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Introduction

In 1888, Reinitzer [292] was the first to recognize that apart from the familiar states of
matter — solid, liquid, and gas — there exists a fourth state of aggregation. In particular,
certain organic molecules do not show a single transition from solid to liquid, but rather
a cascade of transitions involving what we now call liquid crystalline phases. With fluids
they share the ability to flow, however, they also exhibit anisotropies in their dielectric,
magnetic, and optical properties reminiscent of crystals. This work deals with the nematic
phase which possesses the simplest liquid crystalline order. For example, rod-like organic
molecules align on average parallel to each other forming a long-range orientational order
whereas their centers of mass are disordered as in a conventional fluid. The mean orienta-
tion of the molecules is indicated by a unit vector, named director. It coincides with the
optical axis of the birefringent nematic phase.

The energetic ground state of a nematic liquid crystal is represented by a spatially
uniform director field. The present work addresses inhomogeneities in the nematic order
which are induced either by bounding surfaces and external fields or by strong thermal
fluctuations of the director. In the first half of this century, the elastic theory for long-
wavelength distortions of the director as an orientational order parameter was developed
culminating in the Oseen-Zocher-Frank free energy [259, 407, 121]. Since the nematic
state breaks the continuous rotational symmetry of the isotropic fluid, these distortions
correspond to hydrodynamic Goldstone modes. Their dynamics is governed by an extension
of the Navier-Stokes equations, first formulated by Ericksen [102] and Leslie [204] and
derived later by the Harvard group following rigorously the framework of hydrodynamics
[117]. Furthermore, topological defects in the orientational order arise. As we will recognize
in Part II, they provide a determining feature of inhomogeneous nematic liquid crystals.

Colloidal dispersions of particles in a solvent are part of our everyday life and an im-
portant state of matter for fundamental research. Motivated by experiments on inverted
and multiple nematic emulsions [279], in Part 1T we investigate the properties of spherical
particles suspended in a nematic environment. Due to the coupling of the liquid crystal
molecules to the surface of the suspended objects, the director field is spatially non-uniform.
After an introduction into the topic and a careful review of literature in Chapter 3, we
study in Chapter 4, what I consider the paradigm for the understanding of nematic col-
loidal dispersions, i.e., the director configuration around one single particle. As we explain
in Chapter 5, its overall symmetry determines the long-range two-particle interaction me-
diated by the distorted director field. In Chapter 6, we calculate Stokes’s friction force
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8 INTRODUCTION

experienced by a particle moving in a nematic environment, and in Chapter 7 we investi-
gate how suspended particles behave when the surrounding liquid crystal is enclosed into
a complex geometry. Finally, in Chapter 8 we demonstrate that surface-induced nematic
order influences the two-particle interaction even above the nematic-isotropic phase tran-
sition. It can induce flocculation in an otherwise stabilized dispersion, addressing a key
issue in colloid science.

Inhomogeneities in the nematic order are furthermore induced by thermal fluctuations
of the director, i.e., the local optical axis. Single light scattering from such fluctuations is
well understood [146]. In Part IIT we use this scattering mechanism to test our generalized
theory for the diffuse transport of light and its temporal correlations in random anisotropic
media. Diffusing light constitutes a successful regime for accessing multiply scattered
light in the limit where the photons behave like random walkers. It can even be used to
monitor the dynamics of turbid systems [226]; a technique which is now called diffusing-
wave spectroscopy [270]. In Chapter 9 we provide a review of all the fascinating facets of
multiply scattered light, and we also introduce the basic theory of diffuse light transport
in isotropic systems. In Chapter 10 we then generalize the theory to anisotropic media,
namely, uniaxial nematic liquid crystals.

We begin with Part I, where we review the phenomenological description of the nematic
phase. In Chapter 1 we introduce the total free energy from which a static director configu-
ration is determined by minimization. We then access the properties of the hydrodynamic
director modes on the basis of the Ericksen-Leslie equations governing the dynamics of the
director. In Chapter 2 we provide the basic knowledge of topological point and line defects
necessary for the understanding of director configuration around a single spherical particle.
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Nematic Liquid Crystals






Chapter 1

Phenomenological Description

Typical liquid crystalline compounds consist of organic molecules. According to their
elongated or disc-like shape one distinguishes between calamatic and discotic liquid crys-
tals. Figure 1.1a) presents the molecular structure of the well-studied compound N-(p-
methoxybenzylidene)-p-butylaniline (MBBA). Its approximate length and width are 20 A
and 5 A. At sufficiently high temperatures, the liquid crystalline compound behaves like a
conventional isotropic liquid; the molecules do not show any long-range positional and ori-
entational order, as illustrated in the right box of Fig. 1.1b) for rod-like molecules. Cooling
below the clearing point T, the liquid becomes turbid, which indicates a phase transition
to the liquid crystalline state. Finally, below the melting point 7;, the system is solid.
There exists a wealth of liquid crystalline phases [49, 76, 46]. Here we concentrate on the
simplest, 7.e., the nematic phase, which consists of non-chiral molecules. Their centers of
mass are disordered as in the isotropic liquid, whereas their main axes align themselves on
average parallel to each other, so that they exhibit a long-range orientational order. The
average direction is given by a unit vector mn, called Frank director. However, m merely
characterizes an axis in space, e.g., the optical axis of the birefringent nematic phase. As
a result, all physical quantities, which we formulate in the following, have to be invariant
under the inversion of the director (n — —mn). From the topological point of view, the
order parameter space of the nematic phase is the projective plane P? = S?/Z,, i.e., the
unit sphere S? in three dimensions with opposite points identified [351]. Unlike the magne-
tization in ferromagnets, the nematic order parameter is not a vector. This statement can
be understood from the following argument. Organic molecules often carry a permanent
electric dipole moment along their main axis but so far no ferroelectric nematic phase with
a spontaneous polarization has been found. Therefore, the same number of molecules that
point into a certain direction in space also have to point into the opposite direction.

In thermotropic liquid crystals, the phase transitions are controlled by temperature.
On the other hand, increasing the concentration of rod- or disc-like objects in a solvent
can lead to the formation of what is called lyotropic liquid crystalline phases. The objects
can be either large macromolecules, like the famous tobacco mosaic virus [119], or micelles,
which form when amphiphilic molecules are dissolved, e.g., in water.

All directions in the isotropic fluid are equivalent. The phase transition to the ne-

11



12 CHAPTER 1. PHENOMENOLOGICAL DESCRIPTION

b)
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Figure 1.1: a) The compound MBBA b) The nematic liquid-crystalline phase below the
clearing point T,.. The average direction of the molecules is indicated by the double arrow

{n,—n}.

matic state breaks the continuous rotational symmetry of the isotropic liquid. As a result,
domains with differently oriented directors appear like in a ferromagnet. These domains
strongly scatter light and are one reason for the turbidity of the nematic phase. Hydrody-
namic Goldstone modes appear in systems with a broken continuous symmetry [116, 46].
They are “massless”, i.e., their excitation does not cost any energy for vanishing wave
number. In the nematic phase, the Goldstone modes correspond to thermal fluctuations
of the director about its equilibrium value. Such fluctuations of the local optical axis also
scatter light very strongly.

In the next three Sections 1.1-1.3 we will lay the basis for an understanding of the static
and dynamical properties of the nematic phase, and we will apply it to director fluctuations
in Section 1.4, which serves as a prerequisite for Part III of this work. Sections 1.1 and 1.2
also provide the necessary knowledge for Part II. There, we will determine the spatially
non-uniform field of directors in complex geometries under the influence of surfaces and
external fields and in the presence of topological defects. Furthermore, with the help of the
dynamic theory in Section 1.3, we will calculate the Stokes drag of a particle in a nematic
environment, and we will demonstrate that it is influenced by the presence of topological
defects close to the particle.
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1.1 Free Energy

Thermodynamics tells us that a complete knowledge of a system on a macrosopic level
follows from the minimization of an appropriate thermodynamic potential [44]. We use
the free energy, which consists of bulk and surface terms,

F, :Fel+F24+FH+FS:/dgT(fel+f24+fH)+/deS ; (1.1)

and discuss them in order.

The energetic ground state of a nematic liquid crystal is a spatially uniform director
field; any deviation from it costs elastic energy. To describe slowly varying spatial distor-
tions of the director field n(r), one expands the free energy density into the gradient of
n(r), V,n;, up to second order, and demands that the energy density obeys the local point
symmetry D, of the nematic phase. The point group D, contains all the symmetry
elements of a cylinder, i.e., all rotations about an axis parallel to n(r), a mirror plane
perpendicular to n(r), and an infinite number of two-fold axes also perpendicular to n(r).
The result is the Oseen-Zocher-Frank free energy density [259, 407, 121], which consists of
two parts,

1
fu = S[Kr(divn)? + Ky(n - curln)? + Ky(n x curln)?) (12)

and K
o = —%div(ndivn +n x curln) | (1.3)

where K, Ky, K3, and Ky denote, respectively, the splay, twist, bend, and saddle-splay
elastic constants. Figure 1.2 illustrates the characteristic deformations of the director
field. The splay and bend distortions can be viewed, respectively, as part of a source or
vortex field. In the twist deformation, the director rotates about an axis perpendicular
to itself. In calamatic liquid crystals one usually finds the following relation, K3 > K; >
K,. For example, in the compound pentylcyanobiphenyl (5CB), K; = 0.42 - 1076 dyn,
Ky =0.23-10"%dyn, and K5 = 0.53-107%dyn. In discotic liquid crystals, the relationship
K, > K > K3 is predicted [329, 260, 340], which is in good agreement with experiments,
where Ky > K; > K3 is observed [378, 153].

The saddle-splay term is a pure divergence. It can be transformed into integrals over
all surfaces of the system,

1
Fo = —§K24/d8 - (ndive + n x curln) | (1.4)

where it prefers the formation of a saddle (see Fig. 1.2). A Cauchy relation for Ky, follows
from the Maier-Saupe molecular approach [253],

Koy = (K11 + K»)/2 . (1.5)

Exact measurements of Kys are still missing but it is of the order of the bulk elastic
constants K, Ky, and K3 [63, 10, 62]. There is also the possibility of another surface
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Figure 1.2: Illustration of the characteristic deformations in a nematic liquid crystal: splay,
twist, bend, and saddle-splay.

term with a free energy density Ki3div(ndivn), which we will not consider in this work
(253, 256, 17, 265, 266]. The controversy about it seems to be solved [267].

In the one-constant approximation, K = K; = Ky = K3, the Frank free energy takes
the form

Fy = g /d3r(ij)2 + % /dS - (ndivn + n x curln) . (1.6)
It is often used to obtain a basic understanding of a system without having to deal with
effects due to the elastic anisotropy. The bulk term is equivalent to the non-linear sigma
model in statistical field theory [406, 46] or the continuum description of the exchange
interaction in a ferromagnet [245].

In nematic liquid crystals we can assume a linear relation between the magnetization

M and an external magnetic field H, M = xH, where x stands for the tensor of the
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magnetic susceptibility. The nematic phase represents a uniaxial system, for which the
second-rank tensor x always takes the following form:

X=x11+Ax(n®@mn) ; (1.7)

1 is the unit tensor, and ® means dyadic product. We have introduced the magnetic
anisotropy Ax = x| — x.. It depends on the two essential magnetic susceptibilities x| and
x . for magnetic fields applied, respectively, parallel or perpendicular to the director. The
general expression for the magnetic free energy density is —H - xH /2 [194]. A restriction
to terms that depend on the director n yields

fir = —5X{(n- B~ 1) (1)

In usual nematics Ay is positive and typically of the order of 10~7 [76]. For Ax > 0, the
free energy density fy favors an alignment of the director nm parallel to H. By adding a
term —AxH?/2 on the right-hand side of Eq. (1.8), we shift the reference point in order
that the magnetic free energy of a completely aligned director field is zero. This will be
useful in Chapter 4 where we calculate the free energy of an infinitely extended system.
The balance between elastic and magnetic torques on the director defines an important
length scale, the magnetic coherence length

— K3
fH - “W . (19)

Suppose the director is planarly anchored at a wall, and a magnetic field is applied per-
pendicular to it. Then &y gives the distance from the wall that is needed to orient the
director along the applied field [76]. The coherence length tends to infinity for H — 0.

Finally, we employ the surface free energy of Rapini-Papoular to take into account the
interaction of the director with boundaries:

fo= 5l —(n-2)] (1.10)
The unit vector & denotes some preferred orientation of the director at the surface, and
W is the coupling constant. It varies in the range 107% — 1 erg/cm? as reviewed by Blinov
et al. [29]. In Subsection 4.3.4 we will give a lower bound of W for the interface of water
and the liquid crystalline phase of 5CB in the presence of the surfactant sodium dodecyl
sulfate, which was used in the experiment by Poulin et al. on nematic emulsions [279, 280].
From a comparison between the Frank free energy and the surface energy one arrives at

the extrapolation length [76]
Ky

& =37 - (1.11)

It signifies the strength of the anchoring. Take a particle of radius a in a nematic environ-
ment with an uniform director field at infinity. (We will investigate this case thoroughly
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in Chapter 4.) The Frank free energy of this system is proportional to Kza whereas the
surface energy scales as Wa?. At strong anchoring, i.e., for Wa? > Ksa or {5 < a, the
energy to turn the director away from its preferred direction & at the whole surface would
be much larger than the bulk energy. Therefore, it is preferable for the system that the
director points along ©. However, n can deviate from & in an area of order {ga. In Sub-
section 4.3.4 we will use this argument to explain a ring configuration around the particle.
Rigid anchoring is realized for £ — 0. Finally, {5 > a means weak anchoring, where the
influence of the surface is minor. Since in our discussion we have always referred &g to the
radius a, it is obvious that the strength of the anchoring is not an absolute quantity but
depends on characteristic length scales of the system.

1.2 Routes towards the Director Field

The director field n(r) in a given geometry follows from a minimization of the total free
energy F,, = F, + Fy4 + Fg + Fs under the constraint that n is a unit vector:

§F,=0 with n-n=1. (1.12)

Even in the one-constant approximation and under the assumption of rigid anchoring of
the director at the boundaries, this is a difficult problem to solve because of the additional
constraint. Typically, full analytical solutions only exist for one-dimensional problems,
e.g., for the description of the Fréedericksz transition [49, 76|, or in two dimensions when
certain symmetries are assumed [216]. To handle the constraint, one can use a Lagrange
parameter or introduce an appropriate parametrization for the director, e.g., a tilt (©) and
twist (®) angle, so that the director in the local coordinate basis takes the form

n = (sin © cos ¥, sin O sin , cos O) . (1.13)

If an accurate analytical determination of the director field is not possible, there are two
strategies. First, an ansatz function is constructed that fulfills the boundary conditions
and contains free parameters. Then, the director field follows from a minimization of the
total free energy in the restricted space of functions with respect to the free parameters.
In Section 4.2 we will see that this method is quite successful.

Secondly, one can look for numerical solutions of the Euler-Lagrange equations cor-
responding to the variational problem formulated in Eq. (1.12). They are equivalent to
functional derivatives of F,[©, ®], where we use the tilt and twist angle of Eq. (1.13) to
parametrize the director:

0F, 0F, On;

50~ om o6 " (1.14)
5F, 0F, On;
5o omon - (1.15)

Einstein’s summation convention over repeated indices is used. To arrive at the equations
above for ©(r) and ®(r), we have employed a chain rule for functional derivatives [335].
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These chain rules are useful in numerical problems since they allow to write the Euler-
Lagrange equations, which can be quite complex, in a more compact form. For example,
the bulk and surface equations that are solved in Section 4.3 could only be calculated with
the help of the algebraic program Maple after applying the chain rules.

Typically, we take a starting configuration for the director field and relax it on a grid
via the Newton-Gauss-Seidel method [284]. It is equivalent to Newton’s iterative way of
determining the zeros of a function but now generalized to functionals. We illustrate it
here for the tilt angle O:

SF, [60(r)

Gnew(r) - @Old(r) - “52Fn/5@2(,’,)77

(1.16)

There are two possibilities to implement the method numerically. If the grid for the nu-
merical investigation is defined by the coordinate lines, one determines the Euler-Lagrange
equations analytically. Then, they are discretized by the method of finite differences for
a discrete set of grid points 7[284]. Finally, “6?F},/d©%*(r)” is calculated as the deriva-
tive of F, /6O (r) with respect to ©(r) at the grid point . We put “6*F,/6©?(r)” into
quotes because it is not the discretized form of a real second-order functional derivative,
which would involve a delta function. If the geometry of the system is more complex,
the method of finite elements is appropriate (see Chaper 7). In two dimensions, e.g., the
integration area is subdivided into finite elements, which in the simplest case are triangles.
In doing so, the boundaries of the complex geometry are well approximated by polygons.
The finite-element technique generally starts from an already discretized version of the
total free energy Fj, and then applies a numerical minimization scheme, e.g., the Newton-
Gauss-Seidel method. Both the first and second derivatives in Eq. (1.16) are performed
with respect to ©(r) at the grid point 7.

1.3 Hydrodynamic Equations

In the last section we concentrated on the static properties of the director field. In this
section we review a set of dynamic equations coupling the flow of the liquid crystal to
the dynamics of the Frank director. The set consists of a generalization of the Navier-
Stokes equations for the fluid velocity v to uniaxial media and a dynamic equation for
the director m. We will not provide any detailed derivation of these equations, rather we
will concentrate on the explanation of their meaning. The main problem is how to find a
dynamic equation for the director. An early approach dates back to Oseen [259]. Ericksen
(102, 103, 104, 105, 106] and Leslie [204, 205] considered the liquid crystal as a Cosserat
continuum [108] whose constituents possess not only translational but also orientational
degrees of freedom. Based on methods of rational thermodynamics [107], they derived
an equation for the fluid velocity from the balance law for momentum density and an
equation for the director, which they linked to the balance law for angular momentum.
The full set of equations is commonly referred to as the Ericksen-Leslie equations. An
alternative approach is due to the Harvard group [117, 46] which formulated equations
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following rigorously the ideas of hydrodynamics [116, 46]. It only deals with hydrodynamic
variables, i.e., densities of conserved quantities, like mass, momentum, and energy, or
broken-symmetry variables. Each one obeys a conservation law. As a result, hydrodynamic
modes exist whose, in general, complex frequencies become zero for vanishing wave number.
Excitations associated with broken-symmetry variables are called hydrodynamic Goldstone
modes according to a concept introduced by Goldstone in elementary particle physics
[139, 140]. The director is such a variable that breaks the continuous rotational symmetry
of the isotropic fluid. In a completely linearized form the Ericksen-Leslie equations and
the equations of the Harvard group are identical.

In the following, we review the Ericksen-Leslie equations and explain them step by step.
In a symbolic notation, they take the form [49, 76]

0 = dive (1.17)
d

Qd_;’ — dvT with T=-pl+T'+ T (1.18)

0 = nx(h®—n), (1.19)

where the divergence of the stress tensor is defined by (divT); = V,;T;;. The first equation
states that we consider an incompressible fluid. We also assume constant temperature in
what follows. The third equation balances all the torques on the director. We will discuss
it below. The second formula stands for the generalized Navier-Stokes equations. Note
that 4 5

— = — + v -grad 1.20

at ot U8 (1.20)
means the total or material time derivative as experienced by a moving fluid element. It
includes the convective part v - grad. Besides the pressure p, the stress tensor consists of
two terms:

At
T = — Vi ith = f. m 1.21
ij OV i Tk Wl b= Jat+ fuat ] (1.21)
Tz'j = agningnpAg + con;N; + asn; N;
+ 054141']' + oz5njnkAik + aﬁninkAjk . (122)

In addition to p, T introduces a second, anisotropic contribution in the static stress tensor.
It is due to elastic distortions in the director field, where f, denotes the sum of all free
energy densities introduced in Section 1.1. The quantity T” stands for the viscous part of
the stress tensor. In isotropic fluids, it is simply proportional to the symmetrized gradient
of the velocity field,

1
Aij = 5 (Vivy + Vjui) (1.23)

The conventional shear viscosity equals ay/2 in Eq. (1.22). The uniaxial symmetry of
nematic liquid crystals allows for further contributions proportional to A which contain
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the director n. There are also two terms that depend on the time derivative of the director
n, i.e., the second dynamic variable,

N = dn _ wXxn with  w = 1curl'v , (1.24)
dt 2
The vector N denotes the rate of change of n relative to the fluid motion, or more precisely,
relative to a local fluid vortex characterized by the angular velocity w = curlv/2. The
viscosities aq, ..., aq are referred to as the Leslie coefficients. We will gain more insight
into T” at the end of this section.
Finally, Eq. (1.19) demands that the total torque on the director due to elastic distor-
tions in the director field (h°) and due to viscous processes (h’) is zero. The elastic and
viscous curvature forces are

O fy Ofp
¢ ]8ani éml ( )
hi = 7N +74;n; with M =a3—az and = tag (1.26)

De Gennes calls hY a molecular field reminiscent to a similar quantity in magnetism [76].
In Eq. (1.19) the curvature force h® — h/ is only defined within an additive expression
A(r,t)n(r,t). It has the meaning of a Lagrange-multiplier term, and A(r,t) is to be de-
termined by the condition that the director is normalized to unity. In static equilibrium,
we obtain h%(r) + A(r)n(r) = 0, i.e., the Euler-Lagrange equation in the bulk which
follows from minimizing the total free energy Fj, introduced in Section 1.1. One can easily
show that the saddle-splay energy fos does not contribute to h®. The first term of the
viscous curvature force h’ describes the viscous process due to the rotation of neighbor-
ing molecules with different angular velocities. The coefficient 7, is, therefore, a typical
rotational viscosity. The second term quantifies torques on the director field exerted by a
shear flow. An inertial term for the rotational motion of the molecules is not included in
Eq. (1.19). One can show that it is of no relevance for the time scales of micro-seconds
or larger. In the approach of the Harvard group, it does not appear since it results in a
non-hydrodynamic mode.
The energy dissipated in viscous processes follows from the entropy production rate

d
Td—‘j:/(T’-AJrh’-N)d?’r : (1.27)

where 7' is temperature, and S is entropy. The first term describes dissipation by shear
flow and the second one dissipation by rotation of the director. Each term in the entropy
production rate is always written as a product of a generalized flux and its conjugate
force. The true conjugate force to the flux A is the symmetrized viscous stress tensor
T = (T}; + T};)/2. The flux N is conjugate to the generalized force h'. Note, that h'
corresponds to the dual form of the antisymmetric part of 1", i.e., hj = e;(T}), — Ty;) /2
The Harvard group calls T"™ and h’ fluxes since they appear in the currents of the
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Figure 1.3: Definition of the three Migsowicz viscosities in shear experiments.

respective balance laws for momentum and director [117, 46]. In hydrodynamics the viscous
forces are assumed to be small, and they are written as linear functions of all the fluxes:

(T )or(4). 125

The matrix I' must be compatible with the uniaxial symmetry of the nematic phase, and
it must be invariant when m is changed into —n. Furthermore, it has to obey Onsager’s
theorem [77], which demands a symmetric matrix I' for zero magnetic field. Fulfilling all
these requirements results in Eqgs. (1.22) and (1.26). One additional, important Onsager
relation is due to Parodi [263]:

Qg + a3 =g — Qs . (129)

It reduces the number of independent viscosities in a nematic liquid crystal to five. The
Leslie coefficients of the compound 5CB are [58]

a; = —0.111P as = —0.939P as = —0.129P

a, = 0.748P as = 0.906P ag = —0.162P . (1.30)

At the end, we explain two typical situations that help to clarify the meaning of the
possible viscous processes in a nematic and how they are determined by the Leslie coeffi-
cients. In the first situation we perform typical shear experiments as illustrated in Fig. 1.3.
The director field between the plates is spatially uniform, and the upper plate is moved
with a velocity vy relative to the lower one. There will be a constant velocity gradient
along the vertical z direction. Three simple geometries exist with a symmetric orientation
of the director; it is either parallel to the velocity field v, or perpendicular to v and its
gradient, or perpendicular to v and parallel to its gradient. The director can be firmly
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Figure 1.4: Permeation of a fluid through a helix formed by the nematic director.

aligned in one direction by applying a magnetic field strong enough to largely exceed the
viscous torques. For all three cases, the shear forces 7" per unit area are calculated from
the stress tensor T of Eq. (1.22), yielding 77 = n;v/d, where d is the seperation between
the plates. The viscosities as a function of the Leslie coefficients for all three cases are
given in Fig. 1.3. They are known as Miesowicz viscosities after the scientist who first
measured them [239, 240]. If one chooses a non-symmetric orientation for the director, the
viscosity oy is accessible in shear experiments, too [127].

The second situation describes a gedanken experiment illustrated in Fig. 1.4 [152]. Sup-
pose the nematic director forms a helical structure with wave number ¢, inside a capillary.
Such a configuration is found in cholesteric liquid crystals that form when the molecules are
chiral. Strictly speaking, the hydrodynamics of a cholesteric is more complicated than the
one of nematics [215]. However, for what follows we can use the theory formulated above.
We assume that the velocity field in the capillary is spatially uniform and that the helix is
not distorted by the fluid flow. Do we need a pressure gradient to press the fluid through
the capillary, although there is no shear flow unlike a Poiseuille experiment? The answer
is yes since the molecules of the fluid, when flowing through the capillary, have to rotate
constantly to follow the director in the helix, which determines the average direction of the
molecules. The dissipated energy follows from the second term of the entropy production
rate in Eq. (1.27). The rate of change, N = v, - gradn, is non-zero due to the convective
time derivative. The energy dissipated per unit time and unit volume has to be matched
by the work per unit time perfomed by the pressure gradient p’. One finally arrives at

P =" - (1.31)

Obviously, the Gedanken experiment is determined by the rotational viscosity v;. It was
suggested by Helfrich [152] who calls the motion through a fixed orientational pattern
permeation. This motion is always dissipative because of the rotational viscosity of the
molecules which have to follow the local director.

Of course, the gedanken experiment is not suitable for measuring v;. A more appro-
priate method is dynamic light scattering from director fluctuations, which we treat in the
next section. The light scattering will then be described in Chapter 9. Together with the
shear experiments it is in principle possible to measure all five indepent viscosities of a
nematic liquid crystal.
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1.4 Director Fluctuations

In this section we study thermal fluctuations of the director around its equilibrium value.
We will proceed step by step, first deriving the static and then the dynamic properties of
director modes. All the concepts of the previous sections will be applied. Our final goal is
to arrive at the time autocorrelation function for director fluctuations, which is necessary
for the understanding of light scattering in nematics. We will apply it in Part III.

We decompose the director in its equilibrium value
ny and the fluctuating part dn(r,t):

n(r,t) =nyg+on(r,t) . (1.32)
For small fluctuations, we have dn(r,t) L my since

n(r,t)is a unit vector. We expand dn(r,t) into plane
waves,

n(r,t) = / (;l;;g n(q,t)exp(ig-7) , (1.33)

and write dn(q,t) in the basis introduced in Fig. 1.5:

Ug

Figure 1.5: Definition of the basis
vectors u; and s relative to the
equilibrium director ny and a wave Sn(q,t) = ony(q,t)in(q) + ono(q, t)in(q) , (1.34)
vector q.

where the amplitudes ons(q,t) (6§ = 1,2) characterize
the different director modes, i.e., sinusoidal variations of the director in space. In our
discussion we concentrate on the bulk properties of director fluctuations. Accordingly, the
Frank free energy supplemented by the magnetic field term [see Eqs. (1.1), (1.2), and (1.8)]
takes the form

2
1 d3q
Faln(r 0]+ Fuln(r.0] = 5 3 [ G Kola) lins(a. 0 (135)
5=1
with g-dependent elastic constants
K5(q) = Ksq + Kyqjf + AxH? (1.36)

where ¢, and ¢ are the respective components of g perpendicular and parallel to my. The
saddle-splay term Fy, and the expression in the magnetic free energy Fjy that does not
depend on the director are omitted. If we choose ¢ = 0, the director modes are pure splay
(0 = 1) or twist (6 = 2) modes. For ¢, = 0, we obtain two bend modes. The distortions
corresponding to these modes are illustrated in Fig. 1.2. For a general wave vector q, the
modes contain a combination of bend and either splay or twist deformations.
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The equipartition theorem states that each director mode has, on average, a thermal en-
ergy kgT'/2. Application to the free energy of Eq. (1.35), yields the mean-square amplitude
of each director mode!® [76, 49]:

kgT
Ks(q)

The spatial autocorrelation functions (dns(r,0)ons(0,0)) (6 = 1,2) follow from Eq. (1.37)
after a Fourier transformation. In the one-constant approximation (K = K;), one finds
[76]

(lons(aq,t)*) =

(1.37)

(0ns(r,0)0ns(0,0)) = 4’;% exp (—r/&x) | (1.38)
where £y is the magnetic coherence length, which we already encountered in Eq. (1.9).
Here, &g gives the length scale over which director fluctuations are correlated. For typical
magnetic fields of 1T, Ay = 1077, and K = 10~%dyn, we obtain a coherence length of
3 pm. By the appropriate choice of the basis vectors 4; and ,, we have decoupled dn;(q,t)
and 0ns(q,t) from each other. Note that Eq. (1.38) is only valid for distances much larger
than molecular dimensions.
Now we address the dynamics of director modes. We linearize the Ericksen-Leslie
equations of the preceding section in dn(r,t) and v(r,t) and insert plane waves with a
complex frequency z:

on(r,t) = [oni(g,2)(q) + ona(q, 2)t(q)] exp(—zt +ig - ) (1.39)
v(r,t) = [vi(q,2)m(q)+va(q, 2)U(q) + v|(q, 2)n0) exp(—2zt +iq-r) . '
Since we consider an incompressible fluid, i.e., dive = 0 or ig v, = —igv), only the

velocity components v; and v, are used. We arrive at two generalized eigenvalue problems

[49]:

DY) (q, 2) ( 5&‘5(((1‘1”3 ) -0, (1.40)

where the dynamical matrices D (q,2) (6 = 1,2) depend on the Frank constants K;
and the Leslie viscosities «;. Again, through the choice of w; and 4y, we have decoupled
oni(q,z), v1(q,z) and dns(q, 2), va(q,z) from each other. The solutions of Eq. (1.40)
determine the eigenmodes in nematics. Their dispersion relations follow from det[D(®)] = 0.
Using oK /n? < 1, where n ~ 0.1 P is a typical viscosity of nematics, and ¢ = 1 g/cm3, one
finds [117, 49, 46]:

Ks(q)
n5(q)

Zgs =

and 2p5 R 1is(9) : (1.41)
0

with viscosities of the s mode,

(043613 - CW]ﬁ)z a%qﬁ
Mgl + Nedj + Nmd? 4 Naqt + 1

!Because we use a continuum of g vectors, the equipartition theorem gives (dns(g,0)don3(q’,0)) =
[ksT/Ks5(q)|0(q — q'). Then we set (|dns(q,t)|?) = [d3q/(27)% (ns(g,0)dn}(q’,0)).

(1.42)

m(q) =m and  m(q) =m
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and of the f mode,

m(q) = Mgl +ned +nma? qf — (azgt — aaq})* /7

(1.43)
M(q) = Mgt +neaf — o3qf/m

The quantities n,, n, and 7. are the Migsowicz viscosities introduced in Fig. 1.3, and
Nm =0 + 1 + 17 . (1.44)

The subscripts s and f denote ‘slow’ and ‘fast’ since z.5/2t5 ~ 0K/n? < 1. Both modes
are purely diffusive. The relaxation frequency zy involves the elastic constant Kj(gq) of
Eq. (1.36) while z¢s does not. The slow modes, therefore, represent the relaxation of the
orientational motion of the director. Their viscosities 7s(g) are mainly determined by the
rotational viscosity 71 with corrections such that 7s(q) < 1. The fast mode, where no
elastic torque is exerted on the molecules, is reminiscent of the diffusive transverse velocity
mode in an isotropic fluid [116, 21, 46]. The interpretation of the nature of the eigenmodes
is supported by investigating the ratios of the amplitudes:

5n5> n (5na) 0
— ) ~ = and — ] ~ = . 1.45
( vs ), Kq vs ) mg (1.45)

From these ratios we find
0 ) K
(ﬁ) / (ﬁ) NP (1.46)
Vs £ Vs s n

so that the slow and fast modes are dominated by the respective amplitudes dns or vy.

Being familiar with the eigenmodes of nematics, we proceed to the calculation of the
time autocorrelation function of the director. We first need to know how dn(q,t) and
v(q,t) evolve when dn(q,t = 0) and v(q,t = 0) are given. We perform a Laplace trans-
formation of the linearized Ericksen-Leslie equations using

ns(q,z) = /OOO dténs(q,t)exp(zt) and ws(q,z) = /OOO dtvs(q,t)exp(zt) (1.47)

and arrive at

DO (q. 2) (672?((111,,;)) ) _ % DRI (5;?(((;17,;::0(;) ) ‘ (1.48)

Solving for ons(q,z) and applying the inverse Laplace transformation with the help of
Cauchy’s integral theorem, we obtain

ons(g,t) = ons(q,t = 0) exp(—2gt) + ... , (1.49)

where we have concentrated on the essential term leaving out fast relaxing contributions
and terms involving vs(gq,t = 0). So far we have considered variations in the thermal equi-
librium value of the director n(gq,t) and the velocity v(g,t). Due to Onsager’s regression
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hypothesis [258, 116, 21], we can employ Eq. (1.49) when calculating the time autocorrela-
tion function of the fluctuating director component én(q,t) about its thermal equilibrium
value ng. We simply obtain

(0n*(g,t =0)®dn(q,t)) = Z (onj(g,t =0)dns(q,t)) us(q) ® us(q) (1.50)

5=1,2

with
(oni(q,t =0)6ns(q,t)) ~ (|0ns(q,t = 0)]*) exp(—zst) . (1.51)

We have neglected a contribution from the fast mode which is smaller than the leading term
by a factor of the order of (0K /n?)?. We have also used that (dn}(q,t = 0)vs(q,t =0)) =0
since this correlation function should not change its value when dnj or v; are reversed.
Hence, we realize that the time autocorrelation function of the director is dominated by
the slow relaxing orientational mode. The mean-square amplitudes { |dns(q,t = 0)]*) have
already been calculated via the equipartition theorem. Its value is stated in Eq. (1.37).
With the result of Egs. (1.50) and (1.51), which can also be derived with the help of
the fluctuation-dissipation theorem [146, 116, 46|, we are able to describe dynamic light
scattering from director fluctuations in Chapter 10.
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Chapter 2

Topological Defects

Topological defects [176, 234, 351, 46], which are a necessary consequence of broken con-
tinuous symmetry, exist in systems as disparate as superfluid helium 3 [375] and 4 [389],
crystalline solids [348, 123, 250], liquid crystals [50, 187, 200], and quantum-Hall fluids[309].
They play an important if not determining role in such phenomena as response to external
stresses [123, 250], the nature of phase transitions [46, 254, 345], or the approach to equi-
librium after a quench into an ordered phase [39]; and they are the primary ingredient in
such phases of matter as the Abrikosov flux-lattice phase of superconductors [2, 28] or the
twist-grain-boundary phase of liquid crystals [293, 142, 143]. They even arise in certain
cosmological models [53]. Topological defects are points, lines or walls in three-dimensional
space where the order parameter of the system under consideration is not defined. The
theory of homotopy groups [176, 234, 351, 46] provides a powerful tool to classify them.
To identify, e.g., line defects, homotopy theory considers closed loops in real space which
are mapped into closed paths in the order parameter space. If a loop can be shrunk con-
tinuously to a single point, it does not enclose a defect. All other loops are divided into
classes of paths which can be continuously transformed into each other. Then, each class
stands for one type of line defect. All classes together, including the shrinkable loops, form
the first homotopy or fundamental group. The group product describes the combination
of defects. In the case of point singularities, the loops are replaced by closed surfaces, and
the defects are classified via the second homotopy group.

