Untersuchungen von
Struktur-Funktions-Beziehungen an
Membranproteinen
mittels Molekulardynamik-Simulationen

Von der Fakultät Mathematik und Physik der Universität Stuttgart
zur Erlangung der Würde eines
Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Abhandlung

Vorgelegt von
Andrew Aird
aus Stuttgart

Hauptberichter: Prof. Dr. Jörg Wrachtrup
Mitberichter: Prof. Dr. Hans-Rainer Trebin

Tag der mündlichen Prüfung:
5. Mai 2008

3. Physikalisches Institut der Universität Stuttgart
2008
Inhaltsverzeichnis

Abkürzungsverzeichnis ... 5

Summary .. 7

1. Einleitung .. 15

2. Theorie und Methoden .. 19

 2.1. Molekulardynamik-Simulation ... 19
 2.1.1. Allgemeine Beschreibung .. 19
 2.1.1.1. Die Born Oppenheimer Näherung .. 20
 2.1.1.2. Empirische Kraftfeldfunktion ... 20
 2.1.1.3. Die Newtonsche Bewegungsgleichung .. 24
 2.1.2. Wichtige Parameter einer MD-Simulation .. 27
 2.1.2.1. Lösungsmittel .. 27
 2.1.2.2. Periodische Randbedingungen ... 28
 2.1.2.3. Elektrostatische Wechselwirkung ... 28
 2.1.2.4. Temperatur- und Druckkopplung ... 29
 2.1.2.5. Strukturelle Abweichung .. 31

 2.2. Beschleunigte Simulationen ... 32
 2.2.1. Steered Molecular Dynamics .. 33

 2.3. Freie Energie des Simulationssystems ... 35

 2.4. Fluktuationstheoreme .. 37
 2.4.1. Die Jarzynski-Gleichung .. 39
 2.4.2. Rekonstruktion des Freien Energieprofils aus SMD-Simulationen ... 40

3. Strukturelle Stabilität verschiedener Mutanten und Fragmente des Tumornekrosefaktor-Receptors 1 ... 47

 3.1. Einleitung ... 47

 3.2. Untersuchte Systeme und Simulationsdetails .. 52
 3.2.1. TNF / LTα .. 52
 3.2.2. TNFR1 ... 53
 3.2.3. TNFR1-LTα-Komplex ... 55
 3.2.4. Simulationssysteme und Simulationsdetails .. 56

 3.3. Ergebnisse und Diskussion ... 58
 3.3.1. System 0 - Referenzsystem TNFR1ex ... 58
 3.3.1.1. Diskussion .. 58
 3.3.2. System I und II - A1B2CRD1- und A1B2CRD1A1CRD2-Fragmente .. 66
 3.3.2.1. Diskussion .. 66
 3.3.3. System III und IV - A1CRD1-TNFR1ex und A1CRD1-TNFR1ex-Mutanten 70
 3.3.3.1. Diskussion .. 70

 3.4. Zusammenfassung des Kapitels .. 74

4. Untersuchung eines möglichen Diffusionspfades des Ubichinon-Moleküls durch den LH1-Ring im Purpurbakterium Rhodospirillum rubrum .. 77

 4.1. Einführung in die Photosynthese .. 78

 4.2. Photosynthese der Purpurbakterien ... 79

 4.3. Simulation des Kernkomplexes von R. rubrum .. 83
 4.3.1. Simulationssystem und Simulationsparameter ... 84
 4.3.2. Ergebnisse ... 90
 4.3.3. Diskussion ... 93

 4.4. Modellsystem .. 96
 4.4.1. Simulationssystem und Simulationsparameter ... 96
 4.4.2. Ergebnisse und Diskussion ... 98
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Å</td>
<td>ÅNGSTRÖM</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosindiphosphat</td>
</tr>
<tr>
<td>AFM</td>
<td>Rasterkraftmikroskop (Atomic force microscope)</td>
</tr>
<tr>
<td>ALP</td>
<td>α-Untereinheit</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosintriphosphat</td>
</tr>
<tr>
<td>BCHl</td>
<td>Bacteriochlorophyll</td>
</tr>
<tr>
<td>BET</td>
<td>β-Untereinheit</td>
</tr>
<tr>
<td>BPTI</td>
<td>Bovine Pancreatic Trypsin Inhibitor</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>ca.</td>
<td>Circa</td>
</tr>
<tr>
<td>Car</td>
<td>Carotinoid</td>
</tr>
<tr>
<td>Chl</td>
<td>Chlorophylle</td>
</tr>
<tr>
<td>CRD</td>
<td>Cysteineerreiche Domäne</td>
</tr>
<tr>
<td>DD</td>
<td>Todesdomäne (Death domain)</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EM</td>
<td>Elektronenmikroskop</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier Transformation</td>
</tr>
<tr>
<td>Fs</td>
<td>Femtosekunde</td>
</tr>
<tr>
<td>GDP</td>
<td>Guanosindiphosphat</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathion-S-Transferase</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosintriphosphat</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>IR</td>
<td>Infrarot</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>kcal</td>
<td>Kilokalorie</td>
</tr>
<tr>
<td>LH1</td>
<td>Lichtsammelkomplex 1</td>
</tr>
<tr>
<td>LH2</td>
<td>Lichtsammelkomplex 2</td>
</tr>
<tr>
<td>LTα</td>
<td>Lymphotoxin α</td>
</tr>
<tr>
<td>M. jannaschii</td>
<td>Methanococcus jannaschii</td>
</tr>
<tr>
<td>MD</td>
<td>Molekulardynamik (Molecular dynamics)</td>
</tr>
<tr>
<td>MFPT</td>
<td>Mean First Passage Time</td>
</tr>
<tr>
<td>MM</td>
<td>Molekularmechanik</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger Ribonukleinsäure</td>
</tr>
<tr>
<td>NMFF</td>
<td>Normal mode based flexible fitting</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Ausdruck</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>µs</td>
<td>Mikrosekunde</td>
</tr>
<tr>
<td>Ms</td>
<td>Millisekunde</td>
</tr>
<tr>
<td>NMR</td>
<td>Kernresonanzspektroskopie</td>
</tr>
<tr>
<td>Ns</td>
<td>Nanosekunde</td>
</tr>
<tr>
<td>PLAD</td>
<td>Pre Ligand binding Assembly Domain</td>
</tr>
<tr>
<td>PME</td>
<td>Particle Mesh Ewald</td>
</tr>
<tr>
<td>PMF</td>
<td>Freies Energieprofil (Potential of Mean Force)</td>
</tr>
<tr>
<td>pN</td>
<td>Pikonewton</td>
</tr>
<tr>
<td>ps</td>
<td>Pikosekunde</td>
</tr>
<tr>
<td>QM</td>
<td>Quantenmechanik</td>
</tr>
<tr>
<td>R. rubrum</td>
<td>Rhodospirillum rubrum</td>
</tr>
<tr>
<td>R. sphaeroides</td>
<td>Rhodobacter sphaeroides</td>
</tr>
<tr>
<td>RC</td>
<td>Reaktionszentrum</td>
</tr>
<tr>
<td>RMSD</td>
<td>Root mean square deviation</td>
</tr>
<tr>
<td>t</td>
<td>Zeit</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumornekrosefaktor</td>
</tr>
<tr>
<td>TNFR1</td>
<td>Tumornekrosefaktor-Rezeptor 1</td>
</tr>
<tr>
<td>TNFR1ex</td>
<td>Extrazelluläre Domäne des Tumornekrosefaktor-Rezeptors 1</td>
</tr>
<tr>
<td>TNFR2</td>
<td>Tumornekrosefaktor-Rezeptor 2</td>
</tr>
<tr>
<td>TRAF</td>
<td>TNF-Rezeptor assozierter Faktor</td>
</tr>
<tr>
<td>TRADD</td>
<td>TNF-Rezeptor assoziiertes Todesdomänenprotein</td>
</tr>
<tr>
<td>TRANS</td>
<td>Transmembranbereich</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolett</td>
</tr>
<tr>
<td>VdW</td>
<td>Van der Waals</td>
</tr>
<tr>
<td>WLC</td>
<td>Worm like chain</td>
</tr>
<tr>
<td>z. B.</td>
<td>zum Beispiel</td>
</tr>
</tbody>
</table>
Summary

Molecular Dynamics (MD) simulations of biomolecules have come a long way since Karplus et al. performed the first protein simulation in 1977. The simulation system comprised 885 atoms and was run for 10 ps in vacuum to investigate the flexibility of the structure on very short timescales. Steady progress in describing the interactions between the participating atoms along with an ever-increasing number of available high-resolution structures of proteins and other biomolecules have helped to establish MD-simulation as a powerful tool for studying biological systems. This rapid progress only became possible through an exponential increase in computation power (Moore’s law) together with the development of efficient simulation algorithms.

The major advantage of a MD-simulation is obvious, since it allows capturing protein dynamics with atomic spatial resolution, therefore delivering a microscopic picture of the biological process under investigation. This is done by numerically integrating Newton’s equation of motion, resulting in a trajectory \(r_i(t) \) for every atom \(i \) in the system.

Nowadays, system sizes of up to \(10^5 \) atoms are routinely investigated on the nanosecond timescale - some simulations have even gone far beyond these limits with respect to system size (\(10^6 \)) as well as timescale (500 µs).

The main field of application of MD-simulations is the microscopic description of the dynamics and function of biomolecules and thus, the construction of a detailed picture of the relevant processes taking place inside the cell.

Many biological processes take place on timescales, which are still not accessible by conventional MD-simulations. A number of special simulation techniques, like Umbrella Sampling, Essential Dynamics or Steered Molecular Dynamics (SMD) have emerged that can accelerate the process under investigation onto accessible timescales. One common feature of these methods is an enforced movement of the system along a specified reaction coordinate in order to overcome potential barriers. This is done by applying an additional force or adding a harmonic potential to manipulate one or more atoms of the simulated system. Using statistical analysis methods like fluctuation theorems allows the quantitative study of the accelerated processes.

In 1997, Jarzynski formulated an integral version of the fluctuation theorem, connecting the free energy difference to an exponential average of the external work for systems driven arbitrarily out of equilibrium. For infinite sampling of work values, the free-energy estimate is
exact; for finite sampling, it allows an estimate of this value. This remarkable equation has since been tested in many experimental investigations as well as simulation studies.

In the framework of this thesis, three different biological systems are investigated using MD-simulations. The main focus lies on the identification between structural features that are related to functional consequences.

Structural stability of Tumor Necrosis Factor receptor type 1 mutants and fragments

Apoptosis, the programmed cell death, is an essential mechanism for every organism to maintain cell homeostasis and effectively kill cells, which are harmful or no longer functional. Apoptosis specifically initializes a signaling cascade within these cells, which ultimately leads to their death. It can be induced by several different mechanisms. The Tumor Necrosis Factor (TNF) is a mediator of the innate immune system and can also induce apoptosis. The homotrimeric TNF can bind to two different membrane receptors; TNF receptor type 1 (TNFR1) and TNF receptor type 2 (TNFR2). Both receptors contain four cysteine rich domains (CRDs) in their extracellular parts, which is a hallmark of a whole family of receptors (TNFR superfamily). Each CRD can be structurally further divided into two subdomains A1 and B2. The initial step of TNF induced apoptosis is the binding of TNF to three TNFR1. However, single TNF-[TNFR1]₃ complexes are not capable of initiating strong intracellular signals; for efficient signal transduction oligomerization of TNF-[TNFR1]₃ is necessary. CRD2 and CRD3 are involved in numerous ligand contacts and thus responsible for ligand binding, as observed in the crystal structure of lymphotoxin-α (LTα) in complex with the extracellular domain of TNFR1. CRD1 is believed to be involved in receptor-receptor interaction and therefore also necessary for the formation of signal competent receptor clusters.

MD-simulations are performed to gain insight into conformational consequences induced by mutational changes of the extracellular part of TNFR1. Together with data from an experimental study done by Marcus Branschädel from the Institute of Cell Biology and Immunology at the University of Stuttgart, these conformational consequences are linked to functional changes.

In the extracellular domain of TNFR1, the subdomains A1 and B2 of the CRDs are the smallest structurally stable subunits. These subunits are arranged in alternating sequence and make up the flexible backbone. The flexibility can be attributed to relative movements of the subunits A1 and B2. The intra-CRD flexibility is larger than the inter-CRD flexibility.
From the data of the crystal structure, the different CRDs can be connected with different functional aspects. But this simple relation cannot be used to create functionalized mutants. Deletion of CRD1 should abolish receptor-receptor interaction, but results in a deletion mutant that retains its ligand binding affinity. However, experimental data clearly shows, that deletion of CRD1 also eliminates ligand binding. MD-simulations of ΔCRD1-TNFR1\textsubscript{ex}, a deletion mutant, where CRD1 is removed, show a clear conformational change in the A1 subunit of CRD2. This can be attributed to a missing stabilizing effect of the deleted CRD1. In contrast, deletion of only the first half of CRD1 ΔA1\textsubscript{CRD1}-TNFR1\textsubscript{ex} did not show any visible conformational changes in CRD2. In this case, part of the CRD1 (B2) is enough to stabilize the adjacent subdomain. Results from the experimental study confirm this observation. The ΔA1\textsubscript{CRD1}-TNFR1 deletion mutants did show ligand binding affinity but were not able to build signaling competent receptor clusters and therefore did not show sufficient receptor-receptor interaction.

Receptor-receptor interaction between TNFR1 is an interesting target for therapeutic research. A molecule that can bind to CRD1 of TNFR1 can inhibit the formation of signaling competent receptor clusters. Crosslinking studies reveal that a TNFR1 fragment consisting only of CRD1 is not able to form homo-oligomers and therefore does not exhibit any CRD1-CRD1 interaction. MD-simulations of CRD1 show an increased flexibility in B2\textsubscript{CRD1}. Again the missing stabilizing effect, this time from A1\textsubscript{CRD2} is responsible for the increased flexibility. Subsequent simulations of a fragment, which contained CRD1 and A1\textsubscript{CRD2}, did not show any increased structural stability within the subdomains of CRD1 and should therefore be able to show CRD1-CRD1-interaction. This prediction has yet to be verified. However, a CRD1 with a Glutathione-S-Transferase- (GST)-tag was able to inhibit signal transduction via TNFR1. In this case, the GST-tag could serve as a scaffold to stabilize CRD1.

This study shows that although different primary functions of TNFR1 like receptor-receptor interaction or ligand binding can be attributed to structurally distinct domains of the receptor. A structural stabilizing effect by adjacent subdomains is necessary to retain these individual functions.

Possible Pathway for ubiquinone diffusion through the LH1 ring of the purple bacteria *Rhodospirillum rubrum*

In the last decade, the structures of many components of the photosynthetic apparatus of purple bacteria, as well as the mutual organization of these components within the purple membrane, were resolved. The core complex of the photosynthetic unit of purple bacteria,
consisting of the reaction center (RC) and the light-harvesting 1 complex (LH1), plays a crucial role in the conversion of light into chemical energy. In the reaction center, a ubiquinone molecule functions as an electron carrier to transport electrons, created in the first step of photosynthesis, from inside of the core complex to the cytochrome bc1-complex.

One key question that emerged concerned the assembly of the core complex. In some species, like *Rhodobacter sphaeroides* (*Rb. sphaeroides*), the ring-shaped LH1 complex was found to be open, whereas other species, like *R. rubrum*, have a closed ring surrounding the reaction center. This poses the question of how the ubiquinone molecule that transports electrons and protons from the RC to the cytochrome bc1 complex overcomes the apparent barrier of the LH1 ring. The pathway of the ubiquinone molecule is still unknown. In this study, we investigated how, in the case of a closed ring structure, the ubiquinone molecule diffuses through the LH1 ring.

Starting from model structures for both the LH1 ring and the RC, the core complex was assembled and simulated in a lipid water environment. The core complex was structurally stable and a detailed analysis of the protein complex revealed openings in the LH1 ring due to the flexibility of the embedded chlorophyll tales where a possible diffusion might take place. The enormous size of the pigment protein complex made it necessary to construct a minimum model system and to accelerate the diffusion process onto accessible timescales. The minimum model consisted of one ubiquinone molecule and a quarter LH1 ring embedded in a lipid bilayer and solvated in a water box. Analysis of SMD simulations pulling the ubiquinone molecule, which was already halfway inserted in the LH1 ring, into the membrane area, revealed a possible pathway for ubiquinone diffusion. There are three strong indications for the plausibility of this pathway. First, simulations along two different pulling directions (forward and backward) result in almost identical pathways. Second, there is very little structural deviation for substructures of the LH1 ring and pigments that could be disturbed by the ubiquinone headgroup. Third, the forces along the pathway are comparable to other SMD simulation studies exploring ligand diffusion in protein channels. To reconstruct the potential of mean force (PMF) along the proposed pathway through the LH1 ring, additional SMD simulations were performed. To keep the system close to equilibrium, the pathway was divided into nine independent sections for both directions. 10 SMD simulations per section were performed, where the head of the ubiquinone molecule was pulled along the specified pathway. To reconstruct the PMF, statistical analysis on the work profiles, which can be calculated from the forces of the SMD simulation, was performed. Using the second-order cumulant expansion and assuming a Gaussian shaped work distribution, the PMF of every
individual section for both directions were reconstructed and subsequently combined. Accounting for the entropic contribution of stretching the ubiquinone during the SMD simulations, results in very similar PMFs for both pulling directions. The statistical error for both PMFs was estimated from the dissipated work and hence from the width of the work distribution. Parts from both forward and backward potentials were combined to obtain a PMF with minimum overall statistical inaccuracy. The PMF exhibits potential characteristics that can be closely connected to structural features along the pathway. There are potential barriers at positions along the pathway between two α-helices of the inner and outer protein structure and a central barrier, which can be attributed to the influence of chlorophyll and carotenoid tails. The potential modulation is \(\sim 8 \, k_B T^{(300K)} \) and the error is on average 25% of the total modulation depth. Using a model of one-dimensional diffusion along the PMF and a scaled potential to include the error bars, a Mean First Passage Time (MFPT) of \(\sim 8 \times 10^{-3} \) s can be estimated. Under the assumption, that this process is the rate limiting step of the core complex, an overall turnover rate of \(\sim 50 \) Hz can be predicted. In comparison with experimentally determined turnover rates, this supports the proposed model of ubiquinone diffusion through the LH1 ring and can explain why cryoelectron microscopy and AFM studies of this species always find closed LH1 structures around the reaction center.

Investigation of the protein-conducting channel SecY from *Methanococcus jannaschii*

Protein translocation, the transport of a protein through a pore is of great importance for all living organisms. It is essential for cells to have membrane channels, which are able to transport proteins to different locations inside and outside the cell. An example for such a channel is the protein-conducting channel SecY. Here, proteins are both translocated across and inserted into the membrane. Two of the main structural features of this protein channel are a pore region, consisting of a ring of six hydrophobic residues located in the center of the channel, as well as a "plug" consisting of a short alpha-helix located just below the pore region. For protein translocation, the plug has to be removed from the pore region and the pore has to be dilated. Both features guarantee the correct functionality, meaning specific transport of polypeptides through the channel area while blocking the channel in the closed state.

Molecular dynamics simulations are performed to understand the overall mechanism of protein transport across the membrane and to address questions concerning translocation, sealing of the channel and relaxation. Protein translocation processes usually take place on timescales (\(\sim \) ms) not accessible to conventional molecular dynamics simulation. By using
steered molecular dynamics simulations to accelerate the opening process together with statistical analysis using fluctuation theorems, the potential of mean force for removal of the plug is obtained.

Starting from the crystal structure of the SecY-complex of Methanococcus jannaschii, which resembles the protein-conducting channel in its inactive form, the protein was equilibrated in a lipid-water environment. The simulation resulted in a stable protein structure (inactive closed conformation). Based on data from cryoelectron microscopy of the SecY-complex in an active form bound to a ribosome, the equilibrated structure of the inactive closed conformation was modified using harmonic constraints. The resulting structure (active closed conformation) was in good agreement with the experimental data.

Using SMD simulations, the plug was pulled away from the pore region in both the inactive closed and the active closed conformation. Ten simulations were performed for each conformation. From the calculated work profiles, the PMF was reconstructed using the second-order cumulant expansion. The resulting PMFs showed distinct differences inside the first 6 Å of pulling distance. The plug in the inactive closed conformation sits very tightly bound below the pore region and a potential barrier of $72 \pm 13 \text{k}_B\text{T}^{(300\text{K})}$ has to be overcome to remove the plug. In case of the active closed conformation the potential barrier is $13 \pm 11 \text{k}_B\text{T}^{(300\text{K})}$ which is significantly lower. In comparison to known potential barriers of biological processes and by estimating the MFPT of thermally crossing these barriers, a conformational change from the inactive form into the active form is necessary to enable plug removal and thus protein translocation on biologically relevant timescales in the range of milliseconds. This conformational change is initiated by binding of the ribosome, which leads to a destabilization of the pore-plug interaction, by widening the pore region.

Another necessary feature of the protein-conducting channel is its ability to prevent water and ions from spontaneously crossing the membrane. This is especially important in order to maintain the membrane potential. SMD simulations were performed on different conformations of SecY to pull a water molecule and a sodium ion across the pore region. The inactive as well as the active conformation, both with the plug in a closed and open state were investigated and reveal distinct differences in the ability to block water and sodium ions, respectively. To effectively prevent water and ion flow across the pore region, the plug must be located directly below the pore, which means the protein must be in the inactive closed conformation. In this case, the work to translocate a water and a sodium ion was $25 \text{k}_B\text{T}^{(300\text{K})}$ and $55 \text{k}_B\text{T}^{(300\text{K})}$, respectively. Removing the plug or undergoing a conformational change into the active form markedly reduces the necessary work. In both active conformations,
spontaneous water translocation even occurs on the nanosecond timescale. This result is in agreement with experimental data, where water permeability and ion conduction through SecY was measured. Only the native, non-translocating form of the protein (which corresponds to the inactive closed conformation) is able to effectively prevent the flow of water and ions across the membrane.

This means, that once a protein is translocated across the membrane, the channel must return quickly to its inactive closed conformation. MD-simulations of the relaxation process reveal that plug and pore relaxation are connected. The inactive pore region accelerates the return of the plug from the open to the closed state, whereas a plug located directly below the pore region accelerates relaxation of the pore from the active to the inactive form. The plug does not only play a role in simply blocking the protein channel and therefore helping to seal the pore region but also in stabilizing the protein structure in the inactive conformation.
1. Einleitung

Die Molekulardynamik (MD)-Simulation hat sich in den letzten Jahrzehnten zu einer wichtigen und erfolgreichen Methode zur theoretischen Untersuchung biologischer Systeme entwickelt. Den Grundstein legten Alder and Wainwright bereits Ende der fünfziger Jahre mit der Simulation harter Kugeln, die wichtige Einblicke in das Verhalten einfacher Flüssigkeiten lieferte [1, 2].

Danach vergingen rund 20 Jahre bis die erste MD-Simulation eines Proteins veröffentlicht wurde [3]. Die Proteinstruktur BPTI (Bovine Pancreatic trypsin inhibitor) besteht lediglich aus 885 Atomen, deren Verhalten für 10 ps im Vakuum simuliert wurde.

In den nachfolgenden drei Jahrzehnten vollzog sich eine rasante Entwicklung, die durch den Fortschritt in drei unterschiedlichen wissenschaftlichen Bereichen maßgeblich beeinflusst wurde.

(i) Verbesserungen bei der Beschreibung der Wechselwirkung der simulierten Atome mit Hilfe von Kraftfeldern sorgten dafür, dass sich die MD-Simulation als rechnergestützte Untersuchungsmethode sowohl im Bereich der Chemie, der Biologie sowie der Physik weiter etablierte. Es dauerte jedoch bis in die frühen 80iger Jahre bis durch die Entwicklung von Kraftfeldern für Wassermoleküle (SPC bzw. TIP3P/TIP4P) [4, 5] Simulationen von Proteinen in Lösung möglich wurden, was bei vielen Wissenschaftlern in dieser Zeit reges Interesse weckte.

Heutzutage gibt es eine ganze Reihe unterschiedlicher Kraftfelder für die Simulation biologischer Moleküle, die ein sehr breites Anwendungsgebiet abdecken und für jeweils eine bestimmte Fragestellung optimiert sind. Neben Standard-Kraftfeldern wie AMBER [6, 7] oder...

Die Hauptanwendung heutiger MD-Simulationen ist die Beschreibung der Dynamik und der Funktion von Proteinen und Proteinkomplexen auf mikroskopischer Ebene, um damit einen detaillierten Einblick in die in der Zelle ablaufenden Prozesse zu erhalten. Hierbei kann die

In dieser Arbeit werden drei unterschiedliche biologische Systeme vorgestellt, die mit Hilfe von MD-Simulationen untersucht wurden. Dabei stand die Verknüpfung von strukturellen Eigenschaften der Proteine bzw. Proteinkomplexe mit ihrer Funktionalität im Mittelpunkt. Nach einer Einführung in die theoretischen Grundlagen werden in Kapitel 3 Simulationen am Tumornekrosefaktor-Rezeptor 1 (TNFR1) präsentiert. TNFR1 ist ein Membranrezeptor, der eine wichtige Rolle in der Tumornekrosefaktor-vermittelten Apoptose spielt. Anhand der Simulationsdaten der extrazellulären Domäne des TNFR1 und der daraus abgeleiteten Deletionsmutanten wird eine Bewertung der strukturellen Stabilität vorgenommen. Zusammen mit den Daten einer experimentellen Studie von Marcus Branschädel vom Institut für Zellbiologie und Immunologie der Universität Stuttgart wird die Frage beantwortet, wie sich die struk-
turellen Veränderungen der Deletionsmutanten von TNFR1 auf die Funktionalität, insbesondere auf mögliche Rezeptor-Rezeptor- und Rezeptor-Ligandenbindung auswirkt.

2. Theorie und Methoden

2.1. Molekulardynamik-Simulation

2.1.1. Allgemeine Beschreibung

Grundsätzlich lässt sich die Dynamik eines beliebigen Systems mit der zeitabhängigen Schrödingergleichung

\[
\hat{H} \Psi = \frac{i\hbar}{\partial t} \frac{\partial \Psi}{\partial t}
\]

exakt beschreiben. Hierbei ist \(\hat{H} \) der Hamiltonoperator, \(\hbar \) das Plancksche Wirkungsquantum und \(\Psi \) die Wellenfunktion des Systems. Die Gleichung beschreibt jedes Teilchen des Systems und ist somit eine Funktion der Koordinaten und Impulse aller Kerne und Elektronen. Selbst für kleine Systemgrößen von wenigen Atomen ist die Zahl der zu berücksichtigenden
Freiheitsgrade groß und eine Berechnung daher zeitintensiv bzw. in vielen Fällen unmöglich. Die Methode der MD-Simulation ist eine Vereinfachung und beruht auf mehreren Annahmen, die es erlauben, die Zahl der zu berücksichtigenden Freiheitsgrade zu reduzieren und damit eine erhebliche Reduktion der notwendigen Rechenzeit zu erreichen.

2.1.1.1. Die Born Oppenheimer Näherung
Die erste Vereinfachung stellt die Born-Oppenheimer-Approximation dar [25]. Die Bewegung der Elektronen ist aufgrund ihrer viel geringeren Masse wesentlich schneller als die Bewegung der Atomkerne. Dadurch stellt sich zu jeder Kernkonfiguration quasi instantan eine Elektronenkonfiguration ein. In der Wellenfunktion Ψ lassen sich die Kernfreiheitsgrade von den Elektronenfreiheitsgraden separieren

$$\Psi_{tot}(R,r) = \Psi_{Kern}(R) \cdot \Psi_{El}(r; R).$$

2.1.1.2. Empirische Kraftfeldfunktion
Abb. 2.1

Bindungen
\[V_d = \frac{1}{2} k_d \left[d - d_0 \right]^2 \]

Winkel
\[V_\theta = \frac{1}{2} k_\theta \left[\theta - \theta_0 \right]^2 \]

Urey-Bradley
1,3 Term
\[V_{UB} = \frac{1}{2} k_{UB} \left[s - s_0 \right]^2 \]

Torsionen
\[V_\phi = \sum_{n=0}^{N} A_n \left[1 + \cos(n\phi - \gamma) \right] \]

Verbotene Torsionen
\[V_\psi = \frac{1}{2} k_\psi \left[\psi - \psi_0 \right]^2 \]

Coulomb
\[V_{\text{Coulomb}} = \frac{1}{4\pi\varepsilon_0} \frac{q_i q_j}{r_{ij}} \]

Van der Waals
\[V_{\text{vdW}} = 4\varepsilon_{ij} \left[\left(\frac{r_{ij}}{r_{ij}^\text{min}} \right)^{12} - \frac{1}{2} \left(\frac{r_{ij}}{r_{ij}^\text{min}} \right)^{6} \right] \]
In das CHARMM-Kraftfeld gehen sowohl so genannte gebundene (interne) Wechselwirkungen als auch nicht-gebundene Wechselwirkungen ein. Zu den internen Wechselwirkungen zählen neben dem Energieterm V_{Bindung}, der Änderungen des Abstandes zweier gebundener Atome berücksichtigt, der Energieterm V_{Winkel}, der Änderungen des Winkels dreier gebundener Atome beschreibt und V_{Torsion}, der Änderungen des Torsionswinkels von vier aufeinander folgenden Atomen angibt, auch der Urey-Bradley-Term V_{UB} und der Term zur Berücksichtigung verbotener Torsionen $V_{\text{verbotene Torsionen}}$. Die letzten beiden Terme sind Korrekturterme, die verwendet werden, um die Winkel- bzw. Torsionspotentiale zu optimieren. V_{UB} berücksichtigt die Wechselwirkung aufgrund des Abstands zwischen dem ersten und dritten Atom eines kovalent gebundenen Atom-Tripletts und $V_{\text{verbotene Torsionen}}$ verhindert so genannte verbotene Torsionen, also Bewegungen von Atomen aus einer Ebene heraus, die aufgrund der Molekülgeometrie verboten sind. Zu den nicht-gebundenen (externen) Wechselwirkungen zählen der Coulomb-Term V_{Coulomb}, der die elektrostatische Wechselwirkung zwischen geladenen Atomen beschreibt, und der Energieterm für Van der Waals-Wechselwirkungen (V_{vdW}), die zwischen nicht gebundenen Atomen auftreten. Die funktionale Form des Kraftfelds ist gegeben durch

$$V(\vec{R}) = \sum_{\text{Bindungen}} K_d (d - d_0)^2 + \sum_{\text{Winkel}} K_\theta (\theta - \theta_0)^2 + \sum_{\text{Urey-Bradley}} K_{\text{UB}} (s - s_0)^2 + \sum_{\text{Torsionen}} A_n \left[1 + \cos(n\omega - \gamma) \right] + \sum_{\text{verbotene Torsionen}} K_\varphi (\varphi - \varphi_0)^2 + \sum_{\text{Van der Waals und Coulomb}} \left[4\varepsilon_{ij} \left(\frac{r_{\text{ij}}^{\text{min}}}{r_{ij}} \right)^{12} - \left(\frac{r_{\text{ij}}^{\text{min}}}{r_{ij}} \right)^6 + \frac{1}{4\pi\varepsilon_0} \frac{q_i q_j}{r_{ij}} \right].$$

(2.3)

Die in Gleichung (2.3) eingeführten Parameter beinhalten Referenzgrößen für Bindungslängen d_0, d_{UB}, Bindungswinkel θ_0 und verbotene Torsionen φ_0, sowie die dazugehörigen Kraftkonstanten k_d, k_{UB}, k_θ und k_φ. Weitere Parameter sind der Phasenwinkel γ, die Multiplizität n und die Barrierehöhen A_n für die Torsion; die Partielladungen der Atome q_i für die Elektrostatik, die Tiefe ε_{ij}, die Breite σ_{ij} und der Abstand des Minimums im Potential r_{ij}^{min} für die Van der Waals-Wechselwirkung. Die Korrekturterme V_{UB} und $V_{\text{verbotene Torsionen}}$ werden nicht für alle Atome des Systems verwendet, sondern auf ein Minimum beschränkt. Genau genommen müssen für jede denkbare Kombination aus Atomen Parameter bestimmt werden. Dies führt zu einem erheblichen Aufwand bei der Berechnung. Aus diesem Grund wurden so genannte
Atomtypen eingeführt. Dabei handelt sich um eine Zusammenfassung chemisch ähnlicher Atome zu einem einzelnen Atomtyp, wodurch sich die Anzahl der notwendigen Parameter um ein Vielfaches verkleinert.

Optimierung bzw. Anpassung der Kraftfeldparameter

Die für das Kraftfeld notwendigen Parameter werden so an das System angepasst, dass sie experimentelle Daten aus der Röntgenstrukturanalyse, der IR-Spektroskopie oder der NMR, sowie Ergebnisse aus *ab initio* quantenmechanischen Berechnungen möglichst genau wiedergeben. Die Parametrisierung erfolgt in der Regel für kleine Bausteine, für die strukturelle, dynamische und thermodynamische Daten zur Verfügung stehen oder berechnet werden können. Die Parameter werden so gewählt, dass sie sich auf andere Moleküle bzw. Molekülfragmente übertragen lassen. So ist es möglich, mit einer einzigen funktionalen Form des Kraftfeldes und einem begrenzten Parametersatz eine Vielzahl von Molekülen zu behandeln. Die Parametersätze werden kontinuierlich weiterentwickelt bzw. optimiert und erlauben die Simulation von Proteinen, DNA und organischen Molekülen in einer Reihe von Lösungsmitteln oder in einer Lipidumgebung. Für die Simulation solcher biologischer Systeme gibt es eine ganze Reihe unterschiedlicher Kraftfelder, die nur geringfügig in ihrer funktionalen Form voneinander abweichen (z.B. CHARMM [8], AMBER [6], GROMOS [26]).

In einigen Kraftfeldern werden alle Atome explizit berücksichtigt. Man spricht von so genannten *all-atom*-Kraftfeldern. Um die Anzahl an Atomen im System zu reduzieren und somit einen weiteren Gewinn an Rechengeschwindigkeit zu erhalten, werden in manchen

2.1.1.3. Die Newtonsche Bewegungsgleichung

Die dritte Vereinfachung besteht schließlich darin, dass die Dynamik der Atomkerne durch die klassische Newtonsche Bewegungsgleichung

\[
\frac{-dV}{dr_i} = m_i \frac{d^2}{dt^2} \vec{r_i}, \text{ bzw. } \vec{F}_i(\vec{r}_i, t) = m_i \cdot a_i
\]

beschrieben wird. In Gleichung (2.4) ist \(V\) die potentielle Energie des Systems, die aus der Kraftfeldfunktion (Gleichung (2.3)) berechnet werden kann, \(F_i\) ist die resultierende Kraft, \(m_i\) die Masse, \(a_i\) die Beschleunigung und \(r_i\) die Koordinate des i-ten Atoms. Durch zweimalige
numerische Integration pro Zeitschritt dt erhält man die Geschwindigkeiten und Koordinaten der Atomkerne.

