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1 Introduction: From the Micro- to
the Macro-world

When describing a physical phenomena there is always implicitly or explicitly a statement
about the scale such as a length scale, a time scale or an energy scale. The scale on which
we talk will more or less set which theory will be used for the description if any is available.
There is classical mechanics to describe the non-relativistic macroscopic phenomena just as
we have quantum mechanics to describe the microscopic phenomena. At a non-relativistic
level quantum mechanics is the most fundamental theory existing. These theories form a basis
from which one works upwards in order to describe phenomena. We do not use classical
mechanics nor quantum mechanics alone to describe a gas that is in equilibrium but rather
thermodynamics and statistical mechanics. One could ask oneself if the postulates of these
are derivable in some sense from quantum mechanics. More refined statements about the
scale introduce then more approximations which allow then to tackle the problem at hand.

Transport, in large systems, is one of the most complicated phenomena to describe in
physics. A straight forward application of the theory, may it be classical or quantum, is often
useless. The many degrees of freedom make it hard to solve the equations even for the most
simple models. Boltzmann came up with his famous equation to describe on a simple level
how the phase space density of a gas would change in time. In order to do this he had to
introduce the often criticized assumption of “molecular chaos”. It would also result in the H-
theorem which states that the entropy of a system will increase in time. These equations were,
despite criticism, very useful. The botanist Robert Brown discovered brownian motion, that
is , he realized that the movement of a particle suspended in a liquid was eratic and random
like. Wiener later on formulated the mathematical description of it which goes now under the
name of Wiener process or white noise. It is the prime example of a stochastic process and
the most studied one. These equations are without doubt fundamental ones but are not de-
rived from first principles only. A strict derivation of the Boltzmann equation is still lacking.
Fourier’s law states that the heat current in a metal between two baths will be proportional to
the temperature gradient. It works very well but still remains to be proven [4]. The emergence
of these laws and equations which typically work very well are still open questions.

Today in order to describe transport in a system the quantum nature of it has to be taken
into account. A lot of the non-equilibrium phenomena is analyzed by means of the Kubo
formalism or with the help of the Lindblad equations. One of the tools exploited here is the
notion of a thermal bath and thermal equilibrium. This means that a much greater part of the
system is in thermal equilibrium.

A main characteristic of non-equilibrium is the fact that it returns to equilibrium. This sim-
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1 Introduction: From the Micro- to the Macro-world

ple and obvious statement generates a serious problem when starting from quantum mechanics
because in the microscopic theory there is no notion of equilibrium. As Poincare pointed out,
any finite system will return infinitely close to its starting point, hence reversibility.

In order to obtain the irreversible behavior given by stochastic equations there has always
been some type of course-graining involved. The ergodic hypothesis states the time scale of
a measurements is long compared with the microscopic time scale and so a time average has
to be taken. The notion of an ensemble is similar in the sense that we average over a whole
set of possible configurations. Many of the approximations used to derive the Lindblad and
other master equations are also some type of time coarse graining. All of these “tricks” allow
one to make the step from the reversible to the irreversible description. From a mathematical
point of view something is taken out or added to the equations and changes fundamentally the
nature of the resulting ones.

One of the most simplest ways to try to predict the time evolution of a system is to apply
Fermi’s golden rule. In a quantum system Fermi’s golden rule gives us the transition probabil-
ities of one state of the system to another one. Naively one obtains this rule by expanding the
solution of the Schrödinger equation and considering only the first order term. At this point
one is assuming that time is small enough for the expansion to the first order to make sense.
The transition probability from a state m to a state k is then proportional to |Vmk |2 sin2(ωt/2)

ω2

where ω is the energy difference between the two states. Then one assumes that t is large
enough so that the transition rate 1

t |Vmk |2 sin2(ωt/2)
ω2 is proportional to |Vmk |2 π

2 δ(ω).
If Fermi ’s golden rule would be true at all times, then from it an equation could be derived

for the probability distribution of the system. One would then jump from a Schrödinger equa-
tion to a type of master equation. But Fermi’s golden rule is not valid for all system, nor for
all times. This has to be checked for the particular model at hand. Partly we can see this by
the two possibly contradicting assumptions about the time scale. First it is assumed small but
later on large enough. These fuzzy requirements and the success of them are the reasons why
it is called a rule.

On the other hand quantum chaos has been an intensive field of research since its discovery.
While in Boltzmann’s time chaos was a concept emerging from the fact that we have many
particles in a system , many degrees of freedom, it became later apparent that even systems
with small number of degrees of freedom could exhibit chaotic behavior [3]. Specifically in
quantum chaos, signatures of quantum chaos became the new field of study. Although today
there is no definition yet of what quantum chaos is, the signatures of quantum chaos are very
clear and the main tool for deciding whether or not a system is quantum chaotic is a compar-
ison to the predictions given by random matrix theory (RMT) [20]. In the recent years there
have been a number of investigations about the role of quantum chaos in transport proper-
ties, [19], [21], [30]. In such investigations deterministic Hamiltonians were taken and their
transport properties were analyzed as a function of their "chaoticity". Quantum chaos is said
to be exhibited by systems with very few degrees of freedom, so that large compound systems
should also exhibit it. And yet there is no theory of transport or dynamics that focusses on its
role. We investigate here, in some sense, a marriage between these two ideas, quantum chaos
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and the derivation of effective equations. And why? If a dynamical law works so well, could
it not be that a general statistical characteristic of the system is the one that gives rise to it?
If most real systems exhibit signatures of quantum chaos it might be essential that in describ-
ing the evolution of a system this inherent part be taken into account. For this sake we take
systems which from the start show signatures of quantum chaos. We do this with the help of
RMT. Since RMT is the main tool for modelling the statistical behavior of quantum chaotic
Hamiltonians, including in our Hamiltonian a random matrix means, in some sense, including
quantum chaos, for it would not be surprising to find then that the system is quantum chaotic.
Essentially we have a random Hamiltonian and the type of problem to be solved is similar to
the Anderson type of model [1]

In this work our line of thoughts goes as follows. There are basically three ensembles in
RMT. If different deterministic Hamiltonian show the same statistical behavior of an ensemble
would it not be so that they would also show the same dynamical behavior? If we can manage
to say what would happen for the ensemble could we not translate this for any deterministic
Hamiltonian that seems to belong to this ensemble?

Essentially this dissertation will consist of two parts: First we will calculate the average
of the solutions of the Schrödinger equation for a deterministic plus random Hamiltonian. In
order to achieve this we will exploit the Feynman diagrammatic expansion of the solution
of Schrödinger equation. These diagrams will be classified and analyzed in certain limits
such as large size of the Hilbert space and long time-weak coupling limits. Secondly we will
calculate the variance of the solution of the Schrödinger equation with respect to the random
matrix ensemble. This will tell us if the outcome of an average over the ensemble is a typical
result for a member of the ensemble. The relevance of the answers to those questions is as
follows. If say a deterministic Hamiltonian, H , exhibits quantum chaos and belongs to a
certain ensemble (GOE, GUE), would the evolution calculated by using this Hamiltonian or
another one randomly chosen from the ensemble be any different?
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1 Introduction: From the Micro- to the Macro-world
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2 Expectation value for
Macro-variables: Rate equations

2.1 Macro variables and limiting procedures

In this chapter we will derive the average of the time evolution of what we shall call Macro-
observables. A Macro-observable here does not only refer to common intuition. Loosely
speaking, if the Hilbert space, in which we work, has a certain dimension D, and if our ob-
servable is diagonal in some basis, we call an observable macro, when the number of non-zero
diagonal matrix elements is a certain fraction of D, where the fraction is independent of D. For
example, the probability to be in half of the Hilbert space will be a Macro-observable but the
probability to be in a certain state of the Hilbert space will not be a Macro-observable. This
means that if we let the size of the Hilbert space grow to ∞ and the spectrum becomes contin-
uous, then our observable will become a distribution function which is non-zero in intervals of
length different from zero. We will perform the derivations within certain limits such as large
Hilbert space limit and the weak coupling-long time limit (used in [16], [6], [15]). In section
2.2 we introduce the classes of models which will be analyzed. The basic characteristic of
these models is that they possess a deterministic part and a random part. The deterministic
part is taken to be known and given in its diagonalized form, although we do not fix it. Only
some assumptions are made on its spectrum. The random part couples the system and thus
generates non trivial dynamics. These are the dynamics which we want to derive. Since our
Hamiltonian is partly random we have to compute the average of the dynamics. We derive
thus the evolution of certain quantities given by the expectation value of an operator Ô .
Our strategy in performing this derivation is similar to those used in [27], [10], [8], [7], [28], in
particular [9]. In section 2.3 we will use the Duhamel formula in order to expand our time evo-
lution operator in powers of the interaction to any given order and in section 2.4 we calculate
the average over products of random matrices and introduce the graphical representation in or-
der to calculate these averages. With this representation our solution is expanded in Feynman
type diagrams. Since we pose the problem in an abstract language of Hilbert space vectors, we
view it as Feynman diagrams in the Hilbert space. The different types of Feynman diagrams
can be classified according to their contribution in the given limits. In particular there will be
three types of diagrams, crossing (section 2.5), nested (section 2.6) and simple (section 2.7).
The simple ones will be tractable in the limits considered and can be resummed up afterwards.
This will be done in section 2.9. In order to do this we will need a double limit procedure.
Initially our systems will be finite dimensional. A parameter N will control so to say the size
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2 Expectation value for Macro-variables: Rate equations

of the Hilbert space. It is in the limit N → ∞ that we will derive our equations of motion
and so this is the first limit. Secondly we will take the Van Hove limit [16]. In this limit we
take t → ∞ and λ→ 0, where λ is the coupling strength, while maintaining λ2t = T finite.
This is then a weak coupling- long time kind of regime. We call T the macroscopic time. Put
mathematically our objective is to derive

λ2t=T
lim
t→∞

lim
N→∞

E
[〈ψt |Ô |ψt〉

]
= O(T ) (2.1)

We shall see that the system evolves according to Pauli rate equations where the rates are given
by Fermi’s Golden Rule.
Pauli’s rate equations read

d

dt
P(q) = ∑

q ′

(
Mq ,q ′P(q ′)−Mq ′,qP(q)

)
(2.2)

where Mq ,q ′ is given by Fermi’s Golden Rule

Mq ,q ′ =
2π

h̄

∣∣〈q |V̂ |q ′〉∣∣2 δ(Eq −Eq ′) (2.3)

In chapter 5 we shall show that the limits need not to be taken independently but that certain
scaling relations between time and size would render the same result. Since an average does
not say much about what evolution the system follows for an individual realizations of the
Hamiltonian we also analyze the variance later on. This will give rise to what we call dynam-
ical typicality in chapter 3. Since we are analyzing classes of systems, the language we use in
our derivation is necessarily a bit abstract. We will give some examples in chapter 4.

2.2 Model Class

We choose here a model which has a deterministic Hamiltonian, Ĥ0, plus a random Hamilto-
nian, V̂ . The random part is included as a weak interaction and we calculate the dynamics in
the weak coupling - long time limit, the so-called Van Hove limit. |q , l〉 denotes an eigenstate
of Ĥ0 with energy El . q stands for a vector of M quantum numbers, qa , each allowed to have
a finite number, ℵa , of different values (degeneracy). Our undisturbed Hamiltonian is

Ĥ0 =
N ,ℵ1,...ℵM

∑
n=1,q1=1,...qM =1

El |q1, . . .qM , l〉〈q1, . . .qM , l |

=
N ,ℵ

∑
n=1,q=1

El |q , l〉〈q , l | (2.4)

12



2.2 Model Class

In Eq. (2.4) ∑
ℵ
q=1 stands for ∑

ℵ1,...ℵM
q1=1,...qM =1 and ℵ = ∏

M
a=1 ℵa . We shall treat q as if it were

just one quantum number. Since we will analyze the dynamics in the limit N → ∞ we must
specify how our density of states behaves, thus how the spectrum of Ĥ0 behaves when N →∞.
We will take the spectrum to remain bounded and become continues as N → ∞.We specify
our discrete density of states as νN (E ) such that

N

∑
l=1

1
N

F (El ) =
Z

dEν
N (E )F (El )

=
Z

dE
N

∑
l=1

δ(E −El )
N

F (E ) (2.5)

lim
N→∞

Z
dEν

N (E )F (E ) =
Z

dEg(E )F (E ) (2.6)

Our discrete density of states, νN (E ), will tend to a certain function g(E ), which we take to
be smooth and bounded. The spectrum is taken to remain bounded between 0 and 1 and we
take dg(E )

dE to be continues and bounded.
Our interaction will allow transitions between states |q , l〉 and |q ′, l ′〉 with some amplitude
Wq ,q ′(l , l ′) weighed by a gaussian distributed independent complex random variable for each
entry, zq ,q ′(l , l ′). As N → ∞ and the spectrum of Ĥ0 becomes continues we let our transition
amplitudes Wq ,q ′(l , l ′) go to a continuous bounded function in El and El ′ . We then set

W =
∣∣Maxq ,q ′,l ,l ′(Wq ,q ′(l , l ′))

∣∣2 (2.7)

i.e. W is the square of the maximum transition amplitude. Our interaction term then reads

V̂ =
N ,ℵ

∑
l ,l ′=1,q ,q ′=1

zq ,q ′(l , l ′)Wq ,q ′(l , l ′)|q , l〉〈q , l ′| (2.8)

The distribution over this type of random matrix is

P(V ) =
1
Z ∏

zq ,q ′(l ,l ′)
e−N ℵ|zq ,q ′(l ,l ′)|2

If we define Ṽ as the non weighed random matrix

Ṽ =
N ,ℵ

∑
l ,l ′=1,q ,q ′=1

zq ,q ′(l , l ′)|q , l〉〈q , l ′|

then

P(V ) =
1
Z

e−N ℵTr[Ṽ 2]

Z =
(

π

N ℵ

)N2ℵ(ℵ−1)
2

13



2 Expectation value for Macro-variables: Rate equations

We have the following formula for the average over a pair of random matrix elements:

E [Vq1,q2(l1, l2)Vq3,q4(l3, l4)] =
|Wq1,q2(l1, l2)|2

N ℵ
δq1,q4δq2,q3δl1,l4δl2,l3 (2.9)

Our total Hamiltonian is then

Ĥ = Ĥ0 +λV̂ (2.10)

We define now Macro-observables:

Definition 2.2.1. In a Hilbert space,H , of dimension N ℵ, an observable Ô diagonal in the
basis of eigenfunction of Ĥ0 has the form

Ô =
ℵ

∑
q=1

N

∑
l=1

O(q , l)|q , l〉〈q , l | (2.11)

It is called a Macro-observable, if the number of values O(q , l) different from zero is a finite
fraction of N ℵ in the limit N → ∞.

Since we want to derive the respective Pauli equations we shall analyze the average over the
random matrix of the time evolution of the probabilities, Pt(q , l), to be in state |q , l〉 . This
will be done by expanding the evolution operator in powers of the interaction and averaging
over the random matrices. We will analyze Pt(q , l) as a distribution over a test function and
thus the mean values of the expectation values of some operator in the limit N →∞. Therefore
we have to analyze

lim
N→∞
〈Ô〉t = lim

N→∞
〈ψt |Ô |ψt〉

= lim
N→∞

∑
l0,q0

1
N

O(q0,El0)P̃t(q0, l0) (2.12)

=
Z

dE0g(E0)∑
q0

O(q0,E0)P̃t(q0,E0) (2.13)

where

P̃t(q0, l0) = N |ψt(l0,q0)|2 (2.14)

remains bounded as N → ∞. We refer to appendix C for more details.
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2.2 Model Class

This chapter will be devoted to the proof of the following theorem:

Theorem 2.2.2. Say |ψt〉 is the solution to the Schrödinger equation with the Hamiltonian of
Eq. (2.10) and with initial condition |ψ0〉. If Ô is a Macro-observable then the average over
the random matrix ensemble of the time evolution of the observable, in the limit of large N
and in the Van Hove limit,

tλ2=T
lim
t→∞

lim
N→∞

E
[〈Ô〉t]= O(T )

is given by

O(T ) = ∑
q

Z
dωg(ω)O(q ,ω)PT (q ,ω) (2.15)

were PT (q ,ω) solves the following rate equation:

∂

∂T
PT (q ,ω) = ∑

q ′
Mq ,q ′(ω)PT (q ′,ω) (2.16)

Mq ,q ′(ω) = πg(ω)

(
−δq ,q ′ ∑

q̄ 6=q

|Wq ,q̄(ω,ω)|2 +
∣∣Wq ,q ′(ω,ω)

∣∣2) (2.17)

with initial condition

PT=0(q ,ω) = ψ
∗
0(q ,ω)ψ0(q ,ω) (2.18)

We take PT=0(q ,ω) to be bounded by some constant.

2.2.3 Notation

We summarize here some notation which we will use.
In general, when many variables are used, for example the set {l0, . . . ln}, we will write it in
short as {li}. Or if there are two of such sets, for example {l0, . . . ln} and {l ′0, . . . l ′n}, we will
write it in short as {li , l ′j}. In order to refer to the set of these many variables with one variable
removed, for example {l1, . . . ln} out of the set {l0, . . . ln}, we will write {li}0. If a function, f ,
depends on such sets of variables we will write it as f

(
{li , l ′j}

)
.

In general there will be many constants appearing, which do not really matter. The only
important fact is that they are constant. This is why we use often C to denote a constant but
not necessarily the same one. Also C1 and C2 is used to denote constants. This is not to be
confused with Cπ or Cπ(n,m) which stands for a contraction function of a particular graph.
For brevity of notation we will write

R
[dE ] for

R
dEg(E ), where g(E ) is the density of states

of Ĥ0 in the limit N → ∞.

15



2 Expectation value for Macro-variables: Rate equations

2.3 The Duhamel expansion

In the following we want to express the time evolution of an observable such as the projector
|q0, l0〉〈q0, l0| in powers of the coupling constant λ. This would give us Pt(q0, l0), the proba-
bility to be in state |q0, l0〉 at time t . The Duhamel expansion of the time evolution operator
is the expansion in terms of the perturbative term of the Hamiltonian. It gives thus the first
n-terms of the perturbation series and encodes the rest of the evolution in a remaining term,
see eq. (2.25). The following identity for the evolution operator can be verified easily:

e−iHt = e−iH0t − iλ
Z t

0
e−iH (t−s)Ve−iH0sds (2.19)

By applying successively this identity we can expand the evolution operator in orders of λ.
Thus we can rewrite the time evolution operator, and by using this expression the evolution of
the wave vector, as follows:

e−iHt =
M−1

∑
n=0

(−iλ)nΓn(t)+ Γ̃M (t) (2.20)

|ψt〉=
M−1

∑
n=0
|ψn

t 〉+ |φM
t 〉 (2.21)

with

Γn(t) =
Z t

0

Z t−s1

0
. . .

Z t−∑
n−1
j=1 sj

0
ds1 . . .dsne−iH0(t−∑

n
j=1 sj )Ve−iH0snV . . .e−iH0s1

=
Z t

0

Z t

0
. . .

Z t

0
ds0 . . .dsne−iH0s0Ve−iH0sn . . .e−iH0s1δ(t −

n

∑
j=0

sj ) (2.22)

and

Γ̃M (t) =
Z t

0

Z t

0
. . .

Z t

0
ds0 . . .dsM e−iHs0Ve−iH0sn . . .e−iH0s1δ(t −

M

∑
j=0

sj ) (2.23)

In Eq. (2.21) we have applied M − 1 times Eq. 2.19 to obtain the perturbation expansion in
the interaction of |ψt〉 up to the M − 1th term. |φM

t 〉 encodes the rest of the evolution and
fulfills Eq. (2.24).

|φM
t 〉=

Z t

0
dse−iH (t−s)(−iλ)V |ψM−1

s 〉 (2.24)

We adopt the following notationZ t

0
. . .

Z t

0
ds0 . . .dsnδ(t −

n

∑
i=0

si) =
Z

[dsn ]
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2.3 The Duhamel expansion

Using the expansion of Eq. (2.20) we find for the probability to be in state |q0, l0〉〈q0, l0|

Pt(q0, l0) =
M−1

∑
n,m=0

(iλ)m(−iλ)n〈ψ0|Γ†
m(t)|q0, l0〉〈q0, l0|Γn(t)|ψ0〉+R(M , t ,λ,q0, l0)

(2.25)

We will focus only on the first term as M goes to ∞. It will be shown in chapter 6 that the
contribution of R(M , t ,λ,q0, l0) amounts to zero in the limit M → ∞ and so we may omit in
Eq. (2.25) this term. Therefore we will take Pt(q0, l0) to be the first term, that is the sum, in
Eq. (2.25) and keep in mind that we will finally take the limit M → ∞ in order to have the
whole evolution. We replace the initial state of our system by its expansion in terms of our
basis vectors, |qj , lj 〉.

PM
t (q0, l0) =

M−1

∑
n,m=0

λ
m+n im(−i)n

∑
ln ,l ′m ,q ′m ,qn

ψ
∗
0(q
′
m , l ′m)ψ0(qn , ln)〈q ′m , l ′m |Γ†

m(t)|q0, l0〉〈q0, l0|Γn(t)|qn , ln〉

(2.26)

When inserting Γn(t) into 〈q0, l0|Γn(t)|qn , ln〉 and successive identities, ∑lj ,qj |qj , lj 〉〈qj , lj |
after each interaction term, we obtain:

(−i)n〈q0, l0|Γn(t)|qn , ln〉=
n−1

∏
i=1

ℵ

∑
qi

N

∑
li=1

K n(t ,{Eli})Ln({qi},{li}) (2.27)

with

K n(t ,{Eli}) = (−i)n
Z

[dsn ]e−iEl0s0e−iEl1s1 . . .e−iEln sn (2.28)

Ln({qi},{li}) = 〈q0, l0|V |q1, l1〉〈q1, l1|V |q2, l2〉 . . .〈qn−1, ln−1|V |qn , ln〉 (2.29)

The same can be done with the left hand side expression, 〈q ′m , l ′m |Γn(t)|q0, l0〉, and the vari-
ables of the identities introduced on this side will be denoted by primed variables. Each
K n(t ,{Eli}) is a set of propagators attached together. It is a "possible history" of the wavevec-
tor given by the energy levels it jumps to. This is the quantity we will be analyzing in the Van
Hove limit.
The Ln({qi},{li}), on the other hand, is the statistical weight given to this history or process
by the random interaction. It carries no time dependency and is a random variable.
We thus end up with

PM
t (q0, l0) =

M−1

∑
n,m=0

λ
n+m

∑
{li ,l ′j }0,{qi ,q ′j }0

ψ
∗
0(q
′
m , l ′m)ψ0(qn , ln)K n(t ,{Eli})K̄m(t ,{El ′i})

×Ln({qi},{li})L̄m({q ′j},{l ′j}) (2.30)
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2 Expectation value for Macro-variables: Rate equations

where {li , l ′j}0 stands for the set {li , l ′j} without l0. The same applies to {qi ,q
′
j}0. Notice

that q0 = q ′0 and l0 = l ′0. This can be seen by inspecting Eq. (2.26). Therefore El0 = El ′0 . Since
we want to calculate the average of Eq. (2.30) and the randomness is all encoded in the Ln

factors, we will have to calculate E[L̄m({q ′j},{l ′i})Ln({qj},{li})].
There is another useful representation for the K n terms which we introduce now. Starting
from Eq. (2.28) and the following identities

δ

(
t −

n

∑
j=0

sj

)
=

Z
∞

−∞

dαe−iα(t−∑
n
j=0 sj )eη(t−∑

n
j=0 sj ) (2.31)

Z
∞

0
dse−is(ω−iη) =

−i

ω− iη
(2.32)

we obtain

K n(t ,{Eli}) = i
Z

∞

−∞

dαe−iαteηt −1
El0−α− iη

−1
El1−α− iη

. . .
−1

Eln −α− iη
(2.33)

The identity in Eq. (2.31) is valid for any positive η. Later we shall set η equal to t−1. A
similar expression as Eq. (2.33) can be found for K̄m(t ,{El ′j }). We may thus rewrite the
previous equations for the propagators as

K̄m(t ,{El ′i}) =−i
Z

∞

−∞

dβe iβteηt
m

∏
j=0

−1
El ′j −β+ iη

(2.34)

K n(t ,{Eli}) = i
Z

∞

−∞

dαe−iαteηt
n

∏
j=0

−1
Elj −α− iη

(2.35)

with, once again, El0 = El ′0 .

2.4 Product of multiple random matrices: Graphs

The main purpose of this section will be to introduce graphs as representations of contributions
to the ensemble average we want to calculate such that averaging will turn out to be a sum over
different graphs. Since L̄m({l ′i},{q ′i})Ln({li},{qi}) is a product of random variables we can
use Wick’s formula to rewrite the average as a sum of products of averages of paired matrix
elements. It is through this basic formula that the notion of graph comes into play. We recall
Wick’s theorem here.

Theorem 2.4.1. Say we have 2n random Gaussian variables denoted by Xi , 1≤ i ≤ 2n, and
say we have Y = X1X2 . . .X2n . Denote by π(2n) a set of pairings between all the elements of
the set s , s = (1,2 . . . ,2n). That is π(2n) is a list of pairs of elements of s . We then have:

E[Y ] = ∑
π(2n)

∏
(i ,j )∈π(2n)

E[XiXj ] (2.36)
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2.4 Product of multiple random matrices: Graphs

where (i , j ) refers to a pair of π(2n). ∏(i ,j )∈π(2n) is the product of all the pairs of π(2n)
and ∑π(2n) is a sum over all possible sets of pairings. A pairing (i , j ) will also be called a
contraction and a list of pairings π(2n) or contractions will also be called a graph.

We give now a short application of the theorem. If Y = X1X2X3X4 we have s = {1,2,3,4}.
Possible configurations for π(4) are then {(1,2),(3,4)}, {(1,3),(2,4)} and {(1,4),(2,3)}.
We have then explicitly

E[Y ] =E[X1X2]E[X3X4]
+E[X1X3]E[X2X4]
+E[X1X4]E[X2X3]

The three contributions can be represented as in figure (2.1). By taking the variables Xi to be

+

+ X1

X1

X1

X2

X2

X2

X3

X3

X3

X4

X4

X4

0

Figure 2.1: Graphical representation of the average of a product of four random variables

the successive matrix elements appearing in L̄mLn , we can express the average by a sum over
the pairings. For this we first introduce the following definitions:

Definition 2.4.2. We define Vq1,q2(l1, l2) = 〈q1, l1|V |q2, l2〉which allows us to write the product
of random variables L̄m({l ′i},{q ′i})Ln({lj},{qi}) as

L̄m({l ′i},{q ′i})Ln({lj},{qi}) =Vq ′m ,q ′m−1
(l ′m , l ′m−1) . . .Vq ′1,q

′
0
(l ′1, l

′
0)

×Vq0,q1(l0, l1) . . .Vqn−1,qn (ln−1, ln) (2.37)

with l ′0 = l0 and q ′0 = q0. We associate to each L̄mLn a set s̄ having the form

s̄ = {Vq ′m ,q ′m−1
(l ′m , l ′m−1), . . .Vq ′1,q

′
0
(l ′1, l

′
0),Vq0,q1(l0, l1), . . .Vqn−1,qn (ln−1, ln)} (2.38)

= {X1, . . .Xm ,Xm+1, . . .Xn+m} (2.39)
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2 Expectation value for Macro-variables: Rate equations

Each element in the set s̄ represents a random matrix element. We refer to primed random
variables Vq ′j ,q ′j−1

(l ′j , l ′j−1) as left random variables, because they come from the expansion of
the left wave function in Eq. 2.26, and to Vqj−1,qj (lj−1, lj ) as right random variables. We now
apply Wick’s formula to calculate E[(L̄m({l ′i},{q ′i}))Ln({li},{qi})]. π(n,m) will now stand
for a list of paired up elements of the n +m elements that appear in the product L̄mLn .

E[(L̄m({l ′i},{q ′i}))Ln({li},{qi})] = ∑
π(n,m)

∏
(i ,j )∈π(n,m)

E[XiXj ]

= ∑
π(n,m)

Cπ(n,m,{li , l ′j},{qi ,q
′
j ,}) (2.40)

with

Cπ(n,m,{li , l ′i},{qi ,q
′
j ,}) = ∏

(i ,j )∈π(n,m)
E[XiXj ] (2.41)

We call Cπ(n,m,{li , l ′i},{qi ,q
′
j ,}) the contraction function and Cπ(n,m) or Cπ is a short hand

notation for it. Cπ(n,m) is thus a function that depends on the list of paired up elements of
the n +m random matrix elements where m of them are left random variables and n of them
are right random variables. Notice that the product of an odd number of random variables is
zero. Thus n +m has to be even. There are two cases for the average of E[XiXj ].

E[Vq ′i+1,q
′
i
(l ′i+1, l

′
i)Vqj ,qj+1(lj , lj+1)] =

1
N ℵ

δl ′i+1,lj+1
δl ′i ,lj δq ′i ,qj δq ′i+1,qj+1

∣∣Wqj ,qj+1(lj , lj+1)
∣∣2

(2.42)

E[Vqi ,qi+1(li , li+1)Vqj ,qj+1(lj , lj+1)] =
1

N ℵ
δli ,lj+1δli+1,lj δqi ,qj+1δqi+1,qj

∣∣Wqj ,qj+1(lj , lj+1)
∣∣2

(2.43)

Eq. (2.42) is a pairing of a left and a right random variables. We call this an outer contraction.
Eq. (2.43) is a pairing of a right and a right random variable. We call this an inner contraction.
We can of course also have inner contractions on the left side. Apart from the delta functions,
there are different weights to the average. These depend on Wqj ,qj+1(lj , lj+1), N and ℵ. These
last two relate to the dimension of the Hilbert space. This motivates the following separation
of the contraction function:

Cπ(n,m,{li , l ′i},{qi ,q
′
i}) =

wCπ(n,m,{li , l ′i},{qi ,q
′
i})

(N ℵ)
n+m

2
× C̃π(n,m,{li , l ′i},{qi ,q

′
i}) (2.44)

where C̃π encodes all of the delta relations, and so is either 0 or 1, while wCπ is the weight as-
sociated to this set of contractions. wCπ is then a product of transition amplitudes, Wqiqi+1(li , li+1).
Since these are bounded by Eq. (2.7), we have

|wCπ(n,m)| ≤W
n+m

2 (2.45)
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2.4 Product of multiple random matrices: Graphs

Figure 2.2: Example of a graph contributing to the order (m,n) = (7,5)

We build our graphs in the following way. Every Xi is represented by a box and so the product
of Xi ’s is a series of boxes. Every paired up variables are linked to each other by a line which
is always above the boxes. An example is shown in Fig. 2.2. In this specific example we have
(m,n) = (7,5) and it represents the following expression:

E[X1X2]E[X3X6]E[X4X8]E[X5X12]E[X7X9]E[X10X11]

It can also be represented as in Fig. 2.3 where we have just explicitly written down the depen-
dency of the random variables. First we note that since the δ functions only relate l -variables

Figure 2.3: Example of a graph contributing to the order (m,n) = (7,5)

amongst each other and q-variables amongst each other, there will be a graph on the l -space
and one on the q- space. Since one contraction gives the same identities for l - and q-variables
these graphs will be the same and the conclusions for graphs on one space will be the same
for graphs on the other space. Basically we mean that

C̃π(n,m,{li , l ′j},{qi ,q
′
j}) = C̃ 1

π (n,m,{li , l ′j})× C̃ 2
π (n,m,{qi ,q

′
j}) (2.46)

We now want to classify the possible graphs:
In the following definitions (2.4.3 and 2.4.4) we set s̄ = {X1 . . . ,Xm ,Xm+1 . . .Xn+m}, the set
associated to the random variable L̄mLn .

Definition 2.4.3. Say we have the set s̄ and a graph π(n,m) on s̄ .

1 The average of a pair XiXj is called an inner contraction, if i , j ≤m or when i , j > m.
It will be called an outer contraction if i ≤m and j > m or when i > m and j ≤m.

2 The average of a pair XiXj is called a next neighboring (nn) contraction, if j = i +1.
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2 Expectation value for Macro-variables: Rate equations

3 If we have a contraction between Xi and Xj , and a contraction between Xk and Xl and
i < k < j < l , then we call this a crossing or crossing (c) contraction. If we have a
contraction between Xi and Xj and no crossing contraction involving any element Xk

with i < k < j , the contraction is called non-crossing (nc).

4 If we have a contraction, between Xi and Xj , and a contraction between Xk and Xl

and, i < k < l < j ≤m or m < i < k < l < j then we call this a nest.