In the next two section we deal with line and point defects in nematic liquid crystals
whose order parameter space is the projective plane P? = S?/Z,, i.e., the unit sphere
S? with opposite points identified. They play a determining role for the behavior of col-
loidal dispersions in a nematic environment, which we will discuss in Part II. There exist
several good reviews on defects in liquid crystals [176, 234, 351, 46, 50, 187, 200]. We
will therefore concentrate on facts which are necessary for the understanding of colloidal
dispersions. Furthermore, rather than being very formal, we choose a descriptive path for
our presentation.

27
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2.1 Line Defects = Disclinations

Line defects in nematic liquid crystals are also called disclinations. Homotopy theory tells
us that the fundamental group 7 (P?) of the projective plane P? is the two-element group
Z5. Thus, there is only one class of stable disclinations. Figure 2.1 presents two typical
examples. The defect line with the
core is perpendicular to the dra-
wing plane. The disclinations carry
a winding number of strength + or
—1/2, indicating a respective rota-
tion of the director by + or —360°/2
when the disclination is encircled
in the anticlockwise directon (see
left part of Fig. 2.1). Note that the
sign of the winding number is not
S +l' S - 1 fixed by the homotopy group. Both
2 2 e :
types of disclinations are topologi-
cally equivalent since there exists a
continuous distortion of the direc-
tor field which transforms one type
into the other. Just start from the left disclination in Fig. 2.1 and rotate the director
about the vertical axis through an angle 7 when going outward from the core in any radial
direction. You will end up with the right picture. The line defects in Fig. 2.1 are called
wedge disclinations. In a Volterra process [176, 46] a cut is performed so that its limit,
the disclination line, is perpendicular to the spatially uniform director field. Then the
surfaces of the cut are rotated with respect to each other by an angle of 275 about the
disclination line, and material is either filled in (S = +1/2) or removed (S = —1/2). In
tuist disclinations the surfaces are rotated by an angle of m about an axis perpendicular
to the defect line. Disclinations of strength +1/2 do not exist in a system with an vector
order parameter since it lacks the inversion symmetry of the nematic phase with respect
to the director. In addition, one finds 71(S?) = 0, i.e., every disclination line of integral
strength in a ferromagnet is unstable; “it escapes into the third dimension”. The same
applies to nematic liquid crystal as demonstrated by Cladis et al. [54, 390] and Bob Meyer
[237] for S = 1.
The director field around a disclination follows from the minimization of the Frank free
energy (1.6) [176, 49, 76]. In the one-constant approximation the line energy F, of the
disclination can be calculated as

m 1 R
Fi=—-K|{-+In— )] . 2.1
1Ty <2+nrc> (2.1)

Figure 2.1: Disclinations of winding number +1/2.
For further explanations see text.

The surface term in Eq. (1.6) is neglected. The second term on the right-hand side of Eq.
(2.1) stands for the elastic free energy per unit length around the line defect where R is
the radius of a circular cross section of the disclination (see Fig. 2.1). Since the energy
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diverges logarithmically, one has to introduce a lower cut-off radius r., i.e., the radius of
the disclination core. Its line energy, given by the first term, is derived in the following
way [176]. One assumes that the core of the disclination contains the liquid in the isotropic
state with a free energy density . necessary to melt the nematic order locally. Splitting
the line energy of the disclination as in Eq. (2.1) into the sum of a core and elastic part,
Fy=nr’e. + KrIn(R/r.)/4, and minimizing it with respect to r., results in

K1
€ =3 2 (2.2)
so that we immediately arrive at Eq. (2.1). The right-hand side of Eq. (2.2) is equivalent
to the Frank free energy density of the director field at a distance r. from the center
of the disclination. Thus r. is given by the reasonable demand that the nematic state
starts to melt when this energy density equals .. With an estimate ¢, = 107" erg/ cmg,
which follows from a description of the nematic-isotropic phase transition by the Landau-de
Gennes theory [199], and K = 107%dyn, we obtain a core radius r, of the order of 10 nm.
In the general case (K; # K, # K3), an analytical expression for the elastic free energy
does not exist. However, a rough approximation for the core energy per unit length, F,
can be found by averaging over the Frank constants:

™ Kl + KQ -+ K5

=" , 2.3
S 3 (2.3)

In Section 4.3 we will make use of this form for F..

A more refined model of the disclination core is derived from Landau-de Gennes theory
(73, 145, 323], which employs a traceless second-rank tensor @ as an order parameter (see
Section 8.1). The tensor also describes biaxial liquid crystalline order. Investigations show
that the core of a disclination should indeed be biaxial [218, 231, 315], with a core radius of
the order of the biaxial correlation length &, i.e., the length on which deviations from the
uniaxial order exponentially decay to zero. Outside of the disclination core, the nematic
order is essentially uniaxial. Therefore, the line energy of a disclination is still given by Eq.
(2.1) with . ~ &, and with a core energy now determined by the energy difference between
the biaxial and uniaxial state rather than the energy difference between the isotropic and
nematic state.

2.2 Point Defects

Figure 2.2 presents typical point defects in a nematic liquid crystal known as radial and
hyperbolic hedgehogs. Both director fields are rotationally symmetric about the vertical
axis. The second homotopy group m(P?) of the projective plane P? is the set Z of all
integer numbers. They label every point defect by a topological charge (). The result is
the same as for the vector order parameter space S? since close to the point singularity the
director field constitutes a unique vector field. For true vectors it is possible to distinguish
between a radial hedgehog of positive and negative charge depending on their vector field



30 CHAPTER 2. TOPOLOGICAL DEFECTS

0
0

s

-

N

N

-

radial hedgehog hyperbolic

Figure 2.2: Radial and hyperbolic hedgehog of point charge Q) = 1.

Figure 2.3: The hyperbolic hedgehog at the center is transformed into a radial point defect
by a continuous distortion of the director field. Nails indicate directors tilted relative to

the drawing plane.
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that can either represent a source or a sink. In a nematic liquid crystal this distinction
is not possible because n and —n describe the same state. Note, e.g., that the directors
close to a point defect are reversed if the defect is moved around a +1/2 disclination line.
Therefore, the sign of the charge () has no meaning in nematics, and by convention it is
chosen positive. The charge @) is determined by the number of times the unit sphere is
wrapped by all the directors on a surface enclosing the defect core. An analytical expression

for @) is
1
Q= lg /dSZ- gipm - (Vin x Vin)| | (2.4)

where the integral is over any surface enclosing the defect core. Both the hedgehogs in Fig.
2.2 carry a topological charge () = 1. They are topologically equivalent since they can be
transformed into each other by a continuous distortion of the director field. Just start from
the hyperbolic hedgehog and rotate the director about the vertical axis through an angle
7 when going outward from the core in any radial direction. By this procedure, which is
illustrated in Fig. 2.3 with the help of a nail picture, we end up with a radial hedgehog. The
length of the nail is proportional to the projection of the director on the drawing plane, and
the head of the nail is below the plane. Such a transition was observed by Lavrentovich and
Terentjev in nematic drops with homeotropic, i.e., perpendicular anchoring of the director
at the outer surface [199].

In systems with vector symmetry,
the combined topological charge of two

hedgehogs with respective charges )y \
and Q9 is simply the sum Q; + Qs.
In nematics, where the sign of the to- J

pological charge has no meaning, the
combined topological charge of two

hedgehogs is either |Q;+ Q2| or _ ' o
Q1 — Q.]. Tt is impossible to tell with Figure 2.4: A radial (left) and a hyperbolic (right)
certainty which of these possible char- hedgehog combine to a configuration with total

ges is the correct one by looking only charge 0 = [1 —1[.

at surfaces enclosing the individual hedgehogs. For example, the combined charge of two
hedgehogs in the presence of a line defect depends on which path around the disclination
the point defects are combined [351]. In Fig. 2.4 we illustrate how a radial and a hyperbolic
hedgehog combine to a configuration with total charge 0 = |1 — 1|. Since the distance d of
the defects is the only length scale in the system, dimensional arguments predict an inter-
action energy proportional to Kd [261]. It grows linear in d reminiscent to the interaction
energy of quarks if one tries to separate them beyond distances larger than the diameter
of a nucleus.

The energies of the hedgehog configurations, shown in Fig. 2.2, are easily calculated
from the Frank free energy F; + Fyy [see Egs. (1.2) and (1.3)]. The director fields of these
configurations are n = (x,y, z)/r for the radial and n = (—z, —y, z)/r for the hyperbolic
hedgehog, where 7 = (x,y,z) and r = |r|. In a spherical region of radius R with free
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Figure 2.5: A hyperbolic hedgehog can be opened up to a —1/2 disclination ring.

boundary conditions at the outer surface, we obtain for their respective energies:

Fragia = 472K, — Ka)R — 4Ar(2K — Koy)R
dr 47 (2.5)
thper == 1_5(6K1 ‘I’ 4K3 + 5K24)R — 3(2K + K24)R s

where the final expressions apply to the case of equal Frank constants. When Kyy = 0,
these energies reduce to those calculated in Ref. [199]. Note that the Frank free energy of
point defects does not diverge in contrast to the distortion energy of disclinations in the
preceding section. The hyperbolic hedgehog has lower energy than the radial hedgehog
provided K3 < 6K, — 5Ky4 or K > Ky for the one-constant approximation. Thus, if
we concentrate on the bulk energies, i.e., Koy = 0, the hyperbolic hedgehog is always
energetically preferred, since K7 is always of the same order as K3. This seems to explain
the observation of Lavrentovich and Terentjev, already mentioned [199], who found the
configuration illustrated in Fig. 2.3 in a nematic drop with radial boundary conditions at
the outer surface. However, a detailed explanation has to take into account the Frank free
energy of the strongly twisted transition region between hyperbolic and radial hedgehog
[199]. In Section 7.4 we will present a linear stability analysis for the radial hedgehog
against twisting. In terms of the Frank constants, it provides a criterion for the twist
transition to take place, and it shows that the twisting starts close to the defect core. If,
in addition to the one-constant approximation, K4 also fulfills the Cauchy relation (1.5),
i.e., K = Koy, the energies of the two hedgehog configurations in Eqgs. (2.5) are equal,
as one could have predicted from Eq. (1.6), which is then invariant with respect to rigid
rotations of even a spatially varying n.

The twisting of a hedgehog in a nematic drop takes place at a length scale of several
microns [45, 199, 279]. However, point defect also possess a fine structure at smaller length
scales, which has attracted a lot of attention. Figure 2.5 illustrates how a hyperbolic hedge-
hog opens up to a —1/2 disclination ring by filling in vertical lines of the director field. The
farfield of the disclination ring is still given by the hedgehog so that the ring can be assigned
the same topological point charge () = 1. Similarly, a radial point defect is topologically
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equivalent to a 1/2 disclination ring. Mineev pointed out that the characterization of a
ring defect requires two parameters; the index of the line and the charge of the point defect
[241]. The classification of ring defects within homotopy theory was developed by Garel
[131] and Nakanishi et al. [251]. It can be asked whether it is energetically favorable for a
hedgehog to open up to a disclination ring [244, 349]. One can obtain a crude estimate of
the radius Ry of the disclination ring with the help of Egs. (2.1) and (2.5) for disclination
and hedgehog energies. When Ry >> r,, the director configuration of a charge 1 disclination
ring is essentially that of a simple disclination line, discussed in the previous section. It
extends up to distances of order R from the ring center. Beyond this radius, the director
configuration is approximately that of a hedgehog (radial or hyperbolic). Thus, we can
estimate the energy of a disclination ring of radius Ry centered in a spherical region of
radius R to be

1 R
Fling ~ 27 Ry [Z K <§ + In r_0>] + 8raK (R — Ry) (2.6)

where o = 1 for a radial hedgehog and @ = 1/3 for a hyperbolic hedgehog. We also set
K54 = 0. Minimizing over Ry, we find

o[ (o= 10)] -

Though admittedly crude, this approximation yields a result that has the same form as
that calculated in Refs. [244, 349] using a more sophisticated ansatz for the director field.
It has the virtue that it applies to both radial and hyperbolic far-field configurations. It
predicts that the core of a radial hedgehog should be a ring with radius Ry ~ r.e>%, or
Ry ~ 360nm for r, ~ 100 A. The core of the hyperbolic hedgehog, on the other hand, will
be a point rather than a ring because Ry ~ r.e %2 ~ r..

As in the case of disclinations, more refined models of the core of a point defect use
the Landau-de Gennes free energy, which employs the second-rank tensor @ as an or-
der paramter. Schopohl and Sluckin [316] chose a uniaxial @ but allowed the degree of
orientational order, described by the Maier-Saupe parameter S [49, 76], to continuously
approach zero at the center of the defect. A stability analysis of the Landau-de Gennes
free energy demonstrates that the radial hedgehog is either metastable or unstable against
biaxial perturbations in the order parameter depending on the choice of the temperature
and elastic constants [299, 133]. Penzenstadler and Trebin modeled a biaxial defect core
[264]. They found that the core radius is of the order of the biaxial correlation length &,
which for the compound MBBA gives approximately 25 nm. This is an order of magnitude
smaller than the estimate above. The reason might be that the ansatz function used by
Penzenstadler and Trebin does not include a biaxial disclination ring. Such a ring encircles
a region of uniaxial order, as illustrated in the right part of Fig. 2.5, and it possesses a
biaxial disclination core. Numerical studies indicate the existence of such a ring [331, 132]
but a detailed analysis of the competition between a biaxial core and a biaxial disclination
ring is still missing. We expect that Eq. (2.6) for a disclination ring and therefore Eq.
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(2.7) for its radius can be justified within the Landau-de Gennes theory for Ry > r. ~ &.
However, the Frank elastic constant and the core energy will be replaced by combinations
of the Landau parameters. Since the ring radius Ry varies exponentially with the elastic
constants and the core energy, and since r. is only roughly defined, it is very difficult
to predict with certainty even the order of magnitude of Ry. Further investigations are
needed.
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Chapter 3

Approaching Colloidal Dispersions

Our access to colloidal dispersions in nematic liquid crystals is threefold. We first motivate
our investigation and shortly present the contents of the next chapters. Then, we give a
historic account of the topic relating it to recent developments in the liquid crystal field
and reviewing the work performed on colloidal dispersions in nematic liquid crystals. Fi-
nally, with nematic emulsions, we introduce one particular model system for such colloidal
dispersions.

3.1 Motivation and Contents

Dispersions of particles in a host medium are part of our everyday life and an important
state of matter for fundamental research. One distinguishes between emulsions, where
surfactant-coated liquid droplets are dispersed in a fluid environment, colloidal suspen-
sions, where the particles are solid, and aerosoles, with fluid or solid particles floating in
a gaseous phase. Colloidal dispersions, whose particle size ranges from 10nm to 10 pm,
appear in food, with milk being the best-known fat-in-water emulsion, in drugs, cosmetics,
paints, and ink. As such, they are of considerable technological importance. In nature,
one is confronted by both the bothering and appealing side of fog, and one can look at
the beautiful blue-greenish color of berg lakes in the Canadian Rockies, caused by light
scattering from a fine dispersion of stone flower in water. The best-known example of
an ordered colloid, a colloidal crystal, is the opal, formed from a uniform array of silica
spheres compressed and fused over geological timescales. In fundamental research, colloidal
dispersions are ideal systems to study Brownian motion and hydrodynamic interactions of
suspended particles [306, 175]. They provide model systems [211, 134] for probing our
understanding of melting and boiling, and for checking the Kosterlitz-Thouless-Halperin-
Nelson-Young transition in two-dimensional systems [380, 401, 41]. The main interest in
colloidal dispersions certainly focusses on the problem how to prevent the particles from
flocculation, as stated by Russel, Saville, and Schowalter [306]:

“Since all characteristics of colloidal systems change markedly in the transition
from the dispersed to the aggregated state, the question of stability occupies a
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central position in colloid science.”

There exists a whole zoo of interactions between the particles whose delicate balance de-
termines the stability of a colloidal dispersion. Besides the conventional van der Waals,
screened Coulombic, and steric interactions [306], fluctuation-induced Casimir forces (e.g.,
in binary fluids close to the critical point [181, 247]) and depletion forces in binary mixtures
of small and large particles [306, 83, 82, 300] have attracted a lot of interest. Entropic ef-
fects play a major role in the three latter types of interactions. In a subtle effect, they also
lead to an attraction between like-charged macroions [173, 67, 198] by Coulomb depletion
9].

The present work focusses on the interesting question of how particles behave when they
are dispersed in a nematic liquid crystal. There arises an elastic distortion of the director
field between the particles that induces additional long-range forces. They are of dipolar
or quadrupolar type, depending on the symmetry of the director configuration around
the particle [40, 288, 304, 279, 216]. The forces were confirmed by recent experiments in
inverted nematic emulsions [279, 276, 280]. On the other hand, close to the suspended
particles, topological point and line defects in the orientational order occur which strongly
determine their behavior. For example, they give rise to a short-range repulsion [279,
280]. Colloidal dispersions in a nematic environment are therefore an ideal laboratory for
studying the statics and dynamics of topological defects.

The following chapters deal with the physics of such dispersions. In Chapter 4 we
investigate, what I consider the paradigm for their understanding, i.e., the static properties
of one particle. We concentrate on a radial anchoring of the director at its surface, for which
we identify three different types of nematic environment; the dipole configuration, where
the particle and a companion hyperbolic point defect form a tightly bound topologial dipole,
the Saturn-ring configuration, where the particle is surrounded by a —1/2 disclination
ring, and a structure with an equatorial surface ring, which appears for decreasing surface-
anchoring strength. Secondly, in Chapter 5 we address two-particle interactions with the
help of a phenomenological theory. Thirdly, we calculate the Stokes drag of one particle in
Chapter 6. With its knowledge, one immediately has access to the diffusion constants for
the Brownian motion of spherical objects via the Stokes-Einstein relation. In Chapter 7 we
then turn our interest towards colloidal dispersions in complex geometries. In particular,
we will consider particles, e.g., droplets of water, in a large nematic drop. Finally, in
Chapter 8 we investigate the effect of surface-induced nematic order on the stability of
colloidal dispersions above the nematic-isotropic phase transition.

3.2 Historic Account

Liquid crystal emulsions, in which surfactant-coated drops, containing a liquid crystalline
material, are dispersed in water, have been a particularly fruitful medium for studying
topological defects for 30 years [235, 89, 45, 199, 187, 88]. The liquid crystalline drops typ-
ically range from 10 gm to 50 pm in diameter and are visible under a microscope. Changes
in the Frank director n are easily studied under crossed polarizers. The isolated drops in
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these emulsions provide an idealized spherical confining geometry for the nematic phase.
With the introduction of polymer-dispersed liquid crystals as electrically controllable light
shutters [85, 88], an extensive study of liquid crystals confined to complex geometries, like
distorted drops in a polymer matrix or a random porous network in silica aerogel, was
initiated [88, 66].

Here, we are interested in the inverse problem that is posed by particles suspended
in a nematic solvent. Already in 1970, Brochard and de Gennes studied a suspension of
magnetic grains in a nematic phase and determined the director field far away from a
particle [40]. The idea was to homogeneously orient liquid crystals with a small magnetic
anisotropy by a reasonable magnetic field strength through the coupling between the liquid-
crystal molecules and the grains. The idea was realized experimentally by two groups [51,
115]. However, even in the highly dilute regime the grains cluster. Extending Brochard’s
and de Gennes” work, Burylov and Raikher studied the orientation of an elongated particle
in a nematic phase [42]. Chaining of bubbles or microcrystallites was used to visualize
the director field close to the surface of liquid crystals [289, 55]. A bistable liquid crystal
display was introduced based on a dispersion of agglomerations of silica spheres in a nematic
host [95, 183, 182, 138]. The system was called filled nematics. Chains and clusters were
observed in the dispersion of latex particles in a lyotropic liquid crystal [278, 286, 287].
The radii of the particles were 60 and 120 nm. Therefore, details of the director field could
not be resolved under the polarizing microscope.

Terentjev et al. started to investigate the director field around a sphere by both an-
alytical and numerical methods, first concentrating on the Saturn-ring and surface-ring
configuration [349, 185, 305, 325]. Experiments of Philippe Poulin and coworkers on in-
verted nematic emulsions, which we describe in the following section, clearly demonstrated
the existence of a dipolar structure formed by a water droplet and a companion hyperbolic
hedgehog [279, 276, 280, 281]. A similar observation at a nematic-isotropic interface was
made by R. B. Meyer in 1972 [236]. Lately, Poulin, Mondain-Monval, et al. were able
to identify the dipolar structure in suspensions of latex particles [277], and they could
observe an equatorial ring configuration in the weak-anchoring limit of nematic emulsions
[242]. Lubensky, Stark, and coworkers presented a thorough analytical and numerical anal-
ysis of the director field around a spherical particle [279, 216, 335]. Tt is discussed in the
next chapter. Ramaswamy et al. [288] and Ruhwandl and Terentjev [304] determined the
long-range quadrupolar interaction of particles surrounded by a ring disclination, whereas
Lubensky et al. addressed both dipolar and quadrupolar forces [216] (see Chapter 5).
Recently, Lev and Tomchuk studied aggregates of particles under the assumption of weak
anchoring[207]. Work on the Stokes drag of a spherical object immersed into a uniformly
aligned nematic was performed by Diogo [84], Roman and Terentjev [295], and Heuer,
Kneppe, and Schneider [177, 155]. The calculations were extended to the Saturn-ring
configuration by Ruhwandl and Terentjev [303] and to the dipolar structure by Ventzki
and Stark [370], whose work is explored in detail in Chapter 6. Stark and Stelzer [339]
numerically investigated multiple nematic emulsions [279] by means of finite elements. We
discuss the results in Chapter 7. It is interesting to note that dipolar configurations also
appear in two-dimensional systems including (1) free standing smectic films [209, 268],
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where a circular region with an extra layer plays the role of the spherical particle, and
(2) Langmuir films [111], in which a liquid-expanded inclusion in a tilted liquid-condensed
region acts similarly. Pettey, Lubensky, and Link studied the dipolar structure in two
dimensions theoretically [268]. In cholesteric liquid crystals particle-stabilized defect gels
were found [402], and people start to investigate dispersion of particles in a smectic phase
[122) 163, 27]. Finally, Meeker et al. reported a gel-like structure in nematic colloidal
dispersions with a significant shear modulus [230].

With two excellent publications [319, 320], Ping Sheng initiated the interest in partially
ordered nematic films above the nematic-isotropic phase transition temperature 7, using
the Landau-de Gennes approach. In 1981, Horn, Israelachvili, and Perez performed first
measurements of liquid crystal-mediated forces between curved mica sheets [159]. Mo-
tivated by both works, Poniewierski and Sluckin refined Sheng’s study [274]. Borstnik
and Zumer explicitly considered two parallel plates immersed into a liquid crystal slightly
above T, [36], and thoroughly investigated short-range interactions due to the surface-
induced nematic order. An analog work was presented by de Gennes, however, assuming a
surface-induced smectic order [75]. The effect of such a presmectic film was measured by
Moreau, Richetti, and Barois [243]. Recent studies address short-range forces of spherical
objects using either analytical methods [33], which we report in Chapter 8, or numerical
calculations [128]. In Chapter 8 we also demonstrate that such forces can induce floccula-
tion of colloidal particles above the nematic-isotropic phase transition [34, 35]. In a more
general context, they were also suggested by Lowen [212, 213]. Musevi¢ et al. probe these
interactions with the help of an atomic force microscope [248, 249], whereas Bottger et al.
[37] and Poulin et al. [275] are able to suspend solid particles in a liquid crystal above T..
Even Casimir forces arising from fluctuations in the liquid-crystalline order parameter were
investigated both in the nematic [5, 4, 346] and isotropic phase [405] of a liquid crystal.

3.3 Nematic Emulsions

Three years ago, Philippe Poulin succeeded in producing inverted and multiple nematic
emulsions [279, 280]. The notion “inverted” refers to water droplets dispersed in a nematic
solvent, in contrast to direct liquid-crystal-in-water emulsions. If the solvent itself forms
drops surrounded by the water phase, one has multiple emulsions. We introduce them here
since they initiated the theoretical work we report in the following chapters.

Philippe Poulin dispersed water droplets of 1 to 5 um in diameter in a nematic liquid
crystal host, pentylcyanobiphenyl (5CB), which formed larger drops (~ 50 um diameter)
surrounded by a continuous water phase. This isolated a controlled number of colloidal
droplets in the nematic host which allowed to observe their structure readily. As a sur-
factant, a small amount of sodium dodecyl sulfate was used. It is normally ineffective at
stabilizing water droplets in oil. Nevertheless, the colloidal water droplets remained stable
for several weeks, which suggested that the origin of this stability is the surrounding liquid
crystal — a hypothesis that was confirmed by the observation that droplets became unsta-
ble and coalesced in less than one hour after the liquid crystal was heated to the isotropic
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Figure 3.1: (a) Microscope image of a nematic multiple emulsion taken under crossed
polarizers. (b) A chain of water droplets under high magnification. (¢) A nematic drop
containing a single water droplet .

phase. The surfactant also guaranteed a homeotropic, i.e., normal boundary condition of
the director at all the surfaces.

The multiple nematic emulsions were studied by observing them between crossed polar-
izers in a microscope. Under such conditions, an isotropic fluid will appear black, whereas
regions in which there is the birefringent nematic will be colored. Thus the large nematic
drops in a multiple emulsion appear predominately red in Fig. 3.1(a)!, whereas the contin-
uous water phase surrounding them is black. Dispersed within virtually all of the nematic
drops are smaller colloidal water droplets, which also appear dark in the photo; the number
of water droplets tends to increase with the size of the nematic drops. Remarkably, in all
cases, the water droplets are constrained at or very near the center of the nematic drops.
Moreover, their Brownian motion, usually observed in colloidal dispersions, has completely
ceased. However, when the sample is heated to change the nematic into an isotropic fluid,

'Reprinted with permission from P. Poulin, H. Stark, T.C. Lubensky, and D.A. Weitz, Novel Colloidal
Interactions in Anisotropic Fluids, Science 275, 1770 (1997). Copyright 1997 American Association for
the Advancement of Science .
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Figure 3.2: The director field lines of a nematic drop containing a string of three spherical
particles.

the Brownian motion of the colloidal droplets is clearly visible in the microscope.

Perhaps the most striking observation in Fig. 3.1(a) is the behavior of the colloidal
droplets when more than one of them cohabit the same nematic drop: the colloidal droplets
invariably form linear chains. This behavior is driven by the nematic liquid crystal: the
chains break, and the colloidal droplets disperse immediately upon warming the sample
to the isotropic phase. However, although the anisotropic liquid crystal must induce an
attractive interaction to cause the chaining, it also induces a shorter range repulsive inter-
action. A section of a chain of droplets under higher magnification [see Fig. 3.1(b)] shows
that the droplets are prevented from approaching each other too closely, with the separa-
tion between droplets being a significant fraction of their diameter. A careful inspection
of Fig. 3.1(b) even reveals black dots between the droplets which we soon will identify
as topological point defects. The distance between droplets and these host-fluid defects
increases with the droplet radius.

To qualitatively understand the observation, we start with one water droplet placed at
the center of a large nematic drop. The homeotropic boundary condition enforces a radial
director field between both spherical surfaces. It exhibits a distinctive four-armed star of
alternating bright and dark regions under crossed polarizers that extend throughout the
whole nematic drop as illustrated in Fig. 3.1(c). Evidently, following the explanations in
Section 2.2 about point defects, the big nematic drop carries a topological point charge
@ = 1 that is matched by the small water droplet which acts like a radial hedgehog.
Each water droplet beyond the first added to the interior of the nematic drop must create
orientational structure out of the nematic itself to satisfy the global constraint () = 1. The
simplest (though not the only [216]) way to satisfy this constraint is for each extra water
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droplet to create a hyperbolic hedgehog in the nematic host. Note that from Fig. 2.4 we
already know that a radial hedgehog (represented by the water droplet) and a hyperbolic
point defect carry a total charge zero. Hence, N water droplets in a large nematic drop
have to be accompanied by N — 1 hyperbolic hedgehogs. Figure 3.2 presents a qualitative
picture of the director field lines for a string of three droplets. It is rotationally symmetric
about the horizontal axis. Between the droplets, hyperbolic hedgehogs appear. They
prevent the water droplets from approaching each other and from finally coalescing since
this would involve a strong distortion of the director field . The defects therefore mediate
a short-range repulsion between the droplets.

In the following chapters, we demonstrate the physical ideas which evolved from the
experiments on multiple nematic emulsions. We will explain the chaining of droplets by
introducing the topological dipole formed by one spherical particle and its companion
hyperbolic defect. This leads us to the next chapter where we investigate the simplest
situation, i.e., one particle placed in a nematic solvent which is uniformly aligned at infinity.
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Chapter 4

The Paradigm - One Particle

The multiple nematic emulsions that we introduced in Section 3.3 are already a complicated
system. In this chapter we investigate thoroughly by both analytical and numerical means
what I regard as the paradigm for the understanding of inverted nematic emulsions. We
ask which director field configurations do occur when one spherical particle that prefers a
radial anchoring of the director at its surface is placed into a nematic solvent uniformly
aligned at infinity. This constitutes the simplest problem one can think of, and it is a guide
to the understanding of more complex situations.

4.1 The Three Possible Configurations

If the directors are rigidly anchored at the surface, the particle carries a topological charge
@ = 1. Because of the boundary conditions at infinity, the total charge of the whole system
is zero; therefore, the particle must nucleate a further defect in its nematic environment.
One possibility is a dipolar strucure where the particle and a hyperbolic hedgehog form a
tightly bound object which we call dipole for short (see Fig. 4.1). As already explained
in Fig. 2.4, the topological charges +1 of a radial hedgehog, represented by the particle,
and of a hyperbolic point defect "add up” to a total charge of zero. In the Saturn-ring
configuration, a —1/2 disclination ring encircles the spherical particle at its equator (see
Fig. 4.1). Of course, the disclination ring can be moved upward or downward, and by
shrinking it to the topologically equivalent hyperbolic hedgehog, the Saturn ring is con-
tinuously transformed into the dipole configuration. However, our calculations show that
a non-symmetric position of the defect ring is never stable. When the surface anchoring
strength T is lowered (see Fig. 4.1), the core of the disclination ring prefers to sit directly
at the surface of the particle. For sufficiently low W, the director field becomes smooth
everywhere, and a ring of tangentially oriented directors is located at the equator of the
sphere. In the case of tangential boundary conditions, there exists only one structure. It
possesses two surface defects, called boojums, at the north and south pole of the particle
(233, 45, 186, 377]. We will not investigate it further.

It is instructive to first consider the director field far away from the particle, which
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Figure 4.1: A spherical particle with a preferred homeotropic anchoring at its surface that
is placed into a uniformly aligned nematic liquid crystal exhibits three possible structures:
the dipole configuration where the particle is accompanied by a hyperbolic hedgehog, the
Saturn-ring configuration where the particle is surrounded by a —1/2 disclination ring at
the equator, and the surface-ring configuration.



4.2. AN ANALYTICAL INVESTIGATION OF THE DIPOLE 47

crucially depends on the global symmetry of the system [40, 216]. With its knowledge,
ansatz functions for the director configurations around a particle can be checked. Further-
more, the far field determines the long-range two-particle interaction. Let the director ny
at infinity point along the z axis. Then, in the far field, the director is approximated by
n(r) = (ng,ny,, 1) with n,, n, < 1. In leading order, the normalization of the director can
be neglected, and the Euler-Lagrange equations for n, and n, arising from a minimization
of the Frank free energy in the one-constant approximation are simply Laplace equations:

Vn, =0 . (4.1)

The solutions are the well-known multipole expansions of electrostatics that include mo-
nopole, dipole, and quadrupole terms. They are all present if the suspended particle has a
general shape or if, e.g., the dipole in Fig. 4.1 is tilted against ny. In the dipole configuration
with its axial symmetry about ng, the monopole is forbidden, and we obtain

x 2T z

ngy=p—+2— and ny:pg—i-?c—?; , (4.2)

T3 r T3 r
where 7 = (2% + y? + 22)Y/2. We use the expansion coefficients p and ¢ to assign both a
dipole (p) and quadrupole (¢) moment to the configuration:

p=png and c=c(ny®mny—1/3) . (4.3)

The symbol ® means tensor product, and 1 is the unit tensor of second rank. We adopt the
convention that the dipole moment p points from the companion defect to the particle.
Hence, if p > 0, the far field of Egs. (4.2) belongs to a dipole configuration with the
defect sitting below the particle (see Fig. 4.1). Note, that by dimensional analysis, p ~ a?
and ¢ ~ a®, where a is the radius of the sperical particle. Saturn-ring and surface-ring
configurations possess a mirror plane perpendicular to the rotational axis. Therefore, the
dipole term in Egs. (4.2) is forbidden, i.e., p = 0. We will show in Chapter 6 that the
multipole moments p and ¢ determine the long-range two-particle interaction. We will
derive it on the basis of a phenomenological theory.

In the present chapter we investigate the dipole by both analytical and numerical means.
First, we identify a twist transition which transforms it into a chiral object. Then, we study
the transition from the dipole to the Saturn ring configuration, which is induced either by
decreasing the particle radius or by applying a magnetic field. The role of metastability is
discussed. Finally, we consider the surface-ring configuration and point out the importance
of the saddle-splay free energy Fy,. Lower bounds for the surface-anchoring strength W
are given.

