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Preface

At the time of my graduation, “quantum computing” has, for some time, been
one of the buzzwords among the physicists. A tremendous amount of research
activity and whole new avenues of inquiry have sprung up around the concept of
quantum information processing. I believe, this enormous interest is primarily
motivated by two factors.

First, of course, is the excitement about the ability to manipulate nature at the
scale of single quanta, to access matter at it’s innermost level, where phenom-
ena are governed by laws defying the common sense. The second – and I think
more important reason for this great interest – is the fact that study of quan-
tum information processing turns a spotlight on fundamental interpretational
problems at the hart of quantum mechanics, a theory which we have been using
with spectacular success for almost a century.

Those difficulties were first hinted at by Einstein, Podolski, and Rosen [1], when
the phenomenon of entanglement, which we now recognize as being central to
quantum information, was first identified. Feynman in 1982 was the first to
express the idea that quantum systems could be used to solve hard problems
about quantum systems [2].

Feynman’s ideas were put into precise mathematical form, when Deutsch rigor-
ously demonstrated that a computational device who’s elements are governed
by quantum mechanical principles is capable of solving a mathematical problem
in exponentially less time than a computer restricted to classical behavior [3–5].
Deutsch’s paradigm of quantum computing is based on the Turing machine [6,7].
This approach has, so far, been the most fruitful. Although the Deutsch prob-
lem has no practical utility, it has inspired a search for more practically useful
algorithms. Apart from Deutsch’s algorithm, the best known algorithms for
quantum computers are Grover’s search algorithm [8, 9] and, of course, Shor’s
algorithm for prime factorization [10].

The theoretical advances in the field have by far outpaced the experimental
implementations. Besides the three famous algorithms there has been extensive
work on error correction, quantum simulation, teleportation etc. Main cause of
the slow pace of experimental realization are the difficulties connected with such
an endeavor summarized in the five DiVincenzo criteria [11,12] of (i) well-defined
(ii) initializable qubits with (iii) slow decoherence for which (iv) a universal set
of quantum gates and (v) high quantum efficiency measurements are available.

The first experimental technique used to demonstrate quantum computing [13]
was Nuclear Magnetic Resonance (NMR) in liquid state at room temperature.
Nuclear spins of small, rapidly tumbling molecules in solution are ideally suited
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2 Preface

to serve as qubits. NMR provides unprecedented coherent control of the quan-
tum state of these qubits through the use of rf pulses, gates are be implemented
utilizing the scalar J-coupling, decoherence times are long and gradient pulses
together with diffusion are efficient coherence erasers. The only item missing
from the NMR quantum computing toolkit is the ability to implement hard
projective measurements. The early achievements in the implementation of
quantum computing with liquid state NMR already included the implementa-
tion of the Deutsch [13–17] and Grover [18–21] algorithms, the quantum Fourier
transform [22,23], quantum simulations [24,25], entanglement transfer [26], and
quantum error correction [27]. They culminated in the experimental factoriza-
tion of the number 15 with the Shor algorithm [28].
These fast advances were afforded by the high level of sophistication of exper-
imental techniques in NMR. However, liquid state NMR quantum computing
is not scalable beyond at most a few dozen qubits [29]. The range of chemi-
cally available resonance frequencies limits the number of selectively addressable
qubits and the ratio of gate time to relaxation time is only sufficient for proof-of-
principle demonstrations. More importantly, ensemble spin quantum computing
suffers from exponential loss of efficiency of pseudo-pure state preparation with
growing system size. Clearly, other approaches are needed, if quantum comput-
ers are to actually compete with classical computers.
A large number of possible implementations of quantum computing has been
proposed. The range of ideas includes cold cavity quantum electrodynamics,
trapped ions, ultra-cold Rydberg atoms, molecular magnets, charge and spin
qubits on quantum dots, charge and flux qubits in superconducting boxes,
nuclear and electron spins implanted in diamond or semiconductor hetero-
structures and so on. Ultimately, only time will tell, which of these approaches
will make the race to building a quantum computer useful beyond the study of
fundamental questions of quantum information itself.

All of the quantum computing schemes intending to use spins as qubits have in
common the basic methods of manipulating and observing the quantum state
of those spins and controlling their interactions. My own work has been chiefly
concerned with several of these methodic aspects of quantum computing. In
particular, procedures for creation, tomography, and control of the quantum
states of spin qubits were studied and refined.

First, I report on the observation of intermediate entanglement in the ex-
perimental implementation of the Deutsch-Josza algorithm. Together with
O. Mangold in the course of his master’s thesis research [30, 31], we imple-
mented the Deutsch-Josza algorithm using the three 19F nuclear spins of 2,3,4-
Trifluoroaniline as qubits. It turns out, that the possible test functions and
associated oracle transforms can be subdivided into several equivalence classes
according to the spin-basis operator structure of the oracles. Some but not all
of these oracles produce partially or maximally entangled states in the course
of their application. This entanglement can be made visible by applying local
(i.e., one-qubit) operations to the output states of the algorithm.
On the experimental side, the highlights were the preparation of three-
qubit pseudo-pure states as input to the algorithm and a method for full
tomography of density matrix of the spin system. The tomography is used
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to access the entire density matrix which is only rarely done in NMR im-
plementations of quantum computing. This extended information allows
the fidelity of implementation to be quantified. Also, with this data, it is
possible to demonstrate the difference arising from the use of pseudo-pure
states as input to the algorithm instead of the sometimes used Boltzmann state.

Control of interactions between the qubits is one of the goals of every quantum
computing scheme. Many proposals suggest to actually move the particles in
space to achieve this. Another possibility to tailor the interaction Hamiltonian
consists of applying a suitably designed sequence of strong rf pulses to average
out interactions when they are not desired. In particular, interactions must be
switched off during the application of single-qubit gates. The question now is,
whether it is still possible to selectively manipulate the single qubits under the
thus tailored Hamiltonian.
Chapter 2 presents some proof-of-principle measurements. 2,3-Difluoroaniline
was placed in a liquid crystal matrix in order to partially align the molecules
and thus partially reintroduce the dipole-dipole coupling between the fluorine
nuclei. Protons were decoupled by strong continuous irradiation. A variant of
the magic echo pulse sequence was used to turn this dipolar coupling on and
off. Selective manipulation of qubits under the modified Hamiltonian was then
demonstrated by applying soft excitation pulses un top of the averaging pulse
sequence.

One of the major parts of experimental work in Magnetic Resonance is the
design of pulse sequences to achieve a particular goal. Especially in the case of
homonuclear spin systems, where all spins are to some degree affected by all
pulses, it is sometimes difficult to grasp these influences. In standard NMR,
pulses are usually designed to transform the polarization of a spin ensemble
from one particular state to another state. Because spins frequently enter
the quantum algorithms in superimposed or even entangled states, the pulses
must implement particular unitary transformations instead of point-to-point
rotations. Rotations of spins-1/2 have a simple classical representation based
on the Bloch sphere construction. It is, however, not immediately obvious, how
to imagine a unitary transformation affected by an rf-pulse. Thinking about
unitary transformations resulting from an rf pulse is further complicated when
some or all pulse parameters are varied during the pulse. Chapter 3 presents
a technique for visualizing one-qubit time-dependent unitary transformations
without looking at thir effect on particular spin components.

Some of the solid state proposals for quantum computing are certainly among
the most interesting candidates: They hold a great scalability promise and draw
upon highly developed fabrication techniques. In our group we have worked on
the implementation of the S-bus concept of spin quantum computing developed
by M. Mehring [32–34]. Many aspects of this concept are relevant to other
proposals for spin quantum computing in solid state.
The S-bus concept is based on an electron spin coupled via hyperfine interaction
to a number of nuclear spins. The nuclear spins serve as qubits carrying quantum
information, while the electron spins serves as “quantum bus” which connects
the qubits with each other. Such clusters can then be coupled over longer
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distances to each other via the dipole-dipole interaction between their bus spins.
In addition to it’s role as a bus, the electron spin can be used to create highly
correlated states of nuclear qubits. Also, the use of the electron spin to detect
the state of the nuclear spins affords a large sensitivity enhancement. Direct
observation of the nuclear qubits is not feasible because of the necessarily low
concentration of paramagnetic centers.
In the course of his PhD work in our group [35, 36], J. Mende was able to find
a system with suitable properties in cerium doped CaF2 single crystals. He has
experimentally characterized the system and performed the basic demonstra-
tions of its fitness as a testbed for the S-bus concept by preparing pseudo-pure
states of two and three qubits, implementing the two-qubit Deutsch algorithm
and a first attempt at creating a two-qubit entangled state. The general S-bus
theory does approximate the paramagnetic cluster in CaF2:Ce reasonably well.
It does not, however, provide detailed and, in particular, quantitative under-
standing. The missing pieces must be filled in by further theoretical treatment
and experimental study.
To improve qualitative and quantitative understanding, I have performed a full
numeric simulation of this ten-spin system. It gives access to may experimentally
relevant quantities and allows the simulation of some experiments. In addition,
I studied the evolution of various components of truncated density matrices
under a number of pulse sequences relevant to quantum computing with this
system. When taken as a basis, the perturbation model features a number of
coefficients which can not be calculated from that model itself. Measurements
of the evolution of the density matrix components allow experimental access to
these quantities.
The work on CaF2:Ce culminated in the implementation and tomography of a
CNOT -gate. Also, experiments toward creation of entangled states of distant
qubits were performed. Finally, measurements of decoherence properties of
these Bell-states were done. The quantum computing work on CaF2:Ce is
presented in Chapter 4.

Chapter 5 describes a series of experiments on CaF2:Ce which are also rele-
vant outside the realm of quantum computing. Fluorine nuclei are abundant
CaF2 and form an extended spin network via dipole-dipole interaction. This
neighborhood is a strong source of decoherence and, in this sense, presents the
paramagnetic cluster with very hostile environment. When no measures are
taken, the highly correlated state of the cluster decays too quickly to implement
even a single two-qubit gate. Even, if that environment could be neglected, the
cluster itself has 210 possible states and the coupling between the participating
spins must be carefully controlled.
Decoupling experiments showed that the a single qubit can be effectively de-
coupled from all other spins. To utilize the coupling of a selected qubit pair
for a two-qubit gate, however, it must be restored while the decoupling from
the environment is still effective. Variants of known and a newly designed pulse
sequence were tested regarding their utility for this purpose. As a side-effect,
these sequences allow spin-spin couplings to be measured accurately [37].



Chapter 1

Entanglement in the
Three-Qubit Deutsch-Josza
Algorithm

The technique of nuclear magnetic resonance (NMR) was the first experimental
method to be used to approach the implementation of quantum computing
(QC) [13]. The milestones where the implementation of various basic logic
gates [14, 15, 38–41], the demonstration of the Deutsch-Josza [15, 41–44],
Grover [18, 19, 45] and ultimately Shor [28] algorithms. In addition, a great
variety of the many aspects of quantum computing ranging from the evaluation
of various error correcting protocols to the investigation of decoherence
effects and questions of entanglement has been and still remains under active
investigation.

The magnetic Hamiltonian of a molecule in liquid state has the most simple form
due to the fact that all anisotropic interactions are averaged out because of the
rapid tumbling motion of the molecules in solution. For a molecule containing
N nuclear spins the Hamiltonian has the form

H =
N∑

i

ω0iIzi +
∑

i 6=j

JijIiIj (1.1)

The Larmor frequencies ω0i are determined by the chemical shift of the local field
seen by the nuclear spin due to the shielding effect of the molecules electrons.
The J-couplings Jij are the scalar spin-spin interactions mediated by those
electrons. In the case of large differences in the resonance frequency, off-diagonal
parts of the coupling term can be neglected:

H =
N∑

i

ω0iIzi +
∑

i 6=j

JijIziIzj for |ω0j − ω0k
| À Jij (1.2)

We1 have used 2,3,4-Trifluoroaniline – which at room temperature is liquid –
1Most of the measurements were performed by O. Mangold in the course of his master’s
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6 Chapter 1. Entanglement in the Three-Qubit Deutsch-Josza Algorithm

to implement the three-qubit Deutsch-Josza algorithm by the means of NMR.
For input into the algorithm, refined pseudo-pure states of three qubits were
prepared. Extensive tomography was deployed to measure all 64 elements of
the density matrix.

1.1 2,3,4-Trifluoroaniline as a
Three-Qubit Quantum Processor

The molecular structure of 2,3,4-Trifluoroaniline and its free induction decay
(FID) spectrum at 7.8 T are shown in Figure 1.1. The lines are nearly equally
separated by 2 kHz and the J-couplings are unresolved.

NH3

F

F

F

1

2

3

4 5 6 7 8 9

Ν0 @kHzD

12 3

Figure 1.1: Molecular structure and FID-spectrum of 2,3,4-Trifluoroaniline at
B0 = 7.8 T. Note that the numbering of spins used here is different from the
chemical nomenclature.

The coupling network of the fluorine nuclei of this molecule has been determined
by a two-dimensional echo modulation measurement [46]. The pulse sequence
for this type of measurement is shown Figure 1.2.
The result of applying this pulse sequence is most easily demonstrated using
an example with two spins Ia and Ib . The full time-dependent Hamiltonian of
such a system in the laboratory frame is given by

H = ω0aIza + ω0b
Izb

+ JabIzaIzb
(1.3)

where ω0j is the Larmor frequency of spin j and Jab is the scalar coupling
between the two spins. The unitary transform describing the evolution under
the echo modulation sequence is then given by

U(t1, t2) = exp (−it2H) ·

exp
(
−i t1

2
H

)
· exp (−iπ (Iya + Iyb

)) · exp
(
−i t1

2
H

)
·

exp
(
−iπ

2
(Iya + Iyb

)
)

(1.4)

Applying this sequence to the initial Boltzmann state ρB = Iza + Izb
yields

the expression for the density matrix of the spin system dependent on the two

thesis work [30] in 2002/2003.
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Figure 1.2: Two-dimensional echo modulation measurement on 2,3,4-
Trifluoroaniline at 7.8 T. Top left: The pulse sequence. All pulses are wide-band
and applied to all spins simultaneously. Bottom left: Two-dimensional Fourier
transform of the experimental data. Right: Slices of the spectrum along the
ν2-direction, showing the splittings due to J-couplings between the three 19F
spins.

parameters t1 and t2:

ρ(t1, t2) = U(t1, t2) · ρB · U†(t1, t2) (1.5)

The complex amplitude recorded by the quadrature detection of the NMR spec-
trometer is given by the trace of the density matrix with the measurement
operator PM = I−a + I−b

:

A(t1, t2) = tr {ρ (t1, t2)PM} =

exp
{
i

(
−1

2
Jab t1 +

(
ω0a −

1
2
Jab t2

))}
+

exp
{
i

(
+

1
2
Jab t1 +

(
ω0a +

1
2
Jab t2

))}
+

exp
{
i

(
−1

2
Jab t1 +

(
ω0b
− 1

2
Jab t2

))}
+

exp
{
i

(
+

1
2
Jab t1 +

(
ω0a +

1
2
Jab t2

))}

(1.6)

A two-dimensional Fourier transform of such a signal will yield a spectrum with
four peaks. Since the J-coupling is much smaller than the Larmor frequencies
of the spins, the lines corresponding to spin j will be aligned roughly at ω0j

along the ω2-axis. The splitting along the ω1-axis indicates the J-coupling to
another spin. The results for the 2,3,4-Trifluoroaniline are shown in Figure 1.2.
The spectrum clearly shows that J12 ≈ J23 ≈ 20 Hz while the third coupling is
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very weak J13 ≤ 2 Hz. The results of detailed evaluation of this measurement
are shown in table Table 1.1. For more details on the measurement of the J-

I 2 3 1

2 0 ppm 20.00 Hz 19.30 Hz
3 6.48 ppm 1.50 Hz
1 13.28 ppm

Table 1.1: Chemical shifts and J-couplings of the 19F in 2,3,4-Trifluoroaniline.
Chemical shifts are given relative to spin number 2.

couplings see [21]. The NMR-Hamiltonian for this molecule is therefore given
by

H =
3∑

j=1

ω0j
Izj

+ 2πJ (Iz1Iz2 + Iz2Iz3) (1.7)

The missing coupling Iz1Iz3 represents a challenge and leads to some interesting
aspects as discussed below.
Line widths were dominated by the inhomogeneity of the static field B0 and lay
between 100 Hz and 140 Hz. Longitudinal relaxation time T1 for all three spins
was around 3 s dependent on sample preparation. No splitting due to scalar
coupling to protons was observed and proton decoupling was not necessary.

1.2 Pseudo-pure States

The liquid state NMR operates with large (> 1020) ensembles of spins at room
temperature. In the Boltzmann equilibrium, the density matrix of such an
ensemble is given by

ρB = exp
(
− H
kBT

)
(1.8)

For the typical fields in modern NMR magnets, Larmor frequencies lie in the
range of tens to hundreds of MHz. The Boltzmann factor for such splittings is in
the order of magnitude of 10−4 and the exponential function in Equation (1.8)
can be expanded in a series and truncated after the first term:

ρB ≈ 1 +
~ω0

kBT
Iz = 1 + ε Iz (1.9)

This density matrix represents a highly mixed quantum state. This observation
has led to an intense debate over whether liquid state NMR experiments can
properly be considered to be valid implementations of quantum computing. In
fact, it has been shown, that any state which can be reached by standard liquid
state NMR procedures starting from the Boltzmann state is fully separable [47–
52]. Thus, no entanglement occurs and the NMR experiments can in principle
be described in classical terms. A more severe implication is that the signal-to-
noise ratio deteriorates exponentially with the number of qubits, thus, limiting
the scalability of liquid state NMR quantum computing.
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1.2.1 Pure versus Pseudo-pure States

Liquid state NMR is still a very useful technique for studies of the quantum
computing with small systems (i.e., at most 10 to 20 qubits). The dominant
mixed part of the density matrix in Equation (1.9) is invariant under unitary
transformations and therefore under most operations used in magnetic resonance
techniques. For the formal treatment of experiments, the density matrix of the
spin ensemble can be separated in two parts:

ρ = (1− ε)1 + ερPPS (1.10)

Under the assumption that the single molecules do not interact with each other
magnetically, the dimension of the density matrix ρPPS can be reduced to rep-
resent only the magnetically non-equivalent spins on a single molecule. Further-
more, it is possible to chose the factor ε, such that the matrix ρPPS satisfies the
condition for pure quantum states:

tr
{
ρ2

PPS

}
= 1 (1.11)

Such a density matrix is formally equivalent to a density matrix of a pure state
and is, therefore, called the density matrix of pseudo-pure state. Crucially, this
part of the total density matrix in Equation (1.10) is sufficient to describe all
unitary transformations in magnetic resonance. This concept allows to imple-
ment quantum computing algorithms with the means of magnetic resonance
far from the pure states, since all operations and measurements yield the same
quantitative results as they would for an isolated quantum mechanical system.
The most important aspects of QC with liquid state NMR that arise from
the use of large ensembles in nearly maximally mixed states are the lack of
projective measurements and the ability to measure the expectation values of
non-commuting operators simultaneously [47,53–55].
The inability to project the state on chosen basis presents a problem for a class
of procedures which require the destruction of coherence. An example of such a
procedure is given in the following section. The weak measurement common in
magnetic resonance is a direct consequence of the large ensemble size; the MR
literature is full of plots of experimental data showing the expectation values of
the Ix and Iy spin operators measured simultaneously.
Intuitively, the ensemble of isolated quantum systems may be thought of as an
ensemble of quantum computers undergoing identic evolutions and performing
identic quantum computations simultaneously. This has the advantage that the
averaging over many measurements that is necessary to obtain the expectation
value of an observable on an single isolated quantum system is replaced by an
ensemble average. The sample size of this average is many orders of magnitude
larger than any practicable sample achieved by the repetition of a particular
measurement. Furthermore, the variations that can occur between the consec-
utive repetitions of a single measurement are eliminated, since all experimental
parameters are identic for each copy of the quantum computer in an ensemble.
The major problem for this interpretation is that the initial state of each copy of
the quantum computer is pourly defined and certainly not the same. The way
to solving this problem is in seeking systems and methods that allow to obtain
an almost fully polarized spin ensemble. Several proposals in this direction have
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been made. For NMR, for instance, this could be achieved by dynamic nuclear
polarization (DNP) [56, 57]. In solid state magnetic resonance the quantum
limit separating sufficiently pure from highly mixed states may be reached at
experimentally viable temperatures [33].

1.2.2 Preparation of Pseudo-pure States

There have been two approaches to quantum computing with liquid state NMR.
One way to demonstrate the implementation of algorithms is to prepare parts of
the pseudo-pure state separately and run the experiments on the different parts
consecutively, superimposing the obtained data after the measurement. The
other method is to manipulate the spin system, such that the non-unity part
of it’s density matrix shows the desired structure of a pure state. The latter
approach was chosen here.
For the implementation of the Deutsch-Josza algorithm described below, three-
qubit pseudo-pure states were prepared in 2,3,4-Trifluoroaniline. The density
matrix of a pseudo-pure state of three qubits consists of zeroes with only one
“1” at the main diagonal. The density matrices and spin-operator expressions
for the eight pseudo-pure sates are as follows:

ρ000 =




1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




=

=
1
8
I0 +

1
4

(Iz1 + Iz2 + Iz3) +
1
2

(Iz1Iz2 + Iz2Iz3 + Iz3Iz1) + Iz1Iz2Iz3 (1.12a)

ρ001 =




0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




=

=
1
8
I0 +

1
4

(Iz1 + Iz2 − Iz3) +
1
2

(Iz1Iz2 − Iz2Iz3 − Iz3Iz1)− Iz1Iz2Iz3 (1.12b)

ρ010 =
1
8
I0 +

1
4

(Iz1 − Iz2 + Iz3) +
1
2

(−Iz1Iz2 − Iz2Iz3 + Iz3Iz1)− Iz1Iz2Iz3 (1.12c)
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ρ011 =
1
8
I0 +

1
4

(Iz1 − Iz2 − Iz3) +
1
2

(−Iz1Iz2 + Iz2Iz3 − Iz3Iz1) + Iz1Iz2Iz3 (1.12d)

ρ100 =
1
8
I0 +

1
4

(−Iz1 + Iz2 + Iz3) +
1
2

(−Iz1Iz2 + Iz2Iz3 − Iz3Iz1)− Iz1Iz2Iz3 (1.12e)

ρ101 =
1
8
I0 +

1
4

(−Iz1 + Iz2 − Iz3) +
1
2

(−Iz1Iz2 − Iz2Iz3 + Iz3Iz1) + Iz1Iz2Iz3 (1.12f)

ρ110 =
1
8
I0 +

1
4

(−Iz1 − Iz2 + Iz3) +
1
2

(Iz1Iz2 − Iz2Iz3 − Iz3Iz1) + Iz1Iz2Iz3 (1.12g)

ρ111 =
1
8
I0 +

1
4

(−Iz1 − Iz2 − Iz3) +
1
2

(Iz1Iz2 + Iz2Iz3 + Iz3Iz1)− Iz1Iz2Iz3 (1.12h)

The task consists of preparing such a density matrix from the Boltzmann state
which has the following shape:

ρB =
1
8
I0 + ε (Iz1 + Iz2 + Iz3) (1.13)

It is easily seen, that there is no unitary transformation able to achieve this
goal. Due to to the lack of projective measurement in ensemble NMR, the
non-unitary operations are implemented by means of gradient pulses [58]. Such
pulses effectively delete all off-diagonal components of the density matrix. Com-
bined with one-spin rotations by appropriate angles, they allow the amplitude
of linear z-terms to be adjusted.
The second challenge is to produce the bilinear and trilinear terms in Equa-
tion (1.12) from the linear terms available in the Boltzmann state in Equa-
tion (1.13). Such sequences must utilize the coupling between qubits. Regular
time evolution under the unperturbed Hamiltonian is capable of producing such
terms from transverse linear components. The term Ix1 , for instance produces:

e−itH Ix1 e
itH = cos

(
J t

2

)
cos (ω01t) Ix1 + cos

(
J t

2

)
sin (ω01t) Iy1

− 2 sin
(
J t

2

)
sin (ω01t) Ix1Iz2 + 2 sin

(
J t

2

)
cos (ω01t) Iy1Iz2 (1.14)

This shows, also, that evolution under different chemical shifts produces many
undesired terms. To avoid such complications, the standard refocusing and
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decoupling technique based on the Hahn echo can be used. This sequence in-
troduces a π-pulse in the middle of the free evolution period. With the initial
and final π/2-pulses to rotate the magnetization into the xy-plane and back,
the corresponding propagator is

U1↔12 = Px1

(π
2

)
e−i t

2H Px1,2(π) e−i t
2H Py1

(π
2

)
(1.15)

The π-pulse effectively inverts the time for the evolution under the chemical
shift leaving only the J-coupling effective:

U1↔12 Iz1 U
†
1↔12 = cos

(
J t

2

)
Ix1 + 2 sin

(
J t

2

)
Iz1Iz2

Jt=π= 2 Iz1Iz2 (1.16)

Selecting t such that 2Jt = π achieves a full transfer from the linear to the
bilinear term. Applying the π-pulse only to two of the three spins additionally
cancels out the evolution under the coupling of each of the two spins to the
third one. The term Iz2Iz3 can be obtained analogously from Iz3 .
When Iz2 is used as input, a slightly modified sequence allows creation of the
trilinear term Iz1Iz2Iz3 :

U2↔123 = Py2

(π
2

)
e−i t

2H Px1,2,3(π) e−i t
2H Py2

(π
2

)
(1.17)

and

U2↔123 Iz2 U
†
2↔123 = −1

2
(1 + cos (Jt)) Iz2

+ sin (Jt) (Iz1Iy2 + Iy2Iz3) + 4 sin2

(
Jt

2

)
Iz1Iz2Iz3

Jt=π= 4Iz1Iz2Iz3 (1.18)

The term Iz1Iz3 cannot be created in this simple fashion, because the two spins
are not coupled directly. However, applying U2↔123 and U1↔12 in succession
yields the desired result.
Combining these operations with single-spin rotations and gradient pulses allows
a pulse sequence for creation of pseudo-pure states to be constructed. Such
a sequence is shown in Figure 1.3. It utilizes three evolution periods with
refocussing π-pulses and four gradient pulses to achieve the goal. Each of the
eight different pseudo-pure states in Equation (1.12) can be selected by the
appropriate choice of rotation angles for some pulses as indicated in Table 1.2
and Figure 1.3.
A typical signature of a pseudo-pure state is shown in Figure 1.4. It is obtained
by recording the decay of the magnetization after the last gradient pulse and
applying a Fourier transform. Such signatures, though commonly used in liter-
ature as indicators of particular quantum states, do not, in fact, provide the full
information about the density matrix. Particularly under the conditions of un-
resolved J-coupling, the signature only shows the terms of the density matrices
in Equation (1.12) which are linear in spin operators. To obtain the complex
amplitudes of bilinear and trilinear terms, special pulse sequences must be ap-
plied which are, in a sense, inverse to the above mentioned sequence for creation
of higher order terms.
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ρ 000 001 010 011 100 101 110 111

η π/3 π/3 π/3 π/3 2π/3 2π/3 π/3 π/3
χ π/4 π/4 π/4 π/4 −3π/4 π/4 π/4 π/4
ξ1 0 0 0 0 0 0 π π

ξ2 π π 0 0 π π 0 0
ξ3 −3π/4 π/4 −3π/4 π/4 −3π/4 −3π/4 −3π/4 π/4

Table 1.2: Parameters of the preparation sequence for the eight three-qubit
pseudo-pure states in 2,3,4-Trifluoroaniline. The pulse sequence is shown in
Figure 1.3.

4 6 8 10 12
Ν @kHzD

A
@
a
.
u
.
D

Ρ001

Figure 1.4: Example of a spectral signature of a pseudo-pure state (ρ001) in
2,3,4-Trifluoroaniline. Notice that the qubits in the spectrum appear in the
order 2, 3, 1 (cf. Figure 1.1)

1.2.3 Density Matrix Tomography

Only lniear transverse components Ixj and Iyj of the density matrix are directly
observable by NMR. Izj is readily transformed to one of the former by a simple
π/2-pulse. Higher order components of the form IαjIβk

(and higher orders)
are not directly accessible, because their products with the NMR measurement
operator are traceless:

tr
{
I− IαjIβk

}
= 0 (1.19)

for any choice of α, β and j 6= k. The information about such terms can, under
suitable conditions, be extracted from two-dimensional measurements [59]. In
the present case, however, the spin interactions are not resolved and a more
generally applicable procedure must be deployed. It consists of transforming
higher order contributions to linear terms, which can then be observed directly.
This task can be achieved by the same basic sequence which was described
in the last section. The various sequences required for the different terms of
the density matrix are discussed in detail in [31]. Applying this tomography
procedure, it is possible to gain the knowledge of all the 64 complex elements
of the density matrix. In the case of the pseudo-pure states, the final gradient
pulse in the preparation sequence eliminates all off-diagonal elements, such that
only the eight diagonal components must be measured.
The knowledge of the density matrix allows the fidelity of the prepared state to
the theoretical expectation to be computed. This is a measure of the deviation
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of the theoretically expected density matrix from the experimentally obtained
result which utilizes the scalar product in the Hilbert space.

F = 1− 1
2
tr

{
|ρexp − ρtheo|2

}
. (1.20)

The preparation sequence described above is designed under the assumption of
non-existent relaxation and perfect δ-pulses. In practice, there are, of course, de-
viations from such idealized conditions. The analysis of the intermediate states
produced during the preparation allows the sequence to be optimized by ad-
justing the rotation angles of some pulses to take advantage of the non-unitary
nature of the entire transformation to compensate for the experimental imper-
fections as described in [30]. The pulses used for optimization are highlighted
in Figure 1.3.
This procedure results in pseudo-pure states of much higher fidelity. Figure 1.5
shows a comparison of the real parts of the measured density matrices for the
state ρ000 before and after the optimization of the preparation sequence. The
fidelity improvements from 0.953 the former case to 0.999 in the latter. Thor-
ough optimization, it was possible to prepare all eight pseudo-pure states with
fidelities F > 0.95.
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Figure 1.5: Real part of the density matrix of the pseudo-pure state ρ000

prepared without the compensation for pulse errors and relaxation (left) and
after such optimization (right).

1.3 Implementation of the
Deutsch-Josza Algorithm

1.3.1 Collins Version of the D.-J. Algorithm

The first concrete form of quantum computing algorithm was given by Deutsch
and Josza [5]. It considers a set of functions which map a binary string of length
N to a single bit:

f : Z2N 7→ Z2 (1.21)

These functions are divided into two classes according to the following property:

i) f is constant, i.e., it yields the same value for all inputs, or

ii) it is balanced, meaning that applied to all possible inputs it returns 0
exactly as often as 1.



16 Chapter 1. Entanglement in the Three-Qubit Deutsch-Josza Algorithm

Functions f in Equation (1.21) which do not satisfy one of the above criteria
are explicitely excluded. Deutsch and Jozsa have shown that, for a reasonable
model of the oracle Uf , a quantum computer can solve this problem exponen-
tially faster than a classical computer.

The original version of the algorithm required N + 1 qubits for a N -bit func-
tion and two applications of Uf . Later, Cleve, Ekert, Macchiavello, and Mosca
(CEMM) modified the Deutsch-Jozsa algorithm by reducing the number of eval-
uations of Uf to one [60]. Collins, Kim, and Holton removed the requirement
of an ancilla qubit [61].
The block diagram for this extended version of the algorithm is shown in Fig. 1.6.
| 0 〉N is the initial state with all N qubits in state | 0 〉. Application of Uf is

N
0 fNH NH Meas.U

Figure 1.6: Block diagram of the CEMM version of the Deutsch-Jozsa algo-
rithm for N qubits.

defined by

| 0 〉N
HN−−→ 1√

2N

2N−1∑

k=0

| k 〉N

Uf−−→ 1√
2N

2N−1∑

k=0

(−1)f(k) | k 〉N

HN−−→ 1
2N

2N−1∑

k=0

(−1)f(k)
2N−1∑
m=0

(−1)
PN−1

j=0 mjkj |m 〉N

(1.22)

HN = H ⊗H ⊗ · · · ⊗H ⊗H is the Hadamard transform applied to all N qubits
simultaneously. The Hadamard transform of one qubit is defined by

H =
1√
2

(
1 1
1 −1

)
(1.23)

and is equal to its inverse. The decision on the class of the test function is based
upon the amplitude of the state | 0 〉N in the output state:

P (| 0 〉N ) =
1

2N

∣∣∣∣∣∣

2N−1∑

k=0

(−1)f(k)

∣∣∣∣∣∣
=

{
1 if f constant
0 if f balanced

(1.24)

1.3.2 Deutsch-Josza Oracle Transformations
for Three Qubits

In the case of three qubits, there are 256 possible functions 70 of which are
balanced and 2 are constant. Not all of these, however, are essentially different
from the experimental point of view. First of all, there is the freedom of reversing
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the states | 0 〉 and | 1 〉 to spin up and spin down resulting in a mirror image
function. This halves the number of functions.
In order to further reduce the number of functions to a feasibly small set of
interesting candidates, it is instructive to analyze the operator structure of the
oracle transformations associated with them. Given a function which maps the
input sequence of natural numbers Si = {1, 2, ..., 8} to the sequence of outputs
such as So = {1, 0, 1, 0, 1, 0, 0, 1}, the unitary transformation representing the
oracle for this test function is obtained by replacing the zeroes in the output
sequence with −1 and using this list for the diagonal of an 8 × 8 matrix with
otherwise vanishing elements2:

U8 =




+1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 +1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 +1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 +1




(1.25)

This transformation can be represented in the basis of spin component operators
in the following way:

U8 = Iz3 + 2 Iz1Iz3 + 2 Iz2Iz3 − 4 Iz1Iz2Iz3 (1.26)

It turns out, that the oracle transformations consist of linear combinations of
certain sets of basis operators. There are seven such sets:

I0 (1.27a)

Iz1

Iz2 (1.27b)
Iz3

Iz1Iz2

Iz1Iz3 (1.27c)
Iz2Iz3

Iz1Iz2Iz3 (1.27d)

Iz1 , Iz2 , Iz3 , Iz1Iz2Iz3 (1.27e)

Iz1 , Iz2 , Iz1Iz3 , Iz2Iz3

Iz1 , Iz3 , Iz1Iz2 , Iz3Iz2 (1.27f)
Iz2 , Iz3 , Iz1Iz2 , Iz2Iz3

2For simplicity, the numbering of the oracle transformations was chosen to be identical to
the scheme used by Arvind et al. in [44]. See below for more details.
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Iz1 , Iz1Iz2 , Iz1Iz3 , Iz1Iz2Iz3

Iz2 , Iz1Iz2 , Iz2Iz3 , Iz1Iz2Iz3 (1.27g)
Iz3 , Iz1Iz3 , Iz2Iz3 , Iz1Iz2Iz3

The oracles within each set differ only in the signs of the constituting terms
and can otherwise be mutually mapped onto each other by qubit permutations.
Thus, the implementations of all transforms within a class will be essentially
identical save for the trivial operations of sign reversal and qubit relabeling.
The transformations in the first two classes (Equations (1.27a–d) require only
one-qubit gates and a readily implemented through z-rotations. Transforms in
the class of Equation (1.27f) utilize effective three-qubit gates. The remaining
two classes employ different combinations of two-qubit gates.

1.3.3 NMR Implementation of the
Three-Qubit Deutsch-Josza Algorithm

The analysis in the previous section assumed a Hamiltonian that is invariant
under permutation of spins. For the Hamiltonian of 2,3,4-Trifluoroaniline in
Equation (1.7) this is not the case. It is symmetric under the exchange of
spins 1 ↔ 3, however, exchanges 1 ↔ 2 and 2 ↔ 3 break this symmetry.
The lower symmetry of the Hamiltonian has interesting implications for the
implementation of some of the oracle transformations. For instance, the second
type of the class in Equation (1.27) requires a two-qubit gate between the qubits
1 and 3. This gate cannot be implemented directly, because the J-coupling
between these two spins in 2,3,4-Trifluoroaniline is negligible. This gate must
be composed of the other two-qubit gates using next-neighbor interactions in
the coupling network (cf. Section 1.2.2).
Our work on implementing the three-qubit Deutsch-Josza Algorithm was in-
spired by results published by Arvind et al. [44]. Their implementation differed
in several important aspects from our approach. However, their choice of oracle
functions reasonably highlights the different aspects of implementation of oracle
transformations from different classes described above. For easy comparison, we
adopted their choice of test functions and corresponding transformations:

U1 = I0 (1.28a)

U2 = 2 Iz1 (1.28b)

U3 = 2 Iz3 (1.28c)

U4 = 4 Iz1Iz2 (1.28d)

U5 = 4 Iz1Iz2Iz3 (1.28e)

U6 = Iz1 + 2 Iz1Iz2 + 2 Iz1Iz3 − 4 Iz1Iz2Iz3 (1.28f)

U7 = Iz2 + 2 Iz1Iz2 + 2 Iz2Iz3 − 4 Iz1Iz2Iz3 (1.28g)

U8 = Iz3 + 2 Iz1Iz3 + 2 Iz2Iz3 − 4 Iz1Iz2Iz3 (1.28h)

U9 = Iz1 + Iz3 − 2 Iz1Iz2 + 2 Iz2Iz3 (1.28i)

The defining output sequences of the corresponding test functions are listed in
Table 1.3
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f 000 001 010 011 100 101 110 111
f1 0 0 0 0 0 0 0 0
f2 0 0 0 0 1 1 1 1
f3 0 1 0 1 0 1 0 1
f4 0 0 1 1 1 1 0 0
f5 0 1 1 0 1 0 0 1
f6 0 0 0 1 1 1 1 0
f7 0 0 1 1 0 1 1 0
f8 0 1 0 1 0 1 1 0
f9 0 1 0 0 0 1 1 1

Table 1.3: Definitions of the test functions implemented by the oracle trans-
formations in Equation (1.28). The inputs are given in binary representation
to facilitate the association with the eight possible pseudo-pure states.

The nine selected oracle transformations were implemented by appropriate NMR
pulse sequences. The measurements consisted of the sequence for the prepara-
tion of the pseudo-pure state ρ000 followed by a Hadamard transform, then one
of the oracles’ pulse sequences and a second Hadamard transform. Instead of
the Hadamard transform as defined in Equation (1.23), a variant implemented
by simple π/2-pulses was used. This substitution has some effect on details
of calculations but presents no qualitative alteration. The output state of the
Deutsch-Josza algorithm for each test function was then subjected to full den-
sity matrix tomography as described in Section 1.2.3. This procedure allowed
the evaluation of the decision criterion in Equation (1.24) in order to ascertain
the correct discrimination between the constant and balanced functions by the
algorithm.

The measured values of the decision parameter for the nine test functions are
shown in Table 1.4 along the fidelity of the output states to their theoretically
expected shape. The decision parameter clearly separates the constant function

U1 U2 U3 U4 U5 U6 U7 U8 U9

F 0.862 0.874 0.879 0.897 0.905 0.891 0.819 0.862 0.646
D 0.862 0.206 0.121 0.051 -0.066 0.084 0.015 0.027 0.184

Table 1.4: Fidelity of the output states of the nine oracle transforms of the
Deutsch-Josza algorithm (F ) and corresponding values of the decision param-
eter (D). The values for the identity transformation U1 are highlighted.

(oracle U1) from its balanced counterparts (U2 – U9). The fidelity of the output
states is satisfactory, especially, since the total pulse sequences (including the
input state preparation and output state tomography) of some of the oracles
involve upwards of 50 pulses. The implementation of the oracle transformation
U1, in principle, requires no pulses. However, a pulse sequence analogous to the
sequences for the other “z-rotation” oracles was applied to insure comparability
of results. This way, the results for U1 are an indicator of the overall performance
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of the preparation and tomography procedure. The poor fidelity of the pulse
sequence for U9 is notable. It can be attributed to the fact that an effective
three-qubit gate used in it utilizes the two slightly different J-couplings at the
same time resulting in an additional error.

1.3.4 Entanglement in the Deutsch-Josza Algorithm

It has been shown [43, 61] that entanglement between qubits does not always
take place in the course of the Deutsch algorithm: Some oracles are entangling
in nature others are not. Furthermore, entangling oracles only occur starting
with at least three qubits. In addition, the comparison of the output states
of the algorithm when pseudo-pure states are used as input as opposed to the
Boltzmann state demonstrates the utility of pseudo-pure states in the context
of ensemble quantum computing.

The oracle transforms for the first five test functions discussed here do not
produce any entanglement and their output states when the pseudo-pure state
ρ000 is used are again various pseudo-pure states:

ρ1 =
(

1
2
I0 + Iz1

)(
1
2
I0 + Iz2

)(
1
2
I0 + Iz3

)
= ρ000 (1.29a)

ρ2 =
(

1
2
I0 − Iz1

)(
1
2
I0 + Iz2

)(
1
2
I0 + Iz3

)
= ρ100 (1.29b)

ρ3 =
(

1
2
I0 + Iz1

)(
1
2
I0 + Iz2

)(
1
2
I0 − Iz3

)
= ρ001 (1.29c)

ρ4 =
(

1
2
I0 − Iz1

)(
1
2
I0 − Iz2

)(
1
2
I0 + Iz3

)
= ρ110 (1.29d)

ρ5 =
(

1
2
I0 − Iz1

)(
1
2
I0 − Iz2

)(
1
2
I0 − Iz3

)
= ρ111 (1.29e)

Note, how, in this representation, it is particularly straight forward to evaluate
the decision criterion in Equation (1.24). Since the pseudo-pure basis states
ρ000 – ρ111 form an orthogonal set, the oracle U1 reveals it’s test function to be
constant whereas all the others are balanced.

