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1 Introduction

1.1 Motivation

Macroscopic material properties are based on interactions of the constitutive particles on
a microscopic level. An attractive interaction among particles favors them to agglomerate.
Therefore from the energetic point of view a liquid, in which the particles are close to
each other, but not regularly positioned like in a crystal, is more favorable than a gas,
in which the interparticle distance is much larger and hence the mean particle density is
much lower. On the other hand the freedom of movement of the particles decreases, if
they are densely packed. This means that from the entropic point of view a gas is more
favorable than a liquid. Consequently the actual arrangement of the particles as a liquid
or a gas results from an interplay of energy and entropy.

A fluid does not always exhibit a liquid and a gas phase. If the temperature is sufficiently
high, solely one fluid phase can be observed. The critical point describes the state in
which two phases — here the liquid and the gas phase — become indistinguishable. For
temperatures below the critical temperature the liquid and the gas phase can coexist in
equilibrium, i. e., they are both thermodynamically stable and suitable boundary condi-
tions ensure the presence of both phases at a time. The spatial region where two or more
phases are in contact is called interface. An example of a system with three phases in
contact is given in Fig. 1.1.

Usually the fluid in an interfacial region, e.g., a solid—gas, solid-liquid, or liquid—gas
interface, behave differently than in a “bulk” system, i.e., a system without any interfaces
or boundaries. The influence of an interface may reach far from the interface position,
which can be defined with some degree of arbitrariness. The inhomogeneous distribution
of particles at an interface gives rise to an extra free energy contribution called surface
tension or — more general — interfacial tension. On a microscopic length scale the
structure of an interface can be very complicated and is not simply given by two bulk
systems glued together unchanged: The particle density usually varies continuously from
one bulk density to the other, and it may even exhibit density oscillations indicating
packing effects, i.e., the particles tend to form layers there.

A particular kind of inhomogeneity is formed, if a planar liquid—gas interface is brought
into contact with a planar substrate, e. g., a glass plate. On a macroscopic scale a liquid

Fig. 1.1: Droplet on a superhydrophobic surface [1]. The substrate is covered by aligned, coated
nanofibres. Here a droplet with a diameter of 2 mm resides on the tips of the fibres.
The diameter and length of these fibres can be varied between 10-40 nm and 70-360
nm, respectively. The property of the surface can range between superhydrophobic and
superhydrophilic depending on the type of coating.



2 1.2 Outline

wedge resting on a substrate may form. The contact angle describes the inclination of
the liquid—gas interface with respect to the substrate surface. The line where the three
involved phases (gas, liquid, and solid substrate) are in contact is — in a macroscopic
picture — called contact line. However, the structure of the three-phase contact region is
much richer on a microscopic scale. The spatial distribution of the fluid particles in such
a wedge geometry is analyzed theoretically in this work.

The system of a sessile liquid wedge is inspired by sessile droplets (see Fig. 1.1). The
contact angle 6 of a sessile liquid droplet is described by Young’s law [2],

g

cosfh = 2

S

%a1. (1.1)
g
Oggs Oy, and 0y, are the interfacial tensions of solid—gas, solid-liquid, and liquid—gas
interfaces, respectively. An interfacial tension describes the energy that is necassary to
create an interface. Young’s equation can be illustrated by a lateral force balance at the
contact line:

Ogg = Og + 015 cos . (1.2)

However, for sessile droplets smaller than approximately one micrometer deviations from
this law occur. They are attributed to some extend to the influcence of a so-called
line tension. This is, roughly speaking, the free energy contribution (per unit length)
associated with the contact line. The line tension of a sessile liquid wedge is related to
the sessile droplet line tension and therefore is an important quantity both for a thorough
theoretical understanding and for technological applications comprising small amounts of
liquid.

Up to now theoretical studies of phenomenological model systems did not take the micro-
scopic spatial structure of the fluid into account. In the present work microscopic details
of the particle-particle interactions as well as microscopic details of the fluid structure are
taken into account. Consequently this fully microscopic approach enables one to calculate
the line tension of a sessile liquid wedge in an unprecedented realistic way.

1.2 Outline

The present chapter introduces the topic of line tensions. The line tension was mentioned
already in the previous Sec. 1.1 in the context of sessile droplets smaller than approxi-
mately 1 pum, for which the line tension helps to explain deviations of the contact angle
from Young’s law. In the following Sec. 1.3 the subject of this study and its aims are spe-
cified. The general definition of a line tension applies to many, sometimes very different
systems. They are categorized into classes of line tensions in Sec. 1.4. Some technological
applications of such systems with relevant line tensions are highlighted in Sec. 1.5. The
present work is embedded into the research field of line tensions of sessile liquid wedges
or droplets in Sec. 1.6. For completeness the research on line tensions for substrate-free
three-phase coexistence is reviewed in Sec. 1.7.

After the introduction in the present chapter the method applied in this work, classical
density functional theory (DFT), is introduced in Chapter 2. Fluid interfaces are con-
sidered thereafter, especially from the point of view of DFT, in Chapter 3. Chapter 4
is dedicated to sessile droplets, the definition of a line tension for that system, and the
connection between the line tensions of a sessile liquid droplet or wedge, respectively.
Other line excess quantities, besides the line tension of a sessile liquid wedge or droplet,
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are described in Chapter 5. The model system studied here, a liquid wedge on a sub-
strate, is described in Chapter 6 in more detail than in the present chapter. The same
system has been analyzed using the so-called “sharp-kink approximation”. This approach
is described and extended in Chapter 7. Thus in Chapter 8 the results of the fully micro-
scopic approach can be compared to those obtained from the semi-microscopic sharp-kink
calculations. The perspectives arising from this work are sketched in Chapter 9. Finally,
a summary is given in Chapter 10.

1.3 Formulation of the scientific problem

The model system analyzed in this study is described briefly in Sec. 1.3.1. Moreover the
definition of a line tension in general and of the liquid wedge line tension in particular are
given in Sec. 1.3.2. Then the status of this work is assessed in Sec. 1.3.3.

1.3.1 Subject: line tension of a sessile liquid wedge

The system under consideration is a liquid wedge residing on a planar substrate. Such
a sessile liquid wedge can be regarded as a part of a macroscopicly large sessile droplet.
Thermodynamic equilibrium, for which the liquid coexists with its gas phase, is presumed.

In this study the theoretical model of actual fluids is a one-component fluid the intermole-
cular interactions of which are modeled either by a short-ranged square-well potential or
by a long-ranged Lennard-Jones (12-6) potential, respectively. The homogeneous, flat,
chemically inert substrate is represented by a Lennard-Jones (9-3) potential and varieties
thereof. The model is described in more detail in Chapter 6.

The method to calculate the structure of the three-phase contact region and the line
tension for the present model system is a density functional calculation of the effectively
two-dimensional equilibrium particle number density distribution g(z, z). These technical
terms are explained in the following chapter.

1.3.2 Definition of a line tension

Shortcomings of macroscopic line tension definitions:

If theoretical calculations based on a macroscopic scale utilize the line tension (e.g.,
colloids at a liquid-gas interface or a liquid ridge on a substrate), the line tension is
typically considered as an external parameter, the value of which has to be inserted by
hand. Typically in macroscopic approaches the total free energy of the studied system is
unknown and approximatively described, for instance, by contributions known for simpler
geometries or by assigning values to individual quantities.

Macroscopic calculations of line tensions rest upon a coarse grained definition. E.g., in
an interface displacement model the line tension exclusively depends on the position of a
liquid—gas interface. The line tension is well-defined there, however, the connection to its
microscopic origin is kept only in a crude way.

Microscopic definition of a liquid wedge line tension:

A “microscopic” approach resolves molecular details of the involved particles, i.e., the
spatial distribution of particles on a molecular length scale and characteristics of the
particle-particle interactions. From a microscopic perspective the line tension of the
considered system, a liquid wedge resting on a substrate, is defined as follows. Within
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the grand canonical ensemble the natural thermodynamic potential is the grand potential
Q= Q(T,V,u) with temperature 7', volume V', and chemical potential p.

A “microscopic calculation” yields the value of the grand potential of a microscopic model
system. This is in contrast to macroscopic approaches, in which the precise value of €2
remains unspecified. The microscopicly obtained value of €2 is decomposed into terms
(a) proportional to the volume V of the fluid, (b) proportional to the surface areas Aggs
Ay, and Alg of the solid—gas, solid-liquid, and liquid—gas interfaces, respectively, and (c)
proportional to the length L of the contact line. The contact line is the curve where the
substrate, the liquid region, and the gaseous region are in contact. From a microscopic
point of view the line tension 7 is defined as the coefficient of the contribution to the
grand potential which is proportional to the length L of the contact line,

Q= —pV + o, A, + 0944 + 0, A4y + 7L (1.3)

Oggs Oy, and 0y, are the interfacial tensions of solid—gas, solid-liquid, and liquid—gas
interfaces, respectively, which are discussed in more detail in Sec. 3.1. If the pressure
and the interfacial tensions are calculated consistently (i. e., for the same interactions and
physical parameters), the above decomposition determines the value of the line tension.
Note that the values of the solid—gas and solid-liquid interfacial tensions, Oge and oy,
depend on the choice of the interface position (cf. Sec. 3.3.2). Hence the value of the
liquid wedge line tension depends on this choice as well [Eq. (6.4)].

General line tension defnition:

In short, a line tension is a one-dimensional analogue of the surface tension. Gibbs
introduced the concept of a “linear tension” in 1878, when he suggested that a line formed
by three phases should be treated entirely analogously to interfaces [3].

In general, a line tension is related to a free energy that scales with the length of a linear
structure (e. g., a line) of the considered system. It describes the excess in free energy due
to this linear structure, in addition to volume (“bulk”), surface, and — possibly — point
contributions. Precisely, the line tension is the coefficient of the line excess contribution
in a decomposition of the “natural” thermodynamic potential of the system into volume,
surface, linear, and point terms.

1.3.3 Aims and status of this work

The main task of this study is to calculate line tension values for different model systems
in different wetting scenarios (cf. Subsecs. 1.6.1 and 3.3.5). In order to obtain a line
tension value via the presently applied method, the microscopic structure of the three-
phase contact region, where the three phases (solid substrate, liquid, and gas) are in
contact, has to be calculated. In doing so a continuous particle density is taken into
account. This means that the particle density is not piecewise constant but is free to vary
smoothly. Moreover effects due to details of the interaction between a fluid particle and
another fluid particle or a substrate particle are resolved in the theoretical description
as well. Consequently, since microscopic details both of the molecular interactions and
of the particle distribution are taken into account, the approach presented here can be
regarded as “fully microscopic”.

Previous studies of similar, phenomenological model systems treated the solid—fluid and
liquid—gas interfaces in a crude, so-called sharp-kink approximation. The fluid in a certain
phase is regarded to be homogeneous right up to the interface position, where the density
changes discontinuously. Hence the intrinsic interfacial structure is neglected. Solid—
liquid interfaces, for instance, can exhibit strong density oscillations due to packing effects
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(i.e., the liquid tends to form layers in the vicinity of the substrate surface). Hence a
comparison between the fully microscopic approach and the sharp-kink theory should
reveal the quality of the sharp-kink approximation in the context of liquid wedge line
tensions.

This theoretical model study renders the line tension of a rather realistic model system
more accurately than in previous studies. It is a step towards a complete understanding
of the shape of very small droplets, i.e., droplets with diameters below the micrometer
range. The liquid wedge line tension is related to the line tension of a sessile droplet
by a computationally simple transformation [4]. Furthermore a proposal is given how
axisymmetric sessile droplets could be described efficiently at the same level of accuracy.

1.4 Classes of line tensions

Although the line energy contribution is usually much smaller than the surface energy con-
tribution, it plays an important role in various physical systems [5]. One can distinguish
between the following (and even more [6]) classes of line tensions:

1. Three-dimensional, simple fluid systems:

(a) Line tension (or contact line tension) of a sessile liquid droplet:

e A liquid droplet sitting on a planar, homogeneous substrate and coexisting with
its vapor phase, a so-called sessile droplet, exhibits a three-phase contact region.
Macroscopicly this region can be regarded as a circular contact line. Its line
tension affects the equilibrium droplet shape, if the droplet diameter is well below
the micrometer range. This situation represents a constrained equilibrium, since
the solid phase is not thermodynamically coexisting with the other two phases.
Fig. 1.1 shows a nearly perfect dewetting scenario, where a sessile droplet is
barely touching the solid surface.

e For advancing (e.g., spreading) or receding small droplets on a substrate the
shape of the moving contact line is influenced by the line tension. Surface inho-
mogeneities can disort an otherwise moving contact line, on the spot, which is
called “pinning” of the contact line [7]. The spreading dynamics is influenced by
the line tension for droplet sizes in the micro-/nanometer range [8].

e The line tension plays an important role in heterogeneous droplet nucleation
and growth [9]. In this context nucleation means the onset of condensation, i.e.,
droplets emerge in a saturated vapor phase. For heterogeneous nucleation this
happens preferentially at nucleation sites (on a surface or inside the fluid). For
sessile droplets such condensation nuclei can be composed of chemical impurities
or geometrical defects. Volatile dust particles, for instance, can serve as conden-
sation nuclei for free (i.e., not sessile) liquid droplets. This line tension has to
be distinguished from the line tension for surface crystal nucleation, which will
be discussed below.

(b) Line tension (or contact line tension) of a sessile liquid wedge:
In the limiting case of a macroscopicly large sessile droplet the three-phase contact
region resembles a sessile liquid wedge. Its liquid—gas interface is planar, and the
contact line is straight. Since this system is effectively two-dimensional, it is per-
fectly suited as a model system to study its line tension, the wedge line tension.
There is a computationally simple relation between the line tensions of a sessile
wedge and of a sessile droplet, which will be explained in Chapter 4.
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1.4 Classes of line tensions

Line tension of a sessile bubble:

The inverse scenario to a sessile liquid droplet alludes to a gas bubble that resides
on a substrate and is surrounded by liquid. An example are the bubbles that form
in a glass of sparkling water and stay at the glass—water interface. A line tension
assigned to the three-phase contact line (or region) can be defined like in the case
of a sessile liquid droplet.

Line tension of a three-phase contact region for full three-phase equilibrium:

In a system of three coexisting phases (i.e., in an unconstrained equilibrium) that
form a common contact line, the morphology of this contact line is governed by
the line tension. Analogously to a sessile droplet and a wedge, one can distinguish
between a macroscopicly large lense and a lense of limited volume immersed in
an interface of two other phases. The macroscopicly large lense corresponds to
bulk coexistence (i.e., a planar interface formed by any two of the three phases is
thermodynamically stable), so that each of the three phases fills a macroscopicly
large spatial region. The lense of finite volume is in coexistence with the other two
phases due to an increased pressure in the inside, the so-called Laplace pressure.
In the case of bulk coexistence (or a macroscopicly large lense) the three angles
between the individual interfaces are described by the Neumann equation. The
Young equation represents a special case thereof. However, the angles related to a
lense of finite volume are modified by the line tension. The phase of the fluid lense
merely needs to be different from the other two phases, it is not restricted to the
case of a liquid lense (i.e., a liquid droplet at the interface) or a gas lense (i.e., a
gas bubble at the interface). This means that one or several of the three phases
could be solid. For a one-component simple fluid the three phases can merely be
gas, liquid, and solid; for a binary (or multi-component) simple fluid also three (or
more) fluid phases are possible.

Boundary (line) tension:

In certain fluid systems with a planar substrate and in a state on the prewetting
line near a first-order wetting transition, the coexistence between two surface phases
with different film thicknesses is possible. The system has a small film thickness, say
on the left-hand side, a large film thickness on the right-hand side, and a straight
interface between both parts. Then the boundary region is attributed a boundary
line tension, shortly named “boundary tension”.

Like any liquid—gas interfacial tension also the boundary tension has to be positive
for stability reasons. For a negative boundary tension infinitely many interfaces
between the two kinds of surface phases would occur in order to reduce the total
free energy. Exactly at the wetting transition (cf. Sec. 3.3.5) the boundary ten-
sion equals the wedge line tension (cf. Sec. 5.2.1). At the prewetting critical point
the two surface phases become identical and consequently the boundary tension
vanishes [10].

A boundary tension may be defined analogously for interfacial wetting instead of
wetting of a solid substrate [10]. Here another fluid phase plays the role of the
substrate.

Substrate boundary line tension:

Consider a fluid on a geometrically or chemically structured substrate. If there is
a line separating one substrate region from the other (e.g., an edge, a wedge, or a
chemical step), the associated excess free energy can be regarded as the line tension
of such a substrate boundary [11]. Clearly, more complex substrate structures (like
geometrical steps of finite height or subsequent chemical stripes [12]) can be studied
as well, and the corresponding line tension obtains a size dependence (i. e., it depends
on the step height or the stripe width).
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(g) Line tension for droplets on or near particles:
The interaction of gas bubbles with solid inclusions in a melt or with aqueous drops
involves three phases in contact as well. A similar situation exists in emulsions or
foams which are stabilized by fine particles. Here the “substrate” consists of spheri-
cal or, in general, irregularly shaped and (more or less) hard particles. Furthermore
droplets residing on larger solid spheres [13, 14, 15] or cylinders [16] are examples
for regularly shaped, but curved “substrates”.

(h) Line tension for surface nucleation at freezing:

The freezing of a liquid into a solid phase (e.g., a crystal) can either start in the
liquid bulk region (homogeneous nucleation) or at an interface with another phase
(heterogeneous nucleation). Heterogeneous nucleation can occur, for instance, at
an interface with a gas surface, a substrate or an impurity (e.g., in a hard sphere
crystal [17, 18]). In the case of surface nucleation at a liquid—gas interface a roughly
lense-shaped solid-like nucleus (embryo) emerges. The work to form such a nucleus
with a certain number of atoms contains a term related to the perimeter of the
lense. Hence this line tension influences the shape of the nucleus and the freezing
process [19, 20|, particularly since freezing preferably occurs in the three-phase
contact region [21].

The freezing lense scenario is similar to the three coexisting phases (with a lense) or
the sessile liquid droplet discussed above. For freezing near a gas phase, however,
the gas does not have to coexist with the solid and liquid phases, if the number of
gas particles is fixed. The case of freezing near a substrate corresponds to a sessile
liquid droplet, where now the droplet is solid and the surrounding is liquid.

2. Three-dimensional, complex fluid systems: In this category an example of a line ten-
sion is the boundary tension between lamellar phases. In systems containing oil, water,
and surfactant amphiphilic layers in a lamellar phase can form between water and oil
regions for suitable concentrations. Phases with different stack thicknesses can coexist,
and boundary line tensions are attributed to the boundaries between them [22]. Thus
the situation is in principle comparable to the case of membrane domains (see below).
Smectic liquid-crystal multilayers can exhibit coexisting domains with different thick-
nesses as well, and a line tension is associated with the domain boundaries [23].

3. Quasi-two-dimensional systems:
“Quasi-two-dimensionality” means that one spatial extension of a genuinely three-di-
mensional physical system is very small, such that it appears to be two-dimensional at
first glance. This notion has to be distinguished from “effective two-dimensionality”,
where the system extended considerably in all three spatial directions contains trans-
lational symmetry and can therefore be described by solely two coordinates.

(a) Two kinds of line tensions of a fluid membrane:

Line tension also plays an important role in systems which are merely distantly re-
lated to liquid drops. The fusion of fluid membranes (i. e., lipid bilayer membranes)
is vital in many cell-biological processes. The rate of membrane fusion depends on
the line tension of a hole (pore) formed in the membrane [24]. The membrane hole
line tension has to be positive in order to prevent the membrane from dissolving.
Another line tension related to fluid membranes arises at boundaries of membrane
domains (so-called “lipid rafts”) [25, 26, 27, 28, 29]. The thermal fluctuations of
domain boundaries are related to the line tension and can be analyzed by means
of flicker spectroscopy [30, 31]. Like surfactants can reduce a surface tension, a
class of molecules (“linactants”) can reduce this membrane domain boundary line
tension [32].
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(b) Thin fluid films:

A thin fluid film can, e. g., consist of a liquid film on a substrate or a soap film. A
soap film represents the symmetrical film case, where either a (surfactant-stabilized)
water-film exists between two identical gas phases or an oil film exists between two
identical aqueous phases. Viewed in reflected white light against a black back-
ground, films becoming gradually thinner loose their white appearance and finally
appear black. They are called common black films or Newton black films, if their
thickness is either sensitive or not very sensitive on parameter changes.

A line tension can be related to the perimeter of a finite thin film [33, 34]. Very
thin films tend to form domains, i. e., finite spatial regions exhibiting a constant film
thickness. The curve limiting such a film domain can be attributed a line tension
as well, which is called interphase line tension [35].

Since systems containing thin membranes or thin liquid films are quasi-two-dimen-
sional, their line tensions cannot be compared to the line tensions in three-dimensional
systems like droplets or liquid lenses.

Among the listed line tensions exclusively the boundary line tension and the membrane
hole line tension have to be positive to ensure thermodynamic stability. Hence solely
these two line tensions can be regarded as true one-dimensional analogues of the surface
tension, if for the latter one has in mind a liquid—gas interfacial tension.

1.5 Technological applications of systems exhibiting a line
tension

Possible applications of the physical systems and effects described in the previous section
are positioned in the research fields of nanofluidics and surface material science. Fast
technological progress in these fields has promoted corresponding fundamental and applied
research activities. The general trend towards miniaturization of technical devices also
affects devices that handle small amounts of fluids. Shrinking system sizes increase the
relevance of line tension effects for the system properties. Some technological applications
of the mentioned simple-fluid systems involving line tension effects, especially small sessile
droplets, are listed in the following.

1. Lab on a chip: Micro- and nanofluidics deals with the manipulation of small amounts
of liquid, which can occur, for instance, in biotechnology, chemistry, and pharmacy.
Analogously to the development of micro- and nanoelectronics one aims at very small
devices (“lab on a chip”), that accomplish tasks like guided transport, mixing, separa-
tion, and controlled chemical reactions of fluids.

2. Coatings: A branch of surface material science is concerned with solid—fluid interfaces.
A solid-fluid interface is the “borderland” between a solid phase and an adjacent fluid
(liquid or gas). Detailed knowledge about the behavior of such interfaces is relevant
for the controlled manipulation of surface-related material properties. Solid—fluid in-
terfaces exist in coatings, easy-to-clean, or self-cleaning surfaces, adhesion, gluing and
corrosion due to humidity. Large public interest has been attracted by the effect of
superhydrophobicity, commonly known as “lotus effect”. A rough surface formed by
a hydrophobic material can attain very large contact angles, so that (small) sessile
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droplets are almost spherical (see Fig. 1.1). The field of applications of superhydro-
phobic coatings is large and covers, e.g., conservation of buildings and cars, sanitary
facilities, housekeeping products, and textiles.

3. Ink applications: In typical ink applications, e. g., in an ink printer, a newspaper prin-
ting machine, or when writing with a pen or biro, a paper surface is covered with small
amounts of liquid. The shape of the boundary of an ink droplet is crucial for the sharp-
ness of the printing product. Hence to extend the knowledge about the microscopic
structure of ink droplets is helpful in order to improve printing technologies.

4. Flotation: Flotation is a widely applied method to concentrate or purify sulphide
minerals (like copper, lead, and zinc) or to recycle paper. Air is pumped into an
aqueous suspension of ore or used paper, respectively, such that air bubbles form.
The difference in wettability of the desired material (metal or paper) and inclusions
(minerals or ink remains) is exploited. The air bubbles are intended to carry the
inclusions to the surface, where they are removed. The interplay between air bubbles,
water, metal/paper, and inclusion particles determines the functioning of the flotation
process.

Undesired inclusions (e. g., silica) in an iron or steel melt can be removed by flotation
as well [36]. In order to avoid oxidation, here typically argon instead of air is pumped
through the melt. This process depends on the microscopic interplay of liquid metal,
inclusions, and argon bubbles.

5. Particle-stabilized emulsions and foams: Emulsions (i. e., a mixture of at least two im-
miscible liquids, e. g., milk, mayonnaise, or cosmetics) tend to phase-separate (demix)
in many cases. The prevailing procedure to stabilize an emulsion employs tensides
(emulsifiers). However, also small solid particles can stabilize an emulsion. The micro-
scopic structure and the line tension of the three-phase contact region on the surface
of such a particle is responsible for the emulsion stability. Similar thoughts hold for
particle-stabilized foams, i.e., small gas bubbles bordered by thin liquid or solid walls.