4.2 An Analytical Investigation of the Dipole

Even in the one-constant approximation and for fixed homeotropic boundary conditions,
analytical solutions of the Euler-Lagrange equations, arising from the minimization of
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Figure 4.2: Frank free energy (in units of 7K a) for the topological dipole as a function of
the reduced distance r4/a from the particle center to the companion hedgehog.

the Frank free energy, cannot be found. The Euler-Lagrange equations are highly non-
linear due to the normalization of the director. In this section we investigate the dipole
configuration with the help of ansatz functions that obey all boundary conditions and
possess the correct far-field behavior. The free parameters in these ansatz functions are
determined by minimizing the Frank free energy. We will see that this procedure already
provides a good insight into our system.

We arrive at appropriate ansatz functions by looking at the electrostatic analog of our
problem [279, 216], i.e., a conducting sphere of radius a and with a reduced charge ¢ which
is exposed to an electric field of unit strength along the 2z axis. The electric field is

2
T are, —3zr

E(r) = e. + qad* 5 (4.4)

5
In order to enforce the boundary condition that E be normal to the surface of the sphere,
an electric image dipole has to be placed at the center of the sphere. The ansatz function
for the director field follows from a normalization: n(r) = E(r)/|E(r)|. An inspection of
its far field gives
xz 3 Yz

n(r) ~ (qa —+3a —5,qa —+3a 7‘5) , (4.5)
in agreement with Eqs. (4.2). The electrostatic analog assigns a dipole moment ga? and a
quadrupole moment 3a®/2 to the topological dipole. The zero of the electric field deter-
mines the location —rge, of the hyperbolic hedgehog on the z axis. Thus, ¢ or the distance
rq from the center of the particle are the variational parameters of our ansatz functions.
Note that for ¢ = 3, the hedgehog just touches the sphere, and that for ¢ < 3, a singular
ring appears at the surface of the sphere. In Fig. 4.2 we plot the Frank free energy in
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the one-constant approximation and in units of 7Ka as a function of the reduced distance
rq/a. The saddle-splay term is not included, since for rigid anchoring it just provides a
constant energy shift. There is a pronounced minimum at r4 = 1.17a corresponding to
a dipole moment p = ga® = 3.08¢%2. The minimum shows that the hyperbolic hedgehog
sits close to the spherical particle. To check the magnitude of the thermal fluctuations of
its radial position, we determine the curvature of the energy curve at ryg; its approximate
value amounts to 337K /a. According to the equipartition theorem, the average thermal
displacement dryy follows from the expression

0T o ksT -3
~~ ~2-1 4.
a 33rKa 0 (4.6)

where the final estimate employs kgT ~ 4-10"*erg, K ~ 10~%dyn, and @ = 1 um. These
fluctuations in the length of the topological dipole are unobservably small. For angular
fluctuations of the dipole, we find §6 ~ 1072, i.e, still difficult to observe [216]. We conclude
that the spherical particle and its companion hyperbolic hedgehog form a tightly bound
object. Interestingly, we note that angular fluctuations in the 2D version of this problem
diverge logarithmically with the sample size [268]. They are therefore much larger and
have indeed been observed in free standing smectic films [209].

The droplet-defect dipole was observed by Philippe Poulin in inverted nematic emul-
sions [280]. In Fig. 4.3(top) we present how it looks like in a microscope under crossed
polarizers, with one polarizer parallel to the dipole axis. In Fig. 4.3(bottom) we show a
calculated image using the Jones matrix formalism [88] based on the director field of the
electrostatic analog. Any refraction at the droplet boundary is neglected. The similarity of
the two images is obvious and clearly confirms the occurrence of the dipole configuration.

The electric field ansatz is generalized by no longer insisting that it originates in a true
electric field. This allows us to introduce additional variational paramters [216]. The Frank
free energy at ryg is lowered, and the equilibrium separation amounts to r4 = 1.26a. The
respective dipole and quadrupole moments turn out to be p = 2.20a? and ¢ = —1.09a. We
are also able to construct ansatz functions for the dipole-Saturn ring transition utilizing
the method of images for the related 2D problem and correcting the far field [216]. The
results agree with the numerical study presented in the next section.

4.3 Results and Discussion of the Numerical Study

Before we present the results of our numerical study, we summarize the numerical method.
Details can be found in [335].

4.3.1 Summary of Numerical Details

The numerical investigation is performed on a grid which is defined by modified spherical
coordinates. Since the region outside the spherical particle is infinitely extended, we employ
a radial coordinate p = 1/r%. The exponent 2 is motivated by the far field of the dipole



50 CHAPTER 4. THE PARADIGM - ONE PARTICLE

Figure 4.3: (top) Image of a single droplet with its companion defect as observed under
crossed polarizers obtained by P. Poulin [280]. (bottom) Simulated image of the same
configuration using the Jones matrix formalism [216]. The two pictures are very similar.
From Ref. [216].
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configuration. Such a transformation has two advantages. The exterior of the particle is
mapped into a finite region, i.e., the interior of the unit sphere (p < 1). Furthermore,
equally spaced grid points along the coordinate p result in a mesh size in real space which
is small close to the surface of the particle. In this area the director field is strongly
varying, and hence a good resolution for the numerical calculation is needed. On the other
hand, the mesh size is large far away from the sphere where the director field is nearly
homogeneous. Since our system is axially symmetric, the director field only depends on p
and the polar angle 6. The director is expressed in the local coordinate basis (e, ey, €,) of
the standard spherical coordinate system, and the director components are parametrized
by a tilt [O(p,0)] and a twist [®(p,0)] angle: n, = cosO, ny = sinO cos P, and ny =
sin © sin ®.

The total free energy F, of Eq. (1.1) is expressed in the modified spherical coordinates.
Then, the Euler-Lagrange equations in the bulk and at the surface are formulated with
the help of the chain rules of Eqgs. (1.14) and (1.15) and by utilizing the algebraic program
Maple. A starting configuration of the director field is chosen and relaxed into a local
minimum via the Newton-Gauss-Seidel method [284] which was implemented in a Fortran
program.

So far we have described the conventional pro-
cedure of a numerical investigation. Now, we ad-
dress the problem of how to describe disclination
rings numerically. Figure 4.4 presents such a ring
whose general position is determined by a radial
(rg) and an angular () coordinate. The free
energy Fj, of the director field follows from a nu-
merical integration. This assigns some energy to
the disclination ring which certainly is not correct
since the numerical integration does not realize
the large director gradients close to the defect
core. To obtain a more accurate value for the
total free energy F', we use the expression

Figure 4.4: Coordinates (rq4,0,) for a

F = Fy— Fylyos + Fopa X 27rgsinfy | (4.7) —1/2 disclination ring with a general
position around the spherical particle.

where F,. and Fj are the line energies of a discli- From Ref. [335].
nation introduced in Egs. (2.1) and (2.3). The quantity F,|,, . denotes the numerically
calculated free energy of a toroidal region of cross section wR? around the disclination
ring. Its volume is T7R? X 27rgsinf,. The value F,|, ... is replaced by the last term on
the right-hand side of Eq. (4.7), which provides the correct free energy with the help of
the line energies F, or F;. We checked that the cross section mR? of the cut torus has to
be equal or larger than 3ApA#/2, where Ap and A are the lattice constants of our grid.
For larger cross sections, the changes in the free energy F' for fixed core radius r. were less
than 1 %, i.e., F became independent of 7R%. What is the result of this procedure? All
lengths in the free energy F,, can be rescaled by the particle radius a. This would suggest
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that the director configuration does not depend on the particle size. However, with the
illustrated procedure a second length scale, i.e., the core radius r. of a disclination, enters.
All our results on disclination rings therefore depend on the ratio a/r.. In discussing them,
we assume 7. &~ 10nm [176] which then determines the radius a for a given a/r..

4.3.2 Twist Transition of the Dipole Configuration

In this subsection we present our numerical study of the topological dipole. We always
assume that the directors are rigidly anchored at the surface (W — oo0) and choose a
zero magnetic field. In Fig. 4.5 we plot the reduced distance r;/a of the hedgehog from
the center of the sphere as a function of the reduced splay (K;/K3) and twist (K2/K3)
constants. In the one-constant approximation, we find r; = 1.26 + 0.02, where the mesh
size of the grid determines the uncertainty in r4. Our result is in excellent agreement
with the generalized electric-field ansatz we introduced in the last section [216]. However,
Ruhwandl and Terentjev using a Monte-Carlo minimization report a somewhat smaller
value for r4 [304]. In front of the thick line r4 is basically constant. Beyond the line 74
starts to grow which indicates a structural change in the director field illustrated in the nail
picture of Fig. 4.6a). Around the hyperbolic hedgehog the directors develop a non-zero
azimuthal component ngy, i.e., they are tilted relative to the drawing plane. This introduces
a twist into the dipole. It should be visible under a polarizing microscope when the dipole
is viewed along its symmetry axis.

In Fig. 4.6b) we draw a phase diagram of the twist transition. As expected, it occurs
when K /K3 increases or when K,/ K3 decreases, i.e., when a twist deformation costs less
energy than a splay distortion. The open circles are numerical results for the transition
line which can well be fitted by the straight line K,/K3 ~ K;/K3—0.04. Interestingly, the
small offset 0.04 means that K3 does not play an important role. Typical calamitic liquid
crystals like MBBA, 5CB, and PAA should show the twisted dipole configuration.

Since the twist transition breaks the mirror symmetry of the dipole, which then becomes
a chiral object, we describe it by a Landau expansion of the free energy:

F = Fy + a(K1/Ks, K3/ K3)[ny™]* + c[n3™]* . (4.8)

With the maximum azimuthal component ny** we have introduced a simple order param-
eter. Since the untwisted dipole possesses a mirror symmetry, only even powers of ng**
are allowed. The phase transition line is determined by a(K; /K3, K3/ K3) = 0. According
to Eq. (4.8), we expect a power-law dependence of the order parameter with the exponent
1/2 in the twist region close to the phase transition. To test this idea, we choose a constant
K,/ K5 ratio and determine ng ™ for varying K. As the log-log plot in Fig. 4.7 illustrates,

when approching the phase transition, the order parameter obeys the expected power law:

ng™ ~ (K1 /K5 —04372)'% with K /K3 =04 . (4.9)
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Figure 4.5: The reduced distance r;/a of the hyperbolic hedgehog from the center of the
sphere as a function of the reduced splay (K;/K3) and twist (K5/K3) constants.
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a) Nail picture of a close-up of the twisted dipole configuration. Around the

hyperbolic hedgehog the directors are tilted relative to the drawing plane. From Ref. [335].
b) Phase diagram of the twist transition as a function of the reduced splay (K;/K3) and
twist (Ky/K3) constants. A full explanation is given in the text.
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Figure 4.7 Log-log plot of the order parameter nj® versus K;/Kj3 close to the twist
transition (Ky/K3 = 0.4); o ...numerical values, — ...fit by a straight line.

4.3.3 Dipole versus Saturn Ring

There are two possibilities to induce a transition from the dipole to the Saturn-ring con-
figuration; either by reducing the particle size or by applying, e.g., a magnetic field. We
always assume rigid anchoring in this subsection, set Koy = 0, and start with the first
point.

Effect of particle size

In Fig. 4.8 we plot the free energy F' in units of wK3a as a function of the angular
coordinate 6, of the disclination ring. For constant 6, the free energy F' was chosen as
the minimum over the radial coordinate r4. The particle radius a is the parameter of
the curves, and the one-constant approximation is employed. Recall that 6, = 7/2 and
0y = m correspond, respectively, to the Saturn-ring or the dipole configuration. Clearly,
for small particle sizes (¢ = 180 nm) the Saturn ring is the absolutely stable configuration,
and the dipole enjoys some metastability. However, thermal fluctuations cannot induce
a transition to the dipole since the potential barriers are much higher than the thermal
energy kgT. E.g., a barrier of 0.1rK3a corresponds to 1000 kgT (T = 300K, a = 1 um).
At a =~ 270nm, the dipole assumes the global minimum of the free energy, and finally
the Saturn ring becomes absolutely unstable at a ~ 720 nm. The scenario agrees with the
results of Ref. [216] where an ansatz function for the director field was used. Furthermore,
we stress that the particle sizes were calculated with the choice of 10nm as the real core
size of a line defect, and that our results depend on the line energy (2.1) of the disclination.

The reduced radial coordinate r4/a of the disclination ring as a function of 6, is pre-
sented in Fig. 4.9. It was obtained by minimizing the free energy for fixed ;. As long as the
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Figure 4.8: The free energy F' in units of mK3a as a function of the angular coordinate 6.
The parameter of the curves is the particle size a. Further parameters are indicated in the
inset.
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Figure 4.9: The reduced radial coordinate r4/a of the disclination ring as a function of 6
for two particle sizes. Further parameters are indicated in the inset.
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ring is open, r4 does not depend on #; within an error of £0.01. Only in the region where
it closes to the hyperbolic hedgehog, does r; increase sharply. The figure also illustrates
that the ring sits closer to larger particles. The radial position of r4/a = 1.10 for 720 nm
particles agrees very well with analytical results obtained by using an ansatz function (see
Refs. [216]) and with numerical calculations based on a Monte-Carlo minimization [304].

Effect of a magnetic field

A magnetic field applied along the symmetry axis of the dipole can induce a transition to
the Saturn-ring configuration. This can be understood from a simple back-of-the-envelope
calculation. Let us consider high magnetic fields, i.e., magnetic coherence lengths much
smaller than the particle size a. The magnetic coherence length &y was introduced in
Eq. (1.9) as the ratio of elastic and magnetic torques on the director. For £y < a, the
directors are basically aligned along the magnetic field. In the dipole configuration, the
director field close to the hyperbolic hedgehog cannot change its topology. The field lines
are ”compressed” along the z direction, and high densities of the elastic and magnetic free
energies occur in a region of thickness £g. Since the field lines have to bend around the
sphere, the cross section of the region is of the order of a?, and its volume is proportional
to a®¢y. The Frank free energy density is of the order of K/¢%, where K is a typical Frank
constant, and therefore the elastic free energy scales with Ka?/£y. The same holds for
the magnetic free energy. In the case of the Saturn-ring configuration, high free energy
densities occur in a toroidal region of cross section oc €2 around the disclination ring.
Hence, the volume scales with a&%, and the total free energy is of the order of Ka, i.e., a
factor a/y smaller than for the dipole.

Fig. 4.10 presents a calculation for a particle size of a = 0.5 um and the liquid crystal
compound 5CB. We plot the free energy in units of 7K3a as a function of 6, for different
magnetic field strengths which we indicate by the reduced inverse coherence length a/&y.
Without a field (a/&g = 0), the dipole is the energetically preferred configuration. The
Saturn ring shows metastability. A thermally induced transition between both states can-
not happen because of the high potential barrier. At a field strength a/{y = 0.33, the
Saturn ring becomes the stable configuration. However, there will be no transition until
the dipole loses its metastability at a field strength a/€y = 3.3, which is only indicated
by an arrow in Fig. 4.10. Once the system has changed to the Saturn ring, it will stay
there even for zero magnetic field. Fig. 4.11a) schematically illustrates how a dipole can
be transformed into a Saturn ring with the help of a magnetic field. If the Saturn ring is
unstable at zero field, a hysteresis occurs [see Fig. 4.11b)]. Starting from high magnetic
fields, the Saturn ring loses its metastability at H;;, and a transition back to the dipole
takes place. In Fig. 4.8 we showed that the second situation is realized for particles larger
than 720nm. We also performed calculations for a particle size of 1uym and the liquid
crystal compound 5CB and still found the Saturn ring to be metastable at zero field in
contrast to the result of the one-constant approximation.

To be more concrete, according to Eq. (1.9), a/€g = 1 corresponds to a field strength
of 4.6 T when 0.5 um particles and the material parameters of 5CB (K3 = 0.53 x 1075 dyn,
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Figure 4.10: The free energy F in units of mK3a as a function of the angular coordinate
04. The parameter of the curves is the reduced inverse magnetic coherence length a/&y.
Further parameters are indicated in the inset.

Ax = 1077) are used. Hence, the transition to the Saturn ring in Fig. 4.10 occurs at
a rather high field of 15T. Assuming that there is no dramatic change in a/§y = 3.3
for larger particles, this field decreases with increasing particle radius. Alternatively, the
transition to the Saturn ring is also induced by an electric field with the advantage that
strong fields are much easier to apply. However, the large dielectric anisotropy Ae = ¢ —¢
complicates a detailed analysis because of the difference between applied and local electric
fields. Therefore, the electric coherence length &5 = [4rK3/(AcE?)]/2, which replaces &y,
only serves as a rough estimate for the applied field E necessary to induce a transition to
the Saturn ring.

4.3.4 Influence of Finite Surface Anchoring

In the last subsection we investigate the effect of finite anchoring on the director field around
the spherical particle. The saddle-splay term with its elastic constant Koy is important
now. We always choose a zero magnetic field. In Fig. 4.12 we employ the one-constant ap-
proximation and plot the free energy versus the reduced surface extrapolation length £s/a
for different reduced saddle-splay constants Ko4/K3. Recall that s is inversely propor-
tional to the surface constant W [see Eq. (1.11)]. The straight lines belong to the dipole.
Then, for decreasing surface anchoring, there is a first-order transition to the surface-ring
structure. We never find the Saturn ring to be the stable configuration although it enjoys
some metastability. For Koy/K3 = 0, the transition takes place at £s/a =~ 0.085. This value
is somewhat smaller than the result obtained by Ruhwandl and Terentjev [304]. One could
wonder why the surface ring already occurs at such a strong anchoring like £s/a ~ 0.085
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Figure 4.11: a) The Saturn ring is metastable at H = 0. The dipole can be transformed
into the Saturn ring by increasing the magnetic field H beyond H;, where the dipole loses
its metastability. Turning off the field the Saturn ring remains. b) The Saturn ring is
unstable at H = 0. When the magnetic field is decreased from values above H,s, the
Saturn ring shrinks back to the dipole at H;; where the Saturn ring loses its metastability.
A hysteresis occurs. From Ref. [335].

where any deviation from the homeotropic anchoring costs a lot of energy. However, if Af
is the angular width of the surface ring where the director deviates from the homeotropic
alignment (see inset of Fig. 4.13) then a simple energetical estimate allows Af to be of
the order of s /a. It is interesting to see that the transition point shifts to higher anchor-
ing strengths, i.e, decreasing &s/a when Kyy/Kj is increased. Obviously, the saddle-splay
term favors the surface-ring configuration. To check this conclusion, we plot the reduced
saddle-splay free energy Fyy versus {s/a in Fig. 4.13. The horizontal lines belong to the
dipole. They correspond to the saddle-splay energy 47 Kssa which one expects for a rigid
homeotropic anchoring at the surface of the sphere. In contrast, for the surface-ring con-
figuration the saddle-splay energy drops sharply. The surface ring at the equator of the
sphere introduces a “saddle” in the director field as illustrated in the inset of Fig. 4.13.
Such structures are known to be favored by the saddle-splay term. We modeled the surface
ring with an angular width A# by the following radial and polar director components:

_ 0—m/2 B o—m/2\]"
nT——tanh( N ) and ng——[cosh< N )] , (4.10)
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Figure 4.12: The minimum free energy F' in units of 7K3a as a function of the reduced
surface extrapolation length g /a for different Ks,/K3. A first-order phase transition from
the dipole to the surface ring occurs. Further parameters are indicated in the inset.

where Af < /2 to ensure that n, = 1 at § = 0,7, and calculated the saddle-splay energy
versus Af by numerical integration. The result is shown in the inset of Fig. 4.13. It fits
very well to the full numerical calculations and confirms again that a narrow “saddle”
around the equator can considerably reduce the saddle-splay energy.

For the liquid crystal compound 5CB we determined the stable configuration as a
function of Kyy/Kj3 and £gs/a. The phase diagram is presented in Fig. 4.14. With its
help, we can derive a lower bound for the surface constant W at the interface of water
and 5CB when the surfactant sodium dodecyl sulfate is involved. As the experiments by
Poulin et al. clearly demonstrate, water droplets dispersed in 5CB do assume the dipole
configuration. From the phase diagram we conclude g/a < 0.09 as a necessary condition
for the existence of the dipole. With a ~ 1 um, K3 = 0.53 x 107%dyn, and the definition
(1.11) for & we arrive at

W > 0.06 erg/cm?* . (4.11)

If we assume the validity of the Cauchy-Relation (1.5), which for 5CB gives Ky /K3 = 0.61,
we conclude that W > 0.15 erg/cm?. Recently, Mondain-Monval, Poulin et al. were able to
observe an equatorial ring structure by changing the composition of a surfactant mixture
containing sodium dodecyl sulfate (SDS) and a copolymer of ethylene and propylene oxide
(Pluronic F 68) [242]. We conclude from our numerical investigation that they observed
the surface-ring configuration.
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Figure 4.13: The saddle-splay free energy Fy, in units of mK3a as a function of £g/a for
the same curves as in Fig. 4.12. Inset: F54 in units of mKs4a versus the angular width of
the surface ring calculated from the ansatz functions in Eqgs. (4.10).
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Figure 4.14: Phase diagram of the dipole-surface ring transition as a function of £s/a and
K54/ K3. Further parameters are indicated in the inset.
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4.4 Conclusions

In this chapter we presented a detailed study of the three director field configurations
around a spherical particle by both analytical and numerical means. We clearly find
that for large particles and sufficiently strong surface anchoring, the dipole is the preferred
configuration. For conventional calamitic liquid crystals, where Ky < K7, the dipole should
always exhibit a twist around the hyperbolic hedgehog. It should not occur in discotic
liquid crystals where Ky > K. According to our calculations, the bend constant K3 plays
only a minor role in the twist transition. The Saturn ring appears for sufficiently small
particles provided that one can realize a sufficiently strong surface anchoring. According
to our investigation, for 200 nm particles the surface constant has to be larger than W =
0.3erg/cm?. However, the dipole can be transformed into the Saturn ring by means of
a magnetic field if the Saturn ring is metastable at H = 0. Otherwise a hysteresis is
visible. For the liquid crystal compound 5CB, we find the Saturn ring to be metastable at
a particle size a = 1 ym. Increasing the radius a, this metastability will vanish in analogy
with our calculations within the one-constant approximation (see Fig. 4.8). Lowering the
surface-anchoring strength W, the surface-ring configuration with a quadrupolar symmetry
becomes absolutely stable. We never find a stable structure with dipolar symmetry where
the surface ring possesses a general angular position 6; or is even shrunk to a point at
64 = 0, . The surface ring is clearly favored by a large saddle-splay constant Ko,.

The dispersion of spherical particles in a nematic liquid crystal is always a challenge
to experimentalists. The clearest results are achieved in inverted nematic emulsions [279,
276, 280, 242]. However, promising experiments with silica or latex spheres do also exist
(278, 286, 287, 242, 277]. We hope that the summary of our results stimulates further
experiments which probe different liquid crystals as a host fluid [277], manipulate the
anchoring strength [242], and investigate the effect of external fields.
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Chapter 5

Two-Particle Interactions

To understand the properties of, e.g., multi-droplet emulsions, we need to determine the
nature of particle-particle interactions. These interactions are mediated by the nematic
liquid crystal in which they are embedded and are in general quite complicated. Since in-
teractions are determined by distortions of the director field, there are multi-body as well
as two-body interactions. We will content ourselves with calculations of some properties of
the effective two-particle interaction. To determine the position-dependent interaction po-
tential between two particles, we should solve the Euler-Lagrange equations, as a function
of particle separation, subject to the boundary condition that the director be normal to
each spherical object. Solving completely these non-linear equations in the presence of two
particles is even more complicated than solving them with one particle, and again we must
resort to approximations. Fortunately, interactions at large separations are determined
entirely by the far-field distortions and the multipole moments of an individual topological
dipole or Saturn ring, which we studied in Section 4.1. The interactions can be derived
from a phenomenological free energy. We will present such an approach in this section
[288, 279, 216].

5.1 Formulating a Phenomenological Theory

In chapter 4, we established that each spherical particle creates a hyperbolic hedgehog to
which it binds tightly to create a stable topological dipole. The original spherical inclusion
is described by three translational degrees of freedom. Out of the nematic it draws a
hedgehog, which itself has three translational degrees of freedom. The two combine to
produce a dipole with six degrees of freedom, which can be parametrized by three variables
specifying the position of the particle, two angles specifying the orientation of the dipole,
and one variable specifying the magnitude of the dipole. As we have seen, the magnitude
of the dipole does not fluctuate much and can be regarded as a constant. The direction of
the dipole is also fairly strongly constrained. It can, however, deviate from the direction of
locally preferred orientation (parallel to a local director to be defined in more detail below)
when many particles are present. The particle-defect pair is in addition characterized by its

63
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higher multipole moments. The direction of the principal axes of these moments is specified
by the direction of the dipole as long as director configurations around the dipole remain
uniaxial. The magnitudes of all the uniaxial moments like the strengths p and ¢ of the
dipole and quadrupole moment (see Section 4.1) are energetically fixed, as we have shown
in Section 4.2. When director configurations are not uniaxial, the multipole tensors will
develop additional components, which we will not consider here. We can thus parametrize
topological dipoles by their position and orientation and a set of multipole moments, which
we regard as fixed. Let e® be the unit vector specifying the direction of the dipole moment
associated with droplet a. Its dipole and quadrupole moments are then p® = pe® and
c® = c(e* ® e* —1/3), where p and ¢ are the respective magnitudes of the dipole and
quadrupole moments calculated, e.g., by analytical means in Section 4.2. The symbol ®
means tensor product, and 1 is the second-rank unit tensor. Note, that this approach
also applies to the Saturn-ring and surface-ring configuration but with a vanishing dipole
moment p = 0. It even applies to particles with tangential boundary conditions where two
surfaces defects, called boojums [233, 45, 186], are located at opposite points of the sphere
and where the director field possesses a uniaxial symmetry, too. We now introduce dipole-
and quadrupole-moment densities, P(r) and C(7r), in the usual way. Let r® denote the
position of droplet «, then

Zp r—r and C(r) :Zco‘é(r—'ro‘) . (5.1)

In the following, we construct an effective free energy for director and particles valid
at length scales large compared to the particle radius. At these length scales, we can
regard the spheres as point objects (as implied by the definitions of the densities given
above). At each point in space, there is a local director n(r) along which the topological
dipoles or, e.g., the Saturn rings wish to align. In the more microscopic picture, of course,
the direction of this local director corresponds to the far-field director ng. The effective
free energy is constructed from rotationally invariant combinations of P, C', n, and the
gradient operator V that are also even under n — —mn. It can be expressed as a sum of
terms

F:Fel+Fp+FC+Faligna (52)

where F,; is the Frank free energy, F), describes interactions between P and n, F describes
interactions between C' and n involving gradient operators, and

Fugn = =D [ &1Cy(r)n{rin(r )= -DQE{le e - 13) 69

forces the alignment of the axes e® along the local director n(r®). The leading contribution
to F, is identical to the treatment of the flexoelectric effect in a nematic [235, 76]

F, = 47rK/d3r[—P n(V-n)+ 8P (nx V x n), (5.4)
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where (3 is a material-dependent unitless parameter. The leading contribution to F is

There should also be terms in F¢ like C;;Vin;Vin,. These terms can be shown to add
contributions to the effective two-particle interaction that are higher order in separation
than those arising from Eq. (5.5). One coefficient in F), and all coefficients in F are fixed
by the requirement that the phenomenological theory yields the far field of one particle
given by Eq. (4.2) (see next section). Equation (5.5) is identical to that introduced in Ref.
[288] to discuss interactions between Saturn rings, provided n;C;;n; is replaced by a scalar
density p(r) =>_,0(r — r®). The two energies are absolutely equivalent to leading order
in the components 1, of n perpendicular to my provided all e are restricted to be parallel
to ny.

Since P prefers to align along the local director n, the dipole-bend coupling term in
Eq. (5.4) can be neglected to leading order in deviations of the director from uniformity.
The —P -n(V-n) term in Eq. (5.4) shows that dipoles aligned along n create local splay
as is evident from the dipole configuration depicted in Fig. 4.1. In addition, this term
says that dipoles can lower their energy by migrating to regions of maximum splay while
remaining aligned with the local director. Experiments on multiple nematic emulsions
[279, 280] support this conclusion. Indeed, the coupling of the dipole moment to a strong
splay distortion explains the chaining of water droplets in a large nematic drop whose
observation we reported in Section 3.3. We return to this observation in Chapter 7.

5.2 Effective Pair Interactions

In the following we assume that the far-field director ny and all the multipole moments of
the particles point along the z axis, i.e., e* = e, = ny. Hence, we are able to write the
dipole and quadrupole densities as

P(r)=P(r)ny and  C(r)=3C(r)(ng®mng—1/3) , (5.6)
where P(r) and C(r) can be both positive and negative. We are interested in small

deviations from ny, n = (n,,n,,1), and formulate the effective energy of Eq. (5.2) up to
harmonic order in n,,:

F=K / d*r[2(Vn,)? — 4w PO,n, + 47(9.C)dun,,] (5.7)

The dipole-bend coupling term of Eq. (5.4) does not contribute because P is aligned along
the far-field director. The Euler-Lagrange equations for the director components are

V?n, = 470,[P(r) — 0,C(r)], (5.8)
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which possess the solution

. 1
nu(r) = —/d‘%r’ P (9;[P(T'/) —a.C(r")] . (5.9)
For a single droplet at the origin, P(r) = pd(r) and C(r) = 2¢é(r), and the above
equation yields exactly the far field of Eq. (4.2). This demonstrates the validity of our
phenomenological approach.

Particles create far-field distortions of the director, which to leading order at large
distances are determined by Eq. (5.8). These distortions interact with the director fields of
other particles which leads to an effective particle-particle interaction that can be expressed

to leading order as pairwise interactions between dipole and quadrupole densities. Using
Eq. (5.9) in Eq. (5.7), we obtain

r = 3 [ @rd PEOWer(r = )P + CVec(r - )C(r)
+ Voelr — ) [C(#)P(r') — P(r)C(r)] | (5.10)
with L
Vpp(r) = 0y~ = = (1 — 3cos®6)
Voe(r) = —6’3@8“% = % (9 — 90 cos® § + 105 cos" ) (5.11)
Vpe(r) = 028#8#% = C(;ie (15c0s”6 —9) |

where 6 is the angle enclosed by the separation vector r and mng. The interaction energy
between droplets at positions r and ' with respective dipole and quadrupole moments p,
p', ¢, and ¢ is thus

4 2
U(R) =47 K |pp'Vep(R) + §CC'VCC(R) + g(cp' —dp)Vee(R)| (5.12)

where R = r — r/. The leading term in the potential U(R) is the dipole-dipole interaction
which is identical to the analogous problem in electrostatics. Minimizing it over the angle
6, one finds that the dipoles prefer to form chains along their axes, i.e., pp’ > 0, § = 0, 7.
Such a chain of dipoles is illustrated in Fig. 5.1. It is similar to configurations seen in
other dipolar systems such as magnetorheological fluids and in magnetic emulsions under
the influcence of an external field [135, 210]. The chaining was observed by Poulin et
al. in inverted emulsions [276, 280] or in a suspension of micron-size latex particles in a
lyotropic discotic nematic [277]. Both systems were placed in a thin rectangular cell of
approximate dimensions 20 um x 1 cm X 1 cm. The upper and lower plates were treated to
produce tangential boundary conditions. Thus the total topological charge in the cell was
zero. The dipolar forces were measured recently by a method introduced by Poulin et al.
[276]. When small droplets are filled with a magnetorheological fluid instead of pure water,
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Figure 5.1: A chain of three topological dipoles formed due to their dipolar interaction.

a small magnetic field of about 100 G, applied perpendicular to the chain axis, induces
parallel magnetic dipoles. Since they repel each other, the droplets in the chain are forced
apart. When the magnetic field is switched off, the droplets move towards each other to
reach the equilibrium distance. In a chain of two moving droplets, the dipolar force on one
droplet has to be balanced by the Stokes drag,

/

247TK% = 67 Negrav (5.13)
where v is the velocity of one particle, and 7n.g is an effective viscosity, which we will
address in Chapter 6. Intertial effects can be neglected since the movement is overdamped.
By measuring the velocity as a function of R, Poulin et al. could show that the origin of
the attractive force is indeed of dipolar nature down to a separation of approximately 4a.
Furthermore, they found that the prefactor of the dipolar force scales as a*, as expected
since both the dipole moments p and p’ scale as a? (see Section 4.1). In Chapter 6 we will
calculate the Stokes drag of a spherical particle.

If p,p’ = 0, the quadrupolar interaction is dominant. A minimization over # predicts
that the quadrupoles should chain under an angle of § = 49° [288]. In experiments with
tangential boundary conditions at the droplet surface, where a quadrupolar structure with
two opposite surface defects (boojums) forms, the chaining occurred under an angle of
6 = 30°, probably due to short-range effects [280]. A similar observation was made in a
suspension of 50 nm latex particles in a lyotropic discotic nematic [242], where one expects a
surface-ring configuration because of the homeotropic surface anchoring (see Section 4.3.4).

Finally, we discuss the coupling between dipoles and quadrupoles in Eq. (5.12). Their
moments scale, respectively, as a? or a®. The coupling is only present when the particles
have different radii. Furthermore, for fixed angle @, the sign of the interaction depends
on whether the small particle is on the right or left side of the large one. With this
rather subtle effect, which is not yet measured, we close the chapter about two-particle
interactions.
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Chapter 6

Stokes Drag of Spherical Particles

In Section 1.3 we introduced the Ericksen-Leslie equations that govern the hydrodynamics
of a nematic liquid crystal. Due to the director as a second hydrodynamic variable be-
sides the fluid velocity, interesting new dynamical phenomena arise. With the Miesowicz
viscosities and Helfrich’s permeation, we presented two of them in Section 1.3. Here we
deal with the flow of a nematic around a spherical particle in order to calculate its Stokes
drag, which is a well-known quantity for an isotropic liquid [330, 306]'. Via the celebrated
Stokes-Einstein relation [96, 97, 98], it determines the diffusion constant of a Brownian
particle, and it is, therefore, crucial for a first understanding of the dynamics of colloidal
suspensions [306].

In Section 6.1 the existing work on the Stokes drag, which has a long-standing tradition
in liquid crystals, is reviewed. Starting from the Ericksen-Leslie equations, we introduce
the theoretical concepts for its derivation in Section 6.2. We calculate the Stokes drag
for three director configurations; a uniform director field, the topological dipole, and the
Saturn-ring structure. Since a full analytical treatment is not possible, we have perfomed
a numerical investigation. A summary of its details is presented in Section 6.3. Finally,
we discuss the results and open problems in Section 6.4.

