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The Kiss Precise

For pairs of lips to kiss maybe
Involves no trigonometry.
’T is not so when for circles kiss
Each one the other three.
To bring this off the four must be:
As three in one or one in three.
If one in three, beyond a doubt
Each gets three kisses from without.
If three in one, then is that one
Thrice kissed internally.

Four circles to the kissing come.
The smaller are the benter.
The bend is just the inverse of
The distance form the center.
Though their intrigue left Euclid dumb
There’s now no need for rule of thumb.
Since zero’s bend’s a dead straight line
And concave bends have minus sign,
The sum of the squares of all four bends
Is half the square of their sum.

To spy out spherical affairs
An oscular surveyor
Might find the task laborious,
And now besides the pair of pairs
A fifth spere in the kissing shares.
Yet, signs and zero as before,
For each to kiss the other four
The quare of the sum of all five bends
Is thrice the sum of their squares.
Frederick Soddy
Soddy, F., Nature 137 1021, 1936.



Publications related to this thesis

• R. Mahmoodi Baram and H.J. Herrmann. Self-Similar Space-Filling Pack-
ings in Three Dimensions. Fractals, 12, 293-301 (2004).

• R. Mahmoodi Baram, H.J. Herrmann, and N. Rivier. Space-Filling Bear-
ings in Three Dimensions. Phys. Rev. Lett., 92, 044301-1 (2004).

• R. Mahmoodi Baram, H.J. Herrmann. Random Bearings and Their Stabil-
ity. For submitting to Phys. Rev. Lett.
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Chapter 1

Zusammenfassung

Dichte, Größenverteilung der Teilchen, sowie die Topologie und Kontaktnetzw-
erke gehören zu den wichtigsten Eigenschaften granularer Materialen [1]. Zur
Herstellung von Hochleistungszementen werden Mischungen aus Teilchen unter-
schiedlicher Größe benötigt, um höhere Dichten zu erzeugen. Die raumfüllenden
Lager, die wir in Kapitel 4 beschreiben, sind alle Beispiele für Systeme mit
einer Dichte von 1, d.h. jede Konfiguration beschreibt eine Größenverteilung
kugelförmiger Teilchen mit denen das Volumen auf mindestens eine Weise
vollständig gefüllt werden kann. Hierdurch entfällt jegliche obere theoretische
Grenze für die Größenverteilung.

Für die Herstellung selbstähnlicher raumfüllender Packungen in zwei und
drei Dimensionen haben wir einen Algorithmus auf Basis konformer Packun-
gen entwickelt. Mit diesem Algorithmus und einigen Erweiterungen wurden
verschiedene bisher unbekannte Kugelpackungen erzeugt. Diese Packungen
haben unterschiedliche Topologien, da sie verschiedene fraktale Dimensionen
aufweisen. Durch definierte Einfärbung bestimmter Teilchen werden die Unter-
schiede der Packungen noch offensichtlicher.

Unter den dreidimensionalen Packungen gibt es eine, bei der man die einzelnen
Teilchen mit nur zwei Farben so markieren kann, daß sich niemals zwei Kugeln
mit der selben Farbe berühren (siehe Abb. 1.1). Wir nennen solche Konfigura-
tionen bichromatisch. Die Bichromatik ist eine grundlegende Eigenschaft, da sie
es ermöglicht, ein dreidimensionales, volumenfüllendes Kugellager zu bauen in
dem die Kugeln rotieren können, ohne daß sie blockieren. Wir haben die Exis-
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Figure 1.1: Darstellung der bichromatischen Packung, der als zweiter Packung
der Oktaeder zu Grunde liegt. Kugeln der gleichen Farbe berühren sich hier nicht.

tenz des dreidimensionalen volumenfüllenden Kugellagers durch die Darstellung
der genauen Konstruktion bewiesen. Wir zeigen, daß in zwei und in drei Dimen-
sionen die Bichromatik der Packung eine notwendige und hinreichende Bedin-
gung ist. Außerdem geben wir eine Ausdruck für die Winkelgeschwindigkeit
(5.12) jeder Kugel in der Packung, die nur von ω1 und einem Faktor c abhängen.
Somit können wir das Modell, dass das Gleiten tektonischer Platten durch Rollen
einzelner Teilchen beschreibt, untermauern. Dieses Ergebnis ist auch für die
Mechanik und Hydrodynamik von Interesse.

Des Weiteren beschreiben wir eine Möglichkeit, zufällige Kugelpackungen zu
erzeugen für ein realistischeres Modell zur Beschreibung der physikalischen
Phänomene, wie sie zwischen tektonischen Platten vorkommen. Jedwede Abwe-
ichung von der perfekten Packung verursacht lokale Blockaden, die wiederum
zur Energiedissipation führen. Wir zeigen, daß die Anzahl dieser Blockaden
abnimmt, je größer die Anzahl der Teilchen in so einer zufälligen Packung ist.
Hierdurch wird das System im Ganzen stabiler.
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Figure 1.2: (a) Blockierte Masse M als Funktion des Cutoff ε für zweidimen-
sionale Kugellager mit α = 0.5 bzw. 0.8. Die Linien zeigen verschiedene Fits
an Potenzgesetze, mit den jeweiligen Exponenten γ=0.74 und γ=0.71. (b) Der
Exponent γ als Funktion von α.

Um den Einfluss der Schwerkraft auf das System zu bestimmen, gebrauchen
wir eine halb-dynamische Simulationsmethode; eine Erweiterung derjenigen,
die von Manna et al. [2] genutzt wurde, um Scheiben unter Gravitationsein-
fluss zu simulieren. Die Teilchen, welche nicht genügend Kontakte besitzen (d.
h. mindestens zwei in zwei Dimensionen bzw. drei in drei Dimensionen), um
ihr Eigengewicht zu tragen, müssen sich entweder im freien Fall befinden oder
übereinander hinwegrollen. Alle Teilchen werden nacheinander von oben nach
unten ausgewählt und dahingehend überprüft, ob sie durch ihre Kontakte mit an-
deren fixiert sind. Falls nicht, dann rollt das entsprechende Teilchen, oder es
fällt, bis es mit einem weiteren zusammenstößt. Nach einer Abfolge von Roll-
und Fallbewegungen wird das Teilchen an einer bestimmten Stelle im System
anhalten und dort fixiert bleiben. Abb. 1.2(a) zeigt die Blockierte Masse M
als Funktion des Cutoff ε für zweidimensionale Kugellager mit Konstruktionspa-
rameter α = 0.5 bzw. 0.8. Der beste Fit an die Datenpunkte wird durch eine
PotenzfunktionM∼ εγ erzielt. ε ist definiert als der Cutoff der Teilechengröße.
Der Exponent γ wurde für verschiedene Werte von α berechnet, wie in Abb.
1.2(b) gezeigt.

Die Ergebnisse lassen darauf schließen, dass das System sich einem Zustand
völliger Stabilität annähert, d. h.M = 0 für ε→ 0. Bei einem endlichen Cutoff
besteht eine endliche Energie-Dissipation, welche mit kleiner werdendem Cut-
off verschwindet. Der Exponent γ nimmt —innerhalb der Rechengenauigkeit—
einen mehr oder weniger konstanten Wert, nämlich 0.72 ± 0.02 an. Dies
deutet auf ein allgemein gültiges Verhalten der Energie-Dissipationsrate eines
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zufälligen Kugellagers als Funktion des Cutoffs hin.

Diese Arbeit leistet einen wichtigen Beitrag auf diesem Feld und eröffnet die
Möglchkeit für weitere Forschung. Die Untersuchung von Raumpackungen und
Kugellagern ist ein junges Forschugnsgebiet und bietet ein großes Potential für
weitere Arbeiten, theoretisch als auch experimentell. Im Folgenden sollen einige
Möglichkeiten für weitere Arbeiten besprochen werden.

In Wirklichkeit sind die Teilchen zufällig verteilt, und es ist sehr unwahrschein-
lich dass eine einzige bestimmte Konfiguration angenommen wird. Ein statis-
tischer Zugang scheint daher unausweichlich. Es ist noch unklar, ob es eine
weitere Konfiguration derselben Größenverteilung gibt, die zur gleichen Dichte
führt. Dies wirft eine wichtige Frage auf: Was ist die maximale Dichte für
eine vorgegebene Verteilung an Teilchen. Außer für den speziellen Fall wo alle
Teilchen dieselbe Größe haben, ist diese Frage bisher noch nicht ausreichend
untersucht worden.



Chapter 2

Introduction

2.1 Granular media

Substances known as granular media include anything that is made up of
macroscopically-sized solid particles. According to material scientist Patrick
Richard, “Granular materials are ubiquitous in nature and are the second-most
manipulated material in industry (the first one is water)” [3]. Bulk quantities of
these materials display behavior which is unlike that of either solids or liquids
and studies of the granular state continue to produce surprising results that are
unique to this class of matter [4–10]. Unlike solids, granular media conform to
the shape of a container and will flow if the container is tilted sufficiently. Unlike
liquids, however, a granular material is stable when its container is tilted slightly.
In addition, they exhibit a wealth of interesting phenomena like heaping under vi-
bration [11–14], segregation [15–17], convection [18], heap-formation [19, 20],
fluidisation [21, 22], and density waves [23, 24].

A distinguishing feature between flows of granular materials and other solid-
fluid mixtures is that in granular flows, the direct interaction of particles plays an
important role in the flow mechanics [25]. A significant fraction of the energy
dissipation and momentum transfer in granular flows occurs when particles are
in contact with each other or with a boundary. Following are a few examples of
granular flows:

• grains such as corn or wheat flowing from a silo

5
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• landslides of boulders and debris

• rock and ice collisions in planetary rings

• dune formation

• transport and handling of coal or chemicals in industrial plants

• powder metallurgy

• handling of pharmaceuticals

Granular media include common materials as diverse as sand, wheat, flour, soil,
coal, seeds, pills, etc. and, therefore, play an important role in many of our indus-
tries, such as mining, agriculture, civil engineering and pharmaceutical manufac-
turing. They clearly are also important for geological processes where landslides
and erosion and, on a larger scale, plate tectonics determine much of the mor-
phology of the Earth. However, their physics remains poorly understood (for a
nice review of what is known, look into Physics of the Granular State by H.M.
Jaeger S.R. Nagel in Science, Vol. 255, 20 March 1992, page 1523), and there
is no generally accepted theory of granular media so far. Therefore, in recent
years the simulation of granular systems has become a widely used research tool.
The growing capacity of computer power gives rise to the hope to achieve a sig-
nificant progress in the understanding of the complicated collective behavior of
granular media in the near future.1

2.2 Contribution of the present work

Density, size distribution of the particles, topology and contacts network are
among the most important properties of granular materials [1]. In high perfor-
mance concrete (HPC), mixtures of particles with different sizes which lead to
larger densities are highly desired. Although mixing techniques are of practical
importance, the size distribution of the particles plays also a crucial role in order
to get densities as large as possible, since it puts sometimes theoretical higher
bound on the density [26]. For example, for a mono-disperse mixture of the
spherical particles the highest possible density that can be ever reached is≈ 0.74
which is for highly ordered configurations of face-centered cubic packing (FCC)

1This text was adapted from the introduction to the article The Physics of Granular Materials
by Heinrich M. Jaeger, Sidney R. Nagel, and Robert P. Behringer which appeared in Physics Today,
April 1996, page 32.
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and hexagonal close packing (HCP). The space-filling bearings which we will
discuss in Ch. 4 are all clear examples of systems with density one. In other
words, each configuration presents a size distribution for spherical particles with
which the space can be completely filled in least in one way. This removes any
upper theoretical limit on the density for this particular size distribution.

The topology and the contact network are important in the dynamic behavior such
as energy dissipation and shear stress in dense systems [27–29]. Shear bands and
tectonic plates are examples of such systems. In both of which there is a relatively
thin layer where the largest dissipation and stress release occur.

The present work is a contribution to this fast-growing field of research, by devel-
oping techniques for constructing packings and bearings which consist of ideally
round particles of a variety of sizes using mainly geometric approaches. Several
configurations are constructed here for the first time. The only previously-known
self-similar space-filling packing in three dimensions is the classic Apollonian
packing.

Furthermore, we develop a method for constructing random bearings as more re-
alistic models for physical phenomena such as the tectonic plates. Any deviation
from the perfect bearing causes the formation of frustrated arrangements of the
particles in a system, resulting in dissipation of energy.

2.3 Overview

In Ch. 3, a brief introduction to the concepts and methods which we will en-
counter in this work is given. In Ch. 4, we develop a technique for constructing
different self-similar space-filling packings in both two- and three-dimensions.
In Ch. 5, we discuss general bearings in two and three dimensions for ideally
round particles and show that one of the constructed packings can act as a bear-
ing. In Ch. 6, we introduce a method for constructing more realistic bearings in
which the particles are distributed randomly in space. We also study the effect
of gravity on the stability of such bearings using a semi-dynamics and measure
the amount of energy dissipation which may occur when the particle sizes have a
lower bound. Finally, a conclusion is presented in chapter 7.
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Chapter 3

Basics

3.1 Sphere packing

In mathematics, sphere packing problems are problems concerning arrangements
of non-overlapping identical spheres which fill a space. Usually the space in-
volved is three-dimensional Euclidean space. However, sphere packing prob-
lems can be generalized to two dimensional space (where the ”spheres” are cir-
cles), to n-dimensional space (where the ”spheres” are hyper-spheres) and to
non-Euclidean spaces such as hyperbolic space.

