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Preface

The main object of this Habilitationsschrift is the geometric study of solutions of
overdetermined conformally invariant differential equations via the use of Cartan and
tractor calculus. This study fits into the broader research field of conformal and par-
abolic invariant theory. Parts of our investigations take special attention to conformal
Lorentzian and spin geometry, which provides a link to the theories of modern physics.

The present text originated from a collection of research articles and other works
of the author, which emerged since the year 2003. In order to make the text basically
self contained with uniform notations and conventions I decided to prefix an extended
introductory chapter. An English and German summary are included as well.

Over the years I have benefited and learnt from discussions with many mathe-
maticians. Especially, I would like to thank Helga Baum, Florin Belgun, Andreas
Čap, Jose Figueroa-O’Farrill, Rod Gover, Andreas Juhl, Wolfgang Kühnel, Thomas
Neukirchner, Hans-Bert Rademacher and Gerd Schmalz. I’m also grateful to Jesse
Alt, who proofread parts of this text.

Stuttgart, October 2007
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Zusammenfassung (German Summary)

Die grundlegende Thematik dieser Habilitationsschrift ist die geometrische Unter-
suchung von Räumen, welche Lösungen von überbestimmten, konform-invarianten Dif-
ferentialgleichungen zulassen. Dabei kommt in besonderem Maße der Verwendung von
Methoden der Cartan-Geometrie und des Tractor-Kalküls Bedeutung zu. Unsere Unter-
suchungen sind im weiteren Kontext der konformen und parabolischen Invariantenthe-
orie zu sehen. Teile davon nehmen auch Bezug auf die Lorentzsche und spinorielle Ge-
ometrie, was eine Beziehung zu den Theorien der modernen Physik herstellt. Spezielle
Themen sind insbesondere die konformen Killing-Formen, Twistorspinoren, kon-
forme Holonomie, explizite Ambientmetriken nach Fefferman-Graham, das Poincaré-
Einstein-Modell, wesentliche konforme Killingvektorfelder und Transformationsgrup-
pen, partiell integrierbare CR-Strukturen und ihre Fefferman-Konstruktion, pseudo-
Einsteinsche, transversal-symmetrische pseudo-Hermitische Strukturen und Fefferman-
Einsteinmetriken.

Die vorliegende Habilitationsschrift ist eine kumulative Abfassung verschiedener,
eigener Forschungsarbeiten, die in den letzten Jahren seit meiner Promotion entstanden
sind (vgl. [106]). Einige dieser Arbeiten sind bereits als Artikel in Fachzeitschriften
erschienen. Andere Beiträge erscheinen als Preprints oder sind erst kürzlich neu ent-
standen. In jedem Fall haben wir versucht, die verschiedenen Quellen zu einer Einheit
zusammenzufügen. Dabei kommt der ausführlichen Einleitung in Teil 1 (d.h. Kapitel
0), welcher aus 13 Abschnitten besteht, eine besondere Bedeutung zu. Zum einen sollen
in diesem einführenden Kapitel die grundlegenden Themen und Prinzipien der Differ-
entialgeometrie vorgestellt werden, welche für die Untersuchungen in Teil 2, den eigenen
Forschungsergebnissen, zum Tragen kommen. Zum anderen legt die Einführung auch
die Bezeichnungen und Konventionen fest, welche in den späteren Kapiteln durchgängig
und einheitlich benutzt werden sollen. Die eigenen Forschungsergebnisse in Teil 2 sind
dann in 6 Kapiteln zusammengefasst.

Wir beschreiben hier zunächst kurz den Inhalt der 13 einführenden Abschnitte.
Die zentralen Themen darin sind konforme, CR- und Spin-Geometrie. Einige The-
men und Prinzipien werden dabei ausführlich beschrieben, so dass man sie in weit-
erführenden und auch anderen Themengebieten der parabolischen Geometrie als Grund-
lage verwenden könnte, während andere Ausführungen eher kurz gehalten sind und
nur das Wesentliche für unsere Zwecke bereithalten. Im Einzelnen: die ersten drei
Abschnitte starten mit der Beschreibung sehr grundlegender Prinzipien und Metho-
den der Differentialgeometrie, welche auch in vielen Lehrbüchern nachgelesen werden
können. Wir verweisen hier auf [91]. Insbesondere werden standardmäßig und auf
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viii ZUSAMMENFASSUNG (GERMAN SUMMARY)

grundlegendem Niveau differenzierbare Mannigfaltigkeiten, Liesche Gruppen und Al-
gebren, ihre Darstellungen, Faserbündel mit Zusammenhängen und Differentialoper-
atoren eingeführt. In Abschnitt 0.4 erwähnen wir in kompakter Form die Grundla-
gen der Geometrie von Riemannschen Metriken mit beliebiger Signatur, wiederum auf
grundlegendem Niveau mit besonderem Augenmerk auf Lorentzscher Geometrie und
auch in Hinblick auf die konforme Geometrie (vgl. z.B. [91, 128, 139] und viele an-
dere Quellen). Im darauffolgenden Abschnitt 0.5 wenden wir uns der parabolischen
Geometrie im Kontext der Cartan-Geometrie zu. Bezüglich der allgemeinen Theorie
von Cartan-Zusammenhängen verweisen wir auf [144]. Der beschriebene Zugang zur
parabolischen Geometrie lehnt sich besonders an die Arbeiten [145, 64, 41, 45, 42, 35]
an. Dabei ist eine parabolischen Geometrie modelliert auf einem Hauptfaserbündel
mit Cartan-Zusammenhang zum Struktur-Paar (G,P ), bestehend aus einer halbein-
fachen Lieschen Gruppe G mit parabolischer Untergruppe P . In Abschnitt 0.6 führen
wir dann die konforme Geometrie im Sinne der parabolischen Cartan-Geometrie ein
(als Geometrie zweiter Ordnung), dass heißt als P -Hauptfaserbündel mit g-wertigem
Cartan-Zusammenhang, wobei g die Lie-Algebra der Möbiusgruppe G = PO(r+1, s+1)
ist, und P beschreibt die Fixpunktgruppe des Möbiusraumes bei homogener G-
Wirkung. Die zur Gruppe P gehörige Gradierung der Lie-Algebra g hat die Länge
1. Die Beziehung von konformer Geometrie und semi-Riemannscher Geometrie wird
ausführlich dargestellt (vgl. [46, 90, 43, 44]). Im darauffolgenden Abschnitt 0.7
führen wir das Tractor-Kalkül ein, welches auf T. Thomas (vgl. [150]) zurückgeht
und in [14] grundlegend neu beleuchtet wurde (vgl. [36, 64, 37]). Das Tractor-
Kalkül ist im Wesentlichen als ein äquivalentes Modell zur Cartan-Geometrie zu ver-
stehen, wobei beide Zugänge (z.B. zur konformen Geometrie) ihre besonderen Stärken
haben. In der Tat liegt bei unserer Einführung das Hauptaugenmerk auf dem konfor-
men Tractor-Kalkül (vgl. [14, 64]). In Abschnitt 0.8 definieren wir die Grundlagen
der semi-Riemannschen Spin-Geometrie, insbesondere Spin-Strukturen, Spinorbündel,
Clifford-Multiplikation, Spinorableitung, den Dirac- und den Penrose-Operator (vgl.
[100, 15, 19, 139]). Weiterhin entwickeln wir eine spinorielle Version des Tractor-
Kalküls, was uns die Einführung von Twistoren und den Zugang zur Twistorgle-
ichung für Spinoren bereitet. Abschnitt 0.9 stellt einen kurzen Diskurs zur Defi-
nition von metrischen Kegeln dar (vgl. [62, 12]). Wir werden später sehen, dass
die metrische Kegelkonstruktion als ein erster einfacher Ansatz zur Theorie der Am-
bientmetriken im Sinne von Fefferman und Graham in Rahmen der konformen Ge-
ometrie gesehen werden kann. Die CR-Geometrie vom Hyperflächentyp wird dann in
Grundzügen in Abschnitt 0.10 erklärt. Dabei beschreiben wir sowohl den Zugang mit
Hilfe der parabolischen Geometrie für partiell integrierbare CR-Strukturen als auch
den klassischen Zugang in Beziehung mit der pseudo-Hermitischen Geometrie (vgl.
[149, 152, 103, 86, 48, 41, 39]). Die Ambientmetrik nach Fefferman-Graham ist ein
sehr wichtiges Werkzeug für das Studium der konformen und CR-Invariantentheorie.
Die Ambientmetrik-Konstruktion steht auch in direkter Beziehung zum Poincaré-
Einsteinschen Modell, welches eine so wichtige Rolle bei der Untersuchung von Bran-
son’s Q-Krümmung, Volumenrenomalisierung und der AdS/CFT-Korrespondenz in der

Physik spielt. Wir geben einen Überblick zu beiden Konstruktionen in Abschnitt 0.11
(vgl. [53, 54, 55, 56, 74, 75, 76, 77, 78, 79]). Abschließend behandeln wir die
Fefferman-Konstruktion, welche eine enge Beziehung von CR-Geometrie und konformer
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Geometrie herstellt (vgl. [53, 31, 102, 146, 73, 33, 34, 39]). In Abschnitt 0.13 fassen
wir die Ergebnisse unserer Untersuchungen in Teil 2 dieser Habilitationsschrift zusam-
men. Das wollen wir nun auch hier als nächstes tun.

Die Hauptmotivation für unsere Untersuchungen in den Kapiteln 1 bis 6 (d.h. Teil
2) ist die konforme Invariantentheorie. Jedoch steht dabei nicht so sehr die Konstruk-
tion (neuartiger) konformer Invarianten und ihre Diskussion im Vordergrund (was ein
sehr interessantes und aktives Forschungsfeld ist mit dem wir uns auch in Zukunft
verstärkt beschäftigen wollen), sondern viel mehr das Lösen von wohlbekannten, in-
varianten (partiellen) Differentialgleichungen und die Beschreibung der zugrundeliegen-
den Räume samt ihrer konformen Geometrie. Wie wir bereits erwähnt haben, inter-
essieren wir uns dabei besonders für überbestimmten Differentialgleichungen, was in
der Konsequenz dazu führt, dass die zugrundeliegenden konformen Räume im All-
gemeinen gewisse Symmetrien besitzen. Das Studium der Existenz von Lösungen
solcher konform-invarianten Differentialgleichungen und ihrer Symmetrien ist in den
verschiedensten Gebieten der Geometrie und Physik von großem Interesse. In der Tat
liegt ein Schwerpunkt unserer Untersuchungen im Bereich der Lorentzschen Geome-
trie, was eine Beziehung zu Supergravitationstheorien im Rahmen der mathematischen
Physik herstellt. In diesem Zusammenhang sind auch das Poincaré-Einstein-Modell
in Verbindung mit dem holographischen Prinzip und der AdS/CFT-Korrespondenz zu
nennen. Um bereits ein konkretes Beispiel zu geben, ein Hauptgegenstand unserer
Untersuchungen ist die Twistorgleichungen der Lorentzschen Spin-Geometrie, welche
man in einem gewissen Sinn als die grundlegende invariante Differentialgleichung erster
Ordnung der konformen Geometrie betrachten kann. Aber auch die konformen Killing-
Formen und ganz einfach auch die konformen Killingvektorfelder sind sehr stark im
Fokus des Interesses. Wir werden auch sehen, dass gewisse Symmetrien mit Hilfe einer
konformen Holonomietheorie beschrieben werden können. In der Tat, der Begriff der
konformen (Tractor)-Holonomie wird die verschiedenen Kapitel hindurch (abgesehen
von Kapitel 4) die Rolle eines Leitmotivs spielen.

Im Einzelnen werden die folgenden Untersuchungen und Ergebnisse in den Kapiteln
1 bis 6 behandelt. In Kapitel 1 diskutieren wir die Gleichung ∇norα = 0 für (p + 1)-
Form-Tractoren α auf konformen Räumen (Mn, c) der Dimension n. Diese Diskussion
basiert auf den Arbeiten [110, 111] (vgl. auch [150, 88, 148, 14, 143, 37, 35, 51,
72, 80]). Es stellt sich heraus, dass der projizierende Teil α− = ΠH(α) eine konforme
Killing-p-Form mit Gewicht (p+ 1) ist, d.h. eine Lösung der (tensoriellen) Gleichung

∇g
Xα− −

1

p+ 1
ιXdα− +

1

n− p+ 1
X♭ ∧ d∗α− = 0

für alle X ∈ TM bzgl. einer beliebigen, kompatiblen Metrik g ∈ c. Zusätzlich erfüllt
diese konforme Killing-p-Form α− ∈ Ωp(M) gewisse Normalisierungsbedingungen,
welche wir auch bzgl. der Metrik g in der konformen Klasse c berechnen. (Dies läuft im
Wesentlichen auf die Berechnung des Splittingoperators S in dieser speziellen Situation
hinaus.) Außerdem berechnen wir die Integrabilitätsbedingungen für die Existenz von
normal-konformen Killing-p-Formen. Auf konformen Einstein-Räumen sind wir in der
Lage mit Hilfe der metrischen Kegelkonstruktion die zugrundeliegende konforme Ge-
ometrie von Räumen mit Lösungen α zu beschreiben. In der Tat, da in diesem Fall die
Existenz einer normal-konformen Killing-p-Form auch die einer speziellen konformen
Killing-Form impliziert, ergibt sich für vollständige Riemannsche Mannigfaltigkeiten
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eine Klassifikation mit Hilfe der speziellen Holonomiegruppen des Kegels (vgl. Theo-
rem 4 und [12, 143]). Es ist auch wichtig zu erwähnen, dass die konforme Einstein-
Bedingung selbst durch die Existenz von ∇T-parallelen Standardtractoren beschrieben
wird (vgl. [28, 64, 93, 92, 6, 7, 65, 69, 122, 123, 3]). Genauer gesagt, ein ∇T-
paralleler Standardtractor auf einer konformen Mannigfaltigkeiten (Mn, c) gibt in ein-
deutiger Weise eine Einsteinmetrik in c bis auf Singularitäten in M an. Falls alle
Einstein-Skalierungen auf M Singularitäten aufweisen, sprechen wir von (konformen)
fast-Einsteinschen Räumen.

Offensichtlich steht die Gleichung ∇norα = 0 in enger Beziehung mit der Holonomi-
etheorie des kanonischen Zusammenhangs ωnor (bzw. ∇nor) der konformen Geometrie
(vgl. auch [6]). Wir werden im weiteren Verlauf zeigen, dass diese Tatsache einige in-
teressante Konsequenzen und Anwendungen nach sich zieht. Zunächst beweisen wir ein
konformes Analogon des Zerlegungssatzes von deRham für semi-Riemannsche Räume
(vgl. Theorem 6). Die entsprechende (lokale) Aussage in der konformen Geometrie
besagt, dass die konforme Holonomiegruppe genau dann zerlegbar ist, wenn ein Paar
von Einsteinmetriken existiert mit einer gewissen Relation zwischen den zugehörigen
Skalarkrümmungen, deren Produkt in der konformen Klasse c liegt. Die notwendige
Relation für die Skalarkrümmungen ist dabei gegeben durch

n2(n2 − 1) · scal1 = −n1(n1 − 1) · scal2 ,
wobei n1 und n2 die Dimensionen der Faktoren angeben (vgl. Proposition 6). Wir
wollen an dieser Stelle auch hervorheben, dass insbesondere die konforme Einstein-
Bedingung eine sehr nützliche Interpretation in Rahmen der konformen Holonomiethe-
orie besitzt. Es ist nämlich einfach so, dass eine Mannigfaltigkeit mit konformer Struk-
tur genau dann fast-Einsteinsch ist, falls die konforme Holonomiegruppe reduziert ist,
so dass sie einen Standardtractor fixiert. Diese Holonomiebedingung kann in konkreten
Situation sehr gut nachprüfbar sein. (Zumindest sollte diese Bedingung einfacher
nachzuprüfen sein, als den Beweis zu führen, dass ein Standardtractor ∇T-parallel
ist!) Wir werden das in einer konkreten Situation in Kapitel 3 demonstrieren.

Ein Twistorspinor ϕ (oder auch konformer Killingspinor genannt) auf einer kon-
formen Spin-Mannigfaltigkeit ist Lösung der Twistorgleichung

∇S
Xϕ+

1

n
X ·DSϕ = 0

für all X ∈ TM . Eine bemerkenswerte Eigenschaft von Twistorspinoren ist, dass
jeder zugehörige Twistor (d.h. ein Schnitt im spinoriellen Tractorbündel) in je-
dem Fall ∇nor-parallel ist (vgl. [137, 61, 19, 32]). Mit Hilfe der Spinorquadrate
eines Twistorspinors wird sofort deutlich, dass sich (in Abhängigkeit von Signatur
und Dimension) verschiedene normal-konforme Killing-p-Formen auf einer konformen
Spin-Mannigfaltigkeit (M, c) generieren lassen. Eine Besonderheit bei der konformen
Lorentzschen Geometrie besteht darin, dass der Dirac-Strom (d.h. das Spinorquadrat
in den Tangentialvektoren) dieselbe Nullstellenmenge besitzt wie der Spinor selbst. Da
der Dirac-Strom zu einem Twistorspinor ein normal-konformes Killingvektorfeld ist,
ist der zugehörige adjungierte Tractor ∇nor-parallel, d.h. dieser adjungierte Tractor
besitzt einen eindeutig bestimmten Orbittypen unter der Wirkung der Möbiusgruppe
O(2, n) (welcher auch über der Mannigfaltigkeit konstant ist). Mit Hilfe von Tafel
3 können wir eine Klassifikation von 2-Formen bzw. schiefadjungierten Endomor-
phismen auf dem pseudo-Euklidischen Raum R2,n mit Signatur (2, n) angeben. Das
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wesentliche Ergebnis unserer Klassifikation besagt, dass es exakt 4 generische Orbit-
typen (bzw. Normalformen) für 2-Formen auf R2,n gibt, welche als spinorielles Quadrat
entstehen können. Entsprechend dieser 4 generische Typen sind wir in der Lage in The-
orem 10 eine vollständige geometrische Klassifikation für (konforme) Lorentzsche Spin-
Mannigfaltigkeit anzugeben, welche Twistorspinoren ohne Singularitäten zulassen.
Unter den beschriebenen möglichen Geometrien befinden sich statische Monopole,
Brinkmannsche Räume, die Fefferman-Räume, die Einsteinschen Sasaki-Räume und
gewisse (konforme) Produkträume (wie oben bereits erwähnt). Diese Klassifikation
erweitert die bekannten Resultate aus [117, 17, 106, 21].

Die metrische Kegelkonstruktion für Einstein-Räume ist im Prinzip äquivalent zur
Ambientmetrik-Konstruktion der zugörigen konformen Klasse nach Fefferman und Gra-
ham. In der Tat, wie man sogar einfach raten kann, ist die Ricci-flache Ambientmetrik
einer konformen Einstein-Klasse durch das Produkt des Kegels und eines parallelen
Linienelements gegeben. In Kapitel 2 verallgemeinern wir diese einfache Idee. Dieser
Teil der Arbeit basiert auf [68], was eine Gemeinschaftsproduktion mit Prof. A.R.
Gover von der Universität Auckland in Neuseeland ist. In Theorem 11 werden wir ex-
plizit eine Ricci-flache Ambientmetrik-Konstruktion nach Fefferman-Graham angeben
für eine beliebige konforme Struktur mit zerlegbarer (konformer) Holonomie. Das In-
teressante an dieser Konstruktion ist, dass die zugrundeliegende konforme Struktur im
Allgemeinen nicht Einsteinsch ist. Wir zeigen das, indem wir die konforme und die
Holonomie der Ambientmetrik miteinander identifizieren (vgl. Theorem 15). (In allge-
meineren Situation ist übrigens nicht zu erwarten, dass diese beiden Holonomiegruppen
etwas gemein haben!)

Die Ambientmetrik nach Fefferman-Graham steht in enger Beziehung zum bekan-
nten Poincaré-Einstein-Modell mit konformem Rand im Unendlichen. In der Tat kann
das Poincaré-Einstein-Modell als Hyperfläche im Ambientmetrik-Raum realisiert wer-
den. Auf der anderen Seite zeigen wir im Abschnitt 2.4 ganz allgemein, dass ausgehend
vom Poincaré-Einstein-Modell mit Hilfe der Kegelkonstruktion eine Ambientmetrik mit
Rand erzeugt werden kann. In diesem Sinn sind beide Modelle äquivalent. Die ex-
plizite Poincaré-Einsteinmetrik für einen konformen Rand mit zerlegbarer (konformer)
Holonomie wird in Theorem 13 präsentiert. Wir geben dabei auch die explizite Tay-
lorreihenentwicklung der Poincaré-Einsteinmetrik bzgl. der speziellen definierenden
Funktion des Produktrandes an (vgl. [74, 87]). Man muß sicherlich sagen, dass unsere
explizite Konstruktion nur für eine recht spezielle Klasse von konformen Strukturen
funktioniert, wie die Taylorreihenentwicklung zeigt, welche bereits nach dem Term
4. Ordnung abbricht. Jedoch ist es unserem Wissen nach auch so, dass diese Kon-
struktion eine der wenigen bekannten ist, für Ränder die nicht konform-Einsteinsch
sind (vgl. [131] für einen anderen bekannten Fall; vgl. auch [77, 26, 104, 5, 125]
für existenzielle, nicht explizite Aussagen)! In Abschnitt 2.6 beschreiben wir dann
noch eine Charakterisierung unserer expliziten Poincaré-Einsteinmetriken mit Hilfe
der Existenz von gewissen speziellen Killing-p-Formen (vgl. [143]). Wir möchten hier
nochmal erwähnen, dass das Poincaré-Einstein-Modell und natürlich auch die Am-
bientmetrik nach Fefferman-Graham von sehr großer Bedeutung sind in der Geome-
trie und Physik bei der Untersuchung von konformen Invarianten, wie z.B. Branson’s
Q-Krümmung, in Verbindung mit Fragen der Volumenrenormaliserung und ähnlicher
Größen (vgl. [1, 5, 47, 55, 74, 79, 87]) oder auch der AdS/CFT-Korrespondenz (vgl.
z.B. [124, 78]).
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Nach den bisherigen Ausführungen sollte bereits deutlich geworden sein, dass
die konforme Holonomietheorie eine zentrale Rolle bei unseren Untersuchungen
spielt. In Kapitel 3 beabsichtigen wir den Beweis zu erbringen, dass eine konforme
Holonomiegruppe in konkreten Situationen tatsächlich explizit berechenbar ist. Zu
diesem Zweck entwickeln wir ein Kalkül zur Beschreibung des kanonischen invari-
anten Cartan-Zusammenhangs der konformen Geometrie von bi-invarianten Metriken
auf Lieschen Gruppen. Tatsächlich sind Holonomieberechnungen dann durchaus hand-
habbar unter Benutzung dieses Kalküls und der klassischen iterativen Formel für
Holonomiegruppen invarianter Zusammenhänge auf Hauptfaserbündeln (vgl. z.B.
[91]). Konkret berechnen wir die konformen Holonomiegruppen der speziell orthogo-
nalen Gruppen SO(3) und SO(4) mit bi-invarianten Metriken, welche in beiden Fällen
durch die zugehörige Killingform der Lie-Algebra gegeben sind. Offensichtlich ist die
bi-invariante Metrik auf SO(3) konform-flach und tatsächlich ergibt unsere Rechnung
ein triviales Resultat für die konforme Holonomie. Auf der anderen Seite sieht man
sofort ein, dass die bi-invariante Metrik auf SO(4) lokal das Produkt zweier runder
Sphären ist, welches nicht konform-flach ist. In der Tat ergibt unsere Berechnung
so(7) für die konforme Holonomiealgebra von SO(4). Insbesondere zeigt dieses Resul-
tat, dass die bi-invariante Metrik auf SO(4), welche von der Killingform kommt, bis
auf einen konstanten konformen Faktor die einzige Einsteinmetrik in ihrer konformen
Klasse darstellt. Der Inhalt der Ausführungen in Kapitel 3 ist der Arbeit [109] ent-
nommen. Die hier vorgestellten Ideen können auch in sehr viel allgemeineren Situation
homogener Räume mit parabolischen Geometrien angewandt werden. Das zeigt die
Arbeit [83], welche in eleganter Art und Weise auch eine allgemeine Beziehung von
Automorphismengruppen und invarianten Holonomiegruppen herstellt.

In Kapitel 4, welches auf den Quellen [105, 108, 115] beruht, wird unser Interesse
an speziellen Lösungen konform-invarianter Differentialgleichungen besonders deutlich.
Das Problem dieses Kapitels ist das Lösen der Twistorgleichung für Spinoren auf
Lorentzschen Spin-Mannigfaltigkeiten mit singulären Punkten. Konkret heißt das hier,
dass wir Twistorspinoren mit Nullstellen suchen. (Zur Erinnerung: in Kapitel 1 hatten
wir eine geometrische Klassifikation im nicht-singulären Fall angegeben.) Wir wollen
auch motivieren, warum Nullstellen von Twistorspinoren besonderes Interesse verdi-
enen. In der Riemannschen Geometrie kann man mit klassischen Methoden einfach
zeigen, dass Twistorspinoren mit Nullstelle außerhalb der Nullstelle konform-äquivalent
zu paralleln Spinoren sein müssen (vgl. [19]). Auf kompakten Riemannschen Räumen
existieren Twistorspinoren mit Nullstelle nur auf der runden Spähre Sn, welche bekan-
ntermaßen konform-flach ist (vgl. [120]). Im nicht-kompakten Fall treten Nullstellen
von Twistorspinoren typischer Weise im unendlich fernen Punkt von asymptotisch
flachen Riemannschen Metriken mit irreduzibler (oder trivialer) Holonomiegruppe auf
(vgl. [96, 99]).

Wie wir bereits zuvor im Kontext der Lorentzschen Geometrie erwähnt haben,
ist der Dirac-Strom ein normal-konformes Killingvektorfeld, welches die gleiche Null-
stellenmenge wie der Twistorspinor selbst hat. Die Existenz einer solchen Nullstelle
eines Dirac-Stroms macht es dann auf einfache Art und Weise möglich, den Orbittypen
des zugehörigen ∇nor-parallelen adjungierten Tractors zu bestimmen (vgl. Tafel 3).
Diese Untersuchung zeigt dann wiederum, dass ein Twistorspinor mit Nullstelle in der
Lorentzschen Geometrie konform-äquivalent ist zu einem parallelen Spinor außerhalb
der Nullstellenmenge (vgl. Theorem 19). Wir erhalten also dasselbe Resultat wie in der
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Riemannschen Geometrie, jedoch scheint es so, als ob der Beweis in der Lorentzschen
Geometrie ohne das Tractor-Kalkül nicht auskommt! Diese Bemerkung soll hier in
einer nur ganz speziellen Situation verdeutlichen wie nützlich das Tractor-Kalkül ist.

Twistorspinoren mit Nullstellen in der Lorentzschen Spin-Geometrie sind auch aus
folgendem Grund von Bedeutung. Es stellt sich nämlich durch eine einfache Überlegung
heraus, dass der Dirac-Strom eines Twistorspinors mit Nullstelle ein wesentliches kon-
formes Killingvektorfeld auf der zugrundeliegenden konformen Mannigfaltigkeit (M, c)
ist, was bedeutet, dass der Dirac-Strom bezüglich keiner kompatiblen Metrik in der
konformen Klasse c ein Killingvektorfeld ist, und somit als eine echte infinitesimale
konforme Symmetrie von (M, c) zu verstehen ist (vgl. z.B. [2, 4, 60])! In der Rie-
mannschen Geometrie kommen wesentliche konforme Transformationsgruppen nur sehr
selten vor. In der Tat besagt ein wohlbekanntes Ergebnis, dass eine vollständige
Riemannsche Mannigfaltigkeit mit wesentlicher konformer Transformationsgruppe en-
tweder konform-äquivalent zur runden Sphäre ist (das ist der kompakte Fall) oder
konform-äquivalent zum Euklidischen Raum ist (das ist der nicht-kompakte Fall).
In beiden Fällen ist die konforme Geometrie flach (vgl. [134, 116, 2]). In der
Lorentzschen Geometrie sind nicht konform-flache Räume mit wesentlicher Transfor-
mationsgruppe so gut wie unbekannt (vgl. [106, 60]).

Das zweite Hauptresultat von Kapitel 4 ist dann auch die explizite Konstruk-
tion einer Familie von nicht-kompakten Lorentzschen Mannigfaltigkeiten in der Di-
mension 5, welche Twistorspinoren mit isolierter Nullstelle besitzen, so dass die zu-
grundeliegende konforme Geometrie in jeder Umgebung der isolierten Nullstelle nicht
konform-flach ist (vgl. Theorem 20). Insbesondere beweist dieses Resultat die Existenz
von nicht konform-flachen Lorentzschen Räumen mit wesentlicher konformer Transfor-
mationsgruppe. (Wir möchten an dieser Stelle daran erinnern, dass eine bekannte Ver-
mutung von Lichnerowicz besagt, dass kompakte Lorentzsche Räume mit wesentlicher
Transformationsgruppe konform-flach sein müssen (vgl. z.B. [4]).) Unsere Konstruk-
tion benutzt die Eguchi-Hanson-Metrik in Dimension 4 (welche eine hyper-Kählersche
Metrik der Riemannschen Geometrie darstellt) und kann interpretiert werden als eine
konforme Vervollständigung von Räumen, welche das asymptotische Verhalten des 5-
dimensionalen Minkowskischen Raumes besitzen. Es muss erwähnt werden, dass die
konstruierte Metrik nur einmal stetig differenzierbar ist. Jedoch ist es denkbar, dass
die konforme Struktur glatt ist. Das bleibt an dieser Stelle unklar.

Bisher haben wir in dieser Zusammenfassung keine Resultate und Untersuchungen
zur CR-Geometrie beschrieben. Das wird sich nun ändern, denn die beiden letzten
Kapitel beschäftigen sich intensiv mit der CR-Geometrie und ihrer Verbindung zur
konformen Geometrie. Die ursprüngliche Motivation für unser Interesse an der CR-
Geometrie geht dabei wieder auf die Twistorgleichung der Lorentzschen Spin-Geometrie
zurück. Die folgende Diskussion lässt sich auch sehr gut in das Thema der konformen
Holonomietheorie integrieren. Der wesentliche Punkt in den Kapiteln 5 und 6 ist, dass
mit Hilfe der (verallgemeinerten) Fefferman-Konstruktion aus CR-Geometrien kon-
forme Räume entstehen, welche interessante Invarianzeigenschaften besitzen. (Auf
der anderen Seite ist die Fefferman-Konstruktion natürlich auch ein sehr geeignetes
Hilfsmittel zur Untersuchung der CR-Invariantentheorie.) Konkret werden wir fes-
tellen, dass die Fefferman-Konstruktion konforme Räume produziert, welche spezielle
Lösungen von konform-invarianten Differentialgleichungen, wie der Twistorgleichung,
zulassen und auch besondere Holonomieeigenschaften besitzen (vgl. [117, 17, 40]).
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Das Kapitel 5 basiert auf der Arbeit [112]. Die grundlegende Annahme ist hier-
bei eine partiell integrierbare CR-Struktur vom Hyperflächentyp, welche zusätlich mit
einer pseudo-Hermitischen Struktur versehen ist. Man beachte, dass die Annahme
der partiellen Integrierbarkeit im Allgemeinen die Existenz eines nicht-trivialen Ni-
jenhuisschen Torsionstensor NJ zur Folge hat. Zunächst stellt sich das Problem der
Existenz eines ausgezeichneten linearen Zusammenhangs, welche durch die Wahl der
pseudo-Hermitischen Struktur bestimmt ist. In der Tat können wir mit Hilfe der
Levi-Form zur pseudo-Hermitischen Struktur und einer geeigneten Normalisierung der
Torsion Bedingungen angeben, welche einen linearen Zusammenhang eindeutig bes-
timmen (vgl. Lemma 17). Wir nennen diesen Zusammenhang den verallgemeinerten
Tanaka-Webster-Zusammenhang, da er im Fall integrabler CR-Strukturen tatsächlich
mit dem klassischen Tanaka-Webster-Zusammenhang einer pseudo-Hermitischen Ge-
ometrie übereinstimmt (vgl. z.B. [149, 152, 102, 103, 67, 48]). Unsere explizite
Konstruktion richtet sich nach Methoden, wie sie in [17] benutzt werden. In Ab-
schnitt 5.3 konstruieren wir dann den Fefferman-Raum mit zugehöriger Metrik einer
partiell integrierbaren CR-Mannigfaltigkeit mit pseudo-Hermitischer Struktur. Diese
Konstruktion verläuft analog zur intrinsischen Fefferman-Konstruktion, welche auf
J.M. Lee zurückgeht, d.h. mit Hilfe eines Weyl-Zusammenhangs auf dem kanonis-
chen Kreisbündel des zugrundeliegenden CR-Raumes funktioniert (vgl. [102]). Es
wird dann auch hier gezeigt, dass die konforme Klasse der Fefferman-Metrik nicht
von der Wahl der pseudo-Hermitischen Struktur abhängt, und somit ist klar, dass die
Fefferman-Konstruktion auch unter der allgemeineren Annahme der partiellen Inte-
grierbarkeit eine CR-Invariante ist (vgl. Theorem 21).

Überraschender Weise stellen wir fest, dass die Benutzung des Weyl-
Zusammenhangs (auch im speziellen integrablen Fall) gar nicht zwingend notwendig
ist, um ein konforme Klasse zu konstruieren, welche nicht von der Wahl der pseudo-
Hermitischen Form abhängt. Es ist eine Tatasche, dass man eigentlich sogar jeden
beliebigen Zusammenhang im kanonischen Kreisbündel wählen kann, und am Ende
einen Fefferman-Raum erhält, der nur von der CR-Struktur und einer Eichform ℓ
abhängt. Wir nennen diese Erweiterung die geeichte Fefferman-Konstruktion der par-
tiell integrierbaren CR-Geometrie (vgl. Definition 4). Ihr Nutzen, vom Standpunkt der
CR-Geometrie aus gesehen, ist eher zweifelhaft, und vermutlich überhaupt gar nicht
vorhanden! Trotzdem werden wir in Kapitel 6 sehen, dass die geeichte Fefferman-
Konstruktion ein Phänomen im Reich der konformen Geometrie erklären kann. Auf
jeden Fall berechnen wir in den folgenden Abschnitten 5.4 bis 5.6 Eigenschaften der
Torsion, die Skalarkrümmung der geeichte Fefferman-Metriken (bzgl. der Webster-
Skalarkrümmung; vgl. Theorem 22) und wenden den Bochner-Laplace-Operator auf
das fundamentale Vektorfeld χK an, welches ein vertikales Killingvektorfeld in der gee-
ichte Fefferman-Konstruktion darstellt (vgl. Proposition 16). All diese Berechnungen
ermöglichen uns die Anwendung des Splittingoperators S auf das fundamentale Vektor-
feld 2χK zu berechnen, so dass wir das Resultat bzgl. der gegebenen Objekte explizit
identifizieren können. Es sei bemerkt, dass wir zu diesem Zweck zunächst einmal
auch überhaupt den Splittingoperator S bzgl. einer kompatiblen Metrik auf einem be-
liebigem konformen Raum (M, c) kennen müssen. Diese Berechnung wird in Abschnitt
5.7 durchgeführt. Insgesamt können wir am Ende feststellen, dass die Anwendung
S(2χK) im Rahmen der geeichten Fefferman-Konstruktion für partiell integrierbare
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CR-Strukturen auf eine orthogonale komplexe Struktur J des Standardtractorbündels
T führt, zumindest unter gewissen Bedingungen an die Eichform ℓ. Die abschließende
Folgerung von Kapitel 5 (vgl. Theorem 23) ist dann der Nachweis der Konstruktion
einer Familie von Lösungen J der konform-invarianten Tractorengleichung

∇norJ = −Ωnor(ΠH(J), ·) mit J • J = −id|T .

Abschließend werden in Kapitel 6 die folgenden drei Sachverhalte diskutiert.
Zunächst betrachten wir Lösungen J der obigen Tractorengleichung auf einem beliebi-
gen Raum (M, c) mit konformer Struktur. Es stellt sich heraus, dass allein mit Hilfe
von J eine natürliche lokale Konstruktion existiert, welche in eindeutiger Art und Weise
eine partiell integrierbare CR-Struktur vom Hyperflächentyp auf einer Quotienten-
Mannigfaltigkeit erzeugt (wobei die Dimension des Quotientenraumes um eins reduziert
ist; vgl. auch [39]). Weiterhin können wir dann zeigen, dass die konforme Struktur c
auf M lokal äquivalent ist zu einer geeichten Fefferman-Metrik über dem induzierten
CR-Quotienten bei geeigneter Wahl der Eichform ℓ. Zusammen mit den Resultaten
aus Kapitel 6 haben wir dann also eine vollständige lokale Charakterisierung und ein
Konstruktionsprinzip für Räume (M, c) mit Lösungen J der obigen Tractorengleichung
gefunden (vgl. Theorem 24). Soviel zur Rechtfertigung unserer geeichten Fefferman-
Konstruktion!

Das zweite Argument des Kapitel 6 betrifft die Holonomie-Charakterisierung
der klassischen, intrinsischen Fefferman-Konstruktion für integrierbare CR-Strukturen
nach J.M. Lee. Dieses charakterisierende Resultat wurde in unserer Arbeit [113] be-
wiesen (vgl. auch [40]). Die Aussage ist, dass ein konformer Raum (M, c), dessen
konforme Tractor-Holonomie Hol(T) soweit reduziert ist, so dass sie in der irreduz-
iblen Untergruppe U(p + 1, q + 1) der Möbiusgruppe enthalten ist, zumindest lokal
konform-äquivalent zu einem klassischen Fefferman-Raum über einer integrierbaren
CR-Mannigfaltigkeit ist. Tatsächlich ist sogar eine stärkere Aussage wahr. Wir können
nämlich im Tractor-Kalkül zeigen, dass wenn die konforme Holonomie-Algebra hol(T)
mindestens bis auf u(p + 1, q + 1) reduziert ist, dann ist sie sogar mindestens bis zur
speziell unitären Algebra su(p + 1, q + 1) reduziert (vgl. Theorem 25). Dieses Resul-
tat bedeutet dann auch, dass eine konforme Holonomiegruppe niemals identisch zur
ganzen U(p+ 1, q + 1) sein kann.

Die Holonomie-Charakterisierung der klassischen Fefferman-Konstruktion in Kom-
bination mit der Holonomie-Charakterisierung der konformen Einstein-Bedingung
lässt uns dann zum letzten Streich ausholen. Es ist wohlbekannt, dass eine klas-
sische Fefferman-Metrik niemals eine Einsteinmetrik ist. Aber offensichtlich, wenn
ein Raum eine konforme Holonomiegruppe in U(p + 1, q + 1) hat und außerdem
die konforme Holonomie einen Standardtractor fixiert, dann sollte das die konforme
Holonomiegruppe einer Fefferman-Metrik sein, die zumindest im konformen Sinne
fast-Einsteinsch ist. Da es keinen Grund gibt anzunehmen, dass solche konformen
Holonomiereduktion für einen Raum nicht möglich sind (abgesehen von der trivialen
Holonomie), sollte es also tatsächlich möglich sein, solche Holonomie-reduzierten kon-
formen Räume zu erzeugen. In der Tat, basierend auf unserer Arbeit [114], wer-
den wir in den letzten Abschnitten des Kapitel 6 ein Konstruktionsprinzip für soge-
nannte (TSPE)-Strukturen entwickeln. Dabei ist mit (TSPE)-Struktur eine pseudo-
Einsteinsche Struktur im Sinne von Lee (vgl. [103]) gemeint, welche simultan eine
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transversale Symmetrie in Form des zugehörigen Reeb-Vektorfeldes auf der zugrun-
deliegenden integrierbaren CR-Mannigfaltigkeit erzeugt. Eine solche (TSPE)-Struktur
kann konkret mit Hilfe von Kähler-Einstein-Räumen konstruiert werden. Tatsächlich
zeigen wir in Theorem 26, dass zumindest lokal jede (TSPE)-Struktur in natürlicher
Weise von einer Kähler-Einsteinmetrik stammt. Da (TSPE)-Strukturen zu ∇nor-
parallelen Standardtractoren der CR-Geometrie korrespondieren, und der Lift solcher
CR-Tractoren entlang der Fefferman-Konstruktion zu ∇nor-parallelen Standardtrac-
toren der konformen Geometrie führt, wird deutlich, dass jede Fefferman-Metrik, welche
über einer (TSPE)-Struktur auf einem integrablen CR-Raum entsteht, konform fast-
Einsteinsch sein muss! Tatsächlich sind wir in der Lage (lokal) einen konformen Faktor
explizit zu bestimmen, der die Fefferman-Metrik einer beliebigen (TSPE)-Struktur auf
eine Einsteinmetrik skaliert. Die resultierenden lokalen Ausdrücke für diese Fefferman-
Einsteinmetriken werden in Theorem 27 angegeben. Global auf dem kanonischen
Kreisbündel ist eine Fefferman-Metrik niemals konform Einsteinsch! Das zeigt, dass
es Situationen geben kann, in denen neben den Einsteinmetriken auch andere kom-
patible Metriken einer konformen Klasse in besonders natürlicher Weise hervortreten,
bzw. in denen die (fast)-Einsteinsche Eigenschaft im konformen Sinn eigentlich als die
natürlichste Bedingung angesehen werden muss.
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CHAPTER 0

The Basic Theory

This is an introductory chapter consisting of 13 sections, whose aim is to provide
essentially all the basic and necessary material of the theory, on which the topics and
investigations in Part 2 (Chapter 1 to 6) of our work are based. The collection starts
with the very common definitions of differential geometry, carries on with the theory of
parabolic Cartan geometries and tractor calculus and finally comes to a brief discussion
of the ambient metric and Fefferman constructions. Thereby, some of the discussed
themes will be described in detail and are based on a rather broad footing, providing
enough background for investigations that go beyond our aims, whereas some other
parts of the theory are described briefly, providing just the necessary facts. The central
topics are conformal differential geometry and CR-geometry, and other material in this
introduction and later is developed in relation to these.

Section 0.1 to 0.3 are concerned with the standard facts of differentiable manifolds,
Lie groups and algebras, their representations, fibre bundles, principal connections and
differential operators. All these things can be found in many text books. We refer to
[91]. Section 0.4 reviews the geometry of Riemannian metrics of arbitrary signature,
again on a basic level with emphasis on features related to Lorentzian and conformal
geometry (cf. e.g. [91, 128, 139] and many other sources). In the following section, we
introduce parabolic Cartan geometry. As a general reference for the theory of Cartan
connections we cite [144]. Our approach to parabolic geometry is essentially influenced
by [41, 64, 145, 45, 42, 35]. In Section 0.6 we introduce conformal geometry in the
framework of parabolic Cartan geometry. The relation with semi-Riemannian geometry
is discussed as well (cf. [46, 90, 43, 44]). In the subsequent section we treat parabolic
geometries from the viewpoint of tractor calculus, which can be seen as equivalent to
the Cartan formulation. Tractor calculus was initially invented by T. Thomas in [150]
and revived in [14]. The emphasis of our discussion is on conformal tractor calculus
(cf. [36, 64, 45, 37, 38]). Further, in Section 0.8, we give a short explanation of spin
structures in semi-Riemannian and conformal geometry (cf. [100, 15, 19, 139]). A
spin version of conformal tractor calculus is implemented as well, which gives rise to the
notion of twistors. This allows us to discuss the twistor equation, which is a fundamental
topic for our studies. In Section 0.10 we discuss partially integrable CR-geometry of
hypersurface type from the viewpoint of parabolic geometry and also via the classical
approach in relation with pseudo-Hermitian structures (cf. [149, 152, 103, 86, 48,
41, 39]). The Fefferman-Graham ambient metric construction is a very useful tool
for studying conformal and CR-invariant theory. The ambient construction is closely
related to the Poincaré-Einstein model, which is of particular interest in relation with
such research topics as Q-curvature and the AdS/CFT correspondence in physics. We
review both constructions in Section 0.11 (cf. [53, 54, 55, 56, 74, 75, 76, 77, 78, 79]).
The metric cone construction of Section 0.9 (vgl. [62, 12]) can be seen as a simplified

3
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version of the ambient metric construction for Einstein spaces. Finally, in Section
0.12, we discuss the Fefferman construction, which relates CR-geometry with conformal
geometry (cf. [53, 31, 102, 146, 73, 33, 34]). This construction was originally
invented by C. Fefferman in order to study geometric properties and the invariant
theory of pseudoconvex boundaries. In Section 0.13 we give a summary of our results
in Part 2 (Chapter 1 to 6).

1. Manifolds, Vector Bundles and Differential Operators

Let Rs denote the Euclidean vector space of dimension s ≥ 0. A topological man-
ifold is a Hausdorff topological space X, which admits a countable basis of open sets
and is locally homeomorphic to Rn, where n = dim(X) ∈ N is a fixed number, the
dimension of X. A space X decomposes into disjoint connected components. If X
consists of exactly one component then the space X is called connected. We denote
the fundamental group of a connected space X by π1(X). A connected topological
manifold X is called simply connected if π1(X) is trivial.

A differentiable structure F on a topological manifold X is given by a collection
of coordinate systems (or charts), which cover the space X such that all coordinate
changes on the overlap of any two charts give rise to diffeomorphisms. Then we call a
pair

M := (X,F)

a (differentiable) manifold. The class of differentiability of M is determined by the dif-
ferentiability of the coordinate changes. In this work all manifolds (without boundary)
are assumed to be smooth, i.e., all coordinate changes are infinitely often differentiable
and we denote this class by C∞. A manifold is called real analytic if all coordinate
changes are of class Cω. The Cartesian product M1 × M2 of two manifolds is in a
natural way a manifold. A map

f : M → N

between manifolds M and N is differentiable of class Ck if the induced maps with
respect to any coordinate charts are k-times differentiable. Apart from some exceptions
we will usually work with smooth maps.

Let E,M and F be manifolds with a (smooth) projection π : E →M . The tuple

E = (E, π,M ;F )

is called a (locally trivial) fibre bundle over M with total space E and fibre type F
if for any point x ∈ M there exists an open neighbourhood U(x) of x in M and a
diffeomorphism

Ψ : π−1(U(x)) → U(x)× F
such that the projection π is just the composition of Ψ and the natural projection onto
the first factor of U(x) × F . Usually, we will denote the total space of a fibre bundle
E by E(M) or simply E again (via abuse of notion).

A vector bundle E
π→ M of rank s ≥ 0 is a fibre bundle, where any preimage

Ex := π−1(x), x ∈ M , is a real vector space of dimension s and there exist charts
Ψ : π−1(U(x)) → U(x) × Rs for all x ∈ M such that the natural projection at x onto

the second factor Rs is a vector space isomorphism. Let E
π→ M and E′ π′

→ M ′ be
any two vector bundles. Then a map f : E → E′ is called a homomorphism of vector
bundles if π′ ◦ f = l ◦ π for some map l : M → M ′ and the restriction f |Ex is a vector
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space homomorphism from Ex to E′
l(x) for all x ∈ M . A subset V of E is a subbundle

in E if the inclusion is a vector bundle homomorphism, which induces the identity idM
on the base M . If M is a manifold and l : M → M ′ is a map to the base M ′ of a vector
bundle E′, then the pull-back along l induces a vector bundle l∗E′ on M with fibre F ′.

There are various other operations to produce vector bundles from given ones. For
example, let A and B be vector bundles on M . Then we have the direct sum A⊕ B,
the tensor product A ⊗ B, the dual bundle A∗ and the vector bundles ΛkA∗ ⊗ B of
alternating k-forms on A over M with values in B. If V is a vector subbundle of A

then we have the quotient bundle A/V. Probably the most prominent vector bundles
on a manifold Mn of dimension n are the tangent bundle, denoted by TM , and its dual
T ∗M . Moreover, we denote by

T (k,l)M =
(
⊗k TM

)
⊗
(
⊗l T ∗M

)

the bundle of (k, l)-tensors. This gives rise to the tensor algebra ⊕∞
k,l=0T

(k,l)M .

Moreover, we have the vector bundles ΛkT ∗M , 0 ≤ k ≤ n, of exterior forms of
degree k on M . The ∧-product makes ⊕nk=0Λ

kT ∗M into an algebra. (Note that with
our conventions, α ∧ β = α⊗ β − β ⊗ α for any 1-forms α and β.) We call a k-form α
on M simple if it is a ∧-product of 1-forms only. The insertion of a vector X ∈ TM
into an exterior form α is denoted by ιXα. A differentiable map f : M → N between
manifolds naturally induces the bundle homomorphism

f∗ = df : TM → TN ,

which is called the tangent map or differential of f . Exterior forms on N pull back to
M via the differential f∗. There are also the bundles Sk(T ∗M) of symmetric tensors
of degree k ∈ N on M . The symmetric product ◦ of two 1-forms α, β is defined by
α ◦ β = 1

2
(α⊗ β + β ⊗ α).

Now let E
π→M be an arbitrary vector bundle. A (smooth) map s : M → E is called

a section of E if π◦s : M →M is the identity map. (In case s is only defined on an open
subset U of M we speak of a local section in E.) The set of (global) sections in E over
M is denoted by Γ(E;M) or just Γ(E). A section in a tangent bundle TM is called a
vector field on M and the space of vector fields is denoted by X(M). Sections in T (k,l)M
are called tensors of type (k, l) and sections in ΛkT ∗M are called differential k-forms
on M . The set of smooth differential k-forms is denoted by Ωk(M). In particular, we
have the space of smooth functions C∞(M) on M . The differential df of a function
f ∈ C∞(M) is a 1-form. The derivative of f in direction of a vector field X ∈ X(M) is
again a smooth function on M , denoted by Xf := df(X). More generally, the exterior
derivative d maps a k-form α ∈ Ωk(M) to the (k + 1)-form dα ∈ Ωk+1(M).

Let X ∈ X(M) be a smooth vector field on a manifold M . A (differentiable) curve
γ(t) defined on an interval I ⊂ R is an integral curve of X if

γ′(t) = X(γ(t))

for all t ∈ I. To any point p ∈ M there exists a unique integral curve γXp (t), which is

defined on a maximal open interval I ⊂ R including 0 ∈ R such that γXp (0) = p. We set

Xt(p) := γXp (t) and call the map p ∈M 7→ Xt(p) ∈M the flow of p along X at time t.
For any p ∈M there exists a small t > 0 and a neighbourhood U(p) such that the map
p̃ ∈ U(p) 7→ Xt(p̃) ∈ M is a diffeomorphism onto its image, i.e., the flow Xt is locally
always defined for small times. The vector field X is called complete if the maximal
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integral curve γXp is defined on R through any point p ∈M . In this case the flow Xt of
X is globally defined on M and forms a 1-parameter group of diffeomorphisms of M .
The commutator [X, Y ] ∈ X(M) of two vector fields X, Y ∈ X(M) is defined by

[X, Y ] = lim
t→0

1

t
(Y − (Xt)∗Y ) .

More generally, we have the Lie derivative L of tensors fields. For example, the Lie
derivative of a k-form α with respect to X ∈ X(M) is denoted by LXα, which is again
a k-form on M . (Note that with our conventions the exterior derivative of any 1-form
α satisfies dα(X, Y ) = X(α(Y ))− Y (α(X))− α([X, Y ]).)

A map f : M → N between manifolds is called an immersion if the differential
df : TM → TN is non-singular at every point x ∈ M . If, in addition, the map f is
injective and a homeomorphism onto its image f(M) in N , then we call f an embedding
of M into N and the image f(M) is a submanifold of N . A subbundle E with rank r of
the tangent bundle TM over a manifold M is called a distribution. A distribution E is
called involutive if [X, Y ] ∈ Γ(E) for all X, Y ∈ Γ(E). The Frobenius’ Theorem states
that an involutive distribution can be integrated, i.e., there exists for any point p ∈M
a (maximal) integral manifold Ep ⊂ M of dimension r, which has the corresponding
restriction of E ⊂ TM as its tangent space. Although an integral manifold is the image
of an injective immersion, it might not be a submanifold. In such a case we call it a
weak submanifold.

Next we want to introduce the notion of differential operators. So let Rn be the
Euclidean space equipped with standard coordinates (x1, · · · , xn). The tangent space
of Rn is spanned by the coordinate vectors {∂/∂x1, · · · , ∂/∂xn}. Now let us consider
an open subset U ⊂ Rn. The map

f ∈ C∞(U) 7→ ∂f/∂xi = df(∂/∂xi) ∈ C∞(U)

defines an R-linear operator on functions. More generally, let α = (α1, . . . , αn) be an
n-tuple of non-negative integers and let |α| = ∑n

i=1 αi be its length. Then we denote
xα := (x1)α1 · . . . · (xn)αn and Dα := (∂/∂x1)α1 · · · (∂/∂xn)αn . The operator Dα actsR-linearly on smooth functions. Then let xo ∈ U be a base point. The Taylor series
expansion of a smooth function f at xo ∈ U to order k ≥ 0 is given by

∑

|α|≤k

(Dαf)(xo)

|α|! (x− xo)α + Rk(|x− xo|) ,

where |α|! = Πn
i=1(αi!) and Rk(|x− xo|) contains the higher order terms.

Two smooth functions f, g are called equivalent to order k at xo ∈ U if Dα(f −
g)(xo) = 0 for all |α| ≤ k, i.e., the function f − g vanishes to order k. In this case we
write jkxo

f = jkxo
g and jkxo

f is called the k-jet of f at xo ∈ U . More generally, we have
the k-jet jkxo

f at xo ∈ M for any smooth mapping f : M → N between manifolds,
which contains the information of all partial derivatives of f to order k with respect
to some coordinate charts around xo in M and f(xo) in N . In particular, let E

π→ M
be a vector bundle of rank r. A section f ∈ Γ(E) gives rise to a k-jet jkxo

f at xo ∈ M
and the set of all k-jets of sections in E at a point forms a vector bundle over M ,
which is denoted by JkE

π→ M and which is called the kth jet prolongation of E. In
particular, any section f ∈ Γ(E) naturally gives rise to a section jkf ∈ Γ(JkE) and
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we have πk ◦ jkf = jk−1f , where πk : JkE → Jk−1E denotes the natural bundle map,
which forgets the information of all derivatives of order k of a section in E.

Now let V
π′

→ M be another vector bundle on M of rank s and let D : JkE→ V be
a vector bundle homomorphism over M . Then the map

D : f ∈ Γ(E) 7→ D(jkf) ∈ Γ(V)

is given locally, with respect to coordinates (x1, . . . , xn) on U ⊂M and local frames in
E|U and V|U , by an expression of the form

D =
∑

|α|≤k
Aα(x)D

α, (1)

where the Aα’s are (r × s)-matrix valued functions on U . In general, a map D

acting on (smooth) sections of a vector bundle, which is locally expressible in the
above form (1) with respect to some coordinates, is called a differential operator. One
can show that any differential operator D : Γ(E) → Γ(V) is induced by some bundle
homomorphism D : JkE → V. If this map D does not factor through the projection
πk to a homomorphism D′ : Jk−1E → V, then we say that D is a differential operator
of order k.

Finally, we define here manifolds with boundary. For this purpose, let us consider
the half space Rn+ := {x ∈ Rn : x1 ≥ 0} .
The boundary ∂Rn+ of Rn+ is the set {0}×Rn. We call a function f defined on an open
subset U of Rn+ smooth (resp. differentiable of class Ck) if in a neighbourhood of any
point p ∈ U , f is the restriction of some smooth (resp. Ck-) function on Rn. A Hausdorff
topological space X of dimension n equipped with a differentiable structure Fb, which
allows coordinate maps to the half space Rn+, gives rise to a manifold Mn = (X,Fb)
with boundary. The boundary is denoted by ∂M and is a manifold of dimension n−1.
The interior M r ∂M is a manifold without boundary, which we sometimes call the
bulk of M . Again, the differentiability of M depends on the coordinate changes in
Fb. Usually, the bulk and the boundary (considered as manifolds) are assumed to be
smooth, whereas the class of differentiability at the boundary inM needs to be specified
from case to case. Often the boundary of a space M is (locally) given by the zero set
of a defining function r, which is differentiable up to a certain order (cf. Section 0.11).
In this case any object on M (e.g. functions or tensor fields) can be expanded into a
Taylor series with respect to r. For example, the expansion of a function f : M → R
with respect to r at the boundary {r = 0} to order k is given by an expression of the
form

f(r) =
k∑

j=0

1

j!
· ∂

jf

∂rj
· rj + o(rk) ,

where o(rk) contains the expansion terms of higher order.

2. Lie Groups, Representations and Principal Bundles

A group (G, ·) is called a Lie group if G is a smooth manifold (of finite dimension n)
and the group operation (a, b) ∈ G×G 7→ a · b−1 ∈ G is a smooth map. A (continuous)
group homomorphism ρ : G → G′ between Lie groups G and G′ is called a Lie group
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homomorphism. A closed subgroup H of a Lie group G is again a Lie group with
induced differentiable (submanifold) structure. Also the quotientG/H admits a natural
differentiable structure such that the canonical projection is smooth. Moreover, to any
Lie group G there exists a smooth universal covering space G̃ equipped with a group
multiplication such that the canonical projection is a Lie group homomorphism. If G
is connected then the Lie group G̃ is simply connected and unique up to isomorphism.
It is called the universal covering group of G.

A smooth map
β : G×M → M ,

(g, p) 7→ β(g, p) = g · p
such that g1 · (g2 · p) = (g1 · g2) · p for all g1, g2 ∈ G and p ∈ M , where G is a Lie
group and M a manifold, is called a Lie group action by G from the left on M (resp.
G is called a (left) transformation group on M). Transformation groups from the right
are similarly defined. If β : G × M → M is a transitive group action of G on M
then M ∼= G/Hp as smooth manifold, where Hp is the isotropy group (or stabiliser)
at p ∈ M . In this case we call M a homogeneous space with transitive G-action. For
example, let G be a Lie group. Then the map La : G→ G, g 7→ a · g, where a ∈ G is a
fixed group element, is a group action of G on itself, which is called left translation by
a. Similarly, we have the right translations Ra. A Lie group G acts also from the left
on itself by inner automorphisms:

α : G×G → G ,
(a, g) 7→ αa(g) = aga−1 .

A real vector space V (of arbitrary dimension) equipped with an R-bilinear and
skew-symmetric product [·, ·] : V × V → V , which satisfies the Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 for all X, Y, Z ∈ V ,

is called a Lie algebra and [·, ·] is the Lie bracket on V . A subset W of V is called an
ideal of (V, [·, ·]V ) if [X, Y ]V ∈ W for all X ∈ W , Y ∈ V and a subset S of V is a Lie
subalgebra if [X, Y ]V ∈ S for all X, Y ∈ S. A linear map ψ : (V, [·, ·]V ) → (W, [·, ·]W )
between Lie algebras such that [ψ(a), ψ(b)]W = ψ([a, b]V ) for all a, b ∈ V is called a Lie
algebra homomorphism. For example, the commutator of vector fields on a manifold
M produces a Lie algebra structure on the infinite dimensional real vector space X(M).

A vector field X on a Lie group G is called left invariant if (La)∗X = X for all
a ∈ G. The vector field X is uniquely determined by its value Xe at the identity
element e ∈ G. On the other hand, a vector Xe at e ∈ G gives rise to a unique smooth
left invariant vector field X on G by left translation. We denote the space of left
invariant vector fields on a Lie group G by g. It has the same finite dimension as G,
and since the commutator of left invariant vector fields is again left invariant, the space
g is naturally equipped with a Lie algebra structure [·, ·]g. We call g (with induced Lie
bracket [·, ·]g) the Lie algebra of G. The differential dρ : TG → TG′ of a Lie group
homomorphism ρ : G→ G′ gives naturally rise to a Lie algebra homomorphism, which
we denote by ρ∗ : g→ g′. The Lie algebras g and g̃ of a Lie group G and its universal
covering G̃ are canonically isomorphic. On the other hand, any Lie algebra g (of finite
dimension) has a (simply connected) Lie group G, whose Lie algebra is g.

For example, let V be a real vector space of dimension n. A vector space isomor-
phism V ∼= Rn induces a smooth differentiable structure on V (which does not depend
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on the chosen isomorphism). Using this differentiable structure the group (Gl(V ), ◦) of
linear automorphisms of V is in a natural way a Lie group, which is diffeomorphic to the
group Gl(n,R) = Gl(n) of invertible (n× n)-matrices. The corresponding Lie algebra
is gl(V ), the space of endomorphisms of V with Lie bracket [A,B] = A ◦B−B ◦A for
A,B ∈ gl(V ). The algebra gl(V ) is isomorphic to the algebra gl(n) of (n×n)-matrices
with matrix multiplication.

A representation of a Lie group G on a real vector space Vn of finite dimension
n is given by a Lie group homomorphism ρ : G → Gl(V). In this case the group G
acts on V via ρ by (g, v) ∈ G × V 7→ g · v ∈ V and V is called a representation space
of G or simply a (real) G-module. A representation of a Lie group G on V is called
irreducible if there exists no proper subspace W 6= {0} in V, which is invariant under
the group action of G. The differential of a representation ρ induces a homomorphism
ρ∗ : g → gl(V) of Lie algebras, and in particular, a representation of g on V, which is
called the infinitesimal representation of G.

For example, any inner automorphisms αg, g ∈ G, fixes the identity on a Lie group
G and the corresponding differentials induce linear Lie algebra isomorphisms (αg)∗ on
g. This construction gives rise to the adjoint representation of G on its Lie algebra,

AdG : G → Gl(g) ,
g 7→ (αg)∗ .

Furthermore, we denote the differential of the adjoint representation by adg. This is a
representation of g on itself given by the Lie bracket

adg(X)(Y ) = [X, Y ], X, Y ∈ g .

A Lie algebra g is called nilpotent (resp. solvable) if its lower central (resp. derived)
series becomes trivial after a finite number of steps. Any Lie algebra g admits a maximal
solvable ideal, which is called the radical of g. If the radical of g is trivial, then the Lie
algebra g is called semisimple. A Lie group G with semisimple Lie algebra g is called
semisimple as well. Any finite dimensional representation space V of a semisimple group
G decomposes into a direct sum

⊕Vi of irreducible G-modules Vi. A Lie algebra g,
which is the direct sum of its centre gc and a semisimple part g0 is called a reductive Lie
algebra. For example, gl(n) = sl(n)⊕ R is reductive, where the semisimple part sl(n)
denotes the Lie subalgebra of tracefree matrices in gl(n). Now let g be an arbitrary
Lie algebra of finite dimension n. We define

Bg(X, Y ) := tr(adX ◦ adY )

to be the trace of the g-endomorphism adX ◦ adY . Then Bg is a symmetric bilinear
form on g , which is called the Killing form. The Killing form Bg is g-invariant, i.e.,
Bg([X, Y ], Z) = Bg(X, [Y, Z]) for all X, Y, Z ∈ g. The Killing form Bg of a Lie algebra
g is non-degenerate if and only if g is semisimple.

Let C be the complex number field. We denote the real, resp., imaginary part
of a complex number z by Re(z) and Im(z) ∈ R. With Cn we denote the complex
n-space, which is a vector space of dimension n over C. A complex Lie algebra g is a
complex vector space equipped with a C-bilinear Lie bracket [·, ·]. A real vector space
V is complexified by VC := V ⊗R C. Correspondingly, a real Lie algebra g can be
complexified to gC, where the Lie bracket on gC is given by complex bilinear extension
of [·, ·]g. This construction gives rise to a complex Lie algebra. A complexified Lie
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algebra gC is semisimple (as complex Lie algebra) if and only if the real Lie algebra g

is semisimple.
A left invariant vector field X ∈ g on a Lie group G is always complete. In

particular, the integral curve to X through the identity element is defined on R. We
denote this integral curve by γXe = exp(tX). Then the mapping

exp : X ∈ g 7→ exp(X) ∈ G
is called the exponential map of the Lie group G. Now let β : M × G → M be a
group action from the right on a manifold M . For any p ∈M and A ∈ g the mapping
t ∈ R 7→ p · exp(tA) defines a curve in M and the differential of this curve at p gives
rise to a vector denoted by χA(p). Then the mapping p ∈ M 7→ χA(p) ∈ TpM defines
a smooth vector field, which we call the fundamental vector field (from the right) to
A ∈ g on M . There is a similar construction for fundamental vector fields coming from
left group actions.

Next let us consider a (locally trivial) fibre bundle G = (E, π,M ;H) over a manifold
M with fibre a Lie group H . If H acts on E from the right preserving the fibres and
acting simply transitive on each fibre of M , then we call G a principal bundle with
structure group H . The right action of H on G generates fundamental vector fields
χA for any A ∈ h. These vector fields project by π∗ to the trivial vector on M , i.e.,
they are vertical vectors in G. In fact, the fundamental vector fields span pointwise the
subbundle T vG of vertical vectors in TG. A basic example for a principal fibre bundle
is the frame bundle Gl(M) of a manifold M . The bundle Gl(M) consists of all linear
bases of TM and it inherits a differentiable structure and a Gl(n)-action on the right
from its definition via the tangent bundle, i.e., the frame bundle Gl(M) is a principal
Gl(n)-bundle.

Now let G be another Lie group, λ : G → H a Lie group homomorphism and

let K
π′

→ M be a principal G-bundle over M . A map Φ : K → G, which preserves
the fibres over M and commutes with the Lie group actions, i.e., π ◦ Φ = π′ and
Φ(p · g) = Φ(p) · λ(g) for all p ∈ K and g ∈ G, is called a λ-reduction of G. If the
principal G-bundle K is a ι-reduction, where ι : G → H is an inclusion of G, then we
call K simply a G-reduction of G. A G-reduction of the general linear frame bundle
GL(M) over a manifold M is called a G-structure on M .

Furthermore, let G
π→ M be a principal H-bundle and let ν : H × P → P be a

left action of H on a manifold P . The group H acts on the product space G × P by
h · (g, p) = (g · h, h−1 · p), where h ∈ H and (g, p) ∈ G × P . The quotient of G × P
through the orbits of this H-action is denoted by

R := G×ν P .

The (locally trivial) bundle R → M is the ν-associated fibre bundle to G over M with
fibre P . If ν is a group homomorphism into a Lie group P , we call the fibre bundle
R the ν-extension of G by the group P . This ν-extension R is in a natural way a
principal P -bundle, which admits G as a natural subbundle. In fact, the corresponding
embedding is given by

ι : G → R ,
g 7→ [g, e] ,

where [g, e] ∈ R denotes the H-orbit through (g, e) ∈ G× P .
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3. Principal Connections and Holonomy

Let H be a Lie group with Lie algebra h and let G
π→M be an H-principal bundle

over a manifold Mn of dimension n. A 1-form ω : TG→ h with the properties

(1) ω(χA) = A for all A ∈ h and
(2) R∗

hω = AdH(h−1) ◦ ω for all h ∈ H ,

where Rh denotes the right action by h ∈ H on G, is called a principal connection
(1-form) on G. The kernel of ω generates a distribution T hG of rank n in TG. The
intersection of T hG with any vertical vector in TG is trivial. Thus the tangent space TG

has the direct sum decomposition T vG⊕ T hG with projections πv and πh. The vector
bundle T hG is called the horizontal distribution in TG with respect to the connection
ω. The curvature of the connection ω is defined by

Ω := dω ◦ πh .
Obviously, the curvature Ω is a 2-form on G and insertion of vertical vectors produces
zero, i.e., ιXΩ = 0 for all X ∈ T vG. The curvature Ω can be seen as measure for
the integrability of the horizontal distribution T hG. In particular, Ω ≡ 0 holds iff the
distribution T hG is integrable. The structure equation for the connection ω is

Ω(X, Y ) = dω(X, Y ) + [ω(X), ω(Y )]h for all X, Y ∈ TG ,

and the Bianchi identity says that

dΩ ◦ πh = 0 .

By use of a (local) section s : U ⊂ M → G the connection ω and its curvature Ω can
be pulled back to the base manifold M and we obtain local connection and curvature
forms

ωs := ω ◦ ds and Ωs := Ω ◦ ds .
The frame bundle Gl(M)

π→ M of a manifold is equipped with the canonical (sol-
dering) form

θ : TGl(M)→ Rn ,
which maps a vector X at p ∈ Gl(M) to the coordinates of dπ(X) ∈ Tπ(p)M with
respect to the frame p at π(p) ∈ M . A connection form ω on Gl(M) is called a linear
connection. The structure equations for a linear connection ω can be written as

dθ = −ω ∧ θ + Φ ,

where Φ is called the torsion 2-form of ω, and

dω = −ω ∧ ω + Ω

with ω ∧ ω(X, Y ) = [ω(X), ω(Y )]h for X, Y ∈ TG (cf. [91]). The first and second
Bianchi identity for the curvature form Ω of a linear connection ω are given by

dΦ ◦ πh = Ω ∧ θ and dΩ ◦ πh = 0 .

Next let us consider an arbitrary principal H-bundle (G, ω) equipped with a con-
nection form ω : TG → h over a manifold Mn of dimension n and let λ be an H-
representation on a vector space V. The associated bundle V := G ×λ V is a vector
bundle over M with structure group H . Let ΛkT ∗G⊗ V denote the bundle of k-forms
on G with values in V. We call a section φ in ΛkT ∗G⊗ V tensorial if R∗

hφ = λ(h−1) · φ
for all h ∈ H (i.e., φ is H-equivariant) and ιXφ = 0 for all vertical vectors X ∈ T vG.
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It is a matter of fact that the space of tensorial k-forms with values in V, denoted by
Ωk
h(G;V)λ, is canonically identified with Ωk(M ; V), the space of k-forms on M with

values in the associated vector bundle V. With the aid of the connection form ω on G

we obtain the exterior covariant derivative dω given by

φ ∈ Γ(ΛkT ∗G⊗ V) 7→ dωφ := dφ ◦ πh ∈ Γ(Λk+1T ∗G⊗ V) .

And, via the identifications Ωk
h(G;V )λ ∼= Ωk(M ; V), 0 ≤ k ≤ n, we thus obtain first

order differential operators acting on Ωk(M ; V). In particular, if k = 0 we have
C∞(G;V)λ ∼= Γ(V) and the corresponding operator acting on sections of V is denoted
by

∇ω : X(M) ⊗ Γ(V) → Γ(V) ,

( X , φ ) 7→ ∇ω
Xφ .

The map ∇ω is a so-called covariant derivative, i.e., we have ∇ω
· φ ∈ Γ(T ∗M ⊗ V) for

any section φ ∈ Γ(V) and the Leibnitz rule

∇ω
X(f · φ) = f · ∇ω

Xφ+X(f) · φ
is satisfied for all f ∈ C∞(M) and X ∈ X(M). Locally, with respect to a section s in
G we can express the covariant derivative on V by

∇ω
Xφ = [ s , dφ(X) + λ∗(ω

s(X)) · φ ] .

Finally, we introduce here the notion of holonomy for principal connections (and

covariant derivatives). Let (G, ω)
π→ M be a principal H-bundle with connection ω

over a connected base space Mn of dimension n. Let x ∈M be an arbitrary point and
let C(x) denote the set of continuously differentiable curves in M , which start and end
at x ∈M . For any curve (or loop) γ ∈ C(x) and any point p ∈ π−1(x) in the fibre of G

over x ∈M , there exists a uniquely defined curve γ∗p starting at p such that π ◦ γ∗p = γ
and the tangent vectors to γ∗p (at any point of the curve) are horizontal. The curve γ∗p
is called the horizontal lift of γ through p. Now, if we map any p ∈ π−1(x) to the end
point of γ∗p , which is again a point in the fibre π−1(x), then we obtain a map

Γγ : π−1(x)→ π−1(x) ,

which is called the parallel displacement of the fibre π−1(x) onto itself with respect to
ω along the curve γ. One can prove that every parallel displacement Γγ, γ ∈ C(x), acts
as a diffeomorphism on the fibre π−1(x), and, in fact, the set of all such displacements
forms a Lie group, which is called the holonomy group of (G, ω) with respect to the
base point x ∈M .

The holonomy group with respect to x ∈ M can be realised as a subgroup of H .
To see this, we fix a particular p ∈ π−1(x) and compare for any γ ∈ C(x) the reference
point p with the end point Γγ(p) ∈ π−1(x) of the horizontal lift γ∗p . Then Γγ(p) = p · bγ
for some uniquely determined group element bγ ∈ H . The collection

Hp := { bγ : γ ∈ C(x) }
of these group elements forms a (weak) Lie subgroup of H , which we call the holonomy
group of the connection ω with respect to the reference point p ∈ G. It is a matter of
fact that for any two points p, q ∈ G the holonomy groups Hp and Hq are conjugated
subgroups in H , i.e., the isomorphism class of the Hp, p ∈ G, is a uniquely defined
Lie group. We denote this Lie group by Hol(G, ω) and call it the holonomy group
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of (G, ω)
π→ M . The corresponding Lie algebra is denoted by hol(G, ω) or simply

hol(ω). The restricted holonomy groupHol0(G, ω) is by definition generated via parallel
displacement along lifts of null homotopic curves only. It turns out that the restricted
holonomy group is just the identity component of Hol(G, ω).

The set G(p) of points in G which can be reached by a horizontal curve starting at
the fixed base point p ∈ G, is in a natural way a smooth principal Hp-bundle and a
Hp-reduction of G. We call G(p) the holonomy bundle of (G, ω) with respect to the base
point p ∈ G. Moreover, the connection ω on G, which defines the holonomy bundle G(p),
pulls back to a principal Hp-connection form ω(p) on G(p). The holonomy theorem of
Ambrose and Singer states that the Lie algebra hp of the holonomy group Hp with
respect to the reference point p ∈ G is the linear span in h of the curvature values
Ω(X, Y ), where X, Y are arbitrary tangent vectors (at any point) of the holonomy
bundle G(p).

Now let V
π→ M be a vector bundle equipped with a covariant derivative ∇ over

a connected manifold M . For any curve γ(t) in M running from some x to y ∈ M
and any vector Vx ∈ Vx, there exists a uniquely defined vector field V along the curve
γ with values in V such that ∇γ̇(t)V ≡ 0. The vector field V is called the parallel
displacement of Vx along γ. In particular, for any Vx ∈ Vx we have a uniquely defined
parallel displacement vector Vγ(t) ∈ Vγ(t) along γ to the end point y ∈M . This parallel
displacement gives rise to a vector space isomorphism

Γγ : Vx → Vy .

In particular, if γ ∈ C(x) is a loop we obtain an automorphism Γγ of Vx. The collec-
tion of all these automorphisms Γγ for loops γ ∈ C(x) is a subgroup of Gl(Vx). We
denote this group by Holx(V,∇) and call it the holonomy group of (V,∇) at x ∈ M .
One can show that the holonomy groups Holx(V,∇) and Holy(V,∇) to any two base
points x, y ∈M are isomorphic. Thus the corresponding isomorphism class is uniquely
defined. We denote it by Hol(V,∇) and call this the holonomy group of (V,∇). In

case V
π→ M is the associated vector bundle to a principal H-bundle G on M with

representation λ : H → Gl(V) and the covariant derivative ∇ on V is induced by a
connection ω on G the relation λ(Hol(G, ω)) = Hol(V,∇) holds.

4. Semi-Riemannian Geometry

We start with some basic linear algebra. Let V n be a real vector space of dimension
n equipped with a symmetric and non-degenerate bilinear form

〈·, ·〉 : V × V → R
and let Be := { e1, . . . , en} denote a (pseudo)-orthonormal basis for 〈·, ·〉, i.e.,

εij := 〈ei, ej〉 =

{
0 if i 6= j

−1 or 1 if i = j
.

