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Kurzinhalt 

Die frühzeitige Kostenabschätzung ist häufig eine Voraussetzung, um bei der 
Entwicklung komplexer Produkte deren Wirtschaftlichkeit beurteilen zu können. Die 
Verknüpfung zahlreicher technischer und wirtschaftlicher Faktoren stellt dabei für 
Systementwickler insbesondere in sehr frühen Phasen eine Herausforderung dar, in 
denen nur wenig mehr als die gewünschte Funktionalität bekannt ist. Da die 
Servicerobotik im Vergleich zu anderen Technologien noch relativ jung ist, verschärft 
der Mangel an Erfahrungswerten diese Problematik für Serviceroboterprodukte. 

In dieser Arbeit wird ein Ansatz vorgeschlagen, der durch strukturale Verknüpfung 
von typischen Serviceroboterkomponenten, -funktionalitäten und statistischen 
Kostenmodellen den Kostenschätzungsprozess unterschiedlicher Kostenaggregats-
stufen für Serviceroboter-Prototypen in frühen Entwicklungsphasen erleichtert. 
Zusätzlich ermöglicht diese Vorgehensweise die Abschätzung von Stückkosten für 
kleine Stückzahlen.  

Kernelemente der Arbeit sind die Entwicklung einer Design-Struktur-Matrix für 
Serviceroboter und die Modellierung von Hardware- und Softwarekosten. Die 
anhand von Experteninterviews ermittelte Strukturmatrix verknüpft typische 
Roboterfunktionen mit  Hardware- und Softwarekomponenten und ermöglicht 
dadurch die Ableitung der wesentlichen Bestandteile eines Prototyps aus 
gewünschten Fähigkeiten des Serviceroboters.  

Der Stand der Technik wird bezüglich der gängigen Produktentwicklungs- und 
Kostenschätzungsmethoden sowie deren Einsatz im Bereich der Servicerobotik 
dargestellt. Neben allgemeinen Vorgehensweisen der Kostenschätzung werden 
hardware- und softwarespezifische Konzepte vorgestellt. Entwurfstechniken für 
neue Produkte werden in intuitive und strukturelle Methoden untergliedert und 
erläutert. Die Betrachtung dieser Techniken wird abgeschlossen mit einer 
Untersuchung, inwieweit sie innerhalb der Entwicklung von Servicerobotern 
Anwendung finden und diesbezüglich Verbesserungsmöglichkeiten bestehen. 

Um Kostenschätzungen für Hardwarekomponenten vornehmen zu können, wurden 
im Rahmen einer empirischen Primärrecherche zentrale technische Eigenschaften 
und Preise typischer Komponenten als Basis der Modellentwicklung ermittelt. Die 
vorausgehende Auswahl der untersuchten Komponentenkategorien basiert auf 
Experteninterviews, der Analyse abgeschlossener Serviceroboterprojekte sowie 
einschlägiger Literatur. Für jede Kategorie wurden nach der Datenerhebung mittels 
semi-parametrischer Regression mehrere Kostenmodelle erstellt und das jeweils 
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geeignetste ausgewählt. Die Güte der  Modelle wurde dabei mit Hilfe  statistischer 
Vergleichsmaße beurteilt. 

Für Softwarekomponenten bedient sich der Ansatz der analogiebasierten 
Aufwandsschätzung. Im Wesentlichen wird bei diesem Ansatz der Aufwand zur 
Erstellung einer spezifischen Software abgeschätzt, indem aus einer Analogie zu 
einem bereits bestehenden, funktional ähnlichen Programm Rückschlüsse gezogen 
werden. Zu diesem Zweck wurden mehrere Hundert Module der Open-Source-
Softwareumgebung Robot Operating System (ROS) von Willow Garage analysiert. 
Hierbei wurde zunächst der Umfang von Softwaremodulen in Programmzeilen 
ermittelt. Anschließend wurde der jeweilige Umfang in ein weiteres Maß für 
Softwareumfang, sog. Function Points, konvertiert, um den Aufwand mittels 
Produktivitätsraten unabhängig von der verwendeten Programmiersprache schätzen 
zu können. Die verwendeten Konvertierungs- und Produktivitätsraten basieren auf 
heuristischen Daten aus Literaturquellen zur Softwareprojektierung.  

Für jedes Kostenmodell wird im Rahmen  der vorgestellten Methodik eine 
statistische Kostenverteilung errechnet. Dies ermöglicht neben punktweisen 
Schätzungen auch die Errechnung von Standardabstand und Wahrscheinlich-
keitsbändern. Dies birgt den Vorteil, dass die Schwankungsbreite von Schätzungen 
expliziert werden können und somit die Schätzunsicherheit besser beurteilt werden 
kann. 

Um den Schätzprozess zu unterstützen, wurde eine Softwareapplikation entwickelt. 
Diese stellt eine grafische Benutzeroberfläche zur Verfügung, die den Benutzer 
durch die wesentlichen Schritte des Schätzprozesses führt. Nachdem der Benutzer 
Roboterfunktionen und -komponenten ausgewählt und parametriert hat, errechnet 
das Programm anhand der integrierten Modelle Kostenschätzungen einschließlich 
Unsicherheitskorridoren. Als zusätzliche Orientierung werden dabei für jede 
Komponente Parameterwerte basierend auf den vorangegangen Erhebungen 
vorgeschlagen. 

Der Ansatz wurde an zwei unterschiedlichen Datensätzen verifiziert. Zum einen 

wurden für im Rahmen von EFFIROB entworfene Roboterskizzen Schätzungen 

erstellt und von Experten mit bestehenden Kostenschätzungen verglichen und 

beurteilt. Hierfür wurden fünf Szenarien für mögliche Serviceroboter ausgewählt 

und jeweils mehrere Kostenaggregate mit Hilfe der vorgestellten Methodik 

geschätzt. Die Ergebnisse wurden auf ihre relative Diskrepanz zu den Originalwerten 

untersucht und auf Plausibilität geprüft, indem zu jedem Szenario ein Experte, der 
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die ursprüngliche Schätzung vorgenommen hatte, zur Qualität der neuen 

Kostenprognose befragt wurde. Zum anderen wurde die Kostenschätzung für einen 

gebauten Prototypen durchgeführt. Für den Vergleich ursprünglicher und neuer 

Schätzungen sowie tatsächlicher Kosten  wurde der Prototyp "Raser", ein 

Serviceroboter für autonomes Rasenmähen, ausgewählt. Anhand der 

Projektdokumentation konnten die ursprüngliche Kostenschätzung sowie die 

tatsächlichen Kosten ermittelt werden und einer Schätzung gemäß der vorgestellten 

Methodik gegenübergestellt werden. Für die Beurteilung der Ergebnisse wurde ein 

Experte, der maßgeblich an der Entwicklung des Prototyps beteiligt war, befragt. 
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Short summary 

Early cost estimation is a common prerequisite for the profitability assessment of 

the development of complex products. Thereby, the combination of numerous 

technical and economic factors poses a particular challenge for system developers 

when little more than the desired functionality of the product is known. In the field 

of service robotics, this issue is acerbated by the lack of empirical values and 

experience as the according technologies are comparatively novel. 

The presented work proposes an approach which facilitates the estimation process 

for various cost aggregates of service robot prototypes in early development phases. 

To this end, typical components and functionalities are structurally mapped and 

related to statistical cost models. Additionally, the presented approach offers the 

possibility of unit cost estimation for small lot sizes. 

Core elements of this work are the development of a design-structure-matrix for 

service robots and the modeling of hardware and software costs. The structure 

matrix determined by expert interviews typical maps robot functions to hardware 

and software components, thus facilitating the derivation of essential prototype 

parts from desired service robot skills. 

The status quo is presented regarding current product development and cost 

estimation methods as well as their application in the field of service robotics. In 

addition to general practices of cost estimation, hardware and software specific 

concepts are illustrated. Design techniques for new products are divided into 

intuitive and structural methods and explained. The consideration of these methods 

concludes with the examination of their application to service robot development 

and possible improvements in this regard. 

In order to develop a model for cost estimation of hardware components, essential 

technical features and prices of typical components were identified via empirical 

research. The preceding selection of examined component categories was based on 

expert interviews, the analysis of finalized service robot projects and relevant 

literature. Several cost models were developed for each category using semi-

parametric regression. The most suitable model was chosen from these based on 

their quality according to statistical comparative measures. 



vii 

For software components, the approach applies the principle of analogy-based 

estimation. Essentially, this approach estimates the effort required to implement a 

specific software application by inferring it from the analogy to an existing and 

functionally similar program. To this end, several hundred modules of the open 

source software environment 'Robot Operating System' (ROS) by Willow Garage 

were analyzed. After determining the extent of each module, i.e. number of lines of 

code, it was converted into function points, another measure of software extent. 

Using the latter in conjunction with productivity rates, required effort can be 

estimated regardless of the employed programming language. The applied 

conversion and productivity rates are based on heuristic data from software 

development literature. 

The presented approach also illustrates the calculation of a statistical cost 

distribution for each cost model. In addition to single point estimations, the 

distributions allow the computation of deviation and probability bands. The 

advantage of this additional information is the facilitation of the assessment of the 

fluctuation range and thus the provision of an indicator for estimation uncertainty. 

In order to support the estimation process a software application was developed. It 

features a graphical user interface guiding the user through the steps of the 

estimation process. After the user has selected and parameterized the desired robot 

functions and components, the program computes cost estimations including 

uncertainty corridors based on the integrated cost models. For additional 

orientation, the program proposes default parameter values for each component 

based on the empirical research data. 

The approach was verified using two different datasets. On the one hand, 

estimations for robot prototypes outlined in the EFFIROB study were calculated 

applying the proposed methodology and consecutively compared with the original 

estimates and assessed by experts. To this end, five service robot scenarios were 

selected and several cost aggregates estimated using the presented method. The 

results were examined regarding their relative discrepancy to the original values. 

Their quality and plausibility was gauged by interviewing experts who had 

conducted the according original estimations. On the other hand, costs were also 

estimated for a built prototype. For the comparison with the original estimate as 
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well as the actual costs, the prototype 'Raser' was chosen, a service robot for lawn 

mowing. The original cost estimation and actual costs were extracted from project 

documentation and juxtaposed to the estimations according to the presented 

approach. The results were critically reviewed by one of the developers involved in 

the prototype's development. 
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1. Introduction 

The field of service robotics is a comparatively young area that is expected to 

economically boom within the next decades into an economically significant multi-

billion Euro market (Hägele 2011, pp. ix–xi). For this to come true, the cost-

effectiveness of service robots must be assured. However, only few studies on 

economic aspects of service robots have been published, most articles seem to 

focus on technical feasibility and solutions.  

The lack of cost consideration has led to many prototypical service robots that were 

able to fulfill a certain purpose but prohibitively expensive (Prassler 2010). However, 

if profit-oriented enterprises are to engage in this field they must be able to predict 

the profitability of those undertakings that concern the development and marketing 

of a service robot in order to make rational planning. 

1.1. Problem 

Estimating the development cost of a prototypical robot is difficult for several 

reasons. Most technical cost estimation methods require more detail knowledge 

than is available at early development stages thus basically reducing the appropriate 

selection of methods to expert opinion and comparison to similar products if 

possible. Also, service robots represent complex systems where the costs cannot 

simply be reduced to material costs as is often the case for simple products like nails 

or pencils; higher complexity entails an elevated development risk. Estimating the 

efforts and costs for developing a service robot requires expertise not only in a 

variety of technical fields such as electronics, systems engineering and software 

development but also an understanding of costing concepts and risk management. 

Furthermore, the estimator must be knowledgeable about feasible service robot 

solutions and their possible mapping to complex tasks. Bridging these diverse fields 

poses a significant challenge to single estimators. Furthermore, the cost of the 

estimation itself must not be prohibitively expensive as that would lead to 

abandonment of the attempt to predict project costs at all. 

Often, the estimation of manufacturing costs is based on the hardware structure. 

But nowadays, the software development has become equally as important for 
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service robots as the study EFFIROB on profitability of innovative service robot 

applications has shown; because service robots are complex systems the software 

development costs are considerable (Hägele 2010, p. 337). This major cost block is 

incurred in preproduction phases whereas the direct software costs (i.e. per unit 

produced) in the manufacturing stage are negligible. Therefore the classical 

definition of production costs falls short for a complex product and cost intensive 

constituents of a system where hardware and software are equally important as it 

does not capture the indirect cost incurred in the development stage.  

The dilemma is exacerbated by the phenomenon that up to 90% of the life-cycle 

costs are determined in planning and development phases although the majority of 

the costs are incurred during production as depicted in Figure 1.1-1 (Ehrlenspiel 

2007a, p. 11). This means that solid decision-making is highly important in early 

phases in spite of bounded rationality; at the time detailed product knowledge is 

available the possibilities of influencing costs will have decreased significantly. 

Figure 1.1-1 Influence on costs vs. incurrence of costs over product life-cycle 
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1.2. Motivation 

Enterprises interested in serving the market for complex products as service robots 

require means to predict the profitability of such engagements (Trivailo 2012, 

pp. 2-5). Committing to the development of a service robot that is technically 

feasible but economically not viable could result in profound financial losses 

therefore early cost considerations are the developer's responsibility (Ehrlenspiel 

2007a, p. 62). Ex ante cost estimation also becomes increasingly important for 

research institutes aspiring to receive public funding; as an example the 

substantiation of the profitability of proposed robot concepts was mandatory in a 

recent call for proposals in the field of service robotics by the German Federal 

Ministry for Research and Education (BMBF 2012). Cost estimates can also be used 

for comparison of variants, recognition of cost reduction potentials, production 

controlling or supplier cost examination i.e. they serve a variety of controlling and 

management purposes. 

Therefore, cost estimation methods and tools that are reliable and produce realistic 

results on one hand and allow uncomplicated, quick and traceable estimates on the 

other hand could provide substantial support to service robot experts. Porter states 

that "an approach for reducing the complexity of the forecasting process is highly 

desirable" in the context of developing competitive strategies in emerging markets 

(Porter 2004, p. 234). Bridging the gap between the current lack of pragmatic 

prognostic methodologies and applications in the field of service robotics contrasted 

with the obvious benefits of sound cost estimation is the driving motivation behind 

this thesis. 

1.3. Thesis Objectives 

The primary objective of this thesis is to provide support for cost estimation in early 

planning and development stages of service robot prototypes. To this end, a 

pragmatic methodology is presented drawing on statistical data and expert 

knowledge formalized in cost models and structure matrices. The integration of the 

approach in a software tool is aimed at allowing quick and flexible yet reliable cost 

estimation when little more than the desired functionality of the service robot is 

known. The further the project advances, the more accurate the estimates the tool 

can deliver due to the increment in available information on the solution; the tool 
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can thus be used as an accompanying project management tool. These estimates 

can be used for decision making and assessments processes in product and project 

management and controlling. 

Estimating prototype costs with the methods proposed gives the estimator a more 

comprehensive perspective on potential cost impacts of a specific service robot 

concept because it creates the possibility of comparing and aligning the results with 

estimates derived by different methods e.g. ad hoc expert opinion. It also provides 

the possibility of quick comparison of alternative variants by simply changing the 

selection of basic components which are used as an input to the cost estimation. 

The approach approximates probability distribution of estimated costs thus allowing 

the indication of estimation ranges. These cost corridors improve the assessment of 

uncertainty inherent to the estimation as the additional information enables the 

estimator to judge magnitude and probability of deviation from the estimated value. 

A secondary objective pursued in the presented approach is the derivation of unit 

costs for a specific service robot concept. To this end, various cost constituents 

estimated for prototype development are combined to extrapolate two forms of 

unit costs:  direct unit costs i.e. costs that are incurred per robot manufactured and 

product unit costs which are construed as the direct unit costs plus the costs of 

development not attributable to an individual unit. One limitation of the presented 

approach regarding this objective is that it can only be applied directly to small 

number of produced units as economies of scale and mass production are not 

considered here. 

1.4. Thesis Outline 

Chapter 2 Preliminaries introduces the required terminology used in the presented 

work by giving definitions and explanations on essential service robot and cost 

subjects. Furthermore, the general assumptions made in the scope of this thesis are 

laid out. This chapter also points out the estimator's requirements concerning an 

estimation approach. 

In Chapter 3 State of the Art and Related Work current methods and applications of 

cost estimation and product development are discussed. Moreover, their use in 

relation to service robotics and respective shortcomings are indicated. 
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Chapter 4 Function-based Cost Estimation Approach gives an overview of the 

complete approach. The estimation process is outlined in several steps and the 

methods for collecting data and constructing required dependency matrices and 

cost models are explained. 

Chapter 5 Function-based Structure Estimation details the categories used for 

describing service robot functionality and structure. Furthermore, the combination 

of these categories into a structure matrix is presented. The structure matrix is the 

employed means to map the dependencies between components and serves the 

derivation of an approximate robot structure.  

In Chapter 6 Component-based Cost Estimation, the modeling of prototype costs is 

explicated. These costs are based on the individual component cost models of the 

service robot structure. Cost constituents are established and the pertinent cost 

model derivations are formulated. 

Chapter 7 The Software Tool SEROCOST presents the basic concept and features of 

the software application that has been developed within the scope of this work for 

direct and uncomplicated use of the proposed methodology. 

Chapter 8 Experimental Validation explains the validity of the proposed cost 

estimation; because the presented approach is not amenable to statistical validation 

in a strict sense, use case estimations are computed and subsequently assessed by 

individual experts. Consequently, findings on estimation suitability and usefulness 

are discussed.  

The thesis closes with Chapter 9 Conclusion. It contains a summary and discussion of 

the contributions and an outlook on further extensions and potential improvements 

of the presented approach.  
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2. Preliminaries 

This chapter serves the clarification of the scope of the presented work. Essential 

terms and concepts are described, the general underlying assumptions explained 

and objectives of primary addressees of the cost estimation approach outlined. 

2.1. Terminology 

2.1.1. Service Robot 

A service robot is defined as "a robot [...] that performs useful tasks for humans or 

equipment excluding industrial automation applications" (ISO 8373, p. 3); a robot is 

an "actuated mechanism programmable in two or more axes [...] with a degree of 

autonomy [...], moving within its environment, to perform intended tasks" (ibid., p. 

2). The robots considered in this approach are ground-based mobile service robots 

according these definitions. Although it is generally applicable to a wider range of 

robots (or even engineering solutions outside of robotics for that matter) the high 

exigencies for time and effort of data acquisition required for deriving cost functions 

necessitate a focus on specific areas; against this background aerial and marine 

platforms are beyond the scope of this work.  

 

Figure 2.1-1 Care-O-bot 3 by Fraunhofer IPA 

 

Figure 2.1-2 PR2 by Willow Garage 

Further restrictions stem from limiting the parameter ranges of the considered 

hardware components which are outlined in Chapter 2.1.3; effectively, these 

constraints limit the considered service robot to small and medium-sized robots 
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weighing no more than 650 kg.1 This restriction to this subset is deemed justifiable 

as it covers the majority of service robots: in 2007, Piperidis et al. reported that only 

27% of service robots weigh more than 10 kg (Piperidis 2007, p. 1). Popular 

examples of medium-sized service robots like the Care-O-bot 3 (186 kg) by 

Fraunhofer Institute for Manufacturing Engineering and Automation shown in Figure 

2.1-1 or the PR2 (220 kg) by Willow Garage depicted in Figure 2.1-2 (Willow Garage 

2009c) stay far below maximum theoretical weight considered in this approach. 

Service robots interact with their environment which is why the term 'robot system' 

sometimes includes the environment (e.g. Dalgaard 2010, pp. 10–13; Lindemann 

2005, p. 10). In the scope of this work, 'system' refers only to the robot itself; the 

environment is only considered insofar as structural components external to the 

robot are absolute prerequisites for its functionality (s. Miscellaneous Environment 

Hardware in Chapter 5.1.2.2). 

2.1.2. Skill 

At the time of writing this thesis, no general application or definition of the terms 

'skill' existed but it has been used in combination and sometimes in distinction with 

the terms 'function', 'skill', 'action', 'task', 'application', 'mission' and others (e.g. 

Bischoff 2009, p. 7; Smits 2010, p. 6). For this reason, it is deemed to be of 

importance to clarify the term's use in the scope of this work; it is not the intention 

of the author to create a universally valid definition. 

In this work, the term 'skill' is interpreted as a class of intermediate granularity that 

comprises purpose-oriented activities frequently occurring in a service robot's mode 

of operation, i.e. each skill could be decomposed into further sub-skills of a finer 

granularity.  

For a concrete service robot application area specific skills can be detailed. However, 

the aim of the presented cost estimation approach is to cover a variety of service 

robots which requires a certain degree of generalization. For this reason a skill is 

defined here as a generic ability to deliver an expected functional performance. As 

1The weight constraint stems from restricting the maximum weight of the platform to 350 kg and 

its maximum payload capacity to 300 kg; s. Chapter 5.1.2.2. 
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an example, the specific tasks 'cut wire of thickness x' or 'grind metallic surface' 

require specific skills but can be subsumed under the generic skill 'process object'. 

The list of skills developed in this work is not regarded as exhaustive rather than a 

compilation of robotic abilities that are demanded of many service robots, based on 

the experience of robot engineers and current literature on service robots (s. 

Chapter 5.1.2.1). 

2.1.3. Component 

Components are the building blocks of a service robot. In the scope of this work, 

these do not only comprise hardware i.e. physical equipment but also include 

software components. Similar to the generalization issue described for skills, 

abstract categories for components are essential to the approach being applicable 

to a range of different service robot concepts. In the scope of this work, several 

terms are used to clarify the level of concretization.  

Component type is the most general expression applied in these considerations. A 

component type represents a generic category of components which serves similar 

technical purposes and characteristics and thus can be described by a common set 

of parameters. In contrast, component as the most specific term describes an actual 

element within a component type category specified by a determined set of values 

for the component type parameters. As an example, all robot arms (component 

type) are "interconnected sets of links [...] and powered joints [...]" (ISO 8373, p. 7) 

and allow positioning of an end-effector within its working space but a variety of 

implementations (components) differing in size, shape, number of degrees of 

freedom etc. exists. 

Furthermore, the term component instance is used which stands for an entire set of 

identical components i.e. the determining parameter values of a component 

instance are the determining parameter values of a specific component and 

additionally the quantity of these components per robot unit. This term was 

introduced to clarify the distinguishing between differently parameterized 

components of the same component type category. Figure 2.1-3 illustrates the 

component terminology with an example for cameras. 
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Component level 

Component instance level 

Component type level Camera 

Instance 1 

frames per sec.: 32, 

sensor diagonal: 0.3 '', 

quantity: 2 

Camera 1 

frames per sec.: 
32, 

sensor diagonal: 
0.3 '' 

Camera 2 

frames per sec.: 
32, 

sensor diagonal: 
0.3 '' 

Instance 2 

frames per sec.: 90, 

sensor diagonal: 0.5 '', 

quantity: 1 

Camera 3 

frames per sec.: 
90, 

sensor diagonal: 
0.5 '' 

Each component type is assigned an individual cost model which permits the cost 

estimation per cost instance using the respective parameter values as model input. 

As these cost models have been determined by statistical regression analysis the 

data required to build the models was collected beforehand. The dilemma in this 

context is that the component types must be generic enough to fit a variety of 

components but this abstraction complicates the selection of representative data 

because it increases the size of the population to be surveyed. In order to improve 

model accuracy and reducing the population size the ranges for component type 

parameters were restricted within plausible ranges for the service robot types 

considered. Examples are the maximum payload for robot arms which was set to 10 

kg or platform maximum weight at 350 kg; detailed explanations of component-

related restrictions are given in Chapter 5.1.2.2. 

Figure 2.1-3 Camera example of the component terminology 

2.1.4. Cost Types 

Costing theory offers a wide range of cost terms. From a business-oriented point of 

view, costs are the consumption of goods and services incurred with the purpose of 

creating products or services, evaluated in monetary terms (Coenenberg 2009, p. 

24). 
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Costs can be classified according to a number of characteristics depending on the 

focus of the specific consideration (Coenenberg 2009, p.25, pp.57-95; Plinke 2000, 

pp. 23–39). They are the dominant metric for planning and controlling the economic 

success of an enterprise. Classifications of costs help to fairly assign costs to specific 

business-oriented decisions according to the input involved – the principle of 

causation – in order to assess the economic viability of the latter.  

In this work the considered costs are classified by factor consumption i.e. labor and 

material costs and by allocation unit i.e. costs per produced unit or costs incurred by 

the product type. A detailed explanation of cost types is given in Appendix 10.1. 

2.1.5. Early development stages 

In order to clarify the classification of early product development stages at which 

the estimation approach in this thesis is aimed, several current models of generic 

development processes are outlined in the following section.  

Kossiakoff and Sweet regard the product development process as an eight phase 

system development life-cycle (Kossiakoff 2003, p. 52). The different phases can be 

subsumed under the three main development stages concept development, 

engineering development and post development as depicted in Figure 2.1-4 (ibid.; 

also cf. Dalgaard 2010, pp. 94–98). 

Figure 2.1-4 System life-cycle model of systems engineering by Kossiakoff and Sweet 

The concept development stage relates to the first phases of product development 

and is concerned with issues of principal requirements, feasibility and product 

characteristics. The engineering development stage comprises phases of detailing 

the product concept by identifying and analyzing remaining technical problems, 

engineering component and subsystem solutions and incorporating them in a final 

product. Post development consists of the production and related engineering 

processes and after sales services and improvements. For each phase, applying an 

iterative method of the four successive steps requirement analysis, functional 



2 Preliminaries 

11 

definition, physical definition and design validation is suggested (Kossiakoff 2003, 

pp. 69–70). 

Ulrich and Eppinger propose a similar generic product development process 

comprising the six phases as depicted in Figure 2.1-5 (Ulrich 2012, pp. 11–32). 

Figure 2.1-5 Generic product development process by Ulrich and Eppinger 

The first two stages represent early development activities where technical and 

economical feasibility are focused. The following three phases concern the concrete 

product design in a 'top-down-top' manner i.e. first the overall system design is 

decided upon then the detailed solutions are developed and subsequently 

integrated into one whole. The final phase of this model incorporates final 

adjustments and production start.  For each phase, executing a variety of activities 

related to marketing, design, manufacturing and other functions is suggested (ibid., 

p. 14). As Dalgaard points out this model basically reveals the same structure as the

system life-cycle model by Kossiakoff and Sweet (Dalgaard 2010, p. 98). 

The VDI guideline 2221 proposes a comparable general procedure for development 

and construction which consists of seven steps structured in four overlapping 

phases as displayed in Figure 2.1-6 (VDI-Richtlinie 2221, pp. 9–13). 

The procedure starts with a task, i.e. an application the product to be designed is 

aimed at. After establishing the customer's demands and related requirements in 

the first step the overall product functionality is determined and decomposed into 

subfunctions arranging them in a structured form. Subsequently, technical solutions 

for these functions are investigated. These solutions are then organized in feasible 

modules, i.e. they are mapped to real elements and groups vital for the 

implementation and the interfaces between them are specified. In the next step the 

essential concretization through detailed design of these significant modules takes 

place. In the penultimate step of the procedure the partial designs are finalized and 

integrated into the overall product design. Finally, the results of the product 

development and construction are documented so that product implementation, 
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features and usage can be used in successive processes, particularly in production. 

The procedure is flexible because at any given step a backward or forward iteration 

to other steps is possible; nevertheless, no step should be left out (ibid., p.9, p.11). 

 

Figure 2.1-6 General procedure for development and construction according to VDI 2221 

Although the VDI procedure does not directly address the production and post 

production stage it bears profound similarities with the two other models presented 

here. They all start at the refining of task requirements and functions, continue with 

the search for solution ideas which are consequently decomposed into parts and 

partial designs and finally integrated into one product. 

In the scope of this thesis, early development stages are understood as those where 

application, main functionalities and approximate structure of the service robot are 

determined but no detailed design yet. This notion coincides with the first three 

steps of each of the development process concepts described above. 

2.2. General Assumptions 

In order to guarantee the assessability of the estimation model’s quality the 

underlying assumptions must be disclosed and justified. The estimation approach in 

this work stands on the premises described in following paragraphs. 

2.2.1. Manual Assembly/Small-series Production 

The assembly of the robot units is executed in a small-series, manual fashion, i.e. no 

assembly lines or other mass production means are employed. This is in line with 

the fact that most service robots of today are produced in small numbers and mainly 

assembled manually (Botthof 2011, p. 29). This assumption also entails that no 
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explicit distinction between functional model and prototype development is made in 

this work.2 

2.2.2. Existing company 

The assumption of an existing company entails the premise that the robot 

development enterprise is not founded specifically for the purpose of the robot 

project but is already in business (not necessarily in robotics)  and thus does not 

need to render capital investments in production facilities. This assumption also 

signifies that the necessary manpower is already employed at the company; 

variations in employment due to service robot development are not considered. 

2.2.3. Prototypical Robot 

The robot whose costs are to be estimated is assumed to be a prototype. This 

assumption entails the exemption of series production issues (e.g. patent claims, 

safety restrictions, etc.). There are several reasons for this assumption. Firstly, legal 

matters tied to series production can form a major constituent but are largely locally 

determined. Taking these complex and highly variable issues into account is beyond 

the scope of this approach. Secondly, larger series production of a finalized product 

offers many possibilities to drive down unit costs, e.g. using automated assembly 

lines, buying materials in large quantities or redesign of components (Ehrlenspiel 

2007a, pp. 153–159). The study of cost-efficient production is a separate field of 

study. Implying its potential cost impacts requires complex models that could result 

in inapplicability or at least being impractical for early cost estimation purposes. 

2.2.4. Off-the-shelf Hardware Components 

The hardware components used in the robot are assumed to be parts commercially 

available on the market and no custom products, i.e. off-the-shelf (OTS) 

components. This means that no costs for the development of individual hardware 

components are considered, or that if parts are developed individually their costs 

are similar to OTS components. The assumption is necessary because developing 

separate cost models for prototypical components is beyond the scope of this 

                                                

2For the possible distinction between functional model and prototype s. (Masing 2007, p. 500). 
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thesis. The assumption appears to be justified by the current availability of 

competing commercial products for each of the hardware component type 

categories investigated; also, custom parts need to lie in a comparable price range in 

order to be competitive. 

2.2.5. Component-based Software Development and Software Reuse 

Similar to the assumption of using available hardware technology it is assumed that 

existing open-source robot software is reused and adapted rather than building the 

software from scratch. Also, the software paradigm of component-based 

development is implied which is an appropriate match for the modular structure of 

robot systems and is considered the most viable approach to handling the involved 

complexity (Brugali 2007, p. 13; Brugali 2009, pp. 84–96). This assumption entails 

that no fundamental research is undertaken, i.e. cost for research isolated from 

specific products or components is disregarded. 

2.3. Estimator Requirements 

The presented cost estimation approach and the pertinent software tool are aimed 

at individuals who need to assess the economic viability or profitability of a service 

robot as a planned product in early development stages e.g. robot scientists, 

product engineers or project managers; in the scope of this work these are referred 

to as estimating persons or estimators. For early phase cost estimation and the 

corresponding cost models to be useful the key demands are that "they should be 

acceptable to intuition and experience, should be simple and transparent with 

traceable logic and ground rules, and have an applicable data base" (Meisl 1988, p. 

100). This section details the requirements from the estimator's perspective and 

how they are met. 

2.3.1. Intuitive Application 

The cost estimation process should be intuitive and fairly easy to apply. If the cost 

estimation is too time-consuming and complicated it creates costs in itself which 

increases the likelihood of the process being avoided altogether (Wierda 1988, p. 

190). Intuitive use is particularly important for developers who are technical experts 

and only have minimal exposure to cost issues because the solutions they design 

determine a majority of the product's costs (ibid., pp. 189–190). 
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In order to enable quick and comprehensible usage of the presented approach a 

software application was implemented that allows use of estimation data and 

models without forcing the estimator to research technical or economic details for 

frequently used robot components. The software not only calculates cost estimates 

for components but also provides suggestions for structural dependencies between 

components and functions, thus supporting decisions on the robot's structural 

design. Furthermore, default values are provided for every parameter and are based 

on expert judgments, statistical analysis and further research of current technical 

literature and software. Default values can be overridden by the user. 

2.3.2. Traceability of Estimation 

In order to render the estimation comprehensible the estimation process and its 

results must be traceable for the estimator. For this reason, the development of 

every cost model for the different cost constituent is explained and the results 

displayed separately for each component as well as in aggregated form so that the 

estimator can retrace the calculation. 

The software tool also permits the adaptation of all cost parameters which enables 

the estimator to calibrate cost results according to his experience and to conduct 

sensitivity analyses thus fostering the estimator's understanding of the outcome. 

2.3.3. Applicability 

The data base of the structure and cost models must be applicable to the field of 

interest i.e. the development of service robot prototypes. To this end, lists of typical 

service robot skills and components were compiled and validated by robot experts 

at the Fraunhofer Institute for Manufacturing Engineering and Automation (IPA). 

These catalogs were deliberately designed to be of a generic nature so that the 

individual items can accommodate a wider range of conceivable robot designs. In 

order to avoid over-generalization the component configuration can be tuned to the 

concrete design idea by adapting technical component parameter values like 

weight, selection of software required etc.  

The hardware and software component cost models are based on data research 

specifically conducted within the field of service robotics i.e. the components that 
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were chosen for analysis are currently used and integrated in working service 

robots. 

2.3.4. Uncertainty Assessment 

All estimations are subject to uncertainty. As an early phase estimation has the 

purpose of supporting development decisions it is important that the estimator be 

able to assess the degree of uncertainty inherent to the estimation. Unfortunately, 

the true accuracy can only be evaluated after the real costs are known so they can 

be compared to the estimate i.e. from hindsight.  

To permit the estimator assessing the level of vagueness, the presented approach 

provides means to calculate not only single point estimates but also range estimates 

which give the estimator information on the corridor of most likely costs; a wide 

range indicates a high degree of uncertainty. This additional information improves 

the estimation result by facilitating its interpretation. 
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3. State of the Art and Related Work 

The concept of cost estimation can be applied to a variety of projects. It is usually 

part of the new product development (NPD) process and used to assess the 

profitability of a product idea or to derive business plans, budgets and schedules 

(Ehrlenspiel 2007a, p.62, pp.423-426). Against this background, different cost 

estimation approaches are presented in this chapter. As the structure or design of 

the product considered are central to cost estimation current methods of 

determining product structure are also outlined. 

3.1. Cost Estimation 

This section exhibits general cost estimation categories that can be applied to all 

kinds of costs e.g. project cost estimation where the estimation is extended beyond 

the component costs to the costs incurred on a system-wide level, e.g. overall 

design, administrative costs or management costs.  

Furthermore, the most common approaches for hardware and software cost 

estimation are presented. There are two reasons why hardware and software 

components are treated separately: 

1. The dimensionality of hardware versus software parameters are of different 

natures: Whereas most hardware parameters are physical, e.g. size, weight, 

forces, current etc. software cannot be described by such parameters as it is a 

logical concept, not a physical object. 

2. Whereas software costs consist mainly of labor cost, hardware costs are a 

combination of material costs and labor costs. Thus, the different approaches 

for the respective domain differ in their focus. 

It is noteworthy that in comparison to hardware cost estimation software 

estimation appears to be drawing more attention to researchers. Table 3.1-1 shows 

the number of search results for strings related to cost estimation supporting this 

impression.3 

                                                

3Date of search: 06/06/2012 
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 "hardware… "software… 
Google  Google 

Scholar 

IEEE 

Xplore 

Google Google 

Scholar 

IEEE 

Xplore 
…cost" 464,000 32,300 1,454 963,000 15,300 982 
…cost 

estimation" 

26,200 96 3 136,000 5,500 887 
…cost prediction" 1,840 5 1 9,350 84 0 
…cost 

engineering" 

6 8 0 13,200 35 0 
…development 

effort" 

62,600 191 2 133,000 6,530 121 

Table 3.1-1 Comparison of search results for estimation related terms 

Costs can also be viewed from the customer's perspective. The initial cost is the 

price the user has to pay for the product and usually is higher than the 

manufacturing costs; otherwise the selling company cannot be long-term profitable. 

Demand-based cost estimation tries to answer the question "how much is the user 

willing to pay for a specific product?" whereas the cost estimation in the presented 

approach analyzes the cost of developing and manufacturing a certain kind of 

product, namely service robots. Thus typical market-oriented approaches like target 

costing, price-to-win, value analysis, preference matrix method or similar are not 

considered in the scope of this work. 

3.1.1. Basic Approaches 

As there is a large variety of different approaches for cost estimation a 

categorization of general methods facilitates understanding their advantages and 

drawbacks although the distinction between these categories is fuzzy. The majority 

of the approaches applied in practice are hybrid forms of the basic methods, e.g. 

expert judgment can be used as the basis of a parametric mode; some type of 

parametric model and work breakdown structure (WBS) or component breakdown 

structure (CBS) can be identified in most of the practiced methodologies (cf. 

Williams 1994, p. 4). These methods can be applied to the estimation of hardware 

and software development as detailed below, but they can also be applied in a more 

general fashion to estimate total project costs or those cost constituents that cannot 

be related to a specific part of the development project e.g. project management. 

The following are the most common categories of cost estimation approaches.  
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Expert opinion or expert judgment is the elicitation of subjective opinions from 

experts of the specific field. Their assessment is usually based on experience from 

previous projects that bear similarity with the project to be estimated. This 

approach is very common for early project effort estimation on a macroscopic level 

(ibid., p. 2). 

Cost estimation by expert opinion is the most common estimation approach and 

offers several advantages (Molokken 2003, p. 39). Estimates can be very accurate if 

the expert is knowledgeable; some studies reveal that expert estimates are not 

inferior to other methods and can even outperform them in terms of accuracy 

(Hughes 1996; Molokken 2003, p. 42). Furthermore, implicit expert knowledge often 

is the only reliable source of data when documentation is scarce or fragmentary 

which often is the case for new technologies. Another benefit of most expert 

judgments is their low impact on project costs and quickness of delivery (Rush 2001, 

p. 132). 

The problems associated with expert estimation originate from its subjectivity. 

Whereas good expert deliver accurate estimates, inexperienced ones may be far out 

in their calculations. Expert estimations tend to be too optimistic (Jones 2007, p. 67). 

With a large amplitude of estimation error it is difficult to assess an estimate's 

quality. In the same vein it is hard to judge an expert's proficiency by other 

measures than the success of his or her previous estimates. 

The difficulties in assessing the estimate are associated with the lack of 

systematization of the approach. The expert relies on his subjective and partly tacit 

knowledge without disclosing every assumption he makes thus increasing the 

probability of bias (Roy 2003, p. 3); given the problems of subjectivism, full 

disclosure is either not possible (Polanyi 1985)4 or requires considerable knowledge 

management efforts (Polanyi 1985; Nonaka 1995). This lack of structure reduces the 

comprehensibility and verifiability of the estimate (Rush 2001, p. 132).  A further 

inconvenience of this lack in structure is its low reproducibility of results; different 

                                                

4Polanyi hypothesizes that implicit knowledge can never be fully rendered explicit. 
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expert make different assumptions and experts leaving a company cause drain of 

estimation knowledge. 

Parametric modeling, sometimes referred to as algorithmic modeling, implies the 

derivation and use of mathematical equations and algorithms to estimate costs. The 

model reflects the causality between certain input data, e.g. software size and 

output data, the cost estimate. The central assumption is that a number of 

important product features are the main cost drivers and thus determine the cost 

function (CBET 1990, p. 36). It is based on knowledge from historical data, research 

results and plausible assumptions where no data is available. 

The model’s complexity usually depends on the complexity of the underlying 

product. Simple linear models with only one input variable can be sufficiently 

accurate for plain products, e.g. cost as a linear function of the weight for cog wheel 

production estimation (Ehrlenspiel 2007a, pp. 432–433; Wierda 1988, pp. 190–191). 

For complicated products like large software developments more sophisticated, 

often non-linear models have been developed, e.g. Boehm’s Constructive Cost 

Model COCOMO (CSE 2000). 

Because parametric models are expressed by mathematical equations they 

represent highly systemized approaches. The derivation of the model and the 

underlying assumptions are usually documented thus rendering estimates 

repeatable, verifiable and comprehensible due to their transparency (Roy 2003, pp. 

4–5). However, if documentation is lacking or disclosed e.g. for proprietary 

estimation models the validity of the model is hard to retrace (CBET 1990, p. 36). 

The mathematical structure also allows the application of different statistical 

measures which can facilitate the assessment of the estimation quality and its 

degree of uncertainty. The model's accessibility to computation also permits 

implementation of software tools enhancing and accelerating the estimation 

process. 

As most models contain a number of adjustment parameters they can be adapted to 

different projects without major efforts. This renders parametric models flexible and 

usable for repeated estimation. 
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The main disadvantage of parametric modeling lies in the efforts necessary to create 

the model. Whereas parametric estimation is fast once the model is available it 

requires considerable amounts of research and resources to derive the underlying 

equations. In order to construct a model historical data must be accessible from 

which to extrapolate; if no data is available it must be acquired through costly 

research activities. Also, the applied assumptions, e.g. if the model is additive or 

multiplicative, linear or exponential, must be justified based on verifiable facts or at 

least plausible rationalizations which necessitate further investigative efforts. 

Another drawback of parametric models is their inapplicability to radically new 

products and technologies. Although this issue applies to all estimation approaches 

as they are all based on some form of previous experience it particularly weights 

parametric models because the efforts put into creating a previous model are of 

little value for the new estimate (ibid.). 