A typical sphere packing problem is to find an arrangement in which the spheres
fill as large a proportion of the space as possible. The proportion of space filled
by the spheres is called the density of the arrangement. As the density of an
arrangement can vary depending on the volume over which it is measured, the
problem is usually to maximize the average or asymptotic density, measured over
a large enough volume.

A regular arrangement (also called a periodic or lattice arrangement) is one in
which the centers of the spheres form a very symmetric pattern called a lattice.
Arrangements in which the spheres are not arranged in a lattice are called irreg-
ular or aperiodic or random arrangements.

9



10 3.1 Sphere packing

Figure 3.1: Apollonian packing of circles.

3.1.1 Circle packing

In two dimensional Euclidean space, German mathematician Carl Friedrich
Gauss proved that the regular arrangement of equal-sized circles with the highest
density is the hexagonal packing arrangement, in which the centers of the cir-
cles are arranged in a hexagonal lattice (like a honeycomb), and each circle is
surrounded by six other circles. The density of this arrangement is

π√
12
∼ 0.9069

In 1940, the Hungarian mathematician László Fejes Tóth proved that the hexago-
nal lattice is the densest of all possible circle packings, both regular and irregular.

However, in order to get higher densities, the monodispersity condition should
be abandoned. Depending on the amount of particles of each size, the maximum
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possible density varies over a wide range. Therefore, the size distribution of
particles is a crucial property of the packing. It is possible to obtain even the
density one by systematically choosing right sizes and positions for the particles.
An example is the well known Apollonian packing, in which one starts with three
mutually touching circles and puts in the hole between them a fourth circle which
touches all three, and iterates the same procedure (see Fig. 3.1.) To find the radius
of the fourth r4 circle which touches three mutually tangent circles of radii r1,
r2 and r3, René Descartes has given a formula in a letter in 1643 to Princess
Elisabeth of Bohemia [30]:

[(
1

r1

)
+

(
1

r2

)
+

(
1

r3

)
+

(
1

r4

)]2

=

2

[(
1

r1

)2

+

(
1

r2

)2

+

(
1

r3

)2

+

(
1

r4

)2
]

(3.1)

This formula was rediscovered in 1936 by the physicist Sir Frederick Soddy who
expressed it in the form of a poem, ‘The Kiss Precise’ [31]. Apollonian packing
is an example of two dimensional self-similar space-filling packing.

The same configuration can be obtained in other ways. Herrmann et al. obtained
a variety of classes of such configurations, among which Apollonian packing is
a special case, using a technique based on conformal mappings [32, 33]. These
configurations were obtained in pursuit of space filling bearings in which the par-
ticles can role on each other and no particles rub on another one. The necessary
and sufficient condition for a packing to act as a bearing is that any closed loop of
touching particle should contain an even number of particles. Figure 3.2 shows
two examples of space-filling bearings. The upper configuration has loop size
four and the lower one has loop size six. In this work, we use a technique which
is in principle similar but with the difference that it can be easily extended to
three-dimensions (see Ch. 4).

3.1.2 Sphere packing

In three dimensional Euclidean space, Gauss proved that the regular arrange-
ments of equal-sized spheres with the highest density are two very similar ar-
rangements called cubic close packing (or face centered cubic) and hexagonal
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Figure 3.2: Examples of space-filling bearings in two dimensions.

close packing. In both of these arrangements each sphere is surrounded by 12
other spheres, and both arrangements have an average density of

π√
18
∼ 0.7405

In 1661 Johannes Kepler had conjectured that this is the maximum possible den-
sity for both regular and irregular arrangements - this became known as the Ke-
pler conjecture. In 1998 Thomas Hales, Andrew Mellon Professor at the Univer-
sity of Pittsburgh, announced that he had a proof of the Kepler conjecture. Hales’
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Figure 3.3: Three dimensional Apollonian packing.

proof is a proof by exhaustion involving checking of many individual cases using
complex computer calculations. Referees have said that they are ”99% certain”
of the correctness of Hales’ proof, so the Kepler conjecture has almost certainly
been proved.

As can be seen, the maximum possible density that can be reached in three di-
mensions using equal-sized particles is much lower than that of two dimensions.
A curious point here is that in practice the highest possible density which could
be reached using mixing techniques both in laboratories and computer simula-
tions is ≈ 0.64 which is fairly lower than its possible limit 0.7405 [30, 34, 35].
Therefore, monodispersity appears even less favorable in three dimensions as
long as dense packings are desired.

The corresponding Apollonian packing in three dimensions can be constructed
by iteratively filling the void between four mutually touching spheres with a fifth
sphere which is touching to all four. This configuration was reproduced by Peik-
ert et al. using an algorithm called inversion algorithm which is the base of our
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techniques in producing further configurations. Figure 3.3 shows a view of a
three dimensional Apollonian packing (see Ch. 4.)

3.2 More real packings

When it comes to modeling the physical phenomena, there are some criticisms
which can be made about the packings described in the previous sections. Per-
fectly round particles, highly regular arrangement, and no cut-off on the size of
the particles are common properties of such packings which are all drawbacks
for a model which tries to mimic reality.

Using perfectly round particles in their models is a common approximation which
the scientists make to reduce the complexities and the computation time of the
simulations. Some major behaviors of the granular media like segregation and
fluidization can be captured very well by simulations even with this approxima-
tion. But, for some other behaviors like granular ratcheting one has to go beyond
this approximation [36, 37]. Throughout this work, however, we consider the
particles in the system to be perfectly round geometrical objects.

Another problem is that the packings mentioned in the last sections are highly
regular. Therefore, they will not be satisfactory when it comes to modeling the
physical phenomena where usually a high degree of randomness exists. There are
several methods, including random Apollonian packing (RA packing) [38] and
packing-limited growth (PLG) [39–41], which have been developed to construct
packings mimicing the random patterns formed in nature.

In PLG objects are seeded randomly in the space and in the time. The objects,
then, grow according to a rule which may be specific to each object. They stop
growing when a part of their boundary hits that of another object. Some physi-
cal examples of this kind of pattern formation may be found in the competition
between tree crowns in dense forests [42, 43], the structure of porous media [44–
46], and the generalized problem of dense packings [47].

In the RA packing, the packing process begins in a finite-size volume (or alterna-
tively with an initial number of disks with fixed radii). New disks are added one
at a time by randomly choosing a point in the packing and inserting the largest
possible disk centered at that point.

As we will discuss in Ch. 6, we develop an alternative method for filling the
space which is more amenable to our eventual goal, namely, the construction of
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random bearings.

The third criticism is the lack of a lower bound on the size of the particles. In
Ch. 6 we will study in detail the effect of an external force such as gravity on the
random packings we obtain in Ch. 5, when a lower bound exists for the size of
the particles.

3.3 Bearings and plate tectonics

Space-filling bearings have been introduced in several contexts, such as in ex-
plaining the so-called seismic gaps [48–50] of geological faults. The term seis-
mic gap refers to any region along an active geological plate boundary that has
not experienced a large thrust or strike-up earthquake for more than 30 years
[50]. The tectonic plates usually tend to move relative to each other due to the
earth’s internal convection, but the large friction between the boundaries hinders
a continuous sliding which would be several centimeters per year and leads to
the accumulation of stress over the course of time. Beyond a critical point the
accumulated stress is released resulting in big shocks and large relative motions
of the plates of up to 20m. Figure 3.4 demonstrates San Andreas fault and nearby
geological structure and how different tectonic plates move relatively.

The deformation of geomaterials produces well-known spontaneous shear planes.
Due to the granular structure inside the shear planes, grains can rotate. In fact,
the tectonic faults are examples of shear planes which are spontaneously formed
inside a deformed earth’s crust. In the upper layers of the earth’s crust, where the
hydrostatic pressures are not too high, the network of faults has been monitored
over many orders of magnitude and self-similarity has been measured by Barton
and others [51] from geological maps. Active faults flow on a layer of fragments,
called gauge, which over time organizes itself into a size distribution [52] given
by a power law. Also rotations have been observed in this gauge zone [48, 53, 54].

Space-filling bearings have also been used as toy models for turbulence and can
also be used in mechanical devices [55]. Two dimensional space-filling bear-
ings have been shown to exist and a discrete infinity of realizations has been
constructed [32, 33]. The remaining question still open is: Do they also exist in
three dimensions? This question is of fundamental importance to the physical
applications.
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Figure 3.4: San Andreas fault and nearby geological structure. Different tectonic
plates move relatively.

3.3.1 Bearing model

In some faults, like that of San Andreas, tectonic plates have been moving for a
long time (thousands of years) without any significant earthquake or production
of heat as it is expected for the processes involving rubbing rough surfaces. The
space-filling bearings were introduced more than a decade ago for the first time
by Herrmann et al. as a simplified model for explaining this phenomenon [32,
33]. In this model, it is assumed that the space between the tectonic plates is
filled with more or less round particles which, as the plates move, may roll on
each other resulting in the spontaneous formation of local bearings and reducing
the amount of friction and dissipation of energy. One refers to the medium which
fills up the gap between two plates as gauge (see Fig. 3.4). The spontaneous
formation of bearings has been shown to be possible in simulations of shear bands
[29], supporting the model.

In a tectonic fault the large blocks of rocks are, of course, not simple spheres.
The most significant difference between a packing of spheres and that of closely
packed irregular blocks is that the spheres can rotate on each other as in a bearing.
They can also form complex ensembles of sliding grains that act like a ratchet
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and effectively also perform rotations [36]. If, however, the shear stress on the
blocks in the fault increases, the shape irregularities that hinder the blocks from
rotating will eventually break, and blocks will begin to rotate. The introduction
of fragmenting blocks has been studied in Ref. [56, 57].

In this work we extend the idea of space-filling bearing to three dimensions.
Although the dynamics of bearings in three dimension is more complicated than
that of two dimensions due to higher rotational degrees of freedom of the spheres,
we will show in Ch. 5 that the necessary and sufficient condition for a packing
of spheres to be a bearing is to be bichromatic. In other words, only two colors
are needed for coloring all spheres in such a way that no spheres having the same
color touch each other. One example of bearings in three dimension has been
discovered among the space-filling packings which will be presented in Ch. 4.

In Ch. 6, we will improve our three dimensional model by introducing random-
ness in the arrangement of the particles, since such highly ordered configurations
like the one among self-similar packings are very unlikely in nature.

3.3.2 Stability under gravity

As discussed before, in all packings constructed using our techniques the space
is completely covered, if no lower bound is set on the size of the particles. But,
in nature there is always a smallest size for the particles and, in any model de-
scribing the reality, this fact should be considered.

However, the lack of small particles, caused by setting a lower bound on the size,
may result in instabilities of the arrangement of the particles. These instabilities
are specially important in the bearings. Because, by changing the arrangement
of the particles, an ideal bearing can be partly or even completely destroyed and
can turn into a frustrated1 configuration. We will study the stability of random
bearings in Ch. 6 by simulating the effect of gravity and calculating the energy
dissipation.

There are three well-known methods to simulate the full dynamics of a system of
interacting particles such as a packing of spheres. They are molecular dynamics
(MD) [58–64], contact dynamics (CD) [65–68], and the event driven method
(ED) [58, 59, 68, 69]. The proper choice depends on the system and the properties

1Here by frustrated we mean, particles cannot roll without rubbing on each other resulting in
energy dissipation in the system
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Figure 3.5: Particles fall and roll under gravity until they are fixed through their
contacts with other sphere.

under consideration. While MD can be used best for dense systems, ED may be
a better choice for simulating dilute systems.

To simulate the effect of gravity on our system we use a semi-dynamics in which
the full details of the motion of the particles are omitted, since only the final
arrangement of the particles is relevant to our problem. All particles are chosen
one by one from bottom to top and checked whether they are fixed through their
contacts with others. If the particle is not fixed it either rolls or falls until it
hits another one. After a sequence of rollings and fallings, the particle will stop
somewhere in the system and stays fixed (see Fig. 3.5.)



Basics 19

As discussed in Ch. 6 we can argue that the total energy dissipation will be
proportional to the total mass of dislocated particles:

Etotal ∼M.

Therefore, the amount of energy dissipation in the system can be calculated from
the total mass of the particles which have been dislocated under gravity. Us-
ing this relation, the energy dissipation in the system which is a measure of the
deviation from an ideal bearing can be studied.