We set εi := εii, for i = 1, . . . , n, and denote by r the number of basis vectors ei in Be

with εi = −1, whereas s denotes the number of those ei’s with εi = 1. We have r+s = n
and the ordered pair sig(〈·, ·〉) := (r, s) is independent of the choice of orthonormal basis
Be. We call (r, s) the signature of 〈·, ·〉 on V . In case r, s ≥ 1 the scalar product 〈·, ·〉
on V is called indefinite, and otherwise definite. In particular, if the signature of 〈·, ·〉
is (0, n) we call (V, 〈·, ·〉) a Euclidean vector space. In this case we set ‖x‖ :=

√
〈x, x〉
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for x ∈ V . Then ‖x‖ = 0 iff x = 0. The standard Euclidean scalar product on Rn
is given by 〈x, y〉n :=

∑n
i=1 x

iyi, where x = (x1, . . . , xn)⊤ and y = (y1, . . . , yn)⊤ ∈ Rn.
The standard orthonormal basis of 〈·, ·〉n on Rn is { ∂

∂x1 , . . . ,
∂
∂xn}.

Now let us consider a space V n with indefinite scalar product 〈·, ·〉. Then we call
a vector 0 6= x ∈ V spacelike if 〈x, x〉 > 0, timelike if 〈x, x〉 < 0 and lightlike or null
if 〈x, x〉 = 0. Usually, we order an orthonormal basis Be for (V, 〈·, ·〉) such that the
first r basis vectors are timelike and the last s basis vectors are spacelike. Then we
set Jr,s = (εij)i,j=1,...n, which is a diagonal (n × n)-matrix. A subspace W of V is
called non-degenerate if the restriction of 〈·, ·〉 is a scalar product on W . The space Rn
furnished with the scalar product 〈x, y〉r,s := x⊤Jr,sy is the standard pseudo-Euclidean
space of signature (r, s). We denote this space by Rr,s = (Rn, 〈·, ·〉r,s). For later use, we
accent from time to time the case of a scalar product 〈·, ·〉 of signature (1, n− 1) on a
vector space V n. In this case (V, 〈·, ·〉) is called a Minkowski space of dimension n and
any orthonormal basis of (V, 〈·, ·〉) has exactly one timelike vector. The set

L := { x ∈ V : 〈x, x〉1,n−1 ≤ 0 }
is called the causal cone of V . Non-trivial elements in L are called causal vectors. The
set

Lo := { x ∈ V : 〈x, x〉1,n−1 = 0 }
is called the null cone of V .

An isometry of an arbitrary scalar product space (V, 〈·, ·〉) is a linear mapA : V → V
such that 〈Ax,Ay〉 = 〈x, y〉 for all x, y ∈ V . The group of isometries acting on Rr,s (with
arbitrary signature (r, s)) is denoted by O(r, s) and is called the (pseudo)-orthogonal
group of signature (r, s). The special orthogonal group is denoted by SO(r, s). The
latter group consists of the matrices A, for which A⊤Jr,sA = Jr,s and detA = 1 holds.
The Lie algebra of SO(r, s) (and also of O(r, s)) is denoted by so(r, s). The group of
isometric motions on Rr,s is the semidirect product

Euc(r, s) := O(r, s) ⋉ Rn ,
where the Rn-part acts by translation. The dimension of Euc(r, s) is n(n + 1)/2 and
the isotropy subgroup of the Euc(r, s)-action on Rr,s at the origin is O(r, s). Thus Rr,s
is naturally identified with the homogeneous space Euc(r, s)/O(r, s).

Now, in general, let Vm be a finite dimensional representation space of O(r, s).
Then V admits also the induced infinitesimal action of the Lie algebra so(r, s). The
O(r, s)-module V is called irreducible if any proper, O(r, s)-invariant subspace is trivial.
In general, any O(r, s)-module Vm is (in a unique way) the direct sum of irreducible
O(r, s)-representations, i.e., V = ⊕i∈IVi with projections πi. It is well known that
any finite dimensional O(r, s)-module (resp. SO(r, s)-module) V can be realised as a
submodule of the tensor algebra ⊕∞

k,l=0T
(k,l)Rn.

We call the action of O(r, s) by matrix multiplication on Rn the standard represen-
tation of O(r, s). The standard module Rn (resp. Rr,s) is irreducible and canonically
identified with the dual representation Rn∗ via the scalar product 〈·, ·〉r,s. If x ∈ Rn is
a vector then we denote by x♭ := 〈x, ·〉r,s the metric dual in Rn∗. And for α ∈ Rn∗ we
denote by α♯ the vector in Rn, whose metric dual is α. The space End(Rn) is isomorphic
to Rn∗ ⊗ Rn as O(r, s)-module and the trace

tr : End(Rn) → R
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is a homomorphism of O(r, s)-modules (where R denotes the trivial representation).
With respect to an arbitrary orthonormal basis Be of Rr,s the trace of α ∈ Rn∗⊗Rn∗ is
given by tr(α) =

∑n
i=1 εi · α(ei, ei). More generally, via the identifications of End(Rn)

with Rn ⊗ Rn and Rn∗ ⊗ Rn∗, we can apply the trace to any pair of indices (a, b) of a
(k, l)-tensor. This gives rise to O(r, s)-module homomorphisms

trab : T (k,l)Rn → T (k̃,l̃)Rn ,
for some appropriate (k̃, l̃) with k̃ + l̃ + 2 = k + l. The operation trab is also called
contraction. A complete contraction of a (k, l)-tensor is a real number, which is pro-
duced by applying trace operations a maximal number of times. Note that the module
End(Rn) is not O(r, s)-irreducible. In fact, End(Rn) decomposes into the direct sum
Λ2Rn∗⊕S2

o (Rn∗)⊕R of irreducible O(r, s)-modules, where S2
o (Rn∗) denotes the tracefree

part of the symmetric (0, 2)-tensors, i.e., S2
o(Rn∗) is the kernel of tr12 : S2(Rn∗)→ R.

In general, a subgroup H of O(r, s) is called irreducible if the induced action of H on
the standard module Rr,s admits no proper, non-trivial invariant subspace. If there exist
degenerate invariant subspaces we call the subgroup H weakly irreducible. This can
happen only in the indefinite signature case, since any subspace of the Euclidean spaceRn is non-degenerate. In general, an irreducible O(r, s)-module Vm will decompose
as direct sum into weakly irreducible subspaces with respect to the action of some
subgroup H of O(r, s).

We are prepared now to consider semi-Riemannian metrics. So let Mn be a n-
dimensional (connected and differentiable) manifold. A metric g onM is a differentiable
section in S2(T ∗M) such that

gp = gp(·, ·) : TpM × TpM → R
is non-degenerate at every point p ∈ M . Since g is continuous and M is connected, the
signature (r, s) of g is constant on M . If sig(g) is equal to (0, n) we call g a Riemannian
metric and (M, g) a Riemannian manifold. If the signature is indefinite, (M, g) is a
pseudo-Riemannian space. In particular, if the signature of g is (1, n−1) we call (M, g)
a Lorentzian manifold with Lorentzian metric g. If we do not specify the signature of a
metric, then we speak of a semi-Riemannian metric, resp., semi-Riemannian space. In
this work, any metric g on a manifold M is usually assumed to be smooth. However,
there will be a few exception as we will indicate when appropriate.

Let us fix a (smooth) metric g of signature (r, s) on a connected manifold M . The
metric g determines at every point p of M the orthonormal bases of TpM . This gives
rise to a smooth reduction of the general linear frame bundle Gl(M) to the structure
group O(r, s), i.e., the metric g naturally gives rise to a O(r, s)-structure on M , which
we denote by O(M). Moreover, the metric g induces a scalar product on any tensor
bundle T (k,l)M . Usually, we denote these scalar products by g again. The manifold M
is orientable if the frame bundle O(M) allows for a further reduction to the structure
group SO(r, s). We denote such a reduction by SO(M). A bundle SO(M) determines
the oriented orthonormal frames on M and a volume form dM , which is a global
section of length square 1 in the determinant bundle ΛnT ∗M . With respect to a local
orthonormal and oriented frame s = {s1, . . . , sn} on M the volume form is given by
dM = s1 ∧ · · · ∧ sn. Moreover, an orientation on M defines the Hodge star operator

⋆ : Λp(T ∗M) → Λn−p(T ∗M)



16 0. THE BASIC THEORY

for any 0 ≤ p ≤ n by the relation η ∧ ⋆ξ = g(η, ξ)dM for all η, ξ ∈ Λp(T ∗M).
The canonical form θ on Gl(M) restricts to the bundle O(M) of orthonormal frames

on (M, g). It is a basic fact of semi-Riemannian geometry that there exists a uniquely
determined principal connection ωg on O(M), which has no torsion, i.e.,

Φ = dθ + ωg ∧ θ = 0 .

The connection form ωg on O(M) is called the Levi-Civita connection of (M, g). In
case (M, g) is oriented the Levi-Civita connection ωg reduces also to the principal
bundle SO(M). The tangent bundle TM is naturally identified with the associated
bundle O(M)×O(r,s) Rn coming from the standard representation and the Levi-Civita
connection gives rise to a canonical covariant derivative on vector fields, which is metric,
torsion-free and denoted by

∇g : X(M) ⊗ X(M) → X(M) ,
( X , Y ) 7→ ∇g

XY .

More generally, let V be any O(r, s)-module with irreducible decomposition ⊕i∈IVi.
Then, accordingly, the associated vector bundle V

π→M decomposes into a direct sum
⊕i∈IVi of irreducible O(r, s)-associated vector bundles Vi, i ∈ I, and V is equipped
with a natural covariant derivative ∇g, which preserves the decomposition ⊕i∈IVi. In
particular, any O(r, s)-subbundle of the tensor algebra ⊕∞

k,l=0T
(k,l)M is equipped with

a natural covariant derivative ∇g.
The condition that ∇g is metric and torsion-free is expressed by ∇gg = 0 and

∇g
XY −∇g

YX = [X, Y ] for all X, Y ∈ X(M). The Riemannian curvature operator Rg

of ∇g on TM is defined by

Rg(X, Y )Z := ∇g
X∇g

YZ −∇g
Y∇g

XZ −∇g
[X,Y ]Z ,

where X, Y, Z ∈ TM . We also have the Riemannian curvature tensor, which we denote
by Rg as well, and which is given by

Rg(X, Y, Z,W ) := g(∇g
X∇g

YZ −∇g
Y∇g

XZ −∇g
[X,Y ]Z,W )

with W ∈ TM . The Riemannian curvature tensor Rg has the symmetry properties

Rg(X, Y, Z,W ) = −Rg(Y,X, Z,W ) = −Rg(X, Y,W,Z) = Rg(Z,W,X, Y ) (2)

and it satisfies the Bianchi identities

Rg(X, Y, Z,W ) +Rg(Y, Z,X,W ) +Rg(Z,X, Y,W ) = 0 ,

(∇g
XR

g)(Y, Z) + (∇g
YR

g)(Z,X) + (∇g
ZR

g)(X, Y ) = 0 .

A semi-Riemannian space (M, g) is called (locally) flat iff Rg = 0 everywhere on M .
The Ricci curvature and the scalar curvature of (M, g) are defined as contractions of
the Riemannian curvature tensor Rg by

Ricg := trg23R
g and scalg := trg12Ric

g .

The Schouten tensor

P
g :=

1

n− 2

(
scalg

2(n− 1)
− Ricg

)

is by definition a scalar normalisation of the Ricci-curvature.
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The Kulkarni-Nomizu product ∗ of two symmetric (0, 2)-tensors h and k is given
by

(h ∗ k)(X, Y, Z,W ) := −h(X,W )k(Y, Z)− h(Y, Z)k(X,W )

h(X,Z)k(Y,W ) + h(Y,W )k(X,Z) .

The tensor h ∗ k is a (0, 4)-tensor, which has the symmetry properties (2) and satisfies
the first Bianchi identity. The Weyl tensor of (M, g) is defined as the tracefree part of
the Riemannian curvature tensor Rg and is given explicitly by

W g = Rg − P
g ∗ g .

Moreover, we have the Cotton tensor

Cg(X, Y, Z) := (∇g
XP

g)(Y, Z) − (∇g
Y P

g)(X,Z)

and the Bach tensor (cf. [11])

Bg(X, Y ) :=
n∑

i=1

εi · ∇si
C(Y, si, X)−

n∑

i=1

εi ·W (P(si), X, Y, si),

All curvature quantities for (M, g) that we have defined so far are so-called Rie-
mannian invariants. We want to explain this notion in some detail. In general, a
semi-Riemannian metric g on a space M is locally given with respect to coordinates
(x1, . . . , xn) by g =

∑n
i,j=1 gijdx

idxj , where gij := g( ∂
∂xi ,

∂
∂xi ). We set

gij,α := Dαgij ,

where α = (α1, . . . , αn) can be any n-tuple of non-negative integers and Dα denotes
the corresponding partial derivative of order |α| (cf. Section 0.1). A tensor-valued
Riemannian invariant Q(g) is a tensor on (M, g), whose components with respect to
a coordinate system are polynomials in the variables gij,α, |α| ≥ 0, and det(gij)

−1.
Thereby, the polynomial expression is required to be coordinate free in the sense that
it looks formally the same for any choice of coordinates, and universal in the sense
that it constitutes an invariant tensor for any semi-Riemannian metric g on a space
M (regardless of any property of g). In particular, if Q(g) is given by exactly one
coordinate free, universal polynomial in above variables (i.e., Q(g) gives rise to anR-valued function with respect to any g on M), then this object is called a scalar
Riemannian invariant. For example, the Riemannian curvature tensor Rg is given (in
coordinates) by the universal expression

Rijkl =
1

2
( gik,jl + gjl,ik − gjk,il − gil,jk ) +

∑

p,q

gpq ·
(

ΓpikΓ
q
jl − ΓpilΓ

q
jk

)
, (3)

where Γkij := 1
2
(gkl)

−1
(
gil,j + gjl,i − gij,l

)
are the Christoffel symbols. A complete con-

traction of an expression of the form (∇g)l1Rg ⊗ · · · ⊗ (∇g)lrRg with l1, . . . , lr some
non-negative integers (i.e., a tensor product of covariant derivatives of the Riemann-
ian curvature tensor Rg) is called a Weyl invariant. Classical invariant theory shows
that any scalar Riemannian invariant is a linear combination of Weyl invariants. The
simplest scalar Riemannian invariant is the scalar curvature scalg. In fact, we obtain
from (3) through a complete contraction the universal polynomial, which represents
the scalar curvature scalg.
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More generally, a metric invariant differential operator D acting on tensors over
a space (M, g) is given locally, with respect to coordinates, by an expression of the
form

∑
|α|≤k Aα(x)D

α (cf. (1)), which is coordinate free (in above sense) and universal,

where the Aα(x)’s are matrix-valued polynomials in the variables gij,α and det(gij)
−1.

In general, such invariant differential operators can be produced as follows. Let V(M)
be the associated vector bundle over M to an O(r, s)-module V. Application of the
covariant derivative ∇g to sections of V(M) produces a first order invariant differential
operator

∇g : Γ(V)→ Γ(T ∗M ⊗ V) .

Moreover, for any vector bundle homomorphism φ : T ∗M ⊗V→ V′, the superposition
φ ◦∇g : Γ(V)→ Γ(V′) is an invariant operator. In particular, the projections πi to the
irreducible components of T ∗M⊗V give rise to first order invariant differential operators
πi ◦ ∇g. More generally, iterated applications of ∇g combined with vector bundle
homomorphisms give rise to higher order invariant operators. In fact, application k
times of the covariant derivative ∇g induces uniquely a bundle homomorphism ∇k :
JkV→ ⊗kT ∗M ⊗V of the k-jet bundle of V (cf. Section 0.1). An invariant differential
operator then acts on sections f ∈ Γ(V) by superposition of the k-jet prolongation jkf
with ∇k and some homomorphism φ : ⊗kT ∗M ⊗ V→ V′.

In particular, we have the following standard differential operators for semi-
Riemannian spaces (M, g). There is the gradient

f ∈ C∞(M) 7→ gradg(f) := df ♯ ∈ X(M)

of first order and the Hessian

f ∈ C∞(M) 7→ Hessg(f) = g(∇g
· grad

g(f), ·) ∈ Γ(S2(T ∗M))

of second order, which both act on functions. The trace of the Hessian gives rise to the
Laplace operator ∆g

trf = tr12Hess(f) ∈ C∞(M). More generally, we have the Bochner
Laplacian for any associated vector bundle V on (M, g):

∆g
tr := tr ◦ (∇g)2 : Γ(V)→ Γ(V) .

The divergence of a (0, s)-tensor α is defined by divgl (α) := tr1,l+1(∇gα), with 1 ≤ l ≤ s
determines the contraction. On p-forms α ∈ Ωp(M) we have the codifferential d∗α :=
−divg1α, which is given with respect to a local orthonormal frame Bs = {s1, . . . , sn} by
d∗ = −∑n

i=1 ιsi
∇g
si

. The p-form Laplacian is defined as

∆g
p := dd∗ + d∗d .

There are other invariants for semi-Riemannian spaces, e.g. the holonomy. Since
the Levi-Civita connection ωg on the orthonormal frame bundle O(M) over a space
(Mn, g) of dimension n is uniquely determined by the metric, we can define

Hol(M, g) := Hol(O(M), ωg) .

We call Hol(M, g) the holonomy (group) of the semi-Riemannian space (M, g). In
general, Hol(M, g) is a (weak) Lie subgroup of O(r, s). The Lie algebra of Hol(M, g) is
denoted by hol(M, g). The Ambrose-Singer Theorem states that the holonomy algebra
hol(M, g) is spanned (with respect to a base point p ∈M) by all parallel displacements
along any curve from any xo to p ∈ M of any curvature endomorphism Rg

xo
(X, Y ),

X, Y ∈ TxoM . It follows that a space (M, g) is flat iff hol(M, g) is trivial. The deRham
decomposition Theorem states that a metric g on a space M is locally isometric (see
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below) to a Riemannian product metric h× k if Hol(M, g) acts decomposable on the
standard module Rn. If Hol(M, g) is not decomposable then the space (M, g) does
not split (locally) (cf. [141]). In this case, Hol(M, g) in O(r, s) is either irreducible
or weakly irreducible. The latter case can only occur in pseudo-Riemannian geometry.
A complete classification of irreducible holonomy groups Hol(M, g) for Riemannian
spaces (M, g) is well known (cf. e.g. [25, 29]).

A diffeomorphism φ : (M, g)→ (N, h) between semi-Riemannian spaces is called an
isometry if φ∗h = g. The set Aut(M, g) of isometries on a space (M, g) is in a canonical
way a Lie group, which acts smoothly on (M, g), and is called the isometry group of
(M, g). In case the isometry group Aut(M, g) acts transitively, the underlying space
(M, g) is called a homogeneous Riemannian space. A special instance of a homogeneous
space is a Lie group with left or bi-invariant metric (cf. Chapter 3). An infinitesimal
automorphism of (M, g) is a vector field X ∈ X(M), for which LXg = 0. Such an
X is called a Killing vector field. The local flow Xt along a Killing vector field X
consists of (local) isometries on (M, g). The set of all Killing vector fields gives rise to
a finite dimensional Lie algebra iso(M, g). The dimension of iso(M, g) is bounded by
n(n+ 1)/2, which is the dimension of Euc(r, s). It is known that a space (M, g) is flat
if dim(iso(M, g)) = n(n+ 1)/2 is maximal. We note that the condition LXg = 0 for a
vector field X is equivalent to

g(∇g
YX,Z) = −g(∇g

ZX, Y ) for all Y, Z ∈ TM ,

i.e., the operator ∇gX is skew-adjoint with respect to g on M . In general, a Killing
vector field X has no divergence, i.e., divgX = 0, and ∆g

trX = −Ricg(X). The dual
X♭ := g(X, ·) of a Killing vector field satisfies the equation ∇gX♭ = 1

2
dX♭. This

equation has an obvious generalisation to p-forms α ∈ Ωp(M), namely

∇gα =
1

p + 1
dα .

Solutions of this equation are called Killing p-forms (cf. e.g. [147, 89, 143]). The
equation for Killing p-forms is invariant and describes the kernel of an invariant differ-
ential operator. In addition, if α ∈ Ωp(M) is Killing and satisfies the equation

∇g
Xdα = c ·X♭ ∧ α

for all X ∈ TM with some fixed Killing constant c ∈ R, then we call α a special Killing
p-form (cf. Section 0.9 and [143]).

The equations of geodesic motion are metric invariant as well. A smooth curve
γ : I → M is called a geodesic of a semi-Riemannian space (M, g) if its tangent
vector γ′(t) is parallel along γ, i.e., ∇g

γ′(t)γ
′(t) = 0. The theory of ordinary differential

equations guarantees for any p ∈ M and any Vp ∈ TpM the existence of a unique
maximal geodesic ζVp (t) with ζVp (0) = p and (ζVp )′(0) = Vp. A semi-Riemannian space
(M, g) is called geodesically complete if the maximal geodesics exist for all times t ∈ R
on (M, g). Now let us fix an arbitrary point p ∈M . The set of vectors Vp ∈ TpM such
that ζVp (1) ∈M exists gives rise to an open subset Up of TpM . Then we can define the
exponential map

expp : V ∈ Up 7→ expp(V ) := ζVp (1) .

at any point p ∈M . The exponential map expp is locally on a suitable neighbourhood of
the origin in TpM a diffeomorphism onto its image, and gives rise to so-called normal
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coordinates around p ∈ M . A local neighbourhood Wp of a point p ∈ M is called
geodesically convex if any two points in Wp are connected by a unique geodesic in Wp.
Convex neighbourhoods always exist around any point of a semi-Riemannian space. In
case the metric g on M is indefinite we call a geodesic ζVp (t) lightlike (timelike) if its
tangent vector V at p is lightlike (timelike). In particular, we have, on a Lorentzian
space (M, g) with respect to the exponential map at a point p, the geodesic light cone
Lo,p and the causal cone Lp ⊂ M , which are defined as images of the cones Lo, resp.,
L in TpM (intersected with Up).

Finally, we note that a submersion π : (M, g) → (N, h) between semi-Riemannian
spaces is called a Riemannian submersion if the restriction of the differential dπ to the
orthogonal complement of its kernel in TM is a pointwise isometry onto the target.
There are well known formulae for the relationship of the curvatures of (M, g) and
(N, h) in a Riemannian submersion, which we will use in Chapter 6. We omit these
formulae here. They can be found in [127]. Accordingly, a Riemannian immersion
ι : (M, g)→ (N, h) is an immersion such that ι∗h = g. Again, there are basic formulae
relating the curvatures. The metric cone construction and the Fefferman-Graham
ambient metric construction provide common examples for Riemannian submersion
(and immersion) spaces (cf. Section 0.9 and 0.11).

5. Parabolic Cartan Geometry

Let G be a Lie group and H a closed subgroup. We call a pair (G,H) a Klein
geometry. The corresponding pair of Lie algebras is denoted by (g, h). The coset
space M = G/H is in a natural way a manifold with smooth projection π : G → M
and we call M the (flat) homogeneous model of (G,H). Obviously, the group G acts
transitively from the left on M and, in general, one can expect that some (geometric)
structure on M is preserved by the G-action. For example, if G = Rn ⋊ O(n) is the
Euclidean group of motions and H = O(n) the orthogonal group in dimension n, then
the homogeneous model M = G/H is diffeomorphic to the Euclidean space Rn and the
action of the Euclidean group is isometric with respect to the standard inner product
〈·, ·〉n on Rn.

Now let M be a smooth manifold of dimension n and let (G,H) be a Klein geometry
with corresponding Lie algebras (g, h). A Cartan connection ω on a principal H-bundle

P
π→M over a manifold M is a smooth 1-form with values in g such that

(1) ω(χA) = A for all fundamental fields χA, A ∈ h,
(2) R∗

hω = Ad(h−1) ◦ ω for all h ∈ H and
(3) ω|TuP(M) : TuP(M)→ g is a linear isomorphism for all u ∈ P(M).

Basically, these properties mean that ω is an H-equivariant absolute parallelism on
P(M). A Cartan geometry on M of type (G,H) is a pair (P, ω), which consists of a
principalH-bundle with Cartan connection ω. Clearly, in this case dim(M) = dim(G)−
dim(H). For example, let ωG be the Maurer-Cartan form on a Lie group G. Then for
any closed subgroup H the group G is a principal H-bundle over M = G/H and the

Maurer-Cartan form ωG is a Cartan connection on G
π→ M . Furthermore, if (M, g) is

a Riemannian manifold we can define P(M) to be the set of orthonormal frames in the
tangent space TM and a Cartan connection is given by θ⊕ωg : TP(M)→ Rn ⋊ so(n),
where θ is the soldering form.
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Let us fix an arbitrary Cartan geometry (P, ω)
π→ M . The curvature 2-form Ω of

ω is defined by

Ω = dω +
1

2
[ω, ω] ,

where [·, ·] denotes the bracket of the corresponding differential graded Lie algebra (cf.
e.g. [144], p. 61). Then ιχA

Ω = 0 for all A ∈ h and Ω satisfies the Bianchi identity
dΩ = [Ω, ω]. The corresponding Ad(H)-equivariant curvature function

κ : P(M) → Hom(Λ2g, g)

to Ω is defined pointwise by

κ(u)(X, Y ) := dω(ω−1
u (X), ω−1

u (Y )) + [X, Y ], u ∈ P(M), X, Y ∈ g .

Since the curvature Ω is vertically trivial, we can view κ as a function with values in
Hom(Λ2(g/h), g). If the curvature function κ takes only values in the H-submodule

Hom(Λ2g, h) then the Cartan geometry (P, ω)
π→ M is called torsion-free. If κ = 0

(resp. Ω = 0) on P(M) then the Cartan connection ω is called flat. For example, the
Maurer-Cartan form ωG is flat for any M = G/H . The curvature Ω of θ⊕ωg on P(M)
over a Riemannian space (M, g) is torsion-free and Ω is just (the right translation by
Euc(n) of) the curvature of the Levi-Civita connection ωg on O(M).

Now let V be an H-representation space. This gives rise to an associated vector
bundle V := P(M) ×H V over M . A function f ∈ C∞(P,V) admits an invariant
differential defined by

∇ω : C∞(P,V) → C∞(P, g∗ ⊗ V)
f 7→ Lω−1(·)f

with respect to ω on P(M). It is a matter of fact that the invariant differential of an
H-equivariant function f on P with values in V is anH-equivariant function with values
in g∗ ⊗ V. Thus, we obtain an invariant differential operator Dω : Γ(V)→ Γ(A∗ ⊗ V),
where A∗ denotes the dual of the associated bundle to the adjoint representation of H
on g. However, note that this operator Dω does not give the derivatives in the direction
of tangent vectors on M . This problem can be resolved if V is a G-module, as we will
see next.

In general, a Cartan geometry (P, ω)
π→ M of type (G,H) admits a natural ex-

tension by G in the following manner. Let G(M) := P(M) ×H G be the principal
G-bundle induced by extension via the inclusion of H in G and let ω̃ on G(M) be the
right translation of ω by G. The 1-form ω̃ is a principal G-bundle connection. If we
assume that V is a G-module then the associated bundle V = G×G V is equipped with
a covariant derivative ∇ω̃ induced by ω̃ on G(M). Moreover, we have the covariant
exterior derivatives dω̃ acting on k-forms with values in V (cf. Section 0.3). The ex-
tension (G(M), ω̃) of a Cartan geometry (P(M), ω) also makes it possible to introduce
the notion of holonomy for Cartan geometries. In fact, we define the holonomy group
Hol(ω) as the holonomy group of the principal G-connection ω̃ on the extended bun-
dle G(M) in the usual way via parallel translations (cf. Section 0.3). The holonomy
algebra hol(ω) is the Lie algebra of the holonomy group Hol(ω). We remark that there
is a direct way of defining the holonomy group for a Cartan connection without using
the G-extension ω̃ (cf. [144]).
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We want to specialise the situation to parabolic Cartan geometries. First, we do
some preparation. Let V be a finite dimensional vector space. A filtration on V
consists of a sequence of subspaces V i ⊂ V , i ∈ Z, such that V i ⊃ V i+1 for all i ∈ Z
and V a = V , V b = {0} for some a < b ∈ Z. We call V a filtered vector space. The
associated graded gr(V ) is defined to be the sum of the quotients gri(V ) := V i/V i+1,
i ∈ Z, i.e.,

gr(V ) =
b−1⊕

i=a

gri(V ) .

Now let g be a Lie algebra. A direct sum decomposition

g = ga ⊕ · · · ⊕ gb

with a < b ∈ Z, which is compatible with the Lie bracket in the sense that for all
X ∈ gi and Y ∈ gj the commutator [X, Y ]g is an element of gi+j , is called a grading of
the Lie algebra g. We set gi := gi⊕· · ·⊕gb for all a ≤ i ≤ b. This defines a filtration of
the vector space g, which is compatible with the Lie bracket, and an associated graded
gr(g) is induced as well. We denote the group of automorphisms of g preserving the
grading by Autgr(g).

The notion of filtration (and associated graded) for vector spaces extends in an
obvious way to vector bundles in the form of sequences of smooth subbundles. In
particular, we can consider a smooth filtration of the tangent bundle TM of a manifold
M given by

TM = TM−k ⊃ · · · ⊃ TM−1 ⊃ TM0 = M ,

where k > 0. The associated graded is denoted by gr(TM) =
⊕

gri(TM) and
X(M,T iM) denotes the space of sections in T iM over M . If the Lie bracket of vec-
tor fields is compatible with the filtration on TM , i.e., for all ξ1 ∈ X(M,T iM) and
ξ2 ∈ X(M,T jM) the commutator [ξ1, ξ2] is an element of X(M,T i+jM), then we speak
of a filtered manifold M . In this case the Lie bracket [·, ·] of vector fields generates
pointwise bilinear maps

Zij : gri(TM)x × grj(TM)x → gri+j(TM)x

for all x ∈ M and (all relevant) i, j < 0. The collection of all Zij is denoted by
Z ∈ Λ2(gr(TM)∗) ⊗ gr(TM) and we call it the (generalised) Levi-bracket. The Levi-
bracket satisfies the Jacobi identity and thus gr(TM)x is a nilpotent graded Lie algebra
for every x ∈M . If gr(TM) is locally trivial with (constant) fibre type, some nilpotent
graded Lie algebra a, then there exists a natural frame bundle with structure group
Autgr(a), which we denote by Autgr(TM).

In the following, we are interested in the case of semisimple Lie algebras g over R
or C, which are graded by

g = g−k ⊕ · · · ⊕ gk

for some k > 0. We call this a |k|-grading of g. In order to avoid unintentional side
effects we always assume that g0 does not contain any simple ideal of g. Then we denote
g− := g−k ⊕ · · · ⊕ g−1 and p+ := g1 ⊕ · · · ⊕ gk, which are both nilpotent subalgebras
of g. Moreover, we set p := g0 ⊕ p+. The gi, i ∈ {−k, . . . , k}, define a filtration. The
associated graded gr(g) is isomorphic to g as a g0-module, but not as a p-module, in
general. There exists a unique element E ∈ g0 such that

[E,X]g = jX for all X ∈ gj and j ∈ {−k, . . . , k} ,
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which is called the grading element of g = g−k ⊕ · · · ⊕ gk. Moreover, let Bg denote
the Killing form of the Lie algebra g. Then B(gi, gj) = 0 unless i + j = 0. In the
latter case, the Killing form Bg induces an isomorphism g∗

i
∼= g−i of g0-modules for all

i = −k, . . . , k.
In case g is a complex semisimple Lie algebra equipped with some |k|-grading, the

corresponding subalgebra p is a parabolic subalgebra, which means that p contains a
maximal solvable subalgebra (i.e., a Borel subalgebra) of g. On the other hand, any
parabolic subalgebra p of a complex semisimple Lie algebra g naturally gives rise to
a |k|-grading of g. Thus a |k|-grading of a complex semisimple g is nothing, but a
choice of parabolic p in g. A subalgebra p of a real semisimple Lie algebra g is called
a parabolic if its complexification in gC is parabolic.

In general, the cohomology groups of a Lie algebra h with values in an h-module V
are defined as follows. Let Hom(Λlh,V), l ∈ N, be the chain groups with differential

∂ : Hom(Λlh,V)→ Hom(Λl+1h,V)

given by

∂ϕ(X0, . . . , Xl) :=

l∑

i=0

(−1)iXi · ϕ(X0, . . . , X̂i, . . . , Xl)

+
∑

i<j

(−1)i+jϕ([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j, . . . , Xl),

where Xi ∈ h for i ∈ {0, . . . , l} and the hat denotes omission. The differential ∂
computes the cohomology groups H l(h,V) of h with values in V. In particular, if g

is a |k|-graded semisimple Lie algebra, then the nilpotent subalgebra g− acts on g by
the adjoint representation and we have the cohomology groups H l(g−, g). Note that
∂ is in this case a g0-homomorphism and the cohomology groups are in a natural way
g0-modules. By definition, an element φ ∈ Hom(Λlg−, g) has homogeneity degree s
if φ(X1, . . . , Xl) ∈ gi1+...+il+s where Xj ∈ gij for all j ∈ {1, . . . , l}. The homogeneity

degree gives rise to a bigrading H l(g−, g) = ⊕sH l
s(g−, g) of the cohomology by g0-

modules.
Now let V be any g-module of a |k|-graded semisimple g. Via the Killing form Bg

the chain group Hom(Λlg−,V) is dual to Hom(Λlp+,V∗) for all l ∈ N. In particular,
the negative of the dual map of the Lie algebra differential ∂ : Hom(Λrp+,V∗) →
Hom(Λr+1p+,V∗) is a linear map ∂∗ : Hom(Λr+1g−,V) → Hom(Λrg−,V), which is
called the codifferential and satisfies ∂∗ ◦ ∂∗ = 0. For the special case when V = g we
obtain the Kostant-codifferential

∂∗ : Hom(Λrg−, g)→ Hom(Λr−1g−, g),

which is a p-module homomorphism (via the identification g− ∼= g/p). An explicit
formula for the codifferential ∂∗ : Hom(Λ2g−, g)→ Hom(Λ1g−, g) is given by

∂∗φ(X) =
∑

α

[ηα, φ(ξα, X)] +
1

2

∑

α

φ([ηα, X]−, ξα) ,

where {ξα} is a basis of g− and {ηα} denotes the dual basis of p+. In general, the
construction shows that the Lie algebra cohomology H l(g−,V) is dual as a g0-module
to H l(p+,V∗).



24 0. THE BASIC THEORY

It is a matter of fact that on any |k|-graded semisimple Lie algebra g over R, there
exists a positive definite inner product B∗, which is defined via the Killing form Bg and
certain involutive automorphisms on the simple ideals of g. The differential ∂ and the
codifferential ∂∗ are adjoint with respect to this inner product B∗, i.e., B∗(∂φ, ψ) =
B∗(φ, ∂∗ψ) for all φ ∈ Hom(Λlg−, g) and ψ ∈ Hom(Λl+1g−, g). In particular, the
spaces Hom(Λlg−, g), l ∈ N, split as direct sum into the image Im(∂) and the kernel
Ker(∂∗), i.e., any cohomology class contains a ∂-closed and ∂∗-closed representative,
the so-called harmonic representative.

Let us consider now the situation at the group level. Let G be a semisimple Lie
group with |k|-graded Lie algebra g and corresponding parabolic p. Then, in general,
the Lie subgroup P in G, which consists of all elements in G preserving the filtration
of g under the adjoint action, has Lie algebra p and is called a parabolic subgroup of
G. The subgroup G0 of G preserving the grading of g is a reductive Lie group with Lie
algebra g0. The exponential map on g restricted to the nilpotent subalgebra p+ gives
rise to a diffeomorphism between p+ and a normal vector Lie subgroup P+ in P . The
parabolic subgroup P is isomorphic to the semidirect product P = G0 ⋉ exp(p+) and
P/P+ = G0. We call such a pair (G,P ) a parabolic Klein geometry.

Now let M be a smooth manifold equipped with a Cartan geometry (P, ω)
π→

M modelled on a parabolic Klein geometry (G,P ) with Lie algebras (g, p). We call
(P(M), ω) a parabolic geometry of type (G,P ) on M . Note that for any such (P, ω)
the associated bundle P(M) ×P g/p is canonically isomorphic to the tangent bundle
TM . And the Cartan connection ω induces for any P -module V a differential ∇ω|g∗− :

C∞(P;V) → C∞(P; g∗
− ⊗ V). However, even if f ∈ C∞(P;V) is assumed to be a

P -equivariant function, the function ∇ωf |g∗− is not P -equivariant, in general.

The corresponding curvature function κ : P → Λ2g∗
− ⊗ g to a parabolic geometry

(P, ω)
π→ M takes values in the 2-chains of the complex computing the Lie algebra

cohomology of g− with values in g. The curvature function κ splits with respect to the
grading of g into the direct sum κ = κ− +κ0 +κ+ and with respect to the homogeneity

degree it splits into κ =
∑3k

i=−k+2 κ
(i).

Definition 1. Let (P, ω) be a parabolic geometry on a manifold Mn and let κ
denote the curvature function of the Cartan connection ω. Then the parabolic geometry
(P(M), ω)

π→M is called

(1) normal if ∂∗κ = 0,
(2) regular if κ(i) = 0 for all i ≤ 0,
(3) torsion-free if κ− = 0,
(4) flat if κ = 0.

The regular normal Cartan connections play a central in the theory of parabolic
geometries. To briefly explain this, let us consider the following reduction procedure
for an arbitrary parabolic geometry (P(M), ω)

π→ M . Since the tangent bundle TM
is canonically isomorphic to P(M) ×P g/p, the P -invariant filtration on g/p induces
a canonical filtration of TM with associated graded gr(TM) = P(M) ×P gr(g/p).
Moreover, the space P0(M) := P/P+ is a principal G0-bundle over M , and since P+

acts trivially on gr(g/p), we can factor through the P+-action and write the associated
graded as

gr(TM) = P0(M)×G0 gr(g/p) .
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Thereby, the bundle P0(M)
π→ M is a reduction of the frame bundle Autgr(TM) of

gr(TM) to the structure group G0. Since gr(g/p) ∼= g− as G0-modules, we see that
the associated graded gr(TM) is a locally trivial bundle of nilpotent Lie algebras with
fibre type g−. In particular, we have an algebraic bracket {·, ·} on gr(TM) induced by
the G0-invariant Lie bracket on g−. Now, if the curvatures κ(i) vanish for all i < 0, one
can show that the induced filtration of TM makes M into a filtered manifold. And,
if in addition κ(0) = 0, i.e., (P, ω) is regular, then the algebraic bracket {·, ·} coincides
with the generalised Levi-bracket Z.

On the other hand, let (G,P ) be a parabolic Klein geometry with the property
that the cohomology groups H1

k(g−, g) vanish for all k > 0 and let M be a filtered
manifold such that the associated graded gr(TM)x equipped with Levi bracket Zx is
isomorphic to g− for all x ∈ M (and gr(TM) is locally trivial). Then any reduction
of gr(TM) to the structure group G0, for which the induced algebraic bracket {·, ·} on
gr(TM) coincides with Z, admits a unique prolongation procedure, which results in a

regular normal parabolic geometry (P, ωnor)
π→ M . Thereby, the reduction procedure

for (P, ωnor) as described in the previous paragraph reproduces the given filtration on
M (cf. [41]).

Finally, we introduce the notion of Weyl structures for parabolic geometries in the
sense of [42]. Let (P, ω)

π→ M be a parabolic geometry of type (G,P ) on a space
M . Then we have P0(M) := P/P+, which is a principal G0-bundle over M , and P

is a principal P+-bundle over P0. A smooth section σ : P0(M) → P(M) considered
over the base P0(M), which is G0-equivariant with respect to the G0-actions on P0(M)

and P(M), is called a Weyl structure for the parabolic geometry (P, ω)
π→ M . In

this situation the pull-back σ∗ω− of the g−-part of the Cartan connection ω to P0(M)
is a soldering form and gives rise to an embedding of P0(M) into the general linear
frame bundle GL(M). We conclude that the choice of a Weyl structure σ gives rise
to G0-structure on M . Moreover, the pull-back σ∗ω0 of the g0-part of ω is a G0-
equivariant 1-form on P0(M) with values in g0, which induces the tautological map on
fundamental vector fields in vertical directions. This means that σ∗ω0 is a principal
connection form on the G0-reduction P0(M), which is called the Weyl connection ωσ

to the Weyl structure σ. The pull-back of the p+-part of ω is tensorial on M and gives
rise to the famous Rho-tensor P

σ !

6. Conformal Geometry

Conformal geometry is a classical object of interest in geometry and physics. There
are different approaches for its definition and treatment. We aim to introduce conformal
geometry in the framework of parabolic geometry as discussed in the previous section.
The structure group of conformal geometry is the Möbius group G = PO(r+ 1, s+ 1),
which acts on the flat homogeneous model Sr,s, the Möbius space of signature (r, s).
The corresponding parabolic P generates a |1|-grading on the structure algebra g and g0

acts irreducibly on g−1. This means that a conformal Cartan geometry induces a trivial
filtration on the underlying space M . However, the structure group of gr(TM) = TM
is reduced to G0 = CO(r, s).

First, we describe the flat model of conformal geometry on the Lie algebra level.
Let Rr,s be the Euclidean space of dimension n = r + s ≥ 3 equipped with the scalar
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product 〈·, ·〉r,s of signature (r, s) given by the matrixJr,s =

(
−Ir 0
0 Is

)
.

We denote by g the Lie algebra so(r+1, s+1) of the orthogonal group O(r+1, s+1),
which acts via the standard representation on the Euclidean space Rr+1,s+1 of dimension
n+ 2 equipped with coordinates (x−, x1, . . . , xn, x+) and indefinite scalar product

〈x, y〉 = x−y+ + x+y− + (x1, . . . , xn) Jr,s (y1, . . . , yn)⊤ .

The Lie algebra g = so(r + 1, s+ 1) is |1|-graded by

g = g−1 ⊕ g0 ⊕ g1 ,

where g0 = co(r, s), g−1 = Rn and g1 = Rn∗. The 0-part g0 is reductive and decomposes
further into the centre R and the semisimple part so(r, s), which is the Lie algebra of
the isometry group of the Euclidean space Rr,s. We realise the subspaces g0, g−1 and
g1 by matrices of the form


0 0 0
m 0 0
0 −m⊤Jr,s 0


 ∈ g−1 ,



−a 0 0
0 A 0
0 0 a


 ∈ g0 ,




0 l 0
0 0 −Jr,s l⊤
0 0 0


 ∈ g1 .

The commutators with respect to these matrices are given by

[ , ] : g0 × g0 → g0 , [(A, a), (A′, a′)] = (AA′ −A′A, 0)

[ , ] : g0 × g−1 → g−1 , [(A, a), m] = Am+ am

[ , ] : g1 × g0 → g1 , [l, (A, a)] = lA + al

[ , ] : g−1 × g1 → g0 , [m, l] = (ml − Jr,s (ml)⊤Jr,s, lm) ,

where (A, a), (A′, a′) ∈ so(r, s)⊕ R, m ∈ Rn, l ∈ Rn∗.
As before we denote p := g0 ⊕ g1 and p+ := g1. The filtration

g ⊃ p ⊃ p+

is p-invariant. The 0-part g0 acts via the adjoint representation, preserving the grading
of g. In particular, g0 acts irreducibly on g−1 and we obtain a natural inclusion of g0

into g∗
−1⊗ g−1 (cf. [135, 44]). The first prolongation of the Lie algebra g0 = co(r, s) is

by definition the intersection of g∗
−1 ⊗ g0 with S2g∗

−1 ⊗ g−1. This intersection is given
by the kernel ker(∂) of the differential ∂ : g∗

−1 ⊗ g0 → Λ2g∗
−1 ⊗ g−1. Since H1

1 (g−, g) is
trivial, the kernel ker(∂) is the injective image of ∂ : p+ → g∗

−1⊗ g0, which shows that

the nilpotent radical p+ is the first prolongation co(r, s)(1). The second prolongation
of co(r, s) vanishes.

The Kostant-codifferential ∂∗ is given on 2-chains by

∂∗ : Hom(Λ2g−1, g) → Hom(g−1, g) ,

ψ 7→ ∂∗ψ = ( X ∈ g−1 7→
∑n

i=1[ηi, ψ(ξi, X)] ) ,

where {ξi : i = 1, . . . , n} is some basis of g−1 and {ηi : i = 1, . . . , n} is the cor-
responding dual basis of p+ (with respect to the Killing form of g). On 1-chains we
have

∂∗ : Hom(g−1, g) → g ,

ψ 7→ ∂∗ψ =
∑n

i=1[ηi, ψ(ξi)] .
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The projective orthogonal group PO(r+1, s+1) is defined as O(r+1, s+1) divided
by its centre Z2. We set G := PO(r+1, s+1) and call it the Möbius group of signature
(r, s). The subgroup P of the Möbius group G, which consists of those elements whose
adjoint action on g preserve the filtration, is a parabolic subgroup with Lie algebra
p. The subgroup G0, which preserves the grading of g, is isomorphic to the group
CO(r, s) = O(r, s)× R+ with Lie algebra g0 = co(r, s), where R+ denotes the positive
real numbers. Moreover, the exponential map of g restricts to a diffeomorphism from
p+ onto a normal vector subgroup P+

∼= Rn of P . Then P = CO(r, s) ⋉ Rn and
P/P+ = CO(r, s). As (lifted) subgroup of O(r + 1, s + 1) the parabolic P is given by
the set of matrices








a−1 v b
0 A r
0 0 a



∣∣∣∣
A ∈ O(r, s), a ∈ R+, v ∈ Rn∗,
r = −aAJr,sv⊤, b = −a

2
vJr,sv⊤ 


 .

The vector group P+ is given by







1 v b
0 In −Jr,sv⊤
0 0 1



∣∣∣∣ v ∈ Rn∗, b = −1

2
vJr,sv⊤ .

The pair (G,P ) represents the Klein pair on which conformal geometry is modelled.
The projective representation of G on Rr+1,s+1 gives rise to a transitive action on the
(projective) null cone PLo of Rr+1,s+1 and the parabolic P is the stabiliser of the real
null line o = [1 : 0 : · · · : 0]. The homogeneous space Sr,s = G/P is the flat model of
conformal geometry and we call Sr,s the Möbius space of signature (r, s). The normal
subgroup P+ is the kernel of the isotropy representation on the tangent space ToS

r,s. In
the Riemannian case the Möbius space is diffeomorphic to the sphere Sn, which is the
compactification of the Euclidean space Rn by adding a point at infinity. (The round
metric on Sn represents the flat conformal structure.) In the Lorentzian case the space
S1,n−1 is the compactification of the Minkowski space R1,n−1 by a light cone at infinity.
The space S1,n−1 is diffeomorphic to (S1 × Sn−1)/Z2.

Now let Mn be a C∞-manifold of dimension n ≥ 3 and let (P, ω)
π→M be a Cartan

geometry on M of conformal type (G,P ) with curvature Ω. The curvature function

κ : P(M) → Hom(Λ2g−1, g)

decomposes to κ−1 + κ0 + κ1 according to the grading of g. Thereby, the 0-part κ0

can be seen as a function on P(M), which takes values in g∗
−1 ⊗ g∗

−1 ⊗ g∗
−1 ⊗ g−1. The

(generalised) Bianchi identity for a Cartan connection ω on P(M) is expressed by

−∂κ(X, Y, Z) =
∑

cycl

( ∇ω
Z(κ(X, Y )) + κ(κ−1(X, Y ), Z) ) ,

where
∑

cycl denotes the sum over all cyclic permutations of the arguments.

The normalisation condition ∂∗ ◦κ = 0 for a Cartan connection ω on P(M) of type
(G,P ) is equivalent to

κ−1 = 0 and trκ0 :=

n∑

i=1

κ0(ξi, ·)(·)(ηi) = 0 ,
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where {ξi} is a basis of g−1 with dual basis {ηi}, i.e., a normal Cartan connection ω
of type (G,P ) is torsion-free and the 0-part of the curvature function is traceless. For
normal Cartan connections ω the Bianchi identity simplifies to

∑

cycl

[κ0(X, Y ), Z] = 0 ,
∑

cycl

∇ω
Z(κ1(X, Y )) = 0 and

∑

cycl

∇ω
Z(κ0(X, Y )) =

∑

cycl

[κ1(X, Y ), Z] .

Let (P, ω)
π→ M be an arbitrary Cartan geometry of conformal type (G,P ). We

observe that the bundle G0 := P/P+ is a principal G0-bundle on M and the (−1)-part
ω−1 of the Cartan connection ω induces a soldering form θ−1 on G0. Thus the bundle G0

is a G0-structure on M , which determines orthogonal frames at every point of M . We
call (G0, θ−1) a conformal structure (of first order) on M . In general, different Cartan
connections on P can induce the same first order conformal structure (G0, θ−1). How-
ever, there exists a canonical Cartan connection on P(M), which induces (G0, θ−1). To
see this, we describe briefly the natural prolongation procedure for (G0, θ−1) (cf. Section
0.5 and [44]). The resulting canonical Cartan connection is uniquely determined by
the condition ∂∗κ = 0, i.e., it is the unique normal one. We will denote the canonical
connection by ωnor.

So let (G0, θ−1)
π→ M be a CO(r, s)-structure on M with θ−1, the soldering form.

Then let us consider a linear map φ : g−1 ⊕ g0 → TuG0(M) for u ∈ G0(M) such that
φ(0, A) = χA for all A ∈ g0 and θ−1 ◦ φ(X,A) = X for all X ∈ g−1. The map φ is
uniquely determined by the image φ(g−1) in TuG0(M), which is a transverse complement
to the vertical space, i.e., a horizontal subspace. The exterior derivative dθ−1 gives rise
to an element tφ ∈ Λ2g∗

−1 ⊗ g−1, which sends X ∧ Y ∈ Λ2g−1 to dθ−1(φ(X, 0), φ(Y, 0))
and which is called the torsion of φ. We set

P := { φ horizontal in TG0(M) and ∂∗tφ = 0 } .

The set P is seen to be non-empty and for any two φ1, φ2 ∈ Pu, u ∈ G0, there exists a
unique α in the prolongation p+ = co(r, s)(1) such that φ2(X,A)−φ1(X,A) = χ∂α(X)(u)
for all (X,A) ∈ g−1⊕g0. In fact, the parabolic P acts on P by φ ∈ Pu 7→ R∗

l0
◦φ◦Ad(l) ∈

Pu·l0, where l0 denotes the class in G0 = P/P+ of l ∈ P . This action is free and

transitive on the fibres of P
π→ M and makes P into a principal P -bundle over M .

Furthermore, let φ be any point in P and let ξ ∈ TφP be a vector at φ. Then we can
take the projection of ξ to TG0 and apply to it φ−1. This gives rise to a soldering
form θ := θ−1 ⊕ θ0 : TP → g−1 ⊕ g0. The bundle (P, θ) → M with soldering form θ

is called the first prolongation of the conformal structure (G0, θ−1)
π→ M . Since the

torsion Tθ := dθ−1 + [θ0, θ−1] of θ vanishes (in case of conformal geometry), it can be
shown that P is via θ a P -reduction of the second order frame bundle Gl(2)(M) (the
bundle of 2-jets of coordinates at points in M).

In the next step, we consider certain linear maps Φ : g−1⊕ g0⊕ g1 → TuP at u ∈ P

and again we can define a torsion tΦ as before by use of the soldering form θ. This
time, since the cohomology H1

2 (g−1, g) is trivial (in case of conformal geometry), we
can conclude that there exists a unique Φ̃ with ∂∗tΦ̃ = 0 at each u ∈ P. In this sense

the second prolongation of (G0(M), θ−1) is trivial. The collection of the inverse Φ̃−1
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at each u ∈ P gives rise to a smooth 1-form ωnor : TP → g−1 ⊕ g0 ⊕ g1, which is by

construction a normal Cartan connection on P
π→M of type (G,P ).

The described prolongation procedure establishes a bijective correspondence be-
tween first order conformal structures and normal conformal Cartan geometries (or
second order conformal structures) on a space M . In particular, the canonical con-
nection ωnor solves the equivalence problem of conformal geometry, i.e., two conformal
(first order) structures are equivalent if and only if their prolongations (P, ωnor) are iso-
morphic as Cartan geometries. The existence of the canonical connection in conformal
geometry was discovered by E. Cartan (cf. [46]). Note that there exists no conformally
covariant linear connection on the first order structure (G0, θ−1).

The canonical connection ωnor is a useful tool for the construction of invariants for
conformal geometries (G0, θ−1)

π→ M . For example, we have the conformal holonomy
group Hol(ωnor), which is uniquely defined as the holonomy group of the G-connection

ω̃nor on the G-extension G
π→ M of P (cf. Section 0.5). In general, the group Hol(ωnor)

is a subgroup of the Möbius group G = PO(r+1, s+1). We denote the corresponding
holonomy algebra by hol(ωnor). The holonomy algebra hol(ωnor) is trivial iff the con-
formal structure is flat. The curvature Ω of ωnor is a basic invariant as well, which we
will discuss in more detail below.

A Weyl structure for a normal conformal Cartan geometry (P, ωnor)
π→ M is a G0-

equivariant section σ in P considered as a P+-bundle over the bundle G0(M) = P/P+

of first order. Since the torsion Tθ vanishes, the pull-back ωσ := σ∗ ◦ θ0 with respect to
such a Weyl structure is a torsion-free linear connection on the G0-structure G0(M). On
the other hand, any torsion-free connection γ on G0(M) gives rise to a Weyl structure
σγ : G0 → P via the γ-horizontal subspaces in TG0(M). This shows that there is a
natural and bijective correspondence between Weyl structures and torsion-free linear
G0-connections in conformal geometry. We call the torsion-free connections on G0(M)
the Weyl connections.

Now let us consider the standard inclusion ι : O(r, s) →֒ CO(r, s) of the semisimple
part of the reductive structure group G0 of first order. A ι-reduction O(M) of the
conformal structure (G0(M), θ−1) onM is nothing, but the choice of a semi-Riemannian
metric g on M . We call such a metric g compatible with the given conformal structure
(G0, θ−1) onM . Since the Levi-Civita connection ωg of a compatible metric g is uniquely
determined and torsion-free, it gives rise to a Weyl structure σg : G0(M) → P(M).
However, note that not every Weyl structure σ comes from a compatible metric.

Obviously, whenever g is compatible for a given (G0, θ−1)
π→ M , then g̃ = e2fg is

compatible as well for any function f : M → R. In fact, any two compatible metrics
g1, g2 are related by g2 = e2fg1 for some function f and we call the metrics g1 and g2

conformally equivalent in this case. Now, if a compatible metric g for some (G0, θ−1)
on M does exist, then we denote by c := [g] the equivalence class of conformally
related (i.e. compatible) metrics. The class c is uniquely determined by the conformal
structure (G0, θ−1). On the other hand, any semi-Riemannian metric g on a space M
determines a class c = [g] of conformally equivalent metrics and, in particular, the
metric g, resp., its conformal class c defines uniquely a conformal structure (G0, θ−1) on
M . For that reason, we call a class c of conformally related metrics on a space M also
a conformal structure. Note that, in general, a compatible metric for a given (G0, θ−1)
need not exist onM . However, in Riemannian signature it is clear (by use of a partition
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of unity) that any (G0, θ−1) admits a compatible metric, i.e., there is a natural bijective
correspondence between conformal classes c and G0-reductions (G0, θ−1).

In the following, we will usually assume that a compatible metric does exist for
a given conformal structure (G0, θ−1) on M or that (G0, θ−1) is actually given by a
metric g, resp., its conformal class c = [g]. This assumption guarantees that the
ray subbundle Q of pointwise conformally related metrics to g in S2(T ∗M) is a trivial
principal R+-bundle over M , where s ∈ R+ acts on g by g ·s2. Then the representations
ρw : a ∈ R+ 7→ a−w/2 ∈ Aut(R), w ∈ R, give rise to real line bundles

E[w] := Q×ρw R ,
which are trivial on M . For any w ∈ R the bundle E[w] is called the density bundle of
conformal weight w on (M, c).

Now let g be a semi-Riemannian metric of arbitrary signature (r, s) on a manifold
M of dimension n ≥ 3 and let c := [g] (resp., (G0, θ−1)) be the corresponding conformal
structure on M . The natural prolongation uniquely gives rise to the normal conformal
Cartan geometry (P(M), ωnor), where ωnor = ω−1 + ω0 + ω1, and we have the induced
Weyl structure σg : G0 → P. In this situation the pull-back σg∗ω0 is the Levi-Civita
connection to g on G0. Moreover, the pull-back σg∗ω1 is tensorial on G0 and projects
to the Schouten tensor P

g = 1
n−2

(
scalg

2(n−1)
− Ricg

)
on M . The curvature Ω of ωnor

decomposes to Ω0 + Ω−1 and σg∗Ω0 gives rise to the Weyl tensor W g on (M, g). The
p+-part σg∗Ω1 corresponds to the Cotton tensor Cg (cf. Section 0.7).

We introduced in Section 0.4 the notion of metric invariants Q(g) and differential
operators D(g) for semi-Riemannian spaces (M, g) via universal polynomial formulae
with respect to components of the metric given in coordinates. Now let us consider
conformal spaces (M, c) and let Q(g) be an invariant for some compatible metric g ∈ c.
Then we call Q(g) a conformal invariant of (M, c) if

Q(e2φg) = e−bφ ·Q(g)

for any g̃ = e2φg ∈ c with some fixed number b ∈ R. For example, it is well known that
the Weyl tensor W g is such a conformal invariant. In dimension n = 3, the Cotton
tensor Cg is a conformal invariant, since the Weyl tensor vanishes. (In general, we have
Cg = (3 − n) · divg4W g.) In dimension 4, the Bach tensor Bg is a conformal invariant
(cf. Section 0.4 and 0.11). Accordingly, a metric invariant differential operator D(g)
is called conformally covariant of bidegree (a, b) if D(e2φg) = e−bφ ◦D(g) ◦ eaφ for all
φ ∈ C∞(M) with some fixed numbers a, b ∈ R. A well-known example for a conformally
covariant differential operator is the conformal Laplacian

P g
2,n := ∆g

tr +
n− 2

4(n− 1)
scalg

of bidegree (n
2
− 1, n

2
+ 1).

Finally, in this section we want to discuss symmetries of conformal structures and
related covariant differential equations. First, let (P, ωnor)

π→ M be a normal con-
formal Cartan geometry. An automorphism Φ of (P(M), ωnor) is a principal bundle
automorphism of P(M) such that Φ∗ωnor = ωnor. The group of such automorphisms
is denoted by Aut(ωnor). Since Aut(ωnor) preserves an absolute parallelism on P(M),
it is clear that Aut(ωnor) acts as a finite dimensional Lie group on P(M), whose di-
mension is bounded by dim(G) = (n + 1)(n + 2)/2. An infinitesimal automorphism
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of a normal conformal Cartan geometry (P(M), ωnor) is a P -invariant vector field X
on P(M) such that LXωnor = 0. The Lie algebra of infinitesimal automorphisms is
denoted by inf(ωnor) and dim(inf(ωnor)) ≤ dim(G) with equality only if (P(M), ωnor)
is a flat Cartan geometry.

Of course, there is also an equivalent first order formulation for conformal automor-
phisms. In first order we say, a map φ : (M, c)→ (M, c) is a conformal transformation
(or automorphism) if φ is a diffeomorphism and φ∗g = l ·g for some (hence any) metric
g ∈ c, where l ∈ C∞(M) is an appropriate function depending on g. Accordingly, we
call a vector field V on (M, c) a conformal Killing vector field iff LV g = λg for some
metric g ∈ c with appropriate λ ∈ C∞(M). (This generalises the notion of Killing vec-
tor fields for semi-Riemannian spaces.) We denote the set of conformal Killing vector
fields on a space (M, c) by inf(M, c). The local flow of any V ∈ inf(M, c) is a local
1-parameter group of conformal transformations on (M, c). In particular, the local flow
of V determines the flow of the first order frames in G0(M) ⊂ Gl(M) and also of the
second order frames in P(M) ⊂ Gl(2)(M). In fact, the 2-jet j2(V ) of V is a P -invariant
vector field on P(M) with Lj2(V )ωnor = ωnor, i.e., j2(V ) is an infinitesimal automor-
phism of (P, ωnor). On the other hand, any element X ∈ inf(ωnor) projects down to
a conformal Killing vector field V := π∗(X) on (M, c). This establishes a canonical
Lie algebra isomorphism between inf(M, c) and inf(ωnor). The analogous statement for
automorphisms of (M, c) and (P(M), ωnor) is also true. In particular, it is clear now
that a conformal transformation of a connected space (M, c) is uniquely determined by
its 2-jet at a single point p ∈ M (cf. [90]).

We highlight some properties and further definitions for conformal Killing vector
fields V . So let us consider such a V on a semi-Riemannian space (M, g). Then, in
general, LV g = λg with λ = 2

n
divg(V ) and ∇gV = 1

n
divg(V ) · id|TM + A, where A is

some skew-symmetric endomorphism on TM . Moreover, using a Weitzenböck formula
we obtain

∆g
trV = −Ricg(V ) +

2− n
n

gradg(divgV ) . (4)

If divg(V ) 6= 0 is constant on (M, g), we call V a homothetic Killing vector. A conformal
gradient field is a conformal vector field V , which is the gradient of some function, i.e.,
V = gradgf . Both these notions are just metric invariant. Homothetic gradient fields
are closely related to the metric cone construction (cf. Section 0.9).

A conformal Killing vector field V is called essential if divg(V ) 6≡ 0 for all g ∈ c
on M . This definition means that an essential conformal Killing vector field is not a
Killing vector for any metric g in a given conformal class c on M . Locally, an essential
conformal Killing vector V field needs to have a zero. Accordingly, the conformal
transformation group Aut(M, c) of a space (M, c) is called essential if there exists
a φ ∈ Aut(M, c), which is not an isometry with respect to any metric g ∈ c. In
Riemannian geometry, Aut(M, c) is non-compact if and only if Aut(M, c) is essential.
In this case it is also known that Aut(M, c) is essential only for the Euclidean spaceRn and for the round sphere (Sn, go) (up to conformal equivalence), which are both
conformally flat (cf. [133, 134, 116, 2, 153]). The investigation of pseudo-Riemannian
conformal spaces with essential transformation group is much more involved (cf. e.g.
[4, 60]). In Chapter 4 we will present examples of essential conformal Killing vectors
on non-compact Lorentzian spaces, which are not conformally flat!
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The dual 1-form αV := V ♭ to a conformal Killing vector field V on a space (M, g)
satisfies the equation

∇g
XαV −

1

2
ιXdαV +

1

n
X♭ ∧ d∗αV = 0 for all X ∈ TM .

More generally, let us consider the vector bundle T ∗M ⊗ΛpT ∗M . This bundle decom-
poses into the direct sum Λp−1(T ∗M) ⊕ Λp+1(T ∗M) ⊕ Cp(M), where Cp(M) denotes
the intersection of the kernels of ∧-product and insertion ι applied to elements of
T ∗M ⊗ ΛpT ∗M . The composition prC ◦ ∇g : Ωp(M) → Γ(Cp(M)) is a first order
differential operator, which is actually conformally covariant. The kernel of prC ◦ ∇g

on a semi-Riemannian space (M, g) is described by the conformally covariant partial
differential equation

∇g
Xα−

1

p+ 1
ιXdα +

1

n− p+ 1
X♭ ∧ d∗α = 0 , X ∈ TM , (5)

for p-forms α. We call a solution α ∈ Ωp(M) of this equation a conformal Killing
p-form (cf. Section 0.7; [88, 148, 143, 72]). Conformal Killing p-forms are related to
higher symmetries of the Laplacian (cf. [51]).

7. Tractor Calculus

We start by introducing tractor bundles for parabolic geometries, in general. Later
in this section we will specialise to conformal geometry. In Section 0.8 and 0.10 we will
also meet a spin version of conformal tractor calculus and furthermore CR-tractors.

Let (P, ω)
π→ M be a parabolic geometry on M of arbitrary type (G,P ) with Lie

algebras (g, p). The adjoint representation of P on g gives rise to an associated vector
bundle A(M) := P ×P g, which is called the adjoint tractor bundle to P(M). This
vector bundle A admits a (locally trivial) invariant filtration A−k ⊃ · · · ⊃ Ak and an
algebraic bracket {·, ·}A on each fibre induced by g and its |k|-grading. More generally,
let V be a finite dimensional G-module with effective action ρ. The space V decomposes
as direct sum ⊕iVi into G0-modules, where a summand Vj denotes the eigenspace to
an eigenvalue j with respect to the action of the grading element E ∈ g0. Then the
action of the component gi of g maps Vj to Vi+j and the splitting ⊕iVi gives rise to a
P -invariant filtration Va ⊃ · · · ⊃ Vb of V. (Note that we allow here a and b to be real
numbers.) We call the associated vector bundle

TV := P(M)×ρ(P ) V
the V-tractor bundle for P(M) over M . The infinitesimal g-action ρ∗ on V is compatible
with the P -action and this gives rise to a bundle homomorphism A⊗ TV → TV, which
makes TV into a bundle of modules over A. We denote the action of this module
structure by (A, t) 7→ A • t. Moreover, TV is equipped with a locally trivial filtration
TaV ⊃ · · · ⊃ TbV, which is invariant under the action • of A0 on TV.

Now let (G(M), ω̃) be the G-extension of (P(M), ω) over M and V an effective
G-module. The principal connection ω̃ gives rise to a covariant derivative

∇ω̃ : Γ(TV)→ Γ(T ∗M ⊗ TV) ,
on the V-tractor bundle (cf. Section 0.5). We call ∇ω̃ a tractor connection. We also
denote by ∇A the tractor connection on the adjoint tractor bundle A (in case ω is a
canonical choice). In general, the action of ∇ω̃ on t ∈ Γ(TV) is given by u−1(∇ω̃

Xt) =
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X̃(t̃)(u) + ρ∗(ω(X̃))t̃(u), where t̃ ∈ C∞(P;V) denotes the P -equivariant lift of the
section t, the isomorphism u−1 : (TV)π(u) → V is given for u ∈ P(M) by [u, s̃] 7→ s̃

and X̃ is an arbitrary lift of X ∈ Tπ(u)M to TuP(M). Such a tractor connection ∇ω̃

is distinguished by the following properties. For any tangent vector ξ ∈ TuP(M),
u ∈ P(M), the map Φu(ξ) := ( t̃(u) ∈ V 7→ u−1 ◦∇ω̃

π∗(ξ)t− ξ(t̃)(u) ∈ V ) is the action of

some element in g, and ∇ω̃ is non-degenerate in the sense that for any p ∈M and any
tangent vector X ∈ TpM , there exists a number i and a local smooth section t ∈ Γ(TiV)
such that ∇ω̃

Xt(p) 6∈ (TiV)p. We call a connection ∇ω̃ which satisfies these two properties
a non-degenerate g-connection on TV.

We remark that our definition of tractor bundles TV with derivative ∇ω̃ makes use
of a parabolic Cartan geometry (P, ω) on M . However, tractor calculus can also be
defined without the input of Cartan geometry. In fact, given a locally trivial bundle
of filtered Lie algebras modelled on some semisimple |k|-graded g, any non-degenerate
g-connection induces a Cartan connection for some principal bundle with parabolic
structure group P ⊂ Aut(g). In this respect, tractor calculus and parabolic Cartan
geometry are on an equal footing (cf. [150, 14, 37]).

Now let us consider the principal G0-bundle G0(M) = P(M)/P+ for a parabolic
geometry over M . The associated graded gr(V) of a G-module V admits a natural
G0-action. Via this action gr(TV) becomes an associated vector bundle to G0(M).
However, there is no natural identification of gr(TV) and TV unless we introduce a Weyl
structure. So let σ : G0(M) → P(M) be a Weyl structure. The Weyl structure σ give
rise to a G0-structure (G0, θ−) on M equipped with connection σ∗ω0. Moreover, we
obtain a splitting of TV via σ into a direct sum ⊕iTVi

of G0-associated bundles TVi
. In

particular, we have an identification of gr(TV) and TV via σ and the Weyl connection
σ∗ω0 on G0(M) induces covariant derivatives ∇Vi on each TVi

. The difference between
∇ω̃ and the direct sum of the ∇Vi on ⊕iTVi

is described by the action of the Rho-tensor
P
σ = σ∗ω+.

We specialise the situation now to tractor calculus in conformal geometry. So let
Mn be a space of dimension n ≥ 3 equipped with a conformal structure c, which is
given by the conformal class of some metric g on M . Then we have the trivial density
bundles E[w] of conformal weight w ∈ R over M (cf. Section 0.6). We denote by

(P, ωnor)
π→M the corresponding normal Cartan geometry on (M, c) of conformal type

(G,P ) with G = PO(r + 1, s + 1). Since g is |1|-graded (in conformal geometry),
the principal bundle G0(M) = P(M)/P+ is already a G0-structure on M . Then, if
B denotes an arbitrary vector bundle associated to G0(M), we denote by B[w] the
conformally weighted bundle B ⊗ E[w]. For example, TM = T ∗M [2], which means
that vector fields on M are identified via the conformal structure c with 1-forms of
conformal weight 2.

The adjoint tractor bundle A(M) for a conformal Cartan geometry of type (G,P )
is given by P(M)×P so(r + 1, s+ 1) and is filtered by

A ⊃ A0 ⊃ A1 ,

where A0 = P ×P p and A1 = P ×P p+. Obviously, the subbundle A1 is canonically
isomorphic to T ∗M , i.e., the dual tangent bundle T ∗M is canonically embedded in
A(M). However, in order to be able to resort to some more assortment of tractors

we extend the group G by the centre Z2 to G̃ = O(r + 1, s + 1). This gives rise to
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the extended Klein geometry (G̃, P̃ ) (of conformal type), where P̃ is the stabiliser of

a null line in Rr+1,s+1 under the standard action of G̃. We set G̃0 := G0 (in abuse
of our conventions so far) and consider it as a (lifted) subgroup in G̃. Now, since we
assume the existence of a compatible metric g on M , the ray bundle Q ⊂ S2(T ∗M)

is trivial. This ensures that the trivial Z2-covering P̃(M) over P(M) is a P̃ -reduction
of P(M) as principal fibre bundle over M , which is then endowed with the lift of the
normal Cartan connection ωnor. Thus we obtain a normal conformal Cartan geometry
(P̃, ωnor)

π→M of type (G̃, P̃ ).

The construction of (P̃, ωnor) allows us to define the standard tractor bundle of
conformal geometry on (M, c) by

T(M) := P̃×P̃ Rr+1,s+1 ,

which is a vector bundle of rank n+2. The standard tractor bundle is naturally endowed
with the invariant scalar product 〈·, ·〉T, which is induced by the G̃-invariant product
on Rr+1,s+1. The dual standard tractor bundle is denoted by T∗(M). In general, a
conformal tractor bundle TV is defined as vector bundle over (M, c) associated to some
(effective) G̃-module V. Any tractor bundle TV comes with an invariant filtration. In
case of the standard tractor bundle T this filtration is given by T ⊃ T0 ⊃ T1, where
T1 corresponds to the P̃ -stabilised null line in Rr+1,s+1 and T0 is the 〈·, ·〉T-orthogonal
complement of T1. In fact, the real line T1 can be canonically identified with the density
bundle E[−1].

We remark that the standard tractor bundle T(M) on a space (M, c) with con-
formal structure c = [g] can be constructed directly as follows. Let us consider the
2-jet prolongation J2(E[1]) of the density bundle E[1] on (M, c). By definition of the
prolongation, we have the exact sequence

0→ S2(T ∗M)[1]→ J2(E[1])→ J1(E[1])→ 0 .

The conformal structure c on M gives rise to a splitting of S2(T ∗M)[1] into
S2

0(T
∗M)[1] ⊕ E[−1], where S2

0(T
∗M)[1] denotes the trace-free part, and we can see

that S2
0(T

∗M)[1] sits as a smooth subbundle in J2(E[1]). The corresponding quotient
bundle is isomorphic to the standard tractor bundle T(M) (cf. [36]).

All tractor bundles TV on (M, c) are equipped with a canonical covariant derivative
∇nor induced by ωnor (via G̃-extension). In particular, the canonical covariant deriva-
tive on T(M) is called the standard tractor connection, which we denote by ∇T. The
standard tractor connection ∇T has a holonomy group Hol(T) with algebra hol(T),
which is defined as usual via parallel translations of frames in T along loops in M (cf.
Section 0.3). We call Hol(T) the conformal tractor holonomy group of (M, c). In gen-
eral, the tractor holonomy Hol(T) differs from Hol(ωnor) (by a Z2-covering). However,
the conformal holonomy algebras hol(T) and hol(ωnor) coincide canonically.

Next we consider gradings of conformal tractor bundles with respect to Weyl struc-
tures. So let σ : G0 → P be a Weyl structure on M (which we can trivially lift to theZ2-cover P̃(M)). Any conformal tractor bundle TV on (M, c) is identified via σ with
its associated graded gr(TV) = ⊕igri(TV). Basic representation theory of the reductive
group G̃0 = CO(r, s) shows that any summand gri(TV) can be realised as a subbun-
dle of the tensor algebra ⊕k,lT (k,l)M equipped with a certain conformal weight. We
illustrate this for the p-form tractor bundles ΛpT∗(M) on (M, c), which are defined as
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P̃ (M)×P̃ ΛpRr+1,s+1∗. The p-form tractors are filtered by ΛpT∗ ⊃ (ΛpT∗)0 ⊃ (ΛpT∗)1,
where the 1-part is naturally identified with the (p− 1)-forms Λp−1T ∗M [p− 2] of con-
formal weight p− 2. The associated graded is given by

Λp−1T ∗M [p] ⊕
(

ΛpT ∗M [p] ⊕ Λp−2T ∗M [p− 2]
)
⊕ Λp−1T ∗M [p− 2] ,

which is naturally identified with ΛpT∗(M) only via σ. In particular, for p = 2 we
have Λ2T∗M ∼= A, which is graded by TM ⊕ co(TM)⊕ T ∗M , where co(TM) denotes
the skew-symmetric endomorphisms on TM (with respect to any metric in c) plus
multiples of the identity map id|TM . The standard tractor bundle T is graded via σ by

E[1]⊕ TM [−1]⊕ E[−1] .

Now we choose a metric g ∈ c, which gives rise to a O(r, s)-structure Gs(M) =
O(M, g) on M . This reduction allows a natural identification of all density bundles
E[w], w ∈ R, with the trivial real line bundle R on M . In particular, any tensor
bundle B[w] on (M, c) looses its conformal weight. For example, T admits via g a
natural identification with the direct sum R⊕TM ⊕R and, more generally, the p-form
tractors split into Λp−1T ∗M ⊕ ΛpT ∗M ⊕ Λp−2T ∗M ⊕ Λp−1T ∗M . In particular, we
can write any adjoint tractor A ∈ A with respect to a metric g as a triple (ξ, φ, ρ) ∈
TM ⊗ co(TM) ⊗ T ∗M , where φ = φc + φs splits further into a trace and a skew-
symmetric part. A standard tractor t ∈ T is given by a triple (f, ψ, h), where f, h are
real functions and ψ is a vector field on (M, c). The algebraic bracket {·, ·}A on A is
given for (ξ1, φ1, ρ1) and (ξ2, φ2, ρ2) with respect to g by

{ (ξ1, φ1, ρ1) , (ξ2, φ2, ρ2) }A =

( φ1(ξ2)− φ2(ξ1) , φ1 ◦ φ2 − φ2 ◦ φ1 + {ξ1, ρ2}+ {ρ1, ξ2} , ρ1 ◦ φ2 − ρ2 ◦ φ1 ) ,

where {ξ1, ρ2} = ξ1 ⊗ ρ2 − ρ♯2 ⊗ ξ♭1 + ρ2(ξ1)id|TM . The action • of A(M) on T(M) is
given by

(ξ, φ, ρ) • (f, ψ, h) = ( φc · f − g(ξ, ψ) , −f · ρ♯ + φs(ψ) + h · ξ , ρ(ψ)− φc · h ) .

