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Zusammenfassung

Die erstmalige Realisierung eines Bose-Einstein-Kondensats in verdünnten atomaren
Gasen im Jahr 1995 [6, 25, 47] hat eine faszinierende Forschungsrichtung eröffnet: das
Studium makroskopischer Quantenzustände als eine neue Form der Materie. In den
neuesten Experimenten spielt die interatomare Wechselwirkung eine entscheidende
Rolle für die große Vielfalt der beobachteten Phänomene [19]. Die exakte Kenntnis
der Wechselwirkungs-Potenziale zwischen zwei Atomen ist eine der Grundvoraus-
setzungen für diese Experimente. Eine sehr präzise Methode zur Vermessung der
Wechselwirkungs-Potenziale nutzt die Existenz von magnetisch induzierten Streu-
Resonanzen sog. Feshbach-Resonanzen aus. Durch ein extern angelegtes Magnetfeld
lässt sich in der Nähe dieser Streuresonanzen die Wechselwirkung zwischen zwei
Atomen beliebig variieren. Dieser Effekt ist experimentell messbar. Aus den Posi-
tionen der Feshbach-Resonanzen lassen sich weitreichende Rückschlüsse über die
Wechselwirkungs-Potenziale ziehen.
Thema der vorliegenden Arbeit ist die erstmalige Beobachtung von vierzehn magne-
tisch-induzierten Feshbach-Resonanzen bei Stößen zwischen optisch gespeicherten
ultrakalten 52Cr Atomen. Untersucht wurde dabei der Magnetfeldbereich zwischen 4
und 600 G. Die Variation der Streulänge nahe einer Feshbach-Resonanz wurde anhand
der Teilchenverluste aufgrund der resonant überhöhten inelastischen Stoßprozesse be-
obachtet. Die Kalibration der Magnetfelder erfolgte mittels Mikrowellenspektroskopie
und erlaubte eine absolute Genauigkeit von unter 100 mG.
Vor dieser Arbeit war nur wenig über das Wechselwirkungs-Potenzial zwischen zwei
52Cr Atomen bekannt. In Zusammenarbeit mit Dr. Andrea Simoni und Dr. Eite
Tiesinga vom National Institute of Standards and Technology (NIST), Gaithersburg,
USA gelang es uns, dreizehn der vierzehn experimentell beobachteten Resonan-
zen zu identifizieren und die entsprechenden Quantenzahlen zuzuordnen. Die elf
stärksten Feshbach-Resonanzen bilden einen kompletten Satz von Resonanzen. Diese
entstehen aufgrund der Kopplung des s-Wellen Eingangskanals an die gebundenen
Molekülzustände. Für die Kopplung ist die starke Dipol-Dipol-Wechselwirkung bei
52Cr verantwortlich, welche bis zur zweiten Ordnung berücksichtigt werden muss,
um die elf stärksten Resonanzen zu erklären. Weitere zwei Resonanzen konnten
der Ankopplung des d-Wellen-Eingangskanals an die gebundenen Zustände zugeord-
net werden. Mit Hilfe der experimentellen Resonanz-Positionen und der Kenntnis
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Zusammenfassung

der zugehörigen Quantenzahlen gelang es erstmalig, einen Parametersatz für die
Born-Oppenheimer Potenziale 13,9,5Σ+

g mit hoher Genauigkeit anzugeben. Die Ab-
weichungen zwischen den mit diesem Parametersatz theoretisch vorhergesagten und
experimentell beobachteten Positionen liegen im Mittel bei 10 G. Bei Berücksichti-
gung der Dipol-Dipol-Wechselwirkung in der Theorie beträgt die mittlere Abweichung
unter 0,6 G. Dies zeigt, dass die Dipol-Dipol-Wechselwirkung für Stöße zwischen
ultrakalten Chromatomen eine entscheidende Rolle spielt.
Die genaue Kenntnis der Molekülpotenziale eröffnet viele neue Perspektiven. Auf Basis
der Molekülpotenziale lassen sich präzise Aussagen über die Kollisionseigenschaften in
anderen Eingangskanälen und weiterer Chrom-Isotope treffen. Möglicherweise führen
diese neuen Ergebnisse auch zu einem besseren Verständnis der Bindungsmechanismen
des Cr2-Moleküls, welche noch nicht im Detail verstanden sind.
Für weitere Experimente mit ultrakalten Chromatomen ist vor allem die Variation
der Wechselwirkungsstärke nahe bei einer Feshbach-Resonanz von Interesse. Dies
erlaubt es, das Verhältnis zwischen der anisotropen Dipol-Dipol-Wechselwirkung
und der isotropen Kontaktwechselwirkung beliebig einzustellen. Auch können die
gefundenen Feshbach-Resonanzen ausgenutzt werden, um ultrakalte Moleküle zu
erzeugen.
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Abstract

The first realization of Bose-Einstein condensation (BEC) in dilute atomic gases in
the year 1995 [6, 25, 47] has pioneered the exploration of an exciting new form of
matter: the macroscopic quantum state. In many of the more recent experiments
the interatomic interaction is responsible for the astonishing variety of observed
phenomena [19]. The exact knowledge of the interaction potentials between two atoms
is one of the prerequisites for these kind of experiments. A very precise method for
determining the interaction potentials exploits the existence of magnetically induced
Feshbach resonances. For certain values of the applied external magnetic field the
interaction can be arbitrarily tuned. From the positions of these Feshbach resonances
one can deduce many details of the acting interaction potentials.

The topic of this thesis is the first observation of fourteen magnetically induced
Feshbach resonances in collisions between optically trapped ultracold 52Cr atoms.
The search for Feshbach resonances was performed for magnetic fields between 4
and 600 G. A calibration of the magnetic field was done for each observed resonance
slightly above and below the resonance using rf-spectroscopy. This allowed us to
determine the positions of the resonances with an accuracy of below 100 mG.

Up to now, not much was known about the interaction potentials between two 52Cr
atoms. Due to a close collaboration with Andrea Simoni and Eite Tiesinga of the
National Institute of Standards and Technology, Gaithersburg, USA we succeeded in
identifying thirteen of the fourteen experimentally observed resonances and to assign
the relevant quantum numbers. The eleven strongest Feshbach resonances build a
complete set of all possible resonances up to second-order in the magnetic dipole-
dipole coupling for the deca-triplett s-wave entrance channel. The two remaining
identified resonances are resonances with a d-wave entrance channel and are thus much
weaker. From the experimental resonance positions and knowing the corresponding
quantum numbers allowed us to calculate a set of parameters describing the Born-
Oppenheimer potentials 13,9,5Σ+

g with unprecedent precision. The average difference
between theoretical and experimental resonance positions is only ≈ 0.6 G. Neglecting
the spin-spin dipole interaction in our calculations leads to an average deviation of
about 10 G. This is a clear sign, that the dipole-dipole interaction plays an important
role in collisions between ultracold chromium atoms.
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Abstract

The precise knowledge of the molecular potentials opens up new vistas. Based on
the measured molecular potentials we can predict the collisional properties in other
entrance channels and even for other chromium isotopes. Maybe these new results
will lead to a better understanding of the bonding mechanisms of the chromium
dimer, which is not yet fully understood in detail.
Concerning further experiments with ultracold chromium atoms, the possibility to
vary the interaction strength by using a Feshbach resonance is of interest. This will
allow to change the strength of the isotropic contact interaction in relation to the
anisotropic dipole-dipole interaction. The observed Feshbach resonances can even be
used to create ultracold molecules.
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Chapter 1

Introduction

For thousands of years people have asked, “What is the world made of?” and “What
holds it together?” The idea that matter should be made out of fundamental building
blocks is more then 2000 years old. The blocks were assumed to be simple and
structureless and not made of anything smaller:

“. . . the nature of the perpetual things consist of small particles infinite
in number. . . the particles are so small as to be imperceptible to us, and
take all kinds of shapes and all kinds of forms and differences of size. Out
of them, like out of elements (earth, air, fire, water) he now lets combine
and originate the visible and perceptible bodies. . . ”

450 B.C. Democritus [11]

Today we know that according to The Standard Model [44], the world is made out of
six quarks1 and six leptons2 and is held together by four fundamental forces3. Much
of our understanding of the fundamental nature of particles and their underlying
microscopic interactions has been derived from scattering experiments. In the year
1909 Ernest Rutherford scattered alpha particles off a thin gold foil [94]. From
the observed distribution of backscattered particles, he inferred the presence of a
charged massive core concentrated within a tiny spatial region. He thus discovered
the nucleus and proposed a celestial model for the atom, with electrons orbiting a
massive nucleus. In the quest of a deeper understanding of matter and the basic
interactions, more and more complex scattering experiments were performed. During
the last century the collision energy between two colliding particles was further and
further increased to successfully verify the predictions made by the standard model.
But not only very high collision energies are of interest. Extremely low collision
energies imply that the two particles interact with one another for a long time during

1top,bottom,strange,charm,up and down quark
2electron, muon, tau and the corresponding neutrinos
3electromagnetism, gravity, strong and weak interaction.

5



Chapter 1 Introduction

a collision event. This makes the study of ultracold collisions an ideal method for
understanding the weak long-range forces that atoms exert on one another. The
preparation of an ultracold atomic sample was driven by the quest to create a
Bose-Einstein condensate [20, 62] for which temperatures below 1µK are typically
required. In the year 1995 three different groups [6, 25, 47] successfully created a
Bose-Einstein condensate. This was the first advancement into the degenerate regime
of a weakly interacting quantum gas. By now, there are many groups worldwide who
have realized a Bose-Einstein condensate, most of them working with alkalis due
to their simple level structure [19], but also more complex elements like metastable
helium [194, 204] or ytterbium were condensed [234]. Due to the specific collisional
properties of each element, appropriate trap types and cooling procedures are required
for the realization of a Bose-Einstein condensate. In experiments with rubidium and
sodium atoms a BEC can be achieved by laser cooling [39, 42, 178] and subsequent
rf-evaporation in magnetic traps [137], while Hydrogen has been cooled with cryogenic
methods and evaporative cooling below the critical condensation temperature.

The effectiveness of the evaporative cooling step, critically depends on the collision
rate of the atoms and thus the interaction potential of two atoms. The same holds
true for the properties of a Bose-Einstein condensate. Even though the creation of a
Bose-Einstein condensate is theoretically possible for non-interacting atoms, many
interesting effects occur due to the existence of an interaction between the atoms.
Already 1995 it was observed that for 7Li the condensate is stable only below a
critical number of atoms due to the attractive interaction between the atoms [24].
But also for repulsive interactions many interesting phenomena can be observed. The
experiments performed range — without claiming completeness — from the study of
elementary excitations like acoustic waves and phonons [149, 219, 220], the creation
of solitons [27, 54] and the realization of condensate spin mixtures [159, 208, 226],
over the creation of atom lasers [4, 16, 93, 150], the setup of atom interferometers [96]
with condensates and the demonstration of matter wave amplification [109, 126] to
the examination of superfluidity in condensates [34, 140, 185] and in particular the
observation of quantized vortices [1, 110, 139, 145] and solitons [5, 27, 54]. BEC in
optical lattices have been investigated [4, 28, 125, 174] and quantum phase transitions
have been demonstrated [81]. From many of these experimental results a rough
estimate of the interaction potentials can be extracted.

The most accurate method to determine the interaction potentials though, is to
perform Feshbach resonance spectroscopy. Feshbach resonances have been observed
for the first time in nuclear physics [70] and have recently become an important tool
in atomic physics, allowing to tune the magnitude and sign of the interaction by con-
trolling an external parameter e. g. the magnetic field. Feshbach resonances have been
observed in different atomic gases [36, 37, 45, 108, 143, 195, 197, 198, 199, 244]. The
fruitful interplay between theoretical calculations [107, 131, 155, 241] and experimen-
tal work has lead to an excellent understanding of the relevant interaction potentials.
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Moreover, interspecies Feshbach resonances [217, 222], Feshbach resonances between
atoms in different states [63] were observed.
After the successful creation of a Bose-Einstein condensate the next big challenge was
the creation of ultracold molecules of even a molecular BEC. Due to the additional
vibrational and rotational energy levels of molecules, no practical approach has
been found to laser-cool molecules. Therefore, alternative methods were explored
to create ultracold molecules. One possibility which has been demonstrated with
CaH [247], is sympathetic cooling of molecules with a buffer gas of cryogenically
cooled helium. In other approaches, polar molecules could be slowed in oscillating
electric fields by using the DC Stark-effect [14, 117]. In a similar experiment,
ammonia-molecules were successfully loaded into an electrostatic trap. The achieved
temperatures were also of the order of a few 10 mK [15]. A completely different
approach is to form cold molecules from laser-cooled atomic ensembles. Using laser-
induced photoassociation, homonuclear molecules in their electronic ground state
with translational temperatures below 1 mK could be produced [75, 164, 165, 258].
In particular, the experiments in the groups of D. Heinzen [258] with 87Rb and
R. Hulet [75] with 7Li show that the creation of molecules works very well if the
atomic ensemble is already quantum degenerate. The success of this technique stems
from the small Doppler-broadening (a few kHz) of the transition from the molecular
to the atomic state at extremely low temperatures. Both approaches though, never
achieved to cool molecules into the quantum degenerate regime.
This changed in the past two years, when researchers succeed to adiabatically transfer
ultracold colliding atoms from an open channel into a molecular bound state of a closed
channel by ramping the magnetic offset field slowly over the position of a Feshbach
resonance towards lower fields. This synthesis of ultracold molecules gases generated
of bosonic [58, 61, 104, 199, 245, 259] and fermionic [56, 115, 188] degenerate quantum
gases was reported and dissociation of these molecules was studied. While the lifetime
of molecules formed by bosonic atoms is due to a high three-body loss-coefficient
of approximately L3 ≈ 10−25 cm6/s extremely short [68, 197, 225, 246], the lifetime
of molecules created by fermionic atoms is sufficiently long to allow evaporative
cooling of the molecules and to generate molecular BECs [82, 116, 266]. Moreover,
the BEC-BCS crossover regime has been investigated in the latter system. This leads
to the observation of strongly correlated fermionic gases [190] and the observation of
a pairing gap in a strongly interacting Fermi gas [38].
The interaction in BECs realized up to now is dominated by the isotropic and short-
range contact interaction. In contrast to the contact interaction, the dipole-dipole
interaction is long-range and anisotropic. If the dipole moment is high enough, the
resulting dipole-dipole force can influence or even completely change the properties of
a Bose-Einstein condensate. Properties of these dipolar gases have been theoretically
investigated [9]. Due to the character of the interaction, the stability of the condensate
is expected to depend on the trapping geometry [89, 205]. Changes in the excitation
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spectrum are predicted [87, 260] and under certain conditions a dispersion law which
acquires a roton-maxon spectrum [170, 206] can be obtained. Dipolar gases in optical
lattices may lead to new phase transitions [90]. Moreover, there are theoretical
proposals for realizing a fast and robust quantum computer with permanent dipole
moments [52]. In degenerated dipolar Fermi gases an anisotropy in the gap parameter
in the Cooper Pair formation is predicted [10].
Promising candidates [9] for observing the influence of the dipole-dipole interaction
on the dynamics of a BEC are atomic gases with high magnetic moments, e. g.
chromium (µ=6µB) and europium (µ=7µB). Other possibilities are molecules which
display either a high electric moment in electric fields [14] or electric dipole moments
by exciting them to Rydberg states [205]. Another alternative is to laser-induce
dipole-dipole interactions [169].
Similar to the Feshbach resonances, there is a possibility to change the magnitude
and sign of the dipole-dipole interaction by applying time varying magnetic fields [77]
as it is done in NMR. This makes it possible to map the dependence of the effects
described above on the strength of the dipolar interaction. In contrast to a Feshbach
resonance, tuning the dipolar interaction is a non-resonant effect, so there are no
excessive losses to be expected.
The phase transition to a Bose-Einstein condensate leads to a non-zero value of the
scalar order parameter, i. e. the condensate wave function. For atoms with multiple
(e. g. magnetic) sub-states, a quantum fluid consisting of multiple — distinguishable —
components can be created. In a magnetic trap only the low-field-seeking components
can be trapped, which limits the number of suitable states. Moreover, there are
high losses due to exothermic collisions which change the sub-state. Due to a
fortunate near-equality of the singlet and triplet scattering lengths for 87Rb the
exothermic collisions are suppressed. This allowed experiments with multi-component
condensates of 87Rb in a magnetic trap e. g. probing the spatial separation [95, 159]
and the stability of the relative phase in presence of dissipation [96] between the
two components. Also investigated were the nature of multi-component condensates
in the presence of continuous resonant and non-resonant rf-coupling between the
components [144, 145, 252, 253, 254]. In an optical dipole-trap atoms in all sub-
states can be trapped. Thus, spinor condensates consisting of a mixture of internal
sub-states can be created. In spinor condensates the order parameter is no longer
a scalar, but rather a vector which can rotate in the space spanned by the sub-
states. In various experiments the ground state of such a spinor condensate in
external magnetic fields [226], the dynamics [208], the formation and persistence
of meta-stable spin-domains [154] and the transport over spin-domain borders by
quantum-tunneling [221] have been investigated. There are theoretical calculations
on ferromagnetism in a lattice of Bose-Einstein condensates, in which the dipole-
dipole interaction leads to a spontaneous magnetization [184] or the excitation of
spin-waves [265].
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In this thesis, I report the observation of fourteen magnetically induced Feshbach
resonances in ultracold 52Cr. The resonance positions were determined by monitoring
the increased three body loss-rate close to a Feshbach resonance. Through a close
collaboration with theory, we were able to infer from the experimental results the
interaction potentials of the 13,9,5Σ+

g states. Our results form the most precise
determination of the 52Cr interaction potentials up-to-date. The precise knowledge
of the potentials may lead to a better understanding of the bonding mechanisms
of the chromium dimer, which is not yet fully understood theoretically [200]. In
addition, the existence of Feshbach resonances will allow to change the value of the
contact interaction. The adjustability of both, the dipole-dipole interaction and the
contact interaction, along with seven Zeeman-substates makes chromium an ideal
candidate for exploring the properties of dipolar condensates and spinor-physics.
Finally, due to the absence of the hyperfine-structure, 52Cr forms an ideal candidate
for the theoretical investigation of Feshbach resonances; it is an ideal “text-book”
example for discussing Feshbach resonances.

This thesis is organized as follows:

Chapter 2 and 3 are dedicated to introducing the theoretical framework used to
describe Feshbach resonances. The idea behind these two chapters is to form a
compilation of all the theoretical aspects about Feshbach resonances in a very concise
manner. Chapter 2 is a short repetition of the well known basic scattering theory.
The presentation follows not the commonly encountered approach found in textbooks
though, but uses “formal” scattering theory. This approach is much more powerful
and will allow us to introduce the Feshbach resonance theory in Chapter 3 much
more elegantly. Before turning our attention to this task, I apply the “formal”
scattering theory to solve the scattering problem at a square-well potential. After a
phenomenological introduction of Feshbach resonances at the beginning of Chapter 3,
I then derive the behavior of the scattering length close to a Feshbach resonance.
This is done using the approach of Feshbach [70], which uses the “formal” scattering
theory from the previous chapter. Following this abstract derivation, I now extend
our previous example to include two square-well potentials. When a coupling is
introduced between these two potentials I can reproduce all properties of Feshbach
resonances already with this quite simple example. Since an analytic solution of the
Schrödinger equation is not possible any more for real world potentials, Feshbach
resonance calculations need to resort to numerical methods. I present two popular
methods for solving the Schrödinger equation. The chapter closes with an overview of
the different possibilities to experimentally observe the diverging scattering length at
a Feshbach resonance. Chapter 4 gives a summary of the physical and spectroscopic
properties of chromium for this work. There I also review some results of our
earlier measurements of the elastic and inelastic cross-sections of 52Cr and 50Cr. Of
particular interest for this work are the results of the cross-dimensional relaxation
measurements. From this measurement I could determine the elastic cross-section

9



Chapter 1 Introduction

of the 13Σ+
g state of 52Cr, which serves as a comparison to our obtained value. The

setup of our experiment is described in Chapter 5. Since the experiment has grown
quite complex over time, only the new parts which were realized during this thesis are
discussed in detail. These are the setup of the optical dipole trap, optical pumping
laser-system and the computer control system. The experimental observation of
the Feshbach resonances is treated in Chapter 6. First I review all steps involved
in preparing the necessary ultracold atomic sample of 52Cr. This is followed by
the presentation of the experimental results of the Feshbach measurements. The
Feshbach resonances were detected by looking for the inelastic loss features which
accompany the diverging scattering length. To obtain the interaction potentials from
the measured positions we need to construct the model potentials which reproduce
the experimental results. The precise knowledge of these potentials allows to infer
the outcome of several follow-up experiments which are investigated at the end of this
chapter. The thesis concludes with a summary and future perspectives in Chapter 7.
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Chapter 2

Basic collision theory

In this first chapter, I introduce the basic physical concepts of collision theory with an
emphasis on cold and ultracold collisions. I do not intend to give a full derivation of
the theoretical formalism but rather stress the — sometimes less precise — underlying
physical pictures and interpretations. For the full derivations see for example [202].
After introducing the theoretical formalism used to describe the scattering process,
I’ll explain the scattering of a square-well potential. Using this example, I’ll also
highlight some special features of low energy scattering. The material in this chapter
will establish the basis for the discussion of the Feshbach resonance-theory in the
next chapter.

2.1 The scattering problem

Here we will consider the non-relativistic collision process between two distinguishable,
moving particles interacting via a finite-range scalar potential V (r1 − r2). We shall
not take into account the possible internal structure of the particles, thereby ignoring
inelastic scattering phenomena. Also, we shall assume that the target is thin enough
to enable us to neglect multiple scattering processes. Because the interaction potential
V (r1 − r2) depends only on the relative positions r1 − r2 of the particles, one can
most conveniently solve this problem in the center-of-mass reference frame. Thus the
problem reduces to the study of the scattering problem of a single particle by the
potential V (r). The reduced mass mµ of this particle is then given by mµ = m1m2

m1+m2
.

In quantum mechanics, particles are usually described as wave packets. The incident
particle is described by a wave packet φ(r) which is a superposition of plane waves
eikr:

φ(r) =

∫
dkeikrAk0(k) , (2.1)

where Ak0(k) is sharply peaked about the particle momentum k0. E(k) is the energy
of a free particle with momentum k = |k|; in the case of a non-relativistic particle

11



Chapter 2 Basic collision theory

k
0

dΩ

k

dA

V( r )

ϑ
z

Figure 2.1: Basic scattering problem: an incident plane wave with wave vector k0 is
scattered by a potential V (r). The scattered wave is detected in the shaded area along a
direction k under the solid angle dΩ.

E(k) = ~2k2

2mµ
. It is therefore sufficient to solve the scattering problem for a plane

wave eikr. This simplified scattering problem is sketched in Figure 2.1. An incident
plane wave with wave vector k0 is scattered by a potential V (r). The scattering of
the plane wave is described by the time independent Schrödinger equation[

~2k̂2

2mµ

+ V (r)

]
φ(r) = Eφ(r) . (2.2)

The solution of this equation in the far field consists out of two components: the
incident plane wave and a spherical wave with wave vector k modulated by the
angle-dependent scattering amplitude f(ϑ, φ):

φ(r) −−−→
r→∞

eikr + f(ϑ, φ)
eikr

r
. (2.3)

For elastic scattering, energy conservation requires k = |k0|. The main goal of
scattering theory is to derive an expression for the scattering cross-section σtot which
tells us how many scattering events per unit time and incident particle flux take
place. The detector in the setup which is depicted in Fig. 2.1 can only observe a
fraction of the total scattered wave. This leads to the definition of the differential
scattering cross-section

dσ(E, ϑ, φ) = |f(E, ϑ, φ)|2dΩ , (2.4)

12



2.2 Lippmann–Schwinger equation

which is a measure for scattering probability of a single particle into the solid angle
dΩ normalized to the incident particle current density. Integration of Eq. (2.4) yields
the total scattering cross-section

σtot(E) =

∫
|f(E, ϑ, φ)|2dΩ . (2.5)

All the information about the collision process can therefore be obtained from the
scattering amplitude.
Finally one can derive the optical theorem:

σtot(E) =
4π

k
Imf(E, ϑ = 0) . (2.6)

It arises because of the destructive interference between the incident and the scattered
waves behind the scattering region (ϑ ≈ 0). In other words, the “shadow” cast by
the target in the forward direction reduces the intensity of the incident beam, so
that the scattered particles are removed from it in an amount proportional to σtot
[202]. Most books now continue by introducing the partial wave expansion. The
partial wave expansion approach simplifies calculations and allows to gain a faster
insight into the physical properties of the scattering process (see for example [40]).
We will in the following solve the scattering problem in a more formal way, using the
framework of the Lippmann-Schwinger equation which is much more powerful. It
also enables us to describe the theory of collisions involving Feshbach resonances in
the next chapter more elegantly.

2.2 Lippmann–Schwinger equation

We assume that the scattering Hamiltonian can be decomposed in the following way:

Ĥ = Ĥ0 + V̂ , (2.7)

where Ĥ0 is the kinetic-energy operator and V̂ the scattering potential operator.
In the absence of a scatterer, V̂ would be zero and an energy eigenstate would be
just a free particle state k. However, if the scattering process is to be elastic we are
interested in obtaining a solution to the full Schrödinger equation with the same
eigenvalue. More specifically, let |φ 〉 be the energy eigenket of Ĥ0:

Ĥ0|φ 〉 = E|φ 〉 . (2.8)

So the basic Schrödinger equation we need to solve is

Ĥ|ψ 〉 = (Ĥ0 + V̂ )|ψ 〉 = E|ψ 〉 , (2.9)
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Chapter 2 Basic collision theory

or slightly rewritten
(E − Ĥ0)|ψ 〉 = V̂ |ψ 〉 . (2.10)

This linear inhomogeneous differential equation can be solved using Green’s functions
[71] or in this case operators. A formal solution is given by:

|ψ(±) 〉 = |φ 〉+ Ĝ
(±)
0 V̂ |ψ(±) 〉 . (2.11)

This is the so called Lippmann-Schwinger equation, where

Ĝ
(±)
0 =

1

E − Ĥ0 ± iε
. (2.12)

The Lippmann-Schwinger equation can be formally derived by multiplying Eq. (2.10)
with (E − Ĥ0)

−1, which results in

|ψ 〉 = (E − Ĥ0)
−1V |ψ 〉 . (2.13)

To make this solution meaningful, we must define the inverse operator if E happens
to be an eigenvalue of Ĥ0. We avoid the singularity by adding/subtracting an
infinitesimally small imaginary part iε to the energy1 E. For completeness and to
match the complete scattering experiment boundary conditions, the full solution
must also include |φ 〉, the solution to the homogeneous equation2. The physical
meaning of the ± in the Lippmann-Schwinger equation is to be discussed in a moment
when we look at the space representation of the solution, i.e. 〈 r |ψ(±) 〉.

First note that the Lippmann-Schwinger equation is an integral equation which
replaces the Schrödinger Eq. (2.10) plus the boundary condition Eq. (2.3) which is
incorporated through the choice of Green’s operator Eq. (2.12). To verify the correct
asymptotic behavior, one can calculate the space representation of the Lippmann-
Schwinger equation in the limit3 r→∞. Green’s Operator in space representation
is given by:

G(±)(x,x′) = − 1

4π

e±ik|r−r′|

|r− r′|
, (2.14)

which is nothing else than Green’s function for the Helmholtz equation [71, 112].
This now enables us to calculate the asymptotic solution of the Lippmann-Schwinger

1Some authors add a limε→0 to make this more explicit and mathematically correct. We choose
to omit it here for readability reasons.

2A more rigorous derivation of this expression for Green’s operator can be found in Appendix B
on page 135.

3for most real potentials the condition is less stringent, r has to be only far outside the range
of the potential. But the range of the Coulomb potential for example is infinite. Solving the
scattering problem for a Coulomb potential requires thus special care and is described in [114].
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2.2 Lippmann–Schwinger equation

equation in space representation [202]:

〈 r |ψ(±) 〉 −−−→
r→∞

= 〈 r |φ 〉 − 1

4π

2m

~2

e±ikr

r

∫
dr′e−ik′r′V (r′)〈 r′ |ψ(±) 〉 =

=
1

(2π)3/2

(
eikr + f(k,k′)

e±ikr

r

)
. (2.15)

This form makes it very clear that we have the original plane wave in propagation
direction k plus an outgoing (+) or incoming (-) spherical wave with amplitude
f(k,k′) given by

f(k,k′) = − 1

4π
(2π)3 2m

~2
〈±k′ | V̂ |ψ(±) 〉 . (2.16)

The implicit Eq. (2.11) can be rewritten to only depend on |φ 〉 by multiplying from
the left with (E − Ĥ0 + iε), adding on both sides V̂ |φ 〉 and again multiplying from
the left (E − Ĥ + iε)−1, to give

|ψ(±) 〉 = |φ 〉+
1

E − Ĥ ± iε
V̂ |φ 〉 = |φ 〉+ Ĝ(±)V̂ |φ 〉 . (2.17)

Here we have defined
Ĝ(±) =

1

E − Ĥ ± iε
. (2.18)

Compared with Eq. (2.11) the full Hamilton operator appears now in Green’s operator.
One can define the so called “Møller operators” Ω̂(+) and Ω̂(−)

Ω̂(±) = 1 + Ĝ(±)V , (2.19)

through which Eq. (2.17) may be rewritten as,

|ψ(±) 〉 = Ω̂(±)|φ 〉 . (2.20)

In other words Ω̂(+) is just the operator which transforms the unperturbed initial
state |φ 〉 into the scattering state |ψ(+) 〉. Ω̂(−) transforms |φ 〉 into the unphysical
state |ψ(−) 〉, whose significance lies in the number of important results in which it
occurs.
It is helpful to define the transition operator T̂ , such that

V̂ |ψ(+) 〉 = T̂ |φ 〉 . (2.21)

Using this definition, the scattering amplitude of Eq. (2.16) can now be expressed
using Eq. (2.21)

f(k,k′) = − 1

4π
(2π)3 2m

~2
〈k′ | T̂ |k 〉 . (2.22)
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Chapter 2 Basic collision theory

Multiplying the Lippmann-Schwinger Eq. (2.11) by V̂ and using that the eigenkets
|φ 〉 are complete, results in

T̂ = V̂ + V̂
1

E − Ĥ0 + iε
T̂ . (2.23)

We can obtain an iterative solution for T̂ as follows

T̂ = V̂ + V̂
1

E − Ĥ0 + iε

(
V̂ + V̂

1

E − Ĥ0 + iε

(
V̂ + V̂

1

E − Ĥ0 + iε

(
V̂ + · · ·

)))
.

(2.24)
Using this iterative solution to calculate the scattering amplitude with the help of
Eq. (2.22) gives the well known Born approximation [167].
On the other hand we can multiply Eq. (2.17) with V̂ from the left to get a formal
solution for T̂

T̂ = V̂ + V̂
1

E − Ĥ + iε
V̂ . (2.25)

After insertion of the complete set of eigenstates |ψ(+) 〉 of Ĥ we have

T̂ (E) = V̂ +
∑

ν

V̂
|ψ(+) 〉〈ψ(+) |

E − εν
V̂ , (2.26)

where the summation over ν is discrete for the bound-state energies εν < 0, and
represents an integration for positive energies that correspond to scattering solutions.
From this equation we see that the two-body T-matrix has poles, which correspond
to the bound states of the potential4.
Finally we define the S-Operator as Ŝ = Ω̂(−)†Ω̂(+). Let us now calculate the S-Matrix
in the basis of the asymptotic states |φµ 〉:

Sµν = 〈φµ | Ω̂(−)†Ω̂(+) |φν 〉 = 〈ψ(−)
µ |ψ(+)

ν 〉 =

= 〈φµ |U(+∞,−∞) |φν 〉 .
(2.27)

In the last step we have used that the Møller operators can be expressed by the
time evolution operator Û(t, t′) as shown in Appendix B on page 135. Now the
physical interpretation of the S-Matrix is clear. It gives the asymptotical transition
probabilities between two free states |φµ 〉 and |φν 〉. One can derive a more explicit
expression for the S-Matrix elements [114, Chapter 14], which relates the S- and
T-Matrix.

