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Notation

The following table shows the significant symbols used in this work. Local notations are
explained in the text.

Symbol Definition Dimension

Greek Letters:

Ω control volume [m2]
α Van-Genuchten parameter [1/m]
δ e-folding depth of root density [m]
ηi set of all neighboring nodes of node i [ - ]
γ surface tension [J/m2]
Γ control volume boundary [m]
λ mobility [(m s)/kg]
µ dynamic fluid viscosity [kg/(m s)]
ϕ porosity [ - ]
ϕt variable ϕt = exp(αψ) [ - ]
ψ pressure head [ m ]
Ψ total potential [ J/m3 ]
ρ fluid density [kg/m3]
ρU correlation function of random field U [ - ]
σ2U variance of random field U [U2]
τ transpiration demand [m/s]
τA amplitude of transpiration cycles [m/s]
Θ water content [ - ]
Θr residual water content [ - ]
Θs maximum water content [ - ]

Latin Letters:

bu scaling factor [ - ]
Bi box for node i [ - ]
∂Bi boundary of box Bi [ - ]
c normalized total concentration in domain [ - ]
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CU covariance function of random field U [U2]
CVU coefficient of variation of random field U [ - ]
d characteristic grain size diameter [m]
dr root density distribution [1/m]
dA area element [m]
dV volume element [m2]
Ei set of elements connected to node i [ - ]
F loghydraulic conductivity F = ln(Ks) [ - ]
f fluctuation of loghydraulic conductivity or zero-

mean loghydraulic conductivity
[ - ]

fc2,fc3 scaling factor [ - ]
fd frequency of infiltration/root water uptake cycles [ - ]
fd,c critical frequency of infiltration/root water uptake

cycles
[ - ]

fF stress-response function (Feddes-function) [ - ]
g vector of gravitational acceleration (0, 0,−g)T [m/s2]
g (scalar) gravitational acceleration [m/s2]
h1 -h4 critical pressure head values in Feddes-function [m]
H domain height [m]
i, j node of the finite element mesh [ - ]
IU integral scale of the random field U [m]
j Darcy flux, volume flux per cross-sectional area [m/s]
kr relative permeability [ - ]
k tensor of permeability [m2]
ks tensor of (intrinsic) permeability [m2]
K tensor of hydraulic conductivity [m/s]
Ks tensor of saturated hydraulic conductivity [m/s]
Ks,g geometric mean of saturated hydraulic conductivity [m/s]
M

(lump)
ij (lumped) mass matrix [ - ]

n Van - Genuchten parameter [ - ]
n unit normal vector [ - ]
nbunstr number of unstressed nodes [ - ]
Ni Ansatz function for node i [ - ]
M2,M3 root water uptake strategy [ - ]
p pressure [Pa]
pa air pressure [Pa]
pc capillary pressure [Pa]
pnon pressure of the non-wetting phase [Pa]
pu probability density function [ - ]
pwet pressure of the wetting phase [Pa]
pw soil water pressure [Pa]
q infiltration rate at top boundary [m/s]
qA amplitude of infiltration cycles [m/s]
ql local net infiltration rate q − Tz [m/s]
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qn net infiltration rate q − τ [m/s]
R sinks due to water extraction by roots [1/s]
R1 −R4 root water uptake parametrizations [1/s]
Rp local potential root water uptake rate [1/s]
Ra local actual root water uptake rate [1/s]
∆Rloss global deficit of uptake rate [1/s]
S saturation [ - ]
Se effective saturation [ - ]
t time [s]
t1-t3 characteristic time scales [s]
tDS timescale for formation of dry spots [s]
tRC time for recovery of dry spots [s]
Tpot global potential root water uptake [m2/s]
Tact global actual root water uptake [m2/s]
Tz potential root water uptake up to location z

( Tz =
∫ H
z Rpdz ) [m/s]

u unknown quantity [ - ]
U random field [U]
⟨U⟩ mean of random field [U]
Wi weighting function for node i [ - ]
x position vector [m]
x horizontal position [m]
z vertical position [m]

Subscripts:

U random field (f , α, ψ or S)
R1, R2 uptake strategy
0 characteristic quantity
p pressure
g gravity

Superscripts:

0 zeroth order
1 first order
′ fluctuations of random field
r reference soil



Abstract

The unsaturated zone is the part of the soil between the aquifer and the atmosphere. Unsat-
urated flow processes are highly dynamic and control e.g. the growth of plants or ground-
water recharge. Environmental problems such as the agricultural use of arid regions and
groundwater contamination call for sustainable solutions, which can only be achieved with
model predictions. To improve model quality, a sound understanding of unsaturated flow
processes and the used model approaches is necessary.

The present work is intended to contribute to the understanding of modeling unsaturated
flow with focus on the influence of water extraction by plant roots (root water uptake) and
soil structure. The model for root water uptake, in the following called standard or basic
approach, is determined by atmospheric demand, distribution of roots in the soil and soil
water status. Soil properties are described by autocorrelated random fields with layered
structure (1D) and multi-Gaussian or non multi-Gaussian distribution (2D).

For steady state flow in layered media, a semi-analytical first-order second-moment
solution for mean and variance of pressure head is presented. Flow in 2D heterogeneous
media is analyzed using numerical simulations where steady state and dynamic scenarios
with one or several drying-rewetting phases are carried out.

Results show that only under very wet conditions, the mean pressure head in the differently
structured fields is well predicted by the analytical solutions while variances of pressure
head are overestimated if the variance of the loghydraulic conductivity is large.

Under drier conditions, root water uptake and soil structure have combined effects on un-
saturated flow, which are not observed if one of these two factors is neglected, and which
cannot be predicted by first-order second-moment effective models. In particular, distinct re-
gions with pressure head values at the wilting point, where root water uptake is zero (local
wilting), occur in lenses of coarse material. Furthermore, root water uptake affects the vari-
ance of pressure head and saturation during drying and rewetting phases in comparison to
an equally dry state where root water uptake is not accounted for. Other effects introduced
by root water uptake arise from a decreasing local net infiltration rate with depth, caused by
the continuous extraction of water by roots within the root-zone. With decreasing local net
infiltration rate, which leads to drier states, the impact of soil structure increases. For water
flow, this leads e.g. to a depth dependency of the width of the infiltration front during rewet-
ting. For solute transport, earlier arrival, smaller tailing and less impact of the considered
structures of soil properties are observed due to root water uptake, when scenarios with and
without root water uptake, which have the same groundwater recharge rate, are compared.
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To test modeling approaches for root water uptake, alternative uptake strategies that allow
for compensation of stressed (uptake-reduced) locations by enhanced uptake at other, more
favorable locations are considered. These strategies affect the distribution of pressure head
and saturation, leading to smaller variances in the root-zone and attenuated local wilting,
but do not prevent local wilting.

The difficulty to evaluate the effect of local wilting as realistic physical phenomenon or un-
realistic model artifact, the fact that the trend of the impact of root water uptake on the
variability of flow depends on the uptake strategy and the lack of knowledge of how roots
really extract water in heterogeneous soils emphasize the need for a deeper understanding
of root functioning at smaller scales before macroscopic models for root water uptake can
be used for reliable predictions of flow in heterogeneous media.



Zusammenfassung

Die ungesättigte Zone ist der Bereich des Bodens zwischen Grundwasserleiter und Atmo-
sphäre. Strömungsprozesse in der ungesättigten Zone spielen u.a. eine tragende Rolle für
das Wachstum von Pflanzen, die Grundwasserneubildung oder den Eintrag von Wasser in
die Atmosphäre. Nachhaltige Lösungsstrategien für umweltpolitische Fragestellungen wie
z.B. die agrikulturelle Nutzung von ariden Gebieten oder die Verschmutzung von Grund-
wasserressourcen werden mit Hilfe von Modellvorhersagen entwickelt. Um die Genauigkeit
der Vorhersagen zu verbessern, ist ein fundiertes Verständnis von Strömungsprozessen in
der ungesättigten Zone und der verwendeten Modelle notwendig.

Die vorliegende Arbeit soll zur Verbesserung dieses Verständnisses beitragen. Im folgenden
wird die Modellierung von Strömungs- und Transportprozessen in der ungesättigten Zone
behandelt. Der Schwerpunkt liegt hierbei auf dem Zusammenwirken des Einflusses der
Wasseraufnahme von Wurzeln und der Bodenstruktur. Für die Modellierung der Wasserauf-
nahme von Wurzeln werden vereinfachte, makroskalige Modelle verwendet. Die Wasser-
aufnamerate ist, im hier als ‘Standard-Modell’ bezeichneten Ansatz, vom atmosphärischen
Bedarf, der Verteilung von Wurzeln und dem vorhandenen Wasser im Boden bestimmt.
Die Bodenparameter werden durch autokorrelierte Zufallsfelder mit geschichteter Struktur
(1D-Felder) und multi-Gaußschen oder nicht-multi-Gaußschen 2D-Feldern beschrieben.

Für die Strömung in geschichteten Medien werden semi-analytische (first-order second-
moment) Lösungen vorgestellt. Die Strömung in 2D heterogenen Strukturen wird mit-
tels numerischer Simulationen untersucht, wobei sowohl stationäre Randbedingungen
als auch zeitlich veränderliche Randbedingungen mit einem oder mehreren Trocknungs-
Bewässerungszyklen angelegt werden.

Die Ergebnisse zeigen, dass der Mittelwert des Drucks in den unterschiedlichen Strukturen,
mit den gewählten Parametern, nur unter sehr nassen Bedingungen gut von den analy-
tischen Lösungen wiedergegeben wird. Die Varianz des Drucks wird hingegen überschätzt,
sobald die Varianz der logarithmischen hydraulischen Leitfähigkeit zu groß wird.

Unter trockeneren Bedingungen nehmen Wasseraufnahme von Wurzeln und Bodenstruk-
tur gemeinsam Einfluss auf Strömungsprozesse in der ungesättigten Zone, was zu Effekten
führt, die unter Vernachlässigung einer der beiden Faktoren nicht beobachtet werden und
die von effektiven Modellen, welche auf first-order second-moment Lösungen beruhen,
nicht vorhergesagt werden. Ein Beispiel dafür ist das Auftreten von extrem trockenen
Stellen in aus grobem Material bestehenden Linsen, an denen der Wasserdruck Werte
am Welkpunkt erreicht und die Wasseraufnahme von Wurzeln null ist (lokales Welken).
Desweiteren beeinflusst die Wasseraufname von Wurzeln, im Vergleich zu gleich trockenen
Zuständen bei denen Wurzelaufnahme nicht berücksichtigt wird, die Varianz von Druck
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und Sättigung während Trocknungs- und Bewässerungsphasen. Weitere Effekte, die
unter Miteinbeziehung der Wasseraufnahme von Wurzeln beobachtet werden, entstehen
hauptsächlich aufgrund der kontinuierlichen Entnahme von Bodenwasser durch Wurzeln,
was zu einer abnehmenden lokalen Netto-Infiltrationsrate mit steigender Tiefe führt,
wodurch die Struktur mit steigender Tiefe an Einfluss gewinnt. Dies wirkt sich auf den
zeitlichen Verlauf der Varianz von Druck und Sättigung und den Transport von Schadstoff
aus. Die einzelnen Punkte werden im folgenden ausführlicher behandelt.

Lokales Welken

Aus grobem Material bestehende Linsen haben unter trockenen Bedingungen eine geringe
hydraulische Durchlässigkeit, wodurch es zum Aufstau von Wasser oberhalb der Linsen
kommt. Die maximale Wasserdruckhöhe auf der Linse ist aufgrund des lateralen Druck-
ausgleichs von den Druckwerten in der Umgebung bestimmt, welche wiederum aus der
angelegten Flussrandbedingung an der Oberfläche des Gebiets resultieren. Die Flussrate
von Regenwasser ins Innere der Linsen ist deshalb begrenzt. Falls lokal mehr Wasser von
Wurzeln aufgenommen wird, als von außen in Linsen aus grobem Material nachfliesst, ver-
ringert die Wasseraufnahme von Wurzeln kontinuierlich den Wasserdruck in diesen, inner-
halb der Wurzelzone situierten, Linsen bis der Welkpunkt, an dem die Wasserwurzelauf-
nahme null ist, erreicht wird. Linsen aus grobem Material können somit aufgrund der be-
grenzten Nachlieferung von Regenwasser ins Innere der Linsen austrocknen. Die trockenen
Stellen sind von relativ nassem Material umgeben. Da der Welkpunkt bei einer Druckhöhe
von −150m liegt, werden Mittelwert und Varianz der Druckhöhe beim Auftreten solcher
Stellen erheblich beeinflusst. Der Mittelwert sinkt ab, die Varianz zeigt extrem hohe Werte
auf. Das kritische Merkmal der Bodenstruktur, welches zum Auftreten lokal verwelkter
Stellen führt, ist das Vorhandensein von Linsen aus grobem Material, deren Länge die typ-
ische Längenskala, über die Wasser von Wurzeln gezogen werden kann, übertrifft. Diese
Eigenschaft der Struktur ist nicht notwendigerweise in der Korrelationslänge des hetero-
genen Parameterfeldes beinhaltet. Die räumliche (zwei-Punkt) bivariate Kopula hingegen
spiegelt die Längenskala der Strukturen für die einzelnen Parameterbereiche wieder. Die
Ausbildung von lokal ausgetrockneten Stellen könnte somit mithilfe der räumlichen zwei-
Punkt bivariaten Kopula vorhergesagt werden.

Eine Zeitskala für die Ausbildung solcher Stellen während Trocknungsphasen kann mit-
tels einer charakteristischen Zeitskala für Wasserwurzelaufnahme abgeschätzt werden.
Der Zeitraum innerhalb derer eine Linse während Bewässerungsphasen wiederaufgefüllt
wird, wird von der verwendeten charakteristischen Zeitskala für gravitationsbestimmte
Strömung erheblich unterschätzt. Bei periodischen Trocknungs-Bewässerungszyklen lässt
sich eine kritische Frequenz, unterhalb derer ausgetrocknete Stellen auftreten, ableiten.
Da in tieferen Bodenschichten, aufgrund einer verspäteten Ankunft der Infiltrationsfront,
Trocknungs- und Bewässerungsphasen nicht voneinander getrennt werden können, gilt
diese Abschätzung nur für nah an der Oberfläche gelegene Schichten.
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Das Auftreten lokal verwelkter Stellen hat unter Verwendung des Standard-Modells für
Wurzelaufnahme eine Verringerung der global von Planzen aufgenommenen Wassermenge
zur Folge, so dass der atmosphärische Bedarf an Wasser nicht gedeckt werden kann. Die
Simulationsergebnisse zeigen, dass die lokale aktuelle Wasseraufnahme während Trock-
nungsphasen verringert ist. Auch wenn der Ernteertrag, der mit der globalen (über das
Gebiet integrierten) aktuellen Wasseraufnahme verbunden ist, in den durchgeführten Test-
Szenarien kaum betroffen ist, kann man sich jedoch darauf basierend, Szenarien vorstellen
in denen das Auftreten lokal verwelkter Stellen den jährlichen Ernteertrag massgeblich re-
duziert. Dies könnte z.B. der Fall sein, wenn Wurzeln mit tieferer Reichweite, Bodenstruk-
turen mit großen Linsen, die aus gröberem Material bestehen oder Szenarien mit extrem
ausgedehnten Trocknungsphasen miteinbezogen würden.

Experimentelle Studien besagen, dass Pflanzen eine reduzierte Aufnahmerate aufgrund von
auftretendem Stress an oberen Bodenschichten durch erhöhte Aufnahme in unteren Schicht-
en kompensieren können, so dass die globale aktuelle Aufnahme dem atmosphärischen Be-
darf gegenüber kein Defizit aufweist. Auf der Annahme basierend, dass Pflanzen sowohl
lokal auftretenden Stress an bestimmten Stellen ausgleichen können, wird das Standard-
Modell für Wasserwurzelaufnahme (Strategie 1) mit alternativen Modellen verglichen, die
Kompensationsmechanismen beinhalten. Diese hängen von der Sättigung (Strategie 2) bzw.
von der relativen Permeabilität (Strategy 3) ab oder verteilen die Differenz zwischen glob-
aler aktueller und globaler potentieller Aufnahme gleichmässig auf ungestresste Stellen um
(Strategie 4). Der Kompensationsprozess ist so implementiert, dass die globale (über das
Gebiet integrierte) Menge an aufgenommenem Wasser dem potentiellen, von der Atmo-
sphäre vorgegebenem Wert entspricht. Lokal verwelkte Stellen treten auch mit den alter-
nativen Ansätzen für Wasserwurzelaufnahme auf, wobei die Bildung mit Strategie 2 und
3, die, im Vergleich zum Standard-Modell, zu einer geringeren Aufnahme an ungünsti-
gen und einer erhöhten Aufnahme an günstigen Stellen führen, abgeschwächt wird. Das
Auftreten der trockenen Stellen wird mit diesen Strategien somit in einigen Fällen, jedoch
nicht grundsätzlich, verhindert.

Im Allgemeinen erscheinen die mit den oben beschriebenen Modellansätzen erlangten
Ergebnisse diskussionswürdig. Eine nach dem Standard-Modell vorhergesagte Ver-
ringerung des Ernteertrags erscheint unrealistisch, vor allem bei stationären Randbe-
dingungen und unter Anbetracht dass die trockenen Stellen lokal auftreten und der
Gesamtwassergehalt im Gebiet einen gewissen Grenzwert nicht unterschreitet. Daher
gewinnt die Einbeziehung von Kompensationsmechanismen in heterogenen Böden an
Bedeutung. Dies könnte möglicherweise zu einer Überschätzung des Ernteertrags führen,
falls Pflanzen eine Reduktion der Wasserwurzelaufnahme aufgrund von Stress nicht
vollständig ausgleichen können. Zudem treten ausgetrocknete Stellen mit Druckwerten
am Welkpunkt auch bei Verwendung der alternativen Modelle für Wasseraufnahme von
Wurzeln auf. Da diese trockenen Stellen von nassem Material umgeben sind, erscheinen sie
ebenfalls unrealistisch. Das eigentliche Problem ist jedoch, dass die nötigen Informationen,
solche Effekte als realistisch oder unrealistisch einzuordnen zu können, nicht vorhanden
sind. Dies lässt schlussfolgern, dass makroskalige Modelle für die Wasseraufnahme von
Wurzeln, deren Aufnahmerate lokal festgelegt wird, in homogenen Böden zwar gut
verwendbar sein mögen, jedoch in heterogenen Böden zu Effekten führen, die die generelle
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Gültigkeit des konzeptionellen Modells in Frage stellen. Für heterogene Medien wären
Wurzelaufnahmemodelle, die die Reaktion des Gesamtsystems berücksichtigen, besser
geeignet. Ob das Auftreten lokal ausgetrockneter Stellen in bestimmten Bodenstrukturen
tatsächlich ein Modellartefakt ist und in welchem Ausmaß Kompensation existiert, kann
nur unter Miteinbeziehung boden-physikalischer und pflanzen-physiologischer Vorgänge
beurteilt werden. Diese sind auf größeren Skalen einerseits schwierig einzubeziehen und
anderseits in heterogenen Medien kaum erforscht.

Schadstofftransport

Die, aus den Strömungssimulationen abgeleiteten, stationären Verteilungen der Darcy-
Flüsse (in Gaußschen und nicht-Gaußschen Feldern) werden für die Durchführung eines
numerischen Transportexperiments verwendet. An der Oberfläche wird ein Schadstoffpuls
ins Gebiet eingelassen und unterhalb der Wurzelzone, oberhalb des Grundwasserspiegels
aufgezeichnet. Fluss-gemittelte Durchbruchskurven (die zeitliche Ableitung der gesamten,
normalisierten Konzentration im Gebiet) werden mit Blick auf Einfluss der Wasseraufnahme
von Wurzeln und nicht-Gaußscher Strukturen untersucht. Es zeigt sich, dass beide Faktoren
den Transport von Schadstoff in den durchgeführten Szenarien beeinflussen.

Der Schadstoff durchquert Felder, die unter den angelegten Bedingungen verbundene Pfade
aus gut durchlässigem Material und Linsen aus schlecht durchlässigem Material besitzen,
am schnellsten und Felder, die das entgegengesetzte Muster aufweisen, am langsamsten.
Generell ist die Fließzeit durch die Infiltrationsrate an der oberen Randbedingung bestimmt.
Zwischen den einzelnen Strukturen beobachtete Unterschiede nehmen mit fallender Infiltra-
tionsrate zu. Daher befinden sich, bei Miteinbeziehung der Wasseraufnahme von Wurzeln,
sowohl die Ankunftszeiten der Hauptmasse des Schadstoffs als auch beobachtete Unter-
schiede zwischen den verschiedenen Strukturen zwischen den Werten die sich mit Szenar-
ien ohne Wurzelaufnahme ergeben, deren Infiltrationsraten der Infiltrationsrate an der
oberen Randbedinungen bzw. der Netto-Infiltrationsrate im Wurzelszenario entsprechen.
Beim Vergleich zweier Szenarien im bewachsenem und unbewachsenem Boden mit dersel-
ben Grundwasserneubildungsrate, führt die Wasseraufnahme von Wurzeln in allen in Be-
tracht gezogenen Strukturen zu schnelleren Fließpfaden durch die Wurzelzone. Die Konzen-
tration, die von stagnanten Zonen im Boden zurückgehalten wird, ist in Feldern mit nassen
Linsen (unter den gegebenen Bedingungen) höher als in Feldern mit trockenen Linsen.
Da Wasserwurzelaufnahme die Durchlässigkeit in Linsen aus grobem Material verringert,
so dass weniger Schadstoff in diese Regionen gelangt, könnte die Wasseraufnahme von
Wurzeln die von der Struktur zurückgehaltene Konzentration in Feldern mit Linsen aus
grobem Material, die unter den angelegten Randbedingungen trocken sind, erniedrigen.

Die vorliegende Studie zeigt, dass Unterschiede im Transportverhalten zwischen den
einzelnen, betrachteten Strukturen existieren. Die oft gemachte Annahme einer multi-
Gaußschen Verteilung der Bodenparameter kann somit in einer Über- oder Unterschätzung
der Ankunftszeiten des Schadstoffs resultieren. Die Unterschiede bei der Ausbreitung des
Schadstoffs in Gaußschen und nicht-Gaußchen Strukturen spielen eine wichtige Rolle für
die Reaktionen, die der Schadstoff auf seinem Weg durch die ungesättigte Zone unterläuft.
Umso langsamer die Ausbreitungsgeschwindigkeit ist, desto mehr Reaktionen laufen
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ab und desto weiter schreitet der Abbau des Schadstoffs voran. In diesem Sinne ist die
Einbeziehung von Struktur sehr wichtig für die Abschätzung des Schadstoffeintrags ins
Grundwasser. Da sich bei gleicher Grundwasserneubildungsrate, unter Berücksichtigung
von Wurzeln schnellere Fließpfade ergeben, was wiederum den Abbau des Schadstoffs
beeinflusst, darf der Schadstoffeintrag ins Grundwasser nicht allein auf Neubildungsraten
basierend bestimmt werden. Beide Faktoren, das Vorhandensein von Wurzeln und der
Bodenstruktur sollten deshalb in der Modellierung berücksichtigt werden, wenn die Studie
auf Umweltprobleme in Verbindung mit Schadstofftransport gerichtet ist.

Variabilität von Druck und Sättigung

Die Verteilung des Wassergehalts im Boden, unter anderem durch Mittelwert und Varianz
beschrieben, charakterisiert das Strömungsverhalten von Wasser und geht in gekoppelte
Systeme, wie z.B. Klimamodelle, als wichtiger Parameter ein. Als weiterer Punkt wird daher
der Einfluss der Wasseraufnahme von Wurzeln und der Heterogenität der Bodenparameter
auf den Mittelwert und die Varianz der Druckhöhe und der Sättigung diskutiert.

Simulationen mit stationären Randbedingungen in 2D heterogenen Feldern ergeben, dass
die Varianz der Druckhöhe unter sehr nassen und sehr trockenen Bedingungen groß ist. Da
die hydraulische Leitfähigkeit von grobem Material mit zunehmender Trockenheit schneller
abnimmt als die hydraulische Leitfähigkeit von feinem Material, gibt es einen Bereich in
dem die Leitfähigkeit von grobem und feinem Material sehr ähnliche Werte annimmt, so
dass die Struktur wenig ausgeprägt und die Varianz der Druckhöhe klein ist. Außerhalb
dieses Bereichs (bei niedrigeren Wasserdruckwerten), sind trockenere Zustände generell mit
einer höheren Variabilität verbunden.

Unter transienten Bedingungen, während Trocknungsphasen, erhöht sich die Variabilität
von Druck und Sättigung. Während der Bewässerung ist der Trockenheitszustand des Bo-
dens nicht zwangsläufig mit der Variabilität verbunden, da sich in mehrdimensional struk-
turierten Böden eine heterogene Bewässerungsfront entwickelt, welche bei Eintreffen in
einer bestimmten Bodenschicht, die Varianz von Druck und Sättigung in dieser Schicht
erhöht. Wenn die Infiltrationsfront die jeweilige Schicht passiert hat, sinkt die Varianz von
Druck und Sättigung wieder ab. Je nach Aufnahmestrategie der Wurzeln werden während
des Trocknens und Bewässerns leicht erhöhte oder erniedrigte Varianzen des Drucks und
der Sättigung im Vergleich zum unbewachsenen Fall beobachtet. Die betrachteten Struk-
turen der Bodenparameter beeinflussen Mittelwert und Varianz von Druck und Sättigung
nur wenig. Da Wasserwurzelaufnahme, im Vergleich zu einem gleich trockenen Zustand
im unbewachsenen Boden, Einfluss auf die Varianz der Sättigung nimmt, ändert sich die
Beziehung von Mittelwert und Varianz der Sättigung im bewachsenen Boden.

Der Punkt, an dem der mittlere Druck in einer bestimmten Bodenschicht nach einer Trock-
nungsphase anzusteigen beginnt (Minimum der Druckhöhe), entspricht dem ersten Ein-
treffen von Regenwasser in dieser Schicht. Das Maximum der Varianz kann als Maß für das
Eintreffen der mittleren Front in dieser Schicht gesehen werden. Der beobachtete Zeitversatz
zwischen Minimum des Mittelwerts und Maximum der Varianz des Drucks oder der Sätti-
gung kann somit als Maß für die Breite der Infiltrationsfront dienen. Die Frontbreite nimmt
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mit abnehmener Netto-Infiltrationsrate ab. Somit ist die Breite der Infiltrationsfront beim
Durchqueren der ungesättigten Zone im unbewachsenen Fall eher konstant, während die
Frontbreite im bewachsenen Fall mit der Tiefe zunimmt. Da sich die Frontbreite in Szenarien
mit Wasserwurzelaufnahme mit steigender Tiefe weitet, werden Vorhersagen von Ankunfts-
zeiten der Infiltrationsfront, die auf gewöhnlichen, effektiven Bodenparametern beruhen,
zunehmend schwieriger und ungenauer mit der Tiefe.

Der Variationskoeffizient der Druckhöhe ist in den analysierten Testfällen hauptsächlich
von der Varianz bestimmt, so dass er im Bezug auf das Minimum des mittleren Drucks
zeitlich versetzt sein Maximum erreicht. Der Variationskoeffizient der Sättigung hingegen
wird vom Mittelwert dominiert und erreicht seinen Höchstwert nur mit sehr kleinem
Zeitversatz zum Minimum der mittleren Sättigung.

Zusammenfassend lässt sich sagen, dass die Wasseraufnahme von Wurzeln und die
Heterogenität der Bodenparameter gemeinsam Strömungsprozesse in der ungesättigten
Zone beeinflussen, so dass keiner der Faktoren vernachlässigt werden kann, was bei
gross-skaligen Anwendungen oft der Fall ist. Die Schwierigkeit, das Auftreten lokal ver-
welkter Stellen, die hier mit allen berücksichtigten Wurzelmodellen auftreten, als realistisch
oder unrealistisch einordnen zu können, die Tatsache dass der Einfluss von Wurzeln auf
die Variabilität von Druck und Sättigung von der Aufnahmestrategie abhängt und die
vorherrschende Wissenslücke, tatächliche Entwicklungs- und Aufnahmemechanismen
von Wurzeln in heterogenen Böden betreffend, verdeutlichen die Notwendigkeit eines
tieferen Verständnisses für die Funktionsweise von Wurzeln auf kleinen Skalen bevor
makroskalige Modelle für die Wasseraufnahme von Wurzeln für verlässliche Vorhersagen
von Stömungsprozessen in heterogenen Böden verwendet werden können.

Ausblick

Ein konzeptionelles Verständnis für die Funktionsweise von Wurzeln in heterogenen Böden
könnte mittels physikalischer Experimente und numerischer Studien vorangetrieben wer-
den. Experimente auf der Labor- und Feldskala, aber vor allem auch mikroskalige biolo-
gische Erkenntnisse über Wurzelverhalten in heterogenen Strukturen könnten von Wert
sein. Besonders interessant wäre die Messung kritischer Druckwerte unterhalb derer re-
duzierte oder keine Aufnahme stattfindet, und deren Abhängigkeit von Bodenparametern.

Auf der numerischen Seite erscheint die Verwendung von makroskaligen Modellen,
die Wurzelaufname als Optimierungsproblem behandeln, oder die Verwendung von
mikroskaligen Modellen, die Wasserwurzelaufnahme in Folge von Druckgradienten zwi-
schen Boden und Wurzel simulieren, vielversprechend. Nach den Ergebnissen dieser Ar-
beit zufolge sollte sich die Analyse auf das Verhalten eines Wurzelsystems in der Nähe von
Linsen aus grobem Material konzentrieren. Desweiteren wäre die Entwicklung der Varianz
von Druck und Sättigung in unterschiedlich strukturierten Böden unter Verwendung eines
mikroskaligen Modells interessant.



1 Introduction

1.1 Motivation

The development of efficient crop-production and sustainable irrigation strategies is of ma-
jor importance due to a growing world population and decreasing water resources. In order
to increase the agricultural yield, fertilizers and pesticides are often intensively used, which
could contaminate groundwater resources. Finding solutions for environmental problems
such as the agricultural use of arid regions or groundwater contamination becomes more
difficult in the future since heat waves and heavy rainfall are expected to intensify (IPCC,
2007). The formation of cracks in the soil during dry periods makes groundwater resources
more vulnerable for contamination during events of heavy rainfall. Reduced availability of
water in the soil limits the uptake of water by roots and causes restricted growth or even
wilting of plants. To be able to handle these problems, reliable model predictions of flow
and transport processes in the upper part of the soil are necessary.

The part of the soil between aquifer and atmosphere is referred to as unsaturated zone. Flow
processes are controlled by precipitation, evapotranspiration and groundwater recharge.
Figure 1.1 shows a sketch of the unsaturated soil zone including relevant flow processes.
Water movement is indicated by dark blue arrows, exchange with the atmosphere addi-
tionally by light blue arrows. Two important factors for unsaturated flow, which are in the
focus of this work, are the soil heterogeneity and the vegetation whoose roots extract soil
water (denoted by ‘root water uptake’ (RWU)). Note that the terms ‘heterogeneity’ and ‘soil
structure’ are used interchangeably in this study.
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Figure 1.1: Sketch of the unsaturated zone. Flow processes are determined by precipitation, evapo-
transpiration and groundwater recharge. Movement of water is indicated by dark blue
arrows, exchange with the atmosphere additionally by light blue arrows.

Motivated by different fields of interest, root water uptake and heterogeneity of the soil
have often been analyzed separately. Studies on large-scale root water uptake usually ad-
dress crop production while studies which include soil heterogeneity are mostly motivated
by contaminant transport. However, root water uptake and soil structure have combined
effects on unsaturated flow. As the supply of water is essential for plants to live and grow,
root water uptake is affected by soil heterogeneity. Conversely, plant roots influence the soil
structure by changing the soil moisture and by growing into the soil. Therefore, this work
jointly considers the influence of root water uptake and soil heterogeneity on unsaturated
flow.

The approach used to model the system depends on the scale of interest. Root water uptake
and heterogeneity affect unsaturated water flow on a local scale: Roots extract water at dis-
tinct locations and flow pathways of water depend on the pore geometry of the soil matrix.
However, for most environmental applications, larger scales of several meters or kilometers
are relevant. With increasing size of the system, factors which are crucial on small scales
may become less important and large-scale pattern such as the variation of soil properties
or percentage of root mass per depth might dominate. Small-scale processes are thus often
neglected, and simplified or averaged approaches, so-called upscaled models, are preferably
used when environmental problems are treated. These model approaches also vary with re-
spect to the considered level of complexity. Artificial terms, which are supposed to represent
small-scale processes on larger scales, are sometimes introduced to governing equations.
When choosing a model for large-scale environmental applications, it is important that the
considered approach be as simple as possible but does not lead to a loss of relevant informa-
tion. The use of large-scale models gets problematic if effects exist that cannot be reproduced
by the simplified model for example due to neglected interactions between flow-influencing
factors. Using more complex large-scale approaches can be problematic as well because ar-
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tifacts may be introduced to predictions by insufficiently represented processes which orig-
inate on smaller scales. Nevertheless, such approaches are used on large scales, but to make
reliable predictions, conditions which restrict the applicability of upscaled models should
be well defined.