Integrationsalgorithmus

Es existiert eine ganze Reihe von Algorithmen, mit denen die Newtonschen Bewegungsgleichungen numerisch integriert werden können. Wichtige Anforderungen sind, dass der verwendete Algorithmus energie- sowie impulserhaltend ist, sich zeitlich umkehren lässt und einen möglichst großen Integrationszeitschritt verwenden kann, ohne an Genauigkeit zu verlieren. Die Rechengeschwindigkeit bzw. die Speicheranforderungen sind in diesem Zusammenhang nicht von großer Bedeutung, da der eigentliche Integrationsschritt im Vergleich zur Kraftberechnung nicht ins Gewicht fällt. Viele der vorhandenen Algorithmen basieren auf der *Finite Differenz*-Methode. Dabei werden alle relevanten physikalischen Größen, wie Ort, Geschwindigkeit und Beschleunigung bzw. die Kraft in eine Taylorreihe entwickelt, was am Beispiel der Ortskoordinate in Gleichung (2.5) gezeigt ist.

\[
\begin{align*}
 r(t + dt) &= r(t) + \frac{\partial r}{\partial t} dt + \frac{1}{2} \frac{\partial^2 r}{\partial t^2} dt^2 + \frac{1}{6} \frac{\partial^3 r}{\partial t^3} dt^3 + O(dt^4) \\
 r(t + dt) &= r(t) + v(t) dt + \frac{1}{2} \frac{F(t)}{m} dt^2 + \frac{1}{6} \frac{\partial^3 r}{\partial t^3} dt^3 + O(dt^4) \\
\end{align*}
\]

(2.5)

$r(t)$ ist die Ortskoordinate zum Zeitpunkt t, $v(t)$ die dazugehörige Geschwindigkeit, $F(t)$ die Kraft zum Zeitpunkt t, m die Masse und dt der Integrationszeitschritt. Die Taylorentwicklung wurde im obigen Beispiel nach dem dritten Term abgebrochen. Der *Verlet*-Algorithmus [31] ist eine sehr verbreitete Methode, Bewegungsgleichungen in Molekulardynamik-Simulationen zu integrieren. Dazu muss in Gleichung (2.5) sowohl $r(t+dt)$ als auch $r(t-dt)$ entwickelt und beide Ausdrücke addiert werden. Die Rechenvorschrift des Verlet-Algorithmus lautet dann:

\[
 r(t + dt) = 2r(t) - r(t - dt) + \frac{F(t)}{m} dt^2.
\]

(2.6)

Die Geschwindigkeiten sind in Gleichung (2.6) nicht mehr explizit enthalten, können aber mit $v(t) = \left[r(t + dt) + r(t - dt) \right] / 2 dt$ berechnet werden. Der Verlet-Algorithmus ist eine einfache Rechenvorschrift, die jedoch einige Nachteile mit sich bringt. So kann die Geschwindigkeit nicht zum selben Zeitpunkt berechnet werden, wie der Ort. Für eine Berechnung der
Geschwindigkeit \(v(t) \) muss die Ortskoordinate des vorherigen Zeitschrittes \(t-dt \) bekannt sein, sowie die des folgenden Zeitschrittes \(t+dt \). Dazu kommt, dass die neuen Koordinaten durch die Addition eines sehr kleinen Terms \(\left[F(t)/m\right]dt^2 \) mit der Differenz zweier deutlich größeren Terme \(2r(t)-r(t-dt) \) berechnet werden, was zu einem Verlust an Genauigkeit führen kann. Ein weiterer Punkt ist, dass der Algorithmus nicht „selbst startend“ ist. Zum Zeitpunkt \(t = 0 \) werden die Koordinaten des Zeitpunkts \(t = -dt \) benötigt, die aber nicht vorhanden sind. Um diese Nachteile zu umgehen, werden heutzutage in den meisten Programmen Abwandlungen des Verlet-Algorithmus verwendet, wie beispielsweise der Leap-Frog-Algorithmus [32] oder der Velocity-Verlet-Algorithmus [33]. Der Velocity-Verlet-Algorithmus kommt im Programm NAMD zum Einsatz. Die Rechenvorschrift lautet

\[
\begin{align*}
 r(t+dt) &= r(t) + v(t)dt + \frac{F(t)}{2m}dt^2 \\
 v(t+dt) &= v(t) + \frac{1}{2m} \left[F(t) + F(t+dt) \right] dt
\end{align*}
\]

(2.7)

Der Ort \(r(t) \), die Geschwindigkeit \(v(t) \) und die Kraft \(F(t) \) können mit Hilfe von Gleichung (2.7) für denselben Zeitpunkt berechnet werden. Der verwendete Zeitschritt \(dt \) ist so zu wählen, dass die höchstfrequenten Bewegungen im System ausreichend häufig abgetastet werden. Bei biologischen Systemen sind dies Streckschwingungen mit Beteiligung eines Wasserstoffatoms, die im Bereich von einigen Femtosekunden liegen. Dies führt zu einer oberen Grenze des Integrationszeitschritts von 0.5 fs bis 1 fs. Durch Verwendung spezieller Rechenvorschriften, wie beispielsweise dem Shake-Algorithmus [5], der einem Einfrieren dieser Schwingungen gleich kommt, lässt sich diese obere Grenze auf einige Femtosekunden vergrößern, ohne die Genauigkeit der Simulation maßgeblich zu vermindern [34]. Als Ergebnis der numerischen Integration erhält man für jedes Atom Trajektorien von Ort und Geschwindigkeit, sowie Informationen über die einzelnen Energieterme aus der Kraftfeldfunktion zu jedem Zeitschritt.
2.1.2. **Wichtige Parameter einer MD-Simulation**

2.1.2.1. **Lösungsmittel**

Abb. 2.2

Biologische Modellsysteme für die Durchführung von MD-Simulationen. (A) Protein-Wassersystem und ein (B) Protein-Lipid-Wassersystem. Das Protein ist in blau (Surface-Darstellung) (A) bzw. grün (Cartoon-Darstellung) (B) gezeigt.

Im linken Teil der Abbildung ist ein System gezeigt, das aus dem Protein *Bovine Pancreatic Trypsin Inhibitor* (BPTI) und einer Wasserbox besteht. Im rechten Teil der Abbildung ist eine Transmembranhelix in eine Doppellipidschicht eingebaut. Die Membran wird von Wasser umgeben. Dieses System stellt ein Beispiel für ein Protein-Lipid-Wassersystem dar. Der Großteil der simulierten Atome wird durch die Umgebung dargestellt, was bis zu 90% der gesamten Systemgröße ausmachen kann. Das Hauptinteresse besteht in der Regel jedoch an der Beschreibung der Dynamik des Proteins oder Biomoleküls und nicht an der Beschreibung der Dynamik des Lösungsmittels. Man ist daher bestrebt, möglichst wenig Rechenzeit für die Simulation einer unnötig großen Anzahl an Lösungsmittel aufzubringen.
2.1.2.2. Periodische Randbedingungen

2.1.2.3. Elektrostatische Wechselwirkung

einen einfachen Abschneideradius verwenden, wäre dies mit Fehlern bzw. Artefakten verbunden.

Liegt ein System mit periodischen Randbedingungen vor, so hat die zu berechnende Coulombsumme folgende Form:

\[E_{EL} = \frac{1}{2} \sum_{i,j=1}^{N} \frac{q_i q_j}{|\mathbf{r}_i - \mathbf{r}_j + \mathbf{r}_*|}. \] \hspace{1cm} (2.8)

Für jedes Atom \(i \) in der zentralen Einheitszelle wird die Wechselwirkung mit jedem anderen Atom \(j \) in derselben Zelle \((n = 0)\), sowie mit allen anderen Atomen \(j \) aus allen anderen Zellen \((n \neq 0)\) berechnet.

Ewald-Summation

In heute gängigen MD-Programmen wird zur Berechnung der Elektrostatik das so genannte *Particle Mesh Ewald* (PME)-Verfahren angewandt, welches die Ladungen auf einem Raster ausrichtet und so die reziproke Summe mit Hilfe einer *Fast Fourier Transformation* (FFT) berechnet werden kann. Dadurch skaliert der Algorithmus mit \(N \log N \) [36]. Diese Vorgehensweise führt zu einem enormen Geschwindigkeitsvorteil, bei gleichzeitiger Berücksichtigung der langreichweitigen Wechselwirkungen.

2.1.2.4. Temperatur- und Druckkopplung

Mit dem bisherigen Wissen lässt sich eine MD-Simulation mit konstanter Teilchenzahl \(N \), konstantem Volumen \(V \) und konstanter Energie \(E \), also im mikrokanonischen (NVE) Ensemble durchführen. Ein Austausch von Energie mit der Umgebung wird nicht berücksichtigt. Dies ist bei Simulationen biologischer Systeme jedoch in den meisten Fällen...
erwünscht. Um möglichst nahe am Experiment zu bleiben, soll ein biologisches System entweder bei einer konstanten Temperatur und einem konstanten Volumen (NVT, kanonisches Ensemble) oder einer konstanten Temperatur und einem konstanten Druck (NPT, isotherm-isobares Ensemble) untersucht werden.

Temperaturkopplung

Zur Temperaturkontrolle muss das System in der Lage sein, Wärme mit der Umgebung austauschen zu können. Es gibt eine Reihe von Methoden, die eine solche Kopplung in einer MD-Simulation realisieren. Im einfachsten Fall werden die Geschwindigkeiten der einzelnen Atome nach jedem Zeitschritt mit einem Faktor \(\lambda \) so skaliert, dass sich die gewünschte Geschwindigkeitsverteilung und damit die gewünschte Temperatur einstellt [37]. Eine weitere Methode zur Temperaturkontrolle stellt die Kopplung des Systems an ein Wärmereservoir dar [38]. Bei dieser Methode werden die Geschwindigkeiten ebenfalls nach jedem Zeitschritt skaliert, jedoch proportional zur Differenz zwischen der momentanen Temperatur und einer Referenztemperatur. Damit nähert sich die Temperatur exponentiell dem gewünschten Wert an.

In dieser Arbeit wurde die *Langevin*-Methode verwendet, bei der die Kopplung des Wärmebads an das Simulationssystem durch einen geschwindigkeitsabhängigen Reibungsterm \(-\gamma \cdot m \cdot v\) und eine stochastische Kraftkomponente \(R_i(t) \) berücksichtigt wird [22]. Die *Langevin*-Gleichung lautet

\[
m_i a_i = F_i(r) - \gamma_i m_i v_i + R_i(t).
\] (2.9)

Hierbei ist \(m_i \) die Masse, \(a_i \) die Beschleunigung, \(F_i(r) \) die wirkende Kraft, \(\gamma \) die Dämpfungs- konstante, \(k_B \) die Boltzmannkonstante und \(R_i(t) \) eine stochastische Kraft, die auf das \(i \)-te Atom wirkt. Der Reibungsterm entfernt kinetische Energie aus dem System: der stochastische Term bringt Energie in das System ein. Beide Terme sind über die Beziehung

\[
\langle R_i(t) \cdot R_j(t') \rangle = 2k_B T \ m_i \gamma_i \delta(t - t')
\] (2.10)

miteinander verknüpft, wobei \(T \) die Referenztemperatur des Systems ist.
Druckkopplung
Zur Druckkontrolle werden analog zur Regulierung der Temperatur ähnliche Annahmen gemacht bzw. Verfahren verwendet [38, 39]. Eine Kopplung an ein Druckbad wird vorgenommen, indem das Volumen der Simulationszelle verändert wird, was durch Skalierung der Atomkoordinaten erfolgt. In dieser Arbeit wurde, entsprechend der Temperaturkontrolle, die Langevin-Piston-Methode verwendet [40]. Dabei wird das System um einen Freiheitsgrad, das Systemvolumen, erweitert. Dieser zusätzliche Freiheitsgrad wird ebenfalls mit einer Langevin-Gleichung beschrieben.

2.1.2.5. Strukturelle Abweichung

\[
RMSD = \min \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(x_i - x_{i,0} \right)^2 + \left(y_i - y_{i,0} \right)^2 + \left(z_i - z_{i,0} \right)^2 }
\]
(2.11)

In Gleichung (2.11) sind \(x_i, y_i, z_i \) und \(x_{i,0}, y_{i,0}, z_{i,0} \) die Koordinaten der aktuellen Struktur und der Referenzstruktur, \(N \) ist die Anzahl der Atome im System. Das „min“ unter dem Gleichheitszeichen deutet an, dass die Strukturen gegeneinander translatiert bzw. rotiert werden, bis der RMSD-Wert minimiert wird oder mit anderen Worten, bis sich beide Strukturen am ähnlichsten sind. Diese Größe wird während der Simulation dazu verwendet, die zeitliche Entwicklung der Struktur in Bezug auf die Referenzstruktur zu verfolgen. Von einer equilibrierten Struktur wird ausgegangen, wenn Observablen, wie beispielsweise der RMSD-Wert, einen stabilen Verlauf ohne erkennbare Drift zeigen.
2.2. Beschleunigte Simulationen

Abb. 2.4

In Abb. 2.4 sind intramolekulare (grün) sowie intermolekulare Wechselwirkungen und biologische Prozesse (orange) gemäß ihrer typischen Zeiten unterteilt. In rot ist der Integrationszeitschritt eingezeichnet, in rosa ist der mit heutiger Rechenleistung typischerweise simulierbare Bereich hinterlegt. Die Zeitachse verläuft logarithmisch und deckt einen Zeitraum von 1 fs bis 100 s ab. Alle intramolekularen Wechselwirkungen wie z. B. die Kollektivbewegungen von Atomgruppen oder Winkel bzw. Torsionsänderungen spielen sich im Bereich von 10 fs bis hin zu 100 ps ab. Größere Konformationsänderungen eines Proteins liegen bereits auf Zeitskalen, die bis in den µs-Bereich reichen und nicht immer von MD-Simulationen erfasst werden können. Biologisch interessante Prozesse, wie beispielsweise die Proteintranslokation, die zwischen 100 ms und 1 s abläuft, sind mit der Methode der MD-Simulation nicht zu untersuchen, da hier zeitlich gesehen ca. fünf Größenordnungen fehlen. Ausnahmen bilden die Kanalproteine für den Transport von kleinen Molekülen. Hier verläuft
der Prozess zur Translokation von Wasser oder Kalium auf einer Zeitskala, die noch von MD-Simulationen erreicht werden kann.

Um diese Systeme dennoch mit den zur Verfügung stehenden Rechenressourcen untersuchen zu können, wurden verschiedene Methoden entwickelt, die zu einer Beschleunigung des untersuchten Prozesses führen [15-17]. Im Allgemeinen unterscheiden sich diese Methoden in ihrer Vorgehensweise. Sie besitzen aber auch eine Gemeinsamkeit: alle Methoden greifen von außen in die Simulation ein und bewegen das System aus einem Anfangszustand in einen Endzustand. Dadurch wird es möglich, Potentialbarrieren zu überschreiten, die in dem kurzen Simulationsfenster aufgrund von thermischer Aktivierung, in einer konventionellen MD-Simulation, nicht überwunden werden können. Um dies zu erreichen, wird in allen Methoden die verwendete Kraftfeldfunktion verändert bzw. um einen oder mehrere Terme erweitert, die eine Einfluss auf unterschiedliche Teile des Systems haben. Eine dieser Methoden, die Steered Molecular Dynamics-Methode [17], wurde in dieser Arbeit eingesetzt und wird im Folgenden näher beschrieben.

2.2.1. Steered Molecular Dynamics

Bei der Steered Molecular Dynamics (SMD)-Methode wird das System von einem Anfangs- in einen Endzustand bewegt, in dem eine Kraft von außen an einem Teil des untersuchten Systems angelegt wird. Diese Kraft wird mit Hilfe eines sich bewegenden harmonischen Potentials auf das System übertragen. In Gleichung (2.12) ist k_{SMD} die Kraftkonstante, x die Reaktionskoordinate, x_0 die Referenzposition und v die Geschwindigkeit, mit der sich das Potential bewegt. Die zugehörige Kraft berechnet sich somit zu

$$V_{SMD} = \frac{1}{2} k_{SMD} \left(x - x_0 - vt \right)^2$$ (2.12)

$$F_{\text{extern}} = k_{SMD} \left(x_0 + vt - x \right).$$ (2.13)
Das Prinzip der SMD-Simulation ist am Beispiel von Deka-Alanin, einem Peptid aus zehn Alanin-Resten, in Abb. 2.5 schematisch dargestellt. Zur Visualisierung ist eine Feder eingezeichnet, die am \(C_\alpha \)-Atom der letzten Aminosäure (blau) angreift und sich mit der Geschwindigkeit \(\nu \) in x-Richtung bewegt.

Abb. 2.5
Schematische Darstellung des Prinzips der SMD-Simulation am Beispiel des Peptids Deka-Alanin. Die einzelnen Alanin-Reste sind in unterschiedlichen Farben eingezeichnet. Das \(C_\alpha \)-Atom der ersten Aminosäure (rot) ist fest im Raum fixiert, das \(C_\alpha \)-Atom der letzten Aminosäure (blau) ist mit einer Feder, also mit dem SMD-Potential verbunden. Bewegt sich das Potential in die x-Richtung, wird eine Kraft auf das \(C_\alpha \)-Atom des letzten Alanin-Rests ausgeübt. Dies ist durch die Feder angedeutet. Zu Beginn der Simulation \(t = t_0 \) befindet sich das Deka-Alanin in einem gefalteten Zustand (A), am Ende der Simulation \(t = t_1 > t_0 \) in einer gestreckten Konformation (B).

Mit Hilfe der SMD-Simulation wird Deka-Alanin von einer helikalen Struktur (Abb. 2.5A) in eine gestreckte Konformation überführt (Abb. 2.5B). Eine SMD-Simulation kann bei konstanter Geschwindigkeit \(\nu \) oder konstanter Kraft \(F \) ablaufen. Dies ist ähnlich einem AFM-Experiment, jedoch sind die Möglichkeiten der SMD-Methode weitaus umfangreicher [41]. So können gleichzeitig unterschiedliche Atome mit unterschiedlichen Kräften manipuliert werden. Darüber hinaus sind auch komplizierte Reaktionspfade mit verschiedenen Richtungsänderungen und variierenden Kraftkonstanten möglich. Durch Anlegen eines Drehmomentes an Teilen eines Proteins war es möglich, eine Rotationsbewegung bestimmter Domänen zu induzieren [42]. Die Informationen, die man durch SMD-Simulationen erhält, sind zum einen qualitativ, da man einen Einblick in die beschleunigten Prozesse erhält und zum anderen...
quantitativ, da die externe Kraft als Funktion der Zeit bzw. der Reaktionskoordinate direkt zugänglich ist.

2.3. Freie Energie des Simulationssystems

Bei der Beschreibung von biologischen Prozessen ist die Kenntnis über die Freie Energie des Systems eine überaus nützliche Information. Aus ihr lassen sich sämtliche thermodynamischen Größen direkt oder aus einer Ableitung der Freien Energie bestimmen. Damit können beispielsweise Bindungskonstanten oder Reaktionskinetiken ermittelt werden, die zur Beschreibung vieler biologischer Prozesse erforderlich sind. Die Freie Energie lässt sich jedoch nicht direkt aus einer konventionellen MD-Simulation extrahieren. Für ein kanonisches Ensemble (NVT) kann die Freie Energie eines Zustandes gemäß

\[A = -k_B T \ln Z \]

berechnet werden, wobei \(A \) die Freie Energie, \(k_B \) die Boltzmannkonstante, \(T \) die Temperatur und \(Z \) die kanonische Zustandssumme ist. Die kanonische Zustandssumme kann folgendermaßen beschrieben werden

\[Z = \int e^{-\frac{1}{k_B T} E(R)} dR. \]

\(E(R) \) ist die Energie des Systems, \(R \) eine Konfiguration im Phasenraum und \(\int dR \) ist ein Integral über den Phasenraum. Bei Kenntnis der Zustandssumme, lässt sich die Freie Energie berechnen. Die Schwierigkeit bei der Bestimmung der Freien Energie ist es, den gesamten Phasenraum zu durchmustern, um einen genauen Wert der Zustandssumme zu erhalten. MD-Simulationen bewegen sich nur in einem sehr eingeschränkten Teil des Phasenraums. Dabei handelt es sich um Bereiche, die zu Zuständen mit niedriger Energie gehören. Größen, wie beispielsweise die Innere Energie, in deren Berechnung diese niederenergetischen Zustände mit großem Gewicht eingehen, lassen sich deshalb relativ genau abschätzen. Die Innere Energie \(U \) lässt sich gemäß

\[U = \int dR \ E(R) \cdot \rho(R) \]

berechnen. Die Phasenraumdichte \(\rho(R) \) ist definiert als
Kapitel 2 Theorie und Methoden

\[\rho(R) = \frac{\frac{E(R)}{k_B T}}{Z} \]

(2.17)

und gibt an, mit welcher Wahrscheinlichkeit ein Zustand mit zugehöriger Energie \(E(R) \) eingenommen wird. Beiträge mit großer Energie \(E(R) \) haben eine geringe Wahrscheinlichkeit und somit ein geringes Gewicht bei der Berechnung des Integrals in Gleichung (2.16) bzw. bei der Bestimmung der Inneren Energie \(U \).

Durch Umformung und unter Verwendung der Gleichungen (2.15) und (2.17) lässt sich die Freie Energie als

\[A = k_B T \ln \left(\int dR \, e^{\frac{E(R)}{k_B T}} \cdot \rho(R) \right) \]

(2.18)

in einer ähnlichen Form wie Gleichung (2.16) beschreiben. In Gleichung (2.18) sind Normierungsfaktoren der Einfachheit wegen vernachlässigt worden. Für eine genaue Bestimmung der Freien Energie und damit auch der Entropie müssen Zustände mit großer Energie \(E(R) \), die durch den Exponentialterm \(\exp(+E(R)/k_B T) \) eine große Gewichtung bei der Berechnung des Integrals haben, ausreichend oft eingenommen werden. Dies wird in der Praxis, selbst mit den längsten MD-Simulationen nicht erreicht.

Punkten entlang der Reaktionskoordinate berücksichtigt werden müssen, kann es aufgrund limitierter Rechenressourcen Schwierigkeiten geben, genügend Daten zu produzieren, um die ganze Reaktionskoordinate ausreichend genau abzutasten.

Eine Alternative, um in solchen Fällen das PMF zu bestimmen, ist die Verwendung von SMD-Simulationen, gekoppelt mit einer statistischen Analyse (Fluktuationstheoreme). Dies wird im Folgenden genauer erläutert.

2.4. Fluktuationstheoreme

Abb. 2.6 (A) Das System wird aus Zustand A entlang einer Reaktionskoordinate in einen Zustand B überführt. Die Änderung der Freien Energie ist ΔG, die hierfür notwendige Arbeit ist W_{AB}. (B) Histogramm der Arbeitswerte W_{AB} bei mehrfacher Durchführung des Prozesses. Eingezeichnet sind der Mittelwert der Arbeit $\langle W_{AB}\rangle$ (rot), sowie die tatsächliche Änderung der Freien Energie ΔG (grün).

In Abb. 2.6B ist die Änderung der Freien Energie in grün eingezeichnet. Hauptsächlich treten Ereignisse auf, bei denen $W_{AB} > \Delta G$ ist, was aufgrund der Prozessführung im Nichtgleichgewicht zu erwarten ist. Thermische Fluktuationen können den Übergang aber so weit begünstigen, dass $W_{AB} < \Delta G$ und die aufzubringende Arbeit kleiner als die Änderung der Freien Energie ist. Arbeitswerte einzelner Ereignisse, die kleiner als die Änderung der Freien Energie sind, stellen keine Verletzung des 2. Hauptsatzes dar, da dieser genau genommen für den Mittelwert der Arbeit W_{AB} definiert ist: $W_{AB} \geq \Delta G$, wobei die spitzen Klammern das Ensemblemittel darstellen. Somit wird auch in mikroskopischen Systemen bei nicht-quasistatischer Prozessführung im Mittel Energie dissipiert. Aus einer einzelnen Trajektorie lässt sich die Änderung der Freien Energie nur für einen quasistatisch geführten Prozess direkt entnehmen. Dieser Sachverhalt kann aufgrund der Beschleunigung der SMD-Simulationen jedoch in den wenigsten Fällen als realistisch angenommen werden. Vielmehr arbeitet man in der Regel im Nichtgleichgewicht. Die thermischen Fluktuationen des Systems können herangezogen werden, um selbst bei einer Prozessführung im Nichtgleichgewicht Aussagen über die zugrunde liegende Änderung der Freien Energie machen zu können. Aus der statistischen Physik sind Fluktuationstheoreme bekannt, die für beliebig weit ins Nichtgleichgewicht getriebene Systeme gültig sind, und die es erlauben, Gleichgewichtsgrößen wie zum Beispiel die Änderung der Freien Energie aus einem Satz an Nichtgleichgewichtsdaten zu extrahieren. Im
Folgendes wird näher auf ein Fluktuationstheorem, der Jarzynski-Gleichung, und dessen Anwendung in der MD-Simulation eingegangen.

2.4.1. Die Jarzynski-Gleichung

Im Jahr 1997 wurde von Jarzynski eine integrale Version eines Fluktuationstheorems formuliert [19]. Diese Formulierung verknüpfte die Änderung der Freien Energie mit einer exponentiellen Mittelung der am System verrichteten externen Arbeit. Hierbei wird ein System, das an ein Wärmebad gekoppelt ist, aus einem Gleichgewichtszustand A in einen beliebigen Zustand B überführt. Das Protokoll von A nach B ist beliebig; es muss jedoch für jede Simulation identisch sein. Typischerweise wird dieses Protokoll durch einen Kontrollparameter \(\lambda \) beschrieben, der von \(\lambda(t_A)=0 \) bis \(\lambda(t_B)=1 \) geschaltet wird. Die Wahl des Parameters \(\lambda \) ist beliebig. Die Arbeit, die entlang einer einzelnen Trajektorie am System verrichtet wird, ist dann

\[
W = \int_{t_A}^{t_B} d\tau \dot{\lambda} \frac{\partial H(r(\tau))}{\partial \lambda}.
\]

(2.19)

\(W \) ist die verrichtete Arbeit, \(\lambda(t) \) ist das Protokoll und \(H(r(\tau)) \) ist die Hamiltonfunktion, die die Energie des Systems beschreibt. Für den Fall, dass das Protokoll \(\lambda(t) \) gerade der Koordinate des SMD-Potentials entspricht, vereinfacht sich die Gleichung zu

\[
W = \int_0^{z} dz \, F(z),
\]

(2.20)

dem Integral der Kraft \(F \) entlang der Reaktionskoordinate \(z \). Für ein System, das sich durch die Langevin-Gleichung beschreiben lässt, gilt die Jarzynski-Gleichung

\[
\exp \left[-\frac{\Delta G(z)}{k_B T} \right] = \left\langle \exp \left[-\frac{W(z,r)}{k_B T} \right] \right\rangle_N.
\]

(2.21)

\(W \) ist die externe Arbeit entlang einer einzelnen Trajektorie, \(k_B \) die Boltzmannkonstante, \(T \) die Temperatur des Wärmebads und \(\Delta G \) ist die Änderung der Freien Energie. Die spitzen Klammern beschreiben eine Mittelung über \(N \) Trajektorien. Im Grenzfall einer unendlichen Anzahl von Trajektorien ist Gleichung (2.21) exakt erfüllt; für eine endliche Anzahl an Trajektorien lässt sie eine Abschätzung von \(\Delta G \) zu. Die Abschätzung ist stark davon

Abb. 2.7 zeigt eine Arbeitsverteilung $p(W)$ in rot und die dazugehörige Verteilung $p(e^{-W})$ in grün. Die Verteilung $p(W)$ wird in diesem Beispiel als Gaußförmig angenommen, kann aber prinzipiell jede beliebige Form einnehmen. Die Verteilung $p(e^{-W})$ ist zu kleineren Werten verschoben. Gerade der Bereich $W \approx \Delta G$ ist für eine korrekte Evaluation der Jarzynski-Gleichung notwendig, da dieser mit großem Gewicht in das exponentielle Mittel eingeht. Trajektorien sind in diesem Bereich sehr selten, da sie am Rand der Arbeitsverteilung $p(W)$ liegen. Das Ausmaß der Überlappung zwischen $p(W)$ und $p(e^{-W})$ hängt vom Betrag der dissipierten Arbeit W_{diss} ab. Für Systeme, die weit ins Nichtgleichgewicht getrieben werden, ist dieser Überlapp sehr klein und daher ist eine sehr große Anzahl an Trajektorien notwendig, um die Arbeitsverteilung an den Rändern ausreichend gut zu beschreiben und damit eine Abschätzung von ΔG zu ermöglichen.

2.4.2. Rekonstruktion des Freien Energieprofils aus SMD-Simulationen

Abb. 2.8
Die rekonstruierten Potentialverläufe sind in Abb. 2.8A zu sehen. Der Verlauf des Referenzpotentials ist in schwarz, und die rekonstruierten Potentialverläufe der Simulationen mit unterschiedlichen Geschwindigkeiten in rot (\(v = 10\) Å/ns), orange (\(v = 50\) Å/ns) und lila (\(v = 100\) Å/ns) dargestellt. In Abb. 2.8B ist die Abweichung des jeweiligen Potentialverlaufes vom Referenzpotential eingezeichnet. Aus den Diagrammen folgt, dass mit Hilfe der Jarzynski-Gleichung nur der Potentialverlauf aus den Daten der SMD-Simulationen mit der Geschwindigkeit von \(v = 10\) Å/ns richtig rekonstruiert werden kann. Bei einer Geschwindigkeit von \(v = 50\) Å/ns beträgt die Abweichung am Ende der Reaktionskoordinate \(8k_BT(300K)\), bei \(v = 100\) Å/ns sind es \(15k_BT(300K)\). Der Grund für die Überschätzung des Potentials bei höheren Geschwindigkeiten wird bei Betrachtung der Arbeitsverteilungen, die in Abb. 2.8C-E dargestellt sind, deutlich. Die Arbeitsverteilungen sind jeweils für den Endpunkt der Reaktionskoordinate abgebildet. Die Änderung der Freien Energie \(\Delta G\) beträgt an diesem Punkt \(34.5\ k_BT(300K)\) und ist in den Histogrammen als graue, gestrichelte Linie eingezeichnet. Nur für die Geschwindigkeit \(v = 10\) Å/ns finden sich Arbeitswerte, die im Bereich von \(\Delta G\) bzw. darunter liegen. Die Arbeitsverteilungen der anderen Geschwindigkeiten sind aufgrund größerer Dissipation verbreitert und zu höheren Arbeitswerten verschoben. Bei diesen Geschwindigkeiten liegen alle 500 Arbeitswerte deutlich oberhalb von \(\Delta G\). Eine exakte Bestimmung der Änderung der Freien Energie ist somit nicht möglich und das Potential wird überschätzt. In diesen beiden Fällen ist es notwendig, die Zahl an simulierten Trajektorien zu erhöhen, um die Arbeitsverteilungen im Bereich um \(\Delta G\) ausreichend genau beschreiben zu können.

Eine Näherung der exponentiellen Mittelung findet sich, wenn die rechte Seite von Gleichung (2.21) in eine Kumulantenreihe entwickelt wird. Für die Änderung der Freien Energie \(\Delta G\) ergibt sich folgender Ausdruck

\[
\Delta G = -k_B T \ln \left\langle \exp \left[-\frac{W(z,r)}{k_B T} \right] \right\rangle_N = -k_B T \sum_{n=1}^{\infty} \frac{(-1/n!)}{k_B T} C_n(z),
\]

(2.22)

In Gleichung (2.22) sind \(C_n(z)\) die Kumulanten, die die Form der Arbeitsverteilung beschreiben. So hat beispielsweise die erste Kumulante \(C_1 = \langle W \rangle\) die Bedeutung des Mittelwerts; die zweite Kumulante steht für die Varianz der Arbeitsverteilung \(C_2 = \langle W^2 \rangle - \langle W \rangle^2\). Im speziellen Fall einer Gaußförmigen Arbeitsverteilung ist die Kumulante dritter Ordnung und alle darüber liegenden Kumulanten gleich Null. Lediglich die ersten beiden Terme müssen somit in der Entwicklung berücksichtigt werden. Das bedeutet, dass die Änderung der Freien Energie nicht mehr aus der Beschreibung der Ränder der Verteilung hervorgeht, sondern aus

Abb. 2.9

eingzeichnet (Abb. 2.9A,B). Es ist deutlich zu erkennen, dass mit der Kumulantenentwicklung bis zur zweiten Ordnung bessere Ergebnisse erzielt werden, als mit der Jarzynski-Gleichung. Bei \(v = 50 \text{ Å/ns} \) beträgt die Abweichung am Ende der Reaktionskoordinate 3.5 \(k_B T(300\text{K}) \), bei \(v = 100 \text{ Å/ns} \) sind es 7.5 \(k_B T(300\text{K}) \). Die Abweichung stammt nicht von einer ungenügenden Beschreibung der Arbeitsverteilung an den Rändern, sondern von der Ungenauigkeit mit der Mittelwert und Breite bestimmt werden können und der Abweichung von einer Gaußförmigen Arbeitsverteilung. Eine Gaußförmige Arbeitsverteilung kann genau genommen nur dann angenommen werden, wenn sich das System in der Nähe des Gleichgewichts befindet - die Dissipation also im Bereich von einigen \(k_B T(300\text{K}) \) liegt. Interessanterweise lässt sich eine Gaußförmige Arbeitsverteilung durch die Wahl der Kraftkonstanten des SMD-Potentials beeinflussen. Wählt man die Federkonstante hart genug (Stiff spring approximation), so erhält man auch bei stärkerer Dissipation bzw. höheren Geschwindigkeiten eine Gaußförmige Arbeitsverteilung [43, 44]. Im Fall der langsamensten Geschwindigkeit von \(v = 10 \text{ Å/ns} \) liegt die dissipierte Arbeit am Ende der Reaktionskoordinate bei 5.5 \(k_B T(300\text{K}) \), was in einem Bereich liegt, der sich in der Nähe des Gleichgewichts befindet. Beide Methoden können mit den 500 Trajektorien den Verlauf des Potentials bei einer Geschwindigkeit von 10 Å/ns gleich gut rekonstruieren. Im Fall von \(v = 50 \text{ Å/ns} \) liegt die dissipierte Arbeit bei 19.5 \(k_B T(300\text{K}) \) und beide Methoden überschätzen das Potential. Die Kumulantenmethode liegt mit einer Abweichung von 4 \(k_B T(300\text{K}) \) deutlich unterhalb der Jarzynski-Gleichung, die eine doppelt so große Abweichung vom tatsächlichen Potential hat. Die Arbeitsverteilung kann als Gaußförmig angenommen werden; kein Arbeitswert liegt dabei aber im Bereich um \(\Delta G \). Für den Fall von \(v = 100 \text{ Å/ns} \) liegt die dissipierte Arbeit bei 31 \(k_B T(300\text{K}) \), was bereits im Bereich der Potentialmodulation liegt. Das System ist weiter ins Nichtgleichgewicht getrieben worden und beide Methoden überschätzen den tatsächlichen Potentialverlauf deutlich. Mit 7.5 \(k_B T(300\text{K}) \) liegt der Fehler der Kumulantenentwicklung aber immer noch deutlich unter dem Fehler der Jarzynski-Gleichung. Der Fehler Jarzynski-Gleichung liegt bei dieser Geschwindigkeit über 15 \(k_B T(300\text{K}) \). Bei dieser Geschwindigkeit kann nicht mehr von einer Gaußförmigen Arbeitsverteilung ausgegangen werden.

Für Systeme, die nicht zu weit aus dem Gleichgewicht getrieben werden bzw. bei denen man von einer Gaußförmigen Arbeitsverteilung ausgehen kann (im hier angesprochenen Fall \(W_{\text{diss}} < 19.5 k_B T(300\text{K}) \)), ist die Methode der Kumulantenentwicklung zur Rekonstruktion der Änderung der Freien Energie besser geeignet als die Jarzynski-Gleichung. Genau genommen gilt dies im Fall der Simulation von Deka-Alanin auch für die schnellste verwendete SMD-Geschwindigkeit von 100 Å/ns (\(W_{\text{diss}} > 19.5 k_B T(300\text{K}) \)). Da hier aber die ermittelte Arbeits-
verteilung nicht mehr als Gaußförmig angenommen werden kann, ist die Verwendung der Kumulantenentwicklung bis zur zweiten Ordnung, wie sie in diesem Kapitel vorgestellt wurde, nicht mehr korrekt und wird daher nicht berücksichtigt.

Für die Untersuchung von großen Biomolekülen ist aufgrund der verfügbaren Rechenzeit üblicherweise nur die Simulation einer kleinen Anzahl an Trajektorien durchführbar. Im Folgenden werden die Fehler, mit denen die Methode der Kumulantenentwicklung bis zur zweiten Ordnung behaftet ist, in Abhängigkeit von der Anzahl an Trajektorien näher betrachtet.

