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Zusammenfassung

Diese Dissertation behandelt die Anwendung einer Klasse statistischer Modelle, der so-
genannten Faserbündelmodelle, auf aktuelle Fragestellungen in Bezug auf das Bruch-
verhalten ungeordneter Materialien, insbesondere der faserverstärkten Verbundstoffe. Es
handelt sich hierbei im Einzelnen um die Probleme des Schubversagens geklebter Ver-
bindungen, die Darstellung von Plastizität, entgegengesetzt dazu das Auftreten von aus-
geprägter Sprödigkeit, und zuletzt die schrittweise Schwächung von Materialien mit einer
extremalen Defektverteilung. Die Notwendigkeit dieser Untersuchungen wird in Kapitel 1
begründet, eine Darstellung der grundlegenden Eigenschaften von Faserbündelmodellen
erfolgt in Kapitel 2. Die vorgestellten Ergebnisse sind für sich alleine genommen gültig,
weisen aber auch Beziehungen zueinander auf. So ist das Balkenmodell, welches in Ka-
pitel 3 vorgestellt und behandelt wird, zur Beschreibung der Faser-Matrix-Grenzfläche
in Verbundwerkstoffen prädestiniert, eine Anwendung in der auch Plastizität, für die
in Kapitel 4 ein einfaches Faserbündelmodell dargestelltwird, zum Tragen kommt. In
diesem plastischen Faserbündelmodell wiederum tritt unter bestimmten Annahmen eine
Auffälligkeit zu Tage, die signifikantëAnderung der Häufigkeitsverteilung von Brucher-
eignissen, welche der Gegenstand von Kapitel 5 ist, und zudem auch in ausgeprägter Wei-
se in Kapitel 6 im Rahmen eines graduellen Schädigunsmodelles auftritt. Dies spiegelt die
Tatsache wieder, dass alle Modelle auf gemeinsamen theoretischen und experimentellen
Erkenntnissen aufbauen, und im gleichen Formalismus der Faserbündelmodelle (FBM,
engl.fibre bundle models) behandelt werden.

Das Gebiet der Bruchmechanik, welches durch experimentelle Studien von Galilei und
da Vinci begründet wurde, hat in den letzten Jahren gesteigerte Aufmerksamkeit in Zu-
sammenhang mit dem mechanischen Versagen ungeordneter Systeme und Materialien
erhalten, für dessen Beschreibung die Methoden der statistischen Physik in besonderem
Maße geeignet sind [1]. Unter den ungeordneten Materialienbildet die Klasse der faser-
verstärkten Werkstoffe einen Schwerpunkt dieser Arbeit.Als Beispiele für diese Materia-
lien sind hierbei Holz, Stahlbeton, d.h. eine mit Stahlfasern verstärkte Betonmatrix, und
die Klasse der faserverstärkten Compositmaterialien zu nennen, die in den letzten Jah-
ren zu eminenter Bedeutung insbesondere in der Luft- und Raumfahrtindustrie gelangt
sind, da sie bei geeigneter Faserorientierung außergewöhnliche Festigkeit mit geringer
spezifischer Masse vereinigen. Einhergehend mit diesem Bedeutungszuwachs war auch
die Erkenntnis, dass die gängigen ingenieurwissenschaftlichen Methoden die spezifischen
Eigenschaften dieser Werkstoffe nicht vollständig erfassen können, insbesondere wenn es
um Effekte der Unordnung geht, wie der statistischen Verteilung von Defektstellen. In
Abb. 1 sind der faserige Aufbau von Holz und Faserbeton und der hierarchische Aufbau
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a)

c)

b)

Abbildung 1: Beispiele für den faserigen Aufbau von Stahlbeton (a) und Holz (b,c). Der
hierarchische Aufbau von Holz wird bei Betrachtung einer Weichholzprobe in mikrosko-
pischem Maßstab (b) und bei einer anderen Holzprobe im mesoskopischen Bereich (c)
ersichtlich. Quellen: (a) aus Ref. [2], (b) aus Ref. [3], (c)Foto eines Holzbalkens, welcher
im Rahmen eines Zugversuches am Insitut für Werkstoffe im Bauwesen der Universität
Stuttgart versagt hat.

von Holz zu erkennen.

Das klassische Faserbündelmodell, welches auf wegweisende Arbeiten von Peires [4] und
Daniels [5] zurückgeht, wird in Kapitel 2 umrissen. Kurz gefasst besteht das Modell aus
einer Menge an parallelen Fasern, welche auf einem kubischen zweidimensionalen Git-
ter angeordnet werden. Die Fasern werden unter Zug belastetund verhalten sich hierbei
linear elastisch, bis sie einen spezifischen Lastwert erreichen an dem sie vollständig versa-
gen, wobei die Last einer Faser nach Versagen auf Null fällt. Die jeweiligen Lastwerte für
das Versagen unterliegen einer Wahrscheinlichkeitsverteilung, welche die Unordnung in
dem zu betrachtenden Material abbildet; üblicherweise findet hier eine Weibull-Verteilung
mit Maßstabsparameterm und Formparameterλ Verwendung; letzterer dient zur direkten
Modellierung der Unordnung. Beim Versagen muss die Last, welche von der versagenden
Faser getragen wird, auf die umliegenden intakten Fasern übertragen werden, was entwe-
der lokal (LLS,engl. local load sharing) auf die benachbarten, oder global (GLS,engl.
global load sharing) auf alle intakten Fasern im Bündel erfolgen kann. Bei beständigem
Fortschreiten der von außen angelegten Zugspannung kann schon bei Versagen einer ein-
zelnen Faser eine Kaskade von weiteren Versagensprozesseneintreten, da durch die La-
stumlagerung von der versagenden auf die intakten Fasern eventuell weitere Schwellwer-
te überschritten werden. Die GrößenverteilungD(∆) dieser lawinenartigen Prozesse ist
neben dem makroskopischen Spannungs-Dehnungs-Diagrammσ(ε) das Hauptcharakter-
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Abbildung 2: Spannungs-Dehnungs-Diagramm im Balkenmodell von Kapitel 3, wo-
bei der relative Einfluss der unabhängigen Bruchmodi durchVariation des Weibull-
Parametersλ2 für die Verteilung der Schwellwerte für Versagen durch Biegung variiert
wird. Mit zunehmendem Wert vonλ2 gewinnt der Zugmodus an Bedeutung und domi-
niert schließlich das Verhalten des Systems (nicht gezeigt), so dass das Balkenmodell
einem reinen Faserbündelmodell entspricht.

teristikum der Faserbündelmodelle, und bei Betrachtung unter globaler Wechselwirkung
findet man hierbei für das klassische Faserbündelmodell wie auch für die meisten sei-
ner Derivate ein Potenzgesetz mit einem universalen Exponenten5/2, der sich auch mit
analytischen Methoden herleiten lässt [6].

Mit der genannten Konstruktionsvorschrift bildet schon das klassische Modell die wesent-
lichen Eigenschaften von faserverstärkten Werkstoffen unmittelbar ab: die Anwesenheit
einer statistischen Verteilung für die Festigkeit der einzelnen Elemente, die ausgeprägte
Anisotropie sowie die Lastumlagerung bei Versagen eines Elementes sind integrale Be-
standteile dieser Beschreibung.

Das Studium der Faserbündelmodelle und verwandter Methoden wie etwa demrandom
fuse modelist nicht nur aus Sicht der Materialwissenschaften von Bedeutung, sondern
hat in den vergangenen Jahren auch wichtige Einblicke in diephysikalischen Grundlagen
des Versagens ungeordneter Stoffe geliefert [7]. Auch Anwendungen außerhalb des bis-
herigen Definitionsbereiches, etwa auf biologische Systeme oder Erdbeben, sind in letzter
Zeit populär geworden.

Im Folgenden wird ein kurzer Abriss der vorgestellten Forschungsergebnisse gegeben.
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Das klassische Faserbündelmodell beschreibt eine Belastung in Faserrichtung. Um aber
den Fall einer Schubbelastung senkrecht zur Faserrichtungzu modellieren, muss eine
Modifikation vorgenommen werden. Dies geschieht in der Absicht, das Schubversagen
von faserverstärkten Compositen, welches wesentlich durch die Eigenschaften der Faser-
Matrix-Grenzfläche bestimmt wird, abzubilden. Als einfaches Modellbild wird in Kapitel
3 das Schubversagen geklebter Verbindungen zwischen zwei festen Körpern unter Be-
trachtung eines neuartigen Modells untersucht. In dem Modell wird die Verbindung als
Menge elastischer Balken diskretisiert, welche unter Schubbelastung gedehnt und gebo-
gen werden. Das Versagen eines Balkens kann demzufolge durch zwei Bruchmodi ver-
ursacht werden, nämlich Spannung und Biegung, welche durch zufallsverteilte Schwell-
werte beschrieben werden. Diese zwei Bruchmodi können entweder unabhängig vonein-
ander wirken, oder in der Form eines von Mises-artigen Kriteriums kombiniert werden.
Im Falle langreichweitiger Wechselwirkungen zwischen denBalkenelementen kann die
vollständige Lösung für das makroskopische Verhalten sowie für den mikroskopischen
Schädigungsprozess der Verbindung angegeben werden. Es zeigt sich, dass die Anwe-
senheit zweier unabhängiger Bruchmodi sowohl die kritische Spannung als auch die kri-
tische Dehnung im Vergleich zum Vorliegen nur eines Bruchmodus herabsetzt, wovon
die statistischen Häufigkeitsverteilungen der mikroskopischen Bruchereignisse unberührt
bleiben. Die Kopplung der Bruchmodi führt zu einer weiteren Herabsetzung der mecha-
nischen Festigkeit der Verbindungsschicht. Das mechanische Ansprechverhalten der Ver-
bindung ändert sich bei Einstellung unterschiedlicher relativer Stärke beider Bruchmo-
di in einem weiten Bereich, wie in Abb. 2 anhand des konstitutiven Verhaltens sichtbar
wird. Auch im Grenzfall stark lokalisierter Wechselwirkungen, in dem Balkenelemen-
te auschließlich mit den nächsten und übernächsten Nachbarelementen auf dem Gitter
wechselwirken, wird das konstitutive Verhalten und die Gr¨oßenverteilung der Brucher-
eignisse betrachtet. Ferner wird eine effiziente Simulationsmethode vorgestellt, welche
die Betrachtung hinreichend großer Systeme ermöglicht. Auf Grundlage der vorgestellten
Untersuchungen kann das Balkenmodell auf das klassische Faserbündelmodell abgebildet
werden.

Zur Beschreibung der in diesem Zusammenhang relevanten makroskopischen Plastizität
wird in Kapitel 4 eine Erweiterung der klassischen Faserbündelmodelle und des Balken-
modells aus Kapitel 3 vorgestellt, in welcher Oberflächenelemente auch nach ihrem Ver-
sagen weiterhin eine gewisse Fähigkeit zur Lastaufnahme besitzen. Die materielle Un-
ordnung der Verbindung wird durch eine parallele Anordnungvon Faserelementen mit
zufallsverteilten Versagensgrenzwerten repräsentiert, welche bis zum jeweiligen Versa-
genspunkt linear elastisch reagieren. Es wird angenommen,dass die Fasern nach ihrem
Versagen eine konstante Last annehmen, welche ein Bruchteil 0 ≤ α ≤ 1 ihrer Last
unmittelbar vor dem Versagen ist. Der Parameterα des Modells interpoliert hierbei zwi-
schen den Grenzwerten des vollständig plastizitätsfreien und des vollständig plastischen
konstitutiven Verhaltens des Faserbündels. Auf der Grundlage analytischer Berechnun-
gen und von Computersimulationen erweist sich die Fähigkeit der versagten Fasern zur
Lastaufnahme als wesentlicher Einfluss sowohl auf das makroskopische Ansprechen des
Systems, als auch auf seinen mikroskopischen Schädigunsprozess. Im Falle kurzreich-
weitiger Wechselwirkungen lässt sich ein interessanter Phasenübergang bei einem klar
definierten Wert vonα feststellen. In der Nähe dieses kritischen Wertes vonα treten un-
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a) b)

c) d)

Abbildung 3: Das Erscheinen ausgedehnter zusammenhängender Bereiche im plastischen
Faserbündelmodell von Kapitel 4 bei Variation des Plastizitätsparametersα in der Nähe
des kritischen Wertesαc ≈ 0, 4. a)α = 0. b)α = 0, 35. c)α = 0, 4. d)α = 0, 6.

mittelbar vor dem globalen Systemversagen großflächige zusammenhängende Bereiche
von versagten Fasern auf (s. Abb. 3), deren Beschreibung mitden Methoden der statisti-
schen Physik weitere Einblicke in den mikroskopischen Sch¨adigungsprozess liefert.

Wie vor kurzem erkannt wurde, hat die Existenz einer unterenGrenzeεL für die Ver-
sagenswahrscheinlichkeiten in einem Faserbündel einen ausgeprägten Einfluss auf den
Schädigungsfortschritt. In Kapitel 5 wird dieser Fall betrachtet, wobei die effektive Reich-
weite der Wechselwirkungen zwischen den Grenzfällen einer vollständig lokalisierten und
einer globalen Lastumlagerung variiert wird. Simulationsergebnisse zeigen, dass für je-
de effektive Reichweite der Wechselwirkungen ein kritischer Wert dieser unteren Grenze
existiert, an dem das makroskopische Verhalten eines Faserbündels vollständig spröde
wird. Dies äußert sich in einem rein elastischen Verhaltenbis der globale Versagenspunkt
erreicht wird, an welchem plötzliches Versagen schon nachdem Bruch einer kleinen An-
zahl von Fasern eintritt. Als Erweiterung bisheriger Arbeiten im Falle globaler Wech-
selwirkungen [8] zeigen wir, dass sich bei Annäherung an den kritischen Grenzwert ein
Übergang der Größenverteilung der mikroskopischen Schadereignisse einstellt, hin zu ei-
nem universalen Potenzgesetz mit einem Exponenten3/2, welcher unabhängig von der
Reichweite der Wechselwirkungen ist. DieserÜbergang ist in Abb. 4 dargestellt.
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Abbildung 4: VerteilungD(∆) mikrosopischer Schadensereignisse der Größe∆ in
Abhängigkeit einer unteren GrenzeεL für die Versagenswahrscheinlichkeiten, s. Kapi-
tel 5. Für die Wahrscheinlichkeiten wird eine Gleichverteilung im Intervall [εL, 1] ange-
nommen; die Lastumlagerung ist lokalisiert. Mit zunehmendemεL ist das Auftreten eines
Potenzgesetzes der FormD(∆) ∝ ∆−3/2 sichtbar. Zu beachten ist, dass auch in Abwe-
senheit einer Begrenzung, d. h. fürεL = 0, kein reines PotenzgesetzD(∆) ∝ ∆−5/2 wie
im Falle globaler Lastumlagerung auftritt.

In ungeordneten Materialien mit hierarchischem Aufbau, wie z. B. Holz, können einige
wenige makroskopische Defekte das Bruchverhalten entscheidend beeinflussen, insbe-
sondere durch Arretierung und Umlenkung von Rissen. Die Anzahl dieser Fehlstellen
kann hierbei von Probe zu Probe signifikanten Schwankungen unterliegen. Aus diesem
Grund werden in Kapitel 6 zwei frei kombinierbare Erweiterungen der Modelle für die
schrittweise Schädigung von Materialien, der sogenannten CDFBM (engl.continuous da-
mage fibre bundle models) vorgestellt. In der ersten Modellvariante wird die maximale
Anzahl von Schädigungsereignissen eines Elementes als Poisson-verteilte Zufallsvaria-
ble mit einem Mittelwertκ modelliert, um den Einfluss von Unordnung nicht nur auf den
Schwellwert für das Versagen eines Elementes, sondern auch auch auf die Anzahl der ma-
kroskopisch wirksamen Defektstellen abzubilden. Als Folge dieserÄnderung erscheint
ein asymptotischer linearer Härtungsbereich im konstitutiven Verhalten des Faserbündels.
Die Größenverteilung der mikroskopischen Schadensereignisse bleibt hiervon unberührt.
Zusammenfassend ergibt die Einführung einer Zufallsvariablen für die maximale Anzahl
der signifikanten Schadereignisse eine bessere Darstellung der Verteilung der makrosko-
pischen Fehlstellen in Materialien mit ausgeprägt hierarchischem Aufbau, wie etwa ge-
klebten Strukturelementen aus Holzlamellen, deren beobachtetes Bruchverhalten unter
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Zugbelastung als Ausgangspunkt dieser Betrachtung dient.

In den genannten Materialien treten unter Belastung makroskopische Risse auf, welche
sich unter zunehmender Last vergrößern. Diese Risse können aber auch an besonders
festen Materialstellen arretiert werden, ehe unter weiterzunehmender Last globales Ver-
sagen eintritt. Um eine köharente Beschreibung dieses Verhaltens zu erreichen, wird in
einem zweiten Schritt eine Sortierung der zufällig verteilten Versagensschwellwerte, wel-
che nach dem Versagen eines Elementes seinen nächsten Versagenspunkt bestimmen,
vorgenommen. Im Rahmen des CDFBM werden den Fasern —welche Bestandteile ei-
nes Materials auf der untersten Hierarchieebene darstellen— wie im klassischen FBM
Schwellwerte für das erstmalige Versagen bei einer bestimmten Dehnungε (äquivalent
einer Spannungσ) zugeordnet. Anschließend wird für jeden Schädigungsschritt ein neuer
Schwellwert gewählt, welcher entweder identisch mit dem ersten ist (eingefrorene Un-
ordnung,engl. quenched disorder), oder anhand einer Zufallsverteilung bestimmt wird
(thermische Unordnung,engl.annealed disorder). Das hier vorgestellte Modell stellt ein
Gemenge der genannten Umordnungsformen dar, da die Zufallszahlen im voraus gezo-
gen und in aufsteigende Reihenfolge gebracht werden. Mit dieser Vorschrift zeigt sich ein
divergentes Verhalten der kritischen Spannung und der kritischen Dehnung mit ansteigen-
der maximaler Anzahl der singulären Schadereignisse. Vordem Erreichen der kritischen
Spannung bzw. Dehnung ist ein langes nichtlineares Regime in der konstitutiven Kur-
ve vorhanden. Für hohe numerische Werte der maximalen Anzahl der Schadereignisse
treten Oszillationen der konstitutiven Kurve auf, die von ungewöhnlichen Kaskaden mi-
kroskopischer Schadereignisse begleitet werden. Auch erscheint in diesem Falle wieder
das Potenzgesetz für die Kaskaden mit einem Exponenten3/2, welches im Rahmen von
Kapitel 5 behandelt wird. Eine konsistente Erklärung fürdieses Phänomen wird angege-
ben, und das Auftreten der Oszillationen, welche exemplarisch in Abb. 5 dargestellt sind,
wird im Parameterraum lokalisiert.

Zum Schluss, in Kapitel 7, erfolgt eine Zusammenstellung der in den vorangegangenen
Kapiteln gewonnenen Ergebnisse und deren Einordnung in Hinblick auf den derzeitigen
Stand der Forschung. Auch werden weitere mögliche theoretische und experimentelle
Arbeiten im Zusammenhang mit diesen Ergebnissen vorgeschlagen, und eine Prognose
über die zukünftige Entwicklung der Faserbündelmodelle abgegeben.
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Abbildung 5: Im graduellen Schädigungsmodell mit sortierten Versagenswahrscheinlich-
keiten erscheinende Oszillationen der konstitutiven Kurve σ(ε) (durchgezogene Linie)
und synchron dazu auftretende mikroskopische Schadensereignisse der Größe∆, vgl.
Kapitel 6.



Chapter 1

Introduction

1.1 Motivation

This thesis deals with the application of fibre bundle models, a class of statistical fracture
models, on several current issues in the fracture of disordered materials, and fibrous com-
posites in particular: the shear failure of glued interfaces, relevant to the failure of fibre-
matrix interfaces in composite materials under external shear; the question of plasticity,
which is related to this interfacial failure mode; the appearance of perfect brittleness when
no weak fibres are present in the bundle; and finally the gradual degradation process of
materials with an extremal distribution of defects. All these discussions are based on the
classical fibre bundle model, which will be introduced in Chapter 2, or recent extensions
thereof, and numerical simulations as well as analytical results will be presented.

Why do things break? Fracture of structures that surround usis a well known phenomenon
in everyday life, and a fundamental manifestation of the second law of thermodynamics.
The more important question therefore is how things break, and in which time. The sys-
tematic study of the mechanics of fracture, which was probably initiated by Leonardo da
Vinci [9] and Galileo Galilei [10], has received renewed interest from the point of statis-
tical physics in recent decades, especially for the case of disordered materials. Statistical
models such as the fibre bundles are inherently suitable to capture the physical aspects of
fracture in disordered materials, and applying the resultsobtained in this dissertation to
models of material failure can aid a better understanding ofthe fracture mechanisms for
a wide class of ubiquitous materials such as wood, concrete,fibre reinforced polymers or
ceramics. Increased knowledge in this field can therefore enhance the lifetime, decrease
the production and maintenance costs, and —most importantly— increase the safety of
buildings, vehicles and structural components.

It may be advantageous to first highlight the importance of the materials considered, and to
introduce some characteristic mechanical properties, i. e. their loading behaviour and frac-
ture characteristics. Disordered materials are materialswhich display inhomogeneities,
typically on the mesoscale of the sub-cm regime. An example for the microstructure of
two fibrous materials, wood and fibre-reinforced concrete, is given in Fig. 1.1, where

13
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a)

c)

b)

Figure 1.1: The structure of some fibrous composites. a) Steel reinforced concrete, from
[2]. b) Microstructure of a softwood sample, from [3]. c) Fibrous mesostructure of an-
other wood sample with a macroscopic knothole defect. Photograph taken in IWB, Uni-
versity of Stuttgart.

the fibrous structure and also the hierarchical properties of wood are clearly visible.
Statistically seen, the presence of disorder can be modeledthrough random variables,
which enter into the continuum mechanics and determine the rich microscopic behaviour
[1; 7]. It turns out that the presence of disorder substantially reduces the fracture tough-
ness and therefore effectively determines the mechanical stability of a material, as the
order-of-magnitude difference between the ab-initio calculated strength of an ideal crys-
tal and the experimentally measured strength of a real soliddemonstrates [1; 11]. The
effect of disorder is also visible in size effects, particularly when the strength of a material
decreases with growing size, and strongly fluctuates between different samples. Fracture
mechanics is a lasting problem in engineering and physics, and it is a generally accepted
fact that the powerful computational and theoretical machinery employed in engineering
tasks is not so well equipped when it comes to dealing with strong disorder, a shortcoming
that statistical models such as the fibre bundle model and itsderivates may help to over-
come. At the core of the problem is the question at which external load a given material
fails, if there are precursors of failure (and how to measurethem), and how the critical
load scales with the size of materials.
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An important subclass of disordered materials are the fibrous composites [12], or fibre
reinforced composites (FRCs). In general, such a compositeconsists of a fibre reinforce-
ment embedded in a matrix material, where the fibres are capable of sustaining a large
amount of longitudinal stress. The material properties aredetermined not only by the
respective constituent properties, but also by their mixing ratio, i. e. the volume fraction,
the average fibre orientation and the deviation therefrom, and very prominently also by
the fibre-matrix interface. Many of these factors can be adjusted in the manufacturing
process, but a lack of control in the production gives rise tostrong inter-sample fluctua-
tions of the mechanical properties. Generally speaking, a hierarchy of length scales can
be identified in composite materials, which is illustrated in Fig. 1.1. On the smallest scale
the fibres and their bonds with the matrix can be identified. The fibres form sub-bundles
and later on bundles, which are organized into a ply.

