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1 Introduction

1.1 Motivation

Macroscopic material properties are based on interactions of the constitutive particles on
a microscopic level. An attractive interaction among particles favors them to agglomerate.
Therefore from the energetic point of view a liquid, in which the particles are close to
each other, but not regularly positioned like in a crystal, is more favorable than a gas,
in which the interparticle distance is much larger and hence the mean particle density is
much lower. On the other hand the freedom of movement of the particles decreases, if
they are densely packed. This means that from the entropic point of view a gas is more
favorable than a liquid. Consequently the actual arrangement of the particles as a liquid
or a gas results from an interplay of energy and entropy.

A fluid does not always exhibit a liquid and a gas phase. If the temperature is sufficiently
high, solely one fluid phase can be observed. The critical point describes the state in
which two phases — here the liquid and the gas phase — become indistinguishable. For
temperatures below the critical temperature the liquid and the gas phase can coexist in
equilibrium, i. e., they are both thermodynamically stable and suitable boundary condi-
tions ensure the presence of both phases at a time. The spatial region where two or more
phases are in contact is called interface. An example of a system with three phases in
contact is given in Fig. 1.1.

Usually the fluid in an interfacial region, e. g., a solid–gas, solid–liquid, or liquid–gas
interface, behave differently than in a “bulk” system, i. e., a system without any interfaces
or boundaries. The influence of an interface may reach far from the interface position,
which can be defined with some degree of arbitrariness. The inhomogeneous distribution
of particles at an interface gives rise to an extra free energy contribution called surface
tension or — more general — interfacial tension. On a microscopic length scale the
structure of an interface can be very complicated and is not simply given by two bulk
systems glued together unchanged: The particle density usually varies continuously from
one bulk density to the other, and it may even exhibit density oscillations indicating
packing effects, i. e., the particles tend to form layers there.

A particular kind of inhomogeneity is formed, if a planar liquid–gas interface is brought
into contact with a planar substrate, e. g., a glass plate. On a macroscopic scale a liquid

Fig. 1.1: Droplet on a superhydrophobic surface [1]. The substrate is covered by aligned, coated
nanofibres. Here a droplet with a diameter of 2 mm resides on the tips of the fibres.
The diameter and length of these fibres can be varied between 10–40 nm and 70–360
nm, respectively. The property of the surface can range between superhydrophobic and
superhydrophilic depending on the type of coating.

1



2 1.2 Outline

wedge resting on a substrate may form. The contact angle describes the inclination of
the liquid–gas interface with respect to the substrate surface. The line where the three
involved phases (gas, liquid, and solid substrate) are in contact is — in a macroscopic
picture — called contact line. However, the structure of the three-phase contact region is
much richer on a microscopic scale. The spatial distribution of the fluid particles in such
a wedge geometry is analyzed theoretically in this work.

The system of a sessile liquid wedge is inspired by sessile droplets (see Fig. 1.1). The
contact angle θ of a sessile liquid droplet is described by Young’s law [2],

cos θ =
σsg − σsl

σlg

. (1.1)

σsg, σsl, and σlg are the interfacial tensions of solid–gas, solid–liquid, and liquid–gas
interfaces, respectively. An interfacial tension describes the energy that is necassary to
create an interface. Young’s equation can be illustrated by a lateral force balance at the
contact line:

σsg = σsl + σlg cos θ. (1.2)

However, for sessile droplets smaller than approximately one micrometer deviations from
this law occur. They are attributed to some extend to the influcence of a so-called
line tension. This is, roughly speaking, the free energy contribution (per unit length)
associated with the contact line. The line tension of a sessile liquid wedge is related to
the sessile droplet line tension and therefore is an important quantity both for a thorough
theoretical understanding and for technological applications comprising small amounts of
liquid.

Up to now theoretical studies of phenomenological model systems did not take the micro-
scopic spatial structure of the fluid into account. In the present work microscopic details
of the particle–particle interactions as well as microscopic details of the fluid structure are
taken into account. Consequently this fully microscopic approach enables one to calculate
the line tension of a sessile liquid wedge in an unprecedented realistic way.

1.2 Outline

The present chapter introduces the topic of line tensions. The line tension was mentioned
already in the previous Sec. 1.1 in the context of sessile droplets smaller than approxi-
mately 1 µm, for which the line tension helps to explain deviations of the contact angle
from Young’s law. In the following Sec. 1.3 the subject of this study and its aims are spe-
cified. The general definition of a line tension applies to many, sometimes very different
systems. They are categorized into classes of line tensions in Sec. 1.4. Some technological
applications of such systems with relevant line tensions are highlighted in Sec. 1.5. The
present work is embedded into the research field of line tensions of sessile liquid wedges
or droplets in Sec. 1.6. For completeness the research on line tensions for substrate-free
three-phase coexistence is reviewed in Sec. 1.7.

After the introduction in the present chapter the method applied in this work, classical
density functional theory (DFT), is introduced in Chapter 2. Fluid interfaces are con-
sidered thereafter, especially from the point of view of DFT, in Chapter 3. Chapter 4
is dedicated to sessile droplets, the definition of a line tension for that system, and the
connection between the line tensions of a sessile liquid droplet or wedge, respectively.
Other line excess quantities, besides the line tension of a sessile liquid wedge or droplet,
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are described in Chapter 5. The model system studied here, a liquid wedge on a sub-
strate, is described in Chapter 6 in more detail than in the present chapter. The same
system has been analyzed using the so-called “sharp-kink approximation”. This approach
is described and extended in Chapter 7. Thus in Chapter 8 the results of the fully micro-
scopic approach can be compared to those obtained from the semi-microscopic sharp-kink
calculations. The perspectives arising from this work are sketched in Chapter 9. Finally,
a summary is given in Chapter 10.

1.3 Formulation of the scientific problem

The model system analyzed in this study is described briefly in Sec. 1.3.1. Moreover the
definition of a line tension in general and of the liquid wedge line tension in particular are
given in Sec. 1.3.2. Then the status of this work is assessed in Sec. 1.3.3.

1.3.1 Subject: line tension of a sessile liquid wedge

The system under consideration is a liquid wedge residing on a planar substrate. Such
a sessile liquid wedge can be regarded as a part of a macroscopicly large sessile droplet.
Thermodynamic equilibrium, for which the liquid coexists with its gas phase, is presumed.

In this study the theoretical model of actual fluids is a one-component fluid the intermole-
cular interactions of which are modeled either by a short-ranged square-well potential or
by a long-ranged Lennard-Jones (12–6) potential, respectively. The homogeneous, flat,
chemically inert substrate is represented by a Lennard-Jones (9–3) potential and varieties
thereof. The model is described in more detail in Chapter 6.

The method to calculate the structure of the three-phase contact region and the line
tension for the present model system is a density functional calculation of the effectively
two-dimensional equilibrium particle number density distribution ̺(x, z). These technical
terms are explained in the following chapter.

1.3.2 Definition of a line tension

Shortcomings of macroscopic line tension definitions:
If theoretical calculations based on a macroscopic scale utilize the line tension (e. g.,
colloids at a liquid–gas interface or a liquid ridge on a substrate), the line tension is
typically considered as an external parameter, the value of which has to be inserted by
hand. Typically in macroscopic approaches the total free energy of the studied system is
unknown and approximatively described, for instance, by contributions known for simpler
geometries or by assigning values to individual quantities.

Macroscopic calculations of line tensions rest upon a coarse grained definition. E. g., in
an interface displacement model the line tension exclusively depends on the position of a
liquid–gas interface. The line tension is well-defined there, however, the connection to its
microscopic origin is kept only in a crude way.

Microscopic definition of a liquid wedge line tension:
A “microscopic” approach resolves molecular details of the involved particles, i. e., the
spatial distribution of particles on a molecular length scale and characteristics of the
particle–particle interactions. From a microscopic perspective the line tension of the
considered system, a liquid wedge resting on a substrate, is defined as follows. Within
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the grand canonical ensemble the natural thermodynamic potential is the grand potential
Ω = Ω(T, V, µ) with temperature T , volume V , and chemical potential µ.

A “microscopic calculation” yields the value of the grand potential of a microscopic model
system. This is in contrast to macroscopic approaches, in which the precise value of Ω
remains unspecified. The microscopicly obtained value of Ω is decomposed into terms
(a) proportional to the volume V of the fluid, (b) proportional to the surface areas Asg,
Asl, and Alg of the solid–gas, solid–liquid, and liquid–gas interfaces, respectively, and (c)
proportional to the length L of the contact line. The contact line is the curve where the
substrate, the liquid region, and the gaseous region are in contact. From a microscopic
point of view the line tension τ is defined as the coefficient of the contribution to the
grand potential which is proportional to the length L of the contact line,

Ω = − p V + σsg Asg + σsl Asl + σlg Alg + τ L. (1.3)

σsg, σsl, and σlg are the interfacial tensions of solid–gas, solid–liquid, and liquid–gas
interfaces, respectively, which are discussed in more detail in Sec. 3.1. If the pressure
and the interfacial tensions are calculated consistently (i. e., for the same interactions and
physical parameters), the above decomposition determines the value of the line tension.
Note that the values of the solid–gas and solid–liquid interfacial tensions, σsg and σsl,
depend on the choice of the interface position (cf. Sec. 3.3.2). Hence the value of the
liquid wedge line tension depends on this choice as well [Eq. (6.4)].

General line tension defnition:
In short, a line tension is a one-dimensional analogue of the surface tension. Gibbs
introduced the concept of a “linear tension” in 1878, when he suggested that a line formed
by three phases should be treated entirely analogously to interfaces [3].

In general, a line tension is related to a free energy that scales with the length of a linear
structure (e. g., a line) of the considered system. It describes the excess in free energy due
to this linear structure, in addition to volume (“bulk”), surface, and — possibly — point
contributions. Precisely, the line tension is the coefficient of the line excess contribution
in a decomposition of the “natural” thermodynamic potential of the system into volume,
surface, linear, and point terms.

1.3.3 Aims and status of this work

The main task of this study is to calculate line tension values for different model systems
in different wetting scenarios (cf. Subsecs. 1.6.1 and 3.3.5). In order to obtain a line
tension value via the presently applied method, the microscopic structure of the three-
phase contact region, where the three phases (solid substrate, liquid, and gas) are in
contact, has to be calculated. In doing so a continuous particle density is taken into
account. This means that the particle density is not piecewise constant but is free to vary
smoothly. Moreover effects due to details of the interaction between a fluid particle and
another fluid particle or a substrate particle are resolved in the theoretical description
as well. Consequently, since microscopic details both of the molecular interactions and
of the particle distribution are taken into account, the approach presented here can be
regarded as “fully microscopic”.

Previous studies of similar, phenomenological model systems treated the solid–fluid and
liquid–gas interfaces in a crude, so-called sharp-kink approximation. The fluid in a certain
phase is regarded to be homogeneous right up to the interface position, where the density
changes discontinuously. Hence the intrinsic interfacial structure is neglected. Solid–
liquid interfaces, for instance, can exhibit strong density oscillations due to packing effects
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(i. e., the liquid tends to form layers in the vicinity of the substrate surface). Hence a
comparison between the fully microscopic approach and the sharp-kink theory should
reveal the quality of the sharp-kink approximation in the context of liquid wedge line
tensions.

This theoretical model study renders the line tension of a rather realistic model system
more accurately than in previous studies. It is a step towards a complete understanding
of the shape of very small droplets, i. e., droplets with diameters below the micrometer
range. The liquid wedge line tension is related to the line tension of a sessile droplet
by a computationally simple transformation [4]. Furthermore a proposal is given how
axisymmetric sessile droplets could be described efficiently at the same level of accuracy.

1.4 Classes of line tensions

Although the line energy contribution is usually much smaller than the surface energy con-
tribution, it plays an important role in various physical systems [5]. One can distinguish
between the following (and even more [6]) classes of line tensions:

1. Three-dimensional, simple fluid systems:

(a) Line tension (or contact line tension) of a sessile liquid droplet :

• A liquid droplet sitting on a planar, homogeneous substrate and coexisting with
its vapor phase, a so-called sessile droplet, exhibits a three-phase contact region.
Macroscopicly this region can be regarded as a circular contact line. Its line
tension affects the equilibrium droplet shape, if the droplet diameter is well below
the micrometer range. This situation represents a constrained equilibrium, since
the solid phase is not thermodynamically coexisting with the other two phases.
Fig. 1.1 shows a nearly perfect dewetting scenario, where a sessile droplet is
barely touching the solid surface.

• For advancing (e. g., spreading) or receding small droplets on a substrate the
shape of the moving contact line is influenced by the line tension. Surface inho-
mogeneities can disort an otherwise moving contact line, on the spot, which is
called “pinning” of the contact line [7]. The spreading dynamics is influenced by
the line tension for droplet sizes in the micro-/nanometer range [8].

• The line tension plays an important role in heterogeneous droplet nucleation
and growth [9]. In this context nucleation means the onset of condensation, i. e.,
droplets emerge in a saturated vapor phase. For heterogeneous nucleation this
happens preferentially at nucleation sites (on a surface or inside the fluid). For
sessile droplets such condensation nuclei can be composed of chemical impurities
or geometrical defects. Volatile dust particles, for instance, can serve as conden-
sation nuclei for free (i. e., not sessile) liquid droplets. This line tension has to
be distinguished from the line tension for surface crystal nucleation, which will
be discussed below.

(b) Line tension (or contact line tension) of a sessile liquid wedge:
In the limiting case of a macroscopicly large sessile droplet the three-phase contact
region resembles a sessile liquid wedge. Its liquid–gas interface is planar, and the
contact line is straight. Since this system is effectively two-dimensional, it is per-
fectly suited as a model system to study its line tension, the wedge line tension.
There is a computationally simple relation between the line tensions of a sessile
wedge and of a sessile droplet, which will be explained in Chapter 4.
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(c) Line tension of a sessile bubble:
The inverse scenario to a sessile liquid droplet alludes to a gas bubble that resides
on a substrate and is surrounded by liquid. An example are the bubbles that form
in a glass of sparkling water and stay at the glass–water interface. A line tension
assigned to the three-phase contact line (or region) can be defined like in the case
of a sessile liquid droplet.

(d) Line tension of a three-phase contact region for full three-phase equilibrium:
In a system of three coexisting phases (i. e., in an unconstrained equilibrium) that
form a common contact line, the morphology of this contact line is governed by
the line tension. Analogously to a sessile droplet and a wedge, one can distinguish
between a macroscopicly large lense and a lense of limited volume immersed in
an interface of two other phases. The macroscopicly large lense corresponds to
bulk coexistence (i. e., a planar interface formed by any two of the three phases is
thermodynamically stable), so that each of the three phases fills a macroscopicly
large spatial region. The lense of finite volume is in coexistence with the other two
phases due to an increased pressure in the inside, the so-called Laplace pressure.
In the case of bulk coexistence (or a macroscopicly large lense) the three angles
between the individual interfaces are described by the Neumann equation. The
Young equation represents a special case thereof. However, the angles related to a
lense of finite volume are modified by the line tension. The phase of the fluid lense
merely needs to be different from the other two phases, it is not restricted to the
case of a liquid lense (i. e., a liquid droplet at the interface) or a gas lense (i. e., a
gas bubble at the interface). This means that one or several of the three phases
could be solid. For a one-component simple fluid the three phases can merely be
gas, liquid, and solid; for a binary (or multi-component) simple fluid also three (or
more) fluid phases are possible.

(e) Boundary (line) tension:
In certain fluid systems with a planar substrate and in a state on the prewetting
line near a first-order wetting transition, the coexistence between two surface phases
with different film thicknesses is possible. The system has a small film thickness, say
on the left-hand side, a large film thickness on the right-hand side, and a straight
interface between both parts. Then the boundary region is attributed a boundary
line tension, shortly named “boundary tension”.
Like any liquid–gas interfacial tension also the boundary tension has to be positive
for stability reasons. For a negative boundary tension infinitely many interfaces
between the two kinds of surface phases would occur in order to reduce the total
free energy. Exactly at the wetting transition (cf. Sec. 3.3.5) the boundary ten-
sion equals the wedge line tension (cf. Sec. 5.2.1). At the prewetting critical point
the two surface phases become identical and consequently the boundary tension
vanishes [10].

A boundary tension may be defined analogously for interfacial wetting instead of
wetting of a solid substrate [10]. Here another fluid phase plays the role of the
substrate.

(f) Substrate boundary line tension:
Consider a fluid on a geometrically or chemically structured substrate. If there is
a line separating one substrate region from the other (e. g., an edge, a wedge, or a
chemical step), the associated excess free energy can be regarded as the line tension
of such a substrate boundary [11]. Clearly, more complex substrate structures (like
geometrical steps of finite height or subsequent chemical stripes [12]) can be studied
as well, and the corresponding line tension obtains a size dependence (i. e., it depends
on the step height or the stripe width).
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(g) Line tension for droplets on or near particles:
The interaction of gas bubbles with solid inclusions in a melt or with aqueous drops
involves three phases in contact as well. A similar situation exists in emulsions or
foams which are stabilized by fine particles. Here the “substrate” consists of spheri-
cal or, in general, irregularly shaped and (more or less) hard particles. Furthermore
droplets residing on larger solid spheres [13, 14, 15] or cylinders [16] are examples
for regularly shaped, but curved “substrates”.

(h) Line tension for surface nucleation at freezing :
The freezing of a liquid into a solid phase (e. g., a crystal) can either start in the
liquid bulk region (homogeneous nucleation) or at an interface with another phase
(heterogeneous nucleation). Heterogeneous nucleation can occur, for instance, at
an interface with a gas surface, a substrate or an impurity (e. g., in a hard sphere
crystal [17, 18]). In the case of surface nucleation at a liquid–gas interface a roughly
lense-shaped solid-like nucleus (embryo) emerges. The work to form such a nucleus
with a certain number of atoms contains a term related to the perimeter of the
lense. Hence this line tension influences the shape of the nucleus and the freezing
process [19, 20], particularly since freezing preferably occurs in the three-phase
contact region [21].

The freezing lense scenario is similar to the three coexisting phases (with a lense) or
the sessile liquid droplet discussed above. For freezing near a gas phase, however,
the gas does not have to coexist with the solid and liquid phases, if the number of
gas particles is fixed. The case of freezing near a substrate corresponds to a sessile
liquid droplet, where now the droplet is solid and the surrounding is liquid.

2. Three-dimensional, complex fluid systems: In this category an example of a line ten-
sion is the boundary tension between lamellar phases. In systems containing oil, water,
and surfactant amphiphilic layers in a lamellar phase can form between water and oil
regions for suitable concentrations. Phases with different stack thicknesses can coexist,
and boundary line tensions are attributed to the boundaries between them [22]. Thus
the situation is in principle comparable to the case of membrane domains (see below).
Smectic liquid-crystal multilayers can exhibit coexisting domains with different thick-
nesses as well, and a line tension is associated with the domain boundaries [23].

3. Quasi-two-dimensional systems:
“Quasi-two-dimensionality” means that one spatial extension of a genuinely three-di-
mensional physical system is very small, such that it appears to be two-dimensional at
first glance. This notion has to be distinguished from “effective two-dimensionality”,
where the system extended considerably in all three spatial directions contains trans-
lational symmetry and can therefore be described by solely two coordinates.

(a) Two kinds of line tensions of a fluid membrane:
Line tension also plays an important role in systems which are merely distantly re-
lated to liquid drops. The fusion of fluid membranes (i. e., lipid bilayer membranes)
is vital in many cell-biological processes. The rate of membrane fusion depends on
the line tension of a hole (pore) formed in the membrane [24]. The membrane hole
line tension has to be positive in order to prevent the membrane from dissolving.
Another line tension related to fluid membranes arises at boundaries of membrane
domains (so-called “lipid rafts”) [25, 26, 27, 28, 29]. The thermal fluctuations of
domain boundaries are related to the line tension and can be analyzed by means
of flicker spectroscopy [30, 31]. Like surfactants can reduce a surface tension, a
class of molecules (“linactants”) can reduce this membrane domain boundary line
tension [32].
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(b) Thin fluid films:
A thin fluid film can, e. g., consist of a liquid film on a substrate or a soap film. A
soap film represents the symmetrical film case, where either a (surfactant-stabilized)
water-film exists between two identical gas phases or an oil film exists between two
identical aqueous phases. Viewed in reflected white light against a black back-
ground, films becoming gradually thinner loose their white appearance and finally
appear black. They are called common black films or Newton black films, if their
thickness is either sensitive or not very sensitive on parameter changes.
A line tension can be related to the perimeter of a finite thin film [33, 34]. Very
thin films tend to form domains, i. e., finite spatial regions exhibiting a constant film
thickness. The curve limiting such a film domain can be attributed a line tension
as well, which is called interphase line tension [35].

Since systems containing thin membranes or thin liquid films are quasi-two-dimen-
sional, their line tensions cannot be compared to the line tensions in three-dimensional
systems like droplets or liquid lenses.

Among the listed line tensions exclusively the boundary line tension and the membrane
hole line tension have to be positive to ensure thermodynamic stability. Hence solely
these two line tensions can be regarded as true one-dimensional analogues of the surface
tension, if for the latter one has in mind a liquid–gas interfacial tension.

1.5 Technological applications of systems exhibiting a line

tension

Possible applications of the physical systems and effects described in the previous section
are positioned in the research fields of nanofluidics and surface material science. Fast
technological progress in these fields has promoted corresponding fundamental and applied
research activities. The general trend towards miniaturization of technical devices also
affects devices that handle small amounts of fluids. Shrinking system sizes increase the
relevance of line tension effects for the system properties. Some technological applications
of the mentioned simple-fluid systems involving line tension effects, especially small sessile
droplets, are listed in the following.

1. Lab on a chip: Micro- and nanofluidics deals with the manipulation of small amounts
of liquid, which can occur, for instance, in biotechnology, chemistry, and pharmacy.
Analogously to the development of micro- and nanoelectronics one aims at very small
devices (“lab on a chip”), that accomplish tasks like guided transport, mixing, separa-
tion, and controlled chemical reactions of fluids.

2. Coatings: A branch of surface material science is concerned with solid–fluid interfaces.
A solid–fluid interface is the “borderland” between a solid phase and an adjacent fluid
(liquid or gas). Detailed knowledge about the behavior of such interfaces is relevant
for the controlled manipulation of surface-related material properties. Solid–fluid in-
terfaces exist in coatings, easy-to-clean, or self-cleaning surfaces, adhesion, gluing and
corrosion due to humidity. Large public interest has been attracted by the effect of
superhydrophobicity, commonly known as “lotus effect”. A rough surface formed by
a hydrophobic material can attain very large contact angles, so that (small) sessile
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droplets are almost spherical (see Fig. 1.1). The field of applications of superhydro-
phobic coatings is large and covers, e. g., conservation of buildings and cars, sanitary
facilities, housekeeping products, and textiles.

3. Ink applications: In typical ink applications, e. g., in an ink printer, a newspaper prin-
ting machine, or when writing with a pen or biro, a paper surface is covered with small
amounts of liquid. The shape of the boundary of an ink droplet is crucial for the sharp-
ness of the printing product. Hence to extend the knowledge about the microscopic
structure of ink droplets is helpful in order to improve printing technologies.

4. Flotation: Flotation is a widely applied method to concentrate or purify sulphide
minerals (like copper, lead, and zinc) or to recycle paper. Air is pumped into an
aqueous suspension of ore or used paper, respectively, such that air bubbles form.
The difference in wettability of the desired material (metal or paper) and inclusions
(minerals or ink remains) is exploited. The air bubbles are intended to carry the
inclusions to the surface, where they are removed. The interplay between air bubbles,
water, metal/paper, and inclusion particles determines the functioning of the flotation
process.

Undesired inclusions (e. g., silica) in an iron or steel melt can be removed by flotation
as well [36]. In order to avoid oxidation, here typically argon instead of air is pumped
through the melt. This process depends on the microscopic interplay of liquid metal,
inclusions, and argon bubbles.

5. Particle-stabilized emulsions and foams: Emulsions (i. e., a mixture of at least two im-
miscible liquids, e. g., milk, mayonnaise, or cosmetics) tend to phase-separate (demix)
in many cases. The prevailing procedure to stabilize an emulsion employs tensides
(emulsifiers). However, also small solid particles can stabilize an emulsion. The micro-
scopic structure and the line tension of the three-phase contact region on the surface
of such a particle is responsible for the emulsion stability. Similar thoughts hold for
particle-stabilized foams, i. e., small gas bubbles bordered by thin liquid or solid walls.

1.6 Current state of research on substrate-related line

tensions

A line tension can be defined for various systems where an excess free energy is attributed
to a linear structure. The current state of research on line tensions of systems involving
simple fluids is presented in this and the following section, Sec. 1.7. These systems either
comprise an inert phase (so do, for instance, sessile liquid wedges, sessile droplets, or
two coexisting surface phases) or contain three thermodynamically coexisting phases. For
simplicity here the case of an inert third phase is considered as containing a “substrate”,
while the case of three coexisting phases is considered as containing no substrate.

A broader review of theoretical and experimental line tension studies can be found in
Ref. [37]. Theoretically determined line tension values are of the order of 10−12 to 10−10 N,
whereas experimental values span a wide range from 10−12 to 10−6 N [37, 38].

First, there are fluid systems which involve a substrate and for which a line tension can
be identified. The case of deformable substrates giving rise to an effective line tension
[5, 6, 39] is not discussed here. The second case of three coexisting phases (i. e., without
a “substrate”) is discussed in Sec. 1.7.
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1.6.1 Sessile liquid wedge

Experiments on sessile liquid wedges are — strictly speaking — impossible to arrange,
since an infinitely long, straight three-phase contact region cannot exist in reality. This
situation exists merely approximately in the three-phase contact region of a very large
sessile droplet. Gravity has to be taken into account for the overall shape of a large
droplets. But counterintuitively Young’s law still holds in the presence of gravity [40, 41].
(Other experimental and theoretical studies claim a non-trivial relation between the
droplet size and its contact angle due to gravity [42], thus the topic is still controversal.)

For sessile liquid droplets a local contact angle can be introduced in addition to the
macroscopic contact angle given by Young’s law. For this purpose a spherical cap is fitted
to the top of the droplet, and the local contact angle is defined as the inclination of the
spherical cap at the substrate surface. However, there is no generally accepted way to
define a local contact angle of a sessile liquid wedge, hence merely the macroscopic contact
angle is an observable here.

Theoretical work on the wedge geometry offers a convenient way to treat the sessile
wedge under idealized conditions, e. g., without substrate inhomogeneities, with a perfectly
straight contact line, and with perfectly planar interfaces. There is a connection between
the line tension of a sessile wedge and that of a sessile droplet (cf. Chapter 4).

In 1981 Tarazona and Navascués presented the first theory of wedge line tension based on
statistical mechanics [43]. Their choice of the system volume corresponds to a cylinder
around the three-phase contact region. The particle density distribution was assumed to
be formed by the macroscopic step-like profiles of the three participating planar interfaces
(solid–gas, solid–liquid, and liquid–gas) plus a function which decays exponentially in the
direction perpendicular to the substrate and depends on the lateral coordinate. Both
the circular shape of the cross-section of the system and the crude approximation of the
actual density profile are questionable and limit the quantitative validity of their results.

In 1992 Indekeu analyzed the behavior of the wedge line tension close to wetting in
an interface displacement model (IDM) [44, 45]. An IDM is a simple kind of effective
interface Hamiltonian, which accounts for the effective interface potential ω(l) and an
increase of the liquid–gas interfacial area due to a non-horizontal contour l(x). The
asymptotic behavior of the line tension is expected to display universal features that are
independent of details of the model system. Hence the IDM is a helpful tool, even though
molecular details are not resolved. The asymptotic behavior of the wedge line tension
upon approaching a wetting transition was predicted (cf. Sec. 3.3.5). Depending on the
range of the interactions and the order of the wetting transition, four wetting scenarios
can be distinguished:

• Short-ranged forces (i. e., short-ranged fluid–fluid interactions as well as short-ranged
substrate–fluid interactions):

– First-order wetting transition:

τ ≃ τwetting + c1 θ ln θ + c2 θ + O
(
θ2
)

(1.4)

→ τwetting for T ր Tw (1.5)

with 0 < τwetting < ∞ and the contact angle θ expressed as radian measure. Hence
τ reaches a positive, finite value at the wetting transition temperature Tw and
approaches it from below. The wedge contour l(x) at Tw behaves as

l(x) ∼ ln x (1.6)

for large values of x.
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– Critical wetting (second-order wetting transition):

τ ∼ − θ → 0 for T ր Tw (1.7)

The vanishing limiting value at Tw is reached from below as well. The contour l(x)
reaches its asymptote, i. e., a planar solid–gas interface far from the three-phase
contact region on the gas side and a planar liquid–gas interface far from the contact
region on the liquid side, from above. In other words, the kink of the asymptote at
the contact line is smeared out.

• Long-ranged forces (i. e., long-ranged fluid–fluid interactions or/and long-ranged sub-
strate–fluid interactions): Here unretarded van der Waals forces are assumed.

– First-order wetting transition: Upon approaching Tw the line tension obeys

τ ∼ − ln θ → +∞ for T ր Tw. (1.8)

The line tension changes sign from negative to positive values upon approaching Tw

and finally diverges at wetting. The contact angle θ vanishes as

θ ∼ t1/2 → 0 for t ց 0 (1.9)

with the reduced temperature t := (Tw − T )/Tw, that corresponds to the relative
temperature deviation from the wetting temperature. The contour profile l(x) at
Tw is given by

l(x) ∼
(
x − xtp

)1/2
(1.10)

with a (diverging) turning point xtp ∼ t−1. Close to Tw the actual contour corres-
ponds to an interpolation between the above function (for relativeley small values
of l) and the planar wedge boundary condition (for large values of l). The cross-
over point xcp, up to which the approximation by the above function is valid, also
diverges. Since xcp − xtp diverges as well, the square-root-like profile in Eq. (1.10)
can evolve at wetting. τ approaches its singularity continuously, while the film
thickness diverges abruptly.

– Critical wetting: The line tension close to Tw can be described by

τ ∼ − θ1/3 → 0 for T ր Tw. (1.11)

The line tension is negative close to wetting and finally vanishes at wetting. The
contact angle θ vanishes as

θ ∼ t3/2 → 0 for t ց 0. (1.12)

Qualitatively the contour l(x) behaves like in the case of critical wetting with short-
ranged forces, i. e., it reaches its asymptote from above for small as well as for large
values of the x coordinate. Upon approaching Tw the film thickness l0 diverges here
like

l0 ∼ t−1. (1.13)

Indekeu’s IDM employs a square-gradient approximation for the expression of the inter-
facial area. To incorporate the full, unapproximated expression for this area neither
complicates the calculation much nor does it change the asymptotic behavior of the line
tension (and boundary tension) [46].

Numerical line tension calculations are restricted to finite system sizes. The influence
of a macroscopic, but finite system size on the leading order behavior of a wedge line
tension was analyzed with scaling arguments by Indekeu and Dobbs for an interface
displacement model [47]. For long-ranged, van-der-Waals–like interactions (decaying as
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r−6 in leading order) the line tension at first-order wetting diverges logarithmically with
increasing (vertical) system size. For short-ranged interactions the finite size correction
to the line tension at first-order wetting vanishes exponentially with increasing (vertical)
system size. The slope of the line tension as a function of the contact angle diverges (to
−∞) linearly in the (vertical) system size L⊥, i. e., dτ/dθ|θ=0◦ ∼ −L⊥, both for first-order
and critical wetting.

In 1995 Perković, Blokhuis and Han [48] presented the first (numerically) exact calcula-
tions of the wedge line tension (and the boundary tension) for a continuous model system
(i. e., not a lattice model). This model system is not related to realistic fluid–fluid inter-
actions. By fitting expressions containing the value at Tw and the first two correction
terms to the obtained line tension (and boundary tension) data, they found excellent
agreement with preditions by Indekeu [44] and Blokhuis [49]. The employed free-energy
functional corresponds to a square-gradient approximation, i. e., the free energy density
depends locally on the density and its gradient. Several further assumptions on the spe-
cific form of the involved functions are made, basically in order to obtain coexistence of
two fluid phases and a partial wetting scenario.

Within a density functional theory the morphology of the three-phase contact region
and the line tension of a sessile liquid wedge was analyzed on a semi-microscopic level
by Getta and Dietrich [50, 51] as well as Bauer and Dietrich [11, 52] in the late 1990s.
The microscopic details of the fluid–fluid and substrate–fluid interactions were taken into
account. However, the continuous particle density distribution function was replaced by
a piecewise constant sharp-kink distribution. This sharp-kink theory represents the first
line tension calculations for a phenomenological model system. This sharp-kink theory is
reviewed and partially extended in Chapter 7, since it serves as comparison for the fully
microscopic approach presented in this work.

In 1999 Dobbs applied Indekeu’s IDM theory to a phenomenological interface poten-
tial [53]. This was the first calculation of the (wedge) line tension for parameter values of
a specific, actual system, even though molecular details were merely taken into account
via a coarse-grained IDM description. The results for the line tension (and the boundary
tension) upon approaching Tw are in agreement with Indekeu’s predictions.

Fluctuations of the contact line and the liquid–gas interface were addressed in a phe-
nomenological model by Clarke in 1992 [54]. The influence of the line tension on the
mean square fluctuation magnitude was analyzed. It was found that a positive line ten-
sion value modifies the fluctuations near a wetting transition. For a vanshing line tension
value the contact line fluctuations are larger than for a liquid–gas interface. For negative
line tension values, however, the model breaks down.

1.6.2 Sessile liquid droplet

In a macroscopic picture the shape of an axisymmetric sessile droplet results from the
minimization of the the free energy expression for the system under the constraint of a
certain fixed amount of liquid in the droplet (e. g., a certain droplet volume, if the liquid is
incompressible). The corresponding Euler-Lagrange equation for this variational problem
is called shape equation or Young-Laplace equation,

∆p + ̺m g h(r) = 2 σlg H(r). (1.14)

Here ∆p is the Laplace pressure (i. e., the pressure difference between inside and outside
the drop), ̺m the (bulk) liquid mass density, g the gravitational acceleration, h(r) the
droplet surface, σlg the liquid–gas interfacial tension, and H(r) the mean curvature of the
surface h at the point r of the drop base area.
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Gravity can be neglected for sufficiently small droplets, i. e., if the droplet is small com-
pared to the capillary length

l =

√
σlg

̺m g
. (1.15)

For water under ambient conditions one finds l ≃ 2.6 mm, thus water droplets with a
diameter below approximately 1 mm can be regarded as free from gravitational influences.
In this case the solution of the shape equation gives a spherical cap.

A small sessile droplet with a radius below 1 mm, but above approximately 1 µm, macro-
scopicly resembles a spherical cap. This shape is governed by the surface free energy
alone. Minimizing the surface free energy with respect to the base radius and the droplet
height, again keeping the volume constant, leads to Young’s law for the contact angle.

However, for very small sessile droplets below the micrometer scale deviations of the
intrinsic contact angle θ (i. e., the equilibrium contact angle on a planar, homogeneous,
inert substrate) from the value θ0 predicted by the Young equation occur. These deviations
have been attributed for decades to the line tension almost exclusively via the modified
Young equation [55],

cos θ = cos θ0 − τ

σlg r
, (1.16)

which was proposed by Boruvka and Neumann in 1976. Here, r denotes the radius of the
circular droplet base and the line tension τ is regarded as a constant which is independent
of the droplet size. Based on this equation positive or negative values of the line tension
are commonly interpreted as follows: A positive line tension value increases the contact
angle, thus the droplet tends to shrink its perimeter. Analogously a negative line tension
value decreases the contact angle, and the droplet perimeter is expanded.

In 1997 Marmur [56] pointed out difficulties in interpreting experimental results and ques-
tioned the connection between the physical line tension and the value obtained from the
modified Young equation. He claimed the line tension to depend on the contact angle and
suggested an approximative correction of the modified Young equation. Further improve-
ments of the modified Young equation were proposed [57]. Very recently Schimmele,
Napiórkowski, and Dietrich [4] introduced an equation for the contact angle of a sessile
liquid droplet — which is called “corrected modified Young equation” in the present work
— that involves additional quantities which are comparable to the line tension term. Thus,
in view of the above mentioned corrected modified Young equation, most experimental
results did not determine the bare line tension, but a sum of the line tension and several
other terms.

The earliest molecular dynamics (MD) simulations of a sessile droplet were carried out
in the early 1990s [58]. In the recent years large improvements of the MD techniques
were made. E. g., a droplet consisting of a Lennard-Jones fluid sitting on a homogeneous
Lennard-Jones (9–3) substrate (cf. Sec. 3.3.1) was studied [59, 60]. Besides a homogeneous
LJ substrate also a crystal (fcc lattice) was investigated [61]. Further examples are MD
simulations of water molecules on polymer surfaces [62] or on amorphous silica [63]. MD
simulations represent an alternative to a density functional theory (DFT) approach in
order to obtain the equilibrium particle density distribution. The line tension could be
determined from this density distribution by means of the corrected modified Young
equation mentioned above. The number of particles in a MD simulation is limited: In the
LJ fluid simulations mentioned above the droplet contained at most around 120 [61], 18000
[59] or 70000 [60] particles, respectively. The water simulations mentioned contained up
to 600 water molecules [63] or few thousands [62], respectively. Hence, in order to reach
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the limiting case of large droplets and to substantiate the MD results, one is still obliged
to use other techniques like DFT for axisymmetric systems (cf. Sec. 9.3).

For a broader overview of the methods to address fluid properties some other — mainly
numerical — methods applicable to fluids should be mentioned as well: Results from
Monte Carlo (MC) simulations are regarded as quasi-exact, since they emerge from a
sort of “computer experiment”. A system with an effectively two-dimensional equilibrium
particle distribution function ̺(x, z) has to be simulated in three dimensions nevertheless,
in order to capture all fluctuations. In 2001 Milchev and Milchev presented results from
a MC study on sessile droplets consisting of a polymer melt [64]. For nanodroplets they
observed strong distortions of the spherical droplet shape.
A lattice model based on the Ising model offers an analytical way (using cluster expansion
techniques) to address the line tension of a sessile droplet [65]. However, the handling of
this very crude model system is very sophisticated and does not open the way towards a
more realistic description.
Integral equation theories [66] originate mainly from the 1960s and yield approximative
analytical results in many cases. Nevertheless in general the results have to be obtained
numerically. This is an alternative route to obtain fluid properties, but to my knowledge
sessile droplets or wedges have not yet been analyzed with this method.
Density functional calculations presumably offer the most direct and numerically efficient
access to the morphology of the three-phase contact region and the line tension value.
This is the reason, why in this work DFT has been chosen as method of calculation.

Experiments on line tensions of sessile liquid droplets or sessile liquid wedges (as parts
of a larger droplet) mainly rest upon contact angle measurements and an interpretation
via the modified Young equation. As mentioned above this approach implies that not
the bare line tension value is extracted. Furthermore nanoscale substrate inhomogeneities
play an important role for the sessile droplet shape and limit the quantitative accuracy
in all substrate-related line tension measurements [67].

Scanning force microscopy (SFM), a variant of atomic force microscopy (AFM), is fre-
quently used to determine liquid surface topographies with a high resolution of a few
nanometers [68]. Pompe and Herminghaus evaluated the line tension from measured con-
tour profiles l(x) on the basis of the sharp-kink line tension theory (cf. Chapter 7) [68, 69].
This approach directly yields (wedge) line tension values and does not suffer from the
shortcomings of the modified Young equation. The quantitative agreement with the sharp-
kink theory is reasonable. For a first-order wetting transition line tension values ranging
from −200 pN for large contact angles (around 55◦) up to +25 pN for small contact
angles (around 5◦) were found [69]. A predicted line tension divergence could not be
observed, either since such small contact angles were not obtained or since a short-ranged
interaction might have dominated and possibly leads to a finite positive value [69]. In
order to minimize the perturbation of the droplet exerted by the AFM tip, recently AFM
experiments in noncontact mode were performed by Checco and coworkers [70].

The most widespread experimental technique to analyze the shape of microscopic sessile
droplets is light interferometry, a variant of optical microscopy. An experimental setup is
described in Ref. [71]. From the interference patterns the drop shape can be reconstructed
(as described, e. g., in Ref. [72]). The contact angle is obtained by fitting a spherical cap to
the top of the droplet and is usually interpreted in terms of the modified Young equation.

Electron micriscopy represents another method to detect the shape of sessile droplets
with a high resolution [73]. Once the shape profile of a small droplet is obtained, the
(microscopic) contact angle θ can be obtained by fitting a spherical cap to the data points.
For larger droplets, above a base diameter of approximatively a micrometer, gravity plays
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a role and the contact angle has to be determined in a more evolved fashion [74, 75].

The droplet material does not have to be liquid at room temperature; metals, for instance,
can form sessile liquid droplets at high enough temperatures as well (e. g., gold on alumina
[76] or graphite [77] at 1100◦ C).

A widely applied experimental technique to manipulate droplets is based on the phe-
nomenon called electrowetting. A review on this topic can be found in Ref. [78]. The
basic setup contains an electrode as substrate, a sessile liquid droplet consisting of elec-
trically polar particles and a second electrode in contact with the droplet. The role of
the second/upper electrode is usually played by a needle immersed into the liquid or by
the ceiling in a closed nano-/microfluidic device which touches the droplet. If a voltage is
applied between the two electrodes, the charged fluid particles are exposed to an external
electrical field, which changes the droplet shape and may even lead to wetting, i. e., the
wetting temperature becomes voltage dependent. The voltage dependence of the contact
angle (determined as the contact angle of a spherical cap fitted to the top of the droplet)
is prevalently described by the Young-Lippmann equation,

cos
(
θ(U)

)
= cos

(
θ(U = 0)

)
+

εr ε0
2 σlg d U2, (1.17)

where U is the voltage, d the thickness of the insulating layer between the substrate
electrode and the droplet, ε0 the dielectric susceptibility of vacuum, εr the relative per-
mittivity of the dielectric layer, and σlg the liquid–gas interfacial tension. There are other
extensions of Young’s law due to different aspects of electro-wetting systems, such as an
ionic layer (acting as a capacitor), a dielectric liquid, or a finite liquid resistance (which
is considered to be responsible for contact angle saturation at high voltages) [79]. If the
voltage is switched off, the system tends to restore the initial configuration (apart from
hysteresis and non-equilibrium effects). The local contact angle (measured microscopicly
in the three-phase contact region), however, resembles the angle given by Young’s law,
i. e., the local contact angle is independent of the applied voltage [80, 81, 82].
The electrowetting effect can be exploited experimentally or technologically in order to
discontinuously switch or gradually control the wetting behavior of the fluid simply by
changing the applied voltage. Moving the immersed electrode needle or using a patterned
electrode with different individually addressable areas is a method to steer the droplet
on the substrate (e. g., in a microfluidic device) [83] or to move single particles within a
droplet [84].
Contributions to the line tension stemming from substrate/fluid charges or external elec-
tric fields have been been addressed on a mechanical or local thermodynamic level in
recent years [85, 86]. However, a microscopic treatment seems to be out of reach yet.

Certainly droplet dynamics is a broad and interesting field of research as well. Even
though dynamics is beyond the scope of this work, some issues emerging there are briefly
mentioned. For a spreading small droplet intertia seem to influence the kinetics in the
first few milliseconds [87]. A sliding droplet (e. g., due to gravity on an inclined substrate)
contains an advancing front and a receding back part. The contact angles in these parts,
the advancing and receding contact angle, are usually quite different (called “contact angle
hysteresis”), and the equilibrium contact angle attains values between them. Furthermore
advancing and receding contact angles change (relax) slowly with time [88]. An advancing
or receding droplet front is also present for condensing or evaporating droplets, respec-
tively. Sliding drops on an inclined substrate can be investigated by Lattice-Boltzmann
simulations [89, 90, 91]. Lattice-Boltzmann methods constitute an efficient way to simu-
late dynamic behavior of fluids. The fluid dynamics is split into propagation and collision
processes on a discrete lattice. These methods form a simulation counterpart to analy-
tical hydrodynamic calculations (typically based on the Navier-Stokes equation) or their
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numerical implementations (which yield numerical solutions of the hydrodynamic equa-
tions and not simulation results).
Substrate inhomogeneities lead to a threshold angle for the substrate inclination. For
angles smaller than this threshold angle the droplet base does not move (and solely the
upper droplet part bends). An advancing contact line might be stopped by geometric
or chemical obstacles, which is called “contact line pinning”. It is a matter of interest
how the contact line interacts with defects and to what extent the line tension is changed
thereby.

