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List of Symbols

This list contains the more frequently used symbols. A more detailed
explantation may be found in the sections where the symbols are intro-
duced.

Variables and Parameter

a half the edge length of the tiles

b in-plane lattice constant of the ω-phase

b0 equilibrium in-plane lattice constant of the ω-phase

c arbitrary velocity of sound

c11, c12 elastic constants of an isotropic material

cb bulk velocity of sound: cl =
√

K/ρ

cl longitudinal velocity of sound: cl =
√

F/ρ

ct transversal velocity of sound: cl =
√

G/ρ

cx velocity of sound for structure or direction x

d perpendicular lattice constant of the ω-phase

d0 equilibrium perpendicular lattice constant of the ω-phase

Epot potential energy

Ex potential energy of structure x

F uniaxial elastic constant

G shear modulus

K bulk compressibility

kT temperature in energy units

k0 reciprocal lattice constant along the three-fold axis of bcc

P hydrostatic pressure: P = (Pxx + Pyy + Pzz)/3

P0 unit of pressure and stress: P0 = ǫ/a3

Pii uniaxial pressure (stress) along direction i

rab distance between an atom of type a and an atom of type b

rC cut-off radius

rs relative strength vd/ve

S shear pressure (stress): S = Pxx − (Pyy + Pzz)/2
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Se shear pressure (stress) at the end of the sample

Sp peak shear pressure (stress)

t time

t0 unit of time: t0 = a
√

m/ǫ

T temperature

tr time to ramp up the piston velocity

u unspecified shock front velocities

ui velocity of the flyer plate

up piston velocity

up,eff effective piston velocity

us in a closer sense: shock wave velocity,

frequently used for all types of wave velocities

v0 unit of velocity: v0 =
√

ǫ/m

vd potential minimum for diagonal interactions

ve potential minimum for edge interactions

w position of the B and C layers with respect to the lattice
constant d in bcc and the ω-phase

Y yield stress

ǫ energy unit

ǫij strain tensor
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ν Poisson ratio

ρ density

Reduced Units

Reduced units are used throughout the thesis. Lengths are given in a,
and energies in ǫ. All other units are converted into a, ǫ and the mass
m. Thus there are the following relations: t0 = a

√

m/ǫ, v0 =
√

ǫ/m,
and P0 = ǫ/a3



Deutsche Zusammenfassung

Übersicht

Diese Habilitationsschrift handelt von Molekulardynamiksimulationen
an geordneten Festkörpern. Im ersten Teil werden die Grundlagen der
Stoßwellenphysik kurz zusammengefasst, gefolgt von einem Überblick
über die Simulation von Stoßwellen in Festkörpern. Ein weiterer Ab-
schnitt enthält die Beschreibung der untersuchten Strukturen, Wechsel-
wirkungen und relevanten Phasendiagramme.
Im zweiten Teil der Arbeit folgt die Beschreibung der Ergebnisse: Im
ersten Kapitel werden binär ikosaedrische Quasikristalle und verwandte
Laves-Phasen behandelt, im zweiten monoatomar zwölfzählige Quasi-
kristalle, eng verwandte tetraedrisch dicht gepackte Phasen und ku-
bisch innenzentrierte Kristalle. Das dritte Kapitel handelt von der in-
termediären ω-Phase und solitären Wellen, die in den innenzentrierten
Kristallen bei Stoßwellen entlang von dreizähligen Symmetrierichtungen
auftreten.
In allen Fällen gibt es drei Bereiche unterschiedlichen Materialverhal-
tens: bei schwachen Stoßwellen findet man elastische Deformationen,
in einem mittleren Bereich elastische und plastische Deformation bzw.
Phasenübergänge. Im Bereich starker Stoßwellen werden die Ausgangsstruk-
turen amorphisiert.

Stoßwellenphysik in Festkörpern

Stoßwellen treten überall im Universum und in allen Zuständen der
Materie auf. Man findet sie sowohl in der Bugwelle der Heliosphäre
oder in Supernovaexplosionen als auch bei der Sonolumineszenz und
beim Überschallknall.
Stoßwellen existieren auch in Festkörpern und ermöglichen dort die Un-
tersuchung von Materiezuständen, die mit anderen Methoden nicht er-
reicht werden können:

• die Bestimmung der Zustandsgleichung bei sehr hohen Drücken
und Temperaturen wie zum Beispiel im Erdinnern,

• die Untersuchung des mechanischen Verhaltens von Festkörpern
bei plötzlichen Lastwechseln,

• die Analyse dynamischer Phasenübergänge, die an den Stoßwellen-
fronten auftreten.
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• In Simulationen ermöglichen sie die Untersuchung von ausgedehn-
ten Defekten wie Versetzungen und Stapelfehler, die sonst künst-
lich eingebaut werden müssten. Dieses Vorgehen spielt insbeson-
dere bei komplexen Kristallstrukturen und Quasikristallen eine
Rolle.

Eine Stoßwelle (Abs.1.2) ist definiert als eine sich fortbewegende Un-
stetigkeit der thermodynamischen Größen. Stabile Stoßwellen propa-
gieren mit Überschallgeschwindigkeite bezüglich des Ausgangsmediums
und langsamer als der Schall im komprimierten Medium. In Gasen und
Flüssigkeiten stellen diese Definitionen wegen der fehlenden Rückstell-
kräfte kein Problem dar, wohl aber in Festkörpern. Hier versteht man
unter einer Stoßwelle eine permanente Änderung von Atompositionen,
das heißt es muss Plastizität oder Phasenübergänge auftreten. In dieser
Arbeit haben wir uns allerdings nicht an diese rigorose Definition gehal-
ten, sondern alle abrupten Änderungen thermodynamischer Größen als
Stoßfronten bezeichnet.

Grundlage der Stoßwellenphysik sind die Rankine-Hugoniot-Gleichung-
en (Abs.1.5). Sie stellen nichts anderes dar als eine Umformulierung
der Erhaltung von Masse, Impuls und Energie über die Stoßfront hin-
aus. Ursache ist die unterschiedliche Materiegeschwindigkeit auf beiden
Seiten der Stoßfront.

Im Festkörper (Abs.1.6) können wegen der endlichen Festigkeit mehrere
Wellen entsehen. bei schwachen Stoßwellen findet nur eine elastische
Verformung statt. Ist die Welle stärker als die elastische Hugoniot-
grenze (HEL), so folgt nach der elastischen Welle eine plastische oder
eine Phasenumwandlung. bei starken Stoßwellen sind elastische und
plastische Front nicht mehr unterscheidbar. Im Bereich des elastisch-
plastischen Schocks ist die Stoßwelle nicht stationär.

In den Simulationen spielt auch die Dimensionalität der Stoßwelle eine
wichtige Rolle (Abs.1.10): Ist die Temperatur zu niedrig oder der An-
fangszustand nicht äqulibriert, so fehlt die Koppelung der Bewegung
longitudinal und transversal zur Stoßwelle. Das System verhält sich rein
eindimensional, es tritt keine Thermalisierung eine lineares Anwachsen
der Stoßfrontdicke und starke Solitonen auf. Dieses Verhalten ist nicht
zu verwechseln mit dem in Kapitel 6 berichteten Auftreten von solitären
Wellen.
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Simulation von Stoßwellen in Festkörpern

Simulationen von Stoßwellen in Festkörpern (Abs.2.1) haben vor etwa
vierzig Jahren begonnen. Wegen der begrenzten Rechnerleistung wur-
den Vereinfachungen gemacht, die dazu führten, dass die Strukturen
sich wie im vorigen Abschnitt beschrieben eindimensional verhielten,
was zu der (falschen) Ansicht führte, dass es in Festkörpern gar keine
Stoßwellen gäbe. Im Laufe der Zeit konnte gezeigt werden, dass Stoß-
wellen in Festkörpern existieren und zu Plastizität durch Abscherung
führen. Im Jahre 1998 gelang schließlich der Durchbruch mit der ersten
Simulation eines flächenzentriert kubischen Kupferkristalls mit mehreren
Millionen Atomen. Erstmls konnten einzelne Stapelfehler isoliert wer-
den. Seither hat man eine Vielzahl neuer und unerwarteter Phänomene
wie nichtstationäre Stoßwellen, verschiedene Phasenübergänge und soli-
täre Wellen gefunden und konnte beispielsweise Modelle der Entstehung
von Plastizität durch Versetzungen überprüfen.

Für die Simulation von Stoßwellen in Festkörpern werden Standard-
Molekulardynamikprogramme eingesetzt (Abs.2.4). Der Ausgangszu-
stand sollte gut äquilibriert sein, was mit Hilfe von isothermen und
isotherm-isobaren Ensembles erreicht wird. Die eigentlichen Simulatio-
nen werden mikrokanonisch durchgeführt.

Zur Erzeugung der Stoßwellen werden mehrere Methoden verwendet
(Abs.2.2): zwei Klötze werden mit konstanter Geschwindigkeit aufeinan-
der zubewegt, sobald sie sich treffen, entstehen im Zentrum zwei Stoß-
wellenfronten. Man kann das Verfahren modifizieren indem man einen
der Klötze durch einen Spiegel ersetzt, der alle Teilchenimpulse umkehrt.
Quer zur Stoßwellenrichtung werden periodische Randbedingungen ver-
wendet um ein Auseinanderbrechen der Probe zu verhindern.

Strukturen und Potentiale

Ein Ausgangspunkt dieser Arbeit war die Frage, ob sich die Auswirkung
von Stoßwellen in aperiodisch geordneten Quasikristallen und in Krist-
allen unterscheidet. In Quasikristallen sind beispielsweise zusätzliche
lokalisierte und ausgedehnte Defektmoden möglich (Abs.3.1).

Die Simulation von Stoßwellen stellt hohe Anforderungen an simulier-
bare Modellstrukturen: es sollten vergleichbare quasikristalline und krist-
alline Strukturen existieren, die Modelle sollten möglichst stabil sein,
die Ergebnisse, insbesondere eventuelle Defekte, gut analysierbar wer-
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den können und brauchbare Wechselwirkungen sollten bekannt sein.

Alle untersuchten Modelle sind tetraedrisch dicht gepackt (Abs.3.2).
Simuliert wurden binär ikosaedrische Quasikristalle wie sie experimentell
als (AlCu)Li und (AlZn)Mg bekannt sind und vereinfacht als Deko-
ration von Rhomboedern dargestellt werden können. Da bisher keine
realistischen Wechselwirkungen bekannt waren, wurden Lennard-Jones-
Potentiale verwendet. Die Potentialparametern wurden an die Geome-
trie angepasst. Als kristallinen Vergleichsstruktur wurde die kubische
Laves-Phase untersucht, die zum Beispiel bei MgCu2 auftritt.

Stabile monoatomare ikosaedrischen Quasikristallmodelle sind nicht be-
kannt. Die einzige Struktur, die sich für Stoßwellensimulationen eignet,
ist ein zwölfzähliger Quasikristall. Hier existiert ein Modell, das aus
dekorierten Drei- und Vierecksprismen besteht und in der dritten Di-
mension periodisch ist. Der Quasikristall wird durch das Dzugutov-
Potential (Abs.3.4) stabilisiert und wurde bei Abkühlsimulationen aus
einer Schmelze entdeckt. Das Minimum des Dzugutov-Potentials gle-
icht dem Lennard-Jones-Potential, aber es existiert noch ein Maximum,
das verhindern soll, dass sich bei Abkühlsimulationen flächenzentriert
kubische Kristalle bilden. Die Prismen lassen sich zu vielen kristalli-
nen und aperiodischen tetraedrisch dicht gepackten Phasen zusammen-
bauen und durch rhombische und hexagonale Prismen ergänzen. Eine
der kristallinen Phasen, die sogenannte σ-Phase, kann als Approximant
verstanden werden und ist stabiler als der Quasikristall.

Die Suche nach Grundzuständen für das Dzugutov-Potential (Abs.3.4.3)
zeigt jedoch, dass im Gegensatz zu den beim Abkühlen entstehenden
Strukturen eine ganz andere Phase, nämlich ein kubisch innenzentrierter
Kristall, bei T = 0 und P = 0 stabiler als alle anderen Phasen ist.

Bei den Stoßwellensimulationen wurde eine weitere Phase beobachtet,
die ω-Phase (Abs.3.5). Bekannt ist sie heutzutage als die Struktur von
MgB2, sie tritt auch bei den Elementen Ti, Zr und Hf und bei vielen
Legierungen auf. Die ω-Phase entsteht aus innenzentriert kubischen
Kristallen, wenn zwei der drei Gitterebenen parallel zur dreizähligen
Achse zusammenfallen. Diese Phasenumwandlung wird verursacht durch
eine allgemeine Instabilität innenzentriert kubischer Kristalle bei Ver-
formung entlang dieser Richtung.
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Stoßwellen in kubischen Laves-Phasen und binär

ikosaedrischen Quasikristallen

Vergleicht man das elastische Verhalten von Kristall und Quasikristall
(Abs.4.4.1), so stellt man wie erwartet fest, dass der Kristall anisotrop
ist, während sich der Quasikristall isotrop verhält.

Eine gute Übersicht (Abs.4.4.3) über die Ergebnisse erhält man aus
dem Hugoniotdiagramm, das ist die Auftragung der Geschwindigkeiten
der Wellenfronten, auch Pistongeschwindigkeit genannt, gegen die Ge-
schwindigkeit, mit der die Klötze sich bewegen. Man beobachtet drei
Bereiche, die allerdings oft nicht scharf abgegrenzt sind: ein elastischer
Bereich, ein Bereich zweier Wellenfronten (elastisch-plastisch) und ein
rein plastischen Bereich. Auch bei den Geschwindigkeiten der plastis-
chen Wellen findet man den Unterschied in der Anisotropie zwischen
Kristall und Quasikristall. In der Arbeit wird insbesondere der Bereich
mittelstarker elastisch-plastischer Stoßwellen genauer untersucht. Bei
sehr starken Stoßwellen tritt vollständige Fragmentierung auf, ein Ver-
halten, das vollständig unabhängig von der Ausgangsstruktur und de-
shalb für die Untersuchung von Defektstrukturen nicht besonders inter-
essant ist.

Bei den Laves-Kristallen (Abs.4.4.7) zerbricht der Ausgangskristall in
Kristallite, die gegen einander verdreht sind. Die Grenzen der Kristallite
laufen diagonal durch den Kristall und sind bis zu zehn Atomabständen
dick. Die entstehenden Strukturen lassen sich besser untersuchen, wenn
der Kristall nach dem Durchlaufen der Stoßwelle abgeschreckt wird,
denn dann verschwinden die Verdrehungen. Das Zerbrechen setzt direkt
an der elastische Hugoniotgrenze (HEL) ein. Mit steigender Stoßwellen-
intensität wird die Fragmentierung immer feiner und geht kontinuierlich
in den Bereich starker Stoßwellen über.

Bei den Quasikristallen (Abs.4.4.8) findet man grundsätzlich ein analo-
ges Verhalten, allerdings treten hier zusätzliche Defekte auf. Verwen-
det man das vereinfachte Quaskristallmodell, so beobachtet man Ring-
prozesse bei denen fünf Atome auf alternative Positionen springen. Die-
ses Verhalten ist schon ohne Stoßwellen vorhanden, wird aber durch
die Stoßwellen intensiviert. Mit steigender Stoßwellenstärke degener-
ieren die Ringprozesse erst zu Ketten, dann zu Netzen, und durchziehen
schließlich das ganze Material. Letzten Endes führt dieses Verhalten zu
einer Ausschmierung der elastischen Hugoniotgrenze und zu einem kon-
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tinuierlichen Übergang zwischen elastisch und elastisch-plastisch. Ver-
wendet man ein verbessertes Quasikristallmodell, so verschwinden die
Ringprozesse und es gibt nur noch einzelne Sprünge der Atome. Die
Stabilität der Proben wird erhöht und das Verhalten dem des Laves-
Kristalls ähnlicher.
Zusammenfassend kann man sagen, dass sich die hier simulierten binären
Kristalle und Quasikristalle weitgehend wie ionische Materialien verhal-
ten. Erklären kann man dies durch die Wahl der Potentialparameter.
Bei den Quasikristallen wurden zusätzliche Defekte gefunden, die zu
einer Schwächung des Materials führen. Da die Ringprozesse aber nicht
zu einer Änderung der Zellstruktur der Quasikristalle führen, kann man
sie nicht als quasikristallspezifische Defekte auffassen. Sie können auch
in anderen komplexen Kristallstrukturen mit partieller Besetzung von
Gitterplätzen aufteten.

Stoßwellen in Materialien, die über Dzugutov-Potentiale

wechselwirken

Auch bei den monoatomaren Strukturen wurde zunächst das elastische
Verhalten untersucht. Die Quasikristalle sind in der quasiperiodischen
Ebene isotrop, senkrecht dazu aber nicht. Alle anderen Strukturen sind
wie erwartet anisotrop.
Die Ergebnisse sollen wieder anhand des Hugoniotdiagramms (Abs.5.4.2)
dargestellt werden. Auf den ersten Blick sieht es so aus, als ob es hier
nur den elastisch-plastischen und den plastischen Bereich gäbe. Dies
liegt am Phasendiagramm: schon bei schwachen Stoßwellen tritt ein
Übergang von den Ausgangsstrukturen zu dichten Kugelpackungen auf,
also den Phasen, die nach Konstruktruktion des Dzugutov-Potentials
eigentlich ungünstig sein sollten. Deshalb taucht der elastische Bereich
im Phasendiagramm gar nicht auf. Da das Potential sehr kurzreich-
weitig ist, ist die Stapelfolge in den dichtgepackten Phasen zufällig und
nicht rein kubisch flächenzentriert oder hexagonal dicht gepackt.
Es wurden viele Ausgangsstrukturen und -orientierungen untersucht.
Die detaillierten Ergebnisse können hier nicht im Detail geschildert
werden (Abs.5.4.3). Ausgezeichnet ist die vierzählige Richtung bei in-
nenzentrierten Ausgangskristallen: hier findet der Phasenübergang in-
nerhalb ein- bis zwei Atomlagen statt und führt zu fast defektfreien
Einkristallen oder Zwillingen. Mit zunehmender Stoßwellenintensität
treten aber mehr und mehr Defekte auf. Bei anderen Ausgangsstruk-
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turen und -orientierungen verschieben oder drehen sich oft die Atomebe-
nen senkrecht zur Stoßwellenrichtung. Die Ausgangsordnung bricht in
mehreren Stufen zusammen, und es entstehen dicht gepackte Kristalle
mit vielen Defekten, die nur langsam ausheilen. Verwendet man den
Impulsspiegel in der Simulation, so wirkt dieser als Keim für fast defek-
tfreie Kristallschichten. Für die Analyse der entstandenen Strukturen
wurden vor allem radiale und Winkelverteilungsfunktionen eingesetzt.
Spezielle Phänomene beobachten man bei Quasikristallen und Approx-
imanten, wenn die Stoßwellenrichtung in der Grundebene der Struktur
liegt (Abs.5.4.5): In diesem Fall treten zwischen der elastischen und der
plastischen Stoßwellenfront Flips auf, das heißt die Zellstruktur ändert
sich. Zusätzlich zu den Dreiecks- und Vierecksprismen findet man rhom-
bische und hexagonale Prismen, die sich als Verallgemeinerung der Aus-
gangszellen verstehen lassen und bei Flips in Quasikristallen auftreten
müssen.
Die Simulationen mit Dzugutov-Pontentialen lassen sich überraschen-
derweise qualitativ mit Stoßwellensimulation an Eisen vergleichen, bei
denen spezielle Embdedded-Atom-Wechselwirkungen eingesetzt wurden
(Abs.5.5.1). Ursache ist die qualitative Ähnlichkeit des Phasendia-
gramms von Eisen und dem Dzgutov-Potential. So findet man für die
innenzentriert kubischen Ausgangsstrukturen ähnliche Endstrukturen.
Auch solitäre Wellen, die im nächsten Abschnitt detailliert beschieben
werden, sind beim Eisen beobachtet worden.
Zumsannefassend kann man sagen, dass sich das Dzugutov-Potenial
nicht sehr gut für Stoßwellensimulationen von Quasikristallen eignet,
da die Stabilität verglichen zu gering ist. Im Gegensatz zum binären
Fall wurden hier aber eindeutig quasikristallspezifische Defekte, nämlich
Zellflips, aufgefunden. In beiden Fällen zeigt sich, dass Auftreten der
Defekte durch die Deformation der Probe verstärkt wird.

Die ω-Phase und solitäre Wellen

Innenzentrierte kubische Kristalle besitzen einen inhärente Instabilität
entlang der dreizähligen Achse, was durch das Verschwinden der Summe
der k-Vektoren im reziproken Raum bei zwei Dritteln der Zonengrenze
verursacht wird. Dies führt bei vielen Materialien zu einem Phasen-
übergang in die ω-Phase.
In unserem Fall ist die ω-Phase nur in einem kleinen Kompressionsbere-
ich stabil (Abs.6.7.2), so dass eine Hin- und Rücktransformation zwi-
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schen ω-Phase und innenzentriert kubischer Phase stattfindet solange
die Phasenumwandlung sich langsamer als die Schallgeschwindigkeit
ausbreitet (Abs.6.4). Wird die Schallgeschwindigkeit überschritten, so
entstehen solitäre Wellen, die im Innern die ω-Phase enthalten. Erhöht
man die Temperatur bei der Simulation, so verschwinden die solitären
Wellen nach und nach.
Bei sehr großen Proben mit einem Querschnitt von 40x40 Atomabstän-
den beobachtet man auch bei niedrigen Temperaturen ein Abklingen
der solitären Wellen (Abs.6.4.4). Betrachtet man die Probe als eine
Ansammlung von Atomketten parallel zur Stoßwellenrichtung, so findet
man, dass die Amplitude der Stoßwellen entlang der Ketten nicht ab-
nimmt, sondern die Korrelation zwischen benachbarten Ketten verloren
geht. Bewegt man sich mit dem Maximum des Drucks in der solitären
Welle mit so beobachtet man, dass diese Front zunächst flach ist, dann
zu fluktuieren anfängt, und am Ende sich einige langwellige Moden
aufschaukeln, die gerade in den Querschnitt der Simulationszelle passen.
Nach solitären Wellen wurde auch in anderen Symmetrierichtungen
gesucht (Abs.6.4.5). Dabei wurde festgestellt, das es in Spiegelebenen
und entlang der vierzähligen Richtungen keine solitären Wellen gibt.
Im übrigen hängt das Auftreten stark von der Methode der Stoßwellen-
erzeugung ab. Um den Einfluss der unendlich starken Beschleunigung
am Anfang der Simulation zu verringern, wurden Simulationen mit
langsam ansteigenden Pistongeschwindigkeiten durchgeführt. Die so-
litären Wellen treten dennoch auf. Sie konnten auch bei Stoßwellen-
simulationen in Eisen mit realistischen Wechselwirkungen beobachtet
werden und waren dort sogar stabiler als in den hier vorgestellten Sim-
ulationen.
Für die Beschreibung der ω-Phase und der solitären Wellen existiert
ein phänomenologisches Landau-Ginzburg-Modell (Abs.6.7), das alle
beobachteten Phänomene voraussagt. Aus diesem Grund wurde die
Anwendbarkeit des Modells untersucht (Abs.6.7.4). Leider wurde fest-
gestellt, dass die Vorraussetzungen für die Landau-Ginzburg-Beschrei-
bung nicht gegeben sind. Auch die Dispersionsrelation der Phononen
(Abs.6.7.3) wurde bestimmt und ein Weichwerden der longitudinalen
Mode gefunden. Allerdings liegt dies nicht bei zwei Dritteln der Zo-
nengrenze sondern fast bei der Hälfte, solange sich die Probe in der
innenzentrierten Phase befindet. Wird sie aber uniaxial komprimiert,
so wandert die Instabilität zum erwarteten k-Wert.
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Solitäre Wellen wurden auch in flächenzentriert kubischen Kristallen
entlang der zweizähligen Achse beobachtet (Abs.6.8). Auffällig ist dabei,
dass es sich ebenfalls um eine Richtung handelt, in der die Atome den
kürzesten Abstand haben. Auch bei den zwölfzähligen Quasikristallen
und Approximanten findet man Ansätze von solitären Wellen senkrecht
zur Grundebene. Hier sind sie aber nicht stabil, da die Atomketten mit
kurzem Atomabstand sozusagen ausgedünnt sind. Es stellt sich deshalb
die Frage, ob solitäre Wellen auch in einfach kubischen Kristallen ent-
lang der vierzähligen Achse existieren. Nun sind aber einfach kubische
Kristalle instabil. Dieses Problem wurde gelöst, indem Wechselwirkun-
gen nicht nur zwischen nächsten sondern auch zwischen zweitnächsten
Nachbarn eingeführt wurden. Es konnten tatsächlich solitäre Wellen
entlang der vier- und zweizähligen Richtung erzeugt werden je nach
dem, ob die kürzeren oder längeren Wechselwirkungen stärker waren.
Zusammenfassend führen diese Beobachtungen zu einem einfachen Mo-
dell: solitäre Wellen in einer bestimmten Richtung treten auf, wenn die
Atome ununterbrochene Ketten mit kürzesten Atomabständen bilden.
Die solitäre Welle stellt einen Stoßpuls wie bei harten Kugeln dar, der
die Atomkette entlang läuft und von eindimensionalen Ketten harter
Kugeln wohlbekannt ist. Die atomaren Ketten müssen dicht gepackt
sein, da sonst die Korrelation zwischen benachbarten Ketten verloren
geht und die solitäre Welle verschwindet.
Die Frage einer analytischen Beschreibung der solitären Wellen wurde
ebenfalls diskutiert. Der Zerfall der solitären Wellen zeigt, dass eine
dreidimensionale Beschreibung notwendig ist. Da solche nichtlinearen
Gleichungen aber nur numerisch lösbar sind, wurde dieser Weg bisher
nicht weiter verfolgt.

Amorphe Strukturen

Bei den diatomaren und bei den monoatomaren Simulationen wurden
auch das Verhalten von amorphen Ausgangsstrukturen mit denselben
Wechselwirkungen und Zusammensetzungen wie bei den Quasikristallen
und Kristallen untersucht (Abs.4.4.9 und 5.4.7). Die amorphen Phasen
wurden durch Abkühlen einer Schmelze gewonnen.
Erwartet wurde, dass es hier keine elastische Hugoniotgrenze gibt, und
dementsprechend keinen Bereich mit elastisch-plastischer Welle, son-
dern dass sich das Material verhält wie eine Flüssigkeit. Bei den binären
Strukturen ist dies tatsächlich der Fall. Die Stoßwellengeschwindigkeit
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ist im ganzen untersuchten Bereich eine lineare Funktion der Geschwin-
digkeit, mit der die Klötze bewegt werden.
Die Stoßwellengeschwindigkeiten bei der monoatomaren amorphen Phase
weichen von der Linearität ab: bei Pistongeschwindigkeiten bis etwa
15% der Schallgeschwindigkeit hat man nichtstationäre dispersive Wellen,
die sich etwa mit Schallgeschwindigkeit bewegen. Erst dann setzt das
lineare Verhalten ein. Eine Ursache für den quasielastischen Bereuch
ist nicht bekannt.

Schlußbemerkungen und Ausblick

In dieser Arbeit konnten erste Ergebnisse von Stoßwellensimulationen
in komplexen geordneten Strukturen berichtet werden. Bei den Quasi-
kristallen konnten tatsächlich neuartige Plastizitätsmoden beobachtet
werden, die nun im Detail in Gleichgewichtssimulationen weiter unter-
sucht werden sollten.
Bisher wurden Modellpotentiale verwendet. Inzwischen sind auch für
Quasikristalle spezifische Wechselwirkungen berechnet worden. Zusam-
men mit verbesserten Modellen sind nun auch realistische Simulationen
möglich.
Für manche Phänomene wie dem Ausheilen der Defekte und dem Er-
reichen stationären Stoßwellenzustände sind noch wesentlich größere
Proben und längere Simulationszeiten notwendig. Hier sei auch noch
auf die Entwicklung des Hugoniostaten hingewiesen, eines Ensembles
zur Gleichgewichtssimulation des Zustands hinter der Stoßwellenfront.
Spekulativ ist auch immer noch die Beobachtung der solitären Wellen.
In den Simulationen wurden sie unter verschiedenen Umständen beob-
achtet und ihre Existenz nach allen Seiten abgesichert. Jetzt wären
experimentelle Untersuchungen sehr hilfreich.
Bisher wurden Stoßwellen nur in dreidimensionalen Quasikristallen stu-
diert und der zweidimensionale Fall vernachlässigt, obwohl ein wohlun-
tersuchtes binäres Modell existiert und die Analyse der Ergebnisse viel
einfacher sein sollte. Diese Simulationen sollen nachgeholt werden.
Eine Zukunftsvision stellt die Simulation der Laserabtragung dar. Hier
treten Stoßwellen, Risse und Versetzungen auf. Zur Simulation wer-
den mehrere Millionen Atome benötigt. Eine besondere Rolle spielt
das Elektronengas bei der Wärmeleitfähigkeit. Sein Einfluss muss mit
finiten Elementen modelliert werden, was bedeutet, dass Multiskalen-
simulationen notwendig werden.



Introduction

With the advent of large massively parallel supercomputers it has be-
come possible to carry out multi-million atom molecular dynamics sim-
ulations. One of the most spectacular applications is the atomistic
scale study of defects generated by shock waves in three dimensions.
Before it was not possible to resolve the details of the defects [101],
and the simulations were limited to four-fold symmetry directions of
fcc crystals. Thus it occurred as a surprise when Germann et al. [72]
found that even simulations of one of the simplest systems, fcc-crystals
with Lennard-Jones interactions, yielded quite complicated phenomena
if shocked along the two- and three-fold directions, for example marten-
sitic phase transitions and non-steady wave fronts. The phenomena are
still partially unexplained [206]. One of the surprises included differ-
ent kinds of solitary wave trains along the three-fold direction. Mean-
while non-steady solitary waves have been observed in bcc-iron along
the three-fold direction by Kadau [118] and by the present author in a
simple cubic structure along the four-fold direction.

