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Chapter 1

Zusammenfassung in deutscher
Sprache

1.1 Fachlicher Hintergrund und Motivation

In den letzten Jahren hat die Mikro- und Nanofluidik eine stark wachsende Bedeu-
tung in der Industrie gewonnen. Das wurde durch mehrere an Förderprogrammen
unterstützt. Dabei galt die Aufmerksamkeit vor allem dem Design von Mikrokanälen.
Die physikalischen Grundlagen des Flusses in kleinen Geometrien wurden aber ver-
nachlässigt, obwohl der Fluß in solchen Geometrien meist nicht durch klassische
Kontinuumsmethoden beschrieben werden kann. Besonders die Wechselwirkung zwi-
schen der Flüssigkeit und der Kanalwand spielt in Mikrofluid-Systemen eine wich-
tigere Rolle, da das Verhältnis der Oberfläche zum Volumen weit größer ist als in
makroskopischen Systemen. Das bedeutet, dass die Randbedingungen in solchen Sy-
stemen besonders genau untersucht werden müssen. In den letzten Jahren ist dabei
eine Verletzung der Haftbedingung beobachtet worden. Das hat zur Folge, dass als
Randbedingung in Mikrofluid-Systemen Naviers’ Schlupfbedingung

uy(x0) = β
∂uy(x)

∂x
|x=0, (1.1)

angewendet werden muss. Dabei ist uy die Flussgeschwindigkeit in y Richtung.

β ist die sogenannte Schlupflänge (engl. slip-length) und ∂uy(x)
∂x

die Scherrate der
Flüssigkeit an der Oberfläche. Eine anschauliche Interpretation der Schlupflänge
ist, dass sie die Position innerhalb der Wand angibt, in der das extrapolierte Ge-
schwindigkeitsprofil verschwindet. In den letzten Jahren wurden zahlreiche Expe-
rimente zur Messung der Schlupflänge durchgeführt, die abr widersprüchliche Er-
gebnisse lieferten – sowohl was den absoluten Wert der Schlupflänge angeht als
auch die Abhängigkeiten von verschiedenen Parametern. Mittlerweile gibt es aber
einen Konsens darüber, dass Schlupflängen in einfachen Flüssigkeiten an hydropho-
ben Oberflächen unter einem Mikrometer liegen, typischerweise sogar deutlich unter
100nm. Andere Daten lassen auf scheinbaren Schlupf schliessen. Wie dieser scheinba-
re Schlupf aber zustande kommt und wovon er abhängt, ist weitgehend unbekannt.
Mögliche Ursachen für diesen Effekt sind die Oberflächenrauigkeit oder die Bildung
von Gasblasen auf der Oberfläche.
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8 Chapter 1. Zusammenfassung in deutscher Sprache

Die Untersuchung dieser Phänomene ist sehr schwierig. Eine analytische Be-
schreibung von rauen Oberflächen ist nur in wenigen Fällen möglich. Deshalb sind
Computersimulationen hilfreich, um einen tieferen Einblick zu erhalten und so das
scheinbare Auftreten von Schlupf in Experimenten zu verstehen. Dabei ist zu klären,
welche Simulationsmethode geeignet ist. Die Ursache von Hydrophobizität liegt auf
der molekularen Skala. Deshalb wären MD-Simulationen ein angemessenes Mittel.
Allerdings sind die verfügbaren Längen- und Zeitskalen zu klein. Klassische CFD-
Kontinuums-Löser können problemlos diese Längen- und Zeitskalen erreichen, sind
aber nicht in der Lage, Wechselwirkungen auf molekularer Skala zu modellieren. Aus
diesem Grund bieten sich sogenannte mesoskopische Methoden an, bei denen nicht
die gesamte Molekülbewegung simuliert wird, sondern nur deren statistisches Mittel.
In dieser Arbeit geht es um die Simulation von Fluss in der Umgebung von rauen
und hydrophoben Oberflächen mittels der Gitter Boltzmann Methode.

Zu Beginn der Arbeit wird in Kapitel 3 ein Überblick über die gängigen Ex-
perimente zur Schlupfbestimmung gegeben. Besonderes Augenmerk wird dabei auf
Experimente gelegt, die die hydrodynamische Kraft auf eine Kugel an der Spitze ei-
nes Kraftfeld-Mikroskops messen, die in einer Flüssigkeit gegen die zu untersuchende
Oberfläche bewegt wird. Die gemessene Kraft F wird dann mit dem theoretischen
Wert

Fz = −6πR2
eµv

h
f ∗ (1.2)

verglichen. Die Korrekturfunktion ist durch

f ∗ =
1

4

(

1 + 6
h

4β

[(

1 +
h

4β

)

ln

(

1 +
4β

h

)

− 1

])

. (1.3)

gegeben. Dabei ist µ die Viskosität der Flüssigkeit, v die Geschwindigkeit und R
der Radius der Kugel. Der Abstand zwischen Kugel und Oberfläche ist h. Die
Schlupflänge β wird dann durch das Anfitten der Korrekturfunktion an die Messwer-
te ermittelt.

1.2 Simulationsmethode

Kapitel 4 gibt einen Überblick über verschiedene Simulations-Methoden wie Molekular-
Dynamik (MD), dissipative Teilchen-Dynamik (DPD), sowie die stochastische Ro-
tationsdynamik (SRD). Im Folgenden wird dann die Gitter-Boltzmann-Methode be-
schrieben, mit welcher die Simulationen dieser Arbeit durchgeführt werden. Dabei
betrachtet man die Dynamik der Einteilchen-Verteilungsfunktion η. Sie ist ein Maß,
für die Wahrscheinlichkeit ein Teilchen mit Geschwindigkeit c am Ort x anzutreffen.
Dabei ist der Phasenraum auf einem Gitter diskretisiert. Somit läßt sich die Gitter
Boltzmann Gleichung als

η(x + ci, ci, t + δt) − η(x, ci, t) = Ω (1.4)

ausdrücken [129]. Dabei ist x der diskretisierte Ort, ci die diskretisierte Geschwin-
digkeit, die so gewählt ist, dass sie in einem Zeitschritt δt, gerade zum nächsten oder
nächst-nächsten Nachbarn reicht [129]. Der linke Teil der Gleichung gibt an, wie sich
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die virtuellen Teilchen frei bewegen, welche durch die Einteilchenverteilungsfunktion
beschrieben werden. Der Kollisionsoperator Ω steht dann für Kollisionen, die dafür
sorgen, dass die Verteilung η zu einem Gleichgewicht ηeq tendiert. Die lokale Masse
und der Impuls der Flüssigkeit bleiben dabei erhalten.

Durch Erweiterungen der Methode ist es möglich, die hydrophobe Flüssigkeits-
Wand-Wechselwirkung durch eine Shan Chen Kraft

Fwf (x) = Ψfluid(x)
∑

i

cigwfΨ
wall(x + ci) (1.5)

zu modellieren. Dabei ist Ψfluid eine Funktion der lokalen Flüssigkeitsdichte, gwf ein
globaler Kopplungssarameter und Ψwall ein Maß für die Hydrophobizität der Wand
an der angegebenen Position x. Es wurde gezeigt, dass solch ein Modell in der Lage
ist, einen Wandschlupf zu erzeugen, der von der Stärke der Wechselwirkung und
dem Druck der Flüssigkeit abhängt [48].

Ferner ist die Methode in der Lage, sich bewegende Teilchen in der Flüssigkeit
zu simulieren. Dazu wird die Teilchenwand auf dem Gitter diskretisiert. Die Gitter-
wandpunkte tauschen dann ihren Impuls mit der Flüssigkeit aus. Auf diese Weise
kann auch die gesamte hydrodynamische Kraft, die auf das Teilchen wirkt, bestimmt
werden.

1.3 Fluss über raue Oberflächen

In Kapitel 5 wird Poiseuille-Fluss über raue Oberflächen untersucht. Dabei wird die
Überlegung verfolgt, dass sich eine raue Oberfläche durch eine effektive Wand be-
schreiben läßt, die sich zwischen den Spitzen und den Vertiefungen der Rauigkeit
befindet. Um die Position der effektiven Wand zu bestimmen wird die effektive Ka-
nalbreite bestimmt, indem das theoretische Flussprofil an das gemessene angefittet
wird. Aus der effektiven Kanalbreite lässt sich dann die effektive Wandhöhe bestim-
men, welche den Abstand der effektiven Wand zum tiefsten Punkt der Rauigkeit
angibt [74].

Es wird zuerst gezeigt, dass die Methode in der Lage ist, die theoretischen Werte
für die effektive Wandposition von Panzer et al. für sinusförmige Rauigkeit wie-
derzugeben [108]. Auch können die Werte von Lecoq et al. für eine dreiecksförmi-
ge Rauigkeit bestätigt werden [88]. Allerdings ist es mittels analytischer Verfahren
nicht möglich, komplexere Oberflächen mit starken Variationen zu beschreiben. Aus
diesem Grund ist man zur Untersuchung solcher Oberflächen auf numerische Ver-
fahren angewiesen. Da das Verfahren für die analytisch lösbaren Fälle die korrekte
Position ergibt, werden weitere Modellrauigkeiten untersucht. Das sind Rillen mit
quadratischem und dreieckigem, Querschnitt, sowie eine Rauigkeit mit zufälliger
Rauigkeitshöhe an jedem Punkt der Oberfläche. Abschließend wird der Fluss über
eine Oberfläche simuliert, wie sie in Experimenten verwendet wurde.

Die Ergebnisse lassen sich folgendermassen zusammenfassen: Die Position der ef-
fektiven Wand steigt linear mit der maximalen Höhe der Rauigkeit. Sie hängt nur im
geringen Maß von der tatsächlichen Form der Rauigkeit ab. Für Rillen mit quadra-
tischem Querschnitt befindet sich die effektive Wand bei 95% der maximalen Rau-
igkeit. Für Rillen mit dreieckigem Profil bei 85 % und bei gleichverteilten, zufälligen
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Rauigkeitselementen bei 92%. Für die Rauigkeit einer experimentellen Oberfläche
wurde ermittelt, dass die Position der effektiven Wand an derselben Stelle liegt, wie
die einer zufälligen Oberfläche mit derselben gaußförmigen Höhenverteilung. Wei-
ter wird in diesem apitel festgestellt, dass eine falsch angenommene Wandposition
großen Einfluss auf die Schlupfmessung haben kann. Abschließend wird auch ge-
zeigt, dass Rauigkeit den Schlupf an hydrophoben Oberflächen sowohl erhöhen als
auch herabsetzen kann: je nach Stärke der Hydrophobizität und Höhe der Rauig-
keit [74, 76, 49].

1.4 Kraftmessung einer Kugel in der Umgebung

einer glatten Oberfläche

In Kapitel 6 wird überprüft, ob die theoretischen Werte für die Kraft auf eine Ku-
gel in der Nähe der Wand erreicht werden. Das sind wichtige Vorarbeiten, um si-
cherzugehen, dass spätere Ergebnisse nicht das Resultat von Simulationsartefakten
sind. Dabei wird die simulierte Kraft mit der Theorie von Maude für eine Kugel,
die sich einer Wand nähert, verglichen [95]. Auf diese Weise kann gezeigt werden,
dass der Einfluss der Diskretisierung und des begrenzten Simulationsvolumens unter
zwei Prozent liegt wenn das Verhältnis von Systemgröße zu Radius größer als 16/1
ist und der Radius mindestens acht Gitterpunkte misst. Außerdem wird überprüft,
ob der Schlupf, der durch die hydrophoben Wände erzeugt wird, auch durch die
Kraftmessung erfasst werden kann. Dabei zeigt sich, dass der Schlupf, der durch die
Kraftmessung bestimmt wird, wie erwartet, mit dem einer Poiseuille-Flussmessung
übereinstimmt.

1.5 Kraftmessung einer Kugel in der Umgebung

einer rauen Oberfläche

In Kapitel 7 geht es um die Untersuchung von rauen Oberflächen mittels der Kraft-
messung an einer Kugel, die gegen die Wand bewegt wird. Aufgrund der Erkenntnisse
aus den vorangegangenen Kapiteln wird zuerst gezeigt, dass sich Rauigkeit in diesem
Fall auch durch eine effektive Wand beschreiben lässt und nicht durch eine Schlupf-
Korrektur wie in Gleichung 1.3. Mittels Poiseuille-Fluss zwischen festen Wänden
ist es nicht möglich, die beiden Fälle genau zu unterscheiden. Es wird überprüft,
wie weit die Annahme einer effektiven Wand gültig ist. Dabei konnte innerhalb der
Grenzen der Simulationsgenauigkeit keine Abhängigkeit der effektiven Wandposition
vom Kugelradius, vom Abstand der Kugeloberfläche zur Wand oder dem ,,Auftreff-
punkt” gefunden werden. Das heisst unter anderem, dass die effektive Wandposition
unverändert bleibt, selbst wenn die maximale Höhe der Rauigkeit grösser als der
Kugelradius ist.

Ein besonderes Augenmerk liegt auf der Untersuchung von Oberflächen mit ei-
ner Rauigkeit, die aus zufällig verteilten, gleich hohen Rauigkeitselementen besteht.
Dabei wird festgestellt, dass schon bei einer Bedeckung von nur 10% der Oberfläche
die effektive Wandposition bei 90% der Elementhöhe liegt. Weiter kann gezeigt wer-
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den, dass die Position der effektiven Wand Position für isotrope Oberflächen mit
der für Poiseuille-Fluss übereinstimmt. Bei Oberflächen, die eine Vorzugsrichtung
aufweisen, wie zum Beispiel Gräben, befindet sich die effektive Wand zwischen den
Werten für Fluss in einer der beiden ausgezeichneten Richtungen [78].

1.6 Superhydrophobe Oberflächen

Kapitel 8 beschreibt die Untersuchung von superhydrophoben Oberflächen. Dazu
werden zuerst zwei superhydrophobe Einheitszellen vorgestellt. Die erste besteht aus
einem Graben mit quadratischem Querschnitt, dessen Innenwände stark hydrophob
sind. Auf diese Weise entsteht eine Dampfblase im Inneren des Grabens über den die
äussere Flüssigkeit mit stark verminderter Reibung fliessen kann. Die Dampfblase
kann über den Rand des Kanals herausragen (oder unter ihm bleiben) und bildet mit
der festen Oberfläche, den sogenannten Herrausragungswinkel ϕ (engl. protrusion
angle). Die zweite Zelle besteht aus einer zylindrischen Aussparung in der Oberfläche,
deren Innenwände ebenfalls stark hydrophob sind. Während die erste Einheitszelle
eine quasi 2D Struktur hat, besitzt die zweite eine echte 3D Struktur.

Die Schlupfeigenschaften der Oberfläche werden in diesem Fall wieder durch das
Anlegen eines Poiseuille-Flusses ermittelt und es werden erste Ergebnisse gezeigt.
Zunächst werden die Flussprofile in Flussrichtung und orthogonal zur Flussrichtung
ermittelt und mit den experimentellen Daten von Tsai et al. verglichen [142]. Dabei
wird in guter Übereinstimmung mit dem Experiment festgestellt, dass das Flussprofil
aufgrund der Schlupf-Keinschlupfstreifen in Flussrichtung stark oszilliert. Die Oszil-
lation nimmt stark ab, je weiter das Flussprofil von der Wand entfernt aufgenommen
wird. Orthogonal zur Flussrichtung ergibt sich ein schlupfbehaftetes Parabelprofil,
welches man für eine derartige Geometrie erwartet. Weiter wird die Abhängigkeit
der Schlupflänge von ϕ, mit den theoretischen Voraussagen von Davis und Lauga
verglichen. Dabei wird beobachtet, dass die Schlupflänge stark von ϕ abhängt und
ein Maximum bei ϕmax = 31◦ hat. Weiter wird die Schlupflänge für ϕ grösser als
ϕci > 70◦ negativ. Diese Ergebnisse stimmen mit der Theorie von Davis und Lauga
überein, allerdings sind die in der Simulation gefundenen Schlupflängen kleiner als
die vorausgesagten. Das liegt an der relativ großen Grenzfläche zwischen der Dampf-
und der Flüssigkeitsphase. Andererseits nimmt die Theorie perfekten Schlupf auf
der Blasenoberfläche an. Des weiteren ist ϕ aufgrund der Dicke der Grenzschicht
nicht eindeutig definiert. Abschliessend wird dann ermittelt, dass die Blase bei ho-
hen Scherraten deformiert wird, was zu einer Reduktion der Schlupflänge führt. Ein
Effekt, der auch von Hyväluoma und Harting beobachtet wurde [59].

Ausblick

Die Ergebnisse dieser Arbeit zeigen, dass Rauigkeit und Hydrophobizität zu un-
terschiedlichem Verhalten der Flüssigkeit an der Oberfläche führen. Weiter wird
gezeigt, dass das Zusammenspiel aus Rauigkeit und Hydrophobizität zu unerwarte-
ten Phänomenen führt. Wird hingegen die Rauigkeit nicht in die Auswertung von
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Experimenten einbezogen, wie beispielsweise bei der Schlupfmessung mittels eines
AFM, führt das zu einer groben Ungenauigkeit der Ergebnisse.

Auf Basis der verwendeten Simulationsmethode lassen sich nun auch weitere
Fragestellungen beantworten. Beispielsweise kann der Einfluss der Deformation von
Dampfblasen an superhydrophoben Oberflächen untersucht werden. Einige Expe-
rimente beobachten beispielsweise eine Erhöhung des Schlupfes mit der Scherrate.
Hier wurde vermutet, dass sich die Blasen dabei von der Oberfläche lösen. Des Wei-
teren wäre es interessant zu untersuchen, in wie weit sich die Deformation der Blasen
auf die Lubrikationskraft in Kraftmessungsexperimenten auswirkt.



Chapter 2

Introduction

During the last decade, micro- and nano-technology has become an important indus-
try. This development has been assisted by a funding policy supporting the design
of miniaturized mechanical structures and complex micro-machines through which
fluids move. However, the actual transport of fluids in these confined geometries
have become an area of interest only during the recent years, even though the fluid
flow on increasingly smaller scales cannot always be properly described by conven-
tional continuum equations: physical phenomena which, can be neglected on the
macro scale, become dominant as the length scale diminishes. On the other hand,
systems on scales on which micro effects become sensible cannot yet be treated by
molecular methods, owing to the lack of computational power. Hence, there is a
definite need for novel theories, numerical methods, and measurement techniques
devised to properly describe the confined fluid flow on length scales in the range
from 10 and 1000nm.

Reynolds numbers in microfluidic systems are usually small, i.e., usually below
0.1. In addition, due to the small scales of the channels, the surface to volume
ratio is high causing surface effects like wettability or surface charges to be more
important than in macroscopic systems. Also, the mean free path of a fluid molecule
might be of the same order as the characteristic length scale of the system. For gas
flows, this effect can be characterized by the so-called Knudsen number [70]. While
the Knudsen number provides a good estimate for when to expect rarefaction effects
in gas flows, for liquids one would naively assume that its velocity close to a surface
always corresponds to the actual velocity of the surface itself. This assumption is
called the no-slip boundary condition and can be counted as one of the generally
accepted fundamental concepts of fluid mechanics. However, this concept was not
always well accepted. Some centuries ago, there were long debates about the velocity
of a Newtonian liquid close to a surface and the acceptance of the no-slip boundary
condition was mostly due to the fact that no experimental violations could be found,
i.e., a so-called boundary slip could not be detected.

In recent years, it became possible to perform very well controlled experiments
that have shown a violation of the no-slip boundary condition in sub-micron sized
geometries. Since then, mostly experimental [86, 30, 139, 16, 20, 5, 27, 149, 139], but
also theoretical works [146, 43], as well as computer simulations [130, 3, 23, 136, 140]
have been performed to improve our understanding of boundary slip. The topic is
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of fundamental interest because it has practical consequences in the physical and
engineering sciences as well as for medical and industrial applications. Interestingly,
also for gas flows, often a slip length much larger than expected from classical theory
can be observed. Extensive reviews of the slip phenomenon have recently been
published by Lauga et al. [86], Neto et al. [104], as well as Bocquet and Barrat [12].

The reason for such findings is that the behavior of a fluid close to a solid in-
terface is very complex and involves the interplay of many physical and chemical
properties. These include the wettability of the solid, the shear rate or flow velocity,
the bulk pressure, the surface charge, the surface roughness, as well as impurities and
dissolved gas. Since all those quantities have to be determined very precisely, it is
not surprising that our understanding of the phenomenon is still very unsatisfactory.