Sµν = δ(µ− ν)− 2πiδ(Eµ − Eν)〈φµ | V̂ |ψ(+)
ν 〉

= δ(µ− ν)− 2πiδ(Eµ − Eν)〈φµ | T̂ |φν 〉 .
(2.28)

4While all bound states occur at poles of T̂ , not all poles of T̂ are bound states. True bound
states are only poles where k is located along the positive imaginary axis of the complex k plane.
Other poles may correspond to resonances, virtual states, or kinematic effects [162]. This also
holds true for the S-matrix.
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2.3 Partial wave decomposition

2.3 Partial wave decomposition

If we assume that the potential is spherically symmetric, the transition operator T̂
commutes with L̂2 and L̂. In other words, T̂ is a scalar operator. Thus the solution
of the Schrödinger equation Ψ can be separated into a radial part 1/ru`(r) and an
angular part5 P`(θ). We can now expand the scattering amplitude Eq. (2.22) in
spherical functions |E `m 〉:

f(k,k′) = − 1

4π
(2π)3 2m

~2
〈k′ | T̂ |k 〉 =

= − 1

4π
(2π)3 2m

~2

∑
`,`′,m,m′

∫∫
dE dE ′〈k′ |E ′ `′m′ 〉〈E ′ `′m′ | T̂ |E `m 〉〈E `m |k 〉 =

= −4π

k

∑
l,m

T`(E)

∣∣∣∣∣
E=~2k2/2m

Y m
` (k′)Y m†

` (k) . (2.29)

Together with the customary definition

f`(k) = −πT`(E)

k
, (2.30)

and the properties of the spherical harmonic functions, we then have

f(k,k′) = f(ϑ) =
∞∑

`=0

(2`+ 1)f`(k)P`(cosϑ) . (2.31)

To appreciate the physical significance of f`(k), we have to study again the large-
distance behavior of the wave function 〈 r |ψ(+) 〉 given by Eq. (2.15). Using the
expansion of a plane wave in terms of spherical waves [114] and Eq. (2.31) gives

〈 r |ψ(+) 〉 −−−→
r→∞

1

(2π)3/2

(
eikr + f(k,k′)

eikr

r

)
=

=
1

(2π)3/2

∑
`

(2`+ 1)

2ik
P`(cosϑ)

[
(1 + 2ikf`(k))

eikr

r
− e−i(kr−`π)

r

]
. (2.32)

The physics of scattering process becomes now clear. When the scatterer is absent,
we can analyze the plane wave as the sum of a spherically outgoing eikr/r and a
spherically incoming −e−i(kr−`π)/r wave for each `. The presence of a scatterer changes
only the coefficient of the outgoing wave. The incoming wave is completely unaffected.
It is now convenient to define6 S`(k) to be

S`(k) = (1 + 2ikf`(k)) = e2iδ`(k) . (2.33)
5P` denotes the Legendre polynomials
6S`(k) can also be regarded as the `-th diagonal element of the Ŝ operator.
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V(r)

r

-V
0

r
0

δ

Figure 2.2: Schematic representation of the phase shift δ`(k). The wave function Eq. (2.32)
when the scattering potential is absent is drawn in gray, while the wave function with the
scattering potential present is drawn in black. The phase difference between these two
wave functions far away from the scattering region determines the phase shift δ`(k) (in
this case for `=0).

Using this definition we can rewrite Eq. (2.32) in a more convenient form

〈 r |ψ(+) 〉 −−−→
r→∞

1

(2π)3/2

∑
`

(2`+ 1)P`(cosϑ)i`eiδ`(k) sin(kr − 1
2
`π + δ`(k))

kr
(2.34)

Because of the probability flux conservation one can deduce that |S`(k)| = 1, that
is, the most that can happen is a change in the phase of the outgoing wave. This
is expressed by the second equality in Eq. (2.33), where we have introduced δ`(k),
the so called phase shift of the `-th partial wave. A schematic representation of the
phase shift is given in Fig. 2.2. We can now express f`(k) explicitly in terms of δ`(k):

f`(k) =
S`(k)− 1

2ik
=
e2iδ`(k) − 1

2ik
=
eiδ`(k) sin δ`(k)

k
=

1

k cot δ`(k)− ik
. (2.35)

For the full scattering amplitude we have finally:

f(ϑ, φ) =
1

k

∑
l

(2l + 1)eiδ`(k) sin δ`(k)Pl(cosϑ) . (2.36)
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(a) (b)

θ

π−θ

Detector

Figure 2.3: For identical particles, it is impossible to tell if we are observing a scattered
beam particle (a) or a recoiling target particle (b).

The differential cross section can now be obtained from Eq. (2.4) and σtot can be
obtained by performing the integration over the solid angle Eq. (2.5), which gives

σtot(k) =
4π

k2

∑
l

(2`+ 1) sin2 δ`(k) =
∑

l

σ`(k) . (2.37)

The maximum contribution of a specific partial wave to the total cross-section is
reached in the so called unitarity limit (sin2 δ`(k) = 1) and increases with angular
momentum according to

σ`(k) =
4π(2`+ 1)

k2
. (2.38)

Comparing the scattering amplitude in forward direction, f(ϑ = 0) with Eq. (2.37),
directly yields the optical theorem given in Eq. (2.6).
We have now reduced the solution of a specific scattering problem to the determination
of the corresponding partial wave phase shifts δ`(k). These are obtained by solving
the full Schrödinger Eq. (2.10) — numerically if necessary. The solution is then
compared to the asymptotic solution of Eq. (2.32) to determine the scattering phase
δ`(k). From the δ`(k) all other physically interesting quantities can be calculated.

2.4 Identical particles

In quantum mechanics there is no way of keeping track of each particle individually
when the wave functions of two identical particles overlap. It is therefore impossible
to identify in a scattering event, which particle scatters and which is the scatterer.
A detector can either detect the scattered particle or the recoiling target particle
as shown in Fig. 2.3. The symmetrization postulate [40] requires that the wave
function is either completely symmetric (for bosons) or completely antisymmetric
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(for fermions) with respect to permutation of these particles (r → −r7, r → −r,
ϑ→ π−ϑ, φ→ π+φ). To achieve this, we need to (anti-)symmetrize the asymptotic
wave function from Eq. (2.3),

φ(r) −−−→
r→∞

eikr ± e−ikr + [f(ϑ, φ)± f(π − ϑ, π + φ)]
eikr

r
, (2.39)

where the plus sign applies for bosons and the minus sign for fermions. This results
in a differential cross section,

dσ

dΩ
= |f(ϑ, φ)± f(π − ϑ, π + φ)| =

= |f(ϑ, φ)|2 + |f(π − ϑ, π + φ)|2 ± 2<
[
f(ϑ, φ)f †(π − ϑ, π + φ)

]
.

(2.40)

We note that in the classical limit, where the particles are distinguishable, the
interference term 2<

[
f(ϑ, φ)f †(π − ϑ, π + φ)

]
disappears. The total cross section

σtot needs to be divided by a factor of two, since we count each scattering event twice
during the integration. If we now use the partial wave decomposition Eq. (2.31) to
calculate the differential cross section we immediately see that odd partial waves
interfere destructively for bosons, whereas for fermions all even partial waves vanish
due to the symmetry properties of the Legendre polynomials. Integration gives the
total scattering cross section:

σtot(k) =
8π

k2

∑
` even, bosons
` odd, fermions

(2l + 1) sin2 δ`(k) . (2.41)

In the limit k → 0, i.e. when only s-wave collisions are still possible, collisions
between identical fermions are “frozen out”.

2.5 Elastic s-wave collisions
At low energies — or, more precisely, when 1/k is comparable to or larger than the
range R of the potential — partial waves for higher ` are, in general, unimportant.
This point may be obvious classically because the particle cannot penetrate the
centrifugal barrier8; as a result the potential inside has no effect. In terms of quantum
mechanics, the effective potential for the l-th partial wave is given by9

Veff(r) = V (r) +
~2

2mµ

`(`+ 1)

r2
. (2.42)

7To see that this operation really is a permutation of both particles, please remember that r is
the relative position of the particles

8a semi-classical argument gives that substantial scattering only occurs for ` '
√
`(`+ 1) . kR,

where R is the range of the potential.
9If the potential is strong enough to accommodate l 6= 0 bound states near E ' 0 the atoms can

tunnel through the potential barrier and couple resonantly to a bound state. This is a so called
shape resonance [114].
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2.5 Elastic s-wave collisions

The behavior of the radial wave function u`(r) is then largely determined by the
centrifugal barrier term. We can estimate the behavior of the phase shift by writing
Eq. (2.11) using the partial wave expansion of Green’s operator Eq. (2.14) [128, Chap.
8] which gives the following Integral equation for the scattering amplitude/phase:

f`(k) =
eiδ`(k) sin δ`(k)

k
= −2m

~2

∫ ∞

0

j`(kr)V (r)u`(r)rdr . (2.43)

If u`(r) is not to different from the solution10 j`(kr) for a free particle and 1/k is
much larger than the range of the potential, the right hand side would vary as k2`;
for small δ`(k) the left-hand side must vary as δ`(k)/k Eq. (2.33)11. Hence the phase
shift k goes to zero as

δ`(k) −−→
k→0

k2`+1 modulo π, (2.44)

for12 ` > 0. This is known as threshold behavior13. It is therefore obvious that at
low energies with a finite range potential, all partial cross sections except the s-wave
contribution σ0 vanish as k4`, which can be written

lim
k→0

σ0(k) = 8πa2, (2.45)

where the scattering length a is defined by

a = − lim
k→0

tan δ0(k)

k
. (2.46)

So low energy scattering can be described by a single parameter, the scattering length.
To understand the physical significance of the scattering length we will look at the
asymptotic behavior of the radial wave function for r → 0. For s-wave scattering
(` = 0) at low energies k ' 0, the Schrödinger equation outside the range of the
potential r > R is given by

d2u0(r)

dr2
= 0 . (2.47)

The obvious solution is u0(r) = c(r − a), so just a straight line! This can be
understood if we look at the behavior of the asymptotic s-wave function in the
limit k → 0. It is given by limk→0 u0(r) = sin[k(r + δ`(k)/k)] which shows identical

10j`(z) are the spherical Bessel functions and assume the values j`(z) −−−→
z→0

zl

(2`+1)!!
11For non-negligible values of δ`(k) the scattering amplitude is complex. This is best visualized

using a so called Argand plot [114, 128, 202, 235]
12j0(z) −−−→

z→0
1, thus the s-wave scattering amplitude assumes a constant value.

13We should be aware here that our argumentation is not very strict. A more careful derivation
shows that for power law potentials U(r) ∝ r−n Eq. (2.44) is valid only if 2l + 3 < n. So for
n ≤ 3 (e.g. the dipole-dipole interaction) all partial waves will contribute [127, §124].
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a<0

(a)

a=∞

bound

state

(b)

a>0

bound

state

(c)

a>0

(d)

Figure 2.4: The scattering length of a potential can be determined from the intercept of
the asymptotic wave function. (a,b,c) attractive potential with increasing depth. In case
(a) the potential supports no bound state, thus the scattering length is negative. (b) the
potential is now deep enough to start to support one bound state, the scattering length
diverges. (c) an even deeper potential increases the curvature of the wave function even
further, so the asymptote intersects the zero energy line for positive energies. (d) for a
repulsive potential the curvature is always away from the r-axis, so the scattering length is
always positive.

behavior. We are now interested in the intercept of the s-wave function, which can
be calculated by linear extrapolation of u0(r) from a point r = r0 onwards

u0(r)
!
= 0 ⇒ r = r0 −

u0(r0)

u′0(r0)
= r0 −

tan
[
k(r0 + δ0(k)

k
)
]

k
−−→
k→0

a . (2.48)

Now, from the intercept of the asymptotic wave function we can directly read of the
scattering length of the potential. This is shown schematically for different potentials
in Fig. 2.4.
Sometimes we are not only interested in the behavior for k → 0, but in the whole
low temperature region. To investigate the cross section in the small k region we
expand k cot(δ0(k)) from Eq. (2.46) to higher order14 [114]:

k cot(δ0(k)) = −1

a
+

1

2
reffk

2 + . . . , (2.49)

where the effective range reff is defined by

reff = 2

∫ ∞

0

[
v0(r)

2 − u0(r)
2
]
dr . (2.50)

14The effective range expansion can only be performed for any potential vanishing faster than 1/r5

[158]
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2.6 Example: Square well potential

Here u0(r) and v0(r) are the solutions of the radial Schrödinger equation with and
without the potential V (r) present, respectively. The effective range expansion
is valid provided the energy dependent term satisfies 1

2
k2areff < 1. The effective

range can be interpreted as a second-order correction to the phase shift, reducing
or enlarging the effective width of the scattering potential. The cross section one
obtains using the effective range expansion is given by

σ0(k) =
8πa2

k2a2 + (1
2
k2reffa− 1)2

, (2.51)

which of course reduces to 8πa2 for k → 0. Two other things are of interest here.
First, the scattering length appears linearly in this equation, so the temperature
behavior will depend on the sign of a. Second, the approximation is not sufficient to
reproduce oscillations in the cross section, like the Ramsauer-Townsend effect (see
Figure 2.6).

2.6 Example: Square well potential

To illustrate the results from the previous section, we now explicitly calculate the
results for the simple case that the interaction potential is a square-well potential of
the form:

V (r) =

{
−V0 if r < R.
0 if r > R.

(2.52)

The general solution of the Schrödinger Eq. (2.10) for this potential assuming ` = 0
and E > 0 is

u<(r) = Aeik<r +Be−ik<r if r < R, (2.53a)
u>(r) = Ceikr +De−ikr if r > R, (2.53b)

with k< =
√
k2 − 2mµV0/~2. Since the wave function has to obey the Schrödinger

equation at the origin, we have to require that u< vanishes at the origin. This
immediately gives the boundary condition B = −A. Comparing the wave function
u> to the s-wave component of the general scattering wave function for r → ∞
Eq. (2.32), we find that

e2δ0(k) = −C
D
. (2.54)

Requiring that the wave functions for r < R and r > R join smoothly leads to the
following result for the scattering phase:

δ0(k) = −kR + arctan

(
k

k<
tan(k<R)

)
. (2.55)
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Figure 2.5: (a) shows the behavior of the scattering length a and the effective range
reff with increasing well-depth γ. (b) The formation of the first three bound states with
increasing well-depth is shown. Every time the potential supports a new bound state, the
scattering length diverges. This is a so called zero energy resonance. Please note that the
lower plot was done under the assumption R = 1.
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2.6 Example: Square well potential

From this result we can now explicitly determine an analytical expression for the
scattering length

a = R(1− tan γ

γ
), where γ = R

√
2mµ|V0|

~2
. (2.56)

and the effective range

reff = R

[
1 +

3 tan γ − γ(3 + γ2)

3γ(γ − tan γ)2

]
, (2.57)

using Eq. (2.49). Their behavior with increasing well depth γ is shown in Fig. 2.5.
For γ = (n+ 1/2)π the scattering length diverges and changes sign. This behavior
is called a zero energy resonance and in fact occurs each time the potential is just
deep enough to support a new bound state15. If a potential is just about to support
another bound state (a so called virtual bound state) the scattering length goes to
−∞ and returns from +∞ the moment the bound state is really supported by the
potential (see also Fig. 2.4). The effective range diverges if the scattering length
becomes equal to zero because the effective range expansion is ill defined for a = 0.
Also of interest is the dependence of the cross sections σ`(k) on the collision energy
which is shown in Fig. 2.6 on the next page. As predicted by Eq. (2.44) higher partial
cross sections “freeze out” according to k4` for low k.
It turns out, that there is an important relationship between the energy of the
last bound state and the scattering length. To derive this relation, we first need
the positions of the last bound state. Therefore we need to solve the Schrödinger
equation for negative energy. This leads to

u<(r) = A(eik<r − e−ik<r) if r < R, (2.59a)
u>(r) = Be−κr if r > R, (2.59b)

with k< =
√

2mµ(E − V0)/~2 and κ =
√

2mµ|E|/~2. Again we demand the solutions
to smoothly join at r = R. This gives the following equation for the bound-state
energies √

2mµ

~2
|Em| = −

√
2mµ

~2
(Em − V0) cot(

√
2mµ

~2
(Em − V0)) . (2.60)

One can show that a potential with a well-depth of V0 supports n bound states,
where n is given by

(n− 1/2)π < γ < (n+ 1/2)π . (2.61)
15Also the phase shift jumps by π each time a new bound state is supported. The number of bound

states a potential supports can be obtained according to Levinson’s theorem [128]

δ0(k = 0)− δ0(k = ∞) = nπ . (2.58)
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Figure 2.6: Temperature dependence of the partial cross sections σ`=0,1,2(k) for a square
well potential of width r = 100 a0 and a depth V0 = 1.02 ·10−21 J which supports 150 bound
states. (a) With increasing temperature the partial cross-sections oscillate between zero
and the unitarity limit. The phenomenon that for certain ` and k the cross section vanishes
is called the Ramsauer-Townsend effect. It has been observed in low-energy collisions of
electrons with rare-gas atoms. (b) The partial cross sections for ` > 0 show the expected
k4` behavior and “freeze out” with decreasing temperature, while σ0 approaches the finite
value of 4πa2 for small k. (c) Behavior of the scattering phase δ`(k) over the temperature.
Also shown is the low temperature behavior δ`(k) = k2`+1.

For small binding energy |Em| � |V0| we have from Eq. (2.60):√
2mµ

~2
|Em| ' −γ cot γ/R ' 1/a or Em = − ~2

2mµa2
. (2.62)

It turns out, that this relation is quite general and does not depend on the specific
details of the potential. Any potential with a large positive scattering length has a
bound state just below the continuum threshold.
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Chapter 3

Theory of Feshbach resonances

After introducing the “formal” scattering theory in the last chapter, I’ll now turn to
describing Feshbach resonances. First an informal, phenomenological description of
the properties of Feshbach resonances is given. After an initial understanding of the
phenomenon has been formed, I’ll turn to the theoretical description of Feshbach
resonances. There, the relevant Schrödinger equation will be solved with the help
of formal scattering theory. In the following, I’ll extend the previous square-well
example to include Feshbach resonances. For realistic potentials only numerical
solutions are possible. Two different numerical multi-channel calculation methods
are presented. The chapter closes with an overview of the different possibilities to
experimentally observe a Feshbach resonance.

Feshbach resonances were introduced in nuclear physics to describe the narrow
resonances observed in the total cross section for a neutron scattering of a nucleus
[70]. These very narrow resonances are the result of the formation of a long-lived
compound nucleus during the scattering process, with a binding energy close to that of
the incoming neutron. The defining feature of a Feshbach resonance is that the bound
state responsible for the resonance exists in another part of the quantum-mechanical
Hilbert space than the part associated with the incoming particles. Stwalley [232]
discussed for the first time the existence of Feshbach resonances in collisions of
spin-polarized Hydrogen and Deuterium and the possibility to magnetically tune
those Feshbach resonances. Those resonances were experimentally found by Reynolds
et al. [191] and Silvera et al. [215]. Tiesinga et al. [238, 239] predicted the existence
of Feshbach resonances in ultracold collisions of Cs and their usefulness to determine
the long-range interaction potentials of the involved atoms. Following the first
observation of Feshbach resonances in 23Na by Inouye et al. [108], they have now
been observed in various bosonic atomic species [45, 143, 195, 228, 244], as well as a
number of fermionic isotopes [21, 57, 173, 187]. Feshbach resonances between different
atomic species have also been theoretically predicted [217], and were quite recently
experimentally observed [111, 222]. If the interaction between the two colliding
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Figure 3.1: Basic principle of a Feshbach resonance. Shown are the molecular interaction
potentials VP and VM for two colliding atoms in two different internal states, labeled P
and M, respectively. The M-state supports at least one or more bound states. The energy
difference between the two interaction potentials ∆V can be changed by experimental
means. The collision occurs in the energetically open channel P with a collision energy
E. Due to the energy being lower than the asymptotic energy of the M-state, the atoms
cannot collide in this state and it is called a closed channel. A Feshbach resonance now
occurs if the energy of the open channel is (almost) degenerate with a bound state of the
molecular state M and a coupling between the two states exists. This allows a temporary
occupation of the bound state and thus modifies the scattering properties drastically.

atoms is not isotropic, one Feshbach resonance can split up into a multiplett [237].
Finally, an entertaining introduction to Feshbach resonances and their application
can be found in [123].

3.1 Phenomenological description

In the preceding chapter we discussed the scattering of two atoms in some detail.
What we neglected in the preceding chapter was the internal structure of the atoms.
The different internal states of the atoms give rise to many different molecular
interaction potentials. In addition, we need to take the coupling between the different
internal states into account. The situation with which we are dealing now is sketched
in Fig. 3.1. To keep our picture simple, we have limited ourselves to two internal
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3.1 Phenomenological description

states for our colliding atoms which we call P and M. The corresponding molecular
interaction potentials are denoted by VP and VM, respectively. The energy of the
two colliding atoms is slightly above the asymptotic value of VP . Since their energy
E is less than the asymptotic value of VM, the collision products can never be in
state M. This is why M is often called a closed and P an open channel. The closed
channel M supports at least one, if not more bound states as shown in the figure.
So, up to now the scattering could be still described along the lines of the previous
chapter, since there is yet nothing different from the one channel case. The situation
changes when we allow for the existence of a coupling between the open and the
closed channel. If the energy of the open channel is close to the energy of a bound
state of M, the two colliding atoms can undergo a Landau-Zener [264] type transition
from P to a bound state of M mediated by the coupling. A diatomic quasi-molecule
is formed, whose lifetime is limited due to the coupling to the continuum-states of
channel P . Due to the formation and the decay of the quasi-molecule the scattering
process will be modified drastically. Since the situation is similar as in Chapter 2.6
for the zero-energy resonance we expect a resonance behavior for the scattering
length depending on the position of the bound state.

The only remaining question is how to change the energy difference ∆V between the
two molecular interaction potentials and thus the position of the bound states. In the
most common case the two different internal states are different spin configurations of
the two atoms and thus their magnetic moment is different. By applying a magnetic
field both molecular potentials shift differently, thereby changing ∆V . Figure 3.2 on
the following page shows the position of the open channel and the bound states with
increasing magnetic field, together with the resulting scattering length. Each time
the energy of a bound state is slightly below the energy of the incoming channel,
the scattering length diverges to positive infinity, only to return again from minus
infinity slightly above. Far away from resonance the scattering length returns to
the value anr of the P-state alone. The strength of the coupling between the two
involved states determines the width of the Feshbach resonance. The width of a
Feshbach resonance is defined as the difference between the positions where the
scattering length diverges and where it crosses zero. Also shown in the lower figure
is the Landau-Zener behavior of the energy levels, i.e. in the diagonalized basis.

Alternative coupling schemes for inducing Feshbach resonances have been proposed.
The use of radio frequency [156] and static electric fields [141] was suggested but
never experimentally applied to control atomic interactions. Fedichev et al. [67] came
up with the possibility to induce Feshbach resonances using optical fields, which was
theoretically analyzed further in [18, 124]. To optically modify the scattering length,
one can use laser light tuned close to a photo-association resonance which couples the
continuum state of the incoming free atoms to an excited molecular level. So here
the external laser-field is responsible for the coupling of the two states. The coupling
also leads to an atomic loss, due to spontaneous decay via the molecular state. The
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Figure 3.2: Magnetically induced Feshbach resonances. The upper plot (a) shows the
behavior of the scattering length over the magnetic field, while the lower (b) shows the
energy of the open channel and the bound states with increasing magnetic field. The
scattering length diverges each time when a bound state crosses the open channel. Far
away from resonance the scattering length returns to its non-resonant value anr. Due to the
coupling between the open channel and the bound states a Landau-Zener transition allows
to adiabatically transfer the atomic state of the two colliding atoms into a molecular state
and back. The strength of the coupling is reflected by the width ∆Bel of the resonance
which is defined as the difference between the positions where the scattering length diverges
and where it crosses zero.
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scattering length can be tuned by changing the frequency of the photo-association
laser. The strength of the coupling, and thereby the width of the resonance can
be changed through the laser intensity. Inducing Feshbach resonances with optical
fields offers experimental advantages compared to magnetic fields. The intensity and
frequency of optical fields can be rapidly changed. Furthermore, complex spatial
intensity distributions can be easily produced which result in corresponding scat-
tering length patterns across the sample. Experimentally this has been successfully
demonstrated for Na by Fatemi et al. [66] and 87Rb by Theis et al. [236].

3.2 Theoretical description

3.2.1 Formal solution

Here we will investigate a particularly elegant solution to the problem of resonance
scattering which is due to Feshbach [70]. Originally devised to study nuclear collision
processes, the Feshbach method can also be applied to atomic collisions.
Again the starting point is the Schrödinger equation which describes the collision of
two atoms with the energy E = ~2k2

2mµ

(Ĥ − E)|ψ 〉 = 0 , (3.1)

where Ĥ = Ĥ0 + V̂ . The potential operator now describes the incident scattering
channel P and the closed1 molecular channel M (see Fig. 3.2) and the coupling
between those two channels2. We can now define two projection operators P̂ and M̂
that denote respectively, the projections onto the Hilbert subspace of the incident
channel and the subspace of the (closed) molecular channels. For r→∞ the collision
process is solely described by the potential of the open channel P, or using the
operator formalism P̂|ψ 〉 −−−→

r→∞
|ψ 〉. In addition these projection operators satisfy

the usual projection operator properties:

M̂P̂ = P̂M̂ = 0 (3.2a)
M̂2 = M̂ (3.2b)
P̂2 = P̂ (3.2c)
M̂ = 1− P̂ . (3.2d)

The wave function |ψ 〉 can now be decomposed according to

|ψ 〉 = M̂|ψ 〉+ P̂|ψ 〉 = |ψM 〉+ |ψP 〉 . (3.3)
1This channel is closed because the energy of the colliding atoms is assumed to be smaller than

the asymptotic value of the M channel.
2This means that V̂ in the (P,M) basis contains off-diagonal elements.
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Using this, we may write the Schrödinger Eq. (3.1) as

(Ĥ − E)(P̂ + M̂)|ψ 〉 = 0 . (3.4)

Acting on this equation with P̂ and M̂ and using the projection operator properties
(3.2) we get:

(ĤPP − E)|ψP 〉+ ĤPM|ψM 〉 = 0 and (3.5a)
(ĤMM − E)|ψM 〉+ ĤMP |ψP 〉 = 0 , (3.5b)

where

ĤPP = P̂ĤP̂ , ĤMM = M̂ĤM̂, ĤPM = P̂ĤM̂, ĤMP = M̂ĤP̂ . (3.6)

The two Eqs. (3.5) may be decoupled by formally solving Eq. (3.5b) using Green’s
operator Ĝ(+)

MM = 1

E−ĤMM+iε
for |ψM 〉:

|ψM 〉 = Ĝ
(+)
MMĤMP |ψP 〉 , (3.7)

and inserting this result into Eq. (3.5a), so that

(E − ĤPP − Ĥ ′
PP)|ψP 〉 = 0 . (3.8)

Here the term Ĥ ′
PP = ĤPMĜ

(+)
MMĤMP represents an effective interaction in the P

subspace due to transitions from that subspace to the M subspace, time evolution
in the M subspace and a transition back to the P subspace.
Now let us imagine that we have solved the eigenvalue problem in the M subspace

ĤMM|χM,ν 〉 = εν |χM,ν 〉 , (3.9)

for all εν , |χM,ν 〉. Since the energy in our problem is below the excitation threshold,
the eigenvalues εν are discrete and the |χM,ν 〉 are the bound states of the molecular
potential. Due to the completeness of the set |χM,ν 〉 in the M subspace we are
allowed to write

M̂ =
∑

ν

|χM,ν 〉〈χM,ν | . (3.10)

This in turn allows us to write Ĥ ′
PP using Eq. (3.2) as

Ĥ ′
PP = ĤPMĜ

(+)
MMĤMP =

=
∑

ν

ĤPMĜ
(+)
MM|χM,ν 〉〈χM,ν |ĤMP =

=
∑

ν

ĤPM
|χM,ν 〉〈χM,ν |

E − εν
ĤMP ,

(3.11)
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so that Eq. (3.8) becomes(
E − ĤPP −

∑
ν

ĤPM
|χM,ν 〉〈χM,ν |

E − εν
ĤMP

)
|ψP 〉 = 0 . (3.12)

If the resonances may be considered as isolated, so that the εν are well separated
from each other, it is clear that only one term of the sum, say µ = ν will become
large when E gets close to εµ. This particular term is now isolated

(
E − ĤPP −

∑
ν 6=µ

ĤPM
|χM,ν 〉〈χM,ν |

E − εν
ĤMP︸ ︷︷ ︸

=Ĥnr≈ĤPP

)
|ψP 〉 =

= ĤPM
|χM,µ 〉〈χM,µ |

E − εµ
ĤMP |ψP 〉 . (3.13)

Ĥnr is that part of the effective Hamiltonian which varies slowly with energy and
therefore gives rise to the non-resonant part of the scattering. To solve the last
equation, we first consider the solution |χP 〉 of the corresponding homogeneous
equation, namely (ĤPP − E)|χP 〉 = 0 which describes non-resonant scattering. Let
us now assume that we have been able to find outgoing spherical wave solutions of
this equation, which we denote by |χ(+)

P 〉. We can now again formally solve Eq. (3.13)
using Green’s operator Ĝ(+)

PP = 1

E−ĤPP+iε
and thus get

|ψ(+)
P 〉 = |χ(+)

P 〉+ Ĝ
(+)
PP
ĤPM|χM,µ 〉〈χM,µ |ĤMP |ψ(+)

P 〉
E − εµ

. (3.14)

The matrix element 〈χM,µ | ĤMP |ψ(+)
P 〉 may be obtained by multiplying Eq. (3.14)

from the left with 〈χM,µ | ĤMP and then solving for 〈χM,µ | ĤMP |ψ(+)
P 〉. Substi-

tuting this expression into Eq. (3.14) again, leads to

|ψ(+)
P 〉 = |χ(+)

P 〉+ Ĝ
(+)
PP
ĤPM|χM,µ 〉〈χM,µ | ĤMP |χ(+)

P 〉
E − (εµ + ∆µ) + 1

2
iΓµ

, (3.15)

with

∆µ = <〈χM,µ |ĤMPĜ
(+)
PPĤPM|χM,µ 〉 and (3.16)

1

2
Γµ = −=〈χM,µ |ĤMPĜ

(+)
PPĤPM|χM,µ 〉 . (3.17)
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Finally we need to obtain the T̂ Matrix. Using Eq. (3.5a) and the two-potential
theorem3 one ends up with the following expression

Tfi = T
(P̂)
fi + T

(P̂M̂)
fi = 〈φ(−)

f | ĤPP |χ(+)
P 〉+ 〈χ(−)

P | ĤPM |ψ(+)
P 〉 . (3.20)

Using Eq. (3.15) we retrieve the final result

T
(P̂M̂)
fi =

〈χ(−)
P | ĤPM |χM,µ 〉〈χM,µ | ĤMP |χ(+)

P 〉
E − (εµ + ∆µ) + 1

2
iΓµ

. (3.21)

The last expression clearly exhibits a resonance behavior. We see that the term ∆µ

gives rise to a shift in the position of the resonance from εµ, while the quantity Γs

controls the width of the resonance.
We are now interested in the asymptotic behavior of 〈 r |ψ(+)

P 〉 (using |ψ(+)
P 〉 from

Eq. (3.15)) for r→∞. By comparing the result with Eq. (2.32) we can directly infer
the scattering phase δ`(k) and the scattering matrix S`(k). Since in our application
only s-wave scattering plays an important role and it greatly simplifies our calculations,
we will limit us in the following to the case l = 0. We now investigate each term of

lim
r→∞

〈 r |ψ(+)
P 〉 = lim

r→∞

(
〈 r |χ(+)

P 〉+
〈 r | Ĝ(+)

PPĤPM |χM,µ 〉〈χM,µ | ĤMP |χ(+)
P 〉

E − (εµ + ∆µ) + 1
2
iΓµ

)
,

(3.22)
separately. The first term can be directly expressed using Eq. (2.34) using a non-
resonant scattering phase δnr. The second term is evaluated by expanding Ĝ(+)

PP in
eigenfunctions |χP,ν 〉 of ĤPP

lim
r→∞

〈 r | Ĝ(+)
PPĤPM |χM,µ 〉 =

= lim
r→∞

∑
ν,ν′

〈 r |χP,ν 〉〈χP,ν | Ĝ(+)
PP |χP,ν′ 〉〈χP,ν′ | ĤPM |χM,µ 〉 =

= lim
r→∞

∑
ν

〈 r |χP,ν 〉
1

E − Eν + iε
〈χP,ν | ĤPM |χM,µ 〉 .