In the following sections, micro- and macroscale model concepts for root water uptake and
heterogeneity are explained.

1.2 Root water uptake

Soil water enters the root induced by pressure and osmotic gradients between the surface
and the inner part of the root. Subsequently, water travels to the xylem where it is transport-
ed up to the foliage. There, water evaporates into the atmosphere through openings at the
leaves, so called stomata. Figure 1.2 illustrates the water cycle in a plant.

Figure 1.2: Water cycle in a plant: water is taken up at the roots of a plant and transported to the
leaves where it evaporates into the surrounding air.

Thus, stomata control the transpiration of plants. If they are covered with water during rain-
fall cycles, transpiration is assumed to be inhibited. If the stomata are exposed to the atmo-
sphere, the demand of water by plants is driven by meteorological variables, such as solar
radiation, air temperature and wind speed, but also plant parameters, such as an average
leaf area. Root water uptake is assumed to be controlled by the highest occurring resistance.
Under wet conditions, the highest hydraulic resistance occurs in the leaf with water evap-
oration into the surrounding air and uptake is demand-controlled (Hopmans and Bristow,
2002). Depending on the geometry and distribution of the root system as well as the up-
take strategy, the extraction rate is distributed over the root zone such that the integrated
global uptake rate equals the atmospheric demand. Measurement data suggest that the root



4 Introduction

surface area rather than the root length distribution is the measure of root geometry that
determines uptake. Furthermore, uptake takes place predominantly within 30 cm from the
root tip (Varney and Canny, 1993). As roots grow and decay, the active root distribution in
the soil develops with time. Very little is known about the strategies how roots develop and
take up water in a variably saturated soil.

As the soil dries out, the decreasing unsaturated soil hydraulic conductivity and the possibly
decreasing root-soil contact lead to an increased flow resistance. Unfavorable conditions,
such as water scarcity or lack of oxygen that occur under extremely wet conditions, can
induce stomata closure and thereby cause a reduction of the uptake rate (Augé and Moore,
2002). Under so-called stressed conditions, root water uptake is, therefore, supply-controlled
(Hopmans and Bristow, 2002). Experimental data suggest, that root systems can compensate
local reduction of the water uptake rate by increased extraction at other locations where
sufficient water is available (e.g. Taylor and Kleppner, 1978; Hasegawa and Yoshida, 1982;
English and Raja, 1996; Stikic et al., 2003; Leib et al., 2006). The exact mechanism is, however,
barely understood.

Clearly, the extraction of water by plant roots is a complex process. Moreover, knowledge
gaps exist regarding the exact mechanisms of root functioning.

Model concepts for root water uptake were developed on different scales. Reviews on water
transpiration have been given by, e.g., Nimah and Hanks (1973), Molz (1981), Passioura
(1988), Hopmans and Bristow (2002), Cardon and Letey (1992), Wang and Smith (2004) and
Raats (2007). Generally, complexity of models decreases with domain size. Approaches to
model water uptake by plant roots are mainly divided into two types: Microscopic models
where root water uptake is determined by radial water flow in response to water potential
gradients, and macroscopic approaches which consider extraction of water by the root zone
as a volumetric sink term in the water mass balance.

On the scale of a single root, three types of models are used to model water flow. The first
accounts for water flow inside the root, the second type deals only with water flow in the
soil (both are described by, e.g., Hopmans and Bristow (2002) and Raats (2007)). The third
type combines both (Roose and Fowler, 2004; Doussan et al., 2006). These models are based
on the work of, e.g., Gardner (1960), Philip (1966), Dalton et al. (1975) and Herkelrath et al.
(1977a,b). Gradients between the water potential inside the root and water potential in the
soil at the root surface are assumed to drive radial flow of water towards the root. Water
flux into the root is balanced by the axial flux along the root. Water flow from roots to leaves
through the xylem is often assumed to be described by Poiseuilles law (Roose and Schnepf,
2008).

Models for a single root can be extended to work on the root-system (plant) scale. Addition-
ally, growth mechanisms are considered in different ways. Initially, such models were used
to compare observed root systems with simulated ones. Later, the goal was rather, to ob-
tain average properties and characteristics of root water uptake (Roose and Schnepf, 2008).
Recently, models on a root-system scale were developed which couple micro- and macro
approaches, in particular the flow of soil water, determined by Richards’ equation and wa-
ter transport in the xylem of a three-dimensional root network. A volumetric sink term for
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each soil node is determined by summation over the radial fluxes of root segments, which
are located in the corresponding soil voxel (Javaux et al., 2008). Compensation patterns oc-
cur due to the root architecture and an optimized distribution of the extraction rate. Javaux
et al. (2008) illustrated that the macroscopic extraction rate derived from the fully resolved
three-dimensional root uptake model follows the root density distribution as long as suffi-
cient water is available. As the soil is depleted by water, the extraction pattern changes and
the maximum average uptake rate moves further down.

In macroscale approaches, the water extraction by plant roots is usually modeled as a spatio-
temporally uniform or variable sink term in the water balance equation (Whisler et al., 1968;
Molz and Remson, 1970; Verburg et al., 1996). Hopmans and Bristow (2002) reviewed larger
scale crop models, water and nutrient uptake models. The volumetric sink term is obtained
in two ways, referred to as so-called Type 1 and Type 2 models.

Based on the radial water flow to a single root, Type 1 models, introduced by Nimah and
Hanks (1973), use an Ohm’s law analogy where uptake is determined by three factors. First,
a difference in water potential between the soil and the plant, second, a network of resis-
tances, consisting of the resistance to flow in the soil and the resistance to flow across the
root surface and through the roots, and third, a water flow- geometry term (e.g. Guswa,
2005; Green et al., 2006). Since the root resistance is included to determine the transition
from potential to reduced uptake, compensation of reduced uptake due to local stress is
not introduced to the model but results automatically as a consequence of the root water
uptake formulation (e.g. Hopmans and Bristow, 2002; Guswa, 2005). However, microscale-
modeling as well as macroscale-Type1 approaches require information about root geometry
which is generally not available in detail. Moreover, on larger scales of several meters or
kilometers, such detailed models would overload current computation power and strongly
simplified approaches need to be used. Type 1 models are thus more suitable for water flow
calculations on the root system scale.

On the plot and field scale, Type 2 models, which are based on empirical relations, are fa-
vored. In such models, root water uptake is commonly assumed to be dependent on avail-
able water in the soil and the root distribution function that describes the relative presence
of roots as a function of depth. The root distribution function can be modeled either as a
one-dimensional (e.g. Molz, 1981; Hoffman and Genuchten, 1983) or a multi-dimensional
root density distribution function (e.g. Coelho and Or, 1996; Vrugt et al., 001a,b). Beyond
the one-dimensional descriptions, an exponentially decreasing function with depth is most
common. Specific active root distributions that take only the parts of roots into accout, which
are actively involved in root water uptake, were reported e.g. by Hoogland et al. (1981) and
Raats (1974). A temporally changing root distribution function was investigated by Claus-
nitzer and Hopmans (1994). If root distribution functions are, however, too complex, they
run into the same problems as Type 1 models. Data on root geometry is not available and
simulations are extremely demanding which restricts such models to a scale of root systems.

To account for water stress, the reduction factor approach, proposed by Feddes et al. (1976)
is the most popular. In this approach, the potential transpiration is multiplied by a factor
which is equal to one if conditions are favorable and, depending on water pressure head or
saturation, decreases under unfavorable conditions. Different parametrizations and shapes
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are discussed (e.g. Skaggs et al., 2006). Feddes et al. (1976) proposed a linear reduction of
uptake with pressure head under extremely wet and dry conditions due to oxygen or water
deficit, characterized by four critical values of pressure head. In the range of intermediate
values, the reduction factor is constant and equals one. An alternative smooth, S-shaped
reduction function was suggested by van Genuchten (1987).

Compensation for stressed conditions was rarely included in macroscale vadose zone mod-
els. In the study of Li et al. (2001) and Bouten (1995), the potential transpiration rate was
weighted according to a stress index which was depending on root distribution and soil
water availability or saturation. Katul et al. (1997) compared different weighting factors,
amongst others, a factor depending on the saturation with a weighting factor determined
by the hydraulic conductivity. Jarvis (1994), Pang and Letey (1998) and Simunek and Hop-
mans (2009) also used a weighted stress index and allowed for partial compensation beyond
a critical value. A section about macro-models which include compensation mechanisms can
be found in the review of Skaggs et al. (2006).

Analytical solutions for unsaturated flow in homogeneous soil with water extraction by
plant roots modeled by a sink term were first presented by Warrick (1974) and extended by,
e.g., Basha (1999), Braddock and Parlange (2000), Braddock and Parlange (2003) and Yuan
and Lu (2005). The dynamics of vegetation at the scale of ecosystems were analyzed by, e.g.,
Rodriguez-Iturbe et al. (1999), Laio et al. (2001), Porporato et al. (2001) and Guswa et al.
(2002). The mean intensity, duration and frequency of periods with water deficit could be
quantitatively described to derive optimal conditions for vegetation (e.g. Porporato et al.,
2004).

1.3 Flow in heterogeneous soil

Soil heterogeneity and structure were often neglected in vadose zone models which consider
root water uptake (Wang and Smith, 2004). However, variability of soil hydraulic properties
significantly affects flow processes. An overview of possibilities to describe soil heterogene-
ity is given in this section.

Natural soils show spatial and temporal variations in the arrangement of pore sizes and con-
sisting materials. Soil hydraulic properties, thus differ in space and show various structures.
Samples of different soil profiles are illustrated in Figure 1.3.

One distinguishes between micro-heterogeneity which refers to the heterogeneity at the
pore-scale, like the existence of macropores and elements which form a separate pore net-
work, and macro-heterogeneity which comprises the spatial variability of macroscopic soil
properties which determine flow at a macroscopic scale. The two types of soil heterogeneity
require different modeling approaches (Feyen et al., 1998). Reviews on different descrip-
tions, upscaling approaches and model concepts were given by, e.g., Feyen et al. (1998),
Vereecken et al. (2007b) and Harter and Yeh (1998).
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Figure 1.3: Pictures of soil columns illustrating the heterogeneity of the soil. Note that the two pro-
files on the right side are grown with roots. The pictures were taken in the Soil Museum
Wageningen.

On the pore scale, detailed knowledge of the soil parameter distribution is available by
methods such as magnetic resonance imaging (MRI). Due to the large differences between
the flow behavior in the soil and in macropores, the classical continuum approach cannot be
applied to micro-heterogeneous structures. Often dual - porosity models are used and have
shown potential to reproduce measured data on flow and transport.

On the macroscale, soil parameters are assumed to vary continuously and Richards equation
can be applied to model flow. However, field tracer tests have demonstrated that flow pat-
terns are extremely complex and irregular (Feyen et al., 1998). Amongst others, effects such
as horizontal redistribution of solutes (Schulin et al., 1987), preferential movement through
macropores (Flury et al., 1995) or fingered flow (Ritsema et al., 1993), were observed. Several
concepts have been developed to model flow in a macroscale heterogeneous soil, they can
be divided into two main classes. First, a deterministic approach, where definite values of
the varying property are attributed to each point of space assuming that slight variations
are unimportant or assumed to be represented by an equivalent homogeneous medium
obtained by upscaling techniques. A field specific distribution of measured soil parameter
values can be used as well. The second class comprises stochastic approaches which essen-
tially differ from deterministic approaches by assuming that each property is described by a
distribution at each point of space. In contrast to the deterministic approach, the stochastic
approach accounts for the variability of soil parameters and is able to quantify emerging un-
certainties which is crucial on the field scale, since only few measurement points contribute
to the estimation of soil properties.

In the stochastic approach, flow processes are modeled by the same continuum equations
that are used in a homogeneous field (Feyen et al., 1998). The soil hydraulic parameters
are assumed to be random space functions. Often, based on the concept of Miller-similar
soils (Miller and Miller, 1956) only differing in scale but not in pore geometry, variability of
soil properties is described by a scale factor which relates the constitutive relationships at
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different locations to an average hydraulic function. In fact, only the linear components of
hydraulic functions such as the saturated hydraulic conductivity are described by scaling
factors (Tillotson and Nielsen, 1984). The scale factors in the similarity concept are modeled
as random fields. As a consequence, the hydraulic variables such as pressure and saturation
are also random space functions, representing the spatial heterogeneity of the system.

For unsaturated flow without root water uptake, this topic has been addressed by, e.g., Da-
gan and Bresler (1979). Their pioneering work resulted in a large body of literature. The
objective is generally to derive stochastic properties of flow variables (pressure head, water
content, water flux) and effective flow parameters which are constant in space and predict
mean water flow. Approaches to reach this goal mainly differ between analytical solutions
and numerical studies.

Steady state flow was analyzed analytically by, e.g., Yeh et al. (1985a,b,c) using a pertur-
bation approximation. The variance of hydraulic variables and effective hydraulic conduc-
tivity were analyzed as function of the statistical properties and mean flow characteristics.
Analytical solutions for the mean and the variance of pressure head in a multiple layered
unsaturated soil were derived by Lu and Zhang (2004) and Lu et al. (2007). Mantoglou and
Gelhar (1987a,b,c) extended the solutions of Yeh et al. (1985a,b,c) to transient conditions em-
phasizing the effects of vertical heterogeneity on the effective soil hydraulic properties.

The most common way to numerically approach stochastic models is the Monte Carlo
method. For a Monte Carlo study, numerous realizations of parameter fields with the de-
sired statistical properties, representing the soil, need to be generated. In each field, the flow
equation is numerically solved. Subsequently, mean and variance of the obtained hydraulic
variables are calculated by averaging over the realizations. They provide a measure on the
mean flow behavior in a parameter field with variable soil hydraulic properties including
uncertainties of predictions. Since the computational effort is high if flow in higher dimen-
sional domains is analyzed, research is increasingly conducted in the direction of alternative
stochastic approaches where analytical expressions or measurement data are included to re-
duce the necessary computation power.

Various numerical studies on unsaturated flow in heterogeneous soils (Warrick et al., 1977;
Warrick and Amoozegar-Fard, 1979; Peck et al., 1977; Hopmans et al., 1988) tested the per-
formance of effective parameters derived by analytical solutions (Anderson and Shapiro,
1983; Hopmans et al., 1988; Polmann et al., 1991) or investigated more complex structures
such as preferential flow in 2D isotropic heterogeneous domains (e.g. Roth, 1995; Birkholzer
and Tsang, 1997). It was found, that the analytical predictions, made by the stochastic theory,
agree well with the averaged profiles of the simulated heterogeneous pressure head distri-
butions. The underlying assumptions of the perturbation approximations such as small vari-
ability of the soil parameters were found not to be critical in the test cases examined. Obser-
vations on variance of pressure, hysteresis and large-scale anisotropy of effective hydraulic
conductivities could be confirmed by the detailed simulations as well (Polmann et al., 1991).
The standard deviation of the pressure head increases generally with increasing variance of
the loghydraulic saturated conductivity and with decreasing water content. With increasing
dimensionality of the soil domain, the standard deviation of the pressure head decreases
(Hopmans et al., 1988).
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In the early studies, scaling factors were assumed to be statistically independent. As analy-
sis of data on soil parameters show that scale factors can be autocorrelated (e.g. Hopmans,
1987), correlated random fields were used in later work (e.g. Hopmans et al., 1988). Vari-
ability of soil parameters has been described mostly with multi-Gaussian correlated ran-
dom fields. In two dimensions, multi-Gaussian structure manifests as isolated extreme val-
ues. Nevertheless, under very dry conditions, processes such as the formation of cracks or
shrinking of roots may create macropores which result in connected pathways that are not
captured by multi-Gaussian fields. Neuweiler and Cirpka (2005) and Neuweiler and Vogel
(2007) considered non-multi-Gaussian fields with connected high and low extreme values
in comparison with Gaussian fields. Effective hydraulic conductivities were determined by
homogenization theory. It was found that connectivity of extreme values does only have a
significant influence on the mean flow if the soil is very dry.

The flow pattern in two-dimensional Miller-similar random parameter fields was analyzed
by, e.g., Roth (1995) and Birkholzer and Tsang (1997). Miller-similarity involves a correlation
of the saturated hydraulic conductivity and the entry pressure. Depending on the relative
specific discharge (compared with saturated conductivity), a network of flow channels de-
velops. The hydraulic conductivity of coarse material is under saturated conditions larger
than that of fine material but decreases due to the lower air entry pressure stronger with
decreasing saturation than that of fine material. This leads to a crossover of the hydraulic
conductivity of coarse and that of fine material at a specific saturation, as illustrated by Roth
(1995). This means that the hydraulic conductivity of coarse material is smaller than the
hydraulic conductivity of fine material for saturations lower than the crossover point. At
intermediate saturations close to the crossover, the variance of the conductivity has a mini-
mum and the soil structure behaves as rather homogeneous. At very dry states, the pattern
of the conductivity at fully saturated conditions is inverted. Correspondingly changes the
location and pattern of the flow channels.

The standard deviation of soil moisture as function of the mean value was analyzed inten-
sively by experimental and numerical studies. Increasing (e.g. Bell et al., 1980; Famiglietti
et al., 1998; Oldak et al., 2002) as well as decreasing (e.g. Famiglietti et al., 1999; Choi and
Jacobs, 2007) variability with decreasing mean saturation was found. During drying from
very wet states, σS(< S >) was shown to follow a parabolic curve. σS initially increases
until a maximum is reached and decreases during further drying, (e.g. Ryu and Famiglietti,
2005; Choi and Jacobs, 2007; Choi et al., 2007; Harter and Zhang, 1999). Explanations were
given based on empirical (Hu and Islam, 1998) and statistical analysis of field data (e.g. Ryu
and Famiglietti, 2005) as well as stochastic theories (Vereecken et al., 2007a). It was shown
that σS(< S >) depends on the soil hydraulic parameters and that the pore-size distribution
determines the maximum value of σS .
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1.4 Root water uptake in heterogeneous soils

In heterogeneous media, the assumptions of a uniform distribution and uptake ability of
roots might not be given. On the pore-scale, roots are found clustered in cracks and bio-
pores (Taylor, 1974; Wang and Smith, 2004). The results by Hatano et al. (1988) and Hatano
and Sakuma (1990) indicate that the root distribution depends on the distribution of macro-
pores. The effect of macropores on root water uptake pattern is, however, unclear. On one
hand, the soil volume explored by a root system is much smaller compared to a uniform
root distribution. Additionally, roots may be in poor contact with the soil (Herkelrath et al.,
1977b) and unfavorable soil structure might induce roots to send growth reducing signals
(Passioura, 2002). On the other hand, macropores provide the opportunity to reach deeply
located wet layers and nutrients (Cornish, 1993). The non-uniform distribution of roots and
uptake ability is assumed to influence root water uptake also on the macroscale. However,
a large knowledge gap exists regarding this topic. According to Wang and Smith (2004), the
use of strongly simplified models on the field scale is likely to lead to an overestimation of
root water uptake in structured soils.

The interaction of root water uptake and flow in random heterogeneous soils has been con-
sidered in few studies only. The topic was addressed by Rubin and Or (1993), who derived
an analytical steady-state solution for a one-dimensional column model with root water up-
take in a stochastic framework. They found that root water uptake has a strong influence on
the mean and variance of pressure and saturation. In the root-zone, where water is continu-
ously extracted by plant roots, the mean water content decreases with increasing depth, and
increases with depth below this zone. The variance of saturation and pressure head follow
the mean profile, high saturations relating to low variances and vice versa. Soil heterogene-
ity with root water uptake was also analyzed by Kim et al. (1996, 1997) who showed that the
consideration of soil heterogeneity is relevant for the spatial average of evapotranspiration
using a one-dimensional water budget model. Katul et al. (1997) compared predicted and
measured time series of mean and variance of the soil moisture with different uptake mod-
els. A root water uptake term that depends on water content consistently gave good agree-
ment with the measurements but differences between the different strategies were found
to be small. The variability of pressure head, however, depends on the uptake model, as
demonstrated by Hopmans et al. (1988).

Transpiration dynamics influence the variability of flow. Albertson and Montaldo (2003) an-
alyzed the temporal changes of soil moisture variability in the unsaturated zone using a one-
dimensional model that includes vegetation. It was concluded that transpiration and infil-
tration may increase or decrease the variance of soil moisture depending on the soil moisture
state. Teuling and Troch (2005) compared model results with measurements at three different
sites. Contradictory observations of increasing as well as decreasing standard deviation of
soil moisture with decreasing mean value, earlier reported (e.g. Famiglietti et al., 1998, 1999),
were explained by the temporal dynamics of the interaction between soil, vegetation, and to-
pography controls. The main factor between both cases (creating or destroying spatial vari-
ance) was found to be whether or not the soil dries below a critical moisture content which
defines the transition between unstressed and stressed transpiration. Rodriguez-Iturbe et al.
(2006) found that vegetation heterogeneity significantly affects spatio-temporally averaged
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soil moisture in comparison to a homogeneous vegetation. Ivanov et al. (2010) analyzed the
temporal development of the soil moisture variability in comparison to the temporal behav-
ior of the mean in a slope experiment. It was concluded that in vegetated soils, perturbations
from an attractor state can be balanced more easily than in bare soils. This is referred to as a
homogenizing effect of vegetation.

1.5 Overview of the work

Modeling of root water uptake has been focused to homogeneous domains, and considera-
tion of spatial variability in more than one dimension has remained quite limited. The scope
of this work is to assess the effect of soil heterogeneity in combination with root water up-
take on the variability of pressure head in the water unsaturated zone numerically. Different
approaches for root water uptake and soil structure are considered.

For root water uptake, standard approaches on large scales that are determined by the dis-
tribution of roots and atmospheric demand or which additionally account for soil moisture
are considered. On the next level, heterogeneous uptake strategies are included which com-
pensate local reduction of the uptake rate by increased extraction at other locations to main-
tain the global actual uptake at the potential value. As base case, in order to determine the
influence of vegetation, scenarios where root water uptake is neglected (and the same net
infiltration rate is assumed) are analyzed.

Soil structure is described by effective homogeneous or simplified one-dimensional media.
Furthermore, variation of soil parameters in two directions is included. Water flow including
root water uptake in 1D structures can be solved with analytical solutions. In this work, we
provide an analytical steady-state approximation for mean and variance of pressure head
in a layered soil, for comparison with our numerical results and with the solutions for a
medium consisting of parallel streamtubes, derived by Rubin and Or (1993). As a variety of
patterns exist in the soil, differently structured fields are taken into account for the 2D simu-
lations. We consider non-Gaussian random fields, to determine whether the assumption of
Gaussian heterogeneity limits the generality of conclusions on the impact of variability of
flow.

It is assumed that essential features of three-dimensional water flow are reproduced by two-
dimensional calculations (Roth, 1995). In view of large computational demand of transient
3D modeling, simulations are, therefore, carried out in two dimensions. The simplification
is supported by the finding that under saturated conditions, one- and two-dimensional flow
are qualitatively different but that the difference between two- and three-dimensional flow
is only of a quantitative nature (Dagan, 1989).

An overview of model concepts for root water uptake and soil structure is illustrated in
Figure 1.4.
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Figure 1.4: Sketch of unsaturated flow problem and different models for root water uptake strategy
and soil structure. In the simplest case, the heterogeneity of the soil is assumed to be
homogeneous and root water uptake is determined by the root density. In more advanced
models, the soil is modeled to vary in one, two or three dimensions. For root water uptake
models, the reduction of uptake due to stress or preferential, compensating strategies can
be considered.

The main goal of this work is to identify the phenomena of unsaturated flow, introduced
by the interaction of root water uptake and soil structure, where models with different com-
plexity are considered. Constant and temporally variable precipitation rates are analyzed,
(evaporation is not considered). Mean and variance of soil hydraulic variables as well as
fastest flow tracks are the parameters of interest.

In particular, this study focuses on the following issues:

1. Which influence of structure becomes important under the consideration of root water
uptake?

2. Which features of structure are sensitive to the influence of root water uptake?

3. Which conditions do limit simplified models, such as the analytical solutions for lay-
ered media?

4. Are the conclusions made under steady state conditions extendable to transient cases?

In chapter 2, the theoretical basics of unsaturated flow, stochastic modeling and the numer-
ical scheme used for the simulations, are given. In chapter 3, semi-analytical (first-order
second-moment) solutions for mean and variance of pressure head in layered media are de-
rived. Chapter 4 explains the numerical setup of the water flow simulations. In chapter 5,
steady state simulations are analyzed. It is tested under which conditions the analytical so-
lutions for layered media gives good estimates of the mean and the variance of the pressure
head distribution for unsaturated flow in an isotropic, two-dimensional structured domain.
The joint effect of (Gaussian and non-Gaussian) soil structure and root water uptake on the
steady state mean and variance of the hydraulic variables is analyzed for wet conditions,
and for drier conditions that are still typical for Germany or the Netherlands. Arid or semi-
arid conditions are not considered. It is furthermore discussed, which features of structure
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are sensitive to the influence of root water uptake where different uptake strategies are test-
ed. The influence of heterogeneity and root water uptake on the time series of the hydraulic
variables with dynamic boundary conditions, such as drydown and rewetting and periodic
cycles, is assessed in section 6.

Since little is known about the exact mechanisms of root water uptake, this study provides
a qualitative analysis on the influence of root water uptake and soil structure, points out
the limitation of large scale root water uptake approaches and determines which features of
structure are critical.



2 Modeling of flow in the subsurface

In this chapter, the theoretical background for flow in the subsurface is given. We intro-
duce the basic concepts of flow in porous media and treat flow in the unsaturated zone. We
present how heterogeneity of soil hydraulic properties can be modeled and finally explain
the discretization scheme for the numerical solution of the unsaturated flow problem.

2.1 Flow in porous media

This section provides an insight on the concepts of porous media which rely on an averaged
macroscopic description of the soil. We roughly explain how modeling is transferred from
the micro- to the macroscale and what measures characterize flow on the macroscale. More-
over, the interaction between porous matrix and fluid is discussed and basic flow equations
to describe flow in porous media are presented.

2.1.1 Transition from the micro- to the macroscale

The volume of a porous medium, a material which contains pores, is divided into solid
matrix and pore space. On the pore level, each point belongs either to the pore space or
to the matrix, described by a pore distribution. The pore space is typically filled by one
or several fluids. Flow on the pore scale is described by the Navier-Stokes equation and
depends on the properties of the solid matrix and the properties of the fluids. Besides the
pore-size distribution, particle sizes of grains and friction coefficients of pore channels are
important parameters of the matrix. Fluids are predominantly described by their density
ρ [kg/m3], the mass per unit volume, and the dynamic viscosity µ [kg/ms] which is a measure
of a fluid’s resistance to shear stresses and represents the internal friction within a fluid.

To describe flow on scales that are relevant for environmental applications, a transition from
the pore scale to the continuum scale is necessary. This is performed by averaging over the
pore distribution. The volume from which on averaging over the pore distribution leads
to a macroscopic value that neither depends on the form nor on the size of the averaging
volume, is called representative elementary volume (REV). Down to this characteristic size
it is assumed that every element contains solid matrix and pore space (Roth, 2007).

At the continuum scale, the porous matrix is characterized by the volume fraction of in-
terconnected pore space referred to as the porosity ϕ [-] and by the pore-size-distribution
index which indicates whether a rather wide (small values) or a more uniform distribution
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(large values) of pore sizes is on hand. The microscopic properties of the matrix, such as fric-
tion coefficient and tortuosity of pores lead to a macroscopic resistance of the solid matrix,
described by the intrinsic permeability ks [m2]. A rigorous definition is given in equation
(2.13). Taking the properties of a fluid into account, the saturated conductivity Ks [m/s] with
Ks =

ρ·g
µ ks describes the ability of the porous medium to transmit a fluid under fully satu-

rated conditions.

In general, flow behavior and fluid properties depend on the pressure p and the temperature
T . However, in this work, such variations are neglected and incompressible, isothermal
flow is considered.

The macroscopic state of a fluid is characterized by the amount of the fluid and its potential
energy. The amount of the fluid is described by the water content Θ [−] which equals the
volume fraction of the fluid,

Θ =
Volume of fluid in REV

Total volume in REV
, (2.1)

or the saturation [-]

S =
Θ

ϕ
(2.2)

where ϕ is the porosity. The saturation is a measure for the fraction of pore space that is filled
with fluid. Its value is between zero and one.

The potential energy density of a pure fluid in a porous medium is the energy which is
required to move a unit volume of fluid from a reference state to a particular state in the
porous media. Considering isothermal incompressible flow of pure fluid, a particular state
of an element of the fluid is defined by height z and the pressure p. The reference state is
assumed to be characterized by zr, pr, (Roth, 2007).

The potential energy Ψ per unit volume of the fluid is then determined by the pressure
difference and gravity.

Ψ(x) = Ψp +Ψg (2.3)

= p(x)− pr +

∫ z

zr

ρ(z′)gdz′ (2.4)

= p(x)− pr + ρg(z − zr) (2.5)

where p [Pa] is the pressure at location x [m], ρ [kg/m3] the density, g [m/s2] the gravitational
acceleration, and z [m] is the upwards-pointing vertical vector of x.
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2.1.2 Interaction between fluid and matrix

At the surface of a fluid, an interfacial energy density, so called surface tension γ [J/m2], acts
due to the difference of attractive forces (cohesion) acting on molecules which are located
within the fluid and close to the surface. Surface tension leads to a restoring force which acts
to minimize the interfacial area between the fluid and its surrounding. When a fluid is in
contact with a solid, the fluid tends to adhere to the solid due to attractive forces between
the molecules of the solid and the fluid (adhesion).

For a system of two fluids, cohesion leads to the formation of droplets of one fluid in the
other fluid. In a thin tube, filled with two fluids, cohesion and adhesion can cause the fluid
to rise against gravity. The interface between the fluids is described by the contact angle a,
illustrated in Figure 2.1. The competition between cohesive and adhesive forces determines
whether an acute or an obtuse contact angle develops (Tipler, 1999). The force F resulting
from interfacial tension is directed tangentially to the interface. The fluid with the acute
contact angle is called wetting fluid, and the fluid with the obtuse contact angle is called
non-wetting fluid. The fluid rises until gravitational forces acting on the risen mass of fluid
are large enough to balance the vertical component of F .

Figure 2.1: Capillary tube filled with water.

The height is inversely proportional to the radius of the capillary. Hence, the narrower the
tube is, the higher does the wetting fluid rise and the larger is the required energy to break
the meniscus.

The pressure jump at the interface between the two fluids is called capillary pressure

pc = p1 − p2 =
2γ

r
(2.6)

where r [m] is the radius of the capillary.
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The most simplified model for porous media consists of a bundle of capillaries with differ-
ent diameters. In the same way as for the idealized case, surface tension exists due to inter-
molecular forces such that menisci form within the solid matrix of real soils. The emerging
pressure discontinuity across the interface of two immiscible fluids in a porous medium on
the micro scale is described on the macroscale by the difference of pressures of wetting and
non-wetting fluid.

pc = pnon − pwet (2.7)

This energy density induced by the interaction of porous medium and fluid contributes to
the pressure potential in equation (2.5). The capillary pressure can be seen as a measure of
the tendency of the porous medium to suck in the wetting or to repel the non-wetting fluid
(Bear, 1972). For a single tube, the capillary pressure can explicitly be determined. In the soil,
which consists of a network of capillaries, a distribution of capillary pressures is found. De-
pending on the degree of saturation, pores with different sizes are filled. For low saturation
values, the water is mainly located in narrow pores with high capillary pressures. As the
saturation increases, larger pores are included which lowers the capillary pressure (Cirpka,
2007). The macroscopic capillary pressure represents an average pressure in the REV. Fig-
ure 2.2 illustrates the idealized case of the soil represented by a bundle of capillaries filled
with water and air. On average, a constitutive relationship between macroscopic capillary
pressure and saturation, also called retention curve, can be obtained. Generally, the reten-
tion curve needs to be determined experimentally. To account for residual air or water in the
soil, the retention curve is usually set for the effective saturation which is defined as

Se =
Θ−Θr

Θs −Θr
(2.8)

where Θr [-] is the minimum (residual) water content and Θs [−] the maximum water con-
tent.

Figure 2.2: In a porous medium, saturation and pressure head are average quantities. Averaging over
different pore sizes is illustrated for a bundle of capillaries. With increasing height, the
absolute value of the water pressure head increases and the saturation decreases.
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Models for the capillary pressure-saturation relationship were suggested, for example, by
Russo (1988), Brooks and Corey (1966) and van Genuchten (1980). A very commonly used
relation is the parametrization by van Genuchten (1980):

Se(pc) = (1 + (αpc)
n)−1+ 1

n (2.9)

where pc [m] is the capillary head. α [1/m] and n > 1 [-] are model parameters which influ-
ence the shape of the curve. α represents the retention ability and n the pore-size distribu-
tion. Typical values of these parameters for different soils can be found in Carsel and Parrish
(1988). The capillary pressure-saturation relationship is shown in Figure 2.3.