A boundary slip is typically quantified by the so-called slip length β – a concept
that was already proposed by Navier in 1823 [101]. He introduced a boundary
condition where the fluid velocity at a surface is proportional to the shear rate at
the surface (at y = y0), i.e.,

ux(y0) = β
∂ux(y)

∂y
. (2.1)

In other words, the slip length β can be defined as the distance from the surface
where the relative flow velocity vanishes.

The substantial scientific research invested in the slip phenomenon has lead to a
more clear picture which can be summarized as follows: one can argue that many
surprising published results were only due to artefacts or misinterpretation of ex-
periments. In general, there seems to be an agreement within the community that
slip lengths larger than a few nanometers can usually be referred to as “apparent
slip” and are often caused by experimental artefacts. However, the understanding
of those artefacts is limited because it involves a large interplay of different param-
eters. Besides this, it is interesting whether such an apparent slip is based on a
physical effect that can be technically used or if it is simply a misinterpretation of
experimental results.

Therefore, it is of importance to perform computer simulations which have the
advantage that most parameters can be changed independently without modifying
anything else. Thus, the influence of every single modification can be studied in
order to present estimates of expected slip lengths or experimental “errors”.

One of the most important deviations between the reality and the idealized
case which is used for the analysis of the experimental data, is surface roughness.
Typically, it is assumed that surface roughness simply increases friction and therefore
decreases any possible slip. However it is still not clear how surface roughness should
be treated in microfluidic setups. This problem becomes more serious when the
surface becomes hydrophobic, since hydrophobicity is known to cause slip [86, 104,
12]. Here, the interplay of roughness can cause so-called super-hydrophobicity, as it
is known in the lotus effect [115]. In this thesis, computer simulations are applied
to investigate the influence of roughness and the influence of the combination of
roughness and hydrophobicity on the slip phenomenon.

The simulation method used to study microfluidic devices has to be chosen care-
fully. While Navier-Stokes solvers are able to cover most problems in fluid dynamics,
they lack the possibility to include the influence of molecular interactions as needed
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to model boundary slip. Molecular dynamics (MD) simulations are the best choice
to simulate the fluid-wall interaction, but the computer power today is not sufficient
to simulate length and time scales necessary to achieve orders of magnitude which
are relevant for experiments. However, boundary slip with a slip length β of the
order of many molecular diameters σ has been studied with molecular dynamics
simulations by various authors [136, 23, 24, 5, 111]. The problem of MD simulations
is that the achievable time- and length scales are very small. Therefore, mesoscopic
simulation methods should be applied to describe phenomena in microfluidics.

This work focuses on numerical investigations of the slip phenomenon by means
of lattice Boltzmann simulations with a strong focus on roughness and the interplay
between roughness and wetting phenomena. To do so, two different slip measurement
methods are simulated. One is to apply a Poiseuille flow between two patterned
boundaries, and to record the flow profile. Then, the profile can be compared to
the theoretical one, which assumes a slip boundary condition. The second method
records the drag force that is acting on a sphere which is moved with a constant
velocity towards the observed surface. Due to the influence of the boundary, the
drag force acting on the sphere is disturbed and a correction function is needed to
describe the measured force. This correction function, which depends on the slip, is
fitted via the slip length towards the recorded force.

The lattice Boltzmann method has to be extended to be able to simulate hy-
drophobic boundaries by means of a repulsive fluid-boundary interaction. Further,
it is necessary to implement a multi-phase model to simulate liquid- and gas phases
in the vicinity of the boundary. Both tasks can be achieved by a Shan-Chen interac-
tion [124, 126]. The next important enhancement is the implementation of moving
objects. Ladd et al. have developed a method to implement this [82]. A detailed
description of the simulation method which is applied here is given in chapter 4.

In chapter 5, fluid flow in the vicinity of rough surfaces is investigated. Here,
different model roughnesses and experimental surfaces are implemented in the sim-
ulation. The roughness is described by means of an effective boundary position that
corresponds to a virtual plane at which the no-slip boundary condition holds. An
important finding is the fact that the effective boundary position mainly depends
on the maximum height of the roughness elements but only to a small extent on the
actual shape or the detailed position of them [74].

An alternative way of investigating boundaries is the measurement of the drag
force acting on a sphere that is approaching a surface. Since the boundary condition
on the surface is changing the fluid flow in its vicinity and thus the drag force created
by the flow around the sphere changes. This effect is utilized in many experiments
where typically a sphere is attached to the cantilever of an atomic force microscope
which approaches a surface [146, 147, 128, 13, 156, 157]. To simulate such a behavior
it is essential to understand the limits of the applied simulation method. Therefore,
detailed studies of finite size and discretization effects in a system of a sphere, which
is approaching a flat surface, are performed in chapter 6 [77]. Further, it is shown
that the results for the slip length β in a Poiseuille flow and a drag force measurement
are equivalent. Therefore, it is possible to utilize the simulation scheme to investigate
other boundary properties as well.

In chapter 7, the findings of chapter 6 are used to investigate the influence of a
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rough surface on the drag force. Here, it is possible to demonstrate that the drag
force shows a different asymptotic behavior when the sphere is approaching a rough
or a slippery surface. A rough surface can be described by an effective boundary
position that leads to a shift of the recorded force curve, while a slip surface requires
a complex correction function [78]. This finding is important because it is not
possible to distinguish a shift or slip in a Poiseuille or Couette flow setup with fixed
separation between the boundaries. However, the question of the correct boundary
condition is fundamental in nature.

After the investigation of rough surfaces the interplay of roughness and hydropho-
bicity is of interest. Here, the focus lies on the flow over so-called super-hydrophobic
surfaces. At these surfaces, a gas bubble is trapped in the asperities of the surface
roughness, leading to a decreased friction. In chapter 8, two super-hydrophobic cells
are presented. In addition, Poiseuille flow over such surfaces is studied and the
preliminary findings are compared to analytical and experimental studies. A good
agreement to experimental data is found considering the flow profiles and the de-
pendence of the slip length on the protrusion angle, which depicts how strongly the
bubble invades into the bulk fluid. Further, a shear dependence of the slip length is
detected due to the deformation of the bubbles trapped in the roughness.

The results show that the roughness has an influence on slip measurements. In
case of a wrongly assumed boundary condition, large apparent slip length could be
measured. Further, the interplay of roughness and hydrophobicity can lead to both,
an increase and a decrease of the apparent slip. Here, future research can be done
applying the presented methods.



Chapter 3

Slip in microfluidic devices

For more than a century the no-slip boundary condition, stating that the velocity
of a fluid close to a solid boundary is equal to the boundary velocity, was assume to
describe fluid flow. Its wide acceptance is founded on the fact that no experimental
violation was found on a macroscopic length scale. To characterize slip in 1823
Navier [101] postulated a slip boundary condition stating that the flow velocity v at
the boundary at x = 0 is proportional to the shear rate and the so-called slip length
β,

v(x = 0) = β
∂v

∂x
|x=0. (3.1)

In the recent years, fluid flow in micro and nano sized geometries has become a
popular research topic. Here, several experiments have been performed that showed
a violation of the no-slip boundary condition, which can be explained by Navier’s
slip boundary condition (or its tensorial generalization [7]). However, typical slip
lengths are found to be less than one µm.

In the following chapter an overview on typical slip experiments is given. Further,
some controversial findings are presented and different dependencies are discussed.
Those contradicting experimental results are the starting point for this thesis. There-
fore, it is necessary to understand the fundamentals of the experimental setups and
possible error sources.

3.1 How slip is detected

In recent years, it became possible to perform very well controlled experiments that
have shown a violation of the no-slip boundary condition in sub-micron sized geome-
tries. Since then, mostly experimental [86, 30, 139, 16, 20, 5, 27, 149, 139], but also
theoretical works [146, 43], as well as computer simulations [130, 3, 23, 136, 140] have
been performed to improve our understanding of boundary slip. However, many re-
sults are contradicting each other concerning the value of slip and the influence of
different parameters. Extensive reviews of slip phenomena have been published re-
cently by Lauga et al. [86], Neto et al. [104], and Bocquet and Barrat [12]. Therefore,
only a short overview on the topic will be given.

In this section the most common experiments, simulations and theories about
boundary slip are discussed. A strong focus lies on the experiments based on force
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measurements, since they are the foundation of this thesis. Then an overview on
possible parameters that have an influence on the slip length β is given and reasons
for the development of slip are discussed.

3.1.1 Double focus cross correlation

LASER

Particles

Detector 1 Detector 2

Computer

Figure 3.1: Cartoon of the cross correlation method. The particles are illuminated
by the foci of two laser beams. By calculating the time cross-correlation function
the velocity between the two foci can be derived.

For the cross correlation method fluorescent particles are brought into the flow.
Typically, a laser beam split into two beams is used to illuminate the particles. The
two beams can be focused at a fixed distance at a fixed location. By having two
beams at a fixed distance it is possible to record every particle that crosses one of
the focal points of the beams. The technique rests in the premise that only a small
number of labeled particles are simultaneously located in an effective focal volume
of the order of 10−15l. Therefore the time cross-correlation can be used to determine
the average time a particle needs to cross the second focus after it crosses the first
one. A time cross-correlation function g2(t) may generally be derived from any two
time-resolved intensities I1(t

′), I2(t
′). It is calculated via

g2(t) =
〈I1(t

′)I2(t
′ + t)〉t′

〈I1(t′)〉t′〈I2(t′)〉t′
,

with 〈...〉t′ denoting the ensemble average for an ergodic system. The quantity In(t′)
is given by the fluorescence intensity detected by focus n at time t′. Typically the
time cross-correlation function exhibits a local maximum tm which is the average
time a particle needs to travel from one focus to the other.

Since the focus of the laser beams can be located very precisely one has an accu-
rate measurement of the flow velocity at a given point [91]. Pit et al. have applied
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the cross correlation method for hexadecan flowing on a hydrocarbon lyophobic
smooth surface, and found a slip length of 400nm [110].Vinogradova et al. refined
the method and determined a slip length for water and NaCl aqueous solution of
less than 100nm which is independent on the shear rate and the salt-concentration,
at a hydrophobic polymer channel. For hydrophilic surfaces no measurable slip was
detected [148] .

3.1.2 Micro particle image velocimetry

A common tool for the measurement of flows is the so-called particle image velocime-
try (PIV). The method is very similar to the cross correlation method, but instead
of just taking into account single events of a particle crossing the focus of a laser
beam, one takes a whole video and correlates the single frames to each other, in a
similar way as described in the section above.

LASER

Particles

Microscope
Camera

Figure 3.2: A cartoon of the PIV method. The particles are illuminated by a laser
and their movement is recorded by a camera through a microscope. The data is
then analysed by a computer by calculating the cross-correlation function between
consecutive frames.

The simplest form of micro-PIV is to illuminate the whole micro-channel under
a microscope and to take an video. The disadvantage of such a setup is that possible
frame rates are low so the correlation is highly disturbed by the Brownian motion of
the particles. Therefore typically the volume is illuminated by two laser pulses with
different wave length. By this, the autocorrelation can be determined on a much
smaller timescale, which reduces the noise.

Tretheway and Meinhart [138, 139] applied micro PIV in hydrophobic glass chan-
nels and measured slip lengths of up to 1µm. However Joseph and Tabeling [67]
found slip lengths of less than 100nm, stating that this is the minimal resolution of
the method, i.e., that it is doubtful whether there is any slip.

Both methods have systematic problems in the measurement of slip in Newtonian
fluids. The basic assumption of the methods is that the particles have the same
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velocity as the fluid and that the particles do not disturb the fluid flow. In case of
simple fluids on a length scale that is not large compared to the particle size those
assumptions might not be valid. Further, the particles might interact directly with
the boundary which influences their velocities.

3.1.3 Flow rates

A less direct method to measure the slip length is to measure the mass flow Q =
∫

ρvdA through a pipe and compare the ratio between the theoretical value QPoiseuille

and the measured one Qβ. Here v is the flow velocity and A is the cross-section of
the pipe. For a circular pipe with radius R the slip length can be calculated via

Qβ

QPoiseuille

= 1 +
4β

R
. (3.2)

Experiments of this kind have been performed by different groups using different
fluids and different channels. An early experiment was performed by Schnell in 1956,
finding a slip length of β = 1...10µm [122]. However, this early experiments suffer
from a lack of accuracy. More recent experiments report slip lengths of 10 − 70nm
[138]. For an overview on slip measurements several reviews have been published
recently [104, 86, 12, 90]. The measurement of the flow rate has several problems.
The first one is that it is hard to exactly measure the parameters that enter the
flow rate like the radius of the channel or the exact pressure drop. The second
drawback of the method is that all deviations to the flow rate automatically result
in a measured slip length. Therefore one obtains no deeper understanding of a
potential slip mechanism.

3.1.4 Force measurement

A very popular way to measure fluid slip is the measurement of the lubrication force
acting on a sphere that is approached towards a surface. Since such experiments are
one of the background of this thesis, a more detailed overview on their theoretical
background is given here.

The main theory was developed by O.I. Vinogradova [149, 150, 147, 146] and is an
extension of the Reynolds lubrication theory adopted for slip surfaces. For simplicity
the derivation concentrates on spherical rigid bodies instead of arbitrarily curved
surfaces as presented in [69]. Additionally the focus lies on the case where a no-slip
boundary condition is applied on one sphere with radius R1 approaching another
sphere with infinite radius R2 (i.e. a flat surface). According to the symmetry a
cylindrical coordinate system (r, θ, Z) is employed, thus the spheres move along the
z-axis. The angular direction θ drops out. The distance between the two surfaces is h
and the approaching velocity is v. The two surfaces can be described by paraboloids:

Z = h +
1

2

r2

R1

+ O(r4)

and

Z = −1

2

r2

R2

+ O(r4)
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By shifting coordinates with z = Z+r2/(2R2) and Re = R1R2/(R1+R2) the surfaces
read as

z = h +
1

2

r2

Re

+ O(r4)

and
z = O(r4).

From the Stokes equation of a fluid with viscosity µ, pressure gradient ∇p and the
fluid velocity of u

µ∇2u = −∇p

we get

µ
∂2ur

∂z2
=

∂p

∂r
(3.3)

when assuming that pressure gradient in z-direction vanishes ∂p
∂z

= 0. This implies
that the pressure is a function of r only. On the lower boundary we now assume a
slip boundary condition with the slip length β, which reads as

uz = 0

and

ur = β
∂ur

∂z
while on the top surface we apply the no-slip boundary condition so we get

uz −
rur

Re

= −v

and
ur = 0.

In the original paper by O.I. Vinogradova [146] an arbitrary slip β1 is assumed but
for simplicity we focus on the case that is applied in this thesis, i.e. β1 = 0. The
solution of Eq. 3.3 with the given boundary conditions reads now as

ur =
1

2µ

∂p

∂r

[

z2 − z
H2

H + β
− βH2

H + β

]

,

where H = h + r2

2Re
. Further, the continuity equation

∂uz

∂z
+

1

r

∂(rur)

∂r
= 0

has to be fulfilled. By integrating we get

v =
1

r

∂

∂r

[(

r
∂p

∂r

)

∂p

2µ

(

H3

3
3 − H4

2(H + β)
− βH3

H + β

)]

which gives us the dependence of the flow field on the constant relative velocity v of
the spheres. Due to this we have obtained a differential equation of the pressure p:

d

dr

(

X−1r
dp

dr

)

= 2µvr (3.4)
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where

X =
6(β + H)

−H3(H + 4β)
.

By integrating Eq. 3.4 two times while assuming p = 0 for r → ∞ and due to the
rotational symmetry dp

dr
= 0 at r = 0 one obtains

p = −3µRev

H2
p∗,

with the dimensionless correction function

p∗ =
1

4
2

H

3β

[

1 − H

4β
ln(1 +

4β

H
)

]

,

The hydrodynamic resistance force F on the upper sphere is now the inverted of the
one acting on the lower surface. Therefore it can be calculated as

Fz = −
∫ ∞

0

(

−p + 2µ
dvz

dz

)

2πr dr.

Since the contribution of the outer region can be neglected one concludes that the
pressure term is dominant and one ends up with

Fz = −6πR2
eµv

h
f ∗ (3.5)

where

f ∗ =
1

4

(

1 + 6
h

4β

[(

1 +
h

4β

)

ln

(

1 +
4β

h

)

− 1

])

. (3.6)

In the case of a flat lower surface, as discussed above, Re will become the radius of
the upper sphere R. The force is valid for small distances h and slow approaching
velocities v. Eq. 3.5 is widely used in experiments, but here some corrections have
to be applied, due to deviations from the ideal case. Such deviations include the
acceleration of the sphere due to surface forces, or the drag force of the cantilever.

A typical experimental setup is shown in Fig. 3.3. On the cantilever of an atomic
force microscope (AFM) or a surface force apparatus (SFA) a silicon sphere is at-
tached. Then the surface is approached towards the sphere while the distance and
the force are recorded and compared with Eq. 3.5 using the slip length β in f ∗ as a
fit parameter.
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Figure 3.3: Typical setup of an AFM-based slip experiment. The lower surface is
approached towards the silicon sphere attached to the cantilever of the AFM.

Several authors used this method to investigate slip phenomena but ended up
with different results, like slip length varying from a few nm up to 2.5µm [156,
157, 158, 140, 24, 25, 30, 103, 17]. Additionally there was a strong argument about
whether the slip length depends on the shear rate or not. Craig et al. published
several articles about shear dependent slip [30, 103, 104], but there was no further
evidence like computer simulations for their findings and the shear dependency could
not be reproduced with a different setup. Later it was argued that the shear de-
pendency is an experimental artefact from a torsion of the cantilever that appears
only with a specific cantilever setup [151]. Further, problems in such experiments
appear due to the simplifications that have to be made in the theory. Those in-
clude the constant and small velocity and perfectly smooth surfaces. Therefore the
experimental data has to be processed. For example due to the van der Waals inter-
action between the sphere and the surface the velocity and the force itself has to be
adopted. Further the exact boundary shape and position is unknown what requires
separate measurements which do not include the actual surface properties at the
point of contact, i.g. between the slip measurement and the surface measurement,
impurities might settle on the surface.

3.2 Reasons for boundary slip

Generally, the slip length β is just a mesoscopic parameter, meaning it includes
a variety of microscopic effects like wetting, surface roughness, or surface charge.
In this section different causes and different “types” of slip are discussed. Their
dependences on different parameters is shown.
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a) b) c)

β

Figure 3.4: Depiction of the slip length β. The scatches show: intrinsic (or molecu-
lar) slip (a), apparent slip (b), and no-slip (c).

Slip can be categorized into intrinsic slip and apparent slip as depicted in Fig. 3.4.
Intrinsic (or molecular) slip means that the fluid has a non-zero velocity at the
boundary, down to molecular resolution. Apparent slip means that there is a layer
in which the effective viscosity of the fluid is reduced and therefore the fluid velocity
increases stronger than it does in the bulk. When the whole velocity field is observed,
this increased velocity appears as slip. Usually the low viscosity layer is so small that
it is below the spatial resolution of the experiment. In this case it is not possible to
distinguish between both kinds. Further, the concept of slip is a continuum model,
which has its basis on the molecular scale. This means that a possible reduction
of the friction between the liquid and the solid boundary or the reduction of the
viscosity takes place on a molecular length scale. However the slip length assumes
a continuum velocity close to the boundary which makes it necessary to be in the
hydrodynamic limit. Thus in case the low viscosity layer is in the range of a few
molecular diameters one cannot apply a continuum approximation for this layer and
therefore a distinction between the two types is not only an experimental problem
but as well a theoretical one. An additional problem is the fact that the slip length
is always coupled with the position of the boundary. In most experiments it is not
possible to distinguish between slip and a shift of the boundary position. Therefore,
all measured slip is just a mesoscopic effective slip.

Besides the question of what kind of slip one is looking at, there are different
theories about the origin of the detected slip. For gases, Maxwell [96] postulated
that a molecule will be reflected with the probability (1 − p) while it inelastically
collides with the probability p. The mean free path for a single molecule with the
effective cross section σ in a gas of density ρ is lm ≈ 1/(

√
2πσ2ρ). With this one can

calculate a slip length as

β =
2 − p

3p
lm. (3.7)

This is a classical example of slip in rarefied gases. But for liquids this assumption
cannot be applied, since the mean free path is not well defined.

Another classical example of slip occurs in non Newtonian liquids. The reason
for this is either shear thinning or shear thickening which leads to a slip effect due
to the shear forces near the boundary. In polymer solutions depletion layers occur.
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Here, the polymers are not entering an area close to the boundary[152]. Since the
solution has a higher viscosity than the solvent, apparent slip occurs [49].