(3.23)

3The two-potential theorem is due to Gell-Mann and Goldberger [74]. Suppose one has the
Hamiltonian Ĥ = Ĥ0 + V̂1 + V̂2, with the equations

(E − Ĥ0)|φ(±) 〉 = 0 (3.18a)

(E − Ĥ0 − V̂1)|χ(±) 〉 = 0 (3.18b)

(E − Ĥ0 − V̂1 − V̂2)|ψ(±) 〉 = 0 (3.18c)

being satisfied. One can then prove that the transition matrix element for the complete
Hamiltonian Ĥ is given by:

Tfi = 〈φ(−)
f | T̂ |φ(+)

i 〉 = 〈φ(−)
f | V̂1 + V̂2 |ψ(+)

i 〉 = 〈φ(−)
f | V̂1 |χ(+)

i 〉+ 〈χ(−)
f | V̂2 |ψ(+)

i 〉 . (3.19)
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The first term of this equation is again given by Eq. (2.34), so what remains to
be calculated is 〈χP,ν | ĤPM |χM,µ 〉 . Since we are again only interested in the
asymptotic limit we find

〈χP,ν | ĤPM |χM,µ 〉 ≈
e−iδnr

√
Ω

∫
u(r)ĤPMχM,µ(r)dr︸ ︷︷ ︸

=α

=
e−iδnr

√
Ω
α . (3.24)

where Ω represents the macroscopic volume to which the binary atom system is
confined. Note that the de-Broglie wavelength (2π/k) in our case k → 0, vastly
exceeds the range L of the inter-atomic potential. So in a range L < r < 1/k u(r)
can be approximated by u(r) ≈ 1 + δnr/kr ≈ 1− a/r, so u(r) and thus α are thus
independent of the collision energy. Using this we get

lim
r→∞

〈 r | Ĝ(+)
PPĤPM |χM,µ 〉 ≈ α

1

Ω

∑
ν

〈 r |χP,ν 〉
u(r)

E − Eν + iε
. (3.25)

Using the same approximations 〈χM,µ | ĤMP |χ(+)
P 〉 ≈ α†eiδnr/

√
Ω and thus

lim
r→∞

〈 r | Ĝ(+)
PPĤPM |χM,µ 〉〈χM,µ | ĤMP |χ(+)

P 〉 ≈

≈ eiδnr

Ω3/2
|α|2

∑
ν

u(r)

E − Eν + iε
= −e

2iδnr

√
Ω

eikr

r
γµ with γµ = |α|2 m

4π~2
, (3.26)

where in the last step we’ve converted the sum to an integral and evaluated it using
the residue theorem. We’ve also introduced the reduced width γµ. The connection
between the width of a resonance and γµ becomes obvious if one reformulates
Eq. (3.17):

1

2
Γµ = −=〈χM,µ | ĤMPĜ

(+)
PPĤPM |χM,µ 〉 =

= −=
∑

ν

〈χM,µ | ĤMP |χP,ν 〉
1

E − Eν + iε
〈χP,ν | ĤPM |χM,µ 〉 =

=
∑

ν

∣∣∣〈χM,µ | ĤMP |χP,ν 〉
∣∣∣2 ε

(E − Eν)2 + ε2
≈

≈ |α|2 1

Ω

∑
ν

δ(E − Eν) =

= γµk .

(3.27)

Here we explicitly see, that the width of the Feshbach resonance is k-dependent.
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Now we put everything together, by substituting Eqs. (3.26) and (2.34) into (3.23).
We finally get for the asymptotic behavior of 〈 r |ψ(+)

P 〉 :

lim
r→∞

〈 r |ψ(+)
P 〉 = lim

r→∞
〈 r |χ(+)

P 〉 − 1

2ik
√

Ω
e2iδnr

eikr

r

iΓµ/2

E − (εµ + ∆µ) + 1
2
iΓµ

=

= − 1

2ik
√

Ω

(
e−ikr

r
− e2iδnr

[
1− iΓµ/2

E − (εµ + ∆µ) + 1
2
iΓµ

]
eikr

r

)
.

(3.28)

By identifying the factor in square brackets with the scattering matrix Ŝ (see
Eqs. (2.32) and (2.33)), we obtain

S = e−2ikanr

[
1− iΓµ/2

E − (εµ + ∆µ) + 1
2
iΓµ

]
︸ ︷︷ ︸

=e−2ikar

= e−2ik(anr+ar) = e−2ikaeff , (3.29)

where we used that δnr = −kanr and defined aeff = anr + ar.

aeff = anr +
1

2k
arctan

(
Γµ(E − εµ −∆µ)

(E − εµ −∆µ)2 + Γ2
µ/4

)
=

= anr −
γµ

εµ + ∆µ − E
= for k → 0

= anr

(
1− ∆Eel

εµ + ∆µ − E

)
with ∆Eel =

γµ

anr
.

(3.30)

One can see from the second line, that even though E and Γµ = 2γµk vanish for
k → 0, the effective scattering length aeff tends to a well defined value.
From Eq. (3.30) we can see that the scattering length can be varied, if the energy of
the bound state εµ can be varied relative to the incoming energy E of the colliding
atoms. This can be achieved in different ways. The most common method is to apply
a homogeneous magnetic field which shifts the energy of both channels P and M by
different values. Near a resonance the “detuning” of both channels ∆E = εµ +∆µ−E
can be expanded in a Taylor series around the resonance value B0:

∆E(B) =
∂∆E

∂B

∣∣∣∣
B=B0

× (B −B0) + · · · . (3.31)

Together with Eq. (3.30) the dependency of the scattering length on the magnetic
field can be expressed as

aeff = anr(1−
∆Bel

B −B0

) with ∆Bel =
γµ

anr∂∆E/∂B|B0

. (3.32)
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The dependence of anr and γµ on the magnetic field is so weak, that it can be neglected
for our purposes. One also sees that the width of the resonances is determined by the
coupling strength between both channels given through ∆Bel and thus by Eq. (3.17).
The width of a resonance can be directly seen in a plot of the scattering length over
the B-field, it is the distance between the resonance position and the zero crossing of
the scattering length (see Fig. 3.2).

3.2.2 Example: Square well potential

To get a more intuitive picture of a Feshbach resonance, it is helpful to consider an
example. The derivation of this example is based on Duine and Stoof [60]. Building
on the example of a square-well potential in section 2.6, we now use two square-well
potentials,

VT,S(r) =

{
−VT,S if r < R ,

0 if r > R ,
(3.33)

where VT,S > 0. Furthermore, we assume that the potentials are such that VT < VS
and VS supports at least one bound state. The resulting potentials are shown in
Fig. 3.3 on the next page.
We now introduce a coupling VC between the two square-well potentials VT and
VS. For the strength of the coupling we assume that 0 < VC � VT, VS,∆µB. The
Schrödinger Eq. (3.1) we need to solve, is given by

(Ĥ − E)~Ψ =

(
−~2O2

2m
+ VT(r)− E VC

VC −~2O2

2m
+ ∆µB + VS(r)− E

)(
ψT (r)
ψS(r)

)
= 0 .

(3.34)
It is now again advisable to diagonalize the Hamiltonian Ĥ for r < R (Ĥ<) and
r > R (Ĥ>) separately. Ĥ< and Ĥ> are given by4

Ĥ =



(
0 VC

VC ∆µB

)
for r > R,(

−VT VC

VC ∆µB − VS

)
for r < R,

(3.35)

and can be diagonalized by using the following (unitary) matrix

Q(θ) =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
, (3.36)

4Since the kinetic energy operator is diagonal in the internal space of the atoms, we can omit it
here.
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Figure 3.3: Feshbach resonance in a two-channel system with square-well interaction
potentials. The solid lines indicate the singlet and triplet potentials when no coupling
is present. Due to the Zeeman interaction with the magnetic field, the energy difference
between the singlet and triplet potential is equal to ∆µB. The dashed lines show how the
potentials shift when a coupling is applied. The singlet potential supports a bound state
which is responsible for the existence of the Feshbach resonance.

which gives

Q(θ≷)ĤQ−1(θ≷) =



(
ε>− 0

0 ε>+

)
for r > R using tan(2θ>) = − 2VC

∆µB
.(

ε<− 0

0 ε<+

)
for r < R using tan(2θ<) = 2VC

VS−VT−∆µB
.

(3.37)

The ε≷± are given by

ε>± =
∆µB

2
± 1

2

√
(∆µB)2 + (2VC)2 and

ε<± =
∆µB − VT − VS

2
∓ 1

2

√
(VS − VT −∆µB)2 + (2VC)2 .

(3.38)
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Physically, this means that due to the coupling of the singlet and the triplet potentials,
the energies in the coupled basis are shifted. In Fig. 3.3 the dashed lines show the
energies in the coupled basis. The square-well of the triplet potential gets shallower,
while the singlet well depth increases, thereby shifting the position of the bound
state and thus the resonance position. The solutions for the wave functions in the
coupled basis ↑↑, ↓↓ are given by(

u>
↑↑
u>
↓↓

)
=

(
Ceikr +De−ikr

Fe−κr

)
and

(
u<
↑↑
u<
↓↓

)
=

(
A sin(ik<

↑↑r)

B sin(ik<
↓↓r)

)
, (3.39)

where κ =
√

2mµ(ε>+ − ε>−)/~2 − k2, k<
↑↑ =

√
2mµ(ε>− − ε<−)/~2 + k2, and

k<
↓↓ =

√
2mµ(ε>− − ε<+)/~2 + k2. In order to determine the phase shift we have

to join the solution for r < R and r > R smoothly. This is done most easily
by transforming back to the singlet/triplet basis. Demanding the solution to be
continuously differentiable leads to the equations:

Q−1(θ<)

(
u<
↑↑(R)

u<
↓↓(R)

)
= Q−1(θ>)

(
u>
↑↑(R)

u>
↓↓(R)

)
∂

∂r
Q−1(θ<)

(
u<
↑↑(r)

u<
↓↓(r)

)∣∣∣∣
r=R

=
∂

∂r
Q−1(θ>)

(
u>
↑↑(r)

u>
↓↓(r)

)∣∣∣∣
r=R

.

(3.40)

These equations determine the coefficients A, B, C, D and F up to a normalization
factor. Therefore, also the phase shift and the scattering length is given. Normally
one determines A through the incoming probability current5 J = ~k/m|A|2, and
solves for the remaining variables. An analytic solution for the scattering length (see
Eq. (2.54)) is possible, but the resulting expression is rather formidable and is thus
omitted here. The resulting dependence of the scattering length on the magnetic field
is shown in Fig. 3.4 on the following page for VS =10 ~2/2mµR

2, VT =1 ~2/2mµR
2,

VC =0.1 ~2/2mµR
2 and E = 1 · 10−5 ~2/2mµR2. The resonant behavior is due to the

energy of the bound state of the singlet potential VS becoming comparable to the
incoming energy. Using Eq. (2.60) to determine the binding energy of a square-well
potential of depth VS gives Eµ ≈ 4.6242 ~2/2mµR2, which is approximately the
position of the resonance in Fig. 3.4. As we already know from the discussion in
the previous section, the scattering length behaves as expected by Eq. (3.30). The
non-resonant scattering length anr is approximately equal to the scattering length
expected from Eq. (2.56) for VT = 1 ~2/2mµR2 which gives anr = −0.5574 1/R.
Next, we calculate the energy dependency of the molecular state state on the magnetic
field. In the absence of the coupling between the open and closed channel, we simply
have that εµ = Eµ + ∆µB. Here, Eµ is the energy of the bound state responsible for
the Feshbach resonance, that is determined by Eq. (2.60) for a single square-well.

5The incoming plane wave cannot be normalized.
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Figure 3.4: Scattering length for two coupled square-well potentials and energy of the
corresponding bound state (scaled by a factor of 20) as a function of ∆µB. The dotted line
shows the background scattering length anr = −0.5574 1/R which results from the triplet
potential alone. While the resonance occurs at approx. 4.6371 ~2/2mµR

2, the bound state
is degenerate with the incoming energy at about 4.6242 ~2/2mµR

2. The depth of the triplet
and singlet channel potentials is VT =1 ~2/2mµR

2 and VS =10 ~2/2mµR
2, respectively.

The coupling is VC =0.1 ~2/2mµR
2.

This bound-state energy as a function of the magnetic field is shown as a dashed
line in Fig. 3.5. A non-zero coupling drastically changes this result. To calculate the
bound-state energy with the coupling present, we solve the Schrödinger Eq. (2.10)
for negative energy. Here we change Eqs. (3.39) accordingly and again require the
solution to be continuously differentiable at R (see Eq. (3.40)). Since we are looking
for bound states, Eq. (3.40) can only be solved for energies where a bound state is
present. To retrieve these energies, one writes Eq. (3.40) in the form Mx = 0, where
x = (A,B,C,D)6. This equation only has solutions when det(M) = 0, which can be
solved for the energies of the bound states. The position of the bound state over the
applied magnetic field is shown as a solid line in Fig. 3.5. As expected already from
our previous derivation Eq. (3.30) the position of the resonance is shifted compared
to the case without coupling. Additionally, the dependence of the bound-state energy

6In this case, there are only four constants for the wave functions, because for r > R all wave
functions decay exponentially for E < 0.
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Figure 3.5: Bound-state energy of the molecular state near a Feshbach resonance for two
coupled square-well interaction potentials. Shown are the results for VC =0.1 ~2/2mµR

2

and for the uncoupled case. The inset is a close up of the crossing region. Here, due to the
influence of the coupling an avoided crossing occurs. The parameters are the same as in
Fig. 3.4.

on the magnetic field is no longer linear close to resonance, but quadratic as seen in
the inset of Fig. 3.5. For fields above the resonance a bound state no longer exists
and due to the coupling the molecule can now decay into two free atoms, because its
energy is above the two-atom continuum threshold. Similar to the single-channel
case, close to resonance the energy of the molecular state turns out to be related to
the scattering length by

εµ(B) = − ~2

2mµ[a(B)]2
. (3.41)

This directly results from the T -Matrix, which has a pole at energy εµ [60].
To underpin the statement that a quasi-molecule is created in the bound state, we
will look in the following at the probability density function of the bound state
close to a resonance. As already explained earlier, we assume a constant incoming
probability current, which thus determines the constant A. Using the solutions for
E > 0 we can then determine the wave functions and occupation probabilities for
all r. It is convenient to calculate the wave functions in the ↑↑, ↓↓ basis7 for r > R,

7Since we use the unitary matrix from Eq. (3.36) for all basis transformations, the probability
current is conserved.
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Figure 3.6: Resonantly enhanced occupation of a quasi-bound state for different magnetic
fields close to resonance. The depicted wave function u↓↓ was calculated in the ↑↑, ↓↓
basis for r > R, so the wave function decays exponentially for r > R. For magnetic field
values close to the resonance value, the occupation of the quasi-bound state is two orders
of magnitude higher, than already slightly off resonance. The parameters are again the
same as in Fig. 3.4.

since in this basis the wave function8 u↓↓ will decay exponentially for r > R. In
Fig. 3.6 the resulting probability density is plotted for magnetic fields around the
resonance. It can be clearly seen that the probability density is resonantly enhanced
close to the resonance, while already only a little bit off the resonance it sharply
decays. This means in other words, that the probability for two atoms forming a
(quasi-)molecule and thus populating the bound state is very high on resonance.

Finally, we investigate the dependence of the shift and the width of a resonance on
the coupling. From Eq. (3.30) and the definition of γµ (3.26) we expect the width of
the resonance ∆Eel to vary quadratically with the strength of the coupling. This
is well reproduced in Fig. 3.7. It also shows the increasing shift of the resonance
position with increasing coupling strength. In the limit of a weak coupling the
resonance position coincides with the position of the bound state in a square-well
potential.

8The wave function u↓↓ is the only one we are interested in because it contains the bound state.
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Figure 3.7: (a) Width of the position of the Feshbach resonance as function of the
strength of the coupling. (b) Shift of the position of the Feshbach resonance as function of
the strength of the coupling.

3.3 Multi-channel calculations

As was seen in the previous section, for the special case of two coupled square-well
potentials we could solve the Schrödinger equation analytically. However, in the
general case, which includes more than two coupled states and involves realistic
potentials, we have to resort to numerical methods. Solving such coupled linear
differential equations numerically is a problem found in all branches of physics
and as such, extensive literature exists on the subject [182]. One can divide these
numerical methods broadly into two categories, explicit (also called “propagators”)
and implicit approaches. Both approaches divide the domain of the independent
variable into grids or sectors. Explicit methods require the value of the dependent
variable at the previous grid point, to calculate the value at the next adjacent point.
Examples of explicit methods are the algorithms from Numerov [168] and Gordon
[79]. Implicit methods take not only the previous, but also the future values of the
dependent variable into account. This approach leads to a large set of linear equations
(or an eigensystem), which can be solved using linear algebra methods. One thus
determines the value at all grid points simultaneously. A typical example for an
implicit algorithm is the finite-elements method (FEM) [251]. Another example are
methods which involve the representation of a continuous function by a finite set of
sampling points, commonly called discrete variable representations (DVRs) [43, 135].
The different algorithms are compared in [186] regarding their accuracy and the
required computing time for solving a coupled channel Schrödinger equation.
For the calculation of Feshbach resonance positions in 52Cr two different methods
have been used. The DVR method was employed to determine the position of the
bound states in the absence of a coupling, while Gordon’s method was used for the
“full” scattering calculations which included the coupling between different scattering
channels. So what follows is a closer look at these two methods.
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3.3.1 Gordon’s method

The method proposed by Gordon [79] is one of the most popular and well established
methods, due to its intuitive and straightforward implementation. It is also accurate
enough for most applications, even though it is inferior to other methods [186]. The
method is thoroughly outlined in Gordan’s lucid papers. Our description is based on
the slightly modified method suggested by Mies [152].

Gordon’s method solves the Schrödinger equation over some specified range of r.
The initial values for the propagation are given by the boundary conditions. The
total range is now divided into a number of intervals dr. Then the potential matrix
V (r) is approximated by an averaged constant potential in each interval dr and the
resulting matrix is subsequently diagonalized. In the diagonalized interval dr the wave
function is represented in each channel9 n by Ψn = An(r) sin(knr) +Bn(r) cos(knr),
and the vectors of the coefficients A and B are calculated by integrating a system of
first-order coupled differential equations involving the difference between the true and
the averaged potential matrix for r to r + dr. The diagonalization is then reversed
to obtain the wave function and its first derivative at r + dr. This procedure is
repeated and thus the solution is propagated toward some predetermined distance
rmax. Consequently no large linear system needs to be evaluated in the Gordon
algorithm and hence the method is not memory limited. The step size of each
propagation is calculated on the fly according to an accuracy criterion. Closed
channels are removed from the propagation when the corresponding amplitude of the
channel wave function has become smaller than a threshold parameter. The influence
of these components on the scattering properties of the asymptotically accessible
channel is then negligible. The physical boundary conditions for the solution are
obtained by first calculating N linear independent solutions from different initial
slopes at the origin, and then constructing appropriate linear combinations of these
solutions. For a bound state ψ(rmax) = 0 has to hold, while for a scattering state
they must approach the asymptotic form given by Eq. (2.32). The resulting Ŝ matrix
contains everything to predict the result of any scattering experiment.

3.3.2 Discrete variable representation (DVR)

The discrete variable representation approach to quantum-scattering is described
in [43, 135, 136] and a nice review is given by Light and Carrington [134]. The
description of this method is based on this review and [216].

9which are the solutions for the Schrödinger equation for a constant potential and positive local
energy. If the local energy is negative then exp(±kr) is used instead. In the intervals where
some of the local energies are negative, the undesired exponentially increasing functions are
minimized by a “triangularization” method developed by Gordon.
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Since we are interested in the calculation of the bound state energies, we only need
to solve the Schrödinger equation in a finite interval [0, r], as the bound state wave-
function decays exponentially at large distances. The smaller the binding energy
of the bound state, the larger the interval has to be chosen. In a first step we
choose a finite, n-dimensional, orthogonal basis for the Hilbert space which reflects
the symmetry of the problem under consideration. This is called the finite basis
representation (FBR), and the basis functions are usually orthogonal polynomials10.
Commonly used are a trigonometric basis (Fourier-series), particle in a box states
(i.e. Chebyshev polynomials), harmonic oscillator functions (Hermite polynomials),
and Legendre or Laguerre polynomials. In our case particles in a box states are
used, since they have the needed vanishing boundary conditions required for bound
states. One could try to solve the whole problem in the FBR, but this would
require to compute the matrix elements of the potential onto this basis, i.e. the
numerical calculation of lots of integrals. The kinetic energy operator instead is
usually simple to evaluate analytically in the FBR. For instance, on the trigonometric
basis it is trivially diagonal. The problem of calculating the integrals of the potential
on the FBR is bypassed by introducing a second basis set, the discrete variable
representation (DVR).
The idea is to use Gaussian quadrature to evaluate these integrals11 which leads to a
new basis representation, the DVR. Harris et al. [97] showed that by diagonalizing
the matrix representation of the position operator x̂ in the FBR, the DVR can be
constructed much more easily. The eigenvalues of the matrix U which diagonalizes x̂
are the quadrature points, while the eigenvectors constitute the new basis set that
defines the DVR.
These new basis functions, as they reduce the x̂ position operator to diagonal
form, look quite much like bell-shaped functions, centered around the quadrature
points. The larger n, the more they will look like delta-functions. This is why one
can approximate the matrix representing the potential on the DVR basis as being
10Generally the complete basis has an infinite number of basis functions. But since we are only

interested in states up to a certain energy, we can restrict us to a finite basis.
11A quadrature rule is an approximation of the definite integral of a function, usually stated as a

weighted sum of function values at specified points within the domain of integration. An n-point
Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule constructed
to yield an exact result for polynomials of degree 2n− 1, by a suitable choice of the n points xi

and n weights wi such that ∫ b

a

ω(x)f(x) dx ≈
n∑

i=1

wif(xi) . (3.42)

It can be shown [182] that the evaluation points are just the roots of a polynomial belonging to
a certain class of orthogonal polynomials depending on the choice of the weight function ω(x)
and the integration interval [a, b]. Knowing the evaluation points, the associated weights are
easily calculated [182].
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diagonal, with elements equal to the potential evaluated at the quadrature points.
The larger n, the better the approximation.
Of course the problem is now to express the kinetic energy in the DVR. This is easily
done, because we know the orthogonal matrix U that diagonalizes x̂. The matrix U
is the orthogonal transformation that connects DVR and FBR:

TDVR = U · TFBR · UT . (3.43)

Now that we have expressed all parts of the Hamiltonian in the DVR, we just need
to diagonalize the resulting matrix to get the energies and wave functions of the
bound states.

3.4 Detecting Feshbach resonances experimentally

We have seen in the preceding parts of this chapter, that the scattering length
a diverges on a Feshbach resonance. The remaining part of this chapter will be
concerned with what methods we can use to determine the scattering length. The
methods in question, can be roughly divided into three different categories, according
to the physical quantity which is measured:

• Elastic collision rate
Looking back at Chapter 2, we see that the elastic cross-section is directly
related to the scattering length through Eq. (2.45) for vanishing k, and by
Eq. (2.51) for small k. The elastic collision rate is then given by

Γcoll = n̄(t)<σ(v)v>therm , (3.44)

where σ(v) is the velocity dependent s-wave elastic cross-section, < ·>therm

denotes thermal averaging and n̄ =
∫
n2(r)dV/

∫
n(r)dV is the mean density.

A limited redistribution of energy in the collision process requires each atom
to scatter more than once before an athermal atomic cloud reaches thermal
equilibrium. The relaxation rate for this thermalization process can be related
to the collision rate by Γcoll = αΓrel, where α is in general a temperature
dependent factor [8, 119, 157, 160, 257]. The idea of the cross-dimensional
rethermalization method is now to prepare an athermal atomic cloud, by
adiabatically compressing the trap in only one direction. If this is done on a
faster time scale than the collision rate, the temperature in the compressed
direction will be higher, than in the other two. Due to elastic collisions the
atomic cloud will relax to a new (higher) equilibrium temperature. From the
measured relaxation rate it is then possible to determine the elastic cross-
section and thus the magnitude of a, but not the sign, through Eq. (2.45)
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[8, 17, 51, 106, 157, 161, 193, 196]. If one can measure the temperature
dependence of the relaxation rate according to Eq. (2.51) it is also possible to
determine the sign of a like for 52Cr by Schmidt et al. [212]. In Chapter 4 we
will shortly review this measurement and the obtained results, to be able to
compare them to the values for the scattering length obtained in this thesis.
Another possibility to detect the variations in the scattering length a and thus
σel is to allow atoms in the high-energy tail of the thermal distribution to
leave a shallow trap. Elastic collisions again replenish these states, leading to
a continued evaporation loss that is determined by the collision rate. Although
this loss is a nonlinear function of the elastic cross section, it can still be used
to find minima in σel (and accordingly a) with high precision. This method
has been successfully applied for finding Feshbach resonances in Cs [36].

• Inelastic collision rate
With increasing scattering length not only the probability for an elastic collision
increases, but also the chances for three-body inelastic collisions go up. The
recombination event rate can be parametrized as Γrec = αn3, where α is the
recombination constant and n is the density of the gas. Dimensional analysis
under the assumption that a is bigger than the size of the atoms implies that

α = C
~a4

m
. (3.45)

C is a dimensionless constant and generally consists out of two contributions.
One contribution is from recombination into a shallow s-wave state, which is
only possible for a > 0. For either sign of a, there can also be recombination
into deep molecular bound states. The three-body recombination into the
shallow bound state has been studied in [69, 163] and into the deep states in
[13, 23, 64, 240]. These theoretical investigations predict values between 0 and
70 for C. A review of this topic is given by Braaten and Hammer [22].
The three body loss rate is connected to the recombination rate, by nl the
number of atoms lost from the trap due to a three body collision:

L3 = nlα = nlC
~a4

m
. (3.46)

The value of nl depends on the details of the experiment. In the recombination
process, the molecular binding energy is set free as kinetic energy. Since the
kinetic energy is large compared to the trapping potential depth, both molecule
and the third atom are expelled from the trap, setting nl = 3. However, the
binding energy of the weakly bound last energy level of the dimer is given
by Eq. (3.41), and at very large scattering length values the kinetic energy
of the third atom may be below the trap depth and thus cannot escape. If
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Chapter 3 Theory of Feshbach resonances

the potential of the atom trap does not confine the molecule, the dimer is lost
and nl=2. If, however, the molecule is trapped and stays within the atom
cloud, it may quickly quench its high vibrational excitation in an inelastic
collision with a fourth trapped atom. The large amount of energy released in
this situation expels the collision partners, making nl = 3. In either case, the
kinetic energy of the remaining atom is distributed in the ensemble, giving rise
to recombination heating.
Yurovsky and Ben-Reuven [262] use a different approach for modeling the
three-body loss. They treat it as a two-stage reaction, using Breit-Wigner
theory. The first stage is the formation of a resonant diatomic molecule, and
the second one is its deactivation by inelastic collisions with other atoms. For
a non-condensed atom sample, they obtain for α the following dependence

α =
36π~2kd |anrµ|∆

m [µ2(B −B0)2 + ~2Γ2
e/4]

, (3.47)

where kd is the two body rate coefficient, anr the non-resonant cross-section, µ
the difference of the magnetic momenta, ∆ the Feshbach resonance width and
Γe the resonance width for the formation of the molecule. Of special interest is
here the dependence of α on the resonance width, i.e. the three-body loss rate
is proportional to the width of the Feshbach resonance. A similar expression
can be derived for a BEC [263], though the rate coefficient is six times smaller
than the corresponding rate for the non-condensed case. This difference, due
to the effects of quantum statistics, has been predicted [118] and observed in
experiments [29].
Both theoretical approaches predict that the highest three-body loss rate occurs
when the scattering length diverges. This has been experimentally verified
with high accuracy for 87Rb, where a discrepancy of only 60 mG was observed
[242]. It is though justified to infer the location of a Feshbach resonance from
the position of the maximum of the three-body loss rate.

• Thomas-Fermi radius of a Bose-Einstein condensate.
Once a Bose-Einstein condensate has been created, the scattering length can
be deduced from the measured density distribution of the BEC. If the thermal
de-Broglie wavelength is on the order of the inter-particle separation and
much larger than the potential range, the interaction between the condensate
atoms can be described by an effective interaction Veff(r) = gδ(r), where r
is the particle separation and g = 4π~2a/m is the coupling constant [46].
The stationary Schrödinger equation including particle interactions becomes
nonlinear and is called the Gross-Pitaevskii equation (GPE)[

− ~2

2m
∇2 + Vtrap(r) + g|Ψ(r)|2

]
Ψ(r) = i~

∂

∂t
Ψ(r) , (3.48)
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where Ψ(r) is the condensate wave function.
If we put a large enough number of atoms N0 into the condensate, the repulsive
interactions will dominate over the kinetic energy term of the GPE. This is
the so called Thomas-Fermi regime [32]. The shape of the condensate density
mirrors the trapping potential and is given for a harmonic trap by [121]

n(r) =
µ

N0g

(
1−

∑
α=x,y,z

r2
α

R2
α

)
where R2

α =
2µ

mω2
α

=
8π~2an0

m2ω2
α

, (3.49)

µ is the chemical potential, ωα are the trap frequencies and n0 is the peak
density. As can be clearly seen, the Thomas-Fermi radius depends on a. The
main uncertainty in this measurement comes from the difficulty in determining
the density accurately. For negative scattering lengths, the condensate is stable
only below a critical number of atoms. From this instability, a value for the
negative scattering length can be deduced.
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Chapter 4

Chromium

This chapter will give a short overview over the physical, electronic and spectroscopic
properties of chromium relevant to this work. I’ll also shortly recapitulate the results
of previous experiments conducted by our group, regarding the elastic and inelastic
cross sections of 52Cr.