Zur Bestimmung der Fehler wird eine Gaußförmige Arbeitsverteilung mit dem Mittelwert Null und einer Varianz $\sigma^2 = 2k_B T \langle W_{\text{diss}} \rangle$, entsprechend dem Wert an dissipierter Arbeit, angenommen. Hieraus werden n Arbeitswerte (n = Anzahl an Trajektorien) extrahiert. Diese Arbeitswerte werden zur Berechnung der Änderung der Freien Energie ΔG mit Hilfe der Kumulantentwicklung bis zur zweiten Ordnung verwendet. Dieser Vorgang wird 10000-mal wiederholt und im Anschluss kann die Verteilung der ermittelten ΔG-Werte untersucht werden. Dissipierte Arbeit in einem Bereich von $1 \, k_B T^{(300K)}$ bis $10 \, k_B T^{(300K)}$ wurde betrachtet. Im linken Teil der Abb. 2.10 ist in einem 2D-Plot die Abweichung des berechneten Mittelwertes $\langle \Delta G \rangle$ der Verteilung gezeigt. Der 2D-Plot im rechten Teil von Abb. 2.10 zeigt die Standardabweichung $\text{std}(\Delta G)$, d. h. die Breite der Verteilung der ermittelten ΔG-Werte. Wie man aus den 2D-Plots sehen kann, spielt bei einer dissipierten Arbeit bis zu $10 \, k_B T^{(300K)}$ die Verschiebung des Mittelwerts $\langle \Delta G \rangle$ zu höheren Potentialwerten und damit die tendenzielle Überschätzung der Änderung der Freien Energie keine große Rolle. Bei 10 Trajektorien beläuft sich der Fehler auf ca. $1 \, k_B T^{(300K)}$. Die statistische Unsicherheit der Änderung der Freien Energie ist die maßgebliche Fehlerquelle. Im ungünstigsten Fall von 10 Trajektorien und einer Dissipation von $10 \, k_B T^{(300K)}$ liegt dieser Fehler bei $\pm 5 \, k_B T^{(300K)}$.

Abb. 2.10
Statistischer Fehler bei der Bestimmung der Änderung der Freien Energie, der bei Verwendung der Kumulantentwicklung bis zur zweiten Ordnung auftritt. Links ist die Abweichung des Mittelwertes von ΔG gezeigt, rechts die statistische Unsicherheit von ΔG. Der jeweilige Fehler ist in den 2D-Plots farbkodiert.
3. Strukturelle Stabilität verschiedener Mutanten und Fragmente des Tumornekrosefaktor-Rezeptors 1

3.1. Einleitung

induziert, wodurch sich entweder der Oligomerisierungsgrad des Rezeptors verändert oder intrazellulär eine Enzymaktivität induziert wird. Es gibt eine Vielzahl verschiedener Zellrezeptoren, die einen oder mehrere Liganden binden können, was unterschiedliche Signalwege für die Zelle zur Folge hat. Hinzu kommt, dass sich verschiedene Signalwege gegenseitig beeinflussen können und der Zelle somit ein weiterer regulatorischer Mechanismus zur Verfügung steht. Das Resultat ist ein komplexes Signal-Netzwerk, mit der eine Zelle auf Reize aus der Umgebung reagieren kann.

Eine für höhere Organismen lebensnotwendige Zellreaktion ist der programmierte Zelltod, die Apoptose. Bei der Apoptose durchlaufen kranke, für den Organismus schädliche Zellen oder solche, die vom Organismus nicht mehr benötigt werden, ein Programm, an dessen Ende der Tod der Zelle steht.

Der Tumornekrosefaktor (TNF) ist ein Cytokin des Immunsystems und unter anderem für die Vermittlung der Apoptose verantwortlich [46].

TNF liegt als Homotrimer vor und kann mit den Zellrezeptoren Tumornekrosefaktor-Rezeptor 1 (TNFR1) und Tumornekrosefaktor-Rezeptor 2 (TNFR2) wechselwirken [47, 48], die zur TNF-Rezeptor-Superfamilie (TNFR-Superfamilie) gehören. In der TNFR-Superfamilie...
familie werden Rezeptoren mit einem strukturellen Merkmal, dem so genannten Cys-Repeat motif (Cystein-Wiederholungs-Motif) zusammengefasst. Dabei handelt es sich um sechs Cysteine, die in einer bestimmten Abfolge Disulfidbrücken bilden und so Loop-Struktur-lemente bedingen. Neben TNF-Rezeptoren gehören zu dieser Superfamilie Fas, der NGF-Rezeptor, CD27 und weitere Proteine. TNF ist in der Lage drei TNF-Rezeptoren zu binden. Abb. 3.1 zeigt schematisch den initialen Schritt der TNF-vermittelten Signalkaskade. Er beinhaltet die Bindung eines TNFs an die extrazelluläre Domäne von TNFR1/2 (I). Durch Bindung von drei TNF-Rezeptoren (TNF-[TNFR]₃) (II) kommt es zur Zusammenlagerung der intrazellulären Domänen der TNFRs (III), was zur Aktivierung weiterer Bindungsstellen für folgende Signalproteine führt und damit zur Initiierung der Signalkaskade (IV).

Im Fall von TNFR1 handelt es sich bei der intrazellulären Bindungsstelle um die so genannte Todesdomäne (DD - Death Domain). Diese Domäne kann andere Proteine rekrutieren, die ebenfalls eine Todesdomäne besitzen, was zur Aktivierung weiterer Signalproteine und somit zur Apoptose führt [49].

Darüber hinaus kann TNFR1 über indirekte Rekrutierung von TRAF-Proteinen (TRAF – TNF Receptor Associated Factor) auch zur Aktivierung von Transkriptionsfaktoren führen und das Überleben der Zelle sichern.

Einzelne TNF-[TNFR1]₃-Komplexe sind jedoch nicht in der Lage eine ausgeprägte Zellantwort zu initiieren. Um ein Signal effizient in die Zelle weiterleiten zu können, müssen sich mehrere TNF-[TNFR1]₃-Komplexe zusammenlagern [50]. Im verwandten Fas-System wurden ähnliche Beobachtungen gemacht; auch hier müssen sich mehrere Ligand-Rezeptor-Komplexe zusammenlagern, um ein Signal in der Zelle auszulösen [51]. Hierfür ist ein Mechanismus notwendig, der eine Vernetzung mehrerer TNF-[TNFR1]₃-Komplexe zu einem stabilen Aggregat zulässt.

Durch die Entdeckung der so genannten Pre Ligand binding Assembly Domain (PLAD) im TNF-Rezeptor 1 und in anderen verwandten Rezeptoren wurde eine Region im Protein identifiziert, die für die Ausbildung stabiler Aggregate verantwortlich ist. Bei PLAD handelt es sich um die N-terminale Domäne des TNFR1, die sich im extrazellulären Bereich befindet und die eine Wechselwirkung zwischen Rezeptoren ermöglicht. Man nimmt an, dass über eine PLAD-PLAD Interaktion die Möglichkeit gegeben ist, Homo-Rezeptoraggregate bereits ohne
Zugabe des Liganden auszubilden, was in verschiedenen Experimenten mit unterschiedlichen Rezeptoren experimentell bestätigt werden konnte [52-55]. Damit stabile Aggregate aus mehreren TNF-[TNFR1]₃ entstehen können, sind zwei Arten von Wechselwirkungen notwendig: zum einen die Ligand-Rezeptor-Wechselwirkung, mit der die Ausbildung initialer Signalkomplexe TNF-[TNFR1]₃ ermöglicht wird und zum anderen die homophile Receptor-Rezeptor-Wechselwirkung, vermittelt über PLAD, mit der die Vernetzung zu signalkompetenten, stabilen Aggregaten erfolgt.

Der genaue Wechselwirkungsmechanismus der PLAD-PLAD-Interaktion sowie die exakte Stöchiometrie signalkompetenter Aggregate sind bislang im Detail noch nicht geklärt. In den letzten Jahren haben zahlreiche Experimente aber bereits zu einem besseren Verständnis zur Receptor-Rezeptor-Wechselwirkung und zur Ligand-Rezeptor-Wechselwirkung im Fall von TNF-TNFR1 beigetragen.

So konnte festgestellt werden, dass durch Zugabe der isolierten, löslichen PLAD, die die N-terminale Domäne des Rezeptors darstellt, Zellen vor einer TNF-induzierten Apoptose geschützt werden können und somit die Ausbildung signalkompetenter Aggregate gestört wird [52-55].

Wird PLAD durch Mutation des Receptors genetisch verändert oder ganz entfernt, so ist keine TNF-Bindung am Receptor mehr möglich [53, 54]. Dieses Ergebnis ist im ersten Moment erstaunlich, da es anhand der kristallographischen Daten sehr unwahrscheinlich ist, dass PLAD direkt an der Ligandenbindung beteiligt ist. Es wurde spekuliert, dass die monomere Rezeptorform keine ausreichend hohe Bindungsaffinität zu TNF besitzt; eine effiziente Bindung des Liganden also nur via PLAD-multimerisierter Rezeptoren zustande kommen kann. Erste Crosslinking-Experimente hierzu haben ergeben, dass es sich bei diesen Rezeptoren wahrscheinlich um Rezeptor-Komplexe handelt, die über PLAD-PLAD-Interaktion bereits ohne Ligand als Homotrimere vorliegen. Vor-Multimerisierung und das Sortieren der Rezeptoren in Homooligomere könnte die Spezifität und Geschwindigkeit, mit der die Zelle auf den Liganden reagiert, erhöhen; Komplexe mit gemischten Rezeptoren, die eine Signaltransduktion inhibieren, wären somit ausgeschlossen.

Eine experimentelle Studie, die unter anderem die Rolle der PLAD in den ersten Schritten der Signaltransduktion im TNF-TNFR1-System untersucht hat, wurde am Institut für Zellbiologie und Immunologie der Universität Stuttgart von Marcus Branschädel durchgeführt [56]. Ziel dieser Studie war es unter anderem, die extrazellulären Domänen des TNFR1 zu charakterisieren, die für eine effiziente Ligandenbindung und die Ausbildung signalkompetenter TNF-TNFR1-Komplexe notwendig sind. Als Basis dienten TNFR1-Fas-Chimäre [50]. Diese

3.2. Untersuchte Systeme und Simulationsdetails

Ausgangspunkt aller in diesem Kapitel gemachten Simulationen ist die Kristallstruktur (pdb code 1TNR) der extrazellulären Domäne von TNFR1 im Komplex mit Lymphotoxin α (LTα, auch TNFβ genannt). Lymphotoxin α ist ein zu TNF homologer Ligand, der ähnliche Aufgaben im Bereich der Immunantwort besitzt und an dieselben Rezeptoren wie TNF (TNFR1 und TNFR2) bindet. Trotz der geringen Homologie der Primärstruktur von 33% haben beide Liganden eine ähnliche Sekundärstruktur.

Die Kristallstruktur beinhaltet einen LTα-Homotrimer im Komplex mit drei TNFR1-Monomeren. Sie ist die einzige verfügbare Kristallstruktur eines TNF-Rezeptors gebunden an einen Liganden und besitzt eine Auflösung von 2.85 Å.

In allen gemachten Simulationen wurde nur die Rezeptorstruktur verwendet und dabei besonderes Augenmerk auf die Bindungsstelle zwischen TNFR1 und TNF bzw. LTα gelegt. Aufgrund der funktionalen und strukturellen Ähnlichkeit beider Liganden [57], wurde die Kristallstruktur von LTα-TNFR1 als Modellsystem verwendet. Im Folgenden werden die Struktur des Liganden, des Rezeptors, sowie des Liganden-Rezeptor-Komplexes kurz vorgestellt.

3.2.1. TNF / LTα

Der Ligand LTα ist ein Homotrimer mit jeweils 171 Aminosäuren pro Monomer. In der Kristallstruktur sind die ersten 26 Aminosäuren aufgrund ihrer Unordnung nicht aufgelöst. LTα ist ein Protein, das fast ausschließlich β-Faltblätter als Sekundärstrukturelemente aufweist (siehe Abb. 3.2).
Abb. 3.2
LTα-Homotrimer. Die monomeren Untereinheiten sind in Cartoon-Darstellung gezeigt und verschieden angefärbt. Für die Rezeptorbindung relevante Bereiche sind zusätzlich in Surface-Darstellung gezeigt. (A) Aufsicht. (B) Seitenansicht.

LTα hat eine Höhe von 60 Å und einen Durchmesser von 30 Å an der schmalen und 50 Å an der breiten Seite. Die Gesamtstruktur ist kompakt, mit jeweils einer Mulde an der Grenzfläche zwischen zwei Monomeren (siehe Abb. 3.2A). Diese Mulden fungieren als Bindungsstellen für TNFR1 bzw. TNFR2. Ein Vergleich der Strukturen von TNFα und LTα (TNFβ) ergibt, dass sich beide Proteine sehr ähnlich sind, identische Sekundärstrukturelemente, nämlich β-Faltblätter aufweisen und sich lediglich an der Oberfläche im Detail unterscheiden. Nach struktureller Überlagerung von TNFα und LTα konnte eine mittlere Abweichung (Root Mean Square Deviation - RMSD) der Cα-Atome des Proteinrückgrats von 0.65 Å für 99 strukturell äquivalente Aminosäuren der Protein-Monomere und 0.85 Å für alle 297 strukturell äquivalenten Aminosäuren der Homotrimere ermittelt werden. Beide Liganden lagern sich aufgrund ihrer Strukturen als Trimer in derselben Art und Weise zusammen [57].

3.2.2. TNFR1

Der TNF-Rezeptor 1 ist ein Transmembranprotein, das aus insgesamt 415 Aminosäuren besteht. In Abb. 3.3A ist der schematische Aufbau gezeigt. Der extrazelluläre Bereich des Rezeptors TNFR1 hat eine längliche Form und besteht aus 4 Cys-Repeat motifs, auch cysteinreiche Domänen (CRD1 bis CRD4 - Cystein Rich Domains) genannt. Die erste Domäne (CRD1) ist die PLAD. Jede der Domänen besteht wiederum aus zwei unterschiedlichen Subdomänen, die mit A1 bzw. B2 bezeichnet werden und in rot bzw. blau dargestellt sind. TNFR1 besitzt eine Transmembrandomäne (in orange dargestellt), die die Membran einmal
durchspannt. Im intrazellulären Bereich befindet sich eine Protein-Interaktionsdomäne, die so genannte Todesdomäne (*Death Domain* - DD), welche in gelb dargestellt ist.

Abb. 3.3
TNF-Rezeptor 1. (A) Schematische Darstellung der vollständigen Proteinstruktur. (B) Kristallographisch aufgelöster extrazellulärer Teil (TNFR1ex) in Cartoon-Darstellung. (C) Schematische Darstellung einer cysteinstärkeren Domäne (CRD) mit den Modulen A1 und B2 (adaptiert aus [49]).

In der für die Simulation verwendeten Kristallstruktur sind die Aminosäuren 15 bis 153 aufgelöst. Die ersten 14 Aminosäuren sowie der zweite Teil (B2) von CRD4 sind nicht aufgelöst. Der Transmembranbereich und die intrazellulären Domänen sind ebenfalls nicht in der Kristallstruktur enthalten. Zur Kristallisation wurde eine lösliche Form des TNFR1 verwendet, die nur den extrazellulären Teil beinhaltet [58]. Die fehlenden Aminosäuren wurden für die Simulationen nicht rekonstruiert, da in der vorhandenen Struktur alle wichtigen Bereiche für
die in diesem Kapitel gemachten Untersuchungen (im wesentlichen CRD1 bis CRD3) aufgelöst waren. Der für die Simulation verwendete Teil der extrazellulären Domäne hat eine Höhe von ca. 85 Å.

3.2.3. TNFR1-LTα-Komplex

Abb. 3.4A zeigt eine schematische Darstellung von TNFR1 im Komplex mit dem Liganden LTα. Der kristallographisch aufgelöste Bereich der Struktur ist in Seitenansicht sowie in Aufsicht in Abb. 3.4B bzw. Abb. 3.4C dargestellt.

Abb. 3.4

TNFR1-LTα-Komplex. (A) Schematische Darstellung des Rezeptor-Ligand-Komplexes. (B) und (C) Kristallstruktur der extrazellulären Domäne von TNFR1 (=TNFR1ex). TNFR1 ist in Surface-Darstellung, LTα in Cartoon-Darstellung gezeigt. Für die Rezeptorbindung relevante Bereiche von LTα sind zusätzlich in Surface-Darstellung gezeigt und grün eingefärbt. Für die Rezeptorbindung nicht relevante Bereiche von TNFR1 sind transparent dargestellt. (B) Seitenansicht, (C) Aufsicht.

Der Ligand ist in grau gezeigt, die Subdomänen der extrazellulären Domäne des Receptors A1 und B2 in rot bzw. blau. Es ist zu erkennen, dass sich die Rezeptor-Ligand-Wechselwirkung nicht über alle CRDs erstreckt. In Abb. 3.4B,C ist der Rezeptor in Surface-Darstellung,
der Ligand in Cartoon-Darstellung gezeigt. Wichtige Bereiche für die Rezeptor-Ligandenbindung sind ebenfalls in Surface-Darstellung (grün) hervorgehoben. Die Bindung des Receptors erfolgt in der Mulde, die durch die Zusammenlagerung von zwei LTα-Monomeren entsteht (siehe Abb. 3.4C und Abb. 3.2A). In der Seitenansicht (Abb. 3.4B) ist deutlich zu sehen, dass sich die Rezeptor-Ligand-Interaktionsfläche nur über die Domänen CRD2 und CRD3 erstreckt [57] und die übrigen CRDs hierbei unbeteiligt sind.

3.2.4. Simulationssysteme und Simulationsdetails

Die unterschiedlichen Systeme und eine schematische Darstellung des zeitlichen Ablaufs der Simulationen sind in Abb. 3.5 zusammengestellt.
Abb. 3.5
Simulationszeitplan. Nach Equilibrierung des extrazellulären Teils des TNFR1 (TNFR1\textsubscript{ex}) wurden vier Systeme (zwei Deletionsmutanten + zwei Proteinfragmente) aufgesetzt, gekennzeichnet mit römischen Zahlen (Näheres siehe Text).

Zunächst wurde TNFR1\textsubscript{ex} für 6 ns equilibriert, um eine Ausgangsstruktur für die weiteren Simulationen zu haben (System 0). Mit Hilfe dieser Struktur wurden dann die entsprechenden Systeme (siehe Abb. 3.5) konstruiert, in dem verschiedene Teile der Rezeptorstruktur entfernt wurden. Eine erneute Solvatisierung und anschließende Minimierung führte zu den Startstrukturen der Simulationssysteme (I) bis (IV).

Folgendes Simulationsprotokoll wurde verwendet: Die C-terminale Aminosäure wurde in den Systemen (0), (III) und (IV) mit einem harmonischen Constraint in z-Richtung (entspricht der Längsachse des Rezeptors) mit einer Kraftkonstanten von 35 pN/Å fixiert, um den Einfluss der Verankerung in die Membran zu berücksichtigen. Die Systeme wurden für eine Dauer von 6 ns (TNFR1\textsubscript{ex}), 4 ns (Systeme (I) und (II)) und 4.75 ns (Systeme (III) und (IV)) equilibriert. Ein Integrationszeitschritt von 1 fs wurde verwendet. Während der ersten Nanosekunde der Equilibrierung wurde ein harmonischer Constraint auf das Proteinrückgrat von 70 pN/Å auf

3.3. Ergebnisse und Diskussion

3.3.1. System 0 - Referenzsystem TNFR1\textsubscript{ex}

Abb. 3.6
Zeitlicher Verlauf wichtiger Systemgrößen während der Simulation. Die Rohdaten sind in grau, der zeitlich gemittelte Verlauf ist in rot dargestellt. (A) Gesamtenergie. (B) Volumen der Simulationszelle. (C) Druck. (D) Temperatur.

Aufgrund des länglichen Aufbaus von TNFR1_{ex} aus mehreren Domänen (siehe Abb. 3.3) ist die zeitliche Entwicklung der Struktur nicht von vornherein ersichtlich. Der RMSD-Wert gibt Aufschluss über strukturelle Veränderungen entlang der Trajektorie (siehe Kapitel 2.1.2.5. Strukturelle Abweichung). Abb. 3.7 zeigt den Verlauf des RMSD-Wertes für verschiedene

Abb. 3.7
RMSD-Verlauf verschiedener Substrukturen von TNFR1ex. (A) Das Proteinrückgrat ist in orange, die cysteinreichen Domänen CRD1, CRD2 und CRD3 sind in rot, grün und blau dargestellt. (B) Gezeigt sind die Subdomänen der einzelnen CRDs. A1_{CRD1} ist in rot, B2_{CRD1} in magenta, A1_{CRD2} in grün, B2_{CRD2} in oliv, A1_{CRD3} in blau und B2_{CRD3} in cyan dargestellt.

In Abb. 3.7A ist das Proteinrückgrat in orange, die einzelnen cysteinreichen Domänen CRD1 bis CRD3 in rot, grün bzw. blau dargestellt. Abb. 3.7B zeigt die jeweiligen Subdomänen A1 und B2 der einzelnen CRDs. A1_{CRD1} ist in rot, B2_{CRD1} in magenta, A1_{CRD2} in grün, B2_{CRD2} in oliv, A1_{CRD3} in blau und B2_{CRD3} in cyan dargestellt. Die Betrachtung der strukturellen Abweichung (RMSD) der Equilibrierung zeigt, dass das Proteinrückgrat eine flexible Struktur darstellt, die im Verlauf der Simulation nicht nur signifikante Abweichungen von der Startstruktur (~5 Å), sondern auch Schwankungen im Verlauf der gesamten Simulation aufweist. Dieses Verhalten lässt sich durch den Aufbau aus einzelnen Domänen erklären. Der RMSD der CRDs zeigt, mit Ausnahme von CRD1, ebenfalls eine Flexibilität bzw. Schwankungen entlang der Trajektorie. Diese Schwankungen sind geringer als die des Proteinrückgrats. Im gesamten Verlauf kommt es bei CRD2 und CRD3 zu keiner deutlichen Stabilisierung der Domänen. Ein anderes Bild zeigen die Subdomänen, aus denen die einzelnen CRDs aufgebaut sind. Betrachtet man die strukturelle Veränderung von A1 bzw. B2 für die einzelnen Domänen (Abb. 3.7B), so sieht man, dass diese Komponenten entlang der Trajektorie keine Drift des RMSD-Wertes zeigen und sich eine Stabilisierung bereits nach ca. 2 ns einstellt.
Die Disulfidbrücken sind in TNFR1 entlang der gesamten Struktur leiterartig angeordnet (siehe Abb. 3.3C). Diese Tatsache wurde dazu verwendet, die strukturelle Entwicklung der Gesamtstruktur von TNFR1_{ex} entlang der Trajektorie qualitativ zu untersuchen. Die gesamte Proteinstruktur wurde lediglich durch die Position der Disulfidbrücken approximiert. Hierzu wurde, wie in Abb. 3.8 gezeigt, für jede Momentaufnahme der Trajektorie der Schwerpunkt der Disulfidbrücken einzeln berechnet und eingezeichnet. Anschließend wurden die Punkte-Serien aller Schwerpunkte in zeitlicher Reihenfolge miteinander verbunden und in unterschiedlicher Farbe dargestellt. Man erhält dadurch die zeitliche Evolution der Bewegung der Schwerpunkte der Disulfidbrücken. Zusätzlich wurden alle Disulfidbrücken zu Beginn der Simulation (siehe Abb. 3.8A) sowie zum Ende der Simulation (siehe Abb. 3.8B) verbunden (blau), um die Gesamtstruktur besser zu visualisieren. Die zeitliche Entwicklung der so approximierten Proteinstruktur ergibt qualitativ, dass sich die Gesamtstruktur während der Simulationsdauer verändert. Die Struktur richtet sich auf, wirkt im Vergleich zur Startstruktur im oberen Teil mehr gestreckt. Dies bestätigt den Verlauf der RMSD-Daten des Proteinrückgrats und verdeutlicht die Flexibilität der extrazellulären Domäne von TNFR1.

Um die strukturellen Eigenschaften des modularen Aufbaus des TNFR1 besser zu verstehen, wurde die Flexibilität der einzelnen Domänen genauer untersucht. Laut Literatur [57] stellen die CRDs die elementaren Einheiten im extrazellulären Teil des TNFR1 dar. Jedoch sieht man im RMSD-Plot der CRDs strukturelle Veränderungen, die nicht auf die Flexibilität der Subdomänen A1 und B2 selbst zurückzuführen sind (Abb. 3.7). Die Subdomänen sind im gesamten Verlauf der Simulation strukturell sehr stabil. Es kann sich also nur um eine Relativbewegung zwischen den einzelnen Subdomänen einer CRD handeln. Um diesen Sachverhalt genauer zu untersuchen, wurde die Relativbewegung zwischen zwei aufeinander

Das Hauptaugenmerk lag darauf, das Ausmaß der Flexibilität zwischen den Subdomänen abzuschätzen und nicht die Bewegung im Detail zu untersuchen. Dazu wurde der Schwerpunktsabstand R_{ij}, die Rotation β der beweglichen Subdomäne als Ganzes um die raumfeste Subdomäne, sowie die Rotation der beweglichen Subdomäne um ihren Schwerpunkt (α_1 und α_2) betrachtet. Abb. 3.9 zeigt eine schematische Darstellung der verwendeten Parameter.

Abb. 3.9

In Abb. 3.11 ist ein Überblick über die Relativbewegung der einzelnen Subdomänen zueinander gezeigt. Es wurden jeweils zwei benachbarte Subdomänen betrachtet, sowohl intra-CRD (A1\textsubscript{CRDn}-B2\textsubscript{CRDn}), als auch inter-CRD (B2\textsubscript{CRDn}-A1\textsubscript{CRDn+1}). Aufgetragen sind die Änderung des Schwerpunktabstandes (Abb. 3.11A), die Rotation der beweglichen Subdomäne in Bezug auf die raumfeste, angegeben als eingeschlossener Winkel zwischen der Verbindungslinie beider Schwerpunkte der Startstruktur und der aktuellen Struktur (Abb. 3.11B) und die Änderung der Lage der Hauptachsen der beweglichen Subdomäne, angegeben als eingeschlossene Winkel zwischen den Hauptachsen der Startstruktur und der aktuellen Struktur (Abb. 3.11C, D). In orange sind Intra-Domänen-Paare, in grün Inter-Domänen-Paare dargestellt. Die Kurvenverläufe sind über 5 Datenpunkte (25 ps) gemittelt. Die Mittelung dient dazu, den generellen Verlauf hervorzuheben und eventuell auftretende schnelle Schwankungen der Orientierung der einzelnen Hauptachsen zu unterdrücken.

In Abb. 3.11A sieht man, dass es keine größeren Änderungen des Schwerpunktabstandes der einzelnen Subdomänen-Paare gibt. Die maximale Änderung liegt bei ca. 2 Å. Bei Betrachtung der Rotation der flexiblen Subdomäne um die raumfeste Subdomäne (Abb. 3.11B) sowie der Rotation der flexiblen Subdomäne um ihren Schwerpunkt (Abb. 3.11C, D) treten Schwankungen bis ca. 45° auf.

Kapitel 3
Stabilitätsuntersuchung an TNF-Rezeptor 1

Abb. 3.11
(A) Änderung des Schwerpunktsabstandes. (B) Rotation der beweglichen Subdomäne bezüglich der raumfesten Subdomäne. (C) und (D) Änderung der Lage der Hauptachsen der beweglichen Subdomäne in Bezug auf die Startstruktur. Gezeigt sind jeweils paarweise zwei Subdomänen der ersten drei CRDs (näheres siehe Text).

Das Ausmaß der Schwankungen für die untersuchten Größen ist dabei für die einzelnen Subdomänen-Paare verschieden. Es ist jedoch zu bemerken, dass sich ein Trend in den verschiedenen Rotationsbewegungen erkennen lässt. Die Inter-Domänen-Paare (in orange eingezeichnet) zeigen in allen Fällen eine geringere Relativbewegung als die Intra-Domänen-Paare (Abb. 3.11B-D).

3.3.1.1. Diskussion

Die MD-Simulation der solvatisierten extrazellulären Domäne (kristallographisch aufgelöster Teil) TNFR1\textsubscript{ex} liefert ein stabiles System, bei dem sich nach ca. 2 ns ein Gleichgewichtszustand einstellt. Eine Analyse der strukturellen Stabilität der Proteinstruktur, bezogen auf die Referenzstruktur (Kristallstruktur) hat gezeigt, dass das Proteinrückgrat eine gewisse Flexibilität hat, was sich durch eine Änderung des RMSD-Wertes während der gesamten Simulationszeit bemerkbar macht (Abb. 3.7). Qualitativ lässt sich dies an der zeitlichen Entwicklung der Positionen der Disulfidbrücken, die zur Approximation der Gesamtstruktur herangezogen wurden, erkennen; im Verlauf der Simulation verändert sich die Position der

In Abb. 3.12 ist die Referenzstruktur sowie die gemittelte Endstruktur der Simulation für eine A1-Subdomäne (Abb. 3.12A) und eine B2-Subdomäne (Abb. 3.12B) bestmöglich überlagert. Die Referenzstruktur ist in rot bzw. blau, die Endstruktur in rosa bzw. hellblau dargestellt. Man kann deutlich erkennen, dass die Loopstruktur des Proteinrückgrats auch nach 6 ns Simulationszeit in beiden Fällen gut erhalten ist. Die strukturelle Veränderung der CRDs kommt somit durch eine Relativbewegung der einzelnen Subdomänen zustande. Wenn es sich um einen hierarchischen Aufbau der extrazellulären Domäne handelt (TNFR1_{ex} → CRDs → A1

Aber auch eine größere strukturelle Veränderung (beispielsweise eine Konformationsänderung in eine mögliche inaktive Form) ist anhand der MD-Simulationen und der verfügbaren Strukturdaten nicht gänzlich auszuschließen. Aufgrund der Zeitskalen ist eine Aussage diesbezüglich, anhand der durchgeführten MD-Simulationen nicht möglich, da größere Konformationsänderungen von Proteinen wesentlich langsamer ablaufen.

3.3.2. System I und II - A1B2\text{CRD}_1- und A1B2\text{CRD}_1A1\text{CRD}_2-Fragmente

Um eine mögliche protektive Wirkung von PLAD gegenüber Apoptose zu untersuchen, wurden MD-Simulationen an Protein-Fragmenten des TNFR1, die die PLAD enthalten, durchgeführt. Die Simulationssysteme wurden entsprechend der experimentellen Untersuchung von Marcus Branschädel gewählt [56]. Isolierte PLAD wurde mit Hilfe von Crosslinking-Experimenten auf die Fähigkeit zur Selbstassoziation überprüft, d. h. inwieweit eine PLAD-PLAD-Interaktion möglich ist.

In den MD-Simulationen wurde neben PLAD, d. h. A1B2\text{CRD}_1, auch ein Protein-Fragment der extrazellulären Domäne von TNFR1 simuliert, dass zusätzlich die Subdomäne A1\text{CRD}_2 beinhaltet (A1B2\text{CRD}_1A1\text{CRD}_2). Als Ausgangspunkt für die Simulationen der Systeme I und II (A1B2\text{CRD}_1 und A1B2\text{CRD}_1A1\text{CRD}_2) wurde die equilibrierte Struktur von System 0 (TNFR1\text{ex})

System I

Abb. 3.13 zeigt die strukturellen Veränderungen der Subdomänen A1\(_{CRD1}\) und B2\(_{CRD1}\) im Verlauf der Simulation für das System I. In Abb. 3.13A ist der RMSD-Verlauf gezeigt, Abb. 3.13B,C zeigen jeweils die Überlagerung des Proteinrückgrats der Referenzstruktur (rot bzw. blau) mit der gemittelten Endstruktur der Simulation (rosa bzw. hellblau) in Cartoon-Darstellung.

 Eine strukturelle Stabilität der Subdomänen A1 und B2 von CRD1 ist in diesem System nicht mehr gegeben, was an einer Erhöhung des RMSD-Wertes zu sehen ist. Die Struktur beider Domänen verändert sich im Verlauf der Simulation. In der Überlagerung ist dies durch eine Veränderung der Loop-Struktur beider Subdomänen zu erkennen (Abb. 3.13B,C).
System II

Die Ergebnisse der Simulation von System II sind in Abb. 3.14 dargestellt. Hier sind analog zu Abb. 3.13 der RMSD-Verlauf (A) sowie die Überlagerung von Referenz- und gemittelter Endstruktur für die beiden Subdomänen von CRD1 gezeigt. Für die Überlagerung wurde der Klarheit wegen ein anderer Betrachtungswinkel als in Abb. 3.13B gewählt. Die Subdomäne A1_{CRD2} ist nicht gezeigt, da man die Auswirkung der benachbarten Subdomäne A1_{CRD2} auf strukturelle Veränderungen der Subdomänen A1 und B2 von CRD1 untersuchen möchte; die strukturelle Veränderung von A1_{CRD2} selber in diesem Zusammenhang aber nicht interessiert.

Abb. 3.14
System II: (A) RMSD-Verlauf verschiedener Substrukturen von A1B2_{CRD1}A1_{CRD2}. (A) Die Subdomänen A1_{CRD1} und B2_{CRD1} sind in rot und magenta dargestellt, die Subdomäne A1_{CRD2} ist nicht gezeigt. (B), (C) Überlagerung der Strukturen beider Subdomänen A1_{CRD1} (B) und B2_{CRD1} (C) mit der entsprechenden Subdomäne der Referenzstruktur. Gezeigt sind die Referenzstruktur in rot bzw. blau und die gemittelten Endstrukturen der Simulation in rosa bzw. hellblau. Die Strukturen wurden bestmöglich überlagert. Es wurde ein anderer Betrachtungswinkel verwendet wie in Abb. 3.13B,C.

Es ist deutlich zu sehen, dass der RMSD-Wert für beide Subdomänen im gesamten Verlauf der Simulation nahezu konstant bleibt und es keine Veränderung der Ausgangsstruktur der Subdomänen von der Referenzstruktur gibt. Diese Stabilität ist qualitativ in der Überlagerung von Referenzstruktur und gemittelter Endstruktur für die Subdomänen zu sehen. In beiden Fällen ist die gesamte Loopstruktur des Proteinrückgrats noch gut erhalten (Abb. 3.14A,B).

3.3.2.1. Diskussion

Im Folgenden werden die vorgestellten Ergebnisse der MD-Simulationen an den TNFR1-Fragmenten (System I, (A1B2_{CRD1}) und System II, (A1B2_{CRD1}A1_{CRD2})) in Kombination mit den experimentellen Ergebnissen aus [56] und weiteren Arbeiten aus der Literatur diskutiert. Es konnte gezeigt werden, dass CRD1 (PLAD) allein strukturell nicht stabil ist und im

Unterstützt wird diese Hypothese durch Experimente, die am Institut für Zellbiologie und Immunologie der Universität Stuttgart von Marcus Branschädel am verwandten Rezeptor TNFR2 durchgeführt wurden. Um den möglichen protektiven Einfluss von CRD1 (PLAD) auf die TNFR2-Aktivierung durch TNF überprüfen zu können, wurden in vitro Crosslinking-Experimente mit der isolierten PLAD durchgeführt. Dabei wurde untersucht, inwieweit sich PLAD-Oligomere ausbilden können und es dadurch zur Selbstassoziation via einer PLAD-PLAD-Interaktion kommt. Die experimentellen Daten zeigen, dass es zu keiner starken Selbstassoziation kommt.