As described in Section 1.2.1 the Boltzmann state is fundamentally mixed. It is
reasonable to require a representation of this state to satisfy the normalization
condition

tr(ρB) = 1 (1.30)

A possible representation is then

ρB =
1
8
I0 + b (Iz1 + Iz2 + Iz3) (1.31)

Using this representation the output sates corresponding to those in Equa-
tion (1.29) when the algorithm is applied to the input state ρB are given by:
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ρB
1 =

1
8
I0 + b (+Iz1 + Iz2 + Iz3) (1.32a)

ρB
2 =

1
8
I0 + b (−Iz1 + Iz2 + Iz3) (1.32b)

ρB
3 =

1
8
I0 + b (+Iz1 + Iz2 − Iz3) (1.32c)

ρB
4 =

1
8
I0 + b (−Iz1 − Iz2 + Iz3) (1.32d)

ρB
5 =

1
8
I0 + b (−Iz1 − Iz2 − Iz3) (1.32e)

Because the oracles U1 – U5 are non-entangling, no higher-order products of
the spin operators are present in the output. The linear terms, however, do
reproduce the situation in Equation (1.29) correctly. It is because of this, that
the discrimination between balanced and constant functions is at all possible
with the Boltzmann state as the input. The quantitative evaluation of the
decision parameter D = tr(ρout ρ000), however, shows the shortcomings of this
approach:

D1 = 1 DB
1 =

1
8

+
3
2
b (1.33a)

D2 = 0 DB
2 =

1
8

+
1
2
b (1.33b)

D3 = 0 DB
3 =

1
8

+
1
2
b (1.33c)

D4 = 0 DB
4 =

1
8
− 1

2
b (1.33d)

D5 = 0 DB
5 =

1
8
− 3

2
b (1.33e)

Though the balanced function is sufficiently separated from its constant conun-
terparts, and the initial problem can thus be solved, more detailed understand-
ing of the implementation must consider the entire density matrix prepared from
a pseudo-pure input state.
The output states of the algorithm for the oracles U6 – U9 are these3 :

ρ6 =
1
8
I0 − 1

4
Iz1 +

1
2
Iy2Iy3 −

1
2
Iz2Ix3 −

1
2
Ix2Iz3

+ Iz1Iz2Ix3 + Iz1Ix2Iz3 − Iz1Iy2Iy3 (1.34a)

ρ7 =
1
8
I0 − 1

4
Iz2 +

1
2
Iy1Iy3 −

1
2
Iz1Ix3 −

1
2
Ix1Iz3

+ Ix1Iz2Iz3 + Iz1Iz2Ix3 − Iy1Iz2Iy3 (1.34b)

ρ8 =
1
8
I0 − 1

4
Iz3 +

1
2
Iy1Iy2 −

1
2
Iz1Ix2 −

1
2
Ix1Iz2

+ Iz1Ix2Iz3 + Ix1Iz2Iz3 − Iy1Iy2Iz3 (1.34c)

3Notice, that the experimental implementation uses a π/2-pulse instead of the Hadamard
transform
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ρ9 =
1
8
I0 − 1

2
Iz1Ix2 +

1
2
Ix2Iz3 −

1
2
Iz1Iz3

+ Ix1Iy2Iy3 − Iy1Iy2Ix3 + Ix1Iz2Ix3 + Iy1Iz2Iy3 (1.34d)

The entanglement content of these states is not immediately obvious. Although
entanglement of bipartite systems is well understood [62, 63], the problem of
general multipartite entanglement [64–66] still remains unsolved . Fortunately,
for the output states above it is possible to find a small set of local (i.e., one-
qubit) operations, which transform each of these output states into a from which
reveals the entanglement structure:

Py2

(
−π

2

)
ρ6 =

(
1
2
I0 − Iz1

)(
1
4
I0 + Ix2Ix3 + Iy2Iy3 − Iz2Iz3

)
=




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1

2
1
2 0

0 0 0 0 0 1
2

1
2 0

0 0 0 0 0 0 0 0




=

(
0 0
0 1

)(1)

⊗




0 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 0




(2,3)

= ρ
(1)
1 ⊗ ρ(2,3)

Ψ+ (1.35a)

Py3

(
−π

2

)
ρ7 =

(
1
2
I0 − Iz2

)(
1
4
I0 + Ix1Ix3 + Iy1Iy3 − Iz1Iz3

)
=




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1

2 0 0 1
2 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1

2 0 0 1
2 0

0 0 0 0 0 0 0 0




=

(
0 0
0 1

)(2)

⊗




0 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 0




(1,3)

= ρ
(2)
1 ⊗ ρ(1,3)

Ψ+ (1.35b)
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Py3

(
−π

2

)
ρ8 =

(
1
2
I0 − Iz3

)(
1
4
I0 + Ix1Ix2 + Iy1Iy2 − Iz1Iz2

)
=




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1

2 0 1
2 0 0

0 0 0 0 0 0 0 0
0 0 0 1

2 0 1
2 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




=

(
0 0
0 1

)(3)

⊗




0 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 0




(1,2)

= ρ
(3)
1 ⊗ ρ(1,2)

Ψ+ (1.35c)

Py1 (π)Py2

(
−π

2

)
ρ9 =

1
8
I0 +

1
2

(Iz1Iz2 + Iz2Iz3 + Iz1Iz3)

+ Ix1Ix2Ix3 − Ix1Iy2Iy3 − Iy1Ix2Iy3 − Iy1Iy2Ix3 =


1
2 0 0 0 0 0 0 1

2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1
2 0 0 0 0 0 0 1

2




= ρGHZ

(1.35d)

The matrix representation is given to facilitate the comparison with the ex-
perimental results shown in Figure 1.7. Shown there are the results of the
tomography procedure applied to the output states of the algorithm for the
oracles U6 – U9. To emphasize the entanglement, the data has been subjected
to the local transformations described above. The states ρ6, ρ7, and ρ8 show
the entangled Bell [67] state Ψ+ in the subspace of the spins {1,2}, {1,3}, and
{2,3} respectively, whereas the third spin remains in the one-qubit pseudo-pure
state ρ1. The density matrix resulting from the application of the algorithm for
U9 produces the maximally entangled three-qubit Greenberger-Horne-Zeilinger
(GHZ) state [68].

Again, these properties of the oracle transformations are not revealed, when the
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Figure 1.7: Partially and fully entangled output states of the three-qubit
Deutsch-Josza algorithm. The theoretically expected (left) and experimen-
tally obtained (right) real part of the density matrix is shown. The data has
been subjected to local transformations to demonstrate the entanglement (see
Equation (1.35)). The imaginary part is expected to vanish in all cases; the
experimentally obtained elements of the imaginary parts show the same degree
of deviation from the predicted behavior as the vanishing elements of the real
parts.
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Boltzmann state is used as input. The corresponding output states are:

Py2

(
−π

2

)
ρB
6 =

1
8
I0 − b Iz1 + 2b Ix2Ix3 − 2b Iz2Iz3 =




1
8 − b 0 0 − b

2 0 0 0 0
0 1

8 − b
2 0 0 0 0 0

0 − b
2

1
8 0 0 0 0 0

− b
2 0 0 1

8 − b 0 0 0 0
0 0 0 0 1

8 0 0 − b
2

0 0 0 0 0 1
8 + b − b

2 0
0 0 0 0 0 − b

2
1
8 + b 0

0 0 0 0 − b
2 0 0 1

8




(1.36a)

Py3

(
−π

2

)
ρB
7 =

1
8
I0 − b Iz2 + 2b Ix1Ix3 − 2b Iz1Iz3 =




1
8 − b 0 0 0 0 b

2 0 0
0 1

8 0 0 b
2 0 0 0

0 0 1
8 0 0 0 0 b

2

0 0 0 1
8 + b 0 0 b

2 0
0 b

2 0 0 1
8 0 0 0

b
2 0 0 0 0 1

8 − b 0 0
0 0 0 b

2 0 0 1
8 + b 0

0 0 b
2 0 0 0 0 1

8




(1.36b)

Py3

(
−π

2

)
ρB
8 =

1
8
I0 − b Iz3 + 2b Ix1Ix2 − 2b Iz1Iz2 =




1
8 − b 0 0 0 0 0 b

2 0
0 1

8 0 0 0 0 0 b
2

0 0 1
8 0 b

2 0 0 0
0 0 0 1

8 + b 0 b
2 0 0

0 0 b
2 0 1

8 0 0 0
0 0 0 b

2 0 1
8 + b 0 0

b
2 0 0 0 0 0 1

8 − b 0
0 b

2 0 0 0 0 0 1
8




(1.36c)

Py1 (π)Py2

(
−π

2

)
ρB
9 =

1
8
I0 + 4b Ix1Ix2Ix3 + 2b Iz1Iz2 + 2b Iz2Iz3 =




1
8 + b 0 0 0 0 0 0 b

2

0 1
8 0 0 0 0 b

2 0
0 0 1

8 − b 0 0 b
2 0 0

0 0 0 1
8

b
2 0 0 0

0 0 0 b
2

1
8 0 0 0

0 0 b
2 0 0 1

8 − b 0 0
0 b

2 0 0 0 0 1
8 0

b
2 0 0 0 0 0 0 1

8 + b




(1.36d)
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Although these density matrices show certain symmetries, neither the opera-
tor structure, nor the matrix representation demonstrate the creation of en-
tanglement in the course of the Deutsch-Josza algorithm. Similar to the non-
entangling oracles, however, the decision parameter can be used to separate of
the balanced functions from the constant one:

D6 = 0 DB
6 =

1
8
− 1

2
b (1.37a)

D7 = 0 DB
7 =

1
8
− 1

2
b (1.37b)

D8 = 0 DB
8 =

1
8
− 1

2
b (1.37c)

D9 = 0 DB
9 =

1
8

(1.37d)

These findings demonstrate the utility of the preparation of the pseudo-pure in-
put states and full tomography of the output states, when implementing quan-
tum computing algorithms in large ensembles.



Chapter 2

Selective Excitation under
Continuous Averaging

It has long been known [69] that it is possible to modify the effective Hamilto-
nian of a spin system by continuous irradiation with strong rf fields. The spins
are driven into a dynamic equilibrium state with a potentially different effective
Hamilton operator. By carefully designing such a pulse sequence it is often pos-
sible to modify the Hamiltonian to satisfy particular needs. It is, for instance,
possible to reduce or eliminate the dipole-dipole interaction of like nuclear spins
in a solid sample [70, 71], to scale the chemical shifts of spins in a liquid [72],
etc. As has been noted early on [29], this opens up the opportunity of tailor-
ing a system’s Hamiltonian to suit the requirements for the implementation of
quantum computing.
The utility of such an approach depends on the ability to selectively manipulate
the single spins of the system while the averaging is in effect. This chapter
presents some proof-of-principle NMR experiments in this direction performed
in 2002. The dipole-dipole coupling of two 19F nuclear spins offers a suitable
test case. In normal liquids, this anisotropic interaction is averaged out due
to fast random tumbling of the molecules. To avoid this cancellation, a liquid
crystal matrix was used to align the molecules. The dipolar coupling has the
additional advantage of being much stronger than the J-coupling which leads
to potentially much shorter gate times.

2.1 The Magic Echo Sequence

The basis of the pulse sequences used here is the magic echo sequence [70,
71, 73, 74]. It was originally designed in the context of high resolution NMR in
solids [75] to produce a free-standing echo in solid samples with an extended spin
network. Under such conditions, the dipolar coupling amongst the ubiquitous
spins leads to quick distribution of coherence among the spins and prevents the
formation of an echo. The magic echo sequence as sketched in Figure 2.1 can
be used to overcome this.
The average Hamiltonian theory, is commonly used to treat such muli-pulse

27
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Figure 2.1: The magic echo pulse sequence for suppression of direct dipolar
couplings between spins. All pulses are wide-band and affect all participating
spins equally. The duration T of the magic echo sandwich and the ratio τ/T
must satisfy certain conditions (see text). Below the pulses, the chemical shift
and dipolar Hamiltonians effective during that period are given.

sequences. It is assumed that the native Hamiltonian of the system is time-
independent and the pulse sequence is periodic with period (cycle time) tc.
During the cycle time, the system may undergo complex evolution due to the
interplay between the rf pulses and the native Hamiltonian. The effect of this
evolution at t = tc can be expressed by an average Hamiltonian which is not
time-dependent. If the system is observed stroboscopically only at t = n tc, it
will appear to obey that average Hamiltonian. The average Hamiltonian1 can
be represented by an infinite sum of terms involving integrals of various com-
binations of commutators of the Hamiltonians at different times. The leading
term is simply the average of the Hamiltonian over the cycle time:

H̄(0) =
1
tc

tc∫

0

dtH(t) (2.1)

The power of this approach comes from the fact that the experimenter has –
by judicious choice of pulse strength, phases, and timings – great influence on
the average Hamiltonian’s shape. He may, for instance seek to hide some of it’s
features while revealing others.
This formalism can be applied to calculate the 0-th order average Hamiltonian of
the magic echo sequence. The free Hamiltonian of the system in the coordinate
frame rotating with the frequency of rf irradiation

H = HS +HD (2.2)

contains two contributions: The chemical shift part given by

HS =
∑

j

ω0jIzj (2.3)

1A concise but rigorous treatment is given in [75,76].
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and the dipole-dipole interaction part

HD =
∑

j<k

Djk

(
3Izj

Izk
− IjIk

)
(2.4)

where ω0j is the offset of the resonance frequency of the spin Ij from the spec-
trometer frequency and Djk is the dipole-dipole coupling constant. To simplify
the notation, it is useful to define dipolar Hamiltonians quantized along the
three Cartesian axes:

H(xx)
D =

∑

j<k

Djk

(
3Ixj

Ixk
− IjIk

)

H(yy)
D =

∑

j<k

Djk

(
3IyjIyk

− IjIk

)

H(zz)
D =

∑

j<k

Djk

(
3IzjIzk

− IjIk

)
(2.5)

They satisfy the relationship

H(xx)
D +H(yy)

D +H(zz)
D = 0 (2.6)

The average Hamiltonians can now be derived for the different parts of the
cycle by piecewise integration. During the initial (a) and final (d) free evolution
periods τ , the average Hamiltonian of the system is identic to the native form:

H̄(a) = H̄(d) = HS +H(zz)
D (2.7)

During the first period (b) of evolution under continuous irradiation, the sys-
tem is driven by the rf field of strength B1 = ω1/γ applied in the y-direction:
ω1 (Iy1 + Iy2). The dipolar part of the average Hamiltonian is then

H̄(b)
D =

1
T/2

T/2∫

0

dt e−i ω1 t (Iy1+Iy2)H(zz)
D e i ω1 t (Iy1+Iy2)

=
1
T/2

T/2∫

0

dt
(
3

(
Izj cosω1t+ Ixj sinω1t

)
(Izk

cosω1t+ Ixk
sinω1t)− IjIk

)

=
1
2

(
3 IzjIzk

− IjIk + 3 IxjIzx − IjIk

)

=
1
2

(
H(zz)

D +H(xx)
D

)
= −1

2
H(yy)

D

(2.8)
under the condition that the time T/2 accomodates an integer number of full
Rabi rotations:

T = n
2π
ω1

, n = 2, 3, 4... (2.9)

Analogously, it can be shown that the second period (c) of evolution under rf
irradiation with inverted phase produces the same average Hamiltonian

H̄(c)
D = H̄(b)

D (2.10)
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The phase inversion corresponds to an inversion of the B1-field in the rotat-
ing frame of reference. Although this has no influence on the dipolar average
Hamiltonian, it does correct for the inhomogeneity of the B1 field.
The effect of the π

2 |x,x̄-pulses at the beginning and the end of continuous irra-
diation is to rotate the Hamiltonian back into the z-direction:

Px1,2

(π
2

)
H(yy)

D Px̄1,2

(π
2

)
= H(zz)

D (2.11)

By a similar argument, it can be shown that the chemical shift contribution
HS vanishes under continuous rf irradiation. The average Hamiltonian over the
entire cycle tc can now be assembled:

H̄ =
1
tc

(
τ

(
HS +H(zz)

D

)
− T 1

2
H(zz)

D + τ
(
HS +H(zz)

D

))

=
2τ

2τ + T
HS +

2τ − T/2
2τ + T

H(zz)
D

=
1
3
HS

(2.12)

when the condition
T = 4 τ (2.13)

is satisfied.
To summarize: The sequence in Figure 2.1, under the conditions in Equa-
tion (2.9) and Equation (2.13), produces an effective Hamiltonian with the
following properties:

(i) as desired, the dipolar part of the Hamiltonian is eliminated:
Dij

(
3IziIzj − Ii · Ij

) −→ 0

(ii) as a side effect, the chemical shift part of the Hamiltonian is scaled by a
factor of 1/3: ω0Iz −→ 1

3ω0Iz

The average Hamiltonian only accurately describes the stroboscopic evolution
of the density matrix, if the cycle time is much shorter than the time scale of
the evolution under the dipolar coupling.
Under these conditions an echo is formed at t = tc. Applying a second magic
echo period at that time, produces a second echo at time t = 2 tc. In this
fashion, the modified form of the Hamilton operator can be maintained over
periods of many hundreds tc with echoes appearing at t = n tc. By recording
the echo amplitude, the evolution of the spin system can be monitored during
the excitation.

2.2 Scaling of the Chemical Shift
under the Magic Echo Pulse Train

To demonstrate the feasibility of this approach and the predicted scaling of the
chemical shift under the magic echo, the sequence was applied it to a sample of
Trifluoroacetic acid. As described in the last section, a train of magic echo cycles
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was used to modify the Hamiltonian and simultaneously monitor the state of the
system. The pulse sequence shown in Figure 2.2 consists of an initial π/2-pulse,
which brings the magnetization into the x-direction, followed by the magic echo
train. In this form, the measurement comprises an observation of an FID of the
magnetization under the modified Hamilton operator.

t

t
c

Figure 2.2: Magic echo pulse train used to demonstrate the scaling of the
chemical shift part of the Hamilton operator. The data points were take at the
peak of the echos (shown in red) just before the following pulse sandwich.

The fluorinated methyl-group is attached to the molecule by a single carbon-
carbon bond which allows fast and free rotation making all 19F nuclei magneti-
cally equivalent. As a result, the high resolution liquid state 19F-NMR spectrum
of this compound consists of a single sharp line.
Figure 2.3 shows on the left a comparison between the spectra under the two
regimes: the native Hamiltonian of the molecule (green) and the average Hamil-
tonian created by the magic echo pulse train (red). To test the quantitative
prediction of scaling by a factor of 1/3, the native and scaled spectra were mea-
sured for a range of offsets of the resonance line with respect to the spectrometer
frequency. Figure 2.3 shows on the right the plot of the two frequencies against
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Figure 2.3: Scaling of the chemical shift part of the Hamiltonian under the
magic echo pulse train. Left: FID-spectra of the Trifluoroacetic acid. Green:
unmodified Hamiltonian. Red: average Hamiltonian produced by the magic
echo pulse train. Right: Plot of scaled vs. native resonance frequency for
different offsets with respect to the spectrometer frequency. B0 = 7.8 T
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each other. On the blue line, both frequencies would be equal. The red line
represents a linear fit to the data points. The slope, which indicates the scaling
factor of 0.36 is in good agreement with the predicted value of 1/3.

2.3 Elimination of the Dipolar Coupling

The second prediction of the average Hamiltonian theory, namely the elimina-
tion of the dipole-dipole coupling was tested on 2,3-Difluoroaniline embedded
in a liquid crystal matrix. The liquid matrix used for this experiment was a
composed of the following three liquid crystals available from Merck KGaA:

� 33%wt S-1409 (Merck, BCH-52)

� 33%wt ZLI-1495 (Merck, D-501)

� 33%wt ZLI-1496 (Merck, D-302)

This mixture has been previously described as a host system suitable for align-
ment of small organic molecules for NMR [77]. Other liquid crystals have been
used in early quantum computing experiments with NMR [20].
The chemical structure of 2,3-Difluoroaniline is shown in Figure 2.4. The spec-
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Figure 2.4: Left: Chemical structure of 2,3-Difluoroaniline. Right: Fluo-
rine NMR-spectra of Difluoroaniline in a liquid crystal matrix. The blue plot
shows the line splittings due to the interaction with the protons on the ben-
zene ring. The red line shows the spectrum of the molecule with the protons
decoupled through continuous irradiation. The splitting visible here is due to
dipole-dipole coupling between fluorine nuclear spins of the partially aligned
2,3-Difluoroaniline molecules. B0 = 7.8 T, 1H Rabi frequency ≈ 250 kHz.

tra in this figure show the effect of the liquid crystal matrix upon the effective
Hamiltonian of this system. In this situation, the free tumbling of the ani-
line molecule, which would otherwise average out all anisotropic interactions,
is partially suppressed by the liquid crystal host. The dipole-dipole interaction
of the 19F-nuclei with each other and with the protons on the benzene ring is
therefore effective. This leads to multiple splittings of the two fluorene lines.
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Heteronuclear interaction can be eliminated by strong continuous irradiation at
the 1H resonance. This results in the proton decoupled spectrum shown in red
in Figure 2.4. This spectrum reveals that the difference of the chemical shifts
of the two fluorines is approximately 6 kHz. The line splitting shows that the
dipole-dipole coupling is 1.8 kHz. This situation is well suited to demonstrate
the effect of the magic echo sequence on the dipolar interaction.
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Figure 2.5: Suppression of the dipole-dipole coupling under the magic echo
sequence. Spectra for three different cycle times tc are shown, demonstrating
the increasingly effective suppression. The strong baseline modulation is an
experimental artifact. B0 = 7.8 T.

The sequence shown in Figure 2.2 and continuous proton decoupling were ap-
plied to the sample of Difluoroaniline in the liquid crystal matrix. Figure 2.5
shows the 19F FID spectra for three different cycle times of tc = 110 µs, 100 µs,
and 90 µs. These spectra show the dependence of both the major features of
the magic echo sequence on the cycle time tc. The scaling of the chemical shift
approaches the value of 1/3 expected for the limiting case of τ << tc. The
most important finding is, that it was possible to achieve total suppression of
the dipolar interaction between the two fluorene nuclei for tc = 90 µs as seen in
the bottom spectrum in Figure 2.5.
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2.4 Selective Excitation under
Continuous Averaging

As the previous sections have demonstrated, it is possible to tailor the Hamilto-
nian of a spin system by use of strong wide-band pulse trains. If such Hamilto-
nians are to be used for quantum computing, it must be possible to selectively
address individual spins by means of soft pulses applied on top of the averaging
sequence. To test the feasibility of such a procedure, we applied the sequence
shown in Figure 2.6 to 2,3,4-Trifluoroaniline2 in liquid state. It consists of a

t
c

excitation detection

t

Figure 2.6: Pulse sequence for selective manipulation of a single spin under
the action of the magic echo sequence. During the excitation phase, a soft
selective rf pulse is applied in the windows of the magic echo block. In the
detection phase, the sample response is sampled during the windows.

long train of magic echo cycles as described in Section 2.1. The first 80 cycles
were used for the narrow-band selective excitation pulse. The Rabi frequency
of the wide-band excitation channel was 67.6 kHz. A full Rabi rotation took
14.8 µs and a π

2 -pulse 3.7 µs. Accordingly, the time unit was set to τ = 7.4 µs
and the full duration of the magic block (including the π

2 -pulses) was 37 µs
resulting in a cycle time of tc = 51.8 µs. The soft excitation pulse was applied
in the windows during the excitation phase which spanned 4.144 ms.
The construction of the soft pulse deserves special attention. The individual
qubit-spins have different resonance offsets ω0j with respect to the spectrometer
frequency. This allows their selective excitation. As a sideffect, due to the evo-
lution under these offsets during the long quantum computing pulse sequences,
different spins acquire appreciable phases. This accumulated phase must be
taken into account, when applying pulses with specified phases to given spins.
For instance, when two x-pulses are to be applied to the spin j at a distance ∆t
from each other, then the phase of the rf must be corrected by ∆ϕ = −ω0j ∆t
for the first pulse. In general, a transformation into a rotating frame is used
for each spin, such that at the beginning of observation rotating frames of all
spins coincide. In the experiment described here, the evolution of spins under
the resonance offset is suspended for the duration of the magic echo sandwich.
Thus, the phase accumulated by a spin differs significantly from that acquired
in the usual case. This is a crucial detail, since the ommission of the phase
correction results in a failure of the experiment.
The detection phase consisted of 512 magic echo cycles. The rotation angle of
the soft excitation pulse was adjusted by varying the attenuation in the soft

2For more details on this molecule, see Chapter 1
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Figure 2.7: Selective excitation of a single spin under continuous action of the
magic echo sequence. The plots show the x- (red) and y-component (green) of
the NMR signal. The soft rotation pulse was applied at the frequency of the
leftmost spin. The rotation angle of the pulse was adjusted by varying the pulse
amplitude to be approximately multiple of 90◦: β = n× π/2, n = 1, 2, 3, 4.

excitation channel until the rotation angle of β = π/2 was found. Consecutively
the attenuation was reduced in steps of 3 dB resulting in the doubling of the
rf-field amplitude B1 with each step. Thus, rotation angles β = n × π/2 with
n = 1, 2, 3, 4 were expected. The corresponding spectra (for both the x- and the
y-channel) are shown in Figure 2.7. The expected behavior is clearly visible for
the spin I2 .
These measurements demonstrate the feasibility of the original idea. However,
for these overview measurements, no particular effort was made to carefully
adjust the settings for optimal performance. This manifests itself especially
in the strong cross-excitation of the other spins. With some additional effort,
the amount of cross-excitation can be reduced significantly. Figure 2.8 shows
as an example a selective π/2-pulse applied to spin I2 under the continuous
magic echo averaging after careful adjustment of timings and amplitudes. The
plot represents the magnitude of the magnetization signal. This representation
allows the comparison of the amplitude of the spectral lines without regard to
the possible phase errors arising from a long “dead time” at the beginning of
the transients.
Thus, it is shown that it is possible to tailor the Hamiltonian of a spin system
through application of wide-band multi-pulse sequences and treat the resulting
average Hamiltonian the same way as the native Hamiltonians. In particular,
it is possible to apply soft shaped pulses on top of the averaging sequences in
order to selectively address single spins.
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Figure 2.8: FID under magic echo averaging after selective π/2 pulse on I2

(leftmost line) under continuous magic echo averaging in 2,3,4-Trifluoroaniline.
Modulus of the magnetization is plotted to suppress the artefact of time-
proportional phase shift. B0 = 7.8 T.



Chapter 3

Visualization of
Unitary Transformations

Design of pulse sequences is a major part of implementing quantum computing
by means of magnetic resonance. Such pulse sequences are subject to a number
of partially competing constrains. Some of which are well known from tradi-
tional uses of magnetic resonance others become more important in the case of
spin quantum computing.
A large variety of pulse sequences have been invented in the field over the
decades to achieve an equally large variety of goals. They feature acronym
names like INEPT, INADEQUATE, BURP and RE-BURP, WAHUHA and even
HOHAHA. 1 Just the number of ways to invert the population of a particular
spin – an operation commonly known as a π-rotation – is impressive [78–82].
Many of these methods however are targeted at preparing a desired state of the
spin system; such as inverting the z-component of a particular spin species (π-
pulse) or rotating the z-magnetization into the xy-plane (π/2-pulse). In many
situations, what happens to the other spin operator components is usually not
important. One might call such operations “point-to-point” transformations.
In spin quantum computing, the freedom of choice is much more constrained
since the goal lies not so much in preparing particular sates of the quantum
system but in the production of a particular unitary operation which works
regardless of the input spin state.
A good example is the implementation of selective pulses in liquid state NMR
under the conditions of spectral crowding in homonuclear spin systems. Quan-
tum algorithms call for well defined single qubit operations. Since the separation
of the spectral lines is sometimes just a few ppm, very long and thus spectrally
narrow pulses are commonly used. The spectral width of such pulses is however
limited because pulses must be short on the time scale of evolution under the
interactions coupling the spins. Which in turn must be fast on the time scale
of decoherence and relaxation.
Under most circumstances it is therefore desirable to shorten the pulses as much
as possible. At the same time, influence on the spectrally neighboring spins must

1For a list of NMR acronyms, see for instance
http://www.bmrb.wisc.edu/education/nmr acronym.php.

37
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be suppressed. Clearly, this can only be achieved by varying the transforma-
tion’s parameters as it proceeds. Although constrained numeric optimization
can sometimes be used to obtain pulses that produce a desired transforma-
tion [83, 84], it is still necessary to understand pulse sequences constructed an-
alytically.
Reasoning about the possible variations is, however, made difficult by the prob-
lem of imagining the temporal evolution of transformations. Evolution of spins
is commonly visualized using the analogy between the components of the spin
operator with the components of a vector in real space, which is utilized in the
Bloch sphere construction. At least for evolution of single spins-½ particles, it
is possible to visualize the unitary transformations themselves using a similar
technique.

3.1 Representing Single-Spin
Unitary Transformations in R3

3.1.1 Vector Representation of Unitary Transformations

Unitary transformations applied to spins are very closely related to rotations
in ordinary space. This is most easily seen, when the density matrix of the
spin and the unitary transformations applied to it are both written in the spin
component basis.
Suppose that the spin state is represented by the pure state density matrix

ρ0 =
1
2

I0 + Iz =
(

1 0
0 0

)
(3.1)

classically corresponding to the spin pointing in z-direction. A unitary operation
describing continuous irradiation along the y-direction in the rotating frame of
reference is given by

U = exp (−iβ Iy) = I0 cos
β

2
− 2i sin

β

2
Iy =

(
cos β

2 − sin β
2

sin β
2 cos β

2

)
(3.2)

with β = ~ωt.
Applying this transformation to the density matrix in Equation (3.1) yields the
new density matrix

ρ(β) = U ρ0 U † =
(

cos2 β
2 cos β

2 sin β
2

cos β
2 sin β

2 sin2 β
2

)
=

1
2
I0 + cosβ Iz + sinβ Ix (3.3)

This is readily interpreted as a rotation of magnetization around the y-axis which
is the direction of the oscillating magnetic field, as seen in the term containing
Iy in Equation (3.2). The rotation angle is given by β.
This observation can be generalized as follows. A density matrix of a spin-½ may
be represented in the basis of the spin operator components ({I0, Ix , Iy , Iz})
according to

ρ = s1I0 + sxIx + syIy + szIz (3.4)
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with real coefficients sj . Because of the normalization requirement tr(ρ2) = 1,
three real numbers are sufficient to fully describe ρ. Thus, one can define the
3-vector s = (sx, sy, sz) which describes the orientation of the spin in real space.
Analogously, a given unitary transformation U may be written as

U = u1I0 − 2i (uxIx + uyIy + uzIz) (3.5)

with real coefficients uj and the unitarity requirement

U U † = I0 (3.6)

satisfied when
u2

1 + u2
x + u2

y + u2
z = 1 (3.7)

Again, this representation defines a 3-vector, u = (ux, uy, uz). It can be shown
that applying the transformation U to the density matrix ρ corresponds to the
rotation of the vector s around the axis defined by the direction of u. The
magnitude of u defines the rotation angle β = 2 arcsin |u| and the sign of the
scalar component u1 determines the sense of rotation.
This construction provides the ingredients necessary for the visualization of
unitary transformations by vectors in ordinary space. Such visualization is
obtained by plotting the vector s to represent the density matrix. Because
of the normalization condition these vectors have unit length and end on the
surface of the unit sphere.
The actual unitary transformations are represented by the vector u with the
sense of rotation given by the color used. As an example, Figure 3.1 demon-
strates the situation described above for the case of the rotation angle β = π.
The propagator (Equation (3.2)) extends from the origin in the direction of

a) b)

Figure 3.1: Representation of the propagator for a π-pulse applied in y-
direction. a) The red line along the y-axis represents the propagator. b) The
green trace represents the trajectory of the spin under the action of the prop-
agator starting from the z-direction. Axes’ ticks mark rotation angles of π/2
and π.

the y-axis. The trajectory of the spin, which is initially oriented along the z-
direction (Equation (3.1)), is a semicircle around the direction of the propagator
(Equation (3.3)).
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Simple pulses with constant frequency, amplitude, and phase always produce
straight trajectories in the xy-plane when considered in isolation. The more
interesting question is: What happens when, for example, a pulse in y-direction
is followed by a pulse in x-direction?

3.1.2 Rules for Successive Transformations

To obtain a rule for successive application of transformations, consider two
propagators U and V parameterized according to Equation (3.5):

U =u1I0−2i (uxIx + uyIy + uzIz) (3.8)
V =v1I0−2i (vxIx + vyIy + vzIz) (3.9)

The vectors representing these transformations in R3 are given by

u =



ux

uy

uz


 , v =



vx

vy

vz


 (3.10)

The product transformation W in terms of operator components is then

W = V U = (v1u1 − vxux − vyuy − vzuz)I0

− 2i(v1ux + vxu1 + vyuz − vzuy)Ix

− 2i(v1uy + vyu1 + vzux − vxuz)Iy

− 2i(v1uz + vzu1 + vyux − vyux)Iz (3.11)

The scalar and vector parts of this composite propagator are thus found to be

w1 = u1v1 − (uxvx + uyvy + uzvz) (3.12a)

w =



v1ux + vxu1 + vyuz − vzuy

v1uy + vyu1 + vzux − vxuz

v1uz + vzu1 + vyux − vyux


 = v1u + u1v + v × u. (3.12b)

This rule produces the transformation arising from the combination of any two
constant propagators.2

In order to visualize the trajectory of a propagator with a complicated contin-
uous time dependence, the duration of the transformation T may be split into
time slices such that the propagator can be approximated by a constant value
during each time slice. The total transformation can then be represented by

U(T ) = UNUN−1 . . .U j . . .U1U0 (3.13)

where U j is the propagator describing the evolution of the spin during j-th
time slice. With such segmentation, it is possible to numerically obtain the
trajectories of constant and varying pulses for visual representation.
The formula in Equation (3.12) implies some interesting properties of concate-
nation of propagators in special cases:

2Notice, that Equation (3.12) closely resembles multiplication rules for mathematical ob-
jects called quaternions. In fact, quaternions are used in several branches of physics instead
of Euler angles to describe rotations. The corresponding formalism has also been used in the
context of magnetic resonance [85–87].
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� tr (U) ≈ 1
This is the region of weak initial propagators deep within the Bloch sphere
around the coordinate origin, where

U ≈ 1, u1 ≈ 1, u ≈ 0 =⇒ w ≈ v

When the initial propagator is weak, the vector v immediately produces
the total transformation.

� tr (U) ≈ 0
Edge of the Bloch sphere, region of strong initial propagators. Here,

u1 ≈ 0 =⇒ w ≈ v1u + v × u. (3.14)

The step in R3 produced by V goes at right angles to v. Notice, that for
strong V the scalar part v1 may be negative, such that w may partially
or entirely counter-oriented to u.

� Because magnetic resonance spectrometers do not allow rf pulses outside of
the xy-plane (i.e., u,v ⊥ ẑ is always true), it is not possible to move along
the equator of the Bloch sphere by means of constant (i.e., constant phase,
amplitude, and frequency) pulses; the propagator inevitably escapes in
z-direction.

� For the same reason, on the surface of the Bloch sphere, constant propa-
gators can only move along the meridians.

� Because of the term v × u, when within the equatorial plane, it is only
possible to move along a straight line, if v ‖ u (i.e., along a radial direc-
tion).

� Again, because of v ⊥ z and v×u, no continuous motion at all is possible
within the equatorial plane with constant pulses. It is merely possible to
make “jumps” starting and ending in the xy-plane with limited minimum
jump distance.

3.2 Examples of Visual Pulse Sequence Analysis

In order to demonstrate the utility of the visualization technique described
above, two example pulse sequences are analyses in some detail here.

3.2.1 Composite π-Pulse

To achieve a π-rotation of spins in a sample, an rf pulse of duration T = 1/2ν1
is applied, where ν1 = γB1/2π is the Rabi nutation frequency under the rf
field with amplitude B1. A very typical experimental complication in magnetic
resonance lies in the fact that the driving rf field B1 is inhomogeneous across the
extent of the sample. As a result, the Rabi frequency is different for different
parts of the spin ensemble. Thus, spins with lower and higher Rabi frequencies
than the average experience rotation angles below and above π respectively.
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One of the frequently used pulse sequences designed to alleviate the effects
of rf inhomogeneity is the composite π-pulse [78]. It consists of a π-pulse in
y-direction sandwiched between two π/2-pulses in x-direction as shown in Fig-
ure 3.2. For a resonant spin, the net effect of this pulse is readily calculated:

t

x

π

2

x

π

x

π

2

Figure 3.2: Composite π-pulse for compensation of B1 inhomogeneity.

U = exp
(
−iπ

2
Ix

)
exp (−iπIy) exp

(
−iπ

2
Ix

)
=

− 2i Iy = exp (−iπIy) = Py (π) (3.15)

Therefore, the composite pulse does indeed produce a transformation equivalent
to a single π-pulse in y-direction. The trajectory of the unitary transformation
differs, however, significantly for the two pulses as shown if Figure 3.3. The
simple π-pulse corresponds to a straight line extending in the direction of the
y-axis up to the distance π.

a) b)

Figure 3.3: Trajectories of the unitary transformations for simple (a) and
composite (b) π-pulses.

The trajectory of the composite pulse shows the three constituent constant
pulses. The fact that trajectories of both pulses end at the same point shows
again that the net transformation of a resonant spin is identical for both types
of pulses. The difference in the trajectories, however, has strong effects on the
trajectories taken by the spin operator components. Figure 3.4 juxtaposes the
paths taken by the different spin components under the two kinds of pulses.
The question is now: How do the two pulses differ in their effect on spins
with mismatched Rabi frequencies? To answer this question, the propagator
trajectories for both types of pulses have been calculated for a range of Rabi
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a) b) c)

Figure 3.4: Comparison of the trajectories taken by Ix, Iy, and Iz (a, b, and
c respectively) under the action of a simple (top row) and a composite (bottom
row) π-pulses.

frequencies between 0.7 and 1.3 of the matching value. To make the results more
clear, Figure 3.5 a) and b) shows the trajectories taken by Iz for mismatches
between 1 and 1.3. In the case of the simple pulse the endpoints are situated in
the zx-plane beyond the −z-direction. For the composite pulse, the endpoints
are situated close to the zx-plane but on the opposite side of the −z-direction
and are less spread out. Figure 3.5 c-e) contains only the endpoints resulting
when the spin is initially aligned along Ix , Iy , and Iz . Here, the entire mismatch
range 0.7− 1.3 is shown.

Figure 3.5 f) shows the net transformations for the two pulses. For the simple
pulse, the Rabi frequency mismatch spreads the total transformations along
the y-direction halfway between π/2 and π, while the axis of rotation remains
the same. For the composite pulse, the inverse holds: The amplitude (i.e., the
rotation angle) is close to π even for relatively large values of mismatch, while
the rotation axis deviates significantly from the y-axis.

This visual representation, immediately demonstrates the important properties
of the two pulses. Due to the spread of rotation angles, the simple pulse shows
poor performance with respect to the x- and z-component of the spin, while
the y-component is not affected at all by the transformation. The spread of its
rotation axes, causes the composite pulse to produce similarly weak results for
the x- and y-oriented spin components. However, because – independently of
the Rabi mismatch – the rotation axis of the composite pulse remains very close
to the xy-plane and the rotation angle close to π, its ability to accurately invert
the z-component of the spin is significantly better than that of the simple pulse.

This analysis shows that the composite pulse described in this section is well
suited for the task of inverting Iz under large B1 inhomogeneity. It’s usefulness
as a universal unitary transformation, however, is limited.
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a) Usimp(ν1, t) |Iz) b) Ucomp(ν1, t) |Iz)

c) U(ν1) |Ix) d) U(ν1) |Iy)

e) U(ν1) |Iz) f) U(ν1)

Figure 3.5: Dependence of the total transformation on the mismatch of the
Rabi frequency for a simple and a composite π|y-pulse. Red and green indicate
data for the simple and the composite pulse respectively. a,b) Trajectories taken
by the spin starting at Iz for a range of Rabi frequency offsets of 1.05− 1.3 ν1.
c-e) Endpoints of the evolution of the spin components Ix, Iy, and Iz for Rabi
frequency offsets of 0.7− 1.3 ν1. f) Total unitary transformations.
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3.2.2 Continously Shaped Pulses

Various rf pulses are the building blocks of pulse sequences used to implement
quantum computing with spins. Even under perfect experimental conditions –
such as sufficiently narrow spectral lines, perfectly shaped pulses, etc. – some
intrinsic properties of spin systems present substantial difficulties. A typical
problem is cross-excitation.
Quantum algorithms usually call for well defined one-qubit operations. When
several spins of the spin system occupy a narrow spectral region (such as, for
instance, in Trifluoroaniline described in Chapter 1), pulses applied to one par-
ticular spin can have significant effect on spectrally neighboring spins, thus,
causing errors in the algorithm.
In real experiments, the spectral lines being addressed possess finite widths de-
termined by the inhomogeneity of the static field B0. This poses another prob-
lem, as the excitation properties of pulses typically vary across the linewidth.
Such non-uniform excitation is another source of errors. The ideal pulse would
produce a perfectly uniform response in a narrow region surrounding the spec-
tral line, while presenting an identity transformation to spins outside of this
range.
More demonstratively, these problems are best discussed when considering the
usual case of constant rectangular pulses and the alternative shaped pulses [88].

3.2.2.1 Constant Rectangular π
2 |y-Pulse

To make the discussion more concrete, typical parameters used in our liquid
state NMR experiments (see Chapter 1) are used in the following.
The diagram on the upper left in Figure 3.6 shows a constant rectangular rf pulse
of 2 ms length. A spin who’s Larmor frequency coincides with the rf frequency
of the pulse will be rotated by π/2 if the amplitude of the rf is such that the
Rabi-frequency is, as indicated, ν1 = 125 Hz. The phase of the rf is chosen such
that its magnetic field vector points in the y-direction in the rotating frame of
reference.
What is now the total transformation experienced by a spin who’s Larmor fre-
quency is separated by an offset ∆ν0 from the resonance frequency of the tar-
geted spin? The total transformation effected by the pulse is plotted against ∆ν0
on the upper right in Figure 3.6 for 0 < ∆ν0 < 1 kHz = 8νR. This plot is gen-
erated by keeping the spin at resonance and moving the excitation frequency
by −∆ν0. The opposite procedure – namely keeping the excitation constant
and moving the test spin – would complicate the results by the presence of the
residual precession component.
At ∆ν0 = 0, the transformation corresponds to a perfect π/2-rotation around
the y-axis, as intended for the resonant spin. As the offset increases, the magni-
tude of the propagator diminishes and its direction rotates out of the xy-plane
and quickly spirals towards the unity propagator at the coordinate origin. At
offsets of a few ν1, the propagator deviates dramatically in magnitude and di-
rection from the intended value. This means that constant rectangular pulses
produce propagators of sufficient fidelity only in the region of |∆ν0| < ν1/2.
The effect for a wide range of offsets is shown in the plot at the bottom of
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Figure 3.6: Selectivity of a rectangular π
2 y

-pulse. Upper left: Envelope of
the rf applied. Upper right: Ending points of the total transformation effected
by the pulse, for resonance frequency offsets between 0 kHz and 1 kHz. Bot-
tom: Dependence of the total propagator on the frequency offset plotted for
each component as defined by Equation (3.5). The dashed line indicates the
amplitude of u1 = 1/

√
2 corresponding to a rotation angle of π/2. The high

frequency rf components produce appreciable excitation even for very large
(∆ν0 > 20ν1) resonance frequency offsets. The region of uniform excitation is
narrowly confined around the resonance.