4.1 General properties

The general scope of this project is the investigation of quantum statistical effects in
bosons and fermions. A natural choice are two different isotopes of the same element.
Chromium offers three bosonic (I=0) and one fermionic isotope (I=3/2) with high
natural abundances. Table D.1 in Appendix D summarizes the natural abundance
and nuclear spin for the stable chromium isotopes.
For operating a magneto-optical trap chromium vapor is necessary. At room temper-
ature chromium is a very hard metal with a body-centered cubic crystalline structure.
It has a very high melting point of 1850 °C. The boiling point is at around 2200 °C.
Sublimation under vacuum conditions results in a vapor pressure of 6 · 10−7 mbar at
a temperature of 1500 °C [233], which is sufficient for operating a MOT.
For efficient laser cooling the spectroscopic properties of the considered atom are
of importance. Figure 4.1 on the next page shows the relevant part of the level
scheme for bosonic 52Cr and fermionic 53Cr. A more complete scheme can be found
in Fig. D.1 on page 144. All bosonic isotopes share a similar level scheme, except
for slightly different transition frequencies due to isotope shifts. This is contrasted
by the fermionic isotope where each level splits up into four, due to the hyperfine
interaction. We operate the Zeeman-slower and the magneto-optical trap on the
strong transition connecting the ground state 7S3 with the excited state 7P4 in the
blue at a wavelength of 425.555 nm1. Atoms in the excited 7P manifold can undergo

1All wavelengths given in this thesis are vacuum wavelengths from [166], unless otherwise noted.
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Figure 4.1: Part of the level schemes for (a) bosonic 52Cr and (b) fermionic 53Cr.
Also shown are the relevant transitions together with their respective wavelength. The
hyperfine-splittings and the shifts between the bosonic and fermionic isotope are given in
MHz.
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4.2 Elastic cross section measured in a magnetic trap

a transition to the metastable 5D manifold via intercombination lines. Due to the
high magnetic moment of the 5D manifold states, atoms in these states are trapped
in a magnetic trap (see Chapter 6.1.1). We use a repumper laser on the 5D4 ↔ 7P3

line to pump the atoms back into the ground state, since this transition is faster
than the 5D4 ↔ 7P4 transition, and dark state resonances on the latter transition are
absent [230]. One disadvantage is that the 7P3 state can also decay into the 5S2 state
instead of the ground state 7S3 with a branching ratio of 1:1000. For optical pumping
the atoms from the ms =+3 into the -3 state we use the transition 7S3 ↔ 7P3 with a
wavelength of 425.600 nm. All relevant transitions for this work and their widths are
summarized in Appendix D.
Compared to the alkalis, chromium has six valence electrons instead of one, which
leads to a much more complicated electron configuration. In the ground state 7S3,
the electrons are in a hybridized [Ar]3d54s1 electronic configuration. The alignment
of all electron spins leads to a strong magnetic moment in the 7S3 (6µB) ground and
metastable 5D4 (6µB), 5D3 (4.5µB) states. This allows to build magnetic traps with
a strong confinement, necessary for evaporative cooling. The large magnetic moment
is also responsible for a very strong anisotropic spin-spin dipole interaction between
two 7S3

52Cr atoms. In fact, when compared to alkali-metal atoms, which have a
maximum magnetic moment of 1µB, it is 36 times stronger.
The number of electrons also has profound consequences on the complexity of
ultracold elastic collisions, which will be seen in Chapter 6.

4.2 Elastic cross section measured in a magnetic trap

From the measurements of the Feshbach resonance positions for 52Cr which are
presented in Chapter 6 of this thesis, precise model potentials can be constructed
which allow an exact determination of the 13,9,5Σ+

g scattering lengths. Our group
already performed a scattering length measurement of the deca-triplet state 13Σ+

g

of 52Cr [209, 212] in a magnetic trap, employing the cross-dimensional relaxation
method described in section 3.4. To compare both methods, the results of the cross-
dimensional relaxation method will be summarized here. The latter was performed
in a temperature range which covers almost two orders of magnitude to be able to
not only give an absolute value for the scattering length, but to also determine the
sign of the scattering length. Figure 4.2 on the next page shows the measured density
normalized relaxation rate Γrel/n̄ versus the mean temperature. Four theory curves
are plotted together with the data. The blue lines are a fit of the thermal average
Γrel = n̄(t) < σ(v)v >therm, where σ is given by the effective range approximation
Eq. (2.51). The magnitude of the scattering length is most accurately determined
from the low temperature elastic collisional properties. Thus for fitting we only
considered data points below 25µK. The fits were done once under the assumption
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Figure 4.2: Temperature dependence of the density normalized relaxation rate for 52Cr.
The blue lines are a fit of Γrel = n̄(t) < σ(v)v >therm to the data, while the red lines
are numerical single channel calculations. The fits were done under the assumption
of a positive/negative scattering length. They result in a positive scattering length of
a(52Cr) = 170 ± 39 a0 and a negative scattering length of a(52Cr) = −220 a0. The error
bars are derived from statistical and calibration uncertainties. Data from different runs are
labeled by the plot symbols [212].

of a positive and once for a negative scattering length. The reader clearly sees that
the high energy tail of the curve for a(52Cr) = 170± 39 a0 follows the experimental
data, in contrast to the best fit for a negative scattering length of a(52Cr) = −220 a0.
The red lines are the results of numerical single channel calculations using model
potentials which exhibit the same scattering lengths.

We also investigated the deca-triplet scattering length of 50Cr using the same method.
In Fig. 4.3 we have plotted the results of the relaxation experiment for 50Cr. All
theory curves are obtained from numerical single-channel calculation. The solid curve
is a fit to the 50Cr data resulting in a scattering length of a(50Cr) = 40±15 a0. For the

54



4.3 Inelastic cross section measured in a magnetic trap

Γ
re

l
/

[c
m

/s
]

n
3

x10
-12

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T [µK]

55 a
0

25 a
0

40 a
0

170 a
0

50
Cr data

52
Cr data

theory

-200 a
0

Figure 4.3: Density normalized cross-dimensional relaxation rates for 52Cr (squares)
and 50Cr (circles). The red lines are plots with a = 25 a0, 40 a0, 55 a0 and −200 a0,
respectively [212].

dashed curve, we have assumed a negative scattering length, where a(50Cr) = −200 a0

gave the best agreement with the data. The Cr2 molecular potential constructed from
C6 and a(52Cr) can be used to obtain a scattering length for 50Cr by mass scaling.
We find that negative scattering lengths a(50Cr) ≈ −200 a0 are not compatible with
reasonable changes in our best potential, thus providing very strong evidence for a
positive sign of a(50Cr).

4.3 Inelastic cross section measured in a magnetic
trap

As a consequence of Maxwell’s equations it is impossible to create a maximum of
a static magnetic field in a region where external currents are absent. For this
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reason atoms are usually magnetically trapped in the energetically highest Zeeman
sub-level (weak-field-seeking state). The trap lifetime of these atoms is mainly limited
by collisions. Aside from background gas collisions and three-body recombination,
the atoms undergo spin-exchange and dipolar relaxation collisions. In contrast to
spin-exchange collisions, in which the total spin is conserved, the spin is flipped in a
dipolar relaxation process, since the dipole–dipole interaction does not preserve the
total spin, but rather the total angular momentum. Therefore, if one considers a
cloud of fully polarized 52Cr atoms in the energetically highest state ms =+3, only
spin relaxation that does not conserve the total spin i.e. the dipolar relaxation, leads
to atom loss from the magnetic trap. During a dipolar relaxation process either one
or both colliding atoms can relax to the ms =+2 state. The gained Zeeman-energy
leads to heating of the atomic cloud. Furthermore, the existence of atoms in the
ms =+2 states opens new collision channels which now also include spin-changing
collisions. Atoms whose energy exceeds the magnetic trap depth or which reach
states with ms <+1 are lost from the trap. Previous attempts to Bose-Einstein
condense 52Cr in a magnetic trap using evaporative cooling, showed that the dipolar
relaxation limits the maximum attainable phase-space density in a magnetic trap to
ρ = 10−2 [100].
To be able to quantify the dipolar relaxation rate βdr of 52Cr our group measured
the dependence of βdr on the magnetic offset field using three different experimental
methods [100, 102]. We find a typical dipolar relaxation rate constant of βdr =
4 ·10−12 cm3/s at a magnetic offset field of B0 = 1 G. Thus, even at low magnetic fields,
the loss coefficient for chromium is one order of magnitude larger than that reported
for Cs in the lowest hyperfine level (F=3) [86] and another three orders of magnitude
larger than that for Na [92]. The values predicted by a theoretical calculation [102]
are in good agreement with the experimentally observed values. These findings are
especially important for experiments that aim to produce high-density samples of
atoms and molecules with high magnetic or electric dipole moments in magnetostatic
or electrostatic traps [15, 247, 248]. Large inelastic two-body collision rates are
to be expected with increasing dipole–dipole interaction. As has already been
pointed out by Guéry-Odelin et al. [86], dipolar relaxation can be almost totally
suppressed by polarizing the sample in the energetically lowest spin state, which
requires different trapping schemes, for example optical dipole traps (see Chapter 5.4).
In this state neither dipolar relaxation nor spin-exchange collisions are possible at a
reasonable offset field. The only expected loss mechanisms in this case are three-body
recombination and background gas collisions.
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Experimental setup and methods

Before covering the Feshbach experiments in detail in the next chapter, this chapter
will give an overview of our experimental setup. Since the design and characterization
of many parts of our setup were already the subject of earlier theses [83, 100, 209,
230, 250], the description will be kept very concise. For further details the cited
references should be consulted. The optical dipole trap, the optical pumping laser
system and the computer control system were not contained in earlier theses and are
thus described more thoroughly.

5.1 The vacuum system

The ultra-high vacuum (UHV) system for our experiments consists out of three
chambers, see Fig. 5.1. The core is the science chamber, where the atoms are captured,
accumulated and manipulated. Right next to the science chamber the pumping
chamber is attached. The lower oven-chamber (see Fig. 5.2) is attached through
a 800 mm long Zeeman-slower to the science chamber. Using a high temperature
effusion cell1, chromium is sublimated at temperatures around 1873 K. We use
commercially available chromium granulate2 which is deposited in a CaO stabilized
zirconium dioxide crucible3, which in turn is placed inside a tungsten crucible4. This
is necessary, because chromium forms a low-melting alloy with tungsten [233], while
zirconium dioxide crucibles tend to react with the tantalum rods holding the crucibles
(or even break). The crucibles are heated using tungsten wires. An aperture with
a diameter of 1 mm, which is put into the crucible, collimates the chromium beam.
This prevents that chromium is deposited onto the cooler molybdenum apertures

1VTS Schwarz GmbH, model HT-TA-35-10/W (special design)
2Chromium 99.99%, granulate 0.7-3.5 mm. Unaxis, Article Nr. BD481138-T
3Haldenwanger, special design
4VTS Schwarz, model W-T-HTC-UK-802
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Figure 5.1: Setup of the ultra-high vacuum system. (a) CAD-Drawing of the vacuum
chamber. Shown are the science- (top), pumping- (top right) and oven-chamber (bottom).
The oven and the science chamber are interconnected by the Zeeman-slower. (b) Photo of
the vacuum chamber setup. The chamber is surrounded by the necessary optics for the
different required laser beams. Also easily spotted are the power cables and the cooling
water tubes for the magnetic trap. See text for details.

above, which serve as heat shield. The chromium beam can be switched on and
off in approximately 200 ms using a rotatable metal plate which is operated by a
stepper motor through a mechanical feed-through. The vacuum in the oven chamber
is maintained by an ion pump5 at a pressure of around 10−10 mbar.

The velocity distribution for atoms coming out of the oven has a peak at around
950 m/s. A typical MOT has a capture velocity of approximately 30 m/s. To accumulate
enough atoms in a MOT, the atoms need to be slowed down longitudinally. This is
done using a spin-flip Zeeman-slower [83, 100, 230, 256]. The Zeeman-slower tube
with an inner diameter of 1.5 cm also acts as a differential pumping stage. This
allows a pressure difference between the oven and science chamber of more than two
orders of magnitude [83].

The details of the science- and pumping-chamber are shown in Fig. 5.3. The pump-

5Varian, VacIon 75-Diode and MiniVac-Controller
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Figure 5.2: View of the realized oven chamber. (a) Photo of the complete oven chamber.
(b) Schematic view of the high temperature effusion cell.

chamber is a 6-way vacuum cross, where an ion pump6 and a Ti:sublimation7 pump
are attached. Both together yield a pressure below 10−11 mbar. This is also helped by
the fact, that chromium itself is a very good getter material, so all surfaces coated by
chromium will improve the vacuum. To create the initial vacuum a turbo-molecular
pump can be attached to the 6-way cross through an edge valve. By doing away
with mechanical pumps, we avoid vibrations and thus a heating of the atomic cloud.

The science chamber is dominated by two inverted CF160 flanges which are opposite
to each other. These inverted flanges house the magnetic coil packets. The distance
between the two inverted flanges is 26 mm. In the center of each inverted flange a
glass window is mounted, allowing to shine in the z-beams. In star formation around
the inverted flanges, two CF100 flanges and 10 smaller flanges can be found. One
of the two big CF100 flanges connects to the pumping cross and one small flange
interconnects with the Zeeman-Slower, while all the others are used for optical access
through viewports. The purpose of each flange is found in Fig. 5.3. Additionally,
there exist four CF40 supply flanges which are used for electrical feed-throughs (for
the RF-coils) and a vacuum gauge8.

6Varian, VacIon 75-Diode and MiniVac-Controller
7Varian TSP-cartridge
8Varian, UHV-24, range up to 1 · 10−11 mbar
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Figure 5.3: Details of the science-, and pumping chamber. (a) in z-direction, (b) in
x-direction. Shown are the directions of the necessary trapping beams. See text for details.

5.2 The laser system

5.2.1 Cooling laser

For cooling and trapping of 52Cr atoms the 7S3 ↔ 7P4 transition with a wavelength
of 425.6 nm is used. The laser light for this transition is generated by frequency
doubling the output of a Ti:sapphire-laser9 which is in turn pumped by an Ar+-ion
laser10 with a power of 16 W (see Fig. 5.4). A self-made external, pump beam
resonant cavity using a brewster cut LBO crystal converts 2 W of fundamental power
into approximately 300 mW of blue light. Further details about the design and
characterization of the frequency doubling system can be found in my diploma thesis
[250]. Since the brewster angle of the LBO crystal is only correct for the pumping
light, approximately 19 % or 80 mW of the converted blue light is reflected at the
exit face of the crystal. The light from this reflex is used for the imaging beam and
the spectroscopy.
For actively stabilizing the blue laser light on the 7S3 ↔ 7P4 transition we use a
Doppler-free polarization spectroscopy [53] on chromium gas (beam II), produced
by a cold gas discharge in a chromium tube under an argon atmosphere [230]. By
applying a magnetic field, the resonance frequency can be fine-tuned by Zeeman-
shifting the transition energy. We achieve a long term stability of ≈ 1 MHz. The

9Coherent, model MBR-110
10Coherent, model Sabre 25 TSM, multi-line visible mode (MLVIS)
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Figure 5.4: Sketch of the setup for the cooling laser system showing laser light generation,
frequency stabilization (beam II) and beam preparation for absorption imaging (beam I),
Zeeman-slower (beam III) and magneto-optical trap (beam IV). The frequencies of the
beams are relative to the atomic resonance. L: lens, OD: optical diode, λ/2, λ/4: half and
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shutter, AOM: acousto-optic modulator, HCL: hollow cathode lamp.
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generated lock signal is fed back to the Ti:sapphire laser. Due to the additional
AOMs in the spectroscopy setup the frequency of the laser light coming out of the
frequency doubling cavity is 200 MHz red detuned to the atomic resonance. For
the absorption imaging light a double-pass AOM and a VCO are used to shift the
light back close to resonance and allow for fast switching (beam I). The imaging
beam is coupled into a single-mode fiber to guide it to the science chamber. Using a
fiber improves the transversal mode quality and beam pointing stability. The main
fraction of the blue light (≈ 120 mW) is allotted to the Zeeman-Slower beam (beam
III), whose frequency is fixed to -200 MHz. The remaining power of 60 mW is used
for the retro-reflected MOT beams (beam IV). Again a double pass AOM is used to
allow for flexible frequency shifts of the MOT light by a few linewidths around the
atomic resonance and also to control the power in the MOT beams.

5.2.2 Repumping laser

During laser cooling, atoms can decay from the 7P4 state into the metastable 5D4

and 5D3 states instead of the ground state. Those atoms can be transferred back
into the ground state by pumping them into the 7P3 state, from which they then
spontaneously decay with high probability into the ground state11. To achieve this,
two commercially available diode laser systems12 in Littrow configuration [192] have
been set up. The setup is sketched in Fig. 5.5. The first diode laser system is
resonant with the 5D3 ↔ 7P3 transition at a wavelength of 663.2 nm and provides a
power of approximately 5 mW. Optionally, the power can be increased to 15 mW by
injection locking to a slave laser. The second system is responsible for the 5D4 ↔ 7P3

transition at 654.0 nm. Both lasers are stabilized onto a 1 m long, passive Fabry-
Perot reference cavity made out of Zerodur and Invar, using the Pound-Drever-Hall
sideband modulation technique [59]. The resonator is evacuated and temperature
stabilized, to minimize drifts. To obtain frequencies between two cavity fringes,
double pass AOMs are used to shift the frequencies. We experience frequency drifts
of about 2 MHz/h, which can be mostly attributed to temperature drifts. More details
can be found in [101].

5.2.3 Optical pumping laser

To generate the laser light with a wavelength of 427.6 nm necessary for optical
pumping on the transition 7S3 ↔ 7P3 a new laser system had to be set up. Since
the required optical power necessary for optical pumping is below 1 mW, we decided
11There exists a probability of 1:1000 that the atoms decay into the metastable 5S2, which can be

neglected in our applications.
12Toptica, model DL100
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Figure 5.5: Sketch of the setup for the repumping laser system showing both master laser
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and the SHG ring cavity using KNbO. L: lens, OD: optical diode, λ/2, λ/4: half and quarter-
wave plate, respectively, M: mirror, PBS: polarizing beam splitter, PD: photo diode, PI:
proportional-integral servo, PZT: piezo transducer, AOM: acousto-optic modulator, AP:
anamorphic prism pair, FC: fiber coupler.

to build a frequency doubling resonator employing KNbO as non-linear material.
KNbO is well suited for frequency doubling in the low power regime (output power
below 200 mW). It has a very high non-linear coefficient (20.3 pm/V) and adverse
effects like the high absorption coefficient for the fundamental and frequency doubled
light which lead to a thermal lens or even BLIIRA13 [138] only play a role in the
high power regime. It is also not necessary to use a brewster cut crystal, since the
circulating power in the resonator is typically below 1 W and thus the power density
on the crystal surfaces is well below the damage threshold of the anti-reflection
coating. To generate the necessary pump power, we use a self built master/slave
laser-diode system using commercially available high power diodes14. The complete
setup is shown in Fig. 5.6. The master laser-diode system is in Littrow configuration
and stabilized also onto the Fabry-Perot resonator which is already used for the
repumping laser system (see section 5.2.2). For stabilization we use again the Pound-
Drever-Hall [59] stabilization technique. The necessary sidebands are generated by
modulating the master laser-diode current. To tune the frequency arbitrarily between
two cavity fringes, a double-pass AOM is shifting the frequency between the master
and the slave diode laser. Approximately 70 mW of optical pumping power reach the
frequency doubling resonator. Since the sidebands of the master laser system are
13Blue Light Induced Infrared Absorption
14Roithner Laser
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5.3 The magnetic trap

also imprinted on the slave laser we can stabilize the frequency doubling resonator
with the proven Pound-Drever-Hall technique. Phase-matching in the KNbO-crystal
is achieved by tuning the temperature of the crystal. Due to non-optimal impedance
matching and a very old KNbO crystal, the conversion efficiency is not optimal, but
the output power of about 2 mW is sufficient for our purposes. The design of the
frequency doubling resonator is described in [223], for similar setups see [146, 210].
To be able to switch the optical pumping laser on short timescales an AOM is used
for switching, supplemented by a mechanical shutter.

5.3 The magnetic trap

For magnetically trapping 52Cr atoms we have implemented a Ioffe-Pritchard (IP)
trap [80, 183] in the cloverleaf configuration15 [148]. All IP trap configurations
produce a translationally invariant 2D quadrupole field in the radial direction and a
quadratically increasing magnetic “curvature” field along the axial direction of the
trap. The advantage of the cloverleaf configuration is that it offers 2π optical and
mechanical access in radial direction, in contrast to the other trap types. Our coil
setup is shown in Fig. 5.7 on the following page. Four pairs of cloverleaf coils generate
the required radial gradient, while the two dipole coils produce the axial curvature.
Cloverleaf and dipole coils are located in the same plane to achieve maximum radial
gradient without scarifying axial curvature. The offset coils are placed behind the
cloverleafs and produce an almost homogeneous field canceling the field of the dipole
coils at the center of the trap. The actual shape of the cloverleaf coils is not circular
but rather elliptical to fill the available space most efficiently. All coils are made out
of hollow copper tubing to allow for water cooling. To mechanically fix the position
of the coils, they were glued into a tightly fitting plastic form using two component
low expansion epoxy glue. The resulting coil packets were then inserted into the
reentrance buckets of the vacuum chamber. They are held in position by four screws
from the backside. Table 5.1 lists the typical parameters of our magnetic trap. A
detailed explanation of the magnetic trap design can be found in [83, 100]. To be
able to compensate stray magnetic fields in all spatial directions three pairs of coils
in Helmholtz configuration are used.
We use a power supply16 with 16.8 V/300 A for the dipole and offset compensation
coils which are connected in series to achieve common mode rejection of current
noise. To generate the homogeneous offset field needed for observing the Feshbach
resonances, we use an additional power supply 20 V/500 A over the pinch coils 17.
It is decoupled from the rest of the circuit through two diodes. For compensating
15Other configurations are the baseball trap [159], 4-Dee trap [98] and the QUICK-trap [65].
16Agilent technology, model HP 6682A
17Power Ten, model P63C-20500
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Figure 5.7: Coil setup for the cloverleaf magnetic trap. (a) Sketch of the coil configuration.
Arrows indicate the direction of the current in the coils. (b) Rendered image of the
implementation. Each dipole coil is surrounded by four clover-leaves. The offset coil is
placed behind the leaves. (c) Photo of one coil package, before the coils were fixed into
place using epoxy glue.
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Property Value

radial gradient ∂B′r
∂I

0.67 G/(cmA)

maximum radial gradient B′
r at 300 A 201 G/cm

axial curvature ∂B′′z
∂I

1.08 G/(cm2A)

maximum axial curvature B′′
z at 300 A 324 G/cm2

instability points position zinst at 300 A 0.62 cm

axial trap frequency at 300 A 73 Hz

radial trap frequency at 300 A and B0 =1 G 808 Hz

Table 5.1: Calculated properties of our magnetic trap.

small offset fields a power supply 18 over the offset coils is used. The polarity of the
power supply can be reversed to compensate fields in both directions. The cloverleafs
are powered by a separate current supply19 with 30 V/300 A. Fast switching of all
the currents is accomplished by using IGBT’s20 and carefully designed free wheeling
circuits. We achieve switching times below 50µs. Residual eddy currents in the steel
chamber can prolong the magnetic field switching time up to 5 ms. The complete
electrical circuit is drawn in Fig. 5.8. The currents of all power supplies are set by
the computer control through the analog inputs.

5.4 The dipole trap

5.4.1 Atom-light interaction

To understand the mechanisms behind an optical dipole trap we have to investigate
how a two-level atom with ground state | g 〉 and excited state | e 〉 interacts with
a monochromatic light field E(r, t) = êE0(r) cos(ωlt− Φ(r)) of frequency ωl, phase
Φ(r), amplitude E0 and polarization ê. The electric field couples to the induced
electric dipole moment d of the atom giving rise to an interaction term HWW = −d·E.
From this interaction term and by considering the spontaneous emission one can
derive the time averaged force on a resting atom [41, 147, 151], which has two
18EA-PS 3016-10
19Power Ten, model P63D-30330
20Insulated Gate Bipolar Transistor, from Semikron
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contributions: The conservative dipole force term arising from energy shifts of the
atomic states in the light field (ac stark shift) is proportional to ∇I. The second
contribution is the dissipative radiation pressure force and arising from momentum
transfer of scattered photons. It is proportional to the phase gradient ∇Φ. As we
are only interested in the dipole force, we will restrict the following discussion to it.

The dipole force shows a dispersive behavior. This can be understood in the classical
Lorentz model [71, 112]. If the frequency of the laser field ωl is lower (higher) than
the transition frequency of the two-level system ωa (i.e. the detuning δ = ωl − ωa is
negative (positive)) the induced electric dipole and the driving electric field oscillate
in phase (180° out of phase). For the induced dipole it is now energetically preferable
to stay in regions of the light field with high (low) intensity. This classical derivation
[85] gives the same results as a semi-classical [214] or even quantum-mechanical
derivation [85] for the dipole potential Udip and the scattering rate Γsc:

Udip(r, t) = −3πc2Γ

2ω3
a

(
1

ωa − ωl

+
1

ωa + ωl

)
I(r, t) (5.1)

Γsc(r, t) =
3πc2Γ2

2~ω3
a

(
ωl

ωa

)3(
1

ωa − ωl

+
1

ωa + ωl

)2

I(r, t), (5.2)

Here the line-width of the two-level transition is denoted by Γ.

For |δ| = |ωl−ωa| � ωa the second term in the equations can be neglected (rotating-
wave approximation) and one can set ωl/ωa ≈ 1. This leads to

Udip(r, t) = −3πc2

2ω3
a

(
Γ

δ

)
I(r, t) (5.3)

Γsc(r, t) =
3πc2

2~ω3
a

(
Γ

δ

)2

I(r, t), (5.4)

Obviously, a simple relation exists between the scattering rate and the dipole potential

~Γsc =
Γ

δ
Udip . (5.5)

This means that while the dipole potential scales as I/δ, the scattering rate scales as
I/δ2. Therefore, optical dipole traps usually use large detunings and high intensities
to keep the scattering rate as low as possible at a certain potential depth.

For a very far detuned laser ωl � ωa, both terms of (5.1) contribute with almost the
same amount to the potential to give

Udip(r, t) = −3πc2Γj

ω4
a

I(r, t) = −αDC
I(r, t)

2ε0c
(5.6)

68



5.4 The dipole trap

This is a so called Quasi-electrostatic trap (QUEST). The trap depth just depends
on αDC, which is the static polarizability of the atom. In this case the scattering
rate is given by:

Γsc(r, t) =
6πc2Γ2ω3

l

~ω8
a

I(r, t). (5.7)

In real atoms all transitions which optically couple to the ground state need to
be considered to calculate the resulting optical dipole potential. This is further
complicated by the presence of a fine- or hyperfine-splitting. If δ � ∆FS > ∆HFS then
the presence of the (hyper)fine structure can be ignored, otherwise the line strengths Γ
have to be modified to include the square of the relevant Clebsch-Gordon-coefficients
for the selected polarization [85]. The total potential and scattering rate is now given
by the summation over all coupled states:

Udip(r, t) = −
∑

j

3πc2Γj

2ω3
j

(
1

ωj − ωl

+
1

ωj + ωl

)
I(r, t) (5.8)

Γsc(r, t) =
∑

j

3πc2Γ2
j

2~ω3
j

(
ωl

ωj

)3(
1

ωj − ωl

+
1

ωj + ωl

)2

I(r, t), (5.9)

where the transition wavelengths are given by ωj and the corresponding linewidths
by Γj.
The fundamental source for heating in an optical dipole trap stems from the scattering
of trap photons. In the far-detuned case considered here, the scattering is completely
elastic. This means that the energy of the scattered photon is determined by the
frequency of the laser and not of the optical transition. Both the absorption and the
spontaneous re-emission processes contribute to the total heating. Both contributions
add up to an increase of the total thermal energy by 2Erec (where Erec = ~2k2/2m

is the recoil energy) in a time 1/Γsc
21. The heating power is directly related to the

photon scattering rate by

Pheat = 2ErecΓsc = kBTrecΓsc . (5.10)

Approximating the dipole trap by a power-law potential, allows one to apply the
virial theorem and express the previous equation as a heating rate

Ṫ =
2/3

1 + κ
TrecΓsc , (5.11)

21This seems intuitively clear, but on closer examination one realizes that the absorption process
is anisotropic (in the direction of the dipole trap beam), while the re-emission is isotropic. A
rigorous derivation [85] shows that the longitudinal direction is heated on average by 4Erec/3
per scattering process and Erec/3 for the two transversal directions. Since the trap mixes the
motional degrees on a time scale faster than or comparable to the heating, one can thus use a
simple global heating of 2Erec per scattering event.
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describing the corresponding increase of temperature with time. κ is the ratio of
the potential and the kinetic energy and depends on the trap type (κ = 1 for a 3D
harmonic trap, κ = 0 for an ideal 3D box potential). Due to the finite trap depth of
an optical dipole trap, this heating process will lead to increased evaporation and
thus atom loss.
The simplest realization of an optical dipole trap22 is to use a red detuned Gaussian
beam. The intensity distribution of a Gaussian beam which propagates in z-direction
with Power P is given by [203]

I(r, z) =
2P

πw2(z)
exp

(
− 2r2

w2(z)

)
(5.12)

w(z) = w0

√
1 +

(
z

zR

)2

(5.13)

zR = πw2
0/λl, (5.14)

In the case of 52Cr-atoms and light with a wavelength of 1064 nm, the dipole potential
depth and the scattering rate are related to the intensity by

Udip(r, z) = 2.74 · 10−37 Jm2

W
· I(r, z) and Γstr(r, z) = 5.3 · 10−12 m2

Ws
· I(r, z) .

(5.15)
In the trap center the dipole potential is approximately harmonic with trap frequencies

ωr =

√
4Udip(0, 0)

mw2
0

and ωz =

√
2Udip(0, 0)

mz2
R

. (5.16)

The ratio of the radial and axial trap frequencies is given by

ωr

ωz

=

√
2π

λ
w0, (5.17)

and is a direct consequence of relation (5.14) for the shape of a Gaussian beam.

5.4.2 Optical dipole trap for 52Cr

In the case of chromium the relevant levels which can optically couple to the ground
state are listed in Table 5.2 on page 72 (see Fig. D.1 on page 144 for the complete level
scheme). Since the detuning δ is much bigger than the existing fine-structure splitting
∆FS we can safely ignore it. Therefore we have a very simple s→ p transition, see
22Other realizations are also common, see [85] for a review.
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Figure 5.9: For very large detunings exceeding the fine-structure splitting δ � ∆FS
every transition listed in Table 5.2 reduces to a simple s → p transition. For any laser
polarization it behaves like a two-level system.

Fig. 5.9. Such a transition behaves like a two-level atom with the full line strength
for any laser polarization, and the ground state light shift is thus equal to the one of
a two-level atom. The single ground state couples to the electronic spin in exactly
the same way as it would do without light. In this simple case, all resulting magnetic
sub-states acquire the light shift of the initial atomic s state.
Figure 5.10 shows the dependence of the depth of the dipole potential Udip and the
scattering rate Γsc on the trapping laser wavelength calculated according to Eq. (5.9),
in the rotating wave approximation Eq. (5.4) and for the quasi electrostatic case
Eq. (5.6). One clearly sees that the counter-rotating term in Eq. (5.9) cannot be
neglected for very far detuned dipole traps.

5.4.3 Setup

The optical dipole trap is made up by two Gaussian beams of a Yb-fiber laser23.
Such lasers can be bought in a wave-length range from 1030 nm to 1120 nm. We
opted for a laser running at 1064 nm since this allows one to work with cheap, off the
shelf optics for Nd:YAG lasers. The laser emits up to 20 W of linear polarized light
with a beam quality M2 < 1.1. Power fluctuations are specified to be <2.5% (rms)
for a range of 1 kHz—20 MHz or <3% for the long-term stability. The line-width
of the laser is ∆λ = 1.65 nm from which the coherence length can be calculated to
be λc = λ2/∆λ = 0.7 mm. A longer coherence length would lead to the existence of
23IPG Photonics, PYL-20W-LP
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transition vacuum wavelength λ [nm] Γ [108 s−1]

a7S-z7P 427.193 3.13 · 10−1

a7S-z5P 373.364 1.3 · 10−3

a7S-y7P 359.198 1.52

a7S-y5P 336.517 8.9 · 10−4

a7S-x7P 236.707 5.7 · 10−2

a7S-w7P 209.664 1.1 · 10−2

Table 5.2: Possible optical transitions from the 7S3 ground state for 52Cr [166]. The
transition a7S-y7P is the only other relevant transition besides the cooling transition at
427 nm. The contributions of the other transitions to the optical potential Udip and the
scattering rate Γsc can be safely neglected. All values given here are multiplett averaged
values.
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Figure 5.10: Dependence of (a) the depth of the dipole potential and (b) the scattering
rate on the trapping laser wavelength. Shown are the full calculation Eq. (5.1), the rotating
wave approximation Eq. (5.4) and the QUEST approximation Eq. (5.6). For this calculation
we assumed a laser power of 10 W, a waist of 30µm for the Gaussian beam and included
all lines given in Table 5.2.
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polarizing beam splitter, AOM: acousto-optic modulator, BB: Beam block, FC: Fiber
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standing waves in our crossed dipole trap, which is not wanted. The setup of the
dipole trap has changed considerably since the description in [100], to address the
problems encountered previously.

