

Nikolaus Blümlein

Function-based Cost Estimation for
Service Robot Prototypes in Early Design Phases

STUTTGARTER BEITRÄGE ZUR PRODUKTIONSFORSCHUNG BAND 35

Herausgeber:
Univ.-Prof. Dr.-Ing. Thomas Bauernhansl
Univ.-Prof. Dr.-Ing. Dr. h.c. mult. Alexander Verl
Univ.-Prof. a. D. Dr.-Ing. Prof. E.h. Dr.-Ing. E.h. Dr. h.c. mult. Engelbert Westkämper

FRAUNHOFER VERLAG

Kontaktadresse:
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA, Stuttgart
Nobelstraße 12, 70569 Stuttgart
Telefon 0711 9 70-00, Telefax 0711 9 70-13 99
info@ipa.fraunhofer.de, www.ipa.fraunhofer.de

STUTTGARTER BEITRÄGE ZUR PRODUKTIONSFORSCHUNG

Herausgeber:
Univ.-Prof. Dr.-Ing. Thomas Bauernhansl
Univ.-Prof. Dr.-Ing. Dr. h.c. mult. Alexander Verl
Univ.-Prof. a. D. Dr.-Ing. Prof. E.h. Dr.-Ing. E.h. Dr. h.c. mult. Engelbert Westkämper

Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA, Stuttgart
Institut für Industrielle Fertigung und Fabrikbetrieb (IFF) der Universität Stuttgart
Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen (ISW)
der Universität Stuttgart

Titelbild: © Dominik Kaltenbacher

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie;
detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.
ISSN: 2195-2892
ISBN (Print): 978-3-8396-0749-7

D 93

Zugl.: Stuttgart, Univ., Diss., 2013

Druck: Mediendienstleistungen des Fraunhofer-Informationszentrum Raum und Bau IRB, Stuttgart
Für den Druck des Buches wurde chlor- und säurefreies Papier verwendet.

© by FRAUNHOFER VERLAG, 2014
Fraunhofer-Informationszentrum Raum und Bau IRB
Postfach 80 04 69, 70504 Stuttgart
Nobelstraße 12, 70569 Stuttgart
Telefon 0711 9 70-25 00
Telefax 0711 9 70-25 08
E-Mail verlag@fraunhofer.de
URL http://verlag.fraunhofer.de

Alle Rechte vorbehalten

Dieses Werk ist einschließlich aller seiner Teile urheberrechtlich geschützt. Jede Ver wertung, die
über die engen Grenzen des Urheberrechtsgesetzes hinausgeht, ist ohne schriftliche Zustimmung
des Verlages unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen,
Mikro ver filmungen sowie die Speiche rung in elektronischen Systemen.
Die Wiedergabe von Warenbezeichnungen und Handelsnamen in diesem Buch berechtigt nicht
zu der An nahme, dass solche Bezeichnungen im Sinne der Warenzeichen- und Markenschutz-
Gesetzgebung als frei zu betrachten wären und deshalb von jedermann benutzt werden dürften.
Soweit in diesem Werk direkt oder indirekt auf Gesetze, Vorschriften oder Richtlinien (z.B. DIN,
VDI) Bezug genommen oder aus ihnen zitiert worden ist, kann der Verlag keine Gewähr für
Richtigkeit, Vollständigkeit oder Aktualität übernehmen.

GELEITWORT DER HERAUSGEBER

Produktionswissenschaftliche Forschungsfragen entstehen in der Regel im Anwen-
dungszusammenhang, die Produktionsforschung ist also weitgehend erfahrungsbasiert.
Der wissenschaftliche Anspruch der „Stuttgarter Beiträge zur Produktionsforschung“
liegt unter anderem darin, Dissertation für Dissertation ein übergreifendes ganzheitliches
Theoriegebäude der Produktion zu erstellen.

Die Herausgeber dieser Dissertations-Reihe leiten gemeinsam das Fraunhofer-Institut
für Produktionstechnik und Automatisierung IPA und jeweils ein Institut der Fakultät für
Konstruktions-, Produktions- und Fahrzeugtechnik an der Universität Stuttgart.

Die von ihnen betreuten Dissertationen sind der marktorientierten Nachhaltigkeit
verpflichtet, ihr Ansatz ist systemisch und interdisziplinär. Die Autoren bearbeiten
anspruchsvolle Forschungsfragen im Spannungsfeld zwischen theoretischen Grundlagen
und industrieller Anwendung.

Die „Stuttgarter Beiträge zur Produktionsforschung“ ersetzt die Reihen „IPA-IAO
Forschung und Praxis” (Hrsg. H.J. Warnecke / H.-J. Bullinger / E. Westkämper / D. Spath)
bzw. ISW Forschung und Praxis (Hrsg. G. Stute / G. Pritschow / A. Verl). In den vergan-
genen Jahrzehnten sind darin über 800 Dissertationen erschienen.

Der Strukturwandel in den Industrien unseres Landes muss auch in der Forschung in
einen globalen Zusammenhang gestellt werden. Der reine Fokus auf Erkenntnisgewinn
ist zu eindimensional. Die „Stuttgarter Beiträge zur Produktionsforschung“ zielen also
darauf ab, mittelfristig Lösungen für den Markt anzubieten. Daher konzentrieren sich die
Stuttgarter produktionstechnischen Institute auf das Thema ganzheitliche Produktion in
den Kernindustrien Deutschlands. Die leitende Forschungsfrage der Arbeiten ist: Wie
können wir nachhaltig mit einem hohen Wertschöpfungsanteil in Deutschland für einen
globalen Markt produzieren?

Wir wünschen den Autoren, dass ihre „Stuttgarter Beiträge zur Produktionsforschung“
in der breiten Fachwelt als substanziell wahrgenommen werden und so die Produk-
tionsforschung weltweit voranbringen.

Alexander Verl Thomas Bauernhansl Engelbert Westkämper

kskdxks

Function-based Cost Estimation for Service Robot

Prototypes in Early Design Phases

Von der Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

der Universität Stuttgart

zur Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.)

genehmigte Abhandlung

Vorgelegt von

Dipl.-Inf. Dipl.-Kfm. Nikolaus Blümlein

aus Ludwigshafen am Rhein

Hauptberichter: Prof. Dr.-Ing. Dr. h.c. mult. Alexander

Verl

Mitberichter: Prof. Dr.-Ing. Heinz Wörn

Tag der mündlichen Prüfung: 05.11.2013

Institut für Steuerungstechnik der Werkzeugmaschinen und

Fertigungseinrichtungen (ISW)

 der Universität Stuttgart

2013

ii

Vorwort des Autors

Die vorliegende Arbeit entstand im Rahmen meiner Arbeit als wissenschaftlicher

Mitarbeiter der Abteilung Roboter- und Assistenzsysteme des Fraunhofer-Instituts

für Produktionstechnik und Automatisierung (IPA) in Stuttgart-Vaihingen.

An erster Stelle möchte ich Herrn Prof. Dr.-Ing. Dr. h.c. mult. Alexander Verl für die

Übernahme des Hauptberichts, seine Betreuung während der Anfertigung der Arbeit

und seine wertvollen Ratschläge danken. Mein Dank gilt auch Herrn Prof. Dr.-Ing.

Heinz Wörn für die freundliche Übernahme des Mitberichts.

Zahlreiche Kollegen standen mir während der Dissertation mit hilfreichen

Ratschlägen und ermutigenden Worten zur Seite und trugen so direkt und indirekt

zum Gelingen dieser Arbeit bei. Ich bedanke mich bei Herrn Dipl.-Ing. Martin Hägele

M.S., der mich maßgeblich bei der Themenfindung und Informationsrecherche

unterstützt hat. Für seine konstruktiven Anmerkungen und kontinuierlichen

Zuspruch bin ich Herrn Dipl.-Ing. Kai Pfeiffer zu Dank verpflichtet. Den Kollegen Frau

Dr.-Ing. Dipl.-Inf. Birgit Graf, Herrn Dr.-Ing. Georg Arbeiter, Herrn Dipl.-Inf. Winfried

Baum, Herrn Dipl.-Ing. Alexander Bubeck, Herrn Dr.-Ing. Ulrich Reiser und Herrn

Dipl.-Ing Maik Siee danke ich für ihre stet Bereitschaft, mit ihrer fachlichen Expertise

wertvolle Unterstützung zu liefern. Herrn Dr.-Ing. Christian Connette und Herrn Dr.-

Ing. Arne Rost möchte ich ganz besonders danken für die intensiven und

anregenden Diskussionen und Fachgespräche. Frau Luzia Schuhmacher M.A. und

Frau Heide Kreuzburg gebührt ebenfalls ein besonderes Dankeschön für ihre Geduld

und ihre wertvollen Ratschläge bei organisatorischen Fragen.

All den Kollgen, die durch ihre freundliche Art zu einer angenehmen und

produktiven Arbeitsatmosphäre beigetragen haben, möchte ich ebenfalls danken,

die schöne Zeit wird mir stets in Erinnerung bleiben.

Aschaffenburg, im April 2014 Nikolaus Blümlein

iii

Kurzinhalt

Die frühzeitige Kostenabschätzung ist häufig eine Voraussetzung, um bei der
Entwicklung komplexer Produkte deren Wirtschaftlichkeit beurteilen zu können. Die
Verknüpfung zahlreicher technischer und wirtschaftlicher Faktoren stellt dabei für
Systementwickler insbesondere in sehr frühen Phasen eine Herausforderung dar, in
denen nur wenig mehr als die gewünschte Funktionalität bekannt ist. Da die
Servicerobotik im Vergleich zu anderen Technologien noch relativ jung ist, verschärft
der Mangel an Erfahrungswerten diese Problematik für Serviceroboterprodukte.

In dieser Arbeit wird ein Ansatz vorgeschlagen, der durch strukturale Verknüpfung
von typischen Serviceroboterkomponenten, -funktionalitäten und statistischen
Kostenmodellen den Kostenschätzungsprozess unterschiedlicher Kostenaggregats-
stufen für Serviceroboter-Prototypen in frühen Entwicklungsphasen erleichtert.
Zusätzlich ermöglicht diese Vorgehensweise die Abschätzung von Stückkosten für
kleine Stückzahlen.

Kernelemente der Arbeit sind die Entwicklung einer Design-Struktur-Matrix für
Serviceroboter und die Modellierung von Hardware- und Softwarekosten. Die
anhand von Experteninterviews ermittelte Strukturmatrix verknüpft typische
Roboterfunktionen mit Hardware- und Softwarekomponenten und ermöglicht
dadurch die Ableitung der wesentlichen Bestandteile eines Prototyps aus
gewünschten Fähigkeiten des Serviceroboters.

Der Stand der Technik wird bezüglich der gängigen Produktentwicklungs- und
Kostenschätzungsmethoden sowie deren Einsatz im Bereich der Servicerobotik
dargestellt. Neben allgemeinen Vorgehensweisen der Kostenschätzung werden
hardware- und softwarespezifische Konzepte vorgestellt. Entwurfstechniken für
neue Produkte werden in intuitive und strukturelle Methoden untergliedert und
erläutert. Die Betrachtung dieser Techniken wird abgeschlossen mit einer
Untersuchung, inwieweit sie innerhalb der Entwicklung von Servicerobotern
Anwendung finden und diesbezüglich Verbesserungsmöglichkeiten bestehen.

Um Kostenschätzungen für Hardwarekomponenten vornehmen zu können, wurden
im Rahmen einer empirischen Primärrecherche zentrale technische Eigenschaften
und Preise typischer Komponenten als Basis der Modellentwicklung ermittelt. Die
vorausgehende Auswahl der untersuchten Komponentenkategorien basiert auf
Experteninterviews, der Analyse abgeschlossener Serviceroboterprojekte sowie
einschlägiger Literatur. Für jede Kategorie wurden nach der Datenerhebung mittels
semi-parametrischer Regression mehrere Kostenmodelle erstellt und das jeweils

iv

geeignetste ausgewählt. Die Güte der Modelle wurde dabei mit Hilfe statistischer
Vergleichsmaße beurteilt.

Für Softwarekomponenten bedient sich der Ansatz der analogiebasierten
Aufwandsschätzung. Im Wesentlichen wird bei diesem Ansatz der Aufwand zur
Erstellung einer spezifischen Software abgeschätzt, indem aus einer Analogie zu
einem bereits bestehenden, funktional ähnlichen Programm Rückschlüsse gezogen
werden. Zu diesem Zweck wurden mehrere Hundert Module der Open-Source-
Softwareumgebung Robot Operating System (ROS) von Willow Garage analysiert.
Hierbei wurde zunächst der Umfang von Softwaremodulen in Programmzeilen
ermittelt. Anschließend wurde der jeweilige Umfang in ein weiteres Maß für
Softwareumfang, sog. Function Points, konvertiert, um den Aufwand mittels
Produktivitätsraten unabhängig von der verwendeten Programmiersprache schätzen
zu können. Die verwendeten Konvertierungs- und Produktivitätsraten basieren auf
heuristischen Daten aus Literaturquellen zur Softwareprojektierung.

Für jedes Kostenmodell wird im Rahmen der vorgestellten Methodik eine
statistische Kostenverteilung errechnet. Dies ermöglicht neben punktweisen
Schätzungen auch die Errechnung von Standardabstand und Wahrscheinlich-
keitsbändern. Dies birgt den Vorteil, dass die Schwankungsbreite von Schätzungen
expliziert werden können und somit die Schätzunsicherheit besser beurteilt werden
kann.

Um den Schätzprozess zu unterstützen, wurde eine Softwareapplikation entwickelt.
Diese stellt eine grafische Benutzeroberfläche zur Verfügung, die den Benutzer
durch die wesentlichen Schritte des Schätzprozesses führt. Nachdem der Benutzer
Roboterfunktionen und -komponenten ausgewählt und parametriert hat, errechnet
das Programm anhand der integrierten Modelle Kostenschätzungen einschließlich
Unsicherheitskorridoren. Als zusätzliche Orientierung werden dabei für jede
Komponente Parameterwerte basierend auf den vorangegangen Erhebungen
vorgeschlagen.

Der Ansatz wurde an zwei unterschiedlichen Datensätzen verifiziert. Zum einen

wurden für im Rahmen von EFFIROB entworfene Roboterskizzen Schätzungen

erstellt und von Experten mit bestehenden Kostenschätzungen verglichen und

beurteilt. Hierfür wurden fünf Szenarien für mögliche Serviceroboter ausgewählt

und jeweils mehrere Kostenaggregate mit Hilfe der vorgestellten Methodik

geschätzt. Die Ergebnisse wurden auf ihre relative Diskrepanz zu den Originalwerten

untersucht und auf Plausibilität geprüft, indem zu jedem Szenario ein Experte, der

v

die ursprüngliche Schätzung vorgenommen hatte, zur Qualität der neuen

Kostenprognose befragt wurde. Zum anderen wurde die Kostenschätzung für einen

gebauten Prototypen durchgeführt. Für den Vergleich ursprünglicher und neuer

Schätzungen sowie tatsächlicher Kosten wurde der Prototyp "Raser", ein

Serviceroboter für autonomes Rasenmähen, ausgewählt. Anhand der

Projektdokumentation konnten die ursprüngliche Kostenschätzung sowie die

tatsächlichen Kosten ermittelt werden und einer Schätzung gemäß der vorgestellten

Methodik gegenübergestellt werden. Für die Beurteilung der Ergebnisse wurde ein

Experte, der maßgeblich an der Entwicklung des Prototyps beteiligt war, befragt.

vi

Short summary

Early cost estimation is a common prerequisite for the profitability assessment of

the development of complex products. Thereby, the combination of numerous

technical and economic factors poses a particular challenge for system developers

when little more than the desired functionality of the product is known. In the field

of service robotics, this issue is acerbated by the lack of empirical values and

experience as the according technologies are comparatively novel.

The presented work proposes an approach which facilitates the estimation process

for various cost aggregates of service robot prototypes in early development phases.

To this end, typical components and functionalities are structurally mapped and

related to statistical cost models. Additionally, the presented approach offers the

possibility of unit cost estimation for small lot sizes.

Core elements of this work are the development of a design-structure-matrix for

service robots and the modeling of hardware and software costs. The structure

matrix determined by expert interviews typical maps robot functions to hardware

and software components, thus facilitating the derivation of essential prototype

parts from desired service robot skills.

The status quo is presented regarding current product development and cost

estimation methods as well as their application in the field of service robotics. In

addition to general practices of cost estimation, hardware and software specific

concepts are illustrated. Design techniques for new products are divided into

intuitive and structural methods and explained. The consideration of these methods

concludes with the examination of their application to service robot development

and possible improvements in this regard.

In order to develop a model for cost estimation of hardware components, essential

technical features and prices of typical components were identified via empirical

research. The preceding selection of examined component categories was based on

expert interviews, the analysis of finalized service robot projects and relevant

literature. Several cost models were developed for each category using semi-

parametric regression. The most suitable model was chosen from these based on

their quality according to statistical comparative measures.

vii

For software components, the approach applies the principle of analogy-based

estimation. Essentially, this approach estimates the effort required to implement a

specific software application by inferring it from the analogy to an existing and

functionally similar program. To this end, several hundred modules of the open

source software environment 'Robot Operating System' (ROS) by Willow Garage

were analyzed. After determining the extent of each module, i.e. number of lines of

code, it was converted into function points, another measure of software extent.

Using the latter in conjunction with productivity rates, required effort can be

estimated regardless of the employed programming language. The applied

conversion and productivity rates are based on heuristic data from software

development literature.

The presented approach also illustrates the calculation of a statistical cost

distribution for each cost model. In addition to single point estimations, the

distributions allow the computation of deviation and probability bands. The

advantage of this additional information is the facilitation of the assessment of the

fluctuation range and thus the provision of an indicator for estimation uncertainty.

In order to support the estimation process a software application was developed. It

features a graphical user interface guiding the user through the steps of the

estimation process. After the user has selected and parameterized the desired robot

functions and components, the program computes cost estimations including

uncertainty corridors based on the integrated cost models. For additional

orientation, the program proposes default parameter values for each component

based on the empirical research data.

The approach was verified using two different datasets. On the one hand,

estimations for robot prototypes outlined in the EFFIROB study were calculated

applying the proposed methodology and consecutively compared with the original

estimates and assessed by experts. To this end, five service robot scenarios were

selected and several cost aggregates estimated using the presented method. The

results were examined regarding their relative discrepancy to the original values.

Their quality and plausibility was gauged by interviewing experts who had

conducted the according original estimations. On the other hand, costs were also

estimated for a built prototype. For the comparison with the original estimate as

viii

well as the actual costs, the prototype 'Raser' was chosen, a service robot for lawn

mowing. The original cost estimation and actual costs were extracted from project

documentation and juxtaposed to the estimations according to the presented

approach. The results were critically reviewed by one of the developers involved in

the prototype's development.

ix

Table of Contents

1. Introduction .. 1

1.1. Problem .. 1

1.2. Motivation ... 3

1.3. Thesis Objectives .. 3

1.4. Thesis Outline ... 4

2. Preliminaries ... 6

2.1. Terminology ... 6

2.1.1. Service Robot ... 6

2.1.2. Skill ... 7

2.1.3. Component .. 8

2.1.4. Cost Types .. 9

2.1.5. Early development stages .. 10

2.2. General Assumptions ... 12

2.2.1. Manual Assembly/Small-series Production 12

2.2.2. Existing company ... 13

2.2.3. Prototypical Robot ... 13

2.2.4. Off-the-shelf Hardware Components ... 13

2.2.5. Component-based Software Development and Software Reuse 14

2.3. Estimator Requirements ... 14

2.3.1. Intuitive Application ... 14

2.3.2. Traceability of Estimation ... 15

2.3.3. Applicability.. 15

2.3.4. Uncertainty Assessment ... 16

3. State of the Art and Related Work .. 17

3.1. Cost Estimation .. 17

3.1.1. Basic Approaches ... 18

x

3.1.2. Hardware Cost Estimation .. 23

3.1.3. Software Cost Estimation ... 27

3.2. Product Design Methods .. 34

3.2.1. Intuitive Methods ... 35

3.2.2. Structured Methods ... 36

3.3. Method application to Service Robotics ... 40

4. Function-based Cost Estimation Approach .. 43

4.1. The Estimation Process .. 45

4.2. From Functions to Structure ... 49

4.3. From Structure to Cost ... 51

4.4. Data Collection and Processing Methods ... 52

4.4.1. Regression analysis .. 52

4.4.2. Static Code Analysis.. 60

4.4.3. Modeling estimation uncertainty ... 66

4.4.4. Expert opinion elicitation ... 71

5. Function-based Structure Estimation .. 74

5.1. System Definition ... 75

5.1.1. Domain Specification .. 75

5.1.2. Domain Elements ... 76

5.1.3. Structural Dependencies .. 90

5.2. Data Collection and Modeling .. 92

6. Component-based Cost Estimation ... 95

6.1. Component-based Estimation Cost Model ... 95

6.2. Component Costs ... 96

6.2.1. Hardware Component Costs .. 97

6.2.2. Software Component Costs .. 107

6.3. System Designing Costs .. 122

xi

6.3.1. Data Collection ... 122

6.3.2. System Designing Cost Model .. 124

6.4. Prototype Development Costs ... 126

6.5. Derivation of Unit Costs ... 127

7. The Software Tool SEROCOST .. 129

7.1. Aim ... 129

7.2. Features ... 129

7.3. Basic Architecture .. 133

8. Experimental Validation .. 134

8.1. Validation Methods .. 134

8.2. Comparison with EFFIROB Estimates .. 135

8.2.1. Assessment Method ... 136

8.2.2. EFFIROB Scenarios .. 141

8.3. Comparison with the Raser project .. 156

8.3.1. Assessment Method ... 157

8.3.2. The Raser lawn-mowing service robot ... 159

8.4. Evaluation Results and Interpretation .. 162

9. Conclusion... 168

9.1. Contributions ... 168

9.2. Discussion .. 169

9.3. Outlook .. 172

10. Appendices ... 173

10.1. Cost Types .. 173

10.1.1. Classification by Factor Consumption ... 173

10.1.2. Classification by Organizational Function 174

10.1.3. Classification by Allocation ... 177

10.1.4. Classification by Variability ... 180

xii

10.2. Software Package Development Effort Estimation:

 Value and Variance .. 182

10.3. Hardware Components .. 184

10.4. ROS Software Packages .. 186

10.5. Verification Scenarios Parameterizations ... 196

10.6. Scenario Questionnaires .. 213

Publication bibliography ... 220

xiii

Abbreviation Index

AD...

Axiomatic Design

AGV... automated guided vehicle

AIC...

Akaike's Information Criterion

BIC... Bayesian Information Criterion

BOM..

bill of materials

CBD...

Component-based

Development

CBS..

component breakdown

structure

CE..

cost estimate

COCOMO... Constructive Cost Model

DSM..

design structure matrix

EFFIROB...

Profitability Analysis of New

Service Robot Applications and

Their Relevance for Robotics

Development

FP..

function point(s)

GAM..

General Additive Model

GCV...

Generalized Cross-validation

GUI..

graphical user interface

HRI..

human-robot interaction

HW..

hardware

IPA...

Fraunhofer Institute for

Manufacturing and

Automatisation

LOC..

lines of code

OP...

.......

object point(s)

pdf...

probability distribution

function

PERT..

Program Evaluation and

Review Technique

PLT..

Programming Language Table

R&D...

research and development

ROS...

Robot Operating System

SEROCOST...

Service Robot Cost Estimation

Tool

SLIM..

Software Lifecycle

Management

SPR..

Software Productivity

Research LLC.

SW...

software

UFP..

unadjusted function points

US..

ultrasonic sensor

USD...

US Dollar

xiv

VDI.. Verein Deutscher Ingenieure

(Association of German

Engineers)
WBS... work breakdown structure

xv

Symbol Index

a... software project coefficient

(COCOMO)

AFP... adjusted function point(s)

AIC.. Akaike's Information Criterion

b... software project coefficient

(COCOMO)

BC... best case estimate

 .. best cast estimate for

software development cost

BIC.. Bayesian Information

Criterion

 .. aggregated hardware costs

 ... hardware administrative cost

per robot design

 ... aggregated hardware

installation cost

 ... hardware installation cost per

robot

 ... aggregated hardware labor

costs

 .. environment or technology

factor (SLIM)

 .. prototype costs

 ... development and designing

cost

 ...

software installation cost per

robot

 ... aggregated software

installation costs

 ... material cost of robot unit of

component instance i

D..

deviance

DDC.. development and designing

cost

 ...

working days per month

DoF...

degrees of freedom of model

(GCV)

DUC..

direct unit costs

E..

development effort

(COCOMO)

E(x).. expectancy value of x
e...

relative average estimation

error

GCV... generalized cross-validation

K.. development effort (SLIM)

 ... lines of code per function

point rate for language j

 ..

best case lines of code per

function point rate for

language j

 ... worst case lines of code per

function point rate for

language j

xvi

 ... lines of code of package i in

programming language j

MLC.. most likely estimate

MC.. manufacturing cost

N.. number of data samples

(GCV)

 .. number of component type

instances per robot

 ... number of components in

instance i

 ... number of manufactured

service robots

p.. number of parameters (AIC)

PUC... product unit costs

 .. coefficient of determination

 .. reuse ratio of package i

RSS... sum of squares of residuals

S... expected software size

(COCOMO)

 ... function point size of package

i's part coded in language j

 ... software size output in LOC

(SLIM)

TC.. total cost

 ... software delivery time (SLIM)

TDI... total degree of influence

 .. software development staff

time

.. software development staff

time for implementation of

new code for package i

.. software development staff

time for acquiring and

adapting reusable code for

package i

UFP... unadjusted function points

VAF...

value adjustment factor

VAR(x).. variance of x
 ... development rate for non-

reusable, custom code

 ... development rate for

reusable code

VIF..

variance inflation factor

 ... rate of acquisition and

adaptation of reusable code

WC.. worst case estimate

xvii

... worst case estimate for

software development cost
... software developer monthly

wage rate... engineer monthly wage rate
α.. system designing cost markup
β..

..

ratio of manufacturing cost to

total cost
γ... ratio of development and

designing cost to total cost
ε... estimation error
θ... parameter vector of

likelihood function
μ... mean value
σ... standard deviation

xviii

Figure Index

Figure 1.1-1 Influence on costs vs. incurrence of costs over product life-cycle .. 2

Figure 2.1-1 Care-O-bot 3 by Fraunhofer IPA ... 6

Figure 2.1-2 PR2 by Willow Garage .. 6

Figure 2.1-3 Camera example of the component terminology 9

Figure 2.1-4 System life-cycle model of systems engineering by Kossiakoff and

Sweet ... 10

Figure 2.1-5 Generic product development process by Ulrich and Eppinger 11

Figure 2.1-6 General procedure for development and construction according to

VDI 2221 .. 12

Figure 3.2-1 Schematic example of a morphological matrix 36

Figure 3.2-2 Exemplary intradomain matrix ... 38

Figure 3.2-3 Exemplary interdomain matrix ... 38

Figure 3.2-4 Mapping of design domains ... 38

Figure 3.2-5 Zigzagging decomposition in AD ... 39

Figure 4.1-1 From robot application to costs .. 45

Figure 4.1-2 Service robot cost estimation approach 48

Figure 4.4-1 General steps of regression analysis ... 53

Figure 4.4-2 Example of a Q-Q plot .. 59

Figure 4.4-3 Conceptual example of the cone of uncertainty 67

Figure 4.4-4 Exemplary beta distribution function ... 71

Figure 5-4.4-1 General structure management approach 74

Figure 5.1-1 Different categorizations of service robot skills 78

xix

Figure 5.2-1 Multiple-Domain Matrix ... 94

Figure 6.1-1 Cost structure of service robot prototype 96

Figure 6.2-1 Aggregation of hardware probability density functions 108

Figure 6.2-2 Distribution of package reuse ratios ... 114

Figure 6.3-1 Cost structure in the machine engineering industry 124

Figure 7.2-1 Step 1: Selecting tasks and component types 131

Figure 7.2-2 Step 2 Parameterization of components 131

Figure 7.2-3 Step 3 Overview of calculated estimates 132

Figure 7.3-1 Basic architecture of the software tool SEROCOST 133

Figure 8.2-1 Validation process based on EFFIROB comparison 136

Figure 8.2-2 Design sketch for care utensil service robot 142

Figure 8.2-3 Design sketch of ground-crop service robot 145

Figure 8.2-4 Design sketch of floor-cleaning service robot 149

Figure 8.2-5 Design sketch of container transporting service robot 151

Figure 8.2-6 Design sketch of service robot for interior finishing works 154

Figure 8.3-1 The functional Raser prototype .. 157

Figure 8.4-1 Cumulated responses for the EFFIROB estimation scenarios 162

Figure 8.4-2 Response values for the Raser scenario 164

Figure 8.4-3 Preferred cost aggregates .. 164

Figure 10.1-1 Porter Value Chain.. 175

Figure 10.1-2 Two-tier product cost object .. 178

xx

Table Index

Table 3.1-1 Comparison of search results for estimation related terms 18

Table 3.1-2 Factors influencing software development effort based on

COCOMO II ... 30

Table 3.1-3 Examples of software estimation programs 32

Table 3.1-4 Assessment of estimation methods ... 33

Table 3.3-1 Example of a bill of materials ... 42

Table 4.4-1 Examples of open source robotics software 63

Table 4.4-2 Comparison of robot software frameworks 64

Table 4.4-3 Excerpt from the Programming Language Table 65

Table 4.4-4 Estimation error for costs and efforts in software development

phases .. 68

Table 5.1-1 Service robot skills ... 79

Table 5.1-2 Hardware component types .. 82

Table 5.1-3 Software component types.. 87

Table 5.1-4 Dependency type designators ... 91

Table 5.1-5 Possible designator combinations ... 92

Table 6.2-1 Component-wise counts of technical parameters 100

Table 6.2-2 Component-wise sample sizes ... 101

Table 6.2-3 Comparison of hardware cost model performance 103

Table 6.2-4 Average function points per stack ... 111

Table 6.2-5 Team capability adjustment factors ... 112

Table 6.3-1 Mentions of research and development proportion of total costs123

xxi

Table 8.2-1 New estimates for cost constituents of the care utensil scenario 143

Table 8.2-2 Cost aggregate estimations for care utensil scenario 144

Table 8.2-3 New estimates for cost constituents of ground-crop harvest

scenario ... 146

Table 8.2-4 Cost aggregate estimations for ground-crop harvest scenario 147

Table 8.2-5 New estimates for cost constituents of floor cleaning scenario ... 149

Table 8.2-6 Cost aggregate estimations for floor cleaning scenario 150

Table 8.2-7 New estimates for cost constituents for hospital container transport

scenario ... 152

Table 8.2-8 Cost aggregate estimations for hospital container transport

scenario ... 153

Table 8.2-9 New estimates for cost constituents for interior works scenario . 155

Table 8.2-10 Cost aggregate estimations for interior works scenario 156

Table 8.3-1 Cost estimates for the Raser service robot 160

Table 8.3-2 Relative differences between new estimates and original values 161

Table 8.4-1 Median and average values of responses for the EFFIROB

estimation scenarios .. 163

Table 8.4-2 Overview of expert comments on the estimation approach 166

Table 10.3-1 Parameters of hardware component cost models 185

Table 10.4-1 ROS stacks and packages used for code sizing 196

Table 10.4-2 Excluded files ... 196

Table 10.5-1 Basic parameters ... 197

Table 10.5-2 Scenario-specific skills ... 197

Table 10.5-3 Scenario-specific hardware components 198

xxii

Table 10.5-4 Scenario-specific software components 199

Table 10.5-5 Ground harvester hardware parameters 200

Table 10.5-6 Ground harvester software selection .. 201

Table 10.5-7 Provisioning of care utensils hardware parameters 203

Table 10.5-8 Provisioning of care utensils software selection 204

Table 10.5-9 Container transport in hospitals hardware parameterization 205

Table 10.5-10 Container transport in hospitals software selection 206

Table 10.5-11 Floor cleaning hardware parameterization 207

Table 10.5-12 Floor cleaning software selection .. 208

Table 10.5-13 Assistance with interior finishing works hardware

parameterization ... 209

Table 10.5-14 Assistance with interior finishing workssoftware selection 210

Table 10.5-15 Raser lawn mowing hardware parameterization 211

Table 10.5-16 Raser lawn mowing software selection 212

1 Introduction

1

1. Introduction

The field of service robotics is a comparatively young area that is expected to

economically boom within the next decades into an economically significant multi-

billion Euro market (Hägele 2011, pp. ix–xi). For this to come true, the cost-

effectiveness of service robots must be assured. However, only few studies on

economic aspects of service robots have been published, most articles seem to

focus on technical feasibility and solutions.

The lack of cost consideration has led to many prototypical service robots that were

able to fulfill a certain purpose but prohibitively expensive (Prassler 2010). However,

if profit-oriented enterprises are to engage in this field they must be able to predict

the profitability of those undertakings that concern the development and marketing

of a service robot in order to make rational planning.

1.1. Problem

Estimating the development cost of a prototypical robot is difficult for several

reasons. Most technical cost estimation methods require more detail knowledge

than is available at early development stages thus basically reducing the appropriate

selection of methods to expert opinion and comparison to similar products if

possible. Also, service robots represent complex systems where the costs cannot

simply be reduced to material costs as is often the case for simple products like nails

or pencils; higher complexity entails an elevated development risk. Estimating the

efforts and costs for developing a service robot requires expertise not only in a

variety of technical fields such as electronics, systems engineering and software

development but also an understanding of costing concepts and risk management.

Furthermore, the estimator must be knowledgeable about feasible service robot

solutions and their possible mapping to complex tasks. Bridging these diverse fields

poses a significant challenge to single estimators. Furthermore, the cost of the

estimation itself must not be prohibitively expensive as that would lead to

abandonment of the attempt to predict project costs at all.

Often, the estimation of manufacturing costs is based on the hardware structure.

But nowadays, the software development has become equally as important for

1 Introduction

2

service robots as the study EFFIROB on profitability of innovative service robot

applications has shown; because service robots are complex systems the software

development costs are considerable (Hägele 2010, p. 337). This major cost block is

incurred in preproduction phases whereas the direct software costs (i.e. per unit

produced) in the manufacturing stage are negligible. Therefore the classical

definition of production costs falls short for a complex product and cost intensive

constituents of a system where hardware and software are equally important as it

does not capture the indirect cost incurred in the development stage.

The dilemma is exacerbated by the phenomenon that up to 90% of the life-cycle

costs are determined in planning and development phases although the majority of

the costs are incurred during production as depicted in Figure 1.1-1 (Ehrlenspiel

2007a, p. 11). This means that solid decision-making is highly important in early

phases in spite of bounded rationality; at the time detailed product knowledge is

available the possibilities of influencing costs will have decreased significantly.

Figure 1.1-1 Influence on costs vs. incurrence of costs over product life-cycle

1 Introduction

3

1.2. Motivation

Enterprises interested in serving the market for complex products as service robots

require means to predict the profitability of such engagements (Trivailo 2012,

pp. 2-5). Committing to the development of a service robot that is technically

feasible but economically not viable could result in profound financial losses

therefore early cost considerations are the developer's responsibility (Ehrlenspiel

2007a, p. 62). Ex ante cost estimation also becomes increasingly important for

research institutes aspiring to receive public funding; as an example the

substantiation of the profitability of proposed robot concepts was mandatory in a

recent call for proposals in the field of service robotics by the German Federal

Ministry for Research and Education (BMBF 2012). Cost estimates can also be used

for comparison of variants, recognition of cost reduction potentials, production

controlling or supplier cost examination i.e. they serve a variety of controlling and

management purposes.

Therefore, cost estimation methods and tools that are reliable and produce realistic

results on one hand and allow uncomplicated, quick and traceable estimates on the

other hand could provide substantial support to service robot experts. Porter states

that "an approach for reducing the complexity of the forecasting process is highly

desirable" in the context of developing competitive strategies in emerging markets

(Porter 2004, p. 234). Bridging the gap between the current lack of pragmatic

prognostic methodologies and applications in the field of service robotics contrasted

with the obvious benefits of sound cost estimation is the driving motivation behind

this thesis.

1.3. Thesis Objectives

The primary objective of this thesis is to provide support for cost estimation in early

planning and development stages of service robot prototypes. To this end, a

pragmatic methodology is presented drawing on statistical data and expert

knowledge formalized in cost models and structure matrices. The integration of the

approach in a software tool is aimed at allowing quick and flexible yet reliable cost

estimation when little more than the desired functionality of the service robot is

known. The further the project advances, the more accurate the estimates the tool

can deliver due to the increment in available information on the solution; the tool

1 Introduction

4

can thus be used as an accompanying project management tool. These estimates

can be used for decision making and assessments processes in product and project

management and controlling.

Estimating prototype costs with the methods proposed gives the estimator a more

comprehensive perspective on potential cost impacts of a specific service robot

concept because it creates the possibility of comparing and aligning the results with

estimates derived by different methods e.g. ad hoc expert opinion. It also provides

the possibility of quick comparison of alternative variants by simply changing the

selection of basic components which are used as an input to the cost estimation.

The approach approximates probability distribution of estimated costs thus allowing

the indication of estimation ranges. These cost corridors improve the assessment of

uncertainty inherent to the estimation as the additional information enables the

estimator to judge magnitude and probability of deviation from the estimated value.

A secondary objective pursued in the presented approach is the derivation of unit

costs for a specific service robot concept. To this end, various cost constituents

estimated for prototype development are combined to extrapolate two forms of

unit costs: direct unit costs i.e. costs that are incurred per robot manufactured and

product unit costs which are construed as the direct unit costs plus the costs of

development not attributable to an individual unit. One limitation of the presented

approach regarding this objective is that it can only be applied directly to small

number of produced units as economies of scale and mass production are not

considered here.

1.4. Thesis Outline

Chapter 2 Preliminaries introduces the required terminology used in the presented

work by giving definitions and explanations on essential service robot and cost

subjects. Furthermore, the general assumptions made in the scope of this thesis are

laid out. This chapter also points out the estimator's requirements concerning an

estimation approach.

In Chapter 3 State of the Art and Related Work current methods and applications of

cost estimation and product development are discussed. Moreover, their use in

relation to service robotics and respective shortcomings are indicated.

1 Introduction

5

Chapter 4 Function-based Cost Estimation Approach gives an overview of the

complete approach. The estimation process is outlined in several steps and the

methods for collecting data and constructing required dependency matrices and

cost models are explained.

Chapter 5 Function-based Structure Estimation details the categories used for

describing service robot functionality and structure. Furthermore, the combination

of these categories into a structure matrix is presented. The structure matrix is the

employed means to map the dependencies between components and serves the

derivation of an approximate robot structure.

In Chapter 6 Component-based Cost Estimation, the modeling of prototype costs is

explicated. These costs are based on the individual component cost models of the

service robot structure. Cost constituents are established and the pertinent cost

model derivations are formulated.

Chapter 7 The Software Tool SEROCOST presents the basic concept and features of

the software application that has been developed within the scope of this work for

direct and uncomplicated use of the proposed methodology.

Chapter 8 Experimental Validation explains the validity of the proposed cost

estimation; because the presented approach is not amenable to statistical validation

in a strict sense, use case estimations are computed and subsequently assessed by

individual experts. Consequently, findings on estimation suitability and usefulness

are discussed.

The thesis closes with Chapter 9 Conclusion. It contains a summary and discussion of

the contributions and an outlook on further extensions and potential improvements

of the presented approach.

2 Preliminaries

6

2. Preliminaries

This chapter serves the clarification of the scope of the presented work. Essential

terms and concepts are described, the general underlying assumptions explained

and objectives of primary addressees of the cost estimation approach outlined.

2.1. Terminology

2.1.1. Service Robot

A service robot is defined as "a robot [...] that performs useful tasks for humans or

equipment excluding industrial automation applications" (ISO 8373, p. 3); a robot is

an "actuated mechanism programmable in two or more axes [...] with a degree of

autonomy [...], moving within its environment, to perform intended tasks" (ibid., p.

2). The robots considered in this approach are ground-based mobile service robots

according these definitions. Although it is generally applicable to a wider range of

robots (or even engineering solutions outside of robotics for that matter) the high

exigencies for time and effort of data acquisition required for deriving cost functions

necessitate a focus on specific areas; against this background aerial and marine

platforms are beyond the scope of this work.

Figure 2.1-1 Care-O-bot 3 by Fraunhofer IPA

Figure 2.1-2 PR2 by Willow Garage

Further restrictions stem from limiting the parameter ranges of the considered

hardware components which are outlined in Chapter 2.1.3; effectively, these

constraints limit the considered service robot to small and medium-sized robots

2 Preliminaries

7

weighing no more than 650 kg.1 This restriction to this subset is deemed justifiable

as it covers the majority of service robots: in 2007, Piperidis et al. reported that only

27% of service robots weigh more than 10 kg (Piperidis 2007, p. 1). Popular

examples of medium-sized service robots like the Care-O-bot 3 (186 kg) by

Fraunhofer Institute for Manufacturing Engineering and Automation shown in Figure

2.1-1 or the PR2 (220 kg) by Willow Garage depicted in Figure 2.1-2 (Willow Garage

2009c) stay far below maximum theoretical weight considered in this approach.

Service robots interact with their environment which is why the term 'robot system'

sometimes includes the environment (e.g. Dalgaard 2010, pp. 10–13; Lindemann

2005, p. 10). In the scope of this work, 'system' refers only to the robot itself; the

environment is only considered insofar as structural components external to the

robot are absolute prerequisites for its functionality (s. Miscellaneous Environment

Hardware in Chapter 5.1.2.2).

2.1.2. Skill

At the time of writing this thesis, no general application or definition of the terms

'skill' existed but it has been used in combination and sometimes in distinction with

the terms 'function', 'skill', 'action', 'task', 'application', 'mission' and others (e.g.

Bischoff 2009, p. 7; Smits 2010, p. 6). For this reason, it is deemed to be of

importance to clarify the term's use in the scope of this work; it is not the intention

of the author to create a universally valid definition.

In this work, the term 'skill' is interpreted as a class of intermediate granularity that

comprises purpose-oriented activities frequently occurring in a service robot's mode

of operation, i.e. each skill could be decomposed into further sub-skills of a finer

granularity.

For a concrete service robot application area specific skills can be detailed. However,

the aim of the presented cost estimation approach is to cover a variety of service

robots which requires a certain degree of generalization. For this reason a skill is

defined here as a generic ability to deliver an expected functional performance. As

1The weight constraint stems from restricting the maximum weight of the platform to 350 kg and

its maximum payload capacity to 300 kg; s. Chapter 5.1.2.2.

2 Preliminaries

8

an example, the specific tasks 'cut wire of thickness x' or 'grind metallic surface'

require specific skills but can be subsumed under the generic skill 'process object'.

The list of skills developed in this work is not regarded as exhaustive rather than a

compilation of robotic abilities that are demanded of many service robots, based on

the experience of robot engineers and current literature on service robots (s.

Chapter 5.1.2.1).

2.1.3. Component

Components are the building blocks of a service robot. In the scope of this work,

these do not only comprise hardware i.e. physical equipment but also include

software components. Similar to the generalization issue described for skills,

abstract categories for components are essential to the approach being applicable

to a range of different service robot concepts. In the scope of this work, several

terms are used to clarify the level of concretization.

Component type is the most general expression applied in these considerations. A

component type represents a generic category of components which serves similar

technical purposes and characteristics and thus can be described by a common set

of parameters. In contrast, component as the most specific term describes an actual

element within a component type category specified by a determined set of values

for the component type parameters. As an example, all robot arms (component

type) are "interconnected sets of links [...] and powered joints [...]" (ISO 8373, p. 7)

and allow positioning of an end-effector within its working space but a variety of

implementations (components) differing in size, shape, number of degrees of

freedom etc. exists.

Furthermore, the term component instance is used which stands for an entire set of

identical components i.e. the determining parameter values of a component

instance are the determining parameter values of a specific component and

additionally the quantity of these components per robot unit. This term was

introduced to clarify the distinguishing between differently parameterized

components of the same component type category. Figure 2.1-3 illustrates the

component terminology with an example for cameras.

2 Preliminaries

9

Component level

Component instance level

Component type level Camera

Instance 1

frames per sec.: 32,

sensor diagonal: 0.3 '',

quantity: 2

Camera 1

frames per sec.:
32,

sensor diagonal:
0.3 ''

Camera 2

frames per sec.:
32,

sensor diagonal:
0.3 ''

Instance 2

frames per sec.: 90,

sensor diagonal: 0.5 '',

quantity: 1

Camera 3

frames per sec.:
90,

sensor diagonal:
0.5 ''

Each component type is assigned an individual cost model which permits the cost

estimation per cost instance using the respective parameter values as model input.

As these cost models have been determined by statistical regression analysis the

data required to build the models was collected beforehand. The dilemma in this

context is that the component types must be generic enough to fit a variety of

components but this abstraction complicates the selection of representative data

because it increases the size of the population to be surveyed. In order to improve

model accuracy and reducing the population size the ranges for component type

parameters were restricted within plausible ranges for the service robot types

considered. Examples are the maximum payload for robot arms which was set to 10

kg or platform maximum weight at 350 kg; detailed explanations of component-

related restrictions are given in Chapter 5.1.2.2.

Figure 2.1-3 Camera example of the component terminology

2.1.4. Cost Types

Costing theory offers a wide range of cost terms. From a business-oriented point of

view, costs are the consumption of goods and services incurred with the purpose of

creating products or services, evaluated in monetary terms (Coenenberg 2009, p.

24).

2 Preliminaries

10

Costs can be classified according to a number of characteristics depending on the

focus of the specific consideration (Coenenberg 2009, p.25, pp.57-95; Plinke 2000,

pp. 23–39). They are the dominant metric for planning and controlling the economic

success of an enterprise. Classifications of costs help to fairly assign costs to specific

business-oriented decisions according to the input involved – the principle of

causation – in order to assess the economic viability of the latter.

In this work the considered costs are classified by factor consumption i.e. labor and

material costs and by allocation unit i.e. costs per produced unit or costs incurred by

the product type. A detailed explanation of cost types is given in Appendix 10.1.

2.1.5. Early development stages

In order to clarify the classification of early product development stages at which

the estimation approach in this thesis is aimed, several current models of generic

development processes are outlined in the following section.

Kossiakoff and Sweet regard the product development process as an eight phase

system development life-cycle (Kossiakoff 2003, p. 52). The different phases can be

subsumed under the three main development stages concept development,

engineering development and post development as depicted in Figure 2.1-4 (ibid.;

also cf. Dalgaard 2010, pp. 94–98).

Figure 2.1-4 System life-cycle model of systems engineering by Kossiakoff and Sweet

The concept development stage relates to the first phases of product development

and is concerned with issues of principal requirements, feasibility and product

characteristics. The engineering development stage comprises phases of detailing

the product concept by identifying and analyzing remaining technical problems,

engineering component and subsystem solutions and incorporating them in a final

product. Post development consists of the production and related engineering

processes and after sales services and improvements. For each phase, applying an

iterative method of the four successive steps requirement analysis, functional

2 Preliminaries

11

definition, physical definition and design validation is suggested (Kossiakoff 2003,

pp. 69–70).

Ulrich and Eppinger propose a similar generic product development process

comprising the six phases as depicted in Figure 2.1-5 (Ulrich 2012, pp. 11–32).

Figure 2.1-5 Generic product development process by Ulrich and Eppinger

The first two stages represent early development activities where technical and

economical feasibility are focused. The following three phases concern the concrete

product design in a 'top-down-top' manner i.e. first the overall system design is

decided upon then the detailed solutions are developed and subsequently

integrated into one whole. The final phase of this model incorporates final

adjustments and production start. For each phase, executing a variety of activities

related to marketing, design, manufacturing and other functions is suggested (ibid.,

p. 14). As Dalgaard points out this model basically reveals the same structure as the

system life-cycle model by Kossiakoff and Sweet (Dalgaard 2010, p. 98).

The VDI guideline 2221 proposes a comparable general procedure for development

and construction which consists of seven steps structured in four overlapping

phases as displayed in Figure 2.1-6 (VDI-Richtlinie 2221, pp. 9–13).

The procedure starts with a task, i.e. an application the product to be designed is

aimed at. After establishing the customer's demands and related requirements in

the first step the overall product functionality is determined and decomposed into

subfunctions arranging them in a structured form. Subsequently, technical solutions

for these functions are investigated. These solutions are then organized in feasible

modules, i.e. they are mapped to real elements and groups vital for the

implementation and the interfaces between them are specified. In the next step the

essential concretization through detailed design of these significant modules takes

place. In the penultimate step of the procedure the partial designs are finalized and

integrated into the overall product design. Finally, the results of the product

development and construction are documented so that product implementation,

2 Preliminaries

12

features and usage can be used in successive processes, particularly in production.

The procedure is flexible because at any given step a backward or forward iteration

to other steps is possible; nevertheless, no step should be left out (ibid., p.9, p.11).