3.4 Fractal dimensions

All the configurations which we will encounter throughout this work exhibit self
similarity over different scales of particle sizes. In other words, the radii distri-
bution n(r) of the particles of such packings follows a power law, as we go down
to smaller scales. Contrary to simple fractals, there is no known way to calculate
analytically the fractal dimensions of such configurations. However, using some
asymptotic functions one can calculate the fractal dimensions numerically [70–
72]. The fractal dimension of a packing can be related to the exponent of its radii
distribution, as follows:

n(r) ∼ r−τ , df = τ − 1 (3.2)

It can be calculated by dividing the range of the particle sizes into several inter-
vals and counting the particles corresponding to each interval. The result can be
fitted with a power-law function whose exponent is related to the fractal dimen-
sion via Eq.(3.2). However, since there will not be particles of all sizes in a pack-
ing, n(r) is not a continuous function and may fluctuate strongly from one point
to another. This causes difficulties in calculating the fractal dimension precisely.
Some auxiliary quantities can be instead invoked for more precise calculations.
These are the total number of particles N(ε), the sum of the perimeters (area) of
the circular (spherical) particles s(ε) and the porosity p(ε), i.e. the space which is
not covered by particles. They are defined by introducing a cut-off length ε such
that one considers in a packing exactly those circles that have a radius larger than
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ε. They can be easily related to n(r) as follows:

N(ε) =

∫ ∞

ε

n(r)dr ∼ ε−df (3.3)

s(ε) = 2π

∫ ∞

ε

rn(r)dr ∼ ε1−df (3.4)

p(ε) = 1− π
∫ ∞

ε

r2n(r)dr ∼ ε2−df (3.5)

in two dimensions and:

N(ε) =

∫ ∞

ε

n(r)dr ∼ ε−df (3.6)

s(ε) = 4π

∫ ∞

ε

r2n(r)dr ∼ ε2−df (3.7)

p(ε) = 1− 4π

3

∫ ∞

ε

r3n(r)dr ∼ ε3−df (3.8)

in three dimensions (see Ref.[73]).

The upper limit of the integrals is actually rmax the size of the biggest particle
in the system. However, in a finite system, for ε near rmax these quantities will
deviate from the perfect power law and may show large fluctuations due to the
effect of the walls confining the system. In the limit of ε→ 0 this effect vanishes
and, therefore, the precise fractal dimension can be obtained considering small
scales. In other words, the fractal dimension can be calculated as follows:

df = lim
ε→0

logN(ε)

log ε
. (3.9)

Similarly, df can be obtained from s(ε) and p(ε).

The fractal dimension is a topological property of a packing which can be invoked
to identify the difference between the packings.



Chapter 4

Self-similar space-filling
packings in three dimensions

Apart from their geometrical beauty, self-similar space-filling packings of
spheres are used as models for ideally dense granular packings. For example,
although we cannot expect to reproduce experimentally the precise positions of
their spheres, the size distribution of such packings are good candidates to be
used in making high performance concrete, if a grain of sand can be approx-
imated as a spherical particle. The well-known Apollonian packing of circles
is a two-dimensional example of such packings (see Fig. 4.1). In two dimen-
sions, Herrmann et al [32, 33] have developed an algorithm to produce a variety
of different packings of circles among which the simple Apollonian packing is a
special case.

In three dimensions, only one space filling packing had been constructed and
studied before (see for example Ref. [70, 74]). Peikert et al. [74] use a method
called inversion algorithm to produce this three dimensional Apollonian packing.
The inversion algorithm is based on a simple conformal transformation, namely,
inversion with respect to spheres [75]. We will explain this algorithm in the
following sections.

Furthermore, in this chapter, we show in detail how the inversion algorithm can
be adapted to make topologically different packings of spheres which have been
previously unknown. These configurations include packings with the important
property of having only two classes of spheres such that no spheres from the

21
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Figure 4.1: Apollonian packing of circles. The dashed circles are the inversion
circles.

same class touch each other. We refer to this packings as the bichromatic pack-
ing which will be studied in more detail in the next chapter. We also calculate
the fractal dimensions of some of new packings. As discussed briefly in the pre-
vious chapter, different fractal dimensions imply a topological difference of the
packings.

In this chapter, we explain in detail the inversion algorithm and ways of its gener-
alization in producing different packings of circles. In Sec.4.3 we go over to three
dimensions and discuss all possible packings of spheres which can be obtained
using our method. Finally, in Sec.4.4 we calculate the fractal dimensions of the
obtained packings and of two dimensional cuts of the bichromatic packings.

4.1 Inversion algorithm

In this section we will discuss the inversion algorithm in detail.
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Figure 4.2: Inversion in two dimensions. Point A is mapped to pointA′ such that
OA ×OA′ = R2.

4.1.1 Inversion

Following Mandelbrot [75] we refer to the inversion around a sphere S as the
conformal mapping which maps any point A to another point A′ along the line
connectingA and center point O in such a way that:

OA ×OA′ = R2, (4.1)

R being the radius of S as shown in Fig. 4.2 for two dimensions. We refer to
S around which the inversion in made as inversion sphere. Also, A and A′ are
called images of each other. In an inversion around S all points outside S are
mapped inside and vice versa. Only those points lying on S are mapped onto
themselves. The center pointO is the image of all points at infinity and any point
infinitely far away is mapped toO. Applying an inversion on a point twice results
in the same point.

There are two facts about the inversion as a conformal mapping which enable us
to develop algorithms for construction packings:

• Angles are conserved under inversion.

• The image of a sphere is also a sphere. In other words, the set of points
on a sphere are mapped under inversion into a (another) set of points on a
sphere.
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4.1.2 Inversion on a sphere

Throughout this chapter we will work with inversion performing on circles and
spheres only. Therefore, we explore this case in detail here. Figure 4.3 illustrates
how the inversion around a circle (shown as dashed) acts on different circles
(shown as solid). As can be seen from the figure, there is a special case where the
image of a circle falls onto itself. This is when the circle is perpendicular to the
inversion circle as is the case in the lower right picture. In this case the following
relation holds:

d2 = R2 + r2, (4.2)

where R is the radius of the inversion circle and r the radius of the circle on
which the inversion is made. It can be easily verified that the same equation
holds for perpendicular spheres too. One should, however, clarify the definition
of the angle between two spheres. We refer to the angle between two spheres
as the angle between the tangent planes at their intersection points. This angle
can vary from 0 (externally tangent) to π (internally tangent) as the radii and
relative distance between the centers vary. It is, of course, defined only if the two
spheres intersect. For two arbitrary intersecting spheres which are not necessarily
perpendicular Eq. (4.2) takes the general form:

d2 = R2 + r2 + 2rR cos(α), (4.3)

where α is the angle between the spheres.

As we will see in this chapter, in the construction of a packing using the inversion
algorithm, both the angles between the inversion spheres and the angles between
the inversion spheres and the spheres constituting the packing play crucial rules.
For each packing, one needs to choose these angles properly. However, due to
the geometry of the initial configuration, the possible choices which lead to a
packing may be limited.

Although finding the image of a point is as easy as solving Eq. (4.1), finding the
image of a sphere turns out not to be as easy. It should be noted that the center of
the image of a sphere will not be in general the image of the center of that sphere,
since under inversion distances are not conserved, as is shown in Fig. 4.2. In the
following we calculate the image of a sphere under inversion.

A sphere can be specified by coordinates of its center and its radius (x, y, z, r).
Let S′ : (x′, y′, z′, r′) be the image of S : (x, y, z, r) under the inversion around
sphere I : (X,Y, Z,R). Doing some simple manipulations, one can easily derive
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Figure 4.3: Inversion acting on different circles. The inversion circle is shown
as dashed. If the circle is perpendicular to the inversion circle it is mapped onto
itself.

the following relations:

r

r′
=

x−X
x′ −X =

y − Y
y′ − Y =

z − Z
z′ − Z =

R2

d′2 − r′2 . (4.4)

where d′ is the distance from the center of S ′ to the center of the inversion sphere
I . This is a system of non-linear equations which cannot be easily handled es-
pecially from the computational point of view. However, one can simplify the
equations using the inversion coordinates for the sphere which are defined as
follows:

a1 =
x

r
, a2 =

y

r
, a3 =

x

r
,

a4 =
x2 + y2 + z2 − r2 − 1

2r

a5 =
x2 + y2 + z2 − r2 + 1

2r
. (4.5)

The number of inversion coordinates is five while only four independent values
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are needed in specifying a sphere. Therefore, the five coordinates are not in-
dependent and, as one can easily verify, they are related through the following
equation:

a2
1 + a2

2 + a2
3 + a2

4 − a2
5 = 1 (4.6)

This choice enables us to transform the system of equations (4.4) to a linear
one. The new set of equations can conveniently be written in the matrix form as
follows:




a′1
a′2
a′3
a′4
a′5




= (4.7)




1− 2A2
1 −2A1A2 −2A1A3 −2A1A4 2A1A5

−2A2A1 1− 2A2
2 −2A2A3 −2A2A4 2A2A5

−2A3A1 −2A3A2 1− 2A2
3 −2A3A4 2A3A5

−2A4A1 −2A4A2 −2A4A3 1− 2A2
4 2A4A5

−2A5A1 −2A5A2 −2A5A3 −2A5A4 1 + 2A2
5







a1

a2

a3

a4

a5




where S′ : (a′1, a
′
2, a
′
3, a
′
4, a
′
5) is the image of S : (a1, a2, a3, a4, a5) under inver-

sion around I : (A1, A2, A3, A4, A5). The details of the derivation of Eq. 4.8 are
given in the Appendix at the end. One can simply obtain the usual coordinates of
a sphere (x, y, z, r) from its inversion coordinates (a1, a2, a3, a4, a5):

x = ra1, y = ra2, z = ra3, r =
1

a5 − a4
.

4.1.3 Iterative inversions on a sphere

Here we discuss successive inversions on a sphere performed iteratively around
two spheres, since this is the main process which we utilize to construct a packing
of spheres. If the inversions are made around two disjoint spheres infinitely many
times, two disjoint infinite sets of images are obtained each of which confined
within an inversion sphere. Figure 4.4 demonstrates an example of iterative in-
versions of a circle shown as solid around two inversion circles shown as dashed.
The inversion spheres act similar to two parallel mirrors which produce infinite
images of an object located between them, with the difference that the images
becomes smaller if the inversion spheres have finite sizes.
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Figure 4.4: Iterative inversions applied on a circle shown as solid around two
disjoint inversion circles shown as dashed.

The situation where the inversion spheres are not disjoint looks, however, differ-
ent. There is an overlapping region any point of which corresponds to two points
outside the inversion spheres. The left image in figure 4.5 demonstrates iterative
inversions of a circle around two overlapping inversion circles. Only those inver-
sions have been performed which decrease the size of the circles. In other words,
the circles are inverted from outside of the inversions circles to inside.

It can be seen from Fig. 4.5 that the two images of original circles which fall into
the overlapping region by different sequences of inversions do not necessarily
fit on top of each other. This will be a problem in constructing a packing using
the inversion algorithm which is based on successive inversions around inversion
spheres which are overlapping. Fig. 4.11 illustrates a typical obtained configura-
tion where the inversion circles overlap. Apparently, this is not a packing.

To resolve this problem, we take a closer look at what happens in a sequence of
alternating inversions of an arbitrary circle with respect to two overlapping inver-
sion circles. To do that, we transform the whole configuration by an inversion to
a configuration which is much easier to analyze.
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Figure 4.5: Iterative inversions of a circle with respect to two overlapping inver-
sion circles (dashed lines). Two figures are equivalent (see the text). The solid
lines connect each circle to its image.

By an inversion with respect to a circle centered around one of the intersecting
points of inversion circles, the inversion circles are transformed to lines acting
like plane mirrors. This is shown in Fig. 4.5 on the right. The inversion circles
are now straight lines shown as dashed. The two configurations are topological
equivalent, since the inversion is an conformal transformation. One can show that
two circles which are images of each other will be also images of each other if the
whole configuration is transformed by an inversion. To be more mathematically
precise, suppose sphere S2 is the image of S1 under the inversion around sphere
I1, that is:

S2 = II1S1 (4.8)

where II1 denotes the inversion around sphere I1. Now, consider the inversion
around sphere I2 which is applied on S1, S2 and I1, i.e.,

S′1 = II2S1

S′2 = II2S2

I ′1 = II2I1
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Figure 4.6: Iterative inversions on a circle shown as solid around two overlapping
inversion circles shown as dashed. If the angle between the two inversion circles
is chosen according to Eq. (4.11), the obtained images in the overlapping region
fall exactly on top of each other (compare to Fig. 4.5).

It can be shown that:

S′2 = II′1S
′
1, (4.9)

in other words,

II′1 = II2II1I−1
I2

(4.10)

Therefore, the two configurations shown in Fig. 4.5 are equivalent, as far as the
inversion is concerned.

It can be seen from the figure that one can solve the problem of the overlapping
of the images by choosing the angle between two inversion spheres α as follows:

α =
π

l+ 2
, l = 0, 1, 2, 3 · · · , (4.11)

for which the two images fall exactly on top of each other. Upon these choices
the space will be divided in 2(l+ 2) regions which are images of each other with
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a one-to-one correspondence between their points. As we will see in the rest
of this chapter, this is why all configurations we obtain exhibit self-similarity.
Figure 4.6 shows the case of l = 0. In Fig. 4.12 Eq. (4.11) has been considered
in choosing the inversion circles.

