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Kapitel 1

Deutsche Zusammenfassung

Newton zeigte, dass Körper mit einer konstanten Beschleunigung auf die Erde fallen, aber
trotz der unleugbaren Anziehung der Schwerkraft bewegen sich nicht alle fallenden Ge-
genstände auf gerader Flugbahn abwärts. Die Betrachtung der Flüssigkeit beinhaltet sehr
schwierige und nichtlineare Interaktionen. Trotz der bahnbrechenden Bemühungen durch
Maxwell (1853), der als erstes die Körper- Flüssigkeit-Interaktion betrachtet hat, blieb das
allgemeine Problem ohne Lösung. Andererseits ist die Sedimentbildung eines Systems
von Partikeln in einer Flüssigkeit unter dem Einfluss der Schwerkraft ein sehr wichtiges
Problem in der Hydrodynamik und in der Statistischen Physik. Dieses Problem hat viele
Anwendungen in den grundlegenden Wissenschaften wie in den Luftfahrtwissenschaf-
ten, der Biophysik, der Klimaforschung sowie auf dem Gebiet der technischen chemi-
schen Reaktoren, z.B. der Ausbreitung von Verschmutzung, in Tintenstrahldruckern, den
druckaufgeladenen Wirbelschichtsystemen, etc.. Dieses Problem weist schwierige Mul-
tikörper-Interaktionen wegen der weitreichenden Hydrodynamik auf, die für Kugeln über
einen Bereich von 1/r abfällt, wobei r der Abstand zwischen den Partikeln ist, Ramas-
wamy (2001). Troz diese breiten Anwendungmöglichkeiten fehlt der Partikelsediment-
bildung weiterhin eine statistisch-mechanische und hydrodynamische Beschreibung und
bleibt ein ungelöstes Problem.

1.1 Simulationsmethode

Das Modell wurde durch Höfler and Schwarzer (2000) entwickelt, erweitert durch Kuu-
sela et. al. (2001) und wird in einigen Studien von Kuusela et. al. (2003) und Fonseca and
Herrmann ((1) 2004) angewandt. Die Bewegung von Flüssigkeiten wird gelöst, indem
man die inkompressiblen Navier-Stokes Gleichungen auf einem diskreten Gitter löst:

∂v
∂t

+ (v ·∇)v = −∇p+ 1
Re
∇2v + f

∇ · v = 0
(1.1)

wobei v die Geschwindigkeit der Flüssigkeit ist, sowie p den Druck und f eine ex-
terne Kraft darstellt, die in unserem Problem die Schwerkraft ist. Die Reynoldszahl

1



2 1.1.1 Simulationsmethode
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Abbildung 1.1: Typische Falltrajektorien in unseren Simulationen. Wir zeigen das un-
veränderlich-fallende Regime, (a1), mit ∆r = 0.25, ν = 0.033; (b1) die periodische Os-
zillation mit ν = 0.025, ∆r = 0.133. (c1), und die chaotische Bewegung mit ∆r = 0.25,
ν = 0.033.

Re = v2RMρf/(ν), wobei v die vertikale oblate Ellipsoidgeschwindigkeit ist, 2RM der
größte Durchmesser des oblaten Ellipsoids, ρf die Dichte und ν = µ/ρf die kinemati-
sche Viskosität (µ ist die Scherviskosität). Die Froude Zahl ist Fr = (v2)/(g(2RM)), g
ist dabei die Schwerkraft. Die Grenzbedingungen zwischen der Flüssigkeit und den ob-
laten Ellipsoidpartikeln sind erfüllt, wenn man in Betracht zieht, dass die Bewegung der
Flüssigkeit auf der Partikeloberfläche abhängig von der rutschfreien Grenzbedingung ist,
v(x) = vt + r(x)CM ×ω, wobei vt die translationale Geschwindigkeit des Ellipsoids ist,
r(xCM) der Vektor von seiner Mitte zum Punkt x an der Ellipsoidoberfläche, und ω die
Winkelgeschwindigkeit des Ellipsoids.

Die Interaktion zwischen der ellipsoidalen Oberfläche und der Flüssigkeit, die an das El-
lipsoid angrenzt, wird erhalten, indem man eine wiederherstellende Kraft einfügt, die
eine “Verteilungskraft” in die Volumenkraft der Navier-Stokes Gleichung verursacht.
Diese Verteilungskraft ahmt die Gegenwart des Ellipsoids in dem Sinne nach, dass die
Flüssigkeit innerhalb des Ellipsoids sich wie ein steifer Körper bewegt. Eine nichtreiben-
de Kraft wird ausgeübt, wenn die Partikelschablone und der steife Körper nicht in der
gleichen Position sind (Höfler (2000)).

Die repulsive Kraft zwischen den Ellipsoiden wird proportional zu ihrer Überlappung
gewählt. Wenn die oblaten Ellipsoide nichtüberlappend sind, ist die Kraft null, und über
kurze Abstände vermeiden die hydrodynamischen Kräfte, die das Vorhandensein der
Flüssigkeit beschreiben, den Kontakt zwischen den Partikeln (Kuusela et. al. (2001)). Für
diese Kraft wird eine Kontaktfunktion gewählt, die eingehender in Kuusela et. al. (2001)
und in Perram and Rasmussen (1996) erklärt wird. Die Geometrie des oblates Ellipso-
ids wird durch sein Seitenverhältnis ∆r gekennzeichnet, definiert als das Verhältnis des
minimalen Radius Rm zum maximalen Radius RM , somit ∆r = Rm/RM .
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Abbildung 1.2: Ausgangsbedingungen im System: θo = 26.60, ho = 220, ∆r = 0.15 und
kinematische Viskosität ν = 0.083. In der Abbildung stellen wir die vertikale Geschwin-
digkeit gegen die Zeit in beiden Systemen (durchgezogene Linie), L′ , (n = 2, gestrichelte
Linie mit Quadraten) dar. Die Superposition wird durch Anwendung der Umkehrtranfor-
mation durchgeführt, die in Tabelle 1.1 beschrieben wird.

System L → System L
′ System L → System L

′

Lhor → n ∗ Lhor T ∗ → n ∗ T ∗

RM → n ∗RM vhor → vhor
n

Rm → n ∗Rm vvert → vvert
n

g → g
4∗n

Tabelle 1.1: Transformationsregeln der Sedimentation. n ist eine reelle Zahl.

1.2 Die Phasen

Wir fanden drei unterschiedliche Arten von Bewegung, genannt Phasen, in unseren Simu-
lationen: Der stationäre Zustand, die seitliche oder periodische Bewegung (Belmonte et.
al. (1998)) und eine chaotische Bewegung, die in Abb. 1.1 gezeigt werden.

1.3 Der stationäre Zustand und periodische Phasen:
Ähnlichkeitgesetz.

Die Grenzgeschwindigkeit v wird bestimmt durch das Gleichgewicht zwischen den
Trägheits- und Viskositätskräften Fi = Fd, daher ist v ∼

√
gRm. Wir nehmen an, dass die

charakteristische Periode der Bewegung von der seitlichen AbmessungLhor des Behälters
abhängt und von der vertikalen Abmessung unabhängig ist. Folglich nehmen wir an, dass
die Periode sich wie T ∗ ∼ Lhor/v ändern sollte. Die Transformation in Tabelle 1.1 läßt die
Froude und Reynoldszahl konstant und die Dynamik in den zwei Systemen ist äquivalent,
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Abbildung 1.3: Die linke Abbildung zeigt das Zustandsdiagramm der fallenden Scheiben
wie in Belmonte et. al. 1998 berichtet. In des rechten Abbildung stellen wir der Pha-
senraum für das fallende oblate Ellipsoid dar, das wir in unseren Simulationen erhalten
haben.

wenn sich die dynamischen Variablen wie in Tabelle 1.1 (Abbildung 1.2) ändern. Auch
die Dynamik für den stationären Zustand und die periodischen Phasen werden auf dieser
Skala unabhängig voneinander.

1.4 Zustandsdiagramm und Übergänge.

Im Phasenraum definieren wir ein dimensionsloses Trägheitsmoment I? = 5
4

ρellip
ρfluid

∆r, das
das Verhältnis des Trägheitsmoments des oblaten Ellipsoids zu der seines kugelförmigen
Äquivalents bei der gleichen Reynoldszahl Re = U(2rM )

ν
ist. Es ist wichtig zu erwähnen,

dass das Experiment für eine fallende Scheibe mit kleinen Seitenverhältnissen durch-
geführt wurde, und wir erwarten, dass die Dynamik des Systems ähnlich der eines oblaten
Ellipsoids sein wird.

Wenn wir unser Diagramm in Abb. 1.3 rechts mit den experimentellen Resultaten links in
Abb. 1.3 (Field et. al. (1997)) vergleichen, sehen wir, dass in beiden Abbildungen die Ver-
teilung der Phasen ähnlich ist. Die Unterschiede bezüglich unseres Diagramms mit denen
von Field et. al. (1997) sind, dass sie Scheiben benutzen und nicht oblate Ellipsoide und
das Taumel-Regime nicht in unseren Resultaten vorkommt. Die Koexistenz der dynami-
schen Phasen ist von der anfänglichen Orientierung des oblaten Ellipsoids unabhängig.

Links in Abbildung 1.4 zeigen wir das Verhalten der charakteristischen Zeit T ∗/T . Mit
Erhöhung die Reynoldszahl Re geht die charakteristische Zeit nach Null bei Rec ≈ 355
(Abb. 1.3). Nach diesem Punkt finden wir die periodische Phase, die sich wie die Phase
des unverändlichen Fallens mit einer unendlichen charakteristischen Zeit verhält. Folglich
können wir T ∗/T als Ordnungparameter betrachten, und der Kontrollparameter für die-
sen Übergang ist die Reynoldszahl. Dieser Übergang ist wie ein Phasenübergang zweiter
Ordnung. Die innere Abbildung stellt das Potenzgesetz mit einem kritischen Exponenten
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Abbildung 1.4: Die linke Abbildung stellt den T ∗/T gegen den Ordnungparameter Re,
mit Rec ≈ 355 dar. Die innere Abbildung zeigt das Potenzgesetz-Verhalten mit einem
Exponenten nahe bei 0.5. Die rechte Abbildung zeigt den T/T ∗ gegen den Ordnungspa-
rameter ∆r, mit ∆rc ≈ 0.22.

≈ 0.5 dar. Im Fall des oberen Teils des Übergangs, Abb. 1.3, deutet die Veränderung des
oblaten Ellipsoid-Seitenverhältnisses die Änderung von einen stationären Zustand Fallen
zu einem periodisches Regime an.

Der Übergang vom stationären Zustand Fallen zum chaotischen Regime wird in Abb. 1.4
rechts dargestellt. Wir verwenden T/T ∗, d.h. die Inverse des zuvor verwendeten Ord-
nungsparameters, um den Übergang zu beschreiben und als Kontrollparameter das Sei-
tenverhältnis ∆r. Bei ∆rc wird ein endlicher Sprung des Ordnungsparameters beobach-
tet. Die charakteristische Zeit T/T ∗ verschwindet wegen der nicht-regelmässigen bewe-
gungen, die gegen kleine Schwankungen der anfänglichen Orientierung sehr empfindlich
sind. Dieser Übergang scheint daher ein Phasenübergang erster Ordnung zu sein.

1.5 Sedimentationsgeschwindigkeit für oblate Ellipsoide

In der linken Abbildung 1.5 zeigen wir die mittlere vertikale Sedimentationsgeschwindig-
keit v(t)‖ als Funktion des Volumenanteils ΦV für Ellipsoide und Kugeln und v ergleichen
dann mit dem phänomenologischen Richardson-Zaki Gesetz v(Φ)

v0
= (1−ΦV )n (Richard-

son and Zaki (1954)) mit n = 5.5. Der Grenzwert ΦV→ 0 entspricht dem einzelnen
fallenden Ellipsoid, das wir in Fonseca and Herrmann ((1) 2004) studierten. Es ist inter-
essant zu unterstreichen, dass die Sedimentationsgeschwindigkeit des Ellipsoids, die dem
phänomenologischen Richardson-Zaki Gesetz folgt, verglichen mit der der äquivalenten
Kugel, klein ist. Für Ellipsoide geht die vertikale Mittelgeschwindigkeit durch ein lokales
Maximum bei ΦV ≈ 0.05. Dieses Maximum ist ziemlich interessant, da es nicht für Ku-
geln beobachtet wird. Ähnliche nicht-monotone Sedimentation über nicht-kugelförmige
Körper (z.B. Fasern) ist experimentell durch Herzhaft and Guazzelli (1999) und für pro-
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Abbildung 1.5: Linker Plot zeigt die mittlere Sedimentationsgeschwindigkeit v(t)‖ für
das oblate Ellipsoid (gestrichelte Linie mit Quadraten) und die Kugel (gestrichelte Linie
mit Punkten), als Funktion des Volumenanteil ΦV bei Re = 4 ∗ 10−2. Die rechte Abbil-
dung zeigt die mittlere Sedimentationsgeschwindigkeit bei Re ≈ 7. Das oblate Ellipsoid-
Seitenverhältnis ist ∆r = 0.25, die äquivalent Kugel hat Requi = 0.97.

late Ellipsoide in Simulationen von Kuusela et. al. (2001) berichtet worden.

Abbildung 1.5 rechts stellt die mittlere vertikale Geschwindigkeit für Ellipsoide (�) und
die äquivalenten Kugeln (◦) als Funktion des Volumenanteil bei niedriger Reynoldszahl
dar (Re ≈7). In einer vorhergehenden Arbeit ist diese Simulationsmethode mit Erfolg
bis zu Re ≈ 10 (Höfler and Schwarzer (2000) und Kuusela et. al. (2003)) verwendet
worden. Das Zwischenmaximum für die Ellipsoide wird nicht in Abb. 1.5 rechts beob-
achtet, wie in Abb. 1.5, links bei der niedrigen Reynoldszahl gezeigt. Ein Vergleich mit
dem phänomenologischen Richardson-Zaki Gesetz (durchgezogene Linie im Abb. 1.5
rechts) zeigt einen Exponenten von nSph = 3.2 für Kugeln und nEllip = 4.0 für Ellip-
soide. In beiden Fällen folgen die Daten dem Richardson-Zaki Gesetz recht gut. Diese
Exponenten (nSph = 3.2 und nEllip = 4.0) liegen zwischen dem Grenzwert niedriger
Partikel-Teilchen-Zahlen (n ≈ 4.5) und einem turbulenten Partikelsystem (n ≈> 2.5),
Richardson and Zaki (1954).

1.6 Orientierungsverhalten

Die mittlere vertikale Orientierung (MVO) θ wird als Funktion des Volumenanteils in
Abb. 1.6 links gezeigt. Für kleinere Volumenanteile zeigt das MVO eine stärkere Aus-
richtung mit der Schwerkraft, und im Grenzfall ΦV → 0 wird eine genauere Ausrichtung
mit der Schwerkraft beobachtet, welches dem Orientierungsverhalten für ein oblates El-
lipsoid entspricht, das in Fonseca and Herrmann ((1) 2004) beobachtet wurde. Wir sehen
auch für das MVO ein Zwischenmaximum bei ΦV ≈ 0.05, welches das lokale Maxi-
mum der vertikalen Geschwindigkeit bei gleichem Volumenanteil erklären könnte, das in
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Abbildung 1.6: Die Verteilungsfunktion P (cos(θ)) für die mittlere vertikale Orientierung
θ für unterschiedliche Volumenanteile. Das Ellipsoid-Seitenverhältnis ist ∆r = 0.25 und
die Reynoldszahl Re = 4 ∗ 10−2. Ordnungparameter Ψ als Funktion des Volumenanteils,
ΦV für, drei unterschiedliche Seitenverhältnisse ∆r = 0.4/2.4; 0.4/1.6;0.4/0.8.

Abb. 1.5 dargestellt ist. Dieses Zwischenmaximum existiert nicht für Kugeln. Für größere
Werte des Volumenanteils (ΦV > 0.08) zeigt die Abbildung eine monotone Abnahme.

Um die Orientierung der oblaten Ellipsoide quantitativ zu bestimmen führen wir die
Größe Ψ =< 2cos(θ) − 1 > ein, die auch in Kuusela et. al. (2003) als Ordnungspa-
rameter der Orientierung mit den Werten −1, 0 oder +1 verwendet wurde, wenn alle
oblaten Ellipsoide zur Schwerkraft senkrecht, zufällig orientiert oder entlang der Schwer-
kraft ausgerichtet sind. Abbildung 1.6 rechts zeigt das Verhalten von Ψ gegen ΦV , für
kleinere Volumenanteile nimmt der Ordnungsparameter ΦV ≈ 0.001 − 0.08 negative
Werte an, was die Ausrichtung entlang der Schwerkraft beweist und in Übereinstimmung
mit dem Grenzwert, ΦV → 0 (ein oblates Ellipsoid) Fonseca and Herrmann ((1) 2004),
ist. Ungefähr bei ΦV ≈ 0.08 ist der Ordnungsparameter Null. Für größeres ΦV ≥ 0.08,
die orientierung deutet bei positivem Ordnungparameter senkrecht zur Schwerkraft. Im
Bereich von ΦV ≈ 0.001 − 0.08, hat Ψ ein lokales Minimum nahe bei ΦV ≈ 0.05,
wo wir ein lokales Maximum in Abb. 1.6 rechts und in Abb. 1.5 links fanden. Die Si-
mulationen wurden mit zwei anderen unterschiedlichen Längenverhältnissen wiederholt,
∆r = 0.4/0.8; 0.4/2.4, und wir beobachteten ähnliches Verhalten.

1.7 Diffusion

Abbildung 1.7 (a) zeigt die Ableitung der mittleren quadratischen Teilchenverschiebung
dR/dt für sedimentierende Ellipsoide, wobei R(t) =< [x(t) − (x(0)+ < v > t)]2 >
ist. Die Klammern bedeuten, dass ein Mittelwert über das Ensemble jener Partikel, die
sich im unteren Bereich des Behälters befinden, gebildet wird. < v > ist die mittelere
Geschwindigkeit aller Partikel mit v 6= 0. Die Graphiken stellen die größen Anisotropie
den parallelen (‖) und senkrechten (⊥) Anteile dar. Im Allgemeinen stellen beide Anteile
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Abbildung 1.7: Abbildung zeigt die parallelen (‖) und senkrechten (⊥) Anteile der M.S.D.
für sedimentierende Ellipsoide in einer log-log Skala. Die dicken gepunkteten Linien da-
zwischen stellen das Wachstum in den ballistischen und nicht-diffusiven Regimen dar.
Der Kugelradius ist Requi = 1.01. Die Reynoldszahl ist 2× 10−2 und das Seitenverhältnis
∆r = 0.4/1.6. Die Zahl der Ellipsoide ist von der Größenordnung 103.

Zeit → Adimensional Zeit
t → t

ts

< x2 > → <x2>
4R2

eq

v → v
vs

Tabelle 1.2: Transformationsregeln für die Sedimentation

ein anfängliches sogenanntes ballistisches Regime dar, wie in Abbildung 1.7 (a), durch
eine parallele dicke gepunktete Linie zwischen den Kurven bildlich dargestellt ist. Dieses
ballistische Regime ist zu t2 proportional. Wir finden ein nicht-diffusives Verhalten defi-
niert durch R(t) ≡ tα und Exponenten zwischen 1.4 ≤ α ≤ 2.5, deren Werte von der
Ellipsoiddichte, der Viskosität und dem Seitenverhältnis abhängen.

In Tabelle 1.2 stellen wir die Tranformationsregeln dar, die verwendet werden, um die
Graphiken in Abbildung 1.8 übereinander zu legen. Die Reynoldszahl wird durch die
Tranformationsregeln unverändert gelassen. Dieses Ergebnis gilt für kleine Re / 10−2.

