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Zusammenfassung

Diese Dissertation behandelt die Anwendung einer Klasgessscher Modelle, der so-
genannten Faserbindelmodelle, auf aktuelle Fragesggtuin Bezug auf das Bruch-
verhalten ungeordneter Materialien, insbesondere denfasstarkten Verbundstoffe. Es
handelt sich hierbei im Einzelnen um die Probleme des Sarshgens geklebter Ver-
bindungen, die Darstellung von Plastizitat, entgegeeigéslazu das Auftreten von aus-
gepragter Sprodigkeit, und zuletzt die schrittweisev@thung von Materialien mit einer
extremalen Defektverteilung. Die Notwendigkeit diesetdéisuchungen wird in Kapitgl 1
begrindet, eine Darstellung der grundlegenden Eigeftecheon Faserbindelmodellen
erfolgt in Kapitel 2. Die vorgestellten Ergebnisse sinddich alleine genommen giiltig,
weisen aber auch Beziehungen zueinander auf. So ist dasrBadidell, welches in Ka-
pitel @ vorgestellt und behandelt wird, zur Beschreibung Fekser-Matrix-Grenzflache
in Verbundwerkstoffen pradestiniert, eine Anwendung er duch Plastizitat, fur die
in Kapitel[4 ein einfaches Faserbiindelmodell dargestetid, zum Tragen kommt. In
diesem plastischen Faserbiundelmodell wiederum trigrun¢stimmten Annahmen eine
Auffalligkeit zu Tage, die signifikantAnderung der Haufigkeitsverteilung von Brucher-
eignissen, welche der Gegenstand von Kapltel 5 ist, undzwdeh in ausgepragter Wei-
se in Kapite[6 im Rahmen eines graduellen Schadigunsresdalftritt. Dies spiegelt die
Tatsache wieder, dass alle Modelle auf gemeinsamen tisadrenh und experimentellen
Erkenntnissen aufbauen, und im gleichen Formalismus degrBandelmodelle (FBM,
engl.fibre bundle models) behandelt werden.

Das Gebiet der Bruchmechanik, welches durch experimengtiidien von Galilei und
da Vinci begriindet wurde, hat in den letzten Jahren gesteigAufmerksamkeit in Zu-
sammenhang mit dem mechanischen Versagen ungeordnetem®ysnd Materialien
erhalten, fur dessen Beschreibung die Methoden dertstatisn Physik in besonderem
Mal3e geeignet sindi[1]. Unter den ungeordneten Materidlielet die Klasse der faser-
verstarkten Werkstoffe einen Schwerpunkt dieser Arldd# Beispiele fur diese Materia-
lien sind hierbei Holz, Stahlbeton, d.h. eine mit Stahlfaseerstarkte Betonmatrix, und
die Klasse der faserverstarkten Compositmaterialienennen, die in den letzten Jah-
ren zu eminenter Bedeutung insbesondere in der Luft- unanReutindustrie gelangt
sind, da sie bei geeigneter Faserorientierung aul3ergéiebl Festigkeit mit geringer
spezifischer Masse vereinigen. Einhergehend mit diesereuBedgszuwachs war auch
die Erkenntnis, dass die gangigen ingenieurwissendicegh Methoden die spezifischen
Eigenschaften dieser Werkstoffe nicht vollstandig es#askonnen, insbesondere wenn es
um Effekte der Unordnung geht, wie der statistischen \fertgi von Defektstellen. In
Abb.[ sind der faserige Aufbau von Holz und Faserbeton undhidearchische Aufbau
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Abbildung 1: Beispiele fur den faserigen Aufbau von Stahdim (a) und Holz (b,c). Der
hierarchische Aufbau von Holz wird bei Betrachtung eineidMeolzprobe in mikrosko-
pischem Mal3stab (b) und bei einer anderen Holzprobe im rkegizshen Bereich (c)
ersichtlich. Quellen: (a) aus Ref] [2], (b) aus REf. [3], oo eines Holzbalkens, welcher
im Rahmen eines Zugversuches am Insitut fur Werkstoffe anvilesen der Universitat
Stuttgart versagt hat.

von Holz zu erkennen.

Das klassische Faserbundelmodell, welches auf wegwdssireiten von PeireE|[4] und
Daniels Eﬁ] zuriickgeht, wird in Kapitél 2 umrissen. KurAagst besteht das Modell aus
einer Menge an parallelen Fasern, welche auf einem kubisoleidimensionalen Git-
ter angeordnet werden. Die Fasern werden unter Zug belasdeterhalten sich hierbei
linear elastisch, bis sie einen spezifischen Lastwertaresi an dem sie vollstandig versa-
gen, wobei die Last einer Faser nach Versagen auf Null ikt jeweiligen Lastwerte fur
das Versagen unterliegen einer Wahrscheinlichkeitsantg welche die Unordnung in
dem zu betrachtenden Material abbildet; Ublicherweisketihier eine Weibull-Verteilung
mit Mal3stabsparameter und Formparameter Verwendung; letzterer dient zur direkten
Modellierung der Unordnung. Beim Versagen muss die Ladtiveevon der versagenden
Faser getragen wird, auf die umliegenden intakten Fadwririagen werden, was entwe-
der lokal (LLS,engl.local load sharing) auf die benachbarten, oder global (Gfg).
global load sharing) auf alle intakten Fasern im Bundeblggn kann. Bei bestandigem
Fortschreiten der von aul3en angelegten Zugspannung kon Bei Versagen einer ein-
zelnen Faser eine Kaskade von weiteren Versagensprozaisseten, da durch die La-
stumlagerung von der versagenden auf die intakten Fasentumll weitere Schwellwer-
te Uberschritten werden. Die GrofRenverteilung\) dieser lawinenartigen Prozesse ist
neben dem makroskopischen Spannungs-Dehnungs-Diagsamrmas Hauptcharakter-
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Abbildung 2: Spannungs-Dehnungs-Diagramm im Balkenmod®s Kapitel [3, wo-
bei der relative Einfluss der unabhangigen Bruchmodi durahiation des Weibull-
Parameters\, fur die Verteilung der Schwellwerte fir Versagen durcledding variiert
wird. Mit zunehmendem Wert voi, gewinnt der Zugmodus an Bedeutung und domi-
niert schliel3lich das Verhalten des Systems (nicht gezesgtdass das Balkenmodell
einem reinen Faserbindelmodell entspricht.

teristikum der Faserbiindelmodelle, und bei Betrachturtgnglobaler Wechselwirkung
findet man hierbei fur das klassische Faserbiindelmodellawch fur die meisten sei-
ner Derivate ein Potenzgesetz mit einem universalen Exgenég/2, der sich auch mit
analytischen Methoden herleiten lasst [6].

Mit der genannten Konstruktionsvorschrift bildet schos Kiassische Modell die wesent-
lichen Eigenschaften von faserverstarkten Werkstoffemittelbar ab: die Anwesenheit
einer statistischen Verteilung fur die Festigkeit derzeinen Elemente, die ausgepragte
Anisotropie sowie die Lastumlagerung bei Versagen einemEhtes sind integrale Be-
standteile dieser Beschreibung.

Das Studium der Faserbiindelmodelle und verwandter Methade etwa demandom
fuse modelst nicht nur aus Sicht der Materialwissenschaften von Badey, sondern
hat in den vergangenen Jahren auch wichtige Einblicke iphiysikalischen Grundlagen
des Versagens ungeordneter Stoffe geliefert [7]. Auch Arduegen aulRerhalb des bis-
herigen Definitionsbereiches, etwa auf biologische Systeder Erdbeben, sind in letzter
Zeit popular geworden.

Im Folgenden wird ein kurzer Abriss der vorgestellten Fomsgysergebnisse gegeben.



Das klassische Faserbundelmodell beschreibt eine Belgst Faserrichtung. Um aber
den Fall einer Schubbelastung senkrecht zur Faserriclkunmodellieren, muss eine
Modifikation vorgenommen werden. Dies geschieht in der éliisidas Schubversagen
von faserverstarkten Compositen, welches wesentlicthddie Eigenschaften der Faser-
Matrix-Grenzflache bestimmt wird, abzubilden. Als eirffas Modellbild wird in Kapitel

B das Schubversagen geklebter Verbindungen zwischen esteinf Kdrpern unter Be-
trachtung eines neuartigen Modells untersucht. In dem Meded die Verbindung als
Menge elastischer Balken diskretisiert, welche unter 8bklastung gedehnt und gebo-
gen werden. Das Versagen eines Balkens kann demzufolgk dwei Bruchmodi ver-
ursacht werden, namlich Spannung und Biegung, welchehduurfallsverteilte Schwell-
werte beschrieben werden. Diese zwei Bruchmodi konnemeztdr unabhangig vonein-
ander wirken, oder in der Form eines von Mises-artigen Kutes kombiniert werden.
Im Falle langreichweitiger Wechselwirkungen zwischen 8atkenelementen kann die
vollstandige Losung fur das makroskopische Verhalm@nis fur den mikroskopischen
Schadigungsprozess der Verbindung angegeben werdereidissich, dass die Anwe-
senheit zweier unabhangiger Bruchmodi sowohl die khgsSpannung als auch die kri-
tische Dehnung im Vergleich zum Vorliegen nur eines Bructusoherabsetzt, wovon
die statistischen Haufigkeitsverteilungen der mikros&dpen Bruchereignisse unberihrt
bleiben. Die Kopplung der Bruchmodi fuhrt zu einer weiteréerabsetzung der mecha-
nischen Festigkeit der Verbindungsschicht. Das mechlei8asprechverhalten der Ver-
bindung andert sich bei Einstellung unterschiedlichéatresr Starke beider Bruchmo-
di in einem weiten Bereich, wie in AbBl 2 anhand des konstiéut Verhaltens sichtbar
wird. Auch im Grenzfall stark lokalisierter Wechselwirkgen, in dem Balkenelemen-
te auschlie3lich mit den nachsten und Ubernachsten béaelementen auf dem Gitter
wechselwirken, wird das konstitutive Verhalten und die@afiverteilung der Brucher-
eignisse betrachtet. Ferner wird eine effiziente Simubatieethode vorgestellt, welche
die Betrachtung hinreichend gro3er Systeme ermogliatGxundlage der vorgestellten
Untersuchungen kann das Balkenmodell auf das klassisdeetftandelmodell abgebildet
werden.

Zur Beschreibung der in diesem Zusammenhang relevanterosialpischen Plastizitat
wird in Kapitel[4 eine Erweiterung der klassischen Fasedalmodelle und des Balken-
modells aus Kapitéll3 vorgestellt, in welcher Oberflachemente auch nach ihrem Ver-
sagen weiterhin eine gewisse Fahigkeit zur Lastaufnahesézen. Die materielle Un-
ordnung der Verbindung wird durch eine parallele Anordnuog Faserelementen mit
zufallsverteilten Versagensgrenzwerten reprasentiegiche bis zum jeweiligen Versa-
genspunkt linear elastisch reagieren. Es wird angenomdaess, die Fasern nach ihrem
Versagen eine konstante Last annehmen, welche ein Bruéht€i o« < 1 ihrer Last
unmittelbar vor dem Versagen ist. Der Parameteles Modells interpoliert hierbei zwi-
schen den Grenzwerten des vollstandig plastizitatsfrand des vollstandig plastischen
konstitutiven Verhaltens des Faserbundels. Auf der Gagedanalytischer Berechnun-
gen und von Computersimulationen erweist sich die Faliigle versagten Fasern zur
Lastaufnahme als wesentlicher Einfluss sowohl auf das mké&pische Ansprechen des
Systems, als auch auf seinen mikroskopischen Schadigpaess. Im Falle kurzreich-
weitiger Wechselwirkungen lasst sich ein interessantersBniibergang bei einem klar
definierten Wert vorx feststellen. In der Nahe dieses kritischen Wertesvareten un-
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Abbildung 3: Das Erscheinen ausgedehnter zusammenh@egBareiche im plastischen
Faserbundelmodell von Kapitil 4 bei Variation des Pl#stigparameters in der Nahe
des kritischen Wertes,. ~ 0,4.a)a = 0.b)a =0,35.¢c)a =0,4.d)a = 0, 6.

mittelbar vor dem globalen Systemversagen grol3flachigammenhangende Bereiche
von versagten Fasern auf (s. ABb. 3), deren BeschreibundeniMethoden der statisti-
schen Physik weitere Einblicke in den mikroskopischeraSajingsprozess liefert.

Wie vor kurzem erkannt wurde, hat die Existenz einer unt&esnzes;, fur die Ver-
sagenswahrscheinlichkeiten in einem Faserbiindel einegearagten Einfluss auf den
Schadigungsfortschritt. In Kapitel 5 wird dieser Falltaghtet, wobei die effektive Reich-
weite der Wechselwirkungen zwischen den Grenzfallerreioiéstandig lokalisierten und
einer globalen Lastumlagerung variiert wird. Simulatienggbnisse zeigen, dass fur je-
de effektive Reichweite der Wechselwirkungen ein kritexcWert dieser unteren Grenze
existiert, an dem das makroskopische Verhalten eines Ifiasgels vollstandig sprode
wird. Dies aul3ert sich in einem rein elastischen Verhdsisrer globale Versagenspunkt
erreicht wird, an welchem plotzliches Versagen schon wiech Bruch einer kleinen An-
zahl von Fasern eintritt. Als Erweiterung bisheriger Atbriim Falle globaler Wech-
selwirkungenl[B] zeigen wir, dass sich bei Annaherung anldgischen Grenzwert ein
Ubergang der GroRenverteilung der mikroskopischen Sakighisse einstellt, hin zu ei-
nem universalen Potenzgesetz mit einem Exponedjtenwelcher unabhangig von der
Reichweite der Wechselwirkungen ist. Die§Hyergang ist in AbtJ4 dargestellt.
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Abbildung 4: VerteilungD(A) mikrosopischer Schadensereignisse der Gri3én
Abhangigkeit einer unteren Grenzeg fur die Versagenswahrscheinlichkeiten, s. Kapi-
tel . Fur die Wahrscheinlichkeiten wird eine Gleichviduteg im Intervall [, 1] ange-
nommen; die Lastumlagerung ist lokalisiert. Mit zunehnmend,, ist das Auftreten eines
Potenzgesetzes der Fo(A) oc A~3/2 sichtbar. Zu beachten ist, dass auch in Abwe-
senheit einer Begrenzung, d. h. fiyy = 0, kein reines Potenzgeseff A) oc A~%/2 wie

im Falle globaler Lastumlagerung auftritt.

In ungeordneten Materialien mit hierarchischem Aufbawe wiB. Holz, konnen einige
wenige makroskopische Defekte das Bruchverhalten entsame beeinflussen, insbe-
sondere durch Arretierung und Umlenkung von Rissen. DieaAhdieser Fehlstellen
kann hierbei von Probe zu Probe signifikanten Schwankungesrliegen. Aus diesem
Grund werden in Kapitdll6 zwei frei kombinierbare Erweitegen der Modelle fur die
schrittweise Schadigung von Materialien, der sogenan@i2FBM (engl.continuous da-
mage fibre bundle models) vorgestellt. In der ersten Modalwnte wird die maximale
Anzahl von Schadigungsereignissen eines Elementes &sdPeverteilte Zufallsvaria-
ble mit einem Mittelwert modelliert, um den Einfluss von Unordnung nicht nur auf den
Schwellwert fur das Versagen eines Elementes, sondemaawot auf die Anzahl der ma-
kroskopisch wirksamen Defektstellen abzubilden. Als EdlieserAnderung erscheint
ein asymptotischer linearer Hartungsbereich im korstgn Verhalten des Faserbiundels.
Die GrolR3enverteilung der mikroskopischen Schadensassig bleibt hiervon unberthrt.
Zusammenfassend ergibt die Einfuhrung einer Zufallsiden fur die maximale Anzahl
der signifikanten Schadereignisse eine bessere DargjelemVerteilung der makrosko-
pischen Fehlstellen in Materialien mit ausgepragt hr@chem Aufbau, wie etwa ge-
klebten Strukturelementen aus Holzlamellen, deren béubtes Bruchverhalten unter
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Zugbelastung als Ausgangspunkt dieser Betrachtung dient.

In den genannten Materialien treten unter Belastung mi&pmsche Risse auf, welche
sich unter zunehmender Last vergroRern. Diese Risseekbaher auch an besonders
festen Materialstellen arretiert werden, ehe unter weit@ehmender Last globales Ver-
sagen eintritt. Um eine kdharente Beschreibung diesdsaltens zu erreichen, wird in
einem zweiten Schritt eine Sortierung der zufallig véieai Versagensschwellwerte, wel-
che nach dem Versagen eines Elementes seinen nachstemafspunkt bestimmen,
vorgenommen. Im Rahmen des CDFBM werden den Fasern —welebmlteile ei-
nes Materials auf der untersten Hierarchieebene darnsteli@ie im klassischen FBM
Schwellwerte fur das erstmalige Versagen bei einer bestem Dehnung (aquivalent
einer Spannung) zugeordnet. Anschliel3end wird fur jeden Schadigurigesein neuer
Schwellwert gewahlt, welcher entweder identisch mit destem ist (eingefrorene Un-
ordnung,engl. quenched disorder), oder anhand einer Zufallsverteillesjitmmt wird
(thermische Unordnungngl.annealed disorder). Das hier vorgestellte Modell stetit ei
Gemenge der genannten Umordnungsformen dar, da die Zafialésy im voraus gezo-
gen und in aufsteigende Reihenfolge gebracht werden. EsediVorschrift zeigt sich ein
divergentes Verhalten der kritischen Spannung und des&nién Dehnung mit ansteigen-
der maximaler Anzahl der singularen Schadereignissed®or Erreichen der kritischen
Spannung bzw. Dehnung ist ein langes nichtlineares Reginteri konstitutiven Kur-
ve vorhanden. Fiur hohe numerische Werte der maximalenAmlsa Schadereignisse
treten Oszillationen der konstitutiven Kurve auf, die vargeawodhnlichen Kaskaden mi-
kroskopischer Schadereignisse begleitet werden. Audheirst in diesem Falle wieder
das Potenzgesetz fur die Kaskaden mit einem Exponé&iterwelches im Rahmen von
Kapitel[ behandelt wird. Eine konsistente Erklarungdiegses Phanomen wird angege-
ben, und das Auftreten der Oszillationen, welche exergahiin Abb[b dargestellt sind,
wird im Parameterraum lokalisiert.

Zum Schluss, in Kapitdll 7, erfolgt eine Zusammenstellunginlelen vorangegangenen
Kapiteln gewonnenen Ergebnisse und deren Einordnung ihlidinauf den derzeitigen

Stand der Forschung. Auch werden weitere mogliche thischet und experimentelle
Arbeiten im Zusammenhang mit diesen Ergebnissen vorgageh] und eine Prognose
uber die zukiinftige Entwicklung der Faserbiindelmaslaigegeben.
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Abbildung 5: Im graduellen Schadigungsmodell mit sotéerVersagenswahrscheinlich-
keiten erscheinende Oszillationen der konstitutiven Kuri) (durchgezogene Linie)
und synchron dazu auftretende mikroskopische Schadeégsisse der GroRReé\, vgl.
Kapitell@.



Chapter 1

Introduction

1.1 Motivation

This thesis deals with the application of fibre bundle modeldass of statistical fracture
models, on several current issues in the fracture of diseddmaterials, and fibrous com-
posites in particular: the shear failure of glued interfacelevant to the failure of fibre-
matrix interfaces in composite materials under externabghthe question of plasticity,
which is related to this interfacial failure mode; the appeae of perfect brittleness when
no weak fibres are present in the bundle; and finally the gtatkgradation process of
materials with an extremal distribution of defects. All$lealiscussions are based on the
classical fibre bundle model, which will be introduced in Gtesl2, or recent extensions
thereof, and numerical simulations as well as analyticallis will be presented.

Why do things break? Fracture of structures that surroumglamell known phenomenon
in everyday life, and a fundamental manifestation of thesddaw of thermodynamics.
The more important question therefore is how things breadt,ia which time. The sys-
tematic study of the mechanics of fracture, which was pribaltiated by Leonardo da
Vinci [9] and Galileo Galilei[10], has received renewedargst from the point of statis-
tical physics in recent decades, especially for the casésofdkred materials. Statistical
models such as the fibre bundles are inherently suitableptoi@athe physical aspects of
fracture in disordered materials, and applying the reqatained in this dissertation to
models of material failure can aid a better understandinp@fracture mechanisms for
a wide class of ubiquitous materials such as wood, condibte,reinforced polymers or
ceramics. Increased knowledge in this field can therefohamce the lifetime, decrease
the production and maintenance costs, and —most impoytaniticrease the safety of
buildings, vehicles and structural components.

It may be advantageous to first highlight the importance®ftlaterials considered, and to
introduce some characteristic mechanical propertiesthe& loading behaviour and frac-
ture characteristics. Disordered materials are matenhlsh display inhomogeneities,
typically on the mesoscale of the sub-cm regime. An exangi¢hfe microstructure of
two fibrous materials, wood and fibre-reinforced concredegiven in Fig.[ LI, where

13



14 1.1 Motivation

Figure 1.1: The structure of some fibrous composites. a) &wdorced concrete, from
[ﬁ]. b) Microstructure of a softwood sample, from [3]. ¢) Flns mesostructure of an-
other wood sample with a macroscopic knothole defect. Rjnapth taken in IWB, Uni-
versity of Stuttgart.

the fibrous structure and also the hierarchical propertfewamd are clearly visible.
Statistically seen, the presence of disorder can be modktedgh random variables,
which enter into the continuum mechanics and determineichemicroscopic behaviour
[E|; ﬂ]. It turns out that the presence of disorder substiyptieduces the fracture tough-
ness and therefore effectively determines the mecharntahilisy of a material, as the
order-of-magnitude difference between the ab-initio glated strength of an ideal crys-
tal and the experimentally measured strength of a real skazlidonstratesﬂ[ﬂl]. The
effect of disorder is also visible in size effects, partariy when the strength of a material
decreases with growing size, and strongly fluctuates betw#gerent samples. Fracture
mechanics is a lasting problem in engineering and physitkitas a generally accepted
fact that the powerful computational and theoretical maethi employed in engineering
tasks is not so well equipped when it comes to dealing witmsgtdisorder, a shortcoming
that statistical models such as the fibre bundle model ardkitsates may help to over-
come. At the core of the problem is the question at which esldoad a given material
fails, if there are precursors of failure (and how to meashesn), and how the critical
load scales with the size of materials.
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An important subclass of disordered materials are the fdoommposites [12], or fibre

reinforced composites (FRCs). In general, such a compoesitsists of a fibre reinforce-
ment embedded in a matrix material, where the fibres are tapélsustaining a large

amount of longitudinal stress. The material propertiesdatermined not only by the

respective constituent properties, but also by their ngixatio, i. e. the volume fraction,

the average fibre orientation and the deviation therefrard,\eery prominently also by

the fibre-matrix interface. Many of these factors can be stdpiin the manufacturing

process, but a lack of control in the production gives rissttong inter-sample fluctua-
tions of the mechanical properties. Generally speakingemithy of length scales can
be identified in composite materials, which is illustratedrig.[I.]. On the smallest scale
the fibres and their bonds with the matrix can be identifiece filtres form sub-bundles
and later on bundles, which are organized into a ply.