An overview of the dipole laser system is given in Fig. 5.11. The laser power is
divided into two beams using a λ/2-wave plate and a polarizing beam-splitter. Each
beam then passes through an acousto-optic modulator24 which allows to control the
laser power independently in each beam25. Both beams are then expanded by one
or more telescopes to Gaussian waists of w0=6 mm and 3 mm respectively, before

24Crystal Technology, Model 3110-125 together with RF-Driver Model 1110AF-AIFO-2.0
25As can seen from Fig. 5.11 for one beam the +1 order and for the other the -1 order is used,

thereby shifting the laser frequency between both beams by twice the RF-frequency of the
AOMs of 2 · 110 MHz. This again ensures that there will be no standing waves in the crossed
optical dipole trap.
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being focused into the chamber by a 500 mm lens (diameter 2 inch)26. The last lens
is mounted onto a translation stage to allow for precise control of the waist position
in the chamber. The beam with more power is directed along the axial direction of
the magnetic trap, which ensures good mode-matching between the magnetic and
dipole trap. The second beam traverses the vacuum chamber in vertical direction,
which may allow the magnetic levitation of atoms [245] in the optical dipole trap
in the future. Both beam directions are already used by existing blue laser beams
(for the z-beam of the MOT and for optical pumping), so we employed dichriotic
mirrors27 just before the chamber to overlap the beams.

5.4.4 Characterization

To reliably determine the physical properties of the atomic cloud from the camera
pictures, a good knowledge about the properties of the dipole trap is needed. In
particular a good knowledge about the dependency of the trap frequencies on the
laser power is needed. Theoretically the trap frequencies are fully determined by
Eqs. (5.16). But this is too shortsighted. It starts with the measurement of the
power in the considered dipole beam. The beam power can only be measured outside
the vacuum chamber, and the passage through the vacuum window introduces
approximately 8% of losses due to reflections. Since the spot size on the power meter
must not be to small, the beam power has to be measured even earlier in the beam
path, introducing additional losses and uncertainties. The beam waist w0 can be
determined by imaging the beam on the CCD chip of a camera and searching for the
smallest spot. The beam waist is given by twice the Gaussian width of the spot on the
camera. The influence of the vacuum window on the beam waist is again unknown
and leads to further uncertainty. By looking at the mode of our dipole beams with
the help of the CCD-camera, we discovered that the beam mode outside the Rayleigh
range ±zR is not a Gaussian TEM00 mode any more, but shows contributions of
higher order modes. These higher order modes may reduce the already low axial trap
frequency even further. Due to all these uncertainties involved in the determination
of the trap frequencies, we needed to carry out a in-situ measurement.
One in-situ possibility is to measure the temperature of an atomic sample using a
time-of-flight temperature measurement and the in-trap size of the cloud to calculate
the trap frequencies by the following equation:

ωr,z =
1

σr,z

√
kBT

m
. (5.18)

Due to the uncertainties in the trap size and the temperature, the resulting error
bars on the trap frequencies are huge and thus making this method inappropriate
26There is no need to use an achromat for the last lens, since due to a f/#-number of 20 the

imaging is not limited by the spherical aberration but is diffraction limited.
27HR 1064 nm and HT 425 nm from Lens Optics.
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for our purposes. We finally settled the question of the trap frequencies by using a
method commonly called “parametric heating” [72, 181, 193, 243].
When harmonic trap parameters, such as trap frequencies, or trap center position,
are periodically modulated by external fields, the excitation spectrum shows narrow
peaks at integer fractions of twice the trap frequency ω0 [180]. This is most easily
visualized for the modulation of the trap frequency. Atoms which reach their turning
point at a time when the trap frequency is increased due to the modulation, will
gain additional energy. If the modulation frequency is twice the trap frequency (or
an integer fraction of it), they will reach their other outer turning point again in
phase with the modulation. Atoms initially out of phase with the modulation will
initially lose some energy until they come in phase with the modulation and are
thus also heated. In our optical dipole trap the trap frequency can be modulated
by changing the laser intensity. The increased temperature of the atomic sample
becomes apparent through an increase in the size of the atomic cloud or due to the
finite depth of the trap, the atoms will be lost from the dipole trap. The (classical)
equation of motion for the atoms is given (to first order in the potential) by

d2x(t)

dt2
+ ω2

0 [1 + ε(t)]x(t) = 0 , (5.19)

where ε(t) = ε0 cos(ωt) for our case of harmonic modulation. This differential
equation can then be written in the Mathieu canonical form

d2x(t)

dt2
+ [α− 2q cos(2z)]x(t) = 0 , (5.20)

with z = ωt/2, α = (2ω0/ω)2, and q = ε0α/2. It is well known [2] that depending
on the values of α and q, the solutions x(t) are stable or unstable. In the context
of parametric heating the transition curves which separate regions of stability and
instability define the width of the corresponding resonance. For q � α the resonances
are located at α ∝ n2, i.e. ω = 2ω0/n. The resonance at ω = 2ω0 has a width28

∆2ω0 ∝ ε0ω0/2. That the width of the parametric resonance depends on modulation
amplitude is obvious, because the atoms “sample” a potential whose trap frequency
changes between ω0(1± ε). For ω = 2ω0 the energy increases exponentially with a
rate constant ε0ω0 [30, 73, 113, 207].
Figure 5.12 on the next page shows the results for a parametric heating measurement
in a crossed optical dipole trap. Typical trap parameters for our optical dipole
trap extrapolated from our trap frequency measurements can be found in Table 5.3.
Figure 5.13 shows absorption images of a single beam and a crossed dipole trap.
28For deriving this dependency one needs to approximate the curves separating the unstable and

stable regions by a power series for small q using, e.g. equation 20.2.25 of [2]. For the resonance
ω = ω0 one finds a width ∆ω0 ∝ ε20ω0/4. Since the width of this resonance is expected to be
smaller, it would allow a much more accurate determination of the trap frequency. Unfortunately
it is not as pronounced as the resonance at 2ω0.
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Figure 5.12: Measurement of the trap frequencies of a crossed optical dipole trap. We
observe the heating of the sample through an increase in the size of our atomic cloud when
the modulation frequency is twice the trap frequency. The modulation amplitude was
approximately 5%.

axial beam trap radial beam trap crossed trap

Laser power Pz =8.25 W Px =5.25 W Pz =8.25 W
Px =5.25 W

Beam waist ω0 = 29µm ω0 = 50µm

Trap frequencies ωax = 2π · 12 Hz ωax = 2π · 2 Hz ωx = 2π · 1604 Hz

ωrad = 2π · 1550 Hz ωrad = 2π · 415 Hz ωy = 2π · 1549 Hz

ωz = 2π · 416 Hz

Trap depth U0/kB 125µK 27µK 152µK

scattering rate Γsc 0.034 1/s 0.007 1/s 0.041 1/s

Table 5.3: Parameters for both optical dipole trap beams at typical beam powers. All
parameters are calculated neglecting the gravitation. The radial beam, which is along the
vertical direction, can not by itself trap atoms due to the gravitation.
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Figure 5.13: Typical absorption images for (a) a single beam optical dipole trap and (b)
a crossed optical dipole trap. For both cross-sections and typical sizes are given.

5.5 Computer control

Many coordinated events must occur to prepare and detect a sample of ultracold
atoms. Lasers have to be switched on and off at the right junctures, their frequency
has to be changed several times, the currents through the magnetic coils have to be
ramped up and down and RF fields have to be swept in frequency. Most experimental
parameters can be easily controlled through digital and analog signals, while others
(especially function generators) are controlled through the GPIB-Bus29. The timing
accuracy required for all control signals is below 100µs. This can be achieved using
a computer control system. The control computer we use, is equipped with an AMD
Athlon 1.2 GHz CPU, a 32 Channel digital input/output PCI card30, two 8 channel,
12 bit analog output PCI cards31 and a GPIB-Card32. The analog and digital cards
are interconnected through the RTSI-Bus33, which allows the synchronization of the
output signals. The digital output signals are opto-coupled to a 50 Ω driver which can
also be controlled manually. The analog output signals are rescaled to the required
voltages levels to retain the 12 bit accuracy of the D/A converter. When necessary,
an additional 1:1 isolation amplifier is employed to prevent grounding problems.
For the experiments a control software was developed. The control software should
allow the easy programming of the experimental sequences using a graphical user
interface. Some other design considerations were:

• Easy programming of analog output waveforms

• Support for loops in sequences, which allow to change an experimental param-
eter during each loop iteration (for statement)

29General Purpose Instrument Bus
30National Instruments, PCI-6533 (DIO-32-HS)
31National Instruments, PCI-6713
32National Instruments, PCI-GPIB
33Real-Time-System-Integration Bus
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• Conditional execution of sequences (if statement)

• Subroutines allow to reuse common standard sequence parts

• Easy extensibility through external modules, to accommodate future require-
ments

• Usage of variables allows to easily change parameters in a sequence

• Close integration with the camera and data-evaluation software

The control software is implemented in LabView34 and C++ [229]. The user interface
and the programming of the I/O-cards were done in LabView, while the sample
generation for the I/O-cards was implemented for performance reasons (among
others) in C++.
The user interface of the control software is shown in Fig. 5.14. An experimental
sequence is a concatenation of so called “words”. Each word can serve different
purposes. Most commonly a word defines the state of all digital and analog channels
that last for a specified time (a so called output word). Other purposes a word can
serve are:

• Start a for loop

• Start an if case

• End a loop/if

• Call a Sub-VI35 with the supplied parameters

• Execute a sub-sequence

For each purpose the respective fields need to be filled in. All fields not only allow
numerical values but also accept arbitrary mathematical expressions involving the
most common mathematical functions and variables. The usage of variables instead
of numerical values allows to easily change the experimental parameters in many
words at the same time, which would otherwise need to be done by hand and would
be quite tedious and error prone. The variable values can be set explicitly or through
loop variables. In the value fields for the analog outputs, the variable t plays a
special role. During the duration of an output word the value of t varies from 0 to 1.
This allows for example to linearly change the value of an analog output channel in
a word or even modulate it with a sinusoidal function.
34National Instruments
35VI stands for Virtual Instrument and is nothing more than a small sub-program written in

LabView.
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Figure 5.14: The user interface of the computer control software. Left top: Assignment
of variables, left bottom: template for the information file which is used by the data
evaluation software. Middle: Default values for all channels when no sequence is running.
Right: Sequence of “words”.

It is possible to call sub-VIs at certain times during the execution of a sequence,
which can perform different tasks. One commonly used task is to program a function
generator using the GPIB-Bus. To achieve the necessary timing accuracy a hardware
counter on the I/O-cards is used to keep track of the time. This allows to execute
the sub-VIs with a timing accuracy of ±5 ms36.
After each experimental run, the sequence file is saved automatically to enforce the
documentation. Additionally an information file is saved for the data evaluation
36A better timing accuracy could be achieved by using a Real-Time OS, i.e. LabView RT. But

since the time-delay between the transmission of the GPIB command and the execution of the
command is for many instruments of the same order (or even an order bigger!), this does not
matter.
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software, which contains the relevant experimental parameters. The format of this
information file is defined by a template, where the expression ${variable name} is
replaced by the value of the variable used in the sequence.

5.5.1 Implementation

Since the software design of the computer control software is non-trivial, the key
points of our implementation can only be highlighted in the following section.
When a sequence of words is executed, LabView converts the graphical representation
of the sequence into source code of a specifically devised programming language. Due
to historical reasons, the language resembles MATLAB37 source code, but has been
syntactically simplified and expanded with new commands to suit our needs. The
two most important new commands are pattern (which defines the states of the
digital and analog channels for a certain time) and callvi (which calls a LabView
Sub-VI during the execution of a sequence). A short sample program is shown in
Fig. 5.15. The source-code is then passed on to an interpreter, which was completely
written in C++.
The job of the interpreter is to execute the program and thereby build up tables
which contain the time and the values of the digital and analog channels when their
state changes and the times when a Sub-VI needs to be executed. The information
contained in these tables is the basis for the generation of the raw data which is sent
to the cards. Before turning our attention to this step, we’ll take a closer look at the
design and the implementation of the interpreter.
In computer science a lot of literature exists about compiler38 design and imple-
mentation (see Aho et al. [3] for an introduction). The operation of an interpreter
is normally divided into three phases. The first phase is a so called “Lexer”. The
Lexer takes the source code, which is nothing else than a stream of characters and
breaks the stream up into vocabulary symbols. For example the three characters f
o r are turned into the vocabulary symbol for which is just an integer number and
much more easily to handle computationally. In the second phase, the parser applies
a grammatical structure to this stream of vocabulary symbols. The grammatical
structure describes the order in which the vocabulary symbols are allowed to appear
in the stream39. The generation of the source-code for these two phases can be
easily automatized. Tools have been developed which take input files describing the
vocabulary and the grammar of a language and output the necessary source-code.
The two most well known tools for this task are LEX and YACC [133]. We decided
37The Mathworks
38An interpreter is a simpler form of a compiler.
39This is completely similar to the grammar in human languages, though the extent of the vocabulary

in human languages is orders of magnitude bigger than for computer languages.
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for i=1:1:3,

    pattern(10,10,652314,i,i*a,sin(c*t))

end

Figure 5.15: A simple sample program and the corresponding AST generated by the
ANTLR Lexer and Parser. Nodes with rounded corners are non-terminals, while rectangular
nodes are terminals. Each node is of a certain type (upper part) and can contain additional
information (lower part). A tree walker is then used to execute the program. If it for
examples encounters the sin node, it recurses down the tree to retrieve the argument of the
sine. There it comes across a node of type STAR which can be evaluated by multiplying
the values of the variables c and t.

to use a tool called ANTLR40 because it can also generate much of the necessary
source code for the third and last phase. The parsers generated by ANTLR not
only check the grammatical structure of the program but also construct a so called
AST41, which is a tree representation of the program. For our small example program
the corresponding AST is shown in Fig. 5.15. In the third phase a tree walker is
employed. It starts with the top node of the tree and then recurses down the tree,
while executing the necessary commands according to the type of the encountered
non-terminal nodes. The complete and comprehensive definition of the grammar and
the tree walker for our language can be found in Appendix E.

After the interpreter has done its job, all the necessary data is contained in the
tables which are returned by the interpreter. LabView is now again used to initialize
the cards, configure a master/slave configuration where the scan clock of one card
(master, usually the digital card) is distributed over the RTSI-Bus to the other (slave)
cards, thereby synchronizing all the cards. For each card a circular buffer (size about

40ANother Tool for Language Recognition, a predicated-LL(k) parser generator that
handles lexers, parsers, and tree parsers [175].

41Abstract Syntax Tree
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64000 samples) is set up and filled with the initial data. After the sample generation
is started, the circular buffers are periodically refilled with new data. The data
for the circular buffers is generated on the fly from the tables returned from the
interpreter. The tables just contain for how many samples a certain state should
be applied, while the cards need a stream of sample values which they output. To
generate the sample values from the tables again C++ code is used for performance
reasons. The stream of digital samples is obtained by copying the digital value only
sufficiently often. The analog sample values are more complicated. They are given by
a formula, which can still contain the variable t. The formula needs to be evaluated
with t being a vector with values from zero to one. Since the size of t can be huge
(commonly a few thousand elements) optimized assembler routines42 are used for
the vector calculations. As already mentioned, a hardware counter is configured
to count the number of scan clock transitions which corresponds to the number of
samples which have already been generated. The value of this hardware counter is
periodically polled43 and used to execute the Sub-VIs at the correct points in time.
When a sequence is finished, the cards are cleared and the default values for the
digital and analog channels are applied.

5.6 Imaging and data evaluation

All thermodynamic properties of an atomic ensemble can be obtained from images
of its density and momentum distribution. For imaging we use a 12 bit digital
progressive scan charge coupled device (CCD) camera44, connected to a standard
PC. The camera offers a high resolution of 1392x1024 pixel, with a pixel size of
6.45x6.45µm2 and a quantum efficiency of over 45% at 425 nm. The camera can
be positioned to image the atomic cloud along the radial axis either in horizontal
or vertical direction. In both positions it is possible to use 1:1 or 2.6:1 (reduction)
imaging. The optical resolution of the 1:1 imaging system was determined using a
USAF-1951 test target45 to be 8µm, which is consistent with the resolution limit
of ∆x = 1.22λf/# = 6.2µm. At both positions it is possible to do flourescence as
well as absorption imaging. The remaining experimental setup for flourescence and
absorption imaging is unchanged from [209] and all relevant theoretical aspects were
covered already there in detail. For imaging atoms in the ms =-3 state we changed
the polarisation of our imaging light from σ− to σ+ by turning the λ/4-plate around,
so the beam traverses it in the opposite direction. Also the detuning of the imaging
light had to be adapted. The detuning was experimentally determined to give the

42We are using the Intel Integrated Performance Primitives and the Intel Math Kernel Library
43Unfortunately LabView does not seem to support an interrupt driven approach.
44PCO, model PixelFly QE
45Newport
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Figure 5.16: Screen shot of the camera program. Shown is an absorption image of a
single beam dipole trap. The program calculates the resulting absorption image on the fly
from three separate absorption images. As an additional post-processing step, it allows to
apply an average.

highest number of atoms observed, which lead to a value of δ = −2.3 Γ for ms =-3
(compared to δ = +2.6 Γ for ms =+3).

A custom made LabView program is used to control all camera settings (e.g. exposure
time, binning etc.) and to save the recorded images to the hard drive. It can also
calculate the resulting column density distribution for fluorescence and absorption
images on the fly. This allows to easily monitor the experimental runs. A screenshot
of the user-interface is shown in Fig. 5.16.

The main purpose of the data evaluation is to extract from the CCD camera images
the physical properties describing the atomic ensemble. The images represent the
integrated density distribution of the atomic cloud along the direction of the camera.
From these images and the knowledge of other experimental parameters (e.g. exposure
time, laser wave-length, trap geometry, ballistic flight time. . . ) one can extract the
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number of atoms, density, size, temperature and phase-space density of the atomic
sample. This is done using a home grown Matlab46 script, which allows us to perform
almost real-time data evaluation during an experimental run [209, 230].

46The Mathworks
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Chapter 6

Feshbach resonances in 52Cr

After laying all the necessary foundations in the previous chapters, this chapter gives
a comprehensive account of the performed experimental Feshbach measurements. It
starts by describing the steps involved in the preparation of the ultracold atomic
sample of chromium atoms. The main part of this chapter is dedicated to the employed
experimental techniques and the interpretation of the origin of the experimentally
found Feshbach resonances. It comprises a review of relevant molecular levels and
possible coupling mechanisms for the existence of Feshbach resonances in chromium.
Then the experimental positions of the Feshbach resonances are used to determine
precise values for the scattering lengths and C6, C8 coefficients of the molecular
potentials through numerical multi-channel calculations. The precise knowledge of
the potential allows to infer the outcome of several follow-up experiments which are
investigated at the end of this chapter.

6.1 Sample preparation

To be able to investigate Feshbach resonances, the collision energy spread of the atoms
needs to be smaller than the width of the Feshbach resonance one wants to observe.
For 52Cr a temperature below 10µK is required to be able to observe resonances
with a width of 100 mG. Additionally, densities above 1012 1/cm3 are required for
sufficiently high collision rates. Preparing atoms at such temperatures and densities
requires employing laser- and evaporation-cooling techniques. These techniques
were established during the last ten years and have become the standard tools for
preparing ultracold and dense atomic gases. Due to the complicated level structure
and the high magnetic moment of 52Cr compared to the alkalis, some extra effort
is involved in laser- and evaporatively cooling chromium into the ultracold regime.
Many of the established technologies needed to be adapted or extended when applied
to chromium. This section will give a short account of all the steps required to
prepare our ultracold atomic chromium sample.

85



Chapter 6 Feshbach resonances in 52Cr
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Figure 6.1: CLIP trap loading scheme. Shown are the relevant atomic levels and
transitions for the implementation in 52Cr. The magneto-optical trap is operated by
driving the fast transition from | g 〉 to | e 〉. Transfer between MOT and CLIP trap is
provided by radiative leakage from | e 〉 to | d 〉. Repumping the atoms via an intermediate
state |m 〉 allows to transfer the atoms to the ground state.

6.1.1 CLIP-Trap

The basic idea of the continuous loading scheme was developed and implemented for
chromium in a 3D-quadrupole magnetic trap by Stuhler [230]. The idea was then
extended to an Ioffe-Pritchard (IP) type trap by Schmidt [209]. The basic principle of
operation of a CLIP-Trap is shown in Fig. 6.1 using a simplified level scheme for 52Cr.
On the strong dipole transition with linewidth Γge which couples the ground state
| g 〉 =7S3 and the excited state | e 〉 =7P4 we operate a modified magneto-optical
trap. The light field configuration was chosen so that it is compatible with the
magnetic field produced by an IP-trap and is similar to a 2D+-MOT configuration
[55]. Two orthogonal pairs of σ+/σ−-polarized laser beams cool and trap the atoms
radially. An additional pair of σ+-polarized laser beams along the axial direction
provide Doppler cooling and very weak confinement due to light pressure forces. The
necessary radial gradient field, axial curvature field and offset field are generated
by the IP-trap (see Chapter 5.3 on page 65). The non-vanishing offset field of the
IP-trap prevents the Majorana spin-flip losses found in the 3D-quadrupole setup.
The actual transition used for the chromium MOT is not closed. Atoms can undergo
spontaneous emission to the long-lived metastable states 5D4 and 5D3 denoted by | d 〉
with a rate of Γed. The radiative leakage is the loading mechanism for the magnetic
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trap. Due to the high magnetic moment of the | d 〉-states (up to 6µB), atoms in the
low-field seeking state of the | d 〉 manifold can be trapped in the magnetic field of the
IP-trap. Since typical magnetic field gradients in the CLIP-trap are around 5-10 G/cm,
the magnetic trap is not very deep and only atoms which have been pre-cooled by
cycling on the MOT transition will be captured. Due to the high branching ratio
Γeg/Γed ≈ 250 000 this condition is easily fulfilled, on the contrary it even limits the
loading rate. The steady-state atom number in the 5D4 and 5D3 states is given by
the ratio of the loading rate Γed and the loss rate from these states.
After 10 s of loading the atom number in the | d 〉-states has reached a steady-state
and the MOT-beams are switched off. Due to the high inelastic losses which have
been observed in the | d 〉 states [230] the atoms are transferred back into the ground
state via the intermediate state |m 〉. The intermediate state |m 〉 is used instead of
the excited state | e 〉, since it allows much faster repumping. The great advantage of
the CLIP trap is that it removes the need for a transfer step from a 3D-quadrupole
into an IP magnetic trap, thus greatly simplifying the preparation procedure. It
can also be used as a source for loading a waveguide, a usage scenario which is also
pursued by our group.
Using the CLIP trap we prepare 2 ·108 atoms in the magnetic trap with temperatures
below 100µK. In the following step we adiabatically compress the magnetic trap to
increase the scattering rate. It turned out though, that it is still not sufficient to
allow for efficient evaporative cooling. This is why we have to employ an additional
Doppler cooling step to further increase the phase-space density.

6.1.2 Doppler cooling

Free-space one-dimensional Doppler cooling [132] is usually performed in a standing
wave field created by a pair of counterpropagating laser beams with a frequency below
the atomic transition. The cooling effect is due to preferential absorption of photons
from the laser beam opposing the direction of motion of the atom. Subsequent
spontaneous emission is centrally symmetric and on average does not change the
momentum of the atom. Our group [211] showed that in optical dense clouds not only
the direction along the laser beams is cooled down to the Doppler limit, but also the
radial directions. Cooling in the radial directions can be explained by reabsorption
of spontaneously emitted photons by the optically dense cloud. The Doppler cooling
step is performed in a fully compressed magnetic trap. The corresponding offset field
has a quite high value of 28 G, which ensures sufficient splitting of the Zeeman-levels
and thereby suppressing unwanted depolarizing transitions. For cooling we use a
retro-reflected σ+ polarized laser beam along the axis of our magnetic trap. The laser
frequency is tuned 7 Γ above the 7S3 ↔ 7P4 transition in 52Cr, which corresponds
to an effective detuning of −0.8 Γ in the center of the magnetic trap. Applying the
laser beams for approximately 200 ms with a mean intensity of 4 · 10−3 Isat leads to
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an increase in the phase-space density to ρ = 1 · 10−7 or by a factor of 80. After
adiabatically compressing the magnetic trap, the scattering rate is sufficiently high
to start evaporative cooling.

6.1.3 Evaporative cooling

Evaporative cooling is a well known process, which occurs in many physical systems.
The most well known example is a cup of coffee or tea which gets colder due to the
evaporating water. Evaporative cooling is used in all experiments creating Bose-
Einstein condensates or degenerate Fermi-gases as final cooling step. It has been
proven to be very efficient and was used to prepare a sample of an atomic gas with a
temperature as low as 500 pK [129].
Evaporative cooling of a trapped gas is based on the preferential removal of atoms
with an energy higher than the average energy and on thermalization by elastic
collisions. The general idea is to remove atoms with an energy E greater than
a certain cut-off energy Ec. Since this reduces the average energy of the atoms
remaining in the trap, the gas will be driven by thermalizing interatomic collisions
towards a new equilibrium state at a lower temperature. These collisions also
promote atoms to energies higher than Ec, thus keeping the evaporation going. As
the temperature of the trapped gas drops, the number of atoms that are able to leave
the trap is exponentially suppressed, approximately like exp(Ec/kBT ). Eventually
the cooling rate is balanced by a competing heating mechanism, or becomes negligibly
small. In order to force the cooling to proceed at a constant rate, the evaporation
threshold Ec may be lowered as the gas cools. The optimal strategy of lowering the
evaporation threshold to achieve the highest possible phase-space density is the topic
many publications and thus will be not discussed here. A nice overview can be found
by Ketterle and van Druten [120]. Hensler [100] applied the theoretical model from
Luiten et al. [137] to 52Cr.
Experimentally two different methods are commonly used for removing atoms with
an energy higher than the cut-off energy, depending on the trap type. If the atoms
are captured in a magnetic trap a method called rf-evaporation is used. Here rf
is used to transfer the trapped atoms from the low-field seeking state into the
high-field seeking state using a Landau-Zener transition. The resonance condition
mjgjµBB(r) = ~ωrf = Ec is only fulfilled for a sharp equipotential-surface. Any atom
which has sufficient energy to cross the equipotential surface is removed from the
trap. Another method commonly used in dipole-traps where rf-evaporation is not
possible, is to lower the trap depth of the dipole-trap and thus lowering Ec. The
disadvantage of this method is that with lowering the trap depth, also the trap
frequencies go down. This decreases the density and the temperature of the trap and
consequently lowers the collision rate, leading to slower evaporation [172]. Still the
creation of a Bose-Einstein condensate in an optical dipole trap is possible [12, 33].
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Evaporative cooling of 52Cr in a magnetic trap allowed to increase the phase-space
density by almost five orders of magnitude to ρ = 0.03± 0.01 [100]. Still this was not
enough to reach the required phase-space density ρ > 1 for the phase-transition to a
Bose-Einstein condensate. The run-away regime, where the evaporation accelerates
itself was never reached. Moreover the figure-of-merit for evaporative cooling, the
ratio of good to bad collisions decreases dramatically when densities above 1012 1/cm3

were reached. This decrease is due to the increased contribution of the dipolar
relaxation process, with a rate constant of βdr = 4 · 10−12 cm3/s at an offset field of 1 G
(see Chapter 4.3). Since the dipolar relaxation rate scales with the magnetic offset
field, performing the evaporation at lower offset fields should allow to suppress the
dipolar relaxation. One cannot though choose arbitrary low offset fields, since at low
offset fields additional losses stemming from Majorana-spin flips are introduced. The
best values quoted above were obtained for an optimal offset field of approximately
130 mG. To be able to suppress the dipolar relaxation process completely, one has to
transfer the atoms into the absolute ground state, the high-field seeking state ms

=-3. But atoms in a high-field seeking state cannot be trapped in a magnetic trap1,
so a transfer of the atoms into an optical dipole trap becomes necessary, which traps
atoms independent of their magnetic sub-state.

6.1.4 Transfer into optical dipole trap

As introduced in the previous chapter the optical dipole trap consists out of two
focused beams of a fiber laser. The beam with higher laser power and smaller spotsize
is directed along the axial direction of the magnetic trap to allow for maximum
overlap between the trap volumes of both trap types. The second, weaker and less
focused beam is along the vertical direction. The axial beam is already switched
on during the preparation of the atomic sample (i.e. already when the CLIP-trap
is loading). We have not yet found any adverse effects of the dipole trap on the
loading of the CLIP-trap or the Doppler cooling stage. The depth of the axial trap
(≈100µK) is simply not sufficiently deep enough to already trap the atoms after
Doppler cooling. Due to this, an evaporative cooling step is necessary. The atoms
now see a hybrid-trap formed by the magnetic field and the optical dipole trap.
The confinement of the optical trap in the axial direction is very weak compared to
the magnetic trap, while in the radial directions the situation is reversed. Atoms
oscillating in the radial direction thus see lower magnetic fields than atoms oscillating
in the axial direction. For temperatures of the atomic sample below the depth of
the dipole trap, the evaporation becomes one-dimensional and thus will not show
the maximum possible efficiency. To avoid this situation we took care not to ramp
below the trap depth during the last rf-evaporation step. The last evaporation ramps
were optimized to obtain the maximum possible number of atoms in the dipole trap.

1It is not possible to generate static magnetic field maxima in free space [255].
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To complete the transfer into the optical dipole trap the magnetic trap needs to
be switched off. This cannot be done abruptly, due to the axial frequency of the
magnetic trap being higher than the axial frequency of the dipole trap. A breathing
mode would be created which in turn incurs a phase-space density loss. Abrupt
switching also leads to uncontrollable transient fields, which are better avoided unless
one wants to lose some atoms. To minimize these negative effects, the magnetic
trap is switched off adiabatically in τ = 2 s > 1/νax. Additional care has to be taken
to ensure that the magnetic offset field never crosses zero during switching, since
this would incur an additional atom loss. To prevent uncontrolled mixing of the
magnetic sub-states a small homogeneous guiding field remains applied. In most of
the experiments presented here, the second dipole beam is only switched on later in
the experimental sequence. Alternatively, if not the optimum number of atoms is
required, the atoms can be directly transferred from the magnetic trap into a crossed
optical dipole trap, thereby shortening the experimental sequence.
Now that we have our atomic sample in an optical dipole trap, we can transfer all
the atoms into the ms =-3 state to completely suppress the dipolar relaxation.

