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List of symbols

β Boltzmann factor
∆µ Chemical potential difference
∆F Free energy difference between two equilibrium states
∆F est Estimate for the free energy difference
∆S Mean difference in the system entropy
δ Transition state position
E Stochastic internal energy
η Efficiency
η∗ Efficiency at maximum power
ηC Carnot efficiency
ηCA Curzon-Ahlborn efficiency
ηqs Efficiency for quasistatic driving
F st Stall force
γ Friction coefficient
λ(τ ) Control parameter for the transition between equilibrium

states
λ∗(τ ) Optimal protocol
λf Final value of the control parameter
λi Initial value of the control parameter
µ Mobility or mobility matrix
ω Frequency
Q Stochastic nonequilibrium heat
τ Time
Tc Temperature of the colder heat bath coupled to a heat

engine
Th Temperature of the hotter heat bath coupled to a heat

engine
Wchem Chemical work
W ∗ Minimal mean work
W Stochastic nonequilibrium work
Wirr Stochastic irreversible work
ζ Gaussian white noise
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a, a† Annihilation and creation operators for a quantum har-
monic oscillator

cATP, cADP, cP Dimensionless concentrations of ATP , ADP , and P molecules
E Mean internal energy
F Load force
F ∗ Optimal load force
H Hamiltonian
k+, k− Bare reaction rate constants for forward and backward

steps
l Distance between two neighbouring motor sites
m Mass
p(x, τ ) Probability distribution for the coordinate x at time τ
ps

i Steady state probability of state i
Q Mean nonequilibrium heat
T Temperature
t Total transition time
u(τ ) Mean particle position in a moving harmonic potential
v Velocity
V (x, τ ) Time-dependent potential
W Mean nonequilibrium work
w(τ ) Variance of the particle position in a harmonic potential

with time-dependent stiffness
w+, w− Reaction rate constants for forward and backward steps
W ad Adiabatic work
W qs Quasistatic work
Wirr Mean irreversible work
y(τ ) Position-momentum correlation
z(τ ) Mean squared momentum
j Probability current
σ Vector of Pauli matrices
B Magnetic field
ρ(τ ) Density operator
RMSE Root mean squared error
k Stiffness of the moving harmonic potential



Summary

The concept of Stochastic Thermodynamics deals with the question how to
define thermodynamic quantities for mesoscopic systems. One important goal
is the thermodynamic description of processes in the biological cell. There
are two major challenges in this regime. First, most processes in the cell are
driven far out of equilibrium. Second, binding energies are typically of the
order of the thermal energy kBT (at room temperature), and fluctuations are
thus important.

During the last decade, there has been considerable progress in this field.
It has been shown how to consistently define stochastic analogues of typical
thermodynamic quantities such as work, heat, or entropy. While the second
law of thermodynamics is valid only on average, a class of fascinating exact
nonequilibrium work and fluctuation relations have been found. The Jarzynski
relation connects the equilibrium free energy difference ∆F between two equi-
librium states with a nonequilibrium average over (stochastic) work values W
obtained from a nonequilibrium transition between these states. While such
relations are intruiging from a theoretical point of view, they also offer a new
class of methods for free energy calculations. However, the straightforward ap-
plication of the Jarzynski relation is plagued by a systematic bias for any finite
number of nonequilibrium trajectories. Particularly for nonequilibrium transi-
tions with large typical values of the irreversible work Wirr ≡ W−∆F , a correct
estimate of the free energy difference requires a huge number of trajectories.

The main objective of this thesis is the analysis of optimization problems
in the context of Stochastic Thermodynamcis. A quite natural optimization
principle for nonequilibrium processes is the requirement that a defined result
should be achieved with the smallest possible amount of dissipation. For a
transition between two given equilibrium states in a given finite time t, this is
directly linked to a process schedule which leads to a minimal (mean) work.

Such an optimization is also relevant from a practical point of view. A variety
of strategies has been proposed in order to improve free energy calculations via
the Jarzynski relation, e.g. by biasing the dynamics for trajectories with low
work values. Although very unlikely for unbiased dynamics, these trajectories
contribute strongly in the average in the Jarzynski relation and therefore are
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Summary

important for a correct estimate of the free energy difference. As an alterna-
tive approach which may also be combined with other strategies, we exploit the
fact that the Jarzynski relation is valid for any time-dependent driving scheme
between two equilibrium states. Quite generally, the quality of the Jarzysnki
estimate improves with decreasing dissipation during the transition. We there-
fore ask for the driving scheme which yields the minimal mean work W for a
transition between two given equilibrium states in a given finite time t. Such
an optimization is equivalent to the mininization of the mean irreversible work
Wirr ≡ W − ∆F since the free energy difference is determined by the (given)
equilibrium states.

In order to study optimal protocols, we need to specify the dynamics of the
considered system. For the correct description of the dynamics of biomolecules,
e. g. in protein pulling experiments or protein folding simulations, it is crucial to
include dissipative effects and fluctuations induced by the surrounding fluid in
the cell which acts as a heat bath. A variety of different thermostats are used in
molecular dynamics simulation. If only a few degrees of freedom are considered,
a Langevin equation with Gaussian white noise is often a good description of
the dynamics. If the momentum relaxation times are short compared to other
typical times in the system, one can use overdamped Langevin dynamics. For
such dynamics, we calculate optimal driving schemes (protocols) using two
different time-dependent model potentials.

First, we consider a harmonic potential where the minimum of the potential
is moved time-dependently from a given initial position λi = 0 to a given final
position λf during a finite time t. This situation corresponds to a colloidal
particle in an optical trap where the focus of the laser is moved from a given
initial position λi = 0 to a given final position λf . In this example, the free
energy difference between initial and final states vanishes. For any given pro-
tocol λ(τ ) for the focus of the laser at time τ , the mean work applied to the
colloidal particle by changing the potential time-dependently can be calculated.
The mean work is generally a non-local functional of the protocol. However,
it can be transformed into a local functional of the mean particle position in
this particular case. At the beginning, the system is in equilibrium and the
mean particle position is at the minimum of the potential λi = 0. The mean
particle position at the end of the process, however, is not determined by the
boundary conditions λ(0) = 0, λ(t) = λf which can be met by jumps of the
protocol λ(τ ) at beginning and end of the process for any given time evolution
of the mean particle positions. The minimization therefore is performed in two
distinct steps: First, the optimal time evolution for the mean particle position
subject to given boundary values is calculated using an Euler-Lagrange equa-
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tion. In a second step, the optimal final value for the mean particle position is
determined. The optimal protocol λ∗(τ ) then exhibits jumps at the beginning
and end of the process. These jumps correspond to instantaneous changes of
the position of the trap. Such discontinuities can be rationalized by the require-
ment of a constant velocity of the particle. Since the particle has a vanishing
mean velocity in the initial equilibrium state, the optimal mean velocity jumps
to the required finite value at the beginning of the process. This jump in the
velocity can only be achieved by a jump in the protocol. In this simple model,
jumps could have also been obtained in a damped dynamics without fluctua-
tions. Indeed, such a behaviour has previously been found in the context of
optimized macroscopic heat engines.

Therefore, it is interesting to consider a second case study whith a finite free
energy difference and with fluctuations affecting also the mean work. Since
the analytic solution of the dynamic equations is out of scope for anharmonic
potentials, we study a harmonic potential with time dependent stiffness. Here,
the free energy change is due to entropic contributions, which indicates that
fluctuations play a crucial role in the system. Again, the mean work is not a
time-local functional of the protocol. However, the mean work can be trans-
formed into a local functional of the variance of the particle position. The
optimization then can be done in complete analogy to the moving harmonic
potential and yields non-linear optimal protocols which also show jumps at
beginning and end. We thus conjecture that jumps quite generally occur in
optimal protocols for overdamped Langevin dynamics.

It is important to keep in mind that the overdamped Langevin equation is
only an approximation valid to describe dynamics if the momentum relaxation
times are short compared to other typical times in the system. The observed
jumps may therefore be an artefact of this overdamped limit. Inertial effects
also play an important role in molecular dynamics simulations. Thus, it is
helpful to consider both harmonic case studies introduced above also for un-
derdamped Langevin dynamics, where inertia effects are taken into account.

For the moving harmonic potential, the mean work can again be written as
a time-local functional of the mean particle position. The minimization then
can be performed in analogy to the overdamped case. The minimal work is
given by exactly the same expression as in the overdamped case. However, the
optimal protocol does not only involve jumps but also delta-type singularities
at beginning and end. A posteriori, this behaviour can be rationalized again
by the requirement of a constant velocity throughout the transition. In the
underdamped regime, a jump in the velocity can only be achieved by a delta-
peak in the force which directly transfers to a delta-peak in the protocol. For
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large masses of the particle and appropriate transition times, the minimal mean
work is much smaller than for a linear protocol.

In the second case study of a harmonic potential with time-dependent stiff-
ness, the mean work can no longer be transformed in a time-local functional of
the variance of the particle position alone. Rather, it is a local functional of the
covariance matrix of position and momentum. The entries of the covariance
matrix are linked by contraints imposed by the dynamics of the system. A vari-
ation under these constraints leads to coupled Euler-Lagrange equations which
cannot be solved analytically. Therefore, the shape of the optimal protocol can
only be calculated numerically, involving also a numerical minimum search for
the optimal boundary values. Again, the optimal protocol shows jumps and
delta-type singularities at beginning and end. Optimizing a protocol with only
one free parameter but allowing for additional singularities at the boundaries,
we show that the resulting mean work is already very close to the optimal value.
Thus, singularities are crucial to obtain a small value for the mean work.

From a theoretical point of view, it is also interesting to consider purely
Hamiltonian or Schrödinger dynamics with initial canonical distribution, with-
out any thermostat coupled to the system during the transition. This procedure
corresponds to an experiment where the thermal bath is decoupled from the
system at time τ = 0 and recoupled to the system after the transition at time
τ = t. It is important to note that due to the lack of thermalization during
the process, the work for quasistatic (infinitely slow) driving is not given by
the free energy difference ∆F but by the adiabatic work W ad ≥ ∆F . For both
previously introduced harmonic case studies and for Hamiltonian as well as
Schrödinger dynamics, the adiabatic work can be reached in any finite tran-
sition time t. Naively, one would have expected to obtain the work for an
instantaneous jump in the limit t → 0, which is considerably larger than the
adiabatic work. For both case studies and both types of dynamics, the optimal
protocol is highly degenerate.

In order to probe whether these features persist for an anharmonic poten-
tial, we study a quartic potential with Hamiltonian dynamics. A numerical
minimization shows that work values well below the work for an instantaneous
jump can be achieved even for very fast transitions. However, it is hard to de-
cide from the numerics whether the adiabatic work can be achieved in a finite
transition time t.

For a quantum two-level system, the answer to the question whether the
adiabatic work can be reached in any given time t depends on the allowed
range of absolute values for the magnetic field. If the absolute value of the
magnetic field is restricted, a finite time tc is necessary to obtain the adiabatic
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work. For any larger time, the adiabatic work can also be reached while for
t < tc, the optimal work is larger than the adiabatic work. If any absolute
value of the magnetic field is allowed, the adiabatic work can be reached in an
arbitrarily short time.

Beyond the theoretical importance of minimal dissipation processes, opti-
mal protocols may become important for free energy calculations. In the case
studies mentioned above, free energy calculations are indeed improved if the
optimal protocol rather than a linear protocol is used. We explicitly show that
the error in the free energy estimate can be reduced by approximately 15% for a
harmonic potential with time-dependent stiffness and given model parameters
subject to underdamped Langevin dynamics. For a simple anharmonic poten-
tial, singularities as found in the optimal protocols in the harmonic case studies
also improve free energy estimates. We thus conjecture that using appropriate
singularities in the protocol will generically improve free energy calculations
via the Jarzynski relation.

When comparing different free energy methods, the computational cost to
create an equilibrated initial state is often neglected. We study the error in free
energy estimates for a given total computational cost as a function of the time
used for equilibration tr and the total transition time t. For slow transtions and
long equilibration times tr, only few trajectories can be sampled at the given
computational cost. However, for a model potential, few slow trajectories lead
to better estimates of the free energy difference than many fast trajectories. If
we had neglected the computational cost of equilibration, many fast trajectories
would have yielded a better result. This example shows that it is important
to take the computational cost of equilibration into account when comparing
different free energy methods.

Until now, we have studied transitions between equilibrium states. Most pro-
cesses in the biological cell, however, cannot be described by a nonequilibrium
transition between equilibrium states. Rather, these systems are permanently
driven out of equilibrium, e. g. by chemical potential differences. An impor-
tant model class of such dynamics are Brownian motors which transfer either
chemical or thermal energy into mechanical work leading to directed transport
against a load force. The dynamics of these motors is stochastic due to thermal
fluctuations.

Heat engines as well as thermodynamic machines can quite generally be
characterized by two important quantities: (i) their efficiency and (ii) their
power output. It is well known that the efficiency for heat engines operating
between two thermal baths with temperatures Th > Tc is bounded from above
by the Carnot efficiency ηC ≡ 1 − Tc/Th. The efficiency of molecular motors
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which transfer chemical energy into directed motion is bounded by ηmax =
1. However, these upper bounds can only be reached for reversible “quasi-
equilibrium” processes which require infintely slow driving and thus lead to a
vanishing power output. It thus has been argued that it is more meaningful to
characterize such thermodynamic machines by their performance at maximum
power output. For heat engines in the endoreversible approximation, where
dissipation is assumed to occur only due to a finite heat conductivity, the
efficiency at maximum power is given by the Curzon-Ahlborn efficiency ηCA ≡
1−

p

Tc/Th. For real macroscopic heat engines, it has indeed been found that
their efficiency is close to the Curzon-Ahlborn value. It has been claimed that
the Curzon-Ahlborn efficiency is somewhat universal beyond the endoreversible
approximation.

In order to study this apparent universality, we consider a Carnot engine on
the mesoscale which can be constructed by using a Brownian particle instead
of the working gas and a time-dependent trapping potential instead of the
confining vessel. The variance of the probability distribution for the position
of the particle then corresponds to the pressure of the gas. For quasistatic
driving where the isothermal transitions are performed infinitely slowly, it can
be shown that the Carnot efficiency can indeed be reached in the overdamped
regime (neglecting contributions from the kinetic energy). For a given variance
of the particle position at beginning and end of the isothermal transitions, the
driving scheme as well as the times used for the isothermal transitions can be
adjusted to yield a maximum power output. The efficiency at this operational
point of maximum power output can be calculated analytically. Surprisingly, it
is given by a quite universal expression which does only depend on the viscosity
(or more generally on the mobility matrices) at the temperatures Th and Tc.
This result is independent of the shape of the potential used to trap the particle.
If contributions from the kinetic energy are taken into account, the efficiency
generally decreases. The maximum attainable efficiency then is smaller than
the Carnot value. However, the universal result for the efficiency at maximum
power persists with slight modifications.

In contrast to heat engines, molecular motors in the biological cell are mostly
driven by chemical potential differences. Such motors can be modeled by a mas-
ter equation on a discrete state space. The stochastic dynamics then involves
transitions between these discrete motor states along a track with given rate
constants. We assume that the motor acts against a load force F . The rate
constants then are constrained by thermodynamic consistency relations. For
processive motors which perform many subsequent steps before they detach
from their track, the system reaches a non-equilibrium steady state (NESS)

12



with time-constant occupation probabilities for the sites. For a given load
force F , thermodynamic quantities such as the (chemical) work input, the
(mechanical) work output, and the efficiency can be calculated. For a simple
linear motor model, all relevant quantities can be expressed as a function of
only three relevant quantities: the chemical potential difference ∆µ, the load
force F , and the position of the transition state δ between two neighbouring
sites. For zero load force F = 0, the motor produces no power output and the
efficiency vanishes. For the stall force, where the directed motion ceases, the
power output also vanishes. Therefore, the load force F can be tuned to reach
a maximum power output of the motor. The efficiency of the molecular motor
in this maximum power regime shows two unexpected features: (i) Both the
power output and the efficiency increase when the transition state position is
moved closer to the initial motor position and (ii) for appropriate parameters,
the efficiency increases when the system is driven further out of equilibrium by
a higher chemical potential difference.

Recent experiments have shown that simple linear models might not be ap-
propriate to explain all features of molecular motors. It seems to be necessary
to include a second motor cycle which allows for dissipation even at the stall
force. In such a model, mechanical backsteps may also involve the consumption
of chemical energy. Thus, the chemical and the mechanical cycle are no longer
tightly coupled, i. e. the hydrolyzation of ATP does not necessarily involve a
mechanical forward step of the motor. In a motor model with two cycles, the
qualitative results for the efficiency at maximum power are confirmed. More-
over, there is experimental evidence that the transition state position in real
molecular motors is compatible with a high efficiency at maximum power.

Beyond their relevance for directed transport within the cell, molecular mo-
tors are also important for the synthesis of proteins. Most processes within
the cell involve proteins or protein complexes. Proteins are assembled from the
information stored in the genetic code during a process called gene expression.
It is crucial for the cell to ensure a high protein production rate in combina-
tion with a low error rate. In order to achieve the low error rates observed in
living cells, a mechanism called kinetic proofreading has evolved. However, it
has been found experimentally that the proofreading scheme is not fully ex-
ploited and that the error rate can be reduced in mutant organisms. It has
been speculated that a low error rate is sacrificed for a high rate of protein
production. This conjecture can be probed within a recently introduced model
for the second stage of gene expression (translation) which dominates the total
error of gene expression. We find that for a given error rate equivalent to the
experimentally observed value, the protein production rate is not at its theo-
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retical maximum either. We therefore conjecture that other evolutionary goals
or structural reasons are responsible for the observed rate constants.
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Zusammenfassung

Die Stochastische Thermodynamic beschäftigt sich mit der Fragestellung, wie
thermodynamische Größen auch für mesoskopische Systeme definiert werden
können. Ein wichtiges Ziel ist es dabei, die thermodynamischen Prozesse
in der biologischen Zelle zu beschreiben. Dabei entstehen im Vergleich zur
makroskopischen Gleichgewichts-Thermodynamik zwei wesentliche neue Her-
ausforderungen. Zum einen laufen Prozesse in der Zelle meist fern vom ther-
modynamischen Gleichgewicht ab. Zum anderen sind die typischen Binde-
Energien für Biomoleküle vergleichbar mit der thermischen Energie kBT bei
Raumtemperatur. Deshalb müssen thermische Fluktuationen bei der Beschrei-
bung dieser Systeme berücksichtigt werden.

Im letzten Jahrzehnt gab es entscheidende Fortschritte im Bereich der Stochas-
tischen Thermodynamik. Für verschiedene Formen der stochastischen Dy-
namik gelang es, stochastische Analoga für konventionelle thermodynamische
Größen wie Arbeit, Wärme oder Entropie zu definieren. Auf dieser mesoskopis-
chen Skala gilt der zweite Hauptsatz der Thermodynamik nur noch für die Mit-
telwerte der stochastischen thermodynamischen Größen. Darüber hinaus gelten
aber in großer Allgemeinheit neue, faszinierende Arbeits- und Fluktuations-
theoreme im Nichtgleichgewicht wie zum Beispiel die Jarzynski-Relation, die
eine Verknüpfung zwischen der freien Energiedifferenz zwischen zwei Gleichge-
wichtszuständen und einem nichtlinearen Mittelwert der Arbeit beim Übergang
zwischen diesen beiden Zuständen herstellt. Diese Relation ist nicht nur aus
theoretischer Sicht interessant, sondern ermöglicht auch die Berechnung von
freien Energiedifferenzen aus Nichtgleichgewichts-Trajektorien. Die direkte An-
wendung der Jarzynski-Relation führt jedoch bei jeder endlichen Anzahl von
Nichtgleichgewichts-Trajektorien zu einem systematischen Fehler, der durch
den nichtlinearen Mittelwert entsteht. Vor allem für schnelle Übergänge, bei
denen die typische irreversible Arbeit Wirr ≡ W − ∆F wesentlich größer als
die thermische Energie kBT ist, benötigt man sehr viele Trajektorien, um eine
gute Abschätzung der freien Energie zu erhalten.

Das Hauptziel der vorliegenden Arbeit ist die Analyse von Optimierungs-
Problemen im Umfeld der Stochastischen Thermodynamik. Ein natürliches
Optimierungsprinzip für Nichtgleichgewichtsprozesse ist die Forderung, dass
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Zusammenfassung

ein definiertes Ziel mit einem Minimum an benötigter Dissipation erreicht
wird. Für einen Übergang zwischen zwei Gleichgewichtszuständen is dies eng
verknüpft mit der Frage nach einer Prozessführung, die zu einer minimalen
mittleren Arbeit führt.

Die Optimierung eines solchen Prozesses ist aber auch aus praktischen Gesicht-
spunkten interessant. Um die Berechnung von Differenzen in der freien En-
ergie ∆F mit Hilfe der Jarzynski-Relation zu verbessern, wurden verschiedene
Strategien vorgeschlagen. Zum Beispiel kann die physikalische Dynamik in
Computer-Simulationen so abgeändert werden, dass mehr Trajektorien mit
niedriger Arbeit W auftreten. Diese Trajektorien liefern einen großen Beitrag
zum Mittelwert in der Jarzynski-Relation und sind deshalb wichtig für eine ko-
rrekte Abschätzung der freien Energie. Alternativ oder auch in Kombination
zu diesem Vorgehen kann auch ausgenutzt werden, dass die Jarzynski-Relation
für jedes beliebige Protokoll gilt, mit dem das betrachtete System von einem in
den anderen Gleichgewichtszustand getrieben wird. Da erwartet werden kann,
dass sich der Schätzwert für die freie Energiedifferenz mit sinkender Dissipa-
tion verbessert, suchen wir für eine feste Übergangszeit t nach dem Protokoll,
das zu einer minimalen mittleren Arbeit W für den Übergang zwischen den
betrachteten Gleichgewichtszuständen führt. Diese Optimierung ist äquivalent
zur Minimierung der mittleren irreversible Arbeit Wirr ≡ W −∆F , da die freie
Energie durch die (gegebenen) Gleichgewichtszustände bestimmt ist und nicht
vom Protokoll abhängt.

Um die Dynamik von Biomolekülen in der Zelle korrekt wiedergeben zu
können (z. B. in Zieh-Experimenten an Proteinen oder in Simulationen zur
Proteinfaltung), muss die verwendete Dynamik Dissipation und Fluktuationen
berücksichtigen. Diese beiden Effekte werden durch die Zellflüssigkeit, die als
Wärmebad für das betrachtete System wirkt, hervorgerufen. Alternativ können
die Wassermoleküle auch explizit in die Simulation eingebunden werden. Wenn
nur einige wenige Freiheitsgrade von Interesse sind, kann die Dynamik des bet-
rachteten Systems meist in guter Näherung durch eine Langevin-Gleichung
mit weißem, Gauß’schem Rauschen beschrieben werden. Wenn die Impulsre-
laxation zusätzlich schnell im Vergleich zu anderen Zeitskalen im System ist,
kann die überdämpfte Langevin-Gleichung verwendet werden. Für eine solche
Dynamik berechnen wir optimale Protokolle für zwei verschiedene Fallstudien
mit unterschiedlichen zeitabhängigen Potentialen.

Zunächst betrachten wir ein harmonisches Potential mit zeitabhängiger Ver-
schiebung des Potentialminimums von einer Anfangsposition λi = 0 zu einer
Endposition λf in einer gegebenen endlichen Zeit t. Dies entspricht z. B. einem
kolloidalen Teilchen in einer optischen Pinzette, deren Laser-Fokus zeitabhängig
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von der Anfangsposition bei λi zur Endposition bei λf verschoben wird. Dabei
sei die Position des Laser-Fokus zur Zeit τ durch das Protokoll λ(τ ) gegeben.
In dieser einfachen Fallstudie ist die freie Energiedifferenz ∆F = 0. Die mit-
tlere Arbeit, die durch die zeitliche Änderung des Potentials auf das kolloidale
Teilchen ausgeübt wird, kann dann für jedes gegebene Protokoll berechnet wer-
den. Die mittlere Arbeit ist allerdings ein zeitlich nicht-lokales Funktional des
Protokolls, welches jedoch mit Hilfe einer Substitution in ein zeitlich lokales
Funktional der mittleren Teilchenposition überführt werden kann. Am Anfang
des Prozesses befindet sich das betrachtete System im Gleichgewicht und die
mittlere Position des Teilchens ist deshalb bei 0. Die mittlere Teilchenposition
am Ende des Prozesses ist jedoch nicht vorgegeben. Die Minimierung erfolgt
deshalb in zwei Schritten: Zunächst wird für gegebene Randwerte der mittleren
Teilchenposition mit Hilfe einer Euler-Lagrange-Gleichung die optimale Zeiten-
twicklung bestimmt. In einem zweiten Schritt wird dann der optimale Endwert
der mittleren Teilchenposition bestimmt. Die Randbedingungen an das Pro-
tokoll λ(0) = 0 und λ(t) = λf können dann bei gegebener Zeitentwicklung
der mittleren Teilchenposition immer durch Sprünge des Protokolls zu Beginn
und Ende des Prozesses erreicht werden. Die Minimierung der mittleren Arbeit
führt deshalb auf ein optimales Protokoll λ∗(τ ), welches Sprünge zu Beginn und
Ende des Übergangs aufweist. Diese Sprünge entsprechen einer instantanen
Änderung der Position des Laser-Fokus. Diese Unstetigkeiten können erklärt
werden durch die Forderung, dass das kolloidale Teilchen über die gesamte
Dauer des Prozesses eine möglichst konstante Geschwindigkeit aufweisen sollte,
um die Dissipation niedrig zu halten. Da die mittlere Geschwindigkeit im
Gleichgewicht Null ist, muss diese somit zu Beginn des Prozesses auf diesen
konstanten Wert springen. Eine Unstetigkeit in der Geschwindigkeit kann
nur durch einen Sprung im Protokoll erreicht werden. In diesem einfachen
Beispiel wären Sprünge im optimalen Protokoll auch schon in einer gedämpften
Dynamik ohne Fluktuationen aufgetreten. Ein ähnliches Verhalten wurde
tatsächlich bei der Optimierung von makroskopischen Wärme-Kraft-Maschinen
gefunden.