6.1 Motivation

Due to the complexity of the Ericksen-Leslie equations, only few examples with an ana-
lytical solution exist, e.g., the flow between two parallel plates, which defines the different
Migsowicz viscosities [69], the Couette flow [16, 68], the Poiseuille flow [15], which was
first measured by Cladis et al. [383], or the back flow [269]. Besides the exploration of
new effects, resulting from the coupling between the velocity and director field, solutions
to the Ericksen-Leslie equations are also of technological interest. They are necessary to
determine the switching times of liquid crystal displays.

A common way to measure viscosities of liquids is the falling-ball method, where the

"'We cite here on purpose the excellent course of Sommerfeld on continuum mechanics. An english
edition of his lectures on theoretical physics is available.
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velocity of the falling particle is determined by a balance of the gravitational, the buoyancy,
and Stokes’s friction force. Early experiments in nematic liquid crystals measured the
temperature and pressure dependence of the effective viscosity 7n.g in the Stokes drag
(383, 188]. Cladis et al. [383] argued that neg is close to the Miesowicz shear viscosity n,
i.e., to the case where the fluid is flowing parallel to the director (see Fig. 1.3 in Section
1.3). Nearly twenty years later, Poulin et al. used the Stokes drag to verify the dipolar
force between two topological dipoles in inverted nematic emulsions [276]. Bottger et al.
observed the Brownian motion of particles above the nematic-isotropic phase transition
[37]. Measuring the diffusion constant with the help of dynamic light scattering, they
could show that close to the phase transition the effective viscosity in the Stokes drag
increases due to surface-induced nematic order close to the particle.

It is obvious, that the hydrodynamic solution for the flow of a nematic liquid crystal
around a particle at rest, which is equivalent to the problem of a moving particle, presents
a challenge to theorists. Diogo [84] assumed the velocity field to be the same as the
one for an isotropic fluid and calculated the drag force for simple director configurations.
He was interested in the case where the viscous forces largely exceed the elastic forces
of director distortions, i.e, Ericksen numbers much larger than one, as we shall explain
in the next section. Roman and Terentjev, concentrating on the opposite case, obtained
an analytical solution for the flow velocity in a spatially uniform director field, by an
expansion in the anisotropy of the viscosity [295]. Heuer et al. presented analytical and
numerical solutions for both the velocity field and Stokes drag again assuming a uniform
director field [177, 155]. They were first investigating a cylinder of infinite length [154].
Ruhwandl and Terentjev allowed for a non-uniform but fixed director configuration, and
they numerically calculated the velocity field and Stokes drag of a cylinder [302] or a
spherical particle [303]. The particle was surrounded by the Saturn-ring configuration (see
Fig. 4.1 of Section 4.1), and the cylinder was accompanied by two disclination lines. The
experiments on inverted nematic emulsions [279, 276] motivated us to perform analogous
calculations for the topological dipole [370], which we present in the next sections. Recently,
Chono and Tsuji performed a numerical solution of the Ericksen-Leslie equations around a
cylinder determining both the velocity and director field. They could show that the director
field strongly depends on the Ericksen number. However, for homeotropic anchoring their
director fields do not show any topological defects required by the boundary conditions.

The Stokes drag of a particle surrounded by a disclination ring strongly depends on the
presence of line defects. There exist a few studies, which determine both experimentally
[56] and theoretically [162, 74, 307] the drag force of a moving disclination. In the multi-
domain cell, a novel liquid crystal display, the occurence of twist disclinations is forced by
boundary conditions [311, 310, 290]. It is expected that the motion of these line defects
strongly determines the switching time of the display.



6.2. THEORETICAL CONCEPTS 71

6.2 Theoretical Concepts

We first review the Stokes drag in an isotropic liquid and then introduce our approach for
the nematic environment.

6.2.1 Stokes Drag in an Isotropic Fluid

The Stokes drag in an isotropic fluid follows from a solution of the Navier-Stokes equations.
Instead of considering a moving sphere, one solves the equivalent problem of the flow around
a sphere at rest [330]. An incompressible fluid (divo = 0) and a stationary velocity field
(Ov /0t = 0) are assumed, so that the final set of equations reads

divoe =0  and —Vp +divT" =0 . (6.1)

In an isotropic fluid the viscous stress tensor T" is proportional to the symmetrized velocity
gradient A, T' = 2nA, where 7 denotes the usual shear viscosity. We have subdivided the
pressure p = po+p’ in a static (pg) and a hydrodynamic (p') part. The static pressure only
depends on the constant mass density ¢ and, therefore, does not appear in the momentum-
balance equation of the set (6.1). The hydrodynamic contribution p’ is a function of the
velocity. It can be chosen zero at infinity. Furthermore, under the assumption of creeping
flow, we have neglected the non-linear velocity term in the momentum-balance equation
resulting from the convective part of the total time derivative dv/d¢. That means, the
ratio of inertial (ov?/a) and viscous (nv/a?®) forces, which defines the Reynolds number
Re = pva/n, is much smaller than one. To estimate the forces, all gradients are assumed
to be of the order of the inverse particle radius a~!, the characteristic length scale of our
problem. Egs. (6.1) are solved analytically for the non-slip condition at the surface of
the particle [v(r = a) = 0], and for a uniform velocity v, at infinity. Once the velocity
and pressure fields are known, the drag force Fs follows from an integration of the total
stress tensor —pl + T over the particle surface. An alternative method demands that the
dissipated energy per unit time, [(7T"-A)d*r, which we introduced in Eq. (1.27) of Section
1.3, should be Fg vy, [25]. The final result is the famous Stokes formula for the drag force:

Fs = vy with v =6mna . (6.2)

The symbol v is called the friction coefficient. The Einstein-Stokes relation relates it to
the diffusion constant D of a Brownian particle [96, 97, 98]:

D kgT 7
67na

(6.3)

where kg is the Boltzmann constant and 7" is temperature.
We can also calculate the Stokes drag for a finite spherical region of radius r = a/e
with the particle at its center [370]. The result is

1—3¢g/2+e&%—¢%/2
(1—-3e/2+¢€3/2)?

Fs =~ v, with Y. = 6mna (6.4)
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where v, denotes the uniform velocity at » = a/e. The correction term is a monotonously
increasing function in € on the interesting intervall [0, 1]. Hence, the Stokes drag increases
when the particle is confined to a finite volume. For ¢ = 1/32 the correction is about 5%.

6.2.2 Stokes Drag in a Nematic Environment

To calculate the Stokes drag in a nematic environment, we have to deal with the Ericksen-
Leslie equations, which couple the flow of the fluid to the director motion. We do not
attempt to solve these equations in general. Analogous to the Reynolds number, we define
the Ericksen number [74] as the ratio of viscous (v /a?) and elastic (K /a®) forces in the
momentum balance of Eq. (1.18):

MUl
K

The elastic forces are due to distortions in the director field, where K stands for an average
Frank constant. In the following, we assume Er < 1, i.e., the viscous forces are too weak
to distort the director field, and we will always use the static director field for v = 0 in
our calculations. The condition Er < 1 constrains the velocity v.,. Using typical values
of our parameters, i.e., K = 10~%dyn, n = 0.1P, and a = 10 um, we find
pm

T

Er

(6.5)

Voo < 100 (6.6)
Before we proceed, let us check for three cases if this constraint is fulfilled. First, in the
measurements of the dipolar force by Poulin et al., the velocities of the topological dipole
are always smaller than 10 pm/s [276]. Secondly, in a falling-ball experiment the velocity
v of the falling particle is determined by a balance of the gravitational, the buoyancy, and
Stokes’s friction force, i.e., 6mN.gav = 4?”(13(@ — o1)g, and we obtain:
2 _ 2
oo 2le—ea’g L pm 67)
9 Teft S
To arrive at the estimate, we choose 7.z = 0.1 P and a = 10 um. We take o = 1g/cm? as
the mass density of the particle and gp— 0q = 0.01 g/cm? as its difference to the surrounding
fluid [306]. Thirdly, we consider the Brownian motion of a suspended particle. With the
time ¢ = a?/6D that the particle needs to diffuse a distance equal to the particle radius a
[306], we define an averaged velocity
6D 1073 2

a
vn=— = — _
t

- : (6.8)

The estimate was calculated using the Stokes-Einstein relation of Eq. (6.3) with thermal
energy kgT = 4-10"* erg at room temperature and the same viscosity and particle radius
as above.

After we have shown that Er < 1 is a reasonable assumption, we proceed as follows.
We first calculate the static director field around a sphere from the balance of the elastic
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torques, n x hY = 0 [see Egs. (1.19) and (1.25)]. It corresponds to a minimization of
the free energy. For v = 0, the static director field defines a static pressure p, via the
momentum balance, —Vpy + divT? = 0, where the elastic stress tensor T° depends on
the gradient of m [see Egs. (1.18) and (1.11)]. If we again divide the total pressure into
its static and hydrodynamic part, p = pg + p/, the velocity field is determined from the
same set of equations as in (6.1), provided that we employ the viscous stress tensor T of
a nematic liquid crystal [see Eq. (1.22)]. In the case of an inhomogeneous director field,
both the different shear viscosities and the rotational viscosity 71, discussed in Section 1.3,
contribute to the Stokes drag.

In general, the friction force Fs does not point along v,,, and the friction coefficient is
now a tensor . In the following, all our configurations are rotationally symmetric about
the z axis, and the Stokes drag assumes the form

Fs=~vv, with ~y=71+(y—-7)e®e . (6.9)

There only exist two independent components v and 7, for a respective flow parallel or

perpendicular to the symmetry axis. In these two cases, the Stokes drag is parallel to v.

Otherwise, a component perpendicular to v, called [ift force, appears. In analogy with
the isotropic fluid, we introduce effective viscosities n,lslﬁa and 0k via

= 67Tngﬁa and v = 6mnia . (6.10)

It is sufficient to determine the velocity and pressure fields for two particular geometries

with v, either parallel or perpendicular to the z axis. Then, the friction coefficients are
calculated with the help of the dissipated energy per unit time [see Eq. (1.27)] [25, 84]:

Fg/Lvmz/(T’-AJrh’-N)di‘r . (6.11)

It turns out that the alternative method via an integration of the stress tensor at the
surface of the particle is numerically less reliable. Note that the velocity and pressure
fields for an arbitrary angle between v, and e, follow from superpositions of the solutions
for the two selected geometries. This is due to the linearity of our equations.

It is clear that the Brownian motion in an environment with an overall rotational
symmetry is governed again by two independent diffusion constants. The generalized
Stokes-Einstein formula of the diffusion tensor D takes the form

kgT

D:DJ_l—l—(D”—DJ_)eZ@eZ with D”/J_:— . (6.12)
/L

At the end, we add some critical remarks about our approach which employs the static
director field. From the balance equation of the elastic and viscous torques [see Eqs. (1.19),
(1.25), and (1.26)], we derive that the change dn of the director due to the velocity v is
of the order of the Ericksen number: dn ~ Er. This adds a correction § T° to the elastic
stress tensor T in the momentum balance equation. In the case of a spatially uniform
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director field, the correction § T is by a factor Er smaller than the viscous forces, and it
can be neglected. However, for a non-uniform director field, it is of the same order as the
viscous term, and, strictly speaking, should be taken into account. Since our problem is
already very complex, even when the directors are fixed, we keep this approximation for a
first approach to the Stokes drag. How the friction force changes when the director field is
allowed to relax, must be investigated by even more elaborate calculations. Two remarks
support the validity of our approach. First, far away from the sphere, dn has to decay at
least linearly in 1/r, and 6 T} is negligible against the viscous forces. Secondly, the non-
linear term in the Navier-Stokes equations usually is omitted for Re < 1. However, whereas
the friction and the pressure force for the Stokes problem decay as 1/r3, the non-linear
term is proportional to 1/r?  exceeding the first two terms in the farfield. Nevertheless,
performing extensive calculations, Oseen could prove that the correction of the non-linear
term to the Stokes drag is of the order of Re [330]. One might speculate that the full
relaxation of the director field introduces a correction of the order of Er to the Stokes
drag.

6.3 Summary of Numerical Details

In this section we only review the main ideas of our numerical method. A detailed account
will be given in Ref. [370].

The numerical investigation is performed on a grid which is defined by modified spher-
ical coordinates. Since the region outside the spherical particle is infinitely extended, we
employ a reduced radial coordinate £ = a/r. The velocity and director fields are expressed
in the local spherical coordinate basis. With this choice of coordinates, the momentum
balance of Eqs. (6.1) with the viscous stress tensor of a nematic becomes very complex.
We, therefore, used the algebraic program Maple to formulate it.

The two equations in (6.1) are treated by different numerical techniques. Given an ini-
tial velocity field, the momentum balance including the inertial term v /0t can be viewed
as a relaxation equation towards the stationary velocity field, which we aim to determine.
The Newton-Gauss-Seidel method, introduced in Section 1.2, provides an effective tool to
implement this relaxation. Employing the discretized version of the momentum balance
equation, the velocity at the grid point r relaxes according to

[—Vp, + div T,]z
[O(=Vp +divT)];/0vi(r)
Note that the denominator can be viewed as the inverse of a variable time step for the
fictitious temporal dynamics of v.

A relaxation equation for the pressure involving dive = 0 is motivated by the method

of artificial compressibility [52]. Let us consider the complete mass-balance equation. For
small variations of the density, we obtain:

Ip 0 .. . | Op
- _= h =4/= . 14
r 2 divo wit c 90 (6.14)

v () = v (r) —

(6.13)
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The quantity ¢ denotes the sound velocity for constant temperature, and ¢/ is the isother-
mal compressibility. In discretized form we have

prev = p? = 2L Ardivo (6.15)
C

Note that the reduced fictitious time step oAt/c* cannot be chosen according to the
Newton-Gauss-Seidel method since divv does not contain the pressure p. Instead, it should
be as large as possible to speed up the calculations. In Ref. [284] upper bounds are given
beyond which the the numerical scheme becomes unstable.

To obtain the friction coefficient 7|, an effective two-dimensional problem has to be
solved due to the rotational symmetry of the director configurations about the z axis. In
the case of v, (v, L e,), the velocity field possesses at least two mirror planes which are
perpendicular to each other and whose line of intersection is the z axis. As a result, the
necessary three-dimensional calculations can be reduced to one quadrant of the real space.
A description of all the boundary conditions will be presented in Ref. [370].

The director fields for the topological dipole and the Saturn ring are provided by the
respective ansatz functions of Egs. (22) and (33) in Ref. [216]. The parameters of minimum
free energy are chosen. In Chapter 4 we showed that these ansatz functions give basically
the same results as the numerical investigation.

We checked our program in the isotropic case. It turned out that it is not stable for
an infinitely extended integration area. We therefore solved Egs. (6.1) in a finite region
of reduced radius r/a = 1/ = 32. For ¢ = 1/32, our program reproduced the isotropic
Stokes drag, calculated from Eq. (6.4), with an error of 1%.

6.4 Results, Discussion, and Open Problems

We begin with an investigation of the stream line patterns, discuss the effective viscosities,
and formulate some open problems at the end.

6.4.1 Stream Line Patterns

In Fig. 6.1 we compare the stream line patterns around a spherical particle for an isotropic
liquid and a spatially uniform director field parallel to v,,. A uniform n can be achieved
by weak surface anchoring and application of a magnetic field with a magnetic coherence
length smaller than the particle radius. In the isotropic fluid the bent stream lines occupy
more space around the particle, whereas for a uniform director configuration they seem to
follow the vertical director field lines as much as possible. This can be understood from
a minimum principle. In Section 1.3 we explained that a shear flow along the director
possesses the smallest shear viscosity, called 7,. Hence, in such a geometry the smallest
amount of energy is dissipated. Indeed, for a uniform director field, one can derive the
momentum balance from a minimization of the dissipation function stated in Eq. (1.27)
[154]. A term —2pdivw has to be added because of the incompressibility of the fluid. It
turns out that the Lagrange multiplier —2p is determined by the pressure p.



76 CHAPTER 6. STOKES DRAG OF SPHERICAL PARTICLES

Figure 6.1: Stream line pattern around a spherical particle for an isotropic liquid (right)
and a uniform director field parallel to vy, (left).

In the case of the topological dipole parallel to v.,, we observe a clear asymmetry in the
stream lines as illustrated in Fig. 6.2. The dot indicates the position of the point defect. It
breaks the mirror symmetry of the stream line pattern, which exists, e.g., in an isotropic
liquid relative to a plane perpendicular to the vertical axis. In the farfield of the velocity,
the splay deformation in the dipolar director configuration is clearly recognizable. Since
we use the linearized momentum balance in v, the velocity field is the same no matter if
the fluid flows upward or downward. The stream line pattern of the Saturn ring [see Fig.
6.3 (right)] exhibits the mirror symmetry, and the position of the ring disclination is visible
by a dip in the stream line close to the equator of the sphere.

If v, is perpendicular to the dipole axis, the missing mirror plane of the dipole con-
figuration is even more pronounced in the stream line pattern. It is illustrated in Fig.
6.4, where the point defect is indicated by a dip in the stream line. Although the pattern
resembles the one of the Magnus effect [330], symmetry dictates that Fig||v.. A lift force
perpendicular to v, does not exist. We find a non-zero viscous torque acting on the par-
ticle whose direction for a fluid flow from left to right is indicated in Fig. 6.4. Symmetry
allows such a torque M since the cross product of the dipole moment p and v, gives an
axial or pseudovector M o p X vy. In the Saturn-ring configuration a non-zero dipole
moment and, therefore, a non-zero torque cannot occur.
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Figure 6.2: Stream line pattern around a spherical particle for an isotropic liquid (right)
and the topological dipole parallel to vy, (left).

Figure 6.3: Stream line pattern around a spherical particle for the Saturn ring (right) and
the topological dipole (left) with their respective symmetry axis parallel to v,..
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Figure 6.4: Stream line pattern around a spherical particle for the topological dipole per-
pendicular to v..

6.4.2 Effective Viscosities

In Table 6.1 we summarize the effective viscosities of the Stokes drag, defined in Eq.
(6.10), for a uniform director field, the dipole and the Saturn-ring configuration. The
values are calculated for the two compounds MBBA and 5CB. For a reference, we include
the three Miesowicz viscosities. In the case of v, parallel to the symmetry axis of the three

configurations, we might expect that ngﬁ is close to 1, as argued by Cladis et al. [383]. For

€

a uniform director field, n; exceeds 1, by 30% or 60% respectively. The increase originates

in the stream lines bending around the particle. The effective viscosity 77!ff of the dipole
and the Saturn ring are larger than 7, by an approximate factor of two. In additon to
the bent stream lines, there exist strong director distortions close to the particle which the
fluid has to flow through constantly changing the local direction of the moving molecules.
Recalling our discussion of the permeation in Section 1.3, a contribution from the rotational
viscosity 7y, arises which does not exist in a uniform director field. In all three cases, we

find n!ﬁ either close to or larger than n,, so that 7, is not the only determining quantity

of nflﬂlﬁ, as argued by Cladis et al. [383]. For v, perpendicular to the symmetry axis,

75T assumes a value between 7, and 7., which is understandable since the flow velocity is
mainly perpendicular to the director field.

The ratio 7/ ngﬂ for the uniform director field is the largest since the extreme cases
of a respective flow parallel or perpendicular to the director field is realized the best in
this configuration. Furthermore, both the dipole and the Saturn ring exhibit nearly the
same anisotropy, and we conclude that they cannot be distinguished from each other in a
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Table 6.1: Effective viscosities of the Stokes drag for the two compounds MBBA and
5CB and for three different director configurations. As a reference, the three Migsowicz
viscosities are included.

MBBA: 7,=0.416P, n, = 0.283P, | 5CB: n, =0.374P, n, = 0.229 P,
n. = 1.035P n. = 1.296 P
uniform n | dipole Saturn ring uniform n | dipole | Saturn ring
'r](lelff [P] 0.380 0.517 0.493 0.381 0.532 0.501
N [P] 0.684 0.767 0.747 0.754 0.869 0.848
njﬂ/ngﬁ 1.80 1.48 1.51 1.98 1.63 1.69

falling-ball experiment. The ratio 7%/ 77(!& that we determine for the Saturn ring and the
uniform director field in the case of the compound MBBA agree well with the results of
Ruhwandl and Terentjev who find 1/ ngﬁ|umform = 1.69 and 7%/ ﬁgg’satum = 1.5 [303].

In the ansatz function of the dipolar configuration, we vary the separation r4 between
the hedgehog and the center of the particle. Both the effective viscosities increase with
rq since the non-uniform director field with its strong distortions occupies more space.
However, the ratio nk/ n!ﬁ basically remains the same. For the Saturn ring, 77(!ff increases
stronger with the radius ry than does nk. This seems to be reasonable since a flow
perpendicular to the plane of the Saturn ring experiences more resistance than a flow

parallel to the plane. As a result, 7/ 77!3 decreases when the ring radius r4 is enlarged.

6.4.3 Open Problems

One should try to perform a complete solution of the Ericksen-Leslie equations including
a relaxation of the static director field for v # 0. In the case of Er < 1, a linearization
in the small deviation dn from the static director field would suffice. Such a procedure
helps to gain insight into several open problems. First, it verifies or falsifies the hypothesis
that the correction to the Stokes drag is of the order of Er. Secondly, the Stokes drag of
the topological dipole is the same whether the flow is parallel or anti-parallel to the dipole
moment. This is also true for an object with a dipolar shape in an isotropic fluid. If such an
object is slightly turned away from its orientation parallel to v, it will experience a viscous
torque and either relax back or reverse its direction to find its absolute stable orientation.
The topological dipole will not turn around since it experiences an elastic torque towards its
initial direction, as explained in Section 5.1. Nevertheless, a full solution of the Ericksen-
Leslie equations would show how much the dipole deviates from its preferred direction
under the influence of a velocity field. It would also clarify its orientation when v, is
perpendicular to the dipolar axis. Furthermore, we expect the non-zero viscous torque,
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discussed in Subsection 6.4.1, to be cancelled by elastic torques.

The Stokes drag of particles in a nematic environment still presents a challenging prob-
lem to theorists. On the other hand, clear measurements of, e.g., the anisotropy in Stokes’s
friction force are missing.



Chapter 7

Colloidal Dispersions in Complex
Geometries

In this chapter we present a numerical investigation of water droplets in a spherically
confined nematic solvent. It is motivated by experiments on multiple nematic emulsions
which we reported in Section 3.3. However, it also applies to solid spherical particles.
Our main purpose is to demonstrate that the topological dipole provides a key unit for
the understanding of multiple emulsions. In Sections 7.1-7.3 we first state the questions
and main results of our investigation. Then we define the geometry of our problem and
summarize numerical details. In particular, we employ the numerical method of finite
elements [354] which is most suitable for non-trivial geometries. Finally we present our
results in detail and discuss them. The last section contains an analytical treatment of
the twist transition of a radial director field enclosed between two concentric spheres. It
usually occurs when the inner sphere is not present. We perform a linear stability analysis
and thereby explain the observation that a small water droplet at the center of a large
nematic drop suppresses the twisting.

7.1 Questions and Main Results

In our numerical investigation we demonstrate that the dipolar configuration formed by one
spherical particle and its companion hyperbolic point defect also exists in more complex
geometries, e.g., nematic drops. This provides an explanation for the chaining reported in
Section 3.3 and in Refs. [279, 280]. One water droplet fits perfectly into the center of a
large nematic drop, which has a total topological charge +1. Any additional water droplet
has to be accompanied by a hyperbolic hedgehog in order not to change the total charge.
If the dipole forms (see Fig. 7.1, left), it is attracted by the strong splay deformation in the
center, as predicted by the phenomenological theory of Section 5.1 and in Refs. [279, 216],
until the short-range repulsion mediated by the defect sets in (see Fig. 7.1, middle). Any
additional droplet seeks the region of maximum splay and forms a linear chain with the
two other droplets. In the following we present a detailed study of the dipole formation in
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Figure 7.1: Scenario to explain the chaining of water droplets in a large nematic drop.
The right water droplet and its companion hyperbolic hedgehog form a dipole, which is
attracted by the strong splay deformation around the droplet in the center (left picture).
The dipole moves towards the center until at short distances the repulsion mediated by
the point defect sets in (middle picture). A third droplet moves to the region of maximum
splay to form a linear chain with the two other droplets.

spherical geometries. For example, when the two water droplets in the middle picture of
Fig. 7.1 are moved apart symmetrically about the center of the large drop, the dipole forms
via a second order phase transition. We also identify the dipole in a bipolar configuration
which occurs for planar boundary conditions at the outer surface of the nematic drop.
Two boojums, i.e., surface defects appear [233, 45, 186], and the dipole is attracted by the
strong splay deformation in the vicinity of one of them [279, 280, 216]. Besides the dipole
we find another stable configuration in this geometry, where the hyperbolic hedgehog sits
close to one of the boojums, which leads to a hysteresis in the formation of the dipole.

In the experiment it was found that the distance d of the point defect from the surface
of a water droplet scales with the radius r of the droplet like d ~ 0.3 [279, 280]. In the
following we will call this relation the scaling law. By our numerical investigations, we
confirm this scaling law within an accuracy of ca. 15%, and we discuss the influence of
the outer boundary of the large drop. Finally, we show that water droplets can repel each
other without a hyperbolic defect placed between them.

7.2 Geometry and Numerical Details

We numerically investigate two particular geometries of axial symmetry. The first problem
is defined in Fig. 7.2a). We consider two spherical water droplets with respective radii 7
and ry in a large nematic drop with radius r3. The whole system possesses axial symmetry,
so that the water droplets and the hyperbolic hedgehog, indicated by a cross, are located
always on the z axis. We employ a cylindrical coordinate system. The coordinates z, 2o,
and zg denote, respectively, the positions of the centers of the droplets and of the hyperbolic
hedgehog on the z axis. The distances of the hedgehog from the surfaces of the two water
droplets are, respectively, d; and dy. Then, the quantity d; + dy means the distance of the
two small spheres, and the point defect is situated in the middle between them if d; = ds.
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Figure 7.2: a) Geometry parameters for two water droplets with respective radii r; and
ro in a large nematic drop with radius r3. The system is axially symmetric about the
z axis, and cylindrical coordinates p, z are used. The coordinates z;, 29, and z; are the
respective positions of the two droplets and the hyperbolic hedgehog. The two distances
of the hedgehog from the surfaces of the droplets are d; and dy. From Ref. [339]. b)
Triangulation of the integration area (lattice constant: b = 0.495). Between the small
spheres a refined net of triangles is chosen. From Ref. [339].

We, furthermore, restrict the nematic director to the (p, z) plane, which means that we
do not allow for twist deformations!. The director is expressed in the local coordinate
basis of the cylindrical coordinate system, n(p, z) = sin©(p, 2)e, + cos O(p, z)e,, where
we introduced the tilt angle ©. It is always restricted to the range [—m/2,7/2] to ensure
the n — —n symmetry of the nematic phase. At all the boundaries we assume a rigid
homeotropic anchoring of the director, which allows us to omit any surface term in the free
energy. In Ref. [216] it was shown that rigid anchoring is justified in our system and that

In nematic droplets with homeotropic anchoring a twist in the director field is usually observed (see
[45] and Section 7.4). In Section 4.3.2 we demonstrated that it even appears in the dipole configuration
close to the hyperbolic hedgehog. However, for the Frank elastic constants of 5CB, the distance of the
defect from the surface of the water droplet differs only by 10% if the director field is not allowed to
twist. We do not expect a different behavior in the geometry under consideration in this chapter. Here,
we want to concentrate, as a first step, on the principal features of the system. Therefore, we neglect twist
deformations to simplify the numerics. The same simplification to catch the main behavior of nematic
drops in a magnetic field was used by other authors, see, e.g., [179, 178].
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any deformation of the water droplets can be neglected.

In the second problem we have only one water droplet inside a large nematic drop.
We use the same coordinates and lengths as described in Fig. 7.2a), but omit the second
droplet. The anchoring of the director at the outer surface of the large nematic sphere is
rigid planar. At the surface of the small sphere we again choose a homeotropic boundary
condition.

Because of the nontrivial geometry of our problem, we decided to employ the method
of finite elements [354], where the integration area is covered with triangles. We construct
a net of triangles by covering our integration area with a hexagonal lattice with lattice
constant b. Vertices of triangles that only partially belong to the integration area are
moved onto the boundary along the radial direction of the appropriate sphere. As a result,
extremely obtuse triangles occur close to the boundary. We use a relaxation mechanism to
smooth out these irregularities. The final triangulation is shown in Fig. 7.2b). In the area
between the small spheres, where the hyperbolic hedgehog is situated, the grid is further
subdivided to account for the strong director deformations close to the point defect. The
local refinement helps us to locate the minimum position of the defect between the spheres
within a maximum error of 15% by keeping the computing time to a reasonable value
[339].

In the following, we express the Frank free energy, introduced in Section 1.1, in units
of K3a and denote it by the symbol F. The quantity a is the characteristic length scale of
our system, typically several microns. The saddle-splay term, a pure surface term, is not
taken into account. The Frank free energy is discretized on the triangular net. For details,
we refer the reader to Ref. [339]. To find a minimum of the free energy, we start with a
configuration that already possesses the hyperbolic point defect at a fixed position z; and
let it relax via the standard Newton-Gauss-Seidel method [284], which we illustrate in Eq.
1.16 of Section 1.2.

Integrating the free energy density over one triangle yields a line energy, i.e., an energy
per unit length. As a rough estimate for its upper limit we introduce the line tension
F, = (K + K3)/2 of the isotropic core of a disclination [76]. Whenever the numerically
calculated local line energy is larger than Fj, we replace it by Fj;. Note that Fj differs from
Eq. (2.3). However, its main purpose is to stabilize the hyperbolic point defect against
opening up to a disclination ring whose radius would be unphysical, i.e., larger than the
values discussed in 2.2.

All our calculations are preformed for the nematic liquid crystal pentylcyanobiphenyl
(5CB), for which the experiments were done [279, 280]. Its respective bend and splay elastic
constants are K3 = 0.53-107% dyn and K; = 0.42-107%dyn. The experimental ratio 73/T1/2
of the radii of the large and small drops is in the range 10 — 50 [279, 280]. The difficulty
is that we want to investigate details of the director field close to the small spheres which
requires a fine triangulation on the length scale given by /5. To keep the computing
time to a reasonable value we choose the following lengths: r3 = 7, ry 3 = 0.5...2, and
b = 0.195 for the lattice constant of the grid. In addition, we normally use one step of
grid refinement between the small spheres (geometry 1) or between the small sphere and
the south pole of the large nematic drop (geometry 2). With such parameters we obtain a
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Figure 7.3: The free energy F as a function of the distance d; + do between the small
spheres which are placed symmetrically about z =0 (r; = ry = 1). Curve 1: z; = 0, curve
2: position zy of the defect can relax along the z axis. From Ref. [339].

lattice with 2200-2500 vertices.

7.3 Results and Discussion of the Numerical Study

In this section we discuss the results from our numerical investigation. First, we confirm
the scaling law dy/p = 0.3 71/, which was observed in experiment, by varying the different
lengths in our geometry. Secondly, we demonstrate that the topological dipole is also
meaningful in complex geometries. Finally, we show that the hyperbolic hedgehog is not
necessary to mediate a repulsion between the water droplets.

7.3.1 Scaling Law

In Fig. 7.3 we plot the reduced free energy F as a function of the distance d; + d» between
the surfaces of the small spheres, which are placed symmetrically about the center, i.e.,
2y = —z;. Their radii are r; = ro = 1. Curve 1 shows a clear minimum at d; + dy = 0.7,
the defect stays in the middle between the two spheres at z; = 0. In curve 2 we move the
defect along the z axis and plot the minimum free energy for each fixed distance d; + d».
It is obvious that beyond d; + do = 2 the defect moves to one of the small spheres. We
will investigate this result in more detail in the following subsection.

In Fig. 7.4 we take three different radii for the small spheres, 1, = r, = 0.5, 1,2, and
plot the free energy versus d;/ry close to the minimum. Recall that d; is the distance of
the hedgehog from the surface of sphere 1. Since for such small distances d; 4+ ds the defect
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Figure 7.4: The free energy F — F,.i, as a function of d; /11 = dg/r3. The small spheres
are placed symmetrically about z = 0. Curve 1: ry = ry = 0.5, curve 2: r; =ry = 1, and
curve 3: r; = ro = 2. From Ref. [339].

always stays at zg = 0, i.e., in the middle between the two spheres, we have d; /r1 = da/75.
The quantity Fi, refers to the minimum free energy of each curve. For each of the
three radii we obtain an energetically preferred distance d;/r; in the range of [0.3,0.35],
which agrees well with the experimental value of 0.3. Why does a scaling law of the form
dijo = (0.325£0.025) r /2 occur? When the small spheres are far away from the surface of
the large nematic drop, its finite radius r3 should hardly influence the distances d; and ds.
Then, the only length scale in the system is r; = ry, and we expect d; /2 o< r1/2. However, in
Fig. 7.4 the influence from the boundary of the large sphere is already visible. Let us take
curve 2 for spheres with radii ry/, = 1 as a reference. It is approximately symmetric about
dy/r1 = 0.35. The slope of the right part of curve 3, which corresponds to larger spheres of
radii 715 = 2, is steeper than in curve 2. Also, the location of the minimum clearly tends
to values smaller than 0.3. We conclude that the small spheres are already so large that
they are strongly repelled by the boundary of the nematic drop. On the other hand, the
slope of the right part of curve 1, which was calculated for spheres of radii 71/, = 0.5, is
less steep than in curve 2. This leads to the conclusion that the boundary of the nematic
drop has only a minor influence on such small spheres.

When we move the two spheres with radii 71, = 1 together in the same direction
along the z axis, the defect always stays in the middle between the droplets and obeys the
scaling law. We have tested its validity within the range [0, 3] for the defect position z,.
Of course, the absolut minimum of the free energy occurs in the symmetric position of the
two droplets, zo = —2.

We further check the scaling law for r; # r5. We investigate two cases. When we
choose 71 = 2 and ry = 0.6, we obtain dy/; ~ 0.371/2. In the second case, 7y = 2 and
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Figure 7.5: The free energy F' as a function of A = (dy — dy)/(d; + d3). Sphere 2 is placed
at zo = 0. The position z; of sphere 1 is the parameter. Curve 1: z; = 5, curve 2: z; = 4,
curve 3: z; = 3.5, and curve 4: z; = 3. The radii are r; = 5 = 1. From Ref. [339].

ro = 1, we find d; =~ 0.37r; and dy ~ 0.373. As observed in the experiment, the defect
sits always closer to the smaller sphere. There is no strong deviation from the scaling law
di/2 = (0.325 £ 0.025) 12, although we would allow for it, since ry # rs.