Estimation by analogy, case-based reasoning or proxy-based estimation is the 

comparison of similar previous projects to the object of estimation and is often 

closely related to expert judgment. The closer the compared project's characteristics 

are to each other the higher the quality of the estimation. This approach is often 

combined with parametric models (Keung 2008). Analogy-based estimation can be 

applied on product level or on component level in combination with the bottom-up 

engineering approach (s. below). Analogy-based estimation can be fast, intuitive and 

accurate if data on similar products is accessible to the estimator which often is the 

case for enterprises with long-term experience in the respective field (Shepperd 

1997, pp. 737–738; Shepperd 1996, p. 174). 

The difficulties in using analogies for estimation purposes lies in the identification of 

relevant differences between the new project and the analogy and in the 

recognition of their impact on costs. Differences can arise from a multitude of 

factors such as production facilities, material price fluctuations, personnel skills and 

many more. If crucial differences are not identified the risk of the estimation being 

overly biased is high and can lead to misleading conclusions. Furthermore, analogy-

based estimation techniques are not applicable if no proxy can be found to compare 

the new project to, a common problem for novel technologies (Roy 2003, p. 9). 
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Cost estimation approaches can also be separated into top-down and bottom-up 

estimation methods. In top-down estimation the global properties of the product 

are used to arrive at a single estimate which can be broken down to more detailed 

levels, e.g. by dividing material costs from labor costs (Williams 1994, p. 2). Top-

down approaches lend themselves to early cost estimation when no detailed 

information is available yet. Estimates can be fast but tend to be rather inaccurate 

(CSSE 2002, Chapter 5). 

Bottom-up estimation, also referred to as grass roots estimation describes 

estimating processes starting at the component level with cost estimates for each 

component or project activity and subsequent aggregation of the part estimates to 

the overall estimate (ibid., Chapter 4). The estimation can be executed from a 

project perspective concerning activity costs, from product perspective with focus 

on components or in a combined form, depending on the aim of the estimate. These 

estimations are based on a WBS or CBS. Such a breakdown structure is the 

decomposition of the main project into its constituents to a determined level of 

detail. 

In general, the advantages of bottom-up approaches reflect the disadvantages of 

top-down methods and vice versa. One advantage of the former is its potential for 

high accuracy if a comprehensive WBS or CBS is available because estimates are 

generated at a level of detail top-down approaches usually cannot deliver (Williams 

1994, p. 2). A further effect of bottom-up aggregation of estimates is the averaging 

of the random error i.e. the random error decreases (Ehrlenspiel 2007a, pp. 453–

456). The compilation of the breakdown structure also renders the cost estimate 

transparent and comprehensible. 

The downside of bottom-up estimating is that it is a more expensive approach than 

top-down estimation because it requires detail knowledge to generate the 

breakdown structure (Trivailo 2012, p. 8; Williams 1994, p. 2). Also, the information 

necessary for a WBS or CBS is less likely to be available in very early development 

stages, particularly if the degree of innovation of the product to be estimated is 

high. Additionally, the risk of omitting crucial cost-driving elements remains, which 

can reduce the accuracy of the estimate. 
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3.1.2. Hardware Cost Estimation 

Hardware costs can be interpreted in a narrower sense as material costs only or in a 

wider sense as all hardware-related costs which also include labor costs e.g. for 

assembly and installation. Accordingly, some cost estimation approaches focus on 

material costs only whereas other take on a more holistic perspective.  

Weight-based costing as one of the material-only approaches is one of the simpler 

forms of parametric modeling in combination with analogy-based estimation: The 

cost per produced unit is calculated as unit weight multiplied with a weight-cost 

ratio derived from historical data or a product analogy. The ratio can be either 

constant or degressive with increasing weight (Ehrlenspiel 2007a, pp. 432–433). This 

cost estimation approach only yields reasonable results when the new product is 

very similar in design to the analogy or historical data used and its approximate 

weight is known. Also, it appears unlikely that the cost of a complicated product can 

be reduced only to its weight. On the other hand, it is frequently used due to its 

simplicity (Wierda 1988, p. 191; Roy 2003, p. 4).  

Cost estimation by a material cost to manufacturing cost relation is a similar 

approach to weight-based costing with the difference that instead of the product's 

weight its direct material costs are considered as the basic parameter of the cost 

function. The underlying assumption is that the relation of material costs to 

manufacturing costs is constant for specific product groups (Wierda 1988, p. 191). 

This approach can be used in conjunction with the bottom-up bill of materials 

(BOM), a detailed list of the required materials and components for manufacturing a 

product (Reid 2002, pp. 457–458; Sun 2007). Evidently, this is only feasible once the 

product design has been decided upon and therefore the use of a BOM is not 

suitable for early product development phases. Furthermore, this approach tends to 

neglect labor costs. 

Estimating costs via design equation combines technical and economic parameters 

into one closed-form cost equation (Ehrlenspiel 2007a, pp. 434–435; VDI-Richtlinie 

2225 Blatt 1; VDI-Richtlinie 2225 Blatt 4). Typically, this is realized by identifying a 

number of product property variables and quantifying their cost impact, e.g. the 

resolution of a camera or the energy output of an electric motor (Eversheim 1985, p. 

417). The advantage of this approach is that it has the potential to capture relations 
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between product characteristics and their impact on costs more precisely. Its major 

disadvantage is the effort required to create adequate design equations. Each 

product category requires a separate equation and thus the establishment of 

techno-economic relations, search for and selection of crucial variables and 

evaluation of the resulting cost function. For complex products, the design function 

can be complicated and results difficult to convey (Wierda 1988, p. 191). Also, labor 

costs are usually not considered. 

A method to systematically derive and quantify relations between product 

properties and costs is regression analysis of the considered variables, i.e. the 

product property parameters. Regression can be linear, non-linear or a combination 

of both (Ehrlenspiel 2007a, pp. 436–437). Regression analysis is a methodologically 

sound and approved technique from the field of statistics. Thus it offers the 

advantage of being highly systematic and less prone to user bias. It allows the 

calculation of statistical measures which can be used to assess the uncertainty 

inherent to the estimation. On the other hand, regression analysis relies on data and 

assumptions made to be reliable and relevant; if this is not the case it can lead to 

false relationships and erroneous conclusions (Cook 1982); (Roy 2003, p. 5). The 

efforts of data acquisition and processing are extensive which renders the 

application of this method costly and time-consuming.  

Although it is often stated that expert judgment is a common tool in estimating the 

costs for product development (Rush 2001, p.272, p.275) empirical studies on the 

matter are sparse. Keeney states that expert assessments are basically inevitable 

and "a judgment is initially required in determining that a problem is even worthy of 

attention" (Keeney 1989, p. 83). The elicitation of expert opinions often represents 

the only possibility to gather information in early development stages (Rowe 2002, 

p. 125). 

Delphi methods offer the possibility to reduce the effect of the aforementioned 

disadvantages of individual judgments by combining the opinions of several experts 

in a structured way. It is assumed that the estimates will converge after several 

rounds of revising the experts' assessments (Rowe 1999). This method has been 

employed for a multitude of application purposes and proven a valid approach to 

forecasting (Linstone 1975). One major disadvantage of delphi approaches in 
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contrast to other expert judgment elicitations is that they require a considerable 

effort for the preparation of expert rounds. 

Another form of statistics-based cost estimation is the use of neural networks. Their 

main building blocks consist of layers of artificial neurons which represent functions 

relating input and output data. The neurons are linked by so-called activation 

functions defining the output of a neuron which is the input to neurons on the 

successive layer; technical literature displays a multitude of different ways of 

constructing a neural network (e.g. Lawrence 1994; Hertz 1991; Gurney 1997). 

The benefits of neural networks are controversially discussed: Some authors claim 

cost estimation via neural networks to outperform other forecasting methods (e.g. 

Liu 2003; Li 2006) whereas others doubt that it is of practical use: "Although neural 

nets do solve a few toy problems, their powers of computation are so limited that I 

am surprised anyone takes them seriously as a general problem-solving tool" 

(Dewdney 1998, p. 82). The main advantage of neural networks is their skill of 

solution optimization through self-adaptation of the applied model and the handling 

of very complex and non-linear data. The drawbacks are the large requirement for 

computational power and expertise in the construction and training of the neural 

network. Whereas the former is arguably abated to a certain degree by the 

development of potent computers and the relative decline of related costs, the 

latter represents a major impediment: not only does the complex process of 

developing a neural network bind considerable manpower but it requires knowledge 

which might not be available to every company. Furthermore, the results of an 

estimation by neural network can be hard to interpret as the internal weighting and 

connections of hidden neurons – the intermediate layers – are concealed from the 

user (Ehrlenspiel 2007a, p. 442; Roy 2003, p. 8). 

A range of integrated software solutions is available for hardware cost estimation 

(Trivailo 2012). PRICE H and TruePlanning TrueH by PRICE Solutions and SEER-H by 

Galorath Incorporated are comprehensive suites that rely on large databases filled 

with data from projects and expert estimates and widely use parametric modeling 

and product analogies. Although these applications stem from military and 

aerospace background they are not restricted to these areas but can be applied to a 

wide array of different industries (ibid., pp. 11–12). The Advanced Cost Estimating 
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System (aces) by 4cost GmbH is a module of the 4cost suite allowing detailed 

parametric cost estimation. In contrast to PRICE and SEER products it does not rely 

on databases but on mathematical cost estimation functions derived from research 

over many years (4cost 2012). These suites offer comfortable out-of-the-box 

solutions but still require a lot of input data for fine-tuning and are thus less 

adequate for early phase cost estimation (Trivailo 2012, p. 15). Also, they are not 

free of charge thus incurring additional estimation costs. 

Another category of tools available for hardware cost estimation is represented by 

"government of the shelf (GOTS)" (ibid., p. 5) handbooks, notably originating from 

U.S.A. aerospace and military programs. Although these are primarily designed for 

the mentioned fields the underlying principles and general recommendations can be 

applied to other areas with complex products such as robotics. 

Some guidelines and norms primarily addressing cost accounting and cost planning 

can also be applied to cost estimation. Financial reporting and management 

accounting standards provide guidelines on how to assess the value of existing 

products within the company. Planned costs are extrapolated from knowledge of 

productivity ratios and unit costs gathered in earlier production periods of the 

product (Plinke 2000, p. 161); from the product perspective this form of cost 

estimation can be regarded as an analogy-based top-down approach. As traditional 

cost planning requires detailed cost information it is best suited for mature products 

and less appropriate for innovation development. 

All of the mentioned methods are valid approaches for hardware cost estimation. 

However, the different methodologies make it hard for the robot developer to 

decide on the appropriate one and in contrast to more established industries like 

aerospace or automotive there is no integrated suite of methods available for 

service robotics. Thus, this work proposes a combination of regression analysis for 

hardware material as well as expert opinion and analogy-based approach for labor 

cost estimation. Regression analysis allows the estimation of material cost 

distributions based on documented component characteristics and is unbiased by 

subjective assessments. Since little information on labor costs is available in contrast 

to well-documented hardware components (material) costs, the analogy-based 
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approach falls back on experts' experiences in building prototypical service robots as 

a grounded basis for estimation.  

3.1.3. Software Cost Estimation 

Expert judgment and analogy-based estimation techniques are the most widely used 

method categories for software development cost estimation (Jorgensen 2007, p. 

40). The methods within these categories range from estimates based on intuition 

and experience over case study analogies to more formalized approaches like delphi 

methods (Molokken 2003, p. 5; Jorgensen 2007, p. 39; Fink 2005, pp. 30–31). 

The roots of the wideband delphi method lie in the research field of cost estimates 

in software development (Boehm 1981). This method is widely used in the software 

industry and has proven to be effective for software projects (Stellman 2006, p. 39; 

Stochel 2011, p. 351). Although the wideband approach is supposed to increase 

communication and interaction between the experts through additional moderated 

meetings the terms "wideband delphi" and "delphi" seem to be used as synonyms.5 

Thus the explanations of advantages and drawbacks given for hardware cost 

estimation using delphi methods apply analogously.  

A more recent approach to ameliorating bias effects by tapping into the knowledge 

of several people at once is the wisdom of crowds approach. According to 

Surowiecki this method improves estimation quality by reducing negative effects 

like peer pressure and bias through dominant personalities in the expert group 

(Surowiecki 2005). Its basic claim is that the behavior of a group can be described as 

the behavior of a single entity potentially revealing higher intelligence than even the 

smartest group member thus leading to better estimates. For this to become true 

the expert group members forming the so-called 'wise crowd' must be 

heterogeneous, independent, decentralized and have a means of coalescing their 

opinions into one decision. Though the wisdom of crowd approach is not specifically 

                                                

5Stellman and Greene state that "The Wideband Delphi estimation method was developed in the 

1940s at the Rand Corporation" but the expression "wideband delphi" originated in (Boehm 1981) 

which derives from the delphi method developed by the RAND corporation as a forecasting tool, s. 

(RAND Corp. 2010) for numerous articles on the topic. 
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aimed at cost estimation, Stochel reports this method to be superior to wideband 

delphi cost estimates for software projects (Stochel 2011, p. 538). Similar to delphi 

methods it is a more costly approach than single expert estimation because it 

requires substantial efforts of preparation. Furthermore, it is difficult to assess if a 

group of experts is a wise crowd or just an opinionated mob.  

Analogy-based cost and effort estimation for software development is also a very 

common method for software development cost estimation (Mair 2005, p. 510). It 

has been found to be suited for early cost estimation phases when little detail 

information is available. Some approaches use the algorithmic determination of 

similarity measures to ensure comparability of analogon and estimation subject but 

these measures are disputed and introduce further inconveniences to the 

estimation process (Shepperd 1997, p. 738). 

Although expert judgment and analogy-based estimation appear to be the most 

favored choice in practice, companies sometimes require stronger formalization for 

cost estimation. Yenduri et al. analyzed the results of a company's switching from 

expert judgment to parametric modeling, reporting higher accuracy of estimates 

after the change (Yenduri 2007). The majority of the more formalized approaches 

focus on algorithmic models (Shepperd 1997, p. 736). 

Most of the parametric models are based on software size measures (Boehm 2000; 

Ma 2010, p. 1). The dominating metrics are lines of code (LOC), function points (FP), 

and object points (OP); the derived values are subsequently translated into cost or 

required effort quantifications (Leung 2002, pp. 309–311; Zia 2011, pp. 104–105). 

Lines of code, delivered source instructions or source code statements can be 

calculated by counting the lines of meaningful code and omitting non-functional 

parts, e.g. comments or empty lines. The appropriate standard of what is to be 

considered meaningful code must be defined before LOC counting (Nguyen 2007, 

pp. 2–5; Kalb 1990-10-01). 

The usage of LOC is a controversially discussed matter among software scientists 

(Touesnard 2004, pp. 1–10). Major advantages of LOC counting are its intuitive 

comprehensibility and easy automation of the counting process. On the other hand, 

its explanatory power is limited because LOC depend on further variables like the 
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code quality depending on the developers' experience, coding style, difference 

between coding languages and many more.6 

The function point metric was introduced by Allan Albrecht as an alternative to LOC 

(Albrecht 1979; Albrecht 1983). It abstracts from physical code size which varies 

greatly depending on the applied programming language by capturing the code's 

functionality. The first step in function point analysis is to determine the number of 

unadjusted function points (UFP) by classifying software functions into the 

categories outputs, inputs, inquiries, internal files and external interfaces and 

consequently weighting each function depending on its complexity (Glinz 2004, pp. 

56–57). The second step is to calculate the adjusted function points (AFP) by using 

the formula 

             (3.1)  
where VAF, the value adjustment factor is calculated by 

      .    .       (3.2)  
TDI stands for total degree of influence and can range from 0 to 70; it is derived by 

summing impact weights from 0 to 5 for 14 different system characteristics (ibid., p. 

57). 

Different variations of the function point concept exist; as of 2012 there are five 

recognized standards (Wikipedia 2006); also there are some extended versions like 

feature points or full function points (Leung 2002, pp. 311–312). Advantages over 

LOC are the metric's detachment from specific coding languages and focus on 

software functionality instead mere physical size. One major drawback is that 

function point analysis requires deeper understanding of the analyzed software than 

LOC and thus must be executed manually by trained experts rendering the code 

analysis more time-consuming and costly.  

Object points estimation is the most recent of the mentioned metrics, the concept 

was presented by Banker et al. in the early 1990s (Banker 1991). Object point 

methods are based on an object-oriented software development perspective and 

depart from traditional sequential programming paradigms; it is claimed that LOC 

                                                

6Discussing LOC in depth is beyond the scope of this work. For a comparison of advantages and 

downsides see e.g. (Sneed 2010, pp. 229–262; Wikipedia 2003). 
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and FP metrics do not accommodate well the characteristics of object oriented 

programming (Chidamber 1994, p. 477; Minkiewicz 1997, pp. 2–3). Object points are 

calculated by counting program windows, reports, third generation language (3GL) 

modules and rules and weighting them (Stensrud 1998, pp. 2–5). Object points are 

similarly correlated with development effort as function points but are allegedly less 

complicated to count which is why they are particularly suited for early design 

phases (McConnell 2006, p. 86); nevertheless a basic idea of the software layout 

must be available in order to calculate the object point estimate. 

No matter which size metric is applied, parametric models are used to derive effort 

estimates from software size, commonly expressed in person time and currency 

units. Additionally, many models imply fine-tuning parameters varying in type and 

number from model to model. Macro-adjustments aim at creating a single multiplier 

based on adjustment parameters like skill level, programming tools and paradigm. 

This factor is then applied to the overall project estimate (Jones 2007, p. 336). 

Micro-adjustments also rely on different adjustment parameters but usually apply 

each derived factor separately. 

McConnell reports 21 adjustment factors used in Boehm's COCOMO II model with 

impact ranges indicating the potential to decrease or increase development effort; 

the ten factors with the highest impacts according to Boehm's research are listed in 

Table 3.1-2 (McConnell 2006, p. 66). In a similar vein, Jones enumerates 25 similar 

factors having potential impact on software productivity (Jones 2007, pp. 342–343). 

Development Factor Potential effort 

decrease, % 

Potential effort 

increase, % 
Product complexity -27 74 
Requirement analyst capability -29 42 
Programmer capability -24 34 
Time constraint 0 63 
Personnel continuity -19 29 
Multi-site development -22 22 
Required software reliability -18 26 
Extent of documentation 

required 

-19 23 
Business area experience -19 22 
Use of software tools -22 17 

Table 3.1-2 Factors influencing software development effort based on COCOMO II 
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Applying concrete, company-specific values for calibrating an estimation model can 

significantly increase the estimation fidelity but the problem with most adjustment 

factors is that they introduce a level of subjectivity, especially if the parameter 

values are difficult to express quantitatively, e.g. programmer experience and thus 

they can create a deceptive impression of accuracy (McConnell 2006, pp. 47–49). 

Although a large number of cost models exist, many of them are proprietary and 

thus cannot be assessed or compared (Boehm 2000, p. 178). However, a few 

parametric models have been received with critical acclaim, Putnam's Software Life 

Cycle Management (SLIM) model and the different versions of the already 

mentioned Constructive Cost Model (COCOMO) by Boehm being among the most 

popular (Leung 2002, pp. 314–315). 

Central part of Putnam's model is the so-called software equation 

        
 
   
 

 
   

(3.3)  

where    is the total software size output in LOC,   the development effort in 

person years,    the software delivery time and    the environment or technology 

factor which can be derived from historical data (Putnam 1978, p. 355). The model is 

derived from the Norden-Rayleigh curve describing manpower as a function of 

project time and captures project manning changes over the lifecycle of a software 

project. Originally aimed at estimating the size of software it can also be used for 

effort and schedule estimation (Leung 2002, pp. 314–316). Although the model is 

based on solid empirical evidence it has been observed that some of the 

assumptions do not always hold in practice (Boehm 2000, p. 180). 

The COCOMO models also have a power function as the basic regression formula at 

the center of their concept: 

 

      (3.4)  
where   is the development effort in person months,   is the expected software size 

in thousand lines of code (KLOC) and   and   are coefficients whose values are 

derived for different types of software project characteristics (Leung 2002, p. 314). 

The COCOMO family comprises different versions of Boehm's cost estimating model: 

The first version COCOMO 81 was published 1981 and became one of most widely-

used parametric cost estimation models (Boehm 1981; Boehm 2000, p. 202). It is 
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subdivided into basic, intermediate, detailed COCOMO, each suggesting different 

values for the coefficients   and  . 

As software development paradigms and processes changed significantly the model 

grew less applicable to modern software projects which is why its creators realized 

the need for an overhaul (CSSE 2011). The new version, dubbed COCOMO II, aims at 

addressing issues like software reuse, object-oriented programming introducing 

scale-factors for precedentedness, development flexibility, architecture and risk 

resolution, team cohesion and process maturity. It is also subdivided into three parts 

called Applications Composition, Early Design and Post-Architecture, each 

addressing different stages of the development process. Although COCOMO II is 

widely-used in practice critics expound the problems of high sensitivity and 

requirement of concurrent approaches (Musilek 2002; Oriogun 1999, p. 61). 

A wide range of software tools is available with many differences regarding their 

characteristics. Some programs are free of charge for personal use; most are 

marketed on a one-time or periodic fee basis. Furthermore, there are tools related 

to one specific estimation method and those that cover a whole spectrum of 

approaches. Another differentiation criterion is their degree of integration: some 

tools are stand-alone programs and others can be integrated into software 

management suites. Table 3.1-3 exhibits examples of estimation software along with 

their characteristics classification. 

Software Distributor Free 

version 

available 

Method-

specific 

Suite 

integration 

SEER-SEM Galorath No No Yes 
4cost-aces 4cost No Yes Yes 
QUEST ProjectExperts No No No 
Construx 

Estimate 

Construx Software 

Builders 

Yes No No 
COCOMO II University of 

Southern California 

(USC) 

Yes Yes No 

ArchANGEL Bournemouth 

University 

Yes Yes No 

Table 3.1-3 Examples of software estimation programs 
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SEER-SEM is a comprehensive suite of estimation methods and models, knowledge 

bases and visual data representation possibilities; it is widely used in aerospace and 

defense industries (CSSE 2002). 4cost-aces is a module based on parametric 

estimation that does not rely on a knowledge database but on cost estimation 

relationships developed by expert engineers (4cost 2012). SEER-SEM and 4cost-aces 

are examples of larger management suites that go beyond software cost estimation 

but also address issues of life cycle costs, hardware costs and project management 

in general. 

QUEST and Construx Estimate are both exemplary applications tailored specifically 

for the estimation of software project efforts and support a variety of estimation 

techniques (CSB 2012). Whereas QUEST appears to be relying more on 

questionnaire techniques for elicitation of expert assessments, Construx Estimate 

has a stronger focus on parametric estimation techniques. 

COCOMO II and ArchANGEL are spin-offs from university research centers and can 

be used free of charge. COCOMO II is based on the popular model of the same name 

described above (CSSE 2011); ArchANGEL is the further development of ANGEL Plus 

and is based on analogy estimation techniques (Shepperd 2002). 

Each type of methodology has its advantages and drawbacks depicted in Table 3.1-4. 

Reproducibility refers to how well similar results can be obtained if another expert 

were to repeat the estimation process, traceability refers to how well the results can 

be understood, interpreted and traced back, and the required expertise indicates 

the necessary knowledge of estimation method and experience in estimating. 

 Expert judgment Parametric 

models 

Analogy-based 

estimation 

Reproducibility Very low to high High Medium 

Traceability Medium Medium High 

Required 

estimation 

expertise 

Low to medium High Medium 

Table 3.1-4 Assessment of estimation methods 
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The estimation quality of expert methods highly depends on the knowledge of the 

estimating experts. If this inherent information is not rendered explicit the results 

may lack reproducibility and traceability. 

Parametric models yield reproducible and traceable results due to their high degree 

of systematization. As they are based on long-term statistics and heuristics, the 

models provide plausible estimation values. However, most parametric models 

require in-depth knowledge from previous projects on model-relevant factors like 

productivity or development time (as in SLIM estimation) for calibration. These 

might not be readily available for a new product type like a service robot in contrast 

to more established industries e.g. automotive or aerospace.  

Analogy-based estimations permit a faster, arguably less accurate prognosis but also 

require comparable software. The quality of the results strongly depends on the 

comparability of the analogon used for comparison. As they tend to be less 

systematized than parametric models the expert's bias may have stronger impact on 

the estimation results.  

In order to strike a reasonable compromise between estimation effort, usability and 

accuracy this work proposes a combination of parametric and analogy-based 

modeling. By referring to existing robot software as an analogy and using approved 

development heuristics, the lack of data from previous projects is abated. The use of 

language-specific productivity value permits more accurate estimations than a 

purely LOC-based approach. 

3.2. Product Design Methods 

Although the designing process for a service robot is not the focus of this thesis at 

least some notions of its principal design must be available in order to estimate the 

costs of developing it. The structure of a complex product is its primary cost 

determinant and depends on its purpose. Therefore, current methods of the 

derivation of product structures from the intended product application are 

presented in this section, i.e. the transition from functional requirements to the 

product structure. The different methods can often be combined in the search for 

product design ideas thus complementing each other.  
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Product descriptions can vary in their degree of specification from rough product 

sketch to minutely detailed designs. As the aim of the presented approach is 

prototype cost estimation in early development stages only those methods that are 

adequate for conceiving approximate product structures are presented here; detail 

engineering usually takes place at later development phases.  

3.2.1. Intuitive Methods 

Intuitive methods for generating design ideas are commonly applied to problems 

with imprecise structures, i.e. problems that cannot be solved by algorithms due to 

their openness (VDI-Richtlinie 2221, p. 34). The related methods are usually group 

creativity techniques aimed at finding innovative solution ideas. When applied to 

the product design process in early planning and development phases these 

methods are adequate for generating concept ideas without detailed engineering.  

The most widely used intuitive method is Brainstorming (Hender 2001, p. 1). It is 

usually set up in small groups of five to 15 people who ideally stem from different 

disciplines with the aim of gathering as many ideas for solving a given problem as 

possible (Ehrlenspiel 2007a, p. 60). The technique is based on two guiding principles, 

namely the principle of deferred idea evaluation or judgment and the principle of 

striving for large quantities of ideas (Osborn 1963, p. 124). The former means that 

ideas are not assessed during the Brainstorming session in order to avoid group 

pressure and inhibition, the latter postulates that a great amount of ideas increases 

the probability of arriving at an excellent solution. Brainstorming is recommended 

for development phases where structures of product functions and thereto related 

solutions need to be generated (VDI-Richtlinie 2221, p. 34). 

The 6-3-5 method developed by Rohrbach is a derivation of Brainstorming also 

referred to as 'Brainwriting' (Rohrbach 1969). After communicating the problem to 

group of six experts, each of these experts is to produce three problem related 

ideas. The ideas are passed on to the next expert who elaborates on them. This 

passing-on takes place five times so that every expert has worked on every idea. 

This method is particularly suited for function and solution structuring but can also 

be applied to detailing design solutions. 
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Synectics is a technique that attempts to tap into subconscious thought processes by 

addressing seemingly irrational or emotional aspects of a problem and connecting 

different and apparently irrelevant elements (Gordon 1961, p. 3). Its core principle is 

to "trust things that are alien, and alienate things that are trusted" (ibid.) i.e. the 

detachment of known solutions and ways of thinking and embracing new 

perspectives. This approach is implemented by finding analogies for technical 

solutions to a given problem outside and consequently looking for possibilities to fit 

these analogies to the original problem. 

3.2.2. Structured Methods 

Whereas the intuitive methods are very difficult to integrate into a systematically 

computer-supported framework, the structured methods lend themselves more 

readily to support by automated spreadsheets, matrix representations and similar 

means due to their inherent systematization. As this allows the deployment of cost-

estimating software these methods are arguably more suitable to the presented 

approach which aims at assisting and facilitating early phase cost estimation by 

providing a structured knowledge framework.  

The Morphological Analysis or General Morphological Analysis is a method that 

attempts to investigate all possible solutions to a multi-dimensional non-

quantifiable complex problem in order to find the most adequate one by means of 

comparison (Ritchey 1998, p. 1). The central concept is the use of a so-called 

morphological matrix or Zwicky-Box (Ehrlenspiel 2007a, p. 61; Ritchey 1998, p. 3). 

This matrix is constructed by setting different product aspects against each other 

along usually two or three dimensions, e.g. by mapping required product 

subfunctions to components as possible subsolutions or by mapping product 

features to possible implementation forms as depicted in Figure 3.2-1 for the 

schematic example of designing a lamp. 

 Solution 

1 

Solution 2 Solution 3 … 
Power 

Supply 

Battery Generator Photovoltaic … 
Light 

Intensity 

High Medium Low … 
Size Small Medium Large … 

⋮ ⋮ ⋮ ⋮ ⋮ 

Figure 3.2-1 Schematic example of a morphological matrix 



3 State of the Art and Related Work 

37 

After construction, the matrix is checked for internally consistent combinations in 

order to reduce the set of theoretically possible configurations which is referred to 

as "cross-consistency assessment" (Ritchey 1998, p. 6). The remaining arrangements 

represent plausible solutions and can serve as a basis for initial product design 

decision making e.g. by marking a preferred arrangement as indicated in Figure 3.2-1. 

Morphological methods have been applied to a variety of problems and found to be 

a useful approach to solution finding (Levin 2012). 

Design structure matrices (DSM) can be used for modeling system and are 

particularly well suited for decomposition and integration purposes (Browning 2001, 

p. 292). The matrix approach can provide information on the relations between 

different components of a system but the concept is not restricted to the 

component domain; functions, processes, human resources adherent to the 

development and production of a system can also be dimensions of a structure 

matrix (Braun 2007; Browning 2001, p. 293). The dependency between domain 

elements presented in row and column heads are marked in the matrix cells i.e. the 

intersections of rows and columns. The dependency types allowed in the matrix cells 

must be determined beforehand. Relations can exist within a domain and between 

domains. The former are captured by intradomain matrices, the latter by 

interdomain matrices; both can be aggregated in a so-called Multi-Domain Matrix 

(Maurer 2008). 

Intradomain matrices are square and also symmetric if only symmetric relations (the 

cell entries) are allowed. The cells on the diagonal left blank; self-reflexive 

dependencies could be noted there but this is atypical for the use of design 

structure matrices (Maurer 2007, p. 77). Figure 3.2-2 exhibits an intradomain matrix 

with a symmetrical relation between items A and B.  
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  Domain 1 

  A B C 
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 A - x  

B x -  

C   - 

Figure 3.2-2 Exemplary intradomain matrix 

 

  Domain 2 

  Φ Χ Ψ Ω 

D
o
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 1

 

 

A x    

B   x  

C     

Figure 3.2-3 Exemplary interdomain matrix 

 
Interdomain matrices are not symmetric as the number and type of items in row 

and column heads can differ (s. Figure 3.2-3). 

The planning matrix of the Quality Function Deployment (the 'roof ' of the House of 

Quality) where customer requirements and product features are correlated is a 

related concept and can be interpreted as a DSM, too (Browning 2001, p. 293; 

Clausing 1994, pp. 94–96). 

Axiomatic Design (AD) is a systematic method aimed at rendering design processes 

more creative and efficient at the same time by providing rational thought 

processes and tools (Suh 2001, p. 5). The basic idea is to map different four domains 

of the designing process in a successive. The transitional mapping between the four 

domains is depicted in Figure 3.2-4 (ibid., p. 11). 

 
Figure 3.2-4 Mapping of design domains 

The customer domain describes the desired features of a product from the 

customer's perspective; in the functional domain these descriptions are translated 

into functional requirements and constraints. The physical domain comprises the 

design parameters with which the requirements are to be met. The process 

concerns the producing process and the pertinent variables (ibid., p. 10). 
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Figure 3.2-5 Zigzagging decomposition in AD 

The main focus of the approach lies on the functional and physical domain and the 

mapping between them. In order to proceed systematically two axioms are applied. 

The independence axioms postulates functional requirements to be formulated as a 

minimum set of independent requirements i.e. decoupling of the product functions 

and subsequently mapping each one of them to a design parameter (ibid., pp. 16–

17). Top-down decomposition of the functional requirement and the respective 

mapping of design parameters – a process dubbed 'Zigzagging' by its creator – leads 

to more a detailed product structure; an example is depicted in Figure 3.2-5 (ibid., 

pp. 29–32). The information axiom stipulates that the design with the least 

information content be chosen i.e. the simplest design fulfilling the requirements; 

however, most of the applications of AD focus on the first axiom (Kulak 2010, pp. 

6707–6710). 

As a conclusion it can be stated that most of the systematic approaches to 

determining a product structure are based on matching desired product 

functionality to product features and top-down structure decomposition. This 

commonality appears logical and reasonable because little more than the product's 
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purpose is known at the initial phase of the development process and a sensible 

product design must be aligned with the pertinent requirements. 

3.3. Method application to Service Robotics 

Although a variety of suitable methods is available for systematic cost estimation 

only few of them have been applied to the field of service robotics as of 2012. 

Noticeably, the majority of mentions of cost aspects within the context of service 

robots relate to low-cost designs where 'low-cost' is employed in relatively vague 

terms. However, many claims of such a design are not substantiated by any cost 

data; in most cases where cost data is given no attempt is made to estimate the 

costs of a service robot before construction but the resulting material costs are 

listed with hindsight. A possible explanation for the marginal treatment of cost 

issues could be that most of the works mentioning costs in relation to service robots 

focus stronger on technical than economic innovations, e.g. the usage of superior 

algorithms in order to compensate for inferior i.e. 'low-cost' sensor performance. 

Shue et al. describe the construction of a "low cost semi-autonomous sentry robot" 

and refer to the usage of low cost components as the means to reduce costs but 

give no detail on any incurred costs (Shue 2012). Psarros et al. present "the design 

and development of a semi-autonomous low-cost underwater service robot" using 

conventional materials and components but provide no cost data whatsoever 

(Psarros 2009). Similarly, Zhou et al. illustrate the "design and implementation of [a] 

low-cost service robot" and justify the expression with the usage of standardized 

and inexpensive components; however only total acquisition costs are given without 

indication of their composition (Zhou 2010). Han et al. discuss "an efficient and low-

cost robot grasping system" and report to have reduced the pertinent cost by using 

less accurate and less inexpensive components but only total costs are stated and 

compared with price estimates for selected robots, e.g. Willow Garage's PR2 (Han 

2011). 

A number of publications with a more detailed treatise of costs can be classified as 

bill of materials (BOM) approaches where costs are implicitly defined as the costs of 

the physical components of the robot. Mundhenk et al. describe a "low cost, high 

performance robot design utilizing off-the-shelf parts" and list the costs for the 
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components of a prototypical robot as depicted in Table 3.3-1 (Mundhenk 2003, p. 

296). 

Although software design is outlined no resulting costs for its development are 

mentioned. Likewise, Wolfe et al. outline the development of "a low-cost 

independently-mobile reconfigurable modular robot" and indicate the detailed 

component costs (Wolfe 2012). Labor costs are explicitly excluded. Piperidis et al. 

present "a low cost modular robot vehicle design" and specify a price lower than 

1,000 € as the target price for a simple educational and research robot (Piperidis 

2007). Only material costs are detailed for the estimation of the robot price; 

software development is addressed without reference to the resulting costs. 

Another example of low costs being claimed on basis of component costs is the "low 

cost indoor mobile robot localization system" by Lopez et al. where the costs for 

localization device and marker tags are stated but no further elaboration of 

development costs is given (Lopez 2011). 

The existing software effort estimation techniques are applicable to the service 

robot software as it is subject to the same basic principles of software design. 

However, cost estimation for service robot software development is neglected in 

the aforementioned approaches and appears to be disregarded in general. Although 

the importance of software development within the field of service robotics has 

become evident only few explicit considerations of the adherent costs have been 

made (e.g. Kim 2005; Kim 2009). Kang et al. point out that virtual prototyping can 

significantly reduce development costs but limit themselves to this claim without 

further elaboration (Kang 2005). 

The profitability study for innovative service robot concepts (EFFIROB) is explicitly 

aimed at estimating life cycle costs for service robots from the user's perspective 

(Hägele 2010, pp. 46–64). The scope of this study comprises methods for the 

estimation of both hardware and software costs. Hardware cost estimates are point 

estimates and based on component costs which is why this method can be classified 

as a simplified BOM approach.7 The individual component costs for a selected range 

                                                

7Simplified because only the main components are considered as no detail design was available. 
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of component categories are listed in a component catalogue. Software costs are 

given as point estimates based on code size of those ROS stacks which the 

estimating expert deemed comparable to expected software development; 

consequently, this estimation method is analogy-based. Although the point 

estimating methods yield no information on the likelihood of the estimate or the 

margin of error the EFFIROB exhibits the most encompassing cost estimating 

framework for service robots so far. 

Part Quantity   Cost per unit 

(USD) 

Total Cost 

(USD) 

Rocky 3742 Motherboard  2 500 1,000 
512 Mb Memory (PC 133) 2 36 72 
Flashram (256 Mb) 2 47 94 
Unibrain Fire-I Camera 1 100 100 
Notebook Hard Drive (40 GB)  2 107 214 
Traxxas E-Maxx 1 369 369 
1 GHz Pentium III CPU 4 92 368 
SONY NP-F960 7.2 V 38.8 Wh 

Battery 

8 129 1,032 
Power Supply (TI Power 

Trends + Parts)  
1 100 100 

Extra Parts, misc 1 200 500 
TOTAL  3,849 

Table 3.3-1 Example of a bill of materials 

In this light, it is deemed necessary to compile a comprehensive and specific 

methodology for early cost estimation in order to facilitate the development of cost-

efficient service robots. The approach thus proposed in this work is presented in the 

following chapter.  
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4. Function-based Cost Estimation Approach 

Regarding the areas of hardware cost estimation and software cost estimation 

separately, a variety of theoretically applicable methods are available as outlined in 

Chapter 3. Although these methods have been applied in a wide array of industries, 

only very few comprehensive cost assessments can be observed in the field of 

service robotics. Studies addressing service robot cost issues often focus on material 

or hardware component costs for low-cost solutions; software costs seem to be 

widely neglected. Additionally, most of these approaches analyze costs from the 

retrospective and thus cannot be regarded as estimation methods. 

In terms of holistic approaches that try to estimate both hardware and software 

costs the lack of integrative methodologies applied to service robots is even more 

evident: The only study that addresses both aspects in relation to service robotics 

within a cost estimating framework is EFFIROB. 

While the EFFIROB study poses a valuable contribution, the approach applied 

therein has several shortcomings: 

1. The cost estimates for service robots considered are point estimates i.e. single 

values. However, point estimates do not convey any information on the 

uncertainty of the estimation or its margin of deviation. Range or corridor 

estimates, however, permit the intuitive assessment of uncertainty by the 

width of the pertinent interval – large intervals reveal a higher probability of 

error. 

2. The hardware component costs provided are based on singular expert 

judgment. In addition to the problem that these are point estimates there is 

no consideration of cost variation as a function of different component 

parameters e.g. weight, payload etc. 

3. There is no systematic link between desired functions and the related 

selection of components which renders the hardware configuration subjective 

to personal preferences and may lead to neglecting possible alternative 

design solutions. 

4. The software cost estimation is based on an average reuse ratio and does not 

account for different reuse ratios among software components. This leads to 

strong bias especially for software parts which only require installation but no 
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modification. Additionally, the basis of the software analogy, ROS, has 

undergone substantial changes since 2009 which suggest an updating of the 

estimation basis i.e. the code sizes of ROS components. 

On the other hand, the general procedural method of decomposing a robot's 

functionality, mapping the corresponding functions to hardware and software 

components and aggregating resultant costs is a valid and expedient approach 

which is corroborated by the fact that the German Federal Ministry of Education and 

Research declared profitability analyses based on the EFFIROB approach as 

compulsory for service robot related project proposals (BMBF 2012). 

Therefore, this work uses the EFFIROB study as a methodological starting point and 

extends it in several ways as to eliminate or ameliorate mentioned shortcomings.  

These enhancements comprise the following methods: 

1. Structural decomposition is realized with structure matrices derived in 

dialogue with service robot experts and current classifications of robot 

functionalities. The relations thus captured permit systematic mapping of 

robot functionality to hardware and software components and provide the 

estimating person with suggestions for least requirements as well as possible 

enhancement and substitution possibilities  

2. Hardware component costs are estimated by parametric cost models based 

on regression analysis thus avoiding subjectivity.  

3. Software costs are estimated using an analogy-based approach. Data on the 

chosen analogy, the Electric Emys8 release of the Robot Operating System by 

Willow Garage, is extracted by analyzing package-wise code size and reuse 

ratios of 469 packages in 89 stacks.  

                                                

8As of April 2012. 
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4. For all cost constituents, uncertainty is indicated by estimating probability 

density functions and thereby determining range estimates. Unknown 

underlying shapes of probability density functions are modeled using the 

three-point estimation technique from Program Evaluation and Review 

Technique (PERT). This technique is considered a best practice approach for 

addressing cost uncertainty (Galway 2007, p. 9). 

5. By applying established costing theories different cost types are considered. 

The parallel utilization of direct costing and burdened costing grants a more 

comprehensive perspective on the costs estimated. 

6. In order to facilitate the estimation process a flexible and extendible software 

application is implemented which integrates the different cost models and 

provides the estimating person with default values for parameterization and 

numerous possibilities to enter individual values. 

 

4.1. The Estimation Process 

The aim of the presented approach is to enable the robot developer to arrive at a 

reasonable cost estimate for a prototype from an initial point at which an 

approximate idea of the desired functionalities is available but no detailed design of 

the system. By following a sequence of software-supported steps the estimation 

process can be facilitated and accelerates as the requirement for substantial 

background knowledge on behalf of the estimating person is substantially eased. An 

overview of the three main steps is given in Figure 4.1-1. 