Atomistic simulations of shock waves have spread out in different di-
rections: other crystal structures like diamond for example [56,237] are
studied, pre-existing defects [101,26] are built in, and poly-crystals [116]
are simulated. In the present thesis I added yet another direction: the
extension to binary crystal structures and to even more complex aperi-
odic structures, namely the quasicrystals. The wealth of behavior ob-
served indicates that I may have scratched up to now only the surface
of possible phenomena.

The other central topic of this thesis is the study of solitary waves
related to shock waves. Holian and Straub [102,204,97] have treated the
subject in one dimension and have generalized it to three dimensions.
Today two kinds of solitons have to be distinguished: one-dimensional
locked-in solitons and non-steady solitary waves. My simulations for the
first time have revealed solitary waves which require a three-dimensional
treatment since they develop transverse modulations. For the case of
solitary waves in bcc-crystal shocked along the three-fold direction I
could show that they are the super-sonic continuation of a sub-sonic
intermediate phase transition to a hexagonal ω-phase.

The habilitation thesis is devoted to two research communities which
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have nearly no overlap: the community which studies shock compression
of solids, and the people working on quasicrystals. To make the thesis
as comprehensible as possible for both groups I have included sections
on the fundamentals of shock wave physics and on the foundations of
quasicrystals. Each section may seem superfluous for the other group,
but then I ask people to apologize and simply skip the section.
I will start in Part I with a repetition of the general basics of shock
waves in condensed matter. The essential equations required to under-
stand the behavior of shock waves are given and the difference between
shocks in fluids and solids are specified. An overview of the literature
on shock compression of solids follows. The next topic is the state of the
art of large-scale shock wave simulations. I address the methods to gen-
erate shock waves in simulations and shortly characterize our general
purpose molecular-dynamics code IMD suitable for massively-parallel
simulations.
In a short overview the crystallographic characteristics of quasicrystals
are exposed and the path to atomistic structures and new kinds of de-
fects is drawn. The structure models investigated in the simulations
are explained subsequently. A description of the special Dzugutov po-
tential applied in the simulation and a discussion of its phase diagram
follow. Part I ends with the presentation of experimental results related
directly or indirectly to the model materials studied here.
The starting point of my research was to compare the behavior of pe-
riodic and aperiodic materials under the influence of shock waves. Due
to the rather limited number of suitable models I had not many choices.
The outcome of this attempt is the central part of this thesis exposed
in Part II. It is subdivided into three chapters: a diatomic case, a
monatomic case, and the solitary wave phenomena together with the
ω-phase.
If the most frequent icosahedral quasicrystals are to be studied one has
to resort to binary models. It turned out that this is a huge task since
up to now large scale shock wave studies do not exist even for ordinary
crystals. The results on diatomic quasicrystals are given in the first
chapter.
If arbitrary crystal symmetries are permitted a monatomic dodecagonal
model endowed with the special Dzugutov potential [53] can be applied.
The results are the content of the next chapter. The ground state of
this model, however, is not a quasicrystal but an ordinary bcc-phase.
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So I could extend my exploration to a number of crystalline and qua-
sicrystalline phases stabilized by the Dzugutov potential.
The peculiar behavior of shock waves along the three-fold axis of the
bcc crystals leads to the final chapter of Part III: non-steady solitary
waves are observed. Since all attempts to eliminate these waves and
all alterations of the initial conditions were fruitless I have come to the
conclusion that these solitary waves are not an artefact but deserve a
more closer look. Results obtained by other researchers confirm this
opinion [118]. The solitary waves are closely related to a bcc-lattice
anomaly and an intermediate phase transition. Analytical theories for
the transformation [29,30,181,182] have been examined and it has been
shown that generalizations are necessary.
The thesis ends with a consideration of the prospects of shock wave
simulations: its extension to polyatomic materials for example and to
technologically relevant applications like laser ablation.
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Chapter 1

Shock Wave Physics

1.1 Why study shock waves in solids?

The scientific study of shock waves is simply appropriate due to the
fact that they are everywhere and occur in all states of matter [123]:
from the bow shocks of the sun and the earth, from the explosion of
supernovae down to the shock waves that ignite thermonuclear fusion,
cause sonoluminescence or a sonic boom.

If we assume that shock waves exist in solids (which is well known
from experiment, and meanwhile from simulations also) then there are
a number of good reasons to study them in computer simulations:

• Shock waves permit to compute the equation of state under ex-
tremely high pressure and/or high temperature conditions, for
example to look for the metalization of hydrogen.

• Shock waves allow to study the mechanical properties of solids
under sudden load change.

• Shock waves can be used to excite plasticity modes without in-
troducing defects artificially. This can be helpful in the case of
complicated structures like quasicrystals.

Strong enough shock waves will produce defect structures which
can be analyzed post mortem. The generation of extended defects
is also possible.

• Shock waves frequently lead to phase transitions. Thus they per-
mit to study the dynamics of the transition.

We may in sort say with Jim Asay [8]: Shock waves are useful to study
properties of materials which are inaccessible to other methods.
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1.2 The definition of shock waves

The definition of shock waves depends to some degree on the point
of view and on the application. Although it is possible to define shock
waves in continuum models rigorously by their mathematical properties,
namely as an infinitesimal jump, such a definition may not be suitable
for physical applications due to the discrete nature of the atomic struc-
ture. This is true already for fluids where shock fronts always have a
finite width, but even more for solids due to the rigid nature of the
lattice.
Usually shock waves are defined by a moving discontinuity of a physical
observable like pressure, stress, density or material velocity [37]. There
is no problem with this definition in liquids or gases since any value
of the jump of the physical observables at the discontinuity surface is
allowed due to the lack of retention forces. Viscous flow can occur
and steady or stationary waves are permitted. The shock waves can
be described by the Navier-Stokes equations despite the large gradients
which are present at the discontinuity interface [100,104].
In solids there is a problem with this definition since they possess finite
yield strength. If the shock stress is above, then the solid will behave like
a fluid. But shock waves are possible already at lower shock intensities.
Then two waves are observed, namely an elastic precursor wave and a
plastic wave.
According to Boslough and Asay for example [25] (See also Bethe [19])
stable shock waves have to be super-sonic with respect to the unshocked
material and sub-sonic with respect to the shocked state.
If we use the definition that a shock wave is a wave which causes per-
manent rearrangement of the atoms [94] (in contrast to strong elastic
waves), then super-sonic elastic waves which cause transient deforma-
tions are excluded, since only plastic waves lead to permanent modifi-
cations. Another distinction is given by Wallace [217]: In a sound wave
dissipation can be neglected, but not for a shock wave where dissipation
is essential.
We will not be rigorous with our notation, but will call any type of
wave front with an abrupt change of thermodynamic quantities a shock
wave [123].
Dislocations and slip planes with stacking faults for example are gener-
ated by plastic flow and relax the uniaxial stress to hydrostatic compres-
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Figure 1.1: Definition of the basic variables. Unshocked state: P0, V0, E0,
u0 = 0. Shocked state: P1, V1, E1, u1 = up. The interface between shocked
and unshocked moves with the shock wave velocity us. The shocked material
is driven by the piston and moves with velocity up.

sion. In contrast to the fluid the stress will not be relaxed completely
but only down to the level of the yield strength of the material. True
shock waves, which lead to steady profiles [101], have to be accompa-
nied by dissipative, irreversible flow transverse to the shock direction.
The flow is extended due to the dislocations and the stacking faults
for example [93, 101, 94]. In fluids viscous flow is found in the shock
front [100,104]. Thus the flow is localized to a small region.

1.3 Definition of the basic observables

The terminology of shock wave physics originates from the generation of
shock waves by a piston in a tube filled with gas. The same expressions
are used even if we have a solid instead of a gas and a flyer plate or a
laser instead of a piston. The thermodynamic state of the material is
typically characterized by the pressure P , the volume V , the internal
energy E, and a velocity u (Fig. 1.1). The temperatures of the shocked
and unshocked material do not show up directly in the equation of state
(See Appendix A) and are therefore omitted in the figure and anywhere
else. In the unshocked material the observables are indexed with ”0”.
In the standard experiment the unshocked material is at rest: u0 = 0,
and therefore u0 is often neglected. The shocked material is indexed
with ”1” and is driven with the piston velocity u1 = up. Sometimes up

is called particle velocity since it is the velocity with which the shocked
material moves.
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Figure 1.2: Change of state in three basic transformation processes: static
isothermal compression, isobaric heating and shock compression.

There is an important difference between up and us which comes into
play if there are several shock fronts or if the material is pre-shocked
or shocked several times: up is defined in a volume like the state ob-
servables P , V , E whereas us is defined for an interface. In the case of
several shock fronts there is a us for each interface and a up for each
volume in between.

In a solid, the pressure P has to be replaced by the stress Pxx if x
denotes the direction of the shock wave. In shock wave physics the
stress Pxx is frequently called Pxx in analogy with the pressure P .

1.4 The equation of state

As noted in the introduction, shock compression offers new possibili-
ties to evaluate the equation of state of a material. In the pressure-
temperature plane shock compression lies between static compression
and isobaric heating (Fig. 1.2).

Now lets consider a fluid or a material beyond its yield strength. If
the equations of state for isothermal and adiabatic compression in the
pressure-volume (P -V ) diagram with shock compression (Fig. 1.3) are
compared it is found that the growth of the pressure is the strongest
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Figure 1.3: Pressure-volume equation of state of a fluid. The system moves
along I in an isothermal and along A in an adiabatic process. The Hugoniot
curve is denoted by H , and the straight Rayleigh line by R. In a shock
experiment the system starts at 0 and jumps to 1.

in shock compression, provided the starting point is the same for all
processes (here denoted 0).
There is a very important point to note: in an isothermal or adiabatic
process the system moves along the lines in Fig. 1.3. In shock compres-
sion the system jumps from the initial state 0 to the final state (denoted
1). The Hugoniot curve H is now defined as the collection of end-points
of all experiments or simulations starting at the same point 0. Thus the
Hugoniot curve is not an ordinary path of a thermodynamical process. If
the system starts from ambient conditions, the Hugoniot curve is called
”principal”, otherwise ”secondary” or ”reshocked”. In the isothermal
or adiabatic processes the work is the area below the curve. In shock
compression the work is the area below the Rayleigh line (Fig. 1.3).

1.5 The Rankine-Hugoniot equations

The Rankine-Hugoniot equations are the basic equations of shock wave
physics, describing the change of the equation of state across a single
shock front in a simple medium. The equations have been derived sev-
eral times (originally in Ref. [150, 109, 110], reprinted in Ref. [151, 107,
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108]). The Rankine-Hugoniot equations are truly valid in solids only
if the stress is higher than the yield strength. Then the solids are in
a state of hydrostatic thermal equilibrium, more precisely in a steady
state.
The Rankine-Hugoniot equations are the consequence of the conserva-
tion of mass, momentum and energy across the shock front interface. If
ρ is the density, P the hydrostatic pressure, and E the internal energy1

with index 0 on the one side and index 1 on the other side of the dis-
continuity then we may write down the following equations (Compare
Sec. 1.3) with respect to the interface velocity us:

mass conservation:

ρ0us = ρ1(us − up), (1.1)

momentum conservation:

P0 + ρ0u
2
s = P1 + ρ1(us − up)

2, (1.2)

energy conservation:

E0 + P0/ρ0 +
1

2
u2

s = E1 + P1/ρ1 +
1

2
(us − up)

2, (1.3)

where we have already substituted u0 by us and u1 by us − up. If
the compressed state is not hydrostatic, then P has to be replaced by
the uniaxial stress Pxx. Frequently it is assumed that the state 0 is
uncompressed and P0 is set to zero in Eqs. 1.2 and 1.3.
From the conservation equations one can derive the Hugoniot equations:

ρ0/ρ1 = (us − up)/us (1.4)

P1 = ρ0usup + P0 (1.5)

E1 − E0 =
1

2
(P1 + P0)(V0 − V1). (1.6)

If we carry out a simulation with given piston velocity up, initial pressure
P0, volume V0, and energy E0, and measure the shock wave velocity us

1More precisely, E denotes the energy density per unit mass (See for example
[48]), but to avoid confusion we will stay with the common sloppy labeling ”internal
energy”.
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then we can derive from the Hugoniot equations the quantities P1, V1,
and E1 which means that we are able to determine the equation of state.

The equations may be solved for us, up and E1 − E0:

us = V0[(P1 − P0)(V0 − V1)]
1/2 (1.7)

up = [(V0 − V1)(P1 − P0)]
1/2 (1.8)

E1 − E0 = P1upV0/us − u2
p/2. (1.9)

Now we can compute up, us and subsequently E1 − E0 if we know
the pressure-temperature equation of state. Apparently there are two
equivalent representations: instead of the P -V -diagram we can draw
a us-up-diagram (or a mixture of both). The us-up-diagram is often
called Hugoniot diagram.
In the shock wave simulations it is sometimes advisable to work in a
coordinate system where the unshocked medium 0 moves at velocity ui.
Then the Hugoniot equations read [25]:

ρ0/ρ1 = 1 − (up − ui)/(us − ui) (1.10)

P1 − P0 = ρ0(us − ui)(up − ui) (1.11)

E1 − E0 =
1

2
(P1 + P0)(V0 − V1) =

1

2
(u1 − ui)

2. (1.12)

The Rankine-Hugoniot relations may be found in many publications
[156, 25, 1, 14]. Duvall and Graham [48] list generalized equations for
an arbitrary sequence of multiple shock fronts, Henderson [83] com-
pares different coordinate systems, and Davis [34] presents a long list
representations of the Rankine-Hugoniot equations.

1.6 Two wave structure from material rigid-

ity

In a solid, both the P -V - and the us-up-Hugoniot diagram look more
complicated than in a fluid. Discontinuities exist which indicate that
several shock fronts are present at a given time.
There are two major reasons for multiple shocks [76]: either the shock
strength is beyond the dynamical yield strength of the solid (Sec. 1.8),
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Figure 1.4: Hugoniot curve of an elastic-plastic solid. The full line is the
reaction upon shock compression, the dotted line the path for hydrostatic
compression. From [144].

then an elastic and a plastic wave is present, or there is a phase transi-
tion [48], then a plastic wave and a transformation wave are observed.
In both cases the us-up-Hugoniot curves look rather similar. In the
simulations the elastic-plastic behavior (Chap. 4) and an elastic-phase
transformation behavior (Chap. 5) have been observed. A high-pressure
solid-solid transformation has not been found in our model systems.
If a solid is compressed hydrostatically, its volume shrinks and the pres-
sure rises (Fig. 1.4) [156]. The hydrostatic curve is smooth as a function
of stress and volume. If the solid is compressed uniaxially stress and
pressure will also increase until the maximal resolved shear stress of the
material is reached. Then it will yield and change from the uniaxially
compressed state to hydrostatic compression. In the P -V -diagram this
event is visible through a cusp, called the Hugoniot elastic limit (HEL).
The location of the cusp is estimated in Sec. 1.8.
Fig. 1.5 shows schematically the typical behavior of a solid with finite
yield strength. The left part is the P -V -diagram, the right part contains
typical stress profiles. The P -V -diagram can be divided into three parts
with stresses Pa, Pb, and Pc. The borders of the regions are defined by
the points denoted HEL and OD. The latter is the overdrive stress
defined as the end-point of the line continuing the P -V -curve under the
HEL straight on.
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Below the HEL the solid reacts elastically with peak stress Pa. We find
a single jump of the wave pulse in the diagram on the right. Between
HEL and OD a two-wave structure is observed. The stress builds up
as long as the material has not yielded and an elastic precursor wave
is generated with height is PHEL. Subsequently the stress increases in
the plastic precursor part until the final plastic wave follows with peak
stress Pb. Ideally there would be two jumps in the stress profile: the
elastic precursor and the plastic front. In reality the second jump is
smeared out by the plastic precursor in between [216]. Beyond OD is
the overdriven regime. There is still an elastic wave but it is invisible
since the system jumps immediately to the plastically deformed state
at stress Pc.

In experiment and in simulations the plateau stresses Pa, Pb, and Pc

can not last forever. They are released by a so-called rarefaction wave
which cannot be a shock wave due to the stability criteria of shock
waves [25, 19]. While the shock wave sharpens, the rarefaction wave
spreads out in time.

If the wave profile is a time-independent function moving at fixed veloc-
ity, then the wave is called steady. This is true for shocks in the elastic
and overdriven regime as long as the driving pressure has not been re-
leased. In the case of a two-wave profile (Part b in Fig. 1.5) the shock
wave is steady only if the velocity of the elastic and the plastic wave
are the same which is the exception. Thus the wave is non-steady in
general, but the elastic and plastic part taken separately may be steady.

Fig. 1.6 finally represents the correspondence between the typical us-
up- Hugoniot diagram and the P -V - or more generally Pxx-V -Hugoniot
diagram of a solid. The information contained in both plots is the
same since they are related by the Rankine-Hugoniot equations. Usually
we will represent the us-up-Hugoniot since it is easier to obtain in the
simulations.

1.7 Different representations of a stressed

state

A typical shock compression experiment involves simultaneous loading
of all points of a planar surface [75], and leads to a uniaxial deformed
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Figure 1.6: Schematic Hugoniot curves of an elastic-plastic solid showing the
correspondence of the us-up and Pxx-V representations. HEL is the Hugoniot
elastic limit, OD the beginning of the overdriven regime. Upper part: the y-
axis intercept c0 is the longitudinal velocity of sound, the virtual intercept
of the full line is the bulk velocity of sound. Lower part: the long straight
line is the Rayleigh line through the HEL. Below HEL is the elastic regime.
The dots mark the borders of the elastic-plastic regime. Above OD is the
overdriven or plastic regime usually studied in experiment. The open circle
marks a typical elastic-plastic shock. From [95].
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state. If a material can resist shear deformation then this uniaxially
stressed configuration results in shear stresses, as the longitudinal and
lateral stress components are not equal. The stress configuration can be
decomposed into a mean or hydrostatic pressure P and the shear stress
S. Every plane in the body except those parallel or perpendicular to
the shock normal is subjected to shear stress.
The hydrostatic pressure is given by

P =
1

3
(Pxx + Pyy + Pzz), (1.13)

the Pii are the uniaxial stresses (in shock wave physics frequently called
”uniaxial pressures”), Pij = 0, if i 6= j. For isotropic and homogeneous
materials Pyy = Pzz . Therefore

P = Pxx − 2

3
(Pxx − Pyy), (1.14)

and the shear stress is maximized on planes lying at 45 degrees to the
shock normal:

S =
1

2
(Pxx − Pyy). (1.15)

The stress S is called the maximal resolved shear stress. The uniaxial
stresses can be expressed by:

Pxx = P +
4

3
S (1.16)

Pyy = Pzz = P − 2

3
S. (1.17)

1.8 Yield strength of a solid and the Hugo-
niot elastic limit (HEL)

For the elastic shock wave, stress and strain at the shock front are given
by [144,156]:

Pxx = (λ + 2µ)ǫxx, (1.18)

Pyy = Pzz = λǫxx, (1.19)
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where ǫxx denotes the one-dimensional strain component, and λ and µ
are the Lamé constants.
If yielding occurs behind the elastic precursor wave, the shock yield
stress Y can be given by

Y = 2µǫxx. (1.20)

This result is obtained by assuming either a maximal shear stress or the
von-Mises criterion for yielding due to the condition of one-dimensional
strain.
The hydrostatic pressure at the wavefront is defined by

P =

(

λ +
2

3
µ

)

ǫxx. (1.21)

The difference between the Hugoniot curve and the hydrostatic com-
pression curve is given by (Fig. 1.4):

Pxx = P +
4

3
µ ǫxx = P +

2

3
Y =

(

2µ

3
+ λ

)

Y

2µ
+

2

3
Y. (1.22)

This is the value of the stress Pxx at the Hugoniot elastic limit (HEL)
and the factor 2µ/3 + λ = K is the bulk compressibility modulus.
The yield strength includes a rate-dependent parameter and a pressure
dependency as well. It is found that Y is an increasing function of hy-
drostatic pressure. In general the propagation of elastic-plastic waves is
a very complicated phenomenon strongly dependent on material which
can be modeled only roughly by the simple considerations presented
here.
An alternative description is given by the stress components:

Pxx = (K +
4

3
µ)ǫxx, (1.23)

Pyy = Pzz =

(

ν

1 − ν

)

ǫxx. (1.24)

K is the bulk compressibility, ν the Poisson ratio. Then the maximal
resolved shear stress can be written as

S =
1

2
(Pxx − Pyy) = µǫxx =

(

1 − 2ν

2(1 − ν)

)

Pxx. (1.25)
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1.9 Velocity of sound

In the simulation of anisotropic monocrystals the question arises: Which
is the correct velocity of sound useful to scale the shock velocity us and
the piston velocity up such that the Hugoniot curves for shock waves in
different directions can be compared directly? There exist two positive
constants c and s in the expansion us = c + sup + . . . , as shock waves
are always super-sonic and the limit for up → 0 is the velocity of sound
c. Because the velocity of sound is related to an elastic constant E and
the density ρ through c =

√

E/ρ, the question amounts to the correct
elastic constant.
According to Nagayama [144] the velocity c is related to the hydrostatic
or adiabatic bulk compressibility K through c2 = K/ρ. It is the velocity
of a virtual longitudinal sound wave due to the hydrostatic compression.
We call c the bulk sound velocity or hydrodynamic sound speed [189]
and denote it by cb. It is related to the ordinary longitudinal velocity
of sound cl and the transverse velocity of sound ct through

c2
b =

K

ρ
=

K + 4
3G

ρ
− 4

3

G

ρ
= c2

l −
4

3
c2
t . (1.26)

G is the shear modulus. These are the usual statements about the
scaling velocity c found in many references (See for example [180]).
But our simulations show that E should depend on the direction of the
shock wave, which is not possible for K. The problem is resolved by
the observation that most of the authors are experimentalists and deal
with data on isotropic polycrystals in the overdriven regime.
A more careful approach (like the one by Davison [35]) leads us in the
case of isotropic materials already for weak shock waves to

c := cl =
√

(λ + 2µ)/ρ, (1.27)

and for strong shock waves to

c := cb =
√

(λ + 2/3µ)/ρ. (1.28)

For anisotropic materials cl becomes equal to
√

F/ρ, where in the case
of a principal axes coordinate system F = c11, and cb gets equal to
√

(c11 + 2c12)/3, which is a trace and therefore independent of the co-
ordinate system. The elastic constants c11 and c12 are the components
of the elastic tensor in Voigt notation.
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The simulation results show that this is indeed the correct answer: If
scaled with the direction-dependent cl, all curves have the same y-axis
intercept in the Hugoniot plot. If unscaled they fall on one curve if up

gets large (See also Fig. 1.6).

1.10 Dependency of the shock wave behav-
ior on the dimensionality of the sim-

ulation

The behavior of shock waves in one dimension is completely different
from other dimensions [102,204,97]. The reason is the lack of transverse
directions. Plasticity is avoided since the atoms cannot exchange their
positions. Dissipation and thermalization are also not possible.

We want to stress this point here since it has been a matter of long
disturbances between different research groups. Observations related to
the dimensional dependency show up in our simulations and have to be
discussed critically.

In one dimension non-steady waves of growing non-equilibrium material
are observed. There is no plastic flow, only damped non-linear elastic
waves. Thus non-steady profiles are not shocks [217] in the proper sense.

In the simulation of Lennard-Jones crystals it has been observed [101]
that no plasticity is present below up/c0 = 0.25 for shock waves along
the four-fold axis where up/c0 is the piston velocity scaled with the ve-
locity of sound. At this speed the shock strength is approximately equal
to theoretical strength of perfect crystals and it is the shock strength re-
quired to generate partial dislocations. If extended defects are present,
the threshold is reduced down to about up/c0 = 0.1.

The differences between one-dimensional processes and real shocks are
summarized in Tab. 1.1. The last row indicates that ”one-dimensional”
does not necessarily mean one spatial dimension. Shock waves in two- or
three-dimensional samples can behave like one-dimensional if the piston
velocity is too small, or the temperature is too low, or no equilibration
is carried out. Then the transverse coupling is missing.
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Table 1.1: Comparison of one-dimensional processes and more-than-one-
dimensional shock waves [100,217].

1d behavior 2d/3d behavior
shock waves non-steady elastic steady plastic
shock front linear growth finite
thickness
soliton-like yes destroyed

by collisions
thermalized no yes
conditions T = 0 T > 0 !!
for 3d-LJ-fcc up/c0 ≤ 0.25 up/c0 > 0.25

1.11 General literature about shock waves

I am not aware of a basic textbook about shock compression in solids.
But there are a number of notable books and series which contain the
foundations of the shock compression physics of solids.
A complete account of shock waves is given in the ”Handbook of Shock
Waves” by Ben-Dor et al., especially the first volume [18] published in
2001. It contains a history of shock waves, starting in 1759 and ending
in 1945 [123] which is regrettable since the shock wave physics of solids
started more or less in 1945. The history of molecular dynamics simula-
tions of solids began even later with the paper by Tsai and Beckett [211]
in 1966 according to a review by Germann [69].
A few important dates may be noted: In 1860 Riemann published his
theory of waves of finite amplitudes (Über die Fortpflanzung ebener
Luftwellen von endlicher Schwingungsweite). Rankine [150] set up the
basic equations of shock waves in 1870, which together with Hugo-
niot’s contributions in 1887 and 1889 [109,110] are known today as the
Rankine-Hugoniot equations. In 1906 Duhem proved that true shock
waves exist only in perfect fluids with discontinuous fronts according to
Riemann’s and Hugoniot’s theory. Grüneisen [80] proposed his famous
equation of state pv + G(v) = Γ(v)e (v specific volume, e specific inter-
nal energy, Γ(v) 6= f(T ) Grüneisen coefficient, G(v) related to lattice
potential) based on his own work [79] and contributions by Mie [136] in
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1926. In 1942 Bethe [19] calculated the stability of shock waves for an
arbitrary equation of state.

The scientific exchange of shock wave physics has long been hampered
by the Iron Curtain, due to the strategic relevance of shock wave studies
for nuclear weapons. Therefore many researchers are still working in the
national labs in the US, and the same may be true for Russia.

A complete account of shock waves from a Russian point of view pub-
lished originally in 1966 also exists [228].

One of the best sources about shock wave physics in solids currently
available is the series ”High-Pressure Shock Compression of Solids” from
Springer Verlag, edited first by R. A. Graham and now by L. Davison
and Y. Horie. It is part of the more extended series ”High-Pressure
Shock Compression of Condensed Matter” which includes for example
explosives and heterogenous materials. Also notable is the book by
J. N. Johnson and R. Cherét collecting a number of ”Classical Papers
in Shock Compression Science” which are difficult to obtain.

The latest development on the physics of shock waves can be found in
the biannual proceedings of the ”Conference of the American Physical
Society Topical Group on Shock Compression of Condensed Matter”
published in the AIP Conference Proceedings.

1.11.1 Special literature for the present thesis

• A number of lists of reviews of shock compression of solids have
been published by Graham and Davison [76, 77, 38] with a list of
references from 1920 to 1979. A chronological bibliography until
1993 has been given by Asay and Shahinpoor [9].

• The general basics of shock waves may be found in [77, 76, 75, 83,
25, 34],

• and shock waves in solids have been addressed especially in [156,
143,75, 144].

• Mechanical properties, plasticity, dislocations and fragmentation
are treated in [28, 113,78, 15].

• An account on ceramic materials is found in [132,133,13],
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• The Hugoniot elastic limit (HEL), which determines the dynam-
ical yield stress, (HEL) and the different wave forms observed in
shock compression are discussed in [76, 75, 1].

• The equation of state (EOS) is the topic of [1, 192,34].

• Hugoniot data from many experiments are shown in [156,133,14,
189,209].

• Duvall and Graham [48] and Batsanov [13] treat phase transitions
caused by shock waves.

• Reviews of simulations of shock waves in solids exist from Holian
and co-workers [94,101,99,98,70,95] and from Wallace [217], and
from their opponents, MacDonald and Tsai [127]. Robertson et
al. [158] have addressed energetic solids.

• Shock waves in granular materials are reviewed by Nesterenko
[145].



Chapter 2

Simulation of Shock Waves in
Solids

2.1 Shock wave simulations: State of the
art

To review the history of shock waves in general would lead much too
far. The interested reader can find a general presentation for the time
up to 1945 in [123]. A history of later times does not exist, so one
depends on the reviews mentioned in Sec. 1.11. We will present only
certain aspects related to the main topics of this thesis: the simulation
of defect structures and phase transitions in inert materials and the
discussions related to steadiness or stationarity of shock waves. Several
reviews have been written by Holian [94,99,95] on simulations. Thus we
will not deal with shock waves in liquids, gases, plasmas, and energetic
materials, although the latter belong to the solids.
In the ”prehistory” of shock wave simulations only continuum mechanics
and finite element computations have been applied. Therefore no state-
ments about the creation of defects or plasticity on an atomic scale were
possible. It was not even clear whether the fluid case, represented by the
Navier-Stokes equation, could be simulated on an atomic level [104,93]
since microscopic dynamics is time-reversible and dissipative processes
are lacking.
The first molecular dynamics simulations of shock waves where carried
out by Tsai and Beckett [211] in 1966. They studied one-dimensional1

samples and found no plasticity due to that restriction. Later they
extended their work to two- [210,212] and three-dimensional simulations
[213,214], but without new insight. The next important step were three-
dimensional simulations by Paskin and Dienes [147] in 1972. For the
first time they obtained the linear Hugoniot relation us = c0 +sup. The

1The term one-dimensional is used for the dynamical behavior of the system
which indicates that the motion of the atoms was restricted to one dimension. The
spatial dimension of the crystals was three.
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Figure 2.1: Simulation result from Holian [93]. The diagonal stripes are
defect bands wrapped periodically around the simulation cell.

problem with these simulations was that the temperature was set to
zero, therefore a one-dimensional behavior with non-steady waves was
observed again. The claim now was that steady shock waves could not
at all exist in solids.

The long-standing debate was finally resolved by Holian and Straub in
a number of papers [102,103,204]. They could show that it is necessary
to equilibrate the samples, and that a certain minimal piston velocity
is required to induce plasticity and to generate steady shock waves.