1.6 Current state of research on substrate-related line
tensions

A line tension can be defined for various systems where an excess free energy is attributed
to a linear structure. The current state of research on line tensions of systems involving
simple fluids is presented in this and the following section, Sec. 1.7. These systems either
comprise an inert phase (so do, for instance, sessile liquid wedges, sessile droplets, or
two coexisting surface phases) or contain three thermodynamically coexisting phases. For
simplicity here the case of an inert third phase is considered as containing a “substrate”,
while the case of three coexisting phases is considered as containing no substrate.

A broader review of theoretical and experimental line tension studies can be found in
Ref. [37]. Theoretically determined line tension values are of the order of 10712 to 10710 N,
whereas experimental values span a wide range from 107'2 to 1076 N [37, 38].

First, there are fluid systems which involve a substrate and for which a line tension can
be identified. The case of deformable substrates giving rise to an effective line tension
[5, 6, 39] is not discussed here. The second case of three coexisting phases (i.e., without
a “substrate”) is discussed in Sec. 1.7.
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1.6.1 Sessile liquid wedge

Experiments on sessile liquid wedges are — strictly speaking — impossible to arrange,
since an infinitely long, straight three-phase contact region cannot exist in reality. This
situation exists merely approximately in the three-phase contact region of a very large
sessile droplet. Gravity has to be taken into account for the overall shape of a large
droplets. But counterintuitively Young’s law still holds in the presence of gravity [40, 41].
(Other experimental and theoretical studies claim a non-trivial relation between the
droplet size and its contact angle due to gravity [42], thus the topic is still controversal.)

For sessile liquid droplets a local contact angle can be introduced in addition to the
macroscopic contact angle given by Young’s law. For this purpose a spherical cap is fitted
to the top of the droplet, and the local contact angle is defined as the inclination of the
spherical cap at the substrate surface. However, there is no generally accepted way to
define a local contact angle of a sessile liquid wedge, hence merely the macroscopic contact
angle is an observable here.

Theoretical work on the wedge geometry offers a convenient way to treat the sessile
wedge under idealized conditions, e. g., without substrate inhomogeneities, with a perfectly
straight contact line, and with perfectly planar interfaces. There is a connection between
the line tension of a sessile wedge and that of a sessile droplet (cf. Chapter 4).

In 1981 Tarazona and Navascués presented the first theory of wedge line tension based on
statistical mechanics [43]. Their choice of the system volume corresponds to a cylinder
around the three-phase contact region. The particle density distribution was assumed to
be formed by the macroscopic step-like profiles of the three participating planar interfaces
(solid—gas, solid-liquid, and liquid—gas) plus a function which decays exponentially in the
direction perpendicular to the substrate and depends on the lateral coordinate. Both
the circular shape of the cross-section of the system and the crude approximation of the
actual density profile are questionable and limit the quantitative validity of their results.

In 1992 Indekeu analyzed the behavior of the wedge line tension close to wetting in
an interface displacement model (IDM) [44, 45]. An IDM is a simple kind of effective
interface Hamiltonian, which accounts for the effective interface potential w(l) and an
increase of the liquid—gas interfacial area due to a non-horizontal contour [(x). The
asymptotic behavior of the line tension is expected to display universal features that are
independent of details of the model system. Hence the IDM is a helpful tool, even though
molecular details are not resolved. The asymptotic behavior of the wedge line tension
upon approaching a wetting transition was predicted (cf. Sec. 3.3.5). Depending on the
range of the interactions and the order of the wetting transition, four wetting scenarios
can be distinguished:

e Short-ranged forces (i. e., short-ranged fluid—fluid interactions as well as short-ranged
substrate—fluid interactions):

— First-order wetting transition:

T Tyenting T 100 + 0 + O(6?) (1.4)
- 7—wotting for T / Tw (15)
with 0 < T, < oo and the contact angle # expressed as radian measure. Hence

wetting
7 reaches a positive, finite value at the wetting transition temperature 7, and

approaches it from below. The wedge contour [(x) at T,, behaves as
l(x) ~ Inzx (1.6)

for large values of .
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— Critical wetting (second-order wetting transition):
T~ —0 —0 for T "T, (1.7)

The vanishing limiting value at T, is reached from below as well. The contour I(x)
reaches its asymptote, i.e., a planar solid—gas interface far from the three-phase
contact region on the gas side and a planar liquid—gas interface far from the contact
region on the liquid side, from above. In other words, the kink of the asymptote at
the contact line is smeared out.

e Long-ranged forces (i. e., long-ranged fluid—fluid interactions or/and long-ranged sub-
strate—fluid interactions): Here unretarded van der Waals forces are assumed.

— First-order wetting transition: Upon approaching 7}, the line tension obeys
T ~ —Inf — +oo for T /T,. (1.8)

The line tension changes sign from negative to positive values upon approaching 7t
and finally diverges at wetting. The contact angle 6 vanishes as

0 ~ t'/2 -0 for t\,0 (1.9)

with the reduced temperature t := (T, — T')/T,,, that corresponds to the relative
temperature deviation from the wetting temperature. The contour profile I(z) at
T, is given by

l(z) ~ (:E—xtp)l/z (1.10)

with a (diverging) turning point z, ~ t=1. Close to T, the actual contour corres-
ponds to an interpolation between the above function (for relativeley small values
of 1) and the planar wedge boundary condition (for large values of [). The cross-
over point x.,, up to which the approximation by the above function is valid, also
diverges. Since z, — 7y, diverges as well, the square-root-like profile in Eq. (1.10)
can evolve at wetting. 7 approaches its singularity continuously, while the film
thickness diverges abruptly.

— Critical wetting: The line tension close to T}, can be described by
T~ =03 S0 for T /T, (1.11)

The line tension is negative close to wetting and finally vanishes at wetting. The
contact angle 6 vanishes as

0 ~ 32 0 for t\,0. (1.12)

Qualitatively the contour [(z) behaves like in the case of critical wetting with short-
ranged forces, i. e., it reaches its asymptote from above for small as well as for large
values of the x coordinate. Upon approaching 7}, the film thickness [, diverges here
like

lg ~ t7L. (1.13)

Indekeu’s IDM employs a square-gradient approximation for the expression of the inter-
facial area. To incorporate the full, unapproximated expression for this area neither
complicates the calculation much nor does it change the asymptotic behavior of the line
tension (and boundary tension) [46].

Numerical line tension calculations are restricted to finite system sizes. The influence
of a macroscopic, but finite system size on the leading order behavior of a wedge line
tension was analyzed with scaling arguments by Indekeu and Dobbs for an interface
displacement model [47]. For long-ranged, van-der-Waals—like interactions (decaying as
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r~6 in leading order) the line tension at first-order wetting diverges logarithmically with
increasing (vertical) system size. For short-ranged interactions the finite size correction
to the line tension at first-order wetting vanishes exponentially with increasing (vertical)
system size. The slope of the line tension as a function of the contact angle diverges (to
—00) linearly in the (vertical) system size L |, i.e., d7/df|g9—p> ~ —L , both for first-order
and critical wetting.

In 1995 Perkovié¢, Blokhuis and Han [48] presented the first (numerically) exact calcula-
tions of the wedge line tension (and the boundary tension) for a continuous model system
(i.e., not a lattice model). This model system is not related to realistic fluid—fluid inter-
actions. By fitting expressions containing the value at 7T, and the first two correction
terms to the obtained line tension (and boundary tension) data, they found excellent
agreement with preditions by Indekeu [44] and Blokhuis [49]. The employed free-energy
functional corresponds to a square-gradient approximation, i.e., the free energy density
depends locally on the density and its gradient. Several further assumptions on the spe-
cific form of the involved functions are made, basically in order to obtain coexistence of
two fluid phases and a partial wetting scenario.

Within a density functional theory the morphology of the three-phase contact region
and the line tension of a sessile liquid wedge was analyzed on a semi-microscopic level
by Getta and Dietrich [50, 51] as well as Bauer and Dietrich [11, 52] in the late 1990s.
The microscopic details of the fluid—fluid and substrate—fluid interactions were taken into
account. However, the continuous particle density distribution function was replaced by
a piecewise constant sharp-kink distribution. This sharp-kink theory represents the first
line tension calculations for a phenomenological model system. This sharp-kink theory is
reviewed and partially extended in Chapter 7, since it serves as comparison for the fully
microscopic approach presented in this work.

In 1999 Dobbs applied Indekeu’s IDM theory to a phenomenological interface poten-
tial [53]. This was the first calculation of the (wedge) line tension for parameter values of
a specific, actual system, even though molecular details were merely taken into account
via a coarse-grained IDM description. The results for the line tension (and the boundary
tension) upon approaching 7, are in agreement with Indekeu’s predictions.

Fluctuations of the contact line and the liquid—gas interface were addressed in a phe-
nomenological model by Clarke in 1992 [54]. The influence of the line tension on the
mean square fluctuation magnitude was analyzed. It was found that a positive line ten-
sion value modifies the fluctuations near a wetting transition. For a vanshing line tension
value the contact line fluctuations are larger than for a liquid—gas interface. For negative
line tension values, however, the model breaks down.

1.6.2 Sessile liquid droplet

In a macroscopic picture the shape of an axisymmetric sessile droplet results from the
minimization of the the free energy expression for the system under the constraint of a
certain fixed amount of liquid in the droplet (e. g., a certain droplet volume, if the liquid is
incompressible). The corresponding Euler-Lagrange equation for this variational problem
is called shape equation or Young-Laplace equation,

Ap + 0y, gh(r) = 201, H(r). (1.14)

Here Ap is the Laplace pressure (i. e., the pressure difference between inside and outside
the drop), o, the (bulk) liquid mass density, g the gravitational acceleration, h(r) the
droplet surface, Olg the liquid—gas interfacial tension, and H(r) the mean curvature of the
surface h at the point r of the drop base area.
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Gravity can be neglected for sufficiently small droplets, i.e., if the droplet is small com-
pared to the capillary length

0y
1 = ([—&. 1.15
\/ Om 9 (1.15)

For water under ambient conditions one finds [ >~ 2.6 mm, thus water droplets with a
diameter below approximately 1 mm can be regarded as free from gravitational influences.
In this case the solution of the shape equation gives a spherical cap.

A small sessile droplet with a radius below 1 mm, but above approximately 1 pgm, macro-
scopicly resembles a spherical cap. This shape is governed by the surface free energy
alone. Minimizing the surface free energy with respect to the base radius and the droplet
height, again keeping the volume constant, leads to Young’s law for the contact angle.

However, for very small sessile droplets below the micrometer scale deviations of the
intrinsic contact angle 6 (i.e., the equilibrium contact angle on a planar, homogeneous,
inert substrate) from the value 6, predicted by the Young equation occur. These deviations
have been attributed for decades to the line tension almost exclusively via the modified
Young equation [55],

cosf = cosb, — T ) (1.16)

O'lg’r'

which was proposed by Boruvka and Neumann in 1976. Here, r denotes the radius of the
circular droplet base and the line tension 7 is regarded as a constant which is independent
of the droplet size. Based on this equation positive or negative values of the line tension
are commonly interpreted as follows: A positive line tension value increases the contact
angle, thus the droplet tends to shrink its perimeter. Analogously a negative line tension
value decreases the contact angle, and the droplet perimeter is expanded.

In 1997 Marmur [56] pointed out difficulties in interpreting experimental results and ques-
tioned the connection between the physical line tension and the value obtained from the
modified Young equation. He claimed the line tension to depend on the contact angle and
suggested an approximative correction of the modified Young equation. Further improve-
ments of the modified Young equation were proposed [57]. Very recently Schimmele,
Napiérkowski, and Dietrich [4] introduced an equation for the contact angle of a sessile
liquid droplet — which is called “corrected modified Young equation” in the present work
— that involves additional quantities which are comparable to the line tension term. Thus,
in view of the above mentioned corrected modified Young equation, most experimental
results did not determine the bare line tension, but a sum of the line tension and several
other terms.

The earliest molecular dynamics (MD) simulations of a sessile droplet were carried out
in the early 1990s [58]. In the recent years large improvements of the MD techniques
were made. E.g., a droplet consisting of a Lennard-Jones fluid sitting on a homogeneous
Lennard-Jones (9-3) substrate (cf. Sec. 3.3.1) was studied [59, 60]. Besides a homogeneous
LJ substrate also a crystal (fcc lattice) was investigated [61]. Further examples are MD
simulations of water molecules on polymer surfaces [62] or on amorphous silica [63]. MD
simulations represent an alternative to a density functional theory (DFT) approach in
order to obtain the equilibrium particle density distribution. The line tension could be
determined from this density distribution by means of the corrected modified Young
equation mentioned above. The number of particles in a MD simulation is limited: In the
LJ fluid simulations mentioned above the droplet contained at most around 120 [61], 18000
[59] or 70000 [60] particles, respectively. The water simulations mentioned contained up
to 600 water molecules [63] or few thousands [62], respectively. Hence, in order to reach
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the limiting case of large droplets and to substantiate the MD results, one is still obliged
to use other techniques like DFT for axisymmetric systems (cf. Sec. 9.3).

For a broader overview of the methods to address fluid properties some other — mainly
numerical — methods applicable to fluids should be mentioned as well: Results from
Monte Carlo (MC) simulations are regarded as quasi-exact, since they emerge from a
sort of “computer experiment”. A system with an effectively two-dimensional equilibrium
particle distribution function p(x, z) has to be simulated in three dimensions nevertheless,
in order to capture all fluctuations. In 2001 Milchev and Milchev presented results from
a MC study on sessile droplets consisting of a polymer melt [64]. For nanodroplets they
observed strong distortions of the spherical droplet shape.

A lattice model based on the Ising model offers an analytical way (using cluster expansion
techniques) to address the line tension of a sessile droplet [65]. However, the handling of
this very crude model system is very sophisticated and does not open the way towards a
more realistic description.

Integral equation theories [66] originate mainly from the 1960s and yield approximative
analytical results in many cases. Nevertheless in general the results have to be obtained
numerically. This is an alternative route to obtain fluid properties, but to my knowledge
sessile droplets or wedges have not yet been analyzed with this method.

Density functional calculations presumably offer the most direct and numerically efficient
access to the morphology of the three-phase contact region and the line tension value.
This is the reason, why in this work DFT has been chosen as method of calculation.

Experiments on line tensions of sessile liquid droplets or sessile liquid wedges (as parts
of a larger droplet) mainly rest upon contact angle measurements and an interpretation
via the modified Young equation. As mentioned above this approach implies that not
the bare line tension value is extracted. Furthermore nanoscale substrate inhomogeneities
play an important role for the sessile droplet shape and limit the quantitative accuracy
in all substrate-related line tension measurements [67].

Scanning force microscopy (SFM), a variant of atomic force microscopy (AFM), is fre-
quently used to determine liquid surface topographies with a high resolution of a few
nanometers [68]. Pompe and Herminghaus evaluated the line tension from measured con-
tour profiles I(z) on the basis of the sharp-kink line tension theory (cf. Chapter 7) [68, 69].
This approach directly yields (wedge) line tension values and does not suffer from the
shortcomings of the modified Young equation. The quantitative agreement with the sharp-
kink theory is reasonable. For a first-order wetting transition line tension values ranging
from —200 pN for large contact angles (around 55°) up to +25 pN for small contact
angles (around 5°) were found [69]. A predicted line tension divergence could not be
observed, either since such small contact angles were not obtained or since a short-ranged
interaction might have dominated and possibly leads to a finite positive value [69]. In
order to minimize the perturbation of the droplet exerted by the AFM tip, recently AFM
experiments in noncontact mode were performed by Checco and coworkers [70].

The most widespread experimental technique to analyze the shape of microscopic sessile
droplets is light interferometry, a variant of optical microscopy. An experimental setup is
described in Ref. [71]. From the interference patterns the drop shape can be reconstructed
(as described, e. g., in Ref. [72]). The contact angle is obtained by fitting a spherical cap to
the top of the droplet and is usually interpreted in terms of the modified Young equation.

Electron micriscopy represents another method to detect the shape of sessile droplets
with a high resolution [73]. Once the shape profile of a small droplet is obtained, the
(microscopic) contact angle 6 can be obtained by fitting a spherical cap to the data points.
For larger droplets, above a base diameter of approximatively a micrometer, gravity plays
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a role and the contact angle has to be determined in a more evolved fashion [74, 75].

The droplet material does not have to be liquid at room temperature; metals, for instance,
can form sessile liquid droplets at high enough temperatures as well (e. g., gold on alumina
[76] or graphite [77] at 1100° C).

A widely applied experimental technique to manipulate droplets is based on the phe-
nomenon called electrowetting. A review on this topic can be found in Ref. [78]. The
basic setup contains an electrode as substrate, a sessile liquid droplet consisting of elec-
trically polar particles and a second electrode in contact with the droplet. The role of
the second /upper electrode is usually played by a needle immersed into the liquid or by
the ceiling in a closed nano-/microfluidic device which touches the droplet. If a voltage is
applied between the two electrodes, the charged fluid particles are exposed to an external
electrical field, which changes the droplet shape and may even lead to wetting, i.e., the
wetting temperature becomes voltage dependent. The voltage dependence of the contact
angle (determined as the contact angle of a spherical cap fitted to the top of the droplet)
is prevalently described by the Young-Lippmann equation,

cos (B(U)) = cos (A(U =0)) + % U2, (1.17)

where U is the voltage, d the thickness of the insulating layer between the substrate
electrode and the droplet, ¢, the dielectric susceptibility of vacuum, ¢, the relative per-
mittivity of the dielectric layer, and Olg the liquid—gas interfacial tension. There are other
extensions of Young’s law due to different aspects of electro-wetting systems, such as an
ionic layer (acting as a capacitor), a dielectric liquid, or a finite liquid resistance (which
is considered to be responsible for contact angle saturation at high voltages) [79]. If the
voltage is switched off, the system tends to restore the initial configuration (apart from
hysteresis and non-equilibrium effects). The local contact angle (measured microscopicly
in the three-phase contact region), however, resembles the angle given by Young’s law,
i.e., the local contact angle is independent of the applied voltage [80, 81, 82].

The electrowetting effect can be exploited experimentally or technologically in order to
discontinuously switch or gradually control the wetting behavior of the fluid simply by
changing the applied voltage. Moving the immersed electrode needle or using a patterned
electrode with different individually addressable areas is a method to steer the droplet
on the substrate (e.g., in a microfluidic device) [83] or to move single particles within a
droplet [84].

Contributions to the line tension stemming from substrate/fluid charges or external elec-
tric fields have been been addressed on a mechanical or local thermodynamic level in
recent years [85, 86]. However, a microscopic treatment seems to be out of reach yet.

Certainly droplet dynamics is a broad and interesting field of research as well. Even
though dynamics is beyond the scope of this work, some issues emerging there are briefly
mentioned. For a spreading small droplet intertia seem to influence the kinetics in the
first few milliseconds [87]. A sliding droplet (e. g., due to gravity on an inclined substrate)
contains an advancing front and a receding back part. The contact angles in these parts,
the advancing and receding contact angle, are usually quite different (called “contact angle
hysteresis”), and the equilibrium contact angle attains values between them. Furthermore
advancing and receding contact angles change (relax) slowly with time [88]. An advancing
or receding droplet front is also present for condensing or evaporating droplets, respec-
tively. Sliding drops on an inclined substrate can be investigated by Lattice-Boltzmann
simulations [89, 90, 91]. Lattice-Boltzmann methods constitute an efficient way to simu-
late dynamic behavior of fluids. The fluid dynamics is split into propagation and collision
processes on a discrete lattice. These methods form a simulation counterpart to analy-
tical hydrodynamic calculations (typically based on the Navier-Stokes equation) or their
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numerical implementations (which yield numerical solutions of the hydrodynamic equa-
tions and not simulation results).

Substrate inhomogeneities lead to a threshold angle for the substrate inclination. For
angles smaller than this threshold angle the droplet base does not move (and solely the
upper droplet part bends). An advancing contact line might be stopped by geometric
or chemical obstacles, which is called “contact line pinning”. It is a matter of interest
how the contact line interacts with defects and to what extent the line tension is changed
thereby.

Coalescence of droplets or conversely rupture of large droplets into smaller ones raises
the question of stability of droplets [92] or certain liquid structures. The line tension is
important for these processes. The dynamics of droplets in micro-/nanofluidic channels
— which can be open (like railway tracks) or closed (like tubes) — is another, lively
field of research. (For the topic of stability and micro-/nanofluidics see the comments
and references in Sec. 9.2.3 around page 132.) Droplets on a vibrating substrate [93] and
bouncing droplets (e. g., on a microstructured superhydrophobic substrate [94]) represent
further topics within the research on droplet dynamics.

Stationary shapes of liquid droplets in hydrodynamic flow and localized by optical tweezers
yield an effective line tension, which results from a competition of the bare line tension
with dipole and hydrodynamic forces [95]. The shape of the droplet reacts on external
manipulations, which brings the elasticity of the three-phase contact line into play [96].

1.6.3 Surface phase coexistence in a prewetting scenario

In a prewetting scenario (cf. Sec. 3.3.5) two surface phases of a fluid on a substrate can
coexist. The thickness of the liquid-like film forming near the substrate is different for
the two surface phases. In the case of a straight interfacial region between two of these
phase regions, a boundary (line) tension can be introduced (cf. Sec. 5.2.1 for details of
the definition and the reference system). At the wetting transition the boundary tension
is expected to equal the line tension [Eq. (5.7)].

In 1995 Perkovié¢, Blokhuis, and Han calculated the boundary tension of a model system
numerically exact [48]. In 2005 the boundary tension 7, was obtained by Monte Carlo
simulations [97].

1.6.4 Structured substrates

Furthermore geometrically or chemically structured substrates can give rise to a linear
free energy excess as well. This free energy per unit length of the structural line is called
“substrate boundary line tension”. The simplest case is a sharp geometrical change of the
otherwise planar substrate substrate (i. e., a substrate composed of a solid edge or wedge)
or a chemical “step”, i.e., a sharp straight line (or plane) separating two chemically
different substrate regions. The substrate boundary line tension is described in more
detail in Sec. 5.2.2. For the distantly related system of an electrolyte on an electrode
substrate with a step-like shape, the line tension of this step (called “step line tension”)
has already been evaluated (by solving the Poisson-Boltzmann equation) [98].
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1.7 Current state of research on line tensions in substrate-
free systems

Besides line tensions in systems containing a substrate, a line tension can arise in systems
without an inert substrate, i. e., in unconstrained three-phase coexistence. Such a situation
exists, e.g., in a system containing a liquid lense at a liquid—gas interface. If the three
phases «, G, and « are at bulk coexistence, the interfaces formed by pairs of them are
planar far away from the three-phase contact region. The angles between the three planes
set up by the dividing interfaces far away from the contact line and the involved interfacial
tensions are related by a force balance in the Neumann triangle,

Oy = OagCoS(T —ag) + 0, cos(m — ), (1.18)
that ensures mechanical equilibrium. From this expression the Neumann equation follows:
Oay + Oqp cOSOy + 0p,cosyy = 0. (1.19)

However, if a liquid lense of finite size (with radius r) is considered, deviations from the
above equation occur. Traditionally this difference is assigned to the line tension by means
of the modified Neumann equation [55],

Oqy + Onp cOSQ + 04, COSY = ; (1.20)

For a macroscopicly large liquid lense (i.e., r — o0) the situation of three planar inter-
faces intersecting at the contact line is recovered and the angles between the planes of
dividing interfaces are not changed by the line tension. Very recently it has been found by
Schimmele, Napiérkowski, and Dietrich [4] that the modified Neumann equation should
be extended towards an equation, which is called “corrected modified Neumann equation”
in the present work. This equation distinguishes between the role of the line tension and
additional quantities, which are comparable to the line tension term and therefore cannot
be neglected. Coexistence of three fluid phases is not possible for a one-component simple
fluid, however a binary mixture would form the simplest model system suited for this
purpose.

Up to now line tension experiments in unconstrained three-phase coexistence used the
modified Neumann equation in order to attribute deviations from the Neumann equation
to the line tension term appearing in that equation. However, in view of the above men-
tioned corrected modified Neumann equation, the experimental results did not determine
the bare line tension.

In 1992 Szleifer and Widom [99] studied the line tension behavior of a two-component
fluid model system upon approaching a wetting transition. In this substrate-free system
wetting means that one of the angles between two adjacent phases vanishes. The two
density profiles are described by approximate functions. The model free-energy functional
is based on a square-gradient approximation (i.e., it depends locally on the densities and
their gradients).

