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Abstract

In the present work, the spin properties of single Nitrogen-Vacancy (NV)

defect centers in diamond are investigated, in perspective to their appli-

cation to quantum computing. One of the actual approaches to quantum

computing is based on spins, and, therefore, their behavior and properties

related to manipulation and readout are very important. Using conventional

NMR, an ensemble of spins can be used as a qubit implementation. However,

the method has limitations in regards to the number of qubits that can be

achieved. Conventional magnetic resonance methods cannot be applied to a

single spin because of their low sensitivity. Instead, an alternative method for

detection of magnetic resonance, Optical Detection of Magnetic Resonance

(ODMR) was proved to be suitable for detection of single spins.

The method of choice for studying single NV defects combines single

molecule detection techniques with magnetic resonance. The NV center in

diamond is paramagnetic ( S = 1). The energy level scheme consists of a

triplet ground state and a triplet excited state as well as a singlet metastable

state. The center can be optically detected due to the fluorescent transition

between the excited and ground triplets. In zero magnetic field, the ground

state splits into three components, (X and Y, mS = ±1) and Z (mS = 0),

separated by 2.88 GHz. The ground state can be used as a spin qubit im-

plementation. In order to determine the properties associated with the NV
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triplet ground state, continuous wave (cw) and pulsed ODMR methods have

been applied. The coherent evolution in time of the electron spin in a mi-

crowave field is probed by observing transient nutations. The decoherence

time of the single electron spin is measured by the Hahn echo method. ES-

EEM experiments prove the hyperfine structure of the neighboring nuclei,

i.e., for this case, 14N nucleus. Simulations of the energy level scheme and

spin dynamics of a single electron spin confirm the experimental findings.

Furthermore, the influence of the optical readout on the evolution of the

system is studied, and the possibility of observing quantum Zeno effect in a

single electron spin is addressed.

The hyperfine coupling of the single electron spin to a single neighboring

13C gives the possibility of scaling up the number of spin qubits. The 13C nu-

cleus has a spin 1/2. The nuclear spin states can be readout via the electron

spin states. The hyperfine energy level scheme was probed experimentally

by cw ODMR. Calculations confirmed the hyperfine structure. A Hahn echo

sequence, adapted to nuclear spins was employed for determining the de-

coherence time for the single nuclear spin. The state of the setup at that

time did not allow the determination of the hyperfine tensor. All calculation

assume an isotropic value for the hyperfine constant.

The issue of dipolar coupling between two NV centers is addressed, in the

context of its eventual use towards increasing the degree of qubit scalabil-

ity. The magnetic dipolar coupling depends upon the distance between the

centers, according to the known rule of dipolar coupling interaction energy.

The resulting energy level scheme of two coupled NVs was probed via cw

ODMR. Two theoretical models for the coupling between centers result in a

good agreement with experimental data.
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Chapter 1

Introduction

1.1 Single molecule detection and manipula-

tion

Over the last decades, important progress has been made in developing meth-

ods for detection and manipulation of single quantum systems. Due to the re-

moval of normal ensemble averaging over a sample characteristics, as it is the

case in bulk measurements, the single molecule regime is expected to unravel

new physical and chemical behaviour. Previous to single molecule detection,

experiments on single ions or electrons confined in electromagnetic traps

revealed interesting aspects of quantum mechanics, e.g., quantum jumps,

photon antibunching [IBW87]. However, the experimental environment used

for these cases, i.e., vacuum and electromagnetic fields for the traps, can-

not be applied for single molecules in solids. Similarly, Scanning Tunneling

Microscopy (STM) [BR87] and Atomic Force Microscopy (AFM) [BQG86]

made significant advances in increasing the spatial resolution to the limit of

detection of single systems. Even though these techniques are well-known
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and commercially available, they can only be used for surface investigations.

Optical detection of single molecules can overcome these problems: it has a

less restrictive experimental environment and allows for detection of single

quantum objects embedded into a crystal lattice.

The first optical detection of single molecules was achieved by Moerner

and Kador in 1989 [MK89]. The detection method was based on the ab-

sorption of the laser light in a small volume sample of pentacene-doped p-

terphenyl crystal, at liquid He temperature. Spectral selection was applied

in order to identify single molecules by tuning the laser frequency within the

inhomogeneously broadened line of the electronic transition. In the follow-

ing year, single molecule detection based on fluorescence was performed by

the Orrit group [OB90]. An advantage of using fluorescence emission rather

than absorption is the improved signal-to-noise ratio, at both room and low

temperatures. In both cases, the detection of single molecules delivers ex-

pected results for as long as the concentration of the impurities in the host

is low enough so that they can be isolated in the spectrum and the detection

efficiency sufficiently high in order to overcome the dark count rate in the

detector.

Fluorescence detection of single molecules has been applied to several

fields: molecular and solid state physics, quantum optics, biophysics [Orr02].

One of the spectacular outcomes was performing magnetic resonance on sin-

gle spins [ea93a, ea93b]. It is well known that Nuclear Magnetic Resonance

(NMR) and Electron Spin Resonance (ESR) are important tools in investi-

gations at molecular or submolecular levels. In both conventional NMR and

ESR, a large number of spins is required to provide a detectable signal, e.g.,

1016 − 1018 spins for NMR and 1010 − 1012 spins for ESR. Both methods use

inductive readout methods. For decreasing the number of observable spins,
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the external meagnetic field has to be increased. However, in the limit of a

single spins, the amplitude of the external magnetic field would be too high

for any technologically aproachable method.

1.2 Single molecule detection and quantum

computing

The new physics in the single molecule domain becomes highly important

in the context of the recent developments in nanophysics and nanotech-

nologies. Among these, the emerging field of quantum information holds

much promises related to the improvement of the computing capabilities and

communications security. Besides the practical use of quantum information,

questions of fundamental physics can be addressed. Topics like experimen-

tal realization of entangled states, theory of quantum measurement, spin

transport in solids, can be studied within the large framework of quantum

information.

The quantum analog of a bit in classical computing is a quantum bit

(qubits), i.e., a quantum system with two available states corresponding to

the classical 0 and 1. The advantage over the classical counterpart resides

in the fact that a quantum system state is a linear superposition of the

two eigenfunctions attached to the system. Thus, the power of a quantum

processor is given by the dimension of the Hilbert space associated with the

physical implementations of qubits. The logic gates within the new com-

puter architecture would be a combination of unitary operations. The field

got more momentum with the advent of Shor’s algorithms for factorizing

large numbers [Sho94] and Grover’s algorithm for searching large databases

[Gro95].
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The requirements for hardware implementations of qubits have been sum-

marized in the so-called DiVincenzo list [DiV95]:

1. Initialization of the qubits in a simple state - insures that the quantum

operations have a known initial state of quantum registers.

2. Long decoherence time - the time interval within the quantum gates can

be applied; succesful completion of operations is given by the ’quality

factor’, i.e., the ratio between the decoherence time and the time needed

to apply a gate. Long decoherence times are needed for error correction

codes.

3. Universal set of quantum operations - the operations consist of combi-

nations of logic gates, which in turn are sequences of unitary transfor-

mations, related to the Hamiltonian describing the qubits

4. Qubit specific measurement capability - the ability to read out the state

of the qubits after applying the set of unitary transformations

5. Qubit scalability - to perform calculations, more than one qubit will

be needed. Scaling up the number of qubits would result in a higher

dimension of the associated Hilbert space, and implicitly, a higher com-

puting power

Up to date, there are several proposals for implementations of qubits:

ion traps [CZ95], superconducting qubits [NPT99, MOL+99], quantum dots

[LL01], NMR spin-based qubits [GC97, GC98], linear optics qubits [EKM01].

The later is, up to date, the most succesful in terms of the number of qubits

implemented, even though the nature of the entanglement achieved is still

under debate. For the spin-based approach, a spin 1/2 provides a natural

basis for implementation of qubits, due to its two spin projections, 1/2 and

-1/2, to which states 0 and 1 can be associated, respectively. Subsequently,
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the state of the system is given by the linear combination of the two spin

eigenstates

ψ = a |0〉 + b |1〉

|a|2 + |b|2 = 1.
(1.1)

Logic operations consist of sequences of rf pulses in the case of nuclear spins.

Using the spin states of nuclei, 7 qubits have been implemented using NMR

[VSB+01]. However, the liquid state NMR approach is limited in the number

of qubits. The qubit implementation is not a single quantum system, but

an ensemble of nuclei. The measurement on a spin ensemble would prevent

the initialization of a pure state, and a measurement on it would not result

in a wave function collapse, as it would be the case of a single system. The

measurement result would be an average value over an ensemble. Due to

the fact that the thermal energy is much larger than the energy difference

between two spin sublevels, the scalability of the system is limited [WC97].

A solution for a spin-based quantum computing approach would be given

by single spins. The ensemble averaging would be eliminated in this way, and

pure states would be available. Thus, a good spin implementation would

require a single spin which can be easily manipulated and readout. The

Nitrogen-Vacancy (NV) center in diamond presents all these features. The

NV center is an impurity center in diamond that can be read out optically in

the single molecule domain. It is photostable upon optical excitation. Due

to its paramagnetic nature, it is suitable for ESR. Thus the logic gates would

consist of ESR pulses. However, for constructing a qubit out of an NV center,

its properties and dynamic behaviour have to be fully understood.
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1.3 Nitrogen-Vacancy (NV) defect center in

diamond

A large array of impurities is present in diamond, influencing many of its op-

tical properties. The most abundant impurity in diamond is nitrogen. The

nitrogen impurities in diamond can be found in forms of single atomic nitro-

gen or nitrogen clusters. Based on the type and quantity of the impurities,

diamonds can be classified into four distinct categories [Dav84]:

• Type Ia - high amount of nitrogen, up to 0.3%; the most common type

of natural diamond

• Type Ib - comprises mostly of synthetic diamonds. It may contain up

to 500 ppm in atomic nitrogen

• Type IIa - very rare, with extremely low nitrogen content

• Type IIb - p-type semiconductor

Beside nitrogen atoms, boron, silicon and hydrogen are the most abun-

dant impurities in diamond. However, their presence is detectable only when

the density of nitrogen is very low. Synthetic diamonds can be produced by

either High Pressure High Temperature (HPHT) Synthesis or by Chemical

Vapor Deposition (CVD). In the HPHT synthesis procedure, graphite and a

metallic catalyst are placed in a hydraulic press under high temperatures and

pressures. Over periods of two hours, the graphite converts into diamond.

The CVD procedure is used for fabricating thin films of diamond.

The NV defect center consists of a single nitrogen atom next to an adja-

cent vacancy in the lattice. In addition to that, an electron from the diamond
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Figure 1.1: Schematic representation of NV defect in diamond

lattice is captured by the center. Subsequently, the electron spin of the de-

fect is going to be given by the coupling between the captured electron and

the unpaired electron from the nitrogen atom, resulting in a spin S = 1.

Thus, the NV center is a paramagnetic impurity. Fig. 1.1 shows a geomet-

rical view of the NV defect center in diamond. It can occur naturally in

diamond with nitrogen impurities, having a particularly high concentration

in type Ia diamond. In the case of type Ib diamonds, NV defects can be

obtained by irradiation and subsequent annealing at temperatures above 800

K. By electron irradiation, vacancies are produced in the diamond lattice.

The annealing treatment induces the migration of the vacancies through the

diamond lattice, and implicitely to nitrogen atoms, enhancing the chances

of producing a higher concentration of NV defects. The NV defect can be

also produced in type IIa diamonds, by N+ implantation. Based on neutron

irradiation experiments, the NV defect has been identified as a negatively

charged center [Mit96].
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The NV center presents a fluorescence excitation spectrum with a zero-

phonon line at 637 nm (1.945 eV) [DH76, Dav94]. In 13C diamonds the ZPL

is shifted by 2.1 meV [CDKW88]. The oscillator strength of the zero-phonon

line is comparable to the one corresponding to GR1 center fNV /fGR1 = 1.15

[DLC+92] [Zai01]. The phonon wings in the excitation spectrum is given

mostly by electron-phonon coupling with 65 meV vibration modes, with a

strength λ = 3.65. The fluorescence lifetime of the NV center is 11.6 ns at

low temperature (70 K) or 13.3 ns, at ambient conditions [Zai01, CTJ83].

The fluorescence transition occurs between the triplet excited state and

triplet ground state. The center has C3v symmetry. The ground state is split

into three sublevels, X,Y (corresponding to mS = 1, mS = -1, respectively)

and Z (mS = 0), separated by 2.88 GHz [vO90, RMK87]. The excited state

is also split into three levels, mainly due to the spin-orbit interactions and

lattice strain [Mar99]. Details on the internal structure of the NV center will

be given in Chapter 4.
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1.4 Outline of the dissertation

The present work focuses on the properties of single NV centers in diamond,

from the point of view of its eventual use in quantum computing. Chapter

2 outlines the experimental methods used to detect and manipulate single

NVs. Technical details about the optical readout setup, magnetic resonance

hardware and data acquisition software are presented. Chapter 3 present the

theoretical approach to ODMR on single NV centers. This introduces the

methods for calculating the energy level scheme of NV, the hyperfine inter-

actions with neighboring nuclei, and the spin dynamics of the NV centers.

The internal photophysics related to the NV and the optical readout are

presented in Chapter 4. Chapter 5 is concerned with magnetic resonance on

single NV defects: cw and pulsed ODMR, analysis of the results, influence of

the optical readout on the decoherence time of a single spin. The hyperfine

coupling to 13C is studied in Chapter 6. Chapter 7 presents some preliminary

results and theoretical intepretations of ODMR on two coupled NVs.
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Chapter 2

Experimental

2.1 Experimental setup

2.1.1 Optical setup

Single molecule detection is achieved by fluorescence excitation spectroscopy

using a confocal microscope. A typical experimental setup for single mole-

cule fluorescence spectroscopy is presented in Fig. 2.1. The laser light is

directed through fiber optics and reflected by the dichroic beamsplitter into

the high NA microscope objective, resulting in a diffraction-limitted focal

spot on the sample glass plane. The diameter of the laser spot, defined by

the Sparrow criterion is dS = 0.51λ/NA [BW99], where λ is the excitation

laser wavelength. Thus, the necessity of a high NA objective is obvious, since

the collected background light will scale with the area of the spot.

The fluorescence light from the sample is collected via the same pathway

as the incident light. The excitation light is filtered out by an emission filter,

so that only the fluorescence light will proceed further through the detection

chain. The pinhole blocks the fluorescence originating from outside the focal
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Figure 2.1: Schematic representation of the optical setup

plane of interest. The diameter of the pinhole determines the depth of the

confocal image, thus giving the axial resolution. For a low diameter of the

pinhole, a high axial resolution is achieved, increasing the probability of

detecting a single defect. However, the transmission through the pinhole

decreases with the diameter of the pinhole, so in order to have a good signal-

to-noise ratio (SNR), a trade-off between transmission and axial resolution

has to be made. Typically, the diameter of the pinhole is in the order of tens of

µm, which gives an axial resolution smaller than 200 nm, with a transmission

higher than 90 %. Emerging from the pinhole the fluorescence photons are

detected by an avalanche photodiode (APD). Optionally, the fluorescence

light can be redirected to a spectrograph, in order to record the optical

spectrum. The APD is an advanced semiconductor detector, with a single-

photon detection resolution. Upon detection of a photon, the APD generates

a transistor-transistor logic (TTL) signal, which can be further on processes
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digitally. For the spectrograph, a charge-coupled device (CCD) detector is

used. The CCD camera consists of a 2-dimensional array of coupled photon

counting devices, cooled down at liquid nitrogen temperature. The quantum

efficiency of the CCD camera is around 80 % (Ropper Scientific, former

Princeton Instruments).

2.1.2 Magnetic resonance hardware

The magnetic resonance hardware had to be adapted in order to meet the

requirements of the present experimental approach. First, opposite to the

conventional ESR/NMR there is no magnetic resonance hardware involved in

the readout scheme. This is completely optical. Thus the magnetic resonance

is used for pulse generation in order to manipulate the spins states of the

NV center. For ESR experiments, microwaves are transmitted to the sample

through a microresonator (provided by D. Suter, University Dortmund). The

small size of the diameter of the resonator allows to achieve Rabi frequencies

of up to 50 MHz in the center of the loop. As a microwave generator a

Hewlett-Packard Digital Signal Generator was used. The microwaves are

amplified by a TWT amplifier.

For the radiofrequency, an rf Wavetek generator was employed (.2-1100

MHz). A solid state amplifier (P = 20 W) was used for rf. Both generators are

functioning in a triggered mode, i.e., the pulse sequence is generated based on

a trigger signal comming from a digital signal generator. HP 8175A Digital

Signal Generator and Tektronix AWG 2041 Arbitrary Waveform Generator

have been used for this purpose. In the advanced pulse sequences, the signal

generators are used for triggering the laser as well.

14



laser load sequence

resonator

Digital
Signal Generator

mw
generator

rf
generator

TWT
amplifier

solid-state
amplifier

laser load sequence

resonator

Digital
Signal Generator

mw
generator

rf
generator

TWT
amplifier

solid-state
amplifier

Figure 2.2: Magnetic resonance hardware scheme. The mw/rf generators are trig-

gered by a digital signal generator interfaced with a computer, and their outputs

are amplified through TWT and solid-state amplifiers, respectively. The digital

signal generator is used also for laser triggering.

2.2 Data acquisition software

The main data acquisition (DAQ) system is designed to meet the criteria of

pulsed and cw ODMR experiments. The DAQ software was implemented

on a Windows 2000 1 operating system using a Borland C++ Builder IDE

platform 2. The software design choice combined with the given hardware

result a in maximum efficiency within a low range of overall costs for the

entire system. All codes feature a multithreaded, event-driven design, cross-

compatible with most versions of Windows operating system. Most of DAQ

software involve a real-time data sampling with direct visual access to the

acquired data.