The most simple explanation of slip is the low friction between the boundary
and the fluid molecules, compared with the inner friction of the liquid [83]. Reasons
might be repulsive forces between the fluid and the boundary, like at hydrophobic
boundaries. However, this effect is small since other effects like the surface roughness
generally increase the friction so it is questionable whether the low molecular friction
overcompensates this unless there is a mechanism that creates more slip due to
roughness. The surface-fluid interaction that causes the slip might be increased by
the roughness due to the larger total surface.

One way to decrease the friction is the formation of nano-bubbles. They are
either formed by solved gas or vapor that forms bubbles in pockets created by the
surface roughness. Since the viscosity of the gas inside the bubbles is very low the
fluid will slide over this film of bubbles [43, 142]. Specially designed surfaces can be
produced to create gas or vapor bubbles. Such surfaces show a very large contact
angle and therefore are called super-hydrophobic surfaces which will be discussed
later. A way to create such surfaces is the deposition of carbon nanotubes to form
so-called carbon nanotube forests [25, 66, 26]. Another possible geometry are grooves
that are filled with vapor [142].

In the case that the surface roughness is of the same order of magnitude as the
size of the fluid molecules the molecules get trapped inside the roughness, but in
the case where the molecules are significantly larger, they will just roll over the
roughness. In consequence the friction is reduced and slip occurs. This effect is
known for friction of solid state bodies [73] and MD simulations came to similar
conclusions [39, 40].

Another phenomenon in a fluid near a solid surface is the ordering of the fluid
molecules according to the crystal structure of the solid boundary. Due to this
ordered fluid layers are formed which can slide over each other with reduced fric-
tion [132, 120].

Due to the variety of different effects that influence the surface-fluid interaction
and therefore the slip length, one observes a significant dispersion of the results for
almost similar systems [86, 104]. For example, observed slip lengths vary between a
few nanometers [21] and micrometers [139] and while some authors find a dependence
of the slip on the flow velocity or shear rate [20, 156, 30], others do not [16, 139].

However, the substantial scientific research during the past few years allows to
draw a clearer picture that can be summarized as follows: many surprising results
published were only due to artifacts or misinterpretation of experiments. In general
there seems to be an agreement within the scientific community that slip lengths in
simple fluids larger than ”a few nanometers” can usually be referred to as apparent
slip and are often caused by experimental artefacts. Small slip length are even harder
to determine experimentally and require sophisticated methods like the presented
AFM measurements or well controlled micro PIV experiments.

Extensive reviews of the slip phenomenon have recently been published by Lauga
et al. [86], Neto et al. [104], as well as Bocquet and Barrat [12]. This brief intro-
duction to the topic should give a sufficient overview for this thesis while a deeper
insight is given by the cited literature.
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3.3 Surface roughness

One important parameter entering the slip length β is the surface roughness that
cannot be neglected if the height of the roughness is of the same magnitude as typical
length scales of the system. The influence of roughness on β has been investigated
by numerous authors. The first idea is that roughness leads to higher drag forces
and thus to no-slip on macroscopic scales. Richardson showed analytically that
when looking on a no-shear (full-slip) surface with a periodic roughness a significant
drag force arises that leads to a finite slip length and in the continuum limit to
no-slip [114].

Panzer et al. calculated the slip length β analytically for Poiseuille flow with
rough walls by performing a Fourier expansion of the streaming function Ψ con-
taining the solution of the Navier-Stokes equations in the laminar case [108]. Ψ is
obtained by a Fourier expansion of the boundary surface and of the pressure field
and its solution contains information of an effective boundary. The problem of such
an approach is that it works only for small wave numbers. One would have to take
into account an infinite number of terms to achieve a result for arbitrary geometries.
Panzer et al. gave an analytical equation for β in the case of small cosine-shaped
surface variations [108]. It is applicable to two infinite planes separated by a distance
2d being much larger than the highest peaks rmax. Surface variations are determined
by peaks of height rmax, valleys at rmin = 0 and given by r(z) = rmax

2
+ rmax

2
cos(qz).

Here, q is the wave number. Since the surfaces are separated by a large distance, the
calculated slip length is equal to the negative effective boundary reff that is found
to be

reff = −β =
rmax

2

(

1 + k
1 − 1

4
k2 + 19

64
k4 + O(k6)

1 + k2(1 − 1
2
k2) + O(k6)

)

. (3.8)

The first and k-independent term shows the linear behavior of the effective height
reff on the average roughness Ra = rmax/2. Higher order terms cannot easily be
calculated analytically and are neglected. Thus, Eq. 5.2 is valid only for k = qrmax

2
≪

1. However, for realistic surfaces, k can become substantially larger than 1 causing
the theoretical approach to fail. This shows that for flow over a rough surface one has
either to assume an effective boundary position inside the boundary or to describe
the flow by a slip boundary condition.

Lecoq and coworkers [88] performed experiments with well defined roughness,
and developed a theory to predict the position of the effective boundary. For the
experiments they utilised a laser interferometer to measure the trajectory of a col-
loidal sphere and thereby determined the lubrication force and an effective boundary
position. The used geometry consists of grooves with a triangular profile. For a the-
oretical description the boundary is expressed in a Fourier series that gives the
boundary condition for the Laplace equation. From this an effective boundary can
be derived by a fast converging series. The approach is very similar to the theory
of Panzer et al. and only varies in details and in the investigated surface, i.e., the
shape being triangular instead of sinusoidal.

However, an analytical description of the flow near an arbitrarily rough surface
is not possible [83]. The reason is that the surface has to be expressed in an expan-
sion that enters the covering flow equations but the higher orders of the expansion
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cannot be neglected in an arbitrary geometry. Thus, the correct boundary condition
is unknown. Therefore in classical boundary layer theory the usage of the ”sand
equivalent” is still in use [119]. This means that a rough surface is compared to a
surface with sand of different grain sizes glued on it.

Besides the obvious creation of friction there are some cases were roughness leads
to a slip effect. Jansons has shown analytically that even few perturbations on flat
surfaces lead to mesoscopic slip [64]. This was experimentally demonstrated by
McHale and Newton [98]. Jabbarzadeh et al. performed molecular dynamics (MD)
simulations of Couette flow between sinusoidal walls and found that slip appears for
roughness amplitudes smaller than the molecular length scale [63]. Also, it can cause
pockets formed by the corrugations of the surface, to be filled with vapor or gas nano-
bubbles leading to apparent slip [33, 66]. Molecular dynamics simulations (MD)
have been applied to investigate roughness as well [154, 1]. Recently, Sbragaglia
et al. applied the LB method to simulate fluids in the vicinity of microstructured
hydrophobic surfaces [117] and Varnik et al. showed that even in small geometries
rough channel surfaces can cause flow to become turbulent [144].

3.4 Super-hydrophobic surfaces

In recent years specially designed surfaces have become popular. In the context
of fluid dynamics and with a special focus on slip phenomena so-called super-
hydrophobic surfaces are of great interest. A review of the topic was written by
Rothstein [115].

3.4.1 Hydrophobic surfaces

When talking about wettability, one typically assumes a liquid drop on a solid sur-
face surrounded by vapor. The wettability of a surface is defined by the spreading
coefficient S = γSV − γLV − γLS where γSV , γLV , and γLS are the solid-vapor, liquid-
vapour, and liquid-solid interfacial tensions. For spreading coefficients greater than
zero S > 0, the solid is fully wetted by the liquid whereas for S < 0, the solid is only
partly wetted by the liquid, which forms a spherical end cap with an equilibrium
contact angle θ defined by Young’s law as [155]

θ = cos−1 γSV − γLS

γLV

.

For surfaces with contact angle θ < 90◦ the surface is considered hydrophilic, whereas
θ > 90◦ is called hydrophobic as depicted in Fig. 3.5. However, this applies only
to the equilibrium contact angle. Due to surface roughness and other effects like
chemical heterogenity a variety of contact angles is possible, depending on the actual
wetted parts of the surface on the micro scale or in other words it depends on the
“history” of the wetting process. This non-uniqueness of the contact angle is known
as contact angle hysteresis [41].
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Figure 3.5: A liquid drop on a surface forms a contact angle θ with the surface.
For θ > 90◦ the surface is considered as hydrophobic (a), whereas θ < 90◦ is called
hydrophilic (b).

The influence of the wettability on the slip was investigated by various authors.
Results showed, that hydrophobicity can cause slip lengths much larger than the
mean free path. Thompson and Trojan [137] performed molecular dynamics (MD)
simulations and found a nonlinear increase of the slip velocity at large (unphysical)
shear rates and that the slip length diverges at a critical shear rate. Barrat and
Bocquet [3, 10, 11] showed that the slip length can be larger than 40 molecular
diameters in the linear (shear independent) regime that corresponds to experimental
shear rates. The slip results from a liquid depletion layer near the wall. Within this
layer, the density and thus the viscosity are decreased resulting in a large apparent
slip. However, the possible slip length that can be achieved by plane hydrophobic
surfaces is limited to some tens of nanometers and for a stronger effect some surface
structure is needed.

3.4.2 Rough and hydrophobic surfaces

Super-hydrophobic surfaces were originally inspired by the strong water repellent
properties of the Lotus leaf [4]. Barthlott and Neinhuis stated that a very large
contact angle and a small contact angle hysteresis is responsible for the efficient
self cleaning behavior of the plant’s leaf and called this behavior super-hydrophobic.
Due to the small hysteresis a drop becomes unstable to small perturbations on the
surface and starts to roll over it.

Synthetic super-hydrophobic surfaces have been created recently by a variety of
groups. They achieve a contact angle of nearly 180◦ with little to no measurable con-
tact angle hysteresis. The difference between a hydrophobic and a super-hydrophobic
surface lies not in the surface chemistry but in the surface structure or its topology.
As an example the Lotus leaf has micrometer sized protrusions that are covered with
hydrophobic wax.

One distinguishes between two different states that characterize a hydrophobic
rough surface. The first one is the Wenzel state [153] in which all surface asperities
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are covered with fluid. Since the total surface is larger than the projected surface
area, the hydrophobicity is increased. Compared to the equilibrium contact angle θ
the contact angle in the Wenzel state is given by

cos θW = c · cos θ,

with c being a roughness parameter that can be calculated in the case of a periodic
array of posts like in Fig. 3.6, as c = 1 + 4φsr/d, where φs = d2

(d+w)2
is the fraction

of surfaces covered with posts. In the Wenzel state the contact line is pinned to the
roughness and therefore the contact angle hysteresis is relatively high.

r

d
w

water

air

b)a)

Figure 3.6: Cartoon of a) the Wenzel state and b) the Cassie-Baxter or fakir state.
In the Wenzel state the fluid enters the volume w between the posts of hight r and
thickness d. In the Cassie-Baxter state the fluid is not allowed to enter this free
volume and sits on top of the asperities.

The second case is the so-called Cassie-Baxter state [15]. In this case, the dimples
formed by the surface roughness are filled with vapor or solved gas and the fluid
does not invade into them. Since the fluid sits on top of the roughness peaks like
a fakir on a bed of nails another common name of this state is “fakir state”. Here
the equilibrium contact angle θC is increased by the fraction of air-water interface
(1 − φs) so that it is given by

cos θC = −1 + φs(1 + cos θ).

Since the contact line is only pinned to the solid pins the contact angle hysteresis is
small. Due to those properties commonly only the Cassie-Baxter state is called (true)
super-hydrophobic. To maximize the effect the fraction of posts-covered surface
should be reduced. This leads to a practical limit since there is a maximum pressure
that can be sustained by the liquid-air interface before the liquid enters the free
space and the system drops into the Wenzel state.

Another interesting case that would lie in between the two possible states is one
where a less viscous liquid is attracted to the surface. Here the dimples would not
be filled with gas but still the friction is decreased. A possible realization would be
a light oil and water solution at a hydrophobic rough boundary or a polydisperse
polymer melt, where the lighter molecules are repelled less by the surface [6].

3.4.3 Slip on super-hydrophobic surfaces

As reported in the previous sections slip occurs on hydrophobic surfaces. Therefore,
it is not surprising that super-hydrophobic surfaces should show large slip lengths.
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The reason for a large slip-length in the fakir state is easy to understand. While on
the solid parts a no-slip condition can be applied, the gas filled parts of the surface
are in good approximation shear free. As example, the viscosity (and therefore the
friction) of water µwater is about a thousand times the viscosity of air. Therefore, a
model for slip over super-hydrophobic surfaces is a surface pattern consisting of no-
slip and no-shear (full-slip) areas. Theoretical studies have been performed on such
a system by several authors [109, 87, 118]. Philip was the first who assumed such
a model for the flow over a porous media that can be seen as a super-hydrophobic
surface as well [109]. He calculated an effective slip length βeff by assuming longi-
tudinal and transversal stripes. Based on this, Lauga et al. improved the model
to arbitrary stripes [87]. Feuillebois et al. concentrated on the limit of arbitrarily
shaped but infinitely small elements which are more relevant since this is the case
where the surface texture cannot be resolved by the experiment, and one assumes
an averaged boundary condition [37]. They found that the main parameter is the
fraction of no-slip to no-shear surface and not a shape parameter. Therefore, to ob-
tain large slip lengths one needs to create a pattern that needs less supporting poles
to stay in the Cassie-Baxter state. Due to the non trivial description of most surface
patterns an analytical description is hard to realize and numerical methods should
be applied. Classical CFD methods have been used to solve the flow field near a
no-slip / full-slip patterned surface [97]. Besides the analysis of no-slip/ no-shear
surfaces classical CFD methods are not able to model the underlying physics of the
slip phenomenon.

For a more detailed and deeper understanding of the super-hydrophobic phe-
nomena simulations on the molecular scale are needed. Cottin-Bizone et al. applied
molecular dynamics simulations, were able to create a fakir State, and showed that
the friction is dramatically reduced [25, 24].

Since the typical length- and time-scales of MD simulations are very short, it is
helpful not to simulate the complete atomistic behavior but rather do a coarse-grain
modeling and use so-called mesoscopic simulation methods as described in detail
in chapter 4. Sbragaglia et al. used the lattice Boltzmann method to investigate
a model with repulsive boundaries to create a low density layer and showed that
such a model is able to simulate a drag reduction and an increased flow rate [117].
Hyväluoma and Harting used a similar method and investigate the slip length of a
surface with bubbles trapped to holes in the surface. Further they showed that the
deformation of the bubble due to shear has a great influence on the slip length [59].

Experimentally, there are only a few works that have measured slip on super-
hydrophobic surfaces [107, 66]. Ou et al. used a series of lithographically etched
and silanized grooves on a silicon surface. In a pressure driven flow they mea-
sured a drag reduction of up to 40% compared to the no-slip case, applying flow
rate measurements and micro PIV. The corresponding slip length would be 25µm.
Joseph et al. created a super-hydrophobic surface by deposing carbon nano tubes
on a silicon substrate and measured the slip length with micro PIV. They found
a slip length of a few microns in the Cassie-Baxter state that scales linearly with
the characteristic roughness length, while the slip vanishes in the Wenzel state [66].
A number of more recent experiments have extended these results to a variety of
super-hydrophobic surface designs and flow geometries [18, 19, 141]. Some of these
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studies have moved towards super-hydrophobic surfaces with nanometer-sized fea-
tures. Choi et al. studied a super-hydrophobic surface created using Teflon-coated
nanogrooves with 60nm wide ridges spaced 180nm apart. They used a specially
designed flow meter to measure differences in the throughput of a microfluidic de-
vice between smooth and super-hydrophobic surfaces and infer slip lengths. A slip
length of roughly β ≈ 140nm was found for flow parallel to the ridge direction
and roughly half that length for flow transverse to the ridge direction. Choi and
Kim created needle-like structures on a silicon wafer using the deposition of carbon
nanotubes [18]. The resulting carbon-nanotube forest consisted of 1 to 2 nm tall
nanoposts spaced 500nm to 1µm apart, which were coated with Teflon to make the
surface hydrophobic. They measured drag reduction using a cone-and-plate rheome-
ter. Slip lengths of approximately β ≈ 20µm and β ≈ 50µm were determined for
water and for glycerin, respectively.

Resume

To conclude this chapter it can be said that the field of microfluidics provides a vari-
ety of interesting physical phenomena that are hard to describe by analytic theories.
The experimental results about slip phenomena have been discussed controversially
which made a common understanding hard to achieve. However, in the past few
years the effect of hydrophobicity on the flow past smooth surfaces is reasonably
clear. Despite some remaining controversies in the data and amount of slip (cf. [86]),
a concept of hydrophobic slippage is now widely accepted. For rough hydrophilic
surfaces the situation is much less clear, and opposite experimental conclusions have
been made. Computer simulations can help do draw a clearer picture of slip phe-
nomena. However, the simulation method has to be chosen carefully. Classical CFD
methods need a founded analytical theory to model sub-continuum effects. Since
such a theory is missing they are less helpful in the case of micro-fluidic slip phe-
nomena. Molecular dynamics has the advantage that it can utilize first principles
but suffers of a large computational effort. Therefore, the time and length scales one
can achieve by this method are too small. A possible way to approach the problem
are so-called mesoscopic methods as described in the next chapter.
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Chapter 4

Simulation method

As explained in the previous chapter, microfluidic experiments have a large vari-
ety of parameters that might influence the results. Mostly these parameters such
as viscosity, surface roughness, and wettability influence each other or cannot be
varied independently. Therefore, computer simulations can help to gain a deeper
understanding of the phenomena in microfluidic systems, since here all parameters
are known and can be well controlled. But still, for the simulation of microfluidic
systems and the fluid-surface interaction the simulation method has to be chosen
carefully. The challenge is to cover the molecular interaction and still be able to
resolve the flow field and relevant time scales.

The latter could be achieved easily by classical Navier-Stokes solvers like finite
volume or finite difference methods [113]. The problem lies here in the modeling of
the fluid-wall interaction. It would be possible to implement a slip boundary condi-
tion but in this case the slip length β would just enter as a free parameter without
any deeper physical meaning. Further, surface roughness would just be modeled
by an effective boundary or require a very sophisticated mes refinement, thus the
computational advantage is gone. Sophisticated models are implemented in case of
turbulence, like perturbation is added to the flow field close to the boundary. To
model the physical origin of surface effects, other simulation methods are needed.
In this chapter, an overview on simulation methods like molecular dynamics simula-
tions (MD), stochastic rotation dynamics (SRD), and dissipative particles dynamics
(DPD) is given, followed by a description of the Lattice Boltzmann (LB) method
which is used in this thesis, including a deeper insight into the used simulation
technique and its theoretical foundation.

4.1 Molecular dynamics simulations and mesoscopic

methods

4.1.1 Molecular dynamics simulations

Molecular-dynamics (MD) simulations are simulating the dynamics of single molecules
or even atoms. It is a very well grounded type of simulation, since all information
entering the method are Newtons equations of motion and the usually pairwise po-

33
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tential between the molecules. However, the latter has some pitfalls because the
potentials have to be derived from measurements or other principles. Since MD-
simulations are described well in the literature [2, 38] and are not in the focus of
this thesis they will be described here just briefly.

The basis for MD-simulations are Newton’s equations of motion

mi

d2ri

dt2
= Fij, (4.1)

which have to be solved for every particle i at every time-step δt. Here, ri is the
position of the i-th particle, mi its mass and Fi,j is the force between the i-th and j-th
particle plus possible external forces. Note that this includes already the assumption
that only two-body interactions between particles have to be taken into account. In
the case of strong dipolar molecules one would need multi-body interactions, and
additional descriptions are necessary. Then, the Newton equations of motion are
integrated numerically over the time-step δt. A commonly used integration method
is the velocity Verlet algorithm. The velocity Verlet algorithm reduces the level of
errors introduced into the integration by calculating the position and velocity at
the next time step from the positions and velocity at the previous and current time
steps:

r(t + δt) = r(t) + v(t) δt +
1

2
a(t)(δt)2 v(t + ∆t) = v(t) +

a(t) + a(t + δt)

2
δt (4.2)

with a = F

m
being the acceleration of the particle. The standard implementation

scheme of this algorithm is:

• Calculate: r(t + δt) = r(t) + v(t)δt + 1
2
a(t)(δt)2

• Calculate: v(t + δt
2
) = v(t) + a(t)δt

2

• Derive: a(t + ∆t) from the interaction potential.

• Calculate:v(t + δt) = v(t + δt
2
) + a(t+∆t)δt

2

A common interaction potential is the Lennard-Jones potential [65].