Figure 2.1-6 General procedure for development and construction according to VDI 2221

Although the VDI procedure does not directly address the production and post

production stage it bears profound similarities with the two other models presented

here. They all start at the refining of task requirements and functions, continue with

the search for solution ideas which are consequently decomposed into parts and

partial designs and finally integrated into one product.

In the scope of this thesis, early development stages are understood as those where

application, main functionalities and approximate structure of the service robot are

determined but no detailed design yet. This notion coincides with the first three

steps of each of the development process concepts described above.

2.2. General Assumptions

In order to guarantee the assessability of the estimation model’s quality the

underlying assumptions must be disclosed and justified. The estimation approach in

this work stands on the premises described in following paragraphs.

2.2.1. Manual Assembly/Small-series Production

The assembly of the robot units is executed in a small-series, manual fashion, i.e. no

assembly lines or other mass production means are employed. This is in line with

the fact that most service robots of today are produced in small numbers and mainly

assembled manually (Botthof 2011, p. 29). This assumption also entails that no

2 Preliminaries

13

explicit distinction between functional model and prototype development is made in

this work.2

2.2.2. Existing company

The assumption of an existing company entails the premise that the robot

development enterprise is not founded specifically for the purpose of the robot

project but is already in business (not necessarily in robotics) and thus does not

need to render capital investments in production facilities. This assumption also

signifies that the necessary manpower is already employed at the company;

variations in employment due to service robot development are not considered.

2.2.3. Prototypical Robot

The robot whose costs are to be estimated is assumed to be a prototype. This

assumption entails the exemption of series production issues (e.g. patent claims,

safety restrictions, etc.). There are several reasons for this assumption. Firstly, legal

matters tied to series production can form a major constituent but are largely locally

determined. Taking these complex and highly variable issues into account is beyond

the scope of this approach. Secondly, larger series production of a finalized product

offers many possibilities to drive down unit costs, e.g. using automated assembly

lines, buying materials in large quantities or redesign of components (Ehrlenspiel

2007a, pp. 153–159). The study of cost-efficient production is a separate field of

study. Implying its potential cost impacts requires complex models that could result

in inapplicability or at least being impractical for early cost estimation purposes.

2.2.4. Off-the-shelf Hardware Components

The hardware components used in the robot are assumed to be parts commercially

available on the market and no custom products, i.e. off-the-shelf (OTS)

components. This means that no costs for the development of individual hardware

components are considered, or that if parts are developed individually their costs

are similar to OTS components. The assumption is necessary because developing

separate cost models for prototypical components is beyond the scope of this

2For the possible distinction between functional model and prototype s. (Masing 2007, p. 500).

2 Preliminaries

14

thesis. The assumption appears to be justified by the current availability of

competing commercial products for each of the hardware component type

categories investigated; also, custom parts need to lie in a comparable price range in

order to be competitive.

2.2.5. Component-based Software Development and Software Reuse

Similar to the assumption of using available hardware technology it is assumed that

existing open-source robot software is reused and adapted rather than building the

software from scratch. Also, the software paradigm of component-based

development is implied which is an appropriate match for the modular structure of

robot systems and is considered the most viable approach to handling the involved

complexity (Brugali 2007, p. 13; Brugali 2009, pp. 84–96). This assumption entails

that no fundamental research is undertaken, i.e. cost for research isolated from

specific products or components is disregarded.

2.3. Estimator Requirements

The presented cost estimation approach and the pertinent software tool are aimed

at individuals who need to assess the economic viability or profitability of a service

robot as a planned product in early development stages e.g. robot scientists,

product engineers or project managers; in the scope of this work these are referred

to as estimating persons or estimators. For early phase cost estimation and the

corresponding cost models to be useful the key demands are that "they should be

acceptable to intuition and experience, should be simple and transparent with

traceable logic and ground rules, and have an applicable data base" (Meisl 1988, p.

100). This section details the requirements from the estimator's perspective and

how they are met.

2.3.1. Intuitive Application

The cost estimation process should be intuitive and fairly easy to apply. If the cost

estimation is too time-consuming and complicated it creates costs in itself which

increases the likelihood of the process being avoided altogether (Wierda 1988, p.

190). Intuitive use is particularly important for developers who are technical experts

and only have minimal exposure to cost issues because the solutions they design

determine a majority of the product's costs (ibid., pp. 189–190).

2 Preliminaries

15

In order to enable quick and comprehensible usage of the presented approach a

software application was implemented that allows use of estimation data and

models without forcing the estimator to research technical or economic details for

frequently used robot components. The software not only calculates cost estimates

for components but also provides suggestions for structural dependencies between

components and functions, thus supporting decisions on the robot's structural

design. Furthermore, default values are provided for every parameter and are based

on expert judgments, statistical analysis and further research of current technical

literature and software. Default values can be overridden by the user.

2.3.2. Traceability of Estimation

In order to render the estimation comprehensible the estimation process and its

results must be traceable for the estimator. For this reason, the development of

every cost model for the different cost constituent is explained and the results

displayed separately for each component as well as in aggregated form so that the

estimator can retrace the calculation.

The software tool also permits the adaptation of all cost parameters which enables

the estimator to calibrate cost results according to his experience and to conduct

sensitivity analyses thus fostering the estimator's understanding of the outcome.

2.3.3. Applicability

The data base of the structure and cost models must be applicable to the field of

interest i.e. the development of service robot prototypes. To this end, lists of typical

service robot skills and components were compiled and validated by robot experts

at the Fraunhofer Institute for Manufacturing Engineering and Automation (IPA).

These catalogs were deliberately designed to be of a generic nature so that the

individual items can accommodate a wider range of conceivable robot designs. In

order to avoid over-generalization the component configuration can be tuned to the

concrete design idea by adapting technical component parameter values like

weight, selection of software required etc.

The hardware and software component cost models are based on data research

specifically conducted within the field of service robotics i.e. the components that

2 Preliminaries

16

were chosen for analysis are currently used and integrated in working service

robots.

2.3.4. Uncertainty Assessment

All estimations are subject to uncertainty. As an early phase estimation has the

purpose of supporting development decisions it is important that the estimator be

able to assess the degree of uncertainty inherent to the estimation. Unfortunately,

the true accuracy can only be evaluated after the real costs are known so they can

be compared to the estimate i.e. from hindsight.

To permit the estimator assessing the level of vagueness, the presented approach

provides means to calculate not only single point estimates but also range estimates

which give the estimator information on the corridor of most likely costs; a wide

range indicates a high degree of uncertainty. This additional information improves

the estimation result by facilitating its interpretation.

3 State of the Art and Related Work

17

3. State of the Art and Related Work

The concept of cost estimation can be applied to a variety of projects. It is usually

part of the new product development (NPD) process and used to assess the

profitability of a product idea or to derive business plans, budgets and schedules

(Ehrlenspiel 2007a, p.62, pp.423-426). Against this background, different cost

estimation approaches are presented in this chapter. As the structure or design of

the product considered are central to cost estimation current methods of

determining product structure are also outlined.

3.1. Cost Estimation

This section exhibits general cost estimation categories that can be applied to all

kinds of costs e.g. project cost estimation where the estimation is extended beyond

the component costs to the costs incurred on a system-wide level, e.g. overall

design, administrative costs or management costs.

Furthermore, the most common approaches for hardware and software cost

estimation are presented. There are two reasons why hardware and software

components are treated separately:

1. The dimensionality of hardware versus software parameters are of different

natures: Whereas most hardware parameters are physical, e.g. size, weight,

forces, current etc. software cannot be described by such parameters as it is a

logical concept, not a physical object.

2. Whereas software costs consist mainly of labor cost, hardware costs are a

combination of material costs and labor costs. Thus, the different approaches

for the respective domain differ in their focus.

It is noteworthy that in comparison to hardware cost estimation software

estimation appears to be drawing more attention to researchers. Table 3.1-1 shows

the number of search results for strings related to cost estimation supporting this

impression.3

3Date of search: 06/06/2012

3 State of the Art and Related Work

18

 "hardware… "software…
Google Google

Scholar

IEEE

Xplore

Google Google

Scholar

IEEE

Xplore
…cost" 464,000 32,300 1,454 963,000 15,300 982
…cost

estimation"

26,200 96 3 136,000 5,500 887
…cost prediction" 1,840 5 1 9,350 84 0
…cost

engineering"

6 8 0 13,200 35 0
…development

effort"

62,600 191 2 133,000 6,530 121

Table 3.1-1 Comparison of search results for estimation related terms

Costs can also be viewed from the customer's perspective. The initial cost is the

price the user has to pay for the product and usually is higher than the

manufacturing costs; otherwise the selling company cannot be long-term profitable.

Demand-based cost estimation tries to answer the question "how much is the user

willing to pay for a specific product?" whereas the cost estimation in the presented

approach analyzes the cost of developing and manufacturing a certain kind of

product, namely service robots. Thus typical market-oriented approaches like target

costing, price-to-win, value analysis, preference matrix method or similar are not

considered in the scope of this work.

3.1.1. Basic Approaches

As there is a large variety of different approaches for cost estimation a

categorization of general methods facilitates understanding their advantages and

drawbacks although the distinction between these categories is fuzzy. The majority

of the approaches applied in practice are hybrid forms of the basic methods, e.g.

expert judgment can be used as the basis of a parametric mode; some type of

parametric model and work breakdown structure (WBS) or component breakdown

structure (CBS) can be identified in most of the practiced methodologies (cf.

Williams 1994, p. 4). These methods can be applied to the estimation of hardware

and software development as detailed below, but they can also be applied in a more

general fashion to estimate total project costs or those cost constituents that cannot

be related to a specific part of the development project e.g. project management.

The following are the most common categories of cost estimation approaches.

3 State of the Art and Related Work

19

Expert opinion or expert judgment is the elicitation of subjective opinions from

experts of the specific field. Their assessment is usually based on experience from

previous projects that bear similarity with the project to be estimated. This

approach is very common for early project effort estimation on a macroscopic level

(ibid., p. 2).

Cost estimation by expert opinion is the most common estimation approach and

offers several advantages (Molokken 2003, p. 39). Estimates can be very accurate if

the expert is knowledgeable; some studies reveal that expert estimates are not

inferior to other methods and can even outperform them in terms of accuracy

(Hughes 1996; Molokken 2003, p. 42). Furthermore, implicit expert knowledge often

is the only reliable source of data when documentation is scarce or fragmentary

which often is the case for new technologies. Another benefit of most expert

judgments is their low impact on project costs and quickness of delivery (Rush 2001,

p. 132).

The problems associated with expert estimation originate from its subjectivity.

Whereas good expert deliver accurate estimates, inexperienced ones may be far out

in their calculations. Expert estimations tend to be too optimistic (Jones 2007, p. 67).

With a large amplitude of estimation error it is difficult to assess an estimate's

quality. In the same vein it is hard to judge an expert's proficiency by other

measures than the success of his or her previous estimates.

The difficulties in assessing the estimate are associated with the lack of

systematization of the approach. The expert relies on his subjective and partly tacit

knowledge without disclosing every assumption he makes thus increasing the

probability of bias (Roy 2003, p. 3); given the problems of subjectivism, full

disclosure is either not possible (Polanyi 1985)4 or requires considerable knowledge

management efforts (Polanyi 1985; Nonaka 1995). This lack of structure reduces the

comprehensibility and verifiability of the estimate (Rush 2001, p. 132). A further

inconvenience of this lack in structure is its low reproducibility of results; different

4Polanyi hypothesizes that implicit knowledge can never be fully rendered explicit.

3 State of the Art and Related Work

20

expert make different assumptions and experts leaving a company cause drain of

estimation knowledge.

Parametric modeling, sometimes referred to as algorithmic modeling, implies the

derivation and use of mathematical equations and algorithms to estimate costs. The

model reflects the causality between certain input data, e.g. software size and

output data, the cost estimate. The central assumption is that a number of

important product features are the main cost drivers and thus determine the cost

function (CBET 1990, p. 36). It is based on knowledge from historical data, research

results and plausible assumptions where no data is available.

The model’s complexity usually depends on the complexity of the underlying

product. Simple linear models with only one input variable can be sufficiently

accurate for plain products, e.g. cost as a linear function of the weight for cog wheel

production estimation (Ehrlenspiel 2007a, pp. 432–433; Wierda 1988, pp. 190–191).

For complicated products like large software developments more sophisticated,

often non-linear models have been developed, e.g. Boehm’s Constructive Cost

Model COCOMO (CSE 2000).

Because parametric models are expressed by mathematical equations they

represent highly systemized approaches. The derivation of the model and the

underlying assumptions are usually documented thus rendering estimates

repeatable, verifiable and comprehensible due to their transparency (Roy 2003, pp.

4–5). However, if documentation is lacking or disclosed e.g. for proprietary

estimation models the validity of the model is hard to retrace (CBET 1990, p. 36).

The mathematical structure also allows the application of different statistical

measures which can facilitate the assessment of the estimation quality and its

degree of uncertainty. The model's accessibility to computation also permits

implementation of software tools enhancing and accelerating the estimation

process.

As most models contain a number of adjustment parameters they can be adapted to

different projects without major efforts. This renders parametric models flexible and

usable for repeated estimation.

3 State of the Art and Related Work

21

The main disadvantage of parametric modeling lies in the efforts necessary to create

the model. Whereas parametric estimation is fast once the model is available it

requires considerable amounts of research and resources to derive the underlying

equations. In order to construct a model historical data must be accessible from

which to extrapolate; if no data is available it must be acquired through costly

research activities. Also, the applied assumptions, e.g. if the model is additive or

multiplicative, linear or exponential, must be justified based on verifiable facts or at

least plausible rationalizations which necessitate further investigative efforts.

Another drawback of parametric models is their inapplicability to radically new

products and technologies. Although this issue applies to all estimation approaches

as they are all based on some form of previous experience it particularly weights

parametric models because the efforts put into creating a previous model are of

little value for the new estimate (ibid.).

Estimation by analogy, case-based reasoning or proxy-based estimation is the

comparison of similar previous projects to the object of estimation and is often

closely related to expert judgment. The closer the compared project's characteristics

are to each other the higher the quality of the estimation. This approach is often

combined with parametric models (Keung 2008). Analogy-based estimation can be

applied on product level or on component level in combination with the bottom-up

engineering approach (s. below). Analogy-based estimation can be fast, intuitive and

accurate if data on similar products is accessible to the estimator which often is the

case for enterprises with long-term experience in the respective field (Shepperd

1997, pp. 737–738; Shepperd 1996, p. 174).

The difficulties in using analogies for estimation purposes lies in the identification of

relevant differences between the new project and the analogy and in the

recognition of their impact on costs. Differences can arise from a multitude of

factors such as production facilities, material price fluctuations, personnel skills and

many more. If crucial differences are not identified the risk of the estimation being

overly biased is high and can lead to misleading conclusions. Furthermore, analogy-

based estimation techniques are not applicable if no proxy can be found to compare

the new project to, a common problem for novel technologies (Roy 2003, p. 9).

3 State of the Art and Related Work

22

Cost estimation approaches can also be separated into top-down and bottom-up

estimation methods. In top-down estimation the global properties of the product

are used to arrive at a single estimate which can be broken down to more detailed

levels, e.g. by dividing material costs from labor costs (Williams 1994, p. 2). Top-

down approaches lend themselves to early cost estimation when no detailed

information is available yet. Estimates can be fast but tend to be rather inaccurate

(CSSE 2002, Chapter 5).

Bottom-up estimation, also referred to as grass roots estimation describes

estimating processes starting at the component level with cost estimates for each

component or project activity and subsequent aggregation of the part estimates to

the overall estimate (ibid., Chapter 4). The estimation can be executed from a

project perspective concerning activity costs, from product perspective with focus

on components or in a combined form, depending on the aim of the estimate. These

estimations are based on a WBS or CBS. Such a breakdown structure is the

decomposition of the main project into its constituents to a determined level of

detail.

In general, the advantages of bottom-up approaches reflect the disadvantages of

top-down methods and vice versa. One advantage of the former is its potential for

high accuracy if a comprehensive WBS or CBS is available because estimates are

generated at a level of detail top-down approaches usually cannot deliver (Williams

1994, p. 2). A further effect of bottom-up aggregation of estimates is the averaging

of the random error i.e. the random error decreases (Ehrlenspiel 2007a, pp. 453–

456). The compilation of the breakdown structure also renders the cost estimate

transparent and comprehensible.

The downside of bottom-up estimating is that it is a more expensive approach than

top-down estimation because it requires detail knowledge to generate the

breakdown structure (Trivailo 2012, p. 8; Williams 1994, p. 2). Also, the information

necessary for a WBS or CBS is less likely to be available in very early development

stages, particularly if the degree of innovation of the product to be estimated is

high. Additionally, the risk of omitting crucial cost-driving elements remains, which

can reduce the accuracy of the estimate.

3 State of the Art and Related Work

23

3.1.2. Hardware Cost Estimation

Hardware costs can be interpreted in a narrower sense as material costs only or in a

wider sense as all hardware-related costs which also include labor costs e.g. for

assembly and installation. Accordingly, some cost estimation approaches focus on

material costs only whereas other take on a more holistic perspective.

Weight-based costing as one of the material-only approaches is one of the simpler

forms of parametric modeling in combination with analogy-based estimation: The

cost per produced unit is calculated as unit weight multiplied with a weight-cost

ratio derived from historical data or a product analogy. The ratio can be either

constant or degressive with increasing weight (Ehrlenspiel 2007a, pp. 432–433). This

cost estimation approach only yields reasonable results when the new product is

very similar in design to the analogy or historical data used and its approximate

weight is known. Also, it appears unlikely that the cost of a complicated product can

be reduced only to its weight. On the other hand, it is frequently used due to its

simplicity (Wierda 1988, p. 191; Roy 2003, p. 4).

Cost estimation by a material cost to manufacturing cost relation is a similar

approach to weight-based costing with the difference that instead of the product's

weight its direct material costs are considered as the basic parameter of the cost

function. The underlying assumption is that the relation of material costs to

manufacturing costs is constant for specific product groups (Wierda 1988, p. 191).

This approach can be used in conjunction with the bottom-up bill of materials

(BOM), a detailed list of the required materials and components for manufacturing a

product (Reid 2002, pp. 457–458; Sun 2007). Evidently, this is only feasible once the

product design has been decided upon and therefore the use of a BOM is not

suitable for early product development phases. Furthermore, this approach tends to

neglect labor costs.

Estimating costs via design equation combines technical and economic parameters

into one closed-form cost equation (Ehrlenspiel 2007a, pp. 434–435; VDI-Richtlinie

2225 Blatt 1; VDI-Richtlinie 2225 Blatt 4). Typically, this is realized by identifying a

number of product property variables and quantifying their cost impact, e.g. the

resolution of a camera or the energy output of an electric motor (Eversheim 1985, p.

417). The advantage of this approach is that it has the potential to capture relations

3 State of the Art and Related Work

24

between product characteristics and their impact on costs more precisely. Its major

disadvantage is the effort required to create adequate design equations. Each

product category requires a separate equation and thus the establishment of

techno-economic relations, search for and selection of crucial variables and

evaluation of the resulting cost function. For complex products, the design function

can be complicated and results difficult to convey (Wierda 1988, p. 191). Also, labor

costs are usually not considered.

A method to systematically derive and quantify relations between product

properties and costs is regression analysis of the considered variables, i.e. the

product property parameters. Regression can be linear, non-linear or a combination

of both (Ehrlenspiel 2007a, pp. 436–437). Regression analysis is a methodologically

sound and approved technique from the field of statistics. Thus it offers the

advantage of being highly systematic and less prone to user bias. It allows the

calculation of statistical measures which can be used to assess the uncertainty

inherent to the estimation. On the other hand, regression analysis relies on data and

assumptions made to be reliable and relevant; if this is not the case it can lead to

false relationships and erroneous conclusions (Cook 1982); (Roy 2003, p. 5). The

efforts of data acquisition and processing are extensive which renders the

application of this method costly and time-consuming.

Although it is often stated that expert judgment is a common tool in estimating the

costs for product development (Rush 2001, p.272, p.275) empirical studies on the

matter are sparse. Keeney states that expert assessments are basically inevitable

and "a judgment is initially required in determining that a problem is even worthy of

attention" (Keeney 1989, p. 83). The elicitation of expert opinions often represents

the only possibility to gather information in early development stages (Rowe 2002,

p. 125).

Delphi methods offer the possibility to reduce the effect of the aforementioned

disadvantages of individual judgments by combining the opinions of several experts

in a structured way. It is assumed that the estimates will converge after several

rounds of revising the experts' assessments (Rowe 1999). This method has been

employed for a multitude of application purposes and proven a valid approach to

forecasting (Linstone 1975). One major disadvantage of delphi approaches in

3 State of the Art and Related Work

25

contrast to other expert judgment elicitations is that they require a considerable

effort for the preparation of expert rounds.

Another form of statistics-based cost estimation is the use of neural networks. Their

main building blocks consist of layers of artificial neurons which represent functions

relating input and output data. The neurons are linked by so-called activation

functions defining the output of a neuron which is the input to neurons on the

successive layer; technical literature displays a multitude of different ways of

constructing a neural network (e.g. Lawrence 1994; Hertz 1991; Gurney 1997).

The benefits of neural networks are controversially discussed: Some authors claim

cost estimation via neural networks to outperform other forecasting methods (e.g.

Liu 2003; Li 2006) whereas others doubt that it is of practical use: "Although neural

nets do solve a few toy problems, their powers of computation are so limited that I

am surprised anyone takes them seriously as a general problem-solving tool"

(Dewdney 1998, p. 82). The main advantage of neural networks is their skill of

solution optimization through self-adaptation of the applied model and the handling

of very complex and non-linear data. The drawbacks are the large requirement for

computational power and expertise in the construction and training of the neural

network. Whereas the former is arguably abated to a certain degree by the

development of potent computers and the relative decline of related costs, the

latter represents a major impediment: not only does the complex process of

developing a neural network bind considerable manpower but it requires knowledge

which might not be available to every company. Furthermore, the results of an

estimation by neural network can be hard to interpret as the internal weighting and

connections of hidden neurons – the intermediate layers – are concealed from the

user (Ehrlenspiel 2007a, p. 442; Roy 2003, p. 8).

A range of integrated software solutions is available for hardware cost estimation

(Trivailo 2012). PRICE H and TruePlanning TrueH by PRICE Solutions and SEER-H by

Galorath Incorporated are comprehensive suites that rely on large databases filled

with data from projects and expert estimates and widely use parametric modeling

and product analogies. Although these applications stem from military and

aerospace background they are not restricted to these areas but can be applied to a

wide array of different industries (ibid., pp. 11–12). The Advanced Cost Estimating

3 State of the Art and Related Work

26

System (aces) by 4cost GmbH is a module of the 4cost suite allowing detailed

parametric cost estimation. In contrast to PRICE and SEER products it does not rely

on databases but on mathematical cost estimation functions derived from research

over many years (4cost 2012). These suites offer comfortable out-of-the-box

solutions but still require a lot of input data for fine-tuning and are thus less

adequate for early phase cost estimation (Trivailo 2012, p. 15). Also, they are not

free of charge thus incurring additional estimation costs.

Another category of tools available for hardware cost estimation is represented by

"government of the shelf (GOTS)" (ibid., p. 5) handbooks, notably originating from

U.S.A. aerospace and military programs. Although these are primarily designed for

the mentioned fields the underlying principles and general recommendations can be

applied to other areas with complex products such as robotics.

Some guidelines and norms primarily addressing cost accounting and cost planning

can also be applied to cost estimation. Financial reporting and management

accounting standards provide guidelines on how to assess the value of existing

products within the company. Planned costs are extrapolated from knowledge of

productivity ratios and unit costs gathered in earlier production periods of the

product (Plinke 2000, p. 161); from the product perspective this form of cost

estimation can be regarded as an analogy-based top-down approach. As traditional

cost planning requires detailed cost information it is best suited for mature products

and less appropriate for innovation development.

All of the mentioned methods are valid approaches for hardware cost estimation.

However, the different methodologies make it hard for the robot developer to

decide on the appropriate one and in contrast to more established industries like

aerospace or automotive there is no integrated suite of methods available for

service robotics. Thus, this work proposes a combination of regression analysis for

hardware material as well as expert opinion and analogy-based approach for labor

cost estimation. Regression analysis allows the estimation of material cost

distributions based on documented component characteristics and is unbiased by

subjective assessments. Since little information on labor costs is available in contrast

to well-documented hardware components (material) costs, the analogy-based

3 State of the Art and Related Work

27

approach falls back on experts' experiences in building prototypical service robots as

a grounded basis for estimation.

3.1.3. Software Cost Estimation

Expert judgment and analogy-based estimation techniques are the most widely used

method categories for software development cost estimation (Jorgensen 2007, p.

40). The methods within these categories range from estimates based on intuition

and experience over case study analogies to more formalized approaches like delphi

methods (Molokken 2003, p. 5; Jorgensen 2007, p. 39; Fink 2005, pp. 30–31).

The roots of the wideband delphi method lie in the research field of cost estimates

in software development (Boehm 1981). This method is widely used in the software

industry and has proven to be effective for software projects (Stellman 2006, p. 39;

Stochel 2011, p. 351). Although the wideband approach is supposed to increase

communication and interaction between the experts through additional moderated

meetings the terms "wideband delphi" and "delphi" seem to be used as synonyms.5

Thus the explanations of advantages and drawbacks given for hardware cost

estimation using delphi methods apply analogously.

A more recent approach to ameliorating bias effects by tapping into the knowledge

of several people at once is the wisdom of crowds approach. According to

Surowiecki this method improves estimation quality by reducing negative effects

like peer pressure and bias through dominant personalities in the expert group

(Surowiecki 2005). Its basic claim is that the behavior of a group can be described as

the behavior of a single entity potentially revealing higher intelligence than even the

smartest group member thus leading to better estimates. For this to become true

the expert group members forming the so-called 'wise crowd' must be

heterogeneous, independent, decentralized and have a means of coalescing their

opinions into one decision. Though the wisdom of crowd approach is not specifically

5Stellman and Greene state that "The Wideband Delphi estimation method was developed in the

1940s at the Rand Corporation" but the expression "wideband delphi" originated in (Boehm 1981)

which derives from the delphi method developed by the RAND corporation as a forecasting tool, s.

(RAND Corp. 2010) for numerous articles on the topic.

3 State of the Art and Related Work

28

aimed at cost estimation, Stochel reports this method to be superior to wideband

delphi cost estimates for software projects (Stochel 2011, p. 538). Similar to delphi

methods it is a more costly approach than single expert estimation because it

requires substantial efforts of preparation. Furthermore, it is difficult to assess if a

group of experts is a wise crowd or just an opinionated mob.

Analogy-based cost and effort estimation for software development is also a very

common method for software development cost estimation (Mair 2005, p. 510). It

has been found to be suited for early cost estimation phases when little detail

information is available. Some approaches use the algorithmic determination of

similarity measures to ensure comparability of analogon and estimation subject but

these measures are disputed and introduce further inconveniences to the

estimation process (Shepperd 1997, p. 738).

Although expert judgment and analogy-based estimation appear to be the most

favored choice in practice, companies sometimes require stronger formalization for

cost estimation. Yenduri et al. analyzed the results of a company's switching from

expert judgment to parametric modeling, reporting higher accuracy of estimates

after the change (Yenduri 2007). The majority of the more formalized approaches

focus on algorithmic models (Shepperd 1997, p. 736).

Most of the parametric models are based on software size measures (Boehm 2000;

Ma 2010, p. 1). The dominating metrics are lines of code (LOC), function points (FP),

and object points (OP); the derived values are subsequently translated into cost or

required effort quantifications (Leung 2002, pp. 309–311; Zia 2011, pp. 104–105).

Lines of code, delivered source instructions or source code statements can be

calculated by counting the lines of meaningful code and omitting non-functional

parts, e.g. comments or empty lines. The appropriate standard of what is to be

considered meaningful code must be defined before LOC counting (Nguyen 2007,

pp. 2–5; Kalb 1990-10-01).

The usage of LOC is a controversially discussed matter among software scientists

(Touesnard 2004, pp. 1–10). Major advantages of LOC counting are its intuitive

comprehensibility and easy automation of the counting process. On the other hand,

its explanatory power is limited because LOC depend on further variables like the

3 State of the Art and Related Work

29

code quality depending on the developers' experience, coding style, difference

between coding languages and many more.6

The function point metric was introduced by Allan Albrecht as an alternative to LOC

(Albrecht 1979; Albrecht 1983). It abstracts from physical code size which varies

greatly depending on the applied programming language by capturing the code's

functionality. The first step in function point analysis is to determine the number of

unadjusted function points (UFP) by classifying software functions into the

categories outputs, inputs, inquiries, internal files and external interfaces and

consequently weighting each function depending on its complexity (Glinz 2004, pp.

56–57). The second step is to calculate the adjusted function points (AFP) by using

the formula

 (3.1)
where VAF, the value adjustment factor is calculated by

 . . (3.2)
TDI stands for total degree of influence and can range from 0 to 70; it is derived by

summing impact weights from 0 to 5 for 14 different system characteristics (ibid., p.

57).

Different variations of the function point concept exist; as of 2012 there are five

recognized standards (Wikipedia 2006); also there are some extended versions like

feature points or full function points (Leung 2002, pp. 311–312). Advantages over

LOC are the metric's detachment from specific coding languages and focus on

software functionality instead mere physical size. One major drawback is that

function point analysis requires deeper understanding of the analyzed software than

LOC and thus must be executed manually by trained experts rendering the code

analysis more time-consuming and costly.

Object points estimation is the most recent of the mentioned metrics, the concept

was presented by Banker et al. in the early 1990s (Banker 1991). Object point

methods are based on an object-oriented software development perspective and

depart from traditional sequential programming paradigms; it is claimed that LOC

6Discussing LOC in depth is beyond the scope of this work. For a comparison of advantages and

downsides see e.g. (Sneed 2010, pp. 229–262; Wikipedia 2003).

3 State of the Art and Related Work

30

and FP metrics do not accommodate well the characteristics of object oriented

programming (Chidamber 1994, p. 477; Minkiewicz 1997, pp. 2–3). Object points are

calculated by counting program windows, reports, third generation language (3GL)

modules and rules and weighting them (Stensrud 1998, pp. 2–5). Object points are

similarly correlated with development effort as function points but are allegedly less

complicated to count which is why they are particularly suited for early design

phases (McConnell 2006, p. 86); nevertheless a basic idea of the software layout

must be available in order to calculate the object point estimate.

No matter which size metric is applied, parametric models are used to derive effort

estimates from software size, commonly expressed in person time and currency

units. Additionally, many models imply fine-tuning parameters varying in type and

number from model to model. Macro-adjustments aim at creating a single multiplier

based on adjustment parameters like skill level, programming tools and paradigm.

This factor is then applied to the overall project estimate (Jones 2007, p. 336).

Micro-adjustments also rely on different adjustment parameters but usually apply

each derived factor separately.

McConnell reports 21 adjustment factors used in Boehm's COCOMO II model with

impact ranges indicating the potential to decrease or increase development effort;

the ten factors with the highest impacts according to Boehm's research are listed in

Table 3.1-2 (McConnell 2006, p. 66). In a similar vein, Jones enumerates 25 similar

factors having potential impact on software productivity (Jones 2007, pp. 342–343).

Development Factor Potential effort

decrease, %

Potential effort

increase, %
Product complexity -27 74
Requirement analyst capability -29 42
Programmer capability -24 34
Time constraint 0 63
Personnel continuity -19 29
Multi-site development -22 22
Required software reliability -18 26
Extent of documentation

required

-19 23
Business area experience -19 22
Use of software tools -22 17

Table 3.1-2 Factors influencing software development effort based on COCOMO II

3 State of the Art and Related Work

31

Applying concrete, company-specific values for calibrating an estimation model can

significantly increase the estimation fidelity but the problem with most adjustment

factors is that they introduce a level of subjectivity, especially if the parameter

values are difficult to express quantitatively, e.g. programmer experience and thus

they can create a deceptive impression of accuracy (McConnell 2006, pp. 47–49).

Although a large number of cost models exist, many of them are proprietary and

thus cannot be assessed or compared (Boehm 2000, p. 178). However, a few

parametric models have been received with critical acclaim, Putnam's Software Life

Cycle Management (SLIM) model and the different versions of the already

mentioned Constructive Cost Model (COCOMO) by Boehm being among the most

popular (Leung 2002, pp. 314–315).

Central part of Putnam's model is the so-called software equation

(3.3)

where is the total software size output in LOC, the development effort in

person years, the software delivery time and the environment or technology

factor which can be derived from historical data (Putnam 1978, p. 355). The model is

derived from the Norden-Rayleigh curve describing manpower as a function of

project time and captures project manning changes over the lifecycle of a software

project. Originally aimed at estimating the size of software it can also be used for

effort and schedule estimation (Leung 2002, pp. 314–316). Although the model is

based on solid empirical evidence it has been observed that some of the

assumptions do not always hold in practice (Boehm 2000, p. 180).

The COCOMO models also have a power function as the basic regression formula at

the center of their concept:

 (3.4)
where is the development effort in person months, is the expected software size

in thousand lines of code (KLOC) and and are coefficients whose values are

derived for different types of software project characteristics (Leung 2002, p. 314).

The COCOMO family comprises different versions of Boehm's cost estimating model:

The first version COCOMO 81 was published 1981 and became one of most widely-

used parametric cost estimation models (Boehm 1981; Boehm 2000, p. 202). It is

3 State of the Art and Related Work

32

subdivided into basic, intermediate, detailed COCOMO, each suggesting different

values for the coefficients and .

As software development paradigms and processes changed significantly the model

grew less applicable to modern software projects which is why its creators realized

the need for an overhaul (CSSE 2011). The new version, dubbed COCOMO II, aims at

addressing issues like software reuse, object-oriented programming introducing

scale-factors for precedentedness, development flexibility, architecture and risk

resolution, team cohesion and process maturity. It is also subdivided into three parts

called Applications Composition, Early Design and Post-Architecture, each

addressing different stages of the development process. Although COCOMO II is

widely-used in practice critics expound the problems of high sensitivity and

requirement of concurrent approaches (Musilek 2002; Oriogun 1999, p. 61).

A wide range of software tools is available with many differences regarding their

characteristics. Some programs are free of charge for personal use; most are

marketed on a one-time or periodic fee basis. Furthermore, there are tools related

to one specific estimation method and those that cover a whole spectrum of

approaches. Another differentiation criterion is their degree of integration: some

tools are stand-alone programs and others can be integrated into software

management suites. Table 3.1-3 exhibits examples of estimation software along with

their characteristics classification.

Software Distributor Free

version

available

Method-

specific

Suite

integration

SEER-SEM Galorath No No Yes
4cost-aces 4cost No Yes Yes
QUEST ProjectExperts No No No
Construx

Estimate

Construx Software

Builders

Yes No No
COCOMO II University of

Southern California

(USC)

Yes Yes No

ArchANGEL Bournemouth

University

Yes Yes No

Table 3.1-3 Examples of software estimation programs

3 State of the Art and Related Work

33

SEER-SEM is a comprehensive suite of estimation methods and models, knowledge

bases and visual data representation possibilities; it is widely used in aerospace and

defense industries (CSSE 2002). 4cost-aces is a module based on parametric

estimation that does not rely on a knowledge database but on cost estimation

relationships developed by expert engineers (4cost 2012). SEER-SEM and 4cost-aces

are examples of larger management suites that go beyond software cost estimation

but also address issues of life cycle costs, hardware costs and project management

in general.

QUEST and Construx Estimate are both exemplary applications tailored specifically

for the estimation of software project efforts and support a variety of estimation

techniques (CSB 2012). Whereas QUEST appears to be relying more on

questionnaire techniques for elicitation of expert assessments, Construx Estimate

has a stronger focus on parametric estimation techniques.

COCOMO II and ArchANGEL are spin-offs from university research centers and can

be used free of charge. COCOMO II is based on the popular model of the same name

described above (CSSE 2011); ArchANGEL is the further development of ANGEL Plus

and is based on analogy estimation techniques (Shepperd 2002).

Each type of methodology has its advantages and drawbacks depicted in Table 3.1-4.

Reproducibility refers to how well similar results can be obtained if another expert

were to repeat the estimation process, traceability refers to how well the results can

be understood, interpreted and traced back, and the required expertise indicates

the necessary knowledge of estimation method and experience in estimating.

 Expert judgment Parametric

models

Analogy-based

estimation

Reproducibility Very low to high High Medium

Traceability Medium Medium High

Required

estimation

expertise

Low to medium High Medium

Table 3.1-4 Assessment of estimation methods

3 State of the Art and Related Work

34

The estimation quality of expert methods highly depends on the knowledge of the

estimating experts. If this inherent information is not rendered explicit the results

may lack reproducibility and traceability.

Parametric models yield reproducible and traceable results due to their high degree

of systematization. As they are based on long-term statistics and heuristics, the

models provide plausible estimation values. However, most parametric models

require in-depth knowledge from previous projects on model-relevant factors like

productivity or development time (as in SLIM estimation) for calibration. These

might not be readily available for a new product type like a service robot in contrast

to more established industries e.g. automotive or aerospace.

Analogy-based estimations permit a faster, arguably less accurate prognosis but also

require comparable software. The quality of the results strongly depends on the

comparability of the analogon used for comparison. As they tend to be less

systematized than parametric models the expert's bias may have stronger impact on

the estimation results.

In order to strike a reasonable compromise between estimation effort, usability and

accuracy this work proposes a combination of parametric and analogy-based

modeling. By referring to existing robot software as an analogy and using approved

development heuristics, the lack of data from previous projects is abated. The use of

language-specific productivity value permits more accurate estimations than a

purely LOC-based approach.

3.2. Product Design Methods

Although the designing process for a service robot is not the focus of this thesis at

least some notions of its principal design must be available in order to estimate the

costs of developing it. The structure of a complex product is its primary cost

determinant and depends on its purpose. Therefore, current methods of the

derivation of product structures from the intended product application are

presented in this section, i.e. the transition from functional requirements to the

product structure. The different methods can often be combined in the search for

product design ideas thus complementing each other.

3 State of the Art and Related Work

35

Product descriptions can vary in their degree of specification from rough product

sketch to minutely detailed designs. As the aim of the presented approach is

prototype cost estimation in early development stages only those methods that are

adequate for conceiving approximate product structures are presented here; detail

engineering usually takes place at later development phases.

3.2.1. Intuitive Methods

Intuitive methods for generating design ideas are commonly applied to problems

with imprecise structures, i.e. problems that cannot be solved by algorithms due to

their openness (VDI-Richtlinie 2221, p. 34). The related methods are usually group

creativity techniques aimed at finding innovative solution ideas. When applied to

the product design process in early planning and development phases these

methods are adequate for generating concept ideas without detailed engineering.

The most widely used intuitive method is Brainstorming (Hender 2001, p. 1). It is

usually set up in small groups of five to 15 people who ideally stem from different

disciplines with the aim of gathering as many ideas for solving a given problem as

possible (Ehrlenspiel 2007a, p. 60). The technique is based on two guiding principles,

namely the principle of deferred idea evaluation or judgment and the principle of

striving for large quantities of ideas (Osborn 1963, p. 124). The former means that

ideas are not assessed during the Brainstorming session in order to avoid group

pressure and inhibition, the latter postulates that a great amount of ideas increases

the probability of arriving at an excellent solution. Brainstorming is recommended

for development phases where structures of product functions and thereto related

solutions need to be generated (VDI-Richtlinie 2221, p. 34).

The 6-3-5 method developed by Rohrbach is a derivation of Brainstorming also

referred to as 'Brainwriting' (Rohrbach 1969). After communicating the problem to

group of six experts, each of these experts is to produce three problem related

ideas. The ideas are passed on to the next expert who elaborates on them. This

passing-on takes place five times so that every expert has worked on every idea.

This method is particularly suited for function and solution structuring but can also

be applied to detailing design solutions.

3 State of the Art and Related Work

36

Synectics is a technique that attempts to tap into subconscious thought processes by

addressing seemingly irrational or emotional aspects of a problem and connecting

different and apparently irrelevant elements (Gordon 1961, p. 3). Its core principle is

to "trust things that are alien, and alienate things that are trusted" (ibid.) i.e. the

detachment of known solutions and ways of thinking and embracing new

perspectives. This approach is implemented by finding analogies for technical

solutions to a given problem outside and consequently looking for possibilities to fit

these analogies to the original problem.

3.2.2. Structured Methods

Whereas the intuitive methods are very difficult to integrate into a systematically

computer-supported framework, the structured methods lend themselves more

readily to support by automated spreadsheets, matrix representations and similar

means due to their inherent systematization. As this allows the deployment of cost-

estimating software these methods are arguably more suitable to the presented

approach which aims at assisting and facilitating early phase cost estimation by

providing a structured knowledge framework.

The Morphological Analysis or General Morphological Analysis is a method that

attempts to investigate all possible solutions to a multi-dimensional non-

quantifiable complex problem in order to find the most adequate one by means of

comparison (Ritchey 1998, p. 1). The central concept is the use of a so-called

morphological matrix or Zwicky-Box (Ehrlenspiel 2007a, p. 61; Ritchey 1998, p. 3).

This matrix is constructed by setting different product aspects against each other

along usually two or three dimensions, e.g. by mapping required product

subfunctions to components as possible subsolutions or by mapping product

features to possible implementation forms as depicted in Figure 3.2-1 for the

schematic example of designing a lamp.

 Solution

1

Solution 2 Solution 3 …
Power

Supply

Battery Generator Photovoltaic …
Light

Intensity

High Medium Low …
Size Small Medium Large …

⋮ ⋮ ⋮ ⋮ ⋮

Figure 3.2-1 Schematic example of a morphological matrix

3 State of the Art and Related Work

37

After construction, the matrix is checked for internally consistent combinations in

order to reduce the set of theoretically possible configurations which is referred to

as "cross-consistency assessment" (Ritchey 1998, p. 6). The remaining arrangements

represent plausible solutions and can serve as a basis for initial product design

decision making e.g. by marking a preferred arrangement as indicated in Figure 3.2-1.

Morphological methods have been applied to a variety of problems and found to be

a useful approach to solution finding (Levin 2012).

Design structure matrices (DSM) can be used for modeling system and are

particularly well suited for decomposition and integration purposes (Browning 2001,

p. 292). The matrix approach can provide information on the relations between

different components of a system but the concept is not restricted to the

component domain; functions, processes, human resources adherent to the

development and production of a system can also be dimensions of a structure

matrix (Braun 2007; Browning 2001, p. 293). The dependency between domain

elements presented in row and column heads are marked in the matrix cells i.e. the

intersections of rows and columns. The dependency types allowed in the matrix cells

must be determined beforehand. Relations can exist within a domain and between

domains. The former are captured by intradomain matrices, the latter by

interdomain matrices; both can be aggregated in a so-called Multi-Domain Matrix

(Maurer 2008).

Intradomain matrices are square and also symmetric if only symmetric relations (the

cell entries) are allowed. The cells on the diagonal left blank; self-reflexive

dependencies could be noted there but this is atypical for the use of design

structure matrices (Maurer 2007, p. 77). Figure 3.2-2 exhibits an intradomain matrix

with a symmetrical relation between items A and B.

3 State of the Art and Related Work

38

 Domain 1

 A B C
D

o
m

ai
n

 1
 A - x

B x -

C -

Figure 3.2-2 Exemplary intradomain matrix

 Domain 2

 Φ Χ Ψ Ω

D
o

m
ai

n
 1

A x

B x

C

Figure 3.2-3 Exemplary interdomain matrix

Interdomain matrices are not symmetric as the number and type of items in row

and column heads can differ (s. Figure 3.2-3).

The planning matrix of the Quality Function Deployment (the 'roof ' of the House of

Quality) where customer requirements and product features are correlated is a

related concept and can be interpreted as a DSM, too (Browning 2001, p. 293;

Clausing 1994, pp. 94–96).

Axiomatic Design (AD) is a systematic method aimed at rendering design processes

more creative and efficient at the same time by providing rational thought

processes and tools (Suh 2001, p. 5). The basic idea is to map different four domains

of the designing process in a successive. The transitional mapping between the four

domains is depicted in Figure 3.2-4 (ibid., p. 11).

Figure 3.2-4 Mapping of design domains

The customer domain describes the desired features of a product from the

customer's perspective; in the functional domain these descriptions are translated

into functional requirements and constraints. The physical domain comprises the

design parameters with which the requirements are to be met. The process

concerns the producing process and the pertinent variables (ibid., p. 10).

3 State of the Art and Related Work

39

Figure 3.2-5 Zigzagging decomposition in AD

The main focus of the approach lies on the functional and physical domain and the

mapping between them. In order to proceed systematically two axioms are applied.

The independence axioms postulates functional requirements to be formulated as a

minimum set of independent requirements i.e. decoupling of the product functions

and subsequently mapping each one of them to a design parameter (ibid., pp. 16–

17). Top-down decomposition of the functional requirement and the respective

mapping of design parameters – a process dubbed 'Zigzagging' by its creator – leads

to more a detailed product structure; an example is depicted in Figure 3.2-5 (ibid.,

pp. 29–32). The information axiom stipulates that the design with the least

information content be chosen i.e. the simplest design fulfilling the requirements;

however, most of the applications of AD focus on the first axiom (Kulak 2010, pp.

6707–6710).

As a conclusion it can be stated that most of the systematic approaches to

determining a product structure are based on matching desired product

functionality to product features and top-down structure decomposition. This

commonality appears logical and reasonable because little more than the product's

3 State of the Art and Related Work

40

purpose is known at the initial phase of the development process and a sensible

product design must be aligned with the pertinent requirements.

3.3. Method application to Service Robotics

Although a variety of suitable methods is available for systematic cost estimation

only few of them have been applied to the field of service robotics as of 2012.

Noticeably, the majority of mentions of cost aspects within the context of service

robots relate to low-cost designs where 'low-cost' is employed in relatively vague

terms. However, many claims of such a design are not substantiated by any cost

data; in most cases where cost data is given no attempt is made to estimate the

costs of a service robot before construction but the resulting material costs are

listed with hindsight. A possible explanation for the marginal treatment of cost

issues could be that most of the works mentioning costs in relation to service robots

focus stronger on technical than economic innovations, e.g. the usage of superior

algorithms in order to compensate for inferior i.e. 'low-cost' sensor performance.

Shue et al. describe the construction of a "low cost semi-autonomous sentry robot"

and refer to the usage of low cost components as the means to reduce costs but

give no detail on any incurred costs (Shue 2012). Psarros et al. present "the design

and development of a semi-autonomous low-cost underwater service robot" using

conventional materials and components but provide no cost data whatsoever

(Psarros 2009). Similarly, Zhou et al. illustrate the "design and implementation of [a]

low-cost service robot" and justify the expression with the usage of standardized

and inexpensive components; however only total acquisition costs are given without

indication of their composition (Zhou 2010). Han et al. discuss "an efficient and low-

cost robot grasping system" and report to have reduced the pertinent cost by using

less accurate and less inexpensive components but only total costs are stated and

compared with price estimates for selected robots, e.g. Willow Garage's PR2 (Han

2011).

A number of publications with a more detailed treatise of costs can be classified as

bill of materials (BOM) approaches where costs are implicitly defined as the costs of

the physical components of the robot. Mundhenk et al. describe a "low cost, high

performance robot design utilizing off-the-shelf parts" and list the costs for the

3 State of the Art and Related Work

41

components of a prototypical robot as depicted in Table 3.3-1 (Mundhenk 2003, p.

296).

Although software design is outlined no resulting costs for its development are

mentioned. Likewise, Wolfe et al. outline the development of "a low-cost

independently-mobile reconfigurable modular robot" and indicate the detailed

component costs (Wolfe 2012). Labor costs are explicitly excluded. Piperidis et al.

present "a low cost modular robot vehicle design" and specify a price lower than

1,000 € as the target price for a simple educational and research robot (Piperidis

2007). Only material costs are detailed for the estimation of the robot price;

software development is addressed without reference to the resulting costs.

Another example of low costs being claimed on basis of component costs is the "low

cost indoor mobile robot localization system" by Lopez et al. where the costs for

localization device and marker tags are stated but no further elaboration of

development costs is given (Lopez 2011).

The existing software effort estimation techniques are applicable to the service

robot software as it is subject to the same basic principles of software design.

However, cost estimation for service robot software development is neglected in

the aforementioned approaches and appears to be disregarded in general. Although

the importance of software development within the field of service robotics has

become evident only few explicit considerations of the adherent costs have been

made (e.g. Kim 2005; Kim 2009). Kang et al. point out that virtual prototyping can

significantly reduce development costs but limit themselves to this claim without

further elaboration (Kang 2005).