A technologically important example of fibrous composites are the fibre reinforced poly-
mers, which have gained an unique standing in the aerospace,automotive and and sporting
goods industries due to their excellent strength at a low specific mass. The simplest lay-
out of a fibre reinforced polymer is a unidirectional composite, where the fibres are all
arranged in parallel. In practice, to account for various external loading conditions, the
fibres may also be interwoven, and layers of uni- or multidirectional setups are frequently
glued together into laminae. Under external loading, cracks first appear at the lowest
level, i. e. in the matrix, at the fibre-matrix interface, andin the form of individual fibre
fractures. The entire system and its elements experience a gradual reduction of stiffness
as damage accumulates by nucleation of micro-cracks. The debonding of the fibre-matrix
interface can propagate and lead to delamination, i. e. separation of entire layers. Finally,
whole bundles of fibres will rupture, and the material fails catastrophically.

The usual starting point in the discussion of the failure characteristics of disordered ma-
terials is to consider the macroscopic, bulk averaged loading behaviour, which is rep-
resented by the stress-strain curve. This curve is the representative response obtained
from loading a sample, typically by exerting tension on a long and —macroscopically
speaking— homogeneous bar. Three fundamentally differenttypes of behaviour are
usually distinguished: a linear relation between stress and strain is called linear elastic
behaviour, where a single parameter, the Young modulus, completely characterizes the
loading behaviour, which is typically the case in the early stage of the loading of most
materials, distant from the failure point. After a certain amount of loading, many materi-
als then enter a nonlinear regime, a process that is called strain-hardening, and which is
typically irreversible in the sense that after unloading, the sample will possess a reduced
stiffness upon reloading. Other materials, however, display a behaviour that is labeled
perfect plasticity after passing a material dependent yield point of loading, where the
slope of the stress-strain curve vanishes, an effect that may be visualized as tearing apart
a piece of chewing gum. All models presented in this work fit into one of these schemes,
or compositions thereof. This classification is also usefulin terms of fracture: a brittle
material breaks before reaching the yield point, whereas a ductile material reaches the
plastic regime first.

In contrast to other materials, e. g. glass, the assessment of damage in fibrous composites
is not always a straightforward task, and visual inspectionmay not be able to discover
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a)

b) c)

Figure 1.2: Examples for failure modes in fibrous composites. a) Cracks in timber lamel-
lae, which follow the macroscopic structures. Photograph taken at a tension experiment
at IWB, University of Stuttgart. b) Transversal cracks in a glass fibre reinforced polymer,
from [13]. The cracks propagate along the fibre-matrix interfaces, and beginning plastic
flow is visible. c) Microscopic plasticity in a glass fibre reinforced polymer that has failed
displaying macroscopic brittleness under transversal loading, from [14].

even near catastrophically accumulated damage. For example, in layered composites de-
laminations may occur in deeper layers of a component and critically impair the structural
stability, so elaborate visualization techniques such as ultrasound imaging are required in
order to discover the damage [15].

It can therefore be assessed that in the experimental testing of fibrous composites not only
a variety of material and production parameters appear, butthat there are also a multitude
of coexisting and mutually influencing failure modes, whichexplains the high volatil-
ity of results obtained even if different samples are taken from the same production batch.
Consequently, these fluctuations together with the need forreliable monitoring and failure
prediction capabilities have led to the development of an impressive array of technologi-
cally advanced non-destructive testing (NDT) methods [2].However, safe and economic
material design relies also on theoretical considerations, and finally on simulation. So
far, the practical applicability of composite materials inweight sensitive environments is
somehow limited by a certain lack of knowledge of the failuremechanisms. As a con-
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sequence, to make sure that all safety requirements are met,composites employed under
these conditions have to be more massive than might be necessary, which has a detrimen-
tal economic impact. Computer simulations, as a cost effective tool to clarify damage
mechanisms, can contribute to overcome these shortcomings.

At this point, fibre bundle models (FBM) enter as a simple yet elegant method to cap-
ture the most significant characteristics shared by random materials in general and fibrous
composites: they inherently feature disorder, anisotropyand dynamical load transfer [16],
the dominant features in the breakdown of FRCs. Initially proposed as a model to capture
the failure behaviour of a bundle of fibres in textile yarns, their behaviour can be sum-
marized in a nutshell as follows: a thread of parallel singlefibres is under an external
uniaxial tension. They load in a linear elastic way until they reach their respective failure
thresholds, which are randomly distributed. If a fibre fails, the load on it drops to zero,
and has to be passed to the remaining fibres, which can result in cascades of further break-
ing events. Obviously, fibre bundle models are therefore well suited to describe uniaxial
composites under tension, and have been applied successfully for this loading condition,
since under tension the load on a composite is sustained almost exclusively by the fibres.
Is it worth mentioning here that fibre bundle models possess no explicit time dependency
—although such extensions have been developed; rather, there is an implicit dependence
through the progress of external loading.

However, composite materials are not always loaded under pure tension, although this is
attempted in order to utilize the fibres’ high tensile strength; more importantly, in a real
material there exist no pure loading states, but the different internal loading states are al-
ways present to some extent. One of the modes that has not beenmodeled extensively
in the past is the shear state. Under shear loading, composite materials have been shown
to develop a variety of coexisting failure phenomena. It hasbeen found that under in-
plane shear stress not only matrix shear failure, but also fibre-matrix debonding plays a
crucial role [12; 17], some studies finding that the debonding of the fibre-matrix interface
actually is the limiting factor in shear strength [12; 18; 13]. It is therefore of high impor-
tance to improve the available models for this case, and alsofor the more general case of
sheared states of glued interfaces, i.e. elastic or elasto-plastic connections between two
rigid semispaces, where one can assume that the glued connection possesses disordered
properties.

In fibrous composites the macroscopic loading behaviour under tension typically displays
a nonlinear regime prior to fracture, although this may be rather short; under shear loading
of glued interfaces, one may expect however a high degree of plasticity, which can actually
develop the outlook of perfect plasticity depending on the composition of the glue.

Monitoring stressed systems and predicting imminent failure is an important aspect in the
study of composite materials; recent events have shown thateven state-of-the-art building
structures, which had been under constant supervision, cancatastrophically collapse in
the presence of merely a minor external stimulus. One particularly tragic event led to
the disintegration of the wooden roof skeleton spanning an ice-skating rink in southern
Bavaria in 2006 [19], which caused the death of 15 persons. A subsequent investiga-
tion suggested the main cause to be the chemical decomposition of the glue between the
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wooden components, a decade long process preceding the sudden collapse, which was
finally triggered by the unusually heavy snow load of this season.

Along with similar building collapses in the winter of 2005/2006, live monitoring tech-
niques have received growing attention and recent innovations in terms of wireless tech-
niques render the equipment of precarious structures such as buildings and bridges with
sensors for strain, temperature or noise possible [20]. Of particular importance can be
the detection of noise signatures indicating the imminent collapse of a material system, or
some of its components. As a matter of fact, acoustic emission (AE) techniques have been
employed in materials testing in the past, and most fibrous composite materials exhibit a
signature power law for the distribution of avalanche sizes. Detecting deviations from this
power law could be highly beneficial, and the existence of such deviations in the context
of a specific FBM will be examined in Chapter 5 of this thesis.

Another important aspect that links composite materials toan advanced class of FBMs,
the continuous damage fibre bundle models (CDFBM) [21], is the inclusion of hierarchi-
cal failure levels. Experiments have revealed that long fibre composites loaded parallel to
the fibre orientation experience a gradual degradation process such that the macroscopic
constitutive curveσ(ε) of the composite develops a plastic plateau and the global failure
is preceded by a strain hardening regime.

This effect mirrors the presence of a hierarchical organization in the material, where the
failure mechanisms relevant at the lower length scales (at the scale of fibres) gradually
activate the breaking of higher order substructures (sub-bundles, bundles, and plies) of
the system. With fibres embedded in a matrix material, the breaking of a fibre causes
debonding of the fibre-matrix interface in the vicinity of the crack [22]. Due to the fric-
tional contact at the interface, the load of failed fibres builds up again over a certain stress
recovery length and consequently the broken fibre can still contribute to the overall load
bearing capacity of the system. On a more abstract level, theCDFBMs —an extension
of which will be presented in this thesis— are not restrictedto the length scales of fibres,
fibre bundles etc., but can be applied to any hierarchical system where a failure event
triggers the activation of internal degrees of freedom.

As a widely used tool in computational material research, one can observe that fibre bun-
dle models address two major challenges: on the one hand, they serve as a starting point
to develop more realistic models of material failure, whichthen comprise a detailed rep-
resentation of the microstructure of a material, the local stress fields, and their complex
transmission. Since efficient techniques have been developed to study large scale fibre
systems both through analytical calculations and simulations, FBMs and models based on
them allow to investigate the influence of microscopic material parameters on the macro-
scopic response of disordered systems, and on fibre reinforced composites in particular.
On the other hand, the study of damage and fracture in disordered systems has evolved
into a fascinating branch of statistical physics, where researchers have accomplished to
find a link between breakdown phenomena and phase transitions, as well as critical phe-
nomena in general. Pursuing this analogy, there are now ongoing research efforts to
embed fracture phenomena into the framework of statisticalphysics.
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In summary, FBMs are an established method that have aided the understanding of ma-
terial breakdown and failure, they are deeply rooted in the contemporary understanding
of disordered systems, and they are certainly suitable to accomplish the tasks laid out
in the beginning of this section: first, to describe the shearfailure of bonded interfaces
between solid structures, which requires a reformulation in terms of a sheared state as
opposed to a tensional one. Secondly, to find a simple representation of the damage law
that describes the limiting cases of elasticity and plasticity, and a parameterization for all
cases in between. Furthermore, if a critical failure threshold distribution with finite-range
interactions is considered, there is a need to quantify the distribution of failure event sizes,
which can be measured by recording acoustic emissions from amaterial. And finally, for
materials that fail under continuous restructuring and hardening, certain constraints on the
failure threshold distribution and the maximum number of failures of a fibre (or another
elementary constituent) in a modified continuous damage FBMcapture some aspects ob-
served in the fracture process.

1.2 State of Research

Historically, the first appearance of the fibre bundle model can be traced back to the year
1927, when Peires introduced this approach in order to understand the strength of cotton
yarns [4]. The first consistent stochastic formulation of the model, together with a com-
prehensive study of bundles of threads —assuming equal loadsharing after subsequent
failure— was presented by Daniels [5]. Early attempts to capture fatigue and creep ef-
fects led Coleman to propose a time dependent formulation ofthe model [23], where the
strength of loaded fibres was proposed to diminish with time.

These first developments have been ensued by intense research in both the engineering
[22] and physics [1; 24] communities, so that nowadays fibre bundle models are con-
sidered one of the most important theoretical approaches tothe damage and fracture of
disordered materials. A recent comprehensive review of failure in disordered materials
prominently features fibre bundle models [7].

As mentioned previously, FBMs are a sound choice in modelingfibrous composites under
loading parallel to the fibre direction, where most of the load is carried by the fibres, and
the matrix material and properties of the fibre-matrix interface mainly determine the inter-
action (load transfer) among fibres [25; 26; 27; 28]. Still, some adaptions are necessary to
make the model more realistic. The first step in doing so is to find a means to interpolate
between the limiting cases of global and local load sharing,which obviously constitute
extremal abstractions of the finite range interaction present in a real material. In 2002,
such a model was proposed by Hidalgo et al. [29], where the load shared by the unbro-
ken fibres decays as a power law with the distance from a brokenfibre. This model was
subsequently applied to explain the size dependence of softwood samples under tension
[3].

After fibre breakings, the material yields due to fibre-matrix debonding in the vicinity of
the crack [22], a gradual degradation process which can be arrested due to frictional con-
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tacts at the interface. Macroscopically, this leads to the appearance of a strain hardening
regime prior to failure. The gradual degradation is a trademark sign of a hierarchical orga-
nization of the material, where failure mechanisms relevant at the lower length scales, i.e.
the dimension of the fibres, gradually activate the breakingof higher order substructures
(sub-bundles, bundles, and plies) of the system. A continuous damage model has been
proposed which mirrors this effect [21], and it has been investigated in terms of macro-
scopic behaviour and avalanche characteristics [30]. Furthermore, it has been employed
to explain the restructuring of force chains in granular materials under compression [31].

Another branch of FBM developments aims at modeling the viscous behaviour of fibrous
reinforced composites (FRCs), which under high stresses deform gradually, a time depen-
dent process which can finally result in creep rupture. A viscoelastic model has been sug-
gested [32], and investigated in terms of the usual macro- and microscopic characteristics,
and the universality of the failure process [33; 34]. The same model and some variants
have been proven to give a good description of creep tests on FRC samples [35; 36].

In terms of materials, fibre bundle models have also been applied to model the failure
behaviour of fibre reinforced concrete [37; 38]) and, very recently, asphalt [39; 40], where
the reversal of microscopic crack opening must be considered.

Most of the theoretical studies on the failure of interfaces, where disordered properties
assume a crucial role, rely on discrete models [1; 41] which are able to capture hetero-
geneities and can account for the complicated interaction of nucleated cracks. In studies
of the progressive failure of glued interfaces under a uniform load perpendicular to the in-
terface, several aspects of the failure process have been revealed such as the macroscopic
constitutive behavior, the distribution of avalanches of simultaneously failing constituents
and the structure of failed glue regions [42]. Considering ahierarchical scheme for the
load redistribution following fibre failure, a cascading mechanism was proposed for the
softening interface in Ref. [43; 44]. The roughness of the crack front propagating between
two rigid plates due to an opening load was studied in the framework of the fuse model.
The microcrack nucleation ahead the main crack and the structure of the damaged zone
were analyzed in detail [45]. The shear failure of an interface between two rigid blocks
has very recently been investigated by discretizing the interface in terms of springs. It
was shown that shear failure of the interface occurs as a firstorder phase transition [46].

The original idea behind the invention of FBMs had been to describe material degrada-
tion and failure. However, it turned out that—due to their simplicity and their inherent
features—they have also earned appreciation as a general model for the breakdown of a
broad class of disordered systems, in which many interacting elements are loaded exter-
nally. Some examples that have been mentioned are magnets driven by an applied field
[47; 48] and scale-free networks [49; 50]. Fibre bundle models also capture important
aspects of geological phenomena [51], and it has been shown that a generalization of the
fibre bundle model with long-range interactions is equivalent to a mean field formulation
of the Burridge-Knopoff model frequently used in the investigation of earthquakes [52].

Thus, several novel aspects of breakdown phenomena have been revealed by the study
of FBMs in recent years. The introduction of thermal noise leads to the reduction of
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the strength of materials, and in the presence of thermally activated cracking sub-critical
crack growth and a finite lifetime of materials are observed [53; 54]. The effect of healing
of microscopic cracks has also been addressed by thermodynamical fibre bundle models
[55].

A crossover in the avalanche size distributionD(∆) from the power law of exponent5/2
to another power law regime with a lower exponent3/2 has been observed, when the
avalanches of fibre failures are solely recorded in the vicinity of the point of macroscopic
failure, i.e. the strength distribution of the remaining intact fibres is close to critical [56;
57]. The connectivity properties of the bundle turned out toplay an important role in
breakdown processes, i.e. considering locally interacting fibres of a bundle on the nodes
of a Barabasi-Albert network (instead of placing them on lattice sites) substantially alters
the failure process [50]; these models are closely related to the statistical properties of
social interactions [47]. Similarly, a random fuse model —aclose relative of the FBM—
on a network may be applicable to predict the failure of electric grids [58], and has been
applied for biological materials [59; 60]

Finally, FBMs also played a crucial role in clarifying the fundamental relation between
the breakdown of disordered materials, critical phenomena[48; 61; 62; 63; 64; 65], and
self-organized criticality [66]. Under GLS, the microscopic quantities —such as the dis-
tribution of bursts of fibre breakings— when approaching thepoint of macroscopic failure
under a quasi-statically increasing load were found to exhibit a scaling behaviour which
is typical of continuous phase transitions [67; 6; 68; 65; 63; 69; 70; 71]. It has been
suggested that the macroscopic failure of GLS bundles is analogous to first order phase
transitions close to a spinodal [72; 48; 62; 21], since macroscopic quantities like the
Young modulus of the bundle display a finite discontinuity atthe same time. An interest-
ing mapping of the fracture process of fibre bundles to Ising-like models, widely studied
in statistical physics, has been suggested [73; 74; 69], which provides further hints on
how to embed fracture phenomena into the general framework of statistical physics. An
important aspect of this attempt is the possibility to obtain analytical solutions under GLS
conditions; this also helped to explain the power law behaviour of avalanche statistics
[68; 75; 6]. Although deviations from this power law should exist for small avalanches,
their role is limited even if considering mixed threshold distributions [76].

1.3 Overview of the Research Conducted

Technical applications often require solid blocks that areconnected by welding or glue-
ing of the interfaces, and the structures need to sustain various types of external loads.
If these solid interfaces are subject to shear, the interface elements experience not only
longitudinal deformation (compression and elongation), but also bending deformation.
This kind of loading of joined blocks is a model picture also for interfacial failure which
occurs in fibre reinforced composites, where debonding of the fibre-matrix interface can
even be the dominating damage mechanism when the composite is sheared. The complex
deformation that appear in this context cannot be captured by discretizing the interface in
terms of fibres, as they can only support longitudinal deformation in the classical FBM.
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As a first step to model shear failure, we propose in Chapter 3 anovel beam model, that
perpetuates the classical fibre bundle models and the extensions developed for them to a
pure shear state, i.e. we change the loading direction by 90 degrees and model a novel
situation: two rigid plates are coupled by elastic beams, which are subject to both stretch-
ing and bending under shear load. The beams fail if the two deformation modes exceed
randomly distributed breaking thresholds. The two breaking modes can be independent
or combined in the form of a von Mises-type breaking criterion. Under a global load shar-
ing condition following the beam breaking, the macroscopicconstitutive behaviour of the
system can be obtained, and the microscopic process of the progressive interface failure
has to be explored. An efficient simulation technique is mandatory in order to study large
systems. Also, the limiting case of very localized interaction of surface elements has to be
taken into account, which again requires computer simulations. Following this approach,
the “beam model” of interface failure can then be mapped ontothe classical fibre bundle
model, preserving the theoretical apparatus that has been made available for the latter and
allowing the use of modifications and extensions that have been developed for the FBM.

Secondly, to account for macroscopic plasticity, specifically in the context of glued inter-
faces, a modification to the damage law of fibre bundle models is presented in Chapter
4, assuming that failed fibres still carry a fraction0 ≤ α ≤ 1 of the load they sustained
before failure. This introduces an additional parameterα, whose value interpolates be-
tween the limiting cases of perfectly brittle failure (α = 0) and perfectly plastic behaviour
(α = 1) of fibres. After having examined the macroscopic properties and obtaining an an-
alytical formulation of the constitutive curve, the focus will be on investigating the usual
microscopic characteristics of the system. Since under localized load sharing a nonzero
value ofα softens the stress concentrations around broken fibres, themorphology, size
distribution and evolution of clusters of broken fibres is offundamental importance to un-
derstand the progressive damage of the model system. The competition between failure
due to localization and the quenched disorder imposed by thefailure threshold distribu-
tion can be tuned by varyingα, which has a substantial effect also on the avalanche size
distribution and shows interesting links to the problem of random percolation. It should
be noted that, since the mapping of the aforementioned beam model on the classical FBM
will be derived, the application of this plastic model to theproblem of glued interfaces
under shear is straightforward.

A third aspect that will be investigated in Chapter 5 focuseson a recently discovered
phenomenon, the change in the power law for the avalanche size distribution under certain
choices of the failure threshold distribution. Specifically, it was shown in [56] for GLS
loading conditions that the existence of a lower cutoff of this distribution results in a
change of the exponent from5/2 to 3/2, which is tantamount to a delayed recording
of the avalanches, starting only shortly prior to catastrophic failure. This discovery can
have a strong impact in the field of acoustic monitoring as such a drastic change in the
size distribution of microscopic fracture events can be measured by means of acoustic
emission technologies — the possible benefits of which have been stressed previously.
We will present a detailed numerical study of this situationunder localized load sharing,
employing the variable range model to interpolate between GLS and LLS and detect the
change of exponent for all effective ranges of interaction;in addition, a discussion of this
effect with respect to ductile vs. brittle fracture will be provided.
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Finally, we will suggest two possible modifications to the continuous damage fibre bundle
models in Chapter 6, which can account for gradual failure ofa hierarchical, disordered
system. The model that will be proposed overcomes the restriction of a fixed value for
the maximum number of failures that a constituent element can sustain. This has been
motivated by the existence of a multitude of coexisting damage mechanisms with different
activation energies and failure mechanisms, especially inexperiments on timber lamellae
under tension. A second modification that we introduce to theCDFBM allows to model
the arrest of cracks by introducing a sorting of the particular failure thresholds for each
breaking event. These two extensions will be studied extensively and the differences in
comparison to the CDFBM will be highlighted.

In Chapter 7 a discussion of the research efforts presented in this thesis will be given, and
a comparison to the state of research will be drawn. This is followed by suggestions on
further research and a brief outlook.
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Chapter 2

The Classical Fibre Bundle Model

In this section we will outline the main properties of the classical fibre bundle model in
order to facilitate the comprehension of the modified FBMs presented in the subsequent
chapters.

To generate a computationally feasible fibre bundle model, acouple of simplifying as-
sumptions have to be made [5; 22; 69; 77; 61; 6]:

The disordered model is discretized as a two-dimensional regular lattice, where the lattice
sites represent parallel fibres, see Fig 2.1. Although triangular lattices or even networks
of fibres have also been studied, we will restrict ourselves to the most commonly studied
rectangular lattice type, with side lengthL, and a number of fibresN = L2. The fibres
are loaded under uniaxial tension parallel to the fibres’ direction.

The constituent fibres behave perfectly brittle under an incremental external load, which
means they load linearly elastic with e Young modulusE until they break at their respec-
tive failure loadσi

th, i = 1, . . . , N , which is illustrated in Fig. 2.1. The Young module
E is identical for all fibres. The failure process of a single fibre is instantaneous and
irreversible, so the load on a broken fibre vanishes (see Fig.2.2). Broken fibres in the
classical FBM cannot be restored, i.e. there is no healing without modifying the failure
law.

Of crucial importance in the construction of the fibre bundlemodel is the range of load
redistribution after fibre failure, which is prescribed in the form of a load sharing rule. Two
extreme cases for the form and range of interaction have evolved as standards, and they
constitute two sub-classes of fibre bundle models with substantially different micro- and
macro-behaviour. The first form of global load sharing (GLS), sometimes termed equal
load sharing (ELS), prescribes that the load of a failed fibreis distributed on all intact
fibres in the array irrespective of their distance from the failed fibre, which as a mean
field approach renders the topology of the model irrelevant.It reflects the experimental
situation of loading a set of parallel fibres between two rigid plates, and usually it serves as
a starting point for investigating more complex variationsof this type, since GLS models
usually can be treated analytically [6; 68; 56; 69; 77].
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Figure 2.1: Schematic drawing of the classical fibre bundle model setup. The fibres are
located on a square lattice of sizeL × L. Loading with a force~F is parallel to the fibre
direction. Once a fibre fails, its load is either redistributed on the nearest intact neighbors
(LLS, see arrows) or the entire set of intact fibres (global load sharing).