Alternatively, we can express tractors A = (ξ, φ, ρ) and t = (f, ψ, h) in matrix form.
The action • is then given by the matrix product

A • t =



−φc ρ 0
ξ φs −ρ♯
0 −g(ξ, ·) φc


 ·




h
ψ
f


 .

The canonical covariant derivative ∇nor acts on sections γ ∈ Γ(TV) of any tractor
bundle TV with respect to a metric g ∈ c and a vector X ∈ TM by

∇nor
X γ = ∇g

Xγ + ( X , 0 , P
g(X) ) • γ .

In particular, on sections of A we have

∇A
X(ξ, φ, ρ) = ( ∇g

Xξ , ∇g
Xφ , ∇g

Xρ ) + { (X, 0,Pg(X)) , (ξ, φ, ρ) } .
On standard tractors t = (f, ψ, h) ∈ Γ(T) the action of the tractor connection ∇T is
expressed in matrix notation by

∇T
Xt =




Xh
∇g
Xψ
Xf


 +




0 P
g(X, ·) 0

X 0 −P
g(X, ·)♯

0 −g(X, ·) 0


 ·




h
ψ
f


 . (6)
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The action of ∇nor on p-form tractors in terms of a compatible metric will be explained
in Chapter 1. The curvature of ∇T is given as adjoint tractor in matrix form by




0 Ω1 0

0 Ω0 −Ω♯
1

0 0 0


 =




0 Cg 0
0 W g −Cg♯

0 0 0


 , (7)

where W g is the Weyl tensor and Cg is the Cotton tensor of g (cf. Section 0.4), and
acts on any tractor bundle TV via the action •.

The tractor connection ∇nor : Γ(TV) → Γ(T ∗M ⊗ TV) is a linear conformally in-
variant first order differential operator acting on sections of any tractor bundle TV
associated to a G̃-module V. More generally, the extended principal connection ω̃nor
on G̃(M) gives rise to the covariant exterior derivatives dω̃ : Ωp(M,TV)→ Ωp+1(M,TV)
acting on p-forms with values in TV. However, we are now interested in the construction
of conformally covariant linear differential operators

D : Γ(V)→ Γ(U) ,

where V and U are associated vector bundles to the CO(r, s)-structure G0(M), i.e.,
V and U are tensor bundles, but not tractor bundles on (M, c). The operators D

that we will construct in the following occur naturally as part of the so-called BGG
sequences. Their construction is based on the exterior covariant derivatives dω̃ and a
certain splitting operator S as invented in [45] (cf. also [32, 72]).

To start with, let us consider in general a parabolic geometry (P, ω)
π→ M of arbi-

trary type (G,P ). Let TV be a tractor bundle and let dω̃ : Ωp(M,TV) → Ωp+1(M,TV)
be the corresponding exterior covariant derivative. The codifferential ∂∗ : Λpp+⊗ V→
Λp−1p+ ⊗ V is P -equivariant and thus induces bundle maps

∂∗ : ΛpT ∗M ⊗ TV → Λp−1T ∗M ⊗ TV
for any 1 ≤ p ≤ n. The kernels and images of ∂∗ are invariant subbundles of the
ΛpT ∗M⊗TV and the corresponding quotients Ker(∂∗)/Im(∂∗) are P -associated vector
bundles to P(M) for any 0 ≤ p ≤ n, which we denote by

HpVM = P(M)×P HkV ,
where H

pV = Hp(g−,V) is the pth Lie algebra cohomology of g− with values in the
g-module V. We denote the natural projections by ΠH : Ker(∂∗) → HpVM . Since the
action of P+ maps Ker(∂∗) to Im(∂∗), it follows that P+ acts trivially on the cohomol-
ogy groups H

pV. Thus any bundle HpVM can be naturally identified with G0(M)×G0 H
pV,

which allows a direct interpretation in terms of the underlying graded G0-structure on
TM . Actually, with respect to a G0-reduction of P(M) the p-form bundles ΛpT ∗M⊗TV
split into the direct sum Im(∂) ⊕Ker(�)⊕ Im(∂∗), where � = ∂ ◦ ∂∗ + ∂∗ ◦ ∂ is the
Laplacian of the corresponding harmonic Hodge theory. Any bundle HpVM can thus be
identified with Ker(�).

There exists a certain sequence of differential operators

DV : Γ(M ;HpVM)→ Γ(M ;Hp+1V M), p ∈ {0, . . . , n− 1} .
To construct the DV, we use the so-called splitting operators

S : Γ(M ;HpVM)→ Ωp(M ; TV) ,
whose action on a section s is uniquely determined by the properties
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(1) ∂∗ ◦ S(s) = 0 and ΠH ◦ S(s) = s,
(2) ∂∗dω̃S(s) = 0.

We set DV := ΠH ◦ dω̃ ◦ S, which gives rise to a linear differential operator for any
0 ≤ p ≤ n − 1 of a certain order k ≥ 0. The operators DV generate a so-called BGG
sequence

0 −→ Γ(M ;H0VM)
DV
−→ Γ(M ;H1VM)

DV
−→ . . .

DV
−→ Γ(M ;HnVM) −→ 0

for every G-representation V. This sequence is a complex if (P, ω) is a flat parabolic
geometry. In general, the BGG sequences are not exact.

In particular, let (P̃, ωnor) be a normal conformal Cartan geometry of type (G̃, P̃ )

on a conformal space (M, c). Since G0(M) = P̃/P̃+ is already a G0-structure on M ,

the cohomology bundles HpVM , p ∈ N, for any G̃-module V can be interpreted as

certain subbundles of the tensor algebra. Let us concentrate on the G̃-modules V =
Λk+1Rr+1,s+1∗, which give rise to the (k + 1)-form tractor bundles Λk+1T∗(M). In this
case the image of ∂∗ in Λk+1T∗ is (Λk+1T∗)0 and Ker(∂∗) = Λk+1T∗(M). Thus we
obtain H0VM = ΛkT ∗M [k+1]. The covariant exterior derivative dω̃ is given on 0-forms
with values in Λk+1T∗(M) by the canonical tractor connection, i.e., dω̃ = ∇nor. The
splitting operator is a map S : ΩkT ∗M [k+1]→ Ωk+1T∗(M), whose defining properties
are ΠH ◦ S(s) = s and ∂∗∇norS(s) = 0 for any k-form s. Altogether, this gives rise to
the first differential operator

D0 := ΠH ◦ ∇nor ◦ S : Ωk(M)→ Γ(H1VM)

in a BGG sequence. Note that the differential operator D0 is natural and conformally
covariant, since we used the canonical connection ωnor for its definition.

The bundle H1VM of first cohomologies for the (k + 1)-form tractors Λk+1T∗(M) is
isomorphic to Ck(M) (cf. Section 0.6). In fact, computing the splitting operator S
with respect to some g ∈ c and applying ∇nor to S(α) for α ∈ Ωk(M) shows that

ΠH(∇nor
X S(α)) = ∇g

Xα−
1

k + 1
ιXdα+

1

n− k + 1
X♭ ∧ d∗α

for any X ∈ TM . We conclude that α ∈ Ωk(M) is a conformal Killing k-form if and
only if it is an element in the kernel of D0 : Ωk(M) → Γ(Ck(M)). For k = 1 we have
H0VM = T ∗M [2] = TM and thus the splitting operator S maps vector fields to adjoint
tractors on M . The corresponding conformally covariant differential operator D0 is
given by

D0 : X(M) → S2
0(T

∗M)[2] ,
X 7→ LXg .

This is the so-called conformal Killing operator, where g denotes the canonical section
in S2

0(T
∗M)[2] = C1(M), which determines the conformal structure c = [g] on M .

Finally, we note that the space Γ(A) of adjoint tractors on a conformal space
(M, c) is naturally identified via the normal Cartan connection ωnor with the space

X(P(M))P̃ of P̃ -invariant vector fields on P̃(M). In fact, an adjoint tractor A ∈ Γ(A)

is equivalently given by a P̃ -equivariant function A : P̃(M) → g, and QA(u) := ω−1
nor ◦

A(u), u ∈ P̃(M), is the pointwise definition for the corresponding P̃ -invariant smooth

vector field on P̃(M). One can show that QA ∈ inf(ωnor) iff

∇A
XA = −Ω(ΠH(A), X) for all X ∈ TM . (8)
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In this situation the projection VA := π∗(QA) = ΠH(A) ∈ X(M) is a conformal Killing
vector field on (M, c). In return, the adjoint tractor AV , which corresponds to the 2-jet
j2(V ) of a conformal Killing vector V on (M, c) satisfies (8), and we have AV = S(V ).
We conclude that for any V ∈ inf(M, c) the relation ∇AS(V ) = −Ω(V, ·) holds. Hence,

∇̃A
X := ∇A

X − Ω(X,ΠH(·)) , X ∈ TM ,

defines a covariant derivative on A, whose parallel sections correspond uniquely to
conformal Killing vectors. Moreover, one can show that if ∇AA = 0, i.e., A is a ∇A-
parallel adjoint tractor on (M, c), then Ω(ΠH(A), ·) = 0 (in the setting of conformal
geometry), and therefore, ΠH(A) has to be a conformal Killing vector field (cf. [35,
111]). We will see in Chapter 1 that the analogous statement is true in general for
∇nor-parallel k-form tractors on (M, c).

8. Spinors and Twistors

The theory of orthogonal representations shows that any finite-dimensional (irre-
ducible) SO(r, s)-module occurs as submodule of the tensor algebra. However, the
orthogonal Lie algebra so(r, s) admits spin representations, which are not tensorial (in
the sense that they can be realised in the tensor algebra of Rn), i.e., a spin represen-
tation is not infinitesimally induced by a SO(r, s)-representation. In fact, it is induced
by a representation of the spin group Spin(r, s), which is by definition a 2-fold covering
group of SO(r, s) (and in most cases the universal covering). In the following, we will
realise the complex spin representations of Spin(r, s) by use of Clifford algebras. Under
certain topological assumptions, spin representations give rise to spinor bundles on
semi-Riemannian spaces (Mn, g), and via the spinor derivative, geometric differential
operators for spinors, like the Dirac operator and the Penrose twistor operator, can
be defined. Moreover, we will describe how spin geometry carries over to conformal
geometry. This leads us to the notion of twistor calculus, which is the spin version of
tractor calculus.

The Clifford algebra Clr,s of the Euclidean space Rr,s = (Rn, 〈·, ·〉r,s) with scalar
product of signature (r, s) is generated multiplicatively by the vectors of the orthonor-
mal standard basis {e1, . . . , en} of Rr,s subject to the relations

ei · ej + ej · ei = −2〈ei, ej〉r,s .
The Clifford algebra Clr,s is as vector space isomorphic to the exterior algebra Λ∗Rn.
We denote the complexification of Clr,s by ClCr,s. In case n = 2m is even, ClCr,s is
isomorphic to the algebra M(2m,C) of complex (2m × 2m)-matrices. We set �r,s =C2m

and the real Clifford algebra Clr,s acts on �r,s via the choice of an identification
Ψ : ClCr,s ∼= M(2m,C) and matrix multiplication. In case n = 2m + 1 is odd, ClCr,s is

isomorphic to M(2m,C) ⊕M(2m,C). Again, we set �r,s = C2m

and Clr,s acts on �r,s
via the homomorphism Ψ1 : ClCr,s → M(2m,C), which is the projection onto the first

factor of an identification Ψ : ClCr,s ∼= M(2m,C)⊕M(2m,C). The spin group Spin(r, s)
is realised in Clr,s by

Spin(r, s) = {x1 · . . . · x2l ∈ Clr,s | xj ∈ Rr,s, 〈xj , xj〉r,s = ±1, l ∈ N }
and the Lie algebra spin(r, s) of the spin group is the subspace

Span{ek · el ∈ Clr,s|k < l} ⊂ Clr,s .
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The map

λ : Spin(r, s) −→ SO(r, s) ,

u 7−→ (x ∈ Rr,s 7→ u · x · u−1 ∈ Rr,s)
is a 2-fold covering and a Lie group homomorphism. If n ≥ 3, r = 0 (Riemannian case)
or n ≥ 4, r = 1 (Lorentzian case) the fundamental group of SO(r, s) is Z2 and λ :
Spin(r, s)→ SO(r, s) is a universal covering. The differential λ∗ : spin(r, s)→ so(r, s)
is given by λ∗(ek · el) = 2Ekl, where Ekl := εkel · e⊤k − εlek · e⊤l .

The spinor representation ρr,s of Spin(r, s) is given by restriction of the action of the
Clifford algebra Clr,s on �r,s. We call �r,s the complex spinor module. In case n = r+s
is odd the spinor representation is irreducible. For n = 2m the spinor module �r,s splits
into two (in general, non-equivalent) irreducible Spin(r, s)-modules �+

r,s and �−
r,s. This

decomposition is given by the eigenspaces of the action of the volume form of Rr,s (with
a choice of orientation). In the following we refer to elements of �+

r,s and �−
r,s as positive,

resp., negative Weyl spinors. (Sometimes we just call them half spinors.) Note that
the spin representation on Rr,s ⊗ �r,s decomposes into �r,s ⊕Wker, where Wker denotes
the kernel of the Clifford multiplication.

Next let Spino(r, s) denote the identity component of the spin group. There exists
a Spino(r, s)-invariant, non-degenerate Hermitian scalar product 〈·, ·〉� on the spinor
modules �r,s. In the Riemannian case this product 〈·, ·〉� is definite. Otherwise, in
the pseudo-Riemannian case it is indefinite. Depending on the signature (r, s) the
Clifford multiplication of Rr,s on �r,s is self-adjoint or skew-adjoint with respect to
〈·, ·〉�. Moreover, depending on dimension and signature there exist real or quaternionic
structures on the spinor modules �r,s. We note that for n = 2m + 1 odd the tensor
product �r,s⊗�r,s is isomorphic as Spin(r, s)-module to Λ∗

evRn∗⊗C, the complexification
of the exterior algebra of Rn∗ of even degree. For n even the module �r,s ⊗ �r,s is
isomorphic to Λ∗Rn∗ ⊗ C.

The latter identifications give rise to the so-called spinor square (or pairing). Let
(φ, ψ) be a pair of spinors. Then

ς(φ, ψ) = ⊕ni=0ςi(φ, ψ)

denotes a uniquely determined element of the exterior algebra Λ∗Rn∗ ⊗ C, where the
summands ςi(φ, ψ) are certain exterior forms of degree i. Especially, in Lorentzian
geometry the square of a spinor φ gives rise to a vector vφ := ς1(φ, φ)♯ ∈ R1,n−1. The
interesting point of this remark in Lorentzian geometry is that vφ = 0 iff φ = 0 and
any vφ 6= 0 is causal and points to the future (which means here in direction of the
standard basis vector e1) (cf. [106, 21]).

Now let (Mn, g) be an oriented semi-Riemannian space and let SO(M) denote the
SO(r, s)-bundle of oriented orthonormal frames on M . Furthermore, let (Spin(M), π)
be a reduction of SO(M) over M with respect to the homomorphism λ : Spin(r, s)→
SO(r, s). We call the pair (Spin(M), π) a spin structure on (M, g) and we refer to
points in Spin(M) as spinor frames. In general, a spin structure need not exist on a
space (M, g). And if a spin structure exists, it need not be unique. If (M, g) admits a
spin structure we call (M, g) a spin manifold. We state the following standard criteria
for the existence of spin structures: If (M, g) is space- and time-orientable (i.e. SO(M)
admits a reduction to the identity component SOo(r, s)) a spin structure exists if and
only if the second Stiefel-Whitney class w2(M) of the underlying manifold M vanishes.
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In particular, an orientable Riemannian space (M, g) admits a spin structure if and
only if w2(M) = 0.

In the following, we assume that (Mn, g) is a time-oriented spin manifold. So let
(Spin(M), π) be a spin structure structure on (M, g). We define the complex spinor
bundle

S = Spin(M)×ρr,s �r,s
as associated vector bundle to Spin(M) via ρr,s, which admits an invariant Hermitian
scalar product 〈·, ·〉S. In case n is even we have the positive and negative Weyl spinor
bundles S+ and S−. The exterior algebra Λ∗(TM) acts by Clifford multiplication on S

and we have a spinor square mapping, which sends spinors φ, ψ ∈ Γ(S) to differential
forms ςi(φ, ψ) of degree i. Since the Levi-Civita connection ωg on SO(M) lifts uniquely
to a connection on Spin(M), we obtain a canonical covariant derivative on sections of
S, the so-called spinor derivative

∇S : Γ(S)→ Ω1(M)⊗ Γ(S) .

The spinor derivative ∇S is metric with respect to the scalar product 〈·, ·〉S. The
curvature tensor RS of ∇S acts on a spinor ψ with respect to a local orthonormal frame
{s1, . . . , sn} by

RS(X, Y )ψ =
1

2
·
∑

1≤k<l≤n
εkεl · Rg(X, Y, sk, sl)sk · sl · ψ

for all X, Y ∈ TM . Note that a spinor field φ ∈ Γ(S) on a semi-Riemannian space
(M, g) is called parallel if ∇Sφ = 0. This is the most basic spinor field equation.

The decomposition T ∗M ⊗ S = S ⊕Wker with orthogonal projections π1 onto S

and π2 onto the kernel of the Clifford multiplication gives rise to first order differential
operators acting on spinors. Namely, we obtain the Dirac operator DS := π1 ◦ ∇S and
the Penrose twistor operator P S := π2 ◦∇S. With respect to a local orthonormal frame
{s1, . . . , sn} the Dirac operator DS acts on a spinor φ by

DSφ =

n∑

i=1

εisi · ∇S
si
φ .

Our next aim is to introduce spin geometry in the context of conformal geometry.
For this purpose, let us consider the Klein pair (G,P ), where G = SO(r + 1, s + 1)
is the special orthogonal group with Lie algebra g = so(r + 1, s + 1) and P is the
parabolic in G, which preserves the filtration on g coming from the |1|-grading g−1 ⊕
g0 ⊕ g1. The pair (G,P ) is the Klein model of conformal geometry equipped with
an orientation (and a square root for density bundles). Now let λ : G̃ → G be the

2-fold spin covering and let P̃ be the parabolic in G̃, which is the preimage of P under

λ. The parabolic P̃ is isomorphic to the semidirect product C̃Spin(r, s) ⋉ Rn, where
˜CSpin(r, s) = Spin(r, s)× (Rr {0}). The pair (G̃, P̃ ) is the Klein model of conformal

spin geometry and the homogeneous space G̃/P̃ is the Möbius space equipped with a
spin structure (and a square root for densities).

The group G̃0 := CSpin(r, s) = Spin(r, s)× R+ acts by ρw ◦ (λ⊗ id) on R[w] with
conformal weight w. As standard representation of G̃0 on �r,s we choose ρr,s ⊗ id.

The spin representation of G̃ is denoted by W := (�r+1,s+1, ρr+1,s+1) and we call W
the (standard) twistor module. The twistor module W is irreducible for n odd and
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for n = 2m even it decomposes into an irreducible positive part W+ and a negative
part W−. Further, we denote by W1/2 the set of twistors in W, which are annihilated
by Clifford multiplication with any standard tractor in the p-invariant null line ofRr+1,s+1. The space W1/2 is isomorphic as g0-module to �r,s[−3/2], the spinor module
of conformal weight −3/2. The sequence W ⊃ W1/2 is a p-invariant filtration of W
and the quotient W/W1/2 is as g0-module isomorphic to �r,s[−1/2]. The associated
g0-invariant grading of W is then given by �r,s[−1/2] ⊕ �r,s[−3/2]. By restricting the
g0-action on the associated graded to the semisimple part spin(r, s) we simply obtain
the splitting �r,s ⊕ �r,s of W.

Now let us consider a normal conformal Cartan geometry (P(M), ωnor) of type
(SO(r+1, s+1), P ) on an oriented and time-oriented space M with conformal structure

c. A λ-reduction (P̃(M), π) of P(M) over M is by definition a conformal spin structure.
We note that (M, c) admits a conformal spin structure if and only if some metric
g ∈ c (hence any compatible metric) allows for a semi-Riemannian spin structure. In
particular, a conformal Riemannian space (M, c) admits a spin structure iff w2(M) = 0.

The standard spin tractor bundle for (P̃(M), ωnor) is defined as

W := P̃×ρr+1,s+1 W ,

which is filtered by W ⊃W1/2. (We omit the name twistor bundle, since this notion is
reserved for something else (cf. [10]). Nevertheless, we call the vectors in W (standard)
twistors.) The spin tractor bundle W is also endowed with a Hermitian scalar product
〈·, ·〉W and we have the twistor pairings ςp : W ⊗W → Λp(T∗M), 0 ≤ p ≤ n + 2, with

values in the p-form tractors. More generally, any P̃ -module U (which does not reduce
to a P -module) gives rise to a spin tractor bundle WU. All spin tractor bundles WU are
equipped with a canonical covariant derivative ∇nor coming from the normal Cartan
connection ωnor. For standard twistors we denote the canonical covariant derivative by
∇W, which is a metric covariant derivative with respect to 〈·, ·〉W.

Now let Φ ∈ Γ(W) be a ∇W-parallel standard twistor, i.e., ∇WΦ = 0. Then the
quotient ΠH(Φ) ∈ Γ(S[−1/2]) is a so-called conformal Killing spinor on (M, c). (We will
also use the expression twistor spinor, since this is a standard notion in the literature.)
Let us discuss the equation ∇WΦ = 0 with respect to the choice of compatible metric
g. Then the spin tractor bundle W splits as S ⊕ S and, accordingly, the twistor Φ
decomposes to a pair (φ, ψ) of spinors on (M, g). The equation ∇WΦ = 0 translates
with respect to g into the system

∇S
Xφ+

1

n
X · ψ = 0 and ∇S

Xψ =
n

2
P
g(X) · φ , X ∈ TM ,

of partial differential equations for φ and ψ (cf. [106] for an explicit calculation).
Computing the splitting operator S involved in the construction of the corresponding
spinorial BGG sequence in terms of the compatible metric g results in

φ ∈ Γ(S) 7→ S(φ) =
(
φ , DSφ

)
.

It follows that the first equation above is equivalent to the so-called twistor equation

∇S
Xφ+

1

n
X ·DSφ = 0 for all X ∈ TM .

And a simple calculation shows now that the second equation of the above system
is a consequence of the twistor equation. We conclude that ∇nor-parallel twistors
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Φ correspond uniquely via the splitting operator S and a metric g ∈ c to solutions
φ ∈ Γ(S) of the twistor equation. It is well known that the twistor equation describes
the kernel of the Penrose operator P S (cf. [137, 61, 138, 19]). In fact, the kernel
Wker of the Clifford multiplication is isomorphic to the bundle H2WM of twistor valued
second cohomology classes of g− on M , and the first differential operator DW

0 := ΠH ◦
∇W◦S : Γ(S[−1/2])→ Γ(Wker) in the spinorial BGG sequence is the Penrose operator.
This means that for the twistor representation W the space of ∇nor-parallel sections
is identical to the kernel of the differential operator DW

0 in the corresponding BGG
sequence!

In particular, we understand now that the twistor equation is a conformally covari-
ant first order PDE for spinors. In fact, the Penrose operator P S rescales with respect
to conformally equivalent metrics g and g̃ = e2σ ∈ c by

P g̃φ̃ = e−σ/2 ·
(
P g(e−σ/2φ̃)

)
,

where φ̃ = eσ/2 · φ for φ ∈ Γ(Sg), i.e., the bidegree of P S is (−1/2, 1/2). (Attention!

The notation φ̃ is a bit misleading here, since φ̃ and φ denote the same spinor fields
in Γ(S[−1/2]). Nevertheless, we use this notation sometimes when we work with a
conformal change of metrics!) Since the twistor equation is an overdetermined PDE, the
existence of solutions φ is obstructed by integrability conditions, which are expressed
in terms of curvature properties. The basic integrability conditions are implied by
application of the curvature operator of ∇W to the ∇W-parallel twistor Φ = S(φ). In
terms of a metric g this is expressed by

W g(Y, Z) · φ = 0 and W g(Y, Z) ·DSφ = n · Cg(Y, Z) · φ .
Further, one can deduce the condition

(∇g
XW

g)(Y, Z) · φ = X · Cg(Y, Z) · φ+
2

n
(ιXW

g(Y, Z)) ·DSϕ

for all X, Y, Z ∈ TM . A conformal Killing spinor φ satisfies also (DS)2φ = n·scalg
4(n−1)

φ.

We remark that the Dirac operator DS is conformally covariant as well with bidegree
(n−1

2
, n+1

2
).

In the past, integrability conditions for twistor spinors have been intensely studied
in geometry and physics and various structure results are known (cf. e.g. [118, 119,
84, 121, 120, 81, 19, 117, 94, 82, 96, 99, 17, 106, 21]). We state here an interesting
structure result concerning certain twistor spinors in Lorentzian geometry. First, recall
that any spinor ϕ ∈ Γ(S) on a Lorentzian spin space (M, g) gives rise to the spinor
square ς1(ϕ). The dual vector field Vϕ to ς1(ϕ) is determined by the relation

g(Vϕ, X) = −〈X · ϕ, ϕ〉S for all X ∈ TM .

We call Vϕ the Dirac current of the spinor ϕ. Note that the zero set of a spinor ϕ and
its Dirac current Vϕ always coincide and off the zero set Vϕ is causal (cf. Chapter 4;
[18, 106]). Moreover, if ϕ is a twistor spinor then Vϕ is a conformal Killing vector field
(cf. Chapter 1; [18, 19]).

Theorem 1. (cf. [117, 17, 106, 21, 40]) Let (M, g) be a Lorentzian spin manifold
admitting a conformal Killing spinor ϕ such that the spinor square Vϕ is a lightlike
Killing vector. Then the function Ricg(Vϕ, Vϕ) is constant and non-negative on M . In
particular,
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(1) Ricg(Vϕ, Vϕ) > 0 if and only if (M, g) is locally isometric to a Fefferman space.
In this case the Dirac current is twisting and the dimension of M is even.

(2) Ricg(Vϕ, Vϕ) = 0 if and only if (M, g) is locally conformal equivalent to a
Brinkmann space with parallel spinors. In this case the Dirac current is non-
twisting.

We add some explanations to Theorem 1. Obviously, the first part of the result
is closely linked to the Fefferman construction, which plays an important role for our
investigations. We will explain the Fefferman construction in Section 0.11 and further
discuss it in Chapter 5 and 6. The second part of Theorem 1 is related to the geometry
of spaces admitting parallel spinors. In Riemannian geometry, it is well known that
parallel spinors occur only on Ricci-flat spaces with special holonomy (cf. [151]; see also
[20, 30] for the pseudo-Riemannian case). In Lorentzian geometry, there exist basically
two types of spaces with parallel spinors. We have the static monopole solutions, which
are in general defined as the product of a Ricci-flat Riemannian metric with a time
axis. On the other hand, we have the Brinkmann spaces, which admit by definition a
parallel lightlike vector field V . A special class of Brinkmann spaces are the pp-waves
(M, g), which satisfy the curvature condition tr(3,5),(4,6)R

g ⊗ Rg = 0. Parallel vectors
do not have twist. In general, the twist of a vector V is given by αV ∧ dαV , where
αV := g(V, ·) denotes the dual 1-form. If αV ∧ dαV 6= 0 we say that the vector V
is twisting. Also, note that the assumption in Theorem 1 for Vϕ to be Killing is not
essential (for the conformal geometry), since this can be achieved (locally) by rescaling
the metric g in the conformal class. The condition only indicates when Ricg(Vϕ, Vϕ) is
constant. The type of conformal geometry is actually determined by the twist of the
lightlike Dirac current Vϕ.

Finally, note that a twistor spinor φ ∈ Γ(S) on a semi-Riemannian space (Mn, g) of
dimension n, which is also an eigenspinor of the Dirac operator DS, is called a Killing
spinor. Killing spinors φ solve the equation

∇S
Xφ = µX · φ

for any X ∈ TM with some fixed Killing number µ ∈ C, which implies DSφ = −nµφ.
(In case µ = 0, the spinor φ is parallel.) It is a matter of fact that the Killing spinor
equation is a metric invariant, but not conformally covariant (due to the different con-
formal weights of the Penrose and the Dirac operator). In Riemannian signature, the
derived integrability conditions for the Killing spinor equation imply that the underly-
ing space has to be Einstein. Also, note that the existence of a Killing spinor does not
force the base space to be Einstein in the general pseudo-Riemannian case. The rela-
tion scalg = 4n(n−1)µ2 always holds, which implies that the Killing number µ is either
real or purely imaginary. In the next section, we will meet the Einstein-Sasaki spaces,
which are typical examples for spaces admitting Killing spinors (see also Chapter 1).
Killing spinors play a very important role in supergravity theories with supersymmetry
(cf. e.g. [49, 50, 57, 58]).

9. Metric Cone Constructions

The metric cone is a standard construction for the investigation of various problems
in semi-Riemannian geometry. Since we will apply the metric cone frequently in Chap-
ter 1 and 2, we dedicate a separate introductory section to its construction. In general,
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the metric cone of a semi-Riemannian space is defined as a certain warped-product.
In the special case of the standard sphere Sn the metric cone is isometric to the flat
Euclidean space Rn+1 of dimension n+ 1 (with deleted origin). In a way this property
characterises the round sphere Sn entirely. It was shown by S. Gallot in [62] that the
cone of a complete Riemannian space is either flat or its holonomy is irreducible. Ch.
Bär applied the cone construction to a geometric description of complete Riemannian
spin spaces admitting real Killing spinors (cf. [12]). Interesting from the conformal
point of view is the fact that the metric cone construction over an Einstein space is ba-
sically equivalent to the Fefferman-Graham ambient metric construction (cf. Chapter
2; [110, 6, 68]), which we will introduce in Section 0.11. In Chapter 2 we will extend
this picture by a double cone construction to a wider class of (conformal) geometries
(cf. [68]). We also note that the Poincaré-Einstein model of conformal geometry is
related to the Fefferman-Graham ambient model via the cone construction (cf. Section
0.11).

In general, let (A, h) and (M, g) be two semi-Riemannian spaces and let f : A→ R
be a non-vanishing function. Then a metric is given by h + f 2g on the product space
A×M . We call this a warped-product metric with warping function f . The canonical
projection from A×M to M is denoted by π. Formulae for the Levi-Civita connection
and curvature of a warped product can be found in [128] and many other sources.

In particular, let A be a one dimensional manifold. For simplicity let us set A = R
with line element εdt2, where ε = ±1 defines the signature. Then we have, for any
semi-Riemannian space (Mn, g) of dimension n and some warping function f : R→ R+,
the warped-product metric

gf := εdt2 + f 2 · g
defined on R ×M . Let ∇gf be its Levi-Civita connection and let us denote for any
vector fields X, Y on M the pull-backs to R ×M (which are tangential to the factor
M) by X and Y , again. Then the Levi-Civita connection ∇gf is determined by the
formulae

∇gf

X Y = ∇g
XY − εg(X, Y )f ′f · ∂

∂t
,

∇gf

X

∂

∂t
=
f ′

f
X , ∇gf

∂
∂t

X =
f ′

f
X and ∇gf

∂
∂t

∂

∂t
= 0 ,

where f ′ = ∂f
∂t

. The Riemannian curvature operator Rgf is given by

Rgf (X, Y )Z = Rg(X, Y )Z − ε(f ′)2 ·
(
g(Y, Z)X − g(X,Z)Y

)
,

Rgf (X, Y )
∂

∂t
= 0 , Rgf (X,

∂

∂t
)
∂

∂t
=
−f ′′

f
X and

Rgf (X,
∂

∂t
)Y = εf ′′f · g(X, Y )

∂

∂t
,

where X, Y and Z denote vector fields on M (resp. their pull-backs to R × M).
Expressions for the Ricci-tensor and the scalar curvature of gf follow immediately.

We further specialise and set A = R+ and f(t) = t. In this case we denote M =R+×M and ĝ := εdt2+t2 ·g is the warped-product metric on M , which we call the cone
metric (of 1st kind) over the (arbitrary) semi-Riemannian base space (M, g). The set
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{1} ×M ⊂M is called the 1-level of M . The 1-level of M is as submanifold isometric
to the base space (M, g) and

ι : M →֒ M ,
x 7→ (1, x) ,

is an isometric embedding. Moreover, we set E := t ∂
∂t

and call it the Euler vector of

the cone (M, ĝ). On the 1-level, we have E = ∂
∂t

. We denote by ∇ĝ the Levi-Civita
connection of ĝ, for which we have the relations

∇ĝ
XY = ∇g

XY − εg(X, Y )E ,

∇ĝ
E
X = ∇ĝ

XE = X and ∇ĝ
E
E = E .

The Ricci-tensor of ĝ is given by

Ricĝ(X, Y ) = Ricg(X, Y ) − ε(n− 1)g(X, Y ) and Ricĝ(E, ·) = 0 .

The scalar curvature is scalĝ = 1
f2 · ( scalg − ε · n(n− 1) ).

Obviously, these formulae show that ∇ĝ
AE = A for any A ∈ TM , which simply says

that E is a homothetic gradient vector field for the cone (M, ĝ), whose causal type
is either timelike or spacelike according to the sign ε. Actually, one can show that
cone metrics are characterised by the existence of such a homothetic gradient vector
field (cf. Lemma 1). Moreover, we see immediately that the cone (M, ĝ) is Ricci-flat
if and only if the base space (M, g) is Einstein with non-vanishing scalar curvature
scalg = ε · n(n − 1). If the base (M, g) is a complete Riemannian manifold then it
is also known that (M, ĝ) with ε = 1 has either irreducible holonomy or it is flat (cf.
[62]).

The above observation about Ricci-flat cones is the motivation for another (slightly
different) metric cone construction for a semi-Riemannian base space (M, g), whose
scalar curvature scalg is constant and does not vanish. As before, we set M := R+×M
with Euler vector E := t ∂

∂t
and now we define the cone metric ḡ (of 2nd kind) on M

over (M, g) by

ḡ := sgn(λg) ·
(
λgt2g + dt2

)
,

where λg satisfies scalg = n(n−1)λg and sgn(λg) denotes the sign of λg. This definition
implies that the metric cone (M, ḡ) is Ricci-flat if and only if the base space (M, g)
is Einstein with scalg 6= 0. Note that the causal type of E depends on the sign of
scalg. For example, if scalg is negative we need to attach a timelike direction to the
base space (M, g) in order to obtain a Ricci-flat cone. We will use in Chapter 2 the
following fact, which follows e.g. from results in [63].

Lemma 1. Let (N, h) be a Ricci-flat semi-Riemannian space of signature (r+1, s+
1) admitting a homothetic gradient vector field V , i.e., ∇h

ZV = d · Z for all Z ∈ TN
and some constant d 6= 0.

(1) If V is everywhere spacelike then (N, h) is an open subset of the cone (M, g)
defined over some Einstein space (M, g) of positive scalar curvature scalg > 0
with signature (r, s+ 1).

(2) If V is everywhere timelike then (N, h) is an open subset of the cone (M, g)
of some Einstein space (M, g) of negative scalar curvature scalg < 0 with
signature (r + 1, s).



46 0. THE BASIC THEORY

If the base (Mn, g) is a spin manifold, the metric cone (M, ḡ) is a spin manifold,
too. The choice of a spin structure on the base induces a uniquely determined spin
structure on the cone M . We denote the corresponding spinor bundle of the cone by
S̄. For n even the restriction of S̄ to the 1-level {1}×M is naturally isomorphic to the
spinor bundle S on the base manifold Mn via a map

Φ : S ∼= S̄|{1}×M
with the property Φ(X ·ϕ) = X ·Φ(ϕ) for all ϕ ∈ S and X ∈ TM . Similar, if n is odd,
there are isomorphisms Φ± : S ∼= S̄±|M×{1} for the restricted half spinor bundles such
that

X · Φ±(ϕ) = Φ±(X · ϕ)

for all tangent vectors X ∈ TM . With respect to the metric ḡ the projection π gives
rise to a pull-back π∗ : Γ(S̄|M×{1}) → Γ(S̄) of spinor fields on the 1-level to the cone

space M . We denote by Kµ(M) the space of Killing spinors on (Mn, g) to the Killing
number µ ∈ (iR∪ R) r {0}. The space K0(M) denotes the space of parallel spinors on
a manifold M with spin structure (cf. Section 0.8).

Proposition 1. (cf. [12]) Let (Mn, g) be a semi-Riemannian spin manifold of
dimension n with scalg = 4n(n− 1)µ2 6= 0 and (M, ḡ) its metric cone. The following
correspondence exists.

(1) If n is even the map

Kµ(M)⊕K−µ(M) ∼= K0(M, ḡ) ,

ϕ 7→ ϕ̄ := π∗ ◦ Φ ◦ ϕ
is a natural linear isomorphism.

(2) If n is odd then (with the choice of appropriate orientations)

K±µ(M) ∼= K±
0 (M) ,

ϕ 7→ ϕ̄ := π∗ ◦ Φ± ◦ ϕ ,

where K±
0 (M) denotes the space of parallel ±-Weyl spinors on the cone.

This result (in the Riemannian case) is due to Ch. Bär (cf. [12]). It basically
says that Killing spinors on the base space correspond to parallel spinors on the cone.
Notice that in the presence of a Killing spinor the scalar curvature scalg is non-zero and
constant, which allows the construction of (M, ḡ). The proof of the correspondence
established by Proposition 1 is based on the observation that a Killing spinor ϕ is
parallel with respect to the modified spinor derivative ∇µ

X := ∇S
X − µX·, X ∈ TM ,

coming from an affine connection 1-form on the frame bundle of M , which (in the case
of Riemannian geometry with positive scalar curvature) takes values in the subsetRn ⊕ spin(n) ∼= spin(n+ 1)

of the Clifford algebra ClCn . Proposition 1 can be used to establish a classification for
complete Riemannian spaces (M, g) admitting real Killing spinors via the holonomy
group Hol(ḡ) of the cone metric (cf. [12]). In fact, in this situation the cone (M, ḡ) is
a Ricci-flat Riemannian manifold with parallel spinor. Since (M, ḡ) can not be locally
symmetric or decomposable unless it is flat, the Berger list states that the holonomy
of (M, ḡ) is special or trivial, i.e., Hol(ḡ) = SU(n+1

2
), Sp(n+1

4
), G2, Spin(7) or trivial

(cf. [25, 12]; see also Theorem 4).
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A similar result (as Proposition 1) for a geometric description of special Killing
p-forms was established by U. Semmelmann in [143].

Proposition 2. (cf. [143]) Let (Mn, g) be a semi-Riemannian manifold.

(1) There exists a natural 1-to-1-correspondence of special Killing p-forms α to
the Killing constant c = −ε · (p + 1) and parallel (p + 1)-forms on the cone
(M, ĝ) (of 1st kind). The correspondence is explicitly given by

α ∈ Ωp(M) 7→ tpdt ∧ α +
tp+1

p+ 1
dα ∈ Ωp+1(M) . (9)

(2) If the base space (M, g) is Einstein with scalg 6= 0 then the Killing constant of

any special Killing p-form satisfies c = − (p+1)scalg

n(n−1)
and there exists a natural

1-to-1-correspondence for special Killing p-forms to the Killing constant c and
parallel (p + 1)-forms on the metric cone (M, ḡ) (of 2nd kind). Again, the
explicit correspondence is given by the mapping (9).

Note that not every space admitting a special Killing p-form needs to be an Einstein
space. Nevertheless, the first part of Proposition 2 can be generalised to arbitrary
Killing numbers c 6= 0 (on non-Einstein spaces) by using the cone metric ḡ with constant
λg := −c

p+1
(which might be unrelated to scalg in this case) and (9) as explicit cone

correspondence.
We want to give a classical example for a geometric structure, which occurs natu-

rally in relation with a cone construction. A semi-Riemannian Sasaki space is tradition-
ally defined as a triple (Mn, g, ξ) with n = 2m+1 odd, where ξ is a Killing vector field
of unit length (i.e. g(ξ, ξ) = ε = ±1) such that the linear map J := −∇gξ : TM → TM
satisfies

J2(X) = −εX + g(X, ξ)ξ and (∇g
XJ)(Y ) = g(X, Y )ξ − g(Y, ξ)X

for all X, Y ∈ TM . In particular, the triple (ξ, J, η) with η := g(ξ, ·) defines a metric
contact structure on (M, g). In addition, if the metric g is Einstein, then (Mn, g, ξ) is
called an Einstein-Sasaki space. In this case scalg = n(n− 1).

There is a well known interpretation of Sasaki spaces in terms of the metric cone
ĝ = dt2 + t2g with ε = 1. In fact, the base space (M, g) admits a Sasaki structure if
and only if the cone (M, ĝ) admits a (pseudo)-Kähler structure. To be concrete, if ω
is a (pseudo)-Kähler form on (M, ĝ) then the 1-form ιEω restricted to the 1-level gives
rise to a special Killing 1-form on the base (M, g), whose dual vector field ξ defines
a Sasaki structure. On the other hand, given a Sasaki structure ξ with dual 1-form
η := g(ξ, ·) the 2-form

tdt ∧ η +
t2

2
dη

is a (pseudo)-Kähler structure on (M, ĝ). Moreover, we can see now that a space
(Mn, g) is Einstein-Sasaki of signature (r, s) if and only if the cone (M, ĝ) is a Ricci-
flat (pseudo)-Kähler space, i.e., the holonomy Hol(ĝ) of the cone sits in SU( r

2
, s+1

2
).

We remark that every simply connected semi-Riemannian space (M, g) equipped with
Einstein-Sasaki structure admits a spin structure. In particular, the cone (M, ĝ) admits
parallel spinors, which implies that the base (M, g) always admits Killing spinors.

Einstein-Sasaki spaces can be constructed in the following way. Let (N, h, J) be
a 2m-dimensional Kähler-Einstein space with signature (2p, 2q) and scalar curvature
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scalh = 4m(m + 1) and let U(N) denote the complex orthogonal frame bundle over
N with structure group U(p, q). The canonical S1-bundle over N is given by M :=
U(N)×detC S1 with projection π and the Levi-Civita connection to h on U(N) induces
a connection form ρ : M → iR. We set

g := π∗h− 1

(m+ 1)2
ρ ◦ ρ ,

which is an Einstein metric of signature (2p, 2q + 1) on the canonical S1-bundle M .
Moreover, one can show that the dual vector field to η := 1

i(m+1)
ρ on (M, g) defines a

Sasaki structure with ε = 1.
By our definition of Einstein-Sasaki structures on a space (Mn, g) of odd dimension

n the scalar curvature scalg is always n(n − 1) and thus positive. However, in the
literature Lorentzian Einstein-Sasaki structures are often assumed to be of negative
scalar curvature −n(n− 1). In fact, this can be achieved by taking an Einstein-Sasaki
metric g (in above sense) of signature (n− 1, 1) and then switching to the metric −g,
which has signature (1, n − 1) and scalar curvature scal−g = −n(n − 1). We will use
the latter convention of negative scalar curvature in the case of Lorentzian geometry.
Note also that if we start with a Riemannian Kähler space (N, h, J) of negative scalar
curvature scalh = −4m(m + 1) and define the metric g = π∗h + 1

(m+1)2
ρ ◦ ρ on the

canonical S1-bundle M over N , then this gives rise to a Lorentzian Einstein-Sasaki
space of negative scalar curvature with timelike Killing vector field ξ.

Finally, we remark that there exist more generalised versions of cone constructions
for semi-Riemannian space (cf. [13, 22]). We also note that for Ricci-flat spaces one
can use the Fefferman-Graham ambient metric h (which is explicitly known in this case;
cf. Chapter 2 and e.g. [6]) as a replacement for the metric cone (M, ḡ) (of 2nd kind,
whose construction is only possible under the assumption of non-zero scalar curvature
for the base).

10. CR-Geometry

In this section we introduce partially integrable CR-geometry of hypersurface type
on smooth manifolds Mn of dimension n = 2m + 1 ≥ 3. This kind of CR-geometry
can be described as a |2|-graded parabolic geometry with canonical Cartan connection
of type (G,P ), where G = PSU(p + 1, q + 1) and the parabolic P fixes a complex
null line in Cm+2 with m = p + q. As usual for parabolic geometries, the canonical
Cartan geometry and the first order picture correspond to each other uniquely via
a prolongation, resp., reduction procedure. Integrable CR-structures are naturally
induced on real hypersurfaces of generic type in Cm+1. This setting provides an ample
source for CR-spaces and a link to the theory of complex analysis in several variables.
We will also discuss here basic notions for pseudo-Hermitian structures on integrable
CR-spaces, which are related to particular Weyl structures for CR-geometry in the
sense of Section 0.5 (cf. [42]).

We start our discussion with the structure groups and algebras of CR-geometry.
The group G̃ = SU(p+1, q+1), m = p+ q ≥ 1, acts on Cm+2 equipped with indefinite

Hermitian product (·, ·)p+1,q+1 via the standard representation. The stabiliser P̃ of a

complex null line, which is a parabolic subgroup of G̃, gives rise to a |2|-grading

su(p+ 1, q + 1) = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2
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of the Lie algebra g of G̃. Thereby, g0
∼= cu(p, q), g−1

∼= Cm, g−2
∼= R, g1

∼= Cm∗ and
g2
∼= R∗. Further, let G = PSU(p+1, q+1) denote the projective special unitary group

with Lie algebra g. This is the quotient of the group G̃ by its centre Zm+2. We denote
by P the parabolic subgroup of G, which preserves the corresponding filtration to the
|2|-grading of g. The subgroup G0 which preserves the grading of g is isomorphic to the
conformal unitary group CU(p, q) = U(p, q)×R+ and the parabolic P is isomorphic to
the semidirect product G0 ⋉ exp(p+). We call (G,P ) the Klein model of CR-geometry.

Now let Mn be a connected smooth manifold of odd dimension n = 2m+1 ≥ 3. We
describe the first order picture of CR-geometry on M . So let H be a subbundle in TM
of corank 1 equipped with a pointwise complex structure J on H , i.e., J2

p = −id|Hp for
all p ∈ M , which is smooth. The Lie bracket of vector fields X, Y on M induces the
(tensorial) Levi-bracket

Z : H ×H → Q := TM/H ,

Z(X, Y ) := πQ[X, Y ] .

We assume that Z is non-degenerate and totally real, i.e., Z(X, ·) 6= 0 for all 0 6= X ∈ H
and Z(X, Y ) = Z(JX, JY ) for all X, Y ∈ H . In this case the bilinear form Z(·, J ·)
on H with values in Q is symmetric and we can see that Z is pointwise (with respect
to an identification of Q with R) the imaginary part of a Hermitian form. We assume
from now on that the real line bundle Q = TM/H is equipped with an orientation.
Then the Levi-bracket Z has a uniquely defined signature (p, q) with p+ q = m, which
is inherited from a global Hermitian form on H (with values in Q⊗C) and a choice of
non-zero global section in Q. Under all these assumptions we call (Mn, H, J) a non-
degenerate, partially integrable CR-space of hypersurface type with signature (p, q).
In particular, the subbundle H of TM is a contact distribution. If, in addition, the
Nijenhuis torsion tensor

NJ (X, Y ) := [X, Y ]− [JX, JY ] + J [JX, Y ] + J [X, JY ]

vanishes for all X, Y ∈ Γ(H), we call (Mn, H, J) an integrable CR-space. Furthermore,
if the Levi-bracket is positive-definite we call (Mn, H, J) a strictly pseudoconvex CR-
space.

Alternatively, a CR-structure on a smooth space Mn can be defined as a subbundle
T10 of the complexified tangent bundle TMC = TM ⊗C, for which T10∩T10 = {0} and
dimCT10 = m. We set T01 := T10. The Levi-bracket L on T10 is then given by

L : T10 × T10 → E := TMC/T10⊕T01 ,

(U, V ) 7→ i · (prE [U, V̄ ]) ,

where prE denotes the projection onto the quotient E. A (complex defined) CR-
structure T10 gives rise to a (real defined) CR-structure (H, J) by

H := Re(T10 ⊕ T01) and J(U + Ū) := i(U − Ū), U ∈ Γ(T10) .

On the other hand, a (real) CR-structure (H, J) uniquely defines the J-eigenspace T10 in
TMC to the eigenvalue i, which is a complex CR-structure. A (complex) CR-structure
is non-degenerate if the Levi-form L on T10 is non-degenerate and it is partially inte-
grable iff [Γ(T10),Γ(T10)] ⊂ Γ(T10 ⊕ T01), resp., integrable iff [Γ(T10),Γ(T10)] ⊂ Γ(T10).

By definition, the distribution H of a partially integrable CR-structure makes the
underlying space M into a filtered manifold and the Levi-bracket Z on the associated
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graded gr(TM) is compatible with the almost complex structure J . This makes gr(TM)
into a locally trivial bundle of nilpotent Lie algebras with a reduction of the structure
group to G0 = CU(p, q), where each fibre is isomorphic to the nilpotent part g− of
g = su(p+1, q+1). In this situation, we can apply the general prolongation procedure
for filtered manifolds as mentioned in Section 0.5 (cf. [41]), which generates in a unique
way a parabolic Cartan geometry (P(M), ωnor) of CR-type (G,P ) on the underlying
space M with regular and normal Cartan connection ωnor. We call (P(M), ωnor) the
canonical Cartan geometry of a partially integrable CR-space (M,H, J). It is a matter
of fact that the canonical connection ωnor is torsion-free if and only if the underlying
CR-structure (H, J) is integrable.

In general, a regular CR-Cartan geometry (of hypersurface type) on a smooth space
Mn is given by a pair (P(M), ω), where P(M) is a principal P -bundle on M and ω is a
Cartan connection with values in g = su(p+1, q+1) such that the curvature function κ
of ω satisfies the condition κ(gi, gj) ⊂ gi+j+1 for all i, j ∈ {−2, . . . , 2}. In this situation,
the Cartan geometry (P(M), ω) induces a filtration TM ⊃ T−1M on TM = P×P g/p,
an almost complex structure J and a J-compatible algebraic bracket on T−1M , which
makes the associated graded gr(TM) into a locally trivial bundle with fibre type g−
and G0-reduction of the structure group. The regularity condition for the curvature
function κ implies that the algebraic bracket on gr(TM) is induced by the Lie bracket
and M becomes a filtered manifold. Altogether, this means that (P(M), ω) induces
the partially integrable CR-structure (T−1M,J) (of first order) on M .

A basic example for a regular and normal Cartan geometry is the homogeneous
space G/P with Cartan geometry (G,ωG), where ωG denotes the Maurer-Cartan form
of G. The induced CR-structure on G/P is flat and integrable with signature (p, q). In
general, the homogeneous CR-space G/P is naturally identified with a compactification
of the Heisenberg group exp(g−), whose Lie algebra g− = g−2 ⊕ g−1 induces a left-
invariant flat CR-structure. In case G = PSU(1, m+ 1) the homogeneous model G/P
can be realised as the unit sphere S2m+1 in Cm+1. Thereby, the flat CR-structure on
the hypersurface S2m+1 is naturally induced by the complex structure of Cm+1 and
has definite signature. In general, any generic hypersurface N of Cm+1 is naturally
equipped with an integrable CR-structure.

In order to introduce CR-tractor calculus we need a P̃ -reduction of the canonical
CR-Cartan geometry (P, ωnor) on a space (M,H, J). Such a P̃ -reduction (P̃(M), ωnor)
exists if and only if the complex line bundle ΛmCH ⊗ Q admits a (m + 2)nd root, i.e.,

there exists a complex line bundle E(1, 0)→M such that E(1, 0)⊗
m+2

= ΛmCH ⊗Q (cf.
[33, 39]). Note that locally such a root bundle E(1, 0) always exists. The standard
CR-tractor bundle on M is then defined by

TCR(M) := P̃(M)×P̃ Cm+2 ,

which is naturally filtered by T−1
CR ⊃ T0

CR ⊃ T1
CR, where T1

CR is canonically identified
with the dual bundle E(−1, 0) of E(1, 0). The standard CR-tractor bundle TCR on a
space (M,H, J) admits a natural complex structure JCR and the canonical connection
ωnor induces the tractor connection

∇CR : Γ(TCR)→ Ω1(TM)⊗ Γ(TCR) .

An automorphism Ψ of a partially integrable CR-space (M,T10) is a diffeomorphism
of M such that Ψ∗T10 = T10. The automorphisms of a CR-space (M,T10) form a Lie
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group Aut(M,T10) acting on M . An infinitesimal automorphism of (M,T10) is a vector
field X ∈ X(M) such that the local flow Xt preserves the complex distribution T10. We
denote the Lie algebra of infinitesimal automorphisms by inf(M,T10). The dimension
of inf(M,T10) is bounded for any CR-space by (m+ 2)2 − 1, which is the dimension of
su(p + 1, q + 1). This bound can be reached only if the CR-space (M,T10) is locally
flat. We call an element X ∈ inf(M,H, J) a transverse symmetry of a CR space M if
Xp 6∈ Hp for all p ∈M , i.e., X is everywhere on M transverse to H .

We now introduce some basic notions of pseudo-Hermitian geometry in the set-
ting of integrable CR-structures. We will keep this discussion brief, since a more
detailed exploration of a generalised (but, completely analogous) version for the par-
tially integrable case will follow in Chapter 5. Let θ be a nowhere vanishing 1-form
on a non-degenerate, integrable CR-manifold (M,H, J) of hypersurface type and sig-
nature (p, q) with θ|H ≡ 0. Such a 1-form θ is called a pseudo-Hermitian form (resp.,
pseudo-Hermitian structure) and the data (M,H, J, θ) (resp., (M,T10, θ)) are called a
pseudo-Hermitian space. A pseudo-Hermitian form θ is necessarily a contact form on
M and gives rise to a Weyl structure for the canonical Cartan geometry (P(M), ωnor)
(cf. Section 0.5). The existence of a θ is guaranteed by the orientability of the quo-
tient bundle Q. Any pseudo-Hermitian form θ uniquely determines a Reeb vector field
T θ = T ∈ X(M) by the conditions

θ(T ) ≡ 1 and dθ(T, ·) ≡ 0 .

The Hermitian form Lθ defined by

Lθ : T10 × T10 → C ,

Lθ(U, V ) := −idθ(U, V̄ )

is called the Levi-form of (M,T10, θ). Obviously, θ(L(U, V )) = Lθ(U, V ). The Levi-form
Lθ can be naturally extended to TMC by

Lθ(U, V̄ ) := 0 , Lθ(T, ·) = 0 ,

Lθ(Ū , V̄ ) := Lθ(U, V ) = Lθ(V, U) .

The real part of this extension is a symmetric bilinear form on TM , which is non-
degenerate on H and has real signature (2p, 2q). We also denote this form by

Lθ : TM × TM → R .
If the Hermitian form Lθ is positive definite, the CR-space (M,H, J) is strictly pseu-
doconvex. In general, any two pseudo-Hermitian forms on (M,H, J) differ only by
multiplication (= rescaling) with a nowhere vanishing function. If this function is pos-
itive the signatures of the two equivalent pseudo-Hermitian structures are the same.

For any choice of pseudo-Hermitian form θ on an integrable (M,H, J) there exists
a covariant derivative ∇W : X(M) → Ω1(M) ⊗ X(M), which is uniquely determined
by the conditions

X(Lθ(Y, Z)) = Lθ(∇W
X Y, Z) + Lθ(Y,∇W

X Z)

for all X, Y, Z ∈ X(M), i.e., ∇W is metric with respect to Lθ on H ⊂ TM , and

TorW (X, Y ) = Lθ(JX, Y ) · T ,

TorW (T,X) = −1
2

(
[T,X] + J [T, JX]

)
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for all X, Y ∈ Γ(H), where the torsion TorW is defined in the usual way by

TorW (X, Y ) := ∇W
X Y −∇W

Y X − [X, Y ] .

The connection ∇W satisfies

∇WT = 0 and ∇WJ = 0 .

We call ∇W the (real version of the) Tanaka-Webster connection of the pseudo-
Hermitian structure θ. The complex linear extension of ∇W to TMC is denoted by
∇W as well. We remark that the Tanaka-Webster connection ∇W is not induced by
the pull-back of the g0-part of the canonical Cartan connection ωnor with respect to
the Weyl structure σθ : G0(M)→ P(M), which is naturally induced by θ.

Finally, we introduce curvature expressions for ∇W . Thereby, we use the following
conventions: indices with letters i, j and k run from 1 to 2m, whereas indices with
Greek letters α, β and γ run from 1 to m. We denote by {ei : i = 1, . . . , 2m} an
orthonormal basis (resp., local frame) of (H,Lθ) such that

J(e2α−1) = e2α, J(e2α) = −e2α−1 for all α = 1, . . . , m .

The complex vectors

Zα :=
1√
2
(e2α−1 − iJe2α−1), α = 1, . . . , m ,

form an orthonormal basis of (T10, Lθ) and the vectors Zᾱ := Zα represent an orthonor-
mal basis of T01. The curvature operator of ∇W is defined by

R∇W

(X, Y )Z = ∇W
X∇W

Y Z −∇W
Y ∇W

X Z −∇W
[X,Y ]Z .

The corresponding curvature tensor is given by

RW (X, Y, Z, V ) = Lθ(R
∇W

(X, Y )Z, V̄ ) ,

where X, Y, Z, V ∈ TMC are complex vectors. The Webster-Ricci and scalar curvatures
are contractions of RW :

RicW :=
∑m

α=1R
W (Zα, Zᾱ, ·, ·) ,

scalW :=
∑m

α=1Ric
W (Zα, Zᾱ) .

The function scalW on (M,T10, θ) is real. All these definitions of curvature for ∇W are
independent of the choice of orthonormal frame.

In general, the Webster-Ricci curvature RicW of a pseudo-Hermitian structure θ is
skew-symmetric for real tangent vectors. If RicW is a multiple of the 2-form dθ then
the relation

RicW = −iscal
W

m
· dθ

holds. In this case the pseudo-Hermitian structure θ is called a pseudo-Einstein struc-
ture for the CR-space (M,H, J) in the sense of J.M. Lee (cf. [103]). The (local) exis-
tence of a pseudo-Einstein structure is not restrictive to the underlying CR-geometry
(cf. [103, 48]). Also, the Webster scalar curvature scalW need not be constant for
pseudo-Einstein structures. These properties make the pseudo-Einstein condition quite
different from its namesake in (conformal) semi-Riemannian geometry. We will see in
Chapter 6 what the natural analog of the conformal Einstein condition is in the frame-
work of CR-geometry.
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11. Fefferman-Graham Ambient Metric Construction and
Poincaré-Einstein Model

We explain here the Fefferman-Graham ambient metric construction for spaces
with conformal structure (cf. [54] and e.g. [87, 59]). The ambient metric is known
to be a powerful tool for studying conformal invariant theory. This is related to the
fact that its construction incorporates in a suitable way the higher order jets (up to
infinite order) of the underlying conformal structure. We start our discussion with
a brief review of the original ambient metric construction due to Ch. Fefferman for
pseudoconvex real hypersurfaces N in Cm+1, which actually led to the idea of ambient
metrics in conformal geometry. We are also interested in the Poincaré-Einstein model
with conformal boundary, which is closely related to the ambient metric model via the
metric cone construction.

Let Cm+1 denote the (m + 1)-dimensional complex vector space with coordinates
(z1, . . . , zm+1) and let us consider a strictly pseudoconvex domain Ω in Cm+1, i.e., Ω
admits a boundary N = ∂Ω, which is locally given as the graph of a twice continu-
ously differentiable real function, whose Levi-form is positive definite. In this case the
boundary N is called a strictly pseudoconvex real hypersurface in Cm+1, which admits
a naturally induced integrable CR-structure of definite signature. It is known that a
domain Ω is strictly pseudoconvex in Cm+1 if and only if Ω is a domain of holomorphy.
We set Ω := Ω ∪ ∂Ω, where Ω is differentiable up to the boundary of a certain order.
Usually, the boundary itself is assumed to be smooth (cf. Section 0.1).

A defining function for the boundary N is by definition a (smooth) function r : Ω→R≥0 with r > 0 on Ω and r = 0, |dr| 6= 0 on N . The relevant complex Monge-Ampère
problem for the boundary N is to find a function u > 0 on Ω, which satisfies L(u) = 1
with boundary condition u|∂Ω = 0, where

L(u) = (−1)m+1 det

(
u uj̄
ui uij̄

)
and ui =

∂u

∂zi
, etc .

Solutions of this Dirichlet boundary value problem are closely related to the Bergman
kernel of the domain Ω. There exists an iterative procedure using elementary calculus
to produce approximate solutions u of the Monge-Ampère problem such that L(u) =
1 + o(um+1), which means that the coefficients of the Taylor expansion of L(u)− 1 (at
the boundary with respect to the coordinate u) vanish for all orders s ≤ m + 1. This
approximate solution u is unique up to addition of terms in o(um+2) (cf. [53]).

The approximate solution u can be used to define an ambient metric for the bound-
ary space N with induced CR-structure. This ambient metric lives on C∗ ×Nǫ, where
Nǫ
∼= N × [0, ǫ) is some collar neighbourhood of N in Ω with ǫ > 0, and is defined as

the Lorentz-Kähler metric

g̃(u) =
m+1∑

j,k=0

∂2f(u)

∂zj∂z̄k
dzjdz̄k

with respect to the potential f(u) := −|z0|2u(z), where (z0, z) ∈ C∗ × Nǫ. Note that
L(u) = 1+o(um+1) implies Ricg̃(u) = o(um), which shows that the ambient metric g̃(u)
is asymptotically Kähler-Einstein near the boundary C∗ × N to order m. Replacing
the potential f(u) by −|z0|2uo(z), where uo is an exact solution of the Monge-Ampère
problem, produces a Kähler-Einstein metric on C∗ ×Nǫ.
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We now turn our interest to the ambient metric construction in conformal geometry.
Let (Mn, c) denote a smooth manifold of dimension n ≥ 3, where c = [g] is the class
of conformally related metrics to some given metric g on M with signature (r, s).

The conformal class [g] determines the ray subbundle Q
π→ M in S2T ∗M with R+-

action σ(s)(x, gx) = (x, s2gx) for x ∈ M . Now let M̃ be an (n + 2)-dimensional
manifold endowed with a free R+-action, which we also denote by σ, and an R+-
equivariant embedding i : Q → M̃ . We call (M̃, i) an ambient space of (M, c) and we
write X ∈ X(M̃) for the fundamental vector field generating the R+-action, i.e., for

f ∈ C∞(M̃) and u ∈ M̃ we have Xf(u) = d
dt
f(σ(et)u)|t=0. An ambient metric h is a

pseudo-Riemannian metric on an ambient space (M̃, i) of signature (r + 1, s+ 1) such
that

(i) the metric h is homogeneous of degree 2 with respect to the R+-action σ, i.e.,
LXh = 2h and X is a homothetic vector field for h.

(ii) For u = (x, gx) ∈ Q and ξ, η ∈ TuQ, we have h(i∗ξ, i∗η) = gx(π∗ξ, π∗η).

The second condition implies that the tangent direction along the fibres of Q is null.
To simplify the notations we will usually identify Q with its image in M̃ and suppress
the embedding map i. So far the definition of ambient metrics is rather general. In
order to link the geometry of an ambient space (M̃,h) to the underlying conformal
structure c on M , further requirements on h are necessary. In [54] Ch. Fefferman and
R. Graham treat the problem of constructing a formal power series solution along Q

for the (Goursat) problem of finding an ambient metric h, which satisfies in addition
to (i) and (ii) the condition that it be Ricci-flat, i.e., Ric(h) = 0. They observed the
following key result.

Theorem 2. Let (Mn, c) be a space with conformal structure c = [g] of dimension
n ≥ 3 and let Q× (−1, 1) be an ambient space with trivially extended R+-action, where
Q is identified with the level set {ρ = 0} of the coordinate ρ in the interval (−1, 1).

(1) If n is odd then there exists a formal power series solution h, which is unique
up to a R+-equivariant diffeomorphism of Q × (−1, 1) fixing Q, satisfying (i)
and (ii) and Ric(h) = o(ρ∞). If the conformal structure c on M is real
analytic, then this formal power series converges so that h actually exists on
a neighbourhood of Q in Q× (−1, 1).

(2) If n is even the condition Ric(h) = 0 for an ambient metric h can not be re-
alised, in general. However, there always exists a formal power series solution
h such that Ric(h) = o(ρn/2−1). This solution is uniquely determined up to aR+-equivariant diffeomorphism fixing Q and addition of terms in o(ρn/2).

In the following, we will say that an ambient metric is Ricci-flat to the optimal order
if it is a metric with the properties guaranteed by Theorem 2. As a concrete example
for a Ricci-flat ambient space, let us consider the pseudo-Euclidean space Rr+1,s+1r{0}
with origin removed and flat metric 〈·, ·〉r+1,s+1. The conformally flat standard model
Sr,s = G/P with G = PO(r + 1, s + 1) can be realised as the projective light cone ofRr+1,s+1 r {0}, where the conformally flat structure co on G/P is naturally induced by
the metric 〈·, ·〉r+1,s+1. Conversely, (the upper) half of the light cone can be interpreted
as the ray bundle Q on Sr,s, which defines an embedding of Q into Rr+1,s+1 r {0}. TheR+-action σ on Rr+1,s+1 r {0} is given by multiplication with positive real numbers,
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which makes the natural embedding of Q σ-equivariant. By definition of co it is clear
that 〈·, ·〉r+1,s+1 is a flat ambient metric for Sr,s on Rr+1,s+1 r {0}.

Now let us consider, in general, a metric of the form

h = 2tdtdρ+ 2ρdt2 + t2g̃ij(x, ρ)dx
idxj (10)

defined on a set M̃ := R+ × Ω × I with coordinates (t, x, ρ), where the set Ω is open
in Rn, the interval I contains zero and the symmetric tensor g̃ij(x, ρ)dx

idxj is the pull-

back to M̃ of a 1-parameter family of metrics on Ω. Such a metric h is by definition
homogeneous of degree 2 in the coordinate t and the curves ρ ∈ I 7→ (t, x, ρ) for fixed
t and x are geodesics. The parametrised R+-orbits s ∈ R+ 7→ (st, x, ρ) are geodesics
as well. Further, we set X := t∂t. Then for any metric h of the form (10), we have
the following: X is homothetic and h(X , ·) is closed, which implies Ric(h)(X, ·) = 0.
In particular, Ric(h)ti = Ric(h)tt = 0 for all i ∈ {1, . . . , n}. The other components of

Ric(h) are given as follows: Ric(h)ij is (the pull-back to M̃ of) the tensor

ρg̃′′ij − ρg̃klg̃′ikg̃′jl +
1

2
ρg̃klg̃′klg̃

′
ij +

2− n
2

g̃′ij −
1

2
g̃klg̃′klg̃ij + Ric(g̃)ij, (11)

on M ; Ric(h)ρρ is

−1

2
g̃ijg̃′′ij +

1

4
g̃ijg̃klg̃′ikg̃

′
jl ; (12)

and Ric(h)ρj is

∇̃(ρ)
ℓ (g̃kℓg̃′kj)− ∇̃(ρ)

j (g̃kℓg̃′kℓ), (13)

where the prime denotes differentiation with respect to the coordinate ρ, and for each
value of the parameter ρ, ∇̃(ρ) is the Levi-Civita covariant derivative on M for g̃(x, ρ).

One can show that the formal power serious solution h to infinite order for a Ricci-
flat ambient metric of a space (Mn, g) of odd dimension n (as guaranteed by Theorem
2) can locally always be brought into the form (10), where (x1, . . . , xn) describes a
coordinate patch on M , t is a coordinate in fibre direction of Q (determined by the
corresponding section to g), ρ is the coordinate of a thickening interval I and g =∑n

i,j=1 g̃ij(x, 0)dxidxj. Unfortunately, in even dimension it is not correct to assume a

priori the form (10) for any ambient metric h which is Ricci-flat to the optimal order.
Certainly, we can say that if a metric h of the form (10) is Ricci-flat (to the optimal
order), then h is an ambient metric for c = [g̃ij(x, 0)dxidxj] on Ω. An example of a
Ricci-flat ambient metric expressed in the form (10) is

ho = 2tdtdρ+ 2ρdt2 + t2(1 + ρ/2)2go ,

where go denotes a conformally flat metric of constant sectional curvature 1 with sig-
nature (r+ 1, s+ 1). The metric ho is flat. In fact, ho is a local coordinate expression
for 〈·, ·〉r,s on the ambient space Rr+1,s+1 r {0} of Sr,s (as discussed above) in a neigh-
bourhood of Q.

If we assume that an ambient metric h for some space (Mn, g) exists in the form
(10), then the Taylor expansion (to the optimal order in the coordinate ρ) of the com-
ponents g̃ij(x, ρ) can be determined by formally solving Einstein’s equation Ric(h) = 0.
In fact, we obtain the correct coefficients for this expansion by setting (11) - (13) to
zero and solving this inductively, beginning with the initial condition g̃ij(x, 0) = gij(x).
For example, setting ρ = 0 in (11) and solving for g̃′ij (such that (11) becomes zero)
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results in g̃′ij(x, 0) = −2P
g
ij(x). When n is odd this procedure determines the expan-

sion of g̃ij(x, ρ) up to the ρn-term. The vanishing of the other components of Ric(h)
determines the remainder of the expansion to infinite order. For n even this procedure
can be used to determine the Taylor expansion for h up to the ρn/2-term such that
Ric(h) = o(ρn/2−1). Then the procedure stops if Ric(h) 6= 0 mod o(ρn/2). The ρn/2-
term of Ric(h) in this (optimal) expansion is called the obstruction tensor denoted by
Oij . The ambient obstruction tensor is known to be conformally covariant and trace-
free symmetric, involving n derivatives of the metric g. For example, in dimension
n = 4 the obstruction is given by the Bach tensor Bg from Weyl’s relativity (cf. [11]
and Section 0.4).

We remark that the Ricci-flat ambient metric construction (to the optimal order) is
suitable for the construction of conformal scalar invariants and conformally covariant
differential operators on the underlying space (M, c). For example, let P (h) be a Weyl
invariant of the semi-Riemannian metric h, then the pull-back of the restriction of
P (h) to Q with respect to some metric g ∈ c produces a conformal scalar invariant
on (M, c). The Weyl tensor W g and the Cotton tensor Cg can be derived this way by
pulling back certain parts of the Riemannian curvature tensor of h. The conformal
Laplacian P g

2,n on (M, [g]) is naturally induced by the Laplace operator ∆h
tr on (M̃,h).

Moreover, conformally covariant differential operators of order 2k, k ∈ N, are obtained
from the kth power of the ambient Laplacian. In even dimensions n = 2m this works
only up to the critical power k = 1

2
n, which gives rise to the celebrated GJMS-operators

on (M, c) (cf. [75]).
Finally, we want to discuss the Poincaré-Einstein model for smooth conformal man-

ifolds. For this purpose, let Mn+1 denote a manifold of dimension n+1 with boundary
a smooth manifold ∂M = M . We denote the interior of M by M+, which we also call
the bulk of M . A defining function r for the boundary M is a function on M (with a
certain regularity up to the boundary), which is positive on M+ and satisfies r = 0,
dr 6= 0 on the boundary M . A semi-Riemannian metric g+ on the interior M+ is said
to be conformally extendible to the boundary if there exists some defining function r
such that the symmetric 2-tensor g = r2g+ extends (with some specified regularity) to
M and g is non-degenerate up to the boundary. In this case the restriction of g to TM
in TM |M , which we denote by g, determines a conformal structure c = [g] on M . This
conformal structure c is independent of the choice of defining function r. Thus we call
(M, c) the conformal infinity space or conformal boundary of (M+, g+) (cf. [101]). If
the space M is compact, the metric g+ is called conformally compact in the described
situation. In the Riemannian case, any conformally compact metric g+ is complete on
M+.

Besides the conformal structure c, there exists a second invariant on the boundary
of M . Namely, the function |dr|2g extends to M and its restriction to M is independent

of the choice of r. In case |dr|g = 1 along M the sectional curvatures of (M+, g+)

tend to −1 at the boundary (of infinity). In general, the asymptotic behaviour of the
Riemannian curvature tensor R+ of g+ is described by

R+
ijkl = −(|dr|2g)(g+

ikg
+
jl − g+

il g
+
jk) + o(r−4)

with respect to local coordinates on M at the boundary.
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For example, let

g+ := 4(1− |x|2)−2
n+1∑

i=1

(dxi)2

be the hyperbolic metric (in Riemannian signature) on the unit ball in Rn+1. Then
r = 1

2
(1− |x|2) is a defining function for the boundary sphere Sn and the metric r2g+

restricts to the round metric go on Sn. This is the flat model, which gives the name
Poincaré metric to any g+ on the bulk M+ of some M when the sectional curvatures
tend to −1 at infinity. In particular, we note that the condition |dr|g = 1 along M is

satisfied if the metric g+ on the bulk is an Einstein metric with Ric(g+) = −ng+ and
negative scalar curvature −n(n + 1). In the latter case we call g+ on the bulk M+

with boundaryM a Poincaré-Einstein metric. Notice that we use this terminology even
when we do not assume, in general, that M is compact. In fact, a collar neighbourhood
of the boundary M is enough for our purpose.

In any case, the choice of a defining function r on M gives rise to a representative
g in the conformal class of the boundary. However, a conformal representative g ∈ c
does not uniquely determine a defining function r on M without further conditions.
In case g+ is a Poincaré-Einstein metric, a second condition can be imposed in order
to find a distinguished defining function for a boundary metric. Namely, there exists
a unique defining function r on some neighbourhood of M such that g = r2g+ induces
the chosen g ∈ c and |dr|g ≡ 1 on this neighbourhood. We call such a function r

special defining (cf. [77, 74] in the case of Riemannian signature). For example, let us
consider again the flat hyperbolic model on the unit ball. A special defining function

inducing the round metric go on the boundary sphere Sn is given by r = 1
2
· 1−|x|

1+|x| . The

hyperbolic metric g+ on the unit ball can then be written (in polar coordinates) as

g+ = r−2
(
dr2 + (1− r2)2go

)
.

In general, let r be a special defining function for the boundary M of a Poincaré-
Einstein space (M+, g+). Then g+ is given on a neighbourhood of M by

g+ = r−2
(
dr2 + gr

)
, (14)

where gr is a 1-parameter family of metrics with g0 = g|M , the boundary metric.
Similar to the problem of an ambient metric construction for a space with conformal

structure, one can ask for the construction of a (not necessarily compact) Poincaré-
Einstein space for a given conformal boundary. The following existence result for the
bulk is known. Let (Mn, g) be a space of odd dimension n = 2m + 1 ≥ 3 equipped
with a real analytic metric g, then there exists (at least locally) some ǫ > 0, a collar
neighbourhood M ǫ := M × [0, ǫ) of M and a smooth family gr of metrics on M
with g = g0 such that g+ := r−2 ( dr2 + gr) is a Poincaré-Einstein metric on M ǫ

with conformal boundary (M, [g0]). If g is a smooth metric then there exists at least
a formal power series solution in r to infinite order for the family gr, which makes
g+ = r−2(dr2 + gr) an Einstein-metric. If the conformal boundary (Mn, c) is of even
dimension n = 2m a Poincaré-Einstein metric on a collar neighbourhood does not
exist (to all orders), in general. Again, (as for ambient metrics) the obstruction for the
existence is the vanishing of the tensor O = Oij .