The profitability study for innovative service robot concepts (EFFIROB) is explicitly

aimed at estimating life cycle costs for service robots from the user's perspective

(Hägele 2010, pp. 46–64). The scope of this study comprises methods for the

estimation of both hardware and software costs. Hardware cost estimates are point

estimates and based on component costs which is why this method can be classified

as a simplified BOM approach.7 The individual component costs for a selected range

7Simplified because only the main components are considered as no detail design was available.

3 State of the Art and Related Work

42

of component categories are listed in a component catalogue. Software costs are

given as point estimates based on code size of those ROS stacks which the

estimating expert deemed comparable to expected software development;

consequently, this estimation method is analogy-based. Although the point

estimating methods yield no information on the likelihood of the estimate or the

margin of error the EFFIROB exhibits the most encompassing cost estimating

framework for service robots so far.

Part Quantity Cost per unit

(USD)

Total Cost

(USD)

Rocky 3742 Motherboard 2 500 1,000
512 Mb Memory (PC 133) 2 36 72
Flashram (256 Mb) 2 47 94
Unibrain Fire-I Camera 1 100 100
Notebook Hard Drive (40 GB) 2 107 214
Traxxas E-Maxx 1 369 369
1 GHz Pentium III CPU 4 92 368
SONY NP-F960 7.2 V 38.8 Wh

Battery

8 129 1,032
Power Supply (TI Power

Trends + Parts)
1 100 100

Extra Parts, misc 1 200 500
TOTAL 3,849

Table 3.3-1 Example of a bill of materials

In this light, it is deemed necessary to compile a comprehensive and specific

methodology for early cost estimation in order to facilitate the development of cost-

efficient service robots. The approach thus proposed in this work is presented in the

following chapter.

4 Function-based Cost Estimation Approach

43

4. Function-based Cost Estimation Approach

Regarding the areas of hardware cost estimation and software cost estimation

separately, a variety of theoretically applicable methods are available as outlined in

Chapter 3. Although these methods have been applied in a wide array of industries,

only very few comprehensive cost assessments can be observed in the field of

service robotics. Studies addressing service robot cost issues often focus on material

or hardware component costs for low-cost solutions; software costs seem to be

widely neglected. Additionally, most of these approaches analyze costs from the

retrospective and thus cannot be regarded as estimation methods.

In terms of holistic approaches that try to estimate both hardware and software

costs the lack of integrative methodologies applied to service robots is even more

evident: The only study that addresses both aspects in relation to service robotics

within a cost estimating framework is EFFIROB.

While the EFFIROB study poses a valuable contribution, the approach applied

therein has several shortcomings:

1. The cost estimates for service robots considered are point estimates i.e. single

values. However, point estimates do not convey any information on the

uncertainty of the estimation or its margin of deviation. Range or corridor

estimates, however, permit the intuitive assessment of uncertainty by the

width of the pertinent interval – large intervals reveal a higher probability of

error.

2. The hardware component costs provided are based on singular expert

judgment. In addition to the problem that these are point estimates there is

no consideration of cost variation as a function of different component

parameters e.g. weight, payload etc.

3. There is no systematic link between desired functions and the related

selection of components which renders the hardware configuration subjective

to personal preferences and may lead to neglecting possible alternative

design solutions.

4. The software cost estimation is based on an average reuse ratio and does not

account for different reuse ratios among software components. This leads to

strong bias especially for software parts which only require installation but no

4 Function-based Cost Estimation Approach

44

modification. Additionally, the basis of the software analogy, ROS, has

undergone substantial changes since 2009 which suggest an updating of the

estimation basis i.e. the code sizes of ROS components.

On the other hand, the general procedural method of decomposing a robot's

functionality, mapping the corresponding functions to hardware and software

components and aggregating resultant costs is a valid and expedient approach

which is corroborated by the fact that the German Federal Ministry of Education and

Research declared profitability analyses based on the EFFIROB approach as

compulsory for service robot related project proposals (BMBF 2012).

Therefore, this work uses the EFFIROB study as a methodological starting point and

extends it in several ways as to eliminate or ameliorate mentioned shortcomings.

These enhancements comprise the following methods:

1. Structural decomposition is realized with structure matrices derived in

dialogue with service robot experts and current classifications of robot

functionalities. The relations thus captured permit systematic mapping of

robot functionality to hardware and software components and provide the

estimating person with suggestions for least requirements as well as possible

enhancement and substitution possibilities

2. Hardware component costs are estimated by parametric cost models based

on regression analysis thus avoiding subjectivity.

3. Software costs are estimated using an analogy-based approach. Data on the

chosen analogy, the Electric Emys8 release of the Robot Operating System by

Willow Garage, is extracted by analyzing package-wise code size and reuse

ratios of 469 packages in 89 stacks.

8As of April 2012.

4 Function-based Cost Estimation Approach

45

4. For all cost constituents, uncertainty is indicated by estimating probability

density functions and thereby determining range estimates. Unknown

underlying shapes of probability density functions are modeled using the

three-point estimation technique from Program Evaluation and Review

Technique (PERT). This technique is considered a best practice approach for

addressing cost uncertainty (Galway 2007, p. 9).

5. By applying established costing theories different cost types are considered.

The parallel utilization of direct costing and burdened costing grants a more

comprehensive perspective on the costs estimated.

6. In order to facilitate the estimation process a flexible and extendible software

application is implemented which integrates the different cost models and

provides the estimating person with default values for parameterization and

numerous possibilities to enter individual values.

4.1. The Estimation Process

The aim of the presented approach is to enable the robot developer to arrive at a

reasonable cost estimate for a prototype from an initial point at which an

approximate idea of the desired functionalities is available but no detailed design of

the system. By following a sequence of software-supported steps the estimation

process can be facilitated and accelerates as the requirement for substantial

background knowledge on behalf of the estimating person is substantially eased. An

overview of the three main steps is given in Figure 4.1-1.

Figure 4.1-1 From robot application to costs

These steps can also be interpreted as traversing several conceptual domains of

robot design similar to Suh's axiomatic design domain model (s. Chapter 3.2.2).

The estimation process starts with deriving required specific functions or skills from

the known application purpose i.e. the developers have to decide what actions the

robot is supposed to perform. The estimator must map these specific functions to

4 Function-based Cost Estimation Approach

46

the generic skills used in the presented approach (s. Chapter 5.1.2.1) if the software

tool is to derive suggestions for a conceptual technological structure from skill

requirements. Alternatively, the estimator can also directly indicate components

that make up the robot structure. Finally, the costs for the robot's development

based on the structure of the previous step are estimated using heuristic cost

functions. Figure 4.1-2 illustrates the cost estimation process as it is supported by the

implemented software tool functionality (s. Chapter 7).

Initially, the developer of the robot must decide what actions the robot should

perform, i.e. the specific robot application must be known. Once the purpose of the

robot is decided upon, the application is broken down into tasks which directly

correspond to specific functions.9 This can be achieved by applying various creativity

techniques (s. Chapter 3.2.1). Since the number of possible applications and specific

function combinations is virtually infinite structured methods are deemed less

adequate at this stage which is why the estimation software tool does not support

this step.

The specific skills must then be mapped to the ones suggested in the skills catalog of

the presented approach. These skills represent a non-exhaustive, generic set of

typical robotics skills that can be found in most service robots (s. Chapter 5.1.2.1 for

details on skills). Depending on the desired functionality the estimator selects those

skills demanded of the robot as the input to the derivation of the technological

structure. The transition from specific to generic robot skills is the entry point for

the usage of the implemented software tool and marked by the dashed horizontal

line in Figure 4.1-2.

From the selection of skills the set of necessary hardware and software components

can be deduced by using knowledge on structural dependencies between these

categories. These dependencies are extracted from the database where this

knowledge based on expert information has been stored a priori (s. Chapter 5.2).

After checking for interconnections, two separate lists of hardware and software

components are presented to the estimator. Each of these lists contains suggestions

9An application represents a general field of work, tasks are more specific duties within this field,

s. (ISO 8373, p. 17).

4 Function-based Cost Estimation Approach

47

for components required and potential substitutes as well as components that can

enhance the robot's performance. The effect of relating items of the categories

skills, hardware component and software components via stored structural

dependencies is supporting the estimator's task of creating an approximate robot

design on which cost estimates can be based. Also, potential alternative solutions

and possibilities for variants are indicated.

4 Function-based Cost Estimation Approach

48

Figure 4.1-2 Service robot cost estimation approach

4 Function-based Cost Estimation Approach

49

The selection of components serves as the base of cost estimation for the robot as

each component has been assigned a specific cost function of its main cost driving

parameters which are stored in the database along with typical average values of

these parameters. By modifying the parameter values the estimate is fitted to the

concrete robot solution without forcing the estimating person to develop individual

cost models. The database also holds default parameter values in order to provide

orientation to the estimating person in case no information on the specific

parameter is available; if the default settings are used the averaging problem applies

i.e. averages are usually not as exact as detail specifications for a concrete product

or component. These defaults are based on expert knowledge and statistics on

current market data.

In addition to component specific costs the costs of the system designing process

which are not tied directly to components but rather the robot development on the

whole are estimated by employing a proportional cost model.

Aggregating the previously calculated cost constituents, the cost estimate for the

prototypical development of the robot is calculated based on the selections,

pertinent cost models and additional input from the estimating person. In addition

to prototype costs, direct and burdened unit costs are also derived.

4.2. From Functions to Structure

It is the declared aim of the presented work to facilitate the estimation of costs for

robot development with only an early concept of the robot's desired behavior at

hand. In order to avoid the necessity for detailed engineering in early concept

phases generic knowledge on structural relations between skills and components -

the main constituents of a service robot design in this approach - must be made

available to the estimating person.

As developing service robots is a complex field of overlapping disciplines the

extensiveness of knowledge required for the pertinent activities is vast. For

knowledge essential to the estimation of the respective development costs to be

systematically applicable it must be structured. In its structured form it can be

rendered available to computer-aided processing thus formalizing and facilitating

the estimation process. Structural knowledge in the context of the presented

4 Function-based Cost Estimation Approach

50

approach is the knowledge about interdependencies between parts of and their

relation to the overall structure, i.e. the service robot.

 The determination of a product's structure i.e. product design engineering is a

discipline of its own and cannot be covered to its full extent in the scope of this

thesis.10 The objective is not the derivation of detailed design or the qualitative

assessment of a structure but to arrive at an information level where main cost-

driving blocks can be identified.

The typical approach to modeling a complex system is to

1. decompose the system into subsystems,

2. analyze the (internal) relationships between subsystems, and

3. analyze the (external) relationships with its environment (Browning 2001, p.

292).

The decomposition of a complex system and its internal and external relations must

be restricted to a level of granularity that is sufficient for the purpose at hand as the

coverage of all details is too overwhelming or even counter-productive for human

individuals and probably not feasible in early design phases (Maurer 2006; Maurer

2007, pp. 69–71; Browning 2001, p. 302). The differentiation between system and

its environment also requires "choosing an arbitrary boundary for the system of

interest" (Browning 2001, p. 292). The operating environment can be considered

part of the system (e.g. Dalgaard 2010, pp. 10–13); however, in the context of the

presented work the robot system is restricted to the mobile unit as outlined in

Chapter 2.1.1.

Matrix-based approaches are among the most commonly used techniques for

structuring knowledge on complex systems and relations (Maurer 2007, pp. 53–54;

Browning 2002, pp. 429–430). Because they are well-suited for the illustration of

dependencies between components and also complementary to computer

processing matrices are used in the presented work for deriving a component-based

10For a detailed discussion of product engineering cf. e.g. (Lindemann 2005; Kossiakoff 2003).

4 Function-based Cost Estimation Approach

51

architecture (Browning 2001, p. 292). Details on the structure matrix layout used in

this work are presented in Chapter 5.

4.3. From Structure to Cost

With the help of structure matrices the user can determine what kind of

components are required for the planned service robot but in order to derive cost

estimates more information on the details of the component format are necessary.

For this reason cost models are developed for each component category. Parameter

values can be declared for each component thus refining the cost estimate; the

overall costs for prototype and robot units are calculated as different aggregates of

the component cost estimates plus the cost estimate for system design activities i.e.

costs which cannot be attributed to a single component but rather the system as a

whole. The latter cost constituent is modeled based on average industry data and

several assumptions as data availability concerning this particular type of costs is

sparse.

Hardware component material costs are based on regression models derived from

technical data and prices of components currently available on the market. For each

component, up to three main cost driving parameters are identified by comparing

different regression models. Labor costs are considered based on average

installation effort per component as indicated by robot experts and administrative

efforts tied to each component instance.

The cost estimation for software components follows a different approach because

there are no software suites that can be used in service robots without major

adaptation and thus the dominant cost constituent is the development effort for

robot software. These expenses are estimated by analyzing current robot software –

the software analogy – related to each software component category and inferring

development effort from their size and reusability. Heuristic values for development

productivity are based on literature and expert opinions. By selecting packages from

the analyzed software analogy that relate to the software component types of the

structure matrix the software estimation can be refined to the specific planned

service robot.

4 Function-based Cost Estimation Approach

52

4.4. Data Collection and Processing Methods

The knowledge on service robot structures as described in this chapter must be

based on data systematically retrieved and verified – the grey areas in Figure 4.1-2

mark those elements of the approach that required individual research. As different

types of data needed to be acquired different methods were applied to collecting

data for the construction of cost models. The general methods and their

combination aimed at converting data into knowledge supporting cost estimation

are described in this section; results of the data collection and the integration into

cost models are presented in the respective section of Chapter 5 and Chapter 6.

The basic techniques employed in this work are regression analysis (hardware

components), static code analysis (software components) and expert opinion

elicitation (structural dependencies, validation). Research in third-party databases

and technical literature provided additional information on average burden cost.

These techniques were combined in order to create a service robotics knowledge

database for early phase cost estimation. The application of each method is detailed

in the following sections.

Obviously, the adequate values for an accurate estimate will vary from company to

company depending on its individual situation. A typical example of such

discrepancies is the wage rate of engineers and software developers: a company

located in the People's Republic of China is subject to different wage structures than

a European enterprise. To compensate for these issues the software tool supporting

the estimation approach in this work allows the user overriding of any default

parameter value. Some types of information are more difficult to survey than

others; in the case where no or too little information is available the collected and

derived values of the presented work provide the estimator with default values for

component parameters thus offering support for quick estimates in early

development stages.

4.4.1. Regression analysis

The presented approach applies regression analysis for the development of cost

models for hardware components. The steps required for this method – data

collection, modeling, model selection and adaptation, model validation and

4 Function-based Cost Estimation Approach

53

assessment – are described in the following subsections. The general procedure of

regression analysis is depicted in Figure 4.4-1 (Backhaus 1996, p. 8).

4.4.1.1. Data Collection

As data constitutes the starting point for the regression analysis it has to be

collected first. To this aim, sampling of hardware component data is used. Sampling

is the selection of units from a collectivity to be studied, the basic population. The

selected units must be representative of the basic population in order to allow

significant deduction of information on the properties of the domain examined

(Sachs 2002, p. 99).

Figure 4.4-1 General steps of regression analysis

Sampling is used to retrieve information on the typical parameters for each

hardware component category and their impact on prices. As the categories are

designed to be collective terms the underlying basic population is not known. The

collection and analysis of the entirety of elements belonging to each category would

require massive market research efforts beyond the scope of the presented work.

Therefore, the sampling approach is deemed a justified alternative.

4 Function-based Cost Estimation Approach

54

A problem of the basic population being unknown consists in the impossibility to

prove the representativeness of the samples selected. Thus representativeness of

the samples selected can only be assumed. However, the selected units were cross-

checked with experience from practical use in service robot development at the

Fraunhofer IPA to ensure a sufficient degree of relevance.

For each hardware component category a list of specific component parameters was

aggregated from a presample of five to ten products pertaining to the category.

These product characteristics were then filtered for product relevance (is the

feature important for the product's functionality?), number of mentions (threshold

60%) and statistical evaluability (nominal features were excluded) in order to

determine the potential input variables for the cost model. Subsequently, the

parameter values for the selected characteristics and single unit prices were

sampled for a larger number of products.

4.4.1.2. Modeling

After the collection of data, the regression model must be formulated i.e. the input

variables for the model have to be determined. The objective of this step is to create

a model with a minimum set of independent variables x1, ..., xn that reflects the

influence of the real influencing factors on the dependent variable y (the component

cost) as correctly and completely as possible.

Given that little information is available at early product development phases it is

essential to reduce the number of estimation input parameters i.e. independent

variables: the more input data the estimating person is expected to collect in order

to perform an estimation the higher the probability that the estimation will be

foregone. Also, collecting and editing large amounts of data for the development of

the estimation models significantly increases the cost and time of the estimation

process as well as those of the model development. On the other hand, improper

and exaggerated reduction leads to loss in estimation quality. Thus, a compromise

must be found between usability of the estimation model, model construction effort

and estimation accuracy.

4 Function-based Cost Estimation Approach

55

4.4.1.3. Model selection and adaptation

In order to estimate the hardware component cost a functional relation between

the technical parameters identified in the previous step and the cost must be

established. The general form of such a function is

 (4.1)
where is the dependent variable cost, are the independent k variables

for the technical parameters and is the estimation error. is the cost component

not explained by the model (Fahrmeir 2009, p. 19).

The most common regression model type is the linear regression model of the form

 (4.2)
which assume a linear relationship between independent and dependent variables.

Another central assumption of linear regression is that the error term is normally

distributed around the expected value 0. The coefficients are often

estimated using the method of least squares on a dataset of at least k+1

observations. The major problem that can arise when applying linear regression is

that the estimation error can be very large if the underlying data does not reveal a

linear relationship i.e. the linearity assumption can be too restrictive.

Non-parametric models attenuate this issue by postulating solely a continuous and

smooth regression function without assuming a simple linear form (ibid., p. 41). The

original values are fitted to a smoothed curve using smoothing kernels, splines or

wavelets to satisfy this condition. This permits a more exact mapping of relationship

between independent and dependent variables at the price of increased

computational effort and more difficult interpretation (Fox 2000, p. 2). In

unrestricted non-parametric regression the expected value of the dependent

variable under given independent variable values can be modeled as

 (4.3)

The assumptions concerning the estimation error remain the same.

Because a large variety of different non-parametric models exist a detailed

description is foregone here.11 The presented approach employs the generalized

11For a detailed description of different non-parametric models see (Fahrmeir 2009, pp. 297–398).

4 Function-based Cost Estimation Approach

56

additive model (GAM). An additive model can be formulated as the sum of smooth

functions for the independent variables

 (4.4)

i.e. instead of using one function for all independent variables a function is

determined for each variable separately. This renders the model more restrictive

than the general form but is more flexible than linear regression which is why it can

be regarded as a fair compromise between accuracy and modeling effort (Fox 2005,

p. 116).

The cost estimation models were calculated using the sample data and the gam

module from the R mgcv library (RDCT 2012, pp. 2631–2820). To find the most

adequate model, backwards selection was conducted i.e. for each component

category a complete model with all independent variables chosen for data collection

was constructed and subsequently reduced models were developed by removing

independent variables. Furthermore a linear model was calculated using the R lm

module of the stats library. In order to select the most adequate model based on an

assessment of its predictive quality the complete model, reduced models and the

linear model were compared applying several statistical measures.

The coefficient of determination R2 is a measure for how well future outcomes are

likely to be predicted by the constructed model. It indicates the proportion of

explained variance by the model and is defined as

 ;
(4.5)

where is the i-th estimated value out of n estimations, the observed mean of

the respective n observations and is the value of the i-th observation. is the

residual or estimation error of the i-th estimation i.e. the unexplained variation of

the model. values close to 1 indicate a good fit of the data whereas close to 0

indicate an inadequate fit. Nevertheless, the informative value of the coefficient of

determination is limited as it does not indicate if the model was specified correctly.

Also, does not show possible correlations between the independent variables

(Fahrmeir 2009, p. 99). Thus the coefficient of determination is only interpreted in

conjunction with further indicators.

4 Function-based Cost Estimation Approach

57

Akaike's Information Criterion (AIC) is a common criterion for model selection

(Fahrmeir 2009, p. 161; Acquah 2010). It indicates the fitness of a model and also

accounts for model complexity including a penalizing term for the number of model

parameters. It is defined as

 (4.6)

where is the parameter vector with those values yielding the maximum of the

likelihood function for the estimated model; is the number of parameters of the

model. The information criterion can only be used in comparison with other models;

a single AIC value does not reveal anything about the model. Comparing AIC values

the model with the smaller AIC value is preferred.

Because the AIC has a systematical bias towards models with a larger number of

parameters for increasing sampling sizes, another information criterion countering

this effect was considered in the model selection. The Bayesian Information

Criterion (BIC), defined as

 (4.7)
allows the reduction of mentioned bias by incorporating the sampling size in the

calculation. As with the AIC, smaller values for the BIC indicate a superior model.

Cross-validation is another method for assessing a model's predictive quality. The

observation data is partitioned into two subsets: one for the estimation of the

model – the training data – and the other for validating the model i.e. examining

how well the model predicts the dependent variable values of the second subset. A

large discrepancy in the fit between training data and validation data indicates

overfitting of the model to the training data. For the purposes the presented work

the generalized cross-validation of the R gam algorithm was used which is defined as

(4.8)

where is the deviance, the number of data and the degrees of freedom of

the model (RDCT 2012, p. 2660);12 the smaller the value of the GCV the better the fit

of the model.

12For a detailed discussion of the GCV criterion see e.g. (Golub 1979).

4 Function-based Cost Estimation Approach

58

The partial F-test can be used to evaluate a model's performance in comparison to

the complete model. This is realized by trying to disprove the null hypothesis that

the complete model does not offer a significantly better fit of data than the reduced

model given a specific level of significance i.e. that their variance is the same. The

value is calculated as

(4.9)

where and are the sums of the squares of residuals of the

reduced and complete model, respectively, and are the number

of parameters of the models and is the number of data points. If the calculated p-

value of is below the significance level the null hypothesis is rejected. In this

work, was set to 0.05.

The relative average estimation error can also be employed as another model

quality criterion. It is calculated as

 (4.10)

where is the estimated and the observed value of the i-th sample and is the

number of observations. As is calculated from observed values it has limited

informational value on the general estimating quality of the model; an overfitted

model in particular with small can still be of poor quality for predicting random

values. However, if used in conjunction with further model evaluation techniques

this measure can serve as another quality indicator.

Depending on the results of the comparison applying all of the described measures

the most adequate cost model was selected for each hardware component

category.

4.4.1.4. Model Validation

In order to validate the chosen model the fulfillment of its basic assumptions must

be verified. The advantage of a non-parametric model in this context is that linearity

is not assumed and thus need not be proven. Apart from the cross-validation

4 Function-based Cost Estimation Approach

59

already mentioned in the previous section several validity checks were conducted

for each model.

The independent variables were examined for multicollinearity i.e. the degree of

their linear dependency was determined. Multicollinearity is to be avoided as it

renders a model more sensitive to variation of the correlated input parameters and

thus introduces bias. The variance inflation factor is a measure for collinearity and is

defined as

(4.11)

where is the index of the j-th input variable of the model and
 is the coefficient

of determination of the regression equation

(4.12)

i.e. the VIF is calculated for each input variable. If the VIF is larger than 10 the

multicollinearity of the variable is considered high (Neter 1989, p. 409; for a critical

review cf. O'Brien 2007).

Figure 4.4-2 Example of a Q-Q plot

The sample data was also manually checked for outliers. Possible outliers in the

input data were scrutinized for plausible explanations and excluded from the data if

found to be abnormal. The exclusion of these values reduces the number of

available data for model estimation but renders the resulting model more robust

and is thus deemed justifiable for the purpose of early cost estimation.

The assumption of the residuals being normally distributed was examined using Q-Q

plots which show the probability distributions of the normal distribution quantiles

4 Function-based Cost Estimation Approach

60

compared with the normalized residual quantiles; an example is depicted in Figure

4.4-2 (adopted from Schönberg 2012, p. 134).

4.4.2. Static Code Analysis

Static code analysis is the analysis of software code without executing the code, i.e.

it is the analysis of code structure. In the scope of the presented work it was

employed to extract the size of relevant code packages as one of the crucial

software component parameters in order to attribute software development

efforts.

4.4.2.1. Code selection

Because the estimation of the presented approach takes place at an early

development stage software implementation for the service robot project has

probably not started yet; consequently, no or little code will be available for direct

analysis. In order to derive estimates comparisons with existing software for similar

projects i.e. service robot related implementations can serve as a plausible

estimation basis.

Costs of software development depend on copious software project attributes

including code complexity and size, user requirements, team skills, development

methods and many more (Jones 2007, p. 24). More often than not, these

parameters are unknown or only fuzzily specified in early development phases; a

circumstance that renders the prognosis of necessary development efforts a

daunting task.

Ideally, all relevant parameters of the analogy are identical to those of the robot

software in development i.e. application area, complexity, experience of the

development team, development tools, etc., in which case the development effort

would be expected to be exactly the same. Usually, differences between separate

software projects are common but comparing two similar projects still yields a

reliable estimate of the development effort to be expected (Shepperd 1997). For

this reason, an analogy-based approach was chosen for the presented estimation

methodology in order to estimate the impact of software development on the

overall costs. This entails analyzing comparable existing robot software – henceforth

software analogy – in regard to its development effort and mapping the identified

4 Function-based Cost Estimation Approach

61

effort quantifications to the specific robot system of which costs are to be

estimated.

With experience from similar software projects at hand parallels can be drawn

between required development efforts. If the estimator holds knowledge of

incurred costs from past project she or he can extrapolate towards the new venture

and thus achieve early cost estimation. Unfortunately, this approach does not lend

itself to pioneering development areas where the development team has little or no

prior experience and no information about efforts and costs to be expected.

The way out of this predicament is to find a suitable software analogy. A prospective

software analogy has to meet certain general selection criteria (Shepperd 1997, pp.

737–739; Shepperd 1996, p. 171):

1. Source code must be available for code analysis, as otherwise derivations

concerning software size and effort are impossible due to non-disclosure issues.

This condition is per definition met by open-source software.

2. Software must be functionally related, i.e. built for same or similar principles of

operation, otherwise the chosen software is no appropriate analogy.

3. Software development paradigms underlying the analogy’s design must be the

same or similar as the paradigms for the planned software because the

underlying paradigm has a strong influence on the software development

productivity. Thus only comparisons between projects under similar

development conditions yield sensible results.

4. The analogy's software quality should meet verifiable standard requirement so

that the comparison also holds information on the quality level to be expected

for a given development effort estimation.

Furthermore, as the presented approach shall cover a wide spectrum of robots and

not one specific type a suitable software analogy must allow for flexible selection of

necessary software packages and omission of irrelevant ones which can be

formulated as two specific selection criteria:

4 Function-based Cost Estimation Approach

62

5. The granularity of its modules should be equal or higher than the software

categorization in Chapter 5.1.2.3 while covering all of the therein described

functionalities in order to permit a more detailed customization of software

components.

6. The software analogy must be aimed at software reuse, i.e. its components

should be designed for being deployed in different robots with minimal effort.

Name Description
Carnegie Mellon Robot Navigation

Toolkit CARMEN (CARMEN-Team

2009)

Basic robot control and robot simulator

Coupled-Layer Architecture for

Robotic Autonomy CLARAty by Jet

Propulsion Laboratory (JPL 2008)

Domain-specific robotics software

Fawkes distributed by Japan's

National Institute of Advanced

Industrial Science and Technology

(FDT 2009)

Component-based software framework

for robotic applications; robotics

technology middleware
Urbi by Gostai Technologies

(Gostai 2012)

Components framework for robots and

complex systems in general

Player project (The Player Project) Robot framework, simulator and

visualization Open Robot Control Software

Orocos (The Orocos Project 2012)

Framework for component-based robot

control software

Orca (Orca Robotics 2009) Robot framework with focus on ease of

use, originally based on Orocos

Mission Oriented Operating Suite

MOOS (OMRG 2008)

Cross platform middleware for robotics

research

Mobile Robot Programming

Toolkit (MPRT 2012)

Library collection with focus on efficiency

and reusability

Open Mobile Robot Architecture

OpenMORA (OpenMORA 2012)

Complete robot architecture based on

MOOS and MRPT

Robot Operating System ROS by

Willow Garage (Willow Garage

2009b)

comprehensive framework or "meta-

operating system" for robots; reusable

design Dave's Robotic Operating System

(Austin 2009)

Basic software modules for modular

programming and mobile robots

http://claraty.jpl.nasa.gov/
http://en.wikipedia.org/wiki/JPL
http://en.wikipedia.org/wiki/JPL
http://www.orocos.org/
http://orca-robotics.sourceforge.net/
http://www.robots.ox.ac.uk/~pnewman/TheMOOS/index.html
http://dros.org/

4 Function-based Cost Estimation Approach

63

OpenJAUS (OpenJAUS 2012) Software library and SDK implementing

the Joint Architecture for Unmanned

Systems (JAUS) protocol RI-JAUS SDK by Jaybridge Robotics

(Jaybridge Robotics 2012)

Cross-platform software development kit

implementing the JAUS protocol for

robot control Open Platform for Robotic Services

OPRoS (OPRoS WIKI 2011)

Component based framework, GUI

editors and simulator

Yet Another Robot Platform YARP

(Fitzpatrick 2012)

Robot control SDK for flexible hardware

interfacing and peer-to-peer

communication OpenRAVE (Diankov 2012) Environment for testing, developing, and

deploying motion planning algorithms in

robotics applications

Table 4.4-1 Examples of open source robotics software

As of 2012, many different frameworks and tools for service robots exist. For the

purposes of the presented approach, only open source projects were considered

due to the necessity of access to the source code. Table 4.4-1 gives a non-exhaustive

overview of available open source robot frameworks and tools as of July 2012 (cf.

Niemueller 2010; Wikipedia 2009).

As the number of available frameworks is too extensive for an all-encompassing

comparison the selection of an adequate software analogy is restricted in the

presented approach to one framework, the Robot Operating System (ROS) by

Willow Garage. The selection of ROS does not imply its superiority over other

robotics frameworks; most of the mentioned frameworks appear to be suitable

candidates, too. All of the above frameworks meet the requirement of open source

code and functional relation to robotics. Many of them also meet the requirements

of reusability and component-based design. The reasons why ROS was selected are:

1. Verifiable quality standards: The release of packages must adhere to a defined

policy that postulates prerelease testing to assure operability and compatibility

with other stacks (Willow Garage 2010).

2. High interoperability: There is no hard separation between frameworks as they

often can be used in combination or have interfaces to each other.13 Many of

13Orocos developer policy even strongly encourages combining efforts, s. (The Orocos Project).

http://www.openjaus.com/
http://www.repinvariant.com/products/
http://en.wikipedia.org/wiki/JAUS
http://210.115.36.127/doku.php
http://210.115.36.127/doku.php

4 Function-based Cost Estimation Approach

64

the mentioned frameworks offer ROS interfaces and ROS is committed to

integrability: "ROS is easy to integrate with other robot software frameworks"

(Willow Garage 2009d).

3. Fine granularity: ROS offers a file system with different levels of granularity with

several hundreds of stacks and even more packages. This fineness permits

component-based software estimation on a detailed level.

4. Wide-spread usage: As of 2012, ROS has been integrated into a variety of

heterogeneous mobile robot systems, e.g. PR2 by Willow Garage, Care-O-bot 3

by Fraunhofer IPA, Robotic Busboy by Intel Research's Personal Robotics

project, TurtleBot and Husky A200 by Clearpath Robotics and many more.

Table 4.4-2 exhibits a comparison of selected frameworks regarding these aspects,

'n.d.' stands for not documented i.e. no description has been found in the respective

project's documentation.

Project Open

source

Component-

based dev.

Quality

control

Module

granularity

Reusable

design

ROS inter-

operability

ROS    fine  -

Orocos   n.d. medium  

URBI   n.d. medium  

OPRoS   n.d. medium  n.d.

Table 4.4-2 Comparison of robot software frameworks

Nevertheless, the analysis of several robot software frameworks is deemed highly

desirable and expected to provide additional insight for the analysis of software

development efforts in this area but is beyond the scope of this work.

4.4.2.2. Code sizing

In order to infer efforts estimates for the software development labor the code size

must be measured. The most common metrics, lines of code (LOC) and function

points (FP) were both combined in the presented approach by applying the so-called

backfiring method. Backfiring is a technique developed by Capers Jones allowing the

translation of source code statements in a specific programming language into

adjusted function points (Jones 1995). This approach allows extracting function

4 Function-based Cost Estimation Approach

65

points by LOC counting and subsequent extrapolation of FP using heuristic, coding

language specific conversion rates.14

Usually, the ascertainment of function points is carried out manually by a function

point expert which renders the process laborious and expensive. Backfiring allows

the mathematical derivation of function points from lines of code but also with less

accuracy. This is possible due to the apparent correlation between source code size

and function points depending on the programming language used. Statistical data

as a result of research into real-world software projects has been gathered by

specialized enterprises like the SPR company over the last three decades yielding

probability values for the ratio of source code statements to function points for

more than 500 programming languages.

The cost estimation for software of the approach in the present work relies on the

Programming Language Table (PLT), Version 2007d (SPR 2007).15 This compilation

provides statistical mean, lowest, highest and median source code statement to

function point ratios for each programming language. Table 4.4-3 shows an excerpt of

the table (adopted from ibid., p. 2).

LOC per function point

Language Name Low () Mean () High()

CLOUT 25.7 40.0 84.9

CMS2 98.4 106.7 116.5

CMSGEN 14.2 18.8 27.3

COBOL 98.4 106.7 116.5

COBOL .Net 35.8 71.1 190.6

Table 4.4-3 Excerpt from the Programming Language Table

The data collected, i.e. the numbers for LOC counted for the selected packages

permits the calculation of a corridor of the approximate amount of function points

14Jones points out that only logical source code statements can be used for this method. The LOC

used in this thesis thus exclude comments and empty lines.

15The function points are based on IFPUG standard 4.1.

4 Function-based Cost Estimation Approach

66

for a given code. The expected size of software package is determined by the

sum of the lines of code of each package divided by the appropriate lines of

code to function point ratio for the respective programming language taken

from the PLT16.

(4.13)

 (4.14)

The expected worst and best case size values were also calculated in the same way

as but with the respective conversion rate and which are also

provided by the PLT.17 These values allow the calculation of corridors for software

sizes instead of single point estimates.

4.4.3. Modeling estimation uncertainty

Estimates are always subject to uncertainty, particularly in early product phases. Its

major source is the lack of detailed knowledge or definition of the final product; the

more details on design, environment and mission parameters are set the lower the

uncertainty level will be. This phenomenon is referred to as the "cone of

uncertainty" (Meisl 1988, pp. 95–100); (McConnell 2006, pp. 35–37); (Stösser 1999).

Figure 4.4-3 depicts a version of this cone where the estimation baseline increases

over the course of time (Trivailo 2012, p. 6). Also, the tendency of exceeding the

cost estimate in contrast to underrunning it is illustrated.

Table 4.4-4 exhibits typical error ranges for sequential software projects; although

these indications stem from the software domain the inherent uncertainty concept

can be extended beyond the field of software development (ibid.). The presented

numbers illustrate that high accuracy of cost estimates cannot be expected in early

16The column "Nominal Value SS/FP" in the PLT holds the arithmetic mean of all observed values

for the considered programming language; is its inverse.

17 is the inverse of "Calculated SS/FP Low", is the inverse of "Calculated SS/FP High".

4 Function-based Cost Estimation Approach

67

project phases because at this stage there are many unknown or undetermined

factors that have impact on costs.

Commonly, point estimates are interpreted as the median i.e. the 50% of all actual

values lie below and 50% above the estimate. As illustrated in Figure 4.4-3 (ibid.) and

Table 4.4-4 (adopted from McConnell 2006, p. 39) this interpretation does not always

hold true. Another problem with point estimates is that lower and upper limit of the

estimation remain unknown to the interpreter. For this reason single-point

estimates, i.e. "product X will cost 100€ per unit" would give the false impression of

definiteness. Without an indication of its likelihood the estimate is of little

informational value.

Figure 4.4-3 Conceptual example of the cone of uncertainty

4 Function-based Cost Estimation Approach

68

Phase Possible error on low

side

Possible error on high

side Initial concept -75% +300%
Approved product

definition

-50% +100%
Requirements

complete

-33% +50%
User interface design

complete

-20% +25%
Detailed design

complete

-10% +10%

Table 4.4-4 Estimation error for costs and efforts in software development phases

To compensate for the estimation error a measure of inaccuracy should be denoted

for assessing the probability of a large deviation from the estimate, often called cost

risk (McConnell 2006, pp. 6–9; Galway 2007, p. ix).18 Cost-risk analysis requires

knowledge of the underlying error probability distribution. Since the actual

probability density functions are unknown the prevalent approach is to assume

normal distribution, arguing that many processes can reasonably be approximated

due to certain statistical effects and characteristics like the central limit theorem or

independency of process variables (Casella 2002, p. 102). However, the diverse cost

constituents exhibit different probability distributions which is why asymmetrical

distribution forms are also taken into account here.

4.4.3.1. Probability Density Functions

As aforementioned, the costs estimated in the presented approach are basically

divided into material and labor costs. In order to achieve a differentiated view on

the estimation uncertainty the distribution for each of these cost types is derived

separately. The reason for this distinction is that costs for activities tend to be

distributed asymmetrically whereas material costs can be assumed to be

symmetrically, normally distributed (Browning 2002, p. 432; McConnell 2006, pp. 7–

8).

Concerning hardware costs, the estimation error i.e. the model standard error

expresses the uncertainty of the respective costs. The standard errors calculated

with predict.gam are based on the Bayesian posterior covariance matrix in the fitted

gam model (RDCT 2012, pp. 2747–2750). Because the standard error is assumed to

be normally distributed for the regression model derivation the probability density

18Galway states that the term 'cost risk' only applies for exceeding estimates.

4 Function-based Cost Estimation Approach

69

function of the estimated hardware costs is also assumed to be normally

distributed; the mean represents the estimated value and the standard deviation

equated with the standard error calculated by the model.

Labor or activities costs tend to be right skewed as work processes are truncated to

the left because there is a limit to how efficient a process can be performed but the

expansion of costs due to failures, delays, requirement changes and other factors is

virtually limitless. As an example in the time period from 1994 to 2004 circa 75% of

the software projects overshot the planned schedule or budget (McConnell 2006, p.

25).

To represent uncertainty in labor costs various asymmetric probability density

functions can be used, the beta distribution being the prevalent one. The Program

Evaluation and Review Technique (PERT) – an acknowledged planning tool for

project management – applies the beta distribution to capture uncertainties

concerning activity related costs (Keefer 1993). As this method has been applied

over many projects in the last decades the beta distribution is used for modeling

labor effort distribution in the presented work (e.g. Chen 2009; Xu 2007).

The continuous beta distribution defined on the interval [0,1] is parameterized by

two shape parameters and , both required to be greater than zero. Its density

function is defined as

(4.15)

with the beta function defined as

(4.16)

and denoting the gamma function. Outside of [0,1] equals zero.19

The expected value of the beta distribution is

19The general beta distribution is defined on the general interval but is more

complicated. As the normalization of [a,b] to [0,1] and subsequent use of the beta distribution

defined on [0,1] and denormalization of the results is mathematically more manageable without

loss of information, only the beta distribution on [0,1] is considered.

4 Function-based Cost Estimation Approach

70

 (4.17)

and the variance

 (4.18)

The three-point estimation technique established in PERT allows the construction of

a beta distributed probability density function by using only three data points: best-

case estimate , most likely estimate 20 and worst-case estimate . These

three estimates can be based on heuristics or elicited from experts (Santillo 2005).

The expected value and variance are approximated by the respective equivalents of

the double-triangular distribution

(4.19)

(4.20)

The shape parameters and are determined by equating (4.3) and (4.5) as well as

(4.4) and (4.6) and consequently solving the equation system to

(4.21)

(4.22)

With the shape parameters determined the beta distribution can be calculated for

the normalized data points.

4.4.3.2. Uncertainty Indicators

The modeled probability distribution functions permit the calculation of various

statistical measures that can serve as uncertainty indicators. In the scope of this

work standard deviation and quartiles are used for this purpose. The standard

deviation expresses how large the variation from the expected value is; a large

standard deviation in relation to the expected value thus expresses a higher degree

of uncertainty. One advantage of this measure is its intuitive interpretability.

20Note that the most likely case is represented by the distribution's mode, not its expected value.

4 Function-based Cost Estimation Approach

71

Another means of expressing uncertainty is the calculation of percentiles. A

percentile marks a value below which a given percentage of observations and by

extension estimations fall e.g. the fifth percentile of costs is the threshold below

which five percent of the estimations would lie. Calculating several percentiles

allows the estimation of probability ranges.

Figure 4.4-4 displays an exemplary beta distribution of labor costs. The dashed vertical

lines indicate the 25th, the 50th (median) and the 75th percentile i.e. first, second and

third quartile; the dotted vertical line represents the expected value. The

interquartile range i.e. the range between first and third quartile lies roughly

between 11,200 and 18,200 € and covers 50% of all values within the estimated

range thus indicating a corridor for the likelihood of the estimate. The quartiles can

also be applied for a staggered risk indication: The cumulated probability up to a

quartile can be interpreted as the probability of the actual cost lying below the

respective quartile; e.g. for the given example a 75% chance of costs lying below

circa 18,200 €. Because the interpretation of the quartiles can be regarded as

intuitive and comprehensible their calculation was incorporated in this work.

Figure 4.4-4 Exemplary beta distribution function

4.4.4. Expert opinion elicitation

Expert opinion elicitation or interviewing means retrieving information on a specific

matter directly from professionals with experience in that particular field. This

method often is the only available solution in cases where little or no data is

4 Function-based Cost Estimation Approach

72

available otherwise: “If suitable data on the structure in question is not directly

available, information acquisition can only be realized by executing interviews with

experts” (Maurer 2007, p. 97). Expert interviews are one of the standard

instruments of empiric social research (Flick 2007, p. 19; Schnell 2008, p. 299).

As little explicit information on the mapping of robot skills to components for

service robots is publicly available expert elicitation was used to establish such

systemic relationships. Furthermore, expert interviews were conducted regarding

the expected reuse ratios for the considered software components and for

hardware installation efforts.

For the derivation of classifications of skills, hardware components and software

components the first step was the research into existing categorizations of robotic

functions. Available literature was scanned for recurring expressions and

descriptions of robotic skills. Based on these characterizations suggestions for item

categorizations were developed. The existing categorizations considered are

classifications employed in EUROP (Bischoff 2009, pp. 28–33), EFFIROB (Hägele

2010, p. 341), RoboEarth (Waibel 2011, p. 71) and the Handbook of Service Robotics

(Siciliano 2008, pp. XXXVII–XLV). The categorizations were then presented to and

discussed with three experts separately in order to evaluate their correctness. The

criteria for items to be valid are applicability and importance to service robots as

well as tangibility and understandability as they should allow their intuitive use for

an early estimation of functions and components necessary.

For the structural mapping i.e. the entries of dependencies in the structural matrices

a workshop was held with six experts for service robot development. The concept of

the structure matrices, the categorizations of items, and dependency types were

explained and pertinent documentation handed out. After clarification of any

questions at this point the experts were requested to individually fill in direct

dependencies on print-out sheets of six structure matrices for the mapping of task-

to-task, task-to-hardware, task-to-software, hardware-to-software, hardware-to-

hardware, and software-to-software. The individually completed matrices were then

combined into one aggregate matrix for each matrix type.

The determination of software reuse ratios was conducted by individually

presenting two experts on service robots a list of the considered ROS packages with

4 Function-based Cost Estimation Approach

73

the request to allocate a percentage range for adaptation and customizing effort to

each package. The percentage given designates the relation of altered code to total

code size. Possible choices for code adaptation and customizing ranges were:

 >0% to 10% are reimplemented, 90% to 100% are reused as is with only minor

adaptation

 10% to 30% are reimplemented, 70% to 90% are reused as is with only minor

adaptation

 30% to 50% are reimplemented, 50% to 70% are reused as is with only minor

adaptation

 50% to 70% are reimplemented, 30% to 50 % are reused as is with only minor

adaptation

 70% to 100% are reimplemented, up to 30% are reused as is with only minor

adaptation

 No modification, installation only, 100% reuse with no modification at all

 Package unknown and/or modification effort unknown

 Package not used

Ranges were chosen instead of single point estimates in order to allow for a degree

of uncertainty and to speed up the ratio estimating process which was deemed

necessary as 469 packages had to be evaluated separately. The calculated averages

of the range indicated by the experts are used as the most likely value for the cost

estimation.

For the installation costs of hardware and software components for each of the

categories two experts were asked individually to estimate installation times based

on their experiences.

For hardware installation costs, a list of the hardware component types was

presented to each expert with the request to gauge the approximate installation

time for every component type. For software costs, the experts were asked to

estimate how long it takes to install ROS on a service robot of their knowledge. The

basic idea is that once the software developed for the service robot subject to the

cost estimation has reached a releasable state it will be installed as one suite similar

to a framework like ROS. Installation of single packages was not considered in the

5 Function-based Structure Estimation

74

presented approach it is already included in the productivity rates of the software

development stage, i.e. the software installation costs only apply to robot units

produced after the prototype has been built. For both categories, values for

minimum, most likely and maximum time required were elicited.

5. Function-based Structure Estimation

In order to support the estimating person in each of these steps the necessary

knowledge must be made available beforehand. This chapter covers the aspects of

mapping desired robot functionality to hardware and software components. First,

the categorization into the three domains Skills, Hardware Components, and

Software Components is explained and consequently how relationships between

them are derived.

Figure 5-4.4-1 General structure management approach

From a structure management point of view this part of the approach covers the

steps system definition, information acquisition and modeling concerned with the

structure of a service robot. Figure 5-4.4-1 depicts the general steps of the complete

structure management process where a handling problem or a design problem

forms the starting point (adopted from Maurer 2007, p. 69). As handling problems

are concerned with controlling issues for existing solutions It should be noted that it

System management problem ↔ Design problem

System definition

Information acquisition

Modeling

Structure analysis

Discussion of practices

Structure manual &
structure potentials

Improved system management ↔ Improved system design

5 Function-based Structure Estimation

75

is not the aim of the presented approach to evaluate the appropriateness of a

specific structure to a given application problem but to indicate central structural

elements which have significant impact on resulting costs which is why the latter

three steps of the indicated structure management process are not considered

further in this work.

5.1. System Definition

In order to derive a structure of a robot from which costs can be derived its scope,

purpose, and functionality must be defined i.e. the domains of the design problem,

the level of detail within the domains, and dependencies considered must be

determined in advance (ibid.). The combination of these three preparatory steps

constitutes the system definition.

5.1.1. Domain Specification

As outlined in Chapter 4 the presented approach is aimed at estimating costs

starting from a point where little more than the robot application is known. In other

words, the costs for fulfilling a desired functionality must be determined. The

abilities to perform certain functional actions are skills of the robot thus skills

constitute the first domain required for the determination of the robot structure.

Skills as abstract concepts do not incur costs themselves but have an impact on costs

through their implementation. The evident manifestations of skills are the robot

hardware components which embody the physical interface between functionality

and physical working environment. Though less evident, the software required to

coordinate and control hardware operation forms another important part of the

realization of functionality. Thus hardware and software components were chosen

as further domains of the robot structure because they represent the domains of

product implementation (Kossiakoff 2003, p. 176).

Conceptually, both hardware and software are components and thus could be

subsumed within one domain. The separation of these categories was undertaken

for two reasons. Firstly, they were divided up in order to prevent the structure

matrices to be constructed from growing too large because oversized matrices tend

to become difficult to handle by experts (Browning 2001, p. 302; Maurer 2007, p.

37). Secondly, due to their different nature the cost allocations for these categories

5 Function-based Structure Estimation

76

exhibit discrepancies that justify separate treatment; e.g. material costs are a

significant part of hardware components but negligible for software. Experience

from the study EFFIROB showed good practicability of the distinction between

hardware and software for cost estimation purposes (Hägele 2010, pp. 37–44).

Process or human resource domains are also potential candidates for the derivation

of costs from system structure. Because the costs incurred within these fields can be

attributed to the components by adequately modeling the cost functions these

domains were not considered separately.

5.1.2. Domain Elements

For each domain the level of detail must be delineated: On one hand, the elements

of a domain must be sufficiently detailed as to permit sensible mapping of the robot

application and reasonable cost estimation; on the other hand they should not be

large in numbers that the sheer quantity becomes too difficult to manage within an

early phase estimation process.

Complex systems usually are constructed from a multitude of different components.

At early design phases it is hardly practicable to exhaustively list all constituents of

the final product (Maurer 2007, p. 67); even if it were feasible the large number of

items would exceed the human capacity to handle complexity. Studies show that

matrices containing only a small number of items can quickly overburden the user

(Maurer 2006). Browning even finds that "individuals may have difficulty building

DSMs with more than ten elements" (Browning 2001, p. 302). Complexity puts high

demands on the estimator's abilities to collect and process information and plan

accordingly; thus the amount of items should be reduced to a number manageable

by the user (Dörner 2003, p. 60).