Es ist deshalb interessant, eine zweite Fallstudie zu betrachten, in der die freie
Energie nicht verschwindet und sich die thermischen Fluktuationen auch auf die
mittlere Arbeit auswirken. Da selbst die Lösung der Bewegungsgleichungen für
ein anharmonisches Potential nur numerisch möglich ist, betrachten wir ein har-
monisches Potential mit zeitabhängiger Federkonstante. In diesem System wird
die freie Energiedifferenz allein durch entropische Effekte hervorgerufen. Fluk-
tuationen spielen deshalb eine wichtige Rolle für die Thermodynamik dieses
Systems. Die mittlere Arbeit ist auch hier ein zeitlich nicht-lokales Funk-
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tional des Protokolls. Allerdings kann die mittlere Arbeit als lokales Funktional
der Varianz der Teilchenposition geschrieben werden. Die Optimierung dieses
Funktionals kann dann analog zum harmonischen Potential mit zeitabhängiger
Position des Minimums durchgeführt werden. Es ergeben sich nicht-lineare op-
timale Protokolle, die wieder Sprünge am Anfang und am Ende des Prozesses
aufweisen. Es kann daher vermutet werden, dass solche Sprünge sehr allgemein
in optimalen Protokollen für eine überdämpfte Langevin-Dynamik auftreten.

Man muss sich bewusst sein, dass die überdämpfte Langevin-Gleichung eine
Näherung für den Fall ist, dass die Impulsrelaxation schnell im Vergleich zu
anderen charakteristischen Zeiten im System ist. Die beobachteten Sprünge
im optimalen Protokoll könnten deshalb ein Artefakt des überdämpften Gren-
zfalls sein. Trägheitseffekte spielen auch in Molekulardynamik-Simulationen
eine wichtige Rolle. Wir betrachten die beiden oben eingeführten Fallstudien
deshalb auch für eine unterdämpfte Langevin-Dynamik, welche Trägheitseffekte
berücksichtigt.

Für die erste Fallstudie eines harmonischen Potential mit zeitabhängiger Po-
sition des Minimums kann die mittlere Arbeit wieder als zeitliche lokales Funk-
tional der mittleren Teilchenposition geschrieben werden. Die Optimierung
kann dann analog zum überdämpften Fall ausgeführt werden. Für die mini-
male Arbeit ergibt sich der gleiche Ausdruck wie im überdämpften Fall. Es zeigt
sich jedoch, dass nun nicht nur Sprünge sondern auch Delta-Singularitäten am
Anfang und am Ende des optimalen Protokolls auftreten. Im Nachhinein kann
man dieses Verhalten verstehen, wenn man wieder fordert, dass die mittlere
Teilchengeschwindigkeit während des Prozesses konstant ist. Im unterdämpften
Fall kann eine Unstetigkeit in der Geschwindigkeit nur durch einen Delta-Peak
in der Kraft auf das Teilchen erreicht werden. Dieser Delta-Peak in der Kraft
überträgt sich direkt auf einen Delta-Peak im Protokoll. Die minimale mittlere
Arbeit ist für große Massen und geeignete Übergangszeiten um ein Vielfaches
kleiner als die entsprechende mittlere Arbeit für ein lineares Protokoll.

Wir betrachten die zweite Fallstudie eines harmonischen Potentials mit zeitab-
hängiger Federkonstante. Die mittlere Arbeit kann nun nicht mehr allein als
ein Funktional der Varianz der Teilchenposition geschrieben werden, sondern ist
nun ein Funktional der Kovarianzmatrix für Ort und Impuls des Teilchens. Die
Einträge dieser Matrix sind durch Nebenbedingungen verknüpft, die durch die
Dynamik des Systems gegeben sind. Eine Variation unter Nebenbedingungen
führt auf gekoppelte Euler-Lagrange-Gleichungen, die nicht analytisch gelöst
werden können. Damit kann das optimale Protokoll nur numerisch berech-
net werden, wobei zusätzlich eine numerische Minimumsuche für Randwerte
nötig ist. Analog zur ersten Fallstudie ergeben sich wieder Sprünge und Delta-
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Peaks im optimalen Protokoll. Es zeigt sich, dass schon die Optimierung eines
Protokolls mit nur einem freien Parameter auf eine mittlere Arbeit führt, die
sehr nahe beim optimalen Wert liegt, sofern man Singularitäten am Anfang
und Ende des Protokolls zulässt. Dies verdeutlicht, dass solche Singularitäten
entscheidend sind, um eine niedrige mittlere Arbeit zu erzielen.

Aus einer theoretischen Perspektive ist es auch interessant, optimale Pro-
tokolle für Hamilton’sche Dynamik und für eine Schrödingerdynamik mit jew-
eils kanonischen Anfangsbedingungen zu berechnen. Während des Prozesses
ist dann kein Wärmebad an das System gekoppelt. In einem entsprechen-
den Experiment müsste also das Wärmebad am Anfang des Übergangs zur
Zeit τ = 0 vom System abgekoppelt und am Ende des Übergangs zur Zeit
τ = t wieder angekoppelt werden. Für eine solche Dynamik ist die Arbeit
bei unendlich langsamer (quasistatischer) Prozessführung im Unterschied zur
Langevin-Dynamik nicht durch die freie Energiedifferenz ∆F sondern durch
die adiabatische Arbeit W ad ≥ ∆F gegeben. Für die beiden harmonischen
Fallstudien ergeben sich sowohl für eine Hamilton’sche Dynamik als auch für
Schrödingerdynamik hochgradig entartete optimale Protokolle. Dabei ist die
optimale Arbeit für jede endliche Übergangszeit durch die adiabatische Arbeit
gegeben. Dies ist überraschend, da man für kleine Übergangszeiten t → 0
eigentlich die mittlere Arbeit für einen istantanen Sprung des Protokolls er-
wartet, welche wesentlich größer als die adiabatische Arbeit ist.

Um zu überprfüfen, ob die adiabatische Arbeit generell in beliebig kurzer Zeit
erreicht werden kann, untersuchen wir ein anharmonisches quartisches Potential
für Hamilton’sche Dynamik. Eine numerische Minimierung zeigt, dass selbst
für sehr kurze Übergangszeiten schon Werte der mittleren Arbeit erzielt wer-
den können, die deutlich unterhalb der mittleren Arbeit für einen instantanen
Sprung liegen. Die numerische Minimierung lässt allerdings keinen eindeutigen
Schluß zu, ob die adiabatische Arbeit schon in einer endlichen Übergangseit t
erreicht werden kann.

Für ein quantenmechanisches Zwei-Niveau-System hängt die Beantwortung
dieser Frage davon ab, ob beliebig große Absolutwerte für das magnetische Feld
erlaubt sind. Falls der Betrag des magnetischen Feldes beschränkt ist, ergibt
sich eine kritische Zeit tc, ab der die adiabatische Arbeit erreichbar ist. Für
kleinere Zeiten t < tc liegt die optimale Arbeit oberhalb der adiabatischen
Arbeit. Für ein unbeschränkt beliebig wählbares magnetisches Feld kann die
adiabatische Arbeit in jeder beliebigen Übergangszeit t erreicht werden.

Abgesehen von der theoretischen Relevanz von Prozessen mit minimaler
Dissipation könnten optimale Protokolle auch für die Berechnung von freien
Energiedifferenzen wichtig werden. In den untersuchten Fallstudien kann der
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Fehler in der Abschätzung der freien Energiedifferenz tatsächlich durch die
Verwendung des optimalen Protokolls im Vergleich zu einem linearen Pro-
tokoll verbessert werden. Dies untersuchen wir exemplarisch für ein harmonis-
ches Potential mit zeitabhängiger Federkonstante für unterdämpfte Langevin-
Dynamik. Dort ergibt sich für die untersuchten Modellparameter eine Ver-
ringerung des Fehlers um ca. 15%. Für eine unterdämpfte Langevin-Dynamik
in einem einfachen anharmonisches Potential verbessern Singularitäten zu Be-
ginn und Ende des Protokolls ebenfalls die Abschätzung der freien Energie-
differenz. Es lässt sich daher vermuten, dass geeignete Singularitäten sehr all-
gemein den Fehler bei der Berechnung von freien Energiedifferenzen mit Hilfe
der Jarzynski-Relation verringern können.

Beim Vergleich verschiedener Methoden zur Berechnung von freien Energie-
differenzen wird oft der Zeitbedarf für die Erzeugung des benötigten Anfangs-
Gleichgewichtszustandes vernachlässigt. Wir untersuchen für ein einfaches an-
harmonisches Modellpotential den Fehler in der Abschätzung der freien Energie-
differenz bei gegebener Gesamtrechenzeit für verschiedene Übergangszeiten t
und verschiedene Zeiten tr, die für die Anfangsrelaxation ins Gleichgewicht
verwendet werden. Für langsame Übergänge und lange Relaxationszeiten tr

können dann nur wenige Trajektorien berechnet werden. Es zeigt sich den-
noch, dass die Verwendung von wenigen langsamen Trajektorien bessere Ergeb-
nisse als die Verwendung von vielen schnellen Trajektorien liefert. Ohne die
Berücksichtigung der Relaxationszeit tr wäre das Urteil genau andersherum
ausgefallen. Es ist deshalb wichtig, bei einem Vergleich verschiedener Ver-
fahren zur Berechnung der freien Energiedifferenz auch die “Kosten” für die
Relaxation ins Gleichgewicht zu berücksichtigen.

Bis jetzt haben wir Übergänge zwischen Gleichgewichtszuständen untersucht.
Die meisten Prozesse in der biologischen Zelle können jedoch nicht durch ein-
fache Nichtgleichgewichts-Übergänge zwischen Gleichgewichtszuständen beschrie-
ben werden. Viele Systeme werden z. B. durch chemische Potentialdifferen-
zen permanent aus dem Gleichgewicht getrieben. Eine wichtige Klasse solcher
Prozesse sind Brown’sche Motoren, die entweder durch chemische oder ther-
mische Energie getrieben werden und diese in mechanisch Arbeit umwandeln.

Sowohl Wärme-Kraft-Maschinen als auch durch chemische Energie getrie-
bene Motoren können allgemein durch ihren Wirkungsgrad und ihre Leistung
charakterisiert werden. Für eine Wärme-Kraft-Maschine, die zwischen zwei
Wärmebädern mit Temperaturen Th > Tc betrieben wird, ist der maximal
erreichbare Wirkungsgrad der Carnot-Wirkungsgrad ηC ≡ 1 − Tc/Th. Für
molekulare Motoren, die durch chemische Energie getrieben werden, ist der
maximal Wirkungsgrad ηmax = 1. In beiden Fällen können diese oberen
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Schranken allerdings nur für unendlich langsame, reversible Prozessführung er-
reicht werden. Dann geht allerdings auch die Leistung gegen Null. Deshalb ist
es sinnvoller, statt des Wirkungsgrades die Leistung einer solchen Maschine zu
maximieren. Der Wirkungsgrad bei dieser maximalen Leistung wurde als Er-
stes von Curzon und Ahlborn für eine Wärme-Kraft-Maschine in der sogenan-
nten endoreversiblen Näherung berechnet. Dabei wird eine Carnot-Maschine
angenommen, bei der Dissipation nur durch eine endliche Wärmeleitfähigkeit
auftritt. Der Wirkungsgrad bei maximaler Leistung ist dann durch den Curzon-
Ahlborn Wirkungsgrad ηCA ≡ 1 −

p

Tc/Th gegeben. Ein Vergleich mit ver-
schiedenen existierenden Wärme-Kraft-Maschinen zeigt, dass deren Wirkungs-
grad gut mit dem Curzon-Ahlborn-Wirkungsgrad übereinstimmt. Es wurde
vermutet, dass der Curzon-Ahlborn Ausdruck für den Wirkungsgrad bei maxi-
maler Leistung über die endoreversible Näherung hinaus eine relativ universelle
Gültigkeit besitzt.

Um diese vermeintliche Universalität näher zu untersuchen, wollen wir das
Analogon zu einer Carnot-Maschine auf einer mesoskopischen Skala betrachten.
Dabei kann ein Brown’sches Teilchen als Arbeitsgas und ein zeitabhängiges Po-
tential anstatt eines Zylinders verwendet werden. Die Breite des Wahrschein-
lichkeitsdichte für die Position des Brown’schen Teilchens entspricht dann dem
Druck des Gases. Für sehr langsam (reversibel) getriebene Isothermen kann
der Carnot-Wirkungsgrad (zumindest im überdämpften Regime) tatsächlich
erreicht werden. Dabei werden allerdings Beiträge der kinetischen Energie
des Brown’schen Teilchens zu Wärme und Arbeit nicht berücksichtigt. Geben
wir nun die Randwerte für die Varianz der Wahrscheinlichkeitsdichte für das
Brown’sche Teilchen vor, können sowohl das Protokoll für die isothermen Über-
gänge als auch die Zykluszeit variiert werden, um eine maximale Leistung der
Maschine zu erreichen. Der Wirkungsgrad an diesem Arbeitspunkt mit maxi-
maler Leistung kann dann analytisch berechnet werden. Überraschenderweise
ergibt sich ein sehr universeller Ausdruck, der nur von den Viskositäten (oder
allgemein in mehreren Dimensionen von den Mobilitätsmatrizen) der umgeben-
den Flüssigkeit bei den beiden Temperaturen Th und Tc abhängt. Insbesondere
ist dieses Ergebnis unabhängig von der Form des verwendeten zeitabhängigen
Potentials. Berücksichtigt man die Beiträge der kinetische Energie, so sinkt der
Wirkungsgrad allgemein. Der maximal mögliche Wirkungsgrad ist dann kleiner
als der Carnot-Wirkungsgrad. Das universelle Ergebnis für den Wirkungsgrad
bei maximaler Leistung bleibt jedoch nach einer kleinen Anpassung erhalten.

Molekulare Motoren in der Zelle werden meist nicht durch Temperaturdif-
ferenzen sondern durch chemische Potentialdifferenzen angetrieben. Solche
Motoren können z. B. durch eine stochastische Master-Gleichung auf einem
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diskreten Zustandsraum modelliert werden. Dabei finden Übergänge zwischen
den diskreten Zuständen des Systems mit gegebenen Raten (Wahrscheinlichkeit
pro Zeitintervall) statt. Wir nehmen an, dass der Motor eine gerichtete Bewe-
gung gegen eine Last F ausführt. Die Übergangsraten zwischen den Zuständen
müssen dann thermodynamische Konsistenzbedingungen erfüllen. Wir betra-
chten sogenannte prozessive molekulare Motoren, die sehr viele Motorschritte
ausführen, bevor sie sich von ihrer Schiene lösen. Für gegebene Last F können
in solch einem Modell thermodynamische Größen wie die den Motor antreibende
chemische Arbeit, die vom Motor geleistete mechanische Arbeit und der Wir-
kungsgrad berechnet werden. In einem sehr einfachen linearen Motor-Modell
können alle Größen als Funktion von drei relevanten Parametern ausgedrückt
werden: die chemische Potentialdifferenz ∆µ, die Last F und die Position des
Übergangszustands δ zwischen zwei benachbarten Motorzuständen. Die Leis-
tung als Funktion der Last F zeigt dann folgendes Verhalten: Bei verschwinden-
der Last F verschwindet auch die Leistung des Motors. Ebenso verschwindet
die Leistung bei der Halt-Last (“stall force”), wo die Last F gerade so groß ist,
dass der Motor keine gerichtete Bewegung mehr ausführt. Deswegen muss es
zwischen diesen beiden Werten eine optimale Last F ∗ geben, bei der die Leis-
tung des Motors maximal wird. Der Wirkungsgrad des molekularen Motors bei
dieser optimalen Last als Funktion der anderen beiden Parameter zeigt dann
folgendes überraschendes Verhalten: (i) Der Wirkungsgrad und die Leistung
nehmen gleichzeitig zu, wenn die Position des Übergangszustands δ näher an
den ursprünglichen Zustand rückt. (ii) Bei geeigneter Parameterwahl wächst
der Wirkungsgrad, wenn das System durch eine wachsende chemische Poten-
tialdifferenz weiter aus dem Gleichgewicht getrieben wird.

Neuere Experimente zeigen, dass einfache lineare Modell möglicherweise nicht
alle Eigenschaften von molekularen Motoren korrekt beschreiben können. Ins-
besondere gibt es wohl auch Dissipation, wenn der Motor genau bei der Halt-
Kraft arbeitet. Um dies zu gewährleisten, muss ein Motor-Modell mindestens
einen zweiten Motor-Zyklus enthalten. In solch einem Modell können mech-
anische Rückwärtsschritte auch mit einem Verbrauch von chemischer Energie
einhergehen. Der chemischer und der mechanische Motor-Zyklus sind dann
nicht mehr eng gekoppelt, d. h. die Hydrolyse von ATP führt nicht notwendi-
gerweise immer zu einem Vorwärtsschritt. In einem Motor-Modell mit zwei
Zyklen können die gewonnenen Resultate für den Wirkungsgrad bei maximaler
Leistung bestätigt werden. Darüberhinaus gibt es Anhaltspunkte, dass der
Übergangszustand in biologischen Motoren tatsächlich in der Nähe des An-
fangszustands liegt und deshalb zu einem hohen Wirkungsgrad bei maximaler
Leistung führt.
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Molekularen Motoren sorgen nicht nur für gerichteten Transport in der Zelle
sondern sind auch an der Synthese von Proteinen beteiligt. Für viele Prozesse,
die in der Zelle ablaufen, sind Proteine oder Komplexe aus Proteinen essentiell.
Bei der Proteinsynthese wird die genetische Information, die in der DNA gespe-
ichert ist, in einem zweistufigen Prozess in entsprechende Proteine übersetzt.
Für die Zelle ist es entscheidend, Proteine mit hoher Rate und mit niedriger
Fehlerrate herzustellen. Um die in lebenden Zellen beobachtete niedrige Fehler-
rate zu gewährleisten, hat die Zelle einen speziellen Fehlerkorrektur-Mechanis-
mus entwickelt. Es zeigt sich jedoch experimentell, dass dieser Mechanismus
nicht voll ausgechöpft wird und Mutationen zu einer noch niedrigeren Fehler-
rate führen können. Es wurde deshalb vermutet, dass eine erhöhte Fehlerrate
in Kauf genommen wird, um eine hohe Protein-Produktionsrate zu erreichen.
Diese Vermutung kann in einem kürzlich eingeführten Modell der zweiten Phase
der Protein-Produktion (”translation“) getestet werden. Diese zweite Phase
dominiert den Gesamt-Fehler in der Protein-Herstellung. Wir untersuchen de-
shalb die Produktionsrate für Proteine bei einer gegebenen Fehlerrate. Dabei
zeigt sich, dass die Protein-Produktionsrate selbst bei einer festgehaltenen
(durch den experimentellen Wert gegebenenen) Fehlerrate nicht maximal ist.
Deshalb kann vermutet werden, dass andere evolutionäre Ziele oder strukturelle
Gründe für die beobachten Ratenkonstanten verantwortlich sind.
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1 Introduction

Recently, there has been considerable progress in the thermodynamic descrip-
tion of small (bio-) systems [1, 2]. Typically, processes within the biological
cell occur at a constant temperature T . Still, these processes occur neither in
equilibrium nor in the linear response regime but are driven far out of equilib-
rium by chemical potential differences between reacting species within the cell.
A prominent example is the hydrolyzation of ATP into ADP + P which is the
driving force for a variety of different molecular motors.

In contrast to the macroscopic heat engines considered in conventional ther-
modynamics, processes in the cell typically involve energy scales of the order of
the thermal energy kBT and thermal fluctuations thus play an important role in
most biologically relevant systems. Therefore, the dynamics in these systems
cannot be described on a deterministic (macroscopic) level. In this regime,
models for thermodynamic machines must incorporate fluctuation effects and
thus allow also for backward steps in a directed motion [3, 4].

A simple model system with the mentioned features is a Brownian parti-
cle immersed in a fluid which can be described by a (stochastic) Langevin
equation. Typically, experiments are performed with colloidal particles of size
d ≃ 1µm. Such a system can be driven out of equilibrium by an optical trap
which acts as a potential on the particle. Moving the focus of such a trap
time-dependently leads to a nonequilibrium situation. The seminal work of
Sekimoto [5, 6] opened the door for a thermodynamic description of Langevin
systems driven far out of equilibrium. Thermodynamic quantities such as work,
heat, internal energy, and entropy can even be defined on a single stochastic
trajectory [6, 7, 8], yielding the respective ensemble quantities after averaging.
Specifically, the work applied to the Brownian particle by a time-dependent
external potential during a transition time t can be defined. For macroscopic
systems, the second law of thermodynamics constrains the deterministic work
to obey W ≥ ∆F , where ∆F is the equilibrium free energy difference between
initial and final state. For mesoscopic systems, the work is a stochastic quan-
tity with a probability distribution p(W) which may also have a non-zero value
for W < ∆F . Thus, the second law should be formulated for the average of the
work W ≡ 〈W〉 ≥ ∆F rather than for every possible trajectory of the system.
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A decade ago, Jarzynski proposed the remarkable relation [9]

e−∆F/(kBT ) =
D

e−W/(kBT )
E

(1.1)

which constrains the possible distributions of the work. It is important to note
that the Jarzynski relation (1.1) quite generally holds for nonequilibrium tran-
sitions between equilibrium states. It has been proven for a variety of different
dynamics [10, 11, 12] and it holds for any time-dependent driving described
by an external control parameter λ(τ ). The Jarzynski relation can be used to
infer free energy differences from a set of nonequilibrium trajectories. Recently,
several schemes have been proposed to improve such free energy estimates.

For a Gaussian work distribution

p(W) =
1

2πσ2
e

(W−〈W〉)2

2σ2 , (1.2)

see Fig. 1.1, the Jarznyski relation (1.1) directly yields the relation 〈W〉 =
∆F + σ2/2 between average work 〈W〉 and variance σ2 which can be inter-
preted as a fluctuation-dissipation relation. However, a Gaussian distribution
is only obtained for simple harmonic systems or for quasistatic driving. This
is in agreement with the common understanding that fluctuation-dissipation
theorems are only valid in the linear response regime. It has been confirmed
experimentally [13] that the Jarzynski relation is valid beyond this regime.

Beyond nonequilibrium transitions between equilibrium states, it is impor-
tant to understand thermodynamic machines on the mesoscale. In the biolog-
ical cell, such machines can typically be described by non-equilibrium station-
ary states (NESS) where probability distributions are stationary but there is
constant dissipation due to fluxes through the system. In these systems, the
fluctuations of the entropy production are constrained by fluctuation theorems
[14, 15] which are closely related to the Jarzynski relation. These relations
have been extended to various related theorems [7, 8, 16, 17, 18, 19, 20] for
different thermodynamic quantities on a single trajectory. Beyond the over-
damped Langevin dynamics suitable to describe a Brownian particle in a poten-
tial, model studies have been performed for underdamped Langevin dynamics
[21, 22], where inertial effects are taken into account. From a theoretical point
of view, it is also interesting to consider Hamiltonian [9, 23, 24] or Schrödinger
[12, 25, 26] dynamics with canonical initial conditions.

An important class of models for thermodynamic machines on the mesoscale
are Brownian motors [27]. Such motors are either driven by chemical poten-
tial differences or a varying temperature (either time-dependent or position-
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Figure 1.1 Typical (Gaussian) work distribution p(W) which satisfies the
Jarzynski relation. While there is a finite probability that the work is smaller
than the free energy difference, it is larger than the free energy difference on
average.

Figure 1.2 Kinesin motor on microtubule track. This motor is driven by ATP
hydrolysis and moves processively in descrete 8 nm steps. For sufficiently small
loads, the chemical energy input leads to an average movement in forward
direction (which is defined by the polarity of the microtubule track). However,
there are also backward steps due to thermal fluctuations. Kinesin is essential
for intracellular transport.
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dependent). While the first class is often used as a model for molecular biomo-
tors such as kinesin, see Fig. 1.2, the second class is of great theoretical impor-
tance since it can directly be linked to results for macroscopic heat engines. The
stochastic dynamics of such motors is typically modelled either on a continuous
state space by Langevin equations or on a discrete state space by master equa-
tions. Since biological motors are typically driven far out of equilibrium, linear
response thermodynamics is not appropriate to describe these systems. In the
last two decades, a variety of aspects of such Brownian motors has been stud-
ied, including dynamics [4, 27], stochastic energetics [5, 6, 28, 29], efficiencies
[30, 31, 32], and also fluctuation theorems [33, 34].