The question on how dislocations are generated and how this leads to
plasticity seemed to be solved when Holian [93] in 1988 carried out sim-
ulations of shock waves along the four-fold direction in an fcc crystal
equipped with Lennard-Jones potentials. He found steady shock waves
and a plasticity mode realized by stacking faults. The slipping of the
material caused the relaxation of the uniaxial stress into a hydrody-
namically compressed state. The problem with these simulations was
the small size of the simulation cell which leads to a back-folding of the
stacking faults and to a periodic array of defects (Fig. 2.1). Thus it still
was not known what really happens for weak shock waves.

The next major step which confirmed the results from 1988 were the
first multi-million atom simulations by Holian and Lomdahl [101] in
1998. Now the sample was large enough that the interaction of the
stacking faults could be neglected. At stronger shock waves a whole net-
work of independent partial dislocations and stacking faults was found
(Fig. 2.2). Another important result was that the threshold of steady
shock waves could be lowered considerably by extended defects.

This paper kicked off a wave of new shock wave simulation studies. The
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Figure 2.2: First multi-million atom simulation of shock waves by Holian
and Lomdahl [101].

question of plasticity appeared to be solved now even for weak shock
waves and the mechanisms probably rather simple. Thus the very com-
plicated results found by Germann et al. [72] came as a surprise: They
studied for the first time shock waves in fcc crystals along two- and
three-fold directions and obtained non-steady shock waves, oscillatory
behavior, solitary waves, martensitic transformations, and delayed plas-
ticity, i.e. uplastic 6= uelastic (Fig. 2.3). A number of detailed studies fol-
lowed about the defect structures in fcc crystals, for example by Hirth
et al. [89], Maillet et al. [129], Tanguy et al. [206], and Germann et
al. [73]. The last two papers could for the first time demonstrate how
dislocation loops are created and stacking faults are formed. Up to then
there had been several models for plasticity, especially mechanisms for
dislocation generation (See for example [198, 135, 219, 141], and more
recently [134,74]), some models even requiring super-sonic dislocations.
These models had never been tested, but now they can be compared to
simulations. Beyond shock waves, high-speed generation of dislocations
in fcc materials has been studied by Schiøtz et al. [187, 188].

For completeness we mention a Russian group [7,230,231,232,233,234,
235]. which also contributed important results to the study of fcc crys-
tals with Lennard-Jones potentials, especially to the shock-melting pro-
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Figure 2.3: Hugoniot plot of fcc-crystals with Lennard-Jones interactions.
From Germann et al. [72].

cess. Ravelo et al. [152] used the constant-stress Hugoniostat to deter-
mine the shock melting location in the phase diagram of the Lennard-
Jones potential more precisely.
Further developments include the simulation of other structures, for
example by Kadau et al. [115, 116, 117] who studied bcc with EAM-
potentials for iron, Elert, and Zybin et al. [56, 237] who worked on
diamond structures, and the results presented in this thesis. It is no
longer possible to keep track of all new developments [26, 16, 17, 46].
The latest account of the present state has been given by Holian [96].
All these studies were concerned with monocrystalline samples where
nanosecond time-scales are sufficient. Simulations of polycrystalline
samples, which are much closer to application, have also been attempted.
But they still represent a major challenge. The results obtained even
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for the largest samples with up to 24 million atoms have not yielded a
steady state [70, 95] since time-scales of microseconds are required.

2.1.1 The Hugoniostat

One important new development deserves to be mentioned here, al-
though it has not been applied in the present thesis. The simulations of
shock waves is a dynamical process, i.e. non-equilibrium molecular dy-
namics (NEMD) simulations are required. The time a simulation lasts
is dictated by the size of the sample and the propagation time of the
fastest shock front. Sometimes it would be desirable to simulate smaller
samples but for longer times in order to observe for example relaxation
processes of defects or phase transitions.
This suggestion can be realized with a new ensemble, the so-called Hugo-
niostat which has been developed by several people [200,201,128,129].
Closely related to this development is another approach by Reed et
al. [153, 154].
The idea of the Hugoniostat is to equilibrate the sample first and then
to apply modified equations of motions in such a way that the system
moves on a Hugoniot curve E − E0 = 1

2 (P + P0)(V0 − V ). Thus one
has an equilibrium (EMD) simulation and the simulation time and size
of the sample are decoupled. The method can be combined with other
constant observables, like volume or pressure and energy or tempera-
ture. Versions for Gaussian [200, 201] and Nosé-Hoover-type [128, 129]
ensembles have been presented. The method of Reed et al. even permits
to simulate several phases and metastable states.
Since the Hugoniostat methods are very new they still have to be tested
thoroughly. Up to now the methods have been applied in a detailed
study of the piston velocity dependency of the defect structures gen-
erated by a shock wave: A fcc crystal supplied with Lennard-Jones
potentials has been shocked along the four-fold axis [128]. It is not
clear whether the defect structures obtained in this way are the same as
for dynamical simulations [95]. The best implementation of the Hugo-
niostat and a comparison of different versions can be found in [152].
With the Hugoniostat it will be possible to solve some of the problems
caused by long-time relaxation especially in the diatomic simulations
(Chap. 4) but maybe also to anneal the transformed crystals in the
monatomic simulations (Chap. 5). The problem could be a modification
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Figure 2.4: Different choices of the coordinate system (From [100]). The
piston velocity is up, the velocity of the shock front us.

of the plasticity or transformation modes. No such difficulty is present
for amorphous materials, and therefore they supply the best example
to test the Hugoniostat.

2.2 Shock wave generation

Shock waves in computer simulations can be observed from different
viewpoints. First of all there are different choices of the coordinate
systems. In the first case the unshocked material is fixed (Fig. 2.4,
top). In the second case the shocked material is at rest (Fig. 2.4, center)
which permits to time-average the shocked material. In the third case
the shock front is at rest which allows to average the properties of the
shock front, but it requires the a priori knowledge of the shock front
velocity. The averaging, however, is not possible if there are several
wave fronts with different velocities.

2.2.1 Impact simulations

The simplest method to create shock waves is the impact method (Fig.
2.5). The setup is similar to the experiment where a flyer plate is
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Figure 2.5: Impact simulations. “pbc” means periodic boundary conditions.
The velocity of the flyer plate is uimpact, the speed of the shock wave us.

shot onto a sample. The flyer plate has a fixed kinetic energy, and is
stopped after collision. Therefore it will always lead to a time-dependent
behavior of weakening shock waves. Since the shock front propagates
into the material, will lead to position dependent damage. The method
works well for meteorite impact or laser pulses but is not suitable to
study defects caused by stationary shock waves. Simulations of binary
quasicrystals carried out with the symmetric impact method have been
reported in Refs. [168,166,164,167].
If the flyer plate is kept moving at constant speed, then the setup is
equivalent to a piston compressing a sample at rest at speed up =
uimpact, thereby creating a shock wave at speed us.

2.2.2 Symmetric impact simulations

Instead of shooting a thin plate onto a massive sample one can use two
blocks of equal size. But there is still the problem of non-stationarity: If
a fixed amount of kinetic energy is attributed to each moving block they
will slow down as the energy is transformed into heat, and the piston
velocity will change. Therefore it is better to keep the mobile block
moving at constant speed after collision, or – in a symmetric way – to
move both blocks at constant speed (Fig. 2.6). In the simulation the two
parts are moved towards each other at constant velocities ±up. Two
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Figure 2.6: Symmetric impact simulation: colliding blocks. Notations are
as in Fig. 2.5.

shock waves are created at the central plane where the blocks collide
and propagate through the compound sample at velocities ±(us − up),
where us is the required shock velocity. The advantage of this method
is that we can generate stationary states. A drawback is the moving
shock front, therefore an averaging with respect to the shock front is
not possible. Furthermore, we are always simulating two shock waves
at a time which can be helpful sometimes since we can compare the
results of both shock waves, and in the case of non-crystalline material
they need not be identical.

2.2.3 Momentum mirror

The last disadvantage of the former method can be avoided if one of
the blocks is replaced by a momentum mirror (Fig. 2.7). When the
atoms reach the mirror, their velocity component parallel to the shock
direction is inverted. Instead of keeping the mirror fixed it is possible
also to move it at any desired speed, for example such that the shock
front is stationary. One shortcoming of the mirror method is that it
introduces a perfectly rigid boundary which may cause side effects. Such
effects are clearly visible in the layering of the atoms near the mirror
(See Chap. 5) and in the orientation dependency of the solitary waves
(See Chap. 6). In general, and far from the mirror, it has been shown
that the symmetric impact method and the momentum mirror yield
equivalent results. The shock wave velocities, for example, and the
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Figure 2.7: Momentum mirror. Notations are as in Fig. 2.5.

defect structures are identical.

2.2.4 Other methods

In our simulations we have employed the collision and the momentum
mirror method. For completeness we will also mention other methods
which have been applied frequently. In the methods presented up to now
there is always at least one open boundary. This can be avoided in the
shrinking-boundary-method, where the periodicity parallel to the shock
front is reduced continuously during simulation such that the material
in between is compressed uniaxially [95].

The last method is the so-called ”ramjet” method [238] which works
like a conveyer belt: at the one end of the simulation box new material
is generated and equilibrated. It moves continuously into the central
region, where it is shocked. At the other end of the simulation box the
shocked material is discarded. Usually the coordinate system is set up
such that the shock front is stationary. Then the velocities are given in
Fig. 2.4, bottom. This method has first been applied by Klimenko and
Dremin [226]. The advantage is that in the case of steady waves it is
possible to average the observables over a long time, and one can get
good statistics even for rather small systems.
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2.3 Boundary conditions

Closely related to the shock wave generation methods are the boundary
conditions. Since the shock compression leads to increasing pressure,
one has to keep the borders of the simulation box fixed or to apply
periodic boundary conditions. Free boundaries are not possible. In the
unshocked part of the box open boundaries are also possible, but in the
shocked part they would lead to non-steady waves as has been observed
by chance when the simulation box was not chosen properly, or even to
an exploding simulation box.

For ordered aperiodic materials it is not possible to apply periodic
boundary conditions directly. In the case of quasicrystals the solution
is well-known: there is an irrational quotient of the two sets of linearly
independent reciprocal lattice vectors which is replaced by a rational
number (Sec. 3.1). The quasicrystal is transformed into a rational ap-
proximant which is an ordinary crystal with a large unit cell. Thus it
is possible again to identify the parallel boundaries of the unit cell and
to apply ordinary boundary conditions.

2.4 Molecular dynamics simulations

All the simulations have been carried out with IMD, the ITAP Molecular
Dynamics Simulation Package [202,173]. IMD is a simulation program
that supports a large number of serial and parallel computers. Paral-
lelization is implemented geometrically by subdividing the simulation
box into cells and distributing them on different computing nodes. The
administration is carried out by the linked-cell-method. Therefore IMD
is especially suitable for simulations with short-range interactions, like
pair or EAM potentials, three-body potentials and covalent bonding.
Long-range interactions are only supported in the serial version. De-
pending on the computer available, IMD can be run with MPI and/or
OpenMP.

A number of thermodynamical ensembles, like NVE, different kinds of
NVT, isotropic and anisotropic NPT are available. Special features in-
clude modules which support for example crack, shock or heat transport
simulations.

Details about the implementation, parallelization, and further develop-
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ment of IMD can be found in [202, 173, 81, 168, 20, 184, 67, 179]. The
latest developments are published on
www.itap.physik.uni-stuttgart.de/˜imd.
For the shock simulations a NVE ensemble was used. Equilibrations
were performed with the NVT-Nose-Hoover and NPT-Andersen ensem-
ble, depending on the volume or pressure to be fixed. At low tempera-
ture and low pressure the differences between NVT and NPT equilibra-
tion are marginal.
Beyond molecular dynamics it is also possible to use IMD to optimize
the potential energy of a structure. For the quenching of the shocked
samples IMD provides the microconvergence (mic) and the global con-
vergence (gloc) method. In the first case an atom is moved if its velocity
vector points in the direction of a minimum, otherwise its position is
kept fixed and the velocity is set to zero. In the second case the global
force in configuration space is used to figure out whether all atoms are
moved or not. If a sample is close to equilibrium, the gloc method works
much better than mic, especially if one tries to remove the kinetic en-
ergy. For the shocked structures, however, it was necessary to reduce
the energy with the mic method first and then to minimize it with the
gloc method.
The simulations presented in this thesis have been run on different com-
puters lasting from single and double CPU PCs up to massively parallel
supercomputers like the Cray T3E.
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Chapter 3

Structures and Potentials

3.1 Quasicrystals

This section is devoted to people who are not familiar with quasicrys-
tals. Only the major differences between crystals and quasicrystals
are presented. For a deeper introduction to quasicrystals the textbook
by Janot [112] and the collection of reviews from the winter school in
Alpe d’Huez [88] are recommended. The latest research can be found
in the report by Trebin about the German “Schwerpunktprogramm
Quasikristalle” [207] and the Proceedings of the 8th International Con-
ference on Quasicrystals [149].

Quasicrystals have been discovered by Shechtman in 1982, but it took
until 1984 that the first publication was accepted [190]. The first sam-
ples where only micrometer-sized, and so many people doubted the ex-
istence of equilibrium quasicrystals. Today, however, it is possible to
grow centimeter-sized perfect single quasicrystals!

What is so special about quasicrystals? The starting point is their pe-
culiar diffraction patterns (Fig. 3.1). It has sharp Bragg peaks which
clearly indicates that quasicrystals possess long-range order. But the
symmetry in the present example is decagonal and it is well-known that
symmetries other than two-, three-, four-, and six-fold are forbidden in
crystals since they are not compatible with periodicity. Thus quasicrys-
tals cannot be periodic. Together with the incommensurate crystals
they form the group of aperiodic structures. In ordinary crystals there
is a set of symmetry related shortest distance vectors between the Bragg
peaks and all other vectors are sums of it. In quasicrystals there are
at least two such sets of vectors with an irrational quotient of their
lengths. As a consequence there should be Bragg peaks everywhere in
the diffraction diagram. The discrete diffraction pattern is caused by an
envelope function which reduces the high-index spots to below visibility.
But if the intensity of the diffraction beam is increased, more maxima
will become visible.

Up to now quasicrystals have been found with icosahedral (i), decagonal
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Figure 3.1: Diffraction patten of a decagonal quasicrystal. From Urban et
al. [215].

(d), dodecagonal (t) and octagonal (o) symmetry. Many quasicrystals
are aluminum alloys. Some alloys may occur with several symmetries.
A few well-known examples are i,d-AlPdMn, i-AlCuFe, i-AlCuLi, d-
AlCuCo, d-AlNiCo, d-AlNiFe, t-TaTe, o-VNiCr.
Icosahedral quasicrystals have morphologies of icosahedrally symmetri-
cal polyhedra (Fig. 3.2) whereas decagonal quasicrystals occur in long
decagonal needles.

3.1.1 Tiling models

How can we describe the internal structure of quasicrystals? An ordi-
nary crystal possesses a single unit cell which is decorated with atoms.
The crystal consists of one repeating unit cell. To build quasicrystals at
least two different cells are required (Fig. 3.3). The cells or tiles must
be placed face to face without gaps and overlaps. There are several
methods to produce an infinite quasicrystal:

• the grid method, where the intersection points of symmetrically
placed sets of regular grids are dualized to get the cells,
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Figure 3.2: Quasicrystal morphologies. Left: AlCuFe dodecahedra, from
Audier and Guyot [10], right: AlCuLi triacontahedra, from Dubost et al. [45].

• the inflation method, where for each tile a subdivision is defined
into smaller copies of the same prototiles, and rules are defined to
repeat the subdivision infinitely, and

• the projection method, where the tiling is produced through a
cut of a higher-dimensional periodic crystal. Each lattice point is
decorated with a polytope, and the intersection with the physical
space produces the vertices. The tiles are the intersection of the
cell boundaries of the higher-dimensional periodic lattice.

The dimension of the higher-dimensional crystal is given by the number
of rationally independent indexing vectors of the diffraction pattern. In
the case of icosahedral quasicrystals for example a six-dimensional space
is required. A two-dimensional pentagonal tiling like the one in Fig. 3.3
can be produced from a five-dimensional hypercubic lattice1. For do-
decagonal quasicrystals a five-dimensional space is needed, consisting
of a four-dimensional space into which the two-dimensional aperiodic

1Actually, a four-dimensional lattice would be sufficient since all basis vectors
sum up to zero, but then the lattice would not be hyper-cubic but the analog of the
two-dimensional hexagonal lattice
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Figure 3.3: Pentagonal Penrose rhomb tiling. A fat and a skinny rhombus
are marked.

plane is lifted plus a one-dimensional space along which the aperiodic
planes are stacked.

The higher-dimensional embedding is very helpful since it permits to
translate many concepts like dislocations or Burgers vectors from ordi-
nary crystals directly to quasicrystals.

3.1.2 Defects in quasicrystals

If a crystal or quasicrystal is deformed plastically parts of the lattice are
shifted with respect to one another, typically along a plane (See Fig. 3.4
for a two-dimensional example). If a crystal is sheared by a Burgers vec-
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Figure 3.4: Shearing in a crystal and in a quasicrystal. Left: in a crystal
the structure is unchanged if a part of the crystal is shifted by a Burgers
vector. Right: in a quasicrystal it is not possible to bring all lattice plains
into coincidence if a part is shifted by the real-space component b‖ of a Burgers
vector. A perp-space component b⊥ will be left over.

tor, the resulting structure is equivalent to the original crystal. There-
fore the material is not weakened. In quasicrystal Burgers vectors exist
also, but they are lattice vectors of the higher-dimensional embedding
space. The components in real and perpendicular space taken sepa-
rately do not lead to proper lattice translations. Therefore only some
lattice planes will coincide as shown in Fig. 3.4, but defects (red circles)
will be left over. The defects cause a weakening of the quasicrystal and
may change the properties from ductile to brittle behavior.

3.1.3 New defect types

In a quasicrystal new types of defects exist in addition to ordinary ones
like vacancies, interstitials, dislocations and stacking faults, due to the
aperiodicity of the structure. The most important are the following:

• Jags (red circles in Fig. 3.4): these are the sites where lattice lines
or planes are broken by a shift of a part of the sample by a Burgers
vector.

• Phason walls are formed by the jags. They are similar to stacking
faults in ordinary crystals. Due to the aperiodicity a dislocation
has to be connected to a phason wall much like a partial disloca-
tion is connected to a stacking fault.
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Figure 3.5: Simple flip in a tiling model where tiles exchange their places.
In a real structure the tiles are decorated with atoms and the motion of the
atoms characterizes the flip.

• Flips: The jags can move transversal to the phason wall such that
the walls get broadened. Jumps of the atoms lead to the exchange
of tiles. (Fig. 3.5). Flips are similar to diffusion processes in
ordinary crystals.

• Phason clouds: if there are many defects and elevated tempera-
tures then the phason walls are completely smeared out. Not only
the shear planes but also the dislocations are accompanied by jags
and flips leading to a polaron-like behavior.

3.2 Quasicrystal models

After the definition of the cells these must be decorated with atoms.
Since we are dealing with three-dimensional simulations we will present
two simple, but realistic three-dimensional models in detail. These are
the models which will be used in the shock wave simulations in Chaps. 4
and 5.

Two-dimensional models are also available [124,221] which have success-
fully been applied in many computer simulations like the motion of dis-
locations [208,139], fracture in perfect quasicrystals [138,202,140,137],
and fracture in random tilings [178,177].
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3.2.1 Tetrahedrally close-packed phases

Quasicrystals are subdivided into two major classes [85]: the AlMn-
class, which is rather loosely packed and typically contains tetrahe-
dral and octahedral atom arrangements, and the Frank-Kasper-type
quasicrystals where all atoms are arranged in non-regular, topological
tetrahedra.

The Delaunay decomposition is a cell division of an arbitrary set of
points which is obtained if the well-known Voronoi decomposition (equiv-
alent to the Wigner-Seitz cell construction in reciprocal space) is du-
alized. The edges of the Delaunay cells are the vectors which are per-
pendicular to the faces of the Voronoi cells [162]. Structures consisting
of tetrahedral Delaunay cells are called tetrahedrally close-packed (tcp)
phases. The Frank-Kasper-type quasicrystals belong to this class, along
with bcc since the dual of the truncated octahedra Voronoi cells are in-
deed distorted tetrahedra.

The last example leads us to tcp-phases in a narrower sense, namely
the Frank-Kasper phases [191]. For these it is not only required that
the cells are tetrahedra, but that along a common edge only five or
six tetrahedra meet. Edges with six tetrahedra are called disclinations,
edges with four tetrahedra anti-disclinations. Bcc crystals have no reg-
ular edges. The edges in the four-fold direction are anti-disclinations
and the edges in three-fold direction disclinations. Therefore, bcc does
not belong to the Frank-Kasper phases. The first neighbor shells of the
Frank-Kasper phases form four polyhedra: an icosahedron, or 14-, 15-,
or 16-vertex polyhedra, all with triangular faces only. It is easy to show
that these are the only convex polyhedra with this property.

A subgroup of the Frank-Kasper phases are the Laves phases which con-
sist of icosahedra, 14- and 16-vertex cells only, and can be generalized to
the binary quasicrystals treated in the next section. Laves phases can
have cubic (C15) and hexagonal (C14, C36)2 symmetry, equivalent to
the fcc-, hcp- and dhcp-structures. Other members of the Frank-Kasper
phases are the square-triangle-phases which consist of icosahedra, 14-
and 15-vertex cells, and may be generalized to the monatomic qua-
sicrystals treated in Sec. 3.2.4. A few important members will also be

2C14, C15, and C36 are the names of the Laves phases in
the Structure Reports / Strukturbericht See for example http://cst-
www.nrl.navy.mil/lattice/struk/index.html.
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described in this section.

3.2.2 The cubic Laves phase and diatomic icosahe-
dral models

The first step of the construction of the quasicrystal structure is the
cubic Laves phase. It is a periodic arrangement of prolate rhombohedra
(Fig. 3.6, right). The rhombohedra are decorated with small atoms at
the corners and the mid-edge centers and with two large atoms along
the body diagonal dividing it in the ratio 3:2:3. Vertex and edge atoms
possess an icosahedral neighbor shell and the large atoms are 16-fold
coordinated. The large atoms of the Laves phase generate a diamond
structure, the small atoms form a corner-connected network of regular
tetrahedra. The edges of the rhombohedra are two-fold [110]-axes, the
long body diagonal is a three-fold [111]-axis. The short body diagonals
form the [100]-direction which are no true four-fold axes since the crystal
symmetry is Fd3m.
The next step is the TI-model3. It is a quasiperiodic arrangement of
the prolate and oblate rhombohedra (Fig. 3.6) on the standard three-
dimensional icosahedral tiling [122]. To obey the different symmetry
the prolate rhombohedra are slightly distorted with respect to the ones
in the Laves crystal. They are decorated as before, but the large atoms
now subdivide the body diagonal in the ratio τ :1:τ , with τ the golden
mean (1+

√
5)/2. The oblate rhombohedron contains only small atoms

at the corners and mid-edge centers [174].
In the quasicrystal models the edges point along five-fold axes, the face
diagonals of the cells are two-fold axes, and the long body diagonal is a
three-fold axis. Strictly speaking, the TI-model is not a perfect Frank-
Kasper phase since there are a few anti-disclinations in the center of the
oblate rhombohedra [87, 162].
The third step is the BI-model4. It has been created since the TI-
model has two drawbacks: the oblate rhombohedra form under-dense

3TI stands for truncated icosahedra, also known as Bergman clusters, a prominent
structural feature of the model. A Bergman cluster is a polyhedron which looks like a
soccer ball. The polyhedron contains successive shells of an atom, an icosahedron, a
dodecahedron, a second icosahedron and a soccer-ball polyhedron. Bergman clusters
occur at the places where 20 prolate rhombohedra meet at a common vertex.

4BI denotes binary icosahedral (model), also known as Henley-Elser model.
Bergman clusters are found at nearly all the tips of the prolate rhombohedra and
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Figure 3.6: Oblate and prolate rhombohedron. Left: the x marks the atom
around which 10 oblate rhombohedra fit together. The atoms marked with
the + form a puckered decagon, around which the ring processes occur. Right:
the atoms marked with o denote the intersection points of the [100]-direction.

and therefore unstable regions (due to the anti-disclinations), the stoi-
chiometry is wrong if real quasicrystals are to be described, and crys-
talline approximants have different structural properties. Henley and
Elser [87] modified the TI-model by replacing compounds of two oblate
and two prolate rhombohedra wherever possible by a rhombic dodeca-
hedron (Fig.3.7). The outer hull of the compound and the dodecahe-
dron are identical, but in the interior four large and five small atoms
are usually replaced by eight large atoms which are placed at the cor-
ners of a hexagonal bipyramid. Depending on the quasicrystal modeled
((AlCu)Li or (AlZn)Mg) the apex atoms (green in Fig. 3.7) are large or
small atoms. In the case considered in this thesis they are large atoms.
The BI model is still not a prefect Frank-Kasper phase since there are a
few single oblate rhombohedra left. The oblate rhombohedra can never
be eliminated completely, but their number may be minimized as in the
canonical cell model [86].

We have produced a fourth model which does not belong to the Frank-
Kasper structure class but should be mentioned here since it was formed
from a Laves crystal in the process of melting, equilibrating, quenching,

the rhombic dodecahedra (Figs. 3.6 and 3.7). They form a network with connections
along two- and three-fold symmetry axes.
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Figure 3.7: The rhombic dodecahedron. The atom marked with an x and
its symmetry-equivalent copies are the primary sites of flips. The large green
atoms are also very mobile. The atoms marked with + and o are secondary
sites for diffusion.

and decompression to ambient pressure. It will be used for the simu-
lations of a diatomic amorphous phase and is simply referred to as the
diatomic amorphous model. The four structures have a rather similar
composition: The crystal and the amorphous solid carry the structure
formula A2B, the composition of the TI quasicrystal is A0.764B0.236,
and the composition of the BI quasicrystal is A0.629B0.371.

The Henley-Elser model has been derived from the crystal structure
of (AlZn)49Mg32, and works rather well for this type of quasicrystals.
An even better model would require a modification of the decoration.
Equivalent sites are no longer decorated by the same atoms but that
there is a certain probability for an occupation with different types of
atoms. A slight shearing of the rhombohedra parallel to the five-fold
axes and a reorganization of the cells as rhombic prisms leads to a class
of decagonal models [169] which indicates the close relationship between
the icosahedral and the decagonal symmetry.



3.2 Quasicrystal models 43

Local atomic rearrangements

Atom jumps occur in the TI model in equilibrium simulations already
[173]. They also play a major role in the shock wave simulations. Start-
ing point are the oblate rhombohedra. If ten copies of these cells are
put together at the edge marked with an x in Fig. 3.6, then the atoms
marked with the + form a puckered decagon centered around an edge.
The analysis of the local potential shows that the atoms can move almost
freely around the decagon. This motion will be called a ring process. It
is possible to replace pairs of oblate rhombohedra by one prolate rhom-
bohedron. The rings are broken into parts and we speak of chains. The
free motion of the atoms along a chain is strongly reduced but it is not
completely impossible. If the TI structure is transformed into the BI
structure, all rings and most of the chains are replaced by dodecahedra
and the ring processes are suppressed entirely. There are, however, a
few single oblate rhombohedra, and the atoms marked with the x in
Fig. 3.6 can still exchange their places. Consequently flip processes still
exist in the BI-model. Other jumps can occur around the dodecahedra.
The atoms marked with the x in Fig. 3.7 are the remainder of the oblate
rhombohedra, furthermore, the atoms marked green have a lot of free
space around them. Thus exchange processes of the green atoms and
the atoms marked with the x occur. A few jumps to the atoms marked
with o and + have also been observed.

3.2.3 Other applications

The TI-model and the BI-model have been used in various computer
experiments on quasicrystals, for example cooling simulations to gen-
erate quasicrystals [175], diffusion studies [165, 92], simulations of the
generation and mobility of dislocations [40, 186,184], and fracture sim-
ulations [179,159,160].

3.2.4 Square-triangle-phases and monatomic dode-
cagonal models

The σ-phase is an ordinary Frank-Kasper phase with squares and tri-
angles as basic motives. Together with other related phases and the do-
decagonal quasicrystals they have been described in detail by Roth [170].



44 Structures and Potentials

Figure 3.8: Possible vertex configurations in square-triangle tcp-phases.
From left to right: A-phase, Z-phase, H-phase, and σ-phase.

The unit cell of the σ-phase can be subdivided into cells which look
like equilateral triangles and squares if projected onto the basis plane
perpendicular to the four-fold direction (Fig. 3.8). Two squares and
three triangles meet at each vertex in such a way that the squares have
no common edge. The arrangement of the atoms can be read off from
Fig. 3.8: the vertices of the squares and triangles are decorated with
atoms at z = 0 and z = 1/2 (dotted circles). These are the basic A
layers. The edge centers of the squares are alternatively decorated at
z = 1/4 and z = 3/4 (filled and empty circles). The interior of the
squares contains four additional atoms. Atoms nearest to each other in
projection are placed in different layers. The atoms at the edge centers
of the triangles are all either at z = 1/4 or at z = 3/4, the interior
atom is again in the layer not occupied by the edge atoms. The atoms
at z = 1/4 and z = 3/4 form the B- and B̄-layers, respectively, which
are locally equivalent up to translations and rotations. The atoms at
the vertices of the tiles are 14-fold coordinated, while the atom in the
center of the triangles is 15-fold coordinated. The remaining atoms
on the edges and in the interior of the square are 12-fold coordinated
non-regular icosahedra. Since all coordination shells have a triangular
surface, all atoms are tetrahedrally close packed.

Other combinations of squares and triangles are also possible. There
are three additional phases in which all vertices are of the same type
(Fig. 3.8) [172]. These phases are less stable than the σ-phase, so they
will not be considered further. If more than one vertex type is allowed
the number of possible phases grows very rapidly, even for crystalline
structures [39].

The quasicrystal is built of the same square and triangle tiles. In this
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Figure 3.9: Original and additional tiles observed in the square-triangle
tcp-phases.

thesis random tilings have been studied only although it is possible to
construct perfect quasicrystals with the help of matching rules or by
inflation [203]. In the quasicrystal model the tiles of the primary layer
are arranged in such a way that the structure has dodecagonal symmetry
on average. The B- and B̄-layers have hexagonal symmetry only. They
are mapped onto one another by the twelve-fold symmetry.