The approach towards usability in this work is to reduce the number of items for

each matrix by establishing catalogs with typical categories for service robot skills,

hardware components, and software components each containing no more than

twenty items.21

21Although these catalogs have been cross-checked against expert knowledge the author does not

claim the list to be exhaustive or exclusive.

5 Function-based Structure Estimation

77

As the items in the component catalogs represent generalizations from specific

components they are subject to variations of manifold parameters, e.g. size, energy

consumption etc. In order to reflect possible differences of characteristics in cost

estimates the main cost driving parameters must be identified and the typical range

of their values determined. Doing so allows the derivation of specific cost functions

based on these parameters thus lessening the loss of exactitude due to

generalization.

5.1.2.1. Skills

At the starting point of the estimation, the estimator has an approximate idea of the

tasks the robot needs to perform which demand certain skills of the robot. Many of

these skills are rather generic and occur in many different robot designs.

Unfortunately, there is no standardized list of robotics skills.

Figure 5.1-1 shows different categorizations taken from EFFIROB, EUROP and

RoboEarth (Hägele 2010, p. 341; Bischoff 2009, pp. 28–33; Waibel 2011, p. 71). Even

though many concepts overlap in meaning, the differences in terminology indicate

that many of the applied terms are not strictly defined.

For the estimation approach in this work a list of robot skills has been compiled from

current literature. The study EFFIROB shows that the most common categories are

perception, navigation, manipulation and human robot interaction (Hägele 2010, p.

340). A slightly extended terminology is used for the initial categorization of robot

skills:

 Perception entails abilities aimed at discerning signals, objects or

environmental conditions.

 Navigation and Locomotion is the umbrella term for skills that serve the

orientating and moving of the platform in its environment.

 Manipulation encompasses all types of exerting physical influence on objects

or environment.

 Communication describes those skills that enable the robot to engage in

information-related interaction with its environment, be it humans, robots or

computers. This includes the interpretation of messages and the derivation of

consecutive actions.

5 Function-based Structure Estimation

78

Figure 5.1-1 Different categorizations of service robot skills

These terms serve as a rough first classification of skills. Due to the plurivalent

nature of skills the relation between categories and skills is many-to-many, i.e. one

skill can fall into several categories.22 As the mentioned categories are still too wide

to facilitate function based cost estimation they are decomposed into skill classes.

22An example: Many sensors are obviously used for perception but also employed for navigation

so it would be difficult to assign them to only one category.

5 Function-based Structure Estimation

79

The fineness of the skill classification is required to contain enough separate items

to distinguish between functionalities but their number must not be so excessive

that selecting from them would require more detailed knowledge of the robot's

design than is available at early development phases.

For validation, the list was individually presented to three robot experts at

Fraunhofer IPA and adapted according to their suggestions in order to align the

categorization with requirements of applied robot design practice (s. Chapter 4.2).

For the sake of clarity the resulting list is shown in Table 5.1-1; each skill is detailed in

the following paragraphs.

Perceive Objects Move Object
Recognize Objects Process/Alter Object
Interpret Environment Process/Alter Environment
Perceive evolutionary processes Send Signals/Commands
Move to Location Interpret Signals/Commands
Orientate in Environment Receive Signals/Commands

Table 5.1-1 Service robot skills

In terms of axiomatic design (AD) the skills represent the domain of functional

requirements – what the robot must be able to do – whereas the components are

the manifestation of the design parameters – what is used to enable the robot to do

what it is supposed to (Suh 2001, pp. 10–12).

The skill to perceive objects describes the ability to detect the presence of physical

entities in the environment when in proximity of the robot without classifying the

object. The scope of the detection depends on the sensor type employed. A simple

implementation of this skill is a bumper that forwards the information of physical

contact of the robot's hull to a colliding object.

Recognizing objects is an extension of perceiving objects in the sense that the robot

is able to classify certain objects in its environment based on sensor information and

a priori knowledge on the objects to be recognized.

Interpreting environment comprises capacities enabling the robot to deduce type

and state of at least some of the environment's features, e.g. lighting conditions,

5 Function-based Structure Estimation

80

slopes, degree of "clutteredness" etc. The characteristics to be interpreted strongly

depend on the robot's design purpose.

The perception of evolutionary processes entails the realization of changes, be they

internally (e.g. tool abrasion) or externally (e.g. lawn mowing). The alterations can

vary from simple changes (e.g. battery load status) to complex ones (e.g. reordering

objects in tridimensional environment). This perception also encompasses detection

of trends.

Moving to location is one of the most basic actions of a mobile robot. In the given

context of this work it entails the avoidance of any harm to humans, the

environment or the robot itself. The movement to a location is executed

autonomously.

Orientation in environment describes the ability to derive the robots geographical

and topological position within the environment the robot is deployed in.

Moving objects is the ability to purposefully change an object's position by carrying,

pushing or pulling it to a desired destination. In the context of skills, objects are

considered moveable and of smaller than the robot or at most equally sized.

Processing or altering objects encompasses all volitional modifications of objects,

e.g. welding together of work pieces.

Processing or altering the environment is similar to that of objects. The difference

lies in the environment being of a much larger extent than objects, e.g. floor or

walls, thus necessitating different handling approaches.

Sending signals and commands represents the variety of abilities to relay external

output to other entities, be it humans, computers or robots. These messages can

take the form of acoustic or visual indications or be transmitted electronically as

data packages.

Interpreting signals or commands encompasses all forms of higher level intelligent

processing of messages from outside. This entails derivation of (re)actions e.g.

replanning a route or stopping a current activity.

5 Function-based Structure Estimation

81

The skill of receiving commands means offering other entities possibilities of

communication via one or several input channels.

5.1.2.2. Hardware Components

Since many components are possible candidates for service robots it is not

attempted here to exhaustively list and categorize all potential hardware

constituents. Instead, central and frequently incorporated hardware component

types were compiled, using the hardware catalog from the EFFIROB project as a

starting point. The extraction of initial component types from this source yielded 38

different component classes for the categories of robot arms, grippers, mobile

platforms, tactile sensors and contact-free sensors (Hägele 2010, pp. 356–358).

As the EFFIROB study revealed human-robot-interaction to be one of the main

functional requirements for service robot the classes Keyboard, Microphone,

Display, Touchscreen, Joystick (or comparable), Speakers and Signal Lights were

added to the preliminary category list. Furthermore, the general infrastructure

classes Wiring, Power Supply, Data Storage, Processing Unit and Data Interface were

included because elements of these are used in virtually any service robot.

The total of 50 preliminary component classes was then reduced through

abstraction and combination of similar classes validated in dialogue with robot

engineers at the Fraunhofer IPA. The reason for this reduction is that the structure

matrices resulting from such a large number would have grown too unwieldy for

data collection on structural dependencies via expert interviews and for

uncomplicated usage by the estimating person (s. Chapter 5.2). This reduction is

deemed justified as detailed design decision are usually made in product

development stages succeeding the early concept phase on which the presented

approach focuses; furthermore, the parameterization of components described in

Chapter 6.2 avoids overgeneralization.

An overview of the resulting hardware component types is given in Table 5.1-2.

Because the list is not exhaustive three placeholder categories were introduced for

miscellaneous hardware components. Although no cost models are derived for

these categories due to their heterogenity they are included in the structure

5 Function-based Structure Estimation

82

matrices to indicate possible relationships with other components thus avoiding the

unintentional disregard of components not fitting into any of the specific categories.

Some constrictions were made for certain classes according to the service robot

types focused in this approach (s. Chapter 2.1.1). These constraints allow the

development of cost models to be better tuned to this kind of systems which are

expected to be of higher accuracy than global category cost models. Each

component is detailed in the following paragraphs.

Camera Gripper
Ultrasonic Sensor Miscellaneous End Effectors/ Tools
Laser Scanner Input Peripherals
Radar Output Peripherals
Binary Sensor Power Supply
Force/Torque-Sensor Controlling Unit
Gyro-Sensor Safety Hardware
GPS System Miscellaneous Structural Hardware
Mobile Platform Miscellaneous Hardware

Environment Robot Arm
 Table 5.1-2 Hardware component types

Digital cameras are sensors providing data on static or dynamic images, either

monochrome or in color. They are typically employed as data source for object

recognition, environment interpretation or self-localization. The prevailing

technologies are charged-coupled device (CCD) and complementary metal oxide

semiconductor (CMOS) which represent the categories analyzed in the scope of this

work, line scan cameras were excluded. Three-dimensional camera systems (time of

flight cameras) were not included due to lack of sufficiently large number of

products but the increasing interest in these products is expected to change this

situation in the near future.

Ultrasonic (US) sensors measure the transit time of ultrasonic sound waves from

sensor to obstacle and back (end-to-end) thus allowing the measurement of

distances to nearby objects. They can be used for object detection, obstacle

avoidance and simple object recognition tasks. This component type encompasses

only reflection-based US sensors excluding those that only measure object presence

(these are subsumed under binary sensors below).

5 Function-based Structure Estimation

83

Laser scanners or laser distance measuring devices emit controlled laser beams and

determine the time of flight (TOF) or phase shift of reflected beams from which the

distance and shape of the reflecting objects can be derived. Due to their high

precision and fast response time they are commonly used for safety zone control

and self-localization. This component type includes one-dimensional and two-

dimensional laser scanners; laser scanners certified for safety applications were also

regarded as long as they do not require an additional evaluation unit. Three-

dimensional laser scanners were excluded for lack of a sufficiently large number of

products and their arguably low relevance for service robots.

Radar sensors measure the presence of and distance to objects by emitting radio

waves and detecting reflections caused by obstacles in the wave's path. A potential

application for radar sensors in service robotics is the safety control for the robot's

workspace. This component type includes radar chip modules and enclosed radar

solutions.

Binary sensors only distinguish between two states; this category comprises

mechanical and contactless sensors with a binary output signal. Typical applications

are object presence control and immediate environment collision avoidance. The

sensors considered include optical, capacitative and inductive proximity sensors as

well as push buttons. One necessary condition for an item to be included was that

all active parts are integrated in one casing thus one-way through-beam light

sensors were not considered. Magnetic proximity sensors were also excluded from

data.

As the name suggests force-torque sensors perceive and measure forces and torques

occurring in physical activities. Typical application purposes are joining operations

with a sensor of this type between robot arm and end-effector or in the joints of the

robot arm. The regression data includes force-only, torque-only and combined

measurement sensors with one to six degrees of freedom. Rotating force-torque

sensors were not considered due to their rare application in service robots.

Gyroscopes measure angular position, acceleration and velocity, acceleration

sensors capture angular and translational accelerations. Because these two types of

sensors are used for similar purposes and combined sensors exist they are combined

5 Function-based Structure Estimation

84

in one category; a typical application area of this sensor category is robot odometry.

The considered sensors' degrees of freedom range from one to six.

GPS (Global Positioning System) modules allow the determination of one's position

based on satellite signals. GPS can be used in the area of service robotics for

minimizing the position error and navigation purposes. The products considered in

this category encompass small integrated systems including GPS receiver, patch

antenna and back-up battery. Separate reference stations typically used for

differential GPS were not subsumed under this category as these would be part of

the robot's environment and not of its internal structure (s. miscellaneous

environment hardware below). Also excluded from this category were products

optimized for usage in agriculture and automotives because they were not seen as

fit for service robot due to their proprietary interfaces.

A mobile platform is one of the central components of a service robot and permits a

robot to change its position in physical space as opposed to stationary industrial

robots. Although many different platforms exist for operation in air, in or on water

as well as on ground, only the latter were considered in this approach as ground-

based platform make up the majority of service robot platforms; platforms for the

different media are of vastly different design and thus unlikely to be reliably

mapped by one cost model. Leg kinematics were also excluded due to their high

complexity and little relevance for commercial service robots as of 2012. No

restriction was made concerning the steering type i.e. the platform steering can be

holonomic, differential or Ackerman-type. Some mobile platform stemming from

the market for automated guided vehicles (AGV) are able to carry weights up to

several tons but do not fit the description of service robots at the center of this

work's attention; only about 27% of commercially available mobile robots weigh

more than 10 kg (Piperidis 2007, p. 1). Thus the mobile platform considered here are

of a maximum weight of 350 kg and a carrying capacity of 300 kg.

Robot arms are programmable devices also referred to as serial chain robots and

can be described as a series of links and joints and can exhibit a resemblance to the

5 Function-based Structure Estimation

85

human arm counterpart (Siciliano 2008, p. 72).23 Robot arms increase the reach of

the service robot and can be used in combination with end-effectors for a variety of

manipulation purposes. Since the focus of this work is on mobile service robots the

maximum weight of robot arms considered here is constraint to 30 kg or less

because their control and power supply requirements are appropriately low for

mobile solutions. They can be powered by batteries as their power demand remains

equal to or below 48 V and do not necessarily entail the use of a bulky control

cabinet but can be controlled by an industrial PC or a similar controlling unit.

Grippers or gripping modules are a specific type of end-effectors aimed at grasping

and holding objects i.e. they form the end of the kinematic chain that comes into

direct contact with the object to be manipulated. The regression model is based on

data for mechanical grippers with the number of gripper jaws ranging from two to

three. Only electrically driven gripper modules were considered due to their high

fitness for service robot purposes because no additional power transmission

infrastructure is required as is the case for pneumatic or hydraulic solutions.

Articulated hands were also excluded from regression due to the lack of data as

there are only few robot hands commercially available; their high complexity is also

likely to require a separate cost model.

Input peripherals allow input of commands or information to the robot by direct

interaction, e.g. keyboards or buttons. Although many types of sensors can be

interpreted as input devices only haptic input appliances like keyboards or joysticks

were considered for the regression model as these represent the majority of input

devices used for service robots and are not already subsumed under one of the

other component types presented.

Output peripherals are one-way communication devices that render information

externally available, e.g. warning signals, status information or feedback on user

input. Due to their flexibility, robustness and intuitive interpretability visual

communication devices arguably represent the most common output means. Thus,

23Robot arms are also referred to as manipulators; this term is ambiguous in so far as it can lead to

confusion with the end-effector, e.g. gripper which is also part of the manipulating chain.

5 Function-based Structure Estimation

86

small monitors with screen resolutions up to 76,800 pixels were chosen as

representatives for output peripherals.

Most of a robot's components require a power supply. For mobile robots the

components supplying power are on-board power sources that allow robots to act

without an energy tether restricting its movements. Due to its advantages in storing,

space requirements, and suitability for indoor applications direct current electricity

is the preferred power source. Hence, the regression model is restricted to direct

current electrical power units and includes storage units i.e. batteries. The range of

available batteries is extensive which is why the model estimation was restricted to

a subset. For the batteries analyzed, the maximum capacity was set to 100 Ah and

the minimum and maximum nominal voltage to 2 V and 15 V, respectively, as these

numbers represent realistic limits for the type of service robots considered here.

Because different hardware components can require different voltage levels voltage

converters (DC-DC) with an output voltage up to 48 V were also subsumed under

power supply components.

The controlling unit is the interface between robot hardware and robot software,

the robot's "brain". As industrial PCs are highly versatile in their application and

readily available off-the-shelf they pose an adequate solution for many service robot

purposes and thus regression data is based on this type of controlling computer.

This category also includes embedded PCs which are more compact and well-suited

for smaller robots. Control cabinets typically used for industrial robots were not

considered because they do not offer an adequate solution for mobile robots.

Safety hardware consists of those components whose primary function is to prevent

the robot from harming persons in its working area. For the regression model safety

switches and safety contact sensors of mat, bumper or band design were

considered; safety components that had already been considered in other

categories e.g. laser scanners were not included in the regression of the safety

hardware cost model.

The placeholder category for miscellaneous end effectors and tools stands for

devices that can be used for manipulation purposes by service robots but are too

specialized to be considered typical service robot components. Possible examples of

this category are a vacuum cleaning unit or cutting and machining tools.

5 Function-based Structure Estimation

87

Miscellaneous structure hardware is a collective term for those components not

fitting into any of the categories mentioned above that can be built into the service

robot. Possible examples are casing elements, internal frames or tool magazine for

quick tool exchange.

Miscellaneous environment hardware covers those components that perform a

supporting or auxiliary function in relation to the service robot but which are not

integrated into the robot itself. Instead, they form a part of the robot's working

environment. Possible examples are GPS reference stations, battery-charging

stations or artificial landmarks like magnetic track tape or RFID tags.

5.1.2.3. Software Components

Similar to the hardware component categorization the software component types

are classified according to their functionality. Because the EFFIROB study does not

offer a catalog of generic software components similar to the hardware lists a

classification was conducted based on literature research and experience values

from the realization of mentioned study. The preliminary list consisting of 23 classes

was separately presented to three robot engineers at Fraunhofer IPA for revision.

The final list resulting from consolidation of the experts' input is displayed in Table

5.1-3. An explanation for each component is given in the following paragraphs.

Object Detection Tool Control
Object Recognition Arm Control
Object Modeling Arm Path Planning 3D/6D
Environmental Modeling Operational Interface (HRI)
Change Detection Robot-to-Robot Coordination
Self Localization & Mapping Communication Protocols & Messages
Platform Path Planning 2D/3D Learning & Reasoning
Platform Control Drivers & Primitives
Grasping & Grasp Planning (Robot) Operating System

Table 5.1-3 Software component types

Object detection describes the detecting of an object without realizing the type of

object. It is a basic feature commonly used for local path correction and safety

purposes and implemented in most service robots.

5 Function-based Structure Estimation

88

Object recognition is the logical extension of object detection. It expresses the ability

classification of a detected object in the robot's vicinity. In computer vision this task

is accomplished by filtering the sensor data and looking for characteristic geometric

features like edges, corners or other visual features like typical patterns or color

gradients.

Object modeling represents the creation and interpretation of different objects as

entities differentiated from the overall environment and is thus closely related to

object recognition as object recognition usually relies on models of objects for

comparison with its sensor data. Library of object models are subsumed under this

category.

Environmental modeling is the creation and interpretation a model of the

immediate surroundings and is similar to object modeling. The disparity lies in the

environment being larger and often much more complex than most singular objects;

it can be made up of lots of objects but can also consist of a large plane only e.g. the

floor of a sizeable room. Environmental modeling can also entail the determination

of topological relations between objects in the surroundings.

Change detection describes the perception of changes either in the immediate

surroundings (external), within the robot (internal), or both. It requires the keeping

track of states over the course of time. This function is vital if the robot is expected

to manipulate its environment in a controlled and autonomous way. An application

example for external change detection could be a floor-cleaning service robot which

realizes when waste has been dropped on the floor and removes it.

Simultaneous localization and mapping (SLAM) is the construction and updating of a

map of an a priori unknown environment and concurrently localize its own position.

SLAM is being increasingly applied in service robotics due to its enhanced flexibility

compared to navigating with predefined maps.

Platform path planning describes the determination of a collision-free itinerary for

the robot platform in order to reach a specific point in its environment. If the path of

a service robot cannot be a random pattern this skill is central to the robot's

mobility. Paths for ground-based robots can be planned in two or three dimensions.

5 Function-based Structure Estimation

89

Platform control is the software enabling the robot to generate commands for the

execution of platform movements and supervise the movement. Forward and

inverse kinematics in conjunction with the required input from platform sensors

constitute the foundation of this skill.

Similar to platform path planning arm path planning allows the determination of a

collision-free itinerary for the robot arm in order to reach a specific point within its

workspace. This task can be particularly demanding in dynamic and cluttered

environments. If the path is planned as a succession of waypoints of each joint in

space coordinates the planning is three-dimensional, if the planned waypoints also

include orientational angles of the joints the planning incorporates six dimensions.

A robot fitted with a gripper needs to be able to grasp an object. This software

generating commands for grasping movements including the planning of grip

position is subsumed under the category of grasping and grasp planning. Depending

of the shape of the object different grasping positions are possible; the according

skill allows the robot to determine the most adequate one and execute the

respective gripper movements.

If the robot is fitted with tools other than grippers the robot software used to

generate commands for tool usage und supervise its correct functionality is

represented by the category for tool control. As these tools can vary greatly (s.

Chapter 5.1.2.2) this rather broad category spans a multitude of possible control

software components.

Arm control is the analogon of the platform control category for the generation of

robot arm commands and the supervision of the execution of arm movements.

The operational interface category covers all those software components which

allow humans to interact with the robot. This includes the possibility to give

commands to the robot and to receive information from it. The category

encompasses graphical user interfaces (GUI), speech recognition, tele-operation and

other conceivable types of human-robot interaction (HRI).

Robot-to-robot coordination components enable a robot to communicate with other

robots and to synchronize collective actions. Elements of this category allow robots

to cooperate and fulfill tasks specified for a team rather than for a single robot.

5 Function-based Structure Estimation

90

Communication protocols and messages are those software components that

constitute the "language" of the robot i.e. the definition and implementation of

standards for command and information exchange purposes. They allow internal

communication processes between components of the service robot but also

external communication with computers.

Reasoning is the inference of implicit information from explicit knowledge in a

deductive way and derive corresponding decisions. Learning signifies acquiring new

or modifying existing knowledge and therefore is closely connected to reasoning. To

a certain degree, these software components allow a robot to integrate smoothly in

its environment and accommodate unforeseen situations. This category entails

reasoning algorithms, ontologies, expert knowledge databases, and similar

components.

Drivers represent low-level interfaces to hardware or software components.

Primitives are atomic instructions which can be combined to create more complex

commands. Commonly, primitives are one of the main constituent of drivers.

The operating system provides the framework and common services for other

software components to run. It handles basic operations like file management,

command execution scheduling and memory allocation.

5.1.3. Structural Dependencies

Three different relation types are considered in the presented approach. Each robot

skill requires certain hardware and software components in order to function

properly; others might improve its compliance or extend its scope. Also, one kind of

component can substitute another one in terms of functionality. Thus, the

dependency types applied in this approach are "requisition", "substitution" and

"enhancement" and are perceived as relations between two items.

Requisition specifies that item A requires item B. Requirements as entered in the

structure matrices are considered the least requirement. Applied to skills, this

means that the required item B or a better one is necessary for skill A to be

satisfactorily executed; applied to hardware and software components, item B or a

better one is required for the component A to function in a useful and desired way.

5 Function-based Structure Estimation

91

Skills can require hardware or software components but cannot be requirements of

those categories.

Substitution describes item A's ability to functionally replace item B. This

dependency plays a vital role in accounting for implementation alternatives. If item

A can substitute item B but not vice versa this entails functional superiority of item

A, e.g. a laser scanner can replace ultrasonic sensors but the inversion is not

correct.24 The declaration of least requirement and substitution dependencies

allows the computation of design alternatives for the service robot. Skills cannot be

substitutions for hardware or software components.

Enhancement represents item A directly augmenting or complementing item B's

skills. Directly means the enhancement must be a proximate effect not an indirect

one. An example: Object recognition using a laser scanner in conjunction with

ultrasonic sensors might be superior to one relying only on ultrasonic sensors. The

laser scanner does not enhance the ultrasonic sensors but the object detection.

Skills cannot be enhancements of hardware or software components.

Because the dependencies defined here are unilateral two designators are

necessary for each relation in order to represent the relation's direction. The

according designators for the structure matrix cells are displayed in Table 5.1-4.

Designator Meaning
R <row> requires at least <column>
r <row> is minimum requirement of <column>
S <row> can be substituted by <column>
s <row> can substitute <column>
E <row> is enhanced by <column>
e <row> enhances <column>

Table 5.1-4 Dependency type designators

24Ultrasonic sensors might be sufficient for a given application. In that case they are the least

requirement but substitution could take place by components with higher functionality. Additional

costs for higher (enhanced) functionality must be weighed against the performance demands.

5 Function-based Structure Estimation

92

Designator combinations for substitution and enhancement are logically possible,

specifically for symmetric relations when mutual substitution or enhancement is

possible and combinations of substitution and enhancement when a component can

substitute but also increase another one's functionality. Per definition, least

requirement dependencies cannot be combined with substitution or enhancement

in the same cell: item A requiring item B cannot be substituted by item B;

enhancement is considered optional in contrast to requirements being compulsory.

The list of possible designator entries in the cells of the structure matrices is given in

Table 5.1-5.

The structural knowledge on dependencies between skills and components

facilitates the cost estimation as follows: After the identification of separate skills

and components the relations and dependencies between them are automatically

mapped and made available the estimating person via the estimation application

SEROCOST (s. Chapter 7). This supports consideration of technological dependencies

and an overview of possible structural alternatives without detailed technological

concepts on the estimating person's part.

Designator Meaning
rR Mutual requirement
eE Mutual enhancement
es <row> can substitute and enhance <column>
Es <row> can substitute and be enhanced by <column>
ES <row> can be substituted and enhanced by <column>
sS Mutual substitutability
eEs Mutual enhancement, <row> can also substitute <column>
eES Mutual enhancement, <row> can also be substituted by <column>
esS Mutual substitutability, <row> can also enhance <column>
EsS Mutual substitutability, <row> can also be enhanced by <column>
eEsS Mutual enhancement and substitutability

Table 5.1-5 Possible designator combinations

5.2. Data Collection and Modeling

As explained in Chapter 4.2 structural matrices provide an appropriate means to

present relationships within and between different design domains in a clearly

5 Function-based Structure Estimation

93

arranged way as means of complexity management (Maurer 2007, pp. 67–68). The

domains considered in the presented work are skills, hardware components, and

software components thus the interrelations between them are captured in three

intradomain matrices and three interdomain matrices; the Multiple-Domain Matrix

(MDM) combines all single matrices and gives an overview of all relations as

depicted in Figure 5.2-1 (ibid., p. 60).

The MDM is a square matrix because the domains are arranged along horizontal and

vertical axis as well. Those sections along the diagonal where rows and columns

belong to the same domain constitute the intradomain matrices, the remaining

sections the interdomain matrices. Because the interdomain in the lower left

triangle of the MDM (dark gray areas) are the transposed matrices of the upper right

triangle they do not contain additional information and thus do not need to be

considered separately. The dependencies depicted are interpreted according to the

rule "row affects column".

The definition of domains and domain elements determines the construction of the

structure matrices and delineates the scope of the cost estimation. In order to

provide support in deriving a list of robot components required for a specific

application the structure matrices must be completed i.e. all those cells where

relations between domain elements exist need to be filled out. To this end, a

workshop was held where six experts in service robot development were requested

to mark dependencies in each of the six structure matrices with the defined

designators as they saw fit.

As the result of the workshop, six different versions of each structure matrix were

filled out. The individual expert specifications were consolidated into one structure

matrix of each type. The consolidation was conducted in three steps for each of the

six structure matrices:

1. All cell entries were aggregated into an aggregation matrix where each cell

could hold up to six different entries.

2. In each cell of the aggregated matrix the less frequently mentioned

dependencies were removed so that only the most frequently mentions

remained.

5 Function-based Structure Estimation

94

3. Each cell was checked for consistency; contradictions were eliminated

manually based on the context of the two related items.

Figure 5.2-1 Multiple-Domain Matrix

In the resulting MDM 612 of 1,176 cells (transposed cells excluded) contained

marked dependencies. One noticeable finding was that only seven combined entries

remained after consolidation which indicates that in most cases one relation

between domain elements is dominant. Furthermore, only eight substitution

relations were specified.

Domains

Interdomain

matrices

Intradomain

matrices

6 Component-based Cost Estimation

95

6. Component-based Cost Estimation

In this chapter the principal cost model is laid out. The overall cost perspective is

that of an entrepreneurial point of view, i.e. social or environmental effects and

external costs are not considered.

6.1. Component-based Estimation Cost Model

The proposed cost estimation model for prototypical service robots is based on its

main hardware and software components and contingent heuristics. The required

components are a function of the skills the robot is supposed to feature; the

required skills depend on the specific robot application. This modeling approach is

top-down from the perspective of the technological structure (from general

functionality to specific component) and bottom-up from cost perspective (from

specific component to prototype cost).

The following paragraphs point out how the separate cost blocks for hardware and

software components are modeled. The main advantage of estimating the costs for

each component separately is the increase in accuracy as the overall variance

decreases and individual components are easier to assess (Ehrlenspiel 2007a, p.

429); also, the overall estimate is rendered traceable by detailing its composition.

Figure 6.1-1 depicts how the different cost blocks are combined to form the cost for

the prototype.

6 Component-based Cost Estimation

96

Figure 6.1-1 Cost structure of service robot prototype

6.2. Component Costs

Each cost constituent is estimated separately, similar to the Bill of Material (BOM)

concept. BOM relies on detailed knowledge of final product's structure, i.e. the

minute design and requirements of the final product is available. Thus, the bottom-

up BOM approach does not lend itself to early phase cost estimation. Conversely to

BOM, the presented approach extrapolates the list of components for a prototypical

service robot yet to be built from the specified robot application, i.e. it is a top-down

approach. To this end, categories for vital component types are established and cost

functions attributed accordingly.

For each component a model of material and labor costs is constructed and the

individual cost constituents are classified according to the cost types illustrated

above. Direct costs at product unit level are calculated for one robot i.e. component

quantities are related to one manufactured unit.

As some of the costs are unit variable whereas others are fixed, the following

notation is used for cost designation: The lower case letter c represents variable

costs calculated for one robot unit, the upper case letter C represent costs incurred

for all regarded units, i.e. . The number of units includes the prototype

and thus is greater or equal to one.

Prototype
Development

Cost

Hardware
Cost

Labor Cost

Installation
Cost

Administrative
Cost

Material Cost

Software Cost

Labor Cost

Development
Cost

Installation
Cost

System
Designing

Cost

Labor Cost

6 Component-based Cost Estimation

97

6.2.1. Hardware Component Costs

As outlined in Chapter 2.2.4, only OTS components are considered for hardware cost

estimation, i.e. no proprietary hardware development costs are estimated. Thus the

hardware component costs in this approach are the sum of the material acquisition

costs, the installation costs for each component and the labor costs incurred by the

related administrative processes e.g. selecting the appropriate component and

finding a supplier.

6.2.1.1. Data Collection

The findings from the data collection processes described in Chapter 4.4 are

outlined in this section. This data was used to create a hardware component cost

model.

The hardware related labor cost can be divided into installation cost and the labor

cost for administrative processes pertinent to the components. For the

administrative labor a literature research was conducted because the inherent work

steps are usually executed by different persons e.g. selection of component by

engineer, purchasing by the buying department, handling and transport by logistics;

the resultant increased effort of identifying the relevant processes and interviewing

the responsible agents and the assumedly low impact on the total costs was

deemed disproportionate to the arguably increased exactitude by expert opinions.

According to Ehrlenspiel e.a. "administrative costs for each additional part usually lie

in the range of 1,500 to 2,000 [€] for purchased parts" as of 2007 (ibid., p. 138).25

Adjusting this value by the inflation rates in Germany from 2007 to 2011 the range

lies between 1,650 € and 2,200 €.26 The average value of 1,925 € is used as a markup

per component (not per component unit) and thus represents direct cost at the

product level and indirect costs at the produced unit level.

25The German original (Ehrlenspiel 2007b) indicates a range between €1500 and €2000, whereas

the translated English version states "1500-2000 [US]$".

26Aggregated growth for agreed wages in Germany 2007-2011: 9.95% (Statistisches Bundesamt

2012a).

6 Component-based Cost Estimation

98

In order to establish an estimation model for the cost of installation two expert

interviews were conducted with robot engineers at the Fraunhofer IPA. To this end,

the list of hardware component types was presented to each expert individually and

each category explained. Consequently the expert was asked to estimate the

minimum, most likely and maximum effort required for the installation of a typical

component of each category. The installation process was explained to include

mounting the device, connecting it to power supply and if applicable to data

interfaces and verifying its correct operation.

For the minimum effort both interviews yielded the reply that the component

installation would take "few hours" for any component. On further inquiry one reply

was "three to five hours" and the other "two to three hours". One expert stated that

the minimum amount of time required (in his case two to three hours) was also the

most likely effort, whereas the second opinion stated was "between half and a full

day" with workdays of eight hours. For the maximum time required the answers

were "one week" and "one to two weeks"; in both cases these larger amounts were

attributed to faulty initial installation or minor defects like broken cables and the

related error finding efforts. In both interviews the experts voiced their concern that

the exactitude of such estimations could only be limited as the components can vary

to a considerable degree.

The process of collecting data on material acquisition costs was conducted in several

steps. First, technical product information was collected for each product of the

category samples. In order to identify potential input parameters for component

cost estimation a list of product features and the prevalence of the features

mentioned were compiled. The data was extracted from technical data sheets and

product information of relevant websites. For this presample five products were

randomly sampled for each hardware component category; if the technical

parameters were inconclusive i.e. no dominant features were identifiable, five more

products were sampled.

In order to identify the most relevant parameters they were filtered in a three step

process. First, all those parameters which were mentioned in less than 60% of the

component group samples were excluded. This first filtering is based on the

assumption that relevant characteristics appear throughout the majority of product

6 Component-based Cost Estimation

99

descriptions of a category. The number of technical parameters considered as

potential main cost drivers resulting from this presampling is presented in Table 6.2-1,

a detailed list for each category can be found in Appendix 10.3.

The remaining parameters were divided into primary and secondary parameter

groups. Primary parameters are those which define the components functionality to

a large degree, e.g. the payload of platforms or the capacity of batteries, secondary

parameters are features not central to the component's purpose e.g. the color of

the casing. Although the distinction between primary and secondary parameter

categories depends on the concrete application the dichotomization based on

feature significance was deemed necessary for further reduction of the number of

parameters. In a third step, the remaining parameters were filtered according to

their statistic evaluability. All nominal parameters i.e. parameters which cannot be

ranked where excluded.

With the list of preliminary cost estimation parameters determined, products

matching the component type description were selected as a representative sample

and the according selling prices researched i.e. material cost for components are

represented by the market prices of the components. Where available, prices were

taken from the manufacturer's website; otherwise they were requested via email or

telephone call to the manufacturer or a supplier if the producer did not engage in

direct sales. The prices are considered as per single unit order i.e. rebates on large

volumes are not contemplated. Value-added tax was excluded from the prices

because it is deductible for non-consumers. The currency unit for all components

observed is Euro (€).

The categories Miscellaneous End Effectors/Tools, Miscellaneous Structural

Hardware and Miscellaneous Environment Hardware are considered too

heterogeneous in nature to determine a single cost model for each one of them.

Therefore, no data was collected on products pertinent to these categories.

It should be noted that the spread for industrial component prices can be

considerable and often depends on the buyer's negotiating power, quantity of

products bought, availability, general market demand and many more; analyzing

these effects is beyond the scope of this work.

6 Component-based Cost Estimation

100

Hardware Component Type Number of

technical

parameters

available

Number of

significant

parameters Camera 101 3
Ultrasonic Sensor 69 3
Laser Scanner 127 4
Radar 40 2
Binary Sensor 63 2
Force/Torque-Sensor 82 4
Gyroscope/Acceleration Sensor 120 5
GPS System 38 027
Wheel-based Platform 66 4
Robot Arm 65 4
Gripper 54 3
Input Peripherals 75 2
Output Peripherals 93 3
Power Supply 76+23 3+3
Controlling Computer 83 4
Safety Hardware 41 2

Table 6.2-1 Component-wise counts of technical parameters28

The sample sizes depend on the availability of commercial products in each category

and thus differ accordingly. A stark contrast can be observed between widely used

products such as binary sensors and goods manufactured for smaller niche markets

like robot arms. The number of sampled grippers is particularly low due to the

technical constraints (s. Chapter 5.1.2.2). The category sample sizes are displayed in

Table 6.2-2.

Applying the regression analysis techniques outlined in Chapter 4.4.1 each hardware

component category was assigned a material cost model. An overview of the

different models is given in Table 6.2-3. As shown, 15 out of 16 regression models

reveal a better coefficient of determination for the regression model (RM) than for

27None of the technical parameters for the compared GPS modules proved cost significant, s.

Chapter 6.2.1.3.

28Power Supply cell entries contain two values because DC-DC converters and batteries were

modeled separately.

6 Component-based Cost Estimation

101

the linear model (LM) and 14 out of 16 yield a lower average estimation error which

can be interpreted as sign that the regression models are a valid approach for

reducing estimation uncertainty.

Hardware Component Type Sample Size
Camera 333
Ultrasonic Sensor 143
Laserscanner 357
Radar 10
Binary Sensor 1,371
Force/Torque-Sensor 165
Gyroscope/Acceleration Sensor 52
GPS System 22
Wheel-based Platform 32
Robot Arm 15
Gripper 8
Input Peripherals 82
Output Peripherals 169
Power Supply 679+103
Controlling Computer 142
Safety Hardware 28

Table 6.2-2 Component-wise sample sizes

While the average estimation error of most models lies within the limits outlined in

Chapter 4.4.3 it is still considerably high for some component types, notably for

power supply products. Including more parameters could increase the accuracy of

these models but conflicts with the lack of detailed technical data in early

conceptual phases and thus reduces the applicability for early estimation purposes.

6 Component-based Cost Estimation

102

Hardware Component

Type

Final parameters R2

(LM)

Avg.

Error %

(LM)

R2

(RM)

Avg.

Error

%

(RM) Camera frames per second,

sensor diagonal

0.56 50.4 0.65 42.81

Ultrasonic Sensor blind range,

maximum operating

distance

0.28 17.92 0.28 17.8

Laser Scanner scanning angle, blind

range, maximal

operating distance

0.83 42.37 0.93 23.45

Radar sensor volume 0.64 67.36 0.93 27.58

Binary Sensor blind range,

maximum operating

distance

0.49 42.86 0.58 37.95

Force/Torque-Sensor degrees of freedom,

measurable moment

Mz

0.79 43.45 0.81 44.98

Gyroscope/Acceleration

Sensor

degrees of freedom,

power consumption

0.85 68.91 0.94 27.6

GPS System - 029 25.55 - -

Wheel-based Platform weight, footprint

size, maximum

payload capacity

0.76 59.02 0.96 29.21

Robot Arm weight, reach,

maximum payload

capacity

0.22 107.78 0.85 28.41

Gripper jaw stroke 0.71 32.76 0.74 31.27

Input Peripherals degrees of freedom,

number of

buttons/keys

0.09 59.63 0.121 55.25

29Equals zero per definition, as in this the estimated value is equaled with the mean of observed

values. For this case, R2 holds no meaningful information.

6 Component-based Cost Estimation

103

Output Peripherals pixel array size 0.83 1131.43 0.97 36.62

Power Supply (DC-DC

converter)

output voltage,

output power

0.3 132.75 0.43 59.19

Power Supply (battery) capacity, output

voltage

0.69 75.39 0.69 75.39

Controlling Computer processor type,

volume, flash

memory capacity

0.72 42.42 0.81 29.32

Safety Hardware weight, size of

contact surface

0.948 74.08 0.981 24.39

Table 6.2-3 Comparison of hardware cost model performance

Two noteworthy cases required an adaptation of the methodology. The power

supply category proved to be difficult to model as it comprises converters as well as

batteries. As these are technically very different concepts no parameters were

found which could be applied to one type without unduly distorting the estimation

for the other. In order to keep the structure matrices synchronized for which data

had already been collected these two types were kept in one category but each was

assigned a separate cost model. For GPS modules no parameter remained as

significant cost drivers because the price spread of the considered products was

small since many products revealed very similar parameter values. Thus, the price

for a GPS module is modeled as the average of the sample prices.

As a further result of the data collection process, averages and medians for each

applied parameter were determined. These values provide the basis for parameter

default values if the user chooses not to enter a specific value or no specific

information is available. The concrete values are listed in Appendix 10.3.

6.2.1.2. Labor Costs

As each hardware component has to be installed in the service robot it also incurs

labor costs. As components for service robots differ in an unwieldy number of

parameters like size, technology, complexity and many more a simplified labor cost

model is used in accordance with the objective of pragmatic and easy-to-use

applicability (s. Chapter 2.3).

6 Component-based Cost Estimation

104

The function of estimated installation cost
 was constructed using the three-

point estimation method on the averages of the expert judgments on minimum,

most likely and maximum time effort required expressed in work day of eight hours

working time. This yielded a mean installation time of 1.46 workdays per component

with a standard deviation of 0.93 workdays. Thus the overall installation cost is

estimated as

 .

(6.1)

where is the number of manufactured robots (including the development

prototype), is the quantity of the i-th of component type instances per robot,

 is the monthly cost rate of the person assigned to the installation and

 is the number of working days per month.

Minimum and maximum values indicated in the interviews yielded averages of 0.41

and 6.25 workdays per component.

The overall hardware installation cost variance is

 .

(6.2)

The installation costs are direct costs on the product unit level.

Components also cause secondary administrative work e.g. in the form of selecting

and purchasing processes, inspection and similar activities. These are indirect costs

and there are several ways to burden them on product units (s. Appendix 10.1.2.5).

Also, some of these processes do not scale with each purchased component unit;

the relevant cost object in most cases is either the component (in the sense of an

OTS product differing from comparable ones) or batches of components as not each

component unit is necessarily bought separately. It is not the aim of the presented

work to capture all indirect costs but only those costs that are caused by the

product's development and production. As the establishment of substantial

knowledge on firm-specific details on administration organization, staffing,

processes etc. required for the determination of holistic administration markups is

deemed neither pragmatic nor required in the scope of this work a heuristic rule is

6 Component-based Cost Estimation

105

applied here for the estimation of the administrative costs related to hardware

component.

Based on Ehrlenspiel e.a. each component is estimated to incur 1,925 € average

administrative cost per component on the product level (s. Chapter 6.2.1.1) i.e.

these costs are modeled as an absolute markup per component:

 (6.3)

where is the number of component type instances.30 The variance is calculated

based on the indicated range between 1,650 € and 2,200 € using three-point

estimation as

(6.4)

It should be noted that the values for administrative costs for hardware components

are only very rough, orientational values due to the lack of more specific data.

The overall hardware labor cost model is calculated as

 (6.5)

 (6.6)

With the minima and maxima adopted from data collected, the probability density

functions
 and

 are calculated as beta distributions and

subsequently convolved in order to compute their aggregate distribution
 .

The beta distributions are calculated with the dbeta algorithm of the R software

library msm. Having estimated
 permits the calculation of probability

quantiles which give the estimator additional information about the range of the

cost estimate in addition to mean and variance.

30Disambiguation note: The markup is not calculated per unit of the component used but per

component type. Example: If two identical laser scanners were used as components, the

administrative cost is only incurred once for the type of laser scanner, not twice.

6 Component-based Cost Estimation

106

6.2.1.3. Material Costs

Applying parameter values from user input the expected value and variance of unit

material cost for the i-th component instance can be estimated using the cost

models derived by regression analysis:

 (6.7)

where is the number of parameters for component i,
 is the generalized

additive regression function for the same component. The regression model

calculated with gam also computes the standard error i.e. standard deviation.

The default values for the parameter are set to the median of the surveyed samples

pertinent to the specific parameter; the median was chosen due to its higher

robustness toward outliers. Consequently, the expected cost of all hardware

materials is estimated as

(6.8)

The overall variance is calculated as the sum of the component variances

 calculated by the respective model

(6.9)

As the models assume a normally distributed estimation error the probability

density function
 for material costs is calculated as a truncated Gaussian

distribution. The area of the distribution is truncated at three standard deviations

above and below the expected cost value; additionally, the lower bound is

constraint to zero to avoid negative cost estimates. This truncation is necessary for

the estimation of corridors as the normal distribution would allow theoretically

infinite minima and maxima for the hardware cost estimate. The threshold of three

standard deviations was chosen because with 99.74% the probability of the values

6 Component-based Cost Estimation

107

lying in the remaining interval is still sufficiently high.31 The calculation of this

probability density functions is executed with the dtnorm algorithm of the R library

msm which adapts mean, variance and densities of the non-truncated distribution

accordingly.

First, second and third quartiles are also calculated for
 in order to

provide additional data on estimation uncertainty.

6.2.1.4. Aggregate Hardware Costs

With hardware labor and material costs estimated an aggregate hardware cost

function can be constructed for the overall hardware costs

 (6.10)

 (6.11)

The probability density function is calculated by convolving
 and

 using the convolve algorithm of the R library stats. Figure 6.2-1 displays an

example of the combination of previously calculated density functions.

6.2.2. Software Component Costs

Similarly to hardware costs, the software costs are calculated in a bottom-up

approach. In distinction to the hardware components, costs are not based on

individual cost models for each component type but on one general cost model

which relies on the four parameters code size, productivity ratios for reusing and

developing code, and reuse ratio for existing code. The reason for this different

approach lies in the lack of data for a regression analysis approach: The

development costs of existing software like ROS are unknown and there is no

abundance of disclosed primary parameter values on the software as there is for

hardware components. Thus, acknowledged software cost estimation principles are

applied, i.e. the extrapolation of cost from code size, and extended with data

collected from expert interview.

31The interval [μ-3σ; μ+3σ] covers 99.74% of sampled values from a normal distribution (Bronštejn

1995, p.633, p.974).

6 Component-based Cost Estimation

108

Figure 6.2-1 Aggregation of hardware probability density functions

6.2.2.1. Data Collection

For the code analysis, 469 packages from the ROS Electric Emys release and current

Care-O-bot stacks as of April 2012 were chosen as the software analogy.32 The

number of meaningful code statements was extracted from each functional file

32For a list of all packages analyzed in the presented work s. Appendix 10.4.

Prob.

dens.

Prob.

dens.

Prob.

dens.

€

€

€

6 Component-based Cost Estimation

109

pertinent to these ROS packages to be used as input for backfiring. Meaningful

statements exclude comments or empty lines because they do not add functionality

to the code.

Functional files are those constituting the implementation of the desired

functionality and exclude those that serve the code administration itself. For

example, ROS packages contain many manifest.xml files that serve to describe

dependencies between packages (Willow Garage 2009e). These are usually not

modified by third-party developers and thus were excluded from backfiring in the

presented work. For similar reasons, all files that serve the code compilation, e.g.

makefile or CMakeLists.txt, were also excluded. A list of files excluded can be found

in Appendix 10.4.

Packages concerned with testing, documentation, and tutorials were also excluded

from the analysis because the applied implementation rates cover the whole

software development process including testing and documentation; considering

mentioned packages would thus lead to an overemphasis of those activities. After

data cleansing, the source code statements were counted for each file using the tool

cloc (Danial 2012) and the resulting data fed into a database including count of lines

and programming language.

Furthermore, each package was related to the software component types by a

package-to-component relation matrix. The cell values of this matrix were not

collected through expert interviews but through analysis of each package's

documentation and assigning an appropriate value (Willow Garage 2008). Possible

values are "package is required by component" or "package enhances component".

Additionally, a package-to-package dependency matrix was created with the

possible cell values "package requires package" and its inverse "package is required

by package" (row to column). The values were determined using the rosdep utility, a

small software application within ROS which provides information on software

dependencies (Willow Garage).

6 Component-based Cost Estimation

110

As the number of lines of code varies highly with the respective programming

language and ROS packages are programmed in many different languages33 the

collected code sizes were translated into function point estimates. To this end the

latest version of the Programming Language Table (PLT) by Software Productivity

Research was used (SPR 2012). The PLT contains statistic ratios for minimum, mean

and maximum lines of code per function point for 550 different programming

languages (SPR 2007). Applying the according conversion value the minimum, mean

and maximum number of function points was calculated for each software package

via backfiring. Table 6.2-4 lists the sums of function point averages per stack.

In order to tie function points to costs productivity rates are required i.e. the time

one developer requires to implement one function point. Although the developer's

productivity depends on many factors heuristic values can serve as default values to

arrive at a plausible estimation. The heuristic values for software implementation

rates employed in this work are based on Jones' research assuming that code is

developed following the CBD paradigm (Jones 2007, pp. 134–145):34

1. Developing reusable code typically occurs at a default rate of 6 function

points per person month.

2. The default rate for developing non-reusable, custom code is 10 function

points per person month.

3. The default rate for acquiring and adapting reusable code is 30 function

points per person month. Such activities include the search for appropriate

components and creating the necessary environment for reusing them e.g.

installing all required miscellaneous software.

3328 different languages were used for the considered 469 packages.

34These values are used as defaults in the estimating software tool SEROCOST pertinent to this

work. As assumptions concerning these values might vary the user is offered the possibility to

change any of these values thus rendering the estimation process more flexible and customizable

to individual needs.