A technologically important example of fibrous compositestae fibre reinforced poly-
mers, which have gained an unique standing in the aerospatoenotive and and sporting
goods industries due to their excellent strength at a lowiBpenass. The simplest lay-
out of a fibre reinforced polymer is a unidirectional comp®swhere the fibres are all
arranged in parallel. In practice, to account for varioumal loading conditions, the
fibres may also be interwoven, and layers of uni- or multtiogal setups are frequently
glued together into laminae. Under external loading, sduist appear at the lowest
level, i. e. in the matrix, at the fibre-matrix interface, andhe form of individual fibre
fractures. The entire system and its elements experiencadaig reduction of stiffness
as damage accumulates by nucleation of micro-cracks. Tiendiéng of the fibre-matrix
interface can propagate and lead to delamination, i. eragpa of entire layers. Finally,
whole bundles of fibres will rupture, and the material fadsastrophically.

The usual starting point in the discussion of the failurerabteristics of disordered ma-
terials is to consider the macroscopic, bulk averaged tgatehaviour, which is rep-
resented by the stress-strain curve. This curve is the septative response obtained
from loading a sample, typically by exerting tension on agl@amd —macroscopically
speaking— homogeneous bar. Three fundamentally diffesgrdgs of behaviour are
usually distinguished: a linear relation between stresssdrain is called linear elastic
behaviour, where a single parameter, the Young modulusplstely characterizes the
loading behaviour, which is typically the case in the eathge of the loading of most
materials, distant from the failure point. After a certamaunt of loading, many materi-
als then enter a nonlinear regime, a process that is callaith¢tardening, and which is
typically irreversible in the sense that after unloadifg $ample will possess a reduced
stiffness upon reloading. Other materials, however, dispal behaviour that is labeled
perfect plasticity after passing a material dependendypaint of loading, where the
slope of the stress-strain curve vanishes, an effect thatomaisualized as tearing apart
a piece of chewing gum. All models presented in this work fib ione of these schemes,
or compositions thereof. This classification is also usefukrms of fracture: a brittle
material breaks before reaching the yield point, whereascdild material reaches the
plastic regime first.

In contrast to other materials, e. g. glass, the assessrheaftr@age in fiborous composites
is not always a straightforward task, and visual inspecti@y not be able to discover
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Figure 1.2: Examples for failure modes in fibrous compos#ag¢<£racks in timber lamel-

lae, which follow the macroscopic structures. Photograilen at a tension experiment
at IWB, University of Stuttgart. b) Transversal cracks inasg fibre reinforced polymer,

from ﬂﬁ]. The cracks propagate along the fibre-matrix fiakzs, and beginning plastic
flow is visible. c¢) Microscopic plasticity in a glass fibremé&rced polymer that has failed
displaying macroscopic brittleness under transversalitag from [14].

even near catastrophically accumulated damage. For egampayered composites de-
laminations may occur in deeper layers of a component atidatly impair the structural
stability, so elaborate visualization techniques suchtagsaound imaging are required in
order to discover the damadEl[lS].

It can therefore be assessed that in the experimentaldgedtfibrous composites not only
a variety of material and production parameters appeathbtithere are also a multitude
of coexisting and mutually influencing failure modes, wh&kplains the high volatil-

ity of results obtained even if different samples are takemfthe same production batch.
Consequently, these fluctuations together with the neegliable monitoring and failure

prediction capabilities have led to the development of goréssive array of technologi-
cally advanced non-destructive testing (NDT) methEbsl[ijever, safe and economic
material design relies also on theoretical consideratiand finally on simulation. So

far, the practical applicability of composite materialsagight sensitive environments is
somehow limited by a certain lack of knowledge of the failarechanisms. As a con-
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sequence, to make sure that all safety requirements areameposites employed under
these conditions have to be more massive than might be rmegesafich has a detrimen-
tal economic impact. Computer simulations, as a cost @ffetool to clarify damage
mechanisms, can contribute to overcome these shortcomings

At this point, fibre bundle models (FBM) enter as a simple yegant method to cap-
ture the most significant characteristics shared by randatenals in general and fibrous
composites: they inherently feature disorder, anisoteopydynamical load transfer |16],
the dominant features in the breakdown of FRCs. Initiallygmsed as a model to capture
the failure behaviour of a bundle of fibres in textile yarieit behaviour can be sum-
marized in a nutshell as follows: a thread of parallel sirfdlees is under an external
uniaxial tension. They load in a linear elastic way untiitiheach their respective failure
thresholds, which are randomly distributed. If a fibre faile load on it drops to zero,
and has to be passed to the remaining fibres, which can resascades of further break-
ing events. Obviously, fibre bundle models are therefore sueed to describe uniaxial
composites under tension, and have been applied sucdgs$sfuhis loading condition,
since under tension the load on a composite is sustainedsaéraousively by the fibres.
Is it worth mentioning here that fibre bundle models possessxplicit time dependency
—although such extensions have been developed; rathes,ithan implicit dependence
through the progress of external loading.

However, composite materials are not always loaded undertpasion, although this is
attempted in order to utilize the fibres’ high tensile stiténgnore importantly, in a real
material there exist no pure loading states, but the diftargernal loading states are al-
ways present to some extent. One of the modes that has nonbedried extensively
in the past is the shear state. Under shear loading, corapusiterials have been shown
to develop a variety of coexisting failure phenomena. It besn found that under in-
plane shear stress not only matrix shear failure, but alse-filatrix debonding plays a
crucial role [12] 17], some studies finding that the debogdithe fibre-matrix interface
actually is the limiting factor in shear strengthi[12} 18].18is therefore of high impor-
tance to improve the available models for this case, andfatdbe more general case of
sheared states of glued interfaces, i.e. elastic or efdasiic connections between two
rigid semispaces, where one can assume that the glued ¢mmpossesses disordered
properties.

In fibrous composites the macroscopic loading behavioueutahsion typically displays
anonlinear regime prior to fracture, although this may leaweshort; under shear loading
of glued interfaces, one may expect however a high degrdastigty, which can actually
develop the outlook of perfect plasticity depending on thaposition of the glue.

Monitoring stressed systems and predicting imminentffailsl an important aspect in the
study of composite materials; recent events have showreteat state-of-the-art building
structures, which had been under constant supervisionca@strophically collapse in
the presence of merely a minor external stimulus. One pdatily tragic event led to

the disintegration of the wooden roof skeleton spanningcarskating rink in southern
Bavaria in 20061[19], which caused the death of 15 personsulSexjuent investiga-
tion suggested the main cause to be the chemical decongrositihe glue between the
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wooden components, a decade long process preceding thersadiapse, which was
finally triggered by the unusually heavy snow load of thisseea

Along with similar building collapses in the winter of 20@B06, live monitoring tech-

niques have received growing attention and recent innavain terms of wireless tech-
niques render the equipment of precarious structures subhildings and bridges with
sensors for strain, temperature or noise possible [20]. aiqular importance can be
the detection of noise signatures indicating the imminehapse of a material system, or
some of its components. As a matter of fact, acoustic enmgsig) techniques have been
employed in materials testing in the past, and most fibrougposite materials exhibit a
signature power law for the distribution of avalanche siBstecting deviations from this
power law could be highly beneficial, and the existence ohgleviations in the context
of a specific FBM will be examined in Chapfér 5 of this thesis.

Another important aspect that links composite materiasrt@dvanced class of FBMSs,
the continuous damage fibre bundle models (CDFEM) [21],estlelusion of hierarchi-
cal failure levels. Experiments have revealed that longfdtamposites loaded parallel to
the fibre orientation experience a gradual degradationggsosuch that the macroscopic
constitutive curver(¢) of the composite develops a plastic plateau and the globaida
is preceded by a strain hardening regime.

This effect mirrors the presence of a hierarchical orgdinan the material, where the
failure mechanisms relevant at the lower length scalesh@stale of fibres) gradually
activate the breaking of higher order substructures (suizHes, bundles, and plies) of
the system. With fibres embedded in a matrix material, thaeking of a fibre causes
debonding of the fibre-matrix interface in the vicinity oktbrack [22]. Due to the fric-
tional contact at the interface, the load of failed fibreddsiup again over a certain stress
recovery length and consequently the broken fibre can stitrdute to the overall load
bearing capacity of the system. On a more abstract levelCIDlEBMs —an extension
of which will be presented in this thesis— are not restridtethe length scales of fibres,
fibre bundles etc., but can be applied to any hierarchicaksysvhere a failure event
triggers the activation of internal degrees of freedom.

As a widely used tool in computational material researcle, @an observe that fibre bun-
dle models address two major challenges: on the one handséee as a starting point
to develop more realistic models of material failure, whilsken comprise a detailed rep-
resentation of the microstructure of a material, the lot@ss fields, and their complex
transmission. Since efficient techniques have been des@ltpstudy large scale fibre
systems both through analytical calculations and simutatiFBMs and models based on
them allow to investigate the influence of microscopic matgarameters on the macro-
scopic response of disordered systems, and on fibre reedfa@omposites in particular.
On the other hand, the study of damage and fracture in dismtdgystems has evolved
into a fascinating branch of statistical physics, whereaeshers have accomplished to
find a link between breakdown phenomena and phase trarssiaisrwell as critical phe-
nomena in general. Pursuing this analogy, there are nowinggesearch efforts to
embed fracture phenomena into the framework of statigpicgs$ics.
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In summary, FBMs are an established method that have aidgednitherstanding of ma-
terial breakdown and failure, they are deeply rooted in th@@mporary understanding
of disordered systems, and they are certainly suitable ¢coraplish the tasks laid out
in the beginning of this section: first, to describe the sha#éure of bonded interfaces
between solid structures, which requires a reformulatioterms of a sheared state as
opposed to a tensional one. Secondly, to find a simple repes of the damage law
that describes the limiting cases of elasticity and pléagtiand a parameterization for all
cases in between. Furthermore, if a critical failure thodglklistribution with finite-range
interactions is considered, there is a need to quantifyigtaloltion of failure event sizes,
which can be measured by recording acoustic emissions froaterial. And finally, for
materials that fail under continuous restructuring andiéaing, certain constraints on the
failure threshold distribution and the maximum number @ufas of a fibre (or another
elementary constituent) in a modified continuous damage EBpure some aspects ob-
served in the fracture process.

1.2 State of Research

Historically, the first appearance of the fibre bundle model lse traced back to the year
1927, when Peires introduced this approach in order to statet the strength of cotton
yarns [4]. The first consistent stochastic formulation & thodel, together with a com-

prehensive study of bundles of threads —assuming equaldbadng after subsequent
failure— was presented by Daniels [5]. Early attempts tawapfatigue and creep ef-

fects led Coleman to propose a time dependent formulatidineofodel|[23], where the

strength of loaded fibres was proposed to diminish with time.

These first developments have been ensued by intense tesedrath the engineering
[22] and physicsi|1| _24] communities, so that nowadays fikredte models are con-
sidered one of the most important theoretical approachésetdamage and fracture of
disordered materials. A recent comprehensive review tir&in disordered materials
prominently features fibre bundle models [7].

As mentioned previously, FBMs are a sound choice in moddilomgus composites under
loading parallel to the fibre direction, where most of thedleacarried by the fibres, and
the matrix material and properties of the fibre-matrix ifdee mainly determine the inter-
action (load transfer) among fibres[25] 26, 27; 28]. Stdine adaptions are necessary to
make the model more realistic. The first step in doing so i & means to interpolate
between the limiting cases of global and local load shanwvtgjch obviously constitute
extremal abstractions of the finite range interaction presea real material. In 2002,
such a model was proposed by Hidalgo et all [29], where the: $bared by the unbro-
ken fibres decays as a power law with the distance from a brislklen This model was
subsequently applied to explain the size dependence afcodt samples under tension

.

After fibre breakings, the material yields due to fibre-matiebonding in the vicinity of
the crackl[2?2], a gradual degradation process which canrbstad due to frictional con-
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tacts at the interface. Macroscopically, this leads to phpearance of a strain hardening
regime prior to failure. The gradual degradation is a traaésign of a hierarchical orga-
nization of the material, where failure mechanisms releaathe lower length scales, i.e.
the dimension of the fibres, gradually activate the breakingigher order substructures
(sub-bundles, bundles, and plies) of the system. A contiswlamage model has been
proposed which mirrors this effect |21], and it has beenstigated in terms of macro-
scopic behaviour and avalanche characteristics [30].hEurtore, it has been employed
to explain the restructuring of force chains in granularenats under compression [31].

Another branch of FBM developments aims at modeling theouisdehaviour of fibrous
reinforced composites (FRCs), which under high stresdesrdeyradually, a time depen-
dent process which can finally result in creep rupture. Aogsastic model has been sug-
gested|[32], and investigated in terms of the usual macmnaoroscopic characteristics,
and the universality of the failure process![33; 34]. The sanodel and some variants
have been proven to give a good description of creep testRa@ndamples [35; 36].

In terms of materials, fibre bundle models have also beenegpf model the failure
behaviour of fibre reinforced concrete [37} 38]) and, vepergly, asphall [39; 40], where
the reversal of microscopic crack opening must be congidere

Most of the theoretical studies on the failure of interfacekere disordered properties
assume a crucial role, rely on discrete models [1; 41] whrehadble to capture hetero-
geneities and can account for the complicated interactioludeated cracks. In studies
of the progressive failure of glued interfaces under a umflmad perpendicular to the in-
terface, several aspects of the failure process have beealed such as the macroscopic
constitutive behavior, the distribution of avalanchesiofidtaneously failing constituents
and the structure of failed glue regionsi[42]. Considerirtgeaarchical scheme for the
load redistribution following fibre failure, a cascadingchanism was proposed for the
softening interface in Ref. [43; 44]. The roughness of tlaekifront propagating between
two rigid plates due to an opening load was studied in the éx@onk of the fuse model.
The microcrack nucleation ahead the main crack and thetsteiof the damaged zone
were analyzed in detail [45]. The shear failure of an intsafhetween two rigid blocks
has very recently been investigated by discretizing theriate in terms of springs. It
was shown that shear failure of the interface occurs as afustr phase transition [46].

The original idea behind the invention of FBMs had been ta@dles material degrada-
tion and failure. However, it turned out that—due to themglicity and their inherent
features—they have also earned appreciation as a genedal fioo the breakdown of a
broad class of disordered systems, in which many intergei@ements are loaded exter-
nally. Some examples that have been mentioned are magmets Oy an applied field
[47; 48] and scale-free networks [49;/ 50]. Fibre bundle n®aéso capture important
aspects of geological phenomeha [51], and it has been sh@awva generalization of the
fibre bundle model with long-range interactions is equinate a mean field formulation
of the Burridge-Knopoff model frequently used in the inwgation of earthquakes [52].

Thus, several novel aspects of breakdown phenomena hawerdesaled by the study
of FBMs in recent years. The introduction of thermal noissdieto the reduction of
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the strength of materials, and in the presence of thermatlyaded cracking sub-critical
crack growth and a finite lifetime of materials are obsen&j|b4]. The effect of healing
of microscopic cracks has also been addressed by thermmdgaddibre bundle models
[BE].

A crossover in the avalanche size distributiofA) from the power law of exponent/2

to another power law regime with a lower expon8p2 has been observed, when the
avalanches of fibre failures are solely recorded in the iticof the point of macroscopic
failure, i.e. the strength distribution of the remaininggpit fibres is close to critical [56;
57]. The connectivity properties of the bundle turned oupley an important role in
breakdown processes, i.e. considering locally intergdilires of a bundle on the nodes
of a Barabasi-Albert network (instead of placing them otidatsites) substantially alters
the failure process [50]; these models are closely relaigtie statistical properties of
social interactions [47]. Similarly, a random fuse model elase relative of the FBM—
on a network may be applicable to predict the failure of elegrids [58], and has been
applied for biological materials [59; 60]

Finally, FBMs also played a crucial role in clarifying thenilamental relation between
the breakdown of disordered materials, critical phenonjéég61;62; 63| 64; €5], and

self-organized criticalityl [66]. Under GLS, the microsaoguantities —such as the dis-
tribution of bursts of fibre breakings— when approachingabiat of macroscopic failure

under a quasi-statically increasing load were found tolakhiscaling behaviour which
is typical of continuous phase transitions|[67;.6; 68; 65; 6%, |70;.71]. It has been
suggested that the macroscopic failure of GLS bundles ikgoas to first order phase
transitions close to a spinodal [72;148; 62] 21], since msmwpic quantities like the
Young modulus of the bundle display a finite discontinuityteg same time. An interest-
ing mapping of the fracture process of fibre bundles to Idilkgmodels, widely studied

in statistical physics, has been suggested [73; 74; 69]chvprovides further hints on
how to embed fracture phenomena into the general framewatatstical physics. An

important aspect of this attempt is the possibility to aealytical solutions under GLS
conditions; this also helped to explain the power law betavof avalanche statistics
[6€;175;16]. Although deviations from this power law shoubdst for small avalanches,
their role is limited even if considering mixed thresholdtdbutions [75].

1.3 Overview of the Research Conducted

Technical applications often require solid blocks that@enected by welding or glue-
ing of the interfaces, and the structures need to sustaioustypes of external loads.
If these solid interfaces are subject to shear, the interédements experience not only
longitudinal deformation (compression and elongationl), dso bending deformation.
This kind of loading of joined blocks is a model picture also interfacial failure which
occurs in fibre reinforced composites, where debonding@fitire-matrix interface can
even be the dominating damage mechanism when the composlteared. The complex
deformation that appear in this context cannot be captwyetideretizing the interface in
terms of fibres, as they can only support longitudinal detdrom in the classical FBM.
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As a first step to model shear failure, we propose in Chépten®al beam model, that
perpetuates the classical fibre bundle models and the éxtsndeveloped for them to a
pure shear state, i.e. we change the loading direction bye§éeds and model a novel
situation: two rigid plates are coupled by elastic beamsc¢kvare subject to both stretch-
ing and bending under shear load. The beams fail if the twordedtion modes exceed
randomly distributed breaking thresholds. The two bregkimodes can be independent
or combined in the form of a von Mises-type breaking criterionder a global load shar-
ing condition following the beam breaking, the macroscapigstitutive behaviour of the
system can be obtained, and the microscopic process of tigegssive interface failure
has to be explored. An efficient simulation technique is naémy in order to study large
systems. Also, the limiting case of very localized intei@tbf surface elements has to be
taken into account, which again requires computer simanati Following this approach,
the “beam model” of interface failure can then be mapped tmalassical fibre bundle
model, preserving the theoretical apparatus that has bede available for the latter and
allowing the use of modifications and extensions that haea bieveloped for the FBM.

Secondly, to account for macroscopic plasticity, spedlfica the context of glued inter-
faces, a modification to the damage law of fibre bundle modatsasented in Chapter
4, assuming that failed fibres still carry a fraction< o < 1 of the load they sustained
before failure. This introduces an additional parametewhose value interpolates be-
tween the limiting cases of perfectly brittle failure € 0) and perfectly plastic behaviour
(o = 1) of fibres. After having examined the macroscopic propsiged obtaining an an-
alytical formulation of the constitutive curve, the focuslwe on investigating the usual
microscopic characteristics of the system. Since undealilied load sharing a nonzero
value ofa softens the stress concentrations around broken fibresnaénghology, size
distribution and evolution of clusters of broken fibres ifuofdamental importance to un-
derstand the progressive damage of the model system. Theetition between failure
due to localization and the quenched disorder imposed bjathee threshold distribu-
tion can be tuned by varying, which has a substantial effect also on the avalanche size
distribution and shows interesting links to the problemasfdom percolation. It should
be noted that, since the mapping of the aforementioned beahelron the classical FBM
will be derived, the application of this plastic model to ghblem of glued interfaces
under shear is straightforward.

A third aspect that will be investigated in Chaplér 5 focusesa recently discovered
phenomenon, the change in the power law for the avalanceelsizibution under certain
choices of the failure threshold distribution. Specifigait was shown inl[56] for GLS
loading conditions that the existence of a lower cutoff aé ttlistribution results in a
change of the exponent frosy2 to 3/2, which is tantamount to a delayed recording
of the avalanches, starting only shortly prior to catadtiofailure. This discovery can
have a strong impact in the field of acoustic monitoring asisudrastic change in the
size distribution of microscopic fracture events can be suesd by means of acoustic
emission technologies — the possible benefits of which haen Istressed previously.
We will present a detailed numerical study of this situatimder localized load sharing,
employing the variable range model to interpolate betwek8 é&nd LLS and detect the
change of exponent for all effective ranges of interactingddition, a discussion of this
effect with respect to ductile vs. brittle fracture will beopided.
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Finally, we will suggest two possible modifications to thattouous damage fibre bundle
models in Chaptdrl 6, which can account for gradual failura bferarchical, disordered
system. The model that will be proposed overcomes the céstriof a fixed value for
the maximum number of failures that a constituent elementstestain. This has been
motivated by the existence of a multitude of coexisting dgeraechanisms with different
activation energies and failure mechanisms, especialixperiments on timber lamellae
under tension. A second modification that we introduce tocGb&BM allows to model
the arrest of cracks by introducing a sorting of the paréic@ilure thresholds for each
breaking event. These two extensions will be studied ektelysand the differences in
comparison to the CDFBM will be highlighted.

In Chaptefl a discussion of the research efforts presentidsithesis will be given, and
a comparison to the state of research will be drawn. Thislisvied by suggestions on
further research and a brief outlook.
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Chapter 2

The Classical Fibre Bundle Model

In this section we will outline the main properties of thesd@al fibre bundle model in
order to facilitate the comprehension of the modified FBMsspnted in the subsequent
chapters.

To generate a computationally feasible fibre bundle modebuple of simplifying as-
sumptions have to be made [5] 22} 59; [77;161; 6]:

The disordered model is discretized as a two-dimensiogalae lattice, where the lattice
sites represent parallel fibres, see [Eid 2.1. Althoughdritar lattices or even networks
of fibres have also been studied, we will restrict ourselegbe most commonly studied
rectangular lattice type, with side length and a number of fibred = L2. The fibres
are loaded under uniaxial tension parallel to the fibre€ation.