With these definitions we recognize three classes of graphs:

Definition 2.4.4. Say we have the set s̄ and a graph π(n,m) on s̄ .

C. G We say the graph is a Crossing graph (C-graph), if it possesses at least one crossing
and we call a graph a Non-Crossing graph (NC-graph) if it possesses no crossings. The
set of all C-graphs of order (n,m) is denoted by G2(n,m) and the set of all C-graphs
is denoted by G2. An example of a crossing graph is the previous Fig. 2.3.

N.G We say the graph is a Nested graph (N-graph) if it is a NC-graph and possesses at least
one nest and call a graph a Non-Nested graph (NN-graph) if it possesses none. The set
of all N-graphs of order (n,m) is denoted by G1(n,m) and the set of all N-graphs is
denoted by G1. An example of a Nested graph is shown in 2.4

S. G We say the graph is a Simple graph (S-graph) if it is a NC and NN-graph. The set of all
S-graphs of order (n,m) is denoted by G0(n,m) and the set of all S-graphs is denoted
by G0. An example of a Simple graph is shown in Fig. (2.5).

Notice that S-graphs are built only from outer contractions and nn-contractions. The amount
of graphs in these classes depend on the order (n,m) and are specified in Eqs. (B.13)-(B.16)
From the definitions of Simple, Nested and Crossing graphs, we note that these classes are

Figure 2.4: Example of a Nested Graph

mutually exclusive and cover the whole set of graphs. The following identity is then valid:

∑
π(n,m)

= ∑
π(n,m)∈G0

+ ∑
π(n,m)∈G1

+ ∑
π(n,m)∈G2

(2.47)
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2.4 Product of multiple random matrices: Graphs

Figure 2.5: Example of a Simple Graph

Thus from Eq. (2.40) we get

E[(L̄m({l ′i},{q ′i}))Ln({li},{qi})] =
2

∑
a=0

∑
π(n,m)∈Ga

Cπ(n,m,{li , l ′i},{qi ,q
′
i}) (2.48)

=
2

∑
a=0

∑
π(n,m)∈Ga

wC (n,m,{li , l ′i},{qi ,q
′
i})

(2N ℵ)
n+m

2
C̃ 1

π (n,m,{li , l ′i})C̃ 2
π (n,m,{qi ,q

′
i})

Of the initial set of variables {li , l ′j} a graph will impose relations between these variables and
so not all of them will remain independent anymore. This motivates the following definitions:

Definition 2.4.5. For a graph, π(n,m) we define:
Aπ = The set of independent variables of the set {li , l ′j} given by the contraction function C̃π

Aq
π = The set of independent variables of the {qi ,q

′
j} given by the contraction function C̃π

Bπ = The set of dependent variables of the set {li , l ′j} given by the contraction function C̃π

Bq
π = The set of dependent variables of the set {qi ,q

′
j} given by the contraction function C̃π

κπ = Number of independent variables we have of the set {li , l ′j} given by the contraction
function C̃π.

Note that the dependent and independent variables given by C̃π are the same as those given
by the contraction function Cπ since C̃π encodes the δ-relations of Cπ. We will also adopt the
following notations regarding dependent and independent variables. The subscript i on any
variable, as in {la}i for example, will refer to the independent variable of the set {li , l ′j} to
which la is equal to. Also if a set has the subscript, as {l2, l5, l ′1, l ′8}i, then it refers to the set of
independent variables in the set {li , l ′j} to which these relate to. For example {li , l ′j}i refers to
all the independent variables of the set {li , l ′j} and this would be the set Aπ.
The number of independent variables we have for a graph will turn out to be very important in
the limit N → ∞. We note the following theorems which are proved in the appendix:

Theorem 2.4.6. A graph π(n,m) on the set s̄ (Eq. 2.38) is a Non-Crossing graph if and only
if it generates n+m

2 +1 independent variables in the set I = {li , l ′j}. That is κπ = n+m
2 +1 for

NC-graphs.

This is proved by using lemma B.0.12 and B.0.11. We note that for any graph we have on
the set I the following relation:

l ′m = ln (2.49)
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2 Expectation value for Macro-variables: Rate equations

This is proved in the appendix (B.0.14). Also since the set I = {li , l ′j} is divided into inde-
pendent sets, i.e. independent of the rest, we can choose any variable to represent all of them
since all the others will be equal to this one. This means the following. For Pt(q0, l0) we have
that l0 will belong to a set independent of the rest and all equal among them. Thus we can take
l0 as representing all of the variables in this set. Finally we state the following theorem:

Theorem 2.4.7. A graph π(n,m) on the set s̄ (Eq. 2.38) can generate no more than n+m
2 +1

independent variables in the set I = {li , l ′j} and so by Theorem 2.4.6 C-graphs have less than
n+m

2 +1 independent variables. That is κπ < n+m
2 +1 for C-graphs.

This is also a consequence of lemma B.0.12 and B.0.11.

2.5 Bound for crossing graphs

In the previous section we expressed the average over products of random matrices as sums
over graphs, which we have classified. In this section we want to introduce this graphical
notation into the expressions we want to calculate, such as Eq. (2.30). We use then the
properties of these classes to provide bounds on their contribution to the time evolution of the
observable. In particular, we bound here the contribution of C-graphs.

When inserting Eq. (2.48) into the average of Eq. (2.30) we obtain:

E
[
PM

t (q0, l0)
]

=
M−1

∑
m,n=0

λ
n+m

∑
{li ,l ′j }0,{qi ,q ′j }0

ψ
∗
0(q
′
m , l ′m)ψ0(qn , ln)K n(t ,{Eli})K̄m({t ,El ′j })

×
2

∑
a=0

∑
π(n,m)∈Ga

Cπ(n,m,{li , l ′j},{qi ,q
′
j}) (2.50)

Since we want to analyze the limit when N →∞ and when the energy, El , becomes continues
we need to renormalize the wave function (see section C). We redefine then our ψ0 as follows:

ψ0(qn , ln)→
√

N ψ0(qn , ln) (2.51)

That is our amplitude ψ0(qn , ln) in Eq. (2.50) stand now for the original ones times
√

N . We
have then

〈Ô〉t = ∑
q0

∑
l0

1
N

PM
t (q0, l0)O(q0, l0) (2.52)

which converges to a Riemann integral in the limit N → ∞. We have not explicitly written
down the dependency of 〈Ô〉t on M . We keep it in mind and will eventually take the limit
M → ∞. In general we will omit these dependencies to avoid an overloaded notation. We can
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2.5 Bound for crossing graphs

split the evolution into three parts coming from the contributions from the three different type
of graphs

E[PM
t (q0, l0)] = P0,t(q0, l)+P1,t(q0, l0)+P2,t(q0, l0) (2.53)

with

Pa,t(q0, l0) =
M−1

∑
m,n=0

λ
n+m

∑
{li ,l ′j }0,{qi ,q ′j }0

ψ
∗
0(q
′
m , l ′m)ψ0(qn , ln)K n(t ,{Eli})K̄m(t ,{El ′j })

× ∑
π(n,m)∈Ga

Cπ(n,m,{li , l ′j},{qi ,q
′
j}) (2.54)

and a equal to 0, 1 or 2. We therefore have for a diagonal observable

E
[〈Ô〉t]=

2

∑
a=0

∑
q0

∑
l0

1
N

O(q0, l0)Pa,t(q0, l0) (2.55)

and define

〈Ô〉at = ∑
q0

∑
l0

1
N

O(q0, l0)Pa,t(q0, l0) (2.56)

= ∑
q0

Z
dE0ν

N (E0)O(q0,E0)Pa,t(q0,E0)

such that

E
[〈Ô〉t]=

2

∑
a=0
〈Ô〉at (2.57)

We can also use the definitions of independent and dependent sets (2.4.5) to rewrite Eq. (2.54).
For this we define the following:

Definition 2.5.1.

Aπ0 = Aπ/l0 (2.58)
Aq

π0 = Aq
π /q0 (2.59)

Aπ0 is thus the set of independent variables Aπ with the independent variable l0 removed
and likewise for Aq

π0. We have then

{li , l ′j}0 = Aπ0
[

Bπ

{qi ,q
′
j}0 = Aq

π0

[
Bq

π

25



2 Expectation value for Macro-variables: Rate equations

and thus from Eq. (2.54) we get

Pa,t(q0, l0) =
M−1

∑
m,n=0

λ
n+m

∑
Aπ0

∑
Aq

π0

∑
Bπ

∑
Bq

π

ψ
∗
0(q
′
m , l ′m)ψ0(qn , ln)K n(t ,{Eli})K̄m(t ,{El ′j })

× ∑
π(n,m)∈Ga

Cπ(n,m,{li , l ′j},{qi ,q
′
j}) (2.60)

We now analyze the behavior of the contribution of C-graphs to E[PM
t (q0, l0)] in the limit

N → ∞. In particular, we show that the contribution of C-graphs can be bounded by N−1 and
so will vanish in the N → ∞ limit. We first prove the following Lemma for C-graphs:

Lemma 2.5.2. For a bounded Macro-observable and E [P2,t(q0,E0)] given by Eq. (2.54) we
have

lim
N→∞
〈Ô〉2t = lim

N→∞
∑
q0

∑
l0

O(q0,El0)P2,t(q0,El0)

= lim
N→∞

∑
q0

Z
dE0ν

N (E0)O(q0,E0)P2,t(q0,E0)

= 0 (2.61)

Proof. Lemma 2.5.2
Inserting Eq. (2.44) and (2.54) in Eq. (2.56) we obtain:

〈Ô〉at =
M−1

∑
m,n=0

λ
n+m

∑
π(n,m)∈Ga

∑
{li ,l ′j }

∑
{qi ,q ′j }

ψ
∗
0(q
′
m , l ′m)ψ0(qn , ln) (2.62)

O(q0, l0)K n(t ,{Eli})K̄ n(t ,{El ′j })
wC (n,m,{li , l ′i},{qi ,q

′
i})

N (N ℵ)
n+m

2
C̃π(n,m,{li , l ′j},{qi ,q

′
j})

Using the definitions (2.4.5) of independent and dependent sets under a graph we have

∑
{qi ,q ′j }

∑
{li ,l ′j }

= ∑
Aq

π

∑
Bq

π

∑
Aπ

∑
Bπ

(2.63)

We introduce the following notation:

Gn,m
π (t ,{Eli ,El ′j }i,{qi ,q

′
j}i) = ∑

Bπ

∑
Bq

π

K n(t ,{Eli})K̄m(t ,{El ′j })C̃π(n,m,{li , l ′j},{qi ,q
′
j})

(2.64)

This means Gn,m
π (t ,{Eli ,El ′j }i,{qi ,q

′
j}i) is just the function K n(t ,{Eli})K̄m(t ,{El ′j }), where

the restrictions given by the contraction function Cπ(n,m) have been implemented. The sub-
script i in the expression {Eli ,El ′j }i means that out of the sets {li , l ′j} and {q ′i ,qj} it only
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2.5 Bound for crossing graphs

depends on the independent variables of the sets. We can thus write Eq. (2.62) as follows:

〈Ô〉at =
M−1

∑
n,m=0

λ
n+m

∑
π(n,m)∈Ga

∑
Aq

π

∑
Aπ

ψ
∗
0({q ′m}i,{l ′m}i)ψ0({qn}i,{ln}i)O({q0}i,{l0}i)

×wCπ(n,m,{li , l ′j}i,{qi ,q
′
j}i)

N
n+m

2 +1 (2ℵ)
n+m

2
Gn,m

π (t ,{Eli ,El ′j }i,{qi ,q
′
j}i)

=
M−1

∑
n,m=0

λ
n+m

∑
π(n,m)∈Ga

1

N
n+m

2 +1−κCπ

∑
Aq

Cπ

∑
ACπ

1
N κCπ

×ψ
∗
0({q ′m}i,{l ′m}i)ψ0({qn}i,{ln}i)O({q0}i,{l0}i)

×wCπ(n,m,{li , l ′j}i,{qi ,q
′
j}i)

(ℵ)
n+m

2
Gn,m

π (t ,{Eli ,El ′j }i,{qi ,q
′
j}i) (2.65)

The sum over the independent variables of Aπ is now weighted by N−1 to the power of the
number of independent variables, κπ, and so in the limit N →∞ turns into an integral over the
independent variables:

∑
{li ,l ′j }i

1
N κπ

= ∑
Aπ

1
N κπ

→
κπ

∏
j=1

Z
[dωj ] (2.66)

where ωj represents an independent variable. By inspecting Eq. (2.28) and Eq. (2.64) we see
that

∣∣Gn,m
π

∣∣ is bounded by some function of t which we will denote by G(t). By Eq. (2.45)
wCπ is also bounded as are the observable and initial wave function. Since the sum over one
qj is a finite sum, the sum over the independent variables Aq

π is bounded by a constant to the
power of the number of independent variables for the graph. Thus we have:∣∣∣λn+m

∑
Aq

π

∑
Aπ

1
N κπ

ψ
∗
0({q ′m}i,{l ′m}i)ψ0({qn}i,{ln}i)O({q0}i,{l0}i)

×wCπ(n,m,{li , l ′j}i,{qi ,q
′
j}i)

ℵ
n+m

2
Gn,m

π (t ,{Eli ,El ′j }i,{qi ,q
′
j}i)
∣∣∣

≤λ
n+m

∑
Aq

π

∑
Aπ

1

N κπℵ
n+m

2
CG(t)W

n+m
2

≤C (t ,λ)∑
Aq

π

1

ℵ
n+m

2
W

n+m
2 (2.67)

By theorems 2.4.6 and 2.4.7 we have that if π(n,m) ∈ G0,1(n,m) there are n+m
2 + 1 in-

dependent variables and therefore κπ = n+m
2 + 1. If π(n,m) ∈ G2(n,m) we have κπ <

n+m
2 + 1. Thus for NC-graphs the factor

( 1
N

)n+m
2 +1−κπ = 1 in Eq. (2.65). For Cross-

ing Graphs
( 1

N

)n+m
2 +1−κπ ≤ 1

N . For the same reason we have that Aq
π contains less than
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n+m
2 + 1 independent variables if π(n,m) ∈ G2 and so ∑Aq

π

1

ℵ
n+m

2
≤ 1. For NC-graphs we

have ∑Aq
π

1

ℵ
n+m

2
≤ℵ. Thus by using Eq. (2.67) in Eq. (2.65) we get

∣∣〈Ô〉2t ∣∣≤ 1
N

M−1

∑
n,m=0

∑
π(n,m)∈G2

C (t ,λ)W
n+m

2

lim
N→∞
〈Ô〉2t = 0 (2.68)

For NC-graphs we get from Eq. (2.65) and the fact that κπ = n+m
2 +1

〈Ô〉at =∑
q0

∑
l0

1
N

O(q0, l0)Pa,t(q0,El0)

=∑
q0

∑
l0

1
N

O(q0, l0)
M−1

∑
m,n=0

λ
n+m

∑
π(n,m)∈Ga

∑
Aq

π0

∑
Aπ0

1

N
n+m

2
ψ
∗
0({q ′m}i,{El ′m}i)

×ψ0({qn}i,{Eln}i)
wCπ(n,m,{Eli ,El ′j }i,{qi ,q

′
j}i)

(ℵ)
n+m

2

×Gn,m
π (t ,{Eli ,El ′j }i,{qi ,q

′
j}i)

Because of Eq.(2.49) for NC-graphs we have {Eln}i = {El ′m}i and so

ψ
∗
0({q ′m}i,{El ′m}i)ψ0({qn}i,{Eln}i) = P0 ({qn}i,{Eln}i)

The sum over the independent variables of Aπ is now weighted by N−1 to the power of the
number of independent variables, κπ, and so in the limit N →∞ turns into an integral over the
independent variables:

∑
{li ,l ′j }i

1
N κπ

= ∑
Aπ

1
N κπ

→ ∏
Eli

,El ′j
∈Aπ

Z
[dEli ]

Z
[dEl ′j ] (2.69)

We get then

lim
N→∞
〈Ô〉at =∑

q0

Z [
dEl0

]
O(q0,El0) ∑

m,n

λ
n+m

∑
π(n,m)∈Ga

∑
Aq

π0

∏
Eli

,El ′j
∈Aπ0

Z
[dEli ]

Z
[dEl ′j ]

×P0({qn}i,{Eln}i)
wCπ(n,m,{Eli ,El ′j }i,{qi ,q

′
j}i)

(ℵ)
n+m

2

×Gn,m
π (t ,{Eli ,El ′j }i,{qi ,q

′
j}i) (2.70)

=∑
q0

Z
dEl0O(q0,El0)Pa,t(q0,El0) (2.71)
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with

Pa,t(q0,El0) = ∑
m,n

λ
n+m

∑
π(n,m)∈Ga

∑
Aq

π0

∏
Eli

,El ′j
∈Aπ0

Z
[dEli ]

Z
[dEl ′j ]P0({qn}i,{Eln}i)

×
wCπ(n,m,{Eli ,El ′j }i,{qi ,q

′
j}i)

(ℵ)
n+m

2
Gn,m

π (t ,{Eli ,El ′j }i,{qi ,q
′
j}i) (2.72)

Pa,t(q0,El0) is now determined by the initial condition P0({qn}i,{Eln}i). This means that
the contribution for these terms are determined only by the initial data of the probability dis-
tribution on states given by the wavefunction and not the initial data of the wave function.
Phases are thus irrelevant because two states with different phases, but same initial probability
distribution have the same evolution according to Eq. (2.72).
We introduce the following definition:

Qπ(n,m,{qi ,q
′
j}i,El0, t) = ∏

Eli
,El ′j
∈Aπ0

Z
[dEli ]

[
dEl ′j

]
P0({qn}i,{Eln}i)

×
wCπ(n,m,{Eli ,El ′j }i,{qi ,q

′
j}i)

(ℵ)
n+m

2
Gn,m

π (t ,{Eli ,El ′j }i,{qi ,q
′
j}i)

(2.73)

We substitute Gn,m
π to have the more explicit form

Qπ(n,m,{qi ,q
′
j}i,El0, t) = ∏

Eli
,El ′j
∈Aπ0

Z
[dEli ]

[
dEl ′j

]
P0({qn}i,{Eln}i)

×∑
Bπ

∑
Bq

π

wCπ(n,m,{qi ,q
′
j},{Eli ,El ′j })

ℵ
n+m

2
C̃π(n,m,{qi ,q

′
j},{Eli ,El ′j })

×
Z

∞

−∞

dαdβe−it(α−β)e2ηt
n

∏
j=0

−1
Elj −α− iη

m

∏
j=0

−1
El ′j −β+ iη

(2.74)

We shall omit sometimes the {qi ,q
′
j}i dependency for brevity of notation. With this we express

Eq. (2.72) as:

Pa,t(q0,El0) =
M−1

∑
n,m=0

λ
n+m

∑
π(n,m)∈Ga

∑
Aq

π0

Qπ(n,m,{qi ,q
′
j}i,El0 , t) (2.75)

2.6 Bounds for Nested Graphs

We now move on to bounding the contribution coming from Nested graphs. For N-graphs we
have the following theorem:
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Theorem 2.6.1. If π(n,m) ∈ G1(n,m) and

Pt=0(q0,E0) < C (2.76)

we get the following bound:

I (t) =
Z

[dE0] |Qπ(n,m,E0, t)|
≤ C logn ′+3(t)t

n+m
2 −1 (2.77)

with C a constant.

Notice that in Eq. 2.75 the Qπ function is weighed by a λn+m factor and so if theorem 2.6.1
holds then λn+mI (t) would vanish in the Van Hove limit.
In order to prove this we will introduce a new notation which will allow us to exploit the
property of nests. In Eq. (2.73) we have the set {Eli ,El ′j }i which labels the independent ener-
gies variables of the left and right side of the expansion of the evolution of the wave function.
These come from the independent variables of the set {li , l ′j} which in turn come from the
graphs.
Depending on the graph structure the variables in {Eli ,El ′j }i can appear in many free propa-
gators, i.e. in the denominators of Eq. (2.74). We call this their multiplicity and will relabel
these variables according to their multiplicity.
Thus we relabel the set of independent variables {Eli ,El ′j }i by {ωi ,ω

′
j} where ωi denotes the

variables having multiplicity higher than 1 and ω′j those with multiplicity equal to 1.
We will denote by pj the multiplicity of ωj on the left hand side and by kj the multiplicity
on the right hand side. This means that for a variable ωj with left and right multiplicity pj

and kj respectively we will have a product of free propagators,
(

−1
ωj−α−iη

)kj ( −1
ωj−β+iη

)pj

appearing in Eq.(2.74). For variables having multiplicity 1 we will have a term
(

−1
ω′j−α−iη

)
,

if it comes from the right and
(

−1
ω′j−β+iη

)
, if it comes from the left. We will denote by n ′ the

number of propagators of multiplicity 1. That is n ′ is equal to the number of ω′j ’s. We also
designate n̄ + 1 as the number of ωj and let the index j runs from 0 to n̄. Note that since
N-graphs are non crossing the number of independent variables n ′+ n̄ +1 is equal to n+m

2 +1
according to theorem 2.4.6. A nest means that we have a contraction between either two left
random variables or two right random variables without having a contraction from any vari-
able in between with an outside one. This means that the energy variables in between this
contraction have no multiplicity on right or left side. Therefore an variable with multiplicity
higher then one that comes from in between a nest will have either kj or pj equal to 0. Since
for every ω′j there is just one propagator and ωi has multiplicity pi + ki the total number of
propagators, ∑

n̄
j=0(pj + kj )+n ′, is equal to n +m + 2. In our new notation we set El0 = ω0

and {Eln}i = ωn̄ . It can be seen that both of these variables always have multiplicity higher
then 1.
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2.6 Bounds for Nested Graphs

Depending on whether propagators of multiplicity one will appear on the right or left hand
side, they will dependend on α or β.
In short, a specific contraction function Cπ(n,m) contains the following information: It tells
us the value of n ′ which gives rise to propagators of multiplicity 1. It also tells us whether
these propagators are on the left or on the right. It contains the information of the value of n̄
and the multiplicity on the left and on the right, pj and kj , respectively. We can thus rewrite
the information encoded in Cπ(n,m) as a function of these variables

Cπ(n,m) = Cπ(n ′,{γi}, n̄,{pj ,kj}) (2.78)

with the following relations fulfilled:

n ′+ n̄ +1 =
n +m

2
+1 (2.79)

n̄

∑
j=0

(kj +pj −1) =
n +m

2
+1 (2.80)

Here 1 ≤ i ≤ n ′ , 0 ≤ j ≤ n̄ and the set {γi} is a sequence of α and β. Each α or β stands
for a right or left propagator of multiplicity 1. In Eq. (2.74) there is still the weight of a
graph to be considered. Since we are taking Wqi ,q

′
j
(li , l ′j ) to tend to a continues and bounded

function as N → ∞ in the energy variables, wCπ(n,m,{qj ,q
′
j},{lj , l ′j}) will also be continues

and bounded and as we are summing in Eq. (2.74) over the dependent variables we define
wCπ(n,m,{qj ,q

′
j}i,{Elj ,El ′j }i), with the identities imposed and in the new notation:

wCπ(n,m,{qj ,q
′
j}i,{Elj ,El ′j }i)

= lim
N→∞

∑
Bπ,Bq

π

wCπ(n,m,{qj ,q
′
j},{lj , l ′j})C̃π(n,m,{qj ,q

′
j},{lj , l ′j})

= W
({ωi ,ω

′
i},{qi ,q

′
j}i
)

(2.81)

In this notation we can write Qπ(n,m,ω0, t) for a specific graph realization as

Qπ(n ′, n̄,{kj ,pj},ω0, t) =

(
n̄

∏
j=1

Z
[dωj ]

)
P0(qn̄ ,ωn̄)

Z Z
dαdβe−i(α−β)teηt

×
n ′

∏
l=1

Z [
dω
′
l

] −1
ω′l − γl + iη

×
n̄

∏
j=0

( −1
ωj −β+ iη

)pj
( −1

ωj −α− iη

)kj W
(
{ωi ,ω

′
i},{qi ,q

′
j}i

)
ℵ

n+m
2

(2.82)

Proof. Theorem 2.6.1
Remember that η was introduced as an identity and we should have 0 < η. From now on
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we set η = t−1. Since the graph considered is a Nested one there is an integration over a ωi

variable that does not possess any multiplicity on the right or left side. That is either pj or kj

is equal to 0. We take pj = 0. By use of Eq. (2.82) and (2.76) we have

I (t)≤ C

ℵ
n+m

2

(
n̄

∏
j=0,j 6=i

Z
[dωj ]

)Z Z
dαdβeηt

n ′

∏
l=1

Z [
dω
′
l

]∣∣∣∣ −1
ω′l − γl + iη

∣∣∣∣ (2.83)

×
n̄

∏
j=0,j 6=i

(∣∣∣∣ −1
ωj −β+ iη

∣∣∣∣pj
∣∣∣∣ −1
ωj −α− iη

∣∣∣∣kj
)

×
∣∣∣∣∣
Z

[dωi ]
( −1

ωi −α− iη

)ki

W
({ωj ,ω

′
j},{qi ,q

′
j}i
)∣∣∣∣∣

The last integral can be done by parts.

∣∣∣∣∣
Z

[dωi ]
( −1

ωi −α− iη

)ki

W
({ωj},{qi ,q

′
j}i
)∣∣∣∣∣

≤
∣∣∣∣∣g(ωi)W

({ωj},{qi ,q
′
j}i
)( 1

ωi −α− iη

)ki−1 ∣∣∣1
0

∣∣∣∣∣
+

∣∣∣∣∣
Z

dωi
∂

∂ωi

(
g(ωi)W

({ωj},{qi ,q
′
j}i
))( −1

ωi −α− iη

)ki−1
∣∣∣∣∣

≤C1

∣∣∣∣∣
(

1
1−α− iη

)ki−1
∣∣∣∣∣+C1

∣∣∣∣∣
(

1
α+ iη

)ki−1
∣∣∣∣∣+C2

Z
dωi

∣∣∣∣ −1
ωi −α− iη

∣∣∣∣ki−1

(2.84)

And so we have for I (t):

I (t)≤ C

ℵ
n+m

2

(
n̄

∏
j=0,j 6=i

Z
[dωj ]

)Z Z
dαdβeηt

n ′

∏
l=1

Z [
dω
′
l

]∣∣∣∣ −1
ω′l − γl + iη

∣∣∣∣
×

n̄

∏
j=0,j 6=i

(∣∣∣∣ −1
ωj −β+ iη

∣∣∣∣pj
∣∣∣∣ −1
ωj −α− iη

∣∣∣∣kj
)

×
(

C1

∣∣∣∣∣
(

1
1−α− iη

)ki−1
∣∣∣∣∣+C1

∣∣∣∣∣
(

1
α+ iη

)ki−1
∣∣∣∣∣+C2

Z
dωi

∣∣∣∣ −1
ωi −α− iη

∣∣∣∣ki−1
)
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By using Eq. (A.4) of the appendix we can derive the following bound

I (t)≤ C

ℵ
n+m

2
logn ′(t)

(
n̄−1

∏
j=1,j 6=i

tpj+kj−1

)
tp0+k0−2tpn̄+kn̄−2

Z
dαdβ [dω0] [dωn̄ ]

1
ki −1(∣∣∣∣ 1

1−α− iη

∣∣∣∣ki−1

+
∣∣∣∣ 1
α+ iη

∣∣∣∣ki−1

+

∣∣∣∣∣
Z

dωi

( −1
ωi −α− iη

)ki−1
∣∣∣∣∣
)

∣∣∣∣ 1
ω0−β+ iη

∣∣∣∣ ∣∣∣∣ 1
ω0−α− iη

∣∣∣∣ ∣∣∣∣ 1
ωn̄ −β+ iη

∣∣∣∣ ∣∣∣∣ 1
ωn̄ −α− iη

∣∣∣∣ (2.85)

From Eq.(A.9) of the appendix we haveZ
dαdβ [dω0] [dωn̄ ]

∣∣∣∣ 1
x −α− iη

∣∣∣∣ki−1 ∣∣∣∣ 1
ω0−β+ iη

∣∣∣∣ ∣∣∣∣ 1
ω0−α− iη

∣∣∣∣
×
∣∣∣∣ 1
ωn̄ −β+ iη

∣∣∣∣ ∣∣∣∣ 1
ωn̄ −α− iη

∣∣∣∣≤ Ctki−1 log3(t) (2.86)

with x equal to 0, 1 or ωi . Using Eq. (2.86) in Eq. (2.85) we get

I (t)≤ C̃

ℵ
n+m

2
logn ′+3(t)

(
n̄−1

∏
j=1

tpj+kj−1

)
tp0+k0−2tpn̄+kn̄−2

≤ C̃

ℵ
n+m

2
logn ′+3(t)

(
n̄

∏
j=0

tpj+kj−1

)
t−2

≤C̃ logn ′+3(t)t
m+n

2 −1

ℵ
n+m

2
(2.87)

To get the last line we used Eq. (2.80).

Using Eq. (2.87) in Eq.(2.75) we have∣∣∣∣Z [dω0]O(q0,ω0)P1,t(q0,ω0)
∣∣∣∣≤Omax

Z
[dω0] |P1,t(q0,ω0)|

≤Omax ∑
n,m

λ
n+m

∑
π(n,m)∈G1

∑
{qi ,q ′j }i

Z
[dω0]

∣∣Qπ(n,m,{qi ,q
′
j}i,ω0, t)

∣∣
≤Omax ∑

n,m

λ
n+m

∑
π(n,m)∈G1

∑
{qi ,q ′j }i

I (t)

≤ Cℵ ∑
n,m

∑
π(n,m)∈G1

λ
n+m

2 logn ′+3(t)t
m+n

2 −1 (2.88)

In the Van Hove limit, with λ2 = Tt−1 we find
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lim
t→∞

∣∣∣∣Z [dω0]O(q0,ω0)P1,t(q0,ω0)
∣∣∣∣≤ lim

t→∞
Cℵt−1

M−1

∑
n,m=0

∑
π(n,m)∈G1

logn ′+3(t)
T

(T )
m+n

2

≤0 (2.89)

Thus in the Van Hove limit only S-graphs will contribute.

2.7 Simple graphs

While introducing the new notation in section 2.6 we have never used the fact that the graphs
were nested. This is why we can also use that notation for expressing S-graphs. For S-graphs
there are extra relations. For N-graphs we made a distinction between variable of multiplicity
1 and higher. The variables of multiplicity 1 could be associated with a propagator with the α

or the β, which we wrote down as a sequence, {γl}, that we did not specify. For S-graphs there
is an easy way to label this, which we explain now. For S-graphs we can never have kj or pj

equal to zero, for this would be a nest. In addition, in between two outer contractions there can
only be nn-contractions because anything else would be a nest. Thus for S-graphs we have
in between two outer contractions, say in between the j th and the (j + 1)th, one propagator
with multiplicity higher then one and a certain number of propagators of multiplicity one on
the left and on the right. This is illustrated in figure 2.6. We can thus label the variable of
the propagator with multiplicity higher then one and, between the j th and the (j + 1)th outer
contraction, by ωj . We anticipated this in section 2.6 and already used this notation. Every
nn-contraction (definition 2.4.3) in between the j th and the (j + 1)th outer contraction will
increase the multiplicity of the propagator that has multiplicity higher then 1 by one. We thus
see that if the multiplicity of this propagator on the left is kj and on the right pj then there
will be kj −1 propagators of multiplicity 1 on the left and pj −1 on the right (see figure 2.6).
n̄ + 1 is the number of propagators of multiplicity higher then 1 and they are generated by n̄
over contractions in the case of S-graphs. Since n ′ is equal to the number of propagators of
multiplicity 1 we find

n ′ =
n̄

∑
j=0

(pj + kj −2) (2.90)

Since the total number of propagators in Qπ(n,m,ω0, t) is n + m + 2, which is equal to
∑

n̄
j=0 (kj +pj )+n ′, Eq. (2.90) implies

n +m

2
+1 =

n̄

∑
j=0

(kj +pj −1) (2.91)

Because in between two outer contraction there can only be nn-contraction we have that for a
given set of numbers n̄, kj and pj there exists only one simple graph. n̄ gives one the number
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of outer contractions and kj and pj tells us how many nn-contractions there are in between the
j th and (j +1)th outer contraction.