In the following section, we will show how one can construct different space-
filling bearings employing the properties of the inversion around a sphere which
were discussed here.

4.1.4 Inversion as a tool for constructing packings

Self-similar space-filling packings in two dimensions were first constructed by
Herrmann et al. more than one decade ago. Their technique consists of suc-
cessive translations, reflections and inversions. All obtained configurations are
initialized by placing two circles as seeds at very specific locations in the space
between two parallel lines and applying different transformations on them in
such a way that the space becomes completely filled in the limit of infinite it-
erations. The topology of each configuration depends on the locations of seed
circles which are controlled by two integer parameters m,n ≥ 0. The discrete-
ness of m and n reflects the fact that the seeds cannot be chosen arbitrarily and
only very special choices will result in a space-filling packing. Figure 4.7 shows
some of these configuration for different values of m and n. A further condi-
tion is also implemented in their method which guarantees the number of circles
in any loop to be an even number allowing for the bearing behavior. The inter-
ested readers are referred to Ref. [32] for the details on the construction of the,
so-called, self-similar space-filling bearings.

In this work, we take an alternative approach different from that mentioned
above. This is what we call inversion algorithm. However, the essence of our
approach is the same as that of discussed above. In the following, we discuss
first the traditional way of constructing the Apollonian packing. In next section,
we show how the same configuration can be obtained using the inversion algo-
rithm.

4.1.5 Apollonian packing

The Apollonian packing was discovered first by Apollonius of Perga who lived
around 200BC. It can be constructed by iteratively filling the void between any
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Figure 4.7: Nine different combinations of n and m of the first family.

three mutually touching circles with the biggest possible circle (see Sec. 3.1.1).
The Apollonian packing is shown in Fig. 4.1.

The Apollonian packing can be alternatively constructed using the algorithm
which we will explain now. This will also inspire us in generalizing the algo-
rithm to produce new packings in two and three dimensions.

4.2 Packings in two dimensions

4.2.1 Apollonian packing using the inversion algorithm

Figure 4.8 illustrates how the inversion algorithm can be employed to construct
the classic Apollonian packing of circles within an enveloping circle of unity
radius. Initially three mutually touching circles are inscribed inside a circular
space which is to be filled, as is shown in the upper left image. Four inversion
circles (shown as dashed) are set such that each of them is perpendicular to three
of the four circles (three initial circles and the enveloping unit circle.)

Beginning with this configuration, if all points outside an inversion circle are
mapped inside, one new circle is generated, since the image of a circle perpen-
dicular to the inversion circle falls on itself, as discussed before. If the same is
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done for all the inversion circles, four new circles are generated inside the cor-
responding inversion circle, shown in Fig. 4.8 upper right image. We call this
the first generation. For next generations we simply continue by applying the
inversions to the newly generated circles. As mentioned before, the inversion is
made only from the outside to the inside of the inversion circles. In other words,
only those inversions are applied which produce a smaller circle, otherwise the
circles of previous generations will be generated again. Figure 4.8 shows the ini-
tial configuration together with the three first generations. In the limit of infinite
generations we obtain the well-known Apollonian packing, in which the circular
space is completely filled with circles of many sizes.

Any sphere (here circle) in the packing is the result of a sequence of successive
inversions on one of the initial spheres. Therefore, any sphere in the packing can
be denoted by a sequence like:

IiIjIkIl · · · i, j, k, l, · · · ∈ {1, 2, · · · , Ninv} , (4.12)

or simply (i, j, k, l, · · · ), where Ii denotes the inversion around inversion sphere
number i, and Ninv is the number of inversion spheres. We define the packing
coordinates of a sphere as the sequence of positive integer numbers (i, j, k, l, · · · )
which the indices of the sequential inversions take. Therefore, a typical packing
coordinate is (3, 1, 2, 1, 4) which represents a sphere which is obtained after five
iterations. In other words, a sphere obtained after the ith iteration is represented
by i indices. It should be noted that no successive indices can take a same number,
since the second inversion will cancel the previous one which results the original
sphere. For example, (1, 2, 2, 1) is not allowed while (1, 2, 1, 2) is allowed.

In constructing all packings two conditions are to be fulfilled:

• All free spaces should be covered, either by initial or by inversion circles

• The inversion circles can intersect with circles constituting the packing
through right angles.

One can verify that these conditions are fulfilled in the construction of the Apol-
lonian packing.

As we discussed in Sec. 4.1.3, in the case where the inversion circles overlap,
a further condition should be fulfilled, namely, the angle between the inversion
circles should be chosen according to Eq. (4.11). Therefore, we add a third
condition:
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Figure 4.8: Construction of an Apollonian packing using the inversion algorithm.
Inversion circles are shown as dashed.

• If the inversion spheres overlap, the angle between the inversion circles
should be chosen according to Eq. (4.11).

One should be aware that the spheres generated in the overlapping regions cor-
respond to more than one sequence of inversions. In other words, they can be
represented by more than one system of coordinates, depending on the number
of the inversion spheres which share that overlapping region. This means that
there will be more than one copy of all the spheres generated in the overlapping
regions. Furthermore, the repeated spheres are not limited to the overlapping
regions, but they will spread throughout the whole packing if further inversions
are applied. This is due to the self-similarity of the configuration of the packing.
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Figure 4.9: Initial circles on the six vortices of a hexagon.

Therefore, if the goal is to enumerate the spheres constituting the packing, one
has to eliminate the extra copies of the spheres to obtain the correct result. This
can be done simply by truncating all the sequences of inversions which generate
a same sphere in the overlapping region except one. This is crucial for calculat-
ing the correct fractal dimension of the packings which is based on counting all
the spheres larger than certain sizes (see Sec. 3.4).

4.2.2 Extension of the inversion algorithm

The inversion algorithm in two dimensions can be generalized in two ways,
which we shall discuss here. Looking at Fig. 4.8, one realizes that the initial
configuration for constructing the Apollonian packing consists of three touching
circles on the vortices of an equilateral triangle inside a circular space. Three in-
version circles are placed each of which corresponding to one side of the triangle
perpendicular to the enveloping circle and the circles making that side. Another
inversion circle is set in the center perpendicular to all three initial circles.
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Figure 4.10: The packing based on a hexagon.

This is, however, not the only possible configuration which fulfills our initial-
ization conditions discussed in last section. An immediate idea for finding new
configurations is to set the initial circles on the vortices of a regular polygon of
N sides (vortices) inside the circular space instead of a triangle. Then,N + 1 in-
version circles are to be set; N inversion circles perpendicular to the enveloping
unit circle and to each pair of the initial circles which share the same side of the
polygon and one inversion circle in the center perpendicular to all initial circles.
It can be verified that the initialization conditions hold for any N ≥ 3.

Figure 4.9 shows the initial configuration for N = 6. The circles obtained from
inversions around one of the inversion circles are also shown for clarity. The
final packing is represented in Fig. 4.10. This generalization will inspire us also
in generalizing the three dimensional inversion algorithm.

In all mentioned initial configurations, the initial circles which make a side of
the based polygon have been set to be touching each other. This is not necessary,
however, and by relaxing this restriction a variety new and interesting packings
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Figure 4.11: The generalization of the simple Apollonian packing to non-
touching initial circles. If the angle between the inner and the outer inversion
circles is not chosen according to Eq. (4.11) no physical packing is obtained.

can be obtained. We do this simply by reducing the sizes of the initial circles1.
The outer inversion circles are the same as before, since in this way the touching
points of initial circles with the unit circle do not change. But, the inner inversion
circle should be larger in order to still be perpendicular to the initial circles, and
also cover the space which is not covered by others. Apparently this causes the
overlapping of the inner inversion circle with outer ones. One should, therefore,
take care of the third condition of the initialization.

Considering Eq. (4.11) in choosing the size of the initial circles, we obtain an
infinite number of different packings corresponding to the different values of
l ≥ 0 and N ≥ 3. The packing with l = 0 and N = 3 is shown in Fig. 4.12.
Figure 4.11 shows a case where the initial configuration has not been chosen
properly.

It seems worth to mention that the classic Apollonian packing of circles shown

1They will be still touching the border of the circular space, since otherwise the condition of
having no initially unoccupied space outside all the inversion circles is not fulfilled
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Figure 4.12: The generalization of the simple Apollonian packing to non-
touching initial circles. If the angle between the inner and the outer inversion
circles is chosen according to Eq. (4.11) a packing without overlapping is ob-
tained. This packing corresponds to l = 0.

in Fig. 4.1 corresponds to l = ∞ and N = 3. In that case, the angle between
inversion circles α is zero, that is, they are externally touching.

It may become already clear to the reader that finding new packings is a matter
of finding new allowed initial configurations. In fact this is what we will do
throughout the rest of this chapter. Later we will mention few techniques with
which further two dimensional packings can be obtained. But, now we shall
discuss the construction of three dimensional packings which is in principle the
same as for their two dimensional analoga. The only difference is that the choices
for the initialization of the packings are much more limited.
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4.3 Generalization to three dimensions

As was mentioned before, Peikert et al. used the inversion algorithm to very
efficiently make the so-called three dimensional Apollonian packing of spheres
within an enveloping sphere of radius one. In this section, we use this algorithm
and its generalization discussed in the previous section to produce more such
three dimensional self-similar space-filling packings.

Peikert et al. begin with four initial spheres on the vortices of a tetrahedron
inside a unit sphere which is to be filled. They placed five inversion spheres,
four spheres perpendicular to the enveloping unit sphere and to the three initial
spheres corresponding to each face of the tetrahedron, and one inversion sphere
in the center perpendicular to all four initial spheres. However, the inversion
spheres, even in this case which is the simplest three dimensional configuration,
do overlap. We come back to this later in this section.

The fact that in two dimensions we can replace a triangle by other regular poly-
gons as the basis for new configurations of initial circles suggests to do a similar
extension in three dimensions. So, we examine the configurations based on the
other Platonic Solids besides the tetrahedron as possible candidates. In this sec-
tion, we will study all Platonic Solids and their resulting packings. An important
restriction is, however, that the number of Platonic Solids is limited to five. Fur-
thermore, as we will see in the following, the inversion spheres overlap in all
configurations. Therefore we do not expect as many packings as in two dimen-
sions. Because, decreasing the size of the initial spheres which was our trick for
finding new configurations will cause further overlapping of inversion spheres,
which cannot go beyond a certain extent. Actually, we will end up with only five
packings.

We begin with mutually touching initial spheres on the vortices of a Platonic
Solid inside the unit sphere. Inversion spheres are placed as follows; One in the
center of the unit sphere perpendicular to all initial spheres, and one at each face
of the Platonic Solid perpendicular to the enveloping unit sphere and the initial
spheres which form that face of the Platonic Solid. Therefore, the number of
vortices of the Platonic Solid determines the number of the initial spheres and
the number of its faces determines the number of the inversion spheres. There
will be one more inversion sphere in the center (which is perpendicular to all the
initial spheres on the vortices.) The enveloping unit sphere is also considered
as belonging to the initial spheres, since its images will be part of the packing.
Using this configuration of initial and inversion spheres, the process of filling
the space is exactly the same as explained in the last section, that is, iteratively
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Figure 4.13: Overlapping of the inversion spheres in the case of the tetrahedron.
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mapping the initial spheres into smaller and smaller unoccupied spaces.

The spheres are grouped into different classes (assigned by different colors) such
that no spheres having the same color touch each other. We consider the color
coding as an another topological characteristic of a packing beside its fractal
dimension. Selecting colors for the spheres needs to be done only for initial
spheres. If the color of a sphere is also assigned to the images of that sphere,
the same pattern will exist in the whole packing and on all scales due to the self-
similarity of the configuration. In other words, for any color the neighbouring
colors are always the same.

In the following we will discuss in detail each of the Platonic Solids and their
possible packings.

4.3.1 Packing based on the tetrahedron

As we discussed in the last section, in order that the iterative inversions lead to
an allowed packing, the inversion spheres should either not overlap or, if they
do, the angle α between them should follow Eq. (4.11). As mentioned before,
in three dimensions α is the angle between the planes tangent to two inversion
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spheres at their intersection points. Therefore, we check the value of α for each
Platonic Solid as well as, here, for the tetrahdron. To do this, we note that the
centers of the inversion spheres are on the vortices of the conjugate Platonic
Solid. Figure 4.13 shows the plane containing one of the faces of the Platonic
Solid conjugate to the tetrahedron (which is also a tetrahedron). This plane is
tangent to the unit sphere and to one of the initial spheres at their contact point.
The circles are the cross section of the plane with the inversion spheres. One
can easily see that the angle between two neigbouring inversion spheres is π

3 ,
which happens to be equal to the value corresponding to l = 1 in Eq. (4.11).
The corresponding angle between the inner and the outer inversion spheres can
also be calculated and is π

3 too. This is a favorable coincidence which leads to
an allowed initial configuration for constructing a packing. For this reason we
obtain a packing based on the tetrahdron which is nothing other than the classical
Apollonian packing in three dimensions.