 

Figure 4.1-1 From robot application to costs 

These steps can also be interpreted as traversing several conceptual domains of 

robot design similar to Suh's axiomatic design domain model (s. Chapter 3.2.2). 

The estimation process starts with deriving required specific functions or skills from 

the known application purpose i.e. the developers have to decide what actions the 

robot is supposed to perform.  The estimator must map these specific functions to 
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the generic skills used in the presented approach (s. Chapter 5.1.2.1) if the software 

tool is to derive suggestions for a conceptual technological structure from skill 

requirements. Alternatively, the estimator can also directly indicate components 

that make up the robot structure. Finally, the costs for the robot's development 

based on the structure of the previous step are estimated using heuristic cost 

functions. Figure 4.1-2 illustrates the cost estimation process as it is supported by the 

implemented software tool functionality (s. Chapter 7). 

Initially, the developer of the robot must decide what actions the robot should 

perform, i.e. the specific robot application must be known. Once the purpose of the 

robot is decided upon, the application is broken down into tasks which directly 

correspond to specific functions.9 This can be achieved by applying various creativity 

techniques (s. Chapter 3.2.1). Since the number of possible applications and specific 

function combinations is virtually infinite structured methods are deemed less 

adequate at this stage which is why the estimation software tool does not support 

this step. 

The specific skills must then be mapped to the ones suggested in the skills catalog of 

the presented approach. These skills represent a non-exhaustive, generic set of 

typical robotics skills that can be found in most service robots (s. Chapter 5.1.2.1 for 

details on skills). Depending on the desired functionality the estimator selects those 

skills demanded of the robot as the input to the derivation of the technological 

structure. The transition from specific to generic robot skills is the entry point for 

the usage of the implemented software tool and marked by the dashed horizontal 

line in Figure 4.1-2. 

From the selection of skills the set of necessary hardware and software components 

can be deduced by using knowledge on structural dependencies between these 

categories. These dependencies are extracted from the database where this 

knowledge based on expert information has been stored a priori (s. Chapter 5.2). 

After checking for interconnections, two separate lists of hardware and software 

components are presented to the estimator. Each of these lists contains suggestions 

                                                

9An application represents a general field of work, tasks are more specific duties within this field, 

s. (ISO 8373, p. 17). 
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for components required and potential substitutes as well as components that can 

enhance the robot's performance. The effect of relating items of the categories 

skills, hardware component and software components via stored structural 

dependencies is supporting the estimator's task of creating an approximate robot 

design on which cost estimates can be based. Also, potential alternative solutions 

and possibilities for variants are indicated. 
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Figure 4.1-2 Service robot cost estimation approach 
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The selection of components serves as the base of cost estimation for the robot as 

each component has been assigned a specific cost function of its main cost driving 

parameters which are stored in the database along with typical average values of 

these parameters. By modifying the parameter values the estimate is fitted to the 

concrete robot solution without forcing the estimating person to develop individual 

cost models. The database also holds default parameter values in order to provide 

orientation to the estimating person in case no information on the specific 

parameter is available; if the default settings are used the averaging problem applies 

i.e. averages are usually not as exact as detail specifications for a concrete product 

or component. These defaults are based on expert knowledge and statistics on 

current market data. 

In addition to component specific costs the costs of the system designing process 

which are not tied directly to components but rather the robot development on the 

whole are estimated by employing a proportional cost model. 

Aggregating the previously calculated cost constituents, the cost estimate for the 

prototypical development of the robot is calculated based on the selections, 

pertinent cost models and additional input from the estimating person. In addition 

to prototype costs, direct and burdened unit costs are also derived. 

4.2. From Functions to Structure 

It is the declared aim of the presented work to facilitate the estimation of costs for 

robot development with only an early concept of the robot's desired behavior at 

hand. In order to avoid the necessity for detailed engineering in early concept 

phases generic knowledge on structural relations between skills and components - 

the main constituents of a service robot design in this approach - must be made 

available to the estimating person.  

As developing service robots is a complex field of overlapping disciplines the 

extensiveness of knowledge required for the pertinent activities is vast. For 

knowledge essential to the estimation of the respective development costs to be 

systematically applicable it must be structured. In its structured form it can be 

rendered available to computer-aided processing thus formalizing and facilitating 

the estimation process. Structural knowledge in the context of the presented 
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approach is the knowledge about interdependencies between parts of and their 

relation to the overall structure, i.e. the service robot. 

 The determination of a product's structure i.e. product design engineering is a 

discipline of its own and cannot be covered to its full extent in the scope of this 

thesis.10 The objective is not the derivation of detailed design or the qualitative 

assessment of a structure but to arrive at an information level where main cost-

driving blocks can be identified. 

The typical approach to modeling a complex system is to  

1. decompose the system into subsystems, 

2. analyze the (internal) relationships between subsystems, and 

3. analyze the (external) relationships with its environment (Browning 2001, p. 

292). 

The decomposition of a complex system and its internal and external relations must 

be restricted to a level of granularity that is sufficient for the purpose at hand as the 

coverage of all details is too overwhelming or even counter-productive for human 

individuals and probably not feasible in early design phases (Maurer 2006; Maurer 

2007, pp. 69–71; Browning 2001, p. 302). The differentiation between system and 

its environment also requires "choosing an arbitrary boundary for the system of 

interest" (Browning 2001, p. 292). The operating environment can be considered 

part of the system (e.g. Dalgaard 2010, pp. 10–13); however, in the context of the 

presented work the robot system is restricted to the mobile unit as outlined in 

Chapter 2.1.1. 

Matrix-based approaches are among the most commonly used techniques for 

structuring knowledge on complex systems and relations (Maurer 2007, pp. 53–54; 

Browning 2002, pp. 429–430). Because they are well-suited for the illustration of 

dependencies between components and also complementary to computer 

processing matrices are used in the presented work for deriving a component-based 

                                                

10For a detailed discussion of product engineering cf. e.g. (Lindemann 2005; Kossiakoff 2003). 



4 Function-based Cost Estimation Approach 

51 

architecture (Browning 2001, p. 292). Details on the structure matrix layout used in 

this work are presented in Chapter 5.  

4.3. From Structure to Cost 

With the help of structure matrices the user can determine what kind of 

components are required for the planned service robot but in order to derive cost 

estimates more information on the details of the component format are necessary. 

For this reason cost models are developed for each component category. Parameter 

values can be declared for each component thus refining the cost estimate; the 

overall costs for prototype and robot units are calculated as different aggregates of 

the component cost estimates plus the cost estimate for system design activities i.e. 

costs which cannot be attributed to a single component but rather the system as a 

whole. The latter cost constituent is modeled based on average industry data and 

several assumptions as data availability concerning this particular type of costs is 

sparse. 

Hardware component material costs are based on regression models derived from 

technical data and prices of components currently available on the market. For each 

component, up to three main cost driving parameters are identified by comparing 

different regression models. Labor costs are considered based on average 

installation effort per component as indicated by robot experts and administrative 

efforts tied to each component instance. 

The cost estimation for software components follows a different approach because 

there are no software suites that can be used in service robots without major 

adaptation and thus the dominant cost constituent is the development effort for 

robot software. These expenses are estimated by analyzing current robot software – 

the software analogy – related to each software component category and inferring 

development effort from their size and reusability. Heuristic values for development 

productivity are based on literature and expert opinions. By selecting packages from 

the analyzed software analogy that relate to the software component types of the 

structure matrix the software estimation can be refined to the specific planned 

service robot.  
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4.4. Data Collection and Processing Methods 

The knowledge on service robot structures as described in this chapter must be 

based on data systematically retrieved and verified – the grey areas in Figure 4.1-2 

mark those elements of the approach that required individual research. As different 

types of data needed to be acquired different methods were applied to collecting 

data for the construction of cost models. The general methods and their 

combination aimed at converting data into knowledge supporting cost estimation 

are described in this section; results of the data collection and the integration into 

cost models are presented in the respective section of Chapter 5 and Chapter 6. 

The basic techniques employed in this work are regression analysis (hardware 

components), static code analysis (software components) and expert opinion 

elicitation (structural dependencies, validation). Research in third-party databases 

and technical literature provided additional information on average burden cost. 

These techniques were combined in order to create a service robotics knowledge 

database for early phase cost estimation. The application of each method is detailed 

in the following sections. 

Obviously, the adequate values for an accurate estimate will vary from company to 

company depending on its individual situation. A typical example of such 

discrepancies is the wage rate of engineers and software developers: a company 

located in the People's Republic of China is subject to different wage structures than 

a European enterprise. To compensate for these issues the software tool supporting 

the estimation approach in this work allows the user overriding of any default 

parameter value. Some types of information are more difficult to survey than 

others; in the case where no or too little information is available the collected and 

derived values of the presented work provide the estimator with default values for 

component parameters thus offering support for quick estimates in early 

development stages. 

4.4.1. Regression analysis 

The presented approach applies regression analysis for the development of cost 

models for hardware components. The steps required for this method – data 

collection, modeling, model selection and adaptation, model validation and 
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assessment – are described in the following subsections. The general procedure of 

regression analysis is depicted in Figure 4.4-1 (Backhaus 1996, p. 8).  

4.4.1.1. Data Collection 

As data constitutes the starting point for the regression analysis it has to be 

collected first. To this aim, sampling of hardware component data is used. Sampling 

is the selection of units from a collectivity to be studied, the basic population. The 

selected units must be representative of the basic population in order to allow 

significant deduction of information on the properties of the domain examined 

(Sachs 2002, p. 99). 

 

Figure 4.4-1 General steps of regression analysis 

Sampling is used to retrieve information on the typical parameters for each 

hardware component category and their impact on prices. As the categories are 

designed to be collective terms the underlying basic population is not known. The 

collection and analysis of the entirety of elements belonging to each category would 

require massive market research efforts beyond the scope of the presented work. 

Therefore, the sampling approach is deemed a justified alternative. 
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A problem of the basic population being unknown consists in the impossibility to 

prove the representativeness of the samples selected. Thus representativeness of 

the samples selected can only be assumed. However, the selected units were cross-

checked with experience from practical use in service robot development at the 

Fraunhofer IPA to ensure a sufficient degree of relevance. 

For each hardware component category a list of specific component parameters was 

aggregated from a presample of five to ten products pertaining to the category. 

These product characteristics were then filtered for product relevance (is the 

feature important for the product's functionality?), number of mentions (threshold 

60%) and statistical evaluability (nominal features were excluded) in order to 

determine the potential input variables for the cost model. Subsequently, the 

parameter values for the selected characteristics and single unit prices were 

sampled for a larger number of products.  

4.4.1.2. Modeling 

After the collection of data, the regression model must be formulated i.e. the input 

variables for the model have to be determined. The objective of this step is to create 

a model with a minimum set of independent variables x1, ..., xn that reflects the 

influence of the real influencing factors on the dependent variable y (the component 

cost) as correctly and completely as possible. 

Given that little information is available at early product development phases it is 

essential to reduce the number of estimation input parameters i.e. independent 

variables: the more input data the estimating person is expected to collect in order 

to perform an estimation the higher the probability that the estimation will be 

foregone. Also, collecting and editing large amounts of data for the development of 

the estimation models significantly increases the cost and time of the estimation 

process as well as those of the model development. On the other hand, improper 

and exaggerated reduction leads to loss in estimation quality. Thus, a compromise 

must be found between usability of the estimation model, model construction effort 

and estimation accuracy. 



4 Function-based Cost Estimation Approach 

55 

4.4.1.3. Model selection and adaptation 

In order to estimate the hardware component cost a functional relation between 

the technical parameters identified in the previous step and the cost must be 

established. The general form of such a function is  

                 (4.1)  
where   is the dependent variable cost,         are the independent k variables 

for the technical parameters and   is the estimation error.   is the cost component 

not explained by the model (Fahrmeir 2009, p. 19). 

The most common regression model type is the linear regression model of the form 

                    (4.2)  
which assume a linear relationship between independent and dependent variables. 

Another central assumption of linear regression is that the error term is normally 

distributed around the expected value 0. The coefficients         are often 

estimated using the method of least squares on a dataset of at least k+1 

observations. The major problem that can arise when applying linear regression is 

that the estimation error can be very large if the underlying data does not reveal a 

linear relationship i.e. the linearity assumption can be too restrictive. 

Non-parametric models attenuate this issue by postulating solely a continuous and 

smooth regression function without assuming a simple linear form (ibid., p. 41). The 

original values are fitted to a smoothed curve using smoothing kernels, splines or 

wavelets to satisfy this condition. This permits a more exact mapping of relationship 

between independent and dependent variables at the price of increased 

computational effort and more difficult interpretation (Fox 2000, p. 2). In 

unrestricted non-parametric regression the expected value of the dependent 

variable under given independent variable values can be modeled as 

                         (4.3)  

The assumptions concerning the estimation error   remain the same. 

Because a large variety of different non-parametric models exist a detailed 

description is foregone here.11 The presented approach employs the generalized 

                                                

11For a detailed description of different non-parametric models see (Fahrmeir 2009, pp. 297–398). 
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additive model (GAM). An additive model can be formulated as the sum of smooth 

functions for the independent variables 

                               (4.4)  

i.e. instead of using one function for all independent variables a function is 

determined for each variable separately. This renders the model more restrictive 

than the general form but is more flexible than linear regression which is why it can 

be regarded as a fair compromise between accuracy and modeling effort (Fox 2005, 

p. 116). 

The cost estimation models were calculated using the sample data and the gam 

module from the R mgcv library (RDCT 2012, pp. 2631–2820). To find the most 

adequate model, backwards selection was conducted i.e. for each component 

category a complete model with all independent variables chosen for data collection 

was constructed and subsequently reduced models were developed by removing 

independent variables. Furthermore a linear model was calculated using the R lm 

module of the stats library. In order to select the most adequate model based on an 

assessment of its predictive quality the complete model, reduced models and the 

linear model were compared applying several statistical measures. 

The coefficient of determination R2 is a measure for how well future outcomes are 

likely to be predicted by the constructed model. It indicates the proportion of 

explained variance by the model and is defined as 

 
    

         
  

   

        
  

   

   
   

  
   

        
  

   

 ;         
(4.5)  

where     is the i-th estimated value out of n estimations,    the observed mean of 

the respective n observations and    is the value of the i-th observation.    is the 

residual or estimation error of the i-th estimation i.e. the unexplained variation of 

the model.    values close to 1 indicate a good fit of the data whereas    close to 0 

indicate an inadequate fit. Nevertheless, the informative value of the coefficient of 

determination is limited as it does not indicate if the model was specified correctly. 

Also,    does not show possible correlations between the independent variables 

(Fahrmeir 2009, p. 99). Thus the coefficient of determination is only interpreted in 

conjunction with further indicators. 
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Akaike's Information Criterion (AIC) is a common criterion for model selection 

(Fahrmeir 2009, p. 161; Acquah 2010). It indicates the fitness of a model and also 

accounts for model complexity including a penalizing term for the number of model 

parameters. It is defined as  

                  (4.6)  

where    is the parameter vector with those values yielding the maximum of the 

likelihood function for the estimated model;   is the number of parameters of the 

model. The information criterion can only be used in comparison with other models; 

a single AIC value does not reveal anything about the model. Comparing AIC values 

the model with the smaller AIC value is preferred. 

Because the AIC has a systematical bias towards models with a larger number of 

parameters for increasing sampling sizes, another information criterion countering 

this effect was considered in the model selection. The Bayesian Information 

Criterion (BIC), defined as  

                        (4.7)  
allows the reduction of mentioned bias by incorporating the sampling size   in the 

calculation. As with the AIC, smaller values for the BIC indicate a superior model. 

Cross-validation is another method for assessing a model's predictive quality. The 

observation data is partitioned into two subsets: one for the estimation of the 

model – the training data – and the other for validating the model i.e. examining 

how well the model predicts the dependent variable values of the second subset. A 

large discrepancy in the fit between training data and validation data indicates 

overfitting of the model to the training data. For the purposes the presented work 

the generalized cross-validation of the R gam algorithm was used which is defined as 

 
    

  

        
 

(4.8)  

where   is the deviance,   the number of data and     the degrees of freedom of 

the model (RDCT 2012, p. 2660);12 the smaller the value of the GCV the better the fit 

of the model. 

                                                

12For a detailed discussion of the GCV criterion see e.g. (Golub 1979). 
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The partial F-test can be used to evaluate a model's performance in comparison to 

the complete model. This is realized by trying to disprove the null hypothesis that 

the complete model does not offer a significantly better fit of data than the reduced 

model given a specific level of significance i.e. that their variance is the same. The   

value is calculated as 

 

  

                      

                  

           

           

                      

(4.9)  

where            and             are the sums of the squares of residuals of the 

reduced and complete model, respectively,           and          are the number 

of parameters of the models and   is the number of data points. If the calculated p-

value of   is below the significance level   the null hypothesis is rejected. In this 

work,   was set to 0.05. 

The relative average estimation error can also be employed as another model 

quality criterion. It is calculated as 

   
 

 
 
         
 
   

   
 
   

 (4.10)  

where     is the estimated and    the observed value of the i-th sample and   is the 

number of observations. As   is calculated from observed values it has limited 

informational value on the general estimating quality of the model; an overfitted 

model in particular with small   can still be of poor quality for predicting random 

values. However, if used in conjunction with further model evaluation techniques 

this measure can serve as another quality indicator. 

Depending on the results of the comparison applying all of the described measures 

the most adequate cost model was selected for each hardware component 

category. 

4.4.1.4. Model Validation 

In order to validate the chosen model the fulfillment of its basic assumptions must 

be verified. The advantage of a non-parametric model in this context is that linearity 

is not assumed and thus need not be proven. Apart from the cross-validation 
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already mentioned in the previous section several validity checks were conducted 

for each model. 

The independent variables were examined for multicollinearity i.e. the degree of 

their linear dependency was determined. Multicollinearity is to be avoided as it 

renders a model more sensitive to variation of the correlated input parameters and 

thus introduces bias. The variance inflation factor is a measure for collinearity and is 

defined as 

 
      

 

    
  

(4.11)  

where   is the index of the j-th input variable of the model and   
  is the coefficient 

of determination of the regression equation 

 
           

 

       

     
(4.12)  

i.e. the VIF is calculated for each input variable. If the VIF is larger than 10 the 

multicollinearity of the variable is considered high (Neter 1989, p. 409; for a critical 

review cf. O'Brien 2007). 

 

Figure 4.4-2 Example of a Q-Q plot 

The sample data was also manually checked for outliers. Possible outliers in the 

input data were scrutinized for plausible explanations and excluded from the data if 

found to be abnormal. The exclusion of these values reduces the number of 

available data for model estimation but renders the resulting model more robust 

and is thus deemed justifiable for the purpose of early cost estimation. 

The assumption of the residuals being normally distributed was examined using Q-Q 

plots which show the probability distributions of the normal distribution quantiles 
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compared with the normalized residual quantiles; an example is depicted in Figure 

4.4-2 (adopted from Schönberg 2012, p. 134). 

4.4.2. Static Code Analysis 

Static code analysis is the analysis of software code without executing the code, i.e. 

it is the analysis of code structure. In the scope of the presented work it was 

employed to extract the size of relevant code packages as one of the crucial 

software component parameters in order to attribute software development 

efforts. 

4.4.2.1. Code selection 

Because the estimation of the presented approach takes place at an early 

development stage software implementation for the service robot project has 

probably not started yet; consequently, no or little code will be available for direct 

analysis. In order to derive estimates comparisons with existing software for similar 

projects i.e. service robot related implementations can serve as a plausible 

estimation basis.  

Costs of software development depend on copious software project attributes 

including code complexity and size, user requirements, team skills, development 

methods and many more (Jones 2007, p. 24). More often than not, these 

parameters are unknown or only fuzzily specified in early development phases; a 

circumstance that renders the prognosis of necessary development efforts a 

daunting task.  

Ideally, all relevant parameters of the analogy are identical to those of the robot 

software in development i.e. application area, complexity, experience of the 

development team, development tools, etc., in which case the development effort 

would be expected to be exactly the same. Usually, differences between separate 

software projects are common but comparing two similar projects still yields a 

reliable estimate of the development effort to be expected (Shepperd 1997). For 

this reason, an analogy-based approach was chosen for the presented estimation 

methodology in order to estimate the impact of software development on the 

overall costs. This entails analyzing comparable existing robot software – henceforth 

software analogy – in regard to its development effort and mapping the identified 
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effort quantifications to the specific robot system of which costs are to be 

estimated.  

With experience from similar software projects at hand parallels can be drawn 

between required development efforts. If the estimator holds knowledge of 

incurred costs from past project she or he can extrapolate towards the new venture 

and thus achieve early cost estimation. Unfortunately, this approach does not lend 

itself to pioneering development areas where the development team has little or no 

prior experience and no information about efforts and costs to be expected. 

The way out of this predicament is to find a suitable software analogy. A prospective 

software analogy has to meet certain general selection criteria (Shepperd 1997, pp. 

737–739; Shepperd 1996, p. 171): 

1. Source code must be available for code analysis, as otherwise derivations 

concerning software size and effort are impossible due to non-disclosure issues. 

This condition is per definition met by open-source software. 

2. Software must be functionally related, i.e. built for same or similar principles of 

operation, otherwise the chosen software is no appropriate analogy. 

3. Software development paradigms underlying the analogy’s design must be the 

same or similar as the paradigms for the planned software because the 

underlying paradigm has a strong influence on the software development 

productivity. Thus only comparisons between projects under similar 

development conditions yield sensible results.  

4. The analogy's software quality should meet verifiable standard requirement so 

that the comparison also holds information on the quality level to be expected 

for a given development effort estimation. 

Furthermore, as the presented approach shall cover a wide spectrum of robots and 

not one specific type a suitable software analogy must allow for flexible selection of 

necessary software packages and omission of irrelevant ones which can be 

formulated as two specific selection criteria: 
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5. The granularity of its modules should be equal or higher than the software 

categorization in Chapter 5.1.2.3 while covering all of the therein described 

functionalities in order to permit a more detailed customization of software 

components. 

6. The software analogy must be aimed at software reuse, i.e. its components 

should be designed for being deployed in different robots with minimal effort. 

Name Description 
Carnegie Mellon Robot Navigation 

Toolkit CARMEN (CARMEN-Team 

2009) 

Basic robot control and robot simulator 

Coupled-Layer Architecture for 

Robotic Autonomy CLARAty by Jet 

Propulsion Laboratory (JPL 2008) 

 

Domain-specific robotics software 

Fawkes distributed by Japan's 

National Institute of Advanced 

Industrial Science and Technology 

(FDT 2009) 

Component-based software framework 

for robotic  applications; robotics 

technology middleware 
Urbi by Gostai Technologies 

(Gostai 2012) 

Components framework for robots and 

complex systems in general 

Player project (The Player Project) Robot framework, simulator and 

visualization Open Robot Control Software 

Orocos (The Orocos Project 2012) 

Framework for component-based robot 

control software 

Orca (Orca Robotics 2009) Robot framework with focus on ease of 

use, originally based on Orocos 

Mission Oriented Operating Suite 

MOOS (OMRG 2008) 

Cross platform middleware for robotics 

research 

Mobile Robot Programming 

Toolkit (MPRT 2012) 

Library collection with focus on efficiency 

and reusability 

Open Mobile Robot Architecture 

OpenMORA (OpenMORA 2012) 

Complete robot architecture based on 

MOOS and MRPT 

Robot Operating System ROS by 

Willow Garage (Willow Garage 

2009b) 

comprehensive framework or "meta-

operating system" for robots; reusable 

design Dave's Robotic Operating System 

(Austin 2009) 

Basic software modules for modular 

programming and mobile robots 

http://claraty.jpl.nasa.gov/
http://en.wikipedia.org/wiki/JPL
http://en.wikipedia.org/wiki/JPL
http://www.orocos.org/
http://orca-robotics.sourceforge.net/
http://www.robots.ox.ac.uk/~pnewman/TheMOOS/index.html
http://dros.org/
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OpenJAUS (OpenJAUS 2012) Software library and SDK implementing 

the Joint Architecture for Unmanned 

Systems (JAUS) protocol RI-JAUS SDK by Jaybridge Robotics 

(Jaybridge Robotics 2012) 

Cross-platform software development kit 

implementing the JAUS protocol for 

robot control Open Platform for Robotic Services 

OPRoS (OPRoS WIKI 2011) 

Component based framework, GUI 

editors and simulator 

Yet Another Robot Platform YARP 

(Fitzpatrick 2012) 

Robot control SDK for flexible hardware 

interfacing and peer-to-peer 

communication OpenRAVE (Diankov 2012) Environment for testing, developing, and 

deploying motion planning algorithms in 

robotics applications 

Table 4.4-1 Examples of open source robotics software 

As of 2012, many different frameworks and tools for service robots exist. For the 

purposes of the presented approach, only open source projects were considered 

due to the necessity of access to the source code. Table 4.4-1 gives a non-exhaustive 

overview of available open source robot frameworks and tools as of July 2012 (cf. 

Niemueller 2010; Wikipedia 2009). 

As the number of available frameworks is too extensive for an all-encompassing 

comparison the selection of an adequate software analogy is restricted in the 

presented approach to one framework, the Robot Operating System (ROS) by 

Willow Garage. The selection of ROS does not imply its superiority over other 

robotics frameworks; most of the mentioned frameworks appear to be suitable 

candidates, too. All of the above frameworks meet the requirement of open source 

code and functional relation to robotics. Many of them also meet the requirements 

of reusability and component-based design. The reasons why ROS was selected are: 

1. Verifiable quality standards: The release of packages must adhere to a defined 

policy that postulates prerelease testing to assure operability and compatibility 

with other stacks (Willow Garage 2010). 

2. High interoperability: There is no hard separation between frameworks as they 

often can be used in combination or have interfaces to each other.13 Many of 

                                                

13Orocos developer policy even strongly encourages combining efforts, s. (The Orocos Project). 

http://www.openjaus.com/
http://www.repinvariant.com/products/
http://en.wikipedia.org/wiki/JAUS
http://210.115.36.127/doku.php
http://210.115.36.127/doku.php


4 Function-based Cost Estimation Approach 

64 

the mentioned frameworks offer ROS interfaces and ROS is committed to 

integrability: "ROS is easy to integrate with other robot software frameworks" 

(Willow Garage 2009d). 

3. Fine granularity: ROS offers a file system with different levels of granularity with 

several hundreds of stacks and even more packages. This fineness permits 

component-based software estimation on a detailed level. 

4. Wide-spread usage: As of 2012, ROS has been integrated into a variety of 

heterogeneous mobile robot systems, e.g. PR2 by Willow Garage, Care-O-bot 3 

by Fraunhofer IPA, Robotic Busboy by Intel Research's Personal Robotics 

project, TurtleBot and Husky A200 by Clearpath Robotics and many more. 

Table 4.4-2 exhibits a comparison of selected frameworks regarding these aspects, 

'n.d.' stands for not documented i.e. no description has been found in the respective 

project's documentation. 

Project Open 

source 

Component-

based dev. 

Quality 

control 

Module 

granularity 

Reusable 

design 

ROS inter-

operability 

ROS    fine  - 

Orocos   n.d. medium   

URBI   n.d. medium   

OPRoS   n.d. medium  n.d. 

Table 4.4-2 Comparison of robot software frameworks 

Nevertheless, the analysis of several robot software frameworks is deemed highly 

desirable and expected to provide additional insight for the analysis of software 

development efforts in this area but is beyond the scope of this work. 

4.4.2.2. Code sizing 

In order to infer efforts estimates for the software development labor the code size 

must be measured. The most common metrics, lines of code (LOC) and function 

points (FP) were both combined in the presented approach by applying the so-called 

backfiring method. Backfiring is a technique developed by Capers Jones allowing the 

translation of source code statements in a specific programming language into 

adjusted function points (Jones 1995). This approach allows extracting function 
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points by LOC counting and subsequent extrapolation of FP using heuristic, coding 

language specific conversion rates.14 

Usually, the ascertainment of function points is carried out manually by a function 

point expert which renders the process laborious and expensive. Backfiring allows 

the mathematical derivation of function points from lines of code but also with less 

accuracy. This is possible due to the apparent correlation between source code size 

and function points depending on the programming language used. Statistical data 

as a result of research into real-world software projects has been gathered by 

specialized enterprises like the SPR company over the last three decades yielding 

probability values for the ratio of source code statements to function points for 

more than 500 programming languages. 

The cost estimation for software of the approach in the present work relies on the 

Programming Language Table (PLT), Version 2007d (SPR 2007).15 This compilation 

provides statistical mean, lowest, highest and median source code statement to 

function point ratios for each programming language. Table 4.4-3 shows an excerpt of 

the table (adopted from ibid., p. 2). 

 

LOC per function point 

Language Name Low (    ) Mean (  ) High(    ) 

CLOUT 25.7 40.0 84.9 

CMS2 98.4 106.7 116.5 

CMSGEN 14.2 18.8 27.3 

COBOL 98.4 106.7 116.5 

COBOL .Net 35.8 71.1 190.6 

Table 4.4-3 Excerpt from the Programming Language Table 

The data collected, i.e. the numbers for LOC counted for the selected packages 

permits the calculation of a corridor of the approximate amount of function points 

                                                

14Jones points out that only logical source code statements can be used for this method. The LOC 

used in this thesis thus exclude comments and empty lines. 

15The function points are based on IFPUG standard 4.1. 
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for a given code. The expected size       of software package   is determined by the 

sum of the lines of code       of each package divided by the appropriate lines of 

code to function point ratio   for the respective programming language   taken 

from the PLT16. 

 
       

     
  

 
(4.13)  

              

 

 (4.14)  

The expected worst and best case size values were also calculated in the same way 

as        but with the respective conversion rate      and      which are also 

provided by the PLT.17 These values allow the calculation of corridors for software 

sizes instead of single point estimates.  

4.4.3. Modeling estimation uncertainty 

Estimates are always subject to uncertainty, particularly in early product phases. Its 

major source is the lack of detailed knowledge or definition of the final product; the 

more details on design, environment and mission parameters are set the lower the 

uncertainty level will be. This phenomenon is referred to as the "cone of 

uncertainty" (Meisl 1988, pp. 95–100); (McConnell 2006, pp. 35–37); (Stösser 1999). 

Figure 4.4-3 depicts a version of this cone where the estimation baseline increases 

over the course of time (Trivailo 2012, p. 6). Also, the tendency of exceeding the 

cost estimate in contrast to underrunning it is illustrated. 

Table 4.4-4 exhibits typical error ranges for sequential software projects; although 

these indications stem from the software domain the inherent uncertainty concept 

can be extended beyond the field of software development (ibid.). The presented 

numbers illustrate that high accuracy of cost estimates cannot be expected in early 

                                                

16The column "Nominal Value SS/FP" in the PLT holds the arithmetic mean of all observed values 

for the considered programming language;    is its inverse. 

17    is the inverse of "Calculated SS/FP Low",     is the inverse of "Calculated SS/FP High". 
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project phases because at this stage there are many unknown or undetermined 

factors that have impact on costs. 

Commonly, point estimates are interpreted as the median i.e. the 50% of all actual 

values lie below and 50% above the estimate. As illustrated in Figure 4.4-3 (ibid.) and 

Table 4.4-4 (adopted from McConnell 2006, p. 39) this interpretation does not always 

hold true. Another problem with point estimates is that lower and upper limit of the 

estimation remain unknown to the interpreter. For this reason single-point 

estimates, i.e. "product X will cost 100€ per unit" would give the false impression of 

definiteness. Without an indication of its likelihood the estimate is of little 

informational value. 

 

Figure 4.4-3 Conceptual example of the cone of uncertainty 
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Phase Possible error on low 

side 

Possible error on high 

side Initial concept -75% +300% 
Approved product 

definition  

-50% +100% 
Requirements 

complete 

-33% +50% 
User interface design 

complete 

-20% +25% 
Detailed design 

complete 

-10% +10% 

Table 4.4-4 Estimation error for costs and efforts in software development phases 

To compensate for the estimation error a measure of inaccuracy should be denoted 

for assessing the probability of a large deviation from the estimate, often called cost 

risk (McConnell 2006, pp. 6–9; Galway 2007, p. ix).18 Cost-risk analysis requires 

knowledge of the underlying error probability distribution. Since the actual 

probability density functions are unknown the prevalent approach is to assume 

normal distribution, arguing that many processes can reasonably be approximated 

due to certain statistical effects and characteristics like the central limit theorem or 

independency of process variables (Casella 2002, p. 102). However, the diverse cost 

constituents exhibit different probability distributions which is why asymmetrical 

distribution forms are also taken into account here. 

4.4.3.1. Probability Density Functions 

As aforementioned, the costs estimated in the presented approach are basically 

divided into material and labor costs. In order to achieve a differentiated view on 

the estimation uncertainty the distribution for each of these cost types is derived 

separately. The reason for this distinction is that costs for activities tend to be 

distributed asymmetrically whereas material costs can be assumed to be 

symmetrically, normally distributed (Browning 2002, p. 432; McConnell 2006, pp. 7–

8). 

Concerning hardware costs, the estimation error i.e. the model standard error 

expresses the uncertainty of the respective costs. The standard errors calculated 

with predict.gam are based on the Bayesian posterior covariance matrix in the fitted 

gam model (RDCT 2012, pp. 2747–2750). Because the standard error is assumed to 

be normally distributed for the regression model derivation the probability density 

                                                

18Galway states that the term 'cost risk' only applies for exceeding estimates. 
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function of the estimated hardware costs is also assumed to be normally 

distributed; the mean represents the estimated value and the standard deviation 

equated with the standard error calculated by the model.  

Labor or activities costs tend to be right skewed as work processes are truncated to 

the left because there is a limit to how efficient a process can be performed but the 

expansion of costs due to failures, delays, requirement changes and other factors is 

virtually limitless. As an example in the time period from 1994 to 2004 circa 75% of 

the software projects overshot the planned schedule or budget (McConnell 2006, p. 

25). 

To represent uncertainty in labor costs various asymmetric probability density 

functions can be used, the beta distribution being the prevalent one. The Program 

Evaluation and Review Technique (PERT) –  an acknowledged planning tool for 

project management – applies the beta distribution to capture uncertainties 

concerning activity related costs (Keefer 1993). As this method has been applied 

over many projects in the last decades the beta distribution is used for modeling 

labor effort distribution in the presented work (e.g. Chen 2009; Xu 2007). 

The continuous beta distribution defined on the interval [0,1] is parameterized by 

two shape parameters   and  , both required to be greater than zero. Its density 

function is defined as  

 
      

 

      
             

(4.15)  

with the beta function        defined as 

 
        

        

      
                 

 

 

 
(4.16)  

and   denoting the gamma function. Outside of [0,1]      equals zero.19 

The expected value of the beta distribution is 

                                                

19The general beta distribution is defined on the general interval               but is more 

complicated. As the normalization of [a,b] to [0,1] and subsequent use of the beta distribution 

defined on [0,1] and denormalization of the results is mathematically more manageable without 

loss of information, only the beta distribution on [0,1] is considered. 
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 (4.17)  

and the variance 

             
  

             
 (4.18)  

The three-point estimation technique established in PERT allows the construction of 

a beta distributed probability density function by using only three data points: best-

case estimate   , most likely estimate    20 and worst-case estimate   . These 

three estimates can be based on heuristics or elicited from experts (Santillo 2005). 

The expected value and variance are approximated by the respective equivalents of 

the double-triangular distribution 

 
                       

          

 
 

(4.19)  

 
                          

       

 
 
 

 
(4.20)  

The shape parameters   and   are determined by equating (4.3) and (4.5) as well as 

(4.4) and (4.6) and consequently solving the equation system to 

 
   

                      

      
 

(4.21)  

 
  

                                   

      
 

(4.22)  

With the shape parameters determined the beta distribution can be calculated for 

the normalized data points.  

4.4.3.2. Uncertainty Indicators 

The modeled probability distribution functions permit the calculation of various 

statistical measures that can serve as uncertainty indicators. In the scope of this 

work standard deviation and quartiles are used for this purpose. The standard 

deviation expresses how large the variation from the expected value is; a large 

standard deviation in relation to the expected value thus expresses a higher degree 

of uncertainty. One advantage of this measure is its intuitive interpretability. 

                                                

20Note that the most likely case is represented by the distribution's mode, not its expected value. 
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Another means of expressing uncertainty is the calculation of percentiles. A 

percentile marks a value below which a given percentage of observations and by 

extension estimations fall e.g. the fifth percentile of costs is the threshold  below 

which five percent of the estimations would lie. Calculating several percentiles 

allows the estimation of probability ranges.  

Figure 4.4-4 displays an exemplary beta distribution of labor costs. The dashed vertical 

lines indicate the 25th, the 50th (median) and the 75th percentile i.e. first, second and 

third quartile; the dotted vertical line represents the expected value. The 

interquartile range i.e. the range between first and third quartile lies roughly 

between 11,200 and 18,200 € and covers 50% of all values within the estimated 

range thus indicating a corridor for the likelihood of the estimate. The quartiles can 

also be applied for a staggered risk indication: The cumulated probability up to a 

quartile can be interpreted as the probability of the actual cost lying below the 

respective quartile; e.g. for the given example a 75% chance of costs lying below 

circa 18,200 €. Because the interpretation of the quartiles can be regarded as 

intuitive and comprehensible their calculation was incorporated in this work. 

 

Figure 4.4-4 Exemplary beta distribution function 

4.4.4. Expert opinion elicitation 

Expert opinion elicitation or interviewing means retrieving information on a specific 

matter directly from professionals with experience in that particular field. This 

method often is the only available solution in cases where little or no data is 
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available otherwise: “If suitable data on the structure in question is not directly 

available, information acquisition can only be realized by executing interviews with 

experts” (Maurer 2007, p. 97). Expert interviews are one of the standard 

instruments of empiric social research (Flick 2007, p. 19; Schnell 2008, p. 299). 

As little explicit information on the mapping of robot skills to components for 

service robots is publicly available expert elicitation was used to establish such 

systemic relationships. Furthermore, expert interviews were conducted regarding 

the expected reuse ratios for the considered software components and for 

hardware installation efforts. 

For the derivation of classifications of skills, hardware components and software 

components the first step was the research into existing categorizations of robotic 

functions. Available literature was scanned for recurring expressions and 

descriptions of robotic skills. Based on these characterizations suggestions for item 

categorizations were developed. The existing categorizations considered are 

classifications employed in EUROP (Bischoff 2009, pp. 28–33), EFFIROB (Hägele 

2010, p. 341), RoboEarth (Waibel 2011, p. 71) and the Handbook of Service Robotics 

(Siciliano 2008, pp. XXXVII–XLV). The categorizations were then presented to and 

discussed with three experts separately in order to evaluate their correctness. The 

criteria for items to be valid are applicability and importance to service robots as 

well as tangibility and understandability as they should allow their intuitive use for 

an early estimation of functions and components necessary. 

For the structural mapping i.e. the entries of dependencies in the structural matrices 

a workshop was held with six experts for service robot development. The concept of 

the structure matrices, the categorizations of items, and dependency types were 

explained and pertinent documentation handed out. After clarification of any 

questions at this point the experts were requested to individually fill in direct 

dependencies on print-out sheets of six structure matrices for the mapping of task-

to-task, task-to-hardware, task-to-software, hardware-to-software, hardware-to-

hardware, and software-to-software. The individually completed matrices were then 

combined into one aggregate matrix for each matrix type. 

The determination of software reuse ratios was conducted by individually 

presenting two experts on service robots a list of the considered ROS packages with 
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the request to allocate a percentage range for adaptation and customizing effort to 

each package. The percentage given designates the relation of altered code to total 

code size. Possible choices for code adaptation and customizing ranges were: 

 >0% to 10% are reimplemented, 90% to 100% are reused as is with only minor 

adaptation 

 10% to 30% are reimplemented, 70% to 90% are reused as is with only minor 

adaptation 

 30% to 50% are reimplemented, 50% to 70% are reused as is with only minor 

adaptation 

 50% to 70% are reimplemented, 30% to 50 % are reused as is with only minor 

adaptation 

 70% to 100% are reimplemented, up to 30% are reused as is with only minor 

adaptation 

 No modification, installation only, 100% reuse with no modification at all 

 Package unknown and/or modification effort unknown 

 Package not used 

Ranges were chosen instead of single point estimates in order to allow for a degree 

of uncertainty and to speed up the ratio estimating process which was deemed 

necessary as 469 packages had to be evaluated separately. The calculated averages 

of the range indicated by the experts are used as the most likely value for the cost 

estimation. 

For the installation costs of hardware and software components for each of the 

categories two experts were asked individually to estimate installation times based 

on their experiences.  

For hardware installation costs, a list of the hardware component types was 

presented to each expert with the request to gauge the approximate installation 

time for every component type. For software costs, the experts were asked to 

estimate how long it takes to install ROS on a service robot of their knowledge. The 

basic idea is that once the software developed for the service robot subject to the 

cost estimation has reached a releasable state it will be installed as one suite similar 

to a framework like ROS. Installation of single packages was not considered in the 
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presented approach it is already included in the productivity rates of the software 

development stage, i.e. the software installation costs only apply to robot units 

produced after the prototype has been built. For both categories, values for 

minimum, most likely and maximum time required were elicited. 

5. Function-based Structure Estimation 

In order to support the estimating person in each of these steps the necessary 

knowledge must be made available beforehand. This chapter covers the aspects of 

mapping desired robot functionality to hardware and software components. First, 

the categorization into the three domains Skills, Hardware Components, and 

Software Components is explained and consequently how relationships between 

them are derived. 