Figure 2.3: Parametrization of the saturation according to Van Genuchten (for α = 3.04m−1 and
n = 2 [−]).

Note, that the presented concept of a macroscopic capillary pressure-saturation relationship
is based on equilibrium conditions. Such conditions might not hold under transient, quickly
changing infiltration patterns. Furthermore, real pore networks have a very complex struc-
ture such that residual water or air is entrapped in the soil at drainage and imbibition. This
leads to a hysteretic behavior of the retention curve, meaning that the relationship between
capillary pressure and saturation on the macroscale depends on the history of imbibition
and drainage. Alternative approaches are currently being discussed where, e.g. a dynamic,
temporally variable term is introduced into relation (4.3) (e.g. Manthey et al., 2005) or where
the classic concept is replaced by relations based on the distinction between percolating and
non-percolating fluid (Hilfer, 2006).
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2.1.3 Flow equations

In the following, the most important equations which describe flow in a porous media are
introduced.

Mass Balance

In an arbitrary volume of the porous medium, the mass of a fluid is always conserved.
Conservation of the mass means that the rate of change of mass within a volume equals the
mass that flows across the volume boundary plus the amount of water that is extracted per
unit time and per unit volume.

The specific mass of the fluid is given by its volume fraction Θ [−] multiplied by the density
ρ [kg/m3].

∂

∂t

∫
V
ΘρdV +

∮
ρj · dA = −

∫
V
ρRdV (2.10)

with j [m3/sm2] being the volume flux per cross-sectional area, dA the area element pointing
outwards, and R [1/s] the (positive) volumetric extraction rate due to sinks.
Using Gauss’ theorem, the advective term can be transformed to an integral over volume.

∂

∂t

∫
V
ΘρdV +

∫
V
∇ · ρjdV = −

∫
V
ρRdV (2.11)

Since equation (2.11) has to be fulfilled for any arbitrary volume, it follows that

∂

∂t
[Θρ] +∇ · [ρj] = −ρR (2.12)

Darcy’s Law

The volume flux of a pure fluid in a porous medium under fully saturated conditions was
found to depend linearly on the driving forces which are the pressure gradient for horizontal
flow, and gravity and pressure gradient for vertical flow.

j = − 1

µ
ks∇Ψ

= − 1

µ
ks(∇p+ ρg) (2.13)

Equation (2.13) is an empirical flux law which dates back to Henry Darcy (1803-1858)
who studied the water flow through a sand column. Under the assumption of slow
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(i.e. a low Reynolds number) and stationary flow of an incompressible Newtonian fluid,
Darcy’s law can be derived from the Navier-Stokes equation (Gray and Hassanizadeh, 1998).

The Buckingham-Darcy Law

For a system of several fluids, the interaction of the two phases has to be taken into account.
To include the increased resistance to flow for a given phase due to the presence of the other
phase, the permeability k is composed of an intrinsic part ks which is a property of the
matrix, and a temporally variable part kr, the relative permeability, which is a function of
the phase saturation.

k = ks · kr(S) (2.14)

The volume flux of one fluid is then described by the so-called Buckingham-Darcy equation,

j = −k
µ
∇Ψ. (2.15)

In the same way as for the retention curve, a relationship can be obtained for kr(S). Exam-
ples of models which parametrize the relative permeability are the Gardner model,

kr(pc) = exp(−αpc) (2.16)

or the Mualem-van Genuchten model

kr(pc) = (1 + (αpc)
n)a(1−1/n)(1− (αpc)

n−1(1 + (αpc)
n)−1+1/n)2. (2.17)

In both relations, pc [m] is the capillary head, and α [1/m] and n [−] are parameter influencing
the shape of the curve. In Figure 2.4, the Gardner-parametrization is illustrated.

Figure 2.4: Relative permeability-capillary head relationship after Gardner (for α = 3.04m−1).
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2.2 Flow in the unsaturated zone

In the unsaturated zone, the pore space is filled with water and air. Since the volume fraction
and movement of water is affected by the volume fraction of air, water flow in the unsatu-
rated zone has to be treated as a multiphase process. This means, that the conductivities of
the porous medium for both water and air need to be described by the Buckingham-Darcy
law. Furthermore, the air phase needs to be considered in the total potential of fluids in the
porous medium. While the hydrostatic pressure in the air is negligible due to its much lower
density compared to water, the air pressure may contribute to the pressure term in equation
(2.5).

2.2.1 Richards’ equation

It is assumed that the volume fraction of air in the unsaturated zone exceeds a critical value,
such that the air phase becomes continuous and connected to the surface. As the mobility of
air is much larger than the mobility of water, pressure gradients of pa, induced by a change of
water content, are much smaller than those of pw. The system reacts quasi-instantaneously
and is always at equilibrium such that the water decouples from the air phase, and the
pressure of the air phase can be assumed to be constant throughout the domain (Roth, 2007).
Hence, flow of water in the unsaturated zone can be considered as quasi one-phase flow, and
the only contribution to the pressure potential comes from the interfacial forces, given by

Ψp = pw − pa (2.18)

The pressure of the air phase pa corresponds to the atmospheric pressure which is, for sim-
plicity, set to zero pa = 0 . The pressure potential is, therefore, given by the soil water pres-
sure.

Ψp = pw (2.19)

For z = z0, the potential of water is

Ψ = pw + ρgz (2.20)

The volume flux of water in the unsaturated zone is then,

j = −k
µ
(∇pw + ρg). (2.21)

Combining the Buckingham-Darcy equation and the mass balance (equation (2.12)) leads
to the Richards equation which describes the dynamics of unsaturated water flow. Under
the assumption that porosity is constant and that water is an incompressible fluid, density
cancels out and Richards’ equation becomes

ϕ
∂S(pw)

∂t
−∇ · [ksλ(∇pw + ρg)] = −R (2.22)
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where ϕ [−] is the porosity, S [−] is the saturation, ks [m2] is the intrinsic permeability, λ =

kr/µ [ms/kg] the mobility andR [1/s] the sink term due to root water uptake, having positive
values. The parametrization for R is explained in section 2.2.2.

In terms of water pressure head ψ with

ψ =
pw
ρg

(2.23)

Richards’ equation reads

ϕ
∂S(ψ)

∂t
−∇ · [K(ψ)(∇ψ + ez)] = −R (2.24)

where K(ψ) [m/s] is the hydraulic conductivity with K = ρg
µ k = Ks · kr. Ks [m/s] is referred

to as the saturated hydraulic conductivity, the hydraulic conductivity under fully saturated
conditions.

2.2.2 Root water uptake

The soil surface is covered with vegetation. The extraction of water by plant roots affects the
dynamics of water flow, especially in the upper part of the soil and needs to be accounted
for in the flow equation.

On the macroscale, root water uptake R is commonly accounted for as a sink term of
the Richards equation (2.24). Approaches to model root water uptake can be arbitrarily
complex. On large scales, the goal is, however, to keep models preferably simple. The
complexity depends on the number of processes taken into account. Generally, the uptake
rate is assumed to be determined by atmospheric demand and presence of roots. Addition-
ally, soil water status or compensation mechanisms, where locally reduced uptake can be
compensated by increased uptake at other locations, are considered.

According to the simplest approach, the water extraction rate is determined by the tran-
spiration demand τ [m/s] and the root distribution function dr [1/m]. The root distribution
function distributes the atmospheric demand according to the relative presence of plants
throughout the domain. The resulting extraction rate equals the local potential uptake rate
Rp.

R(z) = τdr(z) = Rp (2.25)

In this work, the root distribution function is modeled by an exponentially decreasing func-
tion with depth.

dr =
1

δ
exp(

z −H

δ
) (2.26)



2.2 Flow in the unsaturated zone 23

where H [m] is the height of the domain, and δ [m] is a parameter characterizing the length
of the roots.

Accounting for soil water status

On the next level, the availability of soil water is considered. Unfavorable soil conditions
such as water or oxygen scarcity are, on the macroscale, commonly modeled by a stress-
reduction factor fF which ranges between zero and one and depends on the pressure head
or saturation. This factor is multiplied with the uptake rate R such that, under stressed
conditions, the uptake rateR1 is locally reduced compared to the potential root water uptake
rate Rp.

R1(ψ, z) = RpfF (ψ) (2.27)

Root water uptake modeled according to equation (2.27) is in the following referred to as
Strategy 1, also basic or standard approach. In this work, the stress-function was modeled
according to the so-called Feddes-function, proposed by Feddes et al. (1978), where the re-
duction of water uptake is characterized by four critical values of the pressure head, h1−h4,
and a linear dependence of the reduction factor on pressure head:

fF =


− 1
h1−h2ψ h1 < ψ < h2

1 h2 < ψ < h3
1

h3−h4ψ h3 < ψ < h4
0 for ψ < h1 or ψ > h4

(2.28)

The Feddes-function is illustrated in Figure 2.5.
Typical values for the critical pressure heads h1 − h4 can be found in Taylor and Ashcroft
(1972).

h4 h3 h2 h1
0

0.2

0.4

0.6

0.8

1

f F

pressure head [m]

Figure 2.5: Sketch of the Feddes-Function with critical values h1, h2, h3 and h4 (wilting point).
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Accounting for compensation mechanisms

Since experimental data support the occurrence of compensation mechanisms for local stress
within the root zone (e.g. Taylor and Kleppner, 1978; Hasegawa and Yoshida, 1982; English
and Raja, 1996; Stikic et al., 2003; Leib et al., 2006), it is expected that roots can react in re-
sponse to unfavorable soil conditions in order to maintain the overall uptake at the potential
rate. The global actual uptake in the whole domain Tact =

∫
V R1(ψ, z)dV [m2/s] is then equal

to the global potential transpiration Tpot =
∫
V RpdV [m2/s] where R1 [1/s] is the local actual

uptake rate and Rp [1/s] the local potential uptake rate. The process of compensation is very
complex and barely known. In micro-models or Type 1 macro-models for root water uptake,
compensation results automatically since the extraction rate is determined through a chain
of resistances. These approaches are, however, better suited for the plant scale. A sound
understanding of the mechanisms ruling compensation or macroscopic pattern could not
yet be derived which makes modeling of compensation processes on larger scales difficult.
Into macro-approaches that are based on a prescribed uptake rate, compensation has to be
artificially introduced. The global loss of root water uptake due to stress in comparison to
the potential value needs to be calculated and taken up elsewhere. This is either possible by
distributing (adding) the loss to unstressed locations or by multiplying the reduced uptake
rate R1 at each location by a scaling factor, such that the global amount of extracted water
equals the atmospheric demand.

In this work, three strategies (Strategy 2, 3, 4), which include compensation mechanisms for
local reduction of uptake due to stress by increased uptake at other places, are tested. The
corresponding root water uptake terms are denoted by R2, R3 and R4. In order to main-
tain the global uptake rate at the potential value under occurrence of local stress, Strategy
2&3 use a scaling factor and Strategy 4 adds the global loss of uptake, which is the uptake
demand minus the actual uptake summed over all nodes, to unstressed locations.

Strategy 2 and 3 additionally assume that root water uptake is increased at favorable loca-
tions and decreased at unfavorable locations. They are modeled by a factor Mi by which
equation (2.27) is extended.

Ri(ψ, z) = RpfF (ψ)Mi (2.29)

In Strategy 2, root water uptake is proportional to the saturation, thus more water is extract-
ed where more water is available.

M2 = S · fc2 ; full compensation

Strategy 3 reflects that permeability could be the limiting factor for root water uptake. In
this case the extraction rate is proportional to the relative permeability.

M3 = kr · fc3 ; full compensation

To keep a constant global root water uptake rate, the extraction rate is in both strategies
multiplied by a factor fc in such a way that the global actual water uptake Tact [m2/s] equals
the global potential demand Tpot [m2/s], fc2 =

Tpot∫
RpfFSdV

and fc3 =
Tpot∫

RpfF krdV
.
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These approaches are permanent mechanisms which compensate the local decrease of the
root water uptake rate due to stress (reduction with fF ) and unfavorable locations (propor-
tional to S or kr) by enhanced uptake at other locations.
The strategies correspond to the model for root water uptake by Katul et al. (1997) who
used a weighting function equal to one, depending on the water content or related to the
hydraulic conductivity, but neglected a water stress function. The strategy depending on
the water content was proposed by Warrick (1974) and Markar and Mein (1987). Strategy 2
and 3 are also similar to the approach of Jarvis (1989), Jarvis (1994) and Simunek and Hop-
mans (2009). Their inverse dimensionless water stress index 1/ω corresponds to our fc. In
comparison to their model, we add a dependence of S or kr and neglect a critical threshold
value to account for partial compensation. Stress in the sense of a decreased global actual
uptake rate Tact cannot occur with Strategy 2 and 3. Furthermore, the transpiration demand
and root distribution function is independent of time in our approach.

The fourth uptake strategy cannot be formulated in terms of equation (2.29) since it equally
redistributes the difference between global actual uptake and global potential uptake which
occurs with Strategy 1, to the remaining unstressed parts. Thus, stressed and unstressed
locations are treated differently in the fourth root water uptake term R4:

R4 =

{
R1 for stressed nodes

Rp +△Rloss for unstressed nodes
; full compensation

△Rloss is the global deficit of the uptake rate (summed up over all nodes) which is, according
to Strategy 4, equally distributed over the unstressed nodes, △Rloss =

∑
nodes(Rp−R1)
nbunstr

with
nbunstr being the number of unstressed nodes.
A decrease of the total actual transpiration rate Tact occurs with this modification only if not
enough water is available in the whole domain, i.e. if all locations are stressed.

2.2.3 Derivation of time scales

Soil moisture dynamics are modeled with the Richards equation. Boundary conditions, soil
hydraulic properties and sink term determine steady state and temporal behavior of wa-
ter flow in the soil. Dimensionless groups as well as characteristic timescales of the system,
which both determine the flow behavior, can be calculated by means of dimensional anal-
ysis. A dimensionless form of the Richards equation is obtained in the following way. All
parameters and variables are written in dimensionless form by dividing the variable u by a
characteristic quantity u0.

u∗ =
u

u0
(2.30)

where u∗ denotes the dimensionless variable. The variables in the Richards equation can
thus be split into a dimensionless quantity and a characteristic quantity.
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This leads to the following expressions for time t [s] and the spatial vector (in 1D) x [m],

t = t0 · t∗ (2.31)

x = x0 · x∗ (2.32)

It follows that

∂

∂t
=

∂t∗

∂t

∂

∂t∗
=

1

t0

∂

∂t∗
(2.33)

∂

∂x
=

∂x∗

∂x

∂

∂x∗
=

1

x0

∂

∂x∗

∇ =
1

x0
∇∗ (2.34)

In the same way, the other variables such as the sink term, the hydraulic conductivity and
the pressure head can be expressed by the product of a characteristic and a dimensionless
quantity

R = R0 ·R∗ (2.35)

K = K0 ·K∗

ψ = ψ0 · ψ∗

Inserting the dimensionless parameters into Richards’ equation yields

ϕ0ϕ
∗S0
t0

∂S∗

∂t∗
− 1

x0
∇∗K0K

∗ 1

x0
∇∗ψ0ψ

∗ − 1

x0
K0K

∗ez = −R0R
∗. (2.36)

Rearranging the terms such that the dimensionless equation has the same form as the origi-
nal equation leads to

ϕ∗
∂S∗

∂t∗
− t0K0ψ0

S0x20ϕ0
∇∗K∗∇∗ψ∗ − K0t0

S0x0ϕ0
K∗ez = − t0R0

S0ϕ0
R∗. (2.37)

The Richards equation (2.24) and equation (2.37) differ only by the coefficients of each term.
By setting these factors equal to one, a time scale for each term is derived. The time scales
characterize the temporal behavior of the different processes, which the terms reflect.

The characteristic time scales are

t1 =
S0x

2
0ϕ0

K0ψ0
(2.38)

t2 =
S0x0ϕ0
K0

(2.39)

t3 =
S0ϕ0
R0

(2.40)
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t1 is related to capillary flow, t2 to gravity flow and t3 to root water uptake. These timescales
are used and explained in more detail in chapter 6.1.

2.3 Heterogeneity

On the macro scale, soil parameters can vary strongly and have very diverse patterns. Their
full distribution, which is not accessible by measurement devices, contains a high level of
uncertainty that makes it extremely difficult to describe the flow behavior in such soils. It is,
however, a major task of environmental modelers to include the variation of soil parameters
on large scales into their applications, but keep the computational effort small at the same
time. For the development of such effective models, it is necessary to quantify the effect of
soil structure. In this section, it is shown how the variation of soil parameters on large scales
is usually put into a mathematical framework, how different patterns of soil parameters can
be realized in this description, and what measures this framework provides to characterize
these patterns.

2.3.1 Stochastic Approach

As, on larger scales, only few measurement points contribute to the estimation of soil pa-
rameters such as hydraulic conductivity and retention parameter, it is impossible to obtain
a detailed distribution. Often, stochastic methods are used to describe the variations of soil
parameters. A stochastic description allows to quantify the emerging uncertainty by differ-
ent measures. Some of these measures will be explained in the first part of this section. Basic
terms and definitions used in the stochastic approach will be given to provide some back-
ground knowledge for the following chapters. In the second part, the concept of the soil as
a stochastic ensemble will be introduced.

2.3.1.1 Terms and definitions

To assure that the reader has a basic knowledge of the terms used in later chapters, a list of
definitions, which are constantly used in the field of stochastic modeling, is provided in the
following. The definitions should give an insight rather than be mathematically rigorous.
They are taken from chapter two of Zhang (2002), chapter two of Gelhar (1993) and chapter
two of Neuweiler (2005).

• Random variable: In most natural processes, a variable at a distinct location is un-
known, but the possible values can be restricted to a certain interval or set. A ran-
dom variable u is the collection of all possible outcomes of a given experiment.
The classic sample experiment is the throw of a die. The random variable is then
u = {1, 2, 3, 4, 5, 6}. The concept of a random variable forms the basis of the stochastic
approach.
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• Random space function: A random space function describes the variation of an ob-
served quantity in space. At each point in space, the quantity is uncertain but the pos-
sible outcomes are given. A random space function is thus a random variable, u1, .., un,
at each point in space. The collection of all possible records is called ensemble. One par-
ticular trial is denoted as one realization of the random space function. If the spatial
index is multidimensional, one refers to a random space function also as random field.
Note, that the variation of an observed quantity with time is denoted by a stochastic
process. As done in Zhang (2002), the three names are used as interchangeable terms
in the following.

• Cumulative distribution function (cdf): The cdf of a random variable characterizes
the likelihood of each possible outcome of a given experiment. cdf(u) is the probability
that a random variable is found at a value smaller or equal to u.
Probability density function (pdf) pu: pu(u)du is the probability that the random
variable lies in a small interval du, in between u and u+ du. For a random space func-
tion, which is a random variable u1, ...un at each point in space, the probabilistically
interrelation of the variables has to be taken into account. A complete probabilistic
description of a random field requires the probability density function at each point
in space. The joint or multivariate probability density function gives the probability of
each random variable to be in a certain range, i.e. the probability that u1 lies in du1, u2
in du2, .... and un in dun.

• Moments: The probability distribution of a random variable is characterized by its
infinite number of moments

µn = ⟨un⟩ =
∫ ∞

−∞
unpu(u)du (2.41)

or centralized moments

µ′n = ⟨(u− µ1)
n⟩ =

∫ ∞

−∞
(u− µ1)

npu(u)du (2.42)

A random field is composed of multiple random variables. The moments are deter-
mined from each random variable and the joint pdf.

⟨U(x)n⟩ =
∫ ∞

−∞
u1u2...unpu(u1, x1;u2, x2; ....;un, xn)du1du2...dun (2.43)

In practice, the stochastic properties of a random field are mostly reduced to the first
two statistical moments.

The first moment is the mean or expected value

⟨U(x)⟩ =
∫ ∞

−∞
upu(u, x)du (2.44)
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The second central moment is defined as

CU (x1, x2) = ⟨U ′(x1)U ′(x2)⟩ = ⟨U(x1)U(x2)⟩ − ⟨U(x1)⟩⟨U(x2)⟩

=

∫ ∞

−∞

∫ ∞

−∞
u1u2pu(u1, x1;u2, x2)du1du2 − ⟨U(x1)⟩⟨U(x2)⟩ (2.45)

where U ′(xi) = U(xi) − ⟨U(xi)⟩ is the fluctuation of U at xi. Equation (2.45) describes
the covariance of the random field U at two space points, also called the autocovari-
ance function.

When x1 = x2 = x, the autocovariance reduces to the variance function which gives
the deviation from the mean at each point in space.

σ2U (x) = CU (x, x) =
∫ ∞

−∞
u2pu(u, x)du− ⟨U(x)⟩2 (2.46)

The coefficient of variation is the variance devided by the squared mean, CVU =
σ2
U

⟨U⟩2 .

The autocorrelation coefficient is given by

ρU (x1, x2) =
CU (x1, x2)

σU (x1)σU (x2)
(2.47)

ρU is a measure for the correlation of outcomes at x1 and x2, it describes the likelyhood
to sample similar values at the two locations.

• Gaussian random field: A random field U(x) is called normal (Gaussian or multi-
Gaussian) if the random variables U(x1), U(x2), ...., U(xn) are jointly normal for any set
of n points. A normal process is completely characterized by its mean ⟨U(x)⟩ = µU (x)
and autocovariance CU (xi, xj).

The normal univariate pdf of a random variable is:

pu(u) =
1

2πσ2
exp

(
−(u− µ1)

2

2σ2

)
(2.48)

The normal joint pdf of two random variables (bivariate) at two locations x1, x2 of the
same stochastic process U(x) is:

pu(x1, x2) =
1

2πσU (x1)σU (x2)
√

1− ρ2

exp

(
− 1

2(1− ρ2)

(
x1 − µ1
σ(x1)

)2

− 2ρ
(x1 − µ1)(x2 − µ2)

σU (x1)σU (x2)
+

(
x2 − µ2
σU (x2)

)2
)
(2.49)
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• Function of a random variable g(U(x)): If g is a function of a random variable, the
stochastic properties of g(U(x)) can be derived from the moments of U(x)

⟨gn⟩ =
∫ ∞

−∞
g(u)npu(u)du (2.50)

• The correlation of two random fields in space is derived from the cross-covariance
between two random fields U and V which is defined as

CUV (x1, x2) = ⟨U ′(x1)V ′(x2)⟩

= ⟨U(x1)V (x2)⟩ − ⟨U(x1)⟩⟨V (x2)⟩

=

∫ ∞

−∞

∫ ∞

−∞
uvpUV (u, x1; v, x2)dudv − ⟨U(x1)⟩⟨V (x2)⟩ (2.51)

where pUV (u, x1; v, x2) is the joint probability density function of U(x1) and V (x2). The
cross-correlation coefficient is then

ρUV (x1, x2) =
CUV (x1, x2)
σU (x1)σV (x2)

(2.52)

The normal joint pdf of two random fields is:

pUV (u, x1; v, x2) =
1

2πσU (x1)σV (x2)
√

1− ρ2UV

exp

[
− 1

2(1− ρ2UV )

[(
u(x1)− µ1
σU (x1)2

)2

− 2ρUV
(u(x1)− µ1)(v(x2)− µ2)

σU (x1)σV (x2)
+

(
v(x2)− µ2
σV (x2)

)2
]]

(2.53)

• Stationarity:

– Second-order stationarity requires the process to have no trends which means
that the mean and the variance are finite and constant in space and the two-point
covariance depends only on the separation vector,

U(x) = ⟨U⟩ = const,

σ2U (x) = const,

CU (x1, x2) = CU (r) = CU (−r). (2.54)
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– Statistically isotropic are second-order stationary fields where the covariance ad-
ditionally fulfills

CU (x1, x2) = CU (|r|). (2.55)

Apart from chapter 5.2.3, the random fields considered in this work are modeled
as statistically isotropic.

• Integral scale: The integral scale is the integral of the autocovariance over distance
normalized with the variance. For statistically isotropic fields, it becomes

IU =

∫ ∞

0

CU (r)
σ2U

dr. (2.56)

The integral scale is a measure of the distance over which values at two different loca-
tions are correlated.

2.3.1.2 Probabilistic description of the soil

The stochastic approach is used to include the variation of soil parameters into the unsat-
urated flow problem. The distribution of soil hydraulic properties is then described by an
ensemble of realizations of parameter fields. In this study, the variation of the loghydraulic
saturated conductivity F = ln(Ks) and the retention parameter α is considered. F and α are
thus random fields, given by the mean and the fluctuation about the mean:

F = ⟨F ⟩+ f,

α = ⟨α⟩+ α′. (2.57)

All other input parameters of the model are for simplicity assumed to be deterministic.
From f and α being stochastic parameters follows that the output variables S and ψ as
well as the dependent functions such as the saturation-pressure-relationship S(ψ) and the
relative conductivity-pressure relationship K(ψ) are random space functions.

Miller similarity

To be able to consistently describe soil classes regarding structure, Miller and Miller (1956)
introduced a similarity concept which states that two porous media are similar if they have
identical microscopic geometries and differ only in their length scale. For Miller similar soils,
the soil water retention curve and the unsaturated hydraulic conductivity of a soil u can
then be related to a reference soil r by a scaling factor bu which varies in space. The scaling
factor bu ‘contains’ the heterogeneity and is modeled as a random field. The variation of soil
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hydraulic properties can thus be described by defining the reference state and the scaling
factor. Soil hydraulic properties of the soil u and the reference state are interrelated by the
dependency of a typical grain size diameter d. The value ψ needed to retain a given amount
of water, is assumed to be inversely proportional to a characteristic grain size diameter d
since capillary forces decrease with increasing radius,

ψ(S) ∼ 1

d
. (2.58)

As the flux per cross-section through a capillary increases quadratically with the radius, the
conductivity of a soil is assumed to increase proportionally with the squared diameter,

Ks ∼ d2. (2.59)

Based on these explanations, scaling relations for the retention curve and the hydraulic con-
ductivity between a soil u and the reference soil, (denoted by r), were proposed,

ψu(S) =
ψr(S)

bu
, (2.60)

Ku(S) = b2uK
r(S). (2.61)

According to Birkholzer and Tsang (1997), with a deterministic pore-size distribution n and
a scaling factor bu equal to

bu =

√
Ks

Kr
s

, (2.62)

the following relation is obtained from equation (2.60) and (2.61) after ‘some mathematical
rearrangements’,

α

αr
=

√
Ks

Kr
s

. (2.63)

α [1/m] is a measure for the retention ability used in the hydraulic conductivity
parametrization.

The assumption that the similarity concept holds, thus entails a correlation of f and α.
The theoretical concept is supported by measurements of soil parameters indicating an
existing correlation between f and α and has the advantage that mathematical expressions
describing the flow in Miller similar soils with only one random input parameter are easier
to handle. Note, that real data does not suggest a perfect correlation which is here the case.
The other extreme would be to assume totally independent random fields representing f
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and α. The cross-correlation of real soils is in the range of 0.7 (e.g. Hopmans, 1987) and
varies from soil to soil.

Stochastic properties of α

The second order stochastic parameters of α, being a function of f , can be derived from the
stochastic properties of f . Expressions for the mean and the standard deviation of α, σα,
the two-point autocorrelation function of α, ρα and the two-point crosscorrelation function
ρfα of f and α and corresponding integral scales Iα, Ifα for a Gaussian distribution of f are
presented.

From relation (2.63) follows

α = C
√
Ks = C

√
Ks,g exp(

1

2
f) = A exp(

1

2
f), (2.64)

where C is a proportionality factor and Ks,g the geometric mean of the saturated hydraulic
conductivity.

Using relation (2.64) and assuming ⟨f⟩ = 0, the zeroth moment of α becomes

⟨α⟩ =

∫
α(f)pu(f)df

=

∫
A exp(

1

2
f)

1√
2πσ2f

exp(− f2

2σ2f
)df

= A exp(
σ2f
8
) (2.65)

where pu(f) is the probability density of f . The variance is

σ2a =

∫
(α− ⟨α⟩)2pu(f)df

=

∫
(A exp(

1

2
f)− ⟨α⟩)2 1√

2πσ2f

exp(− f2

2σ2f
)df

= A2 exp(
σ2f
4
)(exp(

σ2f
4
)− 1) (2.66)

The dependency of the coefficient of variation of α,CVα withCVα = σ2
α

⟨α⟩2 , on σ2f is illustrated
in Figure 2.6.
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Figure 2.6: Coefficient of variation of α as function of variance of f .

The covariance function of α is

Caa(z
′ − z′′) =

∫ ∫ (
α(z′)− ⟨α⟩

) (
α(z′′)− ⟨α⟩

)
pu(f(z

′), f(z′′))df(z′)df(z′′)

=

∫ ∫ (
A exp(

1

2
f(z′))− ⟨α⟩

)(
A exp(

1

2
f(z′′))− ⟨α⟩

)
 1

2πσ2f

√
1− ρ2f

exp(−
f(z′)2 − 2ρff(z

′)f(z′′) + f(z′′)2

2σ2f (1− ρ2f )
)

 df(z′)df(z′′)

= A2 exp(
σ2f
4
)(exp(

1

4
ρfσ

2
f )− 1) (2.67)

where pu(f(z′), f(z′′)) is the Gaussian joint probability density of f(z′) and f(z′′) and ρf is
the correlation function of f .

ρf (h) =
Cff (h)

σ2f
(2.68)

h = z′ − z′′ is here the distance vector between z′ and z′′ and Cff (h) is the two-point auto-
covariance of f . The correlation function of α is the autocovariance Caa normalized with the
variance.

ρa(h) =
Caa(h)

σ2a
=

exp(
σ2
fρf (h)

4 )− 1

exp(
σ2
f

4 )− 1
(2.69)
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The crosscovariance of f and α is

Cfa(z
′ − z′′) =

∫ ∫
f(z′)

(
α(z′′)− ⟨α⟩

)
pu(f(z

′), f(z′′))df(z′)df(z′′)

=

∫ ∫
f(z′)

(
A exp(

1

2
f(z′′))− ⟨α⟩

)
 1

2πσ2f

√
1− ρ2f

exp(−
f(z′)2 − 2ρff(z

′)f(z′′) + f(z′′)2

2σ2f (1− ρ2f )
)

 df(z′)df(z′′)

=
1

2
Aρf exp(

σ2f
8
)σ2f (2.70)

The corresponding correlation function is then

ρfa(h) =
Cfa(h)

σfσa
=

ρf (h)σf

2

√
exp(

σ2
f

4 )− 1

(2.71)

The correlation function of f , α and fα is shown in Figure 2.7 for σ2f = 1.0.
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Figure 2.7: Correlation function of f , α and fα vs. distance (for σ2f = 1.0).

The equations are based on a multi-Gaussian pdf and cannot be used for non-multi Gaussian
fields.
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2.3.2 Gaussian and Non-Gaussian soil structure

Only multi-Gaussian fields (random fields with a normal multivariate pdf) are fully de-
scribed by their first order second moment properties, (see section 2.3.1.1). Random fields
with other pdfs can have the same first two moments as multi-Gaussian fields but a com-
pletely different, eventually more realistic pattern, characterized by features which are on-
ly contained in higher order moments. Such features can be related to the arrangement of
extreme values. Multi-Gaussian fields are symmetric and have therefore spatially isolated
extreme values. Non-Gaussian fields can be generated from Gaussian fields by applying cer-
tain transformations such that extreme values appear differently. In this work, non-Gaussian
fields with connected extreme values and fields with large patches of extreme values are
considered. In the following, the generation of such fields and the corresponding transfor-
mations of multi-Gaussian fields are explained.

2.3.2.1 ZH-transformation

It is recently discussed that fields with connected extreme values better represent natural
spatial pattern of soil parameters. Such two-dimensional parameter fields, namely Gaus-
sian fields and fields with connected high or connected low extreme values, were used in
the study of Neuweiler and Vogel (2007). Fields with connected extreme values are non-
Gaussian and can be generated through transformation of Gaussian fields according to Zinn
and Harvey (2003)

yj =
√
2erf−1(2erf(

xj√
2
)− 1), (2.72)

where xj is the value at node j of a Gaussian field and yj the value of the resulting non-
Gaussian field.

Transformation (2.72) projects positive and negative extreme values onto positive extreme
values. Intermediate values, which are connected in the Gaussian field, become the mini-
mum extreme values in the transformed field. Thus, the transformed field has connected
low extreme values. The transformed field is referred to as T1-field. The inverse of the
T1-field (with the value −yj at node j), referred to as IT1-field, shows connected high
extreme values. One realization, representing the saturated loghydraulic conductivity of
T1- and IT1-fields, in comparison to Gaussian fields, denoted by G1-fields, with the same
univariate and two-point autocorrelation function, is shown in Figure 2.8.
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Figure 2.8: One realization of the saturated loghydraulic conductivity f , representing the three
structures of G1- (a), T1- (b) and IT1-fields (c).