For the contrary case of local load sharing (LLS), the load ofa failed fibre is shared
equally by the neighborhood of intact fibres, usually only the next neighbors on the lattice
are taken into account, as depicted in Fig. 2.1. This load redistribution evokes a high
level of stress concentration around failed regions. The accompanying correlations set
prohibitive limitations towards an analytical treatment of this problem [78; 22; 79], so
typically large scale simulations have to be employed [75; 80; 81; 29]. The experimental
image corresponding to this situation is the stretching of abundle of fibres between plates
of finite compliance [67; 42; 43].

The amount of disorder in a material is modeled through assigning randomly distributed
failure thresholdsσi

th to the fibres, where the probability density isp(σth) and the dis-
tribution function isP (σth) =

∫ σmax
th

σmin
th

p(x)dx. It is therefore of crucial importance in
modeling heterogeneity and deeply influences the overall response of the model: in fact,
it is the only component of the classical FBM that representsmaterial dependent features.
Typically, two types of random distributions are employed.The first one is a uniform
distribution between 0 and 1 with the density and distribution functions

p(σth) = 1, P (σth) = σth, (2.1)
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Figure 2.2: Linear elastic loading characteristic of a single fibre, which breaks when its
failure loadσth is reached.

which typically serves as a starting point for analytical considerations. A distribution with
a much better physical foundation [1; 24] is the Weibull distribution

P (σth) = 1 − exp
[

−
(σth

λ

)m]

, (2.2)

wherem andλ denote the Weibull index and scale parameter, respectively. It should be
noted that the amount of disorder can easily be controlled bytuning the Weibull indexm.

Some general features of FBMs should be mentioned in the following, as they are shared
by most variants and underscore the importance of the modelsin understanding the break-
down of heterogeneous materials.

Loading of a bundle is usually performed quasi-statically,and can be controlled in two
substantially different ways: first, if the deformationε of the bundle is controlled exter-
nally, the load on single fibresσi at each stage of loading is determined by the externally
imposed deformationε σi = Eε; consequently, no load sharing occurs and the fibres
break subsequently in the order of the increasing breaking thresholds. Hence, at a given
deformationε only those fibres with breaking thresholdsσi

th < Eε have failed, with
the intact fibres sustaining an equal loadEε. It follows from this that the macroscopic
constitutive behavior of the FBM is

σ(ε) = Eε [1 − P (Eε)] , (2.3)

where[1 − P (Eε)] is the fraction of intact fibres at the deformationε [47; 77]. For the
case of Weibull distributed strength values withm = 2 andλ = 1 the constitutive curve
is shown in Fig. 2.2 as a representative example.
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Figure 2.3: Macroscopic constitutive behavior of a fibre bundle with global load sharing
Eq. 2.3 using Weibull distributed strength valuesσth (m = 2 andλ = 1).

Secondly, there is the stress controlled case, where the loading is controlled externally.
Here the damage process is more complex due to the load redistribution following a fibre
breaking. The load received in this way by the remaining fibres —both in the cases
of GLS or LLS— can cause secondary fibre breakings. It turns out that consecutive
load redistributions after fibre failures can evoke entire avalanche of breakings; these
avalanches then can either stop after a certain number of fibre breakings and the integrity
of the bundle is preserved, or continue as a catastrophic event resulting in the macroscopic
failure of the entire system as all remaining intact fibres are destroyed [6; 68; 56; 30].
This catastrophic event also determines the ending point ofthe constitutive curve at its
maximum, and the subsequent decreasing part of the curve cannot be attained under stress
controlled loading.

The existence of a quadratic maximum whose position and value define the critical strain
εc and stressσc of a bundle has been proven analytically for a broad class of disorder
distributionsP under GLS conditions [47; 77]. The global strengthσc(N) rapidly con-
verges to the finite non-zero strength of the infinite bundle with increasing system sizeN
[5; 22; 77].

The macroscopic response of the bundle is more brittle underlocalized load sharing with
the constitutive curveσ(ε) of the LLS bundle equating the GLS counterpart, but macro-
scopic failure occurring at a lower critical stressσLLS

c < σGLS
c , and with only a weak

non-linearity present before failure [29]. It has been revealed through computer simula-
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Figure 2.4: DistributionD of burst sizes∆ obtained by computer simulations of a bundle
of 107 fibres. A straight line of slope 2.5 is drawn to guide the eye.

tions that in the thermodynamic limitN → ∞ the strength of LLS bundles decreases to
zero as1/ (lnN) [82].

Fibre bundle models exhibit interesting properties on the micro-level, depending on the
range of load sharing. Under GLS the spatial distribution ofbreaking events is completely
stochastic, no spatial correlations arise and randomly nucleated clusters of broken fibres
appear analogous to percolation. Under stress controlled loading, the cascades of reload-
ing events produce bursts of fibre breakings, and it has been proven analytically that the
distributionD(∆) of burst sizes∆ has a power law behavior

D(∆) ∼ ∆−α, (2.4)

if recorded over the entire course of loading.The exponentα = 5/2 is universal and
independent of the disorder distributionP [6; 68; 71]. Using simulation results for a large
fibre bundle, this generic behavior is illustrated in Fig. 2.4.

A power law distribution has also been found for more complicated long range inter-
actions, e.g. in the fuse model, which is another model system for studying material
breakdown [83; 84]). For localized load sharing in the FBM, however, studies found a
rapid decrease ofD(∆) and a dependence on the specific form of disorderP [75].
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Chapter 3

A Simple Beam Model for the Shear
Failure of Interfaces

In this chapter we study the shear failure of the glued interface connecting two solid blocks
in the framework of a novel type of model. In this model the interface is discretized in
terms of elastic beams which can be elongated and bent when exposed to a shear load.
The breaking of a beam is caused by two breaking modes, i. e. stretching and bending,
characterized by randomly distributed threshold values. The two breaking modes can
be either independent or combined in terms of a von Mises typebreaking criterion [85].
Assuming long range interaction among the beams, the full analytic solution of the model
for the macroscopic response of the interface, and for the microscopic process of failure is
found. It will be shown that the presence of two breaking modes lowers the critical stress
and strain of the material without changing the statistics of bursts of simultaneously failing
elements with respect to the case of a single breaking mode. The coupling of breaking
modes results in further reduction of the strength of the interface. We demonstrate that
the macroscopic response of the interface can be tuned over abroad range by varying
the relative importance of the two breaking modes. The limiting case of very localized
interaction of beams is also considered. We determine the constitutive behavior and the
distribution of avalanches of breaking beams for the case when beams interact solely
with their nearest and next-nearest neighbors in a square lattice. An effective simulation
technique is worked out which makes it possible to study large systems, and an account
of the research has been published in [86].

3.1 Properties of the model

In the model the glued interface of two solid blocks is represented as an ensemble of
parallel beams connecting the two surfaces. First, we derive an analytical description of
a single beam of quadratic cross section clamped at both endsand sheared by an external
forcef , see Fig. 3.1(a). The shearing is exerted in such a way that the distancel between
the two clamping planes is kept constant. Consequently, thebeam experiences not only a
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torquem, but also a normal forcet due to the elongation∆l, which is characterized by
the longitudinal strainǫ = ∆l/l.
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Figure 3.1: (a) Shearing of a single beam between two rigid plates. Since the distancel
between the plates is kept constant, the beam experiences stretching and bending defor-
mation, with longitudinalt and shearf forces. (b) Shearing of an array of beams, with
the corresponding forces. In the case shown, one beam is broken.

We derive the form of the deflection curve of the beam, as well as the magnitude of
the tension force. It is necessary to introduce some approximations, so the model can
be incorporated into the simulation code in a sensible way. Following the procedure
outlined e. g. in [87], we solve the differential equation for the beam deflectionζ(z)
under the influence of the lateral forcef and a given stretching forcet. We then solve
self-consistently fort(f), with t being the result of the longitudinal elongation.

The governing differential equation for the bending situation depicted in Fig. 3.1(a) can
be cast in the form

ζ ′′′(z) − t

EI
ζ ′(z) = − f

EI
, (3.1)

with boundary conditions

ζ(0) = 0,

ζ ′(0) = 0,

ζ ′′(l/2) = 0. (3.2)

Here,E denotes the modulus of elasticity, andI is the moment of inertia for bending of
the beam. For a beam of rectangular cross-section, we haveI = d4/12, whered is the
side length. Let us briefly motivate this ansatz by stating that the second derivativeζ ′′(z)
is proportional to the torque on the beam, so consequently itneeds to vanish at the beam
half-lengthl/2. Accordingly, the third derivativeζ ′′′(z) is proportional to the shearing
force exerted on the beam, hence, it constitutes a term of thebalance equation, Eq. (3.1).
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The first derivative term withζ ′(z) denotes the projection of the tension forcet. Due to
the clamping, the deflection and its first derivative must vanish at the endz = 0. The
formula for the bending momentm is

m = −EIζ ′′(z) . (3.3)

The solutionζ(z) for vanishingt can be obtained as [88]

ζ(z) =
fz2

12EI
(3l − 2z) , (3.4)

from which we can calculate the elongation

∆l =

∫ l

0

dz
√

1 + ζ ′2(z) − l ≈ 1

2

∫ l

0

ζ ′2 dz. (3.5)

It follows from the above equation

t = ES
∆l

l
= ESǫ, (3.6)

whereS = d2 is the beam cross-section area. The first order solution fort(f) reads as

t ≈ l4S

240EI2
f 2 . (3.7)

From a computational point of view, a formulation of bendingand stretching in terms of
the longitudinal strainǫ is more suitable than using the lateral forcef . For that, we only
need to replacem(f) bym(ǫ), which yields

m(ǫ) ≈ fl

2
=

√

5

12

Ed4

l

√
ǫ, (3.8)

with

ǫ =
t

ES
=

3l4

5E2d8
f 2. (3.9)

Usingǫ as an independent variable enables us to make comparisons tothe simple case of
fibre bundle models [5; 77; 89; 69; 29; 30] where the elements can have solely stretching
deformation. In the model we represent the interface as an ensemble of parallel beams
connecting the surface of two rigid blocks (see Fig. 3.1(b)). The beams are assumed to
have identical geometrical extensions (lengthl and side lengthd) and linearly elastic be-
haviour characterized by the Young modulusE. In order to capture the failure of the
interface in the model, the beams are assumed to break when their deformation exceeds
a certain threshold value. As it has been shown above, under shear loading of the inter-
face beams suffer stretching and bending deformation resulting in two modes of breaking,
which can act independently or in combination. The strengthof beams is characterized
by the two threshold values of stretchingǫ1 and bendingǫ2 a beam can withstand. The
breaking thresholds are assumed to be randomly distributedvariables of the joint proba-
bility distribution (PDF)p(ǫ1, ǫ2). The randomness of the breaking thresholds is supposed
to represent the disorder of the interface material.
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After breaking of a beam the excess load has to be redistributed over the remaining intact
elements. Coupling to the rigid plates ensures that all the beams have the same deforma-
tion giving rise to global load sharing, i. e. the load is equally shared by all the elements,
stress concentration in the vicinity of failed beams cannotoccur. If one of the interfaces
has a certain compliance, the load redistribution following breaking of beams becomes lo-
calized. This case has recently been studied for the external load imposed perpendicular
to the interface [46].

In the present study we are mainly interested in the macroscopic response of the inter-
face under shear loading and the process of progressive failure of interface elements. The
global load sharing of beams enables us to obtain closed analytic results for the consti-
tutive behaviour of the system for both independent and coupled breaking modes. We
examine by computer simulations the statistics of simultaneously failing elements. The
limiting case of the very localized interaction of interface elements is explored by com-
puter simulations.

3.2 Constitutive behaviour

Assuming global load sharing for the redistribution of loadafter the failure of beams, the
most important characteristic quantities of the interfacecan be obtained in closed analytic
form.

Breaking of the beam is caused by two breaking modes, i. e. stretching and bending which
can be either independent or coupled by an empirical breaking criterion. Assuming that
the two breaking modes are independent, a beam breaks if either the longitudinal stresst
or the bending momentm exceeds the corresponding breaking threshold. Since the lon-
gitudinal stresst and the bending momentm acting on a beam can easily be expressed
as functions of the longitudinal deformationǫ, the breaking conditions can be formulated
in a transparent way in terms ofǫ. To describe the relative importance of the breaking
modes, we assign to each beam two breaking thresholdsǫi1, ǫ

i
2, i = 1, . . . , N , whereN

denotes the number of beams. The threshold valuesǫ1 andǫ2 are randomly distributed ac-
cording to a joint probability density functionp(ǫ1, ǫ2) between lower and upper bounds
ǫmin
1 , ǫmax

1 andǫmin
2 , ǫmax

2 , respectively. The density function needs to obey the normaliza-
tion condition

∫ ǫmax
2

ǫmin
2

d ǫ2

∫ ǫmax
1

ǫmin
1

d ǫ1 p(ǫ1, ǫ2) = 1. (3.10)

3.2.1 ORbreaking rule

First, we provide a general formulation of the failure of a bundle of beams. We allow for
two independent breaking modes of a beam that are functionsf andg of the longitudinal
deformationǫ. This case will be called theORbreaking rule, since a single beam breaks
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if either its stretching or bending deformation exceed the respective breaking thresholdǫ1
or ǫ2, i.e. failure occurs if

f(ǫ)

ǫ1
≥ 1 or (3.11)

g(ǫ)

ǫ2
≥ 1, (3.12)

where Eqs. (3.11,3.12) describe the stretching and bendingbreaking modes, respectively.
The functionsf(ǫ) andg(ǫ) are called failure functions, for which the only restriction is
that they be monotonic functions ofǫ. For our specific case of elastic beams the failure
functions can be determined from Eqs. (3.6,3.8) as

f(ǫ) = ǫ , g(ǫ) = a
√
ǫ, (3.13)

wherea is a constant and the value of the Young modulusE is set to 1.

In the plane of breaking thresholds each point(ǫ1, ǫ2) represents a beam. For each value
of ǫ those beams which survived the externally imposed deformation are situated in the
areaf(ǫ) ≤ ǫ1 ≤ ǫmax

1 andg(ǫ) ≤ ǫ2 ≤ ǫmax
2 , as it is illustrated in Fig. 3.2. Hence, the

fraction of intact beamsNintact/N at a given value ofǫ can be obtained by integrating the
density function over the shaded area in Fig. 3.2

Nintact

N
=

∫ ǫmax
2

g(ǫ)

d ǫ2

∫ ǫmax
1

f(ǫ)

d ǫ1 p(ǫ1, ǫ2). (3.14)

Due to the global load sharing, deformation and stress of thebeams are the same every-

ε
1

ε 2

ε
1

ε 2

ε
1

min ε
1

max

ε
2

min

ε
2

max

f(
ε)

g(ε)

intact fibers

Figure 3.2: Plane of breaking thresholds(ǫ1, ǫ2). The point of intersection off(ǫ) and g(ǫ)
determines the fraction of remaining beams.
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where along the interface. Consequently, the macroscopic elastic behaviour of the system
can be obtained by multiplying the load of a single beam,σ(1) = ǫ (E = 1 is taken), by
the fraction of intact elements Eq. (3.14)

σ = ǫ

∫ ǫmax
2

g(ǫ)

d ǫ2

∫ ǫmax
1

f(ǫ)

d ǫ1 p(ǫ1, ǫ2). (3.15)

Assuming that the breaking thresholds, characterizing therelative importance of the two
breaking modes, are independently distributed, the joint PDF can be factorized as

p(ǫ1, ǫ2) = p1(ǫ1) · p2(ǫ2). (3.16)

Introducing the cumulative distribution functions (CDFs)as

P1(ǫ1) =

∫ ǫ1

ǫmin
1

p1(ǫ
′

1) dǫ
′

1, andP2(ǫ2) =

∫ ǫ2

ǫmin
2

p2(ǫ
′

2) dǫ
′

2 , (3.17)

we can rewrite Eq. (3.15) as

σ = ǫ

∫ ǫmax
2

g(ǫ)

dǫ2 p2(ǫ2)

∫ ǫmax
1

f(ǫ)

dǫ1 p1(ǫ1)

= ǫ[1 − P2(g(ǫ))][1 − P1(f(ǫ))]. (3.18)

This is the general formula for the constitutive behaviour of a beam bundle with two
breaking modes applying theOR criterion. In the constitutive equation1 − P1(f(ǫ))
and1 − P2(g(ǫ)) are the fraction of those beams whose threshold value for bending and
stretching is larger thang(ǫ) andf(ǫ), respectively. It follows from the structure of Eq.
(3.18) that the existence of two breaking modes leads to a reduction of the strength of the
material, both the critical stress and strain take smaller values compared to the case of a
single breaking mode applied in simple fibre bundle models [5; 77; 6; 29; 30; 65; 70; 63].

Considering the special case of two uniform distributions for the breaking thresholds in
the intervals[ǫmin

1 , ǫmax
1 ] and [ǫmin

2 , ǫmax
2 ], respectively, we can derive the specific form of

Eq. (3.18) by noting that

p(ǫ1) =
1

ǫmax
1 − ǫmin

1

, p(ǫ2) =
1

ǫmax
2 − ǫmin

2

(3.19)

After calculating the cumulative distributions, the final result follows as

σ = ǫ
[ǫmax

1 − f(ǫ)][ǫmax
2 − g(ǫ)]

[ǫmax
1 − ǫmin

1 ][ǫmax
2 − ǫmin

2 ]
. (3.20)

More specifically, if the distributions have equal boundaries [0, 1], and substituting the
failure functionsf andg from Eq. (3.13), the constitutive equation takes the form

σ = ǫ[1 − ǫ][1 − a
√
ǫ]. (3.21)
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3.2.2 Von Mises type breaking rule

We now address the more complicated case that the two breaking modes are coupled by a
von Mises type breaking criterion: a single beam breaks if its strainǫ fulfills the condition
[85]

(
f(ǫ)

ǫ1

)2

+
g(ǫ)

ǫ2
≥ 1. (3.22)

This algebraic condition can be geometrically representedas it is illustrated in Fig. 3.3.
In the plane of the failure thresholdsǫ1, ǫ2, the beams that survive a loadǫ are bounded
by the maximum valuesǫmax

1 , ǫmax
2 and the hyperbola-like curve defined by Eq. (3.22).

Calculating the intersection pointsa andb defined in Fig. 3.3, which are found to be

1
min f( ) 1

max

1

2
min

g( )

2
max

2

a

b

A

B

Figure 3.3: Intact beams in the plane of the failure thresholds ǫ1, ǫ2 for a given strain
ǫ, if breaking is determined by the von Mises criterion. The shaded region labeledA
denotes the intact beams; the shaded regionB represents the additionally failing beams
that would be intact in the case of theOR-criterion. The valuesa andb are defined as the
intersections between the curve of the breaking condition Eq. (3.22) and the maximum
valuesǫmax

1 , ǫmax
2 , respectively.
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a = f(ǫ)

(
ǫmax
2

ǫmax
2 − g(ǫ)

)1/2

and

b =
g(ǫ)(ǫmax

1 )2

(ǫmax
1 )2 − f 2(ǫ)

, (3.23)

the fraction of surviving beams can be expressed as

Nintact

N
=

∫ ǫmax
1

a

dǫ1

∫ ǫmax
2

ǫ̃2(ǫ1,ǫ)

dǫ2 p(ǫ1, ǫ2) (3.24)

with the integration limit

ǫ̃2(ǫ1, ǫ) =
ǫ21g(ǫ)

ǫ21 − f 2(ǫ)
. (3.25)

The constitutive behaviour in this case is therefore given by

σ = ǫ

∫ ǫmax
1

a

dǫ1

∫ ǫmax
2

ǫ̃2(ǫ1,ǫ)

dǫ2 p(ǫ1, ǫ2) . (3.26)

We would like to emphasize that assuming independence of thebreaking thresholds the
joint distribution factorizesp(ǫ1, ǫ2) = p1(ǫ1) · p2(ǫ2), but the integrals in Eq. (3.26) over
the two variables cannot be performed independently. Still, the integral in Eq. (3.26) can
be evaluated analytically for a broad class of disorder distributions. As an example, we
again consider two homogeneous distributions Eq. (3.19) over the interval[0, 1] along
with the failure functions Eq. (3.13). Setting the Young modulus and the parameterE =
1 = a, the integrals yield

σ = ǫ · 1

2

[(

2 − 2
√
ǫ+ ǫ

3

2 log
1 + ǫ

1 − ǫ

)

− ǫ3/2

(

2

√

1 −√
ǫ

ǫ
+ log

1 +
√

1 −√
ǫ

1 −
√

1 −√
ǫ

)]

. (3.27)

Even for the simplest case of uniformly distributed breaking thresholds, the constitutive
equation takes a rather complex form. It is important to notethat the coupling of the
two breaking modes gives rise to a higher amount of broken beams compared to theOR
criterion. In Fig. 3.3 the beams which break due to the coupling of the two breaking
modes fall in the area labeled byB.

3.3 Computer simulations

In order to determine the behaviour of the system for complicated disorder distributions
and explore the microscopic failure process of the sheared interface, it is necessary to
work out a computer simulation technique. In the model we consider an ensemble ofN
beams arranged on a square lattice. Two breaking thresholdsǫi1, ǫ

i
2 are assigned to each

beami (i = 1, . . . , N) of the bundle from the joint probability distributionp(ǫ1, ǫ2). For
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Figure 3.4:Constitutive behaviour of a bundle of beams with two breaking modes in a strain-
controlled simulation ofN = 4 · 105 beams, under theOR (dashed line),von Mises type(solid
line), and a pure stretching breaking criterion (dotted line). The random failure thresholds for
the breaking modes of each beam are sampled from uniform distribution between[0, 1]. The
points marked with ‘·’, ‘ +’ and ‘×’ denote the respective theoretical results, Eqs. (3.21, 3.27), and
σ = ǫ(1 − ǫ) for the pure stretching case. The constantsE anda are set to unity here.

theOR breaking rule, the failure of a beam is caused either by stretching or bending
depending on which one of the conditions Eqs. (3.11,3.12) isfulfilled at a lower value
of the external load. This way an effective breaking threshold ǫic can be defined for the
beams as

ǫic = min(f−1(ǫi1), g
−1(ǫi2)), i = 1, . . . , N, (3.28)

wheref−1 and g−1 denote the inverse off, g, respectively. A beami breaks during
the loading process of the interface when the load on it exceeds its effective breaking
thresholdǫic. For the case of the von Mises type breaking criterion Eq. (3.22), the effective
breaking thresholdǫic of beami can be obtained as the solution of the algebraic equation

(
f(ǫic)

ǫi1

)2

+
g(ǫic)

ǫi2
= 1, i = 1, . . . , N. (3.29)

Although for the specific case of the functionsf, g given by Eqs. (3.11,3.12) the above
equation can be converted to a 4th order polynomial and solved analytically, this solution
turns out to be impractical, especially since the numericalevaluation of the solution is
too slow. We therefore solve Eq. (3.29) numerically by meansof a modified Newton root
finding scheme, where we make use of the fact that the solutionhas the lower bound 0.
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Figure 3.5:The beams that break due to modeg fall in the shaded region. The labelsa andb mark
the abscissae of the intersection points of the curveg−1(ǫ2) = f−1(ǫ1) with the linesǫ2 = ǫmin

2

andǫ2 = ǫmax
2 , respectively.

In the case of global load sharing, the load and deformation of beams is everywhere
the same along the interface, which implies that beams breakin the increasing order of
their effective breaking thresholds. In the simulation, after determiningǫic for each beam,
they are sorted in increasing order. Quasi-static loading of the beam bundle is performed
by increasing the external load to break only a single element. Due to the subsequent
load redistribution on the intact beams, the failure of a beam may trigger an avalanche
of breaking beams. This process has to be iterated until the avalanche stops, or it leads
to catastrophic failure at the critical stress and strain. Under strain controlled loading
conditions, however, the load of the beams is always determined by their deformation so
that there is no load redistribution and avalanche activity.