There is a close relationship between Ricci-flat ambient metrics and Poincaré-
Einstein spaces for (Mn, [g]) with conformal structure of signature (r, s). To explain
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this, let (M̃,h) be a Ricci-flat ambient metric for (M, c) given in the form (10). We

define M+ to be the zero set of the function h(X,X) + 1 in M̃ . The set M+ is a
smooth hypersurface in M̃ and the ambient metric h restricts to a semi-Riemannian
metric on M+ of signature (r, s+ 1). With new coordinates r =

√−2ρ and u = rt (on

the ρ < 0 side of Q) in M̃ , a direct calculation yields

h = u2g+ − du2 ,

where

g+ = r−2( dr2 + g(x, r)ijdx
idxj)

and g(x, r)ij = g̃(x, ρ(r))ij. Thus we observe that the ambient metric h is a metric
cone over (M+, g+). The ambient Euler vector field X is computed to be X = u∂u
in the new coordinates, and so it has the interpretation of the Euler vector E for the
metric cone over (M+, g+). Since h is Ricci-flat, it follows that g+ is Einstein with
Ric(g+) = −ng+, and since r(ρ) extends smoothly to ρ = 0, the space (M+, g+) has
conformal infinity (M, [g]). We will describe in Section 2.4 how the Poincaré-Einstein
space belonging to a conformal boundary (M, c) gives rise to a Ricci-flat ambient space
(with boundary) for (M, c).

12. The Fefferman Construction

A smooth boundary ∂Ω of a strictly pseudoconvex domain Ω in Cm+1 admits a
naturally induced integrable CR-structure. The restriction of an ambient metric g̃(u)
of ∂Ω to the circle bundle ∂Ω × S1 as a subspace of the ambient space Ω × C∗ gives
rise to a Lorentzian metric. In [53] Ch. Fefferman noticed that the conformal class of
this Lorentzian metric on ∂Ω × S1 is invariant under biholomorphisms of the domain
Ω (in fact, the conformal class depends only on the CR-structure of the boundary). He
also observed that the knowledge of an explicit formula for the ambient metric g̃(u)
to high orders is not necessary for the construction. Instead, an approximate solution
u to 2nd order of the Monge-Ampère problem for the boundary ∂Ω contains already
all necessary information to present a formula for the metric on ∂Ω × S1. Such an
approximate solution u can be derived by elementary calculus (cf. [53]). The induced
metric on ∂Ω× S1 is called the Fefferman metric (corresponding to the solution u) of
the strictly pseudoconvex hypersurface ∂Ω in Cm+1. An intrinsic construction of the
Fefferman conformal metric for an abstract integrable CR-space was later found by J.M.
Lee in [102]. The intrinsic construction coincides with Fefferman’s original construction
for a boundary of a domain in Cm+1. We will describe the intrinsic construction with
respect to a pseudo-Hermitian form θ later in this section. Our first aim is to formulate
a generalised version of the Fefferman construction for parabolic Cartan geometries due
to A. Čap (cf. [34, 39]; see also [130, 8, 9]).

Let ι : G →֒ G′ be an inclusion of semisimple Lie groups and let P ′ be a parabolic
subgroup of G′ such that the G-orbit of eP ′ in G′/P ′ is open. Furthermore, let P be
a parabolic subgroup of G, which contains the intersection G ∩ P ′. The pairs (G,P )
and (G′, P ′) define two parabolic Klein geometries and the corresponding pairs of Lie
algebras are denoted by (g, p) and (g′, p′). By assumption, we have an inclusion g →֒ g′,
which induces a linear isomorphism g/(g∩p′) ∼= g′/p′. This isomorphism is equivariant
under the action of G ∩ P ′.
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Now let (P, ω)
π→ N be a parabolic Cartan geometry of type (G,P ) on a smooth

manifold N . The space P is a principal (G ∩ P ′)-bundle over M := P/(G ∩ P ′). Then

we can build a principal P ′-bundle P′ π′

→ M by setting P′ := P ×G∩P ′ P ′. More-
over, the Cartan connection ω extends by right translation with the action of P ′ to
a Cartan connection ω′ on P′. We call this procedure, which uses the initial data
(P, ω) → N , the generalised Fefferman construction with Fefferman space M and in-
duced parabolic Cartan geometry (P′, ω′) of type (G′, P ′). Thereby, π : M → N is a
natural (P/(G ∩ P ′))-fibre bundle and we call dim(p/(g ∩ p′)) the codimension of the
Fefferman construction. If G′/P ′ is connected the Fefferman construction produces for
the flat model G → G/P with Maurer-Cartan form ωG the model G′ → G′/P ′ with
Maurer-Cartan form ωG′ as Cartan connection, i.e., the resulting Cartan geometry on
the Fefferman space G′/P ′ is flat again.

It is a material programme to classify pairs of parabolic geometries, which allow
for a Fefferman construction (with certain codimension). A basic question occurs
immediately: How are the canonical Cartan connections ωnor and ω′

nor related in a
generalised Fefferman construction? As an example in the framework of parabolic
Cartan geometry, we describe in the following the Fefferman construction which assigns
to any partially integrable CR-space (N,H, J) of dimension n = 2m+1 equipped with
a (m+ 2)nd root E(1, 0) of ΛmCH ⊗Q a Fefferman space M of dimension 2m+ 2 with
Fefferman conformal structure c. This construction agrees with the classical Fefferman
construction for strictly pseudoconvex boundaries due to Ch. Fefferman.

Let (G̃, P̃ ), with G̃ = SU(p+1, q+1), be the Klein pair which models CR-geometry
(with a choice of (m+2)nd root), and let (G̃′, P̃ ′) with G̃′ = SO(r+1, s+1), r = 2p+1,
s = 2q + 1, be the Klein model of oriented conformal geometry (with a choice of root
for densities). The standard representation of SU(p + 1, q + 1) on Cm+2 is given by
restriction of the standard representation of SO(r + 1, s + 1) on Rr+1,s+1 ∼= Cm+2.
Thereby, the standard representation of SU(p+ 1, q + 1) acts irreducibly on Cm+2 and

gives rise to a natural inclusion ι : G̃→ G̃′. The parabolic P̃ ′ in SO(r+1, s+1) fixes a
real null line l in Rr+1,s+1 and the intersection G̃ ∩ P̃ ′ is contained in the parabolic P̃ ,
which fixes the complex null line lC := C · l in Cp+1,q+1. The group P̃ acts transitively
on the set RP 1 of real null lines in lC with stabiliser G̃ ∩ P̃ ′, i.e., P̃ /(G̃ ∩ P̃ ′) ∼= RP 1.

We conclude that G̃/(G̃∩ P̃ ′) is a circle bundle over the flat homogeneous model G̃/P̃
of CR-geometry, which is diffeomorphic to the homogeneous model G̃′/P̃ ′ and thus

admits in a canonical way a flat G̃′-invariant conformal geometry. This describes the
(classical) Fefferman construction for the flat model of CR-geometry. We remark that

the inclusion ι : G̃ → G̃′ can be lifted to Ĝ = Spin(r + 1, s + 1), which automatically

gives rise to a conformal spin structure on the Fefferman space Ĝ/P̂ ∼= G̃′/P̃ ′ (cf. [39]).
It is clear now how to extend the construction to curved CR-geometries. Let

(P̃, ωnor) → N be the principal SU(p + 1, q + 1)-bundle with canonical Cartan con-
nection ωnor on a partially integrable CR-space (N,H, J) of dimension n = 2m + 1

admitting a (m + 2)nd root E(1, 0). Then the Fefferman space F̃c := P̃/(G̃ ∩ P̃ ′) is

a circle bundle over N and admits the conformal Cartan geometry P̃′ := P̃ ×G∩P̃ ′ P̃ ′

with extended connection ω′. In fact, F̃c admits a natural conformal spin structure.
However, the Cartan connection ω′, which is induced by extension from ωnor on P(N)
is in general not the unique normal Cartan connection of conformal geometry. This is
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true iff (P̃, ωnor) → N has no torsion, which means that the underlying CR-geometry
is integrable (cf. [34, 39])! In the partially integrable case, the difference ω′ − ω′

nor is
described by the Nijenhuis torsion tensor NJ (cf. Chapter 5).

Since we assume the existence of a (m+2)nd root E(1, 0) of the complex line bundle
ΛmCH ⊗ Q, the standard CR-tractor bundle TCR(N) → N with invariant filtration

T−1
CR ⊃ T0

CR ⊃ T1
CR exists, and the Fefferman space F̃c over N is canonically identified

with the circle bundle of real lines in T1
CR
∼= E(1, 0)∗. Furthermore, the lift of TCR(N)

along the Fefferman fibration F̃c
π→ N is naturally identified with the standard tractor

bundle T(F̃c) of conformal (Fefferman) geometry. Since TCR(N) is equipped with a

complex structure JCR, the conformal standard tractor bundle T(F̃c) → F̃c inherits a
complex structure (cf. Chapter 5). And, since for integrable CR-geometry the lift of
ωnor induces the tractor connection ∇T and ΩT(χ, ·) = 0 for any vertical vector χ in the

Fefferman fibration, the tractor holonomy hol(T) of∇T on T(F̃c) coincides with the CR-
tractor holonomy algebra of∇CR on TCR(N). This shows that the conformal holonomy
algebra hol(T) is reduced for any conformal Fefferman space (in the integrable case) to
(a subalgebra of) su(p+ 1, q + 1) (cf. Chapter 6 and [113, 40]).

Finally, we review the explicit construction of a Fefferman metric on the canonical
circle bundle of an integrable, oriented CR-space with respect to a pseudo-Hermitian
form θ due to J.M. Lee (cf. [102]). The conformal class of the Fefferman metric
is a CR-invariant, since it does not depend on the choice of pseudo-Hermitian form,
which is shown by direct calculations of the transformation properties (cf. [102] and
Chapter 5). Note that Lee’s intrinsic construction is equivalent to Fefferman’s original
construction, since the canonical bundle is always trivial for pseudoconvex boundaries.
However, Lee’s construction differs from the above construction in the context of Cartan
geometry, since the canonical bundle is not isomorphic to F̃c, in general. (In fact, F̃c (if
it exists) corresponds to a (m+ 2)nd root of the canonical line bundle!) Locally, both
constructions of Fefferman conformal classes do always exist and are equivalent. Also,
note that there is a direct construction for Fefferman metrics via tractor calculus (cf.
[39]). We review Lee’s construction very briefly here, since the generalised version for
partially integrable CR-spaces is completely analogous and will be discussed in more
detail in Chapter 5.

Let (Nn, T10) be an integrable, oriented CR-manifold of dimension n = 2m+1 and
signature (p, q) and let θ be a pseudo-Hermitian structure on N . We denote by

Λm+1,0N := { ρ ∈ Λm+1N ⊗ C : ιXρ = 0 for all X ∈ T01 = T10 }

the complex line bundle over Nn, which is the (m+1)st exterior power of the annihilator
of T01. The bundle Λm+1,0N is called the canonical line bundle of the CR-space (N, T10).
The positive real numbers R+ act by multiplication on K∗ := Λm+1,0N \ {0}, which
denotes the canonical line bundle with deleted zero section. Then we set Fc := K∗/R+

and the triple

( Fc, π, N )

denotes the canonical S1-principal bundle over (N, T10) whose fibre action is induced
by complex multiplication with elements of the unit circle S1 in C.
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The Tanaka-Webster connection ∇W uniquely gives rise to a connection 1-form on
the S1-principal fibre bundle Fc, which we denote by AW : TFc → iR. Further, we set

Aθ := AW − i

2(m+ 1)
scalW θ ,

where θ denotes the pull-back to Fc of θ on N . The latter is a connection 1-form on
Fc as well, which we call the Weyl connection to θ on Fc. The Fefferman metric to θ
on Fc is defined by

fθ := π∗Lθ − i
4

m+ 2
π∗θ ◦ Aθ

(in shorter notation, we simply write fθ = Lθ−i 4
m+2

θ◦Aθ). This is, in fact, a symmetric
2-tensor on the real tangent bundle of Fc with signature (2p+1, 2q+1). If the underlying
space is strictly pseudoconvex the signature of fθ is Lorentzian, i.e., (1, 2m+ 1). The

Fefferman conformal class [fθ] consists of all smooth metrics f̃θ on Fc, which arise by
conformal rescaling of fθ. The class [fθ] depends only on the underlying CR-structure

T10 of N . In fact, rescaling the pseudo-Hermitian form by θ̃ := e2lθ with some real
function l on N produces the conformally changed Fefferman metric fθ̃ = e2lfθ.

There exists a famous characterisation result for Fefferman metrics of integrable
CR-spaces due to G. Sparling in [146] and reviewed by C.R. Graham in [73].

Theorem 3. (Sparling’s characterisation) Let (Mn+1, g) be a pseudo-Riemannian
space of dimension n + 1 ≥ 4 and signature (2p+ 1, 2q + 1). Suppose that g admits a
Killing vector j (i.e., Ljg = 0) such that

(1) g(j, j) = 0, i.e., j is lightlike,
(2) ιjW

g = 0 and ιjC
g = 0,

(3) Ricg(j, j) > 0 on M .

Then g is locally isometric to the Fefferman metric of some integrable CR-space
(N,H, J) of hypersurface type with signature (p, q) and dimension n.

On the other hand, any Fefferman metric of an integrable CR-space (N,H, J) of
hypersurface type admits a Killing vector field j satisfying (1) to (3).

We remark that it was shown in [117] in dimension 4 and for arbitrary even dimen-
sion in [17] that the Fefferman space of a (strictly pseudoconvex) integrable CR-space
admits a certain (pair of) twistor spinor φ ∈ Γ(S), whose Dirac current Vφ is null and
twisting. In fact, the Dirac current Vφ of this particular twistor spinor satisfies the
conditions of Sparling’s characterisation (cf. Theorem 1).

13. Summary of the Developments in Part 2

In the final section of this introductory chapter we summarise in brief the inves-
tigations and results of Part 2 (Chapter 1 to 6) of the present Habilitationsschrift.
The work to these investigations was mainly done since the year 2003 and contains
an essential part of the author’s studies since his PhD Thesis [106]. Several parts of
the following discussion are published already in articles. Some other parts are new or
occur as preprints. In any case we tried to create a unity from the various sources. In
particular, notations and conventions should be uniform throughout the chapters and
should be in accordance with the current introductory chapter.
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Concerning the topics of Part 2 we can certainly say that it is about conformal
geometry. In fact, the main motivation of our studies is conformal invariant theory.
However, we do not touch in the first place the construction of (new) conformal invari-
ants (which is a very interesting research field and which we hope to study increasingly
more in the future), but rather try to solve (well known) invariant equations and to de-
scribe the (local) conformal geometry of spaces admitting solutions. Thereby, the main
character of the studied equations is the overdeterminateness and as a consequence the
existence of solutions is related to symmetries of the underlying geometry. The study
of such equations with symmetries occurs in various context and, in particular, is of
much interest in geometry, but also in mathematical physics. In fact, our emphasis in
many situations is on conformal Lorentzian geometry, which provides e.g. the link to
supergravity as it occurs nowadays in string theories. Also the Poincaré-Einstein model
in relation with the holographic principle of physics and the AdS/CFT correspondence
are to mention in this direction. To be more concrete, a main motivation for us is for
example the twistor equation of spin geometry, which can be seen from a certain point
of view as the most basic (overdetermined) invariant first order differential equation
of conformal geometry. But also conformal Killing forms and (ordinary) conformal
Killing vectors fields are very much in the centre of interest in the following chapters.
Moreover, we will see that these symmetries have to do with a conformal holonomy
theory. In fact, conformal holonomy will be a leading theme throughout the different
chapters (apart from Chapter 4). In detail, the following will happen.

In Chapter 1 we discuss the equation ∇norα = 0 for (p + 1)-form tractors on
a conformal space (Mn, c) of dimension n. This discussion is based on [110, 111]
(see also e.g. [150, 88, 148, 14, 143, 37, 35, 51, 72, 80]). The projecting part
α− = ΠH(α) of a solution α is a conformal Killing p-form of weight p + 1, which
satisfies in addition certain normalisation conditions. We compute these conditions
with respect to a compatible metric g ∈ c (which basically results in the computation
of the splitting operator S in this particular case) and also describe the integrability
conditions for the existence of normalised conformal Killing p-forms. On (conformal)
Einstein spaces we are able to describe the underlying conformal geometry of spaces
with solutions α via the metric cone construction (cf. Theorem 4 and [12, 143]).
In fact, the conformal Einstein condition itself is described by the existence of a ∇T-
parallel standard tractor (cf. [28, 93, 64, 92, 6, 7, 65, 69, 122, 123, 3]).

Obviously, the equation ∇norα = 0 is closely related to the holonomy theory of
the canonical connection ωnor (resp. ∇T) of conformal geometry (cf. [6]). We will
show that this has some interesting consequences and applications. First of all, we
will prove a conformal analog of the well known deRham decomposition Theorem of
semi-Riemannian geometry (cf. Theorem 6). Roughly speaking, the essential part of
the statement is that the conformal holonomy group decomposes if and only if there
exists a product of Einstein metrics in the conformal class c on M . Thereby, the scalar
curvatures of the factors satisfy a certain relation (cf. Proposition 6), which will also be
of interest in Chapter 2. We want to point out that the conformal Einstein condition
has a very useful interpretation in terms of conformal holonomy as well. Namely, a
space (M, c) is conformally almost-Einstein if and only if the conformal holonomy is
reduced such that it fixes a parallel standard tractor. This holonomy condition might
be very pleasant to test in concrete situations. We will demonstrate this in Chapter 3.
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Conformal Killing spinors have the remarkable property that the corresponding
twistors (= spinorial tractors) are ∇nor-parallel (cf. [137, 61, 19, 32]). Having the
spinorial squares at hand it becomes immediately clear that a conformal Killing spinor
gives rise to (a number of) normalised conformal Killing forms of certain degree (de-
pending on dimension and signature) on the underlying conformal spin space (M, c).
A particularity of (conformal) Lorentzian geometry is the fact that a conformal Killing
spinor and its Dirac current (= spinorial square of degree 1) have identical zero sets.
The Dirac current is a normalised conformal Killing vector field, and therefore, the
corresponding adjoint tractor admits a unique orbit type under the adjoint action of
the Möbius group O(2, n). We will classify the possible orbit types by use of Table
3. The essential outcome of the classification is the existence of exactly four generic
types of 2-forms (resp., skew-adjoint endomorphisms) in signature (2, n), which come
from a spinor. According to these four generic types we give in Theorem 10 a lo-
cally complete geometric description of Lorentzian spin spaces admitting conformal
Killing spinors without singularities. Among these geometries are static monopoles,
Brinkmann waves, the Fefferman spaces, the Einstein-Sasaki spaces and a product
class of the form as already mentioned above. This description extends classification
results of [117, 17, 106, 21].

The metric cone construction for Einstein spaces comes very close to the Fefferman-
Graham ambient metric construction for the corresponding conformal class. In fact,
as one can almost guess, only a parallel real line needs to be added to the cone in
order to obtain the ambient metric. We are able to generalise this idea in Chapter
2, which is based on the author’s common work [68] with Prof. A.R. Gover from the
University of Auckland. In fact, in Theorem 11, we explicitly construct the Fefferman-
Graham ambient metric for any space with decomposable conformal holonomy (which
implies the existence of a certain product metric in the conformal class as we mentioned
above). The interesting point about this construction is that the underlying conformal
geometry is not Einstein, in general. We show this point by identifying the conformal
holonomy with the holonomy of the ambient metric (cf. Theorem 15). (In general,
these two holonomy groups will not have much in common.)

The Fefferman-Graham ambient metric is closely related to the Poincaré-Einstein
model with conformal boundary. In fact, the Poincaré-Einstein metric can be realised,
in general, on a certain submanifold of the ambient metric space. On the other hand,
we show in Section 2.4 that via the cone construction an ambient metric space with
boundary can be retrieved from the Poincaré-Einstein model. In this sense both models
are shown to be equivalent. The explicit Poincaré-Einstein metric (on a collar) for a
boundary space with decomposable conformal holonomy is presented in Theorem 13.
We also identify there the Taylor serious expansion with respect to the special defining
function of the product boundary (cf. [74, 87]). Although our construction works only
for a rather special class of conformal structures (as the Taylor expansion indicates,
since it terminates already after the 4th order term), to our knowledge it is one of the
first explicit constructions with non-Einstein conformal boundary (cf. [131] for another
explicit construction and [77, 26, 104, 5, 125] for pure existence results). In Section
2.6 we describe our Poincaré-Einstein metrics by the existence of certain special Killing
forms (cf. [143]). We want to point out again that the Poincaré-Einstein model (and
the ambient metric construction as well) are of much interest in geometry and physics,
e.g. in relation with the study of conformal invariants (like Branson’s Q-curvature),
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renormalised volume and related quantities (cf. [1, 5, 47, 55, 74, 79, 87]), or the
AdS/CFT programme (cf. e.g. [124, 78]).

From what we have said so far it becomes clear that the conformal holonomy plays
a central role for our investigations. In Chapter 3 we aim to show that a conformal
holonomy group can be computed explicitly. For this purpose we develop an invariant
calculus for the normal conformal Cartan connection of a group with bi-invariant met-
ric. It is no problem then to apply the classical iterative formula for the holonomy of
an invariant connection (cf. e.g. [91]). We will do this in the concrete situations of
the bi-invariant metrics on SO(3) and SO(4), which are coming from the corresponding
Killing forms. Of course, the bi-invariant metric on SO(3) is conformally flat and our
invariant calculus shows that the conformal holonomy vanishes in this case. On the
other hand, the group SO(4) is locally the product of two round spheres, which is not
conformally flat. Indeed, our computation shows that the conformal holonomy algebra
hol(T) of the bi-invariant metric on SO(4) is so(7). In particular, this result shows that
up to constant rescaling the bi-invariant metric on SO(4) is the only Einstein metric
in its conformal class. The content of Chapter 3 originated from [109]. Our ideas can
be extended to much more general circumstances in the framework of homogeneous
parabolic geometries as the work [83] shows. The latter work also describes nicely how
the automorphism group of a homogeneous parabolic geometry can be set into relation
with an invariant holonomy theory.

In Chapter 4, which is based on the sources [105, 108, 115], our interest in par-
ticular solutions of conformally invariant differential equations becomes very obvious.
The concrete task is to solve the twistor equation for spinors in (conformal) Lorentzian
spin geometry such that the solution admits a zero, i.e., the twistor spinor vanishes at
a point (cf. [115]). We want to briefly motivate why this problem is interesting. In
Riemannian geometry one can easily show with classical methods that a twistor spinor
with zero is conformally equivalent to a parallel spinor off the zero set (cf. [19]). On
a compact space a twistor spinor has a zero only if it it is the round sphere, which is
conformally flat (cf. [120]). On non-compact spaces twistor spinors with zero occur
on the conformal completion to infinity of asymptotically flat Riemannian spaces with
irreducible (or trivial) holonomy group (cf. [96, 99]). As we have mentioned already
before, in Lorentzian geometry the Dirac current of a twistor spinor is a conformal
Killing vector field with the same zero set as the corresponding spinor. The existence
of zeros for the Dirac current of a twistor spinor makes it possible to determine, which
normal form the corresponding ∇nor-parallel adjoint tractor can take (cf. Table 3). In
fact, this approach makes it possible to show that a twistor spinor with zero is confor-
mally equivalent to a parallel spinor off its zero set (cf. Theorem 19). Thus we obtain
the same result as in (conformal) Riemannian geometry, but it seems that the proof of
this result in Lorentzian geometry does not work without employing conformal tractor
calculus!

Twistor spinors with zeros in Lorentzian geometry are also interesting for the fol-
lowing reason. The corresponding Dirac current is an essential conformal Killing vector
field on the underlying conformal space (M, c), i.e., the Dirac current is not a Killing
vector field with respect to any metric g ∈ c and thus expresses the existence of a true
conformal symmetry (cf. [2, 4, 60]). In Riemannian geometry essential conformal
transformation groups are very rare. In fact, a celebrated result says that a com-
plete Riemannian space with essential conformal transformation group is either the
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round sphere Sn (compact case) or the Euclidean space Rn (non-compact case), which
are both conformally flat spaces (cf. [134, 116, 2]). In Lorentzian geometry confor-
mally non-flat spaces with essential transformation group are more or less unknown (cf.
[106, 60]). The second main achievement of Chapter 4 is the explicit construction of a
family of non-compact Lorentzian spaces in dimension 5, which admit twistor spinors
with isolated zero, such that the conformal geometry around that zero is not flat (cf.
Theorem 20). In particular, this result shows that there exist conformally non-flat
Lorentzian spaces with essential conformal transformation group. Our construction is
based on the Eguchi-Hanson metric in dimension 4 (which is an asymptotically flat
hyperKähler metric in Riemannian geometry) and can be seen as the conformal com-
pletion of spaces, which have the asymptotic behaviour of the Minkowski space in
dimension 5. However, the metric that we explicitly construct is only continuously
differentiable. Nevertheless, it might be possible that the induced conformal class is
smooth. This remains unclear here.

So far we have not mentioned CR-geometry in this summary. However, the two final
chapters of our work are very much concerned with it. The original motivation for our
interest in CR-geometry was again the twistor equation of conformal Lorentzian spin
geometry. The discussed topics fit also very well into the theme of conformal holonomy
theory. The main point in Chapter 5 and 6 is that via the Fefferman construction CR-
geometry is closely related to conformal geometry. In fact, the Fefferman construction
produces from CR-structures certain conformal spaces, which admit particular prop-
erties concerning its holonomy and the existence of solutions of certain conformally
invariant differential equations (cf. [117, 17, 40]).

Chapter 5 is based on the source [112]. We discuss there a generalised Tanaka-
Webster connection and corresponding curvature expressions for partially integrable
CR-spaces of hypersurface type equipped with a pseudo-Hermitian form. This is done
along the lines of [17] (cf. also e.g. [149, 152, 67, 102, 103, 48, 39]). Thereby, the
Tanaka-Webster connection is determined by a certain torsion normalisation, which
includes the Nijenhuis tensor (cf. Lemma 17). In Section 5.3 we construct the Fefferman
space to a partially integrable CR-structure in the spirit of J.M. Lee by use of a
pseudo-Hermitian form and a corresponding Weyl connection form on the canonical
circle bundle (cf. [102]). This Fefferman construction is shown to be independent
from the choice of pseudo-Hermitian form and thus is a CR-invariant construction
(cf. Theorem 21). Surprisingly, a very simple consideration shows that the Fefferman
construction is still independent from the choice of pseudo-Hermitian form if we replace
the corresponding Weyl connection by an arbitrary connection 1-form. We call this
construction the gauged Fefferman construction of partially integrable CR-geometry
(cf. Definition 4). This construction seems to be utterly redundant on the first glance.
And at least from the viewpoint of CR-geometry it probably really is. However, we will
see in Chapter 6 that it is good for something in the realm of conformal geometry. In
any case, in the following sections of Chapter 5, we compute the scalar curvature of the
gauged Fefferman metric (with respect to the Webster scalar curvature; Theorem 22)
and apply the Bochner-Laplacian to the fundamental vector field χK , which is vertical
in the Fefferman fibration and which is a Killing vector for the gauged Fefferman metric
(cf. Proposition 16). Finally, these computations enable us to apply the splitting
operator S to 2χK and to identify the result. On this way, we actually compute, in
general, the splitting operator S acting on 1-forms with respect to a compatible metric
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in a given conformal class. The outcome of the whole computation in the case of a
gauged Fefferman space shows that S(2χK) is an orthogonal complex structure acting
on standard tractors, at least under certain conditions on the gauge 1-form ℓ. The
conclusion of Chapter 5 (cf. Theorem 23) is that we have constructed a family of
solutions J of the tractor equation

∇norJ = −Ωnor(ΠH(J), ·) with J • J = −id|T .
Finally, in Chapter 6 we aim to do three things. First, we consider solutions J

of the above tractor equation on a conformal space (M, c). It turns out that locally
there exists a natural construction, which produces a partially integrable CR-structure
on a quotient space in one dimension lower (cf. [39]). In fact, we can show further
that locally the conformal class c on M is given by a Fefferman metric for a certain
gauge over some partially integrable CR-space of hypersurface type, i.e., together with
results from Chapter 5 we have found a construction principle and a locally complete
characterisation of conformal spaces admitting solutions J of the above equation (cf.
Theorem 24). (So much to the justification of our gauged Fefferman construction!)

The second point we make in Chapter 6 is a holonomy characterisation of the
classical Fefferman construction for integrable CR-structures. This result was proved
in [113] (cf. also [40]). We can show by use of tractor calculus that a conformal space
(M, c), whose conformal tractor holonomy Hol(T) sits in the unitary group U(p +
1, q + 1) is locally conformally equivalent to a classical Fefferman metric induced on
the canonical circle bundle of an integrable CR-space. Actually, more than this true,
since we know that the conformal holonomy algebra hol(T) of a classical Fefferman
space to an integrable CR-structure is always contained in the special unitary algebra
su(p+ 1, q+ 1) (cf. Theorem 25). In particular, this result implies that there exists no
conformal space with tractor holonomy identical to the full U(p+ 1, q + 1).

The holonomy characterisation of the classical Fefferman construction in combina-
tion with the holonomy characterisation of the conformal Einstein condition leads us
to make our final stroke. It is well known that a Fefferman metric is never Einstein.
But, obviously, if a space has a conformal holonomy group sitting in U(p + 1, q + 1),
which, in addition, fixes a standard tractor, then this shall be the conformal holonomy
of a Fefferman space, which is almost conformally Einstein. Since there is no reason to
believe that such a conformal holonomy reduction does not exist (apart from the flat
spaces), we shall be able to find conformal Fefferman-Einstein spaces. In fact, based on
the work [114], we describe in the final sections of Chapter 6 a construction principle
of so-called (TSPE)-structures. A (TSPE)-structure is a pseudo-Einstein structure (in
the sense of Lee; cf. [103]), which induces to the same time a transverse symmetry on
the underlying integrable CR-space in form of the Reeb vector field. Such a (TSPE)-
structure can be constructed from any Kähler-Einstein space, and in fact, we show in
Theorem 26 that any (TSPE)-structure comes locally by a natural construction from
some Kähler-Einstein space. Since a (TSPE)-structure corresponds to a ∇nor-parallel
standard CR-tractor, and further, this tractor lifts in the Fefferman construction to a
∇nor-parallel conformal standard tractor, it is clear that a Fefferman metric constructed
over an integrable CR-space with (TSPE)-structure must be (almost) conformally Ein-
stein. In fact, we are able to determine the conformal rescaling factor explicitly, which
makes the Fefferman metric of a (TSPE)-structure locally to an Einstein metric. The
local expressions for the resulting metrics are presented in Theorem 27. Globally, on
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a circle bundle the Fefferman metrics are never conformally Einstein. This shows that
apart from Einstein metrics there might exist other naturally distinguished metrics
in a conformal class, resp., there might be occasions when one should consider the
almost-Einstein property for the conformal class as the most natural condition.





Part 2

Developments of the Theory





CHAPTER 1

Conformal Killing Forms with Normalisation Condition

Conformal Killing vectors and, more generally, conformal Killing p-forms (as defined
in Section 0.7) are solutions of conformally covariant PDE’s on spaces equipped with
conformal structure. The corresponding PDE’s are typically overdetermined, which
means that the existence of a solution is subject to integrability conditions in form of
(conformal) curvature properties of the underlying space. The solutions itself can be
seen as incidences of (higher infinitesimal) symmetries. In particular, conformal Killing
p-forms are closely linked to symmetries of the (conformal) Laplacian and other related
covariant differential operators (cf. e.g. [23, 51]). For this and many other reasons,
the investigation of conformal Killing p-forms is of much interest both in geometry and
physics (cf. e.g. [88, 89, 147, 148, 24, 136, 72, 111, 143, 110]).

We want to discuss in this chapter the equation

∇norS(α) = 0 ,

where α ∈ Ωp(M)[p + 1] is a p-form of conformal weight p + 1 on a space (M, c) with
conformal structure, S : Ωp(M)[p+1]→ Ωp+1(T∗M) denotes the splitting operator and
∇nor is the tractor connection as introduced in Section 0.7 coming from the normal
conformal Cartan connection ωnor on P(M). The equation ∇norS(α) = 0 is a confor-
mally covariant, overdetermined PDE for conformally weighted differential forms α. It
turns out that a solution α of this tractor equation is nothing else, but a conformal
Killing p-form on (M, c). However, it is important to observe that such solutions satisfy
certain additional normalisation conditions (as we will see below) and not every con-
formal Killing p-form is a solution. Consequently, we call a solution α of ∇norS(α) = 0
a normal conformal Killing p-form (in short, nc-Killing p-form) (cf. [110, 111]).

Obviously, since the corresponding (p+1)-form tractor S(α) of a solution α is ∇nor-
parallel, the existence of a nc-Killing p-form α is intimately linked to the holonomy
theory of ωnor on P(M), resp., ∇nor on the standard tractor bundle T(M). For example,
if S(α) is ∇nor-parallel and simple as (p + 1)-form tractor with 1 < p < n, then this
implies a decomposition of the standard tractor module Rr+1,s+1 into a direct sum under
the action of the conformal tractor holonomy Hol(T). We will show in this situation
with help of α that (at least locally) a certain product metric in the conformal class
c on M does exist (cf. Section 1.3). This result should be seen as a conformal analog
for the deRham splitting Theorem of semi-Riemannian geometry (cf. [141]). A special
case is the existence of a ∇nor-parallel standard tractor t ∈ Γ(T) on (M, c), which is
related to the conformal (almost)-Einstein condition (cf. [64, 65, 69, 6]).

Furthermore, the twistor equation for spinors is a basic differential equation of
conformal geometry and of particular interest in general relativity (cf. [138]). In
Section 0.8 we did explain that conformal Killing spinors ϕ correspond via the splitting
operator S to ∇nor-parallel sections Ψ := S(ϕ) ∈ Γ(W) of the standard spinorial
tractor bundle W on a conformal spin manifold (M, c). It follows immediately that

71
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the (non-trivial) spinor squares ςp(Ψ) ∈ Ωp(T∗M), 1 ≤ p ≤ n + 1, are ∇nor-parallel
and correspond via the projections ΠH to nc-Killing (p− 1)-forms on (M, c). All this
shows that the existence of conformal Killing spinors on (M, c) is closely linked to
the holonomy theory of the tractor connection ∇T. Again, it becomes clear that the
conformal holonomy group Hol(T) and its algebra hol(T) are important invariants of
conformal geometry, which are suitable to indicate symmetries and solutions of basic
conformally covariant differential equations. In Section 1.6 we will pay special attention
to the twistor equation of Lorentzian spin geometry. In fact, using our discussion of
nc-Killing forms we are able to prove a more less complete structure result for solutions
of the twistor equation without singularities (cf. Theorem 10).

We will proceed as follows. In the first section we describe the action of the canonical
connection ∇nor on p-form tractors with respect to a metric g in the conformal class
c on M and derive the normalised equations for nc-Killing forms with integrability
conditions. This discussion is followed by considerations about nc-Killing forms on
(conformally) Einstein spaces (cf. Section 1.2) and in general (cf. Section 1.4). In
Section 1.3 we will establish a version of a deRham-like splitting theorem in conformal
geometry (cf. Theorem 6). Furthermore, in Section 1.5 we will present a normal form
classification of 2-forms in signature (2, n). This classification will enable us to prove
in the final section the geometric structure result for solutions of the twistor equation
in conformal Lorentzian spin geometry.

1. The Normalised Equations for Conformal Killing p-Forms

Let (Mn, c) be a connected and oriented space with conformal structure of dimen-
sion n ≥ 3 and signature (r, s) and let (P̃ (M), ωnor) denote the corresponding normal

conformal Cartan geometry of type (G̃, P̃ ) with G̃ = SO(r + 1, s + 1). The standard

tractor bundle of (Mn, c) is given by T(M) = P̃(M) ×P̃ Rr+1,s+1. Furthermore, let
g ∈ c denote a compatible metric with local orthonormal frame Bs = {s1, . . . , sn}. The

metric g induces a Weyl structure σg : G̃0(M) → P̃(M) (cf. Section 0.6). Then, via

the natural embedding of P̃(M) into the extended G̃-bundle G̃(M), the Weyl structure
σg gives rise to a local frame BT = {s−, s+, s1, . . . , sn} of the standard tractor bundle

T(M)
π→ M , which is an extension of the orthonormal frame Bs, where the vector s−

denotes the unit in E[1] and s+ denotes the unit in E[−1] with respect to g ∈ c.
Now let us consider the (p + 1)-form tractor bundles Λp+1T∗(M) on (M, c), which

split with respect to g ∈ c into

Λp(M)⊕ Λp+1(M)⊕ Λp−1(M)⊕ Λp(M)

(cf. Section 0.7). Accordingly, any section α in Λp+1T∗(M) can locally be written with
respect to g ∈ c and a frame BT as

s♭− ∧ α− + α0 + s♭− ∧ s♭+ ∧ α∓ − s♭+ ∧ α+

with uniquely determined differential forms α−, α0, α∓ and α+. The normal Cartan con-
nection ωnor gives rise to a covariant derivative ∇nor acting on sections of Λp+1T∗(M).
In general, the action of ∇nor on any section γ of some tractor bundle with respect to
a compatible metric g ∈ c is described by

∇nor
X γ = ∇g

Xγ + ( X , 0 , P
g(X) ) • γ
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(cf. Section 0.7). A concrete calculation of • shows that ∇nor acts on sections of the
(p+ 1)-form tractor bundles Λp+1T∗(M) by

∇nor
X α =




∇g
X −P(X)∧ −ιP(X)♯ 0

−ιX ∇g
X 0 ι

P(X)♯

−X♭∧ 0 ∇g
X −P(X)∧

0 X♭∧ −ιX ∇g
X







α+

α∓

α0

α−




.

In the following, we call a section α ∈ Ωp+1(T∗M) a parallel (p + 1)-form tractor iff
∇norα = 0. With respect to a metric g ∈ c this tractor equation is expressed by

∇g
Xα− − ιXα0 +X♭ ∧ α∓ = 0 (15)

−P(X) ∧ α− +∇g
Xα0 −X♭ ∧ α+ = 0 (16)

ιP(X)♯α− +∇g
Xα∓ − ιXα+ = 0 (17)

−ι
P(X)♯α0 − P(X) ∧ α∓ +∇g

Xα+ = 0 . (18)

We aim to investigate solutions of the equation ∇norα = 0 on a space (M, c) (with
compatible metric g). So let α be such a parallel (p + 1)-form tractor with natural
projection ΠH(α) ∈ Ωp(M)[p + 1] and let α− denote the corresponding p-form with
respect to g on M . We can easily recompute the other differential forms α0, α∓ and
α+. Remember that

d =
n∑

i=1

εis
♭
i ∧ ∇g

si
and d∗ = −

n∑

i=1

εiιsi
∇g
si
.

The equations (15) - (17) imply the identities

dα− = (p+ 1)α0 ,

d∗α− = (n− p+ 1)α∓ ,

1

p+ 1
d∗dα− = (p− n)α+ −

n∑

i=1

εiιsi
(P(si) ∧ α−) ,

1

n− p+ 1
dd∗α− = pα+ −

n∑

i=1

εis
♭
i ∧ (ι

P(si)♯α−) .

For n 6= 2p the sum of the two latter identities gives

α+ =
1

n− 2p
·
( scalg

2(n− 1)
α− −

1

p+ 1
d∗dα− −

1

n− p+ 1
dd∗α−

)
,

which is

α+ =
1

n− 2p
(∆g

tr +
scalg

2(n− 1)
)α− ,

where ∆g
tr = trg∇2 is the Bochner-Laplacian. If n = 2p we have

α+ =
−1

(n− p)(p+ 1)
d∗dα− −

1

n− p

n∑

i=1

εiιsi
(P(si) ∧ α−) .
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In any case, we observe that α− ≡ 0 if and only if the (p+ 1)-form tractor α is trivial.
In fact, we have simply computed here the splitting operator S acting on α− with
respect to a metric g (cf. Section 0.7).

With the derived expressions for the components α0, α∓ and α+ of a parallel (p+1)-
form tractor α inserted into (15) - (18) we obtain the equations

0 = ∇g
Xα− −

1

p+ 1
ιXdα− +

1

n− p+ 1
X♭ ∧ d∗α− (19)

0 = −P(X) ∧ α− +
1

p+ 1
∇g
Xdα− −X♭ ∧�pα− (20)

0 = ι
P(X)♯α− +

1

n− p+ 1
∇g
Xd

∗α− − ιX�pα− (21)

0 =
−1

p+ 1
ι
P(X)♯dα− −

1

n− p+ 1
P(X) ∧ d∗α− +∇g

X�pα− (22)

for α− ∈ Ωp(M), where we set

�p :=
1

n− 2p
·
(
∆g
tr +

scalg

2(n− 1)
id
)

for n 6= 2p

and

�n/2 :=
−1

n− p ·
( 1

p+ 1
d∗d +

n∑

i=1

εiιsi
(P(si) ∧ ·)

)
.

Obviously, if only the first of this set of equations is satisfied then the p-form α− is
conformal Killing (cf. (5) in Section 0.6). Hence we call (19) - (22) the normalised
conformal Killing form equations and a solution α− ∈ Ωp(M) is a normal conformal
Killing p-form (in short, nc-Killing p-form). The conformal covariance of the equations
implies that if α− is a nc-Killing p-form to g on M then the rescaled p-form

α̃− := e(p+1)φ · α−

is nc-Killing with respect to the conformally changed metric g̃ = e2φ · g.
Equations (19) - (22) are not only conformally covariant. The Hodge star operator

⋆ gives rise to a further symmetry. In order to explain this symmetry we define the
tractor Hodge operator ⋆T by

α ∧ ⋆Tα = 〈α, α〉T dMT ,

where we set dMT := −s♭−∧s♭+ ∧dM , which is the tractor volume form (given in terms
of a frame BT). The star operator ⋆T is parallel: ∇nor⋆T = ⋆T∇nor. We conclude that
if α is a parallel (p + 1)-form tractor then ⋆Tα is a parallel (n − p + 1)-form tractor.
The tractor ⋆Tα has with respect to g the components

( (−1)p ⋆ α− , ⋆α∓ , −⋆ α0 , (−1)p+1 ⋆ α+ ) .

This proves that if α− is a nc-Killing p-form then ⋆α− is a nc-Killing (n − p)-form.
Indeed, with

⋆(ιXβ
p) = (−1)p+1X♭ ∧ ⋆β and ⋆ (X♭ ∧ βp) = (−1)pιX ⋆ β ,

⋆ ⋆ |Λp = (−1)p(n−p)+r and d∗ = (−1)n(p−1)+r+1 ⋆ d⋆ ,



2. NORMAL CONFORMAL KILLING p-FORMS ON EINSTEIN MANIFOLDS 75

and since ⋆�p = −�n−p⋆, the normalised equations (19) - (22) are seen to be ⋆-
invariant. More generally, it is also true that if α− is just a conformal Killing p-form
then ⋆α− is a conformal Killing (n− p)-form.

Finally, we discuss here integrability conditions for the existence of nc-Killing p-
forms on a semi-Riemannian manifold (Mn, g). Note that the action of the tractor
curvature ΩT on a (p + 1)-form tractor α = (α−, α0, α∓, α+) is given (in matrix form)
by application of




W g(X, Y )• −Cg(X, Y )∧ −ιCg(X,Y )♯ 0

0 W g(X, Y )• 0 ιCg(X,Y )♯

0 0 W g(X, Y )• −Cg(X, Y )∧
0 0 0 W g(X, Y )•




,

where • denotes the usual action of so(TM) on differential forms. As integrability
condition for the existence of a nc-Killing p-form α− we obtain

W g(X, Y ) • α− = 0 (23)

W g(X, Y ) • dα− = (p+ 1) · Cg(X, Y ) ∧ α− (24)

W g(X, Y ) • d∗α− = −(n− p+ 1)ιCg(X,Y )♯α− (25)

W g(X, Y ) •�pα− =
1

p + 1
ιCg(X,Y )♯dα− +

1

n− p+ 1
Cg(X, Y ) ∧ d∗α−. (26)

Of course, these integrability conditions are conformally covariant and invariant with
respect to the Hodge ⋆-operator. Taking the divergence on both sides of (23) - (26)
results in

(n− 4) · Cg
X • α− = 0

(n− 4) · Cg
X • dα− = −(p + 1) · Bg(X) ∧ α−

(n− 4) · Cg
X • d∗α− = (n− p+ 1) · ιBg(X)♯α−

(n− 4) · Cg
X •�pα− = − 1

p + 1
ιBg(X)♯α− −

1

n− p+ 1
Bg(X) ∧ α− ,

where Cg
X := Cg(·, ·, X) for X ∈ TM and Bg is the Bach tensor (cf. Section 0.4) .

2. Normal Conformal Killing p-Forms on Einstein Manifolds

We call a space (M, g) conformally Einstein if there exists an Einstein metric g̃ in
the conformal class [g]. We will show that the property for a metric g to be conformally
Einstein can be expressed in terms of (dual) standard tractors (cf. [64, 65, 69, 6]).
Moreover, we will study in this section solutions of the normalised equations (19) - (22)
for p-forms on semi-Riemannian Einstein spaces (M, g).

First, let f− = α− be a nc-Killing function (= 0-form) without zeros on a space
(M, g). We mentioned before that in this case the rescaled function α̃− = 1

f−
α− = 1 is
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nc-Killing with respect to the metric g̃ = 1
f2
−
· g. From the normalised equations (19) -

(22) follows immediately

P
g̃ =

−scalg̃
2n(n− 1)

· g̃ ,

which means that g̃ is Einstein. On the other hand, every constant function on an
Einstein space (M, g) is nc-Killing. Thus we have a criterion, which says that a metric
g is conformally Einstein if and only if there exists at least one nc-Killing function
without zeros on M . In general, the normalised equations (19) - (22) for a function
f− = α− on (M, g) reduce to the single second order PDE

trace-free part of (Hessg(f−)− f− · Pg) = 0 ,

which is a classical formulation for the conformal Einstein condition and shows that the
kernel of the first differential operator D0 in the BGG sequence for the standard repre-
sentation describes the space of parallel sections of T(M). This is the same behaviour
as we observe for the twistor representation (cf. Section 0.8 and 1.6).

Obviously, if a nc-Killing function f− has zeros the rescaling of the metric g in
the above manner is not possible. Examples for nc-Killing functions with zeros on
a space (M, c) are well known (cf. e.g. Chapter 4). In general, the set of zeros of
a nc-Killing function is singular (i.e. the complement set is dense). In the following
we call a space (M, [g]), which admits a nc-Killing function (possibly with zeros), an
almost (conformally) Einstein space (cf. [65]).

Proposition 3. (cf. [65]) A space (M, c) is almost conformally Einstein iff the
standard tractor bundle T(M) (resp., its dual T∗(M)) admits a ∇T-parallel section.

One can easily see that if a parallel standard tractor is null, the corresponding
Einstein scale g in c is Ricci-flat. Moreover, in the timelike case the Einstein scale has
positive scalar curvature scalg > 0, whereas in the spacelike case we have scalg < 0
(up to singularities). The characterisation of Proposition 3 is very useful and becomes
even more interesting by the fact that parallel sections in T(M) can be detected by
studying the holonomy of ∇T.

Proposition 4. (cf. [6, 110]) A space (M, c) is almost conformally Einstein if and
only if the holonomy representation of Hol(T) on Rr+1,s+1 fixes at least one standard
tractor.

Note in relation with Proposition 4 that in concrete situations it might be more
convenient to test whether a standard tractor is fixed by the holonomy representation
than to show that a standard tractor is parallel.

For the rest of this section, let us assume that (Mn, g) is a semi-Riemannian Ein-
stein manifold. The 1-form tractor o := s♭− − scalg

2(n−1)n
s♭+, which obviously satisfies the

equations (15) - (18), is the parallel dual standard tractor that corresponds to the
Einstein metric g on (M, [g]). The components of o are given with respect to g by
(1, 0, 0, scalg

2(n−1)n
), i.e., o− = 1. Now, let

α = s♭− ∧ α− + α0 + s♭− ∧ s♭+ ∧ α∓ − s♭+ ∧ α+

be an arbitrary parallel (p+1)-form tractor on (M, g). If α0 ≡ 0 then the (n−p)-form
∗α− is nc-Killing and coclosed on (M, g). In the other case when α0 6≡ 0, it follows
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immediately that o∧α is a parallel (p+2)-form tractor, whose components with respect
to g are given by

( α0 , 0 ,
scalg

2(n− 1)n
α− − α+ ,

scalg

2(n− 1)n
α0 ) .

This shows that dα− is a (closed) nc-Killing (p+1)-form and again the (n−p−1)-form
∗dα− is nc-Killing and coclosed. In general, the set of normalised equations (19) - (22)
reduces for a coclosed p-form β− on an Einstein space to

∇g
Xβ− =

1

p+ 1
· ιXdβ− ,

∇g
Xdβ− = −(p + 1) · scalg

n · (n− 1)
·X♭ ∧ β− ,

which implies ∆pβ− = (p+1)(n−p)·scalg
n·(n−1)

β− for the Laplacian ∆p = dd∗+d∗d. By definition,

these two equations determine special Killing p-forms to the Killing constant − (p+1)·scalg
n·(n−1)

(not only in the Einstein case; cf. Section 0.4 and [143]).
The arguments of the previous paragraph show that any Einstein space, which

admits a nc-Killing p-form does also admit a non-trivial special Killing form. Thus we
obtain via the cone correspondence and Berger’s holonomy list (cf. Section 0.9 and
[12]) the following structure result in Riemannian geometry.

Theorem 4. (cf. [12, 143]) Let (Mn, g) be a simply connected and complete
Riemannian Einstein space of positive scalar curvature admitting a nc-Killing p-form.
Then Mn is either

(1) the round (conformally flat) sphere Sn (up to a constant scale),
(2) an Einstein-Sasaki manifold of odd dimension n ≥ 5 with a special Killing

1-form α−,
(3) an Einstein-3-Sasaki space of dimension n = 4m+ 3 ≥ 7 with a S2-family of

(normed) special Killing 1-forms,
(4) a nearly Kähler manifold of dimension 6, where the Kähler form ω− is a special

Killing 2-form or
(5) a nearly parallel G2-manifold in dimension 7 with a nice special Killing 3-form

γ−.

The five cases of Theorem 4 correspond to the possible cone holonomies {e},
SU(n+1

2
), Sp(n+1

4
), G2 and Spin(7). Note that the nice special Killing 3-form γ− of

case (5) can locally be written with respect to an orthonormal frame Bs in the form

γ− = s♭1 ∧ s♭2 ∧ s♭7 + s♭1 ∧ s♭3 ∧ s♭5 − s♭1 ∧ s♭4 ∧ s♭6 − s♭2 ∧ s♭3 ∧ s♭6
−s♭2 ∧ s♭4 ∧ s♭5 + s♭3 ∧ s♭4 ∧ s♭7 + s♭5 ∧ s♭6 ∧ s♭7 .

Theorem 4 relies strongly on the assumption of completeness in Riemannian geom-
etry. In general when (Mn, g) is pseudo-Riemannian or non-complete, (the connected
component of) the holonomy of the cone might be decomposable and non-trivial. Lo-
cally, this means that the cone M is a product of two spaces (Ni, hi), i = 1, 2, with
dimension ni > 0, and the corresponding volume forms vol(hi), i = 1, 2, (with respect
to a local orientation) are parallel on the cone. Via the cone correspondence the volume
forms vol(hi), i = 1, 2, give rise to special Killing forms αi = ιEvol(hi), i = 1, 2, on the
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base Mn (which is identified with the 1-level of M). By construction, the differential
forms α1 and α2 are simple, and if the base Mn is Einstein with scalg 6= 0, then α1

and α2 are nc-Killing.
The (local) existence of α1, α2 for decomposable cone holonomy allows a description

of the metric g on M by certain (double) warped-products (cf. [110]). In fact, let
Ei := pri∗(E), i = 1, 2, denote the projections of the Euler vector E to the (local)
factors (Ni, hi) of the product of the cone (M, ḡ). If we assume that the scalar curvature
is normed by scalg = ±n(n−1), the following two cases are possible (up to singularities
of α1, α2, resp., causal singularities of E1,E2):

(1) E1, E2 are both spacelike and scalg > 0. Then the metric g is locally isometric
to

dr2 + sin2(r) · k1 + cos2(r) · k2 , (27)

where k1, k2 are Einstein metrics with scalki = (ni − 1)(ni − 2), i = 1, 2. The
corresponding nc-Killing forms are (locally) given by

α1 = sinn1(r) · vol(k1) and α2 = cosn2(r) · vol(k2) .

If E1 and E2 are both timelike then the metric −g can locally be expressed in
the form (27).

(2) E1 is spacelike, E2 is timelike and scalg < 0. Then the metric g is locally
isometric to

dr2 + sinh2(r) · k1 + cosh2(r) · k2 , (28)

where k1, k2 are Einstein metrics with scalk1 = (n1 − 1)(n1 − 2) and scalk2 =
−(n2 − 1)(n2 − 2). The special Killing forms are

α1 = sinhn1(r) · vol(k1) and α2 = coshn2(r) · vol(k2) .

If E1 is timelike and E2 is spacelike the metric −g is locally of the form (28).

The second case will be of interest in Section 2.6, where we will also give a proof of
this statement. The proof of case (1) works the same.

We want to take a closer look to the situation when the cone (M, g) over an Einstein

space (M, g) with scalg 6= 0 is decomposable with a parallel covector P̂ (of arbitrary

causal type). Via the cone correspondence the covector P̂ gives rise to a (non-constant)

function fP̂ := ιEP̂ on (Mn, g), which satisfies the second order differential equation

∇gdfP̂ = cfP̂ · g with c =
−scalg
n(n− 1)

,

i.e., the vector gradg(fP̂ ) is a conformal gradient field and fP̂ is a nc-Killing function.
(The gradient corresponds to the parallel 2-form tractor o ∧ α in Ω2(T∗(M)), where
the dual standard tractor α corresponds to fP̂ .) In general, it is well-known that the
existence of a conformal gradient field gives rise to a (local) warped-product structure
on the base M (minus a singularity set, which consists of the zeros of the function and
the length square of its gradient; cf. [97]).

If P̂ is not null and c = −1 the corresponding warped-product structure for g is
either given by

dr2 + sin2(r) · k , resp., dr2 + cos2(r) · k
or

−dr2 + sinh2(r) · k , resp., − dr2 + cosh2(r) · k
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where k is an Einstein metric on a space of dimension n−1 with scalk = ±(n−1)(n−2).
If c = 1 the metric −g takes one of the given forms above. All these warped-product
structures are special cases of (27) and (28) when one of the metrics k1 or k2 does not

occur (for dimensional reason). In case when P̂ is null and c = ±1, the metric g is
locally given by

∓dt2 + exp2(t)k ,

where k is a Ricci-flat metric. For the singularity case, when grad(fP̂ ) has a zero on
an Einstein space, it is known that the sectional curvature has to be constant (in a
neighbourhood of the critical point), i.e., the base space is conformally flat there (cf.
[95, 97, 98]).

Conformal gradient fields are known (since a long time) to generate conformal
transformations between Einstein spaces (cf. [28, 93]). This can be understood in
our context as follows. The function fP̂ (which generates a conformal gradient) on
an Einstein space (Mn, g) is a nc-Killing function and we mentioned already at the
beginning of this section that the rescaling of the metric g by a nc-Killing function
(without zeros) gives rise to another Einstein metric in the conformal class. More
generally, l linearly independent parallel standard tractors gives rise to l independent
Einstein scales in a conformal class. For example, if Mn = Sn is the round n-sphere,
there exists the constant nc-Killing function o− and there are n+1 further, non-constant
and independent nc-Killing functions, each of them with an isolated zero, which give rise
(via stereographic projection) to n + 1 conformal transformations to Einstein metrics
with constant sectional curvature (up to a singular point). This is the conformally flat
case, where the number of independent nc-Killing functions on the base space is the
maximum n + 2.

We noticed already above that not all nc-Killing p-forms on an Einstein space are
special Killing. For example, non-parallel closed differential forms are not special.
However, there is an improvement of the cone construction for Einstein spaces (M, g)
with scalg 6= 0, which allows a description for any nc-Killing p-form α− ∈ Ωp(M). For
this purpose, we consider the metric

h := g − sgn(λg)ds2 = sgn(λg)(λgt2g + dt2 − ds2) with λg =
scalg

n(n− 1)

on M × R, which is again Ricci-flat and has signature (r + 1, s + 1). (cf. Chapter 2
and [68, 110]).

Proposition 5. Let (Mn, g) be a connected semi-Riemannian Einstein space with
scalg 6= 0. Then there exists a natural and bijective correspondence between nc-Killing
p-forms α− ∈ Ωp(M) and ∇h-parallel (p+ 1)-forms α̂ on M × R.

This result follows from the fact that the holonomy groups Hol(T) and Hol(∇h)
coincide. We will prove this in Section 2.5 in a more general case (cf. Theorem 15).
The correspondence of nc-Killing p-forms on (M, g) and ∇h-parallel (p + 1)-forms on
M×R in then explicitly given by a natural identification of the tangent space T (M×R)
with the standard tractor bundle T(M) along the level set M × {1, 0} in M × R. The
basic reason why all this works is that h is (the explicit form of) a Ricci-flat Fefferman-
Graham ambient metric for the conformal space (M, [g]) (cf. Chapter 2 and Section
0.11).
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Theorem 5. Let (M, g) be an oriented Einstein space with nc-Killing p-form α− 6=
0.

(1) If scalg 6= 0 there exist a special Killing p-form β1 and a special Killing (n −
p− 1)-form β2 such that α− = β1 + ⋆dβ2, i.e., α− is the sum of a coclosed and
a closed nc-Killing p-form.

(2) If scalg = 0 then either α−, dα−, d∗α− or �pα− is ∇g-parallel.

Proof. Let α = S(α−) be the corresponding ∇nor-parallel (p+1)-form tractor and
let t ∈ Γ(T(M)) be the ∇nor-parallel standard tractor that corresponds to the Einstein
metric g ∈ [g]. It holds that

ιt(t
♭ ∧ α) + t♭ ∧ (ιtα) = 〈t, t〉T · α .

Thereby, both (p+1)-form tractors α1 := ιt(t
♭∧α) and α2 := t♭∧(ιtα) are∇nor-parallel.

By construction, the corresponding differential forms α1− and ⋆α2− are both coclosed
and, if scalg 6= 0, then α− = 1

〈t,t〉T

(
α1− + α2−

)
.

If scalg = 0 and α−, dα− and d∗α− are not ∇g-parallel the p-form �pα− does not
vanish and must be parallel by equations (20) - (22). �

3. DeRham-like Decomposition Theorem

In this section we study conformal spaces (Mn, c), which admit simple ∇nor-parallel
(p+ 1)-form tractors

α = α1 ∧ · · · ∧ αp+1 ∈ Ωp+1(T∗M)

with 0 < p < n, i.e., α is (locally) a (p + 1)-times wedge product of 1-form tractors
αi in T∗M . The existence of such a tractor implies that the conformal holonomy
representation of Hol(T) has an invariant (non-trivial, proper) subspace in Rr+1,s+1

and thus is not irreducible. We will show that if such an invariant subspace in Rr+1,s+1

is non-degenerate with respect to 〈·, ·〉r+1,s+1, then there exists locally a certain product
of Einstein metrics in the conformal class c on M . This statement can be understood
as a conformal version of the deRham splitting Theorem in semi-Riemannian geometry
(cf. [141]). (The case p = 0 and p = n + 1 correspond to parallel (dual) standard
tractors, which are related to the conformal Einstein condition as we discussed in the
previous section.)

First, we observe here the following construction principle for spaces with nc-Killing
forms. Let (M1, g1) be an Einstein space of dimension n1 with a coclosed nc-Killing
form α−. Taking the product with another space (M2, g2) of dimension n2 produces
the space (M, g) = (M1×M2, g1 +g2). The pull-back of α− to M still satisfies equation
(19), since for every Y ∈ TM2

∇g
Y α− = ιY dα− = Y ♭ ∧ d∗α− = 0 ,

i.e., the pull-back α− is a conformal Killing form on (M, g). Now, it is straightforward
to see that if we choose g2 to be an Einstein metric of scalar curvature

scalg2 = −n2(n2 − 1)

n1(n1 − 1)
· scalg1 ,

then the normalisation conditions (20) - (22) are also satisfied for the pull-back α−.
Thus we have produced a space (M, g) of dimension n = n1 + n2 admitting a coclosed
nc-Killing form. (If we choose for g2 a different scalar curvature then α− does not



3. DERHAM-LIKE DECOMPOSITION THEOREM 81

satisfy the normalised equations. In particular, this shows that not every conformal
Killing form is normal, i.e., there is a difference between the space of ∇nor-parallel
(p+ 1)-form tractors and the kernel of D0 in the corresponding BGG sequence.)

On the other hand, we have the following result which says that certain conformal
Killing p-forms give rise to a product metric in the conformal class of a space.

Lemma 2. Let α− be a conformal Killing p-form with ‖α−‖2 6= 0 on a space (Mn, g)
satisfying the following three properties:

(1) α− is simple, i.e., α− = α1
1 ∧ . . . ∧ α1

p is a p-times ∧-product of 1-forms,

(2) there exists A ∈ X(M) such that dα− = A♭ ∧ α− and
(3) there exists B ∈ X(M) such that d∗α− = ιBα−.

Then a rescaled metric g̃ in the conformal class [g] on M exists such that the rescaled
conformal Killing form α̃− is parallel. In particular, if 0 < p < n then g̃ is (locally) a
product metric g1 × g2.

Proof. First, observe that all assumptions on α− are conformally covariant. For
example, d(eφα−) = Ã♭∧eφα− with Ã♭ = dφ+A♭. Since ‖α−‖2 6= 0, we can rescale the
metric g such that α̃− has constant non-zero length. Let us assume that g is already
this scale. Then we have

0 = X(g(α−, α−)) = 2g(∇g
Xα−, α−)

= 2g(
1

p+ 1
ιXdα− −

1

n− p+ 1
X♭ ∧ d∗α−, α−)

for any X ∈ TM . This equation shows that the vector fields A,B have to be zero for
the scaling g, i.e., the conformal Killing form α− is closed and coclosed, hence parallel
with respect to g. Moreover, since α− is simple by assumption, it follows that g is
(locally) a product g1 × g2 (when the degree of α− is not 0 or n). �

Lemma 2 generalises the well-known fact that a hypersurface orthogonal, conformal
Killing vector field is parallel with respect to some metric in the conformal class. We
also remark at this point that, in general, a conformal Killing p-form α− is conformally
related to a parallel p-form for some metric g̃ = e2φ · g in the conformal class if and
only if

dα− = −(p+ 1) · dφ ∧ α− and d∗α− = (n− p+ 1) · ιgrad(φ)α−

(cf. [143]). This shows that A,B 6= 0 in Lemma 2 are actually (local) gradients (if
they exist). For an (anti)-selfdual form α− = ± ∗ α− the two equations above are
equivalent.

Now we are prepared to study nc-Killing p-forms α− on (M, c) such that S(α−) is a
simple (p+1)-form tractor with 0 < p < n. So let α be such a ∇nor-parallel (p+1)-form
tractor. The first obvious statement we can make says that the four components α−,
α0, α∓ and α+ of α (with respect to any metric g ∈ c) are simple as well. For example,

α− = ιs+(ιs−(s♭+ ∧ α))

and, henceforth, α− is simple. We can say even more. Let us consider the (p+1)-form
tractor α at a single point x of (M, g) and let BT = {s−, s+, s1, . . . , sn} be a fixed frame
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of TxM with respect to g. In any case the (p + 1)-form tractor α can be written with
respect to BT either as

(s♭− + β1) ∧ (s♭+ + β2) ∧ β3 ∧ . . . ∧ βp+1

or as

(a · s♭− + b · s♭+ + β1) ∧ β2 ∧ . . . ∧ βp+1 ,

where the βi’s are linear combinations of the s♭i, i = 1, . . . n, and a, b ∈ R are some real
numbers. If we assume that α− = ΠH(α) 6= 0 at x ∈M then we can also assume that
d∗α− 6= 0 at x (after a possible conformal rescaling of the metric g in a neighbourhood
of x in M). This shows that the (p + 1)-form tractor α takes in a neighbourhood of
x ∈M with respect to a suitable metric and a local frame BT = {s−, s+, s1, . . . , sn} in
any case the normal form

(s♭− + β1) ∧ (s♭+ + β2) ∧ β3 ∧ . . . ∧ βp+1 ,

for some smooth 1-forms βj , j = 1, . . . , p + 1. From this normal form we finally see
that for any parallel (p + 1)-form tractor α on (M, c) with α− 6= 0 there exist smooth
vector fields A,B ∈ X(M) such that

dα− = A♭ ∧ α− and d∗α− = ιBα−

with respect to some metric g̃ ∈ c. We are in position to apply Lemma 2.

Lemma 3. Let α− be a nc-Killing p-form on (M, g) with ‖α−‖2 6= 0 such that
S(α−) is simple. Then there exists a metric g̃ in the conformal class [g] such that the
rescaled form α̃− is parallel.

The parallel nc-Killing p-form that is guaranteed by Lemma 3 is simple and, since its
degree is different from 0 and n, gives rise (locally by the original deRham Theorem) to
a product metric g1×g2 in the conformal class [g]. Moreover, the normalising equations
(16) and (17) for α show that the factors g1, g2 are Einstein with

scalg2 = −(n− p) · (n− p− 1)

p · (p− 1)
· scalg1 .

In this situation the Schouten tensor P
g̃ of the product g̃ = g1× g2 equals the product

P
g1×P

g2 of the Schouten tensors of the factors. This particular type of semi-Riemannian
product spaces will be of interest again in Chapter 2 (cf. [68]).

We also want to discuss the case when α− is a simple and totally lightlike nc-Killing
p-form, i.e., a wedge product of orthogonal, lightlike 1-forms only. This condition
implies that the vectors X ∈ TM with ιXα− = 0 span a totally lightlike subbundle of
TM . There is a version of Lemma 2 for such p-forms.

Lemma 4. Let α− be a (non-vanishing) simple and totally lightlike conformal
Killing p-form on a space (M, g) with the following two properties:

(1) there exists A ∈ X(M) such that dα− = A♭ ∧ α− and
(2) there exists B ∈ X(M) such that d∗α− = ιBα−.

Then there is (locally) a rescaled metric g̃ in the conformal class [g] such that the
rescaled nc-Killing form α̃− is parallel. In particular, the holonomy of the Levi-Civita
connection of g̃ is reducible with a fixed totally lightlike subspace.
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Proof. First, we show that we can assume α− to be a closed form with respect
to a suitable metric g̃ ∈ [g]. In fact, the differential form dα− is simple and closed by
assumption. Hence, by Frobenius’ Theorem there are (local) coordinates (x1, . . . , xn)
such that dα− = dx1 ∧ . . . ∧ dxp+1. Moreover, since α− is simple we can choose these
coordinates such that α− = f · dx1 ∧ . . . ∧ dxp, where f is a non-vanishing function
depending on x1, . . . , xp+1. By rescaling the metric we find that α̃− = f−1α− is a closed
nc-Killing form.

Now let α− = l1 ∧ . . . ∧ lp be a totally null and closed conformal Killing form with
d∗α− = t · l1 ∧ . . . ∧ lp−1, where the li’s are pairwise orthogonal and lightlike 1-forms
and t is some function. Then we can compute in an arbitrary point x ∈M :

0 = X(g(ιl̄1 . . . ιl̄p−1
α−, ιl̄1 . . . ιl̄p−1

α−))

= 2 · g(ιl̄1 . . . ιl̄p−1
∇g
Xα−, ιl̄1 . . . ιl̄p−1

α−)

=
2 · (−1)p

n− p+ 1
· g(tX♭, lp) for all X ∈ TxM ,

where we have chosen lightlike 1-forms l̄i with

∇g l̄i(x) = 0 , gx(li, l̄i) = 1 and gx(li, l̄j) = 0 for i 6= j .

This is only possible for all X ∈ TxM if t = 0, i.e., d∗α− = 0 (at any point x ∈ M).
Henceforth, α− is parallel and totally isotropic. �

Using Lemma 4 and the normal form description for simple (p + 1)-form tractors
with respect to some tractor frame BT = {s−, s+, s1 . . . , sn} leads us to the next result.

Lemma 5. Let α− be a simple and totally null nc-Killing p-form on (M, g) such
that S(α−) is simple. Then there is (at least locally) a metric g̃ in the conformal class
such that the rescaled form α̃− is parallel.

Again, we can say more than stated in Lemma 5. With respect to the metric g̃,
when α̃− is totally null and parallel, the corresponding (p + 1)-form tractor takes the
form

α = (s♭− + a · s♭+) ∧ l1 ∧ . . . ∧ lp
for some constant a ∈ R. However, if a 6= 0 then β = l1 ∧ . . . ∧ lp would be ∇nor-
parallel itself, since s♭− + a · s♭+ has constant non-zero norm with respect to the scalar
product 〈·, ·〉T. This is not possible, since ΠH(β) = 0. Therefore, the constant a
must be zero (and α is totally null), which implies that the scalar curvature of g̃ is
zero. Furthermore, equations (16) and (17) show that the Ricci tensor of g̃ maps into
the totally lightlike subspace of the tangent space consisting of those vectors, which
annihilate the nc-Killing form α̃−. And the metric g̃ has reducible holonomy with an
invariant lightlike subspace (which is not dilated under the action). In the generic case
we expect that the holonomy is weakly irreducible. We summarise our results so far.

Proposition 6. Let (M, c) be a conformal space and Hol(T) the conformal tractor
holonomy. The standard action of the group Hol(T) fixes a simple (p + 1)-form onRr+1,s+1 with 1 ≤ p ≤ n − 1 exactly in the following two situations (up to singular
points).
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(1) There is (locally) a product g1 × g2 of Einstein metrics in c with

scalg2 = −q(q − 1)

p(p− 1)
· scalg1 ,

where g1 is a metric on a space of dimension p and q := n− p. If scalg1 6= 0
then Hol(T) fixes a non-degenerate subspace (= decomposable case) and if
scalg1 = 0 then the group Hol(T) fixes a degenerate subspace of dimension
p+1, which contains an invariant lightlike standard tractor (= indecomposable
case).

(2) There exists g ∈ c admitting a totally lightlike Ricci tensor and a parallel
totally lightlike differential form α−. The group Hol(T) fixes a totally isotropic
subspace in Rr+1,s+1 (without dilation) of dimension at least 2.

The singular points that we exclude in Proposition 6 are those, where the projection
ΠH(α) of a simple and ∇nor-parallel (p+1)-form tractor vanishes or changes the causal
type. In the following we always exclude singularities of this type. In both cases of
Proposition 6 the tractor holonomy representation on Rr+1,s+1 is reducible. A further
possibility for a reducible holonomy Hol(T) is the case when a lightlike subspace of
dimension s is invariant, but dilated under the action. In this case any s-form on this
invariant subspace is not fixed by the action of the holonomy, and therefore, does not
give rise to a nc-Killing form, i.e., Proposition 6 does not apply to this situation.

In Chapter 2 we will present an ambient metric construction for conformal spaces
(M, c), where M = M1 × M2 and c is the conformal equivalence class of a product
metric g1 × g2 as in Proposition 6(1). If scalg1 6= 0 the ambient metric h of (M, c) is
explicitly given as the product

ḡ1 × ḡ2

of the metric cones over (M1, g1) and (M2, g2) (cf. Proposition 9). Moreover, we will
show in Section 2.5 that the conformal tractor holonomy Hol(T) coincides with the
holonomy group Hol(∇h) of the Levi-Civita connection of the ambient metric h (cf.
Theorem 15). It follows from the construction that the latter holonomy group equals
the product Hol(ḡ1)×Hol(ḡ2) of cone holonomies. Proposition 6 and 9 and Theorem 15
provide the ingredients to prove our deRham-like decomposition theorem (cf. [6, 110]).

Theorem 6. Let (Mn, c) be a simply connected conformal C∞-manifold with non-
trivial and decomposable tractor holonomy Hol(T), i.e., there exists a direct sum de-
composition

( Rr+1,s+1 , Hol(T) ) = (V0, {e})⊕
(

k⊕

i=1

(Vi, Gi)

)
,

where k ∈ N is at least 1 and all non-trivial factors Vi ⊂ Rr+1,s+1, i = 1, . . . , k, admit
(weakly) irreducible representations of some closed subgroup Gi ⊂ Hol(T). Then the
conformal class c is (at least locally up to singular points) represented by a product
metric of the form

g0 × Πk
i=1 (eφi · gi) ,

where all gi’s, i = 1, . . . , k, are Einstein metrics with scalgi = ±ni(ni − 1) defined on
certain Mi (of dimension ni ≥ 4), such that the cones (M i, ḡi) are undecomposable. The
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metric g0 is a flat factor defined on some space M0 of dimension n0 := (k−2)+dimV0,
whereas the φi’s are certain real functions depending on coordinates of M0 only.

Proof. The proof works by induction over k. First, let us assume that k = 1.
Then dimV0 > 0, since Hol(T) is decomposable. If dimV0 = 1 the class c is almost
conformally Einstein (of non-zero scalar curvature). Hence c = [eφ1 · g1] for some
Einstein metric with scalg1 = ±n1(n1 − 1) and a constant φ1 on the complement of a
singular set in M . If dimV0 ≥ 2 then it follows by Proposition 6 that c = [g̃0 × g1]
with g̃0, g1 Einstein and scalg1 = ±n1(n1 − 1). Thereby, the cone ḡ1 is (weakly)
irreducible and the cone of g̃0 is flat and has dimension dimV0, i.e., g̃0 is conformally
flat of dimension dimV0 − 1 = dimV0 + k − 2. After rescaling the metric g̃0 (up to
singular points) we obtain c = [g0 × (eφ1g1)], where g0 is flat on some M0 and eφ1 is
the rescaling function defined on M0.

Now let k > 1. Then we have c = [gk × h], where gk is an Einstein metric with
scalgk = ±nk(nk−1), whose cone ḡk has (weakly) irreducible holonomy group Gk. The
metric h is Einstein as well and its cone h̄ has holonomy H = Πk−1

i=1Gi. The ambient
metric of the conformal class [h] is given by h̄± dl2, where ±dl2 is a line element with
signature depending on the sign of scalh. The tractor holonomy Hol(T, [h]) of [h] equals
the holonomy of the ambient metric (cf. Theorem 15), which is again H = Πk−1

i=1Gi.
We can see that Hol(T, [h]) splits into k − 1 (weakly) irreducible factors and a trivial
factor of dimension 1 + dimV0.

Obviously, the conformal structure [h] satisfies (locally) all the assumptions of Theo-
rem 6 and, henceforth, by induction we know that [h] is represented by a product metric
of the form g0 × Πk−1

i=1 (eφi · gi), where g0 is a flat metric on a space M0 of dimension
((k − 1)− 2) + dimV0 + 1 = (k − 2) + dimV0 (which might be zero if k = 2). In fact,
the metric h is given by e−φk( g0 × Πk−1

i=1 (eφi · gi) ), where φk is some function on M0.
This shows that c is represented (locally up to singular points) by

g0 ×
(

Πk−1
i=1 (eφi · gi)

)
× (eφk · gk)

as stated in Theorem 6. �

We remark that Theorem 6 does not apply if k = 1 and dimV0 = 0. This is the case
of (weakly) irreducible conformal holonomy. For example, Ricci-flat metrics have in
the generic case weakly irreducible conformal holonomy Hol(T). A family of conformal
spaces with irreducible tractor holonomy are generic Fefferman spaces (cf. Chapter 6).
In view of Theorem 6 and the latter remark we might say that every conformal class c
on a space M is (locally up to singular points) either built by Einstein metrics (with
undecomposable cone) or the conformal holonomy is (weakly) irreducible as in the case
of (generalised) Fefferman constructions.