Funktionelle Protein-Fragmente von CRD1 (PLAD) können in der Arzneimittelforschung von Bedeutung sein. So spielt der Ligand TNF, bei Vermittlung seiner Wirkung über TNFR1, bei der Pathogenese, der Entstehung eines Krankheitsbildes, wie beispielsweise bei verschiedenen Formen der Gelenkentzündung eine wichtige Rolle [63]. Existierende Arzneimittel, wie beispielsweise ETANERCEPT (lösliches TNFR2), oder INFLEXIMAB werden in diesem Bereich weit verbreitet eingesetzt. Als problematisch hat sich hierbei herausgestellt, dass die verwendeten Wirkstoffe direkt an den Tumornekrosefaktor binden und somit beide Signalwege, sowohl über TNFR1, als auch über TNFR2 blockiert werden. Eine Möglichkeit diesen Nachteil zu umgehen, besteht darin, direkt den Rezeptor TNFR1 zu blockieren, ohne dass das Arzneimittel an den Liganden bindet. Eine derartige Blockierung des TNFR1 könnte über die Bindung von löslichem CRD1 (PLAD) aus TNFR1 möglich sein; Solche Bindungs-

3.3.3. System III und IV - ΔA1$_{\text{CRD1}}$-TNFR1$_{\text{ex}}$- und ΔCRD1-TNFR1$_{\text{ex}}$-Mutanten

Experimentelle Studien haben ergeben, dass eine Deletion der ersten cysteinhaltigen Domäne (PLAD) von mehreren Mitgliedern der TNFR-Superfamilie (unter anderem TNFR1 und TNFR2) dazu führt, dass die verbleibene Rezeptorstruktur nicht mehr in der Lage ist, ihre natürlichen Liganden zu binden [53]. Eine erste Erklärung führt dies darauf zurück, dass zur Ligandenbindung eine Präasoziation der Rezeptoren zu Trimeren notwendig ist, was durch die Deletion von PLAD verhindert wird.

MD-Simulationen der Deletionsmutanten ΔA1$_{\text{CRD1}}$-TNFR1$_{\text{ex}}$ und ΔCRD1-TNFR1$_{\text{ex}}$ wurden durchgeführt, um strukturelle und möglicherweise funktionale Konsequenzen der Deletion von PLAD auf molekularer Ebene zu untersuchen. Hierbei wurde nicht nur die CRD1 vollständig entfernt (System IV, ΔCRD1-TNFR1$_{\text{ex}}$), sondern eine weitere Rezeptorstruktur simuliert, bei der nur die Subdomäne A1 von CRD1 (PLAD) entfernt wurde (System III, ΔA1$_{\text{CRD1}}$-TNFR1$_{\text{ex}}$). Im Rahmen von Bindungsstudien erfolgte die Bestimmung der Bindungssaffinität von TNF an den entsprechenden Rezeptorstrukturen [56]. In Kombination mit den im Folgenden vorgestellten Ergebnissen der MD-Simulationen, sollen die experimentell beobachteten Veränderungen der Bindungssaffinität interpretiert werden.
Als Ausgangspunkt für die Simulationen der Systeme III und IV (ΔA1CRD1-TNFR1ex und ΔCRD1-TNFR1ex) wurde die equilibrierte Struktur von System 0 (TNFR1ex) verwendet. Von dieser Startstruktur wurde für das System III die Subdomäne A1CRD1 entfernt, für das System IV die vollständige Domäne CRD1. Die damit erhaltenen Deletionsmutanten wurden jeweils für weitere 4.75 ns simuliert. Beide Systeme wurden Beginn der Simulationen neu solvatisiert und das Proteinrückgrat in den Simulationen mit einem harmonischen Constraint für 1 ns stabilisiert. Untersucht wurde in beiden Systemen die strukturelle Stabilität, der für die Ligandenbindung wichtigen Domänen CRD2 und CRD3, beziehungsweise die Stabilität der einzelnen Subdomänen von CRD2 und CRD3.

Abb. 3.15

Abb. 3.15 zeigt den Verlauf der strukturellen Abweichung bezogen auf die Referenzstruktur für die Systeme III und IV. Gezeigt sind die Subdomänen A1 und B2 aus CRD2 und CRD3. Dies sind die Domänen, die für die Bindung des Rezeptors mit TNF/LTα wichtig sind. Die Subdomänen aus System III, der Deletionsmutanten ΔA1CRD1-TNFR1ex zeigen über den gesamten Zeitraum der Simulation einen stabilen Verlauf (Abb. 3.15A). Erst nach 1.5 ns ist eine kleine Erhöhung des RMSD-Wertes der Subdomäne B2CRD2 (oliv) zu sehen. Die strukturelle Abweichung für alle Subdomänen bewegt sich bei ca. 2 Å, was mit der Simulation des kompletten TNFR1ex vergleichbar ist. Dies ist auch in einer qualitativen Analyse der Struktur, durch visuelle Inspektion zu sehen (Daten nicht gezeigt). Die Loop-Struktur der einzelnen Subdomänen bleibt während der Simulation erhalten. Die in dieser Mutante N-terminale Subdomäne B2CRD1 ist in Abb. 3.15A nicht dargestellt, da sie nicht direkt an der Bindung des Liganden beteiligt ist. Sie zeigt einen, verglichen mit der Simulation von TNFR1ex,
flexibleren Verlauf, was sich in leicht erhöhten und stärker fluktuierenden RMSD-Werten bemerkbar macht; ein Einfluss auf Subdomänen aus CRD2 und CRD3 ist nicht erkennbar.

Die Ergebnisse der Simulation von System IV (ΔCRD1-TNFR1ex) zeigen ein anderes Bild. Hier sieht man deutlich, dass die Subdomäne A1_{CRD2} (grün) nach 2 ns eine große strukturelle Veränderung durchführt (Abb. 3.15B). Der RMSD-Wert steigt innerhalb der nächsten Nanosekunde auf \(\approx 4 \) Å an und stabilisiert sich im weiteren Verlauf der Simulation auf einen Wert bei ca. 4 Å. Die Verzögerung im Anstieg der strukturellen Abweichung, wie auch schon im System III gesehen, ist auf die Verwendung eines harmonischen Constraint zur Stabilisierung zu Beginn der Simulation zurückzuführen. Innerhalb der ersten Nanosekunde wird der Constraint auf Null reduziert und alle Atome im System können sich frei bewegen.

Qualitativ lässt sich die strukturelle Veränderung von A1_{CRD2} in Abb. 3.16 erkennen. Hier sieht man die CRD2 in Cartoon-Darstellung zu Beginn (links) und zum Ende der Simulation (rechts). Gezeigt ist das Proteinrückgrat, mit A1_{CRD2} bzw. A1_{CRD3} in rot, B2_{CRD2} in blau dargestellt.
erkennen. Die Konformationsänderung ist für den Anstieg des dazugehörigen RMSD-Wertes in Abb. 3.15B verantwortlich.

3.3.3.1. Diskussion

Die vorgestellten Ergebnisse der MD-Simulationen an den TNFR1-Deletionsmutanten ΔA1_{CRD1}-TNFR1_{ex} (System III) und ΔCRD1-TNFR1_{ex} (System IV) werden im Folgenden in Kombination mit den experimentellen Ergebnissen aus [56] diskutiert. Die Deletion der ersten cysteinerreichen Domäne CRD1 (PLAD) führte in den Experimenten, in Übereinstimmung mit früheren Studien [53, 65, 66], zum Verlust der Bindungsaffinität von TNF an den Rezeptor. Die MD-Simulation der Deletionsmutante ΔCRD1-TNFR1_{ex} hat eine strukturelle Veränderung der ersten Subdomäne von CRD2 (A1_{CRD2}) ergeben (Abb. 3.15B).

Qualitativ hat sich der Loop dieser Subdomäne entfaltet (Abb. 3.16). In der Kristallstruktur ist zu erkennen, dass diese Subdomäne zahlreiche Kontaktstellen zum Liganden besitzt (Abb. 3.4B,C). Durch lokale Konformationsänderungen, wie sie in der Simulation für A1_{CRD2} gezeigt werden konnten, kann eine Ligandenbindung durch sterische Hinderung erschwert oder wie in diesem Fall experimentell bestimmt, gänzlich unterbunden werden. Der Grund für die Konformationsänderung ist eine nicht mehr vorhandene Stabilisierung durch die abgeschnittene CRD1. Diese Domäne ist zwar nicht direkt an der Ligandenbindung beteiligt, hat jedoch Bereiche, vor allem in der Subdomäne B2_{CRD1}, die mit A1_{CRD2} interagieren und zu einer Stabilisierung dieser Subdomäne führen. Dies wurde in einer weiteren MD-Simulation bestätigt, bei der nur ein Teil von CRD1, nämlich die Subdomäne A1_{CRD1} deletiert wurde (System III, ΔA1_{CRD1}-TNFR1_{ex}). Diese Deletionsmutante besitzt noch die Subdomäne B2_{CRD1} und ist in der Lage, die angrenzende Subdomäne A1_{CRD2} strukturell zu stabilisieren, was die Ergebnisse der Simulation deutlich zeigen (Abb. 3.15A). Es kommt zu keiner ausgeprägten Erhöhung der strukturellen Abweichung und somit auch nicht zu einem destabilisierenden Effekt. Die in dieser Deletionsmutante N-terminale Subdomäne B2_{CRD1} zeigte nur eine geringe Erhöhung der strukturellen Abweichung (Daten nicht gezeigt), was aber zu keiner Beeinträchtigung der stabilisierenden Wirkung führte und auf das Fehlen von A1_{CRD1} zurückgeführt werden kann. Diese Ergebnisse lassen darauf schließen, dass diese Deletionsmutante in der Lage ist TNF zu binden, jedoch die PLAD-vermittelte Rezeptor-Rezeptor-Interaktion stark reduziert ist, bzw. völlig fehlt, da ein Teil der dafür verantwortlichen Domäne deletiert ist. Bindungsstudien bestätigen, dass diese Deletionsmutanten eine Ligandenbindung eingehen können, was auf strukturell intakte TNF-Bindungsdomänen CRD2 und CRD3 zurückzuführen ist. Eine Ausbildung von signalkompetenten Clustern und
damit eine Induzierung der Apoptose konnte hingegen nicht gezeigt werden. B_2^{CRD1} alleine scheint somit für eine effiziente Rezeptor-Rezeptor-Interaktion und damit für eine Vernetzung der Rezeptor-Ligand-Komplexe nicht ausreichend zu sein. Verwendet man hingegen anstelle von TNF, so genanntes cysTNF, wird die Apoptose eingeleitet. CysTNF ist eine genetisch veränderte Form von TNF, bei der der C-Terminus jeder Untereinheit durch die Aminosäure Cystein erweitert ist. Über Disulfidbrücken ist eine Vernetzung mehrerer cysTNFs möglich. Diese künstliche Vernetzung via cysTNF und die vorhandene Rezeptor-Ligand-Bindung führen wieder zur Ausbildung signalkompetenter Cluster.

Ein Fehlen von struktureller Stabilität kann auch für die Interpretation der experimentellen Ergebnisse aus [65, 66] dienen. Eine Deletion von CRD4 hat keine Reduktion der Ligandenbindungsaffinität zur Folge. Auf den ersten Blick sollte diese Deletion zu einer Destabilisierung der angrenzenden CRD3 und somit zu einer Störung der Bindungsstelle des Liganden führen. Betrachtet man jedoch die Struktur des TNFR1-TNF-Komplexes (Abb. 3.4A, B), so erkennt man, dass die Subdomäne B_2^{CRD3} nicht maßgeblich mit dem Liganden interagiert. Die Deletion von CRD4 könnte dann zwar zu einer Destabilisierung von B_2^{CRD3} führen, was sich aber nicht direkt auf die Bindungsaffinität auswirken muss. Sollte B_2^{CRD3} trotz struktureller Abweichung noch in der Lage sein, A_1^{CRD3} in der richtigen Konformation zu stabilisieren, könnte damit die noch vorhandene Ligandenbindung erklärt werden.

Die MD-Simulation der Deletionsmutanten (System III, IV) kombiniert mit experimentellen Ergebnissen kann eine Erklärung für den Einfluss der CRD1 (PLAD) auf die Bindungsaffinität zu TNF geben. Die CRD1 besitzt eine Doppelfunktion. Ihre primäre Funktion besteht darin, Rezeptor-Rezeptor-Interaktion zur Ausbildung signalkompetenter Rezeptor-Ligand-Komplexe zu vermitteln. Darüber hinaus stabilisiert sie die benachbarte Domäne CRD2 in einer Konformation, die notwendig ist, um eine Ligandenbindung zu ermöglichen. Durch Deletion einer Subdomäne von CRD1 lässt sich diese primäre Funktion unterbinden, der stabilisierende Effekt auf CRD2 bleibt aber erhalten.

3.4. Zusammenfassung des Kapitels

In diesem Kapitel wurden MD-Simulationen von Fragmenten und Deletionsmutanten des extrazellulären Teils von TNFR1 vorgestellt. Es handelt sich dabei zum einen um zwei kleine Protein-Fragmente (System I bzw. II), die nur CRD1 ($A_1B_2^{\text{CRD1}}$) bzw. CRD1 und eine nachfolgende Subdomäne A_1^{CRD2} ($A_1B_2^{\text{CRD1}}A_1^{\text{CRD2}}$) enthalten, zum anderen um zwei Mutanten (System III bzw. IV), bei denen eine Subdomäne von CRD1 (ΔA_1^{CRD1}-TNFR1$_{\text{ex}}$) bzw. die komplette erste Domäne (ΔCRD1-TNFR1$_{\text{ex}}$) von TNFR1$_{\text{ex}}$ deletiert wurden. In einer Vor-
untersuchung wurde eine MD-Simulation am gesamten extrazellulären Teil des Rezeptors (System 0, TNFR₁₉ₓₜ) durchgeführt. Diese Struktur diente gleichzeitig als Ausgangsstruktur für alle weiteren Simulationen.

Zu Beginn wurde eine MD-Simulation an TNFR₁₉ₓ durchgeführt. Die Proteinstruktur, die aus der Kristallstruktur des Komplexes TNFR₁-LTα stammt, sollte auf diese Weise in einen equilibrierten Zustand überführt werden, um als Ausgangsstruktur für weitere Simulationen zu dienen. Die Daten aus den Simulationen wurden auch dafür verwendet, die Flexibilität sowie eine mögliche hierarchische Anordnung der Substrukturen von TNFR₁₉ₓ zu untersuchen.

In TNFR₁₉ₓ bilden die Subdomänen A₁ bzw. B₂ der einzelnen CRDs die kleinste, strukturell stabile Einheit. Die Subdomänen sind als flexible Glieder in alternierender Reihenfolge zusammengesetzt und ergeben eine längliche, flexible Proteinstruktur, deren Proteindruckgrat, sowie das der einzelnen CRDs sich im Verlauf der Simulation strukturell verändern. Diese strukturelle Veränderung kann auf Relativbewegungen der stabilen Subdomänen zueinander zurückgeführt werden. Dabei ist die Flexibilität zwischen Subdomänen innerhalb einer CRD ausgeprägter als die Flexibilität zwischen Subdomänen benachbarter CRDs.

Ein Fragment, welches nur aus CRD₁ besteht ist nicht in der Lage, mit CRD₁s (PLAD) von intakten Rezeptoren zu interagieren, wodurch die Ausbildung signalkompetenter TNF-TNFR₁-Cluster inhibiert wird. Der Grund liegt in der strukturellen Stabilität der Domären und Subdomären. Anhand von MD-Simulationen verschiedener Deletionsmutanten von TNFR₁₉ₓ konnte gezeigt werden, dass die Subdomären im Verbund die kleinste strukturelle Einheit der Proteindomäne darstellen, aber diese Stabilität durch die angrenzenden Subdomären bedingt wird. Die Deletion einer Domäne führt somit zu einer Destabilisierung der angrenzenden Subdomären oder im Fall des Fragmentes A₁B₂ CRD₁ zu einer Destabilisierung des Fragmentes selber. Somit kann man den Domären des extrazellulären Bereichs des TNFR₁ nicht nur eine primäre Funktion, sondern auch eine sekundäre, stabilisierende
Funktion zuordnen. Im hier untersuchten Fall hat CRD1 (PLAD) neben der Funktion als Rezeptor-Rezeptor-Interaktions-Domäne eine weitere Funktion, nämlich die Stabilisierung von CRD2. Umgekehrt hat CRD2 eine stabilisierende Wirkung auf CRD1 (PLAD). Zur Stabilisierung von benachbarten Domänen ist nicht immer die komplette angrenzende Domäne notwendig; im Fall von CRD1 ist lediglich die Subdomäne A₁₉D₂ notwendig, um den stabilisierenden Effekt aufrecht zu erhalten.
4. Untersuchung eines möglichen Diffusionspfades des Ubichinon-Moleküls durch den LH1-Ring im Purpurbakterium Rhodospirillum rubrum

zu setzten, wird eine mittlere Transferzeit abgeschätzt; das ist die Zeit, mit der das Ubichinon-Molekül im Mittel einmal durch den LH1-Ring diffundiert.

4.1. Einführung in die Photosynthese

\[
\text{CO}_2 + 2\text{H}_2\text{X} \xrightarrow{\text{Licht}} [\text{CH}_2\text{O}] + 2\text{X} + \text{H}_2\text{O}.
\]

4.2. Photosynthese der Purpurbakterien

Der erste Schritt der Photosynthese ist die Absorption von Lichtenergie. Die absorbierte Energie wird zur Ladungstrennung verwendet. Dies ist in Abb. 4.1 schematisch dargestellt. Abb. 4.1A zeigt den Elektronen-Protonen-Zyklus während des ersten Schrittes der Photosynthese, in Abb. 4.1B ist eine detaillierte Skizze der Reaktionen, die am RC und LH1 ablaufen, gezeigt.

A

B

Abb. 4.1

Nach Absorption von Licht durch den LH1 Komplex wird die Anregungsenergie zum Special Pair (SP) im Reaktionszentrum geleitet, wo eine Ladungstrennung stattfindet. Entlang einer Elektronentransferkette, bestehend aus verschiedenen Donor-Akzeptor-Molekülen (Chlorophyllen, Pheophytin, etc.) wird das Elektron schließlich auf ein mobiles Transport-Molekül, einem Ubichinon, übertragen. Dabei wird ein Proton aus dem Cytoplasma aufgenommen. Das Ubichinon nimmt insgesamt zwei Elektronen und zwei Protonen auf, verlässt als Ubichinol (2-fach reduziertes Ubichinon) das RC und transportiert die Reduktionsäquivalente zum Cyt-bc₁-Komplex. Hier werden die Protonen an die periplasmatische Seite der Membran abgegeben, was letztendlich einen Protonengradienten erzeugt, da zwei Protonen aus dem Cyto-

Neben diesem allgemeinen Verständnis zum Ablauf dieser Photosynthesereaktionen hat man in den vergangenen Jahrzehnten ein detailliertes Verständnis struktureller und funktioneller Eigenschaften der einzelnen Bestandteile der PSU in Purpurbakterien erhalten.

Die Struktur mehrerer Komplexe der photosynthetischen Einheit konnte entweder mit atomarer Auflösung (RC [67], LH2 [68, 69], Cyt bc$_1$ [70], und ATPase [71]) oder mit einer Auflösung bestimmt werden, die zumindest die Zuweisung von Sekundärstrukturen, wie α-Helizes oder von Pigmenten zulässt (LH1-RC-Komplex [72]). Darüber hinaus wurden eine Reihe von AFM-Untersuchungen an verschiedenen LH1-RC-bzw. LH1-Komplexen durchgeführt, die zum weiteren Verständnis der funktionalen Zusammenhänge dieser Pigment-Protein-Komplexe beigetragen haben [73-76]. Die Energie-transferkinetik wurde für die meisten intra- bzw. intermolekularen Prozesse mittels transienter Absorption im Femtosekundenbereich experimentell bestimmt [77]. Mittels Einzelmolekülspektroskopie wurden die Wechselwirkungen zwischen LH1 und LH2 und dieser beiden Komplexe mit ihrer Umgebung untersucht [78-80].

Allen Lichtsammelkomplexen aus Purpurbakterien gemein ist der relativ ähnliche Aufbau bzw. die allgemeine strukturelle Organisation. LH1 und LH2 bestehen aus einer bestimmten Anzahl identischer Pigment-Protein-Untereinheiten. Stellvertretend ist in Abb. 4.2 eine Untereinheit des LH1-Rings aus R. rubrum gezeigt. Jede dieser Untereinheiten besteht aus zwei separaten membrandurchspannenden α-Helizes, der α- und β-Untereinheit mit einer Länge von jeweils ca. 50 Aminosäuren, in denen Bakteriochlorophyll (grün) und Carotinoide (gelb) eingelagert sind. Im Detail bestehen aber große Unterschiede im Aufbau der einzelnen photosynthetischen Komplexe zwischen den einzelnen Spezies. In Rhodobacter sphaeroides (Rb. sphaeroides) beispielsweise besteht die β-Unterre-

In der Kristallstruktur des Kernkomplexes des Purpurbakteriums aus _Rhodopseudomonas palustris_ konnte nachgewiesen werden, dass der LH1-Ring, der das Reaktionszentrum umgibt, aus lediglich 15 identischen αβ-Untereinheiten besteht [72]. Anstelle der sechzehnten Untereinheit befindet sich eine weitere α-Helix (W-Protein), die eine Öffnung im LH1-Ring bildet. Diese Öffnung soll, ebenso wie die offene S-Form in _Rb. sphaeroides_, für den effizienten Transport des Ubichinons/Ubichinols in und aus dem Reaktionszentrum verantwortlich sein. Diese Möglichkeit, die oxidierte bzw. reduzierte Form des Ubichinons durch eine Öffnung im LH1-Ring zu schleusen, wurde in der Vergangenheit auch für die Spezies _R. rubrum_ diskutiert [86]; bislang ist es aber noch nicht gelungen, ein PufX- bzw. W-Protein-Analogon zu identifizieren. Im Gegenteil, die verfügbaren EM-Daten deuten auf einen sehr symmetrischen Aufbau des Kernkomplexes mit 16 identischen αβ-Untereinheiten hin [82]. Diese Untereinheiten des LH1-Rings bilden einen flexiblen, aber geschlossenen Ring um das Reaktionszentrum. Auch die Ergebnisse aus AFM-Untersuchungen deuten

Folglich ist ein direkter Transportweg des Ubichinons durch den LH1-Ring, wie er in Abb. 4.3C dargestellt ist, nicht auszuschließen, und wurde bereits in der Literatur mehrfach diskutiert [74, 82, 85]. Experimente zur Bestimmung von *Turnover-Raten* des Reaktionszentrums aus *Rb. sphaeroides* an offenen, dimeren LH1-RC-Komplexen sowie an *Rb. sphaeroides*, bei denen das PufX-Gen fehlt und die somit einen geschlossenen LH1-Ring besitzen, haben gezeigt, dass sich die Raten im geschlossenen Fall um einen Faktor zwei reduzieren. Diese Verlangsamung lässt sich nicht auf Blockierung des Ubichinon-Transports...
durch den nun geschlossenen LH1-Ring zurückführen, sondern auf eine möglicherweise nicht
mehr optimale LH1-RC-Interaktion [90]. Ein Transport des Ubichinons durch einen geschlos-
senen LH1-Ring kann somit nicht ausgeschlossen werden.
Um die Möglichkeit eines direkten Transportweges des Ubichinons im Kernkomplex von
R. rubrum zu untersuchen, wurden MD-Simulationen durchgeführt. Eine hochauflösende
Kristallstruktur ist aber weder für das Reaktionszentrum noch für den LH1-Ring aus *R. rubrum*
verfügbar, weswegen auf bereits vorhandene modellierte Strukturen zurückgegriffen wurde. Sowohl die Struktur des Reaktionszentrums als auch die Struktur des LH1-Rings wurden im
Biologischen Institut der Universität Stuttgart in der Abteilung Bioenergetik (Prof. R. Ghosh)
on Felix Authenrieth in Zusammenarbeit mit der Theoretical and Computational Biophysics
Group an der University of Illinois at Urbana-Champaign (Prof. K. Schulten) entwickelt und
stellten die Ausgangsstrukturen für diese Arbeit dar.
Die Modellstruktur des Reaktionszentrums aus *R. rubrum* basiert auf der Kristallstruktur des
Reaktionszentrums aus *Rb. sphaeroides* und wurde mittels Homology Modelling adaptiert.
Die Modellierung des LH1-Rings von *R. rubrum* erfolgte analog der Modellierung des LH1-
Rings aus *Rb. spaheroides* [91]. Aus den einzelnen Komponenten wurde ein Modell eines
Kernkomplexes erstellt, das anschließend in einer MD-Simulation equilibriert wurde. Eine
Equilibrierung ist notwendig, um eine stabile Ausgangsbasis (stabile Struktur des LH1-RC-
Komplexes in physiologischer Umgebung) für weitere Simulationen zu haben.

4.3. Simulation des Kernkomplexes von *R. rubrum*

Zur Untersuchung des Ubichinon-Transports durch den LH1-Ring wurde aus den Modell-
strukturen von LH1 und RC eine Struktur des LH1-RC-Komplexes konstruiert. Der entstan-
dene Kernkomplex wurde in eine physiologisch sinnvolle Umgebung eingebettet. Ziel war es,
ein equilibriertes System zu erzeugen, das als Ausgangsbasis für weitere Simulationen ver-
wendet werden kann.
4.3.1. Simulationssystem und Simulationsparameter

Der LH1-RC-Komplex besteht aus 35 nicht-kovalent gebundenen Protein-Untereinheiten, in die 56 Pigmente eingelagert sind (siehe Abb. 4.4). Um eine stabile Struktur, die aus so vielen Untereinheiten und Pigmenten besteht, zu erhalten, wurde das System als erstes equilibriert. Eventuell auftretende Veränderungen des RC und vor allem des LH1, der im Hinblick auf mögliche Transitpfade für das Ubichinon durch die Ringstruktur besonders wichtig ist, können während der Equilibrierung registriert werden.

Abb. 4.4

Abb. 4.5

Als Referenz für das Koordinatensystem wurde die Doppellipidschicht gewählt. Die x- und y-Achse des Koordinatensystems liegen in der Membranebene, die z-Achse steht senkrecht dazu. Zunächst wurden die Strukturen von LH1 und RC anhand von Symmetrien in der Struktur im Raum ausgerichtet. Für den LH1-Ring ergibt sich die Ausrichtung des Systems aus der Ringstruktur, die durch 16 identische Untereinheiten gebildet wird. Der LH1-Ring wurde so orientiert, dass die Achse senkrecht zur Ringebene parallel zur z-Achse des Koordinaten- systems liegt (siehe Abb. 4.5-1). Für das RC wurde zunächst, mittels Berechnung der Hauptachsen, die pseudo-C2-Symmetrieachse bestimmt und diese im Anschluss ebenfalls parallel zur z-Achse ausgerichtet (Abb. 4.5-2). Die pseudo-C2-Symmetrieachse spiegelt sich sowohl in
der Proteinstruktur (Abb. 4.6A,B), wie auch in den im RC eingelagerten Pigmenten wieder (Abb. 4.6C,D). Die Symmetrieachse ist in beiden Fällen grau eingezeichnet.

Abb. 4.6
Pseudo-C2-Symmetrieachse des RC. (A) und (B) Darstellung der Symmetrie der Proteinstruktur in Seitenansicht bzw. Aufsicht. Die relevanten Proteinstrukturen sind in rot bzw. rosa (Cartoon-Darstellung) eingefärbt. (C) und (D) Darstellung der Symmetrie der Anordnung der Pigmente in Seitenansicht bzw. Aufsicht. Die Chlorophyll (BChl) sind in grün, die Pheophytin-Moleküle (Phe) sind orange und die Ubichinon-Moleküle sind in rot eingefärbt.

Der innere Durchmesser des LH1-Rings ist mit 70 Å groß genug, um ein komplettes Reaktionszentrum zu umschließen (siehe Abb. 4.5-3). Durch die Festlegung der Symmetrieachsen und deren relative Orientierung zur Membranebene sind für eine optimale Platzierung von RC und LH1 nur noch die vertikale Positionierung sowie die relative Orientierung des RC bezüglich des LH1-Rings festzulegen (siehe Abb. 4.5-4). Folgende Annahmen wurden der Ausrichtung zu Grunde gelegt. i) Es ist bekannt, dass sich in Transmembranproteinen an der Grenzfläche zwischen Wasser und Membran bestimmte Aminosäuren bevorzugt aufhalten [92]. Dazu zählt unter anderem die aromatische Aminosäure Tryptophan. Diese polare Aminosäure befindet sich im LH1-Ring und im RC sowohl auf der Ober- als auch auf der Unterseite der Proteinstrukturen und kann somit als Orientierungshilfe dienen. In Abb. 4.7 ist
der LH1-RC-Komplex in einer Cartoon-Darstellung gezeigt. Die Aminosäure Tryptophan ist in blau (LH1) und in rot (RC) hervorgehoben und zur besseren Visualisierung ist eine Hilfsebene eingezeichnet, die den Schwerpunkt der Tryptophan-Reste in z-Richtung darstellt.

Abb. 4.7

Der nächste Schritt beinhaltete den Einbau des LH1-RC-Komplexes in eine Doppel-lipidschicht (siehe Abb. 4.5-5). Durch die Ringstruktur und durch den hydrophoben Bereich der α-Helizes der αβ-Untereinheiten des LH1-Rings, war eine optimale Positionierung vorgegeben. Der Einbau des LH1-Rings in die Membran erfolgte so, dass der hydrophobe

In Abb. 4.8 ist das Gesamtsystem sowohl in einer Aufsicht (A) als auch in einer Seitenansicht parallel zur Membranebene (B) dargestellt.

Ein Teil der Wasseratome und Lipide wurde nicht abgebildet, um einen besseren Blick auf die Pigment-Protein-Struktur zu ermöglichen. Die Proteinatome des LH1-Rings sind in hellblau, des RC in rosa (Cartoon-Darstellung), die BChl- bzw. Car-Atome sind in grün bzw. gelb (Liccorice-Darstellung) eingezeichnet. Das Gesamtsystem umfasst insgesamt 243874 Atome, dabei entfallen 40838 Atome auf das Protein, 7210 Atome auf die Pigmente, 58156 Atome auf die Lipide und 137670 Atome auf die Wassermoleküle. Diese Startstruktur wurde einer Reihe von Minimierungs- und Equilibrierungsschritten unterzogen, um sie an die ge-
wünschten Umgebungsbedingungen, wie Temperatur und Druck anzupassen und um eine Gleichgewichtsstruktur zur erhalten.

Equilibrierung der Aminosäure-Seitenketten: In einer weiteren Simulation wird der harmonische Constraint der Aminosäure-Seitenketten im Verlauf der Simulation von seinem
Anfangswert von 70 pN/Å auf 0 pN/Å reduziert, wodurch sich die Seitenkettenatome frei bewegen können. Die Simulation erfolgte im NPT-Ensemble bei einer konstanten Temperatur von 300 K. Die Simulationsdauer betrug 250 ps.

Equilibrierung des Gesamtsystems: Im letzten Schritt wird der Constraint auf die Atome des Proteinrückgrats des LH1-RC-Komplexes auf 0 pN/Å reduziert und das System kann frei equilibrieren. Die Simulation erfolgte im NPT-Ensemble bei einer konstanten Temperatur von 300 K und einem konstanten Druck von 1 bar. Die Simulationsdauer betrug 4 ns.

4.3.2. Ergebnisse

In Abb. 4.9 ist das Gesamtsystem vor bzw. nach der Equilibrierung dargestellt. Abb. 4.9A und C zeigen die Startstruktur, Abb. 4.9B und D die equilibrierte Struktur in Auf- bzw. Seitenansicht. Die Wasseratome sind der Übersicht wegen nicht eingezeichnet.

Abb. 4.9
Equilibrierung der Startstruktur des LH1-RC-Komplexes. (A), (C) Aufsicht bzw. Seitenansicht zu Beginn der Simulation; (B), (D) Aufsicht bzw. Seitenansicht nach Equilibrierung. Die Proteinstrukturen sind in Cartoon-Darstellung gezeigt (LH1 – cyan, RC – rot, blau und grau), die BCHl-Atome sind in grün und Car-Atome in gelb eingefärbt.
Um die strukturellen Veränderungen innerhalb des LH1-Rings noch genauer betrachten zu können, wurde der Verlauf des RMSD-Wertes für die letzte Nanosekunde der Simulation, für jede $\alpha\beta$-Untereinheit getrennt berechnet (Abb. 4.10G). Die Nummerierung erfolgt für die 16 Untereinheiten von $\alpha\beta1$ bis $\alpha\beta16$; jede Untereinheit ist in einer anderen Farbe dargestellt. Abb. 4.10G zeigt eine Verteilung an RMSD-Werten für die einzelnen $\alpha\beta$-Untereinheiten, die im Verlauf der letzten Nanosekunde schwanken, jedoch keine allgemeine Drift aufweisen. Die Verteilung und die Fluktuationen der RMSD-Werte sind darauf zurückzuführen, dass nicht nur die Transmembrandomäne berücksichtigt wird, wie in Abb. 4.10F, sondern das gesamte Proteinrückgrat der $\alpha\beta$-Untereinheit. Die im Cyto- bzw. Periplasma befindlichen
terminalen Bereiche zeigen eine erhöhte Flexibilität. Eine Überlagerung der membranständigen α-Helizes, sowohl für die α- als auch für die β-Untereinheit mit den vorhandenen NMR-Strukturdaten ist in Abb. 4.10H dargestellt. Gezeigt ist jeweils das Proteinrückgrat in Ribbon-Darstellung. Die NMR-Struktur ist in gelb, die jeweilige Untereinheit aus dem LH1-Ring ist analog zu Abb. 4.10G eingefärbt. Im Bild links ist die β-Untereinheit, rechts die α-Untereinheit dargestellt. Alle Untereinheiten der equilibrierten Struktur zeigen eine gute Übereinstimmung im Transmembranbereich. Die teilweise ungeordneten Loopstrukturen der terminalen Regionen der Untereinheiten sind hier nicht gezeigt. Die verwendete NMR-Struktur beinhaltet 10 unterschiedliche Datensätze. Der Vergleich erfolgte mit einer gemittelten Struktur und berücksichtigte nur das Proteinrückgrat des Transmembranbereichs. Die durchschnittliche Abweichung der Untereinheiten von der NMR-Struktur beträgt ca. 1.5 Å für die α-Untereinheit und 1.7 Å für die β-Untereinheit.

4.3.3. Diskussion

Abb. 4.13

4.4. Modellsystem

Um einen möglichen Diffusionsweg des Ubichinons durch den LH1-Ring untersuchen zu können, wurde ein Modellsystem erstellt, das einerseits alle notwendigen Komponenten beinhaltet um den Diffusionsprozess beschreiben zu können, und andererseits ein Minimum an Atomen besitzt, um eine effiziente Simulation durchführen zu können.

4.4.1. Simulationssystem und Simulationsparameter

Für die Bestimmung eines möglichen Transportwegs, der eine Diffusion des Ubichinons durch den LH1-Ring vorsieht, sind sowohl die Berücksichtigung des Reaktionszentrums, sowie eine Simulation der kompletten Ringsstruktur nicht notwendig. Die gefundenen Kanäle befinden sich zwischen aufeinander folgenden αβ-Untereinheiten. Daher kann das Simulationssystem auf den eigentlichen Kanal und die Pigment-Protein-Struktur um den Kanal begrenzt werden.

Das Modellsystem besteht aus vier αβ-Untereinheiten und einem Ubichinon-Molekül. Die Struktur des LH1-Segmentes stammt aus der equilibrierten Struktur des Gesamtsystems. Die vier αβ-Untereinheiten zusammen mit den Pigmenten wurden in eine POPC-Doppel-

In der Aufsicht sind die vier Protein-Untereinheiten (αβ) mit den entsprechenden Pigmenten zu sehen (Abb. 4.14A). Das Ubichinon befindet sich auf der Außenseite des LH1-Rings (links von der Proteinstruktur) und ist im hydrophoben Bereich der Membran eingebaut worden (Abb. 4.14B). Es wurde darauf geachtet, dass sich sowohl auf der Außen- wie auch auf der Innenseite des LH1-Rings eine ausreichende Anzahl Lipide befindet, um den Diffusionstransport ohne störende Randeffekte simulieren zu können.