1.8 Räumliche Korrelationen

Wir beginnen unsere Analyse, indem wir die räumlichen Korrelationen in den Geschwin-
digkeitsfluktuationen studieren (im Folgenden SCVF). Die normalisierte Autokorrelati-
onsfunktion des parallelen (||) Anteils der Geschwindigkeitsfluktuationen werden wie
folgt definiert (Segré et. al. (1997)):
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Abbildung 1.8: Alle Kurven liegen relativ gut übereinander, was die Transformationsre-
geln in Tabelle 2 rechtfertigt.

C‖(r) ≡
〈δv‖(0)δv‖(r)〉
〈δv‖(0)2〉

(1.2)

wobei die Klammern 〈...〉 einen Ensembledurchschnitt über mehrere individell unter-
schiedliche Konfigurationen im Raum und in den Orientierungen (Ellipsoide) darstellen.
Dabei stellt δvi = vi − vsed die Fluktuationen in der Geschwindigkeit und vsed = 〈vi〉
die Mittlere Geschwindigkeit der Konfiguration dar. Falls der Abstand r in der Richtung
genommen wird, die zur Schwerkraft parallel ist, dann nennen wir die parallele Kompo-
nenteC‖(x) = C‖ oder falls senkrecht dazu, dann nennen wir die senkrechte Komponente
C‖(z) = C⊥.

1.9 Änderungen im Volumenanteil und Kollaps

Abbildung 1.9 zeigt, dass alle Kurven des SCVF für Kugeln und Ellipsoide im (||) Anteil
zur Schwerkraft übereinstimmen. Hier bei wird der Abstand ReqΦ

−1/3
V benutzt, wie von

Segré et. al. (1997) vorgeschlagen. Bei der Übereinstimmung der Kurven betrachten wir
es als bemerkenswert, dass sie für Änderungen des Volumenanteils bis zum 60-fachen
gültig ist. Die von uns gefundenen Korrelationslängen können wie folgt angegeben wer-
den: ξ⊥,sph = 29reqφ

−1/3; ξ‖,sph = 13reqφ
−1/3, was sich nicht erheblich von den Resul-

taten von Segré et. al. (1997) unterscheidet. Im Ellipsoidfall (siehe Abbildung 1.9, (b)),
findet man auch eine sehr gute Übereinstimmung der Kurven. Die Werte für die Korre-
lationslänge sind ξ⊥,Ell = 25ReqΦ

−1/3; ξ‖,Ell = 10ReqΦ
−1/3. Die Korrelationslänge für

Ellipsoide ist in beiden Anteilen kleiner als für Kugeln.

Die Amplitude der parallelen (‖) und senkrechten (⊥) Anteile der Geschwindigkeitsfluk-
tuationen ist in Abbildung 1.10 dargestellt. Die Graphiken werden in einer log-log Skala
dargestellt. Für 0.005 ≤ ΦV ≤ 0.07 sind Fluktuationen gefunden worden, die sowohl für
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Abbildung 1.9: Kollaps der räumlichen Korrelationsfunktion für den (||) Anteil für Kugeln
(a) und Ellipsoide (b).
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Abbildung 1.10: Die oberen Abbildungen stellen die räumlichen Korrelationsfunktionen
für Kugeln und Ellipsoide in den parallelen (‖) und senkrechten (⊥) Anteilen als Funktion
des Volumenanteils in einer log-log Skala dar. Die Reynoldszahl ist 2× 10−2, der Radius
Requi = 1.01 der Kugeln und das Ellipsoid-Seitenverhältnis ist ∆r = 0.4/1.6.

Kugeln, als auch für Ellipsoide wie ≈ Φ
1/3
V (die gerade Linie über den Daten) wachsen,

(Segré et. al. (1997)). Für größere Volumenanteile ΦV > 0.07) werden die Fluktuationen
in beiden Anteilen, für Kugeln und für Ellipsoide, verringert.

1.10 Änderung der Behältergröße

Wir studieren die Geschwindigkeitsfluktuationen wie in der vorhergehenden Arbeit von
Segré et. al. (1997) und verändern die Korrelationslänge, um Größeneffekte zu unter-
suchen. Die Resultate sind in der Abbildung 1.11 für Kugeln (gestrichelt-punktierte
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Abbildung 1.11: Die linke Abbildung zeigt den parallelen Anteil der Geschwindigkeitsf-
luktuationen bei veränderlicher Behältergröße. Die rechte Abbildung zeigt den vertikalen
Anteil. Die Reynoldszahl ist 2 × 10−2, der Radius der Kugeln ist Requi = 1.01, und das
Ellipsoid-Seitenverhältnis ist ∆r = 0.4/1.6.

Linie) und Ellipsoide gezeigt (durchgezogene Linie). Die Behältergrößen werden mit
L/(RequΦ

−1/3) normalisiert. Wie im Fall von Segré et. al. (1997) und von Höfler (2000)
zeigen die Geschwindigkeitsfluktuationen eine anfängliche Übergangsregion, die eine
starke Abhängigkeit von der Behältergröße, zwischen 20 ≤ L/(ReqΦ

−1/3) ≤ 100 haben.
Danach sind die Simulationsdaten unabhängig von der Behältergröße. Im Allgemeinen
zeigen Ellipsoide und Kugeln das gleiche Verhalten, aber mit einem kleineren Gesamt-
wert für Ellipsoide. Wie erwartet wird ist das Verhältnis des Parallelanteils ‖ der Ge-
schwindigkeitsfluktuation zum Vertikalanteil ⊥ ≈ 2.5 für Kugeln und Ellipsoide, Segré
et. al. (1997). Der gleiche Wert für beide Partikelnformen beweist, dass das anisotro-
pe Verhalten der Geschwindigkeitsfluktuation von der Partikelform unabhängig ist. Die
durch die Schwerkraft verursachte Symmetriebrechung wirkt gleichermaßen auf Kugeln
und Ellipsoide.

Caflish and Luke (1985) fanden, dass die Geschwindigkeitsfluktuationen bei Zunahme
der Behältergröße divergieren können. Andererseits wurde weder in Experimenten, Si-
mulationen, noch in der Theorie ein Beweis für solche Divergenzen gefunden. In Höfler
(2000) wird argumentiert, dass Systeme, die durch Wände begrenzt sind, nicht eine ver-
gleichbare Skalierung der Geschwindigkeitsfluktuationen aufweisen. Stattdessen zeigen
sie eine Sättigung, sobald die kleinste Ausdehnung des Behälters eine kritische Größe
übersteigt. Es besteht die Schwierigkeit, ein einziges Skalierungesetz zu finden. In unse-
ren Simulationen wurde die Behältergröße variiert, indem man die gesamte quadratische
Unterseite änderte. Die Resultate in Abb. 9.7 (a) und (b) zeigen keine Divergenz der Ge-
schwindigkeitsfluktuationen für Kugeln oder Ellipsoide und bewegen sich sehr nahe an
den Resultaten, die durch Segré et. al. (1997) gegeben werden.



12 1.1.10 Änderung der Behältergröße



Chapter 2

Introduction

2.1 The falling objects

The tree leaves flutter to the ground in autumn, exhibiting a complex motion and refusing
to follow the shortest path. The way in which objects fall to the ground has been studied
since antiquity. Objects were thought to return to “their natural” places by the ancient
Greeks. During Renaissance, Galileo Galilei dropped two metal balls from the leaning
Tower of Pisa and showed that they fall at the same rate despite having different masses.
Newton showed, that the bodies fall on earth driven by a constant acceleration and he
also observed the complex motion of objects falling in both air and water (Viets and Lee
(1971)).

But despite gravity’s undeniable attraction, not all falling objects travel downwards in
straight trajectories. The consideration of fluid surrounding the objects (figure 2.1), in-
troduces a very complicated and nonlinear interaction between the object and the fluid.
The first pioneering effort was made by Maxwell (1853), who was the first to consider the
fluid-object interaction and proposed a model for a falling paper strip.

In the beginning, theoreticians made few assumptions
a) constrained motion in 2-d was taken into account
b) vortices in fluid were ignored
c) considered a fluid with zero viscosity
Based on these assumptions, Gustav Kirchhof showed that the problem reduces to a sim-
plified set of equations that can be solved for simple particle geometries. This method
also appears in the Horace lamb’s classic treatise on hydrodynamics, (Lamb (1932)).

A deeper understanding of the motion of falling objects in a fluid is of great technical
importance, and has been investigated in a variety of contexts, including meteorology
(Kajikawa (1982)), aircraft stability (Mises (1945)), power generation (Lugt (1983)),
chemical engineering (Marchildon et. al. (1964)), and also in the study of stability of
submarines and the centrifugation of cells by biological techniques.

In the nineties Aref and Jones (1993), found by means of numerical solutions of Kirch-
hoff’s equations that the trajectory of an object moving through an incompressible, invis-

13
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Figure 2.1: Images of the vortices shedding by (a) a rising air bubble (Kelly and Wu 1997)
and (b) a metal strip as it falls through water (S. Field et al 1998). It is possible to see
the fluid motion due to a dispersion of small aluminum particles in the water. The vortex
sheds in each case are synchronized with the zigzag motion of the object.

cid and irrotational fluid is chaotic. Tanabe and Kaneko (1994,95) and Mahadevan et. al.
(1995) used a phenomenological model for the falling of a piece of paper in 1-d. They in-
cluded the lift and kinematic viscosity, but neglected the inertia of the fluid, and described
five falling regimes of which two were chaotic. Further, Mahadevan (1996) implemented
an older work presented in Horace Lamb’s classic treatise on hydrodynamics to the prob-
lem of falling cards that takes into account the effect of the fluid as a shape-dependent
renormalization of the mass and the moment of inertia tensor. Tumbling and drift motion
were observed which are a consequence of the anisotropy in mass and viscosity in the
model. Furthermore, Mahadevan et. al. (1999) also made an experiment by dropping ho-
rizontal cards of thickness d and width w showing that the tumbling frequency, Ω scales
as Ω ≈ d1/2w−1, consistent with the dimensional argument that balances the drag against
gravity.

Additionally, Field et. al. (1997) investigated experimentally the behavior of falling disks
in a fluid and identified different dynamical regimes as a function of the moment of inertia
and the Reynolds number. They obtained experimental evidence for chaotic intermittency
(Bauer et. al. (1992)). Belmonte et. al. (1998), in an experiment with thin flat strips
falling in a fluid, observed two motions: side to side oscillation (flutter) and end-over-
end rotation (tumbling) figure 1.2. They proposed a phenomenological model including
inertial drag and lift which reproduces this motion and yields the Froude similarity which
describes the transition from fluttering to tumbling regime.

In spite of this large effort, the general problem of the falling of a body in interaction with
the surrounding fluid (figure 2.1), remains without solution.
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Figure 2.2: The images show a collage of consecutive video fields (Belmonte et. al. 1998)
of two fundamental motions: side-to-side oscillation (flutter) and end-over-end rotation
(tumble).

2.2 Many particle sedimentation

The sedimentation of a system of particles in a fluid under the action of gravity is a very
important problem in fluid dynamics and statistical physics. This problem has many ap-
plications in basic sciences such as aerospace sciences, biophysics, environment, etc, and
in the field of engineering e.g. chemical reactors, contamination spreading, ink-jet print-
ing, fluidized beds, etc. Many natural processes involve particles immersed in fluids for
example, blood flux, particles in the atmosphere, diffusion studies of organelles transport
in living cells, paper making, sedimentation in rivers and lakes. To understand such sys-
tems, a better knowledge in sedimentation and ability to simulate the sediment behavior
is very much required. With this wide range of applications, the particle sedimentation
still lacks a statistical mechanical and fluid dynamical description and remains an open
problem.

Sedimentation and statistical physics have a long and distinguished common history, be-
ginning with the classical theoretical (Einstein (1906)) and experimental (Perrin (1916))
studies of Brownian motion. The early work dealt primarily with suspensions at or near
thermal equilibrium. This meant that the source of fluctuations in the system is a thermal
bath characterized by the temperature. The correlation and response functions of physical
observables are tightly linked by fluctuation dissipation relations. The interest of phys-
icists in the statistical mechanics and hydrodynamics of suspensions (Pusey (1997)) has
continued to the present day with the focus shifting progressively to the problems of sys-
tems far from equilibrium. The effect of shear flow on the structure and crystallization of
suspensions has received a great deal of attention (Ackerson and Clark (1984)); the con-



16 2.2.3 Driven suspension and hydrodynamic dispersion

ceptually simpler state of sedimentation (Russel et. al. (1989), Blanc and Guyon (1991))
where there is on average no relative motion of the particles.

2.3 Driven suspension and hydrodynamic dispersion

Systems presenting steadily sedimenting suspensions are in a non-equilibrium state and
therefore have properties qualitatively different from the system in thermal equilibrium in
two important ways. Firstly, the suspended particles are denser than the fluid and also in
order to balance between gravity and viscous dissipation on average there is a downward
relative speed. Secondly, irrespective of the particle being sedimented or sheared, they
display random particle motion even when the thermal Brownian motion is negligible.
Each particle influences the other in such a way that the dynamics is highly sensitive to
initial conditions. The resulting chaos as observed in Brady and Bossis (1985) and Jánosi
et. al. (1997), implies that the time-evolution of the coarse-grained quantities must be
described using diffusion coefficients and noise sources, even though the microscopic
dynamics in the absence of thermal Brownian motion is entirely deterministic. This phe-
nomenon of diffusive behavior induced by the flow due to the objects driven through the
fluid, in the absence of a thermal noise is called hydrodynamic diffusion or hydrodynamic
dispersion. This places many questions about the large-scale structure and long-time dy-
namics of sedimenting or sheared suspensions mainly in the domain of non-equilibrium
statistical physics rather than traditional fluid dynamics.

In general, the suspended particles are acted upon by Brownian and other forces. If Dth

is the thermal Brownian diffusivity of a solute particle with radius a in a flow with typical
velocity gradient γ̇ around the particle, then the Péclet number Pe,

Pe =
γ̇a2

Dth

(2.1)

is a dimensionless measure of the importance of particle flow compared to the thermal
diffusion in the suspension. For a particle moving (for example, sedimenting) with a
speed v through an unbounded fluid,

γ̇ ≈ v

a
(2.2)

For a Brownian sphere of radius a and buoyant weight (i.e. weight minus the weight
of solvent displaced) W = mRg settling through a viscous fluid at temperature kBT in
energy units, the settling speed, vs is:

vs =
mRg

Γ
(2.3)

Here, g is acceleration due to gravity and Γ is the coefficient of viscous drag of the fluid

(Γ = 6πaν for a sphere). The Einstein relation tells us that the diffusivity, Dth = kBT/Γ.
Thus, Pe = mRga/kBT is independent of the kinetic coefficients of the system. A
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Figure 2.3: Batch sedimentation.

suspension in which Pe is extremely large, (102 or more) is a non-Brownian suspension.
In such suspensions the physics is dominated by the driving force (gravity in the case of
sedimentation) and hydrodynamics whereas thermal fluctuations play a negligible role.

In contrast De Groot and Mazur (1984), non-equilibrium steady states such as flow of
electrical or thermal currents, fluctuations and hydrodynamic diffusivities in driven non-
Brownian suspensions are determined by the driving force. They have nothing to do with
the thermodynamic temperature of the system and are hence not constrained by fluctu-
ations dissipation relations. Even in suspensions with Pe = 1, there will be substantial
non-equilibrium contributions to diffusion, fluctuations and linear response of the hydro-
dynamic interactions.

2.4 Steady sedimentation and the fluidized bed geometry

One of the most familiar aspects of sedimentation is the separation (figure 2.3), of a sus-
pension into sediment and supernatant with a free-settling layer in between (Russel et. al.
(1989)) under steady sedimentation. This state can in principle be realized by studying
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Figure 2.4: Fluidized bed.

the free-settling region alone, while feeding in particles from the top to compensate those
which form the sediment. An elegant way of achieving this idea in a spatially homogen-
eous perpetually settling state is to move the reference frame with the settling particles
in the ’fluidized geometry’ (reference Xue et. al. (1995)) as follows. Subject the sus-
pension to an upward flow of speed v0 from below (figure 2.4). The number density, n0

is spatially uniform and is compatible with the flow rate. For samples whose linear di-
mensions are large in all directions the behavior, apart from a change of reference frame,
should be identical in the bulk to that of a collection of particles with number density n0

settling with speed v0 in the laboratory frame in an unbounded fluid. Although not all the
experiments that have been performed in the fluidized-bed geometry probe the statistical
properties of steady-state sedimentation, it is an ideal setting for such studies. The ma-
jority of the experiments, even those performed in conventional batch sedimentation are
carried out under the implicit assumption that the underlying state is statistically station-
ary. Throughout the many-ellipsoid part of this thesis we are concerned with the nature
of such a steadily sedimenting state and fluctuations about this state.
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Figure 2.5: (a) A pair of particles settling side by side settles faster than an isolated
particle; (b) a pair with oblique separation vector settles with a small horizontal compon-
ent to its velocity.

2.5 Low Reynolds number flow

The Reynolds number Re = U(2 ∗ RM)/ν is a measure of the ratio of inertial to viscous
forces in the flow of a fluid with ν = µ/ρ the kinematic viscosity and µ the shear viscosity;
ρ the mass density; with U and L being the vertical velocity and the largest radius of the
ellipsoid, respectively. For the suspensions, Re ranges from 10−3 up to 4 depending upon
the values of ρ and ν.

If we work in the Stokesian limit, Re = 0, several important features of Stokesian flow in
the presence of particles (Russel et. al. (1989)) can be summarized.

(i) The equations of the fluid flow in this limit are linear.

(ii) An isolated single particle of buoyant weight W settling under gravity in an unbounded
container gives rise to a velocity field decaying as W/r with distance, r from the particle
to any point in the fluid.

(iii) A localized density fluctuation about a background of uniform concentration of set-
tling particles likewise produces a 1/r velocity fluctuation.

(iv) The relative velocity of an isolated pair of settling particles in an unbounded fluid is
zero: they neither approach, recede from nor rotate about each other. If they start at the
same height, they fall together (figure 2.5 (a)) at a speed greater than that of an isolated
single particle subjected to the same force. If they are initially separated both vertically
and horizontally, their center of mass falls not vertically but obliquely with the velocity
pointing in a direction between the vertical and the vector joining the upper particle to
that at the lower position (figure 2.5 (b)).

(v) The dynamics of three or more particles is complex and chaotic (Jánosi et. al. (1997)).
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2.6 Velocity fluctuations in hard-sphere sedimentation

An approximate theory in sedimentation begins with the pioneering work by Batchelor
(Batchelor (1970)). He computed the particle sedimentation velocity by assuming a ho-
mogeneous spatial distribution in the dilute limit to get the mean particle sedimentation
velocity. The theory predicts that at small volume fraction, φ the sedimentation velocity
will be:

U(φ)/U0 = 1− 6.5φ+O(φ2) (2.4)

with U0 being the equilibrium velocity of a sphere.

In general, this problem reveals a very complicated multi-body interaction due to the
long-range hydrodynamic interaction that decays for a sphere as 1/r (Batchelor (1970))
where r is the distance from the particle for a spatially infinite system at small Reynolds
number. The particle velocities can fluctuate around the mean, both along the gravity
(the vertical) and the perpendicular direction (horizontal plane). Very little is understood
about the nature of these velocity fluctuations Ramaswamy (2001).

Apart from recent advances in the field this old subject of suspension dynamics poses ex-
citing problems in the frontiers of non-equilibrium statistical physics. Much progress has
been made on this problem both experimentally and theoretically. At the same time, sev-
eral puzzles remain as diverging views do on the basic issues. We describe each problem
first and outline the progress made.