The main objective of this thesis is the analysis of optimization problems
for nonequilibrium processes on the mesoscale. In the context of equilibrium
thermodynamics, optimization has always played an important role. For ther-
modynamic processes, it is a practical purpose rather than a variational theory
to choose the parameters to yield an optimal performance. A macroscopic
steam engine, e. g., should operate at a maximal possible efficiency and a max-
imal possible power output. This example already illustrates that there can be
competing goals.

Quite generally, a natural optimization principle for nonequilibrium processes
is the requirement that a defined result should be achieved with the smallest
possible amount of dissipation. For a transition between two given equilibrium
states in a given finite time t, this is directly linked to a process schedule which
leads to a minimal (mean) work. For Brownian motors, it is also natural to
ask for a maximal current within a given range of parameter values. It is quite
obvious that these goals cannot be achieved concomittantly.

Processes occuring in the biological cell are often assumed to be intrinsically
optimized by the evolutionary pressure for a high “fitness”. However, it is
unknown for most processes how the different competing goals are weighted.
It is therefore interesting to study which optimization principles are able to
explain the observed dynamics.

Recently, various optimization aspects of mesoscopic nonequilibrium pro-
cesses have been discussed. For different discrete models of mesoscopic heat
engines, where the potential landscape is characterized by only a few param-
eters, an optimization for a maximum current or a maximum power output
has been performed [35, 36, 37]. Paradoxical Parrondo games [38] which can
be interpreted as discrete analogues of Brownian motors [39], have also been
optimized [40]. For continuous motor models, where optimization requires vari-
ational calculus, only few results exist. The optimization of driving schemes
has been studied for time-dependently driven ratchet motors [41, 42]. Potential
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landscapes have been optimized for the transport across membrane channels
[43] and for temperature ratchets [44]. Maximizing the current by using a
feedback control strategy has been proposed recently [45, 46].

The present thesis is structured as follows: In the second chapter, we give
an overview of the concept of stochastic thermodynamics, introducing relevant
quantities for the following chapters.

In the third chapter, we study optimal protocols yielding a minimal mean
work for the time-dependent transition from an initial equilibrium state to a
final equilibrium state. We discuss different types of dynamics: (i) overdamped
Langevin dynamics, (ii) underdamped Langevin dynamics, (iii) Hamiltonian
dynamics with canonical initial conditions and (iv) Schrödinger dynamics with
canonical initial conditions.

In the fourth chapter, we discuss the optimization of two different types of
Brownian motor models with respect to a maximum power output. First, we
consider a cyclic Brownian heat engine between two heat baths at different
temperatures which can be regared as the mesoscopic analogue of a Carnot
engine. We show that the efficiency at maximum power obeys a universal law.
Second, we calculate the efficiency at maximum power for two generic models
of biological motors.

In the fifth chapter, we optimize a recently introduced model for kinetic
proofreading in the translation stage during gene expression. Here, we study the
competing goals of a preferably high protein production rate and a preferably
low error rate. We show that the experimentally observed rate constants cannot
be explained by the optimization with respect to these evolutionary goals.

Last, we give perspectives for future research and discuss open questions.
Technical details of the optimization approach for underdamped Langevin dy-
namics in the case study II are discussed in Appendix A.
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2 Stochastic Thermodynamics

Most processes occuring within the biological cell have two common properties:
(i) fluctuations are important since typical binding energies are on the order of
the thermal energy kBT , (ii) they are driven far out of equilibrium by chemical
potential differences whereas the temperature T remains constant. For such
situations, new thermodynamic approaches have been developped which will be
outlined in the following for two paradigmatic nonequilibrium situations: the
motion of a colloidal particle in an externally given, time-dependent potential
V (x, λ(τ )) and the motion of a colloidal particle in a nonequilibrium steady
state created by a time-constant potential V (x) and a constant force f acting
on the particle.

Such a time-dependent external potential can be created, e.g., by opti-
cal traps [47] and/or external boundaries. The potential is changed time-
dependently by an external control parameter λ(τ ), e.g. the position of the
focus of the laser trap. For a sufficiently fast change of the control parameter,
the system is driven far out of equilibrium and neither equilibrium thermody-
namics nor linear irreversible thermodynamics are apllicable to describe ther-
modynamic properties of the system. Specifically, we consider a transition with
total transition time t, 0 ≤ τ ≤ t, with initial value of the control parameter
λ(0) = λi and final value of the control parameter λ(t) = λf . We assume that
the system initially is in thermal equilibrium with Boltzmann distribution

p(x, τ = 0) =
1

Z
exp[−βV (x, λi)] (2.1)

where Z is the canonical partition function and β ≡ 1/T . The motion of the
colloidal particle is stochastic due to the interaction with the surrounding fluid.
It can be described to good accuracy by the Langevin equation

ẋ = −µ
∂V (x, λ)

∂x
+ ζ (2.2)

where µ is the mobility of the particle and the dot will denote time derivatives
througout the thesis. The thermal fluctuations are modelled as Gaussian white
noise

˙

ζ(τ )ζ(τ ′)
¸

= 2µTδ(τ − τ ′). (2.3)
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Stochastic Thermodynamics

Here, we have set Boltzmann’s constant kB = 1 by choosing natural units
for energies. Unless stated otherwise, we will use this convention throughout
this thesis. The time evolution of the probability density function p(x, τ ) to
observe the particle at position x at time τ is then governed by the Fokker-
Planck equation

∂τp(x, τ ) = ∂x

»

µ
∂V

∂x
+ µT∂x

–

p(x, τ ). (2.4)

The first law of thermodynamics can consistently be defined [6] by intruduc-
ing the work which is applied to the particle by the change of the external
potential

W[x(τ )] ≡
Z t

0

dτ
∂V

∂λ
λ̇, (2.5)

the difference in internal energy of the particle

∆E [x(τ )] ≡ V (λf , x(t)) − V (λi, x(0)) =

Z t

0

dτ

»

∂V

∂λ
λ̇ +

∂V

∂x
ẋ

–

(2.6)

and the heat

Q[x(τ )] ≡ W[x(τ )] − ∆E [x(τ )] = −
Z t

0

dτ
∂V

∂x
ẋ =

Z t

0

dτF ẋ (2.7)

which is transferred via Stokes friction with a force F ≡ −∂xV to the heat bath
of the surrounding fluid.

These quantities are stochastic in the sense that they depend on the whole
trajectory of the particle which is subject to thermal fluctuations. It can be
shown [9, 10] that the probability density function p(W) of the stochastic work
W is related to the equilibrium free energy difference between initial and final
state by the Jarzynski relation

D

e−βW
E

= e−β∆F

where the average 〈·〉 is defined by 〈f(W)〉 ≡
R

dWp(W)f(W). The definition
of the heat flux into the medium (2.7) allows for the definition of the entropy
flux to the heat bath

∆sM [x(τ )] ≡ Q[x(τ )]/T. (2.8)
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The nonequilibrium entropy of the system can be defined as

s(τ ) ≡ − ln p(x(τ ), τ ) (2.9)

which yields the conventional Shannon entropy after averaging. The change of
the nonequilibrium system entropy during the transition thus is given by

∆s[x(τ )] = − ln p(x(t), t) + ln p(x(0), 0). (2.10)

It is now straightforward to define the total entropy production [7]

∆stot ≡ ∆sM [x(τ )] + ∆s[x(τ )] (2.11)

which can be shown to satisfy the integral fluctuation theorem
D

e−∆stot

E

= 1. (2.12)

This immediately implies the second law of thermodynamics

〈∆stot〉 ≥ 0 (2.13)

via the Jensen inequality.
So far, we have considered only transitions between equilibrium states. Within

the cell, however, most processes are constantly driven out of equilibrium by
persisting constant thermodynamic forces, e.g. chemical potential differences.
In such a situation, the system typically reaches a nonequilibrium steady state,
where probability distributions do not change anymore while the system is per-
manently in nonequilibrium. As a paradigm, the motion of a colloidal particle
in a spatial periodic potential V (x) subject to an additional external force f ,
which can be realized in experiments by a rapidly rotating optical trap, has
been studied extensively [48, 49, 50]. Since the potential is time-independent,
the work then is given by the contribution of the external force f

W ≡
Z t

0

dτfẋ, (2.14)

while the difference in internal energy is given by

∆E [x(τ )] = V (λf , x(t))− V (λi, x(0)) =

Z t

0

dτ
∂V

∂x
ẋ. (2.15)

The heat then can consistently be defined as

Q[x(τ )] = W[x(τ )]− ∆E [x(τ )] =

Z t

0

dτ

„

f − ∂V

∂x

«

ẋ. (2.16)
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Stochastic Thermodynamics

In such a nonequilibrium steady state, the total entropy production in a given
time interval 0 ≤ τ ≤ t can be defined in complete analogy to the case discussed
above. The total entropy production then satisfies also the detailed fluctuation
theorem [7]

p(−∆stot) = p(∆stot)e
−∆stot (2.17)

which immediately implies the integral fluctuation theorem (2.13), where p(∆stot)
is the probability density function to observe the entropy production ∆stot. For
large systems or large times, the entropy production will also typically be large
and thus the probability to find a negative entropy production decays exponen-
tially. For macroscopic systems, this probability is negligible and the observed
entropy production will always be strictly positive.
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3 Optimal protocols

3.1 Introduction

The free energy difference ∆F between two equilibrium states is an important
quantity in isothermal statistical mechanics which allows, e. g., for the calcu-
lation of occupation probabilities under equilibrium conditions. Moreover, the
free energy is also important for the dynamics of biomolecules. In many cases,
the effective dynamics in terms of “good” reaction coordinates can be formu-
lated by an overdamped Langevin equation. Assuming a constant mobility µ,
the dynamics then is determined only by the free energy landscape.

Strategies to extract ∆F from experiments or computer simulations are tradi-
tionally based on either thermodynamic integration or thermodynamic pertur-
bation [51] which use one infinitesimally slow transition or many infinitesimally
fast transitions, respectively, between the two equilibrium states. A decade ago,
Jarzynski proposed the remarkable relation

e−∆F/T =
D

e−W/T
E

(3.1)

which interpolates between these extreme cases using nonequilibrium work val-
ues W obtained from trajectories of finite time transitions between the equilib-
rium states at temperature T (with Boltzmann’s constant kB = 1) [9, 10]. Al-
though these (necessarily irreversible) finite time transitions occur in nonequi-
librium, the equilibrium quantity ∆F can be inferred from a sufficient number
of trajectories either from computer simulations [52, 53, 54, 55] or real exper-
iments [56, 57]. The Jarzynski relation is valid for any given driving scheme
λ(τ ) between the two equilibrium states. It even allows to combine data from
different driving schemes in free energy calculations in a straightforward way
[58]. A generalization of the Jarzynski relation [8] has recently been used to cal-
culate the difference of the grand canonical potential between two equilibrium
states for the adsorption of polyelectrolytes on a charged surface [59].

Beyond the free energy difference between two equilibrium states, one is of-
ten interested in the complete free energy “landscape” (also termed potential
of mean force) as a function of a given reaction coordinate. A variant of the
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Jarzynski relation [18] has been used to extract potentials of mean force both
in simulations [60, 61, 62, 63, 64, 65, 66] and in experiments [67] (see also the
comment [68] and reply [69]). In order to fully describe the dynamics of the
reaction coordinate, the mobility µ, which may be a function of the reaction
coordinate, must be known. It has been shown recently [70, 71, 72] that the
mobility can easily be extracted from the same nonequilibrium pulling experi-
ments / simulations. In fact, an accurate estimate of the mobility as a function
of the reaction coordinate requires much less nonequilibrium trajectories than
the accurate estimate of the potential of mean force.

For free energy calculations via “fast growth” techniques using the Jarzynski
relation or some variant, the convergence of the involved exponential average
causes problems for far out of equilibirium transitions where the mean work
W is substantially larger than the free energy difference ∆F [73]. In this
regime, the exponential average is dominated by low work values which are
very rarely sampled [74]. As a remedy, several path sampling techniques biasing
the dynamics for low work have been proposed [75, 76, 77, 78]. Alternatively,
the Jarzysnki relation may be interpreted in terms of a bijective map which
must not correspond to any realistic dynamics and which can also be optimized
[24, 79]. It has even been proposed to optimize free energy estimates by using
two distinct protocols for the generation of nonequilibrium trajectories and the
calculation of the work [80]. For the reconstruction of free energy landscapes,
only few studies have discussed schemes to improve the convergence of these
calculations [61, 81].

It is still under debate [82, 83, 84] for which systems “fast growth” techniques
are superior to refined “conventional” approaches such as umbrella sampling
[85] or flat histogram methods [86]. It is also unclear how the “cost” of obtaining
correctly sampled initial values can be taken into account. Though valuable
for computer simulations, it is hard to imagine how to bias dynamics in real
experiments, where, however, apparatus drift may prevent long measurements
necessary for thermodynamic integration [57, 87] and thus render fast growth
methods competitive.

Both for thermodynamic integration and “fast growth” methods, efficiency
gains can be achieved by optimizing the driving scheme λ(τ ). For thermody-
namic integration, where the work W with mean value W ≥ ∆F is taken as an
estimator for ∆F , it is quite obvious that a minimal work gives the best result.
In this context, studies of optimal driving schemes have either been restricted
to the linear response regime [88, 89] or involved only an optimization with
respect to a single parameter [90, 91]. In the case of fast growth methods, the
statistics for free energy estimates quite generally also improves with smaller
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3.1 Introduction

mean work [74, 76].
In this chapter, we discuss optimal protocols for four different types of dy-

namics.
First, we calculate optimal protocols for overdamped Langevin dynamics

which is a good description for many biological processes on time scales much
larger than the characteristic decay time of the momentum. Most experimental
studies on the Jarzynski relation and fluctuation theorems use overdamped
Langevin dynamics to describe the motion of a colloidal particle in a potential
generated by optical traps [92, 93, 94, 13]. In paradigmatic protein pulling
experiments [56, 57], the dynamics can also be described by an overdamped
Langevin equation if the pulling direction is a “good” reaction coordinate. As
a main result, we find that the optimal protocol for overdamped Langevin
dynamics shows jumps at the beginning and end of the finite time transition
for two harmonic case studies.

Second, we study underdamped Langevin dynamics which is relevant for
most molecular dynamics (MD) simulations of the dynamics of biomolecules.
Such simulations typically are on time-scales where inertia plays an important
role (see [95] for a review on steered MD). It is an interesting question how
the results for the overdamped limit transfer to underdamped dynamics. In
particular, it is important to know whether the jumps are a result of having
neglected inertia. As a main result, we find that the optimal protocol does not
only involve jumps but also delta-type singularities at the beginning and end.

Third, we optimize the driving protocol for purely Hamiltonian dynamics
using the equilibrium thermal initial distribution for the particle’s position and
momentum. While biomolecules are typically described by a Langevin equation
where effects of the thermal bath are included in friction and fluctuation terms,
the Jarzynski relation has originally been derived in the framework of purely
Hamiltonian dynamics with initial canonical equilibrium distribution [9]. This
situation corresponds to an experiment where the heat bath of temperature T
is decoupled from a small Hamiltonian system at time τ = 0. During a time
intevall τ ∈ [0, t] a control parameter λ is varied time-dependently. Such dy-
namics has been used in various generalizations of the Jarzynski relation [96, 23]
and for the optimization of the free energy reconstruction from nonequilibrium
work data [24, 82, 97]. While this approach is elegant from a theoretical point
of view, it is important to note that such a dynamics has quite different prop-
erties than a system subject to a permanent heat bath modelled e. g. by a
Langevin equation. The most important difference concerns the quasistatic
work which is achieved for infinitesimally slow transitions t → ∞, independent
of the detailed shape of the protocol for the control parameter λ. For a sys-
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tem coupled permanently to a heat bath conserving the canonical distribution
for fixed control parameter, this quasistatic work is equivalent to the free en-
ergy difference. This property gives rise to the free energy calculation method
termed thermodynamic integration where the free energy is approximated by
the work for a very slow transition. For purely Hamiltonian dynamics, how-
ever, the quasistatic work (which then is called adiabatic work) can exceed
the free energy difference [82]. Still, the Jarzynski relation is valid and can be
used to estimate free energy differences. It can be shown that under reasonable
assumptions (mainly ergodicity), both the work is a monotonically decreasing
function of the transition time t for a given protocol shape and the adiabatic
work is independent of the shape of the protocol [98].

Last, we calculate optimal protocols for quantum systems with initial ther-
mal equilibrium distribution. There has been considerable interest in deriving
fluctuation theorems and analogues of the Jarzynski relation also for systems
in the quantum domain [12, 25, 99, 100, 101, 102]. Here, it is more subtle
than in the classical case to define thermodynamic quantities such as work on
a single trajectory [99, 100, 101]. Apart from recent progresses for open quan-
tum systems [101], most studies [12, 26, 103, 104] consider the case where the
energy is measured at beginning and end, defining the work as the difference
between final and initial energy. These studies rely on Schrödinger dynamics
which has similar properties as Hamiltonian dynamics. In particular, the qua-
sistatic work then is also different from the free energy difference. We show
that the adiabatic work can be reached in any given finite time for harmonic
potentials. The optimal protocol again is highly degenerate for these systems.
We also study a two-level system of a single spin in a time-dependent magnetic
field.

3.2 Overdamped Langevin dynamics

3.2.1 The model

Paradigmatically, a Langevin equation describes the driven overdamped mo-
tion of a single degree of freedom with coordinate x in a time-dependent one-
dimensional potential V (x, λ(τ )). As discussed in Chapter 2, the overdamped
Langevin equation (2.2)

ẋ = −µ
∂V (x, λ)

∂x
+ ζ (3.2)
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3.2 Overdamped Langevin dynamics

with thermal fluctuations modelled as Gaussian white noise

˙

ζ(τ )ζ(τ ′)
¸

= 2µTδ(τ − τ ′), (3.3)

describes, e. g., the motion of a colloidal particle in a potential created by laser
traps [92, 93] and/or external boundaries [13].

We consider a situation as described in Chapter 2. Initially, the system
is in thermal equilibrium in the potential V (x, λi). During the time-interval
0 ≤ τ ≤ t, the control parameter λ(τ ) is varied from λi to the final value λf .
The time evolution of the probability distribution p(x, τ ) to observe the particle
at position x at time τ is governed by the Fokker-Planck equation (2.4)

∂τp(x, τ ) = ∂x

»

µ
∂V

∂x
+ µT∂x

–

p(x, τ ). (3.4)

The mean work spent in this process

W [λ(τ )] =

Z t

0

dτ λ̇

fi

∂V

∂λ
(x(τ ), λ(τ ))

fl

(3.5)

is obtained from the stochastic work (2.5) by averaging over the initial ther-
mal distribution and over the noise history where 〈. . . 〉 denotes this averaging
procedure. Since we are interested in processes leading to a minimal mean
work, we will omit the averaging brackets and denote the mean work by W in
the following. The mean work (3.5) is a functional of the protocol λ(τ ) which
now is to be minimized. We will first investigate two case studies motivated
by previously set up experiments on colloidal particles and then analyze the
general case.

3.2.2 Case study I: Moving harmonic potential

As an almost trivial, but still instructive introductory example, we consider
a colloidal particle dragged through a viscous fluid by optical tweezers with
harmonic potential

V (x, τ ) =
k

2
(x − λ(τ ))2 , (3.6)

see Fig 3.1a, with corresponding Langevin equation

ẋ = µk(λ − x) + ζ. (3.7)
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The focus of the optical tweezers is moved according to the protocol λ(τ ).
In previous experiments, such protocols have been used to test the fluctuation
theorem [92] and the Hatano-Sasa relation [94]. The optimal protocol λ∗(τ )
connecting given boundary values λi = 0 and λf in a time t minimizes the
mean total work (3.5)

W [λ(τ )] = k

Z t

0

dτ λ̇(λ − u) (3.8)

with the mean position of the particle u(τ ) ≡ 〈x(τ )〉. The mean work is a
non-local functional of the protocol λ(τ ), since u(τ ) depends on all previous
values of λ(τ ′), τ ′ < τ via the ordinary differential equation

u̇ = µk(λ − u) (3.9)

which follows from averaging the Langevin equation. However, by solving (3.9)
for λ and λ̇,

λ = u + u̇/(µk),

λ̇ = u̇ + ü/(µk), (3.10)

the mean work can be expressed as a time-local functional of the mean particle
position u(τ ) as

W [λ(τ )] = k

Z t

0

dτ λ̇(λ − u) =
1

µ2k

Z t

0

dτ (µku̇ + ü)u̇

=
1

µ

Z t

0

dτ u̇2 +
1

2µ2k

ˆ

u̇2
˜t

0
. (3.11)

The Euler-Lagrange equation corresponding to (3.11),

ü = 0, (3.12)

is solved by u(τ ) = mτ , where u(0) = 0 is enforced by the initial condition.
Equation (3.9) then requires the boundary conditions

u̇(0) = µk (λi − u(0)) = 0,

u̇(t) = µk (λf − mt) , (3.13)

which can only be met by discontinuities in u̇ at the boundaries which corre-
spond to jumps in λ. Note that these “kinks” do not contribute to the integral
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0 λf

p(x, t)peq(x, 0)

V (x, 0) V (x, t) λlin(τ )

λ∗(τ )

λf

t0

∆λ

∆λ

Figure 3.1 Optimal protocol for a moving harmonic potential (Case Study
I). (a) Sketch of the considered nonequilibrium transition where the minimum
of the potential (which may, e. g., correspond to the focus of a laser trap)
is moved according to a protocol λ(τ ). Initially, the system is in thermal
equilibrium with distribution peq(x). (b) Optimal protocol λ∗(τ ) with initial
and final jumps with amplitude ∆λ compared to the linear protocol λlin(τ ).

in the second line of (3.11). The yet unknown parameter m follows from mini-
mizing the mean total work

W = m2 t

µ
+

k

2
(λf − mt)2 (3.14)

which yields

m∗ = λf
µk

µkt + 2
, (3.15)

where the asterisk will denote optimal from now on. The minimal mean work

W ∗ = kλ2
f

1

µkt + 2
(3.16)

vanishes in the quasi-static limit t → ∞. The optimal protocol then follows
from (3.9) as

λ∗(τ ) = λf
µkτ + 1

µkt + 2
, (3.17)
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for 0 < τ < t. As a surprising result, this optimal protocol implies two distinct
symmetrical jumps of size

∆λ ≡ λ(0+) − λi = λf − λ(t−) =
λf

µkt + 2
(3.18)

at the beginning and the end of the process.
The benefit of having jumps in the optimal protocol can be understood in-

tuitively as follows. From the perspective of minimal dissipation, it is obvious
that the particle should be dragged at a constant (mean) velocity from the
beginning rather than being accelerated during a finite time. This initial jump
in the velocity of the particle can only be achieved by a finite initial difference
λ(0)−u(0), corresponding to a jump in λ at τ = 0. The final jump is harder to
grasp intuitively. In fact, it stems from focussing on the minimal work rather
than on the minimal (mean) dissipation (or entropy production). If we had
searched for the minimal entropy production (as defined in [7]), we would have
found an optimal protocol without a final jump. In the present minimization,
at the final time t, the particle is still in non-equilibrium with respect to the
final potential V (x, λ(t)). Relaxation to equilibrium leads to further dissipation
after time t which has, however, already been paid for by the total work since
at constant λ no work is exerted anymore. A smaller final particle position
u(t) leads to a longer relaxation time which can decrease the total dissipation
of the combined process (nonequilibrium transition and relaxation).

A priori, one might have expected a continuous linear protocol

λlin(τ ) = λfτ/t (3.19)

to yield the lowest work. The mean work for such a linear protocol can be
calculated analytically by solving the ordinary differential equation (3.9) with
initial condition u(0) = 0 which yields

u(τ ) =
λf

µkt

“

e−µkτ − 1 + µkτ
”

. (3.20)

The mean work then is given by (3.11)

W lin = k

Z t

0

dτ λ̇(λ − u) =

„

λf

µkt

«2

(e−µkt − 1 + µkt) > W ∗. (3.21)

For any t > 0, the linear protocol yields a larger mean work than the optimal
protocol with a maximal value W lin/W ∗ ≃ 1.14 at µt ≃ 2.69, see Fig. 3.2.
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Figure 3.2 Optimal work W ∗ for a moving harmonic potential (case study

I) compared to the work for a linear protocol W lin as a function of the scaled
transition time µkt.

In macroscopic finite-time thermodynamics, the occurrence of such jumps
has previously been rationalized by pointing out the special nature of this type
of variational problem where the highest derivative (here ü in (3.11)) occurs
linearly [105]. In the present model where fluctuations are irrelevant to the
mean work, these jumps have the same formal origin.