Coalescence of droplets or conversely rupture of large droplets into smaller ones raises
the question of stability of droplets [92] or certain liquid structures. The line tension is
important for these processes. The dynamics of droplets in micro-/nanofluidic channels
— which can be open (like railway tracks) or closed (like tubes) — is another, lively
field of research. (For the topic of stability and micro-/nanofluidics see the comments
and references in Sec. 9.2.3 around page 132.) Droplets on a vibrating substrate [93] and
bouncing droplets (e. g., on a microstructured superhydrophobic substrate [94]) represent
further topics within the research on droplet dynamics.

Stationary shapes of liquid droplets in hydrodynamic flow and localized by optical tweezers
yield an effective line tension, which results from a competition of the bare line tension
with dipole and hydrodynamic forces [95]. The shape of the droplet reacts on external
manipulations, which brings the elasticity of the three-phase contact line into play [96].

1.6.3 Surface phase coexistence in a prewetting scenario

In a prewetting scenario (cf. Sec. 3.3.5) two surface phases of a fluid on a substrate can
coexist. The thickness of the liquid-like film forming near the substrate is different for
the two surface phases. In the case of a straight interfacial region between two of these
phase regions, a boundary (line) tension can be introduced (cf. Sec. 5.2.1 for details of
the definition and the reference system). At the wetting transition the boundary tension
is expected to equal the line tension [Eq. (5.7)].

In 1995 Perković, Blokhuis, and Han calculated the boundary tension of a model system
numerically exact [48]. In 2005 the boundary tension τb was obtained by Monte Carlo
simulations [97].

1.6.4 Structured substrates

Furthermore geometrically or chemically structured substrates can give rise to a linear
free energy excess as well. This free energy per unit length of the structural line is called
“substrate boundary line tension”. The simplest case is a sharp geometrical change of the
otherwise planar substrate substrate (i. e., a substrate composed of a solid edge or wedge)
or a chemical “step”, i. e., a sharp straight line (or plane) separating two chemically
different substrate regions. The substrate boundary line tension is described in more
detail in Sec. 5.2.2. For the distantly related system of an electrolyte on an electrode
substrate with a step-like shape, the line tension of this step (called “step line tension”)
has already been evaluated (by solving the Poisson-Boltzmann equation) [98].
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1.7 Current state of research on line tensions in substrate-

free systems

Besides line tensions in systems containing a substrate, a line tension can arise in systems
without an inert substrate, i. e., in unconstrained three-phase coexistence. Such a situation
exists, e. g., in a system containing a liquid lense at a liquid–gas interface. If the three
phases α, β, and γ are at bulk coexistence, the interfaces formed by pairs of them are
planar far away from the three-phase contact region. The angles between the three planes
set up by the dividing interfaces far away from the contact line and the involved interfacial
tensions are related by a force balance in the Neumann triangle,

σαγ = σαβ cos(π − α0) + σβγ cos(π − γ0), (1.18)

that ensures mechanical equilibrium. From this expression the Neumann equation follows:

σαγ + σαβ cos α0 + σβγ cos γ0 = 0. (1.19)

However, if a liquid lense of finite size (with radius r) is considered, deviations from the
above equation occur. Traditionally this difference is assigned to the line tension by means
of the modified Neumann equation [55],

σαγ + σαβ cos α + σβγ cos γ =
τ

r
. (1.20)

For a macroscopicly large liquid lense (i. e., r → ∞) the situation of three planar inter-
faces intersecting at the contact line is recovered and the angles between the planes of
dividing interfaces are not changed by the line tension. Very recently it has been found by
Schimmele, Napiórkowski, and Dietrich [4] that the modified Neumann equation should
be extended towards an equation, which is called “corrected modified Neumann equation”
in the present work. This equation distinguishes between the role of the line tension and
additional quantities, which are comparable to the line tension term and therefore cannot
be neglected. Coexistence of three fluid phases is not possible for a one-component simple
fluid, however a binary mixture would form the simplest model system suited for this
purpose.

Up to now line tension experiments in unconstrained three-phase coexistence used the
modified Neumann equation in order to attribute deviations from the Neumann equation
to the line tension term appearing in that equation. However, in view of the above men-
tioned corrected modified Neumann equation, the experimental results did not determine
the bare line tension.

In 1992 Szleifer and Widom [99] studied the line tension behavior of a two-component
fluid model system upon approaching a wetting transition. In this substrate-free system
wetting means that one of the angles between two adjacent phases vanishes. The two
density profiles are described by approximate functions. The model free-energy functional
is based on a square-gradient approximation (i. e., it depends locally on the densities and
their gradients).

Recently Koga and Widom studied the line tension in unconstrained three-phase coexis-
tence [100, 101]. The line tension and the boundary tension were analyzed for a model
system that exhibits a first-order wetting transition [100]. The line tension upon ap-
proaching critical wetting was feasible within a closely related model system [101]. The
specific form of the free energy expressions in these two studies allows to exploit a known
formula (namely the Kerins-Boiteux integral), in order to calculate the line tension in
a convenient way. An advantage of these model systems is to be able to study the line
tension behavior close to wetting. There is strong numerical evidence that the predictions



18 1.7 Current state of research on line tensions in substrate-free systems

from Indekeu’s IDM for the line tension behavior upon approaching a wetting transition
are valid also for these model systems.

In 2005 Djikaev performed a Monte Carlo simulation of a rather simple ternary mixture
model system in the three-phase contact region in order to evaluate the line tension [102].

Experimentally obtained line tension values for liquid lenses are typically smaller than
those for sessile droplets [38]. The setup without a substrate has the advantage that the
otherwise strong influence of substrate inhomogeneities is not present. An oil lense at an
otherwise planar air–water interface was studied by Takata and co-workers in 2005 [103].
They obtained experimental line tension values for different surfactant concentrations
in water. Seven such values are reported, which vary between −138 pN and +24 pN.
However, the dependence on lense size and the experimental errors were not discussed.

Fluctuations of the contact line and the three interfaces were investigated by Clarke [104].
This analysis represents an extension of the fluctuation model for a sessile liquid wedge
[54] [see Subsec 1.6.1].



2 Classical density functional theory

Density functional theory (DFT) was first invented for studying the ground state (at tem-
perature T = 0) of quantum mechanical (electronic) systems. The fundamental principles
were developed by Hohenberg and Kohn [105] in 1964 and by Kohn and Sham [106] in
1965.
In the same year 1965 Mermin [107] studied electronic DFT for non-zero temperatures
and derived a variational principle for the probability distribution function in the grand
canonical ensemble. This work facilitated the transfer of the ideas of electronic DFT to
fluid systems. Reviews of classical DFT are given, e. g., in Refs. [108], [109], and [110].

Many interactions among fluids are based on quantum mechanical effects. Masking this
background, DFT for fluids treats particle interactions as classical potentials which, e. g.,
might depend on the interparticle distance, their orientation and their charge. In order
to distinguish between the DFT for quantum mechanical systems and the DFT for fluids,
the latter is called “classical” DFT.

2.1 Basic principles of classical DFT

2.1.1 Equilibrium density distribution ̺

The central quantity in classical DFT is the equilibrium one-particle density ̺. In a
homogeneous system this function is a constant, while in an inhomogeneous systems it
depends on the position, i. e., ̺ = ̺(r) ≡ ̺(x, y, z). The density ̺ is usually treated in
the grand canonical ensemble. This means that the natural variables of the fluid system,
temperature T , volume V , and chemical potential µ, are fixed, while their conjugate
counterparts, entropy S, pressure p, and number of particles N are functions of T , V ,
and µ.

2.1.2 Theorems of classical DFT

Classical DFT deals with the relation between the density ̺ and an external potential
Vext(r). It can be shown [108] that the external potential Vext(r) uniquely follows from
a equilibrium density ̺eq(r). The inverse statement, that the equilibrium density follows
from the external potential, also holds, except for a system in a state of phase-coexistence.
(For a quantum mechanical system such a state corresponds to a degenerate ground-state.)

Classical DFT rests on two theorems: First, there is a functional Ω[̺] of the density
function ̺(r), which equals the grand potential Ωeq, if the equilibrium density distribution
̺eq(r) is inserted,

Ωeq = Ω[̺eq]. (2.1)

Second, this density functional obeys a variational principle. For a non-equilibrium dis-
tribution ̺(r) the value of the functional is larger than the grand potential,

Ω[̺] > Ω[̺eq] = Ωeq. (2.2)

However, the exact density functional Ω[̺] is unknown in most cases. Hence a suitable
approximation for the functional has to be constructed.

19
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2.1.3 Density functional Ω[̺]

The density functional can be separated into

Ω[̺] = F [̺] +

∫

R3

dr ̺(r) (Vext(r) − µ) (2.3)

with an “intrinsic” free energy functional F [̺]. F [̺eq] is the “intrinsic” free energy, since
the free energy contribution from an external field is left out here. Keeping this in mind,
the functional F is simply called free energy functional.

The free energy functional is divided into an ideal gas contribution and an excess part,

F [̺] = Fid[̺] + Fex[̺]. (2.4)

The intrinsic free energy functional of an ideal gas, which consists of point-particles with
a mass m and without any interactions, is exactly known as

Fid[̺] = kBT

∫

R3

dr ̺(r)
(

ln
[
λ3̺(r)

]
− 1
)

(2.5)

with the thermal de Broglie wavelength λ = h/
√

2πm kBT and the Planck constant h.
However, the density functional Ω[̺] does not depend on λ [Eq. (2.17)] and therefore not
on the mass m of the particles.

The interaction among the fluid particles is reflected by the excess free energy functional
Fex[̺]. The fluid–fluid pair interaction potential φff(r) with a distance r between two
interacting particles can be separated into an attractive and a repulsive part,

φff(r) = φrep
ff (r) + φatt

ff (r). (2.6)

The excess free energy functional can be decomposed as well,

Fex[̺] = F rep
ex [̺] + Fatt

ex [̺]. (2.7)

The functionals F rep
ex [̺] and Fatt

ex [̺] depend on the total interaction potential φff(r) in
general. Widely used approximations [cf. Eq. (2.52)], however, allow to regard F rep

ex [̺] as
determined solely by φrep

ff (r) and Fatt
ex [̺] as determined solely by φatt

ff (r).

The repulsive potential is usually approximated by a hard-sphere (HS) potential. Thus
the repulsive excess free energy functional is replaced by a hard-sphere excess free energy
functional,

F rep
ex [̺] ≃ FHS

ex [̺]. (2.8)

The excess free energy functional of a HS fluid is well described by a microscopicly based
theory, the fundamental measure theory (cf. Sec. 2.2). The attractive part is treated by
perturbation theory (cf. Sec. 2.3).

2.1.4 Euler-Lagrange equation

General form of the Euler-Lagrange equation:
In order to find the equilibrium density distribution for a given functional, the variational
principle, Eq. (2.2), is applied. The functional derivative has to vanish for the equilibrium
density profile,

δΩ

δ̺(r)

∣∣∣∣
̺(r)=̺eq(r)

!
= 0. (2.9)

This equation is called Euler-Lagrange equation. From here on the index “eq”, indicating
an equilibrium particle density distribution, is suppressed and ̺(r) is — depending on the
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context — used both for an arbitrary density profile and the solution of the Euler-Lagrange
equation. For the density functional at hand [Eqs. (2.3) and (2.4)] the Euler-Lagrange
equation reads

δΩ

δ̺(r)
=

δFid[̺]

δ̺(r)
+

δFex[̺]

δ̺(r)
+ Vext(r) − µ

!
= 0. (2.10)

Chemical potential µ:
In the canonical ensemble, where the free energy is the appropriate thermodynamic po-
tential, for a homogeneous system with constant density ̺0 (and volume V and number
of particles, N) the differential relation

dF = − S dT − p dV + µ dN (2.11)

holds. The chemical potential µ is given by

µ =
∂F

∂N

∣∣∣∣
T,V

=
∂f

∂̺

∣∣∣∣
T,V ; ̺=̺0

=
δF

δ̺(r)

∣∣∣∣
̺(r)=̺0

. (2.12)

Since the free energy density f can be decomposed into two contributions, fid and fex,
the chemical potential is also separable into the chemical potential of an ideal gas and an
excess chemical potential,

µ = µid + µex =
∂fid

∂̺

∣∣∣∣
T,V

+
∂fex

∂̺

∣∣∣∣
T,V

. (2.13)

For an ideal gas with constant density ̺(r) = ̺0 the chemical potential µid follows from
Eqs. (2.5) and (2.13),

µid = kBT ln(λ3̺0). (2.14)

This means that the density ̺0 is related to the ideal gas chemical potential via
̺0 = eβ µid/λ3.

Rearranged Euler-Lagrange equation:
The functional derivative δFid[̺]/δ̺(r) can be obtained from Eq. (2.5) as well,

δFid[̺]

δ̺(r)
= kBT ln

(
λ3̺(r)

)
. (2.15)

The Euler-Lagrange equation, Eq. (2.10), can be rearranged as

̺(r) = ̺0 exp

{
−βVext(r) + βµex −

δβFex[̺]

δ̺(r)

}
. (2.16)

The Euler-Lagrange equation [Eq. (2.10) or (2.16)] is solved for non-trivial cases by a
numerical iteration procedure, e. g., a Picard iteration scheme (cf. Sec. 6.2.4.1).

Rearranged density functional:
Employing Eqs. (2.5) and (2.14) for the ideal gas terms Fid[̺] and µid, respectively, the
density functional from Eq. (2.3) can be expressed as

βΩ[̺] = βFex[̺] +

∫

R3

dr ̺(r)

{
ln

(
̺(r)

̺0

)
− 1 + βVext(r) − βµex

}
. (2.17)

Here the thermal de Broglie wavelength does not enter. This equation is applied to
calculate the grand potential for a given density distribution.



22 2.2 Hard-sphere fluid: fundamental measure theory

2.2 Hard-sphere fluid: fundamental measure theory

Realistic intermolecular interactions exhibit a repulsion at short distances. The simplest
model comprising a repulsive fluid–fluid interaction is a hard-sphere fluid. It is formed by
an ideal gas plus the condition that the spherical particles may not penetrate each other.
The hard-sphere fluid was addressed for a one-dimensional system (hard rods on a line)
analytically with exact results [111] and for the three-dimensional case within density
functional theory [112]. In 1989 Rosenfeld presented his density functional approach to a
hard-sphere fluid [113]. It is called fundamental measure theory (FMT).

2.2.1 Geometric fundament of FMT

The exact expression for the excess free energy of a one-component hard-sphere fluid for
almost vanishing densities (low-density limit) contains a Θ function to account for the
impenetrability of the hard spheres (with radius R and diameter d := 2 R) [66],

lim
̺→0

βFex[̺] = −1

2

∫

R3

dr

∫

R3

dr′ ̺(r) ̺(r′) f
(
|r − r′|

)
(2.18)

=
1

2

∫

R3

dr

∫

R3

dr′ ̺(r) ̺(r′) Θ
(
d − |r− r′|

)
. (2.19)

The Mayer f function for a fluid–fluid interaction potential φff(r) is defined as

f(r) := e−βφff(r) − 1. (2.20)

Thus for hard-spheres with

βφHS(r) =

{
∞ for r < d
0 for r ≥ d

(2.21)

the Mayer f function is fHS(r) = −Θ(d − r).

Rosenfeld decomposed the Θ function exactly into a sum of convolutions of weight func-
tions. The original work of Rosenfeld is valid for mixtures. However, since in the present
work exclusively a single species with hard-sphere radius R is employed, the formulae are
given for this special case.

The convolution of two (either scalar or vectorial) functions g1(r) and g2(r) can be defined
by

(g1 ⊗ g2)(r) :=

∫

R3

dr′ g1(r− r′) g2(r′). (2.22)

Rosenfeld introduced six weight functions wα(r), where the index α labels the four scalar
weight functions w3, w2, w1, and w0 as well as the vectorial weight functions w2 and w1.

For a one-component hard-sphere fluid with hard-sphere radius R the weight functions
are given as

w3(r) = Θ(R − |r|) , (2.23)

w2(r) = δ(R − |r|) , (2.24)

w1(r) =
w2(r)

4πR
=

δ(R − |r|)
4πR

, (2.25)

w0(r) =
w2(r)

4πR2
=

δ(R − |r|)
4πR2

, (2.26)

w2(r) =
r

|r| δ(R − |r|) , (2.27)

w1(r) =
w2(r)

4πR
=

1

4πR

r

|r| δ(R − |r|). (2.28)
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The decomposition of the Θ function then reads

Θ (2R − |r|) = (w0 ⊗ w3)(r) + (w3 ⊗ w0)(r) + (w1 ⊗ w2)(r)

+ (w2 ⊗ w1)(r) + (w1 ⊗ w2)(r) + (w2 ⊗ w1)(r). (2.29)

For a constant density ̺ the volume integrals over the two vectoral weight functions
vanish, whereas the corresponding integrals over the four scalar weight functions yield

∫

R3

dr wα(r) =
4

3
π R3, 4π R2, R, 1 for α = 3, 2, 1, 0. (2.30)

These values recover the fundamental measures (volume, surface area, radius, and Euler
characteristics) of a sphere. This was the motivation for the name “fundamental measure
theory”.

2.2.2 Excess free energy in FMT

The six weight functions [Eqs. (2.23) to (2.28)] are used to construct four scalar and two
vectorial weighted densities nα(r) by convolutions with the density,

nα(r) := (̺ ⊗ wα)(r). (2.31)

For a constant density ̺ the weighted density n3 corresponds to the packing fraction

η := ̺
4

3
πR3. (2.32)

FMT consists of two features. First, the above definitions of the weight functions and
the corresponding weighted densities. Second, it is assumed that the excess free energy
functional Fex[̺] can be written as

βFex[̺] =

∫

R3

dr Φ ({nα(r)}) . (2.33)

The function Φ({nα}) corresponds to a dimensionless excess free energy density, and its
form is not predefined by FMT. Rosenfeld introduced a certain functional, the so-called
Rosenfeld functional. In 2002 the White Bear functional was derived [114] and refined in
2006 [115]. All these functionals are constructed for the low-density limit (̺ → 0) and
then extrapolated to higher densities. Fortunately even for higher densities the agreement
with the structure and thermodynamic quantities obtained from Monte Carlo simulations
of a hard-sphere fluid is very good.

All versions of FMT have the following characteristic properties in common: First, the
density functionals are non-local in the density. Second, the weight functions are geometri-
cally based and thus better justified than in an ordinary weighted density approximation
(WDA). Third, the low-density limit (̺ → 0) is correctly reproduced by construction.
Fourth, algorithms based on FMT are relatively efficient (cf. Sec. 6.2.2). Fifth, FMT is
applicable to mixtures of hard-spheres with different radii as well.

2.2.3 Rosenfeld functional

Rosenfeld proposed a certain choice for the function Φ ({nα(r)}),

ΦRF ({nα(r)}) := −n0 ln(1 − n3) +
n1 n2 − n1 · n2

1 − n3

+
(n2)3 − 3 n2 (n2 · n2)

24 π (1 − n3)2
. (2.34)
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The excess free energy functional [Eq. (2.33)] that employs this function is called the
Rosenfeld (RF) functional.

Rosenfeld derived the function ΦRF using scaled particle theory (SPT) [116, 117]. SPT
states that in the limit of an infinitely large hard-sphere radius R the chemical potential µ
equals the work p V that has to be performed against the pressure, if a spherical particle
with radius Rtest is inserted and then scaled up. Then one has the SPT equation

lim
Rtest→∞

µ

V
= p. (2.35)

The Rosenfeld functional recovers the Percus-Yevick (PY) equation of state (EOS) [118,
119, 120] for a hard sphere fluid,

βpPY = ̺
1 + η + η2

(1 − η)3
. (2.36)

In 1990 Kierlik and Rosinberg introduced a free energy functional for the inhomogeneous
hard-sphere fluid [121], which involves solely scalar weight functions and no vector con-
tributions. However, instead of the vectorial weight functions here weight functions come
into play, which contain first and second derivatives of Dirac’s δ function. The Kierlik-
Rosinberg functional and the Rosenfeld functional are equivalent [122].

2.2.4 White Bear functional

The White Bear (WB) functional is related to the more accurate Carnahan-Starling (CS)
EOS [123] for a hard-sphere fluid,

βpCS = ̺
1 + η + η2 − η3

(1 − η)3
, (2.37)

instead of the PY EOS. A generalization of the CS EOS to a hard-sphere mixture is
called the Boubĺık-Mansoori-Carnahan-Starling-Leland (BMCSL) EOS [124, 125]. There
the pressure depends not on the total packing fraction but on the four scalar weighted
densities for mixtures. The BMCSL EOS serves as an input for the derivation of the WB
functional.

The function Φ ({nα(r)}) [Eq. (2.33)] for the WB functional can be expressed as

ΦWB ({nα(r)}) := −n0 ln(1 − n3) +
n1 n2 − n1 · n2

1 − n3

+
(n2)3 − 3 n2 (n2 · n2)

24 π (1 − n3)2
× 2

3

n3 + (1 − n3)2 ln(1 − n3)

(n3)2
. (2.38)

The last factor (after the × symbol) goes to 1 for vanishing n3, that corresponds to the
packing fraction η in regions with constant density. Thus for small densities the WB
functional resembles the RF functional. Consequently the WB version also recovers the
correct low-density limit. The WB functional contains a slight inconsistency between the
pressure calculated from the SPT equation and the pressure from the underlying equation
of state.

Recently a modified version of the WB functional was presented, called the White Bear
mark II functional [115]. Here the above mentioned inconsistency is overcome for a one-
component hard-sphere fluid. The WBII functional is based on another generalization of
the CS EOS to mixtures [126]. Density distributions ̺(r) resulting from the WB and the
WBII functional differ very little [115]. These tiny differences are much below the level of
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accuracy aimed at in this work. The computer program is slowed down by approximately
10 percent due to more elaborate array initializations, if the WBII version is applied
instead of the WB functional. Therefore for this work exclusively the WB functional is
used.

2.2.5 Functional derivate δFex/δ̺(r) within FMT

In order to solve the Euler-Lagrange equation, Eq. (2.16), or to calculate the grand poten-
tial, Eq. (2.17), it is necessary to calculate the functional derivative of the excess free
energy functional, δβFex[̺]/δ̺(r). The functional Fex is approximated by a hard-spheres
term and an attractive term [Eqs. (2.7) and (2.8)]. So the functional derivative of Fex

contains two parts,

δFex[̺]

δ̺(r)
≃ δFHS

ex [̺]

δ̺(r)
+

δFatt
ex [̺]

δ̺(r)
. (2.39)

The functional derivative δFatt
ex /δ̺(r), that belongs to the attractive part of the fluid–fluid

interaction, is discussed in Sec. 2.3.1.

If the hard-sphere repulsion is accounted for by FMT, the functional derivative of the
excess free energy functional for hard-spheres can be simplified to convolutions (convolu-
tion integrals): First, from Eq. (2.33) follows

δβFHS
ex [̺]

δ̺(r)
=
∑

α

∫

R3

dr′
∂Φ

∂nα[̺(r′)]

δnα[̺(r′)]

δ̺(r)
, (2.40)

where again α labels the six weight functions (see Sec. 2.2.1). Second, from Eq. (2.31)
one finds

δnα[̺(r′)]

δ̺(r)
= wα(r′ − r) = (±)α wα(r − r′) (2.41)

with a “sign factor”,

(±)α :=

{
+1 for scalar weight functions
−1 for vectorial weight functions ,

(2.42)

i. e., depending on whether the weight function wα is even or odd. Altogether the func-
tional derivative for the hard-spheres part reads

δβFHS
ex [̺]

δ̺(r)
=
∑

α

(±)α

(
∂Φ

∂nα

⊗ wα

)
(r). (2.43)

For concrete calculations this general expression has to be adapted to the employed coor-
dinate system (cf. Sec. 2.4) and evaluated for the employed functional (see Subsecs. 2.2.3
and 2.2.4).

2.2.6 Thermodynamic quantities of a hard-sphere fluid

In this section the thermodynamic quantities of a one-component hard-sphere fluid — like
pressure, excess free energy density, and chemical potential — are considered. In order to
emphasize that solely a hard-sphere fluid is considered here and any attraction is absent,
the thermodynamic quantities are labeled by “HS”. In order to account for attractive
parts of the fluid–fluid interaction as well, the above formulae for the thermodynamic
quantities for a hard-sphere fluid are extended in Sec. 2.3.2.



26 2.3 Attractive interactions: perturbation theory

Pressure pHS:
As mentioned before, Rosenfeld’s functional corresponds to the Percus-Yevick equation
of state (PY EOS), Eq. (2.36), while the White Bear functional (in the standard and
the mark II version) corresponds to the Carnahan-Starling equation of state (CS EOS),
Eq. (2.37).

Chemical potential:
In general, the chemical potential µ can be calculated from the free energy density f
via the definition µ = ∂f/∂̺. Since f can be split into an ideal gas part and an excess
contribution, also the chemical potential can be split analogously [Eq. (2.13)]. For a
hard-sphere fluid this means

µHS = µid + µHS
ex =

∂fid

∂̺
+

∂fHS
ex

∂̺
. (2.44)

The excess chemical potential µHS
ex of a hard-sphere fluid reads

βµPY
ex = − ln(1 − η) +

7η − 13
2 η2 + 5

2η3

(1 − η)3
. (2.45)

for the PY EOS and

βµCS
ex =

3η2 − 9η + 8

(1 − η)3
(2.46)

for the CS EOS.

The chemical potential µHS additonally contains the ideal gas chemical potential βµid =
ln(λ3̺) = ln(λ3) + ln ̺. However, the value of the thermal de Broglie wavelength λ is
irrelevant for the thermodynamical properties of the system [Eq. (2.17)]. Furthermore
λ merely enters as an additive constant on both sides of the conditional equation for
phase-coexistence, Eq. (2.59). If the chemical potential is shifted suitably,

β µ̃id := βµid − ln
(
λ3
/

(4
3πR3)

)
, (2.47)

and the tilde symbol is suppressed, the ideal gas chemical potential obtains a simple form,

βµid = ln η. (2.48)

This shift in the ideal gas part of the chemical potential is tacitly presumed in the
following.

2.3 Attractive interactions: perturbation theory

The interaction potential between two fluid particles is separated into a repulsive and
an attractive part. The repulsive part is approximated by a hard-sphere interaction
potential. The attractive part can be taken into account approximatively by a (first-
order) perturbation theory.

2.3.1 Perturbation theory/random phase approximation (RPA)

According to Eq. (2.18) the low-density limit expression of the excess free energy functional
involves the Mayer f function [Eq. (2.20)],

βFex[̺] ≃ − 1

2

∫

R3

dr

∫

R3

dr′ ̺(r) ̺(r′) f
(
|r − r′|

)
, ̺ → 0. (2.49)
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In other words, here f corresponds to the low-density limit of the direct correlation
function c(2) however this is not a mean-field approximation.

The fluid–fluid interaction potential is separated into a repulsive and an attractive part
[Eq. (2.6)]. The repulsive part of the interaction potential equals a hard-sphere potential
in the case of a square-well fluid (cf. Sec. 2.3.5) or can be approximated by such a hard-
sphere potential in the case of a Lennard-Jones fluid (cf. Sec. 2.3.4),

φff(r) = φrep
ff (r) + φatt

ff (r) ≃ φHS(r) + φatt
ff (r) . (2.50)

Within random phase approximation (RPA) the direct correlation function c(2) is appro-
ximated by

c(2) ≃ c
(2)
HS − βφatt

ff , (2.51)

where c
(2)
HS is the direct correlation function of the hard-sphere reference system and the

attractive part of the interaction potential constitutes a perturbation [66]. RPA is a
mean-field-like approximation.

This approximation is also refered to as a “first-order perturbation theory”, since the per-
turbation of the HS reference system corresponds approximately to a first-order expansion
(in the attractive potential) of the Mayer f function.

Thus the excess free energy functional can be expressed as the sum of the (extrapolated)
excess free energy of a hard-sphere fluid and a term containing the attractive part of the
interaction,

Fex[̺] = F rep
ex [̺] + Fatt

ex [̺]

≃ FHS
ex [̺] +

1

2

∫

R3

dr

∫

R3

dr′ ̺(r) ̺(r′) φatt
ff (|r − r′|). (2.52)

The functional derivative of the attractive excess free energy, Eq. (2.39), is specified for
the RPA (first-order perturbation theory),

δβFatt
ex [̺]

δ̺(r)
≃

∫

R3

dr ̺(r′) βφatt(|r − r′|) =
(
̺ ⊗ βφatt

ff

)
(r) (2.53)

=: (̺ ⊗ wff) (r) =: nff(r). (2.54)

Like a weighted density nα is a convolution of the density ̺ and a weight function wα,
the functional derivative of βFatt

ex is a convolution of ̺ and a function wff . In an effec-
tively three-dimensional system wff is identical to the dimensionless attractive part of the
interaction potential. However, in effectively lowered dimensions (cf. Sec. 2.4) the corres-
ponding function is either called “weight function” as well, if its role in a convolution with
̺ shall be emphasized, or “integrated potential” in order to stress its origin. Due to the
analogy with weighted densities the convolution product is also regarded as a weighted
density, called nff .

2.3.2 Thermodynamic quantities

Thermodynamic quantities — like pressure, (excess) free energy density, and (excess)
chemical potential — of a hard-sphere fluid have been discussed in Sec. 2.2.6. Now
these quantities associated to a fluid with additional attractive fluid–fluid interaction are
presented.

Excess free energy density fex(̺):
According to the (approximative) excess free energy functional in Eq. (2.52) the bulk
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excess free energy density fex(̺) can be decomposed into the sum of a hard-sphere term
and a contribution from the attractive part of the interaction. The integral over this
attractive part,

α :=

∫

R3

dr φatt
ff (|r|), (2.55)

is called the integrated strength of the attractive potential. Then one has

fex = f rep
ex + fatt

ex ≃ fHS
ex +

1

2
̺2 α. (2.56)

This equation determines the excess chemical potential and the excess pressure.

Excess chemical potential:
The excess chemical potential follows from Eqs. (2.13) and (2.56),

µex =
∂fex

∂̺
=

∂f rep
ex

∂̺
+

∂fatt
ex

∂̺
≃ µHS

ex + ̺ α. (2.57)

Pressure p:
In general, the free energy density and the chemical potential are related to the pressure
via p = − (f − µ ̺). Hence the hard-sphere pressure is given by

p ≃ pHS +
1

2
̺2 α. (2.58)

2.3.3 Bulk phase diagram

A “bulk” system is a fictitious infinitely large system (i. e., without boundaries) without
any external fields. A phase diagram is a graph that illustrates for which values of phy-
sical parameters (like temperature, pressure, chemical potential, and packing fraction or
particle density) which thermodynamic phase is present in equilibrium. A bulk phase
diagram displays the different phases of a bulk system. The lines which separate regions
(in parameter space) of different phases are called binodal lines or binodals. However,
since meta-stable states (e. g., a supercooled/undercooled liquid or a superheated liquid)
could exist, also the spinodal lines or spinodals are interesting, since they tell where a
phase-transition must take place at the latest.

In contrast, a surface phase diagram can contain additional information about surface-
related phenomena, e. g., the wetting temperature and the course of a prewetting line (if
they exist).

In a grand canonical ensemble the conditions for coexistence between fluid phases (in
thermodynamic equilibrium) are the following: For a given temperature T below the
critical temperature Tc the chemical potential and the grand potential have to be the
same for the coexisting phases. In a bulk system Ω = −pV holds, and the pressure has
to be identical in the coexisting bulk phases.

Hence for liquid–gas phase coexistence, the case relevant for this work, the conditions of
bulk phase coexistence read

pl
!

= pg and µl
!

= µg, (2.59)

where the indices l and g refer to the liquid and the gas phase, respectively. These two
conditions represent a coupled system of non-linear equations. The packing fractions ηl

and ηg or, equivalently, the bulk densities ̺l and ̺g of the coexisting liquid and gas phases
have to be obtained numerically.



Chapter 2: Classical density functional theory 29

Within RPA and for a certain HS EOS the phase diagrams for all intermolecular inter-
actions collaps to a master curve, if the temperature is scaled accordingly. This is due to
the fact that within RPA the phase diagram merely depends on the integrated strength
α of the interaction potential [Eq. (2.55)].

From the condition ∂p/∂̺
!
= 0 the spinodals,

kBTspinodal = − α ̺
(1 − η)4

1 + 4 η + 4 η2 − 4 η3 + η4
, (2.60)

are obtained for a fluid described by RPA and the CS EOS. Likewise for such a system

the conditions ∂p/∂̺
!
= 0 and ∂2p/∂̺2 !

= 0 lead to

η5
c − 5 η4

c + 4 η3
c + 20 η2

c + 5 ηc − 1 = 0 (2.61)

for the packing fraction at the critical point, ηc. Hence this critical packing fraction is
ηc ≃ 0.130444, and the critical temperature follows as

kBTc ≃ − 0.047164
1

4
3π R3

α. (2.62)

The bulk phase diagram for a fluid described by RPA and the CS EOS is shown in Fig.
2.1 for the case of a so-called WCA-LJ fluid (see Sec. 2.3.4 for details).

2.3.4 Lennard-Jones potential

Liquid–gas coexistence is required for studying the liquid wedge system in thermodynamic
equilibrium. Hard-spheres do not exhibit a fluid–fluid phase transition. The simplest
possible fluid exhibiting a liquid–gas phase transition is a square-well (SW) fluid, which
will be described in Sec. 2.3.5.

A phenomenological interparticle interaction potential widely used in physics and chem-
istry is the Lennard-Jones (LJ) potential. The famous LJ (12–6) potential is a pheno-
menological fluid–fluid interaction potential, which contains both a long-ranged attrac-
tion and a short-ranged repulsion. It resembles the tail of a van der Waals potential, i. e.,
φLJ(r → ∞) ∼ −r−6. The LJ (12–6) potential is defined as

φLJ(r) := 4 εLJ

[(σLJ

r

)12
−
(σLJ

r

)6
]

(2.63)

with an energy parameter εLJ > 0 (that corresponds to the depth of the potential) and a
length parameter σLJ. The LJ potential crosses zero for r = σLJ and attains its minimum
for r = rmin := 6

√
2 σLJ.

The original interaction potential is decomposed exactly [Eq. (2.6)] into a repulsive and
an attractive part,

φLJ(r) = φrep
LJ (r) + φatt

LJ (r). (2.64)

The attractive part is tackled by perturbation theory, while the repulsive part is approxi-
mated by a hard-sphere potential,

φLJ(r) ≃ φHS(r) + φatt
LJ (r). (2.65)

There are two commonly used separation schemes:

Weeks-Chandler-Andersen (WCA) separation scheme:
The decomposition method employed in this work goes back to Weeks, Chandler, and
Andersen [127]. The LJ potential is repulsive for r < rmin = 6

√
2 σLJ and attractive for
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r > rmin. The attractive part of the potential, φatt
LJ (r), is constructed by this attractive

contribution and extrapolating it into the core by a constant,

φatt
WCA−LJ(r) := − εLJ Θ

(
6
√

2 σLJ − r
)

+ φLJ(r) Θ
(
r − 6

√
2 σLJ

)
. (2.66)

Consequently the repulsive part reads

φrep
WCA−LJ(r) :=

(
φLJ(r) + εLJ

)
Θ
(

6
√

2 σLJ − r
)
. (2.67)

Barker-Henderson (BH) separation scheme:
An also widely applied procedure to split the potential into two parts was invented by
Barker and Henderson [128]. Here the positive and negative parts of the potential are
separated, i. e.,

φatt
BH−LJ(r) := φLJ(r) Θ

(
r − σLJ

)
(2.68)

and

φrep
BH−LJ(r) := φLJ(r) Θ

(
σLJ − r

)
. (2.69)

Effective hard-sphere diameter deff(TLJ) for WCA and BH:
In both the BH and the WCA scheme a part of the interaction potential is approximated by
a hard-sphere potential with radius R and diameter d ≡ 2 R. A temperature dependent
choice of an effective hard-sphere diameter deff(T ) has been suggested by Barker and
Henderson [128].

In this work the Lennard-Jones parameter σLJ is directly employed as hard-sphere dia-
meter,

2 R ≡ d := σLJ. (2.70)

Nevertheless, the temperature dependent epxressions are presented for completeness: The
effective hard-sphere diameter reads

dBH
eff (TLJ) :=

σLJ∫

r=0

dr
{

1 − e−β φLJ(r)
}

(2.71)

for a BH-LJ fluid and

dWCA
eff (TLJ) :=

6√2 σLJ∫

r=0

dr
{

1 − e−β [φLJ(r) + εLJ]
}

(2.72)

for a WCA-LJ fluid.

Integrated strength α:
The integrated strength [Eq. (2.55)] of the attractive part of the WCA-LJ potential is

αWCA−LJ ≡
∫

R3

dr φatt
WCA−LJ(|r|) = − 32

9

√
2 π σ3

LJ εLJ

(2.70)
= −4

3
π (3 R)3 εLJ ×

64

81

√
2. (2.73)

For a BH separation α is

αBH−LJ ≡
∫

R3

dr φatt
BH−LJ(|r|) = − 32

9
π σ3

LJ εLJ = αWCA−LJ/
√

2. (2.74)
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BH-LJ, with deff

BH-LJ, without deff

WCA-LJ, with deff

WCA-LJ, without deff

η

T
L
J

0.40.30.20.10

1.41.21.00.8
Fig. 2.1: Bulk phase diagrams for several models for a Lennard-Jones (9–3) fluid. The effective

temperature T
LJ

= 1/(βε
LJ

) is plotted versus the packing fraction η. The phase diagrams
are determined within the random phase approximation (first-order perturbation theory)
for the Weeks-Chandler-Anderson (WCA) and the Barker-Henderson (BH) separation
scheme. Both the WCA-LJ and the BH-LJ fluid are analyzed with and without the
effective hard-sphere diameter deff . In the situations without deff the LJ parameter σLJ

is chosen as the corresponding hard-sphere diameter. A WCA-LJ fluid without deff is
employed in the DFT calculations for this work. In this case the critical point is situated
at ηc ≃ 0.130444 and T

LJ,c
≃ 1.422933. The temperature of the triple point of a LJ

fluid is T
LJ

≃ 0.75 [129]. However, for the WCA-LJ fluid with a relatively high critical
temperature (

√
2 times as large as for the BH-LJ fluid, each considered without deff) the

triple point temperature for a WCA-LJ fluid is expected to be situated in the effective
temperature range between 0.75 and

√
2 × 0.75 ≃ 1.06.

This relation between α for BH and WCA, respectively, illustrates the difference between
these separation schemes. However, if a reduced temperature t := TLJ/TLJ,c with a critical
effective temperature TLJ,c is considered, the apparent difference between BH and WCA
becomes much smaller, and the two phase diagrams within RPA even match exactly.

Bulk phase diagram of a (WCA-)LJ fluid:
The bulk phase diagram of a WCA-LJ fluid calculated within RPA (or “first-order” per-
turbation theory) and the CS EOS for the hard spheres is shown in Fig. 2.1. The spinodals
and binodals are plotted in the plane formed by the effective temperature

TLJ
:=

1

βεLJ

(2.75)

and the packing fraction η.

Weight functions:
The weight function wff(r) [Eq. (2.54)] for the WCA decomposition of a LJ interaction is
given by

wLJ(r) = βφatt
WCA−LJ(|r|). (2.76)

The corresponding one- and two-dimensional versions wLJ(z) and wLJ(x, z) are presented
in Sec. 2.4.2 [Eqs. (2.94) and (2.110)].
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2.3.5 Square-well potential

A SW fluid represents a short-ranged, theoretical model system, which is widely used (for
overviews see, e. g., Refs. [130] and [131]). The SW potential is defined as

φSW(r) :=






∞ for r < σ
−εSW for σ ≤ r ≤ σSW

0 for r > σSW,
(2.77)

where d ≡ 2 R is the hard-sphere diameter and the energy parameter εSW > 0 describes
the depth of the potential well. Throughout this work

σSW
:=

3

2
d ≡ 3 R (2.78)

is chosen. For the inverse case of a negative value of the well depth parameter ε the fluid
is called square-shoulder fluid [132].

The SW potential is well suited for a (first-order) perturbation theoretical treatment. It
can be decomposed into a hard-sphere potential and an attractive potential. Since the
potential is infinitely large for small distances anyway, one is free to chose the attractive
part arbitrarily for small distances r < d. An intuitive choice is to extrapolate the con-
stant −εSW into the core of the hard-spheres. Then the attractive part of the interaction
potential as a function of the interparticle distance r reads

φatt
SW(r) = − εSW Θ (σSW − r)

(2.78)
= − εSW Θ (3 R − r) . (2.79)

The integrated strength [Eq. (2.55)] of the attractive part of the SW potential is

αSW ≡
∫

R3

dr φatt
SW(|r|) = − 4

3
π σ3

SW εSW

(2.78)
= −

(
4
3π R3

)
× 27 εSW. (2.80)

This quantity determines the bulk phase behavior [Eqs. (2.57) and (2.58) and Sec. 2.3.3].

As mentioned before (in Sec. 2.3.3), the phase diagram within RPA (and for a certain HS
EOS) is the same for all fluids. Thus the phase diagram calculated for a WCA-LJ fluid
(see Fig. 2.1 in Sec. 2.3.4) can readily be used for the SW fluid as well, if the axis of the
effective temperature is scaled properly. The integrated strengths of the attractive parts
of the SW and the WCA-LJ potential are identical for

εSW =
64

81

√
2 εLJ ≃ 1.117403 εLJ (2.81)

or, equivalently, for

TSW
:=

1

βεSW

=
1

64
81

√
2

1

βεLJ

≡ 1
64
81

√
2

TLJ ≃ 0.894932 TLJ. (2.82)

The weight function wff(r) employed in perturbation theory [Eq. (2.54)] in the SW case
is given by its attractive interaction part,

wSW(r) = βφatt
SW(|r|). (2.83)

For effectively one- and two-dimensional Cartesian systems the corresponding weight func-
tions wSW(z) and wSW(x, z) are displayed in Sec. 2.4.2 [Eqs. (2.93) and (2.109)].
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2.4 Effectively one- and two-dimensional

Cartesian systems

2.4.1 Exploiting symmetries in three-dimensional systems

If one considers a three-dimensional liquid or gas in contact to a planar, homogeneous
wall, the corresponding density profile ̺ exclusively depends on the (Cartesian) coordinate
z perpendicular to the wall, i. e., ̺(r) ≡ ̺(x, y, z) = ̺(z), if the interaction is isotropic
and no spontaneous symmetry breaking (e. g., crystallization) occurs. In the case of
coexistence between the liquid and the gas phase, the density profile may vary in more
directions, depending on the boundary conditions and external fields. A liquid wedge on
a substrate has a density profile that is translationally invariant in one lateral direction,
say the y-direction. The density profile solely depends on the other lateral coordinate x
and the vertical coordinate z, ̺(r) = ̺(x, z).

If the coordinate dependency of ̺ is restricted to one (z) or two (x and z) coordinates,
crystallization — where the density dramatically varies in all three spatial directions —
cannot be covered. In other words, the configuration space has been reduced. This
procedure remains reasonable for temperatures above the triple point. Also the possible
effect of pre-crystallization at a wall (i. e., crystallization at a density slightly below the
density where crystallization takes place in a bulk system) is not considered here. However,
if a lattice-like structure arises in the effectively two-dimensional density ̺(x, z), this is at
least a sign that crystallization could take place, if the dependency on the third dimension
was released.

Another example of an effectively one-dimensional system is a fluid around a larger spheri-
cal particle, e. g., a single colloid. Here above the melting temperature the density solely
depends on the distance from the center of the particle.

2.4.2 Weighted densities

The coordinate dependency of the density profile ̺ is crucial for concrete calculations.
It depends strongly on the type of coordinate system (Cartesian, polar etc.) and on
the number of “active” coordinates, i. e., the number of coordinates the density profile
really depends on. The convolution integrals and the associated weight functions wα in
the basic version of FMT are written in three Cartesian dimensions. If one uses another
type of coordinate system or less than three coordinates, the weight functions have to be
expressed in the new coordinate system such that they lead to the same weighted densities
as in the Cartesian case.

In the following Rosenfeld’s weight functions wα, the square-well weight function wSW, and
the Lennard-Jones weight function wLJ are adapted to effectively one- and two-dimensional
systems.

2.4.2.1 Effectively one-dimensional Cartesian systems

Let the particle density in the three-dimensional space be translationally invariant in
two Cartesian directions, so that it exclusively depends on a single direction, say the
z-direction,

̺(r) = ̺(z). (2.84)
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Then the weighted densities nα(r) also depend on solely one Cartesian coordinate and
can be written as [Eq. (2.31)]

nα(z) = nα(r) ≡
∫

R3

dr′ ̺(r− r′) wα(r′)

=

∫

R

dz′ ̺(z − z′) wα(z′) ≡ (̺ ⊗ wα)(z) (2.85)

with one-dimensional weight functions (or more precisely: weight functions with a one-
dimensional argument),

wα(z) :=

∞∫

x=−∞

dx

∞∫

y=−∞

dy wα(r), (2.86)

and one-dimensional convolutions.