1Windows is a trademark of Microsoft Corp.
2Borland C++ Builder is a trademark of Inprise Corp.
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The DAQ software consists mainly of two main synchronized threads:

pulse preparation/control and detection. The hardware for the former was

presented in the previous section. For the detection chain a multifunction

National Instruments NI-6601 counter/timer card was used. The TTL signal

from the APD is read by the counter card. The control of operation is per-

formed via the PCI bus. The maximum timebase for the counter is 20 MHz,

which provides a good time binning for most of the experimental trials in cw

ODMR. The control of DAQ was in circular buffered mode with external trig-

gering. This insures that no data are lost during the process of acquisition.

For the simple cw ODMR spectra, the pulse sequence design code is imple-

mented within the main acquisition program. The pulses are transferred via

GPIB to the microwave generator and the acqusition is triggered upon com-

pletion of pulse sequence loading into the generator. For more complicated

pulse sequences, the Tektronix generator was used. A general wave designer

code was written for this purpose. The program has a graphical interface

and allows to configure any pulse sequence on the eight output channels of

the generator. The drawback is that for the specific hardware, an external

support, i.e., a floppy disk has to be used in order to transfer the encoded

pulse sequences to the device. The GPIB bus is too slow for this purpose,

and no other transfer protocol was available.
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Chapter 3

Theoretical model for

description of ODMR

experiments

This chapter introduces the mathematical methods used in the analysis of

the NV center structure and spin dynamics. The first section shows the spin

Hamiltonian adopted for describing the energy structure. The main parts

of the Hamiltonian are shortly discussed. The energies and eigenstates have

been determined using the direct product expansion procedure, which is de-

scribed in one of the subsections. The second part deals with the spin dynam-

ics of the NV center. The Liouville equations are set in order to determine

the time evolution of the density matrix elements. The pulsed experiments

result in fluorescence output that can be described by the differences in level

populations.
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3.1 The spin Hamiltonian of the NV center

The general spin Hamiltonian of a system consisting of an electron spin

coupled to N nuclear spins is given by [SJ01]

H = HZF +HeZeeman +Hhf +HQ +HnZeeman

= ŜD̄Ŝ + βe
~B0ḡŜ +

N
∑

k=1

ŜĀkÎk +
∑

Ik>1

ÎkP̄kÎk − βN

N
∑

k=1

gn,k
~B0Îk

(3.1)

where ge, gn are the g factors for the electron and nuclei respectively, βe,

the Bohr magneton, βn, the nuclear magneton, Ā, the hyperfine coupling

tensor, P̄ quadrupole coupling tensor, and ~B0, the external magnetic field

applied to the system. The Hamiltonian in Eq. 7.26 contains only electron

and nuclear spin coordinates, hence the name. The terms in the Hamiltonian

describe the following interactions: HZF , the zero field splitting, HeZeeman,

the electron Zeeman interaction, Hhf , the hyperfine interactions, HQ, the

quadrupolar interactions for nuclei with I > 1/2, and HnZeeman, the nuclear

Zeeman interactions. The spin state functions associated with H form the

reduced (spin-based only) Hilbert space of the electron-nuclear system, with

the dimension

d =
n

∏

k=1

(2Sk + 1)
m
∏

k=1

(2Ik + 1) (3.2)

where n is the number of electrons and m the number of nuclei in the

system. In the case of a single NV center, the electron spin S = 1, coming

from the unpaired electron in nitrogen coupled to an electron captured from

the diamond lattice, is treated as a single spin. Thus, according to Eq.3.2,

the dimension of the Hilbert space for the case of a single center is 3, while

for the case of a single NV coupled to one 13C nucleus, the Hilbert space will

be spanned by six eigenfunctions.

18



The energy levels structure can be obtained by diagonalizing the Hamil-

tonian corresponding to a specified system. For this purpose the Hamiltonian

must first be setup within the appropriate coordinates for the system and

then eigenvalues and eigenfunctions can be extracted nummerically, using

any linear algebra package (Matlab 3, NAG 4).

3.1.1 Zero field splitting

The zero-field splitting (zfs) is present in a system with a spin S ≥ 1, due to

the dipole-dipole coupling between the electron spins. The zero-field Hamil-

tonian is

HZF = ŜD̄Ŝ (3.3)

where D̄ is zero-field interaction tensor. In its pricipal axes coordinate

systems, the zfs Hamiltonian can be written as [WBW94]

HZF = DxS
2
x +DyS

2
y +DzS

2
z

= D
[

S2
z −

1
3
S (S + 1)

]

+ E
(

S2
x − S2

y

)

(3.4)

where D = 3Dz/2 and E = (Dx −Dy)/2. Due to the axial symmetry of

the NV center, E = 0.

The spin eigenfunctions of the zero-field Hamiltonian in terms of spin

projection quantum numbers are

ψ0 = |0〉

ψ±1 = 1√
2
[|1〉 ∓ |−1〉]

(3.5)

3Matlab is a registered trademark of The Mathworks Inc.
4Nummerical Algorithm Group - NAG is a not-for-profit company limited by guarantee
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In order to diagonalize nummerically the zfs Hamiltonian, the spin ma-

trices for S = 1 are needed:

Sx =











0 0.707 0

0.707 0 0.707

0 0.707 0











Sy =











0 −0.707i 0

0.707i 0 −0.707i

0 0.707i 0











Sz =











1 0 0

0 0 0

0 0 −1











(3.6)

3.1.2 Hyperfine and quadrupole interactions

The hyperfine interaction between the electron and nuclear spins is described

by the Hamiltonian

Hhf = ŜĀÎ (3.7)

where Ā is the hyperfine coupling tensor. Within the hyperfine inter-

action, two terms are present: the isotropic Fermi contact term and the

electron-nuclear dipole-dipole coupling. The isotropic hyperfine interaction

represents the electron spin density at the nucleus, while the anisotropic part

is given by the dipolar interaction between the electron and the nucleus. In

its principal axis frame, the hyperfine coupling tensor for a center with axial
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symmetry is reduced to

Ā =











A⊥

A⊥

A||











(3.8)

The electron spin of the NV center is hyperfine coupled to the 14N nucleus

(I = 1), and to a 13C nucleus (I = 1/2) in an adjacent lattice site. The

hyperfine coupling to 14N is characterized by a hyperfine tensor values A|| =

2.4 MHz and A⊥ = 2.1 MHz.

For the interaction of the electron spin with nuclei having spin I ≥ 1, the

quadrupole interaction has to be taken into account. The general form of

the quadrupolar interaction Hamiltonian is

HQ = ÎQ̄Î (3.9)

where Q̄ is the quadrupole tensor. In the case of NV centers, the quadrupole

interaction have to be considered due to the coupling to the 14N nucleus. In

the principal axes system the quadrupole interaction tensor is

Q̄ =











Qxx

Qyy

Qzz











(3.10)

and the Hamiltonian takes the expression

HQ =
1

2
P

[

3I2
z − I (I + 1) + η

(

I2
x − I2

y

)]

(3.11)

where P is proportional to the quadrupole coupling constant and η is the

asymmetry parameter. For 14N , P = −5.04 MHz and η = 0.
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3.1.3 Zeeman interactions

The Zeeman interaction will develop for both electron and nuclear spins

upon application of an external magnetic field. The terms βe
~B0ḡŜ and

βN

N
∑

k=1

gn,k
~B0Îk in Eq. 7.26 describe the electron and nuclear Zeeman in-

teractions, respectively. However, the Zeeman effect on the nuclear spins

is much smaller than that corresponding to the electron, due to the ratio

between the Bohr magneton and nuclear magneton (βe/βN ≈ 1000). The

Lande’ factor g, for atoms, is given by the

g = 1 +
J (J + 1) + S (S + 1) − L (L+ 1)

2J (J + 1)
(3.12)

The spin orbit interaction contributes to the anisotropy of the g-factor, re-

sulting in a slight deviation from the free electron value. Similarly to the

anisotropic hyperfine interaction, the g-tensor has to be used for this case:

ḡ =











g⊥

g⊥

g||











(3.13)

The g-tensor in this form was considered in the principal axes system,

and collinear with the hyperfine tensor for nitrogen.

For the case of the NV center in the diamond, the deviations from the

free electron g-factor are rather negligible. Under the influence of the crystal

field of the surrounding lattice, the orbital angular momentum is quenched

and only the spin S is left interacting with the crystal field. Thus, the

orbital angular momentum is quenched, and therefore its contribution to the

anisotropy will be zero. Very small contributions to the g-factor may come

through overlaping effects between the wavefunction of the electron in the

NV and the wavefunctions of the electronic shells in the neighboring atoms
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in the lattice. Thus, in a good approximation the g-factor for the electron

in the NV can be considered isotropic and its value is equal to that of a free

electron.

3.1.4 Direct product expansion method

When dealing with a system formed of two or more coupled spins, the total

spin of the system is given by vectorial sum over all spins:

~S =
∑

i

~Si, (3.14)

or for the most common case of two spins

~S = ~S1 + ~S2. (3.15)

The possible representations for the eigenfunctions of the system are

|Sm〉, where S is the total spin and m is its projection, and |mS1
mS2

〉, where

mS1
and mS2

are the spin projections of each of the two spins. Here, the

later representation will be used for all the calculations. Therefore in this

representation the total spin of the system may be written as

~S
′

= ~S1 ⊗ ~I1 + ~I2 ⊗ ~S2 (3.16)

where I1 and I2 are the unity matrices in the S1 and S2 subspaces.

This is termed as direct product method [JF72, Fre88] and in order to

exemplify it, the coupling between a electron spin 1 and a nuclear spin 1/2

is considered. The simplified Hamiltonian for this case reads

H = B0 (geβSz − gNβNIz) + Ā~S~I (3.17)
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where the external magnetic field is along the z axis, and the g-factor

and hyperfine coupling are isotropic. The resulting reduced Hilbert space is

spanned by six eigenfunctions, in the representation mentioned above. The

hyperfine interaction can be expressed as a direct product between the two

spin matrices. In the Zeeman term, a 3x3 identity matrix will be inserted in

the case of a electron spin, and a 2x2 matrix will be inserted in the case of

the nuclear spin

H = B0











ge
β

2





1 0

0 1



 ⊗











1 0 0

0 1 0

0 0 −1











− gNβN











1 0 0

0 1 0

0 0 1











⊗





1 0

0 −1















+

+A
2











1 0 0

0 0 0

0 0 −1











⊗





1 0

0 −1





(3.18)

Afterwards, the Hamiltonian can be brought by simple algebra to a form

from where it can be numerically diagonalized. The problem will be one of

finding the eigenvectors and eigenvalues of a matrix. The resulting energy

levels for the system are given by linear combinations of |mSmI〉, with mS =

1, 0,−1 and mI = 1/2,−1/2, in this order.

3.1.5 Transition probabilities

Upon application of an oscillating field (microwaves in the case of ESR, ra-

diofrequency in the case of NMR), ~B1 cos(ωt), transitions between spin levels

can be induced. The transition probability between an initial state Ei and a

final state Ef is given by the expression [AB70]
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Pif =
2π

h̄2 |〈f |V (t)| i〉|2 δ (ωif − ω) (3.19)

where V (t) is the Hamiltonian corresponding to the oscillating field

V (t) = −β ~M · ~B1 cos(ωt) (3.20)

and for the case of an electron spin coupled to a nuclear spin

V (t) = βege
~S · ~B1 cos(ωt) − βNgN

~I · ~B1 cos(ωt) (3.21)

The transition probability between two states will be then given by the

matrix elements of the magnetic moment operator ~M . In a Cartesian refer-

ence frame, the magnetic moment can be written in terms of spin matrices

of the electron and nucleus:

~M = ge

(

Sx
~i+ Sy

~j + Sz
~k
)

− gN

(

Ix~i+ Iy~j + Iz~k
)

(3.22)

Thus the transition probabilities will be given by the elements of the ma-

trix 〈f |M | i〉, [JF72] transformed into the representation which diagonalizes

the main Hamiltonian of the system:

M∗ = V −1MV (3.23)

Here, V is the set of eigenfunctions obtained upon diagonalizing the static

Hamiltonian of the electron-nuclear system.
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3.2 Spin dynamics of the NV center

The information about the state of a system in an ODMR experiment is given

by its optical response. For the case of NV centers, the information regard-

ing the spin behaviour is encoded in the fluorescence photons corresponding

to the transition 3E-3A. In ODMR the measurement is always connected to

differences in the populations between the two levels from where the fluores-

cence originates. As a result, the amplitude of the fluorescence signal will

be given by level populations. The problem of calculating the response of

the system reduces to determining the time evolution of the density matrix

elements.

Based on the ergodic hypothesis, the Liouville equation for an ensemble

can be applied to a single spin to describe its kinematics

ih̄
dρ

dt
= [H, ρ] (3.24)

where ρ is the density matrix andH is the Hamiltonian of the NV coupled

to the applied optical and microwaves fields. Expanding the commutator on

the right side, the equation can be rewritten as

ih̄ρ̇ = Hρ− ρH. (3.25)

The following will show a generic algorithm for calculations involving a

5-level system for the NV center, with axial symmetry at room temperature.

The model can describe the time evolution of the density matrix elements,

thus providing a tool to simulate pulsed magnetic resonance experiments.

Fig. 3.1 shows the NV level scheme addressed by the calculations. The

excitation laser couples the ms = 0 sublevel of the ground state to one of

the vibrational levels of the excited state 3E. The non-radiative relaxation
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Figure 3.1: 5-level scheme of NV center used for spin dynamics calculations

of the vibrational levels is of the order of 1015 Hz. The microwaves are

applied between the sublevels of the ground state, separated by the zero-

field splitting.

The density and the Hamiltonian can be written in a 5x5 matrix form as

using the level indexing presented in Fig. 3.1

ρ =























ρ11 ρ12 ρ13 ρ14 ρ15

ρ21 ρ22 ρ23 ρ24 ρ25

ρ31 ρ32 ρ33 ρ34 ρ35

ρ41 ρ42 ρ43 ρ44 ρ45

ρ51 ρ52 ρ53 ρ54 ρ55























(3.26)

and
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H =























H11 H12 H13 H14 H15

H21 H22 H23 H24 H25

H31 H32 H33 H34 H35

H41 H42 H43 H44 H45

H51 H52 H53 H54 H55























(3.27)

The Hamiltonian of the NV center subjected to optical and microwaves

fields can be expressed as

H =
∑

i

h̄ωi |i〉 〈i| − h̄Ω cos (ωM t) (|1〉 〈2| + |2〉 〈1|)−

h̄Λ cos (ωLt) (|1〉 〈4| + |4〉 〈1|)
(3.28)

with

• ωi - energy of the state i

• ωL - laser frequency in Hz

• ωM - mw frequency in Hz

• Ω - laser Rabi frequency,Ω =
( ~E·~dij)

h̄

• ~dij - transition dipole moment between states i and j

• ~E - amplitude of the laser electric field corresponding to frequency ωL
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• Λ - mw Rabi frequency, Λ = γ ~By

• γ - gyromagnetic ratio of the electron

• ~B1y - the y-component of the mw magnetic field

The matrix elements of the Hamiltonian 〈i |H| j〉 result in the matrix

form

H = h̄























ω11 −Λ 0 −Ω 0

−Λ ω22 0 0 0

0 0 ω33 0 0

−Ω 0 0 ω44 0

0 0 0 0 ω55























(3.29)

The Rabi frequency of the optical and microwaves fields are time depen-

dent, oscillating with their field frequencies and can be written as

Λ = Λ0 cos (ωM t)

Ω = Ω0 cos(ωLt)

(3.30)

The Liouville equations become

29



ρ̇11 = iΛ0 cos (ωM t) (ρ21 − ρ12) + iΩ0 cos(ωLt) (ρ41 − ρ14)

ρ̇22 = −iΛ0 cos (ωM t) (ρ21 − ρ12)

ρ̇33 = 0

ρ̇44 = −iΩ0 cos(ωLt) (ρ41 − ρ14)

ρ̇55 = 0

ρ̇12 = −iΛ0 cos (ωM t) (ρ11 − ρ22) + iρ12ω21 + iΩ0 cos(ωLt)ρ42

ρ̇21 = iΛ0 cos (ωM t) (ρ11 − ρ22) − iρ12ω21 − iΩ0 cos(ωLt)ρ24

ρ̇14 = −iΩ0 cos(ωLt) (ρ11 − ρ44) + iρ14ω41 + iΛ0 cos (ωM t) ρ24

ρ̇41 = iΩ0 cos(ωLt) (ρ11 − ρ44) − iρ14ω41 − iΛ0 cos (ωM t) ρ42

(3.31)

with

ω21 = ω22 − ω11

ω41 = ω44 − ω11

(3.32)

The equations above are corresponding to a system isolated from the

environment. The relaxation and dephasing processes can be included phe-

nomenologically; thus, the relaxation processes can be introduced in the ex-

pressions of diagonal elements (populations) and the dephasing processes can

be attached to the non-diagonal elements (coherences). The relaxation rates

30



used are indicated in Fig. 3.1 and the general notation is kij, where i and

j are the levels in between where the relaxation occurs. The dephasing is

represented by Γij, where Γij =
kij

2
+ Γ∗

ij , with Γ∗
ij being given by the homo-

geneous linewidth of the transition, Γ∗
ij = πνhom. With the relaxation and

dephasing processes included, the Liouville equations for diagonal elements

of the density matrix read

ρ̇11 = iΛ0 cos (ωM t) (ρ21 − ρ12) + iΩ0 cos (ωLt)) (ρ41 − ρ14) + k21ρ22 + k31ρ33 + k51ρ55

ρ̇22 = −iΛ0 cos (ωM t) (ρ21 − ρ12) − k21ρ22 + k32ρ33 + k52ρ55

ρ̇33 = k43ρ44 − (k35 + k31 + k32) ρ33

ρ̇44 = −iΩ0 cos (ωLt)) (ρ31 − ρ13) − k43ρ44

ρ̇55 = k35ρ33 − (k51 + k52) ρ55

(3.33)

and for the coherences

ρ̇12 = −iΛ0 cos (ωM t) (ρ11 − ρ22) + iρ12ω21 + iΩ0 cos(ωLt)ρ42 − Γ12ρ12

ρ̇21 = iΛ0 cos (ωM t) (ρ11 − ρ22) − iρ12ω21 − iΩ0 cos(ωLt)ρ24 − Γ12ρ12

ρ̇14 = −iΩ0 cos (ωLt) (ρ11 − ρ44) + iρ14ω41 + iΛ0 cos(ωM t)ρ24 − Γ14ρ14

ρ̇41 = iΩ0 cos (ωLt) (ρ11 − ρ44) − iρ14ω41 − iΛ0 cos(ωM t)ρ42 − Γ14ρ41

(3.34)
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The obtained set of linear differential equations can be solved nummeri-

cally, but this involves a rather slow processing algorithm, even when a fast

linear algebra package is used. Thus, it is recommended to eliminate the

time-dependent terms related to the explicit form of the Rabi frequencies.