In conformal Riemannian geometry, the Möbius group is the projective Lorentz
group PO(1, n + 1) and (the connected component of) the tractor holonomy Hol(T)
sits in SOo(1, n+1). It is well known that the only subgroup of SOo(1, n+1), which acts
irreducibly on R1,n+1 is SOo(1, n+1) itself (cf. [142]). Moreover, one can easily see from
(15) - (18) that a Hol(T)-invariant lightlike line in R1,n+1 must contain an invariant
lightlike vector, which indicates (almost) conformal Ricci-flatness. Combining these
facts we see that a conformal space with Riemannian signature is either conformally
almost Einstein, a product of Einstein spaces (up to singular points) as in Theorem
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6 or its has the full tractor holonomy hol(T) = so(1, n + 1). In all these cases the
holonomy of a Fefferman-Graham ambient metric coincides with the tractor holonomy
Hol(T). (For the case hol(T) = so(1, n + 1) the identity of the holonomies is true for
trivial reason, otherwise Theorem 15 applies.)

We finally remark that the conformal tractor holonomy Hol(T) and the holonomy

Hol(∇h) of an ambient metric do not have much in common, in general. For example,
let us consider a 4-dimensional Fefferman metric g with non-vanishing Bach tensor
(cf. e.g. [132] for existence) and let h be an ambient metric for [g]. The (reduced)
conformal tractor holonomy Hol0(T) is a subgroup of SU(1, 2). However, Hol0(h) can
not be a subgroup of SU(1, 2), since this would imply that h is Ricci-flat, which is not
possible, since the obstruction tensor does not vanish. Even if the obstruction vanishes
for a conformal space there is no reason to expect that the holonomy groups Hol(T)

and Hol(∇h) coincide, in general!

4. Further Geometric Discussions

In Section 1.2 we have discussed nc-Killing p-forms on Einstein spaces. Using the
results of the previous section we want to add here some considerations about the un-
derlying geometries of solutions to the normalised equations (19) - (22), in general. We
also want to give some impression of possible geometries admitting nc-Killing p-forms
in 3- and 4-dimensional conformal geometry of Riemannian and Lorentzian signature.

So let (Mn, c) be a space of dimension n with conformal structure c of signature
(r, s) and let α− be a nc-Killing p-form. The corresponding ∇nor-parallel (p+ 1)-form
tractor α := S(α−) gives rise to a (p+1)-form α̂ on the standard module Rr+1,s+1, which
is stabilised by the tractor holonomy Hol(T) of (M, c). The orbit type of α̂ under the
action of O(r+1, s+1) is uniquely determined. We denote by StabT(α−) ⊂ O(r+1, s+1)
the stabiliser of the corresponding α̂. The tractor holonomy Hol(T) is a subgroup of
StabT(α−). The next result is an immediate consequence of Proposition 6.

Proposition 7. Let (Mn, c) be a conformal space with nc-Killing p-form α− such
that StabT(α−) in O(r+ 1, s+ 1) is isomorphic to a product G1 ×G2 of groups, which
acts decomposable on Rr+s,s+1. Then the conformal class c is represented (locally up
to singular points) by a product g1 × g2 on M1 ×M2 ⊂M as in Proposition 6(1) with
scalg1 6= 0, where g1 and g2 admit certain nc-Killing p-forms α1−, resp., α2− such that
α− = α1− + α2− on M1 ×M2.

Proposition 7 can be easily generalised to the case when StabT(α−) acts decom-
posable with more then two factors on the standard module Rr+1,s+1. In fact, if a
conformal class c on M is represented by a metric

g0 × Πk
i=1 (eφi · gi) ,

as discussed in Theorem 6, then any nc-Killing p-form α− on M can be expressed by
a sum

∑k
i=0 e

fi · αi− of pull-backs of certain nc-Killing forms αi− on the (Mi, gi) with
appropriate rescaling functions fi for i = 0, . . . , k.

Next let β 6= 0 be an arbitrary differential form on a space M . There exists a
unique integer rk(β) ≥ 0 such

β ∧ (dβ)rk(β) 6= 0 and β ∧ (dβ)rk(β)+1 = 0 .
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We call this integer rk(β) the rank of the differential form β. Now let us consider
an arbitrary nc-Killing p-form α− on (M, c) with ∇nor-parallel (p + 1)-form tractor
α = S(α−). The (p + 1)-form tractor α is given with respect to a metric g ∈ c on M
and a local tractor frame BT = (s−, s+, s1, . . . , sn) by

α = s♭− ∧ α− + α0 + s♭− ∧ s♭+ ∧ α∓ − s♭+ ∧ α+ .

Obviously, for any integer l ≥ 1 the (lp + l)-form tractor αl is ∇nor-parallel and the
canonical projection ΠH(αl) is (with respect to some g ∈ c) given by the differential
form

α− ∧ αl−1
0 = (p+ 1)1−l ·

(
α− ∧ (dα−)l−1

)

of degree l(p+ 1)− 1 on (M, g).

Proposition 8. Let (M, c) be a conformal space with nc-Killing p-form α−. The
differential form

α− ∧ (dα−)l−1

is non-trivial and nc-Killing for any number l with 1 ≤ l ≤ rk(α−) + 1.

After the general discussion so far, we state some results about the existence of
nc-Killing forms in dimension 3 and 4.

Theorem 7. Let (M3, g) be an oriented semi-Riemannian manifold of dimension
3 with arbitrary signature, which admits a non-trivial nc-Killing p-form α−. Then
(M3, g) is either conformally flat or conformally equivalent (up to singularities) to a
Ricci-isotropic Brinkmann wave (cf. Section 0.8).

Proof. Under the assumptions (using the Hodge star ⋆) there exists in any case
either a nc-Killing function or a nc-Killing 1-form on (M3, g). In the first case g is
almost conformally Einstein. Hence the space is conformally flat.

So let us assume that there exists a non-trivial nc-Killing 1-form α−. The 1-form
α− has either rank 0 or 1. If the rank is 1 then the Hodge dual of α− ∧ dα− is
a nc-Killing function, which shows that (M, g) is conformally flat. It remains to
discuss the situation when rk(α−) = 0. In this case the dual V− of α− is hypersurface
orthogonal by Frobenius’ Theorem and there exists (up to singularities) a metric
g̃ ∈ [g] such that V− is parallel. If V− is not null the metric g̃ is Ricci-flat. Hence
(M, g) is conformally flat. If V− is null the Ricci-tensor of g̃ maps into the subbundleR·V− ⊂ TM , i.e., g̃ is a Ricci-isotropic Brinkmann metric of signature (1, 2) or (2, 1). �

We also have some geometric description in dimension 4.

Theorem 8. Let (M4, g) be an oriented 4-space and let α− be a non-trivial nc-
Killing p-form. a) If g is a Riemannian metric and

(1) deg(α−) = 0 or 4 then (M4, g) is almost conformally Einstein,
(2) deg(α−) = 1 or 3 then (M4, g) is conformally flat,
(3) deg(α−) = 2 then (M4, g) is (up to singularities) conformally related to a

Ricci-flat Kähler space.

b) If g is a Lorentzian metric and deg(α−) = 1 then the following cases occur.

(1) rk(α−) = 1 and (M4, g) is a Fefferman space,
(2) rk(α−) = 0 and (M4, g) is conformally related to a Ricci-isotropic Brinkmann

wave (or conformally flat).



88 1. CONFORMAL KILLING FORMS WITH NORMALISATION CONDITION

Proof. a) First, let us consider the Riemannian case with nc-Killing 2-form α−.
We assume without loss of generality that α− is (anti)-selfdual. Then we set e2λ := ‖α‖2g
and one can show (in dimension 4) that

d∗α− = −3 · ιgrad(λ)α−

(cf. [143]), which implies dα− = 3dλ ∧ α− as well. It follows that ‖α−‖−3
g · α− is a

parallel Kähler form for the rescaled metric g̃ = ‖α−‖−2
g · g (off the singularity set; cf.

Section 1.3). The normalisation conditions (20) and (21) imply that the Ricci-tensor
of g̃ vanishes.

If the degree of α− is 0 or 4 it is clear that (M, g) is conformally almost Einstein.
It remains to discuss the case deg(α−) = 1. If rk(α−) = 0 then α− is conformally
related to a parallel 1-form for some metric g̃ ∈ [g], which has to be Ricci-flat by the
normalisation (up to singularities). This implies that g̃ is locally the product of a real
line with a Ricci-flat 3-space. Hence, (M, g) is conformally flat. If rk(α−) = 1 the
orbit type classification of 2-forms on R1,5 shows that the stabiliser StabT(α−) acts
decomposable on R1,5 (cf. Table 3). This fact implies that there exists (locally up to
singularities) a product g1× g2 ∈ [g] as in Proposition 6(1). In dimension 4 this is only
possible if (M, g) is conformally flat.

b) Now we discuss the case of a nc-Killing 1-form on a Lorentzian space (M, g).
The case rk(α−) = 0 works similar as above in dimension 3. So let us assume that
rk(α−) = 1. Again, the orbit type classification of 2-forms on R2,4 (cf. Table 3) shows
that if ‖α‖2g 6= 0 (up to singularities), then (M4, g) is locally conformally equivalent

to a product of Einstein spaces as in Proposition 6(1), which implies that (M4, g) is
conformally flat. However, if ‖α−‖2g = 0 and rk(α−) = 1 then the dual vector V− of
α− is lightlike and twisting (cf. Section 0.8) and α = S(α−) defines an orthogonal
complex structure on the standard tractor bundle T(M). This is the case of Fefferman
geometry (cf. Section 0.12 and Chapter 6). �

We remark that if α− is a nc-Killing 2-form on a Lorentzian space (M4, g) the notion
of selfduality does not apply. It seems that a geometric discussion for Lorentzian spaces
(M4, g) admitting nc-Killing 2-forms needs a further investigation of the O(2, 4)-orbit
types of 3-form tractors on R2,4. We do not address this problem here. Also the
case of neutral signature on 4-dimensional spaces (M4, g) requires more orbit type
investigations for 2- and 3-form tractors (cf. [140, 85, 80]). In Table 1 and 2 we
give an overview on 4-dimensional Riemannian and Lorentzian geometries admitting
nc-Killing p-forms.

5. Normal Form Description for 2-Forms in Signature (2, n− 2)

In this section we present a complete list (of building blocks) of normal forms for
skew-adjoint endomorphisms acting on the pseudo-Euclidean space R2,n−2 of dimen-
sion n and signature (2, n−2). The normal form description applies also to 2-forms onR2,n−2, which correspond to skew-adjoint endomorphisms in a natural way. We derived
this list from [27] (see also [129, 107]). Since any nc-Killing 1-form α− on a confor-
mal space (M, c) of Lorentzian signature (1, n− 1) gives rise via S(α−) to a uniquely
determined 2-form tractor α̂ on R2,n (with respect to a tractor frame), we can assign to
any α− a certain normal form from our list. This application will allow us a geometric
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Hol(T) sitting in (local conformal) geometry of [g] nc-Killing p-form

O(5) (almost) Einstein, scal > 0 function

O(1, 4) (almost) Einstein, scal < 0 function

Stab(e♭−) (almost) Ricci-flat function

Stab(e♭− ∧ ωo) (almost) Ricci-flat, Kähler Kähler form ωo

{e} conformally flat maximal

O(1, 5) generic case non

Table 1. nc-Killing p-forms on Riemannian spaces in dimension 4.

Hol0(T) sitting in (local conformal) geometry of [g] nc-Killing p-form

O(1, 4) (almost) Einstein, scal > 0 function

O(2, 3) (almost) Einstein, scal < 0 function

Stab(e♭−) (almost) Ricci-flat function

Stab(e♭− ∧ l),
l null, l⊥e♭−

pp-wave 1-form without twist,
Ric(V−, V−) = 0

SU(1, 2) Fefferman spaces 1-form with twist,
Ric(V−, V−) > 0

{e} conformally flat maximal

Stab(3-form) ? 2-form

O(2, 4) generic case non

Table 2. nc-Killing p-forms in 4-dimensional Lorentzian geometry.

description of conformal Lorentzian spin manifolds admitting twistor spinors. We will
discuss this in the final section of this chapter.

Theorem 9. (cf. [27]) Let β be an arbitrary 2-form on the pseudo-Euclidean spaceR2,n−2. Then there exist subspaces Vi such that R2,n−2 = ⊕iVi is an orthogonal direct
sum and the skew-adjoint endomorphism b, which corresponds to β, satisfies b(Vi) ⊂ Vi
for all i. Moreover, there exists a basis {ei1 , . . . , eidim(Vi)

} for every Vi such that the

corresponding matrices for (the restriction of) the scalar product 〈·, ·〉2,n−2 and for b
give a pair of blocks as presented in the rows of Table 3 below.

In the following we call a basis of R2,n−2, in which a skew-adjoint operator takes
a normal form, an adapted basis. There is always an orthogonal decompositionR2,n−2 = E ⊕ P to a skew-adjoint operator b such that E is Euclidean and b preserves
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signature (p, q) A = inner product B = skew-adjoint operator

(0, 1) : (1) (0)

(0, 2) :

„
1 0
0 1

«
B(µ) =

„
0 −µ
µ 0

«
µ 6= 0

(1, 0) : (−1) (0)

(1, 2) :

0
@

0 0 −1
0 1 0
−1 0 0

1
A

0
@

0 1 0
0 0 1
0 0 0

1
A

(1, 1) :

„
0 1
1 0

« „
λ 0
0 −λ

«
λ 6= 0

(2, 2) :

0
BB@

0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

1
CCA BIa =

0
BB@

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

1
CCA

(2, 1) :

0
@

0 0 1
0 −1 0
1 0 0

1
A BIb =

0
@

0 1 0
0 0 1
0 0 0

1
A

(2, 4) :

0
@

0 0 −I2
0 I2 0

−I2 0 0

1
A

0
@

0 I2 0
0 0 I2
0 0 0

1
A

(2, 0) :

„
−1 0
0 −1

«
BII (ν) =

„
0 −ν
ν 0

«
ν 6= 0

(2, 2) :

0
BB@

0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

1
CCA BIIa =

0
BB@

0 −ν 1 0
ν 0 0 1
0 0 0 −ν
0 0 ν 0

1
CCA ν 6= 0

(2, 4) :

0
@

0 0 −I2
0 I2 0

−I2 0 0

1
A

0
BBBBBB@

0 −ν
ν 0

I2 0

0
0 −ν
ν 0

I2

0 0
0 −ν
ν 0

1
CCCCCCA

ν 6= 0

(2, 2) :

„
0 I2
I2 0

« „
λI2 0
0 −λI2

«
λ 6= 0

(2, 2) :

0
BB@

0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

1
CCA

0
BB@

λ 0 1 0
0 −λ 0 1
0 0 λ 0
0 0 0 −λ

1
CCA λ 6= 0

(2, 2) :

0
BB@

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

1
CCA BIIb =

0
BB@

ξ −ν 0 0
ν ξ 0 0
0 0 −ξ ν
0 0 −ν −ξ

1
CCA ξ, ν 6= 0

(2, 3) :

0
BBBB@

0 0 0 0 1
0 0 0 −1 0
0 0 1 0 0
0 −1 0 0 0
1 0 0 0 0

1
CCCCA

0
BBBB@

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

1
CCCCA

Table 3. These are the building blocks in the diagonal for the normal forms of skew-adjoint

operators in signature (2, n− 2). The matrices in the first column (denoted by A) indicate an inner

product (of index s ≤ 2) with respect to some basis. The matrices in the second column (denoted

by B) are skew-adjoint endomorphisms with respect to the inner product in column A and the chosen

basis.
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the decomposition. We call the normal form to b on E an Euclidean block and the
normal form to b on P a pseudo-Euclidean block.

Examples.

(1) Let ωo :=
∑m

i=1 e
∗
2i−1 ∧ e∗2i be the standard (pseudo)-orthogonal Kähler form

on R2,n−2, where {e1, . . . , e2m} denotes the standard basis. The normal form
of the skew-adjoint operator corresponding to a multiple ω = ν · ωo of the
Kähler form with respect to the adapted basis {e1, . . . , e2m} is built by one
block of the form BII(ν) (pseudo-Euclidean block) and (m− 1) blocks of the
form B(ν) (Euclidean blocks) (cf. Table 3).

b) A 2-form ω = l♭1∧ l♭2 on R2,n−2, where l1 and l2 are lightlike vectors, which span
a totally lightlike plane, corresponds as skew-adjoint operator with respect to
some adapted basis to a composition of a pseudo-Euclidean block of the form
BIa and a trivial Euclidean block of edge length n− 4.

c) A 2-form ω = l♭1 ∧ t♭1 on R2,n−2, where l1 is lightlike, t1 is timelike and both
vectors are orthogonal, corresponds as skew-adjoint operator with respect to
some adapted basis to a composition of a block BIb and a trivial block of
length n− 3.

Now let ϕ̂ ∈ �2,n−2 be a spinor on the pseudo-Euclidean space R2,n−2 and let ς2(ϕ̂)
be the corresponding spinor square in the 2-forms. The following observation will help
us to determine the possible normal forms for spinor squares ς2(ϕ̂).

Lemma 6. Let ϕ̂ be a (±-Weyl) spinor on R2,n−2 and T ∈ R2,n−2 an arbitrary
unit timelike vector. The 1-form ιT ς2(ϕ̂) on the Minkowski space T⊥ ⊂ R2,n−2 (with
induced orientation) is the spinor square ς1(ϕ) of the induced spinor ϕ ∈ �1,n−2 on T⊥

(by restriction of ϕ̂; cf. [19]).

Proof. With respect to an orthonormal basis B = {e0, e1, . . . , en−1} of R2,n−2 such
that e0 = T we have the relation

ιT ς2(ϕ̂) = −i
∑

i<j

〈eiej · ϕ̂, ϕ̂〉�2,n−2 · ιT e∗i ∧ e∗j

= −i
n−1∑

j=1

〈T · ej · ϕ̂, ϕ̂〉�2,n−2e
∗
j = −

n−1∑

j=1

〈ejϕ, ϕ〉�1,n−2e
∗
j = ς1(ϕ)

holds (cf. Section 0.8 and [19, 107]). �

Lemma 6 shows that ς2(ϕ̂) 6= 0 whenever 0 6= ϕ̂ ∈ �2,n−2. This is because ς1(ϕ)
does not vanish (cf. Section 0.8). Moreover, since (the dual of) ς1(ϕ) is a causal vector,
Lemma 6 shows that any 2-form ς2(ϕ̂) induced by a spinor in signature (2, n − 2)
has the special property that insertion of any timelike vector produces (the dual of) a
causal vector. With simple calculations we can figure out, which normal forms built
from blocks of our list, are possible for the corresponding skew-adjoint endomorphism
to ς2(ϕ̂).

Corollary 1. Let ω be a 2-form in signature (2, n− 2) such that the covector ιTω
is causal for every timelike vector T ∈ R2,n−2.
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(1) If there is a timelike T such that ιTω is lightlike then the normal form corre-
sponding to ω is a composition of a pseudo-Euclidean block of the form BIa or
BIb with a trivial Euclidean block.

(2) If ιTω is timelike for all timelike T then the normal form of ω is a composition
of BII(ν), BIIa(ν) or BIIb(ν) (ν2 ≥ ξ2) with an Euclidean block consisting of
blocks of the form B(µ) with µ < ν and/or a trivial block.

In the following we will rely on four generic types of 2-forms on R2,n−2.

Definition 2. Let R2,n−2 be the pseudo-Euclidean space of signature (2, n− 2) and
let ω ∈ Λ2Rn∗ be a non-trivial 2-form. We say that ω is of

• Type (Ia) if ω = l♭1∧ l♭2 for some vectors l1 and l2, which span a totally lightlike
plane.
• Type (Ib) if ω = l♭1 ∧ t♭1 for some lightlike vector l1 and a l1-orthogonal timelike

vector t1.
• Type (IIa) or Kähler Type if ω is a non-trivial multiple of the Kähler form.
• Type (IIb) if there exists a non-trivial Euclidean subspace E in R2,n−2 such

that ω restricted to E vanishes and ω is of Kähler Type on the orthogonal
complement of E in R2,n−2.

We call these four types generic, since their stabilisers in O(2, n− 2) are maximal.

Corollary 2. A 2-form ω on R2,n−2, which is of Type (Ia), (Ib) , (IIa) or (IIb), is
distinguished by the following two properties.

(1) The covector ιTω is causal for every timelike vector T ∈ R2,n−2 and
(2) the stabiliser Stab(ω) in O(2, n− 2) is maximal, in the sense that there is no

non-trivial 2-form satisfying (1), whose stabiliser properly contains Stab(ω).

For the proof of Corollary 2 we just note that the stabiliser of a block of the form
BIIa(ν) or BIIb(ν) is (properly) contained in U(1, 1), which is the stabiliser of BII(ν).

Finally, we observe that the stabiliser of a 2-form of Type (Ia) or Type (Ib) acts
indecomposably on R2,n−2, i.e., there exists no non-trivial, proper and non-degenerate
invariant subspaces of R2,n−2 under the action of the stabiliser. The stabiliser of a
Kähler (Type) form is U(1, m− 1) and acts irreducibly on R2,2m−2. The stabiliser of a
2-form of Type (IIb) acts decomposable on R2,n−2.

6. Application to Twistor Spinors in Lorentzian Spin Geometry

We study here a geometric description for (conformal) Lorentzian spin manifolds
admitting solutions of the twistor equation for spinors without singularities (cf. Section
0.8). The discussion is based on the orbit type classification for corresponding spinorial
squares in the 2-form tractors deduced from the results of the previous section. Our
result extends those of J. Lewandowski in [117], H. Baum in [17] and Theorem 1.
The benefits of tractor and twistor calculus shall become obvious in this section again,
since (different to Riemannian spin geometry; cf. [19]) a geometric characterisation for
solutions of the twistor equation does not seem to work by other means. In Chapter
4 we will apply our methods also to a discussion of conformal Killing spinors with
singularities in Lorentzian spin geometry!

So let (Mn, g) be a connected and time-oriented Lorentzian spin manifold of dimen-
sion n ≥ 3 with (complex) spinor bundle S and indefinite Hermitian product 〈·, ·〉S.
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Recall that a twistor spinor ϕ ∈ Γ(S) is a solution of the overdetermined PDE

∇S
Xϕ+

1

n
X ·DSϕ = 0 for all X ∈ TM .

The Dirac current to ϕ is defined by the relation

g(Vϕ, X) := −〈X · ϕ, ϕ〉S
for any X ∈ TM . If ϕ 6≡ 0 is a conformal Killing spinor then the corresponding Dirac
current Vϕ is a conformal Killing vector field. Actually, the dual 1-form ς1(ϕ) to Vϕ
satisfies the normalised equations (19) - (22), i.e., ς1(ϕ) is a nc-Killing 1-form on (M, g).

The latter fact becomes clear from the following observation. In general, the cor-
responding twistor Ψ := S(ϕ) ∈ Γ(W) to a conformal Killing spinor ϕ ∈ Γ(S) is
∇W-parallel on (M, [g]) (cf. Section 0.8). As usual we can form from Ψ the spinorial
squares, which give rise to p-form tractors on (M, [g]). These p-form tractors (which
might be trivial for certain degrees p) are ∇nor-parallel, by construction. In any case,
since (M, g) has Lorentzian signature, the spinorial Möbius group Spin(2, n) has signa-
ture (2, n) and by definition of the Hermitian product 〈·, ·〉W on the spin tractor bundle
W, it is clear that the spinorial square ς2(Ψ) in the 2-form tractors is non-trivial if Ψ
itself is non-trivial. In fact, the 2-from tractor ς2(Ψ) is defined by the relation

〈ς2(Ψ), X2〉T := −i〈X2 ·Ψ,Ψ〉W
for all X2 ∈ Ω2(T∗M) and its projecting part ΠH(ς2(Ψ)) (with respect to the metric g)
is nothing else, but the non-trivial nc-Killing 1-form ς1(ϕ), which is dual to the Dirac
current of the twistor spinor ϕ 6≡ 0:

ϕ
twistor spinor

←→ Ψ ∈ Γ(W)
∇nor-parallel twistor

| |
↓ ↓

ς1(ϕ)
nc-Killing 1-form

←→ ς2(Ψ) ∈ Ω2(T∗M)
∇norparallel 2-form tractor

.

Now we can assign to any conformal Killing spinor ϕ on a Lorentzian spin manifold
(M, g) a 2-form α̂ϕ on R2,n, which corresponds to the ∇nor-parallel 2-form tractor ς2(Ψ)
(with respect to a tractor frame). The 2-form α̂ϕ is stabilised by Hol(T) and admits
a uniquely defined O(2, n)-orbit type with a certain normal form built from blocks of
Table 3. Since α̂ϕ is a spinorial square, the possible generic types for α̂ϕ are given in
Definition 2.

Note that the normal form of α̂ϕ is linked to the rank of the nc-Killing 1-form
ς1(ϕ). For example, rk(ς1(ϕ)) = 0 when α̂ϕ has Type (Ia) or (Ib), whereas the rank
of ς1(ϕ) is n/2− 1 (= maximal) for the Kähler Type (IIa). If α̂ϕ has Kähler Type on
a codimension 1 subspace of R2,n, the rank of ς1(ϕ) is maximal as well, namely n−1

2
,

which simply reflects that ς1(ϕ) is a contact form. In the higher codimensional cases
of Type (IIb) the rank of ς1(ϕ) varies between 0 and n−2

2
. Also note that if α̂ϕ is not

generic, then there exists a nc-Killing 1-form α− on (M, g) such that the stabiliser of
the normal form of S(α−) contains the stabiliser of α̂ϕ. This can only happen if α̂ϕ is
built with a block of the form BIIa(ν) or BIIb(ν). In fact, α− can be chosen such that
the non-trivial blocks of the normal form of S(α−) have the same edge length as the
non-trivial block of the normal form of α̂ϕ. This implies that the rank of the 1-forms
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ς1(ϕ) and α− are the same! The singularity set sing(ϕ) of a twistor spinor ϕ is defined
to be the union of the zeros of ϕ with the singularities of the length square of its Dirac
current Vϕ (cf. Chapter 4). The set M̃ := M r sing(ϕ) is dense in M .

Theorem 10. Let ϕ be a twistor spinor on a Lorentzian spin manifold (Mn, g)
of dimension n ≥ 3. Then at least one of the following statements is true on M̃ =
M r sing(ϕ).

(1) It holds that

rk(ς1(ϕ)) = 0 and ‖ς1(ϕ)‖2g = 0

and ϕ is locally conformally equivalent to a parallel spinor with lightlike Dirac
current Vϕ on a Brinkmann wave.

(2) It holds that

rk(ς1(ϕ)) = 0 and ‖ς1(ϕ)‖2g < 0

and then (locally) [g] = [−dt2 + h], where h is a Ricci-flat Riemannian metric
admitting a parallel spinor (= static monopole case).

(3) The dimension n is odd and the rank

rk(ς1(ϕ)) = (n− 1)/2

is maximal. Then (M̃, g) is conformally related to a Lorentzian Einstein-
Sasaki manifold.

(4) The dimension n is even and the rank

rk(ς1(ϕ)) = (n− 2)/2

is maximal. Then g is locally conformally related to a Fefferman metric on
M̃ = M .

(5) It holds that 0 < rk(ς1(ϕ)) < (n − 2)/2 and there exists (locally) a product

metric g1× g2 ∈ [g] on M̃ , where g1 is a Lorentzian Einstein-Sasaki metric on
a space M1 of dimension n1 := 2 · rk(ς1(ϕ)) + 1 admitting a Killing spinor φ1

and g2 is a Riemannian Einstein metric with Killing spinor φ2 on a space M2

of positive scalar curvature scalg2 = − (n−n1)(n−n1−1)
n1(n1−1)

scalg1.

Proof. The conformal Killing spinor ϕ on (Mn, g) gives rise to a ∇nor-parallel
spinorial square ς2(Ψ) in the 2-form tractors, where Ψ = S(ϕ). By Corollary 2, it
follows that the conformal tractor holonomy Hol(T) of (M, [g]) fixes a 2-form α̂ of
generic type l♭1 ∧ l♭2, l♭1 ∧ t♭1, ωo or ωo|V as described in Definition 2. (Note that the
normal form of ς2(Ψ) might not be exactly one of these four generic types, but in any
case there exists a generic type with bigger stabiliser and same edge length as ς2(Ψ)).
We can conclude that there exists a ∇nor-parallel 2-form tractor β with normal form
α̂ and corresponding nc-Killing 1-form α− on (M, g) such that the tank of ς1(ϕ) and
α− are the same.

Now let us discuss the four generic cases (one of which has to occur on M). First,
let us assume that S(α−) has orbit type l♭1 ∧ l♭2. Then, in fact, S(ς1(ϕ)) has the same
orbit type and, therefore, the rank and the length square of ς1(ϕ) are zero. This shows

that locally on M̃ ⊂M (where ϕ has no zeros) some g̃ ∈ [g] exists such that the Dirac
current Vϕ is a ∇g̃-parallel null vector and the Ricci-tensor of g̃ is totally isotropic.
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Moreover, in this scaling the conformally rescaled spinor ϕ̃ to ϕ has to be ∇S-parallel
(cf. [106]).

Next, if n is odd and rk(α−) = rk(ς1(ϕ)) = n−1
2

, the 2-form tractor β has orbit

type ωo|V and the (n + 1)-form tractor β
n+1

2 is non-trivial and ∇nor-parallel. The

Hodge dual ⋆Tβ
n+1

2 is a ∇nor-parallel spacelike dual standard tractor, which gives rise
to an Einstein scale g̃ ∈ [g] on M̃ . The tractor holonomy Hol(T) sits in U(1, n−1

2
)

and an explicit ambient metric h for [g̃] on R × R+ × M̃ is known (cf. Theorem 11).
The ambient metric h is Ricci-flat and its holonomy Hol(∇h) equals the conformal
holonomy by Theorem 15, i.e., Hol(∇h) sits in SU(1, n−1

2
). This implies that the cone

metric of g̃ on R+× M̃ is Ricci-flat and pseudo-Kähler. It follows that the base metric
g̃ on M̃ is a Lorentzian Einstein-Sasaki space of negative scalar curvature (cf. Section
0.9). If n is even and rk(ς1(ϕ)) = n−2

2
then the 2-form tractor β has type ωo (or ωo|V

with V of codimension 2) and the n-form tractor β
n
2 is non-trivial and ∇nor-parallel.

This shows that Hol(T) sits in U(1, n/2), which implies by Corollary 8 that (M, g) is
locally conformally equivalent to a Fefferman space. The singularity set is empty in
this case (cf. Chapter 6).

In the remaining two cases a product metric will turn up in the conformal class
[g] and the factors will admit certain spinors. To prove this, we need the following
standard argument. Assume that the representation R2,n splits into a direct sum of
non-degenerate invariant subspaces A of signature (2, p) and B of signature (0, n− p)
under the action of Hol(T). Then we denote by �A, resp., �B the corresponding spinor
modules. As representations spaces of Spin(2, p)× Spin(n− p) we have�A ⊗ �B = �2,n for n odd and �A ⊗ �B = �±

2,n for n even .

In general, if ρ is some representation of a product group G1 × G2 and ρ1, ρ2 are
representations of G1, resp., G2 such that

ρ ∼= ρ1 ⊗ ρ2 ,

then the representation ρ has a fixed vector if and only if ρ1 and ρ2 both have fixed
vectors. In our situation that means the preimage of a decomposable tractor holonomy
group Hol(T) in Spin(2, n) fixes a spinor in �2,n (resp., �±

2,n) iff the action of both
factors of the preimage fix some spinors in �A and �B.

Now let rk(ς1(ϕ)) = 0 and ‖ς1(ϕ))‖ < 0 on M̃ ⊂ M . Then the Dirac current Vϕ
is parallel with respect to g̃ = ‖Vϕ‖−2

g · g ∈ [g] on M̃ and g̃ is Ricci-flat. This shows

that [g] contains a static monopole metric −dt2 +h, where h is a Ricci-flat Riemannian
metric and −dt2 +h admits a parallel spinor (cf. Section 0.8). The fact that h admits a
parallel spinor as well, follows from the general observation of the previous paragraph.

Finally, if non of the cases so far apply to M̃ , then 1 ≤ q < n−2
2

holds for the rank
q := rk(ς1(ϕ)), and there exists a ∇nor-parallel 2-form tractor β, whose orbit type is
ωo|V , and βq+1 is a ∇nor-parallel volume form of a non-degenerate subbundle V ⊂ T

of rank n1 + 1 = 2q + 2. This implies that locally on M̃ there exists a product metric
g1 × g2 ∈ [g] as in Proposition 6(1), where g1 lives on some space M1 and g2 on some
M2. In particular, h = ḡ1 × ḡ2 on (R+ × M1) × (R+ × M2) is an explicit ambient
metric for [g], whose holonomy is identical to Hol(T) (cf. Theorem 15). Thereby, we
can choose g1 such that the tangent space of its cone R+ ×M1 (along the 1-level) is

canonically identified with V in T on M̃ , which is furnished with the ∇nor-parallel
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2-form tractor β. This shows that the cone metric ḡ1, which is Ricci-flat, is equipped
with a parallel pseudo-Kähler form, and we can conclude that g1 is a Lorentzian
Einstein-Sasaki metric of dimension n1 (with scalar curvature −n1(n1−1)). It remains
to be shown that g1 and g2 admit Killing spinors. However, this follows again with the
general observation from above, since the lift of Hol(T) to Spin(2, n) fixes a twistor in�2,n and decomposes the standard module R2,n. Therefore, we have parallel spinors on
the metric cones ḡ1 and ḡ2, which says that there are Killing spinors on the bases (cf.
Proposition 1). �

Note that the cases (1) - (4) of Theorem 10 include the standard geometries, which
are well known to admit solutions of the twistor equation (cf. [117, 18] and Theorem 1).
The only new development in the geometric classification of Theorem 10 is the product
case (5). Also note that if the Dirac current Vϕ of a conformal Killing spinor ϕ on
(M, c) is lightlike then the rank rk(ς1(ϕ)) has to be extremal, i.e., either rk(ς1(ϕ)) = 0
or n

2
− 1 (cf. Theorem 1 and [40]).

Finally, we remark that in general, if g = g1 × g2 is a product metric such that
g1 and g2 admit Killing spinors ψ1 and ψ2 with Killing numbers λ1 = ±iλ2, then the
tensor product ψ1⊗ψ2 ∈ Γ(S) is a conformal Killing spinor for g1× g2. One can prove
this fact by checking the twistor equation directly using the spinor connection

∇S,g = ∇S,g1 ⊗ 1 + 1⊗∇S,g2 .

However, for this computation one has to work out carefully a correct identification for
the tensor product of the Clifford algebras of the factors with the Clifford algebra of the
total space. In any case the product construction is a way to produce Lorentzian spin
spaces admitting conformal Killing spinors of the 5th kind of Theorem 10. One simply
has to take a (simply connected) Lorentzian Einstein-Sasaki spin space (which always
admits an imaginary Killing spinor with Killing constant λ1 ∈ iR) and a Riemannian
spin space with real Killing spinor (and Killing constant ±iλ1), whose Dirac current
vanishes! The classification of complete Riemannian spaces with real Killing spinors is
well known (cf. [12] and Section 0.9). For example, nearly G2-spaces and nearly Kähler
spaces are suitable for the product construction (since the Dirac current vanishes in
these two case, whereas the spinor square in the 3-forms, resp., in the 2-forms does not
vanish in these situations).



CHAPTER 2

A Sub-Product Construction of Poincaré-Einstein Metrics

Einstein metrics have a distinguished history in geometry and physics. An area of
intense recent interest has been the study of conformally compact Einstein metrics and
their asymptotically Einstein generalisations. In particular, there have been exciting
recent developments relating the topology and scattering theory of these structures
with Branson’s Q-curvature, renormalised volume and related quantities [1, 5, 47,
55, 74, 79]. This programme is intimately linked to the AdS/CFT programme of
physics [124, 78] which seeks to relate conformal field theory of the boundary conformal
manifold to the (pseudo)-Riemannian field theory of the interior bulk structure.

Let M be a compact smooth manifold with interior M+ and boundary M = ∂M .
A central question is the existence and uniqueness of a Poincaré-Einstein metric g+

on the interior M+ for a given conformal structure on the boundary M (cf. Section
0.11). In [77] Graham-Lee showed that each conformal structure on Sn, sufficiently
near the standard one, is the conformal infinity of a unique (up to diffeomorphism)
asymptotically hyperbolic Poincaré-Einstein metric on the ball near the hyperbolic
metric. This idea has been extended to more general circumstances by Biquard [26],
Lee [104] and Anderson, e.g. [5]. In another direction, yielding further examples, a
connected sum theory for combining Poincaré-Einstein metrics has been developed by
Mazzeo and Pacard [125]. The problem of obtaining existence and examples is already
interesting if we drop the requirement of compactness and simply seek a Poincaré-
Einstein collar (and certain extensions thereof) for a given conformal space (Mn, [g]).
From the physical point of view it is not necessarily expected that Poincaré-Einstein
metrics are conformally compact.

In this chapter the main result is a construction of Poincaré-Einstein metrics for
a class of boundary conformal structures. More precisely it is this. Given a pair
of Einstein manifolds (Mm1

1 , g1) and (Mm2
2 , g2), of signatures resp. (p1, q1) and (p2, q2),

such that their scalar curvatures are related by m2(m2−1)scalg1 = −m1(m1−1)scalg2,
we give a signature (p1 + p2, q1 + q2 + 1) Poincaré-Einstein structure on M1 ×M2 × I,
where I is a suitable subset of the real line and contains an interval [0, r0) for some
r0 > 0. The conformal infinity is (M1 ×M2, [g1 × g2]). This is Theorem 13. Using r
for the standard coordinate on the interval [0, r0), explicitly the interior metric is

g+ = r−2(dr2 + (1− µr2/2)2g1 + (1 + µr2/2)2g2),

where µ is any constant satisfying 2m1(m1−1)µ = scalg1 and 2m2(m2−1)µ = −scalg2 .
We take m1 ≥ 1 and m2 ≥ 0. In the construction m2 = 0 corresponds to taking
(Mm2

2 , g2) as a point (or a collection of isolated points). Thus, as a special case, we
recover an explicit Poincaré metric for the case that the boundary metric is Einstein.
In the generic situation of our construction, the product metric g1×g2 will sit uniquely
as the only metric in its conformal class [g1×g2] which is a product of Einstein metrics,

97
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and so in this setting the Poincaré-metric is determined by the boundary conformal
structure.

In Section 2.4 we show (cf. [77]) that a certain smooth extension of the metric cone
of the interior of a Poincaré-Einstein structure, with conformal infinity (M, [g]), yields a
Ricci-flat ambient metric for (M, [g]) (in the sense of [54, 38] except here we obtain the
ambient as a manifold with boundary and as a fibred structure over the full Poincaré-
Einstein structure). Thus our results above can be rephrased in terms of the ambient
metric. In fact our construction proceeds in the other direction. Over a non-Ricci flat
Einstein m-manifold (M, g) one may construct the Ricci-flat dimension m + 1 metric
cone (M, g) (cf. Section 0.9). If M1 and M 2 are two such cones, over Einstein metrics
g1 and g2 with an appropriate scalar curvature relation, then we show, in Section 2.2
that the product (M1 ×M2, g1 × g2) is an ambient metric for (M1 ×M2, [g1 × g2]).
The construction generalises in the sense that one may write down the same ambient
metric directly and this then extends to the case that g1 and g2 are Ricci-flat. This
general case is treated first in Theorem 11 of Section 2.1, where we verify explicitly that
the metric satisfies the conditions of a Ricci-flat ambient metric as in [38, 54]. The
Poincaré-Einstein metric arises on the hypersurface of the ambient space given by the
zero set of the defining function h(X,X)+1 (cf. Section 0.11). Thus Poincaré-Einstein
metrics are equivalent to ambient metrics, at least ambient metrics as manifolds with
boundary, in the sense of Section 2.4. (We should point out that starting with a smooth
general Poincaré-Einstein metric the ambient metric may fail to be smooth up to the
boundary, but will always be differentiable to an order depending on the dimension.)

In Theorem 15 we show that holonomy of the ambient metrics from Theorem 11
agrees with the conformal holonomy. Using this result we show in Theorem 12 that
in general the products g1 × g2, where m2(m2 − 1)scalg1 = −m1(m1 − 1)scalg2, are
not conformally Einstein. In fact we show the stronger result that they are in general
not conformally almost-Einstein in the sense of [65]. This shows that the general
construction of ambient metrics and Poincaré-Einstein metrics here is not a disguised
form of the simpler construction for Einstein boundaries. The ambient variant of the
latter seems to have been first given in [110, 76] (and see also [6]). Since the obstruction
tensor O is an obstruction to the type of ambient metrics and Poincaré metrics that
we construct [71, 76], it also follows that the generic products of this form give a
large class of metrics which are not conformally almost-Einstein and yet for which
the obstruction tensor O vanishes, see Corollary 3 and Theorem 12. (The obstruction
tensor vanishes on manifolds which are conformally almost-Einstein [54, 71, 76].)

In Section 2.6 we show that the Poincaré-Einstein interior metrics, that we obtain,
are characterised by the presence of certain special Killing forms (cf. Section 0.4
and 0.9). In the final section we give examples of Poincaré-Einstein metrics where the
boundary conformal structure is not conformally Einstein. It is also observed there that
one can obviously iterate the construction of Poincaré-Einstein metrics, as described in
Theorem 13, to obtain a recursive construction principle for a class of Poincaré-Einstein
metrics.

The content of this chapter originates from the paper [68], which is a joint work of
the author in collaboration with Prof. A. Rod Gover from the University of Auckland
in New Zealand.
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1. A Family of Explicit Ambient Metrics

For a pair of suitable Einstein metrics g1 and g2 we give here an explicit Ricci-flat
ambient metric. In the theorem we include the case of just a single Einstein manifold
M1. This is consistent with the general construction by taking the view that the
second manifold M2 is a single point (and so of dimension m2 = 0). It was known to
Fefferman and Graham [54] that the problem of constructing a formal ambient metric
was solvable to all orders whenever the conformal structure underlying manifold M was
conformally Einstein. In [110] an explicit ambient metric was given for that case. The
following theorem may be viewed as an extension and generalisation of those results
(cf. Proposition 6(1) of Chapter 1).

Theorem 11. Suppose that (Mm1
1 , g1) and (Mm2

2 , g2), of signatures resp. (p1, q1)
and (p2, q2), and with m1 ≥ 1, m2 ≥ 0, are Einstein manifolds such that m2(m2 −
1)scalg1 = −m1(m1 − 1)scalg2. For each µ ∈ R satisfying 2m1(m1 − 1)µ = scalg1

and 2m2(m2 − 1)µ = −scalg2, there is a signature (p1 + p2 + 1, q1 + q2 + 1) Ricci-flat
ambient manifold for the conformal manifold (M1 ×M2, [g1 × g2]), with metric given
by the expression (29) below.

Note that if either of m1 or m2 is at least 2 then there is exactly one solution µ to
the condition, 2m1(m1−1)µ = scalg1 and 2m2(m2−1)µ = −scalg2 . Otherwise µ is any
real number. (In fact if m1 = 1 and m2 = 0 then µ can be taken to be a non-vanishing
function. We do not treat this as a special case as the factor may be absorbed as a
conformal transformation of g1.)

Proof. Let us simplify notation by defining M := M1×M2, and g := g1× g2. We
write π : Q → M for the R+-bundle of metrics conformally related to g. The metric
g determines a fibre coordinate t on Q by writing a general point of Q in the form
(p, t2g(p)), where p ∈ M and t > 0 (cf. Section 0.11).

The ambient manifold is defined to be M̃ := Q× Ĩ where

Ĩ =





R if µ = 0,R \ {− 1
µ
} if µ 6= 0 and m2 = 0,R \ { 1

µ
,− 1

µ
} otherwise.

There is a projection M̃ → Q given by forgetting the Ĩ component in the product.
Following this with π : Q → M we have a projection π̃ : M̃ → M . It follows that we
have the canonical bilinear forms π̃∗g1 and π̃∗g2 on M̃ . For notational simplicity let us
write, respectively, g1 and g2 for these forms on M̃ .

We equip M̃ with the metric

h := 2tdtdρ+ 2ρdt2 + t2[(1 + µρ)2g1 + (1− µρ)2g2], (29)

where ρ is the standard coordinate on R viewed as a coordinate on Ĩ (and hence on
M̃) and Q is identified with its image Q × {0} ⊂ M̃ (cf. Section 0.11). Note that

the functions 1 ± µρ are non-vanishing on the set Ĩ. The metric h on M̃ satisfies by
definition the conditions (i) and (ii) of Section 0.11 for an ambient metric. It remains
to check that h is Ricci flat. For this purpose we calculate the components of Ric(h)
as given by the expressions (11) - (13) of Section 0.11. Fixing some choice of local
coordinates x1, · · · , xm1 on M1 and xm1+1, · · · , xm1+m2 on M2, the coordinates (x, t, ρ)
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on M̃ are the obvious extension of the coordinates (x, t) on Q. We calculate in these
coordinates, and for a function f(x, t, ρ) the notation f ′ will mean ∂f/∂ρ.

First we calculate (11), (12), and (13) for the metric (29) in the case m2 = 0, that
is g̃ = a2g1 where a := 1 + µρ. For simplicity write n = m1 and g = g1. Then we have
g̃′ij = 2µagij and hence we have g̃klg̃′kl = 2µa−1n and g̃′′ij = 2µ2gij . Substituting these
in (11) we obtain

−2ρµ2 + 2nρµ2 + (2− n)aµ− anµ+ 2nµ− 2µ = µ(n− 1)(2ρµ− 2a+ 2) = 0,

since ρµ = a − 1. For (12) we need also g̃ij g̃′′ij = 2a−2µ2n and substituting this gives

−na−2µ2 + na−2µ2 = 0. Finally for (13) observe that g̃klg̃′kl depends only on ρ and so

∇̃(ρ)
j (g̃klg̃′kl) = 0. On the other hand g̃klg̃′kj = 2µa−1δlj, Thus

∇̃(ρ)
l (g̃klg̃′kj) = 2µa−1∇̃(ρ)

l δlj = 0 ,

and so Ric(h)ρj = 0.
Next we assumem2 ≥ 1 and so g̃ = a2g1+b

2g2, where a := (1+µρ) and b := (1−µρ).
First note that g̃′ij = 2µag1

ij − 2µbg2
ij and hence we have g̃klg̃′kl = 2µ(a−1m1 − b−1m2)

and g̃′′ij = 2µ2g1
ij + 2µ2g2

ij. Substituting these in (11) and assuming that 1 ≤ i ≤ m1

brings us to

−2ρµ2 + 2ρµ2(m1 −m2
a

b
) + (2−m1 −m2)µa− µa(m1 −m2

a

b
) +

1

m1
scalg1

times g1
ij. But now using that scalg1 = 2m1(m1 − 1)µ and a− b = 2µρ this becomes

µ

b
[b(b− a) + (a− b)(bm1 − am2)

+ ab(2−m1 −m2)− a(bm1 − am2) + 2b(m1 − 1)] = µ(b+ a− 2)(1−m1),

which vanishes identically since b+a = 2. A similar calculation for (11) with m1 +1 ≤
i ≤ m1 +m2 gives µ(b+ a− 2)(1−m2) = 0 and so Ric(h)ij vanishes identically on M̃ .

For (12) with g̃ = a2g1 + b2g2 we have

−1

2
(2µ2a−2m1 + 2µ2b−2m2) + µ2a−2m1 + µ2b−2m2 = 0.

Finally the case (13). First observe that g̃klg̃′kl = 2µ(a−1m1− b−1m2) depends only

on ρ and so ∇̃(ρ)
j (g̃klg̃′kl) = 0. On the other hand g̃klg̃′kj = 2µa−1P(1)

l
j
−2µb−1P(2)

l
j
, where

P(1) is the section of End(TM) projecting onto TM1 and P(2) is the complementary
projection onto TM2. (Here we view TM as TM1 ⊕ TM2 via the derivative of the
product structure M = M1 ×M2.) Thus

∇̃(ρ)
l (g̃klg̃′kj) = 2µa−1∇̃(ρ)

l P(1)
l
j
− 2µb−1∇̃(ρ)

l P(2)
l
j
.

But ∇̃(ρ) is the Levi-Civita connection for a product metric compatible with the struc-
ture M1×M2. Thus ∇̃(ρ)P(1) = 0 =∇̃(ρ)P(2) and we conclude that Ric(h)ρj=0. �

2. The Generic Setting and Metric Cones

For (Mm, g) an Einstein manifold of dimension m > 1 and scalar curvature scalg 6=
0 we define the metric cone to be M = M × R+ equipped with the metric

g = sgn(λg)(λgs2g + ds2) (30)
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where the non-zero constant λg satisfies scalg = m(m− 1)λg (cf. Section 0.9). This is
Ricci-flat. Remember that if g has signature (p, q) then the cone has signature (p+1, q)
or (p, q + 1) according to whether λg is respectively positive or negative.

Now suppose that we have a pair of Einstein manifolds (Mm1
1 , g1) and (Mm2

2 , g2)
such that m2(m2 − 1)scalg1 = −m1(m1 − 1)scalg2 as in Theorem 11 (and we allow the
case m2 = 0 as explained there.) We will show that the product of the cones over
(M1 ×M2, g1 × g2) is the ambient manifold from Theorem 11.

With λ satisfying scalg1 = m1(m1 − 1)λ there is no essential loss of generality in
assuming that λ > 0. Then the cone metrics are

g1 = λs2
1g1 + ds2

1 and g2 = λs2
2g2 − ds2

2 (31)

on, respectively, M 1 and M 2. A product of Ricci-flat metrics is always Ricci-flat and
so in particular this is true for the product metric

h× := g1 + g2 = ds2
1 − ds2

2 + λs2
1g1 + λs2

2g2 (32)

on M1 ×M2. Now we define functions t and ρ on M 1 ×M 2 by

t :=
λ1/2(s1 + s2)

2
and ρ :=

2(s1 − s2)

λ(s1 + s2)
, (33)

and set µ = λ/2. Re-expressing the right-hand-side of (32) in terms of t, ρ, µ, and the
pull-back metrics g1 and g2, a direct calculation recovers exactly the expression for the
ambient metric as given on the right-hand-side of (29). The Jacobian ∂(t, ρ)/∂(s1, s2)
is non-vanishing on the positive (s1, s2)-quadrant and so, with the pull-back (under the
obvious projections) of coordinate sets from M1 and M2, the pair t, ρ give coordinates
on the entire product M 1×M 2. The metric (29) extends this, and since the inverse of
the transformation (33) is

s1 = (2µ)−1/2t(1 + µρ) and s2 = (2µ)−1/2t(1− µρ) , (34)

we see immediately that the points where the ambient metric (29) degenerates (e.g.
ρ = ± 1

µ
in the generic case) are points bounding but not in the product M1×M 2. (In

stating things this way we are viewing both M̃ and the product M 1×M 2 as subspaces,
in the obvious way, of the manifold Q× R.) In summary we have the following result.

Proposition 9. Suppose that (Mm1
1 , g1) and (Mm2

2 , g2) are Einstein manifolds such
that m2(m2−1)scalg1 = −m1(m1−1)scalg2. In a neighbourhood of Q ⊂ M̃ , the ambient
metric (29) for (M1×M2, [g1×g2]) is the product of the cone metrics (31) where λ = 2µ
satisfies scalg1 = m1(m1 − 1)λ and scalg2 = −m2(m2 − 1)λ.

We make some observations in relation to this picture.

Proposition 10. The ambient metric h given in (29) is independent of constant
dilations of the product metric g1 × g2 on Mm1

1 ×Mm2
2 .

Proof. First observe that if α ∈ R+ and metrics g and ĝ are related by a constant
conformal rescaling according to ĝ = αg then Ric(ĝ) = Ric(g). Thus scalbg = α−1scalg

and so, making the compatible transformation of λg to λbg, we have λgg = λbgĝ and the
cone metric (30) for (M, g) is the same as the cone metric for (M, ĝ). It follows easily
that the product metric h× on M 1 ×M 2 depends only on g1× g2 up to dilations. But
this extends to h on M̃ since, via (34), there is a formula for h of the form (32) on a
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dense subspace of M̃ . �

Remark. From Proposition 10 it follows that, from the conformal point of view,
when λ 6= 0 with max(m1, m2) ≥ 2 there is no loss of generality in setting µ = 1.

As a special case of Proposition 9 note that for an Einstein manifold (Mm, g) of
scalar curvature m(m− 1)λ, λ > 0, an ambient metric is given by

λs2
1g + ds2

1 − ds2
2 (35)

on M × R+ × R+. We may view this as the product of the metric cone with the cone
over a point. (In fact we could allow s2 to range over R but this extension is not critical
for our current discussions.) There is an obvious variant of this for the case λ < 0.

The observations above lead to Theorem 12 below. First we note that there is an
obvious consequence of the ambient construction in Theorem 11. An ambient manifold,
as described in Section 0.11, can only be Ricci-flat if the Fefferman-Graham obstruction
tensor O is identically zero [54, 71]. Thus we have the following.

Corollary 3. Suppose that g is a metric conformally related to a product metric
g1 × g2, where (Mm1

1 , g1) and (Mm2
2 , g2) are Einstein structures such that m2(m2 −

1)scalg1 = −m1(m1 − 1)scalg2 6= 0. Then the obstruction tensor Og is everywhere
vanishing.

As mentioned earlier, it was already known that the obstruction tensor necessarily
vanishes on manifolds that are conformally Einstein (or more generally it vanishes
on conformally almost-Einstein manifolds as below). Thus part of the importance of
Corollary 3 above is that, according to the next theorem, it gives a more general class
of structures for which the obstruction vanishes identically. Recall that an almost-
Einstein structure [65] on a manifold is a conformal structure with a parallel standard
tractor (cf. Section 1.2).

Theorem 12. Suppose that (Mm1
1 , g1) and (Mm2

2 , g2), are Einstein structures such
that m2(m2 − 1)scalg1 = −m1(m1 − 1)scalg2 6= 0. Then the product metric g1 × g2 on
M1 ×M2 is conformally almost-Einstein if and only if either [g1] admits two linearly
independent almost-Einstein structures or [g2] admits two linearly independent almost-
Einstein structures.

Proof. Suppose that [g1 × g2] is conformally almost-Einstein. Then the standard
tractor bundle admits a parallel tractor I. From Theorem 15 the holonomy of the
standard tractor bundle is canonically the same as the holonomy group for the (Q
connected component of the) ambient metric (29). Thus there is a corresponding
parallel vector field I on the ambient space. Since we have a product connection on
the ambient space, the projections of I, pr1(I) ∈ X(M 1) and pr2(I) ∈ X(M2) are each
parallel. It follows that one of these, without loss of generality I1 := pr1(I) is not-zero.
So M1 has the parallel vector field I1. It follows that this is clearly also parallel for
the ambient metric

h1 := λs2
1g1 + ds2

1 − ds2
2

ofM1 (cf. (35)). Note that from the construction of I1 on this ambient space as a trivial
extension of a vector field on the cone M1, it follows immediately that ds2(I1) = 0.
On the other hand the vector field V = ∂/∂s2 is also clearly parallel for h1 and linearly
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independent of I1 (since ds2(V ) = 1 6= 0). Linearly independent parallel vectors on
the ambient manifold determine linearly independent parallel standard tractors for the
normal tractor connection [38, 70] and so (M1, [g1]) has two almost-Einstein structures.

In the other direction. If (M1, [g1]) has two linearly independent parallel tractors
then, once again using Theorem 15, there are two corresponding, linear independent,
parallel vector fields on the ambient space M̃ . At least one of these projects to a
non-zero parallel vector field on M1. Then obviously this parallel field on M 1 also
yields a parallel vector field for the product metric on M̃ = M 1 × M 2. Thus it
determines a parallel tractor on (M1 ×M2, [g1 × g2]). �

Remark. There exist manifolds that admit exactly one Einstein structure (up to
constant dilation of the metric), see Section 2.7 for examples.

Note that it follows from Theorem 12 that if, for example, [g1 × g2] admits an
Einstein scale, then on one of the components, say M1 without loss of generality, on
an open dense set the conformal structure [g1] admits two independent Einstein scales.
(Of course we may take one of these to be the Einstein scale on all of M1 assumed in
Theorem 12.) Conversely if we have that M1 admits two Einstein scales then on an
open dense subset of M1 ×M2 the metric g1 × g2 is conformally Einstein.

As a slight digression we point out that when there are multiple (almost-) Einstein
scales then these are never isolated. Since almost-Einstein structures are exactly
parallel sections of the standard normal conformal tractor bundle [65], it follows
that if there are two distinct almost-Einstein structures then there is a 2-dimensional
family (R2 \ {0}) of such structures.

For our later considerations we observe some basic results concerning the Euler
vector field for cone products. Given a tensor field on a manifold we use the same
notation for the trivial extension of this field to a field on a product of the manifold
with another. For a pair of semi-Riemannian manifolds (M 1, g1) and (M 2, g2), the
product metric g1 × g2 is given, using this convention, as a covariant 2-tensor on
M 1×M 2, by g1 + g2. For a constant α we say a vector field V is an α-homothety of a
metric g if LV g = αg (cf. Section 0.6).

Lemma 7. Given semi-Riemannian manifolds (M 1, g1) and (M2, g2), X1 is an
α-homothety of g1 and X2 is an α-homothety of g2 if and only if X1 + X2 is an
α-homothety of (M 1 ×M 2, g1 × g2).

Proof. From the definition of the Lie derivative it follows immediately that, for
any tensor T on M1, its trivial extension to M1 × M 2 satisfies the condition that
LV T = 0 for any vector field V on M 2. Of course we can swap the roles of M 1 and
M 2 in this statement. Using this the result follows from the bilinearity and naturality
of the Lie derivative:

LX1+X2
(g1 + g2) = LX1

g1 + LX1
g2 + LX2

g1 + LX2
g2

= LX1
g1 + LX2

g2 .

Note that (for i = 1, 2) LX i
gi is the trivial extension to the product of a tensor on

M i. Thus we have LX1+X2
(g1 + g2) = α(g1 + g2), if and only if LX1

g1 = αg1 and
LX2

g2 = αg2. �



104 2. A SUB-PRODUCT CONSTRUCTION OF POINCARÉ-EINSTEIN METRICS

On functions the Lie and exterior derivative agree and so by almost the same
argument we have the following result.

Lemma 8. Given semi-Riemannian manifolds (M 1, g1) and (M2, g2), X1 is a
gradient vector field on M 1 and X2 is a gradient vector field on M 2 if and only if
X1 + X2 is a gradient vector field on (M 1 ×M 2, g1 × g2).

Proof. Since, for i = 1, 2, the vector fields X i are tangential to the leaf subman-
ifolds, we have

(g1 + g2)(X1 + X2, ·) = g1(X1, ·) + g2(X2, ·).
If (for i = 1, 2) gi(X i, ·) = difi then summing shows that the left-hand side is
d(f1 + f2). (Here di denotes the exterior derivative on the factor manifolds which may
be identified with the restriction of the exterior derivative d on M 1 ×M 2.) On the
other hand if we have (g1 + g2)(X1 + X2, ·) = df , for some function f on M 1 ×M 2

then by restriction we obtain that gi(X i, ·) = dif which shows that, on any leaf of the
product, X i is a gradient field. So X i is a gradient on M i. �

Recall, from the proof of Theorem 11, that on the ambient manifold there is a
canonical Euler vector field X. This is the Euler field from the R+-action on Q and the
trivial extension of this action via the product Q× I = M̃ . From the formula (29) for
the metric we see that X is a homothetic gradient field. This has an obvious origin in
the case of a metric cone product construction, as follows.

Proposition 11. If the ambient metric is a product of cone metrics, as in Propo-
sition 9, then the canonical ambient Euler vector field X is the sum of the Euler fields
for the metric cones M 1 and M2.

Proof. Suppose that the ambient space (M̃,h) is a product (M 1 ×M 2, g1 × g2),
as in Proposition 9. Each metric cone (M i, gi) (i = 1, 2) has an Euler field Ei which
is a 2-homothetic gradient field (cf. Section 0.9). Thus from the previous lemmata

E1 + E2 is a 2-homothetic gradient field on M̃ .
In terms of the coordinates used for the ambient metric in expression (29) the

ambient Euler field is t∂/∂t. Using (33) and (34) this is easily re-expressed in terms of
the cone coordinates s1 and s2:

t∂/∂t = t
(
∂s1∂t∂/∂s1 + ∂s2∂t∂/∂s2

)

=
1

2
(s1 + s2)

(
(1 + µρ)∂/∂s1 + (1− µρ)∂/∂s2

)

= s1∂/∂s1 + s1∂/∂s1.

Thus X = E1 + E2. �

Remark. Note that using Lemma 7, Lemma 8 and the formula (32) one can
see immediately that the metric h× is a Ricci-flat ambient metric without performing
coordinate transformations to put it in form of (29): Writing Ei (i = 1, 2) for the
respective cone Euler fields, E1 + E2 is a 2-homothetic gradient field for h× (and
so property (i) of the ambient metric definition is satisfied). Along the hypersurface
s1 = s2, the metric h× obviously restricts to the tautological bilinear form for the
conformal structure Q → (M1 × M2) (and so property (ii) of the ambient metric
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definition is satisfied). As mentioned earlier it is a product of Ricci-flat metrics and
therefore Ricci-flat.

We should point out that, there is nevertheless considerable value in the normal
form (29) for the ambient metric. This form has a very useful geometric inter-
pretation, as outlined in [54]. For our purposes here, it enabled an extension of
the cone product metric to a larger manifold. It also is valid for the case when
the boundary structure is conformal to a product of Ricci-flat metrics (a case for
which the metric cones are unavailable). Finally giving the ambient metric in this
form yields immediate contact with the previous explicit treatments of the ambient
manifold such as [54, 74] (where this normalisation of the ambient metric is also used).

3. The Poincaré Metric

Let

h := 2tdtdρ+ 2ρdt2 + t2g̃(x, ρ)ijdx
idxj,

be a Ricci-flat ambient metric on M̃ = Q × Ĩ for the conformal class of g =
g̃(x, 0)ijdx

idxj on the base space M (cf. (10)). We have seen in Section 0.11, in
general, that the restriction of h to the hypersurface given by the zero set of the defin-
ing function h(X,X) + 1 = 0 in M̃ gives rise to a Poincaré-Einstein space (M+, g+)
with boundary (M, [g]). In particular, we may apply this to the ambient metric (29)
from Theorem 11. To respect that (M, g) = (M1 ×M2, g1 × g2), in that case we write
(M1,2, g1,2) for (M+, g+) and have the following result.

Theorem 13. To each pair of Einstein manifolds (Mm1
1 , g1) and (Mm2

2 , g2), (m1 ≥
1, m2 ≥ 0) satisfying m2(m2 − 1)scalg1 = −m1(m1 − 1)scalg2, there is a Poincaré-
Einstein manifold (M1,2, g1,2), with

Ric(g1,2) = −(m1 +m2)g
1,2,

and conformal infinity (M1 ×M2, [g1 × g2]). This is given explicitly by

M1,2 = M1 ×M2 × I
where, with µ satisfying 2m1(m1 − 1)µ := scalg1 and 2m2(m2 − 1)µ := −scalg2, we
have

I =





[0,∞) if µ = 0,
[0,∞) if µ < 0 and m2 = 0

[0,∞) \ {
√

2
µ
} if µ > 0 and m2 = 0,

[0,∞) \ {
√

2
|µ|} otherwise.

and

g1,2 = r−2(dr2 + (1− µr2/2)2g1 + (1 + µr2/2)2g2).

Note that in the special cases m1, m2 ≤ 1 there is a family of Poincaré metrics
parametrised by µ. Obviously, in any case the Poincaré-Einstein metric g1,2 of Theorem
13 has the form r−2(dr2 + gr), where gr is given by the power series expansion

gr = g(0) + g(2)r2 + g(4)r4
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with g(0) = g1 + g2, g
(2) = µ · (−g1 + g2) = P

g1 +P
g2 = P

g1+g2 and g(4) = µ2

4
· (g1 + g2) =

‖P‖2
g1+g2

4(m1+m2)
· (g1 + g2). The bilinear form g(4) has no trace-free part, since the Bach tensor

B of the product metric g1 + g2 vanishes. Its trace is determined to 1
4
‖P‖2g1+g2. No

higher order expansion terms for gr do occur (cf. [74, 87]).

4. The Ambient Metric over a Poincaré-Einstein Metric

We digress briefly to observe here that the above construction of the Poincaré-
Einstein metric is reversible, and this gives a notion of an ambient metric over any
Poincaré-Einstein metric. We recover the ambient metric as a simple extension of the
metric cone over the interior (or bulk) of the Poincaré metric structure. We will use this
result in Section 2.6. For simplicity of exposition we will assume that the Poincaré-
Einstein structure is smooth, however the construction extends in an obvious way to
metrics with some specified regularity.

Suppose that (Mn+1, g, r) is a Poincaré-Einstein structure. That is M is a manifold
with boundary a smooth manifold ∂M = M , r is a non-negative defining function for
M , and, off the boundary g+ := r−2g is Einstein with scalar curvature −n(n + 1).
Then, as mentioned in Section 0.11, the restriction of g to TM in TM+|M determines

a conformal structure [g]. We define the ambient manifold over (Mn+1, g, r) to be

M̃ = M × R+. We write π : M̃ → M for the projection M̃ ∋ (p, u) 7→ p ∈ M and
Q := π−1(M).

The manifold M̃ is equipped with a metric and smooth structure as follows. Off
the boundary we use the usual product smooth structure on M+ × R+. We will use
u here for the standard coordinate on R+. The defining function determines, for some
ǫ > 0, an identification of M × [0, ǫ) with a neighbourhood of M in M : since |dr|g
is non-vanishing along the boundary, (p, y) ∈ M × [0, ǫ) is identified with the point
obtained by following the flow of the gradient gradgr, through p, for y units of time.
Thus over this we also have an identification of M̃ with M × [0, ǫ) × R+. Suppose
that xi are local coordinates on U ⊂ M then on U × (0, ǫ)× R+ we have coordinates
(xi, r, u). We construct a coordinate patch for M̃ over U × [0, ǫ) by taking coordinates
(xi, ρ, t) on U × (−ǫ2/2, 0]× R+ and identifying this space with π−1(U × [0, ǫ)) by the
coordinate transformation ρ = −1

2
r2, t = u/r on π−1(U × (0, ǫ)). This is obviously

independent of the coordinates xi, local on M . Thus, by doing this for all coordinate
patches on M , this extends a smooth structure to M̃ .

We take the cone metric h := u2g+ − du2 on π−1(M+). This cone metric is Ricci
flat and so it remains to verify that it extends to a non-degenerate metric on Q.

The condition Ric(g+) = −ng+ implies that |dr|g = 1 on M . However a choice

of metric g (from the conformal class) on M determines a unique special defining
function r, in a neighbourhood of M , by requiring |dr|g = 1 and g|TM = g. The

special defining function determines, for some ǫ > 0, an identification of M × [0, ǫ)
with a neighbourhood of M in M and in terms of this the metric g+ takes the form
g+ = r−2(gr + dr2), where gr is a 1-parameter family of metrics on M (cf. [77, 74]).
The change from a general defining function to one that satisfies |dr|g = 1 in a

neighbourhood of M is achieved by a smooth rescaling r 7→ eωr (for some smooth
function ω) thus assuming that we have such a normalised r does not affect the smooth
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structure on M̃ . Using (14) and the coordinate transformation ρ = −1
2
r2, t = u/r on

π−1(U×(0, ǫ)) it follows easily that the metric h may be written in the form (10) and so
obviously extends as a metric to Q. Note that the coordinate change ρ = −r2/2 means
the ambient metric is not smooth at the boundary in general. In fact from the Einstein
condition it follows that the Taylor series of gr involves only even powers of r up to the
rn term, and so the ambient metric is differentiable to any order less than n/2 (cf. [77]).

Remark. There is an obvious variant of the above construction where one would
only assume the Poincaré metric is asymptotically Einstein. In this case the ambient
metric will be asymptotically Ricci-flat.

5. Holonomy

Let (M, g) be a semi-Riemannian signature (p, q)-manifold. We write Fq to denote
a frame based at q ∈M and Fq ·A for the obvious action of A ∈ O(p, q) acting on Fq.

If φq is the trace of a closed curve based at q then we write F
φq
q for the frame obtained

from Fq by parallel translation around φq. Recall (from Section 0.3 and 0.4) that the
holonomy, based at q, of the metric g is by definition the group

Holq(M, g) = {A ∈ O(p, q) : for any frame Fq ∃ φq s.t. Fφq
q = Fq · A} .

Now suppose that on M there we have a homothetic gradient field V . That is a
constant c such that LV g = cg or, equivalently, ∇g

UV = c
2
U for all U ∈ X(M). Let us

say a hypersurface E in M is V -transverse if each maximal integral curve of V meets
E in exactly one point. In this setting the holonomy of g is recovered from curves φE

in the V -transverse submanifold E. More precisely we have the following.

Theorem 14. Let (M, g) be a semi-Riemannian signature (p, q)-manifold with a
nowhere-vanishing homothetic gradient field V and a V -transverse hypersurface E.
Then for q ∈ E

Holq(M, g) = {A ∈ O(p, q) : for any frame Fq ∃ φEq ⊂ E s.t. F
φE

q
q = Fq · A} .

We need some preliminary notation and results before we prove Theorem 14. Let us
parametrise the integral curves γV of V by a smooth function s on M which vanishes
on E. For q ∈ M let us fix attention on a closed smooth path φq : [0, 1] → M ,
φq(0) = φq(1) = q. Over φq we construct a 2-parameter path-cone:

Γq : D ⊂ [0, 1]× R→ M

given by
Γq(t, s) := Vs(φq(t)),

where D is the open subset of [0, 1] × R which gives the maximal range of definition
of the flow Vs of V (s runs over an interval that depends on t). By analogy with our
treatment of curves we will also use Γq to denote the trace (graph) of this function in
M since in any instance the meaning should be clear by context. Now for Fq ∈ TqM we
write Fq(t) for the field (at time t) along the trace of φq(t) given by parallel translation
of Fq. We extend this to the path cone by parallel translation along the flow lines of
V ; we write Fq(t, s) for the vector in TΓq(t,s)M given by the parallel transport of Fφq(t)

to Vs(φq(t)) along the integral curve of V through φq(t). We need to compare parallel
transport in this way with Lie dragging.
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Lemma 9.

Fq(t, s) = (1− c

2
s)Vs∗(Fq(t)).

Proof. Since the Levi-Civita connection ∇ is torsion free we have

∇V Fq(t, s) = ∇Fq(t,s)V + LV Fq(t, s).

This vanishes since by construction Fq(t, s) is parallel along the flow lines of V . On
the other hand, since V is homothetic we have ∇Fq(t,s)V = c

2
Fq(t, s) so

LV Fq(t, s) = −c
2
Fq(t, s).

�

This sets us up for the key result on the path-cone which is as follows.

Lemma 10. The field Fq(t, s) is parallel along Γq.

Proof. Let us write φ̇sq(t) for a tangent field to the curve

Γq(·, s) : [0, 1]→M

determined by a fixed value of s. Now it follows from the s derivative of Γq(t, s) that

φ̇sq(t) = Vs∗(φ̇
s
q(t)). This with the previous lemma implies

∇φ̇s
q(t)Fq(t, s) = (1− c

2
s)∇Vs∗(φ̇s

q(t))Vs∗(Fq(t)),

since s is constant. But since V is a homothetic gradient field its flow preserves the
Levi-Civita connection. So

∇Vs∗(φ̇s
q(t))Vs∗(Fq(t)) = Vs∗(∇(φ̇s

q(t))Fq(t)) = 0.

So at each point of Γq, Fq(t, s) is parallel in the direction φ̇sq(t). But it is also parallel
in the direction of V and so the result follows. �

Proof of Theorem 14. First observe that since each integral curve of V meets
the V -transverse hypersurface in exactly one point, there is a canonical smooth pro-
jection π : M → E which for p ∈ M finds the point π(p) ∈ E on the flow through p.
Thus given an arbitrary closed path φq (based at q ∈ E) there is a path φEq with trace

in E given by φEq (t) = π ◦φq(t). This determines a function sE(t) which gives the value

of the parameter s where E meets Γq. That is φEq (t) = Γq(t, sE(t)). There is a vector

field along the trace of φE:
FE
q (t) := Fq(t, sE(t)).

From the previous lemma this is parallelly transported around φE:

∇φ̇E
q (t)F

E
q (t) = 0.

By construction Fq(1) = FE
q (1), since sE(1) = 0. Since this holds for all vectors

Fq ∈ TqM and for all closed paths φq the proof is complete. �

Theorem 15. The holonomy group of the Q connected component of the ambient
manifold, with metric (29), is the same as the conformal holonomy of the underlying
conformal manifold (M1 ×M2, [g1 × g2]).
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Proof. We will retain only the Q connected component of the ambient manifold
and term this the ambient manifold.

First we treat the case that scalg1 = m1(m1 − 1)λ for λ 6= 0. Then (M̃,h) is
a product of cones M 1 and M 2 with metrics given, respectively, as in (31). The
holonomy of the product, the ambient manifold, is the product of the component
holonomy groups. On each cone there is a homothetic gradient field in the sense of
Theorem 14 above. These are respectively s1∂/∂s1 and s2∂/∂s2. Thus on each cone
M i (i = 1, 2) the holonomy may be computed by considering paths only in the si = 1
transverse hypersurface. It follows easily that the ambient holonomy is generated
by (the transport of full frames for T (M1 ×M 2) along) loops in the codimension 2
submanifold s1 = 1 = s2. But this submanifold is in Q and is a section over M1 ×M2

and so this holonomy group is exactly the conformal holonomy, that is holonomy of
the normal tractor connection. To see this last claim we use following result of [38]

(see also [70]). Write TM̃ |Q for the restriction of the ambient tangent bundle to Q

and define an action of R+ on this space by s−1σs∗ · ξ. Here σ is the principal action
of R+ on Q given by σs(gx) = s2gx. Then the quotient (TM̃ |Q)/R+ is a vector bundle
over Q/R+ = M . This may be identified with the standard conformal tractor bundle
and via this identification the ambient parallel transport induces the normal tractor
connection. It follows immediately that parallel transport along any fixed section of Q

is sufficient to recover the conformal holonomy.
Now in the case of λ = 0 suppose the ambient metric is given by (29). Then ∂/∂ρ

is parallel, and hence a homothetic gradient field. This is obviously transverse to Q

and so the ambient holonomy may be calculated by paths in Q. From the result that
the R+-action on (TM̃ |Q) by ξ 7→ −1σs∗ · ξ agrees with parallel transport [38, 70] it
follows easily that the ambient holonomy may be calculated via loops in a section of Q

and thus agrees with the conformal holonomy. �

6. Characterisation by Special Killing Forms

We want to characterise sub-product spaces (M1,2, g1,2) (as they were constructed
in Theorem 13) by the existence of certain special Killing forms (cf. Section 0.4).

To start with, let

g1,2 = r−2(dr2 + (1− µr2/2)2g1 + (1 + µr2/2)2g2)

be a Poincaré-Einstein metric onM1,2 = M1×M2×I as in Theorem 13. We assume here
that the factors Mm1

1 and Mm2
2 of the sub-product are oriented spaces of dimensions

m1 ≥ 1 and m2 ≥ 0 and denote by vol(gi), i = 1, 2, the corresponding volume forms to
g1, resp., g2. We denote the pull-backs of these volume forms to the sub-product M1,2

by vol(gi), i = 1, 2, as well.