The one-dimensional weight functions for FMT are determined from the three-dimensional
ones. Merely three of them are independent,

w3(z) = π(R2 − z2) Θ(R − |z|) , (2.87)

w2(z) = 2πR Θ(R − |z|) , (2.88)

(w2)z (z) = 2πz Θ(R − |z|), (2.89)

where the x and y components of the vectorial weight function w2(z) vanish. The other
three weight functions are related to them via a constant prefactor,

w1(z) =
w2(z)

4πR
, w0(z) =

w2(z)

4πR2
, and w1(z) =

w2(z)

4πR
. (2.90)

The functional derivative of the excess free energy functional of a hard-sphere fluid [Eq.
(2.43)] can also be expressed in terms of the one-dimensional weight functions and one-
dimensional convolutions,

δβFHS
ex [̺]

δ̺(r)
=
∑

α

(±)α

(
∂Φ

∂nα

⊗ wα

)
(z). (2.91)

The perturbation theoretical treatment of the attractive part of the intermolecular inter-
action is specified for the case of an effectively one-dimensional density ̺(z) as follows:
Equation (2.54) is valid for a one-dimensional convolution as well, and the corresponding
effectively one-dimensional weight function wff(z) with

wff(z) :=

∞∫

x=−∞

dx

∞∫

y=−∞

dy wff(r) (2.92)

can be determined for both the square-well and the Lennard-Jones potential: First, the
weight function for the SW fluid reads

wSW(z) = − πβεSW

(
σ2

SW − z2
)

Θ (σSW − |z|) . (2.93)

Second, the weight function for the LJ potential (using the WCA separation) is

wLJ(z) = −πβεLJ

(
9

5

(
6
√

2 σLJ

)2 − z2

)
Θ
(

6
√

2 σLJ − |z|
)

−πβεLJ

(
−4

5

σ12
LJ

z10
+ 2

σ6
LJ

z4

)
Θ
(
|z| − σLJ

)
. (2.94)
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2.4.2.2 Effectively two-dimensional Cartesian systems

Analogously, a three-dimensional density distribution may now depend on two Cartesian
coordinates x and z, but not on the y coordinate,

̺(r) = ̺(x, z). (2.95)

The weighted densities for this case involve two-dimensional weight functions wα(x, z)
and two-dimensional convolutions:

nα(x, z) = nα(r) ≡
∫

R3

dr′ ̺(r− r′) wα(r′)

=

∫

R

dz′
∫

R

dz′ ̺(x − x′, z − z′) wα(x′, z′) ≡ (̺ ⊗ wα)(x, z). (2.96)

The two-dimensional weight functions

wα(x, z) :=

∞∫

y=−∞

dy wα(r) (2.97)

within FMT are given as

w3(x, z) = 2
√

R2 − (x2 + z2) Θ(R −
√

x2 + z2) , (2.98)

w2(x, z) =
2R√

R2 − (x2 + z2)
Θ(R −

√
x2 + z2) , (2.99)

(w2)x (x, z) =
2x√

R2 − (x2 + z2)
Θ(R −

√
x2 + z2) , (2.100)

(w2)z (x, z) =
2z√

R2 − (x2 + z2)
Θ(R −

√
x2 + z2) , (2.101)

(w2)y (x, z) = 0, (2.102)

and

w1(z) =
w2(z)

4πR
, w0(z) =

w2(z)

4πR2
, and w1(z) =

w2(z)

4πR
. (2.103)

Numerically it is difficult to calculate the weighted densities n2(x, z) and n2(x, z) [and
their dependent weighted densities n1(x, z), n0(x, z), and n1(x, z)] by a convolution of
̺(x, z) with the corresponding weight function w2(x, z) or w2(x, z), since they diverge
at the border of the Θ function. In order to circumvent this difficulty, relations between
the weight functions are used: The weight functions w2 and w2 are related to the weight
function w3 via

w2 =
∂

∂R
w3 and w2 = −∇w3, (2.104)

respectively. These relations hold independently of the effective dimension of a three-
dimensional system, i. e., for w3(r), w3(x, z), and w3(z). They translate to relations
between the weighted densites,

n2 = ̺ ⊗ w2 = ̺ ⊗ ∂

∂R
w3 =

∂

∂R
(̺ ⊗ w3) =

∂

∂R
n3 (2.105)

and

n2 = ̺ ⊗ w2 = ̺ ⊗ (−∇w3) = −∇ (̺ ⊗ w3) , (2.106)
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since here integrations and differentiations permute. Consequently the weighted density
n3 evaluated for two or three different HS radii is sufficient to determine the other weighted
densities as well. Details of the numerical implementation are mentioned in Sec. 6.2.2.3.

The functional derivative of the excess free energy functional of a hard-sphere fluid in the
case of a two-dimensional density ̺(x, z) can be expressed as a sum of two-dimensional
convolutions,

δβFHS
ex [̺]

δ̺(r)
=
∑

α

(±)α

(
∂Φ

∂nα

⊗ wα

)
(x, z). (2.107)

The perturbation theoretical treatment of an attractive interaction part is specified for
the case of an effectively two-dimensional density ̺(x, z) as follows: The weight function
wff(x, z) for an effectively two-dimensional system reads

wff(x, z) :=

∞∫

y=−∞

dy wff(r) (2.108)

in general and

wSW(x, z) = − 2βεSW

√
σ2

SW − (x2 + z2) Θ
(
σSW −

√
x2 + z2

)
(2.109)

for a SW fluid.

Furthermore I calculated the weight function wLJ(x, z) for a WCA-LJ fluid analytically.
It depends merely on the distance from the origin in the xz plane, c :=

√
x2 + z2. Except

at the origin the weight function can be expressed as

wLJ(x, z) ≡ wLJ(c)

= βεLJσLJ

{[
63

64
π
(σLJ

c

)11
− 3

2
π
(σLJ

c

)5
]

Θ
(
c − 6

√
2 σLJ

)

+ fLJ

( c

σLJ

)
Θ
(

6
√

2 σLJ − c
)}

(2.110)

with an auxiliary function

fLJ(s) := 63
32 s−11 arctan

(
s
/√

21/3 − s2
)

− 63
32

1
21/3 s−10

√
21/3 − s2

−21
32 21/3 s−8

√
21/3 − s2 − 21

40 s−6
√

21/3 − s2

−3 s−5 arctan
(
s
/√

21/3 − s2
)

+ 51
20

1
21/3 s−4

√
21/3 − s2

+4
5 21/3 s−2

√
21/3 − s2 − 2

√
21/3 − s2. (2.111)

At the origin the weight function is described by

wLJ(x = 0, z = 0) = − 144

55
6
√

2 βεLJσLJ. (2.112)

For numerical implementations an expansion of wLJ(c) for small values of c is useful. It
is reported in Appendix A on page 144.



3 Planar fluid interfaces

The density profiles of three planar interfaces, namely a solid–gas (s–g), a solid–liquid
(s–l), and a liquid–gas (l–g) interface, serve as boundary conditions for the sessile liquid
wedge system. In this work the crystal structure of the substrate is neglected and the
substrate particles are assumed to be smeared out to an unstructured, homogeneous
continuum. Thus effectively one-dimensional s–g, s–l, and l–g interfacial density profiles
̺(z) are ingredients for the liquid wedge program.

General aspects of fluid interfaces, like the concept of surface tension and (Gibbs) dividing
interface, are introduced in the following section. Then the cases of a liquid–gas interface
(cf. Sec. 3.2) and a solid–fluid interface (cf. Sec. 3.3) are discussed.

3.1 Surface tension and dividing interfaces

Infinitely large homogeneous systems (“bulk” systems) are an idealization, actual systems
are always surrounded by bounderies. Boundary conditions often influence system pro-
perties not only in these border regions but also further away from them, deep inside the
system. An interface is formed where two phases are in contact. A surface is a certain
kind of interface at which one side is filled with air.

An interface usually changes the energy of the system in comparison to bulk systems.
The surface excess free energy or the surface excess contribution to the grand potential,

σ A = Ω + p V, (3.1)

scales with the interfacial area A (for an almost infinitely large system and a volume V
of the fluid). The associated prefactor is called surface tension or interfacial tension σ.

Excess quantities (like surface tensions and line tension) are calculated on the basis of
a reference system, which consists of imaginary regions of bulk density. Such a region
is confined by at least one dividing interface, which is the imaginary sharp interface
separating two adjacent regions containing different thermodynamic phases. The dividing
interface of a liquid–gas interface is discussed in Sec. 3.2.1, whereas solid–liquid and solid–
gas interfaces are considered in Sec. 3.3.2.

3.2 Liquid–gas interfaces

3.2.1 Liquid–gas dividing interface

In a situation where a liquid and a gas phase can thermodynamically coexist a planar
liquid–gas interface actually develops only under the influence of a weak external field,
e. g., gravity. For most theoretical descriptions this field can be chosen arbitrarily weak
and thus be neglected [133].

At a liquid–gas interface the density distribution varies smoothly over several or many
atomic radii. Thus it is not obvious where exactly to locate the dividing interface. In prin-
ciple the l–g dividing interface can be chosen arbitrarily, and there are several reasonable
ways to do so:

First, the plane z = z0 with a density corresponding to the arithmetic average of the bulk
liquid and bulk gas densities,

̺(z = z0)
!

=
1

2

(
̺l + ̺g

)
, (3.2)

37
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is an intuitive choice of the dividing interface of a planar l–g interface. This definition has
been employed in the present work.

Second, the equimolar dividing interface of a planar l–g interface [assuming lim
z→−∞

̺(z) = ̺l

and lim
z→∞

̺(z) = ̺g without loss of generality] is defined by

z0∫

z=−∞

dz [̺l − ̺(z)]
!

=

∞∫

z=z0

dz
[
̺(z) − ̺g

]
. (3.3)

This definition arranges the dividing interface plane z = z0 such that on each side there is
the same amount of particles “missing” in comparison to the bulk liquid density or “too
much” in comparison to the bulk gas density, respectively. In other words, the particle
deficit on the liquid side and the particle excess on the gas side of the equimolar dividing
interface are balanced. For the sharp-kink approximation (cf. Chapter 7) of a liquid–gas
interfacial profile this second definition recovers the first definition.

The liquid–gas surface tension σlg is independent of the choice of the dividing interface
for a planar liquid–gas interface. This can be understood by considering the following
definition for the l–g surface tension σlg, which is more rigorous than the general one in
Eq. (3.1):

σlg := lim
Vl ,Vg→∞

Ω − Vl ωl − Vgωg

Alg

= lim
Vl ,Vg→∞

Ω + p Vl + p Vg

Alg

= lim
Vl ,Vg→∞

Ω + p V

Alg

. (3.4)

The grand canonical free energy densities ωl = −p and ωg = −p of the liquid phase and
of the gas phase, respectively, are equal in thermodynamic equilibrium. For a shifted
dividing interface the volumina of each of the two phases changes, but the overall volume
V ≡ Vl + Vg remains constant. Several analytic approaches to calculate the liquid–gas
interfacial tension of a LJ fluid have been made (see, e. g., Ref. [134] and references
therein).

Besides the macroscopic thermodynamic description, which ignores the molecular compo-
sition of simple fluids, and the statistical mechanical picture, which takes the interactions
among molecules into account (on the basis of a partition function or a DFT), another
level of description of a l–g interface exists, namely the mechanical (or local thermo-
dynamic) description. From the condition of local mechanical equilibrium an expression
for the liquid–gas interfacial tension follows [133],

σlg =

∫ ∞

z=−∞
dz [pn − pt(z)] , (3.5)

where pn is the normal and pt(z) the transversal pressure. However, the definition of the
latter is not unique and thus makes the approach problematic. This is due to the fact
that the forces within the fluid act between molecules and the above expression is based
on continuum mechanics [133].

3.2.2 Liquid–gas interfacial density profiles

The asymptotic structure of a planar interface reflects the asymptotic decay of correlations
in the corresponding bulk fluid [135]. Here planar liquid–gas interfaces of a LJ and a SW
fluid are considered. Let z be the coordinate perpendicular to the interface, which is zero
at the interface, positive for the gas region and negative for the liquid region.
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A LJ fluid comprises long-ranged interactions among the particles. For such a fluid–fluid
interaction the density distribution far away from a planar liquid–gas interface reaches
the bulk gas or bulk liquid density obeying inverse power laws, which are called “van
der Waals tails”. The dominant term behaves as z−3 [135, 136, 137, 138]. Therefore the
asymptotic behavior of the l–g interfacial density profile can be described by

̺(z) − ̺l ∼ −|z|−3 for z → −∞ , (3.6)

̺(z) − ̺g ∼ z−3 for z → ∞. (3.7)

Also oscillatory behavior may occur for small or intermediate distances from the interface,
see Fig. 3.1.

A SW fluid represents a model fluid with short-ranged interactions among the fluid parti-
cles. For short-ranged interactions the asymptotic convergence of the density ̺(z) towards
the liquid or gas bulk density exhibits either a monotonic, exponential decay or exponen-
tially damped oscillations, depending on which of the two cases applies to the decay of
correlations in the corresponding bulk fluid. A cross-over between the two scenarios oc-
curs at the Fisher-Widom (FW) line in the phase diagram [139]. Typically the FW line
reaches the binodals on the liquid side of the phase diagram. For temperatures above the
temperature of that point in the phase diagram the density decays exponentially on both
sides of a l–g interface. Below that temperature solely the density on the gas side of a l–g
interface decays purely exponentially, while the density on the liquid side attains its bulk
value in an exponentially damped oscillatory fashion. Examples of density distributions
of a SW fluid at liquid–gas interfaces are given in Fig. 3.1.

3.3 Solid–fluid interfaces

Solid surfaces could exhibit arbitrarily many shapes and structures, which likewise af-
fect the shape of an interface between this solid and a fluid phase. Here the substrate
molecules are assumed to be homogeneously smeared out, thus the actual crystal struc-
ture is neglected. The solid–fluid interface for a planar, unstructured continuum substrate
is effectively one-dimensional, if a one-component simple fluid and isotropic interactions
are assumed and spontaneous symmetry breaking is excluded. In this case the density
distribution exclusively depends on the distance from the substrate surface, i. e., ̺ = ̺(z).

3.3.1 Substrate potentials

A commonly used description of the interaction between a fluid particle and a planar,
laterally translationally invariant (i. e., laterally smeared out, but possibly inhomogeneous
in the direction perpendicular to the surface) solid substrate is an expansion of the sub-
strate potential in terms of 1/z, where z is the distance from the substrate. If one has a
substrate composed of acutal molecules in mind, the plane z = 0 corresponds here to a
plane through the centers of the topmost layer of substrate molecules. The long-ranged
behavior is given by a 1/z3 term. Thus the substrate potential can be written as

V (z > 0) ≡ −
∑

i≥3

ui

zi
, (3.8)

with constant coefficients ui. Clearly, merely a fraction of all imaginable substrate poten-
tials can be described that way; however, this class of substrate potentials is particularly
suited to analyze long-ranged solid–fluid interactions systematically.

A steric interaction (repulsion) between the substrate and the fluid is taken into account
by the substrate–fluid potential. An excluded volume (cf. Sec. 3.3.3) can be assigned



40 3.3 Solid–fluid interfaces

to the narrow zone near the substrate surface which is almost free of (centers of) fluid
particles, in order to construct the external potential Vext(z) that is employed in the
numerical calculations.

LJ (10–4), (9–3), and (9–4–3) potentials:
A special case of the above mentioned class of substrate potentials is the one which arises
from a standard Lennard-Jones (12–6) potential [Eq. (2.63)],

φsf(r) := 4 εw

[(σw

r

)12
−
(σw

r

)6
]

, (3.9)

between a fluid particle and a substrate particle at distance r. In general, the substrate
potential is defined as

Vsf(r) :=

∫

R3

dr′ ̺w(r′) φsf(|r − r′|) (3.10)

with the density ̺w(r′) of the substrate (wall) particles, which in the present cases is
constant (̺w) in the substrate region and zero outside. Note that the substrate is assumed
to be smeared out and thus homogeneous even on a microscopic level, consequently its
potential solely depends on the vertical distance z from the surface.

If the substrate occupies a half space, the resulting potential contains a z−9 and a z−3

term and is called Lennard-Jones (9–3) potential,

V9−3(z) :=

∫

Vw

dr′ ̺w(r′) φsf(|r − r′|) =

∫

R3

dr′ ̺w Θ(−z′) φsf(|r − r′|)

=
2

3
π ̺w σ3

w εw

[
2

15

(σw

z

)9
−
(σw

z

)3
]

. (3.11)

In this work the density of substrate particles is set to

̺w := σ−3
w . (3.12)

Likewise in the case of a LJ fluid for the parameter σw the corresponding parameter of
the fluid is chosen, i. e.,

σw := σLJ. (3.13)

(For easier comparison also in the case of a square-well fluid the parameters of the external
potential are denoted that way.) These two choices are done without loss of generality,
since the potential strength can still be adjusted by εw. A given external potential can be
expressed by another substrate density and another value for σw as well, if the parameter
εw is rescaled accordingly. Thus the solid–fluid interaction parameters and the coefficients
from Eq. (3.8) are related via

u3 =
2

3
π ̺w σ6

w εw =
2

3
π σ3

LJ εw (3.14)

u9 = − 4

45
π ̺w σ12

w εw = − 4

45
π σ9

LJ εw. (3.15)

Note that a positive coefficient ui corresponds to an attractive contribution.

A monolayer of substrate particles leads to a substrate potential which contains a z−10

and a z−4 term and is therefore called Lennard-Jones (10–4) potential,

V10−4(z) :=

∫

R3

dr′ ̺w,A δ(z′) φsf(|r − r′|)

= 2π ̺w,A σ2
w εw

[
2

5

(σw

z

)10
−
(σw

z

)4
]

, (3.16)
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with ̺w,A as the number of substrate particles per surface area. The coefficients u4 and
u10 can be read off.

If the substrate contains a surface layer different from the substrate structure underneath
(e. g., an oxyde layer), the substrate potential contains a z−4 term in addition to a LJ
(9–3) potential and is abbreviated as Lennard-Jones (9–4–3) potential. This z−4 term in
addition to a LJ (9–3) potential can exert a large influence on the wetting behavior (cf.
Sec. 3.3.5). For convenience let the dimensionless parameter

b4 :=
u4

u3 σLJ

(3.17)

describe the relative strength of the z−4 term compared to the z−3 term.

Clearly, if the substrate is not homogeneous in the z-direction (but still translationally
invariant in the lateral directions), many of the coefficients ui in Eq. (3.8) could be non-
zero.

One has to distinguish between the coordinate origin (here z = 0 corresponds to the
plane through the centers of the topmost layer of substrate molecules), the definition of
the dividing interface (cf. Sec. 3.3.2), and the steric interaction between substrate and
fluid particles (cf. Sec. 3.3.3).

3.3.2 Solid–fluid dividing interface

The solid–fluid surface tension can be determined for any packing fraction (i. e., for any
bulk density) corresponding to a point on or outside the meta-/instability region of the
phase diagram. The surface tension involving a substrate and a fluid, liquid, or gas phase
is regarded as solid–fluid interfacial tension.

Different choices of a substrate–fluid dividing interface are possible. In the situation
of a wedge or droplet on a substrate, where both solid–gas (s–g) and solid–liquid (s–l)
interfaces are present at the same time, it is convenient to use a common plane for both
the s–g and the s–l interface and regard it as solid–fluid dividing interface. Throughout
this work the plane z = 0 constitutes the solid–fluid dividing interface.

Sometimes the substrate is treated as a part of the system, sometimes merely the fluid is
considered as the system, on which an external potential acts. In Eq. (1.3) the substrate
was not included in the system. Since in this section the dividing interface between the
substrate and the fluid is focused on and different choices for this plane are allowed, the
substrate is treated as a part of the system here. Then analogously to Eq. (3.4) the
solid–fluid interfacial tension is defined as

σsf := lim
Vs ,Vf→∞

Ω − Vsωs − Vf ωf

Asf

, (3.18)

where ωs and ωf = −p denote the grand canonical free energy density of the substrate
and the fluid, respectively.

A parallel shift of the dividing interface plane by δh changes the volumina, V
(2)
s =

V
(1)
s + δhAsf and V

(2)
f = V

(1)
s −δhAsf . Consequently also the value of the surface tension

changes,

σ
(2)
sf = σ

(1)
sf + (ωf − ωs) δh, (3.19)

since in general solid and fluid energy densities are different. This difference is due to
a constrained equilibrium, where merely the liquid and gas phases thermodynamically
coexist and the substrate is regarded as chemically inert. Thus the value of the surface
tension of a solid–fluid interface depends on the definition of the s–f dividing interface.
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3.3.3 Excluded volume

The steric repulsion between the substrate and fluid particles close to the substrate leads
to an (almost) empty region near the substrate surface. In the sharp-kink approximation
(cf. Chapter 7) an important parameter is the width dw of this excluded volume, since
there the fluid density jumps from zero to a finite value. This means that the density
does not automatically adjust to values compatible with the external potential, but it is
chosen by hand. In numerical, fully microscopic DFT calculations the external potential
would be enough to account for steric repulsion. Nevertheless, such a parameter dw can
be introduced as an approximation, if the particle density almost vanishes for distances
z . dw.

The substrate–fluid potential is assumed to be a LJ potential in most cases analyzed
in this work. Within the WCA or BH separation of a LJ fluid the fluid particles are
assigned a hard core of radius R, i. e., a hard-spherical contribution to the interaction
potential. Hence it is plausible to perform a similar approximation for the substrate–fluid
interaction as well. While in the approximation of the fluid–fluid interaction the distance
between two particles cannot be smaller than two atomic radii, here the fluid particles
are allowed to approach the substrate surface z = 0 up to a distance R. Consequently the
region between z = 0 and z = R is absolutely free from any particle centers. This choice
corresponds to a value

dw = R (3.20)

of the widh of the excluded zone.

The choice dw = R directly translates into a hard-wall (HW) potential

βVHW(z) :=

{
∞ for z < R
0 for z ≥ R.

(3.21)

As a consequence, in this work the external potential Vext(z) entering Eq. (2.3) shall
contain a hard-wall potential,

Vext(z) := VHW(z) + V (z). (3.22)

3.3.4 Solid–fluid interfacial density profiles

3.3.4.1 Sum rules

The equilibrium particle density distribution ̺(r) of a solid-fluid interface obeys thermo-
dynamic consistency relations called “sum rules”. Especially for effectively one-dimensi-
onal interfaces, i. e,. a planar solid surfaces with a homogeneous substrate potential, the
sum rules are of practical importance as check of the resulting ̺(z). In the present case
two sum rules hold:

Wall theorem or contact value theorem:
The fluid density profile near a substrate fulfills an integral condition over the whole fluid
region. Henderson, Blum, and Lebowitz [140] have shown that such a wall theorem for
an external potential according to Eq. (3.22) and a density ̺(z) reads

βp = ̺(R+) −
∞∫

z=R+

dz
dβV (z)

dz
̺(z). (3.23)
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In the special case of a hard wall the wall theorem above becomes a contact value theorem,
i. e., it involves merely the density at the closest possible position, z = R, of a molecule
(with a hard-sphere radius R) at the wall,

βp = ̺(R+). (3.24)

Gibbs’ adsorption theorem:
Another useful relation involves the excess adsorption Γ at a planar solid–fluid interface.
Γ describes the additional (with respect to a fluid with constant density ̺0 up to the
excluded volume near the substrate) amount of particles per surface area,

Γ :=
1

Asf

∫

V
dr
[
̺(r) − ̺0

]
. (3.25)

Then the Gibbs’ adsorption theorem

Γ = − ∂σsf

∂µ

∣∣∣∣
T,V

(3.26)

follows from the Gibbs-Duhem relation. For practical purposes the right-hand side is
rephrased:

Γ = − ∂βσsf

∂η

/
∂βµ

∂η
. (3.27)

The first factor is accessible numerically, the second factor can be calculated analytically
for first-order perturbation theory and the chemical potential belonging to the PY or CS
EOS for hard spheres [Eqs. (2.57), (2.44) to (2.46), and (2.48)].

3.3.4.2 Solid–fluid interfacial density profiles

The asymptotic behavior of solid–fluid interfacial density profiles is expected to depend
merely on bulk fluid correlations and not on details of the external potential [135].
Hence the statements on liquid–gas interfaces in Sec. 3.2.2 translate directly to solid–
fluid interfaces.

A gas in a thermodynamic state of coexistence with its liquid phase can possibly wet a
substrate (cf. the next subsection, Sec. 3.3.5). Then the solid–gas interfacial structure
recovers the corresponding solid–liquid profile and particularly the asymptotic decay to-
wards the liquid bulk density. In a partial wetting situation the asymptotic decay of
a solid–gas interfacial density is still predicted by the Fisher-Widom line, even though
density oscillations close to the substrate surface might occur.

Similarly to the liquid–gas interface the density distribution of a LJ fluid at a substrate
asymptotically attains the bulk density via a power law with z−3 as the dominant term
[137, 138],

̺(z) − ̺f ∼ z−3 for z → ∞. (3.28)

Solid–fluid interfaces comprising LJ or SW fluids, respectively, are displayed in Fig. 3.1.
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Fig. 3.1: Solid–gas, solid–liquid, and liquid–gas interfacial profiles for (a) LJ and (b) SW fluids.
The substrate–fluid interaction is given by a LJ (9–3) potential in both cases, whose
strength is described by βεw = 0.6707 for the LJ fluid in (a) and βεw = 0.45 for the
SW fluid in (b). The LJ fluid is treated within the WCA separation scheme, and the
interaction is truncated at an interparticle distance of 10 hard-sphere radii. Hence the
physical parameters in (a) and (b) correspond to the wedge line tension calculations in
Sec. 8.1.1.1 and 8.1.1.2, respectively. The SW and LJ interfacial profiles are displayed each
for two temperatures. The distance from the substrate surface is displayed as abscissa
for the s–g and s–l interface, however, the l–g interfacial profiles are shifted suitably such
that the interfacial position lies in the plotted range.
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3.3.5 Wetting

Wetting and drying transitions:
If the gaseous phase of a suitable fluid is in contact with a sufficiently attractive substrate,
a liquid-like film forms on the substrate surface. For suitable parameters (temperature,
substrate attractivity, fluid–fluid interaction potential) at liquid–gas coexistence this layer
attains a macroscopic thickness, i. e., the film thickness diverges. The transition from a
finite to an infite film thickness is called wetting transition or shortly wetting. The minimal
temperature at which wetting can occur is called wetting temperature Tw.

If the liquid phase of a suitable fluid is in contact with a sufficiently repulsive substrate,
a gas-like film forms on the substrate surface. For suitable parameters the film thickness
diverges. This analogous effect is called drying. Solely the case of wetting with liquid is
of interest in the following.

Types of wetting transitions:
If the liquid–gas coexistence line in the phase diagram is approached from the gas side
(i. e., ̺ ր ̺g and µ ր µcoex) for a temperature above the wetting temperature (T > Tw),
the film thickness (e. g., expressed by the excess adsorption Γ) diverges continuously. One
speaks about complete wetting.

If for a gas at liquid–gas coexistence (̺ = ̺g and µ = µcoex) the wetting temperature is
approached from below, T ր Tw, two scenarios are possible: Either the film thickness
diverges continuously during this process, which is called critical wetting (or second-order
wetting), or the film thickness discontinuously changes from finite to infinite at Tw, which
is called first-order wetting.

Both complete wetting and critical wetting transitions belong to the category of continuous
wetting transitions, since the layer thickness diverges continuously.

A system of a fluid near a substrate that features a first-order wetting transition displays
another phenomenon called prewetting (or analogously predrying). Upon approaching
coexistence above the wetting temperature (but below the temperature of the prewetting
critical point), the film thickness first performs a finite jump (still off coexistence) and
then jumps to infinity at T = Tw. The prewetting line in the phase diagram displays the
parameters where this finite jump occurs. The prewetting line meets the coexistence line
at the wetting transition point, whereas a prewetting critical point constitutes its other
end.

Wetting as a phase transition:
A wetting transition represents a surface phase transition (for reviews see Refs. [141] and
[142]). In general, a first-order phase transition is characterized by a jump in a first
partial derivative of a thermodynamic potential, and a second-order or continuous phase
transition exhibits a non-analyticity (jump or divergence) in a second partial derivative
of a thermodynamic potential.

The argumentation, why the above definition of a phase transition is fulfilled for complete,
critical, and first-order wetting, is summarized in Appendix C on page 146.

Critical point wetting:
A critical point is a point in the phase diagram where two coexisting phase become
indistinguishable. At the critical point of a fluid system any difference between the liquid
phase and the coexisting gaseous phase vanishes and merely a fluid phase remains.

In 1977 Cahn [143] presented a conjecture, that complete wetting should always occur
close to a critical point. His substantiation for critical point wetting is called Cahn’s
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argument. An illustrative plausibility consideration refers to Young’s law and brings to
mind the fact that the difference between liquid and gas vanishes at the critical point and
that consequently the liquid–gas surface tension vanishes there as well, i. e.,

lim
TրTc

σlg = 0. (3.29)

In order to satisfy Young’s equation even for vanishing liquid–gas interfacial tension, cos θ
has to attain the largest possible value, namely 1. As a consequence the contact angle θ
vanishes near a critical point, i. e.,

lim
TրTc

θ = 0, (3.30)

which is related to a wetting transition. However, exceptions to Cahn’s conjecture have
been found in experiments and theory [144], where partial wetting persists even near the
critical point.

Effective interface potential:
A useful tool to study wetting properties of a fluid at a solid surface is the effective
interface potential ω. It is the grand canonical free energy which is necassary to establish
an interface between a liquid-like film and the gas phase at a certain, finite distance from
the surface instead of forming it infinitely far from the surface. For a planar, homogeneous
substrate ω is a function of the film thickness l, which is the distance of the liquid–
gas dividing interface from the surface. Thus one can write ω = ω(l). Clearly, from
the definition one can easily recognize ω(l → ∞) = 0. The equilibrium film thickness
corresponds to the global minimum of the effective interface potential, i. e.,

l0 = min
l

ω(l). (3.31)

A first- or second-order wetting transition as well as prewetting can be understood in this
picture as follows. Consider a finite film thickness l0 and let the temperature increase
towards the wetting temperature.
At a first-order wetting transition the position of the minimum jumps from a finite value
to infinity. This scenario is related to a negative minimum below the wetting temperature
and an energy barrier comprising positive ω values. Upon approaching Tw the depth
of the minimum decreases, and finally at Tw the global minimum is degenerate, i. e.,
ω(l0) = 0 = ω(l → ∞), and for an infinitesimal temperature increase the equilibrium film
thickness diverges.
For critical wetting (i. e., a second-order wetting transition) ω(l) does not exhibit a posi-
tive energy barrier between the finite l0 [with ω(l0) < 0] and infinity slightly below the
wetting temperature. Upon approaching the wetting transition the minimum becomes
less negative and its position is shifted towards large l values. Hence the film thickness
diverges continuously with increasing temperature.

Upon approaching the liquid–gas coexistence curve in the phase diagram at a temperature
above the wetting temperature prewetting occurs, if the wetting transition on coexistence
(approaching the wetting temperature from below) is of first order. Here the jump of the
position of the global minimum of ω does not reach an infinite film thickness directly.
Rather another minimum at an intermediate l value is accessed before. Therefore the
effective interface potential in this case exhibits two (positive-valued) energy barriers,
which separate the first and second minimum as well as the second minimum and the
third position situated at infinity.
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connection to liquid wedges

In the present study the line tension is deduced from numerical computations of the grand
canonical free energy of sessile liquid wedges. However, in order to find observable con-
sequences resulting from the existence of a line tension, object like sessile liquid droplets
have to be studied. Locally a sessile droplet can be regarded as a sessile wedge. Moreover
in the limit of an infinitely large sessile liquid droplet the structure of the three-phase
contact region should resemble the one of a sessile liquid wedge. Thus the two systems, a
sessile droplet and a sessile wedge, are closely related.

However, as described in a recent paper by Schimmele, Napiórkowski, and Dietrich [4],
very much care is necessary, in order to decompose the grand canonical free energy of a
drop into volume, interfacial and line contributions. The problem arises, because a number
of contributions to the grand canonical free energy of the drop scale with a linear system
dimension and some contributions may be attributed either to the three-phase contact
line or alternatively to an interface in terms of appropriate corrections to the interfacial
tension. Therefore, when basing the definition of the line tension on a decomposition of
the grand canonical free energy of a liquid drop, the mentioned degree of freedom leads
to two alternative sensible definitions of a line tension.
In case of the first definition the line tension τ turns out to be independent of the position
of the Gibbs dividing interfaces separating two adjacent phases; the positions of the Gibbs
dividing interfaces are arbitrary to some extent. In this chapter the symbol τ is employed
for the first definition of the droplet line tension, whereas in the other chapters it denotes
the wedge line tension.
In case of the second definition, the respective line tension denoted τ (wedge) in the following
does depend on the choice of the Gibbs dividing interfaces. As the notation indicates,
τ (wedge) agrees with the line tension deduced from the numerical studies of a sessile liquid
wedge on a substrate presented later on. The two line tensions τ and τ (wedge) are connected
by a simple relation deduced in Ref. [4]. This relation will be given in Sec. 4.6.

In a further step a modified Young equation, expressing the dependence of the contact
angle of a drop on its size (base radius) in terms of the interfacial tensions, the line tension,
and other material parameters has to be established. As shown in Ref. [4], in addition to
the line tension two further stiffness coefficients have to be attributed to the three-phase
contact line, in order to arrive at a description which is free of internal inconsistencies.

The main ideas and results of Ref. [4] are reviewed in the following. Although numerical
results presented in this work exclusively refer to wedge systems, in Sec. 9.3.1 an outlook
is given, how axisymmetric sessile droplets could be addressed in a fully microscopic
approach efficiently.

4.1 Line tension of a sessile droplet

Line tension with or without subdominant terms:
The word “line tension” has to be used with care, since many (more or less precise)
definitions are in use. The grand potential of a sessile droplet contains a contribution attri-
butable to the contact line and scaling with the length L of the three-phase contact line.
The line tension of a sessile droplet, τ∞, can be defined as the leading order contribution

47
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of the grand potential line contribution divided by the length of the contact line [4],
{

Ω −
∑

i=s,l,g

Viωi −
∑

i=sg,sl,lg

Aiσi

}/
L =: τL =: τ∞ + subleading terms. (4.1)

Here ωs, ωl, and ωg denote the grand canonical free energy densities of a homogeneous
solid, liquid, and gas system, respectively. Vi, i ∈ {s, l, g}, is the volume of the phase i
in the droplet scenario. Ai and σi denote the interfacial areas and tensions, respectively.
The length of the three-phase contact line is L.

For finite droplet sizes τL as defined via Eq. (4.1) also contains subdominant terms. How-
ever, subdominant contributions to the line tension will be disregarded consistently in
what follows. In the same spirit contributions to the modified Young equation beyond
the order of the line tension term are consistently truncated. By definition the subleading
terms vanish for a infinitely long contact line,

lim
L→∞

τL = τ∞. (4.2)

Definition of the reference system:
A reference system has to be defined, with respect to which the line tension of a sessile
droplet represents an excess quantity. The consideration is limited to droplets of micro-
meter size or below. Gravity does not play a role for such small droplets. Consequently
in this size regime a sessile droplet has the same shape as, e. g., a pendant droplet or a
droplet near a vertical wall. Since a micrometer-sized droplet macroscopicly looks like
a spherical cap, the liquid–gas dividing interface is chosen to be a spherical cap, which
is fitted to the upper part of the droplet and extrapolated into the three-phase contact
region. Hence for this description the droplet has to be sufficiently large such that its
shape far from the contact line resembles a spherical cap.

Simple geometric considerations (see, e. g., Ref. [76]) for spherical caps reveal relationships
between the contact angle and extension parameters. The contact angle θ, for instance,
is related to the heigth h and the radius r of the contact circle via

tan (θ/2) = h/r (4.3)

and related to the heigth h and the radius R̃ of the sphere, which forms the cap, via

cos θ = 1 − h/R̃. (4.4)

The contact angle for partial dewetting (i. e., 90◦ < θ < 180◦) and vertical observation
cannot be obtained from Eq. (4.3), since r is inaccessible in that case. However, it can be
determined from Eq. (4.4), since R̃ can be measured that way.

The solid–gas and solid–liquid dividing interfaces are chosen to lie in the same plane, thus
they can be combined to a single solid–fluid interface. The three-phase contact line is
defined by the intersection of the spherical cap with this plane. Hence the contact line
serves as a “dividing line” [145]. Then the line tension τL is defined by the decomposition
of the grand potential [4],

Ω = −(p + ∆p) Vl − p Vg + ωs Vs

+ Alg σlg(R) + πr2 σsl + (A − πr2) σsg + 2πr τL (4.5)

with the radius r of the circular base and the radius R of the sphere forming the spherical
cap. The contact angle θ is defined as the angle between the solid–fluid dividing interface
and the tangent to the spherical cap at the three-phase contact line. The Laplace pressure,
i. e., the difference between the pressure inside the droplet (pl = p + ∆p) and the pressure
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in the gas region (pg = p), has to be taken into account. Therefore the liquid and gas
phases are slightly off bulk coexistence. σlg(R) is the surface tension of a free spherical
drop surrounded by gas. For infinitely large droplets it recovers the surface tension of a
free planar liquid–gas interface,

lim
R→∞

σlg(R) = σlg. (4.6)

The surface tensions σsg and σsl are evaluated at the pressure p. Another choice, to
evaluate σsl at the increased pressure p + ∆p, is reasonable as well and will be discussed
in Sec. 4.6.

4.2 Notional invariance

The grand potential Ω is a physical quantity and does not depend on the actual choice
of the dividing interfaces. Hence a variation of the dividing interfaces has to leave Ω un-
changed. The physical droplet and hence the particle density distribution ̺(r) remain the
same during this variation. Shifts of the dividing interfaces are called notional shifts [4].
The property that Ω remains constant under these shifts is called notional invariance. It
is applied to derive an equation for the contact angle θ, a (corrected) modified Young
equation (cf. Sec. 4.4).

Changes of thermodynamic variables (like surface tension or line tension) induced by a
notional shift are described by notional derivatives, which are indicated in Ref. [4] by
square brackets enclosing the derivative.

[
dτ
dθ

]
, for instance, is the notional derivative of

the line tension with respect to a notional change of θ.

The line tension τ = τ∞, defined via Eq. (4.5) (L → ∞) with the surface tensions σsg and
σsl both taken at the pressure p, is independent of the choice of the solid–fluid dividing
interface. Notional invariance of τ is a remarkable result, since the line tension τ (wedge)

as well as σsg and σsl do depend on the position of the solid–fluid interface.

4.3 Variation under constraint of fixed volume

Variations of the droplet shape under the constraint of fixed volume involve non-
equilibrium configurations close to equilibrium. The corresponding grand potential is
minimized in order to find an equilibrium droplet shape. During this variation procedure
the physical system is changed. This contrasts the notional variation in Sec. 4.2.

The derivative of thermodynamic quantities under this variation is indicated by a ver-
tical bar on the right-hand side of the derivative. To call such a quantity “derivative”
might lead to misconceptions, since the corresponding infinitesimal change of the system
leads the system a little bit away from thermal equilibrium. ∂τ

∂R

∣∣, for instance, refers
to an equilibrium configuration with radius R and a non-equilibrium configuration with
radius R + dR and the same other physical parameters. These “derivatives” cannot be
perceived as usual physical derivatives, that connect equilibrium states, and should rather
be regarded as “stiffness coefficients” [4].

The notional derivatives and the constrained variational derivatives (i. e., the stiffness
coefficients) of the line tension,

dτ

dθ

∣∣∣∣ =

[
dτ

dθ

]
and

dτ

dr

∣∣∣∣ =

[
dτ

dr

]
, (4.7)

are equal. However, these stiffness coefficients (or notional derivatives) do depend on the
choice of the dividing interfaces [4].
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4.4 Corrected modified Young equation

Both variational procedures, the notional variation and the constrained variation, lead to
the same corrected modified Young equation [4],

σlg(R) cos θ + σsl − σsg = − τ∞
r

− dτ

dr

∣∣∣∣ −
sin θ cos θ

r

dτ

dθ

∣∣∣∣ , (4.8)

which relates the contact angle θ to the three involved surface tensions, the line tension,
and derivatives of the line tension with respect to the droplet base radius r and the
contact angle. These two derivatives can be regarded as stiffness coefficients attributed to
the contact line. Note that σlg(R) is the surface tension of a spherical liquid drop (with
radius R of the dividing interface) in a gaseous environment [146]. The Tolman length
is defined via the first coefficient in an expansion of the surface tension in terms of the
inverse curvature 1/R [133, 147, 148, 149],

σlg(R) = σ∞
lg

(
1 −

2 δT
lg

R
+ . . .

)
, (4.9)

where σ∞
lg = σlg(R → ∞) is the liquid–gas surface tension of a planar interface. The

macroscopic contact angle θ0 is well-known according to Young’s equation. The geometric
relation sin θ = r

R connects the radius R and the base radius r of a spherical cap.

In order to resemble the left-hand side of the standard modified Young equation, Eq.
(1.16), the corrected modified Young equation can be expressed as [4]

cos θ = cos θ0−
τ∞

r σ∞
lg

+

(
2 δT

lg − 1

r σ∞
lg

dτ

dθ

∣∣∣∣

)
sin θ0 cos θ0

− 1

σ∞
lg

dτ

dr

∣∣∣∣ + O
(

ln r
r2

)
. (4.10)

The curvature dependent surface tension enters here via the surface tension for a planar
interface and the Tolman length. Each of the four terms on the right-hand side contributes
with comparable magnitude to the difference between the contact angle θ of the considered
small droplet and the contact angle θ0 of a macrsocopic drop. Consequently reported
experimental values for the line tension of a droplet do not represent the quantity which
should be called line tension. In fact, the experimental line tension values subsume four
different contributions from which merely one is the line tension.

4.5 Interpretation of Young’s law as a force balance

Young’s law, which is valid for macroscopicly large droplets, can be interpreted as a lateral
force balance at the contact line. This force balance acts as a boundary condition for the
droplet shape. In this macroscopic picture solely translations (and not curvature) of the
droplet surface contribute to the surface energy, hence a kink in the droplet surface is
not related to a cost in energy and thus a non-vanishing contact angle is possible [150].
The boundary conditions for systems with derivatives in the surface Hamiltonian contain
other quantities as well which are related to interface derivatives [150]. The energy of
an adhering vesicle, for instance, is sensitive to surface curvature; therefore the contact
angle vanishes and the bending rigidity enters the boundary condition [151, 152]. For
the microscopic version of Young’s law, i. e., the corrected modified Young equation, the
interpretation as a lateral force balance is possible as well, even though the additional
ingredients [i. e., the four additional terms on the right-hand side of Eq. (4.10)] are not
obvious from the beginning.
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4.6 Connection between a wedge and a droplet

The line tension of a sessile liquid wedge and the line tension τ defined in Sec. 4.1 for a
sessile liquid droplet are closely related. If in Eq. (4.5) the solid–liquid surface tension σsl

is evaluated at the pressure p + ∆p inside the drop, one obtains another definition of the

line tension This alternatively defined sessile droplet line tension is called τ
(wedge)
L . The

leading term,

τ (wedge)
∞ := lim

L→∞
τ

(wedge)
L (4.11)

equals the line tension of a liquid wedge on a substrate [4]. The reason for this equality
is, that the modification of the solid–liquid interfacial tension due to the presence of the
Laplace pressure is now explicitly taken care of via the pressure dependent solid–liquid
interfacial tension and thus taken out from the definition of a line tension. Therefore,

τ
(wedge)
L is the “clean” line tension. On the other hand the equation for the contact angle

becomes simpler in terms of τ . Moreover τ
(wedge)
∞ , i. e., the alternative droplet line tension

or the wedge line tension, depends on the choice of the solid–fluid dividing interface.

The difference in the surface tensions evaluated at different pressures is reflected in the
relation between τ and τ (wedge) [4],

τ = τ (wedge) +
r

2

[
σsl(p + ∆p) − σsl(p)

]
. (4.12)

Expanding the surface tension σsl(p + ∆p) around p yields

σsl(p + ∆p) ≃ σsl(p) +
∂σsl

∂µ

∂µ

∂p
∆p

= σsl(p) + (−Γsl) ×
1

̺l

× 2

r
σlg(p) sin θ0 (4.13)

with the excess adsorption Γsl [Eq. (3.25)] and the bulk liquid density ̺l.