We relabel here the ω′l , that is the variables with multiplicity 1, by ω
j
l for the right hand side

and ω̄
j
l for the left hand side. The superindex j now refers to the fact that the propagator with

this variable lies in between the j th and the (j + 1)th outer contraction. The same notation is
used for the {qj ,q

′
i}i variables. The variables n̄ and {kj ,pj} completely specify the simple

graph π(n,m) . With this we can rewrite the sum over the q-variables of Eq. (2.82) as

(j + 1)th contraction jth contraction

pj nn-contractions kj nn-contractions

ωjωjωj
ωjωjωj ω̄j

pj
ω̄j

1 ωj
1 ωj

kj

Figure 2.6: Sketch of the graph structure in between two over contractions

∑
{qj ,q j

l ,q̄
j
l }

Qπ(n̄,{kj ,pj},{qj ,q
j
l ,q
′j
l },ω0, t) =

∑
{qj ,q j

l ,q̄
j
l }

(
n̄

∏
j=1

Z
[dωj ]

)
P0(qn̄ ,ωn̄)

Z Z
dαdβe−i(α−β)teηt

×
n̄

∏
j=0

(∣∣Wqj ,qj+1(ωj ,ωj+1)
∣∣2( −1

ωj −β+ iη

)pj
( −1

ωj −α− iη

)kj

×

kj−1

∏
l=1

Z [
dω

j
l

]− ∣∣∣Wqj ,q
j
l
(ωj ,ω

j
l )
∣∣∣2

ω
j
l −α− iη


pj−1

∏
l=1

Z [
d ω̄

j
l

]− ∣∣∣Wqj ,q̄
j
l
(ωj , ω̄

j
l )
∣∣∣2

ω̄
j
l −β+ iη

) (2.92)

were we set Wqn̄ ,qn̄+1(ωn̄ ,ωn̄+1) = 1. Notice that the sums over the q j
l and q̄ j

l variables are
summing over W

qj ,q
j
l

and W
qj ,q̄

j
l
, and can be moved inside of the integral.

We make now a shift of the variables kj and pj .

pj → pj +1
kj → kj +1

We had that neither kj nor pj could be equal to zero for S-graphs and so if we were to sum
up over different possible kj ’s and pj ’s we would have to start form 1. With this shift we
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2 Expectation value for Macro-variables: Rate equations

would start from 0. It is for briefness of notation that we make this shift. This shift implies the
following changes in the relationship between the variables n, m and the variables n̄, kj and
pj :

n̄

∑
j=0

(kj +pj +1) =
n +m

2
+1 (2.93)

And, of course in Eq. (2.92) we have to replace every kj by kj +1 and pj by pj +1.
By inspecting Eq. (2.92) we see that this quantity will be large whenever the denominators
tend to be as small as possible. This will occur when the energies ωj , ω

j
l and ω̄

j
l are close to α

or β. Our intentions now will be to show that we can replace the integrations over propagators
of multiplicity 1, −1

ω
j
i−α−iη

, by integrations over −1
ω

j
i−ωn̄−iη

by making an error which goes to 0

in the Van Hove limit. This is a kind of resonance condition because it means that Eq. (2.92)
will be large when the energies ωj , ω

j
l and ω̄

j
l are close to the initial energy ωn̄ . We define

Θ(qj ,ωj ,α,η) =
Z

[dω]
−∑q

∣∣Wqj ,q(ωj ,ω)
∣∣2

ω−α− iη
(2.94)

Θ(qj ,ωj ,ωn̄) = lim
η′→0

Θ(qj ,ωj ,α,η′) (2.95)

Θ(qj ,ωj ,α,η) is the function appearing multiple times in the last line of Eq. (2.92). Since
Wqj ,q(ωj ,ω) is bounded we have:

|Θ(qj ,ωj ,ωn̄)| ≤ C (2.96)

We will show that the difference in the evolution when using Θ(qj ,ωj ,α,η) or Θ(qj ,ωj ,ωn̄)
vanishes in the Van Hove limit. In order to analyze the difference in evolution we look at the
difference between Q̃π(n̄,{kj ,pj},ω0, t) and Qπ(n̄,{kj ,pj},ω0, t),
where Q̃π(n̄,{kj ,pj},ω0, t) is Qπ(n̄,{kj ,pj},ω0, t) with the Θ(qj ,ωj ,α,η) are replaced by
Θ(qj ,ωj ,ωn̄).

∆Qπ(n̄,{kj ,pj},q0,ω0, t) =

∑
{qj ,q j

l ,q̄
j
l }

Qπ(n̄,{kj ,pj},{qj ,q
j
l , q̄

j
l },ω0, t)− Q̃π(n̄,{kj ,pj},{qj ,q

j
l , q̄

j
l },ω0, t) (2.97)

∆Qπ(n̄,{kj ,pj},ω0, t) = ∑
{qj }

Z Z
dαdβe−i(α−β)teηt

n̄

∏
j=0

Z
[dωj ]P0(qn̄ ,ωn̄)

× ∣∣Wqj ,qj+1(ωj ,ωj+1)
∣∣2( 1

ωj −α− iη

)kj+1( 1
ωj −β+ iη

)pj+1

×
((

Θ
kj (qj ,ωj ,α,η)

)(
Θ̄

pj (qj ,ωj ,β,η)
)−(Θ

kj (qj ,ωj ,ωn̄)
)(

Θ̄
pj (qj ,ωj ,ωn̄)

))
(2.98)
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2.7 Simple graphs

We restrict the initial probability distribution to be zero around the borders of the spectrum.

P0(qn̄ ,ωn̄) = χθ(ωn̄)P0(qn̄ ,ωn̄) (2.99)

where χθ(ω) is the characteristic function on [θ,1−θ]. Thus the range of integration on ωn̄

is between [θ,1−θ]. We will now prove the following bound that will allow us to replace
Θ(qj ,ωj ,α,η) by Θ(qj ,ωj ,ωn̄).

Theorem 2.7.1.

∆I (n̄,{kj ,pj},q0, t) =
Z

[dω0] |∆Qπ(n̄,{kj ,pj},ω0, t)|

≤ C (log(t))
n+m

2 +5 t
n+m

2 −1 (2.100)

Notice that, similar to the case of N-graphs, if theorem 2.7.1 is true then λn+m∆I goes to
zero in the Van Hove limit and so in this part would vanish in Eq. (2.75).

Proof. Theorem 2.7.1
We have

|∆I | ≤ ∑
{qj }

Z
dαdβ

n̄

∏
j=0

Z
[dωj ]

∣∣Wqj ,qj+1(ωj ,ωj+1)
∣∣2 ∣∣∣∣ 1

ωj −α− iη

∣∣∣∣kj+1 ∣∣∣∣ 1
ωj −β+ iη

∣∣∣∣pj+1

×
∣∣∣(Θ

kj (qj ,ωj ,α,η)
)(

Θ̄
pj (qj ,ωj ,β,η)

)−(Θ
kj (qj ,ωj ,ωn̄)

)(
Θ̄

pj (qj ,ωj ,ωn̄)
)∣∣∣ (2.101)

where the integration over ωn̄ is between [θ,1−θ]. Notice first that if α or β were not in the
range of [−1,2] then our expression could be bounded by integrals over powers of 1

α
and 1

β
.

Such integrals can then be bounded by a constant since no poles are present and so in this
region ∆I can be bounded by a constant. Thus we need only to consider integration over α

and β belonging to a bounded range.
In order to bound |∆I | we will first bound∣∣Θkj (qj ,ωj ,α,η)Θ̄pj (qj ,ωj ,β,η)−Θkj (qj ,ωj ,ωn̄)Θ̄pj (qj ,ωj ,ωn̄)

∣∣.
We have

|Θ(qj ,ωj ,α,η)−Θ(qj ,ωj ,ωn̄)|

=

∣∣∣∣∣
Z

dωg(ω)
−∑q

∣∣Wqj ,q(ωj ,ω)
∣∣2

ω−α− iη
− lim

η′→0

Z
dωg(ω)

−∑q

∣∣Wqj ,q(ωj ,ω)
∣∣2

ω−ωn̄ − iη′

∣∣∣∣∣
= lim

z ′→ωn̄

∣∣∣∣Z dωG(ω)
(

1
ω− z

− 1
ω− z ′

)∣∣∣∣
with

G(ω) = g(ω)
∣∣Wqj ,q(ωj ,ω)

∣∣2
z = α+ iη

z ′ = ωn̄ + iη′

37



2 Expectation value for Macro-variables: Rate equations

By integrating by parts we get:

|Θ(qj ,ωj ,α,η)−Θ(qj ,ωj ,ωn̄)|
≤ lim

z ′→ωn̄

(∣∣∣∣G(ω)(log(ω− z )− log(ω− z ))
∣∣∣1
0

∣∣∣∣+ ∣∣∣∣Z dωG ′(ω)(log(ω− z )− log(ω− z ))
∣∣∣∣)

≤ lim
z ′→ωn̄

(∣∣∣∣G(ω)(log(ω− z )− log(ω− z ))
∣∣∣1
0

∣∣∣∣+Z z ′

z
d |χ|

Z
dω

∣∣∣∣G ′(ω)
ω−χ

∣∣∣∣)
= B1 (2.102)

Using the following inequalities∣∣log(z )− log(z ′)
∣∣≤ C

∣∣z − z ′
∣∣( 1
|z | +

1
|z ′|
)

(2.103)Z z ′

z
d |χ|

Z
dω

∣∣∣∣G ′(ω)
ω−χ

∣∣∣∣≤ C
∣∣z − z ′

∣∣ log(|η|) (2.104)

we have

lim
η′→0

B1 ≤ C |ωn̄ −α− iη|
(

1
|1−α− iη| +

1
|1−ωn̄ | +

1
|α+ iη| +

1
|ωn̄ | + log |η|

)
(2.105)

Inequality (2.104) is proved at the end of section A. Using the following decomposition

Θ
kj (qj ,ωj ,α,η)Θ̄pj (qj ,ωj ,β,η)−Θ

kj (qj ,ωj ,ωn̄)Θ̄pj (qj ,ωj ,ωn̄) = (2.106)

Θ̄
pj (qj ,ωj ,β,η)

kj−1

∑
l=0

Θ
kj−l−1(qj ,ωj ,α,η)Θl (qj ,ωj ,ωn̄)(Θ(qj ,ωj ,α,η)−Θ(qj ,ωj ,ωn̄))+

Θ
kj (qj ,ωj ,ωn̄)

pj−1

∑
l=0

Θ̄
pj−l−1(qj ,ωj ,β,η)Θ̄l (qj ,ωj ,ωn̄)

(
Θ̄(qj ,ωj ,β,η)− Θ̄(qj ,ωj ,ωn̄)

)
we can bound (2.106) as follows∣∣∣Θkj (qj ,ωj ,α,η)Θ̄pj (qj ,ωj ,β,η)−Θ

kj (qj ,ωj ,ωn̄)Θ̄pj (qj ,ωj ,ωn̄)
∣∣∣≤ A+B (2.107)

A =
∣∣Θ̄pj (qj ,ωj ,β,η)

∣∣ kj−1

∑
l=0

∣∣∣Θkj−l−1(qj ,ωj ,α,η)Θl (qj ,ωj ,ωn̄)
∣∣∣ |Θ(qj ,ωj ,α,η)−Θ(qj ,ωj ,ωn̄)|

=
kj−1

∑
l=0

A(l)

B =
∣∣∣Θkj (qj ,ωj ,ωn̄)

∣∣∣pj−1

∑
l=0

∣∣∣Θ̄pj−l−1(qj ,ωj ,β,η)Θ̄l (qj ,ωj ,ωn̄)
∣∣∣ ∣∣Θ̄(qj ,ωj ,β,η)− Θ̄(qj ,ωj ,ωn̄)

∣∣
=

pj−1

∑
l=0

B(l)
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2.7 Simple graphs

We omitted here all the variable dependencies on A, B , A(l) and B(l) to simplify the notation.
The important point here is to see that each factor in the sum is proportional to
(Θ(qj ,ωj ,α,η)−Θ(qj ,ωj ,ωn̄)) or

(
Θ̄(qj ,ωj ,β,η)− Θ̄(qj ,ωj ,ωn̄)

)
. Using Eq. (A.2) and

(2.96) to bound A(l) we get

A(l)≤ C l |log(η)|pj+kj−l−1 |Θ(qj ,ωj ,α,η)−Θ(qj ,ωj ,ωn̄)| (2.108)

and thus

A≤ C |log(η)|pj+kj−1 |Θ(qj ,ωj ,α,η)−Θ(qj ,ωj ,ωn̄)| (2.109)

Similarly for B we get

B ≤ C |log(η)|pj+kj−1 ∣∣Θ̄(qj ,ωj ,β,η)− Θ̄(qj ,ωj ,ωn̄)
∣∣ (2.110)

When inserting the bound of Eq. (2.107) in Eq. (2.101) we get two parts, one depending on A
and the other on B . We shall bound the first part as it is inserted in ∆I and analyze its limit,
the second being analogous to the first.
We define∣∣∆ĨA(n̄,{kj ,pj}, t , l)

∣∣= ∑
{qj }

Z
dαdβ

n̄

∏
j=0

Z
[dωj ]

∣∣∣∣ 1
ωj −α− iη

∣∣∣∣kj+1 ∣∣∣∣ 1
ωj −β+ iη

∣∣∣∣pj+1

A(l)

(2.111)

and∣∣∆ĨB (n̄,{kj ,pj}, t , l)
∣∣= ∑

{qj }

Z
dαdβ

n̄

∏
j=0

Z
[dωj ]

∣∣∣∣ 1
ωj −α− iη

∣∣∣∣kj+1 ∣∣∣∣ 1
ωj −β+ iη

∣∣∣∣pj+1

B(l)

(2.112)

such that we have

∆I ≤ C

(
kj−1

∑
l=0

∣∣∆ĨA(n̄,{kj ,pj}, t , l)
∣∣+ pj−1

∑
l=0

∣∣∆ĨB (n̄,{kj ,pj}, t , l)
∣∣) (2.113)

We bound now Eq. (2.111). By inserting the bound from Eq. (2.109) in Eq. (2.113) and using
Eq. (A.4) from the appendix to bound the integrations over all ωj ’s except ωn̄ and ω1 we get
for the first sum

kj−1

∑
l=0

∣∣∆ĨA(n̄,{kj ,pj}, t , l)
∣∣≤ C

(
n̄

∏
j=0

(
logkj+pj−1(η−1)

)( 1
η

)kj+pj+1
)

η
2

Z
dαdβ

(2.114)

×
Z

[dωn̄ ] [dω1]
∣∣∣∣ 1
ωn̄ −α− iη

∣∣∣∣ ∣∣∣∣ 1
ωn̄ −β+ iη

∣∣∣∣ ∣∣∣∣ 1
ω1−α− iη

∣∣∣∣ ∣∣∣∣ 1
ω1−β+ iη

∣∣∣∣
×|Θ(ωj ,α,η)−Θ(ωj ,ωn̄)|
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2 Expectation value for Macro-variables: Rate equations

We move to bounding the integrated factor. Inserting the bound from Eq. (2.102) into the
integrated factor we get:

I1 =
Z

dαdβ

Z
[dωn̄ ] [dω1]

∣∣∣∣ 1
ωn̄ −α− iη

∣∣∣∣ ∣∣∣∣ 1
ωn̄ −β+ iη

∣∣∣∣ ∣∣∣∣ 1
ω1−α− iη

∣∣∣∣ ∣∣∣∣ 1
ω1−β+ iη

∣∣∣∣
×|Θ(ωj ,α,η)−Θ(ωj ,ωn̄)|
≤

Z
dαdβ

Z
[dωn̄ ] [dω1]

∣∣∣∣ 1
ωn̄ −β+ iη

∣∣∣∣ ∣∣∣∣ 1
ω1−α− iη

∣∣∣∣ ∣∣∣∣ 1
ω1−β+ iη

∣∣∣∣
×
∣∣∣∣ 1
|1−α− iη| +

1
|1−ωn̄ | +

1
|α+ iη| +

1
|ωn̄ |

∣∣∣∣ (2.115)

Notice that
∣∣∣ 1

ωn̄−α−iη

∣∣∣ was canceled out by the bound on |Θ(ωj ,α,η)−Θ(ωj ,ωn̄)|.
Because ωn̄ is in [θ,1−θ] we have 1

|ωn̄ | and 1
|1−ωn̄ | bounded. From bounds (A.11) in the

appendix we obtain

I1 ≤ log4(η−1)

We then have for ∆ĨA

kj−1

∑
l=0

∣∣∆ĨA(n̄,kj ,pj , t , l)
∣∣≤ C log∑

n̄
j=0(kj+pj−1)+4(η−1)

(
1
η

)
∑

n̄
j=0(kj+pj+1)−2

(2.116)

If we apply the same strategy to bound the ∆ĨB factor and use Eq. (2.93), we get:

∆I ≤ C log
n+m

2 +5−2(n̄+1)(t)t
n+m

2 −1 (2.117)

This result, as we will show now, allows to say that in the Van Hove limit the difference will
tend to zero, once again because the power of t is not strong enough.
Since we changed variables from n,m to {pj ,kj} and n̄ we have to express the sum Eq. (2.75)
in terms of the new variables introduced. We have then

(2.75) =
2∑

n̄
j=0(kj+pj+1)≤2M

∑
n̄,kj ,pj=0

(
λ

2)n̄+∑
n̄
j=0(kj+pj )

× ∑
π(n̄,{kj ,pj })∈G0

∑
qj ,q

j
l ,q
′j
l

Qπ(n̄,{kj ,pj},{qj ,q
l
j ,q
′l
j },ω0, t) (2.118)

The upper limit of the sum is a complicated condition which comes from the fact that we are
summing n and m from 0 until M − 1. That is, the upper limit of the sum over kj and pj

depends on n̄ and vice versa. Since each S-graph π(n̄,{kj ,pj}) is uniquely specified by n̄, kj

40



2.8 Comments on the interpretation

and pj the sum, ∑π(n̄,{kj ,pj })∈G0 , in Eq. (2.118) is actually just a sum over one element and so
can be taken out. We set

P̃0,t(q0,ω0) =
2∑

n̄
j=0(kj+pj+1)≤2M

∑
n̄,kj ,pj=0

(
λ

2)n̄+∑
n̄
j=0(kj+pj )

× ∑
qj ,q

j
l ,q
′j
l

Q̃π(n̄,{kj ,pj},{qj ,q
j
l ,q
′j
l },ω0, t) (2.119)

such that the difference between the time evolution of the probability distribution , P0,t(q0,ω0)
and P̃0,t(q0,ω0), evaluated on an observable can be bounded as follows:∣∣∣∣Z dω0O(q0,ω0)

(
P0,t(q0,ω0)− P̃0,t(q0,ω0)

)∣∣∣∣
=

∣∣∣∣∣∣
Z

dω0O(q0,ω0) ∑
n̄,kj ,pj

(λ2)n̄+∑
n̄
j=0(kj+pj )

∑
π(n̄,{kj ,pj })∈G0

∆Qπ(n̄,{kj ,pj},q0,ω0, t)

∣∣∣∣∣∣
≤Omax

2∑
n̄
j=0(kj+pj+1)≤2M

∑
n̄,kj ,pj=0

(λ2)n̄+∑
n̄
j=0(kj+pj )∆I (n̄,{kj ,pj},q0, t) (2.120)

Inserting the bound of Eq. (2.116) in Eq. (2.120) we get in the Van Hove limit (λ2 = Tt−1):

lim
t→∞

∣∣∣∣Z dω0O(q0,ω0)
(
P0,t(q0,ω0)− P̃0,t(q0,ω0)

)∣∣∣∣
≤C lim

t→∞

2∑
n̄
j=0(kj+pj+1)≤2M

∑
n̄,kj ,pj=0

(
λ

2)n̄+∑
n̄
j=0(kj+pj )

t n̄+∑
n̄
j=0(kj+pj )−1 log∑

n̄
j=0(kj+pj−1)+4 (t)

≤C lim
t→∞

t−1
2∑

n̄
j=0(kj+pj+1)≤2M

∑
n̄,kj ,pj=0

T n̄+∑
n̄
j=0(kj+pj )−1 log∑

n̄
j=0(kj+pj−1)+4 (t)

Thus

lim
t→∞

∣∣∣∣Z dω0O(q0,ω0)
(
P0,t(q0,ω0)− P̃0,t(q0,ω0)

)∣∣∣∣≤ 0 (2.121)

This means that in the Van Hove limit P̃0,t(q0,ω0) captures properly the evolution of the
probability density.

2.8 Comments on the interpretation

Before proceeding to derive the rate equations in the respective limits some comments and
remarks should be in order about the non contributing parts of the evolution. We refer here to
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2 Expectation value for Macro-variables: Rate equations

an analogy with a free quantum particle. We can write down the evolution of the probability
to find a quantum particle at point y , when it starts out in position x as

P(y , t) = ∑
path a,path b

A∗path a(y |x )(t)Apath b(y |x )(t) (2.122)

where Apath a(y |x )(t) is the probability amplitude for a path that starts from the point x and
goes to the point y . Figure 2.7 shows two different paths the quantum particle may take with
the respective amplitudes, A1(t) and A2(t). When calculating the probability to be at point y ,
these two paths can interfere.
If we sum up over the paths that are nearly the same there would practically be no interference.

x

y

A1(t)

A2(t)

0
Figure 2.7: Two different paths the quatum particle can take

The sum over the product of amplitudes of paths becomes the probability of that path being
taken. This is sketched in figure 2.8. Thus if the paths were identical and only those were
contributing, our particle would behave stochastically, and thus classical, it would look very
similar except that instead of having sums over amplitudes of paths we would have sums over
probabilities of paths:

P(y , t) = ∑
path a

Ppath a(y |x )(t) (2.123)

If all quantum effects were negligible we could pass from Eq. (2.122) to Eq.(2.123).
In our case we have paths in the Hilbert space. This is not so different then for the case of
the free particle. If we represent as dots our Hilbert state vectors and as lines the transitions
from one vector to another, we would have the following representation for a pair of paths
coming from the expansion of the evolution operators (see figure 2.9). The weight of such a
pair of trajectories in Hilbert space turns out to be zero, because the transition amplitudes do
not correlate at all. An example of a Crossing path is depicted in figure 2.10. We only show
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x

y
A1(t)

A2(t)

B1(t)

B2(t)
0

Figure 2.8: Sketch of the contribution if only similar paths are taken

A1(t)

A2(t)

Figure 2.9: Representation of pairs of paths in the Hilbert space

three dots for simplicity. The time variables are ordered here and symbolize the time it takes
to make the jump from one state to the other. The arrows indicate the time direction and an
oriented arrow can only correlate with another one that is identical, including the direction. For
a crossing graph the arrow of path t2 correlates with the one of t ′3 and the one of t3 correlates
with the one of t ′2. In some sense this means that if t2 and t ′3 denote the present of the two
paths, then the future of the first path t3 correlates with the past,t ′2 , of the second part. This is
very odd and quantum like.
An example of a Nested path is shown in figure 2.11. The two paths follow each other but
they are allowed to have a completely different evolution at some point, as long as they return
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a b

c

t1

t2 t3

t4

t′1 t′2t′3

t′4

Figure 2.10: Example of a Crossing path

A1(t)

A2(t)

Figure 2.11: Example of a Nested path

to the point, where they started to differ and then continue their way together.
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2.9 The rate equations

For a Simple path we depict an example in figure 2.12. Here once again the paths can differ

A1(t)

A2(t)

Figure 2.12: Simple paths

but have to return after each jump. The more classical like contributions are, of course, the
simple paths.

2.9 The rate equations

As we have seen in section 2.7, we can use P̃0,t(q0,ω0) to calculate the contribution from
S-graphs to the time evolution of the probability distribution in the Van Hove limit. Since we
already showed that C-graphs and N-graphs do not contribute in the N →∞ limit and the Van
Hove limit, P̃0,t(q0,ω0) describes the evolution of the probability distribution in these limits.
We now proceed to showing that the average of the probability distribution Pt(q0,ω0) is a
solution of the rate equations in the limits considered. We will resum up the expression we
have for P̃0,t(q0,ω0) over the S-graphs. Our Duhamel expansion is truncated at the M − 1
term and in the limit M → ∞ the rest would go to zero (see chapter 6). Thus we calculate
P̃0,t(q0,ω0) for M → ∞. This means that instead of the complicated condition we had in the
sum of Eq. (2.118) we have to sum n̄, kj and pj up to ∞. We have for Q̃π the following
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expression:

∑
qj 6=q0,q

j
l ,q
′j
l

Q̃π(n̄,{kj ,pj},{qj ,q
j
l ,q
′j
l },ω0, t) = ∑

{qj }0

(
n̄

∏
j=1

Z
[dωj ]

)
P0(qn̄ ,ωn̄)

×
Z

dαdβe−i(α−β)teηt
n̄

∏
j=0

∣∣Wqj ,qj+1(ωj ,ωj+1)
∣∣2( −1

ωj −β+ iη

)pj+1( −1
ωj −α− iη

)kj+1

×Θ
kj (qj ,ωj ,ωn̄)Θ̄pj (qj ,ωj ,ωn̄) (2.124)

For the probability density we have:

E [PT (q0,ω0)] = lim
M→∞

λ2t=T
lim
t→∞

E
[
PM

t (q0,ω0)
]

= lim
M→∞

λ2t=T
lim
t→∞

P̃0,t(q0,ω0)

=
λ2t=T
lim
t→∞

∞

∑
n̄=0

λ
2n̄

∞

∑
ki ,pi=0

(λ2)∑
n̄
j=0(kj+pj )

∑
qj 6=q0,q

j
l ,q
′j
l

Q̃π(n̄,{kj ,pj},ω0, t)

(2.125)

We absorb the factor (λ2)kj+pj by redefining our Θ function as

Θ(qj ,ωj ,ωn̄)→ λ
2
Θ(qj ,ωj ,ωn̄) (2.126)

By inspecting Eq.(2.124) this entails

(λ2)kj+pj Q̃π(n̄,{kj ,pj},ω0, t)→ Q̃π(n̄,{kj ,pj},ω0, t)

We then find

E [PT (q0,ω0)] =
λ2t=T
lim
t→∞

∞

∑
n̄=0

λ
2n̄

∞

∑
kj ,pj=0

∑
qj 6=q0,q

j
l ,q
′j
l

Q̃π(n̄,{kj ,pj},ω0, t) (2.127)

In section 2.3 we have replaced the delta function over the time integrals δ
(
t −∑j sj

)
by the

integrations over the α and β variables. We now apply to some extent the opposite procedure,
starting from Eq. (2.124). Inserting the following equality in Eq. (2.124)( −1

ωj −α− iη

)kj+1

=−i
Z

∞

0
dsj e

−isj (ωj−α−iη) (−isj )
kj

kj !
(2.128)
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2.9 The rate equations

and integrating over α and β we have

Q̃π(n̄,{ki ,pi},q0,ω0, t) =

(
n̄

∏
j=1

Z
[dωj ]

)
P0(qn̄ ,ωn̄) ∑

{qj }0

n̄

∏
j=0

∣∣Wqj ,qj+1(ωj ,ωj+1)
∣∣2

×
(

n̄

∏
j=0

Z
∞

0
dsj δ(t −

n̄

∑
j=0

sj )e−isj ωj
(−isj )

kj

kj !
Θ

kj (qj ,ωj ,ωn̄)

)

×
(

n̄

∏
j=0

Z
∞

0
dτj δ(t −

n̄

∑
j=0

τj )e iτj ωj
(iτj )

pj

pj !
Θ̄

pj (qj ,ωj ,ωn̄)

)
(2.129)

From this expression we can sum up over kj and pj to evaluate Eq. (2.127). Since

∞

∑
kj=0

(−isj )
kj

kj !
Θ

kj (qj ,ωj ,ωn̄) = e−isj Θ(qj ,ωj ,ωn̄ ) (2.130)

we have

E [PT (q0,ω0)] =
λ2t=T
lim
t→∞

∞

∑
n̄=0

λ
2n̄

(
n̄

∏
j=1

Z
[dωj ]

)
P0(qn̄ ,ωn̄) ∑

{qj }

n̄

∏
j=0

∣∣Wqj ,qj+1(ωj ,ωj+1)
∣∣2

×
(

n̄

∏
j=0

Z
∞

0
dsj δ(t −

n̄

∑
j=0

sj )e−isj (ωj+Θ(qj ,ωj ,ωn̄ ))
)

×
(

n̄

∏
j=0

Z
∞

0
dτj δ(t −

n̄

∑
j=0

τj )e iτj (ωj+Θ̄(qj ,ωj ,ωn̄ ))
)

(2.131)

We now set out to calculate the following part of Eq. (2.131) in the Van Hove limit:

P = λ
2n̄

(
n̄

∏
j=0

Z
∞

0
dsj δ(t −∑

j

sj )e−isj (ωj+Θ(qj ,ωj ,ωn̄ ))
)

(
n̄

∏
j=0

Z
∞

0
dτj δ(t −∑

j

τj )e iτj (ωj+Θ̄(qj ,ωj ,ωn̄ ))
)

(2.132)

By performing the change of variables

aj =
sj + τj

2
(2.133)

bj =
sj − τj

2
(2.134)
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we obtain

P =(2λ
2)n̄

n̄

∏
j=0

Z t

0
daj δ

(
t −

n̄

∑
j=0

aj

)
e2aj Im[Θ(qj ,ωj ,ωn̄ )]

×
n̄

∏
j=0

Z +aj

−aj

dbj δ

(
n̄

∑
j=0

bj

)
e−i2∑j bj (ωj+Re[Θ(qj ,ωj ,ωn̄ )]) (2.135)

We can rewrite the integrals over bj as follows:Z +aj

−aj

dbj δ

(
∑
bj

bj

)
e i2∑

n̄
j=0 bj (ωj+Re[Θ(qj ,ωj ,ωn̄ )])

=
Z

∞

−∞

dbj χa(b)e2i ∑
n̄−1
j=0 bj (ωj−ωn̄+Re[Θ(qj ,ωj ,ωn̄ )]−Re[Θ(qj ,ωn̄ ,ωn̄ )]) (2.136)

Here χa(b) is a product of characteristic functions,

χa(b) =χ(−a0 ≤
n̄

∑
j=0

bj ≤ a0)
n̄−1

∏
j=0

χ(−aj ≤ bj ≤ aj )

We now perform the Van Hove limit,t→∞ with λ2t = T . This means we have for Eq. (2.132):

P =
(
2λ

2)n̄ n̄

∏
j=0

Z T/λ2

0
daj δ

(
t −

n̄

∑
j=0

aj

)
e2aj Im[Θ(qj ,ωj ,ωn̄ )]

×
n̄

∏
j=0

Z
∞

−∞

dbj χa(b)e−i ∑
n̄−1
j=0 2bj (ωj−ωn̄+Re[Θ(qj ,ωj ,ωn̄ )]−Re[Θ(qj ,ωn̄ ,ωn̄ )]) (2.137)

Remember that in Eq. (2.126) we have included in our Θ function the λ2 factor for shorter
notation such that we have now

Θ(qj ,ωj ,ωn̄) = λ
2 lim

η→0
∑
q

Z
dωg (ω)

− ∣∣Wqj ,q (ωj ,ω)
∣∣2

ω−ωn̄ − iη

Im [Θ(qj ,ωj ,ωn̄)] =−λ
2
πg(ωn̄) ∑

q 6=qj

∣∣Wqj ,q (ωj ,ωn̄)
∣∣2 (2.138)

We perform the change of variables,

αj = 2λ
2aj

to obtain

P =
n̄

∏
j=0

Z T

0
dαj δ

(
T −

n̄

∑
j=0

αj

)
e
−αj

λ2 Im[Θ(qj ,ωj ,ωn̄ )]

×
n̄

∏
j=0

Z
∞

−∞

dbj χ
α/(2λ2)(b)e−i ∑

n̄−1
j=0 2bj (ωj−ωn̄+Re[Θ(qj ,ωj ,ωn̄ )]−Re[Θ(qj ,ωn̄ ,ωn̄ )]) (2.139)
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For the integrals over bj we obtain in the limit

lim
t→∞

Z
∞

−∞

dbj χ
α/(2λ2)(b)e i ∑

n̄−1
j=0 2bj (ωj−ωn̄+Re[Θ(qj ,ωj ,ωn̄ )]−Re[Θ(qj ,ωn̄ ,ωn̄ )]) =

n̄−1

∏
j=0

πδ(ωj −ωn̄)

(2.140)

By using Eqs. (2.140) and (2.138) in P and Eq. (2.131) we can now take the Van Hove limit
of the expectation value of an operator,Z

[dω0]Ō(q0,ω0)PT (q0,ω0)

=
∞

∑
n̄=0

Z
[dω0]Ō(q0,ω0) ∑

{qj }

Z
[dωj ]

n̄

∏
j=0

Z T

0
dαj δ

(
T −

n̄

∑
j=0

αj

)
e
−αj πg(ωn̄ )∑q 6=qj

∣∣∣Wqj ,q(ωj ,ωn̄)
∣∣∣2

×
n̄−1

∏
j=0

πδ(ωj −ωn̄)
∣∣Wqj ,qj+1(ωj ,ωj+1)

∣∣2
=

∞

∑
n̄=0

Z
[dω0]Ō(q0,ω0) ∑

{qj }

n̄

∏
j=0

Z T

0
dαj δ

(
T −

n̄

∑
j=0

αj

)
e
−αj πg(ωn̄ )∑q 6=qj

∣∣∣Wqj ,q (ωn̄ ,ωn̄ )
∣∣∣2

×
n̄−1

∏
j=0

πg(ωn̄)
∣∣Wqj ,qj+1(ωn̄ ,ωn̄)

∣∣2 P0(qn̄ ,ωn̄)

This corresponds to the expansion of the solution to the rate equations. Thus the expectation
value of a diagonal operator is

O(T ) = ∑
q0

Z
[dω0]O(q0,ω0)PT (q0,ω0) (2.141)

with PT (q0,ω0) satisfying

∂

∂T
PT (q ,ω) = ∑

q ′
Mq ,q ′(ω)PT (q ′,ω) (2.142)

Mq ,q ′(ω) = πg(ω)

(
−δq ,q ′ ∑

q̄ 6=q

|Wq ,q̄(ω,ω)|2 +
∣∣Wq ,q ′(ω,ω)

∣∣2) (2.143)

which is the desired Pauli master equation with the rates given by Fermi’s golden rule. Eqs.
(2.142) and (2.143) are our central result.
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2 Expectation value for Macro-variables: Rate equations

We finally prove two last bounds. One is on the contribution of S-graphs and the other is a
bound for the norm of |ψn

t 〉. We do not need these results in this section but prove it here since
it has to do with S-graphs.