Lemma 11. Let µ > 0. The m1-form

ψ :=

(
µr

2
− 1

r

)m1+1

· vol(g1)

on (M1,2, g1,2) is special Killing (cf. Section 0.4). The function r̃ := (|ψ|2g1,2)−1/2 is a

defining function for the conformal boundary ∂M1,2 := M1 ×M2 with |dr̃|∂M1,2 = 1.
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Proof. We introduce the coordinate s = ln(
√

µ
2
·r) and set h1 :=

√
2µ · sinh(s) =

(µr
2
− 1

r
) and h2 :=

√
2µ · cosh(s). Then the the metric g1,2 takes the form

ds2 + 2µ(sinh2(s) · g1 + cosh2(s) · g2) .

Let {e1, . . . , em1}, resp., {f1, . . . , fm2} denote local orthonormal frames for (M1, g1)
and (M2, g2). We set g1

ij := g1(ei, ej) for i, j ∈ {1, . . . , m1} and g2
ij := g2(fi, fj)

for i, j ∈ {1, . . . , m2}. Moreover, we denote by e♭i and f ♭i the dual 1-forms with
respect to g1, resp., g2. Their pull-backs give rise to a local (orthogonal) coframe
{ds, e♭1, . . . , e♭m1

, f ♭1, . . . , f
♭
m2
} on M1,2. Locally, we have ψ = hm1+1

1 · e♭1∧ · · ·∧ e♭m1
. For

the covariant derivatives we have (cf. [128]; also Section 0.9)

∇1,2
∂
∂s

e♭i = −h′1
h1
· e♭i, ∇1,2

∂
∂s

f ♭i = −h′2
h2
· f ♭i , ∇1,2

∂
∂s

ds = 0,

∇1,2
ej
e♭i = ∇g1

ej
e♭i − h′1

h1
g1
jids, ∇1,2

ej
f ♭i = 0, ∇1,2

ej
ds = h′1h1 · e♭j ,

∇1,2
fj
f ♭i = ∇g2

ej
e♭i − h′2

h2
g2
jids, ∇1,2

fj
e♭i = 0, ∇1,2

fj
ds = h′2h2 · f ♭j ,

where h′i := ∂
∂s
hi and ∇gi , i = 1, 2, denote the Levi-Civita connections of g1, resp., g2.

We obtain

∇1,2
ei
ψ = −g1

iih
′
1h

m1
1 · e♭1 ∧ · · · ∧ ds ∧ · · · ∧ e♭m1

= (−1)ig1
ii

h′1
h1
· ds ∧ (ιei

ψ)

(where in the middle part of this equation ds replaces ei at the i-th position of the
∧-product),

∇1,2
∂
∂s

ψ =
h′1
h1
ψ and ∇1,2

fi
ψ = 0 .

This implies dψ = (m1 + 1) · h′1
h1
ds ∧ ψ, which shows that ψ is a Killing form, i.e.,

∇1,2ψ = 1
m1+1

dψ. Moreover, we calculate

∇1,2
∂
∂s

dψ = (m1 + 1) · h′′1
h1
ds ∧ ψ = (m1 + 1) · g1,2( ∂

∂s
, ·) ∧ ψ,

∇1,2
fi
dψ = (m1 + 1) · h′1h′2h2

h1
f ♭j ∧ ψ = (m1 + 1) · g1,2(fi, ·) ∧ ψ and

∇1,2
ei
dψ = 0 .

These identities show that the Killing form ψ is special.
For the square length of ψ with respect to g1,2 we have |ψ|2 = h2

1 and this shows
that r̃ = −h−1

1 , which vanishes when r tends to zero. Hence r̃ is a defining function
with |dr̃| = 1 on the conformal boundary ∂M1,2. �

We remark that the assumption µ > 0 in Lemma 11 is not essential, since we do
not make any assumption on the signature of the metric g1,2.

In general, we know from Section 2.4 that the metric cone over an (oriented)
Poincaré-Einstein space (Mn+1, g) gives rise to a Ricci-flat ambient metric (with bound-
ary). On the other hand, any Fefferman-Graham ambient metric space contains the
corresponding Poincaré-Einstein model as a hypersurface, defined by the zero set of
the function h(X,X) + 1. Thus we can apply the cone correspondence for special
Killing forms (cf. Proposition 2) to prove the following characterisation result for
sub-products of the form g1,2. Note, in general, that if φ is a special Killing form on



6. CHARACTERISATION BY SPECIAL KILLING FORMS 111

(Mn+1, g) then the (n+1−p)-form ⋆dφ is special Killing as well. We call a differential
form φ non-degenerate and simple if it is at every point of M a ∧-product of 1-forms
with non-vanishing length.

Theorem 16. Let (Mn+1, g) be a simply connected Poincaré-Einstein space of di-
mension n+ 1 with Ric(g) = −ng and conformal boundary ∂M = Mn.

(1) Suppose that there exists a non-degenerate and simple m1-form ψ, which sat-
isfies the differential equations

∇gψ = γ ∧ ψ and (∇g

Y γ) ∧ ψ = g(Y, ·) ∧ ψ
for all Y ∈ TM on the bulk of M , where γ is a 1-form with dual vector γ#

such that
ιγ#ψ = 0 and g(γ#, γ#) > 1 ,

then (M, g) is a sub-product as constructed in Theorem 13 with a metric on
the bulk of the form

r−2(dr2 + (1− µr2/2)2g1 + (1 + µr2/2)2g2) .

(2) If (Mn+1, g) is a sub-product as described in Theorem 13 then locally on the
bulk of M there exists a m1-form ψ, which satisfies the system of differential
equations with respect to some 1-form γ as given in (1), and |ψ|−1 is a defining
function for the boundary.

Proof. First, let us assume that g := g1,2 on M = M1 ×M2 × I is of the form as
described in Theorem 13. Then we know from Lemma 11 that locally (with some choice

of orientation) the non-degenerate and simple differential form ψ =
(
µr
2
− 1

r

)m1+1 ·
vol(g1) is special Killing. In particular, ∇gψ =

h′1
h1
ds ∧ ψ. We set γ :=

h′1
h1
ds and

together with the formulae for the covariant derivative of ds from the proof of Lemma
11 we see that the demanded conditions are satisfied for this choice of ψ. In particular,
the 1-form γ has length greater than 1. The length function |ψ|g tends to infinity at

the boundary and its inverse |ψ|−1
g is locally a defining function (cf. Lemma 11).

On the other hand, let ψ be a differential form on M such that

∇gψ = γ ∧ ψ and (∇g

Y γ) ∧ ψ = g(Y, ·) ∧ ψ
for all Y ∈ TM , where γ is some smooth 1-form with properties as in (1). The first
equation implies immediately that ψ is a Killing form. The second condition implies
∇g

Y dψ = (m1 + 1) · g(Y, ·) ∧ ψ, i.e., ψ is special Killing.

We consider now the ambient metric h on M̃ = M×R+ (with boundary as in Section
2.4) over the Poincaré-Einstein space (M, g). Over the bulk of M the ambient metric

h is just the cone metric u2g − du2 and the (m1 + 1)-form ψ̃ = um1du ∧ ψ + um1+1

m1+1
dψ

is parallel on this cone. With the assumptions on ψ and γ, it follows that ψ̃ is non-
degenerate and simple. Moreover, since M is simply connected, the ambient space M̃
itself is simply connected and orientable and we can apply the Hodge star operator
to ψ̃ to obtain a non-degenerate and simple parallel differential form ⋆ψ̃. This shows
by the deRham decomposition Theorem (cf. [141]) that h is isometric to a product

h1 × h2 of Ricci-flat metrics on some product space M 1 ×M 2 (which includes M̃ as a
submanifold with boundary).
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Inserting the Euler vector X = u∂/∂u into the parallel differential forms ψ̃ and

⋆ψ̃ reproduces the special Killing forms ψ, resp., ⋆dψ on M . The latter differential
form equals 1

m1+1
⋆ (γ ∧ ψ) and has by assumption no zeros on M . This shows that

the projection of the Euler vector X to the factor M1 of the product structure on the
ambient space has no singularities and, in fact, is everywhere spacelike. The projection
of the Euler vector X to M 2 is everywhere timelike (cf. Section 1.2). Moreover, since
these projections of X are homothetic gradient vector fields (cf. Lemma 7 and 8), we
can conclude with Lemma 1 of Section 0.9 that h1 and h2 are cone metrics over some
Einstein spaces (M1, g1) and (M2, g2). By choosing appropriate scales for the metrics g1

and g2 it is straightforward to see that g1× g2 is just a metric in the conformal class of
the boundary M = M1×M2 of the initial Poincaré-Einstein space (M, g). In particular,

the ambient space (M̃, h) is a submanifold of the ambient space of (M1 ×M2, g1 × g2)
that we introduced in Theorem 11. It follows that the initial Poincaré-Einstein space
(M, g) is a sub-product space as constructed in Theorem 13. �

7. Examples and Multiple Sub-Products

It should be expected that, for Einstein manifolds, in the generic situation there
exists a single Einstein metric in the conformal class (ignoring constant dilations of
the metric). In fact, we give here some concrete examples of such Einstein spaces.
In particular, these examples demonstrate in relation with Theorem 12 the following
statement about Poincaré-Einstein spaces.

Theorem 17. There exist explicit constructions of Poincaré-Einstein metrics
whose boundary structures are not conformally Einstein.

For example, let us consider the special orthogonal group SO(4) in dimension 4.
This is a 6-dimensional compact semisimple Lie group and the Killing form Bso(4) of
the Lie algebra so(4) gives rise to a bi-invariant Einstein metric gB of negative definite
signature and negative scalar curvature −3/2 on SO(4). In Chapter 3 we will compute
the conformal holonomy algebra of the conformal class [gB] on SO(4). The result is
hol(T) = so(7) sitting in the structure algebra so(7, 1). This shows that gB is (up to
constant dilations) the only Einstein metric in [gB].

Now we define M := SO(4)×SO(4) with metric gB×B := g1
B×g2

B, where g1
B is −gB

on the first factor, and g2
B is gB on the second factor. This is a product of Einstein

metrics, which satisfies the scalar curvature relation of Theorem 11 for the construction
of a Ricci-flat ambient metric. By the unique existence (up to multiples) of Einstein
scales on the factors and using Theorem 12 we know that M with metric gB×B is not
conformally Einstein. The corresponding Poincaré-Einstein metric is explicitly given
on M × [0, ro) with ro = 4 ·

√
5 by

r−2(dr2 + (1− r2/80)2g1
B + (1 + r2/80)2g2

B) .

Another way to make examples is by using 4-manifolds in the sub-product construc-
tion. Einstein Riemannian 4-manifolds have only one Einstein scale, unless they are
conformally flat. This is easily seen as follows. Suppose we have two linearly indepen-
dent almost-Einstein structures on a 4-manifold. This exactly means that the manifold
admits two linearly independent parallel dual standard tractors I1 and I2. The exterior
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product I1 ∧ I2 of these is obviously parallel. This (adjoint) tractor I1 ∧ I2 is a jet pro-
longation of a conformal gradient field k which annihilates the Weyl curvature W (i.e.,
ιkW = 0; cf. [66]). Since the parallel tractor I1 ∧ I2 is a prolongation of k and parallel
it follows immediately that k is non-vanishing on an open dense set in the manifold.
On the other hand in dimension 4 we have the identity |W |2δab = 4W acdeWbcde (with
contractions indicated by Einstein summation convention), and so |W |2 = 0 on an
open dense set, and hence everywhere.

Finally, we present a recursive construction principle for multiple sub-products
based on Theorem 13 in order to produce Poincaré-Einstein spaces. For this purpose
we set up the following initial data. Let (Mm0

0 , g0) be an Einstein space of negative
scalar curvature scalg0 = −m0(m0 − 1) with dim(M0) = m0, i.e., µ = −1/2. Further,
let l ≥ 1 be a positive integer and let (Mmi

i , gi), i ∈ {1, . . . , l}, be Einstein spaces with
positive scalar curvature scalgi = mi(mi − 1) and dim(Mi) = mi. In the first step, we
set M0+ := Mm0

0 with metric G0 := g0. And then for 1 ≤ s ≤ l we define recursively

Gs := r−2
s ( dr2

s + (1 + r2
s/4)2 ·Gs−1 + (1− r2

s/4)2 · gs ) ,

which is a metric on the interior of M s := M (s−1)+ ×Ms × Is, where Is = [0, 2) is

an interval of length
√

2/|µ| = 2 with coordinate rs. The interior of M s is given by

Ms+ := M (s−1)+ × Ms × (0, 2). Using Theorem 13 inductively for every step gives
rise to a multiple sub-product construction of Poincaré-Einstein metrics, which can be
formulated as follows.

Corollary 4. Let (M l, Gl), l ≥ 1, be recursively defined as above. Then the metric

Gl on the space M l+ of dimension dim(M l) = l +
∑l

i=0mi is Poincaré-Einstein with
conformal infinity

(M (l−1)+ ×Ml, [G
l−1 × gl]) .

An ambient metric of the conformal structure [Gl−1 × gl] is explicitly given by

hl := ḡ0 × · · · × ḡl
on M0×· · ·×Ml×Rl+1

+ , where the ḡi’s denote the cone metrics of the gi’s. By Theorem
12 we can conclude that the conformal structure [Gl−1×gl] at infinity is not conformally
almost-Einstein if every metric gi for i ∈ {0, . . . , l} of the initial setting admits exactly
one almost-Einstein scale.





CHAPTER 3

Conformal Holonomy of Bi-Invariant Metrics

We introduced in Section 0.6 and 0.7 the conformal holonomy groups Hol(ωnor) of
the normal conformal Cartan connection and Hol(T) of the tractor connection (which
have identical Lie algebras). In Chapter 1 we have already seen that the tractor holo-
nomy Hol(T) is an important and useful invariant for the classification and description
of conformal spaces (Mn, c). In particular, via the conformal tractor holonomy it is
possible to describe invariant sub-structures, like the conformal Einstein condition, and
to detect solutions of certain conformally covariant partial differential equations, e.g.
conformal Killing spinors (cf. [6, 40, 110]). In this chapter we want to demonstrate
that the conformal holonomy can be calculated explicitly, at least in such cases where
the underlying conformal geometry has much symmetry. In fact, our aim is to develop
an invariant calculus for canonical Cartan connections on conformally homogeneous
spaces and to apply this for computations of holonomy. However, in order to simplify
the situation we develop our calculus here only for the conformal geometry of (bi)-
invariant metrics on (semisimple) Lie groups. Certainly, the invariant calculus works
well in much more general circumstances of parabolic geometries as a recent work of
M. Hammerl shows (cf. [83]).

We will proceed as follows in this chapter. The first section recalls the notion of bi-
invariant metrics and, in Section 2, we develop the invariant conformal Cartan calculus
adapted to this situation. In particular, we will describe the canonical connection and
its curvature by certain linear maps γnor : g−1 → p and κ : g−1 × g−1 → p. Then
we discuss properties of these maps and derive a formula for the conformal holonomy
algebra hol(ωnor) (cf. Section 3). Finally, we make explicit computations for the bi-
invariant metric on SO(4) coming from the Killing form B.

1. Bi-Invariant Metrics

Let N be a connected and compact semisimple Lie group of dimension s and let n

denote its Lie algebra of left invariant vector fields. Then the Killing form

Bn(X, Y ) := tr adXadY

is an Ad(N)-invariant, negative definite scalar product on n. In particular,

B(X, [Y, Z]) = B([X, Y ], Z) for all X, Y, Z ∈ n .

The Lie algebra n is canonically identified with the tangent space TeN at the identity
element of N . Thus the negative −B of the Killing form gives rise to an inner product
on TeN , which by left translation with Lg, g ∈ N , extends uniquely to a smooth metric
gn on N . Since −B is Ad(N)-invariant, right translation of −B with Rg, g ∈ N ,
generates again gn and thus the metric gn onN is called bi-invariant (cf. e.g. [91, 128]).

115
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For the Levi-Civita connection ∇n of the bi-invariant metric gn the equation

∇n
XY =

1

2
[X, Y ] for all X, Y ∈ n

holds. The Riemannian curvature tensor is then given by

Rn
XY Z = −1

4
[[X, Y ], Z] for all X, Y, Z ∈ n

and the sectional curvature of a plane spanned by orthonormal elements X, Y in n is

Sn(X, Y ) :=
1

4
gn([X, Y ], [X, Y ]) .

For the Ricci tensor we have

Ricn =
1

4
gn ,

i.e., gn is an Einstein metric on N with positive scalar curvature scaln = s
4
. The

Schouten tensor is P
n = −1

8(s−1)
gn and the Cotton tensor Cn vanishes identically. The

Weyl tensor is given by

W n = Rn +
1

8(s− 1)
gn ∗ gn ,

where ∗ denotes the Kulkarni-Nomizu product.

2. Invariant Calculus for Conformal Cartan Geometry

At the end of the last section we computed directly the content of the conformal
curvature (Weyl tensor and Cotton tensor) for a bi-invariant metric induced by the
Killing form on a compact semisimple Lie group by use of the Lie bracket. Now we
establish an invariant conformal Cartan calculus for bi-invariant metrics on Lie groups.
In particular, we will describe the normal Cartan connection and its curvature with
respect to a certain linear map γnor. This approach will use a global trivialisation
induced by a left invariant frame of second order, which comes from the invariant metric
in the conformal class. We note that, although we assume a compact semisimple Lie
group with bi-invariant metric coming from the Killing form, our discussion here is
actually valid for the more general situation of left invariant metrics on any Lie group.
Only the explicit formulae for γnor and its curvature at the end of this section will
depend on the bi-invariance.

So let N be a connected and (compact semisimple) Lie group of dimension s with
Lie algebra n and (bi)-invariant metric gn. We fix the conformal structure cn = [gn] on
N . By definition, the Lie group N acts by smooth isometries from the left on (N, gn),
hence by conformal transformations on (N, cn). This action gives rise to induced left
actions of N on the first and second order conformal frame bundles G0(N), resp.,
P(N). We denote all these actions by Lg for g ∈ N . Since L∗

gωnor for any g ∈ N is a
normal Cartan connection on P(N) inducing via the soldering form the given conformal
structure cn on N , and since the canonical Cartan connection ωnor on P(N) is uniquely
determined by normality of its curvature, it follows immediately that

L∗
gωnor = ωnor for all g ∈ N .
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The space g−1
∼= Rs is equipped with the standard inner product 〈·, ·〉s and a

standard orthonormal basis {e1, . . . , es}. Now let

θ : (n,−B) ∼= (g−1, 〈 , 〉s)
be an isometry of inner product spaces. We call θ a reference frame. It transfers the
Lie bracket [ , ]n to g−1 through the expression

ρn,θ(a, b) := θ[θ−1(a), θ−1(b)]n ,

where a, b ∈ g−1. Moreover, the reference frame θ induces the orthonormal frame
{
Ei := θ−1(ei)| i = 1, . . . , s

}

on n. The corresponding left-invariant orthonormal frame field on N is a global trivi-
alisation of the first order conformal frame bundle G0(N) on (N, cn):

G0(N) ∼= N × CO(s) ,
{Ei(p)| i = 1, . . . , s} 7→ (p, e) .

(In fact, this is a trivialisation of the orthonormal frame bundle of (N, gn).) The bi-
invariant metric gn induces a CO(s)-equivariant lift

σgn : G0(N)→ P(N) ,

i.e., a Weyl structure (cf. Section 0.6 and [42]), which is also equivariant with respect
to the induced left actions of N . Thus the composition of the left invariant frame
{Ei| i = 1, . . . , s } (as a section in G0(N)) with the lift σgn gives rise to a trivialisation

ιθ,gn
: P(N) ∼= N × P

of the second order frame bundle with parabolic structure group P . As we have chosen
the trivialisation ιθ,gn

, the induced left action of N on P(N) is given by

ιθ,gn
◦ Lg ◦ ι−1

θ,gn
: N × P → N × P ,

(n, p) → (g · n, p) .
The fact that the canonical Cartan connection ωnor is left invariant for the action

of N and right equivariant for the action of the parabolic structure group P implies
that ωnor is uniquely determined by its values at a single point xo ∈ P(N). We can
choose xo as the point (e, e) with respect to the trivialisation ιθ,gn

and then the linear
map

ωnor(e, e) : n× p→ g

contains the whole information about ωnor on P(N). Since the (−1)-part of ωnor
corresponds to the soldering form, we have ω−1(e, e)(Ei) = ei for i = 1, . . . , s. This
leads us to the definition of the map γnor (which depends on the choice of the global
left invariant frame coming from the reference frame θ) as

γnor : g−1 → p ,
a 7→ πp ◦ ωnor(e, e) ◦ πn ◦ ω−1

nor(e, e)(a) ,

where πp and πn denote the obvious projections (the latter with respect to our trivial-
isation ιθ,gn

). This map decomposes to

γnor = γ0 + γ1
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and still contains the whole information about the canonical Cartan connection ωnor
on P(N). In fact, via the relation

ωnor(Ei) = ei + γnor(ei)

at xo = (e, e) the canonical Cartan connection ωnor can be recovered from γnor by right
and left translation with P , resp., N .

The curvature Ω inherits the left and right invariance properties from the canonical
connection ωnor and thus Ω is again determined by its values at the single point xo =
(e, e) in P ×N . With respect to the trivialisation ιθ,gn

, we calculate

Ei(ωnor(Ej))(e, e) =
d

dt

∣∣∣∣
t=0

ωnor(Ej)(exp tEi, e) =
d

dt

∣∣∣∣
t=0

L∗
exp tEi

ωnor(Ej)(e, e)

=
d

dt

∣∣∣∣
t=0

ωnor(Ej)(e, e) = 0

for all i, j ∈ {1, . . . , s}. This shows the identity

Ω(Ei, Ej) = −ωnor(e, e)([Ei, Ej ]n) + [ei + γnor(ei), ej + γnor(ej)]g .

The curvature function κ of the canonical Cartan connection ωnor can then be expressed
by

κ(ei, ej) = −(id + γnor) ◦ ρn,θ(ei, ej) + [ei + γnor(ei), ej + γnor(ej)]g .

Thereby, the (−1)-part of κ is given through

κ−1(ei, ej) = −ρn,θ(ei, ej) + [ei, γ0(ej)]g + [γ0(ei), ej]g .

This expression vanishes, since ωnor has no torsion, and we see that the Lie bracket of
n is given on g−1 by

ρn,θ(ei, ej) = −γ0(ej)ei + γ0(ei)ej . (36)

The 0-part of κ is

κ0(ei, ej) = −γ0 ◦ ρn,θ(ei, ej) + [ei, γ1(ej)]g + [γ1(ei), ej ]g + [γ0(ei), γ0(ej)]g .

This part satisfies the trace-free condition

s∑

i=1

γ0 ◦ ρn,θ(ei, a)(b)(e
∗
i ) =

{ ∑s
i=1[ei, γ1(a)]g(b)(e

∗
i ) + [γ1(ei), a]g(b)(e

∗
i )

+
∑s

i=1[γ0(ei), γ0(a)]g(b)(e
∗
i )

}
(37)

for all a, b ∈ g−1. The 1-part κ1 of the curvature is

κ1(ei, ej) = −γ1 ◦ ρn,θ(ei, ej) + [γ0(ei), γ1(ej)]g + [γ1(ei), γ0(ej)]g

for all i, j ∈ {1, . . . , s}.
The linear map γnor : g−1 → p is uniquely determined by the normalisation condi-

tions (36) and (37) with respect to ρn,θ (which depends on the choice of the reference
frame θ). (Otherwise, we would recover from another map γ subject to these properties
a further normal connection inducing cn, which is not possible.) So γnor depends only
on the choice of θ which induces the Lie bracket of n on g−1. We can introduce the
following formal notions.
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Definition 3. Let (G,P ) with G = PO(1, s+ 1) be the flat homogeneous model (of
conformal Riemannian geometry) with Lie algebras (g, p) and let

ρ : g−1 × g−1 → g−1

be a skew-symmetric map, which satisfies the Jacobi identity and thus defines a Lie
algebra bracket (of compact type) on the (−1)-part g−1 of the grading of g.

(1) We call a linear map

γ = γ0 + γ1 : g−1 → p

an invariant connection form on g−1 of type (G,P ).
(2) The curvature

κγ,ρ = κ−1 + κ0 + κ1 : g−1 × g−1 → g

of the invariant connection γ with respect to the Lie bracket ρ is defined as

κγ,ρ(a, b) = −(id+ γ) ◦ ρ(a, b) + [(id+ γ)(a), (id+ γ)(b)]g

for a, b ∈ g−1.
(3) The invariant connection γ is called torsion-free with respect to ρ if κ−1 = 0.
(4) The invariant connection γ is called normal with respect to ρ if

κ−1 = 0 and tr κ0 = 0

(cf. (37)).
(5) There exists a unique normal connection with respect to the bracket ρ. We

denote it by γρ : g−1 → p (or γnor when the bracket is fixed on g−1) and call it
the canonical invariant connection form of type (G,P ) corresponding to ρ.

As we can see from (36), the Lie bracket of n is determined on g−1 by the 0-part
γ0 of the normal connection γnor, since it has no torsion. In general, a linear map

γ0 : g−1 → g0

with −γ0(b) · a + γ0(a) · b, a skew-symmetric expression in a, b ∈ g−1, defines a Lie
bracket ργ0(a, b) on g−1 if and only if the following sum of even permutations vanishes
(Jacobi identity):

∑

σ(i,j,k)

[
γ0[ei, γ0(ej)] + γ0[γ0(ei), ej ] − [γ0(ei), γ0(ej)] , ek

]
= 0 (38)

for all i, j, k ∈ {1, . . . , s}. The map γ0 can then be extended in an arbitrary manner to
a torsion-free connection form γ with respect to ργ0 just by adding any linear 1-part
γ1. In such a situation, the curvature function to γ with respect to ργ0 is given by

κγ(a, b) = −γ0([a, γ0(b)] + [γ0(a), b]) + [a, γ1(b)] + [γ1(a), b] + [γ0(a), γ0(b)]

−γ1([a, γ0(b)] + [γ0(a), b]) + [γ0(a), γ1(b)] + [γ1(a), γ0(b)] .

Of course, not every torsion-free map γ0 can be extended to the normal connection
γnor with respect to ργ0 . The condition on γ0 for being normally extendible is given by
the existence of a γ1 such that

s∑

i=1

([ei, γ1(a)] + [γ1(ei), a])(b)(e
∗
i ) =

{ ∑s
i=1γ0([ei, γ0(a)] + [γ0(ei), a])(b)(e

∗
i )

−∑s
i=1[γ0(ei), γ0(a)](b)(e

∗
i )

(39)

for all a, b ∈ g−1.
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We note that so far in this section we have only made use of the left invariant nature
of a metric on a Lie group, but not of the bi-invariant nature of gn, which determines
the conformal structure cn. For the explicit computation of γnor and its curvature we
specialise (now really) to the case of a bi-invariant metric (induced by the Killing form)
on a compact semisimple Lie group N . The map γ0 corresponds in this situation to
the Levi-Civita connection of the bi-invariant metric gn and is given with respect to
the reference frame θ by

γ0(ei) = θ ◦ ∇n
Ei

(θ−1(·)) =
1

2
ρn,θ(ei, ·)

for all i = 1, . . . , s. Obviously, the so-defined map γ0, considered as a matrix in
g0 = co(s) with respect to the basis {e1, . . . , es}, satisfies (36), i.e., γ0 is torsion-free
with respect to n (and θ). Then we calculate for the traces on the right hand side in
(39): ∑s

i=1 γ0([ei, γ0(a)] + [γ0(ei), a])(b)(e
∗
i ) = 1

2
Bn(θ

−1(a), θ−1(b)) ,

∑s
i=1[γ0(ei), γ0(a)](b)(e

∗
i ) = 1

4
Bn(θ

−1(a), θ−1(b)) .

(Note that {e∗1, . . . , e∗s} denotes the dual basis to {e1, . . . , es} in Rs. This is the dual
basis with respect to the Killing form Bg of g ∼= so(1, s+1) only up to a multiple!) We
set λ = −1

8(s−1)
and

γ1(a) = λa∗

for all a ∈ g−1. Calculation of the left hand side in (39) gives
s∑

i=1

([ei, γ1(ek)] + [γ1(ei), ek])(el)(e
∗
i ) = 2λ(s− 1)δkl

for all k, l ∈ {1, . . . , s}. Comparing both sides of (39) proves that the normal connection
form for n is determined to

γnor : g−1 → p ,

a 7→ 1
2
ρn,θ(a, ·)− 1

8(s−1)
a∗ .

The curvature functions κ−1 and κ1 vanish identically, since there is no torsion and the
Cotton tensor Cn of gn is trivial. The 0-part κ0 is given by the Weyl tensor W n of gn.
In fact,

κ(a, b) = κ0(a, b) = θ ◦W n(θ−1(a), θ−1(b)) .

3. Invariant Cartan Connections and Holonomy

We derive now a formula, which computes the conformal holonomy algebra for the
invariant connection γnor of the conformal class of a bi-invariant metric. Remember that
in general the holonomy groupHol(ωnor) is by definition a subgroup of G = PO(1, s+1)
and hol(ωnor) sits in so(1, s+ 1).

Let N be a connected and compact semisimple Lie group with Lie algebra n and bi-
invariant Riemannian metric gn coming from the Killing form and let γnor : g−1

∼= n→ p

be the invariant connection form corresponding to ωnor. We denote by

Λ(g−1) := span{(id + γnor)(a)| a ∈ g−1} ⊂ g

the image of the invariant connection and by

q := span{κn(a, b)| a, b ∈ g−1} ⊂ p
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the vector space of curvature values to γnor. There is a classical formula for the holo-
nomy algebra of an invariant connection with arbitrary structure group G on a homo-
geneous space (cf. [91]). This general result implies directly the following formula for
the conformal holonomy algebra of a bi-invariant metric.

Theorem 18. Let N be a connected and compact semisimple Lie group with con-
formal structure [gn]. Then the holonomy algebra of the normal Cartan connection ωnor
on (N, [gn]) is given by the iterative expression

hol(ωnor) = q + [Λ(n), q] + [Λ(n), [Λ(n), q]] + · · · ,
which is a subalgebra of g = so(1, s+ 1).

4. Examples

We make use of our invariant calculus for the conformal geometry of bi-invariant
metrics in order to compute the conformal holonomy algebra in (a trivial and) a
non-trivial case.

Example 1. Let N = SO(3) be the special orthogonal group in dimension 3, which
is a 3-dimensional compact and semisimple Lie group. Let so(3) denote its Lie algebra.
We use for so(3) the standard basis {Eij | 1 ≤ i < j ≤ 3} with the Eij’s defined by
matrix multiplication as

Eij := ei · e⊤j − ej · e⊤i
with respect to the standard basis {e1, e2, e3} of R3.

The Lie algebra so(3) is isomorphic to su(2) and the universal covering of the group
SO(3) is

S3 = Spin(3) ∼= SU(2) .

The bi-invariant metric on SO(3) is conformally flat, since the Weyl tensor W n always
vanishes in dimension 3, and the Cotton Cn vanishes for any bi-invariant metric. Of
course, this is also clear from the fact that the bi-invariant metric on the universal
covering group SU(2) is the standard metric on S3. Therefore, we expect that the
calculation of conformal curvature and holonomy produces trivial results here.

In fact, the connection form γnor = γ0 + γ1 can be presented in the following form.
The chosen basis {Eij} in so(3) is orthogonal and −B(Eij , Eij) = 2 for all its elements.
We define the reference frame

θ(
1√
2
E12) = e1, θ(

1√
2
E13) = e2, θ(

1√
2
E23) = e3 .

Then we have
γ0(e1) = 1√

2
∇n
E12
· = 1

2
√

2
[E12, ·]n = 1

2
√

2
E23 ,

γ0(e2) = 1√
2
∇n
E13
· = 1

2
√

2
[E13, ·]n = − 1

2
√

2
E13 ,

γ0(e3) = 1√
2
∇n
E23
· = 1

2
√

2
[E23, ·]n = 1

2
√

2
E12 .

(Note that in these formulae the Eij ’s form a basis of n as well as a basis of the
semisimple part of g0.) For γ1 we have

γ1(ei) = − 1

16
e∗i , i = 1, 2, 3 .
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These formulae express the normal Cartan connection on SO(3) in the trivialisation
coming from the bi-invariant metric. One can easily that the curvature κ0 of γnor
vanishes identically. In particular, the conformal holonomy algebra is trivial, which
results from the formula in Theorem 18 with q = 0.

Example 2. We apply our invariant calculus now to the 6-dimensional compact
and semisimple Lie group SO(4) with bi-invariant metric induced by the Killing form
B. The Lie algebra so(4) is isomorphic to

so(3)⊕ so(3)

and as basis we use two copies of the basis {Eij} of so(3), namely

{Eij | 1 ≤ i < j ≤ 3} ∪ {Ekl| 4 ≤ k < l ≤ 6} .
This basis is orthogonal with −B(Eij , Eij) = 2.

The bi-invariant metric gso(4) induced by the Killing form on SO(4) is Einstein
with positive scalar curvature. Obviously, it has non-constant sectional curvature Sn

(cf. Section 1), hence it is not conformally flat. For that reason, we expect in our
calculation non-trivial curvature terms and holonomy for the conformal structure cso(4)
on SO(4).

First, we calculate the normal connection form γnor = γ0 +γ1. We use the reference
frame

θ(
1√
2
E12) = e1, θ(

1√
2
E13) = e2, θ(

1√
2
E23) = e3 ,

θ(
1√
2
E45) = e4, θ(

1√
2
E46) = e5, θ(

1√
2
E56) = e6 .

From the calculations for the case of so(3) we know that

γ0(e1) = 1
2
√

2
E23, γ0(e2) = − 1

2
√

2
E13, γ0(e3) = 1

2
√

2
E12,

γ0(e4) = − 1
2
√

2
E56, γ0(e5) = − 1

2
√

2
E46, γ0(e6) = 1

2
√

2
E45 .

The 1-part γ1 is given by

γ1(ei) = − 1

40
e∗i , i = 1, . . . , 6 .

We have only to compute the images of the 0-part κ0 of the curvature function,
which corresponds to the Weyl tensor W n, to obtain the space q. It holds that

W n = Rn +
1

8(s− 1)
gn ∗ gn .

For the Kulkarni-Nomizu product in this expression it is easy to see that

θ(B ∗B)(θ−1(ei), θ
−1(ej)) =

1

20
Eij for all i < j ∈ {1, . . . , 6} .

For the Riemannian curvature tensor we find

θ ◦Rn(θ−1(ei), θ
−1(ej)) = −1

8
Eij

for all i < j ∈ {1, . . . 3} and all i < j ∈ {4, . . . 6}. The remaining curvature expressions
for Rn are zero. This shows that the span of the images of the 0-part κ0 of the Cartan
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curvature is equal to so(6), which is the semisimple part of g0 in the Möbius algebra
so(1, 7). We have

q = so(6) ⊂ g0 .

Obviously, the span of the normal connection id+ γnor is given by

Λ(g−1) = {ei + γ0(ei)−
1

40
e∗i | i = 1, . . . , 6} .

Then it is a straightforward calculation to see that the space [Λ(g−1), q] of commutators
is equal to

span{ei −
1

40
e∗i | i = 1, . . . , 6} ⊕ so(6) .

We denote
l := span{x+ γ1(x)| x ∈ g−1} .

The space l is stable under the action of so(6) sitting in g0. This shows that all the
spaces

[Λ(g−1), [· · · , [Λ(g−1), q] · · · ]]
of commutators are equal to l ⊕ q, which is seen to be isomorphic to the Lie algebra
so(7) embedded into so(1, 7). We conclude for the holonomy algebra of SO(4) that

hol(ωnor) = l⊕ q ∼= so(7) .

This result has the following interpretation. The bi-invariant metric gn in the
conformal class cn on N = SO(4) is Einstein with scaln > 0. Thus this Einstein scale
gives rise to a parallel timelike standard tractor, which reduces the conformal holonomy
algebra at least to so(7). In fact, our calculation shows that the holonomy is not further
reduced and we conclude that up to constant rescaling the bi-invariant metric is the
only Einstein metric in its conformal class on SO(4). Moreover, we can read off from
the holonomy result that SO(4) does not admit twistor spinors nor conformal Killing
forms satisfying the normalisation conditions (cf. Chapter 1). Finally, we can say that
SO(4) is not (locally) conformally equivalent to a product of Einstein metrics such that
the Schouten tensor of the product equals the product of the Schouten tensors of the
factors (cf. Proposition 6(1)).





CHAPTER 4

Twistor Spinors with Zeros in Lorentzian Geometry

We gave in Chapter 1 a geometric structure result for Lorentzian spin manifolds ad-
mitting conformal Killing spinors without singularities (cf. Theorem 10). In this chap-
ter we want to discuss a singularity case in Lorentzian geometry. From the viewpoint of
conformal geometry twistor spinors (and also nc-Killing p-forms) with singularities are
of particular interest for various reasons (cf. [120, 82, 95, 96, 99, 65, 105, 106, 115]).

For example, in Riemannian geometry the length square of a conformal Killing
spinor gives rise via rescaling to a Ricci-flat metric in the conformal class on the com-
plement of the zero set, which consists of isolated points. A result by A. Lichnerowicz
(cf. [120]) states that a compact Riemannian space admitting a twistor spinor with
zero is conformally isometric to the round n-sphere Sn and any twistor spinor on Sn

admits exactly one isolated zero. A construction by W. Kühnel and H.-B. Rademacher
also shows that there exist twistor spinors with zeros on complete, non-compact Rie-
mannian spaces, which are not conformally flat. Such solutions occur typically on the
conformal completion to infinity of asymptotically Euclidean spaces with special irre-
ducible holonomy of the Levi-Civita connection (cf. [96, 99]). More generally, a space
(M, c) admitting a parallel standard tractor t, whose projecting part ΠH(t) ∈ Γ(E[1])
has zeros, is called an almost (conformally) Einstein space (cf. Chapter 1 and [65]).
Such spaces are interesting in view of the Poincaré-Einstein construction, which is
asymptotically hyperbolic (cf. Section 0.11).

Singularities of twistor spinors and conformal Killing vector fields are also important
in the context of essential conformal transformation groups (cf. Section 0.6). In fact,
an essential conformal Killing vector field needs to have (in the local situation) a
zero. In general, an essential conformal transformation group on a space (M, c) is
never compact. In Riemannian geometry the reverse statement is true as well, i.e.,
if a conformal transformation group is non-compact then it has to be essential. On
complete Riemannian spaces this situation is very rare, since only the Euclidean spaceRn and the round sphere Sn admit essential conformal transformation groups (cf. [134,
116, 2]). Both spaces are conformally flat. A conjecture by A. Lichnerowicz states
that compact Lorentzian spaces with essential conformal transformation group are
conformally flat as well (cf. [4, 60]). In the non-compact case this statement is
certainly not true as we will see in Section 2. (cf. also [106, 115]).

To be more concrete, in conformal Lorentzian geometry we did describe before
already that solutions of the Penrose twistor equation always give rise to conformal
Killing vector fields (in form of the Dirac current). The zero set of a twistor spinor and
the corresponding Dirac current always coincide (cf. Section 0.8). In fact, we will see
here that the Dirac current of a twistor spinor with zero has always the property that
its (local) flow consists of essential conformal transformations (cf. Section 1). Then we
will show in this chapter the following two main results. First, we prove that a twistor

125
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spinor with zero rescales conformally outside the zero set (at least locally) to a parallel
spinor. (In Riemannian geometry this result is a straight consequence, since one can
simply rescale with the length function of the spinor. However, in Lorentzian geometry
this argument does not work and for that reason we employ tractor calculus, which
shows in another instance how useful tractor calculus is.) Secondly, we will construct
explicitly a family of Lorentzian metrics on (non-compact) open subsets of R5, which
admit twistor spinors with unique isolated zero and essential conformal transformation
groups. The conformal geometry of these metrics is not flat in any neighbourhood of
the zero. The construction is based on the conformal completion of the Eguchi-Hanson
metric defined on the complement of a closed ball in R4 (cf. [52, 96]). The constructed
family of metrics is of class C1, i.e., with respect to the standard coordinates on R5

the coefficients of the metrics are continuously differentiable exactly once. It is not
clear yet if the regularity of these metrics improves by rescaling with an appropriate
conformal factor. So far solutions with zeros of the twistor equation in Lorentzian spin
geometry were only known on conformally flat spaces!

1. Twistor Spinors with Zeros and Their Dirac Currents

We prove in this section a local geometric structure result for Lorentzian spin spaces
admitting twistor spinors with zeros (on the complement of the zero set). Thereby, we
will use results about the shape of the zero set of conformal Killing vectors and spinors
from [105] (cf. also [106, 108]).

Let (Mn, g) be a connected and time-oriented Lorentzian spin manifold of dimension
n ≥ 3 with (complex) spinor bundle S and indefinite Hermitian product 〈·, ·〉S and let
us consider a twistor spinor ϕ ∈ Γ(S) with spinor square Vϕ, which has a non-empty
set zero(ϕ) of zeros on the Lorentzian space (Mn, g). From the definition of 〈·, ·〉S and
the Dirac current Vϕ it is immediately clear that the zero sets zero(Vϕ) and zero(ϕ)
coincide (cf. Section 0.8 and [106]). In particular, if ϕ is a non-trivial twistor spinor
with zeros then Vϕ is a non-trivial conformal Killing vector field with zeros. Note that
if ϕ(p) = 0 at some p ∈ M then DSϕ(p) 6= 0 (since these are the components with
respect to g of the corresponding ∇nor-parallel twistor S(ϕ); cf. Section 0.8). In [105]
we discussed the shape of the zero set zero(ϕ) of a twistor spinor.

Proposition 12. (cf. [105, 106]) Let ϕ be a twistor spinor with zero on a
Lorentzian space (Mn, g). Then

(1) the set zero(ϕ) consists of (a countable number of) isolated points and/or
isolated images of maximal null geodesics in (M, g).

(2) If p ∈ zero(ϕ) and X ·DSϕ(p) 6= 0 for all X ∈ TpM then the zero p is isolated
on M .

(3) If γp is a geodesic on (M, g) with p = γp(0) ∈ zero(ϕ) and γ′p(0) ·DSϕ(p) = 0
then the image of γp is contained in zero(ϕ).

Remember that, in general, the corresponding twistor Ψ := S(ϕ) ∈ Γ(W) to any
non-trivial conformal Killing spinor ϕ ∈ Γ(S) is ∇W-parallel on (M, [g]) and with
respect to the metric g the components of the twistor Ψ are given by (ϕ,DSϕ). The
spinorial square ς2(Ψ) of Ψ in the 2-form tractors is non-trivial and ∇nor-parallel, and
we can assign to it (by use of Table 3) a normal form α̂ϕ ∈ Λ2(Rn∗) (cf. Section 1.6).
This normal form is by construction constant on the space (M, g) and the idea for our
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geometric description of twistor spinors with zero is to discuss, which normal forms
α̂ϕ allow for a zero of the projecting part Vϕ = ΠH(ς2(Ψ)). Off the singularity set the
geometric description should then be clear from Theorem 10.

So let us assume that ϕ ∈ Γ(S) is a conformal Killing spinor with zero on (M, g).
Since the corresponding Dirac current Vϕ is by definition quadratic in the spinor, we
can make the following important observation. For any metric g̃ ∈ [g] the vector field
Vϕ has a zero at p ∈ zero(ϕ), and moreover,

∇g̃Vϕ(p) = 0 and divg̃Vϕ(p) = 0 ,

which implies gradg̃(divg̃Vϕ)(p) 6= 0 (since the 2-jet can not be trivial at a point).
This shows that Vϕ is an essential conformal Killing vector field on (M, [g]) and its
local flow consists of essential conformal transformations. In fact, we can use these
features of the 2-jet of Vϕ for further useful discussion. For this purpose let us consider
the adjoint (resp. 2-form) tractor ς2(Ψ), which is the image of Vϕ under the splitting
operator S. With respect to any compatible metric g̃ in [g] the adjoint tractor ς2(Ψ)
splits into a set (α−, α0, α∓, α+) of differential forms, where α− = ς1(ϕ), α0 = 1

2
dς1(ϕ),

α∓ = 1
n
d∗ς1(ϕ) and α+ = 1

n−2
(∆g̃

tr + scalg̃

2(n−1)
)ς1(ϕ) (cf. Section 1.1). In fact, α+ is the

spinorial 1-form square of DSϕ, which is in any case a causal 1-form. It follows that at
a zero p ∈ zero(ϕ) the adjoint tractor ς2(Ψ)(p) is given by s♭+ ∧α+ with respect to any
g̃-adapted tractor frame {s−, s+, s1, . . . , sn} (cf. Section 1.1). This implies that ς2(Ψ)
is a simple 2-form tractor everywhere(!) on M and the corresponding normal form of
ς2(Ψ) is either

l♭1 ∧ l♭2 or l♭1 ∧ t♭1 ,
where l♭1 and l♭2 are lightlike and orthogonal cotractors, resp., t♭1 is a timelike cotractor
and orthogonal to l♭1 (cf. Section 1.5).

The argument so far shows that two types of conformal Killing spinors ϕ with
zero(ϕ) 6= ∅ on a Lorentzian space (M, g) are possible. According to the normal form
of the corresponding 2-form tractor ς2(Ψ) we define the singularity set of ϕ as follows.
If the normal form to ϕ is given by a 2-form l♭1 ∧ l♭2 we set sing(ϕ) := zero(ϕ). In the
other case when the normal form is l♭1 ∧ t♭1 we set sing(ϕ) := zero(‖Vϕ‖2).

Proposition 13. Let ϕ ∈ Γ(S[−1/2]) be a conformal Killing spinor with zero(ϕ) 6=
∅ on a conformal Lorentzian spin manifold (M, c). Then the set sing(ϕ) is singular on
M and there exists for every p 6∈ sing(ϕ) a neighbourhood Up ⊂ M of p and a metric
g ∈ c|Up such that ϕ is ∇S-parallel and Vϕ is ∇g-parallel with respect to g.

Proof. Let us consider the ∇nor-parallel 2-form tractor ς2(Ψ). Since ς2(Ψ) is
simple, we have (for both possible normal forms) ς2(Ψ)∧ ς2(Ψ) = 0, which implies that
the corresponding projecting part ς1(ϕ) ∧ dς1(ϕ) is trivial as well. This means that Vϕ
is hypersurface orthogonal off the singularity set sing(ϕ).

There are two cases to consider now. First, let us assume that the interior of
zero(‖Vϕ‖2) is non-empty. In this case Theorem 10 tells us that there exists an open
set U ⊂ zero(‖Vϕ‖2) r zero(ϕ), on which ϕ and Vϕ are parallel with respect to some
metric g ∈ c|U . Then DSϕ = 0 on (U, g) and the scalar curvature scalg vanishes. We
can conclude that with respect to any g-adapted tractor frame {s−, s+, s1 . . . , sn} the
2-form tractor ς2(Ψ) is given on (U, g) by s♭− ∧ ς1(ϕ). In particular, it follows that

the normal form of ς2(Ψ) is l♭1 ∧ l♭2 and sing(ϕ) = zero(ϕ) is singular on M . In fact,
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Theorem 10 implies now that for any p 6∈ zero(ϕ) there exists a neighbourhood Up
such that ϕ and Vϕ a parallel with respect to some g ∈ c on Up.

In the other case the set zero(‖Vϕ‖2) is singular on M , which means that Vϕ is
almost everywhere timelike, and there exists a unique metric g ∈ c on M r sing(ϕ),
for which Vϕ has constant length square g(Vϕ, Vϕ) = −1. Since Vϕ is hypersurface
orthogonal, the vector field Vϕ has to be ∇g-parallel on M r sing(ϕ). In particular,
ς2(Ψ) is given by s♭− ∧ ς1(ϕ) + s♭+ ∧ α+. However, the normal form of ς2(Ψ) must be

l♭1 ∧ t♭1, which implies α+ = 0 and, therefore, DSϕ = 0 with respect to g. This shows
that ϕ is ∇S-parallel on (M r sing(ϕ), g). �

We mentioned already Lorentzian spin spaces with parallel spinors in Section 0.8.
There occur exactly two types of geometries, the static monopoles and the Brinkmann
waves. As the proof of Proposition 13 already suggest, using the normal form descrip-
tion of ς2(Ψ) it becomes immediately clear, which of these geometries do occur off the
singularity set sing(ϕ) of a twistor spinor ϕ with zero. Also the shape of the zero and
the singularity set of ϕ is determined by the normal form of ς2(Ψ).

Theorem 19. (cf. [108]) Let ϕ 6≡ 0 be a twistor spinor on a conformal Lorentzian
spin manifold (M, c) with zero(ϕ) 6= ∅. Then zero(ϕ) consists either of

(1) isolated images of lightlike geodesics and, off the zero set, the metric g is locally
conformally equivalent to a Brinkmann metric with parallel spinor or

(2) isolated points and, off the singularity set sing(ϕ), the metric g is locally con-
formally equivalent to a static monopole −ds2 + h admitting a parallel spinor.
In a (convex) neighbourhood of p ∈ zero(ϕ) the singularity set sing(ϕ) is equal
to the geodesic light cone Lo,p, which emerges from p ∈ zero(ϕ) (cf. Section
0.4).

Proof. Let g ∈ c be a smooth metric on M . First, let us assume that the
normal form of ς2(Ψ) to the twistor spinor ϕ with zero is given by l♭1 ∧ l♭2. Then
sing(ϕ) = zero(ϕ) and at any zero p ∈ zero(ϕ) the Dirac current VDSϕ is null. This
implies that VDSϕ ·DSϕ(p) = 0 (cf. [106]) and with Proposition 12 we conclude that
the (maximal) null geodesic with tangent vector VDSϕ running through p lies entirely
in zero(ϕ). Moreover, we have seen already in the proof of Proposition 13 that ϕ and
Vϕ are locally parallel with respect to some metric g̃ ∈ c off the set zero(ϕ). Since Vϕ
is null off the zero set, the metric g is a Brinkmann wave (cf. Theorem 10).

Now, let l♭1∧t♭1 be the normal form of ς2(Ψ). Then at any zero p ∈ zero(ϕ) the Dirac
current VDSϕ is timelike and therefore X ·DSϕ(p) 6= 0 for all 0 6= X ∈ TpM (cf. [106]).
Proposition 12 implies that zero(ϕ) consists of isolated points on M . Moreover, since
Vϕ is a conformal Killing vector field and ∇gVϕ(p) = 0 for all p ∈ zero(ϕ), it follows
that Vϕ is tangential (or zero) to any lightlike geodesic emerging from any p ∈ zero(ϕ)
(cf. [105]). This implies that Lo,p, p ∈ zero(ϕ), is contained in sing(ϕ).

In fact, if Vϕ is null at q ∈M then the integral curve to Vϕ through q is a lightlike
(pre-)geodesic. If such a point q occurs arbitrary close to some p ∈ zero(ϕ), but is
not contained in Lo,p, then the corresponding (maximal) lightlike geodesic through q
has to intersect the light cone Lo,p very close to p. At such an intersection point the
vector Vϕ would have to be tangential to the null geodesic emerging from p and the
null geodesic emerging from q. Since both geodesics are not parallel by assumption,
the vector Vϕ had to be zero at the intersection. But this is not possible, since p is an
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isolated zero. This shows that q does not exist in an arbitrary small neighbourhood of
p ∈ zero(ϕ) and we conclude that sing(ϕ) is identical to the geodesic light cone Lo,p
in a small neighbourhood of any p ∈ zero(ϕ).

Off the singularity set sing(ϕ) the vector field Vϕ is timelike and parallel with
respect to the metric g̃ = −1

g(Vϕ,Vϕ)
· g. This shows that g̃ is locally a product of the form

−ds2 + h, where h is some Riemannian metric. In fact, the spinor ϕ is also parallel
with respect to g̃, and therefore, ϕ restricts to a parallel spinor on the (space with)
metric h. In particular, it follows that the metrics h and g̃ are Ricci-flat. �

2. Metric with Frame and Spinor

In the previous section we discussed twistor spinors with zeros in Lorentzian geom-
etry without really knowing if such a thing exists at all. Certainly, twistor spinors with
zero exist on flat Minkowski space R1,n. However, we would like to know non-trivial
conformally curved examples. And, in fact, we describe now the explicit construction
of a family of conformally non-flat Lorentzian metrics in dimension 5 admitting twistor
spinors with isolated zeros. The construction is based on the Eguchi-Hanson metric in
dimension 4 (cf. [52, 96, 115]). The proofs for our statements here will be worked
out in the following last section of this chapter.

Let us consider the 5-dimensional real vector space R5 with canonical coordinates
x = (x0, x1, x2, x3, x4). (In this and the next section we put the indices for coordinates
at the bottom.) We set n = 5. The Minkowski metric is given by

g0 = −dx2
0 + dx2

1 + dx2
2 + dx2

3 + dx2
4 .

This metric is of Lorentzian signature (1, 4) and is flat on R5. We aim to rewrite the
Minkowski metric in cylindrical coordinates. So let E be the 4-dimensional vector
subspace in R5 defined by x0 = 0 and denote by

r =
√
x2

1 + x2
2 + x2

3 + x2
4

the radial coordinate on E. The space Er{0} (with deleted origin) is diffeomorphic toR+×S3. Thereby, S3 denotes the 3-sphere, which is given in E by the equation r = 1.
As the group of elements with unit length in E ∼= H the 3-sphere S3 is isomorphic to
the semisimple Lie group SU(2). The round metric gS3 on S3 is SU(2)-invariant and
there exist left-invariant 1-forms σ1, σ2 and σ3 on SU(2) such that

gS3 = σ2
1 + σ2

2 + σ2
3 .

On S3 in E these left-invariant forms are explicitly given by

σ1 = 1
r2

(−x2dx1 + x1dx2 − x4dx3 + x3dx4),

σ2 = 1
r2

(−x3dx1 + x4dx2 + x1dx3 − x2dx4),

σ3 = 1
r2

(−x4dx1 − x3dx2 + x2dx3 + x1dx4) .

We denote the dual orthonormal frame on TS3 by { ∂
∂σ1
, ∂
∂σ2
, ∂
∂σ3
}. Finally, we see that

the Minkowski metric on R5 r {r = 0} is given in cylindrical coordinates by

g0 = −dx2
0 + dr2 + r2(σ2

1 + σ2
2 + σ2

3) .
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We know that this metric can be smoothly completed to the singular set {r = 0} of the
cylindrical coordinate system (which is a real line in R5). The result is the Minkowski
metric g0 on R5.

Now let us define the cone

L := { (x0, x1, x2, x3, x4) ∈ R5 : r ≤ |x0| }
with singular point at the origin of R5. The boundary set of the cone L in R5 is

Lo := { (x0, x1, x2, x3, x4) ∈ R5 : r = |x0| } .
Next we define the radial coordinate

ro :=

{
0 on L

r2−x2
0

r
on R5 r L

.

Furthermore, let a > 0 be a real parameter. Then we set

Ba := { (x0, x1, x2, x3, x4) ∈ R5 : 0 < ro <
1

a
}

and B̃a := Ba ∪ L. Both sets Ba and B̃a are open in R5 for all a > 0. The set
Ba is a subset of R5 r L and B̃a is simply connected. We also introduce the set
B>
a := B̃a r {r = 0}, where the real line {r = 0} is deleted. Figure 1 shows a diagram

of the basic domains of definition.

1/a 1/a

L

L

Ba

Ba

xo

rr
E

Lo

Lo

Figure 1

On B̃a we define a family of pointwise symmetric bilinear forms ga, a > 0, as follows.
Let

ga :=

{
g0 − r2(aro)

4 · σ2
3 + a4(rβ)−2r2

o · α2 on B>
a

g0 on {r = 0} ,

where we set

β :=
√

1− (aro)4 and α := (r2 + x2
0)dr − 2x0rdx0 .

Obviously, the symmetric bilinear form ga is smoothly defined on B̃arLo for all a > 0,
and by definition, ga restricted to LrLo is the flat Minkowski metric. The symmetric
bilinear form ga can be rewritten on B>

a as

ga = −dx2
0 + dr2 + r2( σ2

1 + σ2
2 + β2σ2

3 ) + a4(rβ)−2r2
o · α2 .



2. METRIC WITH FRAME AND SPINOR 131

Proposition 14. The symmetric bilinear form ga is a C1-metric of Lorentzian
signature (1, 4) on the subset B̃a of R5 for all a > 0. The metric ga is not of class C2.

We want to discuss some geometric aspects of the Lorentzian metric ga. The re-
striction of ga to the disk E ∩Ba (with deleted origin) in E ∼= R4 is given by

ha :=
dr2

1− (ar)4
+ r2( σ2

1 + σ2
2 + (1− (ar)4)σ2

3 ) .

This is a Riemannian metric onE∩Ba, which admits a smooth (even analytic) extension
to the origin. Off the origin, the metric ga is conformally equivalent to the Eguchi-
Hanson metric

gEH :=
dR2

1− (a/R)4
+ R2

(
σ2

1 + σ2
2 + (1− (a/R)4)σ2

3

)

defined on the complement of a closed ball in R4. In fact, with R := 1/r on Er{0} we
have gEH = 1

r4
·ha. We want to point out that the complete Eguchi-Hanson metric is a

Ricci-flat Kähler metric defined on the total space of the cotangent bundle of S2, which
is asymptotically locally Euclidean at infinity and hyperKähler with irreducible holo-
nomy group SU(2) = Sp(1). The metric gEH on R4r{R ≤ a} which is used throughout
this chapter is a simply-connected Z2 cover of the complete Eguchi-Hanson metric on
T ∗S2 with the zero section deleted. The metric gEH is asymptotically Euclidean, Ricci-
flat and hyperKähler, and therefore, admits a 2-dimensional space of parallel spinors.
The metric gEH is not conformally flat. In fact, gEH is half-conformally flat, i.e., the
Weyl curvature tensor W = W+ + W− is anti-selfdual (W+ = 0) (cf. [52, 96]). We
set

g̃a :=
1

(r2 − x2
0)

2
· ga on B̃a r Lo .

Proposition 15. a) Let g̃a = (r2 − x2
0)

−2 · ga, a > 0, be a conformally equivalent

metric to ga on B̃a r Lo. Then

(1) the metric g̃a is flat for r < |x0|.
(2) For |x0| < r the metric is given by

g̃a = −ds2 + gEH ,

where we define the coordinate change Ψ by s := −x0

r2−x2
0

and R := r
r2−x2

0
.

In particular, g̃a is Ricci-flat on B̃a r Lo.
b) The Weyl tensor W ga of the smooth Lorentzian metric ga on B̃a r Lo admits

a continuous extension of class C1 to the singular set Lo. For this extension we have
W ga ≡ 0 on L and W ga 6= 0 on Ba, i.e., ga is not conformally flat.

We note that the Ricci-curvature tensor of the metric ga on B̃arLo does not admit
a continuous extension to B̃a. With µ := ln |r2 − x2

0| it holds that

Ricga = −(n− 2) · ( Hessg̃a(µ) − dµ2 ) − ( ∆g̃aµ + (n− 2) · |dµ|2 ) · g̃a .
Furthermore, we note that the hypersurface {s = 0} is totally geodesic with respect

to the metric −ds2 + gEH. This implies that the disk E ∩ B̃a is a totally umbilic
hypersurface in (B̃a, ga). Figure 2 shows the coordinate change Ψ on B̃a together with
the conformally equivalent metrics ga and g̃a.
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1/a 1/aE a aE

go

go

ga

ga

xo

rr

Lo

Lo

Ψ
∂s

go

go

−ds2+gEH

−ds2+gEH

s

R

R

R = −s

R = s

Figure 2

Next we define on B>
a with metric ga an orthonormal frame e = {e0, e1, e2, e3, e4}

in the following way. Let

T := −(r2 + x2
0)
∂

∂r
− 2rx0

∂

∂x0

be a vector field on R5. We set

e0 := ∂
∂x0
− 2x0

r
· a4r2o

1+β
· T

e1 := ∂
∂r

+
r2+x2

0

r2
· a4r2o

1+β
· T

e2 := r−1 · ∂
∂σ1

e3 := r−1 · ∂
∂σ2

e4 := (rβ)−1 · ∂
∂σ3

.

Lemma 12. The orthonormal frame e = {e0, e1, e2, e3, e4} on B>
a is of class C1.

Let Spin(1, 4) be the spin group with universal covering map λ : Spin(1, 4) →
SO(1, 4) onto the special orthonormal group and let Cl1,4 be the Clifford algebra (cf.
Section 0.8). The complex spinor module �1,4 is isomorphic to C4 and a realisation of
the action of the Clifford algebra Cl(1, 4) on �1,4

∼= C4 is given by

γ0 =




−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1


 , γ1 =




0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0


 ,

γ2 =




0 0 −i 0
0 0 0 −i
−i 0 0 0
0 −i 0 0


 , γ3 =




0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0


 ,
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γ4 =




0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0


 ,

where the γi’s denote the generators of the Clifford algebra with relations γ0 · γ0 = 1,
γi · γi = −1 for all i = 1, . . . , 4 and γi · γj = −γi · γj for all i 6= j.

The Lorentzian manifold (B̃a, ga) with C1-metric is simply connected and oriented.
Hence there exists a unique spin structure

π : Spin(B̃a)→ SO(B̃a),

with corresponding spinor bundle

S := Spin(B̃a)×Spin(1,4) �1,4 .

The spinor bundle S is globally trivial on B̃a. With respect to a C1-section of
π : Spin(B̃a) → B̃a (i.e., a global spinor frame of class C1) the space C1(B̃a, S) of
differentiable spinor fields is uniquely identified with the space C1(B̃a,�1,4) of �1,4-

valued continuously differentiable functions on B̃a.
The C1-frame e : B>

a → SO(B̃a) (cf. Lemma 12) admits exactly two lifts (of class
C1) to the spinor frame bundle Spin(B̃a). We choose one of these lifts and denote it
by

es : B>
a → Spin(B̃a) .

Any spinor field φ on B>
a can then be uniquely represented with respect to the spinor

frame es by a �1,4-valued function, i.e.,

φ = [ es , w ] ∈ C1(B>
a , S)

for some function w ∈ C1(B>
a ,�1,4). Now let w(b, c) denote the constant �1,4-valued

function (b,−c, 0, 0)⊤, where (b, c) ∈ C2. We set

ψ>bc := (x0e0 + re1) · [ es , w(b, c) ] on B>
a .

Obviously, the spinor field ψ>bc is an element of C1(B>
a , S) for all (b, c). Calculating the

Clifford product results in

ψ>bc = [ es ,




−x0b
x0c
rb
rc


 ] .

We denote by

V := −2x0r
∂

∂r
− (r2 + x2

0)
∂

∂x0

a smooth vector field on R5. Figure 3 shows the vector field V in a neighbourhood of
the origin in R5 together with integral curves and the flow of the umbilic hypersurface
E to some E+ resp. E−.

Theorem 20. Let (b, c) ∈ C2 and ψ>bc be a spinor on (B>
a , ga) with a > 0.

(1) The spinor field ψ>bc on B>
a admits a unique extension ψbc to (B̃a, ga) of class

C1.
(2) The unique extension ψbc is a twistor spinor on (B̃a, ga).



134 4. TWISTOR SPINORS WITH ZEROS IN LORENTZIAN GEOMETRY

xo

rr
E

E−

E+

Lo

Lo

Figure 3

(3) For (b, c) 6= 0 the twistor spinor ψbc admits exactly one zero at the origin
{0} ∈ B̃a.

(4) The zero set of the spinor length square ubc := 〈ψbc, ψbc〉S is Lo. The function
ubc solves the equation

−ubc · Ric0 = (n− 2) ·Hess(ubc)0

on B̃a r Lo, where Ric0 and Hess(ubc)
0 denote the trace-free parts of the

symmetric tensors Ricga, resp., Hessga(ubc). In particular, the metric g̃a =
1
u2

bc

ga is Einstein for ubc 6= 0.

(5) The spinor square Vψbc
is a smooth conformal Killing vector field on (B̃a, ga).

The following equation holds:

Vψbc
= (b2 + c2) · V .

(6) The vector Vψbc
is timelike on B̃a r Lo, lightlike on Lo r {0} and zero only in

the origin {0} ∈ B̃a.

In short, Theorem 20 says that there exists a 2-dimensional set of twistor spinors on
(B̃a, ga) for all a > 0, which admit an isolated zero at the origin. There exist no further

twistor spinors on (B̃a, ga), since the Eguchi-Hanson metric gEH admits exactly two
linearly independent (parallel) twistor spinors for a > 0. Together with Proposition 15
we obtain from Theorem 20 the following important observation to our construction.

Corollary 5. There exists a family of Lorentzian C1-metrics ga, a > 0, in dimen-
sion 5, which admit twistor spinors and a smooth causal conformal Killing vector field,
all with isolated zero at some point {p} such that ga is non-conformally flat around the
zero at {p}.

We remark that the vector field V is complete on B̃a, i.e., the flow of V to the
time t generates a one-parameter group of conformal transformations on B̃a. All these
conformal transformations are essential (cf. Section 1 and Section 0.6).

We want to add some further comments concerning our construction. The metric
ga can be considered as a completion of the metric −ds2 + gEH , which is Ricci-flat
and asymptotically Minkowskian, to the set L with infinity Lo. The twistor spinors
extend to L as well with a zero at some point of infinity. In general, it is known that
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a Lorentzian metric with differentiable Weyl tensor has to be conformally flat in the
causal past and future of a zero of a twistor spinor (cf. Section 3). Therefore, it is
reasonable in our construction to do the conformal completion to L by using the flat
Minkowski metric g0 on the other side of the infinity set Lo. There exists no extension
(conformal completion) with differentiable Weyl tensor of ga on Ba to a neighbourhood
of the origin, which is not conformally flat on L, but preserves the existence of a twistor
spinor. This fact implies that our completion of ga can not be analytic.

We also want to point out again that our construction is even not smooth. However,
the question remains whether there is a conformally equivalent metric to ga on B̃a,
whose regularity is better than of class C1. The existence of the C1-extension of the
Weyl tensor of ga to the infinity set Lo certainly does not pose an obstruction to this
question. By the way, the reason that we work here with C1-spinors is due to the fact
that our metrics ga are only of class C1. It might well be that there exists a reasonable
differentiable structure of better regularity on the spinor bundle S over (B̃a, ga) than we

use here. In fact, the spinors ψbc of Theorem 20 on (B̃a, ga) might be more regular in a
reasonable sense. However, since we do not know, we decided to work (as a precaution)
only in class C1.

3. Proof of Statements

We prove here the statements which we made in the previous section. We start with
a discussion of differentiability of certain functions on B̃a ⊂ R5. For some arbitrary
p-tuple Ip = (i1, . . . , ip) ∈ {0, . . . , 4}p let us denote by

∂Ip :=
∂

∂xi1
· · · ∂

∂xip

a partial derivative of order p. Moreover, for any 5-tuple l = (lr, l0, . . . , l4) with

lr, l0, . . . , l4 ∈ N ∪ {0} we set sl := −lr +
∑4

i=0 li and define the smooth function

fl = f(lr, l0, · · · , l4) := r−lr · xl00 · . . . · xl44 on Ba .

We say that the rational function fl is of order sl. Remember that we defined the radial
function ro to be (r2 − x2

0)/r on Ba and identically zero on L (cf. Section 2). For any
function f on Ba we understand the product ro · f in a unique way as a function on
B̃a = Ba ∪ L, which is identically zero on L. For t > 0 a real number we denote

Bt
a := Ba ∩ {x ∈ R5 : r ≤ t} .

Notice that if a function f is continuous on Ba and its absolute value |f | is bounded

on Bt
a for all t > 0 then ro · f is continuous on B̃a. In fact, for this conclusion it is

sufficient for |f | to be bounded on Bt
ã for all t > 0 with some ã > a.

Lemma 13. Any function on B̃a of the form rmo · fl with m > 0 is of class Ck−1,
but not of class Ck, where k := min{m,m+ sl}.

Proof. First, we note that |xi| < r on Ba for all i = 0, . . . , 4, and we see that the
absolute value |fl| of any function of the form fl with sl ≥ 0 is bounded on Bt

a by tsl for
all t > 0. More generally, the absolute value of the partial derivative ∂Ipfl is bounded
on Bt

a for all t > 0 if sl−p ≥ 0. In particular, the absolute value of x0/r is bounded on
Ba. Moreover, x0/r is continuous on (Ba∪Lo)r{0}. This shows that the extension of
the function r−x0 ·x0/r by zero to the origin in R5 is a continuous function on Ba∪Lo
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and is identically zero on Lo. And this implies that the coordinate ro is continuously
defined on B̃a. The function ro is not continuously differentiable. However, we have

dro =
−2x0

r
dx0 +

4∑

i=1

(
xix

2
0

r3
+
xi
r

)
dxi ,

and we see that the coefficients of dro are bounded on Ba. (This implies that d(r2
o) =

2rodro is continuous on B̃a, i.e., r2
o is of class C1.)

Since a function of the form rmo · fl admits terms of lowest order m + sl, such a
function is at most of class Cm+sl−1. However, a pth order derivative of rmo · fl on
Ba can be extended continuously to the zero function on L only if p < m. In fact,
any application of a derivative ∂Im of order m admits a non-trivial term of the form
m! · fl · Πm

k=1dro(
∂

∂xik

), which can not be extended continuously by zero to L. On the

other hand, ∂Im−1(r
m
o · fl) = ro · h, where |h| is bounded on Bt

a for all t > 0 if sl ≥ 0.
This shows that rmo · fl is of class Ck−1 with k := min{m,m+ sl}, but it is not k-times
continuously differentiable. �

Now we set

ωa := (aro)
4 · (rσ3)

2 and ρa =
a4r2

o

1− (aro)4
·
(α
r

)2

.

With these notations we have ga = g0 − ωa + ρa on B̃a, where g0 is the flat Minkowski
metric on B̃a.

Proof of Proposition 14. The metric g0 is smooth on B̃a. We have to discuss
the differentiability of ωa and ρa. The coefficients of the 1-forms r · σ3 and α/r are of
order sl = 0, resp., sl = 1. With application of Lemma 13 we conclude that ωa is of
class C3 and ρa is of class C1. The symmetric 2-form ρa is not of class C2. This implies
that the symmetric bilinear form ga on B̃a is of class C1 for all a > 0, but it is not of
class C2.

We postpone the proof that ga is a metric of Lorentzian signature until the proof
of Proposition 15. The proof of Lemma 12 about the existence of the orthonormal
frame e will show the Lorentzian nature of ga as well. �

For the proof of Proposition 15 we use the coordinate change

Ψ : R5 r Lo → R5 r Lo ,

(x0, r, ϕi) 7→ (s, R, ϕi) =
(

−x0

r2−x2
0
, r
r2−x2

0
, ϕi

)
,

where the ϕi’s are some (local) coordinates on S3 which remain unchanged. The
coordinate transformation Ψ is smooth on R5 r Lo and we have

dx0 = − s2+R2

(R2−s2)2ds + 2sR
(R2−s2)2dR,

dr = 2sR
(R2−s2)2ds − s2+R2

(R2−s2)2dR,

∂
∂r

= −2sR ∂
∂s
− (s2 +R2) ∂

∂R
,

∂
∂x0

= −(s2 +R2) ∂
∂s
− 2sR ∂

∂R
.
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This shows also T = ∂
∂R

and V = ∂
∂s

.

Proof of Proposition 15. First, we calculate the symmetric bilinear form ga
on Ba with respect to the coordinate transformation Ψ. Remember that α = (x2

0 +
r2)dr − 2x0rdx0. Then

α = −dR
(R2−s2)2 ,

−dx2
0 + dr2 = −ds2+dR2

(R2−s2)2 .

With R2 = r−2
o on Ba and r2 − x2

0 = (R2 − s2)−1 we obtain

ga =
1

(R2 − s2)2
( −ds2 + dR2 +R2(σ2

1 + σ2
2 + (1− (a/R)4)σ2

3) )

− R2 · dR2

r2(1− (R/a)4) · (R2 − s2)4

=
1

(R2 − s2)2

(
−ds2 + dR2 +R2(σ2

1 + σ2
2 + (1− (a/R)4)σ2

3)

− 1

1− (R/a)4
dR2

)

=
1

(R2 − s2)2

(
− ds2 +

dR2

1− (a/R)4
+ R2(σ2

1 + σ2
2 + (1− (a/R)4)σ2

3

)

and we can conclude that

g̃a =
1

(r2 − x2
0)

2
· ga = −ds2 + gEH

on Ba. The corresponding (even simpler) calculation on L r Lo, where ro ≡ 0, shows
that

g̃a =
1

(r2 − x2
0)

2
ga = −ds2 + dR2 + R2(σ2

1 + σ2
2 + σ2

3) ,

i.e., g̃a is the flat metric for r < |x0|. In particular, since g̃a on B̃a r Lo is a metric
of Lorentzian signature, we have shown that the conformally equivalent symmetric
bilinear form ga of class C1 on B̃a is a metric and admits Lorentzian signature as well,
which completes the proof of Proposition 14.

Next we review curvature properties of the Eguchi-Hanson metric gEH. This discus-
sion will provide us with all the information that we need to prove our claims about the
curvature properties of the Lorentzian metrics g̃a and ga. Let us fix the orthonormal
frame

{f1, f2, f3, f4} :=

{
−β ∂

∂R
, R−1 ∂

σ1
, R−1 ∂

σ2
, (Rβ)−1 ∂

σ3

}
,

where β :=
√

1− (a/R)4. We denote by {f i : i = 1, . . . , 4} the dual frame. The
connection 1-form ω and the curvature 2-form Ω of the Levi-Civita connection ∇EH

are determined by the structure equations

df i = −
4∑

k=1

ωik ∧ fk and Ωi
j = dωij +

4∑

k=1

ωik ∧ ωkj .
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It holds that

ωij = −gEH(∇EHfi, fj) and Ωi
j = −gEH(R(ei, ej)·, ·) ,

where

REH(ei, ej) = ∇EH
ei
∇EH
ej
−∇EH

ej
∇EH
ei
−∇EH

[ei,ej]
.

The components are explicitly calculated to

ω1
2 = ω3

4 = βR−1 · f 2 = β · σ1,

ω1
3 = −ω2

4 = βR−1 · f 3 = β · σ2,

ω1
4 = ω2

3 = γ · f 4 = γRβ · σ3,

where γ = βR−1 + β ′ and β ′ = ∂β
∂R

= 2(a/R)4(Rβ)−1, and

Ω1
2 = Ω3

4 = 2a4

R6 λ
1
− ,

Ω1
3 = −Ω2

4 = 2a4

R6 λ
2
− ,

Ω1
4 = Ω2

3 = −4a4

R6 λ
3
− ,

where the λi−’s build a basis of the anti-selfdual 2-forms for gEH and are defined as

λ1
− = f 1 ∧ f 2 − f 3 ∧ f 4 ,

λ2
− = f 1 ∧ f 3 − f 4 ∧ f 2 ,

λ3
− = f 1 ∧ f 4 − f 2 ∧ f 3 .

It follows that the Riemannian curvature tensor REH of gEH is anti-selfdual. This
implies that gEH is Ricci-flat and REH equals the Weyl tensor WEH, i.e., we have

REH = WEH = W− 6= 0 .

In particular, since the Weyl tensor is a complete obstruction to conformal flatness in
dimension 4, we can see that gEH is nowhere conformally flat on its domain of definition
(which is Ba ∩ E, resp., Ψ(Ba ∩E) ).