The time dependency can be eliminated by transforming the equations in the

rotating reference frame of variable fields; for this case the rotating frame of

the optical and microwave fields are going to be used. As a result, the co-

herences of the system will be converted and the diagonal elements will have

the same value (level populations remain constant within a reference frame

change)

ρii = σii

ρ14 = σ14e
iωLt

ρ12 = σ12e
iωM t.

(3.35)

Here, σ represents populations or coherences in the rotating frame. The

relations above have been written considering the laser coupling levels 1 and

4, and the microwaves between levels 1 and 2. Note that in this way level 1 is

coupled to both microwave and laser fields. Equation terms proportional to

e2iωLt or e2iωM t are out of resonance and are subsequently neglected (rotary

wave approximation). Therefore, the equations can be rewritten in the new

reference frame as
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σ̇11 = − iΛ0

2
(σ12 − σ21) −

iΩ0

2
(σ14 − σ41) + k21σ22 + k31σ33 + k51σ55

σ̇22 = iΛ0

2
(σ12 − σ21) − k21σ22 + k32σ33 + k52σ55

σ̇33 = k43σ44 − (k35 + k32 + k31)σ33

σ̇44 = iΩ0

2
(σ14 − σ41) − k43σ44

σ̇55 = k35σ33 − (k52 + k51) σ55

σ̇12 = iσ12 (ω21 − ωM) − iΛ0

2
(σ11 − σ22) − Γ12σ12

σ̇21 = −iσ21 (ω21 − ωM) + iΛ0

2
(σ11 − σ22) − Γ12σ21

σ̇14 = iσ14 (ω41 − ωL) − iΩ0

2
(σ11 − σ44) − Γ14σ14

σ̇14 = −iσ41 (ω41 − ωL) + iΩ0

2
(σ11 − σ44) − Γ14σ41

(3.36)

The Liouville equations resulted in a system of homogeneous differential

equations, of the form Ẋ = RX, with
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X =















































σ11

σ22

σ33

σ44

σ55

σ12

σ21

σ14

σ41















































(3.37)

and the relaxation matrix

R =















































0 k21 k31 0 k51
−iΛ0

2
iΛ0

2
−iΩ0

2
iΩ0

2

0 −k21 k32 0 k52
iΛ0

2
−iΛ0

2
0 0

0 0 −K1 k43 0 0 0 0 0

0 0 0 −k43 0 iΩ0

2
− iΩ0

2
0 0

0 0 k35 0 −K2 0 0 0 0

− iΛ0

2
iΛ0

2
0 0 0 ∆1 0 0 0

iΛ0

2
− iΛ0

2
0 0 0 0 −∆1 0 0

−iΩ0

2
0 0 iΩ0

2
0 0 0 ∆2 0

iΩ0

2
0 0 −iΩ0

2
0 0 0 0 ∆2















































. (3.38)
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Chapter 4

Optical readout of the NV

defect center

The NV defect center is one of the impurities in diamond that can be read

out optically on a single defect basis. For further investigations, it is essen-

tial to have a good understanding of the photophysics associated with the

defect. Here, the second order autocorrelation function is introduced as a

method of proof for identifying single defects. The outcomes of optical spec-

troscopy performed on the NV at low and room temperatures are discussed,

in the context of determining the photophysical parameters governing the

fluorescence spectrum behaviour.

4.1 Single center readout. Fluorescence in-

tensity autocorrelation function

The time distribution of photons emitted by a single NV center allows to

determine some of its internal photophysical processes. In order to charac-

terize the time distribution of the emitted photons, it is useful to introduce
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the second order fluorescence autocorrelation function, defined as [Lou83]

g(2)(τ) =
〈I(t)I(t+ τ)〉

〈I(t)〉2
(4.1)

where I(t) is the fluorescence intensity measured at the moment t. The

numerator in the expresion of the autocorrelation function can be calculated

by integrating over the total time of measurement T :

〈I(t)I(t+ τ)〉 = lim
T→∞

1

T

∫ T

0

I(t)I(t+ τ)dt (4.2)

The autocorrelation function can be obtained from measurements on photon

pairs, separated by a given time delay τ [BWO+94]. For further analysis, it

is useful to normalize the autocorrelation function, according to [BBG+01].

g(2)(τ) can be re-written as

g(2)
c =

[CN (τ) − (1 − ρ2)]

ρ2
(4.3)

with

ρ =
S

S +B
(4.4)

Here S represents the signal and is given by the sum of the fluorescence

intensities in the two detectors, and B is the background. CN (τ) is the

background correction to the recorded coincidences, and is given by

CN (τ) =
c (τ)

N1N2wT
(4.5)

where c(τ) is the raw coincidence rate in the measurement time T with

the time resolution w and N1 and N2 are the number of counts in the two

detectors. The probability of having a pair of photons in the time interval

[t; t+ τ ] is given by the probability that the center will be in its excited state

at both times t and t + τ . Thus, a null value for g(2)(τ) for τ = 0 would

indicate the detection of a single photon, originating from a single center.
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Figure 4.1: Measured fluorescence intensity autocorrelation function

Fig. 4.1 shows the result of a fluorescence intensity autocorrelation func-

tion. For zero-delay value, the autocorrelation function goes to zero, ex-

hibiting an antibunching effect, associated with the non-classical nature of

the fluorescence emitted by a single NV. The antibunching effect can be ex-

plained intuitively in relation with projection-type measurements on single

quantum systems. Immediately after emitting a photon, the system will be

in its ground state. Thus, upon measurement on the state of the system,

represented here by the detection of the fluorescence photon, the system is

projected into the ground state, from where it cannot emit another photon,

unless pumped back to its excited state. For a time delay τ = 0, the system

cannot emit and therefore, g(2)(τ) will exhibit a subunitary value. For a sin-

gle center, g(2)(τ = 0) = 0. The contrast of the autocorrelation function will

decrease as the number of centers increases.
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Figure 4.2: Schematic representation of NV energy levels at room temperature.

The fine structure corresponding to the ground state 3A is also shown.

4.2 Optical readout of NVs

Single NV defects have been first detected optically at room temperature

using a scanning confocal microscope [GDT+97]. The system showed no

bleaching under laser illumination, even for excitation intensities close to

saturation. Fig. 4.2 shows the energy levels scheme of the NV at room

temperature. The vibronic levels result from lattice vibrations as well as

from intermolecular vibrations. The spectrum for a single NV center at

room temperature is shown in Fig. 4.3.

The zero-phonon line associated with the 3A−3E is at 637 nm (1.945 eV)

and shows an inhomogeneous broadening of 30 cm−1. The high amplitude of

the inhomogeneous broadening can be attributed to a large strain variation

in the excited 3E state.

Due to the strong inhomogeneous broadening of the zero-phonon line
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Figure 4.3: Fluorescence spectrum of a single NV center. The zero-phonon line

(ZPL) is indicated at 637 nm.

recorded at room temperatures, the fine structure of the 3A ground state

cannot be optically accessed. One possible way to overcome this problem

is to perform experiments at low temperatures. Initial experiments at low

temperature performed on large diamond crystals [DFT+99] showed certain

unexpected limitations in reading out optically the fine structure of NV center

ground state. Thus, for temperatures below 90 K, it was observed that the

fluorescence intensity decreases significantly mainly due to the metastable

singlet state 1A. Also, the low fluorescence output may be due to the high

refractive index of diamond (n = 2.4). The use of diamond nanocrystals

instead of bulk diamonds can overcome both of these problems [BBG+01].

The sample material consisted of nanocrystals with sizes smaller than 250

nm, lower than the laser wavelength. This insures that the surface reflections

do not have a significant effect on the extracted fluorescence .
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Figure 4.4: Low-temperature (T = 2 K) spectrum of NV centers in nanocrystals.

The excitation was at 514 nm. The zero-phonon lines around 637 nm correspond

to two NV centers. The inset to the figure shows the autocorrelation function; the

contrast (0.5) proves the presence of two NV centers.

Fig. 4.4 shows the fluorescence emission spectrum of single NVs at T = 2

K. Two zero-phonon lines are visible around 637 nm, corresponding to two

NV centers. The number of NVs was determined by performing fluorescence

antibunching experiments. The outcomes of these experiments is shown in

the inset of the figure: the fluorescence intensity autocorrelation function

has a contrast of 0.5, indicating the presence of two NV centers. Com-

pared with the fluorescence spectra from bulk diamonds, the lines in Fig.

4.4 are a few times wider, most probably due to the enhanced strain in

the nanocrystals lattice. Similarly, the phonon sidebands observed in the

spectrum of nanocrystals are different from the sidebands recorded in bulk

diamonds. This can be related to the quantization of acoustic phonon states
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Figure 4.5: Absorption line at 637 nm.

in nanocrystals. Previous studies on CdSe/ZnS nanocrystals at low temper-

atures [PW01] showed a non-linear temperature dependence of the homoge-

neous linewidth.

In order to perform optical spectroscopy on single NV centers, the elec-

tronic transitions have been scanned using a single mode ring dye laser, with

a resolution of 1 MHz. Fig 4.5 shows the fluorescence excitation spectrum

of a single NV center at T = 2K. The laser had been swept across the 637

nm transition. The absorption line at 637 nm in Fig. 4.5 has a width of

150 MHz and presents a Lorentzian lineshape. Due to the triplet structure

of the ground and excited states, several allowed transitions are expected in

the spectrum, instead of a single line. A detailed account on the possible

reasons is given in the next section.
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Figure 4.6: Energy levels scheme for the NV center at low temperatures.

4.3 Theoretical model for NV structure

The assumed basic levels scheme is presented in Fig. 4.6. Each triplet con-

sists of three sublevels, T0x, T0y, and T0z, corresponding to mS = 1,−1, 0 for

the ground state and T1x, T1y, and T1z for the excited state. The metastable

state, S is a singlet. The optical transition occurs between the triplets T0 and

T1. The center is considered under continuous illumination by a narrow-band

laser in near-resonance with the 637 nm transition (T0 − T1). The linewidth

of the laser is thus smaller than the zero-field splitting in the ground state of

the NV center. Furthermore, it is assumed that the NV center maintains its

C3ν symmetry. This has important consequences for the number of allowed

transitions within the two spin triplets. Due to different electron distribu-

tion for the electron pair in the two triplet states, the principal axes of the

tensor describing the ground state will be different from those describing

the excited state and thus, it is expected that transitions will occur between

each of the two triplet sublevels. In the presence of the symmetry, the direc-
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Figure 4.7: Time trace of single N-V center fluorescence intensity

tion of the principal axes is invariant. Hole burning experiments performed

on 2,2-Dinaphthylcarbene in n-Heptane and n-Hexane at 1.7 K [KAO+00]

have shown that under enforced C2ν symmetry of the molecule, the num-

ber of possible transitions between sublevels of the triplet states decreases.

Consequently, for the NV case, there will be three possible transitions be-

tween triplet sublevels with similar quantum numbers. The transitions are

expected to appear at different positions in the spectrum, due to different

zero-field splittings in the ground and excited states. This should result in

three spectral lines, upon laser sweeping over the T0 − T1 transition. How-

ever, the experimental spectrum shows a single excitation line. The absence

of satellite lines given by the other possible transitions can be explained by

intersystem crossing.

Furthermore, the fluorescence output of a single center kept under contin-

uous illumination of the excitation laser shows a so-called telegraph behav-
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iour. The time trace of the fluorescence intensity of a single NV center in Fig.

4.7 shows dark intervals (low fluorescence intensity) alternating with higher

fluorescence intensity intervals (bright). This can also be explained by the

photo-processes involving the presence of the metastable state. Thus, a high

fluorescence intensity is obtained for as long as the system maintains one of

the triplet-triplet channels, i.e., transitions between corresponding sublevels

within the two triplets, T1i − T0i.The transition rates for this case are in the

order of 106s−1. However, from the excited triplet state T1, the system can

be subjected to a transition to the singlet state. This will drive the center

out of resonance with the excitation laser, resulting in a low fluorescence

intensity. Three possible transition paths are possible from the metastable

singlet state to the triplet ground state; these will correspond to each of the

sublevels of the triplet. Each of these transitions are much slower than the

radiative transition T1i − T0i. Since the excitation of the center is selective,

i.e., only one sublevel of each triplet is addressed by the excitation laser, only

one of the three transitions from the metastable state to the ground state will

restore the high fluorescence output of the center. By following this channel,

the spin projection is preserved, e.g., if the driving laser couples the mS = 0

sublevels of each triplet, a transition from the singlet state to mS = 1 of

the ground state will not conserve the spin projection. The remaining two

transitions, resulting in a change in spin projections will drive the system

out of resonance with the laser (the linewidth of the laser is smaller than the

zero-field splitting in the ground state). For this case, the fluorescence will

be restored through a relaxation process between the sublevels of the ground

triplet state. T1 of the system at low temperatures is in the order seconds,

due to low thermal energy. A concurent process will be a spin-spin interac-

tion between the ground states of two close-by centers; the cross-relaxation
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process will result in a redistribution of the populations of the triplet state

sublevels. However, the cross-relaxation mechanism involves a rather high

density of centers, just opposite to the requirements of low temperature single

center detection.

In order to describe the fluorescence spectrum, a theoretical model has

been proposed by Nizovtsev et al. [NKJ+03]. The average fluorescence in-

tensity of the center, obtained from the optical Bloch equations is given by

〈Ifl〉 =
AB

3 (A +B + kS) +B
(

1 + kS

R
kD+R

kT

) (4.6)

with

kD = kx + ky

kT = kD + kz

(4.7)

where A is the rate of spontaneous transition T1z−T0z , B is the rate of ab-

sorption, R is the spin-lattice relaxation rate, kS is the population rate of the

singlet level from the triplet level, and kx, kz, and ky are the single depopu-

lation rates to the ground levels. The expression for the average fluorescence

intensity is valid for time intervals larger than the optical dephasing; as a con-

sequence, the optical Bloch equations will result only in diagonal elements,

optical coherences being eliminated. For low temperatures and low density

of defects, the spin-lattice relaxation is much lower than the depopulation

rates of the singlet level to the ground sublevels. With these conditions, the

average fluorescence intensity will be given by

〈Ifl〉 ≈
RA

kS

(4.8)
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The typical values for the parameters used in the equation above are R =

1 Hz, A = 108 Hz. The detection efficiency for the low-temperature setup

is approximately 1%. Thus, a good agreement of the calculated fluorescence

intensity with the experimental data was obtained for an intersystem crossing

rate kS = 1 kHz. Faster shelving rates have been observed in correlation

measurements on single NV centers [KMZW00]. The intersystem crossing

rate is essential for the possibility of detection of resonance lines for single

defects. spectral hole burning experiments showed a transition rate of kS =

12.4 kHz, which can be attributed to shelving from the Z sublevel [Ran94].

Therefore, the resonant lines expected in the spectrum, corresponding to

transitions other than T1z - T0z are not observable due to the low fluorescence

intensity.
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Chapter 5

ODMR on single NV centers

As described in the introduction, a physical system has to meet certain cri-

teria in order to function as a qubit. In the present chapter, it will be proved

that single NV centers in diamond meet all of the criteria. In the previous

chapter, it was shown the a single NV center can be optically readout via

fluorescence detection. This provides also the role of initialization of the

qubit, as upon emitting a fluorescence photon, the system will be found in

its lowest state. The aspects related to the rest of DiVincenzo’s criteria will

be approached here. First, the NV defect ground level energy structure is

investigated and spin levels identified via cw ODMR. The experimental find-

ings are confirmed by calculations. The hyperfine coupling to 14N nucleus

is studied. The NV defect is shown to provide two levels separated by 2.9

GHz in its ground state. The spin behaviour of single spins is investigated

in order to obtain the decoherence-related properties of the system. Tran-

sient nutations on single defects are performed in order to prove the coherent

behaviour upon application of microwave pulses. For the case of single NV

spins, the unitary transformations are given by microwave pulses. The de-

coherence time is measured via spin echo. Furthermore, the influence of the
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optical readout scheme on the decoherence time will be described according

to the model presented in Chapter 3, and the possibility of observing the

quantum Zeno effect is discussed.

5.1 cw ODMR of single NV centers

5.1.1 cw ODMR spectra

Continuous wave ODMR experiments have been performed by sweeping the

microwaves along a frequency range centered on the separation between levels

Z and X or Y. As mentioned in the previous chapter, the system is polarized

mainly in level Z. The optical readout will couple this level with the corre-

sponding sublevel in the excited state 3E. For this purpose, a green laser was

utilized.

Fig. 5.1(a) illustrates a simplified model for the cw ODMR on the NV

center. Thus, the recorded fluorescence maintains a constant level for as

long as the population distributions within the triplet ground state are not

modified. This case corresponds to a microwave frequency off-resonance with

the allowed ESR transition(s) within the triplet state. Upon turning the

microwaves in resonance with these transitions, the populations will change;

the system will undergo a change of populations from level Z to levels X or

Y. As a result, this will induce a lower fluorescence outcome, as the optical

readout is mainly coupled to Z level. The process is termed negative ODMR

effect. Fig. 5.1(b) shows a simulation of the line at 2900 MHz, for the case

of a symmetric NV defect. For non-symmetric centers, two lines will occur

in the cw ODMR spectrum, corresponding to the two allowed transitions.