Recently Koga and Widom studied the line tension in unconstrained three-phase coexis-
tence [100, 101]. The line tension and the boundary tension were analyzed for a model
system that exhibits a first-order wetting transition [100]. The line tension upon ap-
proaching critical wetting was feasible within a closely related model system [101]. The
specific form of the free energy expressions in these two studies allows to exploit a known
formula (namely the Kerins-Boiteux integral), in order to calculate the line tension in
a convenient way. An advantage of these model systems is to be able to study the line
tension behavior close to wetting. There is strong numerical evidence that the predictions
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from Indekeu’s IDM for the line tension behavior upon approaching a wetting transition
are valid also for these model systems.

In 2005 Djikaev performed a Monte Carlo simulation of a rather simple ternary mixture
model system in the three-phase contact region in order to evaluate the line tension [102].

Experimentally obtained line tension values for liquid lenses are typically smaller than
those for sessile droplets [38]. The setup without a substrate has the advantage that the
otherwise strong influence of substrate inhomogeneities is not present. An oil lense at an
otherwise planar air-water interface was studied by Takata and co-workers in 2005 [103].
They obtained experimental line tension values for different surfactant concentrations
in water. Seven such values are reported, which vary between —138 pN and +24 pN.
However, the dependence on lense size and the experimental errors were not discussed.

Fluctuations of the contact line and the three interfaces were investigated by Clarke [104].
This analysis represents an extension of the fluctuation model for a sessile liquid wedge
[54] [see Subsec 1.6.1].



2 Classical density functional theory

Density functional theory (DFT) was first invented for studying the ground state (at tem-
perature 7' = 0) of quantum mechanical (electronic) systems. The fundamental principles
were developed by Hohenberg and Kohn [105] in 1964 and by Kohn and Sham [106] in
1965.

In the same year 1965 Mermin [107] studied electronic DFT for non-zero temperatures
and derived a variational principle for the probability distribution function in the grand
canonical ensemble. This work facilitated the transfer of the ideas of electronic DFT to
fluid systems. Reviews of classical DFT are given, e. g., in Refs. [108], [109], and [110].

Many interactions among fluids are based on quantum mechanical effects. Masking this
background, DFT for fluids treats particle interactions as classical potentials which, e. g.,
might depend on the interparticle distance, their orientation and their charge. In order
to distinguish between the DFT for quantum mechanical systems and the DFT for fluids,
the latter is called “classical” DFT.

2.1 Basic principles of classical DFT

2.1.1 Equilibrium density distribution p

The central quantity in classical DFT is the equilibrium one-particle density o. In a
homogeneous system this function is a constant, while in an inhomogeneous systems it
depends on the position, i.e., o = o(r) = o(z,y, z). The density ¢ is usually treated in
the grand canonical ensemble. This means that the natural variables of the fluid system,
temperature 7', volume V', and chemical potential u, are fixed, while their conjugate
counterparts, entropy S, pressure p, and number of particles N are functions of T', V,
and p.

2.1.2 Theorems of classical DFT

Classical DFT deals with the relation between the density ¢ and an external potential
Vext(r). It can be shown [108] that the external potential Ve (r) uniquely follows from
a equilibrium density Qeq(r). The inverse statement, that the equilibrium density follows
from the external potential, also holds, except for a system in a state of phase-coexistence.
(For a quantum mechanical system such a state corresponds to a degenerate ground-state.)

Classical DFT rests on two theorems: First, there is a functional Q[g] of the density
function p(r), which equals the grand potential Qeq, if the equilibrium density distribution
0cq () is inserted,

ch = Q[Qeq]' (21)

Second, this density functional obeys a variational principle. For a non-equilibrium dis-
tribution o(r) the value of the functional is larger than the grand potential,

Qo] > Qoeg] = Qeg- (2.2)

However, the exact density functional [g] is unknown in most cases. Hence a suitable
approximation for the functional has to be constructed.

19
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2.1.3 Density functional Q]
The density functional can be separated into

Qo] = Flol + LT o(r) (Vext(r) — ) (2.3)
with an “intrinsic” free energy functional F[o]. F[o.,] is the “intrinsic” free energy, since

the free energy contribution from an external field is left out here. Keeping this in mind,
the functional F is simply called free energy functional.

The free energy functional is divided into an ideal gas contribution and an excess part,

Flo] = Fald + Fex|oal. (2.4)

The intrinsic free energy functional of an ideal gas, which consists of point-particles with
a mass m and without any interactions, is exactly known as

Falo] = kT | dr ofr) (1 [Xo(x)] —1) (25)
R3

with the thermal de Broglie wavelength A\ = h//2mmkgT and the Planck constant h.
However, the density functional Q[g] does not depend on A [Eq. (2.17)] and therefore not
on the mass m of the particles.

The interaction among the fluid particles is reflected by the excess free energy functional
Fex[o]. The fluid-fluid pair interaction potential ¢g(r) with a distance r between two
interacting particles can be separated into an attractive and a repulsive part,

og(r) = o' (r) + oF (). (2.6)
The excess free energy functional can be decomposed as well,
Fexlel = FePlo] + F&ol. (2.7)

The functionals Fex’[o] and F2[o] depend on the total interaction potential ¢g(r) in
general. Widely used approximations [cf. Eq. (2.52)], however, allow to regard Fex' [¢] as
determined solely by ¢’ (r) and F2*[g] as determined solely by ¢ (r).

The repulsive potential is usually approximated by a hard-sphere (HS) potential. Thus
the repulsive excess free energy functional is replaced by a hard-sphere excess free energy
functional,

Fello = Fllal- (2.8)

The excess free energy functional of a HS fluid is well described by a microscopicly based
theory, the fundamental measure theory (cf. Sec. 2.2). The attractive part is treated by
perturbation theory (cf. Sec. 2.3).

2.1.4 Euler-Lagrange equation

General form of the Euler-Lagrange equation:

In order to find the equilibrium density distribution for a given functional, the variational
principle, Eq. (2.2), is applied. The functional derivative has to vanish for the equilibrium
density profile,

50
00(0) | 4(2) = o ()

~ 0. (2.9)

This equation is called Euler-Lagrange equation. From here on the index “eq”, indicating
an equilibrium particle density distribution, is suppressed and o(r) is — depending on the



Chapter 2: Classical density functional theory 21

context — used both for an arbitrary density profile and the solution of the Euler-Lagrange
equation. For the density functional at hand [Egs. (2.3) and (2.4)] the Euler-Lagrange
equation reads

0 6Falol  0Fex|o]

So(r) — dofr) do(r) + Vext(r) —p = 0. (2.10)

Chemical potential pu:

In the canonical ensemble, where the free energy is the appropriate thermodynamic po-
tential, for a homogeneous system with constant density g, (and volume V' and number
of particles, N) the differential relation

dF = —SdT —pdV + pdN (2.11)

holds. The chemical potential p is given by

oF|  of

_oF aof oF
"N, T e -

T.V; 0=0, do(r)

(2.12)

o(r)=0q

Since the free energy density f can be decomposed into two contributions, f,; and f,,
the chemical potential is also separable into the chemical potential of an ideal gas and an
excess chemical potential,

fa

Ofex
Ho= g + Hex = (9@ =

v do

(2.13)

TV

For an ideal gas with constant density o(r) = g, the chemical potential y,,; follows from
Egs. (2.5) and (2.13),

piq = ksT In(X3gy). (2.14)
This means that the density g, is related to the ideal gas chemical potential via

0y = ePta/r3,

Rearranged Euler-Lagrange equation:
The functional derivative dF;q[g]/do(r) can be obtained from Eq. (2.5) as well,

6Fale] 3
5ot kg In (Xo(r)). (2.15)
The Euler-Lagrange equation, Eq. (2.10), can be rearranged as
63 Fex[o]
= — 0 Vex o — ————— (- 2.1
Q(I’) Qo €XP { ﬁV t(r) + ﬁ/" 59([') ( 6)

The Euler-Lagrange equation [Eq. (2.10) or (2.16)] is solved for non-trivial cases by a
numerical iteration procedure, e.g., a Picard iteration scheme (cf. Sec. 6.2.4.1).

Rearranged density functional:
Employing Eqgs. (2.5) and (2.14) for the ideal gas terms Fiq[o] and p,g, respectively, the
density functional from Eq. (2.3) can be expressed as

8O0 = AFeclel + /

R

arot) fin (20) 14 50 - e p. )

Here the thermal de Broglie wavelength does not enter. This equation is applied to
calculate the grand potential for a given density distribution.
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2.2 Hard-sphere fluid: fundamental measure theory

Realistic intermolecular interactions exhibit a repulsion at short distances. The simplest
model comprising a repulsive fluid—fluid interaction is a hard-sphere fluid. It is formed by
an ideal gas plus the condition that the spherical particles may not penetrate each other.
The hard-sphere fluid was addressed for a one-dimensional system (hard rods on a line)
analytically with exact results [111] and for the three-dimensional case within density
functional theory [112]. In 1989 Rosenfeld presented his density functional approach to a
hard-sphere fluid [113]. It is called fundamental measure theory (FMT).

2.2.1 Geometric fundament of FMT

The exact expression for the excess free energy of a one-component hard-sphere fluid for
almost vanishing densities (low-density limit) contains a © function to account for the
impenetrability of the hard spheres (with radius R and diameter d := 2 R) [66],

lig 5Fulel = — [ dr [ ar'ofr) o) £ (v =) (2.18)

2 3
1 / / /
: /R dr /R A o(x) oft’) © (d— v —1']). (2.19)

The Mayer f function for a fluid-fluid interaction potential ¢g4(r) is defined as

Fr) = e B%(r) _q, (2.20)
Thus for hard-spheres with

oo for r<d
sow) = { 3 1 S (2.21)
the Mayer f function is f,4(r) = —O(d — ).

Rosenfeld decomposed the © function exactly into a sum of convolutions of weight func-
tions. The original work of Rosenfeld is valid for mixtures. However, since in the present
work exclusively a single species with hard-sphere radius R is employed, the formulae are
given for this special case.

The convolution of two (either scalar or vectorial) functions g1 (r) and g2(r) can be defined
by

men)m) = [ aar—r)nw) (222)

Rosenfeld introduced six weight functions w,(r), where the index « labels the four scalar
weight functions wsy, w,, w;, and w, as well as the vectorial weight functions w, and w.

For a one-component hard-sphere fluid with hard-sphere radius R the weight functions
are given as

wy(r) = O(R—|r]) | (2.23)

wy(r) = S(R—Ir|) | (2.24)

w() = 28 _ Bk (2.25)
Cwy(r) SR r)

wr) = 25 = S (2.26)

wy(r) = ,—:,6<R—|r|> , (2.27)

wy(r) = v (r) L §(R —|r|) (2.28)
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The decomposition of the @ function then reads

O2R—[r]) = (wy®@ws)(r) + (w3®wy)(r) + (wy @ wy)(r)
+ (wy @ wy)(r) + (W @ Wy)(r) + (Wy @ Wy)(r). (2.29)

For a constant density o the volume integrals over the two vectoral weight functions
vanish, whereas the corresponding integrals over the four scalar weight functions yield

4
Sdr w,(r) = gﬂR?’, 4rR%, R, 1 for a=3,2,1,0. (2.30)
R
These values recover the fundamental measures (volume, surface area, radius, and Euler
characteristics) of a sphere. This was the motivation for the name “fundamental measure
theory”.

2.2.2 Excess free energy in FMT

The six weight functions [Egs. (2.23) to (2.28)] are used to construct four scalar and two
vectorial weighted densities n,(r) by convolutions with the density,

ne(r) = (0 ®w,)(r). (2.31)

For a constant density o the weighted density n4 corresponds to the packing fraction

4
n = o §7TR3. (2.32)
FMT consists of two features. First, the above definitions of the weight functions and
the corresponding weighted densities. Second, it is assumed that the excess free energy

functional Fex[o] can be written as

8Fuld = [ ar®(namp. (233)

The function ®({n,}) corresponds to a dimensionless excess free energy density, and its
form is not predefined by FMT. Rosenfeld introduced a certain functional, the so-called
Rosenfeld functional. In 2002 the White Bear functional was derived [114] and refined in
2006 [115]. All these functionals are constructed for the low-density limit (¢ — 0) and
then extrapolated to higher densities. Fortunately even for higher densities the agreement
with the structure and thermodynamic quantities obtained from Monte Carlo simulations
of a hard-sphere fluid is very good.

All versions of FMT have the following characteristic properties in common: First, the
density functionals are non-local in the density. Second, the weight functions are geometri-
cally based and thus better justified than in an ordinary weighted density approximation
(WDA). Third, the low-density limit (¢ — 0) is correctly reproduced by construction.
Fourth, algorithms based on FMT are relatively efficient (cf. Sec. 6.2.2). Fifth, FMT is
applicable to mixtures of hard-spheres with different radii as well.

2.2.3 Rosenfeld functional

Rosenfeld proposed a certain choice for the function ® ({n,(r)}),

O ({ng(r)}) = —ngln(l—ng) + 221702
1—ng
(ny)® — 3n,y (ny - ny)
247 (1 — ny)?

(2.34)
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The excess free energy functional [Eq. (2.33)] that employs this function is called the
Rosenfeld (RF) functional.

Rosenfeld derived the function ®*F using scaled particle theory (SPT) [116, 117]. SPT
states that in the limit of an infinitely large hard-sphere radius R the chemical potential p
equals the work p V' that has to be performed against the pressure, if a spherical particle
with radius R, _, is inserted and then scaled up. Then one has the SPT equation

test

o
1 — = p. 2.
W 239
The Rosenfeld functional recovers the Percus-Yevick (PY) equation of state (EOS) [118,

119, 120] for a hard sphere fluid,

14+n4+n?

T (2.36)

Bppy = 0

In 1990 Kierlik and Rosinberg introduced a free energy functional for the inhomogeneous
hard-sphere fluid [121], which involves solely scalar weight functions and no vector con-
tributions. However, instead of the vectorial weight functions here weight functions come
into play, which contain first and second derivatives of Dirac’s d function. The Kierlik-
Rosinberg functional and the Rosenfeld functional are equivalent [122].

2.2.4 White Bear functional

The White Bear (WB) functional is related to the more accurate Carnahan-Starling (CS)
EOS [123] for a hard-sphere fluid,

 l4n+nr-n?
5pcs - Q (1_,’7)3 bl

(2.37)

instead of the PY EOS. A generalization of the CS EOS to a hard-sphere mixture is
called the Boublik-Mansoori-Carnahan-Starling-Leland (BMCSL) EOS [124, 125]. There
the pressure depends not on the total packing fraction but on the four scalar weighted
densities for mixtures. The BMCSL EOS serves as an input for the derivation of the WB
functional.

The function ® ({n,(r)}) [Eq. (2.33)] for the WB functional can be expressed as

¢WB ({na(r)}) = _no ln(l — 7’1,3) + w
-3

(ng)® = 3ny (ny - ny) « 2ng+(1- ng)?*In(1 —ny)
247 (1 —ngy)? 3 (ng)? '

The last factor (after the x symbol) goes to 1 for vanishing ng, that corresponds to the
packing fraction 7 in regions with constant density. Thus for small densities the WB
functional resembles the RF functional. Consequently the WB version also recovers the
correct low-density limit. The WB functional contains a slight inconsistency between the
pressure calculated from the SPT equation and the pressure from the underlying equation
of state.

(2.38)

Recently a modified version of the WB functional was presented, called the White Bear
mark IT functional [115]. Here the above mentioned inconsistency is overcome for a one-
component hard-sphere fluid. The WBII functional is based on another generalization of
the CS EOS to mixtures [126]. Density distributions o(r) resulting from the WB and the
WBII functional differ very little [115]. These tiny differences are much below the level of
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accuracy aimed at in this work. The computer program is slowed down by approximately
10 percent due to more elaborate array initializations, if the WBII version is applied
instead of the WB functional. Therefore for this work exclusively the WB functional is
used.

2.2.5 Functional derivate §F../do(r) within FMT

In order to solve the Euler-Lagrange equation, Eq. (2.16), or to calculate the grand poten-
tial, Eq. (2.17), it is necessary to calculate the functional derivative of the excess free
energy functional, 63 Fex[0]/do(r). The functional Foy is approximated by a hard-spheres
term and an attractive term [Egs. (2.7) and (2.8)]. So the functional derivative of Fex
contains two parts,

0Feclol  0FE o] | OFE'[d]
do(r) —  do(r) do(r)

The functional derivative F2 /§o(r), that belongs to the attractive part of the fluid—fluid
interaction, is discussed in Sec. 2.3.1.

(2.39)

If the hard-sphere repulsion is accounted for by FMT, the functional derivative of the
excess free energy functional for hard-spheres can be simplified to convolutions (convolu-
tion integrals): First, from Eq. (2.33) follows

557;&5 0P dnglo(r')]
=2 L' T ha) (2.40)

where again « labels the six weight functions (see Sec. 2.2.1). Second, from Eq. (2.31)
one finds

on,[o(r')] / /
————= = w,(r'—r) = (&), wu(r—r 2.41
50(r) (r'—r) = (£)ywa(r—r) (2.41)
with a “sign factor”,
o +1 for scalar weight functions
(o = { -1 for vectorial weight functions (2.42)

i.e., depending on whether the weight function w, is even or odd. Altogether the func-
tional derivative for the hard-spheres part reads

SBFEL] _ o N
e = @ (o ow) @) (2.43

For concrete calculations this general expression has to be adapted to the employed coor-
dinate system (cf. Sec. 2.4) and evaluated for the employed functional (see Subsecs. 2.2.3
and 2.2.4).

2.2.6 Thermodynamic quantities of a hard-sphere fluid

In this section the thermodynamic quantities of a one-component hard-sphere fluid — like
pressure, excess free energy density, and chemical potential — are considered. In order to
emphasize that solely a hard-sphere fluid is considered here and any attraction is absent,
the thermodynamic quantities are labeled by “HS”. In order to account for attractive
parts of the fluid—fluid interaction as well, the above formulae for the thermodynamic
quantities for a hard-sphere fluid are extended in Sec. 2.3.2.
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Pressure p"s:

As mentioned before, Rosenfeld’s functional corresponds to the Percus-Yevick equation
of state (PY EOS), Eq. (2.36), while the White Bear functional (in the standard and
the mark II version) corresponds to the Carnahan-Starling equation of state (CS EOS),
Eq. (2.37).

Chemical potential:

In general, the chemical potential y can be calculated from the free energy density f
via the definition p = 9f/0p. Since f can be split into an ideal gas part and an excess
contribution, also the chemical potential can be split analogously [Eq. (2.13)]. For a
hard-sphere fluid this means

Ofa , O1%

HS _ HS _ . 2.44
2 Hig t Hex 8@ 8@ ( )

The excess chemical potential p of a hard-sphere fluid reads

-5’ + 5n°
Buey = —In(l—n)+ 2 2 2.45
(1w + gt (2.45)
for the PY EOS and
3% —9n+8

Blee = —m— 35— 2.46
(1-n)° (240

for the CS EOS.

The chemical potential ;"® additonally contains the ideal gas chemical potential 3, =
In(A\%0) = In(\3) + Inp. However, the value of the thermal de Broglie wavelength A is
irrelevant for the thermodynamical properties of the system [Eq. (2.17)]. Furthermore
A merely enters as an additive constant on both sides of the conditional equation for
phase-coexistence, Eq. (2.59). If the chemical potential is shifted suitably,

S

Blig = Bpig —In ()\3/(%7733))7 (2.47)
and the tilde symbol is suppressed, the ideal gas chemical potential obtains a simple form,
Briq = Inm. (2.48)

This shift in the ideal gas part of the chemical potential is tacitly presumed in the
following.

2.3 Attractive interactions: perturbation theory

The interaction potential between two fluid particles is separated into a repulsive and
an attractive part. The repulsive part is approximated by a hard-sphere interaction
potential. The attractive part can be taken into account approximatively by a (first-
order) perturbation theory.

2.3.1 Perturbation theory/random phase approximation (RPA)

According to Eq. (2.18) the low-density limit expression of the excess free energy functional
involves the Mayer f function [Eq. (2.20)],

BFexlo] =~ — %/}Rl%dr/Rgdr' o(r) o(x') f (\r — r’\) , 0— 0. (2.49)
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In other words, here f corresponds to the low-density limit of the direct correlation
function ¢ however this is not a mean-field approximation.

The fluid—fluid interaction potential is separated into a repulsive and an attractive part
[Eq. (2.6)]. The repulsive part of the interaction potential equals a hard-sphere potential
in the case of a square-well fluid (cf. Sec. 2.3.5) or can be approximated by such a hard-
sphere potential in the case of a Lennard-Jones fluid (cf. Sec. 2.3.4),

$a(r) = ¢ (r) + 0" (r) = éus(r) + o' (r) - (2.50)

Within random phase approzimation (RPA) the direct correlation function ¢?) is appro-
ximated by

? ~ ) — peut, (2.51)

where cgs) is the direct correlation function of the hard-sphere reference system and the

attractive part of the interaction potential constitutes a perturbation [66]. RPA is a
mean-field-like approximation.

This approximation is also refered to as a “first-order perturbation theory”, since the per-
turbation of the HS reference system corresponds approximately to a first-order expansion
(in the attractive potential) of the Mayer f function.

Thus the excess free energy functional can be expressed as the sum of the (extrapolated)
excess free energy of a hard-sphere fluid and a term containing the attractive part of the
interaction,

Foldl = Pl + £
1
=l + g [ dr [ a ofr) o) 6" (). (252)
R3 JR3

The functional derivative of the attractive excess free energy, Eq. (2.39), is specified for
the RPA (first-order perturbation theory),

M r I'/ r— r/ _ att r
o [ v o) B =vl) = (09 505" (1) (2.53)
= (0®wg)(r) =: ng(r). (2.54)

Like a weighted density n, is a convolution of the density p and a weight function w,,
the functional derivative of BF&" is a convolution of ¢ and a function wg. In an effec-
tively three-dimensional system wg is identical to the dimensionless attractive part of the
interaction potential. However, in effectively lowered dimensions (cf. Sec. 2.4) the corres-
ponding function is either called “weight function” as well, if its role in a convolution with
o shall be emphasized, or “integrated potential” in order to stress its origin. Due to the
analogy with weighted densities the convolution product is also regarded as a weighted
density, called ng-.

2.3.2 Thermodynamic quantities

Thermodynamic quantities — like pressure, (excess) free energy density, and (excess)
chemical potential — of a hard-sphere fluid have been discussed in Sec. 2.2.6. Now
these quantities associated to a fluid with additional attractive fluid—fluid interaction are
presented.

Excess free energy density f..(0):
According to the (approximative) excess free energy functional in Eq. (2.52) the bulk
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excess free energy density f..(o) can be decomposed into the sum of a hard-sphere term
and a contribution from the attractive part of the interaction. The integral over this
attractive part,

o = | dr o () (259
R3
is called the integrated strength of the attractive potential. Then one has
1
oo = f&8 + I&" = [+ 500 (2.56)

This equation determines the excess chemical potential and the excess pressure.

Excess chemical potential:
The excess chemical potential follows from Egs. (2.13) and (2.56),
Ofex _ Of&F | Of&

e = 505 = 5y T 9y = flex + 0. (2.57)

Pressure p:

In general, the free energy density and the chemical potential are related to the pressure
via p = — (f — p o). Hence the hard-sphere pressure is given by

L,

e (2.58)

~ HS
p =P +2

2.3.3 Bulk phase diagram

A “bulk” system is a fictitious infinitely large system (i.e., without boundaries) without
any external fields. A phase diagram is a graph that illustrates for which values of phy-
sical parameters (like temperature, pressure, chemical potential, and packing fraction or
particle density) which thermodynamic phase is present in equilibrium. A bulk phase
diagram displays the different phases of a bulk system. The lines which separate regions
(in parameter space) of different phases are called binodal lines or binodals. However,
since meta-stable states (e.g., a supercooled /undercooled liquid or a superheated liquid)
could exist, also the spinodal lines or spinodals are interesting, since they tell where a
phase-transition must take place at the latest.

In contrast, a surface phase diagram can contain additional information about surface-
related phenomena, e. g., the wetting temperature and the course of a prewetting line (if
they exist).

In a grand canonical ensemble the conditions for coexistence between fluid phases (in
thermodynamic equilibrium) are the following: For a given temperature T' below the
critical temperature T, the chemical potential and the grand potential have to be the
same for the coexisting phases. In a bulk system 2 = —pV holds, and the pressure has
to be identical in the coexisting bulk phases.