Figure 3.6. The value of u1 determines the total rotation angle β according to
β = 2arccosu1. The plot shows that the rotation angle falls off quickly with
increasing offset magnitude resulting in a narrow uniform excitation region.
However, even at |∆ν0| > 10ν1 there is a non-negligible effect, mainly in form
of a z-rotation. This phenomenon is a result of Bloch-Siegert shift [89].

The spectrum of uy (the component parallel to the intended rotation axis)
closely resembles the Fourier transform of a symmetric square function around
the origin. An often used explanation for the shortcomings of constant square
pulses states that high-frequency components arising from the sharp edges of
the envelope are responsible for the undesirable excitation of remote spins.3 The
amount of cross-excitation can be reduced by artificially lengthening the pulse
and reducing its Rabi frequency to achieve a narrower spectrum. The length
of such soft pulses is, however, limited by both the requirement of uniform
excitation across spectral lines and by the relaxation and interaction time scales.

3The spectral view of the cross-excitation problem ignores the fact that rotations do not
generally commute. This has important implications as will be shown below.
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Figure 3.7: Selectivity of a π
2 y

-pulse with a Fermi-like envelope. Upper left:
Rf envelope. Vertical lines show the sampling of the pulse used for simulation.
Upper right: Ending points of the total transformation for frequency offsets
0 kHz ≤ ∆ν0 ≤ 1 kHz. Bottom: Dependence of propagator components on
the frequency offset. Cross-excitation at large offsets is reduced compared to
the rectanglular pulse, the uniform excitation region is comparable. For more
details see Figure 3.6.

3.2.2.2 π
2 |y-Pulse with Fermi-like Envelope

To eliminate the high frequency components, the rectangular envelope can be
sightly modified by making the rf amplitude vary more gradually. This is
achieved by giving the pulse an envelope based on the Fermi-function:

ν1(t) = ν10

1

1 + exp
(
|t−t0|−tµ

tT

) (3.16)

where t0 is the center of the pulse, and tµ and tT control the pulse length and
the width of the edges respectively. This type of envelope with tµ = 750 µs and
tT = 50 µs is shown on the upper left in Figure 3.7. Since the total pulse length
is kept the same, a slight increase in Rabi frequency is required to obtain a π/2
rotation on resonance.
Again the plot of the trajectory shown on the upper right and of the propagator
components at the bottom demonstrates the result most clearly. In the vicinity
of the resonance, the behavior resembles closely that of the rectangular pulse.
At offsets of |∆ν0| > 2 kHz ≈ 13ν1, the difference becomes apparent in the
much faster falloff of the propagator amplitude. This envelope was used in the
sequences presented in Chapter 1.
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Figure 3.8: Selectivity of a π
2 y

-pulse with a Gaussian envelope. Upper left: Rf
envelope. Upper right: Ending points of the total transformation for frequency
offsets 0 kHz ≤ ∆ν0 ≤ 1 kHz. Bottom: Dependence of propagator components
on the frequency offset. See also Figure 3.6.

3.2.2.3 π
2 |y-Pulse with Gaussian Envelope

Taken to its logical conclusion, the spectral argument leads to an envelope de-
fined by the Gaussian function:

ν1(t) = ν10 exp

{
−

(
t− t0
tσ

)2
}

(3.17)

where t0 is, as above, the center of the pulse, and tσ determines the pulse width.
This is the only function which retains its shape under Fourier transform. Again
the slow onset is compensated by increased Rabi frequency.
Simulation results for this type of pulse are presented in Figure 3.8. Indeed,
the cross-excitation is suppressed even more effectively than with the Fermi-
shaped pulse. The performance in the narrow neighborhood of the resonance is
slightly better, because the Gaussian function has a flatter top than the Fourier
spectrum of the rectangular envelope.
This pulse shape, however, suffers from a problem which hasn’t yet been men-
tioned. At the beginning of the pulse, the rf field is turned on very slowly. In the
rotating frame of reference, this results in a very slow change in the direction of
the effective. It can be shown [76, 90] that, under such conditions, the magne-
tization essentially follows the direction of the effective field. This is known as
adiabatic following. Although relaxation puts an upper limit on this behavior,
it is relevant in the context of liquid state NMR.
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Figure 3.9: Selectivity of a π
2 y

-pulse a sinx/x envelope. Upper left: Rf
envelope. Upper right: Ending points of the total transformation for frequency
offsets 0 kHz ≤ ∆ν0 ≤ 1 kHz. Bottom: Dependence of propagator components
on the frequency offset.

3.2.2.4 π
2 |y-Pulse with sinx/x Envelope

To address the problem of non-uniform excitation, one might be tempted to
take the Fourier picture too literally by using a pulse envelope which is simply
the Fourier transform of the ideal excitation spectrum. A pulse bounded by

ν1(t) = ν10

sin (|t− t0|/tT )
t/tT

(3.18)

(shown in Figure 3.9) has a rectangular spectrum centered at the resonance
frequency. The pulse shape is even more subject to adiabatic following problems
than the Gaussian envelope of previous section. It is, however, instructive to
ignore this for the moment and consider the effect of such a pulse.
The component plot partially confirms the expected flat excitation profile. The
rotation angle of the propagator does closely follow a rectangular dependence.
The fallacy of the Fourier argument becomes immediately apparent, when the
propagator trajectory is considered. The direction of the propagator rotates
almost four times 360◦ across the flat excitation region! Apart from adiabatic
following, this property menderes the sinx/x envelope unusable for the purposes
of quantum computing. It can, however, be useful for special purposes such
as magnetization inversion of strongly inhomogeneous spin ensembles and in
magnetic imaging applications.
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3.2.3 Selective Alternating π
2
|y-Pulse

Another approach to creating a spectrally selective pulse is to construct a pulse
sequence which by design has no net effect at a given frequency and see, if such
a sequence could perform a useful transformation at some other frequency.
One possible ansatz is sketched in Figure 3.10 a). First, a pulse of duration
t is applied in y-direction with the frequency offset ∆. This pulse is followed
by another pulse with the same duration and the opposite phase and frequency
offset. During the first pulse, the Hamiltonian of a resonant spin is given by

H1 = ∆Iz + ω1Iy (3.19)

where the excitation frequency offset ∆ and the Rabi frequency ω1 are given in
units of angular velocity. Therefore, the effect of off-resonant excitation is that,
in the rotating frame of reference the resonant spin, the effective field and with
it the axis of precession is tilted toward the z-axis by ∆. The resulting rotation
axis is labeled R1 in Figure 3.10 b).
During the second pulse the phase and the offset are inverted, such that the
resulting rotation axis R2 in the rotating frame is exactly opposite to R1 and
the Hamiltonian is given by

H1 = −∆Iz − ω1Iy (3.20)

The total transformation effected by the two pulses is given by

U = exp {−it2 (−∆Iz − ω1Iy)} exp {−it1 (∆Iz + ω1Iy)} = I0 (3.21)

Since the durations of the two pulses are equal, the total propagator is an
identity transformation. This cancellation is independent of the choice of ∆
and ω1. Furthermore, any linear combination cosϕ Ix + sinϕ Iy can be chosen
instead of Iy as long as the phase ϕ is inverted between pulses.
For a spin located at some offset ∆ν0 6= 0, the offsets of the two pulses with
respect to ∆ν0 are no longer equal and the resulting propagators do not cancel
out. The maximal effect for such a spin is achieved when ∆ν0 = 2∆/2π. When
a train of such pulse pairs is applied, this effect can be enhanced or suppressed
by varying the phase ϕ, the offset ∆, and the Rabi frequency ω1 to obtain pulses
with any phase and rotation angle.
As an example, Figure 3.10 c) shows the trajectory of the propagator for a
pulse train of three pairs with the phase and rotation angles chosen such that a
π
2 |y-rotation is achieved at ∆ν0 = 2∆/2π. The consecutive rotations of the spin
about the alternating axes resulting from this propagator are demonstrated by
the trajectory of the z-component of the spin is shown in sub-figure d).
The component plot of the total propagator against the excitation offset in
Figure 3.10 e) shows that a sequence of three pairs of pulses produces the inverse
transformation (π

2 |ȳ) at ∆ν0 = −2∆/2π as expected from the symmetry.
The two regions around ∆ν0 = ±2∆/2π show excitation properties similar
to that of a simple rectangular pulse with some suppression of cross excitation
between the two frequencies. The same plot for a sequence with ten alternations
in sub-figure f) shows that the frequency selectivity of the sequence grows with
the number of alternations and simulations show that it can be made as selective
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Figure 3.10: π
2
|y-pulse with alternating off-resonant excitation. a) Pulse se-

quence. b) Alternating rotation axes for a resonant spin. c) Trajectory of the
propagator for a sequence with three alternation cycles. d) Trajectory of the
z-component of the spin under the sequence. e) Propagator components vs.
the resonance offset ∆ν0 for a pulse with three alternation cycles. f) Dito for
a pulse with 15 alternations. Sequence length is τ = 1.4 ms, Rabi frequency
ν1 ≈ 280 Hz. Sequence shows two excitation regions with small cross-excitation
at higher harmonics. The selectivity of the excitation increases with the number
of alternations per sequence.
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as required. The plot also shows the artefact of significant excitation at higher
harmonics of 2∆.
The utility of this pulse sequence for actual applications in spin quantum com-
puting is limited by the higher harmonic excitation bands, the residual phase er-
rors outside the excitation regions, and some non-uniformity of excitation within
the excitation bands. This sequence is described here, merely to demonstrate
the use of visual pulse sequence analysis with extended multi-pulse sequences.



Chapter 4

Detailed Implementation
of the S-Bus Concept
with CaF2:Ce

The chapter begins with a short introduction of the basic concepts of the S-bus
proposal and its general theoretical treatment. Then, the basic properties of the
cerium doped CaF2 single crystals essential for its use as a quantum processor
are summarized. This system is not described exactly by the general S-bus
theory. Nevertheless, that theory does provide a solid basis for the understand-
ing of the CaF2:Ce cluster. The quantitative details and precise description
can only be gained by further theoretical treatment and experiment. The bulk
of the chapter tackles these tasks by means of exact numeric treatment of the
paramagnetic Ce-center in CaF2:Ce and detailed experimental investigations of
the evolutions of density matrices of the qubits.

4.1 The S-Bus Concept for
Spin Quantum Computing

The S-bus concept for spin quantum computing was developed and theoretically
treated by M. Mehring [33,91].

4.1.1 General Features

The proposal assumes a number N of nuclear spins I = ½ coupled to a central
electron spin S = ½ via hyperfine interaction. The central S spin plays the role
of a quantum bus, in that it mediates the interactions between the single client
qubits. This scheme has a number of advantageous features.

� In the liquid state, the anisotropic contributions to the interaction between
spins are averaged out leaving only the constant isotropic part for the
implementation of 2-qubit gates. In an oriented solid state system, such as
the S-bus, the available interactions are typically much stronger, leading

53
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Figure 4.1: The S-bus concept for spin quantum computing. The I-spins
connected to a central S-spin via the hyperfine interaction serve as a basic
building block. Several such clusters may be connected through coupling of
their S-spins.

to potentially much shorter gate times. Also, anisotropic contributions
can be conveniently scaled by geometric parameters.

� At temperatures above the absolute zero T > 0 K, any form of ensemble
spin quantum computing has to start with the polarization of the spin
system arising from the difference of the occupation probability of the two
eigenstates of a spin-1/2 system according to the Boltzmann distribution:

exp (−γ ~B0/kBT )

where B0 is the static external magnetic field and γ is the gyromagnetic
ratio of the particle carrying the spin. For electrons, this ratio is typically
greater by a factor of 103 as compared to that of nuclei, resulting in an
accordingly larger initial polarization.

� By the same token, the low polarization of the I-spins makes it non-
feasible to observe them directly. Thus, the S-spin has the second role
of a monitor spin. The desired information about the quantum state of
the client qubits is encoded in the state of the monitor spin for readout by
appropriate pulse sequences. Direct manipulation of the I-spins, however,
is easily possible and plays an important role in the implementation of
quantum computing operations.

� The procedure for the transfer of polarization from the electron spin to
the nuclear spins has the side effect of creating a density matrix containing
very high-order correlations between the nuclear spins.

� Similarly to other quantum computing proposals [92], the S-bus arrange-
ment can potentially be scaled by letting the S-spins of several basic units
interact with each other by delocalizing the electron wave function and
using spatially selective addressing of each cluster.

� For realistic situations1, it is possible to reach the quantum limit for readily
achievable temperatures. Therefore, ensembles of truly entangled quan-
tum systems could possibly be obtained.

1It has been calculated [91] that for the CaF2:Ce S-bus cluster (see below) the quantum
limit would be reached in a W-band spectrometer (B0 ≈ 3.5 T) at around 2 K.



4.1. The S-Bus Concept for Spin Quantum Computing 55

In it’s general form, the S-bus concept permits a number of different implemen-
tations. One could, for instance, envisage a large bulk semiconductor containing
spatially separated clusters. Spins in such clusters would be manipulated by
locally applied rf- and microwave fields and the server spins of different clus-
ters could be brought into interaction by the action of appropriately devised
gates. The technology to realize such a device is, of course, not available at
present. However, ensembles of isolated S-bus clusters are available. In fact,
single-crystal of CaF2:Ce has been in use in our lab, as a model system.

4.1.2 Density Matrices in the S-Bus

Below, is a summary of the S-bus theory as developed in [33] and [91]. In
the high-field approximation, the general description above translates into the
following magnetic Hamiltonian for an isolated S-bus cluster (in units of angular
velocity):

H = ω0S
Sz

︸ ︷︷ ︸
HS

+
N∑

j=1

ω0jIzj

︸ ︷︷ ︸
HI

+
N∑

j=1

ajSzIzj

︸ ︷︷ ︸
Hhf

+
N∑

j<k

DjkIzjIzk

︸ ︷︷ ︸
HD

(4.1)

Where Sz and Izj are the spin operator components of the electron and nuclear
spins with the Larmor frequencies ω0S

and ω0j , aj is the effective hyperfine cou-
pling of the j-th nuclear spin, Djk is the dipole-dipole coupling between spins
Ij and Ik and N is the number of qubit spins. The constituent terms have the
following significance in the context of the S-bus: The electron spin Zeeman
term HS allows the bus spin to be manipulated by means of microwave pulses.
The nuclear Zeeman term HI and the hyperfine term Hhf provide for the ad-
dressability of qubit spins. Hereby, it is necessary that the physical system used
for implementation features sufficiently different hyperfine couplings, to enable
selective manipulation of the qubits by rf pulses. The dipole-dipole coupling
term HD between the qubits can be used to implement two-qubit gates. Thus,
all the basic requirements for a quantum processor are present. In addition, the
hyperfine term is also responsible for the bulk of the most promising properties
of the S-bus, in that it enables the creation of a highly polarized and correlated
nuclear density matrix. Notice, that the Zeeman splitting of the electron spin
will commonly be the largest term by three orders of magnitude. Thus, an
ensemble of S-bus clusters can be separated into two sub-ensembles with bus
spins in the states |mS = ±1/2 〉. The nuclear spins of one set are entirely in-
dependent of the other. One could envisage a doubling of the number of qubits
based on this separation.
A complete experiment on an isolated S-bus cluster consists of three basic blocks
as indicated in Figure 4.2. First, a preparation sequence U (S)

P is applied to the
bus spin (S) resulting in a density matrix highly correlated with respect to the
client spins (Ij). This is the starting point for all quantum computing operations
on the qubits. They will typically include the preparation of pseudo-pure states,
actual quantum computation, and encoding of the output state for readout. The
encoded information is finally made available in the form of a detectable signal
by the detection sequence U (S)

D .
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U
(S)
P (prep.) U

(S)
D (det.)S

UI (oper.)I1..N

Figure 4.2: Block diagram of a general S-bus pulse sequence.

4.1.2.1 Preparation of a Highly Correlated Nuclear Density Matrix

The goal of a preparation sequence is to transfer the high polarization of the
electron spin to the nuclear spins and to create correlations among the them.
The basic sequence consists of two π/2-pulses separated by an evolution period
τS as shown in Figure 4.3. It was originally introduced by Mims [93] in the
context of pulsed Electron Nuclear Double Resonance (ENDOR) [94]. The first

t

S
y

π

2

τS

ϕ
π

2

Figure 4.3: Basic preparation sequence for the S-bus. The second pulse can
be applied in x-direction (ϕ = 0), in y-direction (ϕ = π/2), and with ϕ = π/4.
The same variants can also be used for detection.

pulse is applied in the y-direction and transfers the electron spin into the yx-
plane. During the mixing time τS , correlations of between the nuclear spins build
up under the action of the hyperfine term of the Hamiltonian. The second pulse
can be applied in either x-, y-, and ϕ = π/4-direction transforming different
parts of the created correlations into the z-direction. After that, all transient
components decay on the time scale of the electron spin FID (≈ 20 ns) leaving
a purely diagonal density matrix, i.e., one containing only the z-components of
the spin operators.

The initial density matrix of the system is assumed to be

ρB =
M∏

j=1

(
1
2
I2 −ΘSzj

)
≈ 1

2
I2 −ΘSz (4.2)

where M is the number of electron spins, I2 the 2 × 2 unity matrix and Θ =
tanh(~ω0/kBT ). T denotes the temperature and ω0 the Larmor precession
frequency of the electron spin. The approximation is valid for Θ ¿ 1, i.e., for
the high temperature and low field case which applies here. Because of the small
magneto-gyric ratio of the nuclei, γN/γS ¿ 1 and the initial polarization of the
nuclear spins is negligible. It was shown [33], that the density matrix produced
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by any of the preparation sequences can be written as

ρ
(S)
P =

1
2N+1

IN+1 −ΘSz ⊗ ρI (4.3)

where IN+1 is the (N + 1)-dimensional identity matrix and ρI the highly cor-
related density matrix of N nuclear spins. These are the qubits carrying the
quantum information and this is the density matrix on which the quantum
computation represented in Figure 4.2 by UI is performed.
The density matrices generated by the three preparation sequences are given by

ρ(S)
yy =

1
2N+1

IN+1 −ΘSz ⊗ ρyy (4.4a)

ρyy = Re





N∏

j=1

(
cjI2 + i2sjIzj

)


 (4.4b)

ρ(S)
yx =

1
2N+1

IN+1 −ΘSz ⊗ ρyx (4.4c)

ρyx = −Im





N∏

j=1

(
cjI2 + i2sjIzj

)


 (4.4d)

ρ
(S)
yπ/4 =

1
2N+1

IN+1 −ΘSz ⊗ ρyπ/4 (4.4e)

ρyπ/4 =
1√
2

(ρyx + ρyy) (4.4f)

where cj = cos(ajτS/2) and sj = sin(ajτS/2), aj being the hyperfine coupling
constant for spin j. To give an example, the two density matrices ρyy and ρyx

arising for N = 4 are given by

ρyy = −c1c2c3c4I4 + 22 (s1s2c3c4Iz1Iz2 + s1s3c2c4Iz1Iz3+
s1s4c2c4Iz1Iz4 + s2s3c1c4Iz2Iz3 + s2s4c1c3Iz2Iz4+

s3s4c1c2Iz3Iz4)− 24s1s2s3s4Iz1Iz2Iz3Iz4 (4.5)

ρyx = −21 (c2c3c4s1Iz1 + c1c3c4s2Iz2 + c1c2c4s3Iz3 + c1c2c3s4Iz4)

+ 23 (c4s1s2s3Iz1Iz2Iz3 + c3s1s2s4Iz1Iz2Iz4+
c2s1s3s4Iz1Iz3Iz4 + c1s2s3s4Iz2Iz3Iz4) (4.6)

Note that the ρyy contains only products of even number of Iz-operators, while
ρyx contains only products with odd number of Izs. The yπ/4-sequence pro-
duces a mixture of all terms. For N = 3:

ρyπ/4 =
1√
2

{
c1c2c3I0 − 21 (s1c2c3Iz1 + c1s2c3Iz2 + c1c2s3Iz3)

− 22 (+s1s2c3 Iz1Iz2 + c1s2s3 Iz2Iz3 + s1c2s3 Iz1Iz3)

−23s1s2s3 Iz1Iz2Iz3

}
(4.7)
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In general, these density matrices contain correlations of qubits of order up to
N as can be seen by expanding the products:

ρI =
1

2N
p0IN +

1
2N−1

N∑

j

pjIzj
+

1
2N−2

N∑

j<k

pjkIzj
Izk

+ ...+ p1...N

N∏

j

Izj
(4.8)

with the coefficients of each product of Iz operators given by

pq = 2N
∏

j∈{q}
sj

∏

k/∈{q}
ck (4.9)

4.1.2.2 Reduced Density Matrix

Frequently, only a subset of qubits will be used in a quantum computation. In
this case, the nuclear density matrix can be written in a reduced form, where
the operators of non-participating qubits are not expanded. For instance, for
two qubits ρyy and ρyx will have the form

ρyy = c1c2Π
(+)
N−2I0 − 2s1c2Π

(−)
N−2Iz1

− 2c1s2Π
(−)
N−2Iz2 − 4s1s2Π

(+)
N−2Iz1Iz2 (4.10a)

ρyx = −c1c2 Π(−)
N−2I0 − 2s1c2 Π(+)

N−2Iz1

− 2c1s2 Π(+)
N−2Iz2 + 4s1s2 Π(−)

N−2Iz1Iz2 (4.10b)

where the contributions of non-participating qubits are accumulated in

Π(+)
N−2 = Re




N∏

j=3

(
cj + i2 sj Izj

)

 (4.11a)

Π(−)
N−2 = Im




N∏

j=3

(
cj + i2 sj Izj

)

 (4.11b)

The two operators are othogonal:

tr
{
Π+

N−2 Π−N−2

}
= 0 (4.12)

because Π(+)
N−2 contains only products with even numbers of Izj , while Π(−)

N−2

consists of products with odd numbers of Izj . As will become clear later, this
fact has important implications for the use of different preparation and detection
sequences.
The operator nature of the non-participating qubits can now be removed by a
trace operation over their subspaces, resulting in a representation of the density
matrix reduced to the subspace of qubits 1 and 2:

ρ(12)
yy = Q

(yy)
0 I0 − 2Q(yy)

1 Iz1 − 2Q(yy)
2 Iz2 − 4Q(yy)

12 Iz1Iz2 (4.13a)

ρ(12)
yx = −Q(yx)

0 I0 − 2Q(yx)
1 Iz1 − 2Q(yx)

2 Iz2 + 4Q(yx)
12 Iz1Iz2 (4.13b)
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with the real coefficients

Q
(yy)
0 =c1c2

√
P

(+)
N−2 Q

(yx)
0 =c1c2

√
P

(−)
N−2

Q
(yy)
1 =s1c2

√
P

(−)
N−2 Q

(yx)
1 =s1c2

√
P

(+)
N−2

Q
(yy)
2 =c1s2

√
P

(−)
N−2 Q

(yx)
2 =c1s2

√
P

(+)
N−2

Q
(yy)
12 =s1s2

√
P

(+)
N−2 Q

(yx)
12 =s1s2

√
P

(−)
N−2

(4.14)

and

P
(±)
N−2 =

1
2N−2

tr
{(

Π(±)
N−2

)2
}

(4.15)

The coefficients P (±)
N−2 have the useful property

P
(±)
N−2 =

1
2

(1±MN−2) with MN−2 =
N∏

j=3

(
c2j − s2j

)
(4.16)

4.1.2.3 Manipulation and Detection

Equation (4.8) shows that the highly correlated density matrix prepared in the
S-bus system contains all base operators necessary to express a diagonal pseudo-
pure state of N -qubits (cf. Equation (1.12)). In fact, if all the coefficients pq

can be adjusted such that |pq| = 1, a pseudo-pure base state will be created.
This condition would be achieved for all cj = sj = 1/

√
2. In practice, this would

place very stringent requirements on the hyperfine coupling constants aj . Any
practical system would probably require an additional non-unitary step applied
to qubits to prepare pseudo-pure states (cf. Section 4.7.1.2).
After the preparation of the input states, the actual quantum computing algo-
rithm is applied by a series of rf pulses and evolutions. If the resulting nuclear
density matrix is given by ρI , then the full density matrix of the system will
have the form

ρ
(S)
I =

1
2N+1

IN+1 −ΘSz ⊗ ρI (4.17)

The detection proceeds by a second application of one of the preparation se-
quences. Following the decay of transverse components, again a purely diagonal
matrix remains and additional microwave pulses must be used to read out the
Sz component.2 As a result of this setup, the detected signal magnitude is given
by

SD =
tr

(
ρ
(S)
D ρ

(S)
I

)

tr (Sz Sz)
(4.18)

with ρ
(S)
D given in Equation (4.4) by the density matrix corresponding to the

applied detection sequence variant. Clearly, a single execution of such an ex-
periment will provide only a single piece of information. To obtain a potentially
large number of parameters defining the density matrix one- or two-dimensional

2A remote echo detection (RED) [95] sequence can be used to measure Sz .
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experiments must be made with the interesting information encoded in some way
in the signal amplitude. This can be done successive to the quantum algorithm
or during the algorithm itself (see, e.g., Section 4.7.1 and 4.8).

4.2 The S-bus cluster in CaF2:Ce

4.2.1 Crystalline Structure

In our lab, the experimental work on implementing the S-bus concept was pi-
oneered by J. Mende in the course of his PhD research [35]. From a large
number of potentially usable crystaline centers, a suitable candidate was found
in CaF2 single crystals doped with cerium at concentrations of 10−4 – 10−3.
Under appropriate growth conditions, the Ce3+ ion substitutes for a Ca2+ ion
and acquires an interstitial F− at the empty neighboring body centered site for
charge compensation as shown in Figure 4.4.

Figure 4.4: CaF2 lattice with the Ce3+ ion substituting for a Ca2+ ion. The
charge compensating F− ion is also shown.

The Ce3+ ion has a complicated electronic configuration but the spin sublevels
of the ground state of the unpaired electron spin are sufficiently separated from
the next excited states and can serve as an effective spin S = ½ system. Together
with the eight 19F nuclei next to it and the nucleus of the charge compensating
fluorine it comprises an S-bus cluster with N = 9 client qubits, as shown in
Figure 4.5.
The nuclear spins are coupled to the electron spin via hyperfine interaction.
Due to the large gyromagnetic ratio of the 19F nucleus, the coupling for the
next neighbors is very strong (≈ 10 MHz) and is comparable to the Zeeman
splitting of free 19F at a magnetic field of B0 = 0.35 T. The ionic size of
F− exceeds the space available at the interstitial site. Thus, the incorporation
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Figure 4.5: Structure of the S-bus cluster in CaF2:Ce. The spin sublevels of
the unpaired electron spin of the electronic ground state of the Ce3+ (S), its
eight neighboring lattice fluorines (I1 – I8) and the charge compensating F−

(I9) comprise the S-bus system. The shaded ellipsoids indicate the anisotropic
nuclear hyperfine tensors and the g-tensor of the electron spin.

of the charge compensating fluorine distorts the lattice by pushing the lattice
fluorines radially outward. Also, the strong Coulomb attraction results in a
small displacement of the cerium ion. The effect is that the hyperfine tensors of
the upper fluorine layer I (I1 – I4) differ significantly from those in the lower layer
II (I5 – I8). As a whole, the cluster shows four-fold rotational symmetry along
the axis connecting the cerium and the charge compensating fluorine. It can,
therefore, be expected that the Electron Nuclear Double Resonance (ENDOR)
spectrum of the cluster will be fully resolved at appropriate orientations of the
external magnetic fields with respect to the crystal axes.

It should be noted, that the C4 symmetry axis of a given cluster has three
possible orientations with respect to the crystal axes resulting in three ensembles
of equivalent clusters at a given orientation of the external field. This fact is
useful for alignment of the sample with respect to the laboratory frame.

Besides the hyperfine coupling to the electron spin significant dipole-dipole cou-
pling (≈ 10 kHz) amongst the nuclear spins is also present. The strength of
the hyperfine interaction of the fluorines falls off quickly with distance and the
next-to-next neighbors have very small couplings. However, the dipolar coupling
of the nuclear spins within the cluster to the fluorine spins of the surrounding
lattice has strong consequences for the relaxation properties and must be taken
into account as will be discussed later.
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4.2.2 The S-Bus Hamiltonian

The magnetic Hamiltonian of the paramagnetic Ce-center in CaF2 consists of a
number of contributions3:

H = HS +HN +Hhf +Hdd (4.19)

Where the Zeeman term for the electron is given by the tensor product of the
electron spin operator S, the anisotropic g-tensor g, and the external magnetic
field B0:

HS =
µB

h
S · g ·B0 (4.20)

The nuclear Zeeman term combines all z-components of the nuclear spins Izi

with the magnitude of the external field B0 and the nuclear g-factor gN and the
nuclear magneton µN :

HN =
N∑

i=1

µN

h
gN B0Izi

(4.21)

The hyperfine contribution is the sum of the tensor products of all the nuclear
spins Ii with the electron spin and the hyperfine tensors ai:

Hhf =
N∑

i=1

S · ai · Ii (4.22)

The hyperfine tensors ai can be calculated exactly, when the participating spins
may be treated as point-dipoles. However, the bonding in CaF2:Ce is not en-
tirely ionic. The covalent contributions to the bonds lead to an extended electron
wave function, which leads to large deviations of the hyperfine coupling from
the simple dipole-dipole form [96,97].
Finally, the term describing the through-space dipole-dipole interaction of the
nuclear spins amongst each other is given by

Hdd =
N∑

i<j

Ii ·Dij · Ij (4.23)

The Cartesian components of the dipolar interaction tensor Dij are given by

(Dij)kl =
µ0

4πr30
hγ2

F (δkl − 3rkrl) (4.24)

where µ0 is the magnetic permeability of vacuum, γF the magneto-gyric ratio of
the fluorine nucleus, δkl the Kronecker symbol, r0 the distance between the two
spins, and rk the Cartesian components of the unit direction vector connecting
the spins.
Due to the crystal structure of the paramagnetic center, all the tensors in the
found Hamiltonian are strongly anisotropic. Furthermore, an exact ab initio
calculation of the various couplings is not possible, except for the dipole-dipole
tensor. They must be determined experimentally by suitable measurements.
This has been done by Baker et al. [96] and the values reported there are used
in the present work.

3Following the conventions of magnetic resonance the spin operators are assumed to be
dimensionless and the Hamiltonian is written in Hz.
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4.2.3 Manipulation of Spins

In oder to implement the S-bus concept on CaF2:Ce, an Electron Paramagnetic
Resonance (EPR) spectrometer was used. It consists of a resistive magnet
providing the large external magnetic field B0 of up to 1 T. The samples are
mounted at the center of the magnet in an microwave resonator operating at
frequencies around 9.5 GHz (microwave X-band). The magnetic component B1

of the microwave resonator mode is oriented at right angles to the static field.

The excitation channel is equipped with various analog and digital logic, filters,
amplifiers, etc., which allows irradiation of the sample with microwave pulses
of 8 ns to several 1 µs length. Full control of phase, amplitude and frequency
of these pulses is available through the use of an Arbitrary Waveform Gen-
erator (AWG). The detection channel allows for quadrature recording of the
microwave signal induced by the precessing magnetization of the electron spins
in the sample.

The nuclear spins are manipulated by means of rf-pulses. These are produced
by an additional coil inside the microwave resonator such that the magnetic
component B2 of the rf-field is perpendicular to B0 and B1. The coil is fed
by an high-power, linear rf-amplifier which in turn is driven by another AWG.
Again, this allows far-reaching control of all pulse parameters. This arrangement
is known as an Electron Nuclear Double Resonance (ENDOR) setup.

To allow control of the temperature, the microwave resonator with the sample
and the rf-coil is placed inside a flow cryostat, such that temperatures down to
5 K are possible when liquid Helium is used as coolant. The sample is mounted
on a one-axis goniometer to facilitate the rotation of the external field with
respect to the sample frame of reference.

4.2.4 CaF2:Ce as a Testbed for the S-Bus

The general S-bus theory described in Section 4.1.2 assumes an idealized physi-
cal system described by the Hamiltonian in Equation (4.1). The CaF2:Ce Hamil-
tonian presented in Section 4.2.2 clearly violates some of the assumptions: Most
severely, the large hyperfine coupling – which provides for the selective address-
ability of the spins and allows fast creation of a highly correlated qubit register
– also leads to a strong mixing of states between the electron and the nuclear
spins.4 Furthermore, the S-bus cluster in CaF2:Ce is embedded in an extended
19F spin network which is a powerful source of decoherence.

Nevertheless, CaF2:Ce can be used as a testbed for the S-bus concept. The
theoretical treatment in Section 4.1.2 can provide a basic description of the ex-
perimental situation as, in fact, was shown in experiments by J. Mende. Taking
the S-bus theory as a first approximation, the understanding of CaF2:Ce must
be refined by further theoretical treatment and experimental study. Some of
the progress in this direction is detailed below.

4This problem could be circumvented by use of higher magnetic fields. Zeeman interaction
scales linearly with the field while hyperfine coupling is field-independent. When switching
from X band (B0 ≈ 0.35 T) to the W band (B0 ≈ 3.5 T), for instance, the two contributions
would be separated by an order of magnitude, making the perturbational approach much more
applicable.
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4.3 EPR Spectra and Sample Alignment

4.3.1 Coordinate Transformations

Since no crystallographic procedure (such as X-ray diffractometry) was easily
available, the fitting of the angular dependence of the EPR spectrum was used
to determine the sample alignment.
The sample was mounted on a goniometer in an a priori unknown orientation.
The axis of the goniometer was perpendicular to the direction of the external
field B0. The slotted tube EPR resonator was aligned such that the magnetic
component of the alternating field B1 of the microwave mode was at right angles
with the former directions. The axis of the ENDOR coil and the magnetic
component B2 of the rf field coincided with the goniometer axis G.
For the laboratory frame of reference, the direction of the z-axis was chosen to
coincide with the external magnetic field B0 according to the universal conven-
tion of magnetic resonance. The x-axis was aligned along the B1 field direction
and the y-axis was chosen along the goniometer axis.
The coordinate transformation from the lab frame to the crystal frame is de-
scribed by the 3× 3 matrix RLC:

r(c) = RLC r(l) (4.25)

According to Euler’s theorem, three real numbers are sufficient to fully describe
such a rotation matrix. In order to experimentally determine these parameters,
the matrix RLC was parameterized using Euler angles based on the following
elementary rotations around Cartesian axes:

x-axis: Rx(α)=




1 0 0
0 cosα − sinα
0 sinα cosα


 (4.26a)

y-axis: Rx(α)=




cosα 0 sinα
0 1 0

− sinα 0 cosα


 (4.26b)

z-axis: Rx(α)=




cosα − sinα 0
sinα cosα 0

0 0 1


 (4.26c)

In physics, it is common to parameterize the rotation matrix as R(α, β, γ) =
Rz(α)Ry(β)Rz(γ). However, with the goniometer axis aligned along the y-
direction, this choice is inconvenient. Thus, for the purpose of fitting the angular
dependence of EPR spectra only, the following choice was adopted:5

RLC = Ry(α)Rz(β)Ry(γ) (4.27)

Such, that the angle γ is immediately associated with the goniometer angle γG.
Once the rotation matrix is known, the conventional parameterization

RLC = Rz(φ)Ry(θ)Rz(ψ) (4.28)

is calculated and used for all other modeling.
5Here the transromation was chosen heuristically. A more formal treatment of the various

frames of reference can be found in [75].
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Figure 4.6: Crystal frame of reference and three possible orientations of the
tetragonal paramagnetic centers present in CaF2:Ce.

4.3.2 Modeling of the EPR Spectra

As mentioned in Section 4.2.1, the interstitial charge-compensating fluorine can
assume six different orientations relative to the cerium ion and a coordinate
system fixed to the crystal. Every pair of positions, where the fluorine is placed
on the same axis (e.g., “above” or “below” the cerium) are equivalent with
respect to the spectral properties. The EPR spectra will, therefore, consist of
three distinct lines, who’s positions are strongly dependent on the orientation
of the magnetic field relative to the crystal axes.

The coordinate system fixed to the sample (the “crystal frame”) is defined such
that its Cartesian axes coincide with the principal directions of the cubic crystal
lattice. Centers will be called x-, y- or z-centers depending on the orientation of
their C4 axis of symmetry with respect to the crystal frame. The numbering of
the fluorine nuclei is such that I1 is found along the [111] direction and I5 along
the [111] direction in the z-center as shown in Figure 4.6. The x- and y-centers
are obtained from the z-center by rotation around the [111] direction by 120◦

and 240◦ respectively. The charge-compensating fluorine is always labeled I9.

It is also possible for the charge-compensating fluorine to occupy the next vacant
cube in the [111] direction with respect to the cerium ion. The concentration
of such trigonal centers is very low in our samples and they give no significant
contribution to the EPR spectra. When the charge-compensating fluorine is
situated at a distance from the cerium ion which is greater than the range of
the hyperfine interaction, the paramagnetic center retains the cubic symmetry
of the host crystal. The EPR line is then independent of the field orientation
and can be used for field calibration.

The electron spin Zeeman term of Equation (4.19) is by far the largest contri-
bution to the Hamiltonian. It dominates the next largest interactions (nuclear
Zeeman and hyperfine) by a factor of 103. In a very good approximation, the
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positions of the ESR lines are, therefore, determined by the electron Zeeman
contribution, while the rest of the Hamiltonian affects only the shape of those
lines.
Because of the C4 symmetry, the g-tensor of the electron spin is axially sym-
metric. In the crystal frame, the g-tensors of the three types of centers are given
by

g(c)
x =



g‖ 0 0
0 g⊥ 0
0 0 g⊥


 (4.29a)

g(c)
y =



g⊥ 0 0
0 g‖ 0
0 0 g⊥


 (4.29b)

g(c)
z =



g⊥ 0 0
0 g⊥ 0
0 0 g‖


 (4.29c)

The magnetic field in the laboratory frame is

B(l)
0 = B0 b(l)

0 = B0




0
0
1


 (4.30)

where b(l)
0 is the unit vector in the field direction. In the crystal frame the

magnetic field is
B(c)

0 = RLC(α, β, γ)B(l)
0 (4.31)

and the magnitude of the effective magnetic field in the crystal frame for a given
center is

B(eff)
x,y,z =

∣∣∣g(c)
x,y,z B(c)

0

∣∣∣ =
∣∣∣g(c)

x,y,z RLC(α, β, γ) b(l)
0 B0

∣∣∣ = g(eff)
x,y,z B0 (4.32)

with the effective g-factor depending on the Euler angles:

g(eff)
x,y,z (α, β, γ) =

∣∣∣g(c)
x,y,z RLC(α, β, γ) b(l)

0

∣∣∣ (4.33)

Equations (4.26) - (4.27) and (4.33) allow the angular dependence of the g-
factors for the tetragonal centers to be computed. The fourth line featured in
the EPR-spectrum belongs to the cubic center, who’s g-factor gc is independent
of orientation.

4.3.3 Fitting of the EPR Spectra

In order to obtain the EPR-spectra of CaF2:Ce, the Hahn echo pulse sequence
was used. A typical field spectrum is shown in Figure 4.7. It features the four
lines arising from the tetragonal and the cubic centers and a broad, unresolved
background contribution at around 0.32 T. Because the microwave field B1 is
at right angles with the static field B0, the anisotropy of the g-tensor leads to
very small transition probabilities and small signal strengths for high values of
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Figure 4.7: Typical field spectrum of CaF2:Ce recorded using the Hahn echo
sequence on an X-band spectrometer at ν0 = 9.350400 GHz and T = 8.0 K.

the effective g-factor. This explains the small amplitudes of the resonance lines
at the lower end of the spectrum.

EPR-spectra were recorded for a range of goniometer angles γG between −13◦

and 360◦. The line positions were obtained by fitting with Gaussian line shape.
Figure 4.8 shows a polar plot of 1/

√
g(eff) for all fitted lines. The contours of

this quantity should be perfect ellipsis reflecting the symmetry properties of the
tetragonal centers. Careful analysis, however, shows that g(γG) 6= g(γG + π).
This can only be explained by assuming a deviation of the angle between the go-
niometer axis and the B0 direction from 90◦. To account for this misalignment,
the coordinate transformation given in Equation (4.27) was modified:

RLC (α, β, γ, ξ ) = Ry(α)Rz(β)Ry(γ)Rx(ξ) (4.34)

Using this expression, the equations for the dependence of the effective g-factors
on the Euler angles and the goniometer tilt can be derived as outlined in Sec-
tion 4.3.2:

g(eff)
x

2
= g2

⊥ (cos ξ sinβ sin γ − cosβ sin ξ)2 +

g2
‖ (cos γ cos ξ sinα+ cosα (cosβ cos ξ sin γ + sinβ sin ξ))2 +

g2
⊥ (cosα cos γ cos ξ − sinα (cosβ cos ξ sin γ + sinβ sin ξ))2 (4.35a)

g(eff)
y

2
= g2

‖ (cos ξ sinβ sin γ − cosβ sin ξ)2 +

g2
⊥ (cos γ cos ξ sinα+ cosα (cosβ cos ξ sin γ + sinβ sin ξ))2 +

g2
⊥ (cosα cos γ cos ξ − sinα (cosβ cos ξ sin γ + sinβ sin ξ))2 (4.35b)
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Figure 4.9: Fit of the dependence of the effective g-factors on the goniometer
angle. The solid lines are plots of the expressions in Equation (4.33) using
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Experimental details in caption to Figure 4.7.
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g(eff)
z

2
= g2

⊥ (cos ξ sinβ sin γ − cosβ sin ξ)2 +

g2
⊥ (cos γ cos ξ sinα+ cosα (cosβ cos ξ sin γ + sinβ sin ξ))2 +

g2
‖ (cosα cos γ cos ξ − sinα (cosβ cos ξ sin γ + sinβ sin ξ))2 (4.35c)

These expressions and a manual selection of the angles were used to assign
data points to particular centers. Latter choice was a posteriori found to be
consistent with the fit results. A least-square fit to the measured g-values was
performed for all three centers simultaneously. Since the starting value of the
goniometer scale was not known the Euler angle γ was replaced by γG−γ0. The
full set of fitting parameters was thus α, β, γ0, ξ, g‖, and g⊥.
It should be noted at this point, that the angles are not independent. Firstly, the
Euler theorem states that any three-dimensional rotation can be fully described
by a set of three angles. In addition, an examination of the Hamilton operator
of the paramagnetic center shows that it is invariant under rotations around
the direction of the static field. Thus, only four of the six fit parameters are
independent.6

In principle, Equation (4.35) could be reexpressed in terms of two such angles
plus an additional parameter accounting for the arbitrary starting point of the
goniometer scale. Because of the speed of modern computer hardware, such
analysis was not required.
The results of the fit are summarized in Table 4.1. Using these parameters the

α 51.15◦ g‖ 3.0394 (3.038)
β 55.47◦ g⊥ 1.3836 (1.396)
γ0 140.15◦

ξ −0.11◦

Table 4.1: Fitted values of the Euler angles and g-factors for the CaF2 sample.
The values in parentheses were reported in [96]. These angles are determined
by the way the sample is attached to the mount. The actual orientation of the
sample with respect to the external field depends on the goniometer angle γG.

two independent Euler angles of the magnetic field with respect to the crystal
frame of reference can be calculated for each sample orientation characterized
by the corresponding value of the goniometer angle.
It must be mentioned that because of the nature of the sample mount, the true
orientation of the sample varied slightly (< 1◦) after each weekly cooling cycle.
It was, however, possible to find the true current orientation using a fit of the
ENDOR spectrum as described below.