2.6.1 Caflisch and Luke’s work

A severe problem in the statistical physics of sedimentation was pointed out by Caflisch
and Luke (hereafter CL Caflish and Luke (1985)). A very brief resume is given here.
Consider a steadily sedimenting fluid-like suspension (see section 1.3) of hard spheres.
A concentration fluctuation near the origin in this suspension is a point-like force density
and in three dimension, gives rise to a velocity fluctuation decaying as 1/r with r being
distance from the origin. The linearity of Stokes flow implies that the velocity field res-
ulting from many spatially distributed concentration fluctuations is simply the sum,

∑

vi
of the individual contributions. If these fluctuations take place in a random and spatially
uncorrelated manner throughout the suspension, the resulting variance in velocity, σ2

v at
any point in the suspension would be clearly the sum of the squares of the individual con-
tributions. This

∑

v2
i has N ≈ L3 terms if there are N solute particles in a container of

linear dimension, L in all directions. The 1/r form mentioned above for the velocity fluc-
tuation produced by a localized concentration fluctuation means that 〈v2

i 〉 ≈ L−2 so that
σ2
v ≈ L. Such a diverging variance in the infinite L limit, poses serious problems in the

calculations (Batchelor (1970)), of the mean settling speed in an unbounded suspension.
Most experiments find size independence unlike the prediction by Caflisch and Luke but
there are serious questions (Brenner (1999)), that can be asked about the interpretation of
the measurements. It is fair to say that experiments have neither confirmed theCL predic-
tions nor definitely ruled them out. It should of course be noted that CL′s ’predictions’
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say that if the concentration fluctuations are statistically independent from one point to
another in space then the velocity variance diverges. Sufficiently strong anticorrelations
in the particle concentration field at large length scales will suppress the CL divergence.
Clearly what is necessary is a theory that tackles concentration and velocity fluctuations
on the same footing instead of postulating the one and inferring the other.

2.6.2 Resume of experiments and simulations

Experiments on the velocity-fluctuations problem use a wide range of techniques includ-
ing tracking the velocity field by particle imaging (Segré et. al. (1997)), direct counting
of the particles in an illuminated region (Tory et. al. (1992) and Lei et. al. (2001)),
diffusing-wave spectroscopy (Xue et. al. (1995)), tracking the motion of individual
’tagged’ particles in a suspension of otherwise index matched spheres (Tory et. al. (1992,
Nicolai et. al. (1995)) and single as well as multiple sound-scattering (Cowan et. al.
(2000)). It has been claimed by Segré et. al. (1997) and Nicolai and Guazelli (1995),
with one significant exception of Tory et. al. (1992), that the fluctuations saturate to
a size-independent value but this interpretation has been criticized by Brenner (1999).
Numerical simulations by Ladd (1996) show clear evidence of size-dependence over the
range of L explored, although it is argued by Segré et. al. (1997) that this was because
these studies were probing scales smaller than a large screening length. Höfler (2000)
pointed out that the smallest dimension of the container control the magnitude of the velo-
city fluctuations. If the smallest dimension is increased, the velocity fluctuations increase
up to a limit and are independent of the container size.

There is also a class of experiments by Rouyer et. al. (1999), which separates the prob-
lem of hydrodynamic diffusion and non-equilibrium statistical behavior in fluidized beds
from the question of whether the velocity variance diverges. This is accomplished by
working with a suspension in an effectively two-dimensional geometry, i.e. with length,
L and width, W much larger than the thickness, δ, and δ slightly larger than the particle
size. This yields a system whose local hydrodynamics is three dimensional, so that hy-
drodynamic dispersion take place with long-range effects including any possible Caflisch
Luke divergence screened out on lateral scales >> δ. The measurements of the probabil-
ity distribution of the velocity fluctuations of hyperdiffusive particle in these experiments
still lack a theory. The work of Xue et. al. (1995) using diffusing-wave spectroscopy and
the particle-imaging velocimetry of Segré et. al. (1997) also broadly fall in this category.
But these interesting and important experiments do not specifically concern themselves
with the question of the divergent velocity variance. The confined experimental geometry
however, is of relevance since the development of our simulations are made based on that
and the notion (Segré et al. (2001)) of an effective temperature is central to the stochastic
PDE approach of Levine et. al. (1998).

2.6.3 Some theoretical approaches

Apart from the ideas involving particle or fluid inertia which experiments by Cowan et.
al. (2000) seem to have ruled out pretty conclusively, there have been precisely four the-
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oretical attempts to go beyond what Caflisch and Luke, CL have done. Koch and Shaqfeh
(KS) (Koch and Shaqfeh (1991)) were the first to argue that a mechanism analogous to
screening of the Coulomb interaction in electrolytes might work in sedimenting suspen-
sions. They started from a microscopic statistical description of the sedimenting hydro-
dynamically interacting particles and showed that three-particle encounters could lead to
a screening of the CL divergence. They have not, however, mentioned that independ-
ent measurements could predict whether a given suspension is screened or not. Brenner
(1999) assumed the CL mechanism but questioned the evidence in favor of screening,
arguing that the interpretation of the experiments by Segré et. al. (1997) are greatly com-
plicated by the proximate walls of the container. The coarse-grained approach of Levine
et. al. (1998) consists of the stochastic equations of motion for the concentration and ve-
locity fields of a sedimenting suspension. This retains only those terms which dominate
at large length scales assuming no relations amongst the phenomenological parameters
other than those forced by the symmetries of the problem. The spirit is identical to those
underlying theories of dynamical critical phenomena (Halperin and Hohenberg (1977)),
the hydrodynamics of ordered phases (Martin et. al. (1972)) or indeed the fluctuating
Navier-Stokes equations (Landau and Lifshitz (1969)).

The important difference is that sedimentation is a non-equilibrium steady state, where
stationary configuration probabilities are not given by a Boltzmann-Gibbs distribution
with respect to an energy function but can be obtained by solving the equations of motion.

This approach yields a phase diagram for steady sedimentation containing an ’un-
screened’ phase in which the velocity variance 2v diverges as l as observed in CL, and
a ’screened’ phase in which 2v saturates for ’L’ greater than the screening length ξ. Fi-
nally, Tong and Ackerson (1998) made an intriguing observation that the model equations
for sedimentation at large Pe and small Reynolds number Re are identical to those for
thermal convection at large Prandtl and Rayleigh numbers. The sedimentation problem
deals with the concentration field where as the convection problem deals with the tem-
perature field. They then transcribed results from Kraichnan’s mixing-length theory for
Rayleigh-Bernard turbulence to argue for screening and hence, for a finite velocity vari-
ance in steady low Reynolds-number sedimentation. An important difference between
Tong and Ackerson (1998) and the experiments is that the latter were undertaking with
an uniform concentration, while whereas convection is driven by an imposed temperature
gradient.

2.7 Non-Spherical particles

As mentioned above, many of the investigations have been made on spheres and in a
reduced manner on slender bodies, (e. g. fibers) by Ramaswamy (2001) and Batch-
elor (1970). Ellipsoidal particles (figure 1.6), have found an application in the modeling
of the blood flow Olla (1999). Fibers, on the other hand, have numerous technological
applications, the paper manufacturing, transport and refining petroleum, pharmaceutical
processing and environmental waste treatment.. They show orientational transition for
smaller volume fractions which is characterized by the sedimentation velocity that has a
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Figure 2.6: Snapshot of the oblate ellipsoids falling in a fluid. The picture shows the
“cluster” formation along the falling. The ellipsoid aspect-ratio is ∆r = 0.4/1.5, the
distance is given in units of the larger radius, RM and the Reynolds number is Re =
4 ∗ 10−2.

global maximum around the transition in stationary state, Kuusela et. al. (2003).

With this background, the investigation of the sedimentation of non-spherical particles
is fundamental. An understanding of the settlement movement, orientation and spatial
distribution of particles in driven flows is crucial for this task.

2.8 Overview

In this thesis I present a numerical study of the dynamics of one and many falling ob-
late ellipsoids particle in a viscous fluid, in three dimensions, using a constrained-force
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Figure 2.7: A section of a tridimensional falling oblate ellipsoid. The system size is
50× 180× 50 the oblate aspect-ratio is 0.2/1.0 in units of the larger ellipsoid radius. The
Reynolds number is 2 ∗ 10−2, and the ratio of the fluid density over the ellipsoid density
is 3.5.

technique (Höfler and Schwarzer (2000); Höfler (2000); Kuusela et. al. (2001)), under
gravity. We study the dynamical behavior for a typical downward motion, fig. 1.7, es-
tablishing the types of falling motions and finding a similarity law for regular motions.
We propose a mechanism for understand the transitions between the differents types of
motion. In many-particles (ellipsoids) sedimentation (figure 1.6), I study the settling ve-
locity and the average orientation of the ellipsoids as a function of the volume fraction.
We also investigate the diffusive behavior of a sedimenting ellipsoid at low and moderate
Reynolds number. Finally, we show the dependence of the sedimentation dynamics of
ellipsoids and spheres on the size container.
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In chapter 2 we briefly present the fluid dynamical basis of the model and we explain
the basic ingredients of the model. In chapter 3 we show the basic phenomenology of
the falling of one oblate ellipsoid in each regime (steady-falling, periodic-oscillation and
chaotic motion) of the system and we compare our results with previous works. In chapter
4 we investigate the dynamics behind each regime. For the periodic and steady-falling
regime we find a similarity law derived from the invariance of the Reynolds and Froude
number. In the chaotic regime the trajectory of the oblate ellipsoid is characterized by a
high sensitivity to tiny variations in the initial orientation.

In chapter 5 a phase diagram is presented and compared to the results of Field et. al.
(1997). The transition from oscillatory to steady-falling occurs at Rec = 355, where
the transient time of oscillation in the steady-falling regime tends to infinity, beyond this
value the system is oscillatory. The transient time has a power law divergence atRec with
an exponent of 0.5. The transition from steady-falling to chaotic regime becomes abrupt,
for a certain value of the ellipsoid radii.

In chapter 6 we study the settling velocity and the average orientation of the ellipsoids as
a function of volume fraction. We see that the settling velocity shows a local maximum
at the intermediate densities unlike the spheres. The average orientation of the ellipsoids
also shows a similar local maximum and we observe that this local maximum disappears
as the Reynolds number is increased. Also, at small volume fractions, we observe that
the oblate ellipsoids exhibit an orientational clustering effect in alignment with gravity
accompanied by strong density fluctuations. The vertical and horizontal fluctuations of
the oblate ellipsoids are small compared to that of the spheres.

In chapter 7 we investigate the diffusive behavior of sedimenting ellipsoids at low and
moderate Reynolds number. We begin introducing the common theoretical tools used
to study the diffusive behavior of sedimenting particles. We also discuss the results for
ellipsoids in comparison to the equivalent spheres. Moreover, we study the behavior of the
sedimenting spheres and ellipsoids under variations of the kinematic viscosity, ellipsoid
density and aspect-ratio. Furthermore, we present the orientational diffusion behavior.
Additionally, we show the anomalous diffusion for ellipsoids.

Finally in chapter 8 we present the dynamical behavior of sedimenting ellipsoids and
spheres under variations of the container size. We study the influence on the spatial cor-
relations as the particulate volume fraction is changed, comparing the results for ellipsoids
and spheres. We also present the study of the velocity fluctuations as a function of the
volume fraction. After that, we investigate the divergence of the velocity fluctuations as
the container size is changed.
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Chapter 3

Model

This chapter lays out the general technique used for modeling the physics of one and
many sedimenting ellipsoids. We introduce the important quantities and terminologies
that are employed in the rest of the thesis. In the first section we present basic results of
fluid dynamics. Next, a description of fluid and particle coupling is presented. Finally,
the ellipsoid contact method for the ellipsoid-ellipsoid interaction is sketched.

3.1 Navier-Stokes equations

Fluid is defined as the state of matter that cannot sustain any shear stress. For an elastic
solid, the strain increases with time and attains a steady value where as, for a fluid it in-
creases indefinitely with time. In the mathematical description of a fluid flow, the flow
quantities such as velocity, pressure are assumed to vary continuously. In view of the
particle nature of matter, the validity of this assumption can be questioned. If the mean
free path of the molecules is comparable with the characteristic dimension of the mac-
roscopic flow, the continuous approximation breaks down. Standing by this continuous
hypothesis, one can derive the conservation of mass in the fluid flow by writing the global
equation for the mass of the fluid inside a fixed volume. Consider an arbitrary volume V ,
fixed in a reference frame used for describing the flow of fluid and bounded by a closed
surface S. At every instant of time, fluid enters and exits from this volume. The rate
of change of the mass, m contained within the volume is equal and opposite to the flux
leaving the boundary surface. Then we have

dm

dt
=

d

dt

∫∫∫

V

ρfdV = −
∫∫

S

ρfv · ndS (3.1)

where n is the outward unit vector normal to the surface, S of the boundary and V is the
volume. Since V is fixed we can interchange the order of integration and differentiation
with respect to time. Further, by applying the Gauss’s divergence theorem, we obtain:

∂ρf
∂t

+∇ · (ρfv) = 0 (3.2)
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Making an explicit differentiation of the term∇ · (ρfv) and grouping we get,

(
∂ρf
∂t

+ v · ∇(ρf )) + ρf∇ · (v) = 0 (3.3)

The first term of the above equation is known as the convective derivative corresponding
to the Lagrangian description and therefore we can rewrite 3.3 as

dρf
dt

+ ρf∇ · (v) = 0 (3.4)

which shows conservation of mass.

3.1.1 The general equation for the dynamics of the fluid

We solve Newton’s equation of motion

d

dt

∫∫∫

V

ρfvdτ =

∫∫∫

V

ρf fdτ +

∫∫

S

[σ] · ndΣ (3.5)

where dτ is the differential volume of fluid, dΣ is the surface element of the closed sur-
face, S that bounds V , and [σ] is the tensor of all the (pressure and viscosity) forces acting
on dΣ. The volume force f per unit mass of fluid could be the gravitational force.

The derivative d/dt is a Lagrangian derivative, evaluated in the reference frame moving
with the fluid, then the product ρfdτ is constant, as it moves along the local velocity field
of the flow. Applying Gauss divergence theorem to the second term on the right hand side

3.5

we can write equation 3.5 as

∫∫∫

V

ρf
dt

vdτ =

∫∫∫

V

ρf fdτ +

∫∫∫

V

∇ · [σ]dτ (3.6)

Taking the limit as volume tends to zero and dividing by the value of the volume element,
we obtain the local equation of motion for a particle of fluid:

ρf
dt

v = ρf f +∇ · [σ] (3.7)

[σ] can be written as [σ] = [σ
′
]− pδij .

Then we have

∇ · [σ])i = ∇ · [σ′ ]i −
∂pδij
∂xj

(3.8)
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Then equation 3.7 becomes

ρf
dv

dt
= ρf f −∇p+∇ · [σ′ ] (3.9)

This equation is applicable to any fluid. If we study the motion of a Newtonian fluid then
we can express σ′ as

∇ · [σ′ ] = µ
∂2vi
∂xi∂xj

+ (ξ +
µ

3
)
∂

∂xi

∂vl
∂xl

(3.10)

On substituting in eq. 3.6, we obtain the equation of motion for a compressible or incom-
pressible Newtonian fluid:

ρf
∂v

∂t
+ ρf (v · ∇)v = ρf f −∇p+ µ∇2v + (ξ +

µ

3
)∇(∇ · v) (3.11)

If the compressibility effects are negligible in the fluid flow then∇ · v = 0. The resulting
equation is the Navier-Stokes equations:

ρf
∂v

∂t
+ ρf (v · ∇)v = ρf f −∇p+ µ∇2v (3.12)

3.1.2 The dimensionless form of the Navier-Stokes equation

We can also write the Navier-Stokes equation, eq. 3.12, in terms of dimensionless para-
meters (that are labeled with ’primes’). Let L and U be the respective scaling factors
for the spatial characteristic length (particle diameter) and velocity of the sedimenting
particle. Then we have:

r
′

=
r

L
,v
′

=
v

U
(3.13)

and

t
′
=

t

L/U
, p
′
=

p− p′

1/2ρfU2
(3.14)

In defining p′ , the value of p0 has been subtracted, which is the hydrostatic pressure. After
dividing each side by ρfU2/L, the Navier-Stokes equation becomes:

∂v
′

∂t′
+ (v

′ · ∇′)v′ = −∇p′ + 1

Re
∇2v

′
+ Fr2(−g) (3.15)
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In the above equation, the inverse of the Reynolds numberRe = LUρf/µ associated with
the flow appears as a factor of the term ∇2v

′
. It is found that this number represents the

ratio of the non-linear convective term (v
′ · ∇′)v′ to the viscous term µ∇2v

′
. We define

Fr2 = gL/U2 as the Froude number. From the above equation, the velocity and pressure
fields (v

′
and p′) that satisfy the appropiate boundary conditions for a given problem, are

of the form:

v
′

= F(x
′
, y
′
, z
′
, t
′
, Re, Fr) (3.16)

p
′
= G(x

′
, y
′
, z
′
, t
′
, Re, Fr) (3.17)

where F and G are functions that are dependent on the flow. We make use of this in
Chapter 5.

3.2 Boundary conditions

The complete solution for the motion of a fluid velocity field, v(r, t) includes both, the in-
tegration of the equation of motion of the fluid particles and the specification of boundary
conditions; i.e., the value of the variables at all the boundaries of the fluid.

Boundary conditions vary depending on whether the boundary is solid or a fluid. In the
case of a solid wall being a boundary, the fact that the fluid cannot penetrate into the
solid requires that the component of the velocity normal to the boundary surface should
be equal for the fluid and the solid:

vsolid · n = vfluid · n (3.18)

3.3 The model

The general idea of our approach, proposed by Fogelson and Peskin (Fogelson (1988)),
is to work with a simple grid by resolving the fluid motion at all times and represent the
particles not as boundary conditions to the fluid, but by a volume force term or Lagrange
multipliers in the Navier-Stokes equations. This technique was developed in the work by
Schwarzer et. al. (Höfler and Schwarzer (2000)), Höfler (2000), Kuusela et. al. (Kuusela
et. al. (2001)), Wachmann, et al. (Wachmann and Schwarzer (1998)). This employs
a numerical solver for the dynamical simulation of three-dimensional rigid particles in a
Newtonian fluid, bounded by a rectangular container. The equation 3.12 is discretized on a
regular, marker-and-cell mesh to second order precision in space. For the time evolution,
we employ an operator-splitting-technique which is explicit and accurate to first order.
The suspending fluid is subjected to no-slip boundary conditions at the surface of the
particles. More details are presented in Kuusela et. al. (2001), Höfler and Schwarzer
(2000), Höfler (2000).
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Figure 3.1: The picture shows the distribution force between particle and the fluid

An oblate ellipsoid is represented by a rigid template connected to the fluid tracer
particles. This is done by the body force term, in the Navier-Stokes equation as a con-
straint on the fluid in order to describe the oblate ellipsoid. The force density f c, is chosen
to be springlike. We define this force density f c as:

f c = f c(xij + ε(xij)) = −kε(xij) (3.19)

where xij is the displacement field of the separation between the markers i and their
corresponding reference point j. The stiffness constant k, must be chosen large enough
so that | ε(xij) |� h, h being the size of the grid, holds for all iterations.

