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1

Zusammenfassung

Granulare Medien gehören zu den verbreitetsten Materialien in unserem
täglichen Leben, und Sand ist wahrscheinlich das am meisten wahrge-
nommene Beispiel. Aus ihm bestehen z.B. die großen Dünenfelder in
Marokko [1–5] oder aber der allseits beliebte Strand am Meer.

Trockenes Granulat besteht aus einzelnen Teilchen, deren Wechselwir-
kung mittels Newtons zweites Gesetz (F = ma) und die Coulombrei-
bung (FC = µFn) beschrieben werden kann. Abhängig von der kinetis-
chen Energie verhalten sich granulare Medien wie Feststoffe, Flüssigkei-
ten oder Gase. Der vakuumverpackte Kaffee z.B. ist steinhart, öffnet man
aber die Packung lässt er sich leicht ausgießen. Diese Vielfalt hat drei
wichtige Ursachen:

• Die Haftreibung zwischen den Teilchen

• Die einzelnen Teilchen sind keiner thermischen Bewegung unter-
worfen

• Die Energiedissipation während der Kollision zweier Teilchen

9



10 1.1 Polydisperse granulare Medien

1.1 Polydisperse granulare Medien

Bei granularen Medien wie Weizen oder Erdnüssen sind die einzelnen
Teilchen ungefähr von gleicher Größe. Anders verhält es sich für Hoch-
leistungsbeton oder moderne Keramiken. Hier erstreckt sich die Größen-
verteilung typischerweise über mehrere Größenordnungen.

Das Ziel dieser Arbeit ist die Entwicklung schneller Algorithmen zur
Simulation extrem polydisperser Medien. Solche Algorithmen sind von
grundlegendem Interesse, um das Verhalten moderner Arbeitsmateri-
alien besser berechnen zu können. Beim Hochleistungsbeton z.B. ist
eines der Hauptziele die Erhöhung der Packungsdichte. Hierdurch wird
die Menge an Bindemittel reduziert und die Schrumpfung des Betons
während des Aushärtens vermindert. Gleichzeitig reduziert sich die Wahr-
scheinlichkeit der Rissbildung, und der Beton wird stabiler.

Wie wichtig polydisperse Medien beim Erzeugen dichter Packungen sind,
zeigt der Vergleich mit einem monodispersen Material. Füllt man einen
Behälter mit gleich großen Stahlkugeln und vibriert ihn über längere
Zeit, erhält man eine Dichte von 0.637 [6]. Die maximal mögliche Pack-
ungsdichte von π/

√
18 ≈ 0.7405 [7] erreicht man mit der kubisch flächen-

zentrierten Packung. Eine Packungsdichte größer als 0.74 wird also nur
durch die Mischung großer und kleiner Teilchen möglich.

Eine Packungsdichte von eins erhält man z.B. mit raumfüllenden Lagern
[8–10] oder der Apollonischen Packung [11]. In diesen Packungen, wie
auch beim Hochleistungsbeton, ist die Teilchenverteilung durch ein ab-
geschnittenes Potenzgesetz gegeben:

p(r) = ar−b; rmin < r < rmax (1.1)

Hierbei ist rmin der Radius des kleinsten und rmax der Radius des größten
Teilchens und die Polydispersität ist definiert als P = rmax

rmin
. Der Vorfak-

tor a ist so gewählt, dass
∫ rmax

rmin
p(r) = 1 und der Exponent b ist über

b = df + 1 mit der fraktalen Dimension df des Materials verbunden.

1.2 Übersicht

Für die Simulationen in dieser Arbeit wurde sowohl die Kontaktdynamik
[12–17] als auch die Molekulardynamik [18–22] verwendet. Diese bei-
den Methoden unterscheiden sich in folgenden Punkten: Die Kontaktdy-
namik arbeitet mit unendlich harten Teilchen und einem relativ großen
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Zeitschritt. Im Gegenzug sind die auf die Teilchen wirkenden Kräfte
nicht kontinuierlich. Die Molekulardynamik hingegen ist eine kontinuier-
liche Methode und arbeitet mit elastischen Teilchen, bei denen die rück-
treibende Kraft mittels des Überlappes beschrieben wird. Der Zeitschritt
ist umgekehrt proportional zur Steifigkeit der Teilchen, womit die Simu-
lation sehr harter Teilchen sehr zeitaufwendig wird.

Fig. 1.1: Mittels des Quad-trees erzeugtes Gitter welches in Gebieten mit vie-
len kleinen Teilchen engmaschiger wird während es um große Teilchen
grobmaschig bleibt.

Zur Bestimmung überlappender Kontakte wurde statt des Linked-Cell
Algorithmus der Quad-tree (Abbildung 1.1) benutzt. Bei diesem wird
das zu simulierende Volumen mit einem adaptiven Gitter überzogen,
welches in Regionen mit vielen kleinen Teilchen engmaschiger wird, wäh-
rend es im Bereich großer Teilchen grobmaschig ist. Hierdurch wird die
Anzahl der zu überprüfenden Kontakte stark vermindert.
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1.3 Das Scherverhalten polydisperser Medien

Während des Transportes und der Verarbeitung granularer Medien gehen
geschätzte 40% Energie verloren [23, 24]. Daher ist die Industrie sehr
daran interessiert, ihr Wissen über das Verhalten dieser Materialien unter
unterschiedlichsten Bedingungen zu erweitern.

Sehr interessant ist hierbei das Scherverhalten, da die Kraftketten, welche
die externe Last tragen, aufbrechen und sich das Material zur Umlager-
ung ausdehnen muss, so dass Dilatanz [25] zu beobachten ist. Die Visko-
sität hängt hierbei sehr stark von der Größenverteilung ab. Bei bidis-
persen Systemen mit gegebener Packungsdichte nimmt die Viskosität in
dem Maße ab, in dem das Verhältnis des großen zum kleinen Radius zu-
nimmt [26, 27]. Ab einem Verhältnis größer als 10:1 ist kaum noch ein
Einfluss einer weiteren Änderung des Verhältnisses zu beobachten. In
kolloidalen bidispersen Systemen erreicht die Viskosität ein Optimum
für Größenverhältnisse von zwei bis vier [28]. Eine der grundlegenden
Theorien zur Beschreibung der Viskosität multimodaler Suspensionen
wurde von Farris [29] entwickelt und später durch Sengun und Prob-
stein [30] ausgebaut.

In enger Zusammenarbeit mit Herrn Dr. Distler von BASF wurde ein
Modell zur Untersuchung des Einflusses von Schmiermittel auf das Scher-
verhalten polydisperser Materialien entwickelt. Ein Material, das ähn-
liche Eigenschaften zeigt wie das zu beschreibende polydisperse Mate-
rial, kann durch Auflösen von Stärke in Wasser hergestellt werden. Bei
hoher Stärkekonzentration verhält sich diese Mischung unter Schlag wie
ein Festkörper, dreht man die Schüssel auf den Kopf, fließt die Mischung
langsam heraus.

Das Schmiermittel wird durch masselose Punktteilchen beschrieben, die
auf Teilchen näher als dr eine abstoßende Kraft

Fr(d) = −∂U

∂d
=

{

kd̂−1e−αd̂(d̂−1 + α) − F0 0 < d̂ < 1

0 d̂ ≥ 1
(1.2)

ausüben.

Die durchgeführten Scherexperimente zeigen, dass bei gleicher Pack-
ungsdichte polydisperse Mischungen eine stärkere Dilatanz und einen
größeren Scherwiderstand aufzeigen als bidisperse Systeme. Allerdings
sind höhere Packungsdichten für bidisperse Systeme leichter zu erre-
ichen. Für sehr dichte bidisperse Systeme ist das Scherverhalten vergle-
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ichbar mit dem polydisperser Systeme geringerer Packungsdichte. Die
Scherkraft fällt jedoch deutlich geringer aus.

Die Zugabe von Punktteilchen beeinflusst den Scherwinkel und die Di-
latanz kaum, während die Scherkraft abnimmt. Die Anzahl der Punk-
tteilchen hat allerdings durchaus einen Einfluss, denn bei Zugabe sehr
vieler Punktteilchen ist eine größere Dilatanz zu beobachten. Wird die
Zahl der Punktteilchen zu groß, bilden diese ein Netzwerk, welches den
Großteil der Last trägt und nach der Initialisierung zu einer starken Di-
latanz führt.

1.4 Das Konzept der weichen Teilchen

Die grundlegende Schwierigkeit bei der numerischen Untersuchung poly-
disperser Systeme ist die nichtlineare Abhängigkeit der Rechenzeit von
der Polydispersität.

Um die Anzahl der Teilchen bei der Simulation polydisperser Medien zu
reduzieren, wurde das Konzept der weichen Teilchen eingeführt. Hier-
bei werden viele kleine Teilchen, die sich in einer polydispersen Packung
zwischen den größeren befinden, durch eine makroskopische Beschrei-
bung ersetzt. Hierdurch wird die Rechenzeit stark verringert, da nur
eine kleine Anzahl weicher Teilchen anstelle der vielen kleinen Teilchen
in der Simulation berücksichtigt werden muss.

Ein weiches Teilchen besteht aus einer kugelförmigen Hülle, in welcher
sich eine polydisperse Packung befindet. Die Initialisierung erfolgt mit-
tels eines hierarchischen Algorithmus, so dass die erzeugte Packung ei-
nem abgeschnittenen Potenzgesetz (Gleichung 1.1) mit dem Exponenten
b = 3.5 gehorcht. Dies ist der selbe Wert wie für Hochleistungsbeton.
Die eingefügten Teilchen werden im Folgenden als ,,Körner” bezeichnet.

Um diese Teilchen in einer Molekulardynamik verwenden zu können,
wird mittels der in Abbildung 1.2 dargestellten Messmethode deren kon-
stitutives Gesetz bestimmt.

Das linke Bild zeigt die Interaktion eines weichen Teilchens mit einem
Teilchen gleicher Größe, welches durch das Hertzsche Gesetz beschrieben
wird. Im Folgenden wird so ein Teilchen als ,,solide” bezeichnet. Im mit-
tleren Teil ist die Wechselwirkung zweier weichen Teilchen dargestellt.
Wie im rechten Teil gezeigt, wird für die Normalmessung eine vorgege-
bene Normalverformung δn verursacht, und nachdem das System re-
laxiert ist, wird die rücktreibende Kraft Fn gemessen. Bei der Tangen-
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δ n

δ t

F n

F t

x

y

z

R1

R2

Fig. 1.2: Messung des konstitutiven Gesetzes der weichen Teilchen. Links die
Messung für ein weiches Teilchen mit einem soliden Teilchen gleicher
Größe und rechts die Wechselwirkung zweier weicher Teilchen. Zur
Messung des tangentialen Gesetzes werden die roten Teilchen um den
Kugelmittelpunkt gedreht. Die grünen Teilchen hingegen verhindern
ein ungewolltes Rotieren der Körner im zweiten weichen Teilchen.

tialmessung wird eine Tangentialdeformation δt = R1γ durch die Rota-
tion der kleinsten äußeren Körner um den Winkel γ um den Teilchen-
mittelpunkt hervorgerufen und nach der Relaxation die Tangentialkraft
gemessen.

Das gemessene Kraftgesetz in Normalrichtung wird beschrieben durch

F (δn) =

{
0, 0 < δn < δ′n
α(anδbn

n + cn), δn ≥ δ′n
. (1.3)

Die Normalverformung ist durch δn gegeben, δ′n ist die Verformung bis
zu der man keine rücktreibende Kraft misst und an, bn und cn sind Fit-
parameter, die für beide Kontakte unterschiedlich sind. Der Vorfaktor

α =

(
R′

12

R12

)

(1.4)

skaliert das Kraftgesetz vom gemessenen System in ein System beliebiger
Größe. R12 = R1R2

R1+R2
beschreibt den reduzierten Radius während der

Messung und R′
12 denjenigen des skalierten Systems.
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Das tangentiale Kraftgesetz

Ft(δn, δt) = Ftmax
(δn) · tanh(sδt) (1.5)

hängt sowohl von der Normalverformung δn als auch von der Tangen-
tialverformung δt ab. Der Parameter s ist eine Konstante und

Ftmax
(δn) =

{
0, 0 < δn < δ′n
α(atδ

bt
n + atδ

′bt
n ), δn ≥ δ′n

(1.6)

beschreibt die maximale Tangentialkraft, bei welcher der Kontakt ger-
ade nicht gleitet. Die Steigung Ftmax

s um den Nullpunkt beschreibt die
Steifigkeit der Tangentialfeder.

Ein dreidimensionales Scherexperiment mit normalen und weichen Teil-
chen zeigt, dass durch dieses Konzept die Polydispersität um den Fak-
tor 10 erweitert werden kann. Mittels der weichen Teilchen wird die
zu simulierende Teilchenanzahl um den Faktor 28 reduziert und gle-
ichzeitig kann ein fünf mal größerer Zeitschritt gewählt werden. Somit
reduziert sich der Rechenaufwand um mehr als den Faktor 100.

1.5 Das selbstkonsistente Modell

Mit dem Modell der weichen Teilchen kann die Rechenzeit für die Sim-
ulation eines polydispersen Systems zwar reduziert werden, allerdings
bleibt die Abhängigkeit der Rechenzeit von der Polydispersität erhal-
ten. Durch die Erweiterung des Konzepts der weichen Teilchen zu einem
selbstkonsistenten Modell wird es möglich, die Rechenzeit von der Poly-
dispersität abzukoppeln.

Fig. 1.3: Schematische Darstellung des selbstkonsistenten Modells. Das weiche
Teilchen ist mit Körnern und weichen Teilchen gefüllt. Vergrößert man
ein solches weiches Teilchen, so findet man eine ähnliche Konfiguration
aus Körnern und weichen Teilchen vor.
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Abbildung 1.3 zeigt eine schematische Darstellung des selbstkonsisten-
ten Modells, welches die fraktale Natur polydisperser Medien nutzt. Ver-
größert man eine lokale Packung in einem polydispersen System, so fin-
det man in dieser wiederum kleinere lokale Packungen. Das selbstkon-
sistente weiche Teilchen ist mit Körnern und zusätzlich mit kleinen we-
ichen Teilchen gefüllt. Vergrößert man ein solches kleines weiches Teil-
chen, findet man eine ähnliche Konfiguration aus Körnern und kleinen
weichen Teilchen vor.

maxr

lo
g(

p)

p(r)=ax−b

maxr maxr

g
maxr

g
maxr

g
maxr

gg 234

log(r)
q

Fig. 1.4: Die Teilchenverteilung des selbstkonsistenten weichen Teilchens nach
q Iterationen gehorcht einem abgeschnittenen Potenzgesetz. Der Fak-
tor g definiert die Aufteilung des Potenzgesetzes und durch jede Itera-
tion wird die Teilchenverteilung, die von dem gemessenen Kraftgesetz
beschrieben wird, um einen Abschnitt erweitert.

Die Bestimmung des Kraftgetzes erfolgt in einem iterativen Prozess aus
q Schritten. Die Teilchengrößenverteilung des so bestimmten Kraftgeset-
zes ist in Abbildung 1.4 dargestellt und erstreckt sich von rmax/gq bis
rmax und die Polydispersität ist durch P = gg gegeben. Der Faktor g
bestimmt, wie sehr die beschriebene Teilchenverteilung bei einer Itera-
tion erweitert wird. Außerdem ist die Anzahl der eingefügten kleinen
weichen Teilchen unabhängig von der Polydispersität. Dadurch ist es
möglich, Systeme unterschiedlicher Polydispersität mit derselben An-
zahl Teilchen zu beschreiben.

Für die Implementierung dieses Modells muss das Kraftgesetz unabhäng-
ig von der Dichte der weichen Teilchen sein. Dies wird erreicht, wenn
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man selbiges in Abhängigkeit des Interaktionsvolumens beschreibt. Mit
dieser Darstellung zeigt sich, dass die rücktreibende Kraft unabhängig
von der Geometrie ist. Man ist also nicht auf eine kugelförmige Imple-
mentierung der selbstkonsistenten weichen Teilchen angewiesen. Zur
Bestimmung der aktuellen Dichte und des Interaktionsvolumens wurde
ein Algorithmus ähnlich dem iterativen Algorithmus in der Kontaktdy-
namik entwickelt.

1.6 Ausblick

In dieser Arbeit wurden verschiedene Algorithmen zur Simulation ex-
trem polydisperser Systeme entwickelt, bei denen die Teilchenverteilung
durch ein abgeschnittenes Potenzgesetz beschrieben wird. Die grundle-
gende Schwierigkeit bei der Simulation solcher Systeme liegt darin be-
gründet, dass die Rechenzeit nichtlinear von der Polydispersität abhängt.
Dies wird zum einen durch den enormen Teilchenzuwachs im Vergleich
mit einem monodispersen System gleichen Volumens verursacht, aber
auch durch die lineare Abhängigkeit des Zeitschrittes von der Größe des
kleinsten Teilchens.

Zur Bestimmung überlappender Kontakte wurde statt des Linked-Cell
Algorithmus der sogenannte Quad-tree verwendet, welcher mit einer
variablen Zellgröße arbeitet. Für polydisperse Systeme wird somit die
Anzahl der zu überprüfenden Kontakte stark reduziert.