4.4 ENDOR Spectra

The pervious section dealt with the properties of the S-bus server spin S. The
second important ingredient of the S-bus scheme are the client spins Ij . These
were manipulated by rf pulses, applied at their ENDOR transition frequencies.

6Since the microwave field was oriented at right angles to the static field, the knowledge of
the third Euler angled can, in principle, be gained by measuring the angular dependence of
the Rabi precession frequency.
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4.4.1 ENDOR Spectra and Hyperfine Parameters

Frequently, the Zeeman interaction is much stronger than the hyperfine cou-
pling. In this high field approximation, the hyperfine coupling can thus be
treated as perturbation. This commonly encountered case gives a good starting
point for the discussion of the energy level diagram:

H = ν0SSz +
∑

j

(ν0I
+ ajSz) Izj

+
∑

j<k

DjkIzj
Izk

(4.36)

The Larmor frequency of the electron spin ν0S
= µB/h g

(eff)B0 is approx-
imately 9.5 GHz for B0 = 2.5 − 4.5 T (see Section 4.3.3 for details). The
free fluorine nuclear Larmor frequency ν0I = γF B0/2π is determined by the
magneto-gyric ratio of the fluorine nucleus γF = 25.18148 × 107s−1 T−1. In
range of fields of interest, ν0I

lies between 11 MHz and 18 MHz. The effec-
tive hyperfine couplings aj can be as large as 19 MHz. The dipolar couplings
constants Djk are up to approximately 10 kHz.
Since the Hamiltonian in Equation (4.36) is diagonal the resonant frequencies
for the energy levels are readily expressed in terms of the spin quantum numbers
mS and mI of the electron and nuclear spins respectively:

ν(mS ,mI) = mSν0S
+

∑

j

(ν0I
+mIjaj) +

∑

j<k

mIjmIk
(4.37)
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Figure 4.10: Energy level diagram (left) and expected ENDOR spectrum
(right) of a single nuclear spin coupled to an electron spin in the high field
approximation.

The level diagram of a single nuclear spin coupled to the electron spin is shown
in Figure 4.10. Under the above mentioned conditions, the two ENDOR tran-
sitions corresponding to the two electron spin states mS = ±1/2 are situated
symmetrically around the free nuclear Larmor frequency νI0 at a distance of aj

from each other. Because the dipolar couplings amongst the nuclear spins are
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very weak compared to the other contributions to the Hamiltonian, their effect is
restricted to small line broadening and all nuclear spins can be considered sepa-
rately. Thus, the other eight nuclear spins would produce the same pattern with
corresponding values of aj giving rise to a total of nine lines for mS = −1/2 and
another nine lines for mS = +1/2. The lines corresponding to the fluorine nuclei
in the second and higher coordination shells can be suppressed (see below).
The ENDOR spectra are obtained by applying the pulse sequence shown in
Figure 4.11. After the yy-preparation sequence on the electron spin and the

t

t
yy-preparation ENDOR yy-detection remote echo
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Figure 4.11: Pulse sequence for ENDOR experiments. An π-pulse is applied
between the preparation and detection sequences for the electron spin. The
frequency ν of the pulse is scanned to record the ENDOR spectrum.

appropriate decay time of approximately 100 µs, an rf-pulse of length tp is
applied at a frequency ν followed by the yy-detection sequence and the remote
echo sequence for the electron.
When the rf frequency ν coincides with an ENDOR transition, the amplitude of
the the corresponding operator component Izj is scaled by Sj = cosβ. Where
β = 2π ν1j tp, with the Rabi frequency ν1j of the spin j. The S-bus theory
in Section 4.1.2 can be used to calculate the change of the signal relative to
off-resonant rf:

S
(yy)
ENDOR = (1− Sj)s2jP

(−)
1 (4.38)

Since the Rabi frequencies of the individual spins are not known a priori, the
rotation angles of the frequency-swept pulse will vary. The maximum response
with Sj = −1 is reached for a perfect β = π-pulse. However, even for rotation
angles β 6= π, the parameter Sj will vary significantly when ν is swept across
an ENDOR resonance making the measurement very robust.
The parameter sj = sin(ajτS/2) allows for a certain amount of selectivity with
respect to the strength of the hyperfine interaction aj . When τS is kept short,
i.e., τS < 100 ns, nuclei which are far from the electron spin and have small
hyperfine couplings fail to build up significant polarization during the prepara-
tion time. Their transition lines, which lie close to the free fluorine frequency
ν0I have very small amplitudes. The next-neighbor nuclei with large hyperfine
couplings, on the other hand, produce very pronounced transition lines.
Figure 4.12 shows an example of a measured ENDOR spectrum. It consists of 18
resolved lines as expected.7 Full line widths at half of the maximum amplitude
(FWHM) are approximately 30 kHz. The ENDOR spectrum is clearly not
symmetric with respect to the free fluorine frequency, as would be expected
according to the simple model above.

7Lines L12 and L13 partially overlap at the indicated sample orientation. It is, however,
possible to obtain a fully resolved spectrum at other orientations.
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Figure 4.12: ENDOR spectrum of CaF2:Ce. Lines are numbered left-to-right.
All 18 lines except for L12 and L13 are resolved. The arrow indicates the free
fluorine resonance frequency ν0I = 15.651 MHz. Experimental parameters:
z-center, γG = 346.0◦, ϕ = −157.75◦, ϑ = 111.71◦, ψ = 134.83◦, ν0S =
9.342206 GHz, B0 = 0.39052 T, τS = 32 ns, T = 8.0 K.

This asymmetry is due to the fact that, in CaF2:Ce, the hyperfine interaction
is in the same order of magnitude as the Zeeman splitting of the nuclear spins,
such that the high field approximation is not valid and no closed form solution
for the level spectrum can be given. As a result – dependent on the nuclear spin
and sample orientation – the ENDOR lines of the next-neighbor nuclear spins
corresponding to mS = ±1/2 are, in general, no longer symmetric with respect
to ν0I

and can even lie to the same side of it. This greatly complicates the
modeling of the ENDOR spectra. In particular, at an unknown orientation, it
is not possible to tell which pair of lines belongs to the same nuclear spin from
the ENDOR spectrum alone.

4.4.2 TRIPLE Spectra and mS Assignment

A possible way to ascertain which ENDOR lines belong to the same state mS of
the electron spin is the TRIPLE [98] experiment. It makes no specific assump-
tions about the energy level system.
The experiment begins with a measurement of a usual pulsed ENDOR spectrum.
Once the resonant frequencies and line amplitudes for the ENDOR transitions
are known, the experiment proceeds as follows. One of the ENDOR lines (j) is
saturated by a π/2-pulse followed by a second π-pulse who’s frequency is scanned
over the positions of the other ENDOR lines, as shown in Figure 4.13. When
the frequency of the second pulse matches the resonant frequency of another
transition line (k) the signal amplitude will be given by

S
(yy)
TRIPLE = (1− Sk)s2kc

2
jP

(−)
2 (4.39)

if both lines belong to the same mS . Thus, all lines belonging to the same mS as
the line j will be attenuated by a factor of c2j when the first pulse is turned on as
opposed to when it is off. In praxis, the Rabi frequencies for each ENDOR-line
must be known to produce correct π-pulses. In some cases, that measurement
is imprecise and Rabi frequencies are not well known. As a result of this and
other pulse errors, some variation of the attenuation factor can be expected. In
any case, the attenuation factor can be made large by saturating a line at the
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Figure 4.13: TRIPLE pulse sequence for assignment of the ENDOR transition
lines to different mS . A saturation pulse is applied to a selected transition
Lj and an inversion pulse is scanned across the frequency spectrum. Lines
unaffected by the saturation pulse belong to a different mS than Lj .

outer extremes of the spectrum. Figure 4.14 compares the ENDOR spectrum
from Figure 4.12 with the corresponding TRIPLE spectrum.
The saturation pulse of the TRIPLE sequence was applied to the line number
18. To save measurement time, the second pulse was only scanned through
170 kHz-wide regions around the ENDOR lines. The spectra were fitted with
the real part of a Lorentzian line shape:

A =
a0

1 + (ν0 − ν)2/(∆ν/2)2
(4.40)

where a0 indicates line amplitude, ν0 line position, and ∆ν line width. Line
intensities were obtained by multiplying line intensity and line width a0 ∆ν.
Table 4.2 summarizes the results. The measurement clearly separates the two
line sets belonging to the two electron spin states mS , although it does not
indicate to which mS each set belongs. This result can be used as one test of
any model of the ENDOR spectra, as it must produce the same mS-sets.

line 1 2 5 7 9 10 14 15 17
r 0.97 0.99 0.97 0.98 0.94 0.87 0.98 0.99 0.96

line 3 4 6 8 11 12 13 16 18
r 0.25 0.25 0.48 0.48 0.45 0.45 0.48 0.28 0.07

Table 4.2: Ratios r of line intensities of TRIPLE and ENDOR measurements
for all ENDOR transitions (cf. Figure 4.14). Lines are grouped according to
mS .
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Figure 4.14: Assignment of ENDOR lines to different values of mS by a
TRIPLE measurement. Blue: standard ENDOR spectrum, red: ENDOR spec-
trum after a saturation pulse. The black lines show experimental data, the
colored solid lines indicate fitted Lorentzian line shapes. The saturation pulse
of the TRIPLE sequence was applied to line 18. Lines who’s intensities are
diminished in the presence of the saturation pulse belong to the same electron
spin state mS as line 18. Unaffected lines belong to the other mS-state. For
experimental details see Figure 4.12.
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4.5 Numeric Modeling
of the 10-Spin S-Bus System

Although the simple analytic S-bus model provides qualitative understanding of
the system, detailed quantitative description requires a more elaborate modeling
effort. Because of the nature of the Hamiltonian and the size of the problem,
exact analytic diagonalization is not possible. Therefore, numeric simulation of
the cluster was performed.

4.5.1 Construction and Diagonalization
of the Hamiltonian

Numeric modeling of magnetic properties of the Ce3+-center in CaF2 begins
with the construction of the 210 × 210 matrix representing the Hamiltonian in
Equation (4.19). For operations involving spin component operators, algorithms
described in Appendix C were used. The construction of the Hamiltonian is
done in the laboratory frame of reference in units of MHz. The latter choice is
appropriate, because it is a good compromise between the electron resonance
frequencies of approximately 9.5 GHz and nuclear resonances between 10 MHz
and 20 MHz and avoids very small and very large numbers, thus reducing the
effect of finite precision arithmetics.

4.5.1.1 The Zeeman Terms

First, the Zeeman term for the electron spin is constructed:

HS =
µB

h
S · g ·B0 (4.41)

The g-tensor of the chosen type of paramagnetic center is set up in the crystal
frame of reference (Section 4.3.2) and transformed to the laboratory frame by
the transformation obtained from fitting of EPR spectra (Section 4.3.3):

g(l)
x,y,z = RT

LC g(c)
x,y,z RLC (4.42)

To avoid unnecessary tensor multiplication operations, the local magnetic field
of the electron spin g(l) ·B0 is constructed prior to the addition of the Zeeman
term to the target Hamiltonian.

The calculation of the nuclear Zeeman term

HN =
N∑

i=1

µN

h
gN B0Izi (4.43)

is somewhat simpler. Because the anisotropy of the nuclear spin environment
is contained in the hyperfine contribution, straight forward addition of the ap-
propriate terms to the diagonal components of the total Hamiltonian is used.



76 Chapter 4. Detailed Implementation of the S-Bus Concept with CaF2:Ce

4.5.1.2 The Hyperfine Interaction Term

Construction of the hyperfine term

Hhf =
N∑

i=1

S · ai · Ii (4.44)

requires the knowledge of the hyperfine tensors ai.
A detailed investigation of the hyperfine properties of tetragonal Ce-centers in
CaF2 has been undertaken by Baker et al. [96]. They have used measurements
at field orientations along the crystal axes to obtain the hyperfine tensors com-
ponents from such highly degenerate spectra. Their results are best expressed
in terms of a center frame of reference where the z axis is oriented along the
line connecting the cerium ion and the charge-compensating fluorine. For the
z-center, this coincides with the crystal frame as shown in Figure 4.6. The
nuclei are divided in three layers: I with the spins I1 – I4 , II with I5 – I8 ,
and III with I9 . The hyperfine tensors within each layer are connected through
simple π/2-rotations around the symmetry axis. Due to lattice distortion by
the charge-compensating fluorine, there is no simple correspondence between
the values for layers I and II. The form of the hyperfine tensors as required by
site symmetry is

a(I,II) =



a1 a2 a4

a2 a1 a4

a5 a5 a3


 , a(III) =



a1 0 0
0 a1 0
0 0 a3


 , (4.45)

The values of parameters ai as reported in [96] are summarized in Table 4.3.

layer a1 a2 a3 a4 a5

I 2.04 0.95 −5.88 6.25 10.26
II 0.52 −0.56 0.56 −5.70 −9.89
III −1.20 0.00 19.36 0.00 0.00

Table 4.3: Hyperfine parameters of the next-neighbor 19F nuclei in CaF2:Ce
reported in [96]. For layers I and II the numbers provided here are valid for
spins I1 and I5 respectively. The tensors for the other sites can be obtained
through rotations (see text). Values in MHz.

The hyperfine term in Equation (4.44) can thus be calculated. Its construction is
computationally intensive because the hyperfine tensors given in Equation (4.45)
in the center frame must be transformed to the laboratory frame and, in this
form, have no vanishing elements. Therefore, for each nuclear spin j, nine
expressions of the form Sk akl Ilj must be evaluated, where Cartesian operator
components Sk and Ilj are represented by 210× 210-matrices. Again, the use of
algorithms in Appendix C reduces the execution time for this stage by a factor
of 20-30 with respect to full matrix multiplication.

4.5.1.3 The Dipole-Dipole Coupling Term

The most computationally expensive contribution are the dipole-dipole cou-
plings between the nuclear spins which also represents the weakest interaction
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on the scale of a few kHz.

Hdd =
N∑

i<j

Ii ·Dij · Ij (4.46)

The dipolar tensors of Equation (4.24):

(Dij)kl =
µ0

4πr30
hγ2

F (δkl − 3rkrl) (4.47)

depend on the internuclear vector r who’s components are calculated in the
crystal frame from nuclear spin coordinates. For the z-center, these coordinates
are given in Table 4.4. Coordinates for the other centers are given by rotations
around the [111] direction as described in Section 4.3. The dipolar tensors Dij

r1 = a0 (( 1, 1, 1) + ε ( 1, 1,−1)) , r5 = a0 ( 1, 1,−1)
r2 = a0 ((−1, 1, 1) + ε (−1, 1,−1)) , r6 = a0 (−1, 1,−1)
r3 = a0 ((−1,−1, 1) + ε (−1,−1,−1)) , r7 = a0 (−1,−1,−1)
r4 = a0 (( 1,−1, 1) + ε ( 1,−1,−1)) , r8 = a0 ( 1,−1,−1)

r9 = a0 ( 0, 0, 2)

Table 4.4: Positions of the nine next-neighbor nuclear spins in CaF2:Ce for
a z-center. 2 a0 = 0.273 nm is the fluorine-fluorine distance in an undistorted
CaF2 lattice, ε = 0.09 is the distortion in the fluorine positions in layer I
caused by incorporation of the interstitial charge-compensating fluorine. For
more details see [96].

are constructed in the crystal frame and transformed to the laboratory frame,
as described above for the g-tensor. This is followed by the tensor multiplication
of the appropriate nuclear spin operators. Addition of this term concludes the
construction of the total Hamilton operator H(l) in the laboratory frame of
reference.

4.5.1.4 Diagonalization of the Hamiltonian

For diagonalization of the Hamiltonian, the routine zheevr8 from the standard
LAPACK [99] package was used. The result is the list Λ of the 1024 eigenvalues
of the system. They represent the energies of the eigenstates of the system
in frequency units. The eigenvectors corresponding to these eigenvalues are
returned in the matrix V such that

H(l) = V †H(d) V (4.48)

With the Hamiltonian represented in the eigenbasis by the empty matrix with
the eigenvalues λj placed on the main diagonal:

(
H(d)

)
jk

= λj δjk (4.49)

Incidentally, Equation (4.48) means that the rows of V are eigenvectors of H(l).
8This routine solves eigenvalue problems of complex double precision Hermitian matrices

using “Relatively Robust Representations”.
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4.5.2 The Fictitious Eigenframe Hamiltonian

In its diagonal form, the Hamiltonian is representable by a linear combination
of the z-component operators of the form:

H(d) =
∑

q

aq

∏

j∈q

Izj
(4.50)

Here, Izj
stands for the electron spin or any nuclear spin and q is a set containing

between one and ten spin indices. Different parts of this Hamiltonian represent
different properties of the spin system. For instance, the term

H(d)
S ≈ a0 Sz (4.51)

represents the Zeeman interaction of the electron spin modified by the coupling
to the nuclear spins. The precession frequency is then given by the coefficient
a0.
Because the hyperfine couplings are in the same order of magnitude as the
Zeeman energy of the nuclear spins and much larger than dipolar couplings
between the nuclear spins, the transition frequencies of the nuclear spins will be
approximately given by

H(d)
Nj
≈ (aj + a0,jSz) Izj (4.52)

Another property, important for the use of the cluster for quantum computing,
is the strength of the coupling between two nuclear spins:

H(d)
jk = (aj,k + a0,j,kSz+

a1,j,kIz1 + · · ·+ a9,j,kIz9+
al,m,j,kIzl

Izm + · · ·
a0,l,m,j,kSzIzl

Izm + · · · ) IzjIzk
(4.53)

This representation demonstrates a very interesting fact: Even when the direct
dipolar coupling between spins j and k vanishes, there still remains a dipolar-like
spin-spin interaction mediated by the electron spin and to a much lesser degree
by the remaining nuclear spins. These indirect contributions may increase or
diminish the total spin-spin coupling. This feature is already a demonstration
of the “bus”-role which the electron spin assumes in the S-bus arrangement.
Direct calculation of all these properties requires the ability to represent the
diagonal Hamiltonian in the form of Equation (4.50). This, in turn, requires the
knowledge of the operators Izj in the eigenframe, which is not readily available.

4.5.3 The Sorting Problem

Mathematically, the order in which the eigenvalues and eigenvectors are re-
turned by the computation is arbitrary. Equation (4.48) is still valid, when any
two rows of the matrix V are exchanged, provided the correspondence between
eigenvectors and eigenvalues is preserved. The LAPACK routine zheevr returns
the eigenvalues in ascending order.
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The eigensystem of the Hamiltonian is defined by its relationship with the
Hamiltonian expressed in the laboratory frame (Equation (4.48)). This relation
is, in turn, defined by the matrix V . One would like to probe the properties
of the system in connection with the spins of which it is composed. Consider,
for instance, a transition of the nuclear spin number seven from the state “spin
up” to “spin down”. Which eigenvalues belong to the two states participating
in this transition?
In order to answer this question, it would be important to be able to define the
Iz7-operator in the eigenframe. Because the eigenvectors are returned “scram-
bled” by the computational routines, this is a non-trivial task. The following
example [91] illustrates the problem.
Consider a simple two-spin Hamiltonian given in units of Hz:

H = 4 Ix1 + 2 Iz2 (4.54)

Since the part pertaining to the second spin is already diagonal, it is easy to
construct a transformation which diagonalizes the first part and therefore the
entire Hamiltonian:

Va = exp (i θ Iy1) =
1√
2




1 0 1 0
0 1 0 1
−1 0 1 0
0 −1 0 1


 , for θ = π/2 (4.55)

The rows of Va are the eigenvectors of the Hamiltonian. The eigenvalues are
obtained by transforming H to its eigenframe:

H(d)
a = VaH V †a =




3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3


 (4.56)

Now, consider the result of the transformation of base operators from the labo-
ratory frame to the eigenframe:

I(d)
z1

= Va I(l)
z1
V †a = −I(e)

x1
and I(d)

z2
= Va I(l)

z2
V †a = I(e)

z2
(4.57)

As one can see, properties attached to any spin in the laboratory frame remain
connected to that same spin and only to that spin in the eigenframe. The
quantization axes of the two spins are I(e)

x1 and I(e)
z2 . This means, that the spin

component operator representation for a given spin can be constructed in the
eigenframe by the simple tensor multiplication of a Pauli matrix with the unit
matrices in appropriate order (see Appendix B).
A numeric solution of the same problem (here done in Mathematica) produces
the following eigenvectors and eigenvalues:

Vn =
1√
2




0 −1 0 1
1 0 1 0
1 0 −1 0
0 −1 0 −1


 (4.58)
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and

H(d)
n =




−3 0 0 0
0 3 0 0
0 0 −1 0
0 0 0 1


 (4.59)

Notice, that the eigenvalues and up to a sign the eigenvectors are the same as
above, only their order is different. This has a dramatic effect on the transfor-
mation properties of the spin component operators:

I(d)
z1

= Vn I(l)
z1
V †n = 2 I(e)

x1
I(e)
x2
, and I(d)

z2
= Vn I(l)

z2
V †n = −2 I(e)

z1
I(e)
z2

(4.60)

The simple correspondence between the spin operator bases in the laboratory
frame and in the eigenframe is lost. Since no inter-spin coupling is present
in the Hamiltonian, this mixing of the Hilbert spaces of the constituent spins
is entirely artificial. In the case of the S-bus Hamiltonian, with its strong
coupling contributions, the eigenstates are, of course, expected to be mixed
to some degree. In particular, states of the nuclear spins will have significant
contributions from the electron spin. This further complicates the task of finding
the quantization axes.
Furthermore, due to strong anisotropies of the interaction tensors, there is no
single quantization axis for all spins. In general, each spin will be quantized
along its own direction which is different from that of all other spins. This
further aggravates the problem of extracting useful information from the diag-
onalized Hamiltonian.
Reordering of the eigenvectors can be represented by a sorting matrix S such
that

SH(d)
n ST = H(d)

a and S Vn = Va (4.61)

For the example above, such a matrix is readily given:

S =




0 1 0 0
0 0 0 −1
0 0 −1 0
1 0 0 0


 (4.62)

In the case of a large spin system with strong couplings, finding the appropriate
sorting matrix is a non-trivial task. I am not aware of any general solution
to this problem, as I was unable to locate any reference to this problem at
all. One possible attempt at a solution might be to sort the eigenvectors such
that their elements of the largest magnitude are located on the diagonal of the
transformation matrix V . Another possibility is to scale the interaction parts
of the Hamiltonian starting at very small values and track the energy levels,
the latter approach being a very elaborate procedure. Yet another approach
would be to transform base operators from the labframe to the eigenframe and
“round” their elements to 0 or ±1/2. This might work, if the mixing of states
due to coupling is not too strong.

4.5.4 ENDOR Spectrum

The first interesting piece of information which can be learned from the diagonal
Hamiltonian are the transition frequencies of the nuclear spins. Experimentally
they comprise the ENDOR spectrum of the cluster as described in Section 4.4.
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All of the possible (N −1)N/2 = 523776 differences between the energies of the
eigenstates of the system constitute potential transition lines in the spectrum.
Most of these transitions are forbidden by selection rules. To calculate the
transition probabilities, the transition operator must be constructed. Since the
proper form of the transition operators in the eigenframe is not available, the
construction begins in the laboratory frame of reference:

T (l) =
N∑

j=1

I(l)
+j

(4.63)

T (l) is then transformed to the eigenbasis of the Hamiltonian by

T (d) = V T (l) V † = V




N∑

j=1

I(l)
+j


 V † =

N∑

j=1

I(d)
+j

(4.64)

The probability of a transition between two levels j and k is now given by the
modulus squared of the matrix element

wjk ≈
∣∣∣∣
(
T (d)

)
jk

∣∣∣∣
2

(4.65)

Equation (4.65) would provide exact transition probabilities, if I(d)
+j

were strictly
perpendicular to the quantization axes of the spins, which is not necessarily the
case.
It is possible to construct the spectrum by placing at every energy difference a
Lorentzian line weighted by the corresponding transition probability. Since the
line shape and amplitude of the ENDOR lines is of little interest at this point,
it is sufficient to select transitions with probabilities above a certain threshold.
The procedure above reproduces the entire ENDOR spectrum at once. In order
to be able to assign lines to particular fluorine sites and mS-values the following
transition operator can be used:

T±j =
(

1
2
I0 ± S(e)

z

)
I(d)
+j

(4.66)

Because only the transition operator for a single nuclear spin j is taken from
the laboratory frame to the eigenframe:

I(d)
+j

= V I(l)
+j
V † (4.67)

only transitions for that spin will be found by T±j . The use of the electron spin
operator Sz defined directly in the eigenframe selects transitions belonging to
mS = ±1/2. This choice is justified, because the electron Zeeman interaction
by far dominates the Hamiltonian and the state of the electron spin is very
weakly affected by the nuclear spins. Thus, selecting a spin site and a value
for mS and repeating the procedure above, produces a single ENDOR line for
each combination. Figure 4.15 shows a “stick” spectrum obtained in this way
for wjk > 10−3. Clearly, the numeric solution of the Hamiltonian is in good
agreement with the experimental data.
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Figure 4.15: Exact numeric simulation of the ENDOR spectrum in CaF2:Ce.

Black: experimental data, red: calculated nuclear Larmor frequencies ν
(mS)
0j

for mS = +1/2, blue: for mS = −1/2. The free fluorine resonance frequency
ν0I is indicated by the arrow. Numbers show the corresponding fluorine sites.
Experimental parameters in Figure 4.12.

Variation of the Euler angles defining the coordinate transformation between
the laboratory and the crystal coordinate systems shows that the line positions
are very sensitive to these parameters. This allows the uncertainty in the Euler
angles due to frequent cooling cycles (see Section 4.3.3) to be eliminated by
manually “fitting” the coordinate transformation to a freshly acquired ENDOR
spectrum. The range of angle variation, required to align simulated with the
measured spectra is within 1◦ of the values calculated from the goniometer
reading and parameters obtained from fitting the EPR spectra.

4.5.5 Spin-Spin Couplings

As mentioned in Section 4.5.2, the coupling constants governing the evolution
of two nuclear spins are determined by the through-space dipole-dipole coupling
and an additional indirect contribution arising from the hyperfine interaction of
the two spins with the same electron spin.
According to Equation (4.53), the total coupling can be obtained from the
diagonalized Hamiltonian. However, the quantization axes I(e)

zj are not known
and an approximate calculation of the presumably largest contribution can be
attempted by using the I(l)

z -operators transformed to the eigenframe:

D±jk ≈
tr

{
H(d)

(
1
2I0 ± S(e)

z

)
S(e)

z I(d)
zj I(d)

zj

}

tr
{((

1
2I0 ± S(e)

z

)
S(e)

z I(d)
zj I(d)

zk

)2
} (4.68)

Notice, that due to the indirect contribution, the coupling strength between
two nuclear spins depends on the state (mS = ±1/2) of the electron spin.
Because of the dominant electron spin Zeeman term in the Hamiltonian, the
quantization axis of the electron spin can be approximated by the Sz-operator
in the eigenframe.
To compare the simulation with the experimental findings, spin-spin coupling
constants were measured for all possible spin pairs for both values of mS . The
two measurement methods used were double spin locking and SEDOR (see



4.5. Numeric Modeling of the 10-Spin S-Bus System 83

I1 I2 mS = −1/2 mS = +1/2
locking SEDOR simulation locking SEDOR simulation

1 2 3.6 3.3 3.4 5.8 5.3 5.9
1 3 - - 1.0 2.4 2.2 2.5
1 4 2.7 - 2.6 2.0 1.7 1.7
1 5 - 3.5 0.6 10.2 10.7 3.9
1 6 - - 2.0 - - 3.5
1 7 5.0 4.9 0.7 - - 2.4
1 8 3.6 - 0.4 2.8 3.0 0.3
1 9 - - 1.0 - - 0.5
2 3 - - 0.5 7.8 7.6 7.3
2 4 - - 1.7 2.2 2.0 2.0
2 5 - - 1.8 - - 2.1
2 6 4.5 - 4.6 16.6 3.8 5.9
2 7 - - 0.0 4.3 3.9 3.3
2 8 - - 1.6 - - 0.7
2 9 4.8 4.2 4.3 - - 1.2
3 4 5.0 4.9 5.0 - - 0.2
3 5 - 9.0 4.1 - - 3.7
3 6 - - 1.0 4.4 4.2 4.5
3 7 - 3.8 1.7 - 4.4 6.9
3 8 4.5 3.9 3.0 2.5 2.1 1.7
3 9 - - 2.2 9.8 10.2 8.1
4 5 3.6 - 0.6 3.5 3.4 0.3
4 6 3.8 - 1.0 2.2 - 0.7
4 7 2.8 2.8 1.4 3.5 3.4 0.3
4 8 - - 2.1 - - 3.7
4 9 - - 4.4 19.3 19.4 6.6
5 6 4.2 3.7 3.9 10.3 11.0 10.5
5 7 - - 0.7 5.0 5.2 5.0
5 8 2.6 2.8 2.5 2.6 2.9 2.4
5 9 2.3 2.4 2.8 - - 1.0
6 7 3.1 3.0 2.8 6.3 6.3 6.1
6 8 - 2.0 1.9 1.3 - 1.1
6 9 - - 0.5 - - 0.6
7 8 6.6 6.5 6.7 3.8 3.8 3.7
7 9 - - 3.0 - - 0.0
8 9 - - 1.6 - - 1.2

Table 4.5: Comparison of measured and numerically simulated spin-spin cou-
plings (all values in kHz). The couplings were measured with two different
methods: double spin locking and SEDOR. These methods are explained in
detail in Chapter 5. Dashes indicate measurements where no oscillation was
observed. The simulated values correspond to the sample orientation given in
Figure 4.12 and include both the dipole-dipole and the indirect interactions.
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Chapter 5 for experimental detils). Some of the measurements did not pro-
duce transients with a clearly recognizable oscillation. This does not necessarily
mean, that the coupling between the spins involved is negligible. The ampli-
tude of the oscillation depends on the details of the electron spin preparation
sequence. Therefore, a negative result may be due to a too small amplitude.

Table 4.5 presents the measured and computed values. As can be seen, there
is some agreement between the experimental findings and the results of the
simulation. However, in several cases the discrepancy is very large. Apparently,
the approximation in Equation (4.68) is not very good. Until a procedure for
finding the quantization axes of nuclear spins is available, the spin-spin couplings
can only be reliably obtained by measurement.

4.5.6 Computation Time

A note on the computational time required for the calculations described in this
section is due. The calculations were performed on a 1.5 GHz Intel Pentium M
processor with 512 MB RAM. Program was compiled using the Intel C/C++
Compiler for Linux version 9.0. The Basic Linear Algebra Subroutines (BLAS)
and Linear Algebra Package (LAPACK) were provided by Intel Math Kernel
Library (MKL) for Linux version 7.2.1.

The running times measured for some subtasks of the numeric modeling are
listed in Table 4.6. As one can see, a set of simulations can be performed on

general complex matrix-matrix multiplication zgemm < 8 s

construction of the electron Zeeman term HS : < 1 ms

construction of the nuclear Zeeman terms HN : 4 ms

construction of the hyperfine terms Hhf : 21 s

construction of the dipolar terms Hdd: 84 s

diagonalization of the Hamiltonian: 29 s

computation of the ESR spectrum: 15 s

computation of the total ENDOR spectrum: 15 s

computation of site and mS selective ENDOR spectrum: 129 s

Table 4.6: Computation times for the different parts of numeric modeling of
the paramagnetic center in CaF2:Ce.

modest hardware in under 5 minutes. Simulations of pulse sequences below can
take some 30 s per point depending on the number of matrix multiplications
required and on whether diagonalization must be performed in the inner loop.
Computational cost for more elaborate simulations, however, e.g., for fitting of
the angular dependence, is prohibitive. On the other hand, there is certainly
room for improvement in the numeric procedures used.



4.6. Simulation of Pulse Experiments 85

4.6 Simulation of Pulse Experiments

Because of the difficulties described in Section 4.5.3 many interesting properties
of the S-bus cluster are not directly deducible from the diagonalized Hamilto-
nian. Thus, to gain this information, simulations of actual experiments (i.e.,
application of pulse sequences) must be performed.

4.6.1 Transformation to the Rotating Frame of Reference

Direct use of the diagonalized Hamiltonian is not feasible for use in simulations
of pulse experiments, because the time scales involved span six orders of mag-
nitude: The evolution under the electron spin Zeeman term happens at nearly
10 GHz, the evolution under the hyperfine and nuclear Zeeman interaction at
10 − 20 MHz, and the evolution under nuclear spin-spin couplings at less than
10 kHz. Thus, the evolution of the electron spin would need to be sampled
at at least 0.1 ns. Since an observation of the evolution under spin-spin cou-
plings takes milliseconds, such a simulation would require at least 107 steps each
potentially taking tens of seconds on commodity hardware.
To avoid such problems, virtually all computations (analytic and numeric) in
Magnetic Resonance are done in the rotating frame of reference where the fast
oscillation due to the Zeeman term is eliminated.

4.6.1.1 Standard Treatment

The task of removing the time dependence from the Hamiltonian is achieved by
a time dependent transformation Ur(t) which shall be specified below. In the
moving frame of reference an arbitrary unitary operator U(t) and the Hamilto-
nian H are given by

Ũ = U†r U and H̃ = U†r HUr (4.69)

As a corollary, the Hamiltonian governing the evolution of the transformed
operator Ũ is derived first. The equation of motion for U is given by

U̇(t) = −iHU(t) (4.70)

Using Equation (4.69), it is found that

˙̃U = ˙̃U†r U + U†r U̇

= U̇†r U − i U†r HU
= U̇†r UrŨ − i U†r HUr Ũ

= −i
(
i U̇†r Ur + U†r HUr

)
Ũ

= −i H̃ Ũ

(4.71)

Thus, in the moving frame, the equation of motion for operators has the same
form as Equation (4.70) if the Hamiltonian is replaced by

H̃ = U†r HUr + i U̇†r Ur (4.72)
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Incidentally, the second term is analogous to the pseudo-forces appearing in a
non-inertial frame of reference in mechanics.
Now, consider a typical Magnetic Resonance Hamiltonian

H = ω0 Sz + ω12 cos(ωt+ ϕ)Sx = H0 +H1 (4.73)

where H0 represents the Zeeman interaction and H1 an alternating magnetic
field applied in the x-direction at the angular velocity ω with the phase ϕ. Since
it is the precession of the spin around the z-direction, we wish to compensate
for, an appropriate ansatz for Ur is

Ur = exp (−i ωtSz) (4.74)

The transformed Hamiltonian is then given by

H̃ = U†r (H0 +H1)Ur + i U̇†r Ur

= ω0 Sz

+ ω1 cosϕSx + ω1 sinϕSy + ω1 cos(2ωt+ ϕ)Sx − ω1 sin(2ωt+ ϕ)Sy

− ω Sz

(4.75)

The second term (arising from H1) can be interpreted as follows. The linearly
polarized alternating field in Equation (4.73) can be represented as a superpo-
sition of two counter-rotating circularly polarized fields. In a reference frame
rotating at ω with one of these components, that component is stationary, while
the other component rotates at twice the frequency. If ω1 ¿ ω, ω0, this fast os-
cillating term has little influence on the spin dynamics and can be eliminated
by averaging the Hamiltonian over one rotation period:

¯̃H =
ω

2π

∫ 2π/ω

0

dt H̃ = (ω0 − ω)Sz + ω1(cosϕSx + sinϕSy) (4.76)

This is known as the rotating wave approximation. Its quantum mechanical in-
terpretation is that the counter-rotating component is found at twice the energy
splitting of the Zeeman levels and does not induce transitions between them.
At resonance, when ω = ω0, the Sz-term vanishes. The resulting Hamiltonian
nicely demonstrates how it is possible to apply pulses along any direction in
the xy-plane, although only a single linearly polarized field is experimentally
available. By varying the phase ϕ of the driving field, its orientation in the
rotating frame can be varied.

4.6.1.2 Generalized Transformation to the Rotating Frame

The situation in CaF2:Ce differs in two ways from the standard arrangement
described above. Firstly, due to anisotropy, the quantization axis of the spin is
tilted with respect to the external field B0 resulting in an unknown tilt between
the driving field B1 and the quantization axis. Second, in the eigenframe,
the appropriate operators are not readily available. The transformation to the
rotating frame must, thus, be generalized to suit the present case [91].
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We begin with separating the Hamiltonian of the system in a time-independent
part H0 and a time-dependent part H1 due to the driving field:

H = H0 +H1 (4.77)

where

H1 = ω1 2 cos(ωt+ ϕ) Ix = ω1 f1(t) Ix with f1(t) = 2 cos(ωt+ ϕ) (4.78)

First, the two parts are transformed to the eigenframe:

H(d)
0 = V H0 V

† (4.79a)

H(d)
1 = V H1 V

† = ω1 f1 I(d)
x (4.79b)

I(d)
x = V Ix V

† (4.79c)

Since the quantization axes defines the precession direction of the spin, the
appropriate choice of the transformation operator is the z-component of the
spin in the eigenframe I(e)

z :

Ur = exp(−i ωt I(e)
z ) (4.80)

The rotating frame Hamiltonian can now be calculated according to Equa-
tion (4.72). The constant part of the Hamiltonian is not affected by Ur, because
both have diagonal form:

H̃(d)
0 = U†r H(d)

0 U = H(d)
0 (4.81)

The pseudo-field term is given by

H̃(d)
r = i U̇†r Ur = −ω I(e)

z (4.82)

The time averaged form of the driving Hamiltonian can be found analogous to
Equation (4.76):

¯̃H(d)
1 = ω1

ω

2π

∫ 2π/ω

0

f1(t)U†r I(d)
x Ur

= ω1

(
Q

(c)
1 cosϕ+Q

(s)
1 sinϕ

) (4.83)

Again all terms of the type cosnωt are discarded in the rotating wave ap-
proximation. In the choice of Q(c,s)

1 , it is important to consider that only the
components perpendicular to the quantization axis of the spin do contribute to
the dynamics. Components along the quantization axis only modulate the level
separation. This results in the following construction:

Q
(s)
1 = −i [I(e)

z , I(d)
x ] (4.84a)

Q
(c)
1 = −i ei π

2 I(e)
z [I(e)

z , I(d)
x ]e−i π

2 I(e)
z (4.84b)

The rotating frame Hamiltonian is now given by

H̃(d) = H(d)
0 − ω I(e)

z + ¯̃H(d)
1 (4.85)
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with
H̃(d)

0 = H(d)
0 − ω I(e)

z (4.86)

representing the diagonalized system Hamiltonian in the rotating frame in the
absence of a driving field, and ¯̃H(d)

1 representing the effect of the irradiation.
The resonance condition is found by setting the frequency of excitation to the
Larmor frequency of the spin:

ω =
tr

(
H(d)

0 I(e)
z

)

tr
(
I(e)
z I(e)

z

) (4.87)

This entire discussion presumes that the operator I(e)
z which defines the quan-

tization axis is known. For the electron spin, Sz
(e) is known to a very good

approximation, because of the dominant electron Zeeman term. For the nuclear
spins, however, that is not the case.