Generalization

It is possible to introduce additional tiles, for example the hexagons
(Fig. 3.9), and to construct more general quasicrystalline structures, but
they will not be considered here in detail since these configurations are
not as stable as the σ-phase and the pure square-triangle tilings. A more
elaborate treatment may be found in [172]. Additional tiles are observed
in crystalline samples already (Fig. 3.9). Especially rhombi may occur
as localized defects or represent grain boundaries. The rhombi are not
stable if they form pairs or larger aggregates. The two hexagons have
not been observed in crystals. They may be viewed as transition states
which can split into the other tiles.

Figure 3.10 represents a special approximant of a quasicrystal which
has been chosen as a representative picture since most of the tiles and
vertex configurations are present.

True Frank-Kasper phases contain squares and triangles only, since the
rhombi and the hexagons do not formed the 12-, 14-, 15-, and 16-fold
coordinated polyhedra only.
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Figure 3.10: Part of a dodecagonal quasicrystal. The atoms in the basic
A layers z = 0 and z = 1/2 are dotted. The black atoms are in the B layer
at z = 1/4, the white atoms are in the B̄ layer at z = 3/4. The edge length
is usually of the order of 2a, where a is the nearest neighbor distance, but
depends on the interaction between the atoms.
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Figure 3.11: The most important flips in the generalized square-triangle
tilings. Top line: two rhombi + triangle ↔ triangle + square. Central line:
flip of a square, a rhombi and two triangles. Bottom line: rotational flip
inside a hexagon. Other flips can be found in [172].

Local rearrangements

Local rearrangements of tiles in generalized square-triangle quasicrystals
in equilibrium have been studied by Roth and Gähler [172]. The number
of flips is increased by the shock wave similar to the case of the diatomic
quasicrystals.

In one type of flips a triangle and a square transform into two rhombi
and a triangle (Fig. 3.11). In another instance a rhombus, two triangles
and a square form a three-fold symmetric hexagon. Even the situation
where a symmetric hexagon is transformed into a starlike interior and
three rhombi has been seen in the shock wave simulations. In equilib-
rium this arrangement has not been stable. Other configurations are
observed which necessitate more complex tiles but they will not be dis-
cussed in detail.
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3.3 Shock wave experiments on quasicrys-
tals and Laves crystals

No shock wave experiments of quasicrystals have been reported up to
now. The only publications we are aware of are high-pressure studies of
icosahedral AlMn (first quasicrystal class), where no transitions have
been observed, and pressure induced amorphization and subsequent
crystallization of AlCuLi (Frank-Kasper-type quasicrystal) [3, 4, 142].
There are also a number of more recent high-pressure studies which
demonstrate the high strength of quasicrystals [120]. But the high-
pressure studies do not lead to the high temperatures typical for shock
waves.

Decagonal T-phase5 quasicrystals and approximants have been gener-
ated by quenching under high pressure. The materials investigated in-
clude AlCoMn [157], AlMnYb [220], and AlCoNiTb [205].

3.4 The Dzugutov potential

Dzugutov has invented his potential [53,49] to study the glass transition
of monatomic liquids. It turned out that this potential has a number of
interesting properties, especially that it stabilizes monatomic dodecago-
nal quasicrystals.

Although Dzugutov [50] has obtained a quasicrystal by cooling a melt,
the quasicrystal is not a ground state for this interaction at zero tem-
perature. Another crystal structure, namely the σ-phase, which may be
regarded as a low-order quasicrystal approximant, is more stable than
the quasicrystal. But it has been shown that the ground state at zero
temperature is a bcc crystal, and the stable structures at low tempera-
ture and high pressure are even close-packed fcc- or hcp-phases! Upon
heating at low pressure bcc, the σ-phase and the quasicrystal phases
are stable up to rather similar melting temperatures. This is the reason
why shock-wave simulations have been carried out with these structure
models and the Dzugutov potential.

5Like the dodecagonal models treated in this thesis they are quasiperiodic in a
plane and periodic in the third direction.
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Figure 3.12: The Dzugutov potential as applied in the shock wave simula-
tions.

3.4.1 Description of the potential

The Dzugutov pair potential [49], plotted in Fig. 3.12, was originally
defined by

Φ(r) = Φ1(r) + Φ2(r), (3.1)

where

Φ1(r) =

{

A(r−m − B) exp
(

c
r − a

)

, r < a

0, r ≥ a,
(3.2)

and

Φ2(r) =

{

B exp
(

d
r − b

)

, r < b

0, r ≥ b,
(3.3)

with the parameters:

m A c a B d b
16 5.82 1.1 1.87 1.28 0.27 1.94

The potential is characterized by a minimum at r = 1.13a of depth
−0.581ǫ, having the same form as that of the Lennard-Jones poten-
tial, followed by a maximum at r = 1.63a of height 0.460ǫ, designed
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to prevent the system from crystallizing into simple crystal structures.
Beyond the maximum the potential tends to zero continuously and is
cut off at a range of rc = 1.94a which ensures that CPU times remain
within reasonable limits.

In the present study we use a rescaled version of the potential with the
minimum at r = 1.061a and depth −1ǫ. The minimum is followed by a
maximum at r = 1.5282a and V = 0.7906ǫ. The cutoff radius now lies
at rc = 1.805a.

A potential similar in shape and with a related idea in mind has been de-
vised by Silberstein and Clapp [194] to describe the behavior of marten-
sites. Both potentials are nearly identical up to the point of inflection,
the only difference is that the maximum in Silberstein and Clapp’s po-
tential is considerably larger than in Dzugutov’s version. The maximum
lies at r = 1.619 at height 1ǫ, and the cutoff radius rc is 2.135a. The
phase diagram for Silberstein and Clapp’s potential has not been de-
termined, but they claim that both fcc and bcc are stable, with bcc
favored at low and fcc at high densities.

3.4.2 Other applications

Dzugutov et al. have used their potential on various occasions to study
supercooled liquids and amorphous materials [49, 50, 51, 52, 53, 54] and
to compare them to crystals [195,196].

Roth and Gähler studied diffusion and flip diffusion in dodecagonal
quasicrystals [171,172].

Modifications of the Dzugutov potentials, which favor other alloys like
γ-brass for example, have also been introduced [229].

Most recently the original potential and modifications of it have been
applied in the study of polytetrahedral atomic clusters by Doye et al. [42,
43].

3.4.3 The phase diagram of the Dzugutov potential

Stable structures for the Dzugutov potential have been obtained by
Roth with molecular dynamics simulations and by Denton with density
functional methods [170]. The high-temperature structure of the phase
diagram of Dzugutov potentials with reduced maxima has been obtained
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Figure 3.13: Temperature-pressure phase diagram for the Dzugutov poten-
tial.

by Roth [163]. Meanwhile the low-temperature phase diagram has been
improved with the help of direct free enthalpy calculations [161].

At low temperatures and pressures the bcc-phase is stable in a very
small triangular pocket between kT = 0/P = 0, kT = 0.4ǫ/P = 0, and
kT = 0/P = 5.5P0 (Fig. 3.13).

Close-packed phases with different stacking sequences are largely de-
generate due to the short range of the potential which interacts only
up to the third neighbor shell. These phases are stable above about
P = 6P0. The phase boundary moves slowly to higher pressures with
increasing temperature and reaches P = 10P0 at kT = 1ǫ (kT = 1.02ǫ
is the melting temperature of the σ- and the bcc-phase at P = 0).

The σ-phase appears to be the stable phase below P = 6P0 and above
the domain of the bcc-phase. Care must be taken here, however, since
with increasing temperature other tcp-phases and especially the qua-
sicrystal phase may become more stable than the σ-phase due to the
additional entropy caused by the freedom to (re-)arrange the tiles. The
location in the phase diagram where the quasicrystal phase has been
discovered is indeed included in the stability domain of the σ-phase [50].

For shock wave simulations carried out at low temperatures the phase
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Figure 3.14: Phase diagram of the Dzugutov potential at T = 0. Three
stable phases at different densities: bcc, the σ-phase, and fcc.

behavior at T ≈ 0 is interesting (Fig. 3.14). From the curves we can
determine the pressures at which the phase transition should occur in
equilibrium.

3.4.4 Iron phase diagram

Topologically, the phase diagram of iron [6,44,21,48] and the Dzugutov
materials are similar with respect to low temperatures (Fig. 3.15). In
both cases the low pressure structure is bcc (α-iron) and the high pres-
sure phase a close-packed structure. But there is no σ-phase in iron,
and the phase boundary between fcc and bcc ends at a triple point
with fcc (γ-iron). On the other hand, the bcc-phase with the Dzugutov
potential is metastable in the whole range of existence of the σ-phase.
But there is another connection to the σ-phase since the prototype is
the alloy Fe54Cr46.
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Figure 3.15: Phase diagram of iron. Alpha is the bcc-phase, Epsilon the
hcp-, and Gamma the fcc-phase of iron. From [44].

3.5 The ω-phase

The high-temperature phase of the group-IV elements Ti, Zr, and Hf
is bcc, usually called the β-phase. These elements, their alloys and
the β-phase alloys of the noble metals exhibit a phase transition with
correlated atomic displacements into an ω-phase. The phase transition
occurs both isothermally and athermally. It is reversible and cannot be
suppressed by rapid quenching [218]. The ω-phase forms small ellip-
soidal inclusions (≈ 1.5nm), aligned along the [111]-direction (See for
example Fig. 32 in Ref. [218]). Cubical morphologies also occur [222].

It would be interesting to compare the ellipsoidal inclusions with the
relics (“bullets”) of the decaying solitary wave observed in our simula-
tions (Chap. 6). But such a comparison requires much larger samples
than the ones examined until now since only one bullet is created in
these simulations.

The ω-phase is a hexagonal two-layer structure which generated from
the three-layer bcc through the collapse of two adjacent layers. If the
three layers of bcc are called A, B and C, then the perfect ω-phase is
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Figure 3.17: A unit cell of the ω-phase. The colors indicate different layers,
not different kinds of atoms.

generated if the B and C layers are shifted to the same w-coordinate
(Fig. 3.16) where they form a hexagonal network.

Fig. 3.17 represents a unit cell of the ideal hexagonal ω-phase. The red
atoms form triangular layers, the blue atoms hexagonal layers at half
height. If the blue atoms are not at the center we obtain the trigonal
or crumpled ω-phase. In alloys the different kinds of atoms usually
occupy the red and blue sites at random even if they have the right
stoichiometry for an ordered alloy.

The formation of the ω-phase has also been observed in shock wave
experiments of Ta and TaW alloys [106]. In this case the transformation
is caused by inhomogeneous shear together with deformation twinning.
Furthermore, a shock-induced phase transition has been reported in Zr
from hcp to ω [199]. It is believed that the transition occurs by shearing
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Figure 3.18: Schematic phase diagram of the chemical elements Ti, Zr, and
Hf. From Ref. [2].

via hcp → β → ω. For a review of shock wave studies of Ti, Zr, and Hf
(and other metals) involving hcp, bcc, and the ω-phase see Ref. [192].

The ω-phase is usually considered to be metastable, but it occurs as
a stable high-pressure phase in the phase diagram of Ti, Zr and Hf
(Fig. 3.18). For these materials, the low pressure α-phase has hcp
structure and the high temperature phase is the β-phase (bcc) [148].
Ahuja et al. [2] have studied the stable crystal structures of Ti, Zr, and
Hf. The phase diagram obtained is in agreement with the experimental
results except that they find that bcc becomes stable again at the high-
est pressures. First principle calculations of 4d-transition metals [68]
show that energy of the ω-phase should be close to bcc for Y, have a
transition for Zr and should be unstable for Nb.

The basic source about the occurrence of the ω-phase in materials6,
its formation by cooling or compression, and its properties is still the
review by Sikka et al. [193].

6The only case where the ω-phase has been found in the iron-chromium system
is mentioned in a study of anomalous x-ray scattering by Reinhard et al. [155].
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3.6 The bcc-lattice anomaly

Falter et al. [59, 60, 58] have shown that the dip of the longitudinal
phonon modes in bcc crystals at 2

3 [111]2π/a is due to an intrinsic geo-
metric effect caused by the cancellation of certain Fourier components
in reciprocal space. This effect can be reduced or enhanced by elec-
tronic effects. Ho et al. have studied the vibrational frequencies of
bcc transition metals [90, 91]. They could show that the softening of
the longitudinal phonon modes at 2

3 [111] depends on the interatomic
forces. It is decreased for Mo, normal for Nb, but strongly enhanced
for Zr. Their results agree very well with experiment. For Zr they find
a clear instability of bcc due to the longitudinal phonon mode.
The bcc anomaly can help to explain that the solitary waves and perhaps
also the ω-phase show up for simple pair potentials and for specific EAM
potentials since it shows that the interactions may play a lesser role.
Noda et al. [146] and Zhorovkov and Kulagina [236] have presented
an elaborate study of all kinds of phonon softening in bcc. There are
various cases which lead from bcc to the ω-phase and by martensitic
transitions to fcc or hcp. All these instabilities are induced by transverse
modes and do not play a role in our simulations. The only exception is
the longitudinal mode with ideal wave vector 2

3 [111]2π/a which leads to
the ω-phase. This is the mode observed in the shock wave simulations.



Part II

Simulations of Complex
Structures





Chapter 4

Shock Waves in the Cubic
Laves Phase and in Binary
Icosahedral Quasicrystals

4.1 Overview

Shock waves have been simulated in the cubic Laves phase C15, in re-
lated Frank-Kasper-type (AlCu)Li quasicrystals, and in an amorphous
solid of the same composition and potential parameters. The goal of
this study was to generate shock waves in periodic and aperiodic struc-
tures and to compare their behavior. The expectation was that new
types of defects would show up in aperiodic materials. Binary models
were studied first since all naturally occurring quasicrystals are at least
binary and we wanted to treat a realistic quasicrystal.

Three regimes are observed in the Laves phase: At low shock wave
intensity the system reacts elastically, at high intensities it turns dis-
ordered. In the intermediate region the velocity of the elastic wave
saturates and an additional plastic wave appears. Extended defects are
created which form a network of walls of finite width. The crystallites in
between are rotated by the shock wave. If the samples are quenched a
polycrystalline phase is obtained. The size of the grains decreases with
increasing shock wave intensity until complete fragmentation occurs in
the third regime.

The behavior of the quasicrystal models is similar, except that there is a
continuous transition from a quasi-elastic behavior to the plastic regime.
Ring processes are observed which break up into open paths when the
shock wave energy grows. The transition to a complete destruction
of the structure is continuous. In the amorphous solid a linear us-up-
relation is found over the whole range of piston velocities. Two regimes
are present, with unsteady plastic waves at weak shock strengths and
steady waves in the range coinciding with the upper regime in the or-
dered structures.
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4.2 Introduction

Shock wave experiments and simulations are valuable tools to expose a
solid to strong uniaxial stress and to introduce defects without explicitly
constructing them. Defects generated by shock waves have been studied
in monatomic crystals to some depth [72,128,117,206]. The shock stress
relaxes to an energetically more favorable hydrodynamically compressed
state for example by slippage or phase transformations. Often stacking
faults are created which permit a direct detection of the slippage.
For an ordinary crystal structure it is rather easy to construct slip
planes and stacking faults and to analyze them. This is not the case
for quasicrystals. If geometric constructions are used, complicated and
rather arbitrary procedures have to be carried out to create for exam-
ple dislocations and associated extended defects. These problems may
be avoided if shock waves are studied: Now the structure itself selects
the defect planes and the Burgers vectors. A drawback may be that
most often high-energy defect structures are created, which may not be
representative for slow deformations and low-energy plasticity.
The first goal of the present study was to find out whether quasicrys-
tals behave different than other materials if they are traversed by shock
waves. Many real metals and alloys as well as fcc model crystals with
Lennard-Jones interactions, if shocked along the [100] direction [72],
show a rather universal behavior with respect to the shock front veloc-
ity. This is true for quasicrystals, binary crystals and binary amorphous
solids in the case of strong shock waves. For weak shock waves a devia-
tion is observed due to elastic precursor effects. A similar deviation has
been found recently for fcc crystals [72] along the [110] and the [111]
directions.
The second goal was to find out if new kinds of defects occur in the
quasicrystal. Often stacking faults are observed which are the trace of
the slippage. Twinning and martensitic deformations are also very com-
mon. In quasicrystals all these defects are allowed but additional types
of defects are possible: flips, where a few atoms change to alternative
sites, phason walls, where after slippage the aperiodic sequence of lattice
planes does not fit anymore, or transformations to crystals and approx-
imants. It turns out that in the models studied here the defects which
show up in the quasicrystals are indeed different from those expected
for monatomic crystals but that they are similar to those in the closely
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related binary Laves crystal. Weak shock waves merely cause elastic
distortion whereas strong shock waves destroy the structure completely.
Therefore they both will not be studied in detail. We will concentrate
on the defect structures generated in the intermediate range.
The relation between the shock wave velocity us and the piston veloc-
ity up is studied in detail for shock waves along all major symmetry
directions. The question of steadiness of the wave profiles will be dis-
cussed. The defects accompanying the transition from elastic to plastic
behavior will be described for the four-fold crystalline1 and the two-
fold icosahedral direction. Further results have already been published
elsewhere [164,166,167].
The influence of the ordered structure on the effect of shock waves
is addressed in the last section where shock waves in an amorphous
material with the same composition have been simulated. In contrast to
the crystal and the quasicrystal the Hugoniot curve is almost perfectly
linear, but there are also steady and unsteady waves.

4.3 Models, interactions, simulation details

4.3.1 The structure models

The structure models investigated in this chapter have been described
already in detail in Sec. 3.2.2, except for the amorphous sample. Four
models are used: the C15 Laves phase, the TI-model, the BI-model
and an amorphous sample which has been generated from a crystalline
sample by melting, quenching, equilibrating, and decompressing.

4.3.2 The interaction

The interactions were modeled by Lennard-Jones potentials for two rea-
sons: first of all, there are currently no specific potentials available for
quasicrystals of the Frank-Kasper-type. Secondly, we are not interested
in the first place in the behavior of a specific material but in the general
damage caused by shock waves. It may be argued that the Lennard-
Jones potential is not well suited for alloys, but we will comment on

1The [100]-direction will be called four-fold axis for short although the space
group of the C15 Laves crystal, Fd3̄m, contains no four-fold rotation axis but only
four-fold screw and roto-inversion axes.
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this objection later in the discussion (Sec. 4.5). The radii of the poten-
tial minima have been adjusted to the average of the shortest AA, AB
and BB distances. Such distances will be called bonds. The potential
parameters are rAA = 1.0542a, rAB = 1.23034a, and rBB = 1.20395a,
where a is half the edge length of the tiles. The cut-off radius for the
potential was rC = 3.07476a = 2.5rAB. The depth of the potentials
interacting between atoms of the same type is −ǫ, and −2ǫ for atoms
of different types. Since the potential parameters have been optimized
for the TI-model, the coordinates of the Laves phase had to be rescale
by 1.027 and of the BI-model by 1.0064 to obtain uncompressed ini-
tial states. With these potentials, the binding energy is 11.478ǫ for the
TI quasicrystal, 12.478ǫ for the BI quasicrystal, 12.974ǫ for the Laves
crystal, and 10.564ǫ for the amorphous solid.

4.3.3 Preparation of the samples and simulation de-
tails

The shock simulations were carried out in a NVE ensemble. Equilibra-
tions were performed with the NVT-Nose-Hoover and NPT-Andersen
ensemble, depending on the the volume or pressure to be fixed. The
shocked samples were quenched first with the microconvergence (mic)
method and then with the global convergence (gloc) method subse-
quently. The two-stage quenching process was necessary due to the
large energy input during shocking.
The sample sizes ranged from 20,000 up to more than a million atoms for
both crystals and quasicrystals. The samples are long rods with cross-
sections between 14×14 to 61×61a2 and lengths between 100 and 260a.
For the amorphous solid we used samples with 80,000 atoms and size
160 × 14 × 14a3. To permit periodic boundary conditions the perfect
icosahedral quasicrystals is replaced by an orthorhombic approximant.
After the samples were generated they are equilibrated for a time in-
terval of usually ∆t = 10t0 (small samples sometimes up to ∆t = 30t0)
at kT = 0.001ǫ and pressure P = 0.01P0. A typical simulation lasts
∆t = 60t0. When the shock waves have passed through the samples
they are quenched to T = 0 to remove the random displacements of the
atoms caused by the heating and deformation. Of the order of 10,000
steps are typically required for the quenching.
Most runs were carried out with the symmetric impact method, except
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for a few test runs with the momentum mirror method. No significant
differences have been observed.

4.4 Results

Only a representative description of the results for the Laves crystal
and the different quasicrystal models will be given in this section. Most
of the results can be represented best by a series of pictures. Since we
think that it would be too disruptive to display the pictures here, we
have postponed them to a separate section where they can be studied
side by side. A few single pictures will be repeated here to explain the
results obtained from them.

4.4.1 Elasticity and anisotropy of the sound waves

In linear elasticity icosahedral quasicrystals behave elastically isotropic
whereas the cubic Laves crystals are anisotropic. We have computed
the elastic constants for a number of directions by quasi-static uniaxial
deformation of the samples. The (quasi)-longitudinal velocity of sound
is then given by cl =

√

F/ρ where F is the elastic constant for uniaxial
deformation and ρ is the density. For the Laves crystal indeed a strong
anisotropy is found (The indices are the lattice directions): cl[100]] =
14.29v0, cl[111] = 12.81v0, cl[110] = 13.20v0. The relation 4cl[110] −
3cl[111] = cl[100] for cubic crystals is fulfilled. For the TI quasicrystal
the velocities of sound along the major symmetry directions are cl2 =
12.22v0, cl3 = 12.29v0, cl5 = 12.21v0. For the BI quasicrystal they are
cl2 = 9.88v0, cl3 = 10.00v0, cl5 = 9.95v0. The velocity of sound of the
amorphous solid is c0 ≈ 10v0. If all directions are taken into account an
anisotropy of about 2% is found for the Laves crystal while only 0.2%
are calculated for the TI quasicrystal and 0.8% for the BI quasicrystal.
An explanation for the larger anisotropy of the BI samples may be
that their icosahedral ”quality” is worse since the modification of the
structure is more severe.
In the elastic shock wave regime the relation us = aup+b holds between
the velocity of the shock wave us and the piston velocity up. If the
strength of the shock wave goes to zero, the velocity us should be the
velocity of an elastic sound wave. The constants b derived accordingly
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are indeed close to the velocities of sound cl obtained from the quasi-
static computations for all directions that have been studied in the
simulations.

4.4.2 Pressure profiles and steadiness of the profiles

Nature of the wave fronts

The behavior of the samples with increasing shock strength can be sub-
divided into three regimes with respect to the observed wave fronts.
The criterion is the steadiness of the wave profiles.
Here we will shortly sketch the three different regimes occurring in the
simulations. Details about the pressure profiles and the us-up-relation
follow in the next sections.
In the simulations presented here, a single steady elastic wave front is
observed below us/cl ≤ 0.3. Between us/cl = 0.3 and 0.6, a two wave
structure is found. More precisely, the previous elastic front is turned
into an elastic precursor which reaches a steady state during simulation,
followed by a continuously spreading plastic precursor. A steady plastic
front is not present. Above us/cl = 0.6, steady waves are occurring. A
steady elastic wave front is immediately followed by a steady plastic
front moving at the same speed. With increasing shock strength, the
elastic precursor in the second regime develops continuously into the
steady plastic front in the third regime by steepening of the profile.
Although the plastic profiles in the second regime are non-steady, the
structure itself reaches a steady state at the center where the shock
waves started. This indicates that the uniaxial pressure and the shear
stress converge to a finite value and the structure relaxes.

Pressure profiles

During simulation, the distributions of the instantaneous pressures av-
eraged over the cross section of the samples are computed as a function
of the propagation direction x and time. From the uniaxial components
Pxx, Pyy, and Pzz the hydrostatic pressure P = (Pxx + Pyy + Pzz)/3
and the shear pressure S = Pxx − (Pyy + Pzz)/2 can be derived. In
the following we will concentrate on the uniaxial pressure Pxx and the
shear pressure S. The shape of the pressure profiles as a function of
the piston velocity up fits exactly into the three regime picture set up
in Sec. 4.4.2. The results are as a rule identical for all samples and all
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directions, therefore they will be presented summarily. Differences will
be pointed out where appropriate.
In the first elastic regime Pxx and S rise sharply at the shock front
and stay constant along the sample (Fig. 4.1 and 4.2, Laves crystal).
The samples are compressed uniaxially, and no plasticity is observed.
In the Laves crystals up to four oscillations with an amplitude of half
the plateau value and a wavelength of about 7a are found. They are
not present in the quasicrystal and are similar to the locked-in solitary
waves described for example by Germann et al. [72].
In the second regime where defects are created, the wave profile as a
whole does not become steady during simulation (Fig. 4.1 and 4.2, TI
quasicrystal at up/cl = 0.37). The shear pressure S rises sharply, but
then it decays continuously the whole way down to the center of the
sample. The uniaxial and the shear pressure at the center of the sample
drop during simulation, indicating a relaxation of the structure. But if
us/cl is larger than about 0.25 for the TI model and 0.4 for the Laves
crystal, a constant value is reached after some time, indicating that the
structure has reached a relaxed state. There is a remarkable difference
between the quasicrystal models and the Laves crystal: In the qua-
sicrystal S falls of directly behind the shock front whereas in the Laves
crystal a plateau exists which proves that the elastically compressed
sample breaks and plasticity sets in with delay. The uniaxial pressure
Pxx behaves somewhat complementary: Instead of the sharp rise and
slow decay it grows slowly until it reaches a plateau at the location
where S has dropped to about the half of its peak value. If up is larger
than 0.45 in the case of the Laves crystal, the convergence of Pxx and S
to a constant plateau can already be anticipated. In the Laves crystal
the oscillations of the profile in the elastically compressed part of the
sample as described in the first regime are still observable.
In the third regime the curve of the shear pressure S resembles the
shape in the second regime at a first glance, but now the profile is
clearly steady (Fig. 4.1 and 4.2, TI quasicrystal at up/cl = 0.62). The
shear pressure first rises sharply at the shock front, but then it drops
within a fixed interval of 10 to 15a to its final plateau value. The
uniaxial pressure Pxx grows slowly within the same range. Hence the
plastic destruction sets in after only a very short elastic reaction.
In a liquid the shear pressure S should drop to zero after shock com-
pression since there is no shear elasticity and the liquid can flow freely.
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Figure 4.1: Shear pressure S of three samples representative for the three
regimes.
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Such a behavior is certainly not found in our simulations, neither in the
second, nor in the third regime. The shear pressure is a monotonously
rising function of the piston velocity up with changing slopes in the
three regimes. It is expected that S will drop due to relaxation pro-
cesses. But they are too slow to be observed on the simulation time
scale.

4.4.3 The Hugoniot relation us-up in general

The velocities us of the wave fronts were determined in two ways: either
from the slope of the wave fronts in time-distance contour plots, or
directly from histograms of the uniaxial or shear pressure with time
as a parameter. Two factors limit the accuracy: Often there are large
fluctuations of the pressures, and sometimes slow relaxation phenomena
occur leading to decreasing wave velocities and changing pressures. The
fluctuations are caused by the discrete nature of the sample which leads
to a strong variation of the number of particles in the histogram bins.
This problem is even more severe in the case of the aperiodic, but well
ordered quasicrystals. The fluctuations can be avoided to some degree
by averaging in a comoving frame, but only if the wave profile is steady.
The relaxation phenomena themselves can only be avoided by much
longer simulation times which also require much larger samples lying
beyond our current computing capacities. It must be stressed, however,
that larger simulations are not expected to lead to qualitatively new
results since relaxed states can be obtained at the center of the samples
if the shock strength is not too small.
In Fig. 4.3 we present the typical form of a us-up-Hugoniot plot for
shock waves in the Laves crystals along the four-fold direction and in
the TI quasicrystals along the two-fold direction, respectively. The BI
quasicrystals show similar behavior. The curves are characteristic for
a material which reacts elastically below a certain threshold. Then
delayed plastic deformation sets in until at high shock intensities the
structure is destroyed directly behind the shock front.
At low piston velocities elastic shock waves and a material-dependent
gradient are observed. The slopes (us − cl)/up are 3.1 for the crystal
and about 2.6 for the quasicrystals. The values are independent of the
starting temperature of the sample.
The crossover from delayed to immediate plastic behavior takes place
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Figure 4.3: Shock vs. piston velocity. At low piston velocity (quasi-)
elastic behavior is observed. Between up/cl = 0.3 and 0.6 approximately
a crossover to the plastic shock wave and finally the change of slope to a
material-independent value is found. The velocities up and us are scaled by
the velocity of sound cl valid for the different directions.

between 0.3 and 0.6 up/cl. The elastic front from the first regime is
turned into an elastic precursor wave. Its height first decays slowly but
it becomes steady during simulation. The elastic front is followed by
a non-steady plastic precursor. The velocity given in Fig. 4.3 is not a
shock front velocity, but the velocity of half height between the peak
value of the shear pressure and its value at the center of the sample.
This velocity is not half of the speed of the elastic wave, since the
relaxation of the shear pressure is nonlinear across the sample. The
half-height velocity is presented since it demonstrates how the sample
switches from non-steady to steady behavior across the second regime.