6 Component-based Cost Estimation

111

Stack Sum

FP
Stack Sum

FP
arm_navigation 3,891.4

openni_kinect 119.0

arm_navigation_experimental 1,371.3

orocos_kinematics_dynamics 162.9
audio_common 43.4

perception_pcl 134.5

bond_core 50.1

perception_pcl_addons 111.9
brown_remotelab 3.5

physics_ode 199.3

bullet 9.7

pluginlib 111.7
camera_drivers 191.5

point_cloud_perception 1.6

client_rosjava_jni 75.7

pr2_apps 81.0
cob_command_tools 382.6

pr2_arm_navigation 75.0

cob_common 1,541.3

pr2_calibration 1,063.6
cob_driver 706.0

pr2_common 964.2

cob_environment_perception 293.4

pr2_common_actions 283.9
cob_environments 0.3

pr2_controllers 725.4

cob_extern 88.2

pr2_ethercat_drivers 273.7
cob_people_perception 22,215.2

pr2_gui 25.9

cob_simulation 342.8

pr2_kinematics 45.7
common 333.8

pr2_mechanism 481.2

common_msgs 841.0

pr2_navigation 95.7
common_tutorials 202.5

pr2_object_manipulation 3,555.7

control 225.3

pr2_power_drivers 119.6
diagnostics 49.3

pr2_robot 170.1

diagnostics_monitors 65.2

pr2_simulator 150.7
documentation 56.3

robot_calibration 6.4

driver_common 186.3

robot_model 1,312.1
executive_smach 151.6

robot_model_tutorials 107.1

executive_smach_visualization 33.0

ros 537.3
filters 28.3

ros_comm 1,792.6

geometry 217.0

ros_realtime 31.3
geometry_experimental 187.4

ros_tutorials 170.2

geometry_tutorials 8.1

rx 540.0
geometry_visualization 18.6

schunk_modular_robotics 444.9

ias_common 570.4

simulator_gazebo 3,344.9
image_common 56.0

slam_gmapping 17.7

image_pipeline 142.1

sql_database 17.9
image_transport_plugins 26.7

stage 7.0

imu_drivers 30.2

vision_opencv 45.8
joystick_drivers 897.2

visualization 735.5

knowrob 4,633.0

visualization_common 181.5
laser_drivers 40.9

visualization_tutorials 19.9

laser_pipeline 63.0

warehousewg 361.8
navigation 426.0

web_interface 1,053.9

nodelet_core 56.6

wifi_drivers 41.3
object_manipulation 2,794.6

xacro 29.2

octomap_mapping 60.0

Table 6.2-4 Average function points per stack

6 Component-based Cost Estimation

112

These productivity ratios include all software development activities ranging from

early requirement analysis to delivery and thus constitute rather slow development

rates. If activities are skipped or heavily reduced e.g. by omission of thorough

testing the rates will rise with accompanying quality losses.

Furthermore, the development team's experience has a strong impact on the

software productivity rates (McConnell 2006, p. 63; Jones 2007, p. 340). For this

reason the estimator may want to include his assessment of the team skill in an

attempt to increase accuracy of estimates. In order to provide this possibility

without introducing increased complexity to the estimating approach a set of

adjustment factors depicted in Table 6.2-5 was extracted from Jones' research (Jones

2007, pp. 337–342). The default productivity rates for software development are

multiplied with the selected factor yielding the applicable rates and .

Team capability Multiplier Impact compared to

average
Excellent 1.55 +55%
Good 1.28 +28%
Average 1.0 0%
Below average 0.56 -44%
Poor 0.13 -87%

Table 6.2-5 Team capability adjustment factors

As not all of the software is to be rewritten according to the assumption of code

reuse in Chapter 2.2.5 data on estimated reuse ratios was collected. To this end, a

list of the 469 packages was presented to two experts at Fraunhofer IPA familiar

with ROS in order to estimate reuse rates using the scale described in Chapter

4.4.4.35 Several rules were applied in order to aggregate expert judgments into one

reuse ratio for each package:

1. Where the expert could not estimate reuse because he was unfamiliar with it

a default value of 0.6 was determined. This value is a heuristic rule for

component-based development based on software estimation literature

35Both experts are members of the "Extended Authors (Stacks Released)" group, s. (Willow Garage

2009a).

6 Component-based Cost Estimation

113

stating that roughly 60% of the code stems from reusable components (ibid.,

p. 144).

2. If the expert indicated that a component was merely installed but not

adapted the reuse ratio was interpreted as 100% and the packages were

marked in the database so that they are exempt from the estimation software

development cost.

3. If the judgments were identical the median between lower and upper interval

limit were set as the reuse ratio e.g. the interval between 30% and 50% reuse

is translated into a reuse ratio of 0.4.

4. If the expert opinions differed the average of the respective interval medians

was set as the reuse ratio e.g. one judgment of 30% to 50% and one of 10% to

30% equal a reuse ratio of 0.3. There is one exception to this rule: If one

expert indicated lack of knowledge (package not used or unknown, rule 1) and

the other specified "installation only" (rule 2) no average was used but the

package regarded as described in rule 2.

Figure 6.2-2 displays the absolute counts of all occurring reuse ratios thus

determined. One aspect that can be drawn from the presented figure is the

dominance of high reuse ratios. More than 50% of the package for which an

estimate was given revealed an average reuse ratio of 0.8 or higher i.e. more than

50% are only slightly modified. Packages that are not modified at all but only

installed represent another large fraction with 28%. For roughly a third of the

packages analyzed the reuse ratio is 0.6. The reason for this high value is that for

132 packages the experts indicated that they did not know or use these packages so

that their reuse ratios were defaulted to 0.6 (s. rule 1).

The finished software must also be installed on each manufactured robot. Thus

experts were interviewed to determine the costs of an individual installation effort

not related to software development. Not knowing the concrete implementation of

neither the robot nor the robot software the experts were asked to estimate the

minimum, most likely and maximum effort expressed in how long it would take

them to install the ROS release version on a service robot like Care-O-bot 3.

6 Component-based Cost Estimation

114

Figure 6.2-2 Distribution of package reuse ratios

Care-O-bot 3 was chosen as an appropriate analogy because it runs on ROS

components, many software stacks have been released for it, the experts were

familiar with its structure and it fits the definition of service robots outlined in

Chapter 2.1.1. The installation effort to be estimated should also include brief

testing of correct functionality. Both experts specified one workday as the most

likely value and half a workday as the minimum. For the maximum one expert

indicated "between two and three days", the other suggested three workdays; the

worst case was thus set to three workdays.

6.2.2.2. Material Costs

Software per se is not physical but it requires storage and computing media. As

these requirements are already covered by the hardware for the central computing

unit (s. Chapter 5.1.2.2 on control unit) no material costs are accounted for in this

regard.

In a broader sense of material costs the acquisition costs for bought software can be

regarded as material costs as they can be depreciated according to many accounting

standards.36 As the presented work assumes the usage of freely available open

36E.g. UK Income Tax Act, UK Companies Act, German regulations on tax matters (EStR).

85 91

22

39

20
6 4

165

10
1

12
2

12

0

20

40

60

80

100

120

140

160

180

including unknowns without unknowns

33

reuse ratio

number
of

6 Component-based Cost Estimation

115

source code as the basis for the robots software development there are no expenses

in the sense of this software material cost interpretation. Thus, material costs for

software are considered to be nil.

6.2.2.3. Labor Costs

As software is reproducible in virtually any number it is not produced on a per unit

basis. Thus the direct labor costs of software per service robot mainly consist of

software installation costs. Although installation usually is automated for larger

production series it appears plausible that the installation of software and the

verification thereof for prototypical or early series service robots will be handled per

individual unit in accordance with the assumption of small-series production (s.

Chapter 2.2.1). According to data collected in interviews on software installation,

the average time required for installing the finished software on the robot is one

workday, in the best case half a workday and in the worst case three days (s. above).

Using PERT calculation, one installation is thus expected to last

 .

 .

(6.12)

with a variance of

 .

 .

(6.13)

The resulting estimated costs
 for the software installation including

functional verification on manufactured units (including the prototype) are

thus calculated by multiplying the required time with the developer's daily wage

rate. The wage rate is derived as the monthly salary divided by the

average working days per month .

 .

(6.14)

and its variance as

 .

(6.15)

assuming that a software expert undertakes the process and that the software can

be installed without modification at the production stage. These costs are incurred

6 Component-based Cost Estimation

116

at product unit level except for the initial prototype which is why must be

reduced by one if the prototype is included in the total number of produced units.

The reason why the initial prototype is excluded from this form of installation cost is

that the prototype will be directly connected to the software development process

so that the working software is already installed when the development process is

complete.

A large cost factor stems from software components that need to be developed

first. Software development costs are activity costs which are not direct costs at the

robot unit level but can be regarded as direct cost on the product level.

Nevertheless, if software development costs are burdened on produced units,

software costs constitute a considerable part of the production costs (s. Chapter

10.1.3 for comparison of direct and indirect costs).

Labor cost estimates are based on assessing the amount of effort that is put into

activities. Thus an appropriate measure for effort has to be determined. Most

software estimation approaches assume the size of software as the dominant

actuating variable on the required efforts; the most common recognized measures

for size being source lines of code statements (SLOC or LOC) and function points (FP)

(Leung 2002, pp. 309–310; CSE 2000, pp. 3–7). In the presented work a combination

of both LOC and FP measures is applied using the backfiring method.

As software development can be very complex the effort inherent to software

projects depends on a multitude of parameters e.g. experience and size of the

development team, time schedule, available tools, project complexity and many

more; Jones lists 25 different factors affecting software development efforts (Jones

2007, pp. 341–342). For a model to be pragmatically applicable the number of

parameters should be reduced without extensively compromising its informative

value.

The parameters used in the presented approach are software function points,

software reuse ratio, each collected per component of available robot-related

software, and function point implementation rates depending on team experience.

The function point sizes s is the quantitative metric for the size of software as

described above.

6 Component-based Cost Estimation

117

The software reuse ratio r is the relation of how much of the code is reused to the

overall size of the software. This represents the application of the code reuse

assumption (s. Chapter 2.2.5) in combination with the analogy-based estimation

model for software (s. Chapter 3.1.3). In robotics, component-based software

engineering (CBSE) or component-based development (CBD) are increasingly

recommended and applied, as they allow systematic reuse of software elements

and thus save time, effort and eventually cost (Brugali 2009; Brooks 2005, p. 135).

The function point implementation rate v describes the average time per function

point that is required for rendering usable software code. Those packages that only

require installation according to expert opinion do not impact the development cost

but are listed among the software packages for completeness' sake.

As the developments costs are mainly employment expenditures the estimated

overall outlay for software development
 can be approximated by the staff

time required multiplied with the developer's monthly salary . Staff time

can be interpreted as the time one single person would require implementing the

respective software.

 (6.16)

As software is assumed to be developed component-wise is the sum of the staff

time required for each component. However, because components can share

functionalities and thus use the same software parts the software development is

treated on a level of finer granularity than the software components presented in

Chapter 5.1.2.3, namely on package level. The ROS package structure allows a more

detailed customization of analogy-based estimation.

Based on the selection of components on the higher level the necessary packages

are retrieved from the database and the time for the total development

extrapolated from the aggregated code size. This procedure also ensures that

packages occurring in several components are only accounted for once.

 (6.17)

6 Component-based Cost Estimation

118

The staff time required for each package i is composed of two summands; one for

the time required for acquiring and adapting reusable code
 and one for

developing new code
 .

 (6.18)

This distinction is necessary because the development of software occurs at

different implementation rates; adapting reusable software is usually faster than

developing new code from scratch. Consequently, the costs per function point

depend on the manner of implementing it – reuse itself tends to be cheaper than

custom implementation. Writing reusable code however is more expensive than

writing non-reusable code because of the need of greater care for debugging,

documentation and interface compliance. The decision to make the custom code or

parts of it reusable or not is subject to the developer's design philosophy.

Applying these values in conjunction with the size of the package derived by

analogy-based estimation and the respective reuse ratio the staff time summands

can be formed as

(6.19)

and

(6.20)

where is the expected size of package i in function points, is the

expected reuse ratio of the package (i.e. the percentage of software which is

assumed to be reused) and is either for custom code development or if

the newly developed code is to be reusable.37

The software reuse ratio indicates the part of available software packages that

must be adapted and fitted to the concrete application to be implemented; it is the

relative amount of reuse as opposed to the amount to be developed (cf. Frakes

1996). As not all parts of the code are reusable the remaining must be

37For simplicity's sake the possibility of combining development of reusable and non-reusable code

is not considered.

6 Component-based Cost Estimation

119

rewritten. Software that is installed without any modification is not considered

reused and thus not implied in the development costs.

The estimated time effort required for software development of package i is

calculated as

(6.21)

In order to determine the variance of the software development costs its probability

density function must be established by calculating the aggregates of the variances

of sizes and reuse ratios of software packages. The implementation rates and

are assumed to be constants because the uncertainty towards implementation is

represented by the aforementioned variances.

The wage rate is assumed to be constant in the presented approach; it

strongly depends on regional influences and must be known to the estimating

person beforehand (s. Chapter 4.3.2).

In order to establish the expected value and variance of reuse ratios the following

construction model is used:

Minimum of reuse is always 0% and maximum always 100%. The most likely reuse

rate was derived by expert elicitation for each software package

individually as described in the previous chapter.

Applying these values to (4.19) and (4.20) yields

(6.22)

and

(6.23)

Expected value and variance of the function point size of a software package are

modeled as follows:

The lines of code counted for the component are converted to minimum, mean and

maximum sizes using statistic conversion rates from the SPR Software Programming

6 Component-based Cost Estimation

120

Languages Table (SPR 2007). As the distributions of function points varies with the

programming language and software packages can be composed of files

implemented in different programming languages the expected function point size

value of each software package is determined by calculating its language-specific

distributions and consequently adding them. The cumulative expected value of the

function point size of software package is

 (6.24)

where denotes the function point size for the part of package implemented in

programming language . It is calculated as

(6.25)

where represents the number of lines of code written in language which

have been counted for software package . The conversion rate is the mean ratio

of function points per line of code (s. Chapter 4.4.2.2 on backfiring).

Assuming that the language specific implementation sizes are independent from

each other the overall variance of the package's size is

 (6.26)

The variance is determined applying equation (4.20), i.e. using the PERT

estimation method:

(6.27)

The terms and denote worst case and best case for the function point

size of the part of package specific to language , i.e. the largest and smallest sizes

to be anticipated. They are calculated in analogy to (6.32) but with the respective

conversion rates and for conversion to minimum and maximum

function point size:

(6.28)

(6.29)

6 Component-based Cost Estimation

121

With the variances for code sizes and reuse ratios thus modeled and assuming that

the reuse ratio per package is unrelated to the size of the package, i.e.

 , the variance of the time effort per component is calculated as38

(6.30)

The overall expected cost variance for software development is then calculated as

(6.31)

6.2.2.4. Aggregate Probability Density Function

For the derivation of the beta distribution for software development the minimum

and maximum of the development cost must be modeled, too. They are determined

by best case and worst case values for code size and reuse ratio:

 (6.32)

 (6.33)

i.e. in the best case the smallest assumable amount of function points is completely

being reused, in the worst case the largest assumable amount of function points

must be completely redeveloped.

With minimum, maximum, expected value and variance modeled the beta

distribution
 of the software development cost can be derived according to

the method outlined in Chapter 4.4.3. The distribution function allows the

calculation of quartiles as a measure of estimation uncertainty.

38For a detailed derivation s. Appendix 10.2.

6 Component-based Cost Estimation

122

If the costs are to be estimated for more manufactured units than the development

prototype additional software installation cost must be incorporated. To this end,

the beta distribution
 of the installation cost per unit is constructed,

employing worst case and best case estimates for the calculation of minimum and

maximum cost:

 .

(6.34)

 .

(6.35)

Expected value and variance of the overall software costs are the sum of

development and installation costs are

 (6.36)

 (6.37)

The distributions
 and

 are subsequently folded to determine the

overall distribution of the software cost.

6.3. System Designing Costs

There are cost components that cannot be attributed to specific components but

only to the product as a whole, i.e. indirect product unit costs but direct product

costs; because these costs concern the overall product as a system they are referred

to as systemic costs in this work. The major constituents of these are the costs of

the project management, overall system design and engineering process and the

costs of system testing (Kossiakoff 2003, p. 92); the costs for software design and

testing are already covered by the software productivity rates and and thus

not considered in this section. Further project management costs other than those

already included in the hardware and software estimates are not considered under

systemic costs. The remaining systemic cost constituents are subsumed here under

the term 'system designing cost'.

6.3.1. Data Collection

Estimating these costs is particularly difficult because lack of data for these costs

arguably due to general issues of cost allocation and the companies' vested interest

in non-disclosure of such information (Schehl 1994, p. 217). The complicatedness of

estimating these systemic costs is aggravated even more as the process of overall

6 Component-based Cost Estimation

123

system design is usually not a closed, clearly segregated course of action but

intricately interwoven with other parts of the development process.

In order to acquire at least indicative value of development costs other than

hardware and software costs literature and database research on the topic of

development cost allocation was conducted. No experts were interviewed as it

seems questionable if they are willing or capable of disclosing such information

given the constraints of market competitiveness. Secondary literature on costing

was searched and the databases statista (statista 2012), destatis (Statistisches

Bundesamt 2012b), Eurostat (COMM/ESTAT) and Research Data Centres of the

Federal Statistical Office and the statistical offices of the Länder (NRW 2002) were

scanned for information on research and development cost allocation.

One finding of the research was that detailed information is very sparse. If

information on companies' research and development cost is provided it is either in

absolutes for industry branches (e.g. Wiechers 2012), in relation to turnover or in

relation to total costs (e.g. Meisl 1988; VDMA 2009). Absolutes and turnover-related

numbers hold little information value for estimation purposes of this work and were

thus not considered further. Sources of research and development costs in relation

to total costs are displayed in Table 6.3-1.

Source Industry R&D percentage

of total cost
(Meisl 1988, p. 97) Defense 15%

(Ehrlenspiel 2007a, p. 397) Mechanical engineering 8.3%

(VDMA 2009, p. 67) Mechanical engineering 8.1%

(Schehl 1994, p. 219) Industries with low R&D

rate

1 to 3 %

Industries with average

R&D rate

5 to 8.5 %

Industries with high R&D

rate

10 to 25%

Table 6.3-1 Mentions of research and development proportion of total costs

For the mechanical engineering industry a more detailed cost allocation was found

that explains the average overhead cost structure in relation to the total costs. The

according cost hierarchy is depicted in Figure 6.3-1 (adopted from Ehrlenspiel

2007a, p. 397, percentages derived from VDMA 2009, p. 67; the sum of all

percentages is 100.1% due to rounding errors).

6 Component-based Cost Estimation

124

Figure 6.3-1 Cost structure in the machine engineering industry

6.3.2. System Designing Cost Model

Given the lack of data it is arguable if any attempt at estimating robot designing

costs should be made at all. As long as the basis of the estimates is fully disclosed it

is deemed more useful to the end of the objective of this work – namely decision-

making support – to provide estimates with a high degree of uncertainty rather than

omitting estimates. If the estimation model for the particular estimate is considered

by the estimator to be implausible it can be foregone; omission of an estimate,

however, can lead to a false impression of completeness.

In order to provide at least an orientational value for robot designing costs they are

modeled as a markup α on cost incurred for hardware and software of the

prototype:39

 (6.38)

Because no data is available as a default value for α a model that draws on the

knowledge of total cost ratios is applied. Average percentages of development costs

and manufacturing costs in relation to total costs (TC) are available from secondary

39Notice that
 is used instead of because software installation costs are not

separately incurred for the prototype; s. (6.12).

Total costs
(TC)

Manufacturing
costs (70.0%

TC)

Material
costs

(47.2% TC)

Material
direct
costs

(43.7% TC)

Material
overhead

costs
(3.5% TC)

Production
costs

(20.7% TC)

Production
labor costs
(9.4% TC)

Production
overhead

costs
(10.7% TC)

Special
production

direct
costs (0.6%

TC)

Costs for outside
assembly (2.1%

TC)

Development
and design
costs (8.1%

TC)

Special sales
direct costs
(5.4% TC)

Administration
& sales

overhead costs
(16.6% TC)

Administr.
overhead

costs (7.8%
TC)

Sales
overhead

costs
(8.8% TC)

6 Component-based Cost Estimation

125

literature. If the robot development project is regarded as if it were a separate

company it can be hypothesized that similar percentages apply accordingly.

Furthermore, if the costs

 estimated so far

are regarded as preliminary manufacturing costs MC and the robot designing costs

as the development and design costs DDC of the project according to Figure 6.3-1,

the known ratios can be used as a calculation basis for the derivation of markup α:

 (6.39)

 (6.40)

If and are the given ratios

(6.41)

(6.42)

then is approximated by the quotient of and :

 (6.43)

Employing values from Table 6.3-1 a corridor can be determined. Because service

robotics is considered a research intensive high-technology industry the interval for

industries with high research and development rates as indicated by Schehl appears

to be a cogent choice. Thus the minimum value for is assumed to be 0.1 and the

maximum value 0.25. As the percentage of manufacturing costs decreases with an

increase of the development costs must be adapted accordingly. Using the

average values depicted in Figure 6.3-1 as a reference i.e. . . ,

can be scaled in relation to as

(6.44)

Thus, the corridor for is calculated as

 .

 .
 .

(6.45)

 .

 .
 .

(6.46)

which means that systemic costs add between 14.6% and 43.8% to the hardware

and software related costs according to this model.

6 Component-based Cost Estimation

126

Because no information was available on the exact distribution of development and

design costs a beta distribution with a positive skew is assumed as these

costs are mainly labor costs; the expected value is assumed to lie at one third of the

corridor range

 . (6.47)

The variance of α is determined by applying (4.20) as

 .
(6.48)

With this auxiliary model the expected value of the robot designing costs is

(6.49)

and the variance is derived as

(6.50)

As noted earlier the presented model for robot designing costs is based on many

unconfirmed assumptions; the effort required to validate these is beyond the scope

of this work which is why this particular model is considered a tentative attempt to

alleviate lack of a detailed data basis. The results, however, were included in the

validation process explicated in Chapter 8.

6.4. Prototype Development Costs

The models for the separate cost blocks are combined into an aggregated cost

model for the development of a service robot prototype. According to Figure 6.1-1

the manufacturing cost function then takes the form

(6.51)

6 Component-based Cost Estimation

127

The software installation costs
 are not among the summands due to the

reasons explained in Chapter 6.4.

The expected value and variance of the prototype costs is calculated as the sum of

the expected values and variance, respectively for each cost subfunction.

Convolving the pertinent probability density functions yields the aggregate

probability density function which permits the localization of

probability quantiles of costs for a robot prototype.

6.5. Derivation of Unit Costs

Although development of prototypes lies in the focus of the presented approach

unit cost estimates are also modeled as they have the potential of providing

additional insight to the estimator. For the calculation of unit costs i.e. costs per

produced unit two different cost levels are computed in accordance with Figure 6.1-1.

The first unit cost level DUC includes only direct costs at the unit level which means

all development cost are exempt from this calculation. At this level the costs per

unit are

 (6.52)

As no economies of scale are considered in this approach the DUC are also the

marginal costs i.e. costs incurred per increment in produced units.

Expected value and variance of DUC are calculated as the sum of the expected

values and variances of the respectively pertinent cost blocks:

 (6.53)

 (6.54)

The second unit cost level PUC incorporates those costs that are directly related to

the product but do not vary with the number of produced units; these costs are

direct costs at the product level but indirect costs at the product unit level (s.

Chapter 10.1.3.1). For the calculation of the PUC all previously calculated costs in

this work are distributed among the number of produced units except the prototype

unit; the costs of the prototype are burdened on the remaining units.

(6.55)

6 Component-based Cost Estimation

128

Accordingly, the expected value and variance are

(6.56)

(6.57)

The probability density functions for DUC and PUC are computed by convolving the

corresponding distributions of the cost constituents.

Whereas the DUC properly reflect the cost causation per unit, the PUC is more

holistic in the sense that all product-related costs are incorporated. Both values are

amenable to further analysis e.g. cost-plus-pricing or comparison with target costs

thus providing input for information-based decision making. It should be noted,

however, that the unit costs derived with the described method cannot be seen as

realistic estimates for larger series production where cost-saving mass production

means are employed that are not considered here.

7 The Software Tool SEROCOST

129

7. The Software Tool SEROCOST

As a part of this thesis, a software tool was developed in order to implement a

method of computer aided application of the estimation methods described in the

previous chapters. A description of this tool is presented in this chapter.

7.1. Aim

The declared objective of the presented work is to support service robot developers

in their decision-making process. In order to fulfill the pertinent estimator

requirements (s. Chapter 2.3) a software application has been developed in

conjunction with the presented thesis. This tool called "SEROCOST" (short for

"Service Robot Cost Estimation") was designed to serve several purposes:

 Provide access to the data and cost models forming the basis of the presented

estimation approach

 Process provided data and user input according to the presented methods

 Present results in an aggregated and comprehensible way to the estimator

The application should warrant ease-of-use and applicability to reduce estimation

complexity; SEROCOST was designed with the goal in mind to allow a quick estimate

for service robot prototypes in less than one hour. Furthermore, traceability of

results is important to ensure estimator acceptance.

7.2. Features

The application SEROCOST is an application with a graphical, windows-based user

interface. It guides the estimator through a sequence of dialogs that are in

accordance with the estimation process presented in Chapter 4 (s. Figure 4.1-2).

Manifold possibilities to customize the estimation to the estimator's specific needs

render the tool flexible yet maintaining ease of use.

The first selection window after starting a calculation from the main menu presents

the user with lists of typical service robot skills as well as hardware and software

component types. Here, the user can select from the listed items by simply mouse-

clicking on the respective checkboxes (s. Figure 7.2-1). If desired the user can also

request default recommendations for least requirements, enhancements and

substitutes on each category which depend on the choices he has made so far.

7 The Software Tool SEROCOST

130

The following dialog allows the parameterization of the previously selected

hardware and software components (Figure 7.2-2). Each component is already

parameterized with default values from the database but the user can calibrate the

estimation to his concepts by changing hardware parameters and adding or

removing software packages from the selection.

The third and final window of the calculation process displays the essential cost

estimates in a clearly arranged fashion (Figure 7.2-3). The estimates presented here

include all cost constituents – cost for hardware material, installation and

administration, software development and installation and system designing costs –

and the overall cost estimates for a prototype, for direct unit costs as well as

product unit costs. Furthermore the basic parameters for wage rates, number of

units to be built and productivity rates are displayed, all of which can be changed by

the user in order to modify the estimation calculation. This window offers a

multitude of further customization possibilities of the estimation, e.g. excluding any

of the cost constituents or overriding singular estimation parts with own

estimations.

At each step the results and choices can be saved to an Excel file and loaded from

such an Excel file. These files are designed in such a way that they can be

interpreted by users without the Software tool SEROCOST.

7 The Software Tool SEROCOST

131

Figure 7.2-1 Step 1: Selecting tasks and component types

Figure 7.2-2 Step 2 Parameterization of components

Task selection HW selection SW selection

Automatic suggestions

HW components

HW component

parameterization
SW package selections

SW components

7 The Software Tool SEROCOST

132

Figure 7.2-3 Step 3 Overview of calculated estimates

Basic estimation parameters

HW cost constituents HW component costs

SW component costs SW cost constituents

Designing Cost

Estimates for prototype and unit

costs

Partial aggregates

7 The Software Tool SEROCOST

133

7.3. Basic Architecture

The SEROCOST application consists of three basic elements. The main application

which was implemented in C# and XAML provides the graphical user interface as

previously described and the control components of the estimation process.

A PostgreSQL database holds the data on skills, hardware and software component

types, dependencies between them and further data like default values for

hardware parameters and software packages. The database can be deployed locally

or on a remote server.

The third component is the R statistics software which is a separate environment for

statistical computing developed as an open source GNU project by Bell Laboratories

(RDCT 2006). Interfacing with R permits the reliable on-the-fly calculation of

distribution functions and statistical measures used in the presented approach.

Figure 7.3-1 Basic architecture of the software tool SEROCOST

The described combination was chosen in order to reduce development time and

apply state of the art techniques for statistical calculation and knowledge

management.

8 Experimental Validation

134

8. Experimental Validation

Ideally, an estimate for a service robot would be conducted in an early product

phase and then compared with the actual costs once the robot prototype is finished.

Due to the typical development spanning years this validation method appears

hardly practicable. Instead, two alternatives were applied for verifying the

approach's usefulness.

8.1. Validation Methods

The first validation method consists in comparing the estimations of the presented

approach with estimations of the EFFIROB study.40 The EFFIROB scenarios are an

appropriate reference for validation comparisons as they provide data on software

and hardware cost estimates generated by service robot experts. Furthermore, as

the service robot designs described in EFFIROB represent concept sketches and not

actually built robots the cost estimates map well with the early phase estimation

approach in this work. The comparison of estimates was conducted quantitatively

and qualitatively: Absolute and relative differences between original and new

estimate were calculated and interpreted; secondly, the estimation results were

presented to and assessed by the individual expert who had calculated the original

estimate. Because the presented approach allows the calculation of several cost

aggregation levels, different aggregation forms were compared with the original

estimate and the expert's opinion on their validity elicited.

The second validation method contrasts the estimated and actual costs of a

completed service robot prototype, the autonomous lawn mower "Raser" with an

estimate created using the presented approach and project background data. The

Raser project was chosen because its specific objective was the development of a

service robot prototype, the cost data available from this project are sufficiently

detailed, and the robot concept fits well into the definition of service robot applied

in the presented approach. The new estimate was compared with the original a

priori cost estimate and the actual costs incurred. Additionally, the results were

40Each scenario details two variants of a concept. For the verification process, only variant "A" was

used.

8 Experimental Validation

135

presented to one of the developers involved in the Raser project elicitating his

assessment of the new estimate.

Both validation methods apply the deviation of the estimates based on the

presented approach from original estimates or actual costs, respectively, as a

performance indicator. In order to assess the significance of the discrepancies they

are related to cost estimation error ranges that have been observed in the past. As

indicated in Table 4.4-4 errors between -75% and +300% can be expected for the

initial concept phase, -33% and +50%, respectively, are still common once all

requirements have been established. Another study on forecasting errors reports

that the average estimation inaccuracy compared to actual costs for rail

construction projects is -51.4% and that 40% of the project deviated more than

±60% from the initial estimate, 84% revealed inaccuracies over ±20% (Flyvberg 2008,

pp. 6–7). Thus, the discrepancies found in the validation process of the presented

work are assessed in relation to this magnitude of plausibly expectable errors.

In the following explanations, the estimates based on the presented approach are

referred to as new estimates whereas the values to which they are compared to are

referenced as original estimates in order to distinguish terminologically between the

different estimations.

8.2. Comparison with EFFIROB Estimates

In the EFFIROB study, the lifecycle costs for eleven conceivable service robots are

analyzed. In order to derive lifecycle costs the costs for each service robot are

extrapolated from design sketches based on the robot functionality required in each

respective scenario. While the deduction of robot components from required skills is

similar to the presented approach the costs for a prototype are not explicitly

addressed in EFFIROB. For this reason some of the data had to be preprocessed in

order to render a comparison possible; the detailed method is described in Chapter

8.2.1. To achieve a comprehensive view on the estimation and the several estimated

cost constituents, several aggregation levels were calculated and contrasted with

the analogon of the original scenario estimate.

8 Experimental Validation

136

8.2.1. Assessment Method

The validation by comparison with EFFIROB estimates was conducted following a

procedure with several steps as depicted in Figure 8.2-1.

Figure 8.2-1 Validation process based on EFFIROB comparison

In order to render new and original estimates comparable they must be based on

the same basic parameters. The parameters that are used throughout all EFFIROB

scenarios and also required for the new estimation approach are the developers'

wage rate, the number of robot units to be produced and the experience level of the

software development team.

The wage rate is explicitly numeralized as 10,000 € per month including ancillary

labor costs (Hägele 2010, p. 43); this wage rate is thus also applied in the new

approach for both engineers and software developers. As no specification on

workdays per month is given in the EFFIROB study, this value was set to 22 for the

new estimations.

The number of units is not used as a parameter to determine robot prices in

EFFIROB but is accounted for in the respective profitability analyses. Each scenario

explicitly indicates the market potential of robot units () under consideration

of the robot's estimated lifespan (ibid., p. 57). This value was used for the derivation

of product unit costs i.e. burdening indirect costs like software development cost on

the direct unit cost.

The experience level of the software development team is not stated explicitly in the

EFFIROB study but can be extracted from the software cost model. The software

costs are calculated using average productivity (Jones 2007, p. 144) which is the rate

the presented approach applies for average team experience level. This value was

adopted for the new estimations in order to ensure comparability with the original

estimates (Hägele 2010, p. 43).

Determination of
basic parameters

Derivation
of original

cost
estimates

Extraction of
scenario
specific
values

Calculation
of new cost
estimates

Comparison
of

quantitative
differences

Expert
opinion

elicitation

8 Experimental Validation

137

In the next step different cost aggregates of the original estimates were derived. The

EFFIROB study explicitly indicates acquisition cost () for a service robot

and software development costs (
) separately. The latter can be directly

compared with the new estimates for software development. However, acquisition

costs are regarded from the user's and not the manufacturer's perspective, they are

indicated as the cost of hardware components including installation plus a 30% price

markup. Deducting the markup yields the EFFIROB direct unit cost ()

estimate which is also identical to the hardware cost estimate (labor and material)

as software costs are not burdened on the units in the EFFIROB study.

To permit further comparisons, prototype cost (

) and product unit cost

() estimates were also derived from the given estimates. The EFFIROB

prototype cost estimate is calculated as hardware costs (s. above) for one robot plus

software development costs; product unit costs are calculated as software

development costs plus hardware costs for a number of robot units indicated by the

market potential plus one unit for the prototype, divided by the number of

marketed robot units i.e. the costs for the prototype are burdened on the marketed

units.

 .

(8.1)

 (8.2)

(8.3)

The next step concerns the extraction of scenario specific parameters for the

calculation of new estimates. Required robot skills, hardware and software

components and the pertinent parameter values were determined by analyzing the

robot functions and component specifications described in the respective EFFIROB

scenarios. The robot task descriptions were mapped to the generic robot skills and

the component type selection suggested by the software tool adapted according to

the design sketches. Parameters for hardware components were adopted where

available otherwise plausible values were assumed. Because the specification of

software components in the scenario descriptions is rather generic, the section of

8 Experimental Validation

138

required software components was similarly based on plausible assumptions fitting

the given explanations. The details of each selection can be found in Appendix 10.5.

After determining the robot's cost relevant parameters, the different cost

constituents and cost aggregates were calculated as explained in Chapter 6. The cost

constituents calculated are

 Hardware material costs per robot unit

 Hardware installation costs per robot unit

 Hardware administrative costs

 Software development costs

 Software installation costs per robot unit except prototype

 System designing costs

The various cost aggregations calculated are

 Prototype costs including all cost constituents

 Product unit costs including all cost constituents

 Prototype costs including all cost constituents except system designing cost

 Product unit costs including all cost constituents except system designing cost

 Prototype costs including all cost constituents except system designing cost

and hardware administrative costs

 Product unit costs including all cost constituents except system designing cost

and hardware administrative costs

 Direct unit costs

Expected value, standard deviation as well as first and third quartile were computed

for each cost estimate. The reason for calculating several aggregates is to find out

which cost estimate meets the highest acceptance by expert opinion.

After the calculation of the new cost estimates the absolute and relative

differences41 to the corresponding original estimate were determined and

interpreted. Large differences are an indicator for potential systemic estimation bias

41Relative differences were calculated with the original estimate representing the 100% reference.

8 Experimental Validation

139

whereas proximity to the original values is regarded as an indication of valid

estimates; thresholds for difference classification are adopted from Table 4.4-4.

In a final step the documented calculation and the results were presented to the

author of the original EFFIROB scenario description and his judgment elicited using a

prepared questionnaire. The questionnaire surveys the opinion on the estimation

results of the individual cost constituents, the various aggregation forms and the

applicability of the approach; the questionnaire used can be found in Appendix 10.6.

Based on the expert's opinion, the validity of the new estimate and the general

usefulness of the approach were assessed.

8.2.1.1. Questionnaire Setup

The questionnaire contains ten questions, nine of which (questions Q1 to Q9) permit

response on a Likert scale, one (question Q10) is an open question. Furthermore,

each question also provides the possibility for further comments in a separate

comment field. Because the available data in the Raser verification case differs from

the EFFIROB scenarios, a modified version of the questionnaire was used for the

Raser scenario.

Question Q1 addresses the estimate's relative quality for hardware (Q1.1) and

software (Q1.2) costs by asking how realistic the most appropriate aggregate is

assessed in comparison to the original cost estimate. In the Raser case, the main

distinction is between material and labor, thus these are used as items to be

assessed instead of hardware and software cost. Possible responses are 'much more

realistic', 'more realistic', 'equally realistic', 'less realistic', 'much less realistic', and 'I

don't know'.

Questions Q2 to Q4 serve to assess the estimates for the various cost constituents

independently from the original estimates by direct elicitation of the expert's

opinion e.g. "How do you assess the hardware cost estimation?" (question Q2).

Question Q2 and Q3 address the constituents of each of these main cost blocks

(Q2.1 to Q.2.2 and Q.3.1 to Q3.3, respectively), and Question Q4 surveys the opinion

on system designing costs (Q4.1). Because in the Raser case, software installation

costs and hardware administrative costs are not computed as a separate cost

constituent, the modified questionnaire does not survey these items. Each item

8 Experimental Validation

140

offers five response possibilities: 'very realistic', 'reasonably realistic', 'somewhat

unrealistic', 'very unrealistic', and 'I don't know'.

Question Q5 surveys the usefulness of indicating standard deviation and

interquartile range. For each of these (Q5.1 and Q5.2), possible answers are 'very

helpful', 'helpful to some degree', 'neither helpful nor confusing', 'confusing to some

degree', 'very confusing' and 'I don't know'.

Question Q6 is aimed at finding out which cost aggregate the expert considers the

most meaningful for cost estimate of prototype (Q6.1) and product level (Q6.2)

units. For each of these two the possible responses are 'including all cost

constituents', 'excluding system designing cost', excluding system designing costs,

hardware administrative costs', 'direct unit costs', 'none of the above', and 'I don't

know'. For the Raser case, only prototype costs are considered and thus the item

product level units is not surveyed in the modified questionnaire.

Question Q7 to Q9 address the support value of the presented approach in

combination with other estimation methods. Question Q7 surveys in how far the

expert considers the additional support by the tool SEROCOST helpful (Q7.1),

possible responses are 'very helpful', 'helpful to some degree', 'neither helpful nor

confusing', 'confusing to some degree', 'very confusing', and 'I don't know'. Question

Q8 surveys how the expert would combine original and SEROCOST estimate for

hardware (Q8.1) and software (Q8.2) cost each. Possible responses are 'replace

original values with SEROCOST values', 'find a compromise between both values',

'keep old values', and 'I don't know'. Question Q9 examines the expert's acceptance

of tool and approach by asking if he or she would use it in the future if an early

phase cost estimate for a service robot were required (Q9.1). Possible responses are

'definitely', 'probably', 'maybe', 'probably not', 'definitely not', and 'I don't know'.

The final question (question Q10) is an open question where opinions on strengths

and weaknesses not covered in the previous questions can be stated.

8.2.1.2. Questionnaire Evaluation

The responses from the expert interviews were evaluated in various ways in order

to assess if the objective of facilitating cost estimation for service robot prototypes

has been met.

8 Experimental Validation

141

Positive, neutral (where applicable) and negative assessments were accumulated

and compared for the questions with ordinal response scales Q1 to Q5 and Q7 to

Q9. This evaluation yields an overview over the tendency of the assessments.

Question Q6 has a nominal response scales and question Q10 is an open question;

therefore these were exempt from this evaluation method. Because the

questionnaire had been modified for the Raser estimation scenario the respective

responses were evaluated separately.

Furthermore, ordinal responses were assigned integer values in order to calculate

the median response and average values for each question, ranging from -2 for the

most negative possible answer to +2 for the most positive possible answer, 0 for

neutral responses where applicable. As question Q8 only offers the choice between

the three response types of preferring the original estimate, compromising between

new and original estimate, and preferring the new estimate the assigned values are -

1, 0, and +1 , respectively. For each question the median of the responses was

calculated to indicate the dominant judgment; additionally, the average value is also

calculated to give a more detailed impression of the assessment tendency.

The responses to question Q6 indicate which aggregate the experts preferred. These

responses are nominal i.e. no aggregate is considered better or worse than another

one. The mentions for each aggregate are counted; the prevalence rates indicate

the subjective suitability of the aggregates for cost estimation.

Comments and answers to question Q10 were segregated into the categories

'related to a specific cost constituent', related to the approach as a whole', and

'related to the software tool SEROCOST' and marked as either positive, negative and

neutral statements; similar remarks were aggregated and the number of mentions

counted. This qualitative evaluation adds additional information on the expert

assessment of the approach.

8.2.2. EFFIROB Scenarios

Five scenarios were picked from the EFFIROB study as a heterogeneous collection of

use cases representing conceivable service robots with largely varying purposes and

designs. The scenarios selected are "Provisioning of Care Utensils", "Ground-crop

8 Experimental Validation

142

Harvesting", "Floor Cleaning", "Container Transport in Hospitals" and "Assistance

with Interior Finishing Works".

8.2.2.1. Provisioning of Care Utensils

The scenario for care utensil provisioning describes a concept for a service robot

that can replace conventional medical carts in homes and reduce care staff

workload by supplying staff members with required care utensils. It is able to

restock autonomously from a central store and to travel to specified rooms where

care utensils are needed while keeping track of the consumption of the delivered

items. It features a mobile platform with room for item storage and dispensing and a

robot arm with a gripper so it fits well into the notion of service robots as conceived

in the presented work.

In the EFFIROB study, the direct cost of this robot are indicated as 117,200 € and the

software development cost as 6,886,000 €. The derived prototype costs are

calculated to amount to 7,003,200 €, product unit cost lie at 409,000 €.

The new estimates calculated for the main cost constituents are displayed in Table

8.2-1. The system designing costs depend on the values of the other cost

constituents; the indicated value is calculated for the aggregation form of including

all cost constituents.

Figure 8.2-2 Design sketch for care utensil service robot

8 Experimental Validation

143

The removal mechanism for item dispensing, the linear axis on which the robot arm

is mounted and the WLAN router could not be estimated by the component type

specific models because they did not fit any of the component types other than

miscellaneous tools or miscellaneous structural hardware. For these items, the

estimates from the original are adopted as they were.

Cost type Expected

value

Standard

deviation

First

quartile

Third

quartile

Material (per unit) 121,389.58 € 11,183.26 € 113,870.33 € 128,908.84 €

Hardware installation (per unit) 21,900.00 € 13,950.00 € 10,813.14 € 29,421.70 €

Administration 36,575.00 € 1,741.67 € 35,308.97 € 37,841.03 €

Software development 5,814,611.29 € 972,242.91 € 5,117,914.34 € 6,428,873.08 €

Software installation (per unit,

not for prototype)

568.18 € 190.91 € 418.62 € 693.92 €

System designing 1,456,657.64

€

378,552.25 € 1,182,376.29

€

 1,688,607.26

€
Table 8.2-1 New estimates for cost constituents of the care utensil scenario

The different cost constituents were subsequently combined into various cost forms

according to the formulas described in Chapter 6. These cost aggregates are

indicated in Table 8.2-2. The software costs are invariant for the aggregates and thus

already listed in Table 8.2-1.

As software development cost and direct unit cost are invariant to the cost

aggregate form their comparison is straightforward. The new estimate of the direct

unit cost lies 22.75% above the direct unit cost derived in the EFFIROB study,

software development cost lie 15.56% below the original value. These differences

are well within the limits of estimation errors for an early phase estimate and thus

these estimates can be considered close to each other.

Prototype cost, product unit cost and hardware cost need to be regarded separately

for each cost aggregation. In the most comprehensive aggregate, the new prototype

cost estimate lies 6.4% higher than the original one and thus can be considered very

close. Product unit costs are estimated to be 11.08% larger than in the original

which is also a small difference. Hardware costs however are estimated to be

53.47% higher than in the EFFIROB study. This is a difference that is still plausible as

differences in early design phases can assume more than 100% but it also indicates

that the different estimation methods lead to significantly differing values. A

8 Experimental Validation

144

possible explanation for this discrepancy is the inclusion of administrative cost for

hardware components in the presented approach, a cost constituent which was not

considered in the EFFIROB study.

Cost type Expected

value

Standard

deviation

First quartile Third quartile

Aggregate variant: All cost constituents
Prototype cost 7,451,133.51 € 1,043,494.80 € 6,709,661.54 € 8,115,678.09 €

Product unit

cost

454,321.66 € 47,294.78 € 420,971.39 € 484,606.70 €

Hardware cost 179,864.58 € 17,963.88 € 167,191.01 € 191,121.83 €

Aggregate variant: Excluding system designing cost
Prototype cost 5,994,475.87 € 972,408.85 € 5,297,505.71 € 6,608,545.06 €

Product unit

cost

393,627.59 € 44,586.69 € 362,000.32 € 422,018.08 €

Hardware cost 179,864.58 € 17,963.88 € 167,191.01 € 191,121.83 €

Aggregate variant: Excluding system designing cost, hardware admin. cost
Prototype cost 5,957,900.87 € 972,407.29 € 5,259,576.98 € 6,570,616.47 €

Product unit

cost

392,103.64 € 44,586.64 € 360,450.08 € 420,457.86 €

Hardware cost 143,289.58 € 17,879.25 € 130,752.43 € 153,936.05 €

Aggregate invariant
Direct unit cost 143,857.77 € 17,880.27 € 131,309.44 € 154,547.79 €

Table 8.2-2 Cost aggregate estimations for care utensil scenario

The cost aggregate disregarding system designing cost presents a similar difference

profile; the new prototype cost estimate lies 14.4% below the original, product unit

costs are very close to the original with a difference of only 3.76%. The hardware

cost difference remains equal to the previous aggregate. Excluding the hardware

administrative cost brings the hardware costs much closer to the original, the

difference shrinking to 22.26%; prototype cost and product unit cost estimates stay

close to the original estimates with differences of -14.93% and -4.13% respectively.

Overall, the least comprehensive aggregate numerically leaves the impression to be

the most compatible estimate to the original EFFIROB values.

The expert's general impression of the estimated value was positive. Although she

pointed out that she would have chosen a slightly different hardware selection

hardware costs were judged to be more realistic and software costs to be equally

8 Experimental Validation

145

realistic in comparison to the original values.42 However, hardware administrative

costs were considered as tending too high and thus somewhat unrealistic; the

system designing costs were regarded as very unrealistic. The usefulness of the

approach was assessed as high, the expert stated that she would probably replace

original estimates with the new estimates excluding the designing costs and use the

estimation tool in the future estimation situations.

8.2.2.2. Ground-crop Harvesting

The EFFIROB scenario for ground-crop harvesting describes a robot that is able to

harvest and grade ground-crops e.g. lettuce. The primary components are six robot

arms with three-finger grippers and appropriate sensors mounted on a large

horizontal linear axis. It is designed to be dragged behind a tractor so the robot is

mobile in the sense that is used while being moved but is not able to do so on its

own accord. Thus, this service robot is not based on an autonomous mobile

platform typically found in many service robot concepts which makes it an

appropriate case for analyzing if the presented approach is amenable to more

unusual designs, too.

Figure 8.2-3 Design sketch of ground-crop service robot

42The estimate was computed with one controlling unit, the expert indicated that two might be

more realistic which would have increased materials costs by 1,972 €.

8 Experimental Validation

146

Direct costs in the original estimate amount to 541,615 € and software development

cost to 903,100 €. Prototype costs are estimated to be 4,871,392 € and product unit

cost 767,155 €.

The new estimates of main cost constituents for the ground-crop harvesting service

robot are displayed in Table 8.2-3; the different aggregates of these are listed in Table

8.2-4.

Cost type Expected

value

Standard

deviation

First

quartile

Third

quartile
Material (per unit) 564,761.94 € 85,362.59 € 507,366.92 € 622,156.95 €

Hardware installation (per unit) 33,845.45 € 21,559.09 € 16,711.22 € 45,469.90 €

Administration 23,100.00 € 1,100.00 € 22,300.40 € 23,899.60 €

Software development 3,245,956.24 € 921,900.92 € 2,555,077.78 € 3,770,080.83 €

Software installation (per unit, not for

prototype)
568.18 € 190.91 € 418.62 € 693.92 €

System designing 939,842.26 € 296,909.74 € 721,305.47 € 1,114,313.03 €

Table 8.2-3 New estimates for cost constituents of ground-crop harvest scenario

The cost estimates for the linear axis and the three-hand gripper were adopted from

the original because they did not fit into the component type cost models. The

gripper could not be estimated using the regressive cost model because the model

was derived from data for jaw-like grippers only.

Comparing the estimates showed that the direct unit costs are close to each other

with the new estimate being 10.63% higher; the original estimate thus lies well

within the interquartile range of the new estimate. The software development costs,

however, differ significantly: The new estimate exceeds the original by 259.42%

which is already very close to the upper threshold of 300% for typical estimation

errors in early design stages.