3.2.3 Case study II: Harmonic potential with time-dependent
stiffness

In this example, fluctuations are crucial. We consider the motion of a colloidal
particle in a trap whose strength becomes time-dependent whereas its position
remains constant. The corresponding potential reads

V (x, τ ) =
λ(τ )

2
x2 (3.22)

with λ(0) = λi and λ(t) = λf > λi as boundary conditions. Such a potential
with a sudden jump protocol has been investigated experimentally as test of
the fluctuation theorem [93]. We first derive the equation of motion for the
variance w(τ ) ≡

˙

x2(τ )
¸

ẇ = −2µλw + 2µT (3.23)

43



Optimal protocols

λf
λi

0

Figure 3.3 Sketch of the considered nonequilibrium transition where the stiff-
ness of the harmonic potential is changed according to a protocol λ(τ ). Initially,
the system is in thermal equilibrium with distribution peq(x).

by multiplying (3.4) with x2 and integrating over x. By solving (3.23) for λ,

λ =
2µT − ẇ

2µw
, (3.24)

the mean work (3.5) can again be cast in a local functional of the new variable
w and its first derivative

W [λ(τ )] =

Z t

0

dτ λ̇
w

2
= [λw/2]t0 −

Z t

0

dτ
λẇ

2

=
1

2
[λw − T lnw]t0 +

1

4µ

Z t

0

dτ
ẇ2

w
. (3.25)

The minimization of the work functional then requires solving the Euler-Lagrange
equation

ẇ2 − 2wẅ = 0. (3.26)

Its general solution

w(τ ) = c1(1 + c2τ )2 (3.27)

contains two constants. The thermal initial distribution with w(0) = T/λi

fixes c1 = T/λi. The second constant c2 follows from minimizing the total
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mean work

W = T

»

(c2t)
2

µλit
− ln (1 + c2t) +

1

2
(λf/λi) (1 + c2t)

2 − 1

2

–

(3.28)

which leads to

c∗2t =
−1 − µλf t +

p

1 + 2µλit + µ2λfλit2

2 + µλf t
. (3.29)

The optimal protocol derived from (3.24)

λ∗(τ ) =
µλi − c∗2(1 + c∗2τ )

µ(1 + c∗2τ )2
(3.30)

for 0 < τ < t again implies jumps at the beginning and end of the process
as shown in Fig. 3.4a. Both the minimal work W ∗/T , see Fig. 3.4b, and the
scaled optimal protocol λ∗(τ/t)/λi depend only on two parameters (λf/λi) and
λit.

For the two limiting cases of an immediate jump, t → 0, and a quasi-static
process, t → ∞, respectively, the values of W ∗ also follow from general princi-
ples. For an immediate jump, the minimal work

W jp ≡ lim
t→0

W ∗ =

fi

(λf − λi)x
2

2

fl

λi

=
1

2
T ((λf/λi) − 1) (3.31)

is equal to the difference in energy evaluated in the thermal initial ensemble.
In this limit, the optimal protocol λ∗(τ )/λi ≈ ((λf/λi) + 1)/2 is constant for
0 < τ < t but has discontinuities at τ = 0 and τ = t. In the quasi-static limit,
the minimal work

W qs ≡ lim
t→∞

W ∗ =
1

2
T ln(λf/λi) = ∆F (3.32)

is equal to the free energy difference ∆F between the final and the initial state.
In this limit, the optimal protocol is continous at τ = 0 and τ = t and takes
the form

λ∗(τ/t) ≈ λi
“

1 − (τ/t) +
p

(λi/λf )(τ/t)
”2

. (3.33)

For (λf/λi) ≫ 1, the minimal work is of the order of the quasi-static work for
any µλit

∗ ≫ 2/ ln(λf/λi) as a simple analysis of eqs. (3.28) and (3.29) shows.
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Thus, the larger the change of the control parameter λ, the smaller is the time-
interval required to essentially reach the quasi-static work, as quantitatively
shown in Fig. 3.4c. The origin of this surprising features lies in the fact that
the relaxation time scales like 1/λ. For large λ, the particle can follow a larger
change of the control parameter almost quasi-statically. Therefore, the optimal
protocol can become quite steep towards the end of the process for large λf .

3.2.4 General case

For a general non-harmonic potential, it is not possible to express the mean
work as a local functional of just one variable as we have done for the two
harmonic cases. Rather, our optimization problem becomes non-local in time
since changing the protocol at a time τ affects the mean work increments for
all later times τ ′ > τ . This fact becomes obvious by expressing the mean work
as a path integral average

W [λ(τ )] =

Z

d[x(τ )]p[x(τ )]

Z t

0

dτ λ̇
∂V

∂λ
(3.34)

over all possible trajectories x(τ ) with weight

p[x(τ )] = Np(x, 0) exp

»

−
Z t

0

dτ

„

(ẋ + µ∂xV )2

4µT
− µ

∂2
xV

2

«–

, (3.35)

where N is a normalization constant. Minimizing the mean work (3.5) then
requires solving the non-local Euler-Lagrange equation

d

dτ

fi

∂V

∂λ

fl

|τ=σ

=
δW [λ(τ )]

δλ(σ)
(3.36)

where the right hand side can be expressed by correlation functions as

d

dτ

fi

∂V

∂λ

fl

|τ=σ

= λ̇

fi

∂2V

∂λ2

fl

|τ=σ

+ (3.37)

Z t

σ

dτ
λ̇

2

*

„

µ
∂3V

∂λ∂2x
− (ẋ + µ∂xV )

T

∂2V

∂λ∂x

«

|τ=σ

· ∂V

∂λ |x(τ)

+

.

Note that it suffices to let the integral in (3.37) start at σ since all contributions
from times τ < σ vanish due to causality. For harmonic potentials, this integro-
differential equation can be solved, confirming the results obtained in the case
studies I and II [106]. In general, equation (3.37) solved by the optimal protocol
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Figure 3.4 Optimization results for a time-dependent strength λ(τ ) of a laser
trap for different values of (λf/λi) and µλit (case study II): (a) Optimal proto-
cols λ∗/λi as a function of the scaled time τ/t. (b) Minimal work W ∗ in units
of T . (c) Logarithmic fraction ln(W ∗/W qs) of the optimal work and the qua-
sistatic work. (d) Relative height ∆λ/λf of the jump of the optimal protocol
at t = 0 in units of (W ∗ − W qs)/W jp.
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λ∗(τ ) looks rather inaccessible. However, exploring a variational ansatz for
λ∗(τ ) with numerical evaluation of the mean work is a viable approach even
for anharmonic potetials [106, 107].

In order to use jumps in the protocol λ(τ ) for the efficient extraction of free
energy differences from finite-time path sampling via the Jarzynski relation, one
needs an estimate for the height of these jumps without knowing the underlying
potential. For the moving laser trap (case study I), we get the relation

∆λ/λf = 2(W ∗ − W qs)/W jp. (3.38)

For case study II, we find numerically that the relative height of the jump
∆λ/λf at t = 0 is also of the order of (W ∗ − W qs)/W jp, see Fig 3.4d. If such
a relation gave the correct order of magnitude for the optimal jump in general
cases, it could become a helpful tool for estimating the optimal jump heights.

3.3 Underdamped Langevin dynamics

We next discuss optimal protocols for underdamped Langevin dynamics

mẍ = −γẋ − V ′(x, λ) + η(τ ), (3.39)

of a Brownian particle with mass m in a viscous fluid with friction coefficient
γ. The thermal fluctuations are modeled by Gaussian white noise

〈η(τ )η(τ ′)〉 = 2Tγδ(τ − τ ′). (3.40)

In contrast to the overdamped Langevin equation, such dynamics does not
neglect inertia effects. It has been shown that it is crucial to include the inertial
term in an experimental test of the fluctuation theorem for a mesoscopic torsion
pendulum immersed in a fluid where x is the angular displacement [21].

We again consider finite time transitions where the control parameter λ is
changed time-dependently from the inital value λi to the final value λf and ask
for the optimal protocol λ(τ ) leading to a minimal mean work

W ≡
Z t

0

dτ λ̇

fi

∂V (x, λ)

∂λ

fl

, (3.41)

where the average 〈. . . 〉 is over the intitial thermal distribution and over the
noise history. The optimal protocol is calculated for both case studies intro-
duced in Section 3.2.
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3.3 Underdamped Langevin dynamics

3.3.1 Case Study I: Moving harmonic potential

Optimal protocol

As in the overdamped case, We first consider a Brownian particle dragged
through a viscous fluid by the harmonic potential (3.6)

V (x, τ ) =
k

2
(x − λ(τ ))2, (3.42)

where k is the (constant) stiffness of the harmonic potential. Again, the mini-
mum of the potential λ(τ ) is changed time-dependently from an initial position
λi = 0 to a final position λf . Including inertial effects, the Langevin equation
reads

mẍ = −γẋ − k(x − λ(τ )) + η(τ ), (3.43)

The mean work spent in the process of total duration t is given by (3.41) which,
in the present case, reduces to

W =

Z t

0

dτkλ̇(λ − u) = k

Z t

0

dτλu̇ +
k

2
λ2

f − k [λu]t0 , (3.44)

where, for simplicity in the notation, we have defined the mean position of the
particle as u ≡ 〈x〉. This quantity u(τ ) depends on the whole history of λ(τ )
and thus, the work W is a non-local functional of the protocol λ(τ ). However,
in analogy to the overdamped limit, see Chapter 3.2, we can express the work
as a local functional of the mean particle position u. Averaging the evolution
equation (3.43) yields

λ = u + γu̇/k + mü/k, (3.45)

which inserted in (3.44) leads to

W =

»

m

2
u̇2 +

m2

2k
ü2 +

mγ

k
u̇ü +

γ2

2k
u̇2

–t

0

+ γ

Z t

0

dτ u̇2. (3.46)

The only term remaining in the integral, u̇2, is identical to the corresponding
integrand in the overdamped limit, see equation (3.11), while the boundary
terms are different. In complete analogy to the overdamped case, we now
proceed in two steps. First, we calculate the optimal shape u(τ ) minimizing
only the integral given initial values u(0+) = 0 and u̇(0+) = A. Note that
despite the initial equilibrium value u̇(0) = 0, we are free to choose u̇(0+) = A
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since the necessary “kink” in u(τ ) at τ = 0 does not contribute to the integral.
Similarly, at the end of the protocol (at τ = t) there can be another jump in the
velocity. In a second step, we adjust the constant A to yield the minimal total
work. First, from the Euler-Lagrange equation corresponding to the Lagrangian
u̇2 (and subject to the initial conditions just mentioned), we find

u(τ ) = Aτ (3.47)

for 0 < τ < t. In contrast to the overdamped case, we cannot determine all the
boundary terms at t from the evolution equation. Thus, C ≡ u̇(t) is another
free parameter. With

ü(t) = [k(λf − At) − γC]/m, (3.48)

we get the total work as a function of the yet unknown constants A and C

W (A,C) =
m

2
C2 +

k

2
(λf − At)2 + γ

Z t

0

dτA2. (3.49)

We next minimize the work with respect to the remaining parameters A and
C. Obviously, the work is minimal for C∗ = 0. The remaining terms then read

W (A) =
k

2
(λf − At)2 + γtA2, (3.50)

which, surprisingly, is exactly the same expression that was found in the over-
damped limit. Minimizing this expression with respect to A leads to

A∗ =
λf

2γ/k + t
(3.51)

which yields the work

W ∗ = kλ2
f

1

2 + kt/γ
. (3.52)

Inserting (3.47) into (3.45), we find the optimal protocol

λ∗(τ ) = λf
kτ/γ + 1

kt/γ + 2
, (3.53)

for 0 < τ < t implying symmetrical jumps

∆λ ≡ λ(0+) − λi = λf − λ(t−) = λf
1

kt/γ + 2
(3.54)

at the beginning and at the end of the process.
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3.3 Underdamped Langevin dynamics

Figure 3.5 Scheme of the optimal mean position u∗(τ ) and protocol λ∗(τ ).

Superficially, this optimal protocol looks like the expression in the over-
damped case, see Chapter 3.2. There is, however, a subtle difference arising
from the presence of inertia terms. The optimal protocol forces the mean veloc-
ity to instantly jump at the beginning of the process from its initial equilibrium
value u̇(0) = 0 to u̇(0+) = A∗. At the end of the protocol, the optimal strategy
consists in setting back the mean velocity to zero u̇(t) ≡ C∗ = 0. Due to the
second time derivative in the equation of motion such jumps in the velocity,
which require delta functions in the acceleration, imply a delta-type singularity
in the protocol. Specifically, in (3.45), the jumps in u̇ imply a δ-function for ü
and hence a δ function in λ(τ ). The optimal protocol (3.53) thus becomes

λ∗(τ ) = λf
kτ/γ + 1

kt/γ + 2
+

mλf

2γ + kt
[δ(τ ) − δ(τ − t)] , (3.55)

as shown in Fig. 3.5. In the overdamped limit, m → 0, the delta peaks vanish.

Physical origin of singularities in the optimal protocol

The benefit of having jumps in the optimal protocol has already been rational-
ized in the previous section. There, we have argued that it is obvious that the
particle should be dragged at a constant (mean) velocity from the beginning
rather than being accelerated during a finite time. In the present underdamped
regime, such a velocity jump corresponds to a jump in the (mean) particle mo-
mentum which can only be achieved by a delta peak in the force, corresponding
to a delta peak in the protocol.
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The final delta peak corresponds to setting the final velocity to zero. This
decreases the kinetic energy of the particle and thus is beneficial for a small
work. It also explains the surprising fact that, according to (3.52), we do not
have to pay any extra cost for having inertia. During the initial singularity,
the exerted work is stored in the (mean) kinetic energy of the particle. This
contribution is fully recovered during the final singularity where the kinetic
energy of the particle is set back to the equilibrium value.

Comparison to a linear protocol

As in the overdamped case, we compare the optimal work to the work obtained
for the continuous linear protocol

λlin(τ ) ≡ λfτ/t. (3.56)

In the overdamped limit, the work for a linear protocol was at most 14% larger
than for the optimal protocol. We now check how much smaller the value of the
optimal work W ∗ is compared to a linear protocol if we include inertia. First,
we rescale the system in order to compactly write the relevant combination of
parameters. With the rescaled mass m̃ ≡ mk/γ2, the energy scale e ≡ kλ2

f and

a rescaled time t̃ ≡ tk/γ, the work can be written as W = eW̃ (t̃, m̃), with the
optimal work W ∗ = e/

`

2 + t̃
´

.
Solving the second order differential equation of motion (3.45) using the

linear protocol λlin(τ ), we find the ratio:

W lin

W ∗
=

8

<

:

2+t̃
t̃2

“

θ0 + t̃ − e−
t̃

2m̃

ˆ

θ0 cosh
`

νt̃
´

+ θ1 sinh(νt̃)
˜

”

m̃ < 1
4

2+t̃
t̃2

“

θ0 + t̃ − e−
t̃

2m̃

ˆ

θ0 cos
`

νt̃
´

+ θ1 sin(νt̃)
˜

”

m̃ > 1
4

(3.57)

with

ν =

p

|4m̃ − 1|
2m̃

(3.58)

and

θ0 = m̃ − 1, θ1 =
3m̃ − 1

2m̃ν
. (3.59)

In Fig. 3.6, we plot the ratio W lin/W ∗ as a function of rescaled time t̃ and
mass m̃. This result shows that the optimal protocol significantly reduces the
work spent in the process compared to a linear protocol.
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Figure 3.6 Ratio between mean work W lin spent using the continuous lin-

ear protocol λlin(τ ) and optimal work W ∗ as a function of the dimensionless
parameters m̃ ≡ mk/γ2 and t̃ ≡ tk/γ.

3.3.2 Case Study II: Harmonic potential with time-dependent
stiffness

In the first case study, only the averaged quantity u = 〈x〉 appeared in the
work and thus the same result could have been obtained from a deterministic
damped dynamics. In analogy to the overdamped case, we next examine a
second case study where fluctuations are important. We consider a Brownian
particle of mass m in a harmonic potential with time-dependent stiffness λ(τ )
which is driven from an initial value λ(0) = λi to a final value λ(t) = λf in a
finite time t. The time-dependent potential

V (x, τ ) =
λ(τ )

2
x2, (3.60)

leads to the underdamped Langevin equations

ẋ = p/m (3.61)

ṗ = −γp/m − λ(τ )x + η(τ ),
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where p is the momentum of the particle and the noise η(τ ) has the same
properties introduced in the first case study. Again our main goal is to find the
protocol for which the corresponding total (mean) work (3.41)

W =

Z t

0

dτ λ̇
〈x2〉
2

(3.62)

is minimal. Note that the mean squared position

w ≡ 〈x2〉 (3.63)

of the particle is non-trivially coupled to the mean squared momentum

z ≡ 〈p2〉 (3.64)

and to the position-momentum correlation

y ≡ 〈xp〉. (3.65)

Their time evolution is governed by the set of coupled differential equations

ẇ = 2y/m, (3.66)

ż = −2λy − 2γz/m + 2γT , (3.67)

ẏ = z/m − λw − γy/m. (3.68)

Unlike both the moving trap (with and without inertia) and the stiffening
trap in the overdamped limit, the present case is much more involved since one
cannot eliminate the protocol and write the work as a function of one variable
only. We thus express the work as a time-local functional of x(τ ) and z(τ ).
Solving Eqs. (3.66) and (3.68) for λ yields

λ =
1

w
[z/m − γẇ/2 − mẅ/2] (3.69)

which, inserted in (3.62) and after partial integration, leads to

W =

»

λw

2
+

mẇ2

8w

–t

0

+
1

2

Z t

0

dτL (3.70)

with the “Lagrangian”

L =
γẇ2

2w
− zẇ

mw
+

mẇ3

4w2
. (3.71)
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We proceed in two steps analogously to the moving trap. We first minimize
the integral in (3.70) for given initial conditions and then optimize with respect
to remaining free parameters. The integrand L depends on w (and ẇ) but also
on z. The variables w and z are not independent. Eliminating λ and y from the
equations of motion (3.66), (3.67), and (3.68), we find the physical constraint

G ≡ zẇ − mγẇ2/2 − m2ẇẅ/2 − 2γTw + 2γwz/m + wż = 0. (3.72)

A detailed analysis of the solution of this optimization problem using Euler-
Lagrange equations is given in Appendix A.

The results for both the rescaled optimal protocol λ∗(τ/t)/λi and the optimal
work W ∗/T depend on the dimensionless quantities

t̃ ≡ tλi/γ, λ̃ ≡ λf/λi, m̃ ≡ λim/γ2. (3.73)

An extensive analysis of the optimal protocol as a function of all three param-
eters is out of scope. Since the overdamped limit (m̃ → 0) has been discussed
previously, we focus on the behaviour as a function of m̃ for given λ̃ = 2, t̃ = 1.
Given these parameters, the optimization problem can be solved numerically
and the corresponding total work W can be calculated. In Fig. 3.7a, we plot the
value of the minimal work W ∗ (obtained from the optimal protocol) as a func-
tion of the rescaled dimensionless mass m̃ and compare it to other benchmark
protocols. All work values are bounded from below by the free energy differ-
ence ∆F = (ln 2/2) T ≃ 0.35T . Quite generally, work values are also bounded
from above by the work for an immediate jump W jp ≡ limt→0 W ∗ = T/2. We
study (i) a linear protocol, (ii) a protocol leading to a parabolic mean-squared
position

w(τ ) =
T

λi
(1 + cτ )2 (3.74)

with optimized parameter c and optimized final delta peak, and (iii) a protocol
leading to

w(τ ) = 1 + aτ 3
“

1 − e−1/[0.01+(5τ/t)2]
”

+ bτ 5 + cτ 7 + dτ 9 (3.75)

without any discontinuities (except for a final jump) but with free parameters
a, b, c, d. The work arising from protocol (i) lies significantly above the opti-
mal protocol. Protocol (ii) implies (optimized) jumps and delta peaks at the
beginning and end. The work for protocol (ii) and the optimal work almost
coincide. The inset shows that the optimal work is in fact slightly smaller than
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Figure 3.7 Optimization results for case study II for t̃ = 1 and λ̃ = 2. (a)
Mean work W ∗ in units of T as a function of the rescaled mass m̃ compared
to (i) a linear protocol, (ii) a protocol leading to w(t) given by (3.74), and (iii)
a continuous (except for a final jump) protocol leading to w(τ ) given by (3.75)
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λ∗(τ ) for m̃ = 0.5. (d) Jump heights ∆λ and amplitudes D of delta peaks (in
rescaled time τ/t) for the optimal protocol as a function of the rescaled mass
m̃.
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the work obtained for the protocol (ii). The difference to the numerically ob-
tained exact solution W ∗ decreases for decreasing m̃ which is consistent with
the analytical finding that protocol (ii) is optimal in the overdamped limit.
The fact that protocol (ii) which involves optimized singularities but not the
optimized shape is so close to the optimal work highlights the importance of
jumps for the optimal protocol. Protocol (iii) has no delta peaks and no initial
jump but mimics these features approximately since the parameters a, b, c, d
have been optimized, see Fig. 3.7b. These trial protocols show that jumps
and delta peak-like singularities can decrease the total work and confirms that
our numerical solution of the Euler-Lagrange equations is the solution of the
optimization problem.

Finally, the explicit shape of the optimal protocol λ∗(τ ) can be reconstructed
numerically from (3.69), see Fig. 3.7c. It displays initially a delta peak upwards
accompanied with a jump ∆λ and, finally, a delta peak downwards together
with another jump ∆λ′. Such discontinuities in the protocol are a consequence
of the discontinuities in z, ẇ and ẅ. The first singularity is “needed” to sud-
denly increase 〈p2〉 from its equilibrium value and also to change the derivative
of 〈x2〉, which is proportional to the correlation 〈xp〉. Note that both size and
direction of the jumps strongly depend on the rescaled mass m̃ as shown in
Fig. 3.7d. For small m̃, the protocol jumps upwards (as also observed in the
overdamped regime, see Chapter 3.2) while for large m̃, the protocol jumps
downwards.

3.3.3 Discussion

We have calculated optimal protocols yielding the minimal mean work for un-
derdamped Langevin dynamics in two different harmonic model potentials.
Surprisingly, these optimal protocols involve jumps and delta peaks at the ini-
tial and final times ti = 0 and tf . While we have shown that the singularities
in the optimal protocol appear for harmonic potential, there is no reason to
believe that this feature generically vanishes for anharmonic potentials. In fact,
in the overdamped limit, a recent study has shown that initial and final jumps
are also present in a simple anharmonic potential [106]. At first sight, such
singularities seem to be unphysical since neither jumps nor delta peaks can be
implemented in real experiments. Still our theoretical result is an important
insight because it implies that there exists no optimal continuous protocol. Ev-
ery such protocol could be improved by even steeper gradients mimicking the
jumps and delta peaks at the beginning and end. If there was an experimental
constraint on the allowed maximum rate of change in λ, |λ̇| < r, the minimal
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work would still be achieved by a protocol which looks roughly like the opti-
mal one, with the jumps and delta peaks replaced by their best approximation
consistent with |λ̇| < r (e. g. steep straight lines instead of jumps). Thus, it
should be possible to exploit our results for real experiments.

Our results may also be used in steered MD simulations. Even though we
here have calculated optimal protocols for underdamped Langevin dynamics,
there is no reason to believe that other thermostats frequently used in MD sim-
ulations would yield qualitatively different results for the optimal protocol. We
have neglected memory effects by assuming white noise. While there are sys-
tems for which the underdamped Langevin equation is an appropriate physical
description [21], it might still be interesting to see how our results are altered
when considering memory effects.

3.4 Hamiltonian dynamics

In this section, we will study minimum work protocols for Hamiltonian dynam-
ics. We again consider the two harmonic case studies of a moving harmonic
potential and a harmonic potential with time-dependent stiffness. Additionally,
we discuss an anharmonic quartic potential.

3.4.1 Case Study I: Moving harmonic potential

We consider a particle of mass m subject to a moving harmonic potential

V (x, τ ) =
k

2
(x − λ(τ ))2, (3.76)

where k is the (constant) stiffness of the potential. The minimum of the po-
tential λ(τ ) is changed time-dependently from an initial position λi = 0 to a
final position λf . The Hamiltonian dynamics of position and momentum of the
particle at time τ then is governed by the equations of motion

ẋ = p/m,

ṗ = −V ′(x, τ ) = k(λ(τ ) − x) (3.77)

where the prime denotes the derivative with respect to x. The particle initially
is in thermal equilibrium with probability density

ρ(x0, p0) = N exp[−βV (x0, 0)] exp[−βp2
0/(2m)] (3.78)

for the initial position x0 and the initial momentum p0 with normalization
constant N .
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Since there is no heat transfer during the (purely Hamiltonian) transition,
the work is given by the change of internal energy. Averaging over all initial
conditions yields the mean work

W =

"

˙

p2
¸

2m
+ 〈V 〉

#t

0

=

"

˙

p2
¸

2m
+

k

2

`˙

x2¸− 2λ 〈x〉 + λ2´

#t

0

(3.79)

where 〈·〉 denotes the average over the initial distribution of position and mo-
mentum (3.78). It can easily be shown that the variances

˙

x2
¸

− 〈x〉2 and
˙

p2
¸

− 〈p〉2 are time independent for any protocol λ(τ ). Thus, the work (3.79)
can be written as

W =

» 〈p〉2
2m

+
k

2

`

〈x〉2 − 2λ 〈x〉 + λ2´
–t

0

=

» 〈p〉2
2m

+
k

2
(〈x〉 − λ)2

–t

0

(3.80)

which becomes zero, i.e., minimal for

〈p(t)〉 = 0,

〈x(t)〉 = λf . (3.81)

The evolution equations for these mean values are given by

d

dτ
〈x〉 = 〈p〉 /m,

d

dτ
〈p〉 = −k(〈x〉 − λ) (3.82)

with initial values 〈x(0)〉 = 0 and 〈p(0)〉 = 0. With the freedom to choose
the continuous function λ(τ ) which corresponds to an infinite number of free
parameters, it is quite obvious that the two final conditions can easily be met.
In fact, the optimal protocol is highly degenerate.