At high piston velocities above about up/cl = 0.6, the material-inde-
pendent plastic behavior occurs and steady shock waves are found. The
elastic wave front is followed immediately by the plastic wave. In this
regime the finite yield strength of the solids does not play a role any
more.
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In the whole range from up/cl = 0.2 up to up/cl = 1.0 at least, an addi-
tional elastic wave front is observed at the beginning of the simulation,
moving with a velocity that has a constant slope (us − cl)/up = 3.1 for
the crystal and 2.6 for the quasicrystal respectively, the same velocities
as in the elastic regime (This wave is not shown in Fig. 4.3). It repre-
sents an elastic ”one-dimensional” precursor wave. After a simulation
time of t = 0.05t0 the precursor wave vanishes and the ordinary elastic
and plastic wave fronts take over. Obviously it takes a certain time
interval until the coupling between the shock wave direction and the
transversal directions becomes effective.
The Hugoniot curves obtained in the simulations do not depend on the
sample cross-section and on the length of the rod as long as the shock
wave has not penetrated the whole sample during simulation time and
no interference with reflected waves has taken place.
In the crystal the crossover from elastic to plastic behavior occurs at
shock wave intensities higher than in the quasicrystal. One reason may
be that the local environment of a single atom is more symmetrical,
while the opposite holds for the averaged environment. The transition
to plastic behavior has to break the local symmetry to couple the normal
and the transverse directions. The trigger are the random fluctuations
induced by temperature, and the mechanism works better for lower site
symmetry. A further reason will be presented in Sec. 4.4.8.
Usually there are sharp kinks in the Hugoniot plot between the different
regimes if a phase transition occurs, with a flat gradient in the central
part. The reason for the rather weak change of the slope in our case at
about up/cl = 0.6 may be on the one hand the difficulty to determine us

accurately. But on the other hand there is no clear distinction between
the second and third regime since we do not have an ordinary phase
transition but a fragmentation of the sample with decreasing grains.
The third regime is reached when the fragment size is of the order of
a few interatomic distances. The reason why there is no kink between
the first and second regime for the quasicrystals will be discussed in the
Sec. 4.4.8.

4.4.4 Orientation dependency of the us-up-relation

Fig. 4.4 shows the Hugoniot plot for various propagation directions.
In the TI-quasicrystals the curves along six different directions are all
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Figure 4.4: Orientation dependency of the shock vs. piston velocities. The
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they are not marked individually. For the Laves crystal, the velocities along
the four-fold direction differ from the other orientations which on their part
are again quite similar. The velocities up and us are scaled by the velocity of
sound cl valid for the different directions.
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identical within the error bars if scaled with the velocity of sound for
these directions. The result is a first hint that the plasticity modes are
the same for all directions in the quasicrystal.
For the Laves crystal, the curves for shock waves propagating along the
the three-fold and two-fold axes and in the direction perpendicular to a
mirror plane are rather similar whereas a significant deviation exists for
shock waves along the four-fold direction. The difference between the
curves in the second and third regime vanishes, however, if the velocities
of the shock waves are scaled with the individual sound velocities. As
in the case of quasicrystals, we conclude that there is no basic difference
in the plasticity modes for the different shock propagation directions.

4.4.5 Dependency of pressure and stress on the shock
strength

Complementary to the us-up-Hugoniot diagram is the representation of
pressure and stress with respect to the piston velocity up. We have plot-
ted three observables: the hydrodynamic pressure P and the maximal
shear stress Se at the center of the sample. Since we have applied the
symmetric impact method, this gives us the stress at the position where
the system had the longest time to relax. As described in Sec. 4.4.2,
no steady behavior could be achieved in the elastic-plastic regime. The
third value is the maximal peak value Sp of the maximal shear stress
at the elastic front. It occurs before the material yields. The end of the
elastic or quasi-elastic regime are clearly visible around up/cl = 0.43
for the Laves crystal (Fig. 4.5) and up/cl = 0.25 in the case of the qua-
sicrystal (Fig. 4.6). The distinction between the elastic-plastic and the
overdriven regime is not so sharply determined in agreement with the
us-up Hugoniot data.
The curves for the Laves crystal and the quasicrystal models are plotted
for several directions in the same graph. It is obvious that the scatter
of the data is in the same range as the direction dependency. The data
for the quasicrystal models also show that P and S are independent of
the specific model. The main difference between the Laves phase and
the quasicrystal models exists in the (quasi-)elastic regime, where the
ring processes (See Sec. 4.4.8) lead to a reduction of the stress already.
The increasing maximal shear stress S beyond up/cl = 0.5 for the qua-
sicrystal models and up/cl = 0.6 for the Laves crystal indicates that the
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simulation time is too short or the samples are too short, respectively,
for the system to relax completely.

4.4.6 Analysis of defects

Defects in quasicrystals are much harder to analyze than in ordinary
crystals. In a crystal there is usually only a small number of different
atom sites and a small number of neighborhoods. After a modification
of the crystal it is easy to compare the status of an atom, for example
its potential energy and the number of neighbors, to the allowed values
in an ideal structure and to figure out which atoms belong to a defect.
Such a procedure is not possible in a quasicrystal. Certainly, the envi-
ronments of the atoms can be classified if only near neighbors are taken
into account. In each class the atoms have another binding energy. But
even in simple models like the ones considered here there exist of the
order of 40 ideal environments which often differ very little from one
another. Thus it is challenging to find out whether a change in the
binding energy is due to a defective environment. To solve the problem
we have tabulated the binding energy of each atom at the beginning of
the simulation and compared the instantaneous binding energy to the
stored value. Since the atoms vibrate around their equilibrium position
and exchange kinetic and potential energy one has to introduce a tem-
perature dependent tolerance interval for the binding energies. There
are, however, still two possibilities if a change has occurred: the atom
has jumped into another allowed neighborhood class, or it has become
a defect atom.
Since shock waves generate large changes in energy, these classification
methods do not work well for quasicrystals and also not for crystals.
There is a second reason for the failure: the defects are not localized,
but extended. We tried out several other indicators, but none worked
well. The best we could find was a rescaling of the sample after the shock
wave has passed, in such a way that the distances between the initial
and final position of the atoms were minimized. The minimization can
easily be carried out qualitatively by trial and error if the displacement
vectors are plotted as in Fig. 4.7. Then the scaling is varied until the
vector lengths become as small as possible. A good overview of the
defects is obtained if the shortest displacement vectors (or the longest)
are removed and the remaining are plotted. The procedure permits
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us to extract vortices and thereby to map out the local rotation axis.
A three-dimensional impression can be obtained by cutting slices and
comparing them (Fig. 4.7).

A second method which will work for any structure is to produce a list
of nearest neighbor atoms in the initial structure. If a pair of atoms is
in the list we say that the atoms are bound. By computing similar lists
of atoms in the final states one can determine which bonds have been
broken and if new bonds have been created.

A third procedure which turned out to be very helpful was to quench
the sample after the shock. We discovered that it removes not only the
kinetic energy and puts the atoms back into their local force-free state,
but eliminates most of the local rotation of the sample (Fig. 4.8).

4.4.7 Laves crystal

Due to periodicity the results for Laves crystals are much simpler to
analyze than those for quasicrystals. Therefore they will be treated
first.

The crystal structure remains perfect up to up/cl ≈ 0.37 which tells
us that only elastic distortions occur in the first regime. Close to the
shock front large displacements may be found, but these are transient
phenomena.

Within a short interval of about up/cl = 0.1 the behavior changes
abruptly. Extended defects appear which separate perfectly crystalline
domains. The defects start to fill up the bulk with increasing strength
of the shock wave. Beyond up/cl ≈ 0.57 the initial structure seems to be
destroyed completely by the shock wave. The size of the fragments into
which the single crystal breaks become so small that the structure can
no longer be distinguished visually from a disordered material. The ra-
dial distribution function, however, still contains a few discrete maxima
since some small ordered regions are left over.

Defect bands in situ

A slice through the atomic displacement field represented in Fig. 4.7
illustrates the structure of the extended defects. Bands are visible with
a width of up to 10 interatomic distances a and a separation of the order
of 35a. The bands are shear grain boundaries which separate different
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Figure 4.7: In situ displacement field of the Laves crystal at up/cl = 0.45.
The large antiparallel red arrows indicate slip planes. The ring of large blue
arrows marks a rotation axis. Pictures of the quasicrystals look similar. The
numbers at the figure represent the size in nearest neighbor distances a.

crystallites. It could be speculated that the bands are still molten, but
such an assumption could not be confirmed by local temperature maps.

Within the crystallites rotation axes are observed. The edges and cor-
ners of the crystallites are given by hyperbolic points (not visible in the
figure). These are locations, where displacement vectors point towards
one another along one direction while they point in opposite directions
along a directions offset by 90 degrees. Thus the original single crystal
is broken into crystallites which are deformed and rotated with respect
to their initial orientation. If slices parallel to the coordinate directions
are cut through the displacement field and compared we find that nei-
ther the grain boundaries nor the local rotation axis are perpendicular
to the cutting direction. The local rotation axes turn out to be parallel
to the face diagonals of the simulation box. Since the cuts through the
grain boundaries are also parallel to the face diagonals we can conclude
that the grain boundaries are perpendicular to the three-fold axes.

To our knowledge the rotation of crystallites in shock wave simulations
on an atomic scale has not been reported before. Similar structures
are well known from mesoscopic shock wave simulations by Yano and
Horie [223, 224] and by Makarov and co-workers [11, 227, 131, 130] and
discussed for example by Lee [125]. In the mesoscopic simulations the
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Figure 4.8: Displacement field of the Laves crystal at up/cl = 0.45 after
quenching. Shown is nearly the same part of the sample as in Fig. 4.7. Pic-
tures of the quasicrystals look similar. The numbers at the figure represent
the size in nearest neighbor distances a.

initial structure is already polycrystalline and phase boundaries exist,
whereas in the simulations presented here we start with a single crystal
which is broken into grains during simulation.

A sequence of pictures of the displacement fields for different shock
strength is given in Sec. 4.6, Fig. 4.20.

Defect bands after quenching

Fig. 4.8 shows the displacement field of the sample after quenching.
The rotational part of the displacement field has disappeared, only the
relative shift of the crystallites remains. The fragments can also be
identified in a slice through the crystal (Fig. 4.9). If the broken bonds
are visualized we find that they mark the edges of the grains which
look like more or less irregular polyhedral blocks. The final state of
the quenched sample has been presented by Davison [37] as one of the
states that occur if the deformation of the sample is not uniform.

Sequences of pictures of the displacement fields (Fig. 4.21), the textures
of the crystallites (Figs. 4.13 and 4.14), and the broken bonds (Fig. 4.18)
for different shock strength are given in Sec. 4.6.
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Figure 4.9: Slice through the whole Laves crystal at up = 5.5v0 after quench-
ing (260× 61a2). The various textures (dotted and striped) are generated by
displacements of parts of the sample with respect to each other and represent
the newly created grains.

Summary of the defects in Laves crystals

The Laves single crystals are broken into grains by the shock wave in the
second regime. The boundaries between the grains are broad disordered
bands. The grains still contain the original Laves crystal structure, no
phase transitions or twinning has been observed. The spacing between
the bands depends on the cross section of the sample since the bands
are replicated by the periodic boundary conditions. In the case of small
cross sections the boundary conditions may even pretend a disordered
state in the second regime. Stacking faults have not been observed and
dislocations could not be detected.

If the shock wave intensity is increased, the general behavior of the Laves
crystal does not change. The grains get smaller and smaller and the
defect bands closer and closer until it is no longer possible to distinguish
grains and bands. Then the third regime has been reached where the
sample structure is destroyed completely.

4.4.8 Quasicrystal models

The Hugoniot curves for the quasicrystals look similar to those of the
Laves crystal. A first glance at the samples shows that the quasicrystals
stay intact up to a piston velocity of about up/cl = 0.25. But there is
no sharp boundary between the (quasi-)elastic and the plastic regime
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(Fig. 4.3). The reason will be discussed in the next paragraphs.

The TI-quasicrystals

In the TI model the ring processes, which are well known from equi-
librium simulations, are enhanced by the shock wave and are observed
already at very low shock wave intensity up/cl = 0.09 (Fig. 4.10). With
increasing shock strength the rings break up and the atoms start to
move around randomly (at up/cl = 0.17). Well separated chains of
atoms are now observed. At up/cl = 0.22 it is no longer possible to
speak of chains. We find clouds of atoms in motion. At up/cl = 0.26
we finally have a situation similar to the Laves crystal: the sample is
broken into crystallites which are shifted and rotated.
Thus we have two plasticity modes: the ring and chain processes which
take place in the interior of the grains and the disruption of the single
crystal into domains. This is the reason why there is no sharp boundary
between the different shock wave regimes. In addition to the aperiodic-
ity of the quasicrystal it is also the reason why it is so much harder to
visualize the (quasi-)crystallites. The broken fragments are similar to
those in the Laves crystals, but there shape is less polyhedral and the
grains are smaller.

Behavior of the BI-model

In the BI model the ring processes are suppressed completely since the
configurations of tiles responsible for the jumps have been removed.
Only single atom flips are allowed. The displacement of the atoms at the
shock front is large enough that some of them can jump to alternative
sites where they remain after the shock wave has passed (Fig. 4.11). The
jump locations can be considered as double-well potential sites. Since
both positions are equivalent with respect to energy but separated by
a barrier the atoms will not move back to their initial site.
Due to the point defects the transition from the elastic to the plastic
regime is again much smoother in the BI-quasicrystals than in the Laves
crystal. Since the number of jumps and the atoms involved are much
less in the BI model than in the TI model the defects alone cannot be
responsible for the weakness of the quasicrystals. Another reason has
been pointed out in Sec. 4.4.3: Although the global symmetry of the
icosahedral quasicrystals is higher than that of the cubic Laves crystals,
locally many atoms in the quasicrystals have lower symmetry than the
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Figure 4.10: Sequence of shocked samples of the TI-model. The double
arrows indicate the path of the shock fronts starting at the center of the box.
The red lines represent the local rotation axis. In the first three pictures the
spheres represent the jumping atoms directly, while in the last two pictures
they are overshadowed by clouds of atoms with large displacements.



4.4 Results 81

Figure 4.11: Shock wave in the BI-model. The shock waves started at the
right half of the box, approximately in the middle between the end points of
the arrows. In the instant represented in the picture the left-moving wave is
at the left end of the box, whereas the right-moving wave has already left the
box. The dots indicate atoms with large displacements. In the left part of
the box the displacements are transient since they disappear some time after
the shock front has passed as can be seen by comparison with the right half
of the sample. At the place where the shock waves started only a few singular
points are left which mark the sites where atoms have jumped to alternate
positions.
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atoms in the Laves crystal. We believe that this is the true reason
why the threshold to generate defects is reduced considerably in the
quasicrystal.
The pattern of defect bands and displacements is qualitatively similar
to the Laves crystal. There is only one difference: in the quasicrystal
models the crystallites are always smaller and the defect bands closer
together if the results at equivalent shock strengths are compared (See
Fig. 4.18 and Fig. 4.19 or Figs. 4.20 and 4.21 compared to Figs. 4.22
and 4.23).

Summary of the quasicrystal results

Between up/cl = 0.25 and 0.5 extended defects can be observed in
both quasicrystal models. A process similar to the one in the Laves
crystals takes place: the grains get smaller and smaller and the defect
bands move closer and closer together. At shock waves stronger than
up/cl = 0.5 the quasicrystals appear disordered since defect bands and
grains can no longer be distinguished.
Again we find no stacking faults and no dislocations. Quasicrystal-
specific defects like phason walls have also not been observed. Although
we have seen atoms jump, we know [173] that these processes are no qua-
sicrystal flips since they do not change the rhombohedron-dodecahedron
tiling. Real flips are very complicated in the quasicrystal models pre-
sented here and involve at least 10 atoms.

4.4.9 Amorphous solid

In the case of the amorphous solid we find a universal behavior for
all shock front velocities: The slope of the Hugoniot curve is us/c0 =
1.85 · up/c0 + 1.0 up to up/c0 = 1.0 (Fig. 4.12). This is no indication,
however, that the amorphous structure behaves like a fluid. If we con-
sider the pressure profiles, especially the shear pressure, we find that up
to up/cl = 0.2 the profiles are unsteady as a whole. There is a steady
jump from the elastic compression wave followed by an slow decay which
lasts the whole length of the sample. At up/cl = 0.3 we find a tran-
sitional behavior, but at up/cl = 0.4 we clearly observe steady waves.
The shear pressure decays within a short interval to a finite constant
value. If we compare this behavior to Fig. 4.3 we find that the transi-
tion to the steadiness of the plastic waves occurs at approximately the
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Figure 4.12: Shock vs. piston velocity for the amorphous solid. The fcc
curve is from Holian and Lomdahl [99].

same shock strength as in the ordered samples. It also indicates that
the amorphous solid possesses a finite yield strength since the shear
pressure is not zero.
The amorphous solid stays disordered. No obvious change of the struc-
ture has been notified by inspection of the radial distribution function
for example. In particular, crystallization has also not been observed.

4.5 Discussion

Our study has revealed another type of plasticity observable in atom-
istic simulations beyond simple dislocations and stacking faults [99] and
phase transitions [72,117]. Here we find fragmentation of a single crystal
into rotated crystallites separated by thick disordered walls.
The behavior of the crystal and the quasicrystal models used here in
shock wave simulations is similar to the behavior of ionic materials: slip-
page is hindered by the creation of high-energy anti-phase boundaries.
Dislocations are slow, rare and high energies are needed to generate
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them [185]. The single-crystal ionic materials break into many crystal-
lites and form broad defect bands [133]. In the models presented here it
is not possible to exchange A and B atoms at random without destabi-
lizing the structure. If an AB bond is broken it will be replaced by an
AA or BB bond which is only half as strong. Due to the nontrivial plane
structure it may also happen that no new bond is formed. Furthermore
the structure will be strained, since the different bonds are of different
length. The average binding energy decreases. Thus processes allowed
in monatomic structures turn out to be fatal. Recent crack simulations
have shown that the Laves phase and the quasicrystal always behave
brittle [160]. No dislocation emission could be observed.
On the other hand it is well known that stacking faults exist in Laves
crystals and a synchroshear mechanism [82] has been proposed which
should permit slippage. Since our models are stable in a large range of
interaction strengths, it would be interesting to repeat the simulations
with a parameter set where the repulsion is reduced. Calculations γ-
surface2 by C. Rudhart [176] for Lennard-Jones interactions limit the
range of interesting variations. Although the heights of the energy min-
ima and maxima vary, the overall topology of the surface stays largely
the same. No shift vectors exist which would indicate low energy dis-
location directions. The hope is now that the topology of the γ-surface
changes if we replace the general potentials by effective pair potentials
or EAM-potentials designed especially for quasicrystals and their rela-
tives.
We have found that there is a material-independent Hugoniot relation
governed by the interaction only in the case of strong shock waves. This
is due to the complete destruction or amorphization of the structures,
a phenomenon which is well known from high-pressure studies of C15
Laves phases.
We have tried to find crystal and quasicrystal structures which are as
similar as possible. The best model would be monatomic, but no uni-
form simple monatomic quasicrystals exist. There are still differences
in the average binding energies, the composition, and the local atomic
environments in our models. Therefore we cannot rule out that part of
the results (for example the different slopes in the Hugoniot plot) are

2The γ-surface represents the increase in energy with respect to a displacement
vector if a sample is cut into two parts which are shifted laterally with respect to
each other by this vector.
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due to the structural differences.
Defect structures and plasticity modes have been presented for prop-
agation directions of the shock waves along the four-fold direction in
the Laves crystal which is oblique to the close-packed planes, and along
the two-fold direction in the quasicrystal which is normal to the close-
packed planes. Although these two directions are quite different with
respect to the orientation of the prolate rhombohedra, the results are
rather similar. Simulations in other symmetry directions have also been
carried out, but they have not been discussed since no new phenomena
have been observed. We consider this observation as a further indica-
tion that the phenomenology of the shock wave plasticity in the present
study is governed mainly by the strength of the interaction and not by
the type of structure.
Up to now no shock wave experiments have been carried out with qua-
sicrystalline materials. High-pressure studies do not lead to the high
temperatures typical for shock waves. It has been found that quasicrys-
tals are often transformed into approximants under high pressure, but
such a transition has not been observed in our simulations [4, 142].
The behavior of Laves crystals under high pressure is well-studied (See
for example Lindbaum et al. [126] and Sec. 3.3). The crystals are prefer-
ably amorphized. Shock-wave experiments of Laves phases have not
been found in the literature, especially no reports are known to us about
the investigation of defect structures caused by shock waves.
In this chapter we have studied shock waves in diatomic icosahedral
quasicrystal structures. We chose a model which is closely related to
naturally existing quasicrystals and to familiar crystal structures. The
interactions were modeled with generic Lennard-Jones potentials as spe-
cific interactions were lacking. The hope is that the results can be
compared directly to experiments, but this has not yet happened.
Since it is our goal to study generic features especially and models as
simple as possible we will now turn to monatomic quasicrystals which
have not yet been observed in nature. A drawback in the monatomic
case is that we have to use special interactions to stabilized the qua-
sicrystal and that we must be satisfied with layered dodecagonal struc-
tures. In the end it turns out that the simulation of shock waves in
Dzugutov materials is very exciting on its own since multiple phase
transformations and solitary waves are found and that the behavior of
a number of metastable phases can be compared.
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4.6 Pictures of the diatomic simulations

This section contains additional pictures illustrating the results of the
binary structure simulations in all three shock wave regimes. The pic-
tures contain results from Laves crystals shocked along the fourfold
direction and from TI- and BI-quasicrystals shocked along two-fold di-
rections. We will give a few additional comments if necessary. Fig. 4.13
displays a part of the shocked Laves crystals. The different patterns
correspond to different crystallites into which the single crystal is bro-
ken. The patterns can still be recognized in the pictures of the whole
sample (Fig. 4.14). The same is not true for the quasicrystal (Fig. 4.15).
It is easy to observe that the pattern changes, but the consequences are
unclear.
The information from the transverse sections through the samples is
similar (Fig. 4.16 and 4.17). The quasicrystal appears to be disordered
already in the elastic-plastic regime, whereas regularities can still be
found in the Laves crystal in the early plastic regime.
The pictures of the broken bonds (Fig. 4.18 and 4.19 are drawn for
AA bonds. The cases for newly created AA bonds, broken BB bonds
and newly created BB bonds look similar. The only difference is that
there are far less BB bonds. The data of the in-situ and the quenched
samples are also similar.
The pictures of the bonds and the displacement fields (Fig. 4.22 and
4.23) help to solve the riddle of what happens in the quasicrystal: It is
also broken into many crystallites. Please note that the displacement
fields have been mapped to a regular grid!
A comparison of the pictures for the Laves crystal (Fig. 4.18, 4.20 and
4.21) and the quasicrystal (Fig. 4.19, 4.22 and 4.23) clearly show that
the crystallites in the quasicrystal are smaller than in the Laves crystal.
The final pictures (Fig. 4.24 and 4.25) represent the parts of the dis-
placement fields where the absolute value of the displacement vectors
are smallest. Obviously, these parts form rods in diagonal directions as
can be derived especially from Fig. 4.24, where the coloring indicates
that the rods lie in plains are parallel to the coordinate axes.
We hope to have given an impression of the complicated three-dimen-
sional processes going on in these shock wave simulations, but we feel
that picture as a whole may not be satisfying yet.
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elastic: up = 4.5v0

elastic-plastic: up = 5.5v0

elastic-plastic: up = 6.0v0

Figure 4.13: Longitudinal cuts through the central part of a Laves crystals
after shocking at the given up.
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elastic: up = 4.5v0

elastic-plastic: up = 5.5v0

elastic-plastic: up = 6.0v0
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plastic: up = 7.0v0

plastic: up = 9.0v0

Figure 4.14: Longitudinal cuts through the whole quenched Laves crystals
after shocking at the given up.
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quasi-elastic: up = 3.5v0

elastic-plastic: up = 5.0v0

elastic-plastic: up = 6.0v0
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plastic: up = 7.0v0

plastic: up = 9.0v0

Figure 4.15: Longitudinal cuts through the quenched BI quasicrystals after
shocking at the given up.
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elastic: up = 0.4c0 elastic-plastic: up = 0.6c0

plastic: up = 0.7c0 plastic: up = 0.8c0

Figure 4.16: Transverse cut through the Laves crystals after shocking at
the given up. The white line indicates one of the defect bands.

quasi-elastic: up = 0.3c0 elastic-plastic: up = 0.4c0

Figure 4.17: Transverse cut through the TI quasicrystals after shocking at
the given up.
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Figure 4.18: Broken AA bonds in a Laves crystal after shocking at up =
5.5v0. The colors code the depth. Broken BB bonds and newly created bonds
give similar pictures.

Figure 4.19: Broken AA bonds in a TI quasicrystal after shocking at up =
5.0v0. The colors code the depth. Broken BB bonds and newly created bonds
give similar pictures.
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Figure 4.20: In-situ displacement field of a Laves crystal after shocking at
up = 5.5v0. Each slice has a thickness of 6a.
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Figure 4.21: Displacement field of a quenched Laves crystal after shocking
at up = 5.5v0. Each slice has a thickness of 6a.
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Figure 4.22: In-situ displacement field of a BI quasicrystal after shocking
at up = 5.0v0. Each slice has a thickness of 6a.
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Figure 4.23: Displacement field of a quenched BI quasicrystal after shocking
at up = 5.0v0. Each slice has a thickness of 6a.
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Figure 4.24: Locations of zero displacement. Laves crystal shocked at up =
5.5v0. The colors code the depth.

Figure 4.25: Locations of zero displacement. Laves crystal shocked at up =
6.0v0. The colors code the distance to the initial collision plane.



Chapter 5

Materials with Dzugutov
Potential Interactions under
Heavy Load: I. Shock Waves

5.1 Overview

The influence of shock waves on the bcc ground state, the metastable
σ-phase, and quasicrystal structures of the Dzugutov potential [49] has
been studied as a model of a monatomic three-dimensional quasicrystal.
In general, a phase transition is observed to the well-known high-pressure
fcc- or hcp-phases. The details of the phase transition and the perfection
of the created phases depend on the orientation of the shock wave prop-
agation direction with respect to the symmetry axes. The transition
procedure will be described in detail.
Special phenomena occur for shock waves in the bcc-phase along the
three-fold axis: An intermediate hexagonal ω-phase and soliton-like ex-
citations are observed. These results will be treated in Chap. 6.
The present chapter will end with the results obtained for an amorphous
structure supplied with the Dzugutov potential. No crystallization takes
place in this case.

5.2 Introduction

The action of shock waves has been explored in monatomic crystals to
some depth [72, 238], and a first understanding of the basic processes
has emerged [95]. The generation of partial dislocations and stacking
fault type defects in fcc crystals could be clarified [206, 187]. Results
for the plasticity of other structures, like bcc-iron for example, are also
available now [117].
The purpose of this study was to find out whether monatomic quasicrys-
tals behave different than crystalline materials if they are penetrated by
shock waves.
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Binary quasicrystals have been treated in the previous chapter. From a
fundamental point of view it is more interesting, however, to study mod-
els as simple as possible, i. e. monatomic quasicrystals. But the number
of such models is rather limited if generic interactions are favored. The
crucial point is the packing density. There is the unit sphere packing
model of Henley [84] with a density of 0.6288, still worse than the ran-
dom close packing at 0.6366. Treated as a quasicrystal with Lennard-
Jones interactions, the structure is metastable only up to 10% of the
melting temperature of the ground-state fcc crystal [162, 40]. It is still
the only promising monatomic icosahedral quasicrystal model known to
us. Henley’s twelve-fold site model [84] has a much lower packing den-
sity and so is even less stable. Other models are layered quasicrystalline
which are periodic in one direction. The decagonal model of Cockayne
and Mihalkovič [27] has a packing density of 0.6953, higher than the
icosahedral model and larger even than bcc. But it also transforms into
fcc upon heating if the atoms interact via Lennard-Jones potentials.
Finally there is a dodecagonal quasicrystal model with Dzugutov poten-
tial interactions. As described in Sec. 3.4.3 the Dzugutov potential has a
bcc structure as its ground state, and the σ-phase and a quasicrystalline
phase are metastable. At high pressure and low temperature a phase
transition to close-packed fcc- or hcp-phases occurs. Upon heating at
low pressure bcc, the σ-phase and the quasicrystal phases are stable up
to rather similar melting temperatures. Thus we have a model with
promising properties for shock wave simulations.
The simulations of monatomic models are being described in two parts:
Here we present the results of shock wave simulations in different struc-
tures stable with Dzugutov interactions. In the next chapter we con-
centrate on the phenomenon of solitary waves observed especially in the
bcc structure shocked along the three-fold axis and discuss in detail the
hexagonal ω-phase [218], a typical product of a bcc-lattice instability.
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5.3 Generation of the shock waves and sim-
ulation setup

5.3.1 Orientation of the samples

For the simulation of shock waves it is necessary to apply periodic
boundary conditions. Otherwise the pressure from the shock wave leads
to a rapid transversal disintegration. The direction of the shock wave
has to be parallel to one of the boundary axes, for example the x-axis.
This limits the possible (quasi)-crystalline directions along which the
shock wave can travel in the simulations. The quasicrystal, especially,
has to be replaced by an orthorhombic approximant.

Shock waves have been studied in the bcc-phase along the four-, three-,
and two-fold axes where they are straightforward to implement. Shock
waves in the square-triangle quasicrystal have been studied along the
periodic axis and in the quasiperiodic plane. Due to the high twelve-
fold symmetry (space-group 126/mnm) the quasicrystal is expected to
be elastically isotropic in the plane, and the approximant should not
deviate too much from isotropy. Shock waves along different in-plane
directions should therefore give similar results. The σ-phase has space-
group symmetry 42/mnm, which indicates that for an ordinary, nearly
cubic unit cell with 60 atoms the coordinate axes are parallel to the four-
fold axis and to glide planes n, and the diagonals are parallel to mirror
planes m. An in-plane diagonal tetragonal unit cell with 30 atoms is
also possible with the four-fold axis and the m-planes parallel to the
coordinate axis. The aspect ratio of these two unit cell lengths in the
plane and along the z-direction is such that it is possible to construct
out-of-plane diagonal cubic boxes with only minor distortions. The
samples are rotated by 45 degrees towards the z-axis. In summary we
have studied shock waves in the σ-phase along the four-fold axis, along
the n- and m-directions, and along orientations at 45 degree between
the four-fold direction and n and m, respectively. The directions are
denoted by 0, n90, m90, n45 and m45. The corresponding Miller indices
are [100], [001] or [010], [011], [201] or [210], and [

√
811].
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5.3.2 Preparation of the samples and simulation de-
tails

The simulations were carried out as usual: for the shock simulations
an NVE ensemble was used. Equilibrations were performed with the
NVT-Nosé-Hoover and NPT-Andersen ensemble.
The sizes of the samples depend on the structures and orientations.
Therefore they are not listed in detail. For most of the simulations
the sample size was about 20 × 20 × 100a3. The samples contained
40,000 atoms approximately. To study the influence of the size of the
samples and the propagation time of the shock wave on the results longer
(200, 300 and 600a long with up to 250,000 atoms) and thicker samples
(40×40×300a3 with 500,000 atoms) have also been analyzed. To apply
periodic boundary conditions the perfect dodecagonal quasicrystal is
replaced by an orthorhombic approximant. The principial results are
found to be independent of the sample sizes. There may be differences
in the details, but there were no differences for example in the shock
wave propagation velocities or in the phase transitions.
Before the simulation starts the samples are equilibrated for a time
interval of ∆t = 10t0 at a temperature of kT = 0.001ǫ and a pressure of
P = 0.01P0. If the simulations are carried out at elevated temperatures,
the samples are equilibrated again at the desired temperature.
To generate the shock waves we have applied the momentum mirror
method. Tests have shown that the results are equivalent to the simu-
lation with the symmetric impact method (except for the case of solitary
waves in arbitrary directions treated in Sec. 6.4.5).