The constituent fibres behave perfectly brittle under areimental external load, which
means they load linearly elastic with e Young modutuantil they break at their respec-
tive failure loado},, « = 1,..., N, which is illustrated in Figi2]1. The Young module
E is identical for all fibres. The failure process of a singledilis instantaneous and
irreversible, so the load on a broken fibre vanishes (sedZE&). Broken fibres in the
classical FBM cannot be restored, i.e. there is no healitigout modifying the failure
law.

Of crucial importance in the construction of the fibre bunadledel is the range of load
redistribution after fibre failure, which is prescribedletorm of a load sharing rule. Two
extreme cases for the form and range of interaction havered@s standards, and they
constitute two sub-classes of fibre bundle models with suitisilly different micro- and
macro-behaviour. The first form of global load sharing (GLS®)metimes termed equal
load sharing (ELS), prescribes that the load of a failed fibrdistributed on all intact
fibres in the array irrespective of their distance from thkedéafibre, which as a mean
field approach renders the topology of the model irrelevéinteflects the experimental
situation of loading a set of parallel fibres between twakigates, and usually it serves as
a starting point for investigating more complex variatiofshis type, since GLS models
usually can be treated analytically 6] 68| 56; 69; 77].

25
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Figure 2.1: Schematic drawing of the classical fibre bundbel@hsetup. The fibres are
located on a square lattice of sizex L. Loading with a forcer is parallel to the fibre
direction. Once a fibre fails, its load is either redistrémibn the nearest intact neighbors
(LLS, see arrows) or the entire set of intact fibres (globatllsharing).

For the contrary case of local load sharing (LLS), the loadc déiled fibre is shared

equally by the neighborhood of intact fibres, usually onky tiext neighbors on the lattice
are taken into account, as depicted in FEigl 2.1. This loatstrdolition evokes a high

level of stress concentration around failed regions. Thl®mapanying correlations set
prohibitive limitations towards an analytical treatmefitttws problem [78; 22| 79], so

typically large scale simulations have to be employed[T56/83.;29]. The experimental

image corresponding to this situation is the stretchinglmiradle of fibres between plates
of finite compliancel[67; 42; 43].

The amount of disorder in a material is modeled through agsggrandomly distributed
failure thresholdsr}, to the fibres, where the probability density;i&r;,) and the dis-
tribution function isP(oy,) f mmzp Jdz. It is therefore of crucial importance in
modeling heterogeneity and deeply influences the overgiarese of the model: in fact,
it is the only component of the classical FBM that represerdaterial dependent features.
Typically, two types of random distributions are employékhe first one is a uniform
distribution between 0 and 1 with the density and distrinufunctions

plow) =1, P(ow) = oum, (2.1)
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Figure 2.2: Linear elastic loading characteristic of a krfdpre, which breaks when its
failure loadoy;, is reached.

which typically serves as a starting point for analyticaisiderations. A distribution with
a much better physical foundatian [1; 24] is the Weibull dizition

P(ow) =1 — exp [— (%)m] 2.2)

wherem and )\ denote the Weibull index and scale parameter, respectiitedpould be
noted that the amount of disorder can easily be controlletibyg the Weibull indexn.

Some general features of FBMs should be mentioned in thedoih, as they are shared
by most variants and underscore the importance of the modeislerstanding the break-
down of heterogeneous materials.

Loading of a bundle is usually performed quasi-staticallyl can be controlled in two
substantially different ways: first, if the deformatierof the bundle is controlled exter-
nally, the load on single fibres; at each stage of loading is determined by the externally
imposed deformatiom o; = FEe; consequently, no load sharing occurs and the fibres
break subsequently in the order of the increasing breakiresholds. Hence, at a given
deformatione only those fibres with breaking thresholds < Ee have failed, with
the intact fibres sustaining an equal lo&e. It follows from this that the macroscopic
constitutive behavior of the FBM is

o(e) = Ee[1 — P(FEe)], (2.3)

where[l — P(FEe)] is the fraction of intact fibres at the deformatiofd?;77]. For the
case of Weibull distributed strength values with= 2 and A = 1 the constitutive curve
is shown in FiglLZP as a representative example.
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Figure 2.3: Macroscopic constitutive behavior of a fibrediarwith global load sharing
Eq.[Z3 using Weibull distributed strength valuggs (m = 2 and\ = 1).

Secondly, there is the stress controlled case, where tlgénipas controlled externally.
Here the damage process is more complex due to the loadriiedlisin following a fibre
breaking. The load received in this way by the remaining fibreboth in the cases
of GLS or LLS— can cause secondary fibre breakings. It turristloat consecutive
load redistributions after fibre failures can evoke entwalanche of breakings; these
avalanches then can either stop after a certain number eftif@akings and the integrity
of the bundle is preserved, or continue as a catastrophit esgulting in the macroscopic
failure of the entire system as all remaining intact fibres @estroyed [6;_68; 56; 30].
This catastrophic event also determines the ending poititeotonstitutive curve at its
maximum, and the subsequent decreasing part of the curmetdam attained under stress
controlled loading.

The existence of a quadratic maximum whose position ancewddfine the critical strain
e. and stresw,. of a bundle has been proven analytically for a broad classsafrder
distributionsP under GLS conditions [47; 77]. The global strengthiV) rapidly con-
verges to the finite non-zero strength of the infinite bundté wcreasing system siz¥
[5;122;177].

The macroscopic response of the bundle is more brittle uodealized load sharing with
the constitutive curve (¢) of the LLS bundle equating the GLS counterpart, but macro-
scopic failure occurring at a lower critical stress"® < ¢%%5, and with only a weak
non-linearity present before failure_[29]. It has been a#®d through computer simula-
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Figure 2.4: DistributionD of burst sizes\ obtained by computer simulations of a bundle
of 107 fibres. A straight line of slope 2.5 is drawn to guide the eye.

tions that in the thermodynamic limiY — oo the strength of LLS bundles decreases to
zero asl/ (In N) [82].

Fibre bundle models exhibit interesting properties on therodevel, depending on the
range of load sharing. Under GLS the spatial distributiobrefiking events is completely
stochastic, no spatial correlations arise and randomljeated clusters of broken fibres
appear analogous to percolation. Under stress contralbating, the cascades of reload-
ing events produce bursts of fibre breakings, and it has bemmp analytically that the
distribution D(A) of burst sizes\ has a power law behavior

D(A) ~ A, (2.4)

if recorded over the entire course of loading.The exporenrt 5/2 is universal and
independent of the disorder distributién6; 68;171]. Using simulation results for a large
fibre bundle, this generic behavior is illustrated in [Eigl. 2.

A power law distribution has also been found for more congtéd long range inter-
actions, e.g. in the fuse model, which is another model syd$te studying material
breakdown|[83| &4]). For localized load sharing in the FBMwever, studies found a
rapid decrease dP(A) and a dependence on the specific form of disofd€r5].
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Chapter 3

A Simple Beam Model for the Shear
Failure of Interfaces

In this chapter we study the shear failure of the glued iatgriconnecting two solid blocks
in the framework of a novel type of model. In this model theerfdce is discretized in
terms of elastic beams which can be elongated and bent whmmsed to a shear load.
The breaking of a beam is caused by two breaking modes, iretclsing and bending,
characterized by randomly distributed threshold valueke o breaking modes can
be either independent or combined in terms of a von Mises lbypaking criterion/[85].
Assuming long range interaction among the beams, the fallyéin solution of the model
for the macroscopic response of the interface, and for tieeascopic process of failure is
found. It will be shown that the presence of two breaking nsddevers the critical stress
and strain of the material without changing the statistidsiosts of simultaneously failing
elements with respect to the case of a single breaking mobe.c®upling of breaking
modes results in further reduction of the strength of therfate. We demonstrate that
the macroscopic response of the interface can be tuned dweraa range by varying
the relative importance of the two breaking modes. The ingitase of very localized
interaction of beams is also considered. We determine thstitotive behavior and the
distribution of avalanches of breaking beams for the casenwbeams interact solely
with their nearest and next-nearest neighbors in a squttieelaAn effective simulation
technique is worked out which makes it possible to studydaygstems, and an account
of the research has been published.in [86].

3.1 Properties of the model

In the model the glued interface of two solid blocks is repréed as an ensemble of
parallel beams connecting the two surfaces. First, we eenvanalytical description of
a single beam of quadratic cross section clamped at bothamtisheared by an external
force f, see Fig[ 3.1(d). The shearing is exerted in such a way teatistance between

the two clamping planes is kept constant. Consequentlype¢hen experiences not only a

31
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torquem, but also a normal forcedue to the elongatiotl/, which is characterized by
the longitudinal strain = Al/I.
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Figure 3.1: (a) Shearing of a single beam between two rigategl Since the distan¢e
between the plates is kept constant, the beam experiemeéshgtg and bending defor-
mation, with longitudinat and shearf forces. (b) Shearing of an array of beams, with
the corresponding forces. In the case shown, one beam isforok

We derive the form of the deflection curve of the beam, as wellhe@ magnitude of
the tension force. It is necessary to introduce some apmptions, so the model can
be incorporated into the simulation code in a sensible wagllowing the procedure
outlined e. g. inl[87], we solve the differential equatiom fbe beam deflectiog(z)
under the influence of the lateral forgeand a given stretching forcde We then solve
self-consistently fot( f), with ¢ being the result of the longitudinal elongation.

The governing differential equation for the bending siratdepicted in Fig[ 3.1(h) can
be cast in the form

" t / _ _i
¢"(2) = 7¢(2) = =2, 3.1
with boundary conditions
¢(0) =0,
¢0) =0
¢"(l/2) =0. (3.2)

Here, E denotes the modulus of elasticity, ahds the moment of inertia for bending of
the beam. For a beam of rectangular cross-section, we havel*/12, whered is the
side length. Let us briefly motivate this ansatz by statirsg the second derivativg'(z)
is proportional to the torque on the beam, so consequenibeitls to vanish at the beam
half-lengthi/2. Accordingly, the third derivative’’(z) is proportional to the shearing
force exerted on the beam, hence, it constitutes a term dfatamce equation, EqQ.(3.1).



A Simple Beam Model for the Shear Failure of Interfaces 33

The first derivative term witly’(z) denotes the projection of the tension forceDue to
the clamping, the deflection and its first derivative mustistamat the end = 0. The
formula for the bending moment is

m=—FEI{"(z) . (3.3)
The solution{(z) for vanishingt can be obtained as [88]

2
C<2)2112?;21

from which we can calculate the elongation

! I
Al = / dz/1+(?(2) — 1~ %/ ¢? dz. (3.5)
0 0

It follows from the above equation

(3l —22), (3.4)

t:Eﬁ%:E&, (3.6)

whereS = d? is the beam cross-section area. The first order solutiot{ forreads as

s
24012

12, (3.7)

~
~

From a computational point of view, a formulation of bendargl stretching in terms of
the longitudinal strairz is more suitable than using the lateral foreFor that, we only
need to replace:(f) by m(e), which yields

fl o [5 Bd

m(e) 5 = ET\/E, (3.8)
with "
ot 3 :
‘= Es " sEa (3.9)

Usinge as an independent variable enables us to make comparistivesgonple case of
fibre bundle models [%; 77; BD;169;129; 30] where the elemesmtshave solely stretching
deformation. In the model we represent the interface as aaneble of parallel beams
connecting the surface of two rigid blocks (see [Fig. 3]1(Bf)e beams are assumed to
have identical geometrical extensions (lengémd side lengtld) and linearly elastic be-
haviour characterized by the Young modullis In order to capture the failure of the
interface in the model, the beams are assumed to break whagrddformation exceeds
a certain threshold value. As it has been shown above, uhéear $oading of the inter-
face beams suffer stretching and bending deformationtreguh two modes of breaking,
which can act independently or in combination. The stremftheams is characterized
by the two threshold values of stretchiagand bending, a beam can withstand. The
breaking thresholds are assumed to be randomly distrituateables of the joint proba-
bility distribution (PDF)p(ey, €2). The randomness of the breaking thresholds is supposed
to represent the disorder of the interface material.
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After breaking of a beam the excess load has to be redistdter the remaining intact
elements. Coupling to the rigid plates ensures that all #zerts have the same deforma-
tion giving rise to global load sharing, i. e. the load is diyushared by all the elements,
stress concentration in the vicinity of failed beams camuzur. If one of the interfaces
has a certain compliance, the load redistribution follaybneaking of beams becomes lo-
calized. This case has recently been studied for the exteadhimposed perpendicular
to the interfacel [46].

In the present study we are mainly interested in the macpiseesponse of the inter-
face under shear loading and the process of progressivedaif interface elements. The
global load sharing of beams enables us to obtain closegtanegsults for the consti-

tutive behaviour of the system for both independent and leaupreaking modes. We
examine by computer simulations the statistics of simeltasly failing elements. The
limiting case of the very localized interaction of interéaelements is explored by com-
puter simulations.

3.2 Constitutive behaviour

Assuming global load sharing for the redistribution of l@tkr the failure of beams, the
most important characteristic quantities of the interieae be obtained in closed analytic
form.

Breaking of the beam is caused by two breaking modes, i.etching and bending which
can be either independent or coupled by an empirical brgatdterion. Assuming that
the two breaking modes are independent, a beam breaksef ¢ longitudinal stresis

or the bending moment: exceeds the corresponding breaking threshold. Since the lo
gitudinal stresg and the bending moment acting on a beam can easily be expressed
as functions of the longitudinal deformatieythe breaking conditions can be formulated
in a transparent way in terms ef To describe the relative importance of the breaking
modes, we assign to each beam two breaking threshplds i = 1,..., N, whereN
denotes the number of beams. The threshold valuasde, are randomly distributed ac-
cording to a joint probability density functigne;, e;) between lower and upper bounds
emin, emar anden i, e, respectively. The density function needs to obey the nbzara
tion condition

/. d€2/. d€1 p(€1,€2>:1. (310)

3.2.1 ORbreaking rule

First, we provide a general formulation of the failure of afle of beams. We allow for
two independent breaking modes of a beam that are funcfi@mslg of the longitudinal
deformatiore. This case will be called th@R breaking rule, since a single beam breaks
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if either its stretching or bending deformation exceed dspective breaking threshaid
Or e9, i.€. failure occurs if

— > 1lor (3.112)
€1
QR (3.12)
€9

where Eqs.[(3M,3:12) describe the stretching and bermleaking modes, respectively.
The functionsf(e) andg(¢) are called failure functions, for which the only restrictiis
that they be monotonic functions ef For our specific case of elastic beams the failure
functions can be determined from EJs.1B3.8,3.8) as

fle)=¢, gle) = ave, (3.13)
wherea is a constant and the value of the Young modulus set to 1.

In the plane of breaking thresholds each pdint ;) represents a beam. For each value
of € those beams which survived the externally imposed defoomatre situated in the
areaf(e) < e < e andg(e) < eo < '™, as itis illustrated in Fig_3l2. Hence, the
fraction of intact beam®Viact/ N at a given value of can be obtained by integrating the
density function over the shaded area in Eigl 3.2

N egﬁax ETaX
intact _ / d@/ de pey, €). (3.14)
N 9(e 76

Due to the global load sharing, deformation and stress obtaens are the same every-

e max|
2
mtact ibers
W g(e) ,,,,,,,,,,,,,
—
w |
. g
8 mmn i
2
£ ‘min £ fnax
1 - 1
81

Figure 3.2: Plane of breaking thresholdg;, e2). The point of intersection of (¢) and g(e)
determines the fraction of remaining beams.
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where along the interface. Consequently, the macrosctgasti@behaviour of the system
can be obtained by multiplying the load of a single beaf®, = ¢ (£ = 1 is taken), by
the fraction of intact elements Eq.(3114)

eg1ax eTaX
o= e/ d62/ dep pler, €). (3.15)
g(€) f(e)

Assuming that the breaking thresholds, characterizingdlaive importance of the two
breaking modes, are independently distributed, the jd¥# Pan be factorized as

pler, €2) = pi(er) - pa(ea). (3.16)

Introducing the cumulative distribution functions (CDEs)

fuaw=/,m@nﬁaamua@w:/,m&aﬁa (3.17)

min min
1 2

we can rewrite Eq[{3.15) as

g = € Eg]axdEQ 2( €2 - d€1 1 €1
[ deri) [ dan)
= €[l = By(g(e)][1 = Pu(f(e))]- (3.18)

This is the general formula for the constitutive behavioiadeam bundle with two
breaking modes applying th@R criterion. In the constitutive equation— P;(f(e))
and1l — P»(g(e)) are the fraction of those beams whose threshold value fatibgrand
stretching is larger thag(e) and f(¢), respectively. It follows from the structure of Eq.
(3.1I8) that the existence of two breaking modes leads touctim of the strength of the
material, both the critical stress and strain take smaléres compared to the case of a
single breaking mode applied in simple fibre bundle modelg1%56;129; 30} 65; 10; 63].

Considering the special case of two uniform distributiomsthe breaking thresholds in
the intervalge]™", "] and [e]"", )'®], respectively, we can derive the specific form of

Eq. (37I8) by noting that

1 1

ple) = m , ple2) = m (3.19)

After calculating the cumulative distributions, the finasult follows as

A g(o)
= e e — (820

More specifically, if the distributions have equal boundsfb, 1], and substituting the
failure functionsf andg from Eq. [3.IB), the constitutive equation takes the form

o=c¢€[l — €[l —ave|. (3.21)



A Simple Beam Model for the Shear Failure of Interfaces 37

3.2.2 \Von Mises type breaking rule

We now address the more complicated case that the two bgealades are coupled by a
von Mises type breaking criterion: a single beam breaks Btitaine fulfills the condition
[83]

<@)2 IOy (3.22)

€1 €2

This algebraic condition can be geometrically represeated is illustrated in Figi_313.
In the plane of the failure thresholds ¢, the beams that survive a loadre bounded
by the maximum values® 7' and the hyperbola-like curve defined by Hg. (8.22).
Calculating the intersection pointsandb defined in Fig[:313, which are found to be

max |

e
0@ b

%

\

min |
€2 T |
min | rhax
€1 f(e) €1
€1 —+

Figure 3.3: Intact beams in the plane of the failure thredel, ¢, for a given strain

e, If breaking is determined by the von Mises criterion. Thads#d region labeled
denotes the intact beams; the shaded regiaepresents the additionally failing beams
that would be intact in the case of tlER-criterion. The values andb are defined as the
intersections between the curve of the breaking conditign{E22) and the maximum
valuese"® ' respectively.
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max

o = 10 (galg)  and

O ok .23

CEEECh

the fraction of surviving beams can be expressed as

Nin ac eTaX eg”ax
tact :/ dq/ dey p(eq, €2) (3.24)
N a €a(€1,€)

with the integration limit

2
~ e1g(€)
= . 3.25
62(617 6) 6% _ f2(€) ( )
The constitutive behaviour in this case is therefore given b
Erlnax 63’18.)(

o= e/ dq/ dey p(eq, €2) . (3.26)

a €a(€1,€)

We would like to emphasize that assuming independence diremeking thresholds the
joint distribution factorize®(e1, e2) = p1(€1) - p2(e€2), but the integrals in EqL{3.26) over
the two variables cannot be performed independently., 8i#l integral in Eq.[{3.26) can
be evaluated analytically for a broad class of disorderitigions. As an example, we
again consider two homogeneous distributions Eq. 13.18) the intervall0, 1] along
with the failure functions Eq[{3.13). Setting the Young mhus and the parametér =

1 = a, the integrals yield

1—¢€

Y (2 1%\/E+logi\/—7 Vi:ﬁ)] (3.27)

1 1
o = e-§{<2—2\/g+eg log +€>

Even for the simplest case of uniformly distributed bregkiinresholds, the constitutive
equation takes a rather complex form. It is important to ribtd the coupling of the
two breaking modes gives rise to a higher amount of brokembeampared to thOR
criterion. In Fig.[3.B the beams which break due to the cogpbf the two breaking
modes fall in the area labeled 133

3.3 Computer simulations

In order to determine the behaviour of the system for corapid disorder distributions
and explore the microscopic failure process of the sheartedlface, it is necessary to
work out a computer simulation technique. In the model wes@®r an ensemble df
beams arranged on a square lattice. Two breaking thresHoldsare assigned to each
beami (: = 1,..., N) of the bundle from the joint probability distributigrie, €;). For



A Simple Beam Model for the Shear Failure of Interfaces 39

0.25 ¢ L .
"z.x‘ — VOnh mises
< , —— or
O 2 | * ‘;( ........... Stretch
0.15 ¢
b X X
O'l | X ’)“"‘1. %
X I'/{ \\\\
/ ™~ '
| | .
0.05 | .
' N
\\
0.0 ‘

00 02 04 06 08 1.0 1.2
€

Figure 3.4:Constitutive behaviour of a bundle of beams with two bregkimodes in a strain-
controlled simulation ofV = 4 - 10° beams, under th@ R (dashed line)yon Mises typésolid
line), and a pure stretching breaking criterion (dotte@)linThe random failure thresholds for
the breaking modes of each beam are sampled from uniformibdison between[0, 1]. The
points marked with-*, * +" and ‘x’ denote the respective theoretical results, Hqs. [8.21)3and

o = ¢(1 — ¢) for the pure stretching case. The constditanda are set to unity here.

the OR breaking rule, the failure of a beam is caused either bycttieg or bending
depending on which one of the conditions E¢s. (8. 1T]3.1R)lfdled at a lower value
of the external load. This way an effective breaking thréghpcan be defined for the
beams as

e =min(f (), g7 (b)), i=1,...,N, (3.28)

where f~! and ¢g~! denote the inverse of, g, respectively. A beani breaks during
the loading process of the interface when the load on it elcés effective breaking
threshold:. For the case of the von Mises type breaking criterion EG2)3the effective
breaking threshold’ of beami can be obtained as the solution of the algebraic equation

(@)2+M:1, i=1,...,N. (3.29)

i i
€1 €

Although for the specific case of the functiofisy given by Eqgs.[(3[,3.12) the above
equation can be converted to a 4th order polynomial and d@walytically, this solution
turns out to be impractical, especially since the numerealuation of the solution is
too slow. We therefore solve EQ._(3129) numerically by mezfresmodified Newton root
finding scheme, where we make use of the fact that the solh#isrihe lower bound 0.
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Figure 3.5:The beams that break due to maghall in the shaded region. The label@andb mark
the abscissae of the intersection points of the cyrves) = f~1(e1) with the linesey, = N
andey = €)', respectively.