Fig. 5.2 shows an experimental cw ODMR spectrum obtained on a sin-

gle NV center. The center lacks the characteristic three-fold symmetry and
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Figure 5.1: (a) cw ODMR simplified model for NV centers. The highest fluores-

cence yield corresponds to the radiative transition to level Z of the ground triplet;

the microwaves change the population distributions between the sublevels of the

ground state (b) simulation of a cw spectrum of a axially symmetric NV center.

therefore exhibits two allowed transitions. The separation between the two

lines is, for this case, 10 MHz ( E = 10 MHz, in the zero-field tensor). The

spectrum was recorded at room temperature, in the absence of an exter-

nal magnetic field. The ODMR line intensity is around 20% of the average

fluorescence signal.

5.1.2 Dependency on the magnetic field

Upon applying an external magnetic field, levels X and Y are expected to

part away proportionally to the magnitude of the magnetic field, due to

electron Zeeman effect. Fig. 5.3 shows the cw ODMR spectrum of a single

NV recorded in a low field (aprox. 20 G).

The Zeeman energy corresponding to this field magnitude is around 70
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Figure 5.2: cw ODMR spectrum of a single NV center in B = 0 at room tempera-

ture. The center is not axially symmetric and the distance between the two lines

corresponds to E = 10 MHz.

MHz. This is equal to the distance between the two lines in the figure. The

ODMR contrast is similar to the one in the zero-field case.

The cw ODMR spectrum in Fig. 5.3 is typical for a single NV in a low

magnetic field up to 500 G. The lower frequency line in the spectrum will

present a smaller amplitude than the higher-frequency line due to mixing of

the Z-level eigenstate into Y level (mS = −1); the transition strength will de-

crease consequently, upon lowering the mS = −1 eigenstate coefficient. This

is also visible on the experimental spectrum, where the first line is weaker

than the line at 2900 MHz.

The calculated variation of the triplet sublevels energies with the applied

magnetic field is shown in Fig. 5.4. The Hamiltonian for this case is com-
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Figure 5.3: cw ODMR spectrum of a single NV in a low external magnetic field,

B = 20 G; both lines present splittings due to hyperfine coupling to the nitrogen

nucleus.

posed of the zero-field interaction and electron Zeeman energy for a center

with axial symmetry. The magnetic field orientation was chosen along the

molecular axis. Level Anti-Crossing occurs at 1020 G.

Fig. 5.5 shows the calculated angular dependency of the energy levels for

a given magnetic field ( B = 100 G). Thus for low angles of the magnetic

field with the molecular axis, the electron Zeeman separation between the

two lines is the highest. For higher values of the magnetic field orientation,

the Zeeman energy decreases, with a minimum of the separation correspond-

ing to a field perpendicular to the molecular axis. It is worth noting that

for this value of the angle, the Z sublevel undergoes a change of its energy.

The magnetic field applied with a non-zero orientation in respect with the

molecular axis, leads to a change in the eigenstates composition of the Z

level. As a consequence, the Z level will be described by (mostly) mS = 0
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Figure 5.4: Calculated magnetic field dependency of the energy levels of the ground

state triplet of an NV center. Level Anti-Crossing occurs at 1020 G.
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Figure 5.5: Calculated angular dependency of the energy levels for a given magnetic

field amplitude.
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eigenfunctions, as well as a ms = ±1 component, which under the influence

of the magnetic field will result in a Zeeman shift. The effect is maximum

for a perpendicular field.

Well defined ESR lines can be observed in the experimental spectrum in

a low-field low-angle regime. The Zeeman separation is maximum and the

effects due to the orientation of the magnetic field are minimal. However,

since finding the orientation of the magnetic field could be experimentally

difficult, applying a high magnetic field would prevent orientation-related ef-

fects. For a high field, even applied perpendicular to the axis, the separation

between the X and Y levels would be large enough to provide a good basis

for pulsed experiments.

5.1.3 Hyperfine coupling to 14N

The nitrogen nucleus in the NV center has a spin I = 1 leading to the pres-

ence of hyperfine and quadrupole terms in the Hamiltonian describing the

system. The hyperfine and quadrupole interactions associated with the nitro-

gen nucleus in NV have been studied before for bulk NV centers [HMF93].

The hyperfine and quadrupole constants are: A|| = 2.3 MHz, A⊥ = 2.1

MHz for the hyperfine constants, and P = -5.01 MHz for the quadrupole

[HMF93, LvW77, RMK87]. The hyperfine interaction constants are rather

low in comparison with the ones corresponding, for instance, to 13C nucleus

(A = 130 MHz) [LLH04]. This is due to the value of the electron spin den-

sity associated with 14N, 0.2%, significantly lower than 72%, corresponding

to 13C [HMF93].

The low coupling of the electron to the nitrogen nuclear spin leads to
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Figure 5.6: High-resolution experimental cw ODMR spectrum showing the lines

resulting from the coupling to 14N.

the absence of clearly visible additional splittings in the ODMR lines, for

experiments performed with lower microwave frequency resolution. However,

upon increasing the resolution of cw ODMR experiments, (this can be done

by decreasing the range of microwaves, while keeping the number of frequency

steps constant), the splittings resulting from the coupling to nitrogen nucleus

become visible. A high-resolution cw ODMR spectrum is shown in Fig.

5.6. Three equally intense lines are visible in the spectrum, resulting from

coupling the nitrogen nucleus. The spectrum was recorded in the absence of

a magnetic field. Thus, each of the lines in the previously shown cw ODMR

spectra will present such splitting.

Fig. 5.7 shows the the change in the original triplet state sublevels as

a result of the hyperfine and quadrupole coupling to 14N nucleus, using the

parameters mentioned above. The Hamiltonian for this case included the
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Figure 5.7: Calculated energy levels scheme for a single NV electron spin coupled

to a single 14N nuclear spin. The calculation parameters are given in the text.

zero-field term, and the hyperfine and quadrupole interactions. The center

was consider symmetric, i.e., E = 0. The transitions frequencies present in

Fig. 5.6 are reproduced and shown by arrows in the energy levels scheme of

Fig. 5.7.
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Figure 5.8: Optically detected transient nutations for a single NV defect

5.2 Pulsed ODMR on single NV centers

5.2.1 Transient nutations on single NVs

Recording the transient nutations of a spin system is the easiest way to

probe its coherence properties. In the case of the NV center, nutations are

generated by the microwave irradiation with a frequency corresponding to

zero-field splitting in the ground state and detected optically. The interac-

tion with microwaves leads the system into oscillation between absorption

and emmission processes. As a result, the populations within the triplet

ground level will change accordingly, inducing modulations in the popula-

tion differences and, implicitely, in the fluorescence response of the system.

Transient nutations for single NVs have been recorded under continuous

laser illumination (537 nm) by monitoring the fluorescence intensity for the

time a microwave pulse is applied. Each point recorded is corresponding to a
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time bin in the microwave pulse (10 ns). Fig. 5.8 shows the result of a tran-

sient nutation trial on a single NV center. The laser power used was 300 µW.

The nutation curve shows a decay of the nutations within 1 µs. However,

the nutations decay time alone does not provide the decoherence time of the

system. Inhomogeneous line broadening occurs even in the case of a single

system under study. In an ensemble of spins inhomogeneous line broadening

is due to the different environments the spins packets experience throughout

the sample in use. Thus, there is a distribution in the Larmour precession

frequencies due to the interactions with different lattice environments, or

hyperfine and quadrupole couplings with neighboring nuclei. In the case of

a single NV center, the ensemble average is replaced by the time average,

i.e., the center will experience different environments at different times, lead-

ing to a similar distribution in the Larmour frequencies as in the ensemble

case. Since the measurement is done by accumulation, the time necessary

for obtaining a nutation curve is long enough for a significant change in the

Larmour frequencies. Furthermore, as will be seen in the next subsection,

the decay time of the nutations is strongly influenced by the optical power

of the laser. Thus, it is preferable to employ methods for manipulating the

spins in the absence of the laser, i.e., keeping the laser only for the readout

period, opposite to continuous illumination as in the present case.

5.2.2 Optical readout influence on the decoherence time

The fluorescence response of the system in ODMR experiments is given by

the excitation laser intensity. Thus, a higher ODMR contrast can be ob-

tained employing higher laser powers, up to saturation regime. As mentioned

already, initial transient nutations were performed in a continuous laser illu-

mination regime. However, upon increasing the laser power, it was observed
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Figure 5.9: Transient nutations recorded with two different laser powers. The red

curve indicates simulations of transient nutations.

a variation in the decoherence time of the single electron spin of the NV. Fig.

5.9 shows the transient nutations recorded for two different laser powers. It

can be observed that the nutation decay time for higher laser powers is lower

than in the case corresponding to the lower power. The red lines in Fig. 5.9

show a calculated nutation curve, accroding to the 5-level model presented

in Chapter 3. The nutation decay time, i.e., the time in which the system

can be coherently driven between the sublevels of the triplet state, should

not normally be affected by the readout procedure, since it is an intrinsic

property of the system.

The decoherence rate of the system was measured for several laser pow-

ers and it is shown in Fig. 5.10. The decay rate of the nutations increases

linearly with the laser power. The continuous line represents a fit to the
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Figure 5.10: The decay rate of the transient nutations increases linearly with the

laser power, showing the effect of the laser readout on the coherent evolution of

the system. The continuous line represents decay rates, calculated using the model

presented in Chapter 3.

calculated values for the corresponding powers used. Since the laser is used

for readout only, it can be assumed that the variation of the nutations decay

rate comes as an effect of the measurement upon the system. Further on,

this issue is going to by analyzed.

5.2.3 Quantum Zeno effect

The common approach towards quantum measurement description is given

by the von Neumann’s reduction postulate. This states that, upon a mea-
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surement performed on a quantum system, the wavefunction describing that

system collapses or is reduced to one of its eigenstates. To illustrate this,

the case of a system with two energy levels can be considered. The wave-

function of the system is given by a linear combination of the two associated

eigenstates

ψ = a |ϕ1〉 + b |ϕ2〉 (5.1)

where ϕ1 and ϕ1 are the eigenvectors and a and b their coefficients, re-

spectively. The initial density matrix corresponding to this is given by

ρ0 =





|a|2 ab∗

a∗b |b|2



 (5.2)

The diagonal elements of the density matrix are the populations of the

levels, or the probability the levels are occupied, and the off-diagonal elements

are coherences between them.

According to the von Neumann’s reduction postulate, ρ0 will undergo a

change after the measurement. The wavefunction is converted from a su-

perposition of eigenvectors to a mixture of the same states. In the density

matrix formalism, this can be written as

ρ0 → ρ =





|a|2 0

0 |b|2



 . (5.3)

This process is commonly known as decoherence, and it leads to null off-

diagonal elements in the density matrix. Practically, decoherence follows as a

consequence of the interaction of the system with the environment, a system

with a large number of degrees of freedom, compared with the quantum

system of interest. In the case of the NV center, the environment consists

of the atoms in the diamond lattice. Their interactions with the center will
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influence the decoherence time. This is an intrinsic property of the system,

regardless of the state of the measurement. However, when measured, the

measurement apparatus is added to the normal environment of the system.

It is common to use the term environment for the measuring apparatus as

well.

Due to the assumed projective nature of the quantum system, it is ex-

pected that significant effects will occur upon measurement. A significant

effect is the so-called quantum Zeno effect: the inhibition of the quantum

system dynamics upon a continuous measurement, i.e., the transition from

one state to another is prevented by the high frequency of the measurement

(infinite, if continuous). In the case of the two-level system, a measurement

will be described in terms of probabilities of state occupation: P1 = |ϕ1〉 〈ϕ1|

and P2 = |ϕ2〉 〈ϕ2|, for levels 1 and 2 respectively, with the two eigenvectors

orthogonal. If p is the probability that the system is located in state 2, then

the probability of finding the system in state 1, after the measurement will

be complementary, q = 1 − p.

For a continuous measurement, N → ∞, the probability is equal to unity

[MS77]. Thus, a continuous measurement will inhibit the transition between

the two levels considered. As a consequence, the Rabi oscillations between

two levels will be completely suppressed. The effect holds for as long as the

probability of spontaneous decay is quadratic in time; for a linear dependence

no inhibition occurs. Subsequently, the ideal system for checking on the Zeno

effect will be one with a very low decay rate.

The three-level system in Fig. 5.11 was suggested by Cook [Coo88] for
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Figure 5.11: Proposed three level system for experimental tests of quantum Zeno

effect. The transition between levels 1 and 2 is recorded. The level 3 is used for

measurement only.

experimental verification of the quantum Zeno effect. The model was later

realized experimentally by the group of Wineland [IHBW90]. The two states

labeled 1 and 2 are the states where the Zeno effect occurs. The state 3 is

used for measurement. Transitions between states 1 and 2 can be induced by

microwave or rf radiation, while the transition from 3 to 1, e.g., fluorescence

photons, can give information about the state of the system.

The system proposed by Cook is similar to the energy levels scheme of the

NV defect. Thus states 1 and 2 can be identified within the ground triplet

state, corresponding to states Z and X, provided the defect presents axial

symmetry. State 3 corresponds to the excited level. In the case of ODMR on

NVs, the fluorescence photons from transition 3 to 1 give information about

the state of the system. The presence of the fluorescence photons indicates

the system is in state 1 (or Z, respectively). The measurement is given by the

fluorescence photons. The decay within the sublevels of the NV ground state
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is negligible. By applying microwaves in resonance with the ground level

splitting, Rabi oscillation are induced. As seen in the previous subsection,

the nutation time decreases upon increasing the laser power, a proof of Zeno

effect. The calculations using the model described in Chapter 3 agree with

the experimental data. The Liouville equations describing the dynamics of

the density matrix contain already the measurement process, i.e., the laser

pumping, and the radiative decay to the ground level. The measurement

can be considered continous; the duration between individual photons in

the excitation light as well as in the fluorescence light is small enough (400

kcounts/s in the saturation regime for the fluorescence light from a single

center in nanocrystals). Higher laser powers imply higher fluxes of photons

and implicitly a higher frequency of measurement.

However, the Zeno effect can be verified only partially in the case of single

NVs. The probability of populating the singlet metastable level increases

with the laser power; furthermore in the actual model, the fine structure of

the excited triplet was not considered. As mentioned in the previous chapter,

the decay rate from the higher sublevels of the excited state to the singlet

metastable level is considerably higher, in the order of kHz. For a nonselective

excitation with high laser powers, it is expected that the population of the

singlet state will play a significant role within the photokinetics of the system.

The simple scheme shown in Fig. 5.11 will not hold valid anymore, since the

singlet population cannot be neglected. Consequently, the system in the high

laser power regime might not give an accurate test of the Zeno effect.

5.2.4 Hahn echo on single NVs

Due to the inhomogeneities associated with the system, the transient nuta-

tions experiments will not give a correct value for the spin dephasing time.
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Figure 5.12: Schematic representation of the Hahn echo pulse sequence used

To determine the decoherence time for the single electron spin, a Hahn echo

procedure was approached. The conventional spin echo method helps elim-

inate the inhomogeneities related to the system. However, for the actual

purpose, the conventional pulse echo sequence has to be modified in order to

provide optical readout.

The sequence applied to a single NV is pictured in Fig. 5.12. The first

laser pulse is used to polarize the system in its ms = 0 state. The next pulses

follow according to the conventional scheme. The first microwave pulse ex-

cites the coherences, i.e., the populations are converted into coherences be-

tween sublevels of the triplet state. In classical terms, this corresponds to

changing the direction of the magnetization vectors, from longitudinal to

transversal. For a fixed time period τ1, the system is left unperturbed and

the coherences evolve in the transverse plane. For the ensemble case, this

will correspond to a spread in the transverse magnetizations due to different

Larmor frequencies of different spin packages. In the case of a single system

however, the ensemble average is replaced by a time average, leading to a

similar distribution of Larmor frequencies but in time. Since the experimen-

tal data are obtained by accumulation of the repeated pulse sequences, the
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Figure 5.13: Hahn echo at 0.3 µs

electron spin will exhibit different rotation frequencies. Refocusing of the

coherences is done by applying a microwave π-pulse. The next time inter-

val the system is not acted upon, τ2, is variable. For τ1 = τ2 the refocused

signal is at maximum intensity. However, in order to extract the signal, the

coherences must be converted back into populations, whose differences can

by optically read out.

Fig. 5.13 shows the experimental results of a Hahn echo applied to a sin-

gle NV, with a maximum echo amplitude for a time preset of 0.3 µs. Lower

intensity echo replica can be observed for values corresponding to 2τ1 and

2τ2.
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Figure 5.14: The Hahn echo decay exhibits a strong modulation due to the asym-

metry of the defect investigated. For this center E = 17 MHz. The exponential

decay fit (in red) shows a decoherence time of 0.3 µs, similar to the value obtained

following a Hahn echo.

An alternative way of determining the decoherence time for the system

is given by a modified Hahn echo procedure, know in conventional magnetic

resonance as ESEEM (Electron Spin Echo Envelope Modulation)[Mim72].

The new sequence differs from the previous one by setting τ1 = τ2 =variable.

By increasing the time set between the pulses, a decay of the primary echo

can be observed. The exponential decay will give the decoherence time of the

system. The eventual modulation of the decay provides information about

the hyperfine structure of the system.
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Figure 5.15: The Fourier tranform of the data shown in Fig. 5.14 proves the

diference between the two ESR allowed transitions. The inset shows schematically

the energy levels within the ground state.