7.3.2 Identification of the Dipole

In this subsection we demonstrate that the topological dipole is meaningful in our geometry.
We place sphere 2 with radius 7o = 1 in the center of the nematic drop at zo = 0. Then, we
determine the energetically preferred position of the point defect for different locations z;
of sphere 1 (r; = 1). The position of the hedgehog is indicated by A = (dy —dy)/(dy + d3).
If the defect is located in the middle between the two spheres, A is zero since d; = d».
On the other hand, if it sits at the surface of sphere 1, d; = 0, and A becomes one. In
Fig. 7.5 we plot the free energy F versus A. In curve 1, where the small spheres are
farthest apart from each other (z; = 5), we clearly find the defect close to sphere 1. This
verifies that the dipole is existing. It is stable against fluctuations since a rough estimate
of the thermally induced mean displacement of the defect yields 0.01. The estimate is
performed in full analogy to Eq. (4.6) of Section 4.2. When sphere 1 is approaching the
center (curve 2: z; = 4 and curve 3: z; = 3.5), the defect moves away from the droplet
until it nearly reaches the middle between both spheres (curve 4: z; = 3). This means, the
dipole vanishes gradually until the hyperbolic hedgehog is shared by both water droplets.

An interesting situation occurs when sphere 1 and 2 are placed symmetrically about
z = 0. Then, the defect has two equivalent positions on the positive and negative part
of the z axis. In Fig. 7.6 we plot again the free energy F versus the position A of the
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Figure 7.6: The free energy F' as a function of A = (dy — d1)/(d; + d»). The small spheres
are placed symmetrically about z = 0. Curve 1: 2y = —29 = 4, curve 2: z; = —z5 = 3,
curve 3: z1 = —zo = 2.5, curve 4: z; = —z29 = 2.3, curve 5: z; = —zy = 2. The radii are
ry =1y = 1. From Ref. [339].

defect. From curve 1 to 3 (21 = 29 = 4, 3, 2.5) the minimum in F becomes broader and
more shallow. The defect moves closer towards the center until at z; = —zy &~ 2.3 (curve
4) it reaches A = 0. This is reminiscent to a symmetry-breaking second order phase
transition [46, 195] which occurs when, in the course of moving the water droplets apart,
the dipole starts to form. We take A as an order parameter, where A = 0 and A # 0
describe, respectively, the high- and the low-symmetry phase. A Landau expansion of the
free energy yields

F(A) = Fo(21) + ao[2.3 — 2]A% + ¢(2)A* | (7.1)

where z; = —z; plays the role of the temperature. Odd powers in A are not allowed because
of the required symmetry, F(A) = F(—A). This free energy qualitatively describes the
curves in Fig. 7.6. It should be possible to observe such a “second order phase transition”?
with a method introduced recently by Poulin et al. [276] to measure dipolar forces in
inverted nematic emulsion. We already explained the method in Section 5.2 after Eq.
(5.12). Two small droplets filled with a magnetorheological fluid are forced apart when
a small magnetic field of about 100 G is applied perpendicular to the z axis. When the
magnetic field is switched off, the two droplets move towards each other to reach the

equilibrium distance. In the course of this process the phase transition for the dipole
should be observable.

2There is strictly speaking no true phase transition since our investigated system has finite size. How-
ever, we do not expect a qualitative change in Fig. 7.6 when the nematic drop is much larger than the
enclosed water droplets (r3 > r1,72), i.e., when the system reaches the limit of infinite size.
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Figure 7.7: Planar boundary conditions at the outer surface of the large sphere create
boojums, i.e., surface defects at the north and the south pole. A water droplet with
homeotropic boundary conditions nucleates a hyperbolic hedgehog. Two configurations
exist that are either stable or metastable depending on the position of the water droplet;
(1) the dipole, (2) the hyperbolic hedgehog sitting at the surface. From Ref. [339].

7.3.3 The Dipole in a Bipolar Configuration

It is possible to change the anchoring of the director at the outer surface of the large nematic
drop from homeotropic to planar by adding some amount of glycerol to the surrounding
water phase [279]. Then the bipolar configuration for the director field appears [45, 186],
where two boojums [233], i.e., surface defects of charge 1 are situated at the north and
south pole of the large nematic drop (see configuration (1) in Fig. 7.7). The topological
point charge of the interior of the nematic drop is zero, and every small water droplet with
homeotropic boundary condition has to be accompanied by a hyperbolic hedgehog. In the
experiment the hedgehog sits close to the water droplet, i.e., the dipole exists and it is
attracted by the strong splay deformation close to the south pole [279], as predicted by the
phenomenological theory of Chapter 5 and Refs. [279, 216].

A numerical analysis of the free energy F is in agreement with experimental observations
but also reveals some interesting details which have to be confirmed. In Fig. 7.8 we plot F
as a function of the position z; of the small water droplet with radius 7, = 1. The diagram
consists of curves (1) and (2), which correspond, respectively, to configurations (1) and (2)
in Fig. 7.7. The free energy possesses a minimum at around z; = —5.7. The director field
assumes configuration (2), where the hyperbolic hedgehog is situated at the surface of the
nematic drop. Moving the water droplet closer to the surface, induces a repulsion due to
the strong director deformations around the point defect. When the water droplet is placed
far away from the south pole, i.e., at large z;, the dipole of configuration (1) forms and
represents the absolute stable director field. At z; = —3.5 the dipole becomes metastable
but the system does not assume configuration (2) since the energy barrier the system has
to overcome by thermal activation is much too high. By numerically calculating the free
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Figure 7.8: The free energy F' as a function of the position z; of the water droplet for
the configurations (1) and (2). For z; > —3.5, (1) is stable, and (2) is metastable. The
situation is reversed for —4.3 < z; < —3.5. Configuration (1) loses its metastability at
2z = —4.3. From Ref. [339].

energy for different positions of the hedgehog, we have, e.g., at z; = —4.0, determined
an energy barrier of Ksa =~ 1000 kgT’, where kg is the Boltzmann constant, 7' the room
temperature, and a &~ 1um. At z; = —4.3, the dipole even loses its metastability, the
hyperbolic defect jumps to the surface at the south pole and the water droplet follows
until it reaches its energetically preferred position. On the other hand, if it were possible
to move the water droplet away from the south pole, the hyperbolic hedgehog would stay
at the surface, since configuration (2) is always metastable for z; > —3.5. The energy
barrier for a transition to the dipole is again at least 1000 kgT'. We have also investigated
the distance d; of the defect from the surface of the water droplet. For z; € [—2,4], d;
fluctuates between 0.3 and 0.35. For z; < —2, it increases up to 0.5 at z; = —4.3, where
the dipole loses its metastability.

7.3.4 Repulsion without Defect

We return to the first geometry with two water droplets and homeotropic boundary con-
ditions at all the surfaces. When we take either a uniform director field or randomly
oriented directors as a starting configuration, our system always relaxes into the configura-
tion sketched in Fig. 7.9. Both water droplets are surrounded in their equatorial plane by
a —1/2 disclination ring which compensates the point charge +1 carried by each droplet.
That means, each droplet creates a Saturn-ring configuration around it, which we intro-
duced in Section 4.1 (see also Refs. [349, 185]). To obtain the total point charge +1
of the nematic drop there has to be an additional topological defect with a point charge
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Figure 7.9: An alternative, metastable configuration. Both droplets are surrounded by a
—1/2 disclination ring which compensates the topological charge +1 of each droplet. An
additional +1/2 disclination ring close to the surface of the nematic drop satisfies the total
topological charge +1. From Ref. [339].
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+1. In the numerically relaxed director field, we find a +1/2 disclination ring close to the
outer surface. This configuration has a higher energy than the one with the hyperbolic
hedgehog. It is only metastable. Since a transition to the stable configuration needs a
complete rearrangement of the director field, the energy barrier is certainly larger than
K33a ~ 1000 kgT'. We, therefore, expect the configuration of Fig. 7.9 to be stable against
thermal fluctuations. It would be interesting to search for it in an experiment.

We use the configuration to demonstrate that even without the hyperbolic hedgehog
the two water droplets experience some repulsion when they come close to each other. In
Fig. 7.10 we plot the free energy F versus the separation d of the two spheres. For large
d, the free energy oscillates which we attribute to numerical artifacts. For decreasing d,
the free energy clearly increases, and the water droplets repel each other due to the strong
deformation of the director field lines connecting the two droplets.

7.4 Coda: Twist Transition in Nematic Drops

Already thirty years ago, in connection with nematic emulsions, the two main director
configurations in a nematic drop were discussed both experimentally and theoretically
(235, 89]: for homeotropic boundary conditions, a radial hedgehog at the center of the
drop appears, whereas tangential surface anchoring leads to the bipolar structure already
discussed above. The simple picture had to be modified when it was found that nematic
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Figure 7.10: The free energy F as a function of the distance d of the droplets. A repulsion
for d < 0.6 is clearly visible. From Ref. [339].

drops in both cases also exhibit a twisted structure [45]. For the bipolar configuration,
a linear stability analysis of the twist transition was performed [391]. A numerical study
of the twisting in the radial structure of capillaries was presented in Refs. [282, 283].
Lavrentovich and Terentjev proposed that the twisted director field in a nematic drop with
homeotropic surface anchoring is given by a combination of a hyperbolic hedgehog at the
center of the drop and a radial one at its periphery [199] as illustrated in Fig. 2.3 of Section
2.1. This configuration was analysed by means of an ansatz function, and a criterion for
the twist transition was given [199].

In this section we focus on the director field between two concentric spheres with per-
pendicular anchoring at both the surfaces and present a stability analysis for the radial
configuration against axially symmetric deformations. In particular, we will derive a cri-
terion for the twist transition, and we will show that even small spheres inside a large
one are sufficent to avoid twisted configurations. This has been recently observed in the
experiments on multiple nematic emulsions [279, 280].

Throughout the paper we assume rigid surface anchoring of the molecules. In nematic
emulsions it can be achieved by a special choice of the surfactant [279, 280]. For com-
pleteness we note that in a single droplet for sufficiently weak anchoring strength an axial
structure with an equatorial disclination ring appears [101, 88].

In the following three subsections, we first expand the Frank free energy into small
deviations from the radial configuration up to second order. Then, we formulate and solve
the corresponding eigenvalue equation arising from a linear stability analysis. The lowest
eigenvalue leads to a criterion for the twist transition. The section closes with a discussion
of our results.
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7.4.1 Expansion of the Elastic Energy

We consider the defect-free radial director configuration between two concentric spheres
of radii 7, and 7.« and assume rigid radial surface anchoring at all the surfaces. If the
smaller sphere is missing, the radial director configuration exhibits a point defect at the
center. We will argue below that this situation, r;, = 0, is included in our treatment.
The twist transition reduces the SO(3) symmetry of the radial director configuration
to an axial Cy, symmetry. In order to investigate the stability of the radial configuration
ny = e, against a twist transition, we write the local director in a spherical coordinate
basis, allowing for small deviations along the polar (f) and the azimuthal (¢) direction:

1 1
n(r,0) = (1 — §b2f2 — §a292> e-+ageg+bfe, . (7.2)

f(r,0) and g(r, 0) are general functions which do not depend on ¢ due to our assumption of
axial symmetry. The amplitudes a and b describe the magnitude of the polar and azimuthal
deviation from the radial configuration. The second-order terms in a and b result from the
normalization of the director.
The radial director field between the spheres only involves a splay distortion, and its
Frank free energy is
Fradial = 8TK11(Tmax — Tmin) (7.3)

where we did not include the saddle-splay energy. If an azimuthal (b # 0) or a polar
component (a # 0) of the director is introduced, the splay energy can be reduced at costs
of non-zero twist and bend contributions depending on the values of the Frank elastic
constants K7, K5, and K3. We expand the Frank free energy of the director field in Eq.
(7.2) up to second order in a and b and obtain

AF — 2nb2/dr/dcose[—4f<l<f2+7~fo) + Ko(cot OF + fo)? + Ka(f +1£.)
+ 2ma® / dr / dcosf [—4K(g* +rg.g) + Ki(cot Og + gg)* + Ks(g +rg.)?] (7.4)

as the deviation from Fj.q;.1. The respective subsripts , and 4y denote partial derivatives with
respect to the corresponding coordinates. Note that there are no linear terms in a or b, i.e.,
the radial director field is always an extremum of the Frank free energy. Furthermore, there
is no cross-coupling term a b in Eq. (7.4), and the stability analysis for polar and azimuthal
perturbations can be treated separately. For example, for any function f(r,6) leading to
a negative value of the first integral in Eq. (7.4), the radial configuration (a = b = 0)
is unstable with respect to a small azimuthal deformation (b # 0), which introduces a
twist into the radial director field. Therefore, we will call it the twist deformation in the
following. An analogous statement holds for g(r, #) which introduces a pure bend into the
radial director field. We are now determining the condition the elastic constants have to
fulfill in order to allow for such functions f(r,#) and g(r,#). As we will demonstrate in the
next section, the solution of this problem is equivalent to solving an eigenvalue problem.
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7.4.2 Formulating and Solving the Eigenvalue Problem

In a first step, we focus on the twist deformation (b # 0). We are facing the problem to
determine for which values of K;, K5, and K3 the functional inequality

Jdr [ de{Ks(1 = a?)[af /(1= 2%) = fo]? + (K5 — 4K,) f?
-+ (2K3 — 4K1)7“frf + K3T2f3} <0 (75)

possesses solutions f(r,z). The left-hand side of the inequality is the first integral of Eq.
(7.4) after substituting x = cosf. After some manipulations (see Ref. [301]), we obtain

[dr [ de (K f D@ f + Ky f DO )
[dr [ dx f?

where the second order differential operators D® and D) are given by

< 2K | (7.6)

02 0 1

D@ = (1—-2%) =+ 20—+ —— d DM = 2 _p— | 7.7

(1-2 )8372 + Y ox + 1 —2? o "o "or (77)

The inequality in Eq. (7.6) is fulfilled the best when the left-hand side assumes a

minimum. According to the Ritz principle in quantum mechanics, this minimum is given
by the lowest eigenvalue of the operator

K, D@ + Ky D) (7.8)

on the space of square-integrable functions with f(rmin, 0) = f(rmax,d) =0 for 0 <0 <=
(fixed boundary condition) and f(r,0) = f(r,7) = 0 for rmm < 7 < Tmax.

The eigenvalue equation of the operator KyD®) 4 K33DM) separates into a radial and
an angular part. The radial part is an Eulerian differential equation [38] with the lowest

eigenvalue
JYCI Y (S (7.9)
0 4 ln(rmax/rmin) '

and the corresponding eigenfunction

(1) = Lsin WM
o VT ( ln(rmax/rmin>>. (7.10)

The angular part of the eigenvalue equation is solved by the associated Legendre functions
P™=1 The lowest eigenvalue is )\éx) = 2, and the corresponding eigenfunction is f®)(0) =
Pl(6) = sin 6.

With both these results, we obtain the instability condition for a twist deformation:

1K3 1 ™ 2 KQ
—— | = _ — <1. A1
2 K, [4 + <ln(rmax/rmin)> + < (7.11)

K
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This inequality is the main result of the paper. If it is fulfilled, the radial director field no
longer minimizes the Frank free energy. Therefore it is a sufficient condition for the radial
configuration to be unstable against a twist deformation. It is not a necessary condition
since we have restricted ourselves to second-order terms in the free energy, not allowing for
large deformations of the radial director field. Hence, we cannot exclude the existence of
further configurations which, besides the radial, produce local minima of the free energy.
To clarify our last statement, we take another view. The stability problem can be viewed
as a phase transition. Let us take K3 as the “temperature”. Then condition (7.11) tells
us that for large K3 the radial state is the (linearly) stable one. If the phase transition is
second order-like, the radial state loses its stability exactly at the linear stability boundary;,
while for a first order-like transition the system can jump to the new state (due to nonlinear
fluctuations) even well inside the linear stability region. Thus, as long as the nature of the
transition is not clear, linear stability analysis cannot predict for sure that the radial state
will occur in the linear stability region. Furthermore, if the transition line is crossed, the
linear stability analysis breaks down, and there could be a transition from the twisted to a
new configuration. However, there is no experimental indication for such a new structure.
Keeping this in mind, we will discuss the instability condition (7.11) in the next section.
We finish this section by noting that the elastic energy for a bend deformation (a # 0)
has the same form as the one for the twist deformation (b # 0), however, with K5 replaced
by K;. Therefore, we immediately conclude from (7.11) that the instability condition for
a polar component (a # 0) in the director field (7.2) cannot be fulfilled for positive elastic
constants. A director field with vanishing polar component is always stable in second order.

7.4.3 Discussion®

The instability condition (7.11) indicates for which values of the elastic constants K7, K»,
and K3 the radial configuration is expected to be unstable with respect to a twist deforma-
tion. The instability domain is largest for ryax/rmin — 00 and decreases with decreasing
ratio rmax/Tmin, 0-€., a water droplet inside a nematic drop can stabilize the radial config-
uration.

In Fig. 7.11a) the instability condition (7.11) is shown. If the ratios of the Frank elastic
constants define a point in the grey triangles the radial configuration can be unstable
depending on the ratio yay/rmin- The dark grey area gives the range of the elastic constants
where a twisted structure occurs for ryay/rmin = 50. With increasing ratio rpax/Tmin the
instability domain enlargens until it is limited by K3/(8K7) + Ko/ K1 = 1 for ryax/Tmin —
0o. The light grey triangle is the region where the radial configuration is unstable for
Tmax/Tmin > D0 but where it is stable for rpax/Tmin < 50.

The circles in Fig. 7.11a) represent, respectively, the elastic constants for the liquid
crystal compounds MBBA, 5CB, and PAA. For 5CB the elastic constants are in the light

3Reprinted with permission from A. Riidinger and H. Stark, Twist Transition in Nematic
Droplets: A Stability Analysis, Liq. Cryst. 26, 753 (1999). Copyright 1999 Taylor and Francis,
http://www.tandf.co.uk.
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Figure 7.11: a) Stability diagram for the twist transition [cf. Eq. (7.11)]. The dark grey
corresponds to the ratios of Frank constants where the radial configuration is unstable for a
ratio Tmax/Tmin = H0. The light grey triangle is the region where the radial configuration is
unstable for 7. /Tmin = 50. The circles represent the elastic constants for the liquid crystal
compounds MBBA, 5CB, and PAA. b) A comparison between the regions of instability for
a radial director field against twisting derived in this work (full line) and by Lavrentovich
and Terentjev (dashed line) for rpay/Tmin — 00. The regions differ by the areas I and II.

grey domain, i.e., a twisted structure is expected for ryax/Tmin — 00 (no inner sphere) but
not for rpax/Tmin < 50. Such a behavior has been recently observed in multiple nematic
emulsions [279]. It has been found that a small water droplet inside a large nematic drop
prevents the radial configuration from twisting.

Two examples of nematic drops observed under the microscope between crossed polar-
izers can be seen in Fig. 7.12. In the left image the director configuration is pure radial, in
the right one it is twisted. The left drop contains a small water droplet that stabilizes the
radial configuration according to Eq. (7.11). The water droplet is not visible in this image
because of the limited resolution. A better image is presented in [279]. We have calculated
the polarizing microscope picture of the twisted configuration by means of the 2 x 2 Jones
matrix formalism [88]. We took the director field of Eq. (7.2) and used the eigenfunction
of Eq. (7.10) with an amplitude b = 0.15. The result shown in Fig. 7.13 is in qualitative
agreement with the experimental image on the right in Fig. 7.12.

In Fig. 7.14 we plot the radial part f)(r) [see Eq. (7.10)] of the eigenfunction f(r,6) =
f@(r) £ (0) governing the twist deformations. For large values of 7max/Tmin it is strongly
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Figure 7.12: Radial (left) and twisted (right) configuration of the director field in a nematic
drop (diameter ~ 20um) of 5CB observed under the microscope between crossed polarizers.
In the radial configuration there is a small isotropic liquid droplet in the center of the
nematic drop (invisible in this image). Courtesy of P. Poulin.

Figure 7.13: Calculated transmission for the
twisted configuration of the director field in a ne-
matic drop whose diameter is 20 um. The trans-
mission amplitude was obtained by summing over
20 wave lengths between 400 and 800 nm. The am-
plitude b of the twist deformation was set to 0.15.
This figure has to be compared to the rigth image
of Fig. 7.12.

peaked near 7,;,. The maximum of £ (r) occurs at a radius ry which is given by

1 max/ ! min 2
oo _ ("7 )arctan—ﬂ. (7.12)

Tmin 7T ln(rmax/rmin)

In

Hence, for mpax/Tmin > 1 the maximal azimuthal component bf(rg, #) of the director field
is located at 7q/rmin = €* &~ 7.39, i.e., close to the inner sphere. From the polarizing
miscroscope pictures it can be readily seen that the twist deformation is largest near the
center of the nematic drop. In the opposite limit, rpax/mmin ~ 1, the position of maximal
twist is at the geometric mean of ry, and ryac: 70 = (PminTmax) 2

In the limit ry;, — 0, where the inner sphere is not existing, a point defect with a core
radius 7, is located at » = 0. In this case our boundary condition, f(ry,) = 0, makes
no sense since the director is not defined for r» < r.. Fortunately, for r,;, — 0 the lowest
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£r)

A
Figure 7.14: Radial dependence of £ (r)
[cf. Eq. (7.10)] for mmax/rmin = 50. The
function is strongly peaked close to 7.
| > I
Fmin M max

eigenvalue of the operator (7.8) and therefore the instability condition is insensitive to a
change of the boundary condition. Furthermore, the shape of the eigenfunction is also
independent of the boundary condition, in particular its maximum is always located close
tO Thin-

A last comment concerns the work of Lavrentovich and Terentjev [199]. In Fig. 7.11b)
we plot as a dashed line the criterion, K3/(4K;)+ K2/(2K;) = 1, which the authors of Ref.
[199] derived for the twist transition in the case Tyax/rmin — 0. They constructed an ansatz
function which connects a hyperbolic hedgehog at the center via a twist deformation to a
radial director field at the periphery of a nematic drop. Then they performed a stability
analysis for an appropriately chosen order parameter. The region of instability calculated in
this article and their result differ by the areas I and II. This is due to the complementarity of
the two approaches. While the authors of Ref. [199] allow for large deviations with respect
to the radial configuration at the cost of fixing an ansatz function, we allow the system to
search the optimal configuration (i.e., eigenfunction) for small deformations. We conclude
that both results together give a good approximation of the region of instability for the
radial configuration against twisting. However, we cannot exclude that a full nonlinear
analysis of the problem leads to a change in the stability boundaries.

In conclusion, we have performed a stability analysis of the radial configuration in
nematic drops with respect to a twist deformation. Assuming strong perpendicular an-
choring at all the surfaces, we have derived an instability condition in terms of the Frank
constants. We could show that a small water droplet inside the nematic drop stabilizes the
radial configuration.



Chapter 8

Temperature-Induced Flocculation
above the Nematic-Isotropic Phase
Transition

Ping Sheng was the first to study the consequences of surface-induced liquid crystalline
order above the nematic-isotropic phase transition [319, 320]. He introduced the notion
paranematic order in analogy to the paramagnetic phase, in which a magnetic field causes
a non-zero magnetization. He realized that the bounding surfaces of a restricted geometry
influence the bulk transition temperature 7,.. In nematic films, e.g., the phase transition
even vanishes below a critical thickness [319]. Sheng’s work was extended by Poniewierski
and Sluckin [274], who studied two plates immersed in a liquid crystal above T, and who
calculated an attractive force between the two plates due to the surface-induced order.
This force was investigated in detail by Borstnik and Zumer [36].

The work presented in this chapter explores the liquid crystal mediated interaction
between spherical particles immersed into a liquid crystal above T.. It has to be added
to the conventional van der Waals, electrostatic, and steric interactions as a new type of
interparticle potential. Its strength can be controlled by temperature, and close to the
clearing temperature T, it can induce a flocculation transition in an otherwise stabilized
colloidal dispersion.

In Section 8.1 we review the Landau-de Gennes theory, which describes liquid crys-
talline order close to the phase transition, and we present Euler-Lagrange equations for
the director and the Maier-Saupe order parameter to be defined below. Section 8.2 il-
lustrates paranematic order in simple plate geometries and introduces the liquid crystal
mediated interaction of two parallel plates. In Section 8.3 we extend it to spherical parti-
cles and investigate its consequences when combined with van der Waals and electrostatic
interactions.

99
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8.1 Theoretical Background

We start with a review of the Landau-de Gennes theory and then formulate the Euler-
Lagrange equations for restricted geometries with axial symmetry.

8.1.1 Landau-de Gennes Theory in a Nutshell

The director m, a unit vector, only indicates the average direction of the molecules. It
tells nothing about how well the molecules are aligned. To quantify the degree of liquid
crystalline order, we could just vary the magnitude of m, i.e., choose a polar vector as
an order parameter. However, all nematic properties are invariant under inversion of the
director, thus every polar quantity has to be zero. The next choice is any second-rank
tensor, e.g., the magnetic susceptibility tensor x. The order parameter @ is defined by
the relation

9 1
- 1t ) , 8.1
@ 2tr x (X 3 rx (8.1)

where try = x;; stands for the trace of a tensor, and Einstein’s summation convention over
repeated indices is always assumed in the following. We subtract the isotropic part 1try/3
from x, in order that @ vanishes in the isotropic liquid. The prefactor is convention.
The order parameter @ describes, in general, biaxial liquid crystalline ordering through its
eigenvectors and eigenvalues. The uniaxial symmetry of the nematic phase demands that
two eigenvalues of @ are equal, which then assumes the form

3(x| — x1) .

3 1
=-9 —=1 ith S =
Q 5 (n®n 3 ) wi T

(8.2)
The Maier-Saupe or scalar order parameter S indicates the degree of nematic order through
the magnetic anisotropy Ax = x| — x.. It was first introduced by Maier and Saupe
in a microscopic treatment of the nematic phase [222]. The microscopic approach was
generalized by Lubensky to describe biaxial order [214].

In his seminal publication (see Ref. [73]) de Gennes was interested in pretransitional
effects above the nematic-isotropic phase transition. He constructed a free energy in @
and V,;Q); in the spirit of Landau and Ginzburg, commonly known as Landau-de Gennes
theory:

Fio = [ & (i + fsa) | (8.3)
with
1 1 1
fo = §a0(T—T*)tr Qg—gbtr Q3—|—Zc(tr Q?)? (8.4)
fvq = %L1(V1ij)2 + % LQ(Vz'Qij>2 . (8.5)

The quantity f, introduces a Landau-type free energy density which describes a first-
order phase transition, and fy¢ is necessary to treat, e.g., fluctuations in @, as noticed by
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Ginzburg. Both free energy densities are Taylor expansions in @ and V;Q);x, and each term
is invariant under the symmetry group O(3) of the isotropic liquid, i.e., the high-symmetry
phase. The Landau parameters of the compound 5CB are ay = 0.087 - 107 erg/cm3K,
b=213-10"erg/cm?, ¢ = 1.73-107 erg/cm?, and T* = 307.15K [57]. The elastic constants
L, and Ly are typically of the order of 107 dyn.

It can be shown unambiguously that f, is minimized by the uniaxial order parameter
of Eq. (8.2), for which the free energies f;, and fyq take the form

3 1 9
fo = Jao(T - T%)5? — 1 bS® + G cS* (8.6)
3 2 9 2 2

To arrive at Eq. (8.7), we set Ly = 0 in order to simplify the free energy as much as possible
for our treatment in Sections 8.2 and 8.3. Ly # 0 merely introduces some anisotropy, as
shown by de Gennes [73]. Assume, e.g., that S is fixed to a non-zero value at a space
point 7 in the isotropic fluid, then the nematic order around 7y decays exponentially on
a characteristic length scale called nematic coherence length. If L, # 0, the respective
coherence lengths along and perpendicular to m are different. In Fig. 8.1 we plot f,
as a function of S using the parameters of 5CB. Above the superheating temperature
TT = T* + b%/(24ac), there exists only one minimum at S = 0 for the thermodynamically
stable isotropic phase. At T a second minimum for the metastable nematic phase evolves,
which becomes absolutely stable at the clearing temperature T, = T* + b*/(2Tagc). A
first-order phase transition occurs, and the order parameter as a function of temperature

assumes the form
10 2a
=—- — (Tt -T) . 8.8
et ) (8.8)
Finally, at the supercooling temperature 7™ the curvature of f, at S = 0 changes sign,
and the isotropic fluid becomes absolutely unstable. For the compound 5CB, we find

T,—T*=112Kand TT — T, = 0.14 K.

S(T)

8.1.2 Euler-Lagrange Equations for Restricted Geometries

In the following, we determine the surface-induced liquid crystalline order above T,.. As
usual, it follows from a minimization of the total free energy,

F:FLG+FSUT ’ (89>

where we have added a surface term F,, to the Landau-de Gennes free energy Frs. We
restrict ourselves to uniaxial order and employ a generalization of the Rapini-Papoular
potential, introduced in Section 1.1,

Fu = /dA% (WS(S — S0) + 3W,SSo[1 - (n - 19)2]) , (8.10)
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Figure 8.1: The free energy density f, in units of 1000a¢7T™ as a function of the Maier-Saupe
order parameter S vor various temperatures. The Landau coefficients of the compound
5CB are employed. A first-order transition occurs at 7.

where dA is the surface element. The quantity Sy denotes the preferred Maier-Saupe
parameter at the surface, and © is the surface normal since we always assume homeotropic
anchoring. The surface-coupling constants Wy and W,, penalize a respective deviation of .S
from Sy and of the director n from ©. In recent experiments, anchoring and orientational
wetting transitions of liquid crystals, confined to cylindrical pores of alumina membranes,
were analyzed [64, 65]. It was found that Ws and W, vary between 107! erg/cm? and
5erg/cm?, with the ratio W,, /Ws not being larger than 5. If Wg = W,, = W, the integrand
in Eq. (8.10) is equivalent to the intuitive form Wtr(Q — Qp)?/2 with the uniaxial @ from
Eq. (8.2) and Qy = 2Sy(¥ ® © — 31). It was introduced by Nobili and Durand [255]. In
formulating the elastic free energy density fvg of Eq. (8.5), one also identifies a contribution
which can be written as a total divergence, V;(Q;;ViQjr — QjxViQij). When transformed
into a surface term and when a uniaxial @ is inserted, it results in the saddle-splay energy
of Eq. (1.4). To simplify our calculations, we will neglect this term. It is not expected to
change the qualitative behavior of our system for strong surface coupling.

In what follows, we assume rotational symmetry about the z axis. We introduce
cylindrical coordinates and write the director in the local coordinate basis, n(p,z) =
sin ©(p, z) e, + cos O(p, z) e,, restricting it to the (p, z) plane. The same is assumed for the
surface normal ©(p, z) = sinO¢(p, 2)e, + cos Oy(p, z)e.. Expressing and minimizing the
total free energy under all these premises, we obtain the Fuler-Lagrange equations for S
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and the tilt angle © in the bulk,

1 b 3c sin? ©
2¢ - Q2 _ Y7 Q3 _ 2 = A1
ves SJQVS+2L1S 2L18 38((V@) + e ) 0 (8.11)
V2o — w -0, (812
p
and the boundary equations are
1 3
(U-V)S — e (S —Sy) — i Spsin?(@ — Q) = 0 (8.13)
1S
(&- V)0 — T §° sin2(©0 —6g)] = 0 . (8.14)
The meaning of the nematic coherence length
Ev =/ Li/lao(T —T%)] (8.15)

will be clarified in the next section. At the phase transition, {y; = {n(T¢) is of the order
of 10 nm, as can be checked by the parameters of 5CB. The surface-coupling strengths Wy
and W, are characterized by dimensionless quantities

1 L1 CL[)(T - T*)Ll 1 Ll (lo(T - T*)Ll

- - 1 _ and n = = , 8.16
s Ev Ws Ws 7 Env Wh Wy (8.16)

which compare the respective surface extrapolation lengths L;/Ws and L;/W, to the
nematic coherence length &y. For W = lerg/cm? and L; = 107%dyn, the extrapolation
lengths are of the same order as &y at T, i.e., 10 nm.

8.2 Paranematic Order in Simple Geometries

In the first two subsections we study the paranematic order in a liquid crystal compound
above T, for simple plate geometries. It is induced by a coupling between the surfaces and
the molecules. We disregard the non-harmonic terms in S in Eq. (8.11) to simplify the
problem as much as possible and to obtain an overall view of the system. In Subsection
8.2.3 the effect of the non-harmonic terms is reviewed.

8.2.1 One Plate

We assume that an infinitely extended plate, which induces a homeotropic anchoring of
the director, is placed at z = 0. Its surface normals are +e,, and its thickness should be
negligibly small. A uniform director field along the z axis obeys Eqgs. (8.12) and (8.14),
and the Maier-Saupe order parameter S follows from a solution of Eqgs. (8.11) and (8.13),

S() = - fQS expl—|2l/E] - (8.17)
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The order parameter S decays exponentially along the z axis on a characteristic length
scale given by the nematic coherence length &y. The value of S at z = 0 depends on the
strength vg of the surface coupling, i.e., on the ratio of the surface extrapolation length
Li/W and {y. The plate is surrounded by a layer of liquid crystalline order whose thickness
¢y decreases with increasing temperature since &y oc (T — T*)7'/2. The total free energy
per unit surface, F'/A, consisting of the Landau-de Gennes and the surface free energy, is

F_3 2 s

Note that the energy increases with temperature since vg o< v/1' — T*. The whole theory
certainly becomes invalid when £y approaches molecular dimensions. For 10 K above T,
we find £y &~ 3nm, i.e., the theory is valid several Kelvin above T,. Finally, we notice that
a nematic wetting layer can be probed by the evanescent wave technique [326].