5.3.3 Analysis tools for the shocked structures

If the shocked state is monocrystalline as for bcc shocked along the
four-fold direction at low piston velocities then the analysis can be car-
ried out directly by visual inspection of the structures. The stacking
sequence can be derived from a projection of the atoms perpendicular
to the distinguished threefold axis: A zigzag pattern determines hcp, a
diagonal sequence fcc. In general we find a mixture of both.
Usually the shocked crystals are very defective, the lattice rows and
planes are warped and rotated, twins or several crystallites may exist.
A direct distinction between fcc or hcp or more complicated stackings
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Figure 5.1: Typical radial distribution function. The spikes indicate the
neighbor shells for ideal fcc (×) and hcp (�) crystals. Obviously, these cases
cannot be distinguished in the simulation result.

is no longer possible. The radial distribution function (RDF) tells us
only that a close-packed phase has been generated (Fig. 5.1).
But if the angular distribution function (ADF) is computed for nearest
neighbor atoms, then it is possible to distinguish fcc and hcp (Fig. 5.2)
since hcp permits an additional maximum between 140 and 160 de-
gree (the angle between the apex atoms and a base atom of two face-
connected tetrahedra). In most cases a mixture of fcc, hcp and other
stacking sequences is found.

5.4 Results

We will start with the elastic properties of the materials since the elastic
waves form the limiting case of very weak shock waves if the strength
of the material prohibits the creation of defects. The next step is the
discussion of a us-up-Hugoniot diagram which permits a classification
and characterization of the different shock wave regimes. Following is a
presentation of the phase transformation results grouped together with
respect to similar phenomena.
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Figure 5.2: Typical angular distribution function. The spikes denote the
angles in ideal fcc (×), hcp (�), and bcc (∗) respectively. The simulation
result does not fit to the bcc maxima, but to fcc or hcp. A distinction between
the latter two is possible since the maximum between 140 and 160 degrees is
only present in hcp. The conclusion is that the sample under consideration
is preferably hcp stacked. Cases without a maximum between 140 and 160
degrees have also been observed.
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Table 5.1: Elastic properties for the bcc-phase. The first column gives
the Miller indices, the second the uniaxial elastic module and the third the
velocity of the (quasi-)longitudinal wave. The bcc crystals are obviously
anisotropic.

direction F [P0/m] c[v0]
[100] 287.0 16.6
[110] 387.0 19.3
[112] 389.4 19.4
[111] 424.8 20.2

5.4.1 Elastic properties and sound velocities

Dodecagonal quasicrystals behave elastically isotropic with respect to
the quasicrystalline plane, but not with respect to the periodic axis,
similar to hexagonal crystals. The σ-phase is anisotropic in the square-
triangle-plane since it has only tetragonal symmetry. The bcc crystals
have cubic symmetry. The elastic constants determined by quasistatic
uniaxial deformations1 are presented in Tabs. 5.1 and 5.2. If the piston
wave velocity up goes to zero, the shock wave velocity tends towards
the velocity of an elastic sound wave.
It is important to note that the highest velocities of sound occur along
directions perpendicular to the thinnest crystals planes equivalently to
parallel to the densest atomic rows. This are the directions where the
solitary waves (See Chap. 6) are most prominent.

5.4.2 The Hugoniot relation: us vs. up

In the case of shock waves in two-atomic Laves crystals and quasicrystals
three regimes of different behavior of the shocked materials have been
observed. The same is true here, although at a first glance the Hugoniot
diagram (Fig. 5.3) looks different: There seem to be only two ranges,
separated at about up = 4v0, where v0 is the unit of velocity.

1The elastic compression wave is longitudinal only along special symmetry di-
rections. The wave which becomes longitudinal in the long-range limit along other
directions is called quasi-longitudinal.
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Table 5.2: Elastic properties of the tcp-phases. The first column gives the
Miller indices, the second and fourth the uniaxial elastic module and the
third and fifth the velocity of the (quasi-)longitudinal wave for quasicrystals
and the σ-phase, respectively. The first three rows contain the results for the
perfect samples, the last two rows list the results for samples which have been
distorted to permit periodic boundary conditions parallel to the 45 degree
direction. A comparison of the second and third row and the fourth and
fifth row respectively, shows that the quasicrystal is isotropic within the error
margins whereas the σ-phase possesses a strong anisotropy of the order of
6%.

quasicrystal σ-phase
direction F [P0/m] c[v0] F [P0/m] c[v0]
[100] 298.4 16.8 299.2 16.8
[010] or [001] 179.2 13.0 180.4 13.1
[011] 177.0 13.0 203.0 13.9
[201] or [210] 216.8 14.3 248.0 15.4

[
√

811] 200.6 13.8 208.2 14.0
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The reason is that the elastic first range is very small since the transition
from bcc and σ-phase takes place at about P = 5.5 − 6P0, and this
pressure is reached at up = 0.7v0 (0.03 − 0.05cx, if cx is the uniaxial
velocity of sound of structure x)2 already. Furthermore no retardation
effect is observed. The elastic wave velocity is hard to determine since
no sharp wave front exists. Therefore it is not included in the diagram.

In the range between up = 0.7v0 and up = 3−4v0 (≈ 0.2−0.25up/cx) we
observe steady or unsteady shock waves, depending on the orientation of
the samples and the character of the phase transition. In this range the
shock speed of the uniaxial compression wave is more or less constant
whereas the velocity of the slower transformation wave grows rapidly
(Figs. 5.3 and 5.4).

Above up = 3 − 4v0 (≈ 0.2 − 0.25up/cx) the velocities of both waves
approach each other. This range will be called the overdriven regime. If
the transition is sharp, as in the case of bcc shocked along the four-fold
direction, a distinction between both waves does not exist any longer.
In the other cases, especially for bcc shocked in three-fold or two-fold di-
rection two “transformation” wave fronts are plotted: A first one which
indicates that the initial phase starts to be destroyed and a high-defect
phase is formed, and a second one which indicates the transition to a
low-defect close-packed phase. There is a difference between the two
velocities since it takes a finite time to reorder the atoms and to com-
plete the phase transition. It cannot be guaranteed that this process is
finished during simulation even if the samples are an order of magnitude
longer. Furthermore there are hints that the second transition may be
an artefact of the momentum mirror which it forces the lattice planes to
be parallel to it and thus enhances the possibility to form single crystals.

In the monatomic system a clear distinction exists between the over-
driven range and the middle range, in contrast to what has been ob-
served in the simulations of diatomic materials.

In the middle range a metastable phase is formed which is related to
solitary waves observed in the overdriven range. These effects lead to
additional wave fronts and wave velocities us and may complicate the
analysis of the results. For simplicity, in Fig. 5.4 the wave crests related
to the metastable phase and the solitary wave trains are omitted.

2To simplify the comparison the piston velocities are given in reduced units v0

and scaled by the velocity of sound of the structure under consideration if necessary.
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Figure 5.3: Hugoniot diagram for σ-phase and quasicrystal simulations.
The axes are scaled with the velocities of sound.
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5.4.3 Description of the structural results

Since a lot of structures and orientations have been studied to get a gen-
eral overview of the possible mechanisms, it is not possible to deal with
all the cases in detail and to describe the results in dependency of the
piston velocity up. Instead we will concentrate on a few representative
cases, describe them in detail – especially the dependency on up – and
add remarks about other structures and orientations where appropriate.
We will concentrate on the middle range, since in the elastic range no
defects are created and in the overdriven range the energy stored in the
structure is so high that no good crystals are created during simulation.

The first case are shock waves in bcc along the four-fold direction. This
is the only case where an abrupt transition to a perfect close-packed
crystal takes place.

The second case are all the other structures and orientations. The initial
structure is broken, but it takes time to generate a close-packed crystal
with a small number of defects.

The third case are shock waves in bcc along the three-fold direction.
Two closely related special phenomena are observed: an intermediate
phase and solitary waves. These phenomena will be presented in more
detail in Chap. 6. Solitary waves occur also along other directions and
in other structures but they are not stable there.

The last case is an amorphous structure which has been produced by
cooling a molten bcc crystal. Since there is no liquid phase for the
Dzugutov potential at ambient pressures [163], we had to prepare the
liquid by heating at constant volume, cool it down to kT = 0, and
expand it to P = 0.

5.4.4 The four-fold direction

The phase transition from bcc to close-packed phases for shock waves
along the four-fold direction is very special. It is the only case where
a perfect crystal may be found after the transition and an atomically
flat interface between bcc and fcc or hcp is observed. Consequently the
pressure profile is constant and steady and shows a sharp jump at the
interface between bcc and the close-packed phase.

As an example we present the results for up = 4v0 (up/c4 = 0.24,
middle range). Fig. 5.5 shows the flat interface. The orientation of the
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close-packed layers is such that a three-fold axis is generated parallel
to the shock direction. A two-fold axis is parallel to the face diagonal
(Fig. 5.6, left). This orientation is none of the well-known martensitic
bcc-fcc orientation relationships. The stacking sequence of the layers is
more or less random (Fig. 5.7 and Fig. 5.8), but sometimes rather pure
fcc or hcp sequences occur. In the right part of figure 5.6 we display
a case of twinning which is a low-energy defect. Due to the periodic
boundary conditions there have to be two interfaces: one at y = 8a and
one at y = 18a. We have found that the newly generated close-packed
phase may change several times between twined and monocrystalline.

If the piston velocity enters the overdriven region then the transformed
phase is no longer monocrystalline. Several crystallites are created, and
at about up = 8v0 the defect density has grown so large that the sample
cannot be distinguished from a disordered or amorphous structure.

5.4.5 The other directions and structures

Shock waves along the two- and three-fold direction in bcc, and in the
σ-phase and the quasicrystal along any direction never lead to a direct
transition to the close-packed phase. Although the statistics and the
details may differ, the overall pattern of the phase transition is similar.
Therefore we will discuss these cases summarily.

The general scenery is the following: The initial structure is heavily
distorted or destroyed at first, but finally the systems transforms into
the close-packed phase. Therefore we can distinguish two wave fronts
since their velocity is not the same at least at the time scale of the
present simulations (Fig. 5.4).

Shock waves in bcc along the two-fold and three-fold

direction

There are two alternating paths which may however be mixed up: trans-
verse shift of the atomic layers (Fig. 5.7) or rotation of the atomic layers
around an axis parallel to the shock direction (Fig. 5.8). It is remark-
able that there are only kinks in the atomic chains parallel to the shock
wave direction, but no disruption. There are also no point-like defects
or local alterations of the structure. The whole motion of the atoms
appears to be well correlated!
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Figure 5.5: Longitudinal projection of a bcc crystal shocked along the four-
fold direction (up = 4v0). The shock wave moves to the left, the mirror is at
the right side at x = 100a. The interface between initial bcc and final fcc is
flat.
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Figure 5.6: Transverse cuts through a bcc crystal shocked along the four-
fold direction (up = 4v0). The shock front is currently at x = 31a and moves
towards x = 0 (See Fig. 5.5). Left: slice between x = 50a and x = 60a, right:
slice between x = 75a and x = 85a.
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The shift type transformation usually starts with a sudden kink in the
atomic chains parallel to the shock direction, preferably parallel to one
of the transverse coordinate directions (Fig. 5.7). Other kinks may occur
along the same or other directions. Between the kinks the atomic chains
bend smoothly. At the end of the sample, close to the mirror, an almost
perfect close-packed phase is generated. But now the interface with the
distorted bcc-phase is not atomically flat as in the case of shock waves
along the four-fold axis in bcc. A change of the stacking sequence and
twinning is also visible.
The rotation type transformation is not so easy to represent in projec-
tion (Fig. 5.8). It usually is recognized by its Moiré pattern which indi-
cates that the density of the points which represent the atoms changes
back and forth between periodic and almost densely filled. In contrast
to the previous case there are most often no sharp kinks but a contin-
uous local variation of the rotation angle. At the end of the sample,
close to the mirror, an almost perfect close-packed phase is generated
as in the other case.
The effect of higher piston velocity up is similar to the case of shock
waves along the four-fold direction of bcc: In the overdriven region the
generated crystals become polycrystalline and around 6 to 8v0 they can
no longer be distinguished from an amorphous structure.

Shock waves in the tcp-phases

The final state of shock waves in the σ-phase and the quasicrystals
for all orientations is a close-packed phase with clearly defined layers
perpendicular to the shock direction, but with several crystallites in
this plane. Compared to the bcc case, the close-packed crystal has
no preferred direction with respect to the coordinate directions, and it
contains many defects and extended disorder within the plane.
The details of the transition differ for the different phases and orienta-
tions:

1. σ-phase and quasicrystal, shock wave perpendicular to the basic
layers (0-orientation): Instead of kinks or bending, a destruction
of the structure and a periodic modulation along the shock wave
direction is observed. A polycrystalline close-packed phase is gen-
erated with random orientations of the small crystallites. The
sample finally evolves into the structure described above.
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Figure 5.7: Longitudinal projection of a bcc crystal shocked along the two-
fold direction (up = 2v0). This is an example where the lattice planes are
shifted perpendicular to the shock wave direction. The shock wave moves
to the left, the mirror is at the right side. A beginning ABABC stacking
sequence is visible around x/a = 97.
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Figure 5.8: Longitudinal projection of a bcc crystal shocked along the three-
fold direction (up = 3v0). This is an example where the lattice planes are
rotated perpendicular to the shock wave direction. The shock wave moves to
the left, the mirror is at the right side. A beginning ABABABABABCBCAB
stacking sequence is visible between x/a = 87 and x/a = 100.
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2. σ-phase, m45- and m90-orientation, and quasicrystal (90-orienta-
tion), e.g. shock wave parallel to the basic layers: The transition
is similar to the case before, but without the modulation parallel
to the shock wave direction.

3. σ-phase, n90-orientation: The structure observed after the transi-
tion does not consist of randomly oriented crystallites but periodic
bands are running diagonally through the sample at 45 degree with
respect to the basic layers. The material is in a transitional state
to a close-packed phase. At the end it evolves into the structure
described above.

4. σ-phase, n45-orientation: The transition is similar to the case be-
fore, but a transient state is generated. First the initial phase
is sheared homogeneously perpendicular to the shock wave direc-
tion, then after some time kinks and bands are generated as in
the case before. The transient state is most prominent at low pis-
ton velocities, shrinks continuously and vanishes in the overdriven
region. The interface with bcc is atomically flat.

Flipped configurations in the tcp-phases

A phenomenon which is called ”phason flip” in quasicrystals occurs in
the tcp structures shocked along a direction which lies in the basic layer.
For simplicity the phason flips can be regarded as tile rearrangements
and replacements which are possible in many non-trivial tilings.

Figure 5.9 shows an example of new rhombi and rearranged tiles in the
σ-phase shocked in m90-orientation. The orientations are always the
ones found in the figure. Others are not possible for geometric reasons.
In samples shocked in the n90-orientation the rhombi are oriented with
their long diagonal parallel to the coordinate axis. In the quasicrystal
both orientations are observed. The three-fold symmetric hexagon has
also been seen in some occasions, but the two-fold symmetric hexagon
never shows up, because it is very unstable. The atomic rearrange-
ments of a flip have been described in detail by Roth [172]. All the
atoms along a row perpendicular to the shock direction change from a
one-dimensional configuration where the atoms in the basic layer are
represented by a dotted ring in Figs. 3.8 - 3.10 to a staggered config-
uration represented by a open and nearby close circle, or vice versa.
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Figure 5.9: Part of a σ-phase sample shocked in m90-orientation, up = 2v0.
A part of the tiling has been redrawn. Shaded are the newly generated rhombi.
The black dots mark the squares and triangles which have been flipped. The
shock wave moved from the right to the left.

The tiles themselves are abstract objects which have no physical mean-
ing. Therefore it is not surprising that flips from one-dimensional to
staggered configurations are observed which lead to non-tilable regions.

5.4.6 Special phenomena for shock waves along the
three-fold direction of bcc

If shock waves are studied in bcc along the three-fold direction a new
intermediate phase and solitary waves are observed. The intermediate
phase has been identified as the hexagonal two-layer ω-phase [218]. It
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is the crystal structure of the high-temperature superconductor AlB2.
Chapter 6 is devoted to the detailed description of the two closely related
phenomena.

5.4.7 Results for an amorphous structure

The amorphous structure generated from the liquid has a RDF which
differs from an ordinary monoatomic amorphous structure generated
with Lennard-Jones potentials for example. The difference is caused
by the maximum of the Dzugutov potential: The RDF shows the well-
known behavior of a supercooled liquid with a first maximum for nearest
neighbors and a double maximum for next-nearest neighbors, but the
first of the two next-nearest neighbor peaks is extremely sharp if com-
pared with what is usually observed. The third maximum seems to be
enhanced also.
The Hugoniot curve (Fig. 5.10) shows that at low piston velocities the
velocity of the wave front at half height (amoc) is almost constant. The
distance between the bottom and the place where the wave reaches
a constant value grows and the difference is most prominent around
up/ca < 0.1. If the piston velocity is increased the ascent of the wave
gets sharper and sharper until the difference between the velocities van-
ishes in the overdriven regime. The width of the transition region is of
the order 5 to 10 atom distances a.
In the RDF we notice a rather sharp transition at the beginning of
the overdriven regime at about up/ca < 0.4 (Fig. 5.11). At low piston
velocities the first maximum of the RDF lies around 1.05a, then it moves
to 0.85a and broadens slightly. The most significant change occurs to
the sharp sub-peak of the second maximum: It stays at its place, but
broadens from a width of 0.1a to 0.5a. The other sub-peak vanishes
completely and the third maximum moves by 0.3a and doubles its width.
At the highest piston velocities the RDF looks like one of an ordinary
monatomic liquid.
The ADF possesses two broad maxima at an angle of 60 degree and at
112 degree. In the shocked samples these maxima shift continuously to
57 and 110 degrees respectively, if the piston velocity is increased.
The sharp transition indicates that the behavior of the material changes
from glass-like to liquid-like if the piston velocity increases from weak
shocks to overdriven shocks. The kinetic energy of the atoms is high
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Figure 5.10: Hugoniot curve us vs. up for the amorphous structure. Plotted
are the velocities at the bottom (amob), at half height (amoc) and at the place
where the hydrostatic pressure reaches a maximum (amot). In the overdriven
region the distinction between these velocities vanishes, which means that we
find sharp wave fronts.
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Figure 5.11: RDF of the amorphous sample for different up.

enough that the repulsive maximum of the Dzugutov potential no longer
plays a role at the high piston velocities.
In contrast to all other samples studied in this chapter no transition
to fcc is observed. This is already obvious from the RDF since no
maximum or shoulder exists around the distances 1.25 and 1.55a. The
ADF has no maxima at 90, 150, and 180 degrees. All together this
proves that there are no square arrangements of atoms and no nuclei of
a close-packed phase. A modulation of the density occurs only closely
to the momentum mirror.
Compared to the shock waves in the ordered structures we find no crys-
tallization. This indicates that it is easier to shift atomic layers col-
lectively to generate a new structure than to crystallize an amorphous
material.

5.5 Discussion

5.5.1 Comparison to shock wave simulations of iron

Kadau et al. have carried out molecular dynamics simulations of bcc
iron single crystals [117,116,115,119]. Instead of a simple pair potential
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they used EAM potentials especially adjusted to the properties of iron.
Despite these differences their results and ours are in good qualitative
agreement. There are several reasons for this observations: The phase
diagrams of iron [21] and for the Dzugutov potential [162] are similar,
i.e. both possess at low temperatures a low pressure bcc and a high
pressure close-packed phase. Furthermore, if the elastic constants are
computed for the Dzugutov potential and compared with the relative
values c11/c44 and c12/c44 for iron [57] it is found that these values are
closer in the diagrams (Fig. 2 of Every [57]) than to any other material.

Due to the similarity of the phase diagram, the Hugoniot for iron (Kadau
et al. [119], Fig. 4) and bcc with Dzugutov potentials (Fig. 5.4) is qual-
itatively similar. The results for the four-fold direction are also in good
agreement, however we did not observe the compressed bcc inclusions
(Kadau et al. [117], Fig. 1B). It is possible that they have been missed
in our case since the up-interval of occurrence is rather small. Twinning
is also prominent in our simulations (Fig. 5.6), and the growth of the
crystallites with time (Kadau et al. [115]) has also been noticed. An-
other important coincidence are the solitary waves which occur for both
interactions along the same three-fold direction.

There are also some notable differences: The pictures of structures gen-
erated by shock waves along the two- and three-fold axis [119] look
similar at a first glance. Kadau et al. only remark that the grains in
these situations are smaller than for the four-fold case. Furthermore a
broad range of elastically compressed material is seen. The mechanism
of phase transformation seems to be similar to the four-fold direction.
But if one considers our Figs. 5.7 and 5.8 one finds a correlated trans-
verse motion of lattice planes, i.e. a martensitic type of transformation3.
The ω-phase has not been reported for EAM-iron. At last we want to
remark that there is a difference in the final structures: We do not find
a Nishiyama-Wassermann relation between bcc and fcc or hcp,resp., but
close-packed planes perpendicular to the shock direction if this is the

3In the interpretation of these results one has to be very careful if, for example,
the coordination number is taken as an indication of the structure or defects since
the material is compressed uniaxially and the ideal coordination numbers are no
longer valid. If a radial criterion is used we find that a shift of the cutoff radius
by less than a percent can change the picture completely since the atom shells of
bcc and of the close-packed phase are rather broad and overlap partially which may
pretend the presence of point defects (See Kadau et al. [119], Fig. 2).
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four-fold axis. The EAM potential clearly favors a hcp-phase (Kadau
et al. [119], Fig. 3), whereas we get a mixture of stackings of the close-
packed layers. The reason for this difference is not obvious since the
range of the EAM potential is similar to the range of the Dzugutov po-
tential. We attribute the different behavior to the many-body part of
EAM which is lacking for the pair potential. Therefore there is no dif-
ference in energy for ABA or ABC stacking for the Dzugutov potential
whereas the EAM potential favors fcc-ABC.

5.5.2 Conclusions

We have presented detailed studies of shock waves in several structures
that are stabilized by the Dzugutov potential. There are at least three
major results: First, the Dzugutov potential which has been designed for
a completely different purpose is suitable to study qualitative features
of iron and probably of other bcc structures. It may even be possible to
get to a semi-quantitative or quantitative agreement if the Dzugutov po-
tential is modified by fitting it directly to the iron properties. A second
major result is the generation of special defects in the tcp-phases which
are equivalent to the phason flips in quasicrystals. This effect has been
observed now on several occasions, here and in binary quasicrystals.
Since the defects occur especially in the uniaxially compressed part of
the sample it also represents evidence of the coupling between phononic
and phasonic degrees of freedom [121] of a quasicrystal. Although we
have not (yet) found evidence for extended defects like phason walls
generated by shock waves we have observed the creation of point de-
fects and phason-type flips. At last, we have presented simulations of a
Dzugutov glass and found that no crystallization occurs which tells us
that the pre-existing bcc- or tcp-order helps the structures in the phase
transition and shows that the transition is a correlated phenomenon.



Chapter 6

Materials with Dzugutov
Potential Interactions under
Heavy Load: II. The ω-Phase
and Solitary Waves

6.1 Overview

Molecular dynamics simulations show that shock waves in single crystals
are frequently accompanied by solitary waves. In general the shock
waves cause phase transformations to a close-packed phase. In addition,
special phenomena occur if bcc is shocked along the three-fold direction:
We have observed an intermediate phase which has been identified as
the ω-phase, and closely related non-steady solitary waves in the regime
of overdriven shock waves.

The two phenomena are described in detail and compared to solitary
waves in other materials. The conditions for solitary waves are discussed
and we will try to provide a theoretical explanation.

6.2 Introduction

Since solitary waves have been observed very frequently and for different
structures and interactions we decided to investigate this phenomenon
in more detail [72, 119,238].

Before we start we shortly argue why the exceptional wave features
are referred to as solitary waves: they are not called solitons since the
particle character of these waves has not been demonstrated. But they
are denoted solitary waves since they occur as single maxima, moving
through the undistorted or elastically compressed crystal. They show no
dispersion, and their velocity depends on their height. Not everybody
might agree with us since the solitary waves get damped, by virtue of
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the small size, the discrete nature of the structure, temperature and
other influences.
The first simulations of shock waves in fcc Lennard-Jones crystals where
carried out along the four-fold direction [93, 101,128] and yielded quite
simple, steady profiles for all piston velocities. Thus it occurred as
a surprise when complicated shock profiles, locked-in, and non-steady
solitary wave trains where observed along the two-fold direction [72,
95]. Further examples of locked-in solitary wave observations include
simulations by E. Bringa et al. [26] in fcc copper, by S. V. Zybin et
al. [237,238] in a diamond structure and by V. V. Zhakhovskĭı et al. [231,
233, 234, 235, 238] in fcc Lennard-Jones crystals. In all these cases an
oscillatory behavior of the elastic wave preceding the plastic wave was
observed.
Solitons are well-known from shock wave studies of one-dimensional
models for a number of interactions [102]. They can be described as
Korteweg-de-Vries or Toda solitons depending on the nonlinearity and
strength of the interaction [97]. The one-dimensional solitons are caused
by the lack of plasticity. The same happens in the three-dimensional
simulations mentioned above if the shock strength is below the Hugo-
niot elastic limit. The solitary wave train is now locked into a steady
oscillatory profile [95]. Actually, solitary wave peaks are still visible in
the elastic-plastic regime and in the overdriven regime as the results by
Germann et al. [72], Zybin [238] and Zhakhovskĭı et al. [231,233] show.
In addition to the locked-in solitary waves there are non-steady waves
[95, 71] visible in the elastic-plastic regime. The non-steady waves pre-
cede far ahead of the locked-in solitary waves. In Zybin [238] and
Zhakhovskĭı et al. [231,233]’s simulations they are not visible since these
authors are averaging observables like stress and temperature in a frame
moving with the steady wave profile.
The results presented here are about non-steady solitary waves in bcc
along the three-fold axis in the overdriven regime. Such solitary waves
have also been observed in bcc-iron along the three-fold direction by
Kadau [119], and by the present author in a simple cubic structure
along the four-fold direction.
We can demonstrate that the non-steady solitary waves are a super-
sonic continuation of a sub-sonic phase transformation which occurs in
bcc only if shocked along the three-fold direction. The origin of the
phase transformation is an instability with respect to uniaxial compres-
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sion of the bcc structure interacting by the Dzugutov potential. The
instability is related to the softening of a longitudinal phonon mode.
If this mode has the ideal wave vector 2

3 [111], every second and third
plane in bcc collapses. The product is the two-layer hexagonal ω-phase,
the crystal structure of AlB2 or ω-CrTi [218]. If the wave vector of the
phonon mode deviates from the ideal value, a modulated structure is
observed. More precisely, a spatial sequence of bcc and the ω-phase
occurs which leads to oscillatory pressure profiles. The formation of
the ω-phase is not an artefact of the Dzugutov potential since it oc-
curs frequently in bcc-elements and -alloys upon cooling, quenching or
compression [193].

The difference between the formation of the modulated ω-phase and
the locked-in solitons is that the ω-phase spreads out at subsonic speed
whereas the locked-in solitons move at the speed of sound [72]. The non-
steady solitary waves on the other hand are much faster than the plastic
wave front, at least at high piston velocities in the overdriven range,
and move far ahead of the plastic wave front through the undisturbed
or elastically uniaxially compressed material.

6.3 Generation of the shock waves and ori-
entation of the samples

Details about the generation of shock waves, the interaction, and the
simulation setup have been presented in the previous chapter already.

Most of the runs we have been carried out with the momentum mirror
method to generate the shock wave. When we noticed that the strength
of the solitary wave was strongly depending on the orientation we have
repeated the simulations with the symmetric impact method. To study
the stability of the solitary waves and to answer the question if they
may be a consequence of the infinitely large acceleration of the atoms
at the beginning of the simulation we invented a new scheme where
the samples do not collide at full speed at the beginning of the simula-
tion but where the piston velocity (respectively the sample velocity) is
increased linearly until the desired final velocity is reached.

For the simulation of shock waves it is necessary to apply periodic
boundary conditions, otherwise the sample would explode. The direc-
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tion of the shock wave is chosen parallel to one of the coordinate axes,
for example the x-axis. This limits the possible crystalline directions
along which the shock wave can travel to the rational directions indexed
by the Miller indices. In addition to the main symmetry directions stud-
ied in the previous chapter we have carried out simulations along many
other low-index directions to find out the dependency of the solitary
wave amplitude on the orientation of the sample.

The size of the samples depends on the orientation. Therefore we will
not list all the numbers. Most of the simulations have been performed
with a small sample of about 20×20×100 interatomic distances a con-
taining of the order of 40,000 atoms. To study the influence of the
sample size on the solitary waves longer samples (of length 200, 300
and 600a with up to 250,000 atoms), thinner (with a cross section of
6×6 and 8×8a2) and thicker samples (40×40×300a3 with 500,000 atoms
up to 120×120×600a3 with 4.5 million atoms) have been used.

The samples have been equilibrated in the usual way before the simu-
lations started.

6.4 Results for shock waves along the three-
fold directions

The Hugoniot diagram for shock waves in bcc along the three-fold direc-
tion is represented in Fig. 6.1. For the general description see Figs. 5.3
and 5.4.