Die Systemgröße konnte mit diesen Maßnahmen deutlich reduziert werden. Das Gesamtsystem umfasst 82949 Atome. Hiervon entfallen 6940 Atome auf die Proteinuntereinheiten, 1641 Atome auf die Pigmente, 31758 Atome auf die Lipide, 42606 Atome auf die Wassermoleküle und 4 Atome auf Ionen. Das System besitzt eine rechtwinklige Einheitszelle mit den Ausmaßen 115Å x 105Å x 87Å. Zur Gewährleistung der Stabilität der Gesamtstruktur, die hier nicht mehr durch den kompletten Ring gegeben ist, wurde auf das

Minimierung: Um Überlappungen von Atomen im System zu verhindern, wurde das neue System energieminimiert.

Equilibrierung des Gesamtsystems: Der Constraint, der anfänglich auf die Atome der LH1-Untereinheiten und des Ubichinons gewirkt hat, wird auf 0 pN/Å reduziert und das System kann frei equilibrieren. Es wird im NPT-Ensemble bei einer konstanten Temperatur von 300 K und einem konstanten Druck von 1 bar simuliert. Die Simulationsdauer betrug 5 ns.

4.4.2 Ergebnisse und Diskussion

Abb. 4.15 gibt eine Übersicht der Ergebnisse der Equilibrierung. Innerhalb der letzten 2 ns der Simulation sind die Systemgrößen Gesamtemnergie, Temperatur sowie das Volumen des Systems (Abb. 4.15A-C) stabil.
Abb. 4.15 Equilibrierung des Modellsystems. (A) Gesamtenergie, (B) Temperatur, (C) Volumen. Die Orginaldaten sind in grau, eine zeitliche Mittelung ist in rot eingezeichnet um den generellen Verlauf hervorzuheben. (D) RMSD-Wert ausgewählter Substrukturen bezogen auf die Startstruktur des Modellsystems. (E) RMSD-Wert ausgewählter Substrukturen bezogen auf die equilibrierte Struktur des kompletten LH1-RC-Komplexes.

TRANS – Transmembranbereich der Proteinstruktur
ALP – α–Untereinheit (transmembran)
BET – β–Untereinheit (transmembran)
BChl – Chlorophyll-Moleküle
BChlc – Chlorophyll-Moleküle (Kopfgruppe)
Car – Carotinoid-Moleküle

Abb. 4.15D zeigt die strukturelle Abweichung verschiedener Substrukturen bezogen auf die Startstruktur der Simulation. Der Transmembranbereich der Protein-Untereinheiten (schwarz), sowie die α- (rot) und β-Untereinheit (grün) zeigen zu Beginn der Simulation nur kleine Abweichungen von der Startstruktur; die RMSD-Werte liegen unterhalb 1.5 Å. Für die Chlorophyll- (cyan) sowie Carotinoid-Moleküle (magenta) ergibt sich ein ähnlicher Verlauf der RMSD-Werte. Alle betrachteten Substrukturen sind nach ca. 2 ns wieder stabil. Die Änderungen sind auf das erneute Einbauen in die Doppellipidschicht und die anschließende Solvatisierung zurückzuführen.

4.5. Voruntersuchung zur Ubichinon-Diffusion durch den LH1-Ring

4.5.1. Simulationssystem und Simulationsparameter

Abb. 4.16
Das Ubichinon wird Kopf voran durch die Pigment-Protein-Barriere gezogen. Die Kopfgruppe des Ubichinon, an die die externe Kraft des SMD-Potentials angelegt wurde, ist rot hervorgehoben. (A) und (B) Aufsicht auf das System vor bzw. nach der Simulation. (C)-(F) Seitenansicht auf das System. Die Bilder zeigen eine zeitliche Abfolge der Simulation. Am Anfang befindet sich das Ubichinon auf der Außenseite des LH1-Rings (links) (C), am Ende ist es komplett durch den LH1-Ring auf die Innenseite gezogen worden (F). Lipide, Wasser und Teile der Pigment-Protein-Struktur sind zur besseren Übersicht nicht eingezeichnet. Gezeigt ist ein Querschnitt durch die Mitte der vier αβ-Untereinheiten.

4.5.2. Ergebnisse und Diskussion

Die Ergebnisse dieser SMD-Simulation sind in der Abb. 4.17 zusammengestellt. Gezeigt werden nur die externe Kraft sowie die strukturelle Abweichung der Substrukturen des Systems; alle weiteren Systemgrößen zeigten keine Auffälligkeiten. In Abb. 4.17A ist der Verlauf der Kraft zu sehen, die aufgebracht werden musste, um das Ubichinon-Molekül durch den LH1-Ring zu ziehen (grau). In rot sieht ist eine geglättete Kraftkurve eingezeichnet, um den generellen Verlauf zu verdeutlichen.

Abb. 4.17

4.6. Identifizierung eines möglichen Pfades durch den LH1-Ring

4.6.1. Simulationssystem und Simulationsparameter

Abb. 4.18

4.6.2. Ergebnisse und Diskussion

vorlag und sich dadurch die Ubichinon-Kopfgruppe erst nach einer bestimmten Simulationsdauer bewegt.

Abb. 4.19

Eine visuelle Inspektion der Struktur bestätigt diese Ergebnisse; es kam während der Simulation zu keiner merklichen strukturellen Veränderung des Systems. Die Daten der
Simulation aus System 2 ergeben einen sehr ähnlichen Verlauf der untersuchten Größen und werden daher nicht explizit gezeigt.

Um den gewählten Weg der Ubichinon-Kopfgruppe genauer zu untersuchen, wurde er zu verschiedenen Zeitpunkten entlang der Trajektorie visuell rekonstruiert. Dies erfolgte für beide Simulationssysteme (System 1 und 2) und ist in Abb. 4.20 zu sehen. In blau sind Momentaufnahmen der Kopfgruppe für das System 1, in rot für das System 2 gezeigt. Auf Wasser- Lipid-, sowie einige Protein- und Pigmentatome wurden der Übersicht wegen in Abb. 4.20 verzichtet. Der Pfad des Ubichinons führt zwischen den Chlorophyll-Schwänzen und den Carotinoiden durch die Protein-Untereinheiten des LH1-Rings hindurch.

Sowohl die Seitenansicht (Abb. 4.20A) als auch die Aufsicht (Abb. 4.20B) zeigen für beide Richtungen einen sehr ähnlichen Pfad, den die Kopfgruppe des Ubichinons durch den LH1-Ring nimmt. Dies ist auf die dichte Struktur des LH1-Rings, bestehend aus Chlorophyll-Molekülen, Carotinoide und dem Proteingerüst zurückzuführen, wodurch der Raum für eine mögliche Diffusion eingeschränkt ist. In der Aufsicht ist eine Abweichung an der Innenseite des LH1-Segments zu sehen (rechts); dort stimmen die Momentaufnahmen von Vorwärts- und Rückwärtsrichtung (bzw. System 1 und 2) nicht genau überein. Diese Abweichung kann auf die Systempräparation zurückgeführt werden; durch längere Equilibrierungsphasen oder eine langsamere Zuggeschwindigkeit lässt sich wahrscheinlich auch in diesem Bereich des Systems eine bessere Übereinstimmung erreichen.
Im Folgenden soll der gefundene Pfad näher untersucht und ein Profil der Freien Energie entlang des Weges erstellt werden.

4.7. Rekonstruktion des Potentials entlang der Reaktionskoordinate

Um quantitative Aussagen über einen Diffusionsprozess entlang des Pfades machen zu können, muss das Freie Energieprofil entlang des Pfades (PMF) bekannt sein. Dabei beschränkt sich die Betrachtung auf die Kopfgruppe des Ubichinons. Sie stellt das größte Hindernis bei einer Diffusion durch den LH1-Ring dar und wird dementsprechend den größten Beitrag zum PMF liefern. Zur Bestimmung des PMF werden SMD-Simulationen herangezogen, die die Ubichinon-Kopfgruppe entlang des zuvor ermittelten Pfades durch den LH1-Ring ziehen. Aufgrund der erwarteten langsamen Diffusionszeit (das Ubichinon benötigt für dieselbe Strecke ohne Potential bereits mehr als 100 ns) ist eine Simulation im Gleichgewicht nicht möglich; das Ubichinon-Molekül wird beschleunigt entlang des Pfades bewegt. Aufgrund der Beschleunigung des Prozesses befindet sich das System im Nicht-Gleichgewicht, d.h. nicht die gesamte Arbeit, die über das SMD-Potential ins System fließt, wird für die Überwindung des Potentials der Pigment-Protein-Barriere verwendet. Es entsteht Dissipation; also Arbeit, die an das Wärmebad abgegeben wird und somit verloren geht. Zu einer Rekonstruktion des PMFs benötigt man daher eine Reihe von Trajektorien, gekoppelt mit einer statistischen Auswertung, um die Gleichgewichtsgröße (Potentialänderung ΔG) aus den Nichtgleichgewichtsdaten (investierte Arbeit W) zu extrahieren.

4.7.1. Simulationssystem und Simulationsparameter

Das PMF wurde für beide Simulationsrichtungen (System 1 und 2) unabhängig voneinander berechnet. Zu diesem Zweck mussten beide Simulationssysteme modifiziert werden, was in Abb. 4.21 schematisch dargestellt ist. In System 1 (Abb. 4.21A) ist das Ubichinon von außen durch den LH1-Ring auf die Innenseite gezogen worden, in System 2 (Abb. 4.21B) von innen nach außen; in beiden Fällen lag die externe Kraft nun am Schwerpunkt der Kopfgruppe an. Die Ubichinon-Moleküle sind schematisch in blau bzw. rot eingezeichnet, das Sechseck repräsentiert die Kopfgruppe.
Um das System während der Simulation möglichst nahe am Gleichgewicht zu halten, sind beide möglichen Pfade (System 1 und 2) in mehrere Sektionen zerlegt. Ein seitlicher Schnitt durch das Modellsystem verdeutlicht die Einteilung und ist in Abb. 4.22 gezeigt. Zum einen wird, analog zu Abb. 4.20, der Pfad der Kopfgruppe des Ubichinons durch den LH1-Ring für beide Systeme dargestellt, zum anderen wird im unteren Teil der Abbildung die Einteilung in Sektionen, dargestellt durch Pfeile der entsprechenden Farbe, verdeutlicht. Jede Sektion hatte eine Länge von ca. 3 Å.

Abb. 4.21
Schematische Darstellung der beiden Systeme zur Rekonstruktion des Profils der Freien Energie. Die Ubichinon-Moleküle sind schematisch in blau bzw. rot eingezeichnet, das Sechseck repräsentiert die Kopfgruppe. Der LH1-Ring ist durch einen gestrichelten Kreis angedeutet und das simulierter Pigment-Protein-Segment des Modellsystems ist transparent im Hintergrund eingezeichnet. Die Zugrichtung ist als Pfeil dargestellt. (A) System 1 = Vorwärtsrichtung, (B) System 2 = Rückwärtsrichtung.

Abb. 4.22
Einteilung des Pfades in Sektionen. Im Pigment-Protein-Gerüst eingezeichnet ist der Pfad der Kopfgruppe des Ubichinons für beide Systeme. Die Darstellung ist analog zu Abb. 4.20. Im unteren Teil der Abbildung sind zusätzlich die einzelnen Sektionen eingezeichnet. Sie werden durch die Pfeile in der entsprechenden Farbe repräsentiert.

4.7.2. Ergebnisse und Diskussion

Die Arbeitsprofile sind der Klarheit wegen geglättet dargestellt. Die Streuung der Arbeitswerte entlang der Reaktionskoordinate nimmt zu. Dies bedeutet auch, dass die dissipierte Arbeit zunimmt, während das Ubichinon-Molekül entlang der Reaktionskoordinate gezogen wird. Aus den Arbeitswerten lässt sich die Änderung der Freie Energie entlang der Reaktionskoordinate rekonstruieren. In Abb. 4.23B ist das Ergebnis dieser Berechnung für Sektion 3 aus System 2 zu sehen; hier sind die mittlere Arbeit (Dreiecke) sowie die Kumulantentwicklung bis zur zweiten Ordnung (Kreise) eingezeichnet. Die mittlere Arbeit entspricht nur dann der Änderung der Freien Energie, wenn sich das System zu allen Zeiten im Gleichgewicht befindet - was nicht der Fall ist. Die mittlere Arbeit ist dann \(\langle w \rangle > \Delta G \), also immer größer als die Änderung der Freien Energie. Unter der Annahme einer Gaußförmigen Arbeitsverteilung lässt sich das Maß an Dissipation anhand der Breite der Arbeitsverteilung abschätzen. Bis ca. 2 Å ist die dissipierte Arbeit \(W_{\text{diss}} < 3 k_B T \) und das System nahe am Gleichgewicht. Am Ende der Sektion ist die dissipierte Arbeit \(W_{\text{diss}} < 8 k_B T \) und das System hat sich somit weiter vom Gleichgewicht entfernt. Für alle Sektionen, sowohl für die Vorwärts- als auch für die Rückwärtsrichtung, wurde die Dissipation im Bereich von 0 k_B T bis 5 k_B T für große Teile der Sektionen abgeschätzt. Zum Ende der Sektionen steigt die Dissipation in einigen Sektionen bis auf 10 k_B T an. Wie in Kapitel 2.4.2. Rekonstruktion des Freien Energieprofils aus SMD-Simulationen gezeigt, lässt sich für eine geringe Anzahl an Trajektorien (\(n = 10 \)) und der Dissipation (\(W_{\text{diss}} \leq 10 k_B T^{(300K)} \)) die Änderung der Freien Energie mit der Kumulantentwicklung bis zur zweiten Ordnung rekonstruieren. Dies erfolgte für beide Richtungen (System 1 und 2) und alle Sektionen entlang des Pfades (Abb. 4.24A, B). Die rekonstruierten Potentiale der einzelnen Sektionen wurden unter Berück-
sichtigung, dass alle Potential-Segmente nahtlos aneinander anschließen, zusammengeführt. Dazu wurden die Potentiale benachbarter Sektionen auf der ΔG-Achse entsprechend verscho- ben. Eine Überlagerung der zusammengesetzten Potentialverläufe aus System 1 und 2 zeigt Abb. 4.24C.

In den Abbildungen Abb. 4.24A,B ist zu erkennen, dass sich Sektionen mit ansteigendem ΔG und solche mit abnehmendem ΔG die Waage halten. In der Überlagerung der beiden zusammengesetzten Potentialverläufe (Abb. 4.24C) sieht man, dass beide Richtungen unterschiedliche Potentialverläufe ergeben. Die maximale Potentialmodulation liegt bei ca. 16 k_BT. Die Potentialdifferenzen zwischen Anfang und Ende liegen im Bereich von 10 k_BT für System 1 bzw. 7 k_BT für System 2.

Die Kumulantenentwicklung bis zur zweiten Ordnung führt zu keinem zufriedenstellenden Ergebnis, da der Potentialverlauf zwei grundsätzliche Eigenschaften des Potentials nicht wiedergeben kann.

i) Die Potentialverläufe ergeben keine Übereinstimmung zwischen Vor- und Rückwärtsrichtung (System 1 und 2). Wenn aber Wechselwirkungen der Kopfgruppe des Ubichinon-

4.8. Bestimmung des entropischen Beitrags durch Streckung des Ubichinons

![Abb. 4.25](image)

Die SMD-Simulationen wurden im Vakuum durchgeführt. In beiden Simulationen diente ein harmonischer Constraint mit der Stärke 500 pN/Å dazu, den Schwerpunkt der Kopfgruppe zu bewegen, wobei das terminale C-Atom der letzten Isoprenoid-Einheit im Raum fixiert war. Um aus den Simulationsdaten direkt auf das zugrunde liegende Potential schließen zu können, muss sich das System über den gesamten Verlauf der Simulation im Gleichgewicht befinden.
Die Zuggeschwindigkeit betrug aus diesem Grund in beiden Fällen 0.1 Å/ns, was zu einer Simulationsdauer von ca. 450 ns pro Simulation führte. Während der Simulation werden die Kraft, die notwendig ist, um das Molekül zu strecken, sowie der Abstand zwischen dem Schwerpunkt der Kopfgruppe und dem Schwanzatom des Ubichinon-Moleküls kontinuierlich aufgenommen.

4.8.1. Ergebnisse und Diskussion

Lässt man das Ubichinon-Molekül frei equilibrieren, so liegt es in einer geknäulten Konformation vor. Dabei kann das Ubichinon im equilibrierten Zustand bei Raumtemperatur eine Vielzahl an unterschiedlichen Konformationen einnehmen.

$$F(x) = \frac{k_B T}{l_p} \left[\frac{4}{(1 \frac{x}{L_c})^2} + \frac{x}{L_c} \frac{1}{4} \right].$$

(4.2)

F ist die zur Streckung notwendige Kraft, k_B die Boltzmannkonstante, T die Temperatur, x der Abstand zwischen Kopfgruppe und Schwanz, L_c die Konturlänge, (Länge des Moleküls im komplett gestreckten Zustand) und l_p die Persistenzlänge. Abb. 4.26 zeigt den Verlauf der
Kraft-Ausdehnungs-Kurve für die Strecksimulation. Das WLC-Modell ergibt eine Fitkurve (rot), die die Simulationsdaten (schwarz) gut beschreibt. Die ermittelte Persistenzlänge l_p von ca. 3 Å ist kürzer als die Länge der kleinsten strukturellen Einheit des Ubichinon-Moleküls, nämlich einer Isoprenoid-Einheit, die eine Länge von ca. 5 Å besitzt. Die Persistenzlänge macht weniger als 1/15 der Gesamtlänge des Moleküls ($L_c = 53$ Å) aus. Daraus folgt, dass das Ubichinon-Molekül eine Tendenz zu verknäulen besitzt, was in einer MD-Simulation gezeigt werden konnte.

Anhand der Kraft-Ausdehnungskurven lässt sich die Arbeit bestimmen, die für den Streckvorgang am System verrichtet werden muss, bzw. die beim Stauchen frei wird. Die Arbeit wurde für beide Simulationen (Strecken/Stauchen) berechnet und ist in Abb. 4.27A gezeigt. Für den Fall einer quasi-stationären Simulation, ist die Arbeit entlang der Trajektorie identisch mit der Änderung der Freien Energie. Somit sollten die Arbeitskurven für den Streck- bzw. Stauchvorgang identisch sein, was für den vorliegenden Fall erfüllt ist. Der Arbeitsverlauf für den Streckvorgang (blau) deckt sich mit dem Arbeitsverlauf des Stauchvorgangs (rot).
Abb. 4.27

Bereits bei Längenänderungen ab 10 Å sieht man, dass die Steigung der Kurve deutlich größer als Null ist. Das bedeutet, dass bereits ab dieser Länge des Ubichinon-Moleküls eine Streckung bzw. Stauchung zu einem Arbeitsbeitrag führt, der nicht zu vernachlässigen ist. Liegt das Ubichinon-Molekül gestreckter vor (ab ca. 35 Å), erhöht sich die Steigung der Potentialkurve (Abb. 4.27B) und damit auch der Arbeitsbeitrag. Eine Streckung um wenige Ångstrom, führt zu einer Änderung des Potentials, die im Bereich der ursprünglich gemessenen Änderung der Freien Energie des Ubichinons entlang der Reaktionskoordinate liegt (siehe Unterkapitel Rekonstruktion des Potentials entlang der Reaktionskoordinate). In Abb. 4.27B ist im oberen Teil die Längenänderung des Ubichinon-Moleküls für die SMD-Simulation aus Sektion 6 für System 1 gezeigt. Die Länge des Ubichinons nimmt während der Simulation zu, da das Molekül zusätzlich gestreckt wird. Am Ende der SMD-Simulation (300 ps) hat sich das Ubichinon um ca. 3 Å verlängert. Der untere Teil in Abb. 4.27B zeigt einen Ausschnitt des Potentials aus Abb. 4.27A (gelber Kasten). In grün ist die Mittelung aus Hin- bzw.
Rückrichtung eingezeichnet. Die Längenänderung führt in diesem Fall zu einem Beitrag an Freier Energie von ca. 6 k_BT, der durch zusätzliches Strecken des Ubichinon-Moleküls entlang der SMD-Simulation entsteht. Dieser Verlust an Entropie muss mit einem entsprechenden Zusatzbeitrag an Arbeit erkauft werden.

Die Arbeit, die zur Kompensation des Entropieverlusts aufgewendet wurde, muss bei der Rekonstruktion des Potentialverlaufs berücksichtigt werden. Dadurch ist die Kraft, die während der SMD-Simulation am Kopf des Ubichinons angelegt wurde, in den meisten Fällen größer, als die Kraft, die notwendig ist, um das Ubichinon entlang der Reaktionskoordinate zu bewegen. Dies gilt es zu berücksichtigen, um das tatsächliche Potential zu rekonstruieren.

4.9. Rekonstruktion des korrigierten Potentials entlang der Reaktionskoordinate

Mit Hilfe des in Unterkapitel Bestimmung des entropischen Beitrags durch Streckung des Ubichinons bestimmten Potentials zur Streckung des Ubichinon-Moleküls wird das Freie Energieprofil aus Unterkapitel Rekonstruktion des Potentials entlang der Reaktionskoordinate korrigiert. Für jede Sektion (siehe Abb. 4.24A,B) wurde aus den einzelnen Trajektorien eine mittlere Streckung berechnet und damit über das Potential zur Streckung des Ubichinons (siehe Abb. 4.27A) der Wert der Arbeit abgelesen. Um diesen Wert muss das Potential entlang der Reaktionskoordinate korrigiert werden. Der Längenzuwachs innerhalb einer Sektion wurde als linear angenommen, was für die meisten Sektionen mit der tatsächlichen Längenänderung übereinstimmte. Der zusätzliche Längenzuwachs und somit der entropische Arbeitsbeitrag sind von Sektion zu Sektion und für beide Richtungen (System 1 und 2) unterschiedlich. Für die meisten Sektionen wurde das Potential aufgrund einer zusätzlichen Streckung während der SMD-Simulation überschätzt. Es gab aber auch Sektionen, in denen sich das Ubichinon-Molekül während der Simulation zusammengeknäult hat, was zu einem negativen entropischen Beitrag führte. Abb. 4.28 zeigt die korrigierten Potentiale für die Kumulantenentwicklung bis zur zweiten Ordnung.
Die Potentialverläufe der einzelnen Sektionen zeigen für beide Richtungen keine großen Änderungen (Abb. 4.28A,B). Die Amplituden der Potentiale liegen im Bereich einiger $k_B T$. Eine Überlagerung der zusammengesetzten Potentialverläufe ist in Abb. 4.28C dargestellt.

Abb. 4.28
Potentialverläufe mit entropischer Korrektur. Die Berechnung erfolgte mit der Kumulantenentwicklung bis zur zweiten Ordnung. (A), (B) Potential der einzelnen Sektionen aus System 1 und System 2. (C) Überlagerung der kombinierten Potentiale. System 1 ist in blau und System 2 in rot dargestellt.
4.9.1. Diskussion

Durch Berücksichtigung der entropischen Korrektur resultiert ein Potentialverlauf, der beide im Vorfeld geforderten Kriterien erfüllt: die Potentialverläufe für beide Zugrichtungen haben am Anfang und am Ende vergleichbare Werte, mit einer Differenz von lediglich ca. $2 k_B T$. Außerdem stimmen die Potentialverläufe aus beiden Richtungen überein, obwohl die Daten zur Rekonstruktion aus unabhängigen Simulationen stammen. Einzige Vorgabe bei Berechnung der beiden Potentialverläufe war eine nahezu identische Reaktionskoordinate, die sich aus Voruntersuchungen ergeben hatte.

Die berechneten Potentiale können mit strukturellen Gegebenheiten der Pigment-Protein-Barriere in Verbindung gebracht werden. Abb. 4.29 zeigt die Potentiale für System 1 (blau) und System 2 (rot) mit den strukturellen Daten der Pigment-Protein-Barriere im Hintergrund.

Abb. 4.29
Potentialverlauf mit Berücksichtigung der entropischen Korrektur für System 1 (blau) und System 2 (rot). Die Pigment-Protein-Struktur ist im Hintergrund zu sehen. Drei charakteristische Potentialbarrieren sind mit a, b und c gekennzeichnet.

4.9.1.1. Fehlerbetrachtung
Es gibt zwei Kriterien, die beachtet werden müssen, um eine allgemeine Aussage über die Richtigkeit des berechneten Potentials zu machen. Zum einen ist dies die Gesamtdifferenz des Potentials zwischen außen und innen (links und rechts der Pigment-Protein-Barriere), die im Idealfall Null sein sollte. Zum anderen müssen die Potentiale für beide Richtungen identisch sein. Für die Methode der Kumulantentwicklung unter Berücksichtigung der entropischen Korrektur werden beide Kriterien zufriedenstellend erfüllt. Obwohl es offensichtliche Abweichungen zwischen System 1 und 2 gibt, stimmen die Hauptmerkmale, wie der erleichterte Zugang, die Potentialbarrieren zwischen den inneren (α-Untereinheit) und äußeren (β-Untereinheit) Paaren von α-Helizes und der Potentialbarriere in der Mitte des Reaktionsweges, für beide Richtungen gut überein.

Im Folgenden wird eine Abschätzung des Fehlers bei der Rekonstruktion des Potentials vorgenommen. Die Berechnung des Potentials entlang der Reaktionskoordinate erfolgte für jede rekonstruierte Sektion mit einem Datensatz bestehend aus jeweils 10 Trajektorien. Als Auswertemethode kam die Kumulantentwicklung zum Einsatz. Analog zu Kapitel 2.4.2. Rekonstruktion des Freien Energieprofils aus SMD-Simulationen wird der statistische Fehler von Mittelwert und Varianz und damit der Fehler von ΔG berechnet. Aus jeweils 10 zufälligen Arbeitswerten einer simulierten, Gaußförmigen Arbeitsverteilung mit vorgegebenem Mittelwert und Breite lässt sich die Änderung der Freien Energie ΔG bestimmen. Wieder-

Abb. 4.30 zeigt den statistischen Fehler des Potentialverlaufs entlang der Reaktionskoordinate für beide Richtungen. In blau ist das System 1 (Vorwärtsrichtung) und in rot das System 2 (Rückwärtsrichtung) dargestellt. Zusätzlich ist die statistische Ungenauigkeit als Fehlerbalken für jede Sektion eingezeichnet.

Bewegt man sich innerhalb einer Sektion entlang der Reaktionskoordinate, entsteht immer mehr Dissipation, was zu einer Verbreiterung der Arbeitsverteilungen und daher zu einer Vergrößerung des statistischen Fehlers bei der Bestimmung der Änderung der Freien Energie führt. In vielen Sektionen bewegte sich der statistische Fehler in der Regel unterhalb $4 k_B T$. Zum Ende der Sektionen stieg der statistische Fehler jedoch auf teilweise über $8 k_B T$ an (**Abb. 4.30A**). Da zu Beginn der SMD-Simulationen die einzelnen Sektionen equilibriert und damit wieder im Gleichgewicht waren, ist der Startpunkt der Simulation in jeder Sektion, für sich betrachtet, ohne statistischen Fehler behaftet.

Von Interesse ist jedoch der Fehler, der gemacht wird, wenn man sich einmal entlang der gesamten Reaktionskoordinate bewegt. Hierzu müssen die Fehler der einzelnen Sektionen...

Für alle Sektionen werden nun die Fehler berechnet, die auftreten, wenn man genau einen Schritt entlang des Potentials macht, sich also immer zum nächsten Punkt entlang der Reaktionskoordinate bewegt. Damit lassen sich die Daten aus beiden Richtungen miteinander kombinieren und die Teilstücke mit den jeweils kleinsten statistischen Fehlern zu einem neuen kombinierten Potential zusammenfügen (Abb. 4.31).

Abb. 4.31
Rekonstruiertes Potential aus den kombinierten Daten für System 1 und 2 (Vorwärts- und Rückwärtsrichtung). Die LH1-Struktur ist im Hintergrund zu sehen. (A) System 1 ist in blau, System 2 in rot und das kombinierte Potential ist in grün eingezeichnet. (B) Kombiniertes Potential mit Fehlerbalken.

Abb. 4.31A zeigt den Potentialverlauf für System 1 (blau) und 2 (rot). Das kombinierte Potential ist grün gezeichnet und besteht aus Daten der Sektionen beider Richtungen mit minimalen statistischen Fehlern. Im Hintergrund sind Teile der LH1 Struktur zu sehen. Abb. 4.31B zeigt das kombinierte Potential in grün mit eingezeichneten Fehlerbalken. Da sowohl Anfangs- als auch Endpunkt des Potentials fest sind, ergibt sich ein Verlauf des statistischen Fehlers, der von der Mitte des Potentials zu den Enden hin abnimmt und dort verschwindet. Alle strukturellen Merkmale sind noch im Potentialverlauf enthalten; die
Gesamtmodulation hat sich im kombinierten Potential auf ca. 8 k_BT verringert. Der Fehler liegt im Mittel bei ca. 2 k_BT, der maximale Fehler beträgt ca. 4 k_BT. Verglichen mit der Gesamtmodulation des Potentials liegt der Fehler im Mittel bei ca. 25 %, der maximale Fehler bei 50 %. Dies stellt eine Obergrenze der statistischen Ungenauigkeit dar.

4.9.1.2. Mean First Passage Time
Um die Frage zu beantworten, ob Diffusion entlang des vorgeschlagenen Pfades als Transportmechanismus durch den LH1-Ring in Frage kommen kann, wurde, basierend auf dem rekonstruierten Potential, eine mittlere Zeit abgeschätzt, in der sich das Ubichinon-Molekül durch den LH1-Ring bewegt. Die Mean First Passage Time (MFPT) lässt sich dann mit experimentell bestimmten Umsatzraten für das Reaktionszentrum in Purpurbakterien vergleichen. Diese liegen im Bereich von maximal 1000 Hz [103, 104]. Die Umsatzrate eines RC ist die Rate, mit der zwei Elektronen und zwei Protonen nach der Ladungstrennung im RC auf ein Ubichinon-Molekül übertragen werden, der reduzierte Elektronencarrier in die Membran abgegeben und durch ein oxidiertes Ubichinon wieder ersetzt wird. Um die optimale Funktion des Reaktionszentrums zu gewährleisten, sollte der Transport des Ubichinons durch den LH1-Ring auf einer ähnlichen Zeitskala, verglichen mit der Umsatzrate des RC, ablaufen. Zur Berechnung der MFPT wurde als einfachstes Modell eine Diffusion in einem Potential angenommen, das sich mit der Smoluchowski-Gleichung beschreiben lässt. Im Fall eines Diffusionsprozesses entlang eines eindimensionalen Potentials $G(z)$ nimmt die Smoluchowski-Gleichung folgende Form

$$\frac{\partial}{\partial t} p(z,t \mid z_0,t_0) = \frac{\partial}{\partial z} \left[D(z) \exp \left(-\frac{G(z)}{k_BT} \right) \frac{\partial}{\partial z} \exp \left(+\frac{G(z)}{k_BT} \right) \right] p(z,t \mid z_0,t_0)$$

(4.3)

an. $p(z,t \mid z_0,t_0)$ ist die Wahrscheinlichkeitsverteilung, mit der sich das System zur Zeit t an der Stelle z befindet, wenn das System zum Zeitpunkt t_0 an der Stelle z_0 war. $D(z)$ ist die ortsabhängige Diffusionskonstante und $G(z)$ das Potential. Damit lässt sich die mittlere Diffusionszeit gemäß

$$\tau_{MFP} = \frac{1}{D_{\text{Ubiquinon}}} \int_{z_L}^{z_R} dz \int_{z_L}^{z} dz' \exp \left(\frac{1}{k_BT} \left[G(z) - G(z') \right] \right)$$

(4.4)

bestimmen [105]. In Gleichung (4.4) ist τ_{MFP} die mittlere Diffusionszeit entlang des Potentials $G(z)$ und $D_{\text{Ubiquinon}}$ die Diffusionskonstante des Ubichinons. Bei Gleichung (4.4) handelt es sich
um einen Spezialfall, der bei Verwendung bestimmter Randbedingungen und einer Näherung eintritt.

Auf der einen Seite des Potentials wird eine so genannte reflektierende Randbedingung vorausgesetzt; auf der anderen Seite eine absorbierende Randbedingung. Zudem wird als einfachster Fall eine ortsunabhängige Diffusionskonstante angenommen.

Mit diesem Spezialfall soll eine erste Abschätzung der MFPT für die Diffusion des Ubichinon-Moleküls von der Außenseite des LH1-Rings (Membranbereich, linke Seite im Potential in Abb. 4.31B) auf die Innenseite (Reaktionszentrum, rechte Seite des Potentials in Abb. 4.31B) entlang der Reaktionskoordinate vorgenommen werden. Die Verwendung der oben genannten Randbedingungen wird im Folgenden näher erläutert.

Für die Diffusionskonstante des Ubichinons wird ein konstanter Wert von $5 \times 10^{-8} \text{ cm}^2/\text{s}$ angenommen. Dieser wurde experimentell bestimmt und entspricht der Diffusion des Ubichinon-Moleküls in der Membran [87, 89].

Gemäß Gleichung (4.4), geht das Potential exponentiell in die Bestimmung der MFPT ein und wird so durch den statistischen Fehler stark beeinflusst. Um eine realistische Abschätzung der Größenordnung der Diffusionszeit entlang der Reaktionskoordinate zu erhalten, wurde die
Modulation des Potentials so weit erhöht, dass alle Fehlerbalken durch das modifizierte Potential erfasst wurden. Basierend auf diesen Annahmen wurde eine Obergrenze der MFPT für die Diffusion des Ubichinons durch die Pigment-Protein-Barriere von $\sim 8 \times 10^{-3}$ s berechnet. Dieser Wert entspricht der Zeit, mit der das Ubichinon-Molekül im Mittel einmal von der Außenseite des LH1-Rings auf die Innenseite des LH1-Rings diffundiert.

4.9.1.3. Vergleich der Simulationsergebnisse mit experimentellen Daten

Eine geschlossene LH1-Struktur um das RC aus *Rb. sphaeroides* führt zu einer Erniedrigung der Turnover-Rate um den Faktor zwei, d. h. dass durch die geschlossene Pigment-Protein-Barriere, der Ubichinon/Ubichinol-Austausch durch den LH1-Ring nicht entscheidend gestört wird. Die Messungen wurden bei hohen Lichtintensitäten durchgeführt, um einen limitierenden Faktor aufgrund schwacher Lichtintensität auszuschließen. Das Ubichinon benötigt demnach ca. 1 ms, um den LH1-Ring einmal zu durchqueren; die gesamte Turnover-Rate betrug 285 Hz. Dies ist ca. 6 Mal schneller, als die in dieser Arbeit angegebene Turnover-Rate von ca. 50 Hz. Die Rate stellt jedoch nur eine Untergrenze dar, die aufgrund eines Potentials berechnet wurde, das sämtliche Fehlerbalken beinhaltet und damit maximale Potentialbarrieren aufweist. Eine kleine Veränderung des Potentials wirkt sich aufgrund der exponentiellen Abhängigkeit des Potentials stark auf die MFPT und auf die Turnover-Rate aus. Um eine Turnover-Rate im Bereich von ca. 300 Hz bzw. eine MFPT von ca. 1 ms zu erreichen, müssten die Potentialbarrieren um ca. 30 % herabgesetzt werden.

Die Diffusion des Ubichinons durch den geschlossenen LH1-Ring in *R. rubrum* ist aufgrund der Ergebnisse, der in diesem Kapitel vorgestellten Simulationen auf einer Zeitskala im Millisekundenbereich möglich. Eine Öffnung des LH1-Rings, wie sie in anderen Spezies durch Einbau eines zusätzlichen Proteins (wie z.B. PufX oder das W-Protein) beobachtet werden konnte, ist bei *R. rubrum* für die Diffusion des Ubichinons durch den LH1-Ring nicht notwendig. Diese Aussage wird durch die Tatsache bekräftigt, dass alle bislang bekannten
experimentellen Strukturdaten von LH1 bzw. LH1-RC-Komplexen aus R. rubrum eine geschlossene Ringstruktur besitzen und kein Protein entdeckt werden konnte, dass den LH1-Ring öffnet.