In the case of global load sharing, the load and deformatfobeams is everywhere
the same along the interface, which implies that beams bretiie increasing order of
their effective breaking thresholds. In the simulatioteaéletermining’ for each beam,

they are sorted in increasing order. Quasi-static loadirigeobeam bundle is performed
by increasing the external load to break only a single elemBue to the subsequent
load redistribution on the intact beams, the failure of anb@aay trigger an avalanche
of breaking beams. This process has to be iterated until&l@rsche stops, or it leads
to catastrophic failure at the critical stress and straimdéf strain controlled loading
conditions, however, the load of the beams is always detextnby their deformation so
that there is no load redistribution and avalanche activity

In Fig.[3:3 the analytic results on the constitutive behawtegs. [3.21["3.27) are compared
to the corresponding results of computer simulations. Asference, we also plotted the
constitutive behaviour of a bundle of fibres where the fibekdolely due to simple
stretchingl[b] 717;16; 29; 30; 6%; [70;163]. It can be seen in tharé that the simulation
results are in perfect agreement with the analytical ptexfis. It is important to note that
the presence of two breaking modes substantially redueesritical stress. and strain
e. (o ande value of the maximum of the constitutive curves) with respethe case when
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Figure 3.6:Constitutive behaviour of a bundle 8f = 90000 beams using th®Rcriterion. The
parameter values; = 1.0 (stretching),m; = msy = 2 were fixed, while), corresponding to
the bending mode was shifted. Inset: Fraction of beams lomgdiy stretching and bending as a
function of \s.

failure of elements occurs solely under stretching. Simeeaf the failure functiong(e)

is non-linear, the shape of the constitutive cusye) also changes, especially in the post-
peak regime. The coupling of the two breaking modes in themfof the von Mises
criterion gives rise to further reduction of the strengthha interface.

3.4 Progressive failure of the interface

During the quasi-static loading process of an interfacalaaches of simultaneously fail-
ing beams occur. Inside an avalanche, however, the beambBreak under different
breaking modes when tH@R criterion is considered, or the breaking can be dominated
by one of the breaking modes in the coupled case of the vonsMiype criterion. Hence,

it is an important question how the fraction of beams bregkine to a specific breaking
mode (stretching or bending) varies during the course difapof the interface.

For theOR criterion, those beams break, for instance, under bendiegunder mode
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Figure 3.7:Constitutive behaviour for different values of the shapeapeeterm, of stretching.
Strain controlled simulation aV = 90000 beams with failure due to th@R-criterion, fixing the
parameters\; = Ay = 1.0 andmy = 2. Inset: total fraction of beams broken under made
during the course of loading.

defined by Eq.[(32), whose effective breaking threshbid determined by ~!(e) in
Eqg. (328) so that the inequality holds

g er) < fHe). (3.30)

In the plane of breaking thresholds,, ¢, } the region of beams which fulfill the above
condition is indicated by shading in FIg. B.5. The fractidieamsB, (¢) breaking under
modeg up to the macroscopically imposed deformatiazan be obtained by integrating
the probability distribution (e, e2) over the shaded area in Fig.13.5. Taking into account
the fact that the intersection pointsb defined in Fig[3315 may in general lie outside the
rectangle(eln, fMax (max Mmin) and adjusting the integral limits accordingly, we arrive at
the following formula for the fraction of fibres breaking werdnodey as a function of the
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deformatione

min(f(e),b) 9(f~1(er))
Bg(g) = / d€1 / d€2 p(ela 62)

max(e]'",a) egin

f(e) g

+ / d€1/d€2p(€17€2)
min(f(e),b) €gin

max

€1 g(e)

+ / dey / des pley, €3). (3.31)

f(e) emin

It should be noted that the second integral vanishes ublesg®. The total fraction of
beams breaking under mogeluring the entire course of the loading can be obtained by
substitutinge = ¢™** in the above formulas, whee&** denotes the deformation at the
breaking of the last beam.

In order to study the effect of the disorder distributjaa,, ¢;) of beams on the relative
importance of the two breaking modes and on the progresailigd of the interface,
we considered independently distributed breaking thieshg, e, both with a Weibull

distribution
@) =™ ()™ @)™ (3.32)
=— |+ Xp |— | — .
Pul€p N\ p N )

where indexb can take values and2. The exponentsn;, m, determine the amount
of disorder in the system for stretching and bending, raspy, i. e. the width of the
distributions Eq.[(3.32), while the valuesXf, \, set the average strength of beams for the
two breaking modes. Computer simulations were performeabdarframework of global
load sharing by setting equal values for the shape parasweier= m, and fixing the
value of \; = 1 of the stretching mode, while varying of the bending mode.

The total fraction of beams breaking by stretching and bemdising theOR breaking
rule is presented in Fi§._3.6. Increasihgof the bending mode, the beams become more
resistant against bending so that the stretching modes stadominate the breaking of
beams, which is indicated by the increasing fraction oftshieg failure in the figure.

In the limiting case of\, >> ), the beams solely break under stretching. Decreasing
Ao has the opposite effect, more and more beams fail due to lhgndahile the fraction

of beams breaking by the stretching mode tends to zero. htésasting to note that
varying the relative importance of the two failure modesegialso rise to a change of
the macroscopic constitutive behaviour of the system.[Efillustrates that shifting the
strength distributions of beams the functional form of tbastitutive behaviour remains
the same, however, the value of the critical stress andnstialy in a relatively broad
range.

The same analysis can also be performed by fixing the valuesd A\, and changing
the relative width of the two distributions by varying onetloé Weibull shape parameters
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Figure 3.8:Fraction of fibres broken by the stretching mode as a funatferfor different values
of the corresponding shape parameter. Strain controlled simulation with failure due to the
OR-criterion, N = 90000, A\; = Xy = 1.0, my = 9.

m. We find it convenient to shift;, the shape parameter of the stretching mode instead
of m,. It can be observed in Fig._3.7 that for this choice of theesgarameters, the
value of the critical strain hardly changes, however thecali stress nearly doubles as
compared to Fid_316.

Although the effect on the final fraction of beams broken bghemode, see inset of
Fig.[37, is not as pronounced as for shiftizxgwe should also consider the fraction
of fibres broken up to a value efduring the loading process (Fig._B.8). It should be
noted that the end points of the respective curves in[EigaBgust the final fraction
numbers in Fig_317, but the curves show a strong spreadtiEmiediate values ef This
demonstrates that changing the amount of disorder in thakimg thresholds strongly
influences the process of damaging of the interface.

We apply the methods outlined in the previous paragraphisetedn Mises case. Obvi-
ously, Eq. [32R) does not allow for a strict separation efttho modes. However, the
breaking of a beam at a certain vaksas dominated by stretching if

<@)2 e} (3.33)

€1 €2

With the previous prescriptions for the failure functiorgsE[3.IB), we again find a mas-
sive influence on the constitutive behaviour and the final memof broken beams, see
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Figure 3.9:Constitutive behaviour for different values of the bendatgle parametex,. Strain
controlled simulation with the von Mises criteriordV, = 90000, A\; = 1.0, m; = mg = 2. The
inset presents the fraction of beams whose failure was duartnby the stretching or bending
mode.

Fig.[3.9. The inset of Fid._3.9 demonstrates that a crosdmitareen stretching and bend-
ing preponderance occurs also in the von Mises case.

3.5 Avalanche statistics

The stress controlled loading of the glued interface is aqaamied by avalanches of si-
multaneously failing elements. The avalanche activity lsarcharacterized by the dis-
tribution D(A) of burst sizesA defined as the number of beam breakings triggered by
the failure of a single beam. In the framework of simple fibtendle models, it has
been shown analytically that global load sharing gives tisa power law distribution
of avalanche sizes for a very broad class of disorder digiabs of materials strength
[6€; 6]

D(A) ox A™° (3.34)

with an universal exponeit= 5/2.
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Figure 3.10:Avalanche size distributio® (A) for pure stretching of a fibre bundle, and the two
beam breaking conditions for system siZés= 16 - 10°, averaged over 100 runs. A fit with the
best resultD  A~2-5 over almost four decades is provided. The inset shows thendiemcy of
the largest avalanch&; on the system size for the three cases. Again, no differenforind.

In the previous sections we have shown that in our model teeglay of the two breaking
modes results in a complex failure mechanism on the micpsdevel, which is strongly
affected by the distributions of the breaking thresholdsorder to investigate the bursts
of breaking beams we performed stress controlled simulatan large systems\( =
10%...16 - 10%) with both theOR and von Mises type breaking criterion. In Figlire-3.10
the simulation results are compared to the avalanche sstghbdition of a simple fibre
bundle model where failure occurs solely due to stretch@ég 6;129; 30| 65]. In all the
cases the avalanche size distributions can be fitted by ardaweover three orders of
magnitude. The best fit exponentdf= 2.56 4+ 0.08 was derived from the system of size
N = 16 - 10° beams, with an average taken over 100 samples. The size Gfrtest
avalanche in the inset of Filg._3]110 proved to be proporticméhe system size. It can be
concluded that the beam model belongs to the same univgrsialss as the fibre bundle
model [683; 6] 29; 30; 65].

3.6 Local load sharing

During the failure of interfaces, stress localization iWwm to occur in the vicinity of
failed regions, which results in correlated growth and ese¢nce of cracks. In our model
this effect can be captured by localized interaction of titerface elements, which nat-
urally occurs when the two solid blocks are not perfectlydiz]. For simplicity, in
our model solely the extremal case of very localized int#gwas is considered, i. e. after
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Figure 3.11:Snapshot of a LLS system at the last stable configuration.c®he coding repre-
sents the load per beam, with broken beams carrying a vagigtad. The system size is= 100.

breaking of a beam in the square lattice, the load is religed equally on its nearest and
next-nearest intact neighbors. This localized load shgiih S) results in growing failed
regions (cracks) with high stress concentration along tbmiimeter@Z dﬂS]. Figure
B11 shows the last stable configuration of a beam latticegpliag global failure, which
was obtained using th@R criterion for beam breaking. Due to the stress concentratio
around cracks, the onset of a catastrophic avalanche oatlower external loads mak-
ing the macroscopic response of the interface more britthepared to the case of global
load sharing@ﬁﬁﬂ.

As for global load sharing, we shift the relative importammée¢he two breaking modes
by changing their threshold distributions, and record ttileience on micro- and macro-
scopic system properties. We consider hereQRecriterion, and use two Weibull distri-
butions with parameters,;, A\, andm,, m,, where the indices 1 and 2 denote the stretch-
ing and bending mode, respectively. Varyingfor a fixed \;, we find a considerable
influence on the constitutive properties, as Eig.13.12tilatss.

We investigated also the distribution of avalanche sizeklf®, Fig.[3.I3, where we vary
the scale parametey, of the bending modg. We find merely a shifting to different
amplitudes, but no considerable effect on the shape of #taldition function, which is
similar to the one reported iﬂeg]. In comparison to the GlaSe; we should note that
large avalanches cannot occur, and the functional formeo€tinves can be approximated
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Figure 3.12Constitutive curves in the LLS case, shifting (legend) and keeping the parameters
A1 = 1.0 andm; = my = 2 fixed. Stress controlled simulation 8f = 10000 fibres averaged
over 300 runs.
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Figure 3.13Distribution of avalanche sizes for LLS for three values\g{legend), with\; = 1
andm; = mo = 2 fixed. Simulations were performed using tB® criterion for a bundle of
10000 beams averaged over 300 runs.

by a power law with an exponent higher than for GLS in agredgméh Refs. [68] 5| 75].
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3.7 Concluding remarks

Fibre bundle models have been applied to describe variquectsof the failure of het-
erogeneous interfaces. However, fibres can sustain sdtetgation, and hence cannot
account for more complex deformation states of interfaeenehts, which naturally oc-
curs under shear loading. We constructed a novel type of hfod¢he shear failure
of the glued interface of two solid blocks. In the model th&eiface is discretized in
terms of elastic beams which experience stretching andibgaéformation under shear.
Breaking of a beam can be caused by both deformations meguttitwo failure modes.
The mechanical strength of beam elements is charactenziek Itwo threshold values of
stretching and bending the beam can withstand. The beanassuened to have identical
elastic properties, the heterogeneous microstructuepiesented by the disorder distri-
bution of the breaking thresholds. In the model we assumehieawo solid blocks are
perfectly rigid which results in a global load redistrilartiover the intact beams following
the breaking events.

We presented a detailed study of the macroscopic respodgb@progressive damaging
of the interface under quasistatic loading. Making use efglobal load sharing of intact
beams, we obtained the analytic solution of the model focthestitutive behaviour and
the amount of damage during the course of loading. In ordexpdore the microscopic
process of damaging we worked out an efficient simulatiohriiepie which enables us
to study large systems. We demonstrated that the disordeibdition and the relative
importance of the two failure modes have a substantial efiadboth the microscopic
damage process and the macroscopic constitutive behavidhe interface. Varying
its parameters, the model provides a broad spectrum of mmlabethaviours, where the
presence of a second breaking mode reduces the criticabsdred strain as compared
to the classical FBM. Simulations showed that the failurehaf interface proceeds in
bursts of simultaneously breaking beams. The distributiblourst sizes follows power
law behaviour with an exponent equal to the one of simple filonedles. Under stress
controlled loading conditions, the macroscopic failuréhaf interface occurs analogously
to phase transitions, where our beam model proved to be isahm universality class
as the equal load sharing fibre bundle model [61;29; 69]. Vdavel that the localized
interaction of beams leads to a more brittle behaviour ofinkerface, which implies a
more abrupt transition at the critical load.

Beam models have been successfully applied to study theifeaof cohesive frictional
materials where cracks usually form along the grain-graterface. Beam elements
proved to give a satisfactory description of the interfbf@dure of grains and the emerg-
ing micro- and macro-behaviour of materialsi[90]. The beaodeh presented here pro-
vides a more realistic description of the interface of macopic solid bodies than the
simple fibre bundle model and is applicable to more complaslilng situations. Experi-
ments on the shear failure of glued interfaces are rathételimespecially on the micro-
scopic mechanism of the progressive damage, which hinkdeditect comparison of our
theoretical results to experimental findings. Our work iis threction is in progress.
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Chapter 4

Failure Process of a Bundle of Plastic
Fibres

We present an extension of models of the shear failure ofdghierfaces —such as the
one presented in Chapfér 3— considering that surface etsraftar failure still can have

a certain load bearing capacity. The disordered interfacepresented by a parallel set
of fibres with random breaking thresholds and linearly @asthavior until failure. The
broken fibres are assumed to carry a constant load which &adn0 < « < 1 of their
failure load. Varying the value af the model interpolates between the perfectly brittle
(o = 0) and perfectly plastic = 1) constitutive behavior of fibres. Based on analytic
calculations and computer simulations, we show that thé&efioad bearing capacity of
failed fibres has a substantial effect on both the macrosagsponse and microscopic
damage process of the fibre bundle. When the load redistibtdllowing fibre failure

Is short ranged, an interesting phase transition is reslestl@ specific value af. The
results presented here have been published in [91].

4.1 Model

In ChaptellB we presented a detailed study which demondttiase the beam model of
sheared interfaces with two breaking modes can be mapped isimple fibre bundle
model of a single breaking mode by an appropriate transfoomaf the fibres’ strength
disorder. For the sake of simplicity, the following accotimgrefore refers to bundles of
fibres, where the possible application to the problem of igtemterfaces should be kept
in mind.

In the present chapter, we extend fibre and beam models mgtadb account that failed
surface elements can still carry some external load inorgalse load bearing capacity of
the damaged interface. A bundle of parallel fibres is comedieith breaking thresholds
oy, in the intervald < oy, < o™ with a probability density(oy,) and distribution
function P(0,) = [, p(oy,)doy,. We assume that after the breaking of a fibre at the

51
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Figure 4.1: Constitutive behaviour of a single fibre: thedishows linearly elastic be-
haviour up to the breaking thresheif),, then it keeps a fractiol < « < 1 of the ultimate
load o, .

failure threshold},, it may retain a fractio) < o < 1 of its ultimate loads, , i. e. it

will continue to transfer a constant load?, between the surfaces. This assumption can
be interpreted so that at the damaged areas of the intettfaed®/o solids still remain

in contact exerting for instance a friction force which mantibute to the overall load
bearing capacity.

In many applications involving glued parts, the glue betw®eo interfaces has disordered
properties but its failure characteristics is not periebitittle, under shear the glue may
also yield. The constitutive behaviour of single fibres lisstrated in Fig[’4]1. Note that
the load carried by the broken fibres is independent of thereat load, furthermore, it
is a random variable due to the randomness of the breakieghblds. Varying the value
of «, the model interpolates between the perfectly brittleufailx = 0) and perfectly
plastic (¢ = 1) behaviour of fibres. The load stored by the failed fibres ceduhe
load increment redistributed over the intact fibres, whicbrgly affects the process of
gradual failure occurring under quasi-static loading &f ititerface. In the following we
present a detailed study of the model system varying thagineof plasticitya. For the
range of load sharing the two limiting cases of global an@liéaad redistributions will
be considered after failure events.

4.2 Transition to perfect plasticity

Assuming global load sharing (GLS) after fibre breaking, ¢bestitutive equation of
the interface can be cast into a closed form. At an extermalposed deformation the
interface is a mixture of intact and broken fibres, which lathtribute to the load bearing
capacity of the interface. Since the broken fibres retaiacifsn« of their failure load, at
the instant of fibre breaking only the reduced I9ad « )07}, is redistributed over the intact
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Figure 4.2: Constitutive behaviout(¢) of the plastic fibre bundle for uniformu( b, c)
and Weibull distribution withn = 2 (d, e, f) ata = 0.2 (a, d), « = 0.5 (b, ) anda: = 1.0
(¢, f). The contribution of intactprgy and failed fibressp are also shown. Note that
oprsm IS identical with the constitutive curve of simple dry fibrerfale models.

fibres. Since the fraction of fibres having breaking thredithe intervale, £ + de| can
be obtained ag(¢)de, the constitutive equation(<) reads as

o(e) = Fe(1 — P(e)) —1—04/08 Ee'p(e) de’, (4.1)

N / N /

ODFBM Opl

where the integration is performed over the entire loadohyst The first term labeled
oprem provides the load carried by the intact fibres, which comesis to the classical dry
fibre bundle (DFBM) behavioul[%; 6; 77]. The constitutivevlaf DFBMs is recovered

in the limiting casen = 0, when the complete load of the failed fibre is transferred to
the remaining intact fibres of the bundle. In the second tegmwhich accounts for the
load carried by the broken fibres, the integral is calculatest the entire load history of
the interface up to the macroscopic deformationit can be seen in Eql{4.1) that the
value ofa controls the relative importance of tleéasticand plastic terms influencing
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the macroscopic respons¢s) and also the microscopic damage process of the system.
When« is increased, less load is transfered to the intact fibre artda limiting case

« = 1 failed fibres retain their entire load so no load transferuogc In this chapter,

we explore the influence of the parametewhen it is tuned between these two extremal
cases. In the following calculations the value of the fibrésung modulus was set to
unity £ = 1.

We note that the plastic fibre bundle model resembles up t@ stent to the continuous
damage fibre bundle model (CDFBM) worked out in Refs. [21; 3Bl main assumption
of the CDFBM is that due to the activation of certain interdagjrees of freedom, the
fibres undergo a gradual softening process reducing theinyonodulus in consecutive
partial failure events. The fibres always remain linearsat but with a Young modulus
E(k) = a*E, where the multiplication factdr < o < 1 describes the stiffness reduction
in a single failure event ank denotes the number of failures occurred. If the fibres can
fail only once & = 1) and keep their stiffness value constant, the constitldmweof the
system reads as

o(e) = Fe(1 — P(e)) + aEeP(e). (4.2)

It was demonstrated in Refs. [2(1;]30] that increasing the bbemof timesk the fibres
can fail, the CDFBM develops a plastic plateau, howeveth aitnechanism completely
different from the one considered here.

It is instructive to consider two fundamentally differergses of disorder distributions
P(e), namely bounded and unbounded ones, where the largesirigehkesholds};**
takes a finite value or goes to infinity, respectively. In ttiepter, we focus on two
specific realizations, i. e. a uniform distribution betw@sando ]}

Ploy) = 2 0 < oy, < o7, (4.3)

max ’

th

and distributions of the Weibull type
Ploy) =1— e on/N", (4.4)

are considered wherk andm denote the characteristics strength and Weibull modulus
of the distribution, respectively. For our study the Wellalistribution has the advantage
that the amount of disorder in the failure thresholds carlyelas controlled by the value

of m.

The functional form of the constitutive behaviatlz) is shown in FigCZR for both disor-
der distributions Eqsl{4.3].(4.4). Itis interesting taethat fora. < 1 there always exists
a maximum ofz (¢), just as in the case of DFBM. Under stress controlled loadongli-
tions, macroscopic failure occurs at the maximurm @f) so that the position and value of
the maximum define the critical stressand straire, of the bundle, respectively. It can
be observed in Fig._4.2 that the valuespfande,. are both higher than the corresponding
values of DFBM indicating that the presence of plastic fibneseases the macroscopic
strength of the bundle. The decreasing part and the plafealt pbcan be realized under
strain controlled loading conditions gradually incregsinUnder strain control the local
load on the fibres is determined by the externally imposedrd&ition so that there is no
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Figure 4.3: Simulations of stress controlled loading of adla of N = 1.6 x 10° fibres
with Weibull distributed breaking thresholds & 1, m = 2). For clarity, the occurrence
of macroscopic failure is indicated by vertical lines. ke&@singa the constitutive be-
haviour becomes perfectly plastic, i. e. a horizontal @lateith vanishing slope appears.

load redistribution after fibre failure. The fibres break-tayeone in the increasing order
of their failure thresholds?, = E<!,. When the deformationapproaches the maximum
value of the breaking threshold%** = ¢77*/ E, all fibres must fail gradually so that the
load of intact fibresrprpy tends to zero, while that of the broken fibras takes a finite
asymptotic value

opl — 0 = aE/ e'p(e)de’ = a{ow) (4.5)
0

where the integral is equal to the average fibre streqgtf). When the strength of
plasticity « is increased, the critical strai and stress.,., furthermore, the asymptotic
stress of the plateat increase. The value of the critical deformatiQrcan be obtained
by differentiating Eq.[{4]1) with respect toand calculating the root [77]

1- P(ec) - gcp(gc) [1 - Oé] =0, (46)

from which the critical stress follows as = o(¢.). Eq. [4®) implies that in the limiting
case oblx — 1 the critical straire,. tends to the maximum of the breaking threshel%’,
whereP(e}}**) = 1. For the uniform distribution Eq[{4.3) we obtain

0
e mazx

fe= 1T o2 hence, ¢, — 20 = gher, (4.7)
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Figure 4.4: Critical strairx. (a), and critical stress, (b) as a function ofl — « for a
Weibull distribution withA = 1, m = 2; symbols: simulation results, solid lines: analyti-

cal expressions Eq$.(4.8).(1.D).(4.10).