Hence the transformation law between the two line tensions (focusing merely on the
leading terms) reads [4]

τ∞ = τ (wedge)
∞ − Γsl

̺l

σlg(p) sin θ0. (4.14)

The quantities Γsl, σlg(p), and the macroscopic contact angle θ0 can be calculated in
an effectively one-dimensional geometry, and ̺l is known from the bulk phase diagram.

Consequently line tension calculations for the wedge model providing values of τ
(wedge)
∞

are sufficient to determine the line tension τ∞ of a sessile droplet.
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The concept of line excess quantities reaches beyond the line tension. A line excess
quantity represents a coefficient of a line term in a decomposition of a certain quantity
into volume, surface, line, and point contributions. Relevant decomposable quantities
in the one-component, simple, electrically uncharged fluid systems considered in this
work are the grand potential and the average (excess) number of adsorbed particles.
The name of a line excess quantity in an energetical decomposition contains the word
“tension” (e. g., line tension, boundary line tension or substrate boundary line tension),
whereas the line excess quantity in an excess particle number decomposition is called line
adsorption Λ. Both the line tension and the line adsorption can be calculated from a
givend density distribution ̺(x, z) and values of the corresponding surface tensions and
excess adsorptions, respectively.

Clearly, for a multi-component system the excess particle number of each species can
be decomposed accordingly, leading to a line adsorption for each species. In an electri-
cally charged system one could decompose the equilibrium mean charge distribution into
volume, surface, line, and point contributions as well.

The main question which arises on discussing excess quantities is, what the (virtual) refe-
rence system is, with respect to which the excess (in energy, particle number, or whatever)
is counted. In the following the line adsoprtion for a liquid wedge and the line tensions
for a few other systems are considered briefly. Even though these quantities are not
calculated explicitly in this study, the conceptual aspects addressed here serve to perceive
the subject of wedge line tensions from a more general point of view.

5.1 Line adsorption of a liquid wedge

The line adsorption Λ of a fluid system describes the amount of particles, which is accumu-
lated at a certain structural line in addition to the particles present in the corresponding
bulk fluid systems and in addition to the excess adsorption at participating interfaces.
Such a structural line can be formed by the contact line of a sessile droplet or liquid
wedge or by the line of a chemical substrate boundary or a geometrical edge or wedge in
the shape of the substrate surface.

The definition of the line adsorption Λ of a sessile liquid wedge proceeds analogously to
the definition of the wedge line tension [Eqs. (1.3) and (6.1)], i. e.,

〈N〉 :=

∫

R3

dr ̺(r) =: −̺bulk Vfluid + Γsg Asg + Γsl Asl + Γlg Alg + Λ L. (5.1)

The value of the line adsorption of a sessile liquid wedge depends on the position of the
substrate–fluid dividing interface like the line tension does. Furthermore the line adsorp-
tion depends on the choice of the liquid–gas dividing interface. This is a major difference
to the wedge line tension, which does not depend on it. The reason for this difference is
the fact that the grand canonical free energy densities are identical for coexisting liquid
and gas phases, however, the bulk liquid and bulk gas particle number densities are not
identical.
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In order to enable the comparison of values for Λ, which correspond to different choices of
both the liquid–gas and the solid–fluid dividing interface, the transformation laws for Λ
are presented here. They are derived in the spirit of the derivation of the transformation
rule for the wedge line tension (cf. Appendix B on page 144).

First, a shift δh of the solid–fluid dividing interface is related to a change in the line
adsorption value according to

Λ(2) − Λ(1) =
δh

tan θ

(
Γ

(1)
sl − Γ(1)

sg +
1

cos θ
Γlg

)
+

1

2

(δh)2

tan θ

(
̺l − ̺g

)
. (5.2)

Here Γ
(1)
sg , Γ

(1)
sl , and Γlg denote the excess adsorption of a planar solid–gas, solid–liquid,

or liquid–gas interface, θ is the contact angle, and ̺l and ̺g are the bulk liquid and bulk
gas densities, respectively.

Second, a shift ∆zlg of the liquid–gas dividing interface (such that the liquid volume is
enlarged at the expense of the gas volume) gives rise to the following change:

Λ(2) − Λ(1) =
∆zlg

sin θ

(
Γsg − Γsl

)
+

1

2

(
∆zlg

)2

tan θ

(
̺l − ̺g

)
. (5.3)

A liquid wedge corresponds to a constrained three-phase equilibrium, and so it repre-
sents the special case of one angle of 180◦ in a Neumann triangle. The Neumann triangle
consists of the three dividing interfaces between three phases α, β, and γ and three an-
gles (with the same names) between them. Let µi be the chemical potential of species
i ∈ {1, 2, . . . , c} in a c-component system. A change in the line tension value is related to
changes in temperature, chemical potentials, and angles via the (modified) linear adsorp-
tion equation [153],

dτ =

c∑

i=1

(
−si

line dT − Λi dµi

)
+

∑

ζ=α,β,γ

cζ dζ. (5.4)

Here si
line is the line entropy of species i. The last term of this expression accounts for

the change of the angles on changing the chemical potentials. In the special case of a
one-component sessile wedge the above linear adsorption equation simplifies to

dτ = − sline dT − Λ dµ + cθ dθ, (5.5)

where one of the three angles is the contact angle θ.

The concept of line adsorption, described above exemplarily for the sessile wedge system,
can be applied to other systems as well, e. g., the ones discussed in the following section.
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5.2 A closer look at other line tensions

Line tensions, i. e., energetical line excess quantities, can arise in different systems (see
Sec. 1.4). The line tension of a sessile liquid droplet and its relationship with the wedge
line tension have already been discussed in Chapter 4.

Now the boundary line tension and the line tensions due to geometric or chemical substrate
boundaries shall be considered from the microscopic point of view. Special attention is
turned to the definition of an appropriate reference system for each case.

5.2.1 Surface phase coexistence for prewetting: boundary tension

Assume a solid–fluid interface in a prewetting scenario, i. e., the thermodynamic state
corresponds to a point on the prewetting line in the phase diagram. Then two surface
phases can coexist. They exhibit different heights of a liquid-like film formed on the
substrate.

The two surface tensions, associated with one of the two phases on a planar substrate,
are equal at coexistence. The reason for this is, that coexistence between both surface
phases requires a lateral shift of the interface between both surface phases not to cost any
energy. Since the bulk grand canonical free energy density and the surface tension are
identical for both phases at coexistence, the value of the boundary tension is independent
from the position of the dividing interface between the two substrate regions.

If the two coexisting surface phases form to a straight linear interface, a boundary line
tension is attributed to this contact line. It is defined via a decomposition of the grand
potential Ωb for this prewetting scenario,

Ωb =: − p V + σsf (Athin + Athick) + τb L, (5.6)

where Athin and Athick are the interfacial areas of the two surface phases exhibiting a
thin or thick liquid-like film, respectively. Hence the reference system for the boundary
tension scenario consists of two adjacent regions comprising a planar interface between
the substrate and the first or second surface phase, respectively. Then the boundary
tension is the excess grand canonical free energy per unit length of the straight contact
line between the two coexisting surface phases.

At the wetting transition the boundary line tension and the wedge line tension are ex-
pected to be equal [44],

lim
T→TW

τb = τ. (5.7)

The above statement can be proven for the microscopic DFT approach, the described
reference systems for the wedge line tension and the boundary tension and for the choice
of a trapezoidal shape of the finite system (cf. Sec. 6.1) as follows: The grand potential for
the wedge scenario is given in Eq. (1.3). Young’s law for the wetting transition (θ → 0)
gives σsg = σsl + σlg. If the solid–liquid and the liquid–gas interfacial areas are chosen
to be equal,

Asl = Alg, (5.8)

the wedge energy decomposition can be expressed as

Ω = − p V + σsg

(
Asg + Asl

)
+ τ L. (5.9)

Equation (5.8) holds (even for all contact angles) for the trapezoidal shape of the finite
region for which Ω is obtained. At the wetting transition the solid–fluid surface tension
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σsf is given by the solid–gas surface tension. The values of the grand potential are the
same at the wetting transition (T = Tw), no matter whether this point in the phase
diagram was reached on the prewetting line (from T > Tw) or on the coexistence line
(from T < Tw). Clearly, the sums Athin + Athick and Asg + Asl both equal the area A of
the solid surface. Consequently the values of the line and boundary tension are indeed
identical at the wetting temperature.

5.2.2 Chemically structured substrate: substrate boundary line tension

In fluid systems with chemically structured substrates a grand potential contribution
scaling with a length can arise as well. This is the case, e. g., if there is a planar substrate
consisting of two different materials meeting at a plane perpendicular to their substrate–
fluid surfaces [154]. Then they expose a boundary line that is translationally invariant
in the y direction towards the fluid phase. Line excess quantities for the decomposition
(with respect to volume, surface, and line contributions) of the grand potential and the
excess particle number can be defined. They are denoted as “substrate boundary line
tension” and “substrate boundary line adsorption”, respectively. The reference system
contains a planar solid–fluid dividing interface, where the substrate is split into two parts.
The decomposition of the grand potential,

Ω =: − p V + σsf 1 Asf 1 + σsf 2 Asf 2 + τchem. step L, (5.10)

defines the substrate boundary line tension (or chemical step line tension). Note that the
value of the line tension for this system depends not only on the choice of the solid–fluid
dividing interface, but also on the lateral position of the substrate boundary line, which
separates the two adjacent kinds of substrate material.

In this context of chemically structured substrates it is inevitable to mention Cassie’s
law from 1944 [155, 156], which proposes a droplet contact angle for a binary composite
substrate,

cos θC = f1 cos θ1 + (1 − f1) cos θ2, (5.11)

where f1 denotes the fractional area of species 1, while the contact angle for a pure sub-
strate of species 1 or 2 is given by θ1 and θ2, respectively.
Cassie’s law gives an illustrative explanation of superhydrophobicity for rough, hydropho-
bic surfaces: If the liquid does not fill the air pockets on the surface (a so-called Cassie-
Baxter state [155]), the situation represents a composite wetting state with the substrate
material as species 1 and air as species 2. Liquid on air has a contact angle of 180◦, so
the above general expression simplifies to

cos θC = f1 cos θ1 + f1 − 1 = − 1 + f1 (1 + cos θ1) . (5.12)

Consequently the composite structure leads to a larger contact angle than for the pure,
planar solid.

Based on a free energy minimization of a droplet residing on a rough or/and chemically
inhomogeneous substrate, generalizations of Cassie’s and Wenzel’s law were obtained,
which in limiting cases yield these two equations [157]. Besides gravity and line tension
influences are detected. It has been found meanwhile [158, 159], that for a system with a
contorted (i. e., not parallel) contact line Cassie’s law requires a correction which involves
the contact line and therewith the line tension. However the modified equations discussed
there do not include the stiffness coefficients of the contact line [4] (see Chapter 4). Very
recently was claimed [160], that contact lines and not contact areas (which enter Cassie’s
law) influence the wetting behavior of structured substrates.
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5.2.3 Geometrically structured substrates

A simple case of a linear, geometrical substrate structure is a wedge- or edge-shaped
substrate, not necessarily with a right angle. In general, the angle between two planar
semi-infinite solid–fluid interfaces could vary between 0◦ and 360◦. A substrate wedge
corresponds to an edge-shaped fluid region and vice versa. The reference system shall
consist of bulk fluid extrapolated up to the solid–fluid interface, which is sharp bent at
the edge/wedge line. The surface tension for this bent solid–fluid interface is taken from
a planar interface. Thus the edge or wedge line tension, τedge or τwedge, respectively, is
defined via the following decomposition of the grand potential,

Ω =: − p V + σsf Asf + τedge/wedge L. (5.13)

Another example is a geometrical step in the substrate, which consists of a rectangular
substrate edge followed by a rectangular substrate wedge. This step can be conceived as
a unified structure and attributed a line tension and a line adsorption (called step line
tension or step line adsorption, respectively). A reference system for this case can be
defined as a step-shaped fluid region consisting of bulk fluid (with its bulk density). The
solid–fluid interfaces — also in the possibly short part between the edge and the wedge —
are taken into account by the correspdonding surface tension for a planar substrate. For
a very large step heigth H the step line tension is simply the sum of a substrate wedge
line tension and a substrate edge line tension. For an intermediate step height H the step
line tension depends on H, and for vanishing step heigth the step line tension obviously
has to vanish.

Wenzel’s law [161],

cos θW = rm cos θ0, (5.14)

describes the effect of surface roughness on the contact angle. The corresponding planar
substrate gives rise to a contact angle θ0. The roughness factor rm is defined as the
ratio of the total surface area (including the sides and base of the roughness elements)
to the projected surface area (not including the sides of the roughness elements). For
Wenzel’s law the droplet is assumed to be in a Wenzel state, i. e., the droplet covers its
base surface area intimately and does not leave air pockets. Drelich modified Wenzel’s
equation by taking the line tension into account [159]. To include rough substrates into
DFT calculations is a matter of long-standing interest [162, 163, 164, 165].



6 Model system: a liquid wedge on a substrate

6.1 Details of the model system

As mentioned briefly in Sec. 1.3, a sessile liquid wedge coexisting with its gas phase is
considered in an effectively two-dimensional, Cartesian coordinate system. y denotes the
direction of the straight contact line (in which the density distribution is translationally
invariant); x and z label the remaining lateral and vertical directions. In comparision to
a finite sessile droplet the advantages of a liquid wedge are twofold: (i) The contact line
is straight, and (ii) the liquid–gas interface is asymptotically planar.

The fluid consists of particles interacting via a (truncated) Lennard-Jones (12–6) potential
(see Sec. 2.3.4) or a short-ranged square-well potential (see Sec. 2.3.5). The LJ potential is
untruncated in the y-direction, since this direction is integrated out analytically. However,
in x- and z-direction a cut-off is introduced in a radial symmetric fashion. The interaction
is set to zero for a particle distance

√
x2 + z2 in the xz plane of more than cutLJ. Note

that auxiliary, effectively one-dimensional density distributions ̺(z) do not comprise a
cut-off in the x-direction, since also this direction was integrated out analytically. Thus,
strictly speaking, for a LJ fluid ̺(z) and ̺(x, z) refer to slightly different model systems.
Differences between the discrete, effectively one- and two-dimensional LJ fluid systems
arise both from this different cut-offs and different discretization errors. Contrarily the
SW fluid systems exhibit merely slightly differnt discretization errors in effectively one and
two dimensions. The cut LJ potential is regarded as an approximation of the untruncated
LJ, i. e., the integrated strength from the untruncated LJ potential is employed. This is
the reason, why the phase diagram for the LJ fluid is apparently independent of the cut-
off. Technical aspects of the cut-off and a compensation of numerical integration errors
are mentioned in Sec. 6.2.3.

The LJ fluid was treated in the WCA separation scheme (see Sec. 2.3.4). The attractive
parts of the LJ or SW fluid–fluid interaction are taken into account by the RPA (see
Sec. 2.3.1). An effective hard-sphere diameter [Eq. (2.72)] for the WCA-LJ fluid was not
applied here. Instead the hard-sphere diameter is set equal to the LJ length parameter σLJ.

The liquid wedge is residing on a homogeneous, planar substrate. It is described by a LJ
(9–4–3) potential (see Sec. 3.3.1), a cut and shifted LJ (9–3) potential (cf. Sec. 8.1.3) or
a tailored potential (cf. Sec. 8.2).

Definition of the wedge contour:
The contour of an object is called the connected surface which characterizes its shape,
and it is obtained from the continuous density distribution. The contour of a liquid wedge
can be described reasonably by the non-planar liquid–gas dividing interface c(x, z). There
are several possibilities for such a dividing interface (see Sec. 3.2.1), here an “arithmetic
average” dividing interface is employed.

Contours based on this definition are accessible both in the fully microscopic calculations
(cf. Chapter 8) and in the sharp-kink calculations (cf. Sec. 7.3). For sharp contact angles,
θ < 90◦, the contour is a function l(x) for the sharp-kink approach. However, in the
fully microscopic approach packing effects typically lead to more than one contour point
for a certain lateral position x, hence contour within the fully microscopic approach is a
function of x and z.

57
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Rigorous definition of the line tension of a sessile liquid wedge:
The definition of the line tension of a liquid wedge on a substrate follows the definition
for a sessile droplet [Eq. (4.1)] for an infinitely large contact line length L,

Ω(with substrate) =:
∑

i=s,l,g

Vi ωi +
∑

i=sg,sl,lg

Ai σi + τ L (6.1)

with grand canonical free energy densities ωi, i ∈ {s, l, g}, and the three involved surface
tensions σi of planar interfaces. So the reference system is defined as a virtual liquid wedge
with sharp solid–fluid and liquid–gas interfaces where a planar l–g interface approaches
the substrate under the macroscopic contact angle θ. The particle density in the solid,
liquid, or gas region of the reference system equals the respective bulk density. The line
tension corresponds to an excess free energy with respect to this reference system.

For a certain choice of the solid–fluid dividing interface the substrate contribution to the
grand potential of the whole system can be ignored and one can concentrate on the fluid
subsystem,

Ω := Ω(with substrate) − Vs ωs. (6.2)

Hence with ωl = ωg = −p and the fluid volume V := Vl + Vg the line tension definition
from Eq. (1.3) is recovered,

Ω = − p V + Asg σsg + Asl σsl + Alg σlg + τ L. (6.3)

Transformation law for a different solid–fluid dividing interface:
The value of the line tension τ of a liquid wedge depends on the choice of the dividing
interface for the solid–fluid interface. In other words, a differently chosen solid–fluid
dividing interface causes a different value of the liquid wedge line tension. A shift δh of
the s–f dividing interface in positive z-direction is accompagnied by changes of the area
of the planar and sharp interfaces of the reference system. Since the substrate volume
changes through the shift process, it is not sufficient to consider exclusively the fluid
subsystem [Eq. (6.3)], but the substrate has to be included as well [Eq. (6.1)].

The derivation of the transformation law for the line tension of a sessile liquid wedge is
performed in Appendix B on page 144. The result reads [Eq. (B.18)]

τ (2) − τ (1) =
σlg +

(
σ

(1)
sl − σ

(1)
sg

)
cos θ

sin θ
δh. (6.4)

Consequently in order to make wedge line tension values comparable, besides the bare
values also the employed definition of the substrate surface has to be mentioned.

6.2 Aspects of the numerical implementation

Some details of the numerical, fully microscopic calculation of the structure of the three-
phase contact region and the corresponding wedge line tension are presented here.

The fluid density ̺(x, z) is desbribed by a two-dimensional, discrete array. The discreti-
zation is realized as follows: A distance corresponding to the hard-sphere radius R is split
into N grid points. The effectively one-dimensional calculations discretize merely the z
coordinate, whereas the effectively one-dimensional calculations discretize both the x and
z coordinate such that a unit cell is a square with side length

∆ :=
R

N
. (6.5)

If not stated differently, N = 15 was used throughout this work.
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6.2.1 Boundary profiles and initialization of the ̺-array

The calculation of the wedge density distribution ̺(x, z) has to be performed in a finite
region of the xz plane and simultaneously has to mimic a fluid halfspace.

Boundary profiles:
The three-phase contact region of a liquid wedge on a substrate is formed by the contact
of three interfaces, namely a solid–gas, a solid–liquid, and a liquid–gas interface. Far from
this contact region the unperturbed interfacial profiles are recovered. This fact determines
the boundary conditions of the necessarily finite system serving for numerical calculations.
Beyond the region where the iteration procedure for solving the Euler-Lagrange equation
is performed the three interfacial profiles are kept fixed. These “boundary profiles” have
to govern whole stripes (and not only single rows), since the range of the fluid–fluid
interaction has to be respected. For a square-well fluid the distance between the iteration
region and the end of the boundary region has to be σSW = 3 R; for a Lennard-Jones
fluid this distance has to be, in principle, infinitely large, therefore a cut-off has to be
introduced. Typical cut-offs used in the performed calculations are of the order of 10 to
20 R in effectively one- and two-dimensional cases or sometimes even up to hundreds of
molecular radii R in effectively one-dimensional cases.

The boundary profiles are effectively one-dimensional. However, the effectively one-
dimensional results serve as an input for the two-dimensional program, where the x coor-
dinate is discretized as well and not integrated out analytically. Hence the 2D program
runs to a slightly different convergence point than the 1D program. Particularly the wet-
ting temperatures in effectively 1D and 2D deviate slightly (cf. Chapter 8). Such refined
2D boundary profiles are employed for all line tension calculations performed for this work
.

The liquid–gas interface profile is rotated by the contact angle θ in order to serve as a
boundary profile for the wedge. However, the grid of the wedge system is Cartesian and
consequently there is a grid mismatch. Hence the grid points in the liquid–gas boundary
region have to be filled by an interpolation of the liquid–gas profile. For this purpose
a linear interpolation is established such that for the density initialization at a certain
distance from the l-g dividing interface of the wedge the two neighboring data points
which are closest to this distance from the interface are employed.

Initialization of the ̺-array besides the boundary profiles:
Besides the boundary profiles mentioned above, the remaining region of the two-
dimensional array representing the density distribution ̺(x, z) has to be initialized some-
how. Since the fluid particle density is zero inside the substrate and since Fourier trans-
forms of the density array presume periodic boundary conditions, a strip of zeros has
to be introduced to the density array for large values of z. Similarly for 0 ≤ z < R
the density is zero as well due to the hard cores of the fluid particles and the substrate.
For the remaining region it would be sufficient, in principle, to initialize with a constant
particle density value. In order to optimize the convergence speed of the iteration process
the initial density distribution is recommended to be chosen as similar to the expected
equilibrium density distribution as possible with reasonable effort. Consequently in the
regions near the substrate either a solid–liquid or a solid–gas interfacial profile is employed
and the region of the liquid–gas interface is initialized with a liquid–gas interface for the
actual parameter values. In other words, the boundary profiles are extrapolated up to the
contact line. In order to decide for at each point which interface profile should be applied
here the bisecting lines of the contact angle θ and the complementary angle (i. e., 180◦−θ)
are taken as a reference, decomposing the fluid halfspace into a solid–gas, a solid–liquid,
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Fig. 6.1: Sketch of the finite system. The trapezoidal iteration region is displayed, in which the
Picard iteration is performed. Additionally the rectangular ̺(x, z)-array contains boun-
dary regions, which serve to establish planar s–g, s–l, and l–g interfacial profiles far away
from the three-phase contact region. Depending on the range of the fluid–fluid interaction
the size of the whole array may be much larger than the iteration region. The two points
in the xz plane that are marked by empty circles are at least a distance a away from
both the liquid–gas and the solid–fluid dividing interface. A sufficiently large value of a
ensures that artificial line tension contributions can be neglected.

and a liquid–gas initialization region. An exception is made: The region near the sub-
strate surface is dominated by the substrate influence, and therefore only solid–gas and
solid–liquid interfacial profiles are used there. Otherwise near the triple line large changes
during the first iteration steps might occur (which decreases the maximum possible value
of the mixing parameter).

Iteration region and integration region:
The iteration region, i. e., the region where the values of the ̺-array are subject to changes
in the course of the iteration process, corresponds to a trapeze, see Fig. 6.1. It omits the
boundary regions, where the boundary profiles are kept untouched, and the zero-stripes
for large (and small) values of the z coordinate. Such a trapezoidal shape of the integration
area was used before [48].

Young’s law determines the contact angle θ, which is attained far away from the three-
phase contact region. Hence the (for sharp contact angles) top-right, inclined boundary
of the trapeze is perpendicular to the asymptotic contour profile, which is a straight line
from this boundary to the substrate surface z = 0, which it touches at x = 0. (This is in
contrast to the definition in the sharp-kink theory, where x = 0 describes the intersection
of the asymptotic liquid–gas interface curve and the equilibrium film thickness l0.)

The mismatch of the liquid–gas boundary profile, due to the profile inclination and the
accompanied interpolation, leads to very small artefacts in the density distribution ̺(x, z).
However, this effect is limited to that part of the iteration region which is situated very
close to the liquid–gas boundary region. Consequently artefacts in the quantities calcu-
lated from the density distribution ̺(x, z) can be avoided, if a small stripe of the iteration
region near the liquid–gas boundary is omitted in integrations. In other words, the inte-
gration region is a little bit smaller than the iteration region.
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The lateral and vertical system size is described by the trapezoidal iteration (or integra-
tion) region. Within this trapeze one has x ∈ [0, xmax] and z ∈ [0, zmax]. The parameters
xmax and zmax are determined by three conditions:

(i) The distance between the point where the inclined boundary line to the l–g boundary
profile intersects the (x = xmax)-axis and the substrate surface is a. The calculations
performed in this study employed a/R = 30 throughout, except in the analysis of
numerical errors.

(ii) The contour asymptote [starting at (x, z) = (0, 0)] separates the inclined boundary
(adjacent to the l–g boundary profile) into two equally long parts of length a.

(iii) The triple point is located at a distance xtr := 1.5 a from the gas (or liquid) boundary
profile for a sharp (or obtuse) contact angle.

These conditions ensure for given memory space a largest possible distance of the two
points where the inclined boundary line intersects the boundary lines x = xmax and
z = zmax from the liquid–gas and the solid–fluid dividing interfaces. Consequently these
two points are almost situated in bulk regions, where they cannot give rise to artificial
line tension contributions.

6.2.2 Evaluating convolutions efficiently

6.2.2.1 Convolutions treated in Fourier space

In fundamental measure theory (see Sec. 2.2) and first-order perturbation theory (see
Sec. 2.3) several convolution integrals have to be evaluated in every iteration step [Eqs.
(2.31), (2.43), and (2.53)]. The necessary number of iteration steps to obtain numerical
convergence is of the order of 105 (depending on the system size and the interaction range).
So the typical number of convolutions during the calculation of a wedge density profile is
106. In real space these integrations on approximately 5 to 10 million grid points cannot
be performed within a reasonable period of time.

Therefore one is urged to perform the convolutions on a less time-consuming way: The
convolution of two functions f1(r) and f2(r) can be expressed by means of the convolution
theorem as

(f1 ⊗ f2) (r) = F−1 {F (f1(r)) · F (f2(r))} . (6.6)

Here the Fourier transform (FT) of a function f(r) is defined as

f̂(k) := F (f(r)) :=

∫

R3

dr e−ik·r f(r), (6.7)

and F−1 indicates the corresponding backwards transform. On a grid a discrete FT is
attainable efficiently by a fast Fourier transform (FFT) [166].

A prerequisite for the use of FFT is a Cartesian grid. For axisymmetric systems this is not
the case (since the system indeed is effectively two-dimensional but merely in cylindrical
coordinates), what makes the numerical treatment difficult (cf. Sec. 9.3).
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6.2.2.2 Fourier transforms of Rosenfeld’s weight functions wα(x, z)

The weight functions w2(x, z) and w2(x, z), which are used for an effectively two-
demensional system with density ̺(x, z), are diverging at the border of the since they
diverge at the border of the involved Θ function [Eqs. (2.99) to (2.101)]. It is possible
to Fourier transform these weight functions analytically. These Fourier transforms are
not diverging. One might try to use them in order to initialize the FFT of the weight
functions on a computer.

However, short-wavelength oscillations in the density distribution occur, such that the
whole iteration process becomes instable. Most likely the mathematical reason for this
numerical instability is the fact that there is a difference between first discretizing and
then discretely Fourier transforming (real-space initialization) and first (continuously)
Fourier transforming and then discretizing (reciprocal-space initialization). Consequently
the way of numerical differentiations (cf. Sec. 6.2.2.3) is much more convenient than using
the problematic weight functions.

For completeness the Fourier transforms of Rosenfeld’s independent weight functions [Eqs.
(2.98) to (2.103)] are displayed:

ŵ2(k) ≡ ŵ2(kx, kz) = 4πR2 sin(kR)

kR
(6.8)

with lim
k→0

ŵ2(k) = 4πR2,

ŵ3(k) ≡ ŵ3(kx, kz) = 4πR3

(
sin(kR)

(kR)3
− cos(kR)

(kR)2

)
(6.9)

with lim
k→0

ŵ3(k) = 4
3πR3,

(ŵ2)x (kx, kz) = 4πR2 i
kx

k

(
sin(kR)

(kR)2
− cos(kR)

kR

)
, (6.10)

and

(ŵ2)z (kx, kz) = 4πR2 i
kz

k

(
sin(kR)

(kR)2
− cos(kR)

kR

)
(6.11)

with lim
k→0

ŵ2(kx, kz) = 0.

6.2.2.3 Numerical differentiations of n3(x, z)

In the calculations of the effectively two-dimensional density distribution ̺(x, z) numeri-
cal differentiations are performed in order to construct weighted densities from a radius
dependent weighted density n3 = n3(x, z; R) (see Sec. 2.4.2.2). The symmetrical scheme

n2(x, z) =
n3(x, z; R + ∆R) − n3(x, z; R − ∆R)

2 ∆R
+ O

(
(∆R)2

)
, (6.12)

is employed. The small constant ∆R ≪ R needs to be chosen suitably depending on the
grid spacings ∆x and ∆z. For equal grid spacings in both directions, ∆x = ∆z = ∆ [Eq.
(6.5)], the choice

∆R = 0.36 ∆ (6.13)

has turned out to be quite optimal, in the sense that it leads to very good agreement with
a corresponding effectively one-dimensional density profile ̺(z), for which a numerical
differentiation is not necessary.
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The numerical differentiations with respect to the coordinates x or z, respectively, are
performed analogously. The x component of the vectorial weighted density n2(x, z), e. g.,
reads

(n2)x(x, z) = − ∂

∂x
n3(x, z) = −n3(x + ∆x, z) − n3(x − ∆x, z)

2 ∆x
+ O

(
(∆x)2

)
. (6.14)

6.2.3 Partially cut and shifted Lennard-Jones potential

For a LJ fluid the fluid–fluid interaction is truncated in order to be numerically accessible
(see Sec. 6.1). The phase diagram is obtained for an infinitely long-ranged LJ potential,
i. e., the integrated strength of the untruncated potential is used. Technically this cut-
off is reflected in a cut-off of the weight functions wLJ(z) and wLJ(x, z). A shift of the
weight function is established by calibrating the zero-component of its fast Fourier trans-
form, which equals the integrated potential strength, to the analytically available value
of the complete, uncut potential. Such a tiny shift is also applied to the weight func-
tions wSW(z) and wSW(x, z) of the SW fluid, in order to obtain the exact, analytically
calculated integrated potential strength in the numerical integration as well.

6.2.4 Convergence of the iteration process

6.2.4.1 Picard iteration and mixing parameter

The Euler-Lagrange equation, Eq. (2.16), is rearranged into a fixed-point equation

̺(r) = ̺0 exp

{
−βVext(r) + βµex −

δβFex[̺]

δ̺(r)

}
, (6.15)

which can be solved by Picard iteration. In order to improve its convergence properties,
the right-hand side of Eq. (6.15) is mixed with the profile of the previous step. The quality
of convergence can be checked by inserting the converged profile into the Euler-Lagrange
equation,

δβΩ[̺]

δ̺(r)
=

δβFex[̺]

δ̺(r)
+ ln

(
̺(r)

̺0

)
+ βVext(r) − βµex

!
= 0. (6.16)

6.2.4.2 Activation energy for bending of the liquid–gas interface

For each iteration step the value of the density functional Ω[̺] in the given system volume
can be calculated. If the particle density distribution was the equilibrium distribution, this
quantity would equal the value of the grand potential. Similarly for each density profile
one can determine the associated value of the line tension functional. The line tension
functional τ [̺] is the quantity, which yields the line tension value for the equilibrium
density distribution as an input. In an iteration procedure the value of the line tension
functional can be regarded as a function of the iteration step number i, τ [̺] = τ [̺i] =: τ(i),
where ̺i(r) is the result of the i-th iteration step. The line tension is obtained as limiting
value of this function, limi→∞ τ(i) = τ .

Interestingly, the value of the function τ(i) [and likewise the value of a function Ω(i)] does
not decay monotonously during the iteration procedure for a sessile liquid wedge, given
an initial density distribution described above (see Sec. 6.2.1). Rather the value decays
rapidly at first, but then rises again, overcomes an activation barrier, decays monotonously
thereafter and finally reaches the line tension value.
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The analysis of the convergence behavior reveals that the rapid decay at the beginning is
related to a local optimization, in which the structure of the three-phase contact region
close to the substrate surface is established. The intermediate rise of the values of the two
functionals Ω[̺] and τ [̺] corresponds to the bending of the liquid–gas interface. Since at
later iteration steps these energy values decline to smaller values than before the barrier,
this hump can be considered as an activation barrier. It has been recognized for other
systems before, that a shift of an interface is related to an activation energy barrier. Thus
the observation of an energy barrier for bending an interface is not surprising. Clearly, for
a better choice (guess) of an initial density distribution for the iteration procedure such
a barrier does not have to occur.

Exponential decay beyond the barrier:
At least for the employed initialization scheme the value of the line tension functional
attains its asymptotic value in an exponential decay which sets in smoothly behind the
barrier maximum. This feature is found in every of the studied cases with LJ substrate
potentials, however, the necessary number of iteration steps in order to obtain convergence
strongly depends on the system parameters. The exponential decay law can be employed
to extrapolate the value of the line tension functional to its asymptotic value, the line
tension value. Within a given computational time larger systems (or slower converging
situations) can be addressed with this method, since one does not have to wait for the fully
converged state. Hence smaller contact angles are accessible. Vice versa the computational
time to obtain results for a given system can be approximately halfed this way. The region
of data beyond the local maximum has to be sufficiently large for a good exponential fit.

6.2.5 Remarkably small numerical errors

The numerical errors of the calculated line tension values are typically less than 5 % for
not too small contact angles. Since the line contribution to the total grand canonical free
energy of the system is very small compared to volume or surface contributions, these
very small errors are notable.

The magnitude of the numerical errors is evaluated as follows. By systematically changing
the discretization or/and the system size, the line tension value for an infinitely fine grid
and an infinitely large system can be estimated. Numerical errors for a wider meshed,
finite system result from deviations thereof.

A necessary condition to obtain such small errors is to perform several precaution mea-
sures. The most important of these implemented actions are: First, the boundary pro-
files are refined from an effectively one-dimensional calculation to the effectively two-
dimensional program, which is used as well to perform the calculations for the liquid
wedge. Hence the solid–gas and solid–liquid boundary profiles are attained smoothly.
Second, the zero-components of the Fourier transforms of the weight functions are manu-
ally calibrated to resemble the analytically obtained values of the integrated potential
strength. This ensures to reach bulk densities precisely and smoothly. Third, the nu-
merical derivatives in the effectively two-dimensional program are tuned to achieve the
best possible agreement with density profiles in an effectively one-dimensional program.
Fourth, the integration routine to extract the line tension value from a density profile
̺(x, z) has to account for the trapezoidal shape of the integration area. The interpolation
scheme is adjusted such that a constant is integrated exactly. Fifth, the integration zone
comprises a “safety stripe” in order to omit artefacts from a lattice misfit of the liquid–gas
boundary profile (since the boundary orientation is tilted against the substrate surface).
Sixth, efficient book-keeping reduces the computer memory requirements by 50 % and
therefore from the memory point of view allows for a twice as large system size.



7 Sharp-kink line tension theory

The system of a Lennard-Jones (12–6) fluid forming a liquid wedge residing on a Lennard-
Jones (9–4–3) substrate was already considered before by Getta and Dietrich [50, 51] as
well as by Bauer and Dietrich [11, 52]. They applied the concept of the so-called sharp-kink
approximation (cf. Sec. 7.1.1) to the liquid wedge scenario.

The line tension calculation presented in this work goes beyond that. A continuous (i. e.,
smoothly varying) density distribution ̺(x, z) is employed, and hence possible packing
effects near the substrate are respected. Since this method takes the microscopic details
of the interactions and of the density distribution into account, it can be regarded as
“fully microscopic” — in contrast to the “semi-microscopic” sharp-kink theory, where the
interaction potentials enter accurately but microscopic details of the density distribution
are neglected.

The sharp-kink theory of planar interfaces and the sharp-kink theory of sessile liquid
wedges are recalled. Then the sharp-kink line tension theory is extended from a crude
approximation of the Lennard-Jones interaction potential to the (exact) treatment of the
WCA separation (see Sec. 2.3.4) of the Lennard-Jones potential. Furthermore correspon-
ding formulae for a square-well fluid are presented (see Sec. 2.3.5). The results from the
microscopic calculations are compared to the corresponding sharp-kink results in Sec. 8.2.

7.1 Sharp-kink theory of planar interfaces

The sharp-kink (SK) theory of planar fluid interfaces rests upon two fundamental as-
sumptions, (i) the SK approximation of the involved density profiles ̺(z) and (ii) the
local density approximation (LDA) of the excess free energy of hard spheres. Assumption
(ii) influences the form of the density functional, whereas assumption (i) restricts the
search for solutions of the corresponding Euler-Lagrange equation to SK density profiles.

7.1.1 Sharp-kink approximation of planar fluid interfaces

At interfaces fluids usually exhibit smooth density variations (see Fig. 3.1). The sharp-
kink approximation replaces the interfacial structure by a SK density profile, which is
composed of regions with constant density. Consequently the range of density values is
discrete. Planar fluid interfaces can be desribed by ̺(z) (see Chapter 3). The SK approx-
imation of planar liquid–gas, solid–liquid, and solid–gas interfacial profiles is defined as
follows:

1. A liquid–gas interface is represented by a step function. The density discontinuously
changes from one bulk density to the other.

2. A solid–liquid interface is described by a step function

̺(SK)

sl = ̺l Θ (z − dw) , (7.1)

which switches from zero close to the substrate surface to a constant bulk liquid density.
The adjustable parameter dw, i. e., the width of the excluded volume, is described
below.

3. A solid–gas interface is approximated by a liquid-like film (with constant density) and
a discontinuous change to a constant bulk gas density. The liquid-like film extends up
to the film thickness l. This approximation of a s–g interface is illustrated in Fig. 7.1.

65



66 7.1 Sharp-kink theory of planar interfaces

sharp-kink approximationfully mi
ros
opi
 approa
h

z/R

̺
R

3

302520151050

0.2
0.1
0

Fig. 7.1: Illustration of the sharp-kink approximation of a planar solid–gas interfacial density
profile. Here the fully microscopic density ̺(z) exhibits density oscillations near the sub-
strate surface and a smooth transition from the liquid-like film to the bulk gas density.
Contrarily within the SK approximation the density distribution possesses solely three
values here, namely zero (close to the surface), the bulk liquid density ̺l (accounting for
the liquid-like film), and the bulk gas density ̺g. Here dw = R.

The excluded volume near the substrate surface is taken into account by the parameter dw.
The width dw of the excluded volume near the substrate surface enters the SK calculations
of solid–fluid interfaces, in contrast to fully microscopic calculations. The effect of a slight
change of this quantity on the shape of the effective interface potential ω(l) can be large
in the region near the substrate surface.

From a given fully microscopic density profile an optimal value of dw can be calculated
[138], however, within the SK calculation such a profile cannot be obtained. The optimal
value of dw is related to the first moment of the density distribution ̺(z) of a planar
solid–liquid interface via [138]

dw =

∞∫

z=0

dz

(
1 − ̺(z)

̺l

)
, (7.2)

where ̺l is the liquid bulk density. Simple manipulations reveal a simple connection to
the excess adsorption Γ [Eq. (3.25)] of the s–l interface,

dw = − Γ/̺l. (7.3)

In other words, the excluded volume in the SK density profile leads to the same “deficit
adsorption” (i. e., negative excess adsorption) as the fully microscopic profile.

This choice of dw is optimal in the following sense: The analytic wetting theory presented
in Ref. [138] takes density variations via Taylor expansions into account and thus goes
beyond the SK theory. Expressions for the effective interface potential are derived, which
contain moments of the density distribution, e. g., the right-hand side of Eq. (7.2). If this
moment is identified with the parameter dw (and if additionally a similar identification
is performed), the SK expressions are recovered. This means that the apparent detour
provides a way to assign a value to dw, which was not specified by the SK theory.



Chapter 7: Sharp-kink line tension theory 67

7.1.2 Local density approximation (LDA)

The excess free energy functional of a hard-sphere fluid is non-local. Contrarily, in the
standard SK theory the excess free energy of a hard-sphere fluid is addressed by means
of the local density approximation (LDA). This means that the free energy density of the
hard-sphere fluid at a spatial point r with a density ̺(r) is described by the free energy
density of a bulk hard-sphere fluid with the same density.

Consequently within RPA [Eqs. (2.51) and (2.52)] and LDA the density functional Ω[̺] is

Ω[̺] =

∫

R3

dr
{
fid

(
̺(r)

)
+ fHS

ex

(
̺(r), T

)}
(7.4)

+
1

2

∫

R3

dr

∫

R3

dr′ ̺(r) ̺(r′) φatt
ff (|r − r′|) +

∫

R3

dr ̺(r) (Vext(r) − µ) .

Using the chemical potential of an ideal gas from Eq. (2.48), βµid = ln η, the free energy
density of an ideal gas can be expressed as

βfid = ̺
(

ln η − 1
)
. (7.5)

Taking the Carnahan-Starling equation of state (CS EOS) as a basis, the excess free
energy density for hard-spheres, fHS

ex , reads

βfHS
ex ≃ βfCS

ex = ̺
4 η − 3 η2

(1 − η)2
. (7.6)

The packing fraction η and the density ̺ are connected via η = ̺ 4
3πR3 = ̺ π

6 d3

[Eq. (2.32)]. In the case of a SW fluid d is defined through the interaction potential
anyway. However, if for d a BH-LJ or WCA-LJ fluid the effective hard-sphere diameter
[Eq. (2.71) or (2.72)] is employed, the packing fraction becomes temperature dependent,
η = η(T ), and the excess free energy density as well, fHS

ex = fHS
ex

(
̺, T

)
.

The bulk phase-diagram for the LDA density functional [Eq. (7.4)] is the same as for the
full non-local theory (see Sec. 2.3.3), since for bulk densities the LDA resembles the non-
local free energy density. Note that for a LJ fluid the bulk phase diagrams are different
for (a) BH-LJ and WCA-LJ separation schemes and (b) for utilizing or not utilizing the
effective hard-sphere diameter. The bulk phase diagrams of a BH-LJ or WCA-LJ fluid
without usage of the effective hard-sphere diameter and that of a square-well fluid differ
only by a constant prefactor.

7.2 Sharp-kink liquid wedge

Within the sharp-kink approximation a liquid wedge with a sharp contact angle (i. e.,
0 ≤ θ < 90◦) is described by its contour l(x). This contour represents the position of
the non-planar liquid–gas interface. An ansatz for the corresponding sharp-kink density
distribution reads

̺(x, z) = Θ
(
z − dw

) {
̺l Θ

(
l(x) − z

)
+ ̺g Θ

(
z − l(x)

)}
. (7.7)

Let l0 be the equilibrium thickness of a thin liquid-like film that might form at a solid–gas
interface. The approach is only valid, if such a film is present, i. e., if l0 is significantly
larger than dw, i. e., l0 ≫ dw. For obtuse contact angles (90◦ ≤ θ < 180◦) the equations
have to be expressed in terms of the inverse function x(l) [instead of l(x)].

The ansatz for the density, Eq. (7.7), is inserted into the density functional, and volume,
surface, and line contributions are identified. These considerations have been shown in
Refs. [11, 52]. For an arbitrary interaction potential the main formulae are summarized in
the next section, before they are specified for a LJ or SW fluid in the subsequent sections.
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7.3 General expressions

Here general formulae — valid for all intermolecular interactions — of the sharp-kink
approach to a sessile liquid wedge are presented. In Secs. 7.4 and 7.5 they are specified
for an approximated BH-LJ or WCA-LJ fluid, an exact WCA-LJ fluid and a square-well
fluid.