Figure 4.15 shows the initial configuration and Fig. 4.16 shows the packing based
on the tetrahedron including all spheres with radii larger than 2−7. Only the
spheres in the lower hemisphere are drawn for a more revealing view. Figure
4.17 and Fig. 4.18 show two different cuts of this packing.

For the tetrahedron-based packing five colors are needed such that no spheres
having the same color touch each other. Because, any initial sphere touches all
others, including the spherical shell. Therefore, each sphere should take a distinct
color.

This packing can be constructed alternatively using, so-called, Soddy algorithm
[74]. There one starts also with four mutually touching spheres on the vortices
of a tetrahedron inside the unit sphere. The packing is constructed by putting the
biggest possible spheres in the holes between any four spheres which are mutu-
ally touching. Equation (3.1) gives the radii of the new spheres. The resulting
packing is exactly the same as what we obtained using the inversion algorithm.

4.3.2 Packing based on the octahedron

Here we consider the octahedron as the base for the initial configuration. In
this case, there will be six initial spheres on each vortex and eight inversion
spheres corresponding to each face of the octahedron. The centers of the inver-
sion spheres are on the vortices of a cube which is conjucate to the octahedron.
Considering this, one can easily verify that the angles between the outer inver-
sion spheres is π

4 which corresponds to l = 2 in Eq. (4.11). One can show that
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the angle between the inner inversion sphere and the outer ones has also the same
value. This is another favorable coincidence which allows us to obtain the first
previously unknown packing of spheres.

Figure 4.19 shows the initial configuration and Fig. 4.20 shows the packing based
on the octahedron. Figure 4.21 and Fig. 4.22 show two different cuts of the same
packing.

In this case, at least four colors are needed for coloring the spheres such that no
two spheres having the same color touch each other. This is because each pair of
the initial spheres which lay on opposite vortices of the octahedron don’t touch
each other and can be assigned with the same color. Since there are three such
pairs and the unit sphere needs also to be colored distinctly, at least four colors
are necessary.

4.3.3 Packing based on the cube

As the third Platonic Solid, we choose a cube as the base for the initial config-
uration. This time, there will be nine initial spheres, including the unit sphere,
and seven inversion spheres. The centers of the outer inversion spheres are on the
vortices of an octahedron. In this case, the angle between the inversion spheres is
also π

3 as in the case of the tetrahedron, since an octahedron has triangular faces.
So, also in this case the initial configuration fulfills the packing condition and the
inversion algorithm will produce a packing.

Figure 4.23 shows the initial configuration and Fig. 4.24 shows the packing based
on the cube. Figures 4.25 and Fig. 4.26 show two different cuts of this packing.

For this configuration at least three colors are needed such that no spheres having
the same color touch each other. This is because for a cube there are two sets
of vortices which are not neighbours, and all corresponding initial spheres can
be assigned with a same color. Together with a color for the unit surrounding
sphere, at least three colors are necessary.

4.3.4 Packing based on the dodecahedron

The next Platonic Solid which we will consider here as the base for the initial
configuration is the dodecahedron. As seen from Fig. 4.27, a dodecahedron
has twenty vortices. Therefore, the number of the initial spheres is twenty one,
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including the unit sphere. The Platonic Solid conjugate to the dodecahedron is
the icosahedron which has twelve vortices. Therefore, there will be twelve outer
inversion spheres and one inner one perpendicular to all twenty initial spheres on
the votices of the dodecahedron.

The icosahedron which is in this case the base of the inversion spheres has also
triangular faces. Therefore, they overlap as shown in Fig. 4.13 and their inter-
secting angle is π

3 which corresponds again to l = 1 in Eq. (4.11). One has also
the same value for the angle between the inner inversion sphere and the outer
ones. Therefore, the packing conditions are also fulfilled for this configuration
and a packing is expected to be obtained.

Figure 4.27 shows the initial configuration and the resulting packing is shown in
Fig. 4.28. It can be shown that in this case at least four colors are necessary for
coloring the spheres. Of course, the initial spheres cannot be colored symmet-
rically with three colors such that there will be the same number of spheres of
each color. Looking at Fig. 4.27, there are seven red, seven blue, and six green
spheres. The unit sphere is colored with yellow.

4.3.5 Packing based on the icosahedron

So far for each Platonic Solid a packing has been obtained using the inversion al-
gorithm. The overlapping condition was, however, fulfilled automatically by the
geometry of the Platonic Solids. These fortunate coincidences may be expected
to occur also for the last Platonic Solid, i.e., the icosahedron. But, it turned out
to not be the case, as we will discuss here.

Similar to the previous cases, we set up the initial configuration by putting twelve
initial spheres, corresponding to the vortices of the icosahedron, inside the unit
sphere. The inversion spheres are set in such a way that the first two of the
packing condition are fulfilled. There will be twenty outer inversion spheres
centered at the votices of a dodecahedron. One more inversion sphere is set at
the center, perpendicular to all twelve initial spheres.

The third condition is still to be checked by calculating the angles between the
inversion spheres. This can be easily done with the help of Fig. 4.14 which
shows the cross-section of five neighbouring inversion spheres with the plane
containing their centers. As can be seen, the angle between two adjacent spheres
is 2π

5 . This value, however, does not match any value of α in Eq. (4.11). This is
enough to say that this initial configuration will not give us a packing. Therefore,
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Figure 4.14: Overlapping of the inversion spheres in the case of the icosahedron.
α equals 2π

5 .

the icosahedron geometry fails to contribute to expand our collection of the new
packings of spheres.

4.3.6 Further packings of spheres

Here, we look for further possible initial configurations which may lead to a
three dimensional packing. In Sec. 4.2.2 we discussed the generalization of hav-
ing non-touching initial circles. This may also be applied to three dimensions.
Similar to two dimensions, we reduce the size of the initial spheres so that they
are not touching each other but still touching the unit sphere. The outer inversion
spheres will still be the same as before. But, one needs to expand the inner in-
version sphere in order to fulfill the first two of the packing conditions. This will
increase further the overlapping of the inner inversion sphere with the outer ones.
But, according to Eq. (4.11) one can see that the overlapping of the inversion
spheres are at their maximum for all cases we discussed, except for the case of
the octahedron for which α = π

4 . In this case the only value of α which leads to
an expanded inner inversion sphere and does not deviate from Eq. (4.11) will be
π
3 corresponding to l = 1. It should be noted that for l = 0 the inner inversion
sphere will be as big as the unit sphere and the size of the initial spheres becomes
zero, as we will discuss later. Apparently, this initial configuration will not result
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Figure 4.15: Initial spheres are placed on the vortices of a tetrahedron.

in a packing.

Therefore, with this technique only one new packing can be obtained. Figure
4.29 shows the obtained packing together with its first iteration (the image on the
left).

Interestingly, for this configuration only two colors are necessary for coloring the
spheres such that no two spheres having the same color touch each other. This is
because the initial spheres do not touch each other and can be all assigned with
the same color. The second color goes to the unit sphere. We refer to this kind of
packings as bichromatic. Fig. 4.29 presents the first ever constructed bichromatic
space-filling packings of spheres.

As we will discuss in details in the next chapter, being bichromatic is the neces-
sary and sufficient condition for a packing to act as a bearing, where the spheres
can rotate, rolling on each other without slip.
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Figure 4.16: The tetrahedron-based packing.

Figure 4.17: Tetrahedron-based packing: Cut of the plane of one of the faces.
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Figure 4.18: Tetrahedron-based packing: Cut of the plane parallel to one of the
faces, with the distance of 0.5 from the center of the unit sphere.

Figure 4.19: Initial spheres are placed on the vortices of a octahedron.

4.4 Fractal dimensions

As we mentioned before, the obtained packings have self-similar structures, and,
therefore, are fractals. The method we use to calculate the fractal dimensions
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Figure 4.20: The octahedron-based packing.

is the same as the one used in Ref. [73], as already discussed in Ch. 2. The
number of all spheres in a packing with radii larger than ε follows an asymptotic
relation[71, 72],

N(ε) ∼ ε−df , (4.13)

in which df is the fractal dimension of the packing. Figure 4.30 shows N(ε) in
logarithmic scales for different packings. One can see that, for smaller ε’s the
curves become linear the slope of which determines the fractal dimension of the
corresponding packing. The slope is calculated by linear fitting to an interval
containing five points and shifting this interval towards smaller ε’s. The results
are shown in the inset of the figure.

The difference between the fractal dimensions emphasises the topological differ-
ence of the obtained packings. The numerical precision is improved until this
difference becomes evident. The fractal dimension of the packing based on the
tetrahedron has been calculated in Ref.[74] to a high degree of precision. It is
approximately 2.474, which is shown in the figure as the lowest value.

We also calculate the fractal dimensions of two cuts of the bichromatic packing;
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Figure 4.21: Octahedron-based packing: Cut of the plane through the center of
the unit sphere.

one through the plane containing four vortices of the octahedron, which also
passes the center, and another parallel to this plane but 0.5 off the center. The
result is shown in Fig. 4.31. The difference between the fractal dimensions of the
cuts shows that the packing is a non-homogeneous fractal. A non-homogeneous
fractal is a fractal structure to which more than one dimension can be attributed.

4.5 Stripe geometry

The packings we obtain using the inversion algorithm in two dimensions turn
out to be the same as those constructed and named as first family of space-filling
bearings by Herrmann et al [32] with m = N − 3 and n = l + 1 in their
nomenclature. As an example, Fig. 4.12 corresponds to m = 0, n = 0 as they
classify it. This can be easily verified by transforming the circular geometry to
the stripe geometry.
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Figure 4.22: Octahedron-based packing: Cut of the plane with the distance of 0.5
from the center of the unit sphere.

Figure 4.23: Initial spheres are placed on the vortices of a cube.
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Figure 4.24: The cube-based packing.

Figure 4.32 shows how the circular geometry can be transformed to the stripe
geometry. The lower image is the result of the inversion applied on the upper
configuration around the inversion circle shown as dashed. The inversion circle
can be any circle centered at the touching point of any two circles in the configu-
ration, with no restriction on its radius. The straight parallel lines are the images
of these two circles.

All these packings are deterministic, self-similar fractals with a dimension which
is different for different n and m. The configurations from the second family of
the space-filling bearings can be also constructed using the inversion algorithm.
In next section we will discuss more possibilites for choosing the initial configu-
ration in order to obtain further packings in two and three dimensions, including
the packings from the second family.
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Figure 4.25: Cube-based packing: Cut of the plane through the center of the unit
sphere.

Figure 4.26: Cube-based packing: Cut of the plane of one of the faces.
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Figure 4.27: Initial spheres are placed on the vortices of a dodecahedron.

Figure 4.28: The dodecahedron-based packing.

4.6 More packings using the inversion algorithm

As it was discussed before, using the inversion algorithm, the problem of con-
structing new packings reduces to choosing proper configurations of initial and
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Figure 4.29: The bichromatic packing which is the second octahedron-based
packing. No spheres of the same color touch each other.

inversion spheres which fulfill the packing conditions. Here, we discuss some of
these choices and present one example.

In all the previous configurations the outer inversion spheres are perpendicular to
the initial spheres as one of the packing conditions. One can, therefore, replace
any or all of the initial spheres by inversion spheres of the same sizes and cen-
ters, since the perpendicular inversion spheres are allowed by Eq. (4.11). The
only initial sphere which should not be transformed to an inversion sphere is the
unit sphere, otherwise it would be like having many mirrors without having any
object. Therefore, depending on the number of the initial spheres, a variety of
different new configurations can be obtained in both two and three dimensions.

So far, in any initial configuration, one inner inversion sphere is set at the center.
This is, however, not necessary and it is possible to replace this centeral inner in-
version sphere by other inner inversion spheres. One example in two dimensions
is as follows; Four inner inversion circles of redius 0.5 are set on the vortices of
a square inside a unit circle such that all intersect each other at the center of the
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Figure 4.30: The fractal dimension of different packings of spheres.
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Figure 4.31: The fractal dimension of two cuts of the bichromatic packing.

unit circle. To cover the uncovered space, four outer inversion circles are set as
we did in previous section. It can be verified that this configuration fulfills all
the packing conditions. The obtained packing is the one corresponding to m = 1
and n = 1 from the second family of the space-filling bearings, which is shown
in Fig. 4.33. For the packings corresponding to other values of m and n one
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dF Bearing
Tetrahedron 5 5 5 2.474 NO

Octahedron(1) 7 9 4 2.488 NO
Octahedron(2) 7 9 2 2.588 YES

Cube 9 7 3 2.525 NO
Dodecahedron 21 13 4 2.512 NO
Icosahedron 13 21 - - -

Table 4.1: Summary of the three dimensional packings obtained using the inver-
sion algorithm.

can change the radii of the inner inversion circles in any way which satisfies Eq.
(4.11).