In general, the displacement field ε(xij) is defined as:

εi(xij
m) = xij

m − xij
r (3.20)

The vector, xij
m is the position of a fluid tracer whose motion is determined by the local

fluid velocity, i.e.,

˙xij
m = u(xmij ) (3.21)

The xij
r are the reference points associated with the template having the shape of the

physical particle:

xij
r = xi +Oi(t).rij (3.22)

Here xi is the center of mass of the template, Oi(t) is the rotation matrix that describes
the instantaneous orientation of the oblate ellipsoid and rij denote the initial positions
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of the reference points with respect to the center of mass. Rotation is described by the
quaternion formulation as in Allen and Tilsdesley (1987). The equations of motion of the
particle template are:

U̇ =
F

M
(3.23)

and

IΩ̇ = T (3.24)

whereM is the mass of the template particle; U and Ω are the linear and angular velocities
of the template particle, respectively; I is the moment of inertia of the oblate ellipsoid
with only three non-zero elements, I11, I22, I33 where I11 > I22 = I33 (Goldstein et. al.
(2002)) and T is the torque, (Kuusela et. al. (2001), Höfler and Schwarzer (2000)). The
boundary conditions near the container wall are: the normal velocity component of the
fluid is zero, the walls are assumed to be impenetrable, because of a no-slip condition
for the tangential component (Höfler and Schwarzer (2000), Wachmann and Schwarzer
(1998)). The interaction between the oblate ellipsoid and the walls is defined through a
contact force (Perram and Rasmussen (1996) and Kuusela et. al. (2001)), where the walls
are treated as a particle with infinite mass and infinite radius. A velocity-Verlet integrator
(Press et. al. (1992)) serves to integrate the equations of motion for the translation and a
Gear-predictor integrator (Allen and Tilsdesley (1987)) for the rotation of the template:

F = −Mgĵ + ρfV gĵ +
∑

i

f ci + fpi (3.25)

where ĵ is the unit vector along the vertical w.r.t the template’s center of mass rcm.

T =
∑

i

(xi − xcm)× f ci (3.26)

with respect to the template’s center of mass rcm.

The geometry of the oblate ellipsoid is characterized by ∆r, its aspect-ratio which is
defined as the ratio of the smallest radius, Rm to the largest radius, RM :

∆r =
Rm

RM

(3.27)

We define an equivalent sphere for the oblate ellipsoid, as the sphere that has the same
volume, with an equivalent radius:

Requi = 3

√

RmR2
M (3.28)
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The respective Stokes velocity:

vs =
2gR2

equi(
ρellip
ρf
− 1)

9ν
(3.29)

with ρellip, the ellipsoid density, ρf being the fluid density, ν the fluid kinematic viscosity
and g the gravity.

We define the unit Stokes time ts as the time needed for an isolated ellipsoid to goes over
a distance of one-ellipsoid larger radius, RM with a velocity vs, as:

ts =
RM

vs
(3.30)

3.4 Contact function

There is a considerable amount of literature in which models for soft potentials between
nonspherical particles (e.g., oblate ellipsoids) are employed in order to simulate the beha-
vior of simple molecules and liquid crystals. The interest in the potential arises because
it is necessary to determine the force, F p

i due to the ellipsoid-ellipsoid contacts.

The lubrication contact theory at low Reynolds number establishes that the presence of
fluid smoothly avoids the touching of ellipsoid-ellipsoid surfaces. In the algorithm these
forces are captured correctly only on scales larger than the grid resolution. Since we
are working with dilute systems at very low volume fraction, close encounters between
ellipsoidal surfaces are rare. With the aim of restricting significant particle overlapping
a repulsive force is introduced between the ellipsoids and is chosen to be proportional
to their overlap. If the oblate ellipsoids are non-overlapping, the force is zero and at
intermediate distances the hydrodynamic forces describing the existence of the fluid avoid
the contact between the particles (Kuusela et. al. 2001).

We consider two ellipsoids labeled A and B with semi-axes a1,b2,c3 and a1,b2,c3, respect-
ively. The rotational state of the ellipsoid is expressed by the sets, u1,u2,u3 and v1,v2,v3

of orthonormal unit vectors along the principal axis of the two ellipsoids. If the centers
are at ra and rb respectively, the intercenter vector is defined as:

R = ra − rb (3.31)

and the matrices A and B are:

A =
∑

k

a−2
k ukuT

k (3.32)

B =
∑

k

b−2
k vkvT

k (3.33)
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In the case where none of the semi-axes vanishes, these matrices have the inverses

A−1 =
∑

k

a2
kukuT

k (3.34)

B−1 =
∑

k

b2
kvkvT

k (3.35)

Perram and Wertheim have derived the object function, S(λ) (Perram and Rasmussen
1996) and (Kuusela et. al. 2001):

S(λ) = λ(1− λ)RT [(1− λ)A−1 + (λ)B−1]−1R (3.36)

S(λ) = λ(1− λ)RT [(1− λ)A−1 + (λ)B−1]−1R (3.37)

where λ is a parameter. S(λ) is non-negative for λ ∈ [0, 1]. Then the contact function
F (A,B) for the two ellipsoids is

F (A,B) = [max S(λ) | λε[0 1]] (3.38)

If F (A,B) < 1, the two ellipsoids overlap, if F (A,B) > 1, they do not and if F (A,B) =
1, the two ellipsoids are externally tangent.



Chapter 4

Phenomenology

In the preceding chapter we have presented the model of the sedimenting ellipsoids. In
this chapter we will apply this model and see the common physical phenomena associated
to the falling oblate ellipsoids. We will present the three phases that we found, and the
terminologies that will be used in the next chapters. We also compare this model with the
bidimensional one elaborated by Mahadevan. The velocity field for the fluid around the
falling ellipsoid is shown and compared with the work by Belmonte et. al. (1998). We
present in a qualitative way the presence of vortices in the fluid.

4.1 Trajectories of a falling oblate ellipsoid

We found three different kinds of motion in our simulations: steady-falling, side-to-side
or periodic-oscillation, known as flutter (Belmonte et. al. (1998)) and a chaotic motion,
which are shown in fig. 4.1. These kinds of motion are called patterns, regimes, or phases
in the literature and we shall use the term phase in this thesis.

In general, the number of phases depends on the specific model and the conditions of the
experimental setup. But it is possible to classify the phases into two large sets namely,
a) regular and smooth oscillations and b) irregular and chaotic oscillations. For example,
Tanabe and Kaneko (1994,95), identified five falling phases using a simplified bidimen-
sional model: three regular and two chaotic. In an experimental work with dropping disks,
Field et. al. (1997) reported four phases of which three were regular and one was chaotic
as shown in fig. 4.2. And lastly, Belmonte et. al. (1998), observed a regular oscillatory
and rotational phase in their experiments with thin strips.

In the majority of cases, the trajectories in our simulations depend strongly on the initial
conditions and the properties of the system (oblate’s initial orientation Θo, kinematic vis-
cosity ν and the oblate aspect-ratio ∆r). In order to reduce the parameter space in our
system, we fix ρfluid = 1 g

cm3 and ρoblate = 3.5 g
cm3 in our simulations.
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Figure 4.1: Typical falling trajectories obtained in our simulations. Figure I shows the
components Y (vertical)−X(horizontal) in the steady-falling regime, (a1), with initial
conditions θo = 26.60, ∆r = 0.25, ν = 0.033 and (a)ho = 240; (b1) periodic-oscillation
with initial conditions: ν = 0.025, ho = 240, ∆r = 0.133 and θ0 = 63.4o. (c1) chaotic
motion, with initial conditions ho = 240, ∆r = 0.25, ν = 0.033 and (a)θ0 = 26.6o.

Figure 4.2: Trajectories of falling disks, presented in the work by Belmonte et al, (1998).
The images were obtained from the side by using a video camara. The trajectory in
(a) corresponds to the steady-falling regime, (b), periodic-oscillating motion, (c) chaotic
motion and (d) the tumbling motion.
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Figure 4.3: (Left) Comparison between the vertical velocity and the spatial trajectory at
the same height. (Right) Decreasing amplitude of the vertical velocity. Initial conditions
of the system are θo = 26.60, ∆r = 0.25, ν = 0.033. Falling initial height ho = 228 in
the steady-falling regime.

4.2 Steady-falling oblate ellipsoid

When the ellipsoid begins to fall, the vertical velocity is characterized by a damped waver-
ing (transient oscillation) in time resembling the behavior of a damped oscillator (Gold-
stein et. al. (2002)). At a very long time, the vertical component of velocity becomes
constant. The amplitude of the vertical component of velocity decreases as the oblate
ellipsoid approaches the bottom of the container fig. 4.3. The vertical trajectory fig.
4.3 (right), also shows the damped wavering. This wavering in the trajectory curve is
composed of successive turning points. Each one of them, in turn, corresponds to points



38 4.4.2 Steady-falling oblate ellipsoid

Figure 4.4: Euler angles φ, θ and ψ used for the description of the oblate’s orientational
behavior.

where the rate of change in the vertical velocity is zero. This vanishing value in the rate
of change of the vertical velocity is evident in figure 4.3 (left), by the intersection of the
horizontal lines L2, ... L5, with vertical velocity. There is an interesting relation between
the number of turning points in the trajectory and the vertical velocity (see fig. 4.3, left).
For every two successive turning points in the vertical trajectory there are four turning
points in the vertical velocity. If a characteristic length is associated with the vertical
trajectory, then the characteristic length corresponding to the vertical velocity is reduced.
The horizontal components of the velocity follow a similar behavior as the vertical ones
and in general they have regular oscillations (see fig. 4.3, bottom).

The oblate’s orientation is described through the three rotational degrees of freedom,
called the Euler angles, fig. 4.4. We present the time evolution of the angle between
the oblate’s normal and the vertical direction. This we call the vertical orientation, fig.
4.5 (top). Θ = 0 implies that the oblate’s principal axis will be parallel to the container’s
bottom fig. 4.5 (bottom). At the beginning of the movement, there is a large angular
change of the oblate’s normal with the vertical, ∆Θ fig. 4.5 (bottom), which is charac-
terized by a large peak-to-peak amplitude Θp−p. in fig. 4.5 we illustrate the definition of
the peak-to-peak amplitude as the distance between successive turning points, which de-
creases as the oblate sinks. In the steady-falling regime, both the peak-to-peak amplitude,
Θp−p and the change ∆Θ = Θf −Θi , decays as the oblate approaches the bottom of the
container. The oblate tends to align its major axis along the vertical(Huang et. al. (1998))
having a very low resistance to its descent in the fluid acquiring the terminal velocity fig.
4.3 (top).
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4.3 Oscillatory oblate ellipsoid

In the oscillatory phase, the ellipsoid is characterized by a regular oscillation in all the
dynamical variables. We observe such a behavior in our simulations at small kinematic
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viscosity and small aspect-ratios. In fig. 4.6 we show the ellipsoid’s vertical trajectory,
velocity and orientation. This oscillatory phase has been studied experimentally by Bel-
monte et. al. (1998). This phase has a distinctive character that the period of oscillation
of the vertical velocity is half the period of oscillation of the vertical orientation. Our sim-
ulation agrees very well with the experiment which will be discussed in the fourth section
of chapter 4.

4.4 Chaotic oblate ellipsoid

We observe chaotic behavior for variations in the ellipsoid’s initial orientation as shown
in fig. 4.7. The fig shows the prominent change in the vertical and horizontal trajectories
as the initial orientation changes by the order of 10−2. In our simulations the chaotic
phase has been found for large aspect-ratios eq. 3.28 and for all Reynolds numbers. It
is important to point out that the sensitivity to small variations in the initial conditions of
falling bodies (in our case the ellipsoidal orientation Θo) has not been reported neither by
simulations, theory nor by experiments until now.

4.5 Comparison with Mahadevan´s model

As mentioned in chapter 1, there are several models (Tanabe and Kaneko (1994,95),Ma-
hadevan et. al. (1995) and Mahadevan (1996)) that have given good insight to the prob-



Phenomenology 41

−0.8 0.1 1 1.9

−25

−15

−5

Vertical trajectory

Horizontal position

V
e

rt
ic

a
l 
p

o
s
it
io

n

−1.2 0 1.2 2.4

−50

−35

−20

−5

Vertical trajectory

Horizontal position
V

e
rt

ic
a

l 
p

o
s
it
io

n

Figure 4.8: Steady-falling initial conditions ∆r = β = 0.25, α = 0.29, ν1 = 0.1,ν2 =
0.6,ν3 = 0.7, νi = 0.0, λ = 0.006, Θo = 26.6o. For the oscillatory regime: ∆r = β =
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lem. We use a simplified model formulated by Mahadevan (1996) that offers a good
qualitative comparison to our simulations in the oscillatory and steady-falling phase. The
absence of quantitative agreement has to be understood in terms of the difference between
the two models. Mahedevan describes the motion of a falling strip of paper in an infin-
ite sized cylinder, where the cylinder axis is assumed to be perpendicular to the vertical.
The system is assumed to be bidimensional with an incompressible fluid in a gravitational
field. The viscosity is taken into account in terms of the generalized Rayleigh dissipation
function. This work is a continuation of the method used by Kelvin and Kirchhoff and
applied also by Lamb (1932), whose the central approach consisted in ignoring the vor-
tices and assuming that the fluid has zero viscosity. The new equations become complex
since there are 20 newly ’added mass’ terms (Lamb (1932), Mahadevan (1996)). In our
case, we have a three dimensional model with boundaries as explained in chapter 2.

The equations of motion for this model are solved by using Runge-Kutta fourth order in-
tegrator and we use the initial conditions for which steady-falling and oscillatory regimes
are observed, fig. 4.1. The results are shown in fig. 4.8.

4.6 Vortex

The vortex production is an important part of the fluid dynamics that must be taken into
account in the formulation of a theory for falling bodies. Willmarth et. al. (1964) made
a pioneering work where dye-ladden disks were dropped into water and vortices were
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Figure 4.9: The right picture shows the vortex structure of the vertical and horizontal
components of the fluid velocity field (u, v) generated by the falling oblate with a diameter
3.2 in a container of 200 × 30 × 30 and Reynolds number, Re = 128, aspect-ratio,
∆r = 0.5. The left picture shows shedding vortices reported by Belmonte et. al., ref.[12],
for a falling strip.

clearly observed. In our simulations the falling ellipsoid generates shedding vortices in
the fluid along its trajectory as shown in figure 4.9 (right).It shows the fluid velocity field
around the oblate and the vortex is localized just in the region above the oblate and where
it experiences a large angular change, ∆Θ as shown in fig. 4.5 (top). The Reynolds
number calculated from the oblate’s diameter and terminal velocity, Re = 128. We point
out that the vortex is obtained also in the work by Belmonte et al (Belmonte et. al. (1998))
where a shedding vortex is created by the zigzag motion of the falling strip as shown in
the left of figure 4.9.

A systematic study of the boundary layer of the ellipsoid is not presented in the thesis and
it will remain as a future work.

4.7 Conclusions and Outlook

The motion of a single oblate ellipsoid settling in a fluid in a three dimensional con-
tainer has been studied. We found three basic regimes for the dynamics of the system
(steady-falling, oscillatory, and chaotic). We found that our results are in good qualitative
agreement with the simplified model proposed by (Mahadevan (1996)). The same initial
conditions have been used in our work in the study of oscillatory and stead-falling re-
gimes. More work has to be realized in future in order to understand the role of the fluid
pressure and velocity fields better.



Chapter 5

Phases

In this chapter we investigate the dynamics of the phases introduced in the previous
chapter. We explore each phase by changing different parameters in the system. We
introduce some important concepts and definitions which we will use in the next chapter.
In the first section, we discuss the steady falling phase when the initial height of the fall,
aspect ratio of the ellipsoid and the kinematic viscosity are changed. Next, we depict the
oscillatory phase. Furthermore, we study the effect on the dynamics due to changes in the
initial orientation of the ellipsoid. A comparison with the experiments by Belmonte et.
al. (1998) has been made and our simulations agree quite well with the experiments. Fi-
nally, we present the chaotic regime, which is highly sensitive to the change in the initial
orientation of the ellipsoid, as shown in the Lyapunov exponent.

5.1 Steady-Falling Phase.

5.1.1 Change in the initial falling height.

Figure 5.1(I), shows the trajectories for different initial falling heights by fixing all other
parameters. It is evident from the figure that there is no change in the peak-to-peak amp-
litude. For all the heights, the trajectories behave like that of a damped oscillator.

In fig. 5.1(II), we see that the ellipsoid approaches the same terminal velocity independent
of the falling height, at the same time. Also, the vertical velocity sharply converges to
zero as the oblate touches the bottom of the container which is independent of the falling
height.

Figure 5.1(III) shows the vertical orientational behaviour of the ellipsoid with the change
in the initial falling height. For all the trajectories shown in fig. 5.1(I), we see in fig.
5.1 (III) that the orientation of the ellipsoid offers minimum resistance against the fluid,
which is seen by the semi-major axis getting aligned with gravity.

43
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Figure 5.1: Initial conditions of the system. θo = 26.60, ∆r = 0.25, ν = 0.033. Each
Trajectory has different initial height (a)ho = 96, (b)ho = 76, (c)ho = 56. I) The spatial
trajectory in the vertical plane. II) Vertical velocity vs. time. III) Vertical orientation vs.
time.

5.1.2 Dependence on the kinematic viscosity.

In this section, we study the dynamics of the steady-falling ellipsoid as the kinematic vis-
cosity is changed. The ellipsoid starts its swinging motion with a given initial orientation,
θ0 = 26.6o. It glides downwards and to the side acquiring some amplitude, while the
kinematic viscosity ν acts, thereby, reducing the subsequent amplitudes of oscillation as
shown in fig. 5.2(I).

Fig. 5.2(I, II, III) show the trajectory, vertical and horizontal velocities and the vertical
orientation of the ellipsoid for different kinematic viscosities, respectively. Curve a with
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Figure 5.2: Initial conditions in the system. θo = 26.60, ho = 80, ∆r = 0.25. Each
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ν = 0.025, curve b with ν = 0.033 and curve c with ν = 0.1. We observe from all the
three plots that as viscosity increases, the attenuation becomes stronger thereby behaving
like a damped harmonic oscillator.

The attenuation in the amplitude of the vertical velocity with time and the time period
between two consecutive turning points are not very different from each other as the
viscosity changes. Also, we see that both the horizontal and vertical velocities converge
to the same value (eg. vx ≈ 0 and vy ≈ 0.6) for all the values of viscosity.

This strong attenuation for large viscosity is high in the horizontal component of the
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velocity as seen in the figure. This can be explained by the fact that the interaction between
the walls and the oblate is less when the fluid is less viscous Brenner (1961). This is also
true for large angular variations ∆Θ in fig. 5.2(II) c for small values of viscosity.

In fig. 5.2 (III) we see the orientational behaviour as the viscosity changes. The first peak-
to-peak amplitudes are nearly the same for all viscosities. For ν = 0.025 the subsequent
peak-to-peak amplitudes approach a constant value of Θp−p ∼ 15o while for higher vis-
cosities, the oscillations get damped and the ellipsoid reaches a constant orientation. We
also observe that the final orientation of the ellipsoid gets aligned with gravity.

Figure 5.3 explains that the amplitude of oscillation decays exponentially with time which
is revealed by the log linear plot. The dimensionless characteristic time, τ

ts
decays linearly

with the dimensionless kinematic viscosity, ν
νs

as shown in the inset of figure 5.3. The
solid line in the inset shows a linear fit with equation, τ

ts
= −0.03 ν

ν0
+ 5.5. The figure

clearly shows that viscosity plays the role as a damping factor that determines the decay
rate of the vertical velocity and position.
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Figure 5.4: Initial conditions of the system. Θo = 26.60, ho = 96, Lx × Ly × Lz =
10 × 100 × 10, ν = 0.033. Each trajectory has different aspect-ratio (a)∆r = 0, 29,
(b)∆r = 0, 22, (c)∆r = 0, 18. I) Trajectory for the vertical plane. II) Vertical velocity
vs. time. III) Vertical orientation vs. time.