4.6.2 Initial State and Measurement Operators

Experiments, where only the electron spin is directly manipulated and observed
can now be simulated with the use of the approximate quantization axis of the
electron spin Sz. Accordingly, at the Boltzmann equilibrium the electron spin
is aligned along Sz and the initial density matrix is, unless stated otherwise,
given by

ρ(t = 0) = S(e)
z (4.88)

The observation is performed in the laboratory frame of reference with the
measurement operators

M (l)
x,y,z = S(l)

x,y,z (4.89)

Computations are done in the eigenframe of the Hamiltonian, and the measure-
ment operators must be transformed to the that frame:

M (d)
x,y,z = V M (l)

x,y,z V
† , (4.90)

so that the signal amplitude is obtained by

Ax,y,z(t) =
tr

(
M

(d)
x,y,z ρ(t)

)

tr
(
M

(d)
x,y,z M

(d)
x,y,z

) (4.91)

4.6.3 Rabi Oscillations

The simplest pulsed magnetic resonance experiment that actually produces a
result is the observation of the precession of the spin around the effective field
in the rotating frame of reference, i.e., the Rabi precession. The rf is applied
for a period of time t to the Boltzmann equilibrium spin polarization and the
amplitude of the spin components is monitored. The simulation proceeds by
applying

U(δt) = e−iδt H̃(d)
(4.92)
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with H̃(d) defined by Equation (4.85). The density matrix at time t = n× δt is
then given by

ρ(t) = U(δt) ρ(t− δt)U(δt)† (4.93)

Figure 4.16 shows the result of a simulation run with the microwave amplitude
(cf. Equation (4.85)) corresponding to ω1/2π = 37 MHz. The first observation
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Figure 4.16: Simulation of the Rabi oscillation of the electron spin in CaF2:Ce.
Top: Time trace. Red, green, and blue indicate the Ax, Ay, and Az respectively.
Bottom: Detail of the time trace. Vertical lines indicate durations of π/2- and
π-pulse.

is that the starting values of the transverse components Ax,y are not zero and
the starting value of Az is not one. This is explained by the fact that the quan-
tization axes of the electron spin is tilted with respect to the z-direction of the
laboratory frame, such that the initial electron spin state has a non-vanishing
component in the xy-plane in the laboratory frame. The second interesting find-
ing, is that the Rabi oscillation is modulated by a complicated envelope. This
is the result of evolution under the z-part H(d)

0 of the rotating frame Hamilto-
nian in Equation (4.85). To verify this conjecture, a simulation run with the
“δ-pulse” settings has been done.
The “δ-pulse” approximation in Magnetic Resonance is used, when, in the rotat-
ing frame, the precession under the driving microwave field is much faster than
any evolution under the rest of the Hamiltonian. Here, this situation was im-
plemented by excluding H(d)

0 from H̃(d). In this case, the Rabi oscillation shows
no envelope modulation, as expected. A direct comparison of the measured and
simulated evolution under H(d)

0 is presented below.
The Rabi simulation was also used to calibrate the evolution time for pulses
required for other simulations. In accordance with the experimental practice,
the duration of a π/2-pulse was adjusted such that the Sz-component vanishes
at the end of the pulse. For a π-pulse, the first maximum of Sz was taken as
indicated in the figure.
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4.6.4 Pulse and Free Evolution Propagators

Magnetic Resonance experiments consist mostly of applying rf or microwave
pulses and periods of free evolution to spins and observing the resulting magne-
tization. The rotating frame Hamiltonian in Equation (4.85) together with the
simulation of the Rabi precession in the previous section allow one to construct
the appropriate propagation operators.
To obtain a π/2-pulse, for instance, the full Hamiltonian in Equation (4.85)
is applied for a time tπ/2 which was calibrated by the Rabi simulation. The
direction of the pulse can be selected by setting ϕ in Equation (4.78) accordingly.
A value of ϕ = π/2, for example, produces a pulse in y-direction. Summarizing,
the propagator for π/2-pulse in y-direction is thus given by

Px

(π
2

)
= e−itπ/2 H̃(d)(ϕ=π/2) (4.94)

Pulses with other rotation angles and rotation axes are obtained analogously.

During the free evolution, the driving field B1 is off and ¯̃H(d)
1 must be omitted.

The propagator is fully determined by the diagonalized system Hamiltonian:

U(t) = e−it H̃(d)
0 (4.95)

All pulse sequence simulations discussed in the following use these propagators.

4.6.5 Free Induction Decay

The free induction decay (FID) is observed, when the magnetization initially has
a non-vanishing component perpendicular to the quantization axis and is allowed
to evolve freely. Common mechanisms for the decay of the magnetization include
decoherence due to field inhomogeneities and interactions with other magnetic
moments as well as relaxation due to spin-lattice infraction.
As above, the simulation starts with the density matrix oriented along the quan-
tization axis of the electrons spin:

ρ(0) = Sz (4.96)

A π/2-pulse in y-direction followed by a period of free evolution is applied
according to (in Liouville notation)

|ρ(t)) = U(t)Py

(π
2

)
|ρ(0)) (4.97)

As t is incremented, the values of Ax,y,z are computed according to Equa-
tion (4.91).
Figure 4.17 shows the result of such a run. As expected after a π/2-pulse in y-
direction, the spin is oriented close to the x-direction. The deviation is caused
by the tilted quantization axis. For the same reason, the baseline after the
decay is not zero but has finite values for the transverse spin components and a
different finite value for the z-component.
It is not possible to directly measure the FID due to dead-time effects. However,
the time constant of the FID is also found in the rise and fall times of echo
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Figure 4.17: Simulation of the free induction decay of the electron spin in
CaF2:Ce. Red, green, and blue indicate Ax,y,z respectively. Time t = 0 cor-
responds to the end of the pulse. The insets show the pulse sequence and the
initial decay in detail.

signals. The simulated value of around 15 ns is in good agreement with the
experimentally observed echo widths. This indicates that the FID of the electron
spin is, in fact, determined by the hyperfine interaction with the nuclear spins
of the S-bus cluster. Notice, that no dissipative relaxation is present in the
simulation. True decoherence would require the interaction of the simulated
spin system with an external bath.
Conceptually, one could consider only the electron spin and treat the nuclear
spin as such a bath. The simulation demonstrates impressively, how a bath with
only nine nuclear spins can produce an almost total decoherence of the electron
spin. However, the small bath size and the coherent nature of the simulation
is still found in the partial recovery of the electron spin magnetization during
further evolution. Because the “decay” is entirely due to the redistribution of
the polarization among the linear and product terms in the cluster, such as Izj ,
IzjIzk

, IzjIzk
Izl

, and so on, the coherence bounces around the spin system due
to the evolution of these terms under the various interactions. Occasionally, this
produces partial refocussing of one of the linear terms, in this case Sz.

4.6.6 Electron Spin Echoes

There is a whole class of pulse sequences designed to deliberately recover the
magnetization after the decay caused by different types of decoherence. They
are collectively referred to as spin echo sequences. To demonstrate, that the
simulation does reproduce spin echoes, results of simulating two pulse sequences
are presented in this section.
The first is the time-honored Hahn echo sequence. It can be shown, that under
most circumstances, any two pulses will produce an echo. The Hahn echo



92 Chapter 4. Detailed Implementation of the S-Bus Concept with CaF2:Ce

sequence is conceptually the easiest. It consists of a π/2-pulse in y-direction
followed, after a period of free evolution τ , by a π-pulse in x-direction. After
another period of τ an echo in x-direction appears. The sequence and the
simulation result are shown at the top in Figure 4.18. The bottom of the figure
shows the result for a sequence consisting of two identical π

2 |y-pulses separated
by τ . Again the echo is expected at time τ after the last pulse. Latter sequence
is relevant as a precursor to the simulation described in Section 4.6.7.

Both simulation runs reproduce the features one would expect from the corre-
sponding experiments. Pronounced echoes are found at the expected positions.
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Figure 4.18: Simulation of electron spin echoes in CaF2:Ce. Gray vertical
lines indicate the time τ after the last pulse. Top: Hahn echo sequence with
τ = 1.2 µs. Bottom: Echo sequence with two identic π/2-pulses and τ =
1.23 µs. Red, green, and blue correspond to Ax,y,z respectively. Time t = 0
corresponds to the end of the last pulse.



4.6. Simulation of Pulse Experiments 93

For the Hahn sequence the echo is expected to appear in the x-direction. This
can be seen by setting τ = 0 and considering the effect of the two pulses on a
magnetization along z. Analogously, the “two-pulse” sequence should produce
an echo along x̄. The initial FID after the last pulse is reproduced in both cases
and is more pronounced in the “two-pulse” run. As already seen in the case of
the FID, the coherent evolution produces spurious peaks at different times.
Together, the two simulations show that the numeric model is capable of repro-
ducing the formation of spin echoes. Significant magnetization can be recovered
even after relatively long evolution times. Also, the amplitude of the echo de-
pends strongly on τ via the evolution under the interactions contained in H̃(d)

0 .

4.6.7 Electron Spin Echo Envelope Modulation

In most spin echo experiments the echo amplitude depends in various ways on
the interactions present in the Hamiltonian. By varying different time param-
eters in the pulse sequence, it is possible to record the envelope of the echo
depending on those parameters. This technique of Electron Spin Echo Envelope
Modulation (ESEEM) [100, 101] can be used to experimentally probe aspects
of the system Hamiltonian. Here, an ESEEM experiment is used to test the
numeric model of the S-bus cluster against a non-trivial measurement.
The pulse sequence used for ESEEM is shown in Figure 4.19. It begins with

t
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π
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τS

y
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tD

y

π

2

τS

Figure 4.19: Stimulated echo sequence used for electron spin echo envelope
modulation measurements and simulations in CaF2:Ce.

two π
2 |y-pulses separated by the time τS . After an evolution time of tD, a third

π
2 |y-pulse is applied. An echo along x is formed at the time τS after the third
pulse. This is also known as the stimulated echo [93, 102]. In the simple case
of a single electron spin S = 1/2 and a single nuclear spin I = 1/2, the echo
amplitude is given by [33,103]

S(tD) = S0 + C+ cos(ω+tD) + C− cos(ω−tD)
+ S+ sin(ω+tD) + C− sin(ω−tD)

(4.98)

with

S0 =
1
4

(
1 + sin2 ϑ

(
1 +

1
2

(cos(ω−τS) + cos(ω+τS))
))

C± =
1
8

sin2 ϑ cos(ω±τS) (1− cos(ω∓τS))

S± =
1
8

sin2 ϑ sin(ω±τS) (cos(ω∓τS)− 1)

(4.99)

The parameters ω± represent the ENDOR frequencies of the nuclear spins, while
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ϑ is a measure of the anisotropy of the hyperfine interaction:

ω2
± =

(
Axz

2

)2

+
(
Ayz

2

)2

+
(
ω0I
±

(
Azz

2

))2

sinϑ =

(
A2

xz +A2
yz)

)
ω2

0I

ω2−ω2
+

(4.100)

where Ajk are components of the hyperfine tensor and ω0I
is the Larmor fre-

quency of the free nucleus. The experiment consists of recording the echo am-
plitude as a function of tD. Thus, according to Equation (4.98), the power-
spectrum will contain the same two lines corresponding to mS = ±1/2 as the
ENDOR spectrum. The line amplitude will depend on the orientation of the
hyperfine tensor and the time τS .
In the case of the S-bus cluster with nine strongly coupled nuclear spins, there
should be 18 transitions. Because of the dependence on τS , the ESEEM spec-
trum would have to be integrated over τS to produce the ENDOR spectrum.
However, for any given τS most of the ENDOR lines should be visible in the
ESEEM spectrum, even though amplitudes would deviate.
Figure 4.20 shows the result of the measurement. The echo envelope modulation
was sampled for 8192 points at time increments of δtD = 4 ns. The time trace
exhibits a decay with the time constant of around 25 µs which is three orders
of magnitude longer than in the case of the FID. The corresponding power-
spectrum does, in fact, contain almost all of the lines of the ENDOR spectrum.
The latter is indicated for the same orientation by the gray vertical lines. One
ENDOR line is missing in the ESEEM spectrum in each, the third and the
fourth line group. The mixing time for this experiment was τS = 352 ns.
This explains, why the nuclei with weak hyperfine couplings produce the most
pronounced lines.
Results of a simulation of the same experiment are shown in Figure 4.21.
Notice that the simulation can not be expected to reproduce the measurement
in all details for two reasons: The simulation does only include the nine nuclei
belonging to the cluster and does not consider the next-to-next and further
removed neighbors with weaker hyperfine couplings. Neither, does it account
for the effects of relaxation. However, all ENDOR lines except for two in the
fourth group are reproduced very well. Also, the relative weights of the four
groups are roughly the same as in the experiment.

The ESEEM simulation together with the simulations of the FID and spin echoes
shows that the numeric model does describe most aspects of the evolution of
the electron spin in the S-bus cluster in CaF2:Ce reasonably well. Also, the
assumption underlying the choice of the quantization axes of the electron spin
in Section 4.6.1 is justified by these results post factum.
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Figure 4.20: Envelope modulation measurement of the stimulated echo of
the electron spin in CaF2:Ce. Top: Time trace of the echo amplitude vs.
evolution time tD. Center: Powerspectrum. Vertical gray lines indicate line
positions in the measured ENDOR spectrum for this orientation. Bottom:
Detail of the spectrum in the regions of the four line groups of the ENDOR
spectrum. See Figure 4.19 for the pulse sequence (τS = 352 ns) and Figure 4.21
for corresponding simulation.
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Figure 4.21: Simulation of the electron spin simulated echo envelope mod-
ulation in CaF2:Ce. Top: Time trace of the echo amplitude vs. evolution
time tD. Center: Powerspectrum. Vertical gray lines indicate line positions
in the measured ENDOR spectrum for this orientation. Bottom: Detail of
the spectrum in the regions of the four line groups of the ENDOR spectrum.
Pulse sequence is shown in Figure 4.19 (τS = 352 ns). Notice, that the ori-
entation used for this simulation is slightly different from the one used in the
corresponding measurement in Figure 4.20.
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4.7 Detailed Evolution of
Density Matrix Components

Because it is difficult to find the quantization axes of the nuclear spins, a sim-
ulation of the evolution of the density matrix under pulse sequences involving
the nuclear spins is not feasible. Even if the simulation were doable, experi-
ments would still be needed to verify it. In addition, the measurements detailed
below can be used to obtain values of parameters entering quantum computing
experiments and the theoretical description of the S-bus.

4.7.1 Multi-Quantum ENDOR and PPS Preparation

4.7.1.1 Phase Encoding of the Nuclear Spin State (MQE)

As mentioned in Section 4.1, the detection of the nuclear spin state through
the electron spin affords a large sensitivity enhancement. However, the state
of the nuclear spins must be encoded in the state of the electron spin. This
is achieved through a pulse sequence derived from the technique of multiple
quantum ENDOR (MQE) [104–107]. Apart from the basic pulse sequence de-
scribed in this section, a number of variations is used. For simplicity, they are
summarily referred to as “MQE-encoding”.
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Figure 4.22: Pulse sequence for phase encoding of the state of the nuclear
qubits onto the state of the electron spin.

Figure 4.22 shows the the case of two nuclear spins. The electron spin part of
the pulse sequence is made up of the usual S-bus elements: yy-preparation and
yy-detection followed by remote echo detection. The MQE sequence proper, is
applied to the nuclear spins in between . The nuclear part of the density matrix
after the yy preparation sequence U (S) is given by ρyy in Equation (4.10). Since
no transfer between the even and odd products takes place under this pulse
sequence, the reduced form of density matrix can be safely used. Thus, the
prepared density matrix can be written in the form

ρ
(P )
I =

1
4
p0I2 +

1
2
p1Iz1 +

1
2
p2Iz2 + p12Iz1Iz2 (4.101)

where

p0 = 4Q(yy)
0 , p12 = −4Q(yy)

12 , p1 = −4Q(yy)
1 , p2 = −4Q(yy)

2 (4.102)
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with Q(yy)
j defined in Equation (4.14).

After application of the MQE sequence and decay of transient components , the
coefficients of the Iz-terms are modified:

ρ
(D)
I =

1
4
p0I2 +

1
2
p1 cosϕ1Iz1 +

1
2
p2 cosϕ2Iz2 + p12 cosϕ1 cosϕ2Iz1Iz2 (4.103)

The signal depends on the phases ϕj in the following way (cf. Section 4.1.2):

SD = tr
{
ρ(12)

yy ρ
(D)
I

}

=
1
4

(
p2
0 + p2

1 cosϕ1 + p2
2 cosϕ2 + p2

12 cosϕ1 cosϕ2

)

=
1
4

(
p2
0 + p2

1 cosϕ1 + p2
2 cosϕ2 +

1
2
p2
12 cos(ϕ1 − ϕ2) +

1
2
p2
12 cos(ϕ1 + ϕ2)

)

(4.104)

In oder to obtain the sought coefficients pj , pulse phases are varied according
to ϕj = 2πνj tϕ and the signal is sampled for a suitable range of tϕ. A Fourier
transform of this transient will contain four lines L1, ...L4 at the frequencies
ν∆ = ν2 − ν1, ν1, ν2, and νΣ = ν1 + ν2 with the amplitudes 1

2p
2
12, p

2
1, p

2
2, and

1
2p

2
12 respectively. In the parlance of MQE, the lines at ν1 and ν2 belong to

single quantum transitions (1Q) while ν∆ and νΣ arise from null-quanta (0Q)
and two-quanta (2Q) transitions respectively.
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Figure 4.23: Encoding of the state of the nuclear spins on the electron spin
by phase variation. Red and blue indicate the real part and the modulus of
the Fourier transform. The encoding frequencies are ν1 = 2 MHz, ν2 = 6 MHz,
ν∆ = 2 MHz, and νΣ = 10 MHz. Left: MQE-spectrum for the unmodified den-
sity matrix after yy-preparation. Right: MQE-spectrum for a density matrix
after a manipulation of the nuclear spins. Experimental details in Figure 4.25.

An example of such an MQE spectrum is shown on the left in Figure 4.23. As
indicated in the figure, the coefficients pj can be immediately obtained from
the line heights in the spectrum. This provides a kind of a calibration for the
yy-detection sequence.
Once the coefficients of the density matrix produced by an electron spin prepa-
ration sequence (in this case yy) are known, other density matrices can be
tomographed in the same fashion, as long as no conversion between even and
odd products takes place. Suppose, the state of the nuclear qubits is modified



4.7. Detailed Evolution of Density Matrix Components 99

through some one-qubit gates after preparation and the density matrix is now:

ρ̃
(P )
I =

1
4
q0 I2 +

1
2
q1 Iz1 +

1
2
q2 Iz2 + q12 Iz1Iz2 (4.105)

When the MQE sequence is applied to such a state, its density matrix becomes

ρ̃
(D)
I =

1
4
q0 I2 +

1
2
q1 cosϕ1 Iz1 +

1
2
q2 cosϕ2 Iz2 + q12 cosϕ1 cosϕ2 Iz1Iz2 (4.106)

Analogously to Equation (4.104) the signal will be given by

SD = tr
{
ρ
(P )
I ρ̃

(D)
I

}

=
1
4

(p0q0 + p1q1 cosϕ1 + p2q2 cosϕ2 + p12q12 cosϕ1 cosϕ2) (4.107)

The resulting MQE-spectrum is shown on the right in Figure 4.23. Since pj are
known through the calibration measurement, qj can be obtained from the line
amplitudes. This technique can be extended to any number of qubits by proper
choice of phase encoding sequences νϕj

Notice, that the coefficients pj and qj result from the tracing out of all the prod-
ucts of the nuclear spins not participating in the algorithm (cf. Equation (4.10)).
Two qubit gates – most notably the CNOT gate – change the order of these
products from even to odd and vice versa so that this simple encoding scheme
can no longer be used. In such cases, full density matrix must be used in cal-
culations. The tomography procedure is then more elaborate but still based on
the same principle.

4.7.1.2 Preparation of Pseudo-Pure States

Many of the measurements below require well defined input states. Preparation
of such pseudo-pure states for quantum computing is an interesting operation
in its own right and has been demonstrated by J. Mende [35] for two- and
three-qubit cases.
Here, the results are presented because a modified pulse sequence was used and
much higher fidelities were achieved. Also, pseudo-pure states were later used
as input in the demonstration of the CNOT operation and the preparation of
the pseudo-entangled states described below.
The four pseudo-pure states of two qubits have the form:

ρ00 =
1
4
I0 +

1
2
Iz1 +

1
2
Iz2 + Iz1Iz2

ρ01 =
1
4
I0 +

1
2
Iz1 −

1
2
Iz2 − Iz1Iz2

ρ10 =
1
4
I0 − 1

2
Iz1 +

1
2
Iz2 − Iz1Iz2

ρ11 =
1
4
I0 − 1

2
Iz1 −

1
2
Iz2 + Iz1Iz2

(4.108)

The task of preparing pseudo-pure states thus consists of tailoring the coeffi-
cients qj in Equation (4.105) such that

q0 = |q1| = |q2| = |q12| = 1 (4.109)
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This is an essentially non-unitary operation. The sequence is shown in Fig-
ure 4.25. After the yy-preparation and the decay of all transverse components
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Figure 4.24: Pulse sequence for the preparation of pseudo-pure states of two
qubits in CaF2:Ce.

of the electron spin, the density matrix is purely diagonal (i.e., it contains only z-
operators). A two-pulse sequence identical to the MQE sequence is now applied.
The transverse nuclear density matrix components decay with the time constant
of the FID and the resulting density matrix is given by Equation (4.101). When
the PPS sequence is applied to such a state, its density matrix becomes (again
after the decay of off-diagonal components)

ρ
(PPS)
I =

1
4
q0 I2 +

1
2
p1 cosβ1 Iz1 +

1
2
p2 cosβ2 Iz2 + p12 cosβ1 cosβ2 Iz1Iz2

=
1
4
q0 I2 +

1
2
p1S1 Iz1 +

1
2
p2S2 Iz2 + p12S1S2 Iz1Iz2 (4.110)

with Sj = cosβj . Now, the new amplitudes of the operators are:

q1 = p1S1

q2 = p2S2

q12 = p12S1S2

(4.111)

In this form, the problem of satisfying the condition in Equation (4.109) will, in
general, have no solution. It is, however, still possible to find a set βj to obtain
pseudo-pure states.
Recall that, in ensemble spin quantum computing, the density matrix is always
almost maximally mixed. Only a small fraction of spins exhibits the operator
structure corresponding to pure states. Thus, the magnitude q0 with which the
identity operator is included in the density matrix can be freely chosen to obtain
the desired operator structure. In order to be able to satisfy the normalization
condition for the density matrix tr(ρ2) = 1, it is more convenient to scale the
spin operators instead of the identity operator. Thus the density matrix can be
written as

ρ
(PPS)
I =

1
4
I2α

(
1
2
p1S1 Iz1 +

1
2
p2S2 Iz2 + p12S1S2 Iz1Iz2

)
(4.112)
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Now the equations for finding the proper βj become




1=α | p1S1|
1=α | p2S2|
1=α | p12S1S2|

(4.113)

And the solution is given by




α= | p12/p1p2|
|S1|= | p2/p12|
|S2|= | p1/p12|

(4.114)

This expression contains four possible sets of Sj required to produce all four
pseudo-pure states ρ00 - ρ11 with the normalization condition for the density
matrix satisfied by construction. There is even some freedom in the choice of
phase angles βj which implement the desired scaling coefficients Sj .9

Figure 4.25 shows the experimental results. The MQE spectra were obtained
by recording signal amplitude for a range of tϕ commensurable with 1/ν1 and
1/ν2, then concatenating a few copies, and applying exponential attenuation to
avoid Fourier transform artefacts. Since Equation (4.107) contains only terms
of the form cosϕj , one would expect the real part of the spectra to contain
purely Lorentzian lines. As can be seen in some spectra, the lines in the real
part are sometimes shifted in phase. The origin of this phase shift is not clear,
it certainly is not related to the phase of the spins themselves. To still be able
to account for the full amplitude of the coefficients qj , the real part was used to
determine their sign while the amplitude was taken from the absolute hight of
the corresponding line.
The qubits used for this preparation were I5 and I7 with mS = +1/2. The
ENDOR frequencies of the two lines were around 5 MHz away from the free
fluorine Larmor frequency on the opposite sides of the spectrum. This indicates
large and approximately equal effective hyperfine couplings at the given orien-
tation and field. To avoid unnecessary build-up of higher oder correlations, the
mixing time could thus be chosen relatively short at τ = 16 ns .
The coefficients pj were obtained from the calibration measurement presented
on the left in Figure 4.25:

p1 = 0.753 , p2 = 0.872 , p12 = 1.542

These values are already close to the pseudo-pure state ρ00 and satisfy the
condition p1, p2 < p12 such that Equation (4.114) has real solutions for βj . This
favorable situation is due to the fact that the hyperfine couplings of the two
spins are large and similar.
Since the detected states have no off-diagonal components, the three coefficients
qj and the normalization condition suffice to reconstruct the density matrix and,
thus, determine the fidelity of the preparation. An overview of the results are
presented in Table 4.7. They show that the pseudo-pure states can be prepared
with very high fidelity in CaF2:Ce.

9In this point, the approach used here differs from the one used by J. Mende. In his work
he used only one set of βj to obtain ρ00 and used additional composite π-pulses to create the
other states. The use of composite pulses was made necessary because of the much larger rf
inhomogeneity caused by significantly larger samples.
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Figure 4.25: High fidelity two-qubit pseudo-pure states in CaF2:Ce. Left:
MQE spectra. Red and blue indicate the real part and the magnitude of the
Fourier transform respectively. Gray bars indicate the amplitudes used to calcu-
late the density matrices. Right: Density matrix plots. Experimental: Pulse se-
quence shown in Figure 4.24; encoding frequencies νϕ1 = 2 MHz, νϕ2 = 6 MHz;
qubits I5 and I7 ; mS = +1/2; ENDOR frequencies ν+

5 = 10.4538 MHz, and
ν+
7 = 20.5189 MHz; τS = 16 ns; Euler angles: {ϑ = 110.29◦, ϕ = −156.23◦};
x-center; B0 = 0.38186 T; T = 8 K; νS = 9.344742 GHz;.
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ρ β1/2π β2/2π q1 q2 q12 F
00 0.155 0.169 1.089 0.955 0.950 0.998

01 0.155 0.5 + 0.169 1.103 -0.788 -1.078 0.992

10 0.5 + 0.155 0.169 -0.914 1.087 -0.991 0.998

11 0.5 + 0.155 0.5 + 0.169 -1.061 -0.813 1.102 0.994

Table 4.7: Pseudo-pure states in CaF2:Ce. The four sets of phase angles
for the pulse sequence, measured spin operator coefficients, and fidelity of the
preparation.

4.7.2 Density Matrix Evolution during Two-Qubit Gates

One-qubit (i.e., local) gates in the S-bus cluster are readily implemented by
applying simple rf pulses at appropriate ENDOR frequencies. Any interesting
quantum computing experiment, however, requires that a two-qubit gate be
available. One of the most fundamental such gates is the controlled not gate
(CNOT ). To implement a two-qubit gate an interaction between the qubits
is, of course, required. The effective (i.e., comprised of dipolar and indirect
contributions) spin-spin coupling was used for this purpose. The evolution of
the density matrix during the pulse CNOT sequence and it’s precursors were
studied in detail.

4.7.2.1 The Spin Echo Double Resonance Sequence

The simplest way of utilizing the coupling between two nuclear spins is the spin
echo double resonance sequence (SEDOR) shown in yellow in Figure 4.27.
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Figure 4.26: Pulse sequence for resolved measurement of the density matrix
components during their evolution under the SEDOR sequence (yy-detection).

The double π-pulse in the middle of the free evolution period has the role of
eliminating the effect of different Larmor frequencies of the two qubits as well as
decoupling them from the other qubits while maintaining the coupling between
the two.
The entire sequence in Figure 4.26 contains the SEDOR part embedded in a
yy-preparation and yy-detection on the electron spin. In order to be able to sep-
arate the different components of the density matrix resulting from the SEDOR
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Figure 4.27: Evolution of density matrix components during the SEDOR
sequence. Red, green, and blue indicate the MQE line heights for ν1, ν2, and the
sum of the heights of the lines at ν∆ and νΣ. Points show measured values. Solid
lines are fits to the data. Experimental: Pulse sequence shown in Figure 4.26;
qubits I9 and I3 ; mS = +1/2; ENDOR frequencies ν+

9 = 14.7730 MHz, and
ν+
3 = 20.9203 MHz; τS = 32 ns; T = 8.2 K; Euler angles {ϕ = −157.75◦,
θ = 111.71◦, ψ = 134.83◦}; B0 = 0.38244 T; νS = 9.346600 GHz.

application, MQE-encoding pulses are also included. Notice that a sufficiently
long waiting period decay after the SEDOR sequence must be used to allow for
the transverse components of the nuclear part of the density matrix to decay.
The signal dependence on the evolution time τI and the phase angles ϕj of
the MQE-pulses can be calculated from the general S-bus theory described in
Section 4.1.2:

SSEDOR = γ
(
P

(+)
2 c21 c

2
2

− P (−)
2 s21 c

2
2 cosϕ1

− cos (D12τI)P
(−)
2 c21 s

2
2 cosϕ2

+ cos (D12τI) P
(+)
2 s21 s

2
2 cosϕ1 cosϕ2

)

= C0 + C1 cosϕ1 + C2 cosϕ2 + C12 cosϕ1 cosϕ2

(4.115)

where D12 is the total coupling between the qubits. The proportionality con-
stant γ absorbs the effect of sample size and detection sensitivity. Since the
absolute values of the S-bus parameters are of no interest at this point, the
value of γ is irrelevant (see also Section 4.7.3).
The measurement consists of recording the MQE transient for a given value
of τS by varying the pulse phases according to ϕj = 2πνjtϕ as described in
Section 4.7.1.1. After the Fourier transformation, the coefficients C1 are C2

found from the hight of the lines at ν1 and ν2. The coefficient C12 is given by



4.7. Detailed Evolution of Density Matrix Components 105

the sum of the line hights at ν∆ and νΣ. C0 does not depend on ϕj and cannot
be detected. This procedure is repeated for every value of τI of interest.
The initial values of the coefficients Cj were obtained by an MQE measurement
without the SEDOR sequence. As expected for the short mixing tauS = 32 ns
they were all positive. The results of the SEDOR measurement are presented
in Figure 4.27. They reproduce all the important features as expected. The
coefficient of Iz1 , C1 is constant and negative. The coefficients of Iz2 and Iz1Iz2 ,
C2 and C12 show the expected cosinusoidal dependence on τI with the correct
signs. A fit of the transients with

Cj(τI) = Aj e
−2τI/T cos(2πD12(2τI + τ0)) (4.116)

yielded a spin-spin coupling constant of D12 = 4.9 kHz. The exponential model
for the decay fits the data well and the average time constant is T ≈ 330 µs.
Notice the inclusion of the parameter τ0 in the fit formula. Equation (4.115) does
not account for finite width of the pulses used in the experiment. The length
of the π-pulse was, for instance, tπ = 7.2 µs. The fitted value was τ0 ≈ 7.6 µs
which is in good agreement with the expectation. It is not easily possible to
accurately predict the effects of finite pulse width. Therefore, a measurement
like the one presented here must also be used to calibrate the setting of the
evolution time.

4.7.2.2 The “Insensitive Nuclei Enhanced by Polarization Transfer”
Sequence

The measurement of the evolution during the SEDOR sequence demonstrates
that the basic behavior of the spin system under a simple two-qubit gate is
correctly described by the theory. However, the unitary transformation effected
by the SEDOR sequence deviates significantly from the desired CNOT gate.
A sequence which produces the almost correct behavior is known as the “in-
sensitive nuclei enhanced by polarization transfer” (INEPT) sequence [108]. As
shown in Figure 4.28, it differs from the SEDOR sequence, in that the last π/2-
pulse is applied no longer in y but in x-direction. This has the dramatic effect,
that this sequence now turns some odd product terms in the density matrix to
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Figure 4.28: Pulse sequence for resolved measurement of the density matrix
components during their evolution under the INEPT sequence (yx-detection).
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even and vice versa. To detect a thus modified density matrix, the yx-detection
sequence must be used.
Analogously to Equation (4.115), the signal produced by this sequence is given
by

SINEPT = γ
(
sin (D12τI) c1s1s22 P

(+)
2 cosϕ2

+ sin (D12τI) c1s1s22 P
(−)
2 cosϕ1 cosϕ2

)

= C2 cosϕ2 + C12 cosϕ1 cosϕ2

(4.117)

The change of the dependence on τI from cosinusoidal for SEDOR to sinusoidal
for INEPT has to do with the change of the detection sequence: In the case
of SEDOR the gradual reduction of an initially existing term is observed. For
INEPT, the terms of interest are initially not present and it’s their gradual
buildup that is detected.
The experimental findings are presented in Figure 4.29. Again, the coefficients
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Figure 4.29: Evolution of density matrix components during the INEPT se-
quence. Red, green, and blue indicate the MQE line heights for ν1, ν2, and the
sum of the heights of the lines at ν∆ and νΣ. Points show measured values.
Solid lines are fits to the data. For experimental details see Figure 4.27.

of the Iz1 and Iz1Iz2 terms have the correct signs and do, in fact, depend on τI
sinusoidally. C1 is nearly zero, as predicted. A fit of C2 and C12 with

Cj(τI) = Bj e
−2τI/T sin(2πD12(2τI + τ0)) (4.118)

produces the same coupling strength of D12 = 4.9 kHz and an even longer time
constant of T = 450 µs. The finite pulse width effect a τ0 = 8.1 µs.

4.7.2.3 The Controlled Not Sequence

A controlled not (CNOT ) operation inverts the controlled bit depending on the
state of the control bit. There are four possible CNOT gates depending on
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Figure 4.30: Pulse sequence for resolved measurement of the density matrix
components during their evolution under the CNOT12 sequence (yx-detection).

which of the two qubits is the control bit and which of its two states is the
active state10:

UCNOT12 =




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


 UCNOT23=




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




UCNOT34 =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 UCNOT23=




0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0




(4.119)

The notation is such that the subscripts designate the rows of the matrix with
off-diagonal elements. As an example, the UCNOT12 inverts the second qubit,
when the first bit is zero:

CNOT12

00 −−−−−−−→ 01
01 −−−−−−−→ 00
10 −−−−−−−→ 10
11 −−−−−−−→ 11

(4.120)

A pulse sequence implementing CNOT12 is shown in yellow Figure 4.30. It
extends the INEPT sequence by an additional π-pulse on the first qubit to
correct its phase. Again, an MQE sequence is included for component-wise
encoding. The detection sequence is yx. Notice that the unitary transformation
produced by this sequence is

ŨCNOT12 = − 1√
2




0 1− i 0 0
1 + i 0 0 0

0 0 1 + i 0
0 0 0 −1 + i


 (4.121)

10Note that UCNOT23 is also called a swap gate



108 Chapter 4. Detailed Implementation of the S-Bus Concept with CaF2:Ce

which differs from the definition in Equation (4.119) in the phases of the ele-
ments. To correct these deviations, additional pulses implementing z-rotations
would have to be added to the sequence. This, however, is not necessary because
the phase factors cancel out, when the operator is applied to a density matrix:

ŨCNOT12 ρ Ũ
†
CNOT12

≡ UCNOT12 ρU
†
CNOT12

(4.122)

such that the truth table in Equation (4.120) is still valid for ŨCNOT12 . There-
fore, it was not necessary to introduce additional pulses which would only pro-
duce errors due to pulse imperfections.

The signal resulting from the sequence is similar to SINEPT in Equation (4.117):

SCNOT12 = γ
(
− sin (D12τI) c1s1s22 P

(+)
2 cosϕ2

+ sin (D12τI) c1s1s22 P
(−)
2 cosϕ1 cosϕ2

)

= C2 cosϕ2 + C12 cosϕ1 cosϕ2

(4.123)

The experimental procedure is the same as in the case of SEDOR and INEPT
measurements. The results are shown in Figure 4.29. The sinusoidal dependence
with the correct signs of the two coefficients C2 and C12 is clearly seen. The
fit of the terms dependent to τI with the model in Equation (4.118) reproduces
the coupling strength of D12 = 4.9 kHz. The time constant of the decay was
T ≈ 400 µs and the time offset due to finite pulse width τ0 ≈ 6.2 µs. The values
of D12 and τ0 can be used to calibrate the value of τI required to implement a
CNOT operation. It corresponds to the first maximum of the sine wave.
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Figure 4.31: Evolution of density matrix components during the CNOT12

sequence. Red, green, and blue indicate the MQE line heights for ν1, ν2, and
the sum of the heights of the lines at ν∆ and νΣ respectively. Points show
measured values. Solid lines are fits to the data. For experimental details see
Figure 4.27.
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4.7.3 Quantitative Evaluation of the S-Bus Model

As described in Section 4.1.2, the density matrix of the spin system in S-bus
consists of products of nuclear spin operators. Measurements of the evolution of
the density matrix components under two-qubit gates provide a possibility for
determining the various coefficients defining the shape of the density matrix.

Both, the SEDOR and the INEPT sequences are required to obtain a full set
of values for a pair of spins. The full sequence for the case of the SEDOR gate
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Figure 4.32: SEDOR pulse sequence used for measurements for determination
of the S-bus coefficients. The pulses in the “PPS” section are used to scale the
operators Iz1 and Iz2 by Sj = cosβj prior to the application of the two-qubit
gate. The other sequence contains an INEPT instead of the SEDOR gate and
uses yx-detection instead of yy.

is shown in Figure 4.32. The INEPT case is similar except, that yx-detection
is used there. In order to obtain a greater number of controllable parameters
a pair of pulses similar to the type used for preparation of pseudo-pure states
precedes the actual two-qubit gate. The effect of the π

2 |yj − π
2 |ȳj+βj pulses and

the following decay period is to scale the amplitude of the single spin operators
Izj by a factor Sj = cosβj . The term Iz1Iz2 is scaled by S1 S2 = cosβ1 cosβ2.

Analogously to Equation (4.115) and Equation (4.117), the signal amplitude is
given by

SSEDOR = A0 +A1 cosϕ1

+A2 cos (D12τI) cosϕ2

+A12 cos (D12τI) cosϕ1 cosϕ2

SINEPT = B0 +B1 cosϕ1

+B2 sin (D12τI) cosϕ2

+B12 sin (D12τI) cosϕ1 cosϕ2

(4.124)
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where the coefficients




A1 = −αP (−)
2 s21 c

2
2 S

A
1

A2 = −αP (−)
2 c21 s

2
2 S

A
2

A12 = αP
(+)
2 s21 s

2
2 S

A
1 S

A
2

B2 = β P
(+)
2 c1s1s

2
2 S

B
1 S

B
2

B12 = β P
(−)
2 c1s1s

2
2 S

B
2

A0 = B0 = B1 = 0

(4.125)

depend on the sought after parameters cj , sj , and P (±)
2 . These, are determined

by the effective hyperfine couplings for nuclear spins in the cluster (cf. Sec-
tion 4.1.2). They are, in particular, dependent on the mixing time τS during
the electron spin preparation and detection sequences. Equation (4.125) can be
solved for cj , sj , and P (±)

2 in the following way:




s21 = 1/
(

1− A2

A12

B2

B12

SA
1

SB
1

)

s22 = 1/
(

1− A1

A12

B2

B12

SA
2

SB
1

)

P
(+)
2 =

1
α

1
s21s

2
2

1
SA

1 S
A
2

A12

P
(−)
2 =

1
α

1
s21s

2
2

SB
1

SA
1 S

A
2

B12

B2
A12

c1s1 =
α

β

SA
1 S

A
2

SB
1 S

B
2

B2

A12

(4.126)

The values of Aj and Bj can be determined experimentally by SEDOR and
INEPT measurements respectively. They correspond to the amplitudes of the
1Q1-, 1Q2-, and the sum of the 0Q- and 2Q-lines in the MQE spectrum and can
be obtained by fitting the dependence of these amplitudes on τI as described
above. This approach has the advantage of being less sensitive to baseline
errors, because most values of interest are obtained from the amplitude of the
modulation of line hight with τI .
Note, that Equation (4.124) contains overall proportionality constants α and
β. They depend on the number of clusters in the sample and on any number
of ill-defined experimental parameters. For instance, due to the limited power
of the microwave pulses, not the entire electron spin transition line can be
excited uniformly. The sensitivity of detection varies also, due to temperature
dependent losses in the detection chain and gain drift of the various amplifiers
etc. A calibration of the detection sensitivity is thus not feasible in the setup
used in this work and reliance on the absolute amplitude of the signal must be
avoided.
Equation (4.126) shows that s2j only depend on ratios of parameters obtained
from the same measurement. They can be expected to be relatively robust
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Figure 4.33: Example of measurements of the evolution of nuclear density
matrix components under the SEDOR (top) and INEPT (bottom) sequence for
determination of the S-bus amplitudes. Pulse sequence shown in Figure 4.32.
The labels “±” indicate the chosen combination of scaling coefficients S1, S2 =
±1. Red, green, and blue indicate the MQE line heights for ν1, ν2, and the sum
of the heights of the lines at ν∆ and νΣ. Points show measured values. Solid
lines are fits to the data. Experimental: Qubits I9 and I3 ; mS = +1/2; ENDOR
frequencies ν+

9 = 14.7327 MHz, and ν+
3 = 20.9030 MHz; τS = 52 ns; T = 8.2 K;

Euler angles {ϑ = 111.63◦, ϕ = −157.73◦}; x-center; B0 = 0.38162 T; νS =
9.339520 GHz. Another set of measurement was performed at τS = 72 ns.

against drift of experimental parameters. The values of P (±)
2 do depend on

the detection efficiency α which is afflicted by the above stated problems. This
dependence can be eliminated when the definition (Equation (4.16))

P
(±)
2 =

1
2

(1±MN−2) (4.127)

is used. From it, the relation

P
(+)
2 + P

(−)
2 = 1 (4.128)

follows. The ratio

r =
P

(+)
2

P
(−)
2

=
1
SB

1

B2

B12
(4.129)

is independent of α and the parameters can be calculated according to

P
(+)
2 =

r

r + 1
, and P

(−)
2 =

1
r + 1

(4.130)

Two sets of measurements were performed at τS = 52 ns and τS = 72 ns. For
each value of τS and for different combinations of the scaling factors Sj , the
dependence of the MQE line hights was recorded for a range of τI from 30 µs
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to 360 µs. The phase angles βj of the scaling pulses were chosen such that the
scaling coefficients were always of magnitude one: Sj = ±1. Figure 4.33 shows a
few examples of τI -transients. Notice, for instance, how changing the sign of S2

in the case of the SEDOR measurement inverts the Iz2 and Iz1Iz2 term without
affecting the Iz1 component. In INEPT measurements, both Iz2 and Iz1Iz2 are
affected by the switching of S2.
The τI -transients were fitted according to Equation (4.116) and Equation (4.118)
to obtain the values of Aj and Bj . Table 4.8 contains the summary of performed
measurements and fitted values. To demonstrate the consistency of magnitudes

sequence τS [ns] SA
1 SA

2 SA
1 A1 SA

2 A2 SA
1 S

A
2 A12

SEDOR

52

+ + −0.45 −2.09 1.07
− + −0.53 −2.51 1.23
+ − −0.51 −2.03 1.03
− − −0.53 −2.10 1.07

72
+ + −1.19 −0.79 0.57
+ − −1.20 −0.72 0.53
− + −1.35 −0.82 0.64

sequence τS [ns] SB
1 SB

2 B1 SB
1 S

B
2 B2 SB

2 B12

INEPT

52
+ + −0.03 1.88 1.67
+ − −0.04 1.99 1.76
− + −0.06 1.66 1.66†

72
+ + −0.07 0.59 0.56
+ − −0.05 0.60 0.58
− + −0.01 0.65 0.65

Table 4.8: Fitted amplitudes of the oscillations of the MQE lines’ hights un-
der SEDOR and INEPT sequences. Measurements for different combinations
of scaling factors Sj are listed. To demonstrate the consistency of the different
measurements among each other and with the model, the amplitudes are mul-
tiplied by appropriate scaling factors. †This measurement was aborted after
τI = 200 µs due to drift of the detection phase.

between different sets of Sj , the values of Aj and Bj are listed dressed with
the values of the scaling factors Sj chosen for that measurement. In addition,
the data shows that the scaling factors enter the different amplitudes in Equa-
tion (4.125) correctly. In particular, in the case of the INEPT gate, the term Iz2

is affected by both S1 and S2, whereas Iz1Iz2 only depends on S2. With these
experimental values, the S-bus parameters can now be calculated according to
Equation (4.126) and Equation (4.130).