4.10. Zusammenfassung

Die Rekonstruktion des korrigierten Potentialverlaufs erfüllte die im Vorfeld geforderten Bedingungen: i) das Potential besitzt für beide Simulationsrichtungen das gleiche Profil und ii) Start und Endpunkt des Potentials liegen auf demselben Wert. Die Merkmale des Potentials konnten strukturellen Ursachen zugeordnet werden. So sieht man eine Potentialbarriere zu Beginn (ca. 8 k_BT) und am Ende der Reaktionskoordinate (ca. 6 k_BT). Diese Potentialbarrieren werden von Bereichen verursacht, die zwischen den inneren und äußeren α-Helizes liegen. Die zentrale Barriere von ca. 7 k_BT lässt sich durch Wechselwirkung des Ubichinons mit Chlorophyllen und Carotinoiden im Zentrum der Pigment-Protein-Barriere erklären.

Durch Kombination der Ergebnisse für beide Richtungen konnte der Potentialverlauf mit minimalen statistischen Fehlern bestimmt werden. Der Fehler liegt im Mittel bei ca. 2 k_BT, der maximale Fehler beträgt ca. 4 k_BT. Das sind ca. 25 % bzw. 50 %, verglichen mit der Gesamtmodulation des Potentials.

Anhand eines Potentials, das alle Fehlerbalken beinhaltet, wurde eine Obergrenze der MFPT für die Diffusion des Ubichinons durch den LH1-Ring von 8×10^{-3} s abgeschätzt. Unter der Annahme, dass die Diffusion den limitierenden Schritt innerhalb des Kernkomplexes darstellt, beträgt die Turnover-Rate ca. 50 Hz. Durch einen Vergleich dieser Werte mit experimentellen Daten und unter Berücksichtigung möglicher weiterer limitierender Faktoren unter physiologischen Bedingungen, wie beispielsweise der Lichtintensität, kann geschlussfolgert werden, dass ein Diffusionsprozess des Ubichinons durch einen geschlossenen LH1-Ring möglich ist. Damit lässt sich erklären, warum alle bislang bekannten experimentellen Strukturdaten von LH1 bzw. LH1-RC-Komplexen aus *R. rubrum* eine geschlossene Ringstruktur aufweisen.
5. Untersuchung des Proteintranslokationskanals SecY aus *Methanococcus jannaschii*

Um den Einfluss struktureller Unterschiede auf funktionale Konsequenzen zu untersuchen, wurden MD-Simulationen des Proteinkanals SecY in seiner aktiven und inaktiven Form durchgeführt. Dabei wurde überprüft, inwieweit eine Konformationsänderung aus der inaktiven in die aktive Form für den Translokationsprozess notwendig ist und wie sich dies auf die Potentialbarriere zur Aktivierung der Proteintranslokation auswirkt. Darüber hinaus wurde mit Hilfe von SMD-Simulationen die Fähigkeit des Proteinkanals zur Abdichtung gegenüber kleinen Molekülen, wie Wasser und Ionen untersucht. MD-Simulationen zur Relaxation des Kanals in seine inaktive Form erlauben Aussagen über mögliche Funktionen des so genannten Pfropfens, welcher ein wichtiges Strukturelement des Proteinkanals darstellt.
5.1. Einleitung

5.1.1. Allgemeine Beschreibung des Proteinkanals SecY bzw. Sec61

In Prokaryoten wird der Proteinkanal mit SecY bezeichnet, in Eukaryoten mit Sec61 und ist ein Multiproteinkomplex, der in die Membran eingebaut ist [108]. Er besitzt ein hydrophobes Inneres und kann sich sowohl senkrecht zur Membranebene öffnen, um Polypeptide durch eine Membran zu transportieren, als auch in der Membranebene öffnen, um Proteine in die Membran einzubauen. Der Proteinkanal besteht aus drei konservierten Membranprotein-Untereinheiten α, β und γ. Die Homologie der Untereinheiten α und γ aus verschiedenen Spezies ist größer als für die Untereinheit β. Für die Untereinheiten α und γ findet sich eine erhebliche Sequenz-Konservierung zwischen den einzelnen Spezies, für die β-Untereinheit ist dies nicht der Fall. Die β-Untereinheit ist für die Funktionalität des Kanals jedoch nicht essentiell.

Es wird angenommen, dass die Hauptbestandteile, die für die Funktion des Proteinkanals verantwortlich sind, in allen Spezies durch die α- und γ-Untereinheiten gestellt werden. Den Proteinkanal SecY kann man in allen Prokaryoten finden, Sec61 kommt in allen Eukaryoten vor.

Der größte Teil des Proteinkanals wird von der α-Untereinheit gebildet. Die α-Untereinheit besteht aus insgesamt 10 Transmembranregionen. Sowohl der C- als auch der N-Terminus liegen im Cytosol. Die β-Untereinheit besteht in Eukaryoten und Archaeobakterien aus einem
Die Bezeichnungen der einzelnen Untereinheiten des Proteinkanals unterscheiden sich von Organismus zu Organismus, was in Tab. 5.1 an einigen Beispielen zusammengefasst ist:

<table>
<thead>
<tr>
<th>Tab. 5.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nomenklatur der Protein-Untereinheiten des Proteintranslokationskanals für verschiedene Organismen.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>α-Uniteinheit</td>
</tr>
<tr>
<td>β-Uniteinheit</td>
</tr>
<tr>
<td>γ-Uniteinheit</td>
</tr>
</tbody>
</table>

5.1.2. Funktionsweise des Proteinkanals SecY bzw. Sec61

Eine der ersten experimentellen Studien, die einen Hinweis darauf gegeben haben, dass der SecY/Sec61-Komplex die Funktion eines protein-translozierenden Kanals hat, wurde 1994 von Mothes et al. durchgeführt [109]. Mit Hilfe von Crosslinking-Experimenten fand man heraus, dass sich fast ausschließlich Bindungen zwischen dem translozierten Polypeptid und Sec61α, der größten Untereinheit des Kanals ausgebildet haben. Hieraus konnte geschlossen werden, dass das Polypeptid vom Ribosom direkt in den Proteintranslokationskanal transpor-
tiert wird.

Es sind zwei verschiedene Arten der Translokation von Polypeptiden bekannt. Diese sollen im Folgenden kurz vorgestellt werden.

Bei der cotranslationalen Translokation wird die entstehende Peptidkette während der Translation aus dem Ribosom durch den Proteinkanal geschoben. Dieser Mechanismus findet sich in allen Organismen wieder und wird nicht nur dazu verwendet, Proteine durch die Membran zu transportieren, sondern auch Proteine in die Membran einzubauen. Dabei dient

Eine weitere Form der posttranslationalen Translokation, die nur in Eubakterien vorkommt verwendet eine cytosolische ATPase als treibende Kraft [114]. Das synthetisierte Polypeptid wird von einer ATPase (SecA) gebunden, die wiederum einen Komplex mit dem Proteinkanal SecY eingehen kann. Durch die Hydrolyse von ATP kommt es zu Konformationsänderungen, die das Polypeptid schrittweise in den Proteinkanal schiebt. Dies geschieht solange, bis das komplette Polypeptid durch den Kanal transportiert wurde.
In allen drei Fällen handelt es sich um einen gerichteten Transport, bei dem das noch nicht gefaltete Polypeptid durch den Proteinkanal mit Unterstützung unterschiedlicher Helferproteine befördert wird.

Mit der Veröffentlichung der Kristallstruktur des SecY-Komplexes aus dem Archaeobakterium *Methanococcus jannaschii* mit einer Auflösung von 3.4 Å war es 2004 erstmals möglich, einen detaillierten Blick auf die Struktur des Proteinkanals eines Archaeobakteriums zu werfen und Vermutungen über Struktur-Funktions-Beziehungen zu äußern [120]. Aufgrund der hohen Sequenzsimilarität des Kanals verschiedener Spezies, kann die Struktur stellvertretend für alle Spezies genommen werden.

5.1.3. Die Kristallstruktur des Proteinkanals SecY aus *M. jannaschii*

Die Kristallstruktur 1RHZ zeigt einen monomeren SecY-Komplex mit den Untereinheiten SecY, SecE und Secβ. In Abb. 5.1 ist eine Aufsicht aus dem intrazellulären Raum auf den Kanal gezeigt.

Die vorhandene Kristallstruktur zeigt, dass sich der Kanal im Zentrum eines einzelnen SecY-Komplexes befindet und nicht wie früher angenommen, durch die Zusammenlagerung mehrerer SecY-Komplexe entsteht [115, 116, 119, 121]. Alle konservierten Aminosäuren befinden sich im Zentrum des SecY-Komplexes und nicht auf der Außenseite [120], was auf die essentielle Funktion dieser Aminosäuren schließen lässt. Der Innenbereich, mit Ausnahme
der engsten Stelle des Kanals, besteht aus hydrophilen Aminosäuren. Dadurch wird ein Durchgang durch den Kanal und somit durch die Membran für kleine Moleküle und Proteine aus dem extrazellulären bzw. intrazellulären Bereich möglich.

Die Kristallstruktur zeigt von der Seite betrachtet (entlang der Membranebene) trichterförmige Strukturen auf beiden Seiten, die auf Öffnungen des Kanals hindeuten. Zur Mitte hin verjüngt sich dieser Kanal zu einer sehr engen Stelle, die in der Kristallstruktur geschlossen erscheint (siehe Abb. 5.1B). Dieser Bereich wird im Folgenden als Pore oder Porenbereich bezeichnet. Die engste Stelle besteht aus einem Ring von sechs hydrophoben Aminosäuren, bei denen es sich um Isoleucin und Valin handelt.

In Abb. 5.1A sind die Cα-Atome dieser Aminosäuren in Van der Waals-Darstellung grün eingeführt. Direkt unterhalb der Pore, auf der extrazellulären Seite der Membran ist ein kurzes helikales Segment zu sehen, dass sich genau im Kanalbereich befindet und diesen blockiert (Abb. 5.1, blau). Diese Struktureinheit wird im Folgenden Pfropfen genannt, weil sie den Kanal von einer Seite blockiert. Zusammen mit der Pore könnte dies eine Abdichtung darstellen, was eine der geforderten Eigenschaften dieses Proteinkanals ist. MD-Simulationen an der α-Untereinheit (SecY) dieser Struktur haben gezeigt, dass sich auf einer Zeitskala von ~10 ns Wassermoleküle im Innenbereich des Kanals der Pore von beiden Seiten aus nähern, diese aber nicht durchqueren können [122]. Die Kristallstruktur stellt den Kanal also in einer inaktiven (nicht-translozierenden) Konformation dar. Eine Betrachtung des Porenbereichs und des Pfropfens in Surface-Darstellung zeigen, dass die Pore den Kanal bereits komplett verschließt und sich der Pfropfen direkt unterhalb der Pore befindet und eng an diese anliegt (Abb. 5.2).
Kapitel 5
Untersuchung des Proteintranslokationskanals SecY

Abb. 5.2
Proteinkanal (SecY-Komplex) in Cartoon-Darstellung. Die einzelnen Untereinheiten sind in grau (SecY), dunkelgrau (Secβ) und hellgrau (SecE) dargestellt. In Liccorice- und transparenter Surface-Darstellung sind die Pore in grün und der Pfropfen in blau eingezeichnet. (A) Aufsicht, mit hervorgehobener Pore. (B) Aufsicht, mit hervorgehobenem Pfropfen. (C) Seitenansicht. Die Orientierung ist so gewählt, dass Proteine von oben durch den Kanal nach unten transloziert werden.

Hier ist die Proteinstruktur in Cartoon-Darstellung in grau eingezeichnet. In Abb. 5.2A bzw. B sind die Pore in grün und der Pfropfen in blau als transparente Surface-Darstellung eingezeichnet. Abb. 5.2C zeigt eine Seitenansicht auf den Proteinkanal. Hier sind sowohl Pore als auch Pfropfen in Surface-Darstellung hervorgehoben.

Um den Kanal zu öffnen und somit die Translokation eines Polypeptids zu ermöglichen muss sich die Struktur des Proteinkanals ändern. Zum einen muss der Pfropfen seine Position unterhalb der Pore verlassen, zum anderen muss sich die Pore aufweiten können, um genügend Platz für die translozierte Polypeptidkette zur Verfügung zu stellen.

Simulationen, in denen der Einfluss von Kugeln mit anwachsendem Radius auf die Struktur des inaktiven Kanals untersucht wurde, sowie Simulationen, bei denen Kugeln mit unterschiedlichem Radius durch den Proteinkanal gezogen wurden, haben ergeben, dass die Porenregion eine für die Translokation notwendige Flexibilität besitzt. Die durch die Translokation von Kugeln bedingte Vergrößerung der Pore hatte sich in den Simulationen bereits nach wenigen Nanosekunden teilweise wieder zurückgebildet. Darüber hinaus wurde gezeigt,
dass sich der Pfropfen von der Pore wegbewegen muss, um eine Translokation der Kugeln durch den Proteinkanal zu ermöglichen [125].

In einer weiteren Studie wurde eine α-Helix in einer SMD-Simulation durch den Proteinkanal gezogen, der in der inaktiven Konformation vorlag. Durch die Zugkraft des SMD-Potentials wurde die α-Helix durch die geschlossene Pore gezogen, die sich dadurch geweitet hat. Zusätzlich hat sich der Pfropfen aus der Kanalregion gelöst, wodurch die Pore nicht mehr blockiert war. Auch hier war die Flexibilität des Kanals ausreichend, um eine Translokation der α-Helix zu ermöglichen, ohne die Struktur des Proteinkanals zu beschädigen.

Es stellt sich die Frage, wie ein Übergang aus der inaktiven in die aktive Konformation aussehen kann. Eine Möglichkeit zur Aktivierung kann eine Bindung der Polypeptidkette über ihre Signalsequenz an den Proteinkanal sein. Die Signalsequenz besteht im Falle sekretorischer Proteine aus 15 bis 40 Aminosäuren am N-Terminus des Proteins. Das Signalpeptid besitzt einen hydrophoben Kern und ist von geladenen bzw. polaren Aminosäuren flankiert. Crosslinking-Experimente haben gezeigt, dass der hydrophobe Kern eine α-Helix bildet, die sich zwischen zwei Transmembranhelizes der SecY-Untereinheit einbauen kann [126]. Dies könnte zu einer Konformationsänderung der Untereinheit SecY führen, bei der sich die betroffenen TM-Helizes (TM2b und TM7, in Abb. 5.1A in rot bzw. orange dargestellt) auseinander bewegen und möglicherweise zu einer Destabilisierung der Bindung des Pfropfens führen [120].

Mit diesen Daten (Kristallstruktur des SecY-Komplexes und modellierte aktive Struktur des Proteinkanals) wurden in dieser Arbeit MD-Simulationen durchgeführt, die den Proteinkanal in einer möglichen translozierenden, sowie einer nicht-translozierenden Konformation unter-
suchen. Es wird angenommen, dass die Aktivierung des Kanals im Falle der cotranslationalen Translokation durch Bindung des Ribosoms an den Proteinkanal ausgelöst wird. Die Translokation eines Polypeptids beruht auf einem Modell, das im Folgenden erklärt wird und in der Abb. 5.3 schematisch dargestellt ist.

Abb. 5.3
Schematisches Modell zum Ablauf der cotranslationalen Translokation. Der Proteinkanal (hier ist nur die Untereinheit SecY dargestellt) ist in der Membran eingebettet. (A) Im nicht aktivierte Zustand ist die Pore geschlossen und der Pfropfen sitzt fest auf der Pore des Kanals. (B) Nach einer Aktivierung durch das Ribosom (Andocken an den Proteinkanal und Anlagerung der Signalsequenz des Polypeptids – Polypeptidkette als rote Perlenkette, Signalsequenz als roter Kreis mit gelber Füllung gezeigt) wird eine Konformationsänderung in SecY vermutet. Dadurch lockert sich die Bindung des Pfropfens und die Pore vergrößert sich. (C) Das Polypeptid wird direkt vom Ribosom durch den Kanal befördert. (D) Nach vollendeter Translokation schließt sich der Pfropfen wieder und das Polypeptid kann in seinen gefalteten Zustand übergehen. Nach Abdocken des Ribosoms kommt es erneut zu einer Konformationsänderung und der Proteinkanal geht wieder in seinen Ursprungszustand (A) über und dichtet die Membran somit wieder ab.
Der Einfachheit halber ist nur die SecY-Untereinheit, eingebaut in die Membran, dargestellt. Der Kanal ist in grau, die Pore in grün und der Pfropfen in blau gezeigt. Im nicht aktivierten Zustand ist die Pore geschlossen und der Proteinkanal undurchlässig (Abb. 5.3A). Durch Bindung des Ribosoms und Anlagerung der Signalsequenz der Polypeptidkette an die SecY-Untereinheit (Abb. 5.3B), ändert sich die Konformation, wodurch die Bindung des Pfropfens gelockert wird und sich die Pore aufweitet. Im nächsten Schritt wird das ungefaltete Polypeptid durch die Pore auf die andere Seite der Membran geschoben (Abb. 5.3C). In dieser Zeit kann sich der Pfropfen nicht zur Porenöffnung zurückbewegen. Nach vollendeter Translokation kann das Polypeptid in seine native Konformation falten. Die Signalsequenz wird zu einem nicht bekannten Zeitpunkt während der Translokation vom Polypeptid abgeschnitten und kann sich dann vom Proteinkanal lösen (Abb. 5.3D). Anschließend kann sich der Pfropfen wieder zur Porenöffnung bewegen und nach Abdocken des Ribosoms kommt es erneut zu einer Konformationsänderung, die den Proteinkanal in die inaktive, nicht-translozierende Konformation und damit in den Ausgangszustand überführt. Der Proteinkanal bildet wieder eine zuverlässige Abdichtung der Membran. In diesem Modell wird nicht berücksichtigt, ob es sich um einen einzelnen Proteinkanal oder ein Komplex, bestehend aus mehreren Proteinkanälen handelt, wie dies in der Literatur beschrieben wird. Es wird lediglich angenommen, dass der Prozess der Translokation durch den Kanal eines einzelnen SecY- bzw. Sec61-Komplexes erfolgt [129, 130].

MD-Simulationen in Kombination mit Strukturdaten in atomarer Auflösung können einen detaillierten Einblick in die Prozesse der Proteintranslokation geben, was zum allgemeinen Verständnis und zur Aufklärung bislang unbeantworteter Fragestellungen beiträgt. So ist bislang unbekannt, was eine mögliche aktive Konformation, wie sie in den Kryo-EM-Daten gefunden wurde, für Auswirkungen auf die Abdichtung des Kanals oder die Bindung des Pfropfens im Kanal hat. Aufgrund der typischen Zeitskalen der Proteintranslokation, die typischerweise im Millisekunden- bis Sekundenbereich liegen, reichen die heutzutage üblichen Simulationszeiten (~ ns) nicht aus, um den gesamten Prozessablauf in „Echtzeit“ zu simulieren. In diesem Fall können SMD-Simulationen (siehe Kapitel 2.2.1. Steered Molecular Dynamics) Abhilfe schaffen. Durch eine äußere Kraft wird das System getrieben und der untersuchte Prozess auf die verfügbare Simulationszeit beschleunigt.
5.2. Untersuchte Systeme und Simulationsdetails

Die wenigen bislang veröffentlichten Arbeiten zu MD-Simulationen an Proteintranslokationskanälen wurden am SecY-Komplex oder an Untereinheiten dieses Komplexes in der inaktiven Konformation, basierend auf der Kristallstruktur gemacht [125, 131]. Die SMD-Simulationen zur Translokation einer α-Helix ließen qualitative Aussagen über Bindung und Öffnungsmechanismus des Pfropfens bzw. Flexibilität der SecY-Untereinheit zu. Darüber hinaus wurde der Mechanismus zum Einbau von Proteinen in die Membran und eine mögliche Dimerisierung des Proteinkanals untersucht. Ausgangspunkt für diese Simulationen war die inaktive Konformation, d. h. dass sich der Pfropfen in der geschlossenen Position im Kanalbereich befand. Um eine Öffnung zu induzieren wurde eine α-Helix oder eine Kugel durch den Kanal geschoben. Dazu wurden Kräfte bis zu ~ 1000 pN angelegt, wodurch sich die Pore weitete und der Pfropfen aus dem Kanalbereich gedrückt wurde. Eine Konformationsänderung infolge der Bindung eines Ribosoms oder eines weiteren Bindungspartners wurde nicht berücksichtigt. Die im Rahmen dieser Arbeit durchgeführten MD-Simulationen am Proteinkanal SecY untersuchten die Bindung des Pfropfens, die Abdichtung des Kanals, die Translokation kleiner Moleküle, sowie die Relaxation des Proteinkanals sowohl an der inaktiven Konformation als auch an einer möglichen aktiven Form. Dazu wurden MD- sowie SMD-Simulationen an unterschiedlichen Systemen durchgeführt, bei denen sich einerseits der Pfropfen des Proteinkanals in einer offenen bzw. geschlossenen Stellung befand und andererseits der Proteinkanal in einer inaktiven bzw. aktiven Konformation vorlag. Anhand von multiplen SMD-Simulationen, gekoppelt mit einer statistischen Analyse wurde versucht, nicht nur qualitative Aussagen machen zu können, sondern die Bindung des Pfropfens im Kanal in der inaktiven sowie aktiven Konformation quantitativ zu bewerten. Abb. 5.4 zeigt einen Überblick über die in diesem Kapitel gemachten Simulationen.
Abb. 5.4

Ausgangspunkt war die Kristallstruktur 1RHZ aus der Protein-Datenbank. Diese Startstruktur wurde in einer Lipid-Wasser-Umgebung equilibriert und wird im Folgenden als inaktiv geschlossene Konformation bezeichnet. Die Pore dichtet hierbei den Kanal ab (inaktiv) und der Pfropfen sitzt im Kanalbereich unterhalb der Pore (geschlossen). Aus dieser Struktur wurde mittels SMD-Simulationen der Pfropfen entfernt. Nach erneuter Equilibrierung erhält man eine Struktur, die mit inaktiv offen bezeichnet wird. Die Porenregion bleibt dabei unverändert. Die inaktiv geschlossene Konformation wurde mittels MD-Simulationen so verän-
dert, dass die Porenregion der modellierten Struktur, basierend auf Kryo-EM-Daten der translozierenden Konformation, entspricht. Die nach Equilibrierung erhaltene Struktur wird mit *aktiv geschlossen* gekennzeichnet. Auch bei dieser Struktur wurde der Pfropfen mittels SMD-Simulationen aus der Kanalregion herausgezogen; die neue Struktur wurde ebenfalls equilibriert. Sie stellt die *aktiv offene* Konformation dar. An diesen Systemen wurden Simulationen durchgeführt, die im Folgenden kurz vorgestellt werden.

Die Änderung der Freien Energie beim Abziehen des Pfropfens aus der Pore des Proteintranslokationskanals sowohl in *inaktiver* als auch *aktiver* Konformation wurde mittels multiplen SMD-Simulationen bestimmt (Abb. 5.4, rot). Bei den Strukturen *inaktiv offen, aktiv geschlossen* und *aktiv offen* wurde mittels MD-Simulationen die Relaxation in den Ausgangszustand, also in die *inaktiv geschlossene* Konformation untersucht (Abb. 5.4, blau). Darüber hinaus wurde in allen Konformationen die Translokation eines Wassermoleküls und eines Ions durch die Porenregion des Proteinkanals simuliert, um Aussagen über die möglichen Einflüsse der Konformationen auf die Abdichtung des Proteinkanals machen zu können (Abb. 5.4, grün).

5.3. Equilibrierung der Startstruktur von SecY

Die Startstruktur des SecY-Komplexes wurde nach Hinzufügen von Wasserstoffatomen in eine Doppellipidschicht eingebaut, so dass der hydrophobe Bereich des Proteins maximal durch den hydrophoben Bereich der Membran abgedeckt wurde. Anschließend wurde das gesamte System mit einer Wasserbox versehen. Mit Hilfe des VMD-Plugins *Solvate* konnten dem Gesamtsystem Ionen hinzugefügt werden, so dass ein Ladungsausgleich vorhanden war und eine gewünschte Salzkonzentration eingestellt werden konnte. Das Programm verwendet
hierfür Natrium- und Chloridionen als Standardionen. Der Aufbau des Simulationssystems ist in Abb. 5.5 gezeigt. In der Abbildung sieht man eine Seitenansicht auf die Einheitszelle.

Abb. 5.5A zeigt die Proteinstruktur des Proteintranslokationskanals, in Abb. 5.5B sieht man das System nach Einbau der Doppellipidschicht und in Abb. 5.5C wurde die Wasserbox hinzugefügt. Die Proteinstruktur ist in grau (Cartoon-Darstellung), die Pore und der Pfropfen sind in grün bzw. blau (Surface-Darstellung) eingezeichnet. Wasser- und Lipidmoleküle wurden der besseren Übersicht wegen zum Teil nicht eingezeichnet. Zu erkennen ist, dass die Lipidmoleküle eine geordnete Struktur aufweisen und die Wassermoleküle nur oberhalb und unterhalb der Doppellipidschicht zu finden sind. Die Kanalregion ist frei von Wassermolekülen. Ionen sind in der Abbildung nicht eingezeichnet.

Abb. 5.5
Zusammenbau der Startstruktur. Das Protein ist in grau (Cartoon-Darstellung), die Pore und der Pfropfen sind in grün bzw. blau (Surface-Darstellung) eingezeichnet. Lipide und Wasseratome sind in (B) und (C) zur besseren Übersicht nur teilweise dargestellt. (A) Seitenansicht auf die Proteinstruktur. (B) Einbau des Protein-kanals in die Doppellipidschicht. (C) Hinzufügen der Wasserbox (Ionen sind nicht eingezeichnet).

Minimierung: Das Proteinrückgrat des Proteinkanals wird mit einem harmonischen Constraint festgehalten, die übrigen Atome wurden energieminimiert. Damit lassen sich potentielle „Energiespitzen“, die aufgrund der Van der Waals-Wechselwirkung überlappend oder dicht beieinander liegender Atome entstehen, bereinigen, indem die Positionen der Atome gemäß dem Gradienten der potentiellen Energie verändert werden, bis ein lokales Minimum erreicht ist, oder ein festgelegter Grenzwert unterschritten wird. Für die Energie-minimierung des Systems wurde sowohl die Steepest Descent-, als auch die Conjugate Gradient-Methode verwendet.

Equilibrierung des Lösungsmittels: Der Proteinkanal wird mit einem harmonischen Constraint von 70 pN/Å festgehalten und die Lipide und Wassermoleküle werden equilibriert. Das System wird von 0 K entsprechend einer Temperaturrampe auf 300 K aufgeheizt. Dabei kommt es zum Auftauen von Freiheitsgraden der Lipide, was dazu führt, dass die Lipidschwänze ihre anfängliche geordnete Struktur verlieren und sich Wassermoleküle zwischen die hydrophilen Kopfgruppen der Lipide einlagern. Die Simulation wurde im NVT-Ensemble durchgeführt. Die Simulationszeit betrug insgesamt 400 ps.

Equilibrierung des Gesamtsystems: In einem letzten Schritt wurde der Constraint auf die Atome des Proteinrückgrats des Proteinkanals innerhalb der ersten Nanosekunde auf 0 pN/Å reduziert, mit dem Ergebnis, dass das System frei equilibrieren kann. Es wurde im NPT-Ensemble bei einer konstanten Temperatur von 300 K und einem konstanten Druck von 1 bar simuliert. Die Simulationszeit betrug 22 ns.

5.3.1. Ergebnisse und Diskussion

Abb. 5.6 zeigt das Gesamtsystem nach der Equilibrierung sowie relevante Simulationsdaten. Die Gesamtenergie des Systems sowie das Systemvolumen sind in Abb. 5.6A,B für den Simulationszeitraum von 18 ns bis 22 ns gezeigt. Beide Systemparameter zeigen einen

Abb. 5.6
Systemdaten bzw. strukturelle Daten der Equilibrierung der Startstruktur. (A) Gesamtenergie des Systems. (B) Volumen des Gesamtsystems. (C) Strukturelle Abweichung des Proteinrückgrats von der Startstruktur. (D) Seitenansicht auf die equilibrierte Struktur des Proteinkanals. Das Proteinrückgrat ist in grau (Cartoon-Darstellung), der Pfropfen und die Pore in blau bzw. grün (Surface-Darstellung) gezeigt. Lipid- bzw. Wasseratome sind der Übersicht wegen teilweise weggelassen.

Der RMSD-Wert steigt anfänglich auf einen Wert von ca. 2.3 Å in den ersten 5 ns an. Die strukturelle Abweichung stabilisiert sich im weiteren Verlauf der Simulation bei einem RMSD-Wert von ca. 2.7 Å; während der letzten 10 ns bleibt der RMSD-Wert nahezu konstant. Die strukturelle Abweichung des Proteinkanals im Verlauf der Simulation ist vergleichbar mit anderen MD-Simulationen, die an SecY bereits durchgeführt wurden und

5.4. Simulation der aktiv geschlossenen Konformation des Proteinkanals SecY

Zum einen kann SecY an die Austrittsstelle der Polypeptidkette des Ribosoms binden; diese Bindungsstelle besitzt somit eine physiologische Relevanz. Zum anderen bindet SecY an die Austrittsstelle der mRNA des Ribosoms, einem Bereich des Ribosoms, der nicht direkt an der Proteintranslokation beteiligt und somit als physiologisch nicht relevant in Bezug auf die Proteintranslokation ist.

Aufgrund der physiologischen Relevanz der Bindungsstellen, wird vermutet, dass es sich bei der Konformation des Proteinkanals an der Austrittsstelle der Polypeptidkette des Ribosoms um die translozierende Konformation handelt, wohingegen die Konformation des Proteinkanals, die an der Austrittsstelle der mRNA gefunden wurde, die nicht-translozierende Konformation darstellt.

In der Proteindatenbank sind die translozierende (aktive) Struktur des Proteinkanals mit dem Namen 2AKH und die nicht-translozierende (inaktive) Konformation des Proteinkanals mit
dem Namen 2AKI abgelegt. Zu beachten ist dabei, dass nur die Cα-Atome des Proteinrückgrats des Kanals bekannt sind.

Um die Strukturen in dieser Arbeit einsetzen zu können, wurden sie mit der equilibrierten Startstruktur 1RHZ, der _inaktiv geschlossenen_ Konformation, bestmöglich überlagert. Für die Überlagerung wurden nur die helikalen Bereiche der SecY-Untereinheit verwendet. Das Ergebnis ist in Abb. 5.7 in der Aufsicht dargestellt. Die helikalen Bereiche der drei Strukturen sind in Cartoon-Darstellung, die Cα-Atome der Aminosäuren, die die Pore bilden, sind in Van der Waals-Darstellung gezeigt. Die Referenzstruktur der SecY-Untereinheit aus 1RHZ ist grün angefärbt, gelb eingefärbt ist die gefittete Struktur der nicht-translozierenden Konformation (2AKI) basierend auf den Kryo-EM-Daten und blau die gefittete Struktur der translozierenden Konformation (2AKH), ebenfalls basierend auf Kryo-EM-Daten.

Eine Übereinstimmung ist zwischen der Referenzstruktur (grün) und der nicht-translozierenden Konformation des Proteinkanals (gelb) zu erkennen. Die translozierende Konformation des Proteinkanals (blau) weicht deutlich von der Referenzstruktur ab.

Abb. 5.7 Struktureller Vergleich der Proteinkanäle aus den Strukturen der Proteindatenbank 1RHZ (grün – Kristallstruktur des Proteinkanals), 2AKH (gelb – gefittete nicht-translozierende Struktur basierend auf Kryo-EM-Daten) und 2AKI (blau – gefittete translozierende Struktur basierend auf Kryo-EM-Daten); Die Cα-Atome sind in Cartoon-Darstellung gezeigt, die Atome der Pore in Van der Waals-Darstellung.
Die strukturelle Abweichung (RMSD-Werte der Cα-Atome der helikalen Bereiche in der Porenregion) zwischen der equilibrierten Startstruktur 1RHZ (inaktiv geschlossene Konformation) und der nicht-translozierenden EM-Struktur 2AKI beträgt ca. 1.62 Å, zwischen der equilibrierten Startstruktur 1RHZ und der translozierenden EM-Struktur 2AKH beträgt der RMSD-Wert 4.37 Å. Die Pore, hervorgehoben durch die in Van der Waals-Darstellung gezeigten Atome, ist in der translozierenden Struktur geweitet. Die helikalen Bereiche liegen weiter vom Zentrum der Pore (Mittelpunkt der Abbildung) entfernt als im nicht-translozierenden Fall.

Um die Referenzstruktur (inaktiv) in die Konformation der aktiven Struktur (2AKH) zu überführen, wurde eine künstliche Konformationsänderung an der equilibrierten Startstruktur durchgeführt. Hierzu wurden harmonische Constraints auf vier helikale Bereiche in direkter Umgebung der Porenregion angelegt, um diese Helizes während einer MD-Simulation auf die Position der entsprechenden helikalen Bereiche in 2AKH (blaue Struktur in Abb. 5.7) zu bewegen. Eine Überlagerung jedes einzelnen helikalen Bereichs auf die entsprechende helikale Struktur der Zielstruktur diente zur Bestimmung der Referenzpositionen der verwendeten Constraints. Dies führte dazu, dass sich die helikalen Strukturen als Ganzes bewegten, und dass die Sekundärstruktur erhalten wurde. Dieser Vorgang ist schematisch in Abb. 5.8 dargestellt.

Abb. 5.8
Schematische Darstellung des Übergangs der Referenzstruktur aus der inaktiven in die aktive Konformation. Mit Hilfe von harmonischen Constraints wurden Teile der equilibrierten Startstruktur (rosa eingefärbte α-Helizes) in die neue Konformation überführt (Andeutung der Bewegung durch die gelben Pfeile, linker Teil der Abbildung). Die veränderte Struktur (aktive Konformation) ist im rechten Teil der Abbildung dargestellt. Das Protein ist in grau (Cartoon-Darstellung) gezeigt, die Pore und der Pfropfen sind in grün bzw. blau (Surface-Darstellung) eingezeichnet.
Das Protein ist in grau, die helikalen Bereiche der Porenregion sind in rosa eingefärbt. Zusätzlich zur Proteinstruktur und der Porenregion sind die Pore in grün und der Pfropfen in blau hervorgehoben. Im linken Teil der Abbildung ist die Aufsicht auf die equilibrierte Startstruktur 1RHZ (*inaktiv geschlossene* Konformation) gezeigt. Die Pfeile sollen die Bewegungsrichtungen andeuten, in die die helikalen Bereiche auf Grund der harmonischen Constraints bewegt werden. Im rechten Teil der Abbildung ist die Endstruktur ebenfalls als Aufsicht gezeigt. Es ist deutlich zu erkennen, dass sich die Porenregion (grün) geweitet hat und jetzt keine geschlossene Oberfläche mehr erkennbar ist. Unterhalb der Pore ist bereits der Pfropfen (blau) zu sehen.

5.4.1. Ergebnisse und Diskussion

In der Abb. 5.9 ist das Ergebnis der MD-Simulation der aktiven Struktur anhand der wichtigsten System- und Strukturgrößen zusammengefasst. Die Gesamtenergie des Systems ist in Abb. 5.9A dargestellt. Der Kurvenverlauf zeigt zwischen 4 ns und 6 ns einen stabilen Verlauf, zu Beginn ist eine minimale Abweichung der Energie von ihrem anfänglichen Wert zu sehen. Ein deutlicher Trend über den gesamten Verlauf der Simulation ist jedoch nicht zu erkennen. In Abb. 5.9B,C sieht man eine Überlagerung der Proteinstruktur des simulierten Proteinkanals (grün) mit der, anhand der Kryo-EM-Daten bestimmten Zielstruktur, translozierenden Konformation (blau). Diese Struktur entstand durch bestmögliche Überlagerung aller helikalen Bereiche der equilibrierten Startstruktur mit der Struktur 2AKH. Zu sehen ist eine Aufsicht von der intrazellulären Seite vor (Abb. 5.9B) und nach der Simulation (Abb. 5.9C). Die
Strukturen sind in Cartoon-Darstellung gezeichnet. Nur die helikalen Bereiche der SecY-Untereinheit sind zu sehen. Man kann erkennen, dass sich der zentrale Porenbereich (dazugehörige α-Helizes dick gezeichnet) sehr gut an die Zielstruktur angepasst hat.