 

Figure 5-4.4-1 General structure management approach 

From a structure management point of view this part of the approach covers the 

steps system definition, information acquisition and modeling concerned with the 

structure of a service robot. Figure 5-4.4-1 depicts the general steps of the complete 

structure management process where a handling problem or a design problem 

forms the starting point (adopted from Maurer 2007, p. 69). As handling problems 

are concerned with controlling issues for existing solutions It should be noted that it 

System management problem ↔ Design problem 

System definition 

Information acquisition 

Modeling 

Structure analysis 

Discussion of practices 

Structure manual & 
structure potentials 

Improved system management ↔ Improved system design 
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is not the aim of the presented approach to evaluate the appropriateness of a 

specific structure to a given application problem but to indicate central structural 

elements which have significant impact on resulting costs which is why the latter 

three steps of the indicated structure management process are not considered 

further in this work. 

5.1. System Definition 

In order to derive a structure of a robot from which costs can be derived its scope, 

purpose, and functionality must be defined i.e. the domains of the design problem, 

the level of detail within the domains, and dependencies considered must be 

determined in advance (ibid.). The combination of these three preparatory steps 

constitutes the system definition. 

5.1.1. Domain Specification 

As outlined in Chapter 4 the presented approach is aimed at estimating costs 

starting from a point where little more than the robot application is known. In other 

words, the costs for fulfilling a desired functionality must be determined. The 

abilities to perform certain functional actions are skills of the robot thus skills 

constitute the first domain required for the determination of the robot structure. 

Skills as abstract concepts do not incur costs themselves but have an impact on costs 

through their implementation. The evident manifestations of skills are the robot 

hardware components which embody the physical interface between functionality 

and physical working environment. Though less evident, the software required to 

coordinate and control hardware operation forms another important part of the 

realization of functionality. Thus hardware and software components were chosen 

as further domains of the robot structure because they represent the domains of 

product implementation (Kossiakoff 2003, p. 176). 

Conceptually, both hardware and software are components and thus could be 

subsumed within one domain. The separation of these categories was undertaken 

for two reasons. Firstly, they were divided up in order to prevent the structure 

matrices to be constructed from growing too large because oversized matrices tend 

to become difficult to handle by experts (Browning 2001, p. 302; Maurer 2007, p. 

37). Secondly, due to their different nature the cost allocations for these categories 
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exhibit discrepancies that justify separate treatment; e.g. material costs are a 

significant part of hardware components but negligible for software. Experience 

from the study EFFIROB showed good practicability of the distinction between 

hardware and software for cost estimation purposes (Hägele 2010, pp. 37–44). 

Process or human resource domains are also potential candidates for the derivation 

of costs from system structure. Because the costs incurred within these fields can be 

attributed to the components by adequately modeling the cost functions these 

domains were not considered separately. 

5.1.2. Domain Elements 

For each domain the level of detail must be delineated: On one hand, the elements 

of a domain must be sufficiently detailed as to permit sensible mapping of the robot 

application and reasonable cost estimation; on the other hand they should not be 

large in numbers that the sheer quantity becomes too difficult to manage within an 

early phase estimation process. 

Complex systems usually are constructed from a multitude of different components. 

At early design phases it is hardly practicable to exhaustively list all constituents of 

the final product (Maurer 2007, p. 67); even if it were feasible the large number of 

items would exceed the human capacity to handle complexity. Studies show that 

matrices containing only a small number of items can quickly overburden the user 

(Maurer 2006). Browning even finds that "individuals may have difficulty building 

DSMs with more than ten elements" (Browning 2001, p. 302). Complexity puts high 

demands on the estimator's abilities to collect and process information and plan 

accordingly; thus the amount of items should be reduced to a number manageable 

by the user (Dörner 2003, p. 60). 

The approach towards usability in this work is to reduce the number of items for 

each matrix by establishing catalogs with typical categories for service robot skills, 

hardware components, and software components each containing no more than 

twenty items.21 

                                                

21Although these catalogs have been cross-checked against expert knowledge the author does not 

claim the list to be exhaustive or exclusive.  
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As the items in the component catalogs represent generalizations from specific 

components they are subject to variations of manifold parameters, e.g. size, energy 

consumption etc. In order to reflect possible differences of characteristics in cost 

estimates the main cost driving parameters must be identified and the typical range 

of their values determined. Doing so allows the derivation of specific cost functions 

based on these parameters thus lessening the loss of exactitude due to 

generalization. 

5.1.2.1. Skills 

At the starting point of the estimation, the estimator has an approximate idea of the 

tasks the robot needs to perform which demand certain skills of the robot. Many of 

these skills are rather generic and occur in many different robot designs. 

Unfortunately, there is no standardized list of robotics skills.  

Figure 5.1-1 shows different categorizations taken from EFFIROB, EUROP and 

RoboEarth (Hägele 2010, p. 341; Bischoff 2009, pp. 28–33; Waibel 2011, p. 71). Even 

though many concepts overlap in meaning, the differences in terminology indicate 

that many of the applied terms are not strictly defined.  

For the estimation approach in this work a list of robot skills has been compiled from 

current literature.  The study EFFIROB shows that the most common categories are 

perception, navigation, manipulation and human robot interaction (Hägele 2010, p. 

340). A slightly extended terminology is used for the initial categorization of robot 

skills: 

 Perception entails abilities aimed at discerning signals, objects or 

environmental conditions. 

 Navigation and Locomotion is the umbrella term for skills that serve the 

orientating and moving of the platform in its environment. 

 Manipulation encompasses all types of exerting physical influence on objects 

or environment. 

 Communication describes those skills that enable the robot to engage in 

information-related interaction with its environment, be it humans, robots or 

computers. This includes the interpretation of messages and the derivation of 

consecutive actions. 
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Figure 5.1-1 Different categorizations of service robot skills 

These terms serve as a rough first classification of skills. Due to the plurivalent 

nature of skills the relation between categories and skills is many-to-many, i.e. one 

skill can fall into several categories.22 As the mentioned categories are still too wide 

to facilitate function based cost estimation they are decomposed into skill classes. 

                                                

22An example: Many sensors are obviously used for perception but also employed for navigation 

so it would be difficult to assign them to only one category. 
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The fineness of the skill classification is required to contain enough separate items 

to distinguish between functionalities but their number must not be so excessive 

that selecting from them would require more detailed knowledge of the robot's 

design than is available at early development phases.  

For validation, the list was individually presented to three robot experts at 

Fraunhofer IPA and adapted according to their suggestions in order to align the 

categorization with requirements of applied robot design practice (s. Chapter 4.2). 

For the sake of clarity the resulting list is shown in Table 5.1-1; each skill is detailed in 

the following paragraphs. 

Perceive Objects Move Object 
Recognize Objects Process/Alter Object 
Interpret Environment Process/Alter Environment 
Perceive evolutionary processes Send Signals/Commands 
Move to Location Interpret Signals/Commands 
Orientate in Environment Receive Signals/Commands 

Table 5.1-1 Service robot skills 

In terms of axiomatic design (AD) the skills represent the domain of functional 

requirements – what the robot must be able to do – whereas the components are 

the manifestation of the design parameters – what is used to enable the robot to do 

what it is supposed to (Suh 2001, pp. 10–12). 

The skill to perceive objects describes the ability to detect the presence of physical 

entities in the environment when in proximity of the robot without classifying the 

object. The scope of the detection depends on the sensor type employed. A simple 

implementation of this skill is a bumper that forwards the information of physical 

contact of the robot's hull to a colliding object.  

Recognizing objects is an extension of perceiving objects in the sense that the robot 

is able to classify certain objects in its environment based on sensor information and 

a priori knowledge on the objects to be recognized. 

Interpreting environment comprises capacities enabling the robot to deduce type 

and state of at least some of the environment's features, e.g. lighting conditions, 
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slopes, degree of "clutteredness" etc. The characteristics to be interpreted strongly 

depend on the robot's design purpose. 

The perception of evolutionary processes entails the realization of changes, be they 

internally (e.g. tool abrasion) or externally (e.g. lawn mowing). The alterations can 

vary from simple changes (e.g. battery load status) to complex ones (e.g. reordering 

objects in tridimensional environment). This perception also encompasses detection 

of trends.  

Moving to location is one of the most basic actions of a mobile robot. In the given 

context of this work it entails the avoidance of any harm to humans, the 

environment or the robot itself. The movement to a location is executed 

autonomously. 

Orientation in environment describes the ability to derive the robots geographical 

and topological position within the environment the robot is deployed in. 

Moving objects is the ability to purposefully change an object's position by carrying, 

pushing or pulling it to a desired destination. In the context of skills, objects are 

considered moveable and of smaller than the robot or at most equally sized. 

Processing or altering objects encompasses all volitional modifications of objects, 

e.g. welding together of work pieces.  

Processing or altering the environment is similar to that of objects. The difference 

lies in the environment being of a much larger extent than objects, e.g. floor or 

walls, thus necessitating different handling approaches. 

Sending signals and commands represents the variety of abilities to relay external 

output to other entities, be it humans, computers or robots. These messages can 

take the form of acoustic or visual indications or be transmitted electronically as 

data packages. 

Interpreting signals or commands encompasses all forms of higher level intelligent 

processing of messages from outside. This entails derivation of (re)actions e.g. 

replanning a route or stopping a current activity. 
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The skill of receiving commands means offering other entities possibilities of 

communication via one or several input channels.  

5.1.2.2. Hardware Components 

Since many components are possible candidates for service robots it is not 

attempted here to exhaustively list and categorize all potential hardware 

constituents. Instead, central and frequently incorporated hardware component 

types were compiled, using the hardware catalog from the EFFIROB project as a 

starting point. The extraction of initial component types from this source yielded 38 

different component classes for the categories of robot arms, grippers, mobile 

platforms, tactile sensors and contact-free sensors (Hägele 2010, pp. 356–358). 

As the EFFIROB study revealed human-robot-interaction to be one of the main 

functional requirements for service robot the classes Keyboard, Microphone, 

Display, Touchscreen, Joystick (or comparable), Speakers and Signal Lights were 

added to the preliminary category list. Furthermore, the general infrastructure 

classes Wiring, Power Supply, Data Storage, Processing Unit and Data Interface were 

included because elements of these are used in virtually any service robot.  

The total of 50 preliminary component classes was then reduced through 

abstraction and combination of similar classes validated in dialogue with robot 

engineers at the Fraunhofer IPA. The reason for this reduction is that the structure 

matrices resulting from such a large number would have grown too unwieldy for 

data collection on structural dependencies via expert interviews and for 

uncomplicated usage by the estimating person (s. Chapter 5.2). This reduction is 

deemed justified as detailed design decision are usually made in product 

development stages succeeding the early concept phase on which the presented 

approach focuses; furthermore, the parameterization of components described in 

Chapter 6.2 avoids overgeneralization.  

An overview of the resulting hardware component types is given in Table 5.1-2. 

Because the list is not exhaustive three placeholder categories were introduced for 

miscellaneous hardware components. Although no cost models are derived for 

these categories due to their heterogenity they are included in the structure 
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matrices to indicate possible relationships with other components thus avoiding the 

unintentional disregard of components not fitting into any of the specific categories. 

Some constrictions were made for certain classes according to the service robot 

types focused in this approach (s. Chapter 2.1.1). These constraints allow the 

development of cost models to be better tuned to this kind of systems which are 

expected to be of higher accuracy than global category cost models. Each 

component is detailed in the following paragraphs. 

Camera Gripper 
Ultrasonic Sensor Miscellaneous End Effectors/ Tools 
Laser Scanner Input Peripherals 
Radar Output Peripherals 
Binary Sensor Power Supply 
Force/Torque-Sensor Controlling Unit 
Gyro-Sensor Safety Hardware 
GPS System Miscellaneous Structural Hardware 
Mobile Platform Miscellaneous Hardware 

Environment Robot Arm 
 Table 5.1-2 Hardware component types 

Digital cameras are sensors providing data on static or dynamic images, either 

monochrome or in color. They are typically employed as data source for object 

recognition, environment interpretation or self-localization. The prevailing 

technologies are charged-coupled device (CCD) and complementary metal oxide 

semiconductor (CMOS) which represent the categories analyzed in the scope of this 

work, line scan cameras were excluded. Three-dimensional camera systems  (time of 

flight cameras) were not included due to lack of sufficiently large number of 

products but the increasing interest in these products is expected to change this 

situation in the near future. 

Ultrasonic (US) sensors measure the transit time of ultrasonic sound waves from 

sensor to obstacle and back (end-to-end) thus allowing the measurement of 

distances to nearby objects. They can be used for object detection, obstacle 

avoidance and simple object recognition tasks. This component type encompasses 

only reflection-based US sensors excluding those that only measure object presence 

(these are subsumed under binary sensors below). 
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Laser scanners or laser distance measuring devices emit controlled laser beams and 

determine the time of flight (TOF) or phase shift of reflected beams from which the 

distance and shape of the reflecting objects can be derived. Due to their high 

precision and fast response time they are commonly used for safety zone control 

and self-localization. This component type includes one-dimensional and two-

dimensional laser scanners; laser scanners certified for safety applications were also 

regarded as long as they do not require an additional evaluation unit. Three-

dimensional laser scanners were excluded for lack of a sufficiently large number of 

products and their arguably low relevance for service robots. 

Radar sensors measure the presence of and distance to objects by emitting radio 

waves and detecting reflections caused by obstacles in the wave's path. A potential 

application for radar sensors in service robotics is the safety control for the robot's 

workspace. This component type includes radar chip modules and enclosed radar 

solutions. 

Binary sensors only distinguish between two states; this category comprises 

mechanical and contactless sensors with a binary output signal. Typical applications 

are object presence control and immediate environment collision avoidance. The 

sensors considered include optical, capacitative and inductive proximity sensors as 

well as push buttons. One necessary condition for an item to be included was that 

all active parts are integrated in one casing thus one-way through-beam light 

sensors were not considered. Magnetic proximity sensors were also excluded from 

data. 

As the name suggests force-torque sensors perceive and measure forces and torques 

occurring in physical activities. Typical application purposes are joining operations 

with a sensor of this type between robot arm and end-effector or in the joints of the 

robot arm. The regression data includes force-only, torque-only and combined 

measurement sensors with one to six degrees of freedom. Rotating force-torque 

sensors were not considered due to their rare application in service robots. 

Gyroscopes measure angular position, acceleration and velocity, acceleration 

sensors capture angular and translational accelerations. Because these two types of 

sensors are used for similar purposes and combined sensors exist they are combined 
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in one category; a typical application area of this sensor category is robot odometry. 

The considered sensors' degrees of freedom range from one to six. 

GPS (Global Positioning System) modules allow the determination of one's position 

based on satellite signals. GPS can be used in the area of service robotics for 

minimizing the position error and navigation purposes. The products considered in 

this category encompass small integrated systems including GPS receiver, patch 

antenna and back-up battery. Separate reference stations typically used for 

differential GPS were not subsumed under this category as these would be part of 

the robot's environment and not of its internal structure (s. miscellaneous 

environment hardware below). Also excluded from this category were products 

optimized for usage in agriculture and automotives because they were not seen as 

fit for service robot due to their proprietary interfaces. 

A mobile platform is one of the central components of a service robot and permits a 

robot to change its position in physical space as opposed to stationary industrial 

robots. Although many different platforms exist for operation in air, in or on water 

as well as on ground, only the latter were considered in this approach as ground-

based platform make up the majority of service robot platforms; platforms for the 

different media are of vastly different design and thus unlikely to be reliably 

mapped by one cost model. Leg kinematics were also excluded due to their high 

complexity and little relevance for commercial service robots as of 2012. No 

restriction was made concerning the steering type i.e. the platform steering can be 

holonomic, differential or Ackerman-type. Some mobile platform stemming from 

the market for automated guided vehicles (AGV) are able to carry weights up to 

several tons but do not fit the description of service robots at the center of this 

work's attention; only about 27% of commercially available mobile robots weigh 

more than 10 kg (Piperidis 2007, p. 1). Thus the mobile platform considered here are 

of a maximum weight of 350 kg and a carrying capacity of 300 kg.  

Robot arms are programmable devices also referred to as serial chain robots and 

can be described as a series of links and joints and can exhibit a resemblance to the 
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human arm counterpart (Siciliano 2008, p. 72).23 Robot arms increase the reach of 

the service robot and can be used in combination with end-effectors for a variety of 

manipulation purposes. Since the focus of this work is on mobile service robots the 

maximum weight of robot arms considered here is constraint to 30 kg or less 

because their control and power supply requirements are appropriately low for 

mobile solutions. They can be powered by batteries as their power demand remains 

equal to or below 48 V and do not necessarily entail the use of a bulky control 

cabinet but can be controlled by an industrial PC or a similar controlling unit.  

Grippers or gripping modules are a specific type of end-effectors aimed at grasping 

and holding objects i.e. they form the end of the kinematic chain that comes into 

direct contact with the object to be manipulated. The regression model is based on 

data for mechanical grippers with the number of gripper jaws ranging from two to 

three. Only electrically driven gripper modules were considered due to their high 

fitness for service robot purposes because no additional power transmission 

infrastructure is required as is the case for pneumatic or hydraulic solutions. 

Articulated hands were also excluded from regression due to the lack of data as 

there are only few robot hands commercially available; their high complexity is also 

likely to require a separate cost model. 

Input peripherals allow input of commands or information to the robot by direct 

interaction, e.g. keyboards or buttons. Although many types of sensors can be 

interpreted as input devices only haptic input appliances like keyboards or joysticks 

were considered for the regression model as these represent the majority of input 

devices used for service robots and are not already subsumed under one of the 

other component types presented. 

Output peripherals are one-way communication devices that render information 

externally available, e.g. warning signals, status information or feedback on user 

input. Due to their flexibility, robustness and intuitive interpretability visual 

communication devices arguably represent the most common output means. Thus, 

                                                

23Robot arms are also referred to as manipulators; this term is ambiguous in so far as it can lead to 

confusion with the end-effector, e.g. gripper which is also part of the manipulating chain. 
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small monitors with screen resolutions up to 76,800 pixels were chosen as 

representatives for output peripherals.  

Most of a robot's components require a power supply. For mobile robots the 

components supplying power are on-board power sources that allow robots to act 

without an energy tether restricting its movements. Due to its advantages in storing, 

space requirements, and suitability for indoor applications direct current electricity 

is the preferred power source. Hence, the regression model is restricted to direct 

current electrical power units and includes storage units i.e. batteries. The range of 

available batteries is extensive which is why the model estimation was restricted to 

a subset. For the batteries analyzed, the maximum capacity was set to 100 Ah and 

the minimum and maximum nominal voltage to 2 V and 15 V, respectively, as these 

numbers represent realistic limits for the type of service robots considered here. 

Because different hardware components can require different voltage levels voltage 

converters (DC-DC) with an output voltage up to 48 V were also subsumed under 

power supply components. 

The controlling unit is the interface between robot hardware and robot software, 

the robot's "brain".  As industrial PCs are highly versatile in their application and 

readily available off-the-shelf they pose an adequate solution for many service robot 

purposes and thus regression data is based on this type of controlling computer. 

This category also includes embedded PCs which are more compact and well-suited 

for smaller robots. Control cabinets typically used for industrial robots were not 

considered because they do not offer an adequate solution for mobile robots.  

Safety hardware consists of those components whose primary function is to prevent 

the robot from harming persons in its working area. For the regression model safety 

switches and safety contact sensors of mat, bumper or band design were 

considered; safety components that had already been considered in other 

categories e.g. laser scanners were not included in the regression of the safety 

hardware cost model. 

The placeholder category for miscellaneous end effectors and tools stands for 

devices that can be used for manipulation purposes by service robots but are too 

specialized to be considered typical service robot components. Possible examples of 

this category are a vacuum cleaning unit or cutting and machining tools. 



5 Function-based Structure Estimation 

87 

Miscellaneous structure hardware is a collective term for those components not 

fitting into any of the categories mentioned above that can be built into the service 

robot. Possible examples are casing elements, internal frames or tool magazine for 

quick tool exchange. 

Miscellaneous environment hardware covers those components that perform a 

supporting or auxiliary function in relation to the service robot but which are not 

integrated into the robot itself. Instead, they form a part of the robot's working 

environment. Possible examples are GPS reference stations, battery-charging 

stations or artificial landmarks like magnetic track tape or RFID tags. 

5.1.2.3. Software Components 

Similar to the hardware component categorization the software component types 

are classified according to their functionality. Because the EFFIROB study does not 

offer a catalog of generic software components similar to the hardware lists a 

classification was conducted based on literature research and experience values 

from the realization of mentioned study. The preliminary list consisting of 23 classes 

was separately presented to three robot engineers at Fraunhofer IPA for revision. 

The final list resulting from consolidation of the experts' input is displayed in Table 

5.1-3. An explanation for each component is given in the following paragraphs. 

Object Detection Tool Control 
Object Recognition Arm Control 
Object Modeling Arm Path Planning 3D/6D 
Environmental Modeling Operational Interface (HRI) 
Change Detection Robot-to-Robot Coordination 
Self Localization & Mapping Communication Protocols & Messages 
Platform Path Planning 2D/3D Learning & Reasoning 
Platform Control Drivers & Primitives 
Grasping & Grasp Planning (Robot) Operating System 

Table 5.1-3 Software component types 

Object detection describes the detecting of an object without realizing the type of 

object. It is a basic feature commonly used for local path correction and safety 

purposes and implemented in most service robots. 
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Object recognition is the logical extension of object detection. It expresses the ability 

classification of a detected object in the robot's vicinity. In computer vision this task 

is accomplished by filtering the sensor data and looking for characteristic geometric 

features like edges, corners or other visual features like typical patterns or color 

gradients.  

Object modeling represents the creation and interpretation of different objects as 

entities differentiated from the overall environment and is thus closely related to 

object recognition as object recognition usually relies on models of objects for 

comparison with its sensor data. Library of object models are subsumed under this 

category. 

Environmental modeling is the creation and interpretation a model of the 

immediate surroundings and is similar to object modeling. The disparity lies in the 

environment being larger and often much more complex than most singular objects; 

it can be made up of lots of objects but can also consist of a large plane only e.g. the 

floor of a sizeable room. Environmental modeling can also entail the determination 

of topological relations between objects in the surroundings. 

Change detection describes the perception of changes either in the immediate 

surroundings (external), within the robot (internal), or both. It requires the keeping 

track of states over the course of time. This function is vital if the robot is expected 

to manipulate its environment in a controlled and autonomous way. An application 

example for external change detection could be a floor-cleaning service robot which 

realizes when waste has been dropped on the floor and removes it.  

Simultaneous localization and mapping (SLAM) is the construction and updating of a 

map of an a priori unknown environment and concurrently localize its own position. 

SLAM is being increasingly applied in service robotics due to its enhanced flexibility 

compared to navigating with predefined maps. 

Platform path planning describes the determination of a collision-free itinerary for 

the robot platform in order to reach a specific point in its environment. If the path of 

a service robot cannot be a random pattern this skill is central to the robot's 

mobility. Paths for ground-based robots can be planned in two or three dimensions. 
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Platform control is the software enabling the robot to generate commands for the 

execution of platform movements and supervise the movement. Forward and 

inverse kinematics in conjunction with the required input from platform sensors 

constitute the foundation of this skill. 

Similar to platform path planning arm path planning allows the determination of a 

collision-free itinerary for the robot arm in order to reach a specific point within its 

workspace. This task can be particularly demanding in dynamic and cluttered 

environments. If the path is planned as a succession of waypoints of each joint in 

space coordinates the planning is three-dimensional, if the planned waypoints also 

include orientational angles of the joints the planning incorporates six dimensions. 

A robot fitted with a gripper needs to be able to grasp an object. This software 

generating commands for grasping movements including the planning of grip 

position is subsumed under the category of grasping and grasp planning. Depending 

of the shape of the object different grasping positions are possible; the according 

skill allows the robot to determine the most adequate one and execute the 

respective gripper movements. 

If the robot is fitted with tools other than grippers the robot software used to 

generate commands for tool usage und supervise its correct functionality is 

represented by the category for tool control. As these tools can vary greatly (s. 

Chapter 5.1.2.2) this rather broad category spans a multitude of possible control 

software components. 

Arm control is the analogon of the platform control category for the generation of 

robot arm commands and the supervision of the execution of arm movements.  

The operational interface category covers all those software components which 

allow humans to interact with the robot. This includes the possibility to give 

commands to the robot and to receive information from it. The category 

encompasses graphical user interfaces (GUI), speech recognition, tele-operation and 

other conceivable types of human-robot interaction (HRI). 

Robot-to-robot coordination components enable a robot to communicate with other 

robots and to synchronize collective actions. Elements of this category allow robots 

to cooperate and fulfill tasks specified for a team rather than for a single robot.  
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Communication protocols and messages are those software components that 

constitute the "language" of the robot i.e. the definition and implementation of 

standards for command and information exchange purposes. They allow internal 

communication processes between components of the service robot but also 

external communication with computers. 

Reasoning is the inference of implicit information from explicit knowledge in a 

deductive way and derive corresponding decisions. Learning signifies acquiring new 

or modifying existing knowledge and therefore is closely connected to reasoning. To 

a certain degree, these software components allow a robot to integrate smoothly in 

its environment and accommodate unforeseen situations. This category entails 

reasoning algorithms, ontologies, expert knowledge databases, and similar 

components. 

Drivers represent low-level interfaces to hardware or software components. 

Primitives are atomic instructions which can be combined to create more complex 

commands. Commonly, primitives are one of the main constituent of drivers. 

The operating system provides the framework and common services for other 

software components to run. It handles basic operations like file management, 

command execution scheduling and memory allocation. 

5.1.3. Structural Dependencies 

Three different relation types are considered in the presented approach. Each robot 

skill requires certain hardware and software components in order to function 

properly; others might improve its compliance or extend its scope. Also, one kind of 

component can substitute another one in terms of functionality. Thus, the 

dependency types applied in this approach are "requisition", "substitution" and 

"enhancement" and are perceived as relations between two items.  

Requisition specifies that item A requires item B. Requirements as entered in the 

structure matrices are considered the least requirement. Applied to skills, this 

means that the required item B or a better one is necessary for skill A to be 

satisfactorily executed; applied to hardware and software components, item B or a 

better one is required for the component A to function in a useful and desired way. 
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Skills can require hardware or software components but cannot be requirements of 

those categories. 

Substitution describes item A's ability to functionally replace item B. This 

dependency plays a vital role in accounting for implementation alternatives. If item 

A can substitute item B but not vice versa this entails functional superiority of item 

A, e.g. a laser scanner can replace ultrasonic sensors but the inversion is not 

correct.24 The declaration of least requirement and substitution dependencies 

allows the computation of design alternatives for the service robot. Skills cannot be 

substitutions for hardware or software components. 

Enhancement represents item A directly augmenting or complementing item B's 

skills. Directly means the enhancement must be a proximate effect not an indirect 

one. An example: Object recognition using a laser scanner in conjunction with 

ultrasonic sensors might be superior to one relying only on ultrasonic sensors. The 

laser scanner does not enhance the ultrasonic sensors but the object detection. 

Skills cannot be enhancements of hardware or software components. 

Because the dependencies defined here are unilateral two designators are 

necessary for each relation in order to represent the relation's direction. The 

according designators for the structure matrix cells are displayed in Table 5.1-4. 

Designator Meaning 
R <row> requires at least <column> 
r <row> is minimum requirement of <column> 
S <row> can be substituted by <column> 
s <row> can substitute <column> 
E <row> is enhanced by <column> 
e <row> enhances <column> 

Table 5.1-4 Dependency type designators 

                                                

24Ultrasonic sensors might be sufficient for a given application. In that case they are the least 

requirement but substitution could take place by components with higher functionality. Additional 

costs for higher (enhanced) functionality must be weighed against the performance demands. 
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Designator combinations for substitution and enhancement are logically possible, 

specifically for symmetric relations when mutual substitution or enhancement is 

possible and combinations of substitution and enhancement when a component can 

substitute but also increase another one's functionality. Per definition, least 

requirement dependencies cannot be combined with substitution or enhancement 

in the same cell: item A requiring item B cannot be substituted by item B; 

enhancement is considered optional in contrast to requirements being compulsory. 

The list of possible designator entries in the cells of the structure matrices is given in 

Table 5.1-5. 

The structural knowledge on dependencies between skills and components 

facilitates the cost estimation as follows: After the identification of separate skills 

and components the relations and dependencies between them are automatically 

mapped and made available the estimating person via the estimation application 

SEROCOST (s. Chapter 7). This supports consideration of technological dependencies 

and an overview of possible structural alternatives without detailed technological 

concepts on the estimating person's part.   

 

Designator Meaning 
rR Mutual requirement 
eE Mutual enhancement 
es <row> can substitute and enhance <column> 
Es <row> can substitute and be enhanced by <column> 
ES <row> can be substituted and enhanced by <column> 
sS Mutual substitutability 
eEs Mutual enhancement, <row> can also substitute <column> 
eES Mutual enhancement, <row> can also be  substituted by <column> 
esS Mutual substitutability, <row> can also enhance <column> 
EsS Mutual substitutability, <row> can also be enhanced by <column> 
eEsS Mutual enhancement and substitutability 

Table 5.1-5 Possible designator combinations 

5.2. Data Collection and Modeling 

As explained in Chapter 4.2 structural matrices provide an appropriate means to 

present relationships within and between different design domains in a clearly 
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arranged way as means of complexity management (Maurer 2007, pp. 67–68). The 

domains considered in the presented work are skills, hardware components, and 

software components thus the interrelations between them are captured in three 

intradomain matrices and three interdomain matrices; the Multiple-Domain Matrix 

(MDM) combines all single matrices and gives an overview of all relations as 

depicted in Figure 5.2-1 (ibid., p. 60). 

The MDM is a square matrix because the domains are arranged along horizontal and 

vertical axis as well. Those sections along the diagonal where rows and columns 

belong to the same domain constitute the intradomain matrices, the remaining 

sections the interdomain matrices. Because the interdomain in the lower left 

triangle of the MDM (dark gray areas) are the transposed matrices of the upper right 

triangle they do not contain additional information and thus do not need to be 

considered separately. The dependencies depicted are interpreted according to the 

rule "row affects column".  

The definition of domains and domain elements determines the construction of the 

structure matrices and delineates the scope of the cost estimation. In order to 

provide support in deriving a list of robot components required for a specific 

application the structure matrices must be completed i.e. all those cells where 

relations between domain elements exist need to be filled out. To this end, a 

workshop was held where six experts in service robot development were requested 

to mark dependencies in each of the six structure matrices with the defined 

designators as they saw fit. 

As the result of the workshop, six different versions of each structure matrix were 

filled out. The individual expert specifications were consolidated into one structure 

matrix of each type. The consolidation was conducted in three steps for each of the 

six structure matrices: 

1. All cell entries were aggregated into an aggregation matrix where each cell 

could hold up to six different entries. 

2. In each cell of the aggregated matrix the less frequently mentioned 

dependencies were removed so that only the most frequently mentions 

remained. 
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3. Each cell was checked for consistency; contradictions were eliminated 

manually based on the context of the two related items. 

 

 

 

Figure 5.2-1 Multiple-Domain Matrix 

In the resulting MDM 612 of 1,176 cells (transposed cells excluded) contained 

marked dependencies. One noticeable finding was that only seven combined entries 

remained after consolidation which indicates that in most cases one relation 

between domain elements is dominant. Furthermore, only eight substitution 

relations were specified.  
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6. Component-based Cost Estimation 

In this chapter the principal cost model is laid out.  The overall cost perspective is 

that of an entrepreneurial point of view, i.e. social or environmental effects and 

external costs are not considered. 

6.1. Component-based Estimation Cost Model 

The proposed cost estimation model for prototypical service robots is based on its 

main hardware and software components and contingent heuristics. The required 

components are a function of the skills the robot is supposed to feature; the 

required skills depend on the specific robot application. This modeling approach is 

top-down from the perspective of the technological structure (from general 

functionality to specific component) and bottom-up from cost perspective (from 

specific component to prototype cost). 

The following paragraphs point out how the separate cost blocks for hardware and 

software components are modeled. The main advantage of estimating the costs for 

each component separately is the increase in accuracy as the overall variance 

decreases and individual components are easier to assess (Ehrlenspiel 2007a, p. 

429); also, the overall estimate is rendered traceable by detailing its composition. 

Figure 6.1-1 depicts how the different cost blocks are combined to form the cost for 

the prototype.  
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Figure 6.1-1 Cost structure of service robot prototype 

6.2. Component Costs 

Each cost constituent is estimated separately, similar to the Bill of Material (BOM) 

concept. BOM relies on detailed knowledge of final product's structure, i.e. the 

minute design and requirements of the final product is available. Thus, the bottom-

up BOM approach does not lend itself to early phase cost estimation. Conversely to 

BOM, the presented approach extrapolates the list of components for a prototypical 

service robot yet to be built from the specified robot application, i.e. it is a top-down 

approach. To this end, categories for vital component types are established and cost 

functions attributed accordingly. 

For each component a model of material and labor costs is constructed and the 

individual cost constituents are classified according to the cost types illustrated 

above. Direct costs at product unit level are calculated for one robot i.e. component 

quantities are related to one manufactured unit.   

As some of the costs are unit variable whereas others are fixed, the following 

notation is used for cost designation: The lower case letter c represents variable 

costs calculated for one robot unit, the upper case letter C represent costs incurred 

for all regarded units, i.e.       . The number of units        includes the prototype 

and thus is greater or equal to one. 
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6.2.1. Hardware Component Costs 

As outlined in Chapter 2.2.4, only OTS components are considered for hardware cost 

estimation, i.e. no proprietary hardware development costs are estimated. Thus the 

hardware component costs in this approach are the sum of the material acquisition 

costs, the installation costs for each component and the labor costs incurred by the 

related administrative processes e.g. selecting the appropriate component and 

finding a supplier. 

6.2.1.1. Data Collection 

The findings from the data collection processes described in Chapter 4.4 are 

outlined in this section. This data was used to create a hardware component cost 

model.  

The hardware related labor cost can be divided into installation cost and the labor 

cost for administrative processes pertinent to the components. For the 

administrative labor a literature research was conducted because the inherent work 

steps are usually executed by different persons e.g. selection of component by 

engineer, purchasing by the buying department, handling and transport by logistics; 

the resultant increased effort of identifying the relevant processes and interviewing 

the responsible agents and the assumedly low impact on the total costs was 

deemed disproportionate to the arguably increased exactitude by expert opinions. 

According to Ehrlenspiel e.a. "administrative costs for each additional part usually lie 

in the range of 1,500 to 2,000 [€] for purchased parts" as of 2007 (ibid., p. 138).25 

Adjusting this value by the inflation rates in Germany from 2007 to 2011 the range 

lies between 1,650 € and 2,200 €.26 The average value of 1,925 € is used as a markup 

per component (not per component unit) and thus represents direct cost at the 

product level and indirect costs at the produced unit level. 

                                                

25The German original (Ehrlenspiel 2007b) indicates a range between €1500 and €2000, whereas 

the translated English version states "1500-2000 [US]$".  

26Aggregated growth for agreed wages in Germany 2007-2011: 9.95% (Statistisches Bundesamt 

2012a). 
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In order to establish an estimation model for the cost of installation two expert 

interviews were conducted with robot engineers at the Fraunhofer IPA. To this end, 

the list of hardware component types was presented to each expert individually and 

each category explained. Consequently the expert was asked to estimate the 

minimum, most likely and maximum effort required for the installation of a typical 

component of each category. The installation process was explained to include 

mounting the device, connecting it to power supply and if applicable to data 

interfaces and verifying its correct operation. 

For the minimum effort both interviews yielded the reply that the component 

installation would take "few hours" for any component. On further inquiry one reply 

was "three to five hours" and the other "two to three hours". One expert stated that 

the minimum amount of time required (in his case two to three hours) was also the 

most likely effort, whereas the second opinion stated was "between half and a full 

day" with workdays of eight hours. For the maximum time required the answers 

were "one week" and "one to two weeks"; in both cases these larger amounts were 

attributed to faulty initial installation or minor defects like broken cables and the 

related error finding efforts. In both interviews the experts voiced their concern that 

the exactitude of such estimations could only be limited as the components can vary 

to a considerable degree.  

The process of collecting data on material acquisition costs was conducted in several 

steps. First, technical product information was collected for each product of the 

category samples. In order to identify potential input parameters for component 

cost estimation a list of product features and the prevalence of the features 

mentioned were compiled. The data was extracted from technical data sheets and 

product information of relevant websites. For this presample five products were 

randomly sampled for each hardware component category; if the technical 

parameters were inconclusive i.e. no dominant features were identifiable, five more 

products were sampled. 

In order to identify the most relevant parameters they were filtered in a three step 

process. First, all those parameters which were mentioned in less than 60% of the 

component group samples were excluded. This first filtering is based on the 

assumption that relevant characteristics appear throughout the majority of product 
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descriptions of a category. The number of technical parameters considered as 

potential main cost drivers resulting from this presampling is presented in Table 6.2-1, 

a detailed list for each category can be found in Appendix 10.3. 

The remaining parameters were divided into primary and secondary parameter 

groups. Primary parameters are those which define the components functionality to 

a large degree, e.g. the payload of platforms or the capacity of batteries, secondary 

parameters are features not central to the component's purpose e.g. the color of 

the casing. Although the distinction between primary and secondary parameter 

categories depends on the concrete application the dichotomization based on 

feature significance was deemed necessary for further reduction of the number of 

parameters. In a third step, the remaining parameters were filtered according to 

their statistic evaluability. All nominal parameters i.e. parameters which cannot be 

ranked where excluded. 

With the list of preliminary cost estimation parameters determined, products 

matching the component type description were selected as a representative sample 

and the according selling prices researched i.e. material cost for components are 

represented by the market prices of the components. Where available, prices were 

taken from the manufacturer's website; otherwise they were requested via email or 

telephone call to the manufacturer or a supplier if the producer did not engage in 

direct sales. The prices are considered as per single unit order i.e. rebates on large 

volumes are not contemplated. Value-added tax was excluded from the prices 

because it is deductible for non-consumers. The currency unit for all components 

observed is Euro (€).  

The categories Miscellaneous End Effectors/Tools, Miscellaneous Structural 

Hardware and Miscellaneous Environment Hardware are considered too 

heterogeneous in nature to determine a single cost model for each one of them. 

Therefore, no data was collected on products pertinent to these categories. 

It should be noted that the spread for industrial component prices can be 

considerable and often depends on the buyer's negotiating power, quantity of 

products bought, availability, general market demand and many more; analyzing 

these effects is beyond the scope of this work. 
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Hardware Component Type Number of 

technical 

parameters 

available 

Number of 

significant 

parameters Camera 101 3 
Ultrasonic Sensor 69 3 
Laser Scanner 127 4 
Radar 40 2 
Binary Sensor 63 2 
Force/Torque-Sensor 82 4 
Gyroscope/Acceleration Sensor 120 5 
GPS System 38 027 
Wheel-based Platform 66 4 
Robot Arm 65 4 
Gripper 54 3 
Input Peripherals 75 2 
Output Peripherals 93 3 
Power Supply 76+23 3+3 
Controlling Computer 83 4 
Safety Hardware 41 2 

Table 6.2-1 Component-wise counts of technical parameters28 

The sample sizes depend on the availability of commercial products in each category 

and thus differ accordingly. A stark contrast can be observed between widely used 

products such as binary sensors and goods manufactured for smaller niche markets 

like robot arms. The number of sampled grippers is particularly low due to the 

technical constraints (s. Chapter 5.1.2.2). The category sample sizes are displayed in 

Table 6.2-2. 

Applying the regression analysis techniques outlined in Chapter 4.4.1 each hardware 

component category was assigned a material cost model. An overview of the 

different models is given in Table 6.2-3. As shown, 15 out of 16 regression models 

reveal a better coefficient of determination for the regression model (RM) than for 
                                                

27None of the technical parameters for the compared GPS modules proved cost significant, s. 

Chapter 6.2.1.3. 

28Power Supply cell entries contain two values because DC-DC converters and batteries were 

modeled separately. 
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the linear model (LM) and 14 out of 16 yield a lower average estimation error which 

can be interpreted as sign that the regression models are a valid approach for 

reducing estimation uncertainty.  

Hardware Component Type Sample Size 
Camera 333 
Ultrasonic Sensor 143 
Laserscanner 357 
Radar 10 
Binary Sensor 1,371 
Force/Torque-Sensor 165 
Gyroscope/Acceleration Sensor 52 
GPS System 22 
Wheel-based Platform 32 
Robot Arm 15 
Gripper 8 
Input Peripherals 82 
Output Peripherals 169 
Power Supply 679+103 
Controlling Computer 142 
Safety Hardware 28 

Table 6.2-2 Component-wise sample sizes 

While the average estimation error of most models lies within the limits outlined in 

Chapter 4.4.3 it is still considerably high for some component types, notably for 

power supply products. Including more parameters could increase the accuracy of 

these models but conflicts with the lack of detailed technical data in early 

conceptual phases and thus reduces the applicability for early estimation purposes. 
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Hardware Component 

Type 

Final parameters R2 

(LM) 

Avg. 

Error % 

(LM) 

R2 

(RM) 

Avg. 