In Fig. 3.4 the analytic results on the constitutive behaviour Eqs. (3.21, 3.27) are compared
to the corresponding results of computer simulations. As a reference, we also plotted the
constitutive behaviour of a bundle of fibres where the fibres fail solely due to simple
stretching [5; 77; 6; 29; 30; 65; 70; 63]. It can be seen in the figure that the simulation
results are in perfect agreement with the analytical predictions. It is important to note that
the presence of two breaking modes substantially reduces the critical stressσc and strain
ǫc (σ andǫ value of the maximum of the constitutive curves) with respect to the case when
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Figure 3.6:Constitutive behaviour of a bundle ofN = 90000 beams using theORcriterion. The
parameter valuesλ1 = 1.0 (stretching),m1 = m2 = 2 were fixed, whileλ2 corresponding to
the bending mode was shifted. Inset: Fraction of beams breaking by stretching and bending as a
function ofλ2.

failure of elements occurs solely under stretching. Since one of the failure functionsg(ǫ)
is non-linear, the shape of the constitutive curveσ(ǫ) also changes, especially in the post-
peak regime. The coupling of the two breaking modes in the form of the von Mises
criterion gives rise to further reduction of the strength ofthe interface.

3.4 Progressive failure of the interface

During the quasi-static loading process of an interface, avalanches of simultaneously fail-
ing beams occur. Inside an avalanche, however, the beams canbreak under different
breaking modes when theORcriterion is considered, or the breaking can be dominated
by one of the breaking modes in the coupled case of the von Mises type criterion. Hence,
it is an important question how the fraction of beams breaking due to a specific breaking
mode (stretching or bending) varies during the course of loading of the interface.

For theORcriterion, those beams break, for instance, under bending,i. e. under modeg
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Figure 3.7:Constitutive behaviour for different values of the shape parameterm1 of stretching.
Strain controlled simulation ofN = 90000 beams with failure due to theOR-criterion, fixing the
parametersλ1 = λ2 = 1.0 andm2 = 2. Inset: total fraction of beams broken under modeg

during the course of loading.

defined by Eq. (3.12), whose effective breaking thresholdǫic is determined byg−1(ǫi2) in
Eq. (3.28) so that the inequality holds

g−1(ǫi2) < f−1(ǫi1). (3.30)

In the plane of breaking thresholds{ǫ1, ǫ2} the region of beams which fulfill the above
condition is indicated by shading in Fig. 3.5. The fraction of beamsBg(ǫ) breaking under
modeg up to the macroscopically imposed deformationǫ can be obtained by integrating
the probability distributionp(ǫ1, ǫ2) over the shaded area in Fig. 3.5. Taking into account
the fact that the intersection pointsa, b defined in Fig. 3.5 may in general lie outside the
rectangle(ǫmin

1 , ǫmax
1 , ǫmax

2 , ǫmin
2 ) and adjusting the integral limits accordingly, we arrive at

the following formula for the fraction of fibres breaking under modeg as a function of the
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deformationǫ

Bg(ǫ) =

min(f(ǫ),b)∫

max(ǫmin
1

,a)

dǫ1

g(f−1(ǫ1))∫

ǫmin
2

dǫ2 p(ǫ1, ǫ2)

+

f(ǫ)∫

min(f(ǫ),b)

dǫ1

ǫmax
2∫

ǫmin
2

dǫ2 p(ǫ1, ǫ2)

+

ǫmax
1∫

f(ǫ)

dǫ1

g(ǫ)∫

ǫmin
2

dǫ2 p(ǫ1, ǫ2). (3.31)

It should be noted that the second integral vanishes unlessb < ǫmax
1 . The total fraction of

beams breaking under modeg during the entire course of the loading can be obtained by
substitutingǫ = ǫmax in the above formulas, whereǫmax denotes the deformation at the
breaking of the last beam.

In order to study the effect of the disorder distributionp(ǫ1, ǫ2) of beams on the relative
importance of the two breaking modes and on the progressive failure of the interface,
we considered independently distributed breaking thresholds ǫ1, ǫ2 both with a Weibull
distribution

pb(ǫb) =
mb

λb

(
ǫb
λb

)mb−1

exp

[

−
(
ǫb
λb

)mb
]

, (3.32)

where indexb can take values1 and 2. The exponentsm1, m2 determine the amount
of disorder in the system for stretching and bending, respectively, i. e. the width of the
distributions Eq. (3.32), while the values ofλ1, λ2 set the average strength of beams for the
two breaking modes. Computer simulations were performed inthe framework of global
load sharing by setting equal values for the shape parameters m1 = m2 and fixing the
value ofλ1 = 1 of the stretching mode, while varyingλ2 of the bending mode.

The total fraction of beams breaking by stretching and bending using theOR breaking
rule is presented in Fig. 3.6. Increasingλ2 of the bending mode, the beams become more
resistant against bending so that the stretching mode starts to dominate the breaking of
beams, which is indicated by the increasing fraction of stretching failure in the figure.
In the limiting case ofλ2 >> λ1 the beams solely break under stretching. Decreasing
λ2 has the opposite effect, more and more beams fail due to bending, while the fraction
of beams breaking by the stretching mode tends to zero. It is interesting to note that
varying the relative importance of the two failure modes gives also rise to a change of
the macroscopic constitutive behaviour of the system. Fig.3.6 illustrates that shifting the
strength distributions of beams the functional form of the constitutive behaviour remains
the same, however, the value of the critical stress and strain vary in a relatively broad
range.

The same analysis can also be performed by fixing the valuesλ1 andλ2 and changing
the relative width of the two distributions by varying one ofthe Weibull shape parameters
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Figure 3.8:Fraction of fibres broken by the stretching mode as a functionof ǫ for different values
of the corresponding shape parameterm1. Strain controlled simulation with failure due to the
OR-criterion,N = 90000, λ1 = λ2 = 1.0, m2 = 9.

m. We find it convenient to shiftm1, the shape parameter of the stretching mode instead
of m2. It can be observed in Fig. 3.7 that for this choice of the scale parametersλ, the
value of the critical strain hardly changes, however the critical stress nearly doubles as
compared to Fig. 3.6.

Although the effect on the final fraction of beams broken by each mode, see inset of
Fig. 3.7, is not as pronounced as for shiftingλ, we should also consider the fraction
of fibres broken up to a value ofǫ during the loading process (Fig. 3.8). It should be
noted that the end points of the respective curves in Fig. 3.8are just the final fraction
numbers in Fig. 3.7, but the curves show a strong spread for intermediate values ofǫ. This
demonstrates that changing the amount of disorder in the breaking thresholds strongly
influences the process of damaging of the interface.

We apply the methods outlined in the previous paragraphs to the von Mises case. Obvi-
ously, Eq. (3.22) does not allow for a strict separation of the two modes. However, the
breaking of a beam at a certain valueǫc is dominated by stretching if

(
f(ǫ)

ǫ1

)2

>
g(ǫ)

ǫ2
. (3.33)

With the previous prescriptions for the failure functions Eqs. (3.13), we again find a mas-
sive influence on the constitutive behaviour and the final number of broken beams, see
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Figure 3.9:Constitutive behaviour for different values of the bendingscale parameterλ2. Strain
controlled simulation with the von Mises criterion ,N = 90000, λ1 = 1.0, m1 = m2 = 2. The
inset presents the fraction of beams whose failure was dominated by the stretching or bending
mode.

Fig. 3.9. The inset of Fig. 3.9 demonstrates that a crossoverbetween stretching and bend-
ing preponderance occurs also in the von Mises case.

3.5 Avalanche statistics

The stress controlled loading of the glued interface is accompanied by avalanches of si-
multaneously failing elements. The avalanche activity canbe characterized by the dis-
tributionD(∆) of burst sizes∆ defined as the number of beam breakings triggered by
the failure of a single beam. In the framework of simple fibre bundle models, it has
been shown analytically that global load sharing gives riseto a power law distribution
of avalanche sizes for a very broad class of disorder distributions of materials strength
[68; 6]

D(∆) ∝ ∆−δ (3.34)

with an universal exponentδ = 5/2.
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Figure 3.10:Avalanche size distributionD(∆) for pure stretching of a fibre bundle, and the two
beam breaking conditions for system sizesN = 16 · 106, averaged over 100 runs. A fit with the
best resultD ∝ ∆−2.56 over almost four decades is provided. The inset shows the dependency of
the largest avalanche∆l on the system size for the three cases. Again, no difference is found.

In the previous sections we have shown that in our model the interplay of the two breaking
modes results in a complex failure mechanism on the microscopic level, which is strongly
affected by the distributions of the breaking thresholds. In order to investigate the bursts
of breaking beams we performed stress controlled simulations on large systems (N =
104 . . . 16 · 106) with both theORand von Mises type breaking criterion. In Figure 3.10
the simulation results are compared to the avalanche size distribution of a simple fibre
bundle model where failure occurs solely due to stretching [68; 6; 29; 30; 65]. In all the
cases the avalanche size distributions can be fitted by a power law over three orders of
magnitude. The best fit exponent ofδ = 2.56 ± 0.08 was derived from the system of size
N = 16 · 106 beams, with an average taken over 100 samples. The size of thelargest
avalanche in the inset of Fig. 3.10 proved to be proportionalto the system size. It can be
concluded that the beam model belongs to the same universality class as the fibre bundle
model [68; 6; 29; 30; 65].

3.6 Local load sharing

During the failure of interfaces, stress localization is known to occur in the vicinity of
failed regions, which results in correlated growth and coalescence of cracks. In our model
this effect can be captured by localized interaction of the interface elements, which nat-
urally occurs when the two solid blocks are not perfectly rigid [42]. For simplicity, in
our model solely the extremal case of very localized interactions is considered, i. e. after
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Figure 3.11:Snapshot of a LLS system at the last stable configuration. Thecolor coding repre-
sents the load per beam, with broken beams carrying a vanishing load. The system size isL = 100.

breaking of a beam in the square lattice, the load is redistributed equally on its nearest and
next-nearest intact neighbors. This localized load sharing (LLS) results in growing failed
regions (cracks) with high stress concentration along their perimeter [42; 29; 75]. Figure
3.11 shows the last stable configuration of a beam lattice preceding global failure, which
was obtained using theORcriterion for beam breaking. Due to the stress concentration
around cracks, the onset of a catastrophic avalanche occursat lower external loads mak-
ing the macroscopic response of the interface more brittle compared to the case of global
load sharing [42; 29; 75].

As for global load sharing, we shift the relative importanceof the two breaking modes
by changing their threshold distributions, and record the influence on micro- and macro-
scopic system properties. We consider here theOR-criterion, and use two Weibull distri-
butions with parametersλ1, λ2 andm1, m2, where the indices 1 and 2 denote the stretch-
ing and bending mode, respectively. Varyingλ2 for a fixedλ1, we find a considerable
influence on the constitutive properties, as Fig. 3.12 illustrates.

We investigated also the distribution of avalanche sizes for LLS, Fig. 3.13, where we vary
the scale parameterλ2 of the bending modeg. We find merely a shifting to different
amplitudes, but no considerable effect on the shape of the distribution function, which is
similar to the one reported in [29]. In comparison to the GLS case, we should note that
large avalanches cannot occur, and the functional form of the curves can be approximated
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Figure 3.12:Constitutive curves in the LLS case, shiftingλ2 (legend) and keeping the parameters
λ1 = 1.0 andm1 = m2 = 2 fixed. Stress controlled simulation ofN = 10000 fibres averaged
over 300 runs.

1 10 100

∆

0,0001

0,01

1

100

D
(∆

)

0.1
1.0
6.0

Figure 3.13:Distribution of avalanche sizes for LLS for three values ofλ2 (legend), withλ1 = 1
andm1 = m2 = 2 fixed. Simulations were performed using theOR criterion for a bundle of
10000 beams averaged over 300 runs.

by a power law with an exponent higher than for GLS in agreement with Refs. [68; 6; 75].
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3.7 Concluding remarks

Fibre bundle models have been applied to describe various aspects of the failure of het-
erogeneous interfaces. However, fibres can sustain solely elongation, and hence cannot
account for more complex deformation states of interface elements, which naturally oc-
curs under shear loading. We constructed a novel type of model for the shear failure
of the glued interface of two solid blocks. In the model the interface is discretized in
terms of elastic beams which experience stretching and bending deformation under shear.
Breaking of a beam can be caused by both deformations resulting in two failure modes.
The mechanical strength of beam elements is characterized by the two threshold values of
stretching and bending the beam can withstand. The beams areassumed to have identical
elastic properties, the heterogeneous microstructure is represented by the disorder distri-
bution of the breaking thresholds. In the model we assume that the two solid blocks are
perfectly rigid which results in a global load redistribution over the intact beams following
the breaking events.

We presented a detailed study of the macroscopic response and the progressive damaging
of the interface under quasistatic loading. Making use of the global load sharing of intact
beams, we obtained the analytic solution of the model for theconstitutive behaviour and
the amount of damage during the course of loading. In order toexplore the microscopic
process of damaging we worked out an efficient simulation technique which enables us
to study large systems. We demonstrated that the disorder distribution and the relative
importance of the two failure modes have a substantial effect on both the microscopic
damage process and the macroscopic constitutive behaviourof the interface. Varying
its parameters, the model provides a broad spectrum of material behaviours, where the
presence of a second breaking mode reduces the critical stress and strain as compared
to the classical FBM. Simulations showed that the failure ofthe interface proceeds in
bursts of simultaneously breaking beams. The distributionof burst sizes follows power
law behaviour with an exponent equal to the one of simple fibrebundles. Under stress
controlled loading conditions, the macroscopic failure ofthe interface occurs analogously
to phase transitions, where our beam model proved to be in thesame universality class
as the equal load sharing fibre bundle model [61; 29; 69]. We showed that the localized
interaction of beams leads to a more brittle behaviour of theinterface, which implies a
more abrupt transition at the critical load.

Beam models have been successfully applied to study the fracture of cohesive frictional
materials where cracks usually form along the grain-grain interface. Beam elements
proved to give a satisfactory description of the interfacial failure of grains and the emerg-
ing micro- and macro-behaviour of materials [90]. The beam model presented here pro-
vides a more realistic description of the interface of macroscopic solid bodies than the
simple fibre bundle model and is applicable to more complex loading situations. Experi-
ments on the shear failure of glued interfaces are rather limited, especially on the micro-
scopic mechanism of the progressive damage, which hinders the direct comparison of our
theoretical results to experimental findings. Our work in this direction is in progress.
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Chapter 4

Failure Process of a Bundle of Plastic
Fibres

We present an extension of models of the shear failure of glued interfaces –such as the
one presented in Chapter 3— considering that surface elements after failure still can have
a certain load bearing capacity. The disordered interface is represented by a parallel set
of fibres with random breaking thresholds and linearly elastic behavior until failure. The
broken fibres are assumed to carry a constant load which is a fraction0 ≤ α ≤ 1 of their
failure load. Varying the value ofα the model interpolates between the perfectly brittle
(α = 0) and perfectly plastic (α = 1) constitutive behavior of fibres. Based on analytic
calculations and computer simulations, we show that the finite load bearing capacity of
failed fibres has a substantial effect on both the macroscopic response and microscopic
damage process of the fibre bundle. When the load redistribution following fibre failure
is short ranged, an interesting phase transition is revealed at a specific value ofα. The
results presented here have been published in [91].

4.1 Model

In Chapter 3 we presented a detailed study which demonstrated that the beam model of
sheared interfaces with two breaking modes can be mapped into a simple fibre bundle
model of a single breaking mode by an appropriate transformation of the fibres’ strength
disorder. For the sake of simplicity, the following accounttherefore refers to bundles of
fibres, where the possible application to the problem of sheared interfaces should be kept
in mind.

In the present chapter, we extend fibre and beam models by taking into account that failed
surface elements can still carry some external load increasing the load bearing capacity of
the damaged interface. A bundle of parallel fibres is considered with breaking thresholds
σth in the interval0 ≤ σth ≤ σmax

th with a probability densityp(σth) and distribution
functionP (σth) =

∫ σth

0
p(σ′

th)dσ
′

th. We assume that after the breaking of a fibre at the
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σith

ασith

ε

σ

Figure 4.1: Constitutive behaviour of a single fibre: the fibre shows linearly elastic be-
haviour up to the breaking thresholdσi

th, then it keeps a fraction0 ≤ α ≤ 1 of the ultimate
loadασi

th.

failure thresholdσi
th, it may retain a fraction0 ≤ α ≤ 1 of its ultimate loadσi

th, i. e. it
will continue to transfer a constant loadασi

th between the surfaces. This assumption can
be interpreted so that at the damaged areas of the interfacesthe two solids still remain
in contact exerting for instance a friction force which may contribute to the overall load
bearing capacity.

In many applications involving glued parts, the glue between two interfaces has disordered
properties but its failure characteristics is not perfectly brittle, under shear the glue may
also yield. The constitutive behaviour of single fibres is illustrated in Fig. 4.1. Note that
the load carried by the broken fibres is independent of the external load, furthermore, it
is a random variable due to the randomness of the breaking thresholds. Varying the value
of α, the model interpolates between the perfectly brittle failure (α = 0) and perfectly
plastic (α = 1) behaviour of fibres. The load stored by the failed fibres reduces the
load increment redistributed over the intact fibres, which strongly affects the process of
gradual failure occurring under quasi-static loading of the interface. In the following we
present a detailed study of the model system varying the strength of plasticityα. For the
range of load sharing the two limiting cases of global and local load redistributions will
be considered after failure events.

4.2 Transition to perfect plasticity

Assuming global load sharing (GLS) after fibre breaking, theconstitutive equation of
the interface can be cast into a closed form. At an externallyimposed deformationε the
interface is a mixture of intact and broken fibres, which bothcontribute to the load bearing
capacity of the interface. Since the broken fibres retain a fractionα of their failure load, at
the instant of fibre breaking only the reduced load(1−α)σi

th is redistributed over the intact
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Figure 4.2: Constitutive behaviourσ(ε) of the plastic fibre bundle for uniform (a, b, c)
and Weibull distribution withm = 2 (d, e, f ) atα = 0.2 (a, d), α = 0.5 (b, e) andα = 1.0
(c, f ). The contribution of intactσDFBM and failed fibresσPl are also shown. Note that
σDFBM is identical with the constitutive curve of simple dry fibre bundle models.

fibres. Since the fraction of fibres having breaking threshold in the interval[ε, ε+ dε] can
be obtained asp(ε)dε, the constitutive equationσ(ε) reads as

σ(ε) = Eε(1 − P (ε))
︸ ︷︷ ︸

σDFBM

+α

∫ ε

0

Eε′p(ε′) dε′

︸ ︷︷ ︸

σPl

, (4.1)

where the integration is performed over the entire load history. The first term labeled
σDFBM provides the load carried by the intact fibres, which corresponds to the classical dry
fibre bundle (DFBM) behaviour [5; 6; 77]. The constitutive law of DFBMs is recovered
in the limiting caseα = 0, when the complete load of the failed fibre is transferred to
the remaining intact fibres of the bundle. In the second termσP l, which accounts for the
load carried by the broken fibres, the integral is calculatedover the entire load history of
the interface up to the macroscopic deformationε. It can be seen in Eq. (4.1) that the
value ofα controls the relative importance of theelasticandplastic terms influencing
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the macroscopic responseσ(ε) and also the microscopic damage process of the system.
Whenα is increased, less load is transfered to the intact fibre and in the limiting case
α = 1 failed fibres retain their entire load so no load transfer occurs. In this chapter,
we explore the influence of the parameterα when it is tuned between these two extremal
cases. In the following calculations the value of the fibres’Young modulus was set to
unityE = 1.

We note that the plastic fibre bundle model resembles up to some extent to the continuous
damage fibre bundle model (CDFBM) worked out in Refs. [21; 30]. The main assumption
of the CDFBM is that due to the activation of certain internaldegrees of freedom, the
fibres undergo a gradual softening process reducing their Young modulus in consecutive
partial failure events. The fibres always remain linearly elastic but with a Young modulus
E(k) = akE, where the multiplication factor0 ≤ α ≤ 1 describes the stiffness reduction
in a single failure event andk denotes the number of failures occurred. If the fibres can
fail only once (k = 1) and keep their stiffness value constant, the constitutivelaw of the
system reads as

σ(ε) = Eε(1 − P (ε)) + aEεP (ε). (4.2)

It was demonstrated in Refs. [21; 30] that increasing the number of timesk the fibres
can fail, the CDFBM develops a plastic plateau, however, with a mechanism completely
different from the one considered here.

It is instructive to consider two fundamentally different cases of disorder distributions
P (ε), namely bounded and unbounded ones, where the largest breaking thresholdσmax

th

takes a finite value or goes to infinity, respectively. In thischapter, we focus on two
specific realizations, i. e. a uniform distribution between0 andσmax

th

P (σth) =
σth

σmax
th

, 0 ≤ σth ≤ σmax
th , (4.3)

and distributions of the Weibull type

P (σth) = 1 − e−(σth/λ)m

, (4.4)

are considered whereλ andm denote the characteristics strength and Weibull modulus
of the distribution, respectively. For our study the Weibull distribution has the advantage
that the amount of disorder in the failure thresholds can easily be controlled by the value
of m.

The functional form of the constitutive behaviourσ(ε) is shown in Fig. 4.2 for both disor-
der distributions Eqs. (4.3),(4.4). It is interesting to note that forα < 1 there always exists
a maximum ofσ(ε), just as in the case of DFBM. Under stress controlled loadingcondi-
tions, macroscopic failure occurs at the maximum ofσ(ε) so that the position and value of
the maximum define the critical stressσc and strainεc of the bundle, respectively. It can
be observed in Fig. 4.2 that the value ofσc andεc are both higher than the corresponding
values of DFBM indicating that the presence of plastic fibresincreases the macroscopic
strength of the bundle. The decreasing part and the plateau of σ(ε) can be realized under
strain controlled loading conditions gradually increasing ε. Under strain control the local
load on the fibres is determined by the externally imposed deformation so that there is no
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Figure 4.3: Simulations of stress controlled loading of a bundle ofN = 1.6 × 106 fibres
with Weibull distributed breaking thresholds (λ = 1, m = 2). For clarity, the occurrence
of macroscopic failure is indicated by vertical lines. Increasingα the constitutive be-
haviour becomes perfectly plastic, i. e. a horizontal plateau with vanishing slope appears.

load redistribution after fibre failure. The fibres break one-by-one in the increasing order
of their failure thresholdsσi

th = Eεi
th. When the deformationε approaches the maximum

value of the breaking thresholdsεmax
th = σmax

th /E, all fibres must fail gradually so that the
load of intact fibresσDFBM tends to zero, while that of the broken fibresσPl takes a finite
asymptotic value

σPl → σ̃ = αE

∫
∞

0

ε′p(ε′)dε′ = α 〈σth〉 , (4.5)

where the integral is equal to the average fibre strength〈σth〉. When the strength of
plasticityα is increased, the critical strainεc and stressσc, furthermore, the asymptotic
stress of the plateaũσ increase. The value of the critical deformationεc can be obtained
by differentiating Eq. (4.1) with respect toε and calculating the root [77]

1 − P (εc) − εcp(εc) [1 − α] = 0, (4.6)

from which the critical stress follows asσc = σ(εc). Eq. (4.6) implies that in the limiting
case ofα → 1 the critical strainεc tends to the maximum of the breaking thresholdsεmax

th ,
whereP (εmax

th ) = 1. For the uniform distribution Eq. (4.3) we obtain

εc =
ε0

c

1 − α/2
, hence, εc −−→

α→1
2ε0

c = εmax
th . (4.7)
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Figure 4.4: Critical strainεc (a), and critical stressσc (b) as a function of1 − α for a
Weibull distribution withλ = 1, m = 2; symbols: simulation results, solid lines: analyti-
cal expressions Eqs. (4.8),(4.9),(4.10).