Fig. 5.14 shows an echo decay on a single electron spin. The exponential

decay fit results in a decoherence time of 0.3 µs, equal to the result obtained

with a Hahn echo sequence. However, the decay patter presents a strong

modulation superimposed on it. The Fourier transform in Fig. 5.15 gives a

modulation frequency of around 17 MHz. The modulation comes as a result

of an interference between ESR allowed transitions. For the present case,

two ESR transitions can occur in a center without the three-folded axial

symmetry. In this case, the X and Y levels will be separated by parameter

E, usually in the range of 10-20 MHz. The Rabi frequency of the microwaves

( 40 MHz) exceeds the separation between the two levels, exciting thus both

ESR transition, from Z to X and Y respectively.

If external magnetic field is applied, it will result in a Zeeman separation

between the X and Y ground sublevels, additional to the one given by pa-
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Figure 5.16: Upon applying an external magnetic field, the X and Y sublevels are

parted by a separation higher than the Rabi frequency of the microwaves and the

beating between the two main ESR transitions does not occur.

rameter E. Provided that the Zeeman energy is higher than the microwave

Rabi frequency employed, i.e., a higher difference between the frequencies at

which the two allowed ESR transitions occur, the interference between the

two transitions will disappear.

Fig. 5.16 shows the modulation pattern obtained in the presence of a

magnetic field of 30 G. The fast component of the modulation is not present

anymore, as expected.

The Fourier transform shown in Fig. 5.17 reveals several lines, around 5

MHz. The slower component in the Hahn echo decay is given by the hyperfine

coupling to 14N nucleus. The hyperfine levels allow several ESR transitions,

separated by a few MHz (refer to the calculated energy levels scheme shown

previously in this chapter). The remaining modulation in the echo decay will

be then given by the interference between these transitions.

68



0 10 20 30 40
0

2

4

m
S
 = 1

m
S
 = -1

m
S
 = 0

150 MHz

B = 30 G

 

 

am
pl

itu
de

frequency, [MHz]

Figure 5.17: The Fourier transform of the data in Fig. 5.16 reveals the hyperfine

coupling to 14N.
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Chapter 6

ODMR on single NV hyperfine

coupled to 13C

A first attempt to scale up the number of systems that can be used as qubits

is given by the hyperfine coupling of the NV with neighboring nuclei. As seen

from the previous chapter, the electron spin of the NV is hyperfine coupled

to the nuclear spin of 14N. The hyperfine coupling for this case is around

2 MHz, rather small for practical purposes. The resultant levels would be

into a few MHz range of energy separation, lower than the Rabi frequency of

the applied microwaves pulses. This would lead to a non-selective address-

ing of the hyperfine levels. A possible solution would consist of applying an

external magnetic field, in order to increase the separation between levels.

However, this would involve a strong coupling between different eigenstates,

which would prevent addressing the system on the base of individual spin

states. The most abundant carbon isotope in diamond is 12C (natural atomic

abundance 98.93 %). The spin of 12C is I = 0, and therefore the hyperfine

interaction with NV’s electron spin is zero. The 13C occurs with a 1.07 %

natural abundance, and has a nuclear spin I = 1/2, resulting in a hyperfine

70



splitting of the electron levels of NV. The potential use of single 13C nuclear

spins had been proposed by Wrachtrup et al. [WKN01]. Based on the natural

abundance of 13C, one out of 30 NV defect experiences a hyperfine coupling

with a nearest 13C nucleus. However, it is possible to use 13C enriched dia-

monds, up to the limit of 100 %. For this case, the NV electron spin could

be coupled to three 13C nuclear spins in the first coordination shell, and nine

13C in the second coordination shell. The hyperfine coupling constant for

the first coordination shell is 130 MHz, decreasing to 70 MHz for the second

shell. It is estimated that for 13C nuclei located in the third coordination

shell, the hyperfine coupling is around 10 MHz. The 13C nuclear spin cannot

be readout out optically in a direct way. The nuclear states are readout via

the electron states of the NV center.

Here, the hyperfine coupling of a single NV electron spin to a single 13C

nuclear spin is analyzed. The cw ODMR spectra of the system is presented

and compared to calculated values for the transitions energies and probabil-

ities. The state of the experimental setup did not allow the study of angular

dependency of the hyperfine coupling. Therefore, an isotropic hyperfine con-

stant A = 130 MHz will be assumed for calculations. Pulsed experiments

on the nuclear spins are discussed together with possible cause leading to

decoherence.
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Figure 6.1: Zero-field cw ODMR spectrum of a single NV center hyperfine coupled

to a single 13C nucleus. The splitting between the two lines is the hyperfine

coupling constant, A = 127 MHz.

6.1 Continuous wave ODMR results

6.1.1 ODMR spectra of (NV, 13C) system

Continuous wave ODMR experiments have been performed on Type Ib syn-

thetic diamond nanocrystals. Fig. 6.1 shows the spectrum obtained on a

single NV coupled to 13C in the absence of an external magnetic field. The

spectrum was obtained by sweeping the microwaves over a range of frequen-

cies under laser illumination. The NV center is axially symmetric. The

fluorescence is recorded from mS = 0 state coupled to the 3E level. A green

laser has been used for excitation. The ODMR effect is negative, similar to

cw ODMR on single NV centers.

For B = 0, the cw ODMR spectrum exhibits two ESR transitions, while in
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Figure 6.2: cw ODMR spectrum of a single NV center hyperfine coupled to a single

13C nucleus in a small magnetic field (B = 10 G). The two lines in the zero-field

spectrum split into two lines, with the separation given by the electron Zeeman

energy.

the presence of a magnetic field the spectrum is composed of four lines. The

lines in both spectra show slightly unequal ODMR contrast, most probable

related to readout effects. On top of each line very small splittings (around

3 MHz) are visible. Besides the hyperfine coupling to 13C, the electron spin

of the NV is subjected to hyperfine coupling to 14N. However, the hyperfine

coupling constant to the nitrogen nucleus is 2 MHz, much smaller than the

that corresponding to 13C nucleus. Upon coupling an electron spin to two

different species of nuclear spins, the nucleus with lower hyperfine coupling

will constitute a perturbation to the interaction between the electron spin

and the nuclear spin with higher hyperfine coupling constant.
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Figure 6.3: Calculated energy level scheme for a single NV coupled to a 13C in

zero-field. The resulting three levels are degenerated (refer to Table 6.1 for the

eigenvectors corresponding to each energy level). The two ESR allowed transitions

are shown here with t1 and t2.

6.1.2 ODMR spectra analysis

The energy levels scheme of the system has been calculated using the ap-

proach presented in Chapter 3. The following parameters have been used in

the calculations: D = 2880 MHz, E = 0, g|| = 2.0028, g⊥ = 2.0024, βe = 1.44

MHz/G, βn = 0.782×10−3 MHz/G, gn = 1.4048. The fit parameters are the

hyperfine constant, the angle between the magnetic field and molecular axis,

and the intensity of the magnetic field.

Fig. 6.3 illustrates the energy levels scheme in the zero-field case. The

resulting eigenfunctions with their coefficients are in Table 6.1. In the ab-

sence of an external field, the energy level scheme consist of three double-

degenerated levels. Each of the three levels has in its components both

nuclear spin projections. Thus, the ground level corresponds to the electron
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spin projection mS = 0 and does not split under hyperfine interaction, due

to the zero magnetic dipole. The hyperfine splitting is observed on top of

the electron states X and Y, corresponding to mS = 1 and mS = −1, respec-

tively. An isotropic hyperfine constant A = 127 MHz fits well the frequencies

at which transitions shown in Fig. 6.1 occur.

Table 6.1: The eigenfunctions corresponding to energy levels of an NV center

hyperfine coupled to a 13C in zero-field. The eigenvectors are in the form |mSmI〉.

The energy levels are denoted E1 to E8, with E1 the lowest (see Fig. 7.6). Note

that each level is double-degenerated.

E1 E2 E3 E4 E5 E6

∣

∣11
2

〉

0 0 0 0 1 0
∣

∣1 − 1
2

〉

0 0 1 0 0 0
∣

∣01
2

〉

1 0 0 0 0 0
∣

∣0 − 1
2

〉

0 1 0 0 0 0
∣

∣−11
2

〉

0 0 0 1 0 0
∣

∣−1 − 1
2

〉

0 0 0 0 0 1

Upon applying an external magnetic field, the upper levels in Fig. 6.3

are expected to split due to mainly the electron Zeeman interaction. The

resulting energy levels scheme is shown in Fig. 6.4. The Zeeman energy

separation is 30 MHz, corresponding to a low magnitude of the applied field,

B = 10 G. The orientation of the field is along the molecular axis (see next

section for the angular dependency of the energy levels). For the considered

field, the nuclear Zeeman energy can be neglected. The ground state is still

double-degenerate under these conditions.

Table 6.2 gives the eigenfunction identification for each of the levels for

the general case of a NV coupled to 13C in magnetic field, oriented at an angle
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Figure 6.4: Energy levels scheme for a single NV coupled to a 13C in a low magnetic

field (B = 10 G), oriented along the molecular axis.

π/3 in respect with the molecular axis. The ground state consists of linear

combinations of
∣

∣0 − 1
2

〉

and
∣

∣01
2

〉

, with eigenfunction in the form |mSmI〉.

For low values of the magnetic field the ground level is still degenerated.

However, upon increasing the magnetic field the splitting in the ground level

becomes obvious. Levels 3 to 6 are non-degenerated.

6.1.3 Magnetic field dependency

The cw ODMR spectrum in Fig. 6.2 contains four lines given by the ESR

allowed transitions within the energy level scheme at low fields, quasi-aligned

to the molecular axis. For spectra recorded in different experimental condi-

tions, i.e., higher magnetic fields and different single NV centers coupled to

13C, the number of lines doubles. For instance, the spectrum in Fig. 6.5

exhibits eight lines in a four-doublet configuration.

Calculations done for low magnetic fields aligned with the molecular axis
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Table 6.2: The eigenfunctions corresponding to energy levels of an NV center hy-

perfine coupled to a 13C in the presence of an external field, B = 10 G oriented at an

angle π/3 in respect to the molecular axis. The lowest two levels are degenerated.

E1 E2 E3 E4 E5 E6

∣

∣11
2

〉

0 0 0 0 0 1
∣

∣1−1
2

〉

0 0 0 0 -0.49 - 0.86i 0
∣

∣01
2

〉

-0.35 - 0.60i -0.35 - 0.61i 0 0 0 0
∣

∣0−1
2

〉

0.35 - 0.60i -0.35 + 0.60i 0 0 0 0
∣

∣−11
2

〉

0 0 -0.49 + 0.86i 0 0 0
∣

∣−1−1
2

〉

0 0 0 1 0 0
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Figure 6.5: cw ODMR spectrum for NV coupled to 13C in B = 140 G (θ = 26 deg).

The number of lines doubles from the precedent case, due to the splitting in the

ground state caused by non-zero angle between the field and the molecular axis

and the higher magnitude of the magnetic field. The transition in the spectrum

are indicated for easier identification with the ones figured in the energy levels

scheme (see Fig. 6.6 )
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Figure 6.6: Calculated energy levels scheme for B = 140 G

resulting in the energy levels scheme in Fig. 6.4 show that the first two levels,

1 and 2 overlap, having the same energy in the case of low magnetic fields.

Upon changing the relative orientation of the magnetic field to the symmetry

axis, the configuration for these two levels changes. Fig. 6.6 illustrates the

new scheme, assuming a field of 140 G oriented at an angle of 26 deg relative

to the axis. Both magnitude and orientation of the magnetic field are used as

fit parameters to the transition frequencies in Fig. 6.6. The levels 1 and 2 are

in this case split, with a separation of 28 MHz. The electron Zeeman energy

observable in the upper levels (difference between levels 3 and 5, for instance)

is 340 MHz. The splitting between levels 3 and 4 corresponds entirely to the

hyperfine coupling to 13C. Based on |∆mS | = 1,|∆mI | = 0 rules for allowed

ESR transitions, eight lines can be identified within the model.

Both levels 1 and 2 are given by linear combinations of
∣

∣0 − 1
2

〉

and
∣

∣01
2

〉

with equal coefficients. For the considered magnetic field strength, the sep-

aration between levels 1 and 2, given only by the nuclear Zeeman effect is
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Figure 6.7: Angular dependency of the splitting in the ground state for different

magnetic fields.

0.7 MHz, too small to be accounted for the actual value of 28 MHz. The

splitting can be however explained by pseudo-nuclear Zeeman effect, consist-

ing of cross terms between electronic Zeeman interaction and the magnetic

hyperfine interaction [Ble67].

A pseudo-nuclear Zeeman effect has been reported in experiments on the

triplet state of KCl:PO−
2 single crystals hyperfine coupled to spin-1/2 31P

nuclei [SA80]. For this case unusually large splittings in the Z state ( mS = 0

state) resulted from pseudo-nuclear Zeeman interaction in low magnetic fields

(up to 500 G). In the second-order perturbation theory, the splitting of level

1 is given by

∆E =

(

gNβN + gβ
A⊥

E2 − E1

)

B⊥ (6.1)

where the first term in the paranthesis represents the nuclear Zeeman
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interaction, A⊥ is the perpendicular component of the hyperfine tensor, and

E2 and E1 are the energies of levels Z and X or Y in the triplet ground

state of the NV, respectively. Assuming an isotropic value A⊥ = A = 127

MHz, and a separation energy between states X and Y of 2880 MHz, and

a value of the magnetic field of 140 G, an estimate for the difference due

to pseudo-nuclear Zeeman effect will be around 20 MHz which is in the

range of experimental results. However, the splitting between levels 1 and

2 is strongly dependent on the orientation of the magnetic field. Fig. 6.7

shows the angular dependency of the separation for several magnetic field

strengths. Thus, as expected, the separation increases upon increasing the

magnetic field. For a field aligned with the molecular axis, the separation

is zero. For a non-zero orientation angle, the overlaping effects between the

electron and nuclear states become more intense, with a maximum at 90 deg.

6.1.4 Transitions

Transition probabilities have been calculated according to the procedure de-

scribed in Chapter 3. The experimental cw spectra are obtained by accumu-

lating a large number of microwave range sweeping, in order to improve the

signal to noise ratio. Consequently, the variable component of the microwave

magnetic field will be averaged out due to the random phase distribution of

the field throughout the procedure. For this reason, the calculations of the

transition strengths will take into account a constant microwave magnetic

field.

Fig. 6.8 shows a stick plot representation of the transition amplitudes for

the two cases simulated in Figs. 6.3 and 6.4, i.e., B = 0 and B = 10 G. In

the absence of an external magnetic field, there are two lines, separated by

the hyperfine coupling energy whose transition probabilities are equal (Fig.
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Figure 6.8: Transition probabilities for (a) B = 0, corresponding to Fig. 6.3 and

(b) B = 10 G, corresponding to Fig. 6.4

6.8(a)). The same holds for the case of a very small magnetic field, B = 10

G. In Fig. 6.8(b), four lines are visible due to the electron Zeeman effect on

the X and Y states of the NV triplet ground state. As seen in the previous

section, for a very low magnetic field quasi-aligned to the molecular axis,

the separation due to the pseudo-nuclear Zeeman effect is around 1 MHz,

under the frequency resolution, and the nuclear Zeeman effect is completely

neglectable. Due to the low magnitude of the magnetic field, the transition

probabilities are expected to have equal values, confirmed by the calculations.

For a higher external field, B = 140 G, the transition probabilities have

significantly higher values than in the zero-field case. For this case, the

splitting in the lowest energy state is visible, leading to the eight lines in the

spectrum. The calculated lines shown in Fig. 6.9 display slight differences

in their amplitude. However, the differences are within 10% relative to each
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Figure 6.9: The calculated transition probabilties for B = 140 G

other and cannot account for the differences in the ODMR contrast for the

lines shown in the experimental cw spectrum in Fig. 6.5. As mentioned

previously, the optical readout effects as well as relaxation processes between

hyperfine sublevels are not considered.
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Figure 6.10: (a) Levels used for applying the Hahn echo sequence; the nuclear spin

is readout out via the electron spin.(b) The Hahn echo pulse sequence

6.2 Spin dynamics

6.2.1 Decoherence time for single 13C nuclear spins

In order to obtain information about the decoherence time of the single nu-

clear spin, a Hahn echo sequence was applied. The sequence was adapted

for detection of single nuclear spins. As mentioned in the introduction to

this chapter, the nuclear spins cannot be directly probed by the actual de-

tection configuration, since the optical readout applies only to the electron

states. Therefore, the electron spin is used to intermediate the detection and

manipulation of single nuclear spin states.

Fig. 6.10(a) shows the levels of the NV+13C system used for observing

the spin echoes. For nuclear states, the hyperfine splitting of the triplet Y
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Figure 6.11: Hahn echo on a single nuclear spin at 2 µs. The symbols represent

the experimental data, while the continuous line shows the result of a simulation.

state had been used. The two states correspond tomI = 1/2 andmI = −1/2.

The lowest triplet level, Z (mS = 0) is coupled to the hyperfine levels via

microwaves, and provides the optical readout by transition to 3E state. The

applied pulse sequence was πmw − (π/2)rf − τ1 − πrf − τ2 − (π/2)rf − πmw,

with rf and mw representing the nature of the respective pulses. The first

microwave π-pulse is used to excite the system to state Y. The microwave

pulse is selective, in resonance with level 3. From here, a conventional rf

Hahn sequence can be applied. The first rf π-half pulse excites the nuclear

spin coherences and is followed after a delay τ1 by an rf π-pulse for refocusing.

The last rf π-pulse is used for converting coherences back to populations. In

order to complete the optical readout, another mw pulse is needed to bring

the system to the initial Z state. The experiment is averaged out over a large

number of trials (50000).
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Figure 6.12: Series of Hahn echoes. The relative amplitudes of the echoes show no

decay on the time scale shown.

A spin echo obtained for τ1 = 2µs is shown in Fig. 6.11. The solid line

shows a simulation for the spin echo, performed with a modified model similar

to the one presented in Chapter 3. The Liouville equations have been adapted

to the new system accordingly, i.e., the levels resulted from hyperfine coupling

have been included, resulting in a three-level system coupled to microwaves

and radiofrequency fields. The optical readout occurs between the lowest

energy level and the 3E state (see Fig. 6.10a). The fit parameters are the

dephasing Γrf = 0.4 MHz, the Rabi frequency of the rf, Ωrf = 2.4 MHz, the

rf π-pulse, 162 ns, and the rf detuning δ = 9 MHz.