Vi,j = ǫ





(

σ

ri,j

)12

−
(

σ

ri,j

)6


 . (4.3)

ri,j is the distance between the molecules, σ indicates the size of the molecules and
ǫ the energy scale. The potential consists of a very small short range r−12

i,j repulsive
term and a long range attractive r−6

i,j term. It is used due to its simplicity and its
capability to be fitted to real molecular interaction potentials. Other potentials are
the Yukawa potential, which has an exponential form but is missing the repulsive
part. A very simple model is the hard sphere potential, where the potential is infinity
when the spheres overlap, and zero otherwise.

Since one potentially needs to take into account the interaction with all particles,
the calculation of the potential is the most computer time consuming part of the
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MD simulation. Here, several methods like the linked-cell or neighbor-list algorithm
have been introduced to reduce the computer power needed, but all of them require a
truncation of the potential in order to minimise the amount of particles that have to
be taken into account. Besides this the number of molecules that can be simulated is
limited due to the available memory. The time scale of MD-simulations is typically
very short because the time step δt has to be small. Typical length and time scales
of MD simulations are below µm and nm.

To overcome these problems, so called mesoscopic models have been invented
to achieve larger length scales without giving up the molecular foundation of the
theory. Here, the trajectory of every single molecule is not modeled in detail but
the molecular ensemble as a whole is modeled.

4.1.2 Dissipative particle dynamics

A very common method that follows the idea of simulating a molecular ensemble
is the so called dissipative particle dynamics (DPD). It was introduced by Hooger-
brugge and Koelmann [58]. It is based on the idea that a simulation particle does
not represent a single molecule but rather a whole group of them. The representative
particles move during a time-step according to their momentum. After this, in the
collision step, the particle i changes its momentum pi according to

ṗi =
∑

j 6=i

FC
i,j +

∑

j 6=i

FD
i,j +

∑

j 6=i

FR
i,j. (4.4)

Here FC
i,j stands for the momentum transfer during collisions between particle i and j.

The thermal fluctuations are represented by the random interaction term FR
i,j , while

FD
i,j represents dissipative terms due to viscous effects within the molecule group that

is represented by the representative particle. However, to obtain a correct ensemble
several conditions of the interactions have to be fulfilled as it was introduced by
Español and Warren [36]. Conditions are isotropy and Galilean -invariance. Further,
the random forces should have a vanishing time average and must not be correlated
in time.

Since the method is very close to a molecular dynamics simulation it is possible
without much programming effort to transform an existing MD-simulation package
into a DPD-simulation. Further, it is no problem to introduce different species
of fluid particles to simulate multi component flow (like oil and water). For this
Español [28], Marsh and Coveney [94] developed an H-theorem and the method
was successfully used by Coveney and Novik to simulate phase separation in shear
flow [29].

Besides its good theoretical foundation and its easy implementation based on
an existing MD-code, DPD intrinsically creates thermal noise. Further, it is not
able to cover larger volumes since the number of particles is limited as it is in
MD codes because one still needs to store a large amount of information for every
particle and needs to take into account every particle-particle interaction which is
computationally costly.
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4.1.3 Stochastic rotation dynamics

The high computational costs of the collisions in the DPD lead to the idea of a way
to simplify them with an easier collision rule. Malevantes and Kapral developed the
method [92, 93] that is known under many names like stochastic rotation dynamics,
real-coded lattice gas, discrete simulation automation or multi-particle-collision dy-
namics. The method uses a simplification idea that is based on the assumption of
the Navier Stokes equation of local conservation of mass and momentum. Instead of
calculating all collisions of all particles one rather assumes an interaction between
them that conserves local mass and momentum but is fast to calculate. As in DPD
a particle does not represent a single molecule but a whole ensemble, that has the
same momentum. During the streaming step they move freely. The collision is real-
ized by discretizing the simulated volume onto a lattice. Then, in every lattice box
the center of mass velocity of all particles in the box is calculated and subtracted
from each particle in the box. After this the momentum vectors are rotated by a
random angle and finally the center of mass velocity is added again. By this the local
momentum is conserved and on average the rotation of the velocity vectors results
in the same as real collisions between particles. Due to the simplified collision one
is able to simulate much larger volumes.

By using different rotations for each species it is possible to introduce a phase sep-
aration between those species [50]. Further, amphiphiles could be implemented [116].
Hecht et al. developed a model to simulate charged particles in a solution of SRD-
fluid taking into account the DLVO potential of the particles and the hydrodynamic
coupling [55, 53, 54].

The problem of the method is that due to the strong simplification of the col-
lision some fundamental physical properties might be violated. In general due to
the underlying lattice structure the method is not Galilei invariant, which can be
overcome by a random translation of the lattice during every time-step [60, 61]. An
intrinsic drawback of the method is that thermal fluctuations cannot be switched
off if they are not desired. Further, to obtain averaged values, a good statistics is
needed which is computationally costly.

4.2 The lattice Boltzmann method

During the last decade the lattice Boltzmann method (LBM) became a fast growing
field of computational fluid dynamics (CFD). Due to its nature it is able to cover
conventional CFD problems but can be adapted for high Knudsen-number Kn > 0.1
flow, simulate flow in porous media, and multiphase flow.

In this section the lattice Boltzmann method (LB) which is used for the simula-
tions in this thesis is presented. The method is described in more detail beginning
with the fundamentals of the method, and basic additions for boundary conditions,
multiphase flow and suspensions with a strong focus on the models that are used
for this thesis. Besides the used schemes an overview on alternative implementa-
tions is given as well. For more details the reader is recommended to the cited
literature [129, 131].
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4.2.1 The Boltzmann equation

The fundamentals of the lattice Boltzmann method is the kinetic Boltzmann equa-
tion which is well described in textbooks [123]. It is based on the evolution of the
single particle distribution function η(x,v, t). This function indicates how many
particles are present at a point in space x with the velocity v at time t. During the
time dt the particles will now move according to their velocities to the new location
x∗ = x + vdt. In case of external forces f the velocity of the particles will change as
well to v∗ = v+mfdt, with m being the mass of a particle. Without particle-particle
collisions they would just move on like

[

η(x + vdt,v +
1

m
fdt, t + dt) − η(x,v, t)

]

d3xd3v = 0,

but due to intermolecular collisions the particle distribution function η changes. This
change can be described by a collision Operator Ω that represents the number of
particles that enter or leave the given phase space volume so the Boltzmann equation
reads as

[

η(x + vdt,v +
1

m
fdt, t + dt) − η(x,v, t)

]

d3xd3v = Ω. (4.5)

The problem to solve is how the collision operator Ω has to be constructed. Here, it
can be mentioned that Boltzmann himself could not solve this problem. However,
he proposed the following thoughts that illustrate the problem.

Ω is the number of particles that enter or leave the phase space volume µ =
[x,x + dx];[v,v + dv]. Following assumptions are used: Every collision results in
either a particle entering or leaving µ. Further, particles only collide with particles
outside of µ or particles from outside µ are collide into µ. W (v,v2,v3,v4) gives
the probability that two particles with velocity v and v2 collide and end up with
the velocities v3 and v4 while all velocities except v are outside µ. Therefore, the
number of particles lost during a time step is W (v,v2,v3,v4) and due to symmetry
the number of particles added to µ is W (v3,v4,v2,v) = W (v,v2,v3,v4). Taking
into account the fact that W is proportional to the number of particles with the
relevant velocity η(vi) one ends up with

[∂η
∂t

+ v∇x + 1
m
f(x)∇v]η(x,v, t) = (4.6)

∫

d3v2

∫

d3v3

∫

d3v4W (v,v2,v3,v4) [η(x,v3, t)η(x,v4, t) − η(x,v2, t)η(x,v, t)]

which is a non-linear integrodifferential equation.
Since the Boltzmann equation (4.6) cannot be solved analytically, different ap-

proximations have been proposed to find solutions like the one by P.L. Bhatnagar,
E.P. Gross und M. Krook [9]. Their idea was that the system relaxes towards a
local equilibrium distribution ηeq(x,v). Further, it can be assumed that in case the
system is not far from this equilibrium it will relax with a single relaxation rate 1/τ .
Thus, the Boltzmann equation with BGK collision operator reads as

[

∂η

∂t
+ v∇x +

1

m
f(x)∇v

]

η(x,v, t) =
η(x,v, t) − ηeq

τ
. (4.7)
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Here, it should be noted that one can now ”choose” the equilibrium function in
order to obtain the desired physical properties. However, one needs to fulfill some
requirements such as isotropy and conservation of mass and momentum. Usually,
the Maxwell distribution or some expansions of it are used. By performing a Chap-
man Enskog procedure it is possible to show that such a model reproduces the
Navier-Stokes equation if one looks at the moments of the single particle distribu-
tion function η such as mass and momentum.

4.2.2 Concept of lattice Boltzmann

The core concept of the lattice Boltzmann method is to discretize the Boltzmann
equation in time, velocity- and real space [99]. This means instead of having infinitely
small phase space elements µ one takes into account the single particle distribution
function η(xj, ci, t) only on a lattice site xj, with velocities ci that point to the
nearest and next-nearest neighbors. The lattice Boltzmann equation [129] then
reads as

η(x + ci, ci, t + δt) − η(x, ci, t) = Ω. (4.8)

In the implementation used, the position x is discretized on a 3D cubic lattice with
19 discrete velocities ci, i = 0, ..., 18 pointing from a lattice node to its 18 neighbours
and to itself (D3Q19). In two dimensions a D2Q9 model is commonly used. Since it
can be drawn on a paper, such a model is used here to illustrate some parts of the
used model, leaving the extension to three dimensions to the reader. Fig 4.1 shows
the two lattice types. Other lattice types in two and three dimensions can be used as
well but will not be discussed here. The article of Qian et al. provides an overview
on different lattice schemes [112]. In his notation that is widely used in the context
of lattice Boltzmann the D indicates the dimension and the Q the number of used
velocities ci. The choice of the lattice has an impact on several quantities like the
speed of sound cs. Taking less velocities into account decreases the computational
costs but computational artefacts due to the lattice nature become more severe,
since certain directions might be favored, violating Galilei invariance.

The left hand side of equation (4.8) represents the advection of the particles,
i.e., the population η(x, ci, t) moves during a time-step δt along its velocity ci to the
neighboring lattice point x + ciδt. Commonly, the time step is set to δt = 1 so it is
only needed for dimensional reasons and is left out very often.

The collision operator Ω represents inter-molecular interactions, i.e., collisions
between molecules that lead to a redistribution of η(x, ci, t). This redistribution
relaxes the single particle distribution function η towards a local equilibrium ηeq,
while it conserves mass and momentum. The actual shape of the collision operator
Ω can differ in the way how the equilibrium distribution ηeq is calculated or how the
actual relaxation is realized. For a more detailed overview of the method the reader
is referred to the literature [129, 131, 82, 45, 44, 34, 80] thus the focus lies on the
two simulation codes which are actually used for this thesis.

The first code as it is used for the simulations in chapter 5 uses an BGK (or
single relaxation time) collision operator, similar to the Eq. 4.7. The equilibrium
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Figure 4.1: A D3Q19 lattice as it is used in the presented simulation and a D2Q9
lattice that is used for illustration. The arrows depict the 18 or 8 velocity vectors that
are pointing to the nearest and next nearest neighbors. Note that a large fraction
of the particles does not move and therefore an additional 0-velocity is needed.

distribution function is given by

ηeq
i = ζiη

[

1 + ci·u
c2s

+ (ci·u)2

2c4s
− u2

2c2s
+ (ci·u)3

6c6s
− u2(ci·u)

2c4s

]

, (4.9)

which is a polynomial expansion of the Maxwell distribution. cs = 1/
√

3 is the speed
of sound for the D3Q19 lattice, u(x, t) is the macroscopic velocity of the fluid. The
second code uses a multi relaxation time collision operator as it is described in the
following section.

4.2.3 Multi relaxation time approach and macroscopic val-
ues

The implementation used for the particle driven simulations originates to A. Ladd [82,
80]. It uses a multi relaxation time LB approach, where every moment of the distri-
bution function relaxes with its own relaxation rate τm towards the local equilibrium
meq [56]. The moments carry the physical properties of the fluid. Namely the local
density

m0 = ρ =
∑

i

ηi,

the local momentum

m1,2,3 = jx,y,z = ex,y,z

∑

i

ηici,



40 Chapter 4. Simulation method

and the momentum flux

m3...18 = Π =
∑

i

ηicici.

For simplicity the spatial and time dependencies are left out and for the velocity one
writes η(xi, ci, t) as ηi. By writing the distribution function ηi and the moments mm

in vector form |η〉 = T |m〉, the lattice Boltzmann equation for the multi relaxation
time approach can be written as

|ηt+δt〉 − |ηt〉 = T−1S[|mt〉 − |meq〉]. (4.10)

Vector form means that each population density η(ci) with discrete velocity ci makes
one component of |η〉 = T |m〉. T transforms a vector from the basis in density popu-
lation space |η〉 into the basis of the moment space |m〉, and consists of eigenvectors
of the collision rate matrix S. The density space vector |η〉 contains all 19 popula-
tions η(x, c0,...,18) at a specific lattice site x. Practical this scheme can be constructed
by linearizing the collision operator around the local equilibrium ηeq [56]

Ωi =
∑

j

Λij(ηj − ηeq
j ), (4.11)

where Λ is the linear collision Matrix. It is not necessary to construct a particular
collision operator and from this calculate Λ rather it is sufficient to consider the
general principles of conservation and symmetry and then to construct the eigenval-
ues and eigenvectors of Λ. However, before one can do so the proper form for the
equilibrium distribution function will be determined.

The equilibrium distribution ηeq is constructed such that it conserves local mass
and momentum but changes the viscous (or non-equilibrium) part of the momentum
flux Πneq = Π − Πeq. It is realized by

ρeq =
∑

i

ηi, (4.12)

jeq =
∑

i

ηici, (4.13)

Πeq =
∑

i

ηeq
i cici = p1 + ρuu. (4.14)

The equation of state is given by p = ρc2
s, where the speed of sound is given by

the advection as cs =
√

1/3 lattice units per time step. If not stated otherwise
all values are in dimensionless lattice units. The equilibrium part is unchanged by
the collision. Further, in the simulation scheme only the shear modes survive the
collision process. Therefore, only the non-equilibrium momentum flux changes. The
post collision non-equilibrium momentum flux Πneq∗ is given by

Πneq∗ = (1 + λ) ¯Πneq +
1

3
(1 + λv)(Π

neq : 1)1, (4.15)

where the over bar indicates the traceless part of the momentum flux. The star
indicates, that a value is post collision. The parameter λ is an eigenvalue of Λ and
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i cix ciy ciz ci i cix ciy ciz ci i cix ciy ciz ci

1 1 0 0 1 7 1 1 0
√

2 13 1 0 −1
√

2

2 1 0 0 1 8 −1 −1 0
√

2 14 −1 0 1
√

2

3 0 1 0 1 9 1 −1 0
√

2 15 0 1 1
√

2

4 0 −1 0 1 10 −1 1 0
√

2 16 0 −1 −1
√

2

5 0 0 1 1 11 1 0 1
√

2 17 0 1 −1
√

2

6 0 0 −1 1 12 −1 0 −1
√

2 18 0 −1 1
√

2

Table 4.1: Labeling of the 18-velocities. The 0-velocity is not shown. For each label
i, the velocity vector and its speed are shown. All values are given in lattice units.

controls the rate of relaxation of the stress tensor. By this it as well regulates the
shear viscosity

µ = −1

6
ρ(2/λ + 1). (4.16)

For stability reasons λ has to be in the range −2 < λ < 0. The kinetic modes can
also contribute to the post collision distribution but the eigenvalues of these modes
were set to be 0 so they have no effect on the post collision distribution η∗

i . The post-
collision distribution is given in terms of the mass-density ρ, the momentum-density
j (or the velocity u and the updated post collision momentum flux Π∗)

η∗
i = ηi + Ωi(η) = aci

0 ρ + aci
1 jαciα + aci

2 Π∗
αβ ¯ciαciβ + aci

3 (Π∗
αα − 3ρc2

s). (4.17)

The coefficients aci
n have their origin in the different length of the vectors |ci|, i.e.

the absolute velocity needed to reach the neighbor cell in one time-step, depending
whether it is a nearest neighbor or a diagonal neighbor. Those velocities are shown
in Table 4.1. The equilibrium function used for the simulation now reads, written
in the distribution space, as

ηeq
i = aci

[

ρ +
j · ci

c2
s

+
ρuu : (cici − cs1)

2c4
s

]

(4.18)

The coefficients are given as a0 = 1
3
,a1 = 1

18
,a

√
2 = 1

36
. A further discussion of the

equilibrium distribution will follow in the next chapter.

In case of the simpler L-BGK model, one does not need the transformation into
the space of moments. However, to generate the equilibrium distribution the local
mass density ρ and the local momentum m1,2,3 are needed. The computational cost
of the MRT model is moderate higher i.e., in theory a L-BGK model should be 18%
faster [31]. The L-BGK model that is used in chapter 5 is used in further work
and is well described in the literature [47, 102]. Since the differences between both
codes is rather of technical nature than theoretical, I will not go into more details
about the used L-BGK model. The advantage of the MRT model is the possibility
to steer the bulk and shear viscosity independently. As well the numerical artefacts
introduced by some boundary conditions is reduced. However the main advantage
is the accessibility of the moments, which do carry the physical properties of the
system, e.g. thermal fluctuations require a random noise on all modes [34].
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4.2.4 From lattice Boltzmann to Navier-Stokes

After the presentation of the basic concept of the method it is now possible to show
that such a simplified form of the Boltzmann equation will reproduce fluid behavior.
In this case it should be possible to perform a Chapman Enskog procedure and
derive the Navier-Stokes equations

ρ

(

∂u

∂t
+ (u∇u)

)

= −∆p + µ∇u + (λ + µ)∇(∇u), (4.19)

which can also be written in components as

∂tja + ∂β(ρc2
sδαβ + ρuαuβ)∂β = σαβ. (4.20)

Einstein summation convention is in place, ∂α stands for ∂
∂α

, the δαβ denotes a
Kronecker-δ. The viscous stress is given as

σαβ = µαβγδ∂γuδ, (4.21)

which in case of an isotropic fluid can be simplified by

µαβγδ = µ(δαγδβδ + δαδδβγ) + µvδαβδγδ (4.22)

with the shear viscosity µ and the bulk viscosity µv. We follow the standard asymp-
totic analysis [57], like it is described in [35, 34, 68] for the lattice Boltzmann method.
At first one introduces a dimensionless scaling parameter ǫ ≪ 1 and writes

x1 = ǫx. (4.23)

The idea behind this is to introduce a coarse-grained spatial resolution. In the same
way a coarse-grained time

t1 = ǫt (4.24)

is introduced. The reason to use the same ǫ for space and time is the wave-like
propagation of sound waves. However, to cover the momentum diffusion a second
coarse-grained time scale

t2 = ǫ2t (4.25)

has to be introduced. Commonly ǫ is associated with the Knudsen number Kn that
depicts the ratio of the mean free path of a molecule and the typical length scale
of the system. Another equivalent definition would be that the Knudsen number
is the ratio between the mean collision time of a molecule and the typical time
scale of the hydrodynamic system. It is now possible to distinguish between the
hydrodynamical short time scale ts = t1/ǫ and the hydrodynamical long time scale
tl = t2/ǫ

2. Note that both time scales tl and ts are implicitly large on the lattice
scale, as it is the coarse-grained space. The hydrodynamic limit is reached for ǫ → 0
meaning that the lattice space becomes much smaller than the typical length scale.
However, it was shown that even a few lattice nodes are sufficient to reproduce fluid
mechanic behavior [81, 105]. In this “multi-time scale” analysis, the population
density function η can be written in the coarse-grained coordinates

ηi ≡ ηi(x1, t1, t2) (4.26)
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and the proceeding of the algorithm by a time step t → t + δt can be written as
t1 → t1 + ǫδt and t2 → t2 + ǫ2δt. Thus, the LB-equation reads as

ηi(x1 + ǫt1ci, t1 + ǫδt, t2 + ǫ2δt) − ηi(x1, t1, t2) = Ωi (4.27)

It is assumed that the population density is a slowly varying function of the coarse-
grained variables ξ = [x1, t1, t2]. A Taylor expansion of Eq. 4.27 reads as

ηi(ξ + δξ) = ηi(ξ) +
∑

k

∂ηi

∂ξk

δξk +
1

2

∑

kl

∂2ηi

∂ξk∂ξl

+ ... (4.28)

Since the collision operator Ω(ηi) depends on the distribution function ηi one has to
take into account its ǫ dependence

ηi = η
(0)
i + ǫη

(1)
i + O(ǫ2) (4.29)

Ωi = Ω
(0)
i + ǫΩ

(1)
i + ǫ2Ω

(2)
i + O(ǫ3). (4.30)

One can now apply the conservation laws that must hold independently of ǫ and
therefore on any order k one concludes that

∑

i

Ω
(k)
i =

∑

i

Ω
(k)
i ci = 0. (4.31)

By collecting the different orders of ǫ and implementing these relations to Eq. 4.27
one obtains

Ω0
i = 0, (4.32)

(∂t1 + ci · ∂x1)η
(0)
i =

1

δt
Ω

(1)
i , (4.33)

∂t2η
(0)
i +

δt

2
(∂t1 + ci · ∂x1)

2η
(0)
i + (∂t1 + ci · ∂x1)η

(1)
i =

1

δt
Ω2

i . (4.34)

Using Eq. 4.33 one can now eliminate the second η
(0)
i in Eq. 4.34 so that

∂t2η
(0)
i +

1

2
(∂t1 + ci · ∂x1)(η

∗(1)
i + η

(1)
i ) =

1

δt
Ω

(2)
i . (4.35)

with η∗
i = ηi + Ωi being the post collision population in direction ci. The equations

above imply that the relaxation time scale of the collisions t ∼ δt, the sound propa-
gation t ∼ δt/ǫ, and the momentum diffusion t ∼ δt/ǫ2, are separated and therefore
it is possible to calculate the collision operator of a higher order from the lower
order one. One can as well conclude that the zeroth order of the collision operator
Ω

(0)
i does only depend on η

(0)
i . Further, Eq. 4.32 shows that η

(0)
i is invariant under

collisions and therefore has to be the equilibrium distribution ηeq
i . This implies that

the equilibrium distribution should depend only on conserved quantities, namely
the mass density ρ and the momentum density j. Otherwise, the algorithm would
conserve physically not conserved quantities. Since there is no contribution from
higher orders to the mass density ρ and the momentum density j one can express
these quantities in terms of the equilibrium function

∑

i

ηeq
i = ρ (4.36)
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and
∑

i

ηeq
i ci = j. (4.37)

This is concluded from the vanishing of the higher orders in mass and momentum
density

0 = ρ(1) = ρ(0)...

and
0 = j(1) = j(2)...