Two additional wave fronts are drawn in Fig. 6.1: The velocity with
which the three layer bcc-phase is transformed into the ω-phase, and
the velocity of the fastest solitary wave train. Both curves meet at about
up/c3 = 0.185 when they cross the velocity of sound. This is a clear
indication that both phenomena are related. Between up/c3 ≈ 0.2 and
up/c3 ≈ 0.3 up to about 3 to 4 additional solitary wave maxima which
are slower than the first solitary wave but faster than the transition
front can be distinguished. The velocities of the latter have not been
drawn for clarity.



6.4 Results for shock waves along the three-fold directions 125

0

0.5

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

sh
oc

k 
w

av
e 

ve
lo

ci
ty

 u
s/

c 3

piston velocity up/c3

elastic/plastic
plastic end

solitary
omega

Figure 6.1: Hugoniot diagram for shock waves along the three-fold axis
in the bcc crystal. The axes are scaled with the velocities of sound. The
plus signs mark the velocity of the elastic and transition wave fronts, the
crosses the speed with which the high-defect phase transforms into a low-
defect structure. The stars and the squares mark the propagation velocity of
the fastest solitary wave and the spreading of the ω-phase respectively.
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6.4.1 Evolution of the hydrostatic pressure profile
with increasing piston velocity

The formation of the ω-phase and the evolution into the solitary waves
can be described by means of the hydrostatic pressure as a function of
increasing piston velocity up. Instead of the hydrostatic pressure the
shear stress or the longitudinal temperature could be used equally well.

1. up/c3 = 0.005 − 0.035: A non-steady elastic wave exists. The
rising edge of the wave becomes flatter over time since the bottom
of the wave moves faster than the top. At about up/c3 = 0.035
the hydrostatic pressure reaches the transition pressure from bcc
to the close-packed phase. A phase transition to a close-packed
phase would be expected now, but it is delayed by the creation of
the intermediate ω-phase.

2. up/c3 = 0.035−0.175: The non-steady elastic wave is still present.
It is followed by a plateau of the hydrostatic pressure which is
lower than the maximum of the elastic wave between up/c3 = 0.05
and 0.075 and higher between up/c3 = 0.075 and 0.125. Between
up/c3 = 0.135 and 0.16 the hydrostatic pressure grows slightly.

In the plateau region the ω-phase is present. It is most prominent
around up/c3 = 0.1, and is subsequently transformed into fcc by
the transition wave.

3. up/c3 = 0.175: The slope at the front of the ramp becomes steeper
and grows higher than the following plateau. This is the precursor
of the first solitary wave.

4. up/c3 = 0.185: The first solitary wave peak becomes clearly visi-
ble, but is still connected to the ramp.

5. up/c3 = 0.2 − 0.3: Now the first solitary wave is separated from
the ramp. The plateau is no longer flat but modulated, indicat-
ing the nucleation of further solitary wave peaks. The pattern
of oscillations remains the same during observation time. With
increasing piston velocity the distance between the solitary waves
gets larger and larger and the oscillation amplitude grows until
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well-separated peaks are present. The distance between the indi-
vidual solitary wave peaks and to the transition front also grows
with simulation time.

6. up/c3 = 0.3 − 0.75: The first solitary wave is still stable, but the
other solitary waves decay. More precisely, they emerge from the
transition front, move into the region between the first solitary
wave and the transition front, and vanish. At up/c3 = 0.35, for
example, two solitary waves are still detectable, but at up/c3 = 0.4
only one solitary peak is left over.

In summary we find a very complex scenario: After the bcc-phase has
become unstable at up/c3 = 0.035 it does not transform directly into a
close-packed phase in the underdriven regime. An intermediate ω-phase
shows up between the shock front and the transition to the close-packed
phase. At increasing shock strengths the pressure profile develops a
spatial modulation. We notice a sequence of up to four bcc- and ω-
phase slabs. The pressure is high in the ω-phase and low in the bcc
slabs. The width of the ω-phase slabs shrinks with increasing piston
velocity as they develop into the solitary waves. The velocity of the
wave front of the new phase grows but remains below the velocity of
the uniaxial compression wave. In the overdriven region the modulation
develops into a sequence of solitary wave peaks. At very high piston
velocities only one solitary wave peak is left over.

Velocities of the solitary waves

The velocity of the solitary wave peaks is related to their height: The
higher a peak is, the faster it moves. Since the trailing peaks are lower
than the first one they also move slower. The velocities and heights of
a specific solitary wave peak are not constant but decrease very slowly
with time. This can bee seen if Fig. 6.2 is held at a glancing angle. The
solitary waves which emerge from the transition front may be overtaken
again by the transition front after some time. At low temperature the
height of the first solitary wave is constant during simulation time and
the width is about 4a. The other solitary waves also have constant
height, and their width is about 5-6a.



128 Monatomic Models: ω-Phase and Solitary Waves

0 50 100 150 200 250 300

x/a

1.S 2.S 3.S P

0

1.0

2.0

3.0

4.0

5.0

6.0

t/t
0

Figure 6.2: Hydrostatic pressure as a function of time and path at temper-
ature kT = 0.001, the piston velocity is up/c3 = 0.25. Three solitary wave
peaks (1.S, 2.S and 3.S) are visible in front of the transition wave front (P).

Temperature dependency

At low temperatures the solitary waves move through the whole sample
up to at least 600a in the samples with cross section 20×20a2. At finite
temperatures they are damped. The damping increases with temper-
ature: At up/c3 = 0.25 it becomes visible between kT/ǫ = 0.03 and
kT/ǫ = 0.04 for small samples (Fig. 6.3), at up/c3 = 0.4 the damp-
ing starts already between kT/ǫ = 0.01 and kT/ǫ = 0.02. At higher
temperatures solitary waves are no longer present.

6.4.2 Properties of the ω-phase

The ω-phase is observed for the first time at a piston velocity of about
up/c3 = 0.05. The velocity of the interface between bcc and the ω-phase
grows much faster than the speed of the following interface with the
close-packed phase up to up/c3 = 0.1. At this velocity the intermediate
phase is most prominent. If the piston velocity increases further, the
transition front speeds up rapidly and at up/c3 = 0.185 it catches up
with the first interface. Now the phase transition goes directly from bcc
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Figure 6.3: Damping of the solitary wave at different temperature. From
top to bottom: kT = 0.01, 0.05, and 0.1 ǫ. The piston velocity is up/c3 = 0.4.
The solitary waves are visible in front of the transition waves.
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to the close-packed phase.
The bcc-phase is a three layer structure with respect to the three-fold
axis. The new intermediate phase on the other hand is a two-layer struc-
ture which looks hexagonal in projection (See Fig. 6.4). The three-fold
axis of ω-phase and the parent bcc-phase are aligned. The periodic-
ity perpendicular to the hexagonal layer is approximately 1a, and the
neighbor cells are either tetrahedra or rectangular pyramids. The atoms
occupy their sites at random in one of the two layers. They may jump
from one layer to the other. There are, however, certain rules for the
positioning of the atoms. No clusters of three mutually neighboring
atoms (triplets) are permitted. Fractally looking triangular pattern can
be superimposed on the atoms (Fig. 6.4). More precisely, there are
three variants of triangular patterns which form different domains. In
Fig. 6.4 only one domain has been drawn for simplicity.
Both the RDF (Fig. 6.5) and the ADF (Fig. 6.6) clearly indicate that
the ω-phase is a new phase and cannot be confused with bcc or the
close-packed phases. The same is true if the RDF is compared with
those of the σ-phase and the quasicrystals studied in Chap. 5.
The ω-phase exists up to temperatures of about kT/ǫ = 0.15. The
velocity of the transition wave increases with temperature and ”eats”
up the ω-phase.
The new phase is created under uniaxial stress. If the stress is released
it slowly transforms back into the bcc-phase. Only a few well sepa-
rated point defects may stay over. This indicates that the transition is
reversible.

6.4.3 Description of the internal structure of the
solitary wave peak

With regard to the hydrostatic pressure the solitary wave peaks appears
to have a width of 4 − 6a. But if we look at the displacement of the
atoms along a certain atomic chain we find that the width is 1 or at
most 2 a (See Fig. 6.7). The figure shows the shortening of the distance
between the atoms on three arbitrarily chosen chains. At the peak of
the solitary wave the distance between two atoms is compressed by 25
to 30%, whereas the preceding and following distances are shortened by
5 to 10%. The other distances are more or less unchanged. The reason
for the difference between the width of the hydrostatic pressure and the
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domain have been superimposed. The empty triangles are periodic images
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Figure 6.7: Displacement of the atoms at the position of a soliton peak.
The three signs indicate three arbitrarily chosen chains.

displacement of the atoms can be seen in the picture: The displace-
ments are not perfectly correlated. After the solitary wave has passed
the atoms are back at their bcc positions. The modulation of the dis-
tances behind the solitary wave (Fig. 6.7) indicate that the longitudinal
temperature has risen from kT = 0.001ǫ to about kT = 0.01 − 0.02ǫ.

In Fig. 6.8 the shocked structure is projected onto a plane perpendicular
to the three-fold axis. It can already be seen that the solitary waves
are modulated in the transverse direction. It is also obvious that the
sample returns to the original bcc structure after the solitary wave has
passed.

Fig. 6.9 shows what happens within the solitary wave peak: The three-
layer bcc structure is partially transformed into the ω-phase. A perfect
transition is impossible since the solitary wave is very thin and fluctu-
ates. In a perfect bcc structure the three different layers should look
like triangular patterns. These layers are partially modified like the ones
represented in Fig. 6.4. The circles in Fig. 6.9 indicate where at this
very moment of the simulation the atoms are in the two-layer configu-
ration. Due to the dynamic nature of the solitary wave these locations
will change permanently.
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Figure 6.8: Projection of the structure with the solitary wave perpendicular
to the three-fold axis. Upper part: [21̄1̄]-direction, lower part [011̄]-direction.
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peak. The crosses, plus signs and stars indicate three bcc layers. In a perfect
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Figure 6.10: Decay and broadening of a soliton peak as a function of pres-
sure. The peaks are plotted at equal time intervals.

6.4.4 Decay with width

In the broad samples (width 40×40a2 and larger) the solitary waves
seem to decay and broaden if only cross-section averaged histograms of
the simulations are taken into account (See Fig. 6.10). The true reason
for this behavior is not that the hydrostatic pressure or the shear strain
decreases, but that the correlation between the solitary peaks on the
different parallel atom chains vanishes.

This becomes obvious if the peak value of the hydrostatic pressure is
monitored for example (Fig. 6.11, see also Fig. 6.8). At the beginning
the surface formed by the peak values is completely flat. Then it starts
to fluctuate randomly. After a while the lowest or the second lowest
mode which is compatible with the boundary conditions starts to grow
and enslave the other modes. At the end of the simulation it is no longer
possible to represent the peak values by a simply connected surface.
When the solitary wave reaches the end of a sample fountains of atoms
are observed coming out of the material at the positions where the
solitary wave first hits the surface.

The decay of the correlation with the width of the sample may render
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Figure 6.11: Maximum of the hydrostatic pressure in a comoving frame at
times 0, 2.5, and 7.0 t0. The piston velocity is up/c3 = 0.4.
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Figure 6.12: Three-dimensional structure of the solitary peak at up/c3 =
0.4. The solitary wave is the warped plate at the left in the foreground, the
transition front is visible at right in the background. The sample in between
is distorted only elastically and is not made visible therefore. Yellow indicates
the highest pressures, blue the lowest, red is in between.
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an experimental detection of the solitary waves impossible, especially if
the limit for large widths is zero. Up to now it has not been possible to
determine this limit since our computational resources were too limited.

6.4.5 Solitary waves in other phases and along dif-
ferent directions

Short-time solitary waves also show up along the four-fold and two-fold
direction in bcc, but they are always strongly damped and occur only at
high piston velocities. In the metastable phases of the Dzugutov poten-
tial, the σ-phase and the quasicrystal, intermediate solitary waves are
observed if the samples are shocked perpendicular to the basic square-
triangle layer direction. No solitary waves are found if the shock wave
direction encloses an angle of 45 or 90 degree with respect to the basic
layers.

6.5 Shock waves and solitary waves along
arbitrary directions

In addition to the main symmetry directions we have looked for solitary
waves along a large number of other directions. The size of these samples
ranged from 1.2 to 3.5 million atoms. The investigation has been carried
out for two reasons: First to determine the allowed deviation of the
solitary waves from the main symmetry directions (low angle case),
then to determine the feasibility of a description of the solitary waves
which varies smoothly with direction (large angle case). The amplitude
of the hydrostatic pressure at a fixed time t = 4t0 has been chosen as
a measure of the strength of the solitary waves. This may be a rather
crude measure, but it permits us to get a gross overview. For some
directions we have repeated the simulations with different sample sizes
and found an average variation of the intensities of about 7%.
The behavior of solitary waves along arbitrary directions strongly de-
pends on the boundary conditions, i.e. if the momentum mirror method
is applied or if two blocks of equal size are brought into collision. In both
cases, no solitary waves are observed around the four-fold and two-fold
axes and in the directions between them, i.e. in the planes perpendicular
to the four-fold axis (Figs. 6.13 and 6.14).
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Figure 6.13: Strength of the solitary waves as a function of propagation
direction (qualitative description). Dark blue indicates no solitary waves.
Green are the intense solitary waves (i.e. three-fold axis). Yellow and red
mark very strong solitary waves (i.e. [211]-direction). Top: momentum mirror
method, bottom: two block method.
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Figure 6.14: Strength of the solitary waves as a function of propagation
direction (quantitative description). The area of the circles is proportional
to the intensity of the solitary waves. Dots mark the directions were no
solitary waves have been observed. The plane perpendicular to the three-fold
axis contains the [211]- and the two-fold direction. Left: momentum mirror
method, right: two block method.

Results for the momentum mirror

If the momentum mirror method is used then the intensity of the soli-
tary waves varies rapidly and unsystematically with direction. Soli-
tary waves exist along many low index directions and along the [211]-
direction for example they are stronger than along the three-fold axis!
Other directions with strong solitary waves include the [321]- and the
[531]-direction. In contrast, solitary waves along the [421]-direction,
which is closely nearby, are very weak. Between the two- and the three-
fold axis remnants of solitary waves exist. The strongest solitary waves
seem to exist in the plane perpendicular to the three-fold axis, especially
between the three- and four-fold direction.

The half width at half maximum around the three-fold axis is 3 degrees.
Within a ring of about 18 degrees around the three-fold axis almost no
solitary waves occur (Figs. 6.13 and 6.14). Thus solitary waves of the
usual type will be found only if the shock direction is well aligned with
the three-fold axis. The belt between about 20 and 30 degrees to the
three-fold axis indicates that a continuous contribution to the solitary
waves might exist. But it is more likely that the solitary waves depend
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strongly on the lattice direction since even in the belt huge differences
of closely lying peaks exist which cannot be resolved in Figs. 6.13 and
6.14. So the figure should look more like a spherical diffraction pattern.

Results for symmetric impact

If two blocks of material are moved against each other at constant speed
up then the intensity distribution of the solitary waves looks completely
different. The intensity decreases (up to random fluctuations) continu-
ously with the angle to the three-fold axis (Figs. 6.13 and 6.14). The rea-
son for the different behavior for the two boundary conditions is rather
obvious: In the momentum mirror method we have a rigid boundary,
and therefore it should play a role how for example the densely packed
lattice planes are oriented with respect to it. Extinction effects and a
strong angle dependency are expected. Furthermore the boundary acts
like a twin boundary. In the case of two colliding blocks we have a
soft boundary condition at their common interface. The dense lattice
planes will bend and adjust otherwise. Therefore a smooth variation of
the solitary wave intensity with direction is more likely.

We have plotted the atoms in the solitary wave peak for [211]-solitary
waves simulated by the mirror method. It is clearly visible that diagonal
collision cascades exists (See Fig. 6.15). The open question is why this is
the case for some directions and not for others? A possible explanation
might be the lack of symmetry: In the case of the two-and four-fold
direction diagonal cascades are impossible since the environment of the
colliding atom is centrally symmetric. This is not the case for the direc-
tions with large solitary waves, except for the three-fold axis. But for
the latter we can explain the solitary waves by the existence of direct
collision partners (See Sec. 6.8).

Since [211] is still a rather low indexed direction as compared to [531] for
example, this result demonstrates how difficult it must be to work out an
explanation for the solitary wave phenomenon for arbitrary directions.
We have looked at atomic distances parallel to the shock wave direction
and at layer distances perpendicular to it, but none of this measures
gives a reasonable explanation for the appearance of solitary waves.
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144 Monatomic Models: ω-Phase and Solitary Waves

6.6 Ramping up the velocity

The question which arises in this context is: Are all the solitary wave
trains merely artefacts of the boundary conditions and is it possible to
avoid them. The answer is that the solitary waves are indeed stable
and independent of the boundary conditions. The problem with the
momentum mirror as indicated at the beginning of this chapter is that
there exists an acceleration singularity. To resolve it we have changed
the simulation setup, i.e. we have increased the piston velocity linearly
from zero to the desired end velocity. This introduces a new variable,
namely the time interval tr of ramping up the velocity. If tr is large,
only a step instead of the solitary wave is present. If tr is very large, it is
indeed possible to suppress the solitary waves completely. In contrast,
if tr is short, almost nothing changes: The solitary wave gets broadened
but at the end of the accelerating phase it sharpens and increases its
height. If the accelerating phase is enlarged several solitary peaks show
up. It may occur that the subsequent solitary peaks are damped away,
but this was not the case until the end of the sample has been reached.
In summary the following is observed: If the piston velocity up is ramped
up from zero the final state of the solitary waves is shifted to an effective
up,eff with up,eff < up. If up,eff is in the low underdriven range, no
solitary waves exist any more. If up,eff is in the low overdriven range, a
scenario with several solitary wave peaks unfolds. Thus the examination
demonstrates that the solitary waves are an inherent feature of the
system. They may be modified, but they will rise up later if they are
suppressed at the beginning of the simulation.

6.7 Theoretical explanation of the occuran-
ce of the ω-phase

The ω-phase observed in the simulations is never perfect. We therefore
have to deal with possible defects and imperfections.

6.7.1 Geometrical description of the ω-phase

The properties of the imperfect ω-phase can be described by different
pictures as summarized by de Fontaine [64,62]. A certain picture must
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not exclude another.

(111)-plane collapse picture

In the perfect, completely collapsed ω-phase of infinite extension all
B and C planes are shifted by the full displacement, i.e. they coincide.
This situation has never been observed. To our opinion it is not expected
to occur: it is not appropriate to describe bcc as a stacking of layers, but
as a dense packing of close-packed atom chains. The basic defect is a
shift of the chains. This view is also very important for the explanation
of the solitary waves (See Sec. 6.8). Fcc on the opposite is a stacking
of densely packed layers and the basic defect is a stacking fault.

In the crumpled ω-phase the displacement is incomplete, i.e. the B and
C planes do not coincide. This situation does not occur in the sim-
ulations. It is certainly not present in the case of weak shock waves
where the ω-phase spans a long distance. But since the transition is dy-
namical it cannot be ruled out completely, especially for the modulated
structures and the solitary waves.

The ω-phase in real crystals forms ellipsoids with the long axis parallel
to the three-fold direction [218] or small cubes (size 1.5nm). In the
simulations, the ω-phase fills the whole cross section of the samples and
stretches from bcc to the close-packed phase.

Stacking solitons, extra or missing planes have been proposed but could
not be detected in the simulations. The same is true for transverse
defects, i.e. large domains separated by grain boundaries [22, 23, 105].

This model clearly fails to explain the simulation results.

2
3 [111]2π/a-longitudinal displacement wave picture

The ω-phase can be generated by a longitudinal phonon wave with
k = 2

3 [111]2π/a and amplitude
√

3/12a. If the wave vector is different
from this ideal value, a modulated structure occurs. A wrong amplitude
can have the same effect as a wrong wave vector. The crumpled phase
and stacking defects can be the consequence. A further possibility is the
lock-in to a sequence of bcc and ω-domains [183] which is found in our
simulations. If the piston velocity is increased beyond up/c = 0.2− 0.3.
A strong modulation sets in as predicted by this model.
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[111]-atomic row movement picture

Up to now the descriptions of the ω-phase were 2+1 dimensional, i.e. pla-
nar patches move correlated. Only longitudinal and perhaps large-
scale transverse defects occur. The behavior observed in the simula-
tions should better be described as 1+2 dimensional, i.e. the atoms
along one-dimensional chains move correlated, but neighboring chains
are independent. This picture fits best for weak shock waves below
up/c = 0.175: in contrast to the predictions of the first model we do
not find a perfect hexagonal network and a distribution of the atoms
in the ratio 1:2 into the two ω-phase layers but a ratio of 0.444:0.556
(±0.002). The reason is the following: There are three variants of the
ω-phase depending on how the planes collapse (A+B, B+C, or C+A).
Since the domains fit together coherently, there has to be an adjustment
between the variants which changes the trivially expected distribution
of the atoms in the three layer structure from 1:2 to 4:5.

De Fontaine and Buck have carried out Monte Carlo simulations of the
ω-phase transformation [63]. They describe the transformation as a one-
dimensional linear displacive defect, together with a two-dimensional
cooperative ordering of neighboring chains. Their results support the
third model and resemble most closely our shock wave simulations: Es-
pecially Fig. 9 and the central part of Fig. 10 of Ref. [63] are practically
the same as our Fig. 6.4.

Petry et al. [148] called the behavior of β-Ti (which transforms into an ω-
phase) ”liquid-like”. This is another way to express that along the [111]
chains there are strong restoring forces and a long-range correlation.
But if a [111] chain vibrates, its neighboring chains do not follow this
motion. Thus the perpendicular motion is localized, the correlation
is lost rapidly, and the lifetime corresponds to roughly a vibrational
period. Petry et al’s description fits nicely to the decay of the solitary
wave found in our simulations and is similar to our crude model.

The only other model which take a transverse variation of the structure
into account is the Bragg-Williams model of de Fontaine and Kikuchi
[64] where a Landau-type order parameter is constructed for the average
shift of a bcc plane. A full analytical model of the transverse modula-
tions observed in the ω-phase transformation and in the solitary waves
is still lacking.
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Figure 6.16: Potential energy of the ω-phase vs. density for isotropic volume
change. The lattice constants were adjusted to the optimal ratio d/b, where
b is the in-plane and d the perpendicular lattice constant of the ω-phase.

6.7.2 The stability of the ω-phase in Dzugutov ma-
terials

At first sight there seems to be no reason why the ω-phase should form
in Dzugutov materials. The potential energy at the optimum differs
by about 1.4ǫ between bcc and the ω-phase, and the ω-phase is never
stable with respect to bcc, the σ-phase, and close-packed phases if only
isotropic deformations are permitted (Fig. 6.16).

This picture changes completely if the bcc-phase is compressed uniax-
ially as it happens in the shock wave simulations: at a compression of
d/d0 = 0.917 (d0 =

√
3/2a is the axial lattice constant of bcc in hexag-

onal representation) the ω-phase becomes more stable than bcc, but at
d/d0 = 0.835 the stability switches again to bcc (Fig. 6.17). Remark-
ably, bcc and the ω-phase both have their optimal lattice constant in
the (111) plane at the same value b = 1.76a (b =

√
2a is the planar

lattice constant of bcc in hexagonal description) which indicates that
there is no lattice mismatch and no transversal stress is created by the
shock wave and the phase transformation. Furthermore, there is no bar-
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rier between bcc and the ω-phase if the potential energy is considered
as a function of the lattice parameters b and d and the position of the
collapsing layers w/d. The optimal aspect ratio b/d is also similar for
bcc (b/d = 0.614) and the ω-phase (b/d = 0.574)1.
The stability of the bcc- and the ω-phase switches several times with
increasing compression, but we consider this to be irrelevant since the
absolute potential energy increases rapidly and reaches 1.2ǫ at a com-
pression of d/d0=0.835, but 88ǫ at the next intersection at d/d0=0.71.
The bcc-structure itself is no longer stable at this compression.
The instability of bcc at a compression of d/d0=0.917 is the reason for
the transition to the ω-phase. The reentrance of the bcc-phase stability
at d/d0=0.835 causes the modulation of the phase and the solitary wave
phenomenon.

6.7.3 Phonon dispersion and softening

We have applied the Born-von Kármán theory (For an overview see [24],
the details required can be found in [33] and [61]) to compute the phonon
dispersion relation for bcc with the Dzugutov potential. Since this po-
tential is very short ranged a limitation of the interaction parameters
to only three atomic shells yields the exact phonon dispersion relation
in the harmonic approximation. We find that the soft mode occurs at
0.52[111]2π/a already instead of the 2

3 [111]2π/a in the ideal case. The
deviation is large compared to the maximum of ±9% for real materials
(Fig. 6.19). Thus the symmetry-induced cancellation [59, 60, 58] of the
phonon modes in bcc at 2

3 [111]2π/a does not play a role in our case.
The strong offset leads to a minimal modulation of about dmod = 4a.
This value agrees well with the thinnest bcc- and ω-slabs observed in
the simulations. If the bcc structure is compressed, the soft mode shifts
towards the ideal value, which indicates that the modulation length
rises rapidly, in agreement with the simulations (Fig. 6.20).
The soft mode mechanism can also explain qualitatively why solitary
waves are observed along certain directions: these directions coincide

1On the other hand, there is no low-lying transition path from bcc to the high-
pressure fcc phase which is also present in the given parameter space. Bcc and fcc
both have w/d = 1/3, but different aspect ratios (for fcc b/d = 2.457).

1If the nearest neighbor Born-von Kármán interaction constant is scaled to one,
this leads to ω0=4 at k0 = |[111]2π/a|, the boundary of the reciprocal lattice cell.
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Figure 6.21: Intensity of the solitary waves determined by the mirror
method compared to the properties of the phonon modes. The crosses in-
dicate the directions where quasi-longitudinal modes with softening exist.
The x-signs indicates a strong mixing between quasi-longitudinal and quasi-
transverse modes. For the unsigned directions the phonon dispersion has not
been determined.

with the existence of a minimum in the quasi-longitudinal mode, namely
the mode which becomes longitudinal in the long-wave limit (Fig. 6.21).
Along the other directions a mixing occurs with transverse modes. The
softening modes exist along the three-fold direction and in a belt be-
tween the line going through the [211]- and [331]-direction and the plane
perpendicular to the four-fold axis. No softening modes exist in a circle
of about 20 degrees around the three-fold direction. The similarity of
this pattern with the intensity of the solitary waves measured with the
mirror method is quite good except for the plane perpendicular to the
four-fold direction. But for this plane another explanation exists for the
missing of the solitary waves (Compare Sec. 6.4.5). No suitable agree-
ment, however, is found in the case of the symmetric impact method
simulations. This is surprising since we would expect from the argu-
ments given in (Sec. 6.4.5) that continuum description apply better in
this case than for the momentum mirror simulations.
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6.7.4 Evaluation of the Landau theory

Cook and de Fontaine [29, 30, 31, 32] have presented a one-dimensional
phenomenological Landau theory to explain the ω-phase transition. The
order parameter is the amplitude of the 2

3 [111]2π/a phonon. A mod-
ulated phase can easily be explained with this model since it is quite
natural that the minimum of the free energy with respect to k shifts
if the Landau parameters change. Sanati and Saxena [181, 182] have
extended the Landau theory by Cook by including a spatial gradient
(Ginsburg) term. Kinks corresponds to ω–bcc or bcc–ω domain walls if
both phases are equally stable. A soliton represents a slab of the ω-phase
within bcc if the ω-phase is more stable than bcc and an anti-soliton
represents the opposite case. Moving domain walls can be generated by
boosting the static solutions. The lattice cases occur if the sequence of
phases is repeated.
Only kinks and solitons are found in the simulations which tells us
that the phase transformation is driven by an instability of bcc with
respect to the ω-phase. The lattice solutions which are realized by
modulated structures observed in the simulations cannot be used to
judge the stability of bcc and the ω-phase since these occur in all cases.
Unfortunately the analytical theories are only one-dimensional whereas
our results require a full three-dimensional treatment. To our knowl-
edge, nobody has attempted yet to create a three-dimensional theory.

Application to the simulation results

We have calculated the parameters of the Landau free energy

F = F0 + Hη +
A

2
η2 +

B

3
η3 +

C

4
η4 (6.1)

for the ω-phase transformation induced by a uniaxial compression of
bcc. The gradient term (∇η(x))2 has been omitted since we assume
that η is constant throughout the sample. At T = 0 the free energy is
equivalent to the potential energy Epot and can be computed directly
from the lattice sum of the Dzugutov potential as a function of the
compression d/d0 and the position w/d of the shifted layers for fixed
b = 1.76a. The usual assumptions for the Landau theory are that A is
temperature-dependent, whereas B and C are essentially temperature-
independent such that the equation for the free energy can be brought
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into a reduced form with f − f0 = C3/B4(F − F0), φ = C/|B|η, a =
AC/B2, b = −1, c = 1, and h ≈ 0. Thus f = f0 + aφ2/2−φ3/3+φ4/4.

The dependence on temperature has to be replaced by a dependence on
uniaxial compression d/d0 in our case.

A further prerequisite for the Landau theory is that there is a stable
phase and a competing metastable phase which are separated by a bar-
rier and change their roles as a function of T or d/d0 respectively.

The order parameter η should be related to w/d. A direct identification
of η with w/d fails since w/d is a periodic function modulo d. Dmitriev
et al. [41] have described how to apply the Landau theory to a periodic
order parameter. If we set

η =
2

3

[

sin (2π
w

d
+

π

6
) − 1

2

]

, (6.2)

then the parameters H(d/d0), A(d/d0), B(d/d0) and C(d/d0) can be
computed as functions of the compression d/d0. We find that the linear
coefficient H is almost zero which indicates that bcc is always close to
an extremum.
But in contrast to the expectations we observe that all the other param-
eters are strongly dependent on d/d0 (See Fig. 6.22). The situation is
even worse: B and C are directly proportional and vary much stronger
as a function of d/d0 than the parameter A. They even change signs in
the range of interest. Thus a reduction of the free energy equation is
not possible. On the other hand we have to stress that the Landau free
energy F fits Epot very well in the whole range 0.8 < d/d0 < 1.1.