Theorem 2.9.1. If π(n,m) ∈ G0(n,m) we have the following bound:

I (t) =

∣∣∣∣∣∣
Z

[dω0]λn+m
∑
{qi ,q ′j }i

Q̃π(n,m,{qi ,q
′
j}i,ω0, t)

∣∣∣∣∣∣
≤(Cλ2t)

n+m
2

n+m
2 !

(2.144)

where Q̃π(n,m,ω0, t) is given by Eq. (2.124)

Proof. Theorem 2.9.1
From Eq. (2.129) we get the contribution of a graph and so

I (t)≤λ
2n̄
∣∣∣( n̄

∏
j=0

Z
[dωj ]

)
P0(qn̄ ,ωn̄) ∑

{qj }

n̄

∏
j=0

∣∣Wqj ,qj+1(ωj ,ωj+1)
∣∣2

×
(

n̄

∏
j=0

Z
∞

0
dsj δ(t −

n̄

∑
j=0

sj )e−isj ωj
(−isj )

kj

kj !
Θ

kj (qj ,ωj ,ωn̄)

)

×
(

n̄

∏
j=0

Z
∞

0
dτj δ(t −

n̄

∑
j=0

τj )e iτj ωj
(iτj )

pj

pj !
Θ̄

pj (qj ,ωj ,ωn̄)

)∣∣∣ (2.145)

Since
∣∣Wqj ,qj+1(ωj ,ωj+1)

∣∣2 is positive and bounded we can bound the product by C n̄
1 . We

apply the same change of variable as in Eq. (2.133) and (2.134).

I (t)≤ C n̄
1 λ

2n̄
n̄

∏
j=0

Z
∞

0
daj δ(t −

n̄

∑
j=0

aj )

×
∣∣∣ n̄

∏
j=0

Z
[dωj ]

Z aj

−aj

dbj δ

(
n̄

∑
j=0

bj

)
e−ibj ωj

s
kj
j

kj !

τ
pj

j

pj !
Θ

kj (qj ,ωj ,ωn̄)Θ̄pj (qj ,ωj ,ωn̄)
∣∣∣ (2.146)

Here, sj and τj are now of course functions of the new variables and bounded by aj . The
Θ(qj ,ωj ,ωn̄) functions are proportional to λ2 but also bounded and smooth. We can thus use
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the bound of Eq. (A.21) on the double integrations of bj and ωj to obtain

I (t)≤C n̄
1 λ

2n̄
n̄

∏
j=0

Z
∞

0
daj δ(t −

n̄

∑
j=0

aj )
n̄

∏
j=0

(
Cλ2aj

)kj
kj !

(
Cλ2aj

)pj

pj !

≤C n̄
1 λ

2n̄

(
Cλ2t

)
∑

n̄
j=0(pj+kj )

∏
n̄
j=0 kj !pj !

n̄

∏
j=0

Z
∞

0
daj δ(t −

n̄

∑
j=0

aj )

≤
(
Cλ2t

)
∑

n̄
j=0(pj+kj )

∏
n̄
j=0 (kj !pj !)

(
C1λ2t

)n̄
n̄!

(2.147)

Since from Eq. (2.93) we have n̄ +∑
n̄
j=0 (pj + kj ) = n+m

2 we get the following inequality for
some constant C :

1
n̄!∏

n̄
j=0 (kj !pj !)

≤ C
n+m

2

n+m
2 !

(2.148)

Inserting this in Eq. (2.147) and selecting the largest out of all constants present we find

I (t)≤
(
Cλ2t

)n+m
2

n+m
2 !

(2.149)

We now want to explicitly have a bound on the norm of |ψn
t 〉.

Theorem 2.9.2.

E [〈ψn
t |ψn

t 〉]≤
(C ′T )n

n!
(2.150)

Proof. Theorem 2.9.2 Similarly as how we found the expression for Eq. (2.50) we find

E [〈ψn
t |ψn

t 〉] = λ
2n

∑
{li ,l ′j },{qi ,q ′j }

ψ
∗
0(q
′
n , l ′n)ψ0(qn , ln)K n(t ,{Eli})K̄ n({t ,El ′j })

×
2

∑
a=0

∑
π(n,m)∈Ga

Cπ(n,m,{li , l ′j},{qi ,q
′
j}) (2.151)

Once again we have written our expectation value as a function of the different classes of
graphs and for the same reasons as before, that is Eq. (2.67) and theorem 2.6.1, the C-graphs
and N-graphs will vanish in the limit N → ∞ and t → ∞ with λ2t = T finite. Therefore we
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have

lim
t→∞

lim
N→∞

E [〈ψn
t |ψn

t 〉] = lim
t→∞

lim
N→∞

λ
2n

∑
{li ,l ′j },{qi ,q ′j }

ψ
∗
0(q
′
n , l ′n)ψ0(qn , ln)K n(t ,{Eli})K̄ n({t ,El ′j })

× ∑
π(n,n)∈G0

Cπ(n,m,{li , l ′j},{qi ,q
′
j})

= lim
t→∞

λ
2n

∑
π(n,n)∈G0

∑
Aq

π

Z
dω0Qπ(n,n,{qi ,q

′
j}i,ω0, t) (2.152)

where Qπ(n,n,{qi ,q
′
j}i,ω0, t) is defined through Eq. (2.75). We can rewrite Qπ(n,n,{qi ,q

′
j}i,ω0, t)

as a function of dependent and independent variables which would give Qπ (n̄,{kj ,pj},ω0, t)
and by theorem 2.7.1 we have the in the Van Hove limit we can replace Qπ (n̄,{kj ,pj},ω0, t)
by Q̃π (n̄,{kj ,pj},ω0, t). Thus we have

lim
t→∞

lim
N→∞

E [〈ψn
t |ψn

t 〉]≤ lim
t→∞

λ
2n

∑
π(n,n)∈G0

∣∣∣∣∣∣∑Aq
π

Z
dω0Q̃π(n,n,{qi ,q

′
j}i,ω0, t)

∣∣∣∣∣∣ (2.153)

Finally by use of theorem 2.9.1 and the fact that the number of S-graphs of order (n,m) can
be bounded by C̃ n+m with C̃ being a constant we get

lim
t→∞

lim
N→∞

E [〈ψn
t |ψn

t 〉]≤ ∑
π(n,n)∈G0

(CT )n

n!

≤ (C ′T )n

n!
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When something is characterized as “ typical ” (for an ensemble) one refers to the fact that
out of most cases (ensemble members) the same result (property) comes out. In physics there
appears to be a limited number of qualitatively different behaviors described by effective equa-
tions. Nevertheless, there are probably infinitely many realizations of systems. For example,
the empirical law of heat transfer, Fourier’s law, states that the rate of heat flow through a
homogeneous solid is directly proportional to the area of the section at right angle to the di-
rection of heat flow, and to the temperature difference along the path of heat flow. This is a
statement typically valid for homogeneous solids. Thus we say that Fourier’s law is a typical
behavior for solids.

Over the last years there have been studies of typical behavior starting from quantum me-
chanical principles ( [12], [18], [24], [23], [13], [22], [11]), [25] in order to understand better
the properties of matter, may they be large or small. The main claim in [18] is about canonical
typicality. The basic statement is that for large Hilbert spaces, most state vectors are such that
the reduced density matrix we obtain from it, for a small system, will be canonical.

What we mean by “dynamical typicality ” is quite similar. We state that no matter what the
realization will be of the random interaction, the dynamics of the observable will be the same.
Mathematically this means that the variance of the observable, where the variance refers to
the variance with respect to the probability distribution of the random matrix, goes to zero as
N goes to ∞:

VarN ,t

[
Ô
]
=
(
E
[〈ψt |Ô |ψt〉2

]−E
[〈ψt |Ô |ψt〉

]2)
(3.1)

lim
N→∞

VarN ,t

[
Ô
]
= 0 (3.2)

Notice that no statement is made about λ and t , although implicitly one takes these to be finite.
In order to prove Eq. (3.2) we will use in a crucial way the perturbation expansion and the
assumption that t and λ stay finite. This is why this result cannot be extended to the limits of
our previous chapter.

3.1 Bounding the error on the approximate solution

In this section we want to find a bound for the difference between the average of the observable
using the solution of the Schrödinger equation |ψt〉 and the average of the observable using
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the approximate solution. From the expansion in Eq. (2.21) we have

|ψt〉=
M−1

∑
n=0
|ψn

t 〉+ |φM
t 〉

= |ΨM
t 〉+ |φM

t 〉 (3.3)

and so we intend to show that the error made by using |ΨM
t 〉 instead of |ψt〉 becomes zero,

when N → ∞ and M → ∞. Thus we want to find a proper bound for the following function:

Error(t ,λ,M ,N ) = E
[〈ψt |Ô |ψt〉

]−E
[
〈ΨM

t |Ô |ΨM
t 〉
]

=−E
[
〈φM

t |Ô |φM
t 〉
]
+E

[
〈ψt |Ô |φM

t 〉
]
+E

[
〈φM

t |Ô |ψt〉
]

(3.4)

We prove the following theorem:

Theorem 3.1.1. For any t0 < ∞ , λ < ∞ and ε > 0 there exist an N0 and an M such that for
t ≤ t0 and N ≥ N0

Error(t ,λ,M ,N )≤ ε (3.5)

In particular

lim
M→∞

Error(t ,λ,M ,N ) = 0 (3.6)

To prove this we first prove the following theorem:

Theorem 3.1.2. For any t0 < ∞, λ < ∞ and ε > 0 there exist an N0 and an M such that for
all N ≥ N0 and t ≤ t0

E
[
〈φM

t |Ô |φM
t 〉
]
≤ ε (3.7)

In particular

lim
M→∞

E
[
〈φM

t |Ô |φM
t 〉
]

= 0 (3.8)

Proof. Theorem 3.1.2
We take M odd such that later on at least one left random variable will have to contract with a
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right one. By using Eq. (2.24) for |φM
t 〉 and the Cauchy-Schwartz inequality we get

〈φM
t |Ô |φM

t 〉 ≤Omax

Z t

0
dsdτ

√
〈ψM−1(τ)|V 2|ψM−1(τ)〉〈ψM−1(s)|V 2|ψM−1(s)〉

≤Omax t
Z t

0
ds〈ψM−1(s)|V 2|ψM−1(s)〉

= Omax tλ
2M

Z t

0
[dsM ]

Z t

0
[dτM ]

×〈ψ0|
M−1

∏
j=0

e−isjH0V 2
M−1

∏
j=0

e−isjH0 |ψ0〉

= Omax tλ
2M

Z t

0
[dsM ]

Z t

0
[dτM ]O(M ,τi ,sj ) (3.9)

with

O(M ,τi ,sj ) = ∑
{l ′j ,li}

∑
{q ′j ,qi}

ψ
∗
0(l
′
M ,q ′M )ψ0(lM ,qM )

(
M−1

∏
j=0

e
iEl ′j

τj

)(
M−1

∏
j=0

e
−iElj

sj

)
×〈l ′M ,q ′M |V |l ′M−1,q

′
M−1〉 . . .〈l ′1,q ′1|V |l ′0,q ′0〉

×〈l ′0,q ′0|l0,q0〉〈l0,q0|V |l1,q1〉 . . .〈lM−1,qM−1|V |lM ,qM 〉 (3.10)

The average will then be

|E [O(M ,τi ,sj )]| ≤ ∑
{l ′j ,li}

∑
{q ′j ,qi}

∣∣ψ∗0(l ′M ,q ′M )ψ0(lM ,qM )
∣∣

×E[〈l ′M ,q ′M |V |l ′M−1,q
′
M−1〉 . . .〈l ′1,q ′1|V |l0,q0〉

×〈l0,q0|V |l1,q1〉 . . .〈lM−1,qM−1|V |lM ,qM 〉] (3.11)

and so by Eq. (2.40) and (C.5)

|E [O(M ,τi ,sj )]| ≤C ∑
{l ′j ,li}

∑
{q ′j ,qi}

1
N

× ∑
π(M ,M )

∣∣Cπ(M ,M ,{l ′j , li},{q ′j ,qi})
∣∣ (3.12)

By using Eq. (2.44) and (2.45) in Eq.(3.12) and dividing our sum over the graphs between C
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3 Dynamical Typicality

and NC-graphs we get

|E [O(M ,τi ,sj )] | ≤ C ∑
π(M ,M )

∑
{l ′j ,li}

∑
{q ′j ,qi}

∣∣Cπ(M ,M ,{l ′j , li},{q ′j ,qi})
∣∣ 1
N

≤ ∑
π(M ,M )

∑
{l ′j ,li}i

∑
{q ′j ,qi}i

(
W

N ℵ

)M 1
N

≤ ∑
π(M ,M )∈G0,1(M ,M )

∑
{l ′j ,li}i

∑
{q ′j ,qi}i

W M

(N ℵ)M
1
N

+ ∑
π(M ,M )∈G2(M ,M )

∑
{l ′j ,li}i

∑
{q ′j ,qi}i

W M

(N ℵ)M
1
N

(3.13)

where ∑{l ′j ,li}i
refers to a sum over the independent variables of the set {l ′j , li} generated by the

contraction function Cπ and the same holds for the set of q variables. According to theorem
2.4.6 and 2.4.7, the number of independent variables of the set {l ′j , li} is equal to M + 1 for
graphs in G0(M ,M ) or G1(M ,M ) and less then M + 1 for graphs in G2(M ,M ). Each of
these sums will render a factor of N . Thus

|E [O(M ,τi ,sj )] | ≤ ∑
π(M ,M )∈G0,1(M ,M )

∑
{q ′j ,qi}i

W M

ℵM

+
1
N ∑

π(M ,M )∈G2(M ,M )
∑
{q ′j ,qi}i

W M

ℵM

Applying once again theorems 2.4.6 and 2.4.7 on the set {q ′j ,qi} we find there are M + 1
independent variables for graphs in G1 and less than M +1 for graphs in G2, and so

|E [O(M ,τi ,sj )] | ≤W M
ℵ ∑

π(M ,M )∈G0,1(M ,M )
1

+
W M

N ∑
π(M ,M )∈G2(M ,M )

1

|E [O(M ,τi ,sj )] | ≤W M

(
ℵ

(2M )!
M !(M +1)!

+
1
N

G2(M )
)

(3.14)

G2(M ) = ∑
π(M ,M )∈G2(M ,M )

1

Observing that Z t

0
[dsM ] =

tM

M !
(3.15)
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3.1 Bounding the error on the approximate solution

and inserting Eq. (3.14) and (3.15) in Eq. (3.9) we have

E
[
〈φM

t |Ô |φM
t 〉
]
≤ Cλ

2M t
t2M

M !M !

(
ℵ

(2M )!
M !(M +1)!

+
1
N

G2(M )
)

≤ C (B1(M ,ℵ, tλ)+B2(M ,N , tλ)) (3.16)

with

B1(M ,ℵ, tλ) =
t (λt)2M

M !M !
ℵ

(2M )!
M !(M +1)!

(3.17)

B2(M ,N , tλ) =
t (λt)2M

M !M !
1
N

G2(M ) (3.18)

And according to Eq. (B.13) we have

G2(M )≤ (2M )!
2M M !

(3.19)

We have absorbed the W factor in the λ factor for brevity. B2(M ,N , tλ) is bounded by 1
N and

so in the limit N →∞ it goes to zero. As for B1(M ,ℵ, tλ) it goes to zero when M →∞. Thus
for fixed t0, λ and ε there exists always an M such that B1(M ,ℵ, tλ) ≤ ε when t ≤ t0 For
fixed t0, λ and ε and for any M there is always an N0 such that B2(M ,N ,λt) ≤ ε for t ≤ t0
and N ≥ N0.

We have shown that the first term of Eq. (3.4) is bounded by any ε provided N and M are
large enough. In fact just M needs to be large. We now prove the same for the other two
terms, which proves theorem 3.1.1.

Proof. Theorem 3.1.1
By Cauchy-Schwartz inequality for vector spaces we have∣∣∣〈ψt |Ô |φM

t 〉
∣∣∣≤√〈ψt |Ô |ψt〉

√
〈φM

t |φM
t 〉

≤
√

Omax

√
〈φM

t |φM
t 〉

〈φM
t |φM

t 〉 is a sum of products of random variables and consequently, a function of random
variables in the corresponding probability space. In a probability space we have by Hölder’s
inequality:

E [|X |]≤ E
[
|X |2

] 1
2 (3.20)

Applying this to our case, we would have

E
[√
〈φM

t |φM
t 〉
]
≤ E

[
〈φM

t |φM
t 〉
] 1

2 (3.21)

57



3 Dynamical Typicality

which gives us

E
[∣∣∣〈ψt |Ô |φM

t 〉
∣∣∣]≤√OmaxE

[∣∣∣〈φM
t |φM

t 〉
∣∣∣ 1

2
]

≤
√

OmaxE
[∣∣∣〈φM

t |φM
t 〉
∣∣∣] 1

2 (3.22)

Using theorem (3.1.2) and Eq. (3.22) in Eq. (3.4) we see that for any t0, λ and small ε′ there
exists an N0 and M such that for N ≥ N0 and t ≤ t0

|Error(t ,λ,N ,M )| ≤ C
(

ε
′+2ε

′ 12
)

(3.23)

where C depends on Omax . By choosing C
(

ε′+2ε
′ 12
)
≤ ε we have proved theorem

3.1.1.

3.2 Variance

In this section we will turn to the variance of observables and prove the following theorem:

Theorem 3.2.1. For any fixed t0, λ, M and ε > 0 and Macro-Observable Ô there exists an N0
such that if N ≥ N0 and t ≤ t0 we have

VarMN [O(t ,λ)] =
(

E
[(
〈Ô〉Mt

)2
]
−E

[
〈Ô〉Mt

]2
)

≤ ε (3.24)

with

〈Ô〉Mt = 〈ΨM
t |Ô |ΨM

t 〉 (3.25)

Thus

lim
N→∞

VarMN [O(t ,λ)] = 0 (3.26)

When calculating E
[(〈O〉Mt )2

]
, graphs will arise again, but in a broader sense, since we

can have random variable correlations between the two 〈O〉Mt ’s. These graphs do not appear
when calculating E

[〈O〉Mt ]2, thus the idea is to show that the contribution of the extra graphs

appearing in E
[(〈O〉Mt )2

]
is bounded by a constant times N−1.
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3.2 Variance

Proof. Theorem 3.2.1
For a diagonal observable we have

E
[(
〈O〉Mt

)2
]

= E

∑
l0,q0

O(l0,q0)Pt(q0, l0) ∑
l̄0,q̄0

O(l̄0, q̄0)Pt(q̄0, l̄0)

 (3.27)

and from Eq. (2.30)

Pt(q0, l0)Pt(q̄0, l̄0) =
M

∑
n,m=0

λ
n+m

∑
{li ,l ′j }0

∑
{qi ,q ′j }0

ψ
∗
0(l
′
m ,q ′m)ψ0(ln ,qn)K n(t ,{Eli})K̄m(t ,{El ′i})

×Ln({li},{qi})L̄m({l ′i},{q ′i})
M

∑
n̄,m̄=0

λ
n̄+m̄

∑
{l̄i ,l̄ ′j }0

∑
{q̄i ,q̄ ′j }0

ψ
∗
0(l̄
′
m̄ , q̄ ′m̄)ψ0(l̄n̄ , q̄n̄)K n̄(t ,{El̄i

})K̄ m̄(t ,{El̄ ′i
})

×Ln̄({l̄i},{q̄i})L̄m̄({l̄ ′i},{q̄ ′i}) (3.28)

where the subscript 0 in {li , l ′j}0 refers to the fact that l0 is not included in this sum. The same
goes for {l̄i , l̄ ′j}0, {qi ,q

′
j}0 and {q̄i , q̄

′
j}0, which do not include l̄0, q0, and q̄0, respectively. We

set

E
[
Pt(q0, l0)Pt(q̄0, l̄0)

]
= Ol0,l̄0(q0, q̄0) (3.29)

such that

E
[(
〈Ô〉Mt

)2
]

= ∑
l0,q0

∑
l0,q0

O(l0,q0)O(l̄0, q̄0)Ol0,l̄0(q0, q̄0) (3.30)

and so

Ol0,l̄0(q0, q̄0) =
M−1

∑
n,m,n̄,m̄=0

λ
n+m+n̄+m̄

∑
{li ,l ′j ,l̄i ,l̄ ′j }0

∑
{qi ,q ′j ,q̄i ,q̄ ′j }0

ψ
∗
0(l
′
m ,q ′m)ψ0(ln ,qn)

×ψ
∗
0(l̄
′
m̄ , q̄ ′m̄)ψ0(l̄n̄ , q̄n̄)K n(t ,{Eli})K̄m(t ,{El ′i})K

n̄(t ,{El̄i
})K̄ m̄(t ,{El̄ ′i

})
×E

[
Ln({li},{qi})L̄m({l ′i},{q ′i})Ln̄({l̄i},{q̄i})L̄m̄({l̄ ′i}, q̄ ′i)

]
(3.31)

The average to be performed in Eq. (3.31) is similar to the one in Eq. (2.40). Using Wick’s
theorem we have graphs on a set
s = {Vl ′m ,l ′m−1

(q ′m ,q ′m−1) . . .Vln−1,ln (qn−1,qn)Vl̄ ′̄m ,l̄ ′m̄−1
(q̄ ′̄m , q̄ ′m̄−1) . . .Vl̄n̄−1,l̄n̄

(q̄n̄−1, q̄n̄)} that
induce δ-relations between the quantum numbers {li , l ′j , l̄i , l̄ ′j} and{qi ,q

′
j , q̄i , q̄

′
j}.

E
[
Ln({li},{qi})L̄m({l ′i},{q ′i})Ln̄({l̄i},{q̄i})L̄m̄({l̄ ′i},{q̄ ′i})

]
=E
[
Vl ′m ,l ′m−1

(q ′m ,q ′m−1) . . .Vln−1,ln (qn−1,qn)Vl̄ ′̄m ,l̄ ′m̄−1
(q̄ ′m̄ , q̄ ′m̄−1) . . .Vl̄n̄−1,l̄n̄

(q̄n̄−1, q̄n̄)
]

= ∑
π(n,m,n̄,m̄)∈G(n,m,n̄,m̄)

Cπ(n,m, n̄,m̄,{li , l ′j , l̄i , l̄ ′j},{qi ,q
′
j , q̄i , q̄

′
j}) (3.32)
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3 Dynamical Typicality

We conclude that n +m + n̄ + m̄ has to be even and from now on we consider this always
to be the case in our calculations. Thus sums over n, m, n̄ and m̄ have to be restricted to
sums, where this relation is maintained. We can classify the graphs again as NC-graphs and
C-graphs, but before that we introduce the following additional classification of these graphs:

Definition 3.2.2. Separable and Non-Separable Graphs
If for a graph no contractions occur between the Vl ′m ,l ′m−1

(q ′m ,q ′m−1) . . .Vln−1,ln (qn−1,qn)
variables and the Vl̄ ′̄m ,l̄ ′m̄−1

(q̄ ′̄m , q̄ ′m̄−1) . . .Vl̄n̄−1,l̄n̄
(q̄n̄−1, q̄n̄) variables, we call this a separa-

ble graph (Sep-graph) and non separable (NSep-graph), if there is at least one contraction
present. We denote by Gs(n,m, n̄,m̄) the set of all separable graphs of order (n,m, n̄,m̄)
and by Gs the set of all separable graphs. We denote by Gnon−s(n,m, n̄,m̄) the set of all non
separable graphs of order (n,m, n̄,m̄) and by Gnon−s the set of all non separable graphs.

Figures 3.1 and 3.2 are examples of a Non-Separable graph and a Separable graph respec-
tively.

Ô Ô

Figure 3.1: Example of a Non-Separable graph

Ô Ô

Figure 3.2: Example of a Separable graph

A similar definition is used in [5] in order to analyze higher moments of the norm of the
wave function. According to this classification, for Sep-graphs randomness coming from the
first 〈O〉Mt correlates with randomness from that same expression and never with randomness
of the second 〈O〉Mt . The same goes of course for the second 〈O〉Mt . This is then equivalent
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3.2 Variance

to just averaging over 〈O〉Mt and squaring it:

Ol0,l̄0(q0, q̄0) =
M

∑
n,m,n̄,m̄=0

λ
n+m+n̄+m̄

∑
{li ,l ′j ,l̄i ,l̄ ′j }0

∑
{qi ,q ′j ,q̄i ,q̄ ′j }0

ψ
∗
0(l
′
m ,q ′m)ψ0(ln ,qn)

×ψ
∗
0(l̄
′
m̄ , q̄ ′m̄)ψ0(l̄n̄ , q̄n̄)K n(t ,{Eli})K̄m(t ,{El ′i})K

n̄(t ,{El̄i
})K̄ m̄(t ,{El̄ ′i

})
× ∑

π(n,m,n̄,m̄)∈G(n,m,n̄,m̄)
Cπ(n,m, n̄,m̄,{li , l ′j , l̄i , l̄ ′j},{qi ,q

′
j , q̄i , q̄

′
j}) (3.33)

With definition 3.2.2 we see that

∑
π(n,m,n̄,m̄)∈G(n,m,n̄,m̄)

Cπ(n,m, n̄,m̄,{li , l ′j , l̄i , l̄ ′j},{qi ,q
′
j , q̄i , q̄

′
j})

= ∑
π(n,m,n̄,m̄)∈Gs(n,m,n̄,m̄)

Cπ(n,m, n̄,m̄,{li , l ′j , l̄i , l̄ ′j},{qi ,q
′
j , q̄i , q̄

′
j})

+ ∑
π(n,m,n̄,m̄)∈Gnon−s(n,m,n̄,m̄)

Cπ(n,m, n̄,m̄,{li , l ′j , l̄i , l̄ ′j},{qi ,q
′
j , q̄i , q̄

′
j}) (3.34)

We can define a contribution coming from Sep-graphs and one from NSep-graphs as

Ol0,l̄0(q0, q̄0) = Ol0,l̄0
s (q0, q̄0)+Ol0,l̄0

ns (q0, q̄0) (3.35)

Since for graphs in Gs the contractions only occur among the
Vl ′m ,l ′m−1

(q ′m ,q ′m−1), . . .Vln−1,ln (qn−1,qn) variables and among the
Vl̄ ′̄m ,l̄ ′m̄−1

(q̄ ′̄m , q̄ ′m̄−1), . . .Vl̄n̄−1,l̄n̄
(q̄n̄−1, q̄n̄), each graph in Gs(n,m, n̄,m̄) is equal to a graph in

G(n,m) times a graph inG(n̄,m̄). Thus

∑
π(n,m,n̄,m̄)∈Gs(n,m,n̄,m̄)

Cπ(n,m, n̄,m̄,{li , l ′j , l̄i , l̄ ′j},{qi ,q
′
j , q̄i , q̄

′
j})

= ∑
π(n,m)∈G(n,m)

Cπ(n,m,{li , l ′j},{qi ,q
′
j}) ∑

π(n̄,m̄)∈G(n̄,m̄)
Cπ(n̄,m̄,{l̄i , l̄ ′j},{q̄i , q̄

′
j}) (3.36)

If we take only the contribution of Sep-graphs by inserting Eq. (3.36) in Eq. (3.33), we obtain

Ol0,l̄0
s (q0, q̄0)

= ∑
n,m

λ
n+m

∑
{li ,l ′j }0

∑
{qi ,q ′j }0

ψ
∗
0(l
′
m ,q ′m)ψ0(ln ,qn)K n(t ,{Eli})K̄m(t ,{El ′i})

× ∑
π(n,m)∈G(n,m)

Cπ(n,m,{li , l ′j},{qi ,q
′
j})

×∑
n̄,m̄

λ
n̄+m̄

∑
{l̄i ,l̄ ′j }0

∑
{q̄i ,q̄ ′j }0

ψ
∗
0(l̄
′
m̄ , q̄ ′m̄)ψ0(l̄n̄ , q̄n̄)K n̄(t ,{El̄i

})K̄ m̄(t ,{El̄ ′i
})

× ∑
π(n̄,m̄)∈G(n̄,m̄)

Cπ(n̄,m̄,{l̄i , l̄ ′j},{q̄i , q̄
′
j})

= E [Pt (l0,q0)]E
[
Pt

(
l̄0, q̄0

)]
(3.37)
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Combining Eq. (3.37) and (3.35) we get

Ol0,l̄0(q0, q̄0) = E [Pt (l0,q0)]E
[
Pt

(
l̄0, q̄0

)]
+Ol0,l̄0

ns (q0, q̄0) (3.38)

Inserting Eq.(3.38) in Eq.(3.30), will thus lead to

E
[(
〈Ô〉Mt

)2
]

= E
[
〈Ô〉Mt

]
E
[
〈Ô〉Mt

]
+ ∑

l0,q0,l̄0,q̄0

O(l0,q0)O(l̄0, q̄0)Ol0,l̄0
ns (q0, q̄0) (3.39)

Therefore we have

VarMN [O(t ,λ)] =
M−1

∑
n,m,n̄,m̄=0

λ
n+m+n̄+m̄

∑
{li ,l ′j ,l̄i ,l̄ ′j }

∑
{qi ,q ′j ,q̄i ,q̄ ′j }

ψ
∗
0(l
′
m ,q ′m)ψ0(ln ,qn)

×ψ
∗
0(l̄
′
m̄ , q̄ ′m̄)ψ0(l̄n̄ , q̄n̄)K n(t ,{Eli})K̄m(t ,{El ′i})K

n̄(t ,{El̄i
})K̄ m̄(t ,{El̄ ′i

})
×O(l0,q0)O(l̄0, q̄0) ∑

π(n,m,n̄,m̄)∈Gnon−s(n,m,n̄,m̄)
Cπ(n,m, n̄,m̄,{li , l ′j , l̄i , l̄ ′j},{qi ,q

′
j , q̄i , q̄

′
j})

(3.40)

Using the fact that the observable is bounded and Eq. (C.5), we have∣∣∣VarMN [O(t ,λ)]
∣∣∣≤ ∑

n,m,n̄,m̄

λ
n+m+n̄+m̄

∑
{li ,l ′j ,l̄i ,l̄ ′j }

∑
{qi ,q ′j ,q̄i ,q̄ ′j }

κ(t)
C

N 2

× ∑
π(n,m,n̄,m̄)∈Gnon−s(n,m,n̄,m̄)

∣∣Cπ(n,m, n̄,m̄,{li , l ′j , l̄i , l̄ ′j},{qi ,q
′
j , q̄i , q̄

′
j})
∣∣

(3.41)

with C a constant depending on the observable and

κ(t) =
∣∣∣K n(t ,{Eli})K̄m(t ,{El ′i})K

n̄(t ,{El̄i
})K̄ m̄(t ,{El̄ ′i

})
∣∣∣

≤ tn+m+n̄+m̄

n!m!n̄!m̄!
(3.42)

There are n+m+n̄+m̄
2 contractions to be performed and thus a weighing factor smaller than(

W
N ℵ

)n+m+n̄+m̄
2 , where W is the maximum value of the transition amplitudes squared (see Eq.