Further analysis revealed that a large proportion of the new estimate for software

development stems from arm and gripper planning and control. This large

discrepancy was discussed with the creator of the original estimate. The author of

the original scenario found that the new software cost estimate was too high

because in his opinion arm and gripper control and planning are not as complex and

thus cost-intensive as the new estimate suggests. He also suggested that the

8 Experimental Validation

147

increase of costs in the estimate could stem from the large expansion of the ROS

software that had taken place in the meantime.43

Cost type Expected

value

Standard

deviation

First quartile Third quartile

Aggregate variant: All cost constituents
Prototype cost 4,807,505.90 € 972,527.37 € 4,092,939.99 € 5,371,484.86 €

Product unit

cost

759,425.77 € 96,536.38 € 694,195.15 € 823,853.29 €

Hardware cost 621,707.39 € 88,049.85 € 562,412.80 € 680,798.88 €

Aggregate variant: Excluding system designing cost
Prototype cost 3,867,663.63 € 926,176.41 € 3,206,353.93 € 4,427,735.59 €

Product unit

cost

728,097.69 € 96,028.76 € 664,250.43 € 793,191.72 €

Hardware cost 621,707.39 € 88,049.85 € 562,412.80 € 680,798.88 €

Aggregate variant: Excluding system designing cost, hardware admin. cost
Prototype cost 3,844,563.63 € 926,095.50 € 3,151,456.17 € 4,370,516.31 €

Product unit

cost

727,327.69 € 96,027.71 € 662,439.40 € 791,375.79 €

Hardware cost 598,607.39 € 88,042.98 € 539,350.67 € 657,713.38 €

Aggregate invariant
Direct unit cost 599,175.57 € 88,043.19 € 539,876.17 € 658,228.09 €

Table 8.2-4 Cost aggregate estimations for ground-crop harvest scenario

By heavily reducing the number of selected packages for the concerned software

component types the software development cost estimate could be shrunk from

3,245,956 € to 1,608,411 €, this reduction also propagates to system designing costs

and prototype costs. The revised calculations were also presented to the same

expert: The new software development estimate was judged to be more realistic,

the system designing cost at 541,919 € as still too high; the expert stated that

300,000 € could be a plausible value.

Due to the initially large difference the initial prototype cost estimates differ largely,

too; the initial new estimate lies 232.76% higher at the highest aggregation level,

167.71% if system designing costs are excluded and 166.11% higher if hardware

administrative costs are also disregarded. Even though the discrepancy for software

43From May 2009 to November 2010 alone, the number of available packages has more than

quadrupled, s. (Boren 2011, p. 20).

8 Experimental Validation

148

development is significant the product unit costs at the three aggregation levels

differ 28.77%, 23.45% and 23.32% respectively which is a moderate deviation.

Material costs also only differ by 14.79%.

Even though the initial software cost estimate according to the new approach was

assessed as less realistic than the original estimate the overall judgment was

positive. Hardware costs were considered as much more realistic in general:

material costs as very realistic and installation costs as reasonably realistic but

administrative costs were considered somewhat unrealistic. The latter were found

as tending to be too high and the interquartile range as too narrow. Software

installation costs were regarded as very realistic but system designing costs as too

high and thus somewhat unrealistic.

The availability of standard deviation and interquartile range was pointed out to be

very helpful especially when contrasted with the point estimates in the EFFIROB

study. Furthermore, the expert stressed that even though the approach and the

accompanying software tool cannot replace expert "gut feeling" they were

considered a valuable support for early cost estimations.

8.2.2.3. Floor Cleaning

The floor cleaning service robot presented in the EFFIROB study is designed for

autonomous cleaning service within office buildings. To this end it features a variety

of sensors (laser scanners, ultrasonic arrays, cameras) and also a robot arm which

allows the unlocking and opening of doors. The robot is meant to provide its service

in a typical office environment so it must be able to robustly navigate in spite of

possibly repositioned objects like tables or waste bins. The concept also includes a

separable floor cleaning unit which is operated by the robot arm.

The original estimate for direct unit costs and hardware costs are indicated as

71,900 €, software development costs amount to 14,436,400 €. These numbers

yield prototype costs of 14,498,300 € and product unit costs of 118,972 €. As the

design was found unprofitable at these costs the EFFIROB study states that zero

units could be marketed; however, a theoretical market saturation potential of 308

robots is pointed out. This number was used for the derivation of product unit costs.

8 Experimental Validation

149

Figure 8.2-4 Design sketch of floor-cleaning service robot

Most of the components from the given design are amenable to the presented cost

models; the only exception is the cleaning unit which was classified as a

miscellaneous tool. For this tool, the original cost estimate was adopted. The

resulting estimates for the main cost blocks are displayed in Table 8.2-5. The different

aggregations are presented in Table 8.2-6.

Cost type Expected

value

Standard

deviation

First

quartile

Third

quartile
Material (per unit) 55,441.02 € 10,930.45 € 48,091.74 € 62,790.30 €

Hardware installation (per unit) 15,927.27 € 10,145.45 € 7,864.11 € 21,397.60 €

Administration 26,950.00 € 1,283.33 € 26,017.13 € 27,882.87 €

Software development 4,227,684.71

€

936,587.63 € 3,541,810.77

€

4,796,908.35

€ Software installation (per unit, not

for prototype)

568.18 € 190.91 € 418.62 € 693.92 €

System designing 1,051,267.25

€

313,490.50 € 821,994.46 € 1,238,599.36

€
Table 8.2-5 New estimates for cost constituents of floor cleaning scenario

The new direct unit cost estimate is almost identical to the original with an excess of

only 0.05%. Similarly, hardware costs excluding hardware administrative costs only

lie 0.74% below; including the administrative costs (first and second aggregate)

yields a surplus of 36.74%, an value still well within the expectable margins.

8 Experimental Validation

150

Cost type Expected

value

Standard

deviation

First quartile Third quartile

Aggregate variant: All cost constituents
Prototype cost 5,377,221.73 € 987,773.62 € 4,661,011.77 € 5,983,490.86 €

Product unit cost 89,394.99 € 15,302.64 € 78,840.34 € 99,208.78 €

Hardware cost 71,455.51 € 14,913.25 € 87,936.89 € 107,919.62 €

Aggregate variant: Excluding system designing cost
Prototype cost 4,326,003.00 € 936,707.23 € 3,639,869.41 € 4,895,042.64 €

Product unit cost 85,981.94 € 15,268.75 € 75,437.65 € 95,735.61 €

Hardware cost 71,455.51 € 14,913.25 € 45,505.04 € 60,197.54 €

Aggregate variant: Excluding system designing cost, hardware admin. cost
Prototype cost 4,299,053.00 € 936,706.35 € 3,611,423.68 € 4,866,596.65 €

Product unit cost 85,894.44 € 15,268.75 € 75,346.68 € 95,642.56 €

Hardware cost 71,368.29 € 14,913.25 € 61,049.87 € 80,655.38 €

Aggregate invariant
Direct unit cost 71,936.47 € 14,914.47 € 61,611.66 € 81,252.42 €

Table 8.2-6 Cost aggregate estimations for floor cleaning scenario

In contrast, the new estimate for software development costs grossly undercuts the

original by 70.69% which is close to the lower error margin of -75%. This large

difference could possibly be caused by the fact that the software cost estimation

method applied in the EFFIROB study does not discern installed and developed

packages. This could have the effect that a large proportion of software components

had been estimated to be developed whereas the new approach excluded these

from development cost. In order to find out the discrepancy was explicitly discussed

with the creator of the original estimate. The expert agreed that the original cost

estimate for software was probably too high and that the differentiation between

components to be developed and those only to be installed appears more realistic.

Due to the large discrepancy in software costs, the new cost estimates lie far below

the original: -62.91% when all cost constituents are considered, -70.16% excluding

system designing costs and -70.35% further excluding hardware administrative

costs.

The overall judgment was that the hardware cost estimate was equally realistic and

the software cost estimate more realistic than the original values. Hardware

administrative costs were not assessed because the expert did not consider the cost

8 Experimental Validation

151

definition as sufficiently transparent. Software installation costs were regarded as

very unrealistic unless installation would be automatic; the expert's opinion was

that installation would take much longer and thus cost more. System designing costs

were considered too high and thus somewhat unrealistic. The expert indicated that

he could not assess the additional information given by interquartile range and

standard deviation because he considered himself too inexperienced with statistical

measures. He regarded the tool as helpful and pointed out that if the time effort

spent to calculate the estimates amounted to circa an hour he would "definitely"

apply the presented approach in order to arrive at an early order-of-magnitude cost

estimate.

8.2.2.4. Container Transport in Hospitals

The container transport scenario presents the idea of a service robot that is able to

autonomously transport containers or beds in a hospital environment. Its central

feature is a mobile platform of a particularly flat design which permits it to position

itself below the transport object and lift it with is built-in lifter from the ground.

The originally estimated direct unit costs and hardware costs for the container

transporting robot are 43,800 € and software development costs add up to

3,336,900 €. Accordingly, prototype costs amount to 3,380,700 € and product unit

cost 50,843 €.

Figure 8.2-5 Design sketch of container transporting service robot

8 Experimental Validation

152

The new estimates for the main cost constituents are depicted in Table 8.2-7, the

aggregations in Table 8.2-8. Components not estimated separately are the

miscellaneous structural hardware components WLAN router and RFID reader as

well as the miscellaneous end effector component i.e. the lifting mechanism.

Cost type Expected

value

Standard

deviation

First

quartile

Third

quartile

Material (per unit) 52,539.38 € 4,318.18 € 49,635.98 € 55,442.78 €

Hardware installation (per unit) 14,600.00 € 9,300.00 € 7,208.76 € 19,614.47 €

Administration 23,100.00 € 1,100.00 € 22,300.40 € 23,899.60 €

Software Development 1,881,798.45

€

302,103.78 € 1,668,786.23

€

2,078,207.95

€ Software installation (per unit, not

for prototype)

568.18 € 190.91 € 418.62 € 693.92 €

System designing 479,205.19 € 121,801.23 € 391,604.63 € 555,483.92 €

Table 8.2-7 New estimates for cost constituents for hospital container transport scenario

The results of the comparison leave an unclear picture: While the new estimate for

software development is 43.61% below the original the new hardware cost

estimates lie significantly above them with 106.03% surplus for the two more

comprehensive aggregates and still 53.29% excluding hardware administrative costs.

Further analysis revealed that the cost estimation for the platform component were

the principal source of this difference: While the EFFIROB study states the cost for

the platform to be 30,000 € including installation costs, the model estimates it to be

circa 40,000 € excluding installation costs at a parameterization of 300 kg weight,

275 kg payload and 1.8 m2 footprint size. As this component accounts for almost

three quarters of the original cost estimate the deviation results in a significant

relative difference. As these values are close to the upper limit of the model

parameters for platform weight and payload (350 kg and 300 kg, respectively)

border effects could also have influenced this specific cost estimate. Furthermore,

the inclusion of components not considered in the original estimate e.g. power

supply possibly biases the new estimates towards higher values. Because the

hardware component costs dominate the direct unit costs, these also exceed the

original by 54.58%.

8 Experimental Validation

153

Cost type Expected

value

Standard

deviation

First quartile Third quartile

Aggregate variant: All cost constituents
Prototype cost 2,451,243.02 € 325,896.58 € 2,222,209.56 € 2,663,094.93 €

Product unit cost 72,814.32 € 10,299.13 € 65,317.43 € 78,998.68 €

Hardware cost 67,187.41 € 10,312.45 € 82,670.22 € 96,496.72 €

Aggregate variant: Excluding system designing cost
Prototype cost 1,972,037.83 € 302,279.74 € 1,758,484.21 € 2,167,945.05 €

Product unit cost 71,815.98 € 10,296.01 € 64,304.54 € 77,961.68 €

Hardware cost 67,187.41 € 10,312.45 € 82,670.22 € 96,496.72 €

Aggregate variant: Excluding system designing cost, hardware admin. cost
Prototype cost 1,948,937.83 € 302,277.74 € 173,573.86 € 2,145,034.72 €

Product unit cost 71,767.85 € 10,296.01 € 64,256.25 € 77,912.45 €

Hardware cost 67,139.38 € 10,253.62 € 59,722.92 € 72,860.32 €

Aggregate invariant
Direct unit cost 67,707.56 € 10,255.39 € 60,271.50 € 73,496.70 €

Table 8.2-8 Cost aggregate estimations for hospital container transport scenario

However, the new prototype cost estimate undercuts the original by 27.49% at the

most comprehensive aggregation level and by 42.35% excluding system designing

and hardware administrative costs. This is due to the prevalence of the software

cost. In contrast, the product unit costs at the three aggregation levels are 41.16%

to 43.21% higher than in the EFFIROB estimate because at the indicated level for

market saturation with 480 units the burdened software development costs plays a

less significant role than the hardware costs.

The expert's opinion on the results was ambiguous: Whereas most component cost

estimates were considered appropriate, the cost estimate for the mobile platform

and thus the total hardware cost estimate were assessed as too high and thus less

realistic than the original. A possible explanation suggested by the expert was that

most platforms in the considered price range already have integrated sensors and

provide ready-to-use software so that mere material costs should be lower. The

expert also pointed out that the indicated hardware costs were reasonable for

prototypes but that he expects them to decrease for manufacturing of larger unit

numbers. Software costs in genereal, however, were judged as more realistic. The

system designing costs were considered somewhat unrealistic, the expert guessed

that 200,000 € instead of the estimated 479,205 € would be more reasonable.

8 Experimental Validation

154

Nevertheless, the general approach and the software tool were considered a very

helpful support for decision-making in early development phases as it provides the

possibility to adjust estimations created by different methods. Particularly positive

aspects pointed out were the provision of standard deviations and interquartile

ranges as additional information on estimation uncertainty, the formalism of the

approach and the availability of component cost models. Aside from the poor

performance for the platform cost estimation, another mentioned disadvantage was

the approach's dependency on up-to-date cost models.

8.2.2.5. Assistance with Interior Finishing Works

The scenario for interior finishing works outlines a service robot that is designed to

assist with typical work activities associated with dry-wall mounting like installing

profile rails, drilling holes and sanding down walls. It mainly consists of a mobile

platform and a multi-purpose robot arm which can operate a variety of tools.

The original direct cost estimate amounts to 146,500 € and the software

development cost to 4,299,800 €. Prototype cost and product unit cost estimates

are deduced from these numbers to be 4,446,300 € and 252,364 €, respectively.

Figure 8.2-6 Design sketch of service robot for interior finishing works

8 Experimental Validation

155

The new estimates for cost constituents and aggregates are displayed in Table 8.2-9

and Table 8.2-10. One noteworthy phenomenon for this scenario is that the given

robot design includes more miscellaneous hardware components than any of the

other examined scenarios, i.e. eight components could not be estimated using the

precalculated models. These components include the miscellaneous end effectors or

tools power drill, power cutter and the combination of 2-DOF and a 1-DOF module

as well as the miscellaneous structural hardware linear axis, bayonet tool

connection, laser projector, 2D rotary laser and microphone. For these components,

the original estimate was used. The distance measuring sensor skin mentioned in

the original was approximated by 20 binary sensors.

Cost type Expected

value

Standard

deviation

First

quartile

Third

quartile

Material (per unit) 84,559.81 € 11,633.82 € 76,737.61 € 92,382.01 €

Hardware installation (per unit) 29,863.64 € 19,022.73 € 14,745.20 € 40,120.50 €

Administration 34,650.00 € 1,650.00 € 33,450.60 € 35,849.40 €

Software Development 3,942,451.36

€

932,031.97 € 3,255,123.00

€

4,498,294.42

€ Software installation (per unit, not

for prototype)

568.18 € 190.91 € 418.62 € 693.92 €

System Designing 994,240.53 € 305,105.40 € 770,532.07 € 1,174,866.98

€
Table 8.2-9 New estimates for cost constituents for interior works scenario

All of the new cost estimates lie well within the predefined estimation error

thresholds. The estimate for the direct unit costs was calculated to be 21.51% lower

than in the original. Software development costs lie 8.31% below the original

estimate. The prototype cost exceed the original estimate by 14.38% for the most

comprehensive cost aggregation level, undercut it by 7.98% on the intermediate

aggregation level and by 8.76% on the lowest level. All these differences can be

regarded as low given that design details are only vaguely known. The product unit

cost difference moves from -6.45% (most comprehensive aggregate) to -16.16%;

hardware cost vary from 1.76% excess to -21.90%. This comparison reveals that the

new approach can lead to estimation values very similar to the ones in EFFIROB. It

should be noted that the amount of predetermined estimates for the miscellaneous

components evidently reduces the room for deviations; however, the cost of these

components only accounts for roughly a third of the material cost.

8 Experimental Validation

156

Cost type Expected

value

Standard

deviation

First quartile Third quartile

Aggregate variant: All cost constituents
Prototype cost 5,085,765.34 € 980,955.06 € 4,369,268.14 € 5,676,340.53 €

Product unit cost 236,081.28 € 32,656.23 € 212,858.21 € 256,467.55 €

Hardware cost 149,073.45 € 22,359.17 € 133,013.24 € 162,623.21 €

Aggregate variant: Excluding system designing cost
Prototype cost 4,091,524.81 € 932,300.18 € 3,402,846.80 € 4,646,102.12 €

Product unit cost 212,408.89 € 31,837.99 € 189,606.20 € 232,020.62 €

Hardware cost 149,073.45 € 22,359.17 € 133,013.24 € 162,623.21 €

Aggregate variant: Excluding system designing cost, hardware admin. cost
Prototype cost 4,056,874.81 € 932,298.67 € 3,367,923.91 € 4,611,178.97 €

Product unit cost 211,583.89 € 31,837.96 € 188,783.58 € 231,196.98 €

Hardware cost 114,423.45 € 22,298.20 € 98,561.67 € 127,196.33 €

Aggregate invariant
Direct unit cost 114,991.63 € 22,299.02 € 99,117.96 € 127,828.56 €

Table 8.2-10 Cost aggregate estimations for interior works scenario

The expert's judgment of the estimation is positive concerning most cost

constituents costs except material costs and consequently hardware costs on the

whole. Whereas other cost estimates were considered reasonably realistic, material

costs were considered to be too low for prototypical development but as reasonable

for larger numbers of produced units; the expert pointed out the importance of

negotiating power when determining hardware component prices. The approaches

overall usefulness was regarded as helpful to some degree.

8.3. Comparison with the Raser project

The second validation method compares the estimates of the presented approach

with early estimates for a real service robot project and the actual costs incurred.

Before explaining this method two general problems concerning it shall be pointed

out.

Firstly, knowledge on the final design of the robot has the potential of causing a bias

towards the actual implementation thus artificially reducing uncertainty in a way

which does not exist in real a priori estimation situations. Secondly, costs of input

factors for R&D activities often lack direct reference to a specific project; if they do

they tend to be broken down in only coarse categories like personnel and non-

8 Experimental Validation

157

personnel expenses (Gerpott 1999, p. 79). Due to this coarsely granular cost

documentation only material and labor costs as well as derived aggregates are

considered for this method, the clear distinction between hardware and software

costs is not feasible.

The Raser project was chosen for validation because the documentation of the

project including invoices, budget planning and technical information was

considered as particularly detailed and the objective of the project – the

development of two functional prototypes for a small lawn-mowing service robot –

fit well with the aim of the estimation approach.

Figure 8.3-1 The functional Raser prototype

8.3.1. Assessment Method

The assessment method for comparing the Raser project cost data with new

estimates is similar to the previous validation method with a few modifications.

First, the basic parameters for the estimates were established. The monthly wage

rate documented amounts to 15,600 € per month at 20 workdays per month. This

value is therefore used for the new estimates in order to guarantee comparability.

As this relatively high rate includes not only ancillary labor costs but also burdened

costs for administration and equipment the cost constituent hardware

8 Experimental Validation

158

administrative costs is left out in this analysis to avoid multiple accounting for the

same costs.

The number of units was set to one because this project was aimed at creating a

prototype only and no data was available on the market potential. As the actual

project produced two variants that basically differed in complexity of the control

software, the original material costs for one unit were assumed to be half of the

overall material cost; software development costs are not affected by the number of

units. The production of only one prototype also entails that no product unit cost or

direct unit cost estimate was calculated.

The team's software development experience was assumed to be above average

given that the team consisted of service robot experts at the department for robot

systems at the Fraunhofer Institute for Manufacturing Engineering and Automation

with 40 years of experience in the field (Fraunhofer IPA 2011). Thus estimates were

calculated for the team levels "good" and "excellent". The code was assumed to be

specific for a lawn-mowing robot and thus the productivity rate for non-reusable

development was applied.

The comparison with the Raser project not only permits comparison with actual

costs but also with the original a priori cost estimation. Therefore, the next step of

this validation method consisted in ascertaining the original estimate and the

actually incurred costs. The estimates for labor and material costs were adopted

from the project proposal. The actual costs were investigated from invoice, monthly

progress reports and workforce allocation plans. The underlying assumption in this

context is that the cost information is complete and no actual cost blocks remained

undocumented.

In the next step, the desired skills and thus required hardware and software

components had to be determined in preparation of the computation of the new

estimate. To this end project proposal, documented brainstorming sessions, and

technical sketches were analyzed so that the components and their

parameterizations could be extrapolated. Where no exact information was available

e.g. for the maximum operation distance of ultrasonic sensors plausible assumptions

had to be made. This can be viewed as a realistic situation because in early design

phases these design details are commonly not known either.

8 Experimental Validation

159

After the determination of components, material and labor costs were computed,

labor costs being system designing costs, hardware installation costs and software

development costs. Two different aggregate levels of prototype costs were

calculated, one including system designing costs and one without them. This was

done in order to assess which estimate level more adequately approximates the real

costs and was deemed necessary given the large model uncertainty for system

designing cost (s. Chapter 6.3.2). For each aggregate level the labor costs were

calculated for the two team experience levels "good" and "excellent" as outlined

above.

Calculating the differences between estimates and actual costs permits the

evaluation of the estimation; the smaller the difference the better the estimate.

Both original and new estimates are compared to the actual costs; furthermore both

estimates are compared directly to each other. Finally, the new estimations and the

comparisons were presented to one of the experts responsible for the Raser

prototype development and his opinion elicited in order to achieve qualitative

validation.

8.3.2. The Raser lawn-mowing service robot

The costs for the Raser robot project were extracted from the proposals for the

construction and optimization of a functional prototype. Because two almost

identical units were built the documented material costs are divided by two to arrive

at the hardware costs per unit. This yielded estimated material costs of 13,500 € per

robot; labor costs were estimated as 258,960 €. The actual costs amounted to 9,670

€ per robot material and 391,089 € for labor. The estimated prototype costs which

were extrapolated as the sum of material cost per robot and labor costs thus were

272,460 €, actual prototype costs amounted to 391,089 €. This means that the

actual costs were 28.37% lower than originally estimated whereas labor costs

exceeded the estimate by 51.02% and prototype costs were 47.09% higher than

estimated.

The various aggregates of the new estimates are displayed in Table 8.3-1, details on

the estimation parameters are listed in Appendix 10.5.

8 Experimental Validation

160

Cost type Expected

value

Standard

deviation

First quartile Third quartile

Team software development experience level: good
 Aggregate variant: Excluding hardware administrative costs

Prototype cost 697,746.04 € 89,501.21 € 634,990.86 € 753,767.07 €

Labor cost 685,943.14 € 89,478.31 €

622,682.15 € 743,083.35 €

 Aggregate variant: Excluding system designing cost.

hardware admin, cost Prototype cost 561,340.34 € 82,721.51 € 502,980.16 € 612,495.48 €

Labor cost 549,537.44 € 82,696.73 € 490,511.77 € 601,767.07 €

Team software development experience level: excellent
 Aggregate variant: Excluding hardware administrative costs

Prototype cost 583,690.31 € 74,488.64 € 531,368.88 € 629,081.57 €

Labor cost 571,887.41 € 74,461.12 € 518,892.57 € 618,761.25 €

 Aggregate variant: Excluding system designing cost.

hardware admin, cost Prototype cost 469,581.91 € 68,809.66 € 420,905.04 € 510,746.11 €

Labor cost 457,779.01 € 68,779.86 € 408,263.85 € 500,269.26 €

Aggregate and experience level invariant
Material cost 11,802.90 € 2,024.78 € 10,441.51 € 13,164.29 €

Table 8.3-1 Cost estimates for the Raser service robot

These estimates were contrasted with the original estimation values and the actual

costs. An overview of the results is given in Table 8.3-2. The shaded areas indicate

where the new estimates are closer to the actual costs than the original estimate.

The differences indicate that material costs are overestimated by 22.06% which can

be considered a good estimate at an early estimation phase; the additional

consideration of component cost increases could possibly reduce the difference

even further. Assuming that the team's experience level in software development is

high i.e. 'excellent' labor and prototype cost estimates lie circa 17.1% higher than

the actual costs which is also considered a solid estimate. Including the system

designing cost estimate in the prototype and labor costs drives the estimation error

significantly up which can be interpreted as an indication of them being

systematically estimated too high. Given the high uncertainty for the estimation

model of system designing cost this phenomenon seems to demand the

development of an improved cost model for this cost constituent.

The comparison results also show that apart from the component selection the

assessment of the team's development experience has a significant impact on the

8 Experimental Validation

161

estimation results. As no stringent metrics exist for the measurement of

development experience this factor leaves room for subjective judgment.

Team Exp. Level: Good Team Exp. Level: Excellent

 Diff. to

Raser

estimate

Diff. to

Raser

actual cost

Diff. to

Raser

estimate

Diff. to

Raser actual

cost Prototype cost (w/o admin.

cost)

156.09% 74.11% 114.23% 45.65%
Material costs -12.57% 22.06% -12.57% 22.06%
Labor costs (w/o admin.

cost)

164.88% 75.39% 120.84% 46.23%
Prototype cost (w/o admin.

cost, designing cost)

106.03% 40.07% 72.35% 17.17%

Material costs -12.57% 22.06% 12.57% 22.06%
Labor costs (w/o admin.

cost, designing cost)

112.21% 40.51% 76.78% 17.05%

Table 8.3-2 Relative differences between new estimates and original values

The expert's opinion was predominantly positive; the only estimate considered

somewhat unrealistic were hardware installation costs; the expert pointed out that

the real costs had probably been higher because for some components custom parts

had to be developed, e.g. a casing for the compass. Software development costs and

material costs were judged to be very realistic and the latter to be equally realistic

as the original estimate. Notably, the system designing cost estimate was not

considered unrealistic: The expert explained that he considered the calculated

numbers as reasonable for diligent robot designing but conceded that budget

restrictions tend to cut down the actual time and thus costs spent for the according

activities. Another noteworthy finding was that the expert found it impossible to

judge the usefulness of information on quartiles and standard deviations as he

considered himself inexperienced in the field of statistical evaluation.

The tool and approach were assessed as useful in combination with other

estimation methods like expert judgment because they offer the possibility of

comparing separately derived estimates. This statement can be regarded as

confirmation of the approach's validity and shows that the main objective has been

achieved.

8 Experimental Validation

162

8.4. Evaluation Results and Interpretation

Figure 8.4-1 displays the responses to the questions with ordinal response scales for

the EFFIROB estimation scenarios, separated into the categories 'positive', 'negative'

and 'neutral'. Table 8.4-1 reveals the median and average response values according

to the evaluation method described above.

Responses to Q1 reveal that the overall cost estimates derived with the proposed

approach can be considered equally realistic to the original estimates with a weak

tendency towards a more positive assessment. The assessments for hardware

material and installation costs (Q2) are dominantly considered realistic; however,

the assessment of hardware administrative costs is ambiguous. Software

development and installation costs (Q3) are largely regarded as realistic. The system

designing cost estimate is considered unrealistic by the majority of experts; this item

is the only one with a dominant negative assessment value. The availability of

additional information by indicating interquartile range and standard deviation (Q5)

is positive throughout barring one expert abstention. The helpfulness of the

approach in combination with other estimation methods (Q7) was unanimously

affirmed.

Figure 8.4-1 Cumulated responses for the EFFIROB estimation scenarios

0

1

2

3

4

5

Q1.1 Q1.2 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q4.1 Q5.1 Q5.2 Q7.1 Q8.1 Q8.2 Q9.1

positive negative neutral

Question

Number

of

responses

8 Experimental Validation

163

Question Q1.1 Q1.2 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q4.1 Q5.1 Q5.2 Q7.1 Q8.1 Q8.2 Q9.1

Median 0 0 1 1 0 1 1 -1 1.5 1.5 1 0 1 2

Average 0.2 0.2 0.4 1.2 0 0.8 0.6 -0.8 1.5 1.5 1.4 0.2 0.6 1.6

Table 8.4-1 Median and average values of responses for the EFFIROB estimation scenarios

The responses to Q8 indicate that software cost estimates resulting from the

presented approach tended to be preferred over the original EFFIROB estimate

whereas the hardware cost estimates would be used to find a compromise between

the new and the original value. All experts confirmed that they would probably or

definitely use the presented approach for quick cost estimation of service robot

prototype development (Q9).

Figure 8.4-2 shows the integer values assigned to the responses for the Raser scenario

as described in Chapter 8.2.1.2. The zero value for Q1.1 indicates that the material

cost estimates from SEROCOST and EFFIROB are considered as equally realistic; the

zero values for Q8 signify that the expert deems a compromise between these two

estimates preferable. The responses are generally consistent with the pattern of the

responses from the EFFIROB scenarios; for Q5 no conclusions can be drawn as the

expert abstained from assessing the usefulness of interquartile range and standard

deviation. An exception is the assessment of system designing costs which were

judged to be realistic for the Raser case whereas the majority of the EFFIROB expert

considered the respective estimate for their case unrealistic.

Figure 8.4-3 shows the prevalence rates of aggregates from Q6 including the response

for the Raser scenario. Even though some cost constituents were assessed less

positively than others, the most frequently preferred aggregate for prototype cost is

the one including all constituents. This can be interpreted as a confirmation that

developers recognize the need to incorporate more than only direct costs in a cost

estimate even though most articles on low-cost service robots only describe

hardware material costs. A different perspective is offered for the product unit

costs: Here, some experts prefer the all-encompassing cost aggregate whereas

others favor direct unit costs only. The fact that none of the experts regarded all

mentioned aggregates inappropriate can be taken as an indicator that the chosen

aggregates reflect the information demands towards cost estimation correctly.

8 Experimental Validation

164

Figure 8.4-2 Response values for the Raser scenario

Figure 8.4-3 Preferred cost aggregates

An overview over the explicit comments stated during the expert interviews is given

in Table 8.4-2; positive statements are marked with a plus sign, negative ones with a

minus and neutral ones with a circular symbol.

Additional comments regarding the overall approach tend to underpin the positive

assessment of the presented methodology. The most frequent positive statements

stress the additional orientation and the possibility to compare estimates which are

provided by the new approach. This allows the estimator to confirm their initial ad-

hoc estimates or adjust them where appropriate. The availability of estimation

ranges instead of point estimates was also appreciated as a means to express

estimation uncertainty. Further praise was given to the strong formalization

resulting in a high degree of traceability of estimates.

-2

-1

0

1

2

Q1.1 Q1.2 Q2.1 Q2.2 Q3.1 Q4.1 Q5.1 Q5.2 Q7.1 Q8.1 Q8.2 Q9.1

response
value

Question

0

1

2

3

Incl. all cost
constituents

Excl. designing
cost

Excl. system
designing cost,

hardware admin.
costs

Direct unit costs None of the
aggregates
mentioned

Prototype Costs Product Unit Costs

aggregate
response

d
o

n
't

 k
n

o
w

d
o

n
't

 k
n

o
w

8 Experimental Validation

165

One comment categorized as neutral is aimed at the information value of

interquartile range and standard deviation. Although the expert agreed on their

usefulness as indicators for estimation uncertainty he pointed out that one of these

would suffice.

 A criticism concerning the overall approach was that the accuracy of the estimates

strongly depends on models and estimation data base being up-to-date. This is a

true and valid critique; however, it applies to all estimation approaches be it expert

judgment or parametric modeling and thus can be considered a problem inherent to

cost estimation in general.

Another group of comments addresses specific cost constituents or a single aspect

surveyed in the questionnaire. Positive remarks were stated concerning the

provision of hardware cost models, the suggesting of software components and the

finer resolution of separate software parts into packages instead of stacks.44 These

perceived advantages were considered to give the estimator a higher degree of

control of the estimation process and facilitate the estimation of the respective cost

constituents which is in line with the objectives of this thesis.

Two neutral comments concerning specific cost constituents were given. Regarding

hardware installation costs, one expert noted that install costs will differ for

prototypes and series products. This is a correct observation; however, the product

unit costs are only calculated for a production situation similar to the prototype

construction i.e. manual assembly is assumed, the effects of cost reduction through

production process optimization are not considered in the presented approach (s.

Chapter 2.2.1 and 2.2.3).

Another neutral statement stressed the difference between the estimation of costs

as a function of required effort and the determination of actual budgets for

designing a robot system; the expert pointed out that a given budget can lie below

the required amount for diligent prototype design thus discrepancies are prone to

occur. This is in agreement with literature on cost estimation and planning

(McConnell 2006, pp. 259–270).

44A ROS stack consists of one or more packages.

8 Experimental Validation

166

Related to Comment Occur-

rence
Overall approach  Additional orientation, possibility of

comparison

 Range estimates instead of point

estimates

 Formalization

 Redundancy between interquartile

range and standard deviation

▬ Dependency on timeliness of data and

models

3

2

1

1

1

Specific cost

component

 Provided hardware material cost

models (Q2.1)

 Software component suggestions

(Q.3.1)

 Higher granularity for software

estimation compared to EFFIROB (Q3.1)

 Differentiation between hardware

install cost for prototype and product

unit costs (Q2.2)

 Discrepancy between design effort

necessity and actual budgeting (Q4.1)

▬ Term 'hardware administrative costs'

misleading (Q2.3)

▬ Hardware administrative cost estimate

too high (Q2.3)

▬ Software installation cost estimate too

low (Q3.2)

▬ System designing cost estimate too high

(Q4.1)

1

1

1

1

1

2

1

1

4

Software tool

SEROCOST

 Tool supports but cannot replace

human expertise

 Importance of tool usability

1

2

Table 8.4-2 Overview of expert comments on the estimation approach

8 Experimental Validation

167

Specific criticism was directed at the used cost terminology and the estimation of

certain cost constituents. Two experts found the term 'hardware administrative

cost' to be misleading or difficult to interpret. As this term is explicated in the

presented approach as consisting of purchasing miscellaneous activities required for

the procurement of hardware components it could be renamed to 'hardware

procurement cost'; however, this new term could be interpreted as including

material costs. Thus and considering that the rest of the experts did not criticize the

term it was left unchanged.

The cost estimate for hardware administrative costs was explicitly commented on as

being too high by one expert, another expert found the software installation costs

to be too low; four experts pointed out that they considered the estimate for system

designing being much too high. These comments are in line with the given responses

(s. Figure 8.4-1 and Figure 8.4-2). The fact that four experts saw the need to explicitly

comment on the system designing cost can be regarded as a strong indicator that

further research is required into this specific cost constituent which is plausible

given the high model uncertainty indicated in Chapter 6.3.2.

Explicit comments on the software tool address its scope of usage and its usability.

One expert underlined that even though the tool is helpful in supporting cost

estimation it cannot replace human intuition. This statement is valid because

estimation is not deterministic and strongly depends on situative contingencies it

can be argued that a certain degree of subjective expert judgment will influence cost

estimates of all estimation approaches.

Two experts also stressed that the tool's user-friendliness is paramount to the

acceptance of the approach; the GUI was generally considered as an appropriate

way to provide ease of use. In order to comply with this requirement the application

SEROCOST has been tested continuously with test cases. The demonstration of its

functionality has satisfied the experts to which the tool was demonstrated.

9 Conclusion

168

9. Conclusion

9.1. Contributions

This thesis proposes a systematic, formalized and traceable method of early phase

cost estimation for service robot prototypes thus increasing transparency and

support of the pertinent decision-making processes in the development. The

integration of technical and economic aspects was achieved by a combination of

adequate methods originating in research areas of system engineering, project

management and cost accounting.

The technical structure of the planned robot forms the basis of the cost estimation.

The dilemma caused by the lack of definite design plans or system architectures

typical in early development phases has been approached by formalizing the

deduction of necessary hardware and software using knowledge on structural

dependencies between desired functionalities and thus required components.

Generic categorizations have been developed for skills, hardware component types

and software component types and interconnected by structure matrices. Typical

dependencies have been established within an expert workshop.

The economic perspective i.e. the derivation of cost estimates has been

implemented by identifying central cost constituents and developing dedicated cost

models for each one of them. These cost models are based on current cost theory

and statistical research and represent the key innovation of the presented approach.

Hardware material costs have been modeled employing non-parametric regression

analysis on hardware component data collected by market research. For each

hardware category, an individual regression model has been derived from the

collected data and validated using statistical assessment methods.

The model for software development costs combines code sizing and analogy

methods. To this end, the code analysis of one of the most popular robot software

frameworks has been conducted; the resulting code sizes mapped to function points

have been stored in a database forming the base of the software development cost

model. Further parameters influencing productivity, software reuse and team

experience have been included in the model.

9 Conclusion

169

Models have been developed for the labor costs resulting from hardware

installation, hardware administration, software installation and overall system

designing by employing expert opinions and statistical industry data. The validity of

these models has been analyzed in a variety of use cases. These models contribute

to extending the cost perspective on service robots as many current cost

considerations are restricted to material costs.

An innovation of the implemented cost estimation is the computation of estimates

based on probability density functions which permits the calculation of estimate

ranges which can serve as a measure of estimation uncertainty. This information

increases the interpretability of estimation results and has been assessed by experts

to be highly useful.

To facilitate and speed up the application of the presented approach a software tool

has been implemented that allows both quick first-guess calculation as well as

calibration to more detailed scenario specific contexts. It also allows the

extrapolation of unit costs beyond the prototype costs and the calculation of various

cost aggregates. This tool is an additional innovation; to the knowledge of the

author no other software dedicated to cost estimation for service robots exists as of

2012.

9.2. Discussion

The presented approach shows that realistic early phase cost estimation is

reasonably possible even when little information on the planned service robot is

available. The cost models have been based on statistical data and thus reduce

subjectivity in the estimation process. A certain degree of individual assessment

remains in the selecting items from the categories for robot skills, hardware and

software.

Expert interviews revealed that the provision of categories for service robot skills,

hardware component types and software component types are useful in identifying

the technical structure as a basis for cost estimation because they reduce the

chance of omitting relevant parts and in general render the structure-finding

process more systematic. The collected dependencies proved to be a reliable

indicator of required components although occasional custom changes to the

9 Conclusion

170

calculated selections are situationally required due to the large variety of generally

conceivable service robot applications. As none of the categories claims to be

complete in the sense that they cover all possible skills or component types,

respectively, there is room for further expansion of these categories. However, too

large categories could have counter-productive effects as larger numbers of items

become increasingly difficult to handle in interdependency considerations.

The regression models for the hardware material cost models were assessed as

realistic by experts although some models revealed high sensitivity to certain

parameters that could lead to unexpected results. The reason for local inaccuracies

of these models lies in the relatively small size of samples from which the models

were computed. An exhaustive market research on each hardware component type

is beyond the scope of this work but might provide more accurate models.

The software development cost estimation met positive reception by the experts.

Most experts found that they would replace their prior estimates within the

EFFIROB scenarios with the estimation results from the presented approach.

Although some of the scenario-specific estimations were considered less realistic

than prior individual estimates based on expert judgment all experts agreed that the

estimates are plausible, traceable and, given the high uncertainty of early phase

estimation, sufficiently accurate for first economic assessments of development

plans. A drawback of the approach is that it requires periodical updating of the data

on the software analogy (ROS) because service robot software has been and is

expected to continue to be subject to significant changes.

Hardware and software installation costs models have been constructed separately

in order to allow the clearer distinction between variable, unit specific costs and

one-time cost. Although these are of relatively simple design they were unanimously

considered as reasonably realistic for prototypes. One expert pointed out that he

would expect the hardware installation costs to decrease significantly once the

number of built units exceeds five or more robots; capturing this effect requires the

analysis of economies of scale which is beyond the scope of the presented work as it

focuses on the development of service robot prototypes.

This thesis also introduced cost models for hardware administrative costs and

system designing costs as labor cost constituents within the development of service

9 Conclusion

171

robot prototypes. These cost models met the strongest skepticism of the experts.

Although all experts agreed that the inclusion of these cost constituents is useful the

concrete estimation values where generally considered as too high. Whereas the

hardware administrative costs were judged to be at least within reasonable ranges,

system designing costs were considered by most experts as too excessive by a factor

of two to four. A potential cause for this inaccuracy of these cost models lies in the

lack of concrete data and difficulty of cost attribution for these cost blocks. Further

research is required to provide more accurate cost models.

The formalized method cannot and is not supposed to replace expert estimation

due to a variety of circumstances. The categorizations of skills, hardware and

software components are not all-encompassing; thus, many service robot designs

will display features that are not covered by one of the presented categories and

consequently cannot be estimated by a pertinent cost model. Previously mentioned

local inaccuracies of the cost models also advise expert scrutiny of the results.

Furthermore, experts often hold implicit knowledge on manufacturing processes,

prime costs, special requirements and other relevant factors impacting on

development costs that are not integrated in the cost models. However, the

approach offers the possibility to compare the expert's assessment to a

systematically derived estimate. Also, the expert can adjust various parameters of

the presented approach to map his specific experience and better calibrate the

results to the individual estimation situation.

All experts agreed that the approach in combination with the software tool pose a

useful means for quick cost estimation in early service robot prototype development

phases. The availability of estimation ranges and the short time required to arrive at

an order-of-magnitude estimate were pointed out as particularly supportive.

In conclusion, the presented work has shown that the systematic and formalized

cost estimation of service robot prototypes in early development stages is feasible

by applying a combination of structure information and individually constructed cost

models. The calculated estimation ranges provide additional value concerning

uncertainty assessment. The estimates based on the presented approach tend to be

slightly higher than individual expert estimate which is in line with studies showing

that costs of many projects have been underestimated in the past. Literature on cost

9 Conclusion

172

estimation recommends the combination of various estimation methods for reliable

results (Williams 1994, p. 4). Thus, this work is a sensible addition to the

development of service robot prototypes.

9.3. Outlook

The presented work forms the basis for the systematic consideration of cost

relevant aspects in the development of service robots. Obvious extensions are the

broadening of the categories for skills, hardware and software components and the

refinement of cost models. Including more items in said categories could render the

approach amenable to a larger variety of service robots. The refinement of cost

models could also have this effect if the data basis and thus the borders for the

considered parameters of the models were expanded.

Furthermore, the approach could be extended by considering additional parameters

like complexity or quality, either on component or system level. Inversely, the data

on structural dependencies employed in the presented approach might also be used

to derive a measure for a specific robot's complexity e.g. the number of components

used (e.g. Barclay 2000; Wuang 2010; Tani 2009). Adding a temporal dimension

might also be worthwhile considering e.g. in the form of schedule estimation.

Accounting for economies of scale is another possible extension of the approach.

This could also imply the departure from the assumption of manual assembly (s.

Chapter 2.2.1) and open the approach to cost estimation and analysis of unit costs

for larger production numbers.

Appendices

173

10. Appendices

10.1. Cost Types

The perspectives used and their applications within the scope of this work are

explained in this section (for the following delineations of costs, s. Coenenberg

2009, pp. 57–95; Porter 2000, pp. 63–96).

10.1.1. Classification by Factor Consumption

The classification by consumption of production factors presented here is strictly

from an industrial management point of view. There are different classifications for

production factors, most notably those in the field of macroeconomics which are

neither used nor elaborated in this work. This classification is considered to be the

basic framework of most cost accounting approaches (Coenenberg 2009, pp. 62–

63).

10.1.1.1. Material Costs

Material costs can be subdivided into operating material costs, i.e. those costs

forgone in the production of goods or services, e.g. lubricants, small maintenance

articles, and basic material costs, i.e. costs incurred for the materials that make up

the actual product. As operating material costs usually constitute only a minor cost

factor they are not considered in the presented cost estimation. Material costs

within the scope of this approach are the costs for physical components of the

robot.

10.1.1.2. Labor Costs

Labor costs originate in the deployment of workers and employees in business

operation and typically take form in wages and salaries but also include further costs

caused by the use of manpower, fringe costs like employee benefit costs.

In the scope of the presented approach labor costs constitute one of the largest

overall cost components. Development costs, notably software development costs

are mostly labor costs. Labor costs not considered directly in this approach are the

indirect labor costs incurred by administration of human resources, e.g. the cost for

Appendices

174

finding adequate developers (s. Chapter 2.2.2). However, these can be incorporated

in the cost estimation by assigning a markup on the labor wage rate.

10.1.1.3. Capital Equipment Costs

Capital equipment costs are those costs that originate from rendering available

operational machinery, buildings and other investment goods necessary for

productive operation. The most frequent costs of this type are acquisition costs and

capital costs e.g. interests.

In the presented work capital equipment costs are not considered as the

assumption of manual assembly exclude the necessity of product-specific

equipment acquisitions (s. Chapter 2.2.1 and 2.2.2).

10.1.2. Classification by Organizational Function

The classification by organizational functions distinguishes costs according to their

locus within the organization, i.e. assigning costs to so-called cost centers

(Coenenberg 2009, pp. 103–119; Porter 2000, p.63-76, pp.98-107). The most

common categories for cost centers according to their organizational function are

cost centers for material, production, marketing and sales, administration and

research and development as well as miscellaneous secondary cost centers that

provide general services to the other cost centers (Coenenberg 2009, pp. 106–107).

A further common distinction is that of primary and support activities based on a

concept by Michael Porter, the value chain (Porter 1996; Porter 2000, pp. 63–96).

The structure of the value chain is depicted in Figure 10.1-1 (adopted from Porter

2000, p. 66). In order to enhance comprehensibility and comparability the cost types

by organizational structure underlying the presented approach are matched against

the value chain categorization.

10.1.2.1. Research and Development Costs

Research and development (R&D) is the first phase in a product’s lifecycle from the

manufacturer’s point of view. As the term suggest these are not directly tied to

production but a necessary precondition. Commonly, research is understood to be

the striving for fundamental knowledge whereas development entailing the

product’s planning and designing tends to emphasize product implementation. In

Appendices

175

relation to Porter's value chain, R&D costs are primarily technology costs (ibid., p.

73).

Inbound

Logistics
Operations

Outbound

Logistics

Marketing &

Sales
Services

Procurement

Firm Infrastructure

Technology

Human Resource Management M
a
rg

in
M

a
rg

in

Primary Activities

S
u

p
p

o
rt A

c
tiv

itie
s

Figure 10.1-1 Porter Value Chain

In the scope of the presented work research cost are not considered in accordance

with the assumption that no fundamental research is undertaken (s. Chapter 2.2.4).

Evidently, development costs are in the focus of the presented approach and thus

constitute one of most important parts of the cost estimate. Following the

classification by factors, they are composed of labor costs and material costs, capital

investment costs are not considered (s. Chapter 2.2.1 and 2.2.2).

10.1.2.2. Acquisition and Procurement Costs

Acquisition and procurement entail the costs for the input material as well as the

supply costs, occasionally also referred to as warehouse costs or logistics costs. They

are related to the purchase and supplying of production factors needed for the

production of goods or delivery of service. These are costs for materials and for

labor costs spent on necessary activities of rendering the production factors

available, e.g. costs for stocking and transporting. The hardware costs prevail in the

Appendices

176

direct material costs, as software material costs for production are assumed to be

negligible.45

The costs for these material-related activities are mirrored by inbound logistics and

procurement in Porter's value chain; the costs of production input materials in a

narrower sense are not explicitly covered in the value chain as Porter's concept

focuses on activities (ibid., pp. 70–73).

In this work, acquisition and procurement costs are subsumed under production

costs and to a minor degree under R&D costs.

10.1.2.3. Production Costs

Production costs in a narrower sense are costs incurred by turning the input i.e.

production factors into actual products. These costs include processing and

installing of parts and components. Production costs are mapped to operation costs

in the value chain (ibid., p. 70).

The term 'production costs' is also commonly used in a broader sense,

encompassing material costs and manufacturing costs, i.e. the costs for matter and

activities necessary for the production of goods or services. In the scope of this work

the term 'production costs' is applied in a more general sense including the material

costs.

10.1.2.4. Marketing and Sales Costs

Marketing and sales costs are incurred by rendering the produced goods available

on the market and selling them. Typical examples are costs for advertizing and

creating and maintaining channels of distribution. The value chain has its

homonymous correspondent but outbound logistics may also be subsumed under

sales cost (ibid., p. 71).

Marketing and sales costs are not directly related to development and production

but strongly depend on the company's policies – one can spend enormous amounts

45The purchase of software is disregarded due to the assumption that software either stems from

own development or open-source reuse (s. Chapter 2.2.5).

Appendices

177

of money for marketing a simple product or conversely very little on a very

expensive product – thus they are not considered in the presented work.

10.1.2.5. Administration Costs

Administrative costs include a large variety of costs that are tied to managing

organizational processes. Though not producing sellable goods per se administration

orchestrates the operations of the company so goods and services come into

existence in the first place. This indirect relation to the costs of produced units is

usually captured by burden rates, i.e. markups on the direct unit production costs.