Now we will consider the second set of Landau conditions: The coex-
istence of stable and metastable phases. We find that these conditions
are violated in the uncompressed state d = d0 since the ω-phase forms
a local maximum and not a minimum. Only in the ranges between
d/d0 = 0.77 and 0.78 and between 0.82 and 0.92 two phases coexist
(See Fig. 6.23). The presence of the second range tells us that the
Landau principle is indeed applicable since the ω-phase is the global
minimum in the largest part of this range and bcc or a slightly dis-
torted bcc structure form a local minimum. A barrier between both
phases exists. At low compression there is a sudden jump from bcc to
the ω-phase whereas there is a continuous crossover at the reentry of
bcc.
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Figure 6.22: The parameters of the Landau energy.
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We conclude that the transformation from bcc to the ω-phase can in-
deed be explained in the spirit of a Landau theory but a quantitative
application fails since the prerequisites for the Landau theory are not
fulfilled.
A more quantitative application of the Landau-Ginsburg theory in con-
junction with the Born-von Kàrmán parameterization of the interac-
tions should be possible. A better achievement, however, would be a
three-dimensional analytical model of the shock waves and phase tran-
sitions which can also predict the transverse modulation.

6.8 Theoretical explanations of the solitary
waves

We will first present a very crude model which simply claims that the
solitary waves occur along the direction where the atoms have the short-
est distance, and that the solitary waves are quasi-hard sphere collisions
in the spirit of Nesterenko [145]. We have tested the model for different
lattices and proved that it works for all cases where solitary waves have
been observed up to now. But it cannot explain the solitary waves along
arbitrary directions.
Second we will present a few analytical approaches that could be applied
to the solitary wave phenomenon and discuss how these approaches have
to be adapted and generalized.

Crude model for the solitary waves

The solitary waves can be understood in a crude model which assumes
that they are caused by direct hits of close-neighbor quasi-hard spheres.
The directions in bcc where the atoms form chains with distances of the
potential radius 1a are exactly the three-fold axes. These chains are
close-packed. In a characteristic soliton peak the distance between two
atoms is reduced by 25%. The potential energy increases to about 21ǫ
which is large, and the interaction can be regarded as a hard collision
(If the compression is 30% the energy grows to 70ǫ). If shocked along
a four-fold or two-fold direction the momentum of the moving atom
points directly into a gap between two atoms, and no direct collision
partner is present. The increase in energy at the same displacement
is only 4.3ǫ for the four-fold direction. For the two-fold direction it is
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negligible. Therefore the solitary waves cannot persist. The observation
of the decay of the transverse correlation of the collisions would also be
in agreement with this model. In the transverse direction a loss of
correlation leads only to a small increase of the binding energy of the
atoms.
In the tcp-structures the close-packed chains (dotted atoms in Figs. 3.8
- 3.10) are thinned out by the other black and white atoms which do
not form close-packed chains. Therefore the solitary wave is also not
stable in these phases if shocked perpendicular to the basic layers. In
the plane of the basic tiles, in the quasicrystalline plane, and in the 45
degree directions there are no well-defined atomic layers at all, thus no
solitary waves are expected.
We have to admit that this model cannot explain more complicated
cases of solitary waves along high-index directions in bcc. It also misses
the connection to the intermediate ω-phase, but it could be demon-
strated that it applies also in other cases if we assume that the solitons
there are of the same type as the ones described here: In fcc the soli-
tary waves are found along the two-fold directions which are the close-
packed chains. The model also works for a specially prepared single
cubic crystal where the solitary waves can be switched on and off along
the four-fold direction if the interaction is tuned such that it is strong
along the four-fold or two-fold direction.

Tunable solitary waves

To figure out how reasonable this crude model is we have tried to gen-
erate solitary waves in single cubic (sc) crystals. Since the coordination
number of sc crystals is only six, they are not stable with respect to shear
distortion if isotropic potentials are used. Therefore we have introduced
two sets of bonds: Nearest neighbors along the four-fold direction in-
teract with one set, next nearest neighbors along the two-fold direction
interact with the other set. We can tune the relative strength rs of these
two sets of interactions. If the next nearest neighbor interactions are
strong then the system behaves as if it would consist of two independent
interpenetrating fcc crystals. The depth of the edge-connected atoms
has been kept fixed at ve = −1ǫ, the strength for diagonal-connected
atoms has been varied between vd = −0.25 and −4ǫ.
The results are the following: Along the four-fold direction solitary
waves are observed for any value of rs as predicted by our crude model,
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since these atoms always have the shortest distance. If the shock wave
propagation is along two-fold direction we find solitary waves only for
large rs as known from the fcc crystals [72] since in the case of large
rs second nearest neighbors have direct contact. The cross-over occurs
between rs = vd/ve = 0.5 and 1.0. Shock waves along the three-fold
direction never lead to solitary waves even in the case of extremely high
piston velocities. These results nicely fit into the predictions of our
crude model.

Continuum approach

The simplest description of solitary waves in one-dimensional shocked
crystals involves Korteweg-de Vries (KdV) and Toda solitons [97]. Thus
a natural extension would be the Kadomtsev-Petviashvili (KP) solitary
waves [111], which are nonlinear along one direction and linear in the
transverse directions. Moreover, these solitary waves include the KdV
and Toda solitons as one-dimensional limits. There exist two varieties
with positive (II) and negative dispersion (I) for the transverse part.
The solitons of KPI equation behave indeed like our solitary waves,
i.e. they decay into so-called bullets similar to what we have seen in
Fig. 6.11. An application of this approach is currently far beyond the
scope of this thesis since the general continuum case has not yet been
treated (which has to be solved numerically), but in our case the more
complicated discrete limit would be needed.

6.9 Discussion

6.9.1 Experiments

Experimentalists [114] are interested to observe the solitary wave peaks
found in our simulations in single crystals in the picosecond range at low
temperatures with the help of lasers. Although the possibility of detec-
tion seems to be rather limited due to the strong restrictions indicated
above, there is a certain probability of success. Peter Lomdahl [114]
has observed solitary waves in granular media on the oscilloscope along
the hard directions in fcc and bcc. An experimental verification would
certainly clear out the doubts about the existence of these phenomena.
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6.9.2 Comparison to one-dimensional solitons

Holian et al. [102] have simulated shock waves in one-dimensional lattice
models and described the results by analytical means [97]. For Toda
interactions they could show that solitary wave trains exist. Morse and
Lennard-Jones potentials can be treated as perturbations of the Toda
interaction. The important parameter is the product αν of the relative
anharmonicity α = −a0Φ

′′′(a0)/Φ′′(a0)/2 of the potential Φ(r) at its
minimum a0 and the relative piston velocity ν = up/c with respect to
the velocity of sound c. The entire shock profile may be described as a
soliton wave train. If αν is small, the continuum KdV description can be
applied and the discrete Toda description if it grows. Isolated solitons
exist near the shock front. At small up they separate logarithmically,
at large up they are locked in a periodic pattern. If one moves from
the shock front to the piston, the phase between neighboring particles
increases until it reaches π. Near the piston the particles are in an
optical mode, their displacement is equal and opposite. The optical
mode is the highest wave number which a discrete lattice can support.
If αν is small the long time behavior is quasiharmonic, and hard-rod-
like otherwise. The crucial point is that the system is one-dimensional
which prevents plasticity since the particles cannot change their order.
No dissipation is present. In three dimensions we have dissipation due
to the possibility of transverse motion. A comparison of the predicted
speed of the leading soliton us/c = 1+2/3αν for small amplitudes (weak
shock waves) and us/c = 2αν/ ln(4αν) for large amplitudes (stronger
shock waves) with the propagation speed of our solitary waves shows
that there is no agreement.

The one-dimensional results also hold in three dimensions if the shock
strength is below the Hugoniot elastic limit, in the elastic-plastic regime,
or if the temperature is zero [102, 95]. Then there are steady solitary
waves locked-in to an oscillatory profile. Holian [95] claims that if the
cross-section of the samples is too small, distortions will be locked out
and lead to an ever-growing non-steady soliton profile. He is referring
to Germann et al. [72]’s simulations in the elastic-plastic regime with
cross-sections of up to 200 × 200a2. We have observed non-steady soli-
tary waves in the overdriven regime in samples with up to 120× 120a2.
But we found that the averaged solitary waves are decaying by loosing
the inter-chain correlation, while the solitary waves on a single atom
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chain persisted. Our results can be compared to those of Kadau [119].
He studied bcc iron equipped with different sets of EAM potentials. In
general his results are very similar to ours, at least for the three-fold
direction. The solitary wave trains in his simulations seem to consist of
more peaks than in our case, and to decay more slowly. A direct com-
parison, however, is lacking. In general his results are in good agreement
with ours, but there are some notable differences:

1. No ω-phase has been observed. The reason is unclear. Since we
have shown that the ω-phase and the solitary waves are two sides
of the same phenomenon, and solitary waves have been observed
in both cases, one should expect the ω-phase in both systems.

But it is certainly possible that another origin of the solitary waves
exists.

2. A modulated ω-phase is not present in iron since the softening
occurs close to the ideal wave vector.

3. The solitary waves in Kadau et al.’s simulations are not modulated
in the transverse direction. Since they do not loose their corre-
lation they decay much slower. Our first conjecture was that the
range of the interaction may be responsible for the different decay
speed, but this cannot be the case since the interaction ranges
are of comparable size. Other reasons might be the many-body
part of the EAM-interaction or the low stability of bcc with the
Dzugutov potential.
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Final Remarks

In this work we have demonstrated that the study of defects generated
of shock waves is a challenging subject. Our results show once again
that shock wave physics has made a huge leap with the introduction of
massively parallel supercomputers and large-scale computing.

The treatment of the diatomic case has revealed that plasticity of or-
dinary crystals has to be studied in more detail. More detailed anal-
ysis methods are also required. The modes of plasticity turned out to
be much more complicated than in the monatomic case. It would be
preferable to compare the results to experiments. This is not possible
yet since we have used model potentials. Currently we have a project
running which aims to produce material-specific interactions for Laves
crystals and Frank-Kasper quasicrystals starting from ab-initio calcu-
lations. These interactions will permit to study models with realistic
properties and to compare them to experiment.

With regard to the quasicrystals we were able to demonstrate in the
mono- and diatomic case that quasicrystal-specific defects are induced
by the plastic precursor. It would be interesting to study shock waves in
decagonal AlNiCo quasicrystals for which precise models and optimized
interactions are available [5]. Equilibrium results have been obtained
already [65, 66]. Simple modes of plasticity in quasicrystals, like dis-
locations or phason walls in the binary model, are no longer expected
for Frank-Kasper quasicrystals since newer results on crack propaga-
tion have shown that no dislocations are emitted [159,160], despite the
possibility to generate dislocations under extreme conditions [185]. The
issue of steady and non-steady waves and long-term relaxations which
is much more severe for complex structures has not yet been addressed
adequately and deserves a closer investigation.

The most controversial part of this thesis may be the solitary waves.
Solitons generated by shock waves have long been a matter of debate.
Meanwhile a picture has evolved which says that locked-in solitary waves
are observed along certain directions in three-dimensional crystals. The
case of non-steady solitary waves has not yet been settled. We are eager
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to determine the possibility of experimental observations. In granular
model systems they have been seen, but it would be more interesting
to measure them on an atomic scale. The latest results by Kadau [118]
predict that the solitary waves should still be detectable at low temper-
atures after traveling 1µm through a perfect single crystal.
For bcc-materials interacting with the Dzugutov potential and shocked
along the three-fold direction we have shown that the solitary waves
are the super-sonic continuation of a sub-sonic phase transition to the
intermediate ω-phase.
The solitons observed by Kadau [118] decay much slower than our soli-
tary waves. The speculation goes that this is mainly due to the many-
body part of interaction, and not to the range of interaction. We are
preparing new simulations with modified interactions to solve this ques-
tion.



Future Perspectives

What are the next steps? Here we have collected a few ideas on how
the research on shock waves in complicated crystal structures can be
continued.

The synchroshear mechanism, predicted for the Laves crystals as a mode
of plasticity, deserves a closer investigation. Specific EAM-interactions
can help to clarify the question whether the Lennard-Jones potentials
are responsible for the unsuccessful search or if there is a more general
reason like the topology of the γ-surface for example.

For the quasicrystals, we plan to go back to two dimensions where
the analysis and representation of the results is much easier. A two-
dimensional binary model exists which permits the generation of dislo-
cations and phason walls [178, 177] despite the fact that the model is
also rather densely packed. In three dimensions we will soon be able to
study stable icosahedral quasicrystals of the AlCuFe- or AlPdMn-type
when the EAM-potentials become available. Precise models of these
materials exists and dislocations and phason walls are well known from
experiment. In conclusion we have not yet reached the end of the road
in the study of shock waves in quasicrystals although the first results
have suggested a close similarity between crystals and quasicrystals.

We have only shortly reported two studies of amorphous structures. It
turned out that the Dzugutov potential is very suitable for the sim-
ulation of glasses since it prevents crystallization very effectively. The
same is true for the set of parameters of the Lennard-Jones potentials in
the diatomic case. A more thorough investigation of amorphous mate-
rials will be appropriate. Differences in the behavior of weak and strong
shock waves have been found already but they could not be character-
ized in detail. New analysis tools are required and a closer look at the
shock effects on the atomic structure level is necessary.

The analytical treatment of the solitary wave problem is still challeng-
ing. The first attempts to bring the discrete nature of the crystal lattice
into connection with soliton equations had appeared to be tremendously
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complicated. But the realization that an easier way may exist by em-
ploying the Born-von-Kármán formalism for the interactions has revived
this topic again. At least for the short-ranged Dzugutov potential and
the simple bcc-lattice the problem appears to be solvable and will be
addressed soon.

The size of the simulated models has increased dramatically, but they
are still far too small in many instances and can be simulated for a far
to short time in several cases. Especially in the more realistic case of
polycrystals no stationary state could be achieved [95] until now. Great
hopes for improvement lie in the Hugoniostat which permits to decou-
ple the simulation time and the propagation velocity of the shock waves
since it allows to study a (quasi-)stationary system.

Another field of application has recently come into vision: the simula-
tion of the laser ablation process. The interaction of lasers with solids is
a very challenging and exciting subject. Shock waves are only a part of
the complex processes observed there, but show up in the solid and in
the plasma produced by the laser (See App. C). The simulation of laser
ablation will require the interplay of different physical discipline like
plasma physics, electron theory and solid state physics and the treat-
ment of the problem with multi-scale methods. The electron system for
example has to be modeled by finite element methods to capture the
essentials of the heat and energy transfer to the atom system since the
heat conduction of the electrons and the ions is very different.
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A The Mie-Grüneisen-Debye-theory

As long as no phase transition occurs, experiment and simulations obey
the following astonishing relation between the piston velocity up and
the shock wave velocity us, valid in a broad range of piston velocities:

us = s up + c (+k u2
p + · · · ). (A.1)

In polycrystals, c is the bulk velocity of sound and s and k are constants
[180]. Usually k is very small, and the linear relation is valid over a range
of 40 Gbar to within 20% [189]! This indicates that the Grüneisen ratio
γ is a constant, since it is given by

γ = 2
dus

dup
− 1. (A.2)

There is no solid theoretical foundation for this linearity, but an expla-
nation is given by the Mie-Grüneisen-Debye theory (See [156] p. 40ff),
which describes a solid as a collection of harmonic oscillators. The con-
tribution of the electrons is neglected and the material is considered
to be isotropic. Experience has shown that the Mie-Grüneisen-Debye
theory works pretty well for solids at high temperatures.

With the given assumptions we can write down the thermal energy E,
the pressure P and the Grüneisen ratio να per mode by:

E = Φ +
1

2

∑

α

hνα +
∑

α

hνα

ehνα/kT − 1
, α = 1, . . . , 3N

P = −dΦ

dV
+

1

V

∑

γα

{

1

2
hνα +

hνα

ehνα/kT − 1

}

γα = −d ln να/d lnV

Φ is the ground state energy, V the volume, να are the phonon modes.
The ordinary Grüneisen ratio γ is given as an average over all γα.
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The pressure may be represented by:

P = − dφ

dV
+ γ

3NkT

V
. (A.3)

After some rewriting, this gives the Mie-Grüneisen equation of state
[136,79, 80]

P − PK =
γ(V )

V
(E − EK) (A.4)

where the index K means pressure and energy at the starting point,
usually ambient conditions.
The constant γ for an elastic continuum can be derived with Slater’s
assumptions [197] of an isotropic body and a constant Poisson ratio
(c11/c12):

γ = −V

2

(∂2P/∂V 2)

(∂P/∂V )
− 2

3
. (A.5)

Slater’s result follows from the usual equations

cl =
√

V c11

ct =

√

(c11 − c12)V

2

−V
dP

dV
=

c11 + 2c12

3

for the longitudinal and transversal velocity of sound and the bulk mod-
ulus of an isotropic body, together with the relation να = c/λα, where
λα ∝ V 1/3 leads to γα being all equal.
For the longitudinal mode in particular we get

γ =
1

2

d ln c11

d lnV
− 1

6
. (A.6)

and together with Slater’s formula for γ at P = 0:

γ = 2s − 1, s = dus/dup (A.7)

Other derivations, assuming different equations of state are also possi-
ble. Dugdale and MacDonald [47] for example give an improved relation:

γ = −V

2

(∂2(PV 2/3)/∂V 2)

(∂(PV 2/3)/∂V )
− 1

3
(A.8)
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Although their original derivation was wrong, the formula gives excel-
lent results. Meanwhile it has been obtained by an alternative deduction
(for example [144]).

B Shock waves in one-dimensional crystals
and quasicrystals

Shock waves in one-dimensional hard-sphere structures have been stud-
ied by Holian and Straub [102,204]. The model applied is equivalent to
the ”beads on a wire” model of Duvall and Band [25]. Rabie [36] treats
the ”bead on a string” model, a generalization to inelastic scattering.

Spheres of diameter σ and distance a are placed on a regular lattice. If a
further sphere is colliding with this arrangement at a constant velocity
up then the shock velocity can be calculated easily by geometric means
(Fig. B.1, left). It is helpful in this context to define a collision time
tc = (a − σ)/2up and to express the shock velocity by us = a/tc =
2up/(1 − σ/a).

The scheme can easily be extended to ”quasicrystals” built with two
distances l and s in an aperiodic arrangement like for example a Fi-
bonacci sequence (Fig. B.1, right). An inspection of the figure shows
that one has only to replace the distance a by the average a = nll+nss,
nl and ns being the frequency of the l and s distances. This method can
certainly be applied to more complicated structures with a well-defined
average.

C Ablation and generation of shock waves

with lasers

Laser ablation is a method of great technological relevance which is still
being developed. To understand the physical processes and to optimize
ablation, a modeling with computer simulations is urgently required.

In laser ablation there are several time scales which last up to seconds.
Excitingly, the shortest time scales can be assessed directly by molecular
dynamics. Often the timescales and sizes treatable by molecular dynam-
ics are short and small compared to their true orders of magnitude. This
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Figure B.1: Shock waves in one-dimensional hard sphere materials. Left:
ordinary crystal (From [102]), right: quasicrystal, drawn for σ = 0. Each
crossing denotes the collision of two particles.

is not the case for short-time laser ablation with femtosecond pulses as
can be read of the following list (data for example from [12,55, 225]):

• laser power: 108 − 1018 W/cm2

• pulse interval: 100 fs – 10 ns

• pulse duration: 10 fs – 100 µs

• heating: 3000 K – 10000 K

• pressure: 1 GPa – 2 TPa

• penetration depth: 100 – 300 nm

• observation time: few ps – ns

The numbers should be compared to typical sample sizes: In the simula-
tions we used rods with up to 120×120×600a3 (average atom distance
a) and up to 5 million atoms. The achievable simulation time is about
100 ps. These numbers are not dictated by computing power but by
practical purposes. It would be no problem to simulate samples with up
to 5 billion atoms [173]. We will not conceal, however, that there is one
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aspect which has not been treated adequately, namely the laser spot is
a thousand times larger than the cross section treated up to now. But
such large samples are in the range of present day computers.
Laser ablation is a huge challenge even in the most simple case of metals:
The interaction of the laser with the electron system and the coupling of
the electrons and the ions have to be modeled. The process usually takes
place in the phase coexistence region of the phase diagram such that
single atoms, liquid drops and solid clusters play a role in the ablated
material. Shock waves moving out of the sample may be modeled with
continuum methods. Our special concern are shock waves moving into
the sample through highly stressed material where they interact with
dislocations and other extended defects.
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[27] E. Cockayne and M. Mihalkovič, Stable quasicrystalline sphere
packing, Phil. Mag. Lett. 79 (1999) 441–448.

[28] C. S. Coffey, Mechanisms of elastoplastic response of metals to
impact, in High-Pressure Shock Compression of Solids (Edited by
L. Davison and M. Shahinpoor), volume 3, pages 59–80, Springer,
New York, (1998).

[29] H. E. Cook, On the nature of the omega transformation, Acta
Metall. 21 (1973) 1445–1449.

[30] H. E. Cook, A theory of the omega transformation, Acta Metall.
22 (1974) 239–247.



174 Bibliography

[31] H. E. Cook, On first-order structural phase transitions – I. general
considerations of pre-transition and nucleation phenomena, Acta
Metall. 23 (1975) 1027–1039.

[32] H. E. Cook, On first-order structural phase transitions – II. the
omega transformation in Zr-Nb alloys, Acta Metall. 23 (1975)
1041–1054.

[33] H. E. Cook and D. D. Fontaine, On the elastic free energy of solid
sulutions – I. microscopic theory, Acta Metall. 17 (1969) 915–924.

[34] W. C. Davis, Shock waves; rarefaction waves; equation of state,
in Explosive Effects and Applications (Edited by J. A. Zukas and
W. P. Walters), pages 47–113, Springer, New York, (1998).

[35] L. Davison, Attenuation of longitudinal elastoplastic pulses, in
High-Pressure Shock Compression of Solids (Edited by L. Davison
and M. Shahinpoor), volume 3, pages 277–327, Springer, New
York, (1998).

[36] L. Davison, The discontinuous shock–fact or fancy?, in High-
Pressure Shock Compression of Solids (Edited by Y. Horie,
L. Davison, and N. N. Thadhani), volume 6, pages 297–321,
Springer, New York, (2002).

[37] L. Davison, The universal role of turbulence in the propagation
of strong shocks and detonation waves, in High-Pressure Shock
Compression of Solids (Edited by Y. Horie, L. Davison, and N. N.
Thadhani), volume 6, page 1, Springer, New York, (2002).

[38] L. Davison and R. A. Graham, Shock compression of solids, Phys.
Rep. 55 (1979) 255–379.

[39] M. Deza and M. Shtogrin, Isometric embedding of mosaics into
cubic lattices, Discr. Math. 244 (2002) 43–54.

[40] C. Dilger, R. Mikulla, J. Roth, and H.-R. Trebin, Simulation of
shear stress in icosahedral quasicrystals, Phil. Mag. A 75 (1997)
425–441.



Bibliography 175

[41] V. P. Dmitriev, S. B. Rochal, Y. Gufan, and P. Toledano, Defini-
tion of a transcendental order parameter for reconstructive phase
transitions, Phys. Rev. Lett. 60 (1988) 1958–1961.

[42] J. P. K. Doye and D. J. Wales, Polytetrahedral clusters, Phys.
Rev. Lett. 86 (2001) 5719–5772.

[43] J. P. K. Doye, D. J. Wales, and S. I. Simdyankin, Global opti-
mization and the energy landscapes of dzugutov clusters, Farad.
Discuss. 118 (2001) 159–170.

[44] V. V. Dremov, A. L. Kutepov, A. V. Petrovtsev, and A. T.
Sapozhnikov, Equation of state and phase diagram of iron, in
Shock Compression of Condensed Matter - 2001 (Edited by M. D.
Furnish, N. N. Thadhani, and Y. Horie), volume 620, pages 87–90,
(2001).

[45] B. Dubost, J. M. Tanaka, P. Sainfort, and M. Audier, Large Al-
CuLi single quasicrystals with triacontahedral solidification mor-
phology, Nature 324 (1986) 48–50.

[46] L. S. Dubrovinsky, Comment: Atomistic simulations of shock
wave-induced melting of argon, Science 278 (1997) 1474–1475.

[47] J. S. Dugdale and D. K. C. MacDonald, The thermal expansion
of solids, Phys. Rev. 89 (1953) 832–834.

[48] G. E. Duvall and R. A. Graham, Phase transitions under shock-
wave loading, Rev. Mod. Phys. 49 (1977) 523–579.

[49] M. Dzugutov, Glass formation in a simple monoatomic liquid with
icosahedral inherent local order, Phys. Rev. A 46 (1992) R2984
R2987.

[50] M. Dzugutov, Formation of a dodecagonal quasicrystalline phase
in a simple monatomic liquid, Phys. Rev. Lett. 70 (1993) 2924–
2927.

[51] M. Dzugutov, Hopping diffusion as a mechanism of relaxation
stretching in a stable simple monatomic liquid, Europhys. Lett.
26 (1994) 533–538.



176 Bibliography

[52] M. Dzugutov, Phason dynamics and atomic transport in an equi-
librium dodecagonal quasi-crystal., Europhys. Lett. 31 (1995) 95–
100.

[53] M. Dzugutov and U. Dahlborg, Molecular dynamics study of the
coherent density correlation function in a supercooled simple one-
component liquid, J. Non-Cryst. Solids 131 (1991) 62–65.

[54] M. Dzugutov, S. I. Simdyankin, and F. H. Zetterling, Decoupling
of diffusion from structural relaxation and spatial heterogeneity
in a supercooled simple liquid, Phys. Rev. Lett. 89 (2002) 195701.

[55] K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, and S. Hüller, Hy-
drodynamic simulation of subpicosecond laser interaction with
solid-density matter, Phys. Rev. E 62 (2000) 1202–1214.

[56] M. L. Elert, S. V. Zybin, and C. T. White, Molecular dynam-
ics study of shock-induced chemistry in small condensed-matter
hydrocarbons, J. Chem. Phys. 118 (2003) 9795–9801.

[57] A. G. Every, Ballistic phonons and the shape of the ray surface
in cubic crystals, Phys. Rev. B 24 (1981) 3456–3467.

[58] C. Falter, A unifying approach to lattice dynamical and electronic
properties of solids, Phys. Rep. 164 (1988) 1–117.

[59] C. Falter, W. Ludwig, M. Selmke, and W. Zierau, The LA-
2
3 (1, 1, 1) anomaly in bcc structure, Phys. Lett. 90A (1982) 250–
252.

[60] C. Falter, W. Ludwig, W. Zierau, and M. Selmke, A model case
study of the LA- 2

3 (1, 1, 1) anomaly in bcc structure, Phys. Lett.
93A (1983) 298–302.

[61] D. D. Fontaine, Mechanical instabilities in the b.c.c. lattice and
the beta to omega phase transformation, Acta Metall. 18 (1970)
275–279.

[62] D. D. Fontaine, Simple models for the omega phase transforma-
tion, Metall. Trans. A 19 (1988) 169–175.



Bibliography 177

[63] D. D. Fontaine and O. Buck, A Monte Carlo simulation of the
omega phase transformation, Phil. Mag. 71 (1973) 967–983.

[64] D. D. Fontaine and R. Kikuchi, Bragg-Williams and other models
of the omega phase transformation, Acta Metall. 22 (1974) 1139–
1146.

[65] F. Gähler and S. Hocker, Atomic dynamics in decagonal Al-Ni-Co
quasicrystals, J. Non-Cryst. Solids 334-335 (2004) 308–311.

[66] F. Gähler, S. Hocker, U. Koschella, J. Roth, and H.-R. Trebin,
Phason elasticity and atomic dynamics of quasicrystals, in Qua-
sicrystals: Structure and Physical Properties (Edited by H.-R.
Trebin), pages 338–358, Wiley-VCH, (2003).

[67] F. Gähler, C. Kohler, J. Roth, and H.-R. Trebin, Strain distribu-
tions in quantum dot nanostructures, in High Performance Com-
puting in Science and Engineering 2002 (Edited by E. Krause and
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les orps et plus spécialement dans les gaz parfaits. 1ê partie, J.
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Springer, New York, (1998).

[152] R. Ravelo, B. L. Holian, T. C. Germann, and P. S. Lomdahl,
Constant-stress hugoniostat for following the dynamical evolution
of shocked matter, Phys. Rev. B 70 (2004) 014103.

[153] E. J. Reed, L. E. Fried, and J. D. Joannopoulos, A method for
tractable dynamical studies of single and double shock compres-
sion, Phys. Rev. Lett. 90 (2003) 235503.

[154] E. J. Reed, J. D. Joannopoulos, and L. E. Fried, Hugoniot
constraint molecular dynamics study of a transformation to a
metastable phase in shocked silicon, in Shock Compression of Con-
densed Matter - 2001 (Edited by M. D. Furnish, N. N. Thadhani,
and Y. Horie), volume 620, pages 343–346, (2001).

[155] L. Reinhard, J. L. Robertson, S. C. Moss, G. E. Ice, P. Zschack,
and C. J. Sparks, Anomalous-x-ray-scattering study of local order
in bcc Fe0.53Cr0.47, Phys. Rev. B 45 (1992) 2662–2676.

[156] M. H. Rice, R. G. McQueen, and J. M. Walsh, Compression of
solids by strong shock waves, in Solid State Physics (Edited by
F. Seitz and D. Turnbull), volume 6, pages 1–63, Academic, New
York, (1958).

[157] Y. Richeng, X. Dapeng, S. Wenhui, and C. Shucheng, Study on
quasicrystal formation of Al65Co20Mn15 by quenching under high
static pressure, in Proceedings of the XIII AIRAPT Conference:
Recent Trends in High Pressure Research, volume 13, pages 178–
180. Pergamon Press, Oxford, (1991).

[158] D. H. Robertson, D. W. Brenner, and C. T. White, Molecular
dynamics analysis of shock phenomena, in High-Pressure Shock
Compression of Solids (Edited by L. Davison and M. Shahinpoor),
volume 3, pages 37–57, Springer, New York, (1998).
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[232] V. V. Zhakhovskĭı, S. V. Zybin, and K. Nishihara, Orientation
dependence of shock structure in L-J crystal, in Proceedings of of
the Japanese Symposium on Shock Waves , page 262, (2000).
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