4.7 Conformal mapping in the complex plane

As discussed in previous sections, the inversion is a transformation which, al-
though changes the proportions, it keeps the angles unchanged. In two dimen-
sions, this reminds us of Möbius maps which are the general conformal trans-
fomations in the complex plane. Generally, a Möbius map takes the following
form:

T (z) =
az + b

cz + d
, (4.14)

where z is the coordinate of a point in the complex plane and a, b, c and d are
all real numbers. This is the general combination of magnifications, rotations,
translations, reflections, and inversions2 which are all conformal mappings.

2Here, the inversion means z 7→ 1/z which is a combination of a usual inversion, which we used
throughtout this chapter, and the reflection around the real axis.
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Indra’s Pearls [76] is a beautiful book which is devoted strictly to the properties
of these transformations and their use for constructing some interesting patterns
including packings of circles.

4.8 Conclusions

We developed an algorithm for constructing self-similar space-filling packings
in two and three dimensions. Using this algorithm and its extentions, several
previously-unknown packings of spheres have been constructed. These packings
are topologically different since they possess different fractal dimensoins. Using
a coloring scheme that we introduced, the differences between the packings be-
come even more obvious. Among the three dimensional packings, there is one
in which the spheres can be colored with only two colors such that no spheres
having the same color touch each other. This is a significant property since it
leads to the possibility of rotating spheres with no frustration and therefore to
space-filling bearings of spheres, as will be shown in next chapter.
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Figure 4.32: Transformation from the circular geometry to the stripe geometry.
The lower image is the result of the inversion applied on the upper configuration
around the inversion circle shown as dashed. The inversion circle can be any
circle centered at the touching point of any two circles in the configuration.
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Figure 4.33: Packing corresponding to m = 1 and n = 1 from the second family
of the space-filling bearings. The inversion circles are shown as dashed.



Chapter 5

Space-filling bearings

As discussed in Sec. 3.3, space-filling bearings have some important applica-
tions. They can be used for modeling phenomena such as seismic gaps and tur-
bulance. Although in two dimensions a variety of realizations have been con-
structed, it is not obvious whether they can exist in three dimensions. In this
chapter, we will study the space-filling bearings in two and three dimensions. We
will show that in both cases the necessary and sufficient condition for a packing
to act like a bearing is to have only even loops. We will show also that only one
of the three dimensional packings we obtained in the previous chapter can act as
a bearing.

5.1 Space-filling bearings in two dimensions

As discussed in previous chapters, in two dimensions different classes of space-
filling bearings of disks have been constructed in Refs. [32, 33] by requiring the
loops to have an even number of disks. The term loop refers to a closed chain
of successively touching particles in the packing. The number of particles in the
chain is called the loop number. Figure 5.1 represents a typical loop of five discs.

In order that two touching discs can rotate without slip on each other, their tangent
velocities at their contact point have to be equal, that is:

vt = r1ω1 = −r2ω2 (5.1)

59
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Figure 5.1: Typical loop of discs. For an odd loop there will be at least one frus-
trated contact, shown as black dot. The colors correspond to the two directions
in which the discs rotate. In order to have no frustrated contacts, the loop should
be bichromatic (see the text).

where r1, ω1, r2 and ω2 are radii and angular velocities of the two discs. If the
tangent velocities do not agree at the contact point, the discs will slip on each
other, and the contact is called frustrated. In a chain of n successively touching
discs Eq. (5.1) should hold for each contact if one wants to avoid any frustration,
in other words:

vt = (−1)i+1riωi i = 1, 2 · · ·n. (5.2)

However, for a loop of discs where the chain is closed this is possible only when
the loop number n is even. As seen in Fig. 5.1, there will exist at least one
frustrated contact, shown as black dot. If the discs are colored according to their
direction of rotation, the problem of having a non-frustrated loop reduces to hav-
ing a bichromatic loop, i.e., no two touching discs having the same color touch
each other. In other words, being bichromatic is equivalent to having an even
loop.

In a loop inside a packing, discs may have more than two contacts. It means that
the discs may be member of several loops at the same time. In this case it is also
enough to impose the condition of having only even, or equivalently bichromatic,
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Figure 5.2: Two dimensional space-filling bearing. All discs can rotate without
sliding on each other.

loops in order to avoid any frustrated contact. As seen from Eq. (5.2), the tan-
gent velocity at the contact points vt will be a global constant. All disks must
rotate with this velocity, in alternation, clockwise and counter-clockwise, which
is possible only in a bichromatic configuration. The different colors correspond
to different direction of rotation.

Figure 5.1 shows a rotating space-filling bearing in two dimensions.

5.2 Space-filling bearings in three dimensions

The situation in three dimensions is different from two dimensions in two ways;
The axes of rotation need not be parallel, and the centers of the spheres in a loop
may not lie all in the same plane. As a result, even in an isolated odd loop,
spheres could rotate without slip. A simple example is shown in Fig. 5.3. But,
as we will see, in the packings with an infinite number of interconnecting loops,
one can construct unfrustrated configurations of rotating spheres if all loops have
an even number of spheres, i.e., if the packing is bichromatic.

No three dimensional space-filling bearing has been known up to now. The clas-
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Figure 5.3: Loop of three spheres. In contrary to two dimensions, the spheres
can rotate without any frustration even in an odd loop.

sical Apollonian packing is space-filling and self-similar but not a bearing since
at least five colors are needed to assure different colors at each contact. In Ch. 4
we have shown that three dimensional bichromatic packings exist by constructing
one realization (see Fig. 4.29).

As discussed Ch. 4, its construction is based on six non-touching initial spheres
on the vortices of an octahedron inside the unit sphere. Figure 5.4 shows the
plane cut through the centers of the unit sphere and four initial spheres. Dashed
circles are cuts of the inversion spheres. Sphere S : 0, 1, · · · is mapped, by the
inversion sphere shown by a thick dashed line, onto sphere S ′. The inversion
around this sphere gives no new images of spheres 1 and 2. In the first iteration
we make all possible inversions which give new and smaller spheres. In the
next iterations, the newly-generated spheres are mapped to smaller spheres. For
example, sphere 0′ is mapped (by the central inversion sphere) onto 0′′. In this
way, the remaining empty space is filled in the limit of infinite iterations while
the bichromatic topology of the contacts is preserved.

Using our algorithm, the configuration of initial spheres which gives a bichro-
matic packing is unique. Strictly speaking, it is shown that the only value for
radii of the initial spheres which leads to the bichromatic packing without (par-
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tial) overlapping of generated spheres is (
√

3−1)/2 and only using an octahedral
base (see Ch. 4).

The image on the left of Fig. 4.29 shows the initial configuration and the first gen-
eration of inserted spheres, and the one on the right shows the resulting packing
containing all the spheres with radii greater than 2−7. The sphere at the center
and the external hull is white and those on the vertices of the octahedron are
black. Since the spheres on the vertices touch only the external hull and the cen-
tral sphere, and since this topology is preserved by construction, no two spheres
of the same color touch each other.

This implies that every loop of spheres in this packing contains an even number
of spheres. We now show that this is a sufficient condition for the spheres in
contact to rotate without slip, or even torsion friction.

Consider a loop of n spheres as seen schematically for n = 4 in Fig. 5.5. The no-
slip condition implies that each pair of touching spheres have the same tangent
velocities v at their contact point. The condition for the contact between the first
and the second sphere can be written as:

v1 = v2

⇒ R1r̂12 × ω1 = −R2r̂12 × ω2

⇒ (R1ω1 +R2ω2)× r̂12 = 0, (5.3)

where R1, R2, ω1 and ω2 are the radii and the vectorial angular velocities of
the first and second sphere, respectively. r̂12 is the unit vector in the direction
connecting the centers of the first and the second sphere. From Eq. (5.3) the
vector (R1ω1 +R2ω2) should be parallel to r̂12:

R2ω2 = −R1ω1 − α12r̂12, (5.4)

where α12 is an arbitrary parameter. Equation (5.4) is a connection between the
rotation vectors ω1 and ω2 of the two spheres in contact. Similarly for the third
sphere in contact with the second, we have

R3ω3 = −R2ω2 − α23r̂23. (5.5)

Putting Eq. (5.4) into Eq. (5.5) we find the relation between the angular velocities
of the first and third sphere:

R3ω3 = R1ω1 + α12r̂12 − α23r̂23. (5.6)
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Figure 5.4: Plane cut through the center of the unit sphere and four initial spheres.
Dashed circles are cuts of the inversion spheres. Sphere S is mapped, by the
inversion sphere shown by a thick dashed line, onto sphere S ′. 0′ is mapped by
the central inversion sphere onto 0′′.

In general, we can relate the angular velocities of the first and jth spheres of an
arbitrary chain of spheres in no-slip contacts by:

Rjωj = (−1)j−1R1ω1 +

j−1∑

i=1

(−1)j−iαi,i+1r̂i,i+1. (5.7)

As long as the chain is open, the spheres can rotate without slip with the angular
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velocities given by Eq. (5.7) and no restrictions on αi,i+1. But, for a loop of n
spheres in contact, spheres j and j + n are identical, so that

R1ω1 = (−1)nR1ω1 +

n∑

i=1

(−1)n−i+1αi,i+1r̂i,i+1. (5.8)

A similar equation holds for every sphere j = 1, · · · , n in the loop.

Although for a single loop there are many solutions of Eq. (5.8), not all will
serve our purpose. In a packing, each sphere belongs to a very large number of
loops and all loops should be consistent and avoid frustration. In other words,
the angular velocity obtained for a sphere as a member of one loop should be the
same as being a member of any other loop.

If the loop contains an even number n of spheres, Eq. (5.8) becomes a relation
between the hitherto arbitrary coefficients of connection αi,i+1,

n∑

i=1

(−1)iαi,i+1r̂i,i+1 = 0. (5.9)

Using the fact that the loop is geometrically closed:

n∑

i=1

(Ri +Ri+1)r̂i,i+1 = 0, (5.10)

a solution for Eq. (5.9) is

αi,i+1 = c(−1)i(Ri +Ri+1), (5.11)

where c is an arbitrary constant. Putting this in Eq. (5.7), yields the angular
velocities

ωj =
1

Rj
(−1)j (−R1ω1 + cR1j) , (5.12)

where R1j is the vector which connects the centers of the first and jth sphere. As
can be seen, the angular velocities only depend on the positions of the spheres,
so that the consistency between different loops can be automatically fulfilled pro-
vided that the parameter c is the same for every loop of the entire packing.

In Eq. (5.12), all the angular velocities are calculated from ω1 and c, which can
be chosen arbitrarily. (c = 0 corresponds to the case when all angular velocities
are parallel.)



66 5.2 Space-filling bearings in three dimensions
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Figure 5.5: Schematic configuration of a loop of four spheres. The spheres rotate
without slip. The centers of spheres need not be in the same plane, although ω1,
ω2 and R12 are coplanar.

The no-slip condition (5.4) then reads

R1ω1 +R2ω2 = cR12, (5.13)

so that the vectors ω1, ω2 and R12 are coplanar (the plane of Fig.3, containing
the two centers and the point of contact A). They are in general not collinear.

We note that the condition of rotation without slip (5.4) also guarantees that there
will be no torsion friction, as long as the three vectors are not collinear. Indeed,
the locus of the contact point A on sphere 1 is a circle C1, perpendicular to ω1.
On sphere 2, it is a circle C2, perpendicular to ω2. The cone tangent to sphere
i = 1, 2 on circle Ci has an apex Si, on the axis ωi. The two apices Si are in
the same plane as the sphere centers and on the same line as the contact point
A (Fig.5.6). The two spheres rolling on each other can therefore be replaced
by the two cones rolling on each other, around the line S1S2A, which always
contains the contact point A. There will be no twisting between cones, thus no
torsion friction from one sphere rolling on the other. Only when the two angular
velocities and R12 are collinear can there be some twist of the spheres against
each other. (The circlesCi then reduce to the contact pointA, there are no tangent
cones, and the tangent velocities vi = 0). This situation is not generic. It is of
measure zero and physically irrelevant.
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Figure 5.6: Two spheres rolling on each other without slip can be represented by
two cones rolling on each other around the common line S1S2A. Therefore there
is no twist of the spheres against each other.

In the case of odd loops, Eq. (5.8) becomes

n∑

i=1

(−1)iαi,i+1r̂i,i+1 = 2R1ω1. (5.14)

A similar equation holds for every sphere j = 1, · · · , n in the loop. But, since
the coefficients αi,i+1 depend then on both geometry and the rotation velocities
of the spheres of the loop, consistency between different loops cannot be fulfilled
in general and, therefore, a packing containing odd loops cannot be a bearing.
A rigorous proof for this, however, is missing. It should be mentioned however
that an unfrustrated single odd loop is possible, but cannot occur in isolation in a
packing [77].
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5.3 Conclusions

The bearing discussed here is very idealized and based on exactly-spherical par-
ticles with infinite rigidity and, of course, does not exist in this form on all length
scales in nature. Nevertheless, chances still remain that similar bearings, though
with some imperfections, occur in reality. A simulation of two-dimensional shear
bands shows formation of spontaneous rotating bearings in clusters of up to 30
particles [29]. Despite of having more volume, the bearing state is favored be-
cause of its low friction. As an another evidence, the bichromatic packing pre-
sented here is self-similar which is also observed in the samples of tectonic gouge
down to several scales (see Ref. [52]). Interestingly, the measured fractal dimen-
sion, 2.60± 0.1, agrees with that we obtained in this work.