8.2.2 Two Plates

If two plates of the previous subsection are placed at z = +d/2, the order parameter profile
S(z), determined from Egs. (8.11) and (8.13), is

- cosh(z/&N)
5(2) = S cosh(d/28w) + yssinh(d/28y)

(8.19)

For separations d > 2&y, the layers of liquid crystalline order around the plates do not
overlap, as illustrated in the inset of Fig. 8.2.% If d < 2¢y, the whole volume between the
plates is occupied by nematic order, which induces an attraction between the plates. The
interaction energy per unit area, AF/A, is defined as AF/A = [F(d) — F(d — o0)|/A. Tt
amounts to

tanh(d/2¢y) 1
1+ ygtanh(d/Ey) 1+ s

AF  F(d)— F(d — > 3
P - F—) 3y

2
A A 2 (8.20)

In Fig. 8.2 we plot AF/A versus the reduced distance d/2¢y; for different temperatures
at T, and above T.. The material parameters of 5CB are chosen; Wg = 1lerg/cm?, and
Sp = 0.3. The energy unit 3WsS2/2 = 10*kgT is determined at room temperature.
Note, that &xn; is the coherence length at T,.. If d > £y, the interaction energy decays
exponentially in d, AF/A « exp(d/{y). The interaction is always attractive over the
whole separation range. This can be understood by a simple argument. Above T,, the
nematic order always possesses higher energy than the isotropic liquid. Therefore, the
system can reduce its free energy by moving the plates together. The minimum of the
interaction energy occurs at d = 0, i.e., when the liquid with nematic order between the

1Figs. 8.2, 8.3, 8.7, 8.8 reprinted with permission from A. Borstnik, H. Stark, and S. Zumer,
Temperature-Induced Flocculation of Colloidal Particles Above the Nematic-Isotropic Phase Transition,
Progr. Colloid Polym. Sci 115, 353 (2000). Copyright 2000 Springer Verlag.
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Figure 8.2: Interaction energy per unit area, AF'/A, as a function of the reduced distance
d/2&y  for various temperatures. For further explanation see text. From Ref. [35].

plates is completely removed. This simple argument explains the deep potential well in
Fig. 8.2. It extends to a separation of 2§y where the nematic layers start to overlap. Since
En o< (T —T*)7'/2 the range of the interaction decreases with increasing temperature, and
the depth of the potential well becomes smaller.

8.2.3 Effect of Non-Harmonic Terms

In this subsection we review the effects on the two-plate geometry when the complete
Landau-de Gennes theory including its non-harmonic terms in S is employed. A wealth
of phenomena exists, which we illustrate step by step [319, 320]. Their influence on the
interaction of two plates was studied in detail by Borstnik and Zumer [36].

First, we assume rigid anchoring at the nematic-plate interfaces, i.e., S(£d/2) is fixed
to Sp [319]. For d — oo, there is a phase transition at the bulk transition temperature
T.oo = T, from the nematic to the surface-induced paranematic phase, as expected. When
the plates are moved together, the transition temperature T,.; increases until the first-
order transition line in a d — T phase diagram ends in a critical point at (des, TS5).
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For d < d.i, no phase transition between the nematic and the paranematic phase is
observed anymore. This is similar to the gas-liquid critical point in an isotropic fluid. For
Sp = S(+d/2) = 0.5 — 1 and typical values of the Landau parameters, TS is situated
approximately 0.2 K above T,., = T, and 0.1 K above the superheating temperature 7.

Secondly, we concentrate on a basically infinite separation, d > £y;, and allow a finite
surface-coupling strength W [320]. For sufficiently small Wy, both the boundary [S(4d/2)]
and the bulk [S(0)] value of the scalar order parameter exhibit a jump at 7,.. That means,
the surface coupling is so small that S(4d/2) follows the bulk order parameter. However,
in a finite intervall Wey < Wg < Wit the discontinuity of S(+d/2), which Sheng calls
a boundary-layer phase transition, occurs at temperatures Tioung above T.. Beyond the
critical strength W&, the boundary transition vanishes completely. Sheng just used the
linear term o< WS of our surface potential for his investigation. The separate boundary-
layer transition occurred in the approximate intervall 0.01 erg/cm? < Wy < 0.2 erg/cm?.
We do not expect a dramatic change of this intervall for the potential of Eq. (8.10).

Thirdly, we combine the finite separation of the plates with a finite surface-coupling
strength Ws. The boundary-layer transition temperatures Ti,,ung and the intervall Wgo <
Ws < WE® are not effected by a finite d. In addition, a jump of S(%d) occurs at the
bulk transition temperature T,.; < Thoung- It evolves gradually with decreasing d. When
T,.q becomes larger than Tjoung in the course of moving the plates together, the separate
boundary-layer transition disappears. Finally, at a critical thickness d..; the nematic-
paranematic transition vanishes altogether.

All these details occur close to T.o, = T, within a range of 7" — T, = 0.5K [320].
The calculations are non-trivial. Since we do not want to render our investigation in the
following section too complicated, we will skip the non-harmonic terms in the Landau-
de Gennes theory. Furthermore, we use a relatively high anchoring strength of about
Ws = lerg/cm?; so that TS — T.., is even smaller than 0.5 K. The simplifications are
sufficient to bring out the main features of our system.

8.3 Two-Particle Interactions above the Nematic-Iso-
tropic Phase Transition

In this section we present the liquid crystal mediated interaction above T, as a new type of
two-particle potential. We combine it with the traditional van der Waals and electrostatic
interaction and explore its consequences, namely the possibility of a temperature-induced
flocculation. We start with a motivation, introduce all three types of interactions, and
finally discuss their consequences. Our presentation concentrates on the main ideas and
results (see also Ref. [35]). Details of the calculations can be found in Refs. [33] and [34].

8.3.1 Motivation

In Chapter 3 we already mentioned that the stability of colloidal systems presents a key
issue in colloid science since their characteristics change markedly in the transition from
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the dispersed to the aggregated state. There are always attractive van der Waals forces,
which have to be balanced by repulsive interactions to prevent a dispersion of particles
from aggregating. This is achieved either by electrostatic repulsion, where the particles
carry a surface charge, or by steric stabilization, where they are coated with a soluble
polymer brush. Dispersed particles approach each other due to their Brownian motion.
They aggregate if the interaction potential is attractive, i.e., if it possesses a potential
minimum U,;, < 0 at finite separations. Two situations are possible. In the case of
weak attraction, where |Up| &= 1 — 3kgT, an equilibrium phase separation of a dilute
and an aggregated state exists. The higher interaction energy of the dispersed particles
is compensated by their larger entropy in comparison to the aggregated phase. Strong
attraction, i.e., |Unpin| > 5 — 10 kgT, causes a non-equilibrium phase with all the particles
aggregated. They cannot escape the attractive potential in the observation time of interest
of, e.g., several hours. Due to Chandrasekhar, the escape time tq. can be estimated as [47]

G2 kBT
teose = ith D
DO exp(—Umin/k‘BT) Wi 0

Dy is the diffusion constant of a non-interacting Brownian particle with radius a, and n
is the shear viscosity of the solvent. The quantity t.. approximates the time a particle
needs to diffuse a distance a in leaving a potential well of depth U,,. More refined
theories suggest that the complete two-particle potential has to be taken into account
when calculating tes. [208, 147].

Here, we study the influence of liquid crystal mediated interactions on colloidal disper-
sions above T, which are stabilized by an electrostatic repulsion. We demonstrate that
the main effect of the liquid crystal interaction Up¢ is an attraction at the length scale
of £y, whose strength can be controlled by temperature. If the electrostatic repulsion is
sufficiently weak, U induces a flocculation of the particles within a few Kelvin close to
the transition temperature 7. It is completely reversible. A similar situation is found in
polymer stabilized colloids. There, the abrupt change from a dispersed to a fully aggre-
gated state within a few Kelvin is called critical flocculation [252, 306]. The reversibility of
flocculation has interesting technological implications. For example, in “instant” ink, the
particles of dried ink redisperse rapidly when put into water [252].

So far, experiments on colloidal dispersions above the clearing temperature T, are very
rare [37, 275]. They would help to explore a new class of colloidal interactions. Further-
more, they could provide insight into wetting phenomena above T, with all its subtleties
close to T,, which we reviewed in Subsection 8.2.3. Also, experiments by Musevic et al., who
probe interactions with the help of an atomic force microscope [248, 249], are promising.

= . 8.21
6mna ( )
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I ! d >2€N

Figure 8.3: Two particles at a separation d > 2y do not interact. At d ~ 2{x both a
strong attraction and repulsion set in. From Ref. [35].

8.3.2 Liquid Crystal Mediated Interaction

One particle suspended in a liquid crystal above the clearing temperature 7T is surrounded
by a layer of surface-induced nematic order whose thickness is of the order of the nematic
coherence length &y. The director field points radially outward when a homeotropic an-
choring at the particle surface is assumed. Two particles with a separation d > 2&y do
not interact. When the separation is reduced to d ~ 2{y, a strong attraction sets in since
the total volume of nematic order is decreased as in the case of two plates (see Fig. 8.3). In
addition, a repulsion due to the elastic distortion of the director field lines connecting the
two particles occur. In this subsection we quantify the two-particle interaction mediated
by a liquid crystal.

In principle, the director field and the Maier-Saupe order parameter S follow from a
solution of Eqs. (8.11)—(8.14). Since the geometry of Fig. 8.4a) cannot be treated ana-
lytically, we employ two simplifications. First, we approximate each sphere by 72 conical
segments, whose cross sections in a symmetry plane of our geometry are illustrated in Fig.
8.4a). In the following, we assume a particle radius a = 250 nm, and, therefore, each line
segment has a length of 26 nm. Secondly, we construct appropriate ansatz functions for
the fields S(r) and n(r). To arrive at an ansatz for S(r), we approximate the bounding
surfaces A7 and Bi of region 7 by two parallel ring-like plates and employ the order param-
eter profile of Eq. (8.19), where d is replaced by an average distance d; of the bounding
surfaces. Since the particle radius is an order of magnitude larger than the interesting
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a) b)
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Figure 8.4: a) Two spheres A and B are approximated by conical segments as illustrated
in the blowup. b) At separations d ~ 2{y, the director is chosen as a tangent vector n, of
a circular segment whose radius is determined by the boundary condition (8.14).

separations, which do not exceed several coherence lengths, the analogy with two parallel
plates is justified. Furthermore, we expect that only a few regions close to the symme-
try axis are needed to calculate the interaction energy with a sufficient accuracy. In the
limit of large separations (d > 2{y), the director field around each sphere points radially
outward. In the opposite limit (d &~ 2£y), the director field lines are strongly distorted,
and we approximate them by circular segments as illustrated in Fig. 8.4b) for the third
region. The radius of the circle is determined by the boundary condition (8.14) of the
director. With decreasing separation of the two particles, the director field should change
continuously from n., at d > 2{y to the ansatz n, at small d. Hence, we choose n(r) as
a weighted superposition of n,. and n:

n(r)xen.+ (1 —¢)nsy (8.22)

where the free parameter ¢; follows from a minimization of the free energy in region ¢ with
respect to ;.

As in the case of two parallel plates, the interaction energy is defined relative to the
total free energy of infinite separation:

Ure(d) = F(d) — F(d — o) . (8.23)

In calculating U, we employ the free energy densities of Egs. (8.6) and (8.7) and the sur-
face potential of Eq. (8.10), neglecting the non-harmonic terms in S. The volume integrals
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cannot be performed analytically without further approximations which we justified by a
comparision with a numerical integration. The final expression of Uy ¢ is very complicated,
and we refer the reader to Ref. [33] for its explicit form. We checked that regionsi =1...9
are sufficient to calculate Upc. The contribution of region 9 to the interaction energy is
less than 5%. Hence, the orientational order outside these nine regions is not relevant for
U, LC-

We subdivide the interaction energy in an attractive part which results from all terms in
the free energy depending on the order parameter S or its gradient, only. The repulsive part
is due to the elastic distortion of the director field and a deviation from the homeotropic
orientation at the particle surfaces. All the graphs, which we present in the following,
are calculated with the Landau parameters of the compound 8CB [57], i.e., ap = 0.12 -
10~ "erg/cm?K, b = 3.07 - 107" erg/cm?, ¢ = 2.31 - 107" erg/cm?, and L; = 1.8 - 107 %dyn,
which gives T, — T* = b*/(27apc) = 1.3K. The surface-coupling constants are Wg =
lerg/cm? and W, = 5Serg/cm?. In the large inset of Fig. 8.5 we plot the attractive and
repulsive contribution at the clearing temperature 7, in units of the thermal energy kgT.
As in the case of two parallel plates, the total interaction energy exhibits a deep potential
well with an approximate width of 2¢y;. At larger separations, it is followed by a weak
repulsive barrier whose height is approximately 1.5 kg7, as indicated by the small inset
in Fig. 85. If d > 2y, Upc decays exponentially: Upc o exp(—d/&y). Figure 8.5
illustrates further that the depth of the potential well, i.e., the liquid crystal mediated
attraction of two particles decreases considerably when the dispersion is heated by several
Kelvin. That means, the interaction can be controlled by temperature. It is turned off by
heating the dispersion well above T,.. The same holds for the weak repulsive barrier. As
expected, both the depth of the potential well and the hight of the barrier decrease with
the surface-coupling constants, where Wg seems to be more important [33].

8.3.3 Van der Waals and Electrostatic Interactions

The van der Waals interaction of two thermally fluctuating electric dipoles decays with
the sixth power of their inverse distance, 1/r%. To arrive at the interparticle potential of
two macroscopic objects, a summation over all pairwise interactions of fluctuating charge
distributions is performed. In the case of two spherical particles of equal radii a, the
following, always attractive, van der Waals interaction results [306]:

oo — A 20> N 20> , d(d + 4a)
v d(d+4a) " (d+ 2a)? (d+ 2a)?

6
Here d is the distance between the surfaces of the particles, and A is the Hamaker constant.
For equal particles made of material 1 embedded in a medium 2, it amounts to [306]

€ — €2>2 3hvy, (n? —n3)?
€1+ € 16v/2 (n} +n3)3/2

where ¢; and €y are the static dielectric constants of the two materials, and n; and ny are
the corresponding refractive indices of visible light. The relaxation frequency v, belongs

(8.24)

(8.25)

3
A= ksT
4B (
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Figure 8.5: The liquid crystal mediated interaction Upc in units of kg7 as a function of
the particle separation d. The interaction is shown at T,., 7.+ 1K, T, +3 K, and T.+ 11 K.
It strongly depends on temperature. Large inset: Upe is composed of an attractive and
repulsive part. Small inset: A weak repulsive barrier occurs at d ~ 60 nm.

to the dominant ultraviolet absorption in the dielectric spectrum of the embedding medium
2. Typical values for silica particles immersed into a nematic liquid crystal are ¢; = 3.8,
ny = 1.45, €5 = 11, ny = 1.57, and v, = 3-10'°s7! [33]. As a result, the Hamaker constant
equals A = 1.1 kgT. Note, that for separations d > a the particles are point-like, and the
van der Waals interaction decays as 1/d°. In the opposite limit, d < a, it diverges as a/d.

We stabilize the colloidal dispersion against the attractive van der Waals forces by
employing an electrostatic repulsion. We assume that each particle carries a uniformly
distributed surface charge whose density ¢, does not change under the influence of other
particles. Tonic impurities in the liquid crystal screen the surface charges with which they
form the so-called electrostatic double layer. For particles of equal radius a embedded in
a medium with dielectric constant 5, the electrostatic two-particle potential is described
by the following expression [306]:

2
aqgg

2,2
zfegn,

Up = —7 kT In(1 — ey . (8.26)

Here, ¢eg is the fundamental charge, and z is the valence of the ions in the solvent, which
have a concentration n,. The range of the repulsive interaction is determined by the Debye
length

k' = 1\/eokpT/(8med2n,) | (8.27)
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Figure 8.6: The electrostatic (dashed) and van der Waals (dotted) interaction and their
sum Ug + Uy (full line) in units of kg7 as a function of particle separation d. The
parameters are chosen according to the text. Inset: A shallow potential minimum appears
at d ~ 55 nm.

whereas the surface-charge density ¢s controls its strength. The potential Uy decays ex-
ponentially at d > xk~!. The expression (8.26) is derived via the Derjaguin approzimation
(80, 306], which is only valid for d, k™! < a. In the following, we take a monovalent salt
(z = 1), choose g5 = 11, and vary n,, between 10~* and 1072 mol/1. Then, at room temper-
ature the Debye length x~! ranges from 10 to 3.5nm. Together with typical separations d
not larger than a few coherence lengths £ and a = 250 nm, the Derjaguin approximation
is justified. Furthermore, we adjust the surface-charge density around 10*ey/pum?2. The
ranges of n, and g5 are well accessible in an experiment.

In Fig. 8.6 we plot the electrostatic and the van der Waals interactions and their sum
in units of kgT. The surface-charge density ¢, is 0.5 - 10 ¢g/um? and x~! = 8.3nm. All
further parameters besides the Hamaker constant A are chosen as mentioned above. We
increased A from 1.1 to 5.5. Even then it is clearly visible that the strong electrostatic
repulsion determines the interaction for d < 30 nm, the dispersion of particles is stabilized.
At about 55nm, Ug + Uy exhibits a shallow potential minimum (see inset of Fig. 8.6),
and at d > k!, the algebraic decay of the van der Waals interaction takes over. In the
following subsection, we investigate the combined effects of all three interactions for the
Hamaker constant A = 1.1.



8.3. TWO-PARTICLE INTERACTIONS ABOVE T. 113

15

10§

Uc+ U+ Uy [kaT]

10 ]
-20+ — TC 4
T 20 30 40 50 60 70

d I'nml

Figure 8.7: The total two-particle interaction Urc + Ug + Uy, as a function of particle
separation d for various temperatures. A complete flocculation of the particles occurs
within a temperature range of about 0.3K. ¢, = 0.5 - 10 eo/pum?, k! = 8.3nm, and
further parameters are chosen according to the text. From Ref. [35].

8.3.4 Flocculation versus Dispersion of Particles

In Fig. 8.7 we plot the total two-particle interaction Upc + Ug + Uy as a function of
particle separation d for various temperatures. We choose ¢, = 0.5-10%¢g/pum? and £~ =
8.3nm. At 45K above the transition temperature 7., the dispersion is stable. With
decreasing temperature, a potential minimum at finite separation develops. At Trp =
T.+ 0.54 K, the particle doublet or aggregated state becomes energetically preferred. We
call Trp the temperature of flocculation transition. Below Trp, the probability of finding
the particles in the aggregated state is larger than the probability that they are dispersed.
Already at T, 4+ 0.3 K the minimum is 7 kg7 deep, and all particles are condensed in
aggregates. That means, within a temperature range of about 0.3 K there is an abrupt
change from a completely dispersed to a fully aggregated system, reminiscent to the critical
flocculation transition in colloidal dispersions employing polymeric stabilization [252, 306].
Between d = 30nm and 50nm, the two-particle interaction exhibits a small repulsive
barrier of about 1.5 kgT. Such barriers slow down the aggregation of particles, and one
distinguishes between slow and rapid flocculation. The dynamics of rapid flocculation
was first studied by Smoluchowski [328]. Fuchs extended the theory to include arbitrary
interaction potentials [125]. However, only after Derjaguin and Landau [81] and Verwey
and Overbeek [371] incorporated van der Waals and electrostatic interactions into the
theory, became a comparison with experiments possible. In our case, the repulsive barrier
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Figure 8.8: In comparison to Fig. 8.7 the surface-charge density is increased to 0.63 -
10% eg/pm?. As a result, flocculation does not occur. From Ref. [35].

of 1.5 kgT slows down the doublet formation by a factor of three, i.e., it does not change
very dramatically if the barrier is reduced to zero.

If the surface-charge density g, is increased to 0.63 - 10% ey /um?, the dispersed state
is thermodynamically stable at all temperatures above T, as illustrated in Fig. 8.8. An
increase of the Debye length x7!, i.e., the range of the electrostatic repulsion has the same
effect. We define the “flocculation end line” as the border line in a k~! — g, diagram beyond
which the dispersed state is thermodynamically stable for all temperatures above T..

In Fig. 8.9 we present flocculation phase diagrams as a function of temperature and
surface-charge density for various Debye lengths x~!. The inset shows one such diagram
for k! = 8.3nm. The full line represents the flocculation temperature Trp as a function
of ¢q,. For temperatures above Trp, the particles stay dispersed while for temperatures
below Trp the system is flocculated. To characterize the aggregated state further, we
have determined lines in the phase diagram of k1 = 8.3nm, where the escape time ..
of Eq. (8.21) is, respectively, ten (dash-dotted) or hundred (dotted) times larger than in
the case of zero interaction. These lines are close to the transition temperature Trp, and
indicate again that the transition from the dispersed to a completely aggregated state takes
place within less than one Kelvin. The large plot of Fig. 8.9 illustrates the flocculation
temperature Trp as a function of g, for various Debye lengths k1. Txp increases when the
strength (g,) or the range (k') of the electrostatic repulsion is reduced. The intersections
of the transition lines with the T" = T, axis define the flocculation end line beyond which
the system is always dispersed.
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Figure 8.9: Flocculation phase diagrams as a function of temperature and surface-charge
density for various Debye lengths x~!. Inset: Phase diagram for x~! = 8.3nm. The full
line represents the flocculation temperature Trp as a function of ¢,. The dash-dotted and
dotted lines indicate escape times from the minimum of the interparticle potential which
are, respectively, ten or hundred times larger than in the case of zero interaction.
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Chapter 9

Why Multiple Scattering of Light?

Transport processes in random media are essential for the understanding of many physical
phenomena such as the scattering of electrons from impurities in a metal, the propagation
of heat in solids, or the moderation of neutrons in a nuclear reactor. The transmission
of sun light through clouds, the white appearance of milk, or basically all the visual per-
ception of our natural environment is governed by multiply scattered light. Observable
interference effects of light in random media, well-known as Anderson localization of elec-
trons in disordered metals, are a fascinating topic which spawned a new research area for
physicists dealing with light transport in disordered media. In Section 9.1 we review this
area to give an impression about the variety of the physical ideas developed in recent years.
Our presentation stresses the importance of diffusive light transport, which takes place in
the limit of many scattering events disregarding any interference between light waves. In
Section 9.2 we introduce the theory of radiative transfer to treat multiply scattered light
and review the basic concepts of diffusing light in isotropic systems including its important
application known as diffusing-wave spectroscopy. Section 9.2 serves as an introduction to
the next chapter, where we generalize diffusive light transport to nematic liquid crystals.

9.1 Motivation

Fifteen years ago the discovery of coherent backscattering or weak localization of light
in colloidal suspensions [184, 392, 358, 109] initiated a tremendous research activity on
multiple scattering of light [321, 169, 223, 224, 322, 118]. Physicists were attracted by
the possibility of achieving the equivalent to the Anderson localization of electrons in dis-
ordered solids [12]. Electrons diffusing through the solid are scattered by impurities. A
coherent superposition of the electronic wave functions of a closed electron path and its
time-reversed counterpart is always constructive [1, 202, 11]. This enhances the probability
of the electron to return to its starting point, which in turn decreases the diffusion constant.
In three dimensions, it takes a sufficient amount of disorder to finally localize the electronic
wave function. Light that is exactly backscattered from a turbid medium constructively
interferes with its time-reversed partner as well. Therefore the backscattered light inten-
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sity is enhanced by a factor of two relative to the diffusive background. Soon after its
discovery, weak localization of light was explained theoretically [141, 6, 353, 7] after some
first approaches [78, 352]. Detailed studies of the backscattering cone, both theoretically
and experimentally, followed [224]. They concentrated on the effect of polarization of light
(342, 393, 297, 8], on a finite thickness of the scattering slab [110, 361], on absorption in
the scattering medium [110, 393, 8], on broken time-reversal symmetry due to the Faraday
effect in a magnetic field [219, 100, 203, 227, 368], and on chiral systems, which are opti-
cally active media [219]. In the case of finite thickness or absorption, long light paths are
terminated, and as a result the backscattering intensity is decreased. The same happens
for broken time-reversal or parity symmetry, where the phase relation between light paths
and their time-reversed counterparts are gradually lost due to different phase velocities of
left and right-circularly polarized light. The consequences of recurrent multiple scattering
events [387] and amplifying random media [386] on the backscattering cone were published
recently. A self-consistent theory for its enhancement factor exists [350]. The theoretical
treatment of all these cases is mainly based on point-like scatterers and was performed
within a diagrammatic approach to the two-particle electric Green function.

Strong localization of light was addressed theoretically by S. John in two elegant papers
[167, 168], by P. W. Anderson [13], and others [324, 14, 333, 322]. After approaching the
Anderson localization transition [130], it was first observed for microwaves in two [70] and
three [136] dimensions, and it was recently reported in the near-visible range of light in
semiconductor powders [384]. However, the latter experiment is controversial [313, 385].

The theoretical description of coherent backscattering employs the diffusion limit for
multiply scattered light [141, 6, 7]. Photons are treated as classical random walkers with
a random walk step ¢* indicating the path length a photon has to travel to randomize its
initial direction. Once the diffusive light paths are known, their time-reversed counterparts
can be included straightforwardly. The width of the backscattering cone turns out to be of
the order of A/¢*, where A is the wavelength of light. The onset of Anderson localization
is given by the Ioffe-Regel criterion [164]: 27¢* /A ~ 1.

In 1987 Wolf and Maret discovered that diffusing light in colloidal suspensions could
be used for spectroscopy [226], which was later called diffusing-wave spectroscopy (DWS)
by Pine et al. [270]. This was an important step forward since so far turbid systems could
not be investigated with conventional single dynamic light scattering (DLS) [21]. In DWS
temporal correlations of the detected light intensities decay much faster than in single
scattering since phase shifts in the electric field waves, originating from many scattering
events, are accumulated. Therefore, DWS detects dynamic phenomena at much shorter
time scales than single light scattering does. This was also recognized in Ref. [298]. Within
a diagrammatic approach, the principle of DWS was formulated by Golubentsev [141],
Stephen [341], and by MacKintosh and John [220]. Reviews can be found in Refs. [271,
381, 224, 225]. For a collection of recent work see Ref. [400]. First measurements with DWS
in a temporal range from 10 to 1000 us detected the Brownian motion of suspended particles
[226, 270]. Their sizes can be determined via the Stokes-Einstein formula (6.3) [272]. At
very short time scales in dilute suspensions, the particles display hydrodynamic interactions
with the surrounding fluid. Measuring at times smaller than 1 us, a time-dependent self-
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diffusion coefficient Dy = D3 (1 — ¢/+/t) was found [382] in agreement with theory. In
concentrated colloids hydrodynamic interactions between the particles become important
[404]. Their effect on the diffusion constant DY was studied in Refs. [120, 285, 395]. Finally,
the time dependence of Dg(t) in concentrated suspensions was investigated [403, 171, 192].
A glass transition [232] and crystallization [308] in colloidal suspensions were recognized
in DWS through a long-time tail in the electric field correlations. It was shown both
theoretically and experimentally that DWS can be used to monitor laminar shear [394, 22,
23] and turbulent flow [24] in colloidal dispersions. Even ultrasonic modulation is visible
[206]. Beyond colloids, DWS was applied to investigate bubble dynamics in foams [90, 91,
92, 144, 93, 94, 157, 158], shape fluctuations of emulsion droplets [129], viscoelasticity of
complex fluids [229, 228], the dynamics of colloidal gels [180], magnetorheological fluids
[126], and actin networks [137].

Diffusing light stimulated further fundamental and applied research, which we report
in order. It can be employed to image objects in a turbid medium since the diffusing
photon density wave is refracted at inhomogeneities in the diffusion constant [257, 31, 79].
Medical applications are explored to locate, e.g., tumors in human tissue [399]. Dynamic
correlations, too, are sensitive to the location of objects with different temporal response
than the surrounding medium [30, 148, 150, 149, 32]. Finally, a more general approach
to imaging through correlations in the intensity profile of transmitted light, called speckle
pattern, was formulated by Berkovits and Feng [20].

The classical relation for the diffusion constant, D = vgl* /3, involves a velocity vg. It
normally coincides with the group velocity v, since it governs the transport of light pulses.
However, it was shown that the energy transport velcocity vg deviates considerably from
v, when strong resonant scattering, e.g., in Mie scatterers occurs [359, 365, 366, 193]. The
same effect for accoustic waves was discussed in Refs. [262, 317]. There, the authors argue
that the energy and group velocity are very similar.

Tiggelen conjectured that light diffusion in Faraday-active media gives rise to a transver-
sal light current under the action of a magnetic field [362]. This Photonic Hall effect was
soon verified experimentally [294].

When a slab of turbid material is illuminated by a laser, the intensity profile of trans-
mitted light exhibits a speckle pattern. A very fascinating topic are intensity-intensity
correlations C' = (I(0) I(z))/(I1(0))? in this pattern, where z refers to time, space, fre-
quency shift, angle of incidence and detection, or magnetic field [343, 113, 112, 114]. Within
the diffusion approximation, this correlation function is called C. It factorizes into elec-
tric field correlations, C; = [( E(0) E(x))]?/(1(0))?, which decay exponentially. If one
takes into account one crossing of the light paths, a correction C5 smaller by a factor of
g occurs. However, Cy is of longer range than C;. The factor ¢ = N¢*/L > 1 is de-
noted Thouless number, where L is the thickness of the slab, £* is the transport mean free
path, and N is the number of possible light channels. C5 was observed by several groups
(357, 71, 344, 312]. Finally, two crossings in the light paths generate the so-called universal
conductance fluctuations of light, abbreviated by C5, which again is a factor of g smaller
than Cy but decays on a longer range. These universal fluctuations are independent of
the exact geometry of illumination and detection. They have their equivalent in electron
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transport in disordered metals. Recently, Scheffold and Maret detected C5 in an elegant
experiment [314].

Photonic crystals are periodic dielectric structures, for which photonic bands can be
calculated from Maxwell’s theory in complete analogy to electrons in conventional crystals
[166, 332, 26]. In 1987 Yablonovitch suggested that a photonic crystal with a complete
band gap inhibits the spontaneous emission of excited atoms when the light frequency is
situated in the band gap [396]. This opened up an exciting new field in quantum optic. At
the same time, S. John argued that moderate disorder in such bandgap materials helps to
localize light [168]. In the space around a point defect, light is constantly Bragg reflected
and cannot leave the crystal. The existence of a photonic band gap in an fcc lattice was
verified in calculations by Soukoulis et al. [156], and then fabricated by drilling holes in
a slab of material following an idea of Yablonovitch [397]. This produced a band gap in
the micro-wave regime. To shift the gap into the visible range of light, inverse opals, i.e,
air spheres in a high dielectric like Titania are promising [388]. Possible applications [166]
of photonic band gap materials are dielectric mirrors. Furthermore, the light mode of a
single point defect might be used as a resonant cavity for laser systems, and a row of defects
serves as a waveguide of micron-size.

So far we have been concentrating on isotropic systems. There are, however, many
turbid materials such as thermotropic and lyotropic liquid crystals, liquid crystalline col-
loids [119, 174] and emulsions, and also muscle tissue that are anisotropic. In the following
chapter it is our aim to develop a formalism that treats diffusive light transport and DWS
in anisotropic media with special emphasis on nematic liquid crystals. Our work was in-
spired by recent experiments which measured coherent backscattering first in multi-domain
nematics [373] and then in uniformly aligned samples [372]. Light diffusion and DWS was
generalized by Lubensky and Stark [337, 338, 336, 334] and simultaneously by Tiggelen,
Maynard, and Heiderich [367, 364, 151, 363]. For a review see Ref. [369]. Anisotropic light
diffusion and correlation transport in nematic liquid crystals was demonstrated experi-
mentally by Kao, Jester, Yodh, and Collings [170, 336]. An early formulation of radiative
transfer theory in nematics, whose meaning will become clear in the following section,
dates back to Romanov and Shalaginov [296]. A calculation of coherent backscattering
from anisotropic scatterers, which might serve as a very crude approximation for multi-
domain nematics, appeared recently [190]. We mention further studies of liquid crystals in
the context of multiply scattered light. Bellini and Clark applied diffusing light to probe
liquid crystal ordering in silica aerogels [18]. Copi¢ and Mertelj used DWS to analyze
the orientational diffusion of nematic droplets in polymer dispersed liquid crystals [59].
Collings et al. reported the importance of multiple scattering in the exotic blue phase
IIT [327]. Already several years ago photonic band calculations were presented for the
cubic cholesteric blue phases by Hornreich, Shtrikman, and Sommers [160]. However, the
dielectric contrast was too small to achieve a complete band gap. Self-assembling cubic
emulsions, made from an isotropic fluid and a cholesteric nematic, were suggested as a
candidate for a band gap material [161], and Busch and John presented band calculations
in the inverse opal structure, where the voids are filled by a nematic [43].
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9.2 Basic Principles of Diffusing Light

In this section we introduce the basic principles and main ideas of diffusing light in isotropic
systems. We begin with a review of single dynamic scattering. It serves as an input
for the radiative transfer theory which models the transport of light in turbid media.
We illustrate how the diffusion approximation is extracted from the equation of radiative
transfer. Finally, we explain the concept of DWS. It can be interpreted as “dynamic”
absorption in the diffusive transport of temporal correlations in the electric light field.
Simple examples help to work out the basic principles.

9.2.1 Single Scattering of Light

Light is scattered from inhomogeneities in the dielectric constant. For example, in colloidal
dispersions a mismatch between the respective refractive indices of the dispersed particles
and the solvent exists. In dynamic light scattering experiments one measures temporal
autocorrelations in the scattered electric field, ( Eq(t) Es(t') ), through time correlations in
the light intensity. For simplicity, we treat the electric light field as a scalar quantity. Let
k = (nw/c)k be the wave vector of the incoming light wave Eyexpli(k - r — wt)], where ¢
denotes the vacuum speed of light, and n is the average refractive index. Light is scattered
once from an inhomogeneous medium of volume V' and observed at a distance r > V'1/3.
The direction of the scattered light is specified by the wave vector ¢ = (nw/c)q. According
to the weak-scattering or the first Born approximation, which treats the inhomogeneities
de(r,t) in the dielectric constant as a perturbation, the temporal autocorrelations in the
scattered electric field becomes

_ BV

(B0 B0) = o

B(gs, 1) (9-1)

where q; = q — k stands for the scattering vector. We have introduced the temporal
autocorrelation function B(gs,t) for the fluctuating part de(r,t) of the dielectric constant,

4
w
B(gs,t) = o (0e(gs,t) 6c™(gs,0)) (9.2)
and used the Fourier transform
(de(q,t) 6e*(q,0)) = /dgr (de(r,t)6c(0,0) ) exp(—iq - T) . (9.3)

We will often call B(q,t) the dynamic structure factor since it is directly related to the
static and dynamical properties of the scattering medium. In dilute colloidal dispersions
of identical particles, e.g., B(q,t) = ‘;’—jF(q) S(q) exp(—Dgg*t). Here, the form factor
F(q) describes the scattering from a single particle, the static structure factor S(q) is due
to correlations between the scatterers, and the exponential factor results from Brownian

motion characterized by the diffusion constant Dg.
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To derive an important length scale, we first introduce the differential scattering cross

section
do Vv

—— =—-=-B(q—k,0) , 94
. = e Bla— k.0 (94)
which provides the scattered light energy per unit time, per solid angle element df), and
per incident intensity Iy o |FEy|?. Given Iy, the total loss of energy per unit time follows
from an angular integral of the last expression, called the total scattering cross section o.