Hence for liquid—gas phase coexistence, the case relevant for this work, the conditions of
bulk phase coexistence read

! !

b = Pg and o = Hg (259)
where the indices 1 and g refer to the liquid and the gas phase, respectively. These two
conditions represent a coupled system of non-linear equations. The packing fractions
and 7, or, equivalently, the bulk densities g; and g, of the coexisting liquid and gas phases
have to be obtained numerically.
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Within RPA and for a certain HS EOS the phase diagrams for all intermolecular inter-
actions collaps to a master curve, if the temperature is scaled accordingly. This is due to
the fact that within RPA the phase diagram merely depends on the integrated strength
a of the interaction potential [Eq. (2.55)].

From the condition dp/do L0 the spinodals,

kT . = —ap ) (2.60)
spinodal 1+477+4772_4773+7747

are obtained for a fluid described by RPA and the CS EOS. Likewise for such a system
the conditions dp/dp L 0 and 9?p/00? < 0 lead to

S —5nt A +202+50.—1 = 0 (2.61)

for the packing fraction at the critical point, n.. Hence this critical packing fraction is
N, =~ 0.130444, and the critical temperature follows as

1
kgT, ~ —0.047164 —— a. 2.62
B+c %ﬂ' R3 «Q ( )

The bulk phase diagram for a fluid described by RPA and the CS EOS is shown in Fig.
2.1 for the case of a so-called WCA-LJ fluid (see Sec. 2.3.4 for details).

2.3.4 Lennard-Jones potential

Liquid—gas coexistence is required for studying the liquid wedge system in thermodynamic
equilibrium. Hard-spheres do not exhibit a fluid—fluid phase transition. The simplest
possible fluid exhibiting a liquid—gas phase transition is a square-well (SW) fluid, which
will be described in Sec. 2.3.5.

A phenomenological interparticle interaction potential widely used in physics and chem-
istry is the Lennard-Jones (LJ) potential. The famous LJ (12-6) potential is a pheno-
menological fluid—fluid interaction potential, which contains both a long-ranged attrac-
tion and a short-ranged repulsion. It resembles the tail of a van der Waals potential, i.e.,
¢, (r — 00) ~ —r~%. The LJ (12-6) potential is defined as

Gy(r) = dey, [(%)12— (%)6] (2.63)

with an energy parameter €, ; > 0 (that corresponds to the depth of the potential) and a
length parameter o, ;. The LJ potential crosses zero for r = o, ; and attains its minimum
for r = rpn = \6/§O'LJ.

The original interaction potential is decomposed exactly [Eq. (2.6)] into a repulsive and
an attractive part,

Gus(r) = G (r) + ory(r). (2.64)

The attractive part is tackled by perturbation theory, while the repulsive part is approxi-
mated by a hard-sphere potential,

Guy(r) = dys(r) + G157 (r). (2.65)
There are two commonly used separation schemes:
Weeks-Chandler-Andersen (WCA) separation scheme:

The decomposition method employed in this work goes back to Weeks, Chandler, and
Andersen [127]. The LJ potential is repulsive for r < 7y, = v/20,, and attractive for



30 2.3 Attractive interactions: perturbation theory

7 > Tmin. The attractive part of the potential, ¢2%*(r), is constructed by this attractive

contribution and extrapolating it into the core by a constant,
6 6
?‘KE(tJAfLJ(T) = T E 9(\/§ULJ - T) + ¢ry(7) G(T - \/§ULJ)' (2.66)
Consequently the repulsive part reads

woa_ry(r) = (gbu(r) + sLJ) @(\6/50’LJ - 7‘). (2.67)

Barker-Henderson (BH) separation scheme:

An also widely applied procedure to split the potential into two parts was invented by
Barker and Henderson [128]. Here the positive and negative parts of the potential are
separated, i.e.,

%trLLJ(T) = Pp,(r) @(T - ULJ) (2.68)

and

s (1) = ¢, (r) O(oy, — 7). (2.69)

Effective hard-sphere diameter d (7} ,) for WCA and BH:

In both the BH and the WCA scheme a part of the interaction potential is approximated by
a hard-sphere potential with radius R and diameter d = 2 R. A temperature dependent
choice of an effective hard-sphere diameter d g(7") has been suggested by Barker and
Henderson [128].

In this work the Lennard-Jones parameter o, ; is directly employed as hard-sphere dia-
meter,

2R = d = o, (2.70)

Nevertheless, the temperature dependent epxressions are presented for completeness: The
effective hard-sphere diameter reads

9L
By /dr {1_6—5%00} (2.71)
r=0
for a BH-LJ fluid and
%ULJ
oA (T ) o / dr {1_6—5[¢LJ(7‘)+5LJ]} (2.72)
r=0

for a WCA-LJ fluid.

Integrated strength a:
The integrated strength [Eq. (2.55)] of the attractive part of the WCA-LJ potential is

32
Qwea-Ls = /dI‘ ¢?}\1/:(t}A—LJ(|r|) = 9 27701%.1 €Ly
R3
A 4 64
(1 _§W(3R)3 £, X 8—1\/5. (2.73)

For a BH separation « is

a 32
Qpy_ry = /Rgdr ¢Bt}¥7LJ(‘r‘) = _gﬂ'agJ €Ly = aWCA—LJ/\/i' (2.74)
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ud —— WCA-LJ, without d g |
_____ WCA-LJ, with d_g
----------- BH-LJ, without dg |
I/ N N BH-LJ, with d_g

Fig. 2.1: Bulk phase diagrams for several models for a Lennard-Jones (9-3) fluid. The effective
temperature T, ; = 1/(Be,,) is plotted versus the packing fraction . The phase diagrams
are determined within the random phase approximation (first-order perturbation theory)
for the Weeks-Chandler-Anderson (WCA) and the Barker-Henderson (BH) separation
scheme. Both the WCA-LJ and the BH-LJ fluid are analyzed with and without the
effective hard-sphere diameter d . In the situations without d,4 the LJ parameter o
is chosen as the corresponding hard-sphere diameter. A WCA-LJ fluid without d g is
employed in the DF'T calculations for this work. In this case the critical point is situated
at 7, ~ 0.130444 and T}, =~ 1.422933. The temperature of the triple point of a LJ
fluid is T, , ~ 0.75 [129]. However, for the WCA-LJ fluid with a relatively high critical
temperature (v/2 times as large as for the BH-LJ fluid, each considered without d.g) the
triple point temperature for a WCA-LJ fluid is expected to be situated in the effective
temperature range between 0.75 and v/2 x 0.75 ~ 1.06.

This relation between « for BH and WCA, respectively, illustrates the difference between
these separation schemes. However, if a reduced temperature ¢ := 7T} ;/T} ; . with a critical
effective temperature 7T} ; . is considered, the apparent difference between BH and WCA
becomes much smaller, and the two phase diagrams within RPA even match exactly.

Bulk phase diagram of a (WCA-)LJ fluid:

The bulk phase diagram of a WCA-LJ fluid calculated within RPA (or “first-order” per-
turbation theory) and the CS EOS for the hard spheres is shown in Fig. 2.1. The spinodals
and binodals are plotted in the plane formed by the effective temperature

1
T . =
- Ber,

and the packing fraction 7.

(2.75)

Weight functions:
The weight function wg(r) [Eq. (2.54)] for the WCA decomposition of a LJ interaction is
given by

wLJ(r) = ﬁqb%\&gAfLquD' (2'76)

The corresponding one- and two-dimensional versions w, ,(z) and w,,(z, z) are presented
in Sec. 2.4.2 [Egs. (2.94) and (2.110)].
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2.3.5 Square-well potential

A SW fluid represents a short-ranged, theoretical model system, which is widely used (for
overviews see, e. g., Refs. [130] and [131]). The SW potential is defined as

oo forr<o
g (r) = —Eqw for o <r <ogy (2.77)
0  forr > o4y,

where d = 2 R is the hard-sphere diameter and the energy parameter e, > 0 describes
the depth of the potential well. Throughout this work

3
Ogw = §d = 3R (2.78)

is chosen. For the inverse case of a negative value of the well depth parameter ¢ the fluid
is called square-shoulder fluid [132].

The SW potential is well suited for a (first-order) perturbation theoretical treatment. It
can be decomposed into a hard-sphere potential and an attractive potential. Since the
potential is infinitely large for small distances anyway, one is free to chose the attractive
part arbitrarily for small distances r < d. An intuitive choice is to extrapolate the con-
stant —eg,, into the core of the hard-spheres. Then the attractive part of the interaction
potential as a function of the interparticle distance r reads

(2.78)

g%(T) = —Egw O (Usw -r) = —ewOBR-T). (2.79)

The integrated strength [Eq. (2.55)] of the attractive part of the SW potential is

4 (2.78)
gy = /Rgdr Ale]) = —gﬂag’wasw = — (37 R®) x 2Tegy,. (2.80)

This quantity determines the bulk phase behavior [Egs. (2.57) and (2.58) and Sec. 2.3.3].

As mentioned before (in Sec. 2.3.3), the phase diagram within RPA (and for a certain HS
EOS) is the same for all fluids. Thus the phase diagram calculated for a WCA-LJ fluid
(see Fig. 2.1 in Sec. 2.3.4) can readily be used for the SW fluid as well, if the axis of the
effective temperature is scaled properly. The integrated strengths of the attractive parts
of the SW and the WCA-LJ potential are identical for

64
Eqw = g\/5 e, ~ 1.117403 ¢, (2.81)

or, equivalently, for

1 11 1
TSW : =

= = = T, ~ 0.894932 T, ;. 2.82
/BESW %\/5 ﬁELJ g_zll 2 LJ LJ ( )

The weight function wg(r) employed in perturbation theory [Eq. (2.54)] in the SW case
is given by its attractive interaction part,

wey (r) = Bogy(|r]). (2.83)

For effectively one- and two-dimensional Cartesian systems the corresponding weight func-
tions wgy (2) and wgy (7, 2) are displayed in Sec. 2.4.2 [Egs. (2.93) and (2.109)].
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2.4 Effectively one- and two-dimensional
Cartesian systems

2.4.1 Exploiting symmetries in three-dimensional systems

If one considers a three-dimensional liquid or gas in contact to a planar, homogeneous
wall, the corresponding density profile p exclusively depends on the (Cartesian) coordinate
z perpendicular to the wall, i.e., o(r) = o(z,y,2) = o(z), if the interaction is isotropic
and no spontaneous symmetry breaking (e.g., crystallization) occurs. In the case of
coexistence between the liquid and the gas phase, the density profile may vary in more
directions, depending on the boundary conditions and external fields. A liquid wedge on
a substrate has a density profile that is translationally invariant in one lateral direction,
say the y-direction. The density profile solely depends on the other lateral coordinate x
and the vertical coordinate z, o(r) = o(z, 2).

If the coordinate dependency of p is restricted to one (z) or two (z and z) coordinates,
crystallization — where the density dramatically varies in all three spatial directions —
cannot be covered. In other words, the configuration space has been reduced. This
procedure remains reasonable for temperatures above the triple point. Also the possible
effect of pre-crystallization at a wall (i.e., crystallization at a density slightly below the
density where crystallization takes place in a bulk system) is not considered here. However,
if a lattice-like structure arises in the effectively two-dimensional density o(z, z), this is at
least a sign that crystallization could take place, if the dependency on the third dimension
was released.

Another example of an effectively one-dimensional system is a fluid around a larger spheri-
cal particle, e. g., a single colloid. Here above the melting temperature the density solely
depends on the distance from the center of the particle.

2.4.2 Weighted densities

The coordinate dependency of the density profile ¢ is crucial for concrete calculations.
It depends strongly on the type of coordinate system (Cartesian, polar etc.) and on
the number of “active” coordinates, i.e., the number of coordinates the density profile
really depends on. The convolution integrals and the associated weight functions w,, in
the basic version of FMT are written in three Cartesian dimensions. If one uses another
type of coordinate system or less than three coordinates, the weight functions have to be
expressed in the new coordinate system such that they lead to the same weighted densities
as in the Cartesian case.

In the following Rosenfeld’s weight functions w,,, the square-well weight function wg,,, and
the Lennard-Jones weight function w, ; are adapted to effectively one- and two-dimensional
systems.

2.4.2.1 Effectively one-dimensional Cartesian systems

Let the particle density in the three-dimensional space be translationally invariant in
two Cartesian directions, so that it exclusively depends on a single direction, say the
z-direction,

o(r) = o(z). (2.84)
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Then the weighted densities n,(r) also depend on solely one Cartesian coordinate and
can be written as [Eq. (2.31)]

ma(2) = malr) = [ dr'ofe =) ()
= [ ole = Huals) = o)) (2.85)

with one-dimensional weight functions (or more precisely: weight functions with a one-
dimensional argument),

wy (2) = 7d:1: 7Ody w, (r), (2.86)

Tr=—00 Y=—00
and one-dimensional convolutions.

The one-dimensional weight functions for FMT are determined from the three-dimensional
ones. Merely three of them are independent,

ws(z) = w(R*-2HOR-|7) , (2.87)
wye(z) = 2rRO(R—|z|) , (2.88)
(W2), (2) = 2mzO(R - |z]), (2.89)

where the x and y components of the vectorial weight function w,(z) vanish. The other
three weight functions are related to them via a constant prefactor,

wy(2) _ wy(2) _ wo(2)

R wy(z) = R and w(z) = R (2.90)
The functional derivative of the excess free energy functional of a hard-sphere fluid [Eq.
(2.43)] can also be expressed in terms of the one-dimensional weight functions and one-
dimensional convolutions,

IBFE ol 9% oW
o) %:(i) (an ® >() (2.91)

The perturbation theoretical treatment of the attractive part of the intermolecular inter-
action is specified for the case of an effectively one-dimensional density o(z) as follows:
Equation (2.54) is valid for a one-dimensional convolution as well, and the corresponding
effectively one-dimensional weight function wg(z) with

/OO dz /OO dy wg(r) (2.92)

r=—00 Y=—00

wy(z) =

can be determined for both the square-well and the Lennard-Jones potential: First, the
weight function for the SW fluid reads

Wew(2) = — mhegy (Ugw - 22) S} (Usw —|2]). (2.93)
Second, the weight function for the LJ potential (using the WCA separation) is

wy,(2) = —mfey, (g(%JLJ)2 - z2> 6(\6/5O-LJ - |z|)

4012 b
—7Be,, (—32—% + 2?) O(|z| — oyy)- (2.94)
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2.4.2.2 Effectively two-dimensional Cartesian systems

Analogously, a three-dimensional density distribution may now depend on two Cartesian
coordinates x and z, but not on the y coordinate,

o(r) = o(z, 2). (2.95)

The weighted densities for this case involve two-dimensional weight functions w,(z, z)
and two-dimensional convolutions:

n,(z,z) = ny(r) = / dr’ o(r — ') w, (r)
R3
= /dz’/dz' olx — 2,z — 2wy, (2,2) = (e®@w,)(z,2). (2.96)
R JR
The two-dimensional weight functions
wy(x,z) = / dy w,(r) (2.97)
Yy=—00

within FMT are given as

ws(x,z) = 2¢/R%2— (224 22)O(R— Va?+22) (2.98)
2R

wa(®,2) = e s O(R — Va?+2%) (2.99)

2x
(Wa)y (2.2) = —— s O(R — Va2 +22) (2.100)

2z
(wa). (2,2) = —= ) O(R — Va2 +22) (2.101)
(wy), (z,2) = 0, (2.102)

and

wy(z) = 121(;), wy(z) = Z?ng), and w(z) = VZT(;) (2.103)

Numerically it is difficult to calculate the weighted densities ny(x,2) and ny(z,z) [and
their dependent weighted densities n,(x, z), ny(z, 2), and n,(z, z)] by a convolution of
o(z, z) with the corresponding weight function w,(z,z) or wy(z, z), since they diverge
at the border of the © function. In order to circumvent this difficulty, relations between
the weight functions are used: The weight functions w, and w, are related to the weight
function wy via

wy = and wy = — Vuws, (2.104)

—w
OR*
respectively. These relations hold independently of the effective dimension of a three-
dimensional system, i.e., for ws(r), ws(z,2), and ws(z). They translate to relations
between the weighted densites,

0®wy) = (2.105)

0 0
n2:g®w2:g®ﬁw3:@( oR
and

n, = 0wy = 0®(—Vuws) = —V(e®w;), (2.106)
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since here integrations and differentiations permute. Consequently the weighted density
ny evaluated for two or three different HS radii is sufficient to determine the other weighted
densities as well. Details of the numerical implementation are mentioned in Sec. 6.2.2.3.

The functional derivative of the excess free energy functional of a hard-sphere fluid in the
case of a two-dimensional density o(z,z) can be expressed as a sum of two-dimensional
convolutions,

BFelel 0P w ) (2
ooy Za:(i)a (8%@’ a)( ) 2). (2.107)

The perturbation theoretical treatment of an attractive interaction part is specified for
the case of an effectively two-dimensional density o(z, z) as follows: The weight function
wg(x, z) for an effectively two-dimensional system reads

wg(z,z) = /dy wg(r) (2.108)

in general and
Wew(T,2) = —2Begy \/Ugw — (22 +2?) ®(O'sw - Va?+ Zz) (2.109)

for a SW fluid.

Furthermore I calculated the weight function w,,(z,z) for a WCA-LJ fluid analytically.
It depends merely on the distance from the origin in the xz plane, ¢ := Vz2 + 22. Except
at the origin the weight function can be expressed as

wy,(7,2) = wy(c)
seumd [G17 (%) - 37 ()] o(c - ¥20)

+ m(ai) (V20 —c)} (2.110)

LJ

with an auxiliary function
fu(s) == 8 711 arctan (s/\/21/3 _ 32) . 21% 510 /91/3 _ 2
_% 91/3 ¢=8 ., /91/3 _ g2 _ % s—6/21/3 _ 42
—3 s7° arctan (s/\/21/3 — 32) + g_l 21% s—41/91/3 _ 2
+221/3 572\ /213 — 52— 2,/21/3 — g2, (2.111)

At the origin the weight function is described by

lu
55

For numerical implementations an expansion of w; ;(c¢) for small values of ¢ is useful. It
is reported in Appendix A on page 144.

w,,(x=0,2=0) = V2 Be, 0, (2.112)



3 Planar fluid interfaces

The density profiles of three planar interfaces, namely a solid-gas (s—g), a solid-liquid
(s1), and a liquid—gas (I-g) interface, serve as boundary conditions for the sessile liquid
wedge system. In this work the crystal structure of the substrate is neglected and the
substrate particles are assumed to be smeared out to an unstructured, homogeneous
continuum. Thus effectively one-dimensional s—g, s—1, and l-g interfacial density profiles
o(z) are ingredients for the liquid wedge program.

General aspects of fluid interfaces, like the concept of surface tension and (Gibbs) dividing
interface, are introduced in the following section. Then the cases of a liquid—gas interface
(cf. Sec. 3.2) and a solid-fluid interface (cf. Sec. 3.3) are discussed.

3.1 Surface tension and dividing interfaces

Infinitely large homogeneous systems (“bulk” systems) are an idealization, actual systems
are always surrounded by bounderies. Boundary conditions often influence system pro-
perties not only in these border regions but also further away from them, deep inside the
system. An interface is formed where two phases are in contact. A surface is a certain
kind of interface at which one side is filled with air.

An interface usually changes the energy of the system in comparison to bulk systems.
The surface excess free energy or the surface excess contribution to the grand potential,

oA = Q4+ pV, (3.1)

scales with the interfacial area A (for an almost infinitely large system and a volume V/
of the fluid). The associated prefactor is called surface tension or interfacial tension o.

Excess quantities (like surface tensions and line tension) are calculated on the basis of
a reference system, which consists of imaginary regions of bulk density. Such a region
is confined by at least one dividing interface, which is the imaginary sharp interface
separating two adjacent regions containing different thermodynamic phases. The dividing
interface of a liquid—gas interface is discussed in Sec. 3.2.1, whereas solid-liquid and solid—
gas interfaces are considered in Sec. 3.3.2.

3.2 Liquid—gas interfaces

3.2.1 Liquid—gas dividing interface

In a situation where a liquid and a gas phase can thermodynamically coexist a planar
liquid—gas interface actually develops only under the influence of a weak external field,
e.g., gravity. For most theoretical descriptions this field can be chosen arbitrarily weak
and thus be neglected [133].

At a liquid—gas interface the density distribution varies smoothly over several or many
atomic radii. Thus it is not obvious where exactly to locate the dividing interface. In prin-
ciple the l-g dividing interface can be chosen arbitrarily, and there are several reasonable
ways to do so:

First, the plane z = z, with a density corresponding to the arithmetic average of the bulk
liquid and bulk gas densities,

oz = z) = %(@1 + 0g) 5 (3.2)

37
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is an intuitive choice of the dividing interface of a planar I-g interface. This definition has
been employed in the present work.

Second, the equimolar dividing interface of a planar 1-g interface [assuming lim p(2) = g,
Z——00

and lim o(z) = g, without loss of generality] is defined by

/dz o —o(z)] = /dz [o(2) — o] - (3.3)

This definition arranges the dividing interface plane z = 2, such that on each side there is
the same amount of particles “missing” in comparison to the bulk liquid density or “too
much” in comparison to the bulk gas density, respectively. In other words, the particle
deficit on the liquid side and the particle excess on the gas side of the equimolar dividing
interface are balanced. For the sharp-kink approximation (cf. Chapter 7) of a liquid-gas
interfacial profile this second definition recovers the first definition.

The liquid—gas surface tension 0y, Is independent of the choice of the dividing interface
for a planar liquid-gas interface. This can be understood by considering the following
definition for the l-g surface tension Ol which is more rigorous than the general one in
Eq. (3.1):

] Q= Viw — Vyw, ) Q+pVi +pV,
Ol = lim = lim
V,,Vy—o0 Al Vi,V —00 Al
Q \%
— lim P (3.4)
V.Vg—oo A «
The grand canonical free energy densities wy = —p and wy = —p of the liquid phase and

of the gas phase, respectively, are equal in thermodynamic equilibrium. For a shifted
dividing interface the volumina of each of the two phases changes, but the overall volume
V =V + V, remains constant. Several analytic approaches to calculate the liquid-gas
interfacial tension of a LJ fluid have been made (see, e.g., Ref. [134] and references
therein).

Besides the macroscopic thermodynamic description, which ignores the molecular compo-
sition of simple fluids, and the statistical mechanical picture, which takes the interactions
among molecules into account (on the basis of a partition function or a DFT), another
level of description of a l-g interface exists, namely the mechanical (or local thermo-
dynamic) description. From the condition of local mechanical equilibrium an expression
for the liquid—gas interfacial tension follows [133],

o
ne = [ - nle, (35)
zZ=—00
where p, is the normal and p;(z) the transversal pressure. However, the definition of the
latter is not unique and thus makes the approach problematic. This is due to the fact
that the forces within the fluid act between molecules and the above expression is based
on continuum mechanics [133].

3.2.2 Liquid—gas interfacial density profiles

The asymptotic structure of a planar interface reflects the asymptotic decay of correlations
in the corresponding bulk fluid [135]. Here planar liquid-gas interfaces of a LJ and a SW
fluid are considered. Let z be the coordinate perpendicular to the interface, which is zero
at the interface, positive for the gas region and negative for the liquid region.
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A LJ fluid comprises long-ranged interactions among the particles. For such a fluid—fluid
interaction the density distribution far away from a planar liquid—gas interface reaches
the bulk gas or bulk liquid density obeying inverse power laws, which are called “van
der Waals tails”. The dominant term behaves as =3 [135, 136, 137, 138]. Therefore the
asymptotic behavior of the 1-g interfacial density profile can be described by

o) o ~ —|A for z— —oo, (3.6)
0(z) — oy ~ z73 for z — oo. (3.7)

Also oscillatory behavior may occur for small or intermediate distances from the interface,
see Fig. 3.1.

A SW fluid represents a model fluid with short-ranged interactions among the fluid parti-
cles. For short-ranged interactions the asymptotic convergence of the density o(z) towards
the liquid or gas bulk density exhibits either a monotonic, exponential decay or exponen-
tially damped oscillations, depending on which of the two cases applies to the decay of
correlations in the corresponding bulk fluid. A cross-over between the two scenarios oc-
curs at the Fisher-Widom (FW) line in the phase diagram [139]. Typically the FW line
reaches the binodals on the liquid side of the phase diagram. For temperatures above the
temperature of that point in the phase diagram the density decays exponentially on both
sides of a l-g interface. Below that temperature solely the density on the gas side of a l-g
interface decays purely exponentially, while the density on the liquid side attains its bulk
value in an exponentially damped oscillatory fashion. Examples of density distributions
of a SW fluid at liquid—gas interfaces are given in Fig. 3.1.