Herec? denotes the critical strain of DFBM. = £7/%* /2, which can be obtained by
settinga = 0 in Eq. (48). It follows that for unbounded threshold distitions like
the Weibull distributiong,. diverges so that perfect plasticity is only reached in thetli
e. — oo. The functional form of the divergence is not universal, tuéhe structure of
the third term on the left hand side of ER.{4.6),depends on the specific form pfe).
For the Weibull distributions, as a function ofv reads as

1 1/m
ge=¢"(1— a)_l/m, where 2 = ) <—> (4.8)

m

for any Weibull exponentn. Parallel to this, the decreasing part and the plateau of the
constitutive curver(¢) disappear so that. andé converge to the same finite value, which
is the average fibre strengthy;,)

g — (o) and o.— (o). (4.9)

The average fibre strength,,) can be determined as

g 1. (1
(o) = t; and (o) = —T (E) (4.10)
for the uniform and Weibull distributions, respectivelyetdI’ denotes the Gamma func-
tion.

In order to illustrate this behaviour, Fig. %.3 presentsstibutive curves for Weibull dis-
tributed fibre strength obtained by computer simulatiorsti@ss controlled loading up to
the critical point withA = 1 andm = 2. It is apparent that in the limiting case @f— 1
the constitutive curve (¢) reaches a plateau, indicating a perfectly plastic macpsco
state of the system. The position of the maximgnof the constitutive curves, i. e. the
ending point of the curves, rapidly increasescaapproaches 1, while the value of the
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Figure 4.5: Fraction of intact fibres= 1 — P(c.(«)) at the point of macroscopic failure
g. VS. 1 — a for a Weibull distribution ofA = 1, m = 2; circles: GLS simulation results,
solid line: analytical solution EqL{4.11).

maximumo, tends to a finite value. In agreement with the analytic pteshis Eq. [4.B),
simulations confirmed that. diverges as a power law whose exponent depends on the
parameters of the strength distribution (see Eid. 4.4).

Controlling the external stress, the constitutive curvéhefsystem Fid_413 can only be
realized up to the maximum, since at the critical loadbrupt failure of the bundle occurs
breaking all the surviving intact fibres in a large burst. Traetion¢ of fibres which break
in the final burst causing global failure can be determined asl — P(s.(«)), which is
illustrated in Fig[4b as a function @f— « for the specific case of a Weibull distribution

P(a) = e /M=), (4.11)

It can be observed that as the system approaches the stadeaxdtplasticityy — 1, ¢
tends to zero. This demonstrates that more and more fibrak before global failure
occurs, and perfect plasticity is obtained when the strstigare fails at the maximum of
o(e) (compare also to Fi§."4.3). This argument also implies tat f— 1, the difference
of the microscopic damage process under stress and straioibed loading disappears,
the fibres break one-by-one without triggering avalanctieseakings.
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Figure 4.6: Analytic solution of the avalanche size disttibn D(A) at various different
values ofa. Fora — 0 the usual power law distribution is recovered, whereasfer

1 an exponential decay aD(A) is obtained. For the specific calculations a Weibull
distribution was used with = 2.

4.3 Avalanches of fibre breakings

Under stress controlled loading of the fibre bundle, the @pped by a breaking fibre
is redistributed over the intact ones. This load incremantgive rise to further breakings
which then may trigger an entire avalanche of failure eveifite distributionD(A) of
avalanche sized is an important quantity for the dynamical description of thaded
system. For the case of classical DFBMs- 0) under GLS conditions the avalanche
size distributionD(A) can be obtained analytically [6€; 6] as an integral, fromahithe
asymptotic form of the distribution for large avalanchesved to be a power law

D(A) xx A2 A = . (4.12)

The value of the exponerit/2 is universal, it does not depend on the details of the
disorder distribution of the failure thresholds![63; 6].

In order to obtain the analytical solution for the avalandtstribution in the presence of
plastic fibresae # 0, we can follow the derivation of Refs. [68; 6], taking intocaant
that the average number of fibre&, a)de which break as a consequence of the load
increment caused by a fibre breaking at the deformati@reduced by a factor ¢t —«)

a(e, a)de = ”&(6_)(—;(_6)&)%. (4.13)
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Taking into account that the critical deformatignwhere macroscopic failure occurs also
depends o, the avalanche size distributidn(A) can be cast in the form

ec(a)
D(A A

[1—a(e,a)]p(e) de.

For the specific case of the Weibull distribution with an &dyly modulusn the general
equation Eq.[{Z.14) can be written in the form

AAfl
Al(m(1 — a))2As+1
+ AcAm(l - oz)e_Ac] ,
whereA, depends on the amount of disorderand on the strength of plasticity
_
m(l —a)

In Eq. (415)y denotes the incomplete Gamma functlbnTwo limiting cases can be
distinguished in the solution: first, far — 0 the classical power law dependence Eq.
@.12) is recovered. This analytic solution is illustratedrig. [4.6 for a Weibull distri-
bution withm = 2, where a power law oD (A) is apparent forv < 0.9. However, for
the limiting case ofv — 1, we have to consider the behaviour of the argunzgnof the
analytic solution Eq.[{4.15). Far ~ 1, there will be a regime ofA values where the
term1/(m(1 — «)) dominates oveA resulting in a faster decay of the distributibr{A)
than any power. Still, for any values efin the limiting caseA >> A.(«), the usual
mean field power law behaviour E€.(41.12) is asymptoticadlyovered. Avalanche size
distributionsD(A) obtained from computer simulations at various differeftiga of
are presented in Fig.4.7. In a good quantitative agreemigntthe analytic predictions,
the numerical results can be well fitted by a power law of expd®/2 for moderate val-
ues ofa. However, forae > 0.9 strong deviations from the power law EQ.(4.12) can be
observed for intermediate avalanche sizes A < 103, which appears to be an exponen-
tial decay. Although in the analytical solution the asyntigtpower law behaviour is still
visible for very largeA, see Fig[416, computer simulations in Higl4.7 show solelgrs
steep decrease. It can be seen in the analytic solution i@ dhat the relative frequency
of avalanches of siz& > O(10%) is D = O(1073%) for a = 0.99, so it would require
extremely large systems to count any such events. The sthe tdrgest avalanchg,,,,.

is plotted in Fig[4B as a function ef. Obviously,A,,.. is @ monotonically decreas-
ing function ofaw whose decrease gets faster in the regime where the digribti A)
exhibits the crossover to the faster decaying form.

DA o) = Y(A,AL) (4.15)

A=A+ (4.16)

An important consequence of the analytic solution EQSHHZ.16) is that the charac-
teristic avalanche size where the crossover occurs fromnaiplaw to a faster decaying
exponential form also depends on the amount of disordenheestronger the disorder is,
the larger the crossover size gets at a giwen

x
1There are several definitions of the incomplete Gamma fanctie usey(a,z) = [e~"t*~ 1 dt .
0
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Figure 4.7: DistributionD(A) of avalanches of sizA for various values of obtained
by computer simulations for a system &f = 1.6 - 107 fibres with Weibull distributed
failure thresholdsn = 2. Satisfactory agreement is obtained with the analyticltesu
presented in Fid._4.6.

4.4 Local load sharing

From experimental and theoretical point of view, it is vemyportant to study the be-
haviour of the plastic bundle when the interaction of fibedscalized. In the case of local
load sharing (LLS) under stress controlled external logdionditions, the load dropped
by the broken fibre is redistributed in a local neighborhobithe fibre giving rise to high
stress concentration in the vicinity of failed regions.eS# concentration leads to corre-
lated growth of clusters of broken fibres (cracks), whictypla crucial role in the final
breakdown of the system, i. e. macroscopic failure of thedlinccurs due to the insta-
bility of a broken cluster which then triggers an avalanchfaiure events where all the
remaining intact fibres break. This effect typically leadstmore brittle constitutive be-
haviour of the system and the appearance of non-trivialaatd temporal correlations
in the damage process [75] 42| 29; 21].

In the plastic bundle, after a fibre breaks it still retainss&fiona of its failure loado,, so
that only the amountl — «)oy, is redistributed over the intact fibres in the neighborhood.
It implies that the load bearing broken fibres reduce thessttencentration around failed
regions giving rise to stabilization which also affects tamporal and spatial evolution
of damage during the loading process.
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Figure 4.8: Size of the largest avalanche in a GLS simulatiibim a Weibull distribution
of m = 2.

In the following we consider a bundle &¥f fibres organized on a square lattice of size
L x L with periodic boundary conditions. The fibres are assumdtht@ Weibull dis-
tributed strength Eq[{4.4), where the value\aé always set to unity and for the Weibull
modulus two different values are considered= 2 (large disorder) andh = 4 (smaller
disorder). After a failure event the load dropped by the brokibre (1 — «a)o?, is
equally redistributed over the nearest and next-neartsgttineighbors in the square lat-
tice, i. e. the local neighborhood of a broken fibre contain®ast 8 intact sites. Stress
controlled simulations have been carried out for systemssianging from.. = 33 to

L = 801 varying the strength of plasticity < o < 1.

4.4.1 Macroscopic response

It has been shown for DFBMs where broken fibres carry no |dzat, the macroscopic
response of the bundle when the interaction of fibres is il@adlfollows the constitutive
law of the corresponding GLS system with a reduced crititais and stress, i. e. the
LLS bundle behaves macroscopically in a more brittle way tharGitS counterpart
[75;121;129]. Figuré4]9 shows the constitutive curve of afiabundle of sizd. = 401

for several different values ei. It can be observed that far ~ 0 the constitutive curve
exhibits the usual. LS behaviour, i. e. the macroscopic failure is preceded byadively
short non-linear regime and global failure occurs in an pbroanner. The position of
the macroscopic failure defines the value of the criticalistr’*® and stresgZ"“. It is
very interesting to note that whenis increased, the LLS constitutive curves practically
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Figure 4.9: Constitutive law (<) of the LLS bundle obtained by computer simulations of
a system of sizé. = 401 for several different values ei. The inset shows a magnified
view of o(¢) for the regimen: < 0.4. For clarity, vertical lines indicate the location of
macroscopic failure. For the breaking thresholds a Weithisliribution was used with
m = 2.

recover the behaviour of the corresponding GLS systemfore:. > 0.4 the macroscopic
failure occurs when reaching the plateaw¢f).

The convergence of the LLS system to the GLS macroscopicvimlras better seen in
Fig.[ZI0 where the relative difference of the critical s§esr2 () andaZL% () of the
global and local load sharing bundles is presented. It caseba in the figure that there
exists a threshold value. of & above which the macroscopic response of the LLS bundle
becomes very close to the corresponding GLS system, whitevbe, the constitutive
behaviour of the bundle changes continuously from the usu&lresponse with a high
degree of brittlenessy(= 0) to the global load sharing behaviour. It seems that.ca
continuous transition occurs between the two regimes. fdmsition indicates that as a
consequence of the reduction of stress concentration drailad fibres, the bundle can
sustain higher external loads and is able to keep its intyegniil the maximum ot (¢) is
reached.
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Figure 4.10: The relative difference of the critical stesss‘~° and o2*° of global
and local load sharing systems as a function dr two different values of the Weibull
modulusm. The vertical lines indicate the critical values @f which were obtained in
Sec[44B.

4.4.2 Bursts of fibre breakings

The evolution of the macroscopic response of the system iwdteasinga is accom-
panied by interesting changes of the damage process on te-level, characterized
by the avalanches of fibre breakings and the cluster stricififailed regions. The
avalanche statistics presented in Fig. ¥.11 shows remiarffedtures. Forv ~ 0, due
to the high stress concentration around failed fibres, th8 bundle can only tolerate
small avalanches so that the avalanche size distribuigh) decays rapidly. With in-
creasingy the higher amount of load kept by broken fibres can stabitizebundle even
after larger bursts, hence, the cut-off of the distribusiamoves to higher values. It is in-
teresting to note that also the functional form of the disttion D(A) changes, i. e. when
« approaches. the exponential cut-off disappears and the distributiacobees a power
law

D(A) ~ A™H (4.17)

for large avalanches. The exponenof the power law was determined numerically as
S = 1.5 £+ 0.07, which is significantly lower than the mean field valu€”® = 2.5

[6]. Increasingx above the critical point an exponential cut-off occurs dredgower law
regime of large avalanches gradually disappears. Comp&ign[4.11 to the correspond-
ing GLS results presented in FIg. 4.7, it is apparent thav@bg the LLS distributions
D(A) have the same functional form and follow the same tendenttyincreasingr as
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Figure 4.11: Avalanche size distributiohgA) obtained by computer simulations for the
system sizd., = 401 with local load sharing, using Weibull distributed failufeesholds
m = 2. The power law fit is demonstrated far= 0.4. In the inset the size of the largest
avalanche\,,. is plotted versus:.

the mean field results. It can be concluded that the avalsstalistics presents the same
transitional behaviour between the local load sharing aedmiield regimes as observed
for the macroscopic response. The same valug’df was obtained numerically for
m = 4, indicating the universality of the exponent with respectite strength of disor-
der. The transition is more evident in the inset of Eig. Wviiere the size of the largest
avalanchej,,.. is plotted as a function of. The sharp peak indicates the transition
point whose position defines., while in GLS the size of the largest avalanchg,,, was

a monotonically decreasing smooth function (compare toER).

4.4.3 Spatial structure of damage

Gradually increasing the external load in the fibre bundie,weakest fibres break first
in an uncorrelated manner. Since the load is redistribuitsdysover the intact neighbors
of the broken fibre, the chance of fibre breakings increasd¢larvicinity of damage
regions. This effect can result in correlated growth of w@tsof broken fibres with a high
stress concentration around their boundaries. The langecluster is, the higher stress
concentration arises. Global failure of the bundle occuneny due to an external load
increment, one of the clusters becomes unstable and grotsalliriibres break. The
spatial structure of the damage emerging when the interaofifibres is localized can be
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Figure 4.12: Latest stable configuration in LLS simulatioha system of sizé, = 401,
with a Weibull strength distributiom: = 2 at different values of the control parameter
(@) 0.0, (b) 0.35, (c) 0.4, (d) 0.6. The strength of the largest clustig, in the lattices are
(@) 0.003, (b) 0.097, (c) 0.517, (d) 0.999. Broken and intact fibres are indicated by black
and white, respectively.

characterized by studying the statistics and structuréusters of broken fibres. Former
studies of the limiting case of very localized interactidrase revealed that the size of
the largest cluster in the system is rather limited, furtinane, it is independent of the
system size. Since the clusters are relatively small, mgrgi neighboring clusters does
not occur frequently. The clusters themselves are foune tcompact objects dispersed
homogeneously over the cross section of the bundle [72;8; 2

In Fig.[412 the latest stable configuration of the bundleresented just before catas-
trophic failure occurs at the critical loact™* for several different values of. Fora ~ 0
we note only small clusters of broken fibres as it is expeatetlfS bundles (Fig—4.12a).
With increasingy, these clusters grow and adjacent clusters can even meatgerfin-
creasing the typical cluster size (FIg._4.12b). Around thtcal value ofa ~ 0.4, a
spanning clusteof broken fibres seems to appear ([Eig. #.12c), whereas foehiglues
of a > 0.4 almost all fibres have failed (Fig.4]12d) already by the ttheecritical stress
is reached. The existence of very large clusters is thetdimtsequence of the increased
load bearing capacity of broken fibres.
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n(S)

Figure 4.13: Distributiom of the sizeS of broken clusters in LLS simulations with
a Weibull distributionm = 2, for different values ofn. The spanning clusters were
excluded from the distributions far > 0.4.

Clusters of broken fibres were identified in the square Etiging the Hoshen-Kopelman
algorithm. We evaluated the distribution of cluster siz¢S) in the last stable config-
uration just before macroscopic failure occurs. The behavof n(S) shows again the
transitional nature we have observed for other quantitiean be seen again in Fig.4113
that a well defined, exists which separates two regimes: for< «. the clusters are
small andn(S) has a steep decrease. Approachingthe cluster size distribution(S)
tends to a power law

n(S) ~ S, (4.18)
where the value of the exponent was obtained as 2.35 £+ 0.08 which is higher than
the corresponding exponent of 2d-percolation on a squétieda = 187/91 ~ 2.0549
[92]. Note that in the regime where spanning clusters exist(0.4), the distribution
n(S) contains only the finite clusters.

In order to characterize the evolution of the cluster streetvhena is changed and to
reveal the nature of the transition occurringh@f we calculated the average cluster size
S, as the ratio of the second and first moments of the clustedshgbution
m
Spp = —2. (4.19)

my
Thek-th momentmn,, of the distributiom:(S) is defined as

mp =Y S*n(S) — Sk, (4.20)
S
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Figure 4.14: Average cluster si%e, = my/m, as a function ofx for different system
sizesL. Simulation results were obtained with a Weibull distribatrn = 2.

where the largest cluster is excluded from the summatiogure[4.I4 presents,, as a
function of « for different system sizes ranging from= 33 to L = 801. It can be seen
in the figure that for each value @fthe average cluster siZ2, has a maximum at a well
defined value ofy, which becomes a sharp peak with increading e. the peak becomes
higher and narrower for larger systems. The observed betwai typical for continuous
phase transitions, where the position of the maximum define<ritical point of the
finite size system. Based on the analogy to critical phenamentested the validity of
the scaling lawS,, ~ L"*¢((a — a..) L'/*), whereg denotes the scaling function 6f,
[93;192]. The results presented in Fig._4.15 were obtainesdnying the values of the
critical pointa, and of the critical exponent of the susceptibilityand correlation length
v until the best data collapse was reached. It can be obsemvEyi[4.TI5 that in the
vicinity of the critical pointa,. a good quality data collapse is obtained using the values
a. = 0.385 £0.01, v = 2.0 £ 0.15, andv = 1.0 £+ 0.1, where the critical exponents
are only slightly different from the percolation exponenfsy = 43/18 ~ 2.389 and
v=4/3~1.33in2d [92].

At the critical point a spanning cluster of broken fibres asauhich is much larger than
the other clusters. In order to characterize the strengtheo§panning cluster we calcu-
lated the probabilityP,,(«) that a failed fibre belongs to the largest cluster. For parcol
tion the quantityP,, plays the role of the order parameter whose value distihggithe
phases of the system. Similarly to percolation lattices fing numerically a sharp rise
from P, = 0to P, = 1 ata. ~ 0.4, see FiglL4.16. When the system sizés increased
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Figure 4.15: Finite size scaling of the average cluster Siz@resented in Fig.4.14. The
collapse of the curves enables us to determine the valueeafritical exponents andv
with a relatively good precision.

P, tends to a step function indicating that the transition bee® sharper. Assuming the
scaling lawP,, ~ L™y ((a — a.)L'/*) of the order parameter for finite size systems,
wherey denotes the scaling function apds the order parameter exponent/ [93; 92], we
re-plotted the data in Fi§._Z4J17. The good quality of the daltapse was obtained with
the parameter values. = 0.33 + 0.01, 5 = 0.15 £ 0.06, andv = 0.95 + 0.1. Note that
the value ofv agrees well with the one determined by the finite size scalirtige average
cluster sizeS,,, larger deviations occur only for the critical pomt. The order parameter
exponents is compatible with the percolation value= 5/36 ~ 0.13

4.4.4 Random crack nucleation versus crack growth

The failure mechanism of disordered materials and itsiogldb the amount of disorder
has long been discussed in the literaturel[1; 24;121;!84;| £8,9l; 83]. When the

material has a low degree of disorder only a small amounngij af damage occurs prior
to macroscopic failure. In this case even the nucleationihgle microcrack can lead
to localization and abrupt failure of the system. Increggime amount of disorder, the
macroscopic failure is preceded by a larger and larger psecy activity, i. e. a large

amount of damage accumulates and local breakings canitiiggsts of breaking events
[6]. Since cracks nucleate randomly, the process of damefgeeblocalization resembles
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0.8 1.0

Figure 4.16: Order parametéx, vs. « for several system sizeswith the Weibull index
m = 2.

percolation up to some extent. Stress concentration bugd@sound failed regions which
might lead to correlated growth of the nucleated cracks|P45(84; 61]. Increasing the
strength of disorder, correlation effects become less datimg and in the limit of infinite
disorder the damage accumulation process can be mappecttdgien [96].

We have shown above that in the plastic fibre bundle model iPFBhe load bearing
capacity of broken fibres has a substantial effect on thegsof failure when the load
redistribution is localized due to the reduction of the sfreoncentration along cracks.
In order to give a quantitative characterization of damagpeiaulation in our model, we
determined the fraction of broken fibrgsat global failures,. as a function of the strength
of plasticity«. The quantityp, can also be interpreted as the probabilitg p, < 1 that

a randomly chosen fibre in the bundle is broken which make®ssiple to compare
the spatial structure of damage to percolation lattice$ §@2erated with the occupation
probabilityp = p, [1; 24;129;/96]. The results are presented in Eig.4.18 forsystem
size L = 401 and Weibull parameters = 2 andm = 4 plotting also the corresponding
GLS results for comparison. In the case of local load shamitgen the failure load of
fibres is almost entirely redistributed locally & 0) only a small damage can accumulate
up to global failureptS ~ 0.1 — 0.2 keeping the integrity of the system. Comparing
the curves of different Weibull indices it follows that the stronger the disorder is, the
larger amount of damage the system can tolerate at the sdoeeofay. In the vicinity

of the respective., the breaking fractiop}* rapidly increases and converges to the
maximum valuept™ =~ 1, which implies that in the regime > o, practically no
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Figure 4.17: Finite size scaling of the order paraméterpresented in Fid.4.16. The
parameter values used to obtain the best quality data sellagree well with the ones
determined by the finite size scaling §f,.

localization occurs, the bundle can remain stable untibsknall fibres break.

It is instructive to compare this behaviour to the case of Gidsere those fibres break up
to the critical point whose breaking threshold falls belawhencepS(a) can simply

be obtained agp{’® = P(o.(a)). In Fig.[ZIB it can be seen that under global load
sharing fora. =~ 0 a significantly larger fraction of fibres fails without desting the
system than in the LLS bundle. The breaking fractigns a monotonically increasing
function of « irrespective of the range of load sharing, however, in tleenity of the
critical point of LLS bundle®}® exceeds the smoothly rising GLS curygs. Note
that depending on the threshold distributiBrof fibres, even atv = 0 the value ofp§'*°
can be smaller or larger than the critical percolation phbalig p. of the corresponding
lattice type, since (contrary to fuse networks! [33; 84] acdete element models [90])
fracture in fibre bundles is not related to the appearancesplaning cluster of failed
elements. Varyingv as a control parameter, formally the GLS results could bé&epty
mapped onto a percolation problem: at the critical valuehefdontrol parametex&~S
defined asP(o.(aS1%)) = p. a spanning cluster occurs, which has a fractal structure,
the average size of finite clusters has a maximum at thealrftimint and the cluster size
distribution exhibits gap scaling [92]. However, this p@ation is not related to the point
of failure of the GLS bundle, the analogy to percolation isdzhpurely on geometrical
properties without any physical relevance.
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Figure 4.18: The fraction of broken fibres at 0. as a function oty for fibre bundles
of LLS and GLS with different strength of disorder = 2 andm = 4. The vertical
line indicates the critical point obtained as the positibthe maximum of the average
cluster size (see Fifg._4l14). The critical probability ofqmdationp. on the square lattice
is indicated by the horizontal line. Note that for both ddardistributions in LLS, the
location wherep/¥ exceeds, practically coincides with the corresponding criticalptoi
a., indicating the percolation nature of the transition.