Hence the loss per unit surface is,

o o
Al =——1y=—=Az1 9.5
A 0 % Z10 , ( )
where we have written V' = AxAz. This formula suggests that the incident intensity decays
exponentially with the thickness of the sample, I = Iy exp(—Az/ls). The scattering mean
free path or extinction length follows from

1 o dQ,
el / Gy B(q — k,0) . (9.6)

Note that it does not take into account any multiply scattered light propagating along the
initial direction. In the photon picture s denotes the average path length a photon can
travel without being scattered.

So far we did not specify the dynamic structure factor further. Since in isotropic systems
all directions in space are equivalent, it can only depend on the scattering angle ¥, enclosed
by k and q. Therefore, we are allowed to replace the integration [ dQ,/(4m)* B(q—k,t) by

[ dcosts/(87) B(q — k,t). Furthermore, when expanded into spherical harmonics Y, (k)
and Y},,(q), the structure factor B(q — k,t) takes the form

B(q — k,t) ZBZ ZYzm’% m(q) - (9.7)

l=—m

9.2.2 Radiative Transfer Theory

In principle, multiple light scattering in a random medium can be treated rigorously. To
do so, one starts from Maxwell’s theory and calculates the averaged two-particle Green
function of the electric light field with the help of diagrammatic techniques [124]. The
diagrams include light paths which do not “interact” with each other, represented by the
so-called ladder diagrams, and light paths which intersect that means which share some
scattering events. These crossed diagrams involve a coherent superposition of the electric
light field. The summation over all the diagrams can be performed by solving the Bethe-
Salpeter equation for the two-particle Green function.

In the weak-scattering approximation, which we employ here, the most important con-
tribution comes from light paths which do not intersect, i.e., any coherent superposition is
omitted. Then, the Bethe-Salpeter equation is equivalent to the radiative transfer theory



9.2. BASIC PRINCIPLES OF DIFFUSING LIGHT 125

for the specific light intensity [48, 165, 360]. It models light transport in random or turbid

media at length and time scales much larger than the wave length and period of light.

It has a long-standing history, and dates back to the year 1905 when the astrophysicist

Schuster [318] tried to understand light transport through the atmosphere of the earth.
We formulate the equation of radiative transfer for the following quantity:

W,(R,T,t) = (E,(R,T —t/2) E;(R.T +t/2)) . (9.8)

For t = 0, it stands for the energy density of a light wave at time 7" and space point R
travelling into a space direction specified by the unit vector k. The light frequency w is
omitted. Mathematically, W; (R, T,t) follows from a Wigner distribution of the electric
light field, and our interpretation of W; (R, T, t) only makes sense when the variables R and
T refer to respective variations at length and time scales much larger than the wavelength
and period of light. For ¢t # 0, W (R, T,t) describes the temporal autocorrelations in the
electric light field. The equation of radiative transfer treats light as a classical particle
without phase. It is a balance equation for W;(R,T,0), and it formally corresponds to
the Boltzmann equation which balances the phase space distribution f(r, p,T) of classical
particles [291]. Generalized to the transport of temporal correlations, the equation of
radiative transfer takes the form:

n A 1 ds2
(; @% +k-V+ E) Wi(R,T,t) = / (47r;2 B(k—q,t)Wy(R,T,t)+S;,(R,T) . (9.9)
For t # 0 it does not appear in standard textbooks [48, 165, 360] but it is a straightforward
outcome of the Bethe-Salpeter equation when restricted to the ladder diagrams. It is men-
tioned, e.g., in Refs. [3, 87, 30]. The first term describes temporal variations of W (R, T, t)
due to time dependent light sources indicated by the source term S;(R,T). The second
term involves the divergence of the Poynting vector (¢/ n)IQ:W,;(R, T,t) [194]. The correla-
tion function W (R, T, t) changes when there is a net flow of energy (¢ = 0) or correlation
(t # 0) out of the volume element around R. The third and the fourth term refer to losses
and gains due to scattering. The dynamical structure factor B(k — ¢,t) and the scatter-
ing mean free path have been introduced in Egs. (9.2) and (9.6), respectively. There is
one major difference compared to the Boltzmann equation. Since scattering of light takes
place from inhomogeneities in (7, t), the scattering terms are linear in W (R, T, t). In the
Boltzmann equation, however, the collision terms introduce non-linearities in f(7, p,T).
The solution of the equation of radiative transfer is very complicated. Even the famous
Milne problem, 1.e., the transport of light through a slab of scalar point scatterers can
only be solved numerically, even when reduced to a semi-infinite geometry [246, 360]. The
radiative transfer theory applies to single scattering from a thin sample as well as to multi-
ply scattered light. In the limit of a sufficiently large number of scattering events, it turns
into a simple and familiar diffusion equation, to which a dynamic absorption term is added
when temporal correlations are treated. The physical picture behind this equation is the
following. After being scattered many times, a single photon has lost its memory for the
initial direction. It therefore performs a classical random walk, whose distribution function
obeys a diffusion equation. We will derive it in the next subsection.
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We stress that the diffusion equation is a hydrodynamic limit of rigorous transport
theory. Its validity is not restricted to radiative transfer. In principle, it can be derived
from the Bethe-Salpeter equation in the presence of crossed diagrams, i.e, the coherent
superposition of electric fields. Vollhard and Wélfle [374, 376] presented a self-consistent
theory for the diffusion constant including the most-crossed diagrams, that means, the
coherent superposition of electric-field paths and their time-reversed companions. They
reduce the ability of the photon to diffuse around. The self-consistent theory was applied
to the localization transition of electrons.

9.2.3 Diffusion Approximation

In this subsection we set t = 0 and concentrate on the transport of the energy density of
light. The diffusion approximation is valid when the initial direction of single photons is
randomized. That means, the angular dependence of Wi (R, T,0) deviates only slightly
from the equilibrium distribution of the photons which in isotropic system is not a function
of k (for anisotropic media see Section 10.2.1). We, therefore, write down an angular
expansion of W (R, T,0), keeping only the first two orders,

1 3 n .
Wi (R, T,0) = — Wo(R.T,0) + “k-J(RT,0)+... . (9.10)

™ C

The first term on the right-hand side introduces the total energy density
Wo(R,T,0) = /ko Wi (R,T,0) , (9.11)

for which we will establish the diffusion equation. The second term is fixed by the require-
ment that an angular integration over the Poynting vector (¢/n)kW;(R,T,0) must yield
the total energy current density J(R,T,0),

J(R,T,0) :/ko%I%W,;(R,T,O) . (9.12)

From a mathematical point of view, Eq. (9.10) corresponds to an expansion into spher-
ical harmonics of angular momentum [ = 0 and 1. The latter are represented by k =
(sin ¥y cos @y, sin Uy, sin @y, cos Uy, ).

If we integrate the transport equation (9.9) for ¢ = 0 over all directions of k, the
continuity equation for the total energy density Wy (R, T, 0) results,

0
3T Wo(R,T,0)+V - J(R,T,0) = source . (9.13)

Furthermore, Fick’s first law can be extracted from the equation of radiative transfer. It

relates J(R,T,0) to the gradient of Wy(R, T, 0),

J(R,T,0)=—DVWy(R,T,0) . (9.14)
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Any k dependence in the source term S;(R,T) is omitted since it should already provide
diffusing light. The diffusion constant obeys the classical relation

1c¢ 1
D=—--/ ith —
3n W A

= / dc;)sﬁs (1 —cos¥,) B(k — q,0) . (9.15)
m

The length (* denotes the transport mean free path. In isotropic systems D must be a scalar
quantity. It is calculated when the transport equation is projected on cos ¥y, = cos(k-J)/J.!
Combining Egs. (9.13) and (9.14), we finally arrive at the diffusion equation for Wy(R, T',0):

[i - D VQ} Wo(R,T,0) = source . (9.16)
oT
It is an exact outcome of the transport equation. As a result of the isotropic symmetry, only
the zeroth and first angular moments of B(k — g,0) contribute to the diffusion constant
of Eq. (9.15). The transport mean free path is often referred to the scattering mean free
path:

ls  [dcosds (1 — costs) B(k — q,0)

s =(1—cos?,) . 1
0 [dcosd, B(k — q,0) (1—cosds) (9.17)

The brackets denote an average over all possible scattering events, which is performed
with the help of a normalized structure factor B(k — ¢,0)/ [ dcosds B(k — g,0) called
phase function [165, 360]. The transport mean free path is the average step length of
a random walker. That means, it is the path length a photon has to travel before its
direction is completely randomized. For isotropic scattering, B(k — q,0) = const., and
¢* = lg. On the other hand, for anisotropic scattering the photons have to be scattered
several times to randomize their inital direction, and ¢* > (g. The quantity ¢/n in the
diffusion constant normally refers to the group velocity. However, if the fluctuations in
the dielectric constant become larger or if resonances in Mie scatterers occur, an energy
velocity vg has to be introduced in D which deviates from the group velocity [359].

Alternatively, the diffusion approximation is identified as a diffusion pole in the two-
particle Green function, and the diffusion constant is expressed by means of the Kubo-
Greenwood formula [221].

The formulation of the boundary condition for diffusing light poses an interesting prob-
lem [246, 165]. The transition to diffusing light takes place in the turbid medium. Hence, it
makes sense to demand that it does not enter the system from outside, i.e., W;(R,T,0) =0
for all directions k pointing into the medium. Since the angular profile of Wi (R,T,0) is
fixed by Eq. (9.10), this condition cannot be fulfilled for all k simultaneously. Therefore
we content ourselves with the approximate condition that the total diffusive energy flux

I To arrive at the expression of £*, one has to evaluate J dQdQq cos I B(k — q,0) cos 4. This can be
done with the help of Eq. (9.7) and the addition theorem 3 "=" Y;n(k) Yim(q) = 4wPy(k-q)/(2141) or,

m=—I
alternatively, by applying a trick. Note that in an isotropic system [ dQxdQq k® q B(k — q,0) must be
proportional to the unit tensor. Then one can write [ dQxd, cos ¥ B(k — q,0) cos 9, = tr[[ dQ%dQ, k ©
qB(k —q,0)]/3 =8n% [dcosV, cosIs B(k — ¢,0)/3.
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into the medium is zero,
0
/ % (- k) W,(R,T,0) d(ir k) =0, (9.18)
-1

where v denotes the surface normal directed outward. Evaluating the integral with the
help of the angular profile of W (R, T, 0), one arrives at the following boundary condition:

2
Wo(R,T,0) = —5 €& - V(R T.0) . (9.19)

Close to the surface within a layer of thickness ¢*, light is not in the diffusion limit, and
the angular profile of Eq. (9.11) cannot really be applied. However, calculations involving
the exact transport equation (9.9) only reveal small deviations from Eq. (9.11), and as a
result the factor 2/3 in the boundary condition is replaced by 0.7104. If we assume further
that Wo(R,T,0) is a linear function in R, we arrive at the alternative boundary condition,
Wo(R,T,0) =0 at a distance of 2¢*/3 from the surface of the medium.

Let us illustrate the diffusion approximation for a simple but instructive geometry. We
assume a slab of turbid medium whose bounding surfaces are located at z = 0 and L and
which is infinitely extended in the x and y direction. The incident light at z = 0 is a plane
wave. Its initial direction will be randomized at a location zy ~ ¢* inside the slab, and in
the simplest approximation the plane wave produces a delta shaped source for diffusing
light at zg ~ ¢*. Hence, in the stationary case we have to fulfill the following equation
together with the boundary conditions at z = 0, L:

0? 0

2
5.2 Wo(z) = —Sod(z — 20) and Wo(2)l,—op = + 3 14 5 Wo(2) on (9.20)

where the upper/lower sign in the boundary condition corresponds to z = 0/L. As usual,
Eq. (9.20) is solved by a sum of a particular solution (i.e., the Green function in our case)
and a general solution of the homogeneous equation:

S
Wo(z) = —70 |2 — 20| + Chz + O . (9.21)

The free parameters C; and C5 are determined by the boundary conditions:

S() L — 220 r* 20 S()E* L — 220
Ch=——+ d Co=5 | =+ — : 9.22
YT a3 M 2 °(3+2) 3 L+407/3 (9.22)
For the energy densities at z = L and 0, we find
25 2 r 2

Note that Wy(L) fulfills an Ohmic law. That means, the transmitted energy density
decreases with the inverse slab thickness L™!. The length scale is set by ¢*. For a semi-
infinite system (L — o00), all the light is backscattered. Finally, together with the angular
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distribution (9.11) and the boundary condition, we obtain the universal transmission profile
through a slab of turbid medium,

T(0,L) = %WE(L) - % WZETL)

(1 + g Ccos 0) : (9.24)

where cos @ = k-©. The Ohmic law of Eq. (9.23) is a universal feature of light transmission
and not restricted to special light sources. To see that we approximate 0W,/0z by [Wo(L)—
Wy(0)]/L and use the boundary condition of Eqs. (9.20) to arrive at Wy(L)/Wy(0) =~
20*/(3L).

We finish the discussion of the diffusion approximation with an estimate. We are
interested in the average number N of scattering events of a photon that diffuses through
a slab of thickness L. On average, a photon needs the time ¢t = L?/(2D) to diffuse a
distance L along the z axis. With D = $£¢* and t = Nlg/<, we arrive at N ~ L*/((*(s),
which corresponds to an average path length of L?/¢*.

9.2.4 Diffusing-Wave Spectroscopy

We now explain how diffusing light is used for spectroscopy. We allow ¢ # 0 in the
equation of radiative transfer, i.e., we consider the transport of electric field correlations.
The relative time t should be smaller than the typical time scale 7. of the dynamics of the
investigated system, so that the dynamic structure factor satisfies

B(k —q,0) — B(k —q.,1)

1 fi t . - 2
Blk—q.0) < or <L T, (9.25)

Analogous to Eq. (9.10), we formulate an angular expansion for ¢ # 0 and introduce
the total autocorrelation function Wy(R, T, t) and total current J(R, T t) of electric field
correlations. Repeating the derivation of the continuity equation (9.13), we obtain

{8% + M(t):| WO(R7Ta t) +V. J(R’ T? t) = source . (926)

A dynamic absorption term u(t) Wo(R,T,t) is added which means that temporal corre-
lations are not conserved quantities because they decay to zero. The dynamic absorption
coefficient p(t) generally follows from an angular average over all dynamic modes of the
system,

ut) =<1 [ deosv,[Blk — q,0)— Bk — q,1)] . (9.27)

n 8w

For dilute colloidal suspensions with B(q,t) = “C’—f F(q) S(q) exp(—Dgpq?t), we find pu(t) =
2Dptw?/(£*£). Fick’s law of Eq. (9.14) is still valid with neglible corrections of the order
of [B(k—q,0)— B(k—gq,t)]/B(k—q,0) < 1, and we arrive at a diffusion approximation
with “dynamic” absorption,

[% - DV?+ M(t)] Wo(R,T,t) = source . (9.28)
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Let us discuss the contents of this equation by comparing it to a dynamic single scattering
experiment. There, the electric field correlations decay on the characteristic time scale 7,
of the dynamic structure factor [see Eq. (9.1)] determined by the dynamic modes of the
system. For a dilute suspension of colloidal particles, 7.! = Dgw?/(¢/n)?, which is the
average time a Brownian particle needs to diffuse one wavelength of light. Due to the
motion of the particles, the scattered electric fields E,(0) and E;(7.) of one particular light
path obtain a relative phase shift of the order of 7. By averaging over an ensemble of
light paths, this leads to a significant decay of the autocorrelation function (F4(0) Fy(7.)).
When light is diffusing through a slab of turbid material of thickness L, it experiences
approximately N = L?/(£*(s) scattering events which all contribute to the relative phase
shift of F4(0) and E,(t). Therefore, we expect the autocorrelation function (F,(0) Es(t))
to decay exponentially at a time scale of the order of 7./N. We will improve this estimate
in the next paragraph. To summarize, we realize that diffusing-wave spectroscopy allows
to study the dynamics of systems at much smaller time scales than single scattering does.

The physical picture of diffusing-wave spectroscopy, reviewed in the last paragraph, was
developed by Maret and Wolf [226]. To arrive at the time correlation function Wy (R, T, 1),
they summed up all the correlation functions for different light paths. We now demon-
strate that their final expression follows directly from Eq. (9.28). We assume a contin-
uous light source which does not vary in time 7. Hence, a steady-state light field with
a temporal correlation function Wy(R,t) develops. The stationary diffusion equation,
[—~D V? + u(t)) Wo(R, t) = source, can be considered as the Laplace transform of

[—D V2 + ag} P(R,T) = 0(7T) x source , (9.29)
T

where the normalized autocorrelation function is the Laplace transform of P(R, ),

%ﬁ:g - /_Zo P(R,7) exp[—p(t)7]dr . (9.30)

The lower limit —0 means a small negative time 7 in order to pick up the § function. The
meaning of P(R, 1) is clarified by Eq. (9.29). At 7 = 0 a light pulse initiates different
diffusive light paths. Then, P(R,7) represents the probability for a photon to arrive at a
space point R after travelling through the turbid medium during a time 7 along a path
of length s = 7¢/n. The normalized correlation function (9.30) is a superposition of all
light paths ending at R and having different path lengths 7¢/n. Each light path influences
the correlation function according to its length. The inverse absorption coefficient, u(t)~!,
defines a characteristic travel time for the photons, beyond which the dephasing in the
scattered electric fields contributes to the decay of the electric field correlations. Note
that the dephasing time u(t)~! is infinite for ¢ = 0 and decreases for increasing ¢. That
means, the longer light paths probe the dynamics of the system at shorter time scales
while shorter light paths are more sensitive to longer time scales, but still within ¢ < 7.
When applied to dilute colloidal suspensions, we can write the exponent in Eq. (9.30) as
p(t)T = 2t/7, x £7/0*. We realize that the number £7/¢* of random-walk steps in a light
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path determines the decay of the electric field correlations and not the number of scattering
events, as crudely estimated in the preceding paragraph. The correlation function decays,
on average, by exp(—2t/7.) per step.

The exact correlation function for a slab of thickness L in either transmission or re-
flection requires the solution of Eq. (9.28) under the boundary condition of the previous
section, which are still valid. Different steady-state light sources are used; plane waves,
point sources, and an incident beam with Gaussian cross-section. A good review is given
in Ref. [381]. The solution for plane waves in transmission is

Wo(L,t)  L/L ' - -
Wo(L,0) sinh(L/¢L¢) with Ly = /Du(t)L . (9.31)

It is only valid for ¢ < 7. in agreement with the constraint (9.25). As long as L < Ly, we
obtain log[Wy(L,t)/Wo(L,0)] ~ L?/I5 ~ —t/ty, going over into log[Wy(L,t)/Wo(L,0)] ~
slog(t/tr) — \/t/tr as L > L,. Here we have introduced the typical time scale for trans-
mission t7 & 7./(L/(*)? < T, i.e., T, divided by the number of random walk steps. The
last function is approximately linear in ¢/t7, exhibiting a slightly positive curvature. In
reflection from a semi-infinite slab, one finds again for t < 7,

—;V/((:((Zé)) = eXP(Zo/L¢) ~ exp (—\/t/t3> with th ~Te . (9.32)

There is no characteristic path length of the light. Instead, the stretched exponential form
in Eq. (9.32) reflects the wide distribution of decay times, which, in turn, results from
the wide distribution of path lengths inherent in the backscattering geometry. The length
2o &~ * was introduced in the previous subsection in connection with the plane-wave light
source. If the slab has a finite thickness, light on very long paths cannot return. As a result,
for t — 0 the normalized correlation function Wy(L,t)/Wy(L,0) decays more weakly than
indicated in Eq. (9.32).
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Chapter 10

Light Diffusion in Nematic Liquid
Crystals

The spontaneously broken rotational symmetry in liquid crystals has two important con-
sequences compared to isotropic systems. It leads to birefringence in light propagation,
with the optical axis given by the director, and it implies the existence of hydrodynamic
Goldstone modes, which we introduced in Section 1.4 as director modes. In this chapter
we develop the concept of diffusing light for a uniformly aligned nematic crystal. It scat-
ters light due to thermal fluctuations of the local optical axis which introduces a rather
different scattering mechanism in comparison with colloidal suspensions. Our final result
is a generalization of the diffusion equation with dynamic absorption expressed in Eq.
(9.28). We obtain two independent diffusion constants Dy and D, for light diffusing, re-
spectively, parallel and perpendicular to the equilibrium director. The diffusion constants
are connected to the elastic and dielectric properties of the nematic phase. The dynamic
absorption coefficient is still a scalar, and it appears as an angular average over the inverse
viscosities of all director modes. Our presentation is analogous to the previous chapter.
We first explain light propagation and single scattering in Section 10.1. Then we derive
the diffusion approximation with the help of the radiative transfer theory in Section 10.2.

10.1 Light Propagation and Single Scattering in Ne-
matic Liquid Crystals

To treat multiple scattering of light, we have to understand single scattering events and
how light propagates between them. We discuss both issues for nematics in the next two
subsections. Propagation of light and its scattering is governed by the dielectric properties
of a system. In a nematic liquid crystal the local dielectric tensor takes the form

e(r,t) =e 1+ Ae[n(r,t) @ n(r,t)] , (10.1)

in complete analogy to the tensor of magnetic susceptibility of Eq. (1.7). We have intro-
duced the dielectric anisotropy Ae = ¢ — €1, where ¢ and ¢, denote dielectric constants
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for electric fields applied, respectively, parallel or perpendicular to the director. Scatter-
ing takes place from inhomogeneities in the dielectric tensor. As we discussed in Section
1.4, in a uniformly aligned sample thermally induced fluctuations of the director about
its equilibrium value ny exist. They give rise to fluctuations in the local dielectric tensor
which in turn scatter light. This is the physical process for which we will formulate the
theory of multiple scattering. Since director fluctuations are long-range correlated and
characterized by sinusoidal variations in space, light is scattered from some sort of grating
rather than single particles like in colloidal suspensions. However, we will identify some
analogy between both scattering mechanisms in the course of this section.

10.1.1 Light Propagation in a Homogeneous Nematic

A homogeneous nematic is a uniaxial medium and therefore birefringent for light travelling
inside. Light propagates through such a system in two characteristic modes. The ordinary
light ray behaves as in an isotropic system. However, the extraordinary light mode possesses
a direction-dependent index of refraction, its phase and group velocities differ from each
other, and the electric field wave is not transverse. In the following we review these facts,
look at the energy density and the Poynting vector, and introduce some notation for further
use.

We consider the nematic liquid crystal as a dielectric medium characterized by the
constitutive equations,

D(r,t)=e(r,t)E(r,t) and B(r,t) = H(r,t) . (10.2)

The time dependence in these equations refers to slow (micro-second) temporal variations
of the director and not to the fast (femto-second) cycles of the electromagnetic field. The
magnetic permeability is basically unity in liquid crystals, and its effect can be totally
neglected against the induced polarization described by the dielectric tensor. If electric
charge and current densities are absent, light propagation is determined by the Maxwell
wave equation for the electric light field E(r,t):

1 9
VXV x4 oe(rt)] B(r,t) =0 (10.3)
We first ignore fluctuations of the dielectric tensor to discuss light propagation in a homo-
geneous nematic. We adopt Eq. (10.1) with the equilibrium Frank director ng and obtain
the dielectric tensor £y9. Employing a plane-wave ansatz for the electric field,

E(r,t) = E%eq(k)expli(k - r — wt)] | (10.4)

the wave equation (10.3) is transformed into a generalized eigenvalue equation [194, 201,

338]
1
nZ

[(1 —keok) - 60] ea(k) =0 . (10.5)



10.1. LIGHT PROPAGATION AND SINGLE SCATTERING 135

It determines the electric-polarization vector ea(lzz) and a direction-dependent index of
refraction

na(k) = ck/w (10.6)

for the three possible electric field modes. Due to Eq. (10.6), their wave number k changes
with the direction of propagation k for fixed w. We refer to the field modes as ordinary
(v = 2), extraordinary (o = 1), and longitudinal (a = 3). The third solution corresponds
to a non-propagating mode with n3 = oo and 63(12:) parallel to the wave vector k. It
will hardly be important for scattering at optical frequencies. We also define polarization
vectors d(k) for the displacement field by

de(k) = epen(k) . (10.7)

The dot product of the eigenvalue equation (10.5) with k results in k-d*(k) = 0 confirming
the transversality of the displacement field as it should be. With the help of Eq. (10.5), one
proves a duality relation between the polarization vectors d®(k) and ez(k). That means,
their magnitudes can be chosen to satisfy the biorthogonality relation [201]

d(k) - eg(k) = 05 | (10.8)

in complete analogy to the basis vectors of the real and reciprocal lattice in a crystal. From
the last two relations it is obvious that neither d® nor e, are unit vectors. They scale,
respectively, with the index of refraction or its inverse. This is convenient for expressing
energy densities and intensities of light modes in terms of field amplitudes E%, as we will
see below. Also, the theory of multiple light scattering involves several tensor quantities
for which the two sets of polarization vectors proved to be very useful [338].

A first solution to the eigenvalue equation (10.5) is obvious and gives the ordinary light
ray. It possesses an index of refraction

ne = /€L (10.9)

and polarization vectors
ex(k) = —in(k) and  d*(k) = nyin(k) | (10.10)

where the unit vector ’&,2(/2:) is perpendicular to both the Frank director ny and the wave
vector k, enclosing the angle 9 (see Fig. 10.1). Then the second solution, the extraordinary
light ray, can be constructed. The polarization vectors are situated in the plane spanned
by ng and k:

d' (k) = ni(k) [—sinUng + cos Vit (k)] (10.11)

and
(k)| | (10.12)
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Figure 10.1: Constant-frequency surface for ordinary and extraordinary light rays, seen in
the plane spanned by the optical axis (my) and the wave vector. The ordinary light ray
has a constant index of refraction \/e;. The wave vector k; and the group velocity v
are parallel to each other. The extraordinary wave has an ellipsoidal index of refraction
which equals /1 only along the optical axis; k; and v, enclose an angle ¢;. The figure
corresponds to a positive dielectric anisotropy (Ae > 0), so that the extraordinary ellipsoid
is located outside the ordinary sphere. In diffusing light ordinary waves therefore have the
minority (see Subsection 10.2.1). The two unit vectors @; and @, characterize the two
director modes of wave vector q as introduced in Section 1.4.

~

where we used the unit vector (k) = ng x (k) perpendicular to mg. The refractive
index nq(k) is given by the relation
1 sin®0  cos?¥

— = + ) 10.13
ni(k) g €1 ( )

Finally, the angle §; between e; and d! satisfies

1 sin?d  cos? ¥ e
cos 6y = - 5— +—— . (10.14)
ni(k) \ € 1

For the ordinary light wave, d, = 0.

Two velocities exist, phase and group velocity, associated with wave propagation. We
need to discuss them in more detail. Light modes are characterized by a dispersion relation
w(ka) = vpok for each polarization «, where v,, = ¢/n, denotes the phase velocity. For
given frequency w, the wave vector is represented by k, = wk / Upa(lgz), whose magnitude,
in the case of the extraordinary ray, depends on the direction k. If w is constant, the wave
vector k, lies on the constant-frequency surface, which is a circle of radius new/c for the
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ordinary ray (o = 2) and, as shown in Fig. (10.1), an ellipse with semi-axes /e, w/c and
VEw/c for the extraordinary light wave (aw = 1). For each polarization, electromagnetic
energy is transported along the direction of the group velocity defined by

Vya = Viwa(k) . (10.15)

In the ordinary ray phase and group velocity are identical, i.e., vy = v,2 = Izzc/ng. The
group velocity of the extraordinary wave,

cos v sin

vg1 = cny (k) ( ﬂl) : (10.16)

ny
gl 8||

is normal to the constant-frequency surface, as illustrated in Fig. 10.1. Together with the
phase velocity v, it encloses the same angle d; [see Eq. (10.14)] as the polarization vectors
e; and d'. Furthermore, we find Up1 = €OS 010,41, and it can be checked that the magnitude
of e, equals vy, /c.

The energy density of a dielectric medium is expressed by the formula (E - eoE + H -
H)/8n. For a plane wave with polarization E“e,, the cycle-averaged energy density turns
out to be

W =|E“?*/(8x) . (10.17)

That means, the amplitude E* does not determine the strength of the electric field but
rather stands for the square root of the energy density of one light mode. This is very
convenient since experiments measure energy densities or intensities. In a homogeneous
medium without absorption, the Poynting vector ¢(E x H)/4w determines the energy
transport. For one light mode, it equals the group velocity times energy density [194]

S = Wy, . (10.18)

Energy density, group velocity, and Poynting vector will play an important role in what
follows.

10.1.2 Single Light Scattering from Director Fluctuations

In a homogeneously aligned sample the director fluctuates around its equilibrium value ny,
so that n(r,t) = ng + on(r,t). This induces fluctuations de(r,t) of the dielectric tensor,
which are calculated from Eq. (10.1) to first order in dn(r,t):

de(r,t) = Ac[dn(r,t) ® ng + ng @ dn(r,t)] . (10.19)

In the following we consider a characteristic scattering event where an incoming electric
field mode with wave vector ko = wnok /c and electric polarization vector ea(I%) is scattered
from such fluctuations into an outgoing light mode with wave vector gz = wngq/c and
polarization vector es(q). In the weak-scattering or Born approximation the scattered
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electric field is proportional to the Fourier component of de(r,t) projected on the initial
and final polarization:

Seap( @ t) = €(q) - Oe(qu, t)ealk) - (10.20)

The quantity

A~

gs = w(nzq —nak)/c (10.21)

denotes the scattering vector. Note that in comparison to our isotropic and scalar treatment
of light scattering in Subsection 9.2.1, the polarization of light is now important since we
deal with a birefringent medium. The normalization of e, (k) and eg(g) has been chosen as
discussed in the preceding subsection. In dynamic light scattering experiments one probes
the temporal autocorrelation function of the scattered electric field. In single scattering
this autocorrelation function is proportional to the matrix element

4
A w .
Baﬁ(k, q,t) = g <5£a,8(qsat> 56aﬁ(q370)> . (1022)

Analogous to Subsection 9.2.1, we call Bag(fc, q,t) the dynamic structure factor because
it contains information about the elastic and dynamic properties of the director modes.
Using de(r,t) from Eq. (10.19) and the director autocorrelation function specified by Eqs.
(1.50) and (1.51) in Section 1.4, we obtain

7 oy ) K S
Bug(k, q,t) = (A¢) kBT Z ‘;{Jeqﬁ Us) exp[— 5(‘”4 (10.23)

with a geometry factor

N(ea, es, ts) = [(no - €5)(ts - €a) + (s - €5)(n0 - €a)]” - (10.24)

The elastic constant K(gs) and the exponential factor in Eq. (10.23) originate, respectively,
from the static and dynamic properties of director fluctuations and were discussed in
Section 1.4. The strength of light scattering decreases with the square of the dielectric
anisotropy Ae. Adopting that the material parameters are linked to the Maier-Saupe
parameter S as follows, Kz, ns oc S? and Ae oc S [76], the matrix element Bag(iC, q,t)
hardly depends on S. Since the front factor kg7 changes only slightly within the nematic
phase, single light scattering hardly depends on temperature 7. Such independence has
indeed been observed [49]. From the last equation it is possible to deduce the allowed
scattering events. We infer that ordinary-to-ordinary transitions are not possible since
N(ey, e, Us) is zero as ey is always perpendicular to my. Such a scattering may nevertheless
be produced by fluctuations in the isotropic part of the dielectric tensor which, however, are
much smaller than the director-induced scattering, and so we will ignore it. Furthermore,
one realizes that Eq. (10.24) does not allow forward scattering along the director.
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Generalizing Eq. (9.4), the structure factor is related to the differential scattering cross
section giving the scattered energy per unit of time, solid angle element, and incident
intensity in a medium of volume V' [196, 197]:

do®? V

7 = Ty "o () cos b Bup(k, 4.t = 0)nj(q) . (10.25)
q

We have used here the solid angle element ng associated with the outgoing wave vector.

For extraordinary light, it differs from the solid angle element dQ% associated with the
Poynting vector, being more relevant experimentally and in numerical simulations. The
relation between the two is given by dQ2, /dQ, = [nf(q) cos® 1] / (€1 ¢)) [336].

Summing over all directions and polarizations of the scattered light in Eq. (10.25)
defines the total scattering cross section. In complete analogy to Subsection 9.2.1, we
obtain the loss AS® of the incident intensity S* per travelled distance Az as

Ao = _ 8%z ga (10.26)

la(k)

which defines the “physical” scattering mean free path ﬁa(l%) / cos d,, in terms of the “bare”
scattering mean free path lo(E):

g

The length £, (k)/ cosd, determines the exponential decay of the incident light intensity
along the direction of the Poynting vector §¢ = W%w,, due to scattering. If this decay
is measured along the direction of k then, for extraordinary light, it is determined by
the smaller path length El(k) since Poynting vector and k enclose just the angle §;. The
“bare” length appears when multiple light scattering is treated in k space.

The scattering mean free path Ea(lzz) was studied in detail by two groups [197, 356,
191]. Its explicit dependence on k and polarization a was calculated by Romanov et al.
[356, 191]. It is also pictured in Ref. [369]. In Fig. 10.2 we plot the inverse scattering mean
free path, [!, in arbitrary units as a function of cos ), where ¥ denotes the angle enclosed
by the director ny and hatk. In the left picture all Frank constants are equal and Ae = 0.
The angular dependence in [, is purely due to thermal fluctuations perpendicular to the
optical axis, expressed in the geometry factor of Eq. (10.24). This case is academic because
for Ae = 0 light scattering does not occur. In the right picture material parameters of
the compound 5CB are assumed. Along the optical axis (cost = £1) both polarizations
degenerate, and the mean free paths coincide. The structure factor Ba/g(l%, q,t) diverges
for H — 0 and g, — 0. However, such a situation can only occur for extraordinary-to-
extraordinary scattering, and we obtain the unphysical result that the scattering mean
free path ¢, (k) tends to zero for H — 0. This is due to the fact that the weak-scattering
approximation, employed to calculate éa(l%), is no longer valid. It assumes that a propa-
gating plane wave is only slightly disturbed by scattering. Therefore, the scattering mean
free path has to be much larger than the wavelength of light, la(lzz)naw/c > 1.