3.3 Solid—fluid interfaces

Solid surfaces could exhibit arbitrarily many shapes and structures, which likewise af-
fect the shape of an interface between this solid and a fluid phase. Here the substrate
molecules are assumed to be homogeneously smeared out, thus the actual crystal struc-
ture is neglected. The solid—fluid interface for a planar, unstructured continuum substrate
is effectively one-dimensional, if a one-component simple fluid and isotropic interactions
are assumed and spontaneous symmetry breaking is excluded. In this case the density
distribution exclusively depends on the distance from the substrate surface, i.e., 0 = 0(2).

3.3.1 Substrate potentials

A commonly used description of the interaction between a fluid particle and a planar,
laterally translationally invariant (i. e., laterally smeared out, but possibly inhomogeneous
in the direction perpendicular to the surface) solid substrate is an expansion of the sub-
strate potential in terms of 1/z, where z is the distance from the substrate. If one has a
substrate composed of acutal molecules in mind, the plane z = 0 corresponds here to a
plane through the centers of the topmost layer of substrate molecules. The long-ranged
behavior is given by a 1/2 term. Thus the substrate potential can be written as

V(>0 = — > Z_ (3.8)
i>3

with constant coefficients u,. Clearly, merely a fraction of all imaginable substrate poten-
tials can be described that way; however, this class of substrate potentials is particularly
suited to analyze long-ranged solid—fluid interactions systematically.

A steric interaction (repulsion) between the substrate and the fluid is taken into account
by the substrate—fluid potential. An excluded volume (cf. Sec. 3.3.3) can be assigned
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to the narrow zone near the substrate surface which is almost free of (centers of) fluid
particles, in order to construct the external potential Vi (z) that is employed in the
numerical calculations.

LJ (104), (9-3), and (9-4-3) potentials:
A special case of the above mentioned class of substrate potentials is the one which arises
from a standard Lennard-Jones (12-6) potential [Eq. (2.63)],

oul) = e, |(2)" - ()], (39)

r r

between a fluid particle and a substrate particle at distance r. In general, the substrate
potential is defined as

Vi) = [ dr' 0,07 dulir =) (3.10)

with the density o, (r') of the substrate (wall) particles, which in the present cases is
constant (o) in the substrate region and zero outside. Note that the substrate is assumed
to be smeared out and thus homogeneous even on a microscopic level, consequently its
potential solely depends on the vertical distance z from the surface.

If the substrate occupies a half space, the resulting potential contains a z=? and a 27>

term and is called Lennard-Jones (9-3) potential,

Vis(e) = [ oy dulie =) = [ v’ 0,00~ dullr )

- S [3(E)-(2)] o

In this work the density of substrate particles is set to
0, = 0g°. (3.12)

Likewise in the case of a LJ fluid for the parameter o, the corresponding parameter of
the fluid is chosen, i.e.,

w = Oup (3.13)

g

(For easier comparison also in the case of a square-well fluid the parameters of the external
potential are denoted that way.) These two choices are done without loss of generality,
since the potential strength can still be adjusted by ¢,,. A given external potential can be
expressed by another substrate density and another value for o, as well, if the parameter
€, is rescaled accordingly. Thus the solid-fluid interaction parameters and the coefficients
from Eq. (3.8) are related via

2 6 23

Uy = MO OwEy = FTOLEy (3.14)
4 4
ug = —Eﬂgwavlfaw = —ETFO'EJEW. (3.15)

Note that a positive coefficient u; corresponds to an attractive contribution.

A monolayer of substrate particles leads to a substrate potential which contains a z~10

and a z=* term and is therefore called Lennard-Jones (10-4) potential,
Vioad) = [ ' 0ua ) bl —v)

— 2moua0dey E (%)m - (%)4} , (3.16)
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with NEE the number of substrate particles per surface area. The coefficients u, and
u;o can be read off.

If the substrate contains a surface layer different from the substrate structure underneath
(e.g., an oxyde layer), the substrate potential contains a z~* term in addition to a LJ
(9-3) potential and is abbreviated as Lennard-Jones (9-4-3) potential. This z=* term in
addition to a LJ (9-3) potential can exert a large influence on the wetting behavior (cf.
Sec. 3.3.5). For convenience let the dimensionless parameter

Uz Oy
describe the relative strength of the 2~* term compared to the 273 term.

Clearly, if the substrate is not homogeneous in the z-direction (but still translationally
invariant in the lateral directions), many of the coefficients u; in Eq. (3.8) could be non-
Zero.

One has to distinguish between the coordinate origin (here z = 0 corresponds to the
plane through the centers of the topmost layer of substrate molecules), the definition of
the dividing interface (cf. Sec. 3.3.2), and the steric interaction between substrate and
fluid particles (cf. Sec. 3.3.3).

3.3.2 Solid—fluid dividing interface

The solid—fluid surface tension can be determined for any packing fraction (i.e., for any
bulk density) corresponding to a point on or outside the meta-/instability region of the
phase diagram. The surface tension involving a substrate and a fluid, liquid, or gas phase
is regarded as solid—fluid interfacial tension.

Different choices of a substrate—fluid dividing interface are possible. In the situation
of a wedge or droplet on a substrate, where both solid-gas (s—g) and solid-liquid (s-1)
interfaces are present at the same time, it is convenient to use a common plane for both
the s—g and the s-1 interface and regard it as solid-fluid dividing interface. Throughout
this work the plane z = 0 constitutes the solid—fluid dividing interface.

Sometimes the substrate is treated as a part of the system, sometimes merely the fluid is
considered as the system, on which an external potential acts. In Eq. (1.3) the substrate
was not included in the system. Since in this section the dividing interface between the
substrate and the fluid is focused on and different choices for this plane are allowed, the
substrate is treated as a part of the system here. Then analogously to Eq. (3.4) the
solid—fluid interfacial tension is defined as

oy = _ lim £ = Vews — Vfwf,

Ve Vp—oo Asf

(3.18)

where w, and w; = —p denote the grand canonical free energy density of the substrate
and the fluid, respectively.

A parallel shift of the dividing interface plane by dh changes the volumina, VS(Z) =

Vs(l) + 0h Ay and ‘/}(2) = Vs(l) —0d0h Ag. Consequently also the value of the surface tension
changes,

O'i?) = O'gfl) + (wp — wy) Oh, (3.19)

since in general solid and fluid energy densities are different. This difference is due to
a constrained equilibrium, where merely the liquid and gas phases thermodynamically
coexist and the substrate is regarded as chemically inert. Thus the value of the surface
tension of a solid—fluid interface depends on the definition of the s—f dividing interface.
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3.3.3 Excluded volume

The steric repulsion between the substrate and fluid particles close to the substrate leads
to an (almost) empty region near the substrate surface. In the sharp-kink approximation
(cf. Chapter 7) an important parameter is the width d, of this excluded volume, since
there the fluid density jumps from zero to a finite value. This means that the density
does not automatically adjust to values compatible with the external potential, but it is
chosen by hand. In numerical, fully microscopic DFT calculations the external potential
would be enough to account for steric repulsion. Nevertheless, such a parameter d, can
be introduced as an approximation, if the particle density almost vanishes for distances
z<d,,.

The substrate—fluid potential is assumed to be a LJ potential in most cases analyzed
in this work. Within the WCA or BH separation of a LJ fluid the fluid particles are
assigned a hard core of radius R, i.e., a hard-spherical contribution to the interaction
potential. Hence it is plausible to perform a similar approximation for the substrate—fluid
interaction as well. While in the approximation of the fluid—fluid interaction the distance
between two particles cannot be smaller than two atomic radii, here the fluid particles
are allowed to approach the substrate surface z = 0 up to a distance R. Consequently the
region between z = 0 and z = R is absolutely free from any particle centers. This choice
corresponds to a value

d, = R (3.20)

of the widh of the excluded zone.
The choice d,, = R directly translates into a hard-wall (HW) potential

o for z< R
BViw(2) = { 0 for 2> R. (3.21)

As a consequence, in this work the external potential Ve (z) entering Eq. (2.3) shall
contain a hard-wall potential,

Vet(2) == Ving(2) + V(). (3.22)

3.3.4 Solid—fluid interfacial density profiles
3.3.4.1 Sum rules

The equilibrium particle density distribution o(r) of a solid-fluid interface obeys thermo-
dynamic consistency relations called “sum rules”. Especially for effectively one-dimensi-
onal interfaces, i.e,. a planar solid surfaces with a homogeneous substrate potential, the
sum rules are of practical importance as check of the resulting o(z). In the present case
two sum rules hold:

Wall theorem or contact value theorem:
The fluid density profile near a substrate fulfills an integral condition over the whole fluid
region. Henderson, Blum, and Lebowitz [140] have shown that such a wall theorem for
an external potential according to Eq. (3.22) and a density o(z) reads

[e.9]

op = o)~ [ @z dBVE) o0, (3.23)

dz
z=R*t
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In the special case of a hard wall the wall theorem above becomes a contact value theorem,
i.e., it involves merely the density at the closest possible position, z = R, of a molecule
(with a hard-sphere radius R) at the wall,

Bp = o(R"). (3.24)

Gibbs’ adsorption theorem:

Another useful relation involves the excess adsorption I' at a planar solid—fluid interface.
I' describes the additional (with respect to a fluid with constant density g, up to the
excluded volume near the substrate) amount of particles per surface area,

r = Alsf /Vdr [o(r) — 0] (3.25)

Then the Gibbs’ adsorption theorem

B Jog

I =
O

(3.26)
TV

follows from the Gibbs-Duhem relation. For practical purposes the right-hand side is
rephrased:

rz—%%/%ﬁ (3.27)

on on

The first factor is accessible numerically, the second factor can be calculated analytically
for first-order perturbation theory and the chemical potential belonging to the PY or CS
EOS for hard spheres [Eqs. (2.57), (2.44) to (2.46), and (2.48)].

3.3.4.2 Solid—fluid interfacial density profiles

The asymptotic behavior of solid—fluid interfacial density profiles is expected to depend
merely on bulk fluid correlations and not on details of the external potential [135].
Hence the statements on liquid—gas interfaces in Sec. 3.2.2 translate directly to solid—
fluid interfaces.

A gas in a thermodynamic state of coexistence with its liquid phase can possibly wet a
substrate (cf. the next subsection, Sec. 3.3.5). Then the solid-gas interfacial structure
recovers the corresponding solid-liquid profile and particularly the asymptotic decay to-
wards the liquid bulk density. In a partial wetting situation the asymptotic decay of
a solid—gas interfacial density is still predicted by the Fisher-Widom line, even though
density oscillations close to the substrate surface might occur.

Similarly to the liquid—gas interface the density distribution of a LJ fluid at a substrate
asymptotically attains the bulk density via a power law with 272 as the dominant term
[137, 138],

o(z) —op ~ 273 for z — oc. (3.28)

Solid—fluid interfaces comprising LJ or SW fluids, respectively, are displayed in Fig. 3.1.
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Fig. 3.1: Solid-gas, solid-liquid, and liquid-gas interfacial profiles for (a) LJ and (b) SW fluids.
The substrate-fluid interaction is given by a LJ (9-3) potential in both cases, whose
strength is described by e, = 0.6707 for the LJ fluid in (a) and fBe, = 0.45 for the
SW fluid in (b). The LJ fluid is treated within the WCA separation scheme, and the
interaction is truncated at an interparticle distance of 10 hard-sphere radii. Hence the
physical parameters in (a) and (b) correspond to the wedge line tension calculations in
Sec. 8.1.1.1 and 8.1.1.2, respectively. The SW and LJ interfacial profiles are displayed each
for two temperatures. The distance from the substrate surface is displayed as abscissa
for the s—g and s—1 interface, however, the I-g interfacial profiles are shifted suitably such
that the interfacial position lies in the plotted range.
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3.3.5 Wetting

Wetting and drying transitions:

If the gaseous phase of a suitable fluid is in contact with a sufficiently attractive substrate,
a liquid-like film forms on the substrate surface. For suitable parameters (temperature,
substrate attractivity, fluid—fluid interaction potential) at liquid—gas coexistence this layer
attains a macroscopic thickness, i.e., the film thickness diverges. The transition from a
finite to an infite film thickness is called wetting transition or shortly wetting. The minimal
temperature at which wetting can occur is called wetting temperature 7.

If the liquid phase of a suitable fluid is in contact with a sufficiently repulsive substrate,
a gas-like film forms on the substrate surface. For suitable parameters the film thickness
diverges. This analogous effect is called drying. Solely the case of wetting with liquid is
of interest in the following.

Types of wetting transitions:

If the liquid—gas coexistence line in the phase diagram is approached from the gas side
(i,e., 0/ 0, and p Heoex) fOr a temperature above the wetting temperature (7" > T, ),
the film thickness (e. g., expressed by the excess adsorption I') diverges continuously. One
speaks about complete wetting.

If for a gas at liquid-gas coexistence (¢ = 0, and p = fiye) the wetting temperature is
approached from below, T' / T, two scenarios are possible: Either the film thickness
diverges continuously during this process, which is called critical wetting (or second-order
wetting), or the film thickness discontinuously changes from finite to infinite at T, which
is called first-order wetting.

Both complete wetting and critical wetting transitions belong to the category of continuous
wetting transitions, since the layer thickness diverges continuously.

A system of a fluid near a substrate that features a first-order wetting transition displays
another phenomenon called prewetting (or analogously predrying). Upon approaching
coexistence above the wetting temperature (but below the temperature of the prewetting
critical point), the film thickness first performs a finite jump (still off coexistence) and
then jumps to infinity at 7" = T,,. The prewetting line in the phase diagram displays the
parameters where this finite jump occurs. The prewetting line meets the coexistence line
at the wetting transition point, whereas a prewetting critical point constitutes its other
end.

Wetting as a phase transition:

A wetting transition represents a surface phase transition (for reviews see Refs. [141] and
[142]). In general, a first-order phase transition is characterized by a jump in a first
partial derivative of a thermodynamic potential, and a second-order or continuous phase
transition exhibits a non-analyticity (jump or divergence) in a second partial derivative
of a thermodynamic potential.

The argumentation, why the above definition of a phase transition is fulfilled for complete,
critical, and first-order wetting, is summarized in Appendix C on page 146.

Critical point wetting:

A critical point is a point in the phase diagram where two coexisting phase become
indistinguishable. At the critical point of a fluid system any difference between the liquid
phase and the coexisting gaseous phase vanishes and merely a fluid phase remains.

In 1977 Cahn [143] presented a conjecture, that complete wetting should always occur
close to a critical point. His substantiation for critical point wetting is called Cahn’s
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argument. An illustrative plausibility consideration refers to Young’s law and brings to
mind the fact that the difference between liquid and gas vanishes at the critical point and
that consequently the liquid—gas surface tension vanishes there as well, i.e.,

= 0. (3.29)

lim o

T/T, ®
In order to satisfy Young’s equation even for vanishing liquid—gas interfacial tension, cos 6
has to attain the largest possible value, namely 1. As a consequence the contact angle 6
vanishes near a critical point, i.e.,

lim 6 = 0, (3.30)

T/T,
which is related to a wetting transition. However, exceptions to Cahn’s conjecture have
been found in experiments and theory [144], where partial wetting persists even near the
critical point.

Effective interface potential:

A wuseful tool to study wetting properties of a fluid at a solid surface is the effective
interface potential w. It is the grand canonical free energy which is necassary to establish
an interface between a liquid-like film and the gas phase at a certain, finite distance from
the surface instead of forming it infinitely far from the surface. For a planar, homogeneous
substrate w is a function of the film thickness [, which is the distance of the liquid—
gas dividing interface from the surface. Thus one can write w = w(l). Clearly, from
the definition one can easily recognize w(l — oo) = 0. The equilibrium film thickness
corresponds to the global minimum of the effective interface potential, i.e.,

ly = mlin w(l). (3.31)

A first- or second-order wetting transition as well as prewetting can be understood in this
picture as follows. Consider a finite film thickness [, and let the temperature increase
towards the wetting temperature.

At a first-order wetting transition the position of the minimum jumps from a finite value
to infinity. This scenario is related to a negative minimum below the wetting temperature
and an energy barrier comprising positive w values. Upon approaching 7T, the depth
of the minimum decreases, and finally at T}, the global minimum is degenerate, i.e.,
w(ly) =0 =w(l — 00), and for an infinitesimal temperature increase the equilibrium film
thickness diverges.

For critical wetting (i.e., a second-order wetting transition) w(l) does not exhibit a posi-
tive energy barrier between the finite I, [with w(l,) < 0] and infinity slightly below the
wetting temperature. Upon approaching the wetting transition the minimum becomes
less negative and its position is shifted towards large [ values. Hence the film thickness
diverges continuously with increasing temperature.

Upon approaching the liquid—gas coexistence curve in the phase diagram at a temperature
above the wetting temperature prewetting occurs, if the wetting transition on coexistence
(approaching the wetting temperature from below) is of first order. Here the jump of the
position of the global minimum of w does not reach an infinite film thickness directly.
Rather another minimum at an intermediate [ value is accessed before. Therefore the
effective interface potential in this case exhibits two (positive-valued) energy barriers,
which separate the first and second minimum as well as the second minimum and the
third position situated at infinity.



4 Excursion I: sessile droplets and their
connection to liquid wedges

In the present study the line tension is deduced from numerical computations of the grand
canonical free energy of sessile liquid wedges. However, in order to find observable con-
sequences resulting from the existence of a line tension, object like sessile liquid droplets
have to be studied. Locally a sessile droplet can be regarded as a sessile wedge. Moreover
in the limit of an infinitely large sessile liquid droplet the structure of the three-phase
contact region should resemble the one of a sessile liquid wedge. Thus the two systems, a
sessile droplet and a sessile wedge, are closely related.

However, as described in a recent paper by Schimmele, Napiérkowski, and Dietrich [4],
very much care is necessary, in order to decompose the grand canonical free energy of a
drop into volume, interfacial and line contributions. The problem arises, because a number
of contributions to the grand canonical free energy of the drop scale with a linear system
dimension and some contributions may be attributed either to the three-phase contact
line or alternatively to an interface in terms of appropriate corrections to the interfacial
tension. Therefore, when basing the definition of the line tension on a decomposition of
the grand canonical free energy of a liquid drop, the mentioned degree of freedom leads
to two alternative sensible definitions of a line tension.

In case of the first definition the line tension 7 turns out to be independent of the position
of the Gibbs dividing interfaces separating two adjacent phases; the positions of the Gibbs
dividing interfaces are arbitrary to some extent. In this chapter the symbol 7 is employed
for the first definition of the droplet line tension, whereas in the other chapters it denotes
the wedge line tension.

In case of the second definition, the respective line tension denoted 7(Wed8) in the following
does depend on the choice of the Gibbs dividing interfaces. As the notation indicates,
7(wedge) aorees with the line tension deduced from the numerical studies of a sessile liquid
wedge on a substrate presented later on. The two line tensions 7 and 7("¢d2¢) are connected
by a simple relation deduced in Ref. [4]. This relation will be given in Sec. 4.6.

In a further step a modified Young equation, expressing the dependence of the contact
angle of a drop on its size (base radius) in terms of the interfacial tensions, the line tension,
and other material parameters has to be established. As shown in Ref. [4], in addition to
the line tension two further stiffness coefficients have to be attributed to the three-phase
contact line, in order to arrive at a description which is free of internal inconsistencies.

The main ideas and results of Ref. [4] are reviewed in the following. Although numerical
results presented in this work exclusively refer to wedge systems, in Sec. 9.3.1 an outlook
is given, how axisymmetric sessile droplets could be addressed in a fully microscopic
approach efficiently.

4.1 Line tension of a sessile droplet

Line tension with or without subdominant terms:

The word “line tension” has to be used with care, since many (more or less precise)
definitions are in use. The grand potential of a sessile droplet contains a contribution attri-
butable to the contact line and scaling with the length L of the three-phase contact line.
The line tension of a sessile droplet, 7., can be defined as the leading order contribution

47
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of the grand potential line contribution divided by the length of the contact line [4],

{Q— Z Viw; — Z Aidi}/L =: 7, =: T, + subleading terms.  (4.1)

i=s,l,g i=sg,sl,lg

Here wg, w), and w, denote the grand canonical free energy densities of a homogeneous
solid, liquid, and gas system, respectively. V;, i € {s,l, g}, is the volume of the phase i
in the droplet scenario. A, and o; denote the interfacial areas and tensions, respectively.
The length of the three-phase contact line is L.

For finite droplet sizes 7, as defined via Eq. (4.1) also contains subdominant terms. How-
ever, subdominant contributions to the line tension will be disregarded consistently in
what follows. In the same spirit contributions to the modified Young equation beyond
the order of the line tension term are consistently truncated. By definition the subleading
terms vanish for a infinitely long contact line,

lim 7, = 7. (4.2)

00
L—oo

Definition of the reference system:

A reference system has to be defined, with respect to which the line tension of a sessile
droplet represents an excess quantity. The consideration is limited to droplets of micro-
meter size or below. Gravity does not play a role for such small droplets. Consequently
in this size regime a sessile droplet has the same shape as, e.g., a pendant droplet or a
droplet near a vertical wall. Since a micrometer-sized droplet macroscopicly looks like
a spherical cap, the liquid—gas dividing interface is chosen to be a spherical cap, which
is fitted to the upper part of the droplet and extrapolated into the three-phase contact
region. Hence for this description the droplet has to be sufficiently large such that its
shape far from the contact line resembles a spherical cap.

Simple geometric considerations (see, e. g., Ref. [76]) for spherical caps reveal relationships
between the contact angle and extension parameters. The contact angle 6, for instance,
is related to the heigth A and the radius r of the contact circle via

tan (60/2) = h/r (4.3)
and related to the heigth h and the radius R of the sphere, which forms the cap, via
cos = 1—h/R. (4.4)

The contact angle for partial dewetting (i.e., 90° < 6 < 180°) and vertical observation
cannot be obtained from Eq. (4.3), since r is inaccessible in that case. However, it can be
determined from Eq. (4.4), since R can be measured that way.

The solid—gas and solid-liquid dividing interfaces are chosen to lie in the same plane, thus
they can be combined to a single solid—fluid interface. The three-phase contact line is
defined by the intersection of the spherical cap with this plane. Hence the contact line
serves as a “dividing line” [145]. Then the line tension 7, is defined by the decomposition
of the grand potential [4],

Q = —(p+Ap)VI = pVy + w Vi
+ Ay 015 (R) + oy + (A —7r?) Oy + 2717, (4.5)
with the radius r of the circular base and the radius R of the sphere forming the spherical
cap. The contact angle 0 is defined as the angle between the solid—fluid dividing interface

and the tangent to the spherical cap at the three-phase contact line. The Laplace pressure,
i.e., the difference between the pressure inside the droplet (p; = p+ Ap) and the pressure
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in the gas region (p, = p), has to be taken into account. Therefore the liquid and gas
phases are slightly off bulk coexistence. 0,(R) is the surface tension of a free spherical
drop surrounded by gas. For infinitely large droplets it recovers the surface tension of a
free planar liquid—gas interface,

The surface tensions oy, and o are evaluated at the pressure p. Another choice, to
evaluate o at the increased pressure p + Ap, is reasonable as well and will be discussed

in Sec. 4.6.

4.2 Notional invariance

The grand potential €2 is a physical quantity and does not depend on the actual choice
of the dividing interfaces. Hence a variation of the dividing interfaces has to leave {2 un-
changed. The physical droplet and hence the particle density distribution o(r) remain the
same during this variation. Shifts of the dividing interfaces are called notional shifts [4].
The property that {2 remains constant under these shifts is called notional invariance. It
is applied to derive an equation for the contact angle 6, a (corrected) modified Young
equation (cf. Sec. 4.4).

Changes of thermodynamic variables (like surface tension or line tension) induced by a
notional shift are described by notional derivatives, which are indicated in Ref. [4] by
square brackets enclosing the derivative. [3—5], for instance, is the notional derivative of
the line tension with respect to a notional change of 6.