Here ε0
c denotes the critical strain of DFBMε0

c = εmax
th /2, which can be obtained by

settingα = 0 in Eq. (4.6). It follows that for unbounded threshold distributions like
the Weibull distribution,εc diverges so that perfect plasticity is only reached in the limit
εc → ∞. The functional form of the divergence is not universal, dueto the structure of
the third term on the left hand side of Eq. (4.6),εc depends on the specific form ofp(ε).
For the Weibull distribution,εc as a function ofα reads as

εc = ε0
c (1 − α)−1/m , where ε0

c = λ

(
1

m

)1/m

(4.8)

for any Weibull exponentm. Parallel to this, the decreasing part and the plateau of the
constitutive curveσ(ε) disappear so thatσc andσ̃ converge to the same finite value, which
is the average fibre strength〈σth〉

σ̃ → 〈σth〉 and σc → 〈σth〉 . (4.9)

The average fibre strength〈σth〉 can be determined as

〈σth〉 =
σmax

th

2
and 〈σth〉 =

1

m
Γ

(
1

m

)

(4.10)

for the uniform and Weibull distributions, respectively. HereΓ denotes the Gamma func-
tion.

In order to illustrate this behaviour, Fig. 4.3 presents constitutive curves for Weibull dis-
tributed fibre strength obtained by computer simulations ofstress controlled loading up to
the critical point withλ = 1 andm = 2. It is apparent that in the limiting case ofα → 1
the constitutive curveσ(ε) reaches a plateau, indicating a perfectly plastic macroscopic
state of the system. The position of the maximumεc of the constitutive curves, i. e. the
ending point of the curves, rapidly increases asα approaches 1, while the value of the
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Figure 4.5: Fraction of intact fibresφ = 1 − P (εc(α)) at the point of macroscopic failure
εc vs. 1 − α for a Weibull distribution ofλ = 1, m = 2; circles: GLS simulation results,
solid line: analytical solution Eq. (4.11).

maximumσc tends to a finite value. In agreement with the analytic predictions Eq. (4.8),
simulations confirmed thatεc diverges as a power law whose exponent depends on the
parameters of the strength distribution (see Fig. 4.4).

Controlling the external stress, the constitutive curve ofthe system Fig. 4.3 can only be
realized up to the maximum, since at the critical loadσc abrupt failure of the bundle occurs
breaking all the surviving intact fibres in a large burst. Thefractionφ of fibres which break
in the final burst causing global failure can be determined asφ = 1 − P (εc(α)), which is
illustrated in Fig. 4.5 as a function of1−α for the specific case of a Weibull distribution

φ(α) = e−1/m(1−α). (4.11)

It can be observed that as the system approaches the state of perfect plasticityα → 1, φ
tends to zero. This demonstrates that more and more fibres break before global failure
occurs, and perfect plasticity is obtained when the strongest fibre fails at the maximum of
σ(ε) (compare also to Fig. 4.3). This argument also implies that forα → 1, the difference
of the microscopic damage process under stress and strain controlled loading disappears,
the fibres break one-by-one without triggering avalanches of breakings.
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Figure 4.6: Analytic solution of the avalanche size distributionD(∆) at various different
values ofα. Forα → 0 the usual power law distribution is recovered, whereas forα →
1 an exponential decay ofD(∆) is obtained. For the specific calculations a Weibull
distribution was used withm = 2.

4.3 Avalanches of fibre breakings

Under stress controlled loading of the fibre bundle, the loaddropped by a breaking fibre
is redistributed over the intact ones. This load increment can give rise to further breakings
which then may trigger an entire avalanche of failure events. The distributionD(∆) of
avalanche sizes∆ is an important quantity for the dynamical description of the loaded
system. For the case of classical DFBMs (α = 0) under GLS conditions the avalanche
size distributionD(∆) can be obtained analytically [68; 6] as an integral, from which the
asymptotic form of the distribution for large avalanches proved to be a power law

D(∆) ∝ ∆−5/2, ∆ → ∞. (4.12)

The value of the exponent5/2 is universal, it does not depend on the details of the
disorder distribution of the failure thresholds [68; 6].

In order to obtain the analytical solution for the avalanchedistribution in the presence of
plastic fibresα 6= 0, we can follow the derivation of Refs. [68; 6], taking into account
that the average number of fibresa(ε, α)dε which break as a consequence of the load
increment caused by a fibre breaking at the deformationε, is reduced by a factor of(1−α)

a(ε, α)dε =
εp(ε)(1 − α)

1 − P (ε)
dε. (4.13)
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Taking into account that the critical deformationεc where macroscopic failure occurs also
depends onα, the avalanche size distributionD(∆) can be cast in the form

D(∆)

N
=

∆∆−1

∆!

εc(α)∫

0

a(ε, α)∆−1e−a(ε,α)∆ × (4.14)

[1 − a(ε, α)]p(ε) dε.

For the specific case of the Weibull distribution with an arbitrary modulusm the general
equation Eq. (4.14) can be written in the form

D(∆, α) =
∆∆−1

∆!(m(1 − α))2∆∆+1
c

[γ(∆,∆c) (4.15)

+ ∆∆
c m(1 − α)e−∆c

]
,

where∆c depends on the amount of disorderm and on the strength of plasticityα

∆c = ∆ +
1

m(1 − α)
. (4.16)

In Eq. (4.15)γ denotes the incomplete Gamma function1. Two limiting cases can be
distinguished in the solution: first, forα → 0 the classical power law dependence Eq.
(4.12) is recovered. This analytic solution is illustratedin Fig. 4.6 for a Weibull distri-
bution withm = 2, where a power law ofD(∆) is apparent forα < 0.9. However, for
the limiting case ofα → 1, we have to consider the behaviour of the argument∆c of the
analytic solution Eq. (4.15). Forα ≈ 1, there will be a regime of∆ values where the
term1/(m(1−α)) dominates over∆ resulting in a faster decay of the distributionD(∆)
than any power. Still, for any values ofα in the limiting case∆ >> ∆c(α), the usual
mean field power law behaviour Eq. (4.12) is asymptotically recovered. Avalanche size
distributionsD(∆) obtained from computer simulations at various different values ofα
are presented in Fig. 4.7. In a good quantitative agreement with the analytic predictions,
the numerical results can be well fitted by a power law of exponent 5/2 for moderate val-
ues ofα. However, forα > 0.9 strong deviations from the power law Eq. (4.12) can be
observed for intermediate avalanche sizes1 ≤ ∆ ≤ 103, which appears to be an exponen-
tial decay. Although in the analytical solution the asymptotic power law behaviour is still
visible for very large∆, see Fig. 4.6, computer simulations in Fig. 4.7 show solely avery
steep decrease. It can be seen in the analytic solution in Fig. 4.6 that the relative frequency
of avalanches of size∆ > O(103) is D = O(10−30) for α = 0.99, so it would require
extremely large systems to count any such events. The size ofthe largest avalanche∆max

is plotted in Fig. 4.8 as a function ofα. Obviously,∆max is a monotonically decreas-
ing function ofα whose decrease gets faster in the regime where the distributionD(∆)
exhibits the crossover to the faster decaying form.

An important consequence of the analytic solution Eqs. (4.15),(4.16) is that the charac-
teristic avalanche size where the crossover occurs from a power law to a faster decaying
exponential form also depends on the amount of disorder, i. e. the stronger the disorder is,
the larger the crossover size gets at a givenα.

1There are several definitions of the incomplete Gamma function, we useγ(a, x) =
x∫

0

e−tta−1 dt .
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Figure 4.7: DistributionD(∆) of avalanches of size∆ for various values ofα obtained
by computer simulations for a system ofN = 1.6 · 107 fibres with Weibull distributed
failure thresholdsm = 2. Satisfactory agreement is obtained with the analytic results
presented in Fig. 4.6.

4.4 Local load sharing

From experimental and theoretical point of view, it is very important to study the be-
haviour of the plastic bundle when the interaction of fibres is localized. In the case of local
load sharing (LLS) under stress controlled external loading conditions, the load dropped
by the broken fibre is redistributed in a local neighborhood of the fibre giving rise to high
stress concentration in the vicinity of failed regions. Stress concentration leads to corre-
lated growth of clusters of broken fibres (cracks), which plays a crucial role in the final
breakdown of the system, i. e. macroscopic failure of the bundle occurs due to the insta-
bility of a broken cluster which then triggers an avalanche of failure events where all the
remaining intact fibres break. This effect typically leads to a more brittle constitutive be-
haviour of the system and the appearance of non-trivial spatial and temporal correlations
in the damage process [75; 42; 29; 21].

In the plastic bundle, after a fibre breaks it still retains a fractionα of its failure loadσth so
that only the amount(1−α)σth is redistributed over the intact fibres in the neighborhood.
It implies that the load bearing broken fibres reduce the stress concentration around failed
regions giving rise to stabilization which also affects thetemporal and spatial evolution
of damage during the loading process.
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Figure 4.8: Size of the largest avalanche in a GLS simulationwith a Weibull distribution
of m = 2.

In the following we consider a bundle ofN fibres organized on a square lattice of size
L × L with periodic boundary conditions. The fibres are assumed tohave Weibull dis-
tributed strength Eq. (4.4), where the value ofλ is always set to unity and for the Weibull
modulus two different values are considered:m = 2 (large disorder) andm = 4 (smaller
disorder). After a failure event the load dropped by the broken fibre (1 − α)σi

th is
equally redistributed over the nearest and next-nearest intact neighbors in the square lat-
tice, i. e. the local neighborhood of a broken fibre contains at most 8 intact sites. Stress
controlled simulations have been carried out for system sizes ranging fromL = 33 to
L = 801 varying the strength of plasticity0 ≤ α ≤ 1.

4.4.1 Macroscopic response

It has been shown for DFBMs where broken fibres carry no load, that the macroscopic
response of the bundle when the interaction of fibres is localized follows the constitutive
law of the corresponding GLS system with a reduced critical strain and stress, i. e. the
LLS bundle behaves macroscopically in a more brittle way than its GLS counterpart
[75; 21; 29]. Figure 4.9 shows the constitutive curve of a plastic bundle of sizeL = 401
for several different values ofα. It can be observed that forα ≈ 0 the constitutive curve
exhibits the usualLLS behaviour, i. e. the macroscopic failure is preceded by a relatively
short non-linear regime and global failure occurs in an abrupt manner. The position of
the macroscopic failure defines the value of the critical strain εLLS

c and stressσLLS
c . It is

very interesting to note that whenα is increased, the LLS constitutive curves practically
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Figure 4.9: Constitutive lawσ(ε) of the LLS bundle obtained by computer simulations of
a system of sizeL = 401 for several different values ofα. The inset shows a magnified
view of σ(ε) for the regimeα < 0.4. For clarity, vertical lines indicate the location of
macroscopic failure. For the breaking thresholds a Weibulldistribution was used with
m = 2.

recover the behaviour of the corresponding GLS system, i. e.for α ≥ 0.4 the macroscopic
failure occurs when reaching the plateau ofσ(ε).

The convergence of the LLS system to the GLS macroscopic behaviour is better seen in
Fig. 4.10 where the relative difference of the critical stressesσGLS

c (α) andσLLS
c (α) of the

global and local load sharing bundles is presented. It can beseen in the figure that there
exists a threshold valueαc of α above which the macroscopic response of the LLS bundle
becomes very close to the corresponding GLS system, while below αc the constitutive
behaviour of the bundle changes continuously from the usualLLS response with a high
degree of brittleness (α = 0) to the global load sharing behaviour. It seems that atαc a
continuous transition occurs between the two regimes. The transition indicates that as a
consequence of the reduction of stress concentration around failed fibres, the bundle can
sustain higher external loads and is able to keep its integrity until the maximum ofσ(ε) is
reached.
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Figure 4.10: The relative difference of the critical stressesσGLS
c andσLLS

c of global
and local load sharing systems as a function ofα for two different values of the Weibull
modulusm. The vertical lines indicate the critical values ofα, which were obtained in
Sec. 4.4.3.

4.4.2 Bursts of fibre breakings

The evolution of the macroscopic response of the system withincreasingα is accom-
panied by interesting changes of the damage process on the micro-level, characterized
by the avalanches of fibre breakings and the cluster structure of failed regions. The
avalanche statistics presented in Fig. 4.11 shows remarkable features. Forα ≈ 0, due
to the high stress concentration around failed fibres, the LLS bundle can only tolerate
small avalanches so that the avalanche size distributionD(∆) decays rapidly. With in-
creasingα the higher amount of load kept by broken fibres can stabilize the bundle even
after larger bursts, hence, the cut-off of the distributions moves to higher values. It is in-
teresting to note that also the functional form of the distributionD(∆) changes, i. e. when
α approachesαc the exponential cut-off disappears and the distribution becomes a power
law

D(∆) ∼ ∆−µ (4.17)

for large avalanches. The exponentµ of the power law was determined numerically as
µLLS = 1.5 ± 0.07, which is significantly lower than the mean field valueµGLS = 2.5
[6]. Increasingα above the critical point an exponential cut-off occurs and the power law
regime of large avalanches gradually disappears. Comparing Fig. 4.11 to the correspond-
ing GLS results presented in Fig. 4.7, it is apparent that aboveαc the LLS distributions
D(∆) have the same functional form and follow the same tendency with increasingα as
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Figure 4.11: Avalanche size distributionsD(∆) obtained by computer simulations for the
system sizeL = 401 with local load sharing, using Weibull distributed failurethresholds
m = 2. The power law fit is demonstrated forα = 0.4. In the inset the size of the largest
avalanche∆max is plotted versusα.

the mean field results. It can be concluded that the avalanchestatistics presents the same
transitional behaviour between the local load sharing and mean field regimes as observed
for the macroscopic response. The same value ofµLLS was obtained numerically for
m = 4, indicating the universality of the exponent with respect to the strength of disor-
der. The transition is more evident in the inset of Fig. 4.11,where the size of the largest
avalanche∆max is plotted as a function ofα. The sharp peak indicates the transition
point whose position definesαc, while in GLS the size of the largest avalanche∆max was
a monotonically decreasing smooth function (compare to Fig. 4.8).

4.4.3 Spatial structure of damage

Gradually increasing the external load in the fibre bundle, the weakest fibres break first
in an uncorrelated manner. Since the load is redistributed solely over the intact neighbors
of the broken fibre, the chance of fibre breakings increases inthe vicinity of damage
regions. This effect can result in correlated growth of clusters of broken fibres with a high
stress concentration around their boundaries. The larger the cluster is, the higher stress
concentration arises. Global failure of the bundle occurs when, due to an external load
increment, one of the clusters becomes unstable and grows until all fibres break. The
spatial structure of the damage emerging when the interaction of fibres is localized can be
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Figure 4.12: Latest stable configuration in LLS simulationsof a system of sizeL = 401,
with a Weibull strength distributionm = 2 at different values of the control parameterα
(a) 0.0, (b) 0.35, (c) 0.4, (d) 0.6. The strength of the largest clusterP∞ in the lattices are
(a) 0.003, (b) 0.097, (c) 0.517, (d) 0.999. Broken and intact fibres are indicated by black
and white, respectively.

characterized by studying the statistics and structure of clusters of broken fibres. Former
studies of the limiting case of very localized interactionshave revealed that the size of
the largest cluster in the system is rather limited, furthermore, it is independent of the
system size. Since the clusters are relatively small, merging of neighboring clusters does
not occur frequently. The clusters themselves are found to be compact objects dispersed
homogeneously over the cross section of the bundle [72; 48; 21].

In Fig. 4.12 the latest stable configuration of the bundle is presented just before catas-
trophic failure occurs at the critical loadσLLS

c for several different values ofα. Forα ≈ 0
we note only small clusters of broken fibres as it is expected for LLS bundles (Fig. 4.12a).
With increasingα, these clusters grow and adjacent clusters can even merge further in-
creasing the typical cluster size (Fig. 4.12b). Around the critical value ofα ≈ 0.4, a
spanning clusterof broken fibres seems to appear (Fig. 4.12c), whereas for higher values
of α > 0.4 almost all fibres have failed (Fig. 4.12d) already by the timethe critical stress
is reached. The existence of very large clusters is the direct consequence of the increased
load bearing capacity of broken fibres.
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Figure 4.13: Distributionn of the sizeS of broken clusters in LLS simulations with
a Weibull distributionm = 2, for different values ofα. The spanning clusters were
excluded from the distributions forα ≥ 0.4.

Clusters of broken fibres were identified in the square lattice using the Hoshen-Kopelman
algorithm. We evaluated the distribution of cluster sizesn(S) in the last stable config-
uration just before macroscopic failure occurs. The behaviour of n(S) shows again the
transitional nature we have observed for other quantities.It can be seen again in Fig. 4.13
that a well definedαc exists which separates two regimes: forα < αc the clusters are
small andn(S) has a steep decrease. Approachingαc, the cluster size distributionn(S)
tends to a power law

n(S) ∼ S−τ , (4.18)

where the value of the exponent was obtained asτ = 2.35 ± 0.08 which is higher than
the corresponding exponent of 2d-percolation on a square lattice τ = 187/91 ≈ 2.0549
[92]. Note that in the regime where spanning clusters exist (α ≥ 0.4), the distribution
n(S) contains only the finite clusters.

In order to characterize the evolution of the cluster structure whenα is changed and to
reveal the nature of the transition occurring atαc, we calculated the average cluster size
Sav as the ratio of the second and first moments of the cluster sizedistribution

Sav =
m2

m1

. (4.19)

Thek-th momentmk of the distributionn(S) is defined as

mk =
∑

S

Skn(S) − Sk
max, (4.20)
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Figure 4.14: Average cluster sizeSav = m2/m1 as a function ofα for different system
sizesL. Simulation results were obtained with a Weibull distributionm = 2.

where the largest cluster is excluded from the summation. Figure 4.14 presentsSav as a
function ofα for different system sizes ranging fromL = 33 to L = 801. It can be seen
in the figure that for each value ofL the average cluster sizeSav has a maximum at a well
defined value ofα, which becomes a sharp peak with increasingL, i. e. the peak becomes
higher and narrower for larger systems. The observed behaviour is typical for continuous
phase transitions, where the position of the maximum definesthe critical point of the
finite size system. Based on the analogy to critical phenomena we tested the validity of
the scaling lawSav ∼ Lγ/νφ((α− αc)L

1/ν), whereφ denotes the scaling function ofSav

[93; 92]. The results presented in Fig. 4.15 were obtained byvarying the values of the
critical pointαc and of the critical exponent of the susceptibilityγ, and correlation length
ν until the best data collapse was reached. It can be observed in Fig. 4.15 that in the
vicinity of the critical pointαc a good quality data collapse is obtained using the values
αc = 0.385 ± 0.01, γ = 2.0 ± 0.15, andν = 1.0 ± 0.1, where the critical exponents
are only slightly different from the percolation exponentsof γ = 43/18 ≈ 2.389 and
ν = 4/3 ≈ 1.33 in 2d [92].

At the critical point a spanning cluster of broken fibres occurs which is much larger than
the other clusters. In order to characterize the strength ofthe spanning cluster we calcu-
lated the probabilityP∞(α) that a failed fibre belongs to the largest cluster. For percola-
tion the quantityP∞ plays the role of the order parameter whose value distinguishes the
phases of the system. Similarly to percolation lattices, wefind numerically a sharp rise
from P∞ = 0 to P∞ = 1 atαc ≈ 0.4, see Fig. 4.16. When the system sizeL is increased
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Figure 4.15: Finite size scaling of the average cluster sizeSav presented in Fig. 4.14. The
collapse of the curves enables us to determine the value of the critical exponentsγ andν
with a relatively good precision.

P∞ tends to a step function indicating that the transition becomes sharper. Assuming the
scaling lawP∞ ∼ L−β/νψ((α − αc)L

1/ν) of the order parameter for finite size systems,
whereψ denotes the scaling function andβ is the order parameter exponent [93; 92], we
re-plotted the data in Fig. 4.17. The good quality of the datacollapse was obtained with
the parameter valuesαc = 0.33 ± 0.01, β = 0.15 ± 0.06, andν = 0.95 ± 0.1. Note that
the value ofν agrees well with the one determined by the finite size scalingof the average
cluster sizeSav, larger deviations occur only for the critical pointαc. The order parameter
exponentβ is compatible with the percolation valueβ = 5/36 ≈ 0.13

4.4.4 Random crack nucleation versus crack growth

The failure mechanism of disordered materials and its relation to the amount of disorder
has long been discussed in the literature [1; 24; 21; 84; 48; 62; 94; 83]. When the
material has a low degree of disorder only a small amount (if any) of damage occurs prior
to macroscopic failure. In this case even the nucleation of asingle microcrack can lead
to localization and abrupt failure of the system. Increasing the amount of disorder, the
macroscopic failure is preceded by a larger and larger precursory activity, i. e. a large
amount of damage accumulates and local breakings can trigger bursts of breaking events
[6]. Since cracks nucleate randomly, the process of damage before localization resembles
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Figure 4.16: Order parameterP∞ vs.α for several system sizesL with the Weibull index
m = 2.

percolation up to some extent. Stress concentration buildsup around failed regions which
might lead to correlated growth of the nucleated cracks [95;21; 84; 61]. Increasing the
strength of disorder, correlation effects become less dominating and in the limit of infinite
disorder the damage accumulation process can be mapped to percolation [96].

We have shown above that in the plastic fibre bundle model (PFBM), the load bearing
capacity of broken fibres has a substantial effect on the process of failure when the load
redistribution is localized due to the reduction of the stress concentration along cracks.
In order to give a quantitative characterization of damage accumulation in our model, we
determined the fraction of broken fibrespb at global failureσc as a function of the strength
of plasticityα. The quantitypb can also be interpreted as the probability0 ≤ pb ≤ 1 that
a randomly chosen fibre in the bundle is broken which makes it possible to compare
the spatial structure of damage to percolation lattices [92] generated with the occupation
probabilityp = pb [1; 24; 29; 96]. The results are presented in Fig. 4.18 for thesystem
sizeL = 401 and Weibull parametersm = 2 andm = 4 plotting also the corresponding
GLS results for comparison. In the case of local load sharing, when the failure load of
fibres is almost entirely redistributed locally (α ≈ 0) only a small damage can accumulate
up to global failurepLLS

b ≈ 0.1 − 0.2 keeping the integrity of the system. Comparing
the curves of different Weibull indicesm it follows that the stronger the disorder is, the
larger amount of damage the system can tolerate at the same value ofα. In the vicinity
of the respectiveαc, the breaking fractionpLLS

b rapidly increases and converges to the
maximum valuepLLS

b ≈ 1, which implies that in the regimeα > αc practically no
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Figure 4.17: Finite size scaling of the order parameterP∞ presented in Fig. 4.16. The
parameter values used to obtain the best quality data collapse agree well with the ones
determined by the finite size scaling ofSav.

localization occurs, the bundle can remain stable until almost all fibres break.