2.3.2.2 V-transformation

Fields with large patches of coarse or fine material can be generated from Gaussian fields
using a so-called V-transformation, described in Li (2010):

yj = k · (xj −m)a, xj ≥ m

yj = (m− xj), xj < m (2.73)

where xj is the value at node j of a multi-Gaussian field, yj is the value of the transformed
field and m > 0, a > 0 and k > 1 are transformation parameters. Transformation (2.73)
turns values that are smaller than m into postive values, m becomes the smallest value of
the resulting distribution and values larger than m become either more concentrated (k < 1)
towards or more deviated from m (k > 1), (Li, 2010). The particular pattern depends on
the choice of m, k and a. In a multi-Gaussian field, the intermediate values (around ze-
ro) form the connected background material. These values can be shifted to higher values,
depending on m, but remain connected in the transformed field. Isolated patches of high
conductive material emerge from the right (for xj ≥ m) and the left branch (for xj < m) of
transformation (2.73). While the steepness of the slope of the right branch is controlled by a
and k, the left slope is always constant which results in two kinds of isolated patches. The
patches emerging from the left branch have moderately high values and smooth edges. The
patches emerging from the right branch are the more sharp-edged and larger, the smaller a
is, and the larger and more extreme, the larger k is. Figure 2.9 shows the V-transformation
for different parameters of a and k.
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Figure 2.9: Left branch (for xj < m; black line) and right branch (for xj ≥ m) of transformation
(2.73) for m = 0.5 and different values of a and k. Small values of a and large values of
k (e.g. dark blue line) lead to fields with large patches of high conductive material.

In the same way as for T1- and IT1-fields, transformed fields (referred to as T2-fields) and
the inverse of the transformed fields (IT2-fields) are obtained using transformation (2.73).
T2- and IT2-fields show the opposite pattern. One realization, representing the saturated
loghydraulic conductivity of T2-, IT2- and Gaussian G2-fields, with the same univariate
and two-point autocorrelation function, is shown in Figure 2.10.

Figure 2.10: One realization of the saturated loghydraulic conductivity f , representing the three
structures of G2- (a), T2- (b) and IT2-fields (c). Transformation parameters, a = 0.1,
m = 0.5, k = 4.0, were used.

Note that the ZH-transformation preserves the univariate, while the V-transform does not.
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2.3.3 Measures to characterize the soil structure

This section briefly introduces measures which can be used to characterize the soil structure.
An important measure captured by the first two moments, discussed first, is the anisotropy
of soil parameters, which means the asymmetry of soil properties in space. The variety of
occurring soil structures in nature and the fact that first order second moment properties
are not sufficient to fully characterize a random variable, call for other measures to describe
the soil heterogeneity, which take e.g. the arrangement of extreme values into account. For
example, the saturated loghydraulic conductivity fields introduced in chapter 2.3.2 are not
distinguishable by their mean and variance. Two examples of such measures, the copula and
the connectivity function, are presented in the following. These measures are certainly not
able to represent all existing features of heterogeneity but involve the alignment of extreme
values, thus describe a spatial property of non-Gaussian fields which is not included in the
first two moments.

2.3.3.1 Anisotropy

The fields shown in section 2.3.2 are isotropic, meaning that the saturated loghydraulic con-
ductivity has the same stochastic properties in both directions and that the covariance of f
depends only on the distance vector. Natural fields often show a slightly layered structure
where the integral scale in the horizontal direction is larger than in the vertical direction.
Anisotropy introduces a flow component orthogonally to the mean flow direction and can
thus severly influence flow. It is a classical first-order second-moment measure.

2.3.3.2 Copulas

An empirical bivariate copula is a scale-invariant measure which captures the dependence
of two random variables as a full distribution meaning that the dependence or correlation
can be distinguished according to the different quantile of the variables (Li, 2010). Any two
variables can be observed by means of a copula. When referring to an empirical bivariate
spatial copula, usually the random variables at two space points of a random field are con-
sidered. In this study, the term copula refers to an empirical bivariate spatial copula density.
It is defined as the bivariate probability density function related to the marginal distribution.

To give a more illustrative explanation, the construction of a copula for one particular
distance vector h from a sample of values is explained in the following. The cumulative
density function (cdf) of the empirical distribution f(x) is calculated. Pairs of values
which are separated by the distance h are identified and transformed into a scatter plot
cdf(f(x)) vs. cdf(f(x + h))). Figure 2.11 illustrates an example for cdf(f(x)) = 0.3 and
cdf(f(x + h)) = 0.89. The scatter plot is visualized by a contour plot. From the copula
density, the characteristic features of the underlying structure can be inferred e.g. which
values form larger patches. For example, a maximum in the copula density at a specific
pair of cdf-values for a series of distance classes h1-h5 means that the parameter values,
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belonging to such cdf-values, are correlated up to a distance of h5.

Figure 2.11: Construction of an empirical copula from a sample. (a) shows the empirical distribution
after the cdf is calculated. Pairs (cdf(f(x)),cdf(f(x + h))) which are separated by the
distance h are identified and put into a scatter plot (b). Taken from Li (2010).

The dependence of two space points of a random field can also be described with an autoco-
variance function. The covariance function does, however, neither image the frequency nor
the values of the observed pair but only the correlation. Thereby the information about the
typical cluster size of extreme values is lost.

The parameter fields for the saturated loghydraulic conductivity, presented in section 2.3.2,
can be classified according to their copula: The copula of the Gaussian fields is symmetrical
and rugby-shaped. In contrast, the copulas of the non-Gaussian fields are asymmetric with
a maximum at high values for a series of distance classes if large clusters of high extreme
values are present (T1,T2) and a maximum at low values if large clusters of low extreme
values are present (IT1, IT2). Figure 2.12 shows examples of copulas (for one distance class)
of Gaussian and non-Gaussian fields with clusters of high or low extreme values.

Figure 2.12: Copulas of a Gaussian field (a) and non-Gaussian fields with patches of high extreme
values (b) and patches of low extreme values (c). Taken from Li (2010).
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2.3.3.3 Connectivity

From a copula, the typical cluster size can be identified. Another feature of structure, which
is not captured by a copula and also not contained in the mean and the variance of a random
field, is the connectivity of regions with similar parameter values.

To find the values that are connected over larger distances, the parameter of interest is, in
a continuous field, first transformed into a binary field by means of a threshold value t.
Values which are larger than t are set to one and values below the threshold value to zero,
or vice versa. Connectivity is analyzed as a function of the threshold value t. Therefore,
it is determined whether values equal to one form connected clusters in the binary field.
Depending on the objective of the connectivity analysis, different methods are used. One
possibility is the Euler characteristic χ which is, in two dimensions, calculated from the
number of isolated objects N and the number of redundant connections C (Li, 2010).

χ = N − C (2.74)

While the threshold t is continuously lowered (or increased), the number of isolated objects
N and number of connections C and, thus, χ changes. In this way, the connectivity function
χ(t) is obtained. Values which are equal to the threshold value, at which χ(t) is zero, are
connected in the parameter field. Connectivity is, hence, defined by the equality of N and
C. The Euler characteristic is thus a global measure to quantify connectivity as a whole. It is
a proper measure to characterize the saturated hydraulic conductivity, but might not always
be of interest, e.g. when heterogeneous hydraulic variables such as water fluxes are analyzed
for connectivity. Then, it is rather meaningful to determine the threshold, from which on a
connected pathway from the surface to the groundwater resources exists. As illustrated in
Figure 2.13, this might be independent from the number of isolated objects and number of
connections.

Figure 2.13: Example of a binary field. The Euler method would not predict that values equal to the
applied threshold value are connected.

To determine which range of values of a parameter field form connected pathways from top
to bottom, the parameter field, to be observed, is transformed into a binary indicator field
according to a certain threshold value, as in the previous case. In the second step, the clusters



42 Modeling of flow in the subsurface

of values equal to one are identified and labeled. This procedure is carried out according to
the Hoshen-Kopelman-Algorithm (Hoshen and Kopelman, 1976; Fricke, 2004). A connected
path from top to bottom exists, if a cluster with the same label appears at the top and bottom
of the output field, (see Figure 2.14). The threshold value is scanned through all possible
values of the parameter field to find the minimum and maximum threshold value for which
the values are connected.

Figure 2.14: Illustration of Hoshen-Kopelman procedure. In the binary field (a), clusters of values
equal to one (white fields) are identified and labeled (b). Different colors correspond to
different labels. In this example only the yellow cluster is connected from top to bottom.

2.3.4 Methods to solve stochastic flow equations

There are a number of methods to solve the stochastic flow equations. Generally, the goal
is to make predictions about the moments of hydraulic variables such as pressure head and
saturation. Approaches can be divided into analytical solutions, where often the method
of small perturbations is used, or numerical simulations. Beyond numerical approaches,
performance of Monte Carlo simulations is the most common method. Recently, alternative,
more efficient methods are explored (e.g. Oladhyshkin and Novak, 2010). In this work, we
focus on the two main approaches, perturbation method on the analytical side and Monte
Carlo Method on the numerical side, which are introduced in the following.

2.3.4.1 Perturbation Method

In this section the basics of perturbation approximations, following the book of Zhang (2002)
are explained. It is shown how to make approximate predictions of mean and variance of
flow variables. As explained in the previous section, variability of the flow problem is de-
scribed with one random parameter, the loghydraulic saturated conductivity F . The fluctu-
ations of the soil parameters (equation (2.57)) propagate to the dependent variables. ψ can
be described by a formal Taylor expansion in terms of the standard deviation σf

ψ = ψ0 + ψ1 + ψ2 + ..... (2.75)

Note, that if the variation of the sink term and the boundary conditions was considered as
well, ψ(n) would be a function of σ, a combination of the standard deviations of f, of the sink
term and of the boundary conditions.
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In case the pressure head field varies weakly, ψ can be approximated to first order. To
first order in σf , the mean head is ⟨ψ⟩ = ψ0 and the head fluctuation is ψ′ = ψ1. The
head covariance is, hence, Cψ(x1, x2) = ⟨ψ1(x1)ψ1(x2)⟩ to first order in σf . Thus, to make
predictions about the mean and fluctuations of the head to first order in σf , a set of
equations for each order has to be derived which can be solved for ψ0 and ψ1. Therefore, the
decomposed random variables and the expansion of the dependent variables are inserted
into the Richards equation and conditions for initial and boundary conditions. Then, terms
at separate order are collected. The resulting sets of equations, consisting of zeroth or
first order Richards’ equations, boundary and initial conditions, are solved for ψ0 and ψ1,
respectively.

Method of Greens function

Applying the perturbation method to the unsaturated flow problem results in a linear, inho-
mogeneous partial differential equation for each order. One possibility to solve these equa-
tions is the Method of Greens function which is a mathematical tool to solve inhomogeneous
linear equations of the form

Au = g (2.76)

where A is some linear operator and u the unknown.

The equation is solved by

u(z) =

∫ ∞

−∞
G(z − z′)g(z′)dz′ (2.77)

where G is the Greens function defined by

AG(x) = δ(x) (2.78)

with δ(x) being the Dirac delta function. To determine the Greens function might be very
difficult. For standard equations, G can be found in the literature, it can also be derived for
simple cases e.g. using mirror functions.

2.3.4.2 Monte Carlo method

In this method, a deterministic flow problem is solved numerically for each realization of
an ensemble of parameter fields. From the resulting ensemble of hydraulic variables, the
moments such as mean, variance and covariance are derived.

The numerical method to solve the flow equation, which is in our case the Richards equation,
is explained in the next section.
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2.4 Numerical model for the Richards equation

Unsaturated flow is modeled by the Richards equation which is a non-linear partial differen-
tial equation. First-order second-moment perturbation approximations for the unsaturated
flow problem including root water uptake exist for steady flow and simple soil structures
(see chapter 3). However, these solutions underlie restrictions as small variability of the soil
parameters and are only able to capture the influence of soil structure characterized by the
first two moments (mean and variance) which means a loss of information. Transient prob-
lems, large variations of soil parameters or more complex structure have to be analyzed
using numerical solutions.

Numerical schemes approximate the continuous problem in space and time with a discrete
solution. The procedure to obtain the discrete distribution can be grouped into three steps.
First, the domain of interest is divided into subunits by means of a grid. Second, the flow-
determining equations, in our case the Richards equation, is discretized, which means that
it is formulated for all subunits (in space and time). And third, the resulting system of non-
linear equations is linearized and solved for each successive time level based on the infor-
mation given at the boundaries and in the initial state.

In order to represent the real problem appropriately, the following conditions have to be met.
The discretization scheme should lead to stable solutions, meaning errors are not amplified.
Furthermore, it has to be convergent which means that with a refinement of the grid spacing,
the numerical solution tends towards the exact solution of the differential equations. And
last, the discretization scheme has to be mass conservative.

In the following, the discretization scheme in time and space is explained in more detail.
These methods are implemented in the flow simulator MUFTE-UG (Multiphase Flow, Trans-
port and Energy model) (Helmig et al., 1998) and used for the numerical simulations in 2D
fields.

2.4.1 Temporal discretization

For the time discretization, a fully implicit Euler scheme is used which corresponds to a
backward finite-difference scheme where the time derivative is approximated by the differ-
ence of the solution at two successive time levels,

∂u

∂t
=
un+1 − un

tn+1 − tn
= f(un+1), (2.79)

where n and n + 1 denote the time level and f(un+1) the system of equations evaluated at
the next time level. Consequently, the full system of equations has to be solved at each time
level which is computationally expensive but guarantees stability.
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2.4.2 Spatial discretization

The spatial discretization of the Richards equation is done using a vertex-centered finite-
volume scheme, the so-called Box method (Helmig, 1997).

As in finite-element methods, a discrete solution for the potential is obtained on the nodes of
a finite-element mesh using the weak form of the Richards equation. The fluxes are balanced
over the boundaries of a control volume which is defined by a dual (finite-volume) mesh.
In this sense, the Box method combines the advantages of finite-volume methods as it is lo-
cally mass conservative and finite-element schemes being applicable to complicated meshes.

In the following, we consider unsaturated flow in the domain Ω. The domain is discretized
with a finite-element mesh into elements E. The elements are further divided into subcon-
trol elements to obtain a dual mesh - the finite-volume mesh. This mesh is constructed by
connecting the element barycenters with the barycenters of the element faces. Each element
consists then of n subcontrol volumes, where n is the number of vertices or nodes of the
element. The volume of each finite-volume box is denoted by B. The grid is illustrated in
Figure 2.15.

i

i

Figure 2.15: Construction of Finite Element and Finite Volume mesh.

A numerical, discrete solution approximates the real, continuous solution at distinct points,
defined by the finite-element mesh. In our case, the unknown is the total potential Ψ, defined
in equation (2.20). Within one element, Ψ is approximated using first-order Ansatz functions
Nj which have to be equal to unity at the node j and zero at all other nodes. In between two
nodes, the Ansatz functions Nj are chosen as piecewise linear (see Figure 2.16).

Ψ̃ =
n∑
j=1

NjΨj (2.80)

Gradients are described by

∇Ψ̃ =

n∑
j∈ηi

∇Nj(Ψj −Ψi) (2.81)
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where ηj is the set of neighboring nodes of the node i in a given element.
The geometry of the domain is discretized with the same Ansatz functions as the unknowns.

Figure 2.16: Sketch of Ansatz functions Nj and weighting functions Wj .

The weak formulation requires the Richards equation (2.24) not to hold absolutely but on
average and with respect to some test function Wi which has to vanish on the boundaries of
the domain.

∫
Ω
Wi

∂(ρΘ(pw))

∂t
−
∫
Ω
Wi∇ · [ρλks∇Ψ]−

∫
Ω
WiρR = 0 (2.82)

Approximating the solution by discrete values (equation 2.80) results in an error or residual
ϵ when employed in equation 2.82. The weighted residual which is the residual multiplied
by the test function becomes, however, zero on the average if the test functions, also called
weighting functions, are chosen appropriately,

∫
Ω
WiϵdΩ

!
= 0. (2.83)

With equation 2.80, 2.81 and the weighing functions Wi, the weak formulation of the
Richards equation (2.82) for the approximate solution is as follows

∫
Ω
Wi

∂
∑

j∈ηi(ρΘj)Nj

∂t
dΩ−

∫
Ω
Wi∇ · [ρλks

∑
j∈ηi

(Ψj −Ψi)∇Nj ]dΩ

−
∫
Ω
Wi

∑
j

NjρRjdΩ =WiϵdΩ
!
= 0. (2.84)

As Sj , Ψj andRj are node values, not depending on the spatial coordinates, the summations
can be pulled out of the volume integral. Assuming incompressible flow, the density of
water is constant and drops out in each term,
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∂
∑

j∈ηi Θj

∂t

∫
Ω
WiNjdΩ−

∑
j∈ηi

(Ψj −Ψi)

∫
Ω
Wi∇ · [λks∇Nj ]dΩ

−
∑
j

Rj

∫
Ω
WiNjdΩ =WiϵdΩ

!
= 0. (2.85)

Using a mass lumping technique, the properties of a finite-volume-formulation are gained.
The mass matrix Mij is defined as

Mij :=

∫
Ω
WiNjdΩ (2.86)

and it is assumed that this ‘mass’ is concentrated at the nodes. Correspondingly, Mij can be
replaced by the matrix M lump

ij where the coefficients of each row of Mij are summed onto
the diagonals

M lump
ij = δij

∑
k

Mik, (2.87)

with δij being the Kronecker delta.

In the Box method, the weighting functions are chosen to be piecewise constant (equal to
unity) within the control volume box Bi of the node i and zero otherwise, i.e. the character-
istic function of the box Bi. Weighting and Ansatz-functions are shown in Figure 2.16. Due
to the definition of Wi and Nk, one gets

M lump
ij = δij

∑
k

∫
Ω
WiNkdΩ = δij

∫
Ω
WidΩ = δij

∫
Ω
dBidΩ = δij∥Bi∥, (2.88)

where ∥Bi∥ is the volume of Bi. The assignment of the ‘mass’ to a subvolume, in this case
Bi, is typical for finite-volume methods.

The storage term (term 1) becomes then

∂
∑

j∈ηi Θj

∂t

∫
Ω
WiNjdΩ

=
∂
∑

j∈ηi Θj

∂t
δij∥Bi∥ =

∂Θi

∂t
∥Bi∥. (2.89)

The sink term (term 3) becomes



48 Modeling of flow in the subsurface

∫
Ω
WiRdΩ = Ri∥Bi∥. (2.90)

The flux term (term 2) can be simplified using the product rule of differentiation (equation
(2.91))

∫
Ω
Wi∇ · FdΩ =

∫
Ω
∇ · (WiF)dΩ−

∫
Ω
∇WiFdΩ, (2.91)

with Wi being a scalar field and F, a vector field,

and the Green-Gauss integral theorem (equation (2.92))

∫
Ω
∇ · (WiF)dΩ =

∮
∂Ω
WiF, ·ndΓ (2.92)

where n denotes the outer unit normal vector.

Term 2 can then be reformulated to yield

∑
j∈ηi

(Ψj −Ψi)

∫
Ω
Wi∇ · λks∇NjdΩ

=
∑
j∈ηi

(Ψj −Ψi)

∫
Ω
∇ · (Wiλks∇Nj)dΩ

−
∑
j∈ηi

(Ψj −Ψi)

∫
Ω
∇Wiλks∇NjdΩ. (2.93)

Using the definition of Wi, which implies ∇Wi = 0, and using the Green-Gauss theorem,
the flux term reduces to

∑
j∈ηi

(Ψj −Ψi)

∫
Ω
Wi∇ · λks∇NjdΩ

=
∑
j∈ηi

(Ψj −Ψi)(λ)ij

∫
∂Bi∩∂Bj

ks∇Nj · n∂Bi
dΓBi . (2.94)

The flux into a box boundary segment is thus determined by the difference of the total po-
tential of the two adjacent nodes, the mobility and the intrinsic permeability at the interface
of two boxes. To guarantee that the fluxes are continuous with the applied discretization
scheme, the intrinsic permeability ks is defined at the nodes and is harmonically averaged
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to obtain the value at the interface of two boxes. The mobility is assigned according to a
fully upwinding scheme which takes the properties of the upstream node. Considering the
direction of the advective transport in this way leads to a more stable solution.

(λ)ij = (λ)j if Ψw,i < Ψw,j (2.95)

(λ)ij = (λ)i if Ψw,i ≥ Ψw,j (2.96)

Applying term 1, term 2 and term 3 to equation (2.85) and taking the time discretization into
account finally leads to the discretized form of the Richards equation:

Θn+1
i −Θn

i

tn+1 − tn
∥Bi∥ −

∑
j∈ηi

(Ψj −Ψi)
n+1(λ)n+1

ij k̄s
n+1

∫
∂Bi∩∂Bj

∇Nj · n∂Bi
dΓBi

−Rn+1
i ∥Bi∥ = 0 (2.97)

where k̄s is the harmonic mean of ks,i and ks,j .

2.4.3 Linearization

The discretization scheme results in a system of non-linear equations of the form

f(u) = 0, (2.98)

where u is the set of unknowns and f a non-linear function of u. Non-linearity emerges
from the constitutive relationships as the relative permeability - pressure head relationship
or the pressure head - saturation relationship. The non-linearity is treated with the Newton-
Raphson method where the function is linearized in the following way,

ur+1 = ur −
(
∂f
∂u

)−1

r

· f(ur), (2.99)

where r indicates the iteration step.
The matrix of partial derivatives is defined as Jacobian matrix,

J =
∂f
∂u

. (2.100)

For the transient solutions, the Jacobian is evaluated numerically.



3 First order second moment solutions for
unsaturated flow

For simple soil structures, such as layered media or a medium consisting of parallel stream-
tubes (parallel column medium) and for the standard root water uptake parametrization,
first order second moment solutions of the steady state unsaturated flow problem including
root water uptake can be derived using a perturbation approximation. The mathematical
procedure to derive such solutions in general, was explained in section 2.3.4.1. The depen-
dent flow variables are expanded in terms of the systems standard deviation σ. In this work,
the random space functions in the Richards equation, Θ and K(ψ), are functions of the pres-
sure head ψ(f, α), the saturated loghydraulic conductivity f , and the soil parameter αwhich
is related to f via the Miller similarity, (equation (2.64)). Hence, only one random soil param-
eter, f , determines the variability of the system. The mean and the variance of the pressure
head ψ can thus be expressed in terms of the statistical properties of f . Assuming small
variability of the soil parameters and dependent variables, the steady state first order sec-
ond moment solution can be determined using a perturbation approach.

In this chapter, analytical solutions for mean and variance of pressure head in a parallel col-
umn medium, derived by Rubin and Or (1993), are shown and compared to semi-analytical
expressions for the first two moments in a layered medium.

3.1 Column media

In Rubin and Or (1993), the stochastic Richards equation with water extraction by roots
modeled as sink term in a parallel column medium is analytically solved for the mean and
the variance of pressure head. The solution describes one-dimensional flow in independent
homogeneous streamtumbes where no interactions between media with different properties
takes place. The upper boundary corresponds to the surface and is modeled as a Neumann
boundary with constant inflow q. The lower boundary corresponds to the water table and
is modeled by a Dirichlet boundary condition with ψ equal to zero. The root water uptake
parametrization is as in equation (2.25) with an exponentially decreasing root density distri-
bution (equation (2.26)),

R(z) =
τ

δ
exp

z −H

δ
, (3.1)

where τ [m/s] is the atmospheric demand, δ [m] the root depth and H [m] the vertical exten-
sion of the domain. Note that in the work of Rubin and Or (1993), δ is treated as a random
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variable as well while in this work, δ is assumed to be deterministic.
After Rubin and Or (1993), the mean of pressure head is given by

ψ0(z) =
1

⟨α⟩

ln

(
⟨α⟩
⟨Ks⟩

[
qn
⟨α⟩

+

[
⟨Ks⟩
⟨α⟩

− qn
⟨α⟩

− δ

1 + ⟨α⟩δ
τe−H/δ

]
e−⟨α⟩z +

δ

1 + ⟨α⟩δ
τe−

H−z
δ

])
. (3.2)

With a deterministic δ, the variance of pressure head reads,

⟨ψ1(z), ψ1(z)⟩ =
∫ z

0
(F4(z

′)α′(z) + F5(z
′)f(z′))2dz′ (3.3)

with

F4 =
∂ψ

∂α
− 1

⟨α⟩2
ln

(
exp(⟨F ⟩+ 1)

⟨α⟩⟨ϕtc⟩

)
+

F1

⟨α⟩⟨ϕtc⟩
(3.4)

F1 = −∂ϕtc
∂α

= − qn
⟨α⟩2

− δ2τ exp (−(H − z)/δ)

(1 + δ⟨α⟩)2

− [1 + ⟨α⟩z] exp[−⟨α⟩z + ⟨F ⟩]
⟨α⟩2

+
qn[1 + ⟨α⟩z] exp[−⟨α⟩z]

⟨α⟩2

+
[δ + z(1 + δ⟨α⟩)]δτ exp[−H

δ − ⟨α⟩z]
(1 + δ⟨α⟩)2

(3.5)

F5 =
∂ψ

∂F
=
F2 − ⟨ϕtc⟩
⟨α⟩⟨ϕtc⟩

(3.6)

F2 =
∂ϕtc
∂F

=
exp(⟨F ⟩ − ⟨α⟩z)

⟨α⟩
(3.7)

where ϕtc is the matric flux potential with ϕtc =
∫ ψ
−∞K(ψ)dψ, ⟨ϕtc⟩ = Ks exp(α⟨ψ⟩)

α and qn =

q − τ .

Mean and variance of pressure head depend on the vertical position z [m]. Figure 3.1 illus-
trates mean and variance profile of pressure head for different values of q [mm/d], τ [mm/d]

and δ [m]. At the groundwater table, the medium is fully saturated. With increasing vertical
position, the saturation and ψ decrease due to capillary suction. Above this region, which
is called the capillary fringe, the shape of the profile depends on the water extraction by
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plants. Without root water uptake, the saturation or water pressure remain constant above
the capillary fringe up to the surface. This value depends on the infiltration rate at the top
boundary. Under consideration of root water uptake, water is continuously extracted within
the root zone, the saturation and ψ thus decrease from the surface downwards. The partic-
ular shape depends on the atmospheric demand τ and the rooting depth δ. Thus, scenarios
where root water uptake is taken into account are reflected in a ‘bent’ shape of mean and
variance of water pressure head or saturation vs. vertical position. Figure 3.1 shows profiles
of the mean and the variance of pressure head for an infiltration rate of q equal to 3mm/d

and an extraction rate of τ of 2mm/d with different values of δ (dashed lines). The solid
lines in Figure 3.1 are obtained without root water uptake and an infiltration rate of q (black
line) or q − τ = 1mm/d (green line). For a certain infiltration rate q and transpiration de-
mand τ , the mean and variance profiles for all values of δ are bounded between the profiles
which are obtained for the case without root water uptake and an infiltration rate of q or an
infiltration rate of q − τ (Rubin and Or, 1993).

Figure 3.1: Analytical solution for mean (a) and variance (b) of pressure head in a column soil ac-
cording to the solution of Rubin and Or (1993). In the legend, q denotes the infiltration
rate [mm/d], τ the transpiration rate [mm/d] and δ [1/m] the rooting depth.

3.2 Layered media

A similar solution for mean and variance of pressure head, as derived by Rubin and Or
(1993) for a medium consisting of parallel streamtubes, can be determined for a layered
medium. In the following, the derivation is outlined.

As in the previous chapter, root water uptake is parameterized according to equation (3.1)
and depends only on the potential transpiration rate which equals the, over the root-zone
distributed, atmospheric demand.
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The conductivity K and the water pressure head ψ are expanded around the homogeneous
solution into different orders in terms of the standard deviation of f .

ψ = ψ0 + ψ1 + ψ2 + .....

K = K0 +K1 +K2 + .....

Inserting the expressions into the 1D steady state Richards equation, where the time deriva-
tive is omitted, leads to

∂

∂z
[(K0 +K1 + ...)(

∂ψ0

∂z
+
∂ψ1

∂z
+ ...+ 1)] = R. (3.8)

Under consideration of the variation of f , α and ψ, the hydraulic conductivity K is written
as

K = Ks exp(αψ)

= Ks,g(1 + f +
1

2
f2 + ...) exp

(
(⟨α⟩+ α′)(ψ0 + ψ1 + ....)

)
. (3.9)

The zeroth and first order hydraulic conductivity is obtained from equation (3.9) by taking
only zeroth respectively first order terms into account,

K0 = Ks,g exp(⟨α⟩ψ0),

K1 = Ks,gf exp(⟨α⟩ψ0) +Ks,g exp(⟨α⟩ψ0)(α′ψ0 + ⟨α⟩ψ1).
(3.10)

Zeroth order solution

At zeroth order, we obtain from equation (3.8)

∂

∂z
[K0(

∂ψ0

∂z
+ 1)] = R, (3.11)

where the boundary conditions are

q0(z = H) = q,

ψ0(z = 0) = 0.

With K0 (equation (3.10)), R (equation (3.1)) and transformation,

φ0 = exp(⟨α⟩ψ0), (3.12)

the zeroth order Richards equation (3.11) results in

∂2φ0

∂z2
+ ⟨α⟩∂φ

0

∂z
=

τ⟨α⟩
Ks,gδ

exp(
z −H

δ
). (3.13)
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Equation (3.13) is solved by

φ0 = exp(−⟨α⟩z)(1 + q

Ks,g
+

τ

Ks,g
)− q

Ks,g
+

τ

Ks,g

+
⟨α⟩δτ

(1 + ⟨α⟩δ)Ks,g
(exp(

z −H

δ
)− exp(−H

δ
− ⟨α⟩z)). (3.14)

The zeroth order pressure head follows from

ψ0 =
1

⟨α⟩
ln(φ0). (3.15)

The solution ψ0 represents the pressure head profile for a homogeneous soil where the
conductivity equals its geometric mean Ks,g. As the mean only depends on the averaged
soil parameters, ψ0 agrees with the zeroth order solution of Rubin and Or (1993).

First order solution

The variance of the pressure head ψ1 results from the solution of the first order equation,
which is obtained by taking only first order terms of the flow equation (3.8),

∂

∂z
[K0∂ψ

1

∂z
+K1(

∂ψ0

∂z
+ 1)] = 0. (3.16)

As the sink term R is deterministic, it does not depend on first order terms, hence the right
hand side equals zero.

With K1 from equation (3.10), the first order Richards equation becomes

∂

∂z
[Ks,g exp(⟨α⟩ψ0)

∂ψ1

∂z
+ (Ks,gf exp(⟨α⟩ψ0)

+Ks,g exp(⟨α⟩ψ0)(α′ψ0 + ⟨α⟩ψ1))(
∂ψ0

∂z
+ 1)] = 0. (3.17)

Using the zeroth order flux,

q0 = −Ks,g exp(⟨α⟩ψ0)(
∂ψ0

∂z
+ 1), (3.18)

and the following transformations,

φ1 = ϕ0tψ
1, (3.19)

ϕ0t = exp(⟨α⟩ψ0), (3.20)

yields

∂2

∂z2
φ1 + ⟨α⟩ ∂

∂z
φ1 =

∂

∂z

q0

Ks,g
(f + ψ0α′). (3.21)
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This expression can be further simplified by integration where the integration constant is
assumed to be zero as the average over the fluctuations has to be zero,

∂

∂z
φ1 + ⟨α⟩φ1 =

q0

Ks,g
(f + ψ0α′). (3.22)

With the boundary conditions,

q1(z = H) = 0,

ψ1(z = 0) = 0,

equation (3.22) can be solved using the Greens function, which results in

φ1 =

∫ z

0
G(z − z′)g(z′)dz′ (3.23)

with

g = q0

Ks,g
(f + ψ0α′)

and

G(z − z′) = exp(−⟨α⟩(z − z′)).

With ψ1 = φ1/ϕ0t , it follows

ψ1 = exp(−⟨α⟩ψ0)

∫ z

0
exp(−⟨α⟩(z − z′))g(z′)dz′. (3.24)

The first order second moment approximation for the variance of the pressure head ψ as a
function of the stochastic properties of f and α can be calculated by taking the expectation
value of ψ1(z) · ψ1(z′) at the same location, z = z′, i.e.

σ2ψ = ⟨ψ1(z)ψ1(z)⟩

= e−2⟨α⟩(ψ0(z)+z)

∫ z

0

∫ z

0
exp2⟨α⟩(z

′+z′′)⟨g(z′)g(z′′)⟩dz′dz′′. (3.25)

The term ⟨g(z′)g(z′′)⟩ contains the covariance function of f , α and αf . As the covariances of
f and α are in the integral multiplied by ψ0, the integrals in equation (3.25) cannot be solved
analytically and are solved numerically.

Note, that a deterministic root water uptake term affects the zeroth order solution within
the root zone, and the first order solution through the zeroth order solution. The first
order solution of pressure head consequently follows the zeroth order solution. Thus, the
assumed model for root water uptake results in a bent shape of mean and variance pressure
head profile in comparison to solutions without root water uptake, which was already
observed by Rubin and Or (1993) for a medium that consists of an ensemble of parallel
streamtubes.
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The variance of pressure head in layered soil depends on the correlation length. For de-
creasing correlation lengths, the pressure head variance tends towards zero, (see Figure 3.2).
Thus, for small correlation lengths, the variances of the pressure head in a layered soil, are
much smaller than the variances in a soil consisting of independent homogeneous stream-
tubes.
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Figure 3.2: Analytical solution for mean (a) and variance (b) of pressure head in a layered soil with
different integral scales of f.