Figure[418B shows that for localized load sharing the phasesition occurs when the
damage fractiop-™® reaches the critical percolation probabilityof the corresponding
lattice type. Due to the very localized load sharing, onlgrsihange correlations arise
in the system which are further moderated by the finite loatibg capacity of broken
fibres. Hence, in the vicinity of the transition pojit*(«..) ~ p. holds and the evolution
of the microstructure of damage shows strong analogy toopsron lattices. It can be
seen in Tabl€4l1 that the critical exponents of the pladire foundle model are slightly
different from the corresponding exponents of percolatiorthermore, the usual scaling
relations of percolation critical exponentsi[92] are ndfilfed within the error bars. It
has been shown for percolation that correlated occupatioipgpilities lead to the same
critical behaviour as random percolation when the cori@atatare short ranged [97;198],
however, long range correlations result in changes of thiearexponentsi[97]. It is
interesting to note that the value of the correlation lereyghonent of PFBM is smaller
than the value of random percolation which is consisten wie presence of relevant
correlations|[97]. We would like to emphasize that contriarglobal load sharing, this
percolation like transition has important physical consatges on the behaviour of the
fibre bundle. The failure process of the bundle is dominatethb competition of fibre
breaking by local stress enhancement due to load redistiband by local weakness
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Figure 4.19: Structure of the spanning cluster at two déffiérdisorder strengths in a
lattice of sizel. = 401. The perimeter length(/) of the cluster is plotted as function of
the length of the yardstick normalized by the side lengilof the inscribing square. The
insets present the clusters analyzed.

due to disorder. Our detailed analysis revealed that ttegivelimportance of the two
effects is controlled by the parameter Below the critical pointe < «. high stress
concentration can develop around cracks so that the fadutiee bundle occurs due to
localization. Above the critical point > «, the macroscopic response of the LLS bundle
becomes practically identical with the GLS constitutive@éour showing the dominance
of disorder. It is important to note that the size distribatof bursts of simultaneously
failing fibres becomes a power law at the critical paiptwith an exponent: equal to the
value recently predicted for GLS bundles of so-called eaitfailure threshold distribu-
tions [56;/57], which is discussed for LLS systems in ChaBtelThis can be explained
such that the large avalanches of power law distributiomoogg in the plastic fibre bun-
dle model atn,. (see Fig[[4.1l1) are dominated by the strong fibres of the buntbse
strength distribution is close to critical |56;/57].

The structure of the spanning cluster of the LLS bundle fatratthe critical point,
has also remarkable features different from the spannumge of percolation [92]. The
insets of Fig[ 4719 present representative examples ofduersng cluster of a system of
size L. = 401 at two different disorder strengths. It can be observedtti&tlusters are
compact, they practically do not have holes, there are aads of unbroken fibres in the
interior of the cluster. This structure is a direct conseapaeof the merging of growing
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Critical exponents PFBM Percolation
I} 0.15 + 0.06 5/36 ~ 0.13
¥ 2.0+ 0.15 43/18 ~ 2.38
T 2.35+0.08 187/91 ~ 2.05
v 1.04+0.1 4/3 ~ 1.33
D 2.0 D =91/48 ~ 1.896
D, 1.0 -2.0 7/4=1.75

1 (Bursts) 1.5 £0.07 -

Table 4.1: Summary of the critical exponents of the plasbeefibundle model with
local load sharing. For comparison the value of the cornedpy critical exponents of
percolation are also shown. For the perimeter fractal dsieenD, of PFBM, which
depends on the amount of disorder, a range is given.

compact clusters where especially large stress concemsadrise between the cluster
surfaces breaking the fibres and filling the holes in the spgncluster. We note that
in the limiting case of very strong disorder a small amounintdict fibres may survive
dispersed over the spanning cluster. The result impligsttigafractal dimension of the
spanning cluster of the LLS bundle is 2, which should be caetgpto the corresponding
value of random percolatio® = 91/48 ~ 1.896 where a finite amount of holes exists
[92] even for short range correlated occupation probadslif98]. The perimeter of the
spanning cluster, however, has a fine structure, i. e. it Hasgga number of peninsulas
and valleys of all sizes. To reveal the structure of the petrém we measured its length
p(1) as a function of the length of the yardstiek It can be seen in Fig._4.119 thatl)
shows a power law dependencelayver almost two decades

p(l) ~ 17, (4.21)

where the value of the exponent proved todhe= 0.5 & 0.03 for a Weibull distribution
of fibre strength withm = 2. The power law Eq.[{4.21) indicates that the perimeter
line is a fractal with a dimensio®, = 1 + ¢, = 1.5 £ 0.03. The upper bound of the
scaling range in Fid._4.19 can be attributed to the chaiiatitesize of peninsulas of the
spanning cluster, over which the rough structure of thenpeter disappears. Numerical
calculations revealed that the fractal dimension of thetelusurfaceD,, is not universal,

I. e. it depends on the strength of disorder of the breakingstiolds. The insets of Fig.
.19 illustrate that a lower amount of disorder gives riseatmore regular, smoother
cluster surface characterized by a lower valugxf For the Weibull indexn = 4 we
obtainedD, = 1.24 & 0.05, which is significantly smaller than the corresponding ealu
of m = 2. The surface of damage clusters should be compared to thef i spanning
cluster of percolation with the fractal dimensidp, = 7/4 = 1.75 [99] (see also Table

A7).
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4.5 Summary

We introduced a fibre bundle model where failed fibres retdmaetion0) < o < 1 of
their failure load. The value of the parametemterpolates between the perfectly rigid
failure « = 0 and perfect plasticity = 1 of fibres. We carried out a detailed study of the
effect of the finite load bearing capacity of fibres on the wscopic damage process and
macroscopic response of fibre bundles considering bothagoid local load sharing for
the load redistribution after fibre failure. Analytic calations and computer simulations
revealed that under global load sharing the macroscopistitotive behaviour of the
interface shows a transition to perfect plasticity when— 1, where the yield stress
proved to be the average fibre strength. Approaching the sfgperfect plasticity, the
size distribution of bursts has a crossover from the meashi@lver law form of exponent
2.5 to a faster exponential decay.

When the load sharing is localized it is found that the loaded by the broken fibres has
a stabilizing effect on the bundle, i. e. it lowers the sti@sscentration around clusters of
failed fibres which has important consequences on the ntopas process of fracture and
on the macroscopic response of the bundle. Extensive ncaheslculations showed that
at a specific value,. a very interesting transition occurs from a phase where osaopic
failure emerges due to stress enhancement around failechsdgading to localization, to
another phase where the disordered fibre strength playsthmdting role in the damage
process.

On the macro-level, below the critical point < «. the fibre bundle shows a brittle
response, i. e. the macroscopic failure is preceded by a weaHinearity, while for
a > a, the constitutive behaviour of the LLS bundle becomes praltyi identical with
the GLS counterpart. Analyzing the evolution of the mictasture of damage with
increasingy, the transition proved to be continuous analogous to paticol. Computer
simulations revealed that the avalanche size distributiofibre breakings becomes a
power law at the critical point with an universal exponeniado the mean field exponent
of bundles with critical strength distributions. The spiagrcluster of failed fibres formed
at the transition point proved to be compact with a fractalrstary whose dimension
increases with the amount of disorder. The critical valués not universal, besides the
lattice structure, it also depends on the strength of desord

The plastic fibre bundle model can be relevant for the shelardaof interfaces where
failed surface elements can remain in contact still trattgmgiload. As an important
application, a realization of glued interfaces is found bmdicomposites. The finite load
bearing capacity of failed elements of the model can accfmuribe frictional contact of

debonded fibre-matrix interfaces and also for plastic bel@wf the components.



Chapter 5

Local Load Sharing Fibre Bundles with
a Lower Cutoff of Strength Disorder

In this chapter, we study the failure properties of fibre Basavith a finite lower cutoff of

the strength disorder varying the range of interaction betwthe limiting cases of com-
pletely global and completely local load sharing. Compstetulations are employed to
prove that at any range of load redistribution there exisistecal cutoff strength where
the macroscopic response of the bundle becomes perfettlg kir e. linearly elastic be-

haviour is obtained up to global failure, which occurs caitgghically after the breaking
of a small number of fibres. As an extension of recent meandteldies|[56], we demon-
strate that approaching the critical cutoff, the size thatron of bursts of breaking fibres
shows a crossover to a universal power law form with an expio3)e independent of

the range of interaction. A physically based analog of thisff is present in other types
of FBM, where also a crossover appears, as in 5ecl4.4.2 qitéiid and Sed8.3 of
ChaptefB. The results in this chapter have been publishd®@j.

5.1 Critical Failure Threshold Distributions

For global load sharing it has recently been pointed outttietlistribution of burst sizes
significantly changes if the weak fibres are removed from thedte: if the strength dis-
tribution of fibres has a finite lower cutoff, or analogou#iyhe recording of avalanches
starts after the breaking of the weak elements, the bumstsstribution is found to show
a crossover to another power law with a significantly lowgsanent3 /2 [6€;|57]. The
effective range of interaction in real materials may havgdavariations|[29], therefore,
in order to use the crossover effect of burst sizes in fotewasf imminent failure, its
robustness with respect to the range of interaction has éxjplered.

In the present discussion we extend recent mean field stoflies effect of the lower cut-
off of fibre strength on the failure process of fibre bundle eleG6; 57] by continuously
varying the range of load sharing between the limiting cagesompletely global load

75
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Figure 5.1: Constitutive curves for GL%S = 0 (lines) compared to the case of= 5
(triangles) at different values ef; .

sharing and the very localized one[[29]. We show that at angeaf interaction there

exists a critical value of the cutoff strength above whiahgtobal response of the bundle
becomes perfectly brittle, as in the GLS cese [61]. We detnatesthat the crossover of
the avalanche size distribution to a power law of an expoBghtwhen approaching the

critical cutoff strength, is independent of the range oéiattion. Our results support the
usage of the crossover phenomenon of burst sizes in foregasthniques of imminent

failure.

We consider a parallel bundle of fibres organized on a sqa#tied of sizel. x L. The

fibres are assumed to have linearly elastic behaviour wehtidal Young modulug’ up

to a randomly distributed breaking threshold. For simpfi¢he failure thresholds,;, are
assumed to have a uniform distribution between a lower tatangtho;, and one with
the probability density functiop(oy;,) [101]

1 L , for o <oy <1
—oL
p(Oth) =

0, otherwise.

(5.1)

Under an increasing external load the fibres break when # ém them exceeds the
local threshold value?,, wherei = 1,..., N and N = L? denotes the number of fibres.
Due to the linearly elastic behaviour, the failure thredbet;, can also be expressed in
terms of deformation?, = o;,/E with the cutoff strengtlk, = o, /F. After a failure
event, the remaining intact fibres have to take over the Idaldeofailed one. In order to
give a realistic description of the load redistribution iBNFs, we recently introduced a
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Figure 5.2: Failure stress. and straire.. of the fibre bundle model at zero cutaff = 0
compared to the critical cutoff, as a function ofy.

load transfer function of the form

Oadd = %Tiﬂ, (5.2)
whereo, s denotes the additional load fibigeceives after the breaking of fibje29].
The load increment,, decreases as a power law of the distanc&om the failed fibre,
where the exponent is considered to be a free parameter of the model. The expenen
can take any values between 0 ardcontrolling the effective range of load redistribution
between the limiting cases of completely global= 0 and completely localized load
redistributiony — oo [29].

Under perfectly global load sharing= 0 the macroscopic constitutive equation of the
system can be cast in a simple analytic form

Ee for Fe<op
o(e) = { (5.3)

1-E
Eele;L, for o, < FEe<1,

where in the following, the value of the Young modulus of fdongill be set to unity

E = 1. The constitutive behaviour Eq.(b.3) of the bundle is petydinear up to the de-
formatione, since no fibres break in this regime (see alsolFlg. 5.1). Dthestbreaking of
fibres above 1, the constitutive curve () becomes non-linear and develops a maximum
whose valuer&™S and positiore’* define the failure stress and strain of the bundle,
respectively. It follows from EqL{5l3) that the criticatain is constant&’5 = 1/2 and
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Figure 5.3: Critical deformation. as a function of the cutoff value of failure strength
for different values of the effective range of load sharin@ee legend of Fig. 5.6 for the
values ofy).

does not depend on the cutoff strength while ¢4 increases due to the missing weak
fibres [101]

1
GLS
=— 5.4
O 4(1 . €L) ( )

Increasing the external load quasi-statically, the bregkbres trigger avalanches of fail-
ure events which either stop after a finite fraction of fibwaketl, or become unstable and
destroy the entire system. As a consequence, the cutoffgstre;, can take meaning-
ful values in the interval < ;, < %55 since fore;, > 519 the breaking of the first
weakest fibre results in an immediate catastrophic failitbeobundle.

We explore the effect of the finite cutoff strength on the failure process of FBMs with
short ranged load sharing by means of computer simulatreastributing the load of
broken fibres according to the load transfer function Eq)(5Stress controlled sim-
ulations were carried out on a square lattice of dize- 257 with periodic boundary
conditions varying the cutoff strength, of the disorder distribution EqL{3.1) in the in-
terval [0, 0.5] at several different values of the effective range of intéom v between 0
and 11. To characterize the failure process of the bundleeatiacro and micro level,
we determined the critical stressand straire,., the distributionD of avalanche sizea,
the average avalanche sigz&), and the average value of the largest avalanckeg,, ).
For clarity, we first characterize the behaviour of the sysie the specific case of zero
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Figure 5.4: Critical stress,. as a function of the cutoff value of failure strength for
different values of the effective range of load sharinésee legend of Fid. 5.6 for the
values ofy).

cutoff £;, = 0 by studying the critical stress. and straire,. of the bundle as a function
of v, see FigCRR2. Based on the numerical results, three regifie failure of FBM
can be distinguished in Fig. 5.2 depending on the range of $baring: fory < 2 the
range of interaction is infinite in the two dimensional emtied space, hence both
ande, take their GLS values, = 0.25 ande. = 0.5 independent ofy (see Eq.[(5l4)
ate; = 0). Increasing the value of > 2 the effective range of interaction gradually
decreases which lowers the macroscopic strengémdo,. of the bundle. In the limiting
case ofy — oo the model recovers the very localized load sharing, whgendo, take
again constant values. According to the numerical redihiésperfectly localized limit is
practically reached foy > 6, so that in the interva2 < ~ < 6 a transition occurs be-
tween the completely global and completely local behavi@€t. Fig.[5.1 demonstrates
that fory < 2 (i. e. GLS) the macroscopic failure of the bundle is preceoled strong
non-linearity of the constitutive curwe(s). At any wider range of load sharing, > 2,
the o () curves follow the GLS solution Eq.{5.3), but with lower stg¢h values which
implies a more brittle macroscopic response for short rdmggeractions.

Varying the cutoff strength;, at different values ofy, it can be seen in FigE._3.3,b.4 that
in the long range regime < 2 bothe. ando,. agree well with the analytic predictions
Eqg. (53), i. es. = 1/2 is constant whiler,. increases with increasing cutaff. When
the load sharing becomes short ranged 2, the increasing macroscopic brittleness has
the consequence that the curves @t ;) ando. (¢, ) shift downwards as increases and
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Figure 5.5: Differences. — o.| as a function of the cutoff value of failure strength
for different values of the effective range of load sharin@ee legend of Fig. 5.6 for the
values ofy).

tend to a limit curve when the interaction becomes compjdtedalized fory > 6. It

IS interesting to note that for short range interaction afef#yy > 2, not only the failure
stresso,. but also the failure strain, is an increasing function aof;. It is important to
emphasize that at eachthere exists a critical value of the cutoff strength < &5
where the failure stress. and straire.. of the system become equal to the cutoff strength,
i. e.atef holdse.(c§) = o.(¢5) = €. At this point the macroscopic response of the
bundle becomes perfectly brittle, i. e. under gradual logoif the system the macroscopic
constitutive behaviour is linear up tQ, where the breaking of the weakest fibre gives rise
to the collapse of the entire system (Hig.5.1). This tramsiis better illustrated by Fig.
where the differencé = |s.(¢1) — o.(e1)| is plotted versus,. It can be observed
thaté monotonically decreases and becomes practically zerp at the giveny. Since
the absence of weak fibres gives rise to a higher macroscopitg$h, the value off is
larger than the strength of the bundleando, at zero cutoff (cf. Figlh]2).

On the microlevel, the failure process is characterizedheybursts of fibre breakings,
which also show an interesting behaviour when the rangetefantiony and the lower
cutoffe, are varied. Inthe GLS regime< 2, our computer simulations perfectly recover
the analytical and numerical results of Refs. [56; 57] (seelE=4:): for ¢, = 0 the size
distribution of burstd)(A) follows a power law

D(A) ~ A, (5.5)

with an exponentr = 5/2. Increasing the value of the cutaff, for small avalanches a
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Figure 5.6: Mean size of the largest avalanchg,, as a function of the cutoff value of
failure strengthe;, for different values of the effective range of load sharing

crossover occurs to a power law of a lower exponrert 3/2, while for large avalanches
the original power law withe = 5/2 is retained. The crossover to a lower value of the
exponent indicates that due to the missing weak fibres tletidraof small avalanches
decreases compared to the larger ones. This argumentisifstipported by Fig. 5.6 and
Fig.[5.8 which demonstrate that for< 2 both the average size of the largest avalanche
(Anmqz) and the average avalanche size) are monotonically increasing functions of
the cutoffz,. However, when the load sharing gets short ranged 2, both (A,,..)
and(A) have a maximum at the critical cutoff strength. The qualieabehaviour of the
crossover avalanche size. is equal to that of A): for v > 2, A, has a maximum af; ,

and the height of the maximum decreases with increasing should be noted that the
non-vanishing avalanche size abaeyearises due to the strength fluctuations of the finite
bundle so that above the bundle may survive a small number of avalanches instead o
collapsing after the breaking of the weakest fibre. It isreséing to note that contrary to
GLS, in the transition regim2 < ~ < 6, the avalanche size distribution does not show a
power law behaviour for small cutofts, ~ 0, however, whenr; approaches the critical
valuecs§ (), the distribution of burst size8(A) tends again to a power law of an exponent
a = 3/2 (Fig.[5.b, ¢). For very localized interactiong > 6 an apparent power law of
D(A) is restored foe;, ~ 0 with a relatively high exponent ~ 9/2, in agreement with
Ref. [75] (Fig[&.¥l). The main outcome of our computer simulations is that tbeswver
behaviour ofD(A) to the universal power lai(A) ~ A~%/2 prevails at any value of the
range of interaction for the limiting case ot; — &4 (v), independently of the original
form of D(A) at zero cutoft;, = 0 (see Fig[Rl7). In spite of the relatively large system
size L, for short range interaction of fibres and — < () the statistics of avalanche
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Figure 5.7: Distribution of burst size3(A) varyinge, at different values ofy: a) 2.0,
b) 2.5,¢) 3.0,d) 6.0. A Crossover behaviour @#(A) can be observed as, approaches
the critical cutoff value§ (7).

sizes is rather poor for large avalanches which hinders usalce a definite conclusion
on the shape aD(A) in this A regime.

5.2 Discussion

An interesting experimental realization of the crossowerctackling noise was very re-
cently found in the magnitude distribution of earthquakedapani[102]. Analyzing the
local magnitude distribution of earthquakes precedingrshocks, a significant decrease
of the Gutenberg-Richter exponent was obtained when therlbaund of the time win-
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Figure 5.9: The crossover avalanche sizeand GLS analytical solution/[8] as a function
of ¢, for different values ofy.

dow of the analysis is shifted towards the catastrophictgi€]. Fracture of ferromag-
netic materials is accompanied by changes of the magneticvilnich can be recorded
as magnetic noise and provides information on the dynanficsack propagatiori [103].
The amplitude, area and energy of magnetic emission sigaaksrecently been found to
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have power law distributions with exponents depending ertype of fracture, i. e. duc-
tile failure where stable crack propagation occurs in adamgmber of elementary steps is
characterized by significantly higher exponents thanlériilure, where the crack prop-
agates in an unstable catastrophic manner breaking therspem a few large jumps
[103]. Our numerical results suggest that the reductionasf-imearity of the macro-
scopic response of materials preceding global failure vgueng from ductile and quasi-
brittle to brittle fracture is responsible for the loweriafjthe crackling noise exponents
on the micro-level.

In summary, we carried out computer simulations of the failprocess of a bundle of
fibres with a finite cutoff of the fibres’ strength, continutpugarying the range of in-
teraction between the limiting cases of global and locatl Ieharing. We showed that
increasing the cutoff strength, the macroscopic response of the fibre bundle becomes
perfectly brittle whene;, approaches a critical valug (), depending on the range of
interactiony. Our numerical results demonstrate the robustness of tssaver of the
avalanche size distributioR(A) to a universal power law of exponeht2, irrespective

of the range of interaction between the material elements.



Chapter 6

Extensions of the continuous damage
model

6.1 Introduction

Materials with a highly disordered microstructure exhéitariety of constitutive charac-
teristics when subjected to an increasing external loaderfectly brittle to perfectly
plastic as well as strain hardening and softening. Experigieave revealed that even if
the constituents are brittle, the macroscopic behavioowslhhese variations, especially
if a hierarchy of length scales can be identified in the spenimA possible explana-
tion of this observation is the influence of gradual degriadatf material elements under
loading, such that failure does not occur instantaneously,after a finite number of
degradation steps. The microscopic origin of this mecimamian be the accumulation of
damage due to a growing population of nucleating microgackthe growth and arrest
of a larger crack. A continuous damage fibre bundle model @DFhas been developed
in [21;130], which can account for protracted failure of agénfibre —or constituent—
of a material due to the activation of internal degrees ac¢édmm. However, the conven-
tional CDFBM does not capture two experimentally obsemafiects. First, the number
of maximum failures or restructuring events of the matec@hstituents is not a fixed
number, but shows strong variations between samples. intfas is again an effect of
disorder: the number of faults, defects and also partiyufailure resistant spots in a
material is a random variable, which becomes particulamigartant if the total number
of these defects is small, such as the amount of knotholesvimoa sample. The second
aspect that is not addressed so far by the CDFBM is the arfesacks: if a sample is
stressed, cracks will evolve and propagate, and sometimedap branches. Since the
stress concentration around the tip of the crack increaststie crack length, cracks
that grow larger than a certain critical size are unstabtavéver, cracks can also become
arrested at strong locations inside the material. This phmamon therefore requires the
knowledge of the distribution of the strongest points ingample, an issue that is related
to order statistics. If there are subsequent cycles of caadst and release in a mate-
rial under increasing external load, then the increasirgsstconcentration around the tip

85
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of the growing crack demands that the subsequent arrestdosanust have increasing
strength; otherwise, they would be destroyed.