It is instructive to compare this behaviour to the case of GLS, where those fibres break up
to the critical point whose breaking threshold falls belowσc, hence,pGLS

b (α) can simply
be obtained aspGLS

b = P (σc(α)). In Fig. 4.18 it can be seen that under global load
sharing forα ≈ 0 a significantly larger fraction of fibres fails without destroying the
system than in the LLS bundle. The breaking fractionpb is a monotonically increasing
function of α irrespective of the range of load sharing, however, in the vicinity of the
critical point of LLS bundlespLLS

b exceeds the smoothly rising GLS curvespGLS
b . Note

that depending on the threshold distributionP of fibres, even atα = 0 the value ofpGLS
b

can be smaller or larger than the critical percolation probability pc of the corresponding
lattice type, since (contrary to fuse networks [83; 84] or discrete element models [90])
fracture in fibre bundles is not related to the appearance of aspanning cluster of failed
elements. Varyingα as a control parameter, formally the GLS results could be perfectly
mapped onto a percolation problem: at the critical value of the control parameterαGLS

c

defined asP (σc(α
GLS
c )) = pc a spanning cluster occurs, which has a fractal structure,

the average size of finite clusters has a maximum at the critical point and the cluster size
distribution exhibits gap scaling [92]. However, this percolation is not related to the point
of failure of the GLS bundle, the analogy to percolation is based purely on geometrical
properties without any physical relevance.
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Figure 4.18: The fraction of broken fibrespb at σc as a function ofα for fibre bundles
of LLS and GLS with different strength of disorderm = 2 andm = 4. The vertical
line indicates the critical point obtained as the position of the maximum of the average
cluster size (see Fig. 4.14). The critical probability of percolationpc on the square lattice
is indicated by the horizontal line. Note that for both disorder distributions in LLS, the
location wherepLLS

b exceedspc practically coincides with the corresponding critical point
αc, indicating the percolation nature of the transition.

Figure 4.18 shows that for localized load sharing the phase transition occurs when the
damage fractionpLLS

b reaches the critical percolation probabilitypc of the corresponding
lattice type. Due to the very localized load sharing, only short range correlations arise
in the system which are further moderated by the finite load bearing capacity of broken
fibres. Hence, in the vicinity of the transition pointpLLS

b (αc) ≈ pc holds and the evolution
of the microstructure of damage shows strong analogy to percolation lattices. It can be
seen in Table 4.1 that the critical exponents of the plastic fibre bundle model are slightly
different from the corresponding exponents of percolation, furthermore, the usual scaling
relations of percolation critical exponents [92] are not fulfilled within the error bars. It
has been shown for percolation that correlated occupation probabilities lead to the same
critical behaviour as random percolation when the correlations are short ranged [97; 98],
however, long range correlations result in changes of the critical exponents [97]. It is
interesting to note that the value of the correlation lengthexponentν of PFBM is smaller
than the value of random percolation which is consistent with the presence of relevant
correlations [97]. We would like to emphasize that contraryto global load sharing, this
percolation like transition has important physical consequences on the behaviour of the
fibre bundle. The failure process of the bundle is dominated by the competition of fibre
breaking by local stress enhancement due to load redistribution and by local weakness
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Figure 4.19: Structure of the spanning cluster at two different disorder strengths in a
lattice of sizeL = 401. The perimeter lengthp(l) of the cluster is plotted as function of
the lengthl of the yardstick normalized by the side lengthl0 of the inscribing square. The
insets present the clusters analyzed.

due to disorder. Our detailed analysis revealed that the relative importance of the two
effects is controlled by the parameterα. Below the critical pointα < αc high stress
concentration can develop around cracks so that the failureof the bundle occurs due to
localization. Above the critical pointα ≥ αc the macroscopic response of the LLS bundle
becomes practically identical with the GLS constitutive behaviour showing the dominance
of disorder. It is important to note that the size distribution of bursts of simultaneously
failing fibres becomes a power law at the critical pointαc with an exponentµ equal to the
value recently predicted for GLS bundles of so-called critical failure threshold distribu-
tions [56; 57], which is discussed for LLS systems in Chapter5. This can be explained
such that the large avalanches of power law distribution occurring in the plastic fibre bun-
dle model atαc (see Fig. 4.11) are dominated by the strong fibres of the bundle whose
strength distribution is close to critical [56; 57].

The structure of the spanning cluster of the LLS bundle formed at the critical pointαc

has also remarkable features different from the spanning cluster of percolation [92]. The
insets of Fig. 4.19 present representative examples of the spanning cluster of a system of
sizeL = 401 at two different disorder strengths. It can be observed thatthe clusters are
compact, they practically do not have holes, there are no islands of unbroken fibres in the
interior of the cluster. This structure is a direct consequence of the merging of growing
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Critical exponents PFBM Percolation
β 0.15 ± 0.06 5/36 ≈ 0.13
γ 2.0 ± 0.15 43/18 ≈ 2.38
τ 2.35 ± 0.08 187/91 ≈ 2.05
ν 1.0 ± 0.1 4/3 ≈ 1.33
D 2.0 D = 91/48 ≈ 1.896
Dp 1.0 − 2.0 7/4 = 1.75

µ (Bursts) 1.5 ± 0.07 –

Table 4.1: Summary of the critical exponents of the plastic fibre bundle model with
local load sharing. For comparison the value of the corresponding critical exponents of
percolation are also shown. For the perimeter fractal dimensionDp of PFBM, which
depends on the amount of disorder, a range is given.

compact clusters where especially large stress concentrations arise between the cluster
surfaces breaking the fibres and filling the holes in the spanning cluster. We note that
in the limiting case of very strong disorder a small amount ofintact fibres may survive
dispersed over the spanning cluster. The result implies that the fractal dimension of the
spanning cluster of the LLS bundle is 2, which should be compared to the corresponding
value of random percolationD = 91/48 ≈ 1.896 where a finite amount of holes exists
[92] even for short range correlated occupation probabilities [98]. The perimeter of the
spanning cluster, however, has a fine structure, i. e. it has alarge number of peninsulas
and valleys of all sizes. To reveal the structure of the perimeter, we measured its length
p(l) as a function of the length of the yardstickl. It can be seen in Fig. 4.19 thatp(l)
shows a power law dependence onl over almost two decades

p(l) ∼ l−δp , (4.21)

where the value of the exponent proved to beδp = 0.5 ± 0.03 for a Weibull distribution
of fibre strength withm = 2. The power law Eq. (4.21) indicates that the perimeter
line is a fractal with a dimensionDp = 1 + δp = 1.5 ± 0.03. The upper bound of the
scaling range in Fig. 4.19 can be attributed to the characteristic size of peninsulas of the
spanning cluster, over which the rough structure of the perimeter disappears. Numerical
calculations revealed that the fractal dimension of the cluster surfaceDp is not universal,
i. e. it depends on the strength of disorder of the breaking thresholds. The insets of Fig.
4.19 illustrate that a lower amount of disorder gives rise toa more regular, smoother
cluster surface characterized by a lower value ofDp. For the Weibull indexm = 4 we
obtainedDp = 1.24 ± 0.05, which is significantly smaller than the corresponding value
ofm = 2. The surface of damage clusters should be compared to the hull of the spanning
cluster of percolation with the fractal dimensionDp = 7/4 = 1.75 [99] (see also Table
4.1).
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4.5 Summary

We introduced a fibre bundle model where failed fibres retain afraction0 ≤ α ≤ 1 of
their failure load. The value of the parameterα interpolates between the perfectly rigid
failureα = 0 and perfect plasticityα = 1 of fibres. We carried out a detailed study of the
effect of the finite load bearing capacity of fibres on the microscopic damage process and
macroscopic response of fibre bundles considering both global and local load sharing for
the load redistribution after fibre failure. Analytic calculations and computer simulations
revealed that under global load sharing the macroscopic constitutive behaviour of the
interface shows a transition to perfect plasticity whenα → 1, where the yield stress
proved to be the average fibre strength. Approaching the state of perfect plasticity, the
size distribution of bursts has a crossover from the mean field power law form of exponent
2.5 to a faster exponential decay.

When the load sharing is localized it is found that the load carried by the broken fibres has
a stabilizing effect on the bundle, i. e. it lowers the stressconcentration around clusters of
failed fibres which has important consequences on the microscopic process of fracture and
on the macroscopic response of the bundle. Extensive numerical calculations showed that
at a specific valueαc a very interesting transition occurs from a phase where macroscopic
failure emerges due to stress enhancement around failed regions leading to localization, to
another phase where the disordered fibre strength plays the dominating role in the damage
process.

On the macro-level, below the critical pointα < αc the fibre bundle shows a brittle
response, i. e. the macroscopic failure is preceded by a weaknon-linearity, while for
α ≥ αc the constitutive behaviour of the LLS bundle becomes practically identical with
the GLS counterpart. Analyzing the evolution of the micro-structure of damage with
increasingα, the transition proved to be continuous analogous to percolation. Computer
simulations revealed that the avalanche size distributionof fibre breakings becomes a
power law at the critical point with an universal exponent equal to the mean field exponent
of bundles with critical strength distributions. The spanning cluster of failed fibres formed
at the transition point proved to be compact with a fractal boundary whose dimension
increases with the amount of disorder. The critical valueαc is not universal, besides the
lattice structure, it also depends on the strength of disorder.

The plastic fibre bundle model can be relevant for the shear failure of interfaces where
failed surface elements can remain in contact still transmitting load. As an important
application, a realization of glued interfaces is found in fibre composites. The finite load
bearing capacity of failed elements of the model can accountfor the frictional contact of
debonded fibre-matrix interfaces and also for plastic behaviour of the components.



Chapter 5

Local Load Sharing Fibre Bundles with
a Lower Cutoff of Strength Disorder

In this chapter, we study the failure properties of fibre bundles with a finite lower cutoff of
the strength disorder varying the range of interaction between the limiting cases of com-
pletely global and completely local load sharing. Computersimulations are employed to
prove that at any range of load redistribution there exists acritical cutoff strength where
the macroscopic response of the bundle becomes perfectly brittle, i. e. linearly elastic be-
haviour is obtained up to global failure, which occurs catastrophically after the breaking
of a small number of fibres. As an extension of recent mean fieldstudies [56], we demon-
strate that approaching the critical cutoff, the size distribution of bursts of breaking fibres
shows a crossover to a universal power law form with an exponent 3/2 independent of
the range of interaction. A physically based analog of this cutoff is present in other types
of FBM, where also a crossover appears, as in Sec. 4.4.2 of Chapter 4 and Sec. 6.3 of
Chapter 6. The results in this chapter have been published in[100].

5.1 Critical Failure Threshold Distributions

For global load sharing it has recently been pointed out thatthe distribution of burst sizes
significantly changes if the weak fibres are removed from the bundle: if the strength dis-
tribution of fibres has a finite lower cutoff, or analogously,if the recording of avalanches
starts after the breaking of the weak elements, the burst size distribution is found to show
a crossover to another power law with a significantly lower exponent3/2 [56; 57]. The
effective range of interaction in real materials may have large variations [29], therefore,
in order to use the crossover effect of burst sizes in forecasting of imminent failure, its
robustness with respect to the range of interaction has to beexplored.

In the present discussion we extend recent mean field studiesof the effect of the lower cut-
off of fibre strength on the failure process of fibre bundle models [56; 57] by continuously
varying the range of load sharing between the limiting casesof completely global load
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Figure 5.1: Constitutive curves for GLSγ = 0 (lines) compared to the case ofγ = 5
(triangles) at different values ofεL.

sharing and the very localized one [29]. We show that at any range of interaction there
exists a critical value of the cutoff strength above which the global response of the bundle
becomes perfectly brittle, as in the GLS case [61]. We demonstrate that the crossover of
the avalanche size distribution to a power law of an exponent3/2, when approaching the
critical cutoff strength, is independent of the range of interaction. Our results support the
usage of the crossover phenomenon of burst sizes in forecasting techniques of imminent
failure.

We consider a parallel bundle of fibres organized on a square lattice of sizeL × L. The
fibres are assumed to have linearly elastic behaviour with identical Young modulusE up
to a randomly distributed breaking threshold. For simplicity, the failure thresholdsσth are
assumed to have a uniform distribution between a lower cutoff strengthσL and one with
the probability density functionp(σth) [101]

p(σth) =

{
1

1−σL
, for σL ≤ σth ≤ 1

0, otherwise.
(5.1)

Under an increasing external load the fibres break when the load on them exceeds the
local threshold valueσi

th, wherei = 1, . . . , N andN = L2 denotes the number of fibres.
Due to the linearly elastic behaviour, the failure thresholdsσi

th can also be expressed in
terms of deformationεi

th = σi
th/E with the cutoff strengthεL = σL/E. After a failure

event, the remaining intact fibres have to take over the load of the failed one. In order to
give a realistic description of the load redistribution in FBMs, we recently introduced a
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Figure 5.2: Failure stressσc and strainεc of the fibre bundle model at zero cutoffεL = 0
compared to the critical cutoffεc

L as a function ofγ.

load transfer function of the form

σadd =
1

Z
r−γ
ij , (5.2)

whereσadd denotes the additional load fibrei receives after the breaking of fibrej [29].
The load incrementσadd decreases as a power law of the distancerij from the failed fibre,
where the exponentγ is considered to be a free parameter of the model. The exponent γ
can take any values between 0 and∞ controlling the effective range of load redistribution
between the limiting cases of completely globalγ = 0 and completely localized load
redistributionγ → ∞ [29].

Under perfectly global load sharingγ = 0 the macroscopic constitutive equation of the
system can be cast in a simple analytic form

σ(ε) =

{
Eε for Eε ≤ σL

Eε 1−Eε
1−EεL

, for σL ≤ Eε ≤ 1,
(5.3)

where in the following, the value of the Young modulus of fibres will be set to unity
E = 1. The constitutive behaviour Eq. (5.3) of the bundle is perfectly linear up to the de-
formationεL since no fibres break in this regime (see also Fig. 5.1). Due tothe breaking of
fibres aboveεL, the constitutive curveσ(ε) becomes non-linear and develops a maximum
whose valueσGLS

c and positionεGLS
c define the failure stress and strain of the bundle,

respectively. It follows from Eq. (5.3) that the critical strain is constantεGLS
c = 1/2 and
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Figure 5.3: Critical deformationεc as a function of the cutoff value of failure strengthεL

for different values of the effective range of load sharingγ (see legend of Fig. 5.6 for the
values ofγ).

does not depend on the cutoff strengthεL, whileσGLS
c increases due to the missing weak

fibres [101]

σGLS
c =

1

4(1 − εL)
. (5.4)

Increasing the external load quasi-statically, the breaking fibres trigger avalanches of fail-
ure events which either stop after a finite fraction of fibres failed, or become unstable and
destroy the entire system. As a consequence, the cutoff strength εL can take meaning-
ful values in the interval0 ≤ εL ≤ εGLS

c , since forεL ≥ εGLS
c the breaking of the first

weakest fibre results in an immediate catastrophic failure of the bundle.

We explore the effect of the finite cutoff strengthεL on the failure process of FBMs with
short ranged load sharing by means of computer simulations,redistributing the load of
broken fibres according to the load transfer function Eq. (5.2). Stress controlled sim-
ulations were carried out on a square lattice of sizeL = 257 with periodic boundary
conditions varying the cutoff strengthεL of the disorder distribution Eq. (5.1) in the in-
terval [0, 0.5] at several different values of the effective range of interaction γ between 0
and 11. To characterize the failure process of the bundle at the macro and micro level,
we determined the critical stressσc and strainεc, the distributionD of avalanche sizes∆,
the average avalanche size〈∆〉, and the average value of the largest avalanche〈∆max〉.
For clarity, we first characterize the behaviour of the system in the specific case of zero
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Figure 5.4: Critical stressσc as a function of the cutoff value of failure strengthεL for
different values of the effective range of load sharingγ (see legend of Fig. 5.6 for the
values ofγ).

cutoff εL = 0 by studying the critical stressσc and strainεc of the bundle as a function
of γ, see Fig. 5.2. Based on the numerical results, three regimesof the failure of FBM
can be distinguished in Fig. 5.2 depending on the range of load sharing: forγ ≤ 2 the
range of interaction is infinite in the two dimensional embedding space, hence bothσc

andεc take their GLS valuesσc = 0.25 andεc = 0.5 independent ofγ (see Eq. (5.4)
at εL = 0). Increasing the value ofγ ≥ 2 the effective range of interaction gradually
decreases which lowers the macroscopic strengthεc andσc of the bundle. In the limiting
case ofγ → ∞ the model recovers the very localized load sharing, whereεc andσc take
again constant values. According to the numerical results,the perfectly localized limit is
practically reached forγ ≥ 6, so that in the interval2 ≤ γ ≤ 6 a transition occurs be-
tween the completely global and completely local behaviour[29]. Fig. 5.1 demonstrates
that forγ ≤ 2 (i. e. GLS) the macroscopic failure of the bundle is precededby a strong
non-linearity of the constitutive curveσ(ε). At any wider range of load sharing,γ > 2,
theσ(ε) curves follow the GLS solution Eq. (5.3), but with lower strength values which
implies a more brittle macroscopic response for short ranged interactions.

Varying the cutoff strengthεL at different values ofγ, it can be seen in Figs. 5.3,5.4 that
in the long range regimeγ ≤ 2 bothεc andσc agree well with the analytic predictions
Eq. (5.4), i. e.εc = 1/2 is constant whileσc increases with increasing cutoffεL. When
the load sharing becomes short rangedγ > 2, the increasing macroscopic brittleness has
the consequence that the curves ofεc(εL) andσc(εL) shift downwards asγ increases and



80 5.1 Critical Failure Threshold Distributions

0.0 0.1 0.2 0.3 0.4 0.5

L

0.0

0.05

0.1

0.15

0.2

0.25

|
c

-
c|

Figure 5.5: Difference|εc − σc| as a function of the cutoff value of failure strengthεL

for different values of the effective range of load sharingγ (see legend of Fig. 5.6 for the
values ofγ).

tend to a limit curve when the interaction becomes completely localized forγ ≥ 6. It
is interesting to note that for short range interaction of fibresγ > 2, not only the failure
stressσc but also the failure strainεc is an increasing function ofεL. It is important to
emphasize that at eachγ there exists a critical value of the cutoff strengthεc

L < εGLS
c

where the failure stressσc and strainεc of the system become equal to the cutoff strength,
i. e. atεc

L holdsεc(ε
c
L) = σc(ε

c
L) = εc

L. At this point the macroscopic response of the
bundle becomes perfectly brittle, i. e. under gradual loading of the system the macroscopic
constitutive behaviour is linear up toσc, where the breaking of the weakest fibre gives rise
to the collapse of the entire system (Fig. 5.1). This transition is better illustrated by Fig.
5.5 where the differenceδ = |εc(εL) − σc(εL)| is plotted versusεL. It can be observed
thatδ monotonically decreases and becomes practically zero atεc

L of the givenγ. Since
the absence of weak fibres gives rise to a higher macroscopic strength, the value ofεc

L is
larger than the strength of the bundleεc andσc at zero cutoff (cf. Fig. 5.2).

On the microlevel, the failure process is characterized by the bursts of fibre breakings,
which also show an interesting behaviour when the range of interactionγ and the lower
cutoffεL are varied. In the GLS regimeγ < 2, our computer simulations perfectly recover
the analytical and numerical results of Refs. [56; 57] (see Fig. 5.7a): for εL = 0 the size
distribution of burstsD(∆) follows a power law

D(∆) ∼ ∆−α, (5.5)

with an exponentα = 5/2. Increasing the value of the cutoffεL, for small avalanches a
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Figure 5.6: Mean size of the largest avalanche∆max as a function of the cutoff value of
failure strengthεL for different values of the effective range of load sharingγ.

crossover occurs to a power law of a lower exponentα = 3/2, while for large avalanches
the original power law withα = 5/2 is retained. The crossover to a lower value of the
exponent indicates that due to the missing weak fibres the fraction of small avalanches
decreases compared to the larger ones. This argument is further supported by Fig. 5.6 and
Fig. 5.8 which demonstrate that forγ ≤ 2 both the average size of the largest avalanche
〈∆max〉 and the average avalanche size〈∆〉 are monotonically increasing functions of
the cutoffεL. However, when the load sharing gets short rangedγ > 2, both 〈∆max〉
and〈∆〉 have a maximum at the critical cutoff strength. The qualitative behaviour of the
crossover avalanche size∆c is equal to that of〈∆〉: for γ > 2, ∆c has a maximum atǫcL,
and the height of the maximum decreases with increasingγ. It should be noted that the
non-vanishing avalanche size aboveεc

L arises due to the strength fluctuations of the finite
bundle so that aboveεc

L the bundle may survive a small number of avalanches instead of
collapsing after the breaking of the weakest fibre. It is interesting to note that contrary to
GLS, in the transition regime2 < γ < 6, the avalanche size distribution does not show a
power law behaviour for small cutoffsεL ≈ 0, however, whenεL approaches the critical
valueεc

L(γ), the distribution of burst sizesD(∆) tends again to a power law of an exponent
α = 3/2 (Fig. 5.7b, c). For very localized interactionsγ > 6 an apparent power law of
D(∆) is restored forεL ≈ 0 with a relatively high exponentα ≈ 9/2, in agreement with
Ref. [75] (Fig. 5.7d). The main outcome of our computer simulations is that the crossover
behaviour ofD(∆) to the universal power lawD(∆) ∼ ∆−3/2 prevails at any value of the
range of interactionγ for the limiting case ofεL → εc

L(γ), independently of the original
form ofD(∆) at zero cutoffεL = 0 (see Fig. 5.7). In spite of the relatively large system
sizeL, for short range interaction of fibres andεL → εc

L(γ) the statistics of avalanche
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sizes is rather poor for large avalanches which hinders us tomake a definite conclusion
on the shape ofD(∆) in this∆ regime.

5.2 Discussion

An interesting experimental realization of the crossover for crackling noise was very re-
cently found in the magnitude distribution of earthquakes in Japan [102]. Analyzing the
local magnitude distribution of earthquakes preceding main shocks, a significant decrease
of the Gutenberg-Richter exponent was obtained when the lower bound of the time win-
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Figure 5.9: The crossover avalanche size∆c and GLS analytical solution [8] as a function
of εL for different values ofγ.

dow of the analysis is shifted towards the catastrophic event [102]. Fracture of ferromag-
netic materials is accompanied by changes of the magnetic flux, which can be recorded
as magnetic noise and provides information on the dynamics of crack propagation [103].
The amplitude, area and energy of magnetic emission signalshave recently been found to



84 5.2 Discussion

have power law distributions with exponents depending on the type of fracture, i. e. duc-
tile failure where stable crack propagation occurs in a large number of elementary steps is
characterized by significantly higher exponents than brittle failure, where the crack prop-
agates in an unstable catastrophic manner breaking the specimen in a few large jumps
[103]. Our numerical results suggest that the reduction of non-linearity of the macro-
scopic response of materials preceding global failure whengoing from ductile and quasi-
brittle to brittle fracture is responsible for the loweringof the crackling noise exponents
on the micro-level.

In summary, we carried out computer simulations of the failure process of a bundle of
fibres with a finite cutoff of the fibres’ strength, continuously varying the range of in-
teraction between the limiting cases of global and local load sharing. We showed that
increasing the cutoff strengthεL the macroscopic response of the fibre bundle becomes
perfectly brittle whenεL approaches a critical valueεc

L(γ), depending on the range of
interactionγ. Our numerical results demonstrate the robustness of the crossover of the
avalanche size distributionD(∆) to a universal power law of exponent3/2, irrespective
of the range of interaction between the material elements.