The results are presented in Table 4.9. As expected, the values of s2j and P
(±)
2

show relatively little variance. The fact, that the scaling π/2-pulses, which were
the only parameters varied between measurements produce such small errors,
is an indirect indication of the fidelity of the pulses applied to nuclear spins in
general.

The parameters P (±)
2 measure the amount of correlations of the other nuclear

spins in the cluster. As the initial polarization of the electron spin is converted
to such correlations at the time scale of the electron spin FID (≈ 20 ns), P (±)

2
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quickly approach 1/2. At larger values of τS , the constructive interference can
only occasionally produce noticeable deviations. Thus, the observed situation
at τS = 52 ns and τS = 72 ns is in excellent agreement with the expectations.
The parameter c1s1 deserves special attention. Its value, by definition cannot
exceed 1/2. At least some of the measured values clearly exceed that limit.
The reason is found in Equation (4.126). c1s1 depends on α/β which is the
ratio of detection sensitivities of the yy- and yx-detection sequences. Ideally,
they should be equal. However, small phase errors and amplitude imbalances
apparently lead to deviations from α/β = 1.
To summarize, this section demonstrates a method of experimentally determin-
ing the parameters governing the amount of polarization and the correlation
structure of the density matrix of nuclear qubits in an S-bus cluster.

τS [ns] SA
1 SA

2 SB
1 SB

2 s21 s22 P
(−)
2 P

(+)
2 c1s1

52

+ + + + 0.31 0.68 0.529 0.471 0.55

+ + + − 0.31 0.68 0.531 0.469 0.58

− + + + 0.30 0.67 0.529 0.471 0.46

− + + − 0.30 0.67 0.531 0.469 0.49

+ − + + 0.31 0.64 0.529 0.471 0.57

+ − + − 0.31 0.64 0.531 0.469 0.60

− − + + 0.31 0.64 0.529 0.471 0.55

− − + − 0.31 0.64 0.531 0.469 0.58

0.31 0.66 0.530 0.470 0.55

72

+ + + + 0.41 0.31 0.515 0.485 0.42

+ + + − 0.41 0.32 0.506 0.494 0.43

+ + − + 0.42 0.33 0.500 0.500 0.48

+ − + + 0.41 0.30 0.515 0.485 0.46

+ − + − 0.42 0.30 0.506 0.494 0.47

+ − − + 0.43 0.31 0.500 0.500 0.52

− + + + 0.42 0.31 0.515 0.485 0.39

− + + − 0.43 0.32 0.506 0.494 0.41

− + − + 0.44 0.32 0.500 0.500 0.45

0.42 0.31 0.507 0.493 0.45

Table 4.9: Values of the S-bus amplitudes for τS = 52 ns and τS = 72 ns
determined from SEDOR and INEPT measurements summarized in Table 4.8.
Numbers at the bottom of a column are mean values.
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4.8 Entanglement of Distant Qubits
in the S-Bus

The phenomenon of entanglement plays a central role in quantum comput-
ing. Creation, manipulation, and detection of entangled states must, thus, be
demonstrated in any experimental implementation. In this section, the stepwise
procedure to creation of entanglement of two nuclear qubits is reported.

4.8.1 Distant Qubits

In the S-bus concept of quantum computing, the electron spin is used for readout
of the information about the nuclear qubits as well as to connect them via
the hyperfine coupling. To emphasize the latter role, two distant qubits were
selected for entanglement.
The dipole-dipole interaction is highly anisotropic. It is, therefore, possible to
choose an orientation of the inter-spin vector such that the direct dipole coupling
vanishes. In the high-field approximation this occurs at an angle between the
inter-spin vector and the static field defined by 3 cos2 ϑm − 1 = 0. In NMR
this angle of θm ≈ 54.74◦ is known as the magic angle. At such an orientation,
the spins are not directly coupled and in this sense “distant”. The interaction
required to implement two-qubit gates is provided by the quantum bus.
The task of finding a pair of distant spins is complicated by the fact that the
high-field approximation is not applicable to the S-bus cluster in CaF2:Ce at X-
band fields. The approximation assumes that the spins are quantized along the
direction of the static field. In CaF2:Ce the hyperfine coupling is comparable
with the Zeeman interaction and the quantization axes are significantly tilted.
Therefore, it is not possible to accurately determine the spin-spin coupling theo-
retically (cf. Section 4.5.5). It is, however, possible to ascertain the contribution
of the dipole-dipole interaction to the total spin-spin coupling, because the quan-
tization axes are entirely determined by the hyperfine and Zeeman terms and
are thus completely accounted for in the simulation. The Hamiltonian can be
constructed with and without the dipole-dipole term. The difference between
the coupling constants is then attributed to the dipolar coupling.
Besides negligible dipolar coupling, the orientation must satisfy additional con-
straints: The ENDOR lines of the two spins must be well separated from all
other lines. Also, a strong and approximately equal effective hyperfine couplings
are desirable. All reachable sample orientations with one of the inter-site vec-
tors at the magic angle were calculated. For each orientation and spin-pair, the
ENDOR spectrum and spin-spin coupling were computed. For promising can-
didates, the ENDOR spectra in the regions of interest and the actual spin-spin
couplings were measured.
The ENDOR spectrum at the orientation used for the measurement in this
section is shown in Figure 4.34. The measured value of total spin-spin coupling
of the qubits I4 and I6 for mS = −1/2 was 4.9 kHz. The values of the spin-spin
coupling obtained for the simulation were 4.6 kHz when the dipole-dipole term
was included in the Hamiltonian and 4.9 kHz without it. Thus, the direct dipolar
interaction with 0.3 kHz contributes only 6% of the total spin-spin coupling and
the two qubits can be considered distant in the sense explained above.
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Figure 4.34: ENDOR spectrum at an orientation where the qubits I−4 and I−6
are coupled exclusively by the quantum bus. Colored lines indicate simulated
transition frequencies. Red: Transitions for mS = +1/2. Blue: Transitions
for mS = −1/2. Experimental: x-center; B0 = 0.39115 T; ν = 9.354098 GHz;
ENDOR frequencies ν−4 = 10.9806 MHz, and ν−6 = 21.0928 MHz; τS = 48 ns;
T = 8.2 K; Euler angles: {ϕ = −54.98◦, ϑ = 40.03◦, ψ = 95.62◦}.

4.8.2 Creation of Entanglement

The textbook example of generation of two-qubit entangled states starts with
one of the basis states. A Hadamard transformation H is applied to the
qubit which is the control bit in the following CNOT operation. The Walsh-
Hadamard transformation is a special form of descrete Fourier transform. For
two points, it is defined by11

H =
1√
2

(
1 1
1 −1

)
(4.131)

In Dirac notation, this corresponds to

H =
1√
2

(| 0 〉 〈 0 |+ | 1 〉 〈 0 |+ | 0 〉 〈 1 | − | 1 〉 〈 1 |) (4.132)

When the CNOT12 vairant of the CNOT gate is chosen, the following entangled
states result:

H CNOT12| 00 〉 −→ 1√
2

(| 00 〉+ | 10 〉) −−−−−−−→ 1√
2

(| 01 〉+ | 10 〉) = |Ψ+ 〉

| 01 〉 −→ 1√
2

(| 01 〉+ | 11 〉) −−−−−−−→ 1√
2

(| 00 〉+ | 11 〉) = |Φ+ 〉

| 10 〉 −→ 1√
2

(| 00 〉 − | 10 〉) −−−−−−−→ 1√
2

(| 01 〉 − | 10 〉) = |Ψ− 〉

| 11 〉 −→ 1√
2

(| 01 〉 − | 11 〉) −−−−−−−→ 1√
2

(| 00 〉 − | 11 〉) = |Φ− 〉
(4.133)

The four states Ψ± and Φ± are the famous Bell states. They are mutually
orthogonal and constitute the entangled basis for two qubits. Their density

11Notice that the 2 × 2 matrix must be extended to 4 × 4, when applied to a two-qubit
density matrix. For instance, a Hadamard gate on the first qubit is given by UH1 = H ⊗ I0.
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matrices are

ρΨ+ =
1
2




0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0


 =

1
4
I0 + Ix1Ix2 + Iy1Iy2 − Iz1Iz2

ρΦ+ =
1
2




1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


 =

1
4
I0 + Ix1Ix2 − Iy1Iy2 + Iz1Iz2

ρΨ− =
1
2




0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0


 =

1
4
I0 − Ix1Ix2 − Iy1Iy2 − Iz1Iz2

ρΦ− =
1
2




1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1


 =

1
4
I0 − Ix1Ix2 + Iy1Iy2 + Iz1Iz2

(4.134)

An implementation of the Hadamard transform, as defined by Equation (4.131),
with the means of magnetic resonance is cumbersome. Fortunately, a simple
π
2 |y-pulse can be used instead:

H̃ = Py

(π
2

)
=

1√
2

(
1 −1
1 1

)
(4.135)

With the use of this alternative Hadamard transform, Equation (4.133) is
slightly modified:

H̃ − CNOT12

| 00 〉 −−−−−−−−−−−→ |Ψ+ 〉
| 01 〉 −−−−−−−−−−−→ |Φ− 〉
| 10 〉 −−−−−−−−−−−→ |Ψ− 〉
| 11 〉 −−−−−−−−−−−→ |Φ+ 〉

(4.136)

4.8.3 Implementation and Tomography of the CNOT gate

The first step to creation of entanglement is the implementation of a CNOT -
gate and the tomography of its output states. The pulse sequence is shown in
Figure 4.35. It begins with the yy-preparation sequence applied to the electron
spin. The resulting density matrix ρ0 is the same as ρyy in Equation (4.10).
The preparation sequence for pseudo-pure states (PPS) introduces the scaling
factors Sj = cosβj :

ρ1 = c1c2Π
(+)
N−2 I0 − 2s1c2S1Π

(−)
N−2Iz1

− 2c1s2S2Π
(−)
N−2Iz2 − 4s1s2S1S2Π

(+)
N−2Iz1Iz2 (4.137)
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Figure 4.35: Pulse sequence for creation and tomography of the output states
of the CNOT12 operation.

or – reduced to the subspace of the qubits of interest:

ρ
(12)
1 = Q

(yy)
0 I0 − 2Q(yy)

1 S1Iz1 − 2Q(yy)
2 S2Iz2 − 4Q(yy)

12 S1S2Iz1Iz2

= q0I0 + 2q1Iz1 + 2q2Iz2 + 4q12Iz1Iz2

(4.138)

where
q1 = −Q(yy)

1 S1 , q0 = Q
(yy)
0

q2 = −Q(yy)
2 S2 , q12 = −Q(yy)

12 S1S2

(4.139)

The phase angles βj of the scaling pulses must be chosen such that

|q1| = |q2| = |q12| = 1 (4.140)

to obtain one of the pseudo-pure basis states. The experimental procedure is
described in Section 4.7.1.2. These states then serve as input to the following
CNOT -gate.
The CNOT12 has no effect on Iz1 and exchanges Iz2 and Iz1Iz2 :

Iz1

UCNOT12←−−−−−→ Iz1

Iz2

UCNOT12←−−−−−→−2Iz1Iz2

(4.141)

Applying it to ρ1 produces (after the decay of transient components)

ρ2 = c1c2Π
(+)
N−2I0 − 2s1c2S1Π

(−)
N−2Iz1

+ 4c1s2S2Π
(−)
N−2Iz1Iz2 + 2s1s2S1S2Π

(+)
N−2Iz2 (4.142)

This is the density matrix we wish to detect. In the reduced form it is given by

ρ
(12)
2 = Q

(yy)
0 I0 − 2Q(yy)

1 S1Iz1 + 4Q(yy)
2 S2Iz1Iz2 + 2Q(yy)

12 S1S2Iz2

= q̃0I0 + 2q̃1Iz1 + 2q̃2Iz2 + 4q̃12Iz1Iz2

(4.143)

The new coefficients are

q̃1 = −Q(yy)
1 S1 , q̃0 = Q

(yy)
0

q̃2 = −Q(yy)
12 S1S2 , q̃12 = −Q(yy)

2 S2

(4.144)
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If the CNOT -operation works correctly, ρ2 will represent an output state cor-
responding to the chosen input state according to the truth table in Equa-
tion (4.120).
To detect the coefficients q̃j , the terms in Equation (4.142) are phase-encoded
by the now following MQE pulses. The resulting density matrix is

ρ3 = c1c2Π
(+)
N−2I0 − 2s1c2S1 cosϕ1Π

(−)
N−2Iz1

+ 4c1s2S2 cosϕ1 cosϕ2Π
(−)
N−2Iz1Iz2 + 2s1s2S1S2 cosϕ2Π

(+)
N−2Iz2 (4.145)

From ρ3, the signal amplitude for the yy- and yx-detection sequences can be
calculated:

Syy =
1

2N
tr {ρyy ρ3}

= c21c
2
2P

(+)
N−2 + s21c

2
2P

(−)
N−2S1 cosϕ1

=
(
Q

(yy)
0

)2

+
(
Q

(yy)
1

)2

S1 cosϕ1

(4.146)

and

Syx =
1

2N
tr {ρyx ρ3}

= c1s1s
2
2P

(−)
N−2S2 cosϕ1 cosϕ2 − c1s1s22P (+)

N−2S1S2 cosϕ2

=
(
Q

(yy)
2

)2

S2 cosϕ1 cosϕ2 −Q(yy,yx)
12,2 S1S2 cosϕ2

(4.147)

with

Q
(yy,yx)
12,2 = Q

(yy)
12 Q

(yx)
2 = Q

(yy)
12 Q

(yy)
2

√√√√P
(+)
N−2

P
(−)
N−2

(4.148)

From which it follows that

Q
(yy)
12 =

Q
(yy,yx)
12,2

Q
(yy)
2

√√√√P
(−)
N−2

P
(+)
N−2

(4.149)

Notice, that orders of operator products of the third and fourth terms of the den-
sity matrix are switched from even to odd between ρ1 and ρ2. This is reflected in
the expressions for the signal detected with the two detection sequences: yy only
detects the even while yx only the odd products. Because of this property of
the S-bus, both detection sequences must be used to determine the coefficients
of the output density matrix of the CNOT -gate.
Prior to actual CNOT measurements, the four pseudo-pure basis states were
created and tomographed according to the procedure presented in Section 4.7.1.
The experimental parameters are found in the caption to Figure 4.36 and the
results in Table 4.10 and on the left in Figure 4.37. The fidelities of these
preparations are lower than the ones achieved at more favorable orientations.
This is due to the fact that, at the magic angle, the ENDOR line of one of
the selected qubits (I6) was flanked closely (< 100 kHz) by lines belonging to
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non-participating qubits (cf. Figure 4.34). The cross-excitation of these spins
had detrimental effects on the fidelity of the pulses. It was possible to somewhat
alleviate the problem by adjusting the Rabi frequence of the affected spin such
that the neighboring lines would experience 2π-rotations during a single pulse
on the intended line.
The optimal evolution time τI for the CNOT gate, was calibrated as described
in Section 4.7.2.3. For each of the four input states, the dependence of the
signal in Equations (4.146) and (4.147) on ϕj was recorded. Figure 4.36 shows
an example of yx- and yy-detected MQE spectra for the input state ρ01.

The lines corresponding the the Q
(yy)
12 -, Q(yy)

2 -, and Q
(yy)
1 -terms in Syx and

Syy are highlighted. A separate measurement of P (±)
N−2 was not performed for

technical reasons. At the chosen mixing time of τS = 48 ns, their values can
be safely assumed to be very close to 1/2 (cf. Section 4.7.3). Thus, Equa-
tions (4.149), (4.147), (4.146), and (4.144) together with the normilization con-
dition tr {ρ3} = 1 allow the coefficients q̃j to be determined.
Table 4.10 summarizes the experimental parameters and results. The truth
table of the CNOT12-gate is obviously reproduced. The fidelities of the
implementation at 82% to 96% are not very high. However, the output states
are unambiguously the expected basis states. This is most clearly seen in
Figure 4.37 where the density matrices of the input and the corresponding
output states are presented side by side.

With this working CNOT -gate, preparation of entangled states can be at-
tempted.
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Figure 4.36: Example of MQE spectra taken for tomography of the output
states of the CNOT12 operation. The relevant MQE lines are at ν∆, νΣ, and
ν2 for yx-detection (left) and ν1 for yy-detection (right). Red and blue cor-
respond to the real part and the modulus respectively, gray bars indicate line
amplitudes used for further evaluation. Experimental: Pulse sequence in Fig-
ure 4.35; encoding frequencies νϕ1 = 4 MHz, νϕ2 = 6 MHz; qubits I4 and I6 ;
mS = −1/2; τI = 50 µs; further details in caption to Figure 4.34.

input

ρ 00 01 10 11

β1/2π +0.154 −0.154 0.5 + 0.154 0.5 + 0.154

β2/2π +0.152 0.5− 0.152 +0.152 0.5− 0.152

S1 0.567 0.567 −0.567 −0.567

S2 0.577 −0.577 0.577 −0.577

q1 0.913 1.040 −0.747 −0.997

q2 0.978 −0.581 1.180 −0.626

q12 1.100 −1.250 −1.030 1.270

F 0.998 0.970 0.988 0.973

output

ρ 01 00 10 11

q̃1 1.420 1.360 −1.160 −1.150

q̃2 −0.157 0.385 0.534 −0.154

q̃12 −0.982 1.000 −1.170 1.280

F 0.889 0.937 0.966 0.821

Table 4.10: Experimental parameters and measurement results of the demon-
stration of the CNOT -gate in CaF2:Ce (see also Figures 4.36 and 4.37).
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Figure 4.37: Demonstration of the CNOT12 gate in CaF2:Ce. Left: Pseudo-
pure input states. Right: Corresponding output states of the CNOT12 gate.
Experimental details in caption to Figure 4.36.
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4.8.4 Creation and Direct Detection
of Entangled States in CaF2:Ce

Figure 4.38 shows a pulse sequence for creation and detection of entangled two-
qubit states. It consists of the familiar yy-preparation pulses applied to the
electron spin followed by pulses for preparation of pseudo-pure input states. The
actual entanglement is achieved by a π

2 |y1 -pulse implementing the Hadamard
transformation and a CNOT12 gate. Immediately after the CNOT the density

t

t

t

yy-pre. PPS entanglement

ρB

decay

ρ̃B

encoding

˜̃ρB

yx-det. remote echo

S

Ij

Ik

y

π
2

τS

y

π
2

y

π
2

y

π
2

y + βj
π
2

y + βk
π
2

y

π
2

y

π
2

τI

y

π

y

π

τI

x

π
2

x

π

y

π
2

y

π
2

y + ϕj
π
2

y + ϕk
π
2

y

π
2

τS

x

π
2

y

π
2

x

π

Figure 4.38: Sequence for creation and direct detection of entangled states.
Pulses used to generate the pseudo-pure base states and to perform phase
encoding are shown in blue. The entanglement sequence proper consists of a
Hadamard transform (gray) and a CNOT12-gate (yellow).

matrix ρB is given by

ρB = c1c2Π
(+)
N−2

− 4s1S1s2S2Π
(+)
N−2Ix1Ix2 − 4c2s1S1Π

(−)
N−2Iy1Iy2

+ 4c1s2S2Π
(−)
N−2Iz1Iz2

=
1
4
b0I0 + bxIx1Ix2 + byIy1Iy2 + bzIz1Iz2 (4.150)

If the coefficients of all terms satisfy the condition

|bj | = 1 (4.151)

then ρB will represent one of the four Bell states given in Equation (4.134).
This condition is automatically fulfilled, by the choice of Sj for the preparation
of the input states as given in Equation (4.114).
Detection of this density matrix is not a trivial task. The density matrices
of the Bell states are essentially non-diagonal. The off-diagonal components
are subject to decay on the time-scale of the nuclear FID (≈ 40 µs). Even, if
they should decay much slower, the phase encoding sequence is only capable of
consistenlty detecting the diagonal components of the density matrix.
Still, this measurement is interesting as a first attempt at implementing the
enganglement sequence. After the decay period, the density matrix is reduced
to

ρ̃B = c1c2Π
(+)
N−2 − 4c1s2S2Π

(−)
N−2Iz1Iz2 =

1
4
b0I0 + bzIz1Iz2 (4.152)
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The MQE pulses and another decay period produce

˜̃ρB = c1c2Π
(+)
N−2 − 4c1s2S2Π

(−)
N−2 cosϕ1 cosϕ2Iz1Iz2

=
1
4
b0I0 + bz cosϕ1 cosϕ2Iz1Iz2

(4.153)

which can be detected by the yx-sequence. The signal amplitude is given by

S(H+CNOT+MQE)
yx = 4c1s1s22S2P

(−)
N−2 cosϕ1 cosϕ2

= bz cosϕ1 cosϕ2

(4.154)

Thus, the Iz1Iz2-component produces equally high 0Q- and 2Q-lines, while the
1Q1- and 1Q2-lines ideally should disappear.

Starting with the pseudo-pure state ρ00 characterized in the previous section,
MQE spectra were taken at τI between 20 µs and 210 µs. Figure 4.39 shows
the obtained transients. The fact, that the 1Q amplitudes remain small for all
values of τI proves that, at no point, significant linear z-components Izj are
created. The Iz1Iz2 term, on the other hand, shows the expected sinusoidal
dependence on τI .

Although this measurement does not conclusively prove creation of entangle-
ment, it shows the absence of linear terms in the prepared state and is thus in
full agreement with the theoretical expectations. Detection of the off-diagonal
components of the Bell states requires a rather more elaborate approach.
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Figure 4.39: Creation and direct detection of Bell states in CaF2:Ce. Evo-
lution of diagonal density matrix components with τI (cf. Figure 4.38) was
measured. Red, green, and blue indicate the MQE line heights for ν1, ν2, and
the sum of the heights of the lines at ν∆ and νΣ. For experimental details, see
caption to Figure 4.36 and text.
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4.8.5 Detection of Entanglement
through “Disentanglement”

One way to design a measurement, who’s signature is sensitive to the entan-
gled states is as follows: Once the entangled states have been created with a
Hadamard-gate – CNOT -gate combination, an inverse sequence (CNOT -gate
– Hadamard-gate) is immediately applied (see Figure 4.40). This reverses the
effect of the “forward” sequence, thus “disentangling” the enganled state and
producing a purely diagonal density matrix. To encode the information about
the entangled state in the signal, the entire “reverse” sequence is subjected to
an MQE-like phase rotation.
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Figure 4.40: Pulse sequence for creation and indirect detection of Bell states
in CaF2:Ce. For detection of the created states tD = 0 must be chosen. Incre-
menting tD allows the decay of entangled states to be observed.

The experimentally obtained signatures for the four entangled states are shown
in Figure 4.41. They show that only the 0Q-line is present in the signature
of the Ψ±-states, while the Φ±-states produce only the 2Q-line. Furthermore,
the “+” and “−”-versions of the Bell states can be distinguished by the sign
of the characteristic line. If the Hadamard transform and the CNOT gate
function correctly and a Bell state is indeed prepared, the sequence in Figure 4.40
provides a means to unambiguously distinguishing them.
A first attempt at understanding these findings can be made by considering
only that part of the density matrix which is restricted to the subspace of two
qubits. When the phase-rotated reverse sequence is applied to the Bell states
given in Equation (4.134), the following density matrices result after the decay
of off-diagonal components:

(
CNOT12 − H̃

)
ϕj,k

|Ψ+ 〉 −−−−−−−−−−−−−−−−→ 1
4I0 + 1

2Iz2 − sin(ϕ1 − ϕ2)
(

1
2Iz1 + Iz1Iz2

)

|Φ− 〉 −−−−−−−−−−−−−−−−→ 1
4I0 − 1

2Iz2 + sin(ϕ1 + ϕ2)
(

1
2Iz1 − Iz1Iz2

)

|Ψ− 〉 −−−−−−−−−−−−−−−−→ 1
4I0 + 1

2Iz2 + sin(ϕ1 − ϕ2)
(

1
2Iz1 + Iz1Iz2

)

|Φ+ 〉 −−−−−−−−−−−−−−−−→ 1
4I0 − 1

2Iz2 − sin(ϕ1 + ϕ2)
(

1
2Iz1 − Iz1Iz2

)

(4.155)
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Figure 4.41: Signatures of Bell states in CaF2:Ce. Green and blue indicate
imaginary part and modulus. Gray bars indicate lines characteristic of the
particular Bell state. Plots are labeled with the Bell states resulting from the
chosen input state according to Equation (4.133). For experimental details, see
caption to Figure 4.36.

Thus, this simple calculation does capture the fact that either the 0Q- or the
2Q-line dominates the MQE-spectrum and that the sign of the dominant line
changes between the “+”- and “−”-versions of the Bell states. However, it
disregards the influence of the other seven qubits in the cluster in conjunction
with the preparation and the detection sequences. The basic S-bus theory
above, cannot describe these measurements quantitatively and a full theoretical
treatment is still missing.

4.8.6 Decay of Entangled States

One of the interesting properties of entangled states is their behavior with re-
spect to the environment. There have been studies indicating that some of the
Bell states are especially resistant to decoherence [109]. In particular, is has been
known for a long time that, in molecules in solution, the states spanning zero-
quanta transitions are insensitive to decoherence under field inhomogeneities.
In the context of spin quantum computing in the solid state, it is intriguing
to know, whether the interaction of a state with the environment significantly
depends on its operator structure.
The decay of the Bell states in CaF2:Ce was studied by introducing a variable
decay time tD between the entangling and the disentangling sequences as shown
in Figure 4.40. MQE spectra were recorded for a range of tD between 0 and
85 µs for each of the four Bell states. For each state, the fits of an exponential
decay to the difference between the amplitudes of the dominant line (0Q for Ψ±

and 2Q for Φ±) and the respectively other multi-quanta line (2Q for Ψ± and
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Figure 4.42: Decay of entangled states of distant qubits. The decay of the
modulus of the difference between the ν2 − ν1 and ν2 + ν1 MQE lines fitted
by an exponetial function is shown. For experimental details, see caption to
Figure 4.36.

0Q for Φ±) are shown in the Figure 4.42.
The observed decay constants are summarized in Table 4.11. The states Ψ−

and Φ+ decay approximately at the rate of the nuclear spin FID. The states Ψ+

and Φ− deviate significantly from that average. With the latter decaying twice
as fast as the former. A detailed model of the relaxation would be required to
understand this finding. Also, studies of possible dependence of decay rates on
orientation and other parameters might prove illuminating.

state T [µs]
Ψ+ 34 ± 12
Ψ− 24 ± 11
Φ+ 24 ± 8
Φ− 16 ± 7

Table 4.11: Decay constants of the Bell states in CaF2:Ce.



Chapter 5

Measurement and Use of
Spin-Spin Interactions in a
Hostile Environment

5.1 Spin-Spin Couplings

Pairwise inter-qubit couplings are a necessary prerequisite for the use of a par-
ticular physical system for implementation of quantum computing. In the S-bus
system CaF2:Ce, these are realized by direct dipole-dipole interaction between
the nuclear 19F-spins as well as by an indirect coupling mediated by the central
electron spin. In addition, all qubits within the cluster couple via the dipolar
interaction to the abundant 19F-spins of the host lattice. This dense coupling
network is a powerful source of decoherence and as such presents a problem for
quantum computing with the S-bus.

Already in the very early applications of solid state NMR, the dipole-dipole
interaction among nuclear spins was a subject of interest [90,110] and has later
been utilized in a number of advanced concepts of multiple quantum NMR
[105–107, 111, 112] and more recently in the context of quantum computing
[113,114].

Decoherence and buildup of correlations in extended dipolarly coupled networks
are governed by many-body dynamics. Quantitative description of these phe-
nomena is a challenging theoretical problem. In the framework of this thesis, a
practical solution to the decoherence problem was needed.

The techniques discussed below make the coupling between two spins observable
by effecting an evolution of the spins under its action. This makes these meth-
ods useful for implementing two-spin gates in quantum computing experiments
in addition to their utility for accurate measurement of the coupling constants.
Most of the results, in this chapter were published in [37].

To simplify the discussion, consider the Hamiltonian of a pair of nuclear spins
coupled by the dipole-dipole interaction. In the rotating frame of reference, it

127
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can be written as

H = δνjk

(
Izj − Izk

)
+

1
2
Djk

(
2IzjIzk

− 1
2

(
I+jI−k

+ I−jI+k

))
(5.1)

The reference frequency is chosen halfway between the resonance frequencies of
the two spins and δνjk is their difference. Djk is the dipolar coupling constant.
The interaction part of the Hamiltonian

HD = H(s)
D +H(ns)

D (5.2)

can be separated into two contributions: the secular part

H(s)
D = DjkIzjIzk

(5.3)

and the non-secular part

H(ns)
D = −1

4
Djk

(
I+jI−k

+ I−jI+k

)
(5.4)

If the frequency separation of the two spins is much larger than the characteristic
strength of the coupling Hamiltonain

δνjk À
√

tr {H2
D} (5.5)

then spins Ij and Ik are called hetero-spins.

5.2 Single Nuclear Spin Decoherence

The simplest manifestation of spin dynamics under the action of a Hamiltonian
in Equation (5.1) is the free induction decay (FID). The nuclear spin pulse
sequence for measuring the FID of a single spin in CaF2:Ce is shown at the top
Figure 5.1. The two pulses are applied selectively to a single spin. In the actual
experiment, this sequence (and all other sequences shown in this chapter) is
sandwiched between the familiar S-bus preparation and detection sequences as
shown in Figure 4.2.
A typical result is shown at the bottom of the Figure. The decay constant of the
FID is around 20 µs. This fast decay is caused by the multitude of interaction
partners and the strength of the couplings. Both the secular and the non-secular
parts of the interaction Hamiltonian contribute to the dynamics. However, the
contribution of the non-secular flip-flop terms depends on how far apart the two
spins are in the spectrum. It can be shown [75] that the effective non-secular
Hamiltonian is scaled by the ratio of the coupling strength to the frequency
separation:

H̃(ns)
D =

√
tr {H2

D}
δνjk

H(ns)
D (5.6)

Nuclear spins within the S-bus cluster in CaF2:Ce are typically separated by
δνjk ≈ 200 kHz − 10 MHz from each other and form the lattice spins. The
coupling constants do not exceed 10 kHz such that the non-secular terms are
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Figure 5.1: Single nuclear spin free induction decay (FID) in CaF2:Ce. Top:
nuclear spin part of the pulse sequence (cf. Figure 4.2). Bottom: Typical
measured FID. The decay constant is approximately 20 µs.

diminished by 10−1− 10−3 with respect to the secular part. Such that the bulk
of decoherence is due to the secular part.
The need to combat decoherence now becomes apparent: With the coupling
strength of a few kHz, typical two-qubit gates take tens of microseconds and
measures must be taken reduce the speed of decoherence. To show that this is
possible, a number of well known sequences was applied. They are shown in
Figure 5.2 along with the experimental results.
The simplest way of decoupling a single spin is the Hahn-echo sequence. It elim-
inates the secular part of the dipolar Hamiltonian in the 0-th order of average
Hamiltonian theory such that the evolution under this term is fully refocused.
The measurement shows that decay time of the echo is now beyond 400 µs.
This decoherence is now caused by the flip-flop terms H̃(ns)

D during the long free
evolution periods. Also, the free evolution time increases during the measure-
ment. This results in increasing contributions of higher oder average Hamilto-
nian terms. The non-exponential decay under the Hahn sequence is explained
by this fact.
To further improve the decoupling, the non-secular part of the interaction Hamil-
tonian must be suppressed. The spin locking sequence [115] in Figure 5.2(b)
is suitable for this task. Under the action of continuous irradiation, the non-
secular terms are further reduced. In terms of the average Hamiltonian theory,
the cycle time is now equal to a full Rabi-oscillation: tc = 1/ν1. The 0-th

order average Hamiltonian is then scaled by a factor
√

tr
{
H̃

(ns)2
D

}
/ν1. The

decay time achieved by spin locking is on the order of 2 ms providing a further



130 Chapter 5. Spin-Spin Interactions in a Hostile Environment

(a)

Ij
y
π
2

τ x
π

τ ȳ
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Figure 5.2: Single nuclear spin decoherence in CaF2:Ce. (a) Hahn echo. (b)
The Spin-locking sequence. (c) The rotary echo sequence. See text for details.
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five-fold improvement of decoherence suppression.
The spin-locking sequence provides the best decoupling for a given strength
of the driving field. However, it suffers from the problem of dephasing due
to the inhomogeneity of the driving rf field B2. Who’s detrimental effect can
be compensated by periodically inverting the rf phase. The resulting rotary
echo [116] sequence is shown in Figure 5.2(c). In the rotating frame, the spin is
quantized along the direction of the rf field and the magnetization experiences a
dephasing process analogous to an FID in an inhomogeneous static field. After
a period τ , the phase of the rf field is reversed. This inverts the direction of the
driving field in the rotating frame. The effect of B2 inhomogeneity is therefore
reversed and the dephased magnetization refocuses until a rotary echo appears
at t = 2τ . This is followed by another period of dephasing until the phase is
switched again at t = 3τ giving rise to an echo at t = 4τ . Thereafter, the
phase is periodically alternated at t = (2n + 1)τ producing a train of echoes
at t = (2n)τ . Additionally, it is observed that refocusing becomes increasingly
better, with decreasing τ (see also discussion of the CPMG sequence below). For
the measurement in Figure 5.2(c) the choice was τ = 200 µs. Phase alternation
times are indicated by vertical lines.
These single nuclear spin decoherence experiments show that it is possible to
maintain the coherence of the qubits sufficiently long for implementation of
quantum computing algorithms.

5.3 Recoupling of Selected Spin-Pairs

The sequences discussed in the previous section indiscriminately suppress all
couplings of a nuclear qubit to its neighbors. In order to be able to measure or
generally utilize a particular spin-spin coupling for two-qubit quantum gates, it
must be reintroduced while keeping the decoupling of the rest as good as possi-
ble. In the following, a selection of sequences serving this purpose is presented.

5.3.1 Spin-Echo Double Resonance

The conceptually simplest case is the spin-echo double resonance (SEDOR) se-
quence [117, 118] shown in Figure 5.3. It extends the Hahn-echo sequence by a
π-pulse on the second spin. This results in a additional sign inversion and the
coupling between the two spins is reintroduced, while the coupling to all other
spins is still averaged out. The 0-th order secular average Hamiltonian for the
SEDOR sequence is

H̄D
SEDOR = DjkIzjIzk

(5.7)

Couplings to all other spins are averaged out. Results of application of this
sequence to a selected pair of nuclear spins are shown in Figure 5.3. The oscil-
lation under the spin-spin coupling is clearly seen in the transient. The decay
time is around 450 µs and is similar to the one found in a single spin decoher-
ence measurement with the analogous Hahn-echo sequence. A spectrum of this
oscillation can be obtained by a Fourier transform. A fit with a Lorentzian line
produces a center frequency of fSEDOR = 4.55 kHz and a full line width at half
maximum (FWHM) of ∆fFWHM = 2.24 kHz. Notice that the oscillation goes
through three full cycles before coherence is completely lost. This means that
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Figure 5.3: Spin-echo double resonance (SEDOR) measurement on two nu-
clear spins in CaF2:Ce. Top: Pulse sequence. Bottom: Mesured echo decay
and the corresponding spectrum. Center frequency: fSEDOR = 4.55 kHz, line
width: ∆fFWHM = 0.96 kHz, decay constant: 1/π∆fFWHM = 0.33 ms.

up to 10 two qubit gates can, in principle, be implemented for this spin pair
with the SEDOR sequence. In practice, this number can be significantly lower
due to the fine width of pulses.
As discussed in the previous section for the Hahn echo, the suppression of un-
wanted spin-spin couplings is insufficient during long periods of free evolution
and can be improved.

5.3.2 Carr-Purcell-Meiboom-Gill Sequence

To shorten the time when the spins evolve freely, the Carr-Purcell-Meiboom-
Gill (CPMG) sequence [119] introduces additional π-pulse pairs as shown in
Figure 5.4. The sequence can be treated as a periodic repetition of the τ −π−τ
block. As such it has the same first-order average Hamiltonian as the SEDOR
sequence. However, the CPMG-sequence suppresses spin diffusion much better,
because the free evolution periods – and with them the cycle time tc – can be
made arbitrarily short, limited only by finite pulse width.
The effect of reduced cycle time is seen explicitely when comparing the results for
three different settings of τ as shown in the figure. Line width of the oscillation
under the spin-spin coupling are significantly reduced with shorter cycle time:
trippling tc almost doubles the linewidth. For quantitative analysis, the slow
baseline decay has been fitted with an exponential function and subtracted from
the time-domain data prior to the Fourier transform. The spectra were then
fitted with Lorentzian line shapes to yield the data shown in Table 5.1. At the
shortest tested setting of the cycle time, the CPMG sequence gives an three-fold
improvement in decoherence suppression over the SEDOR sequence.
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Figure 5.4: Carr-Purcell-Meiboom-Gill sequence on two nuclear spins in
CaF2:Ce. Top: Pulse sequence. Bottom: Time traces and corresponding spec-
tra for progressively shorter cycle times. The green line indicates a fit of a
Lorentzian line to the spectrum. The slow baseline decay has been removed
from the spectra by subtracting a fitted exponential decay from the transients
prior to Fourier transform.
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τ [µs] fCPMG [kHz[ ∆fFWHM [kHz] 1/π∆fFWHM [ms]
22.2 4.42 0.55 0.58
14.8 4.41 0.37 0.86
7.4 4.46 0.32 0.99

Table 5.1: Results of spin-spin coupling measurement with the CPMG se-
quence for different cycle times.

5.3.3 Simultaneous Spin-Locking

The next logical step in the quest for decoherence suppression is to eliminate
free evolution altogether. In its simplest form, this is achieved by applying
the spin-locking sequence to two spins simultaneously. To compute the average
Hamiltonian [120] one starts again with the time dependent version:

HD
2lock(t) =

1
2
Djk

(
Izj cosω1t− Iyj sinω1t

)
(Izk

cosω1t− Iyk
sinω1t) (5.8)

and arrives at the average value of

H̄D
2lock =

1
2
Djk

(
IzjIzk

+ IyjIyk

)
(5.9)

Notice the tilted quantization axis in this case. The pulse sequence and the
experimental result are shown in Figure 5.5. Although decoupling from other
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Figure 5.5: Simulatenous spin locking on two nuclear spins in CaF2:Ce.
Top: Pulse sequence. Bottom: Time trace and corresponding spectrum.
The slow baseline decay was removed prior to Fourier transform. Center fre-
quency: f2lock = 4.50 kHz, line width: ∆fFWHM = 0.81 kHz, decay constant:
1/π∆fFWHM = 0.39 ms.
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spins should now be optimal, the line width does not achieve values found with
the CPMG sequence. As mentioned above, this can be attributed to the inho-
mogeneity of the driving rf field B2. This dephasing effect must be addressed
by appropriate phase alternation.

5.3.4 The 8π-Sequence

The phase alternation which is required to counter the rf inhomogeneity, can
also be used for another purpose. The tilted quantization axis of the average
Hamiltonian of the spin-locking sequence differs from the situation encountered
in standard INEPT [16] and CNOT [13] implementations and presents a prob-
lem for the use of that sequence in quantum information processing. For a
straight forward implementation of gates, a Hamiltonian quantized along the
z-direction is much more useful. To address this problem the sequence shown
in Figure 5.6 was devised. It consists of four consecutive 2π-rotations with the
phase alternating in each section on one spin and in every second section on
the other spin (hence the name “8π-block”). The average Hamiltonian for each
section can be calculated in the same way as in the case of spin-locking:

H̄xy = H̄x̄ȳ =
1
2
Djk

(
IzjIzk

− IyjIxk

)
(5.10a)

H̄x̄y = H̄xȳ =
1
2
Djk

(
IzjIzk

+ IyjIxk

)
(5.10b)
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ȳ

2π

x

2π

y

2π

x̄

2π

y

2π

x

2π

ȳ
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Figure 5.6: Evolution of two nuclear spins in CaF2:Ce under the 8π-block.
Top: Pulse sequence. Bottom: Time trace and corresponding spectrum. Center
frequency: f8π = 2.22 kHz, line width: ∆fFWHM = 0.40 kHz, decay constant:
1/π∆fFWHM = 0.80 ms



136 Chapter 5. Spin-Spin Interactions in a Hostile Environment

The Hamiltonian for the entire block is then given by

H̄D
8π =

1
4

(H̄xy + H̄x̄y + H̄xȳ + H̄x̄ȳ

)
=

1
2
IzjIzk

(5.11)

The factor 1/2 demonstrates that the straight quantization axis comes at the
cost of halving the usable coupling strength. This is reflected by measurement
in Figure 5.6. The linewidth of 400 Hz shows that the full potential of this
sequence is not realized in our measurements as compared for instance to the
CPMG data. This can be attributed to experimental problems, such as sample
heating during long periods of rf irradiation, amplifier droop, etc.

5.4 Conclusions

This section has demonstrated that the coherence can be kept in the nuclear
qubits of the S-bus cluster for time periods sufficient for simple quantum com-
puting algorithms to be performed. The techniques described here, also, allow
the pairwise spin couplings to be measured accurately as well as used to im-
plement two-qubit gates. This can be achieved in the face of a very “hostile”
environment rife with decoherence and dephasing paths.
The CPMG sequence yields the narrowest coupling spectra, especially when
the cycle time of the sequence is kept short. For the use in quantum com-
puting experiments, the use of the CPMG sequence can be problematic. The
average Hamiltonian calculation does not take into account the finite width of
the rf pulses and thus neglects some tilting of the quantization axes. Espe-
cially because the minimum pulse width is limited both technically and by the
requirement of selective excitation.
Here, the 8π-block shows the most promise, because it produces the desired
Hamiltonian without the approximation of δ-pulses while retaining good de-
phasing suppression properties. Its disadvantages lie in the potential sample
heating by prolonged rf irradiation and in the reduction of the usable coupling
strength be a factor of two.