Zusätzlich konnte durch das Modell der selbstkonsistenten weichen Teil-
chen die Anzahl der zu simulierenden Teilchen von der Polydispersität
abgekoppelt werden. Mit diesem Modell ist es also möglich Systeme un-
terschiedlicher Polydispersität mit einer gleichbleibenden Anzahl Teil-
chen zu beschreiben. Außerdem ist die Darstellung des Kraftgesetzes in
Abhängigkeit vom Interaktionsvolumen unabhängig von der Geometrie
des Kontaktes und der Form der weichen Teilchen.

Die entwickelten Algorithmen sind ein wichtiger Schritt zu einem besse-
ren Verständnis extrem polydisperser Medien und deren Anwendungen.
Von grosser Bedeutung ist die Möglichkeit ein System beliebiger Polydis-
persität mit einer endlichen Anzahl von Teilchen zu simulieren. Dies er-
laubt z.B. die Untersuchung unterschiedlicher Mischtechniken, um eine
höhere Packungsdichte bei der Herstellung von Hochleistungsbeton zu
ermöglichen.
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Introduction

Granular media are among the most abundant materials in our life. The
probably most perceived example is sand which is found on beautiful
beaches or in large dune fields [1–5] like in Morocco.

Dry granular materials are composed of individual particles whose in-
teraction can be described with Newton’s second law (F = ma) and the
Coulomb friction (FC = µFn). Their behavior can be described as a solid,
liquid or gas. This is caused by three important conditions:

• The existence of static friction

• The particles are not subject to thermal induced motion

• The damping between colliding particles

Despite their seeming simplicity, granular media are very complex and
present a wide variety of interesting physical phenomena which have
been of interest for more than a century. They attracted scientists like
Coulomb, who proposed the idea of static friction [31–33] or Reynolds
who introduced the concept of dilatancy [25]. The effect of dilatancy can
easily be observed when walking on the wet beach. Due to the pressure
exerted by our feet the sand expands and the water flows into the cre-
ated voids which causes the sand around our feet to become dry. In the
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following, a short overview over the wide variety of observable phenom-
ena for granular materials is given. A more detailed description can be
found in the literature [34–36].

Granular materials under strong vertical vibration are referred to as gran-
ular gas [37,38]. Contrary to the behaviour of a normal gas, one observes
the formation of clusters [39, 40], a non-Gaussian nature of the velocity
distribution [41, 42] and standing wave patterns [43, 44]. Another com-
mon phenomenon in a granular medium under vibration is the segrega-
tion of different particle sizes [45–47]. This can be useful when separating
materials but needs to be suppressed when a homogeneous mixture of
granular media, for example in the pharmaceutical industry, is desired.

A good example for the solid state is vacuum sealed coffee which is hard
as a brick. In this state force chains, carrying most of the external load,
form and the particles neighbored to these force chains might feel al-
most no force. These force chains play an important role for granular
media in a silo. Due to the static friction the particles at the wall support
themselves and the height-dependent pressure head, typical for fluids,
is absent. Therefore the pressure at the base of the silo approaches a fi-
nite value as described by Janssen [48] and, in principal, silos of arbitrary
height can be build.

The outflow of material at the bottom of a silo is similar to the behavior of
sand in an hourglass. Here, two glass bowls are connected by a narrow
orifice and the fine sand contained in the upper bowl flows into the lower
one. The Janssen-effect keeps the flow rate almost constant which allows
the measurement of elapsed time. Unlike a fluid, the down falling sand
does not uniformly cover the floor but forms a heap with a slope smaller
than the angle of repose θr as for angles greater than θr the top layers of
sand freely flow downhill [49–53].

The industry relying on the processing of granular materials is very in-
terested in improving the understanding of these materials under differ-
ent conditions. Even a small improvement can significantly decrease the
cost for processing as can be seen for the transport of granular media.
Here very different methods like conveyor belts or plug-flow [54–56] are
used and problems related to the energy loss and momentum transfer
during the particle interaction or the contact with the boundaries lead to
an estimated 40% waste of energy [23, 24].
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2.1 Polydisperse granular media

In this work we focus on extremely polydisperse media where the size
distribution can cover several orders of magnitude.

One example for these materials is the so-called high performance con-
crete. Here people are mainly interested in the creation of a denser pack-
ing of the material. This reduces the consumption of filler and thus
shrinkage of the concrete during the drying process is minimized. As
a consequence the probability for crack building is reduced and, com-
pared with standard concrete, the material can withstand more stress.
The importance of polydispersity for the generation of a dense packing
shows the comparison with a monodisperse system. Pouring ball bear-
ings in a container and vibrating the system for a sufficient long time, one
obtains a random close packing with an approximate volume fraction of
0.637 [6]. The maximum possible volume fraction of π/

√
18 ≈ 0.7405 [7]

is achieved with the face centered cubic packing. Therefore, a volume
fraction higher than 0.74 can only be achieved with a mixture of large
and small particles.

In two dimensions Herrmann et al. completely filled space with space-
filling bearings [8–10] which were introduced as a simple model for the
seismic gaps of geological faults [57–59]. These faults do not experience
any large thrust over long periods of time and it is assumed that the space
between the tectonic plates is filled with more or less round particles
which, as the plates move, may roll on each other resulting in the spon-
taneous formation of local bearings and reducing the amount of friction
and dissipation of energy. The medium which fills the gap between the
plates is referred to as gauge and the spontaneous formation of bearings
has been shown to be possible in simulations of shear bands [60]. How
to completely fill three dimensional space was studied by Peickert [11]
and Mahmoodi et al. [61–66] while the latter also proved the existence of
a three dimensional space-filling bearing.

The size distribution of space-filling bearings, Apollonian packings, seis-
mic gaps and high performance concrete follows a power law where the
exponent b is related to the fractal dimension df via b = df + 1.
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2.2 Simulating polydisperse granular media

Unlike in an experiment it is relatively easy to trace particles in a com-
puter model where the material is simulated on the individual grain
level. For every point in time, position and velocity of every particle
is given which allows the study of velocity distributions or force chains.
Well known numerical methods are the molecular dynamics [18–22], con-
tact dynamics [12–17] and the event driven [18, 19, 67, 68] method. Other
methods are Monte Carlo simulations like the random sequential ad-
sorption (RSA) [69–77]. Using the reversible polydisperse parking lot
model [78, 79] we analyzed the dynamic behaviour of one dimensional
polydisperse systems where we could show that the density of the sys-
tem depends on the exponent in the power law.

The biggest constraint for the numerical study of polydisperse systems
is the nonlinear dependence of the computing time on the polydispersity
which is discussed in more detail in chapter 3. The goal of this work is
to develop fast algorithms for the simulation of extremely polydisperse
media which decouple the computing time from the polydispersity.

2.3 Overview

The present work is organized in the following way: In chapter 3, a
detailed overview over the effects of the polydispersity on numerical
methods is given while chapter 4 describes the molecular dynamics and
contact dynamics we used for our simulations. In chapter 5, a two di-
mensional shear experiment with polydisperse media is explained. This
work was done in close collaboration with Dr. Distler from BASF.

The concept of soft-particles, which macroscopically describe the be–
haviour of a polydisperse packing is introduced in chapter 6. Using this
model in the shear experiment of chapter 7, we were able to reduce the
computation time by more than a factor 100. In chapter 8 this idea is ex-
tended to the model of the self-consistent soft-particles which allows the
simulation of granular media of any polydispersity. Using the fractal na-
ture of polydisperse media the macroscopic description is determined in
an iterative process. We close with a conclusion and outlook in chapter 9.
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Polydispersity

In this chapter we investigate polydisperse materials in more detail. First
some basic definitions and examples for polydisperse media are given.
In the second part the influence of the polydispersity on the simulation
of these materials is discussed.

3.1 Definitions and examples

Ideal examples of polydisperse media are so-called space-filling bear-
ings [8–10]. Here the packing completely fills the two or three dimen-
sional space and the particles in the packing can roll without frustration.
Another example is the Apollonian packing, named after Apollonius of
Perga, which is shown in Figure 3.1. In two dimensions one places three
circles of the same radius such that each one is tangent to the other two.
There exist two non intersecting circles touching these three. One en-
closes the three circles, the other one fits between them. Recursively fill-
ing the remaining voids completely covers space if the size of the smallest
particle goes to zero.

Clearly this mathematical problem of completely filling space is differ-
ent from the practical problem of packing. A volume fraction of unity
is not achieved in reality where the smaller particles cannot be placed

23



24 3.1 Definitions and examples

Fig. 3.1: Apollonian packing in two dimensions which reaches a volume fraction
of unity if the size of the smallest particle goes to zero.

in the voids of a three dimensional packing without moving some par-
ticles and destroying the existing configuration. Nevertheless polydis-
perse materials are of great practical importance. One example is the
so-called high performance concrete (HPC). Here people are interested
to produce three dimensional packings of highest density which will re-
duce shrinking and crack appearance during the hardening and increase
the strength of the concrete.

Figure 3.2 schematically displays the size distribution of HPC. Shown are
the individual size distributions of the different components, from gravel
down to silica fume. The overall distribution ranges over four magni-
tudes and can, as for space-filling bearings, be described by a truncated
power law

p(r) = ar−b, rmin < r < rmax. (3.1)
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Fig. 3.2: Schematic plot of the size distribution in HPC. Shown are the individ-
ual size distributions of the different components ranging from gravel
down to silica fume. The distribution ranges over four magnitudes and
can be described by the truncated power law in equation 3.1, which is
displayed as a straight line. The exponent b, like for space-filling bear-
ings, is approximately 3.5.

Here r is the particle radius ranging from the smallest radius rmin to the
largest one rmax. In the case of the space-filling bearings rmin goes to
zero. The prefactor a is chosen such that

∫ rmax

rmin
p(r) = 1 and the expo-

nent b is related to the fractal dimension df by b = df + 1. For the three
dimensional packings shown in [8, 11] the exponent is b ≈ 3.5, as for
HPC.

Thus polydisperse media are materials with a quasi-continuous size dis-
tribution and the polydispersity

P =
rmax

rmin
(3.2)

is defined as the ratio between the largest rmax and the smallest rmin

particle.
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3.2 Influence onto the computing time in the dis-
crete element method

In this section we show that the computing time for the simulation of ex-
tremely polydisperse media rises proportional to P b. We will also show
that compared with a monodisperse system, a polydispersity of 10 in-
creases the computing time by about a factor 1000.

The polydispersity has two main effects on the simulation: the increase
in the particle number and the decrease of the time step. To quantify
these effects a polydisperse system with rmin and rmax is compared with
a monodisperse one where all particles have the same size rmax.

To investigate the increase in the particle number the particle volume

V =

n∑

i=0

4

3
πr3

i (3.3)

is defined and set to be equal for both systems. Here n is the number of
simulated particles and ri the radius of the ith particle.

Using this volume, the number of particles Nm in the monodisperse sys-
tem is given by

Nm =
V

4
3πr3

max

. (3.4)

For the polydisperse system the sum in equation 3.3 becomes the integral
over the product of particle radius and the number of particles of that
size. This is given by a power law where the prefactor a is chosen such
that Np =

∫ rmax

rmin
ar−b where Np is the total number of particles. Thus one

can write

V =

∫ rmax

rmin

ar−b 4

3
πr3 dr. (3.5)

Using rmin = rmax

P one gets

a =
(4 − b)V

4
3πrmax

4−b(1 − P b−4)
, b 6= 4, (3.6)

and the number of particles in the polydisperse system is given by

Np = a

∫ rmax

rmin

r−bdr =
a

1 − b
rmax

1−b(1 − P b−1), b 6= 4. (3.7)
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Inserting a from above one gets

Np =
(4 − b)V (1 − P b−1)

(1 − b) 4
3πrmax

3(1 − P b−4)
, b 6= 1, 4 (3.8)

and comparing the number of particles of both systems one gets:

Np

Nm
=

4 − b

1 − b

1 − P b−1

1 − P b−4
b 6= 1, 4; P > 1 (3.9)

The second effect is the decrease of the time step. As shown in chapter 4,
the time step ∆t for the Hook-law as well as the Hertz-law is propor-
tional to the size of the smallest particle and the ratio between the time
step ∆tp of a polydisperse and ∆tm of a monodisperse system is

∆tp
∆tm

∼ rmin

rmax
=

1

P
. (3.10)

Combining the increase of the number of particles and the decrease of
the time step for large polydispersities (P � 1) the relative increase in
computing time is

tp
tm

=
Np

Nm
∗ ∆tm

∆tp
≈ 4 − b

b − 1
P b. (3.11)

Here tp is the computation time for the polydisperse system and tm for
the monodisperse one. Care has to be taken with the second term as the
computing time is inverse proportional to the time step. This formula
is only valid for a polydispersity P greater than unity as for P = 1 the
particle volume in equation 3.5 becomes zero. Additionally b must not
be larger than 4 as the fractal dimension of a three dimensional packing
would become larger than the real dimension. An exponent b ≤ 1 would
mean that in the polydisperse system one would have more large parti-
cles than small ones. This would make it impossible to densely fill space.
Thus all the special cases omitted during integration and for which the
derived formula is incorrect are of no interest for our considerations.

In Figure 3.3 the ratios Np

Nm
and tp

tm
are plotted as a function of the poly-

dispersity P . The exponent in the power law was set to b = 3.5 and even
a relatively small polydispersity of P = 10 increases the computing time
by roughly a factor of 1000.

In general the increase in computing time might be even worse as the
increase of contacts in the linked-cell algorithm for a polydisperse system
was not considered. A solution is given by the quad-tree presented in
chapter 4.
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Fig. 3.3: The effects of polydispersity in discrete element methods. Plotted is the
relative increase of particles Np/Nm and the relative increase of com-
puting time tp/tm as a function of the polydispersity. Increasing the
polydispersity by a factor of 10 results in a 1000 times larger computing
time.

3.2.1 Summary

As a summary we can say that compared with a monodisperse system
occupying the same volume, the computing time for a polydisperse sys-
tem rises proportional to P b. The main reason is the increase of the num-
ber of particles but the linear dependence of the time step onto the poly-
dispersity needs also to be taken into account.



4
Simulation
method

Granular media show a wide variety of behavior. They can be described
as a solid, a fluid or even a gas. The sand we walk on can be describe as a
solid while a debris avalanche is behaving like a fluid. Before the inven-
tion of the computer the behavior of granular media was described by
continuum mechanics where the, in general heterogeneous, micro struc-
ture of the material is ignored. Thus the method does not give any in-
formation about the forces, position or velocity of the individual parti-
cle, making it impossible to study force networks and velocity distribu-
tions. Here the discrete element method is filling the gap. This numerical
method computes the trajectory of every single particle by calculating
the interaction between colliding particles and solving Newton’s equa-
tion for the individual particle. There exist three well known models,
the event driven method [18, 19, 67, 68], molecular dynamics [18–22] and
contact dynamics [12–17].

In this work we used the latter two, and in the following the principles of
both methods and our adaptions to simulate very polydisperse systems
are explained.
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In general one has to solve Newton’s equation

~Fi = mi
~̈xi; ~Mi =

(

d(J̄i
~̇
φi)

dt

)

b

+
~̇
φi × J̄i

~̇
φi =

(

d(J̄i
~̇
φi)

dt

)

s

spherical
︷ ︸︸ ︷

= J̄i
~̈
φi .

(4.1)
Here mi is the mass of the ith particle, ~̈xi its acceleration, J̄i its inertial

tensor, ~̇
φi the angular velocity and ~̈

φi the angular acceleration. In the
second equation the term with the subscript b describes the rotational
motion in the body frame while the term with the subscript s describes
it in the space frame. For homogeneous spherical particles the intertial
tensor stays constant and its time derivative becomes zero.

In a granular assembly the force ~Fi felt by a single particle can be split up
into external forces and the interaction forces between the particle and its
nearest neighbors

~Fi = m~̈xi =
∑

j

~Fij + ~Fext. (4.2)

Here ~Fij describes the interaction force between particle i and particle
j, while ~Fext depicts any external force, like gravity, acting onto the in-
dividual particle. For a dry and non-cohesive granular medium com-
posed of grains of a macroscopic size the grain-grain interaction can be
described through repulsion (the normal force), friction (tangential force)
and damping,

~Fij = ~Fn + ~Ft + ~Fd. (4.3)

The tangential component ~Ft of the interaction force gives rise to a torque
Mij = ~ri × ~Ft where the vector ~ri points from the center of particle i to
the contact point at which the frictional force is applied. Therefore the
second part of equation 4.1 can be written as

~Mi =
∑

j

~Mij =
∑

j

~ri × ~Ft, (4.4)

with the individual moments ~Mij exerted onto particle i through the con-
tact with particle j.
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4.1 Molecular Dynamics

Molecular Dynamics (MD) is the oldest of the three discrete element
methods mentioned above. The interacting forces between the particles
are described by an interacting potential where the overlap between two
particles is interpreted as deformation which results in a repulsive force.

4.1.1 The particle-particle contact

The interacting forces are calculated by determining the forces present
at the two particle contacts. A general picture of such a contact between
particle i and j is shown in Figure 4.1.
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Fig. 4.1: Schematic picture of the particle-particle contact of particle i and j.