7.3.1 Effective interface potential and surface tension

Consider a solid–gas interface at liquid–gas coexistence such that a thin liquid-like film
of thickness l forms at the substrate surface. Then the surface contribution (per surface
area) to the grand potential within the sharp-kink approximation reads [141]

Ωs(l) = σsl + σlg + ω(l). (7.8)

ω(l) is the effective interface potential, that corresponds to the energy which is necessary
to form a finite film instead an infinitely large one. Obviously ω(l) obeys

lim
l→∞

ω(l) = 0. (7.9)

The auxiliary function

t(z) :=

∫

R3

dr′ Θ(z′ − z) φatt
ff (|r′|) =

∞∫

z′=z

dz β−1 wff(z) (7.10)

=:
∑

i≥3

ti
zi

, z ≫ R, (7.11)

corresponds to the interaction energy of a particle interacting with a homogeneously filled
halfspace at a disctance z. With its help the surface tension of a solid–fluid interface
(including the special cases of a solid–liquid or a solid–gas interface),

σsf = − 1

2
̺2
l

∞∫

z=0

dz t(z) − dw Ωbulk(̺l) + ̺f

∞∫

z=dw

dz Vext(z), (7.12)

and the interfacial tension of a liquid–gas interface,

σlg = − 1

2
(∆̺)2

∞∫

z=0

dz t(z), (7.13)

can be expressed. The difference of the bulk liquid and bulk gas densities is abbreviated
as

∆̺ := ̺l − ̺g. (7.14)

The auxiliary function t(z) also plays an important role in the sharp-kink formula for the
effective interface potential,

ω(l) = ∆̺

(
̺l

∞∫

z=l−dw

dz t(z) −
∞∫

z=l

dz Vext(z)

)
=:

∑

i≥2

ai

li
. (7.15)

This concept is most reasonable for l ≫ dw. a2 is the Hamaker constant.
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The surface grand potential Ωs(l) is minimized by the equilibrium film thickness l0 and
then equals the solid–gas surface tension

σsg = min
l

{Ωs(l)} ≡ Ωs(l0)
(7.8)
= σsl + σlg + ω(l0). (7.16)

Inserting Young’s equation, the effective interface potential ω for the equilibrium film
thickness l0 is related to the macroscopic contact angle θ,

cos θ
(1.1)
=

σsg − σsl

σlg

(7.16)
= 1 +

ω(l0)

σlg

. (7.17)

7.3.2 Line tension

The line tension τ of a liquid wedge can be decomposed [11, 50, 51, 52] into

τ [l(x)] = τa(l0, θ) + τl[l(x)], (7.18)

where τa(l0, θ) merely depends on the assymptote

a(x) := l0 Θ(−x) + (l0 + x tan θ) Θ(x) (7.19)

with a(0) = l0. Furthermore by construction τa is the line tension of the asymptote, i. e.,
τ [l(x) = a(x)] = τa and τl[a(x)] = 0.

Note that the lateral coordinate origin x = 0 is defined via the intersection of the wedge-
like liquid–gas dividing interface with the plane z = l0 > 0 in the SK theory or the
substrate surface plane z = 0 in the fully microscopic (fm) approach, respectively. These
two coordinate systems are related via xfm = xSK + l0/ tan θ.

Both line tension contributions are again split in two parts,

τa(l0, θ) = τa1(θ) + τa2(l0, θ) (7.20)

and

τl[l(x)] = τω[l(x)] + τi[l(x)]. (7.21)

The function τa1 is given as

τa1(θ) =
1

2
(∆̺)2

(
1 − θ

tan θ

) ∞∫

x=0

dx

∞∫

z=0

dz x z β−1 wff(x, z) (7.22)

with the weight function wff(x, z) [Eq. (2.108)] and the contact angle θ expressed as radian
measure. τa1 is linked to the fluid–fluid interaction within the liquid wedge in addition to
that within a gas wedge.

The function τa2 reads

τa2(l0, θ) :=
1

tan θ

∞∫

l=l0

dl ω(l). (7.23)

This term is made up from energy contributions of the effective interface potential which
arise from a shift of the asymptote’s l–g interface from l0 to a(x), i. e., τa2 =

∫∞
0 dx ω (a(x)).

Very close to a first-order wetting transition the total line tension is dominated by
τa2(l0, θ) [51]. These two line tension contributions, τa1(θ) and τa2(l0, θ), are accessible
analytically for the interactions discussed in this work.
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The other two line tension contributions, τω[l(x)] and τi[l(x)], have to be calculated nu-
merically for a given contour l(x). τω[l(x)] corresponds to an integral over the effective
interface potential ω(l),

τω[l(x)] :=

∞∫

x=−∞

dx
{
ω
(
l(x)

)
− ω

(
a(x)

)}
. (7.24)

τω describes the influence of deviations of l(x) from a(x) on the contributions of the
effective interface potential. τa2 cancels a part of this term, namely the integral from
zero to infinity of the second integrand. Thus the influence of l(x) on effective interface
potential contributions to τ is split into the basic effect of the asymptote a(x) and an
additional effect due to deviations of the contour from the asymptote.

τi[l(x)] is related to the interaction energy of the liquid–gas interface,

τi[l(x)] :=
1

2
(∆̺)2

∞∫

x=−∞

dx

∞∫

x′=−∞

dx′
l(x)∫

z=a(x)

dz





a(x′)∫

z′=−∞

dz′ −
∞∫

z′=l(x′)

dz′



 wff(x − x′, z − z′). (7.25)

τi is a non-local functional of l(x). It can be approximated by a local functional

τi[l(x)] ≃ τ (loc)

i [l(x)]

:= σlg

∞∫

x=−∞

dx






√

1 +

(
dl(x)

dx

)2

−

√

1 +

(
da(x)

dx

)2



 . (7.26)

τi originates from the fluid–fluid interactions across the l–g interface and describes the
excess in comparison to the asymptotic profile a(x). In the local approximation the
expression simplifies to an integral over the additionally created l–g interfacial area. Accor-
ding to Ref. [11] the line tension values and contour profiles within the non-local and
the local theory differ only slightly near first-order wetting transitions and are almost
indistinguishable near a critical wetting transition. These small differences even vanish
upon approaching Tw.

7.3.3 Boundary value problem

In a sharp-kink wedge system the variation of the density distribution is limited to a
variation of the contour profile l(x). Thus the Euler-Lagrange equation here is [11, 50,
51, 52]

δτ

δl(x)
!
= 0. (7.27)

According to Eq. (7.21) this is equivalent to

δτω

δl(x)

!
= − δτ (loc)

i

δl(x)
(7.28)

in the local theory. Rewriting both sides of this equation,

δτω

δl(x)

(7.24)
=

dω(l)

dl

∣∣∣
l=l(x)

(7.15)
= − ∆̺

{
̺l t
(
l(x) − dw

)
− Vext

(
l(x)

)}
(7.29)
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and

−δτ (loc)

i

δl(x)
= σlg

l′′(x)
{

1 +
[
l′(x)

]2}3/2
, (7.30)

the Euler-Lagrange equation for the sharp-kink wedge system can be expressed as [11]

−∆̺
{

̺l t
(
l(x) − dw

)
− Vext

(
l(x)

)}
= σlg

l′′(x)
{

1 +
[
l′(x)

]2}3/2
. (7.31)

This differential equation and the wedge boundary conditions,

l(x → −∞) = l0 and l′(x → ∞) = tan θ, (7.32)

constitute a boundary value problem. Its solution yields the equilibrium contour l(x).
Practically the boundary value problem is solved by a “shooting algorithm” [167]: A
Runge-Kutta algorithm is applied for the initial value problem, which is defined by the
above differential equation and the initial condition of a value l0 and a very small slope
at a starting point x0. Then automatically the desired asymptotic shape is recovered.

7.4 Lennard-Jones fluid

The Lennard-Jones fluid can be treated within the sharp-kink approximation in different
ways. First, the BH or the WCA separation scheme (see Sec. 2.3.4) can be applied to
construct the attractive and repulsive parts of the interaction potential. Second, either
this attractive part is used exactly or in a simplifying analytical approximation. The
analytical approximations for a BH-LJ and a WCA-LJ fluid are reviewed in Sec. 7.4.1,
and the general sharp-kink formalism is extended to the exact treatment of a WCA-LJ
fluid in Sec. 7.4.2.

7.4.1 Approximated BH-LJ and WCA-LJ fluid

The attractive part of the LJ fluid–fluid interaction potential can be derived by the Barker-
Henderson (BH) method or the Weeks-Chandler-Andersen (WCA) method [Eqs. (2.68)
and (2.66)]. The analytical sharp-kink calculations are simplified, if this attractive po-
tential is approximated by a simple expression. This approximation has been applied by
Getta and Dietrich [50, 51] for the BH-LJ fluid, whereas Bauer and Dietrich [11, 52] chose
the same type of function for the WCA-LJ fluid. The two approximative functions merely
differ in a prefactor

√
2, which is due to the different value of the integrated strenght in

both cases [Eqs. (2.74) and (2.73)],

αBH−LJ = −32

9
π σ3

LJ εLJ , (7.33)

αWCA−LJ = −32

9

√
2 π σ3

LJ εLJ =
√

2 × αBH−LJ. (7.34)

In order to address both approximative functions simultaneously, it is convenient to sub-
sume them by the label “X-LJ”, where X either stands for BH or WCA. In this notation
the approximative function φatt,app

X−LJ (r) is given by

φatt
X−LJ(r) ≃ φatt,app

X−LJ (r) :=
4

π2

αX−LJ

σ3
LJ

1
[
1 +

(
r

σLJ

)2
]3 . (7.35)



72 7.4 Lennard-Jones fluid

From this potential the corresponding auxiliary function [Eq. (7.10)] follows,

tapp
X−LJ(z) =

1

π
αX−LJ

(
π

2
− arctan

(
z/σLJ

)
− z/σLJ

1 + (z/σLJ)
2

)
. (7.36)

Hence in the present case the liquid–gas surface tension is

σX−LJ,app

lg = − 1

2 π
(∆̺)2 σLJ αX−LJ > 0 (7.37)

and the effective interface potential reads

ωapp
X−LJ(l) = ∆̺ σ3

LJ

{
αX−LJ

π σ2
LJ

̺l

[
1 +

l − dw

σLJ

(
arctan

(
l−dw
σLJ

)
− π

2

)]

+
1

σ3
LJ

∑

i≥2

1

i

ui+1

li

}
(7.38)

with the coefficients ui, i ≥ 3, of the external potential [Eq. (3.8)].

For completeness the weight function wff(z) [Eq. (2.92)] for the approximative interaction
is given,

wapp
X−LJ(z) =

2

π σLJ

αX−LJ

1
[
1 +

(
z

σLJ

)2
]2 . (7.39)

The weight function wff(x, z) [Eq. (2.108)] for the present case,

wapp
X−LJ(x, z) =

3

2 π σ2
LJ

αX−LJ

1
[
1 +

(
x

σLJ

)2
+
(

z
σLJ

)2
]5/2

, (7.40)

is useful to calculate the line tension contribution τa1(θ). Thus the latter reads

(τa1)app

X−LJ
(θ) =

1

4 π
(∆̺)2 σ2

LJ αX−LJ

(
1 − θ

tan θ

)
(7.41)

with the contact angle θ expressed as radian measure. With the help of ωapp
X−LJ(l) the

function τa2(l0, θ) can be obtained analytically,

(τa2)app

X−LJ
(l0, θ) =

∆̺

tan θ

(
1

2 π
σ2

LJ αX−LJ ̺l

{[(
l0−dw

σLJ

)2
+ 1

]

×
[π

2
− arctan

(
l0−dw

σLJ

)]
− l0 − dw

σLJ

}
+
∑

i≥1

1

i (i + 1)

ui+2

li0

)
. (7.42)

Comment on the strength of the tail:
The following consideration is performed for the case of a an approximated WCA-LJ
fluid, however, a BH-LJ fluid can be addressed analogously. The approximative potential
is constructed such that it contains a r−6-term, possesses a 1/(σLJ + r2)3 shape and the
same integrated potential strength as the WCA-LJ potential. However, the adjusted
constant in front of the potential leads to the fact that the r−6-term is much stronger
than in the original potential. Hence the substrate strength εw for which the Hamaker
constant vanishes [cf. Eq. (8.1)] and hence critical wetting might occur is overestimated
by a factor

32

9

√
2

1

π
≃ 1.60056234. (7.43)
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If the shape 1/(. . . + r2)3 of an approximative potential is desired and on the other hand
the critical wetting parameters should be predicted for a WCA-LJ fluid in a quantitative
fashion, a solution to this problem could be to choose

φatt,app
X−LJ (r) := 4 εLJ

1
[
c2 + r2

]3 (7.44)

as the approximative expression. The suitably chosen constant

c := σLJ

(
9 π

32
√

2

)1/3

(7.45)

guarantees the same integrated potential strength as for the WCA-LJ potential, and at
the same time the LJ tail is maintained.

7.4.2 Exactly treated WCA-LJ fluid

The general expressions are now applied to a WCA-LJ fluid without further approxima-
tions. A WCA-LJ fluid is focused on, and a BH-LJ fluid can be treated analogously. For
this model system the effective interface potential can be obtained analytically. However,
the calculation of the associated line tension values requires numerical calculations.

The integrated potential α in this case is [Eq. (2.73)]

αWCA−LJ = −32

9

√
2 π σ3

LJ εLJ, (7.46)

the auxiliary function related to the WCA-LJ potential reads

tWCA−LJ(z) =





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√
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√
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(7.47)

from which the liquid–gas interfacial tension follows as

σWCA−LJ

lg =
9

16
22/3 π (∆̺)2 εLJ σ4

LJ > 0. (7.48)

For a WCA-LJ fluid and an approximated WCA-LJ fluid the coexisting densities ̺l and ̺g

are the same, since the integrated potential strength is the same and the phase diagram
in first-order perturbation theory only depends on this quantity. Even if the effective
hard-sphere diameter is taken into account, the phase diagrams do not differ, since this
effective diameter is determined by the repulsive part of the interaction alone. Within
the sharp-kink approximation the ratio of liquid–gas surface tensions calculated for the
analytical approximation of a WCA-LJ fluid and an exactly treated WCA-LJ fluid is

σWCA−LJ,app

lg

σWCA−LJ

lg

=

(
16

9

)2 1

21/6 π
≃ 0.896259. (7.49)

Hence the analytical approximation underestimates the liquid–gas surface tension by
approximately 10 % in comparison to the exact treatment of the WCA-LJ fluid.
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Here the effective interface potential is given by

ωWCA−LJ(l) = ∆̺

{

̺l

(
−π εLJσ

4
LJ

) [
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√
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)
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with the auxiliary functions

b1(s) :=
1

3
s−2 − 1

90
s−8 (7.51)

and

b2(s) :=
9

8
22/3 − 16

9

√
2 s +

9

10
21/3 s2 − 1

12
s4. (7.52)

The analytically feasible parts of the line tension can be expressed as

(τa1)
WCA−LJ

(θ) = −24

35
25/6 (∆̺)2 σ5

LJ εLJ

(
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)
(7.53)

and
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7.5 Square-well fluid

The general expressions from Sec. 7.3 are specified here for the case of a square-well (SW)
fluid (see Sec. 2.3.5). They read

tSW(z) =






−π εSW
4
3σ3

SW for z < −σSW

−π εSW

(
2
3σ3

SW − σ2
SW z + 1

3 z3
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(7.55)

σSW
lg =

π

8
(∆̺)2 εSWσ4

SW > 0, (7.56)
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(τa1)
SW

(θ) = − 1

15
(∆̺)2 σ5

SW εSW

(
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(7.58)

and
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7.6 Interface displacement model motivated by the sharp-
kink DFT

The interface displacement model (IDM) [44] represents a mesoscopic approach to the
line tension of a sessile liquid wedge. Important predictions for the behavior of the line
tension and the wedge contour upon approaching the wetting transition were derived from
it (see Sec. 1.6). In the IDM the line tension is defined via deviations of the film contour
from a constant height according to

τ =

∫ ∞

−∞
dx

[
1

2
σlg

(
dl

dx

)2

+ ω
(
l(x)

)
]

+ constant, (7.60)

where τ is the equilibrium value, if l(x) is the equilibrium contour. Therefore this line
tension definition is different from the one in the microscopic approaches, i. e., the sharp-
kink DFT or the fully microscopic treatment. If in a DFT picture it is desired to refer to
predictions from the IDM, at least a crude connection between both definitions should be
established.

Here a motivation of the line tension definition from the IDM is presented, on the basis
of the above described sharp-kink DFT. Within the sharp-kink approach the wedge line
tension consists of four parts (see the explicit formulae in Sec. 7.3),

τ [l(x)] = τa1(θ) + τa2(l0, θ) + τω[l(x)] + τi[l(x)]. (7.61)

The first term only depends on the contact angle and even vanishes vor θ → 0, thus it is
neglected here. The second term is

τa2(l0, θ) =
1

tan θ

∫ ∞

l0

dl ω(l). (7.62)

If the actual contour looks like the reference wedge (i. e., for l(x) = a(x)), it can be
expressed as

τa2(l0, θ) =

∫ ∞

x=0
dx ω

(
l(x)

)
. (7.63)

The third term vanishes for l(x) ≡ a(x). Note that the predictions of the IDM upon
approaching the wetting temperature Tw refer to wedge contours which differ relatively
strongly from an exact wedge, thus the basic assumption of the above motivation is not
fulfilled well. Since the IDM line tension definition also implies the way to determine the
equilibrium wedge contour, the wedge shapes according to the IDM and the sharp-kink
DFT differ.



76 7.6 Interface displacement model motivated by the sharp-kink DFT

The fourth term in the local approximation (apart from a term solely depending on the
contact angle) can be approximated by

τi[l(x)] ≃ σlg

∫ ∞

−∞
dx

1

2

(
dl

dx

)2

+ const. (7.64)

Thus the second and the fourth term essentially resemble the expressions from the IDM
line tension definition, Eq. (7.60). Consequently for roughly wedge-shaped contours [i. e.,
l(x) ≃ a(x)] the line tension definition according to the IDM can be related to a sharp-kink
DFT. By calculating the remaining, omitted contributions, control over the deviations
between the microscopic and the mesoscopic line tension definitions is possible.

Altogether this consideration gives some indication that line tension values from the mi-
croscopic and the mesoscopic level of description are of comparable order of magnitude.
Indeed Getta and Dietrich [50, 51] as well as Bauer and Dietrich [11, 52] have shown
numerically that the asymptotic behavior of the wedge line tension obeys the IDM pre-
dictions. For a simple model system of three coexisting phases Koga and Widom [100, 101]
recovered the IDM predictions as well. One can conjecture that the IDM predictions are
universal, since microscopic details of a model system are expected to be unimportant
for the qualitative behavior of the line tension very close to wetting. The quantitative
behavior, i. e., the prefactor and the range of validity of the description by the leading
order term, certainly depends on microscopic details.



8 Results and discussion

In this chapter quantitative line tension results are presented and discussed. Several mo-
del systems are addressed by means of three different line tension theories:
First, line tension values calculated fully microscopically for several systems are shown in
Sec. 8.1. These systems have been tuned such that they are easily addressable via the
fully microscopic approach.
Second, the quality of the SK line tension theory is analyzed in Sec. 8.2. This approach
is hardly applicable to the systems from Sec. 8.1. Nevertheless a system has been tailored
in order to facilitate a quantitative comparison between SK and fully microscopic line
tension values.
Third, a “hybrid theory” is introduced in Sec. 8.3. It corresponds to the standard SK line
tension approach into which an improved effective interface potential ω(l) is inserted. For
the cases studied in Sec. 8.1 this hybrid theory yields semi-quantitative agreement with
the corresponding fully microscopic line tension values. It fails, however, for the rather
extreme case of the tailored system from Sec. 8.2.

Finally the status of the three line tension theories is appraised in Sec. 8.4. This means
that the power of predicting line tension values and the numerical efficiency of the three
methods are discussed.

8.1 Fully microscopic results

Indekeu’s [44] predictions for the behavior of the line tension upon approaching a wetting
transition distinguish between four wetting scenarios (see Sec. 1.6). They correspond to
systems comprising long- or short-ranged forces, respectively, undergoing a first-order or
critical wetting transition, respectively. Subsections 8.1.1 to 8.1.2 refer to three of these
four wetting scenarios.

The fourth wetting scenario, i. e., a system with short-ranged forces undergoing a critical
wetting transition, could in principle occur for a SW fluid in the presence of a short-ranged
substrate potential. Since mean-field predictions are believed to be not very reliable in
this case, this wetting scenario is beyond the scope of this work.

8.1.1 Long-ranged forces, first-order wetting

8.1.1.1 Lennard-Jones fluid on a LJ substrate

In fully microscopic, numerical calculations a cut-off of the LJ potential range has to be
introduced. Although its cut-off distance might be large compared to the atomic radius,
the cut LJ potential is, strictly speaking, short-ranged compared to the original, infinitely
long-ranged LJ potential. This cut-off approximation influences the wetting behavior and
the asymptotics of the line tension upon approaching wetting. The truncated interaction
acts as long-ranged for a liquid-like film whose thickness is smaller or of the order of the
cut-off distance. For a much larger film thickness the presence of the cut-off is revealed,
and the character of the wetting transition changes from long-ranged to short-ranged.

Since the external potential is not truncated here, the (partially cut and shifted) LJ fluid
under the influence of an LJ (9–4–3) substrate potential belongs to the class of “long-
ranged forces”. First-order wetting and critical wetting (due to a vanishing Hamaker
constant) can be observed.
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Fig. 8.1: Contact angle of a WCA-LJ fluid on a LJ (9–3) substrate. The LJ fluid–fluid interaction

is truncated at an interparticle distance of 10 atomic radii (see Sec. 6.1). The substrate
potential strength is characterized by βε(ii)

w = 0.6707, refered to as case (ii). In case (i)
the substrate potential depth is fixed and adjusted such that the 2D wetting temperature
equals the one in case (ii), i. e., ε(i)

w = 1.3066 ε
LJ

× 0.6707. The predicted asymptotic
relation θ ∼

√
t [Eq. (1.9)] holds for each of the curves and for small contact angles θ . 35◦.

t denotes the reduced temperature with t =
(
T

LJ,w
− T

LJ

)
/T

LJ,w
, which is specified for

the cases (i) and (ii) in 1D or 2D, respectively. The wetting temperatures in the different
cases are T (1D;i)

LJ,w ≃ 1.3169, T (1D;ii)

LJ,w ≃ 1.3140, and T (2D;i)

LJ,w = T (2D;ii)

LJ,w ≃ 1.3066. Hence the 2D
wetting temperature in case (i) or (ii) is about 0.78 % or 0.56 %, respectively, smaller
than the corresponding 1D wetting temperature.

A first-order wetting transition of a WCA-LJ fluid in contact with a planar LJ (9–3)
substrate is analyzed here. The contact angle dependence of the line tension is aimed at.
There are basically two simple ways to change the contact angle θ theoretically: Either (i)
the potential depth parameters of the fluid–fluid and the substrate–fluid interaction, εLJ

and εw, are fixed and the temperature T (of both the substrate and the fluid) is changed.
Hence the effective temperature TLJ = 1/(βεLJ) is changed and the dimensionless substrate
parameter βεw ∼ βεLJ as well. Or (ii) the temperature T is fixed and the fluid–fluid
interaction parameter εLJ is changed, while βεw is fixed. Both methods of changing θ
are employed here, since this gives an idea to what extend the line tension value solely
depends on the value of θ or how important the actual way of establishing such a contact
angle is important.

The temperature dependence of the contact angle is shown in Fig. 8.1. The typical
behavior for first-order wetting is found, i. e., θ ∼

√
t for small contact angles and a

reduced temperature t. Effectively one-dimensional (1D) and effectively two-dimensional
(2D) calculations exhibit small deviations of the wetting temperature. This small error
results from different cut-offs of the LJ fluid–fluid interaction in 1D and 2D (see Sec. 6.1)
as well as from slightly different discretization errors in 1D and 2D. Results for a SW
fluid (cf. Fig. 8.6), where no cut-off exists and the differences between 1D and 2D data
are even smaller, indicate that the small differences between the 1D and 2D data for the
LJ fluid are mainly due to the different cut-offs in 1D and 2D. For consistency 2D density
profiles are employed as boundary profiles in the — likewise 2D — sessile liquid wedge
calculations.
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Fig. 8.2: Density ̺(x, z) in the contact region of a sessile liquid wedge on a LJ substrate. The fluid

consists of WCA-LJ particles. The employed parameters are cut
LJ

= 10, T
LJ

= 1.295,
and βεw = 0.6707. This choice leads to θ ≃ 25.80◦. Additionally the contour refering to
the arithmetic average of bulk liquid and gas densities is indicated.
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Fig. 8.3: Cuts through ̺(x, z) from Fig. 8.2. For several fixed values of x the density ̺ as a function

of the distance z from the surface is displayed. Hence the density profile of a planar s–g
or s–l interfacial is recovered, if x is situated far from the contact line on the gas or liquid
side, respectively.

The microscopic structure of a sessile liquid wedge formed by a LJ fluid resting on a LJ
(9–3) substrate is illustrated in Fig. 8.2. Cuts/slices through this specific density ̺(x, z)
for certain x values are presented in Fig. 8.3. The contour of this density distribution is
contained in Fig. 8.4, which provides fully microscopic contours for several contact angles.

Line tension values of a sessile liquid wedge formed by a LJ fluid on a LJ substrate are
obtained from fully microscopicly calculated density distributions ̺(x, z). The line tension
is presented in Fig. 8.5 for both cases (i) and (ii) of varying the contact angle. The line
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Fig. 8.4: Contour of a sessile liquid wedge comprising a LJ fluid and a LJ (9–3) substrate. The

choice of parameters corresponds to case (ii) in Fig. 8.1. The convergence of the contours
towards their asymptotes is shown in (a), whereas (b) resolves the contour shapes in the
vicinity of the substrate surface. The curve for θ ≃ 25.80◦ displayed (a) is left out in
(b), since its triple line is situated out of the focus there. Contour oscillations near the
surface originate from oscillations in the corresponding planar s–l interface, which decay
towards the gas side in the three-phase contact region. Such contour oscillations have
been found before in WDA-DFT studies of small sessile droplets [168]. It is characteristic
for a first-order wetting transition that far from the contact line the contour reaches its
asymptote from below. Even for obtuse contact angles (i. e., 90◦ ≤ θ < 180◦) the contour
attains the inclined reference l–g dividing interface from the liquid side.

tension in the accessible contact angle range is compatible with Indekeu’s predictions
with respect to the asymptotic behavior. Besides the typical features that τ is negative
for large θ and crosses zero for some small value of θ (here for θ ≃ 3◦, which depends on
the choice of the solid–fluid dividing interface) are recovered as well.
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Fig. 8.5: Line tension of a sessile liquid wedge formed by a WCA-LJ fluid on a LJ substrate. The

parameters are the same as in Fig. 8.1. The two ways of changing θ give very similar
results for small contact angles θ . 40◦. For this scenario a diverging line tension is
predicted [Eq. (1.8)], with an asymptotic contact angle dependence τ ∼ − ln θ. As shown
in the inset, the predicted asymptotic law, τ ∼ − ln θ, fits the data for βεw = 0.6707 very
well up to θ . 9.5◦. The small additive constant in the fit function is unimportant, since
one could chose another solid–fluid dividing interface to make it vanish. Between θ ≃ 9.5◦

and θ ≃ 12◦ the shape of τ(θ) rather abruptly changes from the asymptotic behavior (for
θ . 9.5◦) to the behavior for intermediate θ (say for 12◦ . θ . 40◦). This abrupt change
most likely originates from the second fluid layer in the substrate–gas interface, whose
density peak slightly grows for decreasing θ in this cross-over regime. However, in θ(TLJ)
(from 2D calculations) no imprint of this tiny effect could be observed. Note that the
contact angle θ is expressed as radian measure in ln θ and that the plane z = 0 is chosen
as the solid–fluid dividing interface.
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8.1.1.2 Square-well fluid on a LJ substrate

Even though the square-well fluid–fluid interaction potential is of short range, a long-
ranged LJ (9–3) substrate potential leads to a classification of the system as “long-ranged
forces”. This model system is employed for fully microscopic calculations of the wedge
line tension as well. Thereby one can estimate to what extend the quantitative results
τ(θ) depend on the choice of the fluid.

Like for the LJ fluid discussed in the previous subsubsection, two ways (i) and (ii) of
changing the contact angle are compared. The temperature dependence of the contact
angle for both cases and caluclated in effectively one or two dimensions, respectively, is
displayed in Fig. 8.6. Finy deviations between the 1D and the 2D wetting temperature
originate exclusively from slightly different discretization errors, since in this model system
the fluid–fluid interaction is not truncated.

The liquid wedge line tension as a function of the contact angle is given for both cases (i)
and (ii) in Fig. 8.7. Very small contact angles are not accessible in this fully microscopic
approach and hence the leading order term for vanishing θ cannot be extracted. However,
around θ ≃ 20◦ τ increases more than linearly for decreasing θ, which gives some indi-
cation for a possible divergence at vanishing θ. The data are compatible with Indekeu’s
predictions for the asymptotic line tension behavior.

The line tension value is negative for large contact angles, crosses zero for θ ≃ 40◦, and
further increases on decreasing θ. Note that the line tension value depends on the choice
of the solid–fluid dividing interface, and hence another choice would shift the zero towards
another contact angle. Although not confirmable in this approach, the line tension of this
system is likely to diverge upon approaching wetting. These results are in agreement with
Indekeu’s predictions from the interface displacement model.

The shape of τ(θ) for the SW fluid is similar to the corresponding curve for the LJ
fluid [see Fig. 8.5]. At a certain θ the SW line tension is approximately half as large as
the LJ line tension. In the analyzed contact angle range 10◦ . θ . 120◦ the line tension
in dimensionless units attains values in the range −0.4 . τ/(kBT/R) . 0.05 for the SW
fluid and −0.7 . τ/(kBT/R) . + 0.1 for the LJ fluid case. Hence for room temperature
(T = 298 K) and a hard-sphere radius of R = 0.1 nm the line tension in this contact
angle range varies continuously between −16 pN and +2 pN for the SW fluid or between
−28 pN and +4 pN for the LJ fluid, respectively.

Freezing:
For TSW = 0.8/( 64

81

√
2) quasi-two-dimensional freezing occurs in this system. The density

distribution ̺(x, z) exhibits peaks ordered on a triangular lattice in the xz plane, as
shown in Fig. 8.8. The large density oscillations destabilize the iteration procedure and
thus impede a perfect minimization. At least on the observed intermediate stage crystal
peaks are exclusively present in the former liquid region of the wedge system, whereas
the gas region still contains gas-like densities. Most likely the optimal configuration here
corresponds to density peaks on a triangular lattice and spread all over the finite system
size except close to the boundary profiles.

In the wedge system translational invariance in the y direction is enforced, so density
variations in this direction are excluded. A breakup of this constraint is expected to lead
to freezing in all three dimensions, such that one could interpret the density peaks as
localized particles on a three-dimensional lattice.

The effectively one-dimensional solid–liquid interface profile ̺(z) exhibits strong density
oscillations, which argue for freezing suppressed through the constraint of translational
invariance in the x and y directions. Freezing is not directly observable at the planar solid–
gas or solid–liquid interaface density distributions ̺(x, z) at this temperature, if a planar
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Fig. 8.6: Contact angle of a SW fluid on a LJ (9–3) substrate. Two ways of changing the

contact angle are pursued: In case (ii) βε(ii)
w = 0.45 and in case (i) ε(ii)

SW is fixed, re-
spectively. The 2D wetting temperatures in both cases are made equal by requiring
ε(i)
w = 1.31315/(64

81

√
2) εSW × 0.45. The contact angle is plotted versus the effective tem-

perature of a LJ fluid with the same integrated strength, T
LJ

= T
SW

× 64
81

√
2, in order

to facilitate a comparison to results for LJ fluids. The 1D and 2D data are almost in-
distinguishable on the scale of (a). The predicted asymptotic relation θ ∼

√
t is found

for θ . 35◦. In (b) the temperature regime close to wetting is resolved for case (ii).
Small diferences between 1D and 2D results can be observed. The wetting tempera-
tures in the different cases are T (1D;i)

SW,w ≃ 1.31361/(64
81

√
2), T (1D;ii)

SW,w ≃ 1.31350/(64
81

√
2), and

T (2D;i)

SW,w = T (2D;ii)

SW,w ≃ 1.31315/(64
81

√
2). Hence the 2D wetting temperature in case (i) or (ii)

is about 0.035 % or 0.027 %, respectively, smaller than the corresponding 1D wetting
temperature.

initial configuration is used in the iteration procedure. The effectively one-dimensional
numerical solutions are metastable states, i. e., they correspond to local, but not global
minima in the grand potential density functional. Obviously the initialization profile in
the wedge geometry is sufficiently inhomogeneous to initiate freezing.
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Fig. 8.7: Line tension of a sessile liquid wedge comprising a SW fluid on a LJ (9–3) substrate.

The line tension is plotted versus the contact angle θ, which is changed on two different
trajectories in parameter space: On varying the effective temperature T

SW
βε(ii)

w = 0.45
is chosen in case (ii) and ε(i)

w = 1.31315/(64
81

√
2) εSW × 0.45 in case (i). The two cases give

very similar results for small contact angles θ . 40◦. τ increases more than linearly for
small and decreasing θ, thus it is likely to diverge for θ → 0. As shown in the inset, the
predicted asymptotic law, τ ∼ − ln θ, fits the data for βεw = 0.45 well up to θ . 20◦. The
additive small constant in the fit function is unimportant, since one could chose another
solid–fluid dividing interface to make it vanish. Note that the contact angle θ is expressed
as radian measure in ln θ and that the plane z = 0 is chosen as the solid–fluid dividing
interface.

̺R30.20.150.10.050
z/R

151050x/R 1050-5-10
Fig. 8.8: Onset of freezing in a SW liquid wedge residing on a LJ (9–3) substrate. The three-phase

contact region is displayed. The effective temperature is TSW = 0.8/(64
81

√
2) here, and the

substrate potential is described by βεw = 0.45. The Picard iteration process is obstructed
by high density peaks and therefore has not completely converged.
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8.1.2 Long-ranged forces, critical wetting

Critical wetting for long-ranged forces can be analyzed conveniently by means of the
effective interface potential ω(l) and particularly the Hamaker constant a2, which is the
coefficient of the l−2 term in ω(l). A necessary condition for critical wetting involving
long-ranged forces is a vanishing Hamaker constant a2 at the critical wetting temperature
This means that the l−2 term of the effective interface potential ω vanishes for large
film thicknesses l. The l−2 contribution stemming from the fluid–fluid interaction has
to cancel the contribution generated by the external potential exactly. Furthermore the
next-to-leading coefficient of ω(l) has to be positive, e. g., a3 > 0. If the temperature is
slightly below the wetting temperature, the Hamaker constant is not zero any more and
a negative l−2 term leads to a potential minimum at a certain large film thickness. If this
local minimum is the global one, then the system exhibits critical wetting.

The expression for the (vanshing) Hamaker constant is given by [51]

a2 =
1

2
∆̺
(
u3 − ̺l t3

) !
= 0. (8.1)

t3 and u3 are the coefficients of the z−3 term of the function t(z) [Eq. (7.11)] and the
external potential [Eq. (3.8)], respectively. t3 exclusively depends on the long-ranged tail
of the fluid–fluid interaction.

Critical wetting of a substrate with short-ranged fluid–fluid interactions cannot occur, if
the substrate–fluid potential is long-ranged. In this case t3 = 0 for a sufficiently thick
liquid-like film. Consequently the Hamaker constant a2 exclusively depends on the long-
ranged external potential and thus does not vanish here. Hence critical wettting based
on a vanishing Hamaker constant is impossible for a SW fluid.

The scenario of critical wetting in a system governed by long-ranged interactions is ad-
dressed here via a Lennard-Jones (LJ) fluid ontop of a LJ (9–4–3) substrate. A LJ (9–3)
potential, i. e., without a z−4 term, merely can give rise to first-order wetting. However, a
sufficiently large value of b4, the coefficient of the z−4 term [Eq. (3.17)], causes a dominant
positive l−3 term in ω(l) for large l at the temperature for which the Hamaker constant
vanishes. For the case of a WCA-LJ fluid on a LJ(9–4–3) substrate the conditional
equation for a vanishing Hamaker constant, Eq. (8.1), reads

a2 = ∆̺ σ3
LJ

(
1

3
π εw − 1

3
π ̺l σ

3
LJ εLJ

)
!

= 0. (8.2)

Hence the appropriate LJ substrate parameter εw [Eq. (3.14)] in order to possibly obtain
critical wetting at a certain desired temperature is

εw = ̺l σ
3
LJ εLJ. (8.3)

In fully microscopic calculations the attainable range of values of b4 is limited. For positive
b4 the z−4 term adds additional attraction to the substrate potential. In particular the
height of the first peak in the density distribution of a solid-liquid interface is increased
considerably. For b4 exceeding 1 considerably the fully microscopic programme becomes
instable, since large peaks are precarious for the FFT calculations. Hence systems with
b4 ≫ 1 cannot be desbribed by means of the actual fully microscopic programme.

The (sharp-kink) effective interface potential ω(l) predicts first-order wetting for b4 . 2
and typical values of the other parameters. However, an additional phase transition
associated with a sudden increase of the film thickness from very small values (around 3
R) to an intermediate one (around 12 R) occurs for b4 ≃ 2. This prior phase transition
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Fig. 8.9: Effective interface potential ω

FMT
(l) for sharp-kink (SK) density distributions and a non-

local hard-sphere excess free energy treated via FMT. This hard-sphere contribution
accounts for the repulsive part of the fluid–fluid LJ interaction. The “desired” criti-
cal wetting temperature is set to TLJ = 1.31, which corresponds to a LJ (9–3) substrate
described by βεw ≃ 0.34063. ω

FMT
(l) is displayed for T

LJ
= 1.31 and for several cut-off

distances. The relative influence of a small cut-off of 10 atomic radii is moderate close to
the substrate surface, but quite strong for film thicknesses between 5 and 20 atomic radii.
ω

FMT
(l) is compared to ω(l), which is calculated within the SK theory employing the local

density approximation (LDA), dw = R, and no truncation of the fluid–fluid interaction.
The two curves, ωFMT(l) and ω(l), deviate considerably for small film thicknesses l/R . 3.

masks the critical wetting transition in a large temperature range. Hence a critical wetting
transition unperturbed by such a prior transition requires values of b4 which are much
larger.

On the other hand critical wetting was found by fully microscopic calculations already for
b4 ≃ 1. In this regime the sharp-kink theory predicts first-order wetting instead, which
moreover takes place at another wetting temperature. Hence predictions based on the
sharp-kink effective interface potential for small values of l deviate considerably from the
more realistic fully microscopic approach. It is known that for a small film thickness l the
effective interface potential is not very reliable.

The discrepancy between the sharp-kink approach and the fully microscopic approach is
analyzed further. The hard-sphere contribution to the grand potential is addressed in
the local density approximation (LDA) within the SK theory, while the fully microscopic
theory uses on the non-local FMT instead. The effect of this difference on the shape of
the effective interface potential (within the sharp-kink approximation) can be analyzed
by initializing a liquid film between z = dw and the distance l from the substrate. For
this density profile the interfacial tension can be calculated numerically very easily. It the
interfacial tension for a very large l value (mimicking l → ∞) is substracted, the result
equals an effective interface potential within SK but with the non-local FMT. Deviations
from the LDA theory are considerable, as can be seen in Fig. 8.9. The LDA-SK model
creates much too low values of ω(l) close to the substrate surface. Both the LDA-SK and
the FMT-SK model predict a first-order wetting transition, even though fully microscopic
calculations found critical wetting. Consequently ω(l) is unreliable for small values of l
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Fig. 8.10: Contact angle for critical wetting and cut-off-induced first-order wetting. A WCA-LJ

fluid is exposed to a LJ (9–4–3) substrate. Contact angle curves for several cut-off
distances (10, 20, 50, 100, 500, and 1000 hard-sphere radii) are shown. The “desired”
critical wetting temperature was set to T

LJ
= 1.36, which corresponds to εw ≃ 1.36 ε

LJ
×

0.28798. In this fully microscopic calculation the choice b4 = 1.0 was — in contrast to SK
predictions — sufficient in order to obtain critical wetting. The contact angle is expected
to asymptotically depend as θ ∼ t3/2 on the reduced temperature t = (TLJ,w −TLJ)/TLJ,w

with TLJ,w = 1.36. This prediction is actually found for very large cut-off distances
(cut

LJ
& 1000) and very small contact angles (θ . 3◦). Strictly speaking even in this case

the wetting transition is still of first-order due to the finite cut-off. For smaller cut-off
distances the contact angle exhibits the square-root behavior, θ ∼

√
t, which is typical

for first-order wetting. The size of the contact angle range in which this asymptotic
behavior holds decreases with increasing cut-off distance.

mainly due to the constraint of step-shaped density profiles. Additional deviations very
close to the surface arise from the LDA. Hence in this critical wetting situation the SK
theory fails not only quantitatively but even gives unreliable predictions with respect
to the character of the wetting scenario and the wetting temperature. The tendency is
that the SK theory might miss a critical wetting transition and might instead predict a
first-order wetting at a higher temperature.

Strictly speaking critical wetting due to a vanishing Hamaker constant is only possible
for infinitely long-ranged fluid–fluid interactions. Hence the finite LJ cut-off will always
prevent a critical wetting character, i. e., a continuously diverging thickness of a liquid-like
film in a planar solid–gas interface. However, for still finite film thicknesses the critical
wetting signature, i. e., the characteristic temperature dependence of the contact angle
and the film thickness [Eqs. (1.12) and (1.13)], is also visible for a finite, large cut-off
distance.

Asymptotically the contact angle for critical wetting should behave as θ ∼ t3/2 [Eq. (1.12)]
instead of θ ∼ t1/2 [Eq. (1.9)] for first-order wetting. However, in order to actually observe
this behavior the cut-off distance has to be very large. In Fig. 8.10 the influence of the
cut-off distance on the contact angle behavior is sketched. In order to observe a contact
angle range exhibiting θ ∼ t3/2 a very large cut-off distance is necessary.



88 8.1 Fully microscopic results

1.82 · 10−2 ×
(

1.338−TLJ
1.338

)−1

cutLJ = 100
(
TLJ,w ≃ 1.30778

)
cutLJ = 50 (TLJ,w ≃ 1.29065)

cutLJ = 20 (TLJ,w ≃ 1.25693)

T
LJ

Γ
R

2

1.31.251.21.151.11.051

10.80.60.40.20
Fig. 8.11: Thickness of the liquid-like film at a substrate–gas interface for systems mimicking criti-

cal wetting. The parameters are the same as in Fig. 8.10. The excess adsorption Γ [Eq.
(3.25)] is a convenient measure of the film thickness here, since it increases continuously
up to the discontinuous divergence. This discontinuous divergence marks a first-order
wetting transition, which originates from the truncation of the fluid–fluid interaction.
Excess adsorption curves for several cut-off distances (20, 50, and 100 atomic radii)
are displayed. The data points are well described by a single curve up to the cut-
off dependent wetting temperature. This curve is proportional to the inverse reduced
temperature, ∼ t−1, as expected close to a critical wetting transition [Eq. (1.13)].

Merely from considering these contact angle curves one would not expect critical-wetting-
like behavior for a cut-off distance of the order of 20 atomic radii. However, according
to Fig. 8.11 the temperature dependence of the thickness of a liquid-like film at a planar
substrate–gas interface resembles the behavior typical for critical wetting up to the wetting
temperature, where the film thickness diverges discontinuously. The order of the wetting
transition is exclusively determined by the diverging behavior of the thickness of the liquid-
like film in the planar substrate–gas interface. Here a discontinuous divergence of the film
thickness leads undoubtedly to a classification as first-order wetting. Moreover the contact
angle behaves as expected for first-order wetting. Critical wetting based on a vanishing
Hamaker constant cannot occur in a system comprising a long-ranged external potential
and a truncated fluid–fluid interaction. On the other hand the temperature dependence
of the film thickness resembles the behavior that is typical for critical wetting. Hence the
behavior of this system is ambiguous close to wetting.

Upon approaching critical wetting the thickness of the liquid-like film in the susbstrate–
gas interface diverges. Since the microscopic contact region stays in the vicinity of the
lateral position x = 0 of the macroscopic contact line, the line tension should vanish for
critical wetting. This behavior contrasts the first-order wetting scenario, where the lateral
position of the three-phase contact region diverges towards x → +∞. The statement
τ(θ = 0) = 0 holds for every choice of the solid–fluid dividing interface. According to the
prediction from the interface displacement model (IDM) in a critical wetting transition τ
vanishes with an asymptotic behavior τ ∼ θ1/3 [Eq. (1.11)].

The line tension of a WCA-LJ fluid on the substrate described in Fig. 8.10 is calculated.
The fluid–fluid LJ interaction is truncated at a interparticle distance of 20 atomic radii.
The contact angle behavior and particularly the wetting temperature is slightly different
in effectively one- and two-dimensional calculations (see Fig. 8.12).
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Fig. 8.12: Contact angle for a first-order wetting system due to a truncation of the fluid–fluid
LJ interaction. The corresponding system with untruncated interactions would exhibit
critical wetting. The calculations are performed both in effectively one and two dimen-
sions, since the 2D profiles are employed as boundary profiles in the wedge line tension
calculations. The parameters are εw = 1.36 ε

LJ
× 0.28798, b4 = 1 and cut

LJ
= 20. For

small contact angles the temperature dependence can be described by the characteristic
square-root law, θ ∼

√
t. The reduced temperature in 1D or 2D, t

1D
or t

2D
, refers to

the wetting temperature T (1D)

LJ,w ≃ 1.2569 or T (2D)

LJ,w ≃ 1.2450, respectively. Hence the 2D
wetting temperature is about 0.95 % smaller than in 1D, which is mainly due to different
cut-offs in 1D and 2D.