Error 

% 

(RM) Camera frames per second, 

sensor diagonal 

0.56 50.4 0.65 42.81 

Ultrasonic Sensor blind range, 

maximum operating 

distance 

0.28 17.92 0.28 17.8 

Laser Scanner scanning angle, blind 

range, maximal 

operating distance 

0.83 42.37 0.93 23.45 

Radar sensor volume 0.64 67.36 0.93 27.58 

Binary Sensor  blind range, 

maximum operating 

distance 

0.49 42.86 0.58 37.95 

Force/Torque-Sensor degrees of freedom, 

measurable moment 

Mz 

0.79 43.45 0.81 44.98 

Gyroscope/Acceleration 

Sensor 

degrees of freedom, 

power consumption 

0.85 68.91 0.94 27.6 

GPS System - 029 25.55 - - 

Wheel-based Platform weight, footprint 

size, maximum 

payload capacity 

0.76 59.02 0.96 29.21 

Robot Arm weight, reach, 

maximum payload 

capacity 

0.22 107.78 0.85 28.41 

Gripper jaw stroke 0.71 32.76 0.74 31.27 

Input Peripherals degrees of freedom, 

number of 

buttons/keys 

0.09 59.63 0.121 55.25 

                                                

29Equals zero per definition, as in this the estimated value is equaled with the mean of observed 

values. For this case, R2 holds no meaningful information. 
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Output Peripherals pixel array size 0.83 1131.43 0.97 36.62 

Power Supply (DC-DC 

converter) 

output voltage, 

output power 

0.3 132.75 0.43 59.19 

Power Supply (battery) capacity, output 

voltage 

0.69 75.39 0.69 75.39 

Controlling Computer processor type, 

volume, flash 

memory capacity 

0.72 42.42 0.81 29.32 

Safety Hardware weight, size of 

contact surface 

0.948 74.08 0.981 24.39 

Table 6.2-3 Comparison of hardware cost model performance 

Two noteworthy cases required an adaptation of the methodology. The power 

supply category proved to be difficult to model as it comprises converters as well as 

batteries. As these are technically very different concepts no parameters were 

found which could be applied to one type without unduly distorting the estimation 

for the other. In order to keep the structure matrices synchronized for which data 

had already been collected these two types were kept in one category but each was 

assigned a separate cost model. For GPS modules no parameter remained as 

significant cost drivers because the price spread of the considered products was 

small since many products revealed very similar parameter values. Thus, the price 

for a GPS module is modeled as the average of the sample prices. 

As a further result of the data collection process, averages and medians for each 

applied parameter were determined. These values provide the basis for parameter 

default values if the user chooses not to enter a specific value or no specific 

information is available. The concrete values are listed in Appendix 10.3. 

6.2.1.2. Labor Costs 

As each hardware component has to be installed in the service robot it also incurs 

labor costs. As components for service robots differ in an unwieldy number of 

parameters like size, technology, complexity and many more a simplified labor cost 

model is used in accordance with the objective of pragmatic and easy-to-use 

applicability (s. Chapter 2.3). 
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The function of estimated installation cost          
   was constructed using the three-

point estimation method on the averages of the expert judgments on minimum, 

most likely and maximum time effort required expressed in work day of eight hours 

working time. This yielded a mean installation time of 1.46 workdays per component 

with a standard deviation of 0.93 workdays. Thus the overall installation cost is 

estimated as 

 
          

                      
            .   

         
      

    

  

   

 

 

(6.1)  

where        is the number of manufactured robots (including the development 

prototype),    is the quantity of the i-th of    component type instances per robot, 

          is the monthly cost rate of the person assigned to the installation and 

       is the number of working days per month. 

Minimum and maximum values indicated in the interviews yielded averages of 0.41 

and 6.25 workdays per component. 

The overall hardware installation cost variance is 
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(6.2)  

The installation costs are direct costs on the product unit level. 

Components also cause secondary administrative work e.g. in the form of selecting 

and purchasing processes, inspection and similar activities. These are indirect costs 

and there are several ways to  burden them on product units (s. Appendix 10.1.2.5). 

Also, some of these processes do not scale with each purchased component unit; 

the relevant cost object in most cases is either the component (in the sense of an 

OTS product differing from comparable ones) or batches of components as not each 

component unit is necessarily bought separately. It is not the aim of the presented 

work to capture all indirect costs but only those costs that are caused by the 

product's development and production. As the establishment of substantial 

knowledge on firm-specific details on administration organization, staffing, 

processes etc. required for the determination of holistic administration markups is 

deemed neither pragmatic nor required in the scope of this work a heuristic rule is 
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applied here for the estimation of the administrative costs related to hardware 

component.  

Based on Ehrlenspiel e.a. each component is estimated to incur 1,925 € average 

administrative cost per component on the product level (s. Chapter 6.2.1.1) i.e. 

these costs are modeled as an absolute markup per component: 

         
            (6.3)  

where    is the number of component type instances.30 The variance is calculated 

based on the indicated range between 1,650 € and 2,200 € using three-point 

estimation as 

 
          

      
   

 
    

 

 
(6.4)  

It should be noted that the values for administrative costs for hardware components 

are only very rough, orientational values due to the lack of more specific data. 

The overall hardware labor cost model is calculated as  

         
              

            
    (6.5)  

           
                

              
    (6.6)  

With the minima and maxima adopted from data collected, the probability density 

functions           
   and         

   are calculated as beta distributions and 

subsequently convolved in order to compute their aggregate distribution         
  . 

The beta distributions are calculated with the dbeta algorithm of the R software 

library msm. Having estimated         
   permits the calculation of probability 

quantiles which give the estimator additional information about the range of the 

cost estimate in addition to mean and variance. 

                                                

30Disambiguation note: The markup is not calculated per unit of the component used but per 

component type. Example: If two identical laser scanners were used as components, the 

administrative cost is only incurred once for the type of laser scanner, not twice. 
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6.2.1.3. Material Costs 

Applying parameter values from user input the expected value and variance of unit 

material cost        for the i-th component instance can be estimated using the cost 

models derived by regression analysis: 

         
             (6.7)  

where    is the number of parameters for component i,   
   is the generalized 

additive regression function for the same component. The regression model 

calculated with gam also computes the standard error i.e. standard deviation. 

The default values for the parameter are set to the median of the surveyed samples 

pertinent to the specific parameter; the median was chosen due to its higher 

robustness toward outliers. Consequently, the expected cost of all hardware 

materials is estimated as 

            
                       

   

                     

  

   

 

(6.8)  

The overall variance is calculated as the sum of the component variances 

            calculated by the respective model 

              
           

               
   

        
     

             

  

   

 

(6.9)  

As the models assume a normally distributed estimation error the probability 

density function            
   for material costs is calculated as a truncated Gaussian 

distribution. The area of the distribution is truncated at three standard deviations 

above and below the expected cost value; additionally, the lower bound is 

constraint to zero to avoid negative cost estimates. This truncation is necessary for 

the estimation of corridors as the normal distribution would allow theoretically 

infinite minima and maxima for the hardware cost estimate. The threshold of three 

standard deviations was chosen because with 99.74% the probability of the values 
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lying in the remaining interval is still sufficiently high.31 The calculation of this 

probability density functions is executed with the dtnorm algorithm of the R library 

msm which adapts mean, variance and densities of the non-truncated distribution 

accordingly. 

First, second and third quartiles are also calculated for            
   in order to 

provide additional data on estimation uncertainty. 

6.2.1.4. Aggregate Hardware Costs 

With hardware labor and material costs estimated an aggregate hardware cost 

function can be constructed for the overall hardware costs 

                 
               

    (6.10)  

                     
                 

    (6.11)  

The probability density function       is calculated by convolving         
   and 

           
   using the convolve algorithm of the R library stats. Figure 6.2-1 displays an 

example of the combination of previously calculated density functions. 

6.2.2. Software Component Costs 

Similarly to hardware costs, the software costs are calculated in a bottom-up 

approach. In distinction to the hardware components, costs are not based on 

individual cost models for each component type but on one general cost model 

which relies on the four parameters code size, productivity ratios for reusing and 

developing code, and reuse ratio for existing code. The reason for this different 

approach lies in the lack of data for a regression analysis approach: The 

development costs of existing software like ROS are unknown and there is no 

abundance of disclosed primary parameter values on the software as there is for 

hardware components. Thus, acknowledged software cost estimation principles are 

applied, i.e. the extrapolation of cost from code size, and extended with data 

collected from expert interview. 

 

                                                

31The interval [μ-3σ; μ+3σ] covers 99.74% of sampled values from a normal distribution (Bronštejn 

1995, p.633, p.974). 
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Figure 6.2-1 Aggregation of hardware probability density functions 

6.2.2.1. Data Collection 

For the code analysis, 469 packages from the ROS Electric Emys release and current 

Care-O-bot stacks as of April 2012 were chosen as the software analogy.32 The 

number of meaningful code statements was extracted from each functional file 

                                                

32For a list of all packages analyzed in the presented work s. Appendix 10.4. 
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pertinent to these ROS packages to be used as input for backfiring. Meaningful 

statements exclude comments or empty lines because they do not add functionality 

to the code. 

Functional files are those constituting the implementation of the desired 

functionality and exclude those that serve the code administration itself. For 

example, ROS packages contain many manifest.xml files that serve to describe 

dependencies between packages (Willow Garage 2009e). These are usually not 

modified by third-party developers and thus were excluded from backfiring in the 

presented work. For similar reasons, all files that serve the code compilation, e.g. 

makefile or CMakeLists.txt, were also excluded. A list of files excluded can be found 

in Appendix 10.4. 

Packages concerned with testing, documentation, and tutorials were also excluded 

from the analysis because the applied implementation rates cover the whole 

software development process including testing and documentation; considering 

mentioned packages would thus lead to an overemphasis of those activities. After 

data cleansing, the source code statements were counted for each file using the tool 

cloc (Danial 2012) and the resulting data fed into a database including count of lines 

and programming language. 

Furthermore, each package was related to the software component types by a 

package-to-component relation matrix. The cell values of this matrix were not 

collected through expert interviews but through analysis of each package's 

documentation and assigning an appropriate value (Willow Garage 2008). Possible 

values are "package is required by component" or "package enhances component". 

Additionally, a package-to-package dependency matrix was created with the 

possible cell values "package requires package" and its inverse "package is required 

by package" (row to column). The values were determined using the rosdep utility, a 

small software application within ROS which provides information on software 

dependencies (Willow Garage). 
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As the number of lines of code varies highly with the respective programming 

language and ROS packages are programmed in many different languages33 the 

collected code sizes were translated into function point estimates. To this end the 

latest version of the Programming Language Table (PLT) by Software Productivity 

Research was used (SPR 2012). The PLT contains statistic ratios for minimum, mean 

and maximum lines of code per function point for 550 different programming 

languages (SPR 2007). Applying the according conversion value the minimum, mean 

and maximum number of function points was calculated for each software package 

via backfiring. Table 6.2-4 lists the sums of function point averages per stack. 

In order to tie function points to costs productivity rates are required i.e. the time 

one developer requires to implement one function point. Although the developer's 

productivity depends on many factors heuristic values can serve as default values to 

arrive at a plausible estimation. The heuristic values for software implementation 

rates employed in this work are based on Jones' research assuming that code is 

developed following the CBD paradigm (Jones 2007, pp. 134–145):34 

1. Developing reusable code typically occurs at a default rate     of 6 function 

points per person month. 

2. The default rate for developing non-reusable, custom code     is 10 function 

points per person month. 

3. The default rate for acquiring and adapting reusable code    is 30 function 

points per person month. Such activities include the search for appropriate 

components and creating the necessary environment for reusing them e.g. 

installing all required miscellaneous software. 

 

                                                

3328 different languages were used for the considered 469 packages. 

34These values are used as defaults in the estimating software tool SEROCOST pertinent to this 

work. As assumptions concerning these values might vary the user is offered the possibility to 

change any of these values thus rendering the estimation process more flexible and customizable 

to individual needs. 
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Stack Sum 

FP  
Stack Sum 

FP 
arm_navigation 3,891.4 

 
openni_kinect 119.0 

arm_navigation_experimental 1,371.3 
 

orocos_kinematics_dynamics 162.9 
audio_common 43.4 

 
perception_pcl 134.5 

bond_core 50.1 
 

perception_pcl_addons 111.9 
brown_remotelab 3.5 

 
physics_ode 199.3 

bullet 9.7 
 

pluginlib 111.7 
camera_drivers 191.5 

 
point_cloud_perception 1.6 

client_rosjava_jni 75.7 
 

pr2_apps 81.0 
cob_command_tools 382.6 

 
pr2_arm_navigation 75.0 

cob_common 1,541.3 
 

pr2_calibration 1,063.6 
cob_driver 706.0 

 
pr2_common 964.2 

cob_environment_perception 293.4 
 

pr2_common_actions 283.9 
cob_environments 0.3 

 
pr2_controllers 725.4 

cob_extern 88.2 
 

pr2_ethercat_drivers 273.7 
cob_people_perception 22,215.2 

 
pr2_gui 25.9 

cob_simulation 342.8 
 

pr2_kinematics 45.7 
common 333.8 

 
pr2_mechanism 481.2 

common_msgs 841.0 
 

pr2_navigation 95.7 
common_tutorials 202.5 

 
pr2_object_manipulation 3,555.7 

control 225.3 
 

pr2_power_drivers 119.6 
diagnostics 49.3 

 
pr2_robot 170.1 

diagnostics_monitors 65.2 
 

pr2_simulator 150.7 
documentation 56.3 

 
robot_calibration 6.4 

driver_common 186.3 
 

robot_model 1,312.1 
executive_smach 151.6 

 
robot_model_tutorials 107.1 

executive_smach_visualization 33.0 
 

ros 537.3 
filters 28.3 

 
ros_comm 1,792.6 

geometry 217.0 
 

ros_realtime 31.3 
geometry_experimental 187.4 

 
ros_tutorials 170.2 

geometry_tutorials 8.1 
 

rx 540.0 
geometry_visualization 18.6 

 
schunk_modular_robotics 444.9 

ias_common 570.4 
 

simulator_gazebo 3,344.9 
image_common 56.0 

 
slam_gmapping 17.7 

image_pipeline 142.1 
 

sql_database 17.9 
image_transport_plugins 26.7 

 
stage 7.0 

imu_drivers 30.2 
 

vision_opencv 45.8 
joystick_drivers 897.2 

 
visualization 735.5 

knowrob 4,633.0 
 

visualization_common 181.5 
laser_drivers 40.9 

 
visualization_tutorials 19.9 

laser_pipeline 63.0 
 

warehousewg 361.8 
navigation 426.0 

 
web_interface 1,053.9 

nodelet_core 56.6 
 

wifi_drivers 41.3 
object_manipulation 2,794.6 

 
xacro 29.2 

octomap_mapping 60.0 
   

Table 6.2-4 Average function points per stack 
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These productivity ratios include all software development activities ranging from 

early requirement analysis to delivery and thus constitute rather slow development 

rates. If activities are skipped or heavily reduced e.g. by omission of thorough 

testing the rates will rise with accompanying quality losses. 

Furthermore, the development team's experience has a strong impact on the 

software productivity rates (McConnell 2006, p. 63; Jones 2007, p. 340). For this 

reason the estimator may want to include his assessment of the team skill in an 

attempt to increase accuracy of estimates. In order to provide this possibility 

without introducing increased complexity to the estimating approach a set of 

adjustment factors depicted in Table 6.2-5 was extracted from Jones' research (Jones 

2007, pp. 337–342). The default productivity rates for software development are 

multiplied with the selected factor yielding the applicable rates    and   . 

Team capability Multiplier Impact compared to 

average 
Excellent 1.55 +55% 
Good 1.28 +28% 
Average 1.0 0% 
Below average 0.56 -44% 
Poor 0.13 -87% 

Table 6.2-5 Team capability adjustment factors 

As not all of the software is to be rewritten according to the assumption of code 

reuse in Chapter 2.2.5 data on estimated reuse ratios was collected. To this end, a 

list of the 469 packages was presented to two experts at Fraunhofer IPA familiar 

with ROS in order to estimate reuse rates using the scale described in Chapter 

4.4.4.35  Several rules were applied in order to aggregate expert judgments into one 

reuse ratio for each package: 

1. Where the expert could not estimate reuse because he was unfamiliar with it 

a default value of 0.6 was determined. This value is a heuristic rule for 

component-based development based on software estimation literature 

                                                

35Both experts are members of the "Extended Authors (Stacks Released)" group, s. (Willow Garage 

2009a). 
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stating that roughly 60% of the code stems from reusable components (ibid., 

p. 144). 

2. If the expert indicated that a component was merely installed but not 

adapted the reuse ratio was interpreted as 100% and the packages were 

marked in the database so that they are exempt from the estimation software 

development cost. 

3. If the judgments were identical the median between lower and upper interval 

limit were set as the reuse ratio e.g. the interval between 30% and 50% reuse 

is translated into a reuse ratio of 0.4. 

4. If the expert opinions differed the average of the respective interval medians 

was set as the reuse ratio e.g. one judgment of 30% to 50% and one of 10% to 

30% equal a reuse ratio of 0.3. There is one exception to this rule: If one 

expert indicated lack of knowledge (package not used or unknown, rule 1) and 

the other specified "installation only" (rule 2) no average was used but the 

package regarded as described in rule 2. 

Figure 6.2-2 displays the absolute counts of all occurring reuse ratios thus 

determined. One aspect that can be drawn from the presented figure is the 

dominance of high reuse ratios. More than 50% of the package for which an 

estimate was given revealed an average reuse ratio of 0.8 or higher i.e. more than 

50% are only slightly modified. Packages that are not modified at all but only 

installed represent another large fraction with 28%. For roughly a third of the 

packages analyzed the reuse ratio is 0.6. The reason for this high value is that for 

132 packages the experts indicated that they did not know or use these packages so 

that their reuse ratios were defaulted to 0.6 (s. rule 1).  

The finished software must also be installed on each manufactured robot. Thus 

experts were interviewed to determine the costs of an individual installation effort 

not related to software development. Not knowing the concrete implementation of 

neither the robot nor the robot software the experts were asked to estimate the 

minimum, most likely and maximum effort expressed in how long it would take 

them to install the ROS release version on a service robot like Care-O-bot 3. 
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Figure 6.2-2 Distribution of package reuse ratios 

Care-O-bot 3 was chosen as an appropriate analogy because it runs on ROS 

components, many software stacks have been released for it, the experts were 

familiar with its structure and it fits the definition of service robots outlined in 

Chapter 2.1.1. The installation effort to be estimated should also include brief 

testing of correct functionality. Both experts specified one workday as the most 

likely value and half a workday as the minimum. For the maximum one expert 

indicated "between two and three days", the other suggested three workdays; the 

worst case was thus set to three workdays. 

6.2.2.2. Material Costs 

Software per se is not physical but it requires storage and computing media. As 

these requirements are already covered by the hardware for the central computing 

unit (s. Chapter 5.1.2.2 on control unit) no material costs are accounted for in this 

regard. 

In a broader sense of material costs the acquisition costs for bought software can be 

regarded as material costs as they can be depreciated according to many accounting 

standards.36 As the presented work assumes the usage of freely available open 

                                                

36E.g. UK Income Tax Act, UK Companies Act, German regulations on tax matters (EStR). 
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source code as the basis for the robots software development there are no expenses 

in the sense of this software material cost interpretation. Thus, material costs for 

software are considered to be nil. 

6.2.2.3. Labor Costs 

As software is reproducible in virtually any number it is not produced on a per unit 

basis. Thus the direct labor costs of software per service robot mainly consist of 

software installation costs. Although installation usually is automated for larger 

production series it appears plausible that the installation of software and the 

verification thereof for prototypical or early series service robots will be handled per 

individual unit in accordance with the assumption of small-series production (s. 

Chapter 2.2.1). According to data collected in interviews on software installation, 

the average time required for installing the finished software on the robot is one 

workday, in the best case half a workday and in the worst case three days (s. above).  

Using PERT calculation, one installation is thus expected to last 

 
            

 .       

 
  .   

(6.12)  

with a variance of  

 
              

   . 

 
  .     

(6.13)  

The resulting estimated costs         
   for the software installation including 

functional verification on        manufactured units (including the prototype) are 

thus calculated by multiplying the required time with the developer's daily wage 

rate. The wage rate is derived as the monthly salary            divided by the 

average working days per month       . 

           
                         

   

             
          
      

   .   

(6.14)  

and its variance as 

             
              

              
    

             
          
      

  .     

 

 

(6.15)  

assuming that a software expert undertakes the process and that the software can 

be installed without modification at the production stage. These costs are incurred 
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at product unit level except for the initial prototype which is why        must be 

reduced by one if the prototype is included in the total number of produced units. 

The reason why the initial prototype is excluded from this form of installation cost is 

that the prototype will be directly connected to the software development process 

so that the working software is already installed when the development process is 

complete. 

A large cost factor stems from software components that need to be developed 

first. Software development costs are activity costs which are not direct costs at the 

robot unit level but can be regarded as direct cost on the product level. 

Nevertheless, if software development costs are burdened on produced units, 

software costs constitute a considerable part of the production costs (s. Chapter 

10.1.3 for comparison of direct and indirect costs). 

Labor cost estimates are based on assessing the amount of effort that is put into 

activities. Thus an appropriate measure for effort has to be determined. Most 

software estimation approaches assume the size of software as the dominant 

actuating variable on the required efforts; the most common recognized measures 

for size being source lines of code statements (SLOC or LOC) and function points (FP) 

(Leung 2002, pp. 309–310; CSE 2000, pp. 3–7). In the presented work a combination 

of both LOC and FP measures is applied using the backfiring method.  

As software development can be very complex the effort inherent to software 

projects depends on a multitude of parameters e.g. experience and size of the 

development team, time schedule, available tools, project complexity and many 

more; Jones lists 25 different factors affecting software development efforts (Jones 

2007, pp. 341–342). For a model to be pragmatically applicable the number of 

parameters should be reduced without extensively compromising its informative 

value. 

The parameters used in the presented approach are software function points, 

software reuse ratio, each collected per component of available robot-related 

software, and function point implementation rates depending on team experience. 

The function point sizes s is the quantitative metric for the size of software as 

described above.  
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The software reuse ratio r is the relation of how much of the code is reused to the 

overall size of the software. This represents the application of the code reuse 

assumption (s. Chapter 2.2.5) in combination with the analogy-based estimation 

model for software (s. Chapter 3.1.3). In robotics, component-based software 

engineering (CBSE) or component-based development (CBD) are increasingly 

recommended and applied, as they allow systematic reuse of software elements 

and thus save time, effort and eventually cost (Brugali 2009; Brooks 2005, p. 135). 

The function point implementation rate v describes the average time per function 

point that is required for rendering usable software code. Those packages that only 

require installation according to expert opinion do not impact the development cost 

but are listed among the software packages for completeness' sake.  

As the developments costs are mainly employment expenditures the estimated 

overall outlay for software development       
   can be approximated by the staff 

time required multiplied with the developer's monthly salary           . Staff time 

can be interpreted as the time one single person would require implementing the 

respective software. 

         
                       (6.16)  

As software is assumed to be developed component-wise     is the sum of the staff 

time required for each component. However, because components can share 

functionalities and thus use the same software parts the software development is 

treated on a level of finer granularity than the software components presented in 

Chapter 5.1.2.3, namely on package level. The ROS package structure allows a more 

detailed customization of analogy-based estimation.  

Based on the selection of components on the higher level the necessary packages 

are retrieved from the database and the time for the total development 

extrapolated from the aggregated code size. This procedure also ensures that 

packages occurring in several components are only accounted for once. 

                
 

 

 (6.17)  
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The staff time required for each package i is composed of two summands; one for 

the time required for acquiring and adapting reusable code     
  and one for 

developing new code     
 . 

       
         

         
   (6.18)  

This distinction is necessary because the development of software occurs at 

different implementation rates; adapting reusable software is usually faster than 

developing new code from scratch. Consequently, the costs per function point 

depend on the manner of implementing it – reuse itself tends to be cheaper than 

custom implementation. Writing reusable code however is more expensive than 

writing non-reusable code because of the need of greater care for debugging, 

documentation and interface compliance. The decision to make the custom code or 

parts of it reusable or not is subject to the developer's design philosophy.  

Applying these values in conjunction with the size of the package derived by 

analogy-based estimation and the respective reuse ratio the staff time summands 

can be formed as 

 
      

    
           

  
 

(6.19)  

and 

 
      

   
               

  
 

(6.20)  

where       is the expected size of package i in function points,       is the 

expected reuse ratio of the package (i.e. the percentage of software which is 

assumed to be reused) and    is either     for custom code development or     if 

the newly developed code is to be reusable.37 

The software reuse ratio    indicates the part of available software packages that 

must be adapted and fitted to the concrete application to be implemented; it is the 

relative amount of reuse as opposed to the amount to be developed (cf. Frakes 

1996). As not all parts of the code are reusable the remaining           must be 

                                                

37For simplicity's sake the possibility of combining development of reusable and non-reusable code 

is not considered. 
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rewritten. Software that is installed without any modification is not considered 

reused and thus not implied in the development costs. 

The estimated time effort required for software development of package i is 

calculated as 

 
         

           

  
 
               

  
 

 

  
 

  
 
 

  
               

 

  
       

  

 

(6.21)  

In order to determine the variance of the software development costs its probability 

density function must be established by calculating the aggregates of the variances 

of sizes and reuse ratios of software packages. The implementation rates    and    

are assumed to be constants because the uncertainty towards implementation is 

represented by the aforementioned variances. 

The wage rate            is assumed to be constant in the presented approach; it 

strongly depends on regional influences and must be known to the estimating 

person beforehand (s. Chapter 4.3.2).  

In order to establish the expected value and variance of reuse ratios the following 

construction model is used: 

Minimum of reuse is always 0% and maximum always 100%. The most likely reuse 

rate           was derived by expert elicitation for each software package 

individually as described in the previous chapter. 

Applying these values to (4.19) and (4.20) yields  

 
      

            

 
 

(6.22)  

and 

 
         

 

 
 

 

(6.23)  

Expected value and variance of the function point size   of a software package are 

modeled as follows: 

The lines of code counted for the component are converted to minimum, mean and 

maximum sizes using statistic conversion rates from the SPR Software Programming 
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Languages Table (SPR 2007). As the distributions of function points varies with the 

programming language and software packages can be composed of files 

implemented in different programming languages the expected function point size 

value of each software package is determined by calculating its language-specific 

distributions and consequently adding them. The cumulative expected value of the 

function point size    of software package   is 

               

 

 (6.24)  

where     denotes the function point size for the part of package   implemented in 

programming language  . It is calculated as 

                

 

(6.25)  

where       represents the number of lines of code written in language   which 

have been counted for software package  . The conversion rate    is the mean ratio 

of function points per line of code (s. Chapter 4.4.2.2 on backfiring). 

Assuming that the language specific implementation sizes are independent from 

each other the overall variance of the package's size is 

                   

 

 (6.26)  

The variance          is determined applying equation (4.20), i.e. using the PERT 

estimation method: 

 
          

           

 
 

 

 

 

(6.27)  

The terms     and      denote worst case and best case for the function point 

size of the part of package   specific to language  , i.e. the largest and smallest sizes 

to be anticipated. They are calculated in analogy to (6.32) but with the respective 

conversion rates       and       for conversion to minimum and maximum 

function point size: 

                  

 

(6.28)  

                  

 

(6.29)  



6 Component-based Cost Estimation 

121 

With the variances for code sizes and reuse ratios thus modeled and assuming that 

the reuse ratio per package is unrelated to the size of the package, i.e.            

 , the variance of the time effort per component is calculated as38 

 

                      
 

  
 
 

  
 
 

      
   

 

  
 
 

  
 
 

 

 
 

    
        

 

  
 
 

                   
 

  
 
 

  
 
 

      
   

(6.30)  

The overall expected cost variance for software development is then calculated as 

           
                 

 
          

(6.31)  

6.2.2.4. Aggregate Probability Density Function 

For the derivation of the beta distribution for software development the minimum 

and maximum of the development cost must be modeled, too. They are determined 

by best case and worst case values for code size and reuse ratio: 

         
   

          
  

       
  

 (6.32)  

         
   

          
  

       
  

 (6.33)  

i.e. in the best case the smallest assumable amount of function points is completely 

being reused, in the worst case the largest assumable amount of function points 

must be completely redeveloped. 

With minimum, maximum, expected value and variance modeled the beta 

distribution         
   of the software development cost can be derived according to 

the method outlined in Chapter 4.4.3. The distribution function allows the 

calculation of quartiles as a measure of estimation uncertainty. 

                                                

38For a detailed derivation s. Appendix 10.2. 
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If the costs are to be estimated for more manufactured units than the development 

prototype additional software installation cost must be incorporated. To this end, 

the beta distribution           
   of the installation cost per unit is constructed, 

employing worst case and best case estimates for the calculation of minimum and 

maximum cost: 

           
     .   

          
      

            
(6.34)  

           
     .  

          
      

            
(6.35)  

Expected value and variance of the overall software costs are the sum of 

development and installation costs are 

                   
            

    (6.36)  

                       
              

    (6.37)  

The distributions         
   and           

   are subsequently folded to determine the 

overall distribution       of the software cost. 

6.3. System Designing Costs 

There are cost components that cannot be attributed to specific components but 

only to the product as a whole, i.e. indirect product unit costs but direct product 

costs; because these costs concern the overall product as a system they are referred 

to as systemic costs in this work. The major constituents of these are the costs of 

the project management, overall system design and engineering process and the 

costs of system testing (Kossiakoff 2003, p. 92); the costs for software design and 

testing are already covered by the software productivity rates    and    and thus 

not considered in this section. Further project management costs other than those 

already included in the hardware and software estimates are not considered under 

systemic costs. The remaining systemic cost constituents are subsumed here under 

the term 'system designing cost'.  

6.3.1. Data Collection 

Estimating these costs is particularly difficult because lack of data for these costs 

arguably due to general issues of cost allocation and the companies' vested interest 

in non-disclosure of such information (Schehl 1994, p. 217). The complicatedness of 

estimating these systemic costs is aggravated even more as the process of overall 
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system design is usually not a closed, clearly segregated course of action but 

intricately interwoven with other parts of the development process. 

In order to acquire at least indicative value of development costs other than 

hardware and software costs literature and database research on the topic of 

development cost allocation was conducted. No experts were interviewed as it 

seems questionable if they are willing or capable of disclosing such information 

given the constraints of market competitiveness. Secondary literature on costing 

was searched and the databases statista (statista 2012), destatis (Statistisches 

Bundesamt 2012b), Eurostat (COMM/ESTAT) and Research Data Centres of the 

Federal Statistical Office and the statistical offices of the Länder (NRW 2002) were 

scanned for information on research and development cost allocation. 

One finding of the research was that detailed information is very sparse. If 

information on companies' research and development cost is provided it is either in 

absolutes for industry branches (e.g. Wiechers 2012), in relation to turnover or in 

relation to total costs (e.g. Meisl 1988; VDMA 2009). Absolutes and turnover-related 

numbers hold little information value for estimation purposes of this work and were 

thus not considered further. Sources of research and development costs in relation 

to total costs are displayed in Table 6.3-1. 

Source Industry R&D percentage 

of total cost 
(Meisl 1988, p. 97) Defense 15% 

(Ehrlenspiel 2007a, p. 397) Mechanical engineering 8.3% 

(VDMA 2009, p. 67) Mechanical engineering 8.1% 

(Schehl 1994, p. 219) Industries with low R&D 

rate 

1 to 3 % 

Industries with average 

R&D rate 

5 to 8.5 % 

Industries with high R&D 

rate 

10 to 25% 

Table 6.3-1 Mentions of research and development proportion of total costs 

For the mechanical engineering industry a more detailed cost allocation was found 

that explains the average overhead cost structure in relation to the total costs. The 

according cost hierarchy is depicted in Figure 6.3-1 (adopted from Ehrlenspiel 

2007a, p. 397, percentages derived from VDMA 2009, p. 67; the sum of all 

percentages is 100.1% due to rounding errors). 
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Figure 6.3-1 Cost structure in the machine engineering industry 

6.3.2. System Designing Cost Model 

Given the lack of data it is arguable if any attempt at estimating robot designing 

costs should be made at all. As long as the basis of the estimates is fully disclosed it 

is deemed more useful to the end of the objective of this work – namely decision-

making support – to provide estimates with a high degree of uncertainty rather than 

omitting estimates. If the estimation model for the particular estimate is considered 

by the estimator to be implausible it can be foregone; omission of an estimate, 

however, can lead to a false impression of completeness. 

In order to provide at least an orientational value for robot designing costs they are 

modeled as a markup α on cost incurred for hardware and software of the 

prototype:39 

                      
              

            
            

     (6.38)  

Because no data is available as a default value for α a model that draws on the 

knowledge of total cost ratios is applied. Average percentages of development costs 

and manufacturing costs in relation to total costs (TC) are available from secondary 

                                                

39Notice that             
   is used instead of     because software installation costs are not 

separately incurred for the prototype; s. (6.12). 
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literature. If the robot development project is regarded as if it were a separate 

company it can be hypothesized that similar percentages apply accordingly. 

Furthermore, if the costs            
            

            
    estimated so far 

are regarded as preliminary manufacturing costs MC and the robot designing costs 

as the development and design costs DDC of the project according to Figure 6.3-1, 

the known ratios can be used as a calculation basis for the derivation of markup α: 

            
              

            
            

       (6.39)  

            (6.40)  

If   and   are the given ratios 

 
  

  

  
 

(6.41)  

 
  

   

  
 

(6.42)  

then   is approximated by the quotient of   and  : 

            
 

 
          (6.43)  

Employing values from Table 6.3-1 a corridor can be determined. Because service 

robotics is considered a research intensive high-technology industry the interval for 

industries with high research and development rates as indicated by Schehl appears 

to be a cogent choice. Thus the minimum value for   is assumed to be 0.1 and the 

maximum value 0.25. As the percentage of manufacturing costs decreases with an 

increase of the development costs   must be adapted accordingly. Using the 

average values depicted in Figure 6.3-1 as a reference i.e.       .           . ,   

can be scaled in relation to   as 

 
  

          

        
 

(6.44)  

Thus, the corridor for   is calculated as 

 
     

 . 

 .   
  .    

(6.45)  

 
     

 .  

 .   
  .    

(6.46)  

which means that systemic costs add between 14.6% and 43.8% to the hardware 

and software related costs according to this model. 
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Because no information was available on the exact distribution of development and 

design costs a beta distribution       with a positive skew is assumed as these 

costs are mainly labor costs; the expected value is assumed to lie at one third of the 

corridor range  

           
         

 
  .    (6.47)  

The variance of α is determined by applying (4.20) as 

 
        

         
 

 
 

  .     
(6.48)  

With this auxiliary model the expected value of the robot designing costs is 

             

             
              

            
            

     

(6.49)  

and the variance is derived as 

                         
           

         
         

     

                    
              

            
   

         
    

 

               
                

              
         

             
           

 
 

(6.50)  

          

               
                

              
              

     

 

As noted earlier the presented model for robot designing costs is based on many 

unconfirmed assumptions; the effort required to validate these is beyond the scope 

of this work which is why this particular model is considered a tentative attempt to 

alleviate lack of a detailed data basis. The results, however, were included in the 

validation process explicated in Chapter 8. 

6.4. Prototype Development Costs 

The models for the separate cost blocks are combined into an aggregated cost 

model for the development of a service robot prototype. According to Figure 6.1-1 

the manufacturing cost function then takes the form 

                        

          
         

            
         

       

(6.51)  
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The software installation costs         
   are not among the summands due to the 

reasons explained in Chapter 6.4. 

The expected value and variance of the prototype costs is calculated as the sum of 

the expected values and variance, respectively for each cost subfunction.  

Convolving the pertinent probability density functions yields the aggregate 

probability density function              which permits the localization of 

probability quantiles of costs for a robot prototype. 

6.5. Derivation of Unit Costs 

Although development of prototypes lies in the focus of the presented approach 

unit cost estimates are also modeled as they have the potential of providing 

additional insight to the estimator. For the calculation of unit costs i.e. costs per 

produced unit two different cost levels are computed in accordance with Figure 6.1-1. 

The first unit cost level DUC includes only direct costs at the unit level which means 

all development cost are exempt from this calculation. At this level the costs per 

unit are 

             
            

           
   (6.52)  

As no economies of scale are considered in this approach the DUC are also the 

marginal costs i.e. costs incurred per increment in produced units. 

Expected value and variance of DUC are calculated as the sum of the expected 

values and variances of the respectively pertinent cost blocks: 

                  
               

              
    (6.53)  

                      
                 

                
    (6.54)  

The second unit cost level PUC incorporates those costs that are directly related to 

the product but do not vary with the number of produced units; these costs are 

direct costs at the product level but indirect costs at the product unit level (s. 

Chapter 10.1.3.1). For the calculation of the PUC all previously calculated costs in 

this work are distributed among the number of produced units except the prototype 

unit; the costs of the prototype are burdened on the remaining          units. 

              
         

            
           

         
       

 
 

        
 

 
                

         

        
 

(6.55)  
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Accordingly, the expected value and variance are  

                   
            

               
              

   

         
            

 

        
 

(6.56)  

                       
              

                 
   

             
              

   

            
 

        
 
 

 

(6.57)  

The probability density functions for DUC and PUC are computed by convolving the 

corresponding distributions of the cost constituents. 

Whereas the DUC properly reflect the cost causation per unit, the PUC is more 

holistic in the sense that all product-related costs are incorporated. Both values are 

amenable to further analysis e.g. cost-plus-pricing or comparison with target costs 

thus providing input for information-based decision making. It should be noted, 

however, that the unit costs derived with the described method cannot be seen as 

realistic estimates for larger series production where cost-saving mass production 

means are employed that are not considered here. 
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7. The Software Tool SEROCOST 

As a part of this thesis, a software tool was developed in order to implement a 

method of computer aided application of the estimation methods described in the 

previous chapters. A description of this tool is presented in this chapter. 

7.1. Aim 

The declared objective of the presented work is to support service robot developers 

in their decision-making process. In order to fulfill the pertinent estimator 

requirements (s. Chapter 2.3) a software application has been developed in 

conjunction with the presented thesis. This tool called "SEROCOST" (short for 

"Service Robot Cost Estimation") was designed to serve several purposes: 

 Provide access to the data and cost models forming the basis of the presented 

estimation approach 

 Process provided data and user input according to the presented methods 

 Present results in an aggregated and comprehensible way to the estimator  

The application should warrant ease-of-use and applicability to reduce estimation 

complexity; SEROCOST was designed with the goal in mind to allow a quick estimate 

for service robot prototypes in less than one hour. Furthermore, traceability of 

results is important to ensure estimator acceptance.  

7.2. Features 

The application SEROCOST is an application with a graphical, windows-based user 

interface. It guides the estimator through a sequence of dialogs that are in 

accordance with the estimation process presented in Chapter 4 (s. Figure 4.1-2). 

Manifold possibilities to customize the estimation to the estimator's specific needs 

render the tool flexible yet maintaining ease of use. 

The first selection window after starting a calculation from the main menu presents 

the user with lists of typical service robot skills as well as hardware and software 

component types. Here, the user can select from the listed items by simply mouse-

clicking on the respective checkboxes (s. Figure 7.2-1). If desired the user can also 

request default recommendations for least requirements, enhancements and 

substitutes on each category which depend on the choices he has made so far. 
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The following dialog allows the parameterization of the previously selected 

hardware and software components (Figure 7.2-2). Each component is already 

parameterized with default values from the database but the user can calibrate the 

estimation to his concepts by changing hardware parameters and adding or 

removing software packages from the selection. 

The third and final window of the calculation process displays the essential cost 

estimates in a clearly arranged fashion (Figure 7.2-3). The estimates presented here 

include all cost constituents – cost for hardware material, installation and 

administration, software development and installation and system designing costs – 

and the overall cost estimates for a prototype, for direct unit costs as well as 

product unit costs. Furthermore the basic parameters for wage rates, number of 

units to be built and productivity rates are displayed, all of which can be changed by 

the user in order to modify the estimation calculation. This window offers a 

multitude of further customization possibilities of the estimation, e.g. excluding any 

of the cost constituents or overriding singular estimation parts with own 

estimations.  

At each step the results and choices can be saved to an Excel file and loaded from 

such an Excel file. These files are designed in such a way that they can be 

interpreted by users without the Software tool SEROCOST. 
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Figure 7.2-1 Step 1: Selecting tasks and component types 

 

Figure 7.2-2 Step 2 Parameterization of components 
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Figure 7.2-3 Step 3 Overview of calculated estimates 
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7.3. Basic Architecture 

The SEROCOST application consists of three basic elements. The main application 

which was implemented in C# and XAML provides the graphical user interface as 

previously described and the control components of the estimation process. 

A PostgreSQL database holds the data on skills, hardware and software component 

types, dependencies between them and further data like default values for 

hardware parameters and software packages. The database can be deployed locally 

or on a remote server.  

The third component is the R statistics software which is a separate environment for 

statistical computing developed as an open source GNU project by Bell Laboratories 

(RDCT 2006). Interfacing with R permits the reliable on-the-fly calculation of 

distribution functions and statistical measures used in the presented approach. 

 

Figure 7.3-1 Basic architecture of the software tool SEROCOST 

The described combination was chosen in order to reduce development time and 

apply state of the art techniques for statistical calculation and knowledge 

management. 
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8. Experimental Validation 

Ideally, an estimate for a service robot would be conducted in an early product 

phase and then compared with the actual costs once the robot prototype is finished. 

Due to the typical development spanning years this validation method appears 

hardly practicable. Instead, two alternatives were applied for verifying the 

approach's usefulness. 