Before dealing with the details of MD the different variables of the particle-
particle contact shown in Figure 4.1 are defined.

• The normal vector ~n:
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The normal vector points from the center of particle i to the center
of particle j and is given by

~n =
~xj − ~xi

|~xj − ~xi|
. (4.5)

• The relative velocity ~vrel:
This velocity describes how particle j moves in respect to particle i
and is given by

~vrel = ~vj − ~vi. (4.6)

• The relative surface velocity ~vs:
This is the velocity of the surface of particle j relative to the surface
of particle i. It consists of the tangential part of the relative velocity
and the movement due to rotation.

~vs = ~vrel − (~vrel · ~n)~n − ~n × (ri ~ωi + rj ~ωj) (4.7)

• The tangential vector ~t:
This vector of unit length points in the direction of the relative sur-
face velocity and lies in the plane perpendicular to the normal vec-
tor.

• The overlap or normal deformation δn:
In molecular dynamics the deformation during the particle contact
is modeled by the overlap

δn = ri + rj − | ~xj − ~xi| = ri + rj − d, (4.8)

which can be considered as the elongation of a spring connected
between the interacting particles.

• The reduced mass mij :

mij =
mimj

mi + mj
(4.9)

• The reduced radius Rij :

Rij =
RiRj

Ri + Rj
(4.10)

Note that a wall can be described as a sphere with an infinite ra-
dius. Therefore the reduced radius of a particle wall contact be-
comes Ri,wall = limRj→∞

RiRj

Ri+Rj
= Ri.
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4.1.2 Modeling the normal force

The repulsive normal force ~Fn between interacting particles depends on
the spring constant kn and the normal deformation δn and is given by

~Fn = −knδn~n. (4.11)

The spring constant kn depends on the radius and the material properties
of the two interacting particles. In the Hook-law the spring constant is
given by kn =

2Rij

Dn
with the material dependent constant

Dn =
3

4
(
1 − ν2

i

Ei
+

1 − ν2
j

Ej
). (4.12)

Here ν is the Poisson-ratio and E is the elastic modulus of the particle as
described in continuum mechanics. For spherical particles the repulsive
force in general is not linear as the contact area increases nonlinear with
the normal deformation as described by H. Hertz [80, 81]. In the Hertz-
law the spring constant becomes kn =

√
Rijδn/Dn, the repulsive force is

given by

~Fn = −
√

Rijδ
3/2

Dn
~n (4.13)

and the potential energy U stored in such a contact is

U =
2δ

5/2
n

5Dn

√

Rij . (4.14)

In a more general form, the Hook-law and the Hertz-law can be written
as

~Fn =
2Rij

Dn

(
δn

4Rij

)1+θ

~n. (4.15)

For θ = 0 one gets the Hook-law, for θ = 0.5 the Hertz-law. A more
detailed discussion is given by Stefan Luding [82].

4.1.2.1 Dissipation of energy

During the collision of two particles a certain fraction of the kinetic en-
ergy will be dissipated due to the transformation into heat. This behavior
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is modeled by the introduction of a velocity dependent damping force ~Fd

for which the normal part is given by

~Fdn
= ηn(~vrel · ~n)~n. (4.16)

This force is proportional to the normal part of the relative velocity and
points into the opposite direction of the repulsive normal force. Thus
it slows down the two interacting particles. For a fast relaxation in the
simulation the damping coefficient is calculated with

ηn = 2
√

mijkn, (4.17)

as proposed by Cundall and Strack [21]. This corresponds to the critical
damping of an harmonic oscillator with the mass mij and the spring con-
stant kn. Tsuji et al. [83] relate the damping coefficient to the restitution
coefficient e which is the ratio between the velocity after and before the
collision and can be measured in a simple experiment. They get

ηn = θ
√

mijknδ1/4
n (4.18)

where the constant θ is an empirical constant related to the restitution
coefficient e as described in [83].

For particles separating with high velocities the viscous damping force
inverts the repulsive force. This leads to an attractive instead of a repul-
sive force between the two particles. In such a case the acting force is set
to zero.

4.1.3 Modeling the tangential force

The tangential part of the interaction force is a result of the inter particle
friction and can be described by the Coulomb law

|~Ft| = −µ|~Fn|~t. (4.19)

The friction coefficient µ takes different values depending on the type of
friction.

|~Fs| ≤ µs|~Fn| vs = 0 (4.20)

|~Fd| = µd|~Fn| vs 6= 0 (4.21)

Here vs is the value of the relative surface velocity while µs and µd are the
coefficients of static and dynamic friction which in many publications are
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assumed to be equal. In the simplest implementation the frictional force
is described as a viscous force

~Ft = −µd|~Fn|~vs. (4.22)

This force reduces the relative surface velocity over time. But due to the
discrete time step, it will, when the surface velocity is close enough to
zero, cause a nonzero surface velocity pointing in the opposite direction
as before. As a result the relative surface velocity oscillates around zero.
To prevent this behavior the tangential force, for surface velocities close
to zero, needs to be smaller than µ| ~Fn|. This is achieved by adding a
viscous term

~Fvis = −γ~vs. (4.23)

The resulting tangential force is then given by the smallest of the two
forces and the factor γ needs to be chosen large enough so that mainly
the frictional force is applied. Taking the minimum of both forces as the
actual tangential force is a widely used method which gives satisfactory
results.

~Ft = −min(γ~vt, µ|~Fn|~vs) (4.24)

As a drawback the contacts can bear no load for |~vs| = 0 which is no
problem in a collision-dominated system. On the other hand this force
law is useless if one is interested in static frictional forces. As a solu-
tion Cundall and Strack [21] introduced a virtual spring at the contact.
Denoting the tangential spring constant with kt one can write

~Ft = −ktδt~t. (4.25)

During the contact, starting at the time t0 and ending at tc, the length δt

of this virtual tangential spring is calculated through

δt =

∫ tc

t0

~vs(t
′) · ~t(t′)dt′. (4.26)

According to the theory of Mindlin and Deresievicz [84, 85], the force-
displacement relation depends on the normal deformation δn and fol-
lowing the calculation of Tsuji [83] one gets

kt = 4

√
Rijδn

Dt
. (4.27)
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Here Dt is a material constant similar to Dn and given by

Dt =
(2 − νi)(1 + νi)

Ei
+

(2 − νj)(1 + νj)

Ej
. (4.28)

With this model the force calculated from the spring length can be larger
than µ|~Fn| given by the Coulomb. If this is the case, the spring length is
reset such that the resulting force is equal to −µ| ~Fn|~t.

~Ft =

{

−ktδt~t; δt ≤ µ|~Fn|
kt

−µ|~Fn|~t; δt > µ|~Fn|
kt

(4.29)

During the discussion above it was assumed that in equation 4.26 the
vector representing the tangential spring length always lies in the tan-
gential plane of the contact. For long lasting contacts this assumption
may be wrong. Therefore the spring with the length calculated in the
previous time step has to be remapped into the new tangential plane.

~δtremap = δt − ~n(~nδt) (4.30)

In general the length of the vector needs to be preserved. But for a small
enough time step the error produced by the cosine in the scalar product
can be neglected.

4.1.3.1 Dissipation of energy

As for the damping in normal direction a viscous damping force

~Fdt
= ηt~vs (4.31)

to model the energy dissipation is introduced. The damping coefficient
is set to

ηt = 2
√

ktmij . (4.32)

4.1.3.2 Summary

The normal force is given by ~Fn = −kijδ~n+ηn(~vrel~n)~n while the tangen-
tial force follows ~Ft = −ktδt~t + ηt~vs.
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4.1.4 The rotation of particles

As shown in equation 4.4 the tangential force acting on the individual
particle gives rise to a torque ~Mi = ~ri × ~Ft which lets the particles rotate.
When implementing this equation one needs to take into account the re-
duction of the lever arm ~ri due to the normal deformation δn to conserve
angular momentum. Therefore, for each particle, the length of the lever
arm reduces by the height of its spherical cap which one gets when cut-
ting the particle with the tangential plane of the contact. Thus the two
torques ~Mi and ~Mj in a contact are given by

~Mi = (ri − ci)~n × ~Ft, (4.33)

~Mj = −(rj − cj)~n × ~Ft. (4.34)

The two constants ci and cj are the heights of the spherical caps and can
be calculated through

ci = (rj − ri + d)(rj + ri − d)/2d, (4.35)

cj = (ri − rj + d)(ri + rj − d)/2d. (4.36)

Here d is the distance between the two particle centers as shown in Fig-
ure 4.1.

4.1.5 The linked-cell algorithm

Using a discrete element method to calculate the motion of every parti-
cle in the system one has to determine the interacting particles. For long
range forces these are all possible particle pairs and in a system consist-
ing of n particles this results in a O(n2) loop. When only short range
forces apply the performance can be increased using the linked-cell algo-
rithm with which the number of computations increases linearly O(n).

Figure 4.2 explains how the linked-cell algorithm helps to find those
pairs of particles which are overlapping. One subdivides the system into
cells of the length lc and each particle is assigned to the cell where its cen-
ter lies in. Instead of checking every possible particle pair it is sufficient
to consider the particle pairs between particles in a specific cell and the
particles in the neighbor cells. To prevent double calculations only half
of the neighboring cells have to be investigated. Thus every time step
one sweeps over the system and when calculating the contacts inside a
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lc

Fig. 4.2: Example of the linked-cell algorithm in two dimensions. The system is
segmented into cells of equal length lc and each particle is assigned to
the cell where its center lies in. Sweeping over all cells the actual cell is
shaded dark grey and the contacts for this cell are given by the particle
pairs between all particles in the four grey shaded cells.

specific cell (dark grey in the picture) the contacts of the particles inside
this cell and half of its neighboring cells (light grey) are also calculated.

The possible particle pairs determined in the linked-cell algorithm con-
tain all pairs with overlapping particles if, starting from the last sweep,
no particle traveled further than a given distance

ds = (lc − 2rmax)/2. (4.37)

Thus a further improvement can be achieved if this pair list is stored in a
Verlet-list which is updated only if a particle traveled further than ds.

Note that, when static friction is implemented, the length of the tan-
gential springs in the contacts need to be remembered when updating
the Verlet-list. Therefore, whenever the contact list is rebuild the spring
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lengths of the still existing contacts of the old list are copied to the new
list.

4.1.6 The quad-tree

The previously discussed linked-cell algorithm is suitable for monodis-
perse or slightly polydisperse (P = 0.5) systems. As the cell size lc must
be larger than the biggest particle the Verlet-list contains many unneces-
sary contacts in a polydisperse system because each cell will, addition-
ally to the large particles, contain many small particles.

Fig. 4.3: Grid of variable cell size generated by the quad-tree. The grid is finer in
regions with many small particles while it is coarse around big particles.

An alternative is the quad-tree shown in Figure 4.3. Here a grid with
variable cell size is generated which is finer in regions with many small
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particles while it is coarse around big particles. The creation of the grid
starts with the root cell, which contains the whole system and uses the
following rule: If a cell contains more than one particle, it is subdivided
into n smaller cells and each particle is transferred into that new cell
where its center lies. We continue for the new cells if they contain more
than one particle. The number of new cells n depends on the dimension
D and is given by n = 2D, which is four in two dimensions, giving the
quad-tree its name.

L=0 L=1 L=2

b

a

Fig. 4.4: Generating a quad-tree in two dimensions. Starting from the root cell on
level L = 0, the space is divided into n = 4 sub cells which are then on
level L = 1. As there are two particles in the upper right corner, this cell
is again divided into 4 cells.

Figure 4.4 shows an example in two dimensions. Starting from the root
cell on level L = 0, the space is subdivided into n = 4 sub cells which
are then on level L = 1. As there are two particles in the upper right cell,
this cell is again divided into 4 cells. For practical reasons a maximum
depth level Lmax is defined at which the subdividing is stopped even if
it contains more than one particle. With ds = l

2Lmax+1 , which is half the
size of the smallest cell, a large Lmax results in a smaller Verlet-list but it
needs to be updated more often as ds becomes smaller.

To determine the contacts added to the Verlet-list, the following lists are
needed for each cell:

• list A: particles belonging to the cell

• list B: particles overlapping the cell

• list N: neighboring cells

If following the linked-cell algorithm one creates the Verlet-list simply by
checking for contacts in the actual cell and its neighbors. However, due
to the polydispersity several contacts would be missed. For instance, in
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Figure 4.4, the contact between the big particle a, whose center lies in the
lower left cell, and the small particle b. This is solved by checking the list
B of the neighboring cells as well.

4.1.7 Integration scheme

In this section we discuss well known algorithms to solve equation 4.1.
The easiest approach is the Euler-Algorithm where the change of velocity
∆~vi for particle i at position ~xi is calculated with

∆~vi =
~Fi(~xi(t))

mi
∆t. (4.38)

~Fi is the force acting onto the particle with mass mi and with the time
step ∆t the new position can be calculated via

~xi(t + ∆t) = ~xi(t) + ~vi(t)∆t. (4.39)

Despite its speed, this algorithm is unsuitable for precise calculations
as it has an error of the order O(∆t2). A better method is the Verlet-
Algorithm which uses the third order tailor-expansion of ~x(t ± ∆t).

~x(t ± ∆t) = ~x(t) ± ~v∆t +
1

2
~a(t)∆t2 (4.40)

Adding up these two equations gives the position in the next time step

~x(t + ∆t) = 2~x(t) − ~x(t − ∆t) + ~a(t)∆t2 (4.41)

while the velocity is given by

~v(t) =
~x(t + ∆t) − ~x(t − ∆t)

2∆t
. (4.42)

In this integration the error for the position is of the order O(∆t4) but the
error for the calculation of the velocity is still of the order O(∆t2). Among
others the Velocity-Verlet algorithm [86] overcomes this problem.

~x(t + ∆t) = ~x(t) + ~v∆t +
1

2
~a(t)∆t2 (4.43)

~v(t + ∆t) = ~v(t) +
1

2
(~a(t) + ~a(t + ∆t))∆t (4.44)

Here the error is only of the order of O(∆t5).
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4.1.8 The time step

Choosing the right time step is a crucial process as more time for the
simulation is needed if a small time step is chosen. On the other hand, a
time step chosen too large results in an unphysical gain of energy and/or
energy fluctuations. The underlying property with which the time step
can be determined, is the time tc two particles are in contact. For the
Hook-model, this time can be calculated from the equation for a damped
harmonic oscillator.

tc =
π

ω
=

π
√

ω2
0 − η2

n

(4.45)

Here ω0 =
√

kn/mij is the resonance frequency of the oscillator and the
viscosity is given by ηn = γ/(2mij). Due to the damping in normal direc-
tion, the interaction can end before the particles totally separate. There-
fore the shorter time period

tfc =
1

ω
(π − 2atan

ηn

ω
) (4.46)

from the beginning of the interaction to the point in time where Fn be-
comes attractive and thus is set to zero, is a better measure.

For the arbitrary force law of equation 4.15 one has to neglect the damp-
ing term (ηn = 0) and following the calculation documented in [82] one
gets

tc = J(θ)(1 +
θ

2
)1/(2+θ)(

2Dmij

(4Rij)

1−θ

v
−θ/(2+θ)
0 ). (4.47)

Here v0 is the velocity before the contact and for J(θ) one gets J(0) = π
and J(1/2) = 2.94. Finally, for the Hertz-law, one can write:

tc = 4.54
m12D

2/5
n

√
Rij

v
−1/5
0 (4.48)

The time step ∆t itself is then a fraction of the contact time. To have a
good resolution of the contact ∆t = tc/50 was chosen.

4.1.9 Rolling particles in polydisperse systems

In this section we describe an interesting artefact in almost non-moving
polydisperse systems where static friction is implemented as previously
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Fig. 4.5: In an extremely polydisperse system one encounters situations where a
smaller particle is trapped between larger ones. The four small particles
in the picture show the same particle at different points in time. With-
out rolling friction this particle rolls forever on the surface of the two
larger spheres as the frictional force, exerted from the virtual tangential
springs, is strong enough to cancel the normal force.

described. Figure 4.5 shows a typical situation that can emerge during
the relaxation of such a system. A smaller sphere is clamped between
two large spheres. The four smaller spheres in the picture are the same
particle only at different points in time. In such a situation, the virtual
springs modeling the static friction might prevent a small and slowly
moving particle in contact with the larger two to detach. Here the ma-
jor part of the normal, and thus repulsive, forces between large and small
particles cancel and the frictional force is strong enough to prevent a sep-
aration of the particles. Without rolling friction the small particle will roll
on the surface of the larger ones forever. Its circular path is schematically
shown by the four small spheres.