Chapter 6

Extensions of the continuous damage
model

6.1 Introduction

Materials with a highly disordered microstructure exhibita variety of constitutive charac-
teristics when subjected to an increasing external load —from perfectly brittle to perfectly
plastic as well as strain hardening and softening. Experiments have revealed that even if
the constituents are brittle, the macroscopic behaviour shows these variations, especially
if a hierarchy of length scales can be identified in the specimen. A possible explana-
tion of this observation is the influence of gradual degradation of material elements under
loading, such that failure does not occur instantaneously,but after a finite number of
degradation steps. The microscopic origin of this mechanism can be the accumulation of
damage due to a growing population of nucleating microcracks, or the growth and arrest
of a larger crack. A continuous damage fibre bundle model (CDFBM) has been developed
in [21; 30], which can account for protracted failure of a single fibre —or constituent—
of a material due to the activation of internal degrees of freedom. However, the conven-
tional CDFBM does not capture two experimentally observable effects. First, the number
of maximum failures or restructuring events of the materialconstituents is not a fixed
number, but shows strong variations between samples. In fact, this is again an effect of
disorder: the number of faults, defects and also particularly failure resistant spots in a
material is a random variable, which becomes particularly important if the total number
of these defects is small, such as the amount of knotholes in awood sample. The second
aspect that is not addressed so far by the CDFBM is the arrest of cracks: if a sample is
stressed, cracks will evolve and propagate, and sometimes develop branches. Since the
stress concentration around the tip of the crack increases with the crack length, cracks
that grow larger than a certain critical size are unstable. However, cracks can also become
arrested at strong locations inside the material. This phenomenon therefore requires the
knowledge of the distribution of the strongest points in thesample, an issue that is related
to order statistics. If there are subsequent cycles of crackarrest and release in a mate-
rial under increasing external load, then the increasing stress concentration around the tip
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of the growing crack demands that the subsequent arrest locations must have increasing
strength; otherwise, they would be destroyed.

In order to address these issues, two additions to the CDFBM model will be discussed in
this chapter. Both additions are compatible and can be combined in order to allow for a
more realistic description of the experimental findings.

For the first extension, the maximum number of failure eventsfor a single fibre can be a
random variable subject to a Poissonian distribution. The constitutive behaviour will be
explored by analytical methods, and simulations will be presented for the avalanche size
distribution, so that a comparison to the case with a fixed number of maximum failures can
be drawn. For the second model, the failure thresholds of subsequent failure events of a
single fibre are considered to be random variables, which arehowever sorted in ascending
order. Again, both analytical considerations and numerical calculations will be presented,
and the comparison with the conventional CDFBM will producesome intriguing new
features.

6.2 CDFBM with a randomly distributed number of max-
imum failures

In the CDFBM [21; 30], the damage law of the classical FBM is supplemented by a
gradual degradation of fibre strength in the sequence of failure events. It was shown in
[30] that for certain choices of the model parameters a variety of experimental situations
can be recovered, i.e. either strain hardening or plasticity can occur. On the micro-scale,
the size distribution of avalanche events shows a power law behaviour, but the exponent
is different from the ordinary FBM, and for certain choices of parameters an exponential
cutoff appears [30].

The CDFBM is constructed as follows: the bundle consists ofN parallel fibres with iden-
tical Young-modulusE and random failure thresholdsσi

th, i = 1, . . . , N with a probability
densityp and distribution functionP . Under loading, the fibres behave linearly elastic un-
til they reach their respective point of failure and break ina brittle manner, i.e. as soon as
the load on a fibre exceeds its breaking thresholdσi

th, the fibre will fail. The failure law of
the DFBM is now modified by assuming that at the failure point the stiffness of the fibre is
reduced by a factora, where0 ≤ a < 1; consequently the stiffness of the fibre after fail-
ure isaE. The loading of the fibre will then resume in a linear manner with the reduced
stiffness until the next breaking threshold is reached. Theparameterkmax determines the
maximum number of failures allowed for a single fibre. The damage thresholdσi

th can
either be kept constant for all the breakings (quenched disorder) or new failure thresholds
of the same distribution can be chosen (annealed disorder) after each instant of failure,
which can model a microscopic rearrangement of the materialafter failure, cf. cases (a)
and (b) of Fig. 6.4 in Sec. 6.3.

We can assume that in an actual experimental situation, the number of times that a con-
stituent of the material can break is an independent realization of an integer random vari-
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able. A prime example is the fracture of wood, specifically ofglued timber. Actually, only
a few large defects and the finite number of glued joints determine the extreme statistics
that governs the propagation and arrest of cracks, which will be discussed in Sec. 6.3.
This fact can be incorporated by modelingkmax as a random number, which is governed
by a Poissonian distribution

nκ(kmax) =
κkmaxe−κ

kmax!
. (6.1)

A new parameter then enters the model, which is the mean valueof kmax, κ = 〈kmax〉.

With this prescription, the constitutive curve can be expressed as

σ = ε

∞∑

kmax=0

κkmaxe−κ

kmax!

[
kmax∑

k=0

akPk(ε)

]

, (6.2)

i.e. the Poissonian distribution is convoluted with the previously obtained formula for
the constitutive behaviour in the continuous damage model.In this section we will only
deal with quenched disorder for the failure thresholds, which means that the probabilities
Pk(ε) that at a given deformationε a randomly chosen fibre has failed exactlyk times is

Pk(ε) =







1 − P (ε) , k = 0;

P (ak−1ε) − P (akε) , 1 ≤ k ≤ kmax;

P (akmax−1ε) , k = kmax .

(6.3)

The damage thresholds in this chapter will be drawn exclusively from a Weibull distribu-
tion with λ = 1, m = 2, unless otherwise mentioned.

We can in principle also apply this model to the case of annealed disorder, where

Pk(ε) =

{

[1 − P (akε)]
∏k−1

j=0 P (ajε) , 0 ≤ k ≤ kmax− 1;
∏kmax−1

j=0 P (ajε) , k = kmax ,
(6.4)

however, we restrict this discussion to the quenched disorder case, although it should be
stressed that the introduction of a Poissonian distribution factor to the case of annealed
disorder is feasible and certainly meaningful. In Sec. 6.3,however, a new concept will be
introduced which to a certain extent describes a third alternative to the cases of quenched
and annealed disorder.

In the analytical solution for the constitutive behaviour,Eq. (6.2), two physically strongly
distinct cases can be realized by appropriate choices of thesummation limit of the inner-
most, bracketed term: if the summation extends from zero tokmax, as indicated, the fibres
will retain a residual stiffness after the limiting case ofkmax failures, i.e. hardening of the
fibre bundle occurs in the limit of largeε, and the asymptotic behaviour of the bundle is
described by

σasympt. = ε

∞∑

kmax=0

κkmaxe−κ

kmax!
akmax

= εe−κ(1 − a)

= εe−κ(−aεe−κ) . (6.5)
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Figure 6.1: Constitutive behaviour for a fibre bundle with quenched disorder and Poisson
distributedkmax for three values ofκ, in the presence of the residual stiffness term. Sym-
bols: analytical solution, Eq. (6.2), solid lines: simulation results, dashed lines: asymp-
totic behaviour, Eq. (6.5).

Fig. 6.1 demonstrates the perfect agreement between the analytical solution, Eq. (6.2),
and a strain controlled numerical simulation, where the asymptotic behaviour of Eq. (6.5)
is recovered. In order to model the failure of materials, however, the failure law has to be
slightly modified: afterk∗ = kmax− 1 failures, the load on a fibre must be set to zero, and
the constitutive behaviour changes to

σ = ε

∞∑

kmax=0

κkmaxe−κ

kmax!

[
k∗

∑

k=0

akPk(ε)

]

. (6.6)

Again, in this case the constitutive curves displayed in Fig. 6.2 show an excellent agree-
ment between the analytical solution Eq. (6.6) and the simulation data. At first glance,
the hardening behaviour that emerges after the main course of loading may appear to con-
tradict the fact that residual stiffness is not explicitly taken into account and the terms
Pk(ε) with k = kmax are excluded in the failure law, Eq. (6.6); this regime is dominated
by the fibres withkmax = 0, i.e., fibres that never break, and since the expectation value
of these fibres isnκ(kmax = 0) = e−κ, the asymptotic behaviour even in the case without
an explicit residual stiffness reads

σasympt= εe−κ . (6.7)

Apparently, the dominance of the fibres withkmax = 0 diminishes with increasingκ,
and at least for this choice of the disorder distribution, under stress controlled loading
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Figure 6.2: Constitutive behaviour for a fibre bundle with quenched disorder and Poisson
distributedkmax for three values ofκ, in the absence of the residual stiffness term. Sym-
bols: analytical solution, Eq. (6.2), solid lines: simulation results, dashed lines: asymp-
totic behaviour, Eq. (6.7), that is governed by fibres that never break with the distribution
nκ(kmax = 0) = e−κ.

the hardening regime cannot be accessed, i,e, all fibres break before traversing the local
minima of the slope. One should note that —with or without a residual stiffness term—
the fibres with vanishingkmax can be excluded from both the simulations and the analyt-
ical calculations, in case of which the hardening behaviourin the second case will also
disappear. The distributionnκ(kmax) will not be purely Poissonian anymore, although we
abstain from discussing this case in more detail.

Concerning the avalanche size distribution, this model reproduces the behaviour of the
case of fixedkmax, which has been discussed in [30]. There, it was found that for larger
values ofa, corresponding toa > 0.3 for the Weibull distribution, the distribution can
be fitted to a power law, the exponent of which also depends onkmax. For small values
of kmax, the usual mean field behaviour with an exponent−5/2 is obtained, whereas for
larger values ofkmax a smaller exponent≈ 2.12 appears. Examining the effect of the
Poissonian term with a choice ofκ = 〈kmax〉 corresponding to the ordinary CDFBM, we
find in Fig. 6.3 a quantitative agreement between the two models, i.e. the Poissonian term
causes no visible change to the avalanche statistics, and even the crossover between the
two power law exponents is recovered.
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Figure 6.3: Avalanche size distribution for a fibre bundle ofsizeL = 201 with Poisson
distributedkmax for different values ofκ. Inset: Avalanche size distribution for a fibre
bundle of sizeL = 201 with fixedkmax , where thekmax values shown correspond to theκ
values of the main plot.

6.3 CDFBM with sorted failure thresholds

In highly disordered materials subjected to an increasing external load, in the early stages
of loading cracks nucleate at the weakest locations in a spatially random manner. As the
load increases, simultaneously to the nucleation of new microcracks the existing cracks
propagate and become unstable. Advancing cracks can be arrested by high strength loca-
tions of the material. Before macroscopic failure occurs, advancing cracks can undergo
several activation and arrest events. Since stress concentration at the crack tip increases as
the crack becomes longer, arresting can only be realized by local materials of increasing
strength. These growth and arrest events result in a gradualdegradation of the macro-
scopic sample strength.

In order to provide a more realistic representation of this gradual degradation process
sweeping through material elements in the increasing orderof their local strength, we
modify the CDFBM by considering a fixed number of allowed failures of single fibres
kmax with different threshold values. However, we sort the activation thresholds into in-
creasing order. Fig. 6.4, case (c), provides a graphical illustration of the sorting and the
ensuing damage law for a single fibre. It is important to emphasize that from a physical
point of view this case is a mixture of the annealed and quenched disorder cases discussed
previously [21]. On the one hand, the sorted model bears resemblance to annealed dis-
order, since the consecutive thresholds are different fromeach other; on the other hand,
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it could also be classified as quenched as the thresholds are fixed in advance. Sorting of
a series of random numbers imposes a correlation between these numbers, and we will
have to resort to a mathematical theorem from the field of order statistics in order to ob-
tain a complete understanding of the failure mechanism. It should be stressed that in the
following discussion we will considerkmax to assume a fixed value, although the addition
of the randomly distributedkmax can be trivially incorporated.

We want to motivate the aforementioned prescription by invoking the fibre bundle ana-
logue of crack arrest. If a single fibre —seen as a meta-element representing smaller
constituents— is to model the progress of a crack, which doesnot proceed continuously
but comes to a halt at certain values of the fibres’ strainε, we may apply the damage law of
the CDFBM, but impose the additional condition that the loadon the fibre at subsequent
instants of the arrest should increase. Hence we can draw thefailure thresholds from a
random distribution, for which we will use again the Weibulldistribution, and store them
in sorted order. As in the previous discussion, the Weibull distribution employed will have
the parametersλ = 1 andm = 2.

As mentioned before, bringing an array ofn random numbers in sorted order necessar-
ily invokes correlations between them, and the distribution of the random variant at the
ith position is not governed by the PDF of the unsorted random numbers anymore. The
mathematical field of order statistics deals with the statistical properties of sorted ran-
dom numbers, and we will quote, with slight alterations, from [104] the following two
theorems:

Let the continuous random variablesX1, . . . , Xn denote a random sample
from a population with CDFF (x) and densityf(x). LetX(i), i = 1, . . . , n be
theith smallest of these sample observations. We refer toX(i) ≤ · · · ≤ X(n)

as the order statistics for the random sampleX1, . . . , Xn. Unlike theXs
themselves, the order statistics are neither mutually independent nor identi-
cally distributed.

Theorem: LetX1, . . . , Xn be the order statistics for a random sample of con-
tinuous random variables from a distribution with CDFF (x) and density
f(x). The joint density for the order statistics is then:

g(x(1), . . . , x(n)) =







n!
n∏

i=1

f(x(i)) ,−∞ < x(1) < · · · < x(n) <∞

0 , elsewhere .
(6.8)

Theorem: The marginal statistics for thejth order statisticsX(j), 1 ≤ j ≤ n,
under the conditions of the first theorem is

g(j)(t) =
n!

(j − 1)!(n− j)!
[F (t)]j−1[1−F (t)]n−jf(t),−∞ < t <∞ . (6.9)

The latter marginal statistics is therefore the adequate replacement of the PDF, i.e. the
distribution function for the random number at thej-th position, ifn random numbers
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Figure 6.4: Damage law for a single fibre for the cases of quenched (a), annealed (b)
disorder, cf. [21], and for the model with sorted thresholds(c). In all cases, after breaking
of a fibre upon reaching a failure thresholdσi

th, loading is resumed with a stiffness that is
reduced by a factora.

have been drawn. In order to illustrate this result, in Fig. 6.5 the marginal statistics for the
jth random number,1 ≤ j ≤ n = 4, together with the underlying Weibull distribution
with λ = 1, m = 2 is shown. It is apparent from Fig. 6.5 that with increasingj, the
marginal statistics share the peaked characteristics of the underlying PDF, and that the
position of the maxima reflects the sorting. Also, the marginal statistics become wider
with increasingj, although this effect is not too pronounced.

Having found an analytical expression for the marginal statistics, the constitutive be-
haviour of this model can be expressed in closed form. In analogy to the annealed case of
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Figure 6.5: Marginal statistics for a Weibull distributionwith λ = 1, m = 2, for the re-
spective valuesj = 1, . . . , n = 4 (solid lines), together with the underlying PDF (dashed
line).

the CDFBM, we denote byPk(ε) the probability that a fibre has failed exactlyk times:

Pk(ε) =







[1 −G(k+1)(a
kε)]

k−1∏

j=0

G(j+1)(a
jε) , 0 ≤ k ≤ kmax− 1

kmax−1∏

j=0

G(j+1)(a
jε) , k = kmax ,

(6.10)

where

G(j)(x) =

∫ x

0

gj(t) dt (6.11)

is the integral associated with the marginal statisticsg(j)(t), corresponding to the CDF of
unordered random numbers. The second case in Eq. (6.10) withk = kmax corresponds to
the residual stiffness of the bundle, again in close analogyto the ordinary CDFBM. With
this result the constitutive behaviour reads, if the hardening term is skipped in order to
account for material failure:

σ(ε) =
kmax−1∑

k=0

akε[1 −G(k+1)(a
kε)]

k−1∏

j=0

G(j+1)(a
jε) . (6.12)

We have therefore derived an analytical solution for the constitutive behaviour. It should
be noted, though, that in the formula for thek-th failure probabilityPk(ε), Eq. (6.10),
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Figure 6.6: Constitutive curves for the model with sorted random thresholds, without
residual stiffness. Solid lines; simulation results, symbols: analytical solution Eq. (6.12),
dashed lines: simulations for the conventional CDFBM without sorting, shown for com-
parison. The failure thresholds are drawn from a Weibull distribution withλ = 1, m = 2.

the integral Eq. (6.11) appears, which cannot in general be solved analytically due to the
structure of the integrand, Eq. (6.9). In order to obtain theconstitutive behaviour the
integral Eq. (6.11) has to be evaluated numerically. In Fig.6.6, the stress-strain curves
obtained in this way are plotted for three values ofkmax. The agreement between the simu-
lation results and the analytical solution, Eq. (6.12), is very good, although the numerical
integration routine introduces some numerical error in theevaluation of the analytical
solution, on which we will comment later.

It can be seen in Fig. 6.6 that contrary to the case of unsortedthresholds —whether
quenched or annealed disorder is of no importance— that the constitutive curve does
not develop a plateau, it always increases monotonically and has a quadratic maximum
where macroscopic failure occurs. As a consequence of extreme order statistics, with
growingkmax the critical stressσc and strainεc increase, indicating a higher macroscopic
load bearing capacity. It can be seen from the general expression of the constitutive curve,
Eq. (6.12), that the macroscopic failure of the system is mainly controlled by the largest
thresholds whose distribution can be obtained from Eq. (6.9), settingj = kmax. Analyzing
the constitutive behaviour of the system considering only the largest thresholds,j = kmax,
yields

σc ≈ aλ [ln(kmax + 1)]1/m (6.13)

and
εc ≈ a−kmax , (6.14)
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Figure 6.7: The critical stressσc and strainεc for a bundle with sorted random thresh-
olds from a Weibull distribution withλ = 1, m = 2 and without residual stiffness as a
function of the maximum numberkmax of failures. The symbols represent simulation re-
sults, whereas the lines display evaluations of Eqs. (6.13,6.14) and numerically obtained
maxima of Eq. (6.15) with the settingk = kmax, respectively.

for the failure stress and strain, respectively, assuming Weibull distributed failure thresh-
olds with parametersλ,m. Eq. (6.13) implies that the sorted CDFBM does not have a
plastic limit as in the conventional CDFBM, i.e. no plateau of theσ(ε) emerges. Instead,
the strength of the bundle is an asymptotically increasing function ofkmax, namely,σc

increases logarithmically whereasεc increases exponentially withkmax. This is illustrated
in Fig. 6.7, where the valuesσc andεc obtained by computer simulations are compared to
the analytical results.

For very high values ofkmax, a distinguished regime of ripples appears in the constitutive
curves, see Fig. 6.8. This plot shows the constitutive behaviour in a stress controlled sim-
ulation withkmax = 60, together with the avalanche sizes∆ recorded at each loading step
ε. Apparently, the constitutive curve displays a large amount of ripples with horizontal
plateaus, which coincide with large scale bursts of breaking events. The position of the
peaks suggests a regularity of some kind. In order to quantify this regularity of the peak
events, the inset carries information about the ratiosεi+1/εi of subsequent failure events
∆ with ∆i > 2000. Obviously, this ratio assumes a constant value of≈ 1/a after a brief
onset period, wherea = 0.8 is the load reduction parameter used in all the simulations
presented in this chapter, and a comparison with the case ofa = 0.7 is presented in order
to confirm the influence of the load reduction parameter. It should also be noted that the
envelope of the constitutive curve remains monotonically increasing. In order to analyze
this rippling phenomenon an investigation on the evolutionof the breakdown process is
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Figure 6.8: Constitutive curve (solid line) and avalanche sizes without residual stiffness
as a function of strainε for kmax = 60, m = 2. Inset: ratioεi+1/εi for subsequent bursts
with ∆i > 200, for the valuesa = 0.7 (unfilled circles) anda = 0.8 (filled squares),
where the lines indicate the respective values of1/a.

necessary.

In fact, an analytical argument can be made about the origin of these ripples, and their
position relative to the state of loadingε. In the constitutive formula, Eq. (6.12), there
appears a product of integral marginal statisticsG(j+1)(a

jε), where0 ≤ j ≤ k − 1, and
0 ≤ k ≤ kmax − 1. From the structure of Eq. (6.9), and if a Weibull distribution with
m = 2, λ = 1 is assumed as usual, it can be understood that the respectivederivatives
g(j+1)(x) take on their maximum value even for very largej, n, andj . n at a numerical
value of the argumentx = O(1). Therefore, theg(j+1) for large values ofj possess
well defined peaks at very large values ofε, whereajε ≈ 1. The positions of these
peaks become strongly separated for subsequent indicesj, j + 1 if j = O(n) andn is
large. Consequently, in Eq. (6.12) the product of the integral quantitiesG(j+1)(a

jε) can
be replaced by the largest factorG(k)(a

k−1ε) for relatively largek, and together with the
leading termε[1−G(k+1)(a

kε)] a peak structure is formed. It was confirmed numerically
for kmax = 60 andk & 30 that the positionε of these maxima, which are defined through
the function

mk(ε) = akε[1 −G(k+1)(a
kε)]G(k)(a

k−1ε) (6.15)

correlate well with the observed peaks in the avalanche sizedistribution and with the
settingk = kmax also yield good estimates for the critical stress and strain, see Fig. 6.7.

A rippled regime also appears if residual stiffness is present, as shown in Fig. 6.9 for
stress controlled simulations for various values ofkmax, where ripples are clearly visible
for kmax & 30, as in the case without residual stiffness. Again, the appearance of rippling
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Figure 6.9: Constitutive curve for the model with sorted failure thresholds and residual
stiffness withλ = 1, m = 2 for various values ofkmax in a double-logarithmic plot,
under stress controlled loading. The inset shows a section of the constitutive curves on a
logarithmic-linear scale, where the onset of rippling withincreasingkmax is better visible.

depends on the choice ofkmax, and sets in atkmax ≈ 30. With increasingkmax also pro-
nounced strain hardening occurs, whereas in the conventional CDFBM a plastic plateau
is present. After passing the strain hardening regime, the bundles attain an asymptotical
regime of constant slopeakmax for all values ofkmax, where also macroscopic failure oc-
curs for all cases investigated. It should be noted that therefore for low values ofkmax, i.e.
without rippling, the slope of the constitutive curve is always finite positive, whereas for
higher values ofkmax, there are sections of the constitutive curve with zero slope due to
the ripples.

The presence of the ripples, and therefore of a locally vanishing slope, has a distinguished
effect on the distribution of avalanche sizes, as demonstrated by Fig. 6.10 for the case
with residual stiffness, and in Fig. 6.11 for the case without; this is also suggested by the
presence of large size avalanches in Fig. 6.8 (no residual stiffness). It can be seen that
in the absence of residual stiffness, Fig. 6.10, two remarkable features are present. First,
for all values ofkmax, there is a regime with a power law of exponent−3/2 for small
avalanche sizes. Secondly, For small values ofkmax, an exponential cutoff appears for the
larger avalanches; the presence of the initial power law regime with a following cutoff
is confirmed by rescaling both axes by the average size of the largest avalanche,〈∆max〉.
The distributionsD(∆) can be collapsed onto a single master curve, which was then fit
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Figure 6.10: Avalanche size distributions for the CDFBM with sorted failure thresholds
for various values ofkmax, 1 ≤ kmax ≤ 60 and residual stiffness. Results from stress
controlled simulations ofL = 201 fibre bundles, averaged over 100 realizations.

by the exponential form

D(∆) ∝
(

∆

〈∆max〉

)
−3/2

exp

(

− ∆

c 〈∆max〉

)

, (6.16)

as can be seen in Fig. 6.12, where the curves with low valueskmax ≤ 20 have been used.
The above arguments are supported by the fact that the power law of exponent3/2 with
an exponential cutoff provides a perfect fit to the master curve obtained numerically. It
should be noted that in the fitting, the value of the exponent was fixed to3/2, and the fit
was obtained solely by varying the parameterc in Eq. (6.16).

For high values ofkmax, i.e. in the presence of ripples, a crossover is observed from an
initial regime with a power law of exponent−3/2, to another regime with the mean field
power law of exponent−5/2, and finally to a peaked regime for very large avalanches of
about the system size.