(2.7)). We have then∣∣∣VarMN [O(t ,λ)]
∣∣∣≤ ∑

n,m,n̄,m̄

λ
n+m+n̄+m̄

κ(t)C ∑
π(n,m,n̄,m̄)∈Gnon−s(n,m,n̄,m̄)

× ∑
{li ,l ′j ,l̄i ,l̄ ′j }i

∑
{qi ,q ′j ,q̄i ,q̄ ′j }i

(
W

N ℵ

)n+m+n̄+m̄
2 1

N 2 (3.43)
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3.2 Variance

According to lemma B.0.15 and B.0.18 Non-separable graphs will produce on the set I =
L0 ∪ L1, with L0 = {li , l ′j} and L1 = {l̄i , l̄ ′j}, a number of independent variables MI , with
MI ≤ n+m+n̄+m̄

2 + 1. In addition the equality sign will only hold for NC-graphs. The same
holds for L0 = {q ′m , . . .qn} and L1 = {q̄ ′m , . . . q̄n}. Then for NC-graphs

∑
{li ,l ′j ,l̄i ,l̄ ′j }i

1 = N
n+m+n̄+m̄

2 +1

∑
{qi ,q ′j ,q̄i ,q̄ ′j }i

1 = ℵ
n+m+n̄+m̄

2 +1

and for C-graphs

∑
{li ,l ′j ,l̄i ,l̄ ′j }i

1≤ N
n+m+n̄+m̄

2

∑
{qi ,q ′j ,q̄i ,q̄ ′j }i

1≤ℵ
n+m+n̄+m̄

2

We denote by G0,1
non−s the set of non-separable graphs that are also NC-graphs and by G2

non−s

the set of non-separable graphs that are also C-graphs. Inserting this in Eq. (3.43) we get:

VarMN [O(t ,λ)]≤Cℵ

N

M−1

∑
n,m,n̄,m̄=0

(tλ)n+m+n̄+m̄

n!m!n̄!m̄!2
n+m+n̄+m̄

2 +2 ∑
π(n,m,n̄,m̄)∈G0,1

non−s(n,m,n̄,m̄)

1

+
C

N 2

M−1

∑
n,m,n̄,m̄=0

(tλ)n+m+n̄+m̄

n!m!n̄!m̄!2
n+m+n̄+m̄

2 +2 ∑
π(n,m,n̄,m̄)∈G2

non−s(n,m,n̄,m̄)

1 (3.44)

Since the sum over the graphs is bounded by some function of M we conclude that for
any fixed t0, λ, M and small ε there exists a N0 such that for N ≥ N0 and t ≤ t0 we have
VarM

N [O(t ,λ)]≤ ε.

So far we have proved that the average of the approximate solution approximates well the
average of the real solution up to some time and we have also proved that the average of the
approximate solution is a typical outcome for any realization. Now we move on to proving
that the average of the solution is a typical outcome for any realization.

Theorem 3.2.3. For any t0, λ and 0 < ε and a Macro-Observable Ô there exists an N0 and
an M such that if N ≥ N0 and t ≤ t0 we have

VarN [O(t ,λ)]≤ ε (3.45)

with

VarN [O(t ,λ)] = E
[〈ψt |O |ψt〉2

]−E [〈ψt |O |ψt〉]2 (3.46)
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3 Dynamical Typicality

We can express this variance as a function of |φM
t 〉 and |ΨM

t 〉. Through theorem 3.1.2, and
by taking Ô as the identity, we see that the norm of |φM

t 〉 tends to zero. Thus the norm of
|ΨM

t 〉 tends to 1 and every average, where the vector |φM
t 〉 is involved, should go to zero. Our

strategy will then be to first bound the expressions involving |φM
t 〉 by averages over the norm

of this vector or powers of it.
For this we introduce here the following short hand notation:

X = 〈ψt |Ô |ψt〉
Y = 〈ΨM

t |Ô |ΨM
t 〉

Z = 〈φM
t |Ô |φM

t 〉
R = 〈ΨM

t |Ô |φM
t 〉

In this notation our previous results are

E [Z ] M→∞−−−−→ 0

E [X −Y ] M→∞−−−−→ 0

VarN [Y ] N→∞−−−→ 0

Proof. Theorem 3.2.3
We want to calculate Var [X ]N , which, can be written as:

Var [X ]N =E
[(

Y +Z +R + R̄
)2
]
−E

[(
Y +Z +R + R̄

)]2
=E
[
Y 2 +Z 2 +R2 + R̄2 +2

(
YZ +YR +Y R̄ +ZR +Z R̄ +RR̄

)]
−
(
E [Y ]2 +E [Z ]2 +E [R]2 +E

[
R̄
]2)

−2
(
E [Y ]E [Z ]+E [Y ]E [R]+E [Y ]E

[
R̄
]
+E [Z ]E [R]+E [Z ]E

[
R̄
]
+E [R]E

[
R̄
])
(3.47)

The only term that does not involve |φM
t 〉 is E

[
Y 2]−E [Y ]2. We can pair up the terms as

follows:

VarN [X ] =VarN [Y ]+VarN [Z ]+VarN [R]+VarN
[
R̄
]

+2
(
E [(Y −E [Y ])Z ]+E [(Y −E [Y ])R]+E

[
(Y −E [Y ]) R̄

])
+2
(
E [(Z −E [Z ])R]+E

[
(Z −E [Z ]) R̄

]
+E

[
(R−E [R]) R̄

])
(3.48)

Hölder’s inequality states for probability spaces:

E [|AB |]≤ E
[
|A|2

] 1
2 E
[
|B |2

] 1
2 (3.49)
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3.2 Variance

Applying this here we have:

|VarN [X ]| ≤VarN [Y ]+VarN [Z ]+VarN [|R|]+VarN
[∣∣R̄∣∣]

+2
(

VarN [Y ]
1
2 E
[
Z 2] 1

2 +VarN [Y ]
1
2 E
[
|R|2

] 1
2 +VarN [Y ]

1
2 E
[∣∣R̄∣∣2] 1

2
)

+2
(

VarN [Z ]
1
2 E
[
|R|2

] 1
2 +VarN [Z ]

1
2 E
[∣∣R̄∣∣2] 1

2 +VarN [|R|] 1
2 E
[∣∣R̄∣∣2] 1

2
)

(3.50)

Now Z is a positive variable by definition. In addition we showed that its average goes to
zero. If a positive random variable has average zero then it is likely that the square of such
a variable will also be zero, unless we consider some pathological case. This would mean of
course that the variance also goes to zero. For now we will suppose this to be true. It will be
proved in section 3.3. All the terms proportional to VarN [Z ] or E

[
Z 2] will thus go to zero.

The only terms remaining are then those involving only R and R̄.

We will now show that E
[
|R|2

]
is bounded by E

[
Z 2] 1

2 and that E [|R|] is bounded by E [Z ]
1
2 .

These would tend to zero. The same conclusions can be applied, of course, if we replace R by
R̄. For E

[
|R|2

]
we have:

E
[∣∣R2∣∣]=E

[∣∣∣〈ΨM
t |Ô |φM

t 〉
∣∣∣2]

≤E
[
〈ΨM

t |Ô |ΨM
t 〉〈φM

t |φM
t 〉
]

≤E
[
〈ΨM

t |Ô |ΨM
t 〉2

] 1
2 E
[
〈φM

t |φM
t 〉2

] 1
2

≤CE
[
Y 2] 1

2 E
[
Z 2] 1

2 (3.51)

We applied the Hölder inequality to pass from the second to the third line and C is some
constant. Analoguesly we have for E [|R|]:

E [|R|]2 =E
[∣∣∣〈ΨM

t |Ô |φM
t 〉
∣∣∣]2

≤E
[√
〈ΨM

t |Ô |ΨM
t 〉〈φM

t |φM
t 〉
]2

≤E
[
〈ΨM

t |Ô |ΨM
t 〉
]
E
[
〈φM

t |φM
t 〉
]

≤CE [Y ]E [Z ] (3.52)
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3 Dynamical Typicality

Using inequalities (3.51) and (3.52) in Eq.(3.50) we have :

|VarN [X ]| ≤VarN [Y ]+VarN [Z ]+C

(
E [Y ]E [Z ]+E

[
Y 2] 1

2 E
[
Z 2] 1

2

)
+2
(

VarN [Y ]
1
2 E
[
Z 2] 1

2 +VarN [Y ]
1
2

(
E
[
Y 2] 1

4 E
[
Z 2] 1

4

))
+2VarN [Z ]

1
2

(
E
[
Y 2] 1

4 E
[
Z 2] 1

4

)
+2
(

E [Y ]
1
2 E [Z ]

1
2 +E

[
Y 2] 1

4 E
[
Z 2] 1

4

)
E
[
Y 2] 1

4 E
[
Z 2] 1

4 (3.53)

According to theorems 3.2.1, 3.1.2 and 3.3.1, there exists for any t0, λ and 0 < ε and a Macro-
Observable Ô there exists an N0 and an M such that if N ≥ N0 and t ≤ t0

VarN [Y ]≤ ε

E [Z ]≤ ε

E
[
Z 2]≤ ε

Therefore for any t0, λ and 0 < ε and a Macro-Observable Ô there exists an N0 and an M
such that if N ≥ N0 and t ≤ t0

|VarN [X ]| ≤ C1ε+C2ε
3
4 +C3ε

1
2 +C4ε

1
4

Thus

lim
M→∞

lim
N→∞

|VarN [X ]|= 0 (3.54)

3.3 Bound for E
[
Z 2
]

In this section we will show that E
[〈φM

t |Ô |φM
t 〉2

]
also goes to zero as N and M go to ∞. Our

theorem is the following:

Theorem 3.3.1. For any t0, λ and 0 < ε and a Macro-Observable Ô there exists an N0 and
an M such that if N ≥ N0 and t ≤ t0 we have

E
[
〈φM

t |Ô |φM
t 〉2

]
< ε (3.55)
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3.3 Bound for E
[
Z 2]

Proof. Theorem 3.3.1 For this we can use Eq. (3.9) and (3.10). We have then:

〈φM
t |Ô |φM

t 〉2 ≤O2
max t

2
λ

4M
Z t

0
[dsM ]

Z t

0
[dτM ]O(M ,τi ,sj )

Z t

0
[ds̄M ]

Z t

0
[d τ̄M ]O(M , τ̄i , s̄j )

(3.56)

with

E [O(M ,τi ,sj )O(M , τ̄i , s̄j )] = ∑
{l ′j ,li}

∑
{q ′j ,qi}

∑
{l̄ ′j ,l̄i}

∑
{q̄ ′j ,q̄i}

×ψ
∗
0(l
′
M ,q ′M )ψ0(lM ,qM )ψ∗0(l̄

′
M , q̄ ′M )ψ0(l̄M , q̄M )

×
(

M−1

∏
j=0

e
iEl ′j

τj

)(
M−1

∏
j=0

e
−iElj

sj

)(
M−1

∏
j=0

e
iEl̄ ′j

τ̄j

)(
M−1

∏
j=0

e
−iEl̄j

s̄j

)
×E
[
〈l ′M ,q ′M |V |l ′M−1,q

′
M−1〉 . . .〈l ′1,q ′1|V |l ′0,q ′0〉

×〈l ′0,q ′0|l0,q0〉〈l0,q0|V |l1,q1〉 . . .〈lM−1,qM−1|V |lM ,qM 〉
×〈l̄ ′M , q̄ ′M |V |l̄ ′M−1, q̄

′
M−1〉 . . .〈l̄ ′1, q̄ ′1|V |l̄ ′0, q̄ ′0〉

×〈l̄ ′0, q̄ ′0|l̄0, q̄0〉〈l̄0, q̄0|V |l̄1, q̄1〉 . . .〈l̄M−1, q̄M−1|V |l̄M , q̄M 〉
]

(3.57)

and so by Eq. (C.5)

|E [O(M ,τi ,sj )O(M , τ̄i , s̄j )]| ≤ ∑
{l ′j ,li}

∑
{q ′j ,qi}

∑
{l̄ ′j ,l̄i}

∑
{q̄ ′j ,q̄i}

1
N 2

×
∣∣∣E[〈l ′M ,q ′M |V |l ′M−1,q

′
M−1〉 . . .〈l ′1,q ′1|V |l ′0,q ′0〉

×〈l ′0,q ′0|l0,q0〉〈l0,q0|V |l1,q1〉 . . .〈lM−1,qM−1|V |lM ,qM 〉
×〈l̄ ′M , q̄ ′M |V |l̄ ′M−1, q̄

′
M−1〉 . . .〈l̄ ′1, q̄ ′1|V |l̄ ′0, q̄ ′0〉

×〈l̄ ′0, q̄ ′0|l̄0, q̄0〉〈l̄0, q̄0|V |l̄1, q̄1〉 . . .〈l̄M−1, q̄M−1|V |l̄M , q̄M 〉
]∣∣∣ (3.58)

Once again this average can be split into C-graphs and NC-graphs. The NC-graphs have 2M +
2 independent variables while the C-graphs have necessarily less then 2M + 2 independent
variables. Since there are 4M random variables, there are 2M pairings and so the weight is
inversely proportional to (N ℵ)2M . Since the transition elements are bounded the total weight
of any graphs is bounded by

(
W
N ℵ

)2M
. Thus we have:

E
[
L̄M ({l ′j},{q ′j})LM ({lj},{qj})L̄M ({l̄ ′j},{q̄ ′j})LM ({l̄j},{q̄j})

]
= ∑

π(M ,M ,M ,M )∈G0,1(M ,M ,M ,M )
Cπ(M ,M ,M ,M ,{l ′j , li , l̄ ′j , l̄i},{q ′j ,qi , q̄

′
j , q̄i})

+ ∑
π(M ,M ,M ,M )∈G2(M ,M ,M ,M )

Cπ(M ,M ,M ,M ,{l ′j , li , l̄ ′j , l̄i},{q ′j ,qi , q̄
′
j , q̄i}) (3.59)
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3 Dynamical Typicality

If π(M ,M ,M ,M ) is a NC-graph and thus belongs to G0,1(M ,M ,M ,M ), we have:

∑
{l ′j ,li}

∑
{q ′j ,qi}

∑
{l̄ ′j ,l̄i}

∑
{q̄ ′j ,q̄i}

Cπ(M ,M ,M ,M ,{l ′j , li , l̄ ′j , l̄i},{q ′j ,qi , q̄
′
j , q̄i})

≤W 2M N 2
ℵ

3 (3.60)

But if π(M ,M ,M ,M ) is a C-graph and thus belongs to G2(M ,M ,M ,M ), we have:

∑
{l ′j ,li}

∑
{q ′j ,qi}

∑
{l̄ ′j ,l̄i}

∑
{q̄ ′j ,q̄i}

Cπ(M ,M ,M ,M ,{l ′j , li , l̄ ′j , l̄i},{q ′j ,qi , q̄
′
j , q̄i})

≤W 2M N ℵ
3 (3.61)

Inserting Eq. (3.59) in Eq.(3.58) and using the last two identities we arrive at

|E [O(M ,τi ,sj )O(M , τ̄i , s̄j )]| ≤W 2M
ℵ

3
∑

π(M ,M ,M ,M )∈G0,1(M ,M ,M ,M )
1

+
W 2M ℵ3

N ∑
π(M ,M ,M ,M )∈G2(M ,M ,M ,M )

1 (3.62)

Inserting this in Eq.(3.56) we have∣∣∣E[〈φM
t |Ô |φM

t 〉2
]∣∣∣≤O2

max t
2
λ

4M
Z t

0
[dsM ]

Z t

0
[dτM ]

Z t

0
[ds̄M ]

Z t

0
[d τ̄M ]W 2M

ℵ
3

∑
π(M ,M ,M ,M )∈G0,1(M ,M ,M ,M )

1+
W 2M ℵ3

N ∑
π(M ,M ,M ,M )∈G2(M ,M ,M ,M )

1


≤O2

max t
2
λ

4M t4M

M !4 W 2M
ℵ

3
(

(4M )!
(2M )!(2M +1)!

+
1
N

G2(4M )
)

(3.63)

with

∑
π(M ,M ,M ,M )∈G2(M ,M ,M ,M )

1 = G2(4M ) (3.64)

Thus for any t0, λ and ε there exists an M and N0 such when t < t0 and N > N0 we have
E
[〈φM

t |Ô |φM
t 〉2

]
< ε.

Thus

lim
M→∞

lim
N→∞

∣∣∣E[〈φM
t |Ô |φM

t 〉2
]∣∣∣= 0 (3.65)
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4 Examples

4.1 An illustration of theorem 3.2.3

Basically theorem 3.2.3 tells us that for any time, t0, there exists a system size, N0, for which
the behavior is typical up to that time. The larger t0 is the larger N0 will have to be. However,
it does not give any information about what the relationship might be between N0 and t0. In
this section we want to show that the time t0 up to which the variance is small increases at
least logarithmicly with the size of the Hilbert space.
If, according to theorem 3.1.1, we have a system with Hilbert space size larger than N0 the av-
erage of the time evolution of an observable, E

[〈ψt |Ô |ψt〉
]
, can be well approximated by the

average using our approximate solution, E
[〈ΨM

t |Ô |ΨM
t 〉
]
, until time t0. Now, according to

theorem 3.2.1 the average using the approximated solution faithfully represents the dynamics
of any realization until up to a time t ′0. That is VarMN0

[
Ô
]
< ε. Thus until t = min{t0, t

′
0} we

can say the average faithfully represents the dynamics. We now examine how t0 and t ′0 behave
by varying N0 by using some very rough bounds just to illustrate their meaning. We demand
that B1(M ,ℵ, t0λ) and B2(M ,N0, t0λ) be less then ε, with ε small. We have then from Eqs.
(3.17) and (3.18)

2M log(λt0)+ log(t0)≤ log
(

εM !3(M +1)!
ℵ(2M )!

)
(4.1)

2M log(λt0)+ log(t0)≤ log
(

εM !32M N0

(2M )!

)
(4.2)

We suppose M to be very large so that we can apply Stirling’s approximations. In doing so
we obtain

log(λt0)+ log(t0)≤ logε− logℵ

2M
− log2−2+ logM (4.3)

log(λt0)+ log(t0)≤ logε

2M
+

logN0

2M
+

logM

2
(4.4)

We now look at the variance. We demand

Cℵ

N0

M−1

∑
n,m,n̄,m̄=0

(t ′0λ)n+m+n̄+m̄

n!m!n̄!m̄!2
n+m+n̄+m̄

2 +2 ∑
π(n,m,n̄,m̄)∈G0,1

non−s(n,m,n̄,m̄)

1≤ ε (4.5)

C

N 2
0

M−1

∑
n,m,n̄,m̄=0

(t ′0λ)n+m+n̄+m̄

n!m!n̄!m̄!2
n+m+n̄+m̄

2 +2 ∑
π(n,m,n̄,m̄)∈G2

non−s(n,m,n̄,m̄)

1≤ ε (4.6)
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Since the number of non-separable graphs that are NC-graphs is less then the number of NC-
graphs we have by Eq. (B.16)

∑
π(n,m,n̄,m̄)∈G0,1

non−s(n,m,n̄,m̄)

1≤ (n +m + n̄ + m̄)!(
n+m+n̄+m̄

2

)
!
(

n+m+n̄+m̄
2 +1

)
!

(4.7)

and since the number of non-separable graphs that are also C-graphs is less then the number
of graphs we have by Eq. (B.15)

∑
π(n,m,n̄,m̄)∈G2

non−s(n,m,n̄,m̄)

1≤ (n +m + n̄ + m̄)!(
n+m+n̄+m̄

2

)
!2

n+m+n̄+m̄
2

(4.8)

Using the following inequality for factorials, where C is a constant,

(a + b)!≤ C a+ba!b! (4.9)

we get

∑
π(n,m,n̄,m̄)∈G0,1

non−s(n,m,n̄,m̄)

1≤ C n+m+n̄+m̄ (4.10)

∑
π(n,m,n̄,m̄)∈G2

non−s(n,m,n̄,m̄)

1≤ C n+m+n̄+m̄

(
n +m + n̄ + m̄

2

)
! (4.11)

By using the bound (4.10) and (4.11) in Eq. (4.5) and (4.6) we obtain

Cℵ

N0

M−1

∑
n,m,n̄,m̄=0

(Ct ′0λ)n+m+n̄+m̄

n!m!n̄!m̄!2
n+m+n̄+m̄

2 +2
≤ ε (4.12)

C

N 2
0

M−1

∑
n,m,n̄,m̄=0

(Ct ′0λ)n+m+n̄+m̄

n!m!n̄!m̄!

(
n +m + n̄ + m̄

2

)
!≤ ε (4.13)

By once again using bounds on the factorial in Eq. (4.13) we get

Cℵ

N0

M−1

∑
n,m,n̄,m̄=0

(Ct ′0λ)n+m+n̄+m̄

n!m!n̄!m̄!2
n+m+n̄+m̄

2 +2
≤ Cℵ

N0
e4Ct ′0λ ≤ ε (4.14)

C

N 2
0

M−1

∑
n,m,n̄,m̄=0

(Ct ′0λ)n+m+n̄+m̄

n
2 !m

2 ! n̄
2 ! m̄

2 !
≤ C

N 2
0
e4C (t ′0λ)2 ≤ ε (4.15)

and so finally we get that if the following conditions are fulfilled

t ′0λ≤ C (log(ε)+ log(N0)) (4.16)

t ′0λ≤ C (log(ε)+2log(N0))
1
2 (4.17)

then the variance will be smaller then ε. The bounds made here were very rough and that is
why N0 has to be extremely large compared to t ′0.
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4.2 Example of a system exhibiting typicality

4.2 Example of a system exhibiting typicality

Our example is a bipartite system similar to the one used in [17], where one part is considered
to be large, as an environment for example. We have then

H = H1⊗H2

Dim [H1] = D1

Dim [H2] = D2

with the index 2 referring to the large system and thus large Hilbert space.

H = H1⊗ I2 + I1⊗H2

|n,m〉= |E 1
n〉⊗ |E 2

m〉
H |n,m〉= (E 1

n +E 2
m

) |n,m〉 (4.18)

We couple these two systems randomly

V̂ = ∑
n,m,n ′,m ′

V(n,m),(n ′,m ′)|n,m〉〈n ′,m ′| (4.19)

which can be written down as

V̂ =
D1×D2

∑
n̄,m̄=1

Vn̄,m̄ |n̄〉〈m̄| (4.20)

We set D1×D2 = D . If system 2 is a reservoir then D2 tends to be extremely large and so is
D . D2 plays the role of the N we used in previous sections and D1 of ℵ. If we are interested
in the dynamics of systems 1 such as the probability for certain levels to be populated this
would correspond to the following observable

Ô =
D1

∑
n=1

D2

∑
m=1

En |n,m〉〈n,m| (4.21)

this corresponds to a Macro-observable and thus for finite time and coupling the system be-
haves typically. It is with this example that we best understand that the statement of typicality
is not restricted to what one usually understands as Macro, for system 1 could be very small
and just possess a couple of states. The fact that the environment is large makes the observable
macro with respect to the total Hilbert space.

4.3 Relaxation of a 2-site model

Here we discuss a discrete one particle model where the particle can move on 2 sites (similar
to [2]). Each site possesses N energy levels and the transition amplitudes are complex gaussian
random variables. We have then the following Hamiltonian:
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V̂

site 1 site 2

Energy levels

El

1

0

⊗

Figure 4.1: Sketch of the two site model

Ĥ =
2

∑
x=1

N

∑
l=1

El |x , l〉〈x , l |+λ

2

∑
x1,x2=1

N

∑
l1,l2=1

zx1,x2 (l1, l2)Wx1,x2 (l1, l2) |x1, l1〉〈x2, l2| (4.22)

with

Wx1,x2 (l1, l2) = (1−δx1,x2) (4.23)

If we take the spectrum of H0 to be equidistant and bounded between 0 and 1, we have
El = l/N . The density of states then becomes constant in the limit N → ∞. In the limit
N →∞ and in the Van Hove limit we get, according to (2.142) and (2.143), the following rate
equations for the probability to be on site 1 and 2.

PT (i) =
Z 1

0
dωPT (i ,ω) (4.24)

d

dT
PT (1) =π(PT (2)−PT (1)) (4.25)

d

dT
PT (2) =π(PT (1)−PT (2)) (4.26)

4.4 Diffusion in a randomly coupled chain

The next model is an extension of our previous example. Instead of having just two sites we
have a now a chain. Nevertheless, the interaction between each site is the same. This is a tight
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binding type of model with random coupling similar to the one used in [31]. Our Hamiltonian
is then

Ĥ =
L

∑
x=−L

N

∑
l=1

El |x , l〉〈x , l |+λ

L

∑
x ,y=−L

N

∑
l1,l2=1

zx ,y (l1, l2)Wx ,y (l1, l2) |x , l1〉〈y , l2| (4.27)

Since we are taking only neighboring sites to be coupled we have

Wx ,y (l1, l2) = δx ,y−1 +δx ,y+1 (4.28)

We can then calculate the effective equation by use of Eq. (2.142) and (2.143). We have then

∂

∂T
PT (x ,ω) = ∑

y

Mx ,y(ω)PT (y ,ω) (4.29)

By Eq. (4.28) and (2.143) we have

Mx ,y(ω) =πg(ω)

(
−δx ,y ∑

z 6=x

|Wx ,z (ω,ω)|2 + |Wx ,y(ω,ω)|2
)

=πg(ω)(−2δx ,y +δx ,y−1 +δx ,y+1) (4.30)

Inserting this in Eq. (4.29) we get

∂

∂T
PT (x ,ω) = 2πg(ω)∆xPT (x ,ω) (4.31)

which is the desired discrete diffusion equation. It may appear strange that a system, which
has translation invariance, exhibits diffusion. But if one would investigate the actual conse-
quences of the symmetry, one would see that the conserved quantity does not correspond to the
probability current operator, despite some similarity. The current operator does not commute
with the Hamiltonian either. We refer to [29] where it was noticed that such a kind of model
exhibits two time regimes with transition from diffusive to ballistic type of behavior.
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5 Supplementary Details

5.1 Linking size and time, under one scaling:t = N γ

In chapter 2 we have derived the dynamics by taking the limit N → ∞ and then the limit
t → ∞, with the Van Hove type of scaling between the coupling constant, λ, and time, t . This
is a double scaling limit. Essentially this means that although both N and t tend to ∞, N does
so before t , because we first take this limit. Inverting the order of the limits does not guaranty
that the same equations come out. Implicitly in the order of the limits is hidden the fact that
N is always infinitely larger then t . The main point might be that N needs not be infinitely
larger than t but just larger than a certain amount.

In this chapter we will show exactly this. We will show that there exist scaling relations
between N and t , such as t = N γ, with γ < 1, which in the limit N → ∞ have the same
behavior as the Van Hove limit. Thus we are reducing a two parameter limit procedure to a
one parameter procedure. Scaling t like this with N is, of course, equivalent setting λ2 = N−γ

in t = T
λ2 .

Deriving the dynamics with just one parameter, under some scaling, does not only make
more precise mathematically, when the equations are fullfilled. Remember that N represents
the size of the Hilbert space, which in turn is related to the system we are considering. The
scaling used between N and t may thus turn into a relation between time and whatever phys-
ical quantities which affect the size of the Hilbert space, such as the physical length of the
system or the number of particles.

Our main theorem in this section is the following:

Theorem 5.1.1. If |ψt〉 is the solution to the Schrödinger equation with the Hamiltonian 2.4
and |ΨM

t 〉 is the Duhamel expansion solution truncated at the M th term, that is, according to
Eq. (2.21),

|ΨM
t 〉=

M−1

∑
n=0
|ψn

t 〉 (5.1)

and Ô is a bounded observable, then

λ2t=T
lim
t→∞

lim
N→∞

E
[
〈ΨM

t |Ô |ΨM
t 〉
]

=
λ2t=T ,tN−γ=1

lim
N→∞

E
[
〈ΨM

t |Ô |ΨM
t 〉
]

(5.2)

For the proof we will consider that the spectrum of the deterministic Hamiltonian, Ĥ0, is
equidistant.
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We go one step back here from chapter 2, i.e. we consider once again the evolution of the
system, before taking any limits, and analyze with the help of what we have learned previously.
Our strategy is then as follows. We will have an expression for the contribution of the graphs
but two different limiting procedures. We will find a bound for the difference between the
contribution of a graph in one limit and the contribution of a graph in the other limit. The sum
over this difference is such that it tends to zero in the limits. The notation developed in the
beginning of section 2.6 does not make reference to C, N, or S-graphs. It only relabels the
independent variables as a function of their multiplicity in the propagators. This relabeling
of a graph Cπ(n,m) depending on n and m by Cπ(n̄,{kj ,pj}) depending on {n̄,{kj ,pj}}
happens to be useful in order to count simple graphs and sum them up because a set of variables
{n̄,{kj ,pj}} uniquely determines a S-graph. But this new labeling of a graph can also be used
for C-graphs for that matter, even if it does not uniquely specify the C-graph. We use this
notation then in order to write down the contribution of a graph before taking any limit. By
slightly rearranging Eq. (2.54) we can write

Pa,t(q0, l0) =
M

∑
m,n=0

∑
π(n,m)∈Ga

λ
n+m

∑
{qi ,q ′j }0

∑
{li ,l ′j }0

ψ
∗
0(q
′
m , l ′m)ψ0(qn , ln)

×K n(t ,{Eli})K̄m(t ,{El ′j })Cπ(n,m,{li , l ′j},{qi ,q
′
j}) (5.3)

The expression form the second line of this last equation to the end of the third, were it not
for the λn+m , is exactly our definition of Q(Cπ,{qi ,q

′
j}i,q0,ω0) in Eq. (2.74) for NC-graphs,

before taking the limit N → ∞. We take this and define it as Fπ, the contribution of a graph,
any graph. We have then, similar to Eq. (2.75):

Pa,t(q0, l0) = ∑
m,n

∑
π(n,m)∈Ga

∑
Aq

π0

Fπ

(
n,m,N , t ,{qi ,q

′
j}i,El0

)
(5.4)

with

Fπ

(
n,m,N , t ,{qi ,q

′
j}i,El0

)
= λ

n+m
∑
B

q
π

∑
{li ,l ′j }0

ψ
∗
0(q
′
m , l ′m)ψ0(qn , ln)

×K n(t ,{Eli})K̄m(t ,{El ′j })Cπ(n,m,{li , l ′j},{qi ,q
′
j})

We can now express the contribution of Fπ in terms of independent and dependent variables,
just as we did in section 2.6. Eq. (5.5) is then discrete version of Eq. (2.82) times λn+m , that
is before taking the limit N → ∞. As for W ({ωj ,ω

′
l},{qi ,q

′
j}i) it is the same as in Eq. (2.81)
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5.1 Linking size and time, under one scaling:t = N γ

but without taking the limit N → ∞. We have then for Fπ

Fπ(n ′, n̄,{kj ,pj},N , t ,{qi ,q
′
j}i,ω0) = λ

n ′+∑j (kj+pj )−2
Z Z

dαdβe i(α−β)te2ηt

×
n ′

∏
l=1

∑
ω′l

1
N

−1
ω′l − γl + iη

× ∑
ω1,...ωn̄

1
N

ψ
∗
0(ω1)ψ0(ω2)

n̄

∏
j=0

( −1
ωj −β+ iη

)pj
( −1

ωj −α− iη

)kj

W ({ωj ,ω
′
l},{qi ,q

′
j}i)

×N−
∑j (kj +pj )−n ′−2(n̄+1)

2 (5.5)

with the following relations and definitions:

l th independent variable of multiplicity 1 : ω
′
l

j th independent variable of multiplicity higher then 1 : ωj

Number of independent variables of multiplicity 1 : n ′

Number of independent variables of multiplicity higher then 1 : n̄ +1

Multiplicity on the left of the j th variable : pj

Multiplicity on the left of the j th variable : kj

Number of propagators = n +m +2 = n ′+
n̄

∑
j=0

kj +pj (5.6)

Number of independent variables = n ′+ n̄ +1≤ n +m

2
+1 (5.7)

In this notation we have

Pa,t(q0,ω0) = ∑
n,m

∑
π(n,m)∈Ga

∑
{qi ,q ′j }

Fπ(n ′, n̄,{kj ,pj},N , t ,{qi ,q
′
j}i,ω0) (5.8)

The sum over Fπ(n,m) implicitly means that the variables of Fπ(n ′, n̄,{kj ,pj},N , t ,{qi ,q
′
j}i,ω0)

comply with the relationships given above. It can be verified that when taking all of the N

factor together, and by use of relation (5.6), the result is a factor of
( 1

N

)n+m
2 . We also set

λ
2 = T/t (5.9)

t = N γ (5.10)

Eq. (5.6) comes from the number of propagators of a graph of order (n,m). Eq. (5.7) states
that there are less then n+m

2 + 1 independent variables for C-graphs and exactly n+m
2 + 1 in-

dependent variables for Non C-graphs. Eqs. (5.9) and (5.10) are just the scaling relations and
we have not yet specified γ. The whole point of this chapter is actually to find out for which γ
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our single parameter procedure is equivalent to the double one. We shall omit the dependency
on {qi ,q

′
j}i of Fπ for brevity.