In a compactified monodisperse system one never finds such a situation
as a reasonably dense packing does not allow for such a configuration
and it can be neglected in a non static system. But performing the mea-
surement described in chapter 6 it will cause an oscillation in the mea-
sured repulsive force. Instead of a computational costly implementation
of rolling friction the rolling is stopped by setting, from time to time, all
translational and rotational velocities in the system to zero.
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4.2 Contact Dynamics

In the previous section the molecular dynamics, which is a smooth in-
tegration method, was explained. Using it to simulate extremely rigid
particles is very time consuming as the time step depends on the elastic-
ity of the particles. Contact dynamics (CD) on the other hand [15–17, 87]
works with perfectly rigid particles interacting via point contacts. This
means, when two particles are in contact, the repulsive force ~Fn can take
any value necessary to prevent an overlap of the interacting particles as
shown in Figure 4.6. As a consequence the changes in the forces onto the
particles are not smooth anymore but have jumps. This comes from the
underlying concept that the motion of the particle has to fulfill certain
constraints. One constraint is the prevention of particle interpenetration
also referred to as volume exclusion. The other constraint is the absence
of sliding due to static friction.

nF tF

tV

−µ

µ

g0

F

F

n

n

Fig. 4.6: The left picture shows the signorini graph with the surface distance g
between two particles. For particles not in contact the repulsive force Fn

is zero. When in contact it can take any value necessary to prevent an
overlap of the interacting particles. The right picture shows the tangen-
tial force as a function of the tangential velocity. Its maximum value is
given by the Coulomb law.

4.2.1 Two particle contact

In the contact dynamics the interacting particles are touching but not
overlapping as the particles are infinitely rigid. For a two particle contact
the normal vector ~n points from particle i to particle j and the relative
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velocity ~V ′ is given by

~V ′ = ~vj − ~vi − (ri~ωi + rj~ωj) × ~n. (4.49)

Note that this relative velocity is different from the one defined for the
molecular dynamics in equation 4.7. If the particles approach each other
and get in contact, contact dynamics tries to eliminate this velocity.

Reducing the above velocity to zero will set the particles to rest such
that they are touching but not overlapping. This corresponds to a zero
restitution coefficient e = 0. In general the particles have a finite velocity
after the collision and thus the necessary change in velocity is greater
than ~V ′. This velocity ~V is given by

~V = −(1 + en)(~V ′ · ~n)~n − (1 + et)(~V
′ − (~V ′ · ~n)~n). (4.50)

Here the restitution coefficient is split into a normal part en and a tan-
gential part et.

To eliminate the relative velocity a normal force ~Fn and a tangential force
~Ft is applied which results in the velocity change

∆~V = (
~Fn

mij
+

~Ft

mt
)∆t. (4.51)

Here mij is the reduced mass in the contact and mt is given by

mt = (
1

mn
+

~l2i
Ii

+
~l2j
Ij

). (4.52)

Thus the normal and tangential force acting on the particles can be writ-
ten as

~Fn = −mn(1 + en)(~vj − ~vi~n), (4.53)
~Ft = −mt(1 + et)[(~vj − ~vi) − (~vj − ~vi)~n − (ri~ωi + rj~ωj) × ~n]. (4.54)

As in the molecular dynamics, the maximum tangential force is µ| ~Fn| and
if the force calculated in equation 4.54 is larger it is reset to this value.

As the contact dynamics is an implicit algorithm an implicit Euler algo-
rithm is used to calculate the new positions and velocities of the particles.

~ri(t + ∆t) = ~ri(t) + ~vi(t + ∆t)∆t (4.55)

~vi(t + ∆t) = ~vi(t) +
1

mi

~Fi(t + ∆t)∆t (4.56)
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4.2.2 Multiple Contacts

In the discussion above it was omitted that each particle is also influ-
enced by external forces ~Fext and in general is in contact with more than
one particle. Due to the forces from the adjacent contacts the particle-
particle contact cannot be solved locally. Instead an iterative solver is
used.

For each particle the actual velocity ~vi, calculated in the previous time
step, and the change in velocity δ~vi, resulting from the forces acting dur-
ing the actual time step, is given. Taking into account this velocity change
equation 4.49 can be rewritten to

~V ′ = ~vj + δ~vj − (~vi + δ~vi) − (ri~ωi + rj~ωj) × ~n. (4.57)

The iterative solver determines the velocity change δ~vi in the following
way:

1. At the beginning of each time step the velocity change δ~vi of all
particles is set to zero.

2. In the second step external forces are taken into account. For every
particle the velocity change δ~viext

due to these forces is calculated.

δ~viext
=

~Fext

mi
∆t (4.58)

The velocity change δ~vi is then set to δ~viext
.

3. In the third step a particle contact is randomly picked and the nec-
essary forces ~Ft and ~Fn to eliminate the relative velocity ~V are cal-
culated. The resulting velocity change for particle i and j in the
contact is added to δ~vi and δvj respectively. Note that constant
forces from other contacts of particle i and j are assumed while
calculating the velocity change.

Step three is repeated until the results are accurate enough or a given
number of iterations was performed. For the convergence criteria we
chose

|δ ~Fn/t| ≤ ε|~Fn/t|; ε < 1 (4.59)

Thus the iteration process stops if for all contacts the change in force is
smaller than ε ~F or if a certain number of sweeps N is exceeded.
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The calculating of each contact in a random order prevents a bias of in-
formation spreading. The random sweep differs from the random se-
quential update as for the latter one a contact could be chosen more than
once in a single sweep.

4.3 Comparison of molecular and contact dynam-
ics

The main differences between the two methods described above are the
following: Contact dynamics simulates infinitely rigid particles and al-
lows for a relatively large time step but the forces applied to the individ-
ual particle are non continuous. In the molecular dynamics the particles
are elastic and the repulsive force is calculated from the overlap of inter-
acting particles. This results in a small time step when simulating very
stiff particles.





5
Shearing with lu-
bricants

As stated in the introduction an estimated 40% of energy is wasted dur-
ing the transport and handling of granular material. Thus for the indus-
try it is of great importance to extend the knowledge about these materi-
als under the various conditions of processing.

Very interesting is the shear behavior of granular media. Here, the inter-
nal force chains, carrying the external stress, break up and besides stress
fluctuations [88, 89], dilatancy can be observed. Dilatancy is one of the
fundamental properties of granular media and first studies where done
by Reynolds in 1885 [25]. Additionally the viscosity of such a sheared
system strongly depends on its size distribution and extensive studies
have been mainly conducted on bidisperse suspensions. For a given total
solid volume fraction, the viscosity decreases, as the ratio r1/r2 between
the radius r1 of the large particle and the radius r2 of the small particle in-
creases [26,27]. Above a ratio of 10:1 the viscosity is relatively unaffected
by further ratio changes. Using colloidal bidisperse systems, optima in
viscosity occur for a size ratio of two to four as ultimately, viscosity in-
creases with a larger size ratio [28]. One of the fundamental theories
describing the viscosity for multimodal suspensions was developed by
Farris [29] and later on extended by Sengun and Probstein [30].

In this chapter we describe numerical studies performed in collabora-
tion with BASF in Ludwigshafen, Germany. The polydisperse material

49
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of interest consists of spherical particles immersed in water and shows
a non-Newtonian behavior. A similar material can easily be prepared in
the kitchen when starch is dissolved in cold water. At a high enough con-
centration the mixture behaves like a solid when impacted sharply but
slowly flows out of the bowl if it is turned upside down. For Dr. Distler
from BASF, it was of great interest to study the change in the shear be-
havior when a lubricant is added. Thus we developed the following two
dimensional model where so-called repulsive point-like particles which
model the behavior of the added lubricant are introduced [90]. First the
shear behavior of bi- and polydisperse systems is compared and then
the change of the shear properties of the polydisperse system due to the
addition of point-like particles is discussed.

5.1 The model

First different size distributions used in the model are defined. Then
the concept of point-like particlesı̈s introduced. Afterwards an overview
over the simulation method, including the procedure used to initialize
the system, is given. Finally compaction and shearing of the system are
explained.

5.1.1 Used size distributions

In the simulations bidisperse and a polydisperse size distribution are
used. The bidisperse distribution contains particles of two different sizes.
The radius of the large particles is rmax while the radius of the small par-
ticles is rmin. To fully define this distribution the ratio

τ =
N(rmax)

N(rmin)
(5.1)

between the number of big particles and the number of small particles is
defined. Here N(r) is the number of particles of a given size r.

On the other hand the polydisperse distribution is given by the truncated
power law

p(r) = ar−b, rmin < r < rmax (5.2)

introduced in chapter 3. The interaction between the individual grains
is resolved with contact dynamics which was described in section 4.2.
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In the simulation the restitution coefficient was set to rc = 0.2 and the
friction coefficient was set to µ = 0.3.

5.1.2 The concept of point-like particles

To simulate the added lubricant, so called point-like particles are intro-
duced. They have zero mass and a potential U which gives rise to a
repulsive force Fr on every particle closer than the distance dr. As they
have no mass and occupy no volume they do not contribute to the vol-
ume fraction of the system and might experience infinite accelerations.
Therefore we use a different iteration scheme in the contact dynamics for
calculating their motion. At the beginning of every time step, each point-
like particle is moved to a position where the net force on it vanishes.
Then the forces exerted by the point-like particles on the other particles
are computed, and the contact dynamics time steps proceeds normally.
The potential of the point-like particles is given by

U(d) =

{

kd̂−1e−γd̂ + F0d̂ + U0, 0 < d̂ < 1

0, d̂ ≥ 1
. (5.3)

Here dr is the interaction radius which corresponds to the radius of a
solid particle and d is the separation between the surfaces of two interact-
ing particles which defines the dimensionless surface distance d̂ = d/dr.

The first term in equation 5.3 is a screened long-range potential where k
determines the strength of the potential while γ fixes how fast it decays
with the distance. The constants F0 and U0 in the second and third term
are chosen such that potential and force are continuous at d = dr.

The repulsive force Fr is the gradient of the potential:

Fr(d) = −∂U

∂d
=

{

kd̂−1e−γd̂(d̂−1 + γ) − F0 0 < d̂ < 1

0 d̂ ≥ 1
(5.4)

To distinguish between the point-like particles and ”normal” particles
the latter ones will be called ”grains”.

5.1.3 Simulation Method

In this section the setup of the simulation is explained. After filling the
shear cell with an initial configuration of particles it is compactified and
in the last stage the system is sheared.
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5.1.3.1 The shear cell
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bottom wall

top wall
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h(t)

Fig. 5.1: The shear cell with periodic boundaries. The length of the cell is l and
the actual height of the lid is given by h(t). While the lid is sheared with
the velocity v the normal force FN is exerted onto the lid.

Figure 5.1 shows the two dimensional shear cell. Periodic boundary con-
ditions are applied such that particles leaving the cell to the left will reen-
ter on the right and vice versa. The length of the system is l = 10cm, the
area VC of the shear cell is given by VC = l2 and the density of the par-
ticles is ρ = 103kg/m3. The bottom wall is assigned an infinite mass
which will fix its position while the top wall is allowed to move up and
down. In all simulations the top wall or lidı̈s subject to a normal force
FN = 100N and its position is given by its height h(t). Its mass is set
to 10−5 kg which is roughly twice the mass of the largest particle in the
system. For all simulations gravity was turned off.

5.1.3.2 Initialization

For the generation of a random packing several algorithms like random
packing under gravity (RPG) [91,92], growing of spheres [93–95] and ran-
dom sequential adsorption (RSA) [96] have been proposed and Zhang et
al. [97] showed that the RSA algorithm is the most random method. This
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algorithm picks a grain from a reservoir and inserts it at a random posi-
tion into the system if it does not overlap with already inserted grains.
The distribution of grains in the reservoir can be set to any desired dis-
tribution and in general desorption may also be possible.

For polydisperse packings, Tomaso Aste [98] introduced an hierarchical
RSA-algorithm. He starts with a given radius r and adsorbs as many
grains of this radius as possible. When no space for grains of this size
is left the radius is divided by a given factor and the adsorption contin-
uous. We adapted this algorithm such that instead of the discrete size
distribution we are able to use a quasi-continuous one.

First a separate reservoir is filled with grains where the volume VR of all
grains in the reservoir is given by

VR =
n∑

i

πr2
i . (5.5)

Here n is the number of grains in the reservoir and ri is the radius of
the ith grain. When simulating bidisperse systems, for every large grain,
1/τ small grains are inserted. For the polydisperse systems the grains
are randomly generated from the truncated power law. In both cases the
filling of the reservoir is stopped when VR > βVC . and the factor β is set
to β = 0.7.

In the next step the indices of the n grains in the reservoir are changed
such that r1 > r2 > ... > rn. In other words, the reservoir is sorted by
size, such that the largest grain comes first. Starting with the first and
largest one, each grain gets I = 1000 trials to find a random position
where it does not overlap with any already present grain. In general a
grain is discarded after I trials but with the chosen values for β and I it
was possible to insert all particles in the reservoir into the shear cell.

If point-like particles are used in the simulation they are put in next. We
take Np point-like particles and give them Ip trials for adsorption. As
r = 0 all Np point-like particles can be put into the system for a large
enough Ip.

When averaging over several simulations the same n grains and the same
number Np of point-like particles in the reservoir was used but a differ-
ent seed for the random number generator, choosing the positions of the
particles, was selected. Thus the distribution of particle sizes remains
exactly the same, only the initial configurations are different.
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5.1.3.3 Compaction

As all particles in the reservoir were inserted into the shear cell the actual
volume fraction Φ of the system is given by

Φ(t) =
VR

lh(t)
. (5.6)

To reach a specific volume fraction Φ0 at which the shearing starts, a fixed
normal force FN is exerted onto the lid and, in certain time intervals,
the grains feel a random force in a random direction. Due to the force
FN the system is compressed while the random forces break up arches
and thus allow for better compaction. Additionally friction is turned off
(µ = 0) and the strength of the potential is set to ki = 10−3N . As soon
as the volume fraction Φ reaches the desired value Φ0 the compaction is
stopped, friction is turned on (µ = 0.3), k is set to a value greater or equal
to ki and the shearing is started.

5.1.3.4 Shearing

After compaction the granular material is sheared by moving the lid with
the constant velocity v.

Before the shearing all grains with a radius smaller than 2rmin and a dis-
tance smaller then rmin/2 away from the top and bottom wall are fixed to
these walls to simulate a rough surface. These grains do not experience
the grain-wall interaction anymore and all forces such a grain feels from
its contacts with other grains or point-like particles is applied directly to
the wall. Thus the grains fixed to the bottom do not move anymore as
the mass of the bottom wall is set to infinity and the particles fixed to the
lid move with the constant velocity v.

The position of the lid at the moment the shearing starts is the reference
height h0. As the lid is sheared with a constant velocity v, the position
h of the lid and the force F , needed to keep v constant, is measured.
Shearing is done for at least 0.1 seconds in all simulations. For the slowest
shear velocity the lid moves at least a distance l/2 in horizontal direction.

5.2 Method of analysis

The shearing is characterized by three parameters, the angle of dilatancy
Ψ and the saturation dilatancy ds which characterize the movement of
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the lid and the force Fs needed to maintain the shear motion.

5.2.1 Dilatancy
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Fig. 5.2: Expansion ∆h versus the shear distance s for the polydisperse system.
For small values of s, ∆h increases almost linearly. For larger values ∆h
fluctuates around a saturation value hs. The straight lines show the fit
used to obtain Ψ and hs.

Figure 5.2 shows the change in the height h of the lid as a function of the
shear distance s = vt. When the shearing starts, the lid almost linearly
moves upwards and its position can be described by

h(t) = h0 + s tanΨ = h0 + ∆h. (5.7)

Here s is the distance the lid was moved, Ψ is the angel of dilatancy and
h0 is the height of the lid before the shearing. Ψ is given by the slope of a
straight line fitted to h(t) for small s.

After a large enough shear distance the position of the lid fluctuates
about the saturation height hs. This is determined from the saturation
dilatancy

ds = hs/h0 − 1 (5.8)

which is a measure of how much a medium expands when subject to
shear. It is determined by fitting a straight line to the measurements as
shown in Figure 5.2.
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5.2.2 Shear force
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Fig. 5.3: The force exerted onto the lid as a function of the shear distance s, for
the simulations shown in Figure 5.2.

Figure 5.3 shows the shear force exerted onto the lid as a function of the
shear distance s, for the simulation shown in Figure 5.2. The force is
large when the shearing starts but decreases over time until it fluctuates
around a saturation force Fs. This force is called the shear force and can
be determined by fitting a constant value to the measurement for large
shear distances.

5.3 Results

Three variants of a two-dimensional system with circular grains were
simulated. A bidisperse mixture, a polydisperse one and a polydisperse
one with point like particles.

We first compare the shear behavior of bidisperse and polydisperse mix-
tures and in the second part we investigate how the shear behavior is
influenced by the point-like particles.
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5.3.1 Bidisperse and polydisperse mixtures

Two bidisperse mixtures and a polydisperse one were investigated. In
the polydisperse mixture, the sizes are distributed according to equa-
tion 5.2 with b = 3.5. For the bidisperse mixtures the size ratio was set
to τ = 1/45 and τ = 1/60 [see equation 5.1]. In both bidisperse mixtures
the polydispersity was P = 10 (rmin = 0.1cm, rmax = 1cm) and the sim-
ulations were done with either 575 (polydisperse), 690 (τ = 1/45), or 732
(τ = 1/60) grains.

Each mixture was studied at two or three initial volume fractions. All
mixtures were studied at Φ = 0.887 and 0.876. In addition the bidis-
perse mixtures were examined at Φ = 0.911. For each configuration ten
different samples were prepared and the shear velocity was set to three
different values v = 0.5, 1.5, 4.5m/s. For each group the time series of
ten simulations were averaged over to obtain the shear parameters.
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Fig. 5.4: Dilatancy angles Ψ for bidisperse and polydisperse mixtures, as a func-
tion of the initial shear rate v/h0 . The highest volume fraction (Φ0 =
0.911) could only be obtained with the bidisperse mixtures. The an-
gle of dilatancy increases with shear velocity and volume fraction but
is roughly three times smaller for bidisperse mixtures than for polydis-
perse ones.