For increasing correlation length, one realization of the layered ensemble tends towards a
homogeneous field and the layered solution approaches the solution of Rubin and Or (1993),
as shown in Figure 3.3.

Figure 3.3: Analytical solution for mean (a) and variance (b) of pressure head in a column and layered
medium with different integral scales of f.
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High variances of the saturated loghydraulic conductivity

The semi-analytical solutions for mean and variance of pressure head in layered media are
derived with the assumption that variances of the hydraulic parameters are smaller than 1.
To test the limitation of this assumption, the solutions are compared to 1D numerical steady
state simulations. Layered parameter fields with increasing variance of f , from σ2 = 0.5 to
σ2 = 3 were used.

Figure 3.4: Numerical (solid lines) and semi-analytical (dashed lines) solutions for mean (a) and
variance (b) of pressure head for a layered soil. The variance of f is 0.5, 1, 2, and 3.

Figure 3.4 shows the numerically obtained mean and variance of the steady state pressure
head distribution in comparison with the perturbation approximations for different values
of the variance of the saturated loghydraulic conductivity f . The mean profile of the pres-
sure head is well described by the semi-analytical solutions for all values of the variance
of f . The agreement between the numerical and semi-analytical solutions for the variance
of pressure head is not too poor for σ2f = 0.5, but is rapidly getting worse as the variance
of f increases. Thus, the assumption of small variances of f is irrelevant for the mean, but
is a severe restriction where the variance of pressure head is considered. Saturated flow
is, in contrast, less sensitive to σ2f such that agreement between analytical and numerical
solutions is found up to high variances of f . The extreme sensitivity of the pressure head ψ
to changes in σ2f in the unsaturated case reflects the high non-linearity of the problem.

Since water has to pass through low conductive parts of the soil in both 1D cases (column
and layered media), the solution for the variance of pressue head in 1D is expected to over-
estimate flow in isotropic 2D fields where water can bypass less permeable strata and lenses.
A medium consisting of independent streamtubes and a layered medium are, thus, not the
two extremes regarding the variability of unsaturated flow.

The applicability of the presented 1D analytical solutions to two dimensional, isotropic
Gaussian and non-Gaussian media is discussed in chapter 5.



4 Setup of numerical test case

To assess the joint impact of soil structure and root water uptake, unsaturated flow in simple
soil domains is compared to flow in more complex structures. In simply structured media
such as layered soil, unsaturated flow including root water uptake is approachable with an-
alytical solutions. More complex parameter fields or root water uptake strategies including
compensation are analyzed by means of numerical simulations.

Parameter fields with different patterns of extreme values (Gaussian and non-Gaussian
fields) as well as root water uptake strategies with and without compensation mechanisms
are tested. In this chapter, the numerical setup, the parametrization of the constitutive rela-
tionships and the parameter fields, which are used for the numerical simulations, are shown.
Finally an overview of the performed simulations is given.

4.1 Numerical setup

Unsaturated flow in a vegetated soil with the groundwater table at the bottom and constant
or variable inflow at the top is discussed.

The size of the domain is 8x8meters with a discretization of 256x256 cells. The upper two
meters of the domain are used to model infiltration appropriately as described in the
following. Thus, the flow domain of interest amounts 6m in the vertical and 8m in the
horizontal direction.

Boundary conditions

Infiltration is modeled as a Neumann boundary condition. The infiltration in a heteroge-
neous field with variation of soil parameters in two directions can lead to local ponding
if the local infiltration capacity is exceeded. So that all water can infiltrate and naturally
redistribute before it reaches the domain of interest, the upper boundary of the domain
is mimicked by an artificial top layer with a thickness of 2m. The first 12 cm of the
artificial top layer are homogeneous and of very high conductivity such that no water
ponds on top, the remaining part is heterogeneous such that the flow field can develop.
At the bottom of this artificial top layer, which is the top boundary of the domain of in-
terest, the flow field is at equilibrium. Figure 4.1 illustrates the model concept for infiltration.
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Figure 4.1: Modeling of infiltration using an artificial layer that consists of a very conductive layer
on top and a heterogeneous part; the domain of interest extends from a vertical position
of zero to a vertical position of 6m.

To analyze steady state scenarios, the inflow rate is modeled as constant. For the dynam-
ic scenarios, the inflow rate is temporally variable. We distinguish here between drydown
and rewetting scenarios where a constant infiltration rate is applied from a certain point of
time, which is illustrated in Figure 4.2a, and periodic cycles where the inflow rate follows a
periodic function. For the periodic cycles, a sine-function with variable frequency fd [1/s] is
chosen in this work. Since we only consider infiltration (and neglect evaporation), the nega-
tive part of the sine-function is set to zero. The modified function is illustrated in Figure 4.2b
(blue line) and is later referred to as sin′.
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Figure 4.2: Sketch of temporally varying infiltration (blue) and root water uptake (green) rate over
time in drydown and rewetting scenarios (a) and periodic cycle scenarios (b). In (b), no
transpiration occurs during infiltration phases and vice versa.
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The lower boundary (z = 0) is the water table and is a Dirichlet type boundary with ψ

being zero. The left and the right side of the domain are no-flow boundaries.

Sink Term

Root water uptake is modeled as a sink term with a pre-described extraction rate at each
node and starts directly at the top boundary of the domain of interest (at a vertical position
of z = 6m). Different root water uptake terms, R1 - R4, explained in chapter 2.2.2, are used.
The parameter δ, which describes the e-folding depth of root water uptake, constantly equals
0.6m in this work. Figure 4.3 shows the resulting root density for δ equal to 0.6m and a
domain height H of 6m.
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Figure 4.3: Exponentially decreasing density of roots vs. vertical position for δ = 0.6m and H =

6m.

The considered strategies account for unfavorable conditions by a locally decreased up-
take rate if the pressure head is below or beyond critical values. In this so-called stressed
regime, the soil is so dry that root water uptake is reduced due to water scarcity or so
wet that root water uptake is decreased because of anaerobic conditions. The correspond-
ing stress-response-function is modeled according to the Feddes-Function (Feddes et al.,
1978) illustrated in Figure 2.5. For the critical values h1 − h4, typical values of h1 = −0.1m,
h2 = −0.25m, h3 = −4.0m and h4 = −150.0m were used (e.g. Taylor and Ashcroft, 1972).

Strategy 1 does not compensate for stressed conditions and, thus, leads to a reduced global
transpiration rate. Strategy 2-4 compensate for local stress by increased uptake at more fa-
vorable locations. In Strategy 2 the uptake rate depends on the saturation, in Strategy 3 on
the relative permeability. To maintain the global transpiration rate at the potential value, a
scaling factor is multiplied in Strategy 2 and 3. This factor is calculated in the postprocessing
of each timestep and multiplied with the extraction rate of the next timestep. In the fourth
uptake strategy, the difference between the uncompensated uptake and (global) potential
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demand is also determined in the postprocessing. The difference is divided by the number
of unstressed nodes and, in the next timestep, added to the potential extraction rate at each
unstressed node. As the results of the last timestep are used to calculate the scaling factor
(Strategy 2&3) or the increase of uptake (Strategy 4) of the present timestep, the timestep is
limited not to introduce a systematic error and achieve satisfactory accuracy of results.

The atmospheric demand τ is modeled as constant value in the steady state scenarios. In
the dynamic scenarios, τ follows a sine function which has the same frequency as the inflow
rate, but is shifted by half a period with respect to the infiltration function such that during
infiltration no transpiration occurs and vice versa. The temporally changing atmospheric
demand is illustrated in Figure 4.2 (green line).

4.2 Parametrization of constitutive relationships

Different approaches exist to parametrize the water retention curve and the relative
permeability-pressure head relationship. In chapter 2.1, examples were given for both
relationships. These models were derived semi-empirically. There is evidence that the
Mualem-Van Genuchten model leads to better agreement with experimental data than oth-
er parametrizations. The approach of Mualem for the relative permeability has, however,
the disadvantage to be mathematically very complex. In the derivation of the analytical ex-
pressions for the mean and the variance of pressure head, the relative permeability is hence
parametrized according to the easier-to-handle Gardner-relation (equation (4.1)). For com-
patibility with the analytical solutions, the Gardner parametrization is chosen for the steady
state simulations.

K(ψ) = Ks exp(αψ) (4.1)

In the transient simulations (chapter 6) which should reproduce a natural scenario, the rela-
tive permeability is modeled according to the Mualem-relationship.

K(ψ) = Ks(1 + (αψ)n)a(1−1/n)(1− (αψ)n−1(1 + (αψ)n)−1+1/n)2 (4.2)

The saturation is given by the Van-Genuchten model.

S(ψ) = (1 + (αψ)n)−1+ 1
n (4.3)
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4.3 Parameter fields

Following the stochastic approach (chapter 2.3.1), the saturated hydraulic conductivity Ks

and the parameter α in the constitutive relationships are described by spatially correlated
random fields. Parameter fields with multi-Gaussian and different non-Gaussian probabili-
ty density functions are considered. Gaussian fields have isolated patches of extreme values
and connected intermediate values. In chapter 2.3.2, transformations were presented which
lead to Non-Gaussian fields with connected low extreme values (referred to as T1-fields) or
to fields with large patches of low extreme values (referred to as T2-fields). Fields with the
opposite pattern are obtained by taking the inverse value yITj = −yTj of the transformed
fields. The fields with connected high extreme values are referred to as IT1-fields, and the
fields with large patches of high extreme values are referred to as IT2-fields. Transformed
fields (T1 or T2-fields) and inverse transformed fields (IT1- or IT2-fields) are compared to
multi-Gaussian fields (G1- or G2-fields) with the the same univariate and two-point auto-
correlation function. One realization representing the saturated loghydraulic conductivity
of each structure of field set 1 and field set 2 is shown in Figure 2.8 and 2.10, respectively.

Statistical Properties

The statistical properties of the saturated loghydraulic conductivity, F and the parameter α
(of both field sets) that were used in the following case studies, are ⟨F ⟩ = −13.4934 ln(m/s),
σ2f = 1.0 , ⟨α⟩ = 3.04m−1 and CVα = 0.28 − 0.29 . The integral scales of field set 1 are
If = 0.187m− 0.189m, Iα = 0.180m− 0.182m and Ifα = 0.176m− 0.178m.

The Gaussian fields are generated for a given integral scale of f . To avoid that variations
are averaged out when solving Richards equation numerically, the computation grid has
to be sufficiently small. According to Tompkins et al. (1994), the correlation length should
comprise at least 5 nodes. Therefore, the correlation length is, at a resolution of 256 by 256
elements on 8 by 8 meters, larger than 0.1562m. Correlation length and integral scale are
(for a Gaussian field) related by a factor 1

2π .

When creating non-Gaussian fields with transformation (2.72) and (2.73), the autocorrelation
function of f changes slightly. As Gaussian and non-Gaussian fields are supposed to have
the same autocorrelation function of f , Gaussian fields with the same correlation length as
the transformed fields are generated after the transformed fields are obtained. Therefore, the
autocorrelation functions of f for the Gaussian and the non-Gaussian fields are determined
numerically. Subsequently, a Gaussian correlation function is fitted onto the numerically
determined correlation function of f . Equation (2.65) - (2.71) are applied to derive the au-
tocorrelation function of α and the crosscorrelation function of α and f . The integral scales
are then calculated by integration of the correlation functions according to equation (2.56).
A comparison of the numerically and theoretically derived correlation functions are shown
in Figure 4.4.
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Figure 4.4: Comparison of theoretically and empirically determined correlation function of f , α and
fα for G1 (a), T1 (b) and IT1 (c) fields.

4.4 Performed simulations

Simulations are carried out with the flow model MUFTE-UG. This code solves the Richards
equation using a node-centered finite volume (so-called box) method with an implicit back-
ward Euler discretization in time (Helmig et al., 1998), explained in chapter 2.4. Ensembles
of 100 or 40 realizations with a resolution of 256x256 cells on domains of 8x8m are taken as
parameter fields for each structure.

The numerically obtained mean and variance profiles of the pressure head distribution are
calculated by averaging over all realizations and in the horizontal direction. To exclude
boundary effects, 1.5m (which equals approximately 7−8 correlation lengths) are cut off the
lateral sides of the domain of each realization before the output fields are averaged (Bosma
et al., 1993).

With the setup described above, the following scenarios are analyzed. The performed simu-
lations can be divided into two parts, steady state and dynamic simulations.

On one hand, simulations with constant infiltration rate q [mm/d] and transpiration de-
mand τ [mm/d] are carried out until quasi-steady state is reached. Their purpose is to test
the first order second moment solutions for layered media and find the joint effect of Gaus-
sian and non-Gaussian soil structure and root water uptake on the steady state mean and
variance of pressure head. Moderate dry and wet conditions are analyzed. For comparison
with the scenarios including root water uptake, simulations without root water uptake con-
sidering the same net infiltration rate (q-τ ) are performed. Under dry conditions, both field
sets are used as input for the soil hydraulic properties. Different strategies for root water
uptake R1 - R4 are tested for T2-fields and a dry scenario.

On the other hand, dynamic simulations with temporally variable top boundary and sink
term are performed to assess the influence of heterogeneity on the time series of the hy-
draulic variables under consideration of root water uptake. Root water uptake term R1 and
R2 are applied for a drydown and rewetting scenario in parameter fields G1, T1 and IT1.
In there, root water uptake depletes the root-zone for 40 days with a constant rate τ , sub-
sequently infiltration, with a constant rate q, is considered on the artificial boundary. The
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initial condition is equal to 35 cm. A comparative scenario without roots and with the same
net infiltration rate (q − τ ) is carried out where the initial condition is equal to 50 cm. Fur-
thermore, periodic cycle scenarios where top boundary q and atmospheric demand τ follow
a modified sine-function are done. A low frequency case where one period equals approxi-
mately 30 days and a high frequency case where one period equals approximately 3 days are
tested. An overview of applied settings are given in Table 4.1 and 4.2.

No. Description q [mm/d] τ [mm/d] R Fields
S1 wet, w. roots 16 7 1 G1,T1,IT1
S2 wet, no roots 9 0 - G1,T1,IT1
S3 dry, w. roots 3 2 1 G1,T1,IT1,G2,T2,IT2
S4 dry, no roots 1 0 - G1,T1,IT1
S5 dry, w. roots 3 2.5 1-4 T2
S6 med dry, no roots 3 0 - G1,T1,IT1

Table 4.1: Steady state simulation settings. q is the infiltration rate, τ the transpiration rate, R the
model for root water uptake.

No. Description q [mm/d] τ [mm/d] ψinit R Fields
D1 dryd.-rew., w. roots 4, after 40 days 2 35 1-2 G1,T1,IT1
D2 dryd.-rew., no roots 2, after 40 days 0 50 - G1,T1,IT1
D3 dryd.-rew., no roots 4, after 40 days 0 50 - G1,T1,IT1
D4 per.cylces, high frequ. 6sin′(t) −4sin′(t) 35 1 G1,T1,IT1
D5 per.cycles, low frequ. 6sin′(10 · t) −4sin′(10 · t) 35 1 G1,T1,IT1

Table 4.2: Dynamic simulation settings. q is the infiltration rate, τ the transpiration rate,R the mod-
el for root water uptake. sin′ corresponds to the modified sine-function explained above.



5 Steady state flow in 2D Gaussian and
non-Gaussian fields

The objective of this chapter is to demonstrate the joint effect of soil structure and root water
uptake on steady state unsaturated flow. The simulations specified and listed in chapter 4
are analyzed. We are primarily interested if characteristics of root water uptake gained from
1D analytical solutions are also valid for 2D Gaussian and furthermore non-Gaussian fields.
Wet and dry conditions are distinguished. To point out which effects of structure are only
observed in combination with root water uptake, simulations without root water uptake
are presented as a reference case in comparison to simulations where root water uptake is
included in the model. To make sure conclusions are not limited to the standard root water
uptake term R1, different uptake strategies, explained in chapter 2.2.2, are compared for a
specific test case.

In the first part, mainly mean and variance of pressure head are analyzed. In the last section
of this chapter, the maximum connected velocity (fastest track) is analyzed to illustrate the
potential risk for contaminant transport estimations of neglecting transpiration of plants and
non-Gaussian soil structures. First of all, the pattern of the hydraulic conductivity, which
determines the flow behavior and depends on the saturation, is characterized at wet and
dry states.

5.1 Saturation dependent flow pattern

When analyzing flow under variably saturated conditions, one needs to be aware that the
hydraulic conductivity is a function of pressure head and saturation, respectively. The de-
pendency of the hydraulic conductivity and of the flow patterns on the saturation in Miller-
similar Gaussian fields was discussed by Roth (1995). Figure 5.1 illustrates the hydraulic
conductivity according to the parametrization by Gardner (equation (4.1)) as a function of
pressure head for coarse and fine material. Under fully saturated conditions, which corre-
sponds to a pressure head value of zero, the hydraulic conductivity is largest and equal to
the saturated hydraulic conductivity. With decreasing pressure head, the volume fraction of
water decreases and the volume fraction of air increases. Thus, the hydraulic conductivity
of the porous medium for water decreases (see chapter 2.1). The hydraulic conductivity of
coarse material decreases due to the lower air entry pressure stronger with decreasing water
pressure head than that of fine material. This leads to a crossover of the hydraulic conduc-
tivity of coarse and fine material at a specific water pressure head. At intermediate states
close to the crossover, the variance of the conductivity has a minimum and the soil structure
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is rather homogeneous. It was shown that the pattern of the hydraulic conductivity of the
fully saturated state in Miller-similar Gaussian fields is inverted for pressure head values
much larger than the crossover point (Roth, 1995).

Figure 5.1: Crossover of the loghydraulic conductivity of coarse and fine material.

Such a crossover occurs also in G1-, T1- and IT1-fields. Under saturated conditions, the pat-
tern of the conductivity in T1- and IT1-fields is characterized by connected extreme values,
isolated opposite extreme values and intermediate values. The material with intermediate
values is here called background material. To illustrate the change of pattern, the values
of the saturated loghydraulic conductivity f can be considered as separated into these three
classes. To be more precise, a threshold value fthr1 is defined such that one class captures the
values of the saturated loghydraulic conductivity that form the connected pathways. Here,
fthr1 was chosen such that in a parameter field with connected pathways of high extreme
values, fthr1 corresponds to the maximum possible value, at which the values larger than
fthr1 appear as connected paths. Figure 5.2 shows three examples of binary fields which
were obtained according to a threshold value equal to fthr1 (a), larger than fthr1 (b) and
smaller than fthr1 (c). fthr1 is meant as an estimate to roughly characterize the pattern of the
considered parameter fields and should not be mixed with the measures to quantify con-
nectivity. Its negative value, fthr2 = −fthr1 , is used to separate the parameter range into the
second class. The arithmetic average of the total parameter range represents the background
material and is assigned to the third class.

Figure 5.3 shows the loghydraulic conductivity versus pressure head for these three classes.
The unsaturated conductivity of the coarse material crosses that of the background material
at pressure head hc. At pressure head hf (with hf < hc), the unsaturated conductivity of the
fine material crosses that of the background material. Thus, for values of the pressure head
inbetween hc and hf , both coarse and fine material are less conductive than the background
material. In this regime of pressure heads, both fields, T1- and IT1-fields, have therefore
connected pathways of material with a low conductivity such that similar results for the
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(a) (b) (c)

Figure 5.2: Binary fields obtained by cutting all values below a certain threshold. In (a), the threshold
value is equal to fthr1 such that values above this threshold value form pathways. In (b)
and (c), the threshold value is above and below fthr1 , respectively.

T1- and IT1-fields are expected in the steady state. For the parameters chosen here, this
range of pressure heads is obtained for net infiltration rates of approximately 4− 40mm/d.
Note that these ‘crossover points’, hc and hf , are only a rough estimate and the range of
pressure head values which lead to the same patterns are strongly dependent on the chosen
soil parameters. Different patterns of the unsaturated conductivity in T1- and IT1-fields are
obtained for dry conditions (1mm/d net infiltration rate), as shown on the right hand side
in Figure 5.4.

Figure 5.3: Crossover of the loghydraulic conductivity of coarse and background material at pressure
head hc [m] and of fine and background material at hf [m].
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Figure 5.4: Hydraulic conductivity K [m/s] in G1-, T1- and IT1-fields, for wet conditions with q =
16mm/d, τ = 7mm/d (left) and for dry conditions with q = 3mm/d, τ = 2mm/d

(right).

5.2 Joint influence of structure and root water uptake

It is analyzed under which conditions the first order second moment solutions give good
estimates in two-dimensional fields and what effects non-Gaussian soil structures introduce
in comparison to multi-Gaussian fields if root water uptake is considered. It is furthermore
discussed, which features of structure are sensitive to the effect of root water uptake.

5.2.1 Wet conditions

Using analytical solutions, it was demonstrated that in 1D fields root water uptake leads, in
comparison to a scenario without root water uptake and with the same net infiltration rate,
to an increase of the mean (and correspondingly to a decrease of the variance) of pressure
head within the root-zone which results in a bent shape of the mean and the variance pres-
sure head profile (chapter 3). Figure 5.5 shows the numerically obtained mean and variance
of pressure head versus the vertical position in differently structured 2D-fields (G1, T1- and
IT1-fields) for two very wet scenarios with and without root water uptake.
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(b) Variance of Pressure Head

Figure 5.5: Simulated mean [cm] (a) and variance [cm2] (b) of pressure head vs. vertical position [m]

in G1-, T1-, IT1-fields for wet conditions with (solid lines) and without root water uptake
(dashed lines) (scenarios S1 and S2 in Table 4.1).

The bent shape, discussed for the analytical solutions, is also seen in the three numerically
obtained mean and variance profiles of pressure head and is the only difference in compar-
ison to a scenario without root water uptake and the same net inflow rate. Below the root
zone, the scenarios with root water uptake and without root water uptake lead to the same
profile of mean and variance of pressure head. As for the case without root water uptake,
no influence of the considered structures is expected under wet conditions due to the same
effective value and small variances of the hydraulic conductivity in G1-, T1- and IT1-fields.
Furthermore, T1- and IT1-fields have a similar pattern of hydraulic conductivity, which is
connected values of low conductive material (see chapter 5.1).

A comparison of the mean and the variance of pressure head in G1-, T1- and IT1-fields with
the layered analytical solution, illustrated in Figure 5.6, yields that the numerically obtained
mean pressure head is predicted well by the analytical solutions. Due to a variance of the
loghydraulic conductivity, σ2f , equal to 1.0 (see chapter 3) and the possibility to bypass low
conductive lenses in a 2D-field, the variances of pressure head in G1-, T1- and IT1-fields are
overestimated by the analytical solutions.
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Figure 5.6: Simulated mean [cm] (a) and variance [cm2] (b) of pressure head vs. vertical position
[m] for G1-, T1-, IT1-fields, in comparison to the layered analytic solutions (black dashed
line) for scenario S1. The numerically obtained mean pressure head is well estimated, the
variance of pressure head is overestimated by the analytical solution.

5.2.2 Dry conditions

Flow without root water uptake

Under dry conditions, the hydraulic conductivity of IT1-fields has connected pathways of
low conductive material, and the hydraulic conductivity of G1- and T1-fields has large low
conductive patches (right hand side of Figure 5.4). The low conductive pathways in IT1-
fields can act as barriers for flow in the vertical direction such that little pools of higher
pressure pond up (see Figure 5.7, 5.8).

(a) G1 (b) T1 (c) IT1

Figure 5.7: Pressure head ψ [m] for G1-, T1- and IT1-fields under dry conditions (scenario S4).

(a) G1 (b) T1 (c) IT1

Figure 5.8: Saturated loghydraulic conductivity f [−] for G1, T1 and IT1-fields.
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The ponding in IT1-fields leads to a difference between the mean pressure head of IT1-fields
and G1-/T1-fields of about 10 cm. A comparison of the mean and the variance of pressure
head in the three 2D fields with the analytical solution for layered media, illustrated in Fig-
ure 5.9, yields that the mean pressure head in the field with connected pathways of coarse
material (IT1) is most similar to the first-order second-moment solution which inherently
assumes an underlying Gaussian distribution. The variances of pressure head in G1-, T1-
and IT1-fields are in the same order of magnitude and are all strongly overestimated by the
analytical solution.
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Figure 5.9: Comparison of simulated mean [cm] (left) and variance [cm2] (right) of pressure head for
three structures (G1, T1 and IT1), in comparison to analytical solutions (black dashed
line); dry conditions (scenario S4).

Flow with root water uptake

The low conductive patches in G1- and T1-fields, illustrated on the right hand side of Figure
5.4, impede flow towards their inner parts and lead to very dry regions in the soil if root
water uptake is considered. These regions form in the following way, while the steady-state
distribution of pressure head develops.

In coarse lenses, a limited amount of water is present. Such lenses continuously dry, if more
water is taken up by roots than is replenished across their boundaries. The flow into a coarse
lens from its surrounding depends on the conductivity and the pressure gradient between
the lens and its surrounding. Due to low conductivities, water ponds above coarse lenses to
supply water into the inner parts of such patches. However, the deviation of pressure head
values on top of coarse lenses from their surrounding is limited due to lateral equalization
of pressure head. The pressure head value in the surrounding of coarse lenses depends in
turn on the inflow rate.

Limited ponding above such lenses leads to a maximum replenishment rate from the
top of a coarse lens into its inner part. If the replenishment rate is not sufficient to meet
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the extracted amount of water, a drying front proceeds upwards into coarse lenses from
its lower boundary, leading to decreasing conductivities. Thus, conductivities of lenses
of coarse material monotonously decrease such that increasing pressure gradients are
required to draw water into coarse lenses. At some point, required pressure head values
in coarse lenses increase infinitely given the pressure head on top and bottom is limited.
An analytic steady state solution is derived for a sample setup in one dimension, where a
lens of thickness L [m] with hydraulic properties of Ks [m/s] and α [m−1] is considered. At
the boundaries, top and bottom of the lens, the pressure head ψ is fixed to ht [m] and hb [m],
respectively. The relative permeability is modeled after Gardner. The root water uptake rate
R [1/s] is assumed to be constant and uniformly distributed. Reduction of uptake due to
stressed conditions is not taken into account.

In the vertical direction, Richards equation (at steady-state) reads,

∂

∂z
Ks exp(αψ)(

∂ψ

∂z
+ 1) = R. (5.1)

With the following transformation,

ϕt = exp(αψ), (5.2)

Richards equation becomes

1

α

∂2ϕt
∂z2

+
∂ϕt
∂z

=
R

Ks
. (5.3)

Boundary conditions are

ϕt(z = 0) = H1, (5.4)

ϕt(z = L) = H2, (5.5)

with

H1 = exp(αhb), (5.6)

H2 = exp(αht). (5.7)

This set of equations is solved by

ϕt =
e−αz(eαL(H1Ks −H2Ks + LR)− eαz(H1Ks +Rz) + eα(L+z)(H2Ks +R(−L+ z)))

(−1 + eαL)Ks
.

(5.8)

Figure 5.10a illustrates the solution of equation (5.3) for a typical length of coarse patches of
L = 0.175m, a saturated conductivity of Ks = 1.6618E − 6m/s and α equal to 3.3452m−1.
The root water uptake rate is R = 1.676E − 8 s−1 and the pressure head at top and bot-
tom of the lens was estimated with the analytical solution for layered soil to hb = 1.264m
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and ht = 1.24m (with simulation settings of scenario S3 in Table 4.1). Negative values
of the variable ϕt are unphysical, as they correspond to imaginary values of the pressure
head. These regions with imaginary pressure head values increase with increasing saturat-
ed conductivity of the lens, which is illustrated in Figure 5.10b where coarser material, with
Ks = 1.9777E − 6m/s and α = 3.6493m−1, is used in solution (5.8).

(a) (b)

Figure 5.10: Analytical 1D solution of equation (5.3) for ϕt = exp(αψ) [−] vs. z [m] including root
water uptake if the pressure head at top and bottom of the domain is fixed. Two sets
of hydraulic properties are used: (a) Ks = 1.6618E − 6m/s, α = 3.3452m−1 (b)
Ks = 1.9777E − 6m/s, α = 3.6493m−1.

In our model, water uptake is only restricted if the wilting point (h4 = −150m) is reached
which leads to wilted spots in large patches of coarse material. Such a case is illustrated
in Figure 5.11, which shows the pressure head distribution in one realization of T1-fields
in comparison to the loghydraulic saturated conductivity and the distribution of the root
water uptake term. In two of the patches of coarse material, the pressure head is decreased
to the wilting point of h4 = −150m and the uptake rate is zero, while the surrounding is
still relatively wet.

The localized wilted areas in T1-fields are reflected by a decrease of the mean of pressure
head and by very large variances in the upper part of the domain where a considerable part
of the rainwater has been taken up but the water extraction rate by roots is still large. Figure
5.12 shows the mean and the variance profiles of pressure head in the three structures, G1-,
T1- and IT1-fields, for a relatively dry scenario with q = 3mm/d, τ = 2mm/d and δ = 0.6m

(scenario S3 in Table 4.1). In contrast to the case without root water uptake, large differences
between the structures are seen in the upper part of the profile. T1-fields, which have con-
nected values of fine material and large isolated patches of coarse material, show the lowest
mean values and highest variances of pressure head meaning that such dry spots develop
heavily in T1-fields. Corresponding to the size of low conductive patches, dry wilted spots
develop less in G1-fields and only very weakly in IT1-fields. Clearly, the analytical solutions,
derived in section 3, make poor predictions for the pressure head under dry conditions if lo-
cal wilting occurs.
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Figure 5.11: Formation of dry regions in coarse lenses of T1-field: distribution of saturated loghy-
draulic conductivity f (a), pressure head (b) and (negative) root water extraction rate
(c).

Figure 5.12: Comparison of simulated mean [cm] (a) and variance [cm2] (b) of pressure head in G1-
, T1- and IT1-fields for scenario S3 in Table 4.1. Dry spots lead to extremely large
variances of pressure head.

Since the replenishment from the surrounding is limited, the occurrence of local wilting is
related to the length scale over which water can be drawn by roots. The analytical solu-
tion, shown in Figure 5.10, and the numerical results, shown in Figure 5.11, illustrate that
the length scale of coarse patches is the limiting factor. This aspect is further analyzed us-
ing a second set of parameter fields (G2-, T2-, IT2-fields), introduced in chapter 2.3.2 and
4.3, where the asymmetry of structure length scales is more pronounced. The fields are con-
structed such that they agree in mean and variance of the saturated loghydraulic conductiv-
ity but differ in their copulas which results in patterns with large patches of coarse or fine
material. One realization of G2-, T2-, and IT2-fields is shown in Figure 2.10. Such fields can
be generated from Gaussian fields using a so-called V-transformation (Li, 2010), which is
described in chapter 2.3.2.

The larger the patches of coarse material in the parameter fields are, the more susceptible
the structure is to the drying process at distinct locations. With the applied settings, only T2-
fields have large enough structures of coarse material so that dry spots develop. Figure 5.13
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shows the mean and the variance of pressure head in G2-, T2-, and IT2-fields for scenario S3
in Table 4.1. (Low values of the mean and extreme values of the variance of pressure head
indicate the formation of dry spots). Thus, the susceptibility for the effect of local wilting
is sensitive to the asymmetry of structure length scales and develops much more if large
patches of coarse material exist. For other structures, root water uptake only bents the mean
pressure head in the upper part of the soil, compared to cases without root water uptake.

Figure 5.13: Comparison of simulated mean [cm] (a) and variance [cm2] (b) of pressure head in
G2-, T2- and IT2-fields for scenario S3. In T2-fields, dry spots lead to extremely large
variances of pressure head.

Soil structures with large patches of coarse material can be found in nature. For example,
the las Cruces Trench Site dataset, which was parametrized by Li (2010) has such a
structure. The existence of large coarse lenses, compared to the size of structures of other
material, is captured by spatial bivariate copulas of the saturated hydraulic conductivity.
For details, we refer to the paper of Bárdossy (2006). From the bivariate copula, it can be
inferred which parameter values are correlated over what length scale. In comparison to
Gaussian copulas that are symmetric, large patches of high extreme values are reflected
in an asymmetric shape of the bivariate copula. Examples of copula density distributions
for different parameter fields are shown in chapter 2.3.3, Figure 2.12. Hence, copulas could
eventually serve as an indicator for the susceptibility of a structure to the formation of dry
patches when standard root uptake models are used.