Fπ is the contribution of one graph, once the values of the graph structure, such as n ′, n̄ and
{kj ,pj} are given. We will show that if a certain scaling relationship is imposed between t and
N (which means also between λ and N because of the Van Hove limit), then the difference
between the contributions of Fπ(n ′, n̄,{kj ,pj},N , t ,ω0) and of Fπ(n ′, n̄,{kj ,pj},N ,N γ,ω0)
in the N → ∞ limit and the t → ∞ limit tends to zero.We show this by finding a proper N
dependent bound. We will do this in two steps. First we will bound the difference between
Fπ(n ′, n̄,{kj ,pj},N ,N γ,ω0) and a F̃π still to be defined. Then we shall bound the difference
between this F̃π and Fπ(n ′, n̄,{kj ,pj},N ′, t ,ω0). Together these results will provide us with
a bound for the difference between
Fπ(n ′, n̄,{kj ,pj},N ,N γ,ω0) and Fπ(n ′, n̄,{kj ,pj},N ′, t ,ω0). We will prove then the follow-
ing theorem

Theorem 5.1.2. With the previous definition of Fπ we have∣∣∣∣∣ lim
N→∞

∑
ω0

1
N

Fπ(n ′, n̄,{kj ,pj},N ,N γ,ω0)− lim
t→∞

lim
N ′→∞

∑
ω0

1
N ′

Fπ(n ′, n̄,{kj ,pj},N ′, t ,ω0)

∣∣∣∣∣= 0

(5.11)

Proof. Theorem 5.1.2
As we said we will consider the case where the spectrum of Ĥ0 is equidistant and bounded
between 0 and 1. This means that the sums over each ωj in Eq. (5.5) is a sum over the set[ 1
N , 2

N , . . .1
]
. We have then the following:∣∣∣∣∣

Z
dω

( −1
ω−α− iη

)
−

1

∑
ωl=N−1

1
N

−1
ωl −α− iη

∣∣∣∣∣
=

∣∣∣∣∣∣
1

∑
ωl= 1

N

(Z
Ω(ωl )

dω
−1

ω−α− iη
− 1

N

−1
ωl −α− iη

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
1

∑
ωl= 1

N

Z
Ω(ωl )

dω

( −1
ω−α− iη

− 1
N |Ω(ωl )|

−1
ωl −α− iη

)∣∣∣∣∣∣
Here |Ω(ωl )| refers to the length of the interval Ω(ωl ). The Ω(ωl )’s is an equidistant partition
of Ω, the range of integration of the variable ω (in our case [0,1]). As such each interval Ω(ωl )
contains one eigenvalue ωl of H0.

Ω(ωl ) =
(

l −1
N

,
l

N

]
(5.12)

|Ω(ωl )|=N−1 (5.13)
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We have then ∣∣∣∣∣
Z

dω

( −1
ω−α− iη

)
−

1

∑
ωl=N−1

1
N

−1
ωl −α− iη

∣∣∣∣∣
≤

1

∑
ωl=N−1

Z
Ω(ωl )

dω

∣∣∣∣N |Ω(ωl )|(ωl −α− iη)− (ω−α− iη)
(ω−α− iη)N |Ω(ωl )|(ωl −α− iη)

∣∣∣∣
≤

1

∑
ωl=N−1

Z
Ω(ωl )

d∆ω

∣∣∣∣ (1−N |Ω(ωl )|)(ωl −α− iη)−∆ω

(ω−α− iη)N |Ω(ωl )|(ωl −α− iη)

∣∣∣∣ (5.14)

with ω = ωl +∆ω. We have then ∆ω≤ N−1 inside each interval. If there is a scaling relation
between t and N we also have one between η and N (remember η was set to t−1), namely
η∼ N−γ. The denominator is then bigger then η2 = N−2γ. The first term in the numerator of
Eq. (5.14) is zero because N |Ω(ωl )|= 1 by Eq. (5.13). By bounding the rest of the numerator
by its maximum we get

(5.14)≤
1

∑
ωl=N−1

Z
Ω(ωl )

d∆ω
(
N 2γ−1)

≤N 2γ−1 (5.15)

Thus:

1

∑
ωl=N−1

1
N

−1
ωl −α− iη

=
Z

dω

( −1
ω−α− iη

)
+O(N 2γ−1) (5.16)

From this bound we can also deduce

1

∑
ωl=N−1

1
N

∣∣∣∣ 1
ωl −α− iN−γ

∣∣∣∣k ∣∣∣∣ 1
ωl −β+ iN−γ

∣∣∣∣p ≤ CN γ(k+p−1) (log(N γ)+CN 2γ−1) (5.17)

This is done by bounding k + p − 1 of the fractions by N γ(k+p−1) and using Eq. (5.16) to
bound the rest. We define now F̃π.

F̃π(n ′, n̄,{kj ,pj},N ,N γ,ω0)

=N−γ
n ′+∑j (kj +pj )−2

2

Z Z
dαdβe i(α−β)N γ

e2
n ′

∏
l=1

Z
dω
′
l

−1
ω′l − γl + iN−γ ∑

ω1,...ωn̄

1
N

ψ
∗
0(ω1)ψ0(ω2)

n̄

∏
j=0

( −1
ωj −β+ iN−γ

)pj
( −1

ωj −α− iN−γ

)kj

W ({ωj ,ω
′
l},{qj ,q

′
l}i)N−

n ′+∑j (kj +pj )
2
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This is equal to the expression of Eq.(5.5) except that we have substituted the sums over ω′l by
integrals. Using Eq. (5.16) in Eq.(5.5) we have

Fπ(n ′, n̄,{kj ,pj},N ,N γ,ω0)

=N−γ
n ′+∑j (kj +pj )−2

2

Z Z
dαdβe i(α−β)N γ

e2
n ′

∏
l=1

(Z
dω
′
l

−1
ω′l − γl + iN−γ

+O(N 2γ−1)
)

× ∑
ω1...ωn̄

1
N

ψ
∗
0(ω1)ψ0(ω2)

n̄

∏
j=0

( −1
ωj −β+ iN−γ

)pj
( −1

ωj −α− iN−γ

)kj

×W ({ωj ,ω
′
l},{qj ,q

′
l})N−

∑j (kj +pj )−n ′−2(n̄+1)
2

From this we deduce∣∣∣∣∣∑
ω0

1
N

(
F̃π(n ′, n̄,{kj ,pj},N ,N γ,ω0)−Fπ(n ′, n̄,{kj ,pj},N ,N γ,ω0)

)∣∣∣∣∣
≤CN−γ

n ′+∑j (kj +pj )−2
2 O(N 2γ−1)

n ′

∑
v=1

(
n ′

∏
l=1,l 6=v

∣∣∣∣Z dω
′
l

−1
ω′l − γl + iN−γ

+O(N 2γ−1)
∣∣∣∣
)

×
n̄

∏
j=0

∑
ω0...ωn̄

1
N

∣∣∣∣ −1
ωj −β+ iN−γ

∣∣∣∣pj
∣∣∣∣ −1
ωj −α− iN−γ

∣∣∣∣kj N−∑j (kj +pj )−n ′−2(n̄+1)
2

≤CN−γ
n ′+∑j (kj +pj )−2

2 −∑j (kj +pj )−n ′−2(n̄+1)
2 N 2γ−1n ′ logn ′−1(N γ)

×
n̄

∏
j=0

∑
ω0...ωn̄

1
N

∣∣∣∣ −1
ωj −β+ iN−γ

∣∣∣∣pj
∣∣∣∣ −1
ωj −α− iN−γ

∣∣∣∣kj
≤CN−γ

n ′+∑j (kj +pj )−2
2 −∑j (kj +pj )−n ′−2(n̄+1)

2 N 2γ−1n ′ logn ′−1(N γ)

×
n̄

∏
j=0

N γ(kj+pj−1) (log(N γ)+N 2γ−1)
≤CN

∑j (kj +pj−2)−n ′
2 (γ−1)+3γ−1

(
n ′ logn ′−1(N γ)

(
log(N γ)+N 2γ−1)n̄+1

)
(5.18)

By Eqs. (5.6) and (5.7) we have:

n ′+ n̄ +1≤ n ′+∑
n̄
j=0 kj +pj

2

0≤ ∑
n̄
j=0 (kj +pj −2)−n ′

2

Thus, if we choose γ < 1
3 , the first power of N in Eq. (5.18) will be negative. This negative

power of N decays faster then any power of the logarithm and so in the limit N → ∞, the
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bound (5.18) would tend to zero. We have then

lim
N→∞

∣∣∣∣∣∑
ω0

1
N

(
F̃π(n ′, n̄,{kj ,pj},N ,N γ,ω0)−Fπ(n ′, n̄,{kj ,pj},N ,N γ,ω0)

)∣∣∣∣∣= 0 (5.19)

We now show that

lim
N→∞

∑
ω0

1
N

F̃π(n ′, n̄,{kj ,pj},N ,N γ,ω0)− lim
t→∞

lim
N ′→∞

∑
ω0

1
N ′

Fπ(n ′, n̄,{kj ,pj},N ′, t ,ω0) = 0

(5.20)

In the second term we make a change of variable t = N γ and so the limit t → ∞ become
N → ∞. We then have to prove the following:

lim
N→∞

lim
N ′→∞

(
∑
ω0

1
N

F̃π(n ′, n̄,{kj ,pj},N ,N γ,ω0)−∑
ω0

1
N ′

Fπ(n ′, n̄,{kj ,pj},N ′,N γ,ω0)

)
= 0

(5.21)

First we have by Eq. (5.5)

lim
N ′→∞

∑
ω0

1
N ′

Fπ(n ′, n̄,{kj ,pj},N ′,N γ,{qi ,q
′
j}i,ω0) = N−γ

(n ′+∑j (kj +pj )−2)
2

Z Z
dαdβe i(α−β)te2

×
n ′

∏
l=1

Z
dω
′
l

−1
ω′l − γl + iN−γ

×
n̄

∏
j=0

Z
dωj ψ

∗
0(ω1)ψ0(ω2)

n̄

∏
j=0

( −1
ωj −β+ iη

)pj
( −1

ωj −α− iη

)kj

W ({ωj ,ω
′
l},{qi ,q

′
j}i)

×N−
∑j (kj +pj )−n ′−2(n̄+1)

2 (5.22)

We will show that the first term in Eq. (5.21) is equal to Eq. (5.22) plus some extra terms.
These extra terms will then have a bound in N that will converge to zero.
Similar to the way we have bound the difference between the sum and the integral in Eq.
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(5.16), we find the following bound:

∣∣∣∑
ωj

1
N

( −1
ωj −β+ iN−γ

)pj
( −1

ωj −α− iN−γ

)kj

−
Z

dω

( −1
ω−β+ iN−γ

)pj
( −1

ω−α− iN−γ

)kj ∣∣∣
≤
∣∣∣∑

ωj

Z
Ω(ωj )

dω
1

N |Ω(ωj )|
( −1

ωj −β+ iN−γ

)pj
( −1

ωj −α− iN−γ

)kj

−
( −1

ω−β+ iN−γ

)pj
( −1

ω−α− iN−γ

)kj ∣∣∣
≤
∣∣∣∑

ωj

Z
Ω(ωj )

dω
1

N |Ω(ωj )|
N |Ω(ωj )|(ωj −β+ iN−γ)pj (ωj −α− iN−γ)kj − (ω−α− iN−γ)kj (ω−β− iN−γ)pj

(ωj −β+ iN−γ)pj (ωj −α− iN−γ)kj (ω−α− iN−γ)kj (ω−β− iN−γ)pj

∣∣∣
(5.23)

Because the integration over ω is in the interval Ω(ωj ) we set ω = ωj +∆ω. Also because of
Eq. (5.13) we have N |Ω(ωj )|= 1.The numerator of the integrand is then

(
ωj −β+ iN−γ

)pj
(
ωj −α− iN−γ

)kj − (ω−α− iN−γ
)kj (

ω−β− iN−γ
)pj

=
(
ωj −β+ iN−γ

)pj
(
ωj −α− iN−γ

)kj
−(ωj +∆ω−α− iN−γ

)kj (
ωj +∆ω−β− iN−γ

)pj (5.24)

In expanding the right hand part of Eq. (5.24) in powers of ∆ω we have the following expres-
sion :(

ωj −β+ iN−γ
)pj
(
ωj −α− iN−γ

)kj
+

kj ,pj

∑
nj ,mj=0

kj !pj !
nj !mj !(kj −nj )!(pj −mj )!

(∆ω)nj+mj
(
ωj −β+ iN−γ

)pj−mj
(
ωj −α− iN−γ

)kj−nj

=
kj ,pj

∑
nj ,mj=0;nj+mj≥1

kj !pj !
nj !mj !(kj −nj )!(pj −mj )!

(∆ω)nj+mj

×(ωj −β+ iN−γ
)pj−mj

(
ωj −α− iN−γ

)kj−nj (5.25)

If we insert this sum into the fraction of Eq. (5.23) and bound |ω−α− iN−γ|−1 by N γ, we
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5.1 Linking size and time, under one scaling:t = N γ

have the following bound for Eq. (5.23):

(5.23)≤∑
ωj

Z
Ω(ωj )

d∆ω

kj ,pj

∑
nj ,mj=0;nj+mj≥1

kj !pj !
nj !mj !(kj −nj )!(pj −mj )!

|∆ω|nj+mj N γ(kj+pj+mj+nj )

(5.26)

Because ∆ω≤ N−1 we get

(5.23)≤∑
ωj

Z
Ω(ωj )

d∆ωN γ(kj+pj )
kj ,pj

∑
nj ,mj=0;nj+mj≥1

kj !pj !
nj !mj !(kj −nj )!(pj −mj )!

N (γ−1)(mj+nj )

≤N γ(kj+pj )
((

1+N γ−1)kj+pj −1
)

(5.27)

We then get

∑
ωj

1
N

( −1
ωj −β+ iN−γ

)pj
( −1

ωj −α− iN−γ

)kj

=
Z

dω

( −1
ω−β+ iN−γ

)pj
( −1

ω−α− iN−γ

)kj

+O
(
N γ(kj+pj )

((
1+N γ−1)kj+pj −1

))
Using this estimate for F̃π(n ′, n̄,{kj ,pj},N ,N γ,ω0) we get

∑
ω0

1
N

F̃π(n ′, n̄,{kj ,pj},N ,N γ,ω0)

=N−γ
n ′+∑j (kj +pj )−2

2

Z Z
dαdβe i(α−β)N γ

e2
n ′

∏
l=1

(Z
dω
′
l

−1
ω′l − γl + iN−γ

)
n̄

∏
j=0

Z
dωj

(
ψ
∗
0(ω1)ψ0(ω2)

n̄

∏
j=0

(( −1
ωj −β+ iN−γ

)pj
( −1

ωj −α− iN−γ

)kj

+O
(
N γ(kj+pj )

((
1+N γ−1)kj+pj −1

)))
W ({ωj ,ω

′
l})
)
N−

−n ′+∑j (kj +pj−2)
2

and thus∣∣∣∣∣∑
ω0

1
N

F̃π(n ′, n̄,{kj ,pj},N ,N γ,ω0)− lim
N ′→∞

∑
ω0

1
N ′

Fπ(n ′, n̄,{kj ,pj},N ′,N γ,ω0)

∣∣∣∣∣
≤N−γ

n ′+∑j (kj +pj )−2
2

Z Z
dαdβ

n ′

∏
l=1

∣∣∣∣Z dω
′
l

−1
ω′l − γl + iN−γ

∣∣∣∣
×

n̄

∑
v=0

(
O
(
N γ(kv+pv )

((
1+N γ−1)kv+pv −1

)) n̄

∏
j=0,j 6=v

Z
dωj

∣∣∣∣ −1
ωj −β+ iN−γ

∣∣∣∣pj
∣∣∣∣ −1
ωj −α− iN−γ

∣∣∣∣kj
)

×N−
−n ′+∑j (kj +pj−2)

2 (5.28)
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By using the following bound for the integrals

Z
dωj

∣∣∣∣ −1
ωj −β+ iN−γ

∣∣∣∣pj
∣∣∣∣ −1
ωj −α− iN−γ

∣∣∣∣kj ≤ N γ(kj+pj−1) (5.29)∣∣∣∣Z dω
′
l

−1
ω′l − γl + iN−γ

∣∣∣∣≤ log(N γ) (5.30)

we get

(5.28)≤CN−γ
n ′+∑j (kj +pj )−2

2 logn ′ (N γ)N γ(∑j kj+pj−1)

n̄

∑
v=0

(((
1+N γ−1)kv+pv −1

)
N γ

)
N−

−n ′+∑j (kj +pj−2)
2

≤CN (∑j (kj+pj−2)−n ′) γ−1
2 logn ′ (N γ)

n̄

∑
v=0

N 2γ

((
1+N γ−1)kv+pv −1

)
(5.31)

If gamma < 1
2 the first power of N in Eq. (5.21) will be negative and so tend to zero. If γ < 1

3
the terms in the sum will all be negative power of N The right hand side of Eq. (5.31) will
thus tend to zero in the limit N → ∞ if γ < 1

3 and so we get for Eq. (5.21)∣∣∣∣∣ lim
N→∞

∑
ω0

F̃π(n ′, n̄,{kj ,pj},N ,N γ,ω0)− lim
t→∞

lim
N ′→∞

∑
ω0

Fπ(n ′, n̄,{kj ,pj},N ′, t ,ω0)

∣∣∣∣∣= 0

(5.32)

Finally we have∣∣∣∣∣ lim
N→∞

∑
ω0

1
N

Fπ(n ′, n̄,{kj ,pj},N ,N γ,ω0)− lim
t→∞

lim
N→∞

∑
ω0

1
N

Fπ(n ′, n̄,{kj ,pj},N , t ,ω0)

∣∣∣∣∣
≤
∣∣∣∣∣ lim
N→∞

∑
ω0

1
N

Fπ(n ′, n̄,{kj ,pj},N ,N γ,ω0)− lim
N→∞

∑
ω0

1
N

F̃π(n ′, n̄,{kj ,pj},N ,N γ,ω0)

∣∣∣∣∣
+

∣∣∣∣∣ lim
N→∞

∑
ω0

1
N

F̃π(n ′, n̄,{kj ,pj},N ,N γ,ω0)− lim
t→∞

lim
N ′→∞

∑
ω0

1
N ′

Fπ(n ′, n̄,{kj ,pj},N ′, t ,ω0)

∣∣∣∣∣
the first term goes to zero by Eq. (5.19) whenever γ < 1

3 and the second term goes to zero by
Eq. (5.32).

The proof of theorem (5.1.1) is now as follows:
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5.1 Linking size and time, under one scaling:t = N γ

Proof. Theorem 5.1.1
We define

P̃a,N γ(q0,ω0) =
M

∑
n,m=0

∑
π(n,m)∈Ga

∑
{qi ,q ′j }i

Fπ(n ′, n̄,{kj ,pj},N ,N γ,{qi ,q
′
j}i,q0,ω0)

Pa,t(q0,ω0) =
M

∑
n,m=0

∑
π(n,m)∈Ga

∑
{qi ,q ′j }

Fπ(n ′, n̄,{kj ,pj},N , t ,{qi ,q
′
j},q0,ω0) (5.33)

so that we have the following for a diagonal observable

λ2t=T
lim
t→∞

lim
N→∞

E
[
〈ΨM

t |Ô |ΨM
t 〉
]

=
λ2t=T
lim
t→∞

lim
N→∞

∑
q0,ω0

1
N

O(q0,ω0)Pa,t(q0,ω0) (5.34)

λ2t=T ,tN−γ=1
lim

N→∞
E
[
〈ΨM

t |Ô |ΨM
t 〉
]

=
λ2t=T ,tN−γ=1

lim
N→∞

∑
q0,ω0

1
N

O(q0,ω0)P̃a,N γ(q0,ω0) (5.35)

For the difference between these two equations we have then∣∣∣∣∣ limt→∞
lim

N→∞
∑

q0,ω0

1
N

O(q0,ω0)Pa,t(q0,ω0)− lim
N→∞

∑
q0,ω0

1
N

O(q0,ω0)P̃a,N γ(q0,ω0)

∣∣∣∣∣
≤Omax

∣∣∣∣∣ limt→∞
lim

N→∞
∑

q0,ω0

1
N

Pa,t(q0,ω0)− P̃a,N γ(q0,ω0)

∣∣∣∣∣
≤C

M

∑
n,m=0

∑
π(n,m)∈Ga

∑
{qi ,q ′j }i∣∣∣ lim

t→∞
lim

N→∞
∑
ω0

1
N

Fπ(n ′, n̄,{kj ,pj},N , t ,{qi ,q
′
j}i,ω0)

− lim
N→∞

∑
ω0

1
N

Fπ(n ′, n̄,{kj ,pj},N ,N γ,{qi ,q
′
j}i,ω0)

∣∣∣
≤ 0

To get to the last line we have used theorem 5.1.2 to the expression inside the absolute value
and the fact that the sum is finite. We conclude that

λ2t=T
lim
t→∞

lim
N→∞

E
[
〈ΨM

t |Ô |ΨM
t 〉
]
−

λ2t=T ,tN−γ=1
lim

N→∞
E
[
〈ΨM

t |Ô |ΨM
t 〉
]

= 0
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6 Bound of the remainder

We can summarize what we have done so far by referring to a simple kind of parameter-line.
In chapter 2 we showed that the time evolution of the Schrödinger equation may be identified
as a solution of a rate equation for the probability density. We did so by using the Duhamel
expansion up to order M . We then sent N to ∞ which allowed us to discard certain graphs
from |ΨM

t 〉. Then we sent t to ∞ with the Van Hove limit, λ2t = T . This allowed us to discard
even more graphs from |ΨM (t)〉. Finally when sending M to ∞ we arrived at the solution
of the rate equation. This is depicted in the upper line of figure 6.1. The order in which the
parameters are depicted in figure 6.1 symbolizes which one was taken first to its limit.

In chapter 3 we showed that for fixed t and λ there exists an M and an N such that the
variance of macro-observables (VarN

[
Ô
]

in the figure) would go to zero. This was our result
of typicality. This means that in this case t is finite. This is depicted in middle line of figure
6.1.

In chapter 5 we showed that if t = N γ, with γ < 1
3 , and send N to ∞ (and thus t at the same

time, although slower) we would obtain the same rate equation as for the case where we take
the limits separately. This is depicted in the lower line of figure 6.1. For the results of chapter
2 and 5 we assumed that in these limits the contribution of R(M , t ,λ,q0, l0), the remaining so
to say of |ΨM

t 〉, in Eq. (2.25) converges to zero. This is natural and expected but non trivial.
The proof of this is the aim of this chapter. In order to do so we will show that the norm
under the average of |φM

t 〉 tends to zero. If this is so it makes sense that R(M , t ,λ,q0, l0) will
yield a zero contribution because of its dependency on |φM

t 〉. We recall here the following
expressions:

|ΨM
t 〉=

M−1

∑
n=0
|ψn

t 〉

R(M , t ,λ,q0, l0) =〈φM
t |q0, l0〉〈q0, l0|ψ̃M

t 〉+ 〈ψ̃M
t |q0, l0〉〈q0, l0|φM

t 〉
+〈φM

t |q0, l0〉〈q0, l0|φM
t 〉 (6.1)

Because |φM
t 〉 contains the next order perturbation terms of |ΨM

t 〉 we have to extract these
contributions which we can bound and show that the rest does not matter. The idea to bound
the norm is to divide the integral in Eq. (6.2) in κ smaller pieces and then to expand the
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0

0

0

t →∞

M →∞

M →∞

M →∞

N →∞

N →∞

|ΨM
t 〉 −→ solution of rate equations

|ΨM
t 〉 −→ solution of rate equations

∞

∞

∞

VarN

[
Ô

]
→ 0

t

t = Nγ →∞

Figure 6.1: parameter line
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evolution operator once again by using the Duhamel expansion.

|φM
t 〉=

Z t

0
dse−i(t−s)H (−iλ)V |ψM

s 〉

=
κ

∑
j=0

e−i(t−θj+1)H
Z

θj+1

θj

dse−i(θj+1−s)H (−iλ)V |ψM
s 〉 (6.2)

with

|ΨM
s 〉= (−iλ)M

Z s

0
. . .

Z s

0
[dsM ]e−is0H0V . . .e−isMH0δ

(
s−

M

∑
j=0

sj

)
|ψ0〉

e−i(θj+1−s)H

=
M0−1

∑
n=0

(−iλ)n
Z

θj+1−s

0
. . .

Z
θj+1−s

0
[ds̃n ]e−i s̃0H0V . . .e−i s̃nH0δ

(
θj+1− s−

n

∑
j=0

s̃j

)

+(−iλ)M0

Z
θj+1−s

0
. . .

Z
θj+1−s

0
[ds̃n ]e−i s̃0H V . . .e−i s̃M0H0δ

(
θj+1− s−

M0

∑
j=0

s̃j

)
Inserting this in Eq. (6.2) we have

|φM
t 〉=

κ−1

∑
j=0

e−i(t−θj+1)H
M0−1

∑
n=0
|ψM ,n,θj (θj+1)〉

+
κ−1

∑
j

e−i(t−θj+1)H
Z

θj+1

θj

ds̃e−i(θj+1−s̃)H (−iλV ) |ψM ,M0,θj (s̃)〉 (6.3)

=|ψ1
M ,M0,κ

(t)〉+ |ψ2
M ,M0,κ

(t)〉 (6.4)

with

|ψM ,m,θj (s̃)〉

=(−iλ)m
Z s̃

θj

ds
Z s̃−s

0
. . .

Z s̃−s

0
[ds̃m ]e−i s̃1H0V . . .e−i s̃mH0δ

(
s̃− s−

m

∑
j=1

s̃j

)
×V |ψM

s 〉 (6.5)

We will show that the norm of |ψ1
M ,M0,κ

(t)〉 and |ψ2
M ,M0,κ

(t)〉 indeed tends to zero which
would imply that the norm of |φM

t 〉 goes to zero. We have then the following theorem:

Theorem 6.0.3.

lim
N→∞

E
[〈ψ2

M ,M0,κ
(t) |ψ2

M ,M0,κ
(t)〉]≤ (2(M +M0 +1))!(T )M+M0+1 t

(M +M0 +1)!κM0−M
logn ′+4 (t) (6.6)

89
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Proof. The complicated part of bounding properly |ψ2
M ,M0,κ

(t)〉 comes from the fact that it
still possesses a complete evolution term, that is e−itH , which cannot be averaged over. Nev-
ertheless, the operator being unitary, it does not influence the norm of the state to which it is
applied and we can in this way get rid of it.
We have then the following bound for 〈ψ2

M ,M0,κ
(t)|ψ2

M ,M0,κ
(t)〉 :

〈ψ2
M ,M0,κ

(t)|ψ2
M ,M0,κ

(t)〉=λ
2

κ−1

∑
i

κ−1

∑
j

Z
θi+1

θi

dτ

Z
θj+1

θj

ds〈ψM ,M0,θi (τ)|V 2|ψM ,M0,θj (s)〉

≤t2
λ

2suppj ,s∈[θj ,θj+1]〈ψM ,M0,θj (s)|V 2|ψM ,M0,θj (s)〉 (6.7)

The right hand side of Eq. (6.7) does not have the complete evolution operator anymore,
and so we can average over it as we did for the expressions coming from the expansion in
section2.3. The price we payed have to pay is a factor t2λ2 , which, in the limits considered,
diverges as t . Using Eq. (6.5) we have:

〈l̃0|V |l̃1〉〈l̃1|ψM ,M0,θj (s̃)〉

=(−iλ)M0

Z s̃

θj

ds
Z s̃−s

0
. . .

Z s̃−s

0
[ds̃M0]e

−i s̃1H0V . . .e−i s̃M0H0δ

(
s̃− s−

M0

∑
j=1

s̃j

)

×V (−iλ)M
Z s

0
. . .

Z s

0
[dsM ]e−is0H0V . . .e−isMH0δ

(
s−

M

∑
j=0

sj

)

=(−iλ)M+M0

Z s̃

θj

ds
Z s̃−s

0
[ds̃n ]

Z s

0
[dsM ]δ

(
s−

M

∑
j=0

sj

)
δ

(
s̃− s−

M0

∑
j=1

s̃j

)
N

∑
{l̃j ,lj }0,1=1

(
M0

∏
j=1

e−i s̃j ω̃j

)(
M

∏
j=0

e−isj ωj

)
LM0+M+1(l̃j , lj ) (6.8)

with ωj = ωlj , ω̃j = ωl̃j
and

LM0+M+1(l̃j , lj ) =〈l̃0|V |l̃1〉〈l̃1|V |l̃2〉 . . .〈l̃M0−1|V |l̃M0〉〈l̃M0|V |l0〉 . . .〈lM−1|V |lM 〉 (6.9)

Notice that there is an l -variable that has no energy variable associated to it, namely l̃0. Simi-
larly to the procedure followed in section 2.3, we insert the identities of Eq. (6.10) and (6.11)
in Eq. (6.8), which will allow us to perform the integrals over the sj and s̃j variables and
results in Eq. (6.12).

δ

(
s−

M

∑
j=0

sj

)
=

Z
dαe−iα(s−∑

M
j=0 sj )eη(s−∑

M
j=0 sj ) (6.10)

δ

(
s̃− s−

M0

∑
j=1

s̃j

)
=

Z
d α̃e

−i α̃

(
s̃−s−∑

M0
j=1 s̃j

)
e

η̃

(
s̃−s−∑

M0
j=1 s̃j

)
(6.11)
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〈l̃0|V |l̃1〉〈l̃1|ψM ,M0,θj (s̃)〉=(−iλ)M+M0

Z s̃

θj

ds
Z

dαd α̃e−iαseηse−i α̃(s̃−s)e η̃(s̃−s)

N

∑
{l̃j ,lj }0,1=1

(
M0

∏
j=1

1
ω̃j − α̃− i η̃

)(
M

∏
j=0

1
ωj −α− iη

)
×LM0+M+1(l̃j , lj ) (6.12)

We then have

λ
2〈ψM ,M0,θj (s̃)|V 2|ψM ,M0,θj (s̃)〉= λ

2(M+M0+1)
Z s̃

θj

dτds
Z

dβd β̃

Z
dαd α̃

e−iαseηse−i α̃(s̃−s)e η̃(s̃−s)e iβτeητe i β̃(s̃−τ)e η̃(s̃−τ)
∑

{l̃ ′j ,l ′j ,l̃j ,lj }

×
(

M0

∏
j=1

1
ω̃j − α̃− i η̃

)(
M

∏
j=0

1
ωj −α− iη

)(
M0

∏
j=1

1
ω̃′j − β̃+ i η̃

)(
M

∏
j=0

1
ω′j −β+ iη

)
×L̄M0+M+1(l̃ ′j , l

′
j )L

M0+M+1(l̃j , lj )

Averaging we get

λ
2E
[〈ψM ,M0,θj (s̃)|V 2|ψM ,M0,θj (s̃)〉

]
= λ

2(M+M0+1)

×
Z

dβd β̃

Z
dαd α̃i

e−iαs̃+ηs̃ − e−iαθj+ηθj−i α̃(s̃−θj )+η̃(s̃−θj )

α− α̃+ i(η− η̃)

i
e iβs̃+ηs̃ − e iβθj+ηθj+i β̃(s̃−θj )+η̃(s̃−θj )

β− β̃+ i(η− η̃) ∑
{l̃ ′j ,l ′j ,l̃j ,lj }

×
(

M0

∏
j=1

1
ω̃j − α̃− i η̃

)(
M

∏
j=0

1
ωj −α− iη

)(
M0

∏
j=1

1
ω̃′j − β̃+ i η̃

)(
M

∏
j=0

1
ω′j −β+ iη

)
×E
[
L̄M0+M+1(l̃ ′j , l

′
j )L

M0+M+1(l̃j , lj )
]
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6 Bound of the remainder

Once again the average will bring graphs into play.