8.1. Validation Methods 

The first validation method consists in comparing the estimations of the presented 

approach with estimations of the EFFIROB study.40 The EFFIROB scenarios are an 

appropriate reference for validation comparisons as they provide data on software 

and hardware cost estimates generated by service robot experts. Furthermore, as 

the service robot designs described in EFFIROB represent concept sketches and not 

actually built robots the cost estimates map well with the early phase estimation 

approach in this work. The comparison of estimates was conducted quantitatively 

and qualitatively: Absolute and relative differences between original and new 

estimate were calculated and interpreted; secondly, the estimation results were 

presented to and assessed by the individual expert who had calculated the original 

estimate. Because the presented approach allows the calculation of several cost 

aggregation levels, different aggregation forms were compared with the original 

estimate and the expert's opinion on their validity elicited. 

The second validation method contrasts the estimated and actual costs of a 

completed service robot prototype, the autonomous lawn mower "Raser" with an 

estimate created using the presented approach and project background data. The 

Raser project was chosen because its specific objective was the development of a 

service robot prototype, the cost data available from this project are sufficiently 

detailed, and the robot concept fits well into the definition of service robot applied 

in the presented approach. The new estimate was compared with the original a 

priori cost estimate and the actual costs incurred. Additionally, the results were 

                                                

40Each scenario details two variants of a concept. For the verification process, only variant "A" was 

used. 
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presented to one of the developers involved in the Raser project elicitating his 

assessment of the new estimate. 

Both validation methods apply the deviation of the estimates based on the 

presented approach from original estimates or actual costs, respectively, as a 

performance indicator. In order to assess the significance of the discrepancies they 

are related to cost estimation error ranges that have been observed in the past. As 

indicated in Table 4.4-4 errors between -75% and +300% can be expected for the 

initial concept phase, -33% and +50%, respectively, are still common once all 

requirements have been established. Another study on forecasting errors reports 

that the average estimation inaccuracy compared to actual costs for rail 

construction projects is -51.4% and that 40% of the project deviated more than 

±60% from the initial estimate, 84% revealed inaccuracies over ±20% (Flyvberg 2008, 

pp. 6–7). Thus, the discrepancies found in the validation process of the presented 

work are assessed in relation to this magnitude of plausibly expectable errors. 

In the following explanations, the estimates based on the presented approach are 

referred to as new estimates whereas the values to which they are compared to are 

referenced as original estimates in order to distinguish terminologically between the 

different estimations. 

8.2. Comparison with EFFIROB Estimates 

In the EFFIROB study, the lifecycle costs for eleven conceivable service robots are 

analyzed. In order to derive lifecycle costs the costs for each service robot are 

extrapolated from design sketches based on the robot functionality required in each 

respective scenario. While the deduction of robot components from required skills is 

similar to the presented approach the costs for a prototype are not explicitly 

addressed in EFFIROB. For this reason some of the data had to be preprocessed in 

order to render a comparison possible; the detailed method is described in Chapter 

8.2.1. To achieve a comprehensive view on the estimation and the several estimated 

cost constituents, several aggregation levels were calculated and contrasted with 

the analogon of the original scenario estimate. 
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8.2.1. Assessment Method 

The validation by comparison with EFFIROB estimates was conducted following a 

procedure with several steps as depicted in Figure 8.2-1. 

 

Figure 8.2-1 Validation process based on EFFIROB comparison 

In order to render new and original estimates comparable they must be based on 

the same basic parameters. The parameters that are used throughout all EFFIROB 

scenarios and also required for the new estimation approach are the developers' 

wage rate, the number of robot units to be produced and the experience level of the 

software development team.  

The wage rate is explicitly numeralized as 10,000 € per month including ancillary 

labor costs (Hägele 2010, p. 43); this wage rate is thus also applied in the new 

approach for both engineers and software developers. As no specification on 

workdays per month is given in the EFFIROB study, this value was set to 22 for the 

new estimations.  

The number of units is not used as a parameter to determine robot prices in 

EFFIROB but is accounted for in the respective profitability analyses. Each scenario 

explicitly indicates the market potential of robot units (       ) under consideration 

of the robot's estimated lifespan (ibid., p. 57). This value was used for the derivation 

of product unit costs i.e. burdening indirect costs like software development cost on 

the direct unit cost. 

The experience level of the software development team is not stated explicitly in the 

EFFIROB study but can be extracted from the software cost model. The software 

costs are calculated using average productivity (Jones 2007, p. 144) which is the rate 

the presented approach applies for average team experience level. This value was 

adopted for the new estimations in order to ensure comparability with the original 

estimates (Hägele 2010, p. 43). 
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In the next step different cost aggregates of the original estimates were derived. The 

EFFIROB study explicitly indicates acquisition cost (         ) for a service robot 

and software development costs (        
  ) separately. The latter can be directly 

compared with the new estimates for software development. However, acquisition 

costs are regarded from the user's and not the manufacturer's perspective, they are 

indicated as the cost of hardware components including installation plus a 30% price 

markup. Deducting the markup yields the EFFIROB direct unit cost (          ) 

estimate which is also identical to the hardware cost estimate (labor and material) 

as software costs are not burdened on the units in the EFFIROB study. 

To permit further comparisons, prototype cost (        
         

) and product unit cost 

(          ) estimates were also derived from the given estimates. The EFFIROB 

prototype cost estimate is calculated as hardware costs (s. above) for one robot plus 

software development costs; product unit costs are calculated as software 

development costs plus hardware costs for a number of robot units indicated by the 

market potential plus one unit for the prototype, divided by the number of 

marketed robot units i.e. the costs for the prototype are burdened on the marketed 

units. 

 
           

         
 . 

 
(8.1)  

         
         

         
              (8.2)  

 
           

                              
  

       
 

(8.3)  

The next step concerns the extraction of scenario specific parameters for the 

calculation of new estimates. Required robot skills, hardware and software 

components and the pertinent parameter values were determined by analyzing the 

robot functions and component specifications described in the respective EFFIROB 

scenarios. The robot task descriptions were mapped to the generic robot skills and 

the component type selection suggested by the software tool adapted according to 

the design sketches. Parameters for hardware components were adopted where 

available otherwise plausible values were assumed. Because the specification of 

software components in the scenario descriptions is rather generic, the section of 
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required software components was similarly based on plausible assumptions fitting 

the given explanations. The details of each selection can be found in Appendix 10.5. 

After determining the robot's cost relevant parameters, the different cost 

constituents and cost aggregates were calculated as explained in Chapter 6. The cost 

constituents calculated are 

 Hardware material costs per robot unit 

 Hardware installation costs per robot unit 

 Hardware administrative costs 

 Software development costs 

 Software installation costs per robot unit except prototype 

 System designing costs 

The various cost aggregations calculated are 

 Prototype costs including all cost constituents 

 Product unit costs including all cost constituents 

 Prototype costs including all cost constituents except system designing cost 

 Product unit costs including all cost constituents except system designing cost 

 Prototype costs including all cost constituents except system designing cost 

and hardware administrative costs 

 Product unit costs including all cost constituents except system designing cost 

and hardware administrative costs 

 Direct unit costs 

Expected value, standard deviation as well as first and third quartile were computed 

for each cost estimate. The reason for calculating several aggregates is to find out 

which cost estimate meets the highest acceptance by expert opinion. 

After the calculation of the new cost estimates the absolute and relative 

differences41 to the corresponding original estimate were determined and 

interpreted. Large differences are an indicator for potential systemic estimation bias 

                                                

41Relative differences were calculated with the original estimate representing the 100% reference. 
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whereas proximity to the original values is regarded as an indication of valid 

estimates; thresholds for difference classification are adopted from Table 4.4-4.  

In a final step the documented calculation and the results were presented to the 

author of the original EFFIROB scenario description and his judgment elicited using a 

prepared questionnaire.  The questionnaire surveys the opinion on the estimation 

results of the individual cost constituents, the various aggregation forms and the 

applicability of the approach; the questionnaire used can be found in Appendix 10.6. 

Based on the expert's opinion, the validity of the new estimate and the general 

usefulness of the approach were assessed. 

8.2.1.1. Questionnaire Setup 

The questionnaire contains ten questions, nine of which (questions Q1 to Q9) permit 

response on a Likert scale, one (question Q10) is an open question. Furthermore, 

each question also provides the possibility for further comments in a separate 

comment field. Because the available data in the Raser verification case differs from 

the EFFIROB scenarios, a modified version of the questionnaire was used for the 

Raser scenario. 

Question Q1 addresses the estimate's relative quality for hardware (Q1.1) and 

software (Q1.2) costs by asking how realistic the most appropriate aggregate is 

assessed in comparison to the original cost estimate. In the Raser case, the main 

distinction is between material and labor, thus these are used as items to be 

assessed instead of hardware and software cost. Possible responses are 'much more 

realistic', 'more realistic', 'equally realistic', 'less realistic', 'much less realistic', and 'I 

don't know'. 

Questions Q2 to Q4 serve to assess the estimates for the various cost constituents 

independently from the original estimates by direct elicitation of the expert's 

opinion e.g. "How do you assess the hardware cost estimation?" (question Q2). 

Question Q2 and Q3 address the constituents of each of these main cost blocks 

(Q2.1 to Q.2.2 and Q.3.1 to Q3.3, respectively), and Question Q4 surveys the opinion 

on system designing costs (Q4.1). Because in the Raser case, software installation 

costs and hardware administrative costs are not computed as a separate cost 

constituent, the modified questionnaire does not survey these items. Each item 
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offers five response possibilities: 'very realistic', 'reasonably realistic', 'somewhat 

unrealistic', 'very unrealistic', and 'I don't know'. 

Question Q5 surveys the usefulness of indicating standard deviation and 

interquartile range. For each of these (Q5.1 and Q5.2), possible answers are 'very 

helpful', 'helpful to some degree', 'neither helpful nor confusing', 'confusing to some 

degree', 'very confusing' and 'I don't know'. 

Question Q6 is aimed at finding out which cost aggregate the expert considers the 

most meaningful for cost estimate of prototype (Q6.1) and product level (Q6.2) 

units. For each of these two the possible responses are 'including all cost 

constituents', 'excluding system designing cost', excluding system designing costs, 

hardware administrative costs', 'direct unit costs', 'none of the above', and 'I don't 

know'. For the Raser case, only prototype costs are considered and thus the item 

product level units is not surveyed in the modified questionnaire. 

Question Q7 to Q9 address the support value of the presented approach in 

combination with other estimation methods. Question Q7 surveys in how far the 

expert considers the additional support by the tool SEROCOST helpful (Q7.1), 

possible responses are 'very helpful', 'helpful to some degree', 'neither helpful nor 

confusing', 'confusing to some degree', 'very confusing', and 'I don't know'. Question 

Q8 surveys how the expert would combine original and SEROCOST estimate for 

hardware (Q8.1) and software (Q8.2) cost each. Possible responses are 'replace 

original values with SEROCOST values', 'find a compromise between both values', 

'keep old values',  and 'I don't know'. Question Q9 examines the expert's acceptance 

of tool and approach by asking if he or she would use it in the future if an early 

phase cost estimate for a service robot were required (Q9.1). Possible responses are 

'definitely', 'probably', 'maybe', 'probably not', 'definitely not', and 'I don't know'. 

The final question (question Q10) is an open question where opinions on strengths 

and weaknesses not covered in the previous questions can be stated. 

8.2.1.2. Questionnaire Evaluation 

The responses from the expert interviews were evaluated in various ways in order 

to assess if the objective of facilitating cost estimation for service robot prototypes 

has been met. 
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Positive, neutral (where applicable) and negative assessments were accumulated 

and compared for the questions with ordinal response scales Q1 to Q5 and Q7 to 

Q9. This evaluation yields an overview over the tendency of the assessments. 

Question Q6 has a nominal response scales and question Q10 is an open question; 

therefore these were exempt from this evaluation method. Because the 

questionnaire had been modified for the Raser estimation scenario the respective 

responses were evaluated separately. 

Furthermore, ordinal responses were assigned integer values in order to calculate 

the median response and average values for each question, ranging from -2 for the 

most negative possible answer to +2 for the most positive possible answer, 0 for 

neutral responses where applicable. As question Q8 only offers the choice between 

the three response types of preferring the original estimate, compromising between 

new and original estimate, and preferring the new estimate the assigned values are -

1, 0, and +1 , respectively. For each question the median of the responses was 

calculated to indicate the dominant judgment; additionally, the average value is also 

calculated to give a more detailed impression of the assessment tendency. 

The responses to question Q6 indicate which aggregate the experts preferred. These 

responses are nominal i.e. no aggregate is considered better or worse than another 

one. The mentions for each aggregate are counted; the prevalence rates indicate 

the subjective suitability of the aggregates for cost estimation.  

Comments and answers to question Q10 were segregated into the categories 

'related to a specific cost constituent', related to the approach as a whole', and 

'related to the software tool SEROCOST' and marked as either positive, negative and 

neutral statements; similar remarks were aggregated and the number of mentions 

counted. This qualitative evaluation adds additional information on the expert 

assessment of the approach. 

8.2.2. EFFIROB Scenarios 

Five scenarios were picked from the EFFIROB study as a heterogeneous collection of 

use cases representing conceivable service robots with largely varying purposes and 

designs. The scenarios selected are "Provisioning of Care Utensils", "Ground-crop 
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Harvesting", "Floor Cleaning", "Container Transport in Hospitals" and "Assistance 

with Interior Finishing Works".  

8.2.2.1. Provisioning of Care Utensils 

The scenario for care utensil provisioning describes a concept for a service robot 

that can replace conventional medical carts in homes and reduce care staff 

workload by supplying staff members with required care utensils. It is able to 

restock autonomously from a central store and to travel to specified rooms where 

care utensils are needed while keeping track of the consumption of the delivered 

items. It features a mobile platform with room for item storage and dispensing and a 

robot arm with a gripper so it fits well into the notion of service robots as conceived 

in the presented work. 

In the EFFIROB study, the direct cost of this robot are indicated as 117,200 € and the 

software development cost as 6,886,000 €. The derived prototype costs are 

calculated to amount to 7,003,200 €, product unit cost lie at 409,000 €. 

The new estimates calculated for the main cost constituents are displayed in Table 

8.2-1. The system designing costs depend on the values of the other cost 

constituents; the indicated value is calculated for the aggregation form of including 

all cost constituents. 

 

 

Figure 8.2-2 Design sketch for care utensil service robot 
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The removal mechanism for item dispensing, the linear axis on which the robot arm 

is mounted and the WLAN router could not be estimated by the component type 

specific models because they did not fit any of the component types other than 

miscellaneous tools or miscellaneous structural hardware. For these items, the 

estimates from the original are adopted as they were. 

Cost type Expected 

value 

Standard 

deviation 

First 

quartile 

Third 

quartile 

Material (per unit) 121,389.58 € 11,183.26 € 113,870.33 € 128,908.84 € 

Hardware installation (per unit) 21,900.00 € 13,950.00 € 10,813.14 € 29,421.70 € 

Administration 36,575.00 € 1,741.67 € 35,308.97 € 37,841.03 € 

Software development 5,814,611.29 € 972,242.91 € 5,117,914.34 € 6,428,873.08 € 

Software installation (per unit, 

not for prototype) 

568.18 € 190.91 € 418.62 € 693.92 € 

System designing 1,456,657.64 

€ 

378,552.25 €  1,182,376.29 

€ 

 1,688,607.26 

€ 
Table 8.2-1 New estimates for cost constituents of the care utensil scenario 

The different cost constituents were subsequently combined into various cost forms 

according to the formulas described in Chapter 6. These cost aggregates are 

indicated in Table 8.2-2. The software costs are invariant for the aggregates and thus 

already listed in Table 8.2-1. 

As software development cost and direct unit cost are invariant to the cost 

aggregate form their comparison is straightforward. The new estimate of the direct 

unit cost lies 22.75% above the direct unit cost derived in the EFFIROB study, 

software development cost lie 15.56% below the original value. These differences 

are well within the limits of estimation errors for an early phase estimate and thus 

these estimates can be considered close to each other. 

Prototype cost, product unit cost and hardware cost need to be regarded separately 

for each cost aggregation. In the most comprehensive aggregate, the new prototype 

cost estimate lies 6.4% higher than the original one and thus can be considered very 

close. Product unit costs are estimated to be 11.08% larger than in the original 

which is also a small difference. Hardware costs however are estimated to be 

53.47% higher than in the EFFIROB study. This is a difference that is still plausible as 

differences in early design phases can assume more than 100% but it also indicates 

that the different estimation methods lead to significantly differing values. A 
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possible explanation for this discrepancy is the inclusion of administrative cost for 

hardware components in the presented approach, a cost constituent which was not 

considered in the EFFIROB study. 

Cost type Expected 

value 

Standard 

deviation 

First quartile Third quartile 

Aggregate variant: All cost constituents 
Prototype cost 7,451,133.51 € 1,043,494.80 € 6,709,661.54 € 8,115,678.09 € 

Product unit 

cost  

454,321.66 € 47,294.78 € 420,971.39 € 484,606.70 € 

Hardware cost 179,864.58 € 17,963.88 € 167,191.01 € 191,121.83 € 

Aggregate variant: Excluding system designing cost 
Prototype cost 5,994,475.87 € 972,408.85 € 5,297,505.71 € 6,608,545.06 € 

Product unit 

cost  

393,627.59 € 44,586.69 € 362,000.32 € 422,018.08 € 

Hardware cost 179,864.58 € 17,963.88 € 167,191.01 € 191,121.83 € 

Aggregate variant: Excluding system designing cost, hardware admin. cost 
Prototype cost 5,957,900.87 € 972,407.29 € 5,259,576.98 € 6,570,616.47 € 

Product unit 

cost  

392,103.64 € 44,586.64 € 360,450.08 € 420,457.86 € 

Hardware cost 143,289.58 € 17,879.25 € 130,752.43 € 153,936.05 € 

Aggregate invariant 
Direct unit cost  143,857.77 € 17,880.27 € 131,309.44 € 154,547.79 € 

Table 8.2-2 Cost aggregate estimations for care utensil scenario 

The cost aggregate disregarding system designing cost presents a similar difference 

profile; the new prototype cost estimate lies 14.4% below the original, product unit 

costs are very close to the original with a difference of only 3.76%. The hardware 

cost difference remains equal to the previous aggregate. Excluding the hardware 

administrative cost brings the hardware costs much closer to the original, the 

difference shrinking to 22.26%; prototype cost and product unit cost estimates stay 

close to the original estimates with differences of -14.93% and -4.13% respectively. 

Overall, the least comprehensive aggregate numerically leaves the impression to be 

the most compatible estimate to the original EFFIROB values. 

The expert's general impression of the estimated value was positive. Although she 

pointed out that she would have chosen a slightly different hardware selection 

hardware costs were judged to be more realistic and software costs to be equally 
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realistic in comparison to the original values.42 However, hardware administrative 

costs were considered as tending too high and thus somewhat unrealistic; the 

system designing costs were regarded as very unrealistic. The usefulness of the 

approach was assessed as high, the expert stated that she would probably replace 

original estimates with the new estimates excluding the designing costs and use the 

estimation tool in the future estimation situations. 

8.2.2.2. Ground-crop Harvesting 

The EFFIROB scenario for ground-crop harvesting describes a robot that is able to 

harvest and grade ground-crops e.g. lettuce. The primary components are six robot 

arms with three-finger grippers and appropriate sensors mounted on a large 

horizontal linear axis. It is designed to be dragged behind a tractor so the robot is 

mobile in the sense that is used while being moved but is not able to do so on its 

own accord. Thus, this service robot is not based on an autonomous mobile 

platform typically found in many service robot concepts which makes it an 

appropriate case for analyzing if the presented approach is amenable to more 

unusual designs, too. 

 

Figure 8.2-3 Design sketch of ground-crop service robot 

                                                

42The estimate was computed with one controlling unit, the expert indicated that two might be 

more realistic which would have increased materials costs by 1,972 €.  
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Direct costs in the original estimate amount to 541,615 € and software development 

cost to 903,100 €. Prototype costs are estimated to be 4,871,392 € and product unit 

cost 767,155 €. 

The new estimates of main cost constituents for the ground-crop harvesting service 

robot are displayed in Table 8.2-3; the different aggregates of these are listed in Table 

8.2-4. 

Cost type Expected 

value 

Standard 

deviation 

First 

quartile 

Third 

quartile 
Material (per unit) 564,761.94 € 85,362.59 € 507,366.92 € 622,156.95 € 

Hardware installation (per unit) 33,845.45 € 21,559.09 € 16,711.22 € 45,469.90 € 

Administration 23,100.00 € 1,100.00 € 22,300.40 € 23,899.60 € 

Software development 3,245,956.24 € 921,900.92 € 2,555,077.78 € 3,770,080.83 € 

Software installation (per unit, not for 

prototype) 
568.18 € 190.91 € 418.62 € 693.92 € 

System designing 939,842.26 € 296,909.74 € 721,305.47 € 1,114,313.03 € 

Table 8.2-3 New estimates for cost constituents of ground-crop harvest scenario 

The cost estimates for the linear axis and the three-hand gripper were adopted from 

the original because they did not fit into the component type cost models. The 

gripper could not be estimated using the regressive cost model because the model 

was derived from data for jaw-like grippers only. 

Comparing the estimates showed that the direct unit costs are close to each other 

with the new estimate being 10.63% higher; the original estimate thus lies well 

within the interquartile range of the new estimate. The software development costs, 

however, differ significantly: The new estimate exceeds the original by 259.42% 

which is already very close to the upper threshold of 300% for typical estimation 

errors in early design stages. 

Further analysis revealed that a large proportion of the new estimate for software 

development stems from arm and gripper planning and control. This large 

discrepancy was discussed with the creator of the original estimate. The author of 

the original scenario found that the new software cost estimate was too high 

because in his opinion arm and gripper control and planning are not as complex and 

thus cost-intensive as the new estimate suggests. He also suggested that the 
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increase of costs in the estimate could stem from the large expansion of the ROS 

software that had taken place in the meantime.43 

Cost type Expected 

value 

Standard 

deviation 

First quartile Third quartile 

Aggregate variant: All cost constituents 
Prototype cost 4,807,505.90 € 972,527.37 € 4,092,939.99 € 5,371,484.86 € 

Product unit 

cost  

759,425.77 € 96,536.38 € 694,195.15 € 823,853.29 € 

Hardware cost 621,707.39 € 88,049.85 € 562,412.80 € 680,798.88 € 

Aggregate variant: Excluding system designing cost 
Prototype cost 3,867,663.63 € 926,176.41 € 3,206,353.93 € 4,427,735.59 € 

Product unit 

cost  

728,097.69 € 96,028.76 € 664,250.43 € 793,191.72 € 

Hardware cost 621,707.39 € 88,049.85 € 562,412.80 € 680,798.88 € 

Aggregate variant: Excluding system designing cost, hardware admin. cost 
Prototype cost 3,844,563.63 € 926,095.50 € 3,151,456.17 € 4,370,516.31 € 

Product unit 

cost  

727,327.69 € 96,027.71 € 662,439.40 € 791,375.79 € 

Hardware cost 598,607.39 € 88,042.98 € 539,350.67 € 657,713.38 € 

Aggregate invariant 
Direct unit cost  599,175.57 € 88,043.19 € 539,876.17 € 658,228.09 € 

Table 8.2-4 Cost aggregate estimations for ground-crop harvest scenario 

By heavily reducing the number of selected packages for the concerned software 

component types the software development cost estimate could be shrunk from 

3,245,956 € to 1,608,411 €, this reduction also propagates to system designing costs 

and prototype costs. The revised calculations were also presented to the same 

expert: The new software development estimate was judged to be more realistic, 

the system designing cost at 541,919 € as still too high; the expert stated that 

300,000 € could be a plausible value. 

Due to the initially large difference the initial prototype cost estimates differ largely, 

too; the initial new estimate lies 232.76% higher at the highest aggregation level, 

167.71% if system designing costs are excluded and 166.11% higher if hardware 

administrative costs are also disregarded. Even though the discrepancy for software 

                                                

43From May 2009 to November 2010 alone, the number of available packages has more than 

quadrupled, s. (Boren 2011, p. 20). 
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development is significant the product unit costs at the three aggregation levels 

differ 28.77%, 23.45% and 23.32% respectively which is a moderate deviation. 

Material costs also only differ by 14.79%. 

Even though the initial software cost estimate according to the new approach was 

assessed as less realistic than the original estimate the overall judgment was 

positive. Hardware costs were considered as much more realistic in general: 

material costs as very realistic and installation costs as reasonably realistic but 

administrative costs were considered somewhat unrealistic. The latter were found 

as tending to be too high and the interquartile range as too narrow. Software 

installation costs were regarded as very realistic but system designing costs as too 

high and thus somewhat unrealistic.  

The availability of standard deviation and interquartile range was pointed out to be 

very helpful especially when contrasted with the point estimates in the EFFIROB 

study.  Furthermore, the expert stressed that even though the approach and the 

accompanying software tool cannot replace expert "gut feeling" they were 

considered a valuable support for early cost estimations. 

8.2.2.3. Floor Cleaning 

The floor cleaning service robot presented in the EFFIROB study is designed for 

autonomous cleaning service within office buildings. To this end it features a variety 

of sensors (laser scanners, ultrasonic arrays, cameras) and also a robot arm which 

allows the unlocking and opening of doors. The robot is meant to provide its service 

in a typical office environment so it must be able to robustly navigate in spite of 

possibly repositioned objects like tables or waste bins. The concept also includes a 

separable floor cleaning unit which is operated by the robot arm. 

The original estimate for direct unit costs and hardware costs are indicated as 

71,900 €, software development costs amount to 14,436,400 €.  These numbers 

yield prototype costs of 14,498,300 € and product unit costs of 118,972 €. As the 

design was found unprofitable at these costs the EFFIROB study states that zero 

units could be marketed; however, a theoretical market saturation potential of 308 

robots is pointed out. This number was used for the derivation of product unit costs. 
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Figure 8.2-4 Design sketch of floor-cleaning service robot 

Most of the components from the given design are amenable to the presented cost 

models; the only exception is the cleaning unit which was classified as a 

miscellaneous tool. For this tool, the original cost estimate was adopted. The 

resulting estimates for the main cost blocks are displayed in Table 8.2-5. The different 

aggregations are presented in Table 8.2-6.  

Cost type Expected 

value 

Standard 

deviation 

First 

quartile 

Third 

quartile 
Material (per unit) 55,441.02 €  10,930.45 €  48,091.74 €  62,790.30 €  

Hardware installation (per unit) 15,927.27 €  10,145.45 €  7,864.11 €  21,397.60 €  

Administration 26,950.00 €  1,283.33 €  26,017.13 €  27,882.87 €  

Software development 4,227,684.71 

€  

936,587.63 €  3,541,810.77 

€  

4,796,908.35 

€  Software installation (per unit, not 

for prototype) 

568.18 € 190.91 € 418.62 € 693.92 € 

System designing 1,051,267.25 

€  

313,490.50 €  821,994.46 €  1,238,599.36 

€  
Table 8.2-5 New estimates for cost constituents of floor cleaning scenario 

The new direct unit cost estimate is almost identical to the original with an excess of 

only 0.05%. Similarly, hardware costs excluding hardware administrative costs only 

lie 0.74% below; including the administrative costs (first and second aggregate) 

yields a surplus of 36.74%, an value still well within the expectable margins.  
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Cost type Expected 

value 

Standard 

deviation 

First quartile Third quartile 

Aggregate variant: All cost constituents 
Prototype cost 5,377,221.73 € 987,773.62 € 4,661,011.77 € 5,983,490.86 € 

Product unit cost  89,394.99 € 15,302.64 € 78,840.34 € 99,208.78 € 

Hardware cost 71,455.51 € 14,913.25 € 87,936.89 € 107,919.62 € 

Aggregate variant: Excluding system designing cost 
Prototype cost 4,326,003.00 € 936,707.23 € 3,639,869.41 € 4,895,042.64 € 

Product unit cost  85,981.94 € 15,268.75 € 75,437.65 € 95,735.61 € 

Hardware cost 71,455.51 € 14,913.25 € 45,505.04 € 60,197.54 € 

Aggregate variant: Excluding system designing cost, hardware admin. cost 
Prototype cost 4,299,053.00 € 936,706.35 € 3,611,423.68 € 4,866,596.65 € 

Product unit cost  85,894.44 € 15,268.75 € 75,346.68 € 95,642.56 € 

Hardware cost 71,368.29 € 14,913.25 € 61,049.87 € 80,655.38 € 

Aggregate invariant 
Direct unit cost  71,936.47 € 14,914.47 € 61,611.66 € 81,252.42 € 

Table 8.2-6 Cost aggregate estimations for floor cleaning scenario 

In contrast, the new estimate for software development costs grossly undercuts the 

original by 70.69% which is close to the lower error margin of -75%. This large 

difference could possibly be caused by the fact that the software cost estimation 

method applied in the EFFIROB study does not discern installed and developed 

packages. This could have the effect that a large proportion of software components 

had been estimated to be developed whereas the new approach excluded these 

from development cost. In order to find out the discrepancy was explicitly discussed 

with the creator of the original estimate. The expert agreed that the original cost 

estimate for software was probably too high and that the differentiation between 

components to be developed and those only to be installed appears more realistic. 

Due to the large discrepancy in software costs, the new cost estimates lie far below 

the original: -62.91% when all cost constituents are considered, -70.16% excluding 

system designing costs and -70.35% further excluding hardware administrative 

costs. 

The overall judgment was that the hardware cost estimate was equally realistic and 

the software cost estimate more realistic than the original values. Hardware 

administrative costs were not assessed because the expert did not consider the cost 



8 Experimental Validation 

151 

definition as sufficiently transparent. Software installation costs were regarded as 

very unrealistic unless installation would be automatic; the expert's opinion was 

that installation would take much longer and thus cost more. System designing costs 

were considered too high and thus somewhat unrealistic. The expert indicated that 

he could not assess the additional information given by interquartile range and 

standard deviation because he considered himself too inexperienced with statistical 

measures. He regarded the tool as helpful and pointed out that if the time effort 

spent to calculate the estimates amounted to circa an hour he would "definitely" 

apply the presented approach in order to arrive at an early order-of-magnitude cost 

estimate. 

8.2.2.4. Container Transport in Hospitals 

The container transport scenario presents the idea of a service robot that is able to 

autonomously transport containers or beds in a hospital environment. Its central 

feature is a mobile platform of a particularly flat design which permits it to position 

itself below the transport object and lift it with is built-in lifter from the ground. 

The originally estimated direct unit costs and hardware costs for the container 

transporting robot are 43,800 € and software development costs add up to 

3,336,900 €. Accordingly, prototype costs amount to 3,380,700 € and product unit 

cost 50,843 €. 

 

Figure 8.2-5 Design sketch of container transporting service robot 
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The new estimates for the main cost constituents are depicted in Table 8.2-7, the 

aggregations in Table 8.2-8. Components not estimated separately are the 

miscellaneous structural hardware components WLAN router and RFID reader as 

well as the miscellaneous end effector component i.e. the lifting mechanism. 

Cost type Expected 

value 

Standard 

deviation 

First 

quartile 

Third 

quartile 

Material (per unit) 52,539.38 € 4,318.18 € 49,635.98 € 55,442.78 € 

Hardware installation (per unit) 14,600.00 € 9,300.00 € 7,208.76 € 19,614.47 € 

Administration 23,100.00 € 1,100.00 € 22,300.40 € 23,899.60 € 

Software Development 1,881,798.45 

€ 

302,103.78 € 1,668,786.23 

€ 

2,078,207.95 

€ Software installation (per unit, not 

for prototype) 

568.18 € 190.91 € 418.62 € 693.92 € 

System designing 479,205.19 € 121,801.23 € 391,604.63 € 555,483.92 € 

Table 8.2-7 New estimates for cost constituents for hospital container transport scenario 

The results of the comparison leave an unclear picture: While the new estimate for 

software development is 43.61% below the original the new hardware cost 

estimates lie significantly above them with 106.03% surplus for the two more 

comprehensive aggregates and still 53.29% excluding hardware administrative costs. 

Further analysis revealed that the cost estimation for the platform component were 

the principal source of this difference: While the EFFIROB study states the cost for 

the platform to be 30,000 € including installation costs, the model estimates it to be 

circa 40,000 € excluding installation costs at a parameterization of 300 kg weight, 

275 kg payload and 1.8 m2 footprint size. As this component accounts for almost 

three quarters of the original cost estimate the deviation results in a significant 

relative difference. As these values are close to the upper limit of the model 

parameters for platform weight and payload (350 kg and 300 kg, respectively) 

border effects could also have influenced this specific cost estimate. Furthermore, 

the inclusion of components not considered in the original estimate e.g. power 

supply possibly biases the new estimates towards higher values. Because the 

hardware component costs dominate the direct unit costs, these also exceed the 

original by 54.58%. 
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Cost type Expected 

value 

Standard 

deviation 

First quartile Third quartile 

Aggregate variant: All cost constituents 
Prototype cost 2,451,243.02 € 325,896.58 € 2,222,209.56 € 2,663,094.93 € 

Product unit cost  72,814.32 € 10,299.13 € 65,317.43 € 78,998.68 € 

Hardware cost 67,187.41 € 10,312.45 € 82,670.22 € 96,496.72 € 

Aggregate variant: Excluding system designing cost 
Prototype cost 1,972,037.83 € 302,279.74 € 1,758,484.21 € 2,167,945.05 € 

Product unit cost  71,815.98 € 10,296.01 € 64,304.54 € 77,961.68 € 

Hardware cost 67,187.41 € 10,312.45 € 82,670.22 € 96,496.72 € 

Aggregate variant: Excluding system designing cost, hardware admin. cost 
Prototype cost 1,948,937.83 € 302,277.74 € 173,573.86 € 2,145,034.72 € 

Product unit cost  71,767.85 € 10,296.01 € 64,256.25 € 77,912.45 € 

Hardware cost 67,139.38 € 10,253.62 € 59,722.92 € 72,860.32 € 

Aggregate invariant 
Direct unit cost  67,707.56 € 10,255.39 € 60,271.50 € 73,496.70 € 

Table 8.2-8  Cost aggregate estimations for hospital container transport scenario 

However, the new prototype cost estimate undercuts the original by 27.49% at the 

most comprehensive aggregation level and by 42.35% excluding system designing 

and hardware administrative costs. This is due to the prevalence of the software 

cost. In contrast, the product unit costs at the three aggregation levels are 41.16% 

to 43.21% higher than in the EFFIROB estimate because at the indicated level for 

market saturation with 480 units the burdened software development costs plays a 

less significant role than the hardware costs. 

The expert's opinion on the results was ambiguous: Whereas most component cost 

estimates were considered appropriate, the cost estimate for the mobile platform 

and thus the total hardware cost estimate were assessed as too high and thus less 

realistic than the original.  A possible explanation suggested by the expert was that 

most platforms in the considered price range already have integrated sensors and 

provide ready-to-use software so that mere material costs should be lower. The 

expert also pointed out that the indicated hardware costs were reasonable for 

prototypes but that he expects them to decrease for manufacturing of larger unit 

numbers. Software costs in genereal, however, were judged as more realistic. The 

system designing costs were considered somewhat unrealistic, the expert guessed 

that 200,000 € instead of the estimated 479,205 € would be more reasonable.  
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Nevertheless, the general approach and the software tool were considered a very 

helpful support for decision-making in early development phases as it provides the 

possibility to adjust estimations created by different methods. Particularly positive 

aspects pointed out were the provision of standard deviations and interquartile 

ranges as additional information on estimation uncertainty, the formalism of the 

approach and the availability of component cost models. Aside from the poor 

performance for the platform cost estimation, another mentioned disadvantage was 

the approach's dependency on up-to-date cost models. 

8.2.2.5. Assistance with Interior Finishing Works 

The scenario for interior finishing works outlines a service robot that is designed to 

assist with typical work activities associated with dry-wall mounting like installing 

profile rails, drilling holes and sanding down walls. It mainly consists of a mobile 

platform and a multi-purpose robot arm which can operate a variety of tools. 

The original direct cost estimate amounts to 146,500 € and the software 

development cost to 4,299,800 €. Prototype cost and product unit cost estimates 

are deduced from these numbers to be 4,446,300 € and 252,364 €, respectively. 

 

Figure 8.2-6 Design sketch of service robot for interior finishing works 
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The new estimates for cost constituents and aggregates are displayed in Table 8.2-9 

and Table 8.2-10. One noteworthy phenomenon for this scenario is that the given 

robot design includes more miscellaneous hardware components than any of the 

other examined scenarios, i.e. eight components could not be estimated using the 

precalculated models. These components include the miscellaneous end effectors or 

tools power drill, power cutter and the combination of 2-DOF and a 1-DOF module 

as well as the miscellaneous structural hardware linear axis, bayonet tool 

connection, laser projector, 2D rotary laser and microphone. For these components, 

the original estimate was used. The distance measuring sensor skin mentioned in 

the original was approximated by 20 binary sensors. 

Cost type Expected 

value 

Standard 

deviation 

First 

quartile 

Third 

quartile 

Material (per unit) 84,559.81 € 11,633.82 € 76,737.61 € 92,382.01 € 

Hardware installation (per unit) 29,863.64 € 19,022.73 € 14,745.20 € 40,120.50 € 

Administration 34,650.00 € 1,650.00 € 33,450.60 € 35,849.40 € 

Software Development 3,942,451.36 

€ 

932,031.97 € 3,255,123.00 

€ 

4,498,294.42 

€ Software installation (per unit, not 

for prototype) 

568.18 € 190.91 € 418.62 € 693.92 € 

System Designing 994,240.53 € 305,105.40 € 770,532.07 € 1,174,866.98 

€ 
Table 8.2-9 New estimates for cost constituents for interior works scenario 

All of the new cost estimates lie well within the predefined estimation error 

thresholds. The estimate for the direct unit costs was calculated to be 21.51% lower 

than in the original. Software development costs lie 8.31% below the original 

estimate. The prototype cost exceed the original estimate by 14.38% for the most 

comprehensive cost aggregation level, undercut it by 7.98% on the intermediate 

aggregation level and by 8.76% on the lowest level. All these differences can be 

regarded as low given that design details are only vaguely known. The product unit 

cost difference moves from -6.45% (most comprehensive aggregate) to -16.16%; 

hardware cost vary from 1.76% excess to -21.90%. This comparison reveals that the 

new approach can lead to estimation values very similar to the ones in EFFIROB. It 

should be noted that the amount of predetermined estimates for the miscellaneous 

components evidently reduces the room for deviations; however, the cost of these 

components only accounts for roughly a third of the material cost. 
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Cost type Expected 

value 

Standard 

deviation 

First quartile Third quartile 

Aggregate variant: All cost constituents 
Prototype cost 5,085,765.34 € 980,955.06 € 4,369,268.14 € 5,676,340.53 € 

Product unit cost  236,081.28 € 32,656.23 € 212,858.21 € 256,467.55 € 

Hardware cost 149,073.45 € 22,359.17 € 133,013.24 € 162,623.21 € 

Aggregate variant: Excluding system designing cost 
Prototype cost 4,091,524.81 € 932,300.18 € 3,402,846.80 € 4,646,102.12 € 

Product unit cost  212,408.89 € 31,837.99 € 189,606.20 € 232,020.62 € 

Hardware cost 149,073.45 € 22,359.17 € 133,013.24 € 162,623.21 € 

Aggregate variant: Excluding system designing cost, hardware admin. cost 
Prototype cost 4,056,874.81 € 932,298.67 € 3,367,923.91 € 4,611,178.97 € 

Product unit cost  211,583.89 € 31,837.96 € 188,783.58 € 231,196.98 € 

Hardware cost 114,423.45 € 22,298.20 € 98,561.67 € 127,196.33 € 

Aggregate invariant 
Direct unit cost  114,991.63 € 22,299.02 € 99,117.96 € 127,828.56 € 

Table 8.2-10 Cost aggregate estimations for interior works scenario 

The expert's judgment of the estimation is positive concerning most cost 

constituents costs except material costs and consequently hardware costs on the 

whole. Whereas other cost estimates were considered reasonably realistic, material 

costs were considered to be too low for prototypical development but as reasonable 

for larger numbers of produced units; the expert pointed out the importance of 

negotiating power when determining hardware component prices. The approaches 

overall usefulness was regarded as helpful to some degree. 

8.3. Comparison with the Raser project 

The second validation method compares the estimates of the presented approach 

with early estimates for a real service robot project and the actual costs incurred. 

Before explaining this method two general problems concerning it shall be pointed 

out.  

Firstly, knowledge on the final design of the robot has the potential of causing a bias 

towards the actual implementation thus artificially reducing uncertainty in a way 

which does not exist in real a priori estimation situations. Secondly, costs of input 

factors for R&D activities often lack direct reference to a specific project; if they do 

they tend to be broken down in only coarse categories like personnel and non-
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personnel expenses (Gerpott 1999, p. 79). Due to this coarsely granular cost 

documentation only material and labor costs as well as derived aggregates are 

considered for this method, the clear distinction between hardware and software 

costs is not feasible. 

The Raser project was chosen for validation because the documentation of the 

project including invoices, budget planning and technical information was 

considered as particularly detailed and the objective of the project – the 

development of two functional prototypes for a small lawn-mowing service robot – 

fit well with the aim of the estimation approach. 

 

Figure 8.3-1 The functional Raser prototype 

8.3.1. Assessment Method 

The assessment method for comparing the Raser project cost data with new 

estimates is similar to the previous validation method with a few modifications. 

First, the basic parameters for the estimates were established. The monthly wage 

rate documented amounts to 15,600 € per month at 20 workdays per month. This 

value is therefore used for the new estimates in order to guarantee comparability. 

As this relatively high rate includes not only ancillary labor costs but also burdened 

costs for administration and equipment the cost constituent hardware 
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administrative costs is left out in this analysis to avoid multiple accounting for the 

same costs.  