?§‘>
..Q>

=0)n3(q) - (10.27)
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Figure 10.2: Inverse “bare” scattering mean free path, [;!, in arbitrary units as a function
of cos?, where ¥ denotes the angle enclosed by the director ng and k; g = 5um. In
the left picture all Frank constants are equal, and Ae = 0. In the right picture material

parameters of the compound 5CB are assumed.

To derive a better criterion for the validity of the Born approximation, we adopt a
completely isotropic model of the nematic structure factor,

2 w4 kBT
ct K(g2+1/&)
where &g is the magnetic coherence length defined in Eq. (1.9), and the factor 2 is due to

the two possible director modes for each wave vector. The scattering mean free path (g
assumes the form

1 d 1 (Ae)? kpT we w?e
— =2 . B(qg—k)=— In(1+4—5¢6%) ; 10.2
lg /(4%)2 (g ) A4t g2 K 2 t c2 S ) (10.29)

Blq — k) = 2(A¢) (10.28)

c

now the factor 2 takes into account the two polarizations of light. Employing typical liquid
crystal parameters and a magnetic field of one Tesla, where £y is several microns, we
find /g5 ~ 0.1 mm. However, since £y o 1/H, the scattering mean free path goes to zero
logarithmically in H. Director fluctuations are correlated within a volume V = &2, Let
0P denote the amount of energy per unit time scattered from such a volume. Refering it
to the total incoming energy per unit time Fy, we obtain

5PV [d9y .
Few /(4@2 Blg-k)=5" (10.30)

The weak-scattering approximation is valid as long as £y < fg, which then suggests the
popular picture of subsequent scattering from different director fluctuations, which are well
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&
PR

—@—

Figure 10.3: As long as £ < (g, subsequent scattering from different director fluctuations,
which are well separated in space, occurs. If £ ~ fg, the regions overlap, and the weak-
scattering approximation is no longer valid.

separated in space as illustrated in Fig. 10.3. This is reminiscent of subsequent scattering
from single particles in dilute colloids. If the magnetic field is lowered to approximately
1072 T (100 Gauss), &g is of the order of 0.1 mm and approaches £5. The weak-scattering
approximation is no longer applicable. At the same time, the familiar picture of subsequent
scattering from well separated regions of director fluctuations is lost since they start to
overlap. To understand light scattering in a nematic with fg ~ £y, one has to go beyond
the weak-scattering approximation.

Our last remark concerns the symmetry of the dynamic structure factor. In isotropic
systems, it is completely diagonal when expanded into spherical harmonics as illustrated
in Eq. (9.7). The structure factor for director modes just possesses the rotational sym-
metry about the equilibrium director ny. Hence, it can be written as a function of the
relative azimuthal angle ¢ = ¢, — ¢ between g and k. Using the additional symmetry

Bag(lzi, q,0) = Bag(—lzz, —q,0), the following expansion holds:

Bag(k,q,0) =Y Bus(9g,9,) coslm(pg — )] (10.31)

m>0

where ¥y, and ¥, are polar angles of k and q with respect to ny. In Subsection 10.2.3 we
will write Bag(k, @,0) in terms of modified spherical harmonics Y, (k) and Y;? (¢). Then,

Eq. (10.31) expresses the fact that the matrix element (Im|Bag(k, @,0)|I'm’) o< Sy is
diagonal in the azimuthal quantum number m but not in the angular momentum /.
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10.2 Anisotropic Light Diffusion in Nematics

We are prepared to derive the diffusion approximation of light in a homogeneous nematic
liquid crystal. We will closely follow the procedure outlined in Section 9.2 for isotropic
systems starting from a radiative transfer equation. In our presentation we will stress the
differences between nematics and isotropic systems, and we start with such a difference.

10.2.1 Equipartition of Light Energy

Diffusing light of a given frequency w tends to equipartition the electromagnetic energy
among all available photon states. That means, in an isotropic system the energy is equally
distributed on all light modes with polarization a propagating along the direction k. In
an anisotropic system this is no longer true as can be seen by a simple argument. The
number of photon states is proportional to the volume element k2dkd();, in the phase space
of wave vectors k. However, in an experiment the frequency w of light is fixed. Therefore,
employing the dispersion relation w = ck/ng(k), we find for the number N, (w, k)dwko
of photon states with given polarization «, frequency w, and direction k:

N (w, k)dwdQy, o< k2dkdQy = n? (k) wdwdQy /. (10.32)

We realize that the number of photon states is proportional to the cube of the refractive
index, nz(fc) In the case of extraordinary light this leads to an anisotropic distribution
of energy density in real space. For a fixed direction k, the ratio of energy densities
in the ordinary and extraordinary mode is given by NQ(w k)/Ni(w, k) = n3(k)/nd(k).
For positive dielectric anisotropy Ae > 0, extraordinary waves are in the majority since
ny > ny. When integrating over the whole solid angle [Ny (w) = [ Ny (w, k)dS)), we find
Ny(w)/Ni(w) = €1 /). Despite the heuristic argument, these results are an ezact outcome
of transport theory [367, 337]. They also have an equivalent for elastic waves in solid media
[379]. Note that our reasoning holds regardless the details of the scattering process and its
selection rules for polarization transitions.

10.2.2 Radiative Transfer Theory

Analogous to Subsection 9.2.2, we deal with the temporal auto correlation function of the
electric field,

n(k)We(R,T,t) = (EX(R,T — t/2) E*(R, T + t/2)) . (10.33)

For t = 0, it stands for the energy density of a light wave at time 7" and space point R
travelling into direction k with polarization a. The light frequency w is omitted. We pulled
out the factor n (k) due to the equipartition of energy on all available photon states in
the diffuse regime.
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In complete analogy to Eq. (9.9), the radiative transfer equation for correlation trans-
port in anisotropic media takes the form

0 1 .
(8T+vga V+l—n—a)w (R,T,t)

dx . ) )
:CZ/—(M;Baﬂ(kf,q,t)n%(q)W;f(R,T,t)+S,;(R,T) - (10.34)
B

Its interpretation is the same as for isotropic systems. However, its handling is further
complicated by the fact that the Poynting vector v, W7 (R, T,t) [see Eq. 10.18] and the

scattering mean free path la(lzz) [see Eq. 10.27] heavily depend on k. Furthermore, the
structure factor Baﬁ(’%, q,1t) is more complex due to the reduced symmtry.

The transport equation (10.34) is applicable to general anisotropic random media. Its
validity is restricted to length and time scales much longer than the wavelength and time
period of light. We are able to derive the equation of radiative transfer from first principles.
Starting from Maxwell’s theory, it follows in a straightforward way from the Bethe-Salpeter
equation for the averaged “two-particle” Green function when only ladder diagrams are
taken into account [337, 338, 367, 364, 369, 296]. For nematic liquid crystals, the transport
equation was first formulated by Romanov and Shalaginov [296] and solved in the small-
angle approximation. We concentrate here on the particularly attractive regime of the
much simpler diffusion limit.

10.2.3 Diffusion Approximation

To derive the diffusion approximation from Eq. (10.34), we set ¢t = 0 and assume that the
source term is independent of k thus representing a source for diffusing light. We first
study the equilibrium solution of Eq. (10.34), where W' (R, T,0) equals a constant Wj.

As a result, expresswn (10.27) for the scattering mean free path £, (k) is reproduced. The
energy density n3 (k)W, depends on the direction k and polarization « of light, due to the
equipartition of the light energy on all available photon states, as argued in Subsection
(10.2.1). So far, this is not confirmed experimentally

The diffusion approximation follows when n3 ( k)W“(R T,0) deviates only slightly from
the equilibrium angular distribution. Let us therefore study an angular expansion of
WH(R,T,0),

3 1 PR
WO (R, T,0) = — Wo(R.T) + — —nok-J(R,T,00+ Y Wi (R,T,0Y5 (k) ,
k 8 47T CTL >1.m

(10.35)
where we wrote the total energy density

n3Wo(R,T,0) Z/kon We(R,T,0) (10.36)
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as Wy times an angular average over the cubes of both refractive indices:

78 = (il 4 nd)/2 = / A% [ (k) + nd(k)] /87 = (%) + /)2 | (10.37)

Our aim is to establish a diffusion equation for Wy(R,T,0). Furthermore, we introduced
the total energy density current J*(R, T, 0) associated with polarization «, by integrating
over the Poynting vector of Eq. (10.18):

J*(R,T,0) :/kong Vo W (R, T,0) . (10.38)

The angular expansion (10.35) is written in complete analogy to Eq. (9.10). However,
for uniaxial systems, it is useful to choose modified spherial harmonics Y,% (k). They are
defined via the weight function n? (k) in the orthogonality relation

/ deos ddip 13 (V2 (k) Ve () = 780w (10.39)

where k = (sin 1 cos ¢, sin ¥ sin ¢, cos ). We will see below that this choice establishes an
approximation scheme for the diffusion constants of light. We still obtain the conventional
spherical harmonics in the case of ordinary waves. To derive Y;! (12:) for extraordmary
modes, we introduce a new coordinate C' = nl(k) cos/ny. It is equivalent to my- k = cos¥
since it also ranges from —1 to 1. With this transformation, the weight function becomes
a constant:

/dcosﬁnl(lzz) —nl/dC (10.40)

Hence, the basis functions }Z}n(iﬁ) simply follow from spherical harmonics when cos? is
replaced by C'. Employing the abbreviation C' = cos) in the case of ordinary light, the
modified spherical harmonics are the same for « = 1 and 2. Their real representation for
[ =1 reads

_ . Ye(k) + Y2, (k
Vot = /2 ¢ ana  DARIEVE(R) \/ O (1041)
10 47 2 ne

In expansion (10.35) we have already used them explicitly in the second term taking into
account Eq. (10.16) of the group velocity. Also note the modified “trigonometric” relation

ny(k)sind/ny = [e)/eLv1—C2
We are prepared to extract the diffusion approximation from the transport equation

(10.34). Multiplying Eq. (10.34) by n3(k) and summing over all directions of k and the
two polarizations, yields the continuity equation of the energy density:

0
T n3Wy 4+ V - J = source . (10.42)
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The vector J = J! + J? denotes the total energy density current. Via Fick’s law, it is
related to the gradient of the energy density:

J = —-DVn3W, . (10.43)
We will derive Fick’s law below. We introduced the diffusion tensor
D :DLl—F(D” —Dl)n{)®n@ (10.44)

with its two independent light diffusion constants D) and D, respectively, parallel and
perpendicular to the director ny. Eliminating the current J, finally results in the diffusion
equation for Wy(R, T, 0),

0
(8—T — DHVﬁ - DLV2L> Wy(R,T,0) = source , (10.45)

where V = (V ,V)).

To derive Fick’s law (10.43), we first concentrate on components parallel to the di-
rector my. Due to symmetry, the resulting expression for D) only involves the azimuthal
quantum number m = 0. We project the transport equation (10.34) on all modified spher-
ical harmonics }728(12:) with odd' angular momentum [ > 1 and obtain a set of equations
which couple the energy density W), the components J”1 and J”2, and all further expansion

coefficients W3 (I > 3). We employ a symbolic matrix notation to formulate the set of
equations:

(4m)* ¢ o { 1 } B!, B,  0BI) T]Vlo
18 nj an ByQ B§2 J::2
0 wi | = 0. (1046)
30
0 /
| [ (01B10) | [ (t0B]10) ] w3

The quantitites B(H)ﬁ are extended matrix elements of Bag(fc, q) only involving [ = 1 spher-
ical harmonics:

N R 8 A R
Bl, = / / (CF = CuCy)Bua(h. @) + CE=* Bua(k. )
kJq

N R 8 ~ R
Bl, — / / (C2 — C4Cy)Boslk, @) + C2 22 By (I, ) (10.47)
kJg

€|
Bl, - —//OkOqu(,fz),
kJq

LOnly spherical harmonics with odd [ describe a directed flow of energy in the angular expansion (10.35).
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where we use the abbreviation [; = [dCrdygg. The symbol [(I0[B|l'0)] in Eq. (10.46)
stands for a matrix of objects similar to Byj, however involving at least one higher spherical
harmonic. Terms proportional to d.Jf'/0T" are neglected in Eq. (10.46). Concentrating on
the upper left part in Eq. (10.46), we realize a relation between VW, and the energy
density currents J”a. Due to our special choice of the modified spherical harmonics, there
is no such direct connection between W, and the higher expansion coefficients W3 (I > 3).
If the matrix elements (10|B|l'0) are zero, we can directly solve for the two currents ‘]Hl

and J”2, and we obtain the parallel component of Fick’s law (10.43),
J” = J”l + JHQ = —D”VHEWO , (10.48)
with the diffusion constant

(47T)3 c Byl + BgQ — 2By2

Dy = 18 n2n3 gl Bl —(B” )2
11922 12

(10.49)

Since generally (10|B|lI'0) # 0, we set up an approximation scheme. Via the lower part
of Eq. (10.46), the coefficients W3 (I > 1) can be expressed in terms of JH1 and J? and
reinserted into the upper part. Depending on the number of spherical harmonics we take
into account, the diffusion constant D) of Eq. (10.49) is renormalized. We have checked
that corrections from [ = 3 spherical harmonics are smaller than 1%, so that Eq. (10.49)
already gives a good approximation for D).

Due to symmetry reasons, D, depends only on spherical harmonics with azimuthal
quantum numbers m = +1. The perpendicular component J, is derived in the same
manner as Jj projecting the transport equation (10.34) on [V (k) + Y, (k)] o cos @y

J =J +J?=—-D, V. n3W, (10.50)

with
(4n)® ¢ Bii 4+ Bypei/e — 2B/ 1 /g
18 n2n3 Bii By, — (Bis)? '

The matrix elements B, ; are defined as in Egs. (10.47) but with C replaced by v/1 — C? cos ¢.

The diffusion constants can also be calculated by determining the diffusion pole of the
average two-particle Green function of the electric field [337, 338] or by explicitely summing
up different light paths in direct space [336]. Both methods lead to the same approximation
scheme as derived above. Tiggelen et al. generalized the Kubo-Greenwood formula for the
diffusion constant [221] to uniaxial media [367, 364]. It involves an integral equation for
a tensor 7y, which they determined numerically. The calculated diffusion constants agree
with the results reported in the next subsection.

D, = (10.51)
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10.2.4 Discussion of the Diffusion Constants

To specify the magnitudes of D and D, , we introduce an “averaged” transport mean free
path

2
K; 1
If =97 = = — 10.52

where ¢, is the speed of light of the ordinary light ray. We write the diffusion constants
in the form N N
D” = CLZSD”/?) and DL = CLZSDL/Q)) s (1053)

reminiscent of isotropic systems. The numerical factors 15” and D, depend only on the ra-
tios of the Frank elastic constants (K7 /K3 and K5/ K3) and the relative dielectric anisotropy
Ae/e, . The factor 97 in [ is chosen such that 5” and D, are approximately 1 in the limit
of an “isotropic” nematic with K; = K; = K3, Ae = 0, and H = 0. In this case we find
Dy = 1.053 and D, = 0.998 with a small anisotropy of Dj/D, = 1.06 because of the
inherent anisotropy in the nematic structure factor represented by the geometrical factor
N(eq, eg, u5) of Eq. (10.24). We, at least, qualitatively understand why Dy is larger than
D . The diffusion constants grow when the ability of the system to scatter light decreases.
From Egs. (10.49) and (10.51) for D and D, we recognize that the diffusion constants
are determined, respectively, by scattering around the director (m = 0) or perpendicular to
it (m = +1). However, forward and backward scattering along the director is suppressed
by the geometrical factor, and we expect D) to be larger than D,. With the completely
isotropic structure factor of Eq. (10.28) [N(e,, €3, ts) = 1], the transport mean free path
is easy to calculate. It is smaller than [§ by a factor of 4/9, which again demonstrates the
effect of the geometrical factor. With the material parameters of the nematic compound
5CB (Ae/e; = 0.228, ny = 1.543, K3 = 5.3-107" dyn), green light (w/c =1.15-10°cm™!),
and a temperature of T' = 300K, we obtain [} = 2.3mm or Dy = ¢, [;/3 = 1.5 - 10° cm?/s
in rough agreement with experiments [170, 336].

For 5CB we demonstrate in Fig. 10.4 how the diffusion constants 5“ and D, and

the relative anisotropy (D — D.)/D, behave in a magnetic field. Dy and D, grow
with H because the magnetic field suppresses director fluctuations. The field dependence
of the relative anisotropy in the diffusion is weak. For ordinary magnetic fields up to
5 x 10* @G, corresponding to a magnetic coherence length z of approximately 1um, the
changes in D and D, are small. The values for H = 0 read D = 0.95 and D, = 0.65
with a ratio Dy/D, = 1.45. Together with Dy = c,I3/3 = 1.5 -10°cm?/s, we obtain
D =1.43-10cm®/s and D, = 0.98-10% cm?/s. These numbers are in excellent ageement
with numerical simulations, where we studied the temporal development of a photon cloud
in the compound 5CB by means of the Monte Carlo method [336]. The ratio D)/D, is
also in good agreement with experiments [170, 336]. However, the absolute values of Dj
and D, are larger by a factor of two. We attribute this partially to the fact that the
experiments used light with a longer wavelength. Note that both diffusion constants are
finite for H — 0, although the scattering mean free path for extraordinary-to-extraordinary
scattering goes to zero, as discussed in Subsection 10.1.2. In the completely isotropic model
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Figure 10.4: Reduced diffusion constants lN?” and D, and the relative anisotropy (D) —
D,)/D, as a function of the magnetic field strength H for the nematic compound 5CB
(Kl/Kg = 079, Kz/Kg = 043, and A€/6J_ = 0228)

of Eq. (10.28) we understand this fact. The singularity from g2 o< 1 — cosd, is cancelled
by the familiar factor 1 — cos v, in the expression (9.15) of the isotropic diffusion constant.

In Fig. 10.5 we explore the anisotropy in the diffusion as a function of the dielectric
anisotropy Ae/e; for K1 = Ky = K3. As already discussed, even at Ae = 0, the diffusion
constants D and D, are slightly different because of the inherent anisotropy in the nematic
structure factor. The anisotropy in the diffusion grows with Ae because the speed of light
of the extraordinary light ray is larger along the director than perpendicular to it. In
contrast, when Ae/e; < —0.15, the anisotropy (Dy — D,)/D, changes sign, and light
diffuses faster perpendicular to the director. This effect and the inversion point D = D
should be observable in discotic nematics where Ae is negative. The approximately linear
growth in Fig. (10.5) can be reproduced by a kinematic approach to the diffusion tensor
involving the group velocity vy, [369],

Dx ) /vga ) @ Vga (k)7 ko/ k)dQy, (10.54)
a=1,2

a=1,2

where n3 (k) counts the number of photon states. If the Frank constants K; differ from
each other, the curve in Fig. (10.5) is merely shifted along the vertical axis.

Finally, we discuss how diffusion depends on the reduced elastic constants K7 /K3 and
K5/K;3. We show in Fig. 10.6 that ﬁL decreases with the elastic constants. This is
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Figure 10.5: Relative anisotropy (D — Dy )/D. as a function of Ae/e, for Ky = Ky = K.

obvious since light scattering from director modes increases if they fluctuate stronger. At
the extreme values of K;/K3 = Ky/K3 = 0.01, we obtain D, = 0.07. The contour lines
reveal an asymmetry between the splay (K;) and the twist (K,) distortions. D, decreases
more strongly with K,/Kj3. The diffusion constant l~?|| exhibits a similar behavior. Fig.
10.7 illustrates the anisotropy (D) —D,)/D, for the same range. It grows with decreasing

elastic constants, demonstrating that D, is more affected by splay and twist distortions
than is D). The asymmetry between splay and twist is clearly visible. Figures 10.6 and
10.7 cover the range of conventional thermotropic nematics where usually K; /K3 < 1 and
Ky/K3 < 1. In Fig. 10.8 we extend this range to K;/K3 = Ky/K3 = 10, and we observe
that the anisotropy (D — D,)/D, changes sign. The contour line on the base of the
coordinate system indicates where D = D, . Roughly speaking, Dy < D, if K;/Kj3 > 0.6
and Ky/K3 > 1.4. It should be possible to achieve such conditions in discotic nematics,
which typically exhibit Ky > K; > Kj3 (see Section 1.1). In a smectic-A phase (Sm-A)
twist and bend deformations are expelled by the layered structure [72] hence K; /K3 < 1.
Unfortunately, this means also that certain scattering vectors show very weak scattering,
and the diffusion approximation cannot be achieved for reasonably sized samples. However,
in the vicinity of a Sm-A-nematic phase transition, where the layered structure of Sm-A
softens or starts to form in the nematic phase, the diffusion approximation of light could
be used to study the behavior of the Frank elastic constants close to the transition. A third
interesting system is a polymer nematic liquid crystal. For long rigid rods, one expects a
large splay constant [238, 86]. Taratuta et al. [347] determined the Frank elastic constants
for a racemic mixture of poly-y-benzyl-glutamate (PBG) in a solvent. They determined
the ratios K;/K3 = 0.85 and K,/ K3 = 0.07 with an absolute value of K3 = 4.7-10"dyn,
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K,/Ks

Figure 10.6: Reduced diffusion constant D 1 as a function of K /K3 and K5/ K3 for Ae = 0.

Figure 10.7: Relative anisotropy (D — D,)/D, as a function of K;/Kj3 and K,/Kj for
Ae = 0.
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Figure 10.8: Relative anisotropy (D — D,)/D, as a function of K;/Kj3 and K,/Kj for
Ae = 0. Compared to Fig. 10.7 the reduced elastic constants range from 0.1 to 10.

which is suitable for the diffusion approximation of light. From these parameters we predict
a “large” ratio of Dj/D, = 2.8. The reported system has a very low dielectric anisotropy
Ae and scatters light only weakly. However, it should be possible to find systems which
are more favorable regarding Ac.

10.2.5 Diffusing-wave spectroscopy

Finally we use the radiative transfer equation (10.34) to study the transport of electric field
correlations (¢ # 0) extending the idea of DWS to anisotropic media. We have to restrict
ourselves to times ¢ much smaller than the characteristic time scales 7. of the system under
investigation. In nematic liquid crystals 7. corresponds to typical director relaxation times
T =7/(Kq?), as explained in Section 1.4. For wave numbers q; = wn/c of visible light, 7.
ranges from 10 to 100 us. We rewrite the dynamic structure factor,

Bag(k, q,t) = Bas(k, q,0) + [Bas(k, q,t) — Bag(k, q,0)] . (10.55)
In nematics the second part on the right-hand side assumes the form

4 2 .
Bus(k, @,t) — Bas(k, @,0) = —(8e)kp T S Nlea e th) g0 e r (10.56)
¢ 5O n5(gs)
where we performed an expansion of the exponential time factor in expression (10.23).
All the coefficients in an angular expansion of W (R,T,t) similar to Eq. (10.35) now
carry the relative time ¢ as an additional argument. In particular, we introduce the total
autocorrelation function

n3Wo(R,T,t) = Z/ko nd (k) We(R, T,t) (10.57)
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and the total current of electric field correlations
J(R,T,t)=J R, T,t) + J*(R,T,t) = Z/dﬂk n3 v WE(R, T, 1) . (10.58)
Repeating the derivation of the continuity equation (10.42), we obtain
0 —
a7 T p(t)| n3Wo(R,T,t) + V- J(R,T,t) = source . (10.59)

Due to the dynamic absorption term pu(t)n3Wy(R,T,t), temporal correlations are not
conserved since they decay to zero. Note that the dynamic absorption coefficient pu(t) is
still a scalar quantity. It generally follows from an angular average over all dynamic modes
of the system under investigation,

Z// kodQ 0 (k) [Bag(k. 4.0) — Bas(k, @.]n3(@) . (10.60)

plt 87m3

Hence, DWS can only provide a gobal view on the dynamics of an anisotropic system. We
neglect additional terms in Eq. (10.59) containing higher coefficients W,. Such terms are
small due to the assumption that t < 7.. The same applies to Fick’s law of Eq. (10.43),
so that we finally arrive at the diffusion equation with dynamic absorption,

[;T D”VH D, V2 + u(t)| W(R,T,t) = source , (10.61)

as the basis of DWS.
We calculate the absorption coefficient for director modes by combining Egs. (10.60)
and (10.56):
2kpT w* (Ae)?
Ir A3 JEL v

The numerial factor ;1 represents a dimensionless angular average,

- kodQ n3(k) N(eq, es, i) n3(q)
H= 8 e 5L+5H Z// 15(gs) ’ (10.69)

w(t) = pot with o = (10.62)

which is only a function of reduced Leslie viscosities «; /v and Ae/e;. We haven chosen
the factor such that @ = 1 if 75(qs) = v and Ae = 0. In the case of 7s(gs) = 7, we find
=1+ Ae/(4e,]/[1 + Ae/(2¢,]. In conventional thermotropic nematics i is always of
the order of one. Note that the absorption coeffient p(t) depends on viscosities only and
not at all on the Frank elastic constants. They cancel because they determine both the
static light scattering as well as the hydrodynamics of director modes. This is in contrast
to colloidal suspensions where pg = 2Dpw?/(¢*<). The mean free path ¢* characterizes
light diffusion and Dpg the Brownian motion of colloidal particles.
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For the nematic compound 5CB, v/ = 0.60 + .20 P was determined experimentally by
Kao et al. using DWS and Eq. (10.62) [170, 336]. This value is in good agreement with
the rotational viscosity v = 0.81 P of 5CB [58] demonstrating the validity of the theory.
The numerical factor amounts to g = 1.3 & 0.3 and can be verified roughly by Eq. (10.63)

Down to the experimental resolution of 4 x 1078 s, no deviation of the director dynamics
from the Erickson-Leslie theory was observed. It should show up in a different temporal
power law of p(t). It would be interesting to study systems with larger viscosities, like
polymer liquid crystals, and to search for such a deviation. As reported in Section 9.1,
colloidal particles, e.g., do not exhibit a simple diffusive behavior at short time scales.

10.2.6 What is the Transport Mean Free Path?

So far, we have not mentioned the transport mean free path at all. The derivation of the
diffusion equation just provides the diffusion tensor D. There are, at the moment, several
suggestions to define transport mean free paths, which we review shortly.

The first suggestion uses the classical relation D = ¢f*/(3m). With the help of an
appropriately averaged refractive index 7, two transport mean free paths can be introduced
according to £ = 3nD/c and £ = 3nD /c [336].

In Monte Carlo simulations of multiple scattering a large amount of photons are
launched along one particular direction specified by the unit vector . After a sufficient
amount of scattering events, the photons are in the diffusion regime. A transport mean
free path ¢*(&) can be defined as the displacement of the center of mass of the diffuse
photon cloud with respect to the starting point of the photons [336].

In isotropic diffusion ¢* enters explicitly via the boundary condition in Eq. (9.20). Its
generalization to anisotropic diffusion becomes very complicated, and we do not formulate
it here. Tiggelen et al. consider an infinite slab of thickness L, whose surface normal points
along the unit vector . They give an expression for the total transmission coefficient of
light summed over direction and polarization [364, 369],

20 - Dir Jup ()
L )

T(L) = (10.64)

where

@) =23 / 3 () [vga () - 9] A / k) dot (10.65)

a=1,2

defines some weighted average of the group velocities over the solid angle Q) corresponding
to transmitted photons, i.e., photons whose group velocities are directed outward from the
slab. We can call 3 - D /v the transport mean free path £*(2), so that Eq. (10.64) takes
the form of Ohm’s classical law T' = 2¢*/3L.
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Final Remarks

In this work we have demonstrated that inhomogeneous nematic liquid crystals are chal-
lenging systems for discovering and studying new physical effects and ideas. They are
not only interesting by themselves but they also offer the opportunity to explore different
fascinating research fields. As such, we could establish connections both to colloid science
and to wave propagation in disordered media.

Colloidal dispersions in a nematic liquid crystal introduce a new class of long-range two-
particle interactions mediated by the distorted director field. They are of either dipolar or
quadrupolar type depending on whether the single particles exhibit the dipole, Saturn-ring
or surface-ring configuration. The dipolar forces were verified in an excellent experiment
by P. Poulin et al. [276]. Via the well-known flexoelectric effect [235], strong director
distortions in the dipole configuration should induce an electric dipole associated with
each particle. It would be interesting to study, both theoretically and experimentally, how
this electric dipole contributes to the dipolar force. On the other hand, there exists a strong
short-range repulsion between particles due to the presence of a hyperbolic point defect
which prevents, e.g., water droplets from coalescing. Even above the nematic-isotropic
phase transition, liquid crystals mediate an attractive interaction at a length scale of 10 nm.
Its strength is easily controlled by temperature, and it produces an observable effect since
it can induce flocculation when the system is close to the phase transition.

To understand colloidal dispersions in nematics in detail, we have performed an ex-
tensive study of the three possible director configurations around a single particle. These
configurations are ideal objects to investigate the properties of topological point and line
defects. The dipolar structure should exhibit a twist in conventional calamitic compounds.
The transition from the dipole to the Saturn ring can be controlled, e.g., by a magnetic
field which presents a means to access the dynamics of topological defects. Furthermore,
we have studied how the strength of surface anchoring influences the director configura-
tion. Surface effects are of considerable importance in display technology, and there is
fundamental interest in understanding the coupling between liquid crystal molecules and
surfaces. In addition, we have clarified the mechanism due to which the saddle-splay term
in the Frank free energy promotes the formation of the surface-ring structure. Stokes drag
and Brownian motion in nematics have hardly been studied experimentally. Especially
the dipole configuration with its vector symmetry presents an appealing object. We have
calculated its Stokes drag for a fixed director field. However, we have speculated that for
small Ericksen numbers (Er < 1) flow-induced distortions of the director field result in
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corrections to the Stokes drag which are of the order of Er. Finally, we have demonstrated
that the dipole, consisting of the spherical particle and its companion point defect, also
exists in more complex geometries, and we have studied in detail how it forms.

On the other hand, multiply scattered light has a lot of fascinating implications, in-
cluding the possibility of localizing light in a disordered system, ”"hidden” correlations in
the speckle pattern of strongly scattering media, and photonic band gap materials. The
diffusion limit is a very successful regime to describe light transport in random media.
Diffusing-wave spectroscopy (DWS), which monitors the dynamics of turbid systems at
time scales much shorter than their characteristic times, and the imaging of large-scale
inhomogeneities present attractive applications for diffusing light. In this work we have
generalized the theory of diffuse correlation transport of light to random anisotropic me-
dia, and we have tested our formalism by applying it to director fluctuations in nematics
for which single light scattering is well understood. Many new phenomena appear and
questions arise which are worthwhile to explore. Is it possible to detect the equipartition
of energy on all available photon states in diffusing light? In nematics, it results in an
anisotropic distribution of energy on the light modes characterized by polarization and
direction of propagation. Can DWS illuminate the short time dynamics of director fluc-
tuations, and can theory predict a deviation from their conventional diffusive behavior?
We have thoroughly studied the diffusion constants of light as a function of magnetic field
and the three Frank elastic constants. Discotic materials, polymer liquid crystals, and the
nematic phase close to the nematic-smectic phase transition exhibit a large variation in
the three Frank constants. So far, these systems have not been explored in experiment.
All our calculations are performed within the weak-scattering approximation which implies
the popular picture of subsequent scattering from regions of director fluctuations well sep-
arated in space, reminiscent of scattering in colloidal systems. The question arises what
happens, both theoretically and experimentally, if one exceeds the validity of approxima-
tion? The coherent backscattering cone in aligned nematics has already been observed,
however, its anisotropy still needs to be studied both in experiment and in theory. A
numerical approach exists [151].

Beyond the uniformly aligned nematic, liquid crystals offer a wealth of multiply scat-
tering materials which suggest an application of radiative transfer theory and diffusive
light transport. We mention porous media filled with nematics [18], polymer dispersed
liquid crystals (PDLC) [85, 88], focal conic textures in cholesterics [398], and the Blue
Phase III [189, 217, 99, 327]. The last two materials are especially appealing because they
are chiral and possess an intrinsic periodic structure from which light is scattered. The
scattering cross section heavily depends on the circular polarization of light. It was found
recently that the Blue Phase III constitutes an isotropic phase with strong chiral fluctua-
tions. PDLCs have rather dramatic light scattering properties, which can be switched from
an opaque to a clear state by an external electric field. Scattering from PDLC films has
been investigated mostly in the anomalous diffraction and Rayleigh-Gans approximation
[88, 355, 172, 60, 61]. A complete understanding of this transition can only be obtained
from the equation of radiative transfer, which covers the regime from single to multiple
scattering completely. Also applications to lyotropic and polymeric liquid crystals and to
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Figure 10.9: (left) Spherical particles dispersed in a uniformly aligned nematic.
Anisotropic light diffusion originates in the host medium only. (right) Ellipsoidal particles
dispersed in an isotropic liquid. Anisotropic light diffusion originates in the scatterers only.

liquid crystalline colloids could be of interest.

Both topics treated in this work are strongly connected. Colloidal particles dispersed
in a nematic liquid crystal offer an appealing possibility to study multiple scattering of
light. In the so-called filled nematics [95, 183, 182, 19], silica spheres are clued together by
hydrogen and chemical bonds. As a result, they form a gel-like network which causes the
formation of domains with different director orientation. These domains strongly scatter
light. To test our ideas of diffusing light in an overall anisotropic system, we suggest,
however, two ideal situations. In the first one, spherical particles are dispersed in a uni-
formly aligned nematic, as depicted in Fig. 10.9 (left). The only source for anisotropic light
diffusion is the host medium and no longer the weak scattering from director fluctuations
which is negligible compared to the scattering from particles. Such a situation can be han-
dled with the formalism presented in Chapter 10. We only have to replace the structure
function of director fluctuations by the appropriate quantity for the particles. However, a
clear experiment requires the director field around the particles to be undistorted, in order
to exclude light scattering from the non-uniform director field. This might be achieved
by weak surface anchoring of the directors and by applying a strong magnetic field®>. The
opposite ideal case refers to liquid crystalline colloids. They consist of anisotropic par-
ticles uniformly aligned in an isotropic solvent, as illustrated in Fig. 10.9 (right). Here,
anisotropic light diffusion completely originates in the scatterers. It has recently been ob-
served in magnetorheological suspensions where paramagnetic particles form long chains
under the influence of an applied magnetic field [126].

The two ideal situations demonstrate explicitly that nematic colloidal dispersions and
multiple scattering of light provide topics which stimulate a wealth of new physical ideas.
A part of these ideas was treated in the present work.

2Single scattering from spherical particles with weak surface anchoring dispersed in an oriented nematic
was treated in Ref. [273] within the weak-scattering approximation. However, the authors neglect the
birefringence of the nematic phase which is crucial in our case.
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