A similarly complex behaviour is observed in the cases without residual stiffness, see
Fig. 6.10. There, for low values ofkmax, the usual mean field behaviour of a power law
with an exponent−5/2 is observed. For intermediate values ofkmax, a crossover occurs
between an initial−3/2 power law part to a mean field part for larger avalanches, and the
position of the crossover shifts to larger avalanche sizes with increasingkmax. For higher
values ofkmax, a limiting curve with a crossover at∆ ≈ 102 can be identified, and again
a peak of avalanches of the order of the system size is found for kmax = 60.
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Figure 6.11: Avalanche size distributions for the CDFBM with sorted failure thresholds
and no residual stiffness for various values ofkmax, 1 ≤ kmax ≤ 60 . Results from stress
controlled simulations ofL = 201 fibre bundles, averaged over 200 realizations.

The features found in the avalanche size distributions can all be explained on the basis
of the fine structure of the ripples, which is displayed in Fig. 6.13 for both stress and
strain controlled loading, withkmax = 15 and the choicem = 10 for the Weibull param-
eter. From this illustration it becomes apparent that the horizontal plateaus in the stress
controlled simulations actually correspond to regions of decreasing stressσ under strain
controlled loading, which cannot be accessed in the stress controlled mode. Also, the va-
lidity of the simulation results is supported by a semi-analytical evaluation of Eq. (6.12).
It has been mentioned previously that the integral Eq. (6.11) cannot in general be evalu-
ated easily. However, forkmax = 15, the computer algebraics programMATHEMATICA R©
can perform these integrations analytically and evaluate the results, at least forε . 6. The
excellent agreement with the simulation results, see Fig. 6.13, is convincing proof of the
simulation routine.

In general, a fibre bundle model can only produce large avalanches if the constitutive
curve has at least one maximum, where the susceptibility to asmall increment of the
external force diverges. Avalanches with a power law distributions are generated in the
vicinity of the maximum ofσ(ε), where the shape of the maximum determines the value
of the exponentτ . Quadratic maxima typically result inτ = 5/2, the value obtained
in the absence of both ripples and a residual stiffness term.If loading is stopped at a
strainεs before reaching the maximum, i.e. before global failure occurs, an exponential
cutoff in the avalanche size distribution appears, which isvisible in Figs. 6.10 and 6.12,
where due to the residual stiffness term the bundle fails macroscopically after passing
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Figure 6.12: Rescaled avalanche size distributions for theCDFBM with sorted failure
thresholds and residual stiffness, for small values ofkmax outside the rippling regime. A
best fit with the numerical valuesα = 1.22 andβ = 1.5 for the exponents has been used
to obtain the collapse of the curves and the dashed fit curve.

exclusively through regions of finite positive slope, without quadratic maxima, as for the
caseskmax ≤ 30 no rippling occurs.

In the rippling regime, however,σ(ε) passes a series of consecutive maxima with an in-
creasing amplitude. Under stress controlled loading the system jumps from a local maxi-
mum ofσ(ε) to the ascending side of the next maximum which is somewhat higher than
the previous one, see Fig. 6.13. The jump implies that a largeamount of fibre breakings
occur in a single avalanche removing all fibres which have breaking thresholds lower than
the load of the ending point of the jump on the next peak ofσ(ε). Consequently, when
loading is continued along the ascending side of the peak determined by Eq. 6.15, the
response of the system is determined by a disorder distribution which is critical in the
sense of Ref. [56], i.e. weak fibres are removed so that the lower cutoff of the disorder
distribution falls close to the local critical deformation, the location of the next peak. As
it has been shown in Chapter 5, when the disorder distribution approaches criticality, the
avalanche size distribution exhibits a power law from an exponentτ = 3/2 for the small
avalanches, to another exponent ofτ = 5/2 for the large ones, irrespective of the effective
range of interaction. This effect can be recognized in thekmax = 60 curve in Fig. 6.10.

The same argumentation holds for the case without residual stiffness: here, a global
quadratic maximum is always present, so for low values ofkmax the mean field expo-
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Figure 6.13: Section of the constitutive curve for the modelwith kmax = 15, m = 10
and no residual stiffness. Solid line: strain controlled simulation, dashed line: stress
controlled simulation, dots: exact evaluation of the analytical solution, Eq. (6.12).

nent−5/2 is found. However, in the presence of rippling structures, there appear a series
of local quadratic maxima, and the stepping effect described above yields a series of local
critical threshold distributions, which results in the crossover of exponents visible in the
avalanche size distribution, cf. Fig. 6.11.

It has to be stressed that the effects found here in the CDFBM with sorting have no equiv-
alent counterparts in the conventional CDFBM without sorting. There, the macroscopic
behaviour yields a plastic plateau and no steps appear in theconstitutive curve; conse-
quently, the size distribution of avalanches shows no signatures of criticality. The exis-
tence of rippling, synchronized avalanche bursts and a critical crossover of the avalanche
size distribution exponents is a genuine peculiarity of theextreme order statistics accom-
panying sorting.

The analytical argumentation presented above also makes itclear that rippling cannot
occur for all disorder distributions and all values ofkmax; rather, its appearance is re-
stricted to combinations of largekmax and low disorder corresponding to high values of
the Weibull parameterm, such that the maxima defined through Eq. (6.15) are clearly
separated. Fig. 6.14 presents a numerical survey of the apparent occurrence of ripples.
One can see that a well defined and smooth separatrix can be found which isolates the
regime with ripples from the regime without in the{kmax, m} parameter space.
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Figure 6.14: Phase diagram denoting the appearance of ripples in the constitutive curves
of the model with sorting and no residual stiffness, and the presence of pronounced spikes
in the avalanche size distribution. Filled circles: rippled regime; crosses: normal regime;
unfilled circles: inconclusive state. The solid line denotes the approximate location of the
separatrix between the two regimes.

6.4 Conclusions

Motivated by experimental observation on the fracture process of composite systems hav-
ing a hierarchy of length scales, we extended the continuousdamage fibre bundle model
by taking into account that a hierarchy of length and energy scales for damage initiation
and crack growth and propagation exist. Cracks can also be arrested at particularly strong
locations inside a material, and the maximum number of macroscopically visible dam-
age events, which are based on large defects in the material,is not a constant, but varies
between samples of the same production batch. Therefore, two new features have been
added to the ordinary CDFBM, and their effect on the microscopic and the macroscopic
damage evolution has been investigated.

In the first model, the maximum number of failures has been modeled as a Poissonian ran-
dom variable. It can be concluded that the influence of the additional term on the CDFBM
can be well understood in all its effects; the main additional feature is the appearance
of a hardening regime in the constitutive curve in all the cases investigated, which can
be explained by analytical considerations. The macroscopic behaviour is therefore fully
tractable analytically, and we have presented a numerical study for different values of the
parameterκ. It should be noted that this strain hardening can also be discarded of by mod-
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ifying the distribution prescription forkmax. The effect of the Poissonian term should have
a clearly distinguishable effect on the constitutive behaviour, especially for small values
of its mean. In the microscopic behaviour, the extension of the CDFBM by means of a
Poissonian term forkmax leaves the distribution of avalanche sizes invariant, displaying a
crossover from a power law with an exponent−5/2 to a power law with another exponent
−2.12 for increasing values ofκ, in analogy to the conventional CDFBM.

Consequently, the model incorporates the existence of disorder not only with respect to a
distribution of failure thresholds for each defect, but also with respect to the finite number
of macroscopic defects that may effectively govern the macroscopic breaking of certain
materials.

The second model introducing sorted failure thresholds gives rise to complex dynam-
ics and synchronized damage events. A parameter regime has been identified where the
damage evolution of all fibres synchronizes and considerable changes to the microscopic
quantities can be observed, depending on the amount of disorder and the maximum num-
ber of allowed failures.

A combination of both models has been shown to be feasible, and can be useful to obtain
a better understanding of the failure process in real disordered materials. The models may
be especially helpful if several damage processes coexist in these materials, which differ
in their specific damage mechanism and activation energy.
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Chapter 7

Discussion and Outlook

7.1 Summary of the Results

We have proposed several models to address the issue of finding a more realistic de-
scription of failure and fracture in disordered —specifically fibrous— materials, as it was
mentioned in the introduction: the aim was to provide a description for the shear failure of
interfaces in disordered and composite materials; find a simple representation of plasticity,
investigate the question of criticality, and to explain some aspects of cracking behaviour
in strongly disordered materials, all this with the possible application of fibrous compos-
ites under both shear and tension loading in mind. Several models, all of them variants
of the fibre bundle kind have been proposed, and they have beeninvestigated numerically
and —wherever possible— analytically for a wide range of parameters.

To apply FBMs to the case of transversal loading, a novel typeof model for the shear fail-
ure of the glued interface between two solid blocks has been introduced in Chapter 3. In
the model the interface is discretized in terms of elastic beams which experience stretch-
ing and bending deformation under shear. Breaking of a beam can be caused by both
deformations resulting in two failure modes; the modes can be independent or coupled by
a von Mises type criterion. The mechanical strength of beam elements is characterized by
the two threshold values of stretching and bending which thebeam can withstand. The
beams are assumed to have identical elastic properties, theheterogeneous microstructure
is represented by the disorder distribution of the breakingthresholds.

The beam model introduced in Chapter 3 provides a more realistic description of the in-
terface of macroscopic solid bodies than the simple fibre bundle model and is applicable
to more complex loading situations. A detailed study of the macroscopic response and the
progressive damaging of the interface under quasistatic loading has been presented. The
analytic solution for the constitutive behaviour of the model and the damage accumulated
in the system has been obtained in the case of global load sharing. An efficient simulation
technique has been worked out to study the microscopic damage process in large systems.
It has been demonstrated that the disorder distribution andthe relative importance of the
two failure modes have a substantial effect on both the microscopic damage process and
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the macroscopic constitutive behaviour of the interface, and the existence of two failure
modes was found to lower the critical stress and strain as compared to the corresponding
fibre bundle model. Varying its parameters, the model provides a broad spectrum of ma-
terial behaviours. The distribution of burst sizes displays power law behaviour with an
exponent equal to the one of simple fibre bundles. Under stress controlled loading con-
ditions, the macroscopic failure of the interface occurs analogously to phase transitions,
where the beam model proved to be in the same universality class as the equal load shar-
ing fibre bundle model [61; 29; 69]. In the case of localized interaction of beams a more
brittle behaviour of the interface has been found, which implies a more abrupt transition
at the critical load.

A mapping of the beam model onto the classical fibre bundle model has been worked out;
it was found that despite of the different loading situation, the beam model can be treated
by the same methods as the fibre bundles for loading parallel to the fibre axis. This has
allowed us to restrict all further studies to FBM models.

In Chapter 4, a one-parameter plastic fibre bundle model has been introduced, where
failed fibres retain a fraction0 ≤ α ≤ 1 of their failure load. The value of the parameter
α interpolates between the perfectly rigid failureα = 0 and perfect plasticityα = 1 of
fibres.

The plastic fibre bundle model can be relevant for the shear failure of interfaces where
failed surface elements can remain in contact still transmitting load. In fibre composites,
where fibres are embedded in a matrix material, the fibre-matrix interface —which has a
profound influence on the material failure— displays the properties of the glued interfaces
discussed in Chapter 3. The finite load bearing capacity of failed elements of the model
can account for the frictional contact of debonded fibre-matrix interfaces and also for
plastic behaviour of the components.

The effect of the fibres’ load bearing capacity after failurehas been studied both analyti-
cally and numerically. Under GLS, when the fibres attain a state of perfect plasticity with
α → 1, the yield stress proved to be equal to the average fibre strength, and the critical
strain diverges with a functional form that depends on the failure threshold distribution.
Microscopically, with increasingα the avalanche size distribution shows a crossover from
the mean field power law form with an exponent−5/2 to a faster exponential decay. The
existence of this crossover was confirmed by analytical calculations, which also show an-
other crossover to an asymptotic power law with the mean fieldexponent, in the regime
of very large avalanche sizes that cannot be reached in simulations.

The behaviour of the plastic fibre bundle under LLS is determined by a competition be-
tween failure induced by the presence of disorder, and failure due to stress enhancement
around clusters of broken fibres. An increasing value ofα lowers the stress concentra-
tion around broken fibres, and an interesting phase transition between the two regimes
occurs at a specific valueαc, which depends on the strength of disorder. Macroscopically,
the fibre bundle shows a brittle response below the critical point αc, which means that
a weak non-linearity is present in the constitutive curve before global failure, whereas
aboveαc the constitutive behaviour becomes practically identicalto the GLS counterpart.



Discussion and Outlook 107

Computer simulations revealed that the microscopic damageevolution in the LLS bundle
shows a continuous transition analogous to percolation as afunction ofα. The avalanche
size distribution of fibre breakings becomes a power law atαc with the universal exponent
3/2, which is equal to the exponent of bundles with critical strength distributions studied
in Chapter 5. Also, a spanning cluster of broken fibres appears at the transition point.
Simulations showed that these spanning clusters are compact and have a fractal boundary,
with a dimension that increases with the amount of disorder.

In Chapter 5, we carried out computer simulations of the failure process of a bundle
of fibres with a finite cutoff of the fibres’ strength, continuously varying the range of
interaction between the limiting cases of global and local load sharing. This was done
employing a variable range of interaction model proposed in[29], and our results confirm
the analogy between the localized interaction case, and thecase of purely global load
sharing, which has been investigated in [56]. It was shown that with increasing cutoff
strengthεL the macroscopic response of the fibre bundle becomes perfectly brittle asεL

approaches a critical valueεc
L(γ), depending on the range of interactionγ. As the case

of localized load sharing is not analytically tractable, extensive numerical simulations
have been carried out to substantiate the existence of a macroscopic brittleness regime,
and a microscopic crossover behaviour. The numerical results demonstrate the robustness
of the crossover of the avalanche size distributionD(∆) to a universal power law of
exponent3/2, irrespective of the range of interaction between the material elements. A
thorough investigation of the crossover regime has resulted in a characterization of this
regime by means of several quantities, such as the mean avalanche size and the crossover
avalanche size. The distinguished properties of these quantities clearly mark the existence
of the crossover, and a pronounced change in the degree of macroscopic brittleness, which
has also been found in earlier experiments [103] and in the magnitude distribution of
earthquakes [102].

In Chapter 6, two new features have been added to the ordinaryCDFBM, and their effect
on the microscopic and the macroscopic damage evolution hasbeen investigated.

In the first CDFBM variant, the maximum number of failures of afibre, kmax, has been
modeled as a Poissonian distributed random variable of meanκ. This allows to account for
the inter-sample fluctuations of relevant macroscopic defects, which is a disorder effect
that pertains not only to the strength of a single defect, butalso to the total number of
defects. The value of the parameterκwas shown to influence the macroscopic constitutive
behaviour by introducing an asymptotic linear regime even in the absence of a residual
stiffness term, an effect that becomes less pronounced withincreasingκ. However, no
apparent changes were found to be present in the microscopiccharacteristics, where —as
in the standard CDFBM— a crossover in the avalanche size distributions from a power
law with an exponent−5/2 to a power law with another exponent−2.12 for increasing
values ofκ occurs.

A second variant takeskmax to be fixed, whereas the thresholds for subsequent failure
events of a fibre are determined by random numbers sorted in increasing order. This
sorting can account for crack arrest, since cracks propagate sweeping through the regions
of weak and intermediate strength, but can become arrested at regions of high strength. It
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was found that with increasingkmax, a long strain hardening regime appears prior to global
failure, and the critical stress and strength,σc andεc diverge, although at a different pace.
For certain choices ofkmax and the amount of disorder, which can be controlled through
the Weibull parameterm, ripples appear in the strain hardening regime of the constitutive
curve. The ripples mark the presence of synchronized microscopic damage events of a
critical nature. Hence, a crossover is present in the avalanche size distribution to a power
law with an exponent3/2, which can be explained on the basis of the results discussed
in Chapter 5 for the presence of a cutoff in the failure threshold distribution. It should
be noted that no similar effect is present in the CDFBM without sorting, regardless of
whether quenched or annealed disorder is taken into account.

A combination of both models has been shown to be feasible, and can be useful to obtain
a better understanding of the failure process in real disordered materials. The models may
be especially helpful if several damage processes coexist in these materials, which differ
in their specific damage mechanisms and activation energies.

Two important conclusions have to be drawn at this time: first, the case of shear loading
of composites has been mapped onto the conventional fibre bundle model; this mapping
allows to treat the case of shear failure in the framework, with the methods, and including
all variants that have been developed for the conventional FBM. Secondly, the question
of criticality has emerged as a recurring issue, appearing surprisingly in the context of
different models: not only in the case that the threshold distribution is prepared with a
cutoff, as in Chapter 5, but it appears also in the plastic FBMwith local load sharing, cf.
Chapter 4, and in the modified CDFBM in the presence of ripplesin Chapter 6.

7.2 Open Questions

In this thesis, several models or model variants for fracture have been proposed, and their
properties have been explored through analytical calculations and numerical simulations.
Having completed the theoretical approach, it will be interesting to see further experi-
mental efforts directed at this field. A first step has been taken by our colleagues from the
common research project SFB 381 at the University of Stuttgart to test the predictions of
the beam model by investigating the shear failure of a unidirectional glass fibre compos-
ite. First results from measurements of the constitutive curve and acoustic emissions from
several samples have yielded promising results about the brittle nature of global failure,
which will allow us to calibrate the parameters of the beam model. The acoustic emis-
sion data however still lacks statistical significance, andit is planned to conduct further
experiments on this issue.

Similarly, a microscopic observation of fracture patternsin disordered materials with
some degree of plasticity could be very interesting to compare to the plastic fibre bun-
dle model introduced in Chapter 4, specifically to the clusters of broken fibres found
therein. We have described some unique features of these clusters in detail, which should
make them experimentally distinguishable from microcrackpatterns predicted by other
methods.
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Another ongoing research effort —again within the SFB 381 project, to which we are
deeply indebted— focuses on the fracture of glued timber structures, which serve as cost
effective, wide-spanning structural elements,e. g. in roofs. Preliminary results and ob-
servations from this experimental project have motivated us to propose the extension of
the CDFBM discussed in Chapter 6, and a calibration of our model parameters and the
evaluation of the experimental data gathered so far can hopefully yield new insight into
the interesting questions posed by crack propagation and arrest, and the overall influence
of large defect structures.

Fortunately the effect of a lower cutoff in failure threshold distributions has been found al-
ready in experiments on the brittle vs. plastic fracture of metals, and also in the time series
of earthquakes. Naturally, further research efforts should be dedicated to this important
issue.

In undue generality, a remark about the availability of experimental data from a physi-
cist’s point of view may be in place here: dealing with disordered and especially fibrous
composite materials, the engineering community has amassed an incredible wealth of
theoretical and experimental knowledge on the issue of fracture and failure. Yet the shar-
ing of knowledge between the engineering and physics communities could probably be
improved. We find many experiments described in the engineering literature to be too
complex to handle them by statistical physics methods. It may be helpful in the future
to design simpler experiments, focusing on a single aspect of a well prepared experimen-
tal state, preferably dealing with model materials which may not even have a significant
application in engineering, industry or construction.

Having mentioned this, there is also quite some effort to be undertaken for the unification
of the existing statistical models of fracture, and their embedding into the formalism of
statistical physics, although remarkable progress has been made in the recent years. On a
lower level, one may think of two extensions of FBM models which can be implemented
with moderate effort. First, the introduction of spatial correlations for the failure thresh-
olds in the beam model can more closely reflect the presence oflocalized fibre-matrix
interfaces in fibre composites. This can yield rewarding insight into fracture patterns and
microcracks, when localized load sharing is employed in themodel. Even under global
load sharing, interesting questions arise due to the mixingof failure threshold distribu-
tions, which has been investigated not only in the beam modelof Chapter 3, but also
in another recent study [76]. Secondly, placing fibre bundleelements on the nodes of
networks while retaining their disordered properties and dynamical rules could be a fas-
cinating field to study, and a similar effort has recently been undertaken employing the
random fuse model [58]. This could lead to a better understanding for the failure modes
of electrical grids, or computer networks.

In addition, a close resemblance of fibre bundle models to models of biological structures
[105; 106] has recently been discovered. First steps undertaken in the direction of FBMs
with a healing condition [40; 39] make fibre bundles promising candidates for the under-
standing of the cellular microsceleton, and the possible benefits of further insight in this
field can hardly be exaggerated.
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Finally, we may direct the reader’s attention to a technicalapplication. We have men-
tioned the catastrophic collapse of a sports facility in BadReichenhall in the year 2006
in the introduction, which was followed by a series of other hall collapses in the same
winter, fortunately without inflicting any further injuries. Following these incidents were
demands for regular checks of public buildings by independent experts. Needless to say,
this would impose a heavy financial burden on the owners, and necessarily provide only
a snapshot picture of the buildings’ state. On the other hand, small, battery powered
acoustic sensors have recently been presented and are currently undergoing field tests
[20], which can be equipped with long term recording and warning devices. It is through
the study of fibre bundles and similar statistical models that criteria can be established,
which permit to distinguish ambient and ordinary yield noises from microfractures and
impending collapse. A possibly life saving alarm signal could then be triggered if the lat-
ter are found. Together with the potential of constant building supervision and the ensuing
economic advantages, the early warning capabilites could make theses devices —akin to
smoke detectors— a cheap and ubiquitous piece of equipment in all areas of life.

7.3 A perspective

What is the future of the fibre bundle model? In the field of fracture models, there is
hardly a lack of well proven and tested approaches, and FBMs face the competition of
atomistic simulations, beam models on lattices, classicalfracture mechanics and finite el-
ement simulations, to name but a few. It has been the intention of this thesis to highlight
the appropriateness and elegance of fibre bundle models, andtheir particular suitability
in terms of modeling disorder and load transfer. From a broader application point of
view, the future of all these different models certainly lies in a combination by means of a
hierarchical multi-scale approach, using their specific advantages on one scale while over-
coming restrictions and shortcomings on other scales. An integration is also feasible in
terms of multiple mechanisms and loading conditions; an example can be the mechanism
based toolbox [107] that has been developed as a joint effortby several research groups of
the SFB 381, where also the beam model of Chapter 3 has been implemented to account
for interfacial based failure. It can be ascertained that a considerable number of research
projects all over the world are presently devoted to the issue of multi-scale modeling, and
computer simulations that make the expertise of hundreds ofresearchers easily accessi-
ble through user friendly interfaces are becoming a widespread tool in industry and the
academic world.

We would like to conclude this study with an analogy, which isadmittedly a bit far
fetched, but nevertheless instructive. Present state of the art simulations allow for tracing
crack propagation in a bulk of109 atoms on a single-atom level, which has addressed a
series of fundamental questions about the microscopic origin of fracture. Given the rapid
progress of computational performance, the number given above will certainly strongly
increase in the near future. But just as the potential computation of the1023 molecular
trajectories present in only one mole of an ideal gas will notrender the mean field formu-
lation of thermodynamics useless, there will most likely always be a demand for easily
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comprehensible statistical models of fracture —such as thefibre bundle model— which
capture the almost infinite amount of states by means of a few state variables. The pursuit
of statistical models has yielded an abundance of novel information on the fracture pro-
cess of disordered materials and its connection to statistical physics in recent years. To
name an example, despite the decade long study of fibre bundlemodels, the discovery of
a crossover in the power law exponents describing the statistics of fracture events dates
back to the last year [56], and we have found further manifestations of this crossover
throughout this thesis. It is for this reason we may assume that the field of fibre bundle
models can still bear some surprising insights, and that thestudy of these models is still a
worthwhile effort in exploring fundamental principles of fracture.
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