Using the standard root water uptake model, local wilting affects the integrated (global)
actual transpiration such that the atmospheric demand cannot be met anymore. Such a con-
tinued water uptake, even from relatively dry patches in an otherwise moist soil, does not
seem realistic. Instead, since sufficient water may be available at other locations nearby, wa-
ter uptake should be shifted to those locations. The applied root water uptake model R1 is
quite broadly used for simple soil structures where such effects are not relevant. However,
for heterogeneous media, this uptake strategy is limited to wet scenarios, as demonstrated
above.
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5.2.3 Formation of dry regions in anisotropic media

In the previous section, isotropic parameter fields are used to illustrate that root water up-
take can lead to extreme values of the pressure head distribution under dry conditions. The
critical feature of structure which is related to the formation of dry regions is the length
scale over which water can be drawn from the surrounding of coarse lenses. This length
scale depends on the soil hydraulic properties and the driving forces for flow. In nature, the
heterogeneity of soil parameters is often anisotropic, layered or column like. Moreover, the
driving forces differ between the vertical and horizontal direction. In the horizontal, capil-
lary forces facilitate the flow of water, in the vertical, gravity must be additionally taken into
account. The typical length scale over which water can be drawn by roots in the horizontal
or vertical direction, thus, differs.

Whether roots can draw water in the horizontal direction over a distance that is smaller or
larger than in the vertical direction is analyzed by means of analytical solutions. The same
simplified test model as for the vertical case (section 5.2.2) is used to predict the distribution
of pressure head in a horizontally aligned lens of length L [m] with fixed pressure head at its
boundaries.

In the horizontal direction, Richards equation is

∂

∂x
Ks exp(αψ)

∂ψ

∂x
= R (5.9)

The solution for ϕt = exp(αψ) reads then

ϕt =
2H1Ks(L− x) + x(2H2Ks + αLR(−L+ x))

2KsL
(5.10)

Figure 5.14 shows the solution of the pressure head ψ [m] for flow in the horizontal direc-
tion (red) in comparison to the solution in the vertical direction (blue). The difference of the
potential △Ψ between the two boundaries of the lens matches in both cases. With the pa-
rameters chosen, regions with imaginary pressure head values form in the vertical direction
at smaller values of Ks and α than in the horizontal direction. One has to mention that for a
sound analysis, the water content in the lenses should be compared, the adjustment is here
done by eye.
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Figure 5.14: Analytical 1D solution for pressure head ψ [m] vs. z [m] in a vertically aligned lens
(blue) and a horizontally aligned lens (red) with fixed pressure head at the boundaries
and the same soil hydraulic properties α and Ks.

With these restrictions, our simplified test model predicts that the maximum distance over
which roots can draw water in the vertical direction may be smaller than in the horizontal di-
rection. This means that the effect of local wilting in patches of coarse material can be further
specified. Large lenses of coarse material may in the vertical direction be more susceptible to
the formation of wilted regions than in the horizontal direction. Thus, in anisotropic media
with vertically aligned lenses of coarse material, extremely dry parts of the soil may occur
more distinct than in anisotropic media with horizontally aligned coarse lenses.

To test the conclusions, flow simulations are carried out in anisotropic parameter fields with
coarse lenses in the vertical as well as in the horizontal direction. The results confirm the
analysis above. In a field with vertically aligned lenses of coarse material, dry patches form
heavily. Only in few cases horizontal lenses dry up. In such cases, the thickness of the hor-
izontal lenses is large. Figure 5.15 shows two sample realizations of the saturated loghy-
draulic conductivity and the corresponding pressure field in media with horizontal (a) or
vertical coarse lenses (b). In the field with horizontal anisotropy, local stress does not occur
while in the field with vertical coarse lenses, several patches with pressure head values in
the stressed regime (pressure head values smaller than −4m) develop.
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(a) Horizontal anisotropy

(b) Vertical anisotropy

Figure 5.15: Saturated loghydraulic conductivity f (left) and pressure head ψ [m] (right) in (a)
anisotropic horizontal and (b) anisotropic vertical media. Values smaller than −4m

(dark spots) correspond to stressed regions. The effect of local wilting occurs more se-
vere in fields with vertical lenses of coarse material.

5.2.4 Formation of dry regions in non-Miller similar media

The parameter fields Ks and α are in this work assumed to be correlated with each other
via the Miller-similarity. The theoretical concept was explained in chapter 2.3.1.2. In Miller-
similar fields α is proportional to

√
Ks such that high values of Ks and high values of α

occur at the same location. In this way, few spots of the hydraulic conductivity exist which
might rapidly decrease while the steady-state develops. In this section, it is tested, whether
the assumption of Miller-similar soils enhances the susceptibility to the formation of local
wilting.

If Ks and α are modeled as two independent, lognormally distributed random fields, large
values of α and Ks that are not located at the same place, contribute to low values of the
hydraulic conductivity K under dry conditions. Low conductive regions get thereby larger
and also lower due to the lognormal distribution of α such that dry spots form more easily
if Miller-similarity is not assumed. Figure 5.16 illustrates the hydraulic conductivity K in a
Miller-similar and non Miller-similar media.
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(a) (b)

Figure 5.16: Hydraulic conductivity K [m/s] in Miller-similar media (a) and non-Miller similar
media (b).
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Figure 5.17: Mean [cm] (left) and variance [cm2] (right) of pressure head in Miller-similar media
(a) and non-Miller simlar media (b) for relatively wet conditions (scenario S1). Large
values of the variance of pressure head indicate the formation of dry regions.

Since regions of low conductive material are larger in non-Miller similar media, the suscep-
tibility to the formation of dry regions is increased. Numerical simulations confirm that dry
patches form in non-Miller similar media under wetter conditions or at higher infiltration
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rates, compared to scenarios in Miller-similar media. Figure 5.17 shows the profile of ensem-
ble mean and variance of pressure head for scenario S1 in Table 4.1, which was conducted in
a Miller-similar parameter field (a) and a non Miller-similar media (b). The large variances of
pressure head in part (b) indicate that dry regions extensively form in the simulation where
Ks and α are not related to each other. The effect of local wilting is thus not an artifact of
Miller-similar media.

5.3 Comparison of root water uptake strategies

Since experimental data support the occurrence of compensation mechanisms for local stress
within the root zone (Taylor and Kleppner, 1978; Hasegawa and Yoshida, 1982; English and
Raja, 1996; Stikic et al., 2003; Leib et al., 2006), it is expected that roots can react in response to
an impeding soil structure in order to maintain the overall uptake at the potential rate. For
this reason, the basic root uptake term R1 (in equation (2.27)) is compared to three strategies
which include compensation mechanisms for local drying. The corresponding root water
uptake terms are denoted by R2, R3 and R4.

The uptake models, R1 to R4, are compared using the settings of scenario S5 in Table 4.1
(slightly drier conditions than in the previous section) and one realization of a T2-field where
a resolution of 128x128 on 8x8m was chosen. The distribution of the saturated loghydraulic
conductivity and the parameter α are shown in Figure 5.18.

Figure 5.18: Saturated loghydraulic conductivity f [−] (a) and parameter α [Pa−1] (b).

In Figure 5.19, the simulation results are shown. The distribution of pressure head (left) and
corresponding root water uptake (right) are illustrated for the different uptake strategies
R1-R4 (from top to bottom). The basic model leads to wilting within the two largest up-
permost patches, (Figure 5.19a,b). In case Strategy 2 (M2 = S) is considered, the resulting
relationship between root water uptake and pressure head in the water limited part of the
Feddes function is non-linear. Thus the formation of extremely dry spots is attenuated in
comparison to Strategy 1. But local wilting is in general also possible. In Figure 5.19c and
d it can be seen, that the stressed area is smaller compared to the basic model and the ex-
treme values of pressure head are equal to −4.1m instead of −150m with the basic model.
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Figure 5.19: Distribution of pressure head ψ [m] (left) and (negative) root water extraction rate
R [1/s] (right) with uptake models R1, (a,b), R2 (c,d), R3 (e,f) and R4 (g,h) for sce-
nario S5 in Table 4.1 .
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In case preferential uptake depends on the relative permeability (Strategy 3), the resulting
extraction rate decreases stronger with the pressure head in the water limited range of the
Feddes-function than with Strategy 2. Therefore, the formation of dry areas is even more
attenuated and occurs less often. In the test case examined in this study, dry regions did not
form when Strategy 3 was applied, (see Figure 5.19e, f). This effect is, however, in principle
still possible if the conditions are dry enough or the patches of coarse material large enough.
In contrast, Strategy 4 does not diminish the stressed or wilted area since the uptake rate at
stressed locations is not decreased compared to Strategy 1 (see Figure 5.19g,h). By increasing
the uptake rate at neighboring nodes in order to meet the atmospheric demand, the opposite
effect might be the case. Counting the number of stressed nodes yields that the number of
stressed nodes is slightly increased if compared to the standard approach R1.

Concluding, stress and wilting can develop locally in lenses of coarse material, although
surrounded by fine, wet material even when root water uptake strategies that compensate
for local wilting by increased uptake at wet locations and decreased uptake at stressed lo-
cations, are considered. However, with the root water uptake strategies 2-3, the effect is
attenuated and the global uptake is not affected by the wilted locations in coarse material.
When the fourth approach is employed, the global uptake rate is maintained at the potential
value, but the stressed area is not reduced compared to the standard model.

Considering the adaptability that plants can generally show in nature, the formation of wilt-
ed areas within a relatively wet surrounding seems unreasonable. Obviously, our modeling
approaches, and also the current state of knowledge of compensation mechanisms, lack es-
sential aspects, such as the consideration of soil physical and plant physiological processes.
Whatever strategy applies, compensation mechanisms do probably not work over long dis-
tances, such as few kilometers. Thus, locally wilted spots could eventually occur in large
fields if the cultivated crops are not able to access the groundwater system. Though, to pre-
estimate the local range of influence for compensation is difficult since plants may transmit
signals within one root system, and even communicate indirectly with neighboring plants
by changing the soil moisture status. The natural range of influence is hence likely to depend
strongly on the observed species and location. Compensation is probably not only limit-
ed in space, but also in time. The implemented strategies assume immediate adaptation to
changing conditions. Since the mechanisms driving compensation are still unclear and com-
pensatory growth or signaling might require some processing-time, an immediate response
might not be realistic under quickly changing infiltration pattern. Furthermore, compensa-
tion certainly depends on the soil moisture state. If a threshold dryness is exceeded such that
the bulk of the soil becomes stressed, the uptake rate is reduced if groundwater resources
cannot be accessed. Otherwise, in the extreme case, the whole atmospheric demand would
be extracted from few locations which seems unreasonable.

Finally, one needs to add, that it is questionable how well macroscopic compensation mod-
els for local stress represent natural processes in general. Compensation usually means the
enhanced uptake at deeper layers for stress close to the surface. Additionally, hydraulic vari-
ables are often monitored as average quantity. In heterogeneous media, little data on e.g.
resolved uptake pattern is currently available. In particular, local occurring stress at specific
locations and corresponding compensation has not been observed, to our knowledge, and
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remains until then speculative.

5.4 Impact on solute transport: Flow velocities

Solute, released into water at the surface, travels through the unsaturated zone. To estimate
the potential risk for groundwater contamination, it is crucial to predict the transport be-
havior of a solute. This topic has been addressed by numerous studies (e.g. Birkholzer and
Tsang, 1997). Root water uptake and non-Gaussian soil structures are often neglected in such
work.

In this section, Darcy fluxes of the steady state simulations in G1-, T1- and IT1-fields, with
and without root water uptake, treated above, are discussed. In the scenario without root
water uptake, the infiltration rate at the top boundary corresponds to the net infiltration
rate below the root zone, q − τ , of the scenario where root water uptake is accounted for. In
these stationary flux fields, solute transport is investigated using two methods. First, max-
imum connected transport velocities are studied, second, a numerical tracer experiment is
conducted. It is analyzed whether connected velocities and breakthrough curves are influ-
enced by root water uptake and non-Gaussian soil structures.

5.4.1 Stationary water flow field

Within the root-zone, root water uptake continuously decreases the infiltration rate q at the
top boundary with increasing depth such that the net infiltration rate corresponds to q − τ

below the root-zone. Thus, ensemble mean and variance of the total Darcy flux (
√
j2x + j2y ),

which are shown in Figure 5.20 and Figure 5.21, agree below the root zone in the scenario
with root water uptake (solid lines) and in the scenario without root water uptake where a
infiltration rate of q − τ (dashed lines) is used. The coefficient of variation decreases with
increasing mean and is thus, in the upper part of the domain, smaller as in the case without
root water uptake.
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Figure 5.20: Mean [m/s] (a), variance [(m/s)2] (b), and coefficient of variation [−] (c) of total Darcy
flux profile with and without roots; wet conditions (scenario S1 and S2).
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Figure 5.21: Mean [m/s] (a), variance [(m/s)2] (b), and coefficient of variation [−] (c) of total Dar-
cy flux vs. vertical position [m] in G1, T1 and IT1-fields with and without roots; dry
conditions (scenario S3 and S4).

The flow network depends on the pattern of the hydraulic conductivity which was shown
to be dependent on the infiltration rate at the top boundary, (see section 5.1). Under wet
conditions, the water flux field, illustrated in Figure 5.22, is similar in the non-Gaussian
fields T1 and IT1, corresponding to the pattern of the hydraulic conductivity. As reported by
Roth (1995), the variability of fluxes is small and the distributions are rather uniform close
to the crossover where coarse and fine material have similar conductivities. Under drier
conditions, the flow fields, illustrated in Figure 5.23, show distinct channels and T1- and
IT1-fields have different patterns. Ensemble mean and variance of Darcy fluxes are hardly
affected by the considered structures.

(a) Without root water uptake

(b) With root water uptake

Figure 5.22: Darcy flux in one realization of G1-, T1- and IT1-fields; wet conditions, without root
water uptake (a), and with root water uptake (b).
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(a) Without root water uptake

(b) With root water uptake

Figure 5.23: Darcy flux in one realization of G1-, T1- and IT1-fields; dry conditions, without root
water uptake (a), and with root water uptake (b).

5.4.2 Transport velocities

The transport velocity of solutes is related with the number of occurring reactions and plays,
thus, a role for the degradation process of hazardous compounds. This is important for
environmental problems such as the leaching of pesticides. Therefore, in solute transport
analysis, one is mainly interested in preferential flow paths, where solute can travel quickly,
or the arrival of the bulk of solute.

If solute is released into the stationary flow field, it is transported with a velocity of j/Θ
where j is the Darcy flux in x- and z-direction and Θ, the water content. The arrival time of
solute at a certain depth depends on the velocity of the tracks along which solute is trans-
ported. In order to identify the role that root water uptake and non-Gaussian soil structures
play for fast tracks of solute transport problems, the transport velocity fields are searched
for cluster with high values (preferential paths) which are connected from top to bottom.
The fastest track is related with the connected cluster with the highest velocity. The velocity
at which most connected cluster are found can be considered a measure related with the ve-
locity of the bulk mass. The number of connected cluster as function of a threshold velocity
is obtained using the Hoshen-Kopelman-Procedure, introduced in chapter 2.3.3. The thresh-
old velocity is set equal to the highest velocity and is subsequently stepwise decreased. For
each threshold velocity, values which are smaller than this value, are set equal to zero, the
remaining values are set equal to one. To find and label connected cluster of values equal
to one in each realization, the Hoshen-Kopelman-Algorithm implemented by Fricke (2004)
(in the programming language C) is included into a Matlab code. In this work, processes
in the upper part of the unsaturated zone (above the capillary fringe) and the influence of
root water uptake are of interest, hence, transport velocities are analyzed in a subdomain,
which extends from the surface (vertical position of z = 6m) to a location which is below the
root-zone and 2m above the groundwater table (vertical position of z = 2m). Two scenarios,
with and without root water uptake, which have the same net infiltration rate are compared
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under dry conditions. With and without root water uptake, the considered structures have
only little influence on the maximum threshold velocity and bulk velocity. In IT1-fields, the
bulk velocity is slightly smaller than in G1- and T1-fields. This difference is slightly larger
in the scenario without root water uptake than in the scenario with root water uptake. Both,
the maximum and the bulk velocity are in all structures larger with root water uptake which
indicates that solute travels faster in the scenario with root water uptake. Figure 5.24 shows
the number of connected cluster as function of the threshold value according to which the
binary field is obtained for a dry scenario with and without root water uptake, which have
the same net infiltration rate.

(a) Without root water uptake

(b) With root water uptake

Figure 5.24: Number of cluster vs. threshold velocity, averaged over all realizations. Without root
water uptake (a) and with root water uptake (b).

To test the above applied method of connected cluster, results are compared to arrival times
of solute derived from a numerical tracer experiment. At the top boundary of the veloci-
ty fields, an initial pulse of solute is released. The total (accumulated) concentration in the
subdomain (from a vertical position of z = 2m to z = 6m) is calculated and normalized
(denoted as c [−]). The change of concentration over time at a plane located 2m above the
groundwater table is derived by differentiation of the accumulated concentration with re-
spect to time. This curve is referred to as the flux-averaged breakthrough curve in this work.

We concentrate on the influence of root water uptake and non-Gaussian soil structures on
first arrival and arrival of bulk of the solute, but also on the tail of the flux-averaged break-
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through curves and the concentration held back by stagnant zones (here called residual
concentration). The tail of a breakthrough curve implies that small transport velocities exist
which lead to a retarded arrival of the solute. To evaluate the impact of root water uptake
and soil structure more clearly, we consider, in addition to the scenario without root water
uptake and an infiltration rate at the top boundary equal to q − τ , a case without root water
uptake and an infiltration rate of q.

Note that in the numerical tracer experiment only advective transport is considered. Nu-
merical dispersion occurs, but does not affect the measures of interest (peak arrival and
tailing).

Naturally, with higher infiltration rates at the top boundary, solute propagates faster through
the domain than at lower infiltration rates. Since the flux continuously decreases with in-
creasing depth in scenarios with root water uptake, the arrival time of the bulk of solute is
in between the two cases (inflow rate q and q − τ ) without root water uptake. The tail of
the flux-averaged breakthrough curve depends on the infiltration rate at the top boundary
as well. At higher infiltration rates, the arrival of solute at the lower boundary of the sub-
domain is less retarded and the tail less distinct than at lower infiltration rates. Thus, solute
mass passes the lower boundary of the domain the earlier and more concentrated, the high-
er the infiltration rate at the top boundary is. In the scenario with root water uptake, the
tailing of the flux-averaged breakthrough curve is in between both no-root cases.

Figure 5.25, 5.26 and Figure 5.27 show the normalized concentration (in the subdomain) over
time (a) as well as flux-averaged breakthrough curves (b-d) in G1- (green), T1- (red) and
IT1-fields (blue) for a scenario with roots (scenario S3 in Table 4.1) and the corresponding
scenarios without root water uptake, with an infiltration rate equal to q, and q − τ , respec-
tively (scenario S4 and S6). In (c) and (d) different sections of the breakthrough curves are
shown to illustrate the peak arrival or tailing more clearly. Single realizations are indicated
by light colored, dashed lines, ensemble means are represented by dark colored, solid lines.
In the scenario with root water uptake, solute arrives approximately 110 days ahead of the
no-root case if an infiltration rate of q − τ is applied and approximately 190 days later if an
infiltration rate of q is considered.
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(a) (b)

(c) (d)

Figure 5.25: Normalized concentration (in the subdomain) over time (a) and flux-averaged break-
through curves (b-d) (monitored 2m above the groundwater table) in G1- (green), T1-
(red) and IT1-fields (blue). Root water uptake is not considered, the infiltration rate at
the top boundary is equal to q.
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(a) (b)

(c) (d)

Figure 5.26: Normalized concentration (in the subdomain) over time (a) and flux-averaged break-
through curves (b-d) (monitored 2m above the groundwater table) in G1- (green), T1-
(red) and IT1-fields (blue). Root water uptake is not considered, the infiltration rate at
the top boundary is equal to q − τ .
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(a) (b)

(c) (d)

Figure 5.27: Normalized concentration (in the subdomain) over time (a) and flux-averaged break-
through curves (b-d) (monitored 2m above the groundwater table) in G1- (green), T1-
(red) and IT1-fields (blue), including root water uptake.

In T1-fields, particles travel on average faster than in G1- or IT1-fields such that, at early
times, more solute per unit time is detected. Correspondingly, the slope of T1-fields (red
line) is steeper at the onset of the breakthrough curve and the maximum occurs earlier than
in G1- and IT1-fields. In IT1-fields, solute arrives on average later than in G1-fields. Differ-
ences between the considered structures increase with decreasing infiltration rate applied
at the top boundary. Thus, comparing two scenarios with and without root water uptake
where averaged fluxes and pressure heads are equal below the root-zone (same net infil-
tration rate), differences between G1-, T1- and IT1-fields are smaller if root water uptake is
considered. Table 5.1 summarizes the times (in days of simulation time) at which dc/dt is
maximum in G1-, T1- and IT1-fields in the performed scenarios.
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RWU G1 T1 IT1

no - high 164 156 172

no - low 468 456 508

yes 356 348 384

Table 5.1: Times [days] at which dc/dt is maximum in G1-, T1- and IT1-fields with and without root
water uptake (high and low infiltration rate), monitored 2m above the groundwater table.

With and without root water uptake, the residual concentration is highest in IT1-fields,
which have large patches of fine material. With increasing infiltration rates, the residual
concentrations decrease.

In G1- and T1-fields, which have lenses of coarse material, the conductivity of coarse patch-
es is lowered by root water uptake such that these regions are bypassed by downwards
streaming water. The flow around dry lenses might lead to a lower residual concentration
and a decrease of the tail such that dc/dt approaches zero more quickly in such fields if root
water uptake is taken into account, in comparison to the case without root water uptake and
the same net infiltration rate of q− τ . However, which feature of structure is, with respect to
solute transport, most sensitive to the influence of root water uptake, needs to be analyzed
more detailed in future studies.

Comparing the results obtained with the numerical tracer experiment and the results of the
above used method of connected clusters, the latter can predict an earlier arrival of solute
under consideration of root water uptake but is not able to capture the differences between
the considered structures. Thus, algorithms based on the search for connected clusters can
only provide approximate measures for transport problems.



92 Steady state flow in 2D Gaussian and non-Gaussian fields

5.5 Intermediate summary 1: Steady states

In this chapter, steady state simulations on unsaturated water flow including infiltration
and root water uptake in differently structured soils are analyzed. In the following the main
findings of this chapter are listed:

• The pattern of the hydraulic conductivity is dependent on saturation. With the param-
eters chosen in this work, a wide range of infiltration rates exist which lead to similar
pattern of the hydraulic conductivity of T1- and IT1-fields. With very low infiltration
rates, the hydraulic conductivity of T1- and IT1-fields show inverse pattern (5.1). This
needs to be considered when steady state or dynamic simulations under varying con-
ditions are conducted.

• Section 5.2.1 shows that under wet conditions, root water uptake bents the profile of
mean and variance of pressure head by extracting water within the root zone. Only
small differences of mean and variance of pressure head exist between the considered
structures.

• Without root water uptake, structure slightly influences the pressure head distribution
under dry conditions. Including root water uptake, local wilting occurs in some struc-
tures, which decreases the mean pressure head and leads to extremely large values of
the variance of pressure head (section 5.2.2).

• The feature of structure which is sensitive to local wilting is the length scale of coarse
lenses. This feature is more critical in the vertical direction. The sensitivity to local
wilting is also increased if non-Miller similar media is considered.

• The occurrence of local wilting under steady state conditions leads to unreasonable
results and is likely to be a model artifact due to the use of oversimplified model ap-
proaches for root water uptake.

• Section 5.3 demonstrates that compensating root water uptake mechanisms main-
tain the global potential uptake rate and attenuate the effect of local wilting but do
not prevent local stress. We currently lack a sufficient understanding of uptake and
compensation mechanisms with respect to the involvement of soil-physical and plant-
physiological processes.

• Flux-averaged breakthrough curves obtained from transport calculations yield that in
dry scenarios with and without root water uptake, particles cross T1-fields slightly
faster, while IT1-fields retain more concentration over a long period of time. Arrival
times of bulk solute (i), tailing of the flux-averaged breakthrough curves (ii) as well
as differences between G1-, T1- and IT1-fields (iii) increase with decreasing infiltration
rate at the top boundary. Thus, in comparison to a case without root water uptake
and the same net infiltration rate, (i)-(iii) are smaller if root water uptake is considered
since the top infiltration rate is larger and water is continuously extracted over depth
(section 5.4).



6 Transient flow in 2D Gaussian and
non-Gaussian fields

In the previous chapter, the influence of soil structure and root water uptake on steady state
unsaturated flow was discussed. In reality, weather patterns are not constant over a long
period of time but vary strongly and drying and rewetting cycles take turns. Under such
conditions, conclusions drawn at steady state might not hold due to e.g. changing flow pat-
terns or preferential flow, and factors such as structure and root water uptake might become
more important. In this section, the joint influence of structure and root water uptake on
transient unsaturated flow during drying and rewetting phases is discussed.

We particularly focus on the phenomenon of locally occurring stress at distinct locations,
which has been shown to be the most severe effect of soil structure on steady state distribu-
tions of pressure head under consideration of root water uptake. Timescales for formation
and recovery of dry spots as well as the impact of the occurrence of local wilting on crop
yield is assessed. The second issue to be investigated deals with the development of variabil-
ity of pressure head and saturation over time during drying and rewetting and the impact
of root water uptake in the process. Special attention is paid to the state of largest variability
of pressure head, which is related to the driest state under steady state conditions.

In the following, pressure head and saturation are analyzed in G1-, T1- and IT1-fields at
three different depths of the root zone, illustrated in Figure 6.1, for test cases where drying
and subsequent rewetting is considered. The root water uptake terms R1 and R2, described
in section 2.2.2, are applied and compared to cases without root water uptake.

Figure 6.1: Exponentially decreasing root density and layers (in red) at which variables are analyzed.
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Test case

The joint influence of structure and root water uptake on transient flow is illustrated for
a scenario where first drying due to drainage and root water uptake is considered, and
subsequently rewetting with a constant flux at the top boundary. In this drydown-rewetting
scenario (scenario D1 in Table 4.2), root water uptake (with τ = 2mm/d and δ = 0.6m) is
applied from the beginning of the simulation. From the 40th day forward, both, root water
uptake and infiltration, with a rate of 4mm/d (on the artificial boundary), are considered
until a steady state profile develops. (Recall that infiltration on the soil surface is modeled
by an artificial layer of 2m. If infiltration is considered from the 40th day forward on the
artificial top boundary, the infiltration front arrives accordingly later at the top boundary of
the model domain.) The initial condition at the beginning of the simulation is uniform with
ψ equal to −35 cm.

Figure 6.2 shows time series of the mean of pressure head or saturation (solid line) in com-
parison to the coefficient of variation (dashed line) for the three structures, G1- (green), T1-
(red) and IT1-fields (blue), in layer 1 (a), layer 2 (b) and in layer 3 (c).

In each layer, the infiltration pattern at the top boundary is reflected. Through root extraction
and drainage of the initial water mass, the upper part of the soil dries down until infiltrat-
ing rainwater arrives. A rewetting front proceeds from the surface to the groundwater table
which subsequently reaches all layers. The minimum of mean pressure head or saturation
corresponds to the driest state before rewetting starts. The rainwater arrives at layer 1, ap-
proximately after 70 days, at layer 2, after 87 days and at layer 3, after 105 days. More deeply
located layers dry over a longer period of time and less water arrives due to water extraction
by plant roots above. This leads to a slower achievement of the steady state value such that
the drydown-rewetting curve widens with depth. Apart from the pressure head in layer 2
where the mean in T1-fields has lower values from 100− 150 days than the mean in G1- and
IT1-fields, the mean of pressure head and saturation behave very similarly in the considered
structures.
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(a) layer 1
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(b) layer 2
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(c) layer 3

Figure 6.2: Mean (solid line) and coefficient of variation (dashed line) of pressure head (left) and
saturation (right) vs. time for G1 (green), T1 (red) and IT1-fields (blue) in layer 1 (a),
layer 2 (b) and in layer 3 (c).
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The coefficient of variation of pressure head versus time shows two distinct features. Partic-
ularly striking are, first, the large peaks of the coefficient of variation of T1-pressure fields
(red dashed line) in layer 1 and 2, which occur at the same time as the mean pressure head
in T1-fields deviates from the mean pressure head in G1- and IT1-fields. From the results
of the previous chapter it can be concluded that these peaks are related to the formation of
dry regions in lenses of coarse material. The mean and variance of saturation is not affected
by these dry regions. The formation of dry spots depends on the local root water uptake
rate and the length scale of patches of coarse material. In layer 3, where root water uptake is
small, dry spots do not form. In G1- and IT1-fields, lenses of coarse material are smaller than
in T1-fields which leads to a smaller susceptibility to the formation of dry regions. Figure
6.3 shows again time series of < ψ > and CVψ in the three structures, but with differently
scaled axis. In G1- and IT1-fields, the coefficient of variation of pressure head has moderate
values, which indicates that patches with extreme pressure head values do not form in layer
1 to layer 3.
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(a) layer 1
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(b) layer 2
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(c) layer 3

Figure 6.3: Mean (solid line) and coefficient of variation (dashed line) of pressure head vs. time for
G1- (green), T1- (red) and IT1-fields (blue) in layer 1 (a), layer 2 (b) and in layer 3 (c).

The second distinctive feature in Figure 6.2 or Figure 6.3 is, that the maximum of the coef-
ficient of variation of pressure head follows the minimum of the mean pressure head with
a remarkable time lag. Extremes of mean and CV of saturation occur also with a small shift
(which is however much smaller than for the pressure head). Thus, the driest state and the
state with the maximum variability of pressure head and saturation do not occur simul-
taneously as expected from steady state solutions. Both phenomena are investigated more
closely in the following sections.
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6.1 Formation of dry spots

Section 5.2 demonstrates that root water uptake, modeled according to the standard macro-
approach, can cause local wilting in soil structures with large patches of coarse material
under dry steady state conditions with constant infiltration at the top boundary and con-
stant water extraction by roots. These locations are permanently wilted spots, situated in a
wet surrounding. The mechanism of formation is explained as well. This section focuses on
the estimation of timescales for the formation of dry spots during drying and the recovery
during rewetting. Such timescales give the opportunity to estimate a critical frequency for
periodic cycle scenarios above which dry spots should not form. Before the formation and
recovery during drying and rewetting is analyzed, we recall how dry patches form.

• Under dry conditions, conductivities of coarse lenses have very low values which
leads to ponding of water above coarse lenses to supply water into the coarse material.

• Pressure head values on top of coarse lenses cannot deviate from their surrounding
by any value due to lateral equalization of pressure. Pressure head values in the sur-
rounding of coarse lenses are determined by the infiltration rate at the top boundary.
A limited pressure head on top of a coarse lens leads to a maximum inflow rate from
the top of a coarse lens into its inner part.

• If the replenishment rate is not sufficient, a drying front proceeds into coarse lenses
from below, leading to decreasing conductivities. At some point infinite pressure gra-
dients are required to draw water into coarse lenses.

• In our model, root water uptake is limited at the wilting point. Such locations, thus,
dry up to the wilting point which is equal to −150m.

• Localized dry spots with extremely low pressure head values lower the mean pressure
head and lead to extreme values of the variance of pressure head.

In this section, transient conditions are analyzed using scenario D1, where a drying phase is
followed by a rewetting phase.

During drying, no infiltration at the top boundary is applied. Depending on the local extrac-
tion rate, the distribution of soil parameters, and the time over which drying is considered,
critical pressure heads are reached at some point such that stressed patches develop. As root
water uptake decreases exponentially with depth, the extraction rate is largest close to the
surface. Thus, dry regions form first in upper layers. As water depletion of the soil is con-
tinued, the formation of such regions moves downwards. Regarding the distribution of soil
hydraulic parameters, the length scale of lenses of coarse material was found to be the criti-
cal feature of structure to which the formation of dry spots is sensitive. Hence, in structures
with large patches of coarse material (T1-fields), dry spots are expected to form earlier than
in structures where coarse material is arranged in pathways (IT1-fields) or smaller patches
(G1-fields).

During rewetting, dry spots get replenished if the infiltration rate at the top boundary is
large enough to cause pressure gradients, which enable sufficient flow into coarse lenses.
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Root water uptake continuously diminishes the rain rate at the top boundary within the
root zone such that less water arrives in deeper layers. Replenishment is therefore the less
efficient, the deeper dry spots are located. The point of time at which the rewetting front
arrives, differs between locations in one soil layer, since the rewetting front is heterogeneous
and reaches some locations later.

In Figure 6.2, which shows time series of mean and coefficient of variation of pressure head
and saturation, extreme values of the coefficient of variation of pressure head indicate the
formation of dry spots. Dry spots emerge only in T1-fields in layer 1 and layer 2. Rewetting
occurs before dry locations develop in G1- and IT1- structures. Dry spots form close to the
surface (layer1) shortly after the driest state is reached. The rewetting front is able to re-
fill these regions such that the coefficient of variation recovers within approximately 5 days.
In layer 2, stressed, dry patches form from approximately 110 days-150 days simulation time.
The minimum of pressure head and saturation occurs after 88 days, it corresponds to the dri-
est state in the scenario and indicates that the infiltration front reaches layer 2, on average,
after 88 days simulation time. Hence, dry spots form after downwards moving rainwater has
already reached layer 2. The formation of dry spots during rewetting can be explained by a
heterogeneous infiltration front. Dry regions with low pressure head values are bypassed by
the front at first and continue to dry. Such a case is illustrated in Figure 6.4 which shows the
distribution of pressure head after 128 days. At about 150 days, these regions can be replen-
ished. Figure 6.5 shows the distribution of the pressure head in the same realization after
128 days (with differently scaled axis) and 160 days. The black bar marks the vertical posi-
tion of layer 2. After 128 days, one dry spot exists in layer 2 where pressure head values are
equal to −150m. After 160 days, this location is not in the stressed, uptake reduced regime
anymore, but has still pressure head values equal to −3m.