The line tension 7 = 7, defined via Eq. (4.5) (L — co) with the surface tensions oy, and
o4 both taken at the pressure p, is independent of the choice of the solid-fluid dividing
interface. Notional invariance of 7 is a remarkable result, since the line tension 7(wedse)
as well as o, and o do depend on the position of the solid-fluid interface.

4.3 Variation under constraint of fixed volume

Variations of the droplet shape under the constraint of fixed volume involve non-
equilibrium configurations close to equilibrium. The corresponding grand potential is
minimized in order to find an equilibrium droplet shape. During this variation procedure
the physical system is changed. This contrasts the notional variation in Sec. 4.2.

The derivative of thermodynamic quantities under this variation is indicated by a ver-
tical bar on the right-hand side of the derivative. To call such a quantity “derivative”
might lead to misconceptions, since the corresponding infinitesimal change of the system
leads the system a little bit away from thermal equilibrium. %L for instance, refers
to an equilibrium configuration with radius R and a non-equilibrium configuration with
radius R + dR and the same other physical parameters. These “derivatives” cannot be
perceived as usual physical derivatives, that connect equilibrium states, and should rather
be regarded as “stiffness coefficients” [4].

The notional derivatives and the constrained variational derivatives (i.e., the stiffness
coefficients) of the line tension,
dr
= |— 4.7
[dr} ’ (47)

dri _ qdrt 4 &
a| — |ag] M @

are equal. However, these stiffness coefficients (or notional derivatives) do depend on the

choice of the dividing interfaces [4].
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4.4 Corrected modified Young equation

Both variational procedures, the notional variation and the constrained variation, lead to
the same corrected modified Young equation [4],

Too dr sinf cosf dr
Ulg(R) COSH + O'Sl — Jsg = —T — 5 — f @ s (48)

which relates the contact angle 6 to the three involved surface tensions, the line tension,
and derivatives of the line tension with respect to the droplet base radius r and the
contact angle. These two derivatives can be regarded as stiffness coefficients attributed to
the contact line. Note that alg(R) is the surface tension of a spherical liquid drop (with
radius R of the dividing interface) in a gaseous environment [146]. The Tolman length
is defined via the first coefficient in an expansion of the surface tension in terms of the
inverse curvature 1/R [133, 147, 148, 149],

oo (1 2o

where o = alg(R — 00) is the liquid—gas surface tension of a planar interface. The
macroscopic contact angle 6, is well-known according to Young’s equation. The geometric
relation sin @ = 1, connects the radius R and the base radius 7 of a spherical cap.

In order to resemble the left-hand side of the standard modified Young equation, Eq.
(1.16), the corrected modified Young equation can be expressed as [4]

1 d
cosf = cosby— L’ZO + <251£— i

) sin 6, cos 6

o rafgo do
1 dr 1
_ Ty 4.1
o dr + O (%) (4.10)

The curvature dependent surface tension enters here via the surface tension for a planar
interface and the Tolman length. Each of the four terms on the right-hand side contributes
with comparable magnitude to the difference between the contact angle 6 of the considered
small droplet and the contact angle 6, of a macrsocopic drop. Consequently reported
experimental values for the line tension of a droplet do not represent the quantity which
should be called line tension. In fact, the experimental line tension values subsume four
different contributions from which merely one is the line tension.

4.5 Interpretation of Young’s law as a force balance

Young’s law, which is valid for macroscopicly large droplets, can be interpreted as a lateral
force balance at the contact line. This force balance acts as a boundary condition for the
droplet shape. In this macroscopic picture solely translations (and not curvature) of the
droplet surface contribute to the surface energy, hence a kink in the droplet surface is
not related to a cost in energy and thus a non-vanishing contact angle is possible [150].
The boundary conditions for systems with derivatives in the surface Hamiltonian contain
other quantities as well which are related to interface derivatives [150]. The energy of
an adhering vesicle, for instance, is sensitive to surface curvature; therefore the contact
angle vanishes and the bending rigidity enters the boundary condition [151, 152]. For
the microscopic version of Young’s law, i.e., the corrected modified Young equation, the
interpretation as a lateral force balance is possible as well, even though the additional
ingredients [i.e., the four additional terms on the right-hand side of Eq. (4.10)] are not
obvious from the beginning.
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4.6 Connection between a wedge and a droplet

The line tension of a sessile liquid wedge and the line tension 7 defined in Sec. 4.1 for a
sessile liquid droplet are closely related. If in Eq. (4.5) the solid-liquid surface tension o
is evaluated at the pressure p + Ap inside the drop, one obtains another definition of the
line tension This alternatively defined sessile droplet line tension is called T£W0dg0). The

leading term,

(wedge)

7 = lim 7 V) (4.11)

L—o0
equals the line tension of a liquid wedge on a substrate [4]. The reason for this equality
is, that the modification of the solid-liquid interfacial tension due to the presence of the
Laplace pressure is now explicitly taken care of via the pressure dependent solid-liquid
interfacial tension and thus taken out from the definition of a line tension. Therefore,

7‘£W0dgc) is the “clean” line tension. On the other hand the equation for the contact angle

. . dge) . . . .
becomes simpler in terms of 7. Moreover TO(ZV ¢ go), i.e., the alternative droplet line tension

or the wedge line tension, depends on the choice of the solid—fluid dividing interface.

The difference in the surface tensions evaluated at different pressures is reflected in the
relation between 7 and 7(Wedge) [4],

”
T = rlvedse) 4 g[Jsl(erAp) —oq(p)]. (4.12)
Expanding the surface tension o (p + Ap) around p yields
do, Ou
A ~ sl YM
Usl(p+ p) Usl(p) + au 8])
1 2 .
= og(p) + (=Ty) x o X ;Ulg(P) sin 6, (4.13)
|

with the excess adsorption I'y [Eq. (3.25)] and the bulk liquid density g.

Hence the transformation law between the two line tensions (focusing merely on the
leading terms) reads [4]

r
T, = Tivedee) _ ?Slalg(p) sin 6. (4.14)
1

The quantities 'y, O'lg(p), and the macroscopic contact angle 6, can be calculated in
an effectively one-dimensional geometry, and g, is known from the bulk phase diagram.
Consequently line tension calculations for the wedge model providing values of Téff edge)

are sufficient to determine the line tension 7., of a sessile droplet.
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The concept of line excess quantities reaches beyond the line tension. A line excess
quantity represents a coefficient of a line term in a decomposition of a certain quantity
into volume, surface, line, and point contributions. Relevant decomposable quantities
in the one-component, simple, electrically uncharged fluid systems considered in this
work are the grand potential and the average (excess) number of adsorbed particles.
The name of a line excess quantity in an energetical decomposition contains the word
“tension” (e.g., line tension, boundary line tension or substrate boundary line tension),
whereas the line excess quantity in an excess particle number decomposition is called line
adsorption A. Both the line tension and the line adsorption can be calculated from a
givend density distribution o(z,z) and values of the corresponding surface tensions and
excess adsorptions, respectively.

Clearly, for a multi-component system the excess particle number of each species can
be decomposed accordingly, leading to a line adsorption for each species. In an electri-
cally charged system one could decompose the equilibrium mean charge distribution into
volume, surface, line, and point contributions as well.

The main question which arises on discussing excess quantities is, what the (virtual) refe-
rence system is, with respect to which the excess (in energy, particle number, or whatever)
is counted. In the following the line adsoprtion for a liquid wedge and the line tensions
for a few other systems are considered briefly. Even though these quantities are not
calculated explicitly in this study, the conceptual aspects addressed here serve to perceive
the subject of wedge line tensions from a more general point of view.

5.1 Line adsorption of a liquid wedge

The line adsorption A of a fluid system describes the amount of particles, which is accumu-
lated at a certain structural line in addition to the particles present in the corresponding
bulk fluid systems and in addition to the excess adsorption at participating interfaces.
Such a structural line can be formed by the contact line of a sessile droplet or liquid
wedge or by the line of a chemical substrate boundary or a geometrical edge or wedge in
the shape of the substrate surface.

The definition of the line adsorption A of a sessile liquid wedge proceeds analogously to
the definition of the wedge line tension [Egs. (1.3) and (6.1)], i.e.,

(N) = /]R3 dro(r) = —opuk Viwia + Lsg Asg + Ta Ag + g A + AL (5.1)

The value of the line adsorption of a sessile liquid wedge depends on the position of the
substrate—fluid dividing interface like the line tension does. Furthermore the line adsorp-
tion depends on the choice of the liquid—gas dividing interface. This is a major difference
to the wedge line tension, which does not depend on it. The reason for this difference is
the fact that the grand canonical free energy densities are identical for coexisting liquid
and gas phases, however, the bulk liquid and bulk gas particle number densities are not
identical.

92
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In order to enable the comparison of values for A, which correspond to different choices of
both the liquid—gas and the solid—fluid dividing interface, the transformation laws for A
are presented here. They are derived in the spirit of the derivation of the transformation
rule for the wedge line tension (cf. Appendix B on page 144).

First, a shift dh of the solid—fluid dividing interface is related to a change in the line
adsorption value according to

oh 1
2 _ A — O _pay -
A A tan 0 (FSl Lsg' + cos F1g> i

Here Fé?, Fgll ), and Flg denote the excess adsorption of a planar solid—gas, solid-liquid,
or liquid-gas interface, 6 is the contact angle, and g and g, are the bulk liquid and bulk
gas densities, respectively.

Second, a shift Azlg of the liquid—gas dividing interface (such that the liquid volume is
enlarged at the expense of the gas volume) gives rise to the following change:

1 (Azlg)2

Az
7 2 tanf (Ql_gg)'

AP A = — Ty —Tg) +

(5.3)

A liquid wedge corresponds to a constrained three-phase equilibrium, and so it repre-
sents the special case of one angle of 180° in a Neumann triangle. The Neumann triangle
consists of the three dividing interfaces between three phases «, 3, and v and three an-
gles (with the same names) between them. Let p; be the chemical potential of species
i€{1,2,...,¢c} in a c-component system. A change in the line tension value is related to
changes in temperature, chemical potentials, and angles via the (modified) linear adsorp-
tion equation [153],
(&
dr = > (=shnedT — Ajdpy) + ) cdC (5.4)
i=1 ¢=a,B,y

Here sfine is the line entropy of species i. The last term of this expression accounts for
the change of the angles on changing the chemical potentials. In the special case of a
one-component sessile wedge the above linear adsorption equation simplifies to

dr = — s dT — Adp + ¢ydé, (5.5)

where one of the three angles is the contact angle 6.

The concept of line adsorption, described above exemplarily for the sessile wedge system,
can be applied to other systems as well, e. g., the ones discussed in the following section.
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5.2 A closer look at other line tensions

Line tensions, i.e., energetical line excess quantities, can arise in different systems (see
Sec. 1.4). The line tension of a sessile liquid droplet and its relationship with the wedge
line tension have already been discussed in Chapter 4.

Now the boundary line tension and the line tensions due to geometric or chemical substrate
boundaries shall be considered from the microscopic point of view. Special attention is
turned to the definition of an appropriate reference system for each case.

5.2.1 Surface phase coexistence for prewetting: boundary tension

Assume a solid-fluid interface in a prewetting scenario, i.e., the thermodynamic state
corresponds to a point on the prewetting line in the phase diagram. Then two surface
phases can coexist. They exhibit different heights of a liquid-like film formed on the
substrate.

The two surface tensions, associated with one of the two phases on a planar substrate,
are equal at coexistence. The reason for this is, that coexistence between both surface
phases requires a lateral shift of the interface between both surface phases not to cost any
energy. Since the bulk grand canonical free energy density and the surface tension are
identical for both phases at coexistence, the value of the boundary tension is independent
from the position of the dividing interface between the two substrate regions.

If the two coexisting surface phases form to a straight linear interface, a boundary line
tension is attributed to this contact line. It is defined via a decomposition of the grand
potential (), for this prewetting scenario,

Q, = —pV +oy (Apin + Athia) + 7 Ly (5.6)

where A,,. and A, are the interfacial areas of the two surface phases exhibiting a
thin or thick liquid-like film, respectively. Hence the reference system for the boundary
tension scenario consists of two adjacent regions comprising a planar interface between
the substrate and the first or second surface phase, respectively. Then the boundary
tension is the excess grand canonical free energy per unit length of the straight contact
line between the two coexisting surface phases.

At the wetting transition the boundary line tension and the wedge line tension are ex-
pected to be equal [44],

lim n, = 7. 5.7

T—-T b ( )

The above statement can be proven for the microscopic DFT approach, the described

reference systems for the wedge line tension and the boundary tension and for the choice

of a trapezoidal shape of the finite system (cf. Sec. 6.1) as follows: The grand potential for
the wedge scenario is given in Eq. (1.3). Young’s law for the wetting transition (6 — 0)

gives oy, = 0y + 0, If the solid—liquid and the liquid—gas interfacial areas are chosen
to be equal,
Asl = Alg7 (58)

the wedge energy decomposition can be expressed as
Q= —pV+oy, (A, + Ay) +7L. (5.9)

Equation (5.8) holds (even for all contact angles) for the trapezoidal shape of the finite
region for which  is obtained. At the wetting transition the solid—fluid surface tension
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o is given by the solid-gas surface tension. The values of the grand potential are the
same at the wetting transition (7" = T,,), no matter whether this point in the phase
diagram was reached on the prewetting line (from 7' > T,,) or on the coexistence line
(from T' < Ty,). Clearly, the sums Ay; + Ay and A, + Ay both equal the area A of
the solid surface. Consequently the values of the line and boundary tension are indeed
identical at the wetting temperature.

5.2.2 Chemically structured substrate: substrate boundary line tension

In fluid systems with chemically structured substrates a grand potential contribution
scaling with a length can arise as well. This is the case, e. g., if there is a planar substrate
consisting of two different materials meeting at a plane perpendicular to their substrate—
fluid surfaces [154]. Then they expose a boundary line that is translationally invariant
in the y direction towards the fluid phase. Line excess quantities for the decomposition
(with respect to volume, surface, and line contributions) of the grand potential and the
excess particle number can be defined. They are denoted as “substrate boundary line
tension” and “substrate boundary line adsorption”, respectively. The reference system
contains a planar solid—fluid dividing interface, where the substrate is split into two parts.
The decomposition of the grand potential,

Q = _pv + Ogsf1 Asfl + Osf2 Asf2 + Tchem. step L7 (510)

defines the substrate boundary line tension (or chemical step line tension). Note that the
value of the line tension for this system depends not only on the choice of the solid—fluid
dividing interface, but also on the lateral position of the substrate boundary line, which
separates the two adjacent kinds of substrate material.

In this context of chemically structured substrates it is inevitable to mention Cassie’s
law from 1944 [155, 156], which proposes a droplet contact angle for a binary composite
substrate,

cosf, = fy cosf; + (1 — f;) cosb,, (5.11)

where f,; denotes the fractional area of species 1, while the contact angle for a pure sub-
strate of species 1 or 2 is given by 6, and 0,, respectively.

Cassie’s law gives an illustrative explanation of superhydrophobicity for rough, hydropho-
bic surfaces: If the liquid does not fill the air pockets on the surface (a so-called Cassie-
Baxter state [155]), the situation represents a composite wetting state with the substrate
material as species 1 and air as species 2. Liquid on air has a contact angle of 180°, so
the above general expression simplifies to

cosf, = fycosb + f1—1 = —1+ f; (1 + cosb). (5.12)

Consequently the composite structure leads to a larger contact angle than for the pure,
planar solid.

Based on a free energy minimization of a droplet residing on a rough or/and chemically
inhomogeneous substrate, generalizations of Cassie’s and Wenzel’s law were obtained,
which in limiting cases yield these two equations [157]. Besides gravity and line tension
influences are detected. It has been found meanwhile [158, 159], that for a system with a
contorted (i.e., not parallel) contact line Cassie’s law requires a correction which involves
the contact line and therewith the line tension. However the modified equations discussed
there do not include the stiffness coefficients of the contact line [4] (see Chapter 4). Very
recently was claimed [160], that contact lines and not contact areas (which enter Cassie’s
law) influence the wetting behavior of structured substrates.
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5.2.3 Geometrically structured substrates

A simple case of a linear, geometrical substrate structure is a wedge- or edge-shaped
substrate, not necessarily with a right angle. In general, the angle between two planar
semi-infinite solid—fluid interfaces could vary between 0° and 360°. A substrate wedge
corresponds to an edge-shaped fluid region and vice versa. The reference system shall
consist of bulk fluid extrapolated up to the solid—fluid interface, which is sharp bent at
the edge/wedge line. The surface tension for this bent solid—fluid interface is taken from
a planar interface. Thus the edge or wedge line tension, Tedge OF Ty, respectively, is
defined via the following decomposition of the grand potential,

L. (5.13)

edge’

QO =: —pV + oy Asf + Todgc/wodgc

Another example is a geometrical step in the substrate, which consists of a rectangular
substrate edge followed by a rectangular substrate wedge. This step can be conceived as
a unified structure and attributed a line tension and a line adsorption (called step line
tension or step line adsorption, respectively). A reference system for this case can be
defined as a step-shaped fluid region consisting of bulk fluid (with its bulk density). The
solid—fluid interfaces — also in the possibly short part between the edge and the wedge —
are taken into account by the correspdonding surface tension for a planar substrate. For
a very large step heigth H the step line tension is simply the sum of a substrate wedge
line tension and a substrate edge line tension. For an intermediate step height H the step
line tension depends on H, and for vanishing step heigth the step line tension obviously
has to vanish.

Wenzel’s law [161],
cos by, = 1, cosby, (5.14)

describes the effect of surface roughness on the contact angle. The corresponding planar
substrate gives rise to a contact angle ¢,. The roughness factor r is defined as the
ratio of the total surface area (including the sides and base of the roughness elements)
to the projected surface area (not including the sides of the roughness elements). For
Wenzel’s law the droplet is assumed to be in a Wenzel state, i.e., the droplet covers its
base surface area intimately and does not leave air pockets. Drelich modified Wenzel’s
equation by taking the line tension into account [159]. To include rough substrates into
DFT calculations is a matter of long-standing interest [162, 163, 164, 165].



6 Model system: a liquid wedge on a substrate

6.1 Details of the model system

As mentioned briefly in Sec. 1.3, a sessile liquid wedge coexisting with its gas phase is
considered in an effectively two-dimensional, Cartesian coordinate system. y denotes the
direction of the straight contact line (in which the density distribution is translationally
invariant); « and z label the remaining lateral and vertical directions. In comparision to
a finite sessile droplet the advantages of a liquid wedge are twofold: (i) The contact line
is straight, and (ii) the liquid—gas interface is asymptotically planar.

The fluid consists of particles interacting via a (truncated) Lennard-Jones (12-6) potential
(see Sec. 2.3.4) or a short-ranged square-well potential (see Sec. 2.3.5). The LJ potential is
untruncated in the y-direction, since this direction is integrated out analytically. However,
in z- and z-direction a cut-off is introduced in a radial symmetric fashion. The interaction
is set to zero for a particle distance vz? + 22 in the xz plane of more than cut, ;. Note
that auxiliary, effectively one-dimensional density distributions o(z) do not comprise a
cut-off in the z-direction, since also this direction was integrated out analytically. Thus,
strictly speaking, for a LJ fluid o(z) and o(z, z) refer to slightly different model systems.
Differences between the discrete, effectively one- and two-dimensional LJ fluid systems
arise both from this different cut-offs and different discretization errors. Contrarily the
SW fluid systems exhibit merely slightly differnt discretization errors in effectively one and
two dimensions. The cut LJ potential is regarded as an approximation of the untruncated
LJ, i.e., the integrated strength from the untruncated LJ potential is employed. This is
the reason, why the phase diagram for the LJ fluid is apparently independent of the cut-
off. Technical aspects of the cut-off and a compensation of numerical integration errors
are mentioned in Sec. 6.2.3.

The LJ fluid was treated in the WCA separation scheme (see Sec. 2.3.4). The attractive
parts of the LJ or SW fluid-fluid interaction are taken into account by the RPA (see
Sec. 2.3.1). An effective hard-sphere diameter [Eq. (2.72)] for the WCA-LJ fluid was not
applied here. Instead the hard-sphere diameter is set equal to the LJ length parameter o ;.

The liquid wedge is residing on a homogeneous, planar substrate. It is described by a LJ
(9-4-3) potential (see Sec. 3.3.1), a cut and shifted LJ (9-3) potential (cf. Sec. 8.1.3) or
a tailored potential (cf. Sec. 8.2).

Definition of the wedge contour:

The contour of an object is called the connected surface which characterizes its shape,
and it is obtained from the continuous density distribution. The contour of a liquid wedge
can be described reasonably by the non-planar liquid—gas dividing interface ¢(z, z). There
are several possibilities for such a dividing interface (see Sec. 3.2.1), here an “arithmetic
average” dividing interface is employed.

Contours based on this definition are accessible both in the fully microscopic calculations
(cf. Chapter 8) and in the sharp-kink calculations (cf. Sec. 7.3). For sharp contact angles,
6 < 90°, the contour is a function [(x) for the sharp-kink approach. However, in the
fully microscopic approach packing effects typically lead to more than one contour point
for a certain lateral position x, hence contour within the fully microscopic approach is a
function of z and z.

o7
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Rigorous definition of the line tension of a sessile liquid wedge:
The definition of the line tension of a liquid wedge on a substrate follows the definition
for a sessile droplet [Eq. (4.1)] for an infinitely large contact line length L,

Q(with substrate) __. Z ‘/z w; + Z Az o; + L (61)
i=s,l,g i=sg,sl,lg

with grand canonical free energy densities w;, i € {s,[, g}, and the three involved surface
tensions o; of planar interfaces. So the reference system is defined as a virtual liquid wedge
with sharp solid—fluid and liquid—gas interfaces where a planar l-g interface approaches
the substrate under the macroscopic contact angle . The particle density in the solid,
liquid, or gas region of the reference system equals the respective bulk density. The line
tension corresponds to an excess free energy with respect to this reference system.

For a certain choice of the solid—fluid dividing interface the substrate contribution to the
grand potential of the whole system can be ignored and one can concentrate on the fluid
subsystem,

0 = Q(With substrate) ‘/s w. (62)

Hence with w) = w, = —p and the fluid volume V' := V] + V, the line tension definition
from Eq. (1.3) is recovered,

Q= —pV + A,04 + Ayoy + Ago, + 7L (6.3)

Transformation law for a different solid—fluid dividing interface:

The value of the line tension 7 of a liquid wedge depends on the choice of the dividing
interface for the solid—fluid interface. In other words, a differently chosen solid—fluid
dividing interface causes a different value of the liquid wedge line tension. A shift dh of
the s—f dividing interface in positive z-direction is accompagnied by changes of the area
of the planar and sharp interfaces of the reference system. Since the substrate volume
changes through the shift process, it is not sufficient to consider exclusively the fluid
subsystem [Eq. (6.3)], but the substrate has to be included as well [Eq. (6.1)].

The derivation of the transformation law for the line tension of a sessile liquid wedge is
performed in Appendix B on page 144. The result reads [Eq. (B.18)]
oy, + (Jill) — aéé)) cos 6

@ _ 0 _ ‘s
T T g oh. (6.4)

Consequently in order to make wedge line tension values comparable, besides the bare
values also the employed definition of the substrate surface has to be mentioned.

6.2 Aspects of the numerical implementation

Some details of the numerical, fully microscopic calculation of the structure of the three-
phase contact region and the corresponding wedge line tension are presented here.

The fluid density o(x, z) is desbribed by a two-dimensional, discrete array. The discreti-
zation is realized as follows: A distance corresponding to the hard-sphere radius R is split
into N grid points. The effectively one-dimensional calculations discretize merely the z
coordinate, whereas the effectively one-dimensional calculations discretize both the x and
z coordinate such that a unit cell is a square with side length

R
A = N (6.5)

If not stated differently, N = 15 was used throughout this work.
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6.2.1 Boundary profiles and initialization of the p-array

The calculation of the wedge density distribution o(x, z) has to be performed in a finite
region of the xz plane and simultaneously has to mimic a fluid halfspace.

Boundary profiles:

The three-phase contact region of a liquid wedge on a substrate is formed by the contact
of three interfaces, namely a solid—gas, a solid-liquid, and a liquid—gas interface. Far from
this contact region the unperturbed interfacial profiles are recovered. This fact determines
the boundary conditions of the necessarily finite system serving for numerical calculations.
Beyond the region where the iteration procedure for solving the Euler-Lagrange equation
is performed the three interfacial profiles are kept fixed. These “boundary profiles” have
to govern whole stripes (and not only single rows), since the range of the fluid—fluid
interaction has to be respected. For a square-well fluid the distance between the iteration
region and the end of the boundary region has to be oy, = 3 R; for a Lennard-Jones
fluid this distance has to be, in principle, infinitely large, therefore a cut-off has to be
introduced. Typical cut-offs used in the performed calculations are of the order of 10 to
20 R in effectively one- and two-dimensional cases or sometimes even up to hundreds of
molecular radii R in effectively one-dimensional cases.