For a specific choice, taking, e. g., a third order polynomial

λ(τ ) = a(τ/t) + b(τ/t)2 + (λf − a − b)(τ/t)3 (3.83)

with two free parameters a, b suffices to meet the optimality conditions. The so-
lution of the evolution equations (3.82) can be solved analytically and, inserted
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into (3.81), leads to

a =
12λf sin (ωt/2) − 6ωtλf cos (ωt/2)

(12 − ω2t2) sin (ωt/2) − 6ωt cos (ωt/2)
,

b =
−3ω2t2λf sin (ωt/2)

(12 − ω2t2) sin (ωt/2) − 6ωt cos (ωt/2)
(3.84)

with ω ≡
p

k/m. For short transitions times t ≪ 1, the coefficients diverge as
a ∼ 1/t2 and b ∼ −1/t2.

As a quite different choice, both conditions can also be met by a linear proto-
col with delta singularities at the boundaries, in analogy to the underdamped
stochastic dynamics case, see Sect. 3.3. Indeed, it can easily be verified that
the protocol

λ∗(τ ) = λf
τ

t
+

mλf

kt
[δ(τ ) − δ(τ − t)] (3.85)

fulfills the conditions (3.81). This expression could also have been obtained as
the limit of the underdamped optimal protocol for γ → 0.

Thus, for any given total transition time t the minimal mean work is given
by

W ∗ = 0. (3.86)

For infinitely long transition times, quite generally, the work is given by the
adiabatic work. For the studied model system, we have W ad = 0. As shown
above, this lower bound on the work can even be achieved for arbitrarily short
transition time. This surprising result shows that purely Hamiltonian dynamics
can beat Langevin evolution where short transition times t → 0 yield the work
for an instantaneous jump W jp = kλ2

f/2.

3.4.2 Case Study II: Harmonic potential with time-dependent
stiffness

As in the previous sections, we next consider the time-dependent potential

V (x, τ ) =
λ(τ )

2
x2, (3.87)

where the stiffness λ(τ ) is changed from an initial value λ(0) = λi to a final
value λ(t) = λf in a finite time t. The work exerted on the system during the
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finite time transition is given by the change in internal energy

W =

"

˙

p2
¸

2m
+ 〈V 〉

#t

0

=

"

˙

p2
¸

2m
+

λ

2

˙

x2¸

#t

0

. (3.88)

The dynamics (3.77) leads to coupled evolution equations for the mean squared
position w ≡ 〈x2〉 and the mean squared momentum z ≡ 〈p2〉

ż = −mλẇ, (3.89)

ẅ =
2z

m2
− 2

m
λw. (3.90)

Multiplication of (3.90) with a factor ẇ and insertion of (3.89) leads to the
relation

ẅẇ =
2

m2
(zẇ + wż) (3.91)

which, using the equilibrium initial conditions w(0) = T/λi, ẇ(0) = 0, and
z(0) = mT can be integrated to yield

zw =
m2

4
ẇ2 +

mT 2

λi
. (3.92)

Minimization of the mean work

W =

»

z

2m
+

λw

2

–t

0

=
z(t)

2m
+

λfw(t)

2
− T (3.93)

then requires w(t) and z(t) to be minimal. Since their product is contrained by
(3.92), it is optimal to choose ẇ(t) = 0 which is equivalent to the final condition

z∗(t) =
mT 2

λiw(t)
. (3.94)

The (mean) total work thus becomes

W =
1

2

»

λfw(t) +
T 2

w(t)λi
− 2T

–

. (3.95)

Optimizing this expression with respect to w(t) leads to

w∗(t) =
T

p

λiλf

(3.96)
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Figure 3.8 Optimal third order polynomial protocols λ∗
p(τ/t) for case study

II with m = 1, T = 1, k = 1, λi = 1, λf = 2 for different transition times t. For
short transition times, the optimal protocol shows a pronounced positive peak
in the first part of the transition and a pronounced negative peak in the second
part of the process, thereby regaining the invested work.

which yields the optimal work

W ∗ = T

 

r

λf

λi
− 1

!

. (3.97)

Similar to the first case study, the optimal protocol is highly degenerate. For a
third order polynomial, the equations of motion cannot be solved analytically.
However, as expected, the two parameters can be chosen such that the bound-
ary conditions (3.94) and (3.96) are fulfilled. Optimal third order polynomial
protocols λ∗

p(τ/t) are shown in Fig. 3.8 for different transition times t. A short
transition time requires pronounced peaks with increasing height for decreasing
transition times. These peaks serve to accelerate the Brownian particle in the
first part of the transition and to deccelerate the particle in the second part of
the transition.

Another convenient choice is a linear protocol with superimposed delta peak
singularities at beginning and end. The initial singularity allows for setting the
initial mean squared momentum instantaneously to a value z(0+) 6= z(0) = mT
which can be tuned to meet the boundary condition on w(t) = w∗(t). The
second delta singularity at the final time t allows for setting ẇ(t) = 0.
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Note that, similar to the first case study, the minimal work (3.97) does not
depend on the transition time t. Naively, in the limit t → 0, one would expect
the result obtained for an instantaneous jump of the protocol W jp = (λf−λi)/2
which is substantially larger than the optimal work. However, the possibility to
use a protocol with increasing absolute values of λ (and thus increasing forces)
for decreasing transition times t leads to the singular limit at t → 0. For any
fixed shape of the protocol λ(τ/t), the work approaches W jp with t → 0.

3.4.3 Quartic anharmonic potential

In both harmonic case studies, the optimal work W ∗ is given by the adiabatic
work W ad, independent of the total transition time t. The optimal protocols
λ∗(τ ) are highly degenerate. It is interesting to see whether these (unexpected)
features persist for anharmonic potentials where the optimality conditions can-
not be cast into only two conditions for the moments of the probability dis-
tribution. However, it is computationally quite difficult to determine optimal
protocols in the anharmonic case. For a case study, we use the quartic potential

V (x, λ) =
1

4
λx4 (3.98)

with T = 1, λi = 1, and λf = 2 together with a Fourier ansatz for the optimal
protocol

λ∗(τ ) = 1 +
τ

t
+ a0 sin(πτ/t) +

n
X

k=1

ak sin(2kπτ/t) (3.99)

where we omit higher odd frequencies because their symmetry is not suitable to
produce the peak structure found in the two harmonic cases. We next optimize
the parameters ak for a minimal mean work which we calculate as the average
of work values from 25000 randomly sampled initial values for x0 and p0. For
the minimization, we use a standard Mathematica algorithm. Note that the
optimal work values obtained in this numerical procedure are upper bounds for
the true optimal work since we have used a finite number of parameters.

The adiabatic work can be calculated using the microcanonical distribution
for given energy E and given λ. The change of internal energy then is given by

dE

dλ
=

fi

∂V

∂λ

fl

micro

≡ 1

Z

Z

dx
1

p

2m (E − V (x, λ))

∂V (x, λ)

∂λ
(3.100)
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with the microcanonical partition function

Z ≡
Z

dx
1

p

2m (E − V (x, λ))
. (3.101)

The evolution equation (3.100) is an ordinary differential equation for E(λ).
For the potential V (x, λ) = λx4/4, we obtain

dE

dλ
=

E

3λ
(3.102)

which has the solution E = E0λ
1/3 with initial energy E0. Averaging over

initial conditions x0, p0 according to the appropriate initial Boltzmann distri-
bution (3.78) then yields

W ad = 3
( 3
√

2 − 1)Γ(5/4)

Γ(1/4)
≃ 0.1949. (3.103)

In Fig. 3.9a, we compare optimal work values with the adiabatic work.
It is hard to decide from the numerics whether this adiabatic work can be
reached in a finite time. Clearly, even for very fast transitions compared to
the characteristic oscillation time tchar ≃ 3, the optimal work is well below the
work for a linear protocol which has the limit W jp = 0.25 for t → 0. The
optimal protocol again shows pronounced peaks for short transition times t,
see Fig. 3.9b. Since we use an ansatz with a finite number of parameters, it is
impossible to decide whether the optimal protocol is degenerate.

3.5 Quantum Systems

In this section, we investigate optimal protocols for quantum system. Fortu-
nately, for harmonic systems which are comparable to the first two case studies
from the previous sections, work distributions p(W) have recently been calcu-
lated for Schrödinger dynamics [103, 104]. By using their results, it is easy
to derive optimal protocols since in both cases, the work distributions (and
therefore also the mean work) depend on a single “rapidity” parameter which
vanishes for quasistatic transitions. In the last subsection, we study the two
level system of a single spin in a time-dependent magnetic field. If we impose
that the absolute value of the magnetic field stays fixed, the adiabatic work
can only be reached in a finite (non-zero) time tc.
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Figure 3.9 (a) Optimal work from the Fourier ansatz (3.99) as a function
of the transition time t for different number of Fourier modes n compared to
the work W lin obtained for the linear protocol λlin ≡ 1+ τ/t and the adiabatic
work W ad ≃ 0.1949. (b) Optimal protocols as obtained from the Fourier ansatz
(3.99) with n = 3 for different transition times t.

3.5.1 Case Study I: Moving harmonic potential

We consider the quantum analogue of a moving harmonic potential

V (x, τ ) =
mω2

2
(x − λ(τ ))2 (3.104)

with Hamiltonian

H = ~ω

»

a†a −
r

mω

2~
λ(τ )

“

a + a†
”

–

+
mω2

2
λ(τ )2 (3.105)

with creation and annihilation operators

a† =

r

mω

2~

“

x − i
p

mω

”

,

a =

r

mω

2~

“

x + i
p

mω

”

, (3.106)

Planck constant ~, frequency ω and a time-dependent minimum of the harmonic
potential λ(τ ) which is changed from an initial value λ(0) = 0 to a final value
λ(t) = λf during a given finite time t. It has been shown [104, 108] that the
work distribution p(W) for an initially thermalized ensemble depends only on
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the absolute value |z| of a “rapidity” parameter

z ≡
r

mω

2~

Z t

0

dτ λ̇(τ )eiωτ (3.107)

which vanishes for adiabatic transitions with t → ∞. However, even for tran-
sitions in a finite time t, there exist appropriate protocols λ(τ ) which lead
to a vanishing “rapidity parameter” z and thus to a vanishing mean work
W ∗ = W ad = 0. For a specific choice, it suffices to consider the simple trigono-
metric protocol

λ∗
n(τ ) = λf

"

τ

t
+

`

4π2n2 − t2ω2
´

sin
`

2nπτ
t

´

2nπt2ω2

#

(3.108)

which can be easily shown to yield z = 0 for any integer n. Thus, the adiabatic
work can also be achieved in an arbitrarily short transition time. Again, the
optimal protocol is highly degenerate. This degeneracy arises because the con-
tinuous protocol λ(τ ) with an infinite number of parameters has to satisfy only
two boundary conditions λ(0) = 0, λ(t) = λf and the adiabaticity condition
z = 0.

3.5.2 Case Study II: Harmonic potential with time-dependent
frequency

A similar argument can be applied to the quantum analogue of the harmonic
potential with time-dependent stiffness mλ(τ ) with Hamiltonian

H =
p2

2m
+

m

2
λ(τ )x2. (3.109)

The control parameter λ is changed time-dependently from an initial value
λ(0) = λi to a final value λ(t) = λf during a finite transition time t, which
corresponds to a time-dependent oscillator frequency ω(τ ) ≡

p

λ(τ ). It has
been shown [103] that the work distribution and therefore also the mean work
only depends on a single parameter

Q =
1

2
p

λiλf

h

λi

“

λfX(t)2 + Ẋ(t)2
”

+
“

λfY (t)2 + Ẏ (t)2
”i

− 1 (3.110)
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where X(t) and Y (t) are solutions for the classical harmonic oscillator equation

Ẍ(τ ) + λ(τ )X(τ ) = 0 (3.111)

with initial conditions

X(0) = 0 , Ẋ(0) = 1 , Y (0) = 1 , Ẏ (0) = 0. (3.112)

The dynamics of X(τ ) and Y (τ ) is constrained by their time evolution with
common protocol λ(τ ) which yields the relation

ẌY = Ÿ X. (3.113)

Addition of the term ẊẎ on both sides and subsequent integration leads to

ẊY = XẎ + 1 (3.114)

where the integration constant is determined by the initial conditions (3.112).
Using standard techniques, we perform a minimization of Q under the con-
straint (3.114) with respect to X(t), Ẋ(t), Y (t), and Ẏ (t). The optimality
conditions then are given by

X∗(t) =
1

p

λiλf

q

p

λiλf − λfY ∗(t)2

Ẋ∗(t) =

r

λf

λi
Y ∗(t) (3.115)

where Y ∗(t) can be chosen arbitrarily. The minimal value of the parameter Q
then is Q∗ = 0 and the optimal work is given by the adiabatic work which can
be calculated [103] as

W ∗ = W ad =
1

2
~(ωf − ωi) coth(β~ωi/2) (3.116)

where ωf ≡
p

λf and ωi ≡
√

λi. Again, only a finite number of optimality
conditions have to be fulfilled while the continuous protocol λ(τ ) corresponds
to an infinite number of parameters. The optimal protocol λ∗(τ ) thus is highly
degenerate and the adiabatic work can be reached in any given (arbitrarily
short) transition time.
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3.5.3 Two-level system

We next study a simple two level system consisting of a single spin in a time-
dependently rotating magnetic field B(τ ) = Be(τ ) where e(τ ) is a unit vector
which is to be changed from an initial value e(0) = êz to a final value e(t) = −êz

in a given finite transition time t, keeping the absolute value of the magnetic
field B fixed. Here êi denotes the unit vector in i-direction, i ∈ {x, y, z}. The
Hamiltonian of the system is given by

H = −~γBσ/2 (3.117)

with Pauli matrices σ and gyromagnetic ratio γ. In the basis of eigenvectors
of σz, the initial canonical density matrix is given by

ρ(0) =
1

Z

“

eβ~γB/2 |+〉 〈+| + e−β~γB/2 |−〉 〈−|
”

, (3.118)

where |+〉 is eigenvector of σz with eigenvalue +1, |−〉 is eigenvector of σz

with eigenvalue −1 and Z is the canonical partition function. The work in
such a finite time transition then is given by

W = 〈E〉t − 〈E〉0 = tr{H(t)ρ(t)} − tr{H(0)ρ(0)} (3.119)

where the time evolution of the density matrix ρ(τ ) is given by the Liouville-
von-Neumann equation

∂τρ(τ ) =
i

~
[ρ(τ ),H(τ )] . (3.120)

Quite generally, due to the adiabatic theorem in quantum mechanics, the
occupation probabilities of the states do not change for quasistatic driving.
The density matrix at the end of an adiabatic transition is therefore given by

ρ1 ≡ 1

Z

“

e−β~γB/2 |+〉 〈+| + eβ~γB/2 |−〉 〈−|
”

. (3.121)

Thus, initial and final energy are equal tr{H(0)ρ(0)} = tr{H(tc)ρ(tc)} and the
adiabatic work is zero W ad = 0.

We next try to identify optimal protocols for such a transition. Generally,
any pure spin state corresponds to a Bloch vector of unit length. Applying
a magnetic field B leads to a precession of the Bloch vector around the axis
of the magnetic field with angular frequency ωL ≡ γB. Therefore, after an
appropriate time tc = π/ωL, the direction of a Bloch vector perpendicular to
the magnetic field is reversed. During the adiabatic evolution from initial state

68



3.5 Quantum Systems

ρ0 to the final state ρ1, the initial Bloch vectors in êz and −êz directions are
also reversed. In order to reach the adiabatic work in a total transition time
t = tc, it therefore suffices to choose the protocol

e∗(τ ) =

8

<

:

êz for τ = 0
êx for 0 < τ < tc

−êz for τ = tc

(3.122)

which corresponds to an initial jump to a (constant) magnetic field perpendic-
ular to the z-direction, i.e. B = Bêx, and a final jump to the magnetic field
B = −Bêz. At the end of the transition, the density matrix is given by

ρ(tc) = ρ1 (3.123)

and the mean work thus is equal to the adiabatic work W ∗ = W ad = 0. The
adiabatic work thus can be reached in the finite time tc. In order to reach the
adiabatic work for any larger transition time t > tc, it suffices to choose the
protocol e∗(τ ) for times t ≤ tc, keeping the magnetic field B(τ > tc) = −Bêz

unchanged for all times τ > tc. For transition times t < tc, the adiabatic work
cannot be reached since there is no possibility to obtain the density matrix ρ1

from the given dynamics in a time t < tc.
However, if we had not constrained the magnetic field to have a given absolute

value B but allowed for any value of the magnetic field during the transition, we
would have found that the adiabatic work can be reached in any transition time
t. This is obvious because the spin precession frequency is proportional to B
and thus any precession frequency can be achieved in such a setup. For a given
transition time t, the magnetic field then can be tuned to yield a precession
frequency ωL = π/t which leads to W ∗ = 0.

More generally, if one allows any form of the Hamiltonian, it is obvious that
a work value arbitrarily close to the adiabatic work can be reached in any
given (short) time t for the following reason. Assume that the work W1 can
be reached in a slow transition with dynamics Ψ1(τ ) for the time-dependent
Hamiltonian H1(τ ) with t1 ≫ t. The Hamiltonian H(τ ) ≡ H1(t1 · τ/t) · t1/t
then leads to an equivalent dynamics Ψ(τ ) = Ψ1(t1 · τ/t) and therefore to an
equivalent final mean internal energy at time t. Thus, the work W1 (which
is arbitrarily close to W ad for long times t1) can already be reached in the
(arbitrarily short) time t. Note, however, that this argument is no longer true
if one allows only for any form of the potential V (x, τ ) since the kinetic energy
(and thus the dependence on the momentum p) in the Hamiltonian H(τ ) is
given and thus cannot be rescaled in this manner.
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For most practical purposes, the range of the control parameter will be lim-
ited by the experimental conditions. For quantum systems, refined strategies
for the optimal control of the time evolution of wave functions under such con-
straints have been developped [109, 110, 111, 112]. These techniques may be
generalized in order to specify minimum work protocols for quantum nonequi-
librium transitions in complex systems with additional constraints on the pos-
sible values of the control parameter λ(τ ).

3.6 Benefits for free energy reconstruction

We will next discuss the benefits for free energy calculations from the consid-
eration of optimal protocols. The Jarzynski relation

e−∆F/T =
D

e−W/T
E

(3.124)

allows for the calculation of a free energy difference ∆F from the average
D

e−W/T
E

over non-equilibrium work values. Consequently, from a finite set

of N non-equilibrium trajectories, the free energy ∆F can be estimated as

∆F est ≡ −T ln

"

N
X

i=1

exp(−βWi)/N

#

. (3.125)

First, we will describe how to define the error of a free energy estimate (3.125)
from the Jarzynski reconstruction. We assume that N nonequilibrium trajec-
tories (either from simulations or experiments) are used. Since the dynamics is
stochastic and therefore also the work values, the estimate for the free energy
difference will also have a stochastic contribution. Additionally, the free energy
estimate is biased because of the nonlinear averaging procedure [73]. We thus
have two different types of errors: (i) a systematic bias characterized by the
error of the mean value

B =
˙

∆F est¸− ∆F (3.126)

and (ii) statistical errors characterized by the standard deviation of the distri-
bution

σ =
p

Var(∆Fest) =
q

˙

(∆F est)2
¸

− 〈∆F est〉2. (3.127)

The mean squared error (MSE) then is the sum of both contributions:

MSE ≡
D

`

∆F est − ∆F
´2
E

= B2 + σ2. (3.128)
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In order to give a quantitative measure of the error, one defines the root mean
squared error

RMSE ≡
√

MSE =
p

B2 + σ2. (3.129)

Both the bias and the statistical error will decrease with an increasing number
of trajectories. On the other hand, faster trajectories which are computation-
ally cheaper lead to larger dissipation and therefore to an increased bias.

The optimal protocol for a minimal mean work is not strictly equivalent to
a protocol leading to an optimized free energy estimate. However, it has been
found that the latter shares the same features (jumps at the boundaries) for
overdamped Langevin dynamics [107]. We expect that this result holds also
for underdamped Langevin dynamics. As we will show in the following, the
optimal protocol leads to improved estimates of the free energy difference for
an underdamped Brownian particle for both our case studies of harmonic po-
tentials. For an anharmonic double-well potential, we show that approximated
delta-peaks at beginning and end of the process lead to an improved estimate
for the free energy difference.

3.6.1 Harmonic potentials

For Langevin dynamics (both overdamped and underdamped), the work distri-
bution for the moving harmonic potential (case study I) is Gaussian [113, 22].
For a Gaussian work distribution, it has been shown that the error in the es-
timate of the free energy difference decreases with decreasing mean work [73].
In the harmonic potential with time-dependent stiffness (case study II), the
work distribution is no longer Gaussian. For underdamped Langevin dynam-
ics, the error in the estimate of the free energy difference is indeed lower for
the optimal protocol compared to a linear protocol, see Fig. 3.10. We expect
a similar behaviour also for overdamped dynamics. For thermodynamic inte-
gration, it is obvious that a minimum mean work leads to the best estimate
of the free energy difference. We thus conjecture that appropriate singularities
at the boundaries generically improve free energy calculations from either fast
growth methods or thermodynamic integration.

3.6.2 Anharmonic potentials

It is computationally very difficult to obtain optimal protocols for anharmonic
potentials. The dynamics then is no longer governed by only a few parameters
and an optimization in analogy to harmonic potentials is not feasible. However,

71



Optimal protocols

∆F

λ

P
(W

)

W

P (W (ii))

〈W (i)〉

P (W (i))
〈W (ii)〉

(a)

τ

∆F est

P (∆F est (i))

P
(∆

F
es

t )

P (∆F est (ii))

(b)

Figure 3.10 Comparison of free energy estimates for underdamped Langevin
dynamics in a harmonic potential with time-dependent stiffness (case study II)
for a linear protocol and a continous approximation to the optimal protocol for
t̃ = 1, m̃ = 1, λ̃ = 2. The data were obtained from Langevin simulation of 106

trajectories for each protocol with γ = 1, m = 1, T = 1, λi = 1. (a) Distribution
P (W) of work values W for the two protocols shown in the inset: (i) the linear
protocol λ(τ ) = 1 + τ and (ii) the linear protocol with additional continuously
approximated delta singularities. The columns show the free energy difference

∆F ≃ 0.3466 and the mean work values
D

W(i)
E

≃ 0.4700(±0.0006),
D

W(ii)
E

≃
0.4270(±0.0005) which both are consistent with a direct evaluation based on
(3.62). (b) Histogram of 105 Jarzynski estimates for the free energy difference
∆F est obtained from N = 10 single trajectory work values Wi each. The
columns show the free energy difference and the mean value of the estimates
obtained from the two protocols. Since the bias (B(i) = 0.0066(±0.0004),
B(ii) = 0.0052(±0.0003)) can be neglected for both protocols, the RMSE is
dominated by the statistical error (σ(i) = 0.119, σ(ii) = 0.104) which is smaller
for protocol (ii).
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Figure 3.11 Sun potential (3.130) for different values of the control parameter
between λi = 0 and λf = 1. For increasing values of the control parameter λ,
the double well minimas move together and become shallower until they merge
to form a quartic potential at λf = 1.

we want to demonstrate in the following that the general features observed for
the optimal protocol (jumps and delta-peaks) can help to construct protocols
which lead to an improved estimate of the free energy. As a test case, we use
the Sun potential [97]

V (x, τ ) = T
`

x4 + 16x2(1 − λ(τ ))
´

(3.130)

with dimensionless position x. We consider initial value of the control pa-
rameter λi = 0 and final value of the control parameter λf = 1, see Fig.
3.11. Instead of searching for the optimal shape of the protocol, we show that
singularities at beginning and end which will be approximated by Gaussians
superimposed on an otherwise linear protocol generally improve free energy
estimates. More specifically, we use the protocol

λ(τ ) = v
h“

1 + (a + b)e−4 + (a + b)e−4(1−d)2/d2
”

τ + ae−4(τ−d)2/d2

−be−4(τ−1+d)2/d2 − ae−4 + be−4(1−d)2/d2
i

. (3.131)

with velocity v ≡ 1/t. We use underdamped Langevin dynamics as described
in Sect. 3.3 with m = 1, γ = 1, and T = 1. The free parameters a, b, d
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tune heigth and position of the peaks. A crude parameter search shows that
a = 0.19, b = 0.21, d = 0.15 are appropriate values for the considered velocity
v = 1. We next discuss the effect on free energy difference estimates which will
also depend on the number of available trajectories. In Tab. 3.1, we compare
free energy estimates obtained from the protocol (3.131) with free energy es-
timates from a linear protocol λlin(τ ) ≡ τ/t = vτ for different numbers N of
trajectories. As expected, the estimates become better for an increasing num-
ber of trajectories. In contrast to the results for the harmonic potential with
time-dependent stiffness shown in Fig. 3.10, the RMSE here is dominated by
the biased mean value of the estimate while the statistical error is small. For
only one trajectory, N = 1, the Jarzynski estimate is equivalent to thermody-
namic integration, where the measured work W is taken as an estimate for the
free energy difference. Also in this case, the protocol with singularities leads
to a significantly improved free energy estimate compared to a linear protocol.
However, while the mean work is lower for the protocol with singularities, the
standard deviation of the work is larger. For increasing number of trajectories
N , the ratio RMSE(i)/RMSE(ii) of the RMSE of the protocol with singularities
RMSE(i) and the linear protocol RMSE(ii) decreases, i.e, the advantage of the
optimal protocol becomes larger. For N = 1000, the RMSE can be reduced
by more than 40% by using approximated singularities in the protocol. In Fig.
3.12, histograms of the work distribution p(W) and the probability distribution
function of free energy estimates for N = 1000 for both the linear protocol and
the protocol (3.131) are shown. Even though the work distribution p(W) is
broader for the protocol with approximated peaks (3.131), this protocol yields
a better free energy estimate than the linear protocol. This can be understood
by considering the tail of the distributions for low work values. While the linear
protocol has a slightly asymmetric work distribution p(W), the work distribu-
tion p(W) for the protocol (3.131) is almost Gaussian. The histograms for the
estimates of the free energy difference in Fig. 3.12b also illustrate that the
RMSE for this double-well potential (3.130) is dominated by the bias rather
than the statistical error.