Figure 6.4: Distribution of pressure head [m] in sample realizations of T1-fields after 128 days (black
bar at layer 2). The rewetting front (indicated by high, red values) bypasses dry locations
with low (blue) pressure head values.



6.1 Formation of dry spots 99

(a) (b)

Figure 6.5: Distribution of pressure head [m] in sample realizations of T1-fields after 128 days (a)
and after 160 days (b) (black bar at layer 2).

To be able to predict how long the formation and recovery of dry spots take in each layer,
typical timescales for it are estimated in the next section.

6.1.1 Estimation of time scales

Typical time scales for the formation and recovery of dry patches depend on the simulation
settings such as the considered initial condition, infiltration rate and hydraulic properties
of coarse lenses. A transient analytical solution of the heterogeneous 2D problem would
provide the opportunity to derive a timescale over which critical pressure head values are
reached. Such estimates are currently not available from the literature. However, timescales
for capillary flow, gravity flow and root water uptake, which were derived in chapter 2.2.3
by means of a dimensionless form of the Richard’s equation, can be used to obtain rough
estimates. These are:

• Capillary flow: t1 = S0
x20ϕ0
K0h0

• Gravity flow: t2 = S0ϕ0x0
K0

• Root water uptake: t3 = ϕ0S0

R0

t3 corresponds to the time that is needed to entirely deplete spots with a given initial sat-
uration S0 by root water uptake with extraction rate R0. Under the assumption that coarse
lenses do not get refilled by capillary flow, t3 can be used to approximate a timescale for the
formation of dry spots.

t2 corresponds to the time which is necessary to drain or imbibe a volume of water equal
to ϕ0S0, at a flow rate which is equal to the saturated hydraulic conductivity, the maximum
flux that can be driven by gravity. t2 can be used to estimate the time needed to refill water
depleted spots up to a saturation of S0.

t1 describes the time which water takes to flow over a distance of x0, at a conductivity of
K0, driven by pressure forces.
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Formation of dry spots

The timescale for the formation of dry spots corresponds to t3 and is, in the following, re-
ferred to as tDS ,

tDS =
ϕ0S0
R0

(6.1)

where ϕ0 is the porosity and R0 the local root water uptake rate, depending on the vertical
position. For S0, the saturation in coarse lenses at the beginning of the simulation (initial sat-
uration) is chosen. Figure 6.6 illustrates a cross-section of the initial saturation at the vertical
position of layer 1 along 40 realizations. (The vertical position of layer 1-layer 3 is illustrated
in Figure 6.1). At a mean saturation of 0.7, coarse lenses have an initial saturation in the
range of 0.3-0.4.

Figure 6.6: Horizontal cross-section of initial saturation [−] at vertical position of layer 1 along 40

realizations. At dry locations consisting of coarse material, the saturation is in the range
of 0.3.

With an initial saturation of 0.3 and 0.4, the characteristic timescales for the formation of dry
spots are:

layer tDS [d] (S0 = 0.3) tDS [d] (S0 = 0.4)

layer 1 40.87 54.49

layer 2 115.82 154.43

layer 3 328.24 437.65

Table 6.1: Timescales [in days] for formation of dry spots (for S0 = 0.3 and S0 = 0.4) in layer 1,
layer 2 and layer 3.

Note, that the estimated timescales can only be a rough estimate for the time at which dry
spots form. tDS depends on the initial saturation in coarse lenses, which, being a function
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of the soil hydraulic parameters, varies between different coarse lenses. Furthermore, the
estimate for tDS implies that coarse lenses do not get replenished by the surrounding due to
capillary flow. This is the case, if the time for capillary flow into coarse lenses is much larger
than the time over which dry regions form. t1 can be used to approximates the time for flow
into coarse lenses due to pressure forces. If we choose K0 = Ks0 exp(−α0h0), t1 is

t1 =
ϕ0S0x

2
0

h0Ks0 exp(−α0h0)
(6.2)

where S0 is the saturation and h0, the pressure head in coarse lenses. x0 is half the typical
length scale of coarse lenses, which is here equal to 0.1m. For sample properties of coarse
lenses (Ks0 = 1.4E − 12m2 and α0 = 8.5E − 4Pa), t1 is approximately 1.3 days if h0 is equal
to −1.0m, but approximately 85 days for a pressure head of h0 = −1.6m.

Thus, t1 becomes very large, if the pressure head in coarse lenses exceeds a certain value.
Since such conditions are not given at the beginning of the simulation, the estimated
timescales tDS tend to underestimate the time at which dry spots form. At layer 2 of test
scenario D1, dry spots form approximately after 110 days which is estimated well by the
calculated timescales in Table 6.1. In contrast, the theoretical timescales do not predict the
temporal behavior at layer 1. Dry spots form approximately after 70 days instead of after 40
to 50 days.

One has to be aware that the timescale for the formation of dry spots does not directly
include the material properties, which omits the fact that local wilting occurs only in coarse
lenses and is the more severe, the higher Ks and α in coarse lenses are. However, by
assuming that the critical regions cannot be replenished, soil hydraulic properties as well
as structure features are inherently considered. In our test case, this is obviously only given
for T1-structures.

Recovery of dry spots

In the following, the time over which dry spots get replenished is estimated by the timescale
for gravity flow, t2 (see equation (2.40)). For S0, we use the saturation in coarse lenses at
steady state, x0 is the typical length of a coarse lens. The net flow rate ql of downwards
streaming rainwater at a distinct layer z0 is determined by the infiltration rate at the top
boundary q and the amount of water potentially extracted by roots from the surface up to
z = z0, which equals Tz0 =

∫ H
z0
Rpdz. Thus, in the equation for t2, K0 is replaced by the local

net infiltration rate ql in each layer which is given by q − Tz0 .

tRC = Sst
x0ϕ0
ql

=
Sstϕ0x0
q − Tz0

(6.3)

With x0 equal to 0.2m and Sst equal to 0.2-0.3, we get the following timescales for each layer
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layer Tz0 [mm/d] tRC(Sst = 0.2) tRC(Sst = 0.3)

layer 1 0.4585 3.9532 5.9298

layer 2 1.4561 5.5033 8.2549

layer 3 1.8081 6.3871 9.5806

Table 6.2: Timescales for replenishment of dry spots (Sst = 0.2/0.3) in layer 1, 2 and 3.

The estimates for tRC roughly agree with the observations from Figure 6.2 only in layer 1.
In layer 1 the coefficient of variation recovers within approximately 5 days, while it recovers
in layer 2 within approximately 20 days if the time for recovery is estimated by the period
of time which passes by from the occurrence of the peak value of CVψ until CVψ is back
at moderate values. Formula 6.3 does not take into account that fluxes in coarse lenses are
smaller than q − τ due to very low conductivities, especially in the beginning of the replen-
ishment process, such that dry spots are initially bypassed by the infiltration front. Hence,
the calculated timescales tRC underestimate the observed period for recovery.

6.1.2 Periodic weather pattern

Natural weather patterns constantly fluctuate, rainy periods follow dry periods and vice
versa. Depending on the season and geographical location, the frequency between raining
and drying phases can differ from hours to months. In this work, it is illustrated that during
drying cycles and in the beginning of rewetting periods, local stress may occur in lenses
of coarse material, which leads to extreme values of the pressure head and a reduction of
the uptake rate. The time over which locally dry regions form, can be roughly estimated
by tDS (equation (6.1)). If critical locations are refilled by rainwater before tDS , wilted or
locally stressed regions should not occur. With periodic infiltration patterns, it is assumed
that transpiration is inhibited by rainwater covering the plant leaves’ stomata during rainfall
periods such that root water uptake phases have the same frequency but are shifted by half
a period, compared to the infiltration pattern. In this way, root water uptake is zero during
rainfall periods and non-zero in the absence of infiltrating rainwater at the top boundary.
Since the timescale for formation is much larger than the observed timescale for recovery of
dry spots, wilted regions, which form if the drying phase exceeds a time of tDS , are always
replenished during the rewetting phase. Thus, tDS corresponds to a critical frequency for
periodic infiltration pattern below which dry spots form. If drying and rewetting cycles are
modeled with different frequencies, the timescale for recovery of dry spots tRC has to be
taken into account as well.

In the following we consider a scenario where both, root water uptake and infiltration are
modeled according to a modified sine-function with frequency fd [d−1]. The infiltration rate
at the top boundary is given by q = qAsin

′(t · fd) (negative values are set to zero, see chapter
4) where t is the time in days and qA the amplitude of the infiltration pattern. The temporal
pattern of the local root water uptake rate has the same frequency as the infiltration rate
and is described by τ = −τA ∗ sin′(t · fd) (negative values are set to zero). qA is equal to
6mm/d and τA equal to 4mm/d. Due to the observations in the previous drydown-rewetting
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scenario, which has the same net infiltration rate, we assume that at the beginning of a
drying scenario, the saturation in coarse lenses is in the range of 0.2. According to equation
6.1, timescales which predict the formation of dry spots are obtained for each layer. For the
calculation of these timescales, the periodic root water uptake rate (τ = −4∗sin′(t·fd)mm/d)
is approximated by a constant value of 2mm/d. In scenarios where the upper boundary
condition and the sink term are prescribed by periodic functions consisting of drying and
wetting phases, dry spots are assumed to form if the drying phase exceeds tDS . Thus, the
timescale in each layer corresponds to a critical frequency of fd,c = π

tDS
. Critical timescales

and frequencies are summarized in Table 6.3.

layer tDS [d] fd,c[1/d]

layer 1 27.25 0.1153

layer 2 77.22 0.0407

layer 3 218.83 0.0144

Table 6.3: Timescales and critical frequency for formation of dry spots (S0 = 0.2).

The estimated timescales are only rough estimates. As the flow problem considered here
is more complex than in scenario D1, additional difficulties regarding the estimation of
timescales arise. With periodic boundary conditions, the mean of pressure head and sat-
uration fluctuate in response to imposed infiltration and root water uptake cycles. Extreme
values of mean pressure head and saturation depend on the frequency of applied cycles.
Thus, S0, the saturation at the beginning of the drying process is dependent on the frequen-
cy and difficult to properly estimate in advance.

Moreover, only at the surface, drying periods are clearly defined. Sink term and infiltration
at the top boundary are prescribed by periodic cycles which are temporally shifted. Since
the rewetting front proceeds from the surface downwards such that it arrives at deeper
layers later whereas root water uptake cycles are simultaneous over the whole domain, the
temporal pattern of drying and rewetting phases changes with depth. If drying and wetting
phases overlap at deeper layers due to a retarded arrival of the rewetting front, pure drying
phases are shortened which reduces the risk of dry spots. Thus, with increasing depth, the
calculated frequencies overestimate simulated critical frequencies.

In the first layer, the critical frequency is 0.1153 d−1. Therefore, two cases are analyzed, one
where the frequency is below the critical frequency in layer 1 (fd = 0.1 d−1) and one where it
is above (fd = 1.0 d−1). With a low frequency of fd = 0.1 d−1, dry spots are expected to form
in the first layer. In layer 2 and 3, dry spots are not expected since the applied frequency
of drying cycles is above the theoretical frequencies in layer 2 and 3, which overestimate
simulated critical frequencies.

Time series of mean and CV of pressure head and saturation are shown in Figure 6.7 for
the high frequency case (fd = 1.0 d−1) and in Figure 6.8 for the low frequency case (fd =

0.1 d−1). In both cases, mean and CV of pressure head and saturation fluctuate in each layer
around steady state values. Fluctuations of pressure head and saturation attenuate with
depth. Superimposed to the fluctuations, the upper part of the domain first drains, due to
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a uniform initial pressure head distribution, and is then rewetted since water enters the
domain in total (qA is larger than τA). For this reason, only times after 100 days simulation
time are shown in Figure 6.7 and Figure 6.8. Very large values ofCVψ indicate the occurrence
of localized extreme values of the pressure head which is in turn related with local wilting
or at least stress. As expected, dry regions form only in layer 1 if infiltration cycles with a
frequency of fd = 0.1 d−1 are imposed. The pressure head dries up to a value of 12m on
average and the coefficient of variation reaches a value of 18. Extreme pressure head values
occur in all structures, but first and most severely in T1-fields which have large patches of
coarse material. Dry spots recover in IT1-fields slightly faster than in G1- and T1-fields. If
boundary conditions vary with a frequency of fd = 1.0 d−1, mean and coefficient of variation
of pressure head remain at moderate values indicating that local wilting does not occur in
the test case considered here.

It should be mentioned that dry spots could generally still occur with frequently applied, but
short rainfall cycles although the period of one drying phase does not exceed the estimated
timescale tDS . This is the case if less water is replenished into low conductive patches during
(e.g. short) rainfall phases than is taken up by roots during (e.g. longer) drying phases,
which might occur as the infiltration front initially bypasses low conductive regions. Then,
dry spots form within several drying phases until they finally persist throughout the entire
simulation time, also during rainfall events.
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(a) layer 1
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(b) layer 2

100 150 200 250
−85

−80

−75

−70

−65

−60

−55

Time [d]

M
ea

n 
−

 P
re

ss
ur

e 
H

ea
d 

[c
m

]

 

 

G1
T1
IT1

100 150 200 250

0.008

0.01

0.012

0.014

0.016

0.018

0.02

C
V

 −
 P

re
ss

ur
e 

H
ea

d 
[−

]

100 150 200 250
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

Time [d]

M
ea

n 
−

 S
at

ur
at

io
n 

[−
]

 

 

G1
T1
IT1

100 150 200 250

0.06

0.07

0.08

0.09

0.1

0.11

0.12

C
V

 −
 S

at
ur

at
io

n 
[−

]

(c) layer 3

Figure 6.7: Mean (solid line) and coefficient of variation (dashed line) of pressure head and saturation
vs. time in layer 1 (a), layer 2 (b) and layer 3 (c). With a high frequency of fd = 1.0 d−1,
dry spots do not form.
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(a) layer 1
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(b) layer 2
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(c) layer 3

Figure 6.8: Mean (solid line) and coefficient of variation (dashed line) of pressure head and saturation
vs. time in layer 1 (a), layer 2 (b) and layer 3 (c). With a low frequency of fd = 0.1 d−1,
dry spots form in the first layer during drying cycles.



6.1 Formation of dry spots 107

6.1.3 Crop yield

The yield of crop production is directly linked to the global actual transpiration Tact =∫
R1dV m2/s. With the standard model for root water uptake, where compensation mech-

anisms are not included, we predict a decrease of the local actual uptake rate and, thus, a
decrease of the global actual uptake rate if locally wilted spots form. In the following, the
impact of local wilting on the global actual uptake is quantified. In the considered drydown
and rewetting scenario (scenario D1 in Table 4.2), local wilting occurs only in T1-structures
and the stressed regions are very small. Figure 6.9 illustrates the summed up difference be-
tween local potential uptake rate and local actual uptake rate,

∑
layer(Rp −R1), versus time

in layer 2 of T1-structures. The maximum reduction in layer 2 equals less than one percent
of the potential value. Thus, the yield output is practically not affected in this scenario.
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Figure 6.9: Difference of local potential uptake rate Rp and local actual uptake rate R1 vs. time for
T1-fields in layer 2.

With periodic weather patterns (low frequency case), dry spots form in the first layer. The
difference of local potential uptake rate and local actual uptake rate in layer 1 is shown
in Figure 6.10a. The local uptake rate is periodically reduced by approximately 4.5 percent
of the potential value which leads to a reduction of the total yield, summed up over the
entire simulation time, of only 0.7 percent. Figure 6.10b shows the global actual and global
potential uptake. The deviation between global actual and global potential uptake is so small
that it cannot be recognized in the graph.
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Figure 6.10: Difference of local potential uptake rate Rp and local actual uptake rate R1 vs. time for
T1-fields in layer 1 (a) and global actual and global potential uptake [m/d] vs. time (b).
Periodic cycle scenario, low frequency fd = 0.1 d−1.

In the considered test cases, crop yield is only remarkably decreased during drying periods,
but hardly affected over the entire time. This would of course change, if longer drying peri-
ods, plants with deeper root systems or fields with larger lenses or lenses of coarser material
are considered.
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6.2 Variability of pressure head and saturation

This section treats the variability of pressure head and saturation in differently structured
soils and under consideration of root water uptake, during drying and rewetting phases.
Variability can be quantified by the coefficient of variation or by the variance. At steady
state conditions, little influence of structure and root water uptake on the variance of pres-
sure head is observed with the chosen model settings and unless dry spots form. Changes of
the variance of pressure head vs. depth due to root water uptake are induced by changes of
the mean value. Under transient conditions, larger sensitivity to factors such as structure and
root water uptake is expected such that the standard deviation of saturation and pressure
head as function of the mean value changes. The standard deviation of saturation as function
of the mean value, σS(< S >), is addressed by various experimental and numerical studies.
During drying from very wet states, σS(< S >) was shown to follow a parabolic curve.
σS initially increases until a maximum is reached and decreases during further drying, (e.g.
Ryu and Famiglietti, 2005; Choi and Jacobs, 2007; Choi et al., 2007; Harter and Zhang, 1999).
Root water uptake influences drying patterns and might have a remarkable influence on the
standard deviation of saturation and pressure head. Teuling and Troch (2005) emphasized
the importance of root water uptake for the relationship of σS and < S >, the exact impact
is however unclear. Another important issue is the change of variability during rewetting.
During rewetting, the mean saturation changes from low to high values. However, with re-
spect to the variability over time, rewetting cannot be regarded as reverse process of drying
since, due to heterogeneous infiltration fronts, rewetting patterns differ substantially from
drying patterns.

We focus in the following mainly on two questions. First, what influence does root water
uptake have on the variability of pressure head and saturation during drying and rewetting.
Second, when does the state of maximum variability occur with respect to the mean and
which role does root water uptake and structure play for it. We analyze the coefficient of
variation and the variance of pressure head and saturation versus time in comparison to the
mean using test scenario D1, (simulation settings are listed in Table 4.2). Time series of mean
and variance of pressure head and saturation are shown in Figure 6.11. In the following, we
discuss the drying and rewetting part of the scenario separately.
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(a) layer 1
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(b) layer 2
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(c) layer 3

Figure 6.11: Mean (solid line) and variance (dashed line) of pressure head (left) and saturation (right)
vs. time for G1-, T1-, and IT1-fields, at layer 1 (a), layer 2(b) and layer 3(c).
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6.2.1 Drying of the soil

In the first part of scenario D1, the domain dries due to drainage and root water uptake. In
the following, we analyze the variance of pressure head and saturation in G1-, T1- and IT1-
fields during drying where the focus is set on the impact of root water uptake in comparison
to scenarios where the domain dries due to drainage alone.

Independent of the considered processes, the pattern of the hydraulic conductivity field de-
pends on the water content and changes during drying. At some point, coarse material be-
comes less conductive than fine material such that the variance of the hydraulic conductivity
is minimal at the crossover point. At drier states, the pattern of the hydraulic conductivity
field under fully saturated conditions is reversed. For a more detailed description, we refer
to chapter 5.1. Test scenario D1 starts at a uniform initial condition of ψ = −35 cm where
coarse material is already less conductive than fine material. With further drying, the vari-
ance of the conductivity field increases. The variance of pressure head increases accordingly
as well and the variance of saturation follows a parabolic curve. Without root water uptake,
the pressure head is in coarse material at higher pressure head values than in fine material.
The saturation is at lower values in coarse material. An example is shown in Figure 6.12. The
loghydraulic conductivity f and the cross-section of f at layer 2 of the sample realization is
illustrated in Figure 6.13.

(a) (b)

Figure 6.12: Sample realization of pressure head ψ [m] (a) and saturation S [−] (b) without root
water uptake. The black bar indicates the vertical position of layer 2.
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Figure 6.13: Sample realization of T1-fields: loghydraulic saturated conductivity f (a) and horizontal
cross-section of f at layer 2 (b).
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Influence of root water uptake on pressure head

Root water uptake extracts water and decreases pressure head values at all locations. As
explained in chapter 5.2.2, a drying front spreads from below, into coarse lenses if the re-
plenishment rate from top is not sufficient to meet the water taken up by roots. Before the
pressure head in coarse lenses is at lower values than the surrounding, the contrast between
pressure head values in coarse and surrounding material is decreased by root water uptake
such that the variance is smaller in scenarios with root water uptake than the variance in
scenarios without root water uptake.

An example is shown in Figure 6.14 which compares the cross-section of pressure head in
a sample realization of T1-fields in scenario D1 after 60 days with an equally dry scenario
without root water uptake. Including root water uptake, high and low pressure head regions
are slightly attenuated indicating a smaller variance in the sample realization. The ensemble
variance at layer 2 after 60 days is also reduced by root water uptake.

Figure 6.14: Cross section of pressure head ψ [m] in T1-fields with and without roots after 60 days

in layer 2. (The dashed line corresponds to the mean value of pressure head in layer2,
which is identical for both scenarios.)

By homogenizing the pattern temporarily, root water uptake may lead to a decrease of the
variance of pressure head over time. As extraction is continued, pressure head values in
coarse lenses become smaller than in the surrounding material. With further drying, critical
values are reached such that dry spots form leading to extreme values of the variance of
pressure head. Due to a continuous distribution of soil hydraulic parameters, the change of
the distribution of pressure head during drying is complex and the onset of homogenizing
and formation of dry spots differs between locations at one layer. It is therefore unlikely that
the ensemble variance of pressure head decreases over time due to root water uptake. With
the parameters chosen, we observe a decrease of the variance of pressure head only in single
realizations. The ensemble variance, in contrast, increases always.

An example for the changing pressure head distribution is illustrated in Figure 6.15a, which
shows a cross-section of the pressure head in layer 2 at different times for a scenario, where
rewetting occurs later than in scenario D1. In the sample realization, the variance decreases
from 80 days to 100 days simulation time. At the location marked by the red line, the pressure



6.2 Variability of pressure head and saturation 113

head changes from values that are above to values below the mean such that the distribution
of pressure head is homogenized. With further drying, pressure head values of −2m to −3m

occur in layer 1 (Figure 6.15b) and in layer 2 after 120 days simulation time, which indicate
the formation of dry spots and lead to an increase of the variance of pressure head from
100 days to 120 days. (The vertical position of layer 1 and layer 2 with respect to the root
density are illustrated in Figure 6.1).
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Figure 6.15: Cross-section of pressure head ψ [m] in sample realizations of T1 fields at different times
in layer 2 (a) and layer 1 (b) that is located 62.5 cm above layer 2.

Thus, in our test case, root water uptake has a rather homogenizing effect on the distribu-
tion of pressure head during drying unless high extraction rates or long drying phases in
T1-fields are considered, which lead to the formation of dry spots and, thus, to extreme
values of the variance.

Influence of root water uptake on saturation

The distribution of saturation is uniquely related to the pressure head through the pc-S re-
lationship that is modeled according to van Genuchten (1980) in this work (equation (4.3)).
However, S depends also on the random parameter α. α is heterogeneously distributed due
to the fact that a larger pore size diameter is related with smaller capillary forces. Water
drains therefore faster and saturation is lower in coarse material than in fine material. While
the pattern of pressure head might change during drying due to root water uptake, satura-
tion is always lower at locations of coarse material since the influence of α dominates.

The pattern of saturation remains with changing pressure head values, but the variance
of saturation is affected by root water uptake compared to equally dry states without root
water uptake. Under consideration of root water uptake, local extremes of the pressure head
distribution are attenuated. Since high pressure head values are related to coarse material
and low values to fine material, wet locations are wetter and dry locations drier with root
water uptake. Hence, the variance of saturation is larger if root water uptake is considered.
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Figure 6.16 shows an example where the variance of saturation in the scenario with roots
is slightly larger than in the case without roots. Figure 6.16a shows the cross-section of sat-
uration in a sample realization of T1-fields of scenario D1 after 60 days in comparison to
an equally dry scenario without root water uptake. As the two curves are almost identical,
the line, representing the no-root case, can hardly be recognized. Figure 6.16b illustrates the
difference between both cases, the saturation at layer 2 with roots (dark colored line in (a))
subtracted by the saturation at layer 2 without roots (light colored line in (a)). Positive val-
ues indicate that the saturation under consideration of root water uptake is larger, negative
values indicate that it is smaller. A comparison of Figure 6.16(b) with a cross-section of the
loghydraulic conductivity f at layer 2, Figure 6.13b, yields that the saturation in the sce-
nario with root water uptake is higher at fine, wet locations and smaller than the saturation
without root water uptake at coarse, dry locations.

Thus, with the parameters chosen, root water uptake increases the variance slightly during
drying, in comparison to cases without root water uptake.

(a) (b)

Figure 6.16: Cross section of saturation S [−] in T1-fields with and without root water uptake after
60 days (a) in layer 2. (The dashed line corresponds to the (identical) mean value of sat-
uration in layer2 of both scenarios.) (b) illustrates the difference between the saturation
with and without root water uptake (dark colored line minus light colored line).

6.2.2 Rewetting of the soil

The drying phase in test scenario D1, analyzed in the last section, is followed by a rewetting
phase. During rewetting, rainwater infiltrates with a constant rate at the (artificial) top
boundary and root water uptake continues as before. Time series of mean and variance of
saturation and pressure head were presented in Figure 6.11. Due to the variation of soil
hydraulic parameters, preferential flow paths and flow impeding parts of the soil exist
which lead to a heterogeneous infiltration front. A heterogeneous front can be separated
into first arrivals (in the following referred to as tips), mean front and tail. A sketch of a
heterogeneous infiltration front is illustrated in Figure 6.17.
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Figure 6.17: Sketch of heterogeneous rewetting front.

The rewetting phase is analyzed, as an example, using one sample realization of G1-fields.
The loghydraulic conductivity and the corresponding cross-section at layer 2 is shown in
Figure 6.18. In the following discussion, we distinguish between arrival of tips and arrival
of the mean front.
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Figure 6.18: Loghydraulic conductivity f in sample realization of G1-fields (a), (the black bar indi-
cates the vertical position of layer 2). Cross-section of f at layer 2 (b).

Arrival of tips

The minimum of mean pressure head or saturation during a drying-rewetting scenario cor-
responds to the driest state before downwards moving rainwater arrives. Rewetting of one
layer of the soil starts with the arrival of tips. The pressure head increases at locations which
have been rewetted, while the pressure head continues to decrease (due to root water up-
take and drainage) at locations which have not yet been rewetted. The time at which the
minimum of mean pressure head (saturation) occurs, thus, represents the mean arrival time
of tips of the pressure head (saturation) front.

Figure 6.19 illustrates the arrival of tips of the pressure head and saturation front at layer 2
for a sample realization of G1-fields. For better perceptibility, the distributions are illustrated
referred to a distribution when the rewetting front has not reached the domain. Here, the
distributions of pressure head and saturation at the arrival of tips are subtracted by the
distributions after 60 days simulation time. The incoming infiltration front is clearly visible,
first tips reach the vertical postition of layer 2 which is indicated by a black bar.
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(a) (b)

Figure 6.19: Distribution of pressure head [m] after 88 days (a) and saturation [−] after 87 days

(b) (with respect to the distributions after 60 days) in a sample realization of G1-fields
(black bar at layer 2) .

Through the arrival of tips, the variance of pressure head and saturation in Figure 6.11
increases quickly since pressure head and saturation values increase at rewetted locations
while values continue to decrease due to drainage and root water uptake at location that
are not yet rewetted.

Arrival of mean front

The variance is maximum when rewetted and not yet rewetted locations balance each other.
It decreases when most locations are rewetted such that also locations with low values of
pressure head increase. Figure 6.20 shows a cross-section of ψ and S in layer 2 of a sample
realization of G1-fields at three different times of the simulation, when < ψ > and < S >

peak (red line), when σ2ψ and σ2S peak (green line) and when σ2ψ and σ2S are decreased again
(blue line). After 101 days, low pressure head values increase or do not decrease anymore
such that the variance of pressure head starts to decrease.

The peak value of the variance of pressure head and saturation occurs therefore during the
rewetting process and the time at which the variance of pressure head and saturation peaks,
can be a measure for the arrival time of the mean infiltration front. Figure 6.21 illustrates the
distribution of ψ and S at the time that σ2ψ and σ2S peak in layer 2 of G1-fields (subtracted by
the distributions after 60 days). The time lag between maximum of mean (arrival of tips) and
maximum of variance (arrival of mean front) is a measure for the width of the horizontally
averaged infiltration front (tail excluded). This aspect is discussed in section 6.2.3.
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Figure 6.20: Cross section of pressure head [m] (a) and saturation [−] in sample realizations of G1-
fields at different times. Since the pressure head front is heterogeneous and reaches dry
locations later, low pressure head values are lower and high values are higher, which
leads to a larger variance after 101 days than after 88 days.

(a) (b)

Figure 6.21: Distribution of pressure head [m] after 101 days (a) and saturation [−] after 107 days
(b) (with respect to the distributions after 60 days) in a sample realization of G1-fields.

Influence of root water uptake

The peak value of the variance of pressure head and saturation during rewetting is expected
to be higher in scenarios with root water uptake than in scenarios without root water uptake
which are at the arrival of the front at a comparable mean pressure head or mean saturation
since, under consideration of root water uptake, locations that are reached later by the
infiltration front continue drying by root water uptake and drainage instead of by drainage
only. Therefore, if root water uptake is considered, not yet rewetted locations reach lower
pressure head values while more tips arrive such that the variance has larger peak values
than without root water uptake. Figure 6.22 illustrates the increase of variance of pressure
head and saturation (at layer 1) due to a heterogeneous infiltration front for two scenarios
with and without root water uptake which have a similar net infiltration rate ql at layer 1.
The peak values of the variance of pressure head and saturation are slightly enlarged by
root water uptake. However, due to the sensitivity of the variance of saturation on the mean
value and the applied infiltration rate at the top boundary, the variances of saturation, with
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and without root water uptake, are difficult to compare. These aspects have to be analyzed
more detailed in the future.
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(b) Saturation

Figure 6.22: Mean (solid line) and variance (dashed line) of pressure head (a) and saturation (b) vs.
time in layer 1 of G1- (left), T1- (middle), and IT1-fields (right) with uptake strategy 1
(light colored lines) and without root water uptake (dark colored lines).

Maximum variability

It was shown, that with a heterogeneous infiltration front, the extremes of mean and vari-
ance of pressure head and saturation occur temporally shifted. The variability can also be
described by the coefficient of variation which is the variance divided by the squared mean.
If the peak value of the variance of pressure head or saturation during rewetting is very high,
the temporal development of the coefficient of variation is affected such that its maximum
is shifted as well, compared to the minimum mean value.

Unless dry spots form, variations of the pressure head during drydown are rather small such
that, during rewetting, the variance of pressure head (at a distinct layer) is strongly affected
by the arrival of tips. The coefficient of variation of pressure head is thus dominated by the
variance and peaks at about the same time as the variance of pressure head.

Due to the large retention of water in fine material, the distribution of the saturation is under
dry conditions more heterogeneous than the pressure head distribution. Incoming rainwater
infiltrates first into fine, already wet material which increases the mean value, but leads
only to small changes of the variance. The temporal shape of the coefficient of variation of



6.2 Variability of pressure head and saturation 119

saturation is therefore dominated by the temporal shape of the mean saturation. In scenario
D1, the coefficient of variation of saturation peaks 1− 7 days later than the minimum of the
mean saturation, while the variance of saturation peaks approximately 14 − 28 days later.
(Time series of mean and variance or coefficient of variation of pressure head and saturation
are shown in Figure 6.11 and Figure 6.2).

6.2.3 Width of the horizontally averaged infiltration front

As explained in the previous section, the minimum of the mean of pressure head or satura-
tion in Figure 6.11 represents the mean arrival time of tips and the maximum of the variance,
the arrival time of the mean front. The time lag between extremes of mean and variance can
be seen as a measure for the width of the front. The propagation of the infiltration front
is affected by several factors such as dryness of the soil, soil hydraulic properties or pre-
cipitation. Root water uptake decreases the net infiltration rate with increasing depth by
continuous extraction of water within the root-zone and therefore, influences the width of
the front.

Figure 6.23 illustrates a widening of the front with depth in all structures. The times at which
the extremes of < ψ >, σ2ψ and CVψ and the extremes of < S >, σ2S and CVS occur are
represented by colored symbols. The distance between peak times of mean and peak times
of variance of pressure head or saturation increases from layer 1 to layer 3. In layer 1 and
layer 2, symbols representing the peak time of pressure head in T1-fields are omitted since,
due to the formation of dry spots during rewetting, the temporal shape of CVψ and σψ
is dominated by extreme values such that the arrival of the pressure head front cannot be
assessed in such cases. Small differences of arrival times of tips and mean front exist between
the structures, but a clear pattern is not evident.
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Figure 6.23: Peak time of mean, variance and coefficient of variation of pressure head and saturation
in layer 1(a), layer 2(b), layer 3(c). Green symbols represent G1-fields, blue, T1-fields
and red symbols IT1-fields.