The higher orders vanish because otherwise η
(0)
i would have ǫ-dependent components

which would contradict Eq. 4.32.
The dynamics of the LB-model on the longer time scales can now be gained by

analysing the moments of Eq. 4.33 and Eq. 4.35 with respect to the discrete veloc-
ity set ci. From the previous chapter we know that the moments are carrying the
physical properties, so their dynamics are the point of interest. Hereby some con-
ditions towards the collision operator Ωi become obvious. From the zeroth moment
of Eq. 4.33 one obtains the continuum equation on the time scale t1:

∑

i

(∂t1 + ci · ∂x1)η
(0)
i =

∑

i

1

δt
Ω

(1)
i = (4.38)

∂t1 + ∂x1αjα = 0 (4.39)

and incompressibility on the time scale t2

∑

i

[

∂t2η
(0)
i +

1

2
(∂t1 + ci · ∂x1)(η

∗(1)
i + η

(1)
i )

]

=
∑

i

1

δt
Ω

(2)
i =

∂t2ρ +
∑

i

1

2
(∂t1 + ci · ∂x1)(η

∗(1)
i + η

(1)
i ) = 0 =

∂t2ρ = 0 (4.40)

Here one uses the condition that the collision operator may not change mass and
momentum density, and therefore each order of the collision operator Ω(n) = 0
may not change the mass and momentum density. The first moment gives us the
momentum conservation. Starting with Eq. 4.33 on the first time scale t1

∑

i

ci

[

(∂t1 + cj · ∂x1)η
(0)
i

]

=
∑

i

ci

1

δt
Ω

(1)
i =

∂t1j + ∂x1

∑

i

cicjη
0
i = 0 (4.41)

and writing this in components ciα and with the momentum flux

Πα,β =
∑

i

ηiciαciβ

one can write the momentum as

∂t1jα + ∂x1βΠ
(0)
αβ = 0. (4.42)
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On the time scale t2 the momentum reads as

∑

i

ci

[

∂t2η
(0)
i +

1

2
(∂t1 + cj · ∂x1)(η

∗(1)
i + η

(1)
i )

]

=
∑

i

ci

1

δt
Ω

(2)
i =

∂t2j
(0) +

1

2

(

∂t1(j
∗(1) + j(1)) + (

∑

i

cicj∂(η
∗(1)
i + η

(1)
i )

)

= 0, (4.43)

with j(1) = 0 and the definition of the momentum flux Π and written in components

∂t2jα +
1

2
∂x1β

(

Π
∗(1)
αβ + Π

(1)
αβ

)

= 0. (4.44)

To reproduce the Navier Stokes equation 4.20 one needs to rewrite Eq. 4.42
and Eq 4.44 as a combination in terms of the lattice-scale coordinates x = x1/ǫ,
t = t1/ǫ = t2/ǫ

2. By using ∂α as component of ∂x one gets for the spatial derivatives

∂α = ǫ∂x1α

and for the time derivative
∂t = ǫ∂t1 + ǫ2∂t2 .

Mass and momentum density in a combination reads on the lattice spacing as

∂tρ + ∂αjα = 0, (4.45)

∂tjα + ∂βΠ
(0)
αβ +

1

2
∂β

(

Π
∗(1)
αβ + Π

(1)
αβ

)

= 0. (4.46)

Looking at Eq. 4.46 it is possible to identify the different terms in the Navier-Stokes
equation 4.20

∂tjα + ∂β(ρc2
sδαβ + ρuαuβ) = ∂βσαβ

The time derivative ∂tjα is obvious. Further, Π
(0)
αβ is the equilibrium momentum flux

Πeq
αβ and therefore unchanged by the collision operator and does depend only on ρ

and j. Therefore, it can be identified as the Euler stress

Π
(0)
αβ = Πeq

αβ = ρc2
sδαβ + ρuαuβ. (4.47)

Here the ideal gas equation of state is implemented in the code (c.f. Eq. 4.14). All
that is left is to identify the remaining non-equilibrium part with the viscous stress

1

2

(

Π
∗(1)
αβ + Π

(1)
αβ

)

= −σαβ, (4.48)

which leads under the postulation of an isotropic liquid and with the definition from
Eq 4.15 to a shear viscosity of

µ = ρc2
sδt

(

1

λ
+

1

2

)

(4.49)

and a bulk viscosity of

µv = ρc2
sδt

(

2

3λv

+
1

3

)

. (4.50)
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Since the time step δt is the natural time unit of the method it is commonly set to 1
and is not written in a lot of publications. The same applies for the distance between
two lattice sites or the volume of one lattice node. For other collision operators or
equilibrium functions several steps of this Chapman Enskog procedure have to be
redone in an analogue way. Further, one can impose non ideal equations of state
or fluctuations, which makes the analysis more complicated. However, one can see
that the conservation of mass and momentum is inherently included in the lattice
Boltzmann scheme and one only has to make sure that the viscous damping is done
in a correct way.

4.2.5 External forces

External forces f are crucial to simulate fluid flow. In principal an external force
changes the momentum of the fluid so one could naively just add it to the momentum
jnew = jold + fδt in every time step δt. In the lattice Boltzmann scheme with discrete
time this would rise the question at which time one has to add the forces or if it
can be done at any time. Therefore, it is useful to see the external forces as an
additional collision operator Ω′, so the lattice Boltzmann equation reads as

η∗
i − ηi =

∑

j

Lij(ηj − ηeq
j ) + Ω′

i. (4.51)

The additional collision operator Ω′ may not change the mass
∑

i

Ω′
i = 0, (4.52)

but has to change the momentum
∑

i

Ω′ci = δtf . (4.53)

A consequence of this is that the momentum j is not any longer unique and any value
between

∑

i ciηi and
∑

i ciηi + δtf could be correct. However, it was shown that a
wrongly assumed force could lead to unphysical behavior like negative permeabilities
in porous-media [100]. Numerical [80] and theoretical [145] analysis have shown
that the optimum value is the arithmetic mean of pre and post collision momentum.
Therefore, one defines the momentum density as

j =
∑

i

ciηi + f
δt

2
. (4.54)

This has two consequences. First one has to keep this in mind when creating an
output of the velocity. The second is that one needs the right flow velocity to
construct the equilibrium function ηeq, so that the equilibrium momentum density
is equal to the defined one

∑

i

ηeq
i ci = j, (4.55)

but the non-equilibrium part does not include the momentum change so that,

∑

i

ηneq
i ci = −f

δt

2
. (4.56)
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If one would leave out the latter term and would just impose
∑

i η
neq
i ci = 0 as done

in [145] one would add a small error of order f 2 to the distribution. This leads to
spurious terms in the Chapman-Enskog analysis, like a force dependent viscosity.
This might become important in the case of strongly inhomogeneous forces but the
differences vanish in the low Reynolds number limit. To be consistent with the
force-free case, one needs to adapt the relaxation of the non-equilibrium momentum
flux in such a way that the resulting viscosity is the same as in the force free case.
The resulting additional force collision operator with ciα = ci · eα then reads as

Ω′ = aci

[

δt

c2
s

faciα +
δt

2c4
s

Σαβ(ciαciβ − c2
sδαβ)

]

, (4.57)

with Σαβ containing the adaption of the non-equilibrium momentum flux. In the
code this is realized by adding half the force to the momentum then calculate the
equilibrium distribution in the momentum space, relax the moments towards this
equilibrium and in the end add the remaining half of the force f

2
and the momentum

flux correction

cαβ =
1 + λ

2ρ
(jαfβ + jβfα) (4.58)

to the corresponding moments.

4.2.6 Multi-phase models in lattice Boltzmann

One strength of the lattice Boltzmann method is the possibility to implement multi-
phase and multi-component flow. For clarification the two cases will be distinguished
in this thesis as follows. Multi-component flow should be flow that contains many
(usually two) distinguished liquids with potentially different chemical properties like
water and oil. Multi-phase (usually two phase) flow is a flow with distinguishable
phases of the same component like liquid and vapor. It should be noted that for this
work the actual phase transition is not of interest and a two phase model is used
to simulate bubbles attached to a surface or to model the wetting behavior of the
boundary.

The Oxford model

The Oxford or free energy model was developed by Swift, Osborn and Yeomans
[134, 133]. The main idea of the model is to have a well defined isothermal equation
of state and force the system to equilibrate towards the desired state. Therefore,
one defines a free energy as that of a van der Waals fluid

Ψ[ρ] =
∫

[

k

2
|∇ρ(r)|2 + ψ(ρ(r, T ))

]

dr, (4.59)

with ψ(ρ, T ) being the bulk free-energy density at temperature T

ψ(ρ, T ) = ηT ln

(

ρ

1 − ρb

)

− aρ2 (4.60)
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while the second term gives the free-energy contribution from the density gradients
in an inhomogeneous system. ρ =

∑

i ηi indicates the number of particles. Here, a
is a measure for the attraction between the particles and b is the excluded volume.

With this free energy one is now able to construct an equilibrium distribution
function ηeq

i that does not have an ideal gas equation of state. Therefore, the pressure
tensor is related to the free energy

Pαβ(x) = p(x)δαβ + κ
∂ρ

∂xα

∂ρ

∂xβ

, (4.61)

with
p(x) = p0 − κη∇2ρ − κ

2
|∇ρ|2, (4.62)

where

p0 = ρ
dψ(ρ)

dρ
− ψ(ρ)

is the equation of state of the fluid. The actual equilibrium function depends on
the type of lattice and collision operator. Since the equation of state is forced on
the system from top one calls such a method a top down method. In the same way
one can find a free energy for a two component model or for the fluid-boundary
interaction. Besides the studies of phase separation, Varnik et al. used such a model
to investigate the behavior of droplets on a surface [46].

The Shan-Chen model

Instead of imposing an equation of state and force the system towards it, it is possible
to introduce an internal force that models the intermolecular interactions. Such a
model was developed by Shan and Chen [124, 125, 126]. This force should simulate
the long range interactions between the particles. Therefore, one considers at a
system with S components and defines a potential of the form

V (x,x′) =
S

∑

σ

S
∑

σ̄

Gσσ̄(x,x′)Ψσ(ρσ(x))Ψσ̄(ρσ̄(x′)) (4.63)

where ρσ and ρσ̄ are the number density of component σ and σ̄. Since the distance
between two lattice points is fixed the number density determines the average particle
particle distance. Therefore, the potential is made to be the product of the local so-
called effective masses Ψσ(ρσ) which are a function of the local densities ρσ only. The
exact form of Ψ is discussed latter. It determines the detailed interaction and the
equation of state. The strength of the interaction is controlled by the Greens function
Gσσ̄(x,x′). In case of a homogeneous system this is reduced to Gσσ̄(|x − x′|). In case
one takes into account only nearest and next nearest-neighbours one can reduce the
Greens function in a one component system to a single number g. In case of a multi-
component system one needs a symmetric tensor gσσ̄ to steer the interaction between
each component. Depending whether gσσ̄ is positive or negative the interaction is
repulsive or attractive. From the potential one can now derive a local force

fσσ̄ = Ψσ(ρσ(x))gσσ̄

∑

i

ciΨ
σ̄(ρ(x + ci)). (4.64)
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This force can now be included in a similar manner as external forces in the previous
section. Note that the force does not conserve the local momentum but in total no
momentum change is induced due to the symmetry of gσσ̄. Shan and Chen showed
by performing a Chapman Enskog procedure that in case of a one component system
one can reproduce a Van der Waals like equation of state [124]. Here, it has to be
noted that their analysis was done on a different lattice Boltzmann model than the
two ones that are used in this thesis. However they showed that an effective mass of

Ψ(ρ) = 1 − e
− ρ

ρ0 , (4.65)

with the reference density ρ0 can produce a non-monotonic pressure in dependence
of ρ. Therefore, a negative dp

dη
appears in the equation of state, which corresponds

with a thermodynamic instability and the system segregates into a dense (liquid)
and a light (gas) phase. However, typical density ratios between the dense and the
light phase are ρdense

ρlight
= 40, so they are still far away from the ratio in real systems

where a typical density ratio would be ρdense

ρlight
= 1000.

Nevertheless, one can achieve a phase separation between two components like
water and oil. To do so one needs an equilibrium function that includes the combined
velocities of both species. The interaction Eq. 4.64 has the same form as for one
component but instead of gσσ one needs the non diagonal parts of gσσ̄. Since one
has only two components and one needs the symmetry this simply reads as a single
value gow which steers the interaction between the two species. Later it is shown
that such a force can as well be used to describe the wetting behavior of a solid
boundary.

4.2.7 Solid-fluid boundary conditions

To simulate fluid flow in the presence of any solid object one needs to define bound-
ary conditions at the interface between them. Further, it is a challenging task to
implement moving objects in a fluid solver like it has to be done for the simula-
tion of the AFM based slip experiments. In the lattice Boltzmann scheme, finding
a boundary condition means to find unknown population densities ηi that are not
defined because prior to the collision step they are lacking corresponding neighbors.
This is depicted in Fig. 4.2 for a D2Q9 model.
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Figure 4.2: Boundary node on the top row of a grid. The gray region, located outside
the simulated fluid volume, does not participate in the simulation. Population den-
sities ηi on the boundary node are represented by their lattice vectors. The dashed
vectors stand for unknown populations.

This problem does not occur in the case of periodic boundary conditions. Here it
is easy to gain the “unknown” population densities since one simply has to identify
the “outgoing“ population densities with the incoming ones ηi(xmax) = ηi(0) and
vice versa. At solid surfaces this is more complicated since here one needs to find
new populations on the boundary nodes that are consistent with the dynamics of the
method and satisfy the desired macroscopic behavior. Besides the implementation
of hydrophobic slip surfaces the general fluid-surface boundary condition is no-slip

u(x = 0) = vboundary

saying that the velocity of the fluid at the boundary is the same as the one of the
solid, which is 0 in case of a non-moving boundary like it is usually assumed. Since
a wrong implementation of the boundary condition can cause serious errors a lot of
analyses have been done on the different types of boundary conditions [85, 68, 52].

Bounce-back boundary condition

A very simple but effective way of implementing a no-slip boundary condition is the
so-called bounce back rule. Here, every population is reflected back to the boundary
node it is coming from (c.f. Fig. 4.3)

η(xb,−ci) = η(xb, ci), (4.66)

for all xb+ci being on a boundary node. By this procedure the density is transferred
to the original boundary node in the next advection step.
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Figure 4.3: Scheme of the bounce back rule. The population densities ηi that are
unknown are set to the same value as the population density that points to the
boundary node from where the population should come from. The dashed arrows
indicate the values that are set by this rule, thus same color indicates the same
value.

It has to be noted that the hydrodynamic boundary created by this procedure is
not on the boundary node itself but between the boundary node and the closest fluid
node. In addition, the actual position of the hydrodynamic boundary depends on
the relaxation rate λ = −1

τ
and therefore on the viscosity. One can show that in case

of a BGK model and τ ≈ 1 the boundary position is right in the middle between
the fluid and the boundary node [52]. However, the shift of the boundary position is
proportional to the square of the relaxation time τ 2. In case of a MRT model one can
tune the relaxation of the non hydrodynamic nodes in such a way that the divergence
of the boundary position scales only linearly with τ . Beside its simplicity the bounce
back method gives the direct possibility to access the momentum transfered by the
fluid towards the boundary since it is given by the sum over all reflected population
densities

jtransfered =
∑

surface

ciη
reflected
i δt. (4.67)

A further advantage is that it can be implemented straight forward for arbitrarily
shaped surfaces since one only needs to bounce back those population densities ηi

which end up inside the boundary1. Due to the intermediate boundary position
and the lattice structure it is in case of arbitrarily shaped surfaces not possible
to determine the exact hydrodynamic boundary position analytically so one either
needs an estimate or a numerical test, e.g. one can determine the effective radius of
a sphere by measuring the Stokes force acting on it. However those deviations are
small and can be well controlled.

Moving boundaries

When simulating moving particles in the fluid it is necessary to implement moving
boundaries. In this case the velocity of the fluid at the boundary should not be zero

1Since all surfaces in this method consist of lattice notes on a cubic lattice, the geometries in
the lattice Boltzmann method are often referred to as Lego world [129].
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compared to the lattice but be the velocity of the boundary. In the given simulation
this is realized by a generalization of the bounce back boundary condition, which
takes into account the momentum of the moving object. The method was developed
by Ladd et al. and described extensively in the literature [145]. The picture one
should have in mind is that an ensemble of particles moving with the velocity ci

is hitting a perpendicular wall which is moving with velocity vb ≪ ci. After the
particles hit the wall their velocity is −ci + 2vb and the force exerted on the wall
is proportional to ci − vb. Since the velocities in the lattice Boltzmann scheme are
discrete, such a scheme cannot be implemented directly but one has to modify the
density of the bounced back particles such that the transfered momentum equals
the same as in the continuous case.

At first one takes into account those population densities η(xb, cb, t) close to the
boundary of the object for those cb that xb +cbδt is a solid node. This is the same as
in the normal bounce back method. One now defines a simple rule for the unknown
“bounced back” particles η(xb,−cb, t + δt) that takes into account the movement of
the boundary

η(xb,−cb, t + δt) = η∗(xb, cb, t) −
2acbρvb · cb

c2
s

. (4.68)

η∗(xb, cb, t) is the post collision distribution population. The local velocity of the
surface is vb, which takes into account the center of mass velocity and the angular
velocity of the particle. However, in the cases that are of interest in this thesis the
angular velocity is kept to 0 so that vb is the center of mass velocity of the object.
The force acting on the object can be calculated from the total momentum exchange
between the fluid and all of its boundary nodes.

Due to the lattice nature of the lattice Boltzmann method one needs to place
particles on the grid. Therefore, the shape of the particle is estimated by the lattice
nodes that are mainly inside the particle. Such an approximation seams very rough
but even at small radii like 2.5 lattice units, the error in the hydrodynamic interaction
can be kept within 1% of an exact numerical solution [22]. This will be validated
latter in this thesis.