3.6.3 Sampling of initial conditions

In discussions on the efficiency of free energy calculations using the Jarzynski
relation as compared to “classical” alternatives such as thermodynamic inte-
gration or umbrella sampling, the computational cost of sampling the necessary
number of independent equilibrium initial configurations is often neglected. It
is obvious that this computational cost increases with the number of trajectories
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N ∆F est(i) B(i) σ(i) RMSE(i)

1 70.103 7.163 3.424 7.939

10 66.702 3.761 1.861 4.196

100 65.225 2.284 1.181 2.571

1000 64.518 1.577 0.811 1.773

N ∆F est(ii) B(ii) σ(ii) RMSE(ii)

1 70.708 7.77 2.909 8.294

10 67.929 4.988 1.713 5.274

100 66.587 3.646 1.191 3.836

1000 65.825 2.885 0.869 3.013

Table 3.1 Contributions to the root mean squared error (RMSE) in the free
energy estimate from the Jarzynski relation for the Sun potential (3.130) for
different number of trajectories N . Shown are numerical values obtained from
Langevin simulation of 1.5 · 106 trajectories with γ = 1, m = 1, T = 1, λi = 1
for the protocol with approximated singularities (3.131) (left) and the linear
protocol (right). The total error is smaller for the protocol with approximated
singularites with increasing advantage for an increasing number of trajectories
N .
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Figure 3.12 Comparison of free energy estimates for the anharmonic poten-
tial (3.130) for a linear protocol and a linear protocol with additional contin-
uously approximated delta singularities (3.131). The data were obtained from
Langevin simulation of 1.5 ·106 trajectories for each protocol with t = 1, γ = 1,
m = 1, T = 1, and λi = 1. (a) Distribution P (W) of work values W for the
two protocols shown in the inset: (i) the linear protocol λ(τ ) = τ and (ii) the
linear protocol with additional continuously approximated delta singularities
(3.131). The columns show the free energy difference ∆F ≃ 62.941 and the

mean work values
D

W(i)
E

≃ 64.518(±0.004),
D

W(ii)
E

≃ 65.825(±0.003). (b)

Histogram of 1.5·103 Jarzynski estimates for the free energy difference obtained
from N = 1000 single trajectory work values Wi each. The columns show the
free energy difference and the mean value of the estimates obtained from the
two protocols. The RMSE is dominated by the bias (B(i) = 1.577(±0.004),
B(ii) = 2.884(±0.0003)) which is smaller for protocol (ii).
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used in the calculations since for each trajectory, an independent initial config-
uration is needed. For thermodynamic integration, where only one (very long)
trajectory is considered, this effect is negligible. However, for thermodynamic
pertubation or its refined version, umbrella sampling, where “trajectories” are
instantaneous jumps and no dynamics is needed at all, equilibrium sampling
is the most important cost factor. For the Jarzynski method using finite-time
transitions, computational cost is shared among the sampling of initial con-
figurations and the calculation of dynamic trajectories. It is thus interesting
whether the computational cost of thermodynamic perturbation (or umbrella
sampling) can be improved by using finite-time trajectories rather than instan-
taneous jumps. For a case study, we consider the quartic potential

V (x, τ ) =
λ(τ )

4
x4 (3.132)

with initial value λi = 1 and final value λf = 2 of the control parameter λ(τ ).
For underdamped Langevin-dynamics with m = 1, γ = 1, we have calculated
free energy estimates for different initial sampling times. If initial sampling is
too short, no proper equilibrium configuration is reached and the free energy
estimate will be biased. On the other hand, if sampling is too long, fewer
trajectories can be calculated with given computational cost and the free energy
estimate will also be biased. In Fig. 3.13, root mean squared errors (RMSE)
for different times tr used for initial equilibration are compared. While slow
transitions yield better estimates for very short and very long equilibration,
there is a interval of times tr where faster transitions yield lower errors. In any
realistic free energy calculation, however, optimal times tr are not known and
in order to avoid incalculable biases, one would rather use long times tr. In
this situation and for the considered potential, it seems to be advantageous to
use few long trajectories rather than many short trajectories. In contrast, if
one had considered only the computational cost for the dynamics, many short
trajectories would have yielded a better estimate. It is thus crucial to include
the computational cost of equilibration when comparing different methods for
the calculation of free energy differences.

3.6.4 Discussion

We have shown that, in principle, optimal protocols can greatly improve free
energy calculations via the Jarzynski relation. For determining the optimal
protocol for an unknown potential, we envisage an adaptive procedure in which
trial protocols (including estimated singularities) are successively improved in

77



Optimal protocols

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  0.5  1  1.5  2  2.5  3  3.5  4

R
M

S
E

tr

v=1
v=2
v=5

v=10

Figure 3.13 Root mean squared error (RMSE) of Jarzynski free energy esti-
mates from underdamped Langevin simulations of a Brownian particle in the
potential (3.132) as a function of the time tr used for the initial equilibration
of the particle. The number of trajectories used in the free energy calcula-
tion is adjusted such that the overall computational cost of equilibration and
generation of dynamic trajectories is equivalent for each data point.

78



3.6 Benefits for free energy reconstruction

an iterative fashion guided by the monitored work values. It might also prove
beneficial to use the optimal moving trap protocol (case study I) rather than
a linear protocol in simulations of (protein) pulling experiments.
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4 Optimization of Brownian motors

4.1 Introduction

According to Carnot, the second law leads to a maximal efficiency ηC ≡
1 − Tc/Th for heat engines working between two heat baths at temperatures
Th > Tc. However, this efficiency can only be achieved in the quasistatic limit,
where transitions occur infinitesimally slowly and hence the power output van-
ishes. For real heat engines, it is more meaningful to calculate the efficiency at
the maximal power output of the machine. This concept is illustrated in Fig.
4.1. The Curzon-Ahlborn efficiency at maximum power ηCA ≡ 1 −

p

Tc/Th

was originally derived for a Carnot-engine in the endoreversible regime, i. e.
with finite thermal resistance coupling to the thermal reservoirs [114]. This be-
haviour is even recovered if path optimization techniques are used to maximize
the work output with respect to the driving scheme, see [115] and references
therein. Recent extensions [116, 117] of this apparent universal law to an in-
finitesimal series of coupled heat engines operating in a linear response regime
(i.e. between heat baths with small temperature difference) have again risen
the question whether the Curzon-Ahlborn result is quite generally a bound on
the efficiency of heat engines working at maximum power output.

In contrast to the macroscopic heat engines considered in conventional en-
doreversible thermodynamics, thermal fluctuations play a crucial role in most
biologically relevant systems and dynamics cannot be described on a deter-
ministic (macroscopic) level. In this regime, models for thermodynamic ma-
chines must incorporate fluctuation effects. A paradigmatic model for such a
heat engine is a thermal ratchet where transport is induced by an spatially
asymmetric potential in a temperature profile [118, 119, 120]. For such mod-
els, several studies on the efficiency at maximum power have been performed
[35, 121, 36, 122, 37]. In the quantum domain, the efficiency at maximum
power has been studied for a quantum dot [123] and a maser model [124]. Very
recently, it has been shown that the Curzon-Ahlborn efficiency is universal up
to second order in the scaled temperature difference (Th−Tc)/Th if a symmetry
relation between the two heat baths is fulfilled [124].

While heat engines on the mesoscale are interesting from a theoretical point
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Figure 4.1 The concept of the efficiency at maximum power. First, the power
output of the considered machine is optimized with respect to some parameter,
e. g. the cycle time for a cyclic heat engine. In a second step the efficiency is
calculated at this operational point of maximum power.
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of view, most biological motors are driven by chemical potential differences. For
these motors, one could expect that evolution has tuned their parameters such
that they operate in an optimal way. It is quite natural to analyze such motors
in the framework of finite-time thermodynamics, calculating their efficiency at
maximum power.

4.2 Cyclic Brownian heat engine

Most models for microscopic heat engines focus on thermal ratchets where
transport along a spatially varying time-independent potential is driven by a
periodic spatial temperature profile [118, 119, 120, 125]. Even if the recent
generation of temperature gradients on small length scales [126, 127, 128] is
a step towards the experimental realization of such ratchet heat engines, the
achievable currents are very small [44]. Moreover, a macroscopic limit of such
heat engines does not lead to heat engines of the Carnot type. In order to
overcome these difficulties, we introduce a simple model system of a stochastic
heat engine whose degrees of freedom are subject to a time-dependent potential
with time-dependent coupling to and decoupling from the two heat baths. This
model is somewhat distinct from the thermal ratchets which are driven by
spatial temperature differences. Ratchet heat engines with a time-dependent
but spatially constant temperature have been studied in [129, 130, 131].

Brownian heat engines have been investigated with a model system using a
spatial temperature profile and a ratchet potential [118, 119, 120]. This ther-
mal ratchet model has also been extended to a Brownian particle in the under-
damped regime [125]. Efficiencies of such ratchet heat engines [5, 132, 121, 122]
and related Brownian heat engines [133] have been calculated. Recent studies
on the efficiency at maximum power, however, have either been restricted to
the linear response regime [122] or use a questionable definition of work (which
allows for the efficiency to exceed the Carnot bound) [121]. For a ratchet heat
engine on a discrete state space, a violation of the Curzon-Ahlborn bound has
been found [35, 37].

We first describe the general setup of a stochastic heat engine consisting of
two adiabatic and two isothermal steps. We then illustrate this setup by a
simple one-dimensinal example and show that our model exhibits a universal
dependence of work and heat on the cycling time. This leads to a universal
form of the efficiency at maximum power. We first neglect the effect of kinetic
energy in our overdamped description and discuss its role (cf. [31]) at the end.
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Optimization of Brownian motors

4.2.1 The model

We consider a thermodynamic machine with internal degrees of freedom x and
an external time-dependent potential V (x, τ ). On a microscopic scale, it is
crucial to include thermal fluctuations in the description and thus to consider
the probability density p(x, τ ) to find the system in state x at time τ . In
the overdamped limit, the time evolution of p(x, τ ) is governed by the Fokker-
Planck equation

∂τp(x, τ ) = −∇ · j = −∇ · µ [− (∇V ) − T∇] p(x, τ ) (4.1)

which is the generalization of (2.4) to the multidimensional case. The mobility
then is replaced by a mobility matrix µ. Similar to a macroscopic Carnot
engine, we consider the machine cycle to consist of two isothermal and two
adiabatic transitions.

Isothermal steps .– The potential V (x, τ ) is varied during a time-interval
ti ≤ τ ≤ tf at a given constant temperature T . The mean work W spent in
this process (or extracted for W < 0)

W =

Z tf

ti

dτ

Z

dx p(x, τ )
∂V

∂τ

= Wirr − T∆S + ∆E (4.2)

becomes a functional of the time dependent potential V (x, τ ). In (4.2), we have
introduced the (mean) irreversible work

Wirr ≡
Z tf

ti

dτ

Z

dx
j(x, τ )µ−1j(x, τ )

p(x, τ )
, (4.3)

the (mean) internal energy

E(τ ) ≡
Z

dx p(x, τ )V (x, τ ), (4.4)

and the system entropy

S(τ ) ≡ −
Z

dx p(x, τ ) ln(p(x, τ )), (4.5)

see also Chapter 2.
Adiabatic steps .– Adiabatic steps are somewhat more difficult to conceive

realistically (just as for macroscopic heat engines). Here, they are idealized
as sudden jumps of the potential while uncoupling from one heat bath and
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4.2 Cyclic Brownian heat engine

coupling to the other heat bath occurs instantaneously and thus without heat
exchange. Note that, within our overdamped description, we first neglect ki-
netic energies. Considering the kinetic energy of the degrees of freedom would
lead to an additional heat flux in these steps because of the relaxation of the
momentum due to the temperature change. This issue is discussed in detail at
the end of this section. Since there is no time for relaxation, the distribution
p(x, τ ) and thus the system entropy S does not change during these steps and
hence these transitions are also isentropic. The mean work applied in such a
transition occuring at time τ is given by

W = ∆E =

Z

dx p(x, τ ) [V (x, τ + 0) − V (x, τ − 0)] . (4.6)

Cyclic process.– We construct a cyclic process by performing subsequently
the following four steps, see Fig. 4.2.

(1) Isothermal transition at temperature Th during time interval 0 < τ <
t1. The potential V (x, τ ) is changed time-dependently and work is extracted
(W < 0).

(2) Adiabatic transition (instantaneously) from temperature Th to tempera-
ture Tc at time τ = t1. The distribution pb(x) ≡ p(x, τ = t1) does not change
during this step.

(3) Isothermal transition at temperature Tc during time interval t1 < τ <
t1 + t3. The potential V (x, τ ) is changed time-dependently (with W > 0).

(4) Adiabatic transition from temperature Tc to temperature Th at time
τ = t1 + t3. The distribution pa(x) ≡ p(x, τ = t1 + t3) does not change during
this step.

For a cyclic process, periodicity in time requires p(x, t1 + t3) = p(x, 0) thus
imposing a constraint on the admissible time-dependence of V (x, τ ). Moreover,
a cyclic process implies

P4
i=1 ∆E(i) =

P4
i=1 ∆S(i) = 0. Since the system

entropy S does not change during the adiabatic steps, ∆S(2) = ∆S(4) = 0, we
even have ∆S(1) = −∆S(3) ≡ ∆S. The total work then is given by

W =

4
X

i=1

W (i) =

4
X

i=1

W
(i)
irr −

4
X

i=1

Ti∆S(i) +

4
X

i=1

∆E(i)

= W
(1)
irr + W

(3)
irr − (Th − Tc)∆S. (4.7)

The heat uptake during one complete cycle from the hotter heat bath at tem-
perature Th is

− Q(1) ≡ −W (1) + ∆E(1) = Th∆S − W
(1)
irr . (4.8)
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Figure 4.2 Scheme for a cyclic process of a stochastic heat engine operating
between heat baths at temperature Th and Tc. The dotted curve shows a one-
dimensional potential V (x, τ ) and the filled curve the boundary values pa(x),
pb(x) of the corresponding distribution p(x, τ ). Steps 1 and 3 are isothermal
whereas steps 2 and 4 are adiabatic.
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4.2.2 Example

In order to illustrate this general concept of a stochastic heat engine, we con-
sider the motion of a colloidal particle in a harmonic potential with time-
dependent stiffness. The corresponding potential is given by (3.22)

V (x, τ ) =
λ(τ )

2
x2. (4.9)

The probability distribution p(x, τ ) remains Gaussian for all times τ if it is so
initially. The equation of motion for the variance w(τ ) ≡

˙

x2(τ )
¸

is given by
(3.23)

ẇ = −2µλw + 2µT. (4.10)

For any initial Gaussian distribution p(x, 0), the internal energy of the system
is given as

E(τ ) =

Z

dx p(x, τ )V (x) = w(τ )λ(τ )/2. (4.11)

For a constant temperature T , the mean work (4.2) can be cast into a local
functional of w, see (3.25),

W [λ(τ )] =

Z tf

ti

dτ λ̇
w

2
= Wirr − T∆S + ∆E (4.12)

=
1

4µ

Z tf

ti

dτ
ẇ2

w
− 1

2
T [lnw]

tf

ti
+

1

2
[λw]

tf

ti
.

We now have to choose a protocol λ(τ ) for the isothermal transitions. The
variance w of the particle position depends on this protocol via (4.10). As a
consequence, the mean work (4.12) will also depend on this protocol. We next
identify protocols λ∗

1(τ ) and λ∗
3(τ ) yielding a maximal (mean) work output

which corresponds to a minimal (mean) work. Rather than imposing bound-
ary conditions on the control parameter λ, we impose boundary values of the
particle position variances wa ≡ w(0) = w(t1 + t3) and wb ≡ w(t1) for a given
finite cycle time ttot ≡ t1 + t3. While it might seem more natural to impose a
range of (experimentally) possible λ values, such an approach can lead to un-
physical optimal processes which are driven infinitely fast with infinitesimally
small changes in the variance w(τ ). With slight modification of the results
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from Chapter 3.2 due to the different boundary conditions, we get the optimal
protocols for the variances

w∗
1(τ ) = wa

“

1 + (
p

wb/wa − 1)τ/t1
”2

(4.13)

w∗
3(τ ) = wb

“

1 + (
p

wa/wb − 1)(τ − t1)/t3
”2

. (4.14)

The optimal protocols λ∗
i (τ ) for the strength of the trap can then be calculated

from (4.10). The resulting quantities are shown in Fig. 4.3.

For this cyclic process, we get the total work output

− W =
1

2
(Th − Tc) ln

wb

wa
− 1

µ

„

1

t1
+

1

t3

«

(
√

wb −
√

wa)2

≡ (Th − Tc)∆S −
„

1

t1
+

1

t3

«

Airr, (4.15)

with the irreversible “action” Airr. The work only depends on the “reduced
time”

tr ≡ 1/(1/t1 + 1/t3) = t1t3/(t1 + t3). (4.16)

The heat uptake during one complete cycle from the hotter heat bath at
temperature Th is given as

− Q(1) = Th∆S − W
(1)
irr = Th∆S − Airr

t1
(4.17)

yielding the efficiency

η ≡ −W

−Q(1)
=

(Th − Tc)∆S − Airr/tr

Th∆S − Airr/t1
(4.18)

For t1, t3 → ∞, we recover the Carnot efficiency ηC ≡ 1−Tc/Th. This shows
that the sudden adiabatic steps do not spoil the reversibility.

We immediately recognize from (4.15) that there exists a “stall time”

tstr ≡ Airr

(Th − Tc)∆S
=

2 (
√

wb −
√

wa)2

µ(Th − Tc) ln (wb/wa)
(4.19)

where the heat engine does not perform work anymore. Rather, at smaller
times tr < tstr , it consumes work.

88



4.2 Cyclic Brownian heat engine

 1

 2

 3

 4

 0  3  6

 
 
 
 

w

T

λ

Teff

τ

Figure 4.3 Stochastic heat engine in a harmonic potential: Time dependence
of the variance of the particle position w, the temperature T , the trap strength
λ and the effective temperature Teff (4.34) for one cycle with t1 = t3 = 3,
wa = 0.5, wb = 1, Th = 2, Tc = 1, and µ = 1, starting with step 1.

We next explore how fast the heat engine must be driven to yield a maximal
power output. The power P = −W/(t1 + t3) has a maximum for

t∗1 = t∗3 =
4Airr

(Th − Tc)∆S
(4.20)

which yields a reduced optimal time

t∗r =
1

2
t∗1 = 2tstr . (4.21)

A similar relation between the stall force and the force at maximum power
has been obtained in [116] within a linear response treatment. The total work
output at maximum power

−W ∗ =
1

2
(Th − Tc)∆S (4.22)

and the corresponding heat uptake

−Q∗(1) =
1

4
∆S(3Th + Tc) (4.23)
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then yield the efficiency at maximum power

η∗ =
2(Th − Tc)

3Th + Tc
=

ηC

2 − ηC/2
. (4.24)

This result is independent of the imposed boundary values wa and wb, sug-
gesting a certain degree of universality confirmed below. For large temperature
differences, Th − Tc ≫ Tc, the efficiency has the limit η∗ → 2/3. An expansion
for small relative temperature differences, T ≡ (Th − Tc)/Tc ≪ 1,

η∗ =
2T

3T + 4
=

T
2

− 3T 2

8
+

9T 3

32
+ O

`

T 4
´

(4.25)

shows that the deviation from the Curzon-Ahlborn efficiency

ηCA = 1 −
p

Tc/Th =
T
2

− 3T 2

8
+

10T 3

32
+ O

`

T 4´ (4.26)

occurs at the third order in the relative temperature difference T . The validity
of the Curzon-Ahlborn efficiency in a linear response regime has been shown
quite generally in [116]. We recover this result even including the second order
in the relative temperature difference, which goes beyond linear response. For
larger deviations from equilibrium, however, the efficiency at maximum power
in this example is smaller than the Curzon-Ahlborn bound.

4.2.3 General Case

We now relax the restriction to one degree of freedom in a harmonic potential
and go back to the general case where we also impose two boundary distribu-
tions: pa(x) at τ = 0 (and at τ = t1 + t3) and pb(x) at τ = t1 for the two
isothermal transitions. As seen from (4.7), minimizing the total mean work
W (leading to a maximal work output) subject to such boundary conditions,
which leave the ∆S term invariant, is equivalent to the minimization of the ir-
reversible work (4.3) for both isothermal transitions. Using a normalized time
τ̂ ≡ (τ − ti)/(tf − ti) and thus a time-dependent distribution P(x, τ̂ ), it follows
from (4.1) that the current can be expressed as j = J (x, τ̂)/(tf − ti). The
irreversible work (4.3) can then be written as

Wirr ≡ 1

(tf − ti)

Z 1

0

dτ̂

Z

dx
J (x, τ̂ )µ−1J (x, τ̂)

P(x, τ̂)
. (4.27)
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Figure 4.4 Efficiency η∗ at maximum power as a function of (Th −Tc)/Tc for
α = 1/2, αCA, and 1, corresponding to the temperature independent mobility
of the example, the Curzon-Ahlborn efficiency, and the upper bound of (4.32),
respectively. The inset shows the same data in a log-plot.

Minimizing the irreversible work Wirr thus is equivalent to minimizing the in-
tegral in (4.27) which only depends on P(x, τ̂) and J (x, τ̂). The time evo-
lution ∂τp = −∇ · j expressed in the time-normalized quantities imposes the
constraint ∂τ̂P = −∇ · J . Minimizing the integral in (4.27) subject to this
constraint leads to the optimal distribution P∗(x, τ̂ ) which does not depend on
the total transition time. Since this optimization has to be done for each of the
isothermal transitions separately, we get optimal distributions P∗

1 (x, τ/t1) and
P∗

3 (x, (τ−t1)/t3) for the two isothermal transitions which both are independent
of the total transition times tj , j = 1, 3.

The optimization with respect to maximal work output is tractable analyt-
ically only if we restrict to harmonic potentials V (x, τ ), as shown above in
the example. Otherwise, the resulting Euler-Lagrange equations are non-linear
partial differential equations and even the numerical solution seems to be a
difficult task. For a derivation of our central result, however, we do not need
an explicit solution. It suffices to observe that (4.27) implies a remarkable uni-
versal feature for the optimal driving scheme: The (mean) irreversible work in
the isothermal transitions scales exactly with the inverse transition time

W
(j)
irr = A

(j)
irr /tj , (4.28)

where A
(j)
irr is independent of the transition times tj(j = 1, 3) and becomes
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a functional only of pa(x), pb(x), and the mobility matrix µ. As a direct
consequence, the work output during a complete cycle is given by

−W = (Th − Tc)∆S − A
(1)
irr

t1
− A

(3)
irr

t3
, (4.29)

The heat flux from the hotter bath Th is

−Q(1) = Th∆S − A
(1)
irr

t1
. (4.30)

For negative ∆S < 0 and transition times larger than the “stall time” t > tst,
where the engine does not perform work anymore, the setup performs as a heat
engine with efficiency

η ≡ −W

−Q(1)
(4.31)

approaching the Carnot efficiency ηC ≡ 1−Tc/Th for infinite cycle time t → ∞.
Maximization of P ≡ −W/(t1 + t3) with respect to the transition times t1, t3
leads to a universal expression for the efficiency at maximum power of

η∗(α) =
ηC

2 − αηC
(4.32)

where

α ≡ 1/

„

1 +

q

A
(3)
irr /A

(1)
irr

«

. (4.33)

This expression for the efficiency at maximal power is our main result. In the
linear response limit, Th − Tc ≪ Tc, we recover η∗ → ηC/2, consistent with the

analysis in [116]. Beyond linear response, one needs the irreversible action A
(i)
irr

which, in principle, can be calculated for any specific system by solving the
optimization problem. In general, due to the temperature dependence of the
mobility µ, the irreversible action A

(i)
irr is temperature dependent. An explicit

statement becomes possible for an isotropic mobility matrix µ in (4.1). In this

case, α depends only on the temperature dependence of µ via A
(3)
irr /A

(1)
irr =

µ(Th)/µ(Tc). For a temperature independent mobility, i. e. α = 1/2, we
recover the result (4.24) from the example above which thus holds also in higher
dimensions. Only for µ ∼ 1/T , corresponding to α = αCA ≡ 1/(1 +

p

Tc/Th),

we recover the Curzon-Ahlborn efficiency η∗ = 1 −
p

Tc/Th. These efficiencies

92



4.2 Cyclic Brownian heat engine

at maximum power are shown in Fig. 4.4. From a theoretical perspective,
it is important to note that for 1 > α > αCA, the result (4.32) exceeds the
Curzon-Ahlborn bound. While in the present setup this can be achieved only
if the mobility µ decreases faster than ∼ 1/T with temperature, α = 1 can be
reached in discrete ratchet heat engines [35].