Figure 5.4 shows the angle of dilatancy Ψ as a function of the initial
shear rate v/h0 for the different simulations. Here the angle of dila-
tancy increases with shear velocity and volume fraction but is roughly
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three times smaller for bidisperse mixtures than for polydisperse ones.
On the other hand, at the maximum volume fraction ( Φ0 = 0.911), the
bidisperse mixture’s angle approaches those of the polydisperse mixture.
Note that this volume fraction could not be obtained for the polydisperse
mixture.
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Fig. 5.5: Saturation dilatancy ds for polydisperse and bidisperse systems. The
symbols are the same as those used in Figure 5.4. As for the angle of
dilatancy the saturation dilatancy increases with velocity and volume
fraction and is for polydisperse mixtures greater than for bidisperse mix-
tures. Note the negative dilation for the bidisperse system depicted by
the large filled triangles.

The saturation dilatancy for the studied systems is shown in Figure 5.5
where ds is plotted as a function of the initial shear rate. As for the an-
gle of dilatancy, the saturation dilatancy increases with velocity and vol-
ume fraction and is for polydisperse mixtures greater than for bidisperse
mixtures. An important difference is the fact that for the lowest initial
volume fraction only bidisperse mixtures exhibit negative dilation. This
means that the height hs at the end of the shearing is lower than h0 at the
beginning. This occurs because the small grains do not fill all the spaces
between the large grains during the preparation of the sample. When
the shearing starts, there can be large voids between the big grains. As
the shearing proceeds, the large grains move relative to one another, the
voids are opened up, and quickly filled with small grains. The voids
never reform, leading to a permanent decrease in the height of the lid.

Figure 5.6 shows the shear force Fs divided by FN versus the initial shear
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Fig. 5.6: The saturation value of the shear force, divided by the imposed normal
force FN , versus the initial shear rate for polydisperse and bidisperse
grains. The symbols are the same as those used in Figure 5.4. Note that
all values are close to the friction coefficient µ = 0.3 used in the simu-
lations. The force measured for the polydisperse systems is about 30%
higher than for the bidisperse ones and is roughly independent of the
initial volume fraction. Surprisingly, it decreases slightly with velocity,
at least between v = 0.05 and v = 0.15.

rate for the different series of simulations. The force measured for the
polydisperse systems is about 30% higher than for the bidisperse ones
and is roughly independent of the initial volume fraction. Surprisingly,
it decreases slightly with velocity, at least between v = 0.5m/s and v =
1.5m/s. This differs from other cases, where the force is always observed
to increase with shear velocity [99]. However, that work concerns flow of
approximately monodisperse polygons, whereas we have studied disks.
The decrease in Fs can be understood as a consequence of dilatancy. At
higher velocities, dilatancy increases and thus making it easier to shear.

5.3.2 Influence of the point-like particles

In this section the influence of the point-like particles onto the shear be-
havior of a polydisperse mixture is studied. Again, the size distribu-
tion in the polydisperse mixture follows equation 5.2 with an exponent
b = 3.5. For the point-like particles four parameters can be changed.



60 5.3 Results

The strength k and the range dr of the potential as well as the param-
eter γ determine how fast the potential decays with the distance. The
fourth parameter A =

N(point-like)
N(grains) gives the number of point-like parti-

cles, divided by the number of grains. The parameters were set to the
following values: k = 2, 5, 10 × 10−3N , dr = 1

5rmax, 2
5rmax, γ = 3 and

A = 1, 2. For all simulations the volume fraction was set to Φ = 0.882
and the shear velocity to v = 1.5m/s. In both mixtures the polydispersity
is P = 10 and rmin = 0.11cm, rmax = 1.1cm. For each set of these three
parameters ten simulations with different initial configurations were av-
eraged together. For some systems the strength of the potential was set
to k = 20, 50, 100× 10−3N .
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Fig. 5.7: Dilatancy angles Ψ for polydisperse mixtures with and without point-
like particles, versus the strength k of the repulsive potential. In all cases,
the volume fraction is 0.882 and the shear velocity is 1.5m/s. The addi-
tion of point-like particles does not cause much change. The observed
angles vary by about one degree from the value found without point-like
particles which is depicted by the horizontal line.

Figure 5.7 shows Ψ as a function of k for the different types and numbers
of point-like particles. One data point stands out from the rest: (Ψ ≈ 29◦,
k = 100 × 10−3N , A = 2). For the moment, we exclude it from the
discussion and treat it separately in section 5.3.2.1. Except for this one
series of simulations, the addition of point-like particles does not cause
much change. The observed angles vary by about one degree from the
value found without point-like particles. Thus Ψ is much less sensitive to
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a change in k than to a change in shear velocity or initial volume fraction.

A very surprising feature of the shear behavior extracted from Figure 5.7
is that point-like particles with a large distance of interaction cause less
change than particles with a small distance. (Compare the large and
small empty circle at k = 100× 10−3N .)
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Fig. 5.8: Saturation dilatancy ds for mixtures with different concentrations of
point-like particles. The symbols are the same as those used in Fig-
ure 5.7. The presence of point-like particles changes the behavior of the
mixture very little.

The saturation dilatancy ds as a function of k for the simulated systems is
shown in Figure 5.8. The data are very similar to those discussed above.
The simulations with k = 100 × 10−3N and A = 2 are widely separated
from all the others. Except for this one data point, the presence of point-
like particles changes the behavior very little. When point-like particles
are added, the dilatancy changes by at most 0.003. The changes due to
the change in volume fraction or shear rate, observed in the previous
section were seven times larger.

Figure 5.9 shows the shear force Fs as a function of FN when the lid fluc-
tuates about its saturation height hs for the different series of simulations.
This time, the point-like particles change the behavior of the mixture.
When short-range point-like particles are added (with dr = rmax/5, the
small circles in the figure), the force decreases substantially. At large k,
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Fig. 5.9: The saturation value of the force Fs, divided by the imposed normal
force FN , for systems with different concentrations of point-like parti-
cles. The symbols are the same as those used in Figure 5.7. Note that
F/FN ≈ µ when k is small. When short-range point-like particles are
added to the polydisperse mixture (with dr = rmax/5, the small circles
in the figure), the force decreases substantially. At large k, the force is
reduced to half of its original value, or very nearly removed, depending
on how many point-like particles are added.

the force is reduced to half of its original value, or very nearly removed,
depending on how many point-like particles are added.

Surprisingly, adding the long-range particles does not reduce the force at
all. This continues the general trend observed in the previous discussion,
where we saw that the particles with a large interaction distance did not
have much effect. One possible reason for this is that when dr is small,
the grains feel only those point-like particles that occupy the neighbor-
ing pore spaces. The force exerted on the grains is thus tightly connected
to the geometry of the surrounding particles, and this force is such that
it reduces the friction between the grains. When dr is large, grains inter-
act with point-like particles in many different regions, and the resulting
forces are no longer so closely related to the geometry of the neighboring
particles.
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5.3.2.1 Behavior at large k and A

In Figure 5.7, one observes for large k and A a very high angle of dila-
tancy (nearly 30◦ compared with all the other points near 20◦), and in
Figure 5.8 a very high saturation dilatancy (roughly 40% more than any
other point). In addition, the force needed to shear this mixture is very
low - only 10% of the mixture without point-like particles. This last re-
sult suggests that the point-like particles carry a significant fraction of the
weight of the lid. This would explain the very high dilatancy. Note that
all the samples are prepared by compressing mixtures with k = 10−3N .
When the shearing starts, k is set to its final value. If k is very large and
the point-like particles are numerous, the mixture will expand not due to
shearing, but simply because the point-like particles push against each
other with enough force to lift up the lid.

This explanation has been confirmed by simulations of unsheared sys-
tems. The system is prepared as before, but is not sheared. When k =
100 × 10−3N and A = 2, one observes a substantial dilation (ds ≈ 0.28)
due only to the repulsive potential of the point-like particle. On the other
hand, when k = 100 × 10−3N and A = 1, no such dilation is observed.
Therefore one can conclude, that the point at k = 100×10−3N and A = 2
is in a different regime from the other points.

5.3.2.2 Dependence on polydispersity

All of the above results were obtained with a polydisperse mixture de-
scribed by a power law exponent b = 3.5 [see (equation 5.2)]. Mixtures
with b = 1.3 were also tried. Point-like particles with dr = 0.022 and
2× 10−3N ≤ k ≤ 100× 10−3N were added. No significant change in the
dilatancy or force is observed, even for the largest values of k. This may
be because there are fewer small grains, and the pore spaces are much
larger. The point-like particles can then stay in the middle of this pore
spaces and interact only weakly with the grains.

5.4 Conclusion

The findings of this study can be summarized by saying that the polydis-
perse mixtures show stronger dilatancy and a greater resistance to shear
than the bidisperse mixtures. At constant volume fraction, the angle of
dilatancy, the saturation dilatancy, and the force needed to maintain the
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shearing were all greater for polydisperse particles. However, this sim-
ple conclusion is complicated by the fact that higher volume fractions
were easier to obtain with bidisperse mixtures. When bidisperse mix-
tures are very dense, their angle of dilatancy and saturation dilatancy is
similar to polydisperse systems at lower volume fractions (although the
shear force remains significantly smaller).

Adding repulsive particles to a sheared polydisperse mixture of grains
changes the kinematic behavior of the mixture very little, but the dy-
namic behavior shows a reduction in the forces. ”Kinematic” refers to
those properties that concern the movement of the mixture - the angle of
dilatancy and the saturation dilatancy. ”Dynamic” behavior refers to the
force necessary to maintain a fixed shear velocity. This finding is compli-
cated by two additional observations. First, particles with a large inter-
action distance cause little change, in spite of exerting larger forces. The
second observation is that it is possible to get dramatic changes in the
kinematic behavior when there are many point-like particles with strong
repulsive forces.

In general one can say that the point-like particles lead to a lubrication
effect which reduces the force necessary to shear the system. But one has
to be careful not to add too many point-like particles. If the number of
point-like particles becomes too large, they build a network that carries
most of the load and leads to a strong dilation after the initialization.



6
The concept of
soft-particles

As shown in chapter 3, the computing time increases non-linearly with
the polydispersity P when simulating extremely polydisperse systems.
In this chapter we introduce the concept of soft-particles to reduce the
computational costs for polydisperse systems. These meta-particles macro-
scopically describe the behavior of a polydisperse packing and thus al-
low to reduce the number of particles in the simulation.

To allow the implementation of these particles into a molecular dynam-
ics, the necessary force law is measured through the interaction of the
soft-particle with another soft-particle or a particle described by the Hertz-
law.

6.1 The Model

Figure 3.1 shows a two dimensional Apollonian packing with the size
distribution following a power law. Between larger particles many smaller
particles are arranged in polydisperse packings. The goal of our model
is to replace all particles within these local packings with so-called ”soft-
particles”. Then, instead of calculating the motion of many small par-
ticles, only a much smaller number of soft-particles needs to be consid-
ered.

65
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Fig. 6.1: A soft-particle of radius R1 = 1.6cm consisting of a random polydis-
perse packing with polydispersity P = 10.

Figure 6.1 shows a soft-particle consisting of a spherical shell with radius
R1 = 1.6cm and the volume VS = 4

3πR3
1. It is filled with a polydisperse

packing which represents the small particles in a local packing.

The macroscopic behavior is determined by applying an external defor-
mation to the soft-particle and measuring the resistance given by the
confined particles. This way, the constitutive law which is needed for
the implementation into a molecular dynamics is determined. In the fol-
lowing the inserted particles are referred to as ”grains” while particles
interacting with a soft-particle and which are described by the Hertz-law
will be called ßolidparticles.

6.1.1 Generation of the random packing

To create a random polydisperse packing of high volume fraction inside
the soft-particle, which follows a truncated power law with an expo-
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nent b, a three dimensional version of the hierarchical initialization in
section 5.1.3.2 is used.

A separate reservoir is filled with grains generated from the truncated
power law. In three dimensions, the volume VR of all grains in the reser-
voir is given by

VR =

n∑

i=1

4

3
πr3

i , (6.1)

where n is the number of grains in the reservoir and ri is the radius of
the ith grain. The filling stops when VR > βVS . Afterwards the par-
ticles in the reservoir are sorted by size and, starting with largest one,
each particle gets I trials to find a random spot in the system where it
does not overlap with already inserted particles. For the initialization
the parameters shown in Table 6.1 are used.

After the insertion of the grains the largest adsorbed grain is chosen and
its radius is increased such that it touches its nearest neighbor particle.
Doing this for all grains the initial volume fraction increases and a simple
contact network is created.
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Fig. 6.2: Size distribution for the soft-particle shown in Figure 6.1. The straight
line shows the power law with an exponent b = 3.5.

Figure 6.1 shows such a randomly generated polydisperse packing for
a polydispersity P = 10 while in Figure 6.2 the size distribution for the
soft-particle is shown. The data can be fitted by a power law with the ex-
ponent b = 3.5 which is the same exponent as in many real polydisperse
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systems.

Table 6.1: Parameters for the initialization
Exponent b 3.5
Polydispersity P 10
Maximum radius rmax 0.64cm
Minimum radius rmin 0.064cm
Soft-particle radius R1 1.6cm
Filling factor β 1000
Trials I 1000

6.2 Measuring the force law

To calculate the motion of the individual grains in the soft-particle a
molecular dynamics is used. The Hertz-law [80]

Fn =

√
R12δ

3
2
n

D
(6.2)

determines the contact forces in normal direction, while static friction is
implemented using the model of Tsuji et al. [83].

Ft =
√

R12hDtδt; Ft ≤ µFn (6.3)

The parameters used in the molecular dynamics are shown in Table 6.2.

Table 6.2: Parameters for the MD
Elastic modulus E 5 · 105N/m2

Poisson ratio ν 0.3
normal constant D 2.73 · 10−6m2/N
tangential constant Dt 8.84 · 10−6m2/N
Friction coefficient µ 0.3

To implement the soft-particles in a molecular dynamics one needs to
know the analogs of the two equations above for the soft-particles. This
means one needs to know the normal and tangential forces as a function
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of the normal and tangential deformation. As soft-particles might also
interact with themselves one has to determine the constitutive laws for
two cases: The interaction of a soft-particle with another soft-particle and
the interaction of a soft-particle with a solid particle.

δ n

δ t

F n

F t

x

y

z

R1

R2

Fig. 6.3: Snapshot of the measurement of the constitutive law. The left picture
shows the solid-soft measurement and the middle picture the soft-soft
measurement. The red grains are those grains used for the tangential
deformation δt while the green grains in the soft-soft interaction are used
for counterbalance during the tangential measurement.

For the measurement the setup shown in Figure 6.3 is used. On the left
side the interaction of a soft-particle with a solid particle of the same size
is shown. The middle picture shows the interaction of two soft-particles
where for simplicity the second soft-particle is a copy of the first one.
Depending on the measurement a soft- or solid particle is placed above
the lower soft-particle such that both particles touch but do not over-
lap. The position of the lower particle is fixed and the upper particle
is moved into the lower one with a constant velocity v = 1mm/s until
the normal deformation δn reaches a given value. Now the system re-
laxes until all grains are at rest and the repulsive force Fn exerted onto
the upper particle is measured. As the tangential force law depends on
the normal deformation each state used to measure Fn(δn) is reloaded
for the tangential measurement. Here all grains in the lower soft-particle
with a radius smaller than 1.5rmin and touching the shell are forced to



70 6.3 Results

rotate a certain angle γ. The rotation axis is parallel to the z-axis and
goes through the center of the soft-particle. The so enforced tangential
deformation δt is given by

δt = R1γ. (6.4)
The grains forced to rotate are colored red in Figure 6.3. As a counter
balance in the solid-soft interaction the solid particle is fixed in place
and does not rotate. The counter balance in the soft-soft interaction is
achieved by fixing the position of the grains in the upper soft-particle
which are smaller than 1.5rmin and touch the shell. These grains are
colored green in Figure 6.3. After relaxing the system the tangential force
Ft, exerted onto the top particle, is measured. Throughout this chapter,
the radius of the lower particle, which always is the smallest of the two,
is given by R1 while the radius of the upper particle is R2.

For the grains inside the soft-particle, the shell is an impenetrable wall of
the same material with no frictional force as it only keeps the grains in a
defined volume. Figure 6.4 explains the implementation of the soft-soft
interaction. When the two soft-particles move into each other the indi-
vidual grains inside the two spheres can move freely in the combined
space. The boundary is the surface of the two overlapping soft-particles
and the normal vector for grains interacting with the boundary is per-
pendicular to the shell and points to the particle center. This is not well
defined when grains interact in the region where the two shells intersect.
Here the normal vector points from the shell intersection to the center of
the grain.