Particle motion

The movement of the particles themselves is realized like in a molecular dynamics
(MD) simulation, i.e., one calculates the forces acting on the particle and changes
its velocity afterwards. In contrast to a classical MD simulation the force is not
coming from pairwise potentials but from the hydrodynamic interaction. The im-
plementation of such potentials would be straightforward but so far only a hard
sphere potential between particles is implemented. Further, it should be noted that
the velocity in the presented simulations is kept constant by setting the mass of the
particle to infinity. The infinite mass is important for the force measurement be-
cause in this case the velocity in Eq. 4.68 is vb(t + δt

2
) as it is used in the underlying

velocity Verlet integration2. One has to make sure that vb(t + δt
2
) is constant even

if a force acts on the sphere. After the center of mass movement is calculated one
might have to change the occupied lattice nodes. This update of nodes is not a

2sounds easy but can cost you one year...
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continuous motion but a discrete jumping over the lattice. Due to this jumping the
flow field (and therefore the forces) around the particles need some time to come
to an quasi-equilibrium. For the practical use this means that one has to average
forces over several time steps. Further, it limits this method to low Mach numbers,
since one should change the boundary node configuration only after one has a well
averaged value for the given configuration. However, the equilibration takes only
about 10 time steps so that this condition is relatively easy to be fulfilled.

Hydrophobic boundaries

It is known from MD-simulations that the interaction between the boundary and the
fluid causing a slip phenomenon usually takes place within a few molecular layers of
the liquid along the boundary surface [136, 135, 71, 23, 72, 24, 5].

The implementation of solid hydrophobic boundaries contains two parts. Since
such a boundary consists of a solid wall one implements a bounce back boundary
condition. The second part covers the hydrophobic interaction between the bound-
ary and the fluid. It is realized in the same way as the interaction between two
components in a multi-component system (c.f. the previous section). In our case
a Shan Chen like force fwf between the fluid nodes close to the boundary and the
boundary nodes itself is implemented. Such a force reads as

fwf (x) = Ψfluid(x)
∑

i

cigwfΨ
wall(x + ci). (4.69)

The force is in full analogy to Eq: 4.64. The effective mass of the boundary
Ψwall = 1 − exp(−ρwall/ρ0) is a local parameter that indicates how strong the local
hydrophobic interaction is while gwf is a global coupling parameter. It is as well
possible to assign a virtual ”fluid density” to a boundary node. By this one can
use a one component multi-phase Shan Chen model to simulate the solid-fluid in-
teractions and a possible phase-transition close to the boundary as it happens at
super-hydrophobic surfaces.

Further, a hydrophobic interaction like the presented one can be utilized to model
apparent slip [48, 76, 49, 117]. Due to the repellent hydrodynamic force, a depletion
layer close to the boundary is formed where the fluid density ρ and therefore the
viscosity µ is reduced. This viscosity reduction finally leads to apparent slip. The
dependences are discussed in section 4.2.8.

Alternative boundary conditions

Besides the presented boundary conditions there are many other possible implemen-
tations. Most of them have a higher precision than the simple bounce back rule
but might have to take into account more boundary nodes, which makes them non-
local, or they are not able to handle arbitrary geometries. Further, not all proposed
boundary conditions can be applied on a 3D lattice. An overview over different
boundaries was recently published by Latt et al. [85].

One possible solution is to create the missing populations by assuming that they
follow the equilibrium distribution with the given velocity. In this case one still has
to find a corresponding pressure (or density) at the close boundary nodes [62].
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Latt and Chopard [84] proposed a “regularized method”. The basic idea is to
keep the non-equilibrium momentum flux Πneq but regulate the velocity. Therefore,
Πneq is calculated utilizing the bounced back densities. The equilibrium parts Πeq

of the population density η(xb) are determined in such a way that they correspond
to the correct velocity at the boundary.

Other methods use a finite difference scheme to obtain the non-equilibrium stress
from the neighboring lattice nodes [127]. Such an approach needs non-local infor-
mation which makes it less efficient when it comes to parallelization.

Slip boundary conditions could be generated in different ways as well. The most
common one is a so-called spectral bounce back scheme [129]. The idea behind
this method is the same as for the Maxwell [96] theory for rarefied gases close to
a boundary (c.f. Eq. 3.7). For the lattice Boltzmann scheme not all the incoming
population densities ηi are bounced back to where they came from but only a fraction
ηi(1 − p). The remaining density ηip is reflected, thus in summation it is similar
to the moving boundary condition where the bounced back density is reduced or
increased by a factor proportional to the boundary velocity. By this method one
creates a shear independent slip velocity.

Another possibility is to change the relaxation time (and therefore the viscosity)
close to the boundary. By such a scheme one generates again a low viscosity layer
but with the same density and the same pressure [106].

4.2.8 Poiseuille flow

The lattice Boltzmann method was facing some criticism. It can be shown that the
boundary conditions might lead to some slip phenomena where this is not desired.
Further, it is necessary to understand the dependencies of the used slip model as it
was presented [75, 48]. In those publications the slip was determined by fitting a
Poiseuille flow profile

ux(y) =
1

2µ

∂P

∂x

[

d2 − y2 − 2dβ
]

(4.70)

between two infinite walls that are at a distance 2d, via the slip length β. The flow
can be generated either by a body force or by applying a pressure gradient ∂P

∂x
. The

latter is realized by setting all population densities ηi on the in and out flow nodes
to a fixed value. A typical flow profile of such a simulation can be seen in Fig. 4.4.
Symbols show the simulation data, the line for the no slip curve is an exact analytical
solution while the curve for the slip case is a fit with the slip length β = 1.33. In
this case the flow is generated by an constant body force f = 10−6 and the viscosity
is set to 0.1. All values are given in lattice units if not stated otherwise.
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Figure 4.4: A typical flow profile ux(y) in a Poiseuille flow with no-slip and slip
boundary condition. Symbols show the simulation data. The doted line is a best fit
via the slip length β = 1.33 and the solid red line is the analytic no slip solution.

A Poiseuille setup was used to investigate the dependency of the slip length
on different parameters [48]. To conclude this work it can be said that the slip
length is independent of the flow velocity over several orders of magnitude and
therefore independent of the shear rate. The slip length grows exponentially with
the interaction parameter gwf but due to the truncation of the effective mass Ψ has
only limited influence on the slip length. Further, the slip length depends on the bulk
pressure (or bulk density). The reason for this is that there is a force equilibrium
in the depletion layer. The pressure from the bulk has to be equal to the pressure
in the layer plus the hydrophobic interaction. Thus, the depletion layer pressure
and therefore its viscosity depends on the bulk pressure. The maximum achievable
slip length is βmax = 5 lattice units. Larger slip length are not possible because of
computational instabilities. In this case some population densities ηi close to the
boundary could become negative, which causes the code to fail. In addition, the
stability of the code at slip length higher than β > 3 is very critical and needs a fine
tuning of the parameters.
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Chapter 5

Poiseuille flow over rough surfaces

Figure 5.1: Visualisation of the geometry and the simulated streamlines for a typical
system with a random-height roughness. The colors of the streamlines indicate the
flow velocity. Between the roughness elements the flow-field is highly influenced by
the boundary profile, however, outside it rapidly relaxes towards a normal Poiseuille
flow.

Surface roughness becomes a relevant parameter if typical length scales of a
system are comparable to the topographical variations as it can be the case in
microfluidic setups. Here, an apparent slip is often detected which can have its
origin in the misleading assumption of perfectly smooth boundaries. In this chapter
the concept of an “effective no-slip plane” at an intermediate position between peaks
and valleys of the surface, is introduced. The averaged flow behaves such as in a
channel with a no slip boundary condition located at this virtual flat surface.

As first system, LB-Simulations of Poiseuille flow over rough surfaces, as depicted
in Fig. 5.1, are performed. After introducing the setup a comparison with the
analytical results by Panzer et al. is given. Finally, different surface geometries and
their effective boundary positions are discussed. It is also shown that a few small

57
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peaks can have a large influence on the effective boundary position. Parts of the
presented data and results have been published in [74, 76, 49].

A Poiseuille setup is chosen since it is an easy model for an micro-channel as
they are used in most micro-PIV experiments. Some the basic ideas for this thesis
are already derived in such a setup but latter the more complex lubrication force
measurement will follow.

5.1 The setup

In this chapter Poiseuille flow between two infinite rough boundaries as, depicted in
Fig. 5.1, is modeled. Simulation lattices are 512 lattice nodes long in flow direction
and the channel walls are separated by 128 nodes between the lowest points of the
roughness elements rmin as illustrated in Fig 5.2. Periodic boundary conditions are
imposed in the remaining direction allowing it to keep the resolution as low as 16
lattice units. A pressure gradient is obtained by setting the pressure to fixed values
at the in- and outflow boundary. The local roughness height is r(x). The height of
the roughness r is defined as its highest point, while the average roughness is given by
rav = 1

A

∫

A r(x)dA, with A being the projected wall surface. Due to the discretization
the integral can be calculated as a summation. All values are measured from the
lowest point of the roughness rmin = 0. In the case of symmetrical distributions the
average roughness is rav = r/2.

r

r

r

2deff

2dmax

min

av

effr

Figure 5.2: The effective boundary height reff is found to be located between the
deepest valley at rmin and the highest peak at r. It corresponds to an effective
channel width deff . For most geometries in this chapter the average roughness is
equal to half the maximum height and therefore rav = r/2. The maximum distance
between the plates dmax is kept constant at 128 lattice sites.

An effective boundary position can be found by fitting the parabolic flow profile

ux(y) =
1

2µ

∂P

∂x

[

d2 − y2 − 2dβ
]

(5.1)
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via the distance d = deff . With β set to 0 the no-slip case is obtained. The viscosity
µ and the pressure gradient ∂P

∂x
are given by the simulation. To obtain an average

value for deff , a sufficient number of individual profiles at different positions z are
taken into account. In case of a periodic roughness this corresponds to one complete
period. Alternatively, the mass flow

∫

u(x)ρ dx can be computed and compared
with the theoretical value to obtain deff . Both methods are equivalent and result
in identical positions deff of the effective boundary. The effective height reff of the
surface roughness is given by reff = (dmax − deff)/2 (c.f. Fig. 5.2).

5.1.1 Description of roughness

Four different types of topography with an average roughness of rav = r/2 are used
in this chapter. Three of the surfaces consist of periodic, transverse stripes, as
illustrated in Fig. 5.3 for a square cross-section. The remaining surface displays a
random or uncorrelated topography.

flow

Figure 5.3: A picture of the square cross-section roughness.

The periodically rough surfaces have different cross-sections that are illustrated
in Fig. 8.4. The cosine-shaped boundaries are given by r(x) = r/2 + r/2 cos(qx),
squares have a height of r and are separated by r lattice sites. Triangular structures
are 2r wide and r high as is shown in Fig. 8.4. Random surface structures are created
by choosing for every lattice position of the boundary the roughness height r(x) as a
random integer between 0 and r. For determining reff in such a geometry the single
flow profiles of 5 surfaces generated with different sequences of uniformly distributed
random numbers are averaged. All walls are geometrically similar, i.e., the effective
height reff scales linearly with rmax. The average height of such a distribution is

rmax/2 and the root mean square roughness is given by rRMS = 1/6
√

3(rmax + 2)rmax.

5.1.2 Validation of the simulation method

Panzer et al. analytically calculated the slip length β for Poiseuille flow with rough
walls by performing a Fourier expansion of the streaming function Ψ containing the
solution of the Navier-Stokes equations in the laminar case [108]. Ψ is obtained
by a Fourier expansion of the boundary surface and the pressure field. Its solution
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Figure 5.4: Periodic surfaces: a) cosines, b) squares with height and separation given
by r, c) triangles, r high and 2r wide.

contains information about the effective boundary. The problem of such an approach
is that it is limited to small wave numbers. An infinite number of terms would have
to be taken into account to obtain a correct result for arbitrary geometries. Panzer
et al. gave an analytical equation for the slip-length β in the case of small cosine-
shaped surface variations [108]. It is applicable to the case of two infinite planes
separated by a distance 2d, being much larger than the height of the highest peaks
r. Surface variations are determined by peaks of height r, valleys at rmin and given
by r(x) = 2r + r/2 cos(qx). Here, q is the wave number. Since the surfaces are
separated by a large distance, the calculated slip length is equal to the negative1

effective boundary reff that now can be expressed in terms of k = qr/2 as

reff = −β =
r

2

(

1 + k
1 − 1

4
k2 + 19

64
k4 + O(k6)

1 + k2(1 − 1
2
k2) + O(k6)

)

. (5.2)

The first term is k independent and shows linear behavior of the effective height reff

on the average roughness rav = r/2. Higher order terms cannot easily be calculated
analytically and are neglected. Thus, Eq. 5.2 is valid only for k = qr/2 ≪ 1.
However, for realistic surfaces, k can become substantially larger than 1 causing the
theoretical approach to fail. In this case, only numerical simulations can be applied
to describe arbitrary boundaries.

To test the simulation method the results are compared to the theoretical model
of Panzer and Liu (5.2) and with the results by Lecoq and coworkers [88]. In Fig. 5.5

1In this case β is measured from rmin. Therefore, an effective boundary position inside the
system appears to be a negative slip length. Typically, the slip length is measured from the top of
the roughness r.
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the effective height reff , obtained from simulations, is plotted versus rav for cosine
shaped surfaces with qr/2 = k = 1, 1

2
, 1

3
(symbols). Error bars would be smaller than

the symbols and are therefore not shown. Lines are given by the analytical solution
of Eq. 5.2. In the inset of Fig. 5.5 the normalized effective height reff/rav obtained
from simulations is plotted versus k for cosine shaped surfaces with r/2 = k = 1, 1

2
, 1

3

(symbols). The line is given by the analytical solution of Eq. 5.2. For k < 1 the
simulated data agrees within 2.5% with Panzer’s prediction. However, for k = 1
a substantial deviation between numerical and analytical solutions can be observed
which is expected since Eq. 5.2 is valid for small values of k << 1 only. In the
case of large k > 1, the analytical approach is not able to correctly reproduce the
increase of reff with increasing k anymore. Instead, reff becomes smaller again due
to missing higher order contributions in Eq. 5.2. Our simulations do not suffer from
such limitations allowing us to study arbitrarily complex surface geometries [74, 76].
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Figure 5.5: Effective height reff over average roughness rav for a cosine geometry
and different variables k. Symbols denote numerical data and lines are given by
Eq. 5.2. The inset shows β(k)/r according to equation (5.2) and our corresponding
simulation data. For k > 1 the slope becomes negative, demonstrating that the
theory fails for more complex surface structures [74, 76].

Lecoq and coworkers performed experiments with well defined boundary rough-
nesses, and developed a theory to predict the position of the effective boundary [88].
In the experiments they utilised a laser interferometer to measure the trajectory
of a colloidal sphere, and thereby determined the lubrication force and an effective
boundary position. The used geometry consists of grooves with a triangular profile.
For a theoretical description the boundary is expressed in a Fourier series that gives
the boundary condition for the Laplace equation. From this an effective boundary
position can be derived by a fast converting series. The roughness that was chosen
for their analysis was an array of truncated triangular grooves, similar to the ones
in Fig8.4 c). In Fig 5.6 the effective boundary positions for such a geometry is plot-
ted. The results match with the theoretical value of Lecoq et al. [88] for a similar
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geometry.
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Figure 5.6: Simulated effective height reff versus rav for triangular shaped grooves.
The triangular shape matches the theoretical and experimentally validated results
of Lecoq et al. [88] for a similar geometry that is plotted as dotted line [49].

A major problem of an analytical approach is that it can only be applied for sur-
faces that can be well expressed by Fourier-series. Since one needs an infinitely high
orders, to describe arbitrary surfaces, it is not possible to express them analytically
and thus numerical solutions are needed [83].

5.2 Results

5.2.1 Model roughness

In Fig. 5.7 reff is plotted versus rav for the different types of roughness discussed in
the previous section. By performing a linear fit to the data as given by the lines
one finds for the uniformly randomly distributed roughness that the position of the
effective wall is at reff = 1.84rav with rav = r/2 or in other words at 92% of the
maximum height r.

For squares and triangular structures the constants of proportionality are found
to be c = 1.90 and c = 1.69 indicating that the shape of the surface variations indeed
affects the position of the effective boundary. However, the effect of the shape is
small compared to the effect of the height of the variations. All surface structures
are geometrically similar causing the linear dependence between reff and rav = r/2
and c to be independent of the lattice resolution.

When converting the 3D random roughness into a purely 2D structure, the dif-
ference in the measured constant of proportionality c is in the range of the error of
the fit algorithm. This is a surprising result since in 3D the flow can pass sidewise
around a roughness element. The measured reff is found to be independent of the
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Figure 5.7: Effective height reff versus rav for triangles, blocks (see Fig. 8.4), and an
equally distributed random roughness. Lines are a linear fit to the simulated data
with slopes 1.90, 1.69, and 1.84.

flow velocity over more than 3 decades and does not depend on pressure either, i.e.,
reff is independent of the Reynolds number.

Non symmetric surface topology

In reality high spikes on a smooth surface may occur, so that the average roughness
rav is much smaller than half the maximum height r/2. This can be modeled by a
triangular geometry with additional void space a between the roughness elements.
As shown in the previous paragraph, the actual shape of the roughness elements has
only a minor influence. However, the ratio a/r should have an influence, as long
as a is sufficiently large. In this paragraph values of r = 5 and r = 10 lattice sites
are chosen to be the maximum height of the roughness. Similarly to Fig. 5.7 the
effective surface height reff over the average roughness rav is plotted in Fig. 5.8. It is
apparent that the average roughness is smaller than one half of the maximum height
r/2, i.e., rav = r2

2r+a
≤ r/2. The values of r = 5 are scaled by a factor of two to

be comparable with the values of r = 10. Due to the geometrical similarity of the
surface structure this scaling is possible. For comparison with Fig. 5.7 the linear
fit with slope c = 1.69 is plotted. As can be seen in Fig. 5.8, for spaced roughness
elements, the maximum height r has a strong influence on the effective height reff

while the spacing a does not. For small values of rav (due to large additional distance
a), which is corresponding to a flat surface, the effective height reff converges to
zero. For small a the effective height reff converges to the same value as the triangle
geometry, as given in Fig. 5.7. For intermediate values of a ≈ 2hmax the effective
boundary position is still in the range of 75% of the maximum height r. This is
an important result, since it demonstrates that the distance between the effective
boundary position reff and the lowest surface parts rmin can be much larger than the
average roughness height rav. In such cases reff > 6 · rav can be obtained. On the
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other hand, for large a this results in heff < 0.7 · r. Therefore, in the case of large
a ≈ 2r, the effective height reff cannot be approximated by the maximum height
rmax nor by the average roughness rav.
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Figure 5.8: reff versus rav for triangles with r = 5 and 10. The distance between
triangles a is varied to obtain the given rav. Values of r = 5 are scaled by a factor
of 2 so one would see possible discretization effects. The fitted values for a triangle
geometry are shown as dotted line.

5.2.2 Flow over a realistic surface

An advantage of the lattice Boltzmann method over other CFD-methods is that non-
trivial boundary-structures can easily be implemented. It is for example possible to
use experimentally measured surfaces like the ones obtained from AFM data of a
gold coated glass surface which have been used in microflow experiments by O.I.
Vinogradova and G.E. Yakubov [150]. The sample size is 1µm2 represented by
512×512 data points with a maximum peak to valley distance of 64nm. The lattice
constant of the LB simulation can be scaled to 1.9nm by setting the relaxation time τ
to 1.15 and by mapping the speed of sound and the kinematic viscosity to the values
for water (cs = 1.5 · 103m/s, ν = 1.02 · 10−6m2/s). reff can then be measured as
described in the previous paragraphs by loading the AFM data onto our simulation
lattice. For the simulations presented in this paragraph, the channel width is set
to 128 lattice units. The effective height, obtained by the simulation of Poiseuile
flow over the gold surface, is depicted by the square at rav=21nm in Fig. 5.9. Data
points at rav = 4 and 8 are obtained by downscaling the original data set with a
constant factor. By analysing the surface data it is found that the distribution of
surface heights follows a Gaussian distribution. This distribution is used to generate
an artificial random surface with identical height distribution. To generate this
height distribution a Gaussian-distributed random height for every lattice point on
the surface is obtained from a Box-Müller based algorithm [14]. The width of the
distribution σ and the average height rav can be set. By using the same sequence of
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random numbers and scaling σ with rav one obtains geometrically similar geometries.
This similarity is important because the effective height heff scales with the average
roughness in the case of geometrical similarity [74]. In contrast to the AFM data,
the random-surface data points are fully uncorrelated, while the gold surface shows
distinct structural properties as can be observed in the left background image of
Fig. 5.9. For artificial surfaces, the average roughness rav can be scaled by varying
the width of the Gaussian distribution of random numbers that allows to determine
reff for rav up to 40nm. As indicated by the dotted line, the measured reff linearly
depends on rav with a constant of proportionality of c = 1.43. The data obtained
from the gold coated surface follows the same linear dependence demonstrating
that the actual surface shape does not influence its effective position, but only the
distribution of heights needs to be known, as long, as the correlation length of the
heights is sufficiently small.