The number of units was set to one because this project was aimed at creating a 

prototype only and no data was available on the market potential. As the actual 

project produced two variants that basically differed in complexity of the control 

software, the original material costs for one unit were assumed to be half of the 

overall material cost; software development costs are not affected by the number of 

units. The production of only one prototype also entails that no product unit cost or 

direct unit cost estimate was calculated. 

The team's software development experience was assumed to be above average 

given that the team consisted of service robot experts at the department for robot 

systems at the Fraunhofer Institute for Manufacturing Engineering and Automation 

with 40 years of experience in the field (Fraunhofer IPA 2011). Thus estimates were 

calculated for the team levels "good" and "excellent". The code was assumed to be 

specific for a lawn-mowing robot and thus the productivity rate for non-reusable 

development was applied. 

The comparison with the Raser project not only permits comparison with actual 

costs but also with the original a priori cost estimation. Therefore, the next step of 

this validation method consisted in ascertaining the original estimate and the 

actually incurred costs. The estimates for labor and material costs were adopted 

from the project proposal. The actual costs were investigated from invoice, monthly 

progress reports and workforce allocation plans. The underlying assumption in this 

context is that the cost information is complete and no actual cost blocks remained 

undocumented. 

In the next step, the desired skills and thus required hardware and software 

components had to be determined in preparation of the computation of the new 

estimate. To this end project proposal, documented brainstorming sessions, and 

technical sketches were analyzed so that the components and their 

parameterizations could be extrapolated. Where no exact information was available 

e.g. for the maximum operation distance of ultrasonic sensors plausible assumptions 

had to be made. This can be viewed as a realistic situation because in early design 

phases these design details are commonly not known either. 
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After the determination of components, material and labor costs were computed, 

labor costs being system designing costs, hardware installation costs and software 

development costs. Two different aggregate levels of prototype costs were 

calculated, one including system designing costs and one without them. This was 

done in order to assess which estimate level more adequately approximates the real 

costs and was deemed necessary given the large model uncertainty for system 

designing cost (s. Chapter 6.3.2). For each aggregate level the labor costs were 

calculated for the two team experience levels "good" and "excellent" as outlined 

above. 

Calculating the differences between estimates and actual costs permits the 

evaluation of the estimation; the smaller the difference the better the estimate. 

Both original and new estimates are compared to the actual costs; furthermore both 

estimates are compared directly to each other. Finally, the new estimations and the 

comparisons were presented to one of the experts responsible for the Raser 

prototype development and his opinion elicited in order to achieve qualitative 

validation. 

8.3.2. The Raser lawn-mowing service robot 

The costs for the Raser robot project were extracted from the proposals for the 

construction and optimization of a functional prototype. Because two almost 

identical units were built the documented material costs are divided by two to arrive 

at the hardware costs per unit. This yielded estimated material costs of 13,500 € per 

robot; labor costs were estimated as 258,960 €. The actual costs amounted to 9,670 

€ per robot material and 391,089 € for labor. The estimated prototype costs which 

were extrapolated as the sum of material cost per robot and labor costs thus were 

272,460 €, actual prototype costs amounted to 391,089 €. This means that the 

actual costs were 28.37% lower than originally estimated whereas labor costs 

exceeded the estimate by 51.02% and prototype costs were 47.09% higher than 

estimated. 

The various aggregates of the new estimates are displayed in Table 8.3-1, details on 

the estimation parameters are listed in Appendix 10.5. 
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Cost type Expected 

value 

Standard 

deviation 

First quartile Third quartile 

Team software development experience level: good 
  Aggregate variant: Excluding hardware administrative costs 

Prototype cost 697,746.04 € 89,501.21 € 634,990.86 € 753,767.07 € 

Labor cost 685,943.14 € 89,478.31 € 

 

622,682.15 € 743,083.35 € 

  Aggregate variant: Excluding system designing cost. 

hardware admin, cost Prototype cost 561,340.34 € 82,721.51 € 502,980.16 € 612,495.48 € 

Labor cost  549,537.44 € 82,696.73 € 490,511.77 € 601,767.07 € 

Team software development experience level: excellent 
  Aggregate variant: Excluding hardware administrative costs 

Prototype cost 583,690.31 € 74,488.64 € 531,368.88 € 629,081.57 € 

Labor cost 571,887.41 € 74,461.12 € 518,892.57 € 618,761.25 € 

  Aggregate variant: Excluding system designing cost. 

hardware admin, cost Prototype cost 469,581.91 € 68,809.66 € 420,905.04 € 510,746.11 € 

Labor cost  457,779.01 € 68,779.86 € 408,263.85 € 500,269.26 € 

Aggregate and experience level invariant 
Material cost 11,802.90 € 2,024.78 € 10,441.51 € 13,164.29 € 

Table 8.3-1 Cost estimates for the Raser service robot 

These estimates were contrasted with the original estimation values and the actual 

costs. An overview of the results is given in Table 8.3-2. The shaded areas indicate 

where the new estimates are closer to the actual costs than the original estimate. 

The differences indicate that material costs are overestimated by 22.06% which can 

be considered a good estimate at an early estimation phase; the additional 

consideration of component cost increases could possibly reduce the difference 

even further. Assuming that the team's experience level in software development is 

high i.e. 'excellent' labor and prototype cost estimates lie circa 17.1% higher than 

the actual costs which is also considered a solid estimate. Including the system 

designing cost estimate in the prototype and labor costs drives the estimation error 

significantly up which can be interpreted as an indication of them being 

systematically estimated too high. Given the high uncertainty for the estimation 

model of system designing cost this phenomenon seems to demand the 

development of an improved cost model for this cost constituent. 

The comparison results also show that apart from the component selection the 

assessment of the team's development experience has a significant impact on the 
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estimation results. As no stringent metrics exist for the measurement of 

development experience this factor leaves room for subjective judgment. 

 

Team Exp. Level: Good Team Exp. Level: Excellent 

  Diff. to 

Raser 

estimate 

Diff. to 

Raser 

actual cost 

Diff. to 

Raser 

estimate 

Diff. to 

Raser actual 

cost Prototype cost (w/o admin. 

cost) 

156.09% 74.11% 114.23% 45.65% 
Material costs -12.57% 22.06% -12.57% 22.06% 
Labor costs (w/o admin. 

cost) 

164.88% 75.39% 120.84% 46.23% 
Prototype cost (w/o admin. 

cost, designing cost) 

106.03% 40.07% 72.35% 17.17% 

Material costs -12.57% 22.06% 12.57% 22.06% 
Labor costs (w/o admin. 

cost, designing cost) 

112.21% 40.51% 76.78% 17.05% 

Table 8.3-2 Relative differences between new estimates and original values 

The expert's opinion was predominantly positive; the only estimate considered 

somewhat unrealistic were hardware installation costs; the expert pointed out that 

the real costs had probably been higher because for some components custom parts 

had to be developed, e.g. a casing for the compass. Software development costs and 

material costs were judged to be very realistic and the latter to be equally realistic 

as the original estimate. Notably, the system designing cost estimate was not 

considered unrealistic: The expert explained that he considered the calculated 

numbers as reasonable for diligent robot designing but conceded that budget 

restrictions tend to cut down the actual time and thus costs spent for the according 

activities. Another noteworthy finding was that the expert found it impossible to 

judge the usefulness of information on quartiles and standard deviations as he 

considered himself inexperienced in the field of statistical evaluation. 

The tool and approach were assessed as useful in combination with other 

estimation methods like expert judgment because they offer the possibility of 

comparing separately derived estimates. This statement can be regarded as 

confirmation of the approach's validity and shows that the main objective has been 

achieved. 
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8.4. Evaluation Results and Interpretation 

Figure 8.4-1 displays the responses to the questions with ordinal response scales for 

the EFFIROB estimation scenarios, separated into the categories 'positive', 'negative' 

and 'neutral'. Table 8.4-1 reveals the median and average response values according 

to the evaluation method described above. 

Responses to Q1 reveal that the overall cost estimates derived with the proposed 

approach can be considered equally realistic to the original estimates with a weak 

tendency towards a more positive assessment. The assessments for hardware 

material and installation costs (Q2) are dominantly considered realistic; however, 

the assessment of hardware administrative costs is ambiguous. Software 

development and installation costs (Q3) are largely regarded as realistic. The system 

designing cost estimate is considered unrealistic by the majority of experts; this item 

is the only one with a dominant negative assessment value. The availability of 

additional information by indicating interquartile range and standard deviation (Q5) 

is positive throughout barring one expert abstention. The helpfulness of the 

approach in combination with other estimation methods (Q7) was unanimously 

affirmed. 

 

Figure 8.4-1 Cumulated responses for the EFFIROB estimation scenarios 
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Question Q1.1 Q1.2 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q4.1 Q5.1 Q5.2 Q7.1 Q8.1 Q8.2 Q9.1 

Median 0 0 1 1 0 1 1 -1 1.5 1.5 1 0 1 2 

Average 0.2 0.2 0.4 1.2 0 0.8 0.6 -0.8 1.5 1.5 1.4 0.2 0.6 1.6 

Table 8.4-1 Median and average values of responses for the EFFIROB estimation scenarios 

The responses to Q8 indicate that software cost estimates resulting from the 

presented approach tended to be preferred over the original EFFIROB estimate 

whereas the hardware cost estimates would be used to find a compromise between 

the new and the original value. All experts confirmed that they would probably or 

definitely use the presented approach for quick cost estimation of service robot 

prototype development (Q9). 

Figure 8.4-2 shows the integer values assigned to the responses for the Raser scenario 

as described in Chapter 8.2.1.2. The zero value for Q1.1 indicates that the material 

cost estimates from SEROCOST and EFFIROB are considered as equally realistic; the 

zero values for Q8 signify that the expert deems a compromise between these two 

estimates preferable. The responses are generally consistent with the pattern of the 

responses from the EFFIROB scenarios; for Q5 no conclusions can be drawn as the 

expert abstained from assessing the usefulness of interquartile range and standard 

deviation. An exception is the assessment of system designing costs which were 

judged to be realistic for the Raser case whereas the majority of the EFFIROB expert 

considered the respective estimate for their case unrealistic. 

Figure 8.4-3 shows the prevalence rates of aggregates from Q6 including the response 

for the Raser scenario. Even though some cost constituents were assessed less 

positively than others, the most frequently preferred aggregate for prototype cost is 

the one including all constituents. This can be interpreted as a confirmation that 

developers recognize the need to incorporate more than only direct costs in a cost 

estimate even though most articles on low-cost service robots only describe 

hardware material costs. A different perspective is offered for the product unit 

costs: Here, some experts prefer the all-encompassing cost aggregate whereas 

others favor direct unit costs only. The fact that none of the experts regarded all 

mentioned aggregates inappropriate can be taken as an indicator that the chosen 

aggregates reflect the information demands towards cost estimation correctly. 
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Figure 8.4-2 Response values for the Raser scenario 

 

Figure 8.4-3 Preferred cost aggregates 

An overview over the explicit comments stated during the expert interviews is given 

in Table 8.4-2; positive statements are marked with a plus sign, negative ones with a 

minus and neutral ones with a circular symbol. 

Additional comments regarding the overall approach tend to underpin the positive 

assessment of the presented methodology. The most frequent positive statements 

stress the additional orientation and the possibility to compare estimates which are 

provided by the new approach. This allows the estimator to confirm their initial ad-
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estimation uncertainty. Further praise was given to the strong formalization 

resulting in a high degree of traceability of estimates. 
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One comment categorized as neutral is aimed at the information value of 

interquartile range and standard deviation. Although the expert agreed on their 

usefulness as indicators for estimation uncertainty he pointed out that one of these 

would suffice. 

 A criticism concerning the overall approach was that the accuracy of the estimates 

strongly depends on models and estimation data base being up-to-date. This is a 

true and valid critique; however, it applies to all estimation approaches be it expert 

judgment or parametric modeling and thus can be considered a problem inherent to 

cost estimation in general. 

Another group of comments addresses specific cost constituents or a single aspect 

surveyed in the questionnaire. Positive remarks were stated concerning the 

provision of hardware cost models, the suggesting of software components and the 

finer resolution of separate software parts into packages instead of stacks.44 These 

perceived advantages were considered to give the estimator a higher degree of 

control of the estimation process and facilitate the estimation of the respective cost 

constituents which is in line with the objectives of this thesis. 

Two neutral comments concerning specific cost constituents were given. Regarding 

hardware installation costs, one expert noted that install costs will differ for 

prototypes and series products. This is a correct observation; however, the product 

unit costs are only calculated for a production situation similar to the prototype 

construction i.e. manual assembly is assumed, the effects of cost reduction through 

production process optimization are not considered in the presented approach (s. 

Chapter 2.2.1 and 2.2.3). 

Another neutral statement stressed the difference between the estimation of costs 

as a function of required effort and the determination of actual budgets for 

designing a robot system; the expert pointed out that a given budget can lie below 

the required amount for diligent prototype design thus discrepancies are prone to 

occur. This is in agreement with literature on cost estimation and planning 

(McConnell 2006, pp. 259–270). 

                                                

44A ROS stack consists of one or more packages. 
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Related to Comment Occur-

rence 
Overall approach  Additional orientation, possibility of 

comparison 

 Range estimates instead of point 

estimates 

 Formalization 

 Redundancy between interquartile 

range and standard deviation 

▬ Dependency on timeliness of data and 

models 

3 

2 

1 

1 

 

1 

Specific cost 

component 

 Provided hardware material cost 

models (Q2.1) 

 Software component suggestions 

(Q.3.1) 

 Higher granularity for software 

estimation compared to EFFIROB (Q3.1) 

 Differentiation between hardware 

install cost for prototype and product 

unit costs (Q2.2) 

 Discrepancy between design effort 

necessity and actual budgeting (Q4.1) 

▬ Term 'hardware administrative costs' 

misleading (Q2.3) 

▬ Hardware administrative cost estimate 

too high (Q2.3) 

▬ Software installation cost estimate too 

low (Q3.2) 

▬ System designing cost estimate too high 

(Q4.1) 

1 

1 

1 

 

1 

 

1 

 

2 

 

1 

 

1 

4 

Software tool 

SEROCOST 

 Tool supports but cannot replace 

human expertise 

 Importance of tool usability 

1 

2 

Table 8.4-2 Overview of expert comments on the estimation approach 
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Specific criticism was directed at the used cost terminology and the estimation of 

certain cost constituents. Two experts found the term 'hardware administrative 

cost' to be misleading or difficult to interpret. As this term is explicated in the 

presented approach as consisting of purchasing miscellaneous activities required for 

the procurement of hardware components it could be renamed to 'hardware 

procurement cost'; however, this new term could be interpreted as including 

material costs. Thus and considering that the rest of the experts did not criticize the 

term it was left unchanged. 

The cost estimate for hardware administrative costs was explicitly commented on as 

being too high by one expert, another expert found the software installation costs 

to be too low; four experts pointed out that they considered the estimate for system 

designing being much too high. These comments are in line with the given responses 

(s. Figure 8.4-1 and Figure 8.4-2). The fact that four experts saw the need to explicitly 

comment on the system designing cost can be regarded as a strong indicator that 

further research is required into this specific cost constituent which is plausible 

given the high model uncertainty indicated in Chapter 6.3.2. 

Explicit comments on the software tool address its scope of usage and its usability. 

One expert underlined that even though the tool is helpful in supporting cost 

estimation it cannot replace human intuition. This statement is valid because 

estimation is not deterministic and strongly depends on situative contingencies it 

can be argued that a certain degree of subjective expert judgment will influence cost 

estimates of all estimation approaches.  

Two experts also stressed that the tool's user-friendliness is paramount to the 

acceptance of the approach; the GUI was generally considered as an appropriate 

way to provide ease of use. In order to comply with this requirement the application 

SEROCOST has been tested continuously with test cases. The demonstration of its 

functionality has satisfied the experts to which the tool was demonstrated. 
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9. Conclusion 

9.1. Contributions 

This thesis proposes a systematic, formalized and traceable method of early phase 

cost estimation for service robot prototypes thus increasing transparency and 

support of the pertinent decision-making processes in the development. The 

integration of technical and economic aspects was achieved by a combination of 

adequate methods originating in research areas of system engineering, project 

management and cost accounting. 

The technical structure of the planned robot forms the basis of the cost estimation. 

The dilemma caused by the lack of definite design plans or system architectures 

typical in early development phases has been approached by formalizing the 

deduction of necessary hardware and software using knowledge on structural 

dependencies between desired functionalities and thus required components. 

Generic categorizations have been developed for skills, hardware component types 

and software component types and interconnected by structure matrices. Typical 

dependencies have been established within an expert workshop. 

The economic perspective i.e. the derivation of cost estimates has been 

implemented by identifying central cost constituents and developing dedicated cost 

models for each one of them. These cost models are based on current cost theory 

and statistical research and represent the key innovation of the presented approach.  

Hardware material costs have been modeled employing non-parametric regression 

analysis on hardware component data collected by market research. For each 

hardware category, an individual regression model has been derived from the 

collected data and validated using statistical assessment methods. 

The model for software development costs combines code sizing and analogy 

methods. To this end, the code analysis of one of the most popular robot software 

frameworks has been conducted; the resulting code sizes mapped to function points 

have been stored in a database forming the base of the software development cost 

model. Further parameters influencing productivity, software reuse and team 

experience have been included in the model. 
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Models have been developed for the labor costs resulting from hardware 

installation, hardware administration, software installation and overall system 

designing by employing expert opinions and statistical industry data. The validity of 

these models has been analyzed in a variety of use cases. These models contribute 

to extending the cost perspective on service robots as many current cost 

considerations are restricted to material costs. 

An innovation of the implemented cost estimation is the computation of estimates 

based on probability density functions which permits the calculation of estimate 

ranges which can serve as a measure of estimation uncertainty. This information 

increases the interpretability of estimation results and has been assessed by experts 

to be highly useful. 

To facilitate and speed up the application of the presented approach a software tool 

has been implemented that allows both quick first-guess calculation as well as 

calibration to more detailed scenario specific contexts. It also allows the 

extrapolation of unit costs beyond the prototype costs and the calculation of various 

cost aggregates. This tool is an additional innovation; to the knowledge of the 

author no other software dedicated to cost estimation for service robots exists as of 

2012. 

9.2. Discussion 

The presented approach shows that realistic early phase cost estimation is 

reasonably possible even when little information on the planned service robot is 

available. The cost models have been based on statistical data and thus reduce 

subjectivity in the estimation process. A certain degree of individual assessment 

remains in the selecting items from the categories for robot skills, hardware and 

software. 

Expert interviews revealed that the provision of categories for service robot skills, 

hardware component types and software component types are useful in identifying 

the technical structure as a basis for cost estimation because they reduce the 

chance of omitting relevant parts and in general render the structure-finding 

process more systematic. The collected dependencies proved to be a reliable 

indicator of required components although occasional custom changes to the 
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calculated selections are situationally required due to the large variety of generally 

conceivable service robot applications. As none of the categories claims to be 

complete in the sense that they cover all possible skills or component types, 

respectively, there is room for further expansion of these categories. However, too 

large categories could have counter-productive effects as larger numbers of items 

become increasingly difficult to handle in interdependency considerations. 

The regression models for the hardware material cost models were assessed as 

realistic by experts although some models revealed high sensitivity to certain 

parameters that could lead to unexpected results. The reason for local inaccuracies 

of these models lies in the relatively small size of samples from which the models 

were computed. An exhaustive market research on each hardware component type 

is beyond the scope of this work but might provide more accurate models. 

The software development cost estimation met positive reception by the experts. 

Most experts found that they would replace their prior estimates within the 

EFFIROB scenarios with the estimation results from the presented approach. 

Although some of the scenario-specific estimations were considered less realistic 

than prior individual estimates based on expert judgment all experts agreed that the 

estimates are plausible, traceable and, given the high uncertainty of early phase 

estimation, sufficiently accurate for first economic assessments of development 

plans. A drawback of the approach is that it requires periodical updating of the data 

on the software analogy (ROS) because service robot software has been and is 

expected to continue to be subject to significant changes. 

Hardware and software installation costs models have been constructed separately 

in order to allow the clearer distinction between variable, unit specific costs and 

one-time cost. Although these are of relatively simple design they were unanimously 

considered as reasonably realistic for prototypes. One expert pointed out that he 

would expect the hardware installation costs to decrease significantly once the 

number of built units exceeds five or more robots; capturing this effect requires the 

analysis of economies of scale which is beyond the scope of the presented work as it 

focuses on the development of service robot prototypes. 

This thesis also introduced cost models for hardware administrative costs and 

system designing costs as labor cost constituents within the development of service 
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robot prototypes. These cost models met the strongest skepticism of the experts. 

Although all experts agreed that the inclusion of these cost constituents is useful the 

concrete estimation values where generally considered as too high. Whereas the 

hardware administrative costs were judged to be at least within reasonable ranges, 

system designing costs were considered by most experts as too excessive by a factor 

of two to four. A potential cause for this inaccuracy of these cost models lies in the 

lack of concrete data and difficulty of cost attribution for these cost blocks. Further 

research is required to provide more accurate cost models. 

The formalized method cannot and is not supposed to replace expert estimation 

due to a variety of circumstances. The categorizations of skills, hardware and 

software components are not all-encompassing; thus, many service robot designs 

will display features that are not covered by one of the presented categories and 

consequently cannot be estimated by a pertinent cost model. Previously mentioned 

local inaccuracies of the cost models also advise expert scrutiny of the results. 

Furthermore, experts often hold implicit knowledge on manufacturing processes, 

prime costs, special requirements and other relevant factors impacting on 

development costs that are not integrated in the cost models. However, the 

approach offers the possibility to compare the expert's assessment to a 

systematically derived estimate. Also, the expert can adjust various parameters of 

the presented approach to map his specific experience and better calibrate the 

results to the individual estimation situation. 

All experts agreed that the approach in combination with the software tool pose a 

useful means for quick cost estimation in early service robot prototype development 

phases. The availability of estimation ranges and the short time required to arrive at 

an order-of-magnitude estimate were pointed out as particularly supportive. 

In conclusion, the presented work has shown that the systematic and formalized 

cost estimation of service robot prototypes in early development stages is feasible 

by applying a combination of structure information and individually constructed cost 

models. The calculated estimation ranges provide additional value concerning 

uncertainty assessment. The estimates based on the presented approach tend to be 

slightly higher than individual expert estimate which is in line with studies showing 

that costs of many projects have been underestimated in the past. Literature on cost 
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estimation recommends the combination of various estimation methods for reliable 

results (Williams 1994, p. 4). Thus, this work is a sensible addition to the 

development of service robot prototypes. 

9.3. Outlook 

The presented work forms the basis for the systematic consideration of cost 

relevant aspects in the development of service robots. Obvious extensions are the 

broadening of the categories for skills, hardware and software components and the 

refinement of cost models. Including more items in said categories could render the 

approach amenable to a larger variety of service robots. The refinement of cost 

models could also have this effect if the data basis and thus the borders for the 

considered parameters of the models were expanded. 

Furthermore, the approach could be extended by considering additional parameters 

like complexity or quality, either on component or system level. Inversely, the data 

on structural dependencies employed in the presented approach might also be used 

to derive a measure for a specific robot's complexity e.g. the number of components 

used (e.g. Barclay 2000; Wuang 2010; Tani 2009). Adding a temporal dimension 

might also be worthwhile considering e.g. in the form of schedule estimation. 

Accounting for economies of scale is another possible extension of the approach. 

This could also imply the departure from the assumption of manual assembly (s. 

Chapter 2.2.1) and open the approach to cost estimation and analysis of unit costs 

for larger production numbers.
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10. Appendices 

10.1. Cost Types 

The perspectives used and their applications within the scope of this work are 

explained in this section (for the following delineations of costs, s. Coenenberg 

2009, pp. 57–95; Porter 2000, pp. 63–96). 

10.1.1. Classification by Factor Consumption 

The classification by consumption of production factors presented here is strictly 

from an industrial management point of view. There are different classifications for 

production factors, most notably those in the field of macroeconomics which are 

neither used nor elaborated in this work. This classification is considered to be the 

basic framework of most cost accounting approaches (Coenenberg 2009, pp. 62–

63). 

10.1.1.1. Material Costs 

Material costs can be subdivided into operating material costs, i.e. those costs 

forgone in the production of goods or services, e.g. lubricants, small maintenance 

articles, and basic material costs, i.e. costs incurred for the materials that make up 

the actual product. As operating material costs usually constitute only a minor cost 

factor they are not considered in the presented cost estimation. Material costs 

within the scope of this approach are the costs for physical components of the 

robot. 

10.1.1.2. Labor Costs 

Labor costs originate in the deployment of workers and employees in business 

operation and typically take form in wages and salaries but also include further costs 

caused by the use of manpower, fringe costs like employee benefit costs.  

In the scope of the presented approach labor costs constitute one of the largest 

overall cost components. Development costs, notably software development costs 

are mostly labor costs. Labor costs not considered directly in this approach are the 

indirect labor costs incurred by administration of human resources, e.g. the cost for 
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finding adequate developers (s. Chapter 2.2.2). However, these can be incorporated 

in the cost estimation by assigning a markup on the labor wage rate. 

10.1.1.3. Capital Equipment Costs 

Capital equipment costs are those costs that originate from rendering available 

operational machinery, buildings and other investment goods necessary for 

productive operation. The most frequent costs of this type are acquisition costs and 

capital costs e.g. interests. 

In the presented work capital equipment costs are not considered as the 

assumption of manual assembly exclude the necessity of product-specific 

equipment acquisitions (s. Chapter 2.2.1 and 2.2.2). 

10.1.2. Classification by Organizational Function 

The classification by organizational functions distinguishes costs according to their 

locus within the organization, i.e. assigning costs to so-called cost centers 

(Coenenberg 2009, pp. 103–119; Porter 2000, p.63-76, pp.98-107).  The most 

common categories for cost centers according to their organizational function are 

cost centers for material, production, marketing and sales, administration and 

research and development as well as miscellaneous secondary cost centers that 

provide general services to the other cost centers (Coenenberg 2009, pp. 106–107). 

A further common distinction is that of primary and support activities based on a 

concept by Michael Porter, the value chain (Porter 1996; Porter 2000, pp. 63–96). 

The structure of the value chain is depicted in Figure 10.1-1 (adopted from Porter 

2000, p. 66). In order to enhance comprehensibility and comparability the cost types 

by organizational structure underlying the presented approach are matched against 

the value chain categorization. 

10.1.2.1. Research and Development Costs 

Research and development (R&D) is the first phase in a product’s lifecycle from the 

manufacturer’s point of view. As the term suggest these are not directly tied to 

production but a necessary precondition. Commonly, research is understood to be 

the striving for fundamental knowledge whereas development entailing the 

product’s planning and designing tends to emphasize product implementation. In 
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relation to Porter's value chain, R&D costs are primarily technology costs (ibid., p. 

73). 
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Figure 10.1-1 Porter Value Chain 

In the scope of the presented work research cost are not considered in accordance 

with the assumption that no fundamental research is undertaken (s. Chapter 2.2.4). 

Evidently, development costs are in the focus of the presented approach and thus 

constitute one of most important parts of the cost estimate. Following the 

classification by factors, they are composed of labor costs and material costs, capital 

investment costs are not considered (s. Chapter 2.2.1 and 2.2.2). 

10.1.2.2. Acquisition and Procurement Costs  

Acquisition and procurement entail the costs for the input material as well as the 

supply costs, occasionally also referred to as warehouse costs or logistics costs. They 

are related to the purchase and supplying of production factors needed for the 

production of goods or delivery of service. These are costs for materials and for 

labor costs spent on necessary activities of rendering the production factors 

available, e.g. costs for stocking and transporting. The hardware costs prevail in the 
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direct material costs, as software material costs for production are assumed to be 

negligible.45 

The costs for these material-related activities are mirrored by inbound logistics and 

procurement in Porter's value chain; the costs of production input materials in a 

narrower sense are not explicitly covered in the value chain as Porter's concept 

focuses on activities (ibid., pp. 70–73). 

In this work, acquisition and procurement costs are subsumed under production 

costs and to a minor degree under R&D costs. 

10.1.2.3. Production Costs 

Production costs in a narrower sense are costs incurred by turning the input i.e. 

production factors into actual products. These costs include processing and 

installing of parts and components. Production costs are mapped to operation costs 

in the value chain (ibid., p. 70). 

The term 'production costs' is also commonly used in a broader sense, 

encompassing material costs and manufacturing costs, i.e. the costs for matter and 

activities necessary for the production of goods or services. In the scope of this work 

the term 'production costs' is applied in a more general sense including the material 

costs. 

10.1.2.4. Marketing and Sales Costs 

Marketing and sales costs are incurred by rendering the produced goods available 

on the market and selling them. Typical examples are costs for advertizing and 

creating and maintaining channels of distribution. The value chain has its 

homonymous correspondent but outbound logistics may also be subsumed under 

sales cost (ibid., p. 71). 

Marketing and sales costs are not directly related to development and production 

but strongly depend on the company's policies – one can spend enormous amounts 

                                                

45The purchase of software is disregarded due to the assumption that software either stems from 

own development or open-source reuse (s. Chapter 2.2.5). 
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of money for marketing a simple product or conversely very little on a very 

expensive product – thus they are not considered in the presented work. 

10.1.2.5. Administration Costs 

Administrative costs include a large variety of costs that are tied to managing 

organizational processes. Though not producing sellable goods per se administration 

orchestrates the operations of the company so goods and services come into 

existence in the first place. This indirect relation to the costs of produced units is 

usually captured by burden rates, i.e. markups on the direct unit production costs. 

According to the value chain administration costs are caused by firm infrastructure, 

human resource management and procurement (ibid., pp. 74–75). 

Due to their indirect nature, administrative costs are only marginally considered in 

this approach which is aimed at capturing costs tied directly to the development and 

production of prototypical service robots. Thus only administrative costs related to 

the components of the service robot concept are incorporated in the cost 

estimation (s. Chapter 0).  

10.1.3. Classification by Allocation 

Classifying cost by allocation is the distinction between costs that can be explicitly 

assigned to a specific cost unit and costs which are impossible or difficult to allocate 

to cost objects like produced units or services delivered (Coenenberg 2009, pp. 63–

64). 

10.1.3.1. Direct Costs 

Direct costs are costs which are unambiguously caused by a specific cost object. A 

lucid example is that of material costs incurred for the production of a product unit 

i.e. a piece of merchandize. Evidently, the basic material that went into its 

construction is allocated in the product unit and thus causes direct costs. 

Cost objects or cost units are usually the units of manufactured end-products of the 

company. The problem with produced units as sole cost object is that many types of 

costs, e.g. development costs and administration costs cannot be related to single 

units. Thus, cost reflecting causation can be ordered in a hierarchical fashion with 

direct costs at its bottom and more indirect cost sources on higher levels.  
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Direct costing, also known as marginal costing only assigns costs to cost units which 

are inherently related to its production. In the scope of this work a two-tier cost 

allocation model is applied in order to map costs in accordance with their cause. The 

considered cost objects are produced units of service robots on the lower tier and 

the service robot as a product type on the higher tier. The cost estimation on the 

lower tier includes material and labor costs per unit, the cost estimation for the 

product type encompasses development costs.  

 
Figure 10.1-2 Two-tier product cost object 

Product is used as a term for the aggregate of technical features of a specific 

product design and produced units are materialized entities of that design. This 

relation is depicted in Figure 10.1-2. The concept allows the allocation of development 

costs to the product but not (directly) to the produced units, in other words 

development costs for a product are direct costs on the product level but indirect 

costs on the level of produced units of this product; indirect costs from higher levels 

e.g. company administration are not considered here. This implies that the 

distinction between direct and indirect costs is relative to the cost object 

considered. 
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10.1.3.2. Indirect Costs 

Indirect costs are costs not attributable to a cost unit and are incurred by business 

decisions affecting several cost units simultaneously. Typical indirect costs are 

administration costs and large capital investments. 

The issue with indirect costs is that they do not have a revenue counterpart whereas 

direct costs can be contrasted with respective direct revenues. Nevertheless, they 

must be covered for an enterprise to be profitable. For this reason, several 

principles of cost imputation can be applied to distribute indirect costs among cost 

objects, remarkably the averaging principle, i.e. divide the indirect costs by the 

number of cost objects and assign evenly or in a weighted manner, and the principle 

of financial viability, i.e. cost objects generating higher revenues are assigned 

greater portions of indirect costs. This violation of the principle of causation is 

accepted because not all interdependencies between business-related processes 

can be disentangled (ibid., pp. 59–60). 

The costing method of including indirect costs is called absorption costing or full 

costing and is a widely used accounting approach that burdens all costs incurred on 

the produced goods, i.e. the produced units 'absorb' all overhead costs within the 

considered time period via cost allocation rates. 

 Production costs are calculated as 

direct material costs 

+ indirect material costs 

+ direct production costs 

+ indirect production costs 

+ special direct production costs.46 

                                                

46There are different accounting standards, e.g. the US-American Generally Accepted Accounting 

Principles (US-GAAP), the International Accounting Standards 2 (IAS 2), the German Commercial 

Code (HGB), all of which differ in certain aspects defining production costs. Therefore, the 
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One major problem with this approach is the adequate distribution of large indirect 

costs incurred once before production e.g. development costs or plant investments. 

The dilemma is that these should be burdened on all accumulated produced units 

but their number is not known until production has been stopped. If the number of 

produced units is estimated an unrealistic estimate results in distorted unit cost and 

can thus bias the assessment of the product's marketability. Further problems arise 

if a company manufactures more than one product in which case burden rates must 

be defined for each product which is subject to the company's policy and legal 

accounting factors.47 

Standard costing is almost synonymous to full costing but focuses on the planning 

aspect, i.e. expected indirect costs are burdened. As the presented work is assuming 

the a priori estimation of costs for prototypical service robots there is no difference 

between these terms in its scope. 

The absorption costing approach is not applied in its explicit form because many 

cost blocks that have no relation to the development and production of service 

robots other than that they are incurred by the same company depend on too many 

firm-specific factors as to be considered in this work (s. Chapter 10.1.2). However, a 

partial absorption of indirect cost at product unit level is adopted as described in the 

previous section. Also, if the monthly cost rates for the work forces include not only 

wages and ancillary payroll related costs but also indirect overhead cost e.g. for 

administration personnel or asset depreciation, absorption of costs beyond the 

robot project at hand is implicit. 

10.1.4. Classification by Variability 

The classification of costs by their variability distinguishes between costs according 

to their behavior upon variation of their cost origin (ibid., pp. 65–68). Although 

there are many potential cost origins all of which should ideally be considered 

                                                                                                                                                            

description of production costs given here is a simplification for illustrative purposes. Detailing 

each of the mentioned accounting standards is beyond the scope of this work. 

47These issues are not elaborated here because the presented approach only considers the 

development of a single service robot. 
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simultaneously, for practical reasons the variables are usually reduced to capacity 

utilization or occupation level and produced output. As the consideration of capacity 

utilization or occupation levels is beyond the scope of this work (s. Chapter 2.2.1, 

2.2.2), only the number of produced unit as cost actuating variable is taken into 

account in the following explanations. 

Similar to the distinction classification by allocation the distinction between variable 

and fixed costs is relative to the cost object regarded and furthermore relative to 

the time period regarded – from a long term perspective, all costs are variable.  

10.1.4.1. Variable Costs 

Variable costs are those costs that change along with the variation of the respective 

reference parameter. A prominent example in the scope of the presented work is 

given by the material costs which are incurred per produced unit. 

Variable cost functions can be linear, degressive i.e. less than linear cost increase in 

relation to its origin, progressive i.e. greater than linear cost increase, or even 

regressive i.e. the total sum of variable costs of the reference objects decreases. As 

the production cost function is unknown at the time of estimation, linear variable 

cost functions based on produced output are assumed. 

10.1.4.2. Fixed Costs 

In opposition to variable costs fixed costs do not vary in regard to their cost origin 

within a certain time span thus they are categorical indirect costs. Typical examples 

are plant and equipment costs. A special case of fixed costs are stepped fixed or 

semi-fixed costs which do not change until the cost origin parameter crosses a 

threshold. At the threshold the cost increase creates a discontinuous step. Semi-

fixed costs are not taken into account in this work because capital equipment 

investment based on output thresholds are beyond its scope (s. Chapter 10.1.1.3). 
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10.2. Software Package Development Effort Estimation: Value and Variance 

The calculation of the expected value of the software development cost 

              
    and its variance                 

    is detailed in this section. 

Assuming             , the estimated time and variance required for each 

package i of the components selection are computed as 
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10.3. Hardware Components 

The following list contains indicates all parameters that were used for the cost 

models of the hardware components and the according mean, median, minimum 

and maximum values. Parameters in italics had been considered potential 

candidates for model parameters but have been excluded from the final cost 

models. 