The metric g̃a = −ds2 + gEH is an ordinary semi-Riemannian product. Hence the
curvature components of g̃a in the direction of the coordinate ∂

∂s
vanish, i.e., the curva-

ture tensor of −ds2 +gEH is entirely determined by the components of the Riemannian
curvature tensor REH . In particular, we see that the metric −ds2 + gEH is Ricci-flat
and the components of the Weyl tensor W g̃a of g̃a in the direction of the coordinate ∂

∂s

do vanish as well. Since, by construction, the metric g̃a = −ds2 + gEH is conformally
equivalent to ga on Ba, we know the Weyl tensor W ga of ga on Ba as well. It is simply
a rescaling of W g̃a. Obviously, the metric ga is not conformally flat on Ba. On Lr Lo
the metric ga is flat and therefore conformally flat, i.e., W ga 6= 0 on Ba and W ga ≡ 0
on Lr Lo.

Finally, on the light cone Lo the Weyl tensor of ga is not defined in the usual way,
because ga is only of class C1 at Lo. We aim to show that the Weyl tensor of ga on
B̃a r Lo admits a continuous extension to Lo. For this purpose we note that the Weyl
tensor rescales explicitly by W ga = r4

or
4 ·W g̃a . Then calculating the components of



3. PROOF OF STATEMENTS 139

W ga with respect to the coordinate system u := { ∂
∂x0
, . . . , ∂

∂x4
} using our formulae for

WEH from above results in expressions of the form

W ga

( ∂

∂xi
,
∂

∂xj
,
∂

∂xk
,
∂

∂xl

)
=

{
A · r2

o + B · r6
o/r

4 on Ba

0 on Lr Lo

for all i, j, k, l ∈ {0, . . . , 4}, where A,B are sums of functions of the form fl, β · fl
and β−1 · fl with order sl = 4, i.e., the extensions of all components to Lo by zero
are C1-functions on B̃a. We conclude that the Weyl tensor W ga has a continuous
extension of class C1 on B̃a. �

Next we consider the frame e = {e0, . . . , e4}, which we have defined in Section 2
and which was claimed there to be orthonormal for ga on B>

a and of class C1.

Proof of Lemma 12. First, we show that the frame e is orthonormal at every
point of (B>

a , ga). Obviously, this is true on Lr {r = 0}, since ga is the flat Minkowski
metric thereon. It is also obvious that the vectors e2, e3 and e4 are orthonormal for ga
on Ba and that they are orthogonal to the remaining basis vectors e0 and e1. For the

latter we find with a4r2o
1+β

= R2(1− β) and T = ∂
∂R

the expressions

e0 = −(s2 +R2) ∂
∂s
− 2sRβ ∂

∂R
and

e1 = −2sR ∂
∂s

− (s2 +R2)β ∂
∂R

,

from which we see that e0 and e1 are orthonormal with respect to ga = (R2 −
s2)−2(−ds2 + gEH) on Ba as well. We conclude that the frame e is a pointwise or-
thonormal basis on Ba.

It remains to discuss the differentiability of the coefficients of the vectors

{e0, . . . , e4}. For this we notice that the function a4r2o
1+β

is only of class C1 on B>
a .

The function β−1 is of class C3 and all other functions, which are involved in the
coefficients are smooth on B>

a . �

Let us introduce the vectors

ẽ0 := −1
R2−s2 ( (s2 +R2) ∂

∂s
+ 2sRβ ∂

∂R
) and

ẽ1 := −1
R2−s2 ( 2sR ∂

∂s
+ (s2 + R2)β ∂

∂R
)

with respect to the Ψ-transformed coordinates, and let us denote

ẽ :=

{
ẽ0 , ẽ1 , R

−1 · ∂

∂σ1
, R−1 · ∂

∂σ2
, (Rβ)−1 · ∂

∂σ3

}
,

which is an orthonormal frame with respect to g̃a = 1
(r2−x2

0)
2 · ga on B>

a r Lo. As we

know from the proof of Lemma 12, Ψ∗(ei) = (R2 − s2) · ẽi, i = 0, . . . , 4. Moreover, we
set

f :=

{
− ∂

∂s
, −β ∂

∂R
, R−1 · ∂

∂σ1

, R−1 · ∂

∂σ2

, (Rβ)−1 · ∂

∂σ3

}
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on B>
a rLo. On Ba this is just the extension by f0 of the frame {f1, f2, f3, f4} that we

introduced already for the Eguchi-Hanson metric gEH . The matrix

κ =
1

R2 − s2




s2 +R2 2sR 0 0 0
2sR s2 +R2 0 0 0
0 0 R2 − s2 0 0
0 0 0 R2 − s2 0
0 0 0 0 R2 − s2




gives the transformation ẽ = f · κ. With t := ln R−s
R+s

and

E01 :=




0 −1 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




we have κ = exp(tE01). The elements in the preimage of κ by the group covering
λ : Spin(1, 4) → SO(1, 4) are given by ± exp( t

2
γ0γ1), where we use the γ-matrices

introduced in Section 2. We choose in the following κ̃ := exp( t
2
γ0γ1), which is given by

κ̃ =
1√

R2 − s2




R 0 −s 0
0 R 0 s
−s 0 R 0
0 s 0 R


 .

Let us remind to the conformal covariance property of a twistor spinor with respect
to conformally related metrics. In general, a twistor spinor ϕ on a spin space (M, c)
with conformal structure c is an element of Γ(S[−1/2]) with conformal weight −1/2.
With respect to some metric g ∈ c and a spinor frame vs the twistor spinor ϕ is given
by [vs, w], where w is some function with values in the spinor module �. If g̃ = e2σg
is some conformally related metric to g in c with corresponding rescaled spinor frame
ṽs, we denote ϕ̃ := eσ/2 · [ṽs, w], which is the conformally rescaled twistor spinor with
respect to g̃. (Of course, in abuse of notations, ϕ and ϕ̃ represent the same spinor
field in Γ(S[−1/2]) (cf. Section 0.8).

Proof of Theorem 20. The verification of the first two statements of Theorem
20 is the main work of the proof. We will show this in some few steps. First, we prove
that ψ>bc is a twistor spinor on Ba and also on Lr (Lo∪{r = 0}), which already implies
that ψ>bc is a twistor spinor on B>

a . Thereby, we will not directly check the twistor
equation for ψ>bc, but first use the conformal transformation from ga to the Ricci-flat

metric g̃a. In the next step we show that ψ>bc extends to a C1-spinor on B̃a r {0}. This
spinor will still solve the twistor equation. Finally, we show that the latter spinor can
also be extended to the origin by a zero. The resulting spinor ψbc is a unique continuous
extension of ψ>bc, which is of class C1 and solves the twistor equation everywhere on

B̃a.
To start with, let us consider ψ>bc on B>

a rLo. The spinor ψ>bc is given with respect
to the spinor frame es by [ es , (−x0b, x0c, rb, rc)

⊤ ]. We have e = ẽ · ((R2 − s2)id),
where ẽ is orthonormal with respect to g̃a = 1

(r2−x2
0)

2 ga. Let ẽs be the corresponding lift
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of the rescaled frame ẽ. Then the (conformally rescaled) spinor ψ̃>bc (cf. Section 0.8) is
given with respect to ẽs by

[ ẽs ,
√
R2 − s2 · (−x0b, x0c, rb, rc)

⊤ ] .

Further, we have

ψ̃>bc =
√
R2 − s2 · [ fs , κ̃ · (−x0b, x0c, rb, rc)

⊤ ] ,

where fs denotes the lift of the frame f , which corresponds to the lift ẽs. With

√
R2 − s2 · κ̃




−x0b
x0c
rb
rc


 =




R 0 −s 0
0 R 0 s
−s 0 R 0
0 s 0 R







−x0b
x0c
rb
rc


 =




0
0
b
c




we find that

ψ̃>bc = [ fs , (0, 0, b, c)⊤ ] .

The spinor derivative of ψ̃>bc with respect to g̃a is given by

∇̃Sψ̃>bc = [ fs ,
−1

2
·
∑

0≤i<j≤4

ωij ⊗ γiγj · (0, 0, b, c)⊤ ] ,

where the ωij’s are the components of the Levi-Civita connection of g̃a. On Ba we have

ω0
j = 0 and the other ωij ’s are just the components that we calculated in the proof of

Proposition 15 for the Eguchi-Hanson metric gEH . Notice also that on Lr(Lo∪{r = 0})
the components ωij admit the same expressions (with β ≡ 1) as on Ba with respect to

the frame f . The relations for the ωij’s immediately prove that ψ̃>bc is a parallel spinor

with respect to g̃a on B>
a rLo for any (b, c) ∈ C2 r 0. (In fact, the spinors of the form

ψ̃>bc restricted to the Eguchi-Hanson metric gEH, which is a hyperKähler metric for any
a > 0, form the space of all parallel spinors thereon.) Any parallel spinor is a twistor

spinor. In particular, ψ̃>bc is a twistor spinor. Hence, by conformal covariance and the
fact that ψ>bc is of class C1 on B>

a , the spinor ψ>bc is a twistor spinor on (B>
a , ga).

Now let

G = r−1 ·




r 0 0 0 0
0 x1 x2 x3 x4

0 −x2 x1 −x4 x3

0 −x3 x4 x1 −x2

0 −x4 −x3 x2 x1




be a matrix valued function on B>
a . We have e·G = { ∂

∂x0
, . . . , ∂

∂x4
} on Lr(Lo∪{r = 0}).

The standard frame u is orthonormal on L r (Lo ∪ {r = 0}) and admits a smooth
extension to LrLo. (Of course, the matrix G is singular for r = 0.) A transformation
matrix for corresponding spinor frames is given by

G̃ = r−1 ·




r 0 0 0
0 r 0 0
0 0 x1 + ix2 x3 + ix4

0 0 −x3 + ix4 x1 − ix2


 .
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This form of the matrix is due to the fact that Spin(4) is isomorphic to SU(2)×SU(2).
The spinor ψ>bc = [es, (−x0b, x0c, rb, rc)

⊤)] is presented with respect to the spinor frame
us on Lr (Lo ∪ {r = 0}) by

ψ>bc = [ us , G̃
−1(−x0b, x0c, rb, rc)

⊤) ] .

Obviously, the vector valued function

G̃−1




−x0b
x0c
rb
rc


 =




−x0b
x0c

(x1 − ix2)b− (x3 + ix4)c
(x3 − ix4)b+ (x1 + ix2)c




is non-singular and smooth on L r Lo. Hence the spinor ψ>bc on B>
a admits a C1-

extension to B̃a r{0}. We denote this extension by ψobc, which is by continuity reasons

a twistor spinor on B̃a r {0}.
We still have to show that ψobc extends further to a C1-spinor ψbc on B̃a. For this

purpose, we improve our change of frame from above and introduce a non-singular
C1-frame around the origin. Then we show that the components of ψobc with respect to
a corresponding non-singular spinor frame are of class C1. So let

Q =




k q 0 0 0
q k 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




with

k :=
√

1+r2oρ

1−4x2
0ρ
·
(

1 − (r2+x2
0)β

2

r2(1+β)
· ρ
)

and

q :=
√

1+r2oρ
1−4x2

0ρ
· 2x0(r2+x2

0)β
2

r(1+β)
· ρ,

where ρ = a4β−2r2
o. We have Q ≡ 1 on L and 4x2

0ρ < 1 on an open neighbourhood
of L. For 4x2

0ρ < 1 the function k is well defined and of class C1 (cf. Lemma 13). It
follows that on a certain open neighbourhood of L in B̃a the function k is positive. We
denote this set by Ca. In fact, k2 − q2 ≡ 1 on Ca, i.e., the transformation matrix Q
takes values in SOo(1, 4) and is of class C1 on Ca. The matrix Q is useful, because the
transformed frame {h0, . . . , h4} := e ·Q is given by

h0 = (1− 4x2
0ρ)

−1/2 · ∂
∂x0

,

h1 = (1 + ρ1)
−1/2 · ∂

∂r
+ ρ2(1 + ρ1)

−1/2 · (1− 4x2
0ρ)

−1 · ∂
∂x0

,

hi = ei for i = 2, 3, 4

on B>
a ∩Ca with ρ1 := r−2(r2 + x2

0)
2ρ and ρ2 := −4x0r

−1(r2 + x2
0)ρ, i.e., the first basis

vector h0 admits now a continuous extension to {r = 0}. The remaining basis vectors
are still singular at {r = 0}. However, a straightforward calculation shows that the

frame h̃ = {h̃0, . . . , h̃4} := e · (QG) admits a C1-extension to {r = 0}, i.e., h̃ is a
non-singular C1-frame on Ca, which is an open neighbourhood of the origin.
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A corresponding transformation matrix to Q for spinor frames is given by

Q̃ =




√
k+1
2

0 −q√
2(k+1)

0

0
√

k+1
2

0 q√
2(k+1)

−q√
2(k+1)

0
√

k+1
2

0

0 q√
2(k+1)

0
√

k+1
2




.

This matrix is again of class C1 on Ca. In particular, it is non-singular and equal to
the identity on L. In fact, the matrix Q̃ can be written as Q̃ = 1 + r2

o · Q̂, where Q̂
is some matrix valued function on Ca whose components are sums of functions of the
form fl with sl ≥ 0. The spinor ψobc is expressed with respect to the corresponding

spinor frame h̃s by

ψobc = [ h̃s , G̃
−1 · Q̃−1(−x0b, x0c, rb, rc)

⊤ ] .

We have

Φ := G̃−1 · Q̃−1




−x0b
x0c
rb
rc


 = G̃−1




−
√

k+1
2
· x0b − qrb√

2(k+1)√
k+1
2
· x0c + qrc√

2(k+1)

qx0b√
2(k+1)

+
√

k+1
2
· rb

qx0c√
2(k+1)

+
√

k+1
2
· rc




.

From Lemma 13 we know that the function qx0

r
is of class C1, since it behaves like

r2
o · x0

r
, where x0

r
has order zero. This observation is sufficient to conclude that the

vector valued function Φ extends to a C1-function on Ca. Obviously, the extended C1-
function Φ is zero at the origin. We can conclude that ψobc extends to a C1-spinor ψbc
on B̃a with zero at the origin. If (b, c) 6= 0, the origin is the only zero of ψbc. Moreover,
since ψobc is a twistor spinor and ψbc is C1, the expression ∇S

Xψbc + 1
n
X · DSψbc is

continuous on B̃a and zero on B̃a r {0} for all differentiable vector fields X. This
shows that ψbc satisfies the twistor equation in the origin. Altogether we have proven
yet the first three statements of Theorem 20.

The length square ubc of ψ>bc = [es, (−x0b, x0c, rb, rc)
⊤] is by definition (cf. [15])

equal to

( γ0 · (−x0b, x0c, rb, rc)
⊤ , (−x0b, x0c, rb, rc)

⊤ )C4 = (r2 − x2
0) · (b2 + c2) .

Obviously, the function ubc is smooth on B̃a and its zero set is Lo. We know already
from Proposition 15 that u−2

bc · ga is a Ricci-flat metric on B̃a r Lo, i.e., the function
ubc provides a rescaling to an Einstein metric in the conformal class. In general, such
a rescaling function satisfies the partial differential equation

−ubc ·Ric0 = (n− 2) ·Hess(ubc)0 .

It is interesting to note that the function ubc has a non-trivial zero set (cf. [65]).
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Furthermore, using the definition ga(Vψbc
, X) = 〈ψbc, X · ψbc〉S and calculating the

products (γ0 · (−x0b, x0c, rb, rc)
⊤, γi · (−x0b, x0c, rb, rc)

⊤) for i = 0, . . . , 4 shows that
the spinor square of the twistor spinor ψbc is equal to

Vψbc
= (b2 + c2) ·

(
− (x2

0 + r2)e0 − 2x0re1
)

= (b2 + c2) · V .

For (b, c) 6= 0 the vector field Vψbc
is smooth with unique zero at the origin. Finally,

since α(V ) = 0, we obtain ga(V, V ) = −(r2 − x2
0)

2. This shows that Vψbc
for

(b, c) 6= 0 is everywhere timelike except on Lo, where the spinor square is lightlike,
resp., zero only at the origin. This behaviour fits to our observations in Theorem 19. �

Corollary 5 is a simple conclusion using Theorem 20 and Proposition 15. We add
some remarks about the vector field V , which is smooth! Since ψbc is a twistor spinor
we immediately know that V is a conformal Killing vector field for ga on B̃a. However,
we simply reprove this statement here directly. Namely,

LV g0 = −4x0 · g0

LV r
m = −2mx0 · rm

LV r
2
o = 0

LV σ
2
3 = 0

LV (−r2(aro)
4 · σ2

3) = −4x0 · (−r2(aro)
4 · σ2

3)

LV α = −4x0 · α
LV (a4(rβ)−2r2

o · α2) = (4x0 − 2 · 4 · x0)(a
4(rβ)−2r2

o · α2)

= −4x0 · (a4(rβ)−2r2
o · α2) .

This proves that LV ga = −4x0 · ga on B̃a, i.e., V is a conformal Killing vector with
divga(V ) = −10 · x0.

Finally, we want to state a reason why an extension of the metric ga on Ba to L
with differentiable Weyl tensor has to be conformally flat in order to preserve twistor
spinors and the conformal Killing vector V . One observes the following facts. All
integral curves of V on L converge in one flow direction to the origin, i.e., the origin
is in the closure of any integral curve on L. The length square |W 2,2|2 of the Weyl
(2, 2)-tensor is constant along integral curves of V . Moreover, with our assumptions
we know that at the origin W ga has to vanish (cf. [17, 106]), i.e., |W 2,2|2 is identically
zero on the closure L of L r Lo. Then, since V inserted into the Weyl tensor W ga

produces zero (cf. [17, 106]) and V is timelike on L r Lo, it follows that the length
square of W ga is non-negative on L r Lo and it is zero if and only if the Weyl tensor
vanishes. With the argument from before we can conclude that the Weyl tensor of the
extension has to vanish on L.



CHAPTER 5

Partially Integrable CR-Spaces and
the Gauged Fefferman Construction

The original Fefferman construction was used to define in an invariant way a confor-
mal structure on a circle bundle over the boundary of a strictly pseudoconvex domain
in Cm+1 (cf. [53]). This construction was made intrinsic for the case of integrable
CR-spaces (M,T10) by J.M. Lee (cf. [102]). In Section 0.12 we explained already
a further generalised version of Fefferman constructions for parabolic geometries via
Cartan geometry due to A. Cap (cf. [34]). This approach coincides in the special case
with the classical Fefferman construction for integrable CR-geometry. Immediately, it
becomes clear that the generalised version applies also to the case of partially integrable
CR-geometry. As in the integrable case the corresponding Fefferman spaces admit a
conformal structure, which is determined by the underlying CR-geometry only.

In this chapter we aim to work out this generalised Fefferman construction for
partially integrable CR-spaces of hypersurface type. Our approach will go along the
lines of Lee’s intrinsic construction, i.e., we will make the construction on the level
of pseudo-Hermitian geometry and the resulting conformal classes will be given by a
generalised version of Fefferman metrics. For this purpose we introduce (generalised)
Tanaka-Webster connections for pseudo-Hermitian structures on partially integrable
CR-spaces. We are neither going to describe the Fefferman construction on the level of
Cartan geometry nor do we discuss the relation of CR-tractor calculus and conformal
tractor calculus. This approach is worked out [39].

However, once we have constructed the Fefferman space for partially integrable CR-
geometry we will discuss some features of its conformal geometry in terms of conformal
tractor calculus. In fact, we will show that there exists a certain complex structure
acting on the conformal standard tractor bundle of a Fefferman space. This complex
structure is a section of the adjoint tractor bundle and corresponds via the splitting
operator S to the fundamental vector field in the fibre of the Fefferman construction.
In Chapter 6 we will investigate orthogonal complex structures on the conformal stan-
dard tractor bundle, which correspond to conformal Killing vectors fields, in general.
In view of the needs of the discussion there, we will actually introduce in this chapter
a slightly more general version of the Fefferman construction for partially integrable
CR-geometry as we announced so far. We call this generalised version the gauged
Fefferman construction. As before the (gauged) Fefferman space is equipped with a
conformal structure. However, in this construction the generalised Tanaka-Webster
connection (resp., the corresponding Weyl connection) is basically replaced by an ar-
bitrary connection on the canonical line bundle.

We start our investigations by introducing a generalised version of Tanaka-Webster
connections for the case of pseudo-Hermitian geometry on partially integrable CR-
spaces in Section 1 (cf. [102, 126]). Using these connections (resp., the corresponding
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Weyl connections) we construct the Fefferman metrics on the canonical S1-bundle such
that the conformal class does not depend on the choice of pseudo-Hermitian form, but
only on the underlying partially integrable CR-geometry (cf. Section 3 and [112]).
It turns out that we can add a gauge form ℓ to the Weyl connection form and still
obtain a uniquely defined conformal structure on the Fefferman space, which does not
depend on the choice of pseudo-Hermitian form. An important part of our study is the
computation of the relation between Webster scalar curvature and Riemannian scalar
curvature of the ℓ-gauged Fefferman space in Section 5 (cf. Theorem 22). Moreover,
we are able to calculate explicitly the application of the Laplacian to the fundamental
vector field in the Fefferman construction (cf. Proposition 16). The result identifies
the explicit form of the adjoint tractor that belongs via the splitting operator to the
vertical Killing vector field in the fibre of the gauged Fefferman construction. In a
certain situation of the gauged Fefferman construction this adjoint tractor acts as
complex structure on standard tractors (cf. Theorem 23).

1. The Tanaka-Webster Connection

Let (M,H, J) (or (M,T10)) denote a partially integrable CR-manifold equipped
with a pseudo-Hermitian form θ (cf. Section 0.10 and e.g. [102, 41]). For the sake
of simplified notations we will assume throughout this chapter that the corresponding
Levi-form Lθ is positive definite on H (and then we call the CR-structure strictly pseu-
doconvex). This restriction is not essential at all for our investigations! The purpose
of this section is to introduce a certain covariant derivative, which naturally belongs
to the given pseudo-Hermitian structure. We call this connection the (generalised)
Tanaka-Webster connection to θ. In the integrable case our definition of this connec-
tion coincides with the original one (cf. [102, 126]). We will also introduce curvature
expressions for the generalised Tanaka-Webster connection.

The following Lemmata 14 to 17 are known facts, certainly for the case of integrable
CR-structures, where its statements and proofs can be found in [16] and [17]. We
discuss here the modified statements for the weaker condition of partial integrability.
Thereby, we mainly explain the refinements of the formulae that have to be taken into
consideration due to partial integrability. We usually omit those parts of the proofs
of the statements, which do not depend on the Nijenhuis tensor NJ (cf. also Section
0.10).

Lemma 14. (cf. [17]) Let Lθ : TMC × TMC → C be the Levi-form to θ on
a partially integrable CR-manifold (M,T10) (resp. (M,H, J)) and let T be the Reeb
vector field that belongs to θ. Then

[T, Z] ∈ Γ(HC) for all Z ∈ Γ(HC) ,
Lθ([T, U ], V ) + Lθ(U, [T, V ]) = T (Lθ(U, V )) ,

Lθ([T, Ū ], V ) = Lθ([T, V̄ ], U) ,

Lθ([T,U], V̄ ) = Lθ([T, V ], Ū)
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for all U, V ∈ Γ(T10), and

Lθ(X, Y ) = dθ(X, JY ) ,

Lθ(JX, JY ) = Lθ(X, Y ) , Lθ(JX, Y ) + Lθ(X, JY ) = 0 ,

Lθ([T,X], Y )− Lθ([T, Y ], X) = Lθ([T, JX], JY )− Lθ([T, JY ], JX)

for all X, Y ∈ Γ(H).

There belongs a certain connection to any pseudo-Hermitian structure θ on a par-
tially integrable CR-manifold (M,T10) (cf. [102, 17, 126]).

Lemma 15. (cf. [17]) Let (M,T10, θ) be a pseudo-Hermitian manifold and let T be
the Reeb vector field to θ. Then there exists a uniquely determined covariant derivative

∇W : Γ(T10)→ Γ(T ∗MC ⊗ T10)

such that

(1)
∇W
T U = pr10[T, U ] , ∇W

V̄ U = pr10[V̄ , U ] ,

(2)
X(Lθ(U, V )) = Lθ(∇W

X U, V ) + Lθ(U,∇W
X̄ V )

for all U, V ∈ Γ(T10) and X ∈ TMC, where pr10 denotes the projection onto T10. The
connection ∇W satisfies

∇W
U V −∇W

V U = pr10[U, V ] .

We call the connection ∇W , which is guaranteed by Lemma 15, the (generalised)
Tanaka-Webster connection corresponding to θ. The connection ∇W is uniquely deter-
mined by relation (1) of Lemma 15 and by Lθ(∇W

Z U, V ) = Z(Lθ(U, V ))−Lθ(U, [Z̄, V ]),
which follows from the metric condition (2). The proof that these defining relations
give rise to a connection uses mainly Lemma 14 (cf. [16]). Note that in case of an
integrable CR-structure T10 the more special relation

∇W
U V −∇W

V U = [U, V ]

holds. We extend now the Tanaka-Webster connection ∇W to the complex tangent
bundle TMC by

∇WT := 0 and ∇W
X Ū := ∇W

X̄
U for all X ∈ TMC, U ∈ Γ(T10) .

The torsion TorW of this connection is defined in the usual manner as

TorW (X, Y ) := ∇W
X Y −∇W

Y X − [X, Y ]

for X, Y ∈ Γ(TMC).

Lemma 16. (cf. [17]) The torsion TorW of the Tanaka-Webster connection

∇W : Γ(TMC)→ Γ(T ∗MC ⊗ TMC)

satisfies

TorW (U, V̄ ) = iLθ(U, V ) · T ,

TorW (U, V ) = −pr01[U, V ] , T orW (Ū , V̄ ) = −pr10[Ū , V̄ ] ,

T orW (T, U) = −pr01[T, U ] , T orW (T, Ū) = −pr10[T, Ū ]

for all U, V ∈ Γ(T10), where pr01 denotes the projection onto T01.
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In the integrable case the formulae for the torsion simplify to

TorW (U, V ) = TorW (Ū , V̄ ) = 0

when U, V ∈ T10. However, due to the refinement in Lemma 15, for the partially
integrable case the relation ∇W

U V − ∇W
V U − [U, V ] = −pr01[U, V ] holds. This implies

immediately the torsion formulae of Lemma 16. As usual, we can restrict the Tanaka-
Webster connection to the real part and obtain a linear connection ∇W on the (real)
tangent bundle TM .

Lemma 17. (cf. [17]) Let θ be a pseudo-Hermitian structure on a partially inte-
grable CR-manifold (M,H, J). The (real) Webster connection

∇W : X(M)→ Γ(T ∗M ⊗ TM)

is uniquely determined by the following properties

(1)
X(Lθ(Y, Z)) = Lθ(∇W

X Y, Z) + Lθ(Y,∇W
X Z)

for all X, Y, Z ∈ X(M), i.e., ∇W is metric with respect to Lθ on H,
(2)

TorW (X, Y ) = Lθ(JX, Y ) · T − 1

4
NJ(X, Y ) and

(3)

TorW (T,X) = −1

2

(
[T,X] + J [T, JX]

)

for all X, Y ∈ Γ(H). In addition, the connection ∇W satisfies

∇WT = 0 and ∇WJ = 0 .

Proof. The same proof as in [16] (p.16) applies. However, we have to take into
consideration the refined formula TorW (U, V ) = −pr01[U, V ] and the relation

−1

4
NJ(X, Y ) = TorW (U, V ) + TorW (Ū , V̄ )

for all U, V ∈ T10, where X = U + Ū and Y = V + V̄ . Together with TorW (U, V̄ ) =
iLθ(U, V ) · T this shows that

TorW (X, Y ) = TorW (Ū , V ) + TorW (U, V̄ ) + TorW (U, V ) + TorW (Ū , V̄ )

= Lθ(JX, Y ) · T − 1

4
NJ(X, Y )

for all X, Y ∈ H . Since

∇W
Y JX = ∇W

Y (i(U − Ū)) = i(∇W
Y U −∇W

Y U)

= J(∇W
Y U + ∇W

Y U) = J∇W
Y X

for all X ∈ Γ(H) and Y ∈ TM , it follows that J is parallel with respect to ∇W . �

The important point in Lemma 17 is the fact that the Nijenhuis tensor is part of
the torsion of the Tanaka-Webster connection due to partial integrability. The way in
which the Nijenhuis tensor NJ occurs in the formula for the torsion TorW is essentially
implicated by condition (1) of Lemma 15. (The metric condition (2) of Lemma 15
is a rather inevitable choice.) There are other suitable connections, which occur in
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the framework of partially integrable CR-geometry and pseudo-Hermitian geometry.
These sorts of connections differ from our definition of the Tanaka-Webster connection
∇W e.g. by the torsion normalisation (cf. e.g. [126]).

Next we define curvature expressions for ∇W . Thereby, we use the conventions for
indices and orthonormal bases as introduced in Section 0.10. The curvature operator
of ∇W is defined by

R∇W

(X, Y )Z = ∇W
X∇W

Y Z −∇W
Y ∇W

X Z −∇W
[X,Y ]Z ,

where X, Y, Z ∈ Γ(TMC) are complex vectors, in general. The operator R∇W

is tenso-
rial in the entries X, Y and Z. The corresponding curvature tensor is given by

RW (X, Y, Z, V ) = Lθ(R
∇W

(X, Y )Z, V̄ )

for X, Y, Z, V ∈ TMC. A straightforward calculation proves the following symmetry
properties,

RW (X, Y, Z, V ) = −RW (Y,X, Z, V ) = −RW (X, Y, V, Z),

RW (A,B,C,D) = RW (C,B,A,D) − Lθ(Tor
W (B, TorW (C,A)), D),

R∇W

(A,B)C = (∇CTor
W )(A,B)

for all vectors X, Y, Z, V in TMC and A,B,C,D in T10. If the Nijenhuis tensor NJ

vanishes the two latter identities simplify to

RW (A,B,C,D) = RW (C,B,A,D) and R∇W

(A,B)C = 0 .

The Webster-Ricci and scalar curvatures are defined (as before in the integrable
case; cf. Section 0.10 and e.g. [103]) by contractions of RW through

RicW :=
∑m

α=1R
W (Zα, Zᾱ, ·, ·) ,

scalW :=
∑m

α=1Ric
W (Zα, Zᾱ) .

These definitions are independent of the choice of orthonormal basis. Note that the
tensor RicW (·, J ·) is symmetric by definition. With respect to an adapted real basis
{e1, . . . , e2m} we have

RicW (X, Y ) = i ·∑m
α=1R

W (e2α−1, Je2α−1, X, Y ) ,

scalW = i ·∑m
α=1Ric

W (e2α−1, Je2α−1) .

Obviously, the function scalW on (M,T10, θ) is real. We set

ωβα := Lθ(∇WZα, Zβ) .
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With the components ωβα of the Tanaka-Webster connection the Webster scalar curva-
ture can be expressed by

scalW =
m∑

α=1

RicW (Zα, Zᾱ)

=
m∑

α,γ=1

Lθ([∇W
Zγ
,∇W

Zγ̄
]Zα −∇W

[Zγ ,Zγ̄ ]Zα, Zα)

=
m∑

γ=1

(
m∑

α=1

dωαα −
m∑

α,β=1

ωβα ∧ ωαβ

)
(Zγ, Zγ̄)

=

m∑

α,γ=1

dωαα(Zγ, Zγ̄) .

2. Rescaling of a Pseudo-Hermitian Structure

We discuss here the transformation rules for the Tanaka-Webster connection and
its scalar curvature under rescaling of a given pseudo-Hermitian structure. We will
use these transformation rules later to prove the independence of the Fefferman con-
struction from the choice of a pseudo-Hermitian form. We note that calculations and
resulting expressions in this section do not differ formally from those in the classical
integrable case, since the Nijenhuis torsion does not play a role in the transformation
(cf. [102]).

Let (M,T10, θ) be a partially integrable CR-space of hypersurface type with pseudo-
Hermitian structure θ of positive definite signature and corresponding Tanaka-Webster
connection ∇W . As before, we use for our calculations local J-adapted frames {ei :
i = 1, . . . , 2m}. Then Zα = 1√

2
(e2α−1 − iJe2α−1). Moreover, we set

θα = Lθ(·, Zα) , θᾱ = Lθ(·, Zᾱ)
and

δβα = Lθ(Zα, Zβ) , ωβα := Lθ(∇WZα, Zβ) .

We have ∇WZα =
∑m

β=1 ω
β
α ⊗ Zβ. For a real smooth function f ∈ C∞(M) we define

fα := Zα(f) , fᾱ := Zᾱ(f) , fo = T (f),

fαβ̄ := (∇W
Zβ̄
df)(Zα) and fᾱβ := (∇W

Zβ
df)(Zᾱ) .

We also set

δf :=

m∑

α=1

fᾱZα and ∆bf := −
m∑

α=1

(
fαᾱ + fᾱα

)
.

The latter definitions for the differential operators δ and ∆b are independent of the
choice of orthonormal frame. We have δf(f) =

∑m
α=1 fα · fᾱ and ∆b is called the

sub-Laplacian (cf. e.g [102]).

Now let f ∈ C∞(M) be an arbitrary function and let θ̃ = e2fθ. The Hermitian form

Lθ̃ is again positive definite and θ̃ is another pseudo-Hermitian structure on (M,T10).
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We want to examine the transformation rules for the Tanaka-Webster connections and
the corresponding scalar curvatures under such a rescaling. First of all, we notice that

θ̃α = ef (θα + 2ifᾱθ) for all α = 1, . . . , m,

where θ̃α is dual to Z̃α = e−f · Zα with respect to Lθ̃, and

T̃ = e−2f · (T − 2iδf + 2iδf) .

Lemma 18. (cf. [102]) Let θ̃ = e2fθ be a rescaled pseudo-Hermitian structure on
a partially integrable CR-space (M,T10). Then the relation

(1)

∇̃W
X U = ∇W

X U + 2df(U) · pr10X + 2df(pr10X) · U − 2Lθ(U, X̄) · δf

+ iθ(X) ·
(
4df(U) · δf + 4U · δf(f) + 2 · ∇W

U δf
)

holds for any U ∈ Γ(T10) and X ∈ TMC.
(2) For the connection components we have the transformation rule

ω̃βα = ωβα + 2(fαθ
β − fβ̄θᾱ) + δβα ·

(
m∑

γ=1

fγθ
γ − fγ̄θγ̄

)

+ i θ(·)
(
fβ̄α + fαβ̄ + 4fαfβ̄ + 4δβα ·

m∑

γ=1

fγfγ̄

)
,

where α, β = 1, . . . , m.
(3) The Webster scalar curvature rescales by

s̃cal
W

= e−2f ·
(
scalW + 2(m+ 1)∆bf − 4m(m+ 1)δf(f)

)
.

Proof. (1) We take the expression for ∇̃W in Lemma 18 as definition for a con-
nection and verify that it satisfies the determining properties for the Tanaka-Webster
connection of Lemma 15. First, we have

∇̃W
V̄ U = ∇W

V̄ U − 2Lθ(U, V )δf ,

and on the other hand,

p̃r10[V̄ , U ] = pr10[V̄ , U ]− 2Lθ(U, V )δf

for all U, V ∈ Γ(T10). This shows that ∇̃W
V̄
U = p̃r10[V̄ , U ]. Next we see that

Lθ̃(∇̃W
X U, V ) + Lθ̃(U, ∇̃W

X̄ V )

= e2f · Lθ(∇W
X U + 2df(U)pr10X + 2df(pr10X)U − 2Lθ(U, X̄)δf, V )

+ e2f · Lθ(U,∇W
X̄ V + 2df(V )pr10X̄ + 2df(pr10X̄)V − 2Lθ(V,X)δf)

= e2f ·X(Lθ(U, V )) + 2e2fdf(X) · Lθ(U, V )

+ e2f ·
(
2df(U) · Lθ(X, V )− 2df(V̄ ) · Lθ(U, X̄)

)

+ e2f ·
(
2df(V̄ ) · Lθ(U, X̄)− 2df(U) · Lθ(V,X)

)

= X(Lθ̃(U, V ))
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for all U, V ∈ Γ(T10). It remains to show the relation ∇̃W
T̃
U = p̃r10[T̃ , U ]. For this

purpose we calculate

e2f · p̃r10[T̃ , U ] = pr10[T, U ] + 2ie2fpr10[e
−2f (−δf + δf), U ]

= pr10[T, U ]− 4idf(U)δf − 2i · ∇W
δfU + 2i · ∇W

δf
U

+ 2i ·
m∑

α=1

U(fᾱ) · Zα + 2i ·
m∑

α=1

fᾱ · ∇W
U Zα ,

and on the other hand,

e2f · ∇̃W
T̃
U = ∇W

T U − 2i∇W
δfU + 2i∇W

δf
U − 8i · df(U)δf − 4i

m∑

α=1

fαfᾱ · U

+ i(4df(U)δf + 4δf(f) · U + 2 · ∇W
U δf) ,

which obviously equals the previous expression.
(2) To calculate the connection components ω̃βα, we use the following identity

ifoδ
β
α + 2 · Lθ(∇W

Zα
δf, Zβ)

= dθ(Zα, Zβ̄)T (f) + 2 · Zα(fβ̄)− 2 · ∇W
Zα
Zβ̄(f)

= 2 · Zα(fβ̄) + [Zβ̄ , Zα](f)− pr10[Zβ̄, Zα](f)− pr01[Zα, Zβ̄](f)

= Zα(fβ̄) + Zβ̄(fα)−∇W
Zα
Zβ̄(f)−∇W

Zβ̄
Zα(f)

= fβ̄α + fαβ̄ .

We have

ω̃βα = Lθ̃(∇̃W Z̃α, Z̃β) = Lθ(∇̃WZα, Zβ)− δβα · df

= ωβα − δβα · df + 2 · fαθβ − 2fβ̄θ
ᾱ + 2δβα ·

m∑

γ=1

fγθ
γ

+ i ·
(

4fαfβ̄ + 2 · Lθ(∇W
Zα
δf, Zβ) + 4δβα ·

m∑

γ=1

fγfγ̄

)
θ

= ωβα + 2(fαθ
β − fβ̄θᾱ) + δβα ·

m∑

γ=1

(fγθ
γ − fγ̄θγ̄)

+ i ·
(

4fαfβ̄ + ifoδ
β
α + 2 · Lθ(∇W

Zα
δf, Zβ) + 4δβα ·

m∑

γ=1

fγfγ̄

)
θ

= ωβα + 2(fαθ
β − fβ̄θᾱ) + δβα ·

m∑

γ=1

(fγθ
γ − fγ̄θγ̄)

+ i ·
(

4fαfβ̄ + fβ̄α + fαβ̄ + 4δβα ·
m∑

γ=1

fγfγ̄

)
θ .
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(3) We use the latter formula for the connection components to calculate the Web-
ster scalar curvature. We have

m∑

α=1

ω̃αα =

m∑

α=1

ωαα + (m+ 2) ·
m∑

α=1

(fαθ
α − fᾱθᾱ)

+ i ·
m∑

α=1

( fᾱα + fαᾱ + 4(m+ 1)fαfᾱ) θ .

The trace of the exterior differential of this expression is equal to the Webster scalar
curvature. With

d(
m∑

α=1

fαθ
α)(Zγ, Zβ̄) =

m∑

α=1

(dfα ∧ θα + fαdθ
α)(Zγ, Zβ̄)

= −Zβ̄(fγ) +
m∑

α=1

fαθ
α([Zβ̄, Zγ])

= −fγβ̄
we obtain

m∑

α,β=1

dω̃αα(Zβ, Zβ̄) =

m∑

α,β=1

dωαα(Zβ, Zβ̄) − (m+ 2) ·
m∑

β=1

(fββ̄ + fβ̄β)

+ i

m∑

α,β=1

( fᾱα + fαᾱ + 4(m+ 1) · fαfᾱ ) · dθ(Zβ, Zβ̄) .

As result we find

s̃cal
W

= e−2f ·
(
scalW + 2(m+ 1)∆bf − 4m(m+ 1)δf(f)

)
.

�

3. The Fefferman Metric

We construct the Fefferman metric to a pseudo-Hermitian structure θ on the total
space of the canonical S1-principal bundle over a partially integrable, strictly pseudo-
convex CR-manifold (M,T10) and show that the Fefferman conformal class is indepen-
dent of the choice of pseudo-Hermitian form. This makes the Fefferman construction a
natural and important device for the study of partially integrable CR-geometry. The
construction that we describe coincides with the classical Fefferman construction in the
case of integrable CR-geometry (cf. Section 0.12). In fact, the Fefferman metric and
calculations for the independence of the the conformal class look formally the same as
in the integrable case (cf. [102, 17]). However, at the end of the section we aim to
introduce a slightly more generalised class of metrics on the canonical S1-principal bun-
dle, which we call the gauged Fefferman metrics. A gauged Fefferman metric depends
on a gauge 1-form ℓ, but again it does not depend on the choice of pseudo-Hermitian
structure. The reason for the invention of this extended construction will become clear
in Chapter 6 when we investigate complex structures in conformal tractor calculus.

So let (Mn, T10) be a partially integrable, strictly pseudoconvex CR-manifold of
dimension n = 2m + 1 and let θ be a pseudo-Hermitian structure on this CR-space.
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We denote by

Λm+1,0M := { ρ ∈ Λm+1M ⊗ C : ιXρ = 0 for all X ∈ T01 = T10 }
the complex line bundle over Mn, which consists of all those complex (m + 1)-forms
that vanish by insertion of any element of T01. The bundle Λm+1,0M is called the
canonical line bundle of the CR-space (M,T10). The positive real numbers R+ act
by multiplication on K∗ := Λm+1,0M \ {0}, which denotes the canonical line bundle
without zero section. We set Fc := K∗/R+ and the triple

( Fc , π , M )

denotes the canonical S1-principal bundle of (M,T10) whose fibre action is induced by
complex multiplication with the elements of the unit circle S1 in C.

Let {Zα : α = 1, . . . , m} be some local orthonormal frame of (T10, Lθ) and let θα,
α = 1, . . . , m, denote the corresponding dual 1-forms. The (m+ 1, 0)-form

τ := θ ∧ θ1 ∧ . . . ∧ θm

is a local section of Λm+1,0M . We denote by [τ ] the corresponding local section in
Fc = K∗/R+. With the help of the projection π every 1-form ρ on M can be lifted to
Fc. The result is a 1-form π∗ρ on Fc. For convenience, we shall usually denote the
lifted 1-form simply by ρ again. On the other hand, by use of the section [τ ] we are
also able to pull back 1-forms σ on Fc to the underlying space M . This pullback is
usually denoted by [τ ]∗σ or just σ again.

The Tanaka-Webster connection ∇W naturally extends to a covariant derivative
acting on sections of the complex line bundle Λm+1,0M . In fact, the covariant derivative
∇W on Λm+1,0M is induced by a uniquely determined connection 1-form on the S1-
principal fibre bundle Fc, which we denote by

AW : TFc → iR .

We have [τ ]∗AW = −∑m
α=1 ω

α
α with respect to local frame forms θα, α = 1, . . . , m.

Further, we set

Aθ := AW − i

2(m+ 1)
scalW θ .

This expression is a connection 1-form on Fc as well. In fact, this is the induced Weyl
connection on the canonical S1-bundle of (M,T10), which belongs to the given pseudo-
Hermitian structure θ (cf. Section 0.5). The curvature of AW is the 2-form ΩW = dAW .
We have

ΩW = −
m∑

α=1

dωαα .

Moreover, we denote the curvature of Aθ by Ωθ = dAθ. Then

Ωθ = ΩW − i

2(m+ 1)
scalWdθ − i

2(m+ 1)
d(scalW ) · θ .

We define now the Fefferman metric to θ on Fc by

fθ := π∗Lθ − i
4

m+ 2
π∗θ ◦ Aθ .

This is, in fact, a symmetric 2-tensor on the real tangent bundle of Fc. To shorten
the notation, we simply use the expression fθ = Lθ − i 4

m+2
θ ◦ Aθ. Since we assume
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Lθ to be positive definite, the signature of fθ is Lorentzian (i.e. sig = (1, 2m + 1)).

The Fefferman conformal class [fθ] consists of all smooth metrics f̃θ on Fc which arise

by conformal rescaling of fθ, i.e., f̃θ = e2lfθ for some smooth function l on Fc. We
want to prove now the independence of the conformal class [fθ] from the choice of
pseudo-Hermitian form. For this purpose we need to find the transformation rule for
the Tanaka-Webster connection form AW , resp., for the Weyl connection Aθ on Fc
under rescaling of θ. Thereby, we use the results from the previous section and we will
see that the transformation rule for the Weyl connection Aθ is particular easy.

To start with, let θ̃ = e2φ · θ be a rescaled pseudo-Hermitian form on (M,T10), and

accordingly, let Z̃α = e−φ ·Zα, α = 1, . . . , m, be rescaled basis vectors for T10. We have

θ̃α = eφ(θα + 2iφᾱθ) and τ̃ = e(m+2)φτ ,

i.e., [τ̃ ] and [τ ] are identical as local sections of Fc. Moreover, we have

[τ ]∗AW = −∑m
α=1 ω

α
α and

[τ ]∗ÃW = −∑m
α=1 ω̃

α
α .

By using Lemma 18, we obtain

[τ ]∗(ÃW −AW ) = − (m+ 2) ·
m∑

α=1

(φαθ
α − φᾱθᾱ)

+ i( ∆bφ − 4(m+ 1) ·
m∑

α=1

φαφᾱ ) · θ,

and further,

[τ ]∗(Aθ̃ − Aθ) = − (m+ 2) ·
m∑

α=1

( φαθ
α − φᾱθᾱ )

− i( −∆bφ + 4m(m+ 1) ·
m∑

α=1

φαφᾱ ) · θ

− i

2(m+ 1)

(
scalW + 2(m+ 1)∆bφ− 4(m+ 1) ·

m∑

α=1

φαφᾱ

)
· θ

+
i

2(m+ 1)
· scalW θ

= − (m+ 2) ·
m∑

α=1

( φαθ
α − φᾱθᾱ )

−
(

2i(m+ 2) ·
m∑

α=1

φαφᾱ

)
· θ .

We conclude that

Aθ̃ = Aθ − (m+ 2)
m∑

α=1

( φαθ
α − φᾱθᾱ ) − 2i(m+ 2)

m∑

α=1

φαφᾱθ .
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Now we can consider the transformation rule for the Fefferman metric fθ under rescaling
of θ. We have

fθ̃ = 2 ·
m∑

α=1

θ̃α ◦ θ̃ᾱ − i
4

m+ 2
θ̃ ◦ Aθ̃

= e2φ ·
( m∑

α=1

2 ·
(
θα ◦ θᾱ + 2iφᾱθ ◦ θᾱ − 2iφαθ

α ◦ θ + 4φᾱφα · θ ◦ θ
)

− i
4

m+ 2
θ ◦ Aθ +

m∑

α=1

(
4iφαθ ◦ θα − 4iφᾱθ ◦ θᾱ − 8φαφᾱ · θ ◦ θ

) )

= e2φ · fθ .

Theorem 21. (cf. [102]) Let (Mn, T10) be a partially integrable CR-space with

a pseudo-Hermitian structure θ and Fefferman metric fθ on Fc. Let θ̃ = e2φθ be a
rescaled pseudo-Hermitian structure. Then the corresponding Fefferman metric rescales
by fθ̃ = e2φ · fθ.

The independence of the conformal class [fθ] of the Fefferman metric from the choice
of the pseudo-Hermitian structure θ relies basically on the use of the Weyl connection
Aθ for the construction. The Weyl connection has simply the correct transformation
law, which makes the construction CR-invariant. However, we can easily see now that
on this basis we can add an arbitrary fixed 1-form to the connection Aθ (for any θ)
and define a more general family of metrics on Fc, whose conformal classes are still
independent from the pseudo-Hermitian structure, i.e., the new metrics are invariants
of the underlying CR-structure and the additional datum of a gauge. To be concrete,
let ℓ ∈ Ω1(M ; iR) be a 1-form on the base space M . We set Aθ,ℓ := Aθ + ℓ. Actually,
this is the general form of an arbitrary connection on Fc.

Definition 4. Let (Mn, T10) be a partially integrable CR-space, θ a pseudo-
Hermitian structure and ℓ ∈ Ω1(M ; iR) an arbitrary 1-form on M .

(1) We call the metric

fθ,ℓ = Lθ − i
4

m+ 2
θ ◦ Aθ,ℓ

the ℓ-gauged Fefferman metric with respect to θ on (Mn, T10).

(2) Let θ̃ = e2φθ be a rescaled pseudo-Hermitian structure. Then fθ̃,ℓ = e2φ · fθ,ℓ,
which shows that the conformal class [fθ,ℓ] is independent of the choice of
pseudo-Hermitian form θ. We denote cℓ := [fθ,ℓ] and call it the conformal
ℓ-gauged Fefferman class of the CR-space (M,T10).

Obviously, for ℓ = 0 the metric fθ,ℓ = fθ is the usual Fefferman metric to θ. Actually,
if ℓ is a closed form on M then the metrics fθ and fθ,ℓ are locally isometric. The local
isometry is given by a gauge transformation on Fc, which transforms the connection
form Aθ,ℓ into Aθ. The fibres are preserved under this (local) isometry. On the other
hand, a local isometry between fθ and fθ,ℓ, which preserves the fibres, can only exist if
there is a gauge transformation, i.e., the difference ℓ = Aθ,ℓ − Aθ has to be closed. In
any case, the metrics fθ,ℓ and fθ̃,ℓ̃ are locally isometric only if the rescaling function φ

on M is constant zero, i.e., when the underlying pseudo-Hermitian geometries θ and θ̃
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are identical. Altogether, we conclude that generalised Fefferman metrics fθ,ℓ and fθ̃,ℓ̃
are locally isometric with preserved fibre if and only if θ̃ = θ and ℓ̃− ℓ is a closed form
on M .

In particular, the ℓ-gauged Fefferman class cℓ = [fθ,ℓ] is locally conformally equiv-

alent to any cℓ̃ = [fθ,ℓ̃] with ℓ̃ ∈ [ℓ], where [ℓ] denotes the class of 1-forms on M with
purely imaginary values, which differ from ℓ only by a closed form (i.e. by a local gauge
transformation). We will sometimes use the notation c[ℓ] for this conformal class, which
is uniquely given by a CR-structure T10 and a local gauge class [ℓ].

4. The Torsion Tensor of Partial Integrability

We examine here properties of the torsion tensor TorW with respect to the Tanaka-
Webster connection on pseudo-Hermitian spaces. The torsion consists essentially of the
Nijenhuis tensor NJ and TorW (T, ·), where the latter part is the deviation of the Reeb
vector T from being a transverse symmetry (cf. Lemma 17). The Nijenhuis tensor is
a CR-invariant.

Let (Mn, H, J) be a strictly pseudoconvex, partially integrable CR-space with di-
mension n = 2m + 1 and let θ denote a pseudo-Hermitian structure on M . As usual
let {ei : i = 1, . . . , 2m} be a local J-adapted orthonormal frame of Lθ on H . We use
the following conventions. If A ∈ T (r,2)MC is a (r, 2)-tensor, then we denote its trace
(or contraction) with respect to θ by

trθA :=

2m∑

i=1

A(ei, ei) .

More generally, we use the notation trθk,lA for the trace of a (r, s)-tensor A, where the
contraction takes place in the kth and lth entry of A. If A is a skew-symmetric 2-tensor
on M then we set

LA(·, ·) := iA(·, J ·)
and we have

trθLA = i · trθA(·, J ·) = 2 ·
m∑

α=1

A(Zα, Zᾱ) .

If A is a symmetric (0, 2)-tensor then

trθA = 2 ·
m∑

α=1

A(Zα, Zᾱ) .

The Nijenhuis tensor N on (M,H, J) is defined by

N(X, Y ) := [X, Y ]− [JX, JY ] + J [JX, Y ] + J [X, JY ] ,

where X, Y ∈ Γ(H). Since TorW (X, Y ) = Lθ(JX, Y ) · T − 1
4
N(X, Y ), we can con-

sider the Nijenhuis tensor as the essential part of the torsion restricted to the contact
distribution H . We have

JN(X, Y ) = −N(JX, Y ) = −N(X, JY ) and

trθLθ(N(X, ·), ·) = 0
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for all X, Y, Z ∈ H . We form from N the Bθ-tensor by

Bθ(X, Y, Z) :=
1

8

(
Lθ(N(X, Y ), Z) + Lθ(N(Z, Y ), X) + Lθ(N(Z,X), Y )

)
.

Moreover, let

B(X, Y ) :=

2m∑

i=1

Bθ(X, Y, ei)ei

denote the corresponding (1, 2)-tensor. The definition of the tensor B does not depend
on the chosen θ and the orthonormal frame {ei}. We have

B(X, Y )−B(Y,X) =
1

4
N(X, Y )

and B vanishes identically if and only if N vanishes identically. In other words, the
tensor B contains the same information as N. Moreover, the relations

Bθ(X, Y, Z) = −Bθ(X,Z, Y ) ,

Bθ(X, Y, Z) = −Bθ(JX, JY, Z) = −Bθ(JX, Y, JZ) = −Bθ(X, JY, JZ) ,

JB(X, Y ) = −B(JX, Y ) = −B(X, JY ) ,

trθB =
∑2m

i=1 B(ei, ei) = 0 ,

trθ1,3Bθ(X) =
∑2m

i=1 Bθ(ei, X, ei) = 0 ,

trθ2,3Bθ(X) =
∑2m

i=1 Bθ(X, ei, ei) = 0

hold. Straightforward calculations using essentially the condition of partial integrability
also show the following identities:

trθLθ(N(N(X, ·), Y ), ·) = trθLθ(N(N(X, ·), ·), Y )− trθLθ(N(X, ·),N(Y, ·))

trθBθ(N(X, ·), ·, Y ) =
1

4
trθLθ(N(X, ·),N(Y, ·))

trθLθ(B(X, ·),B(Y, ·)) =
1

8
trθLθ(N(N(X, ·), ·), Y )

trθLθ(B(X, ·),B(·, Y )) =
1

16
trθLθ(N(N(X, ·), ·), Y )

2m∑

i,j=1

Lθ(N(N(ei, ej), ej), ei) =
1

2
·

2m∑

i,j=1

Lθ(N(ei, ej),N(ei, ej)) .

The third identity above shows that the tensor trθLθ(N(N(X, ·), ·), Y ) is symmetric in
X and Y .

The other part of the torsion is

TorW (T,X) = −1

2
( [T,X] + J [T, JX] ) ,

where X ∈ H . We define the tensor

Rθ(X, Y ) := −2 · Lθ(TorW (T,X), Y ) for X, Y ∈ H .
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By Lemma 14, it is clear that Rθ is a symmetric tensor. Moreover, we have

TorW (T, JX) = −J(TorW (T,X)),

Rθ(X, JY ) = Rθ(JX, Y ) and

trθRθ = trθRθ(·, J ·) = 0 .

If X, Y are (local) sections of H such that Lθ(X, Y ) and Lθ(X, JY ) are constant then
the equation

Rθ(X, Y ) = Rθ(Y,X) = Lθ([T,X], Y ) + Lθ([T, Y ], X)

holds.

5. The Scalar Curvature of Gauged Fefferman Metrics

We compute in this section certain parts of the Ricci-curvature tensor and the scalar
curvature for ℓ-gauged Fefferman metrics. The formulae that we obtain generalise the
results of [102]. Due to partial integrability the Nijenhuis tensor N and also the gauge
ℓ will enter the curvature expressions. This makes the calculations more laborious.

Let (Mn, H, J) be a strictly pseudoconvex, partially integrable CR-space with di-
mension n = 2m+ 1, let θ denote a pseudo-Hermitian structure on M and let

fθ,ℓ = Lθ − i
4

m+ 2
θ ◦ Aθ,ℓ ,

be the gauged Fefferman metric on the canonical S1-bundle Fc to θ on M and some
gauge ℓ. We will sometimes denote the ℓ-gauged Fefferman metric simply by f .

The S1-action on the fibres of Fc induces a (vertical) fundamental vector field for
each element in the Lie algebra iR of S1. We denote by χK the fundamental field which
is determined by

Aθ,ℓ(χK) = i
m+ 2

2
.

The field χK is lightlike on (Fc, fθ,ℓ). Moreover, let T be the Reeb vector field to θ on
M and let X∗ denote the horizontal lift to Fc of any vector X on M with respect to
the connection Aθ,ℓ. We have fθ,ℓ(χK , T

∗) = 1 and

{e∗1, . . . , e∗n, T ∗, χK}
is a local frame on (Fc, fθ,ℓ). Throughout this section we use (local) vector fields X, Y, Z
and V on M which have constant coefficients with respect to the chosen J-adapted
frame {ei : i = 1, . . . , 2m}. This implies that scalar products of such vector fields (and
their images by J) are constant with respect to fθ,ℓ. To start with our calculations, we
note that

[X∗, χK ] = 0

[X∗, Y ∗]V ert = i 2
m+2

Ωθ,ℓ(X, Y ) · χK
[X∗, Y ∗]Horiz = [X, Y ]∗

[T ∗, X∗] = [T,X]∗ + i 2
m+2

Ωθ,ℓ(T,X) · χK
[X∗, Y ∗] = prH [X, Y ]∗ − dθ(X, Y ) · T ∗ + i 2

m+2
Ωθ,ℓ(X, Y ) · χK ,
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where Ωθ,ℓ = dAθ,ℓ is the curvature of the connection form Aθ,ℓ on Fc.

Lemma 19. (cf. [17]) For the ℓ-gauged Fefferman metric f on Fc the Levi-Civita
connection ∇f satisfies

f(∇f
X∗Y ∗, Z∗) = Lθ(∇W

X Y, Z) + Bθ(X, Y, Z)

f(∇f
χK
Y ∗, Z∗) = 1

2
Lθ(JY, Z)

f(∇f
X∗Y ∗, χK) = − 1

2
Lθ(JX, Y )

f(∇f
T ∗Y ∗, Z∗) = 1

2

(
Lθ([T, Y ], Z)− Lθ([T, Z], Y )− i 2

m+2
Ωθ,ℓ(Y, Z)

)

f(∇f
X∗Y ∗, T ∗) = 1

2

(
Lθ([T,X], Y ) + Lθ([T, Y ], X) + i 2

m+2
Ωθ,ℓ(X, Y )

)

f(∇f
T ∗T ∗, Z∗) = − i 2

m+2
Ωθ,ℓ(T, Z)

f(∇fχK , χK) = f(∇fχK , T
∗) = f(∇fT ∗, T ∗) = 0

f(∇f
χK
χK , Z

∗) = f(∇f
χK
T ∗, Z∗) = f(∇f

T ∗χK , Z
∗) = 0

for all X, Y, Z ∈ Γ(H) (which have pairwise constant scalar products with respect to
Lθ).

Proof. We apply the Koszul formula for the Levi-Civita connection ∇f , namely

f(∇f
DB,C) =

1

2

(
f([D,B], C) + f([C,B], D) + f([C,D], B)

)

for all vector fields B,C,D on Fc, which have constant length and pairwise constant
scalar products. In fact, the formulae of Lemma 19 result immediately from the Koszul
formula and above expressions for commutators of vector fields on Fc after projection
to M and replacing the scalar products with respect to f by those with respect to Lθ.
For example, for the first formula in Lemma 19 we calculate

2f(∇f
X∗Y

∗, Z∗) = Lθ([X, Y ], Z) + Lθ([Z, Y ], X) + Lθ([Z,X], Y )

= 2Lθ(∇W
X Y, Z) +

1

4
Lθ(NJ(X, Y ), Z) +

1

4
Lθ(NJ(Z, Y ), X)

+
1

4
Lθ(NJ(Z,X), Y )

= 2Lθ(∇W
X Y, Z) + 2Bθ(X, Y, Z)

for all sections X, Y, Z in H with pairwise constant scalar products. The other
formulae follow in a similar way. �

Note that the Nijenhuis torsion occurs only in theH-part of the connection components
in Lemma 19. The 1-form ℓ influences the curvature expression that appear.
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Lemma 20. (cf. [102])

Ricfθ,ℓ (χK , T ∗) =
1

2(m+ 1)
scalW − i

2(m+ 2)
trθdℓ(·, J ·) and

Ricfθ,ℓ(X∗, V ∗) =
scalW

(m+ 1)(m+ 2)
· Lθ(X, V )

− i
m

2(m+ 2)
( ΩW (X, JV ) + ΩW (V, JX) )

− m

4
( Rθ(X, JV ) + Rθ(V, JX) )

+ trθ1,4(∇WBθ)(X, V ) + trθ1,4(∇WBθ)(V,X)

− 1

8
trθLθ(N(X, ·),N(V, ·)) +

1

4
trθLθ(N(N(X, ·), ·), V )

+
i

m+ 2
( dℓ(X, JV ) + dℓ(V, JX) )

for all vectors X∗, V ∗ in the horizontal lift of H to TFc.

Proof. We use the connection components of Lemma 19 in order to obtain second
covariant derivatives of vector fields on Fc and certain components of the Riemannian
curvature tensor Rfθ,ℓ . We set

G(X, V ) := Rθ(X, V ) + i
2

m+ 2
Ωθ,ℓ(X, V )

for all X, V in H . First, we have

f(∇f
X∗∇f

Y ∗Z∗, V ∗) = X∗(f(∇f
Y ∗Z∗, V ∗))− f(∇f

Y ∗Z∗,∇f
X∗V ∗)

= Lθ(∇W
X∇W

Y Z, V )

+
1

4
Lθ(JY, Z) ·G(X, V ) +

1

4
Lθ(JX, V ) ·G(Y, Z)

− Lθ(∇W
Y Z,B(X, V )) + Lθ(∇W

X (B(Y, Z)), V )

− Lθ(B(Y, Z),B(X, V )) ,

f(∇f
[X∗,Y ∗]Z

∗, V ∗) = Lθ(∇W
prH [X,Y ]Z, V ) +

i

m+ 2
Ωθ,ℓ(X, Y ) · Lθ(JZ, V )

− 1

2
Lθ(JX, Y ) ·
(
Lθ([T, Z], V )− Lθ([T, V ], Z)− i 2

m+ 2
Ωθ,ℓ(Z, V )

)

+ Bθ(prH [X, Y ], Z, V ) ,
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which results in the curvature component

Rf(X∗, Y ∗, Z∗, V ∗) = RW (X, Y, Z, V )

− i

m+ 2
Lθ(JZ, V ) · Ωθ,ℓ(X, Y )− 1

2
Lθ(JX, Y ) ·G(Z, V )

− Lθ(JX, Y ) · Lθ(TorW (T, Z), V )

+
1

4
Lθ(JY, Z) ·G(X, V ) +

1

4
Lθ(JX, V ) ·G(Y, Z)

− 1

4
Lθ(JX,Z) ·G(Y, V )− 1

4
Lθ(JY, V ) ·G(X,Z)

− (∇W
Y Bθ)(X,Z, V ) + (∇W

X Bθ)(Y, Z, V )

− 1

4
Bθ(N(X, Y ), Z, V )

− Lθ(B(Y, Z),B(X, V )) + Lθ(B(X,Z),B(Y, V ))

for X, Y, Z and V in H . Moreover, we have

f(∇f
T ∗∇f

X∗χK , V
∗) = −f(∇f

X∗χK ,∇f
T ∗V

∗)

= −1

4
(Lθ([T, V ], JX)− Lθ([T, JX], V )− 2i

m+ 2
Ωθ,ℓ(V, JX)),

f(∇f
[X∗,T ∗]χK , V

∗) =
1

2
Lθ([T,X], JV )

and we obtain

Rf(X∗, T ∗, χK , V
∗) +Rf (X∗, χK , T

∗, V ∗)=− i

2(m+ 2)

(
Ωθ,ℓ(V, JX) + Ωθ,ℓ(X, JV )

)

−1

4
( Rθ(X, JV ) + Rθ(V, JX) ) .

Then

2m∑

i=1

Rfθ,ℓ(X∗, e∗i , e
∗
i , V

∗) =
2m∑

i=1

RW (X, ei, ei, V )

+
3i

2(m+ 2)
( Ωθ,ℓ(X, JV )− Ωθ,ℓ(JX, V ) )

−
2m∑

i=1

(
(∇W

ei
Bθ)(X, ei, V ) +

1

4
Bθ(N(X, ei), ei, V )

)

+

2m∑

i=1

Lθ(B(X, ei),B(ei, V )) ,
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2m∑

i=1

Rfθ,ℓ(X∗, e∗i , Je
∗
i , JV

∗) =

2m∑

i=1

RW (X, ei, ei, V )

− 1

2(m+ 1)
scalWLθ(X, V ) + i

m+ 1

m+ 2
Ωθ,ℓ(X, JV )

− m− 1

2
Lθ(Tor

W (T,X), JV )

− m− 1

2
Lθ(Tor

W (T, V ), JX)

+
2m∑

i=1

(
(∇W

ei
Bθ)(X, ei, V ) +

1

4
Bθ(N(X, ei), ei, V )

)

−
2m∑

i=1

Lθ(B(X, ei),B(ei, V ))

and
2m∑

i=1

Rfθ,ℓ(X∗, JV ∗, e∗i , Je
∗
i ) =

2m∑

i=1

RW (X, JV, ei, Jei)

+
scalW

m+ 1
Lθ(X, V ) − i

2m+ 2

m+ 2
Ωθ,ℓ(X, JV )

− 2 ·
2m∑

i=1

Lθ(B(X, ei),B(V, ei)) .

By using

2m∑

i=1

Rfθ,ℓ(X∗, e∗i , Je
∗
i , JV

∗) =

m∑

α=1

Rfθ,ℓ(X∗, e∗2α−1, Je
∗
2α−1, JV

∗)

−
m∑

α=1

Rfθ,ℓ(X∗, Je∗2α−1, e
∗
2α−1, JV

∗)

=−
m∑

α=1

Rfθ,ℓ(X∗, JV ∗, e∗2α−1, Je
∗
2α−1)

we obtain
2m∑

i=1

Rfθ,ℓ(X∗, e∗i , e
∗
i , V

∗) = − iΩW (X, JV )

+
3i

2(m+ 2)
( Ωθ,ℓ(X, JV )− Ωθ,ℓ(JX, V ) )

+
m− 1

2
(Lθ(Tor

W(T,X), JV )+Lθ(Tor
W(T, V ), JX))

−
2m∑

i=1

(
2(∇W

ei
Bθ)(X, ei, V ) +

1

2
Bθ(N(X, ei), ei, V )

)
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+

2m∑

i=1

(
2Lθ(B(X, ei),B(ei, V ))+Lθ(B(X, ei),B(V, ei))

)
.

Adding the expression for Rfθ(X∗, T ∗, χK , V
∗) + Rfθ(X∗, χK , T

∗, V ∗) and using the
identities for torsion terms of Section 4 we obtain

Ricfθ,ℓ(X∗, V ∗) = − iΩW (X, JV ) + 2 · trθ1,4(∇WBθ)(X, V )

+
i

m+ 2
( Ωθ,ℓ(X, JV ) + Ωθ,ℓ(V, JX) )

− m

4
( Rθ(X, JV ) + Rθ(V, JX) )

− 1

8
trθLθ(N(X, ·),N(V, ·)) +

1

4
trθLθ(N(N(X, ·), ·), V ) .

After symmetrisation in X and V of (the first line of) the right hand side of the latter
equation, we obtain the component Ricfθ,ℓ(X∗, V ∗) as stated in the lemma. Further-
more, we have

Ricfθ,ℓ(χK , T
∗) =

2m∑

i=1

(
fθ,ℓ(∇fθ,ℓ

[T ∗,e∗i ]χK , e
∗
i )− fθ,ℓ(∇

fθ,ℓ

T ∗ ∇fθ,ℓ

e∗i
χK , e

∗
i )
)

=
i

2(m+ 2)

2m∑

i=1

(
Ωθ,ℓ(Jei, ei)− Lθ([T, ei], Jei) + Lθ([T, Jei], ei)

)

=
1

2(m+ 1)
scalW − i

2(m+ 2)
trθdℓ(·, J ·) .

�

Theorem 22. (cf. [102]) The scalar curvature of the ℓ-gauged Fefferman metric
fθ,ℓ on Fc is given by

scalfθ,ℓ =
2m+ 1

m+ 1
· scalW +

1

m+ 2
· trθLdℓ .

Proof. We compute

scalfθ,ℓ = 2 · Ricfθ,ℓ(T ∗, χK) +

2m∑

i=1

Ricfθ,ℓ(e∗i , e
∗
i )

=

(
1

m+ 1
+

2m

(m+ 1)(m+ 2)
+

2m

m+ 2

)
· scalW

− 1

8
·

2m∑

i,j=1

Lθ(N(N(ei, ej), ej), ei)

+
1

4
·

2m∑

i,j=1

Lθ(N(ei, ej),N(ei, ej))
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+
2i

m+ 2
trθdℓ(·, J ·) − i

m+ 2
trθdℓ(·, J ·)

=
2m+ 1

m+ 1
· scalW +

i

m+ 2
trθdℓ(·, J ·) .

Thereby, we use again the torsion identities from Section 4, which hold under the
condition of partial integrability. �

Theorem 22 shows that the scalar curvature of the Fefferman metric fθ and the
Webster scalar curvature are proportional. For arbitrary ℓ ∈ Ω1(M ; iR) this is not
true.

6. The Laplacian of the Fundamental Vector χK

We discuss now properties of the fundamental vector field χK which is vertical along
the S1-fibre bundle Fc in the Fefferman construction. It is easy to see that χK is a
Killing vector with respect to any ℓ-gauged Fefferman metric fθ,ℓ. However, the main
goal of this section is to calculate the Laplacian of χK . We are able to give an explicit
expression for it. The result is the first step in direction of a tractor calculus description
for ℓ-gauged Fefferman metrics, which come from partially integrable CR-spaces (cf.
also Chapter 6 and [112]).

The fundamental vector field χK is uniquely determined by Aθ,ℓ(χK) = im+2
2

and
it is lightlike with respect to the ℓ-gauged Fefferman metric fθ,ℓ, where ℓ ∈ Ω1(M ; iR).
Lemma 19 shows that

fθ,ℓ(∇fθ,ℓ

C χK , B) = −fθ,ℓ(∇fθ,ℓ

B χK , C)

for all vectors B,C ∈ TFc, i.e., χK is a Killing vector for any ℓ-gauged Fefferman metric
fθ,ℓ. Equivalently, for the dual 1-form θ to χK on (Fc, fθ,ℓ) the equation

∇fθ,ℓθ = 1/2 · dθ
holds. The Bochner-Laplacian ∆

fθ,ℓ

tr = trfθ,ℓ∇2 acts on arbitrary tensor fields ρ through

trfθ,ℓ∇2ρ = ∇fθ,ℓ
χK∇

fθ,ℓ

T ∗ ρ+∇fθ,ℓ

T ∗ ∇fθ,ℓ
χK ρ +

2m∑

i=1

(
∇fθ,ℓ

e∗i
∇fθ,ℓ

e∗i
ρ−∇fθ,ℓ

∇
fθ,ℓ

e∗
i
e∗i

ρ
)

(with respect to our special choice of frame on Fc; cf. Section 0.4). In general, for any
Killing 1-form θ the equations

d∗θ = 0 and ∆
fθ,ℓ

tr θ = −1/2 · d∗dθ = −1/2 ·∆fθ,ℓ

1 θ

hold, where ∆
fθ,ℓ

1 denotes the Laplace-Beltrami operator. By using the formulae of

Lemma 19 we find a simple expression for the Laplacian ∆
fθ,ℓ

1 applied to θ on (Fc, fθ,ℓ).

Proposition 16. (cf. [112]) Let (Fc, fθ,ℓ) be the ℓ-gauged Fefferman space of a
partially integrable CR-space (Mn, T10) of dimension n = 2m+1 with pseudo-Hermitian
structure θ and ℓ ∈ Ω1(M ; iR). Then

(1) the fundamental vector χK is Killing and the lift θ to Fc of the pseudo-
Hermitian form is the dual Killing 1-form. In particular,

∇fθ,ℓθ = 1/2 · dθ .
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(2) For the Laplace-Beltrami operator applied to θ on (Fc, fθ,ℓ) the equation

∆
fθ,ℓ

1 θ = −2i
(n− 1)

n+ 3
· Aθ,ℓ +

(
scalfθ,ℓ

n
− 2(n+ 1)

n · (n+ 3)
trθLdℓ

)
· θ ,

resp.,

�
fθ,ℓ

1 θ =
i

n + 3
· Aθ,ℓ +

(n+ 1) · trθLdℓ
n(n− 1) · (n+ 3)

· θ

holds, where �
fθ,ℓ

1 = 1
n−1

(
∆
fθ,ℓ

tr + scal
fθ,ℓ

2n

)
(cf. Section 1.1).

Proof. Let X, Y, Z denote sections in H on M such that their coefficients with
respect to a local J-adapted frame {ei : i = 1, . . . , 2m} are constant. We have

fθ,ℓ(∇fθ,ℓ

X∗∇fθ,ℓ

Y ∗ χK , χK) = −fθ,ℓ(∇fθ,ℓ

Y ∗ χK ,∇fθ,ℓ

X∗ χK) = −1

4
fθ,ℓ( (JY )∗, (JX)∗ )

= −1

4
fθ,ℓ(X

∗, Y ∗) ,

fθ,ℓ(∇fθ,ℓ

X∗∇fθ,ℓ

Y ∗ χK , T
∗) = −fθ,ℓ(∇fθ,ℓ

Y ∗ χK ,∇fθ,ℓ

X∗ T ∗)

= −1

4

(
Lθ([X, T ], JY ) + Lθ([JY, T ], X)

)

−i 1

2(m+ 2)
Ωθ,ℓ(JY,X),

fθ,ℓ(∇fθ,ℓ

X∗∇fθ,ℓ

Y ∗ χK , Z
∗) = −fθ,ℓ(∇fθ,ℓ

Y ∗ χK ,∇fθ,ℓ

X∗ Z
∗)

=
1

2

(
Lθ(∇W

X JZ, Y ) + Bθ(X, JZ, Y )
)
.

These formulae show that

fθ,ℓ(tr
fθ,ℓ∇2χK , χK) = −m

2

fθ,ℓ(tr
fθ,ℓ∇2χK , Z

∗) = 1
2

∑2m
i=1

(
Lθ(∇W

ei
JZ, ei) + Lθ(∇W

ei
ei, JZ)

)

+ 1
2

∑2m
i=1 Bθ(ei, JZ, ei)

= 1
2

∑2m
i=1 ei

(
Lθ(ei, JZ)

)
= 0

fθ,ℓ(tr
fθ,ℓ∇2χK , T

∗) = −i 1
2(m+2)

∑2m
i=1 Ωθ,ℓ(Jei, ei)

= − scalW

2(m+1)
+ i

2(m+2)
trθdℓ(·, J ·)

= − 1
2n
scalfθ,ℓ + n+1

n(n+3)
trθLdℓ ,

where we use the relation

scalfθ,ℓ =
2m+ 1

m+ 1
scalW +

1

m+ 2
trθLdℓ .
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With the identity fθ,ℓ(tr
fθ,ℓ∇2χK , ·) = trfθ,ℓ∇2θ(·) = −1

2
∆
fθ,ℓ

1 θ(·) we obtain the stated
formula for the Laplace-Beltrami operator applied to θ. �

We obtain the following simple relation for �1θ and the ℓ-gauged Weyl connection
Aθ,ℓ.

Corollary 6. Let (Fc, fθ,ℓ) be the ℓ-gauged Fefferman space of (M,T10) with respect
to θ, ℓ on M . Then

�
fθ,ℓ

1 θ =
i

n+ 3
Aθ,ℓ if and only if trθLdℓ = 0 .