According to the value chain administration costs are caused by firm infrastructure,

human resource management and procurement (ibid., pp. 74–75).

Due to their indirect nature, administrative costs are only marginally considered in

this approach which is aimed at capturing costs tied directly to the development and

production of prototypical service robots. Thus only administrative costs related to

the components of the service robot concept are incorporated in the cost

estimation (s. Chapter 0).

10.1.3. Classification by Allocation

Classifying cost by allocation is the distinction between costs that can be explicitly

assigned to a specific cost unit and costs which are impossible or difficult to allocate

to cost objects like produced units or services delivered (Coenenberg 2009, pp. 63–

64).

10.1.3.1. Direct Costs

Direct costs are costs which are unambiguously caused by a specific cost object. A

lucid example is that of material costs incurred for the production of a product unit

i.e. a piece of merchandize. Evidently, the basic material that went into its

construction is allocated in the product unit and thus causes direct costs.

Cost objects or cost units are usually the units of manufactured end-products of the

company. The problem with produced units as sole cost object is that many types of

costs, e.g. development costs and administration costs cannot be related to single

units. Thus, cost reflecting causation can be ordered in a hierarchical fashion with

direct costs at its bottom and more indirect cost sources on higher levels.

Appendices

178

Direct costing, also known as marginal costing only assigns costs to cost units which

are inherently related to its production. In the scope of this work a two-tier cost

allocation model is applied in order to map costs in accordance with their cause. The

considered cost objects are produced units of service robots on the lower tier and

the service robot as a product type on the higher tier. The cost estimation on the

lower tier includes material and labor costs per unit, the cost estimation for the

product type encompasses development costs.

Figure 10.1-2 Two-tier product cost object

Product is used as a term for the aggregate of technical features of a specific

product design and produced units are materialized entities of that design. This

relation is depicted in Figure 10.1-2. The concept allows the allocation of development

costs to the product but not (directly) to the produced units, in other words

development costs for a product are direct costs on the product level but indirect

costs on the level of produced units of this product; indirect costs from higher levels

e.g. company administration are not considered here. This implies that the

distinction between direct and indirect costs is relative to the cost object

considered.

Appendices

179

10.1.3.2. Indirect Costs

Indirect costs are costs not attributable to a cost unit and are incurred by business

decisions affecting several cost units simultaneously. Typical indirect costs are

administration costs and large capital investments.

The issue with indirect costs is that they do not have a revenue counterpart whereas

direct costs can be contrasted with respective direct revenues. Nevertheless, they

must be covered for an enterprise to be profitable. For this reason, several

principles of cost imputation can be applied to distribute indirect costs among cost

objects, remarkably the averaging principle, i.e. divide the indirect costs by the

number of cost objects and assign evenly or in a weighted manner, and the principle

of financial viability, i.e. cost objects generating higher revenues are assigned

greater portions of indirect costs. This violation of the principle of causation is

accepted because not all interdependencies between business-related processes

can be disentangled (ibid., pp. 59–60).

The costing method of including indirect costs is called absorption costing or full

costing and is a widely used accounting approach that burdens all costs incurred on

the produced goods, i.e. the produced units 'absorb' all overhead costs within the

considered time period via cost allocation rates.

 Production costs are calculated as

direct material costs

+ indirect material costs

+ direct production costs

+ indirect production costs

+ special direct production costs.46

46There are different accounting standards, e.g. the US-American Generally Accepted Accounting

Principles (US-GAAP), the International Accounting Standards 2 (IAS 2), the German Commercial

Code (HGB), all of which differ in certain aspects defining production costs. Therefore, the

Appendices

180

One major problem with this approach is the adequate distribution of large indirect

costs incurred once before production e.g. development costs or plant investments.

The dilemma is that these should be burdened on all accumulated produced units

but their number is not known until production has been stopped. If the number of

produced units is estimated an unrealistic estimate results in distorted unit cost and

can thus bias the assessment of the product's marketability. Further problems arise

if a company manufactures more than one product in which case burden rates must

be defined for each product which is subject to the company's policy and legal

accounting factors.47

Standard costing is almost synonymous to full costing but focuses on the planning

aspect, i.e. expected indirect costs are burdened. As the presented work is assuming

the a priori estimation of costs for prototypical service robots there is no difference

between these terms in its scope.

The absorption costing approach is not applied in its explicit form because many

cost blocks that have no relation to the development and production of service

robots other than that they are incurred by the same company depend on too many

firm-specific factors as to be considered in this work (s. Chapter 10.1.2). However, a

partial absorption of indirect cost at product unit level is adopted as described in the

previous section. Also, if the monthly cost rates for the work forces include not only

wages and ancillary payroll related costs but also indirect overhead cost e.g. for

administration personnel or asset depreciation, absorption of costs beyond the

robot project at hand is implicit.

10.1.4. Classification by Variability

The classification of costs by their variability distinguishes between costs according

to their behavior upon variation of their cost origin (ibid., pp. 65–68). Although

there are many potential cost origins all of which should ideally be considered

description of production costs given here is a simplification for illustrative purposes. Detailing

each of the mentioned accounting standards is beyond the scope of this work.

47These issues are not elaborated here because the presented approach only considers the

development of a single service robot.

Appendices

181

simultaneously, for practical reasons the variables are usually reduced to capacity

utilization or occupation level and produced output. As the consideration of capacity

utilization or occupation levels is beyond the scope of this work (s. Chapter 2.2.1,

2.2.2), only the number of produced unit as cost actuating variable is taken into

account in the following explanations.

Similar to the distinction classification by allocation the distinction between variable

and fixed costs is relative to the cost object regarded and furthermore relative to

the time period regarded – from a long term perspective, all costs are variable.

10.1.4.1. Variable Costs

Variable costs are those costs that change along with the variation of the respective

reference parameter. A prominent example in the scope of the presented work is

given by the material costs which are incurred per produced unit.

Variable cost functions can be linear, degressive i.e. less than linear cost increase in

relation to its origin, progressive i.e. greater than linear cost increase, or even

regressive i.e. the total sum of variable costs of the reference objects decreases. As

the production cost function is unknown at the time of estimation, linear variable

cost functions based on produced output are assumed.

10.1.4.2. Fixed Costs

In opposition to variable costs fixed costs do not vary in regard to their cost origin

within a certain time span thus they are categorical indirect costs. Typical examples

are plant and equipment costs. A special case of fixed costs are stepped fixed or

semi-fixed costs which do not change until the cost origin parameter crosses a

threshold. At the threshold the cost increase creates a discontinuous step. Semi-

fixed costs are not taken into account in this work because capital equipment

investment based on output thresholds are beyond its scope (s. Chapter 10.1.1.3).

Appendices

182

10.2. Software Package Development Effort Estimation: Value and Variance

The calculation of the expected value of the software development cost

 and its variance

 is detailed in this section.

Assuming , the estimated time and variance required for each

package i of the components selection are computed as

(10.1)

and

Appendices

183

(10.2)

Appendices

184

10.3. Hardware Components

The following list contains indicates all parameters that were used for the cost

models of the hardware components and the according mean, median, minimum

and maximum values. Parameters in italics had been considered potential

candidates for model parameters but have been excluded from the final cost

models.

Component type Parameter Unit Mean Median Min. Max.
camera frames per second [none] 47,37 32 0 210

sensor diagonal [''] 0,5 0,5 0,11 1
pixel array size [Pixel]

ultrasonic sensor blind range [mm] 112,98 60 0 600
maximal operating
distance

[mm] 1336,643 500 100 6000

sampling frequency [Hz]
laser scanner scanning angle [°] 36,55 0 0 360

blind range [mm] 90 100 0 300
maximal operating
distance

[mm] 52710 8000 30 300000

protective field range [m]
binary sensor maximal operating

distance
[mm] 97,78 15 0 500

blind range [mm] 2,74 0 0 50
radar volume [mm³] 194802,2 8750 1898 742500

broadcasting power [dBm]
force torque

sensor

degrees of freedom [none] 1,96 1 1 6
measurable moment:
Mz

[Nm] 27,92 0 0 1000
measurable force: Fz [N]
volume [mm³]

gyroscope/

acceleration

sensor

number of axes [none] 1,9 2 1 6
power usage [mA] 7,45 4,2 0,14 25
linear measuring range [m/s²]
rotatory measuring
range

[°/s]
 bandwidth [kHz]
 GPS - -

mobile platform weight [kg] 73,91 51 2,04 350
footprint size [m²] 0,45 0,35 0,08 1,61
maximum payload
capacity

[kg] 65,16 40 0 300

maximum velocity [km/h]
robot arm maximum payload

capacity
[kg] 3,12 2 0,3 10

weight [kg] 14,45 12,8 2 28,9

Appendices

185

reach [mm] 759,95 776,2 433 1300
degrees of freedom [none]

gripper jaw stroke [mm] 36 37 6 80
weight [kg]

closing force/moment [N]

input peripherals number of axes [none] 2,12 3 0 6
number of
buttons/keys

[none] 29,91 5 2 100
output

peripherals

pixel array size [pixel²] 11365,88 8192 1 76800
screen diagonal ['']
weight [kg]

controlling unit processor type [type] 9,95 9 1 17
volume [mm³] 13400000 5900000 11000 42900000
flash memory capacity [Gb] 9,23 0 0 32
RAM capacity [Mb]

power supply

(DC/DC converter)

output voltage [V] 7,76 5 1,5 48
output power [W] 33,82 15 0,25 451
input voltage [V]

power supply

(battery)

capacity [Ah] 17,91 12 0,65 100
output voltage [V] 10,54 12 3 15
volume [mm³]

safety installation weight [kg] 21,49 6,3 0,15 116,7
footprint size [m²] 0,7 0,32 0 3,5

Table 10.3-1 Parameters of hardware component cost models

Appendices

186

10.4. ROS Software Packages

The following packages of the Electric Emys release (April 2012) for the Robot

Operating System have been used as an analogy for code sizing purposes:

Stack Package
arm_navigation arm_kinematics_constraint_aware
arm_navigation arm_navigation_msgs
arm_navigation collision_map
arm_navigation collision_space
arm_navigation constraint_aware_spline_smoother
arm_navigation geometric_shapes
arm_navigation joint_normalization_filters
arm_navigation kinematics_base
arm_navigation kinematics_msgs
arm_navigation mapping_rviz_plugin
arm_navigation motion_planning_rviz_plugin
arm_navigation move_arm
arm_navigation ompl
arm_navigation ompl_ros_interface
arm_navigation planning_environment
arm_navigation planning_models
arm_navigation robot_self_filter
arm_navigation sbpl
arm_navigation spline_smoother
arm_navigation trajectory_filter_server
arm_navigation_experimental arm_navigation_experimental_tools
arm_navigation_experimental chomp_motion_planner
arm_navigation_experimental collider
arm_navigation_experimental collision_checking
arm_navigation_experimental collision_free_arm_trajectory_controller
arm_navigation_experimental collision_proximity
arm_navigation_experimental collision_proximity_planner
arm_navigation_experimental collision_space_ccd
arm_navigation_experimental distance_field
arm_navigation_experimental head_monitor_msgs
arm_navigation_experimental interpolated_ik_motion_planner
arm_navigation_experimental move_arm_head_monitor
arm_navigation_experimental move_arm_warehouse
audio_common audio_capture
audio_common audio_common_msgs
audio_common audio_play
audio_common sound_play
bond_core bond
bond_core bondcpp
bond_core bondpy

Appendices

187

bond_core smclib
brown_remotelab rosbridge
bullet bullet
camera_drivers camera1394
camera_drivers prosilica_camera
camera_drivers prosilica_gige_sdk
camera_drivers wge100_camera
camera_drivers wge100_camera_firmware
client_rosjava_jni rosjava_jni
client_rosjava_jni tfjava
cob_command_tools cob_dashboard
cob_command_tools cob_script_server
cob_command_tools cob_teleop
cob_common brics_actuator
cob_common cob_default_config
cob_common cob_description
cob_common cob_goco
cob_common cob_srvs
cob_common cob_utilities
cob_common cob_vision_utils
cob_common desire_description
cob_driver cob_arm
cob_driver cob_base
cob_driver cob_base_drive_chain
cob_driver cob_battery
cob_driver cob_camera_sensors
cob_driver cob_canopen_motor
cob_driver cob_forcetorque
cob_driver cob_generic_can
cob_driver cob_head_axis
cob_driver cob_hokuyo
cob_driver cob_joint_state_aggregator
cob_driver cob_joy
cob_driver cob_light
cob_driver cob_manipulator
cob_driver cob_oodl_scanner
cob_driver cob_powercube_chain
cob_driver cob_pseudo_joint_state_publisher
cob_driver cob_relayboard
cob_driver cob_sdh
cob_driver cob_sick_s300
cob_driver cob_sound
cob_driver cob_torso
cob_driver cob_trajectory_controller
cob_driver cob_tray
cob_driver cob_tray_sensors
cob_driver cob_undercarriage_ctrl

Appendices

188

cob_environment_perception cob_3d_mapping_msgs
cob_environment_perception cob_3d_mapping_pipeline_fake
cob_environments cob_default_env_config
cob_extern brics_oodl_scanner_libs
cob_extern libcvd
cob_extern libhokuyo_urg
cob_extern libm5api
cob_extern libmesasr
cob_extern libntcan
cob_extern libpcan
cob_extern libphidgets
cob_extern libtoon
cob_people_perception cob_people_detection
cob_people_perception cob_people_detection_msgs
cob_simulation cob_controller_configuration_gazebo
cob_simulation cob_gazebo
cob_simulation cob_gazebo_worlds
cob_simulation cob_simulated_tactile_sensors
common actionlib
common bfl
common tinyxml
common_msgs actionlib_msgs
common_msgs diagnostic_msgs
common_msgs geometry_msgs
common_msgs nav_msgs
common_msgs sensor_msgs
common_msgs stereo_msgs
common_msgs trajectory_msgs
common_msgs visualization_msgs
common_tutorials actionlib_tutorials
common_tutorials pluginlib_tutorials
common_tutorials turtle_actionlib
control control_msgs
diagnostics diagnostic_aggregator
diagnostics diagnostic_analysis
diagnostics diagnostic_updater
diagnostics_monitors robot_monitor
diagnostics_monitors runtime_monitor
documentation rosdoc
driver_common driver_base
driver_common dynamic_reconfigure
driver_common timestamp_tools
executive_smach smach
executive_smach smach_msgs
executive_smach smach_ros
executive_smach_visualization smach_viewer
filters filters

Appendices

189

geometry angles
geometry eigen_conversions
geometry tf
geometry tf_conversions
geometry_experimental tf2
geometry_experimental tf2_bullet
geometry_experimental tf2_geometry_msgs
geometry_experimental tf2_kdl
geometry_experimental tf2_msgs
geometry_experimental tf2_ros
geometry_experimental tf2_tools
geometry_tutorials turtle_tf
geometry_visualization tf2_visualization
ias_common annotation_srvs
ias_common cogman_msgs
ias_common navp_action
ias_common triangle_mesh_msgs
ias_common vision_msgs
ias_common vision_srvs
image_common camera_calibration_parsers
image_common camera_info_manager
image_common image_transport
image_common polled_camera
image_pipeline camera_calibration
image_pipeline image_proc
image_pipeline image_rotate
image_pipeline image_view
image_pipeline stereo_image_proc
image_transport_plugins compressed_image_transport
image_transport_plugins theora_image_transport
imu_drivers microstrain_3dmgx2_imu
joystick_drivers cwiid
joystick_drivers joy
joystick_drivers ps3joy
joystick_drivers spacenav
joystick_drivers spacenav_node
joystick_drivers wiimote
knowrob bosch_semantic_map
knowrob comp_cop
knowrob comp_germandeli
knowrob comp_orgprinciples
knowrob comp_spatial
knowrob comp_temporal
knowrob ias_knowledge_base
knowrob ias_prolog_addons
knowrob ias_semantic_map
knowrob jpl

Appendices

190

knowrob json_prolog
knowrob knowrob_actions
knowrob knowrob_common
knowrob knowrob_objects
knowrob mod_probcog
knowrob mod_srdl
knowrob mod_vis
knowrob rosprolog
knowrob semweb
knowrob srldb
knowrob tf_prolog
knowrob thea
laser_drivers hokuyo_node
laser_drivers sicktoolbox
laser_drivers sicktoolbox_wrapper
laser_pipeline laser_assembler
laser_pipeline laser_filters
laser_pipeline laser_geometry
navigation amcl
navigation base_local_planner
navigation carrot_planner
navigation clear_costmap_recovery
navigation costmap_2d
navigation dwa_local_planner
navigation fake_localization
navigation map_server
navigation move_base
navigation move_base_msgs
navigation move_slow_and_clear
navigation nav_core
navigation navfn
navigation robot_pose_ekf
navigation rotate_recovery
navigation voxel_grid
nodelet_core nodelet
nodelet_core nodelet_topic_tools
object_manipulation bayesian_grasp_planner
object_manipulation compressed_pointcloud_transport
object_manipulation current_state_validator
object_manipulation household_objects_database
object_manipulation household_objects_database_msgs
object_manipulation interactive_marker_helpers
object_manipulation object_manipulation_msgs
object_manipulation object_manipulator
object_manipulation point_cloud_server
object_manipulation probabilistic_grasp_planner
object_manipulation rviz_interaction_tools

Appendices

191

object_manipulation static_transform_broadcaster
octomap_mapping octomap
octomap_mapping octomap_ros
octomap_mapping octomap_server
openni_kinect depth_image_proc
openni_kinect openni_camera
openni_kinect openni_launch
openni_kinect openni_tracker
orocos_kinematics_dynamics orocos_kdl
orocos_kinematics_dynamics python_orocos_kdl
perception_pcl cminpack
perception_pcl flann
perception_pcl pcl
perception_pcl pcl_ros
perception_pcl_addons pcl_tutorials
perception_pcl_addons pcl_visualization
perception_pcl_addons terminal_tools
physics_ode opende
physics_ode parallel_quickstep
pluginlib pluginlib
point_cloud_perception point_cloud_converter
pr2_apps pr2_app_manager
pr2_apps pr2_mannequin_mode
pr2_apps pr2_position_scripts
pr2_apps pr2_teleop
pr2_apps pr2_teleop_general
pr2_apps pr2_tuckarm
pr2_arm_navigation pr2_3dnav
pr2_arm_navigation pr2_arm_navigation_actions
pr2_arm_navigation pr2_arm_navigation_config
pr2_arm_navigation pr2_arm_navigation_filtering
pr2_arm_navigation pr2_arm_navigation_kinematics
pr2_arm_navigation pr2_arm_navigation_perception
pr2_arm_navigation pr2_arm_navigation_planning
pr2_arm_navigation pr2_arm_navigation_tutorials
pr2_calibration calibration_msgs
pr2_calibration dense_laser_assembler
pr2_calibration image_cb_detector
pr2_calibration interval_intersection
pr2_calibration joint_states_settler
pr2_calibration laser_cb_detector
pr2_calibration laser_joint_processor
pr2_calibration laser_joint_projector
pr2_calibration monocam_settler
pr2_calibration pr2_calibration_estimation
pr2_calibration pr2_calibration_executive
pr2_calibration pr2_calibration_launch

Appendices

192

pr2_calibration pr2_calibration_propagation
pr2_calibration pr2_dense_laser_snapshotter
pr2_calibration pr2_se_calibration_launch
pr2_calibration settlerlib
pr2_common pr2_dashboard_aggregator
pr2_common pr2_description
pr2_common pr2_msgs
pr2_common_actions joint_trajectory_action_tools
pr2_common_actions joint_trajectory_generator
pr2_common_actions pr2_arm_move_ik
pr2_common_actions pr2_common_action_msgs
pr2_common_actions pr2_tilt_laser_interface
pr2_common_actions pr2_tuck_arms_action
pr2_controllers control_toolbox
pr2_controllers ethercat_trigger_controllers
pr2_controllers joint_trajectory_action
pr2_controllers pr2_calibration_controllers
pr2_controllers pr2_controllers_msgs
pr2_controllers pr2_gripper_action
pr2_controllers pr2_head_action
pr2_controllers pr2_mechanism_controllers
pr2_controllers robot_mechanism_controllers
pr2_controllers single_joint_position_action
pr2_ethercat_drivers eml
pr2_ethercat_drivers ethercat_hardware
pr2_ethercat_drivers fingertip_pressure
pr2_gui pr2_dashboard
pr2_kinematics pr2_arm_kinematics
pr2_kinematics pr2_arm_kinematics_constraint_aware
pr2_mechanism pr2_controller_interface
pr2_mechanism pr2_controller_manager
pr2_mechanism pr2_hardware_interface
pr2_mechanism pr2_mechanism_diagnostics
pr2_mechanism pr2_mechanism_model
pr2_mechanism pr2_mechanism_msgs
pr2_mechanism realtime_tools
pr2_navigation laser_tilt_controller_filter
pr2_navigation pr2_move_base
pr2_navigation pr2_navigation_config
pr2_navigation pr2_navigation_global
pr2_navigation pr2_navigation_local
pr2_navigation pr2_navigation_perception
pr2_navigation pr2_navigation_self_filter
pr2_navigation pr2_navigation_slam
pr2_navigation pr2_navigation_teleop
pr2_navigation semantic_point_annotator
pr2_object_manipulation active_realtime_segmentation

Appendices

193

pr2_object_manipulation fast_plane_detection
pr2_object_manipulation object_recognition_gui
pr2_object_manipulation object_segmentation_gui
pr2_object_manipulation pick_and_place_demo_app
pr2_object_manipulation pr2_create_object_model
pr2_object_manipulation pr2_grasp_adjust
pr2_object_manipulation pr2_gripper_grasp_controller
pr2_object_manipulation pr2_gripper_grasp_planner_cluster
pr2_object_manipulation pr2_gripper_reactive_approach
pr2_object_manipulation pr2_gripper_sensor_action
pr2_object_manipulation pr2_gripper_sensor_controller
pr2_object_manipulation pr2_gripper_sensor_msgs
pr2_object_manipulation pr2_handy_tools
pr2_object_manipulation pr2_interactive_gripper_pose_action
pr2_object_manipulation pr2_interactive_manipulation
pr2_object_manipulation pr2_interactive_object_detection
pr2_object_manipulation pr2_manipulation_controllers
pr2_object_manipulation pr2_marker_control
pr2_object_manipulation pr2_object_manipulation_launch
pr2_object_manipulation pr2_object_manipulation_msgs
pr2_object_manipulation pr2_pick_and_place_demos
pr2_object_manipulation pr2_tabletop_manipulation_launch
pr2_object_manipulation pr2_wrappers
pr2_object_manipulation rgbd_assembler
pr2_object_manipulation robot_self_filter_color
pr2_object_manipulation segmented_clutter_grasp_planner
pr2_object_manipulation tabletop_collision_map_processing
pr2_object_manipulation tabletop_object_detector
pr2_object_manipulation tabletop_vfh_cluster_detector
pr2_object_manipulation vfh_recognition
pr2_object_manipulation vfh_recognizer_db
pr2_object_manipulation vfh_recognizer_fs
pr2_power_drivers ocean_battery_driver
pr2_power_drivers power_monitor
pr2_power_drivers pr2_power_board
pr2_robot imu_monitor
pr2_robot pr2_bringup
pr2_robot pr2_camera_synchronizer
pr2_robot pr2_computer_monitor
pr2_robot pr2_controller_configuration
pr2_robot pr2_etherCAT
pr2_robot pr2_run_stop_auto_restart
pr2_simulator pr2_controller_configuration_gazebo
pr2_simulator pr2_examples_gazebo
pr2_simulator pr2_gazebo
pr2_simulator pr2_gazebo_plugins
robot_calibration camera_offsetter

Appendices

194

robot_model collada_parser
robot_model collada_urdf
robot_model colladadom
robot_model convex_decomposition
robot_model ivcon
robot_model kdl_parser
robot_model resource_retriever
robot_model robot_state_publisher
robot_model simmechanics_to_urdf
robot_model urdf
robot_model urdf_interface
robot_model urdf_parser
robot_model_tutorials urdf_tutorial
ros mk
ros rosboost_cfg
ros rosbuild
ros rosclean
ros roscreate
ros rosdep
ros rosemacs
ros roslib
ros rosmake
ros rospack
ros rosunit
ros_comm cpp_common
ros_comm message_filters
ros_comm rosbag
ros_comm rosconsole
ros_comm roscpp
ros_comm roscpp_serialization
ros_comm roscpp_traits
ros_comm rosgraph
ros_comm rosgraph_msgs
ros_comm roslaunch
ros_comm roslisp
ros_comm rosmaster
ros_comm rosmsg
ros_comm rosnode
ros_comm rosout
ros_comm rosparam
ros_comm rospy
ros_comm rosservice
ros_comm rostime
ros_comm rostopic
ros_comm roswtf
ros_comm std_msgs
ros_comm std_srvs

Appendices

195

ros_comm topic_tools
ros_comm xmlrpcpp
ros_realtime allocators
ros_realtime lockfree
ros_realtime rosatomic
ros_realtime rosrt
ros_tutorials roscpp_tutorials
ros_tutorials rospy_tutorials
ros_tutorials turtlesim
rx rxbag
rx rxdeps
rx rxgraph
rx rxtools
rx wxPython_swig_interface
rx wxswig
rx xdot
schunk_modular_robotics schunk_description
schunk_modular_robotics schunk_powercube_chain
schunk_modular_robotics schunk_sdh
simulator_gazebo gazebo
simulator_gazebo gazebo_msgs
simulator_gazebo gazebo_plugins
simulator_gazebo gazebo_tools
simulator_gazebo gazebo_worlds
slam_gmapping gmapping
sql_database database_interface
sql_database student_database
stage stage
vision_opencv cv_bridge
vision_opencv cv_markers
vision_opencv image_geometry
visualization interactive_markers
visualization rviz
visualization rxbag_plugins
visualization wxpropgrid
visualization_common ogre
visualization_common ogre_tools
visualization_tutorials interactive_marker_tutorials
visualization_tutorials visualization_marker_tutorials
warehousewg mongo_ros
warehousewg mongodb
warehousewg pymongo
web_interface ckill
web_interface image_stream
web_interface launchman
web_interface pyclearsilver
web_interface ros_apache2

Appendices

196

web_interface rosjson
web_interface rosweb
web_interface web_msgs
web_interface webui
wifi_drivers wifi_ddwrt
xacro xacro

Table 10.4-1 ROS stacks and packages used for code sizing

The following files were excluded from function point derivation because they

provide secondary functionality only e.g. package management or content

administration:

File type
manifest.xml
stack.xml
shell scripts (.sh or similar)
makefiles (.make, .cmake)
init.py
rosdep.yaml
documentation (.dox)
configuration files (.config)
HTML files
ASP.Net files

Table 10.4-2 Excluded files

10.5. Verification Scenarios Parameterizations

The following tables give details on the various components selected for the

computation of estimates using the SEROCOST tool and the indicated

parameterizations. Only changes from the default suggestions are listed for the

software selection; items marked with the prefix '-' have been removed from the

scenario-specific selection, otherwise they have been added.

GH = Ground harvesting robot

CU = Provisioning of care utensils

CT = Container transport in hospitals

FC = Floor cleaning robot

Appendices

197

IF = Assistance with interior finishing works

Ra = Raser lawn mowing robot

Basic parameter GH CU CT FC IF Ra
Wage rate (€) 10,000 10,000 10,000 10,000 10,000 15,600
Workdays per month 22 22 22 22 22 20
Code reusability yes yes yes yes yes no

Table 10.5-1 Basic parameters

Skills GH CU CT FC IF Ra
Perceive Objects x x x x x x
Recognize Objects x x x x
Interpret Environment x x x x x
Perceive evolutionary processes x x x
Move to Location x x x x x
Orientate in Environment x x x x x x
Move Object x x x x
Process/Alter Object x x x
Process/Alter Environment x x
Send Signals/Commands x x
Interpret Signals/Commands x
Receive Signals/Commands x x x x x

Table 10.5-2 Scenario-specific skills

Appendices

198

Hardware components GH CU CT FC IF Ra
Camera x x x x
Ultrasonic Sensor x x
Laserscanner x x x x x
Radar
Binary Sensor x x x
Force/Torque-Sensor x x x x
Gyroscope/Acceleration

Sensor

 x
GPS System
Wheel-based Platform x x x x x
Robot Arm x x x x
Gripper x x
Miscellaneous End

Effectors/ Tools

x x x x x x
Input Peripherals x x x x
Output Peripherals

(screens)

x x x x
Power Supply (batteries) x x x x x x
Power Supply (DC/DC

converter)

x x x x x x
Controlling Computer x x x x x x
Safety Hardware x x
Miscellaneous Structural

Hardware
x x x x x

Miscellaneous Hardware

Environment

 x

Table 10.5-3 Scenario-specific hardware components

Appendices

199

Software GH CU CT FC IF Ra
Object Detection x x x x x x
Object Recognition x x x x
Object Modeling x x x
Environmental Modeling x x x
Change Detection x x x
Simultaneous Localisation

& Mapping

 x x x x
Platform Path Planning

2D/3D

 x x x x
Platform Control x x x x x
Grasping & Grasp Planning x x x
Tool Control x x x x x x
Arm Control x x x x
Arm Path Planning 3D/6D x x x x
Operational Interface (HRI) x x x x x
Robot-to-Robot

Coordination

Communication Protocols

& Messages

x x x x x x
Learning & Reasoning x
Drivers & Primitives x x x x x x
(Robot) Operating System x x x x x x

Table 10.5-4 Scenario-specific software components

Appendices

200

Ground crop harvester

Component type quant. parameters comments
Camera 6

frames per second:32 low-res
camera sensor diagonal(inch):0.2

Laserscanner 6

scanning angle(°):60

blind range(mm):100

maximal operating
distance(mm):2000

Force/Torque-Sensor 6

degrees of freedom:1

measurable moment
Mz(Nm):50

Robot Arm 6

maximum payload
capacity(kg): 4

weight(kg):20

reach(mm):776

Miscellaneous End Effectors/

Tools

6

expected cost(€):50 crop cutter

estimated cost stand.
dev.(€):20

Input Peripherals 1

number of axes:1 touchscreen

number of
buttons/keys:50

Output Peripherals (screens) 1 pixel array
size(inch):76800

touchscreen

Power Supply (batteries) 0

capacity(Ah):12

output voltage(V):12

Power Supply (DC/DC

converter)

6

output voltage(V):24

output power(W):200

Controlling Computer 1

processor type:9

volume(mm³):590000

flash memory
capacity(GB):0

Miscellaneous Structural

Hardware

6/6

expected
cost(€):20000/48000

linear axle;
gripper

estimated cost stand.
dev.(€):5000/8000

Table 10.5-5 Ground harvester hardware parameters

Appendices

201

ROS stack package

camera_drivers prosilica_camera

-robot_model -collada_parser

-collada_urdf

-colladadom

-convex_decomposition

-ivcon

-kdl_parser

-resource_retriever

-robot_state_publisher

-simmechanics_to_urdf

-urdf

-urdf_interface

-urdf_parser

-navigation -robot_pose_ekf

pr2_controllers robot_mechanism_controllers

pr2_kinematics pr2_arm_kinematics

cob_command_tools cob_dashboard

-common_msgs -nav_msgs

-pluginlib -pluginlib

-executive_smach -smach

-smach_msgs

Table 10.5-6 Ground harvester software selection

Appendices

202

Provisioning of Care Utensils

Component type quant. parameters comments

Camera 6/2/1

frames per second:32

sensor
diagonal(inch):0.2/1/0.5

Laserscanner 1

scanning angle(°):180

blind range(mm):100

maximal operating
distance(mm):8000

Force/Torque-Sensor 1

degrees of freedom:6

measurable moment
Mz(Nm):100

Wheel-based
Platform

1

weight(kg):150

footprint size(m²):0.64

maximum payload
capacity(kg):75

Robot Arm 1

maximum payload
capacity(kg):4

weight(kg):20

reach(mm):776

Gripper 1 jaw stroke(mm):80

Miscellaneous End
Effectors/ Tools

1

expected cost(€): 5000 removal mechanism

estimated cost stand.
dev.(€):1000

Input Peripherals 1

number of axes:1 touchscreen (input)

number of buttons/keys:50

Output Peripherals
(screens)

1 pixel array size(inch):76800 touchscreen (output)

Power Supply
(batteries)

8

capacity(Ah):12

output voltage(V):12

Power Supply (DC/DC
converter)

1/1/1

output voltage(V):5/12/24

output
power(W):15/100/200

Controlling Computer 1

processor type:9

volume(mm³):5900000

flash memory capacity(GB):0

Safety Hardware 2

weight(kg):0.15 emergency stop

contact surface
size([m²):0.0025

Appendices

203

Miscellaneous
Structural Hardware

1/1

expected cost():5000/500 linear axle, wlan

estimated cost stand.
dev.(€):1000/200

Table 10.5-7 Provisioning of care utensils hardware parameters

ROS stack Package

laser_pipeline laser_assembler

laser_filters

laser_geometry

image_pipeline camera_calibration

image_proc

stereo_image_proc

vision_opencv cv_bridge

cv_markers

image_geometry

camera_drivers prosilica_camera

slam_gmapping gmapping

cob_driver cob_canopen_motor

cob_forcetorque

cob_undercarriage_ctrl

executive_smach Smach

smach_ros

pr2_controllers robot_mechanism_controllers

pr2_gripper_action

pr2_object_manipulation pr2_grasp_adjust

pr2_gripper_grasp_planner_cluster

pr2_gripper_reactive_approach

pr2_gripper_sensor_action

pr2_gripper_sensor_controller

pr2_gripper_sensor_msgs

pr2_interactive_gripper_pose_action

pr2_manipulation_controllers

pr2_object_manipulation_launch

pr2_object_manipulation_msgs

pr2_tabletop_manipulation_launch

tabletop_collision_map_processing

tabletop_object_detector

pr2_gripper_grasp_controller

pr2_interactive_manipulation

Appendices

204

pr2_arm_navigation pr2_arm_navigation_perception

wifi_drivers wifi_ddwrt

cob_command_tools cob_dashboard

cob_teleop

knowrob ias_knowledge_base

knowrob_actions

knowrob_common

knowrob_objects

mod_probcog

mod_srdl

Table 10.5-8 Provisioning of care utensils software selection

Appendices

205

Container transport in hospitals

Component type quant. parameters comments

Camera 2

frames per second:32

sensor diagonal(inch):0.5

Laserscanner 2

scanning angle(°):270

blind range(mm):100

maximal operating
distance(mm):8000

Wheel-based
Platform

1

weight(kg):300

footprint size(m²):1.8

maximum payload
capacity(kg):275

Miscellaneous End
Effectors/ Tools

1

expected cost(€):750 lifter

estimated cost stand.
dev.(€):150

Input Peripherals 1

number of axes:1 touchscreen (input)

number of
buttons/keys:50

Output Peripherals
(screens)

1 pixel array
size(inch):76800

touchscreen (output)

Power Supply
(batteries)

8

capacity(Ah):12

output voltage(V):12

Power Supply (DC/DC
converter)

1/2

output voltage(V):5/24

output power(W):15/200

Controlling Computer 1

processor type:9

volume(mm³):590000

flash memory
capacity(GB):0

Miscellaneous
Structural Hardware

1/1

expected cost(€):250/500 wlan, rfid/barcode reader

estimated cost stand.
dev.(€):50/100

Table 10.5-9 Container transport in hospitals hardware parameterization

Appendices

206

ROS stack package

cob_driver cob_camera_sensors

cob_forcetorque

cob_base

cob_base_drive_chain

laser_pipeline laser_assembler

laser_filters

laser_geometry

image_pipeline camera_calibration

image_proc

stereo_image_proc

camera_drivers prosilica_camera

perception_pcl cminpack

flann

pcl

pcl_ros

slam_gmapping gmapping

pr2_controllers robot_mechanism_controllers

wifi_drivers wifi_ddwrt

cob_command_tools cob_dashboard

cob_teleop

control control_msgs

web_interface web_msgs

rosweb

webui

Table 10.5-10 Container transport in hospitals software selection

Appendices

207

Floor cleaning

Component type quant. parameters comments

Camera 1 frames per second:32

sensor diagonal(inch):0.5

Ultrasonic Sensor 6 blind range(mm):60

maximal operating
distance(mm):500

Laserscanner 2 scanning angle(°):270

blind range(mm):100

maximal operating
distance(mm):8000

Binary Sensor 2 maximal operating
distance(mm):100

step detection to avoid
falling down stairs

blind range(mm):0

Force/Torque-Sensor 1 degrees of freedom:1

measurable moment
Mz(Nm):5

Wheel-based Platform 1 weight(kg):51

footprint size(m²):0.2

maximum payload
capacity(kg):40

Robot Arm 1 maximum payload
capacity(kg):4

weight(kg):20

reach(mm):776

Gripper 1 jaw stroke(mm):37

Miscellaneous End
Effectors/ Tools

1 expected cost(€):1500 cleaning unit

estimated cost stand.
dev.(€):500

Power Supply
(batteries)

4 capacity(Ah):12

output voltage(V):12

Power Supply (DC/DC
converter)

1/1/1 output voltage(V):5/12/24

output
power(W):15/100/200

Controlling Computer 1

processor type:9

volume(mm³):590000

flash memory

capacity(GB):0

Table 10.5-11 Floor cleaning hardware parameterization

Appendices

208

ROS stack package

cob_driver cob_camera_sensors

cob_base

cob_base_drive_chain

cob_forcetorque

camera_drivers prosilica_camera

perception_pcl cminpack

flann

pcl

pcl_ros

vision_opencv cv_bridge

cv_markers

image_geometry

image_pipeline image_proc

camera_calibration

laser_pipeline laser_assembler

laser_filters

laser_geometry

object_manipulation household_objects_database

cob_environment_perception cob_3d_mapping_msgs

slam_gmapping gmapping

executive_smach smach

smach_ros

pr2_controllers robot_mechanism_controllers

pr2_gripper_action

Table 10.5-12 Floor cleaning software selection

Appendices

209

Assistance with interior finishing works

Component type quant. parameters comments

Laserscanner 2 scanning angle(°):270

blind range(mm):100

maximal operating
distance(mm):8000

Binary Sensor 20 maximal operating distance(mm):
50

optical distance
sensors for safety

blind range(mm):0

Force/Torque-
Sensor

1 degrees of freedom:4

measurable moment Mz(Nm):150

Wheel-based
Platform

1 weight(kg):50

footprint size(m²):0.75

maximum payload capacity(kg):40

Robot Arm 1 maximum payload capacity(kg):4

weight(kg):20

reach(mm):776

Miscellaneous
End Effectors/
Tools

1/1/1 expected cost(€):10000/4000/2000 2DOF module +
1DOF module,
power drill,
power cutter

estimated cost stand. dev.
(€):2000/1000/500

Power Supply
(batteries)

8 capacity(Ah):12

output voltage(V):12

Power Supply
(DC/DC
converter)

1/1/1 output voltage(V):5/12/24

output power(W):15/100/200

Controlling
Computer

1 processor type:9

volume(mm³):5900000

flash memory capacity(GB):0

Miscellaneous
Structural
Hardware

1/1/1/1/1 expected
cost(€):10000/1500/3000/1000/200

linear axle, tool
bayonet
connection, laser
projector, 2D
rotary laser,
microphone

estimated cost stand.
dev.(€):2000/300/500/200/50

Table 10.5-13 Assistance with interior finishing works hardware parameterization

Appendices

210

ROS stack package

laser_pipeline laser_assembler

laser_filters

laser_geometry

vision_opencv cv_bridge

cv_markers

image_geometry

perception_pcl cminpack

flann

pcl

pcl_ros

slam_gmapping gmapping

object_manipulation object_manipulation_msgs

object_manipulator

point_cloud_server

audio_common audio_capture

audio_common_msgs

audio_play

sound_play

pr2_navigation pr2_navigation_teleop

cob_environment_perception cob_3d_mapping_msgs

pr2_controllers robot_mechanism_controllers

Table 10.5-14 Assistance with interior finishing workssoftware selection

Appendices

211

Raser lawn mowing robot

Component type quant. parameters comments

Ultrasonic Sensor 4 blind range(mm):60

maximal operating
distance(mm):500

Binary Sensor 2/2 maximal operating
distance(mm):15

blind range(mm):0

Gyroscope/Acceleration
Sensor

1 number of axes:6

power usage(mA):4.2

Wheel-based Platform 1 weight(kg):15

footprint size(m²):0.2

maximum payload
capacity(kg):2

Miscellaneous End
Effectors/ Tools

1 expected cost(€):0 mowing unit (provided
externally) estimated cost stand.

dev.(€):0

Input Peripherals 1 number of axes:3

number of buttons/keys:5

Output Peripherals
(screens)

1 pixel array size(inch):1600 2-line dotmatrix

Power Supply
(batteries)

0 capacity(Ah):12 (provided externally)

output voltage(V):12

Power Supply (DC/DC
converter)

1 output voltage(V):5

output power(A):15

Controlling Computer 1 processor type:17

volume(mm³):16000

flash memory
capacity(GB): 0

Safety Hardware 1 weight(kg):0.3 bumper

contact surface
size([m²):0.02

Miscellaneous
Structural Hardware

1/1 expected
cost(€):2000/200

grass sensor, compass

estimated cost stand.
dev.(€):500/50

Miscellaneous
Hardware Environment

1/1 expected cost(€):500+500 RFID tags, charging
device estimated cost stand.

dev.(€): 250/100

Table 10.5-15 Raser lawn mowing hardware parameterization

Appendices

212

ROS stack package

pr2_controllers robot_mechanism_controllers

joystick_drivers joy

wifi_drivers wifi_ddwrt

-common_msgs

-trajectory_msgs

-actionlib_msgs

-filters -filters

-nodelet_core -nodelet_topic_tools

-pluginlib -pluginlib

Table 10.5-16 Raser lawn mowing software selection

Appendices

213

10.6. Scenario Questionnaires

The following questionnaire was used for EFFIROB scenarios in the verification

process.

The SEROCOST estimate is … than the EFFIROB estimate.

much more

realistic

more

realistic

equally

realistic

less

realistic

much less

realistic

don't know

hardware

costs

software costs

Comment:

 How do you assess the hardware cost estimation?

very

realistic

reasonably

realistic

somewhat

unrealistic

very

unrealistic

don't know

 material costs

 installation

costs

 administr.

costs

 Comment:

 How do you assess the software cost estimation?

very

realistic

reasonably

realistic

somewhat

unrealistic

very

unrealistic

don't know

 development

costs

 installation

costs

 Comment:

 How do you assess the designing cost estimation?

very

realistic

reasonably

realistic

somewhat

unrealistic

very

unrealistic

don't know

 designing cost

 Comment:

 How do you assess the additional availability of standard deviation and

IQR?

very

helpful

helpful to

some

degree

neither

helpful nor

confusing

confusing

to some

degree

very

confusing don't know

Standard

deviation

IQR

Comment:

Appendices

214

Under the aspects of clarity and meaning, which aggregation would you

prefer in cost estimates for a service robot?

for

prototype

cost

for

product

level

unit cost

 Including all cost constituents

 Excluding designing cost

 Excluding designing cost, admin.
costs

 Direct unit costs

 None of the above

 I don't know.

 Comment:

 Combined with other estimation methods, how do you assess the

additional support with the SEROCOST approach and tool?

very helpful

helpful to

some

degree

neither

helpful nor

confusing

confusing

to some

degree

very

confusing don't know

Comment:

 Given the SEROCOST estimate, how would you adapt the original EFFIROB

estimate?

Hardware

costs

Software

costs
 Replace original values with SEROCOST values

 Find a compromise between both

values

 Keep old values

 I don't know.

 Comment:

 If you had to do an early design phase cost estimate for a service robot,

would you use the SEROCOST tool and approach?

Definitely Probably Maybe Probably

not

Definitely

not

don't

know

Comment: given usability is sufficient

 Open question: What do you consider strengths or weaknesses of the

SEROCOST approach not covered by the questions above?

Appendices

215

The following, slightly modified version of the questionnaire above was used for the
Raser scenario verification.
The SEROCOST estimate is … than the Raser estimate.

much more

realistic

more

realistic

equally

realistic

less

realistic

much less

realistic
don't know

material costs

labor costs

Comment:

 How do you assess the hardware cost estimation?

very

realistic

reasonably

realistic

somewhat

unrealistic

very

unrealistic
don't know

 material costs

 installation

costs

 administr.

costs

 Comment:

 How do you assess the software cost estimation?

very

realistic

reasonably

realistic

somewhat

unrealistic

very

unrealistic
don't know

 development

costs

 installation

costs

 Comment:

 How do you assess the designing cost estimation?

very

realistic

reasonably

realistic

somewhat

unrealistic

very

unrealistic
don't know

 designing cost

 Comment:

 How do you assess the additional availability of standard deviation and

IQR?

very

helpful

helpful to

some

degree

neither

helpful nor

confusing

confusing

to some

degree

very

confusing don't know

Standard

deviation

IQR

Comment:

Appendices

216

Under the aspects of clarity and meaning, which aggregation would you

prefer in cost estimates for a service robot?

for

prototype

cost

 Including all cost constituents

 Excluding designing cost

 Excluding designing cost, admin.

costs

 Direct unit costs

 None of the above

 I don't know.

 Comment:

 Combined with other estimation methods, how do you assess the

additional support with the SEROCOST approach and tool?

very

helpful

helpful to

some

degree

neither

helpful nor

confusing

confusing

to some

degree

very

confusing don't know

Comment:

 Given the SEROCOST estimate, how would you have adapted the original

Raser estimate?

Material

costs
Labor costs

 Replace original values with SEROCOST values

 Find a compromise between both

values

 Keep old values

 I don't know.

 Comment:

 If you had to do an early design phase cost estimate for a service robot,

would you use the SEROCOST tool and approach (assuming maximum time

effort required for a tool based estimate < 1h)?

Definitely Probably Maybe Probably

not

Definitely

not

don't know

Comment:

 Open question: What do you consider strengths or weaknesses of the

SEROCOST approach not covered by the questions above?

Appendices

217

The following questionnaire was used for retrieving expert feedback on the

categorization of skills as well as hardware and software component types.

Functions
 1. Below you see a categorization of generic skills as requirements a service

robot (often) needs to fulfill.
1a. Please verify the usefulness of each category and each function (Does it

make sense? Is it important?).
1b. If you think an important category or function is missing please add it.

Please make sure that it cannot be subsumed under one of the already

listed.
1c. The skills should be as decoupled as possible. If you think that two

functions have overlapping meaning please indicate so and, if possible,

suggest a better distinction.

 Category Skill Comments

Perception

Object Detection
Object Recognition
Environmental

Modeling

includes kinematics
Navigation &

Locomotion

Self Localization
Platform Path

Planning

includes collision avoidance
Platform Control

Manipulation

Manipulator Path

Planning

includes collision avoidance

Manipulator Control includes visual servoing, force

control
Grasping & Grasp

Planning

Robot Interface

Human-Robot

Interaction

includes speech and gesture

recognition, operation and

teleoperation
Programming &

Teaching

Robot-Robot

Interaction

Additional Function …

Appendices

218

Component Types Hardware
 2. Below you see a categorization of generic hardware component types

often installed in a service robot.
2a. Please verify the usefulness of each category and each component type

(Does it make sense? Is it important?).
2b. If you think an important category or component type is missing please

add it. Please make sure that it cannot be subsumed under one of the

already listed.

 Category Component Comments
Perception

Hardware

Camera
Ultrasonic Sensor
Laser scanner
Radar
Binary Sensor Point sensor, area

sensor (including

sensor skin), includes

angle transmitters
Force/Torque-Sensor
Gyro-Sensor
GPS System

Navigation &

Locomotion

Hardware

Ground Platform excludes walkers
Aerial Platform UAV Platforms

Manipulation

Hardware

Robot Arm
Gripper
Miscellaneous End Effectors/

Tools

e.g. welding

equipment
HRI Hardware (if

not listed among

sensors)

Input Peripherals e.g. simple: keyboard,

buttons, microphone;

advanced: Haptic Input

Devices
Output Peripherals e.g. simple:

loudspeakers, screen;

advanced: Augmented

Reality Visors

Appendices

219

Infrastructure

Hardware

Power Supply
Controlling Computer
Safety Hardware hardware dedicated to

safety issues, i.e.

emergency stop circuit
Miscellaneous Structural

Hardware

e.g. frame, wiring

harness
Additional

Hardware

…

 Component Types Software
 3. Below you see a categorization of generic software component types

often installed in a service robot.
3a. Please verify the usefulness of each category and each component type
(Does it make sense? Is it important?).
3b. If you think an important category or component type is missing please
add it. Please make sure that it cannot be subsumed under one of the
already listed.