Abb. 5.9

Dies ist nicht erstaunlich, da gerade in diesen Bereich der harmonische Constraint angelegt wurde. Die umliegende Struktur wird durch diese Constraints indirekt beeinflusst und reagiert ebenfalls mit einer strukturellen Veränderung. Die helikalen Segmente dieses Außenbereichs
ähern sich ebenfalls der Zielstruktur an, jedoch überlagern sich am Ende die gemittelte Endstruktur und die Zielstruktur nicht vollständig (Abb. 5.9C). Dies spiegelt sich auch in den RMSD-Daten der strukturellen Abweichung wieder. In Abb. 5.9D ist dies für den Verlauf der Simulation für die helikalen Bereiche der Porenregion gezeigt, in Abb. 5.9E für das gesamte Proteinrückgrat. In beiden Fällen erhält man einen qualitativ ähnlichen Gesamtverlauf. Innerhalb der ersten Nanosekunde bewegt sich das System, bedingt durch die harmonischen Constraints, auf die Zielstruktur zu und der RMSD-Wert sinkt im Falle des Porenbereichs von ca. 3 Å auf ca. 0.3 Å (Abb. 5.9D). Dies bedeutet eine nahezu perfekte Übereinstimmung des Proteinrückgrats der helikalen Segmente im Porenbereich. Der RMSD-Wert bleibt im weiteren Verlauf der Simulation konstant. Im Fall des Proteinrückgrats des gesamten Proteinkanals kommt es in der ersten Nanosekunde zu einer Annäherung an die Zielstruktur. Hier bewegt sich der RMSD-Wert von ca. 4.5 Å auf ca. 3.3 Å und stabilisiert sich im weiteren Verlauf der Simulation auf diesen Wert (Abb. 5.9E). Die strukturelle Veränderung der Ausgangsstruktur in die aktive Konformation und die anschließende Equilibriierungs Simon gab letztendlich ein strukturell stabiles System, das in der relevanten Porenregion sehr gut mit der modellierten Struktur übereinstimmt. Die Sekundärstruktur bleibt während der gesamten Simulation erhalten.

Die aktiv geschlossene Konformation weist eine geweitete Pore auf, was Auswirkungen auf die Abdichtung des Kanals hat. Wie man in der Abb. 5.9F deutlich erkennen kann, öffnet sich dadurch die Pore für Wassermoleküle, die bereits nach kurzer Zeit die Porenregion durchqueren können.

Man erhält so eine mögliche aktive Konformation des Proteinkanals, die durch das Einbringen einer minimalen Anzahl neuer Strukturinformationen entstanden ist. Allgemein wird angenommen, dass sich die Pore aufweiten muss, um eine Translokation eines Polypeptids zu ermöglichen. Eine solche Aufweitung des Kanals ist gegeben, wenn sich der Proteinkanal in der aktiven Konformation befindet. Das Modell der aktiven Struktur des Proteinkanals erlaubt es erstmals, die Auswirkung einer geweiteten Pore auf molekularer Ebene in MD-Simulation zu untersuchen.
5.5. Abziehen des Pfropfens

5.5.1. Voruntersuchung – Schnelles Abziehen

In einem ersten Versuch wurde der Pfropfen in beiden Systemen (inaktiv geschlossen und aktiv geschlossen) mit einer Geschwindigkeit von 20 Å/ns in die negative z-Richtung gezogen. Die Kraft wirkte auf den Schwerpunkt des Pfropfens. Die Kraftkonstante des SMD-Constraints betrug 500 pN/Å wodurch sichergestellt wurde, dass der Schwerpunkt des Pfropfens dem Zugpotential eng folgte. Ein harmonisches Zusatzpotential mit einer Stärke von 50 pN/Å, das auf die Kopfgruppen der Lipide wirkte, sorgte dafür, dass sich während der Simulation, aufgrund der einwirkenden Kraft auf den Pfropfen, nicht die gesamte Proteinstruktur in die negative z-Richtung bewegte. Dieser Constraint beeinflusste die Lipide ausschließlich in z-Richtung, so dass sie in ihrer Bewegung entlang der Membranebene nicht eingeschränkt, die z-Positionen sowie die Ausdehnung der Doppellipidschicht aber fixiert waren. Die Simulationsdauer für beide Systeme betrug jeweils 350 ps, was einer Bewegung des Pfropfenschwerpunktes um ca. 7 Å entspricht. Die Ergebnisse dieser Simulationen werden im Folgenden vorgestellt.

5.5.1.1. Ergebnisse und Diskussion

Der Verlauf, der am Pfropfen anliegenden Kraft, ist in Abb. 5.11 für beide Konformationen des Proteinkanals gezeigt. In blau ist der Verlauf für die Simulation der inaktiv geschlossenen Konformation, in rot für die Simulation der aktiv geschlossenen Konformation dargestellt.
Abb. 5.11

Um sich ein besseres Bild des Abziehprozesses des Pfropfens machen zu können, sind in Abb. 5.12 Momentaufnahmen des Proteinkanals aus beiden Simulationen in zeitlicher Abfolge zu sehen. Gezeigt sind die ersten 300 ps, was einer Zugdistanz von 6 Å entspricht.

Im Fall der inaktiv geschlossenen Konformation (Abb. 5.13A) sieht man bis ca. 250 ps eine langsamer stetige Abnahme der Wechselwirkungsenergie von ca. -30 kcal/mol auf ca. -25 kcal/mol. Danach knickt die Kurve ab, und die Wechselwirkungsenergie nimmt um ca. 15 kcal/mol innerhalb der nächsten 50 ps ab. Genau zu diesem Zeitpunkt ist ebenso ein deutlicher Abriss der Kraft in Abb. 5.11 zu sehen und der Pfropfen löst sich komplett von der Pore (Abb. 5.12 obere Reihe, vierte Momentaufnahme).

Im Fall der aktiv geschlossenen Konformation (Abb. 5.13B) ist die Wechselwirkungsenergie von Beginn an geringer und liegt bei ca. -13 kcal/mol. Im Verlauf der Simulation sind zwei markante Anstiege im Profil der Wechselwirkungsenergie zu beobachten: Zwischen 70 ps und 125 ps nimmt die Wechselwirkungsenergie von -13 kcal/mol auf -9 kcal/mol ab;

[Diagramm 5.13: Verlauf der Van der Waals-Wechselwirkung (WW) zwischen Pfropfen und Pore bei Abziehen des Pfropfens für den Proteinkanal in der inaktiv geschlossenen Konformation (A) und in der aktiv geschlossenen Konformation (B).]
zwischen 175 ps und ca. 250 ps kommt es zu einer erneuten Abnahme von -9 kcal/mol auf -3 kcal/mol.

In dieser Betrachtung wurden ausschließlich Van der Waals-Wechselwirkungen zwischen dem Porenbereich und dem Pfropfen betrachtet, da sowohl an der Oberfläche des Pfropfens, als auch an der Pore größtenteils hydrophobe Aminosäuren liegen. Um jedoch quantitative Aussagen machen zu können, muss die Änderung der Freien Energie bestimmt werden.

5.5.2. Bestimmung des Potential of Mean Force

5.5.2.1. Ergebnisse

Aus den Profilen der Kraft der einzelnen Simulationen lässt sich die Arbeit bestimmen, die von außen am System verrichtet wird (Abb. 5.14).

Für das Ensemble des Proteinkanals in der inaktiv geschlossenen Konformation (Abb. 5.14A) ergeben sich Arbeitsprofile, die alle im Verlauf der Simulation ansteigen und nach einer Distanz von ca. 6 Å im Bereich zwischen 80 - 100 k_BT(300K) liegen. Innerhalb der letzten Nanosekunde steigen die Arbeitswerte bereits auf über 100 k_BT(300K) an. Die Arbeitswerte des Ensembles des Proteinkanals in der aktiv geschlossenen Konformation (Abb. 5.14B) liegen alle deutlich unter diesen Werten. Sie steigen ebenfalls im Lauf der Simulation an und haben zum Ende, mit Ausnahme einer Simulation, einen Wert im Bereich zwischen 30 - 50 k_BT(300K). Die Verteilung der Arbeitswerte wird in beiden Fällen entlang der Trajektorie breiter, was ein Anzeichen dafür ist, dass die Dissipation entlang der Reaktionskoordinate zunimmt. Aus den Arbeitsprofilen, den Nichtgleichgewichtsdaten, lässt sich mit Hilfe von Fluktuationstheoremen die Änderung der Freien Energie entlang einer gewählten Reaktionskoordinate (in diesem Fall der zurückgelegten Strecke des Pfropfens in Zugrichtung) extrahieren (siehe Kapitel 2.4.2 Rekonstruktion des Freien Energieprofils aus SMD-Simulationen).

Pro Simulationssystem konnten 10 Arbeitsprofile mit Hilfe der Kumulantenentwicklung bis zur zweiten Ordnung analysiert werden. Die Verwendung dieser Näherung ist gerechtfertigt, da für das Potential eine harte Feder (stiff spring approximation) zum Einsatz kam und zusätzlich eine SMD-Geschwindigkeit von 5 Å/ns gewählt wurde, was halb so schnell ist, wie die langsamste Geschwindigkeit in den SMD-Simulationen von Deka-Alanin. Anhand der Breite, der als Gaußförmig angenommenen Arbeitsverteilungen, konnte die dissipierte Arbeit

Abb. 5.14
Arbeitsprofile aus den SMD-Simulationen, bei denen der Pfropfen aus der Pore gezogen wurde; für den Proteinkanal in der inaktiv geschlossenen Konformation (A) und in der aktiv geschlossenen Konformation (B).
abgeschätzt werden, die für den Großteil der Reaktionskoordinate kleiner 7 k_B T^{(300K)} und das System somit in der Nähe des Gleichgewichts war.

Die Änderung der Freien Energie ΔG entlang der Reaktionskoordinate ist in Abb. 5.15 dargestellt. Abb. 5.15A zeigt den Verlauf der Freien Energie während des Abziehens des Pfropfens aus dem Proteinkanal für die *inaktiv geschlossenen* Konformation, Abb. 5.15B für die *aktiv geschlossene* Konformation. Die Rekationskoordinate ist im *inaktiven* System bis 7 Å, im *aktiven* System bis 6 Å rekonstruiert worden.

Abb. 5.15
PMF bei Abziehen des Pfropfens, berechnet aus den Arbeitprofilen aus Abb. 5.14, für den Proteinkanal in der *inaktiv geschlossenen* Konformation (A) und für den Proteinkanal in der *aktiv geschlossenen* Konformation (B).

Der Mittelwert der Arbeit ist als schwarze Kurve zu sehen, blau bzw. rot zeigen die Potentialverläufe der entsprechenden Systeme, berechnet mit der Kumulantentwicklung.

PMF-inaktiv geschlossen

Für den Proteinkanal in der *inaktiv geschlossenen* Konformation steigen die Potentialwerte während der Simulation an. Am Ende der Reaktionskoordinate ist ein Abflachen des Potentialverlaufs zu erkennen. Nach 7 Å liegt die Änderung der Freien Energie bei ca. 70 k_B T^{(300K)}. Dieser Betrag an Freier Energie muss investiert werden, um den Pfropfen um 7 Å von der Pore zu ziehen.

PMF-aktiv geschlossen

Ein anderes Bild ergibt sich bei Betrachtung des Potentialverlaufs, wenn sich der Proteinkanal in der *aktiv geschlossenen* Konformation befindet. Hier liegen sowohl der Mittelwert der Arbeit sowie die Kumulantentwicklung bis zur zweiten Ordnung bei deutlich geringeren Werten als dies für den Proteinkanal in der *inaktiv geschlossenen* Konformation der Fall ist. Die Potentialwerte steigen im ersten Teil der Reaktionskoordinate bis ca. 3.75 Å auf ca.
10 kBT(300K) an. Bei 4.75 Å ist ein kleiner „Dip“ zu erkennen, danach steigen die Potentialwerte wieder leicht an. Am Ende des rekonstruierten Teils der Reaktionskoordinate (bei 6 Å), liegt der Potentialwert bei ca. 13 kBT(300K).

Fehlerbetrachtung

Für beide Potentialverläufe sind in Abb. 5.15 Fehlerbalken eingezeichnet. Bei den Fehlerbalken handelt sich um einen statistischen Fehler, der im Wesentlichen aus der Bestimmung der Varianz der Arbeitsverteilung anhand von zehn Werten folgt. Dieser wird analog zu Kapitel 4.9.1.1. Fehlerbetrachtung berechnet. In beiden Fällen wird der Fehler im Laufe der Simulation größer, da die Varianz der Arbeitsverteilung bzw. die Dissipation zunimmt. Dies bedeutet, dass die Potentialbarriere, die überwunden werden muss, um den Pfropfen die ersten 7 Å bzw. 6 Å von der Pore zu bewegen, für die inaktiv geschlossene Konformation des Proteinkanals bei 72 ± 13 kBT(300K) und für die aktiv geschlossene Konformation des Proteinkanals bei 13 ± 11 kBT(300K) liegt.

Vergleich der Potentialbarrieren

Vergleicht man die Potentialbarrieren, kann man sagen, dass durch die Konformationsänderung vom inaktiven in das aktive System die Potentialbarriere deutlich herabgesetzt und damit die Bindung des Pfropfens im Porenbereich gelockert wird. Selbst bei maximal ungünstiger Kombination der gemachten Fehler, d. h. einem minimalen Potential im inaktiven und einem maximalen Potential im aktiven Fall, besteht immer noch ein deutlicher Unterschied der Potentialbarrieren von 35 kBT(300K).

Um die hier auftretenden Größenordnungen der Potentialbarrieren besser einschätzen zu können, soll ein kurzer Vergleich mit Potentialbarrieren von typischen biologischen und chemischen Systemen gemacht werden. Eine Zusammenfassung ist in Tab. 5.2 gezeigt. Hier sind die Potentialbarrieren nach ihrer Barrierenhöhe geordnet aufgelistet.

<table>
<thead>
<tr>
<th>Art der Potentialbarriere</th>
<th>ΔE / kBT(300K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-C Bindungsdissoziation (Kovalente Bindung) [135]</td>
<td>~ 140</td>
</tr>
<tr>
<td>Inaktiv geschlossene Konformation des Proteinkanals</td>
<td>72±13</td>
</tr>
<tr>
<td>Dissoziation von Biotin gebunden an Streptavidin [136]</td>
<td>~ 33</td>
</tr>
<tr>
<td>Aktiv geschlossene Konformation des Proteinkanals</td>
<td>13±11</td>
</tr>
<tr>
<td>Selektivitätsfilter des Aqua-Glyceroporins [100]</td>
<td>~ 10</td>
</tr>
</tbody>
</table>
Die Dissoziationsenergien der Ionenbindung und der kovalenten Bindung sind mit $> 100 \ k_B T(300K)$ sehr groß. Diese Art von Bindungen ist somit am stabilsten. Die Potentialbarriere einer der stärksten, nicht-kovalent gebundenen Protein-Ligand-Paare, die Bindung von Biotin an das Protein Streptavidin liegt bei ca. $33 \ k_B T(300K)$. Dazwischen liegt mit ca. $72 \ k_B T(300K)$ die rekonstruierte Potentialbarriere des Pfropfens in der *inaktiv geschlossenen* Konformation. Dies würde bedeuten, dass die Bindung des Pfropfens im Porenbereich sehr stabil ist, da dieser Wert nur den minimalen Energiebetrag darstellt. Der weitere Verlauf des Potentials ist nicht bekannt und könnte somit zu einer noch höheren Potentialbarriere führen. Eine sehr stabile Bindung des Pfropfens an die Pore des Proteinkanals in der *inaktiv geschlossenen* Konformation erscheint aus biologischer Sicht nicht unlogisch, da der Proteinkanal in dieser Konformation für Polypeptide, und andere kleine Moleküle, wie Wasser, Ionen, etc. undurchlässig sein sollte.

Die Potentialbarriere des aktiven Systems des Proteinkanals findet sich mit $13 \ k_B T(300K)$ im Bereich „schwächerer“ Bindungen (siehe Tab. 5.2). Damit liegt die Potentialbarriere bei einem Wert, den beispielsweise ein Glycerolmolekül aufbringen muss, um den so genannten Selektivitätsfilter des Aqua-Glycero-Kanals zu passieren. Als Selektivitätsfilter wird eine bestimmte Stelle im Zentrum dieses Kanals bezeichnet. Dabei handelt es sich um einen Prozess, der auf biologisch relevanten Zeitskalen im µs-Bereich abläuft. Eine Barriere, wie sie für den Proteinkanal in der *aktiv geschlossenen* Konformation bestimmt wurde, stellt aus biologischer Sicht, in Bezug auf biologisch relevante Zeitskalen ein leicht zu überwindendes Hindernis dar.

Um den hier bestimmten Potentialbarrieren noch mehr Aussagekraft zu verleihen, ist es hilfreich diesen Größen eine Zeitskala zuzuweisen.

Mean First Passage Time

1) Auf der linken Seite des Potentials wird eine reflektierende Barriere angenommen. Das entspricht der Ausgangssituation, in der der Pfropfen fest auf der Pore sitzt. Dies ist möglich, da sich der Pfropfen nur unter hohem Energieaufwand weiter in Richtung Pore bewegen lässt,
was aufgrund der Van der Waals-Abstoßung einen stark ansteigenden Potentialverlauf zur Folge hätte.

MFPT-inaktiv

Mit Hilfe von Gleichung (4.4) und unter Berücksichtigung des Fehlers, d. h. unter Verwendung des minimal möglichen Potentials, ergibt sich für die MFPT des Proteinkanals in der *inaktiv geschlossenen* Konformation ein Wert von ca. 10^8 s. Man kann also davon ausgehen, dass sich der Pfropfen in dieser Konformation auf biologisch relevanten Zeitskalen nicht von alleine von der Pore lösen kann.

MFPT-aktiv

Im Fall der *aktiv geschlossenen* Konformation ergibt sich für die MFPT unter Verwendung des maximal möglichen Potentials ein Wert von ca. 450 ms. Dies liegt innerhalb der für die Proteintranslokation relevanten Zeitskalen, die sich bis in den Sekundenbereich bewegen [137]. Zieht man den tatsächlich berechneten Potentialverlauf in Betracht reduziert sich die MFPT nochmals deutlich. Man kommt hier sogar in den Bereich von 1 ms.

5.5.2.2. Diskussion

Aus Sicht der berechneten Potentialbarrieren und den daraus abgeschätzten Zeitskalen für ein thermisch aktiviertes Abgehen des Pfropfens aus dem Porenbereich, wird durch die MD-Simulationen bestätigt, dass der Proteinkanal zur Translokation eines Polypeptids eine Konformationsänderung von einer inaktiven in eine aktive Struktur durchführen muss. Das Entfernen des Pfropfens aus der inaktiven Struktur des Proteinkanals würde einen sehr hohen

5.6. Translokation von kleinen Molekülen

Eine wichtige Eigenschaft des Proteinkanals besteht darin, in seiner inaktiven Konformation für kleine Moleküle, wie z.B. Wasser oder Ionen, undurchlässig zu sein. Dies ist für das Überleben der Zelle eine Voraussetzung, damit das Konzentrationsverhältnis zwischen Außen- und Innenbereich der Zelle bzw. zwischen unterschiedlichen Zellkompartmenten nicht ungewollt...

Im Folgenden wird anhand von MD-Simulationen untersucht, wie sich dieses Verhalten ändert, wenn der Pfropfen von der Pore abgezogen wird, oder sich das System in der aktiven Konformation befindet. Zusätzlich soll mit Hilfe von SMD-Simulationen qualitativ abgeschätzt werden, mit welchem Aufwand sich ein Wassermolekül oder ein Natriumion durch die Pore bewegen lässt. Die durchgeführten Simulationen erfolgten für ein Wassermolekül und ein Natriumion an dem Proteinkanal in den Konformationen inaktiv geschlossen, inaktiv offen, aktiv geschlossen und aktiv offen (siehe Abb. 5.4).

5.6.1. Abdichtung des Proteinkanals

Um eine mögliche spontane Translokation von Wassermolekülen oder Ionen zu beobachten, wurden MD-Simulationen an vier unterschiedlichen Konformationen des Proteinkanals durchgeführt. Simulationsdetails entsprechen denen zur Erleichterung der Startstruktur (siehe Unterkapitel Equilibrierung der Startstruktur von SecY). Im Fall der aktiven Konformation kam ein harmonischer Constraint zur Stabilisierung der Struktur hinzu (siehe Unterkapitel Simulation der aktiv geschlossenen Konformation des Proteinkanals SecY). In den Simulationen mit abgezogenem Pfropfen wurde der Schwerpunkt des Pfropfens mit einem harmonischen Constraint der Stärke 500 pN/Å in z-Richtung stabilisiert, um zu verhindern, dass sich der Pfropfen wieder in Richtung Pore bewegt. Die Simulationsdauer der inaktiv geschlossenen Konformation betrug 20 ns, der inaktiv offenen Konformation 9 ns, der aktiv geschlossenen Konformation sowie der aktiv offenen Konformation 5 ns. Mittels der Simulationen soll untersucht werden, ob Wassermoleküle oder Ionen den Porenbereich im Kanal über Diffusion von der einen auf die andere Seite durchqueren können. Momentaufnahmen der einzelnen Simulationen sind in Abb. 5.16 gezeigt.
Abb. 5.16
Abdichtung des Proteinkanals. Die Proteinstruktur ist in grau (Cartoon-Darstellung), die Lipide sind in Liccorice-Darstellung gezeichnet. Die Pore und der Pfropfen sind in grün bzw. blau (Surface-Darstellung) zu sehen. Die Wasseratome sind in Van der Waals-Darstellung gezeichnet. Protein und Lipide sind transparent dargestellt und einige Lipide bzw. Wassermoleküle wurden der Übersicht wegen nicht eingezeichnet. (A) Inaktiv geschlossene, (B) inaktiv offene, (C) aktiv geschlossene und (D) aktiv offene Konformation des Proteinkanals.

In Abb. 5.16 sind Seitenansichten auf den Proteinkanal in den unterschiedlichen Konformationen zu sehen. Die Proteinstruktur ist in grau (Cartoon-Darstellung), die Lipide in Liccorice-Darstellung gezeichnet. Die Pore und der Pfropfen sind in grün bzw. blau (Surface-Darstellung) gezeigt. Wassermoleküle und Ionen in der Nähe der Pore bzw. des Pfropfens sind in Van der Waals-Darstellung eingezeichnet. Abb. 5.16A zeigt die inaktiv geschlossene Konformation des Proteinkanals, Abb. 5.16B die inaktiv offene, Abb. 5.16C die aktiv geschlossene und Abb. 5.16D die aktiv offene Konformation. Für die inaktiven bzw. aktiven Systeme wurden der Klarheit wegen unterschiedliche Blickwinkel verwendet.
5.6.1.1. Ergebnisse und Diskussion

Während der gesamten Simulation der inaktiv geschlossenen, sowie der inaktiv offenen Konformation konnte keine spontane Translokation eines Wassermoleküls oder eines Ions beobachtet werden, trotz dass sich in beiden Fällen Wassermoleküle der Pore ungehindert nähern konnten. In der inaktiv geschlossenen Konformation ist dies nur von der intrazellulären Seite aus möglich, die andere Seite wird von dem Pfropfen blockiert. Eine Annäherung von Ionen konnte nicht nachgewiesen werden, was auf die geringe Ionenkonzentration zurückzuführen ist.

Auf der Zeitskala von Nanosekunden scheint der Kanal im inaktiven Zustand (ohne Bindung des Ribosoms) für kleine Moleküle undurchlässig zu sein. Dabei ist dies unabhängig davon, ob sich der Pfropfen auf der Pore befindet oder nicht (Abb. 5.16A,B). Die Pore allein reicht im inaktiven System bereits aus, um die Translokation von Wasser während der Simulation zu verhindern.

Die Simulationen des Proteinkanals in der aktiv geschlossenen (Abb. 5.16C) sowie der aktiv offenen Konformation (Abb. 5.16D) zeigen, dass sich während der Simulation von 5 ns ein Durchgang für Wassermoleküle ausbildet, eine Translokation von Ionen wurde auch hier nicht beobachtet. Wassermoleküle können den Porenbereich nahezu ungehindert passieren. Der Porenbereich ist in dieser Konformation aufgeweitet, so dass er keine sterische Barriere zur Abdichtung des Proteinkanals ausbildet kann. Im Fall des Proteinkanals in der aktiv offenen Konformation ist dies noch ausgeprägter zu beobachten als für den Proteinkanal, der sich in der aktiv geschlossenen Konformation befindet. In diesem Fall ist die Pore mit abgezogenem Pfropfen noch weniger in der Lage, den Proteinkanal gegenüber Wassermolekülen abzudichten.

SMD-Simulationen zum Transport eines Wassermoleküls und eines Natriumions aus dem Intrazellularraum durch die Pore geben einen genaueren Einblick in das Translokationsverhalten der vier Systeme.

5.6.2. Translokation von Wasser und Ionen

Abb. 5.17 zeigt einzelne Momentaufnahmen der Simulationen zur Untersuchung der Translokation eines Wassermoleküls für die vier unterschiedlichen Konformationen, in denen sich der Proteinkanal befinden kann – zu Beginn und am Ende der jeweiligen Simulation.

Das Proteinrückgrat ist in grau (Cartoon-Darstellung), die Pore in grün (Surface-Darstellung) und das Wassermolekül in Van der Waals-Darstellung gezeigt. Der Pfropfen ist als transparente Ellipse in blau angedeutet. Wasser, Lipide und ein Teil der Proteinstuktur sind der Übersicht wegen nicht eingezeichnet. (A), (E) Inaktiv geschlossene Konformation. (B), (F) Inaktiv offene Konformation (C), (G) Aktiv geschlossene Konformation. (D), (H) Aktiv offene Konformation des Proteinkanals.
5.6.2.1. Ergebnisse

Die am System verrichtete Arbeit, um das Wassermolekül bzw. das Natriumion während der Simulation über den Porenbereich zu bewegen, lässt sich aus dem Kraftverlauf entlang der Trajektorie berechnen und ist in Abb. 5.18 für das Wassermolekül und in Abb. 5.19 für das Natriumion dargestellt. Im linken Teil der Abbildung ist der Kraftverlauf während der Simulation für die vier Konformationen des Proteinkanals zu sehen, im rechten Teil der Abbildung ist die daraus resultierende Arbeit aufgetragen. Eine eventuell unterschiedliche z-Position des Wassermoleküls zu Beginn der Simulation ist für die vier untersuchten Systeme durch einen offset berücksichtigt.

Abbildung 5.18
SMD-Simulationen zur Translokation eines Wassermoleküls durch den Porenbereich für die vier Konformationen des Proteinkanals. Das linke Diagramm zeigt die Kraft, die am Schwerpunkt des Wassermoleküls während der Simulation anlag, im Diagramm rechts ist die resultierende Arbeit zu sehen.

Wassermolekül

Für die *inaktiv offene* Konformation (rote Kurve) konnte ein Kraftverlauf aufgezeichnet werden, der von Beginn des Porenbereichs zur Mitte hin ansteigt und dann nach Überqueren der Mitte wieder abnimmt. Die Maximalkraft erreicht mit ca. 150 pN nicht den Maximalwert,
Im rechten Teil von Abb. 5.18 ist die aus den Kräften berechnete Arbeit gezeigt. Der größte Arbeitsaufwand ist im Fall des Proteinkanals in der inaktiv geschlossenen Konformation zu leisten (schwarze Kurve). Um das Wassermolekül durch die Pore zu ziehen, müssen ca. 25 $k_B T^{(300K)}$ an Arbeit am System verrichtet werden. Ohne Pfropfen ist für das inaktiv offene System mit ca. 10 $k_B T^{(300K)}$ deutlich weniger Arbeit zu leisten (rote Kurve). Fast kein Arbeitsaufwand ist für die beiden aktiven Systemen zu leisten (grüne und blau Kurve); hier liegt der zu leistende Arbeitsaufwand im Bereich weniger $k_B T^{(300K)}$.

Natriumion

Die Simulationen zur Translokation des Natriumions zeigen ähnliche Kraft- bzw. Arbeitsverläufe, wie im Fall der Translokation des Wassermoleküls.

![Diagramm zur Translokation eines Natriumions](image)

Abb. 5.19

SMD-Simulationen zur Translokation eines Natriumions durch den Porenbereich für die vier Konformationen des Proteinkanals. Das linke Diagramm zeigt die Kraft, die am Natriumion während der Simulation anlag, im Diagramm rechts ist die resultierende Arbeit zu sehen.
In der Simulation zur Translokation eines Natriumions durch den Proteinkanal in der *inaktiv geschlossenen* Konformation werden die größten Kräfte gemessen, die Maximalkraft liegt bei ca. 650 pN (schwarze Kurve). Die Kraft steigt beim „Durchlaufen“ der Pore von Beginn bis zum Ende der Pore an, bricht ein und erfährt danach einen erneuten Anstieg.

Für die *inaktiv offene* Konformation sieht man einen bis zur Mitte ansteigenden Kraftverlauf (bis ca. 350 pN), der dann bis zum Ende des Porenbereichs wieder abnimmt (rote Kurve).

Die beiden *aktiven* Konformationen zeigen für die Translokation eines Natriumions einen ähnlichen Verlauf wie für die Translokation eines Wassermoleküls, mit Kräften im Bereich von ca. 150 pN in weiten Teilen der Simulation (grüne und blaue Kurve). Lediglich am Ende des Porenbereichs steigt die Kraft für die *aktiv geschlossene* Konformation auf einen Wert von ca. 350 pN an (grüne Kurve).

Auf der rechten Seite der Abb. 5.19 ist die aus den Kräften berechnete Arbeit gezeigt. Zur Translokation eines Natriumions durch den Proteinkanal in der *inaktiv geschlossenen* Konformation muss Arbeit von bis zu 55 kBT(300K) verrichtet werden (schwarze Kurve). Diese aufzubringende Arbeit liegt damit weit über dem Arbeitsaufwand, der für alle anderen Simulationen (die drei anderen Konformationen sowie die Simulationen zur Translokation eines Wassermoleküls) berechnet wurde. Im *inaktiv offenen* System sind nur ca. 25 kBT(300K) für die Translokation eines Natriumions aufzubringen (rote Kurve); der Arbeitsaufwand für den Proteinkanal in der *aktiv geschlossenen* Konformation liegt bei ca. 15 kBT(300K) (grüne Kurve), für den Proteinkanal in der *aktiv offenen* Konformation bei nur ca. 8 kBT(300K) (blaue Kurve).

5.6.2.2. Diskussion

Inaktiv geschlossene Konformation des Proteinkanals
Der Pfropfen sitzt fest unterhalb der geschlossenen Pore. Dies führt dazu, dass die Pore zusätzlich stabilisiert wird und eine Translokation sowohl von einem Wassermolekül (300 pN) wie auch von einem Natriumion (650 pN) die größte Kraft im Vergleich zu allen anderen Konformationen erfordert. Nachdem das Wassermolekül bzw. das Natriumion die Pore durchquert hat, sinkt die aufzubringende Kraft kurzzeitig ab. Die Kraft steigt aber erneut an, da der Pfropfen ein weiteres Hindernis darstellt, das überwunden werden muss. Als direkte Folge ist in dieser Konformation auch der größte Arbeitsbeitrag zur Translokation eines Wassermoleküls (25 k_BT(300K)) bzw. Natriumions (55 k_BT(300K)) zu leisten.

Inaktiv offene Konformation des Proteinkanals

Aktiv geschlossene Konformation des Proteinkanals
Die Pore ist durch die Konformationsänderung in die aktiv geschlossene Konformation im Porenbereich destabilisiert, wodurch sich der Kanal nicht mehr vollständig schließen kann. Die zur Translokation notwendige Kraft ist nochmals deutlich geringer als für die inaktiven Konformationen des Proteinkanals, da die geöffnete Pore kein größeres Hindernis mehr für Wassermoleküle bzw. Ionen darstellt. Lediglich am Ende der Simulation steigt die Kraft wieder leicht an, was durch das Vorhandensein des Pfropfens unterhalb der Pore erklärt werden kann. Wie in der Simulation zur Abdichtung des Proteinkanals bereits gesehen, durchqueren Wassermoleküle bereits innerhalb der Simulationszeit ohne einwirkende Kraft den Porenbereich. Die am System verrichtete Arbeit beläuft sich lediglich auf ca. 3 k_BT(300K), für das Natriumion liegt der Wert bei 15 k_BT(300K).
Aktiv offene Konformation des Proteinkanals

Der Proteinkanal in der aktiv offenen Konformation zeigt einen ähnlichen Verlauf der Kraft und der berechneten Arbeit wie der Proteinkanal in der aktiv geschlossenen Konformation. Weil aber der Pfropfen aus dem Porenbereich entfernt ist, steigt die Kraft nach Überwinden der Pore nicht mehr an. Die am System verrichtete Arbeit beläuft sich auf ca. $2 \text{k}_\text{B} T^{(300\text{K})}$, für das Natriumion liegt der Wert bei $8 \text{k}_\text{B} T^{(300\text{K})}$.

Die in diesem Abschnitt gemachten Aussagen sind qualitative Aussagen, da für die einzelnen Konformationen nur jeweils eine Trajektorie simuliert wurde und somit keine statistische Analyse durchführbar ist, um die auftretenden Fluktuationen bzw. die Dissipation zu berücksichtigen und die Änderung der Freien Energie zu bestimmen. Es lässt sich aber anhand der Ergebnisse der MD- bzw. SMD-Simulationen sagen, dass der Proteinkanal in der inaktiv geschlossenen Konformation durch Zusammenspiel von Pfropfen und Pore sehr gut abgedichtet wird und der Proteinkanal eine große Barriere für Wasser bzw. Ionen darstellt.

Die inaktiv offene Konformation des Proteinkanals zeigte zwar während der Simulation keine Translokation von Wasser bzw. Natriumionen im Nanosekundenbereich, dies stellt aber keinen Widerspruch zu den experimentellen Untersuchungen dar, die auf Zeitskalen im Sekundenbereich durchgeführt wurden. Außerdem kann nicht mit Sicherheit davon ausge-
gangen werden, ob sich das Entfernen des Pfropfens im Experiment nicht auch auf die Struktur der Pore auswirkt.

5.7. Relaxation des Proteinkanals

Es stellt sich abschließend die Frage, wie sich die Struktur des Proteinkanals nach der Translokation eines Polypeptids verhält. Damit der Proteinkanal wieder in seinem Ursprungszustand vorliegt, sind mindestens drei Schritte notwendig.

Zunächst muss es zu einem Abdocken des Ribosoms kommen. Um den Proteinkanal danach aus seiner *aktiven* in die *inaktive* Konformation zu überführen, muss sich einerseits der Porenbereich verengen, andererseits muss der Pfropfen, der sich während der Translokation aus dem Kanalbereich bewegt hat, seine Position direkt unterhalb des Porenbereichs wieder einnehmen. Dabei ist nicht bekannt, in welcher Reihenfolge die einzelnen Schritte ablaufen und ob die strukturellen Veränderungen miteinander verknüpft sind. Nach vollendeter Translokation muss der Proteinkanal aber möglichst schnell in einen Zustand übergehen, in dem Wassermoleküle und Ionen den Kanal nicht passieren können. Um eine ausreichende Abdichtung zu gewährleisten sollte dieser Prozess auf der Sub-Mikrosekundenskala ablaufen [125].