If the net infiltration rate ql, which reaches each layer, is the dominant factor control-
ling the width of the front, the time lag between peak time of mean and variance of
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pressure head and saturation should be comparatively constant but dependent on the in-
filtration rate in cases without root water uptake. This aspect is discussed in the next section.

Flow without root water uptake

The influence of root water uptake on pattern and variability of pressure head and satura-
tion during rewetting and drying was treated in the previous chapters. This section focus-
es on the time lag between mean and variance of pressure head or saturation in scenarios
where root water uptake is not taken into account and where the infiltration rate at the top
boundary is comparable to the net infiltration rate ql in the upper or in the lower part of the
root-zone in scenarios with root water uptake. It is tested, whether the infiltration rate is the
dominant factor which determines the width of the front.

In scenarios which include root water uptake (with an infiltration rate of qroot and a root wa-
ter uptake rate of τ ), the amount of downwards moving rainwater is continuously decreased
by root water uptake. Close to the surface, the net infiltration rate ql is similar to qroot and in
the lower part of the root zone, it is similar to qroot−τ . If root water uptake is not considered,
ql is constant for all depth. Thus, in drydown and rewetting scenarios where rewetting with
these infiltration rates (qroot and qroot− τ ) and drydown due to drainage, without root water
uptake, is considered, the time lag between minimum of mean and maximum of variance
of pressure head and saturation, which is taken as a measure for the width of the front, is
expected to be relatively constant with increasing depth and larger for a smaller infiltration
rate of qroot − τ .

In the test scenarios without root water uptake, infiltration is applied from the 40th day
forward (on the artificial boundary), starting with an uniform initial condition of ψ equal
to −50 cm (scenario D2, D3 in Table 4.2). The initial condition is chosen such that the mean
pressure head profiles after 40 days (when infiltration starts on the artificial top boundary)
have a similar shape in the scenario with root water uptake and without root water upake
(see Figure 6.24).

(a) (b)

Figure 6.24: The initial condition in the scenario without root water uptake is chosen such that the
mean of pressure head vs. vertical position after 40 days (when infiltration starts) (a) is
similar as in the scenario with root water uptake term R1 (b). Note, that the artificial
top boundary extends from a vertical position of 6m to 8m.
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With the parameters of scenario D1, discussed in the previous section, qroot equals 4mm/d

and qroot − τ equals 2mm/d. Figure 6.25 and Figure 6.26 illustrate the times at which the
extremes of mean and variance of pressure head and saturation occur for both infiltration
rates. The time lag between minimum of < ψ > and σ2ψ is more or less constant at all depth.
It depends on the infiltration rate and increases with decreasing infiltration rate. For a high
infiltration rate, the time lag between extremes of mean and variance is approximately
15 − 19 days, which is similar to the time lag in layer 1 in scenario D1 with root water
uptake. For a low infiltration rate, the time lag is approximately 24 − 30 days, which is
similar to the time lag below the root zone (layer 3) in scenario D1 with root water uptake.
Thus, the time lags in the scenarios without root water uptake and an infiltration rate of
qroot or qroot−τ bound the time lags in scenario D1 where root water uptake is accounted for.
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Figure 6.25: Peak time of mean, variance and coefficient of variation of pressure head and saturation
in layer 1 (a), layer 2 (b), layer 3 (c); no root water uptake, high infiltration rate of
q = 4mm/d.
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Figure 6.26: Peak time of mean, variance and coefficient of variation of pressure head and saturation
in layer 1 (a), layer 2 (b), layer 3 (c); no root water uptake, low infiltration rate of
q = 2mm/d.
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(a) layer 1
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(b) layer 2
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(c) layer 3

Figure 6.27: Mean (solid line) and variance (dashed line) of pressure head (left) and saturation (right)
vs. time in layer 1 (a), layer 2 (b) and layer 3 (c) for scenarios without root water
uptake and an infiltration rate of 4mm/d (light colored lines) and an infiltration rate
of 2mm/d (dark colored lines).
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It should be noted that an infiltration rate of q = 2mm/d at a mean saturation of approx-
imately 0.5 is not sufficient to cause a remarkable increase of the variance of saturation at
the arrival of tips of the front. This can be explained by a rather heterogeneous distribution
of the saturation compared to pressure head. Hence, for an infiltration rate of 2mm/d, the
maximum of the variance of saturation is almost not detectable. Figure 6.27 shows time se-
ries of mean and variance of pressure head and saturation in G1, T1 and IT1-fields at layer
1, 2 and layer 3 for an infiltration rate of q = 4mm/d (light colored lines) and an infiltration
rate of q = 2mm/d (dark colored lines).

Since the changes of the variance of saturation during rewetting are relatively small with
both infiltration rates, the coefficient of variation is not affected by the temporally shifted
peak of the variance of saturation. The maximum of the coefficient of variation of saturation
occurs, thus, concurrently to the minimum of the mean saturation.

If the initial condition for ψ is chosen as a hydrostatic pressure distribution, the variance
of pressure head is zero before the infiltration front arrives. The width of the front during
rewetting can then be clearly recognized. Figure 6.28 shows mean and variance of pressure
head vs. depth at three different times for a scenario without root water uptake, hydrostatic
initial condition for the pressure head and an infiltration rate of q = 4mm/d. The propaga-
tion of tips and mean front is indicated by red lines.

In cases with root water uptake, the choice of a hydrostatic pressure distribution is not prac-
tical with the parameters chosen in this work as initial pressure head values in the upper
part of the soil would be so low that extremely large variances of pressure head due to the
formation of dry spots would dominate the profile.

(a) (b) (c)

Figure 6.28: Mean [m] (solid line) and variance [m2] (dashed line) of pressure head vs. vertical posi-
tion [m] for a scenario without root water uptake, a hydrostatic initial pressure distri-
bution and an infiltration rate of 4mm/d. The red lines indicate the propagation of tips
and mean front.
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Remark

It must be mentioned that taking the variance of pressure head as a measure for the mean
front has certain limitations. The peak time of the variance depends on the pressure head
or saturation values of locations which are not yet rewetted. For example, in the period be-
tween the arrival of tips and the arrival of the mean front, values which are not yet rewetted
decrease more with root water uptake than without root water uptake. If the same rewet-
ting front arrives, the variance peaks later and the width of the front is predicted to be larger
if root water uptake is included, compared to scenarios with bare soil. One must therefore
keep in mind that the time lag between extremes of mean and variance does not capture
all differences between the rewetting front in cases with and without root water uptake. A
quantitative comparison of the width of the front in cases with and without root water up-
take should be seen as an approximate measure. The qualitative result that the width of the
front depends on the net infiltration rate, widens with depth with root water uptake and is
rather constant without root water uptake remains, however, valid.

6.2.4 Effective homogeneous soil

Instead of 2D heterogeneous fields, effective homogeneous models are often used in large
scale applications. In heterogeneous fields, root water uptake was shown to influence the
width of the front. When the front is wider such that distinct tips and tails exists, arrival
times of the mean front are more difficult to predict with homogeneous effective models.
In this section, it is tested how well the transient results in 2D heterogeneous fields with
and without root water uptake, discussed in the previous section, agree with equivalent
simulations in homogeneous effective soils. We do not aim at deriving effective parameters
which capture dynamic effects during rewetting, but focus on the question if root water
uptake improves or corrupts predictions of arrival times of the front with models which are
based on standard effective parameters.

As discussed above, if root water uptake is included in the model, the net infiltration rate
ql decreases and the front widens with increasing depth due to continuous extraction of
water within the root-zone. Hence, the deviation between homogeneous and heterogeneous
media under consideration of root water uptake is expected to increase from layer 1 to layer
3. Accordingly, without roots, the deviation between arrival of the front in homogeneous
and heterogeneous media is rather constant and depends on the infiltration rate.

Figure 6.29 illustrates the times at which pressure head or saturation are maximal for dry-
down and rewetting scenarios, with and without root water uptake (scenario D1-D3 in Table
4.2), in a homogeneous medium where for α and Ks, effective soil parameters are used. The
saturated conductivity equals the geometric mean of the 2D heterogeneous Ks-fields and
the α-parameter equals the arithmetic mean of the 2D α-field. Deterministic parameters and
simulations settings agree in the heterogeneous and homogeneous case. Due to the absence
of a heterogeneous α-parameter, pressure head and saturation peak at the same time.
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Figure 6.29: Peak time of pressure head and saturation in layer 1, layer 2 and layer 3 of homogeneous
domain for different scenarios: with root water uptake term R1 (green), without root
water uptake and an infiltration rate of 4mm/d (black), and without root water uptake
and an infiltration rate of 2mm/d (yellow).

The peak times in the homogeneous medium are in between the peak times of mean and
variance of pressure head or saturation for the heterogeneous case. If the maximum of the
variance of saturation is assumed to represent the mean infiltration front, the front arrives
in the homogeneous scenario with roots approximately 11 (layer1), 15 (layer 2), 20 (layer3)
days earlier than in the heterogeneous case.

For an infiltration rate of q = 2mm/d, the front is in the homogeneous medium about 20
days ahead of the heterogeneous front. Since the variance of saturation does not have a dis-
tinct maximum, this case is difficult to evaluate. With an infiltration rate of q = 4mm/d, the
front in homogeneous and heterogeneous media arrive with a difference of approximately
8 days.

Thus, using an effective homogeneous medium with standard parameters as substitute for
the 2D structured fields, the arrival time of the front is underestimated, given the infiltration
front is, in the heterogeneous case, assumed to be represented by the maximum of variance
of saturation. The deviation of homogeneous and heterogeneous medium depends on the
net infiltration rate and is therefore, in the scenario with root water uptake in between the
two scenarios where root water uptake is not considered.
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6.3 Influence of root water uptake strategy

This section analyzes in which way the model for root water uptake affects the time series of
mean and variance of pressure head and saturation in Gaussian and non-Gaussian parame-
ter fields (G1, T1 and IT1). Using the same drydown and rewetting scenario including root
water uptake as above (scenario D1 in Table 4.2), root water uptake term R2 depending on
the saturation is compared to the standard approach R1.

Uptake strategy 2 depends on the saturation and extracts hence more water at wet locations
that consist of fine material than at dry locations that consist of coarse material. The impact
of root water uptake strategy 1 on the pressure head of decreasing pressure head values
in coarse lenses during drying phases (section 6.2.1), is therefore reduced with Strategy 2.
Extracting water preferentially at wet, fine, locations, thus, leads to a distribution of pressure
head and saturation which is more similar to distributions obtained with scenarios where
root water uptake is not considered.

A sample realization of T1-fields, displayed in Figure 6.13, is used to illustrate the difference
between pressure head and saturation obtained with Strategy 1 and Strategy 2. Figure 6.30
shows the distribution of pressure head (a) and saturation (b) with Strategy 1 (ψR1, SR1)
subtracted by the distribution with Strategy 2 (ψR2, SR2) after 60 days.

(a) (b)

Figure 6.30: Difference of pressure head distributions [m] (a) and saturation distributions [−] (b)
with Strategy 1 and Strategy 2 after 60 days in a sample realization of T1-fields.

At coarse locations, Strategy 1 leads to smaller saturations and lower pressure head values
than Strategy 2. ψR1 substracted by ψR2 (or SR1 substracted by SR2) has therefore negative
values at such locations.

Since Strategy 1 and Strategy 2 differ only in their extraction pattern, but take up the same
amount of water, the mean values of pressure head and saturation is hardly affected by
the root water uptake strategy, unless dry spots form. The variance of pressure head and
saturation is affected by root water uptake during drying and rewetting phases and if dry
spots occur. As Strategy 2 leads to distributions which are similar to distributions obtained
without root water uptake, these phenomena are attenuated with root water uptake model
R2. This is illustrated in Figure 6.31 and Figure 6.32 which compare time series of mean and
variance of pressure head and saturation, obtained with Strategy 1 and Strategy 2 for the
drydown-rewetting scenario D1, at layer 1 to layer 3, separately in each structure.
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(a) layer 1
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Figure 6.31: Mean (solid line) and variance (dashed line) of pressure head [m] vs. time in layer 1 (a),
layer 2 (b) and layer 3 (c) of G1- (left), T1- (middle) and IT1-fields (right) with Strategy
1 (light colored lines) and Strategy 2 (dark colored lines).
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(a) layer 1
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(b) layer 2
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(c) layer 3

Figure 6.32: Mean (solid line) and variance (dashed line) of saturation [−] vs. time in layer 1 (a),
layer 2 (b) and layer 3 (c) of G1- (left), T1- (middle) and IT1-fields (right) with Strategy
1 (light colored lines) and Strategy 2 (dark colored lines).

Formation of dry spots

In chapter 5.3 it was described that root water uptake strategies which increase uptake
at favorable locations and decrease the uptake rate at unfavorable locations have an
attenuating effect on the formation of dry spots. Since the root water uptake rate decreases
with Strategy 2 more, at the onset of stressed conditions, than with Strategy 1, dry spots
form later and less distinct with Strategy 2. In the test case observed here, the formation of
dry spots is prevented if Strategy 2 is applied such that no extreme values of the variance of
pressure head occur in T1-structures.
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Variability during drying and rewetting

In the considered test case D1 where root water uptake is included, the variance of pres-
sure head is slightly lower during drying (before patches of coarse material dry up) than
at comparable states without root water uptake. The variance of saturation is with root wa-
ter uptake slightly larger than at comparable states without root water uptake (see section
6.2.1). Peak values of the variance of pressure head and saturation during rewetting may
be slightly larger with root water uptake (see section 6.2.2). As discussed above, root water
uptake term R2 leads to distributions of pressure head and saturation which are similar to
the case without roots. Accordingly, the variance of pressure head is with Strategy 1 slightly
lower during drying and higher during rewetting than with Strategy 2. The variance of the
saturation is larger with Strategy 1 than with Strategy 2 during drying and rewetting.

As Strategy 2 leads, at the same mean saturation, to smaller variances of saturation, com-
pared to Strategy1, the σS(< S >)-relationship at the surface is affected by the root water
uptake strategy. This relationship is, for example, important for the parametrization of cli-
mate models (e.g. Vereecken et al., 2007a). Figure 6.33 shows a scatter plot of the variance
vs. mean of saturation at the surface of T1-fields for test scenario D1 with Strategy 1 (light
colored lines) and Strategy 2 (dark colored lines). The lower line of each curve corresponds
to the drying process, the upper line to the rewetting process. With Strategy 2, both lines are
shifted to lower variances and the maximum of the drying curves may be shifted to a higher
saturation. The rewetting line differs from the drying line less with Strategy 2 corresponding
to a lower peak value during rewetting than with Strategy 1.
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Figure 6.33: Scatter plot of variance [−] vs. mean [−] of saturation (averaged at the surface of T1-
fields) for Strategy 1 (R1) and Strategy 2 (R2).

One reason for a smaller peak of the variance of pressure head and saturation during rewet-
ting is that dry locations are less depleted with Strategy 2 than with Strategy 1, which di-
minishes the difference of dry and wet locations. Second, first arrivals of the infiltration front
may be equalized by preferential water extraction at wet locations with Strategy 2. The sat-
uration front is thereby slightly homogenized in comparison to Strategy 1. This is illustrated
in Figure 6.34 which shows the difference of saturation fronts after 107 days simulation time
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with both strategies. If Strategy 2 is applied, the saturation front reaches locations which
have not been reached by the tail of the front with Strategy 1. On the other hand, the front
with Strategy 2 does not reach locations which have been reached by tips of the front with
Strategy 1.

Figure 6.35 illustrates the times at which minimum of mean and maximum of variance of
pressure head and saturation occur. The variance of saturation peaks 3 − 4 days later with
Strategy 2 which indicates that the front might propagate slightly slower than with Strate-
gy 1. Changes of the variance of saturation are relatively small such that the coefficient of
variation of saturation peaks at same time as the mean saturation.

To confirm these conclusion, the impact of root water uptake strategy 2 on a heterogeneous
infiltration front and the σS(< S >)-relationship need to be analyzed more detailed in future
work.

(a) (b) (c)

Figure 6.34: Distribution of saturation after 107 days (substracted by the saturation after 60 days)
as binary field, with Strategy 1 (a), and Strategy 2 (b) as well as the difference of both (c).
Values equal to 1 indicate locations which are only reached by the front with Strategy 1,
values equal to −1 indicate locations that are only reached by the front with Strategy 2.
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Figure 6.35: Peak time of mean, variance and coefficient of variation of pressure head and saturation
in layer 1(a), layer 2(b) and layer 3(c); for root water uptake term R2.

In summary, the modeling approach for root water uptake according to Strategy 2, leads
during drying and rewetting to very similar results of the mean value as Strategy 1 but
diminishes the impact of root water uptake on the variance of pressure head and saturation
or may even change the impact of root water uptake by homogenizing the distribution of
saturation. Thus, knowledge about the strategy how plant roots extract water is a crucial
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factor to be able to assess the variability of pressure head and saturation. Using strongly
simplified uptake models in heterogeneous fields, the influence of root water uptake might
be overestimated.

6.4 Intermediate summary 2: Dynamic conditions

In this chapter, transient unsaturated flow with temporally variable infiltration and root
water uptake rate is analyzed. The formation and recovery of dry spots as well as the devel-
opment of the variability of pressure head and saturation at a specific depth during drying
and rewetting phases is discussed. In the following, key findings are summarized.

• In section 6.1.1, timescales for the formation and recovery of dry spots are estimated
based on characteristic timescales derived with the help of a dimensionless Richards
equation (presented in section 2.2.3). The observed timescales for the formation of dry
patches, which can be identified from Figure 6.11, agree roughly with the predicted
timescales. In general, the timescales after which dry spots form tend to underesti-
mate simulated times since in the estimation, replenishment from the surrounding of
coarse patches is neglected which is actually not given. The timescales for replenish-
ment underestimate simulated recovery times since heterogeneous rewetting fronts
and low conductivities postpone the replenishment of dry regions.

• Under periodic conditions, a critical frequency above which dry regions do not form
can be estimated for layers which are close to the surface (section 6.1.2). In deeper
layers, rewetting occurs later and is therefore superimposed with root water uptake
cycles such that drying and rewetting phases cannot be clearly separated.

• In section 6.2.1, the variability of pressure head is shown to increase during drying. By
lowering high pressure head regions, root water uptake may decrease the variance of
pressure head compared to equally dry states in scenarios without root water uptake.
If drying is continued, the variance increases again since pressure head values become
very low in lenses of coarse material. In the extreme case, wilted patches form which
lead to very large values of the variance of pressure head.

• During drying, the variance of saturation increases and decreases during further, cor-
responding to a parabolic shape of the variance as function of the mean value. In the
analyzed test cases, root water uptake increases the variance in comparison to equally
dry states with the same mean saturation, where root water uptake is not considered.

• The variance of pressure head and saturation peak during rewetting with heteroge-
neous fronts since the variance increases at the arrival of tips until the mean front has
passed. Under consideration of root water uptake, the peak value of the variances may
be larger (section 6.2.2).

• The time lag between minimum of mean and maximum of variance of pressure head or
saturation can be taken as a measure for the width of the pressure or saturation front.
It depends on the local net infiltration rate ql at one layer where ql is the infiltration



132 Transient flow in 2D Gaussian and non-Gaussian fields

rate at the top boundary subtracted by the extracted volume of water up to this layer.
Since root water uptake continuously extracts water such that the net infiltration rate
decreases with increasing depth, the time lag increases with increasing depth. Without
root water uptake, the time lag between the extremes of mean and variance of pressure
head or saturation is rather constant and depends on the infiltration rate at the top
boundary.

• In section 6.3 it is shown that root water uptake strategy 2 influences the variance
of pressure head and saturation. By extracting less at dry locations and more at wet
locations, root water uptake model R2 leads to distributions which are similar to cases
without root water uptake. Thus, knowledge about the root water uptake strategy is
crucial information when modeling unsaturated flow problems.
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7.1 Summary and Conclusion

The joint influence of root water uptake and soil structure on unsaturated flow is studied.
Soil hydraulic parameters are described as autocorrelated random fields. Root water up-
take at the macroscopic scale is modeled as a function of atmospheric demand, root density,
and stress-response function. This approach is referred to as ‘standard model’ for root wa-
ter uptake in this work. An extension of the standard model for root water uptake is also
considered, which accounts for locally occurring stress by preferential extraction of water at
wet or easily accessible locations. Analytical first-order second-moment solutions for steady
state flow in a layered medium are derived. In addition, two-dimensional numerical sim-
ulations of steady state and transient flow in autocorrelated Gaussian and non-Gaussian
random fields with different patterns of extreme values are analyzed.

The present study shows that, with the parameters chosen, the analytical solutions in lay-
ered media can be used for predictions of the mean and variance of pressure head only
under very wet conditions with the drawback that variances of the pressure head are over-
estimated if the variance of the loghydraulic saturated conductivity becomes large.

Under drier conditions, the combined investigation of both root water uptake and soil
structure allows for the simulation of unsaturated flow phenomena that are not exhibited
in either unvegetated (no roots) or homogeneous (no soil structure) soil and which cannot
be predicted by first-order second-moment solutions. These phenomena concern (i) local
wilting (ii) solute transport and (iii) the variability of pressure head and saturation, and are
summarized below.

Local wilting

Large patches of coarse material can dry out due to limited replenishment of rainwater into
their inner parts. If locally more water is extracted than can be replenished, root water up-
take will lead to a gradual change of pressure heads in coarse lenses located in the root zone,
which attain the wilting point pressure head, where root water uptake becomes zero. The
patches are surrounded by relatively wet material. These regions lower the mean pressure
head and lead to extremely large variances of the pressure head. The effect of local wilting
is not observed under neglection of root water uptake or soil structure and can thus not be
captured by first-order second-moment effective models. The feature of soil structure which
is sensitive to the occurrence of local wilting is the existence of patches of coarse material
with length scales that exceed the typical length, over which water can be drawn by root
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water uptake. This structure property is not necessarily described by the correlation length
of the heterogeneous parameter field, as coarse and fine material can have different patch
sizes. In contrast, the bivariate spatial copula of the parameter field (Bárdossy, 2006) reflects
the length scales of structures with different parameter ranges. The formation of dry regions
could, thus, be eventually predicted with the help of two-point bivariate spatial copulas of
the hydraulic parameter fields.

Timescales for the formation of dry spots during drying phases can be roughly estimated
with the help of characteristic timescales for root water uptake and gravity flow. If periodic
rewetting and drying cycles with equal frequencies are applied, a critical frequency below
which dry spots form can be quantified. Since at deeper layers, drying and rewetting phases
cannot be clearly separated due to later arrival of the rewetting front, this estimate holds
only for locations close to the surface.

In the case that locally wilted areas occur, the standard root water uptake model would
predict that the global root water uptake rate is decreased and the atmospheric demand is
not met anymore. The local actual uptake rate is shown to be periodically reduced at layers
close to the surface during drying phases if root water uptake is modeled according to the
standard approach. The global actual uptake (integrated over the domain) is related to crop
yield. In the test cases carried out in this study, crop yield is hardly affected, but a reduction
occurs in principle. Based on this, one can imagine scenarios where the annual yield is im-
mensely decreased, e.g. if parameter fields have very large patches of coarse material, plants
with deeper root systems are modeled, or extended drying phases are considered.

Experimental studies suggest that plants can compensate for decreased uptake due to stress
at layers close to the surface by enhanced uptake at deeper layers such that the global actual
uptake is not reduced. Assuming that plants also compensate for localized stress, different
uptake strategies which include compensation mechanisms are considered. The standard
model for root water uptake (Strategy 1) is compared to three alternative models with a
compensation strategy for local stress depending on the saturation (Strategy 2) or the rela-
tive permeability (Strategy 3) and a model where the deficit of uptake is equally distributed
to unstressed parts of the soil (Strategy 4). Although with these compensation mechanisms
the potential transpiration is met in total, the alternative root water uptake strategies can
also lead to local stress and wilting in large lenses of coarse material. The formation of such
dry regions is attenuated for Strategy 2 and 3, where the uptake rate is decreased in stressed
parts and increased at favorable locations.

In general, the results obtained with the considered model concepts is debatable. A reduc-
tion of crop yield, obtained with the standard model, does not seem realistic, especially at
steady state conditions, considering that the dry spots are local and the global amount of
water in the medium is not below a critical value. Thus, in heterogeneous soils, it becomes
more important to use strategies which include compensation mechanisms in the root water
uptake model in order to maintain the global transpiration at the potential value although
this may lead to an overestimation of crop yield if full compensation does not take place.
Moreover, local spots with pressure head values at the wilting point, which occur with the
standard and the alternative root water uptake strategies, do also not seem realistic as the
wilted regions are surrounded by wet material. In fact, the main problem is that much infor-
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mation to call such observations unrealistic or realistic is apparently not available. Hence,
those macro-scale models for root water uptake which are based on a water reduction func-
tion under stressed conditions, may work well for homogeneous domains, but as soon as
heterogeneity of soil hydraulic properties is considered, phenomena such as dry spots oc-
cur, that raise questions regarding to the general validity of the conceptual model.

If the observed effect of local wilting in certain soil structures finally is a model artifact and
to what extent compensation takes place cannot be determined with large-scale approaches
for root water uptake which are based on a water reduction function. Therefor soil physical
and plant physiological aspects need to be taken into account.

Solute transport

The steady state water flux fields in G1-, T1- and IT1-fields are used to perform a numerical
tracer experiment. A pulse of solute is released at the surface and monitored below the root-
zone and above the groundwater table. Flux-averaged breakthrough curves (the temporal
derivative of the total normalized concentration in the domain) are analyzed with emphasis
on the influence of root water uptake and non-Gaussian soil structures. In the considered
test cases, both factors are found to influence solute transport. Solute propagates through
T1-fields, which have, under the conditions applied, connected pathways of high conduc-
tive material and large patches of low conductive material, the fastest, and IT1-fields, which
have the opposite pattern, the slowest. In general, the travel time is controlled by the in-
filtration rate of rainwater at the top boundary. Differences between the structures increase
with decreasing infiltration rate. In scenarios where root water uptake (standard approach)
is included, the arrival time of bulk solute as well as differences between the considered
structures, are in between the values of the two bounding scenarios without root water up-
take (with an infiltration rate of q and q−τ ). Comparing two scenarios in vegetated and bare
soil with the same groundwater recharge rate, root water uptake leads to faster flow paths
through the root-zone in all considered structures. The concentration held back in stagnant
zones (which is here called residual concentration) is in IT1-fields higher than in G1- and
T1-fields. As root water uptake lowers the conductivity of coarse lenses such that less solute
is transported into such regions, root water uptake may decrease the residual concentration
in T1- and G1-fields.

This study shows, that differences of the transport behavior exist between the consid-
ered structures. Thus, the assumption of multi-Gaussian heterogeneity, which is often
made in studies dealing with solute transport, might lead to over- or underestimation of
arrival times of solute. The differences in propagation of solute between Gaussian and
non-Gaussian fields are relevant for reactions that a solute undergoes on its way through
the unsaturated zone. The lower the travel velocity is, the longer is the available reaction
time such that more reactions and degradation can take place. In this sense, consideration
of structure is important. Since, at equal groundwater recharge rate, a scenario with root
water uptake leads to different travel times of the solute, which in turn affect the degra-
dation process, it is not sufficient to model the entry of solute into groundwater resources
based only on recharge rates. Thus, root water uptake and soil structure should be included
in environmental modeling studies which aim at problems related to contaminant transport.
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Variability of pressure head and saturation

It is analyzed in which way mean and variance of pressure head and saturation are influ-
enced by root water uptake and heterogeneity of soil properties.

Steady state simulations in 2D fields yield that the variance of pressure head is high under
very wet and very dry conditions and low close to the cross-over where the conductivity of
coarse material and fine material in the considered fields are similar. Beyond the crossover
(at lower water pressure heads), drier states are generally associated with a higher variabil-
ity.

Under transient conditions, the variability of pressure head and saturation increases during
drying phases. During rewetting, drier states are not necessarily associated with a higher
variability, since in multi-dimensional structured media, a heterogeneous infiltration front
develops which increases the variance of pressure head and saturation at a distinct soil layer
as soon as rainwater arrives at this layer. When the infiltration front has passed this layer,
the variances of pressure head and saturation decrease again and finally reach a steady state
value. Depending on the uptake strategy of roots, variances of pressure head and saturation
can be slightly smaller or larger during drying and rewetting, compared to the case without
root water uptake. The pattern of the considered structures influences the mean and the
variance of pressure head and saturation only slightly. Since root water uptake affects the
variance of saturation in comparison to equally dry states without root water uptake, root
water uptake also changes the relationship between variance and mean of saturation.

The point where the pressure head starts to increase at a distinct layer (minimum of pressure
head) corresponds to the first arrival of water at this layer. The maximum of the variance can
be taken as a measure for the arrival of the mean front. The observed time lag between the
minimum of the mean and the maximum of the variance of pressure head or saturation can
be taken as a measure for the width of the front. The front width increases with decreasing
net infiltration rate. Thus, as the infiltration front travels through the domain, the width of
the front is constant in scenarios without root water uptake while it increases with increasing
depth if root water uptake is taken into account. Since the front widens with depth under
consideration of root water uptake, predictions of arrival times of the infiltration front based
on standard effective parameters for soil properties become more difficult and inaccurate
with depth under consideration of root water uptake.

The coefficient of variation of pressure head is, in the analyzed test cases, dominated by the
variance of pressure head such that it peaks temporally shifted to the mean. The coefficient
of variation of saturation is dominated by the mean value and peaks only with a very small
time lag compared to the minimum of the mean saturation.
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In summary, this study demonstrates that root water uptake and heterogeneity of soil prop-
erties jointly affect unsaturated flow and cannot be safely ignored, as it is often the case in
large scale applications. The actual impact of root water uptake depends on the considered
strategy according to which plants extract water. Differences between the sensitivity to local
wilting of Gaussian and non-Gaussian structures and the increase of variance of saturation,
observed with the standard approach for root water uptake, are weakened if a more com-
plex root water uptake strategy is taken into account. Using macroscopic approaches for
root water uptake, it is generally not possible to evaluate which strategy is more realistic.
However, the critical features of structure which are sensitive to the influence of root water
uptake may be identified. According to the results of this study, one of these features is the
existence of large patches of coarse material.

To make reliable predictions on flow processes on large scales, prequisite knowledge about
uptake mechanisms is necessary when upscaled models are used. This knowledge is cur-
rently not available in complex structured soils. To come up with a reasonable approach for
root water uptake on the macroscopic scale, we must learn from microscopic insights. This
work points out that it is inappropriate to assume a homogeneous distribution of soil pa-
rameters, which is often done by plant scientists and hydrologists, and questions an equal
uptake ability of plant roots in heterogeneous soils, especially under stressed conditions. We
emphasize the need for biological studies to include the variation of soil hydraulic proper-
ties with a focus on growth and uptake in coarse material under dry conditions.

Until these major lacks in our understanding of root - soil interactions are overcome and
the gained knowledge is transferred to effective models, it is important to be aware of the
limitations of using large scale-standard models for root water uptake in structured soils.
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7.2 Outlook

The hydological community would essentially benefit from an improved conceptional un-
derstanding of the uptake mechanism according to which a given plant species extracts wa-
ter. Microscopic models of root networks, such as, e.g., the approach by Javaux et al. (2008)
or Schneider et al. (2010), where the extraction rate is determined by the radial flow due
to potential gradients, would be suitable. Approaches, which treat root water uptake as a
energy optimizing problem (e.g. Adiku et al., 2000), might be promising as well, however
implementation in two and three dimensions might be extremely difficult.

Following the results of this study, the analysis should concentrate on the behavior of a root
network in the surrounding of lenses of coarse material at water shortage. Furthermore, the
influence of root water uptake on the relationship between variance and mean of saturation
in differently structured soils is an interesting question for future work. The results of this
study indicate, that root water uptake and eventually the considered structures plays a role
for the σS(< S >)-curve. Since the variance of saturation depends on the applied uptake
strategy, a microscopic model for root water uptake should be used for this analysis as well.

Alternatively, achievements on the response of plants to heterogeneous structures in order
to derive extraction pattern as well as compensation mechanisms on larger scales, may be
obtained by carefully monitoring flow in vegetated, heterogeneous soils. Experimental work
on root water uptake in heterogeneous media is scarce and further studies at all scales will
surely contribute to fill the gap in our understanding.

Another open aspect is the dependence of critical pressure heads and wilting point in the
Feddes-function on soil hydraulic properties. Theoretically, a variation of critical values can
be reasoned with the model of de Jong van Lier et al. (2006). If a variation of critical values
can be experimentally confirmed and the range of possible values quantified, critical pres-
sure heads in the Feddes-function should be treated as a random space function depending
on the soil hydraulic properties in future work. Depending on the actual values of critical
pressure heads, this approach may prevent extremely low pressure head values and large
variances, but will drastically reduce the actual transpiration rate, unless compensation
methods are included. Resulting uptake pattern should be compared with field data to
evaluate the model.
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