Summary

This thesis presents my work on improving existent and developing new methods
for preparation, manipulation, and observation of quantum states in the context
of spin quantum computing. Three quite different types of quantum systems
were used for this purpose: One consisted of nuclear spins of small molecules
in the liquid state. The second was comprised of similar molecules aligned
in a liquid crystal matrix. The third combined nuclear spins with electron
spins in a single crystal environment. Experimental methods ranged from high
resolution Nuclear Magnetic Resonance (NMR) to Electron Spin Resonance
(ESR). Theoretical methods and computer simulations were used to deepen the
understanding and aid in the work with pulse sequences.

Entanglement in the
Three-Qubit Deutsch-Josza Algorithm

The main result of the work done with high-resolution liquid state NMR was the
use of local operations to reveal the entanglement content of the output states
of the Deutsch-Josza agorithm.
The modern Collins-version of the Deutsch-Josza algorithm was implemented
in cooperation with O. Mangold during his Diploma thesis work. The three
nuclear 19F-spins of the liquid 2,3,4-Trifluoroaniline were used as qubits. One
of the notable properties of this compound is the absence of J-coupling between
two of the three qubits resulting in a linear coupling topology. The pseudo-
pure state ρ000 prepared with fidelity close to 1 was used as an input. Full
tomography of the output states was employed to obtain exhaustive knowledge
of the corresponding density matrices. The method used to bridge the missing
link is applicable to other linear topology systems.
It was shown that the possible oracle transformations of the Deutsch-Josza al-
gorithm can be divided into several classes according to their operator structure
such that the oracles within a class are equivalent under exchange of qubits. The
linear topology of our quantum processor partially lifts this equivalence. Nine
oracles covering the interesting cases (including the one which uses correlations
across the non-existent coupling) were selected for implementation. Starting
with three qubits the Deutsch-Josza algorithm can produce entanglement in
the course of its execution. The entanglement content of the output states,
however, is not immediately obvious. Using the fact that local (i.e., one-qubit)
operations do not modify the entanglement contained in a given quantum state,
a set of such transformations for each of the implemented oracles was found,
which immediately reveals the entanglement of the output states produced by
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those oracles. In this way, it was shown that some of the output states can
be locally mapped onto states entangled in the subspace of two qubits. One of
the oracles was found to produce a state equivalent to the maximally entangled
Greenberger-Horne-Zeilinger (GHZ) state under local transformations.

Selective Excitation under Continuous Averaging

Qubit-qubit couplings are an indispensable prerequisite for quantum computing.
Many physical systems proposed for experimental implementation contain such
couplings in their native Hamiltonian. This “always on” nature of interactions
frequently poses difficulties for implementation of two-qubit gates. In NMR, it
is possible to effectively eliminate such interactions through appropriate pulse
sequences.
Small organic molecules aligned in a liquid crystal matrix were used to test
the feasibility of this idea. In a series of basic proof-of-principle experiments,
the magic echo pulse sequence was used to switch off the dipolear coupling
of nuclear spins. Most importantly, it was shown that it is still possible to
selectively address individual qubits while the averaging sequence is in effect.

Visual Analysis of Pulse Sequences

A method for visualization of unitary transforms of spin-½ was devised to aid
in the analysis and design of pulses and pulse sequences. It was shown that
such transformations can be represented by a vector in R3 with the expected
properties of representing the axis and angle of a rotation. This type of visu-
alization presents all important features of a unitary transformation in a single
picture. Especially plots of variation of this vector with experimental param-
eters allow the merits of a pulse sequence to be easily and intuitively judged.
The advantages of this method were demonstrated by analysing and comparing
a number of simple pulses with respect to their selectivity and phase fidelity.
A sequence of alternating off-resonance pulses was constructed, which could be
used to implement a highly selective π

2 -pulse.

Details of Spin Quantum Computing
with the S-Bus System CaF2:Ce

The S-bus concept for spin quantum computing was developed by M. Mehring.
First implementation was preformed by J. Mende in single crystal CaF2 weakly
doped with cerium. My work on this system was focused on improving quanti-
tative understanding and experimental methods.
The general theory of the S-bus given by Mehring provides a good fundamental
understanding of CaF2:Ce. It does, however, contain a number of parameters
which can only be obtained from measurements. In addition, some of the as-
sumptions underlying the analytic model are not well met by this system.
An exact numeric modeling of the 10-spin magnetic Hamiltonian of the param-
agnetic cluster in CaF2:Ce was undertaken. A problem for the utilization of the
diagonalized Hamiltonian arrises from the fact that the numeric routines return
the eigenvalues and eigenvectors in arbitrary order thus artificially scrambling
the Hilbert spaces of the constituent spins. To circumvent this obstacle, the
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measurement operators had to be constructed in the laboratory frame of refer-
ence an transformed to the eigenframe of the Hamiltonian. In this way the ESR
and ENDOR spectra were calculated. They show excellent agreement with ex-
perimental results. Furthermore they allow accurate assignment of the ENDOR
transitions to the fluorine sites and to the mS = ±½ states of the electron spin.

The mentioned scrambling problem together with the mixing of states due to
strong hyperfine coupling make finding the quantization axes of the nuclear
spins difficult. Because of the large Zeeman splitting of the electron, its quanti-
zation axis can be determined accurately. The standard procedure for rotating
frame transformation was extended to account for the complicated transforma-
tion to the eigenframe. This allowed simulations of ESR pulse sequences to be
performed.

A free induction decay (FID) simulation showed that the T2 decoherence of the
electron spin can be almost entirely attributed to its coupling with the nuclear
spins within the cluster. The obtained value of the time constant of the FID is
in good agreement with the experimental finding. Simulations of a Hahn echo
and a two-pulse sequences demonstrated the ability of the numeric model to
reproduce the refocusing of the electron spin magnetization. Finally an envelope
modulation of the stimulated echo (ESEEM) was computed. The simulation
correctly reflects the spectrum produced by this non-trivial experiment.

The evolution of the two-qubit density matrix components was studied under
the action of the CNOT -gate and its precursor sequences (SEDOR and INEPT)
with two main goals: to compare the general predictions of the theory about
such evolutions and to experimentally determine the parameters entering the
model.

Measurements towards creation of pseudo-entangled states of two distant qubits
were performed. A pair of nuclear spins in CaF2:Ce can be made distant by
aligning the sample such that their dipole-dipole coupling vanishes. The inter-
action is then mediated by the electron spin emphasizing its role as a quantum
bus. As a first step, the CNOT -gate was implemented and tested by applying it
to pseudo-pure states. Because of special properties of the preparation and de-
tection sequences in the S-bus, an elaborate procedure had to be devised for the
measurement of the output states. With the working CNOT -gate and the four
pseudo-pure states as basic ingredients, preparation of the four Bell-states of two
qubits was attempted. Their off-diagonal structure again presents a problem in
their detection. In a first step, the standard tomography procedure was used to
show that the prepared states did not, in fact, contain any linear components.
Secondly, a pulse sequence was devised which allows the four entangled states
to be distinguished using their signatures.

Finally, the interesting question of whether entangled states are especially re-
sistant to decoherence was studied by measuring their decay constants. The
obtained relaxation times states can differ by a factor of two. However, no
spectacular resistance to decoherence was found in the Bell-states in CaF2:Ce.

Measurement of Spin-Spin Interactions in Hostile Environments

The main disadvantage of CaF2:Ce for the purpose of quantum computing is
the fact that the cluster carrying the qubits is embedded in an extended 19F-
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spin network which is a powerful source of decoherence. A number of existing
sequences were applied to CaF2:Ce and compared with respect to their fitness
for one of two purposes: the accurate measurement of the coupling strength
between two qubits and the use of this coupling for quantum gates. Both uses,
require all other couplings to neighboring spins to be suppressed.
The sequences studied were SEDOR, CPMG, and spin locking. The SEDOR se-
quence is the simplest variant and has the additional advantage of producing an
average Hamiltonian which is usable for quantum computing. However, it pro-
duces only insufficient decoupling because of the long evolution periods, where
the non-secular parts of the interactions are not averaged out. The CPMG se-
quence produces the correct Hamiltonian and much better decoupling, especially
with short cycle times. However, with the decreasing cycle time, the effects of
finite pulse width, which cannot easily be accounted for, make an accurate mea-
surement of the coupling strength difficult. Although the spin locking sequence
might be expected to produce the best decoupling, its decay constant is domi-
nated by the inhomogeneity of the driving field. Also, its average Hamiltonian’s
quantization axis is tilted, making it less useful for quantum computing.
As a compromise, an 8π-pulse sequence was devised, which consists of four suc-
cessive 2π-rotations whose phases are alternated such that B1-inhomogeneities
are refocused and the average Hamiltonian is aligned along the z-direction.
Additionally, these methods are useful for accurate measurement of spin-spin
couplings in the presence of strong relaxation sources. They can be applied
outside of the realm of quantum computing and in systems other than CaF2:Ce.

Outlook

The potential of the S-bus concept implemented in CaF2:Ce is certainly not
yet exhausted. Especially its use a higher magnetic fields (in particular in
the W-bad) warrants more attention. A sufficiently high field would clearly
separate the Zeeman energy of the nuclear spins form the hyperfine interaction.
This would greatly simplify the theoretical understanding of the experimental
situation. Furthermore, the higher Boltzmann polarization of the electron spin
would, at low temperature, place the quantum limit within reach and enable
the transition of ensemble spin quantum computing from pseudo-pure to pure
states.

————–



Zusammenfassung

Quantencomputing, d.h. Rechnen mit Quantensystemen, ist eine der aufregend-
sten Entwicklungen der letzten Jahre in der Physik. Die Faszination gründet
sich sowohl in den theoretischen Aspekten dieses Forschungsgebiets als auch in
den experimentellen Herausforderungen, die mit der Umsetzung der abstrakten
Algorithmen verbunden sind.

Den Theoretiker reizt die Möglichkeit, Objekte der Quantenwelt, deren Verhal-
ten dem gesunden Menschenverstand trotzt, in den Dienst der Informations-
verarbeitung zu zwingen. Dabei stößt man unweigerlich auf ganz fundamentale
Fragen der Interpretation der Quantenmechanik. Insbesondere das Phänomen
der Verschränkung, das schon die Pioniere der Quantenmechanik beschäftigte,
steht hier im Mittelpunkt.

Die theoretischen Fortschritte im Feld der Quanteninformationsverarbeitung
sind in der Tat enorm. Eine Vielzahl von Algorithmen zur Lösung rechnerisch
schwieriger Aufgaben, zur Simulation von Quantensystemen mit Quantensyste-
men, zur abhörsicheren Informationsübertragung, zur Quantenfehlerkorrektur
und mehr ist entwickelt worden. Es gibt sogar Vorschläge, die sich von der
prozeduralen Methode der Turing-Maschinen ganz lösen und eine ganz neu-
artige Nutzung von großen verschränkten Qubitregistern anstreben. Auch das
Verständnis der Verschränkung ist inzwischen deutlich vertieft worden.

Für den Experimentator bietet Quantencomputing eine Gelegenheit die Gren-
zen des machbaren zu erweitern. Experimentelle Umsetzung erfordert einen bis
jetzt nicht dagewesenen Grad an Kontrolle über Quantensysteme. Die so ent-
stehenden Verfahren zur Präparation, Manipulation und Vermessung der Quan-
tenzustände bereichern das Instrumentarium der experimentellen Grundlagen-
forschung.

Naturgemäß kann das Experiment nicht mit dem Tempo der theoretischen Ent-
wicklung Schritt halten. Jedoch sind auch bei der Implementierung entschei-
dende Fortschritte gemacht worden. Viele der theoretischen Konzepte sind an
kleinen Systemen demonstriert worden. Dabei kommt eine große Bandbreite an
physikalischen Systemen zum Einsatz: von den Kernspins in Molekülen, über
gefangene Atome und Ionen, über Quantenpunkte und supraleitende Inseln bis
hin zu einzelnen Moden des elektromagnetischen Feldes in Resonatoren hoher
Güte.

Die schnellsten Erfolge wurden seit Ende der 90er Jahre mit den Mitteln der
hochauflösenden Kernspin Resonanz (NMR, engl. Nuclear Magnetic Resonance)
erzielt worden. Dies ist vor allem zwei Tatsachen geschuldet. Erstens ist der
Spin-½ein ideales Qubit. Zweitens, hat die magnetische Resonanz im Hinblick
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auf die Möglichkeiten seinen Zustand zu manipulieren einen sehr hohen Ent-
wicklungsstand erreicht. Diese ersten Bemühungen haben das Teilgebiet des
Spin-Quantencomputing begründet.
Sicherlich ist Quantencomputing mit NMR an Flüssigkeiten in seiner
Skalierbarkeit grundsätzlich begrenzt. Jedoch soll der Spin in vielen Quanten-
computingvorschlägen als Qubit verwendet werden. Deshalb bleibt magnetische
Resonanz eine wichtige Testumgebung für die Entwicklung von experimen-
tellen Methoden. Gleichzeitig, verlagert sich das Interesse von Flüssigkeiten
zu orientierten Systemen und insbesondere zu Festkörpern, die eine höhere
Skalierbarkeit versprechen.

Der Schwerpunkt meiner Arbeit lag an der Entwicklung und Verfeinerung
von Methoden zur Präparation, Manipulation und Vermessung von Quanten-
zuständen. Dabei wurden sowohl Moleküle in Lösung und in einer Flüssigkri-
stallmatrix als auch Festkörpersysteme verwendet. Auf apparativer Seite kamen
Methoden der NMR und Elektron Spin Resonanz (ESR) zum Einsatz. In eini-
gen Fällen wurden numerische Simulationen durchgeführt, um das Verständnis
der Experimente zu verbessern. Auf diese Weise gliedert sich die Arbeit in die
nun folgenden Abschnitte.

Verschränkung im Drei-Qubit
Deutsch-Josza Algorithmus

David Deutsch war der erste, der zeigte, dass Quantencomputing in der Lage
ist klassisch unlösbare Probleme zu lösen. In der Folge, hat sich der Deutsch-
Josza Algorithmus zu einer beliebten Methode entwickelt, die Praktikabilität
von Vorschlägen zur Implementierung von Quantencomputing zu testen. Auch
in unserem Labor wurde der Deutsch-Josza Algorithmus mit drei Qubits im
Rahmen der Diplomarbeit von O. Mangold implementiert. Dabei ging es uns vor
allem um die Frage der Entstehung von Verschränkung im Ablauf des Algorith-
mus und insbesondere um die experimentelle Darstellung solcher verschränkter
Zustände.

Experimentelle Durchführung

Der Quantenprozessor Zur Implementierung mit der Flüssigkeits-NMR
wurde das Molekül 2,3,4-Trifluoroanilin verwendet. Seine drei 19F-Kernspins
sind durch ihre chemischen Verschiebungen hinreichend spektral getrennt und
können somit selektiv angeregt und als Qubits verwendet werden. Einer der
Spins ist durch skalare Wechselwirkung an jeden der beiden Anderen gekoppelt.
Die dritte Kopplung ist vernachlässigbar. Ihr Fehlen hat interessante Auswir-
kungen auf das Design der Pulssequenzen.

Präparation und Tomographie Beim Ensemble-Quantumcomputing mit
Flüssigkeits-NMR startet man naturgemäß mit dem nahezu maximal gemischten
Boltzmann-Zustand. Zur Durchführung von Algorithmen muß daraus zunächst
ein pseudo-reiner Zustand erzeugt werden. Die Präparation muss vor allem
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Korrelationen zwischen den Qubits erzeugen, die in pseudo-reinen Zuständen
vorhanden sind aber im Boltzmann-Zustand fehlen. Dabei liegt eine besondere
Herausforderung darin, die zwei Qubits zu korrelieren, die nicht miteinander
gekoppelt sind. Das Verfahren dazu ist auch in anderen Systemen mit linearer
Qubit-Topologie einsetzbar. Die nicht-unitäre Natur der Präparationssequenz
bietet auch die Möglichkeit Fehler durch nicht-perfekte Pulse zu korrigieren
und Verluste durch Relaxation während der freien Evolution zu berücksichti-
gen. Auf diese Weise konnten pseudo-reine Zustände mit einer Güte von über
99.9% präpariert werden. Um die Güte der Präparation überhaupt bestimmen
zu können, wurde eine vollständige Tomographie der Dichtematrix vorgenom-
men. Diese Verwendet im Wesentlichen die gleichen Bausteine wie die Präpara-
tionssequenz.

Verschränkung im Deutsch-Josza Algorithmus

Das Deutsch-Problem Das Deutsch-Problem betrachtet Funktionen, die N
Bits auf ein Bit abbilden. Es werden zwei Klassen von getesteten Funktionen
zugelassen; diese werden als ausgeglichene und konstante bezeichnet. Die ei-
gentliche Rechnung wird durch eine physikalische Vorrichtung bewerkstelligt.
Da die innere Beschaffenheit dieser Vorrichtung dem Auswerter vorenthalten
bleibt, nennt man sie ein Orakel für die getestete Funktion. Die Aufgabe be-
steht nun darin, eine Funktion in eine der zwei Klassen einzuteilen und dabei
das Orakel möglichst selten zu betätigen. In der modernen Version des Deutsch-
Josza Algorithmus nach Collins löst ein Quantencomputer das Problem mit einer
einzigen Anwendung des Orakels. Ab N = 3 Qubits kann dabei Verschränkung
entstehen.

Auswahl und Implementierung der Orakel Aus den 72 erlaubten Funk-
tionen musste eine sinnvolle Auswahl getroffen werden. Dazu wurden die ent-
sprechenden unitären Transformationen, die die Orakel verwirklichen, in der
Spinoperator-Basis dargestellt. Es stellt sich heraus, dass die Orakel auf natürli-
che Weise in sieben Klassen zerfallen. Die Transformationen innerhalb einer
Klasse zeigen die gleiche Operatorstruktur und können durch Vertauschung
von Qubits ineinander überführt werden. Weil das Kopplungsnetzwerk unseres
Quantenprozessors nicht unter allen Vertauschungen symmetrisch ist, wurden
neun Orakel implementiert, die alle interessanten Fälle abdecken. Insbesondere
auch das Orakel, für welches die fehlende Kopplung überbrückt werden muss. Als
Eingangszustand diente der pseudo-reine Zustand ρ000. Die Ausgangszustände
wurden wiederum tomographiert und analysiert.

Darstellung des Verschränkungsgrades der Endzustände Da das Pro-
blem der Verschränkung ab drei Qubits nachwievor theoretisch nicht vollständig
gelöst ist, ist es nicht ohne Weiteres klar, ob und wie stark die Ausgangszustände
des Algorithmus verschränkt sind. Andererseits ist es bekannt, das lokale Trans-
formationen, d.h. solche, die nur einzelne Spins betreffen, den Verschränkungs-
grad eines Zustandes nicht ändern. Es stellt sich heraus, dass es möglich ist
diesen Grad für die Endzustände des Algorithmus durch einige wenige lokale
Transformationen offensichtlich zu machen.
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Für jedes Orakel wurde ein solcher Satz gefunden. Manche Orakel erzeugen keine
Verschränkung. Andere ergeben Zustände, die im Subraum zweier Qubits ver-
schränkt sind, sodass der Gesamtzustand ein Produkt aus einem Bell-Zustand
dieser Qubits mit einem reinen Zustand des dritten Qubits bildet. Es gibt
auch Orakel mit einem Endzustand, der lokal auf den vollständig verschränkten
Greenberger-Horne-Zeilinger Zustand abgebildet werden kann. Die Erzeugung
von Verschränkung durch ein Orakel ist so mit der Operatorstruktur der Ora-
keltransformation korreliert.

Maßschneidern des Hamilton-Operators

Wechselwirkungen zwischen den Qubits sind eine unabdingbare Voraussetzung
für Quantencomputing. Viele Quantensysteme beinhalten solche Kopplungen in
ihren Hamilton-Operatoren. Dabei ist es oft wünschenswert diese Kopplungen
temporär außer Kraft setzen zu können. Die magnetische Resonanz bietet die
Möglichkeit den Hamilton-Operator durch Verwendung von geeigneten Pulsse-
quenzen zu modifizieren. Um diese Idee zu testen, wurden kleine organische
Moleküle in einer Flüssigkristall-Matrix mit den Mitteln der NMR untersucht.
Diese Systeme nehmen eine Zwischenposition zwischen den Flüssigkeiten und
Einkristallen ein, weil die Flüssigkristalle durch Ausrichtung der Moleküle die
Ausmittelung der anisotropen Dipol-Dipol-Wechselwirkung teilweise aufheben.
Die Magic-Echo-Sequenz erlaubt es diese Wechselwirkung zu unterdrücken.
Die theoretische erwarteten Eigenschaften (Unterdrückung der Dipol-Dipol-
Kopplung und Skalierung der chemischen Verschiebung) wurden experimentell
demonstriert. Es wurde auch gezeigt, dass es möglich ist, während der Mitte-
lungssequenz die einzelnen Qubits selektiv anzusprechen, was für das Quantum-
computing von entscheidender Bedeutung ist.

Visualisierung Unitärer Transformationen

Design von Pulssequenzen ist ein wesentlicher Bestandteil bei der Arbeit am
Spin-Quantumcomputing. Über die Jahre ist eine Vielzahl von Verfahren ent-
wickelt worden, die verschiede Aufgaben in der magnetischen Resonanz lösen.
Meist geht es dabei darum, die Magnetisierung aus einer gegebenen Richtung in
eine andere Richtung zu überführen. Quantencomputing mit Spins bringt nun
die Komplikation mit sich, dass hier weder der Anfangszustand noch der End-
zustand spezifiziert sind. Vielmehr geht es darum, dir Transformation selbst
möglichst getreu zu verwirklichen. Die Schwierigkeit besteht nun darin, dass
man dabei nicht die Bahnen der drei Spinkomponenten verfolgen, sondern sich
die Evolution der unitären Transformation selbst vorstellen muss. Ich habe ein
Verfahren angewendet, das diese Aufgabe wesentlich erleichtert.
Ein Spin-½ wird üblicherweise in der Bloch-Konstruktion durch einen Vektor im
R3 visualisiert. Nun sind unitäre Transformationen von Einzelspins nichts weiter
als Drehungen solcher Vektoren1 und können im wesentlichen auch durch Vek-
toren im R3 visualisiert werden. Die Richtung eines solchen Vektors entspricht

1Bis auf einige Details, die mit den Spinoreigenschaften der Spins zusammenhängen.
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dabei der Drehachse und seine Länge dem Drehwinkel. Eine rechnergestütz-
te Austragung eines solchen Vektors macht es möglich, die Entwicklung der
unitären Transformation währen eines Pulses mit einem komplizierten Phasen-,
Amplituden- und Frequenzverlauf visuell zu erfassen. Es konnten auch einige
hilfreiche Vorschriften angegeben werden, wie aufeinander folgende Pulse zu-
sammenzufügen sind.

Weiterhin kann man mit Hilfe von Computersimulationen die Abhängigkeit eines
solchen Vektors von verschiedenen experimentellen Parametern (wie z.B. der
Inhomogenität der statischen oder der RF-Felder) auftragen. Eine solche Spur
fasst die wesentlichen Eigenschaften eines Pulses auf einen Blick zusammen.

An Beispielen von einigen einfachen in der NMR üblichen Pulsen wurde die An-
wendung dieser Methode demonstriert. Diese Demonstrationen verdeutlichen
sehr schön das Problem der Mitanregung spektral benachbarter Spins bei se-
lektiven Pulsen. Es stellt sich auch heraus, dass ein häufiger Schwachpunkt der
Pulse darin besteht, dass sie zwar über große Bandbreiten von Parametern die
richtigen Drehwinkel haben, dass ihre Drehachsen allerdings in einem nicht an-
nehmbaren Maß variieren.

Mit Hilfe dieser Werkzeuge wurde eine aus alternierenden off-resonanten Pulsen
bestehende Sequenz entwickelt. Diese Sequenz implementiert einen selektiven
π
2 -Puls, der potentiell im Spin-Quantencomputing verwendet werden kann.

Detaillierte Untersuchung der Dichtematrizen im
S-Bus-System CaF2:Ce

Von der Vielzahl der existierenden Vorschläge zum Quantencomputing mit Spins
sind diejenegen am aussichtsreichsten, die auf Festkörpersystemen basieren. Da-
bei sollen Elektronen- wie Kernspins Verwendung finden. Das Studium der
Kopplungen und Manipulationsmöglichkeiten ihrer Wechselwirkungen ist also
von allgemeinem Interesse. Das von M. Mehring entwickelte S-Bus-Konzept ist
ein ideales Testfeld für solche Untersuchungen. In unserer Gruppe hat J. Mende
im Rahmen seiner Doktorarbeit seine Machbarkeit anhand von einkristallinem
mit Cer dotiertem CaF2 eindrucksvoll vorgeführt. Seine wesentlichsten Erfolge
waren unter Anderem, die Präparation von pseudo-reinen Zuständen von zwei
und drei Qubits, die Durchführung des 2-Qubit-Deutsch-Josza-Algorithmus und
erste Versuche zur Herstellung verschränkter Zustände.

Das Ziel meiner Beschäftigung mit CaF2:Ce bestand darin, das Verständnis die-
ses Systems zu vertiefen und auch auf eine quantitative Basis zu stellen. Dazu
habe ich eine exakte nummerische Simulation dieses 10-Spin-Systems durch-
geführt. Auf experimenteller Seite, habe ich die Evolution der Dichtematrizen
unter der Wirkung verschiedener 2-Qubit-Gatter im Detail studiert um die in
die Theorie eingehenden Parameter messtechnisch zu bestimmen. Anhand ei-
ner vollständige Tomographie wurde die Implementierung des CNOT -Gatters
gezeigt mit dessen Hilfe dann die Bell-Zustände zweier Qubits erzeugt wurden.
Auch der Frage der Zerfallseigenschaften dieser verschränkten Zustände wurde
nachgegangen.
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Das S-Bus-Konzept für Spin-Quantencomputing

Das Spin-Bus-Konzept für Quantencomputing basiert auf einem Elektronenspin
(S) der mit einer Anzahl von Kernspins (I) durch die Hyperfeinwechselwirkung
verbunden sind. Die I-Spin sind die Informationsträger (Qubits). Der S-Spin
wird verwendet, um einen hochkorrelierten Zustand der Qubits zu erzeugen
und um ihren Zustand auszulesen. Er dient somit als ein Quantenbus. Zusätz-
lich können die Kernspins untereinander durch die Dipol-Dipol-Wechselwirkung
gekoppelt sein. Das System kann im Prinzip skaliert werden, indem einzelne
S-Bus-Cluster über die großen Dipolmomente ihrer Bus-Spins kontrolliert mit-
einander in Wechselwirkung gebracht werden.
Das S-Bus-Konzept hat eine Reihe von Vorteilen:

� Durch das 103-fach größere gyromagnetische Verhältnis ist im thermischen
Gleichgewicht die Polarisation der Elektronenspins wesentlich höher als die
der Kernspins. Somit steht diese Ressource in einem viel größerem Umfang
für Quantenalgorithmen zur Verfügung.

� Die starke Aufspaltung der Zeeman-Niveaus des Elektronenspins be-
wirkt, dass bereits bei heute verfügbaren Temperaturen und Feldstärken
die Quantengrenze überschritten werden kann, was einen Übergang von
pseudo-reinen zu reinen Quantenzuständen möglich ist.

� Aus dem gleichen Grund, ist die Nachweisempfindlichkeit bei Beobachtung
des Elektronenspins um Größenordnungen höher.

� Die starke Hyperfeinkopplung und die sternförmige Topologie erlauben ei-
ne rasche Erzeugung eines hochkorrelierten Zustands des Qubit-Registers.
Dieser Zustand enthält bereits alle Korrelationen, die zur Herstellung
pseudo-reiner Zustände benötigt werden.

Eine der wesentlichen Schwierigkeiten des Konzepts besteht in der indirekten
Beobachtung des Zustands der Qubits. Als Konsequenz, kann diese Information
nur in ein- oder höherdimensionalen Messungen gewonnen werden.

CaF2:Ce als Quantenprozessor

Das in unserem Labor verwendete System zur Implementierung des S-Bus-
Konzeptes ist ein mit Cer dotierter CaF2-Einkristall. Das Ce3+-Ion ersetzt im
Kristallgitter ein Ca2+-Ion. Zur Kompensation der überschüssigen Ladung wird
an benachbarter raumzentrierter Position ein F−-Ion eingebaut. Aufgrund seiner
Größe verzerrt es merklich das Gitter in seiner Umgebung und reduziert damit
die Symmetrie des Zentrums auf C4. Das Ce3+ hat ein ungepaartes Elektron,
dessen Spin als der Bus-Spin dienen kann. Die 19F-Kernspins des ladungskom-
pensierenden Ions und der acht nächsten Nachbarn sind durch starke Hyper-
feinwechselwirkung an das zentrale paramagnetischen Ion gekoppelt. Aufgrund
der starken Anisotropie der Hyperfeintensoren sind bei bestimmten Orientie-
rungen alle Resonanzen der I-spins aufgelöst, sodass diese selektiv adressiert
werden können. Damit sind alle Ingredienzien für ein S-Bus-Cluster vorhanden.
Der wesentlicher Nachteil des S-Bus-Clusters in CaF2 liegt darin, dass es in
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ein ausgedehntes Netzwerk von Dipol-Dipol-gekoppelten Fluor-Kernspins ein-
gebettet ist, die eine starke Quelle der Dekohärenz für die Qubits darstellen.
Besondere Verfahren mussten entwickelt werden, um diesen Dekohärenzpfad zu
unterdrücken.
Experimentelle Umsetzung erfolgte mit einem ENDOR-fähigen X-Band Puls-
ESR-Spektrometer bei Temperaturen um 8 K. Der Elektronenspin wurde durch
Mikrowellenpulse (9.5 GHz) angesprochen und mit Quadraturdetektion beob-
achtet. Zur Manipulation der Kernspins dienten RF-Pulse (10− 20 MHz).

Exakte nummerische Behandlung
des paramagnetischen Cer-Zentrums in CaF2

Die durch Mehring gegebene theoretische Behandlung des S-Bus liefert aus-
gehend von einem idealisierten System ein grundsätzliches Verständnis der
Verhältnisse. Jedoch, weicht das paramagnetische Zentrum im CaF2 in mancher
Hinsicht stark von der Idealisierung ab. Insbesondere, liegt die Zeeman-Energie
der Kernspins in der gleichen Größenordnung wie die Hyperfeinkopplung. Des-
halb, kann das Problem störungstheoretisch nicht befriedigend behandelt wer-
den. Um ein quantitatives Modell zu erhalten, wurde eine exakte numerische
Simulation des Clusters durchgeführt.

Das 10-Spin-Problem Der Hamilton-Operator des Systems wurde im La-
borsystem aufgesetzt. Die benötigten Werte des g-Tensors und der Hyperfein-
Tensoren sowie die Gitterparameter sind aus der Literatur bekannt. Die Dia-
gonalisierung wurde mit den Standardroutinen aus dem LAPACK-Paket auf
einem üblichen PC durchgeführt.
Die Matrizen, die die benötigten Operatoren in diesem System aus 10 Spins-½
beschreiben aus 210×210 komplexen Zahlen. Die Anzahl der Basisoperatoren, die
in den Hamilton-Operator eingehen würde also den verfügbaren Speicher spren-
gen. Deshalb mussten diese Basisoperatoren für jede Operation neu konstruiert
werden. Eine solche Konstruktion erfordert bis zu 10 Tensor-Multiplikationen,
deren rechnerischer Aufwand mit der Anzahl der Spins sehr schnell wächst.
Unter ausnutzung der Eigenschaften von Pauli-Matrizen konnte die benötigte
Rechenzeit in vielen fällen um den Faktor 10–20 reduziert werden.
Mit Hilfe von speziell konstruierten Messoperatoren liefert die Simulation ESR
und ENDOR-Spektren, die in hervorragender Übereinstimmung mit den gemes-
senen Daten stehen. In der Tat, eine manuelle Anpassung konnte genutzt wer-
den, um die genauen Werte der Euler-Winkel nach kleinen Orientierungsände-
rungen zu bestimmen.

Bestimmung der Quantisierungsachsen Durch die starke Anisotropie und
Größe der Wechselwirkungstensoren sind die Quantisierungsachsen aller Spins
stark verkippt und unterscheiden sich auch von Spin zu Spin. Die Kenntnis ih-
rer Lage ist allerdings erforderlich für die Konstruktion vieler Operatoren, die
insbesondere für die Simulation von Puls-Experimenten erforderlich sind. Die
Quantisierungsachse des Elektronenspins ist leicht zu finden, da seine Zeeman-
Aufspaltung den Rest des Hamilton-Operators um den Faktor 103 übersteigt.
Die Quantisierungsachsen der Kernspins sind allerdings nicht ohne Weiteres
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erhältlich bedingt durch die starke Mischung der Zustände und durch ein num-
merisches Problem. Es ist nämlich so, dass die Diagonalisierungsroutinen die
Eigenwerte und Eigenvektoren in willkürlicher Reihenfolge liefern. Das führt
zu einer künstlichen Vermischung der Hilbert-Räume der einzelnen Spins. Ob-
wohl es mehrere Lösungsansätze gibt, wurde das Problem der Bestimmung der
Quantisierungsachsen der Kernspins letztendlich nicht befriedigend gelöst.

Verallgemeinerte Transformation ins rotierende Koordinatensystem
Die Zeitskalen, die die Evolution des S-Bus-Hamilton-Operators in CaF2:Ce
bestimmen erstrecken sich über mehrere Größenordnungen: Der Elektronspin
präzediert mit ca. 9.5 GHz, die Zeeman-Aufspaltung der Kernspins und die
Hyperfeinkopplungen liegen zw. 10− 20 MHz, die Spin-Spin-Kopplungen unter
10 kHz. Zur nummerischen Simulation von Experimenten muss diese Bandbreite
deutlich reduziert werden.
In der magnetischen Resonanz wird dies mit der Transformation in ein mit den
Spins rotierendes Koordinatensystem bewerkstelligt. Allerdings berücksichtigt
das Standardverfahren zur Transformation ins rotierende System nicht die Ver-
kippung der Quantisierungsachsen und die Mischung der Zustände durch starke
Wechselwirkungen. Es wurde eine Methode verwendet, die es doch erlaubt das
rotierende System bei bekannten Quantisierungsachsen zu finden.

Simulation von ESR-Pulssequenzen Durch die Transformation ins rotie-
rende Koordinatensystem wurde die Simulation von ESR-Puls-Experimenten
ermöglicht. Eine Reihe von solchen Rechnungen wurde durchgeführt.
Die Simulation der Rabi-Oszillation wurde durchgeführt, um die Pulsdauern von
π
2 - und π Pulsen zu bestimmen, die für weitere Simulationen benötigt werden.
Aufgrund der vielen im System vorhandenen Kopplungen und vor allem we-
gen der Anisotropie und Verkippung der Quantisierungsachsen ist eine direkte
Berechnung der Rabi-Frequenz nicht möglich.
Eine Simulation des freien Induktionszerfalls (FID) (engl. free induction decay)
zeigt die gleiche Zeitkonstante für den Zerfall der Elektron-Spin-Magnetisierung
wie die, die experimentell aus der Echo-Breite bestimmt wurde. Dies ist ein
Hinweis darauf, dass der T2-Zerfall beim Elektron-Spin vorwiegend durch die
Kopplung an die nächsten Nachbarn bestimmt wird, da weiter entfernte Spins in
der Simulation nicht berücksichtigt wurden. Da keine Kopplung an ein Spin-Bad
in die Simulation eingeht, bleibt die simulierte Evolution der Spins vollständig
kohärent. Dies zeigt sich darin, dass die FID-Spur zu verschiedenen Zeiten ei-
ne teilweise Echo-artige Refokussierung der linearen Elektron-Spin-Terme auf-
weist. Nichtsdestoweniger, ist es bemerkenswert, dass bereits ein Bad mit neun
Wechselwirkungspartner ausreichen um eine schnelle und scheinbar vollständige
Dephasierung eines Spins zu bewirken.
Auch die Fähigkeit der Simulation echte Spin-Echos nachzubilden wurde gete-
stet. Das Hahn-Echo und ein Zwei-Spin-Echo zeigen dabei alle wichtigen Ei-
genschaften wie z.B. die Modulation durch die Hyperfein-Kopplungen. Mit der
Berechnung von Echo-Modulation (ESEEM) (engl. electron spin echo envelope
modulation) wurde das Modell an einem nicht-trivialen Puls-Experiment gete-
stet. Die gemessenen Modulationsspektren konnten nummerisch sehr gut repro-
duziert werden.
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Evolution der Dichtematrizen unter 2-Qubit-Gattern

Eine der wesentlichen Aufgaben bei der experimentellen Umsetzung von Quan-
tencomputing ist die Realisierung von 2-Qubit-Gattern. Im S-Bus-Konzept wird
bis jetzt die Spin-Spin-Kopplung der Qubits untereinander dafür verwendet. Die
generelle S-Bus-Theorie kann dazu herangezogen werden quantitative Aussagen
über die Entwicklung der Quantenzustände unter 2-Qubit-Gattern zu erhalten.
Allerdings, enthält sie eine Reihe von Parametern, die nur aus Messungen be-
stimmt werden können. Zur Bestimmung dieser Parameter und zur Überprüfung
der allgemeinen Aussagen wurde die Evolution der Dichtematrizen während ei-
niger 2-Qubit-Gatter experimentell untersucht.

Tomographie durch Phasenkodierung Wie bereits erwähnt, wird der Zu-
stand der Qubits im S-Bus indirekt, über den Bus-Spin ausgelesen. Zur Bestim-
mung der einzelnen Elemente der Kern-Spin-Dichtematrix muss diese Informa-
tion in den Zustand des Elektron-Spins kodiert werden. Dazu dient eine Puls-
Sequenz, die auf der Multiquanten-Resonanz basiert. Sie besteht aus zwei Pulsen
gleichen Drehwinkels, wobei der Zweite gegenüber dem Ersten phasenverschoben
ist. Die Sequenz wird gleichzeitig aber selektiv auf jeden Kern-Spin angewandt
dabei wird die Phasenverschiebung mit einer Frequenz die für jeden Spin anders
ist von Schuss zu Schuss inkrementiert. In der Fourier-Transformation einer sol-
chen fiktiven Zeitspur ergeben die linearen Terme der Dichtematrix Linien bei
den jeweiligen Phasenfrequenzen, während die Korrelationsterme sich in Linien
bei Summen- und Differenzenfrequenzen manifestierten. Die Analyse des Spek-
trums erlaubt also die Bestimmung der Amplituden der einzelnen Terme.

Präparation der Eingangszustände Die Präparation von Zwei- und Drei-
Qubit pseudo-reinen Zuständen wurde bereits von Mende gezeigt. Hier wurden
sie verwendet als Eingangszustände für die Demonstration des CNOT -Gatters.
Dabei wurde eine vereinfachte Pulssequenz verwendet. Es konnten alle vier
pseudo-reine Zustände von zwei Qubits mit Güten von über 95% hergestellt
werden.

Parameterbestimmung durch Evolution unter 2-Qubit Operationen
Das wichtige CNOT -Gatter enthält als wesentlichen Baustein eine freie Evolu-
tion des Spinsystems, die in der Mitte durch einen π-Puls an den beiden teil-
nehmenden Spins geteilt wird. Zwei andere Sequenzen, nämlich die “Spin-Echo
Double-Resonance”- (SEDOR) und die “Insensitive Nuclei Enhanced by Pola-
risation Transfer”-Sequenz (INEPT), basieren auf dem gleichen Prinzip. Der
Verlauf einzelner Dichtematrix-Terme mit wachsender Evolutionszeit wurde für
die drei Sequenzen in 2D-Experimenten vermessen. Dadurch konnten die im
Modell enthaltenen Parameter aus den experimentell bestimmt werden.

Präparation pseudo-verschränkter Zustände
“entfernter” Qubits

Erzeugung von Verschränkung ist das eigentliche Gütesiegel einer jeden experi-
mentellen Realisierung von Quantencomputing. In mehreren Schritten wurden
die Bell-Zustände von nicht direkt gekoppelten Qubits in CaF2:Ce präpariert.
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“Entfernte” Qubits Normalerweise sind die Kernspins im S-Bus-Cluster
miteinander durch Dipol-Kopplungen verknüpft. Bei gewissen Orientierungen
verschwinden diese Kopplungen. In diesem Fall, können die beiden Qubits im
Sinne des Kopplungsnetzwerks als entfernt betrachtet werden. Die für Quanten-
gatter benötigte Wechselwirkung wird dann ausschließlich durch den Bus-Spin
vermittelt.

Implementierung und Tomographie der CNOT -Operation Zum Nach-
weis eins funktionsfähigen CNOT -Gatters muss neben der Präparation wohl
definierter Eingangszustände auch eine Tomographie der Ausgangszustände vor-
genommen werden. Die oben beschriebene Phasenkodierung kann wegen einer
Besonderheit des Detektionsverfahrens im S-Bus nicht direkt verwendet werden.
Mit einer modifizierten Phasenkodierung konnte jedoch die gewünschte Infor-
mation über die Dichtematrix der beiden beteiligten Qubits erhalten werden.
Die Daten entsprechen eindeutig die Wahrheitstabelle des CNOT -Gatters.

2-Qubit-Bell-Zustände Auch der Nachweis verschränkter Zustände ist auf-
grund Ihrer besonderen Operatorstruktur umständlich. Als erster Test wur-
den die Endzustände direkt Phasenkodiert. Bell-Zustände enthalten keine li-
nearen Operatoren, was so auch für die präparierten Dichtematrizen gezeigt
werden konnte. Eine direkte Detektion der nicht-diagonalen Terme ist aller-
dings nicht möglich. Deshalb wurde die inverse Pulssequenz (CNOT -Gatter
und Hadamard-Transformation) angewandt und dabei Phasenkodiert. Es stellt
sich heraus, dass die vier Bell-Zustände anhand des resultierenden Phasenspek-
trums eindeutig voneinander unterschieden werden können. Eine erschöpfende
theoretische Beschreibung dieses Experiments steht allerdings noch aus.