6.1.5 Optical pumping

In the presence of a magnetic field the ground state 7S3 of 52Cr splits up into seven
Zeeman sub-levels ms = +3 . . .− 3. Our atomic sample is prepared in the low-field
seeking state ms =+3 in a magnetic trap. Due to the high dipolar interaction, during
a collision of two chromium atoms in the ms =+3 state, either one or both can
spin-flip to the ms =+2 state. Through this process they gain the Zeeman-energy,
which in turn leads to heating of the whole sample and thus atoms are lost from
the trap. This process continues until all the remaining atoms are in the ms =-3
state, the energetically lowest possible state [100]. To prevent this atom loss, one
has to actively transfer the atoms from the ms =+3 state into the ms =-3 state
through optical pumping on the 7S3 ↔ 7P3 transition. This is achieved by applying a
homogeneous magnetic field over the extent of the atomic sample and using a slightly
red detuned, σ− polarized, retro-reflected laser beam along the same direction as
the magnetic field. Atoms in the 7S3, ms = m state are then exited to the 7P3,
ms = m − 1 state, from where they can then again spontaneously decay to the
ground state with ms = m,m± 1. The excitation probability, as well as the decay
probabilities are given by the squares of the Clebsch-Gordon (CG) coefficients. The
values for a 3 ↔ 3 transition as in our case are shown in Fig. 6.2. Atoms which end
up in the 7S3, ms =-3 state are in a so called “dark state” since this state is not
coupled to the σ− polarized laser light any more. This is also the reason why the
7S3 ↔ 7P3 transition is used for optical pumping, instead of the 7S3 ↔ 7P4 transition
where this is not the case. In addition, one has to take care that the splitting of the
Zeeman sub-levels is greater than the line width of the employed laser, otherwise
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Figure 6.2: Level scheme for the optical pumping process on the 7S3 ↔ 7P3 transition.
Each transition is color coded according to the transition type σ±,0 and labeled with the
corresponding Clebsch-Gordon coefficient squared.

impurities in the polarization of the laser beam can lead to sub-optimal optical
pumping.

Optical pumping theory

The time evolution of the optical pumping process can be modeled theoretically.
Assuming only σ− polarized light, the change in the occupation probability Ṗm(t)
for each state is given by following equation2:
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where
Γs(s) =

Γ

2

s

s+ 1
(6.2)

is the photon scattering rate, which has a dependence on the saturation parameter
s. The value of the saturation parameter s−m in this case depends on the magnetic
quantum number m due to the different Zeeman-shift of the ground and the excited
state. The saturation parameter is defined as [147]

s−m =
I/IS

1 + 4δ2/Γ2
, (6.3)

2In the following we have shortened the notation for the magnetic quantum number ms to m for
readability.
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evolution of the occupation probability for each magnetic Zeeman sub-state separately.
The experimental parameters used for this calculation were: applied magnetic offset field
B=9.2 G, laser intensity I = 1 mW/cm2 which corresponds to I/Isat = 0.11 and a detuning
δ=-6.38 Γ.

where IS = πhcΓ/3λ3 is the two level saturation intensity and δ the detuning between
the laser and the atomic transition. In addition we have to take into account the
different Clebsch-Gordon coefficients CG3. We have thus seven coupled differential
equations for the Gm

4 which can be solved numerically. Figure 6.3 shows the resulting
time evolution of the occupation probability for an initially in the ms =+3 polarized
sample assuming our typical experimental parameters. After approximately 250µs
all the atoms are transferred from the ms =+3 into the ms =-3 state.

Optical pumping experiment

The required homogeneous magnetic offset field for the optical pumping was gen-
erated using one pair of the offset compensation coils. Its value of 9.2 G ensures

3y
xCG

p
m is the square of the Clebsch-Gordon coefficient for a p-type transition (where p = +, 0,−

corresponds to σ+, π, σ−) from a level with a magnetic quantum state m between F = x →
F ′ = y

4The nonexistent Gm for |m| > 3 have been set to zero.
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Figure 6.4: Measured number of atoms in the ms = ±3 states after different optical
pumping times, for (a) low I≈100 µW/cm2 and (b) high I≈900 µW/cm2 laser intensities.

sufficient splitting of the Zeeman-levels and thereby suppressing unwanted depolariz-
ing transition due to impurities in the polarization of the optical pumping beam. The
direction of the optical pumping beam (and thus the direction of the applied magnetic
field) coincides with the direction of the second vertical (dimple) dipole beam (see
Fig. 5.11). The optical pumping has to occur perpendicular to the elongation of
the optical dipole trap, because along the direction of the dipole trap the optical
density of the atomic cloud is greater than ten! This would prevent the optical
pumping beam from penetrating the whole cloud at once, thus leading to much
longer pumping times. In the perpendicular direction the optical density is much
lower (. 1). The average laser power we used for optical pumping was 1 mW and the
size of the laser beam at the position of the atoms was approximately 1 cm2. The
laser frequency was set to f=32 MHz below the resonance frequency. The resonance
frequency was determined by tuning the laser wavelength so that our running MOT
disappeared. This typically occurred at a vacuum wavelength of λ=427.6000(5) nm,
which coincides with the value for this transition from the NIST Database [166] of
λ=427.600 nm.

The efficiency of our optical pumping process was determined by measuring the
number of atoms in the ms =+3 and -3 states through σ+/σ−-imaging after different
optical pumping times. The results are shown in Fig. 6.4 for low and high intensities
of the optical pumping laser. We see that for I≈900 µW/cm2 after approximately
500µs all atoms are transferred into the ms =-3 state, which is consistent with our
theory. One has to be careful though in interpreting the atom numbers, because we
do not know if only atoms in the extreme states are imaged, or if also atoms in the
intermediate magnetic sub-states contribute to the result. Theoretical calculations
[100, §6.3] show that also atoms in the intermediate states contribute partly to
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the result. Since our initial sample is not fully polarized, the detected initial atom
number will be lower than the real number of atoms trapped. After optical pumping
all atoms will be in the ms =-3 state and will also be observed. This effect leads
to the sometimes experimentally observed fact, that the atom number after optical
pumping is higher than before the optical pumping process5. The temperature of
our atomic sample seems also to be unchanged after optical pumping. Due to the
finite trap depth the heating would immediately be reflected by an atom loss. All in
all, we can conclude that optical pumping allows us to transfer close to 100% of the
atoms into the ms =-3 state without increasing the temperature.
A different method for transferring the atoms into the ms =-3 state is to apply a
Landau-Zener sweep6 using radio-frequency [201, 264]. The Landau-Zener sweep
is a coherent process and can thus only invert the population distribution, while
optical pumping is due to the spontaneous emissions an incoherent process and can
thus fully polarize a sample. Earlier investigations [100] have shown that applying a
Landau-Zener sweep is indeed not as effective as optical pumping.

6.1.6 Evaporation in the optical dipole trap

Figure 6.5(a) is a logarithmic plot showing the evolution of the atom-number in the
single beam optical dipole trap over time. The picture includes the data of a sample
prepared in the ms =+3 state and of a sample which has been optically pumped into
the ms =-3 state. We extract the lifetime from the exponential decay of the atom
number. For the sample prepared in the ms =+3 state we obtain a lifetime of only
6.3 s. Even when all magnetic fields are switched off, there are still stray magnetic
fields present in our experimental chamber. Due to the dipolar relaxation the atoms
can decay into the ms =-3 sub-state, thereby gaining six times the Zeeman-splitting
energy. Through collisions the gained energy is spread over all the atoms and thus
leads to heating of the complete sample. Since the optical dipole trap is not very
deep, every heating process leads to atom loss. The situation is completely different,
when the atoms are optically pumped into the absolute ground state ms =-3. Since
in this case dipolar relaxation is not possible any more, the lifetime increases by a
factor of 20 to 142 s. For either state, a strong non-exponential initial decay in the
atom number can be observed. Due to the high initial temperature of the atoms and
the limited depth of the dipole trap, atoms evaporate from the trap. This effect is

5During optical pumping the atoms can also decay into the 5S2 state instead of the 7S3 and are
thus lost from the optical pumping process. The probability that a decay from the 7P3 to the
5S2 instead of the 7S3 happens is 1:1000. Since we only need about ten photons for the transfer,
this would mean a 1% loss which can be negelected.

The atoms in 5S2 are still trapped in the optical dipole trap, but to get them back into the
ground state a new laser system with a wavelength of 633 nm would be needed which does not
exist yet.

6Also called rapid adiabatic passage.
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Figure 6.5: (a) The lifetime in the dipole trap increases from 6.3 s in the ms =+3 state
to 142 s after optical pumping all the atoms into the energetically lowest state ms =-3.
The fast initial decay in the first 10 s can be mainly attributed to atom loss due to an
initial plain evaporation. This can be seen in figure (b) which shows σz, the elongation of
the cloud in the z-direction.

called plain evaporation. As depicted in Fig. 6.5(a) a steady state is reached after
about 10 s. This observation is supported by Fig. 6.5(b) which shows the evolution
of the size of the atomic sample in the dipole-trap over time. From Eq. (5.18) we see
that the size of the atomic cloud in the trap is proportional to its temperature, i.e.
the temperature decreases during the first 10 s.
The next step is to slowly switch the second dipole trap beam on. Since the second
dipole beam is perpendicular to the first one, a so called “dimple” potential is formed:
The second beam provides additional strong confinement in the weak direction of the
first dipole beam. The deformation of the trap potential by the dimple thus leads to
an increase of the phase-space density [179, 218] which is determined by the ratio
of the dimple volume to the trap volume and the depth of the dimple. To prepare
a sample of up to 120 000 atoms at a temperature of 6µK and a peak-density of
5 · 1013 1/cm3 in a crossed optical dipole trap, we continue the evaporation by ramping
down the intensity of the stronger of the two laser beams to 5 W.

6.2 Feshbach measurements

To locate the Feshbach resonances in 52Cr [224] we look for an increase of atom loss
by three-body recombination. As already explained in Chapter 3.4 the three-body
loss rate L3 is proportional to the scattering length to the power of four.
Before delving into the experimental details, we would like to develop a qualitative
understanding of the behavior of the atom-number when the magnetic field crosses a
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Feshbach resonance. The density of our sample is reduced over time due to collisions
with the hot background gas (L1) and two- and three-body losses (L2, L3):

ṅ = −L1n− L2n
2 − L3n

3 . (6.4)

First of all we can safely neglect background gas collisions and two-body losses, since
these only play a role on timescales much larger than those relevant for the Feshbach
measurements (typically < 1 s). Since we are interested in the number of atoms and
not in the density, we need to integrate over the trap volume. For a harmonic trap
with average trap frequency ω̄ we get

Ṅ =

∫
ṅ dV = −L′3

N3

T 3
with L′3 =

(
mω̄2

2πkB

)
1√
27
L3 . (6.5)

The solution to this differential equation is

N(t) =
T 3/2√

T 3

N2(0)
+ 2L′3t

. (6.6)

Substituting into the equation for L′3 the a4 proportionality of L3 (see Eq. (3.46))
and expressing the behavior of a near a Feshbach resonance through Eq. (3.30) gives

N(t) =
T 3/2√

T 3

N2(0)
+

nlC~m2ta4
0

“
1− ∆

B−B0

”4
ω̄6

12
√

3k3
Bπ3

. (6.7)

In Figure 6.6 the divergence of the scattering length a on a Feshbach resonance is
shown together with the atom loss close to a resonance due to the increasing three-
body recombination rate. For high positive values of the non-resonant scattering
length, the incursion can show an asymmetry with a shallower slope for magnetic
field values below the Feshbach resonance7. One should be aware though, that our
model is quite simple. Theoretical calculations show that C is not constant, but will
oscillate between C=0 and C=70 close to a Feshbach resonance [13, 23]. Additionally,
we need to take the finite temperature of the atomic sample into account, this would
require the convolution of Eq. 6.7 with the Maxwell-Boltzmann distribution. Due to
the asymmetry of the Maxwell-Boltzmann distribution, the slope at lower magnetic
fields is less steep.
After preparing a cool and dense atomic sample in our optical dipole trap we are set
to start searching for Feshbach resonances. The necessary homogeneous offset field
is generated using the pinch coils. We chose to employ the pinch coils instead of the

7If the non-resonant scattering length is negative, the shallower slope will be found above the
resonance.
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Figure 6.6: Theoretical calculation of the behavior of the scattering length (a) and the
remaining number of atoms (b) with the magnetic field for different hold times. With
increasing hold time the observed loss feature broadens. For tHold = 100 s we can also see
that the inelastic losses are suppressed for a = 0. The plots were calculated under the
following conditions: anr =500 a0, ∆ = 4 G, B0=20 G, N0=120 000 atoms, T=6µK and
ω=2 400 Hz.

offset coils, even if the field generated by the pinch coils is not as homogeneous as
the field generated by the offset coils due to their geometrical configuration. The
pinch coils though, generate less residual eddy currents in the chamber and the
vacuum copper seals, thus allowing shorter switching times of the magnetic field.
Fast switching of the magnetic field is necessary to prevent atom loss when the
magnetic field is passing over a lower lying Feshbach resonance. The inhomogeneity
in the magnetic field leads to a variation across the cloud on the order of 50 mG. In
the magnetic field region between 0-20 G we use the z-compensation field instead,
since it allows a finer control of the magnetic field and the generated magnetic field
is homogeneous due to the Helmholtz-configuration of the coils.
The search itself is performed by first sweeping the magnetic field strength in coarse
steps on the order of 1 G–3 G from 0 G to 600 G. Smaller sweep ranges are then
used in regions where atom loss was observed. To find the precise location of the
resonances a different method is used. The magnetic field is ramped up to a value
close to the resonance in about 5 ms. We hold the magnetic field for 2 s to let the
current settle and to give our magnetic coils time to thermalize. Then the magnetic
field is quickly ramped to the desired value and held there for a variable amount of
time. The holding time is chosen to clearly resolve the resonance and lies between
100 ms and 10 s. Finally, the magnetic field is switched off and an absorption image
is taken. The typical result of such a Feshbach measurement is shown in Fig. 6.7 on
the next page. Shown are (a) the atom loss and (b) the temperature increase for
magnetic fields close to a Feshbach resonance. The temperature increase is partly
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Figure 6.7: Feshbach resonance at 286.6 G. On a Feshbach resonance the atom number
decreases, while the temperature increases. Shown are (a) the relative atom number and
(b) the temperature over the magnetic field. (c) shows the corresponding absorption image
pictures of the atomic cloud (every other picture has been omitted for space reasons).

due to the binding energy of the molecule which the third atom takes away and
distributes it in the atomic sample through collisions. A second source for the heating
is anti-evaporation.
The resolution limit of our measurements is below 100 mG at B=600 G. It is the
result of three different contributions. We already mentioned the inhomogeneity of
the magnetic field, which accounts for 50 mG. The finite temperature of our sample
gives rise to an additional uncertainty in the resonance location that is of the same
magnitude. The experimental noise of the magnetic field accounts for another 40 mG.

6.3 Calibration and data evaluation

The description of the basic fitting and data extraction methods from the absorption
images was already covered by Schmidt [209] and will be not repeated here. We
will concentrate on the additional steps necessary for extracting the required values
for the Feshbach measurements. The positions and widths of all the observed loss
features are determined by a gaussian fit to the data, see Fig. 6.8(a). We decided
to use a gaussian instead of Eq. (6.5), since our measurements did not show an
asymmetry and also for convenience. From the depths of these loss features though,
one can estimate an upper limit for the three-body loss coefficient L3 using Eq. (6.5).
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Figure 6.8: (a) An inverted gaussian is fitted to the atom number measurement of each
loss feature. From this gaussian fit the following information is obtained: Position of the
Feshbach resonance, width and depth of the loss feature, off-resonant number of atoms.
Together with the off-resonant temperature and density of the atomic sample, the L3

coefficient can be calculated. (b) Calibration of the magnetic field with rf-spectroscopy.
The rf-frequency at which the loss feature occurs determines the magnetic field to which
the atoms are exposed.

The intrap size was inferred from the size of the cloud after a certain time-of-flight
and the trap frequencies. Eq. (5.18) allows then to calculate the temperature of the
atoms. Together with the trap size and the trap frequencies, the calculation of the
density is now easily done.

The magnetic field was calibrated separately slightly below and above each resonance
using rf-spectroscopy: a radio-frequency sweep transfers the atoms into higher ms-
levels via adiabatic rapid passage. From there they can undergo dipolar relaxation
processes and are thus lost from the trap. By changing the center frequency of
the radio-frequency sweep and monitoring the atom-loss we can determine the
value of the magnetic field with a one-standard deviation uncertainty of 100 mG
(see Fig. 6.8(b)). The calibration of each resonance was done immediately after
a measurement of the loss feature position, to preclude errors due to day-to-day
changes of the laboratory/cooling-water temperature which influence the accuracy of
the calibration. For the two highest resonances above 450 G this method was not
applicable any more, since the irradiated rf-power by the employed rf-antenna was
too low to drive transitions between different ms states at frequencies above 1.2 GHz8.

8We employed the same antenna which is also used for evaporative cooling. This antenna (and
the whole rf-system) was designed for low frequencies. Due to the unknown impedance of the
antenna at such high frequencies and the unknown losses in the coaxial cables we are not able
to estimate the irradiated power in the chamber. To generate the required rf-frequencies we
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Figure 6.9: Inelastic loss measurement of the Feshbach resonances at 286.6 G and 290.3 G.
The dashed lines are gaussian fits to the data and determine the position and width of
the loss features. The experimental data points are averages over many experimental
measurements. Each measurement was separately normalized to the offset of a gaussian fit
to the data.

We thus had to resort to extrapolation of the applied magnetic field for these two
resonances from three magnetic field calibrations at 270 G, 360 G and 440 G.

6.4 Experimental results

Using the techniques described above we were able to observe fourteen Feshbach
resonances for magnetic fields below 600 G. All fourteen loss features are shown in
Fig. 6.13 together with their position and width. These values are also tabulated in
Table 6.2. If the loss feature was observed more than once, the given width and L3

coefficient are the average of all measurements. The given positions stem only from
calibrated measurements, which were only done once. Of all fourteen resonances we
investigated the two loss features near 290 G more closely. This was done to see if
two loss features are lying close to each other “by chance”, or if it is one resonance
which splits up into a multiplett (see Chapter 6.6.2). Figure 6.9 shows the result of
thirteen measurements of these two resonances. Each measurement was separately
normalized by fitting a gaussian to the data to determine the offset. Since not all
measurements were done at the same field, we had to take an average over all points
in approx. 100 mG wide bins. The error bars in the figure are mainly determined by

used a signal generator from Rohde & Schwarz, Model SMY02
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the atom number fluctuation. For a multiplett to exist, we would have expected at
least an additional third resonance, which we did not observe. We thus were able to
conclude that the two resonances are close to each other just “by chance”.
Even though searching for Feshbach resonances is quite tedious and time consuming it
is a straightforward process. In addition to the knowledge of the resonance positions
we need to identify which bound state is responsible for each Feshbach resonance.
To be able to do this assignment, we need to take closer look at the origin of the
interaction potentials, the possible couplings between the open and closed channels
and the resulting selection rules.

6.5 Multi-channel calculations

From the experimentally measured positions of the Feshbach resonances one can
deduce several characteristic values of the relevant interaction potentials. This is
done by starting with a model-potential characterized by a handful of parameters.
For this model-potential the Schrödinger equation needs to be solved. From the
solution we can determine the position of the Feshbach resonances for this model
potential. The theoretical positions are then compared to the experimental values
to see if they coincide. If this is not the case the model-potential parameters are
adjusted slightly and the whole process is repeated. Of critical importance for this
method to work reliably is the interaction potential.

6.5.1 Modeling of the potential

In a quantum mechanical description of interaction processes between two atoms,
one should in principle take into account the electric and magnetic forces between all
electrons and nuclei involved in the process. Even for simple atoms, like alkalis, this
turns out to be way to complex to calculate. It can be shown [130] that one is allowed
to make two approximations which simplify the calculations immensely. The first
one is the well known Born-Oppenheimer approximation. Due to the much higher
mass of the nuclei their motion is much slower than the motion of the electrons.
Thus the electrons can immediately follow the motion of the nuclei. This allows
to separate the molecule wave function into a product of the nuclei wave function
and the electronic wave function. The second is the Shizgal [213] approximation,
which assumes that all spins are located at the position of their respective nucleus.
Together this results in an interaction potential V , which only depends on the nuclei
distance and the spin quantum numbers

V =
2∑

j=1

(V HF
j + V Z

j ) + V C + V SS + V SO . (6.8)
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It is comprised out of the single-atom hyperfine V HF
j and Zeeman term V Z

j for each
atom, a central two-atom interaction term V C and the dipole-dipole interactions V SS

and V SO.

Hyperfine interaction

The hyperfine interaction describes the coupling of the (valence) electron spin ~s and
the nuclear spin ~i to the total spin ~f . We will use lower case letters for single-atom
spin operators and quantum numbers and reserve capital letters for two-atom spins.
The hyperfine term V HF

j is thus given by

V HF
j =

aHF
j

~2
~sj ·~ij , (6.9)

where aHF
j is the hyperfine splitting constant. Since 52Cr has no nuclear spin, the

hyperfine interaction can be omitted from Eq. (6.8).

Zeeman interaction

The Zeeman interaction of the atoms with an external magnetic field is essential for
magnetically induced Feshbach resonances. It has the familiar form

V Z
j = −~µj · ~B =

µB

~
gs~sj · ~B =

µB

~
gsms,jB , (6.10)

where gs is the Landé-factor for the electron and ms the projection of ~s on the
magnetic field direction. The value of the Landé-factor for 52Cr was determined
by Childs and Goodman [35] to be gs = 2.00183, which is close to the value of the
electron g factor of9 gs = 2.002319.

Central interaction

The central interaction V C depends only on the quantum number S associated with
the magnitude of the total electronic spin ~S = ~s1 + ~s2 which can be between 0 and 6
for 52Cr. It consists out of two contributions

V C = V ex + V disp , (6.11)

where V ex is the electronic exchange interaction and V disp is the dispersion interaction.
The exchange interaction stems from the overlap of both electron clouds and is short-
ranged due to its exponential behavior [99, 153, 227]. If the two atoms are very

9Brix et al. [26] gives some possible explanations for this discrepancy.
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close they will repel each other due to the Pauli principle. At intermediate distances,
where the inner electron shells do not overlap any more, the relative spin orientation
of the valence electrons determines the position and depth of the potential minimum.
Are the spins aligned, the potential will be very shallow, since both atoms repel each
other. Is this not the case, they will attract each other due to the covalent binding
and the resulting potential will be deep. The dispersion interaction dominates at
long range and describes the attractive interaction between the induced electric
multipoles. It is given by

V disp = −C6

r6
− C8

r8
− C10

r10
− . . . , (6.12)

where C6, C8 and C10 are the dispersion coefficients.

Magnetic dipole-dipole interaction

In elements with a high magnetic moment, like 52Cr the spin-spin or dipole-dipole
interaction term V SS becomes relevant. It leads to a long-ranged potential of the
form

V SS =
µ0(gsµB)2

4π

~s1 · ~s2 − 3(~s1 · R̂)(~s2 · R̂)

R3
. (6.13)

Here ~s1,2 are the electron spin of each atom and ~S = ~s1 + ~s2 the resulting total
electronic spin. R̂ and R are the orientation of the internuclear axis and internuclear
separation, respectively. V SS is not spherical symmetric, so the angular momentum
` is not conserved. The dipole-dipole interaction thus allows the redistribution of
angular momentum between the spin ~S and the orbital angular momentum `.

Another way of writing this interaction that isolates the spin and partial-wave
operators is

V SS =
µ0(gsµB)2

√
6

4πR3

q=2∑
q=−2

(−1)qT 2
q (s1 ⊗ s2)

2
−q . (6.14)

Here T 2
q is a reduced spherical harmonic that depends on the relative orientation of

the atoms, and (s1 ⊗ s2)
2
−q is the second rank tensor formed from the rank-1 spin

operators [40, Section BXI]. Each term of the sum stands for a different physical
process. For q = ±2 both spins are flipped, for q = ±1 one of the spins is flipped up
or down. q = 0 describes elastic scattering where no spins flip. Since the total angular
momentum has to be conserved m` has to change accordingly, i.e. ∆ms + ∆m` = 0.
This can also be easily seen from the matrix element for V SS

〈 `m` |V SS | `′m′
` 〉 ∝

∫
Y

m′
`∗

`′ (θ, ϕ)Y q
2 (θ, ϕ)Y m`

` (θ, ϕ)dΩ (6.15)
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which according to the properties of the spherical harmonic functions Y m`
` is different

from zero only for `′ = `, `− 2, `+ 2, m′
` = m` + q with the exception of ` = `′ = 0

which vanishes by symmetry. The possible values for ∆m` can thus vary between
−2 . . .+ 2.

Spin-Orbit interaction

In addition to the spin-spin interaction there is another interaction which allows to
redistribute angular momentum between spin and orbital angular momentum, the
second-order spin-orbit interaction V SO [153]. It originates when the atomic charge
clouds overlap as a molecule is formed, and the interaction between the ground
state spins are modified due to couplings mediated through distant excited electronic
states of the molecule. These interactions are well known in molecular spectroscopy
and mimic the direct spin-spin coupling [130] due to the same tensor structure. The
spin-orbit interaction decays exponentially (similar to the exchange interaction) and
is thus short-ranged, while the spin-spin interaction shows a 1/R3 behavior. Note,
that the signs of V SO and V SS are different, so they can compensate each other. For
heavy species like Rb and Cs these indirect terms can be much larger than the V SS

term at short distances and strongly influence the spin-relaxation rate [153].
Let’s now apply the above knowledge to 52Cr. The isotropic interactions between
two ground state 52Cr atoms can be described by Hund’s case (a) 2S+1Σ+

g/u Born-
Oppenheimer potentials10. The large number of valence electrons leads to seven
Born-Oppenheimer potentials instead of two for ground state alkali-metal atoms.
For 52Cr even (odd) S implies g (u) symmetry, respectively.
Theoretical ab-initio calculations [7, 176] exist but are extremely challenging for 52Cr.
Figure 6.10 shows the resulting potentials of the ab-initio calculations by Pavlovic
et al. [176]. On the experimental side conventional spectroscopic data only exists for
the ground state 1Σ+

g potential [31].
We construct 2S+1Σ+

g/u Born-Oppenheimer potentials VS by smoothly joining a short-
range R ≤ Rx model potential with the well-known long-range dispersion potential∑

n−Cn/R
n, in which we only retain the n = 6 and 8 terms. The connection point

10Hund’s case (a) is applicable when the interaction of the nuclear rotation with the electronic
motion(spin as well as orbital) is very weak, whereas the electronic motion itself is coupled very
strongly to the line joining the nuclei [105]. This means that L the orbital angular momentum
of the electrons couples to the electrostatic field produced by the nuclei along to the internuclear
axis, with Λ being the projection onto the internuclear axis. S the total electronic spin couples
then to the magnetic moment produced by L (with Λ being the projection along the internuclear
axis). Finally adding the nuclear rotation R results in the total molecular angular momentum
J . The notation for Hund’s case (a) is 2S+1Λσ

πe
. Λ = 0, 1, 2, 3, . . . is denoted by Σ,Π,∆,Φ, . . ..

σ is the symmetry upon reflection at a plane through the internuclear axis (either + or -) and
πe the parity of the wave function (g/u which stands for gerade/ungerade)
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6.5 Multi-channel calculations

Figure 6.10: Potential curves for the ground state manifold of Cr2 computed with the
CASSCF/CASPT2 method. The maximally spin-stretched electronic state 13Σ+

g is shown
as a dashed line and in detail in the inset. Figure taken from [176].

Rx = 17.5 a0 is chosen such that each VS can be well represented by its long-range
form beyond Rx and its value at Rx is much larger than the collision and bound-
state energies of interest here. The inner wall and dissociation energy of the model
potentials approximately agree with Pavlovic et al. [176]. Details of the short-range
potentials are unimportant at ultracold temperatures. We allow for variation of Cn

and include short-range corrections near the minimum of each potential curve. This
allows us to independently tune Cn and the s-wave scattering lengths aS of VS to fit
the experimental data. The number of bound states of VS is uncertain to ±10 for
the deeper potentials.

6.5.2 Quantum numbers and selection rules

When the atoms are far apart, the eigenstates of the dimer are |SMS; `m` 〉, in which
MS and m` are projections of ~S and ~̀ along ~B. The total projection M = m` +MS

and parity (−1)` are conserved during the collision. As the nuclei of the atoms are
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Chapter 6 Feshbach resonances in 52Cr

1st order 2nd order

∆` 0,±2 0,±2,±4

∆m` 0a, ±1,±2 0,±1,±2,±3,±4

∆S 0,±2 0,±2,±4

anot allowed for ` = 0 → `′ = 0!

Table 6.1: Selection rules for a dipole-dipole transition to 1st and 2nd order.

identical only states with (−1)S+` = 1 exist due to the symmetrization. In absence
of an interaction, the Hamiltonian conserves ~̀ and ~S as well.

When looking at the different contributions to the potential operator discussed in
the previous section, it turns out that only the Coulomb, spin-spin and spin-orbit
terms provide the necessary coupling for the existence of Feshbach resonances. In
alkalis the Coulomb interaction is the dominating interaction, while the spin-spin and
spin-orbit interactions are much weaker [142]. The situation in 52Cr is quite different.
The Coulomb interaction also exists, but due to the selection rule ∆MS = 0 the
incoming and the bound state will exhibit the same magnetic moment and can thus
not be tuned relative to each other11. Due to the much higher magnetic moment
of 52Cr of 6µB, the spin-spin interaction is a factor of 36 higher than for alkalis
which typically have a magnetic moment of 1µB. The contribution of the spin-orbit
interaction can be neglected for 52Cr, since it is much weaker than the spin-spin
interaction. This has to be contrasted with the situation in the heavier alkalis like
Rb and Cs, where spin-spin and spin-orbit interaction can be of the same order. This
has two reasons: First, the lower magnetic moment of Rb and Cs and second, due to
being heavier the spin-orbit interaction is more pronounced. We will see later on,
from the results of our calculations that neglecting the spin-orbit interaction is really
justified. The only relevant interaction for 52Cr is thus the spin-spin interaction and
it thus determines the relevant selection rules for the possible Feshbach resonances.

As we have seen in the previous section, the anisotropic spin-spin dipole interaction
couples states with ∆S = 0, 2 and ∆` = 0, 2 with ` = 0 → `′ = 0 transitions
forbidden. In Table 6.1 we have compiled an overview over the possible changes
in the quantum numbers for first and second-order spin-spin transitions. This
is further complicated by the the fact, that due to the conservation of the total
projection ∆M = ∆m` + ∆MS = 0 every change in m` has to be reflected in
11In alkalis which exhibit a Hyperfine-splitting the selection rule is accordingly ∆MF = 0 and

a Feshbach resonance is possible between states with different F but same MF . Due to the
different F both states can exhibit different magnetic moments.
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first order 3 resonances

second order 8 resonances

s-wave (ℓ=0)

d-wave (ℓ=2)

g-wave (ℓ=4)

Figure 6.11: Shown are all possible transitions from the open channel
|S = 6,MS = −6; ` = 0,m` = 0 〉 according to the selection rules for the dipole-dipole
interaction up to second-order. For a better overview the different Born-Oppenheimer
potentials have been grouped in columns, while the different angular momenta ` = 0, 2, 4
form the rows. The position of a state does not necessarily reflect its energy

MS. This rules out some possibilities due to the violation of other selection rules.
Our sample is spin polarized, so that the incoming state has quantum numbers
|S = 6,MS = −6; ` = 0,m` = 0 〉 by straightforward angular momentum addition.
Figure 6.11 shows graphically all possible transitions to first and second-order for
our incoming state.