The most time consuming part during the measurement is the relaxation
process. After a short time, most grains are at rest but a few are still mov-
ing very slowly making it impossible to conduct a precise measurement.
As there exists no rolling friction in the simulation especially small grains
rolling on the surfaces of larger ones as described in section 4.1.9 produce
an oscillation in the measured force. To speed up the relaxation and to
eliminate the rolling of small grains, from time to time, the translational
and angular velocity of every grain is set to zero. The time interval be-
tween each of these stoppings has to be chosen according to the actual
configuration of the system.

6.3 Results

In general the constitutive law of a soft-particle depends on the size ra-
tio R1

R2
of the interacting particles. Therefore the simulations described
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Fig. 6.4: Schematic picture of the soft-soft interaction where the individual grains
can move freely inside the combined space of the interacting particles.
In general the normal vector for grains interacting with the boundary
is perpendicular to the shell and points to the particle center. This is
not well defined when grains interact in the region where the two shells
intersect. Here the normal vector points from the shell intersection to
the center of the grain. The cross in the center of the lower particle de-
picts the axis around which the red colored grains are rotated to exert a
tangential deformation.

above was performed for different radii R2 while the radius R1 = 1.6cm
of the first particle is kept constant. For the solid-soft interaction the
radius of the second particle is set to the following three values: R2 =
1.6cm, 3.2cm, 16cm which corresponds to R1

R2
= 1

1 ; 1
2 ; 1

10 . For the soft-soft
interaction the radius of the second particle is chosen such that R1

R2
= 1

1 ; 1
2 .

In principal any size ratio can be chosen for the soft-soft interaction but
the idea is to reduce the number of particles used in a molecular dynam-
ics. When describing a packing of polydispersity P = 102, the minimal
ratio 1

2 above is a good compromise as it reduces the number of parti-
cles by a factor of 28 while keeping a small polydispersity even for the
soft-particles.

During the relaxation process the system was always at rest after three
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stoppings where the time interval during which the particles move freely
was set to 0.3s. To be sure the system is really relaxed it is stopped six
times and after the last stopping we wait at least another 0.3 seconds be-
fore conducting any measurement. Ten different simulations where av-
eraged together and for each simulation a different distribution of grains
was used and the average initial volume fraction was ρi = 0.761 which
is calculated by

ρi =
M

VS
. (6.5)

Here M is the volume of all particles inserted into the soft-particle and
VS is the volume of the soft-particle itself. In the following sections we
analyse these measurements and derive a force law which can be used in
a combined simulation of solid and soft-particles.

During the measurement the normal deformation for the individual grains
inside the soft-particles must not be too large as the Hertz-law itself is
only valid for small overlaps. Measurements showed that, for the used
parameters, this is guaranteed when δn < 0.4R1. As stated above R1 is
always the smaller radius.

6.3.1 The normal force law

Figure 6.5 shows the repulsive normal force Fn as a function of the nor-
mal deformation δn for the solid-soft and the soft-soft interaction. In both
cases the radii of the interacting spheres are R1 = R2 = 1.6cm The up-
per curve shows the constitutive law for the solid-soft interaction which
is stiffer than the soft-soft-interaction shown by the lower curve. Very
important is the behavior for small normal deformations. Unlike in the
Hertz-law, for normal deformations δn smaller then a threshold δ′n, there
exist no repulsive force as the soft-particle can still be compactified.

6.3.1.1 Solid-soft interaction

The measurements for the solid-soft interaction are shown in Figure 6.6.
Here the normal force Fn is plotted as a function of the normal deforma-
tion δn for the size ratios 1

10 ; 1
2 ; 1

1 . While the threshold δ′n stays almost
the same (the small change is not visible in the plot) the constitutive law
becomes stiffer the larger the interacting solid particle. The reason is that
the larger the second particle is, the larger the compression for the same
normal deformation which leads to a stronger repulsive force.
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Fig. 6.5: Comparison of the measured constitutive laws in normal direction. The
upper curve shows the average constitutive law for the solid-soft inter-
action while the lower curve shows the soft-soft interaction. In both
cases the two interacting particles have the same radius R1 = R2 =
1.6cm.

When dividing the measurements shown in Figure 6.6 by the reduced
radius R12 = R1∗R2

R1+R2
of the contact the data collapse shown in Figure 6.7

is obtained. The resulting curve can be fitted with the following equation:

F (δn) =

{
0, 0 < δn < δ′n
anδbn

n + cn, δn ≥ δ′n
(6.6)

Here δ′n is the overlap to which the soft-particle can be compressed with-
out exerting a repulsive force. It is calculated from the fit parameters
an = 3.209 · 107N/m, bn = 2.243 and cn = −5.315N to δ′n = −c

a

1/b
=

0.947mm.

6.3.1.2 Soft-soft interaction

Figure 6.8 shows the normal force for the soft-soft interaction with the
size ratios 1

2 and 1
1 . When comparing this measurement with the solid-

soft interaction two important changes can be seen. First, the threshold
δ′n moves to the right for larger size ratios. Second, the interaction is
stiffer for larger size ratios which is contrary to the hard-soft interaction.
Both changes can be explained with the void space in the soft particle. As
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Fig. 6.6: The normal force Fn as a function of the normal deformation δn for dif-
ferent size ratios in the solid-soft contact. From top down the size ratios
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with R1 = 1.6cm.

mentioned above the second particle is a copy of the first one scaled to
the desired radius R2. When its radius is set to be twice as large as R1 the
void space is multiplied by a factor 8. Therefore, compared with a contact
where both particles have the same radius R1 = R2, the grains in the first
particle have larger voids they can move into and the compression is
lower for the same normal deformation. As a consequence the threshold
δ′n increases and the repulsive force decreases.

Again both curves can be fitted by equation 6.6 and for the size ratio 1
1

one gets: an = 19, 613·106N/m, bn = 3.41 and cn = −0.019N which gives
δ′n = 2.275mm. For the size ratio 1

2 : an = 1, 238 · 109N/m, bn = 4.456
and cn = −0.00284N which gives δ′n = 2.444mm. The force laws for two
interacting particles with a size ratio between 0.5 and 1 are obtained by
interpolating between these two curves.

6.3.2 The tangential force law

The tangential force Ft shown in Figure 6.3 in lies in the x-z-plane which
is perpendicular to the normal force Fn. Figure 6.9 and Figure 6.10 show
the x- and z-component of the tangential force as a function of the tan-
gential deformation δt for the solid-soft and the soft-soft interaction. As
the tangential force depends on the normal deformation it is plotted for
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Fig. 6.7: Data collapse of the measurements shown in Figure 6.6. The normal
force was divided by the reduced radius R12 = R1∗R2

R1+R2
.

different normal deformations. The left plot shows the component in
direction of the tangential deformation, the right one shows the perpen-
dicular component.

The x-component increases with a larger normal deformation as it is di-
rectly coupled with the tangential deformation. The z-component, which
is perpendicular to the direction of deformation, averages out to zero.
Thus in the following we refer to the x-component when the tangential
force Ft is mentioned.

To implement the measured tangential force law the tangential spring
constant and the maximum tangential force the contact can sustain is
needed. These two quantities are obtained when fitting the measured
tangential force law with the following equation:

Ft(δt) = Ftmax
tanh(sδt) (6.7)

Here Ftmax
is the maximum tangential force in the contact and corre-

sponds to the Coulomb force. The tangential spring constant kt is given
by the slope around zero deformation which is

∂Ft(0)

∂δt
= Ftmax

s(1 − tanh2(0)) = Ftmax
s. (6.8)

In the following the dependence of the parameters Ftmax
and s on the
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δ′n moves to the right for larger size ratios and the interaction is stiffer
for larger size ratios which is contrary to the hard-soft interaction.

normal deformation δn is determined. For small overlaps fitting the tanh
results in large error bars, therefore these points are omitted.

6.3.2.1 Solid-soft interaction

Figure 6.11 shows the maximum tangential force given by the prefactor
Ftmax

in equation 6.7 as a function of the normal deformation δn for the
solid-soft interaction. Shown are the measurements for the size ratios 1

1
and 1

10 . As the values of the measurement fall together the parameter
Ftmax

is set to be equal for all size ratios and the data is fit by the follow-
ing equation:

Ftmax
(δn) =

{
0, 0 < δn < δ′n
atδ

bt
n + ct, δn ≥ δ′n

(6.9)

As there exists no tangential force without a non-zero normal force, δ′n is
the same threshold as in equation 6.6. From this condition follows

ct = atδ
′bt
n . (6.10)

The fit gives the following parameters: at = 1407N/m, bt = 1.532 and
ct = −0.03N while δ′n = 0.947mm as for the normal force law.



The concept of soft-particles 77

-0.4

-0.2

 0

 0.2

 0.4

-0.001  0  0.001

F
x(

δ n
)

δt

-0.4

-0.2

 0

 0.2

 0.4

-0.001  0  0.001

F
z(

δ n
)

δt

Fig. 6.9: Tangential force in the solid-soft contact as a function of the tangential
deformation for different normal deformations. The left plot shows the
tangential force in the direction of the tangential deformation which in-
creases with a larger normal deformation. The right plot shows the tan-
gential force in the perpendicular direction, which on average is zero
and unaffected by the normal deformation.

Figure 6.12 shows the parameter s for the solid-soft interaction as a func-
tion of the normal deformation δn. As in Figure 6.11 the measurements
for the size ratios 1

1 and 1
10 are shown. The parameter s was fit by a con-

stant value, which gives the two horizontal lines in the plot. The fitting
values are: s = 990 for the size ratio 1

1 and s = 1140 for the size ratio 1
10 .

The values for other ratios can be determined by interpolation.

6.3.2.2 Soft-soft interaction

As for the normal measurement the tangential force law for the soft-soft
interaction differs from the solid-soft interaction. Figure 6.13 shows the
parameter Ftmax

for the soft-soft interaction as a function of the nor-
mal deformation δn for the size ratios 1

1 and 1
2 . Unlike in the solid-

soft interaction, the measurements are not identical for the different size
ratios. Fitting the plot with equation 6.9 gives the following values:
at = 1208N/m, bt = 1.719, ct = −0.034N and δ′n = 2.25mm for the size
ratio 1

2 and at = 15.131kN/m, bt = 2.409, ct = −0.008N and δ′n = 2.48
for the size ratio 1

1 As for the measurement of the normal force the ac-
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Fig. 6.10: Tangential force in the soft-soft contact as a function of the tangential
deformation as shown in Figure 6.9.

tual parameter Ftmax
is determined via interpolation between these two

curves.

Figure 6.14 shows the parameter s for the soft-soft interaction versus the
normal deformation δn for the size ratios 1

1 and 1
2 . A constant value was

used to fit s, which is shown by the horizontal lines. The fitting values
are: s = 1269 for the size ratio 1

2 and s = 1134 for the size ratio 1
1 .

6.4 Scaling the force law

In the previous sections the constitutive law for the solid-soft and soft-
soft interaction of the soft-particles was measured. In all these measure-
ments the radius R1 of the first particle had the same value R1 = 1.6cm.
The radius R2 of the second particle was adjusted such that one obtains
the desired size ratio R1

R2
< 1. To use the measured force laws in a general

molecular dynamics one needs to understand how it changes when the
size ratio of the particles is increased by the factor α defined by

r′ = αr. (6.11)

Here r describes the radius of a particle in the measurement and r′ is the
radius of the same particle after scaling it by the factor α. Applying this
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The data was fit by equation 6.9.

equation to all the grains and the shell, in the setup shown in Figure 6.4
changes the volume of the whole system by a factor α3.

The Hertz-law in equation 4.13, describing the interaction of the indi-
vidual grains in the polydisperse packing, helps to understand how the
measured force law scales with α. Rewriting this equation in terms of
the relative normal deformation ∆n = δn/R12 the normal interaction be-
tween two arbitrary particles becomes

Fn(∆n) =
R2

12∆n3/2

D
. (6.12)

Scaling both particles by the factor α does not change the relative normal
deformation but a new reduced radius

R′
12 = αR12 (6.13)

is obtained. Therefore the scaled normal force F ′
n can be written as

F ′
n = α2Fn. (6.14)

Following this argument it can be shown that the tangential force follows
the same scaling law. For verification the normal and tangential interac-
tion between an solid and a soft particle was measured. We performed
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two measurements: One with R1 = R2 = 1.6cm, the second one with
R1 = R2 = 3.2cm corresponding to a scaling factor α = 2.

Figure 6.15 shows the resulting force law for the normal and the tangen-
tial interaction. Here the measured force is divided by R2

12 and plotted as
a function of the relative normal deformation ∆n = δn/R12. In both cases
the curves exactly fall on top of each other proving the scaling behavior.

6.5 Velocity dependence of the force law

In the previous discussion a constant velocity v = 1mm/s was used
when deforming the soft-particles. In general such a soft-particle can ex-
perience different compression velocities in a MD. Therefore simulations
with four different velocities were performed. As shown in Figure 6.16
the measured normal force lies within the error bars for all four veloci-
ties. In the plot the points for lower velocity are shifted to the right for
a better visualization. The same behavior was found for the tangential
measurement and thus any velocity dependence of the constitutive law
is ignored.
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6.6 Conclusion

In this chapter we introduced the concept of the soft-particles which al-
lows a macroscopic description of the behavior of a polydisperse packing
which is given by a normal and a tangential force law. The findings of
the measurements for the solid-soft and soft-soft interaction can be sum-
marized in the following equations.

The general normal force law is given by

F (δn) =

{
0, 0 < δn < δ′n
α(anδbn

n + cn), δn ≥ δ′n
. (6.15)

Here δn is the imposed normal deformation, δ′n is the threshold until
which the soft-particle can be compressed before measuring any repul-
sive force and an, bn and cn are fit parameters which are different for the
two contact types. As the measurement in general is not performed on
the scale at which the force law is implemented, the prefactor

α =

(
R′

12

R12

)

(6.16)

describes the scaling of the force-law. R12 = R1R2

R1+R2
is the reduced ra-

dius during the measurement and R′
12 is the reduced radius of the scaled
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system.

The tangential force law

Ft(δn, δt) = Ftmax
(δn) · tanh(sδt) (6.17)

depends on the normal deformation δn and the tangential deformation
δt. The parameter s is a constant and

Ftmax
(δn) =

{
0, 0 < δn < δ′n
α(atδ

bt
n + atδ

′bt
n ), δn ≥ δ′n

(6.18)

is the maximum tangential force the contact can sustain before sliding.
The slope Ftmax

s at zero tangential deformation gives the stiffness of the
tangential spring.

Using these force-laws to describe the smaller particles in a polydisperse
packing the number of simulated particles decreases and the time step
can be set to a larger value. For the shear experiment in the next chapter,
this reduces the computing time by more than a factor 100.
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7 Shearing be-
havior of soft-
particles

In this chapter we use the concept of soft-particles introduced in chap-
ter 6 to investigate the shear behavior of three dimensional polydisperse
packings. As we will see, this concept reduces the computation time
by more than a factor of 100 when compared to a simulation without
soft-particles. For comparison, systems without soft-particles and thus
of smaller polydispersity are also analyzed.

Before discussing the results from the shear experiments the changes in
the setup of the shear cell, compared with the two dimensional shear cell
in chapter 5, are explained.

7.1 The shear cell

Figure 7.1 shows a snapshot of the three dimensional shear cell. Peri-
odic boundary conditions are applied, therefore particles leaving the cell
through one of the four open faces, will reenter the cell through the op-
posite face. For each of these particles there exists a copy at the opposite
face. These shadow particles are colored blue while the particles glued
to the lid are colored green; all other particles are red. For better visual-
ization only half of the lid and half of the shadow particles are displayed.
The length of the cell in all three directions is l = 10cm and its volume is

85
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z
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Fig. 7.1: The three dimensional shear cell with periodic boundary conditions.
The shadow particles are colored blue while the particles glued to the
lid are colored green. All other particles are red. For better visualization
only half of the lid and half of the shadow particles are displayed. The
length of the cell in all three directions is l = 10cm with a volume Vc = l3

and the actual height of the lid is given by h(t). While shearing the lid
with the constant velocity v into the x-direction a constant normal force
FN is exerted onto the lid.

Vc = l3 while the actual height of the lid is given by h(t). While shearing
the lid with the constant velocity v into the x-direction a constant normal
force FN is exerted onto the lid.

The bottom wall is fixed at all times as its mass is set to infinite. The mass
of the top wall or lidı̈s set to 10−5 kg which is less or equal than 0.2 times
the mass of all particles in the shear cell and allows it to move up and
down. In all simulations gravity is turned off and the normal force is set
to FN = 1N , which corresponds to the force it would feel under gravity.

For all simulations discussed in this chapter a molecular dynamics with
an elastic modulus E = 5 · 105N/m2, the poisson-ratio ν = 0.3 and
the friction coefficient µ = 0.3 was used. The material density is set to
103kg/m3 and four different systems were simulated. System A with the
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polydispersity P = 1.11 and rmax = 0.005m, two polydisperse (P = 10)
systems B and C with rmax = 0.015m and rmax = 0.025m respectively as
well as a mixed system D of polydispersity P = 100 where the size of the
”normal” particles range from rmax = 0.025m to rmax/g = 0.0025m and
the soft-particle size ranges from rsmax

= rmax/g to rsmin
= rmax/(2g).

As will be shown in the next section, the factor g determines the size of
the particles replaced by soft-particles and is set to g = 10.