5.1.3 Change in the ellipsoid aspect-ratio.

When the ellipsoid begins to fall, it gains a large amplitude of oscillation. The trajectory
(c), plotted in the figure 5.4 I, is for an ellipsoid with aspect ratio, ∆r=0.18. We see an
oscillatory trajectory characterized by a constant peak-to-peak amplitude of 3. As the
aspect ratio is increased to 0.22, i.e., trajectory (b) in the figure, shows a steady falling
behavior. If the aspect ratio is further increased, the trajectory shows irregular oscillations.
At the beginning of the fall, the ellipsoid with large aspect ratio (trajectory a), shows a
rapid damping amplitude in the first half of the trajectory but in the second half, doesn’t
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show any steady falling behavior, instead changes abruptly into a non-stationary state.

In figure 5.4(I), for all trajectories, the first amplitude, A0 decreases from 3.0 to 1.8 as the
aspect ratio, ∆r increases from 0.18 to 0.29.

As the aspect-ratio, ∆r is increased from 0.18 to 0.29, the oblate’s area becomes small
(minor axis of the oblate is fixed in our simulations) thereby providing less resistance to
the fluid. Therefore, the final vertical velocity decreases as the aspect-ratio is increased,
fig. 5.4II. Also as the aspect-ratio is increased the peak-to-peak amplitude of the vertical
velocity decreases.

The peak-to-peak amplitude for the vertical orientation Θp−p increases when the aspect-
ratio decreases or the oblate’s area increases. For ∆r = 0.29 the peak-to-peak amplitude
is Θp−p = 15o, fig. 5.4 (IIIa), and much smaller compared to Θp−p = 70o, fig. 5.4 (IIIc),
for ∆r = 0.18. In all cases the oblate at the end orients vertically fig. 5.4 (III). As the
ellipsoid aspect ratio, ∆r increases, the system transits from regular to irregular dynamics
which will be discussed in detail in chapter 5.

5.2 Periodic Phase.

We find periodic behavior for smaller kinematic viscosity (ν2 = 0.025→ Re = 480) and
smaller aspect-ratio (∆r = 0.133). The dynamics of the falling ellipsoid is governed by
inertial effects. In figure 5.5 (I), we show the transition from a quasi-periodic, or a long
steady-falling trajectory (ν1 = 0.100), to a periodic behavior fig. 5.5 (I,ν2 = 0.025), when
the kinematic viscosity is varied from ν1 = 0.1 to ν2 = 0.025. The trajectory presented
in fig. 5.5I, with kinematic viscosity ν2 = 0.025 has a wave length of 20.

The vertical velocity shown in fig. 5.5 (II), has the same transition from a long steady-
falling regime with a final average velocity of 3.0 to the periodic regime where the velocity
has a oscillation period of 3.3.

The vertical orientation shown in fig. 5.5 (III) has also the same transition from a long
steady-falling regime to periodic behavior with a period of 6.6 s, and the angular values
oscillate around Θ0 = 90o with angular peak-to-peak amplitude Θp−p = 60o.

The decreasing in the kinematic viscosity, for a much smaller aspect-ratio ∆r < 0.1, takes
the system from steady-falling to oscillatory phase. We will investigate this transition in
chapter 5.

5.2.1 Change in the initial orientation

In this section, we investigate the periodic phase with different initial orientations. The
corresponding trajectories are shown in fig. 5.6(I) for Θ0 = 26o and for Θ0 = 90o

and the peak-to-peak amplitudes are 2.3 and 0.4, respectively and show an oscillatory
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Figure 5.5: Trajectories generated for ν1 = 0.100, ν2 = 0.025. (I) Trajectory in vertical
and horizontal position. (II) Vertical orientation Θ vs time. (III) Vertical velocity vy vs
time. The initial conditions are ho = 96, ∆r = 0.133, θ0 = 63.4o.

behavior. The peak-to-peak amplitude of the oscillation in the trajectory vertical velocity
and orientation fig. 5.6 (I,II,III) decreases as the initial angle of orientation increases.

The final vertical velocity and orientation for all the three initial orientations is on an
average 0.6 and 85o, respectively. This means that the average limiting values of the
vertical velocity and orientation are not affected by the variation of the initial orientation
Θo.

We observe a large peak-to-peak amplitude of oscillation in the vertical velocity and ver-
tical orientation, equal to 1.0 and 70o, respectively, with an initial orientation, Θ0 = 26o

and it reduces as the oblate’s initial orientation, Θ0 tends to 90o.
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Figure 5.6: I) Trajectories for three initial orientations. (a) Θ0 = 26o (b) Θ0 = 63o (c)
Θ0 = 90o . II) The corresponding vertical velocities. III) The vertical orientations. Initial
conditions ho = 100, Lx × Lz = 10× 10, ∆r = 0.133, Re = 435.

5.2.2 Comparison with Belmonte’s results.

In this section, we compare our results with Belmonte’s results. Figure 5.7(a) (simulation)
shows the time dependence of the vertical orientation with ν2 = 0.025 and the value of
the peak-to-peak amplitude is Θo = 60o.

The vertical velocity as shown in fig. 5.7(b) (simulation) reaches its maximum value 3.6
as Θ approaches Θmax thereby, showing a minimum drag. The minimum vertical velocity
vy = 2.5 is achieved at Θmin ∼ 70o.

The butterfly shaped curve (fig. 5.7(b)) was also measured in the experimental work by
Belmonte et. al. (1998) in which the vertical orientation Θ oscillates with twice the period
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Figure 5.7: Comparison with the results of Belmonte et al. ref[12] for a falling strip in
the periodic regime, for the (a) Vertical orientation Θ vs time. (b) Vertical velocity vy vs
Θ. (c) Horizontal velocity vx vs Θ. The initial conditions are ho = 96, ∆r = 0.133,
ν1 = 0.025, θ0 = 63.4o.
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of vy.

The horizontal velocity oscillates around zero with constant period of oscillation and its
maximum value vx,max = 1.5 and the minimum vx,min = −1.5 at Θ ∼ 90o as seen in
fig. 5.7(c). When the horizontal velocity is zero the oblate takes its maximum (120o) and
minimum (60o) values in Θ with a non-zero vertical velocity vy = 3.2.

5.3 Chaotic regime.

5.3.1 Sensitivity to the change in the initial orientation

We now discusss the sensitivity of the dynamics to tiny changes in the initial orientation.
We have simulated three trajectories shown in fig. 4.8, which have slightly different
initial orientation. A tiny variation in the relative orientation (∆θo = 10−3) produces a
significant variation in the shape of all the curves. These changes are appreciated in the
lower part of the trajectories.

In order to get a better picture of sensitivity, we have incremented the fall height ho to 166.
The resulting four trajectories for four slightly different initial orientations in the vertical
plane are plotted in fig. 4.9 and we observe high sensitivity to the initial orientation. For
the four trajectories the relative angular variation is ∆θo = 10−3.
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Figure 5.9: Initial conditions ho = 166, ∆r = 0.25, ν = 0.033 and tiny variations of the
initial orientation (a)θ0 = 45.384o, (b)θo = 45.033o, (c)θo = 44.981o, (d)θo = 44.976o.

5.3.2 Power spectra, autocorrelation, Poincare section.

Due to the sensitivity to small changes in the initial orientation, we proceed to analyse the
system by the Fourier power spectrum time series of the horizontal coordinate x(t), x(t+
δt), x(t + 2 ∗ δt), ... and in our case δt = 0.053566. A broad spectrum of frecuencies
appears as shown in fig. 5.10II thereby, indicating a chaotic motion.

The autocorrelation function, for the same time series (fig. 5.10I), does not fall quickly to
zero rather decreases linearly with time and the points are not independent of each other.

In the figure 5.10III, we present slices or Poincaré sections (px, x), corresponding to the
trajectories in fig. 4.9a which are quite irregular. The orbits are quasi-periodic in the
sense that they pass repeatedly and irregularly through the whole domain. The orbits are
not closed and are not associated with a particular time period. The sensitivity to initial
conditions is clear in these four figures. A small change in the initial orientation results in
large changes in position and velocity.

5.3.3 Lyapunov number.

We now investigate quantitatively, this sensitivity by studying the increment in the Euc-
lidean distance, dp1p2 =

√

(x1 − x2)2 + (y1 − y2)2 between the curves presented in fig.
4.9 (a) and (c). Figure 4.11, shows that the distance between nearby points has an over-
all exponential time dependence d(t) ∼ exp(λt) and the fit gives an estimate for the
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Figure 5.10: Detection of chaos. I) Autocorrelation function for the time series of x(t)
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Lyapunov exponent λ = 0.052 ± 0.005. The positive Lyapunov exponent gives a clear
indication of Chaos.

5.4 Conclusions and Outlook

We have observed three phases of the dynamics of the system namely, steady-falling,
oscillatory(periodic), and chaotic regimes. The steady-falling and the periodic regime ex-
hibit a similar physical behavior as observed for flattened bodies by Field et. al. (1997),
Belmonte et. al. (1998). We have characterized the dynamics of the steady-falling regime
when the kinematic viscosity, dropping height, and oblate’s aspect-ratio are changed.
Some conclusions can be drawn from this part of the work.

(a) The spatial trajectories (x, y) are composed of oscillations that correspond to a damped
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harmonic motion. This regime is present for small values of I? ≈ 0.5 − 1, Re ≈ 100
and is shown in fig.5.1-5.4 There is no variation in the trajectories when we increase the
initial height. The viscosity, for a constant small aspect-ratio, determines the decay of the
position and the velocity of the ellipsoid as shown in fig. 5.2. When the aspect-ratio is
changed, the trajectories vary significantly (fig.5.4).

(b) The final vertical velocity, vy does not depend on the initial falling height and the
kinematic viscosity.

(c) The vertical orientation, Θ of the ellipsoid, undergoes a rotational motion untill its
major axis gets aligned with gravity. This tendency of exhibiting minimum resistance
against the fluid exists for all Reynolds numbers in the range Re ≈ 1− 500.

The periodic behavior in our simulations is found for Re ∼ 400 and small aspect ratios
(∆r ≤ 0.1). The vertical orientation, Θ oscillates with twice the period of oscillation
of the vertical velocity vy and at the same period of the horizontal velocity vx. This
periodic motion has also been observed by (Belmonte et. al. 1998) and this shows that
our simulations are essentially correct. In this regime the initial orientation determines
the value of the amplitude of oscillation in the spatial trajectory (x, y), velocity vy and
orientation Θ, and plays the same role as the phase angle in the oscillatory motion. For
Θo = 90o, the amplitudes of the above quantities approach a small value.

The chaotic behavior is present for larger aspect-ratios (∆r ≥ 0.3) and in the entire range
of Reynolds numbers used in the simulation. The separation between the spatial traject-
ories of the falling oblate ellipsoid diverges for small variations in the initial orientation
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Θo, and grows exponentially in time. The value found for the Lyapunov exponent is
λ = 0.052± 0.005.



Chapter 6

Similarity law and phase transitions

In the two preceding chapters we have seen the characteristic phenomenology of each
phase and the variation in each phase with respect to the physical parameters. In the first
section of this chapter, we discuss the similarity law that describes intrinsically the dy-
namics of the steady-falling and oscillatory regime. A phase diagram has been compared
to the results of Field et. al. (1997). Furthermore, we present a novel mechanism that ex-
plains the transition from the oscillatory to the steady-falling phase and then to the chaotic
phase.

6.1 Steady-Falling Oblate Ellipsoid: Similarity law.

It is well known for large velocities that the inertial drag is given by,

Fd = CρfV
2S (6.1)

where C is the form factor of the inertial drag, S is the cross-sectional area of the oblate
ellipsoid, ρf the fluid density and V the ellipsoid velocity. The weight of the oblate
ellipsoid is proportional to

Fi ≈ ρellR
2
MRmg (6.2)

with ρell being the ellipsoidal density, RM and Rm being the minor and major radius,
respectively. The terminal downward velocity is determined by the equilibrium between
these two forces and since both densities are fixed, the terminal downward velocity is
given by,

Fi = Fd =⇒ V ∼
√

gRm (6.3)

57
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Figure 6.1: Initial conditions in the system. θo = 26.60, ho = 86, ∆r = 0.15 and
kinematic viscosity ν = 0.1. In the figure (left) we plot the vertical velocity against time
in both systems L (solid line) and L′ (dotted line), and the superposition (right) performed
applying the inverse transformation of table 1.

We suppose that the characteristic period of oscillation depends on the lateral dimension
which in our simulations is Lhor(= 25) and independent of the vertical dimension (falling
height). Therefore, we assume that the period of oscillation should change as,

T ∗ ∼ Lhor
V

(6.4)

The dynamics of the system, in general, depends on the Reynolds and the Froude numbers
(Sec.2.1.2, Belmonte et. al. (1998)). We can rescale the parameters of a system of size L
to a system of size L′ through

System L → System L
′

Lhor → n ∗ Lhor
RM → n ∗RM

Rm → n ∗Rm

g → g
4∗n

Table 1. Transformations rules.
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The transformations presented in table 1 keep the Froude and Reynolds numbers con-
stant and the dynamics in the two systems become equivalent if the velocity components
change as in table 2. As a consequence of this transformation, the dynamics in system L

′

undergoes a change in the ellipsoid period, the vertical and horizontal components of the
velocity, as shown in table 2.

System L → System L
′

T ∗ → n ∗ T ∗
Vhor → Vhor

n

Vvert → Vvert
n

Table 2. Period and velocity applying the transformation rules in Table 1.

In fig. 6.1 we present the superposition of the vertical velocity by applying an inverse
transform in L′ with n=2. The three curves coincide quite well in agreement with the
scaling.

6.2 Periodic behavior: Similarity law.

Figure 6.2 shows the vertical velocity against time for the three systems L (solid line)
and L′ (n=2) and L′′ (n=4), respectively. We apply the transformation rules of table 1,
(n = 2), and as in the case of the steady falling regime, the dynamics for the systems L
and L′ , in the oscillatory regime, are related by a similarity law.

6.3 Phase Diagram.

In phase space, we define a dimensionless moment of inertia I∗ which is the ratio of
the moment of inertia of the oblate ellipsoid to that of its spherical equivalent at same
Reynolds number. We do a similar analysis for our results as done by Field et. al. (1997).
It is important to remark that the experiment was for a falling disk, with small aspect-ratio
and we expect the dynamics of the system to be close to that of an oblate ellipsoid.

The definitions of the dimensionless variables for our system are:

I? =
Ioblate
Isphere

=
5

4

rm
rM

ρellip
ρfluid

=
5

4

ρellip
ρfluid

∆r (6.5)

Re =
U(2rM)

ν
(6.6)

Figure 6.3 left , shows the results in the log-log scale. At low values of I∗ and small
Reynolds numbers (high kinematic viscosity), the motion is over-damped and the oblate
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Figure 6.2: Initial conditions in the system. θo = 26.60, ho = 86, ∆r = 0.15 and
kinematic viscosity ν = 0.029. In figure (left) we plot the vertical velocity against time
for systems L (solid line) and L′ (dotted line). The right figure shows the superposition
applying the inverse transformation of table 1.

ellipsoid drops to the bottom of the container without any oscillation and this is the be-
ginning of the steady falling regime. This is seen in the left hand bottom corner of the
diagram. When the Reynolds number is increased (Re ≥ 102) and I∗ is fixed, the traject-
ory is composed of successive oscillations that decrease in amplitude and eventually the
oblate reaches the bottom of the container. This is the steady falling regime.

For small values of I? ∼ ∆r < 1, we have a flat ellipsoid. For Reynolds number,
Re ≥ 400, the trajectory, velocity and the orientation are characterized by oscillations
that are periodic in time and space. This phase is called as the oscillatory regime. As
we increase I?, the object becomes a sphere that is slightly flattened at the poles and its
dynamics becomes sensitive to small variations in the initial orientation thereby exhibiting
a chaotic trajectory.
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Figure 6.3: The left picture shows the phase diagram of falling disks reported in Field
et. al. (1997). In the right plot we present the regimes of the phase space for the falling
oblate ellipsoid obtained in our simulations. In both pictures, the vertical axis is the
dimensionless moment of inertia I∗, and the horizontal axis Re is the Reynolds number.

If we compare our diagram with the experimental results obtained by Field et. al. (1997),
fig. 6.3 left we see that in both pictures, the distribution of phases is equivalent. The
differences in our diagram with that of Field’s are that they use disks and not oblate
ellipsoids and the tumbling regime is not present in our results. The coexistence of the
dynamical phases as explained above is independent of the initial orientation of the oblate
ellipsoid.

6.4 Transition from Steady-falling to Oscillatory phase

In fig. 6.4 we show the behavior of the characteristic time T ∗/T (Sec. 4.1.2), adimen-
sionalized using eq. 5.4, as we increase the Reynolds number Re, the characteristic time
goes to zero at Rec ≈ 355, in fig. 6.3. Beyond this point we find the oscillatory regime,
that behaves like a steady-falling regime with an infinite characteristic time.

Therefore, we can consider T ∗/T as the order parameter and the control parameter is the
Reynolds number for this transition. This transition is like a second order phase transition.
The inset exhibits the power-law behavior with a critical exponent ≈ 0.5. In the case of
the upper part of the transition, in fig. 6.3, the variation in the oblate ellipsoid aspect-ratio
implies the change from steady-falling to oscillatory regime, which is also supported in
fig. 5.4 where the trajectories vary from steady-falling to oscillatory as the aspect-ratio is
decreased.
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6.5 Transition from Steady-falling to chaotic phase.

The transition from steady-falling to chaotic regime is presented in fig 6.5. We use the
order parameter T/T ∗, i.e., the inverse of the one used before in order to describe the
transition, and the control parameter is the aspect-ratio ∆r. At ∆rc a finite jump in the
order parameter is observed. The characteristic time T/T ∗ disappears due to the non-
regular oscillations that are very sensitive to small variations in the initial orientation.
This transition seems to be therefore of first order.
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6.6 Conclusions and Outlook

For the steady-falling and oscillatory regime we obtain a similarity law expressed in tables
1 and 2, which is a direct consequence of the invariance of the Reynolds and Froude
numbers.

The construction of the phase diagram shows three well-defined dynamic regions as
shown by Field et. al. (1997). The difference in the above reference is that the chaotic
behavior is associated with the transition to chaos through intermittency which is not seen
in our simulations. The phase diagram is independent of the initial orientation.

Our simulations show that the transition from steady-falling to oscillatory and the trans-
ition from steady-falling to chaotic regime can be understood as second and first order
phase transition, respectively and the characteristic transient time being the order para-
meter.
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Chapter 7

Many Particles

In the preceding chapters we presented the physics behind the falling of one oblate el-
lipsoid. Now, in this chapter we are going to expose the dynamics of many sedimenting
ellipsoids in a fluid and under the action of gravity using the model given in chapter 2, at
small and moderate Reynolds numbers. We study the settling or sedimenting velocity as
function of the volume fraction. Also, we examine the vertical and horizontal fluctuations
of the ellipsoids compared to spheres. Additionally, we consider the behavior of pair cor-
relation functions as a function of the volume fraction. Next we present an orientational
study using the Euler angles, and the angular distributions and the orientational behavior
with volume fraction. The same study for the sedimenting velocity and orientation are
made as the Reynolds number increases (Re ≈ 7). Furthermore, we present the behavior
of the orientational order parameter with the volume fraction. Finally, a conclusion is
given.

7.1 Results

7.1.1 Sedimentation velocity for oblate ellipsoids

In fig. 7.1 we show the mean vertical sedimentation velocity v(t)‖ as a function of the
volume fraction ΦV , within a range of 0.01 to 0.21, for oblate ellipsoids and spheres
and then compare it to the phenomenological Richardson-Zaki law v(Φ)

v0
= (1 − ΦV )n

Richardson and Zaki (1954) with n = 5.5. The limit of ΦV→ 0 corresponds to the single
falling ellipsoid which we studied in the previous chapter. It is interesting to point out
that the sedimentation velocity of the ellipsoid, is small compared to that of the equivalent
sphere, eq. 2.28, which follows the phenomenological Richardson-Zaki law. This is not
the case for fibers (elongated ellipsoids), where it is found that the sedimentation velocity
has a maximum for smaller volume fraction which can exceed the terminal velocity of a
single fiber Kuusela et. al. (2003).