Figure 5.9: Simulated reff versus rav for gold coated glass and a randomly generated
surface with Gaussian distributed heights. The background image shows the gold
surface (left) and the artificially generated structure (right).

As an extension of the distribution from one sample, Gaussian distributed heights
with different widths σ are investigated. In Fig. 5.10 the effective height reff is
plotted versus the average height rav for 0.054 < σ/rav < 0.135. The height of the
effective wall depends linearly on σ in the observed range as it can be seen in the
inset. The effective height reff can be fitted by

heff = 1 + 3.1σ. (5.3)

The range of distributions is limited by the resolution of the lattice. If σ becomes
too small, the surface is nearly a flat wall, while a too large σ results in a porous
medium instead of a channel because the possible simulation volume is limited by
the available computer power.

The effective height reff ranges from 1.15rav to 1.45rav. These values are lower
than the effective heights for an equally distributed roughness (1.84rav). Previous
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studies showed that experimentally available surfaces commonly have Gaussian dis-
tributed roughness. Therefore, the results shown here can help to estimate reff in
real microchannels.
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Figure 5.10: Effective height reff over average roughness rav for Gaussian distributed
height elements with different width of the distribution σ. Symbols are the simula-
tion results, lines are a linear fit to the data. In the inset the slope of the fitted lines
is plotted over σ/rav. It shows the linear dependence of the effective height on σ.

5.2.3 Influence of roughness on the slip length

The most important question to be answered in this chapter is the effect of a wrongly
assumed position of a surface on experimental measurements. As mentioned in the
introduction many groups use an approaching method to measure the slip length β.
Here, a colloidal sphere at the tip of a cantilever immersed in a fluid is oscillated
in the vicinity of a surface, or the cylinders of a surface force apparatus (SFA)
are brought close to each other. The distance between the surfaces can become
very small – even down to contact. To study the influence of the roughness on
an apparent slip effect, it can be assumed that the surface is placed at r, as it is
commonly done in experiments [13]. Then, the slip length β is measured by fitting
Eq. 5.1 via β. The wrong position of the surface causes a substantial error in the
detected slip as can be inferred from Fig. 5.11. Here, β is given versus the average
roughness height rav for randomly generated boundaries with the heights of the
surface obstacles following the Gaussian distribution given by the AFM data of the
gold surface. For small rav (and thus large separation of the plates) β is in the
range of r− reff and can be neglected in most practical cases. However, the detected
slip diverges if rav becomes larger. Here, a large rav is equivalent to the channel
width becoming very small – an effect also common in typical surface approaching
experiments or microchannel flows. For curved surfaces, as they are utilized in SFA
or AFM based slip measurements, the detected β can be even larger due to higher
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order components of the flow field. This might explain experiments reporting large
slip lengths of β ≈ 100nm [86, 104].
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Figure 5.11: β versus rav for water and randomly distributed roughness. By assuming
reff = r, β is in the range of r − reff for small rav, but diverges for large rav.

5.3 Rough hydrophobic surfaces

A further interesting point in this chapter is how roughness and the surface wetta-
bility act together. In order to study this interplay, simulation results are presented
for a setup of rough channels including a fluid-wall interaction force. This force is
similar to a Shan-Chen force, as presented in chapter 4. As reminder it is stated
here that the Shan-Chen force is a repulsive force

fw,f (xj) = Ψ (ρ(xj)) gwfci

∑

Ψ (ρw(xj + ci)) ,

which leads to a depletion zone on the fluid nodes neighboring the boundary. Due
to this depletion the dynamic viscosity in this zone is lowered and therefore an
apparent slip can be measured. The steering parameters of the slip length are the
local wall density ρw and the global interaction parameter which is kept constant
at gwf = 0.08. For a more detailed explanation see chapter 4 or the literature [48].
For the wall density values of ρwall 0.5, 1, and 5 are chosen. For these values and
perfectly smooth surfaces the slip length β has been determined to be 0.65, 1.13, and
1.3, respectively. The roughness is composed of equally distributed random heights,
so that rav = r/2. In order to obtain better results the values obtained from four
different seeds of the random number generator are averaged. The seed determines
the sequence of random numbers and therefore the actual shape of the boundary
but not the macroscopic properties, since the averaged parameters are left constant.

When analysing the effective height of rough hydrophobic walls in dependence
of the average roughness rav we find for rav > 4 a linear dependence between the
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average roughness rav and the effective height reff . An interesting point however
is that the slope for different ρwall is different. That means that the fluid-surface
interaction does not result in a simple offset on the effective height reff but rather
in a non linear effect.

To decouple the effect of roughness and wettability the slip length is determined
by setting the effective distance deff in equation (5.1) to the effective distance for a
rough no-slip wall that is determined according to the procedure described in the
section above. It is then possible to fit the corresponding velocity profile via the slip
length β. By this procedure a slip length can be obtained which is not based on a
falsely assumed surface position but rather caused by the interplay of surface forces
and roughness.
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Figure 5.12: Slip length β over average roughness rav for equally distributed random
height elements for different fluid-wall interaction ρw = 0.5, 1.0, 5.0. The position
of the effective height heff is chosen as the value for a non-interacting wall. The lines
show the slip length for smooth boundaries (rav = 0).

In Fig. 5.12 it can be seen that the slip length β for strong fluid-wall interactions
(ρw = 5) first decreases with the average roughness and then rises. For a lower
interaction with ρw = 0.5, the slip length is constantly growing and leads to an
increase of the slip length by a factor of more than three. There are two opposing
effects present in this system and their interplay can explain the observed behavior.
The decrease of the slip length β for moderate roughness is due to an increased
friction near the boundary. The increase has its reason in the increased total surface
area and therefore a stronger reduced density near the hydrophobic rough surface.
Due to this low density which is trapped in the asperities of the surface, the fluid
“feels” a smoothed effective surface. Unlike the implementation of Sbragaglia et
al. [117] the L-BGK model used for the simulations in this chapter is not able
to model the liquid-gas transition near the surface. The model implements only
a density difference between the bulk fluid and the lattice site directly next to a
surface site. Further, unlike the implementation of Schmieschek and Harting There
is no third component (gas or oil) [121]. Therefore, one cannot easily calculate the
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contact angle in the presented simulations in contrast to the results presented by
Benzi et al. [8]. This is due to the fact, that for a contact angle three phases (typical
gas, droplet and wall) are needed. However, the general effect of a pressure drop
near a hydrophobic surface is the same as in the model used by Sbragaglia [117].
It can therefore be used to explain the behavior of polymer melts close to rough
hydrophobic surfaces. In such a system the shorter polymer chains are enriched
close to the boundary leading to a low viscous layer [6]. For a more detailed study
on super-hydrophobic surfaces, the strong surface variation as well as the liquid-gas
transitions have to be taken into account.

Resume

In this chapter Poiseuille flow between two rough surfaces is studied. The concept
of an effective boundary position is introduced. Further, the effective boundary
position for different surface geometries is investigated. A key result is that the
effective boundary position mainly depends on the maximum roughness height r
and the distribution of the roughness height. The actual shape of the roughness
elements or the average roughness height have only a minor influence on the position
of the effective boundary. Furthermore, it was shown that the interplay of roughness
and surface wettability can lead to non-linear effects regarding the value of the slip
length.
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Chapter 6

Lubrication force on a sphere
approaching a flat surface

The main part of this work concentrates on the simulation of the AFM based slip
experiments. Therefore, it is necessary that the simulation method is tested well
and the best simulation volume which is small enough to keep finite size effects
below an acceptable limit but still allows fast simulations is found. Further, it has
to be assured that the simulation method is able to reproduce the well established
theoretical solutions for cases where analytical solutions exist. One of them which is
applicable, is the theory of Brenner and Maude for the case of a sphere submerged
in a Newtonian liquid that is approached towards a surface. In this chapter it will
be assured that this theory is reproduced by the simulation method and that finite
size effects can be avoided by choosing the correct boundary condition.

6.1 Discretization effects without boundaries

Finite size effects commonly occur in computer simulations because one has limited
resources, thus the simulated systems are small compared to experiments. There-
fore, the boundaries of the system are much closer to the region of interest than
in experiments and in contrast to most theories which typically assume an infinite
volume. A typical approach to limit finite size effects is to use periodic boundary
conditions. However, in such a system the region of interest then interacts with
its periodic images. Hasimoto gives a theoretical solution for the drag force of a
sphere in a periodic array as it appears in a simulation where all boundaries are
periodic [51]:

FHa =
FSt

1 − 2.83a + 4.19a3 − 27.4a7 + O(a9)
(6.1)

Here, a = R/n is the ratio between the radius of the sphere R and the system length
n. The Stokes force is given by

FSt = 6πµRv, (6.2)

with µ being the viscosity of the liquid and v the velocity of the sphere.
Besides a finite simulated volume most simulation methods utilize a finite dis-

cretization of the simulated objects, i.e., the sphere in our case consists of many

71
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blocks instead of being a perfect sphere. This means that the finite size and the
resolution influence the result of a simulation. However, it is usually possible to
limit the influence of finite size effects and the loss of accuracy due to discretization
if those errors are known and taken into account properly.

It is known from previous studies that the discretization of the sphere results in a
deviation of the Stokes force FSt or in case of periodic boundaries from the Hasimoto
correction [80, 82, 143]. Therefore, simulations are performed of a moving sphere in
a liquid with periodic boundary conditions what makes it possible to compare the
drag force for different radii with Eq. 6.1.

In table 6.1 the measured force F , the theoretical force FHa, the radius Rset set in
the simulation, and the resulting effective radius Reff are shown. Since all movement
is in y-direction, from here on only the y component of the force and velocity is
shown if not stated otherwise. For a better comparison the ratio of Rset/Reff is
shown as well. In all simulations the system size is chosen to be n/R = 5. The shear
viscosity is set to µ = 0.1 and the velocity is set to 10−3 lattice units per time-step.
The simulations have been performed with an older simulation code and only the
first order in Eq.6.1 was taken into account. Besides this the table shows that the
deviation between the set radius and the effective radius shrinks with increasing
radius but seems to stay constant at 1.04Rset. Latter implementations of the sphere
do not suffer from such large deviations.

FHa F Rset Reff Reff/Rset

0.625 0.704 4.0 3.5 1.13
1.251 1.205 8.0 3.3 1.04
1.876 1.769 12.0 12.7 1.06
2.501 2.389 16.0 16.7 1.04

Table 6.1: Investigation of the effective radius in a small confined system.

6.2 The Brenner-Maude theory

The case that is of interest here, however, is different and more complex due to a
broken symmetry caused by the approached surface. In this section the commonly
used theory is recapitulated. In most of the experiments the relative velocity v of
the sphere with the radius R is so small that the simple Reynolds theory as it is
presented in chapter 3 for the lubrication force

FRe = −6πµvR2/d, (6.3)

can be applied. Here, µ is the dynamic viscosity of the fluid [79]. Note that for
larger distances d between the surface of the sphere and the approached boundary
the force in Eq. 6.3 does not converge towards the Stokes drag force FSt = −6πµvR
which is valid for a sphere moving freely in a fluid. Therefore, this simple Reynolds
lubrication fails in case of a larger velocity v or greater separations d, where the
Stokes force is not sufficiently small to be neglected. The system can be described



6.2. The Brenner-Maude theory 73

accurately by the theory of Maude [95]. The base of the theory is a solution for two
spheres approaching each other with the same rate, similar to the simple approach
in chapter 3 but taking into account higher order terms in the parameterization of
the surface. By transforming the coordinates, applying symmetry arguments and
setting the radius of one of the spheres to infinity one ends up with a fast converging
sum for the drag force acting on the sphere:

FMaude = 6πµvRλ1, (6.4)

with

λ1 = −1
3
sinh ξ

×
(

∑∞
n=1

n(n+1)[8e(2n+1)ξ+2(2n+3)(2n−1)]
(2n−1)(2n+3)[4 sinh2(n+ 1

2
)ξ−(2n+1)2 sinh2 ξ]

−∑∞
n=1

n(n+1)[(2n+1)(2n−1)e2ξ−(2n+1)(2n+3)e−2ξ]
(2n−1)(2n+3)[4 sinh2(n+ 1

2
)ξ−(2n+1)2 sinh2 ξ]

)

,

where cosh ξ = (d − R)/R. The term given by λ1 cannot be treated analytically.
Thus, λ1 is evaluated numerically with a convergence of 10−10. A more practical
approximation of (6.4) is given in the same paper [95]:

F (h) = 6πµRv
(

9

8

R

d
+ 1

)

(6.5)

Here, one can easily see that the force converges towards the Stokes force for an
infinite distance d and approaches the Reynolds lubrication Eq. 6.3 for small separa-
tions d. This theory is applicable for a perfect sphere approaching a surface with an
arbitrary approaching velocity v as long as the Reynolds number is low enough to
keep the fluid in the laminar flow regime. In the following sections simulations that
can be compared to this theory are presented and the influence of different sources
of error is investigated.

d

n
Figure 6.1: A sketch of the simulated system. The distance between the surface and
the sphere is d and the system length is n. The surrounding fluid is not shown.

In Fig. 6.1 a sketch of the simulated system is shown. A sphere embedded in
a surrounding fluid is simulated. While the sphere approaches a surface the force
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acting on it is recorded. Due to the jump-like movement of the sphere the force shows
a significant noise from time-step to time-step which makes it necessary to average
the force and to keep the velocity low so that the fluid can relax after a reformation of
the boundary nodes. Simulations with different sphere radii R and different system
width n are performed to investigate finite size effects. For simplicity the x and z
dimensions are set to the same value n and the propagation dimension y is kept
constant at 512 lattice units. If not stated otherwise the simulation parameters are
v = 0.001, µ = 0.1, and the radius is varied between R = 4 and R = 16. The typical
force averaging is done over 333 time-steps. It is assured that the averaging does
not influence the results, i.e. the results for averaging over 99 up to 999 time steps
are compared and no significant deviation is found. 333 time steps reduce the noise
strongly while the spatial coarse -graining due to the constant velocity is over 0.3
lattice sites which is a good spatial resolution. For a better visibility of the data
points only a fraction of them is plotted. The approached boundary is a plain no-slip
wall which is realized by a mid-grid bounce back boundary condition. Along the
open sides periodic boundary conditions are applied so that the sphere can interact
with its mirror images leading to undesired finite size effects.

6.3 Finite size effects with boundaries

A major contribution to the finite size effects is the interaction of the sphere with
its periodic image. Therefore, a larger system length should reduce this effect dra-
matically. However, when the hydrodynamic influence of the wall becomes larger,
finite size effects become smaller. This can be explained by the fact that the friction
at the boundary suppresses the hydrodynamic interaction of the particle with its
periodic image. Instead, the dominant interaction is between the particle and the
surface. It is mandatory for a better understanding of the system to learn how these
finite size effects can be described, quantified, and controlled.

6.3.1 Large test

First, a run of a large 5123 system assures that the method really shows the desired
asymptotic behavior, i.e., it is able to reproduce the theory Maude. Further it has
to be checked that the force scales with the velocity. To demonstrate this behavior
a long run with a smaller R = 8 sphere in a 2563 system is performed as well but
with a velocity of v = 10−4 instead of the usual 10−3 lattice nodes per time-step.
Since the sphere is smaller by a factor of 2 it consumes a factor of 16 less computer
power to run a simulation in which all lengths are scaled by the radius. A factor of
8 in the computer power is due to the smaller simulation volume and an additional
factor of 2 due to the shorter length the sphere has to travel at the constant speed
to travel the same fraction of its radius i.e. twice as many time steps have to be
performed. That is why the velocity independence is shown with R = 8. In addition
intermediate velocities 10−4 < v < 10−3 are tested to assure the results but are not
shown here for a better visibility of the main results.

The simulated data are plotted together with the first order approximation and
the theoretical values by Maude in Fig. 6.2. If not stated otherwise values in this
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Figure 6.2: Normalized force F/FSt versus normalized separation d/R for large sep-
arations for a sphere of R = 16 lattice units at an approaching velocity of v = 10−3

lattice units per time step and a sphere of R = 8 with approaching velocity v = 10−4.
Further, the theoretical values by Maude and the first order approximation are
shown. All data show good agreement.

thesis are normalized by a characteristic value of the system, for example the force
is normalized by the Stokes force

FSt = −6πµvR

and the separation d is normalized by the radius of the sphere R. This is done for
better comparability. The data of Fig. 6.2 shows good agreement with the theory of
Maude and the first order approximation but for a better visibility of possible errors
it is helpful to use different scales for plotting the data.
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Figure 6.3: Inverted normalized force FSt/F versus normalized separation d/R. The
plot shows the same data as Fig. 6.2. Due to the way of plotting the data a deviation
near the Stokes force becomes obvious. At d > 12R the force deviates due to the
influence of the far side boundary.

In case the area of interest lies in the approximation towards the Stokes force
at large separations d, the best way to plot the data is to plot the inverted force 1

F
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versus the distance d. Such a plot is shown in Fig 6.3. Here, only a small deviation
at large separations d is seen that origins in the influence of the opposite boundary,
but in later plots deviations become more visible.

In case the area of interest lies close to the boundary as it is the case in the
presented studies, it is favorable to plot the force F versus the inverse separation
1
d

as shown in Fig. 6.4. Since the distance is inverted one never reaches the actual
boundary in such a plot, but has a good resolution of the area close to the boundary
as it is desired in most cases of this thesis. In the plot one sees the asymptotic
behavior and that both radii/velocities do not show significant deviations. Further,
the data rather follow the first order approximation (see Eq. 6.5) than the actual
Maude solution. The reason lies in the jump-like movement and is discussed later.

It is shown that the simulation method used is able do reproduce the theoretical
values, but still the ideal simulation volume has to be found in order to achieve good
results with reasonable computational costs.
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Figure 6.4: Normalized force F/FSt versus normalized inverted separation R/d. The
plot shows the same data as Fig. 6.2. Due to the way of plotting deviations near
the boundary become obvious. Interestingly, the simulation follows the first order
approximation rather than the Brenner Maude solution.

6.3.2 Influence of the system size

First, a system with a constant sphere radius R = 16 is studied and the system
length n is varied. As shown above and validated later, a sphere of R = 16 reduces
discretization effects sufficiently so they are much smaller than the influence of the
periodic image. In Fig. 6.5 the drag force F normalized by the Stokes force FSt and
the inverse normalized drag force are plotted. In the inverse case the deviations for
the larger distance d can be seen more clearly. Fig. 6.5 shows that the deviation
for the small system n = 192 close to the wall is very small, however the force does
not converge to the Stokes force FSt. Here, effects similar to the ones reported by
Hasimoto (Eq. 6.1) appear. For small separations d the force decays with 1

d
while it

approaches a constant value for large d. The constant values should be given by the
Stokes force FSt, but can be larger due to the interaction with the periodic image.
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Figure 6.5: Normalized lubrication force F
FSt

and the inverted normalized lubrication

force FSt

F
versus the normalized distance d/R for different system lengths n. The

radius of the sphere is fixed at R = 16. The deviation for n = 192 is significant at
larger radii, but can be neglected for small distances. For n = 512 there is nearly
no deviation from the exact solution of Maude (6.4). In addition, the deviation of
the first order approximation (6.5) is below 1% for d > R/2.

In the 1/F plots it can be seen that the deviation is not a constant offset or factor
but rather starts at a critical value of d/R. From there, the force quickly starts to
approach a constant value.