7.1.1 Initialization of the shear cell

For the initialization of a system without soft-particles the hierarchical
method described in section 5.1.3.2 is used. The reservoir is filled with
particles generated from the truncated power law in equation 3.1 and
the filling stops when VR > βVC . Then, starting with the largest one
each particle gets a maximum of I trials to randomly be inserted into the
cell.

For a mixed system of solid and soft-particles this method is extended.
Figure 7.2 schematically shows the size distribution of such a system.
The factor g divides the size distribution ranging form rmin to rmax into
two parts. The shaded grey area ranges from rmin to rmax/g and contains
all particles which will be replaced by soft-particles. The second part
from rmax/g to rmax contains the solid particles described by the Hertz-
law.

The solid particles are hierarchically inserted but this method is too inef-
ficient for the soft-particles as more trials I are needed to find a free spot
if the system gets denser. Even if a free place is found, the void space be-
tween the particles, due to the randomness of the method, is not ideally
filled. Therefore the following algorithm for the soft-particles is used.

One randomly picks an already inserted sphere and three of its neigh-
bors. From the coordinates of these four spheres the position and size of
a fifth sphere is calculated. This sphere touches the other four and thus
ideally fills the intermediate space. To calculate the position ~x and radius
r of the new particle the following set of equations needs to be solved.

|~xi − ~x| = ri + r, i = 1..4 (7.1)

Here ~xi and ri are the positions and radii of the four particles defining
the fifth one. A detailed solution is given in the appendix.

The new particle is checked if it overlaps with an already existing one
and it is made sure the calculated radius lies in the size range of the
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Fig. 7.2: Log-log plot of the truncated power law ranging from rmin to rmax. The
number of particles of a polydisperse system is given by the area under
the truncated power law. The factor g divides the interval [rmin : rmax]
into two parts. The first part ranging from rmin to rmax/g contains all
particles which are described by the soft-particle. The second part is
described by the grains.

soft-particles. As stated in chapter 6 the minimum size ratio for the soft-
soft interaction is 1

2 . Therefore the maximum radius for a soft-particle is
set to rmax

g and the minimum radius to rmax

2g . If all these conditions are
fulfilled the particle is inserted and marked as a soft-particle, otherwise
it is discarded. During this process any combination of hard and soft
particles can be chosen to be the four particles from which the position
of the new particle is calculated.

This insertion continuous until the volume Vs of the inserted soft-particles
correspond to the volume V of all particles in the grey shaded area of the
power law in Figure 7.2. As the grains in the soft-particles do not com-
pletely fill space Vs is given by

Vs =
V

ρs
. (7.2)

Here ρs is the initial volume fraction of the soft particles and V is calcu-
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lated from our power law to

V =

∫ rmax/g

rmin

(
4

3
πr3

)
(
ar−b

)
dr =

a4π

3(4− b)

[
r4−b

]rmax/g

rmin
. (7.3)

7.1.2 Compaction and shearing

After the initialization the normal force FN is applied onto the lid which
compactifies the system and comes to rest at the reference height h0 from
which the shearing starts. To reach high initial volume fractions the fric-
tion coefficient is set to µ = 0 during the compaction. After the com-
paction it is reset to µ = 0.3 and, as in chapter 5, a layer of particles
is glued onto the lid and the bottom. These are the green particles in
Figure 7.1. In system A all particles are of comparable size. Therefore
all those particles touching lid or bottom are fixed while for the systems
with a larger polydispersity only particles which are smaller than twice
the smallest radius are fixed.

The lid is forced to shear at a constant velocity v in the x-direction while
the movement in the y-direction is suppressed. In the vertical direction
the lid is allowed to move freely and is only restricted by the normal
force Fn.

7.2 Results

Table 7.1 shows the average number of particles and the volume fraction
of the four systems after the initialization. The parameters of system C
and D are chosen such that they have the same reference height h0 and
the same maximum radius rmax = 0.025m. For system B the maximum
radius was set to rmax = 0.015m to analyze how the behavior is influ-
enced if only the number of particles changes but other parameters like
shear velocity and initial volume fraction stay the same. For all systems
shearing experiments with velocities from v = 0.1m/s to v = 1m/s were
performed where the shearing always started from the same initial con-
figuration. Note that when simulating system D without soft-particles
about 2 · 105 particles are needed.

Figure 7.3 shows the saturation dilatancy ds as a function of the shear
rate v/h0. In all cases the dilatancy increases with the shear rate and, for
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Fig. 7.3: Saturation dilatancy ds as a function of the shear rate v/h0. In all simula-
tions the dilatancy increases with the shear rate and, for systems without
point-like particles, is larger for more polydisperse systems.

Table 7.1: Initial values of the different simulated systems
System P average number of particles volume fraction
A P = 1.11 795 0.6275
B P = 10 909 0.7333
C P = 10 3481 0.7333
D P = 100 7228 0.7788

systems without point-like particles, is larger for more polydisperse sys-
tems. System B and C show that an increase of the particle number for a
constant polydispersity reduces the dilatancy as do the soft-particles.

Figure 7.4 shows the angle of dilatancy Ψ as a function of the shear rate
v/h0. The systems B and C show a larger angle of dilatancy than system
A while, compared with B and C, the soft-particles reduce the value. In-
teresting is the decrease of the angle of dilatancy for larger shear rates. A
small set of test runs was performed for a polydispersity P = 1.11 where
the normal force and the E-modulus were increased by a factor of 100.
Here a monotonic increase of Ψ with the shear rate was observed. We
did not test this for the very polydisperse systems as the necessary time
step reduction implied by the larger E-modulus results in to long com-
putation times. Nevertheless, judging from the simulations for system
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Fig. 7.4: The angle of dilatancy Ψ as a function of the shear rate v/h0. The sys-
tems B and C show a larger angle of dilatancy than system A while,
compared with B and C, the soft-particles reduce the value.

A, we expect this behavior to be related to the small value of E.

The last parameter is the ratio between the shear force Fs and the normal
force Fn. This ratio is comparable to the friction coefficient which was set
to µ = 0.3. Figure 7.5 shows this ratio as a function of the shear rate v/h0.
All values differ at maximum 60% from the imposed friction coefficient
and compared with the system A, the systems with a larger polydisper-
sity shows a stronger ratio. Again the soft particles, due to their softer
force law, reduce this ratio when compared it with the polydisperse sys-
tem consisting of only solid particles. As for the dilatancy C and D show
comparable results.

7.3 Summary

In this chapter we used the concept of the soft-particles to analyze the
shear behavior of a system with polydispersity P = 100 and compared
the measurements with the results for a system of polydispersity P =
1.11 which was simulated without soft-particles. We could show that for
the more polydisperse system the dilatancy, the angle of dilation and the
measured friction coefficient are larger while compared with a system of
polydispersity P = 10 they are either of comparable size or smaller.
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Fig. 7.5: The shearing force Fs divided by the normal force Fn as a function of
the shear rate v/h0 . Compared with the system A all simulations with a
larger polydispersity show a stronger shear resistance.

The great advantage of the concept of soft-particles is that, instead of
directly simulating 2 · 105 particles it reduces this number to about 7000
particles. Additionally the time step could be chosen larger than without
soft-particles.

As discussed in chapter 3, the time step decreases linearly with the par-
ticle size and in a simulation without soft-particles the smallest particle
would have been five times smaller than the smallest particle used in this
chapter. Thus, taking into account that the number of particles is reduced
by a factor of 2·105

7000 ≈ 28 the computational effort was reduced by more
than a factor of 100.



8
The self-
consistent model

Simulating polydisperse systems with the model of the soft-particles, in-
troduced in chapter 6, substantially reduces the computing time. For the
system with a polydispersity of 100, discussed in chapter 7, the num-
ber of particles was reduced by a factor 28 while the time step could be
chosen five times larger than without soft-particles. Thus, the computa-
tional costs was reduced by more than a factor of 100. Nevertheless the
dependence of the computation time on the polydispersity, as described
in chapter 3, remains when the polydispersity is increased.

In this chapter we extend the concept of the soft-particles to a self-consistent
model which allows the simulation of granular media of any polydis-
persity. This is accomplished through an iterative measurement of the
repulsive force-law while the number of particles in the system remains
constant.

8.1 The model

As mentioned in chapter 3, the size distribution of extremely polydis-
perse materials ranges over several magnitudes and the smaller particles
are contained in local packings between larger particles. Zooming into
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such a local packing one finds, due to the fractal nature of the polydis-
perse material, other, even smaller, local packings.

Fig. 8.1: Schematic picture of the self-consistent model. The soft-particle is filled
with grains and small soft-particles. Inside such a small soft-particle
a similar configuration consisting of grains and small soft-particles is
found.

We want to capture this fractal nature with a self-consistent model shown
in Figure 8.1. As in chapter 6, the soft-particle is filled with grains which
follow a truncated power law. To extend the size range of the model,
small soft-particles are inserted describing particles smaller than the small-
est grain. Inside such a soft-particle a similar configuration consisting of
grains and small soft-particles is found.

The constitutive law of these self-consistent soft-particles is determined
in an iterative process of q steps. After the qth iteration the constitutive
law describes a polydisperse system with the size distribution shown in
Figure 8.2. The particle size ranges from rmax/gq to rmax and the poly-
dispersity is given by P = gq . The factor g defines the binning of the
power law and after each iteration the size distribution is extended by
one bin. The iteration itself works like the following.

In the first step (q = 1) the soft-particle is only filled with grains such
that the resulting packing has a polydispersity P = g. Thus the cov-
ered size distribution of the measurement corresponds to the grey area
in Figure 8.2.

In the next step (q = 2) the previously measured force law is used to
describe the interaction of the grains with small soft-particles. For the
new measurement the grains are inserted at the same position as in the
previous step and afterwards small soft-particles are inserted into the
remaining voids. The polydispersity of the inserted soft-particles and
the grains is P = g and thus the measurement describes the behavior of
a polydisperse packing with P = g2. The size distribution corresponds
to the grey and the adjacent white bin in the picture.
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Fig. 8.2: The size distribution of the self-consistent soft-particle after q iterations
follows a truncated power law. The factor g defines the binning of the
power law and after each step of the iteration the size distribution cov-
ered by the measured force law is extended by one bin.

Repeating the second step until q iterations were performed gives a force
law which describes the behavior of a packing of polydispersity P = gq.

8.1.1 Initializing the self-consistent soft-particle

For the initialization of the self-consistent soft-particle the same method
as in chapter 7 is used. The grains are inserted hierarchically and then,
using the apollonian insertion (see section 10.1), the small soft-particles
are inserted until their summed volume Vs fulfills the condition Vs =
VSgb−4. Here VS is the volume of the soft-particle into which the particles
are inserted. A detailed description of the derivation of Vs is given in the
appendix.

The condition above is very interesting as it tells us that in the self-
consistent packing the volume occupied by soft-particles is independent
of their density. It only depends on the volume of the enclosing soft-
particle and the factor g defining the binning of the size distribution.
Therefore the self-consistent model can describe a polydisperse packing
of any desired volume fraction
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To account for the mass added in each iteration the initial volume frac-
tion of the soft-particles is chosen such that the mass of all soft-particles
equals the mass of all particles smaller than rmax/g. This corresponds to
the white area in the power law. For n inserted soft-particles, the initial
volume fraction is calculated via

ρi =

∫ rmax/g

rmax/gq ar−b 4
3πr3dr

∑n
i=0

4
3πr3

i

=

∫ rmax/g

rmax/gq ar−b 4
3πr3dr

Vs
. (8.1)

The nominator describes the mass of the added soft-particles while the
denominator describes their summed up volume.

8.2 The force law of the soft-particles

In chapter 6 the repulsive force law was described as a function of the
normal deformation δn with the normal force being zero when δn <
δ′n. This description is problematic for the self-consistent model as the
threshold δ′n depends on the density of the soft-particle. In the following
a description of the force-law independent of the density is derived.

Vδ

δ n

P=0 P=0 P>0

Fig. 8.3: The polydisperse material inserted into a soft-particle is displayed as
the grey area. When the radius of the soft-particle shrinks this material
adjusts its shape and when overlapping a pressure is exerted onto the
shell.

For this description, a closer look at the behavior of the contents of the
soft-particle is necessary. The density of the soft-particle is given by

ρ = M/Va (8.2)

where M is the mass of all inserted particles and Va the available volume.
For a non-overlapping soft-particle this is the volume of the soft-particle
itself.
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As shown in Figure 8.3, the inserted polydisperse packing can be envi-
sioned somewhat like a fluid as it has a fixed volume and can adjust to
any shape. The left picture displays a soft-particle partially filled with
a polydisperse material which corresponds to the grey area and the en-
closing shell, displayed as the solid line, does not feel any pressure. Re-
ducing the radius such that the volume of the soft-particle is the same as
the volume of the polydisperse material gives the middle picture. The
pressure on the shell is still zero and the material perfectly adjusts to the
shell. The density in this situation will be called the critical density ρc as
the shell feels a pressure when the radius is reduced further. As shown
in the right picture, this pressure is related to the normal deformation δn.
We will see later, that the volume δV overlapping with the shell is better
suited for the description of soft-particle interaction. In Figure 8.3, δV is
the grey region outside the shell.

Ab

1R

Ab

R2

c 1

c 2

δV V∆

δV
ξ

Fig. 8.4: The measurement for a normal deformation δn = c1+c2. The left picture
shows the solid-soft interaction. Ab is the surface of the solid particle
pushed into the soft-particle and the enclosing area, which corresponds
to the solid line, is denoted Atotal. The overlapping volume δV is the
dark grey area and ∆V corresponds to the grey area outside Atotal. The
right picture shows the soft-soft interaction where Ab is given by the
circular area of radius ξ between the two sphere caps.

For two interacting solid particles, δV corresponds to the volume of the
two sphere caps defined by the overlap δn. For soft-particles the situ-
ation is more complicated. Due to the normal deformation, the avail-
able volume Va for their contents is reduced and the volume fraction
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increases. At the critical volume fraction ρc, the soft-particle cannot be
compacted anymore without measuring a repulsive force. The left pic-
ture in Figure 8.4 shows the solid-soft interaction with a normal defor-
mation δn = c1 + c2. Ab is the surface of the solid particle pushed into
the soft-particle and the enclosing area, which corresponds to the solid
line, is denoted Atotal. The overlapping volume δV which gives rise to
the repulsive normal force corresponds to the dark grey area. and is a
fraction of the volume ∆V which corresponds to the grey area outside
the boundary Atotal.

The right picture shows the situation for the soft-soft interaction. Here
the inserted grains can move freely inside the combined volume of both
soft-particles and Ab is given by the circular area of radius ξ between
the two sphere caps at which the two particles interact. Using the as-
sumption of the fluid like behavior one can argue that the pressure onto
this surface is the same as onto the shell. Thus for both contacts follows
δV = ∆V Ab/Atotal. Using the derivation in the appendix, δV is given by

δV =

{
∆V R1c1

2R2
1
−R1c1+R2c2

solid-soft

∆V
2R1c1−c2

1

4(R2
1
+R2

2
)+2R1c1+2R2c2

soft-soft
(8.3)

where ∆V = M( 1
ρc

− 1
ρ ) is the volume overlapping with the boundary

Atotal.

8.2.1 Analysis of the force law

For the analysis of the measurements, the critical volume fraction ρc of
the soft-particle needs to be determined. When plotting the normal force
versus the actual volume fraction of the soft-particle ρc, is given by the
intersection of the plot with the x-axis. For the measurement in chapter 6
this gives ρc = 0.763; a value only slightly higher than the initial volume
fraction ρi = 0.761.

Using equation 8.3 to determine δV one gets the force law shown in Fig-
ure 8.5 where the normal force is plotted versus δV . The upper two
curves show the solid-soft interaction for the size ratio 1

1 and 1
10 while

the lower two curves show the soft-soft interaction for the size ratio 1
1

and 1
2 . Unlike in Figure 6.8 which shows the normal force versus the

normal deformation, there exists no threshold because as soon as there
exists a volume of interaction δV , a repulsive force is measured

For the soft-soft interaction the force law is independent of the size ratio
while for the elastic-soft interaction one needs to interpolate between the
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Fig. 8.5: Normal force as a function of the interacting volume δV . The lower
two curves show the soft-soft interaction for the size ratios 1

1
and 1

2
. The

upper two show the solid-soft interaction for the size ratio 1

1
and 1

10
.

two curves to obtain the force law for size ratios different from the mea-
sured ones. This can be simplified when δV is calculated only from the
upper part in equation 8.3. This takes into account that in the solid-soft
interaction a fraction of δV generates tangential forces which cancel out
and do not contribute to the normal force. Therefore the bent area Ab can
be replaced by the circular area between the two sphere caps. Figure 8.6
shows the resulting curves and in a first approximation one can set the
curves for the solid-soft interaction to be identical. This allows an arbi-
trary shape for the soft-particles and reduces the number of simulations
significantly as only two measurements are necessary to determine the
force law. Namely the solid-soft and soft-soft interaction with a size ratio
1
1 .

8.3 Implementing the self-consistent soft-par–
ticles

To implement the self-consistent soft particles, an algorithm is needed
which determines the actual volume fraction and, if it is larger than ρc,
gives the interaction volume δV .
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Fig. 8.6: Normal force as a function of the effective overlapping volume δV . The
lower two curves, showing the soft-soft interaction are the same as in
Figure 8.5.