Finally, we define the vector space

H1
tr(M,T10) := {ℓ ∈ Ω1(M ; iR) : trθdℓ(·, J ·) = 0}/{ℓ ∈ Ω1(M ; iR) : dℓ = 0} ,

for any partially integrable CR-space (M,T10). This space is the affine model for the
space of connections, which admit the same scalar curvature as the Weyl connection on
Fc belonging to some pseudo-Hermitian form θ, modulo gauge transformations. The
map

Ψ : [ℓ] ∈ H1
tr(M,T10) 7→ c[ℓ] = [fθ,ℓ]

is onto the space of (local) [ℓ]-gauged Fefferman conformal structures on Fc with the
property

�
f

θ,ℓ̃

1 θ =
i

n + 3
Aθ,ℓ̃

for any pseudo-Hermitian form θ and ℓ̃ ∈ [ℓ].

7. Conformal Tractor Calculus for Gauged Fefferman Spaces

Since the canonical principal S1-bundle Fc over a partially integrable CR-space
(M,T10) is equipped with the ℓ-gauged Fefferman conformal classes, we can employ
tractor calculus for the investigation of the conformal geometry and the underlying CR-
geometry in a Fefferman construction. Our first aim here is to calculate the splitting
operator S : X(F ) → Γ(A(F )) with respect to a metric g ∈ c on a space (F, c) with
conformal structure, in general (cf. Section 0.7). We will see that for any conformal
Killing vector field τ on (F, g) the component of the adjoint tractor S(τ) in A1(F, c) is
just given by �

g
1τ (cf. Section 1.1). With the help of Proposition 16 we can then see

that the corresponding adjoint tractor to the fundamental vector χK on a Fefferman
space Fc is related to a certain complex structure, which acts on the standard tractors
T(F, c). In fact, in Chapter 6 we will show that the existence of such a complex
structure characterises ℓ-gauged Fefferman spaces.

So let (F n+1, c) be a smooth manifold with conformal structure c of dimension n+1
(and arbitrary signature) and let g ∈ c denote a (fixed) metric in the conformal class.
The standard and adjoint tractor bundles of (F n+1, c) are denoted by T, resp. A (cf.
Section 0.7). With respect to the metric g the adjoint tractor bundle decomposes into
TF ⊕ co(TF )⊕ T ∗F and an adjoint tractor A ∈ Ap, p ∈ F , is given with respect to g
by a triple (τ, ψ, η) ∈ Ap. Now let {ei : i = 1, . . . , n+ 1} be an arbitrary orthonormal
basis of TpF with respect to g. We set εi := g(ei, ei). The induced algebraic bracket
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{·, ·} on Ap has the following expressions with respect to (τ, ψ, η) and the basis {ei}
(cf. Section 0.7):

{ei, ψ} = − ψ(ei)

{e∗i , ψ} = e∗i ◦ ψ
{ei, e∗j} = ei ⊗ e∗j − εiεjej ⊗ e∗i for i 6= j

{ei, e∗i } = id|TF
{ei, η} = ei ⊗ η −

∑n+1
j=1 εiεjη(ej)ej ⊗ e∗i + η(ei)id

{τ, e∗j} = τ ⊗ e∗j − εjej ⊗ g(τ, ·) + e∗j (τ)id .

We aim to calculate the splitting operator S : X(F ) → Γ(A), which is uniquely
determined by the conditions

ΠH(S(τ)) = τ and ∂∗(dnorS(τ)) = 0 ,

where dnor = ∇nor is the covariant exterior derivative dnor = ∇nor induced by the
canonical connection ωnor. The connection ∇nor acts on a section (τ, ψ, η) in A by

dnor(τ, ψ, η) = ( ∇g
· τ , ∇g

· ψ , ∇g
· η ) + { (·, 0,Pg(·)) , (τ, ψ, η) }

= ( ∇g
· τ , ∇g

· ψ , ∇g
· η ) + ({·, ψ} , {·, η}+ {Pg(·), τ} , {Pg(·), ψ}),

where ∇g denotes the Levi-Civita connection of g and

P
g : TF → T ∗F ,

X 7→ 1
n−1

(
scalg

2n
g(X, ·)−Ricg(X, ·)

)

is the Schouten tensor with respect to g (cf. Section 0.7). Applying the codifferential
∂∗ results in

∂∗d(τ, ψ, η) =




0
∑n+1

i=1 ( {e∗i ,∇g
ei
τ}+ {e∗i , {ei, ψ}} )

∑n+1
i=1 ( {e∗i ,∇g

ei
ψ} + {e∗i , {ei, η}} + {e∗i , {Pg(ei), τ}} )


 .

With above formulae for the bracket {·, ·} we obtain
∑n+1

i=1 {e∗i , {ei, ψ}} = ψ + trgψ · id − ∑n+1
i=1 εig(ψ(ei), ·)ei

∑n+1
i=1 {e∗i ,∇g

ei
τ} = − ∇g

· τ − trg∇gτ +
∑n+1

i=1 εig(∇g
ei
τ, ·)ei

∑n+1
i=1 {e∗i , {ei, η}} = (n+ 1) · η
∑n+1

i=1 {e∗i ,∇g
ei
ψ} =

∑n+1
i=1 e

∗
i ◦ ∇g

ei
ψ

∑n+1
i=1 {e∗i , {Pg(ei), τ}} = − 2P

g(τ) + trgPg · g(τ, ·),

where trgPg = − scalg

2n(n+1)
. One can immediately see that the equation ∂∗d(τ, ψ, η) = 0

is solved for an arbitrary vector field τ on F by setting

ψ = asym(∇gτ) + trg(∇gτ) · id and

η = − 1
n+1

(
(
∑n+1

i=1 e
∗
i ◦ ∇g

ei
ψ)− 2P

g(τ) + trgPg · g(τ, ·)
)
,
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where asym denotes the skew-symmetric part of an endomorphism on TF . By insertion
of the first equation into the second one we obtain

η =
−1

n+ 1

(
( n+1∑

i=1

e∗i ◦ ∇g
ei
(asym∇gτ)(·)

)
+ d(divgτ)− 2P

g(τ) + trgPg · g(τ, ·)
)

.

We reformulate the latter expression for η in case when τ is a conformal Killing
vector field. In this situation, we have ψ = ∇gτ ,

n+1∑

i=1

e∗i ◦ ∇g
ei
(∇gτ) = −g(trg∇2τ, ·) +

2

n + 1
d(div(τ))

and together with (4) we obtain

η =
1

n− 1
· g(trg∇2τ, ·) +

scalg

2n · (n− 1)
g(τ, ·) .

We conclude that the splitting operator S applied to a conformal Killing vector τ on
(F, c) is given with respect to g ∈ c by

S(τ) = ( τ , ∇g
· τ , �

g
1(g(τ, ·)) ) ,

where the differential operator �
g
1 is defined as in Proposition 16 by

�
g
1 :=

1

n− 1

(
∆g
tr +

scalg

2n

)
.

Now we specialise the situation to the realm of Fefferman spaces and study their
conformal tractor calculus. So let (F n+1

c , fθ,ℓ) be a ℓ-gauged Fefferman space over a
strictly pseudoconvex, partially integrable CR-space (Mn, T10) with pseudo-Hermitian
structure θ and ℓ ∈ Ω1(M ; iR). (We note once again that the restriction to the strictly
pseudoconvex case is not essential for the considerations in this chapter.) Let T(Fc)
and A(Fc) be the standard, resp., adjoint tractor bundle to the conformal structure
[fθ,ℓ] on Fc. We set j := 2χK , where χK is the fundamental vector field in Fc with
Aθ,ℓ(χK) = im+2

2
. The adjoint tractor bundle A(Fc) decomposes with respect to the

ℓ-gauged Fefferman metric fθ,ℓ into TFc ⊕ co(TFc)⊕ TF ∗
c and we define

J := ( j , Jθ,ℓ ,
2i

n + 3
Aθ,ℓ ) ,

where Jθ,ℓ denotes the horizontal lift of the almost complex structure J on H to TFc
(with respect to Aθ,ℓ). The triple J can be considered via the metric fθ,ℓ as a section in
the adjoint tractor bundle A(Fc), which acts by • as an endomorphism on the standard
tractor bundle T(Fc) (cf. Section 0.7).

Proposition 17. (1) The definition of the adjoint tractor

J = (j, Jθ,ℓ,
2i

n+ 3
Aθ,ℓ) ∈ Γ(A)

as a triple with respect to the Fefferman metric fθ,ℓ does not depend on the choice of
θ, i.e., J is a CR-invariant of (M,T10).

(2) The adjoint tractor J acts on the standard tractor bundle T(Fc) as complex struc-
ture, i.e., the relation J2 := J • J = −id|T(Fc) holds.
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Proof. We only proof here the second statement that J acts as complex structure
on T(Fc). The proof of independence of the definition of J from the choice of pseudo-
Hermitian form θ will be postponed until Theorem 23. In fact, we will see there that
J is even a conformally invariant object on Fc.

The standard tractor bundle T(Fc) splits with respect to the ℓ-gauged Fefferman
metric fθ,ℓ into R⊕TFc⊕R and the action of J on a standard tractor t = (a, ξ, b) with
respect to this splitting is given by an application of the matrix

J =




0 2i
n+3

Aθ,ℓ 0

j Jθ,ℓ
−2i
n+3

A♯θ,ℓ

0 −fθ,ℓ(j, ·) 0


 ,

(cf. Section 0.7). We have

J • t =




2i
n+3

Aθ,ℓ(ξ)

b · j + Jθ,ℓ(ξ)− 2ia
n+3

A♯θ,ℓ

−fθ,ℓ(j, ξ)


 ,

where Jθ,ℓ acts trivially on the orthogonal complement of the horizontally lifted distri-
bution H . Applying J again results in

J • J • t =




2ib
n+3

Aθ,ℓ(j)

2i
n+3

Aθ,ℓ(ξ) · j − prH(ξ) + 2i
n+3

fθ,ℓ(j, ξ)A
♯
θ,ℓ

2ia
n+3

Aθ,ℓ(j)


 = −t ,

where we use 2i
n+3

Aθ,ℓ(j) = −1 and prH denotes the orthogonal projection of TFc to
the horizontal lift of H . �

We know that the projection ΠH(J) = j is a Killing vector field on (Fc, fθ,ℓ). Next
we aim to compute S(j) ∈ Γ(A), where S is the splitting operator. We set

U :=
2(n+ 1)

n · (n− 1)(n+ 3)
(0, 0, trθLdℓ · θ) ∈ A(Fc)

with respect to fθ,ℓ. Note that the 1-form trθLdℓ · θ does not depend on the pseudo-
Hermitian structure θ, i.e., trθLdℓ · θ is a uniquely defined section in T ∗Fc. Since T ∗Fc
is canonically included as subbundle in the adjoint tractor bundle (cf. Section 0.7), we
can conclude that U is a uniquely defined section in A(Fc) and does not depend on the
choice of fθ,ℓ.

Theorem 23. Let (F n+1
c , [fθ,ℓ]) be the gauged Fefferman space of a strictly pseudo-

convex, partially integrable CR-space (Mn, T10) with pseudo-Hermitian form θ, gauge
ℓ ∈ Ω1(M ; iR) and fundamental vector field j = 2χK. Then

(1) the relation

S(j) = J + U

holds. In particular, J is a conformal invariant on Fc.
(2)

S(j) = J if and only if [ℓ] ∈ H1
tr(M,T10) .
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In this case the equation

∇nor
· J = −Ωnor(j, · )

is satisfied.

Proof. From Proposition 16 and Lemma 19 we know that j is a Killing vector

with ∇fθ,ℓ

X j = Jθ,ℓX for all X ∈ TFc and

�1fθ,ℓ(j, ·) =
2i

n + 3
·Aθ,ℓ +

2(n+ 1) · trθLdℓ
n(n− 1) · (n+ 3)

· θ .

This shows

S(j) = ( j , Jθ,ℓ ,
2i

n+ 3
Aθ,ℓ + U ) = J + U

with respect to fθ,ℓ. Since the adjoint tractors S(j) and U are conformally invariant by
definition, the adjoint tractor J is a conformally invariant object as well. In particular,
we see that J does not depend on the pseudo-Hermitian form θ, which completes the
proof of Proposition 17. Moreover, Corollary 6 shows that S(j) = J if and only if
trθLdℓ = 0. In general, the equation ∇nor

· S(τ) = −Ωnor(τ, ·) holds for any conformal
Killing vector τ (cf. Section 0.7). Replacing S(τ) by J and τ by j in this formula
yields the claimed equation for J. �

We remark that the curvature expression Ωnor(j, ·) is entirely determined by the
Nijenhuis tensor N and the gauge 1-form ℓ. If N = 0 and ℓ = 0, i.e., in the situation of
the classical intrinsic Fefferman construction, we have ∇norS(j) = 0 and Ωnor(j, ·) = 0.
This statement follows with Sparling’s characterisation of classical Fefferman metrics
(cf. Theorem 3 and Chapter 6).

Finally, we remark that the complex structure J on a ℓ-gauged Fefferman space
admits a natural explanation via the Fefferman construction using Cartan geometry (cf.
Section 0.12). In fact, remember that if ΛmCH⊗Q admits a (m+2)-nd root E(1, 0) then

there exists a P̃ -reduction P̃(M) of the normal CR-Cartan geometry (P(M), ωnor) →
(M,T10) of type (PSU(1, m+ 1), P ), where P̃ denotes the corresponding parabolic in

SU(1, m+ 1). The standard CR-tractor bundle is then given by TCR(M) = P̃(M)×P̃Cm+2, which is equipped with a natural complex structure JCR (cf. Section 0.10). The

Fefferman space is given by F̃c = P̃(M)/(SU(1, m+ 1)∩ P̃ ′), where P̃ ′ is the parabolic
in SO(2, 2m+ 2) of conformal geometry. It is a matter of fact that the lift of TCR(M)
along the S1-fibering F̃c → M gives rise to the conformal standard tractor bundle
T(F̃c) on the Fefferman space (cf. Section 0.12). One can show now that the lift of the

natural complex structure JCR on TCR(M) to T(F̃c) produces J (cf. [39]).





CHAPTER 6

Unitary Conformal Holonomy and Einstein Reductions

This chapter is dedicated to the geometric study of the (tractor) equation

∇nor
· S(j) = −Ωnor(j, ·) with S(j)2 = −id|T(F ) (40)

for a vector field j ∈ X(F ) on a conformal space (F, c) (where S denotes the splitting
operator as introduced in Section 0.7), i.e., we are asking here for the existence of a
conformal Killing vector field j on F , whose 2-jet prolongation J := S(j) in the adjoint
tractors acts as complex structure on the standard tractor bundle T(F ). A special case
of this equation is

∇nor
· J = 0 with J2 = −id|T(F ) .

Obviously, the existence of such a ∇nor-parallel complex structure J ∈ Γ(A) is equiva-
lent to the reduction of the conformal tractor holonomy Hol(T) to (a subgroup of) the
unitary group U(p+ 1, q + 1).

To be more concrete, we aim to discuss in this chapter three features of complex
structures in conformal tractor calculus and unitary holonomy reductions. First, we
have seen already in the previous chapter that certain ℓ-gauged Fefferman spaces of
partially integrable CR-spaces admit a solution j ∈ X(F ), resp., J ∈ Γ(A) of (40).
We will show in the first part of this chapter that if a solution of (40) exists then the
underlying conformal structure is locally given by some ℓ-gauged Fefferman class on
the canonical S1-bundle of a uniquely determined partially integrable CR-space (with
arbitrary signature; cf. Chapter 5). The reconstruction of the underlying partially
integrable CR-structure from a complex structure J will be discussed in detail in Section
1. In particular, we will see that if the complex structure J ∈ Γ(A) is ∇nor-parallel then
the underlying CR-geometry is integrable and the gauge ℓ is trivial (resp., closed), i.e.,
we are in the situation of the classical Fefferman construction. In fact, the equation
∇norJ = 0 implies Ωnor(j, ·) = 0 and one can immediately see that this curvature
condition allows the application of Sparling’s characterisation of classical Fefferman
geometry (cf. Section 0.7 and Theorem 3).

The result about the reconstruction of an integrable CR-structure in case of
∇norJ = 0 also leads us to a discussion of the unitary conformal holonomy reduc-
tion with a remarkable outcome. Due to a result of A. Čap it is known that the lift
of the canonical Cartan connection of CR-geometry gives rise to the normal conformal
Cartan connection of the conformal structure on a Fefferman space if and only if the
CR-geometry is integrable (cf. [34, 39]). Since the structure group of CR-geometry is
PSU(p + 1, q + 1), the latter fact can be used to conclude that at least the conformal
holonomy algebra hol(T) is reduced to the special unitary algebra su(p+ 1, q + 1) if a
∇nor-parallel complex structure J does exist. This further holonomy reduction might
be surprising on the first glance given that the stabiliser of an orthogonal complex
structure is the unitary group U(p + 1, q + 1). In the second part of this chapter we
will explain this automatic su(p+ 1, q+ 1)-reduction of hol(T) by direct computations
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using only conformal tractor calculus (cf. Section 2). The proof relies essentially on the
condition of normality of the canonical Cartan connection of conformal geometry. In
particular, the result says that the conformal tractor holonomy Hol(T) of a conformal
space is never the full unitary group U(p+ 1, q+ 1). Our results about unitary confor-
mal holonomy reductions are confirmed by [40] presenting more general computations
and further conclusions.

In the third and final part of this chapter (Section 3 to 7) we discuss Einstein con-
ditions for integrable CR-geometries and their corresponding Fefferman spaces. This
topic is related to the study of pseudo-Einstein Hermitian structures (in the sense of
Lee; cf. [103]) and Einstein reductions of conformal holonomy (cf. [6, 7, 110]). In
the literature, it is well known that a classical Fefferman metric constructed over an
integrable CR-space equipped with a pseudo-Hermitian structure is never Einstein (cf.
[102]). However, the approach of conformal holonomy theory and its relation to the
conformal Einstein condition via parallel standard tractors (cf. Chapter 1) suggests
that a Fefferman conformal class could possibly be Einstein without being conformally
flat, in general. To be more concrete again, the equivalence of the canonical Cartan
connections of integrable CR-geometry and conformal Fefferman geometry implies that
∇T-parallel standard CR-tractors and conformal tractors correspond naturally and bi-
jectively to each other. It is also known that a ∇T-parallel standard CR-tractor gives
rise to a pseudo-Einstein Hermitian structure θ on the underlying CR-space (up to
singularities), whose Reeb vector T θ is in addition a transverse symmetry (cf. [39]). In
the following we will call such a pseudo-Hermitian structure θ a TS-pseudo-Einstein or
simply (TSPE)-structure. Our discussion will show that (TSPE)-structures are closely
related to Kähler-Einstein spaces (via factoring through the transverse symmetry). In
fact, with our approach we are able to state a local construction and characterisa-
tion principle for (TSPE)-structures on integrable CR-spaces (cf. Theorem 26). In
a second step, we will prove that a Fefferman conformal class, which is induced by a
(TSPE)-space admits locally always an Einstein scale and we are able to present an
explicit form of the corresponding Fefferman-Einstein metric (cf. Theorem 27). The
Einstein scales that occur on these spaces admit globally always singularities. This
instance shows that in a conformal Einstein class there might exist certain naturally
distinguished metrics apart from the Einstein metrics.

1. The Reconstruction of CR-Structures

In Chapter 5 we have proven the existence of a complex structure J on the standard
tractor bundle of certain ℓ-gauged Fefferman spaces (cf. Theorem 23). We want to
argue now in the reversed direction and explain the reconstruction of CR-structures
from such J. Our discussion will be of local nature, since we do not want to assume a
S1-fibration on our initial space.

We will use the following general observation about orthogonal complex structures
on R2p+2,2q+2.

Lemma 21. (cf. [112]) Let

β =



−a l 0
m A −Jl⊤
0 −m⊤J a
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be a matrix in g = so(2p+ 2, 2q + 2). Then the property β2 = −id is equivalent to the
following conditions on m,−Jl⊤ ∈ g−1 and A ∈ so(J2p+2,2q+2):

(1) m and −Jl⊤ are non-zero lightlike eigenvectors of A to the eigenvalue a,
(2) the scalar product of m with −Jl⊤ equals 1 + a2 and
(3) A2 restricted to (span{m,−Jl⊤})⊥ in g−1 is equal to −id.

Proof. We have

β2 =




a2 + lm −al + lA −lJ tl

−am+ Am ml + A2 + J tltmJ −AJ tl − aJ tl

−tmJm −tmJA− atmJ tmtl + a2


 .

From this matrix square the statement of Lemma 21 is obvious. �

Now let (F n+1, c) be a smooth manifold of dimension n+1 with conformal structure
c of signature (2p + 1, 2q + 1) and let J ∈ Γ(A(F )) be a complex structure acting on
the standard tractors T(F ) subject to the tractor equation

∇nor
· J = −Ωnor(j, ·)

with projection ΠH(J) = j (which is a conformal Killing vector field under these
conditions). The splitting operator S applied to j reproduces the adjoint tractor J.
Furthermore, let f ∈ c be some metric on F . Then the adjoint tractor J is given by
the triple ( j , ∇f j , �

f
1(f(j, ·)) ), resp., a matrix

J =



−Jc Jη 0
j Js −J ♯η
0 −g(j, ·) Jc


 ,

where Js is the skew-symmetric part of ∇fj, Jc = 2
n+1

divf(j) and Jη = �
f
1(f(j, ·)).

From Lemma 21 we know that j and −J ♯η are lightlike Jc-eigenvectors of Js with

−f(j, J ♯η) = 1 + J2
c . The skew-symmetric endomorphism Js restricts to an orthogonal

complex structure on the subbundle W (J, f), which is defined to be the f -orthogonal
complement of the span of j and −J ♯η in TF .

Now we denote by θf the dual of 1
2
j with respect to f in c. The subbundles Rj and

E := kerθf give rise to a flag in TF . The quotient Q := E/Rj is via f identified with
the subbundle W (J, f) and inherits a metric denote by fQ. The image of the tensorial
map

∇f
· j : E → TF

lies again in E and j is mapped to 2·divf (j)
n+1

· j. Hence ∇fj can be interpreted as an
endomorphism of the quotient bundle Q. The skew-symmetric part J : Q→ Q of this
endomorphism acts as fQ-orthogonal complex structure, i.e., fQ(JX, JY ) = fQ(X, Y )
for all vectors X, Y in Q. Moreover, the 2-form fQ(J ·, ·) on Q equals the 2-form that
is induced by dθf on the quotient Q. Thereby, note that dθf (j, ·) = 0 on E.

So far we have constructed from J with help of the some metric f in c the dataRj, E, Q := E/Rj and J : Q→ Q .

It is clear from the definition of the projection ΠH : A(F )→ TF = H1
gF (cf. Section

0.7) that Rj is independently given from the choice of f in c. This implies also that
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E := kerθf and the quotient space Q are independent from f ∈ c. We also can show
that J does not depend on the choice of f in c. For this purpose, let f̃ = e2φf be
an arbitrary rescaled metric in the conformal class c. The transformation law for the
Levi-Civita connection under conformal change implies that

∇f̃
Xj = ∇f

Xj + dφ(X)j + dφ(j)X for all X ∈ E .

This relation shows that the skew-symmetric part of ∇f̃j induces on the quotient space
Q the same complex structure J as ∇fj does. Altogether, this reasoning shows thatRj, E and the pair (Q, J) are uniquely determined by J on the conformal space (F, c)

In general, there exists a naturally defined Lie derivative L acting on sections of
any tractor bundle in the direction of conformal Killing vector fields. This derivative
is given by differentiation of a given tractor along the flow of the vector field, which
consists of (local) conformal diffeomorphisms. If A ∈ Γ(A(F )) is an adjoint tractor,
LV in the direction of a conformal Killing vector V on a space (F, c) is given by

LVA = −{S(V ), A} + Ωnor(V,ΠH(A))

(cf. [37]). In particular, LV S(V ) = 0 for any conformal Killing vector V . Note that in
case V is Killing with respect to some metric f ∈ c above Lie derivative LV coincides
with the usual Lie derivative in the direction of V applied to the components of A in
the tensorial decomposition TF ⊕ co(TF )⊕ T ∗F with respect to f .

Applied to our situation here we can see that LjJ = 0 for the complex structure J

with j = ΠH(J) on (F, c), i.e., the complex structure J is preserved under the (local)
flow jt of the conformal Killing vector field j. With this remark we can conclude thatRj, E and the complex structure J on Q are preserved by the (local) flow jt on (F, c)
as well. Alternatively, we can see this point without tractor calculus as follows. Since
the conformal Killing vector field j has no zero, we can find locally a metric f in c such
that j is Killing, i.e., j is an infinitesimal isometry of f , which implies Ljf = 0 and

[Lj ,∇f ] = 0 (also [Lj,�
f
1 ] = 0). Then we have [j, j] = 0 and obtain Ljθ

f = 0, which
proves that j∗t (Rj) = Rj and j∗t (E) = E to any time t. Moreover, Lj(∇fj) = 0, which
shows that J on Q is invariant under the flow jt as well.

The Lie bracket of vector fields on F gives rise to a well defined map

LQ : Q×Q → K := TF/E ,

(X, Y ) 7→ prK [X, Y ] ,

for which the relation θf ◦LQ(·, ·) = −fQ(J ·, ·) holds for any f ∈ c and LQ(JX, JY ) =
LQ(X, Y ) for all X, Y in Q. This shows that LQ is an algebraic, non-degenerate and
totally real bracket on Q. Moreover, the map LQ is by definition invariant under the
flow jt along the integral curves of j.

Let us consider once more the conformal Killing vector j with its integral curves γj

on F . Since j admits no zeros on F , the integral curves γjp through any point p ∈ F
are locally diffeomorphic to R. That means we can factorise the manifold F locally
around every point through these integral curves γj and obtain a smooth projection
onto a C∞-manifold MU of dimension n:

πU : U ⊂ F → MU := U/Im(γj) .

Thereby, we can assume that the open submanifold U of F is diffeomorphic to MU ×R
and πU is the natural projection onto the first factor. Since the subbundle E of TF
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is invariant under the flow jt of the vector field j, its projection by πU gives rise to
a subset H of TMU . The subbundle Rj of TF is the kernel of the projection πU∗.
Hence the subset H is a smooth distribution of corank one in TMU and the quotient
bundle Q projects naturally onto the distribution H . Since the algebraic bracket LQ
is non-degenerate and also jt-invariant on F , the distribution H has to be contact on
MU . The corresponding algebraic bracket Z is just the projection of LQ (cf. Section
0.10). Moreover, the jt-invariant complex structure J on Q projects to a complex
structure on the contact distribution H on MU , which we again denote by J . In
particular, it follows that the bracket Z is totally real with respect to this J . At this
point we have shown that the adjoint tractor J on (F, c) generates locally a uniquely
determined CR-manifold (MU , H, J) of hypersurface type and dimension n, which is
partially integrable.

Finally, we want to construct pseudo-Hermitian structures on (MU , H, J). For this
purpose, let us consider (locally) any metric f in c on U ⊂ F with Ljf = 0. Then
Ljθ

f = 0 and θf projects uniquely to a 1-form θ on MU such that θ|H = 0, i.e., any
(local) metric f with Ljf = 0 gives rise to a pseudo-Hermitian form θ on (MU , H, J).
From such a θ we obtain the Levi-form Lθ on the CR-space (MU , H, J). The signature
of Lθ is (p, q). In summary, we have the following result.

Proposition 18. Let (F, c) be a space with conformal structure c admitting a con-
formal Killing vector j ∈ X(F ) such that S(j) ∈ Γ(A(F )) acts as complex structure on
T(F ). Then

(1) the local factorisation of F through the integral curves γj of j generates in
a natural way a smooth space MU admitting a uniquely determined partially
integrable CR-structure (H, J).

(2) Any (local) metric f in c with Ljf = 0 generates in a natural way a pseudo-
Hermitian form θ on that CR-space.

So far we have not used for our discussion all the information that is encoded in
the existence of the complex structure J. And, in fact, there is still an open issue.
It is the question how the conformal structure c on U ⊂ F is related to the induced
CR-space (MU , H, J). To give an answer to this question, we consider the 1-form

Af := �
f
1(f(j, ·)) for a (local) metric f with Ljf = 0. Then we have Af (j) = −1 and

LjA
f = 0. These properties show that we can understand Af as a local connection

form on the fibration πU : U ⊂ F →MU . From our construction so far, it is clear that
f on U takes the form

π∗
ULθ − 4 · θf ◦ Af ,

where Lθ is the Levi-form on (MU , H, J) belonging to θ, which in turn was induced by
f on U ⊂ F .

If we choose U suitably small we can find a diffeomorphism ΨU , which identifies U
with an open subset of the canonical S1-bundle Fc over (MU , H, J) such that θf = Ψ∗

Uθ
and ΨU∗(j) = 2χK , where χK is the fundamental field introduced in Section 5.5. (Such
an identification ΨU is unique up to gauge transformations of the canonical S1-bundle.)
We can compare now f on U with the Fefferman construction to θ on the canonical S1-
bundle of (MU , H, J). Let Aθ be the Weyl connection to (MU , H, J) (cf. Section 5.3).
We denote by ℓ := Ψ−1∗

U Af − Aθ the difference between the two given connections (via
Ψ−1
U ). Eventually, we see from this discussion that f equals the ℓ-gauged Fefferman
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metric over (MU , H, J) via ΨU , i.e., f = Ψ∗
Ufθ,ℓ. However, the difference ℓ between

the two connections can not be arbitrary. In fact, by construction the adjoint tractor
S(2χK) is via ΨU identified with the complex structure J. Yet we know from Theorem
23 that the vertical Killing vector 2χk in the ℓ-gauged Fefferman construction gives
rise to a complex structure via the splitting operator S if and only if the contraction
trθdℓ(·, J ·) vanishes on MU , i.e., the gauge class [ℓ] is an element of H1

tr(MU , H, J).
This completes our discussion of reconstruction.

Theorem 24. Let (F, c) be a space with conformal structure of arbitrary signature
c admitting a conformal Killing vector j ∈ X(F ) such that S(j) ∈ Γ(A(F )) acts as
complex structure on T(F ) and let (MU , H, J) be the (locally) induced CR-space (cf.
Proposition 18). Then c on F is (locally) conformally equivalent to some [ℓ]-gauged Fef-
ferman metric, which is constructed on (MU , H, J) with suitable [ℓ] ∈ H1

tr(MU , H, J).

Note that Theorem 24 is a statement about conformal spaces of arbitrary signature
(2p+ 1, 2q+ 1), whereas in Chapter 5 we introduced the ℓ-gauged Fefferman construc-
tion only in the strictly pseudoconvex case (i.e. positive definite case). However, the
restriction to the positive definite case in Chapter 5 is not essential and the theory
extends straightforwardly to the arbitrary signature case.

A special case of Theorem 24 is when J = S(j) is a ∇nor-parallel complex structure
on T(F ). The Sparling’s characterisation tells us what happens in this situation (cf.
Theorem 3).

Corollary 7. (cf. [146, 73]) Let (F n+1, c) be a manifold with conformal structure
c admitting a conformal Killing vector j such that J = S(j) is a ∇nor-parallel complex
structure on T(F ). Then c is locally conformally equivalent to a (classical) Fefferman
metric fθ constructed over an integrable CR-space.

Proof. The vector field j admits no zeros on F . This implies that the partial
differential equation

j(φ) =
1

n
· divfj

admits locally a solution φ for any f ∈ c. We choose such a local solution φ for some
fixed f . Then the vector field j is Killing with respect to g = e2φf . We explained in
Section 0.7 that with ∇norJ = 0 the curvature condition ιjΩ

nor = 0 follows, which is
equivalent to ιjW

g = 0 and ιjC
g = 0 with respect to the metric g. Moreover,

divgj = 0 and �
g
1(g(j, ·)) =

1

n− 1

(
−Ricg(j, ·) +

scalg

2n
· g(j, ·)

)
,

and with g(j, j) = 0 and g(j,�g
1j) = −1− (divgj)2 we obtain

Ricg(j, j) = n− 1 > 0 .

These curvature properties for g and j show that we can apply Sparling’s characterisa-
tion (cf. Theorem 3). The conclusion is that g is (locally) isometric to the (classical)
Fefferman metric of some integrable CR-space of hypersurface type. �

We remark that the underlying CR-space, which is predicted by Sparling’s charac-
terisation and actually is explicitly constructed in [73], is indeed (locally) equivalent
to the CR-space (MU , H, J), whose reconstruction was established in Proposition 18.
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Corollary 7 (resp., Sparling’s characterisation) also tells us that in the situation of
Theorem 24 we have

Ωnor(j, ·) = 0 if and only if NJ = 0 and [ℓ] = 0

for the reconstructed CR-space (MU , H, J). Finally, we want to remark that the state-
ment of Corollary 7 can be rephrased as a holonomy characterisation.

Corollary 8. (cf. [113, 40]) Let (F, c) be a manifold with conformal structure
c of signature (2p + 1, 2q + 1) and conformal tractor holonomy Hol(T) contained in
U(p+1, q+1). Then the conformal class c is locally the (classical) Fefferman conformal
class of some integrable CR-space.

2. The Holonomy Reduction to SU(p+ 1, q + 1)

We have just seen in Corollary 8 that a conformal space whose tractor holonomy
Hol(T) is contained in U(p + 1, q + 1) is locally equivalent to a (classical) Fefferman
space constructed over an integrable CR-space. However, since the structure group of
CR-geometry is PSU(p+1, q+1), the lift of the canonical CR-Cartan connection along
the Fefferman construction gives rise to the normal conformal Cartan connection and
since Ωnor(χ, ·) = 0 for any vertical χ (cf. Section 0.12 and [34]), we understand that
at least the holonomy algebra hol(T) of a classical Fefferman space is actually further
reduced to su(p+ 1, q + 1). This observation simply says that

Hol(T) 6= U(p+ 1, q + 1)

for any conformal space! We want to explain this phenomena here using conformal
tractor calculus (without making the detour of reconstructing the underlying CR-space
and using Sparling’s characterisation; see also [40]).

So let J be an adjoint tractor on a space (Mn, c) of dimension n := 2m + 2 with
conformal structure c such that

J2 := J • J = −id|T(M) ∈ Γ(End(T(M)) and ∇norJ = 0 .

The adjoint tractor J is given with respect to a metric g ∈ c by

J =



−Jc Jη 0
j Js −J ♯η
0 −g(j, ·) Jc




(cf. Section 1). As before, let W (J, g) be the g-orthogonal complement of span{j, J ♯η}
in TM , which can be understood as a subbundle of T(M) with respect to g. Note that

〈·, ·〉T|W (J,g) = g|W (J,g) and J|W (J,g) = Js|W (J,g) .

If u− and u+ are generating elements of E[1] ∼=g R, resp., E[−1] ∼=g R with 〈u−, u+〉T = 1
then

W (J, g) := span{j, J ♯η}⊥g = span{u−, Ju−, u+, Ju+}⊥(T,〈·,·〉) .

In this situation we can choose a local complex frame {eα : α = 1, . . . , m} of W (J, g)
such that {eα, Jeα : α = 1, . . . , m} is an orthogonal frame of W (J, g) and

{ u− , Ju− , u+ , Ju+ , e1 , Je1 , . . . , em , Jem }
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is a local frame of the standard tractor bundle T(M). We call the corresponding
complex frame

B(J, g) := { u− , u+ , e1 , . . . , em }
a (J, g)-adapted frame of T(M).

Next let us denote by
TC(M) = T(M)⊗ C

the complexified standard tractor bundle on (M, c). We extend the complex structure
J on T(M) to a C-linear complex structure on the complexification TC(M), which we
denote again by J. The bundle TC(M) decomposes into the direct sum T10⊕T01, where
T10 denotes the i-eigenspace of J and T01 is the complex conjugate. The determinant
bundle

C := Λm+2T∗
10

is a complex line bundle on M . We call C the canonical complex line tractor bundle of
(T(M), J). (If we denote by Ũ(M) the U(p+1, q+1)-reduction of the O(2p+2, 2q+2)-

principal fibre bundle G̃(M) induced by J then the canonical complex line tractor

bundle is given by C = Ũ(M)×det−1C C.) The connection ωnor induces on C a covariant

derivative ∇nor and we denote by ΩC the conformal curvature for the complex line
tractor bundle C.

Lemma 22. Let C be the canonical complex line tractor bundle to T(M) with ∇nor-
parallel complex structure J. Then the curvature ΩC vanishes identically on C.

Proof. We aim to compute the curvature ΩC on C. First of all, we remark that
by assumption we have

Ωnor(j, · ) = 0

with j := ΠH(J). With respect to any metric g ∈ c we can conclude that ιjW
g = 0

and ιjC
g = 0.

Now let {Eα : α = 1, . . . , m+ 2} be a local complex frame of (T(M), J) such that
{Eα, JEα : α = 1, . . . , m+ 2} is a local orthonormal frame of (T(M), 〈·, ·〉). Then we
denote

̺α :=
1√
2
〈 · , Eα + iJEα 〉T

and the (m+ 2)-form
̺ := ̺1 ∧ . . . ∧ ̺m+2

is a local complex tractor volume form on (M, c), i.e., a local section in C. We have

ΩC(X, Y ) ◦ ̺ = −i
m+2∑

α=1

〈Eα, Eα〉T · 〈Ω(X, Y ) • Eα, JEα〉T · ̺

for all X, Y ∈ TM . In particular, this expression proves that

ΩC(j, · ) = 0 .

Next we reformulate above expression for ΩC with respect to an arbitrary metric
g ∈ c on M and a local (J, g)-adapted frame B(J, g) = {u−, u+, e1, . . . , em} with εα :=
g(eα, eα). We have

ΩC(X, Y ) = −2i · 〈Ω(X, Y ) • u−, Ju+〉T − i
m∑

α=1

εα · 〈Ω(X, Y ) • eα, Jeα〉T,
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which is a purely imaginary number for X, Y ∈ TM . We remember that the curvature
Ωnor has with respect to g the matrix form




0 Cg 0
0 W g −Cg♯

0 0 0


 .

Then we obtain

ΩC(X, Y ) = −i
m∑

α=1

εα · 〈Ωnor(X, Y ) • eα, Jeα〉T

= −i
m∑

α=1

εα · 〈Ω0(X, Y ) • eα, Jeα〉T

= −i
m∑

α=1

εα ·W g(X, Y, eα, Jseα)

= −i
m∑

α=1

εα ·
(
W g(X, Jseα, eα, Y ) − W g(X, eα, Jseα, Y )

)

= −i
m∑

α=1

εα ·
(
〈Ω0(X, Jseα) • eα, Y 〉T − 〈Ω0(X, eα) • Jeα, Y 〉T

)

for all X, Y ∈ TM .
Let us assume now that Y is an element of W (J, g) and X ∈ TM is arbitrary. We

set u2α−1 := eα and u2α := Jseα for α = 1, . . . , m. With ιjW
g = 0 and ιjC

g = 0 we
obtain

ΩC(X, Y ) = −i
m∑

α=1

εα ·
(
〈Ω0(X, Jseα) • Jeα, JY 〉T + 〈Ω0(X, eα) • eα, JY 〉T

)

= −i
m∑

α=1

εα ·
(
W g(X, Jseα, Jseα, JsY ) +W g(X, eα, eα, JsY )

)

= − i

n−2∑

i=1

εα ·W g(X, ui, ui, JsY )

+
i

1 + J2
c

·
(
W g(X, j, J ♯η, JsY ) + W g(X, J ♯η, j, JsY )

)

= −i · tr23
g W

g(X, · , · , JsY )

= 0 .

This shows that ιY ΩC = 0 for all Y ∈ W (J, g). Since the orthogonal complement of
W (J, g) in TM has rank 2 and spans together with W (J, g) the tangent space TM ,
we can conclude that the only possible non-vanishing component of the curvature on
C is ΩC(j, J ♯η). However, we know already that ιjΩ

C = 0, i.e., the latter component of

ΩC vanishes as well. �
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The proof of Lemma 22 uses strongly the symmetries of the Weyl curvature W g,
which are a direct consequence of the normalisation condition ∂∗ ◦ κ = 0 for ωnor and
the generalised Bianchi identity (cf. Section 0.6). We note further that Lemma 22
shows that the local complex tractor volume form ̺ is parallel with respect to ∇nor.
This property also implies the local existence of a conformal Killing spinor on (M, c)
(cf. Theorem 1 and 10; see also e.g. [17]). Lemma 22 is the main ingredient for the
proof of our reduction claim on the conformal holonomy.

Theorem 25. Let (M, c) be a space of dimension n = 2m+ 2 ≥ 4 with conformal
structure c of signature (2p+1, 2q+1) such that the conformal holonomy group Hol(T)
is contained in the unitary group U(p+ 1, q + 1). Then

(1) the holonomy algebra hol(T) is a subalgebra of the special unitary algebra su(p+
1, q + 1).

(2) If, in addition, the space M is simply connected then the holonomy group
Hol(T) is contained in the special unitary group SU(p+ 1, q + 1).

Proof. (1) The assumption of Theorem 25 about the holonomy group Hol(T)
implies the existence of a∇nor-parallel complex structure J ∈ Γ(A(M)) on the standard
tractor bundle T(M) of (M, c). Lemma 22 shows that the values Ωnor(X, Y ) ∈ A(M)
of the tractor curvature have vanishing complex trace for all X, Y ∈ TM . It follows
that the curvature form Ω on G̃(M) takes values only in su(p + 1, q + 1) ⊂ g. Since
the special unitary algebra su(p+ 1, q + 1) is an ideal in u(p+ 1, q + 1), the Ambrose-
Singer holonomy Theorem (cf. Section 0.3) shows that the holonomy algebra hol(T) is
contained in su(p+ 1, q + 1).

(2) In general, when M is simply connected the holonomy group Hol(C,∇nor) of
the canonical complex line tractor bundle is a connected Lie subgroup of U(1). Here,
since C is locally flat by Lemma 22, Hol(C,∇nor) is also a discrete subgroup of U(1).
It follows that the holonomy group Hol(C,∇nor) is trivial and the complex line bundle
C is globally flat admitting a parallel complex tractor volume form on M . This proves
that Hol(T) is contained in SU(p+ 1, q + 1). �

We remark that A. Čap and A.R. Gover can also prove Theorem 25. More gen-
erally, their proof shows that for any ∇nor-parallel adjoint tractor A the Killing form
Bso(r+1,s+1)(Ω

nor(·, ·), A) vanishes identically on a space (M, c) (in the framework of
conformal geometry)! This shows again for our case A = J that Ωnor has no complex
trace (cf. [40]).

3. Transverse Symmetry

In the remaining sections of this chapter we want to discuss Einstein reductions
(in the sense of holonomy) for integrable CR-spaces and their corresponding Fefferman
spaces. The idea for this construction comes from the observation that the conformal
tractor holonomy Hol(T) of some space might be contained in U(p + 1, q + 1) (resp.
SU(p + 1, q + 1)) and to the same time fixes a standard tractor without being the
trivial holonomy. This property does imply for the underlying integrable CR-space the
existence of a pseudo-Einstein Hermitian structure θ (up to singularities), whose Reeb
vector is simultaneously a transverse symmetry.
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Let (M,H, J) be an integrable CR-manifold of hypersurface type and dimension
n = 2m + 1 with arbitrary signature (p, q). In the following, we will call a pseudo-
Hermitian form θ on (M,H, J) a transverse symmetry if the corresponding Reeb vector
T θ ∈ X(M) satisfies

[T,X] + J [T, JX] = 0 for all X ∈ Γ(H) ,

i.e., the (local) Reeb flow consists of CR-automorphisms (cf. Section 0.10). In short,
we then say that θ is a TS-pseudo-Hermitian structure or just (TSPH)-structure on
(M,H, J). Obviously, a pseudo-Hermitian form θ is a transverse symmetry if and only
if the torsion part TorW (T θ, X) of the Tanaka-Webster connection ∇W to θ vanishes
for all vectors X ∈ H (cf. Chapter 5). Equivalently, these conditions also mean that θ
is a Killing 1-form for the metric

gθ := Lθ + θ ◦ θ ,
resp., T θ is a Killing vector, i.e., LTgθ = 0. The latter fact uses the properties LTJ = 0
and LT θ = 0 (for the case of transverse symmetry). Furthermore, we extend our
notation and say that θ is a TS-pseudo-Einstein structure (in short: (TSPE)-structure)
on (M,H, J) if and only if θ is a transverse symmetry and simultaneously the Webster-
Ricci tensor RicW is a constant multiple of dθ, i.e.,

RicW = −i scal
W

m
· dθ and TorW (T,X) = 0

for all X ∈ H . In this case we call (M,H, J, θ) a TS-pseudo-Einstein space (cf. Section
0.10 and e.g. [103, 48]).

For later use we aim to compare the Tanaka-Webster connection and corresponding
curvature tensors for a given (TSPH)-structure θ with the Levi-Civita connection and
metric curvature tensors of the induced metric gθ. So let θ be a fixed (TSPH)-structure
on an integrable CR-space (M,H, J). First, we determine the endomorphism

Dθ := ∇W −∇gθ .

A straightforward calculation shows that the covariant derivative

∇W − 1

2
dθ · T +

1

2
(θ ⊗ J + J ⊗ θ)

is metric and has no torsion with respect to gθ. We conclude that it is the Levi-Civita
connection of gθ and we obtain as comparison tensor

Dθ := ∇W −∇gθ =
1

2
(dθ · T − (θ ⊗ J + J ⊗ θ)) .

Another straightforward calculation shows that for any X, Y, Z ∈ X(M) we have

R∇W

(X, Y )Z = Rgθ(X, Y )Z − 1

2
(∇gθ

Z dθ(X, Y )) · T − 1

2
dθ(X, Y ) · J(Z)

+
1

4
dθ(Y, Z) · J(X)− 1

4
dθ(X,Z) · J(Y )

+
1

4
θ(Z) · θ(X) · Y − 1

4
θ(Z) · θ(Y ) ·X .
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This is the comparison of the curvature tensors. The formula immediately proves that
(in the transverse symmetric case!) the Webster curvature operator R∇W

(resp. tensor
RW ) satisfies formally the first Bianchi identity of a Riemannian curvature tensor.

Lemma 23. Let θ be a (TSPH)-structure on (M,H, J). Then the Webster curva-
ture tensor RW satisfies

RW (X, Y, Z, V ) +RW (Y, Z,X, V ) +RW (Z,X, Y, V ) = 0

for all X, Y, Z, V ∈ TM . In particular, we have the symmetries

RW (X, Y, Z, V ) = RW (Z, V,X, Y ) and

RW (X, JY, JZ, V ) = RW (JX, Y, Z, JV ) .

Also note that under the condition of transverse symmetry we have

ΩW = dAW = −π∗RicW

(cf. Section 5.3).
Using the symmetry properties for the Webster curvature tensor stated in Lemma

23 in case of transverse symmetry, we compute the comparison between the Ricci tensor
of gθ and the Webster-Ricci tensor. For this purpose, let {ei : i = 1, . . . , 2m} denote a
local J-adapted frame of H in TM (cf. Section 0.10). We have

Ricgθ(X, Y ) = Rgθ(X, T, T, Y ) +
2m∑

i=1

εiR
gθ(X, ei, ei, Y )

and

RicW (X, Y ) = i
∑

α

ε2α−1R
W (e2α−1, Je2α−1, X, Y )

= i
∑

α

ε2α−1R
W (X, Je2α−1, e2α−1, Y )

− i
∑

α

ε2α−1R
W (X, e2α−1, Je2α−1, Y )

= i
∑

α

ε2α−1R
W (X, Je2α−1, Je2α−1, JY )

+ i
∑

α

ε2α−1R
W (X, e2α−1, e2α−1, JY )

= i
∑

i

εiR
W (X, ei, ei, JY )

for all X, Y ∈ TM . With the comparison formula for the curvature tensors Rgθ and
RW we obtain Rgθ(X, T )T = 1

4
X and

∑

i

εiR
∇W

(X, ei)ei = Ricgθ(X)− Rgθ(X, T )T +
3

4
X
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for all X ∈ H . These formulae combined with the fact that T inserted into RW is zero
result in

Ricgθ(X, Y ) = iRicW (X, JY )− 1
2
gθ(X, Y ),

RicW (T,X) = 0, RicW (T, T ) = 0

and

Ricgθ(T,X) = 0 , Ricgθ(T, T ) =
m

2
gθ(T, T ) ,

where X, Y ∈ H .

4. The (Local) Submersion to a (TSPH)-Structure

We assume here that θ is a (TSPH)-structure on the integrable CR-manifold
(M,H, J) of dimension n = 2m + 1. This implies that the Reeb vector T to θ is
Killing for the induced metric gθ. At least locally, we can factorise through the integral
curves of T on M and obtain a semi-Riemannian metric h on a quotient space, which
has dimension 2m. We describe this process in detail. In particular, we calculate the
relation for the Ricci curvatures of the induced metric gθ and the metric h on the
quotient.

Let θ be a (TSPH)-structure on (M,H, J) of signature (p, q). To every point in
x ∈ M exists a neighbourhood (e.g. some small ball) U ⊂ M and a map φU such
that φU is a diffeomorphism between U and Rn and dφU(T ) = ∂

∂x1
, which is the first

standard coordinate vector in Rn. This implies that there exists a smooth submersion

πU : U ⊂M → N ⊂ R2m

such that for all v ∈ N the preimage π−1
U (v) consists of an integral curve of T through

some point in U parametrised by an interval in R.
The distribution H in TU is orthogonal to T with respect to gθ and the projection

πU∗ restricted to H has no kernel. For any vector X in TN we denote by X∗ the unique
lift of X to TU , which is tangential to H . Then we define

h(X, Y ) := gθ(X
∗, Y ∗) = Lθ(X

∗, Y ∗)

for arbitrary tangent vectors X, Y at some point of N . This defines in a unique way
a smooth metric tensor of signature (2p, 2q) on N and the projection πU becomes a
Riemannian submersion with respect to gθ and h. In particular, the distribution H in
TU is horizontal for this Riemannian submersion. The construction itself is naturally
derived from θ only (and some chosen neighbourhood U).

For simplicity, we assume now that

π : (M, gθ)→ (N, h)

is globally a smooth Riemannian submersion, where the preimages are the integral
curves of the Reeb vector T to a (TSPH)-structure θ on M with CR-structure (H, J).
Since the complex structure J acts on H and T is an infinitesimal automorphism of
J , the complex structure can be uniquely projected to a smooth endomorphism on N ,
which we also denote by J and which satisfies J2 = −id|TN . Since J is integrable on
H , the endomorphism J is integrable on N as well, i.e., J is a complex structure on
N . In fact, J is a Kähler structure on (N, h), i.e.,

∇hJ = 0 .



186 6. UNITARY CONFORMAL HOLONOMY AND EINSTEIN REDUCTIONS

The latter fact can be seen with the comparison tensor Dθ. We have

(∇gθ

X∗J)(Y ∗) = ∇gθ

X∗(JY ∗)− J∇gθ

X∗Y ∗

= ∇W
X∗(JY ∗)− (J∇W

X∗Y ∗)− 1

2
dθ(X∗, J(Y ∗)) · T

= −1

2
gθ(X

∗, Y ∗) · T

and

V ertπ∇gθ

X∗(J(Y ∗)) = −1

2
gθ(Y

∗, X∗) · T .

Together with ∇h ◦ π∗ = π∗ ◦ ∇gθ this implies ∇hJ = 0 on N .
Altogether, we know yet that a (TSPH)-space (M,H, J, θ) gives rise (locally) in a

natural manner to a (2m)-dimensional Kähler space (N, h, J). We use now the standard
formulae for the Ricci tensor of a Riemannian submersion to calculate Rich (cf. [127]).
We obtain

Rich(X, Y ) = Ricgθ(X∗, Y ∗) +
1

2
gθ(X

∗, Y ∗)

for all X, Y ∈ TN . Using our formula for the Ricci tensor of gθ with respect to the
Webster-Ricci curvature, we find

Rich(X, Y ) = iRicW (X∗, JY ∗)

for all X, Y ∈ TN . Basically, this result says that the Webster-Ricci curvature of a
(TSPH)-structure is the Ricci curvature of the base space of the natural submersion.

5. Description and Construction of TS-Pseudo-Einstein Spaces

We explain here an explicit construction of TS-pseudo-Einstein spaces with arbi-
trary Webster scalar curvature. We also show that locally this construction principle
generates all TS-pseudo-Einstein structures, i.e., we obtain a locally complete picture.

Let (M,H, J, θ) be a TS-pseudo-Einstein space with arbitrary signature (p, q), i.e.,

RicW = −i scal
W

m
· dθ and TorW (T,X) = 0

for all X ∈ H . Moreover, we assume for simplicity that θ generates globally a smooth
Riemannian submersion

π : (M, gθ)→ (N, h) .

With the relation for the Ricci tensors from the end of the last section we have

π∗Rich =
scalW

m
dθ(·, J ·) =

scalW

m
π∗h .

This shows that the base space of the natural submersion to the (TSPH)-structure θ
is a Kähler-Einstein space of scalar curvature

scalh = 2 · scalW .

We conclude that a TS-pseudo-Einstein space (M,H, J, θ) of dimension n = 2m + 1
determines uniquely (at least locally) a Kähler-Einstein manifold (N, h, J) of dimension
2m and signature (2p, 2q).
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We want to show now that there is an inverse construction, which assigns to
any Kähler-Einstein metric (with signature (2p, 2q)) a uniquely determined pseudo-
Hermitian structure (which is then TS-pseudo-Einstein). The construction itself is
natural and unique up to a gauge. In fact, it is straightforward to check that the
resulting pseudo-Hermitian structures for different gauges are isomorphic.

To start with, let (N2m, h, J) be a Kähler-Einstein space of dimension 2m with
scalh 6= 0 and let P (N) be the U(p, q)-reduction of the orthonormal frame bundle on
(N, h). Then

Oac(N) := P (N)×detC S1

with projection πOac(N) is the principal S1-fibre bundle over N , which is associated to
the anti-canonical complex line bundle O(−1) of the Kähler manifold (N, h, J). The
Levi-Civita connection to h induces a connection form ρac on the anti-canonical S1-
bundle Oac(N) with values in iR. For its curvature we have

Ωρac(X∗, Y ∗) = iRich(X, JY ) ,

where X, Y ∈ TN and X∗, Y ∗ are their horizontal lifts with respect to ρac.
At first, we see from the latter formula that the horizontal spaces of (Oac(N), ρac)

generate a contact distribution H of corank 1 in TOac(N) and the horizontal lift of the
complex structure J to H produces a non-degenerate CR-structure (H, J) on Oac(N).
This CR-structure is integrable as can be seen from the relation

Ωρac(X∗, JY ∗) + Ωρac(JX∗, Y ∗) = 0

for all X, Y ∈ TN and the fact that the Nijenhuis tensor N(X∗, Y ∗) is the horizontal
lift of

J([JX, Y ] + [X, JY ])− [JX, JY ] + [X, Y ] = 0 .

Secondly, we see that

θ := i
2m

scalh
ρac

is a pseudo-Hermitian structure on M := Oac(N) furnished with the CR-structure
(H, J). The Reeb vector T on the pseudo-Hermitian space

(Oac(N), H, J, θ)

is vertical along the fibres (in fact, it is a fundamental vector field generated by the
S1-action on the fibres) and by construction of (H, J) a transverse symmetry. Since
dθ = π∗

Oac(N)h(J ·, ·) on H , the base space of the corresponding submersion is again the

Kähler-Einstein space (N, h, J) that we started with. For that reason, we know that
the Webster-Ricci curvature of θ must be given by

iRicW (X∗, JY ∗) = Rich(X, Y ), X, Y ∈ H .

Since h is Einstein, we can conclude that the pseudo-Hermitian space (Oac(N), H, J, θ)
is TS-pseudo-Einstein with Webster-Ricci curvature

RicW = −i scal
h

2m
· dθ .

As mentioned before, for the inverse construction on the Kähler-Einstein space
(N, h, J), the choice of θ = i 2m

scalh
ρac as pseudo-Hermitian 1-form is not unique. One

might replace θ by θ̂ := θ + df for some smooth function f on Oac(N) with T (f) 6=
−θ(T ), where T is vertical. The latter condition ensures that θ̂ is transverse with
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respect to the fibration, which makes it possible to lift the complex structure to the
kernel of θ̂. We obtain again a TS-pseudo-Einstein structure on Oac(N) with induced
CR-structure. It is straightforward to see that there exits a diffeomorphism (gauge
transformation) on Oac(N), which transforms θ+df into θ, i.e., there is an isomorphism
of pseudo-Hermitian structures. Since (locally) θ + df is the most general choice of a
transverse 1-form whose exterior differential is the lift of h(J ·, ·) onN , we know that our
gauged construction exhausts locally all (isomorphism classes of) TS-pseudo-Einstein
structures with non-zero Webster scalar curvature.

As we have seen above a Webster-Ricci flat TS-pseudo-Einstein space (M,H, J, θ)
gives rise to a Ricci flat Kähler space. Again we aim to find a reconstruction. So let
(N, h, J) be a Ricci flat Kähler space furnished with a 1-form γ such that dγ = h(·, J ·),
i.e., ω := dγ is the Kähler form. The S1-principal fibre bundle Oac(N) has a Levi-Civita
connection form ρac with values in iR which is flat, i.e., dρac = 0. We set

θ := iρac − π∗γ

on Oac(N). Obviously, it holds that

dθ = −π∗ω ,

i.e., θ is a contact form on Oac(N) and the distribution H in TOac(N), which is defined
to be the kernel of θ, is contact as well. By definition, the distribution H is transverse
to the vertical direction of the fibre. For that reason we can lift J to H . Again, the
CR-structure (H, J) on M := Oac(N) is integrable. Moreover, θ is a pseudo-Hermitian
structure on (Oac(N), H, J). As the construction is done, it is clear that locally around
every point of (Oac(N), gθ) the base of the natural Riemannian submersion is naturally
identified with a subset of the Ricci flat space (N, h, J). We conclude that

iRicW (X, Y ) = Rich(X, Y ) = 0

for all X, Y ∈ H , i.e., the pseudo-Hermitian space

(Oac(N), H, J, θ)

over a Ricci flat Kähler space (N, h, J) with Kähler form dγ, where θ = iρac − π∗γ, is
TS-pseudo-Einstein with scalW = 0.

In the Webster-Ricci flat construction, the pseudo-Hermitian form θ can be replaced
by θ̂ = iρac − π∗γ + df , where f is some smooth function on Oac(N) with T (f) 6=
−iρac(T ) for any vertical vector T . This is the most general transverse 1-form on

Oac(N) with dθ̂ = −π∗ω. However, again one can see that θ and θ̂ = θ + df are
gauge equivalent on Oac(N), i.e., they are isomorphic as pseudo-Hermitian structures.
We conclude that with our construction and the help of a particular gauge we found
(locally) the most general form of a Webster-Ricci flat TS-pseudo-Einstein space. We
summarise our results.

Theorem 26. Let (N, h, J) be a Kähler-Einstein space of dimension 2m and sig-
nature (2p, 2q) with scalar curvature scalh.

(1) If scalh 6= 0 then the anti-canonical S1-principal bundle

Oac(N) = P (N)×detC S1
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with connection 1-form

θ := i
2m

scalh
ρac ,

where ρac is the Levi-Civita connection to h, and with induced horizontal CR-
structure (H, J) is a TS-pseudo-Einstein space with

scalW =
1

2
scalh 6= 0 .

(2) If scalh = 0 and the Kähler form is ω = dγ for some 1-form γ on N then
(Oac(N), H, J) with (TSPH)-structure θ = iρac − π∗γ is Webster-Ricci flat.

Locally, any TS-pseudo-Einstein space (M,H, J, θ) is isomorphic to one of these two
models depending on the Webster scalar curvature scalW .

We remark that for the case scalh 6= 0 we could have chosen (locally) the gauge
θ = iρac + π∗η − π∗γ, where dγ is the Kähler form and dη the Ricci form. This
would enable us to treat the two cases of Theorem 26 simultaneously as a single case.
However, for the following discussion of the corresponding Fefferman spaces we consider
the chosen gauge of Theorem 26(1) as more convenient.

6. The Fefferman Construction under Transverse Symmetry

We specialise now the classical Fefferman construction due to J.M. Lee (cf. Section
0.12 and e.g. [102]) to our case of TS-pseudo-Einstein spaces. This construction comes
(locally) as torus bundle over a Kähler-Einstein space.

In general, for a pseudo-Hermitian space (M,H, J, θ) of dimension n = 2m+ 1 the
Fefferman metric is given on the canonical S1-principal fibre bundle (Fc, πM ,M) by

π∗
MLθ − i

4

m+ 2
π∗
Mθ ◦ Aθ .

Now let (M,H, J, θ) be a TS-pseudo-Einstein space given as the anti-canonical S1-
principal fibre bundle M = Oac(N) over a Kähler-Einstein space (N, h, J) equipped
with the naturally induced CR-structure (H, J) and pseudo-Hermitian form θ as de-
scribed in Theorem 26:

πacN : (Oac(N), H, J, θ) → (N, h, J) .

We denote by

Oc(N) := P (N)×det−1C S1

the canonical S1-principal fibre bundle over (N, h, J), which is equipped with the Levi-
Civita connection denoted by ρc. Further, let Fc be the total space of the canonical
S1-fibre bundle over the CR-manifold (Oac(N), H, J). We denote by π the projection
of Fc to N :

π : Fc → N .

Obviously, the pull-back of Oc(N) along the anti-canonical projection πacN is isomorphic
to Fc. The concrete isomorphism is given by the choice of the gauge θ. This shows
that we can understand the total space Fc as a torus bundle over (N, h, J):

Fc = P (N)×(detC,det−1C ) S
1 × S1 .
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The Tanaka-Webster and Weyl connection forms are given on the torus bundle Fc
over the Kähler-Einstein space (N, h, J) by

AW = π∗
cρc and Aθ = π∗

cρc −
i · scalW
2(m+ 1)

π∗
acθ ,

where πc : Fc → Oc(N) and πac : Fc → Oac(N) are the natural projections. The
Fefferman metric fθ to the TS-pseudo-Einstein space (Oac(N), H, J, θ) on the torus
bundle Fc (over N) is then given by

fθ = π∗h− i 4

m+ 2
π∗
acθ ◦

(
π∗
cρc − i

scalW

2(m+ 1)
π∗
acθ

)
.

Notice that the metric fθ is uniquely derived from (N, h, J) if we assume θ to be given
in the gauge of Theorem 26. We will omit in the following the subscripts for the various
projections. It will be clear from the context which projection is meant.

Definition 5. Let (N, h, J) be a Kähler-Einstein space and let

Fc = P (N)×(detC ,det−1C ) S
1 × S1

be the canonical-anti-canonical torus bundle over N . Then we denote by fh := fθ (where
θ is the gauge of Theorem 26 depending on whether scalh = 0 or 6= 0) the Fefferman
metric on Fc, which belongs to the TS-pseudo-Einstein space (Oac(N), H, J, θ). We call
fh the Fefferman metric of the Kähler-Einstein space (N, h, J).

In general, since θ is a transverse symmetry, we have

d(π∗ρc) + d(π∗ρac) = π∗RicW − π∗RicW = 0 ,

i.e., the 1-form π∗ρc + π∗ρac is closed on Fc. In fact, we will see in the next section
that this 1-form is parallel in case of a TS-pseudo-Einstein structure with scalW 6= 0.
A fh-orthogonal 1-form to π∗ρc+π∗ρac is given by π∗ρc− 1

m+1
π∗ρac and we can rewrite

the Fefferman metric from the previous expression as

fh = π∗h+
4m(m+ 1)

(m+ 2)2 · scalh ·
(

(π∗ρc + π∗ρac)
2 − (π∗ρc −

1

m+ 1
π∗ρac)

2

)
.

If scalh = 0 the Fefferman metric of (N, h, J) is computed to be

fh = π∗h− i 4

m+ 2
(iπ∗ρac − π∗γ) ◦ π∗ρc ,

where dγ = ω is the Kähler form and the 1-form π∗ρc is closed (in fact, parallel).

7. The Einstein Metric in the Fefferman Conformal Class

Finally, we find an explicit local scale for an Einstein metric in the conformal class of
any Fefferman metric, which comes from a TS-pseudo-Einstein space. For this purpose,
we compute a convenient formula for the Ricci tensor of fh. The result shows how to
choose the conformal rescaling factor.

Let (M,H, J, θ) be a TS-pseudo-Einstein space. As before, we assume that M =
Oac(N) is the anti-canonical S1-bundle over a Kähler-Einstein space (N, h, J) and θ
is a gauge as in Theorem 26. The Fefferman metric fh = fθ is defined on the torus
bundle Fc = P (N)×(detC,det−1C ) S

1× S1. We denote by χK the fundamental vector field
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along the Fefferman fibration determined by Aθ(χK) = m+2
2
i and by T ∗ the horizontal

lift of the Reeb vector T ∈ X(M) to Fc with respect to Aθ. Furthermore, let

{ei : i = 1, . . . , 2m}
denote some local orthonormal frame on (N, h) and let the e∗i ’s be the horizontal lifts
to Fc with respect to θ and then Aθ. We obtain a local frame on Fc of the form

{e∗i , T ∗, χK} .
With our definitions, we have

fh(χK , T
∗) = 1 ,

π∗ρc(χK) = m+2
2
i , π∗ρac(χK) = 0 ,

π∗θ(T ∗) = 1 , π∗ρc(T
∗) = 0 ,

π∗(e
∗
i ) = ei , π∗ρac(e

∗
i ) = π∗ρc(e

∗
i ) = 0 and

[T ∗, e∗i ] = [χK , e
∗
i ] = [χK , T

∗] = 0 for all i ∈ 1, . . . , 2m .

In the following, local computations are made with respect to a frame of the form
{e∗i , T ∗, χK}.

From the formulae of Lemma 19 for covariant derivatives (with respect to the Levi-
Civita connection of fh = fθ) combined with the fact that

dAθ = Ωθ = −π∗RicW − i scalW

2(m+ 1)
π∗dθ = i

(m+ 2) · scalh
4m(m+ 1)

· π∗dθ

in the TS-pseudo-Einstein case we obtain

∇fh

e∗i
e∗j = (∇W

ei
ej)

∗ − 1
2
π∗dθ(e∗i , e

∗
j)T

∗ − 1
2
SWπ∗dθ(e∗i , e

∗
j )χK ,

∇fh

T ∗e∗i = ∇fh

e∗i
T ∗ = 1

2
SW (Jei)

∗ ,

∇fh
χK
e∗i = ∇fh

e∗i
χK = 1

2
(Jei)

∗ ,

∇fh
χK
T ∗ = ∇fh

T ∗χK = ∇fh

T ∗T ∗ = ∇fh
χK
χK = 0 ,

where we set

SW :=
scalh

2m(m+ 1)
.

It follows immediately that

fh(∇fh

A T
∗, B) = −fh(∇fh

B T
∗, A)

for all A,B ∈ X(Fc), i.e., T ∗ is a Killing vector field on (Fc, fh). (In general, for any
pseudo-Hermitian space the horizontal lift of the Reeb vector T is a Killing vector on
the Fefferman space if and only if T is a transverse symmetry and ΩAθ(T ∗, ·) = 0.)
Moreover, we see that the vertical vector field

T ∗ − SWχK
is parallel. The dual of this vector field with respect to fh is a parallel 1-form, which
is equal to −i 2

m+2
· (π∗ρc + π∗ρac) for scalh 6= 0, resp., −i 2

m+2
· π∗ρc for scalh = 0 (cf.

Section 6).
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For the Riemannian curvature tensor of fh we find the formulae

Rfh(e∗i , e
∗
j)e

∗
j = (R∇W

(ei, ej)ej)
∗ + 3

2
SWdθ(ei, ej)(Jej)

∗ ,

Rfh(e∗i , χK)T ∗ = 1
4
SW · e∗i ,

Rfh(T ∗, e∗j)e
∗
j = 1

4
SW · (T ∗ + SW · χK) ,

Rfh(χK , e
∗
j )e

∗
j = 1

4
(T ∗ + SW · χK) ,

Rfh(χK , T
∗) = 0 .

Then we obtain for the Ricci tensor

Ricfh(e∗i , e
∗
j) = iRicW (ei, Jej)− SW fh(e∗i , e∗j) ,

Ricfh(T, e∗i ) = Ricfh(χK , e
∗
i ) = 0 ,

Ricfh(T ∗, T ∗) = m
2
(SW )2 ,

Ricfh(T ∗, χK) = m
2
SW ,

Ricfh(χK , χK) = m
2
,

i.e., the Ricci tensor of fh takes the form

Ricfh = iπ∗RicW (·, J ·)− SWπ∗fh

+
m

2

(
(SW )2π∗θ ◦ π∗θ − 4

(m+ 2)2
Aθ ◦ Aθ − i

4

m+ 2
SWAθ ◦ π∗θ

)

=
scalh

2(m+ 1)
fh −

2m

(m+ 2)2

(
Aθ −

i(m+ 2) · scalh
4m(m+ 1)

π∗θ

)2

.

In particular, if scalh = 0 on N we have

Ricfh = − 2m

(m+ 2)2
(π∗ρc)

2

and if scalh 6= 0 then

Ricfh =
scalh

2(m+ 1)
fh −

2m

(m+ 2)2
(π∗ρc + π∗ρac)

2 .

The computations show that the Fefferman metric fh to a Kähler-Einstein space
(N, h, J) is never Einstein. (In fact, any Fefferman metric is not Einstein (cf. [102]).)
For example, a Webster-Ricci flat TS-pseudo-Einstein space gives rise to a Fefferman
metric fh with totally isotropic Ricci tensor. However, the Einstein condition should
not be expected for the Fefferman metric itself. Instead, we will show now that the
Fefferman metric to any TS-pseudo-Einstein space (resp. Kähler-Einstein space) is
(locally) conformally Einstein, i.e., there exists locally around every point of Fc a

conformally rescaled metric f̃h to fh, which is Einstein. For the computation of the
explicit Einstein scale we introduce the coordinate function t on the torus fibre bundle
Fc by

dt = iπ∗ρc when scalh = 0 and

dt = iπ∗ρc + iπ∗ρac when scalh 6= 0 .
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First, we consider the (Webster)-Ricci flat case. So let f̃h = e2φfh be a conformally

rescaled metric of fh, where φ is a real function on Fc. For the Ricci tensor of f̃h we
find by using standard transformation formulae

Ricf̃h −Ricfh = −2m(Hessfh(φ)− dφ ◦ dφ) + (−∆fhφ− 2m‖dφ‖2fh
)fh

(cf. e.g. [93]). We denote this difference by Cφ, which is a symmetric (0, 2)-tensor. Now
let φ(t) be a function on Fc, which depends only on the coordinate t in the direction
of the canonical S1-fibration. Then the only non-trivial component of Cφ is

Cφ(χK , χK) = −2m
(
χKχK(φ)− χK(φ)2

)
.

This shows that for any function φ(t) on Fc, which solves the ODE

∂t∂tφ− (∂tφ)2 =
1

(m+ 2)2
,

the Ricci tensor Ricf̃h of f̃h = e2φfh vanishes identically. The most general solution of
this ODE is

φ = c1 − ln

(
cos

(
t

m+ 2
+ c2

))
,

where c1, c2 are constants. We choose here φ = − ln(cos( t
m+2

)), which gives as confor-
mal rescaling factor

e2φ = cos−2

(
t

m+ 2

)
.

Then the conformally changed Fefferman metric

f̃h = cos−2(t/(m+ 2)) ·
(
π∗h− i 4

m+ 2
(iπ∗ρac − π∗γ) ◦ π∗ρc

)

is Ricci flat on an open subset of Fc around the hypersurface given by {t = 0}. Ob-
viously, a global conformal Einstein scale for fh on Fc does not exist. Locally, it does
exist everywhere.

Now we assume that (N, h, J) is Kähler-Einstein with scalh 6= 0. Then we find with
respect to a conformal scaling function φ(t), which depends only on the coordinate t
with dt = i(π∗ρc + π∗ρac),

Ricf̃h − Ricfh = Cφ = 2m(∂t∂tφ− (∂tφ)2)(dρc + dρac)
2

+
(m+ 2)2 · scalh

4m(m+ 1)
(∂t∂tφ− (∂tφ)2)fh .

Again, if we choose φ = − ln(cos( t
m+2

)), the metric f̃h = e2φfh is Einstein. In fact,
with this choice we obtain

Ricf̃h =
(2m+ 1) · scalh

4m(m+ 1)
fh

for the Ricci tensor of the rescaled metric and scalf̃h = 2m+1
2m
· scalh for the scalar

curvature.

Theorem 27. Let (N, h, J) be a Kähler-Einstein space of dimension 2m and sig-
nature (2p, 2q) with scalar curvature scalh.
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(1) If scalh = 0 and the Kähler form is ω = dγ for some 1-form γ on N then the
metric

f̃h = cos−2(t) · ( π∗h+ 4dt ◦ (π∗γ + ds) )

on N ×{ (s, t) : −π
2
< t < π

2
} ⊂ N ×R2 (with natural projection π onto N)

is conformally Fefferman and Ricci flat with signature (2p+ 1, 2q + 1).
(2) If scalh 6= 0 then the metric

f̃h = cos−2(t) ·
(
π∗h− 4m(m+ 1)

scalh
· ( dt2 +

ρ2
ac

(m+ 1)2
)

)

on Oac(N)×(−π
2
, π

2
), where (Oac(N), π, N) is the anti-canonical S1-bundle over

N with Levi-Civita connection ρac : TOac(N)→ iR, is conformally Fefferman

and Einstein with scalf̃h = 2m+1
2m
· scalh and signature (2p+ 1, 2q + 1).

On the other hand, if a Fefferman metric fθ to an integrable CR-space is locally con-
formally Einstein, then any Einstein metric f̃ ∈ [fθ] can be brought into the form (1)
or (2).

In Theorem 27 we simplified the expressions for the Fefferman metrics. In fact,
in the Ricci flat case both the Levi-Civita connections ρc and ρac are flat, i.e., the
torus bundle is globally a product and so we parametrised the vertical directions by
the coordinates t, s, where the coordinate t is rescaled (compared with our notation

from before) by a factor (m+ 1). We remark that f̃h has the interesting property that

there exists (locally) a conformal Killing spinor ϕ ∈ Γ(S̃) such that D̃Sϕ is a non-trivial
parallel spinor.

For the case when scalh 6= 0 we replaced the 1-form π∗ρc − 1
m+1

π∗ρac on Fc by

−m+2
m+1
· ρac on Oac(N) × (−π

2
, π

2
). This is possible, since locally the canonical bundle

Oc(N) and the anti-canonical bundle Oac(N) can be identified such that the Levi-
Civita connection ρc becomes −ρac. It is useful to note here that the Fefferman metric
fh = cos2(t) · f̃h as presented in Theorem 27 is the product of a real line with the metric

π∗h− 4m(m+ 1)

(m+ 1)2 · scalh · ρ
2
ac .

The latter is the well-known Einstein-Sasaki metric, which is constructed over the
Kähler-Einstein space (N, h) (cf. Section 0.9).

The proof of the fact that any Einstein metric in a Fefferman conformal class
can be brought into the form (1) or (2) of Theorem 27 uses the unique and natural
correspondence of parallel standard tractors of CR and conformal geometry in the
classical Fefferman construction for integrable CR-structures (cf. [39]). This is the
most easy and elegant way to do this and, actually, reflects the initial idea to our
construction. It is also possible to prove the (TSPE)-condition for the underlying
CR-space directly without this argument of tractor calculus. However, we omit this
here.
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