 Category Component Comments
Perception

Software

Object Recognition
Sensor Fusion
Environmental Modeling

Navigation &

Locomotion

Software

Self Localization and

Mapping

Path Planning 2D
Manipulation

Software

Path Planning 3D/6D
Visual Servoing
Grasping & Grasp Planning
Application Specific Control

HRI Software

Speech Recognition
Gesture Recognition
Operation & Teleoperation
Graphical User Interface

Systemic Software

(Robot) Operating System
Internal Component

Interfaces

Learning & Reasoning
Additional Software …

Publication bibliography

220

Publication bibliography

4cost 2012 4cost (2012): aces - module for parametric cost
estimation. Available online at
http://www.4cost.de/en/software/parametric-cost-
estimating, checked on 2012-09-18.

Acquah 2010 Acquah, Henry de-Graft (2010): Comparison of Akaike
information criterion (AIC) and Bayesian information
criterion (BIC) in selection of an asymmetric price
relationship. In Journal of Development and Agricultural
Economics 2 (1), pp. 1–6.

Albrecht 1979 Albrecht, Allan J. (1979): Measuring Application
Development Productivity. In : IBM Application
Development, proceedings. IBM Application
Development Symposium. GUIDE Int.; SHARE Inc.,
IBM Corp. Monterey, CA, USA, pp. 83–92.

Albrecht 1983 Albrecht, A.J; Gaffney, J.E (1983): Software Function,
Source Lines of Code, and Development Effort
Prediction: A Software Science Validation. In IEEE Trans.
Software Eng. (IEEE Transactions on Software
Engineering) 9 (6), pp. 639–648.

Austin 2009 Austin, David; Cole, Luke (2009): Dave's Robotic
Operating System. Available online at http://dros.org/,
updated on 2009-10-27, checked on 2012-09-19.

Backhaus 1996 Backhaus, Klaus (1996): Multivariate Analysemethoden.
Eine anwendungsorientierte Einführung. 8th ed. Berlin,
Germany: Springer.

Banker 1991 Banker, R.D; Kauffman, R.J; Kumar, R. (1991): Output
measurement metrics in an object-oriented computer
aided software engineering (CASE) environment:
critique, evaluation and proposal. In: System Sciences,
proceedings. 24th Annual Hawaii International
Conference on System Sciences. Hawaii, USA, January 8-
11. Los Alamitos, CA, USA: IEEE Computer Society, pp.
18–27.

Publication bibliography

221

Barclay 2000 Barclay, I.; Dann, Z. (2000): New-product-development
performance evaluation: a product-complexity-based
methodology. In IEE Proc., Sci. Meas. Technol. 147 (2), p.
41.

Bischoff 2009 Bischoff, Rainer; Guhl, Tim: Robotic Visions. To 2020 and
beyond. The Strategic Research Agenda for Robotics in
Europe, 07/009 (2009): European Robotics Technology
Platform.

BMBF 2012 BMBF (2012): BMBF › Forschung › Bekanntmachung.
Available online at
http://www.bmbf.de/foerderungen/18386.php, updated
on 2012-03-14, checked on 2012-09-17.

Boehm 1981 Boehm, Barry W. (1981): Software Engineering
Economics. Englewood Cliffs, NJ, USA: Prentice-Hall.

Boehm 2000 Boehm, Barry; Abts, Chris; Chulani, Sunita (2000):
Software development cost estimation approaches - A
survey. In Annals of Software Engineering 10 (1/4), pp.
177–205.

Boren 2011 Boren, Jonathan; Cousins, Steve (2011): Exponential
Growth of ROS [ROS Topics]. In IEEE Robot. Automat.
Mag. 18 (1), pp. 19–20.

Botthof 2011 Botthof, Alfons; Domröse, Wolfgang; Groß, Wolfram
(2011): Technologische und wirtschaftliche Perspektiven
Deutschlands durch die Konvergenz der elektronischen
Medien. Studie der VDI/VDE Innovation + Technik GmbH.
Studienband. VDI/VDE Innovation + Technik GmbH.
Berlin, Germany. Available online at http://www.vdivde-
it.de/publikationen/studien/technologische-und-
wirtschaftliche-perspektiven-deutschlands-durch-die-
konvergenz-der-elektronischen-medien-studienband,
checked on 2012-09-17.

Braun 2007 Braun, Stefanie C.; Lindemann, Udo (2007): A Multilayer
Approach for early Cost Estimation of mechatronical
Products. In : ICED, proceedings. 16th International
Conference on Engineering Design. Paris, France, August
28-31. Scotland: The Design Society, pp. 1–10. Available

Publication bibliography

222

online at
http://www.pe.mw.tum.de/forschung/publikationen/pu
blikationen/pdfs/BraunLindemann2007a.pdf, checked on
2011-12-28.

Bronštejn 1995 Bronštejn, Ilja N. (1995): Taschenbuch der Mathematik.
2., überarb. und erw. Aufl., erw. Lizenzausg. der bis 1977
erschienenen russ. Orig.-Ausg. Thun, Switzerland:
Deutsch.

Brooks 2005 Brooks, A.; Kaupp, T.; Makarenko, A.; Williams, S.;
Oreback, A. (2005): Towards component-based robotics.
In : IROS, proceedings. IEEE/RSJ International Conference
on Intelligent Robots and Systems. Alberta, Canada,
August 2-6. Piscataway, NJ, USA: IEEE, pp. 163–168.

Browning 2001 Browning, T.R (2001): Applying the design structure
matrix to system decomposition and integration
problems: a review and new directions. In IEEE Trans.
Eng. Managemt. (IEEE Transactions on Engineering
Management) 48 (3), pp. 292–306.

Browning 2002 Browning, T.R; Eppinger, S.D (2002): Modeling impacts of
process architecture on cost and schedule risk in product
development. In IEEE Trans. Eng. Managemt. (IEEE
Transactions on Engineering Management) 49 (4), pp.
428–442.

Brugali 2007 Brugali, Davide; Brooks, Alex; Cowley, Anthony; Côté,
Carle; Domínguez-Brito, Antonio C.; Létourneau, Dominic
et al. (2007): Trends in Component-Based Robotics. In
Davide Brugali (Ed.): Software engineering for
experimental robotics, vol. 30. Berlin, Germany: Springer
(30), pp. 135–142.

Brugali 2009 Brugali, Davide; Scandurra, Patrizia (2009): Component-
based robotic engineering (Part I) [Tutorial]. In IEEE
Robot. Automat. Mag. 16 (4), pp. 84–96.

CARMEN-Team 2009 CARMEN-Team (2009): CARMEN. Available online at
http://carmen.sourceforge.net/home.html, updated on
2009-12-02, checked on 2012-09-19.

Publication bibliography

223

Casella 2002 Casella, George; Berger, Roger L. (2002): Statistical
inference. 2nd ed. Pacific Grove, CA, USA: Thomson
Learning.

CSE 2000 Center for Software Engineering, USC (2000):
COCOMO II. Model Definition Manual. Version 2.1.
Available online at
ftp://ftp.usc.edu/pub/soft_engineering/COCOMOII/coco
mo99.0/modelman.pdf, checked on 2012-09-17.

Chen 2009 Chen, Qi-Wei; Li, Guo-Yin; Zhuang, Qing-Hui (2009): The
Analysis of Project Schedule Uncertainty: Based on
Monte Carlo Simulation. In : MASS, proceedings.
International Conference on Management and Service
Science. Wuhan, China, September 20-22. Piscataway,
NJ, USA: IEEE, pp. 2217–2220.

Chidamber 1994 Chidamber, S.R; Kemerer, C.F (1994): A metrics suite for
object oriented design. In IEEE Trans. Software Eng. (IEEE
Transactions on Software Engineering) 20 (6), pp. 476–
493.

Clausing 1994 Clausing, Don (1994): Total quality development. A step-
by-step guide to world class concurrent engineering.
New York, NY, USA: ASME Press.

Coenenberg 2009 Coenenberg, Adolf Gerhard; Fischer, Thomas M.;
Günther, Thomas (2009): Kostenrechnung und
Kostenanalyse. 7th ed. Stuttgart, Germany: Schäffer-
Poeschel.

COMM/ESTAT COMM/ESTAT: Eurostat Home. eurostat. Available online
at
http://epp.eurostat.ec.europa.eu/portal/page/portal/eu
rostat/home, checked on 2012-09-20.

CBET 1990 Committee on Budget Estimating Techniques, Building
Research Board National Research Council (1990):
Improving the accuracy of early cost estimates for
federal construction projects. Washington, D.C., USA:
National Academy Press. Available online at
http://www.nap.edu/catalog.php?record_id=1693,
checked on 2012-10-24.

Publication bibliography

224

CSB 2012 Construx Software Builders (2012): Construx Estimate -
Construx. Available online at
http://www.construx.com/Page.aspx?nid=68, checked
on 2012-09-18.

Cook 1982 Cook, Dennis; Weisberg, Sanford (1982): Criticism and
Influence Analysis in Regression. In Sociological
Methodology 13, pp. 313–361.

CSSE 2002 CSSE (2002): Parametric Cost Estimating Handbook -
Estimation Methodologies. Cost Estimation And
Assessments Office, Johnson Space Center, National
Aeronautics and Space Administration. Available online
at http://cost.jsc.nasa.gov/pcehhtml/pceh.htm, updated
on 2004-03-24, checked on 2012-09-17.

CSSE 2011 CSSE (2011): CSSE Website. COCOMO(TM) II. Center for
Software Engineering, University of Southern California.
Available online at
http://sunset.usc.edu/csse/research/COCOMOII/cocomo
_main.html, updated on 2011-03-22, checked on 2012-
09-18.

Dalgaard 2010 Dalgaard, Lars (2010): Rational System-level Design
Methodology for Autonomous Robotic Systems. Ph. D.
thesis. University of Southern Denmark, Odense,
Denmark. The Maersk-McKinney Moller Institute.
Available online at
http://www.teknologisk.dk/_root/media/47265_thesis_l
arsdalgaard.pdf.

Danial 2012 Danial, Al (2012): CLOC -- Count Lines of Code. Northrop-
Grumman Corporation. Available online at
http://cloc.sourceforge.net/, updated on 2012-04-10,
checked on 2012-09-20.

Dewdney 1998 Dewdney, A. K. (1998): Yes, we have no neutrons. An
eye-opening tour through the twists and turns of bad
science. New York, NY, USA: Wiley.

Diankov 2012 Diankov, Rosen (2012): OpenRAVE | Home. Available
online at http://openrave.org/, checked on 2012-09-19.

Publication bibliography

225

Dörner 2003 Dörner, Dietrich (2003): Die Logik des Misslingens.
Strategisches Denken in komplexen Situationen. Erw.
Neuausg. Reinbek bei Hamburg, Germany: Rowohlt.

Ehrlenspiel 2007a Ehrlenspiel, Klaus; Kiewert, Alfons; Lindemann, Udo;
Hundal, Mahendra S. (2007): Cost-efficient design.
Berlin, Germany: Springer; ASME Press.

Ehrlenspiel 2007b Ehrlenspiel, Klaus; Kiewert, Alfons; Lindemann, Udo
(2007): Kostengünstig entwickeln und konstruieren.
Kostenmanagement bei der integrierten
Produktentwicklung ; mit 143 Tabellen. 6th ed. Berlin,
Germany: Springer.

Eversheim 1985 Eversheim, W.; Rothenbücher, J. (1985): Kalkulation von
Vorrichtungen in der Konzeptphase. Theory and Practice
of Engineering Design in International Comparison. In V.
Hubka (Ed.): ICED, proceedings. Theory and practice of
engineering design in international comparison, vol. 1.
International Conference on Engineering Design.
Hamburg, Germany, August 26-28. Zurich, Switzerland:
Edition Heurista, pp. 427–436.

Fahrmeir 2009 Fahrmeir, Ludwig; Kneib, Thomas; Lang, Stefan (2009):
Regression. Modelle, Methoden und Anwendungen. 2nd
ed. Berlin, Germany: Springer.

FDT 2009 Fawkes Development Team (2009): Fawkes | Robot
Software Framework. Edited by Fawkes Development
Team. Available online at
http://www.fawkesrobotics.org/, checked on 2012-09-
19.

Fink 2005 Fink, Miriam (2005): Metrikeinsatz in Software-
Projekten. Zugel. Diplomarbeit. Universität Stuttgart,
Stuttgart, Germany. Fakultät Elektrotechnik, Informatik,
Informationstechnik.

Fitzpatrick 2012 Fitzpatrick, Paul; Natale, Lorenzo; Metta, Giorgio (2012):
YARP: Welcome to YARP. Available online at
http://eris.liralab.it/yarpdoc/index.html, updated on
2012-09-19, checked on 2012-09-19.

Publication bibliography

226

Flick 2007 Flick, Uwe; Kardorff, Ernst von; Steinke, Ines (2007):
Qualitative Forschung. Ein Handbuch. 5th ed. Reinbek bei
Hamburg, Germany: Rowohlt.

Flyvberg 2008 Flyvberg, Bent (2008): Curbing Optimism Bias and
Strategic Misrepresentation in Planning:Reference Class
Forecasting in Practice. In European Planning Studies 16
(1), pp. 3–21.

Fox 2000 Fox, John (2000): Nonparametric simple regression.
Smoothing scatterplots. Thousand Oaks, CA, USA: Sage.

Fox 2005 Fox, John (2005): Introduction to Nonparametric
Regression. McMaster University. Hamilton, Ontario,
Canada, 2005. Available online at
http://civil.colorado.edu/~balajir/CVEN6833/lectures/no
nparametric-regression-slides.pdf.

Frakes 1996 Frakes, William; Terry, Carol (1996): Software
Resue: Metrics and Models. In ACM Computing Surveys
28 (2), pp. 415–435.

Fraunhofer IPA 2011 Fraunhofer IPA (2011): Robot Systems. Available online
at
http://www.ipa.fraunhofer.de/Robot_Systems.17.0.html
?&L=2, checked on 2012-09-20.

Galway Subjective Probability Distribution Elicitation in Cost Risk
Analysis. Galway, Lionel A. (2007): Subjective Probability
Distribution Elicitation in Cost Risk Analysis. A Review.
RAND Corporation. Santa Monica, CA, USA. Available
online at
http://www.rand.org/pubs/technical_reports/TR410.ht
ml.

Gerpott 1999 Gerpott, Torsten J. (1999): Strategisches Technologie-
und Innovationsmanagement. Eine konzentrierte
Einführung. Stuttgart, Germany: Schäffer-Poeschel.

Glinz 2004 Glinz, Martin (2004): 5. Software-Aufwandschätzung.
Software Engineering I. Universität Zürich. Zurich,
Switzerland, 2004. Available online at
https://files.ifi.uzh.ch/rerg/arvo/ftp/se_I/kapitel_05.pdf,
checked on 2011-12-27.

Publication bibliography

227

Golub 1979 Golub, Gene H.; Heath, Micheal; Wahba, Grace (1979):
Generalized Cross-Validation as a Method for Choosing a
Good Ridge Parameter. In Technometrics 21 (2), pp. 215–
223.

Gordon 1961 Gordon, William J. J. (1961): Synectics. The Development
of Creative Capacity. New York, NY, USA: Harper Row.

Gostai 2012 Gostai (2012): UrbiForge Main/Home Page. Available
online at http://www.urbiforge.org/, updated on 2012-
11-15, checked on 2013-01-25.

Gurney 1997 Gurney, Kevin (1997): An introduction to neural
networks. London, UK: UCL Press.

Hägele 2010 Hägele, Martin; Blümlein, Nikolaus; Kleine, Oliver (2010):
Wirtschaftlichkeitsanalysen neuartiger Servicerobotik
(EFFIROB). Anwendungen und ihre Bedeutung für die
Robotik-Entwicklung. Eine Analyse der Fraunhofer-
Institute IPA und ISI im Auftrag des BMBF. Fraunhofer-
Gesellschaft. Munich, Germany. Available online at
http://www.ipa.fraunhofer.de/index.php?id=1643,
checked on 2012-09-17.

Hägele 2011 Hägele, Martin (2011): World robotics 2011. Service
robots. Frankfurt am Main, Germany: VDMA.

Han 2011 Han, Long; Wu, Xinyu; Liu, Guangyuan; Chen, Chunjie;
Ou, Yongsheng; Xu, Yangsheng (2011): An efficient and
low-cost robot grasping system in household
environments. In : WCICA, proceedings. 9th World
Congress on Intelligent Control and Automation. Taipeh,
Taiwan, June 21-25. Piscataway, NJ, USA: IEEE, pp. 593–
598.

Hender 2001 Hender, J.M; Rodgers, T.L; Dean, D.L; Nunamaker, J.F
(2001): Improving group creativity: brainstorming versus
non-brainstorming techniques in a GSS environment. In :
System Sciences, proceedings. 34th Annual Hawaii
International Conference on System Sciences. Maui, HI,
USA, January 3-6. Los Alamitos, CA, USA: IEEE Computer
Society, pp. 1–10.

Publication bibliography

228

Hertz 1991 Hertz, John; Krogh, Anders; Palmer, Richard G. (1991):
Introduction to the theory of neural computation.
Redwood City, CA, USA: Addison-Wesley.

Hughes 1996 Hughes, R. T. (1996): Expert Judgment as an Estimation
Method. In Information and Software Technology (38),
pp. 67–75.

ISO 8373 ISO 8373, 2012-03-01: Robots and robotic devices -
Vocabulary.

Jaybridge Robotics 2012 Jaybridge Robotics (2012): Jaybridge Robotics - Products
- RI-JAUS. Available online at
http://www.jaybridge.com/products/ri-jaus/, checked
on 2012-09-19.

JPL 2008 Jet Propulsion Laboratory (2008): CLARAty. Available
online at
https://claraty.jpl.nasa.gov/man/overview/index.php,
updated on 2008-09-10, checked on 2012-09-19.

Jones 1995 Jones, Capers (1995): Backfiring: converting lines of code
to function points. In Computer 28 (11), pp. 87–88.

Jones 2007 Jones, Capers (2007): Estimating software costs. Bringing
realism to estimating. 2nd ed. New York, NY, USA:
McGraw-Hill. Available online at
http://www.loc.gov/catdir/enhancements/fy0712/20070
11911-d.html.

Jorgensen 2007 Jorgensen, Magne; Shepperd, Martin (2007): A
Systematic Review of Software Development Cost
Estimation Studies. In IEEE Trans. Software Eng. (IEEE
Transactions on Software Engineering) 33 (1), pp. 33–53.

Kalb 1990 Kalb, George E. (1990): Counting Lines of Code,
Confusions, Conclusions, and Recommendations. Briefing
to the 3rd Annual REVIC User's Group Conference, 1990-
10-01. Available online at
http://sunset.usc.edu/research/CODECOUNT/document
s/3rd_REVIC.pdf, checked on 2012-09-18.

Kang 2005 Kang, Kyo Chul; Kim, Moonzoo; Lee, Jaejoon; Kim,
Byungkil; Hong, Youngjin; Lee, Hyoungki; Bang, Seokwon
(2005): 3D Virtual Prototyping of Home Service Robots

Publication bibliography

229

Using ASADAL/OBJ. In : ICRA, proceedings. IEEE
International Conference on Robotics and Automation.
Barcelona, Spain, April 18-22. IEEE. Piscataway, NJ, USA:
IEEE, pp. 2903–2908.

Keefer 1993 Keefer, Donald L.; Verdini, William A. (1993): Better
Estimation of PERT Activity Time Parameters. In
Management Science 39 (9), pp. 1086–1091.

Keeney 1989 Keeney, Ralph L.; Winterfeldt, Detlof von (1989): On the
uses of expert judgment on complex technical problems.
In IEEE Trans. Eng. Managemt. (IEEE Transactions on
Engineering Management) 36 (2), pp. 83–86.

Keung 2008 Keung, J.W; Kitchenham, B.A; Jeffery, D.R (2008):
Analogy-X: Providing Statistical Inference to Analogy-
Based Software Cost Estimation. In IEEE Trans. Software
Eng. (IEEE Transactions on Software Engineering) 34 (4),
pp. 471–484.

Kim 2005 Kim, Moonzoo; Lee, Jaejoon; Hong, Youngjin; Bang,
Seokwon; Kang, Kyo Chul (2005): Re-engineering
software architecture of home service robots: a case
study. In : ICSE, proceedings. 27th International
Conference on Software Engineering. St. Louis, MO, USA,
May 15-21. New York, NY, USA: The Association for
Computing Machinery, pp. 505–513.

Kim 2009 Kim, Minseong; Kim, Suntae; Park, Sooyong; Choi, Mun-
Taek; Kim, Munsang; Gomaa, Hassan (2009): Service
robot for the elderly. In IEEE Robot. Automat. Mag. 16
(1), pp. 34–45.

Kossiakoff 2003 Kossiakoff, Alexander; Sweet, William N. (2003): Systems
engineering. Principles and practice. Hoboken, NJ, USA:
Wiley-Interscience.

Kulak 2010 Kulak, Osman; Cebi, Selcuk; Kahraman, Cengiz (2010):
Applications of axiomatic design principles: A literature
review. In Expert Systems with Applications 37 (9), pp.
6705–6717. Available online at
http://www.sciencedirect.com/science/article/pii/S0957
417410002423.

Publication bibliography

230

Lawrence 1994 Lawrence, Jeannette; Luedeking, Sylvia (1994):
Introduction to neural networks. Design, theory and
applications. 6th ed. Nevada City, CA, USA: California
Scientific Software.

Leung 2002 Leung, Hareton; Zhang, Fan (2002): Software Cost
Estimation. In S. K. Chang: Handbook of software
engineering & knowledge engineering, vol. 2. River Edge,
NJ, USA: World Scientific, pp. 307–324.

Levin 2012 Levin, Mark Sh (2012): Morphological methods for
design of modular systems (a survey). Cornell University
Library. Available online at
http://arxiv.org/abs/1201.1712v1, updated on 2012-01-
09, checked on 2012-09-18.

Li 2006 Li, Dengke; Zhang, Henxi; Li, Shouan (2006):
Development Cost Estimation of Aircraft Frame based on
BP Neural Networks. In Fire Control and Command
Control (09), pp. 699–701.

Lindemann 2005 Lindemann, Udo (2005): Methodische Entwicklung
technischer Produkte. Methoden flexibel und
situationsgerecht anwenden. Berlin, Germany: Springer.

Linstone 1975 Linstone, Harold A.; Turoff, Murray (1975): The Delphi
method. Techniques and applications. Reading, MA, USA:
Addison-Wesley.

Liu 2003 Liu, Guoli; Tang, Xiaobing; Liu, Yuan-liang (2003):
Prediction for the Missile Development Cost Based on
Neural Network. In Tactical Missile Technology (1), pp.
23–26.

Lopez 2011 Lopez, Joaquin; Perez, Diego; Zalama, Eduardo; Gomez-
Garcia-Bermejo, Jaime (2011): Low cost indoor mobile
robot localization system. In : ISDA, proceedings. 11th
International Conference on Intelligent Systems Design
and Application. Córdoba, Spain, November 22-24.
Piscataway, NJ, USA: IEEE, pp. 1134–1139.

Ma 2010 Ma, Junhai; Mu, Lingling (2010): Comparison Study on
Methods of Software Cost Estimation. In V. E. Muchin,
Zhiwei Ye (Eds.): EBISS, proceedings. 2nd International

Publication bibliography

231

Conference E-Business and Information System Security.
Wuhan, China, May 22-23. Piscataway, NJ, USA: IEEE, pp.
1–4.

Mair 2005 Mair, C.; Shepperd, M. (2005): The consistency of
empirical comparisons of regression and analogy-based
software project cost prediction. In : ISESE, proceedings.
International Symposium on Empirical Software
Engineering. Noosa Heads, Queensland, Australia,
November 17-18. Los Alamitos, CA, USA: IEEE Computer
Society, pp. 509–518.

Masing 2007 Masing, Walter; Pfeifer, Tilo (2007): Handbuch
Qualitätsmanagement. 5th ed. Munich, Germany: Hanser.

Maurer 2006 Maurer, Maik; Pulm, Udo; Ballestrem, Felix (2006): The
Subjective Aspects of Design Structure Matrices. Analysis
of Comprehension and Application and Means to
Overcome Differences. In : Engineering Systems Design
and Analysis, proceedings. 8th Biennial Conference on
Engineering Systems Design and Analysis. Torino, Italy,
July 4-7. ASME. New York, NY, USA: American Society of
Mechanical Engineers.

Maurer 2007 Maurer, Maik S. (2007): Structural Awareness in Complex
Product Design. Doctoral thesis. Technische Universität
München, Munich, Germany. Faculty of Mechanical
Engineering.

Maurer 2008 Maurer, Maik; Lindemann, Udo (2008): The application
of the Multiple-Domain Matrix: Considering multiple
domains and dependency types in complex product
design. In : SMC, proceedings. International Convention
and Exhibition. International Conference on Systems,
Man and Cybernetics. Singapore, October 12-15. IEEE.
Piscataway, NJ, USA: IEEE, pp. 2487–2493.

McConnell 2006 McConnell, Steve (2006): Software estimation.
Demystifying the black art. Redmond, Wash: Microsoft
Press.

Publication bibliography

232

Meisl 1988 Meisl, Claus J. (1988): Techniques for cost estimating in
early program phases. In Engineering Costs and
Production Economics 14 (2), pp. 95–106.

Minkiewicz 1997 Minkiewicz, Arlene F. (1997): Measuring Object Oriented
Software with Predictive Object Points. In : ASM,
proceedings. Applications in Software Management -
Workshops on Abstract State Machines. Atlanta, GA,
USA. Available online at
http://www.pricesystems.com/white_papers/Measuring
%20Object%20Oriented%20Software%20with%20Predic
tive%20Object%20Points%20July%20%2797%20-
%20Minkiewicz.pdf, checked on 2013-02-20.

Molokken 2003 Molokken, Kjétil; Jorgensen, Magne (2003): A review of
software surveys on software effort estimation. In :
ISESE, proceedings. International Symposium on
Empirical Software Engineering. Rome, Italy, September
30 - October 1. IEEE Computer Society. Los Alamitos, CA,
USA: IEEE Computer Society, pp. 223–230.

MPRT 2012 MPRT (2012): The Mobile Robot Programming Toolkit.
The Mobile Robot Programming Toolkit
(MPRT) initiative. Available online at
http://www.mrpt.org/, checked on 2012-09-19.

Mundhenk 2003 Mundhenk, T. Nathan; Ackerman, Christopher; CHung,
Daesu; Dhavale, Nitin; Hudson, Brian; Hirata, Reid et al.
(2003): Low cost, high performance robot design utilizing
off-the-shelf parts and the Beowulf concept, The Beobot
project. In : Intelligent Robots and Computer Vision,
proceedings. SPIE Conference on Intelligent Robots and
Computer Vision, October. SPIE International Society for
Optics and Photonics. Bellingham, WA, USA: SPIE Press,
pp. 293–303.

Musilek 2002 Musilek, P.; Pedrycz, W.; Nan Sun; Succi, G. (2002): On
the sensitivity of COCOMO II software cost estimation
model. In : METRICS, proceedings. Eighth IEEE
Symposium on Software Metrics. Ottawa, Canada, June
4-7. Los Alamitos, CA, USA: IEEE Computer Society, pp.
13–20.

Publication bibliography

233

Neter 1989 Neter, John; Wasserman, William; Kutner, Michael H.
(1989): Applied linear regression models. 2nd ed.
Homewood, IL, USA: Irwin.

Nguyen 2007 Nguyen, Vu; Deeds-Rubin, Sophia; Tan, Thomas; Boehm,
Barry W. (2007): A SLOC Counting Standard. Center for
Systems and Software Engineering, University of
Southern California. Available online at
http://csse.usc.edu/csse/TECHRPTS/2007/usc-csse-2007-
737/usc-csse-2007-737.pdf, checked on 2012-09-18.

Niemueller 2010 Niemueller, Tim; Ferrein, Alexander; Beck, Daniel;
Lakemeyer, Gerhard (2010): Design Principles of the
Component-Based Robot Software Framework Fawkes.
In Noriaki Ando, Stephen Balakirsky, Thomas Hemker,
Monica Reggiani, Oskar von Stryk (Eds.): Simulation,
Modeling and Programming for Autonomous Robots,
proceedings. Second International Conference. (in:
Lecture Notes on Computer Science). Second
International Conference on Simulation, Modeling and
Programming for Autonomous Robots. Darmstadt,
Germany, November 15-18. Heidelberg, Germany:
Springer, pp. 300–311.

Nonaka 1995 Nonaka, Ikujirō; Takeuchi, Hirotaka (1995): The
knowledge-creating company. How Japanese companies
create the dynamics of innovation. New York, NY, USA:
Oxford University Press.

NRW 2002 NRW, Statistisches Landesamt (2002): Research data
centres of the Federal Statistical Office and the statistical
offices of the Länder. Statistical Offices of the Federation
and the Länder. Available online at
http://www.forschungsdatenzentrum.de/en/index.asp,
updated on 2002-12-05, checked on 2012-09-20.

O'Brien 2007 O'Brien, Robert M. (2007): A Caution Regarding Rules of
THumb for Variance Inflation Factors. In Quality &
Quantity (41), pp. 673–690.

OpenJAUS 2012 OpenJAUS (2012): OpenJAUS - JAUS Robotics Software
Development Kit (SDK). Available online at
http://www.openjaus.com/, checked on 2012-09-19.

Publication bibliography

234

OpenMORA 2012 OpenMORA (2012). Available online at
http://sourceforge.net/p/openmora/home/Home/,
checked on 2012-09-19.

OPRoS WIKI 2011 OPRoS WIKI (2011). Available online at
http://210.115.36.127/doku.php, updated on 2011-06-
27, checked on 2012-09-19.

Orca Robotics 2009 Orca Robotics (2009): Orca: Components for Robotics.
Available online at http://orca-robotics.sourceforge.net/,
updated on 2009-11-18, checked on 2012-09-19.

Oriogun 1999 Oriogun, Peter K. (1999): A Survey of Boehm's Work on
the Spiral Models and COCOMO II - Towards Software
Development Process Quality Improvement. In Software
Quality Journal (8), pp. 53–62.

Osborn 1963 Osborn, A. F. (1963): Applied Imagination. Principles and
procedures of creative problem solving. Third Revised
Edition: Scribner.

OMRG 2008 Oxford Mobile Robotics Group (2008): MOOS : Main -
Home Page browse. Available online at
http://www.robots.ox.ac.uk/~mobile/MOOS/wiki/pmwik
i.php, updated on 2012-12-16, checked on 2013-01-25.

Piperidis 2007 Piperidis, S.; Doitsidis, L.; Anastasopoulos, C.;
Tsourveloudis, N. C. (2007): A low cost modular robot
vehicle design for research and education. In : MED,
proceedings. Conference on Control & Automation.
Athens, Greece, June 27-29. IEEE. Piscataway, NJ, USA:
IEEE, pp. 1–6.

Plinke 2000 Plinke, Wulff; Rese, Mario (2000): Industrielle
Kostenrechnung. Eine Einführung. 5th ed. Berlin,
Germany: Springer.

Polanyi 1985 Polanyi, Michael (1985): Implizites Wissen. 1st ed.
Frankfurt am Main, Germany: Suhrkamp.

Porter 1996 Porter, Micheal E. (1996): What is strategy? In Harvard
Business Review (November-December), pp. 61–78.

Porter 2000 Porter, Michael Eugene (2000): Wettbewerbsvorteile
(competitive advantage). Spitzenleistungen erreichen

Publication bibliography

235

und behaupten. 6th ed. Frankfurt am Main, Germany:
Campus.

Porter 2004 Porter, Michael E. (2004): Competitive strategy. First
Free Press Export Edition. New York, NY, USA: Free Press.

Prassler 2010 Prassler, Erwin (2010): Servicerobotik und die
Entdeckung ihrer Langsamkeit. In Economic Engineering
(5). Available online at http://www.economic-
engineering.de/de/knowledge-corner/12-business-
development.html, checked on 2012-09-17.

Psarros 2009 Psarros, D.; Papadimitriou, V.; Chatzakos, P.; Spais, V.;
Hrissagis, K. (2009): FRC: A low-cost service robot for
subsea flexible risers. In : ICAR, proceedings. 14th
International Conference on Advanced Robotics. Munich,
Germany, June 22-26. Piscataway, NJ, USA: IEEE, pp. 1–6.

Putnam 1978 Putnam, L.H (1978): A General Empirical Solution to the
Macro Software Sizing and Estimating Problem. In IEEE
Trans. Software Eng. (IEEE Transactions on Software
Engineering) 4 (4), pp. 345–361.

RAND Corp. 2010 RAND Corp. (2010): Delphi | RAND. Available online at
http://www.rand.org/international_programs/pardee/p
ubs/futures_method/delphi.html, updated on 2010-03-
01, checked on 2012-09-18.

Reid 2002 Reid, R. Dan; Sanders, Nada R. (2002): Operations
management. New York, NY, USA: Wiley.

Ritchey 1998 Ritchey, Tom (1998): General Morphological Analysis. A
general method for non-quantified modelling. In :
Operational Analysis, proceedings. 16th
EURO Conference on Operational Analysis. Brussels,
Belgium, July, pp. 1–11. Available online at
http://www.swemorph.com/pdf/gma.pdf, checked on
2013-02-20.

Rohrbach 1969 Rohrbach, Bernd (1969): Kreativ nach Regeln - Methode
635, eine neue Technik zum Lösen von Problemen. In
Absatzwirtschaft 12, pp. 73–75.

Rowe 1999 Rowe, Gene; Wright, George (1999): The Delphi
Technique as a Forecasting Tool: Issues and Analysis. In

Publication bibliography

236

International Journal of Forecasting 15 (4), pp. 353–375.
Available online at
http://www.sciencedirect.com/science/article/pii/S0169
207099000187.

Rowe 2002 Rowe, Gene; Wright, George (2002): Expert Opinions in
Forecasting: The Role of the Delphi Technique. In Jon
Scott Armstrong (Ed.): Principles of forecasting. A
handbook for researchers and practitioners. 2nd ed.
Boston, MA, USA: Kluwer academic, pp. 125–144.

Roy 2003 Roy, Rajkumar (2003): Cost Engineering: Why, What and
How? Cranfield, UK: Cranfield University.

Rush 2001 Rush, Christopher; Roy, Rajkumar (2001): Expert
Judgement in Cost Estimating: Modelling the Reasoning
Process. In Concurrent Engineering 9 (4), pp. 271–284.

Sachs 2002 Sachs, Lothar (2002): Angewandte Statistik. Anwendung
statistischer Methoden ; mit 317 Tabellen und 99
Übersichten. 10th ed. Berlin, Germany: Springer.

Santillo 2005 Santillo, Luca; Conte, Massimiliano; Meli, Roberto
(2005): Early & Quick Function Point: Sizing more with
less. In : Software Metrics, proceedings. 11th
International Symposium on Software Metrics. Como,
Italy, September 19-22. IEEE Computer Society. Los
Alamitos, CA, USA: IEEE Computer Society, pp. 41–46.

Schehl 1994 Schehl, Michael (1994): Die Kostenrechnung der
Industrieunternehmen vor dem Hintergrund
unternehmensexterner und -interner
Strukturwandlungen. Eine theoretische und empirische
Untersuchung. Berlin, Germany: Duncker & Humblot.

Schnell 2008 Schnell, Rainer; Hill, Paul Bernhard; Esser, Elke (2008):
Methoden der empirischen Sozialforschung. 8th ed.
Munich, Germany: Oldenbourg.

Schönberg 2012 Schönberg, Johannes Paul (2012): Hardware-orientierte
Kostenabschätzung prototypischer
Serviceroboterkonzepte mittels nichtparametrischer
Regressionsanalyse. Master thesis. University of Applied

Publication bibliography

237

Sciences Technikum Wien, Vienna, Austria. Department
of Mechatronics.

Shepperd 1996 Shepperd, M.; Schofield, C.; Kitchenham, B. (1996): Effort
estimation using analogy. In : Software Engineering,
proceedings. 18th International Conference on Software
Engineering. Berlin, Germany, March 25-29. Los
Alamitos, CA, USA: IEEE Computer Society, pp. 170–178.

Shepperd 1997 Shepperd, M.; Schofield, C. (1997): Estimating software
project effort using analogies. In IEEE Trans. Software
Eng. (IEEE Transactions on Software Engineering) 23 (11),
pp. 736–743.

Shepperd 2002 Shepperd, Martin (2002): ANGEL Project. Empirical
Software Engineering Research Group, Bournemouth
University. Available online at
http://dec.bmth.ac.uk/ESERG/ANGEL/, checked on 2012-
09-18.

Shue 2012 Shue, Sam; Hargrove, Claude; Conrad, James (2012): Low
cost semi-autonomous sentry robot. In : Southeastcon,
proceedings. Southeastcon. Orlando, FL, USA, March 15-
18. IEEE. Piscataway, NJ, USA: IEEE, pp. 1–5.

Siciliano 2008 Siciliano, Bruno; Khatib, Oussama (2008): Springer
handbook of robotics. Berlin, Germany: Springer.

Smits 2010 Smits, Ruben (2010): Robot Skills. Design of a constraint-
based methodology and software support. Doctoral
thesis. Katholieke Universiteit Leuven, Leuven, Belgium.
Faculty of Engineering.

Sneed 2010 Sneed, Harry M.; Seidl, Richard; Baumgartner, Manfred
(2010): Software in Zahlen. Die Vermessung von
Applikationen. Munich, Germany: Hanser.

SPR 2007 Software Productivity Research (2007): SPR
Programming Languages Table. Version PLT2007d.

SPR 2012 Software Productivity Research (2012): Programming
Languages Table. Available online at
http://www.spr.com/programming-languages-
table.html, checked on 2012-09-20.

Publication bibliography

238

statista 2012 statista (2012): Statista - das Statistik-Portal: Statistiken,
Marktdaten & Studien. Available online at
http://de.statista.com/, updated on 2012-09-14, checked
on 2012-09-20.

Statistisches Bundesamt
 2012a Statistisches Bundesamt (2012): Gesamtwirtschaft &

Umwelt - Tarifindex - Entwicklung der tariflichen
Monatsverdienste in Deutschland und in Frankreich -
 Statistisches Bundesamt (Destatis). Available online at
https://www.destatis.de/DE/ZahlenFakten/Gesamtwirts
chaftUmwelt/VerdiensteArbeitskosten/Tarifverdienste/T
arifindex/Tabellen/MonatsverdienstDF.html, updated on
2012-06-25, checked on 2012-09-20.

Statistisches Bundesamt
 2012b Statistisches Bundesamt (2012): Startseite - Statistisches

Bundesamt (Destatis). Available online at
https://www.destatis.de/DE/Startseite.html, checked on
2012-09-20.

Stellman 2006 Stellman, Andrew; Greene, Jennifer (2006): Applied
Software Project Management. Sebastopol, CA, USA:
O'Reilly.

Stensrud 1998 Stensrud, Erik (1998): Estimating with Enhanced Object
Points vs. Function Points. In : 13th
COCOMO/SCM Forum, proceedings. 13th
COCOMO/SCM Forum. Los Angeles, CA, USA, October:
University of Southern California, pp. 1–5.

Stochel 2011 Stochel, Marek Grzegorz (2011): Reliability and Accuracy
of the Estimation Process - Wideband Delphi vs. Wisdom
of Crowds. In : COMPSAC, proceedings. 35th Annual IEEE
International Computer Software and Applications
Conference. Munich, Germany, July 18-21. IEEE, IEEE
computer society. Los Alamitos, CA, USA (Vol. 1), pp.
350–359.

Stösser 1999 Stösser, Robert (1999): Zielkostenmanagement in
integrierten Produkterstellungsprozessen. Als Ms. gedr.
Aachen, Germany: Shaker.

Publication bibliography

239

Suh 2001 Suh, Nam P. (2001): Axiomatic design. Advances and
applications. New York, NY, USA: Oxford University
Press.

Sun 2007 Sun, Yi-Ran; Zhao, Song-Zheng; Liu, Wei; Xu, Heng
(2007): Research on a Manufacturing Cost Estimating
Method Based on ABC for Aeronautic Product. In :
Wireless Communications, Networking and Mobile
Computing, proceedings. International Conference on
Wireless Communications, Networking and Mobile
Computing. Shanghai, China, September 21-25. IEEE.
Piscataway, NJ, USA: IEEE, pp. 4059–4062.

Surowiecki 2005 Surowiecki, James (2005): The wisdom of crowds. Why
the many are smarter than the few. London, UK: Abacus.

Tani 2009 Tani, G.; Cimatti, B. (2009): Technological complexity: A
support to management decisions for product
engineering and manufacturing. In : IEEM, proceedings.
The IEEE International Conference on Industrial
Engineering and Engineering Management. Singapore,
December 8-11, 2008. IEEE. Piscataway, NJ, USA: IEEE,
pp. 6–11.

The Orocos Project The Orocos Project: Roadmap ideas for 3.x | The Orocos
Project. Available online at
http://www.orocos.org/wiki/orocos/development/road
map-ideas-3x, checked on 2012-09-19.

The Orocos Project 2012 The Orocos Project (2012): The Orocos Project | Smarter
control in robotics & automation. Available online at
http://www.orocos.org/, updated on 2012-12-03,
checked on 2013-01-25.

The Player Project The Player Project: Player Project. Available online at
http://playerstage.sourceforge.net/, checked on 2012-
09-19.

RDCT 2006 The R Development Core Team (2006): The R Project for
Statistical Computing. R Foundation for Statistical
Computing. Available online at http://www.r-
project.org/, updated on 2006-04-21, checked on 2012-
09-20.

Publication bibliography

240

RDCT 2012 The R Development Core Team (2012): R: A Language
and Environment for Statistical Computing. Reference
Index. Version 2.15.1. R Foundation for Statistical
Computing. Available online at http://cran.r-
project.org/doc/manuals/fullrefman.pdf, checked on
2012-09-19.

Touesnard 2004 Touesnard, Brad: Software Cost Estimation. SLOC-based
Models and Function Points Model. Version 1.1 (2004),
pp. 1–10. Available online at
http://bradt.ca/docs/SWE4103-report.pdf, checked on
2012.09-18.

Trivailo 2012 Trivailo, O.; Sippel, M.; Şekercioğlu, Y. A. (2012): Review
of hardware cost estimation methods, models and tools
applied to early phases of space mission planning. In
Progress in Aerospace Sciences 53 (0), pp. 1–17.
Available online at
http://www.sciencedirect.com/science/article/pii/S0376
042112000140.

Ulrich 2012 Ulrich, Karl T.; Eppinger, Steven D. (2012): Product design
and development. 5th ed. New York, NY, USA: McGraw-
Hill/Irwin.

VDMA 2009 Verband Deutscher Maschinen- und Anlagenbau (2009):
VDMA Kennzahlenkompass. Informationen für
Unternehmer und Führungskräfte. Frankfurt am Main,
Germany: VDMA.

VDI-Richtlinie 2221 VDI-Richtlinie 2221, May 1993: Methodik zum
Entwickeln und Konstruieren technischer Systeme und
Produkte.

VDI-Richtlinie 2225 Blatt 4 VDI-Richtlinie 2225 Blatt 4, November 1997:
Konstruktionsmethodik - Technisch-wirtschaftliches
Konstruieren - Bemessungslehre.

VDI-Richtlinie 2225 Blatt 1 VDI-Richtlinie 2225 Blatt 1, November 1997:
Konstruktionsmethodik - Technisch-wirtschaftliches
Konstruieren - Vereinfachte Kostenermittlung.

Waibel 2011 Waibel, Markus; Beetz, Michael; Civera, Javier; D'Andrea,
Raffaello; Elfring, Jos; Gálvez-López, Dorian et al. (2011):

Publication bibliography

241

RoboEarth. In IEEE Robot. Automat. Mag. 18 (2), pp. 69–
82.

Wiechers and Schneider
 2012 Wiechers, Ralph; Schneider, Gesine (Eds.) (2012):

VDMA Mechanical engineering - figures and charts.
VDMA. Frankfurt am Main, Germany.

Wierda 1988 Wierda, Leo S. (1988): Product Cost-Estimation by the
Designer. In Engineering Costs and Production Economics
(13), pp. 189–198.

Wikipedia 2003 Wikipedia (Ed.) (2003): Source lines of code - Wikipedia,
the free encyclopedia. Available online at
http://en.wikipedia.org/w/index.php?oldid=503106479,
updated on 2012-09-13, checked on 2012-09-18.

Wikipedia 2006 Wikipedia (Ed.) (2006): Function point - Wikipedia, the
free encyclopedia. Available online at
http://en.wikipedia.org/wiki/Function_points, updated
on 2012-07-03, checked on 2012-09-18.

Wikipedia 2009 Wikipedia (Ed.) (2009): Open-source robotics. Available
online at http://en.wikipedia.org/wiki/Open-
source_robotics, updated on 2013-01-08, checked on
2013-01-25.

Williams 1994 Williams, R. G.: Development Cost Prediction (1994).
London, UK: The Institution of Electrical Engineers, pp.
1–4.

Willow Garage Willow Garage: rosdep - ROS Wiki. Available online at
http://www.ros.org/wiki/rosdep, checked on 2012-09-
20.

Willow Garage 2008 Willow Garage (2008): Packages - ROS Wiki. Available
online at http://www.ros.org/wiki/Packages, updated on
2012-02-03, checked on 2012-04-07.

Willow Garage 2009a Willow Garage (2009): About ros.org - ROS Wiki.
Available online at
http://www.ros.org/wiki/About%20ros.org, updated on
2011-08-31, checked on 2012-09-20.

Publication bibliography

242

Willow Garage 2009b Willow Garage (2009): Documentation - ROS Wiki.
Available online at http://www.ros.org/wiki/, updated
on 2012-10-23, checked on 2013-01-25.

Willow Garage 2009c Willow Garage (2009): File:PR2 Tabletop.jpg - Wikimedia
Commons. Willow Garage. Available online at
http://commons.wikimedia.org/wiki/File:PR2_Tabletop.j
pg, updated on 2012-10-11, checked on 2012-10-24.

Willow Garage 2009d Willow Garage (2009): ROS/Introduction - ROS Wiki.
Available online at
http://www.ros.org/wiki/ROS/Introduction, updated on
2012-02-03, checked on 2012-09-19.

Willow Garage 2009e Willow Garage (2009):
ROS/Tutorials/NavigatingTheFilesystem - ROS Wiki.
Available online at
http://www.ros.org/wiki/ROS/Tutorials/NavigatingTheFil
esystem, updated on 2012-11-21, checked on 2013-01-
25.

Willow Garage 2010 Willow Garage (2010): release/Releasing/First Release -
ROS Wiki. Available online at
http://www.ros.org/wiki/release/Releasing/First%20Rele
ase, updated on 2013-01-22, checked on 2013-01-25.

Wolfe 2012 Wolfe, Kevin C.; Moses, Matthew S.; Kutzer, Michael
D.M; Chirikjian, Gregory S. (2012): M3Express: A low-cost
independently-mobile reconfigurable modular robot. In :
ICRA, proceedings. IEEE International Conference on
Robotics and Automation. St. Paul, MN, USA, May 14-18.
IEEE: IEEE, pp. 2704–2710.

Wuang 2010 Wuang, M. S.; Huang, R. H.; Yang, C. L.; Lin, M. J. (2010):
Key component supplier supports based on product
complexity during New Product Development - A case
study of Netbook PC manufacturers in Taiwan. In :
Management of Innovation and Technology,
proceedings. The 5th IEEE International Conference on
Management of Innovation and Technology. Singapore,
June 2-5. IEEE. Piscataway, NJ, USA: IEEE, pp. 1204–1207.

Publication bibliography

243

Xu 2007 Xu, Bin; Hu, Hua; Ling, Yun; Yang, Xiaohu; He, Zhijun; Ma,
Albert (2007): Efficient Collaborative Task Arrangement
in Global Software Design via Micro-Estimation and PERT
Technique. In : CSCWD, proceedings. 11th International
Conference on Computer Supported Cooperative Work
in Design. Melbourne, Australia, April 26-28. Melbourne,
Australia: Swinburne, pp. 174–179.

Yenduri 2007 Yenduri, Sumanth; Munagala, Sravanthi; Perkins, Louise
A. (2007): Estimation Practices Efficiencies: A Case Study.
In : ICIT, proceedings. 10th International Conference on
Information Technology. Rourkela, India, December 17-
20. Los Alamitos, CA, USA: IEEE Computer Society, pp.
185–189.

Zhou 2010 Zhou, Fengyu; Tian, Guohui; Yang, Yang; Hairong Xiao;
Wang, Xuewei; Wang, Wei (2010): Design and
implementation of low-cost service robot mobile
platform for intelligent space. In : ICAL, proceedings. IEEE
International Conference on Automation and Logistics.
Hong Kong and Macau, China, August 16-20. Piscataway,
NJ, USA: IEEE, pp. 49–54.

Zia 2011 Zia, Z.; Rashid, A.; uz Zaman, K. (2011): Software cost
estimation for component-based fourth-generation-
language software applications. In IET Softw 5 (1), pp.
103–110.