For two overlapping soft-particles the available space for the polydis-
perse material is reduced by the volume Vcaps. Thus the volume fraction
of both particles increases. The goal of the following algorithm is to di-
vide the subtracted volume Vcaps between the two particles, such that the
resulting volume fraction of both particles is identical.

As the molecular dynamics only works with particle pairs an iterative
method, similar to the iterative solver in the contact dynamics, is used.
For simplicity the following algorithm is given for spherical soft-particles,
but it can be generalized to particles of arbitrary shape.

In each contact the available volume for the polydisperse media is re-
duced by the overlapping volume Vcaps. Therefore each particle is as-
signed a variable Vcut which corresponds to the volume occupied by
overlapping particles. For the first particle in the contact this is Vcut1 =
a1Vcaps and similar for the second one Vcut2 = a2Vcaps. The sum of the
assigning factors a1 and a2 is unity and the algorithm works like the fol-
lowing:

1. Initialization

For each contact the assigning factors are set to a1 = a2 = 0.5 and
sweeping over all particles the volume cut from a given particle is
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calculated via

Vcut =

i=n∑

i=0

Vcapsi
ai. (8.4)

Here n is the number of contacts of the chosen particle, Vcapsi
is the

overlapping volume of the ith contact and ai the assigning factor.

2. Recalculation of the assigning factors

Going over all contacts the two assigning factors a1 and a2 in every
contact are recalculated via

ainew
= ai + ∆ai = ai +

mi

ρa
− (Vi − Vcuti

)

Vcaps
, i = 1, 2. (8.5)

Here Vi is the volume and mi the mass of the ith particle in the
contact while ρa is the average volume fraction in the contact and
given by

ρa =
m1 + m2

V1 + V2 − Vcut1 − Vcut2

. (8.6)

Thus mi/ρa is the target volume of the particle and Vi − Vcut is the
momentary available volume. The difference between these two
gives the additionally needed volume which, for ρa < ρc, can also
be negative and the assigning factor might become smaller than
zero. In this case the negative factor is set to zero and the other one
to unity.

Using equation 8.5 the assigning factors might show changes from
zero to unity in a single step. This is prevented by allowing a max-
imum change ∆amax. This step width is comparable to the time
step in a molecular dynamics and set to ∆amax = 0.001.

The recalculation is repeated until the assigning factors do not change
anymore.

3. Determine δV

Using the assigning factors determined above, the volume of inter-
action δV for a single contact is calculated via

δV =
Vcapsa1

Vcut1

(
m1

ρc
− (V1 − Vcut1))

︸ ︷︷ ︸

Ve1

+
Vcapsa2

Vcut2

(
m2

ρc
− (V2 − Vcut2))

︸ ︷︷ ︸

Ve2

(8.7)
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The underbraced terms are the excess volumes of the first and sec-
ond particle respectively. This is the volume of the particle at crit-
ical volume fraction minus the available volume at its actual vol-
ume fraction. It corresponds to the mass overlapping with other
particles and is distributed among all overlapping contacts of the
particle.

In theory the second step of the iteration needs to be repeated several
times per time step which is very time consuming. Comparing simula-
tions with a different number of iterations shows that one iteration per
time step is sufficient when the values of a1 and a2, calculated previously,
are used during the initialization in the first step.

Fig. 8.7: Three interacting soft-particles. The flower like area corresponds to the
overlapping volume between the three particles. For the calculation of
the actual density only particle pairs are taken into account and the vol-
ume which corresponds to the grey area in the picture is subtracted more
than once.

Implementing this algorithm an approximation for multi-body contacts
is made. Figure 8.7 shows a simple example of three interacting soft-
particles. The flower like area corresponds to the overlapping volume
between the three particles. With the algorithm above only particle pairs
are taken into account, which avoids this complexity but produces a
small error when calculating the critical volume fraction as the volume
which corresponds to the grey area in the picture is subtracted more than
once. Therefore the resulting volume fraction might be larger than its ac-
tual value.
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8.4 Iteration

Using the self-consistent soft-particles the first two iterations for the model
described above were performed. The binning factor was set to g = 10
while the initial volume fraction of the inserted soft-particle was set to
ρi = 0.35. Thus the force law of the second iteration corresponds to a
system of polydispersity P = 100.
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Fig. 8.8: Repulsive force as a function of the overlapping volume δV in the it-
erative measurement for the solid-soft and soft-soft interaction with a
size ratio 1

1
. The measured force law of the second step is stronger than

in the first step because, in the second iteration, the voids between the
grains are filled with soft-particles which obey the force law of the first
iteration.

The resulting force law for the solid-soft and soft-soft interaction with a
size ratio 1

1 is shown in Figure 8.8. The force law of the second step is
stronger than in the first step because, in the second iteration, the voids
between the grains are filled with soft-particles which obey the force law
of the first iteration. The critical volume fraction is ρc ≈ 0.65 in the first
iteration and becomes ρc ≈ 0.75.

A third iteration was also performed but due to the approximation dur-
ing the calculation of δV the critical volume fraction decreases again.
We expect that a non spherical implementation of the soft-particle, com-
pletely describing the void space between the grains would eliminate the
approximation and thus the critical volume fraction will increase from it-
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eration to iteration.

8.5 Conclusion

In this chapter we introduced a self-consistent model which allows the
simulation of granular media of any given polydispersity. The force law
is determined in an iterative process where each iteration extends the
size distribution described by the measured force law. To obtain a force
law which is independent of the geometry we introduced a new concept
where the polydisperse material filled into the soft-particle is envisioned
similar to a fluid; it has a fixed volume and can take arbitrary shape. With
this concept the force-law of the soft-particles is described as a function
of the volume of interaction δV . It follows that the implementation of
the soft-particles is not restricted to a certain size ratio and the spherical
shape. Thus only one measurement per contact type is necessary which
significantly reduces the simulations during a single iteration. For sim-
plicity the size ratio for the solid-soft and soft-soft interaction was chosen
to be 1

1 .

To test the algorithm a simple version with spherical soft-particles was
implemented. Performing two iterations we could show that the force
law gets stiffer from one iteration to the next. This results from the addi-
tional material filled into the voids.

As a summary we can say that the self-consistent model allows to sim-
ulate systems of different polydispersity with the same number of parti-
cles. Thus it decouples the polydispersity from the number of particles
in the simulation.
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Conclusions

In this thesis we developed fast algorithms to simulate extremely poly-
disperse granular media where the size distribution is given by a trun-
cated power law. We could show that the biggest constraint for the nu-
merical study of extremely polydisperse systems is given by the non-
linear dependence of the computing time on the polydispersity. This
is caused by the increase of the number of particles compared with a
monodisperse system covering the same volume and the fact that the
time step linearly depends on the size of the smallest particle. Addition-
ally the linked-cell algorithm is not suited to determine the interacting
particle pairs because for polydisperse media each cell contains, addi-
tionally to the large particles, many small ones. Therefore a large num-
ber of unnecessary contacts are created which increase the computing
time and memory consumption. A solution was given with the quad-
tree which generates a finer grid in regions with many small particles
while it is coarse around big particles.

In a two dimensional shear experiment and in collaboration with Dr. Dis-
tler from BASF the shear behavior of polydisperse media was analyzed.
Of special interest was the influence of a lubricant which was modeled
with point-like particles. It was shown that the dilatancy increases with
the polydispersity and that point-like particles reduce the force neces-
sary to shear the system while the angle of dilatancy and the dilatancy
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are almost unchanged.

For systems with a polydispersity greater than 10 the simulation of ev-
ery individual particle becomes numerically too expensive. To reduce
the computational costs the concept of the soft-particles was introduced.
These soft-particles replace all grains smaller than a certain size with a
macroscopically description of a polydisperse packing.

The general normal force law of these particles is, for the solid-soft and
soft-soft contact, given by

F (δn) =

{
0, 0 < δn < δ′n
α(anδbn

n + cn), δn ≥ δ′n
. (9.1)

Here δn is the imposed normal deformation, δ′n is the threshold until
which the soft-particle can be deformed before a repulsive force is mea-
sured. The variables an, bn and cn are fit parameters which are different
for the two contact types and the factor α scales the measured force law
to the scale on which the particles are implemented.

The tangential force law

Ft(δn, δt) = Ftmax
(δn) · tanh(sδt) (9.2)

depends on the normal deformation δn and the tangential deformation
δt. Here the parameter s is a constant and

Ftmax
(δn) =

{
0, 0 < δn < δ′n
α(atδ

bt
n + atδ

′bt
n ), δn ≥ δ′n

(9.3)

is the maximum tangential force the contact can sustain before sliding.
As in the normal force law, α is the scaling factor and at and bt are fit
parameters. The slope Ftmax

s at zero tangential deformation gives the
stiffness of the tangential spring.

To fill the soft-particle with a dense random polydisperse packing the
hierarchical algorithm introduced by Tomaso Aste [98] was extended.
The size distribution of the generated packing follows a truncated power
law and has an exponent b = 3.5 which is about the same value observed
in real world polydisperse materials.

Using this macroscopic description for particles smaller than a certain
size significantly reduces the particles in the simulation. In the shear ex-
periment discussed in chapter 7 the polydispersity could be expanded
by a factor of 10 while the number of particles, compared with the sim-
ulation without soft-particles, was reduced by a factor 28. Additionally
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the time step could be chosen five times larger which reduces the overall
computation time by more than a factor 100. Still, the dependence of the
computation time on the polydispersity remains when the polydispersity
is increased.

With the self-consistent extension of the soft-particle the polydispersity
of a granular material can be decoupled from the number of particles
used in the simulation. The force law is determined in an iterative pro-
cess where each iteration extends the described size distribution. This
way systems of different polydispersity can be simulated while the num-
ber of particles in the simulation remains constant. Additionally, describ-
ing the force as a function of the interaction volume shows that the imple-
mentation of the self-consistent soft-particle is not restricted to a certain
shape.

9.1 Outlook

The developed algorithms are an important step to improve the under-
standing of extremely polydisperse media and their applications. Of
great importance is the possibility to simulate any polydisperse media
with a finite number of particles which allows the numerical study of
different mixing techniques.

This is important for the prediction of the maximal achievable density
when mixing a material with a given size distribution. Up to now this
is only solved for a monodisperse system. We believe that the proposed
algorithm can give an answer to this question when the size distribu-
tion follows a truncated power law. As mentioned earlier the creation
of high volume fractions is of great interest for the preparation of high
performance concrete.

To further extend the capabilities of the self-consistent model we pro-
pose the following extensions. As the force-law of the soft-particles only
depends on the volume of interaction they do not need to be spheri-
cal. Therefore it should be possible to use a meshing algorithm similar
to the Voronoi-tessellation [100, 101] to divide the void space between
the grains into segments. These segments then replace the small soft-
particles which further reduces the number of particles as the number of
cells is comparable to the number of grains in the system.
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Appendix A

10.1 Apollonian insertion

Here we derive a solution for the Apollonian insertion used in section 7.1.1.
Wanted is the position and radius of a fifth sphere inserted between four
other spheres such that it touches all four. The set of equation to solve is:

|~xi − ~x| = ri + r, i = 1..4 (10.1)

Here ~x and r are the position and radius of the new sphere while ~xi and
ri are the positions and radii of the four already existing spheres.

The upper equation is linearized by subtracting each of the last three
equations from the first one:

2(~xi − ~xj)~x = r(ri − rj)− ( ~xj − ~xi)( ~xj + ~xi), i = 1..4, j = 2..4 (10.2)
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For all three equations this is:

2





x1 − x2 y1 − y2 z1 − z2

x1 − x3 y1 − y3 z1 − z3

x1 − x4 y1 − y4 z1 − z4





︸ ︷︷ ︸

A





x
y
z



 = r





r1 − r2

r1 − r3

r1 − r4





−





( ~x2 − ~x1)( ~x2 + ~x1)
( ~x3 − ~x1)( ~x3 + ~x1)
( ~x4 − ~x1)( ~x4 + ~x1)





Inverting the matrix A on the left hand side one gets the coordinate of
the new sphere

~x = A−1





r1 − r2

r1 − r3

r1 − r4



 r − A−1





( ~x2 − ~x1)( ~x2 + ~x1)
( ~x3 − ~x1)( ~x3 + ~x1)
( ~x4 − ~x1)( ~x4 + ~x1)



 . (10.3)

Inserting this into equation 10.1 one gets a quadratic equation for the
radius

r2 + br + c = 0. (10.4)

If one of the resulting radii is negative the positive radius is the wanted
one. If both results are positive then the smaller one is the solution as the
larger radius corresponds to the sphere enclosing the other four.

10.2 Calculating Vs

In this section we derive Vs used in section 8.1.1. It describes how much
volume during the initialization must be filled with soft-particles to ob-
tain a self-consistent packing following the size distribution in Figure 8.2.
When the largest radius is set to rmax = 1 and, as in the infinite case, the
smallest radius to rmin = 0, the ratio between the summed volume of the
first interval and the summed volume of all particles in the size distribu-
tion is given by

θ =

∫ 1

1/g
4
3πr3p(r)dr

∫ 1

0
4
3πr3p(r)dr

= 1 − gb−4. (10.5)

For the following discussion one has to distinguish between the summed
volume Vs of the soft-particles inserted into our self-consistent soft-particle
and the volume VS of the soft-particle itself. When the summed volume
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of the grains inserted into the soft-particles is called Vg one can write for
the total mass inside the soft-particle:

Mt = Vgρg + Vsρs. (10.6)

Here ρg and ρs are the volume fractions of the grains and the soft-particles
respectively. Using the fact that self-consistency implies that ρs is the
same for all soft-particles and defining the total occupied volume inside
a soft-particles by Vt = Vg + Vs we can write:

ρs =
Mt

VS
=

Vgρg + (Vt − Vg)ρs

VS
(10.7)

As ρg = 1 we get

ρs =
Vg

VS − (Vt − Vg)
(10.8)

Using the ratio θ = 1−gb−4 calculated in equation 10.5 the volume of the
grains is

Vg = θVSρs. (10.9)

Subtracting the volume of the grains from the total volume one gets

Vs = Vt − Vg = VS(1 − θ) = VSgb−4. (10.10)

10.3 Calculating δV

Here the derivation of the interaction volume δV between two particles,
as it is used in section 8.3, is explained. Figure 10.1 shows the setup of
these two particles.

The intersecting volume Vcaps of the two spheres is the sum of the two
sphere caps defined by the overlap δn = c1 + c2 and is given by [102]

Vcaps =
π(R1 + R2 − d)2(d2 + 2dR1 − 3R2

1 + 2dR2 + 6rR2 − 3R2
2)

12d
.

(10.11)
R1 is the radius of the first particle, R2 the radius of the second one and
d = R1 + R1 − δn is the distance between the sphere centers. Thus, for
δn > 0 the volume ∆V , which is the difference between the volume of
the soft-particle at critical volume fraction and the available volume at
the present overlap, is given by

∆V =
M

ρc
− (

4

3
πR3

1 − Vcaps). (10.12)
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Fig. 10.1: Geometrical sketch of the measurement. Here R1 is the radius of the
first particle, c1 the height of its sphere cap and ξ the radius of the circu-
lar area between the two sphere caps defined by the normal deforma-
tion δn = c1 + c2. The area of the first sphere inside the second sphere
is denoted A1.

Here M is the mass of all particles inserted into the soft-particle and ρc

is the critical volume fraction. The boundary Atotal for the solid-soft and
the soft-soft interaction is given by

Atotal =



4πR2
1
− A1 + A2 = 2π(2R2

1
− R1c1 + R2c2) solid-soft

4π(R2
1

+ R2
2
) − (A1 + A2) = 2π(2(R2

1
+ R2

2
) + R1c1 + R2c2)) soft-soft ,

(10.13)
where A1 and A2 are given by

Ai = 2πR2
i (1 − cos(βi)) = 2πR2

i (1 − Ri − ci

Ri
) = 2πRici, i = 1, 2.

(10.14)
The surface of interaction Ab in the solid-soft contact is A1 = 2πR1c1
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while for the soft-soft interaction it is the circular area πξ2 between the
two sphere caps with ξ2 = R2

i − (Ri − ci)
2.

Thus the overlapping volume is given by

δV =

{
∆V R1c1

2R2
1
−R1c1+R2c2

solid-soft

∆V
2R1c1−c2

1

4(R2
1
+R2

2
)+2R1c1+2R2c2

soft-soft
(10.15)
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théorie des formes quadratiques. Journal für die Reine und Ange-
wandte Mathematik, 133:97–178, 1908.

[102] Eric W. Weisstein. Sphere-sphere intersection. From MathWorld–A
Wolfram Web Resource.



Acknowledgment

I thank Prof. Herrmann for giving me the opportunity to work on this
challenging subject at his institute and Prof. Trebin for being the sec-
ondary supervisor.

Special thanks goes to my girlfriend Jessica who always supported me in
the last years.

I am also very grateful to my colleagues and I especially thank Sean
with whom I worked on the BASF project and Jens for very helpful dis-
cussions and the right questions at the right time. I also thank Martin
Strauß and Reza Mahmoodi for their company and the good times we
had throughout our time at the institute.

I also want to thank all my room mates in the Bauhäusle for all the good
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