It is an interesting question, how the line tension in this system reacts to both critical-
wetting-like and first-order-wetting-like aspects. For vanishing contact angle the line
tension is expected to diverge due to first-order wetting. There might be a contact angle
range for which the line tension tends towards zero for decreasing θ. However, tiny contact
angle values are not addressable fully microscopicly. Furthermore for finite contact angles
subleading terms lead to deviations from the asymptotic curve. The system discussed in
Ref. [51], for instance, exhibits the leading-order only for extremely small contact angles.
Consequently there are several uncertainties in interpreting the results from the fully
microscopic calculations.

The contact angle dependence of the liquid wedge line tension τ of this system is presented
in Fig. 8.13. The shape of τ(θ) is similar to typical curves for first-order wetting. No
imprint of the predicted line tension behavior upon approaching critical wetting was found.
Consequently, if the untruncated system exhibits the predicted behavior, it is masked by
the truncation of the fluid–fluid interaction. Hence only for a very large cut-off distance
a regime with τ ∼ θ1/3 is expected to be observable.
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Fig. 8.13: Line tension of a liquid wedge for critical-wetting-like behavior of a WCA-LJ fluid on a

LJ (9–4–3) substrate. The system undergoes a first-order wetting transition for θ → 0,
however, for finite contact angle values it exhibits some characteristic features of a system
approaching critical wetting. The parameters εw = 1.36 εLJ × 0.28798 and b4 = 1 were
adjusted such that merely the finite cut-off distance of 20 atomic radii prevents the
system from exhibiting a critical wetting transition. For a critical wetting transition the
prediction from the interface displacement model (IDM) is, that τ vanishes as τ ∼ θ1/3

[Eq. (1.11)]. For this system with a truncated fluid–fluid interaction, however, the line
tension resembles the typical behavior near a first-order wetting transition (see Figs. 8.5
and 8.7). Note that the contact angle θ is expressed as radian measure in ln θ and that
the plane z = 0 is chosen as the solid–fluid dividing interface.
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8.1.3 Short-ranged forces, first-order wetting

The classification as “short-ranged forces” requires short-ranged fluid–fluid and substrate–
fluid interactions. A SW fluid on a cut and shifted LJ substrate potential fulfills these
requests. The LJ (9–3) substrate potential is not only truncated at a cut-off distance cutext

away from the substrate surface, since the density distribution varies strongly in a small
spatial region. If the discretization is chosen as N = 15 as usual, the density apparently
jumps at a the cut-off position. This unpleasant feature is omitted by additionally shifting
the truncated LJ (9–3) potential such that the substrate potential attains zero (at z = zcut)
smootly. The shape of the resulting cut and shifted potential only depends on the cut-off
distance. For a given cut-off the parameter εw is merely a prefactor to this potential. The
shift corresponds to approximately 6.07 % of the depth of the minimum of the original
LJ (9–3) potential.

Here the case of

zcut/R := 5 (8.4)

is studied. The range of interaction of the SW potential is 3 R throughout this study, so
the solid–fluid and the fluid–fluid interaction ranges are of the same order of magnitude.

The cut and shifted LJ (9–3) potential reads

V cs
ext(z) :=

[
V9−3(z) + Vshift

]
Θ(zcut − z) (8.5)

with

Vshift :=
2

3
πεw

[
2

15

(
2

5

)9

−
(

2

5

)3
]

≃ 0.133968082 εw. (8.6)

The strength of the external potential is described by the LJ energy parameter

εw := 1.31039/( 64
81

√
2) εSW × 0.6707. (8.7)

The wetting temperature determined in an effectively two-dimensional (2D) calcula-

tion, T
(2D)
SW,w ≃ 1.30899/( 64

81

√
2), is about 0.11 % smaller than the 1D result, T

(1D)
SW,w ≃

1.31039/( 64
81

√
2).

For the present system the temperature dependence of the contact angle determined in
1D and 2D calculations is shown in Fig. 8.14. The corresponding liquid wedge line tension
is presented in Fig. 8.15. The calculated line tension curve is compatible with Indekeu’s
prediction, τ ≃ τwetting + c1 θ ln θ + c2 θ, for a system with short-ranged forces close
to a first-order wetting transition. For the available data and the inherent numerical
errors one could not exclude a different behavior at very small contact angles, namely
the predicted behavior for system with long-ranged forces upon approaching first-order
wetting, τ ∼ − ln θ. However, the predicted curve for short-ranged forces fits the data
slightly better [see the inset in Fig. 8.15 (b)]. Consequently there is some indication that
τ(θ) asymptotically resembles the predicted behavior for first-order wetting and short-
ranged forces.

Freezing:
For TSW = 0.9/( 64

81

√
2) quasi-two-dimensional freezing is observed here. Peaks in the

density distribution ̺(x, z) are distributed on a triangular lattice in the xz plane. As
mentioned in the related paragraph in Sec. 8.1.1.2, density peaks localized in the xz plane
point to freezing in three dimensions, if the constraint of translational invariance in the y
direction is lifted.
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Fig. 8.14: Contact angle of a SW fluid on a cut and shifted LJ (9–3) substrate. On the scale of (a)

the data from 1D or 2D calculations are almost indistinguishable. The predicted asymp-
totic behavior, θ ∼

√
t, is found for θ . 10◦, and it is still a reasonable approximation

up to θ . 75◦. In (b) the temperature regime close to wetting is resolved. The reduced
temperature in 1D or 2D, t1D or t2D, refers to the wetting temperature T (1D)

LJ,w ≃ 1.31039
or T (2D)

LJ,w ≃ 1.30899, respectively. Hence the 2D wetting temperature is about 0.11 %
smaller than in 1D. This tiny error arises from slightly different discretization errors in
1D and 2D.
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Fig. 8.15: Line tension of a liquid wedge comprising a SW fluid and a short-ranged substrate
potential. A cut and shifted LJ (9–3) substrate potential is employed. The potential
is defined in the main text [Eqs. (8.4) to (8.7)]. In (a) the whole addressed contact
angle range up to almost 80◦ is displayed, whereas (b) focuses on contact angles up to
40◦. The exact asymptotic behavior of the line tension could not be determined in this
fully microscopic approach, particularly since the numerical errors for this system are
larger than for the other considered cases. The asymptotic law predicted for such a
system with short-ranged approaching a first-order wetting transition [Eq. (1.4)], τ ≃
τwetting + c1 θ ln θ + c2 θ, fits the data in the range 4.7◦ ≤ θ ≤ 13.5◦ as well as the
predicted curve for first-order wetting with long-ranged forces, τ ∼ − ln θ. However,
as shown in the inset in (b), the first fit curve describes the data slightly better than
the second fit curve in the range 13.5◦ ≤ θ ≤ 18.5◦. Note that the contact angle θ is
expressed as radian measure in the fit functions and that the plane z = 0 is chosen as
the solid–fluid dividing interface.



94 8.2 Comparison to sharp-kink line tension theory: tailored system

8.2 Comparison to sharp-kink line tension theory: tailored

system

8.2.1 Rare situations accessible by both theories

The model system of a liquid wedge for a certain choice of parameter values should
be accessible both by the sharp-kink and the fully microscopic approach, in order to
compare the function τ(θ) from both theories. To establish such a situation accessible by
both theories turns out to be a difficult task. Particularly for the employed LJ substrate
potential — including the simple (9–3) version, the (9–4–3) version and the cut and
shifted (9–3) potential — no such situation was found. One typically faces the following
difficulties:

First, if the parameters are chosen such that the fully microscopic approach registers
a wetting transition with convenient features (like a suitable wetting temperature and
moderate density oscillations in the s–g interface), then in all the situations discussed
in the recent sections of this chapter the effective interface potential exhibits an “edge
minimum”, i. e., l0 = dw. For the systems discussed in the previous sections corresponding
sharp-kink contact angles even at much higher temperatures are much higher (mostly
larger than 90◦) than in the fully microscopic approach. Wetting either does not occur
at all or extremely close to the critical point. The sharp-kink theory is out of its valid
range here, since an edge minimum l0 = dw corresponds to a vanishing equilibrium film
thickness, since dw denotes the excluded volume. Sharp-kink solutions are obviously not
expected to be reliable here.

Second, assume the parameters to be tuned for the sharp-kink theory such that the
equilibrium film thickness l0 is clearly larger than dw. Thus the LJ (9–4–3) potential
is very strong and comprises a rather localized and deep potential minimum near the
substrate surface. In this situation the fully microscopic calculation either observes an
already wet state (with a much lower wetting temperature) or local crystallization, i. e.,
crystal-like density peaks near the substrate surface. Even for a substrate attraction
strength that is clearly below the parameter values desireable for the sharp-kink theory,
the fully microscopic iteration process becomes very delicate or mostly impossible. The
high density peaks tend to disable the fast Fourier transforms of the density profile at the
employed discretization. The mixing parameter (see Sec. 6.2.4.1) almost vanishes, so that
the computational time almost diverges.

8.2.2 Tailored substrate

Still the question remains, how the predictions from both the sharp-kink and the fully
microscopic theories compare quantitatively, once a situation accessible by both theories
has been established. In order to overcome the difficulties of the sharp-kink approach,
namely the tendency to show an edge minimum in the effective interface potential, a
substrate potential has been constructed. The system under consideration exhibits a first-
order wetting transition. A WCA-LJ fluid is presumed, for which the effective interface
potential ωWCA−LJ(l) is given by [Eqs. (7.15) and (7.50)]

ωWCA−LJ(l) = ωWCA−LJ,ff(l) + ωWCA−LJ,ext(l) (8.8)

with the contribution

ωWCA−LJ,ff(l) := ∆̺ ̺l

(
−π εLJσ

4
LJ

) [
b2

(
l − dw

σLJ

)
Θ
(

6
√

2σLJ − (l − dw)
)]

(8.9)
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Fig. 8.16: Tailored substrate potential Vtailor(z) compared to the flatline potential Vflat(z). The
main plot provides an overview in a larger spatial region, while the inset zooms into
the region between z0 = dw + 6

√
2 σ

LJ
≃ 3.245 R and z0 + ∆ ≃ 7.245 R, where the

modulation takes place For z > z0 + ∆ the tailored potential is m = 1.12 times stronger
than the flatline potential. For a modulation coefficient v = 0 and an amplification
factor m = 1 the tailored potential would recover the flatline potential. The tailored
potential is negative for z > R and almost vanishes around z/R ≃ 6.2.

from the fluid–fluid interaction and the contribution

ωWCA−LJ,ext(l) := − ∆̺

∞∫

z=l

dz Vext(z) (8.10)

from the substrate–fluid interaction. The auxiliary functions b1(s) and b2(s) are defined
in Eqs. (7.51) and (7.52), respectively.

The constructed substrate potential Vext(z) = Vtailor(z) is defined as follows:

Vtailor(z) :=






∞ for z < dw

Vflat(z) for dw ≤ z ≤ z0

Vref(z) + Vmod(z) for z0 < z < z0 + ∆

m × Vflat(z) for z ≥ z0 + ∆

(8.11)

with the abbreviation z0 := dw + 6
√

2 σLJ, an amplification factor m := 1.12, and a width
∆ := 4 R of the modulation region. The “flatline potential” is given as

Vflat(z) :=






∞ for z < dw

π σ3
LJ̺l

∣∣
TLJ,comp

b′2

(
z−dw
σLJ

)
for dw ≤ z ≤ z0

π σ3
LJ̺l

∣∣
TLJ,comp

b′1

(
z−dw
σLJ

)
for z > z0

(8.12)

with

b′2(s) = − 16

9

√
2 +

9

5
21/3 s − 1

3
s3 (8.13)
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and

b′1(s) = − 2

3
s−3 +

4

45
s−9. (8.14)

The tailored external potential Vtailor(z) is displayed and compared to the flatline potential
Vflat(z) in Fig. 8.16. If this flatline potential was chosen as external potential, the effective
interface potential would be zero for all l ∈ [R,∞) at the compensation temperature
TLJ = TLJ,comp. Here

TLJ,comp
:= 1.385 (8.15)

was chosen. ̺l

∣∣
TLJ,comp

is the liquid density of a coexisting WCA-LJ liquid and gas at the

compensation temperature. The reference potential

Vref(z) := Vflat(z) ×
[
m − 1

∆
(z − z0) + 1

]
(8.16)

interpolates smoothly between Vflat(z) (at z = z0) and v × Vflat(z) (at z = z0 + ∆). The
flatline potential is amplified for z ≥ z0 + ∆, so that the effective interface potential
reaches zero for z → ∞ from above at the compensation temperature (in order to create
a first-order wetting scenario). The modulation potential

Vmod(z) := v × (z − z0)2 [z − (z0 + ∆1)] [z − (z0 + ∆ )]2 (8.17)

with a modulation coefficient

v := 3.315588 · 10−3 εLJ (8.18)

and a parameter

∆1 := 1.5 R (8.19)

is added to the reference potential in order to tune the shape of the effective interface
potential. Since it is a polynomial of fifth order it remains continuously differentiable at
the connection points z = z0 and z = z0 + ∆. The external potential is continuous as
well, however, its derivative is not perfectly continuous, since m 6= 1, but the effect is very
small here, since m = 1.12 is approximately 1.

The value of the excluded zone width dw can be chosen in an optimal way [Eqs. (7.2)
and (7.3)]. Acccording to the obtained fully microscopic density profiles for the tailored
substrate potential with dw := R one finds a posteriori dw/R ≃ 0.7 < 1 as optimal choice.
Since the substrate contains a hard wall contribution, only values dw/R ≥ 1 are sensible.
Hence in the SK as well as the fully microscopic calculations dw = R was chosen.

8.2.3 Wetting behavior within the SK theory

For the tailored system the effective interface potential ω(l) = ωWCA−LJ(l) is continuously
differentiable and can be calculated analytically. It exhibits a thin–thick transition and
is displayed for several temperatures in Fig. 8.17.

From the effective interface potential ω(l) and the Eqs. (7.17) and (7.48) the contact angle
θ is obtained as shown in Fig. 8.18. The thin–thick transition observed by means of the
effective interface potential (see Fig. 8.17) is reflected in the shape of the function θ(TLJ):
For large contact angles θ ≫ 17.39◦ the function is similar to what one would expect
for a first-order wetting transition at TLJ ≃ 1.38714. However, at θ ≃ 17.39◦ the curve
changes abruptly and exhibits a “cantilever-like” shape for smaller contact angles. Finally
a first-order wetting transition occurs at T (SK)

LJ,w ≃ 1.42274.
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Fig. 8.17: Effective interface potential ω(l) for a WCA-LJ fluid on the tailored substrate with the
solid–fluid potential Vtailor(z). At the compensation temperature T

LJ
= T

LJ,comp
≡ 1.385

the function ω(l) exhibits a constant value for a small film thickness l and a local and
global minimum at the equilibrium film thickness l(SK)

0 ≃ 4.8371 R. On further increasing
l it obtains a maximum and finally converges to zero from above. The contact angle
at this temperature is θ(T

LJ
= 1.385) ≃ 17.36◦. At the wetting temperature T (SK)

LJ,w ≃
1.42274 the equilibrium film thickness diverges discontinuously, i. e., a first-order wetting
transition occurs. A thin–thick transition occurs at TLJ = T (SK)

LJ,jump ≃ 1.38376, since the
global minimum converts discontinuously from an edge minimum at l(SK)

0 = dw to a local
minimum at a larger film thickness l(SK)

0 ≃ 4.8371 R. The corresponding contact angle
is θ = θ(SK)

jump ≃ 17.39◦.
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Fig. 8.18: Contact angle of a wedge formed by the liquid and gas phases of a WCA-LJ fluid in
contact with the tailored substrate. In (a) an overview over a large contact angle range
(up to almost 90◦) is given. In (b) the thin–thick transition at T

LJ
= T (SK)

LJ,jump ≃ 1.38376
and θ = θ(SK)

jump ≃ 17.39◦ is pointed out. The inset in (b) highlights the vicinity of the

wetting transition at T
LJ

= T (SK)

LJ,w ≃ 1.42274.
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8.2.4 Line tension within the SK theory

The liquid wedge line tension can be obtained within the SK approach in a large contact
angle range. In the local approximation τ (loc)

i of the line tension component τi [Eq. (7.26)]
this accessible range includes very small contact angles as well [11, 51]. The line tension of
a liquid wedge comprising a LJ fluid and the tailored substrate is illustrated in Fig. 8.19.

The substrate potential was tuned such that ω(l) possesses a shallow minimum and also
a low maximum for θ < θjump ≃ 17.39◦. Hence the SK line tension attains low absolute
values of the line tension for 5◦ . θ . 17.39◦. For larger contact angles, θjump < θ . 80◦,
the SK line tension is of an order of magnitude larger, τ ≃ −0.1kBT/R. This value is of
the order of magnitude obtained for the other studied systems for similar contact angles
(see Figs. 8.5, 8.7, 8.13, and 8.15).

The SK line tension contains four terms (see Sec. 7.3 and Sec. 7.4.2). Fig. 8.20 shows the
contact angle dependence of these line tension components, whose behavior is discussed
in the figure caption. The asymptotic behavior of the line tension components and the
total line tension is very similar to what has been observed in a related system [51]. For
θ > θjump the individual line tension components play a qualitatively different role than
for small contact angles.

8.2.5 Jump of the wedge line tension at a surface phase transition

As demonstrated in the previous subsection, for the tailored system the SK wedge line ten-
sion exhibits a jump at θ = θjump ≃ 17.39◦ (TLJ = T (SK)

LJ,jump ≃ 1.383756). This jump occurs
simultaneously with a surface phase transition: The equilibrium thickness of a liquid-
like film in the planar substrate–gas interface discontinuously increases from l0/R = 1 to
approximately 4.84.

In the following it is explained why a surface phase transition in the solid–gas interface is
always accompanied by a jump of the line tension of a sessile liquid wedge (cf. Sec. 8.2.5.1).
Special attention is payed to the influence of the local approximation within the SK line
tension theory (cf. Sec. 8.2.5.2).

8.2.5.1 Non-local theory: Jump heigth determined solely by the boundary
tension

Even though the line tension jump was detected within the local theory, here at first the
general case without the local approximation is analyzed. Hence the consideration in this
subsubsection applies to the non-local SK theory, the fully microscopic theory, and the
interface displacement model.

The mentioned surface phase transition from a thin to a thick liquid-like film occurs at a
point in the phase diagram which is corresponding to bulk coexistence of gas and liquid
below the wetting temperature. This means that it is not a prewetting scenario, where a
point in the phase diagram situated off liquid–gas bulk coexistence and above the wetting
temperature of a first-order wetting transition is considered.

The shape of the contour l(x) upon approaching the surface phase transition separates
into a thin–thick region and a thick–wedge region. This phenomenon is called contact line
wetting [46, 169]. The distance between the thin–thick contact line and the wedge contact
line diverges. This happens analogously to the divergence of the thickness of a liquid-like
film in wetting. The contour l(x) within the local theory and close to the surface phase
transition is depicted in Fig. 8.21.
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Fig. 8.19: Line tension within the SK theory. The system contains a WCA-LJ fluid (forming a

liquid wedge and the coexisting gas phase) and the tailored substrate. (a) contains the
whole contact angle range considered here. The jump of τ at θ = θ(SK)

jump ≃ 17.39◦ reflects
the qualitative change of ω(l) there, whose global minimum changes discontinuously from
an edge minimum to a local minimum [see Fig. 8.17]. The upper branch of τ and the jump
are highlighted in the inset. The end points of the two branches of the line tension curve
correspond to physical situations which cannot coexist. Hence the grand potential and
the line tension do not have to be continuous there. The line tension jump is analyzed
in more detail in Sec. 8.2.5. τ can be approximated by an empirical exponential function
for large θ. (b) focuses on the line tension behavior for small contact angles. In the range
2◦ . θ . 6◦ the line tension behaves as τ ∼ 1/θ. Such a regime has been found before
in a different system [51]. For θ . 2.4◦ the predicted asymptotic behavior, τ ∼ − ln θ,
emerges. Note that θ is expressed as radian measure in the fit functions and that the
plane z = 0 is chosen as the solid–fluid dividing interface.
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Fig. 8.20: Components of the line tension within the SK theory. The line tension from Fig. 8.19

is decomposed into its four contributions, τ = τa1(θ) + τa2(l0, θ) + τω [l(x)] + τ (loc)

i [l(x)].
(a) covers the whole addressed contact angle range, (b) magnifies the small angle regime,
and the inset in (b) depicts the behavior of the two dominating terms for θ → 0. For
θ < θjump ≃ 17.39◦ the term τa1 is negligibly small. τ (loc)

i is positive and small, but still of
the order of τ , since τa2 and τω almost cancel each other for θ & 2◦. For very small contact
angles the leading 1/θ-term in τa2 + τω cancels and leaves − ln θ as leading order. At
θ = θjump every component except τ (loc)

i changes it sign. All four terms are quantitatively

important in the range θ > θjump. Here τω and τ (loc)

i possess the largest absolute values
and almost cancel each other. Hence the previously neglected τa1 strongly influences the
line tension for large contact angles, since its prefactor −(1 − θ/ tan θ) ≃ − 1

3
θ2 − 1

45
θ4

becomes very large here. Conversely the previously important τa2 is the one which
contributes the least for large contact angles.
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Fig. 8.21: Contact line wetting in the tailored system oberserved by the local SK line tension

theory. The contour l(x) of a sessile liquid wedge is displayed for a temperature slightly
below the temperature of a surface phase transition, T < T (SK)

LJ,jump. In this surface phase
transition the thickness of a liquid-like film in a planar substrate–gas interface jumps.
For T

LJ
ր T (SK)

LJ,jump the contour separates into an interface between the two surface phases
(thin–thick contact region) and a wedge involving the thick surface phase and the liquid
phase (thick–wedge contact region). Hence the two surface phases and the liquid phase
coexist. For a temperature above T (SK)

LJ,jump the thin surface phase is absent, hence the
thin–thick contact line is absent as well. Therefore the boundary line tension related to
the thin–thick contact line does not contribute to the wedge line tension in this case.
Consequently the wedge line tension values τ (thin) and τ (thick), which correspond to the
limiting cases T

LJ
ր T (SK)

LJ,jump and T
LJ

ց T (SK)

LJ,jump, respectively, differ in general. Since the
two situations (i. e., the thin–thick–wedge situation and the thick–wedge situation cannot
exist simultaneously, the grand potential does not have to be continuous at the surface
phase transition. In the present case the height of the line tension jump is given by the
boundary tension and an extra term due to the local approximation [cf. Eq. (8.22)].

There are two possible conceptions of a discontinuous line tension curve, e. g., τ(θ) or
τ(TLJ): (i) One can either consider different wedge line tensions, one for each surface
phase in the gas part of the sessile liquid wedge. Then each line tension is continuous
up to a surface phase transtion. (ii) Or one can combine these different line tensions to
a single wedge line tension, which at a surface phase transtion exhibits a jump. Since
the physical situations corresponding to the end points of the two branches of the line
tension curve cannot coexist, the line tension jump is no contradiction to the requirement
that different phases must have the same grand potential value in order to coexist in
thermodynamic equilibrium (see Sec. 2.3.3).

The difference between the different line tension values approaching a surface phase tran-
sition is given by the boundary line tension [46, 169]:

τ (thin) = τ (thick) + τ (thin−thick)

b . (8.20)

Hence the line tension jump height (for decreasing contact angle, i. e., increasing tempe-
rature) reads

τ (thick) − τ (thin) = − τ (thin−thick)

b , (8.21)

which is negative, since the boundary tension has to be positive for stability reasons.
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8.2.5.2 Local theory: Artefacts from the local approximation

Equation (8.20) should hold for a fully microscopical approach, a non-local SK approach
and the interface displacement model. The local approximation, however, which is inherent
in the performed calculations of the SK wedge line tension and the SK boundary tension,
leads to an additional term in the relation between τ (thin), τ (thick), and τ (thin−thick)

b :

τ (thin) = τ (thick) + τ (thin−thick)

b − (l2 − l1) σlg sin θ. (8.22)

The boundary tension within the local theory is given as [154]

τ (thin−thick)

b =

∞∫

−∞

dx
{
ω
(
l(x)

)
− ω

(
l∞(x)

)}
+ σlg

∞∫

−∞

dx
{√

1 + [l′(x)]2 − 1
}

. (8.23)

l∞(x) is a step-like reference contour with l∞(x) = l1Θ(−x) + l2Θ(x) (without loss of
generality). In the local theory for the reference contour l∞(x) the boundary tension
value vanishes, τ (thin−thick)

b [l(x) = l∞(x)] = 0, while it is positive within the non-local
theory.

The validity of Eq. (8.22) has been checked numerically by calculating all involved quan-
tities separately using the local approximation.

There are basically two reasons for the extra term in Eq. (8.22):
(i) the SK line tension contains the term τa2(l0, θ) ≡ 1

tan θ

∫∞
l=l0

dl ω(l), where the starting

point of the integration depends on the film thickness. In general the integral value is
different for different equilibrium film thicknesses l1 and l2. Hence τa2(l0, θ) for the thin

and the thick surface phase differ by 1
tan θ

∫ l2
l=l1

dl ω(l). The other contribution related to

the asymptote a(x), τa1(θ), remains unchanged undergoing the surface phase transition.
(ii) The wedge asymptote a(x) possesses a part inclined by the contact angle θ with
respect to the substrate surface, while the boundary tension within the local theory refers
to deviations from a step-like asymptote l∞(x). This gives another extra contribution to
the jump heigth. These two extra terms from (i) and (ii) can be combined to the single
expression −(l2 − l1) σlg sin θ.

It might be possible to find a situation in which the two last terms in Eq. (8.22) cancel
each other. In this case the line tension would not exhibit a jump within the local theory.

8.2.6 Wetting behavior within the fully microscopic approach

For the fully microscopic calculations a cut-off of the fluid–fluid LJ interaction is necessary,
and here a cut-off of 20 atomic radii was introduced for the effectively one- and two-
dimensional calculations in the way discussed in Sec. 6.1. The temperature dependence
of the contact angle within the fully microscopic approach (in effectively one and two
dimensions) is displayed in Fig. 8.22. Like in the SK approach a qualitative change of the
function θ(TLJ) in the vicinity of the contact angle θjump is registered. However, here an
extended cross-over between the two branches occurs. In other words, the discontinuous
transition predicted by the SK theory is smoothed out in the fully microscopic treatment.

Here wetting occurs at a much lower temperature than predicted by the SK theory (see
Figs. 8.18 and 8.22). To some extent this difference may be due to the cut-off in the fully
microscopic theory, although a cut-off of 20 atomic radii is already relatively large and
the obtained results are expected to agree well with the untruncated case.



104 8.2 Comparison to sharp-kink line tension theory: tailored system

∼
√

1 − TLJ/1.069

∼
√

1 − TLJ/1.11296

2D 
al
ulation∼
√

1 − TLJ/1.13291

1D 
al
ulation

T
LJ

θ

(in◦ )
1.151.11.0510.950.9

403020100
Fig. 8.22: Contact angle θ from effectively 1D and 2D fully microscopic calculations. A LJ fluid is

exposed to the tailored substrate. The LJ fluid is described by means of the WCA-LJ
scheme, and the fluid–fluid interaction is truncated at an interparticle distance of 20
atomic radii. The wetting temperature in 1D, T (fm,2D)

LJ,w ≃ 1.11296, is about 1.77 % lower
than in 2D, T (fm,1D)

LJ,w ≃ 1.13291. For large contact angles, θ ≫ 17◦, the function seems
to approach a first-order wetting transition (at TLJ ≃ 1.07 for the 2D data). However,
betweeen θ ≃ 15◦ and θ ≃ 20◦ the contact angle curve (for both 1D and 2D data)
changes smoothly to a cantilever-like shape for smaller contact angles. In contrast to
the SK results in Fig. 8.18 the transition between the two branches takes place in a
cross-over region, and the cantilever-like branch is less pronounced here.
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Fig. 8.23: Density profiles ̺(z) of planar interfaces between a LJ gas and the tailored substrate.

Effectively one-dimensional calculations with a LJ cut-off of 20 atomic radii were per-
formed. The last two curves correspond to a temperature slightly below the wetting
temperature; the last curve represents a solid–liquid density profile. The temperature
around TLJ ≃ 1.045 corresponds to the cross-over in the contact angle around θ ≃ 17◦

(see Fig. 8.22). In this temperature or contact angle range the particle density around
z/R ≃ 3.2 of corresponding solid–gas interfaces increases and forms a second fluid layer
(in addition to the first layer around z = R).

In the cross-over region of the contact angle (i. e., around θ ≃ 17◦) the s–g interfacial
density profile ̺(z) forms a second hump near the substrate surface. In Fig. 8.23 several
solid–gas interfacial profiles are plotted.
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Since the solid–gas interfacial tension is rather sensitive to changes of the density profile, it
is plausible that the value of σsg (and consequently the contact angle) changes considerably
there. In contrast to the SK results the film thickness changes continuously here. Still it
is notable that the phenomenon occurs for very similar contact angles in both approaches.
That the wetting behavior is similar for both theories is very convenient for a meaningful
comparison between the respective line tension behavior.

8.2.7 Line tension within the fully microscopic approach

The fully microscopic calculation of the line tension for this tailored system is presented
in Fig. 8.24. At first glance the behavior of the line tension is quite anomalous compared
to the SK results and the other fully microscopic results in this section: The maximum
of the absolute value here is more than one order of magnitude larger than the largest
value obtained in the other fully microscopic calculations. Furthermore τ(θ) reaches a
constant value for large θ and for small θ apparently tends towards a divergence to −∞.
The underlying substrate potential, however, is rather anomalous as well, compared to
a standard LJ (9–3) or (9–4–3) potential. Moreover only a finite contact angle range
is accessible: Smaller θ are numerically too demanding for the provided computational
power and already for θ ≃ 45◦ the fluid is very likely to crystallize. Thus the typical
negative values for “large” values of θ (around 80 or 120◦) in the other systems are not
addressable here. Likewise the regime of very small contact angles is not accessible either.
It is known from other systems [51] that the asymptotic behavior may become visible only
for very small contact angles. Hence the line tension is nevertheless likely to diverge to
+∞ for θ → 0 here.

The behavior of the fully microscopic line tension is qualitatively completely different from
the SK predictions. For 17◦ . θ . 45◦ the absolute values of τ are an order of magnitude
larger than for the SK approach. For 4◦ . θ . 17◦ the absolute values of τ are roughly three
orders of magnitude larger than for the SK approach. Note that these values depend on
the choice of the solid–fluid dividing interface, and another choice may reduce the relative
deviations. The line tension seems to reach a constant value for large contact angles,
i. e., τ(θ ≃ 40◦) ≃ −2.08 kBT/R. This result is in contrast to the SK prediction that the
absolute value of the line tension increases in this contact angle regime.
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Fig. 8.24: Line tension within the fully microscopic approach for the tailored system. In (a), (b),

and the inset in (b) the same three curves are displayed in different contact angle ranges.
In the accessible contact angle range 4◦ . θ . 45◦ the line tension follows two exponential
functions with a cross-over at 8◦ . θ . 15◦. It is plausible that this cross-over occurs
around that contact angle where the curve θ

(
TLJ

)
exhibits a cross-over as well. The data

point for θ ≃ 3.18◦ comprises a relatively large numerical error, particularly since here τ
is evaluated at a stage of the iteration process which is far from convergence. Note that
θ is expressed as radian measure in the fit functions and that the plane z = 0 is chosen
as the solid–fluid dividing interface.
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8.3 Hybrid theory: Sharp-kink line tension theory with an

improved ω(l)

As shown in the previous section, the SK line tension theory suffers already from an
unreliable description of the wetting behavior through the effective interface potential
ω(l). This section is dedicated to the question, whether the (local) SK line tension theory
describes the fully microscopic results (i. e., the values obtained without the local density
approximation, the sharp-kink approximation and the local approximation) in a better
way, if an improved effective interface potential is inserted into the calculation. The
details of this hybrid theory are described in Sec. 8.3.1. Thereafter in Sec. 8.3.2 this
novel approach is applied to the systems from Sec. 8.1 with smooth substrate potential
and moderate spatial density variations. Finally the tailored system (featuring a strongly
varying substrate potential and strong density oscillations) is addressed within the hybrid
method in Sec. 8.3.3.

8.3.1 Specifications of the hybrid theory

8.3.1.1 Hybrid wetting theory

The wetting behavior has to be determined first. A key quantity to describe the wetting
behavior is the effective interface potential ω(l). The SK version of ω(l) is not very reliable
in the region near the substrate surface, hence the wetting behavior predicted by the SK
theory is not very reliable either. A fully microscopic effective interface potential can be
defined as well (cf. Sec. 8.4.1). An efficient compromise between these two methods, a
“hybrid theory” is proposed in the following.

In general an effective interface potential ω(l) is defined via

σsg(l) ≡ σsl + σlg + ω(l). (8.24)

Since ω(l → ∞) = 0, it can be expressed as

ω(l) = σsg(l) − σsg(l → ∞). (8.25)

Here a hybrid effective interface potential ωhybrid(l) is calculated with the help of hybrid
solid–gas interfacial density profiles. They are established by the fully microscopic solid–
liquid interfacial profile for the given parameters which is then truncated at a distance l
from the substrate surface. From thereon the bulk gas density ̺g is employed.

The systematic variation of the parameter l, which corresponds to the thickness of a liquid-
like layer, yields ωhybrid(l). The discrete values of l are chosen to be non-equidistant, since
for small values of l a smaller distance between neighboring points is needed than for
very large values of l. An equidistant grid of l values would unnecessarily increase the
computational time enormously. At a certain temperature the fully microscopic solid–gas
interfacial structure has more degrees of freedom to optimize its free energy than the
hybrid density profiles. Hence for this hybrid method the solid–gas interfacial tension at
a certain temperature and therefore the wetting temperature are higher than within the
fully microscopic approach.
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8.3.1.2 Hybrid line tension theory

A hybrid line tension τhybrid is defined here as the SK line tension value, if instead of the
standard SK effective interface potential the hybrid one is employed. The above described
quantity ωhybrid(l) enters the hybrid line tension calculation in twofold manner: First, it
is used to determine the wedge contour l(x) within the hybrid approach according to
Eq. (7.29). Second, the line tension components τa2(l0, θ) [Eq. (7.23)] and τω[l(x)] [Eq.
(7.24)] depend on it.

In comparison to the standard SK theory the contour and the line tension integrals have
to be calculated for a discrete, non-equidistant function ωhybrid(l).

Note that the line tension contribution τa1(θ) [Eq. (7.22)] refers to a SK wedge profile. If
one has a “hybrid wedge profile” — consisting of a fully microscopic solid–liquid interfacial
profile up to the contour l(x) and bulk gas density beyond — in mind, to adopt this
contribution represents an approximation.

8.3.2 Application to the potentials from Section 8.1

For each of the systems studied in Sec. 8.1 the SK theory predicts a wetting behavior
which is completely different from the fully microscopic results. Therefore the SK effective
interface potential, which determines the wetting behavior, is unreliable. This aspect is
analyzed in more detail in Sec. 8.3.3.2

The SK wedge line tension theory suffers from this unreliable SK effective interface po-
tential. Hence the question arises how well the hybrid line tension values describe the
corresponding fully microscopic data, i. e., if an improved effective interface potential is
inserted into the standard SK line tension calculation. The hybrid effective interface po-
tential ωhybrid(l) and the wedge contour l(x) are obtained as described in the previous
subsection.

The hybrid method is applied to the four systems (related to three wetting scenarios)
studied before fully microscopically in Sec. 8.1:

8.3.2.1 Long-ranged forces, first-order wetting: (i) LJ fluid

A model system consisting of a (WCA-)LJ fluid and a LJ (9–3) substrate has been ana-
lyzed in Sec. 8.1.1.1. Both the fluid–fluid and the substrate–fluid interactions are of long
range in this system, and it exhibits first-order wetting. The hybrid method applied to
this system yields the wetting behavior and the line tension values illustrated in Fig. 8.25.

The “net line tension” τ/∆̺ is considered here in order to try to subtract the effect of
different wetting temperatures within the two approaches. At a certain contact angle
or at a certain value of the reduced temperature t different wetting temperatures imply
different gas and liquid bulk densities, ̺g and ̺l. The bulk density difference ∆̺ ≡ ̺l−̺g

acts as a prefactor in the SK expression for the line tension [Eqs. (7.22), (7.23), (7.24),
and (7.26)], since ω(l) and σlg comprise this prefactor as well [Eqs. (7.15) and (7.13)].

Indekeu’s prediction τ ∼ − ln θ for the line tension behavior on approaching a first-order
wetting transition comprising long-ranged forces is recovered by the hybrid method. Note
that the line tension value depends on the choice of the solid–fluid dividing interface
[Eq. (6.4)]. Herefore z = 0 is employed throughout this work (for all three considered line
tension theories).
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8.3.2.2 Long-ranged forces, first-order wetting: (ii) SW fluid

A model system of a SW fluid under the influence of a LJ (9–3) substrate potential can
be categorized as a system comprising long-ranged forces as well, since herefore merely
one kind of interaction (here the substrate–fluid interaction) needs to be of long range.
The studied system in Sec. 8.1.1.2 undergoes a first-order wettting transition.

The wetting behavior and the line tension values obtained for this system by means of
the hybrid theory are displayed in Fig. 8.26.

8.3.2.3 Long-ranged forces, (almost) critical wetting

Only the finite cut-off distance required by the numerical calculation hindered the model
system analyzed in Sec. 8.1.2 — a LJ fluid and a carefully tuned LJ (9–4–3) substrate
potential — from exhibiting critical wetting. The temperature dependence of the excess
adsorption resembles the typical behavior expected for critical wetting up to the wetting
temperature, where the excess adsorption discontinuously diverges. In the contact angle
dependence of the line tension the leading-order behavior expected for critical wetting
could not be observed.

The hybrid wetting behavior and the hybrid line tension values for this system are shown
in Fig. 8.27. Despite the small line tension jump due to a surface phase transition the
hybrid line tension curve τhybrid(θ) approximates the corresponding fully microscopic curve
very well. One could conjecture that the critical-wetting-like behavior is responsible for
this almost quantitative agreement here: For increasing temperature the contact angle
decrease (i. e., a shift of the value of the global minimum in the effective interface potential)
is accompagnied by a growing film thickness (i. e., a shift of the position l0 of the global
minimum in the effective interface potential). The equilibrium film thickness l0 strongly
influences the SK/hybrid line tension value [Eq. (7.23)]. Since this film thickness growth
happens very regularly also within the fully microscopic approach (see Fig. 8.11), a high
degree of agreement (which is superior to the already good agreement in the other cases
studied in Sec. 8.3.2) is plausible.

8.3.2.4 Short-ranged forces, first-order wetting

The wetting scenario of a system comprising solely short-ranged interactions and exhi-
biting a first-order wetting transtion has been addressed by a SW fluid and a cut and
shifted LJ substrate potential in Sec. 8.1.3.

The temperature dependence of the contact angle and the contact angle and tempera-
ture dependence of the line tension calculated via the hybrid method for this system are
depicted in Fig. 8.28.

The present system is the only analyzed case where first-order wetting comprising short-
ranged forces occurs. A fit function based on Indekeu’s prediction for this scenario [Eq.
(1.4) and the key in Fig. 8.28 (b)] yields a better description of the hybrid line tension
results than a fit based on the prediction τ ∼ − ln θ for long-ranged forces. Even though
the employed discretization of the hybrid effective interface potential creates relatively
large numerical errors for small contact angles, the results support Indekeu’s prediction
for this short-ranged first-order wetting scenario.
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8.3.2.5 Conclusion: semi-quantitative agreement

In these four cases of the previous subsubsections the hybrid method is capable to describe
the fully microscopic line tension results from relatively well. The temperature dependence
of the contact angle within the hybrid theory exhibits a shape that is roughly similar to
the fully microscopic curve. However, the wetting temperature predicted by the hybrid
approach is higher than the fully microscopic wetting temperature. In the four cases the
relative deviations from the 2D fully microscopic wetting temperature are approximately
3 – 5 %. Compared to the SK wetting temperatures, which in these cases are either absent
due to drying or situated very close to the critical temperature, these deviations appear
rather small. Hence the fully microscopic wetting behavior is reasonably approximated
by the hybrid theory.

The deviations of the hybrid and fully microscopic curves for τ(θ) can be described by
a factor of the order of 1 for not too small contact angles and line tension values. This
means that the order of magnitude of the line tension and its qualitative behavior as a
function of the contact angle is predicted correctly. The typical deviations are relatively
small, such that one can speak at least about a semi-quantitative description.

In the representation of the line tension as net line tension, τ/∆̺, the shapes of the
hybrid and the fully microscopic curves are very similar for not too small contact angles.
The hybrid net line tension curve is situated slightly above the fully microscopic one in
most cases (exception: the almost critical wetting case). This offset might be due to the
approximation of the wedge asymptote line tension value by the original SK expression
τa1(θ) [Eq. (7.22)].

However, one cannot control the error of the hybrid approach for an arbitrary system with
lacking fully microscopic line tension data. It is shown in the following subsection that
the hybrid method fails for the tailored system, where exclusively the fully microscopic
approach yields reliable results.
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Fig. 8.25: Application of the hybrid theory to a WCA-LJ fluid on a LJ (9–3) substrate (see

Sec. 8.1.1.1). In (a) the function θ(T
LJ

) is shown for the hybrid and the fully microscopic
theory. Within the hybrid approach the system exhibits a surface phase transtion at
θ ≃ 21.0◦ (TLJ ≃ 1.3435), where the thickness of a liquid-like film in a planar substrate–
gas interface jumps from l0/R ≃ 1.4 to 2.2. According to Eq. (8.22) this transition
induces a jump of the line tension value. It is accompagnied by a kink in the continuous
curve θ(TLJ). In (b) the hybrid line tension as a function of the contact angle, τhybrid(θ),
is compared to the corresponding fully microscopic result. In (c) the “net line tension”
τ/∆̺ is plotted versus the reduced temperature t ≡ 1−TLJ/TLJ,w for the two approaches.
This representation attempts to remove the effect of different wetting temperatures (see
the main text). Note that the contact angle θ is expressed as radian measure in ln θ and
that the plane z = 0 is chosen as the solid–fluid dividing interface.
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Fig. 8.26: Application of the hybrid theory to a SW fluid on a LJ (9–3) substrate (see Sec. 8.1.1.2).

Analogously to Fig. 8.25 in (a), (b), and (c) the curves θ(TSW), τ(θ), and τ/∆̺ as a
function of t ≡ 1 − T

SW
/T

SW,w
, respectively, are shown for the hybrid method and the

fully microscopic approach. Note that the contact angle θ is expressed as radian measure
in ln θ and that the plane z = 0 is chosen as the solid–fluid dividing interface.
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Fig. 8.27: Application of the hybrid theory to a LJ fluid on a LJ (9–4–3) substrate (see Sec. 8.1.2).

Analogously to Fig. 8.25 in (a), (b), and (c) the curves θ(TLJ), τ(θ), and τ/∆̺ as a
function of t ≡ 1 − T

LJ
/T

LJ,w
, respectively, are shown for the hybrid method and the

fully microscopic approach. Within the hybrid approach the system exhibits a surface
phase transtion at θ ≃ 30.2◦ (TLJ ≃ 1.165), where the film thickness of a liquid-like film
in a planar substrate–gas interface jumps from l0/R ≃ 1.2 to 1.9. The surface phase
transition induces a jump of the line tension and a kink in the continuous curve θ(TLJ).
Note that the contact angle θ is expressed as radian measure in ln θ and that the plane
z = 0 is chosen as the solid–fluid dividing interface.
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Fig. 8.28: Application of the hybrid theory to a SW fluid on a cut and shifted LJ (9–3) substrate

(see Sec. 8.1.3). Analogously to Fig. 8.25 in (a), (b), and (c) the curves θ(T
SW

), τ(θ),
and τ/∆̺ as a function of t ≡ 1 − T

SW
/T

SW,w
, respectively, are shown for the hybrid

method and the fully microscopic approach. At t ≃ 0.1 a tiny jump of the thickness of
the liquid-like film in a planar solid–gas interface occurs. This film thickness jump is at
the order of the grid spacing of the discretized hybrid effective interface potential. Hence
the tiny line tension jump at t ≃ 0.1 is merely a discretization artefact. Note that θ is
expressed as radian measure in the fit functions and that the plane z = 0 is chosen as
the solid–fluid dividing interface.
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8.3.3 Application to the tailored system from Section 8.2

The hybrid line tension theory is applied to the tailored system described in Sec. 8.2,
i. e., a WCA-LJ fluid and the tailored substrate. The hybrid line tension values are
presented in Sec. 8.3.3.1. The hybrid method helps to understand shortcomings of the SK
theory in comparison to the fully microscopic approach. This is the reason why the large
differences between the SK and the fully microscopic line tension values are discussed in
this subsection as well, namely in Sec. 8.3.3.2. Moreover the mismatch between the hybrid
and the fully microscopic line tension values is analyzed in Sec. 8.3.3.3.