In Fig. 6.6 the relative error E = F−FMaude

F
is plotted for different system sizes

n and a constant radius R. The error for the largest system n = 512 in Fig 6.6 is
constantly below 1% for larger distances d > R/2. At distances less than d < R/2
the error rises due to the insufficient resolution of the fluid filled volume between
the surface of the sphere and the boundary. Another possible effect is the fact that
the sphere rather jumps over the lattice than it performs a continuous movement.
Additionally, it can be seen that for distances less than d = R the error for the
different system sizes n collapses. The reason is that for smaller distances the lu-
brication effect which is independent of the system length n dominates the free flow
and therefore suppresses finite size effects due to the periodic image. The deviation
for the n = 512 system that can be seen at large d has its origin in the transient.
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Since the fluid is at rest at the start of the simulation and it takes some time to reach
a steady state this can only be avoided by longer simulations. An interesting fact is
that the deviation between the Maude solution and the first order approximation is
below 1% and that the simulation follows rather the first order approximation than
the Maude theory. A possible explanation is that the higher terms of the Maude
theory have its origin in the non static behavior of the system, while the first or-
der term would describe a sphere in a quasi static case. I.e., the sphere stays still
with a boundary velocity but neglects its change of position. This is similar to the
simulation and its-jump like behavior described in chapter 4.
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Figure 6.6: Symbols denote the relative error E = F−FMaude

FMaude
in % versus the nor-

malized distance d/R for different system sizes n. The line shows the first order
approximation. As expected, the error close to the wall deviates due to the dis-
cretization of the small distance d. The error becomes larger for large d due to the
influence of the periodic image.

6.3.3 Influence of the radius

Since the sphere is discretized on the lattice it is important to understand if this
discretization has an effect on the lubrication force. Therefore, simulations with a
radius of R = 4, 8, 16 are performed at a constant ratio R/n = 1/32 of the radius
and the system length. Fig. 6.7 depicts the normalized lubrication force F

FSt
and

the inverted normalized lubrication force FSt

F
versus the normalized distance d/R

for different radii R. It can be seen that the discretization of the sphere has little
influence on the measured force. Fig. 6.8 shows the relative error E for different
radii. For all radii the finite size effects due to the periodic image are negligible
since the ratio R/n is sufficiently small. The deviation from the Maude theory for
separations d > R are below 2% for all radii. Therefore, one has to concentrate
on small distances d where significant deviations appear. In our case this distance
is better resolved for larger R (note that in the plot the normalized distance is
shown). In addition, the resolution of the sphere is better for larger R. For R = 4
the deviation is more noisy and here the discretization really has an effect on the
drag force F . Additionally, there should be three or more lattice sites between the
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Figure 6.7: Normalized lubrication force F
FSt

and the inverted normalized lubrication

force FSt

F
versus the normalized distance d/R for different radii R but constant ratio

R/n = 1/32. For R = 4 a deviation at small distances can be seen.

surface of the sphere and the boundary. If that is not the case the hydrodynamic
interaction is not resolved sufficiently. If the distance between surface and sphere
is smaller than half a lattice spacing the two surfaces merge and the method fails.
Hence, it it advantageous to choose a large radius in order to be able to reduce
the relative distance to the boundary (in units of the sphere radius) or to resolve
a possible surface structure. For R ≥ 8 the deviations have a regular shape and
follow the deviation for the first order approximation. The trend to follow the first
order approximation is stronger for R = 16 but here the noise is reduced further and
all errors seem to be systematic. Therefore, the deviation has to be described as a
systematic error of the method that has its origin in the jump-like movement of the
sphere. The first order approximation is a quasi-static approximation and rather
represents the actual simulated case than the theory of Maude does.

It should be noted that the finite size effects for R = 16 and R/n = 1/16 due to
the interaction with the periodic image are much more significant than the discretiza-
tion effect. By choosing a large simulation volume, a radius R > 8 and focusing on
the force for separations d < 2R one can reduce those effects to a deviation of the
measured force from the theoretically predicted value of less than 1%.
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Figure 6.8: Relative error E = F−FMaude

FMaude
in percent versus the normalized distance

d/R for different radii n at a constant ratio R/n = 4
128

(symbols). As expected the
error close to the wall deviates due to the discretization of the small distance d. For
R = 4 the deviation fluctuates due to the low resolution but for R = 16 it follows
the first order approximation. The line corresponds to the first order approximation
of the Maude solution.

6.4 Slip at hydrophobic boundaries

6.4.1 Setup

By implementing hydrophobic fluid-wall interaction as described in chapter 4 it
is possible to simulate hydrophobic surfaces. For Poiseuille flow this method was
intensely tested but a validation for the lubrication force measurement method is
missing [48, 8]. Since no surface structure has to be resolved one can use a small
R = 8 sphere in a 1283 system, which reduces the required computer power by a
factor of 16. In all slip measuring simulations the average fluid density is set to
ηfluid = 0.8, the wall interaction parameter is set to ρw = 1.0 and the approaching
velocity is set to 10−3. The global coupling constant gwf is be varied to steer the
fluid-boundary interaction.

6.4.2 Results

Fig 6.9 shows a typical plot of the force F normalized by the Stokes force FSt versus
the inverse separation R/d normalized by the radius of the sphere. Such a graph
suits best to investigate the behavior next to the boundary. The plot shows the
asymptotic behavior of the force near the boundary. The black solid line shows the
theoretical no-slip curve following Eq. 6.3. The red line shows a fit assuming a slip
boundary with the slip length β, by adding the slip correction of Eq. 3.6 to Eq. 6.3.
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In addition, a fitted force curve is shown that assumes a different boundary position.
This boundary is shifted by s. Such a force reads as

F = FSt

(

1 +
9

8

1

d − s

)

. (6.7)
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Figure 6.9: Force F versus inverse distance R/d for a hydrophobic surface (squares)
The dotted line shows a theoretical curve assuming a no-slip effective boundary
inside the wall. The red line shows a fit with a slip assumption. The no-slip curve
is shown for comparison.

It is now possible to investigate the influence of different parameters on the
lubrication force and on the slip length. Here, we concentrate on the question
whether the flow pattern has an influence on the slip length or if it is a more universal
parameter to characterize a surface. Therefore, the global interaction parameter
gwf is varied and the measured slip length β is compared to the results from a
Poiseuille flow geometry, similar to those in [48]. Here, it has to be noted that
those methods are absolutely independent from each other. In one case one applies
a body force to drive the fluid and measures the flow field, in the second case an
object is moved through the fluid and the force on this object is measured. The
mechanism to implement the apparent slip does not interact directly, neither with the
driving mechanism nor with the measured value. In Fig. 6.10 we plot the slip length
β versus the interaction parameter gwf . As shown in a previous publication [48]
the slip length increases exponentially. Since the relevant parameters like pressure
and hydrophobicity are equal, one can now compare the two methods and find
similar results. Beside the influence of the fluid-surface interaction gwf the pressure
influences the slip length. A bulk pressure of more than 1.0 only allows slip lengths
β < 0.1 while a pressure of less than 0.8 causes serious numerical instabilities in
the lubrication force simulations, because the density fluctuations induced by the
jump like movement are to large. Therefore, a deeper observation of the pressure
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dependency is not possible. Since the shear independency was shown in Poiseiulle
flow, the velocity independency is only checked but not investigated in detail.
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Figure 6.10: Slip length β versus interaction parameter gwf . The plot shows the slip
length β measured for a Poiseuille geometry (circles) and the force based measure-
ment (squares). In both cases the slip increases exponentially and gives the same
values.

Resume

It was shown that the solution of Maude (6.4) can be reproduced and that at a
ratio R/n = 1/16 finite size effects are below 2% and can be neglected near the
boundary. The findings for the finite size effects are consistent with the findings by
Lecoq et al. for a similar system [89]. Further, it was demonstrated that a sphere
radius of R = 8 provides a sufficient resolution in the case of a plane surface so for
further simulations of a flat surface a 128× 128× 256 grid is sufficient as long as the
region of interest d ≤ 2R is less than two times the radius of the sphere. For the
simulations of a sphere approaching a rough surface as presented in chapter 7, the
spatial resolution becomes more important and therefore a larger sphere is required.
The best compromise between computational costs and resolution is a sphere of
radius R = 16 and a 2563 grid while keeping the region of interest at d ≤ 2R.

Based on this calibration the slip generated by a flat hydrophobic boundary was
investigated. It was shown that the slip length β measured by different models shows
the same dependencies. Further, it is now possible to investigate the influence of a
rough surface as it is done in the next chapter.



Chapter 7

Lubrication force on a sphere
approaching a rough surface

After the presentation of simulations of a flat surface in the previous chapter which
showed that the common theories for Lubrication flow can be reproduced, simula-
tions of a sphere approaching a rough surface are presented in this chapter. Since
real surfaces are never perfectly smooth this work has an influence on the interpre-
tation of slip experiments. In tis chapter it are shown that the lubrication force on
a sphere approaching a rough boundary cannot be described by a slip correction f ∗

Eq: 3.6 but by a shift of the effective boundary in a manner similar to chapter 5.

7.1 Setup

point of 
contact

r

h

y
z

x

h

contact

r

point of 

Figure 7.1: Sketch of the system: a sphere with radius R approaches a rough surface
where a fixed area fraction φ is covered by roughness elements. The separation h is
defined on top of the surface roughness at position y = r.

Computer simulations provide the opportunity to vary different parameters and

83
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to use different degrees of idealisation. Since the interest lies in lubrication experi-
ments, a sphere that is approaching a rough boundary is simulated, while recording
the force acting on this sphere, as depicted in Fig 7.1. Since the separation be-
tween the surface of the sphere and the approached boundary is not well defined the
following notation is introduced: the distance between the sphere and the highest
asperities should be h. The distance measured between the surface of the sphere
and the lowest point on the approached surface is d. Further, the roughness heights
are measured from the bottom of our roughness as shown in Fig 7.2.

av

min

eff

r
r
r
r

dh
s

Figure 7.2: Illustration of the different height descriptions. r is the height of the
highest peak, rmin the value of the lowest valley of the surface. The average height
rav is given by the arithmetic average of all surface positions. The effective height
reff depends on the actual geometry [74].

The interested in this work lies in the influence of roughness on the lubrication
force. Some model surfaces are constructed. The chosen roughness variants in the
presented study are depicted in Fig.: 7.3. The possible surfaces are elements with an
equally distributed random height between 0 and r Fig. 7.3 a, randomly distributed
elements of a constant height r with a given surface coverage φ, Fig. 7.3 b and
grooves with a square cross section so that the width is equal to r Fig.: 7.3 c. The
basic idea to describe the boundary is the concept of an effective boundary position
were the no-slip assumption holds [74, 78].

As shown in chapter 5 and depicted in Fig. 5.2 the effective boundary is located
between the maximum height r and the average height rav, but the actual position
has to be determined for each individual geometry. For Poiseuille flow the behavior
of the effective boundary position is described in chapter 5 [74] but it is an open
question if the previous findings can be applied to the lubrication problem. Here,
introducing an effective boundary causes a shift of the force curve. Thus the force
acting on a sphere with the velocity v and the fluid viscosity µ is given by

F = −6πµRv
(

1 +
9

8

R

h + s

)

. (7.1)
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c)

b)

a)

Figure 7.3: The three used surfaces. a) surface with random roughness heights,
equally distributed between 0 and r, b) randomly distributed roughness elements
with a height r and a roughness density of φ = 4%. c) grooves with a square cross
section and a roughness height of r.

Here, s = r− reff is the position of the effective boundary measured from the top
of the roughness. For a more clear presentation the distance between the effective
boundary and the surface of the sphere is expressed as d∗ = h + s. Since the
force curve is well recorded and only reff is unknown in our system, it is easy to
fit the effective height. As explained in the previous chapter, finite size effects can
be handled well if the ratio between system width n and the radius of the sphere
R is n/R ≥ 12. This keeps finite size effects below an acceptable minimum. In
the vicinity of the approached surface finite size effects are reduced to less then 1%
relative error. Thus, a lattice size of 256 × 256 × 256 with R = 16 lattice units is
used, if not stated otherwise, in order to keep the computational effort and finite size
effects within acceptable limits. All values are in lattice units. The fluid viscosity
is fixed at µ = 0.1. The approaching velocity is chosen to be 0.001 lattice sites per
time-step. The Reynolds number of this system is therefore Re = 1.6 which is high
for a micro flow application but is owed to the high velocity that is needed to keep
the computational effort acceptable. However, besides that the Reynolds-number is
high for microfluidic the flow is still in the laminar regime.
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Figure 7.4: Drag force F versus separation h plotted in different coordinates. On
the left hand side the inverse force FSt/F versus the normalised separation h/R and
on the right the normalised force F/FSt versus the inverse distance R/h is plotted.
They show the measured force for two rough surfaces with r = 11, φ = 4% and
φ = 50%. For φ = 4% the asymptotic behavior for small h cannot be fitted with
a slip, but the assumption of an effective boundary position holds. The values for
φ = 50% nearly recover the case of a flat surface at r. For comparison a fit with a
slip theory a boundary shift and a flat surface at the top of the asperities is plotted
as well.

7.2 Results

First the effect of roughness is compared with the effect of apparent slip as presented
in the previous chapter and it is shown that the assumption of an effective boundary
position can be distinguished from a slip surface assumption. Then, it is investigated
to what extend the effective boundary assumption holds and whether it differs from
the previous results in a Poiseuille flow geometry,

7.3 Comparison of roughness and slip

The focus of this section is on drag force measurements near surfaces with randomly
distributed roughness elements as shown in Fig. 7.3 b, where the chosen roughness
is characterized by the two parameters r and φ. Such a roughness mimic some
experiment ally used surfaces, like those utilizing a carbon-nano-tube forest [66].
Further, one is able to generate a well controlled surface with only two parameters,
namely the roughness density φ and the roughness height r. Since it was shown in
chapter 6 that for a hydrophobic surface the theoretical expectations (like Eq. 3.6
) are fulfilled simulations of a sphere that approaches a rough surface are presented
now.

In Fig. 7.4 left the inverse normalized lubrication force FSt/F versus the nor-
malized separation h/R is shown for surfaces with φ = 4%, φ = 50%, and r = 11,
while in Fig. 7.4 right the normalized hydrodynamic resistance force F/FSt versus
the inverse separation R/h is plotted. Also shown in both plots are the theory for a
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flat surface at the highest asperities reff = r, a fit with a slip theory (Eq. 6.6)
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, and a fit corresponding to an effective boundary position reff (Eq. 7.1).
A clear impact of roughness on the film drainage can be observed, but for large

separations all data converge towards the Stokes force FSt. At smaller separations
h, however, substantial differences have to be noted: while for φ = 4% the mea-
sured forces deviate strongly from the flat surface case, for φ = 50% almost no
deviation can be observed. The φ = 4% case nicely follows a fit with an effective
boundary position at reff = 7.86. Figs. 7.4 also demonstrate that a fit following the
assumption of a boundary slip is not able to explain the measured forces. The best
possible fit with β = 2.43 shows a different asymptotic behavior than our simula-
tion data for φ = 4%. It is still notable that the fitted slip length β is close to
the shift s = r − reff = 2.14 ≈ β but shows a significant deviation. The quantified
total deviation is small, but the curves shows a different behavior, what leads to
the significance of the deviation. Thus, it can be conclude that roughness cannot be
treated using a slip correction like Eq. 6.6, but can be treated well by an effective
boundary position. Or simply:
slippage and roughness are two different phenomena that have to be treated differ-
ently.

7.4 Influence of different parameters

After showing that roughness should be treated by assuming an effective boundary
position now the most important dependencies are investigated. The focus lies on
the questions weather this has an effect in ”realistic” structures and to what extend
the assumption of an effective boundary holds. Thereby, the boundary position is
characterized as in the chapters before by the effective height reff .

7.4.1 Resolution

Since it is known from previous sections that there is a principle difference between
slip and effective the boundary position, the next interesting question is: at which
distance d∗ = h−s the theory given by equation 7.1 does break down? This question
is very important since the distance between the surface and the sphere comes down
to contact in the slip experiments that are tried to cover. It is doubtful weather
Eq. 7.1 is applicable for such small distances d, because it assumes an averaged
boundary position and local deviations of the surface should have an influence on
the local flow field and thus on the force. To investigate this effect simulations with
an increasing roughness are performed. This allows to study the behavior of the
effective height reff and one can compare the deviation of the force from the theory
(7.1). The chosen standard roughness is a random roughness, where the height at
each lattice point is chosen randomly between 0 and r (see Fig 7.3a) and randomly
distributed roughness elements with a given height r and a roughness density of
φ = 8% (Fig 7.3b).
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Figure 7.5: Lubrication force F normalized by FSt versus the normalized distance
d∗/R between the surface of the sphere and the effective boundary for different
maximum heights r in a system with random heights (left) and randomly distributed
roughness elements φ = 8% (right) for different maximum heights r. The theory is
given by Eq. 7.1. A deviation of the force from the theory is not found up to d < 3
lattice sites. Below this discretization is to strong to give quantitative results.

In Fig. 7.5 the lubrication force F/FSt versus the normalized distance d∗/R be-
tween the effective height and the surface of the sphere is shown for different rough-
ness heights. The lubrication force F is normalized by the Stokes force FSt. The
theoretical curve for a plain surface is plotted as well. The force increases rapidly
for small distances and converges slowly towards the Stokes force FSt for longer dis-
tances. This convergence is not shown in the plot since only short distances where
the surface-fluid interaction has its main influence, are plotted. The deviation from
the theory (7.1) is below 2% at a distance less then d∗ > 3 lattice sites. Here, it has
to be noted that a minimum distance of three lattice nodes is needed to resolve the
fluid flow correctly. The error for smaller distances than d < 2 lattice sites becomes
large but since the fluid field away from the point of contact is resolved sufficiently
the strong increase of the force for < 2 lattice sites is still covered by the simulation.

Similar to previous plots the deviations are more obvious in a force versus the
inverted distance plot as shown in Fig. 7.6. This can be seen at the error for a flat
boundary r = 0 in Fig. 7.7. However the astonishing result is that the deviation
starts very close to the boundary, so the concept of an effective boundary can be
applied for small distances as well.

For a better illustration of the error, the relative deviation δF between the theory
(7.1) and the simulation data, is plotted over the effective distance d∗ in Fig. 7.7.
Note that in this case the distance is given in lattice units and is not normalized
by the radius. This is done in order to distinguish weather the deviation origins in
a discretization effect or if the physical background does not hold in this case. By
plotting the distance in lattice units one can see how strongly the space between the
surfaces is discretized. Further it is known from the previous chapter what is the
effect of the discretization.

For both kinds of roughness the plots are similar. For the moderate roughnesses
of r < 10 the relative error of the measured force F towards equation 7.1 is below
2% down to a distance of d∗ > 5x. At smaller distances the error starts to increase
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Figure 7.6: lubrication force F/FSt versus the inversed distance 1/d∗ between the
surface of the sphere and the effective boundary for different maximum heights r for
a system with random heights (left) and randomly distributed roughness elements
(right). The asymptotic behavior can be seen better in those coordinates.

significantly. However in this region the influence of the discrete computational lat-
tice become very significant. In addition the distance between the highest asperities
and the surface is already below the limit of the simulation method. For the large
roughness of r = 14 the deviation is more significant. But even in this case the
deviation stays under 5% for a distance larger then half the radius of the sphere
(d∗ > R/2) which is below the height of the roughness r. Thus we can conclude that
equation Eq. 7.1 holds down to an effective distance d∗ > r/2 of half the distance
within an acceptable limit of 5% deviation, which leads to the next question weather
there is an influence of the radius on the validity of Eq. 7.1.

7.4.2 Radius of the sphere

In the case of a flat surface the radius is simply a scaling factor to the force. For a
rough surface, however, the ratio between the radius and the height of the roughness
R/r changes and therefore similarity arguments do not hold any longer. Thus, it
is necessary to investigate the influence of the radius R on the effective height reff .
The two extreme cases are a sphere with an infinitely large radius corresponding
to a Poiseuille setup with two infinite planes. The other case is a sphere with a
radius smaller than the typical roughness. In the second case it is obvious that the
lubrication should depend strongly on the actual shape of the surface at the point
of contact and the surface cannot be seen as an averaged effective boundary. To
investigate for which parameters the averaging holds we perform simulations with
different radii R ranging from R = 4 up to R = 40. At smaller radii the discretization
of the sphere becomes to strong, thus an additional fit parameter for the radius of
the sphere is needed. The runs have been performed in a large simulation volume
512 × 512 × 512 to avoid finite size effects and to keep the same geometry. A
surface with randomly distributed roughness elements with a height of r = 10 and
a roughness density of φ = 8% is chosen. In Fig. 7.8 one can see that the effective
height reff converges very fast with increasing radius R. Finite size effects might
come into play because the ratio R/n becomes too large, so the maximum radius is
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Figure 7.7: Relative error of the lubrication force towards the theory (7.1) over
distance d∗ in lattice units δx between the surface of the sphere and the effective
boundary for different maximum heights r for a system with random heights. The
radius of the sphere is 16. For a distance smaller than d < 3 discretization effects
dominate over the physical deviation

R = 40. To avoid errors due to the stochastic nature of the surface, simulations