λ
2E
[〈ψM ,M0,θj (s̃)|V 2|ψM ,M0,θj (s̃)〉

]
= λ

2(M+M0+1)

×
Z

dβd β̃

Z
dαd α̃i

e−iαs̃+ηs̃ − e−iαθj+ηθj−i α̃(s̃−θj )+η̃(s̃−θj )

α− α̃+ i(η− η̃)

i
e iβs̃+ηs̃ − e iβθj+ηθj+i β̃(s̃−θj )+η̃(s̃−θj )

β− β̃+ i(η− η̃) ∑
{l̃ ′j ,l ′j ,l̃j ,lj }

×
(

M0

∏
j=1

1
ω̃j − α̃− i η̃

)(
M

∏
j=0

1
ωj −α− iη

)(
M0

∏
j=1

1
ω̃′j − β̃+ i η̃

)(
M

∏
j=0

1
ω′j −β+ iη

)
× ∑

π(M+M0+1,M+M0+1)
Cπ(M +M0 +1,M +M0 +1,{l̃ ′j , l̃j , l ′i , li}) (6.13)

According to theorem 2.4.6 the number of independent l -variables generated by a NC-graph
in Cπ(M + M0 + 1,M + M0 + 1,{l̃ ′j , l̃j , l ′i , li}) is M0 + M + 2. Remember that ω̃0 has no
propagator associated to it. We write Eq. (6.13) in short as

λ
2E
[〈ψM ,M0,θj (s̃)|V 2|ψM ,M0,θj (s̃)〉

]
= ∑

π(M+M0+1,M+M0+1)
Qπ (M ,M0,θj , s̃) (6.14)

Just as in section 2.6 we can write down Qπ (M ,M0,θj , s̃) as a function of the independent
variables. Because propagators of the right hand side can depend on α or α̃ the multiplicity
of the right hand side, kj , does not specify uniquely how many free propagators that are α

or α̃ there are for this specific independent variable. The same is valid for the left hand side.
Therefore we define aj as the multiplicity of the propagators that are α̃ dependent, bj as the
multiplicity of the propagators that are α dependent, cj as the multiplicity of the propagators
that are β̃ dependent and dj as the multiplicity of the propagators that are β dependent. With
this we can write down, in the limit N → ∞, the contribution for an S or an N-graph as

Qπ (M ,M0,θj , s̃) = λ
2(M+M0+1)

Z
dβd β̃

Z
dαd α̃i

e−iαs̃+ηs̃ − e−iαθj+ηθj−i α̃(s̃−θj )+η̃(s̃−θj )

α− α̃+ i(η− η̃)

×i
e iβs̃+ηs̃ − e iβθj+ηθj+i β̃(s̃−θj )+η̃(s̃−θj )

β− β̃+ i(η− η̃)

×
n̄

∏
j=0

(Z
dωj

(
1

ωj − α̃− i η̃

)aj
(

1
ωj −α− iη

)bj
(

1
ωj − β̃+ i η̃

)cj (
1

ωj −β+ iη

)dj
)

×
(

n ′

∏
l=1

(Z
dω
′
l

1
ω′l − γl − iηl

))
(6.15)

with

aj + bj = kj

cj +dj = pj
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Because ω̃0 has no propagator associated to it the relationship between kj , pj , n ′ and n̄ are a
bit different then those from section 2.6. The number of propagators we have in Eq. (6.13)
and Eq. (6.15) must be equal. Therefore

n̄

∑
j=0

(kj +pj )+n ′ = 2(M0 +M +1) (6.16)

Also since there must be 2M0 propagators dependent on α̃ or β̃ (either as propagators of
multiplicity one or higher) we must have

n̄

∑
j=0

aj + cj +n ′ ≥ 2M0 (6.17)

But because ω̃0 has no propagator associated it and because it could be independent of the
rest the number of independent variables in the set of ω’s could be one less then in the set of
l -variables. Therefore

M0 +M +1≤ n ′+ n̄ +1≤M0 +M +2

We set η = θ
−1
j and η̃ = (s̃−θj )

−1. The absolute value of such a contribution is then bounded
as follows:

|Qπ| ≤ λ
2(M+M0+1)

Z
dβd β̃

Z
dαd α̃

∣∣∣∣ 1
α− α̃+ i(η− η̃)

∣∣∣∣ ∣∣∣∣ 1
β− β̃+ i(η− η̃)

∣∣∣∣
×

n̄

∏
j=0

(Z
dωj

∣∣∣∣ 1
ωj − α̃− i η̃

∣∣∣∣aj
∣∣∣∣ 1
ωj −α− iη

∣∣∣∣bj
∣∣∣∣∣ 1
ωj − β̃+ i η̃

∣∣∣∣∣
cj ∣∣∣∣ 1

ωj −β+ iη

∣∣∣∣dj
)

×
(

n ′

∏
l=1

∣∣∣∣Z dω
′
l

1
ω′l − γl − iηl

∣∣∣∣
)

Using Hölder’s inequality we can bound the following type of integrals:

I (η, η̃) =
Z

dωj

∣∣∣∣ 1
ωj − α̃− i η̃

∣∣∣∣aj
∣∣∣∣ 1
ωj −α− iη

∣∣∣∣bj
∣∣∣∣∣ 1
ωj − β̃+ i η̃

∣∣∣∣∣
cj ∣∣∣∣ 1

ωj −β+ iη

∣∣∣∣dj

≤
(

1
η̃

)aj−2+cj ( 1
η

)bj+dj Z
dωj

∣∣∣∣ 1
ωj − α̃− i η̃

∣∣∣∣2
≤
(

1
η̃

)aj+cj−1( 1
η

)bj+dj

(6.18)
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6 Bound of the remainder

We use this bound for all ωj except ω0.

|Qπ| ≤λ
2(M+M0+1)

Z
dβd β̃

Z
dαd α̃

Z
dω0

∣∣∣∣ 1
α− α̃+ i(η− η̃)

∣∣∣∣ ∣∣∣∣ 1
β− β̃+ i(η− η̃)

∣∣∣∣
×
∣∣∣∣ 1
ω0−α− iη

∣∣∣∣ ∣∣∣∣ 1
ω0−β+ iη

∣∣∣∣
×

n̄

∏
j=1

((
1
η̃

)aj+cj−1( 1
η

)bj+dj
)(

1
η̃

)a0+c0
(

1
η

)b0+d0−2

logn ′ (η)

The integrals are bounded by a logarithm:Z
dβd β̃

Z
dαd α̃

Z
dω0

∣∣∣∣ 1
α− α̃+ i(η− η̃)

∣∣∣∣ ∣∣∣∣ 1
β− β̃+ i(η− η̃)

∣∣∣∣ ∣∣∣∣ 1
ω0−α− iη

∣∣∣∣ ∣∣∣∣ 1
ω0−β+ iη

∣∣∣∣
≤C log4 (η) (6.19)

Since we have η−1 = θj ≤ t and η̃−1 = (s̃−θj )≤ κ−1t we can bound |Qπ| as follows:

|Qπ| ≤λ
2(M+M0+1)

n̄

∏
j=0

((
t

κ

)aj+cj−1

tbj+dj

)
t−2 t

κ
logn ′+4 (t)

≤λ
2(M+M0+1)

n̄

∏
j=0

(
tkj+pj−1

) n̄

∏
j=0

((
1
κ

)aj+cj−1
)

t−1 1
κ

logn ′+4 (t)

≤(λ2t
)M+M0+1

t−1
n̄

∏
j=0

(
1
κ

)aj+cj−1 1
κ

logn ′+4 (t)

(6.20)

By Eqs. (6.16) and (6.17) we have
n̄

∑
j=0

aj + cj −1≥M0−M −1 (6.21)

Because of this inequality and because n ′ < M +M0 +1 the Qπ of such graphs is bounded by

|Qπ| ≤
(
λ

2t
)M+M0+1

t−1
(

1
κ

)M0−M

logM+M0+5 (t)

Using this bound in Eq. (6.14) and subsequently in Eq. (6.7) we have a bound for the average
norm of |ψ2

M ,M0,κ
(t)〉.

E
[〈ψ2

M ,M0,κ
(t)|ψ2

M ,M0,κ
(t)〉]

≤t
(
λ

2t
)M+M0+1

(
1
κ

)M0−M

logM+M0+5 (t) ∑
π(M+M0+1,M+M0+1)∈G0,1(M+M0+1,M+M0+1)

1

≤(2(M +M0 +1))!(T )M+M0+1

(M +M0 +1)!κM0−M
t logM+M0+5 (t) (6.22)
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In going to the last line we used Eq. B.15.

To bound the norm of |ψ1
M ,M0,κ

(t)〉 is much more straight forward, because there is no
unitary time evolution inside. From Eq. (6.3) and the Cauchy-Schwartz inequality we have

〈ψ1
M ,M0,κ

(t)|ψ1
M ,M0,κ

(t)〉

≤
κ−1

∑
i ,j=0

M0−1

∑
n,m=0

∣∣∣〈ψM ,m,θi (θi+1)|e i(t−θi+1)H e−i(t−θj+1)H |ψM ,n,θj (θj+1)〉
∣∣∣

≤
κ−1

∑
i ,j=0

M0−1

∑
n,m=0

√
〈ψM ,m,θi (θi+1)|ψM ,m,θi (θi+1)〉〈ψM ,n,θj (θj+1)|ψM ,n,θj (θj+1)〉

≤
κ−1

∑
i ,j=0

M0−1

∑
n,m=0

2suppθj ,θj+1

(〈ψM ,n,θj (θj+1)|ψM ,n,θj (θj+1)〉
)

And so

E
[〈ψ1

M ,M0,κ
(t)|ψ1

M ,M0,κ
(t)〉]≤ κ

2M 2
0 suppn,θj ,θj+1

(
E
[〈ψM ,n,θj (θj+1)|ψM ,n,θj (θj+1)〉

])
(6.23)

The average E
[〈ψM ,n,θj (θj+1)|ψM ,n,θj (θj+1)〉

]
can again be expanded in C, N, and S-graphs.

In the limit N → ∞ the C-graphs will vanish and in the Van Hove limit t → ∞ the N-graphs
will vanish. Now from theorem 2.9.1 we have a bound for S-graphs. Thus

E
[〈ψM ,n,θj (θj+1)|ψM ,n,θj (θj+1)〉

]≤ ∑
π(M+n,M+n)∈G0

(
Cλ2θj+1

)M+n

(M +n)!

Because we are summing over simple graphs we have that the number of graphs is less then
some constant to the power of the order of the graphs.

∑
π(M+n,M+n)∈G0

1≤ C ′M+n

This yields then

E
[〈ψM ,n,θj (θj+1)|ψM ,n,θj (θj+1)〉

]≤(Cλ2t
)M+n

(M +n)!

and so

E
[〈ψ1

M ,M0,κ
(t)|ψ1

M ,M0,κ
(t)〉]≤κ

2M 2
0 suppn

(
(C ′T )M+n

(M +n)!

)
(6.24)

We now have all the ingredients to prove that the rest vanishes.
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6 Bound of the remainder

Theorem 6.0.4.

lim
t→∞

lim
N→∞

E [〈φM (t)|φM (t)〉]≤
∞

∑
n=M

(CT )n

n!
(6.25)

Proof. Theorem 6.0.4 We will take advantage of the extra parameter κ which we used to
subdivide the evolution and also of the parameter M0 which is the number of times we have
applied Duhamel’s formula the second time. As we said previously |φM (t)〉 contains the next
order contributions of the evolution and some extra terms. The next order terms are those that
will give rise to the bound (CT )M

M ! . In order to capture this we expand our rest terms up to an
order that will be time dependent.

|φM
t 〉=

M (t)

∑
n=M

|ψn
t 〉+ |φM (t)

t 〉 (6.26)

We have then

〈φM
t |φM

t 〉 ≤
M (t)

∑
n,m=M

〈ψm
t |ψn

t 〉+ 〈φM (t)
t |φM (t)

t 〉 (6.27)

The last factor is the one that will still contain the total evolution. We will apply our previous
theorems in order to bound it. First we apply the decomposition of Eq. (6.4) to it and we will
take a κ that is time dependent. We set

κ = log(t)α (6.28)

M (t) = γ
log(t)

log(log(t))
(6.29)

M0 = 2M (t) (6.30)

By theorem 6.0.3 and Eq. (6.24) we have

E
[
〈φM (t)

t |φM (t)
t 〉

]
≤(2(3M (t)+1))!T 3M (t)+1t

(3M (t)+1)!κM (t) log3M (t)+5 (t)

+κ(t)2(2M (t))2suppn

(
(C ′T )M (t)+n

(M (t)+n)!

)
(6.31)

We set Λ = log(t) and analyze the first term. For the two factorials we get

(6M (t)+2)!T 3M (t)+1

(3M (t)+1)!
≤C 3M (t)+1(3M (t)+1)!

≤C
3 γΛ

log(Λ)+1
(

γΛ

log(Λ)

) γΛ

log(Λ)

≤C
3 γΛ

log(Λ)+1
(

γ

log(Λ)

) γΛ

log(Λ) (
eγΛ

)
(6.32)
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As for the rest we get

log3M (t)+5 (t)
κM (t) ≤ Λ

3 γΛ

log(Λ)+5

eαγΛ

≤ e3γΛ+5log(Λ)

eαγΛ
(6.33)

Grouping now the exponential terms from Eqs. (6.32) and (6.33) we get

(2(3M (t)+1))!T 3M (t)+1t

(3M (t)+1)!κM (t) log3M (t)+5 (t)≤ C
3 γΛ

log(Λ)+1
(

γ

log(Λ)

) γΛ

log(Λ)
e5log(Λ)

(
e(4−α)γΛ

)
By selecting α > 4 the last exponential will dominate when Λ→ ∞, that is when t → ∞.
Therefore

lim
t→∞

(2(3M (t)+1))!T 3M (t)+1t

(3M (t)+1)!κM (t) log3M (t)+5 (t) = 0 (6.34)

For the second term in Eq. (6.31) the factorial will dominate

κ(t)2(2M (t))2

(
(C ′T )M (t)+n

(M (t)+n)!

)
≤ Λ

2α 4γ2Λ2

log2(Λ)

(
γΛ

log(Λ)
+n

)−( γΛ

log(Λ)+n
)

(6.35)

For Λ→ ∞ and thus t → ∞ the right hand side of Eq. (6.35) goes to zero. In conclusion we
get

lim
t→∞

E
[
〈φM (t)

t |φM (t)
t 〉

]
= 0 (6.36)

We now turn to the sum in Eq. (6.27). Using theorem 2.9.2 we get

E

[
M (t)

∑
n,m=M

〈ψm
t |ψn

t 〉
]
≤ C

(
E
[
〈ψM

t |ψM
t 〉
]
+E

[
M (t)

∑
n,m=M+1

〈ψm
t |ψn

t 〉
])

≤
M (t)

∑
n=M

C nE [〈ψn
t |ψn

t 〉]

≤
∞

∑
n=M

(C ′T )n

n!

From theorem 6.0.4 we have

lim
M→

lim
t→ lim

N→∞
E
[
〈φM

t |φM
t 〉
]

= 0 (6.37)
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6 Bound of the remainder

and thus

lim
M→

lim
t→ lim

N→∞
E

[
∑
q0,l0

O(q0, l0)R (M , t ,λ,q0, l0)

]
= 0 (6.38)
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7 Conclusion and Outlook

In this work we have analyzed the time evolution of randomly coupled quantum systems. The
Hamiltonians taken were composed of a deterministic part plus a random part. We presented a
derivation for the coarse grained dynamics (dynamics of Macro-observables) starting directly
from the Schrödinger equation. In doing this derivation we took some special limits such as
the large size of the Hilbert space and the large time-weak coupling limit (Van Hove limit). We
found that the dynamics in these limits converges to those given by rate equations, with Fermi’s
golden rule fulfilled (chapter 2, Eqs. (2.142) and (2.143) ). An interesting case where the
effective equations were applied is that of a lattice model, where each site has N energy levels.
The quantum particle is allowed to jump with a random amplitude to nearest neighboring site
levels. This interaction is then given by a random matrix. The effective rate equations turns
out to be the diffusion equation (Eq. (4.31)). Thus the effective dynamics for the quantum
particle is brownian motion.

We also analyzed how typical the dynamics are (chapter 3, theorem 3.2.3). We have shown
that the system behaves typically the same up to finite time with finite coupling when the
dimension of the Hilbert space is large. The larger the dimension of the Hilbert space is
the longer the time for typical behavior becomes. In other words the dynamics of a Macro-
observable will be the same regardless of the random interaction chosen from the ensemble.
This result does not overlap with our derivation of the effective rate equations because of the
large time-weak coupling limit that was taken to derive these. Nevertheless this does not mean
that the effective equations are not the typical behavior. It only means that we have not been
able to prove this. In order to prove typicality in this regime we have to use better estimates
for the propagators. More refined bounds combining better estimates for sets of propagators
and the properties of non-separable graphs would have to be used.

In the derivation of the effective equation two limits were taken, namely the large Hilbert
space limit and the Van Hove limit. We have also analyzed the case where instead of taking
separately two limits one takes them together by imposing a relation between time, t , and the
Hilbert space size, N ℵ (chapter 5, theorem 5.1.1). This was done by maintaining the Van
Hove type of scaling. In this limit we showed that the effective equations would remain the
same if the scaling between t and N is given by t = N γ with γ < 1

3 . Nevertheless it was not
shown that the remainder would converge to zero when this scaling is taken.

It seems as if random interactions favor the emergence of stochastic type of equations, not
only in the average but also as individual realisations of an ensemble.

The method used here relies extensively on the use of Feynman diagrams. These can be-
come extremely complicated as higher orders are calculated but as one recognizes the differ-
ent classes the use of these allows in some sense to see the “anatomy” of the solution of the
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7 Conclusion and Outlook

Schrödinger equation.
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A Estimates for integrals

In this section we basically prove some estimates that are used for proofs in the main text. We
prove the following bound

|Θ(α,η)|=
∣∣∣∣Z 1

0
dxg(x )

1
x −α− iη

∣∣∣∣≤ C log(η−1) (A.1)

Proof. For α <−1 and α > 2 the real part of 1
x−α−iη

is positive and negative respectively for
any x . The imaginary part is always positive. Thus

|Θ(α,η)| ≤
Z 1

0
dxg(x )

∣∣∣∣ 1
x −α− iη

∣∣∣∣
≤ gmax

Z 1

0
dx

∣∣∣∣ 1
x −α

∣∣∣∣
≤ Constant

For −1 < α < 2 divergences appear. Integrating by parts we obtain

|Θ(α,η)| ≤ ∣∣g(x ) log(x −α− iη)|10
∣∣+ ∣∣∣∣Z 1

0
dxg ′(x ) log(x −α− iη)

∣∣∣∣
For η very small we have

Maxx ,α |log(x −α− iη)| ≤ C log(η−1)

Thus for bounded g(E ) and g ′(E ) we have

|Θ(α,η)| ≤ C log(η−1) (A.2)

I (α,β,η) =
Z 1

0
dx

∣∣∣∣ 1
x −α− iη

∣∣∣∣p ∣∣∣∣ 1
x −β+ iη

∣∣∣∣k
≤ C

(
1
η

)k+p−1

(A.3)

with p or k larger then 1.

101



A Estimates for integrals

Proof. By use of Hölder’s inequality we have

I (α,β,η)≤
Z 1

0
dx

∣∣∣∣ 1
x −α− iη

∣∣∣∣ ∣∣∣∣ 1
x −β+ iη

∣∣∣∣( 1
η

)k+p−2

I (α,β,η)≤
(Z 1

0
dx

∣∣∣∣ 1
x −α− iη

∣∣∣∣2
) 1

2
(Z 1

0
dx

∣∣∣∣ 1
x −β− iη

∣∣∣∣2
) 1

2 ( 1
η

)k+p−2

I (α,β,η)≤ C

(
1
η

)k+p−1

(A.4)

I (η) =
Z

∞

−∞

dα

Z
∞

−∞

dβ

Z 1

0
dx

Z 1

0
dy

1
|x −α− iη|

1
|x −β+ iη|

1
|y−α− iη|

1
|y−β+ iη|

(A.5)

≤ C

η
log2

η
−1

Proof. We use the following inequality:Z
∞

−∞

dα
1

|x −α− iη|
1

|y−α− iη| ≤
C

|y− x − iη|
[

1+ log
∣∣∣∣x −y

η

∣∣∣∣] (A.6)

Bounding the integrations over α and β gives then

I (η)≤
Z 1

0
dx

Z 1

0
dy

C

|y− x − iη|2
[

1+ log
∣∣∣∣x −y

η

∣∣∣∣]2

≤
Z 1

0
dx

Z 1

0
dy

C

|y− x − iη|2
[

1+ log
2
η

]2

≤
Z 1

0
dx

C

η

[
1+C1 log

1
η

]2

≤C̃

η
log2

η
−1 (A.7)

I2(η) =
Z

∞

−∞

dαdβ

Z 1

0
dxdy

∣∣∣∣ 1
z −α− iη

∣∣∣∣k ∣∣∣∣ 1
x −β+ iη

∣∣∣∣ ∣∣∣∣ 1
x −α− iη

∣∣∣∣ ∣∣∣∣ 1
y−β+ iη

∣∣∣∣ ∣∣∣∣ 1
y−α− iη

∣∣∣∣
(A.8)

≤ C
1

ηk
log3 (

η
−1)
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with 1≤ k .

Proof. Using the inequality (A.6) over β and then y we obtain

I2(η)≤ 1
ηk−1

Z
∞

−∞

dα

Z 1

0
dxdy

∣∣∣∣ 1
z −α− iη

∣∣∣∣ ∣∣∣∣ 1
x −α− iη

∣∣∣∣ ∣∣∣∣ 1
y−α− iη

∣∣∣∣ ∣∣∣∣ 1
x −y + iη

∣∣∣∣ log
∣∣∣∣x −y

η

∣∣∣∣
≤ 1

ηk−1

Z
∞

−∞

dα

Z 1

0
dx

(∣∣∣∣ 1
z −α− iη

∣∣∣∣)∣∣∣∣ 1
x −α− iη

∣∣∣∣ ∣∣∣∣ 1
x −α− iη

∣∣∣∣ log
2
η

log
∣∣∣∣x −α

η

∣∣∣∣
In the region where α is much larger then x the integral is bounded by a constant. We thus
have the following

I2(η)≤ 1
ηk−1 C1

Z C2

−C2

dα

Z 1

0
dx

(∣∣∣∣ 1
z −α− iη

∣∣∣∣)∣∣∣∣ 1
x −α− iη

∣∣∣∣2 log2
η
−1

≤ 1
ηk−1 C1

Z C2

−C2

dα

(∣∣∣∣ 1
z −α− iη

∣∣∣∣) 1
η

log2
η
−1

≤C
1

ηk
log3 (

η
−1) (A.9)

I =
Z b2

−b1

dαdβ

Z
dxdy

∣∣∣∣ 1
x −β− iη

∣∣∣∣ ∣∣∣∣ 1
y−α− iη

∣∣∣∣ ∣∣∣∣ 1
y−β+ iη

∣∣∣∣ ∣∣∣∣ 1
z −α− iη

∣∣∣∣ (A.10)

with 0 < b1,1 < b2.

Proof. Using successively Eq. (A.6)

I ≤C
Z c1

−c1

dα

Z
dxdy

∣∣∣∣ 1
x −y− iη

∣∣∣∣ ∣∣∣∣ 1
y−α− iη

∣∣∣∣ ∣∣∣∣ 1
z −α− iη

∣∣∣∣(1+ log
(
C1η

−1))
≤C

Z c1

−c1

dα

Z
dx

∣∣∣∣ 1
x −α− iη

∣∣∣∣ ∣∣∣∣ 1
z −α− iη

∣∣∣∣(1+ log
(
C1η

−1))2

≤C
Z

dx

∣∣∣∣ 1
x − z − iη

∣∣∣∣(1+ log
(
C1η

−1))3

≤C̃ log4
η
−1 (A.11)

I3(η) =
Z c1

−c1

dαdβ

Z
dxdy

∣∣∣∣ 1
x −α− iη

∣∣∣∣ ∣∣∣∣ 1
x −β− iη

∣∣∣∣ ∣∣∣∣ 1
y−α− iη

∣∣∣∣ ∣∣∣∣ 1
y−β+ iη

∣∣∣∣
×
∣∣∣∣Z

Γ

dω

Z
dE

g ′(E )
E −ω

∣∣∣∣ (A.12)

≤ C log3(η−1)η
1
2 (A.13)
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A Estimates for integrals

Proof. We define the following:

I =
∣∣∣∣Z

Γ(z ,z ′)
dω

Z
dE

g ′(E )
E −ω

∣∣∣∣ (A.14)

Γ is a path in the complex plane from z to z ′. We have then:

I ≤
Z

Γ(z ,z ′)
d |ω|

Z
dE

∣∣∣∣ g ′(E )
E −ω

∣∣∣∣
≤

Z
Γ(z ,z ′)

d |ω|
Z

dE
1

|ω| 12
≤ |z | 12 − ∣∣z ′∣∣ 1

2

≤ ∣∣z − z ′
∣∣η− 1

2 (A.15)

Using this estimate in the following and applying Eq. (A.6) we obtain

I3(η)≤ C log3(η−1)η
1
2 (A.16)

We now want to prove inequality (2.104).

Z z ′

z
d |χ|

Z
dω

∣∣∣∣G ′(ω)
ω−χ

∣∣∣∣≤ ∣∣z − z ′
∣∣ log(|η|) (A.17)

with z = α− iη and z ′ = ωn̄− iη′ The path we choose the integrate over in going from z to
z ′ are two straight paths, first from α− iη to z ′′ = ωn̄−iη and then from z ′′ to z ′ = ωn̄ − iη′.
We have thenZ z ′

z
d |χ|

Z
dω

∣∣∣∣G ′(ω)
ω−χ

∣∣∣∣≤Gmax

Z z ′

z
d |χ| log

(
ω−χr +

√
χ2
i +(ω−χr )2

)∣∣∣1
0

≤Gmax

Z
ωn̄

α

dχr log
(

ω−χr +
√

η2 +(ω−χr )2
)∣∣∣1

0

+Gmax

Z
η′

η

dχi log
(

ω−ωn̄ +
√

χ2
i +(ω−ωn̄)2

)∣∣∣1
0

We can bound the first term as follows:

Gmax

Z
ωn̄

α

dχr log
(

ω−χr +
√

η2 +(ω−χr )2
)∣∣∣1

0
≤ C1 |α−ωn̄ | log |η| (A.18)
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The second term can be integrated againZ
η′

η

dχi log
(

ω−ωn̄ +
√

χ2
i +(ω−ωn̄)2

)∣∣∣1
0

=−χi +χi log
(

ω−ωn̄ +
√

χ2
i +(ω−ωn̄)2

)
+(ω−ωn̄) log

(
χi +

√
χ2
i +(ω−ωn̄)2

)∣∣∣1
0

∣∣∣η′
η

(A.19)

In the limit η′→ 0 we have then:∣∣∣∣Z η′

η

dχi log
(

ω−ωn̄ +
√

χ2
i +(ω−ωn̄)2

)∣∣∣1
0

∣∣∣∣
≤η(1+ log |η|)+(ω−ωn̄)

(
log
(

η+
√

η+(ω−ωn̄)2
)
− log |ω−ωn̄ |

)∣∣∣1
0

≤η

(
1+ log |η|+C2 (ω−ωn̄)

∣∣∣1
0

)
We have then the bound∣∣∣∣Z z ′

z
d |χ|

Z
dω

∣∣∣∣G ′(ω)
ω−χ

∣∣∣∣∣∣∣∣≤ C1 |α−ωn̄ | log |η|+C2η(1+ log |η|)
≤C |α−ωn̄ − iη| log |η|
≤C

∣∣z − z ′
∣∣ log |η| (A.20)

In the following we prove ∣∣∣∣Z 1

0
dω

Z B1

−B1

dbe−ibωbnF (ω)
∣∣∣∣≤ CBn

1 (A.21)

where F (ω) and its derivative are bounded by some constant. Integrating by parts in ω we
haveZ 1

0
dω

Z B1

−B1

dbe−ibωbnF (ω) =
Z B1

−B1

db
e−ibω

−i
bn−1F (ω)

∣∣∣1
0
−

Z 1

0
dω

Z B1

−B1

db
e−ibω

−i
bn−1F ′ (ω)

≤
Z B1

−B1

db |b|n−1 (|F (1)|+ |F (0)|)+
Z 1

0
dω

Z B1

−B1

db |b|n−1 ∣∣F ′ (ω)
∣∣

≤CBn
1 (A.22)

In the case that n = 0 we haveZ 1

0
dω

Z B1

−B1

dbe−ibωF (ω) =
Z 1

0
dω2

sin(B1)
ω

F (ω)

≤ C (A.23)
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B Graph structures and properties

In this appendix we want to prove some theorems about graph structures. In section 2.4
graphs were introduced as we wanted to average over a product of random variables. This was
motivated by Wick’s theorem ( [32], [14], [33], [26]) for random variables, which we recall
here

Theorem B.0.5. Wick’s theorem
Say we have 2n random Gaussian variables denoted by Xi , 1 ≤ i ≤ 2n, and say we have
Y = X1X2 . . .X2n . Denote by π(2n) a set of pairings between all the elements of the set s ,
s = (1,2 . . . ,2n), i.e. π(2n) is a list of pairs of elements of s . Then

E[Y ] = ∑
π(2n)

∏
(i ,j )∈π(2n)

E[XiXj ] (B.1)

where (i , j ) refers to a pair of π(2n). ∏(i ,j )∈π(2n) is the product of all the pairs in π(2n) and
∑π(2n) is a sum over all possible sets of pairings. A list π(2n) can be seen as a graph on s .

In our case the random variables Xi come from the random matrix interaction. Each Xi

being a matrix element is labeled by two number indicating the row and the column of course.
An average of two matrix elements will induce a relation on those labels. Taking the random
matrix to be a N ×N complex gaussian random matrix, the average of two elements reads:

E [XiXj ] =E
[
Vli ,li+1Vlj ,lj+1

]
=

δli ,lj+1δli+1,lj

N
(B.2)

Our matrix elements are actually labeled as Vq1,q2(l1, l2) but the same applies.
Starting from section 2.3 we introduced Ln which is just a product of random variables that
comes from the matrix multiplication as more interaction terms are included in the expansion.
We have then the following type of random variable products:

X1X2 . . .X2n = Vl1,l2Vl2,l3 . . .Vl2n ,l2n+1 (B.3)

Upon averaging and using Wick’s theorem we have then a sum over all possible pairings of the
matrix elements. For example, if there were four random variables in the product, we would
have:

E [X1X2X3X4] =E
[
Vl1,l2Vl2,l3Vl3,l4Vl4,l5

]
=E
[
Vl1,l2Vl2,l3

]
E
[
Vl3,l4Vl4,l5

]
+E
[
Vl1,l2Vl3,l4

]
E
[
Vl2,l3Vl4,l5

]
+E
[
Vl1,l2Vl4,l5

]
E
[
Vl2,l3Vl3,l4

]

107



B Graph structures and properties

This gives three different possibilities for the average to be non zero. Graphically we represent

+

+ X1

X1

X1

X2

X2

X2

X3

X3

X3

X4

X4

X4

0

Figure B.1: Graphical representation of the contributions to the average of a product of four
random variables

this as in figure B.1, where each box represents an Xi . The fact that the last index of a random
variable Xi is equal to the first index of the next random variable Xi+1 is represented by the
fact that the boxes are right next to each other. The difference in the contributions comes into
play when one sums up over the indices. Say we would want to compute the trace over the
product of four random matrices. Using Eq.(B.2) we get

Tr
[
V 4]= ∑

l1,l2,l3,l4

E
[
Vl1,l2Vl2,l3Vl3,l4Vl4,l1

]
= ∑

l1,l2,l3,l4

δl1,l3

N

δl3,l1

N
+ ∑

l1,l2,l3,l4

δl1,l4δl2,l3

N

δl2,l1δl3,l4

N
+ ∑

l1,l2,l3,l4

δl2,l4

N

δl2,l4

N

=N +N−1 +N (B.4)

The difference in the three contributions comes from the fact that the relations among the in-
dices are more restricted for some than others. The δ-relations for the second contribution
leave much less independent variables than for the other two. Characterizing how many inde-
pendent variables different type of graphs possess is the main point of this section. As already
mentioned the average over a pair Vli ,li+1(qi ,qi+1)Vlj ,lj+1(qj ,qj+1) will generate a set of δ-
identities among the l -variables and the q-variables, (see Eqs. (2.42) and (2.43)). Since from
the identities on the l -variables we can deduce the identities on the q-variables we will focus
on the l -variables since, the results for q-variables are analogues. We will refer to a random
variable Vli ,li+1(qi ,qi+1) as Xi for brevity and when an average is made between two random
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variables, or equivalently when two random variables are paired up, it is called a contraction.
In Eq. (B.1) we then two sets

RI = {X1, . . . ,X2k}
I = {l1, . . . l2k+1}

and a graph π(2k) on the set RI . The graph on RI yields a set of relationships on I . We define
the following:

Definition B.0.6. Independent sets
Say we have a set of variables, I , with some relationships among them given through a graph,
π(2k), on RI . A subset S of a set I is called independent when the variables in S have no
relationship (δ-relation) with the variables in I /S .