In summary, we proved the existence of the three dimensional space-filling
sphere bearing by presenting the explicit construction. We have shown that a
sufficient condition is that the packing is bichromatic, and given an explicit ex-
pression (5.12) for the angular velocity of every sphere of the entire packing, in
terms of ω1 and c only. In this way, we support the previous modelization for lu-
brication between tectonic plates. This result can also be important in mechanics
and hydrodynamics.



Chapter 6

Random space-filling bearings

As discussed in the previous chapter, having an even number of particles in all
possible loops of a packing is the necessary and sufficient condition for the pack-
ing to act as a bearing. In both two and three dimensions, some examples of
space-fillings have been presented.

All these configurations consist of highly ordered arrangements of particles.
There exists no randomness, whatsoever, in the calculation of the positions and
radii of the particles. This is an obvious drawback for a model which is intended
to mimic a physical phenomenon. Secondly, in the configurations the space is
completely filled with particles of different sizes down to infinitely fine grains,
whereas in the reality there exists always a minimum size of the particles.

This chapter is focused on constructing random bearings and studying the ef-
fect of cutoffs for the size of the particles on the stability of the system. In the
following, an algorithm for constructing random bearings in both two and three
dimensions is presented. In the construction procedure, the formation of odd
loops is avoided by imposing the bi-chromatic condition. Next, the instability
of the configurations as a consequence of setting a cutoff is discussed and cal-
culations for the dissipation of energy in a system with rotating particles under
gravity are presented. One can see, that the energy dissipation decreases as the
cutoff is reduced. Finally a discussion of the results and the conclusion is given.

The algorithm can be divided in two parts. First we construct a general random
packing of discs or spheres. Second we impose the bi-chromatic condition which
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Figure 6.1: The procedure through which a new disc is inserted into the packing.
The gray discs are already in the packing. One is randomly chosen (disc 1). We
look for the biggest possible disc which can be inserted around disc 1, shown as
the empty circle, and set it as the candidate to be inserted next. Then, we look
whether it is also the biggest for other touching discs (disc 2 and 3). Continuing
this procedure, the final candidate is found, which is shown as a black disc.

implicitly guarantees the packing to contain no odd loops and, therefore, be a
bearing.

6.1 Random packing of discs

Initially, some discs within a given range of sizes are randomly distributed in
space without touching each other. The filling procedure is continued from then
on by inserting always the biggest possible disc into the system without overlap-
ping with any existing disc. This is the most efficient way of filling the space
starting from a given initial configuration of discs. This becomes more obvious
as the local configurations are observed to be close to that of the classic Apol-
lonian one which is the most efficient known way of packing discs. For finding
the biggest hole where a new disc can be inserted, an arbitrary disc A from the
current configuration is chosen and all possible neighboring pairs are examined
between which a disc can be inserted touching all three without overlapping any
other disc in the system. In this way, the locally biggest disc is found and set as
the candidate to be inserted next into the system. This disc will touch the initially
chosen disc A and two others, namely, B and C. To find the final candidate we
check whether the current candidate is also the biggest for B and C. In other
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Figure 6.2: A random packing with 2× 104 discs, and density of 0.99

words, discs B and C are examined as was disc A. If a bigger disc is found the
candidate for being inserted next is updated. This is shown in Fig. 6.1. Contin-
uing this search, the biggest disc can be finally found and inserted. More discs
are packed into the system by repeating the same procedure over and over. One
notices that as the density increases, different regions of the packing become in-
dependent. Therefore one doesn’t need to look for the globally biggest disc each
time and the search can be stopped after a few iterations.

It is worthwhile to have a closer look on how the center and the radius of a circle
touching three given circles can be found. In Cartesian coordinates, the equations
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Figure 6.3: The method for construction of a bi-chromatic packing. If all three
discs are of the same color (left image) a disc is inserted with opposite color
touching all three, otherwise its size is reduced by a factor α so that it only
touches the two that have the same color (right image).

governing the distance between the centers are as follow:

(x− xi)2 + (y − yi)2 + (z − zi)2 = (r + ri)
2, i = 1, · · · , 4 (6.1)

where (xi, yi, zi, ri) are the coordinates of the given spheres, and (x, y, z, r) are
the coordinates of the sphere touching all four and which is to be calculated.
To solve this system of equations, we subtract the first equation from the other
three to get three equations which are linear with respect to (x, y, z). Solving this
usual non-homogeneous linear system of equations, coordinates of the center of
the sphere (x, y, z) are obtained as functions of radius r. Substituting in the first
equation, one gets two different radii, usually one positive and one negative. The
positive radius is the desired one since the one with negative radius corresponds
to the outer touching sphere.

Figure 6.2 shows the resulting packing with the size of initial circles in the range
0.09− 0.11 within a circular space of unit radius.

6.2 Random bearings

So far no considerations have been made for the packing to act as a bearing. As a
consequence, there will be many odd loops in the packing which will hinder any
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frictionless rotation of the discs. The bearing condition, however, can be easily
implemented into the algorithm. The system is initialized as before except that
the initial discs are also assigned randomly with two colors. A new disc, gets a
color such that it doesn’t touch any disc with the same color. This is only possible
if all three touching discs have the same color. In other cases, where only two
of the discs have the same colors, the radius of the inserted disc is reduced by a
factor α with respect to the size which would make it touch to all three:

r = αr0, (6.2)

where r0 is the size of the biggest possible and r is the size of inserted disc as
shown in figure 6.3. Obviously, for α = 1 we obtain the same packing as in the
last section which is not a bearing. Therefore, α must be less than unity in order
to have a bearing. Figure 6.4 shows the resulting bearing in two dimensions for
α = 0.6.

Similarly, random packings and bearings can be obtained in three dimensions
with this method. The difference to two dimensions is that each new sphere is
inserted touching four spheres. To construct a bearing three situations should be
considered, that is, among the four spheres one is of one color and three of the
other color, two are of one color and two of the other or all three have the same
color. Figure 6.7 shows a resulting bearing in three dimensions for α = 0.6.

The way we imposed the condition for a bearing, although probably different
from what happens in a real or even a simulated system, is a short cut in obtain-
ing a final configuration without considering the dynamics of the particles. One
can argue that in an odd loop, when the discs try to rotate, one of the contacts will
open and relatively small discs will move between the two discs forming that con-
tact. A spontaneous appearance of bearings in simulations of two-dimensional
shear bands has been observed [29]. The simulation of such a system with par-
ticles of sizes distributed over several scales, however, still must be achieved.

6.3 Lower bound on the sizes and the stability of
the random bearings

From both the computational point of view and that of what happens in reality, a
smallest particle size must inevitably exist. The main consequence of this cutoff
ε are unfilled spaces which may cause instabilities in the system under external
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Figure 6.4: Random bearing with α = 0.6. For 2×104 discs, the density is 0.95.

forces. In other words, the particles may no longer be fixed in their positions,
causing changes in the configuration. As we will see, this plays an important
role in the dynamics of the bearing. Here in particular we will study the effect
of gravity on the system. In a random bearing with a cutoff, the particles which
are not supported from below will be displaced by gravity, resulting eventually
in the formation of odd loops in the system. In an odd loop at least one frustrated
contact will form as the particles are forced to rotate. These are sources for local
dissipation of energy and the system will not act as perfect bearing anymore.

The stability of the system depends on how loose it is before applying the gravity.
Here, we make an estimate for the total dissipated energy in the system. Assum-
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Figure 6.5: Random bearing with α = 0.6. For 2×104 discs, the density is 0.95.

Figure 6.6: Comparison between the densities of a random packing (α = 1) and
a random bearing (α = 0.6) as function of logN , the total number of discs. In
the case of a bearing, the density approaches unity much slower.

ing that the friction acting between two rubbing surfaces follows Coulomb’s law,
at a frustrated contact, the energy dissipation rate is,

Edis = µNvrel, (6.3)

where µ is the Coulomb friction coefficient, vrel is the relative velocity of the
surfaces of the particles at the frustrated contact, andN is the normal force acting
between them. As can be easily verified, the normal force N is proportional to
the weight of the dislocated particle. The proportionality factor is a function
of the angles between normal forces at the contacts of a particle and the gravity
direction. In both two and three dimensions, we assume for all frustrated contacts
a typical value for this factor. It should be noted that in two dimensions the
relative tangential contact velocity is exactly the same for all contacts, zero for
unfrustrated and non-zero for frustrated ones, since all touching pairs of discs can
rotate either in the same or in opposite direction. Therefore, we can describe the
total dissipation of energy as proportional to the total mass of dislocated particles
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Figure 6.7: Three dimensional random bearing. No two spheres of the same color
touch each other.
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Figure 6.8: A typical odd loop in two dimensions. Particle C hinders the rotation
of the other particles and causes some energy dissipation.
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Figure 6.9: Particles fall and roll under gravity until they are fixed through their
contacts with other spheres.

that produce frustrated loops:

Etotal ∼M, (6.4)

which we will consider as the measure for the deviation from a perfect bearing.

To check the effect of gravity on the system, we use a semi-dynamics which is an
extension of the one used by Manna et al. [2] to simulate discs under gravity. The
particles which do not have enough contacts (at least two in two dimensions and
three in three dimensions) to carry their weight will either fall freely or role on
one another. All particles are testet one by one from bottom to top and checked
whether they are fixed through their contacts with others. If the particle is not
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Figure 6.10: Two dimensional random bearing with α = 0.6. Applying gravity,
some particles move and form frustrated contacts. These are shown as black
discs. Solid lines show the frustrated contact.

fixed it either rolls or falls until it hits another one. After a sequence of rollings
and fallings, the particle will stop somewhere in the system and stays fixed (see
Fig. 6.9.)

A particle is fixed if the line starting at the center of the particle and going in di-
rection of gravity cuts at least one line (triangle) made by connecting two (three)
contacts in two (three) dimensions. The process of falling and rolling is per-
formed on all particles one at a time while others are held fixed. Those particles
which are in a lower position are treated first and the upper ones later. The pro-
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gramm goes through the list of particles several times and lets them fall and roll
until no particle moves any more. In this way, the system reaches the final state
from whichM the total mass of particles forming frustrated contact can be cal-
culated.

Here, we present the calculation for a two-dimensional system. Figure 6.10
shows a two dimensional random bearing upon which gravity has been applied.
Some particles move and form frustrated contacts. These are shown as black
discs. Solid lines show the frustrated contacts. The total frustrated mass M is
computed as function of the cutoff ε for different configurations. The result is
shown in Fig. 6.11(a) for two values of α. The data points are fitted best by
power law functionsM∼ εγ . For different values of α the exponent γ has been
calculated, as shown in Fig. 6.11(b).

The results indicate that the system approaches the state of complete stability,
that isM = 0, as ε→ 0. Interestingly, for smaller α the total frustrated massM
is smaller (as seen in Fig. 6.11(a)). For a finite cutoff, there is a finite dissipation
on energy which vanishies as the cutoff becomes smaller. The exponent γ has
more or less a constant value for the different configurations within the numerical
errors, which is 0.72 ± 0.02. This suggests a general behavior for the energy
dissipation rate as function of the cutoff for a random bearing.

In the limit α → 0 the configurations are highly polydisperse (see Eq. (6.2)).
Whether they still behave like bearings is disputable, since a very small particle
between two big particles in reality can very unlikely prevent frustration. On the
other hand, in the case of α = 1 all the particles are fixed and the configuration is
completely stable. However, as was mentioned before, this is the limit where the
system becomes fully frustrated due to the formation of many odd loops in the
construction stage. Therefore, to study the role of α, we calculate the exponent γ
only for the systems with their corresponding α away from these limits (see Fig.
6.11).

6.4 Other properties

In this section, we discuss some properties of different packings which have been
generated by the method presented in this chapter. As the most important prop-
erty of a packing, in Fig. 6.6 the density of two configurations is shown as func-
tion of total number of discs. In the case of a random packing, with α = 1, the
density after the initialization increases faster. This is expected, since imposing
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the condition for a bearing we loose some efficiency by reducing the size of those
discs which would otherwise form odd loops (see previous section).