8.3.3.1 Discrepancy between sharp-kink/hybrid and fully microscopic line
tension values

The mismatch between the SK and the fully microscopic line tension values for the tai-
lored system has been described in Sec. 8.2.7. This quantitative disagreement calls for a
comparison to line tension results from the hybrid theory. The wetting behavior of the
tailored system addressed by means of the hybrid method is described in Fig. 8.29.

The hybrid line tension as a function of the contact angle, τhybrid(θ), is displayed in Fig.
8.30 (a) together with the corresponding SK and fully microscopic results. The hybrid
line tension values are at the order of magnitude of the SK data for θ > θ(SK)

jump ≃ 17.39◦.
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Fig. 8.29: Application of the hybrid theory to the tailored system consisting of a WCA-LJ fluid

and a tailored long-ranged substrate potential (see Sec. 8.2.2). The temperature depen-
dence of the contact angle is illustrated for the hybrid method, the fully microscopic
calculations in 1D and 2D, and the SK theory. At θ ≃ 13.1◦ (TLJ ≃ 1.104) and θ ≃ 9.1◦

(T
LJ

≃ 1.146) the thickness of the liquid-like film in a planar solid–gas interface jumps
from l0/R ≃ 1 to 4.2 and from l0/R ≃ 4.4 to 5.6, respectively, within the hybrid theo-
ry. According to Sec. 8.2.5 each of these two surface phase transitions leads to a kink
in the continuous function θ(T

LJ
) and a discontinuity of the line tension (cf. Fig. 8.30).

Qualitatively the shape of the hybrid contact angle curve resembles the fully microscopic
behavior. The wetting temperature TLJ,w within the SK approach, the hybrid method,
and the fully microscopic calculation in 1D or 2D is approximately 1.4227, 1.195, 1.1329,
or 1.1130, respectively. Hence the fully microscopic wetting behavior is approximated
by the hybrid theory much better than by the SK theory.
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Fig. 8.30: Application of the hybrid theory to the tailored system. In (a) the contact angle de-

pendence of the line tension, τ(θ), within the hybrid method is compared to the results
from the SK and the fully microscopic calculations. In (b) the same line tension data
are presented as net line tension τ/∆̺ in order to account for the different bulk liquid
and gas densities at the different wetting temperatures (see Fig. 8.29). The two discon-
tinuities of the hybrid line tension curves occur due to surface phase transitions. Note
that the plane z = 0 is chosen as the solid–fluid dividing interface.

For smaller but not too small contact angles, i. e., for 1◦ . θ . 17.39◦, the hybrid line
tension grows rapidly, while the SK line tension is extremely small (by construction). For
not too small contact angales the absolute values of the line tension obtained by means
of the hybrid theory or the SK theory are up to two orders of magnitude smaller than the
fully microscopic values. Consequently in the present case the SK theory and the hybrid
method both fail to describe the order of magnitude of the fully microscopic line tension
correctly.
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The net line tension τ/∆̺ as a function of the reduced temperature t ≡ 1− TLJ/TLJ,w is
displayed in Fig. 8.30 (b) for the three approaches. This representation helps to extract a
trivial effect of the different wetting temperatures, namely that the bulk density difference
∆̺ ≡ ̺l − ̺g decreases with increasing temperature and thus leads to smaller line tension

values (see the explanation in Sec. 8.3.2.1). For t & 1 % θ > θ(SK)

jump ≃ 17.39◦ the hybrid
net line tension curve is similar to the SK net line tension curve. For the tailored system
the SK wetting temperature is situated rather close to the critical point, where the bulk
density difference ∆̺ vanishes. Consequently here the effect of the prefactor ∆̺ in the
SK/hybrid line tension expressions is very strong in comparison to the cases studied in
Sec. 8.3.2. Hence it is plausible that the hybrid and SK curves for the net line tension
τ/∆̺ are similar, even though the two curves for τ(θ) possess rather different shapes.
However, even in this net line tension representation the hybrid results are far way off
from the corresponding fully microscopic curve.

8.3.3.2 Explanation of the discrepancy between SK and fully microscopic line
tension values

The discrepancy between the SK and the fully microscopic line tension results for the
tailored system are analyzed here, whereas the discrepancy between the hybrid and the
fully microscopic line tension results are investigated in Sec. 8.3.3.3.

The SK line tension behavior is very different from the fully microscopic line tension
behavior. Severe differences arise already on the level of the wetting behavior.

Explanation for the differences in wetting behavior:
The wetting temperatures within the two theories, the SK and the fully microscopic
approach, are extremely different: A substrate potential has been designed carefully such
that both wetting temperatures lie in the numerically accessible range. The SK wetting
temperature is situated little below the critical temperature, and the fully microscopic
wetting temperature lies not far above the melting temperature.

In order to pinpoint the reason for these strong deviations in the wetting behavaior, a
bridge between the SK and the fully microscopic model system is built. The influence of
the different approximations contained in the SK theory compared to the fully microscopic
theory have to be revealed. For this purpose the hybrid model (see Sec. 8.3) is used, and
furthermore a non-local SK theory is introduced.

A convenient tool to study wetting phenomena within the SK theory is the effective
interface potential ω(l). It describes the grand canonical free energy per unit area which
is necessary to establish a liquid-like film in a substrate–gas interface at a thickness l
instead at an infinitely large distance from the substrate surface. The SK density profile
used for this solid–gas interface contains the bulk liquid density for dw ≤ z ≤ l and the
bulk gas density for z > l. In the semi-microscopic SK wetting theory a local density
approximation (LDA) is assumed in addition to the constraint to sharp-kink-like density
distributions. This means that the non-local excess free energy density is approximated
by the bulk excess free energy density for the particle density at the considered position.
The LDA-SK theory represents the usual SK theory. The influence of the LDA and of the
restriction to SK density distrubitions have to be dissected in order to gain more insight
into the reason for the deviations described above.
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1. LDA-SK theory:
A first step is to include the LDA into the fully microscopic programme. This offers a
helpful tool to test the lenghty analytical calculation of the effective interface potential
that is related to the tailored substrate potential. The effective interface potential can
be calculated by means of the fully microscopic programme by initializing a liquid-like
film at a solid–gas interface and iterating zero times. The effective interface potential
ω(l) ≡ ωLDA−SK(l) is calcualted numerically via

ωLDA−SK(l) = σsg(l) − σsg(l → ∞) (8.26)

[for details see the explanation around Eq. (8.25)].

Clearly, the fully microscopic system is discretized (here on an effectively one-
dimensional grid with N grid points per hard sphere radius R) and subject to a trun-
cation of the fluid–fluid interaction (at a cut-off distance cutLJ in units of R). For
infinitely fine grid spacing and infinitely large cut-off distance, however, the resulting
effective interface potentials have to be identical. This equality is recovered numeri-
cally, as demonstrated in Fig. 8.31. Consequently the analytically obtained effective
interface potential ω(l) indeed corresponds to the tailored substrate potential.

2. FMT-SK theory:
A second step is to calculate the effective interface potential for a non-local SK theory.
In order to describe the excess free energy of the hard cores of the WCA-LJ particles
the FMT (see Sec. 2.2) is employed here instead of the LDA. The SK theory refered
to in this work makes use of the CS EOS for the hard spheres, hence the non-local SK
theory introduced here employs the White Bear version of FMT. The numerical calcu-
lation of the effective interface potential within the non-local SK theory, ωFMT−SK(l),
is performed analogously to the calculation of ωLDA−SK(l). Signs that the LDA can be
unreliable have been found before (see Fig. 8.9).

As shown in Fig. 8.31, the values of ωLDA−SK(l) and ωFMT−SK(l) collapse for l/R ≥ 3.
This behavior originates from the range R of the hard-sphere weight functions: With
respect to the hard-sphere free energy contribution the two steps at z/R = 1 and
z/R = 3 forming the SK interfacial profile are energetically uncoupled within FMT
for a distance ≥ 2 R between them. However, in the region near the surface (i. e., for
l/R < 3) there are strong deviations between the LDA-SK and the FMT-SK results.
These strong deviations become meaningful, since at a certain temperature they may
give rise to a different equilibrium film thickness and a different contact angle, which
is related to the depth of ω at the minimum l0. ω(l) = ωLDA−SK(l) yields much smaller
values than ωFMT−SK(l) for small l. There is a large temperature range, 1.3838 ≃
T (SK)

LJ,jump > TLJ & 1.13, where LDA-SK predicts an edge minimum and FMT-SK does
not. For temperatures below this range also FMT-SK changes (continuously) to an
edge minimum, however, the depth of the minimum is still very different for LDA-SK
and FMT-SK. Altogether this finding tells that the quantities and properties based on
the part of ω(l) with l/R . 3 are subject to artefacts from the LDA.

3. Hybrid model:
The third step is to generalize the concept of an effective interface potential from
SK-like density profiles to more realistic ones (i. e., similar to fully microscopic ones).
In comparison to the fully microscopic treatment, which for the same functional is
regarded as the correct reference, the SK approximation is relatively good for a liquid–
gas interface, however, it is less purposeful for solid–fluid interfaces. Packing effects are
especially important for this tailored subsrate, since it comprises a steep and narrow
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Fig. 8.31: Effective interface potentials for the tailored system within several approaches. The tem-

perature in (a), T
LJ

= 1.1325, is very close to the fully microscopic wetting temperature,
T (fm,1D)

LJ,w ≃ 1.13291. In (b) the temperature is T
LJ

= 1.3838, at which in ω
LDA−SK

(l)
a jump from an edge minimum l0 = dw = R to a finite film thickness l0 ≃ 4.8371 R
occurs. The numerical data for the LDA-SK model match the analytically obtained
function ωLDA−SK(l) very well. Therewith the analytical result for ωLDA−SK(l) is verified.
ωFMT−SK(l) recovers ωLDA−SK(l) for l/R ≥ 3. For smaller l, however, the LDA leads to
large deviations from the FMT-SK curve. (b) illustrates, that these deviations may
lead to different orders of magnitude of the amplitudes at a certain contact angle. The
inset in (b) magnifies the minima in ω

LDA−SK
(l) and ω

FMT−SK
(l). The edge minimum in

ω
LDA−SK

(l) is an artefact of the LDA. The hybrid model curve, ωhybrid(l), resembles the
shape of the two SK curves for l/R & 13. For smaller l, however, deviations between
them are severe and lead to qualitatively different wetting behavior. Consequently both
ωLDA−SK(l) and ωFMT−SK(l) are unreliable here for l/R . 13. In (a) the contact angles
within the different approaches are 1.2◦ (fully microscopic), 9.1◦ (hybrid model), 53.5◦

(FMT-SK), and 81.8◦ (LDA-SK).

minimum at z = R, thus variations of the density near the surface should be taken into
account. Hence a hybrid ansatz (see Sec. 8.3.1.1) for the employed density distribution
describing the substrate–gas interface is set up: Taking the idea of a liquid-like film on
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Fig. 8.32: Hybrid effective interface potential for TLJ = 1.05, where the cross-over regime in θ(TLJ)

within the fully microscopic approach is situated. The hybrid model illustrates the
behavior of the system within the fully microscopic approach, for which an effective
interface potential has not been established here. The hybrid model detects a discon-
tinuous increase of the equilibrium film thickness, whereas the film grows continuously
according to the fully microscopic calculations. Here the depth of the minimum is an or-
der of magnitude larger than for the LDA-SK or FMT-SK model with θ ≃ θjump [see the
inset in Fig. 8.31 (b)]. These different energy scales make different orders of magnitude
of the line tension results plausible.

a solid surface literally, the fully microscopic solid–liquid interfacial profile is employed
up to a film thickness l, from where on the bulk gas density is used. For not too
small values of l this gives a more realistic density distribution than the one from the
local or non-local SK theory. In this hybrid model also the non-local treatment of the
hard cores is applied. Results for the hybrid effective interface potential, ωhybrid(l), are
displayed and compared to corresponding LDA-SK and FMT-SK curves in Fig. 8.31.

For l/R & 13 and for a certain discretization and cut-off the curves ω(l) are the same
for all three models. This means that the SK approximation is reasonable for large
film thicknesses, if one takes the hybrid model as the reference. However, very strong
differences between the effective interface potentials of the hybrid model and the two
SK theories occur in the region close to the substrate surface. Errors due to a finite
grid spacing and a truncation of the fluid–fluid interaction are relatively small and do
not change the curves qualitiatively. The wetting temperatures within LDA-SK and
FMT-SK are equal here and very different from the wetting temperature of the hybrid
model, which lies slightly above the fully microscopic wetting temperature.

Figure 8.32 contains the hybrid effective interface potential for the temperature
TLJ = 1.05, at which θ(TLJ) exhibits a cross-over. Also the hybrid model exhibits a
double trough potential. Thus there is evidence for a transition from a very small
liquid-like film to a small liquid-like film in the LDA-SK, the FMT-SK, and the hybrid
model.
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4. Fully microscopic approach:
Compared to the hybrid ansatz the fully microscopic solid–gas interface at a certain
temperature possesses further opportunities to reduce its grand canonical free energy
and hence its solid–gas surface tension, which in turn decreases the contact angle.
Consequently it is plausible that wetting within the fully microscopic approach occurs
at slightly smaller temperature than predicted by the hybrid model.

In the LDA-SK, FMT-SK, and hybrid approaches the transition from a very small film
thickness to a small one takes place discontinuously, however, the fully microscopic
results show a smooth/continuous growth of the film thickness. Hence the hybrid
method is a helpful tool to understand the fully microscopic behavior, but there are
still differences between results of the two approaches. Especially for a small film
thickness l the hybrid ansatz is a crude approximation, so that a fully microscopic
calculation is inevitable.

Consequences on the interpretation of the line tension behavior:
The SK line tension calculation performed in this study rests on liquid-like films in the
solid–gas interface, whose thickness l is situated in the regime of the effective interface
potential that is sensitive to both the LDA and the SK approximation. Hence differences
in the wetting behavior reflect themselves in a different line tension behavior.

The SK line tension for θ > θjump ≃ 17.39◦ suffers from the LDA in comparison to a
non-local SK theory. This in turn exhibits a different wetting behavior than the hybrid
model and the fully microscopic approach. Consequently in this regime of contact angles
the discrepancy between the SK line tension values and the fully microscopic ones is (to
some extent) due to artefacts from both the LDA and the SK approximation.

In the small contact angle regime 3◦ . θ < θjump ≃ 17.39◦ the line tension results are
different as well: Here the SK line tension exhibits tiny absolute values, while the fully
microscopic ones are much larger. The system was designed such that the effective in-
terface potential for small θ exhibits tiny amplitudes, i. e., a shallow minimum and a low
maximum. Already the effective interface potential within the non-local SK theory com-
prises amplitudes which are larger by an order of magnitude in this contact angle range.
The whole shape of the effective interface potential enters expressions for important com-
ponents of the SK line tension [Eqs. (7.23) and (7.24)]. Therefore it is plausible that also
the absolute line tension values are much smaller than the fully microscopic ones.

To some extent the different orders of magnitude of the line tension within the SK or the
fully microscopic approach, respectively, go back to the very different wetting tempera-
tures. The wetting temperature within the SK theory is situated almost at the critical
temperature, in order to leave room at lower temperatures such that the fully microscopic
approach is applicable as well. For the high SK wetting temperature in this system the
bulk liquid and bulk gas densities in the addressed contact angle range differ only slightly,
hence the SK expressions related to ∆̺ are relatively small. This effect contributes to the
small absolute values of the SK line tension. The bulk liquid densities employed in the
fully microscopic calculations are clearly larger than in the SK calculations, thus ∆̺ is
larger here as well. Moreover packing effects at the substrate surface are more pronounced
for the large bulk liquid densities and contribute to the deviations from the SK results.
The “net line tension” τ/∆̺ tries to subtract the effect of different bulk liquid and gas
densities (see Sec. 8.3.2). According to Fig. 8.30 (b), however, even in this representation
the discrepancy between the SK and the fully microscopic line tension values persists.
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The wetting behavior on a planar, homogeneous substrate refers to an effectively one-
dimensional system. The fully microscopic calculation of the line tension of a sessile
liquid wedge, however, forms an effectively two-dimensional system. Since the density in
the three-phase contact region changes considerably in both the vertical and the lateral
direction, it is intuitively clear that the LDA and the SK approximation affects the line
tension value even to larger extent than they influence the wetting behavior.

Line tension behavior for large contact angles:
The line tension τ(θ) for large θ decreases rapidly within the SK appraoch and tends to
a constant value within the fully microscopic approach.

For θ > θjump the contour l(x) from the SK theory is qualitatively different from the
regime of smaller contact angle values, since the global minimum of the effective interface
potential jumps discontinuously from a local minimum to an edge minimum. The typical
contour near first-order wetting exhibits a contact line shifted towards the liquid region
(i. e., towards larger x values). This expected behavior is indeed observed for θ < θjump.
However, for θ > θjump the contour changes to a smoother shape with δl(x) ≡ l(x)−a(x) >
0 for all x. Such a contour is characteristic for a system near critical wetting. For this
reason and due to the reasons described in the analysis of the wetting behavior above this
outcome can be regarded as an artefact from the edge minimum, for which the SK theory
is not valid.

τ (loc)

i is very small and positive for θ < θjump, however, it jumps to a negative value
at θ < θjump and is responsible for the large negative values of the SK line tension for
large contact angles. Since the magnitude (and the sign) of this term are regarded as an
artefact of the edge minimum as well, one could tentatively neglect it. Then the SK line
tension approximated that way varies only little (down to τ ≃ −0.036 kBT/R instead of
τ ≃ −0.2 kBT/R for θ = 80◦). In the range 17◦ . θ . 45◦ this curve is almost constant
and hence can be reconciled with the qualitative behavior of the fully microscopic line
tension there.

Asymptotic line tension behavior:
The SK line tension exhibits unusual behavior in the regime of small contact angles:
Starting at a contact angle θ = 17◦ and decreasing it, the SK line tension decreases,
attains a minimum at θ ≃ 6◦ and rises again until it finally diverges to +∞ according to
the general prediction. Very small contact angle values are necessary in order to observe
a considerable increase of the SK line tension, i. e., its asymptotic behavior. Since the SK
line tension forms the positive trend only for very small contact angle values, it is possible
that for θ . 4◦ the fully microscopic line tension exhibits such a reversal towards +∞ as
well.
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8.3.3.3 Explanation of the discrepancy between hybrid and fully microscopic
line tension values

The hybrid wetting and line tension theory describes the fully microscopic wetting and
line tension behavior for the potentials from Sec. 8.3.2 semi-quantitatively. While the
wetting behavior of the tailored system is described fairly well by the hybrid method, this
approach fails to predict the line tension values for this system by orders of magnitude.

Within the hybrid method the effective interface potential is calculated by introducing a
step-like cross-over from a fully microscopic solid–liquid interfacial structure to bulk gas
density. “Hybrid line tension theory” then means to insert this hybrid effective interface
potential into the standard SK line tension theory. If one takes the idea of the hybrid
method serious, the “hybrid density profile” corresponding to the wedge contour l(x)
consists of a fully microscopic, planar solid–liquid interfacial profile which is cut at a(x)
and a bulk gas density beyond this asymptote, i. e., ̺

(
x, z > a(x)

)
= ̺g. The line

tension contribution τa1 is small for not too small contact angles and is adopted (as an
approximation) from the standard SK theory. For not too small contact angles the SK
line tension (and at least its order of magnitude) can be approximated well by the SK line
tension for the wedge asymptote. Hence only the hybrid wedge asymptote line tension
τ [a(x)] is addressed in the following.

One can compare the hybrid asymptote line tension values (calculated by means of the SK
line tension theory and the hybrid effective interface potential) to the fully microscopic
line tension values of hybrid asymptote density profiles. This means that the density
array is initialized with the hybrid asymptote profile and then (without any iterations)
the asymptote line tension can be extracted. In the fully microscopic calculation relatively
large discretization errors occur. The origin of these are the strong density variations at
a(x), where the density profile ̺(x, z) resembles a cliff line. Fortunately an analysis of the
discretization effect allows to estimate the limit of perfect discretization, i. e., N → ∞.
Furthermore errors due to the cut-off of the fluid–fluid interaction occur, which are small
here compared to the discretization errors. As illustrated in Fig. 8.33, for a certain
temperature, TLJ = 1.0, a factor of approximately three was found between the hybrid
asymptote line tension value and the corresponding fully microscopic value. This shows
that for the asymptote the hybrid method is not a very good description. However, at
least the order of magnitude is predicted correctly.

Another question is, whether the above asumption τ [l(x)] ≃ τ [a(x)] also holds fully micro-
scopically. In order to answer this, the Picard iteration process is started for the hybrid
asymptote density profile as the initial configuration. With a small mixing parameter
α = 0.1 the line tension value decreases dramatically within the first few iteration steps,
see Fig. 8.34. Already after 10 iteration steps the final order of magnitude is reached.
This order of magnitude is the order of magnitude of the fully microscopic line tension
values (which were calculated at the identical temperature for a slightly different contact
angle). This procedure shows that lifting the constraint to optimize the density profile is
responsible for the final order of magnitude of the fully microscopic line tension values.
Since the SK liquid–gas interfacial tension is not very different from the corresponding
fully microscopic value, the gain in energy through this optimization is most likely due to
lateral smoothing in the very vicinity of the contact line.

Hence for the tailored system the hybrid line tension theory — no matter whether merely
for the asymptote a(x) or for the full contour profile l(x) — represents an insufficient
description of the corresponding fully microscopic results.
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Fig. 8.33: The line tension of the wedge contour asymptote a(x) is studied within the hybrid

method and by inserting a hybrid density profile into the fully microscopic program and
calculating the line tension without any iterations. Due to the sharp liquid–gas interface
of the hybrid approach the discretization errors are large, whereas the errors due to a
finite cut-off distance are comparably small. The “hybrid-fm” line tension is plotted
versus the discretization parameter N for two cut-off distances (cut

LJ
= 20 and 50).

An exponential fit allows to read off the limiting value for N → ∞ and cutLJ → ∞ as
namely τ

hybrid−fm
(iter = 0) ≃ −0.48, which is approximately three times as large as the

prediction from the hybrid(-SK) theory. Note that the plane z = 0 is chosen as the
solid–fluid dividing interface.

As a thumb rule for the quality of the hybrid method one could propose that this approach
is able to describe the behavior of the line tension semi-quantitatively, if the substrate
potential is slowly varying with one distinct minimum and does not cause very large spatial
oscillations in the effectively one-dimensional solid–liquid density profiles. In this sense
the tailored system is an extreme case, since (i) the potential represents a double-well
tailored potential with strong variations and two local minima and since (ii) the density
oscillations exceed the ones of the studied “harmless” potentials.
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Fig. 8.34: Rapid decrease of the line tension value during the iteration. The hybrid density profile

is employed as a starting configuration. In (a) a cut-off parameter of cutLJ = 20 is used,
and the line tension is plotted versus the number of iterations (with a mixing parameter
α = 0.1). In (b) the line tension value after 0, 1, and 10 iteration steps is plotted versus
the discretization parameter N for cutLJ = 20 and 50. The drastic decrease of τhybrid−fm

during the iteration demonstrates that the optimization of the density profile may not be
neglected for this tailored system. Especially the lateral relaxations of the density peaks
very close to the substrate surface are believed to represent the source of the quantitative
discrepancy. The hybrid method fails to approximate this optimized fluid structure in
the three-phase contact region well enough.
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8.4 Classification of the SK, hybrid, and fully microscopic

line tension theories

After the individual analysis of the SK, the hybrid, and the fully microscopic line tension
theory in the previous sections a comparison of the three methods is performed here.
The three approaches are compared with respect to several aspects, e. g., the degree of
quantitative reliability, the ability to study systems close to a wetting transition, and the
numerical efficiency.

All three line tension theories represent useful approaches to address certain aspects of
the wide topic of the line tension of a sessile liquid wedge. They are based on classical
DFT calculations. The underlying “original” functional is the same, however, different
approximations are made within the different theories. As far as numerical results can
tell, all three approaches recover Indekeu’s predictions for the line tension behavior upon
approaching a wetting transition.

8.4.1 Quantitative reliability

The original functional in Eq. (2.17) is the starting point of all three methods. The proper-
ties of this original functional (without further approximations) is regarded as the bench-
mark, which the different approaches featuring different approximations try to reproduce.

SK line tension theory:
Situations are rare where both the SK line tension theory and the fully microscopic ap-
proach are applicable. For the tailored system a comparison between these two methods is
possible. The results for the tailored system deviate by even two orders of magnitude. The
SK theory of wetting yields effective interface potentials which are unreliable in the region
near the substrate surface, i. e., for small film thicknesses l. This large error is carried
forward to the SK line tension theory and makes its results quantitatively unreliable.

Hybrid line tension theory:
The hybrid theory is a way to mimic a fully microscopic effective interface potential. Here
for simplicity sharply cut fully microscopic solid–liquid profiles are used as approximative
solid–gas interfacial structures. These hybrid density profiles serve to determine the hybrid
effective interface potential. The wetting behavior of the fully microscopic approach is
reproduced relatively well by the hybrid theory. This improved effective interface potential
is inserted into the formulae of the SK line tension theory.

For the potentials from Sec. 8.1 a semi-quantitative agreement with the fully microscopic
line tension data has been observed. For the tailored system, however, the methods fails
and the discrepancy between the SK and the fully microscopic line tension values cannot
be overcome by the hybrid method. One may conjecture that the hybrid theory works well
for smoothly varying substrate potentials and moderate density variations. Unfortunately
one can only tell a posteriori how well the hybrid model works for a certain considered
system. Once the validity has been checked for one contact angle, the calculation of the
whole τ(θ) curve via the hybrid method represents a good and efficient description.

The hybrid theory could be improved by refering to fully microscopic, non-equilibrium
solid–gas interfacial profiles in order to recover the fully microscopic wetting behavior
(i. e., the θ(T ) curve). One could, for instance, start the Picard iteration process for
a very large liquid-like film in the solid–gas interface and calculate the hybrid effective
interface potential on the fly during the iteration, where l decreases. There are infinitely
many possibilities to define this film thickness l, however, at the wetting transition all
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these degrees of freedom in defining l should collapse, since the equilibrium film thickness
should be obtained there. Clearly, for temperatures below the wetting temperature such
a fully microscopic effective interface potential depends on the definition of l. Within
this approach only the part ω(l > l0) is accessible, which causes no problems, since only
this part is needed for the further calculation of the contour and the line tension value.
Anyway, the benefit of an improvement of the hybrid theory is questionable, since it
would most likely still fail in describing the fully microscopic line tension values of the
tailored system, where lateral spatial density relaxations are supposed to be the origin of
the quantitative discrepancy.

In summary the hybrid theory represents a useful way to cure the SK line tension theory
from its deficiencies with respect to ω(l) for many systems. In order to obtain quantita-
tively reliable line tension results for an arbitrary model system, however, fully microscopic
calculations are required.

Fully microscopic line tension theory:
The fully microscopic approach comprises three approximations: (i) the discretization
error due to a finite (and not vanishing) grid spacing, (ii) the finite size error due to limited
computer memory (and computational time), and (iii) the error due to the finite cut-off
distance of a possibly long-ranged fluid–fluid interaction (e. g., in the case of a LJ fluid).
Nevertheless the numerical errors are found to be relatively small, below 5 %, for not too
small contact angles. Hence the numerical results of the fully microscopic calculations are
regarded as a very good approximation of the inaccessible perfect solution the original
functional.

8.4.2 Numerical costs and benefits

The three line tension theories considered here require different amounts of programming
effort and computational resources. Which of the three methods represents the optimal
choice depends on the actual purpose of the calculation.

SK line tension theory:
Sharp-kink line tension calculations of the studied systems can be performed typically
within a few seconds (for θ & 20◦) or a few minutes (for θ & 1◦). Solving the Euler-
Lagrange equation for the contour l(x) of the liquid wegde requires merely a shooting
algorithm for the solution of the boundary value problem.

The SK line tension theory can address situations close to a wetting transition rather easi-
ly. However, its results are quantitatively unreliable. Hence this method in its standard
form (i. e., not modified by means of an improved effective interface potential) is merely
useful to study the qualitative behavior of the line tension close to wetting.

Hybrid line tension theory:
Hybrid line tension calculations consist of several stages and require a period of time at
the order of an hour. The hybrid effective interface potential ωhybrid(l) is available only in
descretized form. The spacings of the l grid have been chosen to be non-equidistant here,
in order to have a fine description near the substrate surface and to efficiently calculate
large ranges of l clearly away from the surface. Certainly the non-equidistant grid has
to be accounted for in the numerical integrations. Furthermore a one-dimensional FMT-
DFT routine is required to determine the fully microscopic solid–liquid interfacial density
profile, which is underlying ωhybrid(l).
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The larger programming and computational effort of the hybrid method pays off and is
recommended for any SK-like calculation of wetting behavior and line tensions. On the
other hand side, without a check with a fully microscopic calculation one is not definitely
sure about the quality of the data.

Fully microscopic line tension theory:
Fully microscopic calculations typically take at least weeks (for small system sizes,
small cut-off lengths and contact angles around 90◦ or usually several months. A two-
dimensional FMT-DFT apparatus has to be available and (costly in terms of time)
adapted to the trapezoidal shape of the finite computer system.

The huge programming and computational costs of fully microscopic line tension calcu-
lations are necessary, if one is interested in a high quantitative reliability of the obtained
line tension values or/and if one desires to control the validity of the hybrid method for
the considered system.



9 Perspectives

The present work opens the way for further studies. First, the liquid wedge system can
be enriched (cf. Sec. 9.1). Second, the method of two-dimensional, microscopicly oriented
DFT applied in this work is applicable to other model systems as well (cf. Sec. 9.2). Third,
an efficient way to treat axisymmetric sessile droplets is outlined in Sec. 9.3.

9.1 Extensions of the liquid wedge model

9.1.1 Mixtures of spherical fluid particles

The considered model system of a sessile liquid wedge could be generalized from a one-
component fluid to a binary (or even ternary) liquid mixture. A binary liquid mixture
allows for the (unconstrained) thermodynamic coexistence of three phases feasible, i. e.,
a substrate is not required. Consequently one could study the binary liquid mixture in
a sessile wedge geometry (on a substrate) or in the Neumann triangle geometry. Since
experimentally the scenario of unconstrained three-phase coexistence is expected to render
the line tension more precisely than for a potentially imperfect substrate, some characte-
ristic aspects of binary fluid mixtures are depicted in the following.

FMT for hard-sphere mixtures:
Fundamental measure theory (FMT) was designed for a fluid containing a mixture of
hard-spheres [113, 170, 171]. Therefore the repulsive parts of the fluid–fluid interactions
in a mixture cause no problems. For each of the n species (with radii Ri, i ∈ {1, 2, . . . n})
one has to keep track of the corresponding density ̺i(r). With the radius dependent
weight functions the weighted densities follow according to Eq. (2.31). This method was
applied to a binary hard-sphere fluid in contact with a hard substrate [172]. The first-
order perturbation theory (RPA, see Sec. 2.3.1) can readily be applied to a mixture [66].
Then the attractive excess free energy functional contains 1/2 n (n + 1) different terms
instead of one term in Eq. (2.52),

Fatt
ex =

1

2

n∑

i=1

n∑

j=1

∫

R3

dr

∫

R3

dr ̺i(r) ̺j(r′) φatt
ij (|r− r′|), (9.1)

with the interaction potential φatt
ij (r) between particles of species i and j at distance r.

9.1.2 Second-order perturbation theory

The quantitative accuracy of predicting the properties of Lennard-Jones fluids could be
increased by improving the way of treating the attractive part of the interaction. Instead
of the first-order perturbation theory (see Sec. 2.3) a kind of “second-order” perturbation
theory could be employed.

In 2003 Tang and Wu [173] constructed a functional for an inhomogeneous Lennard-Jones
fluid from the so-called “energy route”, which employs the radial distribution function.
In 2004 Tang and Wu [174] presented an alternative, numerically more convenient way
to construct a functional for an inhomogeneous Lennard-Jones fluid. Rosenfeld’s pertur-
bative method [175], which is based on the bulk direct correlation function as an input,
was applied for this construction. The direct correlation function of a sum of two Yukawa
potentials, which approximates the Lennard-Jones (12–9) potential, was determined ana-
lytically within the first-order mean-spherical approximation (FMSA) [176]. The FMSA
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is an approximation of the mean-spherical approximation (MSA), employing only the first
term in an inverse temperature expansion of the radial distribution function. The MSA
is a closure relation for the Ornstein-Zernike integral equation, which relates the direct
correlation function c(R) to the radial distribution function g(R) or, equivalently, to the
total correlation function h(R).

The Tang/Wu approach introduced in 2004 is valid for a clearly defined bulk packing frac-
tion η, since the formulae need this quantity as input. Consequently a system exhibiting
liquid–gase coexistence cannot be addressed directly with this method, since this involves
two bulk densities and choosing merely one of them would not lead to the desired solution
for the second bulk-like region.

A way to generalize the Tang/Wu approach to situations with liquid–gas coexistence is to
replace the packing fraction η by the weighted density n3(r), which can be regarded as a
local packing fraction. In liquid regions far away from the liquid–gas interface n3 equals
the bulk liquid packing fraction, while in gaseous regions far away from the interface the
bulk gas packing fraction is recovered. So both bulk fluids are described consistently, and
n3 performs a reasonable interpolation between the two bulk-like regions.

Very recently, in 2007, Tang applied the method of finding the direct correlation function
within FMSA to the case of a square-well fluid [177]. Consequently the Tang/Wu method
introduced in 2004 could be extended towards a SW fluid. Likewise the above proposed
generalization for a liquid–gas interface could be applied. This procedure points towards
a more accurate treatment of a SW fluid involving the wedge line tension. However, since
the SW model fluid does not capture the dispersion forces of actual fluids the benefit from
quantitatively improved predictions is limited.

9.2 Effectively two-dimensional Cartesian models

The method of FMT-DFT plus perturbation theory in two effective Cartesian dimensions
can be applied to other model systems as well.

9.2.1 Parallel cylinders

Parallel cylinders (or, in general, objects that are translationally invariant in one direction)
surrounded by a fluid could be approached with the Cartesian program, which provides
̺(x, z). The cylinders would have to be discretized on the Cartesian grid. Furthermore a
liquid–gas interface could be established in the system. The cylinders could be positioned,
e. g., at the liquid–gas interface, so that they are partially immersed in the liquid.

9.2.2 Confined geometries

Various geometries confining the fluid could be addressed, e. g., irregularly shaped slits or
pores. If the fluid system is translationally invariant in one direction, it could in principle
be tackled with the program developed here. E. g., capillary condensation in a capped
capillary [178], which consists of a slit and an additional wall perpendicular to the slit
walls, could be studied. Here deviations from the behavior for an infinitely deep slit
occur. A periodic arrangement of such capped capillaries (i. e., rectangular grooves) could
be addressed fully microscopicly as well and thereby serve as a comparison to a mesoscopic
theory (using an effective interface Hamiltonian) [179, 180].
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9.2.3 Geometrically and chemically structured substrates

The method of calculation applied to a homogeneous, planar substrate in this work also
allows for the description of a chemically or/and geometrically structured substrate, which
remains translationally invariant in one direction. The ongoing nanotechnological ad-
vances in substrate patterning require theoretical studies of such systems. Fluids inter-
acting with nanostructured systems are relevant for biological and biomimetic systems,
e. g., it is believed that air humidity contributes to the strong adhesion force of geckos
at various kinds of substrate [181]. One distinguishes between a structured substrate, if
there is a fluid bulk region unperturbed by the substrate, and a confined system, if the
fluid is influenced by the substrate everywhere.

Substrate wedge or edge:
The system of a hard-sphere fluid in a right-angled wedge or at a right-angled edge [182],
for instance, could be extended readily towards a Lennard-Jones or square-well fluid and
arbitrary angles of the substrate wedge or edge [183].

A liquid-like film eventually forms in the corner of the solid wedge and grows (and finally
diverges) upon approaching the filling temperature below the wetting temperature for a
planar substrate. This phenomenon, the filling of a wedge, can be studied with the method
presented in this work. Thereby a fully microscopic foundation for a corresponding meso-
scopic theory [184, 185] (using an effective interface Hamiltonian) and a semi-microscopic
DFT [186] (using the sharp-kink approximation) can be achieved. The influence of a line
tension (attributed to the wedge bottom line) on the wedge filling has already been pointed
out on the level of an effective interface Hamiltonian and a transfer matrix analysis [187].

If the two solid plates establishing the wedge are made up from different materials, the
shape of the interface between a liquid-like film and the gas phase (i. e., the meniscus) in
this chemically asymmetric wedge becomes asymmetric as well [188].

Liquid wedge in a solid edge:
The liquid wedge investigated in this work (i. e., a planar liquid–gas interface approaching
a planar, homogeneous substrate) could be generalized and brought into contact with a
geometrically or chemically structured substrate. E. g., a liquid wedge placed in a solid
edge such that the planar macroscopic liquid–gas reference interface meets the solid surface
near or at the edge, would lead to an interplay of the edge region with the liquid and gas
phases. In an experiment such a situation could be approximately obtained, if the contact
line of a large sessile droplet is moved [e. g., by an atomic force microscope (AFM) tip]
towards a second substrate region, which is inclined with respect to the substrate ground
level. In this way the morphology of the three-phase contact region can be influenced by a
geometric obstacle. The force acting on a droplet near an obstacle could be calculated by
comparing grand potential values for slightly shifted positions of the liquid–gas boundary
profile.

Chemical step or stripe:
A single chemical step and the associated line tension, the substrate boundary line tension,
was already mentioned in Sec. 5.2.2. The sharp-kink DFT approach dealing with this issue
[11] could be compared to a fully microscopic calculation.

Another example for possible applications is a (more or less) hemicylindrical droplet on a
planar substrate with a chemical stripe. A chemical stripe is equivalent to two neighboring
chemical steps where two substrate regions are composed of the same material. Typically a
water-like fluid and a hydrophilic chemical stripe with hydrophobic embedding substrates



132 9.2 Effectively two-dimensional Cartesian models

is considered. A fluid in contact with such a strip was studied before by means of an
effective interface Hamiltonian (i. e., an interface displacement model) [189].

A chemical stripe favoring a thinner wetting layer than the outer region has been treated
in a sharp-kink DFT approach (comparable to the approach to the wedge system in
Chapter 7) [190, 191, 192]. For small stripe widths or/and small amounts of liquid a fully
microscopic treatment is desirable.

Among several structures, a single chemical stripe and a periodic grid of chemical stripes
were investigated via a minimization of the total interfacial free energy of a sessile droplet
on a mesoscopic level [193, 194, 195, 196, 197]. Such chemical stripes can serve as channels
for liquid transport in open [194] or closed [198] micro-/nanofluidic devices. Even vesicles
(i. e., closed lipid bilayers) can adhere to these striped surface domains [199, 200].

In view of these applications the question of stability of a liquid hemicylindrical droplet
(liquid ridge) [201] against pearling (i. e., the formation of single droplets instead of one
connected amount of liquid) [202, 203, 204] and against leaking/overflow (i. e., liquid leaves
the typically hydrophilic chemical pathway and spreads into the hydrophobic outer zone)
arises. Pearling cannot be represented in an effectively two-dimensional description. An
interface displacement model predicts this instability on a mesoscopic level [205]. MD
simulations, for instance, allow one to study the dynamics of these small amounts of
liquid [206]. Flowing nanodroplets near geometrical [207] or chemical [208] structures can
be investigated in terms of hydrodynamics, e. g., by solving the Stokes equation (i. e., the
Navier-Stokes equation in the limit of slow flow) for effectively two-dimensional liquid
ridges numerically.

A straight nanowire, i. e., a very fine molecular chain lying on the solid surface (or embed-
ded in it), can be regarded as the limiting case of a chemical stripe for very small stripe
width. For this special case the additional external potential can be obtained easily for
a square-well or Lennard-Jones interaction between the nanowire particles and the fluid
particles: It is proportional to the integrated potential wff [Eqs. (2.109) and (2.110)] for
the actual interaction parameters.

Fluids near semipermeable walls:
Semipermeable (non-fluid) membranes are technologically important. Within a DFT ap-
proach a semipermeable wall can be modelled by an external potential barrier [209, 210].
Generalizations towards polydisperse fluids [211], ionic fluids [212] and a semipermeable
spherical wall [213] (mimicking a vesicle; here treated within an integral equation ap-
proach) are possible.

What the described computer program can accomplish:
The fluid structure and the line tension related to chemical inhomogeneities (e. g., a chemi-
cal step or stripe) are feasible on the fully microscopic level as well. Only minor modifica-
tions of the existing code would be necessary. Clearly, within the described method such
a system could be extended towards an arbitrary (i. e., a geometrically and chemically
rough) substrate, as long as the system remains effectively two-dimensional.

Morphometric thermodynamics to address very complicated structures:
More complicated, fully three-dimensional geometries (i. e., without simplifying symme-
tries) can be tackled within DFT only for very small system sizes or by using tremendous
computer power and computation times. However, many important biophysical systems,
e. g., protein folding taking into account the solvent [214, 215, 216, 217], should be treated
in a three-dimensional fashion in order to obtain realistic results. Morphometric thermo-
dynamics is a method, which can be applied to a large variety of fluid systems with
a complicated morphology (i. e., shape of the fluid region) [218, 219, 220, 221]. This
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approach uses Hadwiger’s theorem [222] of integral geometry. It states, that any (i)
motion-invariant, (ii) additive, and (iii) continuous functional can be written as a linear
combination of the fundamental measures of the fluid region S with suitable expansion
coefficients. These coefficients do not depend on the shape of the S. (For an illustrative
explanation of the three conditions see, e. g., Ref. [220].) The fundamental measures are
the volume V , the surface area A, the integrated mean curvature

C =
1

4 π

∫

∂S
dA H, (9.2)

and the integrated Gaussian curvature or Euler characteristic

X =
1

4 π

∫

∂S
dA K. (9.3)

Here H and K denote the local mean curvature

H(r) =
1

2

(
1

R1(r)
+

1

R2(r)

)
(9.4)

and the local Gaussian curvature

K(r) =
1

R1(r) R2(r)
, (9.5)

respectively, with the two principal radii of curvature, R2(r) and R2(r), at a point r. σ
denotes the surface tension at a planar wall; κ and κ̄ are two bending rigidities. Thus the
grand potential of a fluid system, which satisfies the three premises mentioned above, can
be written as

Ω = − p V + σ A + κC + κ̄ X. (9.6)

This means that the grand potential can be approximated by a linear combination of the
fundamental measures. The thermodynamic coefficients σ, κ, and κ̄ can be calculated
separately in simple geometries, e. g., for a spherical or cylindrical substrate using the
same kind of substrate–fluid and fluid–fluid interactions and the same definitions of the
dividing interfaces.

9.2.4 Bridge formation between a solid wedge and a substrate

If a solid wedge immersed in a gas approaches a planar substrate, a so-called “liquid
bridge” may form between the wedge and the substrate. This means that there is a
region of high, liquid-like density between the two solid objects. This system has been
analyzed in a macroscopic theory [223]. A (fully) microscopic theory for this system is
desirable, especially in order to analyze small liquid bridges, their microscopic structure
and the onset of bridge formation. The shapes of large liquid bridges (i. e., their liquid–gas
dividing interfaces) are expected to resemble the results from the macroscopic theory.
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9.3 Axisymmetric model systems

9.3.1 Axisymmetric sessile droplets

The line tension of a sessile liquid wedge is related to the line tension of a sessile droplet
(see Sec. 4.6). However, the wedge line tension is not sufficient to predict the contact
angle of small sessile droplets. Rather the line tension for a finite droplet, the Tolman
length and two derivates of the line tension (including subleading terms) with respect to
droplet size parameters are required. Axisymmetric sessile droplets are also effectively
two-dimensional, since the density solely depends on the distance from the axis and on
the distance from the planar substrate surface. This cylindrical coordinate system is not
Euklidian, hence the convolution integrals for the calculation of weighted densities nα and
nff cannot be calculated by Fourier transforms directly. Numerical real-space integrations
are too time-consuming for reasonable droplet sizes. In order to calculate the convolutions
efficiently, the Fourier transform can be applied in an indirect way. The general method to
treat axisymmetric fluid systems within FMT-DFT is presented in the following section.

Once this method is implemented into the computer code, further qualitative differences
to the wedge system have to be taken into account: First, the increased pressure inside
the droplet (i. e., the Laplace pressure) leads to the fact that the binodals in the bulk
phase diagram are not valid to describe liquid–gas coexistence for a small droplet. For
each droplet size the densities of the coexisting liquid and gas phases have to be calculated
separately.