The boundary profiles are effectively one-dimensional. However, the effectively one-
dimensional results serve as an input for the two-dimensional program, where the x coor-
dinate is discretized as well and not integrated out analytically. Hence the 2D program
runs to a slightly different convergence point than the 1D program. Particularly the wet-
ting temperatures in effectively 1D and 2D deviate slightly (cf. Chapter 8). Such refined
2D boundary profiles are employed for all line tension calculations performed for this work

The liquid—gas interface profile is rotated by the contact angle 6 in order to serve as a
boundary profile for the wedge. However, the grid of the wedge system is Cartesian and
consequently there is a grid mismatch. Hence the grid points in the liquid—gas boundary
region have to be filled by an interpolation of the liquid—gas profile. For this purpose
a linear interpolation is established such that for the density initialization at a certain
distance from the l-g dividing interface of the wedge the two neighboring data points
which are closest to this distance from the interface are employed.

Initialization of the p-array besides the boundary profiles:

Besides the boundary profiles mentioned above, the remaining region of the two-
dimensional array representing the density distribution o(z, z) has to be initialized some-
how. Since the fluid particle density is zero inside the substrate and since Fourier trans-
forms of the density array presume periodic boundary conditions, a strip of zeros has
to be introduced to the density array for large values of z. Similarly for 0 < z < R
the density is zero as well due to the hard cores of the fluid particles and the substrate.
For the remaining region it would be sufficient, in principle, to initialize with a constant
particle density value. In order to optimize the convergence speed of the iteration process
the initial density distribution is recommended to be chosen as similar to the expected
equilibrium density distribution as possible with reasonable effort. Consequently in the
regions near the substrate either a solid-liquid or a solid—gas interfacial profile is employed
and the region of the liquid—gas interface is initialized with a liquid—gas interface for the
actual parameter values. In other words, the boundary profiles are extrapolated up to the
contact line. In order to decide for at each point which interface profile should be applied
here the bisecting lines of the contact angle § and the complementary angle (i. e., 180° —6)
are taken as a reference, decomposing the fluid halfspace into a solid—gas, a solid-liquid,
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Fig. 6.1: Sketch of the finite system. The trapezoidal iteration region is displayed, in which the
Picard iteration is performed. Additionally the rectangular o(x, z)-array contains boun-
dary regions, which serve to establish planar s—g, s—1, and 1-g interfacial profiles far away
from the three-phase contact region. Depending on the range of the fluid—fluid interaction
the size of the whole array may be much larger than the iteration region. The two points
in the zz plane that are marked by empty circles are at least a distance a away from
both the liquid-gas and the solid-fluid dividing interface. A sufficiently large value of a
ensures that artificial line tension contributions can be neglected.

and a liquid—gas initialization region. An exception is made: The region near the sub-
strate surface is dominated by the substrate influence, and therefore only solid-gas and
solid-liquid interfacial profiles are used there. Otherwise near the triple line large changes
during the first iteration steps might occur (which decreases the maximum possible value
of the mixing parameter).

Iteration region and integration region:

The iteration region, i. e., the region where the values of the g-array are subject to changes
in the course of the iteration process, corresponds to a trapeze, see Fig. 6.1. It omits the
boundary regions, where the boundary profiles are kept untouched, and the zero-stripes
for large (and small) values of the z coordinate. Such a trapezoidal shape of the integration
area was used before [48].

Young’s law determines the contact angle 6, which is attained far away from the three-
phase contact region. Hence the (for sharp contact angles) top-right, inclined boundary
of the trapeze is perpendicular to the asymptotic contour profile, which is a straight line
from this boundary to the substrate surface z = 0, which it touches at x = 0. (This is in
contrast to the definition in the sharp-kink theory, where x = 0 describes the intersection
of the asymptotic liquid-gas interface curve and the equilibrium film thickness [;.)

The mismatch of the liquid—gas boundary profile, due to the profile inclination and the
accompanied interpolation, leads to very small artefacts in the density distribution o(z, 2).
However, this effect is limited to that part of the iteration region which is situated very
close to the liquid—gas boundary region. Consequently artefacts in the quantities calcu-
lated from the density distribution o(x, z) can be avoided, if a small stripe of the iteration
region near the liquid—gas boundary is omitted in integrations. In other words, the inte-
gration region is a little bit smaller than the iteration region.
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The lateral and vertical system size is described by the trapezoidal iteration (or integra-
tion) region. Within this trapeze one has x € [0, z,,,.] and z € [0, 2, ]. The parameters
Tax and 2z, are determined by three conditions:

(i) The distance between the point where the inclined boundary line to the I-g boundary
profile intersects the (v = . )-axis and the substrate surface is a. The calculations
performed in this study employed a/R = 30 throughout, except in the analysis of
numerical errors.

(ii) The contour asymptote [starting at (z,z) = (0,0)] separates the inclined boundary
(adjacent to the 1-g boundary profile) into two equally long parts of length a.

(iii) The triple point is located at a distance x;, := 1.5 a from the gas (or liquid) boundary
profile for a sharp (or obtuse) contact angle.

These conditions ensure for given memory space a largest possible distance of the two
points where the inclined boundary line intersects the boundary lines z = =z, and
Z = Zpax from the liquid-gas and the solid-fluid dividing interfaces. Consequently these
two points are almost situated in bulk regions, where they cannot give rise to artificial
line tension contributions.

6.2.2 Evaluating convolutions efficiently
6.2.2.1 Convolutions treated in Fourier space

In fundamental measure theory (see Sec. 2.2) and first-order perturbation theory (see
Sec. 2.3) several convolution integrals have to be evaluated in every iteration step [Egs.
(2.31), (2.43), and (2.53)]. The necessary number of iteration steps to obtain numerical
convergence is of the order of 10° (depending on the system size and the interaction range).
So the typical number of convolutions during the calculation of a wedge density profile is
108. In real space these integrations on approximately 5 to 10 million grid points cannot
be performed within a reasonable period of time.

Therefore one is urged to perform the convolutions on a less time-consuming way: The
convolution of two functions fi(r) and fa(r) can be expressed by means of the convolution
theorem as

(1 ® f2) (r) = FHF (filr) - F (fa(r))}. (6.6)

Here the Fourier transform (FT) of a function f(r) is defined as

fk) == F(f(r)) = [ dre ™7 f(r), (6.7)

R3

and F~! indicates the corresponding backwards transform. On a grid a discrete FT is
attainable efficiently by a fast Fourier transform (FFT) [166].

A prerequisite for the use of FFT is a Cartesian grid. For axisymmetric systems this is not
the case (since the system indeed is effectively two-dimensional but merely in cylindrical
coordinates), what makes the numerical treatment difficult (cf. Sec. 9.3).



62 6.2 Aspects of the numerical implementation
6.2.2.2 Fourier transforms of Rosenfeld’s weight functions w,(z, z)

The weight functions wy(x,z) and wy(z,z), which are used for an effectively two-
demensional system with density o(z,z), are diverging at the border of the since they
diverge at the border of the involved © function [Egs. (2.99) to (2.101)]. It is possible
to Fourier transform these weight functions analytically. These Fourier transforms are
not diverging. One might try to use them in order to initialize the FF'T of the weight
functions on a computer.

However, short-wavelength oscillations in the density distribution occur, such that the
whole iteration process becomes instable. Most likely the mathematical reason for this
numerical instability is the fact that there is a difference between first discretizing and
then discretely Fourier transforming (real-space initialization) and first (continuously)
Fourier transforming and then discretizing (reciprocal-space initialization). Consequently
the way of numerical differentiations (cf. Sec. 6.2.2.3) is much more convenient than using
the problematic weight functions.

For completeness the Fourier transforms of Rosenfeld’s independent weight functions [Eqs.
(2.98) to (2.103)] are displayed:
sin(kR)

Wo(k) = Wolky, k) = 47TR2W (6.8)

with lim @, (k) = 47 R,

—0

@W;z@@@):mmCagﬁfﬁﬁv (6.9)
with lim @ (k) = inR?,

(W), (ky k) = 4nR%i k—]: (Si(z(gg) - COS}{S}ZR)» (6.10)
and

(W), (kyo k) = 4mR2 i % (a(z(;g) - COS;ZR)> (6.11)

with lim W, (k,, k.) = 0.

k—0 Tz

6.2.2.3 Numerical differentiations of ns(z, z)

In the calculations of the effectively two-dimensional density distribution o(z, z) numeri-

cal differentiations are performed in order to construct weighted densities from a radius

dependent weighted density ng = ns(x, z; R) (see Sec. 2.4.2.2). The symmetrical scheme
ns(x,z; R+ AR) —ng(x, z; R — AR)

no(x,2) = S AR +0 ((AR)?), (6.12)

is employed. The small constant AR < R needs to be chosen suitably depending on the
grid spacings A, and A,. For equal grid spacings in both directions, A, = A, = A [Eq.
(6.5)], the choice

AR = 0.36 A (6.13)

has turned out to be quite optimal, in the sense that it leads to very good agreement with
a corresponding effectively one-dimensional density profile o(z), for which a numerical
differentiation is not necessary.
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The numerical differentiations with respect to the coordinates = or z, respectively, are
performed analogously. The x component of the vectorial weighted density n,(z, 2), e.g.,
reads

(ny)z(x, 2) = —%ng,(a:, z) = _mlet Az Z; ;;3@ — Az 2) + 0 ((Az)?). (6.14)

6.2.3 Partially cut and shifted Lennard-Jones potential

For a L.J fluid the fluid—fluid interaction is truncated in order to be numerically accessible
(see Sec. 6.1). The phase diagram is obtained for an infinitely long-ranged LJ potential,
i.e., the integrated strength of the untruncated potential is used. Technically this cut-
off is reflected in a cut-off of the weight functions w, ,;(z) and w,;(x, z). A shift of the
weight function is established by calibrating the zero-component of its fast Fourier trans-
form, which equals the integrated potential strength, to the analytically available value
of the complete, uncut potential. Such a tiny shift is also applied to the weight func-
tions wqy (2) and wgy (x, 2) of the SW fluid, in order to obtain the exact, analytically
calculated integrated potential strength in the numerical integration as well.

6.2.4 Convergence of the iteration process
6.2.4.1 Picard iteration and mixing parameter

The Euler-Lagrange equation, Eq. (2.16), is rearranged into a fixed-point equation

63 Fex|o]
= —BV. -, 6.15
o(r) = oy exp { BVext(r) + B ttex — =5 o() (6.15)
which can be solved by Picard iteration. In order to improve its convergence properties,
the right-hand side of Eq. (6.15) is mixed with the profile of the previous step. The quality
of convergence can be checked by inserting the converged profile into the Euler-Lagrange

equation,

58 o] 0 Fex|0] n (9(1")

do(r) —  do(r)

) T BV (r) — B £ 0. (6.16)
Qo

6.2.4.2 Activation energy for bending of the liquid—gas interface

For each iteration step the value of the density functional Q[g] in the given system volume
can be calculated. If the particle density distribution was the equilibrium distribution, this
quantity would equal the value of the grand potential. Similarly for each density profile
one can determine the associated value of the line tension functional. The line tension
functional 7[p] is the quantity, which yields the line tension value for the equilibrium
density distribution as an input. In an iteration procedure the value of the line tension
functional can be regarded as a function of the iteration step number i, 7[p] = 7[0;] =: 7(3),
where g;(r) is the result of the i-th iteration step. The line tension is obtained as limiting
value of this function, lim; o 7(i) = 7.

Interestingly, the value of the function 7(7) [and likewise the value of a function 2(7)] does
not decay monotonously during the iteration procedure for a sessile liquid wedge, given
an initial density distribution described above (see Sec. 6.2.1). Rather the value decays
rapidly at first, but then rises again, overcomes an activation barrier, decays monotonously
thereafter and finally reaches the line tension value.
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The analysis of the convergence behavior reveals that the rapid decay at the beginning is
related to a local optimization, in which the structure of the three-phase contact region
close to the substrate surface is established. The intermediate rise of the values of the two
functionals Q[o] and 7[g] corresponds to the bending of the liquid—gas interface. Since at
later iteration steps these energy values decline to smaller values than before the barrier,
this hump can be considered as an activation barrier. It has been recognized for other
systems before, that a shift of an interface is related to an activation energy barrier. Thus
the observation of an energy barrier for bending an interface is not surprising. Clearly, for
a better choice (guess) of an initial density distribution for the iteration procedure such
a barrier does not have to occur.

Exponential decay beyond the barrier:

At least for the employed initialization scheme the value of the line tension functional
attains its asymptotic value in an exponential decay which sets in smoothly behind the
barrier maximum. This feature is found in every of the studied cases with LJ substrate
potentials, however, the necessary number of iteration steps in order to obtain convergence
strongly depends on the system parameters. The exponential decay law can be employed
to extrapolate the value of the line tension functional to its asymptotic value, the line
tension value. Within a given computational time larger systems (or slower converging
situations) can be addressed with this method, since one does not have to wait for the fully
converged state. Hence smaller contact angles are accessible. Vice versa the computational
time to obtain results for a given system can be approximately halfed this way. The region
of data beyond the local maximum has to be sufficiently large for a good exponential fit.

6.2.5 Remarkably small numerical errors

The numerical errors of the calculated line tension values are typically less than 5 % for
not too small contact angles. Since the line contribution to the total grand canonical free
energy of the system is very small compared to volume or surface contributions, these
very small errors are notable.

The magnitude of the numerical errors is evaluated as follows. By systematically changing
the discretization or/and the system size, the line tension value for an infinitely fine grid
and an infinitely large system can be estimated. Numerical errors for a wider meshed,
finite system result from deviations thereof.

A necessary condition to obtain such small errors is to perform several precaution mea-
sures. The most important of these implemented actions are: First, the boundary pro-
files are refined from an effectively one-dimensional calculation to the effectively two-
dimensional program, which is used as well to perform the calculations for the liquid
wedge. Hence the solid—gas and solid-liquid boundary profiles are attained smoothly.
Second, the zero-components of the Fourier transforms of the weight functions are manu-
ally calibrated to resemble the analytically obtained values of the integrated potential
strength. This ensures to reach bulk densities precisely and smoothly. Third, the nu-
merical derivatives in the effectively two-dimensional program are tuned to achieve the
best possible agreement with density profiles in an effectively one-dimensional program.
Fourth, the integration routine to extract the line tension value from a density profile
o(z, z) has to account for the trapezoidal shape of the integration area. The interpolation
scheme is adjusted such that a constant is integrated exactly. Fifth, the integration zone
comprises a “safety stripe” in order to omit artefacts from a lattice misfit of the liquid—gas
boundary profile (since the boundary orientation is tilted against the substrate surface).
Sixth, efficient book-keeping reduces the computer memory requirements by 50 % and
therefore from the memory point of view allows for a twice as large system size.



7 Sharp-kink line tension theory

The system of a Lennard-Jones (12-6) fluid forming a liquid wedge residing on a Lennard-
Jones (9-4-3) substrate was already considered before by Getta and Dietrich [50, 51] as
well as by Bauer and Dietrich [11, 52]. They applied the concept of the so-called sharp-kink
approzimation (cf. Sec. 7.1.1) to the liquid wedge scenario.

The line tension calculation presented in this work goes beyond that. A continuous (i. e.,
smoothly varying) density distribution o(z,z) is employed, and hence possible packing
effects near the substrate are respected. Since this method takes the microscopic details
of the interactions and of the density distribution into account, it can be regarded as
“fully microscopic” — in contrast to the “semi-microscopic” sharp-kink theory, where the
interaction potentials enter accurately but microscopic details of the density distribution
are neglected.

The sharp-kink theory of planar interfaces and the sharp-kink theory of sessile liquid
wedges are recalled. Then the sharp-kink line tension theory is extended from a crude
approximation of the Lennard-Jones interaction potential to the (exact) treatment of the
WCA separation (see Sec. 2.3.4) of the Lennard-Jones potential. Furthermore correspon-
ding formulae for a square-well fluid are presented (see Sec. 2.3.5). The results from the
microscopic calculations are compared to the corresponding sharp-kink results in Sec. 8.2.

7.1 Sharp-kink theory of planar interfaces

The sharp-kink (SK) theory of planar fluid interfaces rests upon two fundamental as-
sumptions, (i) the SK approximation of the involved density profiles p(z) and (ii) the
local density approximation (LDA) of the excess free energy of hard spheres. Assumption
(ii) influences the form of the density functional, whereas assumption (i) restricts the
search for solutions of the corresponding Euler-Lagrange equation to SK density profiles.

7.1.1 Sharp-kink approximation of planar fluid interfaces

At interfaces fluids usually exhibit smooth density variations (see Fig. 3.1). The sharp-
kink approximation replaces the interfacial structure by a SK density profile, which is
composed of regions with constant density. Consequently the range of density values is
discrete. Planar fluid interfaces can be desribed by p(z) (see Chapter 3). The SK approx-
imation of planar liquid—gas, solid-liquid, and solid—gas interfacial profiles is defined as
follows:

1. A liquid—gas interface is represented by a step function. The density discontinuously
changes from one bulk density to the other.

2. A solid-liquid interface is described by a step function
0" = 00 (z-d,), (7.1)

which switches from zero close to the substrate surface to a constant bulk liquid density.
The adjustable parameter d,,, i.e., the width of the excluded volume, is described
below.

3. A solid-gas interface is approximated by a liquid-like film (with constant density) and
a discontinuous change to a constant bulk gas density. The liquid-like film extends up
to the film thickness [. This approximation of a s—g interface is illustrated in Fig. 7.1.
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Fig. 7.1: Illustration of the sharp-kink approximation of a planar solid—gas interfacial density
profile. Here the fully microscopic density o(z) exhibits density oscillations near the sub-
strate surface and a smooth transition from the liquid-like film to the bulk gas density.
Contrarily within the SK approximation the density distribution possesses solely three
values here, namely zero (close to the surface), the bulk liquid density g, (accounting for
the liquid-like film), and the bulk gas density 0, Here d,, = R.

The ezcluded volume near the substrate surface is taken into account by the parameter d,.
The width d, of the excluded volume near the substrate surface enters the SK calculations
of solid—fluid interfaces, in contrast to fully microscopic calculations. The effect of a slight
change of this quantity on the shape of the effective interface potential w(l) can be large
in the region near the substrate surface.

From a given fully microscopic density profile an optimal value of d, can be calculated
[138], however, within the SK calculation such a profile cannot be obtained. The optimal
value of d, is related to the first moment of the density distribution p(z) of a planar
solid-liquid interface via [138]

0= fas(1-2) (2

z=0

where g, is the liquid bulk density. Simple manipulations reveal a simple connection to
the excess adsorption I' [Eq. (3.25)] of the s-1 interface,

d, = —T/o. (7.3)

In other words, the excluded volume in the SK density profile leads to the same “deficit
adsorption” (i.e., negative excess adsorption) as the fully microscopic profile.

This choice of d, is optimal in the following sense: The analytic wetting theory presented
in Ref. [138] takes density variations via Taylor expansions into account and thus goes
beyond the SK theory. Expressions for the effective interface potential are derived, which
contain moments of the density distribution, e. g., the right-hand side of Eq. (7.2). If this
moment is identified with the parameter d, (and if additionally a similar identification
is performed), the SK expressions are recovered. This means that the apparent detour
provides a way to assign a value to d,, which was not specified by the SK theory.
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7.1.2 Local density approximation (LDA)

The excess free energy functional of a hard-sphere fluid is non-local. Contrarily, in the
standard SK theory the excess free energy of a hard-sphere fluid is addressed by means
of the local density approximation (LDA). This means that the free energy density of the
hard-sphere fluid at a spatial point r with a density o(r) is described by the free energy
density of a bulk hard-sphere fluid with the same density.

Consequently within RPA [Egs. (2.51) and (2.52)] and LDA the density functional Q[] is
Old = [ dr {fulol) + £2° (o). 7)) (7.4

n % /R dr [’ o) oe!) ai (e — ') + /R dro(r) (Ve (r) — ).

Using the chemical potential of an ideal gas from Eq. (2.48), B4 = Inn, the free energy
density of an ideal gas can be expressed as

Bfia = o (lnn—1). (7.5)
Taking the Carnahan-Starling equation of state (CS EOS) as a basis, the excess free

energy density for hard-spheres, f&5 reads

An — 31
(1—n)*"
The packing fraction n and the density ¢ are connected via 1 = p %ﬂRg =0 %d?’
[Eq. (2.32)]. In the case of a SW fluid d is defined through the interaction potential
anyway. However, if for d a BH-LJ or WCA-LJ fluid the effective hard-sphere diameter
[Eq. (2.71) or (2.72)] is employed, the packing fraction becomes temperature dependent,
n =mn(T), and the excess free energy density as well, f25 = fH9 (Q, T).

The bulk phase-diagram for the LDA density functional [Eq. (7.4)] is the same as for the
full non-local theory (see Sec. 2.3.3), since for bulk densities the LDA resembles the non-
local free energy density. Note that for a LJ fluid the bulk phase diagrams are different
for (a) BH-LJ and WCA-LJ separation schemes and (b) for utilizing or not utilizing the
effective hard-sphere diameter. The bulk phase diagrams of a BH-LJ or WCA-LJ fluid
without usage of the effective hard-sphere diameter and that of a square-well fluid differ
only by a constant prefactor.

Bfeac = Bfed = o (7.6)

7.2 Sharp-kink liquid wedge

Within the sharp-kink approximation a liquid wedge with a sharp contact angle (i.e.,
0 < 6 < 90°) is described by its contour I(x). This contour represents the position of
the non-planar liquid—gas interface. An ansatz for the corresponding sharp-kink density
distribution reads

olz,z) = O(z—d,) {0 0((x)—2)+0, O(z—I(z))}. (7.7)

Let [, be the equilibrium thickness of a thin liquid-like film that might form at a solid-gas
interface. The approach is only valid, if such a film is present, i.e., if [, is significantly
larger than d,, i.e., [y > d,,. For obtuse contact angles (90° < 6§ < 180°) the equations
have to be expressed in terms of the inverse function z(l) [instead of [(x)].

The ansatz for the density, Eq. (7.7), is inserted into the density functional, and volume,
surface, and line contributions are identified. These considerations have been shown in
Refs. [11, 52]. For an arbitrary interaction potential the main formulae are summarized in
the next section, before they are specified for a LLJ or SW fluid in the subsequent sections.
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7.3 General expressions

Here general formulae — valid for all intermolecular interactions — of the sharp-kink
approach to a sessile liquid wedge are presented. In Secs. 7.4 and 7.5 they are specified
for an approximated BH-LJ or WCA-LJ fluid, an exact WCA-LJ fluid and a square-well
fluid.

7.3.1 Effective interface potential and surface tension

Consider a solid—gas interface at liquid—gas coexistence such that a thin liquid-like film
of thickness [ forms at the substrate surface. Then the surface contribution (per surface
area) to the grand potential within the sharp-kink approximation reads [141]

Q) = g + ag + (). (7.8)

w(l) is the effective interface potential, that corresponds to the energy which is necessary
to form a finite film instead an infinitely large one. Obviously w(l) obeys

lim w(l) = 0. (7.9)

l—o0

The auxiliary function

t(z) = /Rgdr' 0 — 2) & (Ir'|) = /dz ﬂ_lwﬁ(z) (7.10)
— Z% z> R, (7.11)

i>3

corresponds to the interaction energy of a particle interacting with a homogeneously filled
halfspace at a disctance z. With its help the surface tension of a solid—fluid interface
(including the special cases of a solid-liquid or a solid-gas interface),

1 o0 [oe)
Oy = — §Q12 /dz t(z) — d Qbulk(Ql) + o /dZ Vext(z), (7.12)
2z=0 z=d

W

and the interfacial tension of a liquid—gas interface,

oo

o = —%(AQV / dz #(2), (7.13)
z=0

can be expressed. The difference of the bulk liquid and bulk gas densities is abbreviated
as

Ap = 0 — 0, (7.14)

The auxiliary function ¢(z) also plays an important role in the sharp-kink formula for the
effective interface potential,

w(l) = Ao (gl / dz t(z) — /dz Voxt(z)) =: Z% (7.15)
z=l

2=l—d 122

W

This concept is most reasonable for [ > d,. a, is the Hamaker constant.
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The surface grand potential € () is minimized by the equilibrium film thickness [, and
then equals the solid—gas surface tension

o = min{Q0} =) = oy + oy + wlly). (7.16)

Inserting Young’s equation, the effective interface potential w for the equilibrium film
thickness [ is related to the macroscopic contact angle 6,

Oy — O,
) Tsg 795l (10 4 w(ly) (7.17)

0} 0}

cos 0

g g

7.3.2 Line tension

The line tension 7 of a liquid wedge can be decomposed [11, 50, 51, 52| into

T[l(ﬂ:)] = TaUOa 9) + Tl[l(x)]v (718)
where 7,(ly, ) merely depends on the assymptote

a(z) = 1yO(—x) + (ly +z tanh) O(x) (7.19)

with a(0) = [,. Furthermore by construction 7, is the line tension of the asymptote, i.e.,
7(l(z) = a(x)] = 7, and 7;[a(z)] = 0.