For oblate ellipsoids the mean vertical sedimentation velocity passes through a local max-
imum at ΦV ≈ 0.05. This maximum is quite interesting since it is not observed for
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Figure 7.1: Mean sedimentation velocity v(t)‖ for the oblate ellipsoid (dash-squared line)
and sphere (dash-dot line), as function of the volume fraction ΦV . The oblate ellipsoid
aspect-ratio is ∆r = 0.25, the radius of the equivalent sphere Requi = 0.97 and the
Reynolds number Re = 4 ∗ 10−2.

spheres. Similar non-monotonic sedimentation of non-spherical bodies (e. g. fibers) has
been reported experimentally by Herzhaft and Guazzelli (1999) and for prolate ellipsoids
in simulations by Kuusela et. al. (2001) due to an orientation parallel to gravity.

We choose the density of the fluid, the Stokes velocity and the larger radius of the ellipsoid
equal to unity in our system. In all cases the container has a height, L = 85 and a base
of 10 × 10, and the lattice constant, h = 0.3. We change ΦV adding ellipsoids and the
maximum number of ellipsoids in our simulations is of the order of several thousands.
The ratio between the density of the oblate ellipsoids and the fluid is 4.

In fig. 7.2 we present the parallel (‖) and perpendicular (⊥) components of the velocity
fluctuations with respect to gravity as a function of the volume fraction ΦV which are
defined as:

δv2
‖ =< v2

‖ > − < v‖ >
2 (7.1)

δv2
⊥ =< v2

⊥ > (7.2)

The angular brackets indicate averaging over the ellipsoids that have not reached the final
bottom position at the container. The averages were made over at least 50 realizations
starting with different random positions and orientations. In fig. 7.2 the vertical (parallel
to gravity) fluctuations for spheres and for ellipsoids are much larger than the respective
horizontal components. The fluctuations for ellipsoids decrease with the volume fraction.
For an equivalent system of spheres, the fluctuations show a maximum at intermediate
volume fractions (ΦV ≈ 0.07) (Kalthoff et. al. (1996) and Nicolai et. al. (1995)). In
all cases the fluctuations for the spheres are considerably larger than the fluctuations for
oblate ellipsoids.
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In fig. 7.3 we present the ratio, δv2
||/δv

2
⊥ for spheres and oblate ellipsoids. For spheres

the ratio shows a maximum around ΦV ≈ 0.07 (Kalthoff et. al. (1996) and Nicolai et.
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al. (1995)). For ellipsoids the ratio shows a slightly larger value than that of the spheres
for very small volume fractions and has an overall monotonic decrease with the volume
fraction.

We display the ratio of the vertical velocity fluctuations for spheres to that of the ellipsoids
in fig. 7.4. The quotient exhibits a linear behavior with the volume fraction following
approximately the relation (δv2

vert,sph/δv
2
vert,ellip) = 88 ∗ ΦV + 0.76. The inset shows the

horizontal case, also a linear behavior (δv2
hor,sph/δv

2
hor,ellip) = 33 ∗ ΦV + 3 is found.

In figure 7.5 we present the parallel, τ‖ and perpendicular, τ⊥ components of the autocor-
relation time for both ellipsoids and spheres. We use the definition of the correlation time
as:

τc =
1

C(0)

∫ ∞

0

C(t)dt (7.3)

Where C(t) is the particle velocity autocorrelation function which is defined as C(t) =<
δv(t)δv(0) >. Here δv(t) = v(t)− < v > is the local velocity fluctuation, where < v >
was taken as the mean (horizontal or vertical) velocity.

The vertical component shows an overall large value for the oblate ellipsoids compared
to that of the spheres. The horizontal components of the autocorrelation time between
oblate ellipsoids and spheres are indistinguishable.

In figure 7.5 the four curves decay as power laws given by τ ≈ Φ−α, We see that the
values of α for the parallel and perpendicular components for ellipsoids are α‖ ≈ 0.11
and α⊥ ≈ 0.16 respectively and that for the spheres are α‖ ≈ −0.10 and α⊥ ≈ 0.22
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respectively. These exponents are valid in the dilute limit.

We calculate the pair correlation function for different volume fractions ΦV and the results
are shown in fig. 7.6. The pair correlation function, for smaller volume fractions ΦV =
0.001, clearly shows large inhomogeneities in the sense that there is a “packing formation”
as seen in fig. 1.6, of oblate ellipsoids. These inhomogeneities disappear for large volume
fraction ΦV ≥ 0, 2. Furthermore, in the intermediate case for ΦV = 0.05 we can see in
the pair correlation function that the first peak is close to the origin, located at r = 0.6,
which is also present at ΦV = 0.2 but smaller.

This additional larger peak at ΦV = 0.05 could be related to the local maximum in the
sedimentation velocity fig. 7.1. By looking at the snapshots as the one shown in fig. 1.6
one sees that entire bundles of aligned particles seem to detach and move down faster
which might well be the origin of this peak. This kind of “bundle behavior” has also
been observed in the sedimentation of fibers, Herzhaft and Guazzelli (1999), where these
bundles settle faster than the individual fibers.

7.1.2 Orientational behavior

For the measurement of the orientation we use the Euler angles described in fig. 4.4. The
mean vertical orientation (MVO), θ , as a function of the volume fraction, is shown in
fig. 7.7. For smaller volume fraction the MVO shows more alignment with gravity and in
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Figure 7.6: Pair distribution functions for oblate ellipsoids for different volume fractions,
ΦV . The Reynolds number Re = 4 ∗ 10−2.
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the limit ΦV → 0 a closer alignment with gravity is observed which corresponds to the
orientational behavior for one oblate ellipsoid observed in section 4.1.2; 4.1.3.

We also see for the MVO an intermediate maximum, at ΦV ≈ 0.05, which could explain
the local vertical velocity maximum at the same volume fraction shown in fig. 7.1. This
intermediate maximum is not present for spheres. For larger values of the volume fraction,
ΦV > 0.08 the plot shows a monotonic decrease.

Figure 7.8 shows the orientational distribution function P (cos(θ)) for the vertical angle,
θ, for different volume fractions, ΦV . For smaller volume fractions, ΦV = 0.008 the
orientational distribution shows a maximum around cos(θ) ≈ 0.1 in agreement with fig.
7.7. The limiting case (ΦV → 0), i.e., one sedimenting oblate ellipsoid, studied by us in
section 4.1.2; 4.1.3, presents a vertical alignment with gravity (θ ≈ 90o), and in fig 7.7 we
can see a value of θ ≈ 85o.

As the volume fraction increases, the distributions flatten, and at ΦV = 0.05 the distri-
bution shows a moderate maximum around cos(θ) ≈ 0.45, corresponding to the similar
intermediate maximum in figures 7.7 and 7.1. We conclude that the vertical velocity is
influenced significatively by the orientational behavior along gravity, as it is well known
for other spheroid systems Kuusela et. al. (2003).

Figure 7.9 shows the orientational distribution function P (cos(φ)) for the angle φ, for
different volume fractions, ΦV . The orientation around the vertical slightly increases for
smaller volume fractions, and decreases with larger volume fractions. Similar behavior is
also found for the third Euler angle ψ. We conclude that the Euler angles φ and ψ are not
much influenced by the volume fraction.
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Figure 7.8: The distribution function P (cos(θ)) for the mean vertical orientation θ for
different volume fractions. The ellipsoid aspect-ratio is ∆r = 0.25, and the Reynolds
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Figure 7.9: The distribution function P (cos(φ)) for the mean vertical orientation φ for
oblate ellipsoids. The aspect-ratio is ∆r = 0.25, and the Reynolds numberRe = 4∗10−2.

7.1.3 Orientational changes

To quantify the orientation of the oblate ellipsoids we introduce the quantity Ψ =<
2cos(θ)−1 > that was also used in Kuusela et. al. (2003), Herzhaft and Guazzelli (1999)
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Figure 7.10: Order parameter Ψ as a function of the volume fraction, ΦV for three differ-
ent aspect-ratios ∆r = 0.4/2.4; 0.4/1.6; 0.4/0.8.

as orientational order parameter. It would give −1, 0 or +1 if all the oblate ellipsoids
were perpendicular to gravity, randomly oriented or aligned with gravity respectively.

Figure 7.10 shows the behavior of Ψ against ΦV , for smaller volume fractions, ΦV ≈
0.001 − 0.08 the order parameter takes negative values evidencing the alignment along
gravity and in agreement with the limit, ΦV → 0 (one oblate ellipsoid, section
4.1.2; 4.1.3). Approximately at ΦV ≈ 0.08 the order parameter is zero. For larger
ΦV ≥ 0.08 a positive order parameter implies the orientation is perpendicular to grav-
ity.

In the range of ΦV ≈ 0.001− 0.08, Ψ has a local minimum close to ΦV ≈ 0.05 where we
found a local maximum in fig. 7.7 and fig. 7.1. The simulations were repeated with two
other different aspects ratios ∆r = 0.4/0.8; 0.4/2.4 and we observed similar behavior. In
the case of one oblate ellipsoid (ΦV → 0) the order parameter Ψ has a value very close to
−1 as the ellipsoid aspect-ratio is increased.

7.1.4 Moderate Reynolds number

Figure 7.11 presents the mean vertical sedimentation velocity for oblate ellipsoids (�
squared line) and the equivalent spheres (◦ circle lined) as a function of the volume frac-
tion at moderate Reynolds number (Re ≈ 7). In our previous work this simulation method
has been used with success up to Re ≈ 10 Höfler and Schwarzer (2000) and Kuusela et.
al. (2003). The intermediate maximum for the ellipsoids is not observed in fig. 7.11 as
seen in fig. 7.1 at low Reynolds number.

A comparison with the phenomenological Richardson-Zaki law (continous line in fig
7.11) shows an exponent around nSph = 3.2 for spheres and nEllip = 4.0 for ellips-
oids. In both both cases, the data follow the Richardson-Zaki law rather closely. These
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Figure 7.11: Mean sedimentation velocity v(t)‖ for the oblate ellipsoid (dash-squared
line) and a sphere (dash-circle line), as function of the volume fraction, ΦV . The oblate
ellipsoid aspect-ratio is ∆r = 0.4/1.5, the equivalent sphere has Requi = 0.97 and the
Reynolds number Re ≈ 7.

exponents (nSph = 3.2 and nEllip = 4.0) are between the low particle Reynolds number
limit (n ≈ 4.5) and a turbulent particle system (n ≈ 2.5), Richardson and Zaki (1954).

Figure 7.12 (top) presents the vertical distribution function, P (cos(θ)) at moderate Reyn-
olds number. For all volume fractions, P (cos(θ)) presents a larger distribution around
cos(θ) ≈ 0 (θ ≈ 90o), which tends to be much flatter (cos(θ) ≥ 0.15) than in fig. 7.8. For
the other angular variables, φ and ψ, the distributions show a peak around cos(φ) ≈ 0,
cos(ψ) ≈ 0, and for larger volume fractions, they follow a constant behavior.

The bottom of fig. 7.12 shows the behavior of the orientational parameter Ψ at moderate
Reynolds number. For one oblate ellipsoid (ΦV → 0), the value of Ψ is closer to −1
(vertical alignment), as in the case of low Reynolds number fig. 7.9. The intermediate
maximum, for ∆r = 0.4/1.5, is not observed in figure 7.10, and the point at which the
orientational parameter Ψ vanishes, is shifted slightly to the right (ΦV ≈ 0.1) fig. 7.12
(bottom). This shift in Ψ is also seen in the case of fibers, when the Reynolds number
increases, by a factor of 5, Kuusela et. al. (2003).

7.2 Outlook and Conclusions

We have simulated the sedimentation of oblate ellipsoids at small volume fraction (ΦV ≤
0.2) and small Reynolds number (Re ≈ 10−2). We have found that at intermediate volume
fraction the settling velocity exhibits a local maximum which to our knowledge has never
been reported in the literature. It would be desirable to experimentally verify this max-
imum.
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Figure 7.12: The top picture shows the distribution function, P (cos(θ)) of the mean ver-
tical orientation at different volume fraction ΦV . The bottom picture shows how the
order parameter behaves with the volume fraction ΦV . The oblate ellipsoid aspect-ratio is
∆r = 0.4/1.5, the equivalent sphere has Requi = 0.97 and the Reynolds number Re ≈ 7.

This local maximum in the velocity can be related to the non monotonic behavior of the
vertical orientation of the oblate ellipsoids along gravity, which is shown in figures 7.7,
and 7.8, and can be explained by the “cluster” formation shown in fig. 2.7, which is also
found in fiber-like suspensions Herzhaft and Guazzelli (1999).

At low Reynolds number the orientational order parameter Ψ vanishes around ΦV ≈ 0.08
fig. 7.7. As ΦV decreases the orientational alignment with gravity increases as shown in
fig. 7.7 and 7.12 (bottom), as for low and moderate Reynolds number and in the limit
ΦV → 0 a single ellipsoid aligns with gravity, which is a distinctive feature of the steady-
state regime for a single oblate ellipsoid as reported in sections 4.1.2, 4.1.3 and Galdi et.
al. (2001).
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We also present data at moderate Reynolds number (Re ≈ 7) for the sedimentation ve-
locity of oblate ellipsoids as the volume fraction ΦV is increased. As in the case of low
Reynolds number the ellipsoids have a smaller sedimentation velocity than the equivalent
spheres, fig. 7.1 and 7.11. The data for ellipsoids and spheres follow the Richardson-
Zaki law Richardson and Zaki (1954) with exponents (nEllip ≈ 3.2,Re = 10−2) and
(nSph ≈ 4.0,Re = 7) respectively. The P (cos(θ)) distribution presents a larger alignment
of ellipsoids with gravity compared to those with small Reynolds number. The vanishing
of the order parameter is slightly shifted (ΦV ≈ 0.1) to the right as the Reynolds number
increases (see fig 7.12, bottom). The alignment with gravity is present for small and mod-
erate Reynolds number as ΦV → 0, as shown in fig. 7.12 (top) and fig. 7.8, which is in
agreement with the orientational behavior of a single ellipsoid (section 4.1.2; 4.1.3). All
the simulations in this work are located in the steady-falling regime, chapters 3 and 4, for
a single oblate ellipsoid.



Chapter 8

Diffusion

This chapter is dedicated to the investigation of the diffusive behavior of sedimenting el-
lipsoids at low and moderate Reynolds numbers. We will begin with an introduction the
common theoretical tools used to study the diffusive behavior of sedimenting particles.
We discuss the results for ellipsoids in comparison to the equivalent spheres. Also, we
explore the behavior of the system under variations of the dynamical viscosity, ellipsoid
density and aspect-ratio. Furthermore, we give the orientational diffusion behavior. Addi-
tionally, we present the anomalous diffusion for oblate ellipsoids. Lastly, we summarize.

8.1 Introduction

As was explained in chapter 1, in a sedimenting suspension there are large changes in
the concentration, that can either be temporal or spatial. This hydrodynamic-like diffu-
sion dominates over the thermal Brownian diffusion, in the system considered here. The
dimensionless quantity that accounts for the relative importance of this hydrodynamic di-
fussion process over the thermal diffusion is the Péclet number Pe. When Pe is much
larger than 1, Brownian motion can be neglected Ramaswamy (2001), Kuusela and Ala-
Nissila (2001). For smaller values of Pe << 1, in turn, the hydrodynamic diffusion is not
relevant.

In a regime where (Pe >> 1 and Re << 1), sedimenting spheres undergo long-ranged
hydrodynamic fluctuations (see chapter 1, sec. 1.6). They cause in the long time limit,
that the fluctuating particle motion becomes diffusive, Nicolai et. al. (1995). There-
fore, we can determine the long time behavior of this random-like particle motions, by
examining how the particle velocity becomes uncorrelated. This examination is realized
by computing the particle velocity fluctuation autocorrelation function C(t),(see Kuusela
and Ala-Nissila (2001) and chapter 6, sec. 6.1). This quantity was defined in sec. 6.1, as
follows:

C(t) =< ∆v(t)∆v(0) > (8.1)

77
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where the average is taken over all the particles in motion. Here δv(t) = v(t)− < v >
is the local velocity fluctuation, whereas C(t) is used to define the hydrodynamic diffu-
sion coefficient D, in analogy with the Brownian tracer diffusion coefficient of Brownian
particles immersed in a fluid (Kuusela and Ala-Nissila (2001)). D is defined by the Green-
Kubo formula as:

D =
1

d

∫ ∞

0

C(t)dt (8.2)

where d is the spatial dimension, and for the discrete case as follows:

D =
1

d
[
1

2
C(0) +

∞
∑

n=1

C(n− τ)] (8.3)

where τ is the time step.

Another method to investigate the long time behavior of a sedimenting particles, is to com-
pute the mean square particle displacement (hereafter M.S.D.), Kalthoff et. al. (1996),
i.e. the second moment of the particle displacement, Herzhaft and Guazzelli (1999). It is
calculated as follows:

< x2(t) >:=< [x(t)− (x(0)+ < v > t)]2 > (8.4)

here the brackets indicate an average over the ensemble of those particles that are above
the final bottom position in the container, and < v > is their mean velocity taken of all
particles with v 6= 0. A simple diffusive behavior is characterized by a linear growth with
time. The self-diffusivity D, (Nicolai et. al. (1995)), can be determined from the slope of
this line.

A large anosotropy between the M.S.D. for the parallel (‖) and perpendicular (⊥) com-
ponents to gravity, has been reported by other authors (Nicolai et. al. (1995); Ladd
(1996); Kalthoff et. al. (1996)), who found D‖ >> D⊥. However, this anisotropy be-
comes less important for large Reynolds numbers and volume fractions (Kalthoff et. al.
(1996), Nicolai et. al. (1995), Kuusela and Ala-Nissila (2001)).

Both, D‖ and D⊥ are obtained by examining long time behavior of the particle displace-
ment by the following relations:

< x(t)⊥ >
2≡ 2D⊥t ; < x(t)‖ >

2≡ 2D‖t . (8.5)

Despite the clear evidence for normal diffusive behavior found in the current research,
some experiments, (Rouyer et. al. (1999)) and simulations (Miguel and Pastor-Satorras
(2001)), had shown that the velocities and trajectories of non-Brownian particles in a
quasi bidimensional fluidized bed, exhibit a diffusive behavior along the perpendicular
component and a superdiffusive behavior parallel to gravity. This latter superdiffusive
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Figure 8.1: (a) A bidimensional velocity map showing faster and slower ellipsoids. (b)
Typical Brownian-like trajectories in ellipsoids sedimentation in the laboratory reference
frame. The Reynolds number is 2× 10−2 and the ellipsoid aspect-ratio is ∆r = 0.4/1.6.

behavior is also known as, “anomalous diffusion”, and defined as the growth of the second
order momentum by:

< x2(t) >≡ tα (8.6)

with α 6= 1.

Furthermore, we could extend equation 8.5 to the angular case, and define the M.S.D. as:

< θ2(t) >≡ 2Dθt (8.7)

With regard to sedimenting particles with non-spherical shape, apart, from a few excep-
tions (e.g. Kuusela et. al. (2001) and chapters 4, 5), very little is known about the diffusive
behavior, be it from simulation, experiment or theory. Non-spherical particles, with ro-
tational symmetry around an axis (oblate or prolate ellipsoids), gives rise to rotational
degrees of freedom, and generally plays an important role in the sedimentation, (Kuusela
et. al. (2003) and chapter 6).
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Figure 8.2: Figure (a) shows the parallel (‖) and perpendicular (⊥) components of M.S.D.
for sedimenting ellipsoids. Picture (b) shows the slope behavior in time, of the curves in
picture (a), in a log-log scale. The thick dotted lines in between, present the growth in the
ballistic and non-diffusive regimes. The lower pictures, (c) and (d) show the comparison
between ellipsoids and spheres with regard to the perpendicular ⊥ (c) and parallel ‖ (d)
components of the M.S.D.. The sphere radius is Requi = 1.01. The Reynolds number is
2 × 10−2 and the aspect-ratio ∆r = 0.4/1.6. The number of ellipsoids is of the order of
103.