6.5.3 Assignment of the Feshbach resonances

Now that we have determined our model potential and the possible coupling mech-
anism, we can turn our attention to the task of assigning quantum numbers to
the experimentally observed Feshbach resonances. This is done by calculating the
molecular bound state energies for each basis state |SMS; `m` 〉 separately. For this
we use the Hamiltonian of a pair of 7S3 chromium atoms in an external magnetic
field ~B which includes the seven isotropic Born-Oppenheimer potentials, the nuclear
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Figure 6.12: Theoretical calculations of the bound state energy for S=6,4,2 depending on
the depth of the relevant model potential (denoted as shift). Also shown are the experimental
values for the observed Feshbach resonances. The assignment of the resonances is done by
locating the depth of the potential for which most of the experimental data points can be
reproduced. This is first done for S=6 and then S=4 and 2. Already assigned experimental
data points are shown in orange, while still unassigned points are drawn in blue.

rotational energy ~2~̀2/(2µR2) where ~̀ is the orbital angular momentum of the nuclei
and µ the reduced mass of the diatom and the Zeeman interaction with the magnetic
field. For now we neglect the spin-spin interaction. By solving the Schrödinger
equation using the DVR method described in Chapter 3.3.2 on page 44 we obtain
the energies of all bound states12. Since we know the magnetic moment of each basis
state, we can infer the magnetic field which is necessary for the bound state to come
into resonance with the incoming channel |S = 6,MS = −6; ` = 0,m` = 0 〉. As we
do not know exactly the real depth of our potential, we need to vary the depth of
our model potentials and see how the positions of the Feshbach resonances behave.
Figure 6.12 shows this behavior for S = 6, 4, 2 and the accordingly allowed ` values.
Now we are set to do the assignment. For each spin-state S = 6, 4, 2 separately we

12The resulting energies are listed in Appendix A.2.
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6.5 Multi-channel calculations

need to find a potential depth, where the theoretically predicted Feshbach resonance
position matches as many experimental positions as possible. During matching
we also need to take into account the strength of the coupling. On the theory
side we know that a first order coupling is stronger than a second-order coupling.
Experimentally a stronger resonance will exhibit a broader width and a higher L3

coefficient. In Fig. 6.12 the crosses with the experimental values of the Feshbach
resonances show the chosen assignment. The resulting assignment of S, MS, `, and
m` to each experimentally observed resonance from this approximate model are
shown in Table 6.2.
We find that, in addition to the incoming state, states with ` = 2 and 4 (d and g)
partial waves and S = 2, 4, and 6 have to be coupled together in order to explain the
11 strongest observed features of Table 6.2. Even though no term in the molecular
Hamiltonian directly couples ` = 4 states to the `i = 0 state, second-order mixing in
the spin-spin dipole interaction via ` = 2 states is relevant in 52Cr.
So far, we have focused on incoming `i = 0 s-wave scattering and thus assumed
M = −6. We do observe resonances due to collisions from `i = 2 partial d waves
with M = −4, . . . ,−8 corresponding to different orientations of the internuclear
axis. The pair near 4 G and 8 G is due to such collisions. These additional features
are strongly suppressed at our temperatures and we are only able to detect them
at fields B < 20 G where we have larger atom numbers and an optimal control of
the magnetic field strength. We are not able to infer from our data a conclusive
assignment of the weakest observed resonance at 6.1 G. A complete overview over all
the experimentally observed resonances and their assignment is shown in Fig. 6.13
on the next page.
When the spin-spin dipole interaction is neglected — as we did up to now — a
simple resonance-pattern for the Feshbach resonances is expected. Scattering is
then independent of m` and the resonances occur at Bres = EB/(gsµB(MS + 6))
(see Fig. 6.14, where EB is one of the zero-field binding energies of the potential
VS(R) + ~2`(`+ 1)/(2µR2)). From Fig. 6.14 on page 112 we see that the theoretical
resonance structure qualitatively reproduces the experimental data, but quantitatively
we still observe deviations as large as ≈ 10 G. As we will see in the next section this
will be remedied by the inclusion of the spin-spin dipole interaction.

6.5.4 Position of the Feshbach resonances

Now, that we know the assignment and more importantly the approximate depth of
our model potentials, we can tackle the challenge to calculate the exact positions of
the Feshbach resonances. The theoretical analysis now uses the same Hamiltonian
as before, but now comprises also the anisotropic spin-spin dipole interaction. We
do not include the second-order spin-orbit or spin-rotation interactions [130]. The
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Figure 6.14: Dependence of the position of the bound states on the applied magnetic field.
Every time a bound state reaches E = 0 a Feshbach resonance occurs. In this diagram
also the origin of the different series of resonances can be seen. The open channel can
for example couple to the bound state S = 6 ` = 4 (shown in red) which splits due to
the applied magnetic field into a series of four resonances for MS =-2,-3,-4,-5. The bound
state calculations were done disregarding the dipole-dipole interactions, which explains the
deviation between the predicted and experimentally observed positions.

temperature of our sample, T≈6µK, is small compared to the ` ≥ 2 centrifugal
barrier13 such that incoming `i = 0 collisions dominate the scattering cross sections.
As we saw in the assignment section though, we also need to consider `i = 2
to reproduce two of the weakest resonances. For the numerical solution of the
Schrödinger equation we now used Gordon’s method as described in section 3.3.1.

The locations of the maxima in the experimental three-body loss rate are compared
with locations of peaks in the elastic two-body cross section calculated by full
quantum-scattering methods. We perform a global χ2-minimization with parameters
a2,4,6, C6 and C8. Our best-fit parameters with one standard deviation are a2=-
7(20) a0, a4=58(6) a0, a6=112(14) a0, C6 =733(70) a.u., and C8 = 75+90

−75 · 103 a.u..

13The threshold temperatures are for ` = 2, 4: T`=2 ≈ 1.1 mK and T`=4 ≈ 6.8 mK
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Figure 6.15: (a) Experimentally accessible s-wave scattering length aS,MS
calculated for

two colliding s = 3, ms = −3 (|S = 6,MS = −6; ` = 0,m` = 0 〉) atoms as a function of
magnetic field for our best-fit parameters a6=111.56 a0, a4=57.61 a0, a2=-7.26 a0, C6 =
733 a.u. and C8 = 75 · 103 a.u.. (b) Plot of the positions of the experimental loss features
(c) The feature near 290 G is a pair of nearly degenerate Feshbach resonances (see Fig. 6.9
for details).

Here 1 a.u. is Eha
n
0 for Cn and Eh = 4.359744·10−18 J is a Hartree. The minimization

procedure provides only a weak upper bound on the C8. The 13Σ+
g scattering length

a6 is in reasonable agreement with Ref. [212] and the C6 coefficient is consistent with
that of Ref. [176, 177]. The average difference between theoretical and experimental
resonance positions is only ≈ 0.6 G.
Figure 6.15 shows the experimentally accessible s-wave scattering length aS,MS

of two
colliding s = 3, ms = −3 (|S = 6,MS = −6; ` = 0,m` = 0 〉) atoms as a function of
magnetic field for our best-fit parameters. For comparison also the experimental
data is shown. Unlike the aS, this scattering length aS,MS

depends on the spin-spin
dipole interaction. The off-resonant scattering length is approximately 105 a0. Near
each Feshbach resonance, the scattering length both diverges and crosses zero. The
difference in magnetic field between these two locations defines the resonance width.
The theoretical resonance width ∆ [239] is listed together with the experimental 1/e

magnetic field width and the experimental L3 coefficient in Table 6.2.
Our theoretical calculations of the scattering lengths from the measured positions of
the loss features were independently verified by Pavlovic et al. [177].
Looking at the data in Table 6.2 and Fig. 6.16(a), we see that smaller experimental
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Figure 6.17: As seen in both figures, the loss-rate L3 is correlated to the (a) experimentally
observed width σ and (b) the theoretically predicted width ∆.

widths correspond to smaller theoretical widths, up to the point where we are limited
by our experimental resolution of14 100 mG. The discrepancy between the theoretical
and experimental widths of more than two orders of magnitude can be rectified
by the following argument: While the theoretical width ∆ is the “real” width of
the resonance feature (as defined in Eq. (3.32)), the experimental value σ is the
1/√e-width of the loss feature. The width of the loss feature is determined by the
theoretical width ∆ of the resonance and additionally by the hold time at the applied
14The resolution limit we are using was deduced using the uncertainty of our experimental

parameters. As seen from the figures we seem to have a slightly higher resolution.
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magnetic field. For typical hold times on the order of seconds, the resulting width is
much larger, see Eq. (6.7) and Fig. 6.6. Figure 6.16(b) shows the dependence of the
experimental width on 1/∆MS for series of resonances with constant S and `. Here
∆MS is the difference of MS between the incoming and the closed channel. We again
observe a trend to smaller widths for increasing ∆MS. This is to be expected, since
a bound state with a bigger ∆MS crosses the incoming channel faster for increasing
magnetic field, thus leading to a smaller width of the resonance. We also see from
this figure, that our measured widths are all above the minimum thermal width of
kBT/µB∆MS, where we assumed a typical temperature of T=6µK.

Even though models for a theoretical determination of L3 do not exist, we know
from Eq. (3.47) that the three-body loss rate is proportional to the width of the
Feshbach resonance15. A careful comparison of the theoretical width ∆ or the
experimental width σ and L3 shows correlations as seen in Fig. 6.17. That is for
resonances of a given S and `, increasing theoretical widths coincide with higher
experimental L3 values16. The on-resonance loss rate we measure is comparable or
smaller, respectively, than the ones observed in 23Na [225], Cs [246] and 85Rb [197]
but larger than the ones observed in 87Rb [143]. Consequently, this will allow for
sufficient lifetimes for experiments in the vicinity of the resonance.

6.6 Significance of our results

The observation of Feshbach resonances in 52Cr allowed the first precise determination
of the potential parameters for the 13,9,5Σ+

g states. This is significant in a number
of ways. On the experimental side the now known background scattering length
of 105 a0 should allow the creation of a Bose-Einstein condensate. The existence
of Feshbach resonances enables us to experimentally tune the scattering length to
arbitrary values and to create Cr2 molecules. On the theoretical side, the precise
knowledge of the potentials may lead to a better understanding of the bonding
mechanisms of the chromium dimer, which is not yet fully understood [200]. In
addition it is possible to predict the scattering lengths for different collision channels
of interest and other chromium isotopes. To get a better understanding of the
consequences of our measurements lets take a look at some of the aforementioned
points in some more detail.

15An exact value for L3 cannot be calculated since Γe, the width for the formation of a molecule is
unknown.

16For Feshbach resonances with a width comparable to our experimental resolution of 100 mG, we
may underestimate the absolute value of the L3 coefficient. This is due to the fluctuations in
the magnetic field, which may lead to an averaging of the L3 value over the whole width of the
resonance.
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a6,−6 [a0] a6 [a0] a4 [a0] a2 [a0]

50Cr 29 32 254 209

Table 6.3: Scattering lengths obtained for 50Cr by mass-scaling the 52Cr potential.

6.6.1 Scattering length of 50Cr

Now that we know the scattering length for 52Cr we can predict the scattering lengths
for other isotopes, through a method called mass-scaling. The interatomic potential
is independent of the mass, and thus the same for all isotopes. From the Feshbach
measurements and the corresponding theory we now know the interatomic potential.
So we simply need to calculate the solution of the previously used Schrödinger
equation with the same potential but different reduced masses. Table 6.3 shows the
scattering lengths we obtained for 50Cr. We can see that the value a6,−6 for 50Cr
is consistent with the value of 40± 15 a0 we found by mass-scaling the less precise
potential obtained from cross-dimensional relaxation measurements.

6.6.2 Observation of multipletts

In section 6.5.1 we derived the matrix element for the dipole-dipole interaction,
see Eq. (6.15). Ticknor et al. [237] observed that for fixed q the strength of the
interaction depends on m`. The fact that the dipole-dipole interaction does not
contribute equally to all values of m` means that bound states with different m` have
different energies. This implies that Feshbach resonances with different values of m`

couple to distinct bound states and thus have different magnetic field dependencies.
It is best to discuss the implications of this using our resonance at 589.2 G as an
example. It results from the coupling between the incoming state |S = 6,MS =
−6, ` = 0,m` = 0 〉 and the bound state |S ′ = 6,M ′

S = −5, `′ = 2,m′
` = −1 〉. Since

we have s-wave scattering (` = 0), m` is required to be 0 and thus this bound state
is the only one we can couple to. The situation changes for ` ≥ 2. Lets discuss what
happens if we are incoming in d-waves (` = 2). m` can now vary between -2 and 2,
so M = MS +m` can range from -8 to -4. Figure 6.18 shows the possible transitions
due to the selection rule ∆M = 0 and assuming ∆MS = +117. In addition to the
observed s→ d resonance, four d→ d resonances are possible. The transition with
M = −6 couples to the same bound state as the s→ d transition, so it will occur
at exactly the same field and cannot be observed. The other three transitions will
17There are also possible transitions with ∆MS = +2, but those will end in a bound state with

MS =+4 and thus will form the multiplett which belongs to a different Feshbach resonance.
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Figure 6.18: Due to the anisotropy of the dipole-dipole interaction the degeneracy of a
Feshbach resonance is lifted and it splits up into a multiplett. This is only possible for colli-
sions with ` ≥ 2 because then m` 6= 0. Different m` lead to shifts in the resonance positions
due to different contributions of the matrix element

∫
Y

m′
`∗

`′ (θ, ϕ)Y q
2 (θ, ϕ)Y m`

` (θ, ϕ)dΩ.

S ′ M ′
S `′ M m′

` B [G]

6 -5 2 -6 -1 589.209

6 -5 2 -4 1 591.722

6 -5 2 -7 -2 565.66

6 -5 2 -5 0 593.779

Table 6.4: Results from the multi-channel scattering calculations for the corresponding
d→ d transitions of the s→ d resonance at 589.2 G. The first d→ d resonance is at the
same position as the s→ d resonance and thus hidden by the latter one. When neglecting
the spin-spin dipole interaction the resonance is found at 581.0 G. The spin-spin dipole
interaction then spreads the multiplett by up to 13 G in both directions.
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Figure 6.19: Dependence of the inelastic collision rate for different dipolar relaxation
processes on (a) the energy and (b) the magnetic field. For the plot over the energy a
magnetic field of B=5 G assumed, while for the magnetic field plot an energy of E=10µK
was used [216].

couple to slightly shifted bound states (due to their different m′
`) and will thus

occur at different magnetic fields. It is experimentally challenging to observe these
resonances, since the coupling is very weak and so is their strength. This is the case
for all resonances with ` ≥ 2, because the colliding atoms have to tunnel through
the centrifugal barrier before they can couple to the bound state. As we are able to
observe resonances with ` = 2 at low fields, using a magnetic field stabilization should
allow the observation of these multipletts. Table 6.4 shows the predicted positions of
these resonances from our multi-channel calculations [216]. Neglecting the spin-spin
dipole interaction the resonance position is at approximately 581.0 G (see Fig. 6.14).
The spin-spin dipole interaction spreads the multiplett by approximately 13 G in
both directions. This has to be compared to a splitting of only 0.5 G in alkalis,
which has been observed in 40K [189]. In contrast to Ref. [237] we also do not expect
a |m`| degeneracy, because in our case the scattering is not elastic (T0), but the
coupling flips a spin (T±1). Due to the properties of the spherical harmonic functions
in Eq. (6.15) the symmetry is broken and thus the |m`| degeneracy is lifted.

6.6.3 Predictions for inelastic collisions in the ms =+3 state

From the exact knowledge of the relevant potential parameters we can also make pre-
dictions about inelastic collisions between atoms in the ms =+3 state. Figure 6.19(a)
shows the inelastic collision rate over the collision energy, while 6.19(b) shows the
dependence on the applied magnetic field. The dipolar relaxation allows the incoming
state |S = 6,MS = 6 〉 to decay to the states |S ′ = 6,M ′

S = 5 〉, |S ′ = 6,M ′
S = 4 〉

and |S ′ = 4,M ′
S = 4 〉. Looking at the energy dependence first, we see that up to

10µK the inelastic collision rate stays constant and then starts to increase. It peaks
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around 4 mK. Below 10µK only s-wave scattering contributes to the scattering rate.
For values above 10µK a d-wave shape resonance is responsible for the existence of
the peak. For even higher energies some more shape resonances are expected as seen
in Ref. [177, Fig. 1]. This low lying shape resonance may be the reason, why buffer
gas cooling below a few mK is not possible due to the experienced high inelastic
dipolar losses [49, 50, 249]. Another interesting feature is seen in Fig. 6.19(b). For
certain values of the magnetic field the inelastic collision rate is sharply suppressed.
This behavior is due to the zero crossing of the wave function for positive scattering
lengths (see Fig. 2.4). The value of the matrix element for the dipole-dipole inter-
action Eq. 6.15 is mainly determined by the region around r ∼ 1/kf , and becomes
minimal for 1/kf ∼ a. Because this happens for each possible channel at a different
magnetic field, the total scattering rate will average out this drastic behavior.
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Chapter 7

Summary and perspectives

In this Chapter, I give a summary of the results presented in this thesis and discuss
their consequence for future investigations. Prospects for exciting experiments
involving the recently realized Bose-Einstein condensate and the Feshbach resonances
conclude this chapter.

7.1 Summary

The properties of degenerate quantum gases are governed by the interactions between
the atoms. The main interaction is the contact interaction which arises from s-wave
scattering. For atoms which exhibit a high magnetic moment — like chromium — the
dipole-dipole interaction becomes significant. In contrast to the contact interaction,
the dipole-dipole interaction is anisotropic and long-range. These features are
expected to alter the properties of a degenerate quantum gas and will lead to
new phenomena. An exact knowledge of the interactions between two atoms is an
important premise to be able to study these new phenomena. The observation of
Feshbach resonances, together with a theoretical model allows one to deduce the
exact interaction potentials.
In this thesis, I reported the first observation of magnetically induced Feshbach
resonances in an ultracold gas of 52Cr atoms. Chapters 2 and 3 were devoted to
presenting the theory which is used to describe Feshbach resonances. We followed the
approach of Feshbach since it is the most accessible to the reader. It is though using
the framework of “formal” scattering theory which we thus needed to introduce first.
Following the formal derivation was a “hands-on” calculation of a model Feshbach
resonance using two square-well potentials. This simple example already reproduces
all relevant aspects of a Feshbach resonance. Most importantly, we saw that the
resonance position is shifted according to the coupling strength. Since the Schrödinger
equation for real interaction potentials cannot be solved analytically any more, one
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needs to resort to numerical methods. Two common methods were presented, the
classical Gordon’s method and the more recent discrete variable representation
method. The theoretical part of this thesis is concluded by an overview over the
different possibilities to experimentally detect the variation of the scattering length
due to a Feshbach resonance.

Chapter 4 started with a presentation of the physical, electronic and spectroscopic
properties of 52Cr relevant for this thesis. It also contains a detailed look at the
results of previous measurements performed by our group. These measurements
dealt with determining the 52Cr and 50Cr scattering lengths in a magnetic trap
through cross-dimensional relaxation measurements and the measurement of the
dipolar relaxation rate from the ms =+3 state. These results had two important
consequences for our experiment: Even though the scattering length for 52Cr is
positive and large enough for creating a Bose-Einstein condensate, this goal was
defeated by the existence of a high loss rate due to the dipolar relaxation.

The dipolar relaxation losses can be suppressed by transferring the atoms into the ms

=-3 state, which is the energetically lowest state. Since atoms in the ms =-3 state
cannot be trapped in a magnetic trap, the atoms need to be loaded into an optical
dipole trap first, before the could be optically pumped into the ms =-3 state. These
steps required setting up an optical dipole trap for 52Cr and a new laser system for
optical pumping of the atoms into the energetically lowest state. These two laser
systems and the computer control system were newly implemented during this thesis
and are thus covered in some detail in Chapter 5 which treats the experimental setup.
The remaining parts of our setup were also described, but only very concise and with
pointers to the relevant publications.

This brings us to Chapter 6 which contains the Feshbach measurements. Before
delving into the details of the Feshbach measurements, the chapter starts with
recounting the steps involved in the preparation of our atomic sample and the
reasoning behind each step. Some more time has been spent on developing a theory
for the optical pumping process and comparing it with the experimental results.
We achieve a transfer efficiency of close to 100% without incuring any measurable
heating. After the transfer we further cool down our sample by taking advantage
of the existing plain evaporation followed by a short forced evaporation. After all
these preparation steps, we end up with about 120 000 atoms at a temperature of
6µK and a peak density of 5 · 1013 1/cm3 in the crossed optical dipole trap, which are
close to optimal conditions for observing Feshbach resonances.

Fourteen resonances were located by measuring the inelastic loss of 52Cr in the
energetically lowest Zeeman sub-state ms =-3 as a function of the applied offset
field (4 to 600 G). A calibration of the magnetic field was done for each observed
resonance slightly above and below the resonance using rf-spectroscopy. This allowed
us to determine the positions of the resonances with an accuracy of below 100 mG.
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From the obtained data we were also able to extract the width of the inelastic loss
features and an upper bound for the three-body loss-rate L3 at the resonance.
Using quantum-scattering calculations we identified thirteen of the fourteen observed
resonances and assigned the relevant quantum numbers. The eleven strongest
Feshbach resonances build a complete set of all possible resonances up to second-
order in the magnetic dipole-dipole coupling for the deca-triplett s-wave entrance
channel. The two remaining identified resonances are resonances with a d-wave
entrance channel and are thus much weaker. We were not yet able to identify the
weakest resonance at 6.1 G.
Positions and widths extracted from quantum-scattering calculations are in good
agreement with the experimental data. The average difference between theoretical
and experimental resonance positions is only ≈ 0.6 G. The inclusion of the spin-spin
dipole interaction into our calculations was essential for a quantitative understanding
of the experimental spectrum. From our calculations we obtained the following
best-fit parameters for the different potentials (given with one standard deviation):
a2=-7(20) a0, a4=58(6) a0, a6=112(14) a0, C6 =733(70) a.u., and C8 = 75+90

−75 ·103 a.u..
We have improved the accuracy of the previous collisional measurements [212]
and provided a determination of the 9,5Σ+

g scattering lengths, together with the
corresponding C6 and C8. Our results are the most precise determination of the
chromium interaction potentials up-to-date.
Finally, due to the absence of the hyperfine-structure, 52Cr forms an ideal candidate
for the theoretical investigation of Feshbach resonances; it is an ideal “text-book”
example for discussing Feshbach resonances.

7.2 Perspectives
We already discussed some of the more immediate consequences from the exact
knowledge of the 52Cr interaction potentials at the end of the previous chapter.
There we investigated some predictions about the scattering lengths of other chrom-
ium isotopes and inferred the scattering lengths in the ms =+3 state. We also looked
at the existence of a multiplett structure of Feshbach resonances in nonzero partial
waves. Now we will focus onto the more far-reaching perspectives opened up by the
precise knowledge of the interaction potentials, some of which were already realized
during the time this thesis was written.

7.2.1 Improved control over the short-range scattering
properties

In this thesis we concentrated on observing the magnetic field position of a Feshbach
resonance through inelastic loss measurements. Even though the width of the inelastic
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loss features gives an indication of the real width ∆ of a Feshbach resonance, for
future measurements the exact behavior of the scattering length close to a Feshbach
resonance needs to be determined. Of special interest is the position of the zero-
crossing of the scattering length, because it allows to completely switch of the
contact interaction. This can be done by using two of the methods presented in
Chapter 3.4: Using a Bose-Einstein condensate we can measure the mean-field energy
during the expansion of the BEC. Or we can determine this position by varying the
scattering length during the evaporation. If the sample cannot thermalize due to a
vanishing scattering length, this process becomes very inefficient and no increase in
the phase space density is expected. Furthermore, these measurements will enable
us to optimize our evaporation strategy. In a single beam trap, where the density is
low a large scattering length is desired, while in a crossed dipole trap with a higher
density a smaller scattering length is preferable to avoid three-body losses.

7.2.2 Creation of a dipolar Bose-Einstein condensate

The measured off-resonant scattering length of approximately 105 a0, together with
the suppression of the dipolar relaxation in the ms =-3 state, should allow the
creation of a Bose-Einstein condensate (BEC) due to the much better ratio between
thermalizing collisions and losses. Shortly after the Feshbach measurements were
concluded, our group finally accomplished this goal [84]. By further lowering the power
in the stronger axial beam we increased the phase-space density above the critical
value of ρ ≈ 1. We were able to create a pure BEC with approximately 50 000 atoms.
The critical temperature, at which the phase-transition occurs is around 700 nK.
52Cr is the first element which was condensed, where the dipole-dipole interaction
is strong enough to be visible. Compared with the contact interaction its strength
is approximately 1/10 of the contact interaction. This is already enough to manifest
itself in a well pronounced modification of the condensate expansion that depends on
the orientation of the magnetic moments [78]. Only recently our group was able to
observe this effect [231]. Tuning the contact interaction between 52Cr atoms close to
zero using one of the observed Feshbach resonances will allow us to realize a dipolar
BEC [9] in which the dipole-dipole interaction is the dominant interaction. In this
way, many predicted dipole-dipole phenomena can be investigated experimentally.
These include the occurrence of a Maxon-Roton in the excitation spectrum of a
dipolar BEC [206] or new kinds of quantum phase transitions [91, 261] as well as the
stability and the ground state of dipolar BECs [88, 171, 205].

7.2.3 Tuning the dipole-dipole interaction

In addition to tuning the contact interaction also the dipole-dipole interaction can
be tuned [77]. This is done by applying a rotating magnetic field to the dipoles as
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Figure 7.1: Tunability of the magnetic dipole interaction. (a) Using time-varying magnetic
fields, the dipoles are rapidly rotated around the z axis. (b) The angle ϕ between the dipole
orientation and the z axis determines the strength and sign of the effective interaction.
ϕ = 0: the magnetic dipoles are polarized along the z direction. ϕ = π/2: the sign of the
effective interaction is inverted and the absolute value is only half of the polarized case.
ϕ = 54.7° (magic angle): the dipolar interaction averages to zero.

shown in Fig. 7.1(a). The interaction strength then depends on the rotation angle ϕ
and allows to tune the dipole-dipole interaction from attraction to repulsion, or even
to zero at the so called magic angle of 54.7° (see Fig. 7.1(b)). The rotation frequency
ωspin of the radial field has to be chosen such that ωtrap � ωspin � ωLarmor. In our
case ωtrap ≈ 2π · 200 1/s and ωLarmor/B = 2π · 8.3 · 106 1/G·s, and thus the required
rotation frequency lies in a well accessible range. Together with tuning the contact
interaction by using a Feshbach resonance a degenerate quantum gas with adjustable
long- and short-range interactions can be realized.

7.2.4 Creation of ultracold molecules

Almost ten years after the first creation of a BEC with rubidium [6], there are now
many groups working with BECs of various elements. The next big challenge to
tackle was now the creation of a sample of ultracold molecules. Quantum gases
of molecules would allow very precise molecular spectroscopy, they are very good
candidates for matter-wave interferometers and they could contribute to a better
understanding of the formation of Cooper-pairs and thus superconductivity. But
how can a molecular quantum gas be produced? One idea was to do it the same
way as it is done with atoms. It turns out though, that laser cooling of molecules is
complex. Unlike in atoms in molecules there are no closed transitions due the many
decay channels from the vibrational and rotational levels. A second approach is to
use buffer-gas loading and evaporative cooling of paramagnetic molecules [122]. The
third possibility is to slow polar molecules in inhomogenic electrical fields [14]. Both
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Figure 7.2: Due to the dipole-dipole interaction, a coupling exists between the free
atomic and the molecular state. This turns the crossing of these two levels into a so called
avoided crossing. By slowly ramping the magnetic field above the crossing point, one can
adiabatically convert atoms into molecules and back again.

methods offer the advantage that they can be applied to a whole class of molecules
but also in both cases the degenerate regime was not yet reached.
The problems with the direct cooling of molecules can be circumvented by associating
the molecules from already ultracold atoms. A very popular method to do this is
photoassociation [164, 165], though the formed dimers tend to be distributed over a
range of very high vibrational states, thus reducing the phase-space density. There
is another, astonishing simple method to generate ultracold molecules from atoms,
which involves Feshbach resonances. In this thesis we already discussed the creation
of molecules through three-body-recombination close to a Feshbach resonance (see
section 3.4). But there is also the possibility to use a Feshbach resonance to coherently
produce dimers in one highly excited vibrational state. To understand how this
works we need to recall, that due to the dipole-dipole interaction the crossing of the
energy of the molecular state and the energy of the free colliding atoms is turned
into a so called avoided crossing or Landau-Zener [264] transition. This is depicted
in Fig. 7.2. Thus, if we ramp the magnetic field slowly enough above the resonance
(coming from higher values), we can adiabatically transfer two free atoms into a
molecule. This works both ways: by ramping upwards again, we can dissociate the
molecules again into atoms. Since this is a coherent process an atomic BEC will be
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turned into a coherent molecular sample [58]. Using a degenerate sample of fermions
even a molecular BEC can be achieved [82, 116].
Using one of the Feshbach resonances found in this thesis, it should be possible
to create an ultracold sample of chromium molecules. From the fourteen available
resonances the ones at 290.3 G, 499.9 G and 589.1 G seem to be the most promising
candidates for creating molecules. All three of them are first order resonances and
thus display a strong coupling. This has important consequences: The stronger
coupling allows to ramp the magnetic field much faster above the resonance, i.e. the
generation of molecules is much more efficient. As these resonances are also at least
an order of magnitude wider, the experimental control over the magnetic fields needs
to be not as accurate as for the other resonances1. A ramp of the magnetic field
is easily implemented experimentally. The experimental challenge is the detection
of the molecules. Imaging with a laser beam is not possible, because no closed
transition exists. A simple solution is to perform the experiment in a weak vertical
dipole trap, where the atoms are levitated against the gravitation by a gradient field.
The molecules have a different, lower magnetic moment, so they will slowly drop. If
the magnetic field ramp is now reversed, the molecules are converted back to atoms
again and will appear at a lower position when imaging occurs.
We are interested in the dependence of the efficiency of this molecule formation
process and the lifetime of the molecules at different resonances. A prediction of the
lifetimes is currently not possible. We expect to obtain very precise values for the
resonance widths from the energy gain of the atoms during dissociation [61]. More
challenging will be precision spectroscopy on Cr2 molecules. Predominantly, these
measurements will increase the knowledge of the molecular potentials.

7.2.5 Improved continuous loading scheme

Doing experiments with a higher number of atoms decreases the signal-to-noise
ratio and thus the experimental error. In the following we will look at a possible
improvement of our continuous loading scheme which should increase the number of
atoms available in our experiment. We saw already in Chapter 6.1.1 that the steady
state atom number in the 5D4 state is given by the ratio of the decay rate into this
state compared to the loss rate. If we thus find another state which is magnetically
trappable and which has a higher loading rate to decay rate ratio, we would be able
to load more atoms into the magnetic trap. The 5S2 is such a state. By applying
our optical pumping laser, we intent to populate the 7P3 state during laser cooling.
The decay from this state into the 5S2 state is 200 times faster than the decay from
7P4 state into the 5D4 state (see figure 7.3 on the next page) and should improve

1The figure of merit here is the ratio between the width and the absolute position of the Feshbach
resonance.
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Figure 7.3: In future experiments we intent to use an different intermediate state in our
loading scheme. The fast decay rate into the 5S2 states exceeds the decay rate into the 5D4

states and therefore improves the loading rate into the magnetic trap. The wavelengths
and the widths of the relevant transitions are indicated.

the loading scheme. By changing the intensity of the optical pumping laser we can
control the amount of atoms transferred into the 5S2 state. The 5S2 state also has a
lower magnetic moment of 4µB, leading to less volume overlap between the magnetic
trap and the magneto-optical trap. Thereby inelastic losses due to collisions between
atoms in the two trap types are reduced. One disadvantage of the lower magnetic
moment of the 5S2 state is that only atoms with a lower temperature than for the
5D4 trap are retained. After loading, the magnetically trapped atoms have to be
transferred back to the ground state. For this purpose a new laser system with a
wavelength of 633 nm is necessary.