Fig. 6.12 shows a series of Hahn echoes, recorded for different values of τ1.

The relative amplitude of the echoes shows no decay for a time range of up to

30 µs for single nuclear spins. Previously, it was reported a decoherence time

of up to 100 µs for bulk 13C nuclei [SSSA94]. Compared to the value obtained

for single nuclear spins, it can be concluded that the hyperfine coupling to

the electron spin of the NV center does not contribute as an additional source
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of decoherence to the single nuclear spins.
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Chapter 7

ODMR on two coupled NVs

So far, the NV defect and the system formed by the hyperfine coupling of

the NV to a neighboring 13C nucleus have been shown as suitable systems for

qubit implementations. The single electron spin of the NV center has a long

decoherence time, not significantly affected by the strong hyperfine coupling

to surrounding nuclear spins. However, to meet the fundamental criteria for

a quantum computer, the system must be scalable. The coupling to the 13C

nuclei in the first and second coordination shells can give the possibility of

scaling up the system.

A significant increase in the number of qubits can be achieved by mag-

netic dipolar coupling of several NV centers. An advantage of this approach

over scaling by using the neighboring nuclei is given by the fact that patterns

of defects can be created within the range of interaction of magnetic dipoles,

thus controlling the interaction between centers. A possibility to achieve this

is by performing nitrogen high precision ion implantation into diamond, in

order to generate NV centers. This would allow to create regular patterns of

NV centers in the diamond lattice. The distance between defects in such pat-

terns should not exceed the distance for which the dipolar coupling strength
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is lower than the optical linewidth. Within a pattern of defects, the strongest

interaction is between adjacent centers, due to the rapid decrease of the mag-

netic dipolar interaction energy with the distance between centers. Thus, it

is important to understand the structure and dynamics of two coupled de-

fects, in order to proceed further with higher order couplings. In this chapter,

the magnetic dipolar interaction between two NV centers is investigated and

the possibility to manipulate the spin states of the resulting system is an-

alyzed. The energy level scheme for two coupled NVs was calculated using

two approaches: a detailed Hamiltonian approach and a perturbational ap-

proach. The former takes into account all the possible interactions between

the four electrons involved in the coupling between the two centers. In the

perturbational approach, the inter-center dipolar interaction is considered a

perturbation to the Hamiltonian of separated NV centers. This is justified

by the fact that, for instance, for a separating distance of 1 nm, the dipolar

interaction energy is around 15 MHz, much smaller in comparison with the

zero-field energies of individual NVs (2.9 GHz). Further on, the decoherence

time of the electron spin of the system is measured.

The experiments on two coupled NVs were carried out using the same

experimental setup previously described in this work. The continuous wave

experiments have been performed under similar conditions to those used in

the case of a single NV defect: the microwaves were swept over a range of

frequencies under laser illumination providing the optical readout. Fig. 7.1

shows the cw spectrum of two coupled NVs. The spectrum was taken in a

magnetic field of around 70 G, and consists of two doublets, separated by
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Figure 7.1: cw spectrum of two coupled NVs. The spectrum consists of a set of

two doublets. The separating energy within each doublet is given by the dipolar

coupling between the centers.

the Zeeman energy corresponding to the two NVs. The separation energies

between the two lines within each doublet are equal. Upon increasing the

applied magnetic field, the separation energies between the lines within each

doublet does not change. Thus, it can be assumed that this is given strictly

by the dipolar interaction between the two centers. This is going to be

confirmed by the calculations in the next sections.
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7.1 Detailed Hamiltonian approach

The detailed Hamiltonian approach is based on the paper by Benk and Sixl

[BS81], where it was developed in order to calculate the spectrum and tran-

sitions for two coupled triplet states of bicarbene structures. Fig. 7.2 shows

the geometrical representation of a pair of coupled NV centers, separated

by the distance R12. The two defects are considered in the actual approach

as being magnetically equivalent; thus they have the same zero-field split-

ting, D0 = 2880 MHz and E = 0. z, z’, and z” are principal axis of the

fine structure tensors associated with different spin multiplets. The general

Hamiltonian of the system is

Ĥ = ĤS + Ĥ0 + ĤZeeman (7.1)

where the spin Hamiltonian ĤS describes the magnetic dipolar interaction

between the four electrons of the two defect centers, Ĥ0 is the electrostatic

interaction Hamiltonian, and ĤZeeman is the electron Zeeman Hamiltonian.

The spin-orbit interaction is neglected for this case. The spin Hamiltonian

is the sum between the dipolar magnetic contributions of the electrons and

is given by

HS =
1

2
g2µ2

B

∑

k,k′

(

sksk′

r3
kk′

− 3
(skrkk′) (sk′rkk′)

r5
kk′

)

(7.2)

where g is the electron g−factor and µb is the Bohr magneton. The

sum is done over all electrons. Therefore, the spin Hamiltonian will contain

six terms: two terms describing the intramolecular interactions, i.e., dipolar

interactions between the two electrons within a single defect center, and four

intermolecular dipolar interactions, between individual electrons of the two

defects. The total wavefunction of the system can be decomposed into an
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Figure 7.2: Geometrical model for two coupled NVs, according to the approach

by Benk and Sixl. Each of triplet states is given by two coupled electrons and has

the wavefunctions φ1 and φ2. The defects are considered magnetically equivalent,

i.e., with the same individual zero-field parameters, D = 2880 MHz and E = 0. z,

z’, and z” are principal axes of the fine structure tensors of the individual defects,

the pair triplet states and pair quintet states, respectively, making the angles θ, θ′

and θ′′ with the intermolecular axis.

orbital part and a spin part

|ψ〉 = |ψorbital〉 |ψspin〉 (7.3)

due to the fact that the spin orbit interaction is neglected and that the

spin Hamiltonian commutes with the electrostatic Hamiltonian.

Calculations are performed assuming that the average intramolecular dis-

tances between the two electrons of one defect, r11 and r22 are equal and much

lower than the distance between the two centers, R12

〈r11∗〉 = 〈r22∗〉 = 〈r〉 , (7.4)
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〈r12〉 = 〈r12∗〉 = 〈r21∗〉 = 〈r1∗2∗〉 = R12 >> 〈r〉 . (7.5)

Upon averaging the Hamiltonian over the orbital wave functions, a pure

spin Hamiltonian is obtained

〈

Ĥ
〉

=
〈

ψorb

∣

∣

∣
Ĥ0

∣

∣

∣
ψorb

〉

=
〈

ψorb

∣

∣

∣
Ĥ0

∣

∣

∣
ψorb

〉

+
〈

ψorb

∣

∣

∣
ĤS

∣

∣

∣
ψorb

〉

=

= ε+ Ĥspin

.

(7.6)

where ε is the electrostatic energy separating the spin multiplets. Due to

the high separation between the defects in comparison to the intramolecular

distance between the electrons, the overlap between the electron wavefunc-

tions of different centers is very small, and therefore the exchange energy

can be neglected. Finding the energy levels within the spin multiplets is

reduced thus to diagonalizing the spin Hamiltonian. In the coordinate sys-

tem depicted in the 7.2, the distance vector joining the two centers can be

expressed as

~R =











0

R sinϕ

−R cosϕ











. (7.7)

The intermolecular dipolar term are therefore given by

Ĥ12∗ = Ĥ21∗ = Ĥ12 = Ĥ1∗2∗ =
1

2
g2µ

2
B

R3











1 0 0

0 1 − 3 sin2 ϕ 3 sinϕ cosϕ

0 3 sinϕ cosϕ 1 − 3 cos2 ϕ











.

(7.8)

The total spin Hamiltonian is then given by
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Ĥspin = D0

(

Ŝ2
1z −

1
3
Ŝ2

1

)

+ E0

(

Ŝ2
1x − Ŝ2

1y

)

+D0

(

Ŝ2
2z −

1
3
Ŝ2

2

)

+

E0

(

Ŝ2
2x − Ŝ2

2y

)

+XŜ1xŜ2x +XAŜ1yŜ2y −X (1 + A) Ŝ1zŜ2z

+Xα
(

Ŝ1zŜ2y + Ŝ1yŜ2z

)

(7.9)

where D0 and E0 are related to the individual fine structure tensors, the

factors A and α describe the geometry of the system, and X the strength of

the dipolar interaction between the centers

A = 1 − 3 sin2 ϕ

α =
√

(1 −A) (2 + A)
(7.10)

and

X =
g2µ2

B

R
. (7.11)

The spin coupling between the four electrons, S = S1 + S2, with S1 =

S2 = 1 will result in three pure spin multiplets: a singlet (S), a triplet (T)

and a quintet (Q), whose spin functions are given by linear combinations of

individual triplet spin functions of the defects

|S0〉 =

√

1

3
(|τ1xτ2x〉 + |τ1yτ2y〉 + |τ1zτ2z〉) (7.12)

|Tx〉 =
√

1/2 (|τ1zτ2y〉 − |τ1yτ2z〉) ,

|Ty〉 =
√

1/2 (|τ1xτ2z〉 − |τ1zτ2x〉) ,

|Tz〉 =
√

1/2 (|τ1yτ2x〉 − |τ1xτ2y〉)

(7.13)

|Q1z〉 =
√

1/2 (|τ1xτ2x〉 − |τ1yτ2y〉) ,

|Q2z〉 =
√

1/2 (|τ1xτ2y〉 + |τ1yτ2x〉) ,

|Qx〉 =
√

1/2 (|τ1yτ2z〉 − |τ1zτ2y〉) ,

|Qy〉 =
√

1/2 (|τ1xτ2z〉 + |τ1zτ2x〉) ,

|Qxy〉 =
√

1/6 (|τ1xτ2x〉 + |τ1yτ2y〉 − 2 |τ1zτ2z〉) ,

(7.14)
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with τx, τy, and τz individual triplet spin functions [CM67]. The Hamil-

tonian can be diagonalized numerically or otherwise, analytical solutions can

be found by using

Ŝu |Tu〉 = 0

Ŝu |Tv〉 = i |Tw〉

(7.15)

where u, v, w = x, y, z, analogue to the original triplet functions.

The present results are valid within the limit of large electrostatic energy,

i.e., when the electrostatic energy separation ∆ε between spin multiplets is

much larger than the spin energy arising from the magnetic dipolar interac-

tion. The resulting ESR transitions are identified subsequently within the

pair states of different spin multiplicity only. The triplet and quintet energy

levels are obtained by diagonalizing the Hamiltonian in the triplet eigenfunc-

tion and quintet eigenfunctions, respectively

Eij =
〈

Ti

∣

∣

∣
Ĥspin + ĤZeeman

∣

∣

∣
Tj

〉

(7.16)

Eij =
〈

Qi

∣

∣

∣
Ĥspin + ĤZeeman

∣

∣

∣
Qj

〉

(7.17)

with HZeeman, the Zeeman spin Hamiltonian. Considering the external

magnetic field oriented along the fine structure axis of the triplet centers, the

Zeeman term is

ĤZeeman = gµBBoŜz (7.18)

Fig. 7.3 shows the obtained energy level scheme for the pair triplet state,

in the absence of the magnetic field as well as in the presence of a small

magnetic field, B = 100 G, oriented along the fine structure axis of the

triplet centers. The levels in the figure are associated with high-field quantum

numbers, i.e., mS, where S = S1 + S2. It can be observed that the levels

arrangement is inverted by the coupling of two defects. In the case of a single
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Figure 7.3: Energy levels of the pair triplet state of two coupled NVs. The levels

energies are given in MHz, and states are identified by high-field quantum numbers.

The coupling between the two centers inverts the order of the levels, i.e., τz is the

higher energy state, as opposed to the individual spin triplets, where it was the

lower state. For the fine structure parameter E = 0, symmetric centers, the lower

energy level is degenerated. Upon applying a small external magnetic field, B =

100 G, the two lower levels split, resulting in two ESR allowed transitions.

defect center, the mS = 0 level is the lowest energy level within the triplet,

while in the case of the pair triplet state is the highest. In the absence of an

external magnetic field, the main contributions to the level arrangement are

given by the intermolecular dipolar interaction, X and the geometry of the

system, provided that the fine structure parameter E is zero. Upon applying

an external magnetic field along R, the Tz level remains unchanged, whereas

Tx and Ty are Zeeman shifted. The ESR allowed transitions can be thus

identified in the actual level scheme, based upon the |∆mS| = 1 rule for the

allowed transitions.
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Figure 7.4: The energy levels for the pair quintet state in zero field and in a low

field (100 G). The energy units are MHz. The allowed transitions are indicated by

arrrows.

The quintet state energy level scheme is represented in Fig. 7.4, consid-

ering the same two situations for the external magnetic field. In the absence

of the magnetic field, the quintet state presents an mS = 0 level, and two de-

generate levels corresponding to mS = ±1 and mS = ±2, respectively. In the

presence of the magnetic field, the two degenerate levels, Q(±1) and Q(±2)

are split into corresponding Zeeman levels. The resulting allowed transitions

are shown in the figure. Transitions connecting Q(±2) with Q(0) are not

allowed in a first approximation due to the double spin flip processes.

The detailed Hamiltonian approach can offer a model for the cw spectrum

in Fig. 7.1. In this approach the lines in the spectrum can be identified as

transitions within the pair triplet and the pair quintet states. Each doublet

in the actual representation consists of one ESR allowed transition within the
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triplet and one ESR transition within the quintet, separated by the parame-

ter X, the dipolar coupling between two centers. However, the model fails to

provide a clear identification of energy levels in terms of individual centers,

which would be beneficial for implementing quantum computing on this sys-

tem. A simpler approach, perturbational, where the interaction between the

centers is considered a perturbation in regard to the main Hamiltonian of

two separate NVs can provide such a description.
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7.2 Perturbational approach for two coupled

defect centers

The previous section gave a detailed description of the magnetic dipolar

interaction between two defect centers, where all the magnetic interactions

were taken into account, i.e., both intermolecular and intramolecular. This

approach gives a good description of the spectral lines present in experimental

cw spectra, however it fails to identify the energy levels based on individual

high field quantum numbers for individual defect centers. The levels in the

previous approach were identified based on their mS, corresponding to the

sum between individual quantum numbers. A perturbational approach would

provide a level identification based on pair of quantum numbers, (mS1
, mS2

),

rather than the sum of them.

The perturbation theory can be applied in the present case, considering

the amplitude of the magnetic dipolar interaction between two centers in

comparison with the fine structure energy. Fig. 7.5 shows the dependency of

the calculated magnetic dipolar interaction energy on the distance separating

the two defects. The interaction energy corresponding to a distance r = 1

nm is around 15 MHz, much lower than the zero field splitting energy of the

NV center, D = 2880 MHz.

Thus, the intermolecular interaction can be considered a pertubation to

the fine structure energy of a system of two point dipoles. The resulting

Hamiltonian reads

Ĥspin = Ĥ0 + Ĥ1 (7.19)

where

Ĥ0 = D0

(

Ŝ2
1z −

1

3
Ŝ2

1

)

+E0

(

Ŝ2
1x − Ŝ2

1y

)

+D0

(

Ŝ2
2z −

1

3
Ŝ2

2

)

+E0

(

Ŝ2
2x − Ŝ2

2y

)

(7.20)
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Figure 7.5: The separating distance dependency of the magnetic dipolar interaction

energy between two centers. The calculation assumes two magnetically ecquivalent

centers, with principal axis of the spin triplet tensors aligned. The inset to the

figure shows a zoom for high separating distances. For a separating distance of

1÷2 nm, the interaction energy is 5÷15 MHz.

and

Ĥ1 = Ŝ1T̄ Ŝ2 (7.21)

with T̄ , the magnetic dipolar interaction tensor, whose elements are given by

Tαβ =
1

2

µ0

4π
g2µ2

B

〈

r2δαβ − 3αβ

r5

〉

. (7.22)

Therefore, the energy matrix due to the perturbation is given by

E1 =
〈

ψ
∣

∣

∣
Ĥ1

∣

∣

∣
ψ

〉

(7.23)

where ψ is the spin functions basis in which the main Hamiltonian, i.e.,

zero-field and Zeeman, if existent, are diagonalized.
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The transition probabilities have been calculated according to

Pif =
2π

h̄2 |〈f |V | i〉|2 δ(ωif − ω) (7.24)

where V is the microwave perturbation which induces the ESR transitions

V = −β ~M · ~H1. (7.25)

The calculations have been done for a distance between the two centers

of 1.5 nm, with an external magnetic field of aprox. 60 G, oriented along

the intermolecular axis. The resulting energy level scheme is shown in Fig.

7.6(b). The ground state is |00〉, while the next four energy levels are lin-

ear combinations of |0 − 1〉 and |−10〉 (levels 2 and 3) and |01〉 and |10〉

for levels 4 and 5, respectively. Table 7.1 shows the calculated coefficients

corresponding to each eigenfunction in all the nine levels.

Table 7.1: The eigenfunctions corresponding to energy levels according to the

perturbational approach. The eigenvectors are in the form |mS1
mS2

〉. The energy

levels are denoted E1 to E9, with E1 the lowest (see Fig. 7.6).

E1 E2 E3 E4 E5 E6 E7 E8 E9

|11〉 0 0 0 0 0 0 0 0 1.00

|10〉 0 0 0 0.707 -0.707 0 0 0 0

|1 − 1〉 0 0 0 0 0 0 -0.707 0.707 0

|01〉 0 0 0 0.707 -0.707 0 0 0 0

|00〉 1.00 0 0 0 0 0 0 0 0

|0 − 1〉 0 -0.707 0.707 0 0 0 0 0 0

|−11〉 0 0 0 0 0 0 -0.707 0.707 0

|−10〉 0 0.707 -0.707 0 0 0 0 0 0

|−1 − 1〉 0 0 0 0 0 1.00 0 0 0
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Figure 7.6: Calculated energy level scheme obtained within perturbational ap-

proach.