Zerfall verschränkter Zustände Es ist gelegentlich darüber berichtet wor-
den, dass verschränkte Zustände besondere Eigenschaften bezüglich ihrer Emp-
findlichkeit gegenüber dephasierenden Einflüssen haben können. Um dieser in-
teressanten Frage nachzugehen, wurde der Zerfall der Bell-Zustände Vermessen.
Dazu genügt es, eine variable Zerfallszeit zwischen die beiden Teile der oben
beschriebenen Sequenz einzufügen. In der Tat unterscheiden sich die Zerfallszei-
ten um einen Faktor von bis zu 2. Eine außergewöhnliche Resistenz gegenüber
Dekohärenz liegt im CaF2:Ce aber nicht vor.

Beobachtung von Spin-Spin Wechselwirkungen
in einer feindlichen Umgebung

Die experimentelle Bestimmung der Kopplungsstärke zwischen den einzelnen
Kernspins des S-Bus-Clusters in CaF2:Ce ist dadurch erschwert, dass diese Spins
untereinander und auch mit den übrigen Spins des Gitters ähnlich stark gekop-
pelt sind. Die Vielzahl der Kopplungen führt zu einer vollständigen Dekohärenz
innerhalb weniger 10 µs. Es werden also Verfahren benötigt, die einerseits alle
Kopplungen zwischen den Spins unterdrücken und andererseits eine der Kopp-
lungen wirksam lassen. Dieselbe Anforderung besteht auch bei der Nutzung der
Kopplungen für Quantengatter. Eine Reihe von bekannten Methoden wurde
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hinsichtlich ihrer Eignung für diesen Zweck in CaF2:Ce überprüft. Es wurde,
weiterhin, eine Sequenz entwickelt, die sich besonders für Quantengatter eignet.
Zunächst wurde in SEDOR und und anderen Echo-Experimenten gezeigt, dass
die Kohärenz-Zeit für einzelne Kernspins durch effektive Entkopplung um den
Faktor 100 gesteigert werden kann.
Zum Herauspräparieren einzelner Kopplungen wurden folgende Sequenzen her-
angezogen: SEDOR, gleichzeitiges Spin-Locking und Carr-Purcell-Meiboom-
Gill-Sequenz (CPMG). Alle Sequenzen haben ihre Vor- und Nachteile. Die
SEDOR-Sequenz ist besonders einfach zu realisieren und liefert den im Quanten-
computing benötigten mittleren Hamilton-Operator. Allerdings zeigt sie auch
die schwächste Entkopplungswirkung. Dies kann auf die langen Perioden der
freien Evolution während derer nicht-säkulare Anteile der Wechselwirkungen
wirksam sind.
Die CPMG-Sequenz reduziert die Zykluszeit gegenüber der SEDOR-Sequenz
und zeigt eine höhere Entkopplungseffizienz. Sie leidet jedoch unter den Effekten
der endlichen Pulsbreite, die für eine genaue Bestimmung der Kopplungskon-
stanten von Nachteil sind. Spin-Locking eliminiert freie Evolution vollständig
und erzielt auch die beste Entkopplung. Alledings werden hier die Linienbreiten
durch den Effekt der Wechselfeld-Inhomogenität nach unten begrenzt. Zusätz-
lich, verkippt diese Sequenz die Quantisierungsachse des mittleren Hamilton-
Operators was für die Nutzung in Quantengattern ungünstig ist.
Aufgrund dieser Beobachtungen wurde schließlich eine neue Sequenz entwickelt.
Sie enthält keine freie Evolution und ist somit wirksame gegen nicht-säkilare
Terme und Effekte der endlichen Pulsdauer. Sie wirkt der Wechselfeld-
Inhomogenität durch Phasen-Alternierung engegen und sie erzeugt einen
Hamilton-Operator, der in z-Richtung quantisiert ist. Nachteilig ist, dass dabei
die Kopplungsstärke um den Faktor ½ reduziert wird.

Es bleibt zu bemerken, dass diese Verfahren auch außerhalb von Quantencom-
puting und in anderen Systemen als CaF2:Ce nützlich sein können.

Ausblick

Mit dem bis dato erreichten ist das S-Bus-Konzept noch lange nicht ausgereizt.
Insbesondere, eine Übertragung auf ein höheres Feld erscheint vielverspre-
chend. Dies hätte zweierlei Vorteile. Erstens, würde die hohe Polarisation der
Elektronen in hohen Feldern bei tiefen Temperaturen die Quantengrenze für
Ensemble-Quantencomputing in greifbare Nähe rücken. Zweitens, könnten die
Zeeman-Wechselwirkung der Kernspins und die Hyperfein-Kopplung deutlich
voneinander getrennt werden, was den experimentellen und vor allem den
theoretischen Zugang erheblich vereinfachen würde. In fernerer Zukunft (und
mit einem stark erhöhten Aufwand) könnte man daran denken isolierte Cluster
zu adressieren und miteinander quantenmechanisch zu verschalten.

——————
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Appendix A

Basics of Magnetic
Resonance

This section summarizes the principles of magnetic resonance for the conve-
nience of the reader. For simplicity, the discussion is limited to particles with
spin quantum number I = 1/2. More detailed and general introduction can be
found in [76,90,121].

A.1 Spin Evolution

A.1.1 Spin Hamiltonian

Most elementary particles and nuclei cary an intrinsic angular momentum called
spin. It is quantized in units of ~/2. In this work the letter ‘S’ is used to refer
to electron spin and the letter ‘I’ to nuclear spin. When both types are meant
‘I’ is used.
Spin is represented by a vector operator I with three Cartesian components
Ix , Iy , and Iz .1 These components obey the usual commutator relations of the
angular momentum algebra.
The magnetic moment associated with the spin of a nucleus is given by

µI = gN µN I = γI ~ I (A.1)

where gN is g-factor of this specific nucleus and µN = 5.050783 × 10−27 J/T.
The coefficient γI = gN µN/~ is the gyromagnetic ratio2.
For the spin of an electron, the magnetic moment is given by

µS = −g µB S (A.2)

where µB = 927.400949×10−26 J/T is the Bohr magneton and g is the g-factor
of the electron spin.

1Throughout this thesis the dimensionless form of spin operators is used as described in
Section B.2.

2Since γI is defined by |µ|/|~I |, the more consistent term magneto-gyric ratio is also used
infrequently.
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When placed in an static homogeneous magnetic field B0 the Hamilton operator
of a nuclear spin is given by

HI = −µI B0 = −γI ~ IB0 (A.3)

and for an electron spin by

HS = −µS B0 = g µB~SB0 (A.4)

When the z-direction of the coordinate system is chosen along the magnetic
field the two Hamiltonians assume the form

HI = −γI ~B0 Iz (A.5a)

HS = g µB ~B0 Sz (A.5b)

It is convenient to express the spin Hamiltonian in units of angular velocity s−1

by dividing it by ~. The Hamiltonian is then written

H = ω0Iz (A.6)

with ω0 = −γI B0 for nuclear and ω0 = g µB B0/~ for electron spins.
The eigenvalue problem of the spin Hamiltonian

ω |ψ 〉 = H |ψ 〉 (A.7)

has two solutions described by the spin quantum number mI

ωmI
= mI ω0 (A.8a)

mI = −1
2

: ω↓ = −ω0

2
, | ↓ 〉 =

(
0
1

)
(A.8b)

mI = +
1
2

: ω↑ = +
ω0

2
, | ↑ 〉 =

(
1
0

)
(A.8c)

corresponding to the famous “spin down” and “spin up” states.

A.1.2 Evolution in a Static Magnetic Field

Suppose the spin is in a superposition state

|ψ(t = 0) 〉 = a | ↑ 〉+ b | ↓ 〉 =
(
a

b

)
, with a a∗ + b b∗ = 1 (A.9)

at time t = 0. The general solution of the time dependent Schrödinger equation
with the Hamilton operator in Equation (A.6) is given by

|ψ(t) 〉 = a e−i
ω0
2 t | ↑ 〉+ b e+i

ω0
2 t | ↓ 〉 (A.10)

The expectation values for the Cartesian components of the spin operator are
then

〈Ix〉 =
1
2
ab cos(ω0t) (A.11a)

〈Iy〉 =
1
2
ab sin(ω0t) (A.11b)

〈Iz〉 =
1
2

(|a|2 − |b|2) (A.11c)
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This corresponds to a precession of a classical angular momentum around the
direction of the field which can be described by a classical equation of motion
for the expectation values:

d

dt
〈I〉 = ω0 〈I〉 × b0 (A.12)

where b0 is the direction of the magnetic field. Since the expectation values of
the spin operator are directly linked to magnetic moment by Equations (A.1) -
(A.2), this is also the equation of motion for a macroscopic magnetization of an
ensemble of spins.

The precession frequency ω0 is called Larmor frequency and is found from the
separation ~ω0 between the energy levels of a spin I = 1/2.

A.1.3 Evolution in a Static and
an Oscillating Magnetic Fields

To manipulate a spin precessing in a static magnetic field the following approach
is used almost universally in magnetic resonance. A second magnetic field B1

rotating with the frequency ω in the xy-plane is applied. The Hamiltonian of
the spin then becomes

H = ω0 Iz + ω1 (cos (ωt) Ix + sin(ωt) Iy) (A.13)

where ω1 = −γ B1 for a nuclear and ω1 = g µB B1/~ for an electron spin. At
t = 0 the vector of the rotating field points in the x-direction:

B1(t = 0) ‖ x̂ (A.14)

In the case of resonant excitation when ω = ω0 a solution to the Schrödinger
equation is readily obtained:

|ψ(t) 〉 = cos(ω1t) e−i
ω0
2 t | ↑ 〉+ i sin(ω1t) e+i

ω0
2 t | ↓ 〉 (A.15)

The expectation values of the spin components are now

〈Ix〉 =
1
2

sin(ω1t) cos(ω0t) (A.16a)

〈Iy〉 =
1
2

sin(ω1t) sin(ω0t) (A.16b)

〈Iz〉 =
1
2

cos(ω1t) (A.16c)

The effect of an additional oscillating filed, therefore, is to superimpose a nu-
tation motion upon the precession around the static field. In particular the
expectation value of the z-component of the spin operator oscillates between
+1/2 and -1/2 with the angular frequency ω1. This phenomenon is known as
Rabi oscillation and ω1 as Rabi frequency.
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A.1.4 Empiric Approach to Relaxation:
Bloch Equation

According to Equation (A.12), a spin set in motion around the field B0 would
precess with the same value of the z-component indefinitely. In practice, no
spin ensemble is isolated from its environment and evolves toward a thermal
equilibrium with it. In equilibrium, the population difference between the two
eigenstates | ↑ 〉 and | ↓ 〉 must obey the Boltzmann distribution which links the
expectation value of the z-component of the spin operator to the temperature.

To account for this, Bloch extended Equation (A.12) by the empirical relaxation
terms to obtain the equation known by his name:

d

dt
〈I〉 = ω0 〈I〉 × b0 +




− 1
T2
〈Ix〉

− 1
T2
〈Iy〉

I0−〈Iz 〉
T1


 (A.17)

Here, I0 is the expectation value of the z-component of the spin operator dic-
tated by the Boltzmann distribution and T1 is time constant of the relaxation
into the equilibrium state. It describes the rate at which the spin system ex-
changes energy with its surroundings (collectively called “lattice”) until they
reach thermal equilibrium. This type of relaxation process is known as lon-
gitudinal relaxation. Its effectiveness basically depends on the strength of the
magnetic field fluctuations felt by the spin at the Larmor frequency.

The terms containing T2 account for the fact that, in a spin ensemble, coherence
between individual spins is generally lost with time. As a result, the expectation
values of the x- and y-components of spin operator must vanish in the steady-
state limit. T2 is therefore known as the transverse relaxation time.

The most prominent mechanism of transverse relaxation is due to the fact that
the Larmor frequency of a given spin depends on its position in the sample (due,
e.g., to a slight inhomogeneity of the magnetic field). In this case, different spins
will precess at slightly different angular velocities and fan out from their initial
direction until they become equally distributed in all directions in the xy-plane.
This mechanism gives rise to inhomogeneous broadening of spectral lines.

Another prominent source of transverse relaxation is found in extended spin
networks. If the spins contained in a sample are coupled (e.g., by dipole-dipole
interaction), two neighboring particles can spontaneously exchange their spins.
After such an event, the phase of the two spins will be distributed randomly,
which diminishes the transverse magnetization of the sample.

Depending on the specifics of the relaxation mechanism, the relaxation dynamics
frequently deviate from the exponential decay implied by the Bloch equation.
Detailed treatment of spin relaxation is can be found elsewhere [75].
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A.2 The Principle of
Pulsed Magnetic Resonance

A.2.1 Rotating Frame of Reference

The dynamics of spin under a static and an oscillating magnetic field described
in Section A.1.3 contains both the precession around the static field and the
nutation under the rotating field. Spin motion becomes much clearer when
considered in a frame of reference fixed to the rotating field B1.
The unitary operator of the transformation is

R(ωt) = e−i ωt Iz (A.18)

and the Hamiltonian in Equation (A.13) becomes, in the rotating frame,

Hrot = R†(ωt)HR(ωt)− ω Iz

= (ω0 − ω) Iz + ω1 Ix

(A.19)

The term ω Iz is due to the non-inertial nature of the rotating frame of refer-
ence. It represents a fictitious magnetic field analogous to the fictitious forces
in classical mechanics.
In the rotating frame, the time dependence of the Hamilton operator is thus
completely removed and the spin precesses around an effective magnetic oriented
along

Beff ‖



ω1

0
ω0 − ω


 (A.20)

with the effective angular frequency

ωeff =
√
ω2

1 + (ω0 − ω)2 (A.21)

The situation is further simplified, when the angular frequencies of field rotation
and spin precession in the laboratory frame coincide. Under this condition of
resonant excitation

ω = ω0 and Hres
rot = ω1 Ix (A.22)

so that the spin precesses around the x-direction:

|ψ(t) 〉 = cos(ω1t) Iz − sin(ω1t) Iy (A.23)

At resonance, Rabi oscillation occurs around the direction of the rotating field.

A.2.2 Rotation Pulses

Equation (A.23) shows, how spin can be manipulated in a magnetic resonance
apparatus. Initially, the rotating field is off (ω1 = 0) and the spin in the rotating
frame points in the z-direction. Then, the driving field is switched on for a time
tπ/2 = π/(2ω1) and switched off again. The spin now points in the −y-direction
having been turned by an angle of π/2 around the x-axis. This constitutes a
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π/2-pulse in x-direction. If the field is kept on for tπ = π/ω1, the rotation angle
of the spin is π. After such a π-pulse the spin points in the −z-direction.
If the phase of the rotating filed is chosen such that it points in the y-direction
when it is turned on, the rotation of the spin proceeds in the zx-plane. Thus,
selecting the phase, strength, and and duration of application of the rotating
field a spin rotation through any angle around any axis in the the xy-plane can
be effected.

A.2.3 FID

The most basic and common experiment in pulsed magnetic resonance begins
with the spin ensemble in thermal equilibrium with its environment, such that
the total magnetization of the sample points in the z-direction. A π/2-pulse in
y-direction is applied next. The magnetization now points in x-direction and
begins to precess around the z-direction.
According to Equation (A.17), various relaxation processes now begin to drive
the magnetization towards its equilibrium value along z and the magnitude of
the transverse magnetization decays to zero. This – often exponential – decay is
superimposed upon the harmonic oscillation of the transverse components due
to Larmor precession and is known as the free induction decay (FID).

A.2.4 Hahn Echo

The second most prominent experiment in magnetic resonance is the spin echo
observation. If the dominating mechanism of transverse relaxation is due to
field inhomogeneity as described in Section A.1.4, then the coherence of the
spins is not lost after the FID. A π-pulse applied at a time τ after the π/2 pulse
effectively inverts the time for the Zeeman Hamiltonian, so that the dephased
spins gradually come together again giving a maximum of magnetization at
t = 2τ . After that another FID takes place. This phenomenon was first observed
by Hahn and is commonly known as Hahn echo .
In many situations, any two successive pulses will produce a spin echo. Many
types of experiments and echoes have be introduced for measurement of a large
array of material properties especially in solid-state systems [57,75].

A.3 Pulsed Nuclear Magnetic Resonance

Over the last decades Nuclear Magnetic Resonance (NMR) has become a ubiq-
uitous tool in physics, chemistry and live sciences. A modern NMR-instrument
usually consists of a superconducting magnet providing the static magnetic field.
The field strength of NMR magnets is usually specified in terms of the proton
resonance frequency; spectrometers up to 900 MHz are commercially available
today. Another important characteristic of an NMR magnet is the homogeneity,
which can reach 10−7 in modern systems.
The magnet typically has a room temperature bore into which a cryostat con-
taining the probe head can be inserted. In common use are cryostats and probes
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which allow measurement between 4.2 K and some 400 K. The probe head con-
tains a small coil placed at the center of the magnet’s field. The sample is placed
into the coil. For high resolution liquid state NMR a magic angle spinning unit
is used to average out unwanted interactions through sample rotation at up to
50 kHz.
The spectrometer is equipped with electronics which allow to synthesize rf pulses
with the desired frequency, phase, amplitude, and timing and a number of high-
power amplifiers for excitation of nuclei in different spectral regions. Great
freedom in choice of all these parameters is today available to the experimen-
talist.
The excitation coil is also used for the detection of the signal induced by the
precessing magnetization of the sample. The detection channel consists of filters,
low noise amplifiers, etc. to provide for very sensitive detection of the NMR
signal. Since the coil only captures one linear component of the rf signal, a
special quadrature detection scheme is used to detect both the x- and the y-
component of the sample magnetization.
Finally, the received signal is digitized and recorded as a complex amplitude of
the sample response versus time. In this form, it is available for any number of
numerical methods of enhancement and analysis. Ultimately, the recorded data
are subjected to a Fourier transformation to obtain an excitation spectrum.

A.4 Electron Spin Resonance

Because the gyromagnetic ratio of electrons in most environments is around
103 times larger than that of nuclei, the experimental equipment of electron
spin resonance (ESR) differs from that of NMR. First of all, the frequencies of
excitation at feasible field strengths are much higher; the most commonly used
frequencies are 9.5 GHz (microwave X band) and 95 GHz (W band).
At these frequencies, coils can no longer be used for efficient excitation and
detection, therefore various types of resonators are employed. These are only
tunable in a small frequency range, thus, the magnetic field is varied instead of
the excitation frequency in order to establish the resonance condition.
Due to the usually very fast relaxation times for electron spins, ESR, in its
early years, operated almost exclusively in the cw regime where the excitation
frequency is kept constant and the magnetic field is slowly scanned across the
resonance while the microwave absorption of the sample is monitored. To this
day, this is the most common use of ESR spectrometers.
With the advances in electronics, it became feasible to apply the pulsed approach
which is standard in NMR to the study of electron spins. The major components
of a pulsed ESR spectrometer are essentially the same as in an NMR machine,
although the technical details differs significantly.
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Appendix B

Density Matrix Formalism
and Notation

This appendix summarizes the basics of the density matrix formalism [122,123]
which are relevant to this thesis. The notation used throughout this work –
particularly the use of spin component operators – is also described.

B.1 Fundamental Properties of
the Density Operator

If the probability of finding a system in a quantum state |ψm 〉 is given by pm,
then the density operator is defined by

ρ̂ =
∑
m

pm |ψm 〉 〈ψm | (B.1)

To find an explicit representation of the density operator, i.e., the density matrix,
consider a basis of the Hilbert space of the quantum states of the system:

B : {|ϕj 〉} (B.2)

As implied by the properties of a Hilbert space, the basis vectors |ϕj 〉 are
assumed to be orthonormal1

〈ϕj |ϕk 〉 = δjk (B.3)

and complete ∑

j

|ϕj 〉 〈ϕk | = 1 (B.4)

where 1 is the unit operator.

1The orthogonality of the basis is not strictly required.
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The density operator can be expressed in terms of this basis as

ρ̂ =
∑
m

pm


∑

j

|ϕj 〉 〈ϕj |

 |ψm 〉 〈ψm |

(∑

k

|ϕk 〉 〈ϕk |
)

=
∑

jk

(∑
m

pm 〈ϕj |ψm 〉 〈ψm |ϕk 〉
)
|ϕj 〉 〈ϕk |

=
∑

jk

ρjk |ϕj 〉 〈ϕk |

(B.5)

where
ρjk =

∑
m

pm 〈ϕj |ψm 〉 〈ψm |ϕk 〉 (B.6)

are the elements of the density matrix of the system represented in the basis B.
From this definition, a number of properties of the density matrix follow:

� The expectation value of any observable Â can be calculated from the
density matrix by

〈 Â 〉 = tr
(
Â ρ̂

)
= tr (Aρ) (B.7)

where A is the matrix representation of the operator Â in the basis B.
This means that all physical information about a state of the system is
contained in the density matrix.

� The definition of the density matrix involves two distinct types of statisti-
cal averaging: the fundamental quantum mechanical average arising from
the uncertainty of measurement and the classical statistic average due to
the incomplete knowledge of the observer.
If the knowledge of the system state is complete, i.e., a full set of observ-
ables has been measured, the system is said to be in a pure state |ψm 〉.
The trace of the square of the density matrix of a pure state is unity

tr ( ρ2
pure) = 1 (B.8)

Incompletely known states represent statistical mixtures. The trace of the
square of the density matrix of such mixed states is less than one:

tr ( ρ2
mixed) < 1 (B.9)

This ability to describe pure states and statistical mixtures in a unified
way is the chief advantage of the density matrix formalism.

� The density operator is Hermitian (aslef-adjoint)

ρ̂ = ρ̂† (B.10)

meaning that the density matrix itself is an observable and that its eigen-
values are non-negative, real numbers:

0 ≤ ρjj (B.11)

In particular, the diagonal elements of the density matrix ρjj give the
probability of finding the system in the state |ϕj 〉. In the context of
ensembles, this corresponds to the population of that state.
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� The trace of the density matrix is normalized to unity:

tr (ρ) = 1 (B.12)

in accordance with the probability interpretation.

� In the case of pure states, the off-diagonal elements of the density matrix
ρjk with j 6= k are complex amplitudes of coherent superpositions of states
|ϕj 〉 and |ϕk 〉.

� The evolution of the density matrix with time is described by the Liouville
equation

i~
dρ (t)
dt

= [H(t), ρ(t) ] (B.13)

where H(t) is the matrix representation of the Hamilton operator.2

B.2 Spin Operator Component Basis

The most natural choice of basis vectors |ϕj 〉 of the Hilbert space of a spin
I = 1/2 particle in an external magnetic field are the eigenstates of the Hamilton
operator. They are known as the Zeeman states and are commonly labeled as
| ↓ 〉 and | ↑ 〉 or | −1/2 〉 and |+1/2 〉 or | 1 〉 and | 0 〉. The corresponding density
matrices according to Equation (B.6) are

| 0 〉 〈 0 | : ρ0 =
(

1 0
0 0

)
(B.14a)

| 1 〉 〈 1 | : ρ1 =
(

0 0
0 1

)
(B.14b)

These density matrices represent two pure states of a spin I = 1/2 system. The
remaining two basis matrices are

| 0 〉 〈 1 | :
(

0 1
0 0

)
(B.15a)

| 1 〉 〈 0 | :
(

0 0
1 0

)
(B.15b)

These four elementary matrices constitute a basis in which any density matrix
can be expressed.

The most prominent objects in the field of Magnetic Resonance are the magnetic
moment associated with the spin and its components. Because of that, the basis
used almost exclusively is the basis of the spin operator components. Their

2If the Hamiltonian of the system is written in units of angular velocity s−1, the factor ~
is omitted.
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matrix representation is based on the Pauli matrices. The full basis is given by

I0 =
(

1 0
0 1

)
(B.16a)

Ix =
1
2

(
0 1
1 0

)
(B.16b)

Iy =
1
2

(
0 −i
i 0

)
(B.16c)

Iz =
1
2

(
1 0
0 −1

)
(B.16d)

The identity operation is denoted by I0. Notice, that this is the dimensionless
form of the spin component operators. The usual form given in units of angular
momentum is obtained by multiplying the given expressions by ~ . In addition
to the Cartesian components, the “ladder” operators

I± = Ix ± Iy (B.17)

are also occasionally used.
The expressions in Equation (B.16) satisfy the usual commutator relations of
the spin operators:

[ Ij , Ik ] =
i

2
Il (B.18)

where {j, k, l} are cyclic permutations of {x, y, z}. Additionally, spin component
operators are orthogonal:

tr ( Ij Ik) = 0, for j 6= k (B.19)

The pure states in Equation (B.14) can now be expressed in terms of spin
operator components:

ρ0 =
1
2

I0 + Iz (B.20a)

ρ1 =
1
2

I0 − Iz (B.20b)

B.3 Density Matrices of Multi-Particle Systems

Any non-trivial quantum computation requires more than one qubit. Thus, sev-
eral aspects of the density matrix formalism particular to multi-particle systems
become relevant.
Consider a set of N spin I = 1/2 particles. The Hilbert space HS of the
combined system is said to be a tensor product of the Hilbert spaces of the
individual particles Hj .

H(S) = H(1) ⊗H(2) ⊗ · · · ⊗H(N) (B.21)

Commonly, the tensor product of two tensors with ranks n and m produces a
tensor of rank n+m. A direct translation of this procedure to density matrices
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would, in our case, produce a 2N -dimensional “matrix”. To retain the represen-
tation with two-dimensional matrices, the following definition of tensor product
– also known as Kronecker product is used. Given two matrices A and B, their
tensor product is defined by

A⊗B =



a11B a12B · · ·
a21B a22B · · ·

...
. . .


 =

=




a11b11 a11b12 a11b13 a1nb11 a1nb12 a1nb13
a11b21 a11b22 a11b23 · · · a1nb21 a1nb22 a1nb23 · · ·
a11b31 a11b32 a11b33 a1nb31 a1nb32 a1nb33

...
. . .

...
am1b11 am1b12 am1b13 amnb11 amnb12 amnb13
am1b21 am1b22 am1b23 · · · amnb21 amnb22 amnb23 · · ·
am1b31 am1b32 am1b33 amnb31 amnb32 amnb33

...
...

. . .




(B.22)

With this definition, the density matrix ρ(S) of the entire system is obtained from
the density matrices ρ(j) describing individual particles by the tensor product

ρ(S) = ρ(1) ⊗ ρ(2) ⊗ · · · ⊗ ρ(N) (B.23)

A density matrix constructed in this fashion represents a separable state or
product state, in that it can be expressed as a tensor product of density matrices
describing individual subsystems. Coherent superpositions between degrees of
freedom belonging to different subsystems are manifestations of entanglement
between the subsystems involved.

B.4 Notation of Pulses

In Magnetic Resonance the state of the spin system is manipulated by means
of rf or microwave pulses. The straight forward interpretation of a pulse is the
rotation of the magnetization through a particular angle around a particular
axis. Thus one frequently speaks of a π/2-pulse in x-direction, meaning that
the magnetization is rotated by π/2 around the x-axis of the rotating frame of
reference. In text this may be symbolized by π

2 |x. In calculations, the operator
associated with a pulse around the axes at an angle ϕ to the x-axis and a
rotation angle β is represented by the symbol Pϕ(β). The π

2 |x above would be
written Px

(
π
2

)
. The matrix representing such an operator is given by

Pϕ(β) = e−i β(cosϕ Ix+sinϕ Iy ) (B.24)

To calculate the effect of a pulse on a density matrix ρ, the latter must be
multiplied by the pulse’s matrix representation according to

ρ′ = Pϕ(β) ρPϕ(β)† (B.25)

In pictorial representations of pulse sequences, pulses are depicted as rectangular
blocks with the orientation of the rotation axis given above the rotation angle
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such as this:

t

ϕ

β

B.5 Useful Formulae

This section lists some expressions useful for calculations on spin systems.
Firstly,

tr
(
I2
j

)
=

1
4

tr ( I0) = 2N−2 (B.26)

where N is the number of spin I = 1/2 particles comprising the system. Notice,
that this is not true for spin quantum numbers larger than 1/2.
Also, for spin I = 1/2 particles,

IjIk =
i

2
Il (B.27)

irrespective of the number of spins in the system. Again {j, k, l} are cyclic per-
mutations of {x, y, z}. For non-cyclic permutations the right-hand side changes
sign.
In the computation of the evolution of spin systems, it is frequently necessary
to evaluate the exponential function of spin operators. For an operator R with

R2 =
(r

2

)2

I0 (B.28)

it can be shown that

exp (i αR) =

=
∞∑

n=0

(iα)2n

(2n)!
R2n +

∞∑
n=0

(iα)2n+1

(2n+ 1)!
R2nR

= I0

∞∑
n=0

(−1)n

(2n)!

(rα
2

)2n

+ iR
(

2
r

) ∞∑
n=0

(−1)n

(2n+ 1)!

(rα
2

)2n+1

= cos
r α

2
I0 +

2 i
r

sin
r α

2
R

(B.29)

In particular, the special case of evolution under static and varying fields and
simple space rotations is useful:

exp (i α Ij) = cos
α

2
I0 + 2 i sin

α

2
Ij (B.30)

and for evolutions under spin-spin couplings:

exp (i α IjIk) = cos
α

4
I0 + 4 i sin

α

4
IjIk , for j 6= k (B.31)
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Tensor Product Algorithms
for Large Sparse Matrices

In numeric modeling of multi-spin systems, it is frequently necessary to con-
struct matrices representing the single-spin operators and product operators for
multiple spins. Conceptually this is done by computing corresponding tensor
products as described in Section B.3. For instance, the matrix Ixj representing
the Ix operator for spin j is given by

Ixj = I0
1
⊗ I0

2
⊗ · · · ⊗ I0

j−1
⊗ Ix

j

⊗ I0
j+1
⊗ · · · ⊗ I0

N−1
⊗ I0

N
(C.1)

In large spin systems the costs of storage of and computation with these matrices
become prohibitive.

Consider, for example, the S-bus cluster in CaF2 described in Chapter 4, which
consists of N = 10 spins I = 1/2. A matrix representation of an operator
in this system consists of 2N × 2N complex numbers with real and imaginary
part each represented by a double precision floating-point number. Thus, a
single operator requires 210 × 210 × 2 × 64 Bit = 16 MB of storage. Simply to
provision the three Cartesian component operators for all ten spins – and this
is only a small part of the full basis – would thus require in excess of 480 MB of
storage. Together with workspaces required for various operations, this quickly
exceeds the limits of commodity hardware. In addition, the time required for
construction of simple tensor products already grows exponentially with the size
of the spin system.

Fortunately, some of the properties of the tensor product and the base spin oper-
ators allow the requirements to be greatly reduced. The improvement achieved
by the algorithms described below is sufficient to allow the task at hand to be
performed in feasible time on commodity hardware. However, no claim of op-
timal efficiency either in terms of storage or running time is implied, since no
rigorous analysis of computational complexity was performed.
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C.1 Tensor Product of General Matrices

Consider two matrices A and B with sizes hA × wA and hB × wB respectively.
The tensor product C = A⊗ B will have size hAhB × wAwB . The elements of
this matrix will be given by

ci,j = abi/hBc, bj/wBc b(i mod hB), (j mod wB) (C.2)

where element indices i, j start with 0 and “bx/yc” (meaning floor) is the integer
part and “xmod y” the remainder of integer division of x by y. To simplify
the formulae, a notation akin to those used in many computer programming
languages can be used:

c[i, j] = a [ i/hB , j/wB ] · b [ i% hB , j % wB ] (C.3)

with square brackets enclosing the element indices and “/” and “%” denoting
the quotient and the remainder of integer division.
With this notation, Equation (C.3) can be extended to the case of N arbitrarily
shaped matrices Mk:

P = M1 ⊗M2 ⊗ · · · ⊗MN (C.4a)

p[i, j] =
N∏

k=1

mk [ik, jk] (C.4b)

The indices [ik, jk] of the matrix elements mk contributing to p[j, k] can be cal-
culated as follows. To make the expression legible, the parentheses are omitted.
The integer division must be executed successively left-to-right, i.e., in the ex-
pression for il, first, i is divided by the product with k = 2...N , then the result
is divided by the product with k = 3...N and so on.

i1 = i /

(
N∏

k=2

hk

)
(C.5a)

il = i%

(
N∏

k=2

hk

)
%

(
N∏

k=3

hk

)
% . . .%

(
N∏

k=l

hk

)
/

(
N∏

k=l+1

hk

)
(C.5b)

iN = i%

(
N∏

k=2

hk

)
%

(
N∏

k=3

hk

)
% . . .%

(
N∏

k=N−1

hk

)
%hN (C.5c)

where hk is the number of rows in the matrix Mk. The formula for jk is analo-
gous and involves the number of columns wk of the matrices being multiplied.
To give an example, consider the case of N = 4:

P =
(
m0[0, 0] m0[0, 1]
m0[1, 0] m0[1, 1]

)
⊗



m1[0, 0] m1[0, 1] m1[0, 2]
m1[1, 0] m1[1, 1] m1[1, 2]
m1[2, 0] m1[2, 1] m1[2, 2]


⊗



m3[0, 0] m3[0, 1]
m3[1, 0] m3[1, 1]
m3[2, 0] m3[2, 1]


⊗

(
m2[0, 0] m2[0, 1] m2[0, 2]
m2[1, 0] m2[1, 1] m2[1, 2]

)
(C.6)



C.2. Tensor Multiplication Algorithms 169

The matrix P has hP = h0 · h1 · h2 · h3 = 2 · 3 · 3 · 2 = 36 rows and wP =
w0 ·w1 ·w2 ·w3 = 2 · 3 · 2 · 3 = 36 columns. Which elements of Mk contribute to
the element p[i, j] of P with i = 23 and j = 11? According to Equation (C.4):

p[i, j] = m0[i0, j0] ·m1[i1, j1] ·m2[i2, j2] ·m3[i3, j3] (C.7)

The indices ik can be calculated according to Equation (C.5):

i0 = i/(h1 · h2 · h3) = 23/18 = 1
i1 = i%(h1 · h2 · h3)/(h2 · h3) = 23%18/6 = 5/6 = 0
i2 = i%(h1 · h2 · h3)%(h2 · h3)/h4 = 23%18%6/2 = 5%6/2 = 5/2 = 2
i3 = i%(h1 · h2 · h3)%(h2 · h3)%h4 = 23%18%6%2 = 5%2 = 1

(C.8)

Analogously, for jk: j0 = 0 , j1 = 1 , j2 = 1 , j3 = 2. And the end result is

p[23, 11] = m0[1, 0] ·m1[0, 1] ·m2[2, 1] ·m3[1, 2] (C.9)

Based on the general expression in Equation (C.5) a number of simplified pro-
cedures can be constructed. They are briefly described in the following sections.

C.2 Tensor Multiplication Algorithms

For simplicity and completeness, the algorithms are explained with the help
of actual C routines. GNU Scientific Library (GSL) [124] was used for basic
storage and access of matrices and complex numbers. The names of functions
and types beginning with the prefix “gsl ” are self-explanatory.

C.2.1 Addition of Single Spin Operators

In the construction of Hamiltonians with several contributions, it is convenient
start with an empty matrix and adds various terms successively. To save space, it
is, therefore, useful to be able to add operators directly to the already completed
portion of the Hamiltonian. For example, adding the Zeeman term for the spin
j requires

H = H+ ω0jIzj (C.10)

The following procedure achieves just that. It is a straight forward implemen-
tation of the algorithm described by Equations (C.4) and (C.5). It performs
the operation of adding a single-spin base operator Id for spin j multiplied by
a real factor f to the matrix M :

M = M + f Idj

= M + f I0
1
⊗ I0

2
⊗ · · · ⊗ Id

j

⊗ · · · ⊗ I0
N

(C.11)

The matrix M describes the full N -spin system. This procedure iterates over
all elements of the target matrix. For each element, it successively calculates
the intermediate indices given in Equation (C.5) using the base operator Id for
Mk at the requested spin number.
No special assumptions about the structure of the base operators are necessary.
However, for every element of the matrix M , every element of the single-spin
matrices is tested for all N spins. The only optimization is that the iteration
over the spins is aborted once a null-factor is found in Equation (C.4b).
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/*
matrix add op( m, fac, type, num )

Adds the spin-1/2 operator ‘op’ for the spin number ‘num’ to matrix ‘m’.
m: target complex matrix;
fac: the spin operator is mulipied by this factor;
op: 2x2 base operator
num: number of the spin (0-based).

Example: matrix add op( H, g, 1, 3) implements H = H + g S y 3 10

*/
void
matrix add op( gsl matrix complex* m, double f, gsl matrix complex* op, size t num )
{

size t dim = 2; /* dimension of the spin operators */
size t i,j,k; /* iterators */
size t iC, jC; /* current element indices */
size t iR, jR; /* remaining divisors */
size t iN, jN; /* starting indices for next spin */
gsl complex c; /* accumulator */ 20

size t n spins = 0; /* number of spins */
/* Get number of spins. */
i = m−>size1;
while ( (i = i >> 1) ) {

n spins++;
}
for ( i = 0; i < m−>size1; i++ ) { /* For all elements of the matrix. . . */

for ( j = 0; j < m−>size2; j++ ) {
iR = m−>size1; /* Start with dimensions of all spins. */
jR = m−>size2; 30

iN = i; /* Indices for next spin. */
jN = j;
GSL SET COMPLEX( &c, f, 0 );
for ( k = 0; k < n spins; k++ ) { /* For all spins. . . */

iR = iR / dim; /* ! integer operations ! */
jR = jR / dim;
iC = iN / iR;
iN = iN % iR;
jC = jN / jR;
jN = jN % jR; 40

if ( k == num ) { /* Operator op used for this spin. */
c = gsl complex mul( c, gsl matrix complex get( op, iC, jC ) );

} else { /* Identity used for this spin: delta(i,j) */
if ( iC == jC ) {

c = gsl complex mul real( c, 1.0 );
} else {

c = gsl complex mul real( c, 0.0 );
}

}
if ( GSL REAL(c)==0 && GSL IMAG(c)==0 ) { /* Skip null elements. */ 50

break;
}

}
gsl matrix complex set(

m, i, j, gsl complex add( c, gsl matrix complex get(m, i, j) ) );
}

}
return;

}/* ENDOF matrix add op() */
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C.2.2 Addition of a Spin I = 1/2 Operator

This algorithm inverts the procedure described in Section C.2.1. Instead of
starting at each element of the target matrix and finding the operator elements
contributing to it, it starts at the elements of the base operators and finds the
elements of the target matrix to which the former contribute. Thus, the number
of elements of the target matrix touched by this procedure is reduced. Also,
since a large proportion of the elements of the target matrix is independent of
a given base operator, this approach immediately profits from the null-elements
in the base operator.

/*
matrix add 2op( m, fac, op, num )

Adds the spin-1/2 operator ‘op’ for the spin number ‘num’ multiplied by
‘fac’ onto the matrix ‘m’.

In effect, adds the tensor product to m:
m += fac * 1 x . . . x 1 x op x 1 x . . . x 1 .

NOTE: The other elements of the matrix are not referenced. 10

*/
void
matrix add 2op( gsl matrix complex* m, double fac,

gsl matrix complex* op, int num )
{

int i,j,k; /* iterators */
int n spins = 0; /* number of spins */
gsl complex c; /* operator element */
int occ; /* number of occurances of each op element */
int dims; /* width of dimensions to the right of the spin */ 20

/* Compute number of spins. */
i = m−>size1; while ( (i = i >> 1) ) { n spins++; }
if ( n spins <= num ) {

fprintf( stderr, "opps: spin number %d out of range [0,%d]\n", num, n spins−1 );
exit(1);

}
/* Compute number of occurances of each operator element in the matrix. */
occ = 1 << (n spins−1);

/* Compute the width of the dimensions to the right of the spin. */ 30

dims = 1 << (n spins−num−1);

for ( i = 0; i < 2; i++ ) { /* For all components of the spin operator. . . */
for ( j = 0; j < 2; j++ ) {

c = gsl matrix complex get( op, i, j );
if( GSL REAL(c)==0 && GSL IMAG(c)==0 ) { /* Skip null elements. */

continue;
}
c = gsl complex mul real( c, fac );
for ( k = 0; k < occ; k++ ) { 40

int ic = k + dims * (i + k/dims);
int jc = k + dims * (j + k/dims);
gsl matrix complex set( m, ic, jc,

gsl complex add( c, gsl matrix complex get( m, ic, jc ) ) );
}

}
}

}/* ENDOF matrix add 2op() */
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C.2.3 Addition of a Product of Operators

This algorithm extends the one described in Section C.2.1 in a different way. It
allows a product of base operators multiplied by a real factor to be added to the
target matrix:

M = M + f Iaj
Ibk
· · · Inl

= M + f I0
1
⊗ I0

2
⊗ · · · Ia

j

· · · Ib
k

· · · In
l

· · · ⊗ I0
N

(C.12)

In this case, the forward search starting at the base operators is not feasible and
every element of the target matrix is touched.

/*
matrix add ops( m, fac, ops, nums )

Adds the spin-1/2 operators listed in ‘ops’ multiplied by ‘fac’ to
matrix ‘m’.

m += fac * ops[0] x ops[1] x. .x ops[N].
*/
void
matrix add ops( gsl matrix complex* m, double f, 10

gsl matrix complex* ops[ ] )
{

size t dim = 2; /* dimension of the spin operators */
size t i,j,k; /* iterators */
size t iC, jC; /* current indices */
size t iR, jR; /* remaining divisors */
size t iN, jN; /* starting indices for next spin */
gsl complex c; /* accumulator */
size t n spins = 0; /* number of spins */
/* Get number of spins. */ 20

i = m−>size1; while ( (i = i >> 1) ) { n spins++; }

for ( i = 0; i < m−>size1; i++ ) { /* For all elements of the matrix. . . */
for ( j = 0; j < m−>size2; j++ ) {

iR = m−>size1; /* Start with dimensions of all spins. */
jR = m−>size2;
iN = i; /* Indices for next spin. */
jN = j;
GSL SET COMPLEX( &c, f, 0 );
for ( k = 0; k < n spins; k++ ) { /* For all spins. . . */ 30

iR = iR / dim; /* ! integer operations ! */
jR = jR / dim;
iC = iN / iR;
iN = iN % iR;
jC = jN / jR;
jN = jN % jR;
c = gsl complex mul( c, gsl matrix complex get( ops[k], iC, jC ) );
/* Skip the remaining dimensions if c = 0 already. */
if ( GSL REAL(c) == 0 && GSL IMAG(c) == 0 ) { break; }

} 40

gsl matrix complex set(
m, i, j, gsl complex add( c, gsl matrix complex get(m, i, j) ) );

}
}
return;

} /* ENDOF matrix add ops() */
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