7.2.6 Spin dynamics in classical and quantum degenerate gases

Due to the very different values of the scattering lengths of the 13,9,5Σ+
g molecular

potentials, the elastic spin-changing collision rates for collisions between these states
exceed the inelastic rates by about two orders of magnitude. This makes studies
of spin-dynamics and of the magnetic ground state in zero magnetic field in a
Bose-Einstein condensate possible. These measurements will help to determine the
scattering length of the 1Σ+

g ground state potential. Due to its seven magnetic
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sub-states and the absence of a quadratic Zeeman effect our system is in particular
suitable for exploring this kind of physics.
We already outlined that the preparation of dense atomic samples is not possible for
atoms in the ms =+3 state in a magnetic trap, due to the high dipolar relaxation
rates. The dipolar relaxation couples the kinetic to the spin reservoir, i.e. when a
spin-flip occurs we convert (potential) spin energy into kinetic energy, the sample
heats up and becomes depolarized. But what happens if we are able to reverse this
process? If we for example start in an optical dipole trap in the ms =-3 state and
a small homogeneous magnetic field kBT � µB is applied, the relaxation process
reverses the energy transfer. Kinetic energy will be transferred to the spin reservoir,
i.e. the sample will be cooled. Analogous to the experiments in nuclear physics
[48, 76], where adiabatic demagnetization enables researchers to cool their samples
to a small fraction of their initial temperature, we expect a reduction in the kinetic
temperature depending on the applied offset field [103]. In combination with an
optical pumping process this might be an efficient cooling process which is enabled
by inelastic dipolar collisions.
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Appendix A

Overview over the observed
Feshbach resonances in 52Cr

A.1 Raw experimental data

Position [G] 1/√e-Width [mG] L3 [cm6/s] reference data

4.1 40 3 · 10−28 30.08.2004, run18

6.1 8 8 · 10−29 30.08.2004, run21

8.2 101 4 · 10−27 30.08.2004, run15

8.2 110 4 · 10−27 02.09.2004, run01

50.1 140 2 · 10−26 25.08.2004, run15

65.1 80 3 · 10−26 25.08.2004, run11

65.1 110 7 · 10−26 25.08.2004, run23

98.9 90 3 · 10−24 20.08.2004, run03

98.9 80 1 · 10−24 20.08.2004, run04

98.9 90 1 · 10−24 23.08.2004, run02

98.9 70 1 · 10−24 30.08.2004, run02

143.9 130 1 · 10−26 10.09.2004, run07

continued on next page
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continued from previous page

Position [G] 1/√e-Width [mG] L3 [cm6/s] reference data

143.9 110 1 · 10−26 10.09.2004, run08

188.3 150 4 · 10−26 10.09.2004, run11

205.8 420 4 · 10−24 19.06.2004, run04

286.6 440 2 · 10−24 27.08.2004, run23

286.6 330 1 · 10−24 06.09.2004, run18

286.6 420 2 · 10−25 08.09.2004, run03

286.6 530 1 · 10−25 08.09.2004, run04

290.3 160 2 · 10−24 27.08.2004, run23

290.3 530 1 · 10−25 06.09.2004, run15

290.3 550 2 · 10−25 06.09.2004, run17

290.3 400 1 · 10−25 08.09.2004, run03

290.3 330 1 · 10−25 08.09.2004, run06

290.3 734 1 · 10−25 08.09.2004, run07

379.2 140 1 · 10−25 03.09.2004, run17

499.9 370 1 · 10−24 03.09.2004, run11

589.1 683 3 · 10−24 03.09.2004, run05

Table A.1: Compilation of all Feshbach resonance measurements results.
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A.2 Calculated bound state energies

A.2 Calculated bound state energies

Potential 1st 2nd 3rd 4th 5th

S = 6, ` = 0 −2.72 · 10−9 −3.23 · 10−7 −1.81 · 10−6 −5.31 · 10−6 −1.16 · 10−5

S = 6, ` = 2 −2.47 · 10−7 −1.67 · 10−6 −5.12 · 10−6 −1.13 · 10−5 −2.08 · 10−5

S = 6, ` = 4 −8.31 · 10−8 −1.36 · 10−6 −4.66 · 10−6 −1.07 · 10−5 −2.01 · 10−5

S = 4, ` = 0 −1.87 · 10−8 −5.22 · 10−7 −2.41 · 10−6 −6.60 · 10−6 −1.39 · 10−5

S = 4, ` = 2 −4.36 · 10−7 −2.27 · 10−6 −6.40 · 10−6 −1.37 · 10−5 −2.49 · 10−5

S = 4, ` = 4 −2.42 · 10−7 −1.94 · 10−6 −5.93 · 10−6 −1.31 · 10−5 −2.42 · 10−5

S = 2, ` = 0 −1.03 · 10−7 −1.02 · 10−6 −3.67 · 10−6 −8.98 · 10−6 −1.78 · 10−5

S = 2, ` = 2 −5.31 · 10−8 −9.09 · 10−7 −3.50 · 10−6 −8.76 · 10−6 −1.76 · 10−5

S = 2, ` = 4 −6.60 · 10−7 −3.11 · 10−6 −8.23 · 10−6 −1.69 · 10−5 −2.99 · 10−5

Table A.2: Calculated energy for the five highest bound states. The energy is given in
atomic units.
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Appendix B

Derivation of the Green’s Operator

To formally derive Green’s Operator, we investigate the scattering problem in the
interaction picture [40]. We are only interested in the quantum states long before
(t→ −∞) and long after (t→∞) the scattering event, where the influence of the
potential is negligible and the full solution coincides with the free solution. In the
interaction picture the time evolution of a state is given by

|φ(t) 〉 = Û(t, t′)|φ(t′) 〉 (B.1)

and the time evolution operator Û(t, t′) is given by

Û(t, t′) = e
i
~ Ĥ0te−

i
~ Ĥ(t−t′)e−

i
~ Ĥ0t′ (B.2)

We now define the Møller operators as

Ω̂(±) = Û(0,∓∞) . (B.3)

To get an explicit form of Ω̂(±) we need to apply the limiting procedure of Gell-Mann
and Goldberger [74]. It is defined by

lim
t→−∞

f(t) = lim
ε→0+

ε

∫ 0

−∞
eεt′f(t′) dt′ , (B.4a)

and

lim
t→∞

f(t) = lim
ε→0+

ε

∫ ∞

0

e−εt′f(t′) dt′ . (B.4b)

We use the last two equations now to rewrite Ω̂(±)

Ω̂(±) = lim
t→±∞

U(0, t)

= lim
t→∓∞

e
i
~ Ĥte−

i
~ Ĥ0t dt

= lim
ε→0+

∓ε
∫ ∓∞

0

e±εte
i
~ Ĥte−

i
~ Ĥ0t dt .

(B.5)
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Assuming that the states |φα 〉 form a complete set, we can use the completeness
relation to write

Ω̂(±) = lim
ε→0+

∓ε
∑

α

∫ ∓∞

0

e±εte
i
~ Ĥt|φα 〉〈φα |e−

i
~ Eαt dt . (B.6)

Performing the integration results in

Ω̂(±) = lim
ε→0+

∑
α

±iε
Eα − Ĥ ± iε

|φα 〉〈φα | , (B.7)

or multiplied with |φα 〉 from the right

|ψ(±)
α 〉 = Ω̂(±)|φα 〉 = lim

ε→0+

±iε
Eα − Ĥ ± iε

|φα 〉 . (B.8)

Since Ĥ0|φα 〉 = Eα|φα 〉 and Ĥ = Ĥ0 + V̂ we may also write the result as

|ψ(±)
α 〉 = Ω̂(±)|φα 〉 = lim

ε→0+

1

Eα − Ĥ ± iε
(Eα − Ĥ0 − V̂ + V̂ ± iε)|φα 〉

= |φα 〉+ lim
ε→0+

1

Eα − Ĥ ± iε
V̂ |φα 〉 = (1 + Ĝ(±)V̂ )|φα 〉 ,

(B.9)

which retrieves our original definition of the Møller operators from equation 2.19 in
section 2.2. There we have also shown that this solution is equivalent to

|ψ(±) 〉 = |φ 〉+ Ĝ
(±)
0 V̂ |ψ(±) 〉 . (B.10)
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Publication in PRL

We published the results of this thesis also in Physical Review Letters. It appeared
in Volume 94, Number 18, Article 183201 and is reproduced here on the following
pages.
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Observation of Feshbach Resonances in an Ultracold Gas of 52Cr

J. Werner, A. Griesmaier, S. Hensler, J. Stuhler, and T. Pfau*
5. Physikalisches Institut, Universität Stuttgart, 70550 Stuttgart, Germany

A. Simoni and E. Tiesinga
National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8423, USA

(Received 2 December 2004; published 9 May 2005)

We have observed Feshbach resonances in collisions between ultracold 52Cr atoms. This is the first
observation of collisional Feshbach resonances in an atomic species with more than one valence electron.
The zero nuclear spin of 52Cr and thus the absence of a Fermi-contact interaction leads to regularly spaced
resonance sequences. By comparing resonance positions with multichannel scattering calculations we
determine the s-wave scattering length of the lowest 2S�1��

g potentials to be 112�14� a0, 58�6� a0, and
�7�20� a0 for S � 6, 4, and 2, respectively, where a0 � 0:0529 nm.

DOI: 10.1103/PhysRevLett.94.183201 PACS numbers: 34.50.-s, 03.65.Nk, 31.10.+z

With the development of laser cooling and trapping
techniques, atomic collisional properties in the ultracold
regime have become directly accessible. Today, these prop-
erties play a crucial role in experiments with quantum
degenerate bosonic and fermionic gases. In the ultracold
regime, elastic collisions between most neutral atoms are
dominated by isotropic interaction potentials, which only
depend on the internuclear separation R and can be char-
acterized by a single length, the s-wave scattering length a.
This type of interaction is responsible for many of the
fascinating phenomena observed in Bose-Einstein conden-
sates (BEC’s) (for a review see [1]) and two-species de-
generate Fermi gases [2–5].

In alkali-metal gases, the effect of the isotropic poten-
tials and, consequently, the value of the scattering length
can be controlled by magnetically tunable Feshbach reso-
nances [6]. Feshbach resonances appear when the energy
of the incoming atoms equals the energy of a bound
molecular level of a higher-lying molecular potential and
can be used to change the sign and magnitude of a [7].
Recently, Feshbach resonances have been exploited to
study the strong interaction regime in ultracold atomic
gases or even to produce molecular Bose-Einstein conden-
sates [7]. Feshbach resonances between different atomic
species have also been theoretically predicted [8], and
experimentally observed [9,10].

The spins of the six electrons in the 3d and 4s valence
shells of the 7S3 ground state of 52Cr are aligned. This gives
rise to a magnetic moment as large as � � 6�B, where �B

is the Bohr magneton. This large magnetic moment is
responsible for a very strong anisotropic spin-spin dipole
interaction between two 7S3

52Cr atoms. In fact, when
compared to alkali-metal atoms, which have a maximum
magnetic moment of 1 �B, it is 36 times stronger.

For atomic 52Cr the effects of the anisotropic and long-
range spin-spin dipole interaction can add a new twist to
the field of ultracold quantum gases. In particular, the
expansion of a BEC of 52Cr is expected to depend on the

orientation of the magnetic dipoles [11]. The anisotropic
interaction can be changed by time-varying magnetic fields
[12], while the isotropic interaction can be tuned using a
Feshbach resonance. This allows one to arbitrarily adjust
the ratio of the isotropic and anisotropic interactions. One
can thus create a so called dipolar quantum gas, in which
the dipole-dipole interaction is dominant.

Isotropic interactions between two ground-state 52Cr
atoms can be described by Hund’s case (a) 2S�1��

g=u

Born-Oppenheimer potentials. The large number of va-
lence electrons leads to seven Born-Oppenheimer poten-
tials instead of two for ground-state alkali-metal atoms.
Conventional spectroscopic data only exists for the
ground-state 1��

g potential. Theoretical ab initio calcula-
tions [13,14] exist but are extremely challenging for 52Cr.

Using a cross-dimensional relaxation technique, our
group was able to determine the decatriplet 13��

g s-wave
scattering length of 52Cr to be 170�39� a0 and of 50Cr to be
40�15� a0 where a0 � 0:0529 nm [15]. The uncertainty in
parenthesis is a one standard deviation uncertainty com-
bining statistical and systematic errors.

In this Letter, we report the observation of magnetic
Feshbach resonances in a gas of ultracold 52Cr atoms.
We locate 14 resonances through inelastic loss measure-
ments between magnetic-field values of 0 and 60 mT. The
broadest observed feature has a 1=e width of 96 �T. By
comparing the experimental data with theoretical multi-
channel calculations, we are able to identify the resonances
and to determine the scattering lengths of the 13;9;5��

g

Born-Oppenheimer potentials, the van der Waals disper-
sion coefficient C6, and C8, which are the same for all
seven Born-Oppenheimer potentials.

The details of our cooling scheme are presented in [16].
After Doppler cooling in a clover-leaf-type magnetic trap
[16] and evaporative cooling, we load the atoms into a
crossed optical dipole trap. The dipole trap is realized
using an Yb-fiber laser with a wavelength of 1064 nm.
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The two trapping beams have a waist of 30 and 50 �m and
a power of 11 and 6 W, respectively. To suppress dipolar
relaxation, we optically pump the atoms from the ms � �3
Zeeman sublevel of the 7S3 state to the energetically lowest
ms � �3 level [22]. The lifetime in the optical dipole trap
increases from 7 s in the ms � �3 state to 140 s in the
ms � �3 state and is limited by dipolar relaxation in the
former and by the finite background gas pressure in the
latter case. The optical pumping field of about 0.9 mT is
left on, in order to prevent thermal reoccupation of higher
ms levels through dipolar collision processes. During the
first 5 s after optical pumping, we see a fast initial decay in
the atom number and a decrease in temperature, which we
ascribe to plain initial evaporation in the optical dipole
trap. To prepare a sample of up to 120 000 atoms at a
temperature of 6 �K and a peak density of 5 � 1019 m�3

in a crossed optical dipole trap, we continue the evapora-
tion by ramping down the intensity of the stronger of the
two laser beams to 5 W.

We look for an increase of atom loss by three-body
recombination to locate the Feshbach resonances [17].
This is done by first sweeping the magnetic-field strength
in coarse steps on the order of 0.1–3 mT from 0 to 60 mT.
Smaller sweep ranges are then used in regions where atom
loss is observed. To find the precise location of the reso-
nances a different method is used. The magnetic field is
ramped up to a value close to the resonance in about 5 ms.
We hold the magnetic field for 2 s to let the current settle
and to give our magnetic coils time to thermalize. Then the
magnetic field is quickly ramped to the desired value and
held there for a variable amount of time. The holding time
is chosen to clearly resolve the resonance and lies between
100 ms and 10 s. Finally, the magnetic field is switched off
and an absorption image is taken.

The magnetic field is calibrated both slightly below and
above each resonance using rf-spectroscopy. We are able to
determine the value of the magnetic field with a one
standard deviation uncertainty of 10 �T.

Figure 1 shows our data for two loss features near 29 mT.
The position and widths of all the observed loss features
are determined by a Gaussian fit, which we used for
convenience. From the depth of these loss features, one
can estimate an upper limit for the three-body loss coeffi-
cient L3 [18]. The error bars in the figure are obtained from
repeated measurements of atom loss and are mainly deter-
mined by number fluctuation. All resonance parameters are
tabulated in Table I. In addition to atom loss, we also
observe heating near most resonances, like in [18]. The
resolution limit of our measurements is 14 �T at B �
60 mT.

Our experimental resonance positions can determine the
scattering lengths of the Born-Oppenheimer potentials
with high accuracy. The theoretical analysis uses the
Hamiltonian of a pair of 7S3 chromium atoms in an exter-
nal magnetic field ~B and includes the seven isotropic Born-

Oppenheimer potentials, the nuclear rotational energy
�h2 ~‘2=�2�R2� where ~‘ is the orbital angular momentum
of the nuclei and � the reduced mass of the diatom, the
Zeeman interaction with the magnetic field, and the aniso-
tropic spin-spin dipole interaction. For this Letter, we do
not include second-order spin-orbit or spin-rotation inter-
actions [19].

We construct 2S�1��
g=u Born-Oppenheimer potentials VS

by smoothly joining a short-range R � Rx model potential
with the well-known long-range dispersion potential

P
n �

Cn=R
n, in which we only retain the n � 6 and 8 terms. The

connection point Rx � 17:5 a0 is chosen such that each VS
can be well represented by its long-range form beyond Rx
and its value at Rx is much larger than the collision and
bound-state energies of interest here. The inner wall and
dissociation energy of the model potentials approximately
agree with Ref. [14]. Details of the short-range potentials
are unimportant at ultracold temperatures. We allow for
variation of Cn and include short-range corrections near
the minimum of each potential curve. This allows us to
independently tune Cn and the s-wave scattering lengths aS
of VS to fit the experimental data. The number of bound
states of VS is uncertain to �10 for the deeper potentials.

When the atoms are far apart, the eigenstates of the
dimer are jSMS; ‘m‘i, in which MS and m‘ are projections
of ~S and ~‘ along ~B. The total projection M � m‘ �MS and
parity ��1�‘ are conserved during the collision. As the
nuclei of the atoms are identical, only states with
��1�S�‘ � 1 exist. In absence of the spin-spin interaction,
the Hamiltonian conserves ~‘ and ~S as well. The anisotropic
spin-spin dipole interaction couples states with �S � 0, 2
and �‘ � 0, 2; with ‘ � 0 ! ‘0 � 0 transitions forbidden.

Our sample is spin polarized, so that the incoming state
has quantum numbers S � �MS � 6 by straightforward
angular momentum addition. Moreover, the temperature of
the sample, T  6 �K, is small compared to the ‘ � 2

FIG. 1. Inelastic loss measurement of the Feshbach resonances
at 28.66 and 29.03 mT. The dashed lines are Gaussian fits to the
data and determine the position and width of the loss features.
The experimental data points are averages over many experi-
mental measurements. Each measurement was separately nor-
malized to the offset of a Gaussian fit to the data.
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centrifugal barrier such that incoming ‘i � 0 collisions
dominate the scattering cross sections. We find that, in
addition to the incoming state, states with ‘ � 2 and 4 (d
and g) partial waves and S � 2, 4, and 6 have to be coupled
together in order to explain the 11 strongest observed
features of Table I. Even though no term in the molecular
Hamiltonian directly couples ‘ � 4 states to the ‘i � 0
state, second-order mixing in the spin-spin dipole interac-
tion via ‘ � 2 states is relevant in 52Cr. All these states
have a total projection M � �6. Two of the weakest B<
1 mT resonances in Table I must be explained with incom-
ing ‘i � 2 d-wave collisions and M � �6.The resonance
at 0.61 mT, the weakest observed resonance, could not be
assigned.

The locations of the maxima in the experimental three-
body loss rate are compared with locations of peaks in the
elastic two-body cross section calculated by full quantum-
scattering methods. We perform a global �2-minimization
with parameters a2;4;6, C6, and C8. Our best-fit parameters
with one standard deviation are a2 � �7�20� a0, a4 �
58�6� a0, a6 � 112�14� a0, C6 � 733�70� a:u:, and C8 �

75�90
�75 � 103 a:u: Here 1 a.u. is Ehan0 for Cn and Eh �

4:359 744 � 10�18 J is a Hartree. The minimization pro-
cedure provides only a weak upper bound on the C8. The
13��

g scattering length a6 is in reasonable agreement with
the C6 coefficient is consistent with that of Ref. [14]. The
average difference between theoretical and experimental
resonance positions is only  0:06 mT.

Figure 2 shows the experimentally accessible s-wave
scattering length aS;MS

of two colliding s � 3, ms � �3,
�S � �MS � 6� atoms as a function of magnetic field for
our best-fit parameters. The theoretical resonance width �
[6] is given in Table I. The experimental 1=e magnetic-
field width of all observed features is on the order of
12–96 �T. Smaller experimental widths correspond to

smaller theoretical widths, up to the point where we are
limited by our experimental resolution of 14 �T. For
resonances of a given S, increasing theoretical widths
coincide with higher experimental L3 values. The on-
resonance loss rate we measure is comparable or smaller,
respectively, than the ones observed in 23Na [20] and 87Rb
[21]. This will allow for sufficient lifetimes for experi-
ments in the vicinity of the resonance.

The nature of 52Cr Feshbach resonances can be under-
stood through approximate calculations of molecular
bound states. We find that calculations of eigenstates of a
reduced Hamiltonian limited to a single basis state
jSMS; ‘m‘i locates the resonances to within 0.25 mT
from the scattering calculation. Our assignment S, MS, ‘,
and m‘ from this approximate model is shown in Table I.
An alternative assignment in which the quantum numbers
of the nearly degenerate pair near 29.0 mT are interchanged
is consistent with our best-fit parameters.

In the limit of vanishing spin-spin dipole interaction a
simple resonance pattern is expected. Scattering is then
independent of m‘ and the resonances occur at Bres �
EB=�gs�B�MS � 6��, where EB is one of the zero-field
binding energies of the potential VS�R� � �h2‘�‘�
1�=�2�R2�. Inclusion of the spin-spin dipole interaction
gives rise to observable deviations from this pattern, as
large as  1 mT. Such shifts are an order of magnitude
larger than the 0.06 mT discrepancies that remain after our
least-squares fit. Moreover, the 0.06 mT agreement
strongly suggests that the spin-spin dipole interaction is
the dominant relativistic interaction in ultracold 52Cr.

In conclusion, we have observed Feshbach resonances in
an ultracold gas of 52Cr atoms held in an optical dipole
trap. Resonances were located by measuring the inelastic
loss of 52Cr in the energetically lowest Zeeman substate.
Positions and widths extracted from quantum-scattering

TABLE I. Compendium of positions and strengths of the observed loss features L3, the theoretical positions, widths �, initial partial
wave ‘i, and assignment of the resonances. Theoretical calculations use a collision energy of E � kBT and parameters as in Fig. 2. The
one standard deviation uncertainty of the experimental resonance position is below 14 �T (see text).

Exp. Pos. [mT] Theo. Pos. [mT] Theo. � [�T] Upper limit for Exp. L3 �m6=s� ‘i; SMS; ‘m‘

0.41 0.40 . . . 3 � 10�40 2; 6, �4; 0, 0
0.61 . . . . . . 8 � 10�41 . . .
0.82 0.81 . . . 4 � 10�39 2; 6, �5; 0, 0
5.01 5.01 <1 � 10�4 2 � 10�38 0; 6, �2; 4, �4
6.51 6.49 6 � 10�4 5 � 10�38 0; 6, �3; 4, �3
9.89 9.85 0.030 1 � 10�36 0; 6, �4; 4, �2
14.39 14.32 0.012 1 � 10�38 0; 4, �2; 4, �4
18.83 18.79 0.022 4 � 10�38 0; 4, �3; 4, �3
20.58 20.56 1.2 4 � 10�36 0; 6, �5; 4, �1
28.66 28.80 1.2 6 � 10�37 0; 4, �4; 4, �2
29.03 29.07 5.1 1 � 10�37 0; 6, �4; 2, �2
37.92 37.92 0.042 1 � 10�37 0; 2, �2; 4, �4
49.99 49.92 8.1 1 � 10�36 0; 4, �4; 2, �2
58.91 58.92 170 3 � 10�36 0; 6, �5; 2, �1
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calculations are in good agreement with the experimental
data. The spin-spin dipole interaction is essential for a
quantitative understanding of the experimental spectrum.
We have improved the accuracy of the previous collisional
measurements and provided a determination of the 9;5��

g

scattering lengths [15].
The resonances can be used to control the relative

strength of isotropic and anisotropic interactions.
Together with the BEC of 52Cr we recently realized [22],
this makes the spin-spin dipole interaction in degenerate
quantum gases experimentally accessible. Moreover, the
formation of Cr2 molecules via Feshbach resonances is
now envisaged.
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Appendix D

Properties of Chromium

element mass [au] abundance [%] nuclear spin statistics

chromium 50 4.35 0+ boson

52 83.79 0+ boson

53 9.5 3/2+ fermion

54 2.36 0+ boson

Table D.1: Natural abundance and nuclear spin of stable chromium isotopes.

vacuum wavelength λ = 2π
k

= 425.554 nm

natural linewidth Γ = 1
τ

= 31.5 · 106 1/s

= 2π · 5.02 MHz

saturation intensity Isat = πhcΓ
3λ3 = 8.52 mW/cm2

absorption cross-section σλ = 6πλ̄2 = 8.65 · 10−10 cm2

Doppler temperature TDoppler = 1
kB

~Γ
2

= 124µK

recoil temperature Trec = 1
kB

(~k)2

2m
= 1.02µK

recoil velocity vrec = ~k
m

= 1.80 cm/s

Table D.2: Properties of the cooling and trapping transition 7S3 ↔ 7P4
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Figure D.1: Grotrian diagram of 52Cr. Septett states are drawn in black, while quintett
states appear in red. States marked by an asterisk have odd parity.
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transition vacuum wavelength natural linewidth ref

7S3 ↔ 7P4 425.554 nm Γ = 31.5 · 106 s−1 [166]
7S3 ↔ 7P3 427.600 nm Γ = 30.7 · 106 s−1 [166]
5S2 ↔ 7P3 633.185 nm Γ = 29 · 103 s−1 [166]
5D4 ↔ 7P4 658.2740(2) nm Γ = (127± 14) s−1 [230]
5D4 ↔ 7P3 663.1846(2) nm Γ = 6 · 103 s−1 [166, 230]
5D3 ↔ 7P4 649.1978(2) nm Γ = (42± 6) s−1 [230]
5D3 ↔ 7P3 653.9727(2) nm - [230]

Table D.3: Vacuum wavelengths and natural linewidths of the most important 52Cr
transitions.
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Appendix E Grammar of the experiment control language

program
codeBlock EOF

codeBlock
statement

statement
singleStatement

ifThenBlock

forBlock

singleStatement

assignmentExpression

pattern

pand

por

pxor

pnot

callvi

dumpsymboltable

waitfortrigger

pretrigger

eol

endStatement
"end" eol

ifThenBlock
ifBlock elseIfBlock elseBlock endStatement

ifBlock
"if" condition eol codeBlock

elseIfBlock
"else" "if"

"elseif"

condition eol codeBlock

elseBlock
"else" eol codeBlock

condition
relationalExpression

forBlock
"for" FLT_VAR ASSIGN vektor COMMA eol forBody

vektor
numericExpression COLON numericExpression COLON numericExpression

LBRACK numericExpression RBRACK

forBody
codeBlock endStatement

eol
EOL

Figure E.1: Pattern Parser (1/3)
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pattern
"pattern" INT_CONST COMMA numericExpression RPARENLPAREN numericExpression COMMA numericExpression COMMA

pand
"pand" COMMA numericExpression RPARENLPAREN numericExpression COMMA numericExpression COMMA INT_CONST

por
"por" COMMA numericExpression RPARENLPAREN numericExpression COMMA numericExpression COMMA INT_CONST

pxor
"pxor" COMMA numericExpression RPARENLPAREN numericExpression COMMA numericExpression COMMA INT_CONST

pnot
"pnot" COMMA numericExpression RPARENLPAREN numericExpression COMMA numericExpression COMMA INT_CONST

callvi
"callvi" LPAREN STR_CONST COMMA numericExpression RPAREN

dumpsymboltable
"dumpsymboltable"

waitfortrigger
"waitfortrigger"

pretrigger
INT_CONST RPAREN"pretrigger" LPAREN numericExpression COMMA numericExpression COMMA

assignmentExpression
FLT_VAR ASSIGN numericExpression

Figure E.2: Pattern Parser (2/3)
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Appendix E Grammar of the experiment control language

relationalExpression
relationalXORExpression

relationalXORExpression
relationalORExpression XOR relationalORExpression

relationalORExpression
relationalANDExpression OR relationalANDExpression

relationalANDExpression
relationalNOTExpression AND relationalNOTExpression

relationalNOTExpression
NOT primaryRelationalExpression

primaryRelationalExpression
numericExpression numericExpression LTH

GT

LE

GE

EQ

NE

numericExpression

LPAREN relationalExpression RPAREN

numericValuedFunctionExpression
ABS LPAREN numericExpression RPAREN

SIN LPAREN numericExpression RPAREN

COS LPAREN numericExpression RPAREN

TAN LPAREN numericExpression RPAREN

ASIN LPAREN numericExpression RPAREN

ACOS LPAREN numericExpression RPAREN

ATAN LPAREN numericExpression RPAREN

SINH LPAREN numericExpression RPAREN

COSH LPAREN numericExpression RPAREN

TANH LPAREN numericExpression RPAREN

ASINH LPAREN numericExpression RPAREN

ACOSH LPAREN numericExpression RPAREN

ATANH LPAREN numericExpression RPAREN

SQRT LPAREN numericExpression RPAREN

EXP LPAREN numericExpression RPAREN

LN LPAREN numericExpression RPAREN

LOG LPAREN numericExpression RPAREN

numericExpression
numericMultiplicativeExpression PLUS

MINUS

numericMultiplicativeExpression

numericMultiplicativeExpression
numericExponentialExpression STAR

SLASH

numericExponentialExpression

numericExponentialExpression
numericUnaryExpression EXPO numericUnaryExpression

numericUnaryExpression
PLUS

MINUS

numericPrimaryExpression

numericPrimaryExpression
FLT_CONST

INT_CONST

INC

DEC

FLT_VAR

FLT_VAR INC

DEC

FLT_VAR INC

DEC

FLT_VAR

numericValuedFunctionExpression

LPAREN numericExpression RPAREN

Figure E.3: Pattern Parser (3/3)
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program
CODE_BLOCK statement

statement
assign_statement

forNextStatement

ifThenBlock

patternExecuteStatement

pandExecuteStatement

porExecuteStatement

pxorExecuteStatement

pnotExecuteStatement

callviExecuteStatement

dumpsymboltableExecuteStatement

waitfortriggerExecuteStatement

pretriggerExecuteStatement

forNextStatement
FOR_LOOP FLT_VAR vektor FOR_BODY

vektor
VEKTOR_BRACKET expr

VEKTOR_COLON expr expr expr

ifThenBlock
IF_THEN_BLOCK ifThenBody

ifThenBody
IF_BLOCK conditional

ELSE_IF_BLOCK conditional

ELSE_BLOCK CODE_BLOCK

conditional
CONDITION CODE_BLOCK

condition
CONDITION expr

forBody
FOR_BODY codeBlock

codeBlock
CODE_BLOCK statement

Figure E.4: Pattern Walker (1/3)
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Appendix E Grammar of the experiment control language

patternExecuteStatement
PATTERN expr expr intcon exprTest

pandExecuteStatement
PAND expr expr intcon exprTest

porExecuteStatement
POR expr expr intcon exprTest

pxorExecuteStatement
PXOR expr expr intcon exprTest

pnotExecuteStatement
PNOT expr expr intcon exprTest

callviExecuteStatement
CALLVI zeichenkette expr

dumpsymboltableExecuteStatement
DUMPSYMBOLTABLE

waitfortriggerExecuteStatement
WAITFORTRIGGER

pretriggerExecuteStatement
PRETRIGGER expr expr intcon

assign_statement
ASSIGN FLT_VAR expr

Figure E.5: Pattern Walker (2/3)
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zeichenkette
STR_CONST

id
FLT_VAR

POST_INC FLT_VAR

POST_DEC FLT_VAR

PRE_INC FLT_VAR

PRE_DEC FLT_VAR

con
FLT_CONST

INT_CONST

intcon
INT_CONST

expr
PLUS expr expr

MINUS expr expr

STAR expr expr

SLASH expr expr

EQ expr expr

NE expr expr

LE expr expr

LTH expr expr

GE expr expr

GT expr expr

XOR expr expr

AND expr expr

OR expr expr

NOT expr

UNARY_PLUS expr

UNARY_MINUS expr

ABS expr

SIN expr

COS expr

TAN expr

ASIN expr

ACOS expr

ATAN expr

SINH expr

COSH expr

TANH expr

ASINH expr

ACOSH expr

ATANH expr

EXPO expr expr

SQRT expr

EXP expr

LN expr

LOG expr

id

con

Figure E.6: Pattern Walker (3/3)
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