In order to address these issues, two additions to the CDFBNEehwill be discussed in
this chapter. Both additions are compatible and can be awenlin order to allow for a
more realistic description of the experimental findings.

For the first extension, the maximum number of failure evémts single fibre can be a
random variable subject to a Poissonian distribution. Tdvestitutive behaviour will be
explored by analytical methods, and simulations will bespreged for the avalanche size
distribution, so that a comparison to the case with a fixedoamaf maximum failures can
be drawn. For the second model, the failure thresholds cexylent failure events of a
single fibre are considered to be random variables, which@sever sorted in ascending
order. Again, both analytical considerations and numécalgulations will be presented,
and the comparison with the conventional CDFBM will prodsoene intriguing new
features.

6.2 CDFBM with arandomly distributed number of max-
imum failures

In the CDFBM [21;130], the damage law of the classical FBM ipgamented by a

gradual degradation of fibre strength in the sequence afréa#vents. It was shown in
[3Q] that for certain choices of the model parameters a tsaaeexperimental situations
can be recovered, i.e. either strain hardening or plagtiab occur. On the micro-scale,
the size distribution of avalanche events shows a power &vawour, but the exponent
is different from the ordinary FBM, and for certain choicédparameters an exponential
cutoff appears [30].

The CDFBM is constructed as follows: the bundle consist¥ giarallel fibres with iden-
tical Young-modulug” and random failure threshold$ ,i = 1, ..., N with a probability
densityp and distribution functior”. Under loading, the fibres behave linearly elastic un-
til they reach their respective point of failure and break iorittle manner, i.e. as soon as
the load on a fibre exceeds its breaking threshg)|dthe fibre will fail. The failure law of
the DFBM is now modified by assuming that at the failure pdietstiffness of the fibre is
reduced by a factar, where0 < a < 1; consequently the stiffness of the fibre after fail-
ure isaE. The loading of the fibre will then resume in a linear mannehwhe reduced
stiffness until the next breaking threshold is reached. gdrameter,,.x determines the
maximum number of failures allowed for a single fibre. The dgmthreshold, can
either be kept constant for all the breakings (quencheddakspor new failure thresholds
of the same distribution can be chosen (annealed disortter)emch instant of failure,
which can model a microscopic rearrangement of the mataftet failure, cf. cases (a)
and (b) of Figl&.l in Se€.§.3.

We can assume that in an actual experimental situation,uhar of times that a con-
stituent of the material can break is an independent reéalizaf an integer random vari-
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able. A prime example is the fracture of wood, specificallgloed timber. Actually, only

a few large defects and the finite number of glued joints datex the extreme statistics
that governs the propagation and arrest of cracks, whichbeildiscussed in SeE._6.3.
This fact can be incorporated by modelihg. as a random number, which is governed

by a Poissonian distribution
Kjkmaxefﬂ

N (kmax) = ) (6.1)

k:max!

A new parameter then enters the model, which is the mean ellug,, < = (kmax) -

With this prescription, the constitutive curve can be egpesl as

: (6.2)

i.e. the Poissonian distribution is convoluted with thevprasly obtained formula for
the constitutive behaviour in the continuous damage mddehis section we will only
deal with quenched disorder for the failure thresholdscimeans that the probabilities
Py(e) that at a given deformationa randomly chosen fibre has failed exadtliimes is

1—P(e) Jk=0;
Py(e) = ¢ P(a*te) — P(d*e) ;1 <k < kmax (6.3)
P(armale) k= kmax-

The damage thresholds in this chapter will be drawn exatiygivom a Weibull distribu-
tion with A = 1, m = 2, unless otherwise mentioned.

We can in principle also apply this model to the case of amuedisorder, where

pue) = {1~ PAENTLZ P@e) 0 < I < inar— 1
szagi P(aﬂs) ,k} _ kmax,

however, we restrict this discussion to the quenched disarase, although it should be
stressed that the introduction of a Poissonian distribuféator to the case of annealed
disorder is feasible and certainly meaningful. In $ed. BoBvever, a new concept will be

introduced which to a certain extent describes a thirdradtire to the cases of quenched
and annealed disorder.

(6.4)

In the analytical solution for the constitutive behavidea, (6.2), two physically strongly
distinct cases can be realized by appropriate choices auimenation limit of the inner-
most, bracketed term: if the summation extends from zekg,iQ as indicated, the fibres
will retain a residual stiffness after the limiting casekgfy failures, i.e. hardening of the
fibre bundle occurs in the limit of large and the asymptotic behaviour of the bundle is
described by

kmax,—K
K € Emax
a

o
Oasympt. — € E

kmax:(]
= ce "(1—a)
= ce "(—acge™). (6.5)

kmax!
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Figure 6.1: Constitutive behaviour for a fibre bundle witleqohed disorder and Poisson
distributedkax for three values ok, in the presence of the residual stiffness term. Sym-
bols: analytical solution, EqL{8.2), solid lines: simidat results, dashed lines: asymp-
totic behaviour, Eq{G15).

Fig.[6.] demonstrates the perfect agreement between thdiealasolution, Eq. [ER),
and a strain controlled numerical simulation, where thergaptic behaviour of EqL{8.5)

is recovered. In order to model the failure of materials, &eosv, the failure law has to be
slightly modified: aftelk* = k. — 1 failures, the load on a fibre must be set to zero, and
the constitutive behaviour changes to

00
O'IEE

kmax:(]

K/k‘maxe—fi

K
[Z a" Py (e) (6.6)

k=0

Again, in this case the constitutive curves displayed in[E1g show an excellent agree-
ment between the analytical solution Eq.16.6) and the sitrar data. At first glance,
the hardening behaviour that emerges after the main cotilsading may appear to con-
tradict the fact that residual stiffness is not explicithkén into account and the terms
Py(e) with & = knax are excluded in the failure law, Eq.{b.6); this regime is dwated

by the fibres withkax = 0, i.e., fibres that never break, and since the expectatiareval
of these fibres is,. (kmax = 0) = e~ ", the asymptotic behaviour even in the case without
an explicit residual stiffness reads

kmax!

Uasympt: Eein . (67)

Apparently, the dominance of the fibres with.x = 0 diminishes with increasing;,
and at least for this choice of the disorder distributiondemstress controlled loading
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Figure 6.2: Constitutive behaviour for a fibre bundle witleqohed disorder and Poisson
distributedkax for three values ok, in the absence of the residual stiffness term. Sym-
bols: analytical solution, EqL{8.2), solid lines: simidat results, dashed lines: asymp-
totic behaviour, EqL{617), that is governed by fibres thaenéreak with the distribution
Ny (kmax = 0) = ™",

the hardening regime cannot be accessed, i,e, all fibrek befare traversing the local
minima of the slope. One should note that —with or withoutsideal stiffness term—
the fibres with vanishing,ax can be excluded from both the simulations and the analyt-
ical calculations, in case of which the hardening behaviouhe second case will also
disappear. The distribution, (kmax) Will not be purely Poissonian anymore, although we
abstain from discussing this case in more detail.

Concerning the avalanche size distribution, this modeladyces the behaviour of the
case of fixedkmax, Which has been discussed inl[30]. There, it was found thdafger
values ofa, corresponding ta > 0.3 for the Weibull distribution, the distribution can
be fitted to a power law, the exponent of which also depends,@n For small values
of kmax the usual mean field behaviour with an exponefy2 is obtained, whereas for
larger values ofax @ smaller exponent: 2.12 appears. Examining the effect of the
Poissonian term with a choice 8f= (knax) corresponding to the ordinary CDFBM, we
find in Fig.[&.3 a quantitative agreement between the two ispde. the Poissonian term
causes no visible change to the avalanche statistics, andtee crossover between the
two power law exponents is recovered.
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Figure 6.3: Avalanche size distribution for a fibre bundlesiae . = 201 with Poisson
distributedknay for different values ofs. Inset: Avalanche size distribution for a fibre
bundle of sizel. = 201 with fixed knax , Where thék,ax values shown correspond to the
values of the main plot.

6.3 CDFBM with sorted failure thresholds

In highly disordered materials subjected to an increasktereal load, in the early stages
of loading cracks nucleate at the weakest locations in aadlyatandom manner. As the
load increases, simultaneously to the nucleation of newauniacks the existing cracks
propagate and become unstable. Advancing cracks can Isteartey high strength loca-
tions of the material. Before macroscopic failure occudsaacing cracks can undergo
several activation and arrest events. Since stress caatientat the crack tip increases as
the crack becomes longer, arresting can only be realizeddaf inaterials of increasing
strength. These growth and arrest events result in a grathgmhdation of the macro-
scopic sample strength.

In order to provide a more realistic representation of thiedgal degradation process
sweeping through material elements in the increasing avtiéneir local strength, we
modify the CDFBM by considering a fixed number of allowed dadéls of single fibres
kmax With different threshold values. However, we sort the atton thresholds into in-
creasing order. Fig. 8.4, case (c), provides a graphicadtithtion of the sorting and the
ensuing damage law for a single fibre. It is important to ersfgeathat from a physical
point of view this case is a mixture of the annealed and queshdisorder cases discussed
previously [21]. On the one hand, the sorted model bearsniglsece to annealed dis-
order, since the consecutive thresholds are different f#aoh other; on the other hand,
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it could also be classified as quenched as the thresholdscatkeifi advance. Sorting of
a series of random numbers imposes a correlation betwesa thenbers, and we will
have to resort to a mathematical theorem from the field ofrostigistics in order to ob-
tain a complete understanding of the failure mechanismhdukl be stressed that in the
following discussion we will considétax to assume a fixed value, although the addition
of the randomly distributed,.x can be trivially incorporated.

We want to motivate the aforementioned prescription by kivg the fibre bundle ana-
logue of crack arrest. If a single fibore —seen as a meta-elempresenting smaller
constituents— is to model the progress of a crack, which doéproceed continuously
but comes to a halt at certain values of the fibres’ stravme may apply the damage law of
the CDFBM, but impose the additional condition that the loadhe fibre at subsequent
instants of the arrest should increase. Hence we can drafithee thresholds from a
random distribution, for which we will use again the Weildiltribution, and store them
in sorted order. As in the previous discussion, the Weikiatridbution employed will have
the parameters = 1 andm = 2.

As mentioned before, bringing an array:ofandom numbers in sorted order necessar-
ily invokes correlations between them, and the distribubd the random variant at the
ith position is not governed by the PDF of the unsorted randombers anymore. The
mathematical field of order statistics deals with the siattproperties of sorted ran-
dom numbers, and we will quote, with slight alterationsnirfi04] the following two
theorems:

Let the continuous random variablés, ..., X, denote a random sample
from a population with CDH'(z) and densityf (). Let X;,i =1,...,nbe
theith smallest of these sample observations. We reféf o< --- < X,
as the order statistics for the random samgle. .., X,,. Unlike the X's
themselves, the order statistics are neither mutuallygeddent nor identi-
cally distributed.

Theorem: LetXy, ..., X, be the order statistics for a random sample of con-
tinuous random variables from a distribution with CDFz) and density
f(z). The joint density for the order statistics is then:

n! I f(r@) s —00 <y < -+ <) <
i=1

(0.@)
g(l‘(l), e ,l‘(n)) = (68)

0 , elsewhere .

Theorem: The marginal statistics for tli order statistics((;), 1 < j < n,
under the conditions of the first theorem is

n!

j — 1)'(71 _ ])| [F(t)]j_l[l_F(t)]n_jf(t), —00 <t <00. (6.9)

9o (t) = (

The latter marginal statistics is therefore the adequailacement of the PDF, i.e. the
distribution function for the random number at tji¢h position, ifn random numbers



92 6.3 CDFBM with sorted failure thresholds

Oth

€

Figure 6.4: Damage law for a single fibre for the cases of duemd¢a), annealed (b)
disorder, cf.[[21], and for the model with sorted threshdtsIn all cases, after breaking
of a fibre upon reaching a failure threshelg, loading is resumed with a stiffness that is
reduced by a factar.

have been drawn. In order to illustrate this result, in Eif.the marginal statistics for the
jth random numberl < ;7 < n = 4, together with the underlying Weibull distribution
with A = 1,m = 2 is shown. It is apparent from Fig._%.5 that with increasjnghe
marginal statistics share the peaked characteristicseotitinerlying PDF, and that the
position of the maxima reflects the sorting. Also, the mabstatistics become wider
with increasingj, although this effect is not too pronounced.

Having found an analytical expression for the marginaligias, the constitutive be-
haviour of this model can be expressed in closed form. Incgyyato the annealed case of
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g;(t)

Figure 6.5: Marginal statistics for a Weibull distributianth A = 1, m = 2, for the re-
spective valueg = 1,...,n = 4 (solid lines), together with the underlying PDF (dashed
line).

the CDFBM, we denote by, (<) the probability that a fibre has failed exactlyimes:

k—1 '
[1 — G(Hl)(ake)] H G(j+1)(a]5) L0 <k <kmax—1
Pe) =4, J=0 (6.10)
H G(jJFl)(ajE) 7k = kmam
7=0
where .
G(z) = / g;(t) dt (6.11)
0

is the integral associated with the marginal statisfijgg¢), corresponding to the CDF of
unordered random numbers. The second case ilEQq] (6.10) with,.x corresponds to
the residual stiffness of the bundle, again in close analoglye ordinary CDFBM. With
this result the constitutive behaviour reads, if the haigterm is skipped in order to
account for material failure:

kmax—1 k-1

o(e) = > d*e[l = Gusny(a*e)] [ [ Gy (a'e) . (6.12)

k=0 Jj=0

We have therefore derived an analytical solution for thestitutive behaviour. It should
be noted, though, that in the formula for theh failure probability P (¢), Eq. (&.10),
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Figure 6.6: Constitutive curves for the model with sortedd@m thresholds, without
residual stiffness. Solid lines; simulation results, splsbanalytical solution Eq[{6.12),
dashed lines: simulations for the conventional CDFBM with&orting, shown for com-
parison. The failure thresholds are drawn from a Weibulritistion with A = 1, m = 2.

the integral Eq.[{(6.11) appears, which cannot in generabhed analytically due to the
structure of the integrand, Eq._(6.9). In order to obtain ¢bastitutive behaviour the
integral Eq. [6.111) has to be evaluated numerically. In [Ei§, the stress-strain curves
obtained in this way are plotted for three value$gf,. The agreement between the simu-
lation results and the analytical solution, Hq. (6.12),@sngood, although the numerical
integration routine introduces some numerical error indtaluation of the analytical
solution, on which we will comment later.

It can be seen in Fid._8.6 that contrary to the case of unsdhesholds —whether
quenched or annealed disorder is of no importance— that dhstitutive curve does
not develop a plateau, it always increases monotonicallyhes a quadratic maximum
where macroscopic failure occurs. As a consequence ofregt@der statistics, with
growing kmax the critical stresg .. and straire,. increase, indicating a higher macroscopic
load bearing capacity. It can be seen from the general esipresf the constitutive curve,
Eq. (&12), that the macroscopic failure of the system isigaiontrolled by the largest
thresholds whose distribution can be obtained from [EQ) (6€9tingj = kmax. Analyzing
the constitutive behaviour of the system considering dmiyiargest threshold$,= kmax,
yields

oo & aX [In(kmax+ 1)]Y™ (6.13)

and
(6.14)

Ep R a*kmax’
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Figure 6.7: The critical stress. and strains,. for a bundle with sorted random thresh-
olds from a Weibull distribution with\ = 1, m = 2 and without residual stiffness as a
function of the maximum numbéi, . Of failures. The symbols represent simulation re-
sults, whereas the lines display evaluations of Hqs. J6.13) and numerically obtained
maxima of Eq.[(6.15) with the settifg= kmax respectively.

for the failure stress and strain, respectively, assumie@W distributed failure thresh-
olds with parameters, m. Eq. [6.IB) implies that the sorted CDFBM does not have a
plastic limit as in the conventional CDFBM, i.e. no plateduh® o (¢) emerges. Instead,
the strength of the bundle is an asymptotically increasunmgtion of knay, Namely,o.
increases logarithmically whereasincreases exponentially with,.. This is illustrated

in Fig.[61, where the values ands,. obtained by computer simulations are compared to
the analytical results.

For very high values ok, a distinguished regime of ripples appears in the constiut
curves, see Fi§._8.8. This plot shows the constitutive bhieliain a stress controlled sim-
ulation with ko = 60, together with the avalanche siz@secorded at each loading step
e. Apparently, the constitutive curve displays a large amafimipples with horizontal
plateaus, which coincide with large scale bursts of breakwvents. The position of the
peaks suggests a regularity of some kind. In order to quettti$ regularity of the peak
events, the inset carries information about the ratjog/s; of subsequent failure events
A with A; > 2000. Obviously, this ratio assumes a constant value:df/a after a brief
onset period, where = 0.8 is the load reduction parameter used in all the simulations
presented in this chapter, and a comparison with the case-di.7 is presented in order
to confirm the influence of the load reduction parameter. dusthalso be noted that the
envelope of the constitutive curve remains monotonicaltyeasing. In order to analyze
this rippling phenomenon an investigation on the evolubbthe breakdown process is
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Figure 6.8: Constitutive curve (solid line) and avalancizeswithout residual stiffness
as a function of straia for knax = 60, m = 2. Inset: ratioes; ,; /¢; for subsequent bursts
with A; > 200, for the values: = 0.7 (unfilled circles) and: = 0.8 (filled squares),
where the lines indicate the respective values/af

necessary.

In fact, an analytical argument can be made about the origihese ripples, and their
position relative to the state of loading In the constitutive formula, EqL_(€112), there
appears a product of integral marginal statistis. 1)(a’c), where0 < j < k — 1, and
0 < k < Ekmax — 1. From the structure of Eq[{8.9), and if a Weibull distriloutiwith
m = 2, A = 1is assumed as usual, it can be understood that the respdetivatives
g¢i+1)(x) take on their maximum value even for very large, and; < n at a numerical
value of the argument = O(1). Therefore, they; ) for large values ofj possess
well defined peaks at very large valuesspfwherea’s ~ 1. The positions of these
peaks become strongly separated for subsequent indiges 1 if ;7 = O(n) andn is
large. Consequently, in EQ_{6112) the product of the irtbguantitiesG ;1) (a’c) can
be replaced by the largest factGyy, (a" ') for relatively largek, and together with the
leading terne[1 — G(;11)(a”e)] a peak structure is formed. It was confirmed numerically
for kmax = 60 andk 2 30 that the positiorz of these maxima, which are defined through
the function

mk(e) = aks[l — G(k+1)(ak€)]G(k)(ak_1€) (615)

correlate well with the observed peaks in the avalanche disteibution and with the
settingk = kmax also yield good estimates for the critical stress and stesa Fig[6l7.

A rippled regime also appears if residual stiffness is presas shown in Fig_6l9 for
stress controlled simulations for various values:g@fy, where ripples are clearly visible
for kmax = 30, as in the case without residual stiffness. Again, the agmea of rippling
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Figure 6.9: Constitutive curve for the model with sorteduis thresholds and residual
stiffness withA = 1, m = 2 for various values o« In a double-logarithmic plot,
under stress controlled loading. The inset shows a sectithrea@onstitutive curves on a
logarithmic-linear scale, where the onset of rippling witbreasingcnax is better visible.

depends on the choice &f,., and sets in akmax &~ 30. With increasingkmax also pro-
nounced strain hardening occurs, whereas in the convent@dFBM a plastic plateau
is present. After passing the strain hardening regime, tinelles attain an asymptotical
regime of constant slopg™ for all values ofkn., Where also macroscopic failure oc-
curs for all cases investigated. It should be noted thaetbes for low values ofay, 1.€.
without rippling, the slope of the constitutive curve is alg finite positive, whereas for
higher values o5, there are sections of the constitutive curve with zeroesidype to
the ripples.

The presence of the ripples, and therefore of a locally Yamgsslope, has a distinguished
effect on the distribution of avalanche sizes, as dematestiay Fig.[6.T0 for the case
with residual stiffness, and in Fig.€111 for the case withthis is also suggested by the
presence of large size avalanches in Eigl 6.8 (no residiffalests). It can be seen that

in the absence of residual stiffness, F1g.6.10, two renidekieatures are present. First,
for all values ofknay, there is a regime with a power law of exponerit/2 for small
avalanche sizes. Secondly, For small valuek,@f, an exponential cutoff appears for the
larger avalanches; the presence of the initial power lawnregvith a following cutoff

is confirmed by rescaling both axes by the average size oftigedt avalanchéA,,..).

The distributionsD(A) can be collapsed onto a single master curve, which was then fit
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Figure 6.10: Avalanche size distributions for the CDFBMhnsbrted failure thresholds
for various values ok 1 < kmax < 60 and residual stiffness. Results from stress
controlled simulations of. = 201 fibre bundles, averaged over 100 realizations.

by the exponential form

D(A) x (ﬁ)?’/ exp (_C&%)) , (6.16)

as can be seen in Fig. 6112, where the curves with low valygs< 20 have been used.
The above arguments are supported by the fact that the paweasflexponen8/2 with
an exponential cutoff provides a perfect fit to the mastevewbtained numerically. It
should be noted that in the fitting, the value of the exponext fixed to3/2, and the fit
was obtained solely by varying the parametér Eq. (€.186).

For high values of,,y, i.€. in the presence of ripples, a crossover is observed &o
initial regime with a power law of exponent3/2, to another regime with the mean field
power law of exponent-5/2, and finally to a peaked regime for very large avalanches of
about the system size.

A similarly complex behaviour is observed in the cases withresidual stiffness, see
Fig.[&10. There, for low values @f, ., the usual mean field behaviour of a power law
with an exponent-5/2 is observed. For intermediate valuesigf,, a crossover occurs
between an initial-3/2 power law part to a mean field part for larger avalanches, laed t
position of the crossover shifts to larger avalanche siadsincreasingcmax. For higher
values ofkmay, a limiting curve with a crossover @ ~ 10? can be identified, and again
a peak of avalanches of the order of the system size is fourg,fQ = 60.
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Figure 6.11: Avalanche size distributions for the CDFBMhnsbrted failure thresholds
and no residual stiffness for various valuesigfy, 1 < kmax < 60 . Results from stress
controlled simulations of. = 201 fibre bundles, averaged over 200 realizations.