Second, the iteration process might become instable, so that the droplet either disappears
or grows too much. Suitable boundary conditions and careful control of the iteration
process are essential. As boundary conditions a solid–gas interfacial profile can be used
near the substrate far away from the droplet. One might split the iteration process in
main steps, in which the density in the spatial region of the droplet top is fixed, and
intermediate steps, in which this constraint is removed and the density in the top region
is allowed to adapt to its neighborhood. This “soft constraint” is expected to overcome
the possible problem of metastability.

9.3.2 Method to treat convolutions in cylindrical coordinates

Three-dimensional convolution integrals have to be calculated in order to obtain weighted
densities nα and nff . The idea to evaluate real-space convolutions efficiently by products
in Fourier space is extended to an axisymmetric system, for which cylindrical coordinates
are appropriate. In Sec. 9.3.2.1 the Hankel transform, the Fourier transform of a two-
dimensional, radially symmetric function, is described. In Sec. 9.3.2.2 the full three-
dimensional case of an axisymmetric system is considered.

9.3.2.1 (Fast) Hankel transform

The Hankel transform (HT) (of order zero) of a radially symmetric function f(x, y) = f(r)
is defined as

FH(k) := H (f(r)) :=

∞∫

r=0

dr f(r) r J0(kr), (9.7)

where J0(kr) is the Bessel Function of order zero of the first kind. The HT of another
order ν is defined analogously to a Bessel function of order ν of the first kind, Jν(kr). In
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the following HT means the HT of order zero. Due to the integral kernel the HT is also
known as Fourier-Bessel transform. The HT is related to the two-dimensional Fourier
transform f̂(kx, ky) = f̂(k) (with k :=

√
k2

x+k2
y) of a radially symmetric function f(r) via

f̂(k) = 2π FH(k). The inverse Hankel transform reads

f(r) = H−1 (FH(k)) :=

∞∫

k=0

dk FH(k) k J0(kr). (9.8)

The discrete Hankel transform adapts the HT to a discrete lattice. Analogously to the
FFT there is a number of fast Hankel transform (FHT) algorithms (Siegman 1977 [224],
Sheng and Siegman 1980 [225], Candel 1981 [226], Anderson 1982 [227], and Hansen 1985
[228]). They share Siegman’s idea to express the product k r as elnk+ln r and the transform
as a convolution in the variables ln r and ln k: If the variables r and k are substituted by
the variables

s := ln r and t := ln k, (9.9)

the HT reads

F (log)

H (t) := FH(k) ≡
∞∫

s=−∞

ds f
(
r(s)

) [
r(s)

]2
J0(es+t)

=:

∞∫

s=−∞

ds a(−s) b(s + t) =

∞∫

s=−∞

ds a(s) b(t − s)

= (a ⊗ b) (t) = F−1 {F (a(s)) · F (b(s))} . (9.10)

Hence a HT can be calculated by the sequence of two FT, a multiplication, and an inverse
FT. Likewise a FHT can be replaced by two FFT, a multiplication, and an inverse FFT.
The FHT takes a factor of approximately 3–4 longer than single one-dimensional FFT
and is therefore much more efficient than the corresponding full two-dimensional FFT.
The inverse transform of the FHT can be accomplished by a similar FFT sequence as
well.

If convolutions are evaluated discretely using FFT, the grid of the integration variable has
to be equidistant. Contrarily a FHT requires a sequence of exponentially spaced r-points
and k-points, so that the logarithms of r or k are equidistant [Eq. (9.10)].

9.3.2.2 Three-dimensional Fourier transform in cylindrical coordinates

In this section r :=
√

x2+y2 denotes the radial part of the vector r projected onto the xy
plane. Similarly k :=

√
k2

x+k2
y describes the radial part of the vector k projected to the

kxky plane. As an example the convolution of a weighted density nα is discussed. This
method can be applied analogously to the convolution of nff .

The quantity to be evaluated is [Eqs. (2.31) and (6.6)]

nα(r) = nα(r, z) = (̺ ⊗ wα) (r, z) = F−1 {F (̺(r, z)) · F (wα(r, z))} . (9.11)

Therefore the Fourier transforms (see Sec. 6.1) of ̺(r, z) and wα(r, z) have to be deter-
mined. Given a function f(r, z), the Fourier transform f̂(k) = f̂(k, kz) reads

f̂(k, kz) = 2π

∞∫

z=−∞

dz e−ikzz

∞∫

r=0

dr f(r, z) r J0(kr). (9.12)
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The second integral corresponds to a Hankel transform (HT). Thus the whole three-
dimensional Fourier transform consists of a (one-dimensional) Hankel transform for the
radial part and a one-dimensional FT for the z component. Indicating the variables
on which the respective transform acts under the transformation operator symbol, the
three-dimensional Fourier transform can be described as

f̂(k, kz) = 2π F
z 7→kz

(
H

r 7→k

(
f(r, z)

))
. (9.13)

The discrete lattice for r and k requires equidistant spacings in the z- and kz-direction,
respectively. However, in the radial direction, r or k, an exponential grid, which is equi-
distant in the logarithmic space of ln r or ln k, is inevitable.

The product of the two three-dimensional Fourier transforms is transformed back to real-
space by an inverse Fourier transform, which here consists of an inverse FT for the kz

component and an inverse HT for the radial part k.

9.3.3 Other axisymmetric model systems

As soon as a numerical code for an axisymmetric problem is available, many systems can
be addressed.

9.3.3.1 Finite solid cylinder

An infinitely long cylinder with radius Rcyl surrounded by a fluid can be treated as
an effectively one-dimensional system. The wetting behavior of a fluid at an infinitely
extended cylinder has been studied already [229] via an effective interface potential, which
had been constructed from a density functional inserting a sharp-kink approximation,
analogously to the sharp-kink theory discussed in Chapter 7.

However, a fluid-surrounded finite cylinder (i. e., a cylinder with a finite heigth h) is an
effectively two-dimensional system in cylindrical coordinates, which could be treated with
the axisymmetric program. The line tension τ(Rcyl, h) associated to the two circular
edges of the cylinder could be determined. The grand potential can be separated into

Ωcyl,fin = − p V + σclyl,inf

sf (Rcyl) 2πRcyl h

+ 2 σsf πR2
cyl + 2 τ(Rcyl, h) 2πRcyl, (9.14)

where σclyl,inf

sf (Rcyl) denotes the solid–fluid surface tension for an infinite cylinder and
σsf the surface tension for a planar solid–fluid interface. Here the contribution related
to the interaction between the two cylinder caps is included in τ(Rcyl, h). For h → ∞
this line tension recovers the line tension of the circular cap of a semi-infinite cylinder.
This system could be extended readily such that the solid cylinder contains a stripe-like
chemical inhomogeneity giving rise to a line tension at a curved chemical boundary [230].

9.3.3.2 Cylindrical pores

Pores connect a reservoir to an otherwise isolated bassin. Pores play an important role
in biological systems, e. g., as ion channels in cell membranes. An infinitely long cylin-
der coupled (virtually) to a bath consisting of a binary mixture (mimicking, e. g., an ion
species and water) or even a ternary mixture (mimicking, e. g., two ion species and water)
is an interesting model system of a pore, which explains some basic, entropy-driven selec-
tive filtering phenomena [231]. A cylindrical hole with finite length in a solid-like layer
separating two fluid regions might be a helpful model system of a membrane pore, since
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actual pores are only a few nanometers long. The fluid structure in the vicinity of the
pore openings could be considered, and the behavior in the pore center could be compared
to results for an infinite cylinder.

The cylindrical pore could be generalized to a region filled with fluid which has the shape
of a frustum (of a cone). A frustum corresponds to a cone the tip of which has been cut
off parallel to the basal plane. Capillary evaporation (or condensation) in this complex
geometry is an interesting phenomenon and could be analyzed fully microscopicly, not
least in order to compare it with the morphometric approach applied for this system [232].
Measurements on capillary rise in a conical pore permit to determine the line tension in an
alternative geometry than for a planar substrate [233, 234]. Furthermore a fluid confined
between two coaxial cylinders is feasible [235].

9.3.3.3 Frustum

Similarly a solid frustum (of a cone) could be considered. (In contrast to the frustum-
shaped fluid region mentioned in Sec. 9.3.3.2 now the frustum is solid and surrounded
by fluid.) Let R1 and R2 < R1 be the radii of the two confining circles. Although the
grand potential could be calculated relatively easily with the axisymmetric program, it
is difficult to identify excess quantities. The curved cone shell leads to the fact that the
excess free energy (in comparison to a pure bulk fluid) related to the surface does not
simply scale with the surface area. From my point of view there are mainly two options
to define a reference system:

First, the surface tension σ
(cyl)
sf (Rcyl) for a solid cylinder with radius Rcyl surrounded by

a fluid is calculated. Then the reference system is a frustum described locally by the
surface tension of an infinitely large cylinder, so that the corresponding decomposition of
the grand potential reads

Ω
(1)
frustum = −p V

(1)
f +

∫

A
dA

(cone)
sf σ

(cyl)
sf (Rcyl)

+ σsf π
(
R2

1 + R2
2

)
+ τ(Rcyl, h) 2π

(
R1 + R2). (9.15)

Second, the reference system could be a fluid-surrounded finite cylinder with a radius Rcyl

and a length that equals the cone height. The grand potential can be expressed as

Ω
(2)
frustum = −p V

(2)
f + σ

(cyl)
sf (Rcyl) 2πRcylh

+ 2 σsf πR2
cyl + 2 τ(Rcyl, h) 2πRcyl. (9.16)

There are several possibilities to choose the radius Rcyl, e. g., as R1, so that the cylinder
encloses the whole frustum. Or the radius Rcyl is chosen by a more complicated condition,
e. g., such that the volume or the surface area of the frustum and the cylinder are equal.
However, the combined condition (equal volume and surface area) does not possess a
solution for all values of the paramters (R1, R2, and h), so this approach is limited to
some configurations. This combined condition represents the “fairest” choice, since no
additional or missing volume or surface elements are assigned to the line tension of the
frustum.

9.3.3.4 Point tension of a cone

The concept of excess quantities can also be extended beyond the line tension. A contri-
bution to the grand potential that is related to a point-like structure and does not scale
with a length, area, or volume is called point tension. Since following σ (sigma), used for
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the surface tension, and τ (tau), used for the line tension, the next letter in the Greek
alphabet is υ (upsilon/wye), this letter is used for the point tension here.

The frustum of the previous section, Sec. 9.3.3.3, resembles a cone for R2 → 0. In this
limiting case the length of the smaller confining circle vanishes. The cone can be finite
(i. e., with a finite value of the height h) or infinitely large, depending on the boundary
conditions. The calculation of the grand potential for this system should be feasible,
however, the definition of a reference system is as difficult as in the case of a frustum.

For each of the two definitions suggested there, the decomposition of the grand potential
involves a point tension υ. For the first definition of a reference system the point tension
for a finite cone is defined via

Ω
(1)
finite cone = −p V

(1)
f +

∫

A
dA

(cone)
sf σ

(cyl)
sf (Rcyl)

+ σsf πR2
1 + τ(Rcyl, h) 2πR1 + υ

(1)
(finite)(R1, h). (9.17)

For an infinite cone (which is mimicked by suitable boundary conditions) the decomposi-
tion reads

Ω
(1)
infinite cone = −p V

(1)
f +

∫

A
dA

(cone)
sf σ

(cyl)
sf (Rcyl) + υ

(1)
(infinite). (9.18)

Analogously for the second reference system and a finite cone one has

Ω
(2)
finite cone = −p V

(2)
f + σ

(cyl)
sf (Rcyl) 2πRcylh

+ σsf πR2
cyl + τ(Rcyl, h) 2πRcyl + υ

(2)
(finite)(R1, h). (9.19)

For the LJ interaction (and other long-ranged fluid–fluid interactions with van der Waals
tails), however, the point tension is ill defined: The surface tension, line tension, and
point tension can be expressed by moments of the interaction potential. For a LJ fluid
these three quantities contain integrals over 1/r3, 1/r2, or 1/r, respectively. Therefore for
a LJ fluid the point tension diverges. For a SW fluid (and other short-ranged interaction
potentials which are exactly zero beyond a certain interparticle distance) the point tension
is well defined.

In this context it is worth mentioning that experimentally even drops resting on a solid
cone (at or below the tip) can be studied [236], which clearly is an even more difficult
system to be analyzed in terms of line and point tensions.

The situation of a fluid outside a solid cone could also be inverted, such that a cone is
filled with fluid. The filling of a cone has been analyzed macroscopicly [237], and a fully
microscopic treatment is desirable. A mesoscopic theory for cone filling (involving an
effective interface Hamiltonian) is in preparation [238].

9.3.3.5 Bridge formation between a solid cone or sphere and a substrate

For atomic force microscopy (AFM) it is essential to understand the formation of a liquid
bridge between the AFM tip and the substrate. This situation could be theoretically
mimicked by a solid cone near a planar substrate. Analogously to the similar case of a
solid wedge instead of a solid cone (see Sec. 9.2.4) microscopic insight into the formation
of a liquid bridge could be compared to the macroscopic theory [239].

A similar, axisymmetric system is a solid sphere resting on a substrate. Capillary con-
densed liquid can form around the contact point of both solids. At the contact line of the
surface of the liquid-like ring and the sphere or the substrate the line tension (for curved
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interfaces and a curved contact line) comes into play. This system and the associated line
tension was addressed theoretically already in 1997 [240]. (This macroscopic analysis is
based on the modified Young equation and the Kelvin equation for the curved surface of
the liquid-like ring.) The above described method to treat axisymmetric model systems
within FMT-DFT is suitable to calculate the corresponding fluid structure and the line
tension rather precisely.

9.3.3.6 Wetting of circular or ring-shaped surface domains

Chemically heterogeneous substrates permit a large variety of experimental implemen-
tations. Translationally invariant chemical heterogeneities on planar surfaces have been
discussed in Sec. 9.2.3 as a possible field of application of the computer program developed
here. Axisymmetric chemical (or geometrical) substrate structures could be investigated
with the described program as well. Surface domains formed by two concentric rings
[241] or by circles [242, 243, 244] were analyzed both experimentally and theoretically
(namely by minimizing the free energy of the wetting layer on a macroscopic level). For
small extensions (on the nanometer scale) the fully microscopic FMT-DFT approach could
contribute to these subjects.

9.3.3.7 Stationary colloids

The radially symmetric system of a colloid completely immersed in a fluid could be ad-
dressed in an effectively one-dimensional calculation efficiently. The wetting of a Lennard-
Jones fluid at a spherical colloid has already been addressed in a sharp-kink DFT approach
[229] and a FMT-DFT approach [245].

If the system is generalized towards cylindrical symmetry, the effectively two-dimensional
system could be treated with the axisymmetric program described above. An example
of such a cylindrical symmetric system is a single, large colloid partially immersed in a
thin liquid film [246]. For small particle radii the line tension becomes important and
changes the equilibrium wetting configuration. At a critical line tension value the particle
is expelled from the film undergoing a dewetting transition.

A single colloid at a liquid–gas interface:
The system of a colloid situated at a liquid–gas interface could be addressed with the
axisymmetric program. It could provide the equilibrium density distribution for a spatially
fixed colloid, i. e., one could imagine an optical tweezer keeping the colloid fixed. The level
of the planar liquid–gas interface far away from the colloid defines the depth of immersion
of the colloid. By subsequent calculations for different depths the equilibrium depth of
immersion could be determined. The chemical structure of the colloid surface may be
mimicked by a specific external potential. A FMT-DFT analysis of the wetting behavior
takes into account packing effects near the colloid. Thus small colloids could be treated
as well, which are too small for mesoscopic approaches based on the effective interface
potential or capillary waves.

The line tension of the three-phase contact region, where the colloid meets the liquid–gas
interface, could be calculated. An obvious choice of the reference system is a colloid with
a spherical solid–fluid dividing interface and bulk liquid and gas density in the liquid and
gas region, respectively. A decomposition of the grand potential then defines the line
tension,

Ω = − p V + Asl σsl + Asg σsg + Alg σlg + τ 2πRcoll. (9.20)



140 9.3 Axisymmetric model systems

The surface tension of the curved colloid–gas or colloid–liquid interface, respectively,
depends on the radius of curvature and has to be calculated separately. For small
colloids this line tension represents an important ingredient for the analysis of the
capillary- and fluction-induced interactions between two partially immersed colloids
[247, 248, 249, 250, 251]. For particle sizes in the submicrometer range the preferred
orientation of a ellipsoidal particle that is partially immersed in a liquid (at a planar
liquid–gas interface) depends on the line tension [252]. The penetration depth of such a
particle into a liquid droplet is influenced by the line tension as well [253].

The line tension for this system depends on the choice of the dividing interfaces. Besides
the solid–fluid interface position also the liquid–gas dividing interface position is crucial,
since a parallel shift of it would change the length of the three-phase contact line and the
surface areas Asl and Asg.

Two colloids surrounded by a fluid:
The problem of two colloids fixed in a solvent (or even several colloids aligned in a line)
could be tackled as well. The force between the colloids could be analyzed by slight vari-
ations of their distance D. Even the case that the colloids touch each other is accessible.

For small colloid distances the fluid structure in the region in between changes in com-
parison to the case of two colloids far apart. The excess grand canonical free energy
associated with this effect could be interpreted as an effective interaction υ(D) between
the two colloids. The grand potential can be decomposed in

Ω = − p V + 2 Asf σsf + φeff
cc (D), (9.21)

so that the reference system is given by the bulk fluid density around the colloids. Alter-
natively this free energy contribution υ(D) could be perceived as a distance dependent
point tension. For a single colloid deviations of the density in comparison to the bulk
density are reflected in the curvature dependence of the colloid/solid–fluid surface tension
σsf . Clearly, for macroscopicly separated colloids the effective colloid–colloid interaction
vanishes,

lim
D→∞

φeff
cc (D) = 0. (9.22)

The formation of bridges between liquid-like layers between two spheres has been ad-
dressed already in a mesoscopic theory [254], namely an interface displacement model
which is based on DFT. The fully microscopic DFT approach could yield the finely re-
solved liquid structure and thereby a rather accurate description of the bridge morphology,
which serves as comparison to the mesoscopic theory. Moreover a liquid–gas interface
could occur between the two colloids.



10 Summary

A liquid wedge residing on a substrate has been investigated theoretically. Corresponding

line tension values have been calculated within a fully microscopical, non-local classical

density functional theory (DFT) approach. A Lennard-Jones (LJ) fluid and a square-well

(SW) fluid served as model fluids, i. e., the fluid is composed of particles interacting either

via a long-ranged LJ (12–6) potential or via a short-ranged SW potential. The shape of

the SW potential suggests, how to separate the potential into repulsive and attractive

parts. The LJ interaction was decomposed into repulsive and attractive parts via the

Weeks-Chandler-Andersen (WCA) scheme such that the LJ fluid is approximated by a

WCA-LJ fluid. The repulsive part of the fluid–fluid interaction was accounted for by

fundamental measure theory (FMT), whereas the attractive part was addressed by means

of the random phase approximation (RPA), a kind of mean-field perturbation theory.

The substrate was taken to be homogeneous, planar, and chemically inert. Its interaction

with a single fluid particle was described by several substrate potentials, namely a LJ

(9–3) potential, a LJ (9–4–3) potential, a cut and shifted LJ (9–3) potential, and a

tailored potential. Within the sharp-kink (SK) approximation (see Fig. 7.1) used in related

previous works the particle density distributions are piecewise constant. By contrast the

fully microscopic calculations presented here employed continuous density profiles. Hence

packing effects (i. e., density oscillations near the substrate surface) have been taken into

account. The model system of a sessile liquid wedge is effectively two-dimensional, which

is reflected by a two-dimensional spatial dependence of the particle density distribution

̺ = ̺(x, z). Several precaution measures have been taken in order to achieve a sufficiently

high precision of the calculated line tensions.

Different wetting scenarios have been addressed, namely first-order wetting involving

short-ranged and long-ranged forces as well as critical wetting involving long-ranged forces.

The comparison to the predictions by Indekeu [44] for the line tension behavior upon ap-

proaching wetting transitions is possible with available computational resources for con-

tact angles larger than 5◦ − 10◦. The results are compatible with Indekeu’s predictions

(see Figs. 8.5, 8.7, 8.13, and 8.15). This finding supports the conjecture that structural

details are unimportant for the qualitative behavior of the line tension close to a wetting

transition.

In order to clarify how important packing effects are for line tension values a comparison

was made with results from a SK line tension theory. For this purpose the SK line tension

theory has been extended to incorporate the fluid–fluid interaction potentials under con-

sideration, i. e., the WCA-LJ potential and the SW potential. A quantitative comparison

between the fully microscopic approach and the semi-microscopic SK approach is very

difficult, since one typically faces the following phenomenon: For parameters well suited

for SK calculations the fluid within the fully microscopic approach exhibits (i) wetting

at a much lower temperature or/and (ii) local crystallization near the substrate surface,

which makes a fully microscopic calculation very difficult or in most cases impossible. On

the other hand convenient parameters for the fully microscopic programme lead to an

edge minimum in the effective interface potential, i. e., the global minimum of ω(l) occurs

near the substrate surface. In this case the SK predictions are completely different from

fully microscopic results.
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A substrate potential has been designed (see Fig. 8.16) to overcome this incompatibility

and to permit a quantitative comparison. For this tailored system and for contact angles

up to approximately 17◦ the global minimum of ω(l) is a bona fide local minimum and

not an edge minimum, hence the SK theory is applicable. Already known features of the

SK line tension have been recovered. This means that the asymptotic behavior of the

line tension (see Fig. 8.19) follows Indekeu’s predictions and the various contributions of

the line tension (see Fig. 8.20) behave similarly as described by Getta and Dietrich [51]

and confirmed by Bauer and Dietrich [11]. The fully micriscopic approach reveals a very

different wetting temperature, but a similar behavior of the contact angle as a function of

the reduced temperature describing the relative deviation from the wetting temperature.

Around θ ≃ 17◦ the contact angle changes its behavior like in the SK case. Consequently

a quantitative comparison of the results in the contact angle range between 10◦ and 17◦

should be relatively meaningful. Nevertheless, the quantitative agreement of the results

from the SK theory and the fully microscopic theory is very poor. The fully microscopic

line tension values are about ten to a hundred times as large as the corresponding SK line

tension values for the employed position (z = 0) of the substrate–fluid dividing interface.

This discrepancy between the SK and the fully microscopic results was traced back to

fundamental differences in the wetting behavior. In order to distinguish between the

influences of the two approximations from the SK theory, namely the SK approximation of

the density profiles and the local density approximation (LDA) for the hard-sphere energy

contributions, two model systems have been introduced. First, the LDA-SK theory was

upgraded to a non-local treatment of the hard-sphere part; this approach is called FMT-

SK theory. Second, a hybrid model serves to approximately describe wetting within the

fully microscopic theory in terms of an effective interface potential, ωhybrid(l). This hybrid

theory is based on substrate–gas interfacial profiles which consist of the fully microscopic

substrate–liquid interfacial structure up to the distance l from the substrate and bulk

gas density beyond. For small film thicknesses, l/R . 13, the deviations between ωhybrid(l)

and the LDA-SK and FMT-SK theories are severe (see Fig. 8.31). For very small film

thicknesses, l/R . 3, the LDA leads additionally to deviations from the FMT-SK theory.

The line tension values within the LDA-SK theory, which represents the standard SK

theory, are rather small, since the tailored substrate potential was designed such that

the effective interface potential ω(l) = ωLDA−SK(l) exhibits very small amplitudes for

θ . 17◦ (see Fig. 8.17). At the same time the tailored substrate potential is strongest

near the substrate surface (see Fig. 8.16). This is the spatial region where packing effects

(density variations) are most pronounced. Hence in the considered situation the influence

of packing effects is relatively strong. In the wetting studies the density ̺ = ̺(z) varies

solely in one direction, perpendicular to the substrate surface, and already there the

influence of the two approximations inherent in the SK theory are severe. However, the

wedge scenario gives rise to density variations in two directions, ̺ = ̺(x, z), thus the effect

of the two approximations is certainly even stronger. For all these reasons the discrepancy

between the line tension values from SK theory and the fully microscopic calculation is

plausible.

The hybrid model for the wetting behavior was applied to the SK line tension theory.

This hybrid line tension theory corresponds to the standard SK line tension expressions,

in which the improved effective interface potential ωhybrid(l) from the hybrid model is

inserted. While the wetting behavior of the tailored system is described well by the hybrid
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approach (see Fig. 8.29), the hybrid line tension values are at the order of magnitude of

the SK results. Therefore the hybrid line tension theory fails to predict the order of

magnitude of the fully microscopic results correctly (see Fig. 8.30). The origin of this

discrepancy is most likely the lateral smoothing of the effectively two-dimensional density

profile ̺(x, z) in the very vicinity of the three-phase contact line.

For the other four considered systems the hybrid theory describes the fully microscopic line

tension values at least semi-quantitatively (see Figs. 8.25 to 8.28). The hybrid line tension

theory is expected to be valid, if the spatial variations of the substrate potential and the

solid–liquid interfacial density are comparably small. For a control of the qualitity of the

hybrid approach, however, a comparison to results from fully microscopical line tension

calculations is inevitable.

To conclude, in this work the line tension has been determinded with molecular resolution,

which in this context marks the forefront of research. A semi-microscopic line tension

theory based on the sharp-kink approximation has been further developed. The sharp-

kink results concerning wetting and line tension behavior deviate considerably from the

fully microscopic results. A hybrid line tension theory has been introduced, which employs

an improved effective interface potential for the SK line tension calculation. For most of

the studied cases the results from this hybrid method describe the fully microscopic line

tension values semi-quantitatively. However, for a tailored system with relatively strong

spatial variations of the substrate potential and of the solid–liquid interfacial density the

hybrid method fails and does not predict the correct order of magnitude of the line tension

values. Hence in general the fully microscopic approach is required, if one is interested in

quantitatively reliable line tension values or/and if the validity of the hybrid method for

the considered system has not been checked. The calculation of the line tension of a liquid

wedge is an important contribution for understanding the shape of very small droplets

(below the micrometer range). Furthermore a proposal is given, how axisymmetric sessile

droplets can be addressed efficiently within DFT.



Appendix

A: Expansion of the weight function w
LJ

(x, z)

The attractive part of an intermolecular potential is accounted for in first-order pertur-
bation theory by a weight function. In a three-dimensional system with translational
invariance in one Cartesian direction the weight function wLJ(x, z) for a Lennard-Jones
(9–3) potential for a separation into repulsive and attractive parts following Weeks, Chan-
dler, and Andersen (WCA) is given by Eq. (2.110) on page 36. At the origin the value is
known analytically [Eq. (2.112)]. However, in a numerical implementation this expression
is difficult to evaluate near the origin. Thus an expansion of wLJ(x, z) around the origin,
i. e., for small values of c ≡

√
x2 + z2 and for 0 < c < 6

√
2σLJ, is displayed here:
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B: Transformation of the wedge line tension

In Sec. 6.1 the topic is addressed, how the value of the liquid wedge line tension changes,
if the solid–fluid dividing interface is shifted by δh in the positive z direction.

The grand potential of the whole system [Eq. (6.1)], including the substrate, is the starting
point for this consideration. While the grand potential of the whole system stays the same,
the line tension changes during the shift as
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The grand canonical free energy density is the same for the liquid and gas phase,

ωf = ωl = ωg = − p. (B.3)

The changes of the surface areas are abbreviated as ∆Ai := A
(2)
i −A

(1)
i for i ∈ {sg, sl, lg}.

The volume change of the substrate,

∆V := V (2)
s − V (1)

s =
(
A(2)

sg + A
(2)
sl

)
δh =

(
A(1)

sg + A
(1)
sl

)
δh, (B.4)

equals the negative value of the volume change of the fluid,

−∆V = V
(2)
f − V

(1)
f . (B.5)
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Furthermore the s–g and s–l surface tensions transform via Eq. (3.19), while the l–g surface
tension is independent of the choice of the dividing interface (see Sec. 3.2.1):

σ(2)
sg = σ(1)

sg + (ωg − ωs) δh , (B.6)

σ
(2)
sl = σ

(1)
sl + (ωl − ωs) δh , (B.7)

σ
(2)
lg = σ

(1)
lg =: σlg. (B.8)

Hence the difference σsg − σsl is independent of the choice of the dividing interface,

σ(2)
sg − σ

(2)
sl = σ(1)

sg − σ
(1)
sl . (B.9)

For a macroscopic contact angle θ and an (infinitely large) length of the contact line, L,
the area changes can be expressed as
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With all these ingredients inserted Eq. (B.2) can be written as
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Applying Young’s law finally yields

τ (2) − τ (1) = σlg sin θ δh. (B.18)

Hence the liquid wedge line tension strongly depends on the definition of the solid–fluid
dividing interface.
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C: Wetting as a phase transition

Here a summary of the argumentation [142] is presented, why wetting represents a phase
transition in a strict sense (see Sec. 3.3.5). Furthermore it is illustrated that complete
and critical wetting correspond to second-order or continuous phase transitions and that
first-order wetting justly carries its name.

For complete wetting the excess adsorption diverges as

−
∂σsg

∂µ

(3.26)
= Γ = |µ − µcoex|βcomplete . (C.19)

At complete wetting the surface solid–gas surface tension approaches the sum of the other
two surface tensions,

σsg − (σsl + σlg) ∼ − |µ − µcoex|2−αcomplete , (C.20)

where the critical exponents are related via βcomplete = 1 − αcomplete. Hence the second
derivative of σsg (with respect to µ) diverges as

−
∂2σsg

∂µ2
∼ |µ − µcoex|−αcomplete . (C.21)

For critical wetting the excess adsorption diverges as

−
∂σsg

∂µ

(3.26)
= Γ = |t|βcrit (C.22)

with t as a reduced temperature, that indicates the relative deviation from the wetting
temperature,

t :=
Tw − T

Tw

. (C.23)

The solid–gas surface tension approaches its limiting value as

σsg − (σsl + σlg) ∼ − |t|2−αcritical , (C.24)

so that the second derivative of σsg (with respect to t) diverges as

−
∂2σsg

∂t2
∼ |t|−αcritical . (C.25)

Consequently critical and complete wetting transitions are second-order or continuous
phase transitions,

For first-order wetting the solid–gas surface tension behaves as

σsg − (σsl + σlg) ∼
{

−|t| for t < 0 (i. e., T < Tw)

0 for t > 0 (i. e., T > Tw) .
(C.26)

Thus the surface entropy

ssurface = −
∂σsg

∂T
, (C.27)

that is involved in the differential relation [Eq. (1.12) in Ref. [142]]

dσ = − ssurface dT − Γ dµ, (C.28)

makes a jump at the wetting temperature; this is associated with a latent heat. Since
a first partial derivative of the surface entropy exhibits a jump, a first-order wetting
transition truely fulfills the definition of a first-order phase transition.



Zusammenfassung

Ein flüssiger Keil, der auf einem Substrat ruht, wurde theoretisch untersucht. Zugehörige

Linienspannungswerte wurden in einem vollmikroskopischen, nicht-lokalen Zugang auf

Grundlage klassischer Dichtefunktionaltheorie (DFT) berechnet. Eine Lennard-Jones-

Flüssigkeit (LJ) und eine Square-Well-Flüssigkeit (SW) dienten als Modellflüssigkeiten,

d. h. das Fluidum besteht aus Teilchen, die mittels eines langreichweitigen LJ-(12–6)-

Potentials oder eines kurzreichweitigen SW-Potentials wechselwirken. Die Form des SW-

Potentials legt nahe, wie man das Potential in abstoßende und anziehende Teile zer-

legen kann. Die LJ-Wechselwirkung wurde gemäß des Weeks-Chandler-Andersen-Schemas

(WCA) in abstoßende und anziehende Teile zerlegt, so dass das LJ-Fluid durch ein

WCA-LJ-Fluid angenähert wird. Der abstoßende Teil der Fluid–Fluid-Wechselwirkung

wurde durch die Fundamental Measure Theory (FMT) berücksichtigt, während der

anziehende Teil mit Hilfe der Random Phase Approximation (RPA), einer Mean-Field-

artigen Störungstheorie, behandelt wurde. Das Substrat wurde als homogen, flach und

chemisch inert vorausgesetzt. Seine Wechselwirkung mit einem einzelnen Fluidteilchen

wurde durch diverse Substratpotentiale beschrieben, nämlich einem LJ-(9–3)-Potential,

einem LJ-(9–4–3)-Potential, einem abgeschnittenen und verschobenen LJ-(9–3)-Potential

und einem maßgeschneiderten Potential. Bei der Sharp-Kink-Näherung (SK-Näherung,

s. Abb. 7.1), welche in vorangegangenen, verwandten Arbeiten benutzt wurde, sind die

Teilchendichteverteilungen stückweise konstant. Im Gegensatz dazu verwendete die hier

vorgestellte vollmikroskopische Rechnung kontinuierliche Dichteprofile. Daher wurden

Packungseffekte (d. h., Dichteschwankungen nahe der Substratoberfläche) berücksichtigt.

Das Modellsystem eines aufsitzenden flüssigen Keils ist effektiv zweidimensional, was

sich in einer zweidimensionalen räumlichen Abhängigkeit der Teilchendichteverteilung,

̺ = ̺(x, z), widerspiegelt. Verschiedene Vorsichtsmaßnahmen wurden ergriffen, um eine

hinreichend große Genauigkeit der berechneten Linienspannungen zu erreichen.

Auf verschiedene Benetzungsszenarien wurde eingegangen, nämlich sowohl auf Benetzung

erster Ordnung unter Einfluss kurz- und langreichweitiger Kräfte als auch auf kritische

Benetzung unter Einfluss langreichweitiger Kräfte. Der Vergleich mit Indekeus Vorher-

sagen für das Linienspannungsverhalten beim Annähern an Benetzungsphasenübergänge

[44] ist mit den zur Verfügung stehenden Computerresourcen für Kontaktwinkel ab ca. 5

bis 10◦ möglich. Die Ergebnisse sind mit Indekeus Vorhersagen vereinbar (s. Abb. 8.5,

8.7, 8.13 und 8.15). Dieser Befund stützt die Vermutung, dass strukturelle Details für

das qualitative Verhalten der Linienspannung nahe eines Benetzungsübergangs unwichtig

sind.

Um zu klären, wie wichtig Packungseffekte für Linienspannungswerte sind, wurde ein

Vergleich mit Ergebnissen einer SK-Linienspannungstheorie angestellt. Zu diesem Zweck

wurde die SK-Linienspannungstheorie erweitert, so dass sie die betrachteten Fluid–

Fluid-Wechselwirkungspotentiale, d. h., das WCA-LJ-Potential und das SW-Potential,

enthält. Ein quantitativer Vergleich zwischen dem vollmikroskopischen Zugang und dem

semi-mikroskopischen SK-Zugang is sehr schwierig, weil man typischerweise folgendem

Phänomen gegenübersteht: Für Parameter, die für SK-Rechnungen gut geeignet sind

weist das Fluidum gemäß der vollmikroskopischen Theorie (i) Benetzung bei einer viel

niedrigeren Temperatur oder/und (ii) lokale Kristallisation nahe der Substratoberfläche

auf, welche einen vollmikroskopischen Zugang sehr schwierig oder in den meisten Fällen

unmöglich macht. Auf der anderen Seite führen für das vollmikroskopische Programm
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günstige Parameter zu einem Randminimum im effektiven Grenzflächenpotential, d. h.,

das globale Minimum von ω(l) erscheint nahe der Substratoberfläche. In diesem Fall sind

die SK-Vorhersagen von den vollmikroskopischen Ergebnissen völlig verschieden.

Ein Substratpotential wurde entworfen (s. Abb. 8.16), um diese Inkompatibilität zu

überwinden und einen quantitativen Vergleich zu erlauben. Für dieses maßgeschneiderte

System und für Kontatkwinkel bis ca. 17◦ ist das globale Minimum von ω(l) ein echtes

lokales Minimum und kein Randminimum, folglich ist die SK-Theorie anwendbar. Bereits

bekannte Aspekte der SK-Linienspannung wurden wiedergefunden. Das heißt, das asymp-

totische Verhalten der Linienspannung (s. Abb. 8.19) gehorcht Indekeus Vorhersagen und

die einzelnen Beiträge der Linienspannung (s. Abb. 8.20) verhalten sich ähnlich wie von

Getta und Dietrich [51] beschrieben und von Bauer und Dietrich [11] bestätigt. Der

vollmikroskopische Zugang offenbart eine ganz andere Benetzungstemperatur, weist aber

ein ähnliches Verhalten des Kontaktwinkels als Funktion der reduzierten Temperatur auf,

welche die relative Abweichung von der Benetzungstemperatur beschreibt. Um θ ≃ 17◦

ändert der Kontaktwinkel sein Verhalten wie im SK-Fall. Folglich sollte ein quantitativer

Vergleich der Ergebnisse im Kontaktwinkelbereich zwischen 10◦ und 17◦ aussagekräftig

sein. Nichtsdestotrotz weichen die Ergebnisse der SK-Theorie und der vollmikroskopi-

schen Theorie quantitativ stark ab. Die vollmikroskopischen Linienspannungswerte sind

ungefähr zehnmal so groß wie die zugehörigen SK-Linienspannungswerte für die verwen-

dete Position der Substrat–Fluid-Grenzfläche.

Diese Diskrepanz wurde auf grundlegende Unterschiede des Benetzungsverhaltens zurück-

geführt. Um zwischen den Einflüssen der beiden Näherungen der SK-Theorie zu unter-

scheiden, nämlich der SK-Näherung der Dichteprofile und der lokalen Dichtenäherung

(LDA) für den Hartkugel-Energiebeitrag, wurden zwei Modellsysteme eingeführt. Ers-

tens wurde die LDA-SK-Theorie durch eine nicht-lokale Behandlung des Hartkugelanteils

erweitert; dieser Zugang wird FMT-SK-Theorie genannt. Zweitens dient ein Hybrid-

modell dazu, Benetzung gemäß der vollmikroskopischen Theorie näherungsweise in Form

eines effektiven Grenzflächenpotentials, ωhybrid(l), zu beschreiben. Diese Hybridtheorie

basiert auf Substrat–Gas-Grenzflächenprofieln, die bis zum Abstand l vom Substrat aus

der vollmikroskopischen Substrat–Flüssigkeits-Grenzflächenstruktur und ab dort aus der

“Bulk”-Gasdichte bestehen. Für kleine Filmdicken, l/R . 13, sind die Abweichungen zwi-

schen ωhybrid(l) und der LDA-SK- und FMT-SK-Theorie schwerwiegend (s. Abb. 8.31).

Für sehr kleine Filmdicken, l/R . 3, führt die LDA zusätzlich zu Abweichungen von der

FMT-SK-Theorie.

Die Linienspannungswerte gemäß der LDA-SK-Theorie, die die standardmäßige SK-

Theorie darstellt, sind ziemlich klein, da das maßgeschneiderte Potential so entworfen

worden ist, dass das effektive Grenzflächenpotential ω(l) = ωLDA−SK(l) für θ . 17◦ sehr

kleine Amplituden aufweist(s. Abb. 8.17). Gleichzeitig ist das maßgeschneiderte Potential

am stärksten nahe der Substratoberfläche (s. Abb. 8.16). Dies ist das räumliche Gebiet,

wo Packungseffekte (Dichteschwankungen) am ausgeprägtesten sind. Daher ist in der

untersuchten Situation der Einfluss von Packungseffekten relativ stark. In Benetzungs-

untersuchungen ändert sich die Dichte ̺ = ̺(z) lediglich in einer Richtung, senkrecht zur

Substratoberfläche, und bereits da ist die Wirkung der zwei der SK-Theorie innewohnen-

den Näherungen schwerwiegend. Allerdings führt das Keil-Szenario zu Dichteänderungen

in zwei Richtungen, ̺ = ̺(x, z), somit ist der Effekt der zwei Näherungen gewiss noch

stärker. Aus diesen Gründen ist die Diskrepanz zwischen den Linienspannungswerten der

SK-Theorie und der vollmikroskopischen Theorie plausibel.
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Das Hybridmodell für das Benetzungsverhalten wurde auf die SK-Linienspannungstheorie

angewandt. Diese Hybrid-Linienspannungstheorie entspricht den gewöhnlichen Aus-

drücken für die Sharp-Kink-Linienspannung, in die das verbesserte effektive Grenzflä-

chenpotential ωhybrid(l) des Hybridmodells eingesetzt worden ist. Während das Benetz-

ungsverhalten des maßgeschneiderten Systems durch den Hybridzugang gut beschrieben

wird (s. Abb. 8.29), sind die Hybrid-Linienspannungswerte in der Größenordnung der

SK-Ergebnisse. Daher versagt die Hybrid-Linienspannungstheorie, die Größenordnung

der vollmikroskopischen Linienspannungsergebnisse korrekt vorherzusagen (s. Abb. 8.30).

Der Ursprung dieser Diskrepanz ist höchstwahrscheinlich die laterale Glättung des effektiv

zweidimensionalen Dichteprofils ̺(x, z) im engen Umfeld der Dreiphasen-Kontaktlinie.

Bei den anderen vier betrachteten System beschreibt die Hybridtheorie die vollmikroskopi-

schen Linienspannungswerte mindestens semi-quantitativ (s. Abb. 8.25 bis 8.28). Von

der Hybrid-Linienspannungstheorie wird erwartet, dass sie gültig ist, falls die räumlichen

Schwankungen des Substratpotentials und der Substrat–Flüssigkeits-Grenzflächendichte

vergleichsweise klein sind. Für eine Kontrolle der Qualität des Hybridzugangs ist jedoch

ein Vergleich mit vollmikroskopischen Linienspannungswerten unvermeidlich.

Zusammenfassend wurde in dieser Arbeit die Linienspannung mit molekularer Auflösung

bestimmt, was in diesem Kontext die Forschungsfront darstellt. Eine auf der Sharp-

Kink-Näherung basierende semi-mikroskopische Linienspannungstheorie wurde weiter-

entwickelt. Die Sharp-Kink-Ergebnisse bezüglich Benetzung und Linienspannungsver-

halten weichen beträchtlich von den vollmikroskopischen Ergebnissen ab. Eine Hybrid-

Linienspannungstheorie wurde eingeführt, welche ein verbessertes effektives Grenzflächen-

potential für die Sharp-Kink-Linienspannungsberechnung verwendet. In den meis-

ten der untersuchten Fälle beschriben Ergebnisse dieser Hybridtheorie die vollmikro-

skopischen Linienspannungswerte semi-quantitativ. Jedoch beim maßgeschneiderten

System mit relativ starken räumlichen Schwankungen des Substratpotentials und der

Substrat–Flüssigkeits-Grenzflächendichte versagt die Hybridmethode und beschreibt die

Größenordnung der Linienspannungswerte nicht richtig. Folglich ist im Allgemeinen der

vollmikroskopische Zugang erforderlich, falls man an quantitativ verlässlichen Linienspan-

nungswerten interessiert ist oder/und falls die Gültigkeit der Hybridmethode für das be-

trachtete System nicht überprüft worden ist. Die Berechung der Linienspannung eines

flüssigen Keils ist ein wichtiger Beitrag zum Verständnis der Form sehr kleiner Tröpfchen

(unterhalb des Mikrometerbereichs). Ferner wird ein Vorschlag gemacht, wie axialsym-

metrische, aufsitzende Tröpfchen mittels DFT effizient behandelt werden können.
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[230] P. Jakubczyk and M. Napiórkowski, Influence of inhomogeneous substrate curvature
on line tension, Phys. Rev. E 72, 011603 (2005).

[231] R. Roth and D. Gillespie, Physics of size selectivity, Phys. Rev. Lett. 95, 247801
(2005).

[232] R. Roth and K. M. Kroll, Capillary evaporation in pores, J. Phys.: Condens. Matter
18, 6517 (2006).



Bibliography 163

[233] W. C. Jensen and D. Li, Determination of line tensions from the capillary rise in a
conical tube, Colloids Surf. A 156, 519 (1999).

[234] S. O. Asekomhe and J. A. W. Elliott, The effect of interface deformation due to
gravity on line tension measurement by the capillary rise in a conical tube, Colloids
Surf. A 220, 271 (2003).

[235] P. Bryk, L.  Lajtar, O. Pizio, Z. Soko lowska, and S. Soko lowski, Adsorption of fluids
in pores formed between two hard cylinders, J. Colloid Interf. Sci. 229, 526 (2000).

[236] R. Hanumanthu and K. J. Stebe, Equilibrium shapes and locations of axisymmetric,
liquid drops on conical, solid surfaces, Colloids Surf. A 282-283, 227 (2006).
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