Um einen Einblick in die Dynamik dieser Relaxationsprozesse zu erhalten, wurden daher weitere MD-Simulationen am Proteinkanal in der *inaktiv offenen*, der *aktiv geschlossenen* und der *aktiv offenen* Konformation durchgeführt. Ziel dieser Simulationen war es, zu ermitteln, wie schnell der Proteinkanal in den jeweiligen Konformationen wieder einen abgedichteten Zustand einnimmt und wie sich das System strukturell in den Anfangszustand zurück
entwickelt. Zu diesem Zweck wurden bei allen Simulationen alle Constraints innerhalb der ersten 500 ps auf Null reduziert, was einem Abdocken des Ribosoms entsprechen sollte. Anschließend wurden weitere 9.5 ns unter Beibehaltung der Simulationsparameter (Equilibrierung der Startstruktur von SecY) simuliert. Für den Fall der inaktiv offenen Konformation wurde nur die Relaxation des Pfropfens bei unveränderter Porteinstruktur untersucht. Bei der aktiv geschlossenen Konformation lag das Augenmerk auf den strukturellen Veränderungen des Proteins, da der Pfropfen nicht aus dem Porenbereich entfernt wurde. Für den Fall der aktiv offenen Konformation des Proteinkanals wurde die Dynamik der Relaxation beider Veränderungen untersucht; der Proteinkanal liegt in der aktiven Konformation vor, gleichzeitig befindet sich der Pfropfen außerhalb der Porenregion.

5.7.1. Ergebnisse

5.7.1.1. Relaxation des Proteinkanals in der inaktiv offenen Konformation

Die Simulation des Proteinkanals in der inaktiv offenen Konformation startet aus einem Zustand, bei dem der Pfropfen aus der inaktiven Struktur des Proteinkanals entfernt wurde. In Abb. 5.20A sind die strukturellen Abweichungen der Substrukturen gezeigt. Die strukturelle Abweichung der SecY-Untereinheit ohne Pfropfen ist gering (ca. 1.7 Å) und während der gesamten Simulationszeit stabil (oberer Graph). Durch Abziehen des Pfropfens kommt es zu einer Veränderung der Loop-Regionen in diesem Bereich, was zu dem leicht erhöhten RMSD-Wert führt (mittlerer Graph). Deutliche Veränderungen der Gesamtstruktur, bzw. der
Verlust von Sekundärstruktur-Elementen konnten nicht beobachtet werden. In Abb. 5.20B ist eine gute Übereinstimmung zwischen der simulierten Struktur und der Referenzstruktur sowohl zu Beginn (t = 0 ns) als auch am Ende (t = 10 ns) der Trajektorie erkennbar.

Abb. 5.20
Simulation des Proteinkanals in der inaktiv offenen Konformation zur Untersuchung des Relaxationsverhaltens. (A) Strukturelle Abweichung verschiedener Substrukturen (SecY-Untereinheit, Pfropfen, Pore). (B) Überlagerung der Startstruktur (t = 0 ns) und der Struktur am Ende der Simulation (t = 10 ns) mit der Referenzstruktur. Gezeigt ist die Aufsicht aus dem Cytoplasma auf den Proteinkanal. Die Proteinstruktur ist in orange (Cartoon-Darstellung), die Pore in grün (Surface-Darstellung) gezeigt. Die Referenzstruktur ist in grau bzw. dunkelgrün transparent im Hintergrund zu sehen. Wassermoleküle und Lipide sind nicht eingezeichnet. (C) Seitenansicht des Proteinkanals zu Beginn (t = 0 ns) und zum Ende (t = 10 ns) der Simulation. Das Proteinrückgrat ist transparent in grau (Cartoon-Darstellung), die Lipide transparent in Liccorice-Darstellung gezeigt. Die Pore und der Pfropfen sind in grün bzw. blau (Surface-Darstellung) eingezeichnet. Relevante Wassermoleküle sind in Van der Waals-Darstellung hervorgehoben.
Der Pfropfen nähert sich im Verlauf der Simulation an die Referenzstruktur an (Abb. 5.20A, mittlerer Graph). Die Ausrichtung der Struktur bezieht sich auf die SecY-Untereinheit ohne die Pfropfenregion. Aus diesem Grund sieht man im mittleren Bild nicht nur die strukturelle Abweichung des Pfropfens, sondern auch, die Translations- und Rotationsbewegung des Pfropfens bezogen auf die Referenzstruktur. Es sind Bereiche mit größerer struktureller Veränderung zu erkennen, sowie Bereiche mit konstantem RMSD-Wert (zwischen ca. 2 ns und ca. 6 ns). Der Pfropfen muss, um wieder komplett im Proteinkanal integriert zu sein, die sich dort befindlichen Wassermoleküle verdrängen. Diese haben sich beim Herausziehen des Pfropfens in den Proteinkanal hinein bewegt und liegen nun zwischen Pfropfen und Pore (siehe Abb. 5.20C, t = 0 ns). Aufgrund thermischer Fluktuationen können die Wassermoleküle von dieser Position wegdiffundieren und der Pfropfen kann sich wieder in Richtung Pore bewegen (siehe Abb. 5.20C, t = 10 ns). Am Ende der Simulation hat sich der Pfropfen sichtbar an die Pore angenähert, der RMSD-Wert sinkt von ca. 24 Å auf unter 8 Å. Der Pfropfen hat am Ende der Simulation noch nicht vollständig die Ausgangsposition, in der er in der inaktiv geschlossenen Konformation vorliegt, erreicht.

Die Pore zeigt im Verlauf der Simulation keine strukturellen Veränderungen und ist mit einem RMSD-Wert von nur ca. 1 Å sehr nahe an der Referenzstruktur (Abb. 5.20A, unterer Graph). Dies ist in Abb. 5.20B sowohl zu Beginn, wie auch zum Ende der Simulation deutlich zu erkennen. Über den gesamten Verlauf der Simulation bildet die Pore eine geschlossene Oberfläche und dichtet, wie auch in Abb. 5.20C zu sehen ist, den Kanal ab. Dadurch wird die Translokation von Wassermolekülen durch die Pore verhindert, obwohl der Pfropfen zu Beginn der Simulation komplett aus dem Porenbereich entfernt wurde.

5.7.1.2. Relaxation des Proteinkanals in der aktiv geschlossenen Konformation

Die SecY-Untereinheit des Proteinkanals in der aktiv geschlossenen Konformation zeigt zu Beginn der Simulation eine strukturelle Abweichung von ca. 4 Å (Abb. 5.21A, oberer Graph), was auf eine veränderte Struktur der helikalen Bereiche der Pore zurückzuführen ist. Nach einer deutlichen Abnahme des RMSD-Wertes zu Beginn der Simulation bleibt er von 2 ns bis 8 ns konstant; das simulierte System nähert sich in dieser Zeit der Referenzstruktur nicht an. In den letzten beiden Nanosekunden setzt erneut eine strukturelle Annäherung des Systems an die Referenzstruktur ein. In Abb. 5.21B (t = 0 ns) ist der strukturelle Unterschied von simulierter Struktur und Referenzstruktur durch Überlagerung beider Strukturen verdeutlicht. Die veränderte Struktur der Untereinheit SecY hat auch Auswirkungen auf die Untereinheiten SecE und Secβ. Die Constraints, die in den bisherigen Simulationen zur Stabilisierung der
Struktur in der *aktiven* Konformation notwendig waren, sind nicht mehr vorhanden, da das System in den *inaktiven* Zustand relaxieren soll. Im Verlauf der Simulation (10 ns Simulationsdauer) hat sich die strukturelle Abweichung des simulierten Systems von der Referenzstruktur auf ca. 2.2 Å reduziert. Die Überlagerung beider Strukturen am Ende der Simulation ([Abb. 5.21B, t = 10 ns]) zeigt bereits eine sichtbare Annäherung der simulierten Struktur an die Referenzstruktur.

Abb. 5.21
Simulation des Proteinkanals in der aktiv geschlossenen Konformation zur Untersuchung des Relaxationsverhaltens. (A) Strukturelle Abweichung verschiedener Substrukturen (SecY-Untereinheit, Pfropfen, Pore). (B) Überlagerung der Startstruktur (t = 0 ns) und der Struktur am Ende der Simulation (t = 10 ns) mit der Referenzstruktur. Gezeigt ist die Aufsicht aus dem Cytoplasma auf den Proteinkanal. Die Proteinstruktur ist in orange (Cartoon-Darstellung), die Pore in grün (Surface-Darstellung) gezeigt. Die Referenzstruktur ist in grau bzw. dunkelgrün transparent im Hintergrund zu sehen. Wassermoleküle und Lipide sind nicht eingezeichnet. (C) Seitenansicht des Proteinkanals zu Beginn (t = 0 ns) und zum Ende (t = 10 ns) der Simulation. Das Proteinrückgrat ist transparent in grau (Cartoon-Darstellung), die Lipide transparent in Liccorice-Darstellung gezeigt. Die Pore und der Pfropfen sind in grün bzw. blau (Surface-Darstellung) eingezeichnet. Relevante Wassermoleküle sind in Van der Waals-Darstellung hervorgehoben.
Die strukturelle Abweichung des Pfropfens bleibt während der gesamten Simulationszeit annähernd auf einem konstanten Wert von ca. 2.5 Å (Abb. 5.21A, mittlerer Graph). Dies liegt an der Tatsache, dass sich die Position und die Struktur des Pfropfens beim Übergang von der inaktiven in die aktive Konformation nicht merklich verändert haben. Der leicht erhöhte RMSD-Wert der aktiven Konformation im Vergleich zur inaktiv geschlossenen Konformation kann darauf zurückgeführt werden, dass sich durch das Aufweiten der Porenregion, die Wechselwirkung zum Pfropfen verändert hat und dieser unterhalb der Pore eine leicht veränderte Position im Vergleich zur Referenzstruktur einnimmt.

Die Pore hat zu Beginn der Simulation einen RMSD-Wert von ca. 3.6 Å bezogen auf die Referenzstruktur. Der Unterschied ist in der Überlagerung beider Strukturen deutlich zu erkennen (Abb. 5.21B, t = 0 ns). Die Pore ist aufgeweitet und bildet in der Aufsicht keine geschlossene Oberfläche. Als Konsequenz können Wassermoleküle beobachtet werden, die sich während der Simulation durch die Pore bewegen (Abb. 5.21C, t = 0 ns). Im Verlauf der Simulation nähert sich die Struktur der Pore der Referenzstruktur an, was an dem abnehmenden RMSD-Wert zu erkennen ist. Am Ende der Simulation ist dieser Wert auf ca. 1 Å gesunken (Abb. 5.21A, mittlerer Graph). Die Pore des simulierten Systems ähnelt jetzt der Pore der Referenzstruktur, was deutlich in der Überlagerung beider Strukturen zu erkennen ist (Abb. 5.21B, t = 10 ns). Darüber hinaus sieht man, dass die Pore nun eine geschlossene Oberfläche bildet und den Kanal wieder verschließt. Es werden keine Wassermoleküle mehr beobachtet, die die Pore durchqueren (Abb. 5.21C, t = 10 ns).

5.7.1.3. Relaxation des Proteikanals in der aktiv offenen Konformation

Der Verlauf der strukturellen Abweichung für die SecY-Untereinheit (Abb. 5.22A, oberer Graph) ähnelt dem Verlauf, der für den Proteikanal in der aktiv geschlossenen Konformation aufgezeichnet werden konnte. Zu Beginn der Simulation liegt der RMSD-Wert bei ca. 4.1 Å. Der RMSD-Wert fällt bis ca. 2 ns ab und bleibt bis um Ende der Simulation annähernd konstant. Die Struktur der Untereinheit SecY relaxiert nicht so schnell, wie die Untereinheit SecY des Proteikanals in der aktiv geschlossenen Konformation. In der Plateau-Phase (zwischen 2 ns und 8 ns) liegt die strukturelle Abweichung bei ca. 3.2 Å im Vergleich zu 2.5 Å für den RMSD-Wert in der aktiv geschlossenen Konformation. In der Überlagerung der Anfangs- und Endstrukturen mit der Referenzstruktur (Abb. 5.22B) ist eine Annäherung nach 10 ns Simulation zu erkennen, die aber geringer ausfällt als für die simulierte Struktur des Proteikanals in der aktiv geschlossenen Konformation (Abb. 5.21B).
Abb. 5.22
Simulation des Proteinkanals in der aktiv offenen Konformation zur Untersuchung des Relaxationsverhaltens. (A) Strukturelle Abweichung verschiedener Substrukturen (SecY-Untereinheit, Pfropfen, Pore). (B) Überlagerung der Startstruktur (t = 0 ns) und der Struktur am Ende der Simulation (t = 10 ns) mit der Referenzstruktur. Gezeigt ist die Aufsicht aus dem Cytoplasma auf den Proteinkanal. Die Proteinstruktur ist in orange (Cartoon-Darstellung), die Pore in grün (Surface-Darstellung) gezeigt. Die Referenzstruktur ist in grau bzw. dunkelgrün transparent im Hintergrund zu sehen. Wassermoleküle und Lipide sind nicht eingezeichnet. (C) Seitenansicht des Proteinkanals zu Beginn (t = 0 ns) und zum Ende (t = 10 ns) der Simulation. Das Proteinrückgrat ist transparent in grau (Cartoon-Darstellung), die Lipide transparent in Liccorice-Darstellung gezeigt. Die Pore und der Pfropfen sind in grün bzw. blau (Surface-Darstellung) eingezeichnet. Relevante Wassermoleküle sind in Van der Waals-Darstellung hervorgehoben.

Der RMSD-Wert des Pfropfens sinkt in den ersten 2.5 ns von einem Anfangswert von ca. 24 Å auf ca. 19 Å. Dieser Wert bleibt bis zum Ende der Simulation konstant (Abb. 5.22A, mittlerer Graph). Der Pfropfen nähert sich, im Vergleich zum Pfropfen des Proteinkanals in der inaktiv offenen Konformation deutlich weniger bzw. langsamer an die Referenzstruktur.
Die visuelle Inspektion der Simulation zeigt, dass sich der Pfropfen zum Ende der Simulation zwar sichtbar in Richtung Pore bewegt hat, von dieser aber noch weit entfernt ist (Abb. 5.22C).

Die Pore ist am Anfang der Simulation aufgeweitet und kann den Kanal nicht abdichten. Dies ist sowohl in der Aufsicht (Abb. 5.22B, t = 0 ns) als auch in der Seitenansicht des Proteinkanals zu erkennen (Abb. 5.22C, t = 0 ns). Die Struktur der Pore ist vergleichbar mit der Porenstruktur in der *aktiv geschlossenen* Konformation, jedoch sind deutlich mehr Wassermoleküle zu erkennen, die sich im Porenbereich befinden. In der *aktiv offenen* Konformation des Proteinkanals fehlt der Pfropfen als zusätzlich abdichtendes Element. Der RMSD-Wert sinkt in den ersten 2 ns von anfänglich 3.3 Å auf ca. 1.6 Å, wo er sich im weiteren Verlauf der Simulation stabilisiert (Abb. 5.22A, unterer Graph). In der visuellen Inspektion der Struktur (Abb. 5.22B, C) kann man erkennen, dass sich der durchlässige Porenbereich verkleinert und es für Wassermoleküle immer schwieriger wird, den Porenbereich zu durchqueren. Am Ende der Simulation ist die Pore nicht vollständig geschlossen (Abb. 5.22B, t = 10 ns); es können somit immer noch Wassermoleküle im Porenbereich nachgewiesen werden (Abb. 5.22C, t = 10 ns).

5.7.2. Diskussion

Die drei vorgestellten Simulationen konnten einen ersten Einblick in den Relaxationsprozess des Proteinkanals SecY aus einer modellierten translozierenden in die nicht-translozierende Struktur geben.

Für die drei simulierten Systeme konnten unterschiedliche Relaxationsverhalten nachgewiesen werden. Keines der drei simulierten Systeme lag am Ende der Simulation (nach 10 ns) vollständig relaxiert vor. Von vollständig relaxiert kann ausgegangen werden, wenn der Proteinkanal in der *inaktiv geschlossenen* Konformation vorliegt. Die Simulationen lassen jedoch erste Aussagen über wichtige Voraussetzungen für eine effiziente Relaxation zu. Durch den Vergleich der verschiedenen Systeme konnte festgestellt werden, dass der Übergang aus der *aktiv geschlossen* in die *inaktiv geschlossene* Konformation schneller verläuft, als der Übergang von der *aktiv offenen* in die *inaktiv geschlossene* Konformation; gemeint ist die strukturelle Veränderung der Pore bzw. der SecY-Untereinheit ohne Pfropfen. Die Pore des Proteinkanals in der *aktiv geschlossenen* Konformation schließt vollständig nach ca. 2 ns und läßt im weiteren Verlauf der Simulation keine Wassermoleküle durch den Porenbereich hindurch. In der *aktiv offenen* Konformation ist dies nicht der Fall; hier finden sich auch noch nach einer Simulationsdauer von 10 ns Wassermoleküle in der Pore, da diese nicht vollständig geschlossen ist.
Ähnlich verhält sich die Untereinheit SecY des Proteinkanals in der *aktiv geschlossenen* Konformation, deren Struktur sich während der Simulation von 10 ns schneller der Referenzstruktur annähert und somit auch schneller in die relaxierte Struktur übergeht, als dies für die *aktiv offene* Konformation der Fall ist. Eine Erklärung für dieses Verhalten liefert die Tatsache, dass der Pfropfen nicht nur einen abdichtenden Effekt in der Pore hat, sondern die SecY-Untereinheit mit ihrer Porenregion in der *inaktiv geschlossenen* Konformation stabilisiert. Eine effiziente Relaxation in den nicht-translozierenden Zustand wird durch den Pfropfen unterhalb des Porenbereichs beschleunigt. Durch das Entfernen des Pfropfens hingegen kann der Proteinkanal einfacher in den aktiven, translozierenden Zustand übergehen, was die Pore für Polypeptide durchlässig macht.

5.8. Zusammenfassung des Kapitels

In diesem Kapitel wurden MD-Simulationen am Proteinkanal SecY aus dem Archaeobakterium *M. jannaschii* in einer inaktiven Form, basierend auf einer Kristallstruktur und einer modellierten, aktiven Form, basierend auf Kryo-EM-Daten, vorgestellt. Das Hauptaugenmerk dieser Untersuchung lag auf funktionellen Unterschieden, die durch die verschiedenen Konformationen hervorgerufen werden. Insgesamt wurden vier verschiedene Konformationen (*inaktiv geschlossen, inaktiv offen, aktiv geschlossen* und *aktiv offen*) untersucht. Die Strukturen wurden nicht nur in *aktiv* und *aktiv* unterteilt; die Position des Pfropfens lieferte ein weiteres Unterscheidungskriterium. Es wurde zusätzlich unterschieden, ob sich der Pfropfen direkt unterhalb der Pore befindet (*geschlossen*) oder aus dem Kanalbereich gezogen war (*offen*).

In einem ersten Schritt wurde der Proteinkanal in der *inaktiv geschlossenen* Konformation in einer Lipid-Wasser-Umgebung für eine Gesamtdauer von 22 ns equilibriert. Die Simulation resultierte in einer stabilen Struktur, die mit den Vorgaben der Kristallstruktur gut übereinstimmte und als Startstruktur für weitere Simulationen diente.

Durch Veränderung der Lage der helikalen Segmente im Porenbereich des Kanals, mit Hilfe von harmonischen Constraints und anschließender Equilibrierung, konnte eine stabile Modellstruktur des Proteinkanals in der *aktiv geschlossenen* Konformation erzeugt werden.

Die beiden Konformationen (*inaktiv geschlossen* und *aktiv geschlossen*) unterscheiden sich somit im Porenbereich des Proteinkanals. In der *inaktiv geschlossenen* Konformation bildet die Pore eine geschlossene Struktur und dichtet so den Kanal ab. Die Pore in der *aktiv geschlossenen* Konformation ist geweitet und der Kanal somit nicht vollständig geschlossen.

Der Proteinkanal in der *aktiv geschlossenen* Konformation stellt eine mögliche Struktur des Proteinkanals während des Translokationsprozesses dar.

Eine Voraussetzung für die Translokation eines Polypeptides ist, dass sich der Pfropfen aus dem Porenbereich bewegen muss, um genügend Platz für das translozierte Polypeptid zu schaffen. Mit Hilfe von SMD-Simulationen, die den Pfropfen aus der Pore entfernt haben, konnte gezeigt werden, dass die dazu notwendige Kraft in der *inaktiv geschlossenen* Konformation des Proteinkanals mit 1100 pN deutlich größer ist, als für den Proteinkanal in der *aktiv geschlossenen* Konformation (600 pN). Eine Berechnung der Änderung der Freien Energie, um den Pfropfen aus der Pore zu entfernen, konnte anhand einer statistischen Analyse von je 10 SMD-Simulationen pro System durchgeführt werden. Im Fall der *inaktiv geschlossenen* Konformation muss bereits eine Potentialbarriere von $72 \pm 13 \, k_B T^{(300 \text{K})}$ über-
wunden werden, um den Pfropfen um 6 Å von der Pore zu ziehen; im aktiv geschlossenen Fall sind es lediglich $13 \pm 11 \text{k}_{\text{B}}T^{(300\text{K})}$. Ein Vergleich mit biologisch relevanten Potentialbarrieren zeigt, dass der Pfropfen in der inaktiv geschlossenen Konformation sehr fest im Porenbereich sitzt und eine Abschätzung der MFPT ergibt, dass sich der Pfropfen in einer biologisch relevanten Zeit thermisch nicht von der Pore lösen kann. Im Fall der aktiv geschlossenen Konformation zeigt sich, dass hier ein thermisch aktiviertes Abgehen des Pfropfens im Millisekundenbereich möglich ist. Die Konformationsänderung von der inaktiven in die modellierte active Form weitet den Porenbereich und destabilisiert damit die Wechselwirkung des Porenbereichs zum Pfropfen. Zu einer effizienten Öffnung des Proteinkanals ist eine Konformationsänderung notwendig, die durch Bindung des Ribosoms ausgelöst wird. Damit lässt sich der Pfropfen mit moderatem Energieaufwand aus dem Porenbereich entfernen.

Eine weitere wichtige Eigenschaft ist die Abdichtung des Proteinkanals gegen Wasser moleküle und Ionen. MD-Simulationen zur Untersuchung der Abdichtung des Kanals sowie SMD-Simulationen, bei denen ein Wassermolekül bzw. ein Natriumion gezielt durch den Porenbereich bewegt wurden, haben gezeigt, dass die inaktiv geschlossene Konformation den Proteinkanal durch Zusammenspiel von Pfropfen und Pore sehr gut abdichtet; sie erfordert einen hohen Arbeitsaufwand, um Wasser bzw. Natriumionen durch den Porenbereich zu ziehen (ca. $25 \text{k}_{\text{B}}T^{(300)}$ bzw. $55 \text{k}_{\text{B}}T^{(300\text{K})}$). Wird nur der Pfropfen entfernt, so ist die Pore immer noch in der Lage den Kanal im Verlauf der Simulation abzudichten, die aufzubringende Arbeit ist jedoch deutlich geringer (ca. $10 \text{k}_{\text{B}}T^{(300)}$ bzw. $25 \text{k}_{\text{B}}T^{(300\text{K})}$). Der Protein kanal in seiner aktiven Konformation ist sowohl offen als auch geschlossen nicht in der Lage, eine Barriere für Wassermoleküle zu bilden.

Nach vollendeter Translokation des Polypeptids muss ein rascher Übergang aus der aktiven in die inaktive Konformation stattfinden, um den unkontrollierten Austausch von Wassermolekülen und Ionen zu verhindern. MD-Simulationen des Protein kanals in der inaktiv offenen, aktiv geschlossenen und aktiv offenen Konformation, zeigten nach Entfernung aller Constraints innerhalb von 10 ns ein unterschiedliches Relaxationsverhalten in die inaktiv geschlossene Konformation.

Die Abdichtung des Porenbereichs erfolgte in der aktiv geschlossenen Konformation deutlich schneller als im Fall der aktiv offenen Konformation. Bereits nach 2 ns war der Kanal für den weiteren Verlauf der Simulation für Wassermoleküle undurchlässig. Für die aktiv offene Konformation des Protein kanals, war dieser Zustand bis zum Ende der Simulation noch nicht erreicht. Ähnliches war für die gesamte SecY-Untereinheit zu beobachten. Auch hier verlief
der Relaxationsprozess in der *aktiv geschlossenen* Konformation merklich schneller ab als im Fall der *aktiv offenen* Konformation.

Der Pfropfen war sowohl in der *inaktiv offenen*, wie auch in der *aktiv offenen* Konformation aus dem Porenreich entfernt worden. Die Relaxation des Pfropfens zurück in den Zustand direkt unterhalb der Pore verlief in der *inaktiv offenen* Konformation wesentlich schneller als in der *aktiv offenen* Konformation. Dieses unterschiedliche Relaxationsverhalten lässt die Schlussfolgerung zu, dass sich die Struktur des Pfropfens und die des Porenbereichs gegenseitig beeinflussen. Der Pfropfen dichtet nicht nur den Kanal ab, sondern stabilisiert auch den gesamten Porenreich in der *inaktiven* Konformation. Umgekehrt sorgt die Porenstruktur in der *inaktiven* Konformation für eine beschleunigte Relaxation des Pfropfens in seine ursprüngliche Position (unterhalb des Porenbereichs).
6. Zusammenfassung der Dissertation

Die Molekulardynamik (MD)-Simulation stellt eine wichtige Methode zur theoretischen Untersuchung biologischer Systeme dar. Die Hauptanwendung heutiger MD-Simulationen ist die Beschreibung der Dynamik und der Funktion von Proteinen und Proteinkomplexen auf mikroskopischer Ebene, um einen detaillierten Einblick in die ablaufenden Prozesse einer Zelle zu erhalten. Hierbei kann die Methode der MD-Simulation einen wichtigen Beitrag leisten, denn sie erlaubt es, ein atomistisches Bild der Dynamik von Proteinen zu liefern; eine Eigenschaft, die bislang von keiner experimentellen Untersuchungsmethode erbracht wird. Durch numerische Integration der Newtonschen Bewegungsgleichungen erhält man, für jedes Atom i im System, die Trajektorie $r_i(t)$. Heutzutage lassen sich routinemäßig Systeme bis zu 10^5 Atome auf Zeitskalen im Nanosekundenbereich simulieren. Viele biologisch relevante Prozesse laufen auf Zeitskalen ab, die mit der konventionellen MD-Simulation nicht erreicht werden können. Mit Hilfe von beschleunigten Simulationsverfahren wie Steered Molecular Dynamics (SMD) in Kombination mit statistischen Analyseverfahren wie beispielsweise Fluktuationstheoremen, lassen sich diese Prozesse quantitativ erfassen.

In dieser Arbeit werden MD- sowie SMD-Simulationen an drei biologischen Systemen vorgestellt. Das Hauptaugenmerk liegt dabei in der Verknüpfung von strukturellen Eigenschaften der Proteine oder Proteinkomplexen mit ihrer Funktionalität. Im Folgenden werden die wichtigsten Ergebnisse aus diesen Untersuchungen vorgestellt.
Strukturelle Stabilität verschiedener Mutanten und Fragmente des Tumornekrosefaktor-Rezeptors 1

Der Tumornekrosefaktor-Rezeptor 1 (TNFR1) ist ein Membranprotein, das eine wichtige Rolle in der Tumornekrosefaktor (TNF)-vermittelten Apoptose spielt und für die Weiterleitung des initialen Signals in die Zelle verantwortlich ist. Seine extrazelluläre Domäne lässt eine strukturelle Unterteilung in vier so genannte cysteinstäunte Domänen (CRD1-4) zu, denen bestimmte Funktionen zugeordnet werden können. CRD2 und CRD3 sind für Ligandenbindung zu TNF verantwortlich; von CRD1 wird angenommen, dass sie für die Rezeptor-Rezeptor-Wechselwirkung notwendig ist. Für eine erfolgreiche Signaltransduktion sind sowohl eine Rezeptor-Ligand- als auch eine Rezeptor-Rezeptor-Wechselwirkung notwendig.

MD-Simulationen zeigen, dass die extrazelluläre Domäne des TNFR (TNFR_{ex}) aus einer alternierenden Reihenfolge von A1- und B2-Subdomänen besteht, die die kleinste, strukturell stabile Einheit darstellen. Die Flexibilität von TNFR_{1ex} ist auf die Relativbewegung dieser Subdomänen zurückzuführen. Die Intra-CRD-Bewegung tritt dabei ausgeprägter auf als die Inter-CRD-Bewegung. Nach Deletion von CRD1 (ΔCRD1-TNFR_{1ex}) tritt in der nachfolgenden Subdomäne A1_{CRD2} eine deutliche Konformationsänderung auf. Dies ist auf die nicht mehr vorhandene Stabilisierung der Subdomäne B2 aus CRD1 zurückzuführen und kann den experimentell gemessenen Verlust der Ligandenbindung erklären. Eine Mutante ΔA_{1CRD1}-TNFR_{1ex}, bei der lediglich die erste Subdomäne der CRD1 A_{1CRD1} entfernt wurde, zeigte diese Destabilisierung von A_{1CRD2} nicht. In diesem Fall war der stabilisierende Effekt durch die verbliebene Subdomäne B_{2CRD1} gegeben. Experimentell kann bei dieser Mutante eine Ligandenbindung nachgewiesen werden, eine Rezeptor-Rezeptor-Interaktion ist jedoch nicht vorhanden.

Ein ähnliches Bild zeigt sich bei der Untersuchung des isolierten Proteinfragments CRD1 (A_{1B2_{CRD1}}). Hier erwartet man eine CRD1-CRD1-Interaktion, die im Experiment nicht nachgewiesen werden konnte. MD-Simulationen zeigen, dass es hier zu einer erhöhten Flexibilität von B_{2CRD1} kommt. Diese strukturelle Flexibilität kann reduziert werden, indem das Fragment zusätzlich um die Subdomäne A_{1CRD2} erweitert wird (A_{1B2_{CRD1}A_{1CRD2}}). Die Stabilisierung von CRD1 sollte sich in einer CRD1-CRD1-Interaktion widerspiegeln, was experimentell noch gezeigt werden muss. Bei isolierter CRD1 mit
einem Glutathion-S-Transferase (GST)-tag konnte eine solche CRD1-CRD1-Interaktion bereits nachgewiesen werden.

Die MD-Simulationen am TNFR1-ex-System zeigen, dass die CRDs der extrazellulären Domäne von TNFR1 bestimmte Funktionen erfüllen. Diese Funktionen treten aber nur im Verbund mit benachbarten Subdomänen auf, da die benachbarten Subdomänen für die Stabilisierung der CRDs notwendig sind. Diese Erkenntnis ist für die Entwicklung eines Arzneimittels zur spezifischen Unterdrückung der Apoptose wichtig. Als mögliche Arzneimittel kommen TNFR1-Mutanten oder TNFR1-Fragmente in Frage, die speziell angepasste Funktionen besitzen.

Unersuchung eines möglichen Pfades für Ubichinon-Diffusion durch den LH1-Ring im Purpurbakterium Rhodospirillum rubrum

Untersuchung des Proteintranslokationskanals SecY aus Methanococcus jannaschii

Der Proteintranslokationskanal (SecY-Komplex) aus dem Archaebakterium *Methanococcus jannaschii* (*M. jannaschii*) ist für die Translokation von Proteinen durch die Membran bzw. für deren Einbau in die Membran verantwortlich. Zwei Hauptmerkmale der Struktur sind zum einen die Pore, bestehend aus sechs hydrophoben Aminosäuren, und zum anderen der Pfropfen, der von einer kurzen α-Helix gebildet wird. Im nicht-translozierenden Fall (*inaktive Konformation*), ist die Pore geschlossen und der Pfropfen sitzt direkt unterhalb der Pore. Um ein Protein durch den Kanal zu transportieren muss sich der Pfropfen aus dem Porenbereich bewegen und die Pore muss sich aufweiten (*aktive Konformation*). Von SecY sind sowohl eine Kristallstruktur in der *inaktiven Konformation*, als auch Kryo-EM-Daten der *aktiven Konformation*, gebunden an ein Ribosom vorhanden. Mit Hilfe von MD-Simulationen lässt sich die Kristallstruktur aus der *inaktiven* in die *aktive* Struktur überführen. Diese Modellstruktur stimmt mit den Kryo-EM-Daten gut überein. Zwischen den beiden Strukturen gibt es klare Unterschiede in Bezug auf die Bindung des Pfropfens und die Abdichtung des Kanals.

In der *inaktiven Konformation* sitzt der Pfropfen fest gebunden direkt unterhalb der Pore und es muss eine Potentialbarriere von $72 \pm 13 \, k_B T^{(300K)}$ überwunden werden, um den Pfropfen 6 Å von der Pore wegzubewegen. Diese Potentialbarriere ist in der *aktiven Konformation* mit $13 \pm 11 \, k_B T^{(300K)}$ deutlich reduziert. Um ein Abgehen des Pfropfens auf einer Millisekunden-Zeitskala (relevant für die Proteintranslokation) zu ermöglichen, ist eine Konformationsänderung aus der *inaktiven* in die *aktive* Konformation notwendig. Die Bindung des Ribosoms kann eine solche Konformationsänderung induzieren.
In Übereinstimmung mit experimentellen Ergebnissen einer Studie zur Ionenleitfähigkeit und Wasserpermeabilität des SecY-Proteinkanals, zeigen die MD-Simulationen, dass SecY in der inaktiven Konformation das größte Hindernis für die Translokation eines Wassermoleküls bzw. eines Natriumions durch den Porenbereich darstellt. Wird der Pfropfen entfernt, oder geht der Proteintranslokationskanal in die aktive Form über, nimmt die notwendige Arbeit zur Transloktion von Wasser bzw. Natriumionen deutlich ab. In der aktiven Konformation können Wassermoleküle den Porenbereich sogar spontan im Nanosekundenbereich durchqueren.

Bei Relaxation des Proteinkanals in der aktiven sowie der inaktiven Form ist der Pfropfen nicht nur an der Abdichtung des Kanals beteiligt, sondern trägt auch zur Stabilisierung der kompletten Proteinstruktur im Porenbereich bei. Befindet sich der Pfropfen unterhalb der Pore, so wird die Relaxation in die inaktive Konformation beschleunigt. Liegt SecY umgekehrt in der inaktiven Konformation vor, dann bewegt sich der Pfropfen schneller aus der abgezogenen Position in Richtung Pore zurück, als wenn sich SecY in der aktiven Konformation befindet.
Literaturverzeichnis

Danksagung

An dieser Stelle möchte ich mich bei all denjenigen bedanken, die zum Gelingen dieser Arbeit in irgendeiner Form beigetragen haben.

Zu allererst geht mein Dank an Prof. Dr. Jörg Wrachtrup, der mir die Möglichkeit gegeben hat, an seinem Institut zu promovieren.
Für die Übernahme des Mitberichts danke ich Prof. Dr. Hans-Rainer Trebin und für die Übernahme des Prüfungsvorsitzes Prof. Dr. Peter Michler.

Mein außerordentlicher Dank für die schöne und erfolgreiche Zusammenarbeit gilt Dr. Carsten Tietz, der mir mit zahlreichen Diskussionen und vielen Anregungen zur Seite stand und stets ein guter Betreuer und Kollege war.
Großer Dank geht auch an Prof. Klaus Schulten, nicht nur für die gute Zusammenarbeit und Unterstützung im Ubichinon-Projekt, sondern auch für die Möglichkeit zu Beginn meiner Promotionszeit, in einem dreimonatigen Aufenthalt an seinem Institut (Theoretical and Computational Biophysics Group, University of Illinois at Urbana-Champaign) mein Wissen über Molekulardynamik-Simulation zu vertiefen.
Prof. Dr. Peter Scheurich und Dr. Marcus Branschädel danke ich für die gute Zusammenarbeit im TNFR1-Projekt und die zahlreichen interessanten und hilfreichen Diskussionen.
Für ihre fortwährende Unterstützung und Motivation möchte ich meinen Eltern danken, die an mich geglaubt haben und falls nötig, jederzeit mit einem aufmunternden Zuspruch oder Ratsschlag zur Stelle waren.
Last but certainly not least gilt mein ganz besonderer Dank Alexandra Elli, die sowohl wissenschaftlich meine Lücken in den Bereichen Biologie, Biochemie und Chemie glänzend kompensiert hat, als auch privat mir immer zur Seite stand. Durch diese „doppelte“ Unterstützung hat Sie einen wesentlichen Teil zum Gelingen dieser Arbeit beigetragen.