The features found in the avalanche size distributions tddmeaexplained on the basis
of the fine structure of the ripples, which is displayed in.f@gl3 for both stress and
strain controlled loading, witk,,x = 15 and the choicen = 10 for the Weibull param-
eter. From this illustration it becomes apparent that thézbatal plateaus in the stress
controlled simulations actually correspond to regionsedrdasing stress under strain
controlled loading, which cannot be accessed in the stggsatled mode. Also, the va-
lidity of the simulation results is supported by a semi-giiehl evaluation of Eq[{6.12).
It has been mentioned previously that the integral Eq._Jiecahnot in general be evalu-
ated easily. However, fdt,.x = 15, the computer algebraics programTHEMATICA

can perform these integrations analytically and evaldaedsults, at least far< 6. The
excellent agreement with the simulation results, see[El#,8s convincing proof of the
simulation routine.

In general, a fibre bundle model can only produce large achksif the constitutive
curve has at least one maximum, where the susceptibility gmall increment of the
external force diverges. Avalanches with a power law distions are generated in the
vicinity of the maximum ofz(¢), where the shape of the maximum determines the value
of the exponent. Quadratic maxima typically result in = 5/2, the value obtained

in the absence of both ripples and a residual stiffness tdfrinading is stopped at a
straine, before reaching the maximum, i.e. before global failureuogcan exponential
cutoff in the avalanche size distribution appears, whichisgle in Figs[6.10 anf 612,
where due to the residual stiffness term the bundle failsrasaopically after passing
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Figure 6.12: Rescaled avalanche size distributions folGb&BM with sorted failure
thresholds and residual stiffness, for small values@f outside the rippling regime. A
best fit with the numerical values = 1.22 andg = 1.5 for the exponents has been used
to obtain the collapse of the curves and the dashed fit curve.

exclusively through regions of finite positive slope, withguadratic maxima, as for the
case%max < 30 no rippling occurs.

In the rippling regime, howeves;(c) passes a series of consecutive maxima with an in-
creasing amplitude. Under stress controlled loading tkéesy jumps from a local maxi-
mum of(e) to the ascending side of the next maximum which is somewigdiehithan
the previous one, see FIg. 6113. The jump implies that a langeunt of fibre breakings
occur in a single avalanche removing all fibres which havalorg thresholds lower than
the load of the ending point of the jump on the next peak(@f). Consequently, when
loading is continued along the ascending side of the peadrmi@ied by EqC6.15, the
response of the system is determined by a disorder distsibuthich is critical in the
sense of Ref. [56], i.e. weak fibres are removed so that therlowtoff of the disorder
distribution falls close to the local critical deformatidhe location of the next peak. As
it has been shown in Chapfdr 5, when the disorder distrib@pproaches criticality, the
avalanche size distribution exhibits a power law from anosentr = 3/2 for the small
avalanches, to another exponentcf 5/2 for the large ones, irrespective of the effective
range of interaction. This effect can be recognized inkthg = 60 curve in Fig[6.1D.

The same argumentation holds for the case without residiffless: here, a global
quadratic maximum is always present, so for low values,@f the mean field expo-
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Figure 6.13: Section of the constitutive curve for the moaigh ko = 15, m = 10
and no residual stiffness. Solid line: strain controlleshdation, dashed line: stress
controlled simulation, dots: exact evaluation of the atiedy solution, Eq.[(6.12).

nent—5/2 is found. However, in the presence of rippling structuriesré¢ appear a series
of local quadratic maxima, and the stepping effect desdrdtmve yields a series of local
critical threshold distributions, which results in the gsover of exponents visible in the
avalanche size distribution, cf. FIg.6111.

It has to be stressed that the effects found here in the CDFBMsaerting have no equiv-
alent counterparts in the conventional CDFBM without swyti There, the macroscopic
behaviour yields a plastic plateau and no steps appear ioah&itutive curve; conse-
quently, the size distribution of avalanches shows no sigea of criticality. The exis-
tence of rippling, synchronized avalanche bursts and @a&ritrossover of the avalanche
size distribution exponents is a genuine peculiarity ofakieme order statistics accom-
panying sorting.

The analytical argumentation presented above also malaeait that rippling cannot
occur for all disorder distributions and all values igf,; rather, its appearance is re-
stricted to combinations of largegn.x and low disorder corresponding to high values of
the Weibull parametem, such that the maxima defined through Hq. (b.15) are clearly
separated. Fig. 6114 presents a numerical survey of theagpaccurrence of ripples.
One can see that a well defined and smooth separatrix can bd fohich isolates the
regime with ripples from the regime without in tRén.y, m} parameter space.
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Figure 6.14: Phase diagram denoting the appearance oésippthe constitutive curves

of the model with sorting and no residual stiffness, and tles@nce of pronounced spikes
in the avalanche size distribution. Filled circles: rigblegime; crosses: normal regime;
unfilled circles: inconclusive state. The solid line desdtee approximate location of the

separatrix between the two regimes.

6.4 Conclusions

Motivated by experimental observation on the fracture @ss®f composite systems hav-
ing a hierarchy of length scales, we extended the contindaosage fibre bundle model
by taking into account that a hierarchy of length and eneogyes for damage initiation
and crack growth and propagation exist. Cracks can alsorbstad at particularly strong
locations inside a material, and the maximum number of nsaoically visible dam-
age events, which are based on large defects in the matennad{ a constant, but varies
between samples of the same production batch. Therefooenéw features have been
added to the ordinary CDFBM, and their effect on the micrpgcand the macroscopic
damage evolution has been investigated.

In the first model, the maximum number of failures has beenetsatias a Poissonian ran-
dom variable. It can be concluded that the influence of th&iadd! term on the CDFBM
can be well understood in all its effects; the main additideature is the appearance
of a hardening regime in the constitutive curve in all theesaisivestigated, which can
be explained by analytical considerations. The macrosdogiaviour is therefore fully
tractable analytically, and we have presented a numetigdy $or different values of the
parametek. It should be noted that this strain hardening can also lmadied of by mod-
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ifying the distribution prescription fot.x. The effect of the Poissonian term should have
a clearly distinguishable effect on the constitutive bétas especially for small values
of its mean. In the microscopic behaviour, the extensiorhef@DFBM by means of a
Poissonian term fok,.x leaves the distribution of avalanche sizes invariant,ldispg a
crossover from a power law with an exponerit/2 to a power law with another exponent
—2.12 for increasing values of, in analogy to the conventional CDFBM.

Consequently, the model incorporates the existence ofaksmot only with respect to a
distribution of failure thresholds for each defect, bubaisth respect to the finite number
of macroscopic defects that may effectively govern the wsmpic breaking of certain
materials.

The second model introducing sorted failure thresholdegiise to complex dynam-

ics and synchronized damage events. A parameter regimeekasdentified where the

damage evolution of all fibres synchronizes and consideraidnges to the microscopic
guantities can be observed, depending on the amount ofi@isand the maximum num-

ber of allowed failures.

A combination of both models has been shown to be feasibtecan be useful to obtain
a better understanding of the failure process in real desexdimaterials. The models may
be especially helpful if several damage processes coexieese materials, which differ
in their specific damage mechanism and activation energy.
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Chapter 7

Discussion and Outlook

7.1 Summary of the Results

We have proposed several models to address the issue ofgfiadmore realistic de-
scription of failure and fracture in disordered —specificibrous— materials, as it was
mentioned in the introduction: the aim was to provide a dpson for the shear failure of
interfaces in disordered and composite materials; find pleinepresentation of plasticity,
investigate the question of criticality, and to explain soaspects of cracking behaviour
in strongly disordered materials, all this with the possidpplication of fibrous compos-
ites under both shear and tension loading in mind. Severdelapall of them variants
of the fibre bundle kind have been proposed, and they haveilwestigated numerically
and —wherever possible— analytically for a wide range obpaeters.

To apply FBMs to the case of transversal loading, a novel ofpeodel for the shear fail-
ure of the glued interface between two solid blocks has beteoduced in Chaptéd 3. In
the model the interface is discretized in terms of elastantewhich experience stretch-
ing and bending deformation under shear. Breaking of a besmmbe caused by both
deformations resulting in two failure modes; the modes @mbependent or coupled by
a von Mises type criterion. The mechanical strength of belements is characterized by
the two threshold values of stretching and bending whichbéem can withstand. The
beams are assumed to have identical elastic propertieseteeogeneous microstructure
is represented by the disorder distribution of the breakngsholds.

The beam model introduced in Chagdiér 3 provides a more tiealisscription of the in-
terface of macroscopic solid bodies than the simple fibrelleumodel and is applicable
to more complex loading situations. A detailed study of tleeroscopic response and the
progressive damaging of the interface under quasistaatimg has been presented. The
analytic solution for the constitutive behaviour of the rabaind the damage accumulated
in the system has been obtained in the case of global loaohgh#&mn efficient simulation
technique has been worked out to study the microscopic dapragess in large systems.
It has been demonstrated that the disorder distributiorttadelative importance of the
two failure modes have a substantial effect on both the reampic damage process and

105
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the macroscopic constitutive behaviour of the interfacel the existence of two failure

modes was found to lower the critical stress and strain apaosd to the corresponding
fibre bundle model. Varying its parameters, the model pewia broad spectrum of ma-
terial behaviours. The distribution of burst sizes displagwer law behaviour with an

exponent equal to the one of simple fibre bundles. Undersstastrolled loading con-

ditions, the macroscopic failure of the interface occuralegously to phase transitions,
where the beam model proved to be in the same universalgyg elsthe equal load shar-
ing fibre bundle model[61; 29; 59]. In the case of localize@iiaction of beams a more
brittle behaviour of the interface has been found, whichliespa more abrupt transition

at the critical load.

A mapping of the beam model onto the classical fibre bundleatiwas been worked out;
it was found that despite of the different loading situatithe beam model can be treated
by the same methods as the fibre bundles for loading paraltékt fibre axis. This has
allowed us to restrict all further studies to FBM models.

In Chapter ¥, a one-parameter plastic fibre bundle model baa mtroduced, where
failed fibres retain a fractiof < « < 1 of their failure load. The value of the parameter
« interpolates between the perfectly rigid failure= 0 and perfect plasticityy = 1 of
fibres.

The plastic fibre bundle model can be relevant for the shelardaof interfaces where

failed surface elements can remain in contact still trattgmgiload. In fibre composites,
where fibres are embedded in a matrix material, the fibreiniaterface —which has a

profound influence on the material failure— displays theperties of the glued interfaces
discussed in Chapt€l 3. The finite load bearing capacityilgffa&lements of the model
can account for the frictional contact of debonded fibrerinanterfaces and also for

plastic behaviour of the components.

The effect of the fibres’ load bearing capacity after failbes been studied both analyti-
cally and numerically. Under GLS, when the fibres attain testéperfect plasticity with

a — 1, the yield stress proved to be equal to the average fibregitreand the critical
strain diverges with a functional form that depends on tlilariathreshold distribution.
Microscopically, with increasing the avalanche size distribution shows a crossover from
the mean field power law form with an exponerit/2 to a faster exponential decay. The
existence of this crossover was confirmed by analyticaltations, which also show an-
other crossover to an asymptotic power law with the mean &gfztbnent, in the regime

of very large avalanche sizes that cannot be reached in sions.

The behaviour of the plastic fibre bundle under LLS is deteadiby a competition be-
tween failure induced by the presence of disorder, andr&adue to stress enhancement
around clusters of broken fibres. An increasing valuer ddwers the stress concentra-
tion around broken fibres, and an interesting phase tranditetween the two regimes
occurs at a specific value., which depends on the strength of disorder. Macroscopicall
the fibre bundle shows a brittle response below the criticahtpy., which means that
a weak non-linearity is present in the constitutive curvéoteeglobal failure, whereas
abovex, the constitutive behaviour becomes practically identicdhe GLS counterpart.
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Computer simulations revealed that the microscopic dareagletion in the LLS bundle
shows a continuous transition analogous to percolatiorfasaion of . The avalanche
size distribution of fibre breakings becomes a power law.atith the universal exponent
3/2, which is equal to the exponent of bundles with critical sty distributions studied
in Chapteb. Also, a spanning cluster of broken fibres afgpatithe transition point.
Simulations showed that these spanning clusters are campadbave a fractal boundary,
with a dimension that increases with the amount of disorder.

In Chapter b, we carried out computer simulations of theufailprocess of a bundle
of fibres with a finite cutoff of the fibres’ strength, continugty varying the range of
interaction between the limiting cases of global and looadl sharing. This was done
employing a variable range of interaction model proposd@dh and our results confirm
the analogy between the localized interaction case, andake of purely global load
sharing, which has been investigatedlin [56]. It was shovat With increasing cutoff
strengthe ;, the macroscopic response of the fibre bundle becomes perbeittle ase;,
approaches a critical valug (), depending on the range of interaction As the case
of localized load sharing is not analytically tractabletemsive numerical simulations
have been carried out to substantiate the existence of sostapic brittleness regime,
and a microscopic crossover behaviour. The numericaltsedamonstrate the robustness
of the crossover of the avalanche size distributidf\) to a universal power law of
exponent3/2, irrespective of the range of interaction between the rmatetements. A
thorough investigation of the crossover regime has regutte characterization of this
regime by means of several quantities, such as the meamatialaize and the crossover
avalanche size. The distinguished properties of thesetigjearclearly mark the existence
of the crossover, and a pronounced change in the degree obseapic brittleness, which
has also been found in earlier experiments [103] and in thgnitade distribution of
earthquakes [102].

In ChaptefBb, two new features have been added to the ordB2RBM, and their effect
on the microscopic and the macroscopic damage evolutiobdes investigated.

In the first CDFBM variant, the maximum number of failures dilae, k., has been
modeled as a Poissonian distributed random variable of me&his allows to account for
the inter-sample fluctuations of relevant macroscopicasfavhich is a disorder effect
that pertains not only to the strength of a single defect,ds to the total number of
defects. The value of the parametexas shown to influence the macroscopic constitutive
behaviour by introducing an asymptotic linear regime evethe absence of a residual
stiffness term, an effect that becomes less pronouncedimgteasing=. However, no
apparent changes were found to be present in the microsclo@iacteristics, where —as
in the standard CDFBM— a crossover in the avalanche sizaldisbns from a power
law with an exponent-5/2 to a power law with another exponen®.12 for increasing
values ofx occurs.

A second variant takekn.x to be fixed, whereas the thresholds for subsequent failure
events of a fibre are determined by random numbers sorteccieasing order. This
sorting can account for crack arrest, since cracks propayateping through the regions
of weak and intermediate strength, but can become arrestedians of high strength. It
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was found that with increasing,.y, a long strain hardening regime appears prior to global
failure, and the critical stress and strengthande,. diverge, although at a different pace.
For certain choices 0f,ax and the amount of disorder, which can be controlled through
the Weibull parameter, ripples appear in the strain hardening regime of the canisi
curve. The ripples mark the presence of synchronized ngoms damage events of a
critical nature. Hence, a crossover is present in the aghkasize distribution to a power
law with an exponens/2, which can be explained on the basis of the results discussed
in Chapteib for the presence of a cutoff in the failure thoédhlistribution. It should

be noted that no similar effect is present in the CDFBM withearting, regardless of
whether quenched or annealed disorder is taken into account

A combination of both models has been shown to be feasibtecan be useful to obtain
a better understanding of the failure process in real desexdimaterials. The models may
be especially helpful if several damage processes coexisese materials, which differ
in their specific damage mechanisms and activation energies

Two important conclusions have to be drawn at this time:, first case of shear loading
of composites has been mapped onto the conventional fibrdorodel; this mapping

allows to treat the case of shear failure in the framewort thie methods, and including
all variants that have been developed for the conventioBM.FSecondly, the question
of criticality has emerged as a recurring issue, appeatumgrisingly in the context of

different models: not only in the case that the thresholtriBigtion is prepared with a

cutoff, as in Chaptdd5, but it appears also in the plastic R local load sharing, cf.

Chaptef#, and in the modified CDFBM in the presence of rippl€haptefb.

7.2 Open Questions

In this thesis, several models or model variants for frachave been proposed, and their
properties have been explored through analytical caicuiaiand numerical simulations.
Having completed the theoretical approach, it will be iegting to see further experi-
mental efforts directed at this field. A first step has beerndky our colleagues from the
common research project SFB 381 at the University of Strittgdest the predictions of
the beam model by investigating the shear failure of a uedtional glass fibore compos-
ite. First results from measurements of the constitutiveeand acoustic emissions from
several samples have yielded promising results about ttikelrature of global failure,
which will allow us to calibrate the parameters of the beandeho The acoustic emis-
sion data however still lacks statistical significance, @nsl planned to conduct further
experiments on this issue.

Similarly, a microscopic observation of fracture pattermgdisordered materials with
some degree of plasticity could be very interesting to campa the plastic fibre bun-
dle model introduced in Chapt&l 4, specifically to the clsstaf broken fibres found
therein. We have described some unique features of thesterdun detail, which should
make them experimentally distinguishable from microcrpakerns predicted by other
methods.



Discussion and Outlook 109

Another ongoing research effort —again within the SFB 38djqut, to which we are
deeply indebted— focuses on the fracture of glued timbecsires, which serve as cost
effective, wide-spanning structural elemergsg.in roofs. Preliminary results and ob-
servations from this experimental project have motivatedoupropose the extension of
the CDFBM discussed in Chaptdr 6, and a calibration of ourehpdrameters and the
evaluation of the experimental data gathered so far canfaulbpgield new insight into
the interesting questions posed by crack propagation ardtaand the overall influence
of large defect structures.

Fortunately the effect of a lower cutoff in failure thresthdistributions has been found al-
ready in experiments on the brittle vs. plastic fracture efais, and also in the time series
of earthquakes. Naturally, further research efforts sihéwel dedicated to this important
issue.

In undue generality, a remark about the availability of expental data from a physi-
cist’s point of view may be in place here: dealing with disenetl and especially fibrous
composite materials, the engineering community has ardamsencredible wealth of

theoretical and experimental knowledge on the issue ofdra@nd failure. Yet the shar-
ing of knowledge between the engineering and physics contiasitould probably be

improved. We find many experiments described in the engmgditerature to be too

complex to handle them by statistical physics methods. i bwhelpful in the future

to design simpler experiments, focusing on a single asgecivell prepared experimen-
tal state, preferably dealing with model materials whictymat even have a significant
application in engineering, industry or construction.

Having mentioned this, there is also quite some effort torimertaken for the unification
of the existing statistical models of fracture, and theitbeniding into the formalism of
statistical physics, although remarkable progress has imaele in the recent years. On a
lower level, one may think of two extensions of FBM models ethcan be implemented
with moderate effort. First, the introduction of spatialeations for the failure thresh-
olds in the beam model can more closely reflect the presentealized fibre-matrix
interfaces in fibre composites. This can yield rewardinggimsinto fracture patterns and
microcracks, when localized load sharing is employed inntleelel. Even under global
load sharing, interesting questions arise due to the migingilure threshold distribu-
tions, which has been investigated not only in the beam mofi@hapte B, but also
in another recent study [I76]. Secondly, placing fibre buradéanents on the nodes of
networks while retaining their disordered properties aywlasnical rules could be a fas-
cinating field to study, and a similar effort has recentlyrbeadertaken employing the
random fuse model [58]. This could lead to a better undedstgfor the failure modes
of electrical grids, or computer networks.

In addition, a close resemblance of fibre bundle models toatsauf biological structures
[105;1106] has recently been discovered. First steps uskkamtin the direction of FBMs

with a healing condition [40; 39] make fibre bundles prongstandidates for the under-
standing of the cellular microsceleton, and the possibiefies of further insight in this

field can hardly be exaggerated.
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Finally, we may direct the reader’s attention to a technagglication. We have men-
tioned the catastrophic collapse of a sports facility in Baichenhall in the year 2006
in the introduction, which was followed by a series of othal lcollapses in the same
winter, fortunately without inflicting any further injurge Following these incidents were
demands for regular checks of public buildings by indepahdgperts. Needless to say,
this would impose a heavy financial burden on the owners, andgsarily provide only
a snapshot picture of the buildings’ state. On the other handhll, battery powered
acoustic sensors have recently been presented and aratutnedergoing field tests
[20], which can be equipped with long term recording and wagmlevices. It is through
the study of fibre bundles and similar statistical models thi¢eria can be established,
which permit to distinguish ambient and ordinary yield msigrom microfractures and
impending collapse. A possibly life saving alarm signallddhen be triggered if the lat-
ter are found. Together with the potential of constant bogdupervision and the ensuing
economic advantages, the early warning capabilites coakertheses devices —akin to
smoke detectors— a cheap and ubiquitous piece of equipmaiitareas of life.

7.3 A perspective

What is the future of the fibre bundle model? In the field of tuae models, there is
hardly a lack of well proven and tested approaches, and FBigs the competition of
atomistic simulations, beam models on lattices, clasfiaature mechanics and finite el-
ement simulations, to name but a few. It has been the inteofithis thesis to highlight
the appropriateness and elegance of fibre bundle modelghaimgarticular suitability
in terms of modeling disorder and load transfer. From a beoagplication point of
view, the future of all these different models certainlylie a combination by means of a
hierarchical multi-scale approach, using their specifiathges on one scale while over-
coming restrictions and shortcomings on other scales. fagmtion is also feasible in
terms of multiple mechanisms and loading conditions; amgpta can be the mechanism
based toolbox [107] that has been developed as a joint &éffaeveral research groups of
the SFB 381, where also the beam model of Chdpter 3 has beémiepted to account
for interfacial based failure. It can be ascertained thairesitlerable number of research
projects all over the world are presently devoted to theasgumulti-scale modeling, and
computer simulations that make the expertise of hundredssafarchers easily accessi-
ble through user friendly interfaces are becoming a wicesgbtool in industry and the
academic world.

We would like to conclude this study with an analogy, whichagmittedly a bit far
fetched, but nevertheless instructive. Present stateeadrtsimulations allow for tracing
crack propagation in a bulk df0® atoms on a single-atom level, which has addressed a
series of fundamental questions about the microscopitooigracture. Given the rapid
progress of computational performance, the number givereatwill certainly strongly
increase in the near future. But just as the potential coatjmut of the10%* molecular
trajectories present in only one mole of an ideal gas willreatler the mean field formu-
lation of thermodynamics useless, there will most likelyats be a demand for easily
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comprehensible statistical models of fracture —such agiltine bundle model— which

capture the almost infinite amount of states by means of atiee gariables. The pursuit
of statistical models has yielded an abundance of novetnmétion on the fracture pro-
cess of disordered materials and its connection to stalgthysics in recent years. To
name an example, despite the decade long study of fibre bomatlels, the discovery of
a crossover in the power law exponents describing the ttatisf fracture events dates
back to the last yeal [56], and we have found further marafests of this crossover
throughout this thesis. It is for this reason we may assumagttte field of fibre bundle

models can still bear some surprising insights, and thastindy of these models is still a
worthwhile effort in exploring fundamental principles o&tture.
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