8.2 Results

In figure 8.1 (a), we present bidimensional snapshot of the velocity map for sedimenting
ellipsoids. The map is characterized by complex and highly fluctuating velocity vectors



Diffusion 81

pointing in a wide range of directions, with very different magnitudes. The snapshot
reflects the complexity of the swirls and channels that are very similar to those reported
experimentally in Segré et al. (2001) and in simulations by Rouyer et. al. (1999). The
volume fraction of the particles in the system is ΦV = 0.2.

In figure 8.1 (b) we present a typical ellipsoid trajectories in a container scaled in units
of the mayor radii RM . The trajectories are rather complicated and exhibit many of the
characteristics observed by Nicolai et. al. (1995) and Peysson and Guazzelli (1999), such
as the presence of loops and a strong anisotropy between the parallel and perpendicular
fluctuations in the ellipsoid trajectory.

Pictures (a) and (b) in figure 8.2 show the M.S.D. for sedimenting ellipsoids. The graphics
exhibit the large anisotropy between the parallel (‖) and perpendicular (⊥) components.
In general, both components present an initial so called ballistic regime, as depicted in
figure 8.2 (b), in a log-log scale, by a parallel thick dotted-line in between of the curves.
This ballistic regime is proportional to ≈ t2. Then, we found a non-diffusive behavior
which is quite interesting and will be discussed in section 5 of this chapter.

Another aspect of the long-time behavior is that, as a consequence of the finite size
container, the ellipsoids reach a saturation regime. This is characterized by fluctuations
around the final position of each ellipsoid in the container bottom (Kalthoff et. al. (1996)).
The graphics are normalized in both components according to 〈x2

∗〉 ≡ 〈x2/R2
equ〉 and the

time in units of ts, (see eq. 2.30).

The comparison between the M.S.D. for ellipsoids and that for spheres is given in figure
8.2, in the ⊥ (c) and ‖ (d) components. In our simulations, we found at lower Reynolds
number (Re ≈ 10−2) and for flat ellipsoids, that the components for ellipsoids are much
larger than those for spheres. This phenomenon can be explained by the presence of a
much larger net displacement for ellipsoids than spheres, as can be seen in figure 8.1.

It is interesting to point out, that the perpendicular component of the M.S.D., fig. 8.2
(c), for a very flat ellipsoid, experiences a peak which then decreases abruptly, before the
saturation regime is reached. This behavior is completely new and can only be associated
to the particle shape, since the spheres only echibit a monotonic increment, (see fig. 8.2
(c)). This large peak in the ellipsoid perpendicular component, is present in all simulations
with a fixed aspect-ratio, but variable viscosity or particle density. .

8.2.1 Change in density, viscosity and aspect-ratio

The slope for each one of the curves in fig. 8.3 (a) and (b) becomes large as the ellipsoid
density is increased, keeping constant the rest of parameters in the system, showing the
increase of the inertia in ellipsoids and spheres. For ellipsoids, the slope in both com-
ponents increases much faster than for spheres. For the parallel component to gravity, the
denser ellipsoids diffuse much faster, quickly reaching the saturation regime. This can
be seen by comparing the curves for ρ1 = 5.0 and ρ4 = 11.0 in figure 8.3 (a). In figure
8.3 (c) and (d) we present the M.S.D. behavior as the kinematical viscosity is changed.
For all of the cases, the increament in the viscosity decreases the slope of each on the
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Figure 8.3: Figures a) show the parallel ‖ component of the M.S.D. for ellipsoids and
equivalent spheres b), as the particle density changes. Figures c) and d) present the vari-
ation for the dynamical viscosity and figures e) and f) show the change in the oblate
aspect-ratio and the equivalent radius, respectively. The Reynolds number is Re ≈ 10−2,
the spheres radius is Requi = 1.01 and the ellipsoid aspect-ratio ∆r = 0.4/1.6.



Diffusion 83

30 60 90 120 150 180 210 240
0

3

6

9

12

15

time t(ts)

<
x2 *

>

0.4/1.6
0.8/1.6
1.2/1.6
1.6/1.6

Figure 8.4: Behavior of the perpendicular component of M.S.D. for ellipsoids as the
aspect-ratio changes (∆r = 0.4/1.6,∆r = 0.8/1.6 ∆r = 1.2/1.6 and ∆r = 1.6/1.6).
The Reynolds number is Re ≈ 10−2.

curves In figure 8.3 (c) and (d). The increase of the viscosity reduces the M.S.D. in the
suspension. Also, as for particle density variations, the changes in the viscosity lead, for
lower Reynolds numbers, to a directly proportional increment in the M.S.D..

The peaks in the ellipsoid perpendicular component (see fig. 8.4), is present in all of the
simulations where the kinematical viscosity or particle density are changed, with a fixed
aspect-ratio and lower Reynolds number (Re ≈ 10−2).

Next, we present the M.S.D. for different ellipsoid aspect-ratios ∆r and equivalent sphere
radii Req. The variation in the aspect-ratio goes from a flat ellipsoid up to a sphere, while
the volume fraction Φ ≈ 0.2 is kept constant. The response under variations of the oblate
aspect-ratio, presents a linear increase in the slope of each curve, in both ellipsoids and
spheres, as is shown in figures 7.3 (e) and (f), respectively.

The slope growing in the M.S.D. as the aspect-ratio increases, becoming one, shows that
the spheres have a much larger M.S.D. than the ellipsoids. The ellipsoids, on the other
hand, have more resistance to sediment. This characteristic is present in both components
(see figure 8.3 (e) and 8.4). As for the parallel component fig. 8.3 (e) and (f), spheres and
ellipsoids present the same monotonic behavior before they reach the saturation regime.

In figure 8.4, we can see how the perpendicular component of the M.S.D. approaches the
saturation regime, as the aspect-ratio grows. The peak is shifted to the left and becomes
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Figure 8.5: Angular M.S.D. for the Euler angles θ-fig. (a), φ-fig. (b) and ψ-fig. (c) under
variations of ellipsoid density, ρ1 = 5, 7, 9, 11. The Reynolds number is 2× 10−2 and the
ellipsoid aspect-ratio is ∆r = 0.4/1.6.

much larger and sharper as the aspect-ratio becomes 1 (the sphere).

8.2.2 Orientational diffusion

Figure 8.5 shows the angular M.S.D., < ∆Θ >2 for the three Euler angles (see figure 4.4
in chapter 3), under variations of the ellipsoid density, which correspond to the transla-
tional behavior shown in figure 8.3 (a).

It is interesting to note, that the angular M.S.D. follows a behavior which is similar to
the corresponding translational degrees of freedom, in the sense that the angular M.S.D.
exhibits at the beginning of the sedimentation a faster growth and then approaches to
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the saturation regime. This approach to saturation is quite faster (see fig. 8.5), as it is
compared to the translational components (see fig. 8.3 (a)), and is present for the three
Euler angles.

As the oblate density is increased, the angular M.S.D. for each one of the Euler angles
slightly increases. The relevant variation in the angular M.S.D. is present in the upward
shifting in the final value of the saturation regime (see fig. 8.5). We can observe (approx-
imately), that equal variations in ellipsoid density cause equal upward increments in the
saturation value.

It is also interesting to observe, that the decrease of the kinematical viscosity gives rise to
the same kind of upward shifting as described above, but with a smaller shifting value of
the final saturation (see fig. 8.6).

Increasing the importance of inertial forces by using a higher mass of the ellipsoid or
reducing the kinematical viscosity, increases the saturation state in the Euler angles.

8.2.3 Non-diffusive dynamical behavior

We now study the behavior of the time derivative of the M.S.D., defined as dR(t)/dt with
R(t) =< x2(t) >, eq. (8.4). This type of characterization of the diffusive behavior in
sedimentation is also used in the work of Rouyer et. al. (1999) and Miguel and Pastor-
Satorras (2001). In a case where dR/dt ≡ constant, we have a simple diffusive behavior,
whose constant value is equivalent to one half of the diffusion constant, (see eq. 8.5). If we
find non-diffusive behavior, then dR/dt 6= cte and the temporal behavior of the M.S.D. is
given by eq. (8.6).

Change in the particle density

Figure 8.7 (a) presents the perpendicular component (⊥), if the sphere density is changed.
For ρ1 = 5.0 the evolution of the curve in time, exhibits the above regimes, ballistic,
simple diffusive and saturation. An interesting aspect here consists in the fact that when
the particle density ρ is increased (ρ = 5.0 → ρ = 11.0) the simple diffusive regime is
much shorter in time. Basically, the increment of the inertial forces, reduces the time of
the simple diffusive regime. This general behavior for spheres is in agreement with the
results presented by (Rouyer et. al. 1999) and (Miguel and Pastor-Satorras 2001).

For the parallel component (‖) figure 8.7 (b), all the curves exhibit a ballistic regime.
After that, a non-diffusive behavior characterized by tα, with an exponent α = 1.4 can be
observed (Rouyer et. al. (1999)). Like the perpendicular component, the length in time
of the parallel component is reduced for large sphere densities, as shown in figure 8.7 (b).

In figure 8.8 (a) and (b) we can observe the behavior of the time derivative of the M.S.D.
for ellipsoids. For the perpendicular and parallel components (see figure 8.8) we first find
a ballistic regime and then a non-diffusive regime, which up to now is not known in the
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Figure 8.6: Angular M.S.D. for the Euler angles under variations in the kinematical vis-
cosity. The Reynolds number is 2× 10−2 and the ellipsoid aspect-ratio is ∆r = 0.4/1.6.

literature. The exponents in both components are equal αparallel = 2.5, αperp = 2.5 and
larger than the slope of the ballistic regime.

In contrast to the spheres, the density variation does not modify significatively the non-
diffusive regime’s characteristic time. This kind of behavior for the diffusion of nonspher-
ical particles was never before reported up to now, and the experimental verification will
be necessary. From the plot, we can also extract thatDvert � Dhor, therefore the diffusive
regime is highly anisotropic.

For both ellipsoids and spheres, the M.S.D. in both components are displaced upward as
the particle density grows. As expected at low Reynolds number, an increment in the
inertial forces, produces a large growth of the M.S.D..
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Figure 8.7: The figures show the perpendicular⊥ (a) and parallel ‖ (b) components of the
time derivative of the M.S.D. for spheres as the density is changed. The Reynolds number
is 2 × 10−2, the spheres radius Requi = 1.01. The solid and dashed lines represent the
diffusive and non-diffusive behavior, respectively.
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the time derivative of the M.S.D. for ellipsoids as the density is changed. The Reynolds
number is 2×10−2, the ellipsoid aspect-ratio is ∆r = 0.4/1.6. The solid and dashed lines
represent, the diffusive and the non-diffusive behavior, respectively.
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Figure 8.9: The figures show the parallel ‖ (b) and perpendicular ⊥ (d) components of
the time derivative of the M.S.D. for spheres as the kinematical viscosity is changed. The
Reynolds number is 2× 10−2, the spheres radius Requi = 1.01.

Change in the kinematical viscosity

Next we study the behavior of the system under changes in the kinematical viscosity. Fig-
ure 8.9 (a) and (b) shows the M.S.D. for spheres in the perpendicular (⊥) and parallel (||)
components. Figure 8.9 (a) shows well defined ballistic and simple diffusive regimes. The
plots show a slight increment in time for the simple diffusive regime as the kinematical
viscosity decreases. Also, there is a clear upward shifting as the kinematical viscosity de-
creases. The spheres increase their M.S.D. as the kinematical viscosity becomes smaller.

In the case of the parallel (||) component 8.9 (b), we found a ballistic and non-diffusive
regimes. The exponent α for the non-diffusive behavior is the same in all the curves and
α = 1.4 (Rouyer et. al. (1999)). Such as for the perpendicular (⊥) component, the
upward shifting is also present for the parallel (‖) component.

The ellipsoids system is studied under the same kinematical viscosity variations. Figure
8.10 shows the behavior of the perpendicular (⊥) (a) and parallel (‖) (b) components of
the M.S.D..

The perpendicular component (see figure 8.10 (a)) exhibits ballistic and non-diffusive
behavior. The curves, as in the case of spheres, show an upward shifting as the kinemat-
ical viscosity decreases. As the viscosity decreases the exponent α for the non-diffusive
regime becomes gradually much smaller: ν = 7.7→ α = 2.4 to ν = 5.0→ α = 2.1.

For the parallel component (‖), the difference between the ballistic and the non-diffusive
behavior is not pronounced, and for the lower kinematical viscosity ν = 5.0 → α = 2.0
the non-diffusive behavior in the system practically disappears.
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Figure 8.10: The figures show the parallel ‖ (a) and perpendicular ⊥ (c) components of
the time derivative of the M.S.D. for ellipsoids as the kinematical viscosity is changed.
The Reynolds number is 2× 10−2, the ellipsoid aspect-ratio is ∆r = 0.4/1.6.
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Figure 8.11: The figures show the perpendicular ⊥ (a) and parallel ‖ (b) components of
the time derivative of the M.S.D. for spheres as the sphere radius changes. The Reynolds
number is 2× 10−2.

Change in the ellipsoid aspect-ratio and sphere radius

In the case of variations of the equivalent radii, eq. (3.28), figure 8.11 shows the behavior
of the parallel (‖) and perpendicular (⊥) components. As the equivalent radii decreases,
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Figure 8.12: The figures show the perpendicular ⊥ (a) and parallel ‖ components of the
time derivative of the M.S.D. for ellipsoids as the ellipsoid aspect-ratio changes. The
Reynolds number is 2× 10−2.

we can see in figure 8.11 (a) the same kind of upward shifting in the curves, as viscosity
or density, is changed in the system. As the sphere radius is increased the presence of the
simple diffusive regime is increased during a very long time.

For the perpendicular (⊥) component, all the curves look quite similar to each other, with
a slight difference being that for spheres with Req = 1.6 the approach to the saturation
regime is much faster than in the case ofReq = 1.0. The exponent α for this non-diffusive
regime is α = 1.4.

In figure 8.12 (a) and (b) we present the M.S.D. behavior for ellipsoids as the aspect-
ratio is changed. Here we want to draw attention to an interesting change from a non-
diffusive regime to simple diffusive behavior that can be observed in the perpendicular
(⊥) component (see figure 8.12 (a)) as the ellipsoid aspect-ratio tends to one (∆r → 1,
sphere). The slope of the curve in the non-diffusive part changes from (∆r = 0.25, α =
2.2) to (∆r = 1, α ≈ 0).

Furthermore, in the parallel component (see figure 8.12 (b)), we can see the change in the
slope that characterizes the variation from non-diffusive behavior for ellipsoids to the non-
diffusive behavior for spheres (∆r → 1). The exponents goes from (∆r = 0.25, α = 2.3)
oblate ellipsoids to (∆r = 1, α = 1.4, Rouyer et. al. (1999)) spheres.
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Figure 8.13: We show the collapse of the curves from fig 7.3. All the curves collapse
quite well justifying the transformation rule, table 7.1.

8.2.4 Similarity

In table 8.1, we present the transformation rules that are used to collapse the pictures,
presented in figure 8.3. The Reynolds number Re is left invariant by the transformations.
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Time → Adimensional Time
t → t

ts

< x2 > → <x2>
4R2

eq

v → v
vs

Table 8.1: Transformation rules in sedimentation.

These results, however, only hold for small Reynolds numbers Re / 10−2, since there is
no analytical expression to account the terminal settling velocity, at moderate Reynolds
numbers. Therefore, it is impossible to compute the Stokes time, eq. (3.30) at moderate
Re.

8.3 Outlook and Conclusions

In this chapter, the diffusion of oblate ellipsoids in sedimentation was studied. We have
found a non-diffusive behavior in both components (parallel and perpendicular), which
is completely new and not reported in the literature. Our comparison with the equivalent
sphere system to ellipsoids shows that there is a simple diffusive process for the perpen-
dicular and a non-diffusive process for the parallel components. This result regarding the
diffusive behavior in spheres agrees with the work of (Rouyer et. al. 1999) and (Miguel
and Pastor-Satorras 2001).

In addition, the behavior for ellipsoids and spheres was investigated as the particle density,
kinematic viscosity and ellipsoid aspect-ratio or sphere radii were changed. It was found
that the increment of the inertial forces, by means of the growth in particle density or the
decreasing in the kinematical viscosity, reduces the presence of the diffusive behavior,
and the system goes faster from the ballistic to the saturation regime. When the sphere
radii are changed, we could observe a similar behavior: As the sphere radius is increased
the inertia grows and thus also the particle M.S.D..

It is important to point out the behaviour of the time derivative of the M.S.D. in both
components as the aspect-ratio changes (see figure 8.12). For the vertical component,
with the growth of the aspect-ratio the M.S.D. goes from the non-diffusive behavior to
the simple diffusive regime. In the parallel component, the exponent α for non-diffusive
regimes changes for (α = 2.2,∆r = 04/1.6) flattened ellipsoids to (α = 1.4,∆r = 1)
spheres.

Last, we found a similarity law for the sedimentation process which is valid at small
Reynolds numbers. It is presented in table 8.1.



Chapter 9

Velocity Fluctuations

In this last chapter we examine the dynamical behavior of sedimenting ellipsoids and
spheres under changes of the container size. In the first section we study the influence
on the spatial correlations as the particulate volume fraction is changed, comparing the
results for ellipsoids and spheres. We also present the study of the velocity fluctuations as
a function of the volume fraction. After that, we investigate the divergence of the velocity
fluctuations as the container size is changed. Finally, we summarize.

We choose the density of the fluid, the Stokes velocity and the larger radius of the ellipsoid
equal to unity in our system. In all of the cases, the container height is L = 150 and a
square base of side L = 22 extended up to L = 176, and a lattice constant of h = 0.7.
The ratio between the density of the oblate ellipsoids and the fluid is 4.

9.1 Spatial correlations

We start our analysis by studying the spatial correlations in the velocity fluctuations (here-
after SCVF). The normalized autocorrelation function of the parallel (||) component of the
velocity fluctuations are defined as, (Segré et. al. (1997)):

C‖(r) ≡
〈δv‖(0)δv‖(r)〉
〈δv‖(0)2〉

(9.1)

1cm where the brackets 〈...〉 represent an ensemble average over several individual dif-

ferent configurations in space and orientations (ellipsoids). Where δvi = vi − vsed,
represents the fluctuations in the velocity and vsed = 〈vi〉 is the mean velocity over the
configuration. If the distance r is taken in the direction parallel to gravity, x, then we call
the parallel C‖ or perpendicular, y, C⊥ component.
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Figure 9.1: The figures show the parallel ‖ (a) and perpendicular ⊥ (b) components of
the SCVF for ellipsoids and spheres. Figures (c) and (d) compare the parallel and per-
pendicular components for ellipsoids and spheres, respectively. The Reynolds number is
2× 10−2, the spheres radius Requi = 1.01 and the ellipsoid aspect-ratio is ∆r = 0.4/1.6.

9.1.1 Change in the volume fraction

In figure 9.1, we present the spatial correlations of velocities for ellipsoids and spheres.
Figure 9.1 shows the comparison between the parallel (a) and perpendicular (b) compon-
ents for spheres and ellipsoids. In figures (a) and (b) the components for spheres show a
much faster relaxation than ellipsoids. Figures (c) and (d) exhibit the anisotropy, charac-
teristic to the sedimentation process, with a slower decay of the parallel component of the
velocity autocorrelation funtion. This anisotropy is present in both spheres, (Nicolai and
Guazelli (1995), Segré et. al. (1997), Höfler (2000)) and ellipsoids.
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We present the SCVF for the parallel (‖) and perpendicular (⊥) components fig. 9.2 for
spheres (a,b) and ellipsoids (c,d) corresponding to four representatives volume fractions
ΦV = 0.02, 0.04, 0.08, 0.16. The anisotropy between the components is also present as
the volume fraction ΦV increases as is shown in fig. (a) and (b).