As outlined in the introduction, the Curzon-Ahlborn efficiency is a rather
universal bound on the efficiency at maximum power for a wide class of model
heat engines. Why does the efficiency at maximum power derived here also
under quite general conditions differ significantly from the Curzon-Ahlborn
result?

A first hint is given by analyzing our example in analogy to an endore-
versible Curzon-Ahlborn machine. For the latter, a linear Fourier law for the
heat flow is assumed. However, for systems driven strongly out of equilibrium,
non-linearities can occur. In order to analyze our model heat engine in this
framework, we first have to assign an “effective” temperature to the working
medium (the Brownian particle). Since in this harmonic potential the distribu-
tion remains equilibrium-like (Gaussian) even out of equilibrium, we can assign
an effective temperature

Teff(τ ) ≡ w(τ )λ(τ ) (4.34)

to the system. If we (instantaneously) coupled a heat bath at this temperature
Teff to our system and kept the current trap strength λ constant, we would
recover an equilibrium situation. We now express the heat exchange of the
system in terms of this effective temperature

dQ = dW − dE =
1

2
wdλ − 1

2
d(wλ) = −1

2
λdw

= −1

2
λẇdτ = −µλ(T − λw)dτ

= −µλ(τ )(T − Teff)dτ (4.35)

and recover a linear Fourier law for the heat flow. However, the thermal con-
ductivity µλ(τ ) becomes time-dependent in contrast to the assumptions of the
endoreversible Curzon-Ahlborn engine.

Secondly, the derivation of an apparent universal Curzon-Ahlborn bound in
Refs. [116, 117] by using a cascade construction of N machines working in
the linear response regime comes at the price of an infinitesimally small power
output in the (implicitly assumed) limit N → ∞. For the setup in [116], it
can easily been shown that for a mechanical heat engine in the linear response
regime, the maximal power output scales as P ∼ (∆T )2 where ∆T ≡ Th − Tc.
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The coupling of N such machines with equal temperature differences ∆T =
(Th − Tc)/N thus leads to a total maximal power output of P ∗ ∼ 1/N .

4.2.4 Role of kinetic energy

So far, we have neglected the kinetic energy of the degrees of freedom. How-
ever, even in the overdamped limit, coupling to and decoupling from the heat
baths leads to a heat flux due to the kinetic energy of the particle [31]. This
additional heat flux Qkin = (Th − Tc)/2 per degree of freedom can easily be
considered, leading to a general decrease of efficiencies. For large changes of
the potential V (x, τ ) during the cycle, however, this contribution is small and
can be neglected. In general, a given amount of heat leakage Qleak per cycle
(e. g., due to the kinetic energy) leads to an additional term in (4.30)

−Q(1) = Th∆S + Qleak − A
(1)
irr

t1
. (4.36)

For Qleak > 0, Carnot efficiency cannot be reached anymore and for t1 → ∞,
t3 → ∞, we get the quasistatic efficiency

ηqs ≡ (Th − Tc)∆S/(Th∆S + Qleak). (4.37)

A straightforward calculation shows that the result (4.32) then is generalized
to

η∗(r) =
ηqs

2 − αηqs
(4.38)

where ηC now is replaced by the quasistatic efficiency ηqs.

4.3 Molecular motor at maximum power

Molecular motors are essential for directed transport within the cell [134].
They typically operate under nonequilibrium conditions due to the unbalanced
chemical potentials of molecules like ATP or ADP involved in the chemical
reactions accompanying the motor steps. In contrast to macroscopic engines,
fluctuation effects are important thus allowing for backward steps even in di-
rected motion. The stochastic dynamics of these motors under an applied
load force can be probed experimentally by single molecule assays (see, e. g.,
for kinesin [135], myosin [136, 137, 138] or ATPase [139, 140]). Generically,
such biomotors are modelled either in terms of continuous “flashing ratchets”
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[141, 3, 4, 27] or by a (chemical) master equation on a discrete state space
[142, 143, 144, 145, 33, 146, 34].

In contrast to heat engines, biomotors are driven by chemical potential differ-
ences. The efficiency of such motors is bounded by ηmax = 1 [30]. This bound
can only be reached in an equilibrium situation corresponding to a vanishing
power output of the motor. In analogy with heat engines, we here propose to
investigate such motors under the condition of maximum power output.

We start with a simple model system for a chemically driven biomotor [142]
and show that the qualitative results also apply to a more realistic motor model
involving a second cycle. In this second model, a futile cycle leads to ATP
consumption even at the stall force. Mechanical and chemical cycles are no
longer tightly coupled. In both cases, the efficiency at maximum power crucially
depends on the position of the transition state or, equivalently, on the load
distribution factor. In fact, a transition state near the initial position is most
favorable with respect to a maximal motor power output. For the efficiency
at maximum power, we obtain two counter-intuitive results : (i) it increases
when the transition state position is changed in such a way that the power
output rises and (ii) it can increase when the system is driven further out of
equilibrium by a larger chemical potential difference.

4.3.1 Model I

We first consider a linear molecular motor with equivalent discrete states (sites)
Xn (n = 0,±1,±2, . . . ) with distance l between the sites and next-neighbour
transitions between these states subject to a force F in backward direction, see
Fig 4.5. Forward reactions are assumed to be driven by ATP molecules with
chemical potential µATP and backward transitions by ADP and P molecules
with chemical potentials µADP and µP, respectively,

ATP + Xn
w+

⇋
w−

Xn+1 + ADP + P. (4.39)

If the dilution of all involved species is high, we can assume mass action
law kinetics for the rate constants. Additionally, we assume the usual force
dependence of rate constants [142] such that the transition rates for forward
and backward steps are given by

w+ = cATPk+e−βδF l (4.40)

w− = cADPcPk−eβ(1−δ)F l, (4.41)
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w
+

w
−

l

F

V (x)
δl

Figure 4.5 Simple linear model (Model I) of a molecular motor with step
size l. (a) Scheme of the involved chemical reactions. A forward step involves
hydrolysis of ATP into ADP and P. (b) Scheme of the free energy landscape
V (x) of the molecular motor. The transition state position δ determines the
force dependence of the transition rates.

respectively. Here, ci are the (dimensionless) concentrations of i molecules
(i = {ATP, ADP,P}) and β ≡ 1/(kBT ). Note that we explicitly use Boltz-
mann’s constant kB during this section since we want to compare our results
to experimental data. The bare reaction rates k+, k− are concentration inde-
pendent. The load distribution factor 0 ≤ δ ≤ 1 characterizes the location of
the transition state, see Fig. 4.5. It can vary between the extreme cases δ = 0
(sometimes characterized as a “power stroke” [147] ) and δ = 1, where forward
or backward rate constants, respectively, no longer depend on the force. The
chemical potential of the involved molecules is

µi = µ0
i + kBT ln ci, (4.42)

with a reference value µ0
i . Thermodynamic consistency requires

w+/w− = e(∆µ−F l)/(kBT ), (4.43)

where ∆µ ≡ µATP − µADP − µP. The (mean) velocity of the motor can then
be calculated as

v = l(w+ − w−) = k−cADPcPl
h

eβ(∆µ−δF l) − eβ(1−δ)F l
i

. (4.44)

Thermodynamic quantities for each single transition can now be defined [33,
8, 148] on the basis of the transition rates. The chemical work applied during
one forward step is just the chemical potential difference Wchem = ∆µ. The
mechanical work delivered by the molecular motor during a single forward
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Figure 4.6 Maximum power Ẇ ∗ in units of k−cADPcPkBT exp(β∆µ) as a
function of the position of the transition state δ.

step against the applied force F is given by W = F l. Since all states are
equal, the internal energy does not change, ∆E = 0, and thus the difference
Q ≡ Wchem−W is dissipated as heat in the thermal environment. The efficiency
η of this chemical motor is given by the ratio of mechanical work and chemical
work applied by the chemical potential difference [30] as

η =
W

Wchem
=

F l

∆µ
. (4.45)

With the force velocity relationship (4.44), the power output follows as

Ẇ ≡ Fv = k−cADPcPlF
h

eβ(∆µ−δF l) − eβ(1−δ)F l
i

. (4.46)

The power Ẇ is zero for F → 0. When the force approaches the stall force
F → F st ≡ ∆µ/l, where the velocity vanishes, the power output also becomes
infinitesimally small. Thus, there is an optimal force F ∗, where the power
output is maximal for a given chemical potential difference ∆µ. This optimal
force is given by dẆ/dF = 0 which leads to the implicit relation

eβ∆µ = eβlF∗ 1 + (1 − δ)βlF ∗

1 − δβlF ∗
. (4.47)
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Figure 4.7 Efficiency at maximum power η∗ as a function of (a) the position
of the transition state δ and (b) the chemical potential difference ∆µ for Model
I.

For given β∆µ, the scaled optimal force βlF ∗ depends only on the parameter
δ. The optimal power Ẇ ∗ is shown in Fig. 4.6 as a function of the transition
state position δ. Numerical results for the efficiency at maximum power η∗

are shown in Fig. 4.7. Note that the latter results are quite universal since
no kinetic parameters enter these graphs. Both, power output and efficiency
increase with decreasing δ and thus, a transition state near the initial position
(δ = 0) is most favorable. Previously, it has been speculated [147] that such a
mechanism, where forward rates are almost independent of the force, is realized
in molecular motors in order to reach a large motor velocity (corresponding to
a high power output). Beyond corroborating this idea, we find as a new result
that small δ also leads to a higher motor efficiency at maximum power. This
is somewhat counter-intuitive since an increase in power usually leads to a
decrease in efficiency.

In the limit of small chemical potential differences (where the motor works
in a linear response regime near equilibrium), efficiencies at maximum power
can be obtained analytically. In this limit, the stall force also becomes small
and thus the exponentials in (4.44) can be expanded and truncated after the
first order in ∆µ and F leading to the approximate force-velocity relation

v ≈ k−cADPcPβl(∆µ − F l). (4.48)
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Figure 4.8 Two-cycle model for a molecular motor (Model II). (a) Scheme of
the reaction pathways. (b) Definition of rate constants.

In analogy to the linear response result for heat engines [116], the efficiency
at maximum power universally becomes η∗ = 1/2. Beyond linear response,
as a somewhat surprising result, the efficiency at maximum power increases
for increasing chemical potential differences for positions of the transition state
δ < 1/2, compare Fig. 4.7b. Usually, dissipative cost increases when the system
is driven further out of equilibrium.

4.3.2 Model II

In order to check the generality of the results obtained for the (simple) Model I,
we now calculate the efficiency at maximum power for a more involved motor
model. Recent experiments focussing on the backsteps of kinesin [135] indi-
cate that a realistic motor model should comprise at least one additional cycle
[135, 146, 34] leading to non-zero dissipation even at stall force. Such a mech-
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anism with additional motor cycles presumably also applies to myosin motors
which have a similar molecular structure [149]. In order to capture the main
experimental finding of ATP-driven backsteps from Ref. [135], we propose a
minimal model as shown in Fig. 4.8. This model is very similar to recent
kinesin models [135, 146, 34] and thus captures experimental findings quali-
tatively. Binding and hydrolyzing ATP leads to the unbinding of one motor
head. The elastic energy then leads to a biased diffusive search for the next
binding site. For high load forces, the probability of a backstep increases. Note
that such backsteps involve ATP consumption and thus decrease the coupling
ratio between chemical and mechanical motor cycles. The force dependence is
modelled as

w+
21 = k+

21e
−βδ1lF , w+

12 = k+
12e

−β(1−δ2)lF

w−
21 = k−

21e
βδ2lF , w−

12 = k−
12e

β(1−δ1)lF (4.49)

with the transition state located at δ1,2 for forward and backward steps, respec-
tively. Thermodynamic consistency requires k+

21/k−
12 = exp(β∆E), k−

21/k+
12 =

exp(β∆E), and w12/w21 = exp[β(∆µ − ∆E)] where ∆E is the potential en-
ergy difference between state 1 and state 2. Given all rate constants, the steady
state can be calculated as

ps
1 =

w21 + w+
21 + w−

21

w21 + w+
21 + w−

21 + w12 + w+
12 + w−

12

, (4.50)

ps
2 =

w12 + w+
12 + w−

12

w21 + w+
21 + w−

21 + w12 + w+
12 + w−

12

(4.51)

with motor velocity

v = l
ˆ

ps
1(w

+
12 − w−

12) + ps
2(w

+
21 − w−

21)
˜

. (4.52)

The power output of the motor is Ẇ = Fv. Chemical work is applied to the
motor only in the (vertical) transitions involving ATP and ADP+P. In such a
step, chemical energy of amount ∆µ is transferred to the system and thus the
chemical work per unit time is

Ẇchem = ∆µ(ps
1w12 − ps

2w21). (4.53)

The motor efficiency η ≡ Ẇ /Ẇchem can then be calculated for a given set of
rate constants and a given force.

We again ask for the optimal force leading to a maximal power output. We
recover the qualitative results of Model I for the maximum power (data not
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Figure 4.9 Efficiency at maximum power for Model II. (a) Efficiency at maxi-
mum power as a function of the transition state position δ ≡ δ1 = δ2 with w21 =
0.275/s, k−

21 = 0.7/s, k+
21 = 1.8/s, ∆E = 10kBT . (b) Relation between force [in

pN ] and velocity [in nm/s] for δ1 = 0.004, δ2 = 0.024, w21 = 0.275/s, k−
21 =

0.7/s, k+
21 = 1.8/s, ∆E = 10kBT, ∆µ = 20kBT, l = 9(kBT )/pN ≃ 36nm com-

pared to corresponding data from myosin experiments [138]. For these param-
eters, the optimal force is F ∗ ≃ 1.5pN and the efficiency at maximum power
becomes η∗ ≃ 0.18.
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shown) and the efficiency at maximum power, see Fig. 4.9a, also in this (more
realistic) model of a molecular motor. Specifically, the largest efficiency can be
achieved for both transition states near the initial position (δ ≡ δ1 = δ2 = 0).
For small δ, the efficiency first increases with increasing chemical potential
difference ∆µ until it reaches a maximum. The advantage of a transition state
near the initial position with respect to high power output and high efficiency
thus seems to be a quite general characteristics for molecular motors. Note that
efficiencies are generally lower due to the ATP-driven backward steps leading
to additional dissipation in such models with additional cycles.

4.3.3 Discussion

We have first investigated a simple genuine model of a molecular motor under
the condition of maximum power output. As our main result, we find that a
transition state near the initial position yields both the largest power output
and the largest efficiency at maximum power. Qualitatively, this behaviour is
also recovered in a more realistic model involving a second motor cycle. The
advantage of a small load distribution factor δ with respect to large power
output and high efficiency at maximum power thus seems to be quite generic.
So far, we have assumed 0 ≤ δ ≤ 1. Recently, it has been proposed to use
δ < 0 to interpret non-monotonous force velocity relations [150]. For negative
δ < 0, the efficiency at maximum power is even larger than for δ = 0 in both
our model systems.

For both models, the efficiency at maximum power can increase when the
system is driven further out of equilibrium by a higher chemical potential dif-
ference. This result should be distinguished from previous work predicting a
maximal efficiency for non-zero chemical potential differences [30, 34]. In our
first model, the efficiency decreases monotonically as a function of the chemical
potential difference for a given load F .

For kinesin motors, it is difficult to find clear evidence for a putative design
principle of a transition state near the initial position. While previous studies
have found small δ . 0.1 for the main motor step [144], a transition state in
the range δ ≃ 0.3...0.65 has been extracted recently [146]. For myosin motors,
small δ has been reported for the main motor step (δ < 0.1 [137], [145]) , which
is also supported by our model II as detailed in the following.

In Fig. 4.9b, the force velocity relation of our model with appropriate rate
constants is compared to a recent myosin experiment [138]. For forces F > 0,
the experimental data, including a step at F ≃ ∆µ/l, is captured by our simple
model. For negative forces, our model shows a second step at F ≃ −∆µ/l which

102



4.3 Molecular motor at maximum power

is not present in the experimetal data. Both steps in the theoretical model are
explained by the fact that for large forces |F | ≫ ∆µ/l, vertical (ATP driven)
transitions are slow compared to the horizontal (force dependent) transitions
and the motor is basically pulled by the load. The step at negative forces
could be eliminated by introducing a force dependent energy difference ∆E(F )
which corresponds to an additional force dependence of the vertical transitions.
However, instead of introducing new parameters, we keep the simple model II
and extract from the crude fit shown in Fig. 4.9b transition state positions
δ1 = 0.004, δ2 = 0.024. These values mainly determine the behaviour of the
molecular motor at large loads |F | ≫ ∆µ/l. With these parameters, we find an
efficiency at maximum power of η∗ ≃ 0.18 which, given the strong decay of η∗

with increasing δ, is quite close to the optimal value η∗ ≃ 0.31 for δ1 = δ2 = 0,
see Fig. 4.9a.

We do not claim that our simple model can explain all aspects of myosin
motility. Rather, we have chosen model II in order to probe the robustness
of our main results concerning the efficiency at maximum power. In order to
construct a comprehensive model of myosin, more experimental data seem to
be necessary.
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5 Optimization of kinetic proofreading in
translation

5.1 Introduction

In the biological cell, most processes involve complex proteins which are com-
posed of 20 different aminoacids. These proteins are assembled from the genetic
code stored in the form of DNA. This process is called gene expression and oc-
curs in two main steps, see also Ref. [151] and Fig. 5.1. First, a sequence of
the DNA is transcribed by an enzyme called RNA-polymerase (RNAP) into
messager RNA (mRNA). Both RNA and DNA are chain molecules which are
composed of 4 different nucleotides or nucleotide pairs, respectively. Second,
the information on the mRNA is translated by a protein complex called ribo-
some into a protein. Here, aminoacids which are bound to a so called transfer
RNA (tRNA) corresponding to the mRNA template are recognized by the ri-
bosome. Each set of 3 nucleotides (which is called codon) codes for a specific
aminoacid which is incorporated into the protein. Some aminoacids are coded
for by more than one codon. There are also special stop codons which indicate
that the protein is complete and thus lead to to the termination of the transla-
tional process. In both stages, several regulatory mechanisms are involved and
some proteins even serve to regulate the expression of other proteins.

In order to perform its tasks properly, the gene expression machinery must
operate (i) at a very low error rate, (ii) at a large rate of protein assembly,
and (iii) in a highly cotrolled manner. The error of gene expression can be
decomposed in three main contributions: transcriptional errors (incorporation
of a wrong nucleotide into the mRNA), errors in the production of complexes of
transfer RNA (tRNA) and corresponding aminoacid (aminoacylated tRNAs or
aa-tRNAs), and errors during translation (incorporation of a wrong aminoacid
into the protein). Since translation is the least accurate of these processes, see
Ref. [152], it dominates the overall error of gene expression. It is therefore
crucial for the cell to optimize the translation process for a low error rate.

Most biological recognition is performed by a simple key and lock princi-
ple. For the translation process, this implies that the ternary complex of the
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Figure 5.1 Central dogma of molecular biology. The expression of the ge-
netic code into proteins occurs in two subsequent steps. First, a sequence
of the genetic information on the DNA is transcribed by an enzyme called
RNA-polymerase (RNAP) into RNA. Second, the information on the RNA is
translated by a complex protein called ribosome into a protein.

aminoacylated tRNA, an elongation factor (EF-Tu), and the ATP-analogue
GTP has a higher binding affinity to the right (also called cognate) codon than
to a wrong codon, see Fig. 5.2. Wrong codons are subclassified into near-
cognate (with only one wrong nucleotide) and non-cognate (with more than
one wrong nucleotide). It has been found that the error rate in the translation
stage of gene expression is well below the value expected from thermodynamic
binding affinities. A nonequilibrium enzyme reaction scheme with an additional
proofreading step has been proposed by Hopfield [153] and independently by
Ninio [154] in order to explain the high accuracy in translation.

It has been found in experiments that the translation accuracy is not at its
maximum in living species [155]. This is surprising because translation seems
to be the least accurate step in protein synthesis (compared to transcription
and aminoacylation of tRNA). Therefore, it is tempting to speculate about
competing evolutionary goals. For exponentially growing bacterial systems,
maximal growth rate has been proposed as a prevailing evolutionary goal [156,
157]. In a recent experimental study, translation speed has been mentioned as
a possible reason why accuracy is not at its maximum [158]. It has been found
in simulations that the clustering of ribosomes into polysomes leads to faster
protein synthesis [159].

Another important issue concerns energy dissipation due to kinetic proof-
reading. It has been shown recently [160] that error rate and energy dissipation
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Figure 5.2 Simple key and lock scheme for recognition of the correct aminoacid
during the translation process. In a first step from state 1 to state 2, the
aminoacid (which is complexed with tRNA and other molecules) binds to the
ribosome. The binding affinity is larger for an aminoacid which matches the
codon on the mRNA (cognate codon), resulting in a binding rate which is by a
factor d larger for a cognate codon than for a non-cognate codon. In a second
step from state 2 to state 1, the aminoacid is incorporated into the protein,
leaving an “empty” ribosome with shifted mRNA template ready to bind the
next aminoacid.
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are directly linked in DNA replication. It is known that the theoretical accuracy
limit in kinetic proofreading schemes can only be achieved by infinite energy
dissipation [161]. The first formulation of the energy cost in kinetic proof-
reading [162] only counted consumed moles of ATP, neglecting concentration
dependent chemical potentials. The minimization of entropy production (and
thus energy dissipation) was first discussed by Ehrenberg and Blomberg [161]
with the result that an infinite number of checking steps with equal contribu-
tion should be used to achieve a given accuracy at minimal energy dissipation.
However, most experiments [163, 158] give evidence for just a single checking
step.

Summarizing, there are (at least) three competing goals for the cell to achieve
during translation. A low error rate should be reached at a preferably high
rate of amino acid incorporation. In addition, the necessary energy dissipation
should be as low as possible. In this chapter, we address the question, how these
competing goals have been weighted by evolution to give the measured rate
constants as an optimal choice. This analysis is based on recent experiments,
where rate constants of translation steps in e-coli have been measured [163, 158].

5.2 The model

For a simple key and lock scheme as shown in Fig. 5.2, the minimal error
rate E is determined by the difference in binding affinities for cognate and
non-cognate codons. This difference in binding affinities determines the ratio
d of binding rates for cognate and near-cognate codons, respectively. More
generally, one can assume that the maximal ratio of cognate and non-cognate
rate constants for any reaction step is given by the discrimination rate d. The
minimal error rate in any near-equilibrium network then is given by E = 1/d
[161]. In a branched network in a nonequilibrium steady state, lower error rates
can be achieved by additional “proofreading” steps. A crude translation scheme
similar to the model originally introduced by Hopfield [153] is shown in Fig.
5.3a. In such a setup, initial binding and proofreading step each contribute a
discrimination rate d and the minimal error rate is given by E = 1/d2 [153, 161].
While it has been shown that the error rate can be further reduced by more
than one proofreading step, most experiments indicate a single proofreading
step during the incorporation of a aminoacid into the protein. However, the
observed premature termination of the protein synthesis upon incorporation
of a wrong aminoacid [164] can be interpreted as a second proofreading stage,
decreasing the error rate even below the rate of independent incorporation of
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aminoacids.
In Refs. [163, 158], rate constants for a kinetic proofreading scheme of the

tRNA selection step during translation have been measured at two different
buffer conditions leading to a low and a high accuracy regime, respectively.
The resulting reaction scheme is more complicated than the simple proofread-
ing scheme since intermediate steps occur, see Fig. 5.3b, and comprises the
following (reversible) reactions

X1

k12
⇋
k21

X2

k23
⇋
k32

X3 initial binding and codon recognition

X3

k34
⇋
k43

X4 GTPase activation and hydrolysis

X4

k45
⇋
k54

X5 EF − Tu conf. change

X5

k56
⇋
k65

X6 incorporation

X6

k61
⇋
k16

X1 EF − Tu dissociation

X5

k51
⇋
k15

X1 rejection. (5.1)

A detailed description of each of these steps is given in the caption of Fig. 5.3b.
We denote the intrinsic rate constants for a transition from state i to state j
by kij for cognate codons and by k̃ij for near-cognate codons. The measured
reaction rates for cognate and near-cognate codons are shown in Tab. 5.1.
In the high accuracy regime, backward rates could be measured only for the
X1 ⇋ X2 ⇋ X3 reaction steps.