The allowed ESR transitions occur between each of the levels 2 to 5 and

level 1. Levels 6 to 9 consist of linear combinations of |1 − 1〉 and |−11〉 (levels

7 and 8, degenerate) or |−1 − 1〉 (level 6) and |11〉 (level 9). Transitions

originating from any of these levels to level 1 would involve double spin-flip

processes. The experimental cw spectrum shown in Fig. 7.7(a) presents a

set of two doublets. The energy separation within each of the two doublets

is given by the inter-center magnetic dipolar interaction, and it is 15 MHz

for this case (Fig.7.6(a)) . This is corresponding to the distance between the

energy levels 2 and 3, and 4 and 5, respectively.

The stick plot in Fig. 7.7(b) shows the calculated transition probabilities,

for the two doublets. Due to the identical coefficients of the eigenfunctions

within each linear combination describing the levels 2 to 5, transition prob-

abilities are equal. However, the calculations do not include the influence of
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Figure 7.7: (a) cw spectrum of two coupled NVs showing two doublets (b) The

calculated transition strengths. Optical readout influence was not taken into ac-

count.

the optical readout upon population distributions for each level, therefore, a

deviation from experimental values of the transition strength is expected.

The perturbational approach in describing the coupling between two NVs

offers a good model for explaining the cw spectrum in Fig.7.1. The lines in

the spectrum can be positively identified within the energy levels scheme

resulting from the model. Furthermore, the model allows to describe the lev-

els in terms of individual centers, with eigenfunctions in the form |mS1
mS2

〉.

This is beneficial for approaching quantum computing aspects.
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Figure 7.8: Geometrical representation of a sample pattern of implanted single

NVs. The dipolar coupling to the closest neighbors, dark filled circles in the

figure, will be the strongest; the interaction decreases as the separating distance

between the centers increases.

7.3 Spin dynamics of two coupled NVs

The coupling between NV centers gives the opportunity of scaling up the

number of spin qubits and implementing multiple qubit operations. Fig.

7.8 shows a rectangular pattern of implanted NVs. Thus, the central defect

interacts strongly with the closest neighbours in the pattern, namely 1 to 4 in

the figure. The interactions with the other defects decreases as the separating

distance between the centers increases. However, for inter-center distances

ranging from 5 nm up, the dipolar interaction is under 300 kHz, lower than

the detectable linewidth.

After identifying the energy levels of the system in terms of quantum

numbers associated with individual defects, the decoherence properties of

two coupled NVs have to be analyzed. In order to determine the decoherence
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Figure 7.9: The Hahn echo pulse sequence applied to two coupled NVs. (a) The

energy levels where the Hahn echo was applied. Levels 2 and 3 are separated by

the dipolar interaction energy between two centers. The sequence was performed

in the presence of a small magnetic field (B = 100 G). b) The pulses employed -

the last π/2 mw pulse was used in order to facilitate the optical readout.

time of the system, a Hahn echo modulation pulse sequence similar to the

one employed in the previous cases had been applied (7.9(a)). This will

allow for the determination of the decoherence time of the system and the

eventual influence of the coupling of the two centers on the decoherence.

Fig. 7.9(a) shows the three energy levels, where the pulse sequence was

performed. These are the first three levels in the perturbational approach

energy levels scheme. The microwaves have been coupled to levels 1 and 2.

The Rabi frequency of the microwaves (around 30 MHz), is higher than the

dipolar coupling between the two centers, i.e., the splitting between levels 2

and 3, in the figure, which will result in a beating pattern of the Hahn echo

amplitude.

Fig. 7.10 shows the experimental data of the Hahn echo decay. The echo
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does not decay completely within the experimental time range considered.

The decoherence time for a pair of coupled NVs is thus similar to that cor-

respoding to a electron spin of a single NV center. The magnetic dipolar

coupling of the two centers appears not to be a major source of decoherence

for the electron spin. In the previous data, it was shown that in the case of

an electron spin of the NV hyperfine coupled to a 13C nucleus, the decoher-

ence time of the electron spin was not affected significantly by the relatively

strong hyperfine coupling ( A = 130 MHz). In the case of two coupled cen-

ters the dipolar coupling is one order of magnitude lower and is expected

to be a neglectible factor for the decoherence of the system. Furthermore,

in the considered case, the levels 2 and 3 are linear combinations of |0 − 1〉

and |−10〉, with equal coefficients. Thus upon changing the value of the spin

of one center, the total spin function of the system will remain unchanged,

contributing to a long decoherence time.

A possible source of decoherence is the hyperfine coupling to the 14N nu-

cleus. The advantage of performing a Hahn echo modulation experiment over

a simple Hahn echo is that the former unravells particularly small hyperfine

couplings of the electron spin. Fig. 7.10 shows a pattern of fast and slow

modulations of the Hahn echo decay. The Fourier transform of the echo in

Fig. 7.11 shows several lines corresponding to the modulations of the echo,

reflecting all the couplings of the electron spin. The line marked ’dipolar’

in the figure is due to the beating between levels 2 and 3, coming directly

from the magnetic dipolar coupling between the two centers. Additionally,

it presents two satelite lines, corresponding to the substraction and addi-

tion, respectively of the hyperfine coupling (2.5 MHz for 14N) from and to

the dipolar line. The lowest frequency component comes from modulations

within the hyperfine levels of 14N (see inset to Fig.7.11).
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Figure 7.10: The Hahn echo amplitude as a function of the delay time, τ . From

the exponential decay of the echo, a decoherence time of µseconds can be inferred.

The analysis shown in this chapter demonstrates that a system formed by

two coupled NV centers is suitable for qubit implementations. The system

presents a clear energy structure with a set of two doublets in a magnetic

field. The coherence time for the system is similar to that of a single electron

in a defect center, high enough for applying quantum gates. By creating

patterns of NV centers in diamond the dipolar interaction can be extended

to several centers. Furthermore, the system might be suitable for creating

Bell states. As it can be observed in the pertubational approach, levels 2

and 3 are given by linear combinations of |0 − 1〉 and |−10〉, while 4 and 5

by |01〉 and |10〉. These states are irreducible to direct product individual

states.
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Figure 7.11: Fourier tranform of the Hahn echo modulation data. The line marked

’dipolar’ is corresponding to the dipolar coupling between the two NVs. The

satellite lines are are given by the beating in the Hahn echo to the addition and

substraction of the hyperfine coupling to the 14N nucleus. The lowest energy line is

given by the modulations within the hyperfine coupling to nitrogen only. The inset

to the figure shows a calculated energy levels of the hyperfine coupled electron spin

to the 14N nucleus
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Summary

The primary purpose of this work was the study of single NV centers structure

and dynamics for proving their use in quantum computing. The investiga-

tions combined the detection of single centers based on fluorescence emission

with magnetic resonance methods. The state of single NV centers can be op-

tically readout at room temperature using confocal microscopy. The energy

structure of the triplet ground level was probed via cw ODMR. For a single

NV defect in the absence of an external magnetic field, a zero field splitting of

2.88 GHz was found, in accordance with previous experimental work on en-

sembles. The coherent behaviour upon application of microwave pulses was

probed initially by performing transient nutation experiments. The decoher-

ence time in transient nutations experiments was found to vary significantly

with the laser power. At high laser powers, the decoherence time decreases.

The effect was related to the frequency of measurement. The suppression

of Rabi oscillations upon increasing the frequency of measurement,i.e., the

number of photons incident to the center, is a characteristic sign for the

quantum Zeno effect. A linear dependency of the decoherence rate versus

laser power was observed and confirmed by calculations. However, for higher

laser powers in the saturation regime, the metastable state is increasingly

populated, making the system unsuitable for testing the quantum Zeno ef-

fect. The decoherence time for electrons was found by applying a Hahn echo
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sequence, adapted to optical readout.

The hyperfine coupling between the single electron spin and the 13C nu-

clear spin (I = 1
2
) was investigated. The isotropic hyperfine constant is

around 130 MHz for a 13C nucleus located in the first coordination shell.

Detection and coherent manipulation of the nuclear states were done via the

electronic states. Rabi nutations for the nuclear spins have been recorded.

In order to determine the dephasing time for the nuclear spins, a Hahn echo

decay sequence was applied. This exhibits no decay in the echo amplitude

for up to 30 µs. The result implies that the strong coupling of the single

electron spin to the single 13C nucleus does not result in a source of decoher-

ence for the nuclear spins, and hence, these can be used as well for quantum

computing.

The magnetic dipolar coupling between two defects was observed and

analyzed. The cw ODMR spectrum of two coupled centers reveals an in-

teraction energy of around 15 MHz, corresponding to a separation distance

between the two centers of 1 nm. Two theoretical models have been applied

to interpret the cw ODMR spectrum. The first takes into account all dipolar

interactions between the four electron spins, i.e., inter- and intra-molecular

dipolar interactions. The approach confirms experimental results. However,

the level description is not in terms of individual spin functions, but in terms

of total projection quantum numbers. For the later case, an approach based

on perturbation theory gives the correct answer.
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Zusammenfassung

Das Hauptziel dieser Arbeit war die Untersuchung einzelner NV-Zentren hin-

sichtlich ihrer Struktur und Dynamik, um ihren Einsatz auf dem Gebiet des

Quantencomputing zu prüfen. Einer der gegenwärtig verwendeten Ansätze

für das Quantencomputing beruht auf den Spins. Das Verhalten der Spins

und ihre Eigenschaften bezüglich Manipulation und Auslesen der in Frage

kommenden Systeme sind daher von großem Interesse. Nach der konven-

tionellen NMR kann ein Ensemble von Spins als Qubit-Implementierung be-

nutzt werden. Diese Methode hat jedoch Einschränkungen bezüglich der

Anzahl an Qubits, die erzielt werden kann. Hauptsächlich liegt dies daran,

dass mit großen Spinensembles gerabeitet werden muß. Konventionelle mag-

netische Resonanzmethoden können wegen ihrer geringen Empfindlichkeit

nämlich nicht zur Detektion einzelner Spins verwendet werden. Stattdessen

hat sich als Alternativmethode zur Detektion der magnetischen Resonanz die

optische Detektion der magnetischen Resonanz (ODMR) zur Untersuchung

einzelner Spins als geeignet erwiesen. Die Methode der Wahl, um einzelne

NV-Defekte zu untersuchen, vereint Methoden der Einzelmoleküldetektion

mit denen der magnetischen Resonanz. Ein Verfahren, welches auf einzelnen

Spins beruhen würde, wäre eine gute Alternative zu den auf Spinensemble

basierenden Implementierungen auf dem Gebiet des Quantencomputing. Auf

diese Weise würde eine Mittelung durch das Ensemble eliminiert werden und

110



reine Zustände wären zugänglich. Eine gute Spin-Implementierung würde

einen einzelnen Spin benötigen, welcher leicht manipuliert und ausgelesen

werden kann. Das Stickstoff-Fehlstellen (NV) - Zentrum im Diamant besitzt

gerade diese Merkmale. Das NV-Zentrum ist eine Störstelle im Diamant, die

optisch auf der Einzelmolekülebene ausgelesen werden kann. Das Zentrum

bleibt auch nach optischer Anregung photostabil. Aufgrund seiner paramag-

netischen Natur, sind solche Zentren für ESR-Messungen zugänglich. Die

logischen Gatter würden aus ESR-Pulsen bestehen. Um jedoch ein Qubit

aus einem NV-Zentrum zu erhalten, müssen sowohl seine Eigenschaften als

auch sein dynamisches Verhalten vollständig verstanden werden.

Die Stickstoff-Fehlstelle besteht aus einem einzigen Stickstoffatom, welches

direkt neben einer angrenzenden Fehlstelle im Gitter liegt. Zusätzlich fängt

das Zentrum ein Elektron aus dem Diamantgitter ein. Der Elektronen-

spin der Fehlstelle entsteht durch die Kopplung zwischen dem eingefan-

genen Elektron und dem ungepaarten Elektron des Stickstoffatoms, was

einen Spin von S = 1 ergibt. Das NV-Zentrum ist somit eine paramag-

netische Störstelle. Diese Störstelle kann im natürlichen Diamant mit Stick-

stoff - Verunreinigungen auftreten, wobei eine besonders hohe Konzentration

im Typ Ia Diamant zu finden ist. Im Fall von Typ Ib Diamanten können

NV-Defektzentren durch Bestrahlung und nachfolgendem Tempern bei Tem-

peraturen über 800 K erhalten werden. Durch Bestrahlung mit Elektronen

werden Leerstellen im Diamantgitter erzeugt. Durch das Aufheizen wan-

dern die Fehlstellen durch das Diamantgitter und können auf die vorhan-

denen Stickstoffatome treffen. Dadurch steigt die Wahrscheinlichkeit an,

dass man höhere Konzentrationen an NV-Defektzentren erhält. Durch N+-

Implantation können NV-Defektzentren auch in Typ IIa Diamanten erzeugt

werden. Basierend auf Versuchen mit Neutronenstrahlen konnte gezeigt wer-
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den, dass die NV-Defektzentren negativ geladen sind.

Das Energieniveauschema besteht aus einem Triplettgrundzustand, einem

angeregten Triplettzustand und aus einem metastabilen Singulettzustand.

Das Zentrum kann aufgrund des fluoreszierenden Übergangs zwischen dem

angeregten Triplettzustand und dem Triplettgrundzustand optisch detektiert

werden. Im magnetischen Nullfeld spaltet sich der Grundzustand in drei Be-

standteile auf: X und Y (ms = ±1) und Z (ms = 0), die sich um 2,88 GHz

unterscheiden. Der Grundzustand kann als Spin-Qubit-Implementierung ver-

wendet werden.

Die Aufspaltung zwischen den Niveaus X und Y ist für eine Fehlstelle mit

axialer Symmetrie null. In diesem Fall besteht der Grundzustand aus zwei

Niveaus, welche für die Realisierung eines Qubits geeignet sind.

Eine Detektion von einzelnen Fehlstellen konnte mit Fluoreszenzanre-

gungsspektroskopie durch ein konfokales Mikroskop erreicht werden. Der

Spinzustand des Zentrums wurde optisch ausgelesen, so dass die magnetis-

che Resonanzhardware ausschließlich zur Manipulation der Spins gebraucht

wurde. Für ESR-Experimente wurden Mikrowellen über einen Mikrores-

onator (bereitgestellt von D.Suter, Universität Dortmund) auf die Probe

übertragen. Der sehr kleine Durchmesser des Resonators ermöglicht Rab-

ifrequenzen von bis zu 50 MHz im Zentrum der Schleife.

Der allgemeine Spin-Hamilton-Operator, der die NV-Fehlstellen beschreibt,

lautet:

H = HZF +HeZeeman +Hhf +HQ +HnZeeman

= ŜD̄Ŝ + βe
~B0ḡŜ +

N
∑

i=1

ŜĀkÎk +
∑

Ik>1

ÎkP̄kÎk − βN

N
∑

k=1

gn,k
~B0Îk

(7.26)

in dem ge und gn die g-Faktoren für das Elektron beziehungsweise für den

Kern sind, βe das Bohrsche Magneton, βn das Kernmagneton, A der Hyper-

feinkopplungstensor, P der Quadrupolkopplungstensor und B0 das externe
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Magnetfeld. Die Energieniveauverteilung kann durch Diagonalisierung des

Hamilton-Operators erhalten werden. Daraus können dann die Eigenwerte

und die Eigenfunktionen numerisch mit Hilfe jeder linearen Algebra-Software

berechnet werden (Matlab, NAG).

Um die Spindynamiken des Zentrums zu beschreiben, müssen die Bevölkerungs-

zahlen der Niveaus berechnet werden. Die emittierte Fluoreszenz ist durch

den Unterschied in den Besetzungen der Niveaus gegeben. Die Zeitentwick-

lung der Dichtematrix ist durch die Liouville Gleichung gegeben.

ih̄
dρ

dt
= [H, ρ] (7.27)

Für die Berechnungen wurde ein 5-Niveau-Modell mit einem axial sym-

metrischen NV Zentrum angenommen. Abbildung 3.1 zeigt ein NV-Niveau-

schema, welches man durch die Berechnungen erhalten hat. Der Anre-

gungslaser koppelt das ms = 0 Subniveau des Grundzustands mit einem

vibronischen Niveau des angeregten Zustands 3E. Die strahlungsfreie Relax-

ation der vibronischen Niveaus befindet sich in der Größenordnung von 1015

Hz. Die Mikrowellen werden zwischen den Subniveaus des Grundzustands

eingestrahlt, die durch die Nullfeld-Aufspaltung aufgetrennt sind. In der An-

nahme, dass ein NV-Zentrum einem optischen und magnetischen Feld unter-

liegt, kann das NV-Zentrum durch folgenden Hamilton-Operator beschrieben

werden:

H =
∑

i

h̄ωi |i〉 〈i| − h̄Ω cos (ωM t) (|1〉 〈2| + |2〉 〈1|)−

h̄Λ cos (ωLt) (|1〉 〈4| + |4〉 〈1|)
(7.28)

in welchem ωi die Energie des Zustandes i ist, ωL die Laserfrequenz, ωM

die Mikrowellenfrequenz, Ω die Laser Rabifrequenz und Λ die Mikrowellen-

Rabifrequenz. Die Dichtematrix kann numerisch aus der Liouville Gleichung

berechnet werden.
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Innerhalb des Triplett-Grundniveaus ist ein ESR-erlaubter Übergang für

ein symmetrisches Zentrum vorhanden (zwei Übergänge für den Fall E 6= 0),

wobei dieser bei 2,88 GHz liegt. Dies kann mittels cw (continuus wave)-

ODMR an einem einzelnen Zentrum nachgewiesen werden. Die cw-ODMR

Experimente wurden mittels Durchstimmen der Mikrowellen entlang eines

bestimmten Frequenzbereichs durchgeführt. Der Mittelpunkt des Frequenzbere-

ichs lag dabei im Aufspaltungsbereich der Niveaus Z und X oder Y. Das Sys-

tem ist hauptsächlich im Niveau Z polarisiert. Durch das optische Auslesen

wird dieses Niveau mit dem entsprechenden Unterniveau im angeregten Zu-

stand 3E gekoppelt. Für diesen Zweck wurde ein grüner Laser (532nm) ver-

wendet. Die gemessene Fluoreszenz behält ein konstantes Niveau bei solange

sich die Bevölkerungsverteilung innerhalb des Triplett-Grundzustands nicht

verändert. Wenn die eingestrahlten Mikrowellen in Resonanz mit den er-

laubten ESR-Übergängen sind, ändert sich die Bevölkerungsverteilung. Das

System wird eine Veränderung der Bevölkerung vom Niveau Z zu den Niveaus

X oder Y hin erfahren. Als Ergebnis wird eine geringere Fluoreszenzemis-

sion resultieren, da das optische Auslesen hauptsächlich mit dem Z-Niveau

gekoppelt ist. Abbildung 5.2 zeigt ein experimentelles cw-ODMR Spektrum

von einem einzelnen NV-Zentrum. Dem Zentrum fehlt die charakteristische

C3v Symmetrie und zeigt deshalb zwei zulässige Übergänge. Die Aufspal-

tung zwischen den zwei Linien beträgt in diesem Fall 10 MHz (E = 10 MHz,

im Nullfeldtensor). Das Spektrum wurde bei Raumtemperatur in Abwesen-

heit eines externen Magnetfeldes aufgenommen. Der ODMR Linienkontrast

beträgt ungefähr 20% des Fluoreszenzsignals.