Note that the lateral coordinate origin x = 0 is defined via the intersection of the wedge-
like liquid-gas dividing interface with the plane z = [, > 0 in the SK theory or the
substrate surface plane z = 0 in the fully microscopic (fm) approach, respectively. These
two coordinate systems are related via x;, = g + 1,/ tan6.

Both line tension contributions are again split in two parts,
Ta(l079) = Tal(e) + Ta2(l079) (720)
and

nll(@)] = 7[l)] + nll)]. (7.21)

The function 7,7 is given as
T7,1(0) = 1(A )2 1— —0 7dx 7dz zz 7w (z,z) (7.22)
al ) e tan 6 fA )
=0 z=0

with the weight function wg(x, 2) [Eq. (2.108)] and the contact angle 6 expressed as radian
measure. T4 is linked to the fluid—fluid interaction within the liquid wedge in addition to
that within a gas wedge.

The function 749 reads

1 o0
ralle 6) = / dl w(i). (7.23)
!

:lo

This term is made up from energy contributions of the effective interface potential which
arise from a shift of the asymptote’s I-g interface from [ to a(z), i.e., o2 = [y dz w (a(x)).
Very close to a first-order wetting transition the total line tension is dominated by
Tao(ly,0) [51]. These two line tension contributions, 7,1(0) and 7,2(ly,0), are accessible
analytically for the interactions discussed in this work.
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The other two line tension contributions, 7,,[l(z)] and 7;[{(x)], have to be calculated nu-
merically for a given contour [(x). 7,[l(z)] corresponds to an integral over the effective
interface potential w(l),

T, [l(x)] = / dz {w(l(z)) —w(a(z))}. (7.24)

7, describes the influence of deviations of I(x) from a(x) on the contributions of the
effective interface potential. 7,5 cancels a part of this term, namely the integral from
zero to infinity of the second integrand. Thus the influence of I(x) on effective interface
potential contributions to 7 is split into the basic effect of the asymptote a(z) and an
additional effect due to deviations of the contour from the asymptote.

7,[l(z)] is related to the interaction energy of the liquid-gas interface,

0o 0o I(z)
nl(z)] = %(AQ)2 /daz /d:n' /dz
r=—00 g'=—00 z=a(x)
a(z’) 0o
/dz'— /dz’ wg(z —12' 2 —2). (7.25)
I=—00 2=1(a")

7, is a non-local functional of [(x). It can be approximated by a local functional

nll@)] = 7))

R R ST o A e S

7, originates from the fluid-fluid interactions across the l-g interface and describes the
excess in comparison to the asymptotic profile a(z). In the local approximation the
expression simplifies to an integral over the additionally created I-g interfacial area. Accor-
ding to Ref. [11] the line tension values and contour profiles within the non-local and
the local theory differ only slightly near first-order wetting transitions and are almost
indistinguishable near a critical wetting transition. These small differences even vanish
upon approaching 7.

7.3.3 Boundary value problem

In a sharp-kink wedge system the variation of the density distribution is limited to a
variation of the contour profile [(x). Thus the Euler-Lagrange equation here is [11, 50,
51, 52]

o
W = 0. (7.27)

According to Eq. (7.21) this is equivalent to

(loc)
0T, 1 oT,

= — 2
51(2) 51(2) (7.28)
in the local theory. Rewriting both sides of this equation,
ot (7.24) dw(l) (7.15)
w = B —— = — A — — Vex 2
5l(z) Al =) ¢ {Ql H(1() = dyy) = Vess (l(””))} (7.29)
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and

57’1(1“) " (z)

(7.30)

g 3/2°
ol(z) {14 1))}
the Euler-Lagrange equation for the sharp-kink wedge system can be expressed as [11]

—A@{@lt(l(x)—dw) —Vext(l(:c))} = oy z) 7 (7.31)

{1+—Umxﬂ2}32

This differential equation and the wedge boundary conditions,

l(x — —00) =1y, and ['(z — co0) = tan6, (7.32)

constitute a boundary value problem. Its solution yields the equilibrium contour [(x).
Practically the boundary value problem is solved by a “shooting algorithm” [167]: A
Runge-Kutta algorithm is applied for the initial value problem, which is defined by the
above differential equation and the initial condition of a value [, and a very small slope
at a starting point z,. Then automatically the desired asymptotic shape is recovered.

7.4 Lennard-Jones fluid

The Lennard-Jones fluid can be treated within the sharp-kink approximation in different
ways. First, the BH or the WCA separation scheme (see Sec. 2.3.4) can be applied to
construct the attractive and repulsive parts of the interaction potential. Second, either
this attractive part is used exactly or in a simplifying analytical approximation. The
analytical approximations for a BH-LJ and a WCA-LJ fluid are reviewed in Sec. 7.4.1,
and the general sharp-kink formalism is extended to the exact treatment of a WCA-LJ
fluid in Sec. 7.4.2.

7.4.1 Approximated BH-LJ and WCA-LJ fluid

The attractive part of the LJ fluid—fluid interaction potential can be derived by the Barker-
Henderson (BH) method or the Weeks-Chandler-Andersen (WCA) method [Eqs. (2.68)
and (2.66)]. The analytical sharp-kink calculations are simplified, if this attractive po-
tential is approximated by a simple expression. This approximation has been applied by
Getta and Dietrich [50, 51] for the BH-LJ fluid, whereas Bauer and Dietrich [11, 52] chose
the same type of function for the WCA-LJ fluid. The two approximative functions merely
differ in a prefactor v/2, which is due to the different value of the integrated strenght in
both cases [Eqs. (2.74) and (2.73)],

32

Opy 1y — _37"03] €Ly (7'33)
32

Awea-Ly — _3 27701%(1 €y = ZXQBHfLJ‘ (7'34)

In order to address both approximative functions simultaneously, it is convenient to sub-

sume them by the label “X-LJ”, where X either stands for BH or WCA. In this notation

the approximative function ¢%"%*PP(r) is given by

4 1
W) & GG = o T . (7.35)

e )]
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From this potential the corresponding auxiliary function [Eq. (7.10)] follows,

1 T z/o.,
12PP - = — — t -5 . .
rLa(2) - Ox_13 <2 arctan (Z/ULJ) 1t (Z/ULJ)2> (7.36)

Hence in the present case the liquid—gas surface tension is
al}gu’app = —5x (Ao o, oy 1, >0 (7.37)

and the effective interface potential reads

Q l—d _
D) = Agaig{;a; o1+ 22 (aretan (52 - T

LJ Oy
1 1 u,

+ = > - (7.38)
Oty 55 l

with the coefficients w,, i > 3, of the external potential [Eq. (3.8)].

For completeness the weight function wg(z) [Eq. (2.92)] for the approximative interaction
is given,

2 1
w;prJ(Z) = ﬂ_— Ox 13y 7 -3¢ (7-39)
oy 2
[1 + (C,L) ]
LJ
The weight function wg(x,2) [Eq. (2.108)] for the present case,
app 3 1
Wi (T, 2) = 2702, Qx_1j Y N\ 5/2° (7.40)
[1 +(o5) + () }
is useful to calculate the line tension contribution 7,;(#). Thus the latter reads
app 1 2 2 0
(Tal)foJ (6) E(AQ) Oy Ox_1; 1 - tan @ (7'41)

with the contact angle 6 expressed as radian measure. With the help of Wi ;(I) the

function 7,4(ly,#) can be obtained analytically,

app Ae 1 lg—dw ’
(Ta2)X7LJ (ly,0) = tan 0 <ﬂ UEJ Qyx_rj Ql{ [( OoLJ ) + 1:|

m ly—dy, ly —dy 1wy
X[E_amtan(oou )] - Oau } - Zz’(z’+1) zg+2>' (7.42)

i>1

Comment on the strength of the tail:

The following consideration is performed for the case of a an approximated WCA-LJ
fluid, however, a BH-LJ fluid can be addressed analogously. The approximative potential
is constructed such that it contains a 7~%-term, possesses a 1/(c,, + r2)? shape and the
same integrated potential strength as the WCA-LJ potential. However, the adjusted
constant in front of the potential leads to the fact that the r~S-term is much stronger
than in the original potential. Hence the substrate strength ¢, for which the Hamaker
constant vanishes [cf. Eq. (8.1)] and hence critical wetting might occur is overestimated
by a factor

32 1
— V2= ~ 1.60056234. (7.43)
9 T
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If the shape 1/(... +72)3 of an approximative potential is desired and on the other hand
the critical wetting parameters should be predicted for a WCA-LJ fluid in a quantitative
fashion, a solution to this problem could be to choose

1
3
[02 + 7‘2}
as the approximative expression. The suitably chosen constant

97 1/3
Cc = 01,3 <m> (745)

guarantees the same integrated potential strength as for the WCA-LJ potential, and at
the same time the LJ tail is maintained.

)

= de,, (7.44)

7.4.2 Exactly treated WCA-LJ fluid

The general expressions are now applied to a WCA-LJ fluid without further approxima-
tions. A WCA-LJ fluid is focused on, and a BH-LJ fluid can be treated analogously. For
this model system the effective interface potential can be obtained analytically. However,
the calculation of the associated line tension values requires numerical calculations.

The integrated potential « in this case is [Eq. (2.73)]

32
Qwea-Ly = Y Vor UE’J ELys (7.46)

the auxiliary function related to the WCA-LJ potential reads

“mew ot [$V2- 8 ()" + 3 ()] for < -y,

z

i . 3
_WgLJUI?:J %ﬁ_%JQ = +%<L)}

oLJ

twoa—rs(2) = oL (7.47)
for — V20, <z < V20,
ey of [~k (20) + 3 ()] for = > {20,
from which the liquid—gas interfacial tension follows as
9
o T = 1—622/37T(AQ)2 e 00 > 0. (7.48)

For a WCA-LJ fluid and an approximated WCA-LJ fluid the coexisting densities ¢ and g,
are the same, since the integrated potential strength is the same and the phase diagram
in first-order perturbation theory only depends on this quantity. Even if the effective
hard-sphere diameter is taken into account, the phase diagrams do not differ, since this
effective diameter is determined by the repulsive part of the interaction alone. Within
the sharp-kink approximation the ratio of liquid—gas surface tensions calculated for the
analytical approximation of a WCA-LJ fluid and an exactly treated WCA-LJ fluid is

WCA—LJ,app 2

Jlg 16 1

— e = — | ———— =~ 0.896259. 7.49
O,l\gCAfLJ ( 9 > 91/6 ( )

Hence the analytical approximation underestimates the liquid—gas surface tension by
approximately 10 % in comparison to the exact treatment of the WCA-LJ fluid.



74 7.5 Square-well fluid

Here the effective interface potential is given by

l—d
wywea_s(l) = Ap {01 (_T‘—ELJUé‘]) [bl < W> @(l —d, — \6/§O'LJ)

Ovy
l—d 1 uy
+ by ( W) @(\6/50“ - dw)ﬂ +y - (7.50)
Ov; s l
with the auxiliary functions
1 1
bi(s) = 3 s72 — 90 578 (7.51)
and
9 5o/3 16 9 13 2 1 4
_ ? _ = — = ¢t .52
by(s) 22 9\/§s+102 T (7.52)

The analytically feasible parts of the line tension can be expressed as

(Tat)wea-rs () = 35 227 (800t =, (11&(319) (7.53)
and
e = 28 L oot [ e 12 02
—alo(max{ ) (2 - e v ()
e () g ()" ) e(v2- )|
* ;i(i:—l) uzzz} (7.54)

7.5 Square-well fluid

The general expressions from Sec. 7.3 are specified here for the case of a square-well (SW)
fluid (see Sec. 2.3.5). They read

—T Eqw %ag’w for z < —ogy
tow(2) = —Tegw (305w — 02wz +323) for —ogy <2 <oy (7.55)
0 for z > o4y,
T 4
Ulsgv = 3 (Ag)z EswOsw > 0, (7.56)

1 21—d, 1 [l—d,\?
wsw(l) = AQ{QI (_W‘Eswagw) [Z +§< >

3 Osw Osw

4 u.
_% (l—dw> ]@(USW—(l—dW)) + Z%l—“} (7.57)

Osw
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1 0
(Ta)sw (0) = _1_5(AQ)2 Ug’w Esw <1 - tanQ) (7.58)
and
_ Ao sl 1 —dy 1 [(ly—d,\?
(%””u”m'_t%ﬂ{m“w%W%“[ﬁ‘i ]

1/lg—d,\> 1 [(ly—dy,\° 1w,
() (T LS 7.59
6< Taw > +60( Tow ) * ;i(iﬂ) 1 (7.59)

7.6 Interface displacement model motivated by the sharp-
kink DFT

The interface displacement model (IDM) [44] represents a mesoscopic approach to the
line tension of a sessile liquid wedge. Important predictions for the behavior of the line
tension and the wedge contour upon approaching the wetting transition were derived from
it (see Sec. 1.6). In the IDM the line tension is defined via deviations of the film contour
from a constant height according to

o 1 i\ ?
T = de |=o, | — w(l(z
/. L () et
where 7 is the equilibrium value, if I(z) is the equilibrium contour. Therefore this line
tension definition is different from the one in the microscopic approaches, i.e., the sharp-
kink DF'T or the fully microscopic treatment. If in a DF'T picture it is desired to refer to

predictions from the IDM, at least a crude connection between both definitions should be
established.

+ constant, (7.60)

Here a motivation of the line tension definition from the IDM is presented, on the basis
of the above described sharp-kink DFT. Within the sharp-kink approach the wedge line
tension consists of four parts (see the explicit formulae in Sec. 7.3),

(@) = 7,1(0) + 7a2(lp,0) + 7,[l(x)] + 7[l(2)]. (7.61)

The first term only depends on the contact angle and even vanishes vor # — 0, thus it is
neglected here. The second term is

ol ) = — /oodl w(l). (7.62)

tan ¢ I

If the actual contour looks like the reference wedge (i.e., for I(z) = a(z)), it can be
expressed as

[ee]

Tao(lg, 0) = / dz w(l(z)). (7.63)
=0

The third term vanishes for I(z) = a(z). Note that the predictions of the IDM upon

approaching the wetting temperature 7}, refer to wedge contours which differ relatively

strongly from an exact wedge, thus the basic assumption of the above motivation is not

fulfilled well. Since the IDM line tension definition also implies the way to determine the

equilibrium wedge contour, the wedge shapes according to the IDM and the sharp-kink
DFT differ.
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The fourth term in the local approximation (apart from a term solely depending on the
contact angle) can be approximated by

7i[l(x)] ~ O’lg/ dz 3 <§—i> + const. (7.64)

Thus the second and the fourth term essentially resemble the expressions from the IDM
line tension definition, Eq. (7.60). Consequently for roughly wedge-shaped contours [i. e.,
l(x) ~ a(x)] the line tension definition according to the IDM can be related to a sharp-kink
DFT. By calculating the remaining, omitted contributions, control over the deviations
between the microscopic and the mesoscopic line tension definitions is possible.

Altogether this consideration gives some indication that line tension values from the mi-
croscopic and the mesoscopic level of description are of comparable order of magnitude.
Indeed Getta and Dietrich [50, 51] as well as Bauer and Dietrich [11, 52] have shown
numerically that the asymptotic behavior of the wedge line tension obeys the IDM pre-
dictions. For a simple model system of three coexisting phases Koga and Widom [100, 101]
recovered the IDM predictions as well. One can conjecture that the IDM predictions are
universal, since microscopic details of a model system are expected to be unimportant
for the qualitative behavior of the line tension very close to wetting. The quantitative
behavior, i.e., the prefactor and the range of validity of the description by the leading
order term, certainly depends on microscopic details.



8 Results and discussion

In this chapter quantitative line tension results are presented and discussed. Several mo-
del systems are addressed by means of three different line tension theories:

First, line tension values calculated fully microscopically for several systems are shown in
Sec. 8.1. These systems have been tuned such that they are easily addressable via the
fully microscopic approach.

Second, the quality of the SK line tension theory is analyzed in Sec. 8.2. This approach
is hardly applicable to the systems from Sec. 8.1. Nevertheless a system has been tailored
in order to facilitate a quantitative comparison between SK and fully microscopic line
tension values.

Third, a “hybrid theory” is introduced in Sec. 8.3. It corresponds to the standard SK line
tension approach into which an improved effective interface potential w(l) is inserted. For
the cases studied in Sec. 8.1 this hybrid theory yields semi-quantitative agreement with
the corresponding fully microscopic line tension values. It fails, however, for the rather
extreme case of the tailored system from Sec. 8.2.

Finally the status of the three line tension theories is appraised in Sec. 8.4. This means
that the power of predicting line tension values and the numerical efficiency of the three
methods are discussed.

8.1 Fully microscopic results

Indekeu’s [44] predictions for the behavior of the line tension upon approaching a wetting
transition distinguish between four wetting scenarios (see Sec. 1.6). They correspond to
systems comprising long- or short-ranged forces, respectively, undergoing a first-order or
critical wetting transition, respectively. Subsections 8.1.1 to 8.1.2 refer to three of these
four wetting scenarios.

The fourth wetting scenario, i.e., a system with short-ranged forces undergoing a critical
wetting transition, could in principle occur for a SW fluid in the presence of a short-ranged
substrate potential. Since mean-field predictions are believed to be not very reliable in
this case, this wetting scenario is beyond the scope of this work.

8.1.1 Long-ranged forces, first-order wetting
8.1.1.1 Lennard-Jones fluid on a LJ substrate

In fully microscopic, numerical calculations a cut-off of the LJ potential range has to be
introduced. Although its cut-off distance might be large compared to the atomic radius,
the cut LJ potential is, strictly speaking, short-ranged compared to the original, infinitely
long-ranged LJ potential. This cut-off approximation influences the wetting behavior and
the asymptotics of the line tension upon approaching wetting. The truncated interaction
acts as long-ranged for a liquid-like film whose thickness is smaller or of the order of the
cut-off distance. For a much larger film thickness the presence of the cut-off is revealed,
and the character of the wetting transition changes from long-ranged to short-ranged.

Since the external potential is not truncated here, the (partially cut and shifted) LJ fluid
under the influence of an LJ (9-4-3) substrate potential belongs to the class of “long-
ranged forces”. First-order wetting and critical wetting (due to a vanishing Hamaker
constant) can be observed.

7
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Fig. 8.1: Contact angle of a WCA-LJ fluid on a LJ (9-3) substrate. The LJ fluid-fluid interaction
is truncated at an interparticle distance of 10 atomic radii (see Sec. 6.1). The substrate
potential strength is characterized by [e{? = 0.6707, refered to as case (ii). In case (i)
the substrate potential depth is fixed and adjusted such that the 2D wetting temperature
equals the one in case (ii), i.e., e) = 1.3066 ., x 0.6707. The predicted asymptotic
relation 6 ~ v/t [Eq. (1.9)] holds for each of the curves and for small contact angles 6 < 35°.
t denotes the reduced temperature with ¢ = (T, —T},) /T, which is specified for

LJ,w
the cases (i) and (ii) in 1D or 2D, respectively. The wetting temperatures in the different

cases are T\;%" ~ 1.3169, T;%" ~ 1.3140, and 752" = T5%" ~ 1.3066. Hence the 2D
wetting temperature in case (i) or (ii) is about 0.78 % or 0.56 %, respectively, smaller
than the corresponding 1D wetting temperature.

A first-order wetting transition of a WCA-LJ fluid in contact with a planar LJ (9-3)
substrate is analyzed here. The contact angle dependence of the line tension is aimed at.
There are basically two simple ways to change the contact angle 6 theoretically: Either (i)
the potential depth parameters of the fluid-fluid and the substrate-fluid interaction, ¢,
and e, are fixed and the temperature 7' (of both the substrate and the fluid) is changed.
Hence the effective temperature 7} ; = 1/(8¢,,) is changed and the dimensionless substrate
parameter (e, ~ (e, as well. Or (ii) the temperature T is fixed and the fluid—fluid
interaction parameter ¢, ; is changed, while e, is fixed. Both methods of changing 6
are employed here, since this gives an idea to what extend the line tension value solely
depends on the value of 6 or how important the actual way of establishing such a contact
angle is important.

The temperature dependence of the contact angle is shown in Fig. 8.1. The typical
behavior for first-order wetting is found, i.e., § ~ +/t for small contact angles and a
reduced temperature t. Effectively one-dimensional (1D) and effectively two-dimensional
(2D) calculations exhibit small deviations of the wetting temperature. This small error
results from different cut-offs of the LJ fluid—fluid interaction in 1D and 2D (see Sec. 6.1)
as well as from slightly different discretization errors in 1D and 2D. Results for a SW
fluid (cf. Fig. 8.6), where no cut-off exists and the differences between 1D and 2D data
are even smaller, indicate that the small differences between the 1D and 2D data for the
LJ fluid are mainly due to the different cut-offs in 1D and 2D. For consistency 2D density
profiles are employed as boundary profiles in the — likewise 2D — sessile liquid wedge
calculations.
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Fig. 8.2: Density o(z, z) in the contact region of a sessile liquid wedge on a LJ substrate. The fluid
consists of WCA-LJ particles. The employed parameters are cut,, = 10, T, , = 1.295,
and fe,, = 0.6707. This choice leads to 6 ~ 25.80°. Additionally the contour refering to
the arithmetic average of bulk liquid and gas densities is indicated.
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Fig. 8.3: Cuts through o(z, z) from Fig. 8.2. For several fixed values of 2 the density o as a function
of the distance z from the surface is displayed. Hence the density profile of a planar s—g
or s—1 interfacial is recovered, if x is situated far from the contact line on the gas or liquid
side, respectively.

The microscopic structure of a sessile liquid wedge formed by a LJ fluid resting on a LJ
(9-3) substrate is illustrated in Fig. 8.2. Cuts/slices through this specific density o(z, z)
for certain x values are presented in Fig. 8.3. The contour of this density distribution is
contained in Fig. 8.4, which provides fully microscopic contours for several contact angles.

Line tension values of a sessile liquid wedge formed by a LJ fluid on a LJ substrate are
obtained from fully microscopicly calculated density distributions o(z, z). The line tension
is presented in Fig. 8.5 for both cases (i) and (ii) of varying the contact angle. The line
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Contour of a sessile liquid wedge comprising a LJ fluid and a LJ (9-3) substrate. The
choice of parameters corresponds to case (ii) in Fig. 8.1. The convergence of the contours
towards their asymptotes is shown in (a), whereas (b) resolves the contour shapes in the
vicinity of the substrate surface. The curve for § ~ 25.80° displayed (a) is left out in
(b), since its triple line is situated out of the focus there. Contour oscillations near the
surface originate from oscillations in the corresponding planar s-1 interface, which decay
towards the gas side in the three-phase contact region. Such contour oscillations have
been found before in WDA-DFT studies of small sessile droplets [168]. Tt is characteristic
for a first-order wetting transition that far from the contact line the contour reaches its
asymptote from below. Even for obtuse contact angles (i.e., 90° < 6 < 180°) the contour
attains the inclined reference 1-g dividing interface from the liquid side.

tension in the accessible contact angle range is compatible with Indekeu’s predictions
with respect to the asymptotic behavior. Besides the typical features that 7 is negative
for large 6 and crosses zero for some small value of € (here for 6 ~ 3°, which depends on
the choice of the solid-fluid dividing interface) are recovered as well.
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Fig. 8.5: Line tension of a sessile liquid wedge formed by a WCA-LJ fluid on a LJ substrate. The
parameters are the same as in