Within this model, the incorporation rate of correct proteins per ribosome
can be calculated using standard techniques as

kinc =
p̃s
1

p̃s
1 + ps

1 − ps
1p̃

s
1

(ps
5k56 − ps

6k65) (5.2)

where ps
i is the steady state probability of state Xi when only the cognate

network (5.1) is considered and p̃s
i is the corresponding steady state probability

of state Xi for the near-cognate network. Here, we have used the fact that both
networks for cognate and near-cognate tRNA are connected only through one
single state X1 which corresponds to the “empty” ribosome. The prefactor
p̃s
1p̃

s
1 + ps

1 − ps
1p̃

s
1 scales the steady state probabilities ps

5 and ps
6 of the cognate
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Figure 5.3 (a) Hopfield model of kinetic proofreading with three states 1, 2
and 3 and the basic steps: (i) The initial selection step (1 → 2) discriminates
cognate codons from non-cognate ones. State 2 has a higher affinity for the
ternary complex (consisting of elongation factor Tu (EF-Tu), aa-tRNA, and
GTP) with a cognate tRNA codon. This leads to a larger forward rate for cog-
nate codons. (ii) The hydrolysis of GTP (2 → 3) is the driving mechanism of
the proofreading scheme which keeps the reaction network out of equilibrium.
The chemical work delivered by hydrolyzation of GTP assures that the for-
ward reaction rate is much larger than the corresponding backward rate. (iii)
The rejection step (3 → 1) discriminates between cognate and near-cognate
codons and provides a second “proofreading” stage to prevent incorporation of
a wrong aminoacids. The rate constant for this step is larger for near-cognate
codons. (iv) Protein incorporation. From the ribosome perspective, rejection
and protein incorporation yield the same final state (“empty” ribosome, state
1). Selection is achieved in two seperated steps (Initial selection and Rejection)
whith different rate constants for cognate and near-cognate codons. (b) Exper-
imentally determined model of proofreading in translation with six states from
[158], see also Table 5.1. In a first initial binding step (1 → 2), aa-tRNA binds
non-specifically. In the initial selection step (2 → 3), discrimination between
cognate and non- or near-cognate codons is achieved by different backward
rate constants. The GTP-hydrolysis step (3 → 4) has the same purpose as
step (ii) in the simple model (a) but also discriminates between cognate and
other codons. After an intermediate conformational change step (4 → 5),
proofreading discriminates again between cognate and other condons. Here,
both rejection (5 → 1) and protein incorporation (5 → 6) have different rate
constants for cognate and other codons. In a last step (6 → 1), the elongation
factor Ef-Tu is released.
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5.2 The model

reaction step cognate near-cognate

initial binding ek12
a140(µMs)−1 a140(µMs)−1

k21
a85s−1 a85s−1

codon recognition k23
a190s−1 a190s−1

k32
a0.23s−1 a80s−1

GTPase activation and hydrolysis k34
a260s−1 a0.4s−1

EF-Tu conformational change k45
b50s−1 b50s−1

peptide bond formation k56
a7s−1 c,f1s−1

EF-Tu dissociation k61
b3s−1 b3s−1

rejection k51
d0.05s−1 c,f15.7s−1

Table 5.1 Rate constants used for simulation. a : High accuracy measurement

compiled from Ref. [158] . b : Low accuracy measurement compiled from
Ref. [163] . c : Plausible values which are consistent with Ref. [158] . d

: Rate constant reported to be < 0.3s−1 in Ref [158] . e : Rate constants
k12 were measured per concentration of ternary complex. We assume for our
analysis a ternary complex concetration of cT = 0.05µM . f : According to
[158], the rate constants k̃56 and k̃51 are connected by the measured value of
k̃56/(k̃56 + k̃51) ≃ 0.06.
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network to give the corresponding steady state probabilities for the combined
cognate and near-cognate network, see Sect. 5.3.4 for details. The error rate
then is given by the ratio of near-cognate and cognate incorporation current
(per ribosome)

E =
(p̃s

5k̃56 − p̃s
6k̃65)/p̃s

1

(ps
5k56 − ps

6k65)/ps
1

. (5.3)

If all rate constants were known, the steady state probabilities ps
i and p̃s

i could
be calculated from the rate constants using the Hill method [165, 166]. How-
ever, some of the rate constants could not be determined under high accuracy
conditions [158] and thus the crucial quantities error rate and incorporation
rate cannot be calculated without additional assumptions. We therefore will
assume plausible values for the unknown rate constants, see. Tab. 5.1, us-
ing to some extent the results from the low accuracy regime [163]. Inserting
the rate constants from Tab. 5.1 and assuming zero backward rates, the error
rate becomes E ≃ 0.00096 which is consistent with the approximative calcula-
tion in [158]. However, the error rate which was measured independently was
Eex ≃ 0.0022 and thus about twice as large as theoretically expected [158]. We
therefore first explore how the error rate depends on the choice of the unknown
backward rate constants.

5.2.1 Dependence of the error rate on the backward rate constants

We consider three different strategies to fix the unknown backward rate con-
stants:

Case I.– Since the unknown backward rates are presumably very small, one
could neglect them as a first trial. This results in an error rate of E ≃ 0.00096,
as mentioned above.

Case II.– If backward rates are not to be neglected, one can choose a given
ratio rij = kji/kij = k̃ji/k̃ij of the unknown backward rate kji and its corre-
sponding forward rate kij for each reaction step (equal ratio for both cognate
and near-cognate network). This implies that selection is accomplished by the
height of the barrier and not by free energy differences between the states.
Since nothing is known about the backward rate constants, we employ a Monte
Carlo procedure and choose the ratios rij mentioned above randomly from a
wide range of possible (small) values between 2−7 ≃ 0.01 and 2−20 ≃ 10−6.

With all rate constants given, the error rate then can be calculated using
(5.3). Unexpectedly, though the chosen backward rates are quite small, the
error rate varies in a wide range, mainly dependent on the ratio r15, see Fig.
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Figure 5.4 Error rate for different values of the logarithm of the rate ratio r51

for Case II. The error rate only weakly depends on the other rate ratios rij .
The dashed line shows the experimentally measured error rate Eex.

5.4. The deviation of the calculated error rate from the measured one in [158]
could thus possibly be explained by the neglected backward rate k15.

Case III. – Alternatively, one can choose a given ratio rij of unknown back-
ward rates and their corresponding forward rates only for the cognate network.
For the near-cognate network, backward rates are chosen as in the cognate
network. This implies that selection is mainly accomplished by free energy
differences. The ratios rij are chosen randomly as explained for Case II. In this
regime, the (random) backward rates hardly show an effect on the error rate
E ≃ 0.00096, see Fig. 5.5a.

Summary. – The deviation of the calculated error rate from the measured
one in [158] can possibly be explained by the neglected backward rate k15.
Since the error rate depends on this backward rate constant only in Case II,
this would imply that selection in the rejection step is mainly accomplished by
barrier effects and not by free energy differences.
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5.3 Optimization results

5.3.1 Maximization of Incorporation rate at given error rate

We now test the hypothesis that high accuracy is sacrificed in vivo for the
fast incorporation of aminoacids into the protein. We keep all rate constants
but k34 and k56 fixed at the values given in Tab. 5.1. We then vary the rate
constants k34 and k56, which are crucial for proofreading. We keep the ratios
k34/k̃34 and k56/k̃56 fixed to the measured values, which corresponds to a fixed
discrimination ratio. A mere minimization of the error rate would lead to
k34 → 0 and k56 → 0. A high incorporation rate is achieved by high values of
k34, k56.

We thus explore how the rates k34 and k56 must be chosen to yield a max-
imal incorporation rate at a given error rate. We therefore solve (5.3) for k56

with the error rate on the left hand side of (5.3) given by the value calculated
from the rate constants in Tab. 5.1. After insertion of the result into (5.2),
the incorporation rate depends only on the hydrolysis rate constant k34. Max-
imization yields the optimal rate constant kopt

34 . We again consider the three
strategies for the choice of the backward rate constants.

Case I.– Neglecting backward rates results in an optimal rate constant kopt
34 ≃

40/s which is almost an order of magnitude below the measured rate constant
k34 = 260/s. Thus, contrary to the conjecture in [158], within this case, the
measured rate constants cannot be explained by the goal of achieving a large
protein incorporation rate.

Case II.– We employ the Monte Carlo procedure for the backward rate ratios
rij as explained above. In Fig. 5.5b, the protein incorporation rate as a function
of the rate constant k34 is shown for backward rates chosen to give a high or low
error rate, respectively. Although the backward rates are chosen quite small,
the optimal rate constant kopt

34 depends on the ratios rij (mainly on the ratio
r51). However, the optimal rate constant does not exceed kopt

34 ≃ 70/s for error
rates consistent with the experiment. Optimal rate constant and error rate are
correlated as shown in Fig. 5.5a.

Case III.– The ratios rij are chosen randomly as explained above. In this
regime, the (random) backward rates show no effect on the optimal rate con-
stant kopt

34 ≃ 40/s, see Fig. 5.5(a).

Summary.– Contrary to the conjecture in [158], the large value of the mea-
sured rate constant k34 ≃ 260/s which leads to an error rate well above its
theoretical minimum cannot be explained by the goal of a large incorporation
rate. Rather, the largest incorporation rate would be reached at significantly
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smaller values of the rate constant k34.

5.3.2 Role of dissipation

The (intrinsic) mean entropy production in the proofreading reaction networks
for cognate (5.1) and near-cognate codons can be extracted from the rate con-
stants as [7, 8]

d

dt
stot =

p̃s
1

p̃s
1 + ps

1 − ps
1p̃

s
1

X

i,j

ps
ikij ln

kij

kji
(5.4)

and

d

dt
s̃tot =

ps
1

p̃s
1 + ps

1 − ps
1p̃

s
1

X

i,j

p̃s
ik̃ij ln

k̃ij

k̃ji

. (5.5)

If we vary k34 and k56 again, the total entropy production is almost proportional
to the incorporation rate. The entropy production per incorporated aminoacid
then is roughly constant and the goal of a minimum dissipation does not yield
a reasonable optimization scheme.

5.3.3 Robustness of the results

In order to test the robustness of the results obtained above, we have also
randomly varied some of the forward rates in a reasonable range around the
measured values keeping however the ratio between cognate and near-cognate
rate constants fixed. Specifically, we have varied the measured rate constants
k23, k32 by 30% and the estimated rate constants k45, k51, k̃56 by a factor of
(2−3....23) around the values of Table 5.1). Moreover, the assumed concentra-
tion of the ternary complex was varied in a wide range cT = (0.005 . . . 0.5).
It is believed that the initial binding step is rate limiting in vivo, thus the
concentration of ternary complex cT should be small.

There are parameter values (very low concentration of ternary complex) with
a maximal incorporation rate kinc at an optimal rate constant kopt

34 near the
measured rate constant k34 ≃ 260, see Fig. 5.6a. However, for such rate
constants, the achievable incorporation rate kinc is almost independent of the
prescribed error rate. Within this regime, a slight decrease (in some cases even
an increase) in incorporation rate can lead to a distinctly lower error rate. In
order to quantify this effect, we have calculated the incorporation rate yielding
an error rate of E/2 and compared it to the incorporation rate at an error
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Figure 5.5 (a) : Scatter plot of the error rate E and the optimal rate constant

kopt
34 for 15000 independent runs with random ratios rij for each of the Cases

II and III with fixed forward rate constants as given in Tab. 5.1. For Case
II, the error rate E and the optimal rate constant kopt

34 are strongly correlated
and vary in a wide range. For Case III, the deviation of both E and kopt

34 from
their respective values for zero backward rates (Case I) is small. The inset
shows a magnification of the scatter plot around the point obtained for zero
backward rates (Case I). (b) Protein incorporation rate as a function of the
GTP hydrolysis rate constant k34 for Case II for a fixed error rate E given by
the value calculated from the rate constants from Tab. 5.1. Here, the backward
rate constants are chosen to yield either a high (E ≃ 0.0023, solid line) or low
(E ≃ 0.00096, dashed line) error rate. The maximum protein incorporation
rate is reached for kopt

34 ≃ 64.5/s and kopt
34 ≃ 41.2/s, respectively.
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rate E (both for k34 = kopt
34 ), where E is the error rate calculated from the rate

constants in Table 5.1. In particular for a low concentration of ternary complex,
the ratio of incorporation rate at error rate E and incorporation rate at error
rate E/2 is close to 1, see Fig. 5.6b. A slightly higher incorporation rate at
the expense of a doubled error rate, however, does not seem to be favorable for
the cell.

The analysis for Case I and Case III yields qualitatively similar results. We
thus can conclude that the high rate constant k34 cannot be explained by the
goal of a large protein incorporation rate.

5.3.4 Effect of allowing for more than one non-cognate codon

Protein incorporation rate is lowered by non-cognate tRNA binding to the ri-
bosome. In Ref. [158], it was speculated that this might explain why accuracy
is not at its maximum. We analyse the effect of non-cognate species on the
optimization described above. The networks of different codons are connected
by one single state X1 which is the state of the “empty” ribosome. If we want
to take into account the effect of more competing codon species, we first have
to calculate the steady state of the whole network consisting of sub-networks
corresponding to the different codon-species. We consider a network which con-
sists of n subnetworks connected only by one single state X1. If the stationary
states of the subnetworks are known, the steady state of the entire network can
be calculated as

ps
tot(1) = 1/

 

X

i

1

ps
(i)

(1)
− 1

!

(5.6)

ps
tot(k) =

ps
tot(1)

ps
(i)(1)

ps
(i)(k) (5.7)

where ps
(i)(1) is the stationary probability of state X1 in the subnetwork i and

ps
tot(1) is the stationary probability of state X1 of the entire network.

We assume that the error rate through incorporation of non-cognate codons
is negligible. However, the incorporation rate is lowered since initial binding of
non-cognate codons can block the ribosome. Still, as we have tested using the
measured values of non-cognate rate constants [167], this does not affect the
optimal rate constants significantly.
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Figure 5.6 (a) Scatter plot of error rate and optimal rate constant kopt
34 for 200

different random choices of reaction rate constants obtained via a scheme as
described in Sect. 5.3.3 for different values of ternary complex concentrations
cT . (b) Scatter plot of the optimal rate constant kopt

34 and the ratio of incorpo-
ration rates with given error rates of E and E/2, respectively. The data was
obtained from 200 runs as in (a).
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5.4 Discussion

Using a kinetic proofreading model for translation in e-coli based on experi-
mentally determined rate constants, we have shown that neglecting backward
rate constants as is often done in biochemistry can affect the calculated error
rate in kinetic proofreading significantly.

Second, we have tested the conjecture that the measured high hydrolyzation
rate constant is due to a selectional bias for high protein incorporation rate.
This would imply that translational fidelity is sacrificed for translation speed.
We find that for a wide parameter range consistent with experiments, the
translational machinery does not act at its optimum concerning error rate and
translation speed.

There are three possible explanations for this apparent “non-optimality”: (i)
structural constraints of involved molecules and complexes may have prevented
optimal rate constants. (ii) Competing evolutionary goals not addressed in this
study, e. g. robustness of the translational machinery, may have caused evo-
lutionary pressure leading to the measured rate constants. (iii) Neglecting the
complexity of translation (mainly because details are experimentally unknown)
in the model, e. g. other cognate tRNAs, cellular crowding, and cooperativity
among ribosomes, may have caused apparently non-optimal rate constants.

In order to discriminate between these possibilities more experiments, involv-
ing also multiple cognate tRNA species, are necessary. In order to test if the
translational machinery is optimized for other evolutionary goals, theoretical
models for the robustness in genetic networks [168, 169, 170] could be applied
and it could be probed both theoretically and in experiments whether cellular
crowding and ribosome cooperativity has a significant effect on our results.
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6 Perspectives

The main results of this thesis have already been outlined in the Summary
chapter. We therefore conclude with perspectives and open questions left for
future research.

While we have discussed optimal protocols yielding a minimal mean work for
different dynamics and different potentials, it would be interesting to study the
relation between optimal protocols for the mean work and optimal free energy
calculations. In a broader context, the question whether (or more precisely un-
der which circumstances) the Jarzynski estimate for the free energy difference
is better than other free energy calculation methods is still open. However, in
order to answer this question conclusively, it is necessary to define an “opti-
mal” strategy for free energy calculations via the Jarzynski relation, combining
different strategies from path sampling to optimal protocols. This combined
strategy then must include a practical computational scheme to exploit protocol
singularities for free energy calculations.

Additionally, it should be studied whether optimal protocols can also improve
the reconstruction of free energy landscapes. There are few systematic studies
on how to optimize the reconstruction of free energy landscapes from either
experiments or simulations. Ultimately, a combined optimal strategy to extract
the mobility and the free energy as a function of a reaction coordinate may
become very helpful in the construction of effective Langevin dynamics from
molecular dynamics simulations.

Beyond the application to free energy calculations, the classification of opti-
mal protocols is of great theoretical interest. For Hamiltonian and Schrödinger
dynamics, the question whether the adiabatic work can be achieved in an ar-
bitrarily short time is still open. For Langevin dynamics, systematic studies
identifying optimal protocols for anharmonic potentials could probe our con-
jecture that jumps and singularities generically occur in the optimal protocol.

In this thesis, we only considered optimal protocols for transitions between
equilibrium states. For transitions between nonequilibrium steady states, the
Jarzynski relation can be generalized to the so called Hatano-Sasa relation.
Quite naturally, the question arises whether the features found for optimal pro-
tocols between equilibrium states will persist for transitions between nonequi-

121



Perspectives

librium steady states. First of all, however, one has to identify the proper
quantity to optimize in such a situation. A minimization of the total entropy
production would require the system to be in the steady state with least entropy
production for most of the transition time.

For a stochastic heat engine similar to a macroscopic Carnot engine, we
have shown that the efficiency at maximum power is given by a simple, quite
universal expression. Even though we derived the result using the concept
of stochastic thermodynamics, one might expect that under appropriate con-
ditions a “thermodynamic limit” exists, bridging the gap between the meso-
scopic system discussed here and macroscopic heat engines. However, such a
limit would require underdamped Langevin dynamics in order to include inertia
effects which are important for a macroscopic Carnot engine.

For simple molecular motor models, we have found that a transition state
near the initial position leads to a high efficiency at maximum power. If fu-
ture experiments confirmed the indication that myosin motors have a tran-
sition state near the initial position for the main motor step (corresponding
to an almost force-independent forward rate), it would be tempting to spec-
ulate whether evolutionary pressure for efficiency and large power has led to
this characteristic. For a more comprehensive answer to this question, however,
other evolutionary goals like speed, robustness, and high processivity should be
considered. Likewise, the dependence of our results on the interaction between
single motor domains needs to be explored in future work.

For a recently introduced scheme of the translation process, we have studied
optimal performance regarding error rate and protein production rate. More
generally, it would be interesting which evolutionary goals have led to the com-
bined process of gene expression from the DNA template to proteins. Therefore,
it is necessary to combine our study with complementary approaches for the
transcription process, where proofreading is performed by “backtracks” of the
RNA-Polymerase [171, 172].
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A Solution of the underdamped optimization
problem (case study II)

In this appendix, we give a detailed analysis of the numerical solution of the
optimization problem. In order to minimize the integral in Eq. (3.70), the
constraint [Eq. (3.72)] is included in an effective Lagrangian Leff ≡ L− α(τ )G
through a Lagrange multiplier α(τ ). Then the Euler-Lagrange equations whose
solutions minimize the integral in Eq. (3.70) are obtained from

∂Leff

∂w
+

d2

dτ 2

∂Leff

∂ẅ
=

d

dτ

∂Leff

∂ẇ
,

∂Leff

∂z
=

d

dτ

∂Leff

∂ż
, (A.1)

which, together with the constraint G = 0, define a system of three differential
equations for w, z and α. By defining the useful new variable

µ ≡ zw − m2

4
ẇ2 (A.2)

we can write the initially cumbersome differential equations (A.1) after a te-
dious manipulation in the following reduced form

ẅ =
ẇ2

2w
− 2

m2

µ

w
+ 2Twα +

2T

m
, (A.3)

µ̇ = −2γ

m
µ + 2γTw, (A.4)

α̇ =
2γ

m
α +

1

m

ẇ

w2
. (A.5)

These equations have no analytical solution but they can easily be solved nu-
merically for given initial conditions w(0+), ẇ(0+), µ(0+) and α(0+). It is
important to note that some of these initial conditions are not fixed by the
initial equilibrium conditions w(0) = T/λi, ẇ(0) = 0, ẅ(0) = 0, z(0) = mT ,
but can be realized by additional discontinuities in the respective quantities at
the boundaries. If such discontinuities do not change the value of the integral
in Eq. (3.70), they do not affect the optimization of the integral via the Euler-
Lagrange equations and hence the respective initial conditions should (in a first
step) be treated as free parameters. Since the Langrangian does not depend on
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ẅ(τ ), discontinuities in ẇ(τ ) and ẅ(τ ) can occur at the boundaries. However, a
jump in the mean squared position w(τ ) would affect the integral in Eq. (3.70)
and thus w(τ ) must be chosen to be continuous at the boundaries, enforcing
w(0+) = w(0) ≡ w0 = T/λi. Likewise, discontinuities in z(τ ) can occur at the
boundaries. However, the initial values z(0+) and ẇ(0+) are related by the
constraint G = 0. Integrating this constraint

lim
ǫ→0

Z τ+ǫ

τ−ǫ

dτ ′G = 0 (A.6)

leads to

[wz]τ
+

τ− =
m2

4

ˆ

ẇ2˜τ
+

τ− . (A.7)

When applied at τ = 0 it yields

T

λi
[z(0+) − mT ] =

m2

4
ẇ2(0+). (A.8)

We consider a (possible) discontinuity through the parameter s1 in

z(0+) ≡ mTs1. (A.9)

With Eq. (A.8), the jump in the derivative of w at the initial time as a function
of s1 becomes

ẇ(0+) = ±2T

r

s1 − 1

mλi
. (A.10)

In the case in which λi < λf , the correct sign is the negative one. Note that
the last equation implies s1 > 1, so that at the initial time and given the
equilibrium initial distribution, it is not possible to have a decrease in the
mean squared momentum. From Eqs. (A.8) and (A.2) we also find

µ(0+) = mT 2/λi. (A.11)

Secondly, we define a new free parameter s2 in

ẏ(0+) ≡ Ts2, (A.12)

which, from the evolution equation (3.68), directly yields ẅ(0+) = 2T
m

s2. Then,
writing Eq. (A.3) at τ = 0+ and inserting the above values, the initial value of
the Lagrange multiplier needed to solve the Euler-Lagrange equations is

α(0+) =
λi

mT
(s2 − s1 + 1). (A.13)
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Last, from the evolution equations (3.66)-(3.68) we find the relative value of
the initial jump in the protocol as a function of s1 and s2:

∆λi

λi
≡ λ(0+) − λi

λi
= s1 − s2 − 1 + γ

r

s1 − 1

mλi
. (A.14)

At the end of the process, the value of z(τ ) is allowed to jump again. Recall-
ing Eq. (A.7) applied now at the final time τ = t and isolating z(t), we obtain

z(t) = z(t−) +
m2

4

ẇ(t)2 − ẇ(t−)2

w(t)
. (A.15)

Every quantity on the right hand side of the last equation except for ẇ(t) is
fixed by the solution of the Euler-Lagrange equation. The minimum value for
z(t), which leads to the minimal contribution to the work in Eq. (A.18), is
reached for ẇ(t) ≡ s3 = 0.

For a comparison of the present case with its overdamped analogue as dis-
cussed in Chapter 3.2, one can formally integrate the differential equations for µ
and α and plug them into Eq. (A.3) to obtain the following integro-differential
equation for w,

„

ẅ − ẇ2

2w

«

=
2T

m

»

f(τ )A− B
f(τ )

+ f(τ )(1 + s2 − s1)

–

(A.16)

where f(τ ) ≡ w(τ)
w0

e2γτ/m and

A = 1 − 2γ

m

Z τ

0

1

f(τ ′)
dτ ′, B = 1 +

2γ

m

Z τ

0

f(τ ′)dτ ′. (A.17)

In the overdamped limit, the Euler-Lagrange equation is given by ẅ−ẇ2/2w =
0. Including inertia leads to nonvanishing terms on the right hand side of Eq.
(A.16). However, taking the corresponding overdamped limit m̃ → 0 in Eq.
(A.16) yields the overdamped Euler-Lagrange equation only after optimizing
the parameters s1 and s2.

Combining Eqs. (3.66)-(3.68), the work W [Eq. (3.62)] can be written as

W =

»

λw

2
+

z

2m

–t

0

− γT

m
t +

γ

m2

Z t

0

dτz. (A.18)

To calculate the integral, we insert the solution of the Euler-Lagrange equations
for z, which depends on s1 and s2. Then, we need to insert the boundary values
for w and z at τ = 0 and τ = t. In a last step, the work is optimized with
respect to the free parameters s1 and s2.
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