Definition B.0.7. Totally independent sets and independent variables
A subset S of a set I is called totally independent when S is independent and possesses no
subsets that are independent. This means that all variables in S are equal.
Any variable of a totally independent set is then called an independent variable. They are all
equivalent since they are all equal.

Based on these we add the following definition (similar to definitions 2.4.5)

Definition B.0.8. For a graph π(2k) on RI that generates δ-relations on I we define:
Aπ = The set of independent variables of the set I given by the graph π(2k)
Bπ = The set of dependent variables of the I given by the graph π(2k) that is complementary to Aπ

For the definition of Aπ we referred to "The set of independent variables". It does not really
matter which variable we choose out of a totally independent set since they are all equal in the
end. We denote by Sα sets which are independent and by Iα sets which are totally independent.
Wβ will denote sets with an index continuously running, that is Wβ = {liβ , liβ+1, . . . ljβ−1, ljβ}.
RWβ

are sets associated to a set Wβ as follows:

Wβ = {liβ , liβ+1, . . . ljβ−1, ljβ}
RWβ

= {Xiβ , . . .Xjβ−1}

RSα
are sets associated to Sα as follows:

Sα =
[
β

W α

β

RSα
=

[
β

RW α

β

We recall the definitions of Crossing, Non-Crossing graphs here.
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B Graph structures and properties

Definition B.0.9. Say we have the set RI and a graph π on it.

1 A contraction, or pairing, between Xiand Xj is called a next neighboring contraction
(nn-contraction) if j = i +1.

2 If we have a contraction between Xi and Xj , and a contraction between Xk and Xl , and
i < k < j < l then we call this a crossing.

3 If we have a contraction between Xi and Xj (i < j ), and a no contraction between an
Xk , with i < k < j , and an Xl , with j < l or l < i then we call this a non-crossing
contraction, nc-contraction.

4 If a graph has at least 1 crossing it is called a Crossing graph, C-graph. If not it is
called a Non-crossing graph, NC-graph.

Definition B.0.10. For any set S and any set of contractions on RS we set

MS = Number of independent variables in S

NS = Number of elements in S

CS = Number of contractions on RS

We now prove the following theorem:

Lemma B.0.11. An NC-graph π(2k) on the set RI = {X1, . . .X2k} will generate k +1 totally
independent sets and thus k +1 independent variables on I .

Proof. Lemma B.0.11
We represent RI just as a set of connected boxes (see figure B.2). Since the graph is an NC-

X1 X2 X2k−1 X2k

Figure B.2: Graphical representation of RI

graph, all of the contractions are nc-contractions. We shall prove the theorem by applying
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successively the nc-contractions. If we have an nc-contraction between Xa and Xb we have
the following

I = S1∪S2

S1 = {la+1, . . . lb}
RS1 = {Xa+1, . . .Xb−1}
S2 = {l1, . . . , la}∪{lb+1, . . . l2k+1}
S2 = W1∪W2

RS2 = {X1, . . . ,Xa−1,Xb+1, . . . ,X2k}
= {X1, . . . ,Xa−1}∪{Xb+1, . . . ,X2k}

with S1 and S2 being independent and

la = lb+1

la+1 = lb

RS1 and RS2 are sets of random variables, which are still to be contracted. We wrote them
separately because it is an nc-contraction and so no random variables of RS1 can contract with
those of RS2 . The effect of a nc-contraction is thus to divide the set in two independent parts
and to enforce an equality among the border terms. If we continue to apply nc-contraction to
the sets S1 and S2 we will have each time one more independent set and border equations ap-
pearing. After multiple nc-contractions we will end up with independent sets of the following
form

S =
PS[

α=1

Wα (B.5)

Wα = {liα , . . . ljα} (B.6)
RS = {Xi1, . . .Xj1−1,Xi2, . . .Xj2−1, . . . ,XiPS

, . . .XjPS
−1}

=
PS[

α=1

{Xiα, . . .Xjα−1}

=
PS[

α=1

RWα

and with PS −1 equations for the border terms

ljα = liα+1 (B.7)

for 1 ≤ α ≤ PS − 1. When all nc-contractions have been made I will be split in k + 1 inde-
pendent sets.

I =
k+1[
α=1

Sα (B.8)
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B Graph structures and properties

Each Sα has the form

Sα =
[
β

W α

β

but since all the random variables Xi have been eliminated we see that each W α

β
contains

exactly 1 element for if it did not, RIα
would still contain some random variables to contract.

In addition to all W α

β
containing just 1 element we have the border identities from Eq. (B.7)

and so not only are the sets Sα independent but also totally independent. Thus the Sα’s in Eq.
(B.8) are actually Iα’s. Thus an NC-graph splits I into k + 1 totally independent sets and so
has generated k +1 independent variables.

We now prove the converse.

Lemma B.0.12. A graph π(2k) on the set RI = {X1, . . .X2k} that generates more then, or
equal to, k +1 totally independent sets and thus k +1 independent variables on I is in fact an
NC-graph.

For this we will need the following lemma:

Lemma B.0.13. If a graph π(2k) on the set RS = {X1, . . .X2k} is such that the number of
independent sets on S , MS is greater then CS +1 = k +1, then at least one of the contractions
is an nc-contraction.

Proof. Suppose we have no nc-contractions. We have S = ∑
MS
α=1 Iα. Each Iα has NIα

elements.
Since there are no nc-contractions, there are nn-contractions (next neighboring). Therefore
Nα ≥ 2. We have then for NS :

NS =
MS

∑
α=1

NIα

≥2MS

≥2(CS +1) (B.9)

Since CS = NS−1
2 , this is a contradiction.

We now turn to lemma B.0.12

Proof. Lemma B.0.12
Suppose we have a graph on RI = {X1, . . .X2k} and that MI ≥ k +1. By Lemma B.0.13 there
is at least one nc-contraction. Thus we can split I and RI = {X1, . . .X2k} by performing the
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contraction thus obtaining

I = S1∪S2

S1 = {la+1, . . . lb}
RS1 = {Xa+1, . . .Xb−1}
S2 = {l1, . . . , la}∪{lb+1, . . . l2k+1}
S2 = W1∪W2

RS2 = {X1, . . . ,Xa−1,Xb+1, . . . ,X2k}
= {X1, . . . ,Xa−1}∪{Xb+1, . . . ,X2k}

Since MS = MS1 +MS2 ≥ CS + 1 = CS1 +CS2 + 3, either MS1 ≥ CS1 + 1 or MS2 ≥ CS2 + 1.
Notice that if MS1 = CS1 + 1 then MS2 ≥ CS2 + 1. We can thus use lemma B.0.13 again and
iterate this process and keep on splitting either S1 or S2. Since finally we must arrive at a
situation where there are no more contractions to be performed for a certain set S ′1, we have
then MS ′1 = CS ′1 + 1 with CS ′1 = 0. This means that MS ′2 ≥ CS ′2 + 1. We can thus continue
this procedure until we reach the point where all contractions have been made. Thus the
graph must have been a NC-graph. By lemma B.0.11 no graph can generate more then k + 1
independent variables.

When combining lemma B.0.12 and B.0.11 we have proved theorems 2.4.6 and 2.4.7.

Lemma B.0.14. Any graph π(2k) on the set RI = {X1, . . .X2k} will generate on set I =
{l1, . . . l2k+1} the identity δl1,l2k+1 . In other words l1 and l2k+1 belong to the same totally
independent set.

Proof. Lemma B.0.14
Each variable Xi stands for a random variable Vli ,li+1 . A graph π(2k) pairs up each Vli ,li+1

with a Vlj ,lj+1 . We define ∆i = li − li+1 and thus by Eq. (B.2) a graph imposes ∆i + ∆j = 0.
This means that the graph will impose

2k

∑
j=1

∆j = 0

2k

∑
j=1

lj − lj+1 = 0

2k

∑
j=1

lj =
2k

∑
j=1

lj+1

l1 = l2k+1
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B Graph structures and properties

The previous lemmas help us to compute the averages over random matrices of which we
give an example here. Suppose we want to calculate the average of the expectation value of a
power of the random matrix.

E
[
〈ψ|V 2k |ψ〉

]
= ∑

l1,...l2k+1

ψ
∗(l1)ψ(l2k+1)E

[
Vl1,l2 . . .Vl2k ,l2k+1

]
= ∑

l1,...l2k+1

|ψ(l1)|2 ∑
π(2k)

∏
(i ,j )∈π(2k)

E
[
Vli ,li+1Vlj ,lj+1

]
= ∑

l1,...l2k+1

|ψ(l1)|2 ∑
π(2k)

∏
(i ,j )∈π(2k)

E
[
Vli ,li+1Vlj ,lj+1

]
=∑

Aπ

∑
Bπ

|ψ(l1)|2 ∑
π(2k)

∏
(i ,j )∈π(2k)

E
[
Vli ,li+1Vlj ,lj+1

]
=∑

Aπ

∑
Bπ

|ψ(l1)|2 ∑
π(2k)∈G0,1

∏
(i ,j )∈π(2k)

E
[
Vli ,li+1Vlj ,lj+1

]
+∑

Aπ

∑
Bπ

|ψ(l1)|2 ∑
π(2k)∈G2

∏
(i ,j )∈π(2k)

E
[
Vli ,li+1Vlj ,lj+1

]
The product ∏(i ,j )∈π(2k) E

[
Vli ,li+1Vlj ,lj+1

]
will have a weighing factor of 1

N k and the sum
over the dependent variables Bπ will impose the δ identity of the dependent variables with the
independent variables. Thus

∑
Bπ

∏
(i ,j )∈π(2k)

E
[
Vli ,li+1Vlj ,lj+1

]
=

1
N k

(B.10)

Therefore

E
[
〈ψ|V 2k |ψ〉

]
= ∑

Aπ

|ψ(l1)|2 ∑
π(2k)∈G0,1

1
N k

+∑
Aπ

|ψ(l1)|2 ∑
π(2k)∈G2

1
N k

(B.11)

Through the previous lemmas we know that for an NC-graph, π(2k), the number of indepen-
dent variables is k +1 and for an C-graph it is less then k +1. Thus

∑
Aπ

|ψ(l1)|2 ∑
π(2k)∈G0,1

1
N k

= ∑
π(2k)∈G0,1

1

∑
Aπ

|ψ(l1)|2 ∑
π(2k)∈G2

1
N k
≤ 1

N ∑
π(2k)∈G2

1

We therefore get

E
[
〈ψ|V 2k |ψ〉

]
≤ ∑

π(2k)∈G0,1

1+
1
N ∑

π(2k)∈G2

1

We now prove a lemma similar to lemma B.0.11. The difference will be that the set RI will
not be the same and there will be condition imposed on the graph π(2k).
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Lemma B.0.15. An NC-graph π(2k) on the set RI = {X1, . . . ,Xp−1,Xp+1, . . .X2k+1}, with
thus k pairings, where there is at least one pairing between an Xj with j ≤ p−1 and a Xi with
i ≥ p + 1, will generate k + 1 totally independent sets and thus k + 1 independent variables
on the set I = {l1, . . . , lp , lp+1, . . . , l2k+2}.

Graphs of this sort will be called Non-Separable in Chapter 3.

Proof. Lemma B.0.15
Because the Xp−1 variable is not connected to the Xp+1 we represent in this case RI as in
figure B.3. Similar to our previous lemma we can start dividing our set I in independent sets

X1 Xp−1 Xp+1 X2k+1

Figure B.3: Graphical representation of RI

by applying the NC-contractions. We start then by imposing this contraction between the Xa

with a < p−1 and Xb with b > p +1. We then have two independent sets.

S1 = {la+1, . . . , lp , lp+1, . . . , lb}
RS1 = {Xa+1, . . .Xp−1,Xp+1, . . .Xb−1}
S2 = {l1, . . . , la}∪{lb+1, . . . l2k+2}

= W1∪W2

RS2 = {X1, . . . ,Xa−1,Xb+1, . . . ,X2k+1}
= {X1, . . . ,Xa−1}∪{,Xb+1, . . . ,X2k+1}

with S1 containing lp and lp+1.

la = lb+1

la+1 = lb

Note that if multiple NC-contractions are applied to the set S1, they will always generate sets,
for which their most outer borders are equal. We can rearrange our set S1 and RS1 as

S1 ={lp+1, . . . , lb−1, la+1, . . . , lp}∪{lb}
=S̃1∪{lb}

RS1 ={Xp+1, . . .Xb−1,Xa+1, . . .Xp−1}
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Xa XbXa+1

Xa+1

Xb−1

Xb−1

Figure B.4: Graphical representation of RI

with lb = la+1. This rearrangement is depicted in figure B.4. The following contractions on S1
will not affect lb , since this one is already equal to la+1 and so will belong to the same totally
independent set. We can thus apply lemma B.0.11 to S̃1 and RS1 to state that S̃1, and thus S1,
has b−a

2 independent variables. Similarly we have for S2 and RS2

S2 ={l1, . . . , la−1, lb+1, . . . , l2k+2}∪{la}
=S̃2∪{la}

RS1 ={X1, . . .Xa−1,Xb+1, . . .X2k+1}

with la = lb+1, and so la belongs to the same totally independent set as lb+1. We can apply
lemma B.0.11 to S̃2 and RS2 to state that S̃2, has 2k+b−a

2 + 1 independent variables. S2 has
then 2k+b−a

2 + 1 independent variables. Since the number of independent variables of I is
equal to those of S1 plus those of S2, I has k +1 independent variables.

We have proved that an NC-graph on a product of 2k random variables produces k + 1
independent variables. We now prove the converse, i.e. any graph that on a product of 2k
random variables produces k + 1 independent variables, is in fact an NC-graph. We shall
prove this by showing that an nc-contraction can be applied each time. First we prove the
following:

Lemma B.0.16. Say we have a set S =
SPS

α=1 Wα with Wα = {liα , . . . ljα} and PS −1 identi-
ties of the form ljα = liα+1 (liPS+1 = li1) and a set of contractions among the random variables

RS =
SPS

α=1{Xiα , . . . ,Xjα−1}=
SPS

α=1 RWα
. We take S independent of the rest so S = ∪MS

β=1Iβ

where the Iβ are the totally independent sets produced by a graph. Each Iβ possesses NIβ

elements, S possesses NS elements and so there are CS = NS−PS
2 contractions still to be per-

formed.
Then if MS ≥ CS + 1 and MS ≥ 2 (MS = 1 means there are no more contractions to be per-
formed) there must exist an nc-contraction. That is we can divide the set in to two independent
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sets S1 and S2 of the form

S1 = {li |li ∈ S , la ≤ li ≤ lb}
S2 = {li |li ∈ S , li < la , lb < li}

S1 and S2 have the form of S with the border identities applied. This would be a NC-
contraction.

Proof. Lemma B.0.16
Suppose it not to be true. Clearly each 2≤NIβ

, for if it where not so for a certain Iγ, we could
divide S into S1 = Iγ and S/S1, S1 having just one element and this would be a nc-contraction.
In addition, the Iβ that contains a border element of some Wα must have 3≤NIβ

for if it where
not the case it would have 2 elements and thus we would have Iβ = {ljα , liα+1}. Then we could
divide S into S1 = Iβ and S/S1 which would be caused by a nc-contraction and would be a
contradiction. For the total number of elements we have NS = ∑

MS
β=1 NIβ

and there are PS −1
sets Iβ which have more then 3 elements, and thus

NS ≥ 2MS +PS −1
NS ≥ 2(CS +1)+PS −1

NS ≥ 2
(

NS −PS

2
+1
)

+PS −1

NS ≥ NS +1

which is a contradiction. Therefore if CS +1≤MS we can divide the set into two independent
sets, S1 and S2. This is then a nc-contraction.

Now we prove the following

Lemma B.0.17. Out of the sets S1 and S2 of lemma B.0.16, at least one has CSi +1≤MSi and
if CS1 +1 = MS1 then CS2 +1≤MS2 . This statement is of course symmetric under exchange
of S1 and S2.

Proof. Lemma B.0.17
If a NC-contraction divides the set S into S1 and S2 we have

S1 = ∪PS1
α=1W

1
α = ∪MS1

j=1 Iβj

S2 = ∪PS2
α=1W

2
α = ∪MS2

j=1 Iγj

CS = CS1 +CS2 +1
MI = MS1 +MS2

Since CS +1≤MS we have

CS +1≤MS

CS1 +CS2 +2≤MS1 +MS2 (B.12)
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Thus either CS1 +1≤MS1 or CS2 +1≤MS2 . If CS1 +1 = MS1 we see by Eq. (B.12) we have
CS2 +1≤MS2 .

Lemma B.0.18. Say we have graph on the set RI = {X1, . . . ,Xp−1,Xp+1, . . .X2k+1} gener-
ating graph on the set
I = {l1, . . . , lp , lp+1, . . . , l2k+2}, where there is at least one pairing between an Xj with j ≤
p−1 and a Xi with i ≥ p +1, so that I = ∪MI

α=1Iα with the Iα totally independent sets.
If MI ≥ CI +1 then the graph is a NC-graph.

Proof. Lemma B.0.18
We shall show that we can always apply a nc-contraction which shall divide the previous set
in 2 independent sets, S1 and S2

S1 = {li |li ∈ I , la ≤ li ≤ lb}
S2 = {li |li ∈ I , li < laorlb < li}

which would then amount to a nc-contraction. The reason why lemma B.0.16 cannot be
applied is because there are no border identities present at this point. Notice that CI = N1−2

2 .
We suppose thus that we cannot divide the set I into S1 and S2 and thus that there are no nc-
contractions. If this were the case each NIα

≥ 2. Suppose now that at least one Iα has NIα
≥ 3.

This will be proved later. If this were the case we would have

NI =
MI

∑
α1

Nα

≥ 2MI +1
≥ NI +1

Which is a contradiction.
We now show that at least one Iα has NIα

≥ 3. Suppose all NIα
= 2. Say I1 contains the

variable lp+1 and as said that N1 = 2. Clearly we cannot have I1 = {lp , lp+1} for this would be
a NC-contraction between Xp−1 and Xp+1.
If Xp+1 would contract with any other element then X2k+1, say Xi , then lp+1 = li+1. The
contraction of Xi+1 with any other Xj would then give li+1 = lj+1 and thus NI1 ≥ 3 which is
a contradiction. Thus I1 = {lp+1, l2k+2}.
The contraction generating this also related lp+2 = l2k+1. The set I2 containing lp+2 has al-
ready at least two elements lp+2 and l2k+1. In order for NI2 = 2 we need the Xp+2 to contract
with X2k for if it did not lp+2 would be related to another variable and NI2 ≥ 3. We see we
can apply the same argument to Xp+3 and so on. Thus we would need Xi , with i ≥ p + 1 to
contract with X2k+p−i+2. Since at least one variable has to contract with a Xj with j ≤ p−1
it is impossible to realize this procedure and therefore at least one NIα

≥ 3 which leads to a
contradiction.
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The set I can thus be divided in S1 and S2 which have the following characteristics.

S1 = {l1, . . . , la}∪{lb , . . . , l2k+2}
S2 = {la+1, . . . lb−1}
CI = CS1 +CS2 +1
MI = MS1 +MS2

la = lb

la+1 = lb−1

We have

MI ≥ CI +1
MS1 +MS2 ≥ CS1 +CS2 +2

By applying successively lemma B.0.16 and B.0.17 to S1 and S2 we can perform all contrac-
tions by applying nc-contractions and so the graphs is an nc-graph.

When combining lemma B.0.15 and B.0.18 we have proved theorems 2.4.6 and 2.4.7.
Finally we give the following equalities for the amount of graphs of a certain order.

∑
π(n,m)∈G(n,m)

1 =
(n +m)!

2
n+m

2 n+m
2 !

(B.13)

∑
π(n,m,n̄,m̄)∈G(n,m,n̄,m̄)

1 =
(n +m + n̄ + m̄)!

2
n+m+n̄+m̄

2 n+m+n̄+m̄
2 !

(B.14)

∑
π(n,m)∈G0,1(n,m)

1 =
(n +m)!(

n+m
2

)
!
(

n+m
2 +1

)
!

(B.15)

∑
π(n,m,n̄,m̄)∈G0,1(n,m,n̄,m̄)

1 =
(n +m + n̄ + m̄)!(

n+m+n̄+m̄
2

)
!
(

n+m+n̄+m̄
2 +1

)
!

(B.16)

Eqs. (B.15) and (B.16) can be shown by realizing that there is a one to one correspondence
between these NC-graphs of order (n,m) or (n,m, n̄,m̄) and Catalan paths of length n +m
or n +m + n̄ + m̄. Thus the number of NC-graphs equals the Catalan number.
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C From the discrete sum to the
integration

In this appendix we want to explain how the factor N−1 appears in section 2.2 in Eq. (2.14)
when we wish to calculate the limit N → ∞.

Initially our Hilbert space is finite and of dimension N ℵ and our system is in state |ψ0〉.
This give us a discrete probability distribution P0 (q0, l0) which fullfills

ℵ

∑
q0=1

N

∑
l0=1

P0 (q0, l0) =
ℵ

∑
q0=1

N

∑
l0=1
|ψ0 (q0, l0) |2

= 1 (C.1)

As N → ∞ and as l0 tend to a continues variable this property must be maintained. We can
rewrite our equality as

ℵ

∑
q0=1

N

∑
l0=1

1
N

NP0 (q0, l0) =
ℵ

∑
q0=1

N

∑
l0=1

1
N

P̃0 (q0, l0) (C.2)

= 1

lim
N→∞

ℵ

∑
q0=1

N

∑
l0=1

1
N

NP0 (q0, l0) = lim
N→∞

ℵ

∑
q0=1

N

∑
l0=1

1
N

P̃0 (q0, l0)

=
ℵ

∑
q0=1

Z
dE0g(E0)P0 (q0,E0) (C.3)

= 1

By demanding that P̃0 (q0, l0)
N→∞−−−→ P0 (q0,E0), remains bounded and becomes a function of

a continues variable E0 (that now stand for l0), we have the definition of the Riemann integral.
g(E0) is a function representing the density of states in the limit N → ∞.

Another way of viewing this (equivalent) is to imagine that as our Hilbert space grows, the
number of populated states grows as well and so the number of P0 (q0, l0) 6= 0 grows. Since
the normalization condition (Eq. (C.1)) has to be satisfied P0 (q0, l0) has to decrease as N
grows and so we end up with a distribution P̃0 (q0, l0) = NP0 (q0, l0) that remains finite. A
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C From the discrete sum to the integration

consequence of this is

P0 (q0, l0)≤ C

N
(C.4)

|ψ0 (q0, l0) | ≤
√

C

N
(C.5)

We note that for many proofs (chapter 3) the factor N−1 seems crucial but is not. We could
also perform the proofs by using the normalization condition of Eq. (C.1).

Equivalent to this is to consider from the start our normalization condition to be

ℵ

∑
q0=1

N

∑
l0=1

1
N

P0 (q0, l0) =
ℵ

∑
q0=1

N

∑
l0=1

1
N
|ψ0 (q0, l0) |2

= 1 (C.6)

such that P0 (q0, l0)
N→∞−−−→ P0 (q0,E0) and of course

lim
N→∞

ℵ

∑
q0=1

1
N

P0 (q0, l0) =
Z

dE0g(E0)
ℵ

∑
q0=1

P0 (q0,E0) (C.7)

= 1
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D German Summary:
Zusammenfassung

Diese Arbeit behandelt die Entstehung von Transportgleichungen in Quantensystemen. Für
die Dynamik komplexer Systeme gibt es oftmals keine Lösung. Deshalb werden Annahmen
und Näherungen vorgenommen, um die Komplexität zu reduzieren und um die Systeme en-
tweder numerisch oder analytisch zu lösen. Einige dieser Annahmen sind gut begründet,
andere wiederum können verblüffend wirken obwohl sie physikalisch sinnvoll sind. Die hier
vorgebrachten und analysierten Modelle enthalten eine Zufallskomponente in ihrem Hamil-
tonian. Dieser zufällige Teil kann dazu verwendet werden, um einige chaotische Quanten-
systeme oder Systeme mit Unordnung zu modellieren. Die grundlegende Schwierigkeit liegt
in der mathematischen Behandlung des zufälligen Teils, weshalb sie auch das grundlegende
Ergebnis dieser Analyse darstellt. Eine solche Zufallskomponente im Hamiltonian und fol-
glich die Beschreibung der Dynamik dieser Systeme ist hauptsächlich deshalb kompliziert,
weil wir nicht ein einzelnes System betrachten sondern ein Ensemble. Zufallsmatrizen haben
wesentlich zur Beschreibung der statistischen Eigenschaften komplexer Systeme beigetra-
gen. Daher stellt die Analyse ihrer Effekte in der Dynamik von zufälligen Hamiltonians in
einem System einen wichtigen Schritt für das Verständnis komplexer Quantensysteme und
ihrer Transporteigenschaften dar. Wir führen eine mathematische Analyse der Zeitentwick-
lung der Schrödinger Gleichung durch für grosse zufällig gekoppelte Quantensysteme. Die
Zufälligkeit ist durch ein Ensemble von Interaktionsmatrizen gegeben. Mit grossen Syste-
men meinen wir, dass die Dimension des Hilbertraums der gegebenen Systeme gross ist,
sodass es sich also nicht unbedingt um ein räumlich ausgedehntes System handelt. Ähn-
lich definieren wir Makroobservable als diejenigen Observablen, die eine grosse Anzahl an
Hilbertraum-Projektoren enthalten. Die Notwendigkeit der Analyse von Makroobservablen in
diesem Sinne entsteht durch die Tatsache, dass die Evolution für “kleine Observablen” nicht
aufzulösen ist. Denn die Besetzungszahl eines einzelnen Niveaus in einem gross dimension-
erten Hilbertraum, der grösstenteils an der Systemevolution teilnimmt, ist annähernd Null.
Man könnte grob sagen: wenn in einem D-dimensionalen Raum alle Basiszustände ein wenig
an der Evolution teilnehmen und wenn keiner davon favorisiert wird, dann sollte die Beset-
zungszahl um D−1 oszillieren, was extrem gering für grosse D ist. Um die Zeitentwicklung
des Systems zu ermitteln, verwenden wir eine Feynman-Diagramm-Expansion der Lösung
der Schrödinger Gleichung. Dann kann die Relevanz der jeweiligen Diagramme geschätzt
werden. Wir teilen die Feynman Diagramme in drei Kategorien ein und zeigen, dass nur
eine davon beibehalten werden muss, um die Systementwicklung zu beschreiben. Wir zeigen,
dass diese Schlussfolgerungen innerhalb bestimmter Limites gültig sind. Zuerst stellen wir
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fest, dass die Dimension des Systems und damit auch der gekoppelten Zufallsmatrix gross
ist. Mit “gross” meinen wir, dass wir den Limes betrachten, an dem die Dimension gegen
unendlich geht. Der zweite Limes, den wir benutzen, ist der Van Hove Limes, ein schwach
gekoppelter Limes mit langer Zeit. Es sind diese Limites, die den verschiedenen Kategorien
von Feynman Diagrammen mehr oder weniger Wichtigkeit in der Zeitentwicklung des Sys-
tems geben. Jedes Diagramm steht für einen möglichen Weg, den das System nehmen kann,
und ist damit eine mögliche Geschichte des Systems. Wir zeigen, dass die relevanten Dia-
grammpaare diejenigen sind, die einander ähneln. Es ist bekannt, dass Interferenz-Effekte
auftauchen, wenn verschiedene Feynman Wege sich überlappen. Daher kann man sagen, dass
die Interferenz-Effekte irrelevant sind. So überrascht es nicht, dass man eine klassischere
Beschreibung in der Sprache von stochastischen Gleichungen für das System erhalten kann.
Wir zeigen, dass die Zeitentwicklung, die durch diese Klasse von Diagrammen beschrieben
wird, mit der Lösung der Ratengleichungen identisch ist, die Fermis Goldene Regel vorher-
sagt. Wenn man die Frage nach der Zeitentwicklung des Systems beantworten möchte, bzw.
präziser ausgedrückt, die nach der Zeitentwicklung des Ensembles, dann kann man sagen,
dass sie durch eine Reihe von Ratengleichungen beschrieben wird, die sich an Fermis Gold-
ene Regel halten. Da es nicht immer gültig ist, die Schlussfolgerungen über ein Ensemble auf
ein beliebiges Mitglied des Ensembles zu übertragen, analysieren wir im Anschluss die Frage
nach Typikalität. Hier geht es um die Frage, ob die Zeitentwicklung der meisten Mitglieder
des Ensembles die gleiche ist wie die Zeitentwicklung des Ensembles. Wenn dies der Fall ist,
sprechen wir von dynamischer Typikalität. Um festzustellen, ob dynamische Typikalität vor-
liegt oder nicht, muss die Varianz der Zeitentwicklung einer Observable analysiert werden.
Wiederum wird die Feynman-Diagramm-Expansion der Lösung verwendet und man kann
feststellen, dass im Limes des grossen Systems die Varianz verschwindet. Somit haben wir es
mit dynamischer Typikalität zu tun. Wir betonen, dass in diesem Teil der Analyse, sowohl die
Zeit als auch die Kopplungskonstante als endlich angenommen werden müssen. Hier nehmen
wir nicht den Van Hove Limes, was bedeutet, dass wir nicht formal darauf schliessen kön-
nen, dass das typische Verhalten durch die Ratengleichungen gegeben ist. Diese Möglichkeit
ist natürlich nicht ausgeschlossen. Wir schliessen also, dass für die meisten Mitglieder des
Ensembles die Makroobservablen die gleiche Zeitentwicklung für endliche Zeit und für die
endliche Kopplungskonstante haben. Dieses Ergebnis lässt stark vermuten, dass dies auch im
Van Hove Limes gelten sollte, jedoch ist eine raffiniertere Analyse notwendig, um dies zu
beweisen.
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Symbols

Γ̃M (t) Integral operator of the of the whole evolution after the M th order
perturbation

n̄ Number of outer contraction for a graph π(n,m)
γ scaling exponent between t and N
Γn(t) Integral operator of the n th order perturbation term of the perturbation

theory
Ĥ0 Unperturbed Hamiltonian
Ô Macro-observable
V̂ Perturbation Hamiltonian
κπ Number of independent variables
λ Coupling constant
E [·] Refers to the average over the random matrix ensemble
Fπ(n,m) Product of free propagators evaluated on a certain contraction func-

tion given by π(n,m), times λn+m

G0(n,m) Set of Simple graphs of order (n,m)
G1(n,m) Set of Nested graphs of order (n,m)
G2(n,m) Set of Crossing graphs of order (n,m)
Gns Set of Non-Separable graphs
Gs Set of Separable graphs
ωj Frequency or energy variable
π(n,m) Graph of order (n,m)
Var [·] Refers to the variance over the random matrix ensemble
Var [·] Variance with respect to the random matrix distribution
C̃π(n,m) Non weighed contraction function on the sets {li , l ′j} and {qi ,q

′
j},

given by a graph π(n,m)
{lj} Refers to the list of variables {l0, . . . ln}
{lj}0 Refers to the list of variables {l1 . . . ln}, that is {lj} without l0
{lj}i Refers to the independent variables of the list of variables {lj}
Aπ Set of independent variables
Bπ Set of dependent variables
Cπ(n,m,{li , l ′j},{qi ,q

′
j}) Contraction function on the sets {li , l ′j} and {qi ,q

′
j}, given by a

graph π(n,m)
K n(t ,{Elj }) Product of n successive propagators that depend {Elj }
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kj Multiplicity on the right-hand side of the free propagator that is ωj

dependent
Ln({qj},{lj}) Product of n successive random matrix elements that depend on {qj}

and {lj}
M Order of the expansion
N Number of different energy eigenstates of Ĥ0
pj Multiplicity on the left-hand side of the free propagator that is ωj

dependent
Qπ(n,m) Product of free propagators evaluated on a certain contraction func-

tion given by π(n,m)
qj Variable denoting quantum numbers other then the energy
T Macroscopic time (λ2t)
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