Component type Parameter Unit Mean Median Min. Max. 
camera frames per second [none] 47,37 32 0 210 

sensor diagonal [''] 0,5 0,5 0,11 1 
pixel array size [Pixel]         

ultrasonic sensor blind range [mm] 112,98 60 0 600 
maximal operating 
distance 

[mm] 1336,643 500 100 6000 

sampling frequency [Hz]         
laser scanner scanning angle [°] 36,55 0 0 360 

blind range [mm] 90 100 0 300 
maximal operating 
distance 

[mm] 52710 8000 30 300000 

protective field range [m]         
binary sensor maximal operating 

distance 
[mm] 97,78 15 0 500 

blind range [mm] 2,74 0 0 50 
radar volume [mm³] 194802,2 8750 1898 742500 

broadcasting power [dBm]         
force torque 

sensor 

degrees of freedom [none] 1,96 1 1 6 
measurable moment: 
Mz 

[Nm] 27,92 0 0 1000 
measurable force: Fz [N]         
volume [mm³]         

gyroscope/ 

acceleration 

sensor 

number of axes [none] 1,9 2 1 6 
power usage [mA] 7,45 4,2 0,14 25 
linear measuring range [m/s²]         
rotatory measuring 
range 

[°/s]   
   bandwidth [kHz]   
   GPS -  -         

mobile platform weight [kg] 73,91 51 2,04 350 
footprint size [m²] 0,45 0,35 0,08 1,61 
maximum payload 
capacity 

[kg] 65,16 40 0 300 

maximum velocity [km/h]         
robot arm maximum payload 

capacity 
[kg] 3,12 2 0,3 10 

weight [kg] 14,45 12,8 2 28,9 
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reach  [mm] 759,95 776,2 433 1300 
degrees of freedom [none]         

gripper jaw stroke [mm] 36 37 6 80 
weight [kg]         

closing force/moment [N]         

input peripherals number of axes [none] 2,12 3 0 6 
number of 
buttons/keys 

[none] 29,91 5 2 100 
output 

peripherals 

pixel array size [pixel²] 11365,88 8192 1 76800 
screen diagonal ['']         
weight [kg]         

controlling unit processor type [type] 9,95 9 1 17 
volume [mm³] 13400000 5900000 11000 42900000 
flash memory capacity [Gb] 9,23 0 0 32 
RAM capacity [Mb]         

power supply  

(DC/DC converter) 

output voltage [V] 7,76 5 1,5 48 
output power [W] 33,82 15 0,25 451 
input voltage [V]         

power supply  

(battery) 

capacity [Ah] 17,91 12 0,65 100 
output voltage [V] 10,54 12 3 15 
volume [mm³]         

safety installation weight [kg] 21,49 6,3 0,15 116,7 
footprint size [m²] 0,7 0,32 0 3,5 

Table 10.3-1 Parameters of hardware component cost models 
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10.4. ROS Software Packages 

The following packages of the Electric Emys release (April 2012) for the Robot 

Operating System have been used as an analogy for code sizing purposes: 

Stack Package 
arm_navigation arm_kinematics_constraint_aware 
arm_navigation arm_navigation_msgs 
arm_navigation collision_map 
arm_navigation collision_space 
arm_navigation constraint_aware_spline_smoother 
arm_navigation geometric_shapes 
arm_navigation joint_normalization_filters 
arm_navigation kinematics_base 
arm_navigation kinematics_msgs 
arm_navigation mapping_rviz_plugin 
arm_navigation motion_planning_rviz_plugin 
arm_navigation move_arm 
arm_navigation ompl 
arm_navigation ompl_ros_interface 
arm_navigation planning_environment 
arm_navigation planning_models 
arm_navigation robot_self_filter 
arm_navigation sbpl 
arm_navigation spline_smoother 
arm_navigation trajectory_filter_server 
arm_navigation_experimental arm_navigation_experimental_tools 
arm_navigation_experimental chomp_motion_planner 
arm_navigation_experimental collider 
arm_navigation_experimental collision_checking 
arm_navigation_experimental collision_free_arm_trajectory_controller 
arm_navigation_experimental collision_proximity 
arm_navigation_experimental collision_proximity_planner 
arm_navigation_experimental collision_space_ccd 
arm_navigation_experimental distance_field 
arm_navigation_experimental head_monitor_msgs 
arm_navigation_experimental interpolated_ik_motion_planner 
arm_navigation_experimental move_arm_head_monitor 
arm_navigation_experimental move_arm_warehouse 
audio_common audio_capture 
audio_common audio_common_msgs 
audio_common audio_play 
audio_common sound_play 
bond_core bond 
bond_core bondcpp 
bond_core bondpy 
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bond_core smclib 
brown_remotelab rosbridge 
bullet bullet 
camera_drivers camera1394 
camera_drivers prosilica_camera 
camera_drivers prosilica_gige_sdk 
camera_drivers wge100_camera 
camera_drivers wge100_camera_firmware 
client_rosjava_jni rosjava_jni 
client_rosjava_jni tfjava 
cob_command_tools cob_dashboard 
cob_command_tools cob_script_server 
cob_command_tools cob_teleop 
cob_common brics_actuator 
cob_common cob_default_config 
cob_common cob_description 
cob_common cob_goco 
cob_common cob_srvs 
cob_common cob_utilities 
cob_common cob_vision_utils 
cob_common desire_description 
cob_driver cob_arm 
cob_driver cob_base 
cob_driver cob_base_drive_chain 
cob_driver cob_battery 
cob_driver cob_camera_sensors 
cob_driver cob_canopen_motor 
cob_driver cob_forcetorque 
cob_driver cob_generic_can 
cob_driver cob_head_axis 
cob_driver cob_hokuyo 
cob_driver cob_joint_state_aggregator 
cob_driver cob_joy 
cob_driver cob_light 
cob_driver cob_manipulator 
cob_driver cob_oodl_scanner 
cob_driver cob_powercube_chain 
cob_driver cob_pseudo_joint_state_publisher 
cob_driver cob_relayboard 
cob_driver cob_sdh 
cob_driver cob_sick_s300 
cob_driver cob_sound 
cob_driver cob_torso 
cob_driver cob_trajectory_controller 
cob_driver cob_tray 
cob_driver cob_tray_sensors 
cob_driver cob_undercarriage_ctrl 
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cob_environment_perception cob_3d_mapping_msgs 
cob_environment_perception cob_3d_mapping_pipeline_fake 
cob_environments cob_default_env_config 
cob_extern brics_oodl_scanner_libs 
cob_extern libcvd 
cob_extern libhokuyo_urg 
cob_extern libm5api 
cob_extern libmesasr 
cob_extern libntcan 
cob_extern libpcan 
cob_extern libphidgets 
cob_extern libtoon 
cob_people_perception cob_people_detection 
cob_people_perception cob_people_detection_msgs 
cob_simulation cob_controller_configuration_gazebo 
cob_simulation cob_gazebo 
cob_simulation cob_gazebo_worlds 
cob_simulation cob_simulated_tactile_sensors 
common actionlib 
common bfl 
common tinyxml 
common_msgs actionlib_msgs 
common_msgs diagnostic_msgs 
common_msgs geometry_msgs 
common_msgs nav_msgs 
common_msgs sensor_msgs 
common_msgs stereo_msgs 
common_msgs trajectory_msgs 
common_msgs visualization_msgs 
common_tutorials actionlib_tutorials 
common_tutorials pluginlib_tutorials 
common_tutorials turtle_actionlib 
control control_msgs 
diagnostics diagnostic_aggregator 
diagnostics diagnostic_analysis 
diagnostics diagnostic_updater 
diagnostics_monitors robot_monitor 
diagnostics_monitors runtime_monitor 
documentation rosdoc 
driver_common driver_base 
driver_common dynamic_reconfigure 
driver_common timestamp_tools 
executive_smach smach 
executive_smach smach_msgs 
executive_smach smach_ros 
executive_smach_visualization smach_viewer 
filters filters 
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geometry angles 
geometry eigen_conversions 
geometry tf 
geometry tf_conversions 
geometry_experimental tf2 
geometry_experimental tf2_bullet 
geometry_experimental tf2_geometry_msgs 
geometry_experimental tf2_kdl 
geometry_experimental tf2_msgs 
geometry_experimental tf2_ros 
geometry_experimental tf2_tools 
geometry_tutorials turtle_tf 
geometry_visualization tf2_visualization 
ias_common annotation_srvs 
ias_common cogman_msgs 
ias_common navp_action 
ias_common triangle_mesh_msgs 
ias_common vision_msgs 
ias_common vision_srvs 
image_common camera_calibration_parsers 
image_common camera_info_manager 
image_common image_transport 
image_common polled_camera 
image_pipeline camera_calibration 
image_pipeline image_proc 
image_pipeline image_rotate 
image_pipeline image_view 
image_pipeline stereo_image_proc 
image_transport_plugins compressed_image_transport 
image_transport_plugins theora_image_transport 
imu_drivers microstrain_3dmgx2_imu 
joystick_drivers cwiid 
joystick_drivers joy 
joystick_drivers ps3joy 
joystick_drivers spacenav 
joystick_drivers spacenav_node 
joystick_drivers wiimote 
knowrob bosch_semantic_map 
knowrob comp_cop 
knowrob comp_germandeli 
knowrob comp_orgprinciples 
knowrob comp_spatial 
knowrob comp_temporal 
knowrob ias_knowledge_base 
knowrob ias_prolog_addons 
knowrob ias_semantic_map 
knowrob jpl 
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knowrob json_prolog 
knowrob knowrob_actions 
knowrob knowrob_common 
knowrob knowrob_objects 
knowrob mod_probcog 
knowrob mod_srdl 
knowrob mod_vis 
knowrob rosprolog 
knowrob semweb 
knowrob srldb 
knowrob tf_prolog 
knowrob thea 
laser_drivers hokuyo_node 
laser_drivers sicktoolbox 
laser_drivers sicktoolbox_wrapper 
laser_pipeline laser_assembler 
laser_pipeline laser_filters 
laser_pipeline laser_geometry 
navigation amcl 
navigation base_local_planner 
navigation carrot_planner 
navigation clear_costmap_recovery 
navigation costmap_2d 
navigation dwa_local_planner 
navigation fake_localization 
navigation map_server 
navigation move_base 
navigation move_base_msgs 
navigation move_slow_and_clear 
navigation nav_core 
navigation navfn 
navigation robot_pose_ekf 
navigation rotate_recovery 
navigation voxel_grid 
nodelet_core nodelet 
nodelet_core nodelet_topic_tools 
object_manipulation bayesian_grasp_planner 
object_manipulation compressed_pointcloud_transport 
object_manipulation current_state_validator 
object_manipulation household_objects_database 
object_manipulation household_objects_database_msgs 
object_manipulation interactive_marker_helpers 
object_manipulation object_manipulation_msgs 
object_manipulation object_manipulator 
object_manipulation point_cloud_server 
object_manipulation probabilistic_grasp_planner 
object_manipulation rviz_interaction_tools 
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object_manipulation static_transform_broadcaster 
octomap_mapping octomap 
octomap_mapping octomap_ros 
octomap_mapping octomap_server 
openni_kinect depth_image_proc 
openni_kinect openni_camera 
openni_kinect openni_launch 
openni_kinect openni_tracker 
orocos_kinematics_dynamics orocos_kdl 
orocos_kinematics_dynamics python_orocos_kdl 
perception_pcl cminpack 
perception_pcl flann 
perception_pcl pcl 
perception_pcl pcl_ros 
perception_pcl_addons pcl_tutorials 
perception_pcl_addons pcl_visualization 
perception_pcl_addons terminal_tools 
physics_ode opende 
physics_ode parallel_quickstep 
pluginlib pluginlib 
point_cloud_perception point_cloud_converter 
pr2_apps pr2_app_manager 
pr2_apps pr2_mannequin_mode 
pr2_apps pr2_position_scripts 
pr2_apps pr2_teleop 
pr2_apps pr2_teleop_general 
pr2_apps pr2_tuckarm 
pr2_arm_navigation pr2_3dnav 
pr2_arm_navigation pr2_arm_navigation_actions 
pr2_arm_navigation pr2_arm_navigation_config 
pr2_arm_navigation pr2_arm_navigation_filtering 
pr2_arm_navigation pr2_arm_navigation_kinematics 
pr2_arm_navigation pr2_arm_navigation_perception 
pr2_arm_navigation pr2_arm_navigation_planning 
pr2_arm_navigation pr2_arm_navigation_tutorials 
pr2_calibration calibration_msgs 
pr2_calibration dense_laser_assembler 
pr2_calibration image_cb_detector 
pr2_calibration interval_intersection 
pr2_calibration joint_states_settler 
pr2_calibration laser_cb_detector 
pr2_calibration laser_joint_processor 
pr2_calibration laser_joint_projector 
pr2_calibration monocam_settler 
pr2_calibration pr2_calibration_estimation 
pr2_calibration pr2_calibration_executive 
pr2_calibration pr2_calibration_launch 
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pr2_calibration pr2_calibration_propagation 
pr2_calibration pr2_dense_laser_snapshotter 
pr2_calibration pr2_se_calibration_launch 
pr2_calibration settlerlib 
pr2_common pr2_dashboard_aggregator 
pr2_common pr2_description 
pr2_common pr2_msgs 
pr2_common_actions joint_trajectory_action_tools 
pr2_common_actions joint_trajectory_generator 
pr2_common_actions pr2_arm_move_ik 
pr2_common_actions pr2_common_action_msgs 
pr2_common_actions pr2_tilt_laser_interface 
pr2_common_actions pr2_tuck_arms_action 
pr2_controllers control_toolbox 
pr2_controllers ethercat_trigger_controllers 
pr2_controllers joint_trajectory_action 
pr2_controllers pr2_calibration_controllers 
pr2_controllers pr2_controllers_msgs 
pr2_controllers pr2_gripper_action 
pr2_controllers pr2_head_action 
pr2_controllers pr2_mechanism_controllers 
pr2_controllers robot_mechanism_controllers 
pr2_controllers single_joint_position_action 
pr2_ethercat_drivers eml 
pr2_ethercat_drivers ethercat_hardware 
pr2_ethercat_drivers fingertip_pressure 
pr2_gui pr2_dashboard 
pr2_kinematics pr2_arm_kinematics 
pr2_kinematics pr2_arm_kinematics_constraint_aware 
pr2_mechanism pr2_controller_interface 
pr2_mechanism pr2_controller_manager 
pr2_mechanism pr2_hardware_interface 
pr2_mechanism pr2_mechanism_diagnostics 
pr2_mechanism pr2_mechanism_model 
pr2_mechanism pr2_mechanism_msgs 
pr2_mechanism realtime_tools 
pr2_navigation laser_tilt_controller_filter 
pr2_navigation pr2_move_base 
pr2_navigation pr2_navigation_config 
pr2_navigation pr2_navigation_global 
pr2_navigation pr2_navigation_local 
pr2_navigation pr2_navigation_perception 
pr2_navigation pr2_navigation_self_filter 
pr2_navigation pr2_navigation_slam 
pr2_navigation pr2_navigation_teleop 
pr2_navigation semantic_point_annotator 
pr2_object_manipulation active_realtime_segmentation 
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pr2_object_manipulation fast_plane_detection 
pr2_object_manipulation object_recognition_gui 
pr2_object_manipulation object_segmentation_gui 
pr2_object_manipulation pick_and_place_demo_app 
pr2_object_manipulation pr2_create_object_model 
pr2_object_manipulation pr2_grasp_adjust 
pr2_object_manipulation pr2_gripper_grasp_controller 
pr2_object_manipulation pr2_gripper_grasp_planner_cluster 
pr2_object_manipulation pr2_gripper_reactive_approach 
pr2_object_manipulation pr2_gripper_sensor_action 
pr2_object_manipulation pr2_gripper_sensor_controller 
pr2_object_manipulation pr2_gripper_sensor_msgs 
pr2_object_manipulation pr2_handy_tools 
pr2_object_manipulation pr2_interactive_gripper_pose_action 
pr2_object_manipulation pr2_interactive_manipulation 
pr2_object_manipulation pr2_interactive_object_detection 
pr2_object_manipulation pr2_manipulation_controllers 
pr2_object_manipulation pr2_marker_control 
pr2_object_manipulation pr2_object_manipulation_launch 
pr2_object_manipulation pr2_object_manipulation_msgs 
pr2_object_manipulation pr2_pick_and_place_demos 
pr2_object_manipulation pr2_tabletop_manipulation_launch 
pr2_object_manipulation pr2_wrappers 
pr2_object_manipulation rgbd_assembler 
pr2_object_manipulation robot_self_filter_color 
pr2_object_manipulation segmented_clutter_grasp_planner 
pr2_object_manipulation tabletop_collision_map_processing 
pr2_object_manipulation tabletop_object_detector 
pr2_object_manipulation tabletop_vfh_cluster_detector 
pr2_object_manipulation vfh_recognition 
pr2_object_manipulation vfh_recognizer_db 
pr2_object_manipulation vfh_recognizer_fs 
pr2_power_drivers ocean_battery_driver 
pr2_power_drivers power_monitor 
pr2_power_drivers pr2_power_board 
pr2_robot imu_monitor 
pr2_robot pr2_bringup 
pr2_robot pr2_camera_synchronizer 
pr2_robot pr2_computer_monitor 
pr2_robot pr2_controller_configuration 
pr2_robot pr2_etherCAT 
pr2_robot pr2_run_stop_auto_restart 
pr2_simulator pr2_controller_configuration_gazebo 
pr2_simulator pr2_examples_gazebo 
pr2_simulator pr2_gazebo 
pr2_simulator pr2_gazebo_plugins 
robot_calibration camera_offsetter 
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robot_model collada_parser 
robot_model collada_urdf 
robot_model colladadom 
robot_model convex_decomposition 
robot_model ivcon 
robot_model kdl_parser 
robot_model resource_retriever 
robot_model robot_state_publisher 
robot_model simmechanics_to_urdf 
robot_model urdf 
robot_model urdf_interface 
robot_model urdf_parser 
robot_model_tutorials urdf_tutorial 
ros mk 
ros rosboost_cfg 
ros rosbuild 
ros rosclean 
ros roscreate 
ros rosdep 
ros rosemacs 
ros roslib 
ros rosmake 
ros rospack 
ros rosunit 
ros_comm cpp_common 
ros_comm message_filters 
ros_comm rosbag 
ros_comm rosconsole 
ros_comm roscpp 
ros_comm roscpp_serialization 
ros_comm roscpp_traits 
ros_comm rosgraph 
ros_comm rosgraph_msgs 
ros_comm roslaunch 
ros_comm roslisp 
ros_comm rosmaster 
ros_comm rosmsg 
ros_comm rosnode 
ros_comm rosout 
ros_comm rosparam 
ros_comm rospy 
ros_comm rosservice 
ros_comm rostime 
ros_comm rostopic 
ros_comm roswtf 
ros_comm std_msgs 
ros_comm std_srvs 
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ros_comm topic_tools 
ros_comm xmlrpcpp 
ros_realtime allocators 
ros_realtime lockfree 
ros_realtime rosatomic 
ros_realtime rosrt 
ros_tutorials roscpp_tutorials 
ros_tutorials rospy_tutorials 
ros_tutorials turtlesim 
rx rxbag 
rx rxdeps 
rx rxgraph 
rx rxtools 
rx wxPython_swig_interface 
rx wxswig 
rx xdot 
schunk_modular_robotics schunk_description 
schunk_modular_robotics schunk_powercube_chain 
schunk_modular_robotics schunk_sdh 
simulator_gazebo gazebo 
simulator_gazebo gazebo_msgs 
simulator_gazebo gazebo_plugins 
simulator_gazebo gazebo_tools 
simulator_gazebo gazebo_worlds 
slam_gmapping gmapping 
sql_database database_interface 
sql_database student_database 
stage stage 
vision_opencv cv_bridge 
vision_opencv cv_markers 
vision_opencv image_geometry 
visualization interactive_markers 
visualization rviz 
visualization rxbag_plugins 
visualization wxpropgrid 
visualization_common ogre 
visualization_common ogre_tools 
visualization_tutorials interactive_marker_tutorials 
visualization_tutorials visualization_marker_tutorials 
warehousewg mongo_ros 
warehousewg mongodb 
warehousewg pymongo 
web_interface ckill 
web_interface image_stream 
web_interface launchman 
web_interface pyclearsilver 
web_interface ros_apache2 
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web_interface rosjson 
web_interface rosweb 
web_interface web_msgs 
web_interface webui 
wifi_drivers wifi_ddwrt 
xacro xacro 

Table 10.4-1 ROS stacks and packages used for code sizing 

The following files were excluded from function point derivation because they 

provide secondary functionality only e.g. package management or content 

administration: 

File type 
manifest.xml 
stack.xml 
shell scripts (.sh or similar) 
makefiles (.make, .cmake) 
init.py 
rosdep.yaml 
documentation (.dox) 
configuration files (.config) 
HTML files 
ASP.Net files 

Table 10.4-2 Excluded files 

10.5. Verification Scenarios Parameterizations 

The following tables give details on the various components selected for the 

computation of estimates using the SEROCOST tool and the indicated 

parameterizations. Only changes from the default suggestions are listed for the 

software selection; items marked with the prefix '-' have been removed from the 

scenario-specific selection, otherwise they have been added.  

GH = Ground harvesting robot 

CU = Provisioning of care utensils 

CT = Container transport in hospitals 

FC = Floor cleaning robot 
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IF = Assistance with interior finishing works 

Ra = Raser lawn mowing robot 

 

Basic parameter GH CU CT FC IF Ra 
Wage rate (€) 10,000 10,000 10,000 10,000 10,000 15,600 
Workdays per month 22 22 22 22 22 20 
Code reusability yes yes yes yes yes no 

Table 10.5-1 Basic parameters 

 

Skills GH CU CT FC IF Ra 
Perceive Objects x x x x x x 
Recognize Objects x x x x     
Interpret Environment   x x x x x 
Perceive evolutionary processes   x   x x   
Move to Location   x x x x x 
Orientate in Environment x x x x x x 
Move Object x x x   x   
Process/Alter Object x     x x   
Process/Alter Environment       x   x 
Send Signals/Commands   x x       
Interpret Signals/Commands         x   
Receive Signals/Commands x x x   x x 

Table 10.5-2 Scenario-specific skills 
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Hardware components GH CU CT FC IF Ra 
Camera x x x x     
Ultrasonic Sensor       x   x 
Laserscanner x x x x x   
Radar             
Binary Sensor       x x x 
Force/Torque-Sensor x x   x x   
Gyroscope/Acceleration 

Sensor 

          x 
GPS System             
Wheel-based Platform   x x x x x 
Robot Arm x x   x x   
Gripper   x   x     
Miscellaneous End 

Effectors/ Tools 

x x x x x x 
Input Peripherals x x x     x 
Output Peripherals 

(screens) 

x x x     x 
Power Supply (batteries) x x x x x x 
Power Supply (DC/DC 

converter) 

x x x x x x 
Controlling Computer x x x x x x 
Safety Hardware   x       x 
Miscellaneous Structural 

Hardware 
x x x   x x 

Miscellaneous Hardware 

Environment 

          x 

Table 10.5-3 Scenario-specific hardware components 
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Software GH CU CT FC IF Ra 
Object Detection x x x x x x 
Object Recognition x x x x     
Object Modeling x x   x     
Environmental Modeling   x   x x   
Change Detection   x   x x   
Simultaneous Localisation 

& Mapping 

  x x x x   
Platform Path Planning 

2D/3D 

  x x x x   
Platform Control   x x x x x 
Grasping & Grasp Planning x x   x     
Tool Control x x x x x x 
Arm Control x x   x x   
Arm Path Planning 3D/6D x x   x x   
Operational Interface (HRI) x x x   x x 
Robot-to-Robot 

Coordination 

            
Communication Protocols 

& Messages 

x x x x x x 
Learning & Reasoning   x         
Drivers & Primitives x x x x x x 
(Robot) Operating System x x x x x x 

Table 10.5-4 Scenario-specific software components 
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Ground crop harvester 

Component type quant. parameters comments 
Camera 6 

  

frames per second:32 low-res 
camera sensor diagonal(inch):0.2   

Laserscanner 6 

  

  

scanning angle(°):60   

blind range(mm):100    

maximal operating 
distance(mm):2000 

  

Force/Torque-Sensor 6 

  

degrees of freedom:1   

measurable moment 
Mz(Nm):50 

  

Robot Arm 6 

  

  

maximum payload 
capacity(kg):  4 

  

weight(kg):20   

reach(mm):776   

Miscellaneous End Effectors/ 

Tools 

6 

  

expected cost(€):50 crop cutter 

estimated cost stand. 
dev.(€):20 

  

Input Peripherals 1 

  

number of axes:1 touchscreen 

number of 
buttons/keys:50 

  

Output Peripherals (screens)  1 pixel array 
size(inch):76800 

touchscreen 

Power Supply (batteries) 0 

  

capacity(Ah):12   

output voltage(V):12   

Power Supply (DC/DC 

converter) 

6 

  

output voltage(V):24   

output power(W):200   

Controlling Computer 1 

  

  

processor type:9   

volume(mm³):590000   

flash memory 
capacity(GB):0 

  

Miscellaneous Structural 

Hardware 

6/6 

  

expected 
cost(€):20000/48000 

linear axle; 
gripper 

estimated cost stand. 
dev.(€):5000/8000 

  

Table 10.5-5 Ground harvester hardware parameters 
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ROS stack package 

camera_drivers prosilica_camera 

-robot_model -collada_parser 

-collada_urdf 

-colladadom 

-convex_decomposition 

-ivcon 

-kdl_parser 

-resource_retriever 

-robot_state_publisher 

-simmechanics_to_urdf 

-urdf 

-urdf_interface 

-urdf_parser 

-navigation -robot_pose_ekf 

pr2_controllers robot_mechanism_controllers 

pr2_kinematics pr2_arm_kinematics 

cob_command_tools cob_dashboard 

-common_msgs -nav_msgs 

-pluginlib -pluginlib 

-executive_smach -smach 

-smach_msgs 

Table 10.5-6 Ground harvester software selection 
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Provisioning of Care Utensils 

Component type quant. parameters comments 

Camera 6/2/1 

  

frames per second:32   

sensor 
diagonal(inch):0.2/1/0.5 

Laserscanner 1 

  

  

scanning angle(°):180   

blind range(mm):100 

maximal operating 
distance(mm):8000 

Force/Torque-Sensor 1 

  

degrees of freedom:6   

measurable moment 
Mz(Nm):100 

Wheel-based 
Platform 

1 

  

  

weight(kg):150 

footprint size(m²):0.64 

maximum payload 
capacity(kg):75 

Robot Arm 1 

  

  

maximum payload 
capacity(kg):4 

  

weight(kg):20 

reach(mm):776 

Gripper 1 jaw stroke(mm):80   

Miscellaneous End 
Effectors/ Tools 

1 

  

expected cost(€): 5000 removal mechanism 

estimated cost stand. 
dev.(€):1000 

Input Peripherals 1 

  

number of axes:1 touchscreen (input) 

number of buttons/keys:50 

Output Peripherals 
(screens) 

1 pixel array size(inch):76800 touchscreen (output) 

Power Supply 
(batteries) 

8 

  

capacity(Ah):12   

output voltage(V):12 

Power Supply (DC/DC 
converter) 

1/1/1 

  

output voltage(V):5/12/24   

output 
power(W):15/100/200 

Controlling Computer 1 

  

  

processor type:9   

volume(mm³):5900000 

flash memory capacity(GB):0 

Safety Hardware 2 

  

weight(kg):0.15 emergency stop 

contact surface 
size([m²):0.0025 
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Miscellaneous 
Structural Hardware 

1/1 

  

expected cost():5000/500 linear axle, wlan 

estimated cost stand. 
dev.(€):1000/200 

Table 10.5-7 Provisioning of care utensils hardware parameters 

ROS stack Package 

laser_pipeline laser_assembler 

laser_filters 

laser_geometry 

image_pipeline camera_calibration 

image_proc 

stereo_image_proc 

vision_opencv cv_bridge 

cv_markers 

image_geometry 

camera_drivers prosilica_camera 

slam_gmapping gmapping 

cob_driver cob_canopen_motor 

cob_forcetorque 

cob_undercarriage_ctrl 

executive_smach Smach 

smach_ros 

pr2_controllers robot_mechanism_controllers 

pr2_gripper_action 

pr2_object_manipulation pr2_grasp_adjust 

pr2_gripper_grasp_planner_cluster 

pr2_gripper_reactive_approach 

pr2_gripper_sensor_action 

pr2_gripper_sensor_controller 

pr2_gripper_sensor_msgs 

pr2_interactive_gripper_pose_action 

pr2_manipulation_controllers 

pr2_object_manipulation_launch 

pr2_object_manipulation_msgs 

pr2_tabletop_manipulation_launch 

tabletop_collision_map_processing 

tabletop_object_detector 

pr2_gripper_grasp_controller 

pr2_interactive_manipulation 
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pr2_arm_navigation pr2_arm_navigation_perception 

wifi_drivers wifi_ddwrt 

cob_command_tools cob_dashboard 

cob_teleop 

knowrob ias_knowledge_base 

knowrob_actions 

knowrob_common 

knowrob_objects 

mod_probcog 

mod_srdl 

Table 10.5-8 Provisioning of care utensils software selection 
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Container transport in hospitals 

Component type quant. parameters comments 

Camera 2 

  

frames per second:32   

sensor diagonal(inch):0.5 

Laserscanner 2 

  

  

scanning angle(°):270   

blind range(mm):100 

maximal operating 
distance(mm):8000 

Wheel-based 
Platform 

1 

  

  

weight(kg):300   

footprint size(m²):1.8 

maximum payload 
capacity(kg):275 

Miscellaneous End 
Effectors/ Tools 

1 

  

expected cost(€):750 lifter 

estimated cost stand. 
dev.(€):150 

Input Peripherals 1 

  

number of axes:1 touchscreen (input) 

number of 
buttons/keys:50 

Output Peripherals 
(screens) 

1 pixel array 
size(inch):76800 

touchscreen (output) 

Power Supply 
(batteries) 

8 

  

capacity(Ah):12  

output voltage(V):12 

Power Supply (DC/DC 
converter) 

1/2 

  

output voltage(V):5/24   

output power(W):15/200 

Controlling Computer 1 

  

  

processor type:9   

volume(mm³):590000 

flash memory 
capacity(GB):0 

Miscellaneous 
Structural Hardware 

1/1 

  

expected cost(€):250/500 wlan, rfid/barcode reader 

estimated cost stand. 
dev.(€):50/100 

Table 10.5-9 Container transport in hospitals hardware parameterization 
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ROS stack package 

cob_driver cob_camera_sensors 

cob_forcetorque 

cob_base 

cob_base_drive_chain 

laser_pipeline laser_assembler 

laser_filters 

laser_geometry 

image_pipeline camera_calibration 

image_proc 

stereo_image_proc 

camera_drivers prosilica_camera 

perception_pcl cminpack 

flann 

pcl 

pcl_ros 

slam_gmapping gmapping 

pr2_controllers robot_mechanism_controllers 

wifi_drivers wifi_ddwrt 

cob_command_tools cob_dashboard 

cob_teleop 

control control_msgs 

web_interface web_msgs 

rosweb 

webui 

Table 10.5-10 Container transport in hospitals software selection 
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Floor cleaning  

Component type quant. parameters comments 

Camera 1 frames per second:32   

sensor diagonal(inch):0.5 

Ultrasonic Sensor 6 blind range(mm):60   

maximal operating 
distance(mm):500 

Laserscanner 2 scanning angle(°):270   

blind range(mm):100 

maximal operating 
distance(mm):8000 

Binary Sensor 2 maximal operating 
distance(mm):100 

step detection to avoid 
falling down stairs 

blind range(mm):0 

Force/Torque-Sensor 1 degrees of freedom:1   

measurable moment 
Mz(Nm):5 

Wheel-based Platform 1 weight(kg):51   

footprint size(m²):0.2 

maximum payload 
capacity(kg):40 

Robot Arm 1 maximum payload 
capacity(kg):4 

  

weight(kg):20 

reach(mm):776 

Gripper 1 jaw stroke(mm):37   

Miscellaneous End 
Effectors/ Tools 

1 expected cost(€):1500 cleaning unit 

estimated cost stand. 
dev.(€):500 

Power Supply 
(batteries) 

4 capacity(Ah):12   

output voltage(V):12 

Power Supply (DC/DC 
converter) 

1/1/1 output voltage(V):5/12/24   

output 
power(W):15/100/200 

Controlling Computer 1 
  

processor type:9   

volume(mm³):590000 

flash memory 

capacity(GB):0 

Table 10.5-11 Floor cleaning hardware parameterization 
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ROS stack package 

cob_driver cob_camera_sensors 

cob_base 

cob_base_drive_chain 

cob_forcetorque 

camera_drivers prosilica_camera 

perception_pcl cminpack 

flann 

pcl 

pcl_ros 

vision_opencv cv_bridge 

cv_markers 

image_geometry 

image_pipeline image_proc 

camera_calibration 

laser_pipeline laser_assembler 

laser_filters 

laser_geometry 

object_manipulation household_objects_database 

cob_environment_perception cob_3d_mapping_msgs 

slam_gmapping gmapping 

executive_smach smach 

smach_ros 

pr2_controllers robot_mechanism_controllers 

pr2_gripper_action 

Table 10.5-12 Floor cleaning software selection 
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Assistance with interior finishing works 

Component type quant. parameters comments 

Laserscanner 2 scanning angle(°):270   

blind range(mm):100 

maximal operating 
distance(mm):8000 

Binary Sensor 20 maximal operating distance(mm): 
50 

optical distance 
sensors for safety 

blind range(mm):0 

Force/Torque-
Sensor 

1 degrees of freedom:4   

measurable moment Mz(Nm):150 

Wheel-based 
Platform 

1 weight(kg):50   

footprint size(m²):0.75 

maximum payload capacity(kg):40 

Robot Arm 1 maximum payload capacity(kg):4   

weight(kg):20 

reach(mm):776 

Miscellaneous 
End Effectors/ 
Tools 

1/1/1 expected cost(€):10000/4000/2000 2DOF module + 
1DOF module, 
power drill, 
power cutter 

estimated cost stand. dev. 
(€):2000/1000/500 

Power Supply 
(batteries) 

8 capacity(Ah):12   

output voltage(V):12 

Power Supply 
(DC/DC 
converter) 

1/1/1 output voltage(V):5/12/24   

output power(W):15/100/200 

Controlling 
Computer 

1 processor type:9   

volume(mm³):5900000 

flash memory capacity(GB):0 

Miscellaneous 
Structural 
Hardware 

1/1/1/1/1 expected 
cost(€):10000/1500/3000/1000/200 

linear axle, tool 
bayonet 
connection, laser 
projector, 2D 
rotary laser, 
microphone 

estimated cost stand. 
dev.(€):2000/300/500/200/50 

Table 10.5-13 Assistance with interior finishing works hardware parameterization 
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ROS stack package 

laser_pipeline laser_assembler 

laser_filters 

laser_geometry 

vision_opencv cv_bridge 

cv_markers 

image_geometry 

perception_pcl cminpack 

flann 

pcl 

pcl_ros 

slam_gmapping gmapping 

object_manipulation object_manipulation_msgs 

object_manipulator 

point_cloud_server 

audio_common audio_capture 

audio_common_msgs 

audio_play 

sound_play 

pr2_navigation pr2_navigation_teleop 

cob_environment_perception cob_3d_mapping_msgs 

pr2_controllers robot_mechanism_controllers 

Table 10.5-14 Assistance with interior finishing workssoftware selection 
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Raser lawn mowing robot 

Component type quant. parameters comments 

Ultrasonic Sensor 4 blind range(mm):60   

maximal operating 
distance(mm):500 

Binary Sensor 2/2 maximal operating 
distance(mm):15 

  

blind range(mm):0 

Gyroscope/Acceleration 
Sensor 

1 number of axes:6   

power usage(mA):4.2 

Wheel-based Platform 1 weight(kg):15   

footprint size(m²):0.2 

maximum payload 
capacity(kg):2 

Miscellaneous End 
Effectors/ Tools 

1 expected cost(€):0 mowing unit (provided 
externally) estimated cost stand. 

dev.(€):0 

Input Peripherals 1 number of axes:3   

number of buttons/keys:5 

Output Peripherals 
(screens) 

1 pixel array size(inch):1600 2-line dotmatrix 

Power Supply 
(batteries) 

0 capacity(Ah):12 (provided externally) 

output voltage(V):12 

Power Supply (DC/DC 
converter) 

1 output voltage(V):5   

output power(A):15 

Controlling Computer 1 processor type:17   

volume(mm³):16000 

flash memory 
capacity(GB): 0 

Safety Hardware 1 weight(kg):0.3 bumper 

contact surface 
size([m²):0.02 

Miscellaneous 
Structural Hardware 

1/1 expected 
cost(€):2000/200 

grass sensor, compass 

estimated cost stand. 
dev.(€):500/50 

Miscellaneous 
Hardware Environment 

1/1 expected cost(€):500+500 RFID tags, charging 
device estimated cost stand. 

dev.(€): 250/100 

Table 10.5-15 Raser lawn mowing hardware parameterization 
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ROS stack package 

pr2_controllers robot_mechanism_controllers 

joystick_drivers joy 

wifi_drivers wifi_ddwrt 

-common_msgs 

  

-trajectory_msgs 

-actionlib_msgs 

-filters -filters 

-nodelet_core -nodelet_topic_tools 

-pluginlib -pluginlib 

Table 10.5-16 Raser lawn mowing software selection 
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10.6. Scenario Questionnaires 

The following questionnaire was used for EFFIROB scenarios in the verification 

process. 

The SEROCOST estimate is … than the EFFIROB estimate. 

 

much more 

realistic 

more 

realistic 

equally 

realistic 

less 

realistic 

much less 

realistic 

don't know 

hardware 

costs  

      

software costs 
      

Comment: 
 

       How do you assess the hardware cost estimation? 
 

 

very 

realistic 

reasonably 

realistic  

somewhat 

unrealistic 

very 

unrealistic 

don't know 

 material costs 
     

 installation 

costs  

     

 administr. 

costs 

     

 Comment: 
 

       How do you assess the software cost estimation? 

 

very 

realistic 

reasonably 

realistic  

somewhat 

unrealistic 

very 

unrealistic 

don't know 

 development 

costs 
     

 installation 

costs  

 

    

 Comment: 
 

       How do you assess the designing cost estimation? 
 

 

very 

realistic 

reasonably 

realistic  

somewhat 

unrealistic 

very 

unrealistic 

don't know 

 designing cost      

 Comment: 

 
       How do you assess the additional availability of standard deviation and 

IQR? 

 

very 

helpful 

helpful to 

some 

degree 

neither 

helpful nor 

confusing 

confusing 

to some 

degree 

very 

confusing don't know 

Standard 

deviation 
      

IQR 
      

Comment: 
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Under the aspects of clarity and meaning, which aggregation would you 

prefer in cost estimates for a service robot? 

   

for 

prototype 

cost 

for 

product 

level 

unit cost 

  Including all cost constituents 
  

  Excluding designing cost 
  

  Excluding designing cost, admin. 
costs 

  

  Direct unit costs 
  

  None of the above 
  

  I don't know. 
  

  

  Comment: 
 

       Combined with other estimation methods, how do you assess the 

additional support with the SEROCOST approach and tool? 

 

very helpful 

helpful to 

some 

degree 

neither 

helpful nor 

confusing 

confusing 

to some 

degree 

very 

confusing don't know 

 

      

Comment: 
 

       Given the SEROCOST estimate, how would you adapt the original EFFIROB 

estimate? 

    

Hardware 

costs 

Software 

costs 
 Replace original values with SEROCOST values 

  

 Find a compromise between both 

values  

  

 Keep old values 
  

 I don't know. 
   

  

 Comment: 
 

       If you had to do an early design phase cost estimate for a service robot, 

would you use the SEROCOST tool and approach? 

 

Definitely Probably Maybe Probably 

not 

Definitely 

not 

don't 

know 

 

      

Comment: given usability is sufficient 

       Open question: What do you consider strengths or weaknesses of the 

SEROCOST approach not covered by the questions above? 
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The following, slightly modified version of the questionnaire above was used for the 
Raser scenario verification. 
The SEROCOST estimate is … than the Raser estimate. 

 

much more 

realistic 

more 

realistic 

equally 

realistic 

less 

realistic 

much less 

realistic 
don't know 

material costs  
      

labor costs 
      

Comment: 
 

       How do you assess the hardware cost estimation? 
 

 

very 

realistic 

reasonably 

realistic  

somewhat 

unrealistic 

very 

unrealistic 
don't know 

 material costs 
     

 installation 

costs  
     

 administr. 

costs 
     

 Comment: 
 

       How do you assess the software cost estimation? 

 

very 

realistic 

reasonably 

realistic  

somewhat 

unrealistic 

very 

unrealistic 
don't know 

 development 

costs 
     

 installation 

costs  
     

 Comment: 
 

       How do you assess the designing cost estimation? 
 

 

very 

realistic 

reasonably 

realistic  

somewhat 

unrealistic 

very 

unrealistic 
don't know 

 designing cost 
     

 Comment: 
 

       How do you assess the additional availability of standard deviation and 

IQR? 

 

very 

helpful 

helpful to 

some 

degree 

neither 

helpful nor 

confusing 

confusing 

to some 

degree 

very 

confusing don't know 

Standard 

deviation 
      

IQR 
      

Comment: 
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Under the aspects of clarity and meaning, which aggregation would you 

prefer in cost estimates for a service robot? 

   

for 

prototype 

cost 

   Including all cost constituents 
 

   Excluding designing cost 
 

   Excluding designing cost, admin. 

costs 
 

   Direct unit costs 
 

   None of the above 
 

   I don't know. 
  

 

   Comment: 
 

       Combined with other estimation methods, how do you assess the 

additional support with the SEROCOST approach and tool? 

 

very 

helpful 

helpful to 

some 

degree 

neither 

helpful nor 

confusing 

confusing 

to some 

degree 

very 

confusing don't know 

 

      

Comment: 
 

       Given the SEROCOST estimate, how would you have adapted the original 

Raser estimate? 

    

Material 

costs 
Labor costs 

 Replace original values with SEROCOST values 
  

 Find a compromise between both 

values  

  

 Keep old values 
  

 I don't know. 
   

  

 Comment: 
 

       If you had to do an early design phase cost estimate for a service robot, 

would you use the SEROCOST tool and approach (assuming maximum time 

effort required for a tool based estimate < 1h)? 

 
Definitely Probably Maybe Probably 

not 

Definitely 

not 

don't know 

 

      

Comment: 
 

       Open question: What do you consider strengths or weaknesses of the 

SEROCOST approach not covered by the questions above? 
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The following questionnaire was used for retrieving expert feedback on the 

categorization of skills as well as hardware and software component types. 

Functions 
  1. Below you see a categorization of generic skills as requirements a service 

robot (often) needs to fulfill.  
1a. Please verify the usefulness of each category and each function (Does it 

make sense? Is it important?). 
1b. If you think an important category or function is missing please add it. 

Please make sure that it cannot be subsumed under one of the already 

listed. 
1c. The skills should be as decoupled as possible. If you think that two 

functions have overlapping meaning please indicate so and, if possible, 

suggest a better distinction. 
    

 Category Skill Comments 

Perception 

  

  

Object Detection   
Object Recognition   
Environmental 

Modeling 

includes kinematics 
Navigation & 

Locomotion 

  

  

Self Localization   
Platform Path 

Planning 

includes collision avoidance 
Platform Control    

Manipulation 

  

  

Manipulator Path 

Planning 

includes collision avoidance 

Manipulator Control includes visual servoing, force 

control 
Grasping & Grasp 

Planning 

  
Robot Interface 

  

  

Human-Robot 

Interaction 

includes speech and gesture 

recognition, operation and 

teleoperation 
Programming & 

Teaching 
  

Robot-Robot 

Interaction 

  
Additional Function …   
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Component Types Hardware 
 2. Below you see a categorization of generic hardware component types 

often installed in a service robot.  
2a. Please verify the usefulness of each category and each component type 

(Does it make sense? Is it important?). 
2b. If you think an important category or component type is missing please 

add it. Please make sure that it cannot be subsumed under one of the 

already listed. 

   Category Component Comments 
Perception 

Hardware 

  

  

  

  

  

  

  

Camera   
Ultrasonic Sensor   
Laser scanner   
Radar   
Binary Sensor Point sensor, area 

sensor (including 

sensor skin), includes 

angle transmitters 
Force/Torque-Sensor   
Gyro-Sensor   
GPS System   

Navigation & 

Locomotion 

Hardware 

  

Ground Platform excludes walkers 
Aerial Platform UAV Platforms 

Manipulation 

Hardware 

  

  

Robot Arm   
Gripper   
Miscellaneous End Effectors/ 

Tools 

e.g. welding 

equipment 
HRI Hardware (if 

not listed among 

sensors) 

  

Input Peripherals e.g. simple: keyboard, 

buttons, microphone; 

advanced: Haptic Input 

Devices 
Output Peripherals e.g. simple: 

loudspeakers, screen; 

advanced: Augmented 

Reality Visors 
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Infrastructure 

Hardware 

  

  

  

Power Supply   
Controlling Computer   
Safety Hardware hardware dedicated to 

safety issues, i.e. 

emergency stop circuit 
Miscellaneous Structural 

Hardware 

e.g. frame, wiring 

harness 
Additional 

Hardware 

…   

  Component Types Software 
 3. Below you see a categorization of generic software component types 

often installed in a service robot.  
3a. Please verify the usefulness of each category and each component type 
(Does it make sense? Is it important?). 
3b. If you think an important category or component type is missing please 
add it. Please make sure that it cannot be subsumed under one of the 
already listed. 

   Category Component Comments 
Perception 

Software 

  

  

Object Recognition   
Sensor Fusion   
Environmental Modeling   

Navigation & 

Locomotion 

Software 

  

Self Localization and 

Mapping 
  

Path Planning 2D   
Manipulation 

Software 

  

  

  

Path Planning 3D/6D   
Visual Servoing   
Grasping & Grasp Planning   
Application Specific Control   

HRI Software 

  

  

  

Speech Recognition   
Gesture Recognition   
Operation & Teleoperation   
Graphical User Interface   

Systemic Software 

  

  

(Robot) Operating System   
Internal Component 

Interfaces 
  

Learning & Reasoning   
Additional Software …   
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