Eine der Bedingungen, die ein Qubit zu erfüllen hat, ist eine lange Dekohärenz-

zeit. Innerhalb dieser Dekohärenzzeit können Quantengatter Anwendung

finden. Die erste experimentelle Untersuchung zum kohärenten Verhalten
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einzelner Elektronenspins war ein transientes Nutationsexperiment. Für den

Fall des NV-Zentrums können Nutationen durch Anlegen eines Mikrowellen-

feldes mit einer Frequenz entsprechend der Aufspaltung innerhalb des Triplett-

Grundzustandes erzeugt werden. Nach Anlegen des Mikrowellenfeldes wird

davon ausgegangen, dass das System zwischen den zwei Niveaus (E = 0) in

Phase oszilliert.

Für einzelne NV-Zentren wurden transiente Nutationen unter kontinuier-

licher Laserbestrahlung (537 nm) durch Beobachtung der Fluoreszenzinten-

sität während eines Mikrowellenpulses aufgenommen. Abbildung 5.8 zeigt

das Ergebnis eines transienten Nutationsversuchs an einem einzelnen NV-

Zentrum. Die eingesetzte Laserleistung betrug 300 µW. Die Nutationskurve

zeigt einen Zerfall der Nutationen in einem Bereich von 1 µs. Die Nuta-

tionszerfallszeit allein liefert jedoch nicht die Dekohärenzzeit für das Sys-

tem. Sogar im Fall einzelner Systeme tritt während der Messung eine in-

homogene Linienverbreiterung auf. Um die Dekohärenzzeit zu erhalten,

muss deshalb ein Hahn-Echo Experiment durchgeführt werden. Es wurde

beobachtet, dass die Nutationszerfallszeit für größere Laserleistungen kleiner

ist als bei niedrigeren Laserleistungen. Abbildung 5.10 zeigt die gemessene

Abhängigkeit der Dekohärenzrate von der Laserleistung und die berechneten

Dekohärenzraten, die mit dem 5-Niveaumodell berechnet wurden. Eine Un-

terdrückung der Rabi-Oszillationen in den transienten Nutationsexperimenten

hängt mit dem Zenoeffekt zusammen. Der Zenoeffekt besagt, dass eine

fortlaufende Messung an einem Quantensystem dessen Zustandsentwicklung

hemmt. Für den Fall des NV-Zentrums wird eine Messung durch Fluoreszen-

zphotonen ermöglicht. Eine erhöhte Laserleistung entspricht deshalb einer

höheren Messfrequenz. Dadurch wird der Übergang aus dem Grundzus-

tand in den angeregten Zustand verhindert, was eine kleinere Dekohärenzzeit
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zur Folge hat und die Unterdrückung der Rabi-Oszillationen bedeutet. Für

höhere Laserleistungen im Sättigungsbereich folgt die Nutationszerfallszeit

aufgrund des metastabilen Singulettzustands einer Sättigungskurve. Die

Wahrscheinlichkeit der Besetzung des metastabilen Singulettniveaus steigt

mit der Laserleistung. Im gegenwärtigen Modell wurde die Feinstruktur des

angeregten Triplett nicht berücksichtigt. Folglich dürfte das System bei ho-

hen Laserleistungen keine extakte Prüfmethode für den Zenoeffekt sein.

Aufgrund der Inhomogenitäten, die das System besitzt, kann mittels tran-

sienter Nutationsversuche die Spin-Dephasierungszeit nicht ermittelt werden.

Durch ESEEM (Electron-Spin-Echo-Envelope-Modulation)-Experimente kann

sowohl die Dekohärenzzeit eines Spins als auch die Hyperfein-Kopplung zu

benachbarten Kernen untersucht werden. Die eingesetzte Pulssequenz, die

entsprechend dem optischen Auslesen verändert wurde, besteht aus einem

π/2-Puls, um die Kohärenz anzuregen, und einem π-Puls zur anschließen-

den Refokusierung. Ein weiterer π/2-Puls ist notwendig, um die Kohärenzen

in unterscheidbare Bevölkerungszustände umzuwandeln. Die Zeitintervalle

zwischen den einzelnen Mikrowellenpulsen sind entweder konstant oder vari-

abel. Abbildung 5.16 zeigt ein ESEEM-Spektrum eines einzelnen NV-Zentrums

in Anwesenheit eines schwachen Magnetfeldes (30 G). Aus dem exponen-

tiellen Zerfall des Echos konnte eine Dekohärenzzeit von 0,3 µs ermittelt

werden. Die Zerfallskurve wird aufgrund der Hyperfein-Kopplung zum 14N-

Atom noch mit einer Modulation überlagert. Aufgrund der Tatsache, dass

die Rabifrequenz der Mikrowellen (ca. 30 MHz) größer als die Hyperfein-

Kopplung zu 14N-Atomen (2,3 MHz) ist, werden mehrere ESR-Übergänge

angeregt. Ihre Wechselwirkung liefert die Modulation im Hahn-Echo-Zerfall.

Dies wurde durch eine Fourier-Transformation des Hahn-Echo-Zerfalls in Ab-

bildung 5.17 gezeigt. Das magnetische Feld spaltet die Niveaus X und Y auf,
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so dass es keine Interaktion zwischen den beiden erlaubten ESR-Übergängen

gibt. Diese beiden erlaubten ESR-Übergänge entsprechen gerade denen zu

den Niveaus X und Y. Die berechnete Hyperfein-Struktur ist in Abbildung

5.7 gezeigt; folgende Parameter wurde verwendet: A⊥ = 2,3 MHz, A‖ =

2,1 MHz und für die Quadrupol-Kopplungskonstante P wurde ein Wert von

-5,01 MHz eingesetzt. Die Linien der Fourier-Transformation konnten im

berechneten Modell identifiziert werden.

Eine andere wichtige Bedingung für ein Qubit ist die Skalierbarkeit. Um

Quanten-Algorithmen durchführen zu können, werden mehrere Qubits benötigt.

Eine erste Möglichkeit ist durch die Hyperfein-Kopplung zum 13C-Kern gegeben.

13C-Atome treten mit einer natürlichen Häufigkeit von 1,07% auf und be-

sitzen einen Kernspin von I = 1/2, dies führt zu einer Hyperfein-Aufspaltung

der Elektronenniveaus des NV-Zentrums. Basierend auf dem natürlichen

Vorkommen von 13C-Atomen erfährt eines von 30 NV-Zentren eine Hyperfein-

Kopplung mit dem nächsten 13C-Kern. Die Hyperfein-Kopplungskonstante

beträgt für die erste Koordinationsschale 130 MHz und geht für die zweite

Koordinationsschale auf 70 MHz zurück. Für einen 13C-Kern, der sich in

der dritten Koordinationsschale befindet, wird eine Hyperfein-Kopplung von

ungefähr 10 MHz geschätzt. Der Spin des 13C-Kerns kann nicht auf di-

rektem Weg optisch ausgelesen werden. Die Kernzustände werden über die

Elektronenzustände des NV-Zentrums ausgelesen, und die Hyperfeinstruktur

kann experimentell über cw-ODMR Experimente ermittelt werden. Abbil-

dung 6.1 zeigt ein cw-Spektrum für einen einzelnen Elektronenspin eines NV-

Zentrums, der mit einem einzigen 13C-Kern in einem externen Magnetfeld von

10 G durch Hyperfeinwechselwirkung gekoppelt ist. Das Spektrum zeigt vier

Linien, die den erlaubten ESR-Übergängen entsprechen. Diese Linien werden

durch das berechnete Energieniveauschema bestätigt. Für höhere Magnet-

117



felder jedoch verdoppelt sich die Anzahl an Übergängen, weil eine zusätzliche

Aufspaltung des untersten Niveaus aufgrund des pseudo-nuklearen Zeeman-

Effekts auftritt. Das Magnetfeld induziert eine Wechselwirkung zwischen

ms = 0 und ms = -1, was zu viel größeren Werten der nuklearen Zeeman-

Aufspaltung führt. Das entsprechende Energieniveauschema ist in Abbildung

6.6 gezeigt.

Um Informationen über die Dekohärenzzeit einzelner Kernspins zu erhal-

ten, wurde eine Hahn-Echo-Sequenz angelegt. Die Sequenz wurde entsprechend

der Detektion einzelner Kernspins ausgewählt. Die Kernspins können nicht

direkt mit dem aktuellen Versuchsaufbau untersucht werden, da nur Elek-

tronenzustände optisch ausgelesen werden können. Deshalb wird der Elek-

tronenspin dazu gebraucht, zwischen der Detektion und der Manipulation

einzelner Kernspin-Zustände zu vermitteln. Abbildung 6.13 zeigt eine Serie

von Hahn-Echos, die für verschiedene Werte von τ1 aufgenommen wurden.

Für ein Zeitintervall von bis zu 30 µs zeigt die relative Amplitude der Echos

einzelner Kernspins keinen Zerfall. Verglichen mit dem Wert, den man bei

Messungen im Ensemble von 13C-Kernen erhält (100 µs), kann gesagt werden,

dass die Hyperfein-Kopplung zum Elektronenspin des NV-Zentrums nicht zu

einer zusätzlichen Dekohärenzquelle einzelner Kernspins beiträgt.

Ein wesentlicher Anstieg der Anzahl an Qubits kann durch magnetis-

che Dipolkopplung mehrerer NV-Zentren erreicht werden. Ein Vorteil dieser

Herangehensweise gegenüber der Einbeziehung benachbarter Kerne, ist dadurch

gegeben, dass eine Vielzahl von Defektzentren innerhalb des Kopplungsbere-

ichs magnetischer Dipole miteinander wechselwirken können. Die Interak-

tion zwischen den NV-Zentren ist durch eine Nanopositionierung kontrol-

lierbar. Das Energieniveauschema zweier koppelnder NV-Zentren wurde mit

zwei verschiedenen Ansätzen berechnet: einem detaillierten Hamilton-Ansatz
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und einer Störungstheorie. Der erste Ansatz berücksichtigt alle möglichen

Wechselwirkungen zwischen den vier Elektronen, die zu der Kopplung zwis-

chen zwei Zentren führen. In der Störungstheorie wird die dipolare Wechsel-

wirkung zwischen den Zentren als Störung des Hamilton-Operators der ge-

trennten NV-Zentren betrachtet. Diese Aussage ist dadurch gerechtfertigt,

dass beispielsweise für einen Abstand der Zentren von 1,5 nm, die dipolare

Wechselwirkungsenergie ca. 15 MHz beträgt. Im Vergleich zu den Nullfeld-

Energien einzelner NV-Zentren, deren dipolare Wechselwirkungsenergie bei

2,9 GHz liegt, ist der Wert für die dipolare Wechselwirkungsenergie mit 15

MHz sehr viel kleiner. Die Experimente an zwei gekoppelten NV-Zentren

wurden an demselben Aufbau durchgeführt, der bereits in dieser Arbeit

beschrieben wurde. Das cw-ODMR Spektrum ist in Abbildung 7.1 gezeigt.

Das Spektrum wurde in einem Magnetfeld mit einer Stärke von ca. 70 G

aufgenommen und besteht aus zwei Dubletts, die entsprechend der Zeeman-

Energie der zwei NV-Zentren aufgespalten sind. Die Aufspaltungsenergien

zwischen den zwei Linien innerhalb eines jeden Dubletts sind gleich.

Der präzise Hamilton-Ansatz stellt eine gute Möglichkeit dar, die spek-

tralen Linien in den experimentell aufgenommenen cw-Spektren zu berech-

nen. Mit diesem Ansatz können jedoch nicht die Energieniveaus identifiziert

werden, die auf individuellen Hochfeld-Qantenzahlen einzelner Defektzen-

tren beruhen. Die Niveaus in diesem Ansatz wurden mittels ihrer (mS, mS)

bestimmt, was der Summe der individuellen Quantenzahlen entspricht. Mit

Hilfe der Störungstheorie würden die Energieniveaus in der Art und Weise

ermittelt werden, dass ein Paar an Quantenzahlen (mS1
, mS2

) in Betracht

gezogen wird und nicht die Summe dieses Paares. Die zwischenmolekulare

Wechselwirkung kann als Störung der Feinstrukturenergie eines Systems aus

zwei Punktdipolen gesehen werden. Der resultierende Hamilton-Operator

119



lautet wie folgt:

Ĥspin = Ĥ0 + Ĥ1 (7.29)

wobei

Ĥ0 = D0

(

Ŝ2
1z −

1

3
Ŝ2

1

)

+E0

(

Ŝ2
1x − Ŝ2

1y

)

+D0

(

Ŝ2
2z −

1

3
Ŝ2

2

)

+E0

(

Ŝ2
2x − Ŝ2

2y

)

(7.30)

und

Ĥ1 = ŜT̄ Ŝ (7.31)

mit T̄

Tαβ =
1

2

µ0

4π
g2µ2

B

〈

r2δαβ − 3αβ

r5

〉

. (7.32)

Die Berechnungen wurden für einen Abstand von 1,5 nm zwischen den

Zentren und einem externen Magnetfeld von ca. 60 G, welches entlang der

intermolekularen Achse orientiert war, durchgeführt. Das dadurch erhaltene

Energieniveauschema ist in Abbildung 7.6 gezeigt. Mit der Störungstheorie

kann die Kopplung zwischen zwei NV-Zentren beschrieben werden. Anhand

dieses Modells, kann das cw-Spektrum in Abbildung 7.7 erklärt werden.

Die Linien in diesem Spektrum können eindeutig im Energieniveauschema,

welches mit Hilfe der Störungstheorie berechnet wurde, identifiziert werden.

Desweiteren erlaubt dieses Modell die Niveaus hinsichtlich der Eigenfunktio-

nen individueller Zentren zu beschreiben. Dies ist vorteilhaft zur Behandlung

von Fragestellungen auf dem Gebiet des Quantencomputing.

Nach der Identifizierung der Energieniveaus des Systems hinsichtlich der

Quantenzahlen der einzelnen Defekte, wurden die Dekohärenzeigenschaften

von zwei koppelnden NV-Zentren näher untersucht. Um die Dekohärenzzeit

des Systems zu bestimmen, wurde eine Hahn-Echo Modulations-Pulssequenz,

ähnlich der in vorherigen Experimenten eingesetzten, verwendet. Dadurch

können die Dekohärenzzeit des Systems und schließlich der Einfluss der Kop-
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plung der zwei Zentren auf die Dekohärenz bestimmt werden. Abbildung

7.9(a) zeigt die drei Energieniveaus, die man aus dem Pulssequenzexperi-

ment erhalten hat. Diese Energieniveaus entsprechen den ersten drei Niveaus

des Energieniveauschemas, das mit der Störungstheorie berechnet wurde.

Die Mikrowellen koppelten mit den Niveaus 1 und 2. Die Rabifrequenz der

Mikrowellen (ungefähr 30 MHz) ist größer als die dipolare Kopplung zwis-

chen den zwei Zentren. Das zeigt die Aufspaltung zwischen den Niveaus

2 und 3 in der Abbildung 7.9(a). Diese Aufspaltung führt zu einer Modu-

lation der Hahn-Echo Amplitude. Abbildung 7.10 zeigt die Messdaten des

Hahn-Echo-Zerfalls. Das Echo zerfällt nicht vollständig in dem betrachteten

Zeitbereich. Die Dekohärenzzeit für ein Paar koppelnder NV-Zentren ist

daher ähnlich zu der entsprechenden Dekohärenzzeit eines Elektronenspins

eines einzelnen NV-Zentrums. Die magnetische Dipolkopplung der zwei Zen-

tren scheint nicht die Hauptquelle für die Dekohärenz eines Elektronenspins

zu sein. Das Modulationsmuster im Echo entsteht durch die Wechselwirkung

zwischen den ESR-Übergängen und der Auswirkung der Hyperfein-Kopplung

zum 14N-Atom.

Die Auswertung zeigt, dass ein System aus zwei koppelnden NV-Zentren

für eine Qubit-Implementierung geeignet ist. Das System zeigt in einem

Magnetfeld eine klare Energiestruktur mit einer Gruppe von zwei Dubletts.

Die Kohärenzzeit des Systems ist ähnlich zu der Zeit, die für ein einzelnes

Elektron in einem Defekt-Zentrum ermittelt werden kann. Sie ist groß genug,

um Quantengatter wirksam einzusetzen.
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