As discussed in Ch. 3 the radii distribution n(r) of the discs of such packings fol-
lows a power law, as we go to smaller scales. Therefore, a fractal dimension can
be assigned to a packing which is related to the exponent of the radii distribution:

n(r) ∼ r−τ , df = τ − 1 (6.5)

To calculate the fractal dimension, instead of n(r), we use N(ε) which is the
total number of discs with r > ε:

N(ε) =

∫ ∞

ε

n(r)dr ∼ ε−df (6.6)

This function is shown in Fig. 6.12 in logarithmic scale for the two mentioned
configurations. According to Eq. (6.6) the slope is the fractal dimension of
the corresponding configuration. After the initialization (omitting the first data
point), the slope is is small, about 1.2, even smaller than that of the well-known
Apollonian packing in two dimension,∼ 1.306 [73], which has the lowest fractal
dimension among all known disc packings. In addition, it can be easily shown
that the smaller the fractal dimension the faster the density increases, which may
make us believe that in our packing the discs are packed more efficiently than in
the Apollonian one. In fact, at the beginning the density increases faster because
of our poorly packed initial configuration. We can see that, the slope increases
and, for the case of random packings, it seems to approach that of the Apollonian
packing. For the case of random bearings, the fractal dimension approaches even
a larger value.

Also in three dimensions, we compare N(ε), the total number of spheres larger
than ε, for a random packing (α = 1) and a random bearing (α = 0.6), which is
shown in Fig. 6.13. The slope of each curve is the fractal dimension, 2.37 for the
packing and 2.40 for the bearing. Both fractal dimensions are smaller than that of
the classical Apollonian packing and also other space-filling packings of spheres
(see Ch. 4). We have already discussed a similar situation in two dimensions.
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6.5 Conclusions

All space-filling bearings, which have been obtained and studied so far, were
highly organized arrangements of particles. This is a drawback for them to model
natural phenomena, like tectonic plate motion. Here, we presented an algorithm
for producing some space-filling bearings in which the particles do not follow any
regular pattern. It is argued that any odd loop will be broken at one of its contacts
as the particles try to rotate. Therefore, the spontaneous formation of even loops
becomes possible. Such a spontaneous formation of bearings has been observed
in simulations of two-dimensional shear bands [29]. We also investigated the
stability of the bearing under gravity and showed that as the system becomes
more filled the amount of particles which moves and may hinder the motion of
the bearing becomes smaller and therefore the system becomes more stable.
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Figure 6.11: (a) Frustrated mass M as function of the cutoff ε for two dimen-
sional bearings for α = 0.5 and 0.8. Lines are different power law fits, with
exponents γ=0.74 and γ=0.71 correspondingly. (b) Exponent γ as function of α.
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for a random packing (α = 1) and a random bearing (α = 0.6). The slope is the
fractal dimension.
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Chapter 7

Conclusions

In this thesis we developed an algorithm for constructing three dimensional self-
similar space-filling packings of spheres [78–82]. Among the constructed con-
figurations is the classical three dimensional Apollonian packing which was the
only previously-known configuration. The difference between the calculated
fractal dimensions indicates the topological difference between these configu-
rations. Following a coloring scheme for the spheres, the differences become
even more obvious. Although, we did not exhaust all the possible configurations
which may be obtained using our algorithm, we have given detailed guidelines
useful for discovering further possibilities.

Among the obtained packings there is one for which only two colors are nec-
essary for coloring the spheres such that no two spheres having the same color
touch each other. This is equivalent to saying that the packing consists of only
even loops of touching spheres. In two dimensions this is the necessary and suffi-
cient condition for a packing to act like a bearing. In three dimensions, however,
it is not obvious that this is the case, since the particles have more rotational de-
grees of freedom. We showed that having only even loops is the necessary and
sufficient condition for a packing to act like a bearing in three dimensions as well
[83]. We have given an explicit expression (Eq. 5.12) for the angular velocity of
every sphere of the entire packing, in terms of ω1, which is the angular velocity
of an arbitrarilily chosen sphere, and a factor c ≥ 0. All other spheres rotate
accordingly. Therefore, there will be infinitely many configurations of rotation
axes corresponding to the different values ofω1 and c versus the two dimensional
case where there is only one. For c = 0 all the axes are parallel whereas for a
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finite value of c the spheres rotate around non-parallel axes.

Space-filling bearings have been introduced in several contexts, such as explain-
ing the so-called seismic gaps [48, 50] of geological faults. The deformation of
geomaterials produces well-known spontaneous shear planes. Due to the granu-
lar structure inside the shear planes, grains can rotate. In fact, the tectonic faults
are examples of shear planes which are spontaneously formed inside the earth’s
crust. In the upper layers of the earth’s crust, where the hydrostatic pressures
are not too high, the network of faults has been monitored over many orders of
magnitude and self-similarity has been measured by Barton and others [51] from
geological maps. Active faults flow on a layer of fragments, called gauge, which
over time organizes itself into a size distribution [52] given by a power law. Also
rotations have been observed in the gauge zone [48, 53, 54].

As mentioned before, all the obtained packings consist of highly ordered arrange-
ments of particles. There exists no randomness, whatsoever, in the calculation of
the positions and radii of the particles. This is an obvious drawback for a model
which is intended to mimic a physical phenomenon. We developed a simple
method for constructing random bearings in both two and three dimensions.

Another criticism of the space-filling bearings, is the lack of any lower bound
for the sizes of the particles. In reality such a lower bound exists for any system
and cannot be avoided. We adapted our model to be able to account for this fact
by introducing a cut-off for the size of the particles below which no particle is
allowed to be inserted into the system. As an artifact of this restriction, there
will be many holes throughout the system left unfilled. It will, therefore, not
only make sense but also will be crucial to study the stability of such system
under external forces. In this work, we studied the effect of the gravity force on
different random bearing as function of the cut-off imposed on the size of the
particles, using a semi-dynamics in which the full details of the motions of the
particles are omitted and only the final configuration is of interest. As expected,
the particles which are not supported from below will be displaced by gravity,
eventually resulting in the formation of odd loops in the system. In an odd loop
at least one frustrated contact will form as the particles are forced to rotate. These
are sources for local dissipation of energy and the system will not act as a perfect
bearing anymore. We presented a way to calculate the rate of the total dissipation
of energy if the particles are forced to have steady rotation. The results show that,
for a finite cut-off, there is a finite dissipation on energy which vanishes as the
cut-off becomes smaller like a power law function of exponent γ. This exponent
has been calculated and seems to be the same for different configurations within
the numerical errors, its value being 0.72±0.02. This proposes a general behavior
for the energy dissipation rate as function of the cut-off in a random bearing.
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Space-filling bearings have also been used as toy models for turbulence and can
also be used in mechanical devices [55].

7.1 Outlook

We believe that the present work is a significant step in the subject which opens a
horizon for further investigations. The study of space-filling packings and bear-
ings is a young field with a lot of potential for both theoretical and experimental
research. Here we discuss some possibilities of what can be done in future.

Regardless of the fact that all the obtained configurations are highly regular which
makes them pure geometrical objects, they are all clear examples of the systems
with density one. In other words, each configuration presents a size distribution
for the spherical particles with which the space can be completely filled at least
in one way. This removes any upper theoretical limit on the density for this
particular size distribution. This is important in many practical applications. For
example, in the fabrication of high performance concretes (HPC) the key is to
get to the highest possible densities. If a theoretical limit on density exists, no
possible mixing technique gives us a density higher than that limit. The simplest
example is the mono-disperse distribution of particles for which the upper limit
of the density is about 0.91 for two and 0.74 for three dimensions. Therefore, it
is crucial to choose a right size distribution.

In practice the particles are put together using some mixing technique and it is
very improbable that a given single configuration can be reached. A statistical
approach, therefore, seems inevitable. Whether there is another arrangement with
the same size distribution which leads to the density one is unknown. This poses
an important question: Given a set of particles, what is the maximum density
which can be obtained? Till now, this question has not been studied and answered
except in the simplest case where all the particles have the same size.

The random arrangement and the existence of a lower bound for the size of the
particles posed the problem of the stability of a bearing. We studied this problem
and obtained some results for the energy dissipation rate where the particles are
forced to have steady rotations. This problem may also be studied experimentally.
The following set up for an experiment is proposed: The space between two
concentric cylinders is filled with spherical particles of different sizes. The sizes
of the particles may be chosen to be very small compared to the radii of the
cylinders. By fixing one of the cylinders and rotating the other one with a constant
velocity, the energy dissipation rate can be measured from the amount of the work
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per unit time needed for rotating the cylinder. If all the particles are interlocked,
the energy dissipation rate will be proportional to the pressure on the cylinders’
walls. The proportionality factor is the Coulomb friction coefficient times the
velocity of the cylinder. Significant decrease in the energy dissipation rate will be
expected due to the formation of local or global bearings behavior in the system.



Chapter 8

Appendix

Here, we derive the inversion matrix in Eq. 4.8 in terms of the inversion coordi-
nates of the inversion sphere.

A sphere can be specified by the coordinates of its center (x, y, z) and its radious
r. If the sphere S′ : (x′, y′, z′, r′) is the image of sphere S : (x, y, z, r) under the
inversion about the sphere Si(X,Y, Z,R), then:

r

r′
=

x−X
x′ −X =

y − Y
y′ − Y =

z − Z
z′ − Z =

R2

d′2 − r′2 . (8.1)

Defining the inversion coordinates as

a1 =
x

r
, a2 =

y

r
, a3 =

x

r
,

a4 =
x2 + y2 + z2 − r2 − 1

2r

a5 =
x2 + y2 + z2 − r2 + 1

2r
. (8.2)

Using Eq. 8.1, we have:
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x−X
r

=
x′ −X
r′

→ x

r
=
x′ −X
r′

+
X

r
=
x′ −X
r′

+
X

r′
d′2 − r′2
R2

→

x

r
=
x′ −X
r′

+
X

r′R2

[
(x−X)2 + (y − Y )2 + (z − Z)2 − r′2 −R22)

]

(8.3)

which can be rearranged to the following form:

x

r
=
x′

r′
+

X

R2

(
x2 + y2 + z2 − r′2

r′

)

+
X

r′R

(
X2 + Y 2 + Z2 −R2

R

)

− 2
X

R

(
x′X + y′Y + z′Z

r′R

)

(8.4)

in other words

a1 = a′1 +A1(A5 −A4)(a′4 + a′5) +A1(A5 +A4)(a′4 − a′5)−
2A1(a′1A1 + a′2A2 + a′3A3)

(8.5)

from which the first coordinate of spheres S and S ′ can be linearly related:

a1 = (1− 2A2
1)a′1 − 2A1A2a

′
2 − 2A1A3a

′
3 − 2A1A4a

′
4 + 2A1A5a

′
5 (8.6)

The second and third coordinates can be derived similarily:

a2 = −2A2A1a
′
1 + (1− 2A2

2)a′2 − 2A2A3a
′
3 − 2A2A4a

′
4 + 2A2A5a

′
5 (8.7)

a3 = −2A3A1a
′
1 − 2A3A2a

′
2 + (1− 2A2

3)a′3 − 2A3A4a
′
4 + 2A3A5a

′
5. (8.8)

For the last two coordinates we begin with:

d2 − r2

rR
= −2(a1A1 + a2A2 + a3A3 + a4A4 − a5A5) +

R

r

on the other hand we have:

d2 − r2

rR
=
R

r′
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so we have:

a1A1 + a2A2 + a3A3 + a4A4 − a5A5 = −
(a′1A1 + a′2A2 + a′3A3 + a′4A4 − a′5A5)→
a5A5 − a4A4 = a1A1 + a2A2 + a3A3 +

(a′1A1 + a′2A2 + a′3A3 + a′4A4 − a′5A5) ,

using Eqs. (8.6,8.7,8.8) we have:

a5A5 − a4A4 = 2(A2
4 −A2

5) (a′1A1 + a′2A2 + a′3A3 + a′4A4 − a′5A5)

+a5A5 − a4A4. (8.9)

On the other hand we have:
1

r
= a5 − a4 = 2(A4 −A5) (a′1A1 + a′2A2 + a′3A3 + a′4A4 − a′5A5)

+a′5 − a′4. (8.10)

Solving Eqs. (8.9,8.10), we have:

a4 = −2A4A1a
′
1 + 2A4A2a

′
2 − 2A4A3a

′
3 + (1− 2A2

4)a′4 + 2A4A5a
′
5 (8.11)

a5 = −2A5A1a
′
1 − 2A5A2a

′
2 − 2A5A3a

′
3 − 2A5A4a

′
4 + (1 + 2A2

5)a′5. (8.12)

Therefore, the inversion coordinates of sphere S are related to those of sphere S ′

through a linear system of equations which can be shown in the matrix form:



a′1
a′2
a′3
a′4
a′5




= (8.13)




1− 2A2
1 −2A1A2 −2A1A3 −2A1A4 2A1A5

−2A2A1 1− 2A2
2 −2A2A3 −2A2A4 2A2A5

−2A3A1 −2A3A2 1− 2A2
3 −2A3A4 2A3A5

−2A4A1 −2A4A2 −2A4A3 1− 2A2
4 2A4A5

−2A5A1 −2A5A2 −2A5A3 −2A5A4 1 + 2A2
5







a1

a2

a3

a4

a5




Note that the components of the inversion matrix depend only on the inversion co-
ordinates of the inversion sphere. Therefore, for an inversion sphere it is enough
to calculate the corresponding inversion matrix once. This reduces dramatically
the computation time.
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