The ‖ component of the SVCF for spheres (see figure 9.2 (a), approximately follows an
exponential decay, as C|| ≈ exp(−z/ξ‖,sph), (Nicolai and Guazelli (1995), Segré et. al.
(1997), Höfler (2000)). On the other hand, the ⊥ component (see figure 9.2 (b)) shows
a rapid initial decay in a region of different negative values. This minimum defines the
value of the correlation length, ξ⊥,sph in the system. Segré et. al. (1997) measured the
dependence of the correlation length in the (⊥) component as ξ⊥,sph = 27aΦ−1/3, and for
the (‖) one ξ‖,sph = 11aΦ−1/3, where a is the sphere radius (in our notation a = Req) and
Φ the volume fraction.

In order to make our simulations comparable with the experimental results of Segré et. al.
(1997) and also with previous simulations, Höfler (2000), we use a system size of squared
base with a side 144 and height 150 and a volume fraction of ΦV = 0.03. Segré et.
al. (1997) show that the correlation length of the perpendicular component (⊥) becomes
ξ⊥,sph ≈ 73a for ΦV = 0.05. In our simulations, we find a correlation length for the
equivalent spheres of the order of ξ⊥,sph ≈ 78a.

In the case for ellipsoids the correlation length (fig. 9.2), with regard to the parallel (c)
and perpendicular (d) components, we see a larger value of the correlation length in the
parallel component ξ⊥,sph ≈ 87a whereas the perpendicular component does not show an
appreciable difference.

9.1.2 Collapsing of the spatial correlations

Figure 9.3 (a) and (b) show the collapsing of the SCVF for spheres, in both components,
scaling the distance with ReqΦ

−1/3
V as was proposed by Segré et. al. (1997). The collapse

works quite well, and we consider it noteworthy that it is valid for changes of the volume
fraction by up to 60 times. The correlation lengths that we found are:

ξ⊥,sph = 29ReqΦ
−1/3
V ; ξ‖,sph = 13ReqΦ

−1/3
V (9.2)

which does not really differ from the results of Segré et. al. (1997).
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Figure 9.2: Spatial correlations functions in the parallel (a,c) and perpendicular (b,d)
components of the SCVF for ellipsoids and spheres, with changes of the volume fraction.
The Reynolds number is 2 × 10−2, the spheres radius Requi = 1.01 and the ellipsoid
aspect-ratio ∆r = 0.4/1.6.

In the ellipsoid case (see figure 9.3), we present the SCVF for the parallel (c) and perpen-
dicular (d) component, respectively. The collapse also works well in this case. The values
for the correlation length are the following:

ξ⊥,Ell = 25ReqΦ
−1/3
V ; ξ‖,Ell = 10ReqΦ

−1/3
V (9.3)

The correlation length for ellipsoids, in both components, is smaller than for spheres.
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Figure 9.3: Collapsing of the spatial correlations function for data in fig. 8.2.

The amplitude in the parallel (‖) and perpendicular (⊥) components of the velocity fluc-
tuations (see chapter 6 eqs. 6.1 and 6.2), is presented in figure 9.4. The figures are presen-
ted in a log-log scale. For 0.005 ≤ ΦV ≤ 0.07, the velocity fluctuations grow linearly as
≈ Φ

1/3
V (straight line superimposed on data), as for spheres as well as for ellipsoids (Segré

et. al. (1997)).

For larger volume fractions (ΦV > 0.07), the fluctuations are reduced in both components,
for spheres and for ellipsoids. The decrease in the velocity fluctuations as the volume
fraction increases could be explained by the growth of the particle encounters, since the
container has a fixed volume and the particle encounters are a dissipative process in nature.
Therefore the velocity fluctuations tend to reduce (Kalthoff et. al. (1996)).

It was mentioned in chapter 6 above, that the velocity fluctuations components for spheres
are much larger than for ellipsoids. The appearance of rotations around the ellipsoid
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Figure 9.4: The top pictures present the velocity fluctuations for spheres and ellipsoids in
the parallel (‖) and perpendicular (⊥) components as a function of the volume fraction,
in a log-log scale. The bottom picture compares the results for both kinds of particles and
components. The Reynolds number is 2× 10−2, the spheres radius Requi = 1.01 and the
ellipsoid aspect-ratio ∆r = 0.4/1.6.

center of mass, implies a work against the fluid, then the dissipation of energy is present
now for translational and rotational degrees of freedom. Therefore, the decrease of the
velocity is more dramatic for ellipsoids than spheres.

9.2 Change of the container size

In the previous section we examined the system as the volume fraction increases with a
fixed container side of 176 where the characteristic correlation length was found, eqs. 9.2
and 9.3.

Now we turn to the analysis of the effects of variations in the container size on the velocity
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Figure 9.5: Spatial correlation functions for the parallel ‖ (a,c) and perpendicular ⊥ (b,d)
components of the velocity fluctuations for ellipsoids (a,b )and spheres (c,d) as a function
of the container side. The Reynolds number is 2× 10−2, the spheres radius Requi = 1.01
and the ellipsoid aspect-ratio ∆r = 0.4/1.6.

fluctuations, as examined in the work by (Segré et. al. (1997) and Höfler (2000)). We use
a small container size (close to the characteristic correlation length), in order to investigate
the size effects on the fluctuations.

In figure 9.5, we show the SCVF for spheres (a,b) and ellipsoids (c,d) as the container
size is increased. The correlation length ξ⊥,sph for spheres and ellipsoids decreases in
both components as the container increases. However, the decay for spheres is larger than
the decay for ellipsoids in the parallel component. The perpendicular component, on the
other hand, does not display any difference.

We also measure the pair correlation function as the container side is changed (see figure
9.6). For spheres and ellipsoids we find in the pair correlation for all container sizes, a
characteristic length of the order ≈ 2, followed by a monotonic decay that increases with
the container side (see figure 9.6 (a) and (b)). It is interesting to point out that the ratio of
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Figure 9.6: Pair correlation function for spheres (a), and ellipsoids (b) and the ratio of the
spheres to ellipsoids (c).

the pair correlation for spheres to that of the ellipsoids exhibits higher peak for the larger
container side 176.132 (see 9.6 (c)). This peak reveals much larger density fluctuations
for spheres than for ellipsoids. The behavior of the pair correlation functions resemble
the pair correlation function for liquids, where the positions of neighboring molecules are
strongly correlated, leading to a modulation of the pair correlation functions (Barrat and
Hansen (2003)), which is very similar to that presented in figure 9.6 (a) and (b).

In order to investigate size effects in the velocity fluctuations, we undertake variations
from the correlation length, as in the work of Segré et. al. (1997). The results are present
in figure 9.7 for spheres (dash dotted line) and ellipsoids (dash continuous line). The
container side are normalized by L/(ReqΦ

−1/3). The velocity fluctuations < δV⊥,‖/vs >
present an initial transition region, which have a strong dependence on the container side
(Segré et. al. (1997) and Höfler (2000)), between 20 ≤ L/(ReqΦ

−1/3) ≤ 100, after it,
the simulation data are independent of the container side. In general, the ellipsoids and
spheres show a similar behavior, but with a smaller overall value for ellipsoids. The ratio
of the parallel ‖ velocity fluctuation to the perpendicular ⊥ component, for spheres and
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Figure 9.7: The left graphic show the parallel component of velocity fluctuations as the
container side is changed. The right picture shows the vertical component. The Reynolds
number is 2 × 10−2, the spheres radius Requi = 1.01 and the ellipsoid aspect-ratio is
∆r = 0.4/1.6.

ellipsoids is ≈ 2.5, in agreement with Segré et. al. (1997).

This equal value for both kind of particles, reveals that the anisotropic behavior on the
velocity fluctuation components are independent on the particle shape. The symmetry
breaking induced by gravity acts equally on spheres and ellipsoids.

As is discussed in chapter 1 and by Caflish and Luke (1985), the velocity fluctuations
might diverge with increasing container size. On the other hand, experiments, simula-
tions and theory sec. 1.6 have found no evidence for such divergence. In a previous work,
Höfler (2000), it is argued that systems, bounded by walls, do not show a comparable
scaling of velocity fluctuations but a saturation, if the smallest extension of the container
exceeds a critical size, and then the difficulty to find a unique scaling law. In our simula-
tions, the variations of the container size, were made by changing the entire squared base.
The results, fig. 9.7 (a) and (b), don’t present evidence for the divergence of the velocity
fluctuations neither for spheres nor ellipsoids, and behave really close to the results given
by Segré et. al. (1997).

9.3 Outlook and Conclusions

We studied the variation of the container size for spheres and ellipsoids sedimenting at
small Reynolds number 2× 10−2. It was found that the spatial correlations of the vertical
velocity for ellipsoids show a much slower decay as the perpendicular component. The
equivalent sphere system reproduces the same anisotropy, this matching rather closely to
the results of Segré et. al. (1997).

The collapsing employed in the spatial correlations for ΦV ≤ 0.1 works quite well for
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both spheres and ellipsoids, fig. 9.3 and 9.1. The correlation length for ellipsoids have a
smaller value than for spheres, eq.9.2 and 9.3.

The velocity fluctuations, for both kinds of particles, also reveal the anisotropy present
in the spatial correlations. The collapse transformation used by Segré et. al. (1997), at
ΦV ≤ 0.1, agrees quite well with our data, fig. 9.4. After ΦV > 0.1, all the velocity
fluctuations decrease. It is important to remark, that the velocity fluctuations for spheres
are much larger as for ellipsoids.



Chapter 10

Conclusion

The aim of this thesis is the study of sedimentation of oblate ellipsoids using a numerical
simulation technique Höfler and Schwarzer (2000), which is applyed to the case of one
oblate ellipsoid at low and high Reynolds number and many oblate ellipsoids at low and
moderate Reynolds number, in three dimensions.

10.1 One Oblate ellipsoid

The motion of a piece of paper or a leaf, as it falls to the ground, is an old and unsolved
problem in Physics. Maxwell, Helmholtz and Kelvin are just some who have studied this
problem. Recent experiments (Field et. al. (1997) and Belmonte et. al. (1998)) and
simplified models Mahadevan (1996), confirm that the motion of falling objects is still far
from being understood.

In our work the falling objects are considered a very flat oblate ellipsoid, such as leaves or
a sheet of paper, settling in a fluid, in a three dimensional container. We found three basic
regimes for the dynamics of the system (steady-falling, oscillatory-periodic, and chaotic).

The steady-falling exhibits a similar physical behaviour as observed experimentally by
Field et. al. (1997) and Belmonte et. al. (1998). We have characterized the dynamics
of the steady-falling regime when the kinematic viscosity, dropping height, and oblate’s
aspect-ratio are changed. Some conclusions can be drawn from this part of the work. This
regime is present for small values of I? ≈ 0.5− 1, Re ≈ 100 and is shown in fig.5.1-5.4.

The periodic behaviour in our simulations is found for Re ∼ 400 and small aspect-ratios
(∆r ≤ 0.1). The vertical orientation, Θ oscillates with double the period of oscillation of
the vertical velocity vy and at the same period of the horizontal velocity vx. This periodic
motion has also been observed experimentally by Belmonte et. al. (1998), showing that
our simulations are essentially correct.

We find that our results in the case of the steady-falling and oscillatory phases, are in good
qualitative agreement with the simplified model proposed by (Mahadevan (1996)).
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The chaotic behaviour is present for larger aspect-ratios (∆r ≥ 0.3) and in the entire range
of Reynolds numbers used in this work. The separation between the spatial trajectories
of the falling oblate ellipsoid diverges for small variations in the initial orientation Θo,
and grows exponentially in time. The value found for the Lyapunov exponent is λ =
0.052 ± 0.005. It is worthwhile to point out that we give a quantitative measure of the
sensitivity to small changes in the initial state of the system.

For the steady-falling and oscillatory regime we obtain a similarity law, which is a direct
consequence of the invariance of the Reynolds and Froude numbers. Also, the similarity
expresses the independence of the physical results of the grid size, which is a good test
for the dynamics of these two regimes.

We construct a phase diagram that shows three well-defined dynamic regions as is also
shown by Field et. al. (1997). The difference with the above reference is that the chaotic
behaviour is associated with the transition to chaos through intermittency which is not
seen in our simulations. The phase diagram is independent of the initial orientation.

The transition for steady-falling to oscillatory and the transition from steady-falling to
chaotic regime can be understood as second and first order phase, respectively and the
characteristic transient time and its inverse being the order parameter, respectively.

10.2 Many ellipsoids sedimentation

We have simulated the sedimentation of oblate ellipsoids at small volume fraction (ΦV ≤
0.2) and small Reynolds number (Re ≈ 10−2). We have found that at intermediate volume
fraction the settling velocity exhibits a local maximum which to our knowledge has never
been reported in the literature.

We also present data at moderate Reynolds number (Re ≈ 7) for the sedimentation ve-
locity of oblate ellipsoids wich follows a monotonic behaviour as the volume fraction
ΦV is increased. As in the case of low Reynolds number the ellipsoids have a smaller
sedimentation velocity than the equivalent spheres. The data for ellipsoids and spheres
follow the Richardson-Zaki law (1954) with exponents (nEllip ≈ 3.2,Re = 10−2) and
(nSph ≈ 4.0,Re = 7) respectively.

In addition, the local maximum, at low Reynolds number, in the velocity can be related
to the non-monotonic behaviour of the vertical orientation of the ellipsoids along gravity,
and can be explained by the “cluster” formation. This non-monotonic behaviour is also
found in fiber-like suspensions Herzhaft and Guazzelli (1999). At moderate Re there is
also a larger alignment of ellipsoids with gravity, compared to those with small Reyn-
olds number. The alignment with gravity is present also at moderate Reynolds number,
which is in agreement with the orientational behaviour of a single ellipsoid Fonseca and
Herrmann ((1) 2004).

At low Reynolds number the orientational order parameter Ψ vanishes around ΦV ≈ 0.08
fig. 7.7. As ΦV decreases the orientational alignment with gravity increases. For low
Reynolds number in the limit ΦV → 0 a single ellipsoid aligns with gravity. The
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alignment with gravity is a distinctive feature of the steady-state regime for a single ob-
late ellipsoid as reported in references Fonseca and Herrmann ((1) 2004) and Galdi et.
al. (2001). The vanishing of the order parameter, at moderate Re, is slightly shifted
(ΦV ≈ 0.1) to the right as the Reynolds number increases (see fig 7.12, bottom). All
the simulations in this work are located in the steady-falling phase for a single oblate
ellipsoid.

The diffusion of oblate ellipsoids in sedimentation was studied. We have found a non-
diffusive behaviour in both components (parallel and perpendicular), which is completely
new and not reported in the literature. Our comparison with the equivalent sphere system
to ellipsoids shows that there is a simple diffusive process for the perpendicular and a
non-diffusive process for the parallel components. This result regarding the diffusive
behaviour in spheres agrees with the work of (Rouyer et. al. 1999) and (Miguel and
Pastor-Satorras 2001).

Furthermore, the behaviour for ellipsoids and spheres was investigated as the particle
density, kinematics viscosity and ellipsoid aspect-ratio or sphere radii were changed. It
was found that the increment of the inertial forces, by means of the growth in particle
density or the decreasing in the kinematics viscosity, reduces the presence of the diffusive
behaviour. When the sphere radii are changed, we could observe a similar behaviour: as
the sphere radius is increased the inertia grows and thus also the particle M.S.D..

The vertical component of the M.S.D. passes from the non-diffusive behaviour to the
simple diffusive regime as the aspect-ratio increases. For the parallel component, the
exponent α for non-diffusive regimes changes for (α = 2.2) flattened ellipsoids to (α =
1.4) spheres.

Last, we found a similarity law that collapse quite well the diffusion process and it is valid
at small Reynolds numbers.

We studied the variation of the container size for spheres and ellipsoids sedimenting at
small Reynolds number 2× 10−2. It was found that the spatial correlations of the parallel
velocity for ellipsoids show a smaller decay as the perpendicular component. The equi-
valent spheres system reproduces the same anisotropy, this matching rather closely to the
results of Segré et. al. (1997).

The collapsing employed in the spatial correlations for ΦV ≤ 0.1 works quite well for
spheres and ellipsoids. The correlation length for ellipsoids has a smaller value than for
spheres.

The velocity fluctuations for ellipsoids reveal the anisotropy present in the spatial correla-
tions. The collapse transformation used by Segré et. al. (1997), at ΦV ≤ 0.1, agrees quite
well with our data. After ΦV > 0.1, all the velocity fluctuations decreases. It is important
to remark, that the velocity fluctuations for spheres are much larger as for ellipsoids.
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10.3 Outlook

Despite the facts that falling bodies have been studied for such a long time, there are still
many open problems. Using this model it is now possible to study the sedimentation of
different types of particles and the structure of the fluid surrounding them. Future work
could be addressed in several directions:

• The experiments (Willmarth et. al. (1964), Belmonte et. al. (1998) and Kelly and
Wu (1997)) have confirmed, that the presence of vortices is fundamental, as the
objects fall or rise in a fluid. Vortex generation is such an important part of fluid
dynamics that a complete theory must be taken into account in order to understand
the role of the fluid in the motion of falling objects. Then, a natural following work
is to undertake a systematic research about the velocity and pressure fields in the
dynamics of falling objects. This is a task that our algorithm is able to give.

• The autorotation or the angular motion that the flat object executes as it fall, is
an important research in a large number of laboratory studies. The efforts come
mainly by practical considerations in meteorology as the formation of hailstones;
the dynamics of aircraft after it stall, etc. The autorotation has been found in some
experiments (Field et. al. (1997) or Mahadevan et. al. (1999)) for very flat objects.
Of particular note is the flat object can oscillate several times as it fell, increasing its
amplitude in each oscillation until it completely turned over. The simulation of this
type of motion requires that the thickness object (smaller ellipsoid diameter) has to
be, at least of the order of the grid size. Therefore, the larger object diameter (small
aspect-ratio) and the container size will imply a huge number of grid points in the
simulation for the investigation of this motion. In order to carry out the simulation
of autorotation, the above conditions must demand a high computational effort.
The simulation technique used in this thesis in connection with the parallelized
algorithm version can overcome these difficulties.

• In the dynamics of one falling flat object we found a similarity law for the steady-
falling and oscillatory phases (Sections 5.1 and 5.2). The experimental data sup-
porting these relations would be very important.

• We found a non-monotonic behaviour for the oblate ellipsoid settling velocity as
the volume fraction increases. Also the increasing ellipsoid aligns with gravity as
the volume fraction decreases. Finally in the dynamics of many ellipsoids sedi-
mentation, we found an anomalous diffusion behaviour for the parallel component
to gravity. Up to now, we don’t know an experimental, simulation or theoretical
result related with this settling law or anomalous diffusion, and an experimental
work ratifying these behaviours is necessary.

• Suspensions in nature and industry generally involve the mixtures of particles of
different types, shapes and sizes (e.g., oblate ellipsoids, prolate ellipsoids and
spheres). The bidisperse suspensions are normally made of two different size
spherical particles, but not alike shaped. In the statistical physics of bidisperse
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hard-spheres mixtures is known (Asakura and Oosawa (1954)) the “depletion inter-
action”, which it is the effect of the large particles together increase the available
volume, therefore the entropy, for the small particles. Then, the study of this “de-
pletion interaction” due to the shape and not only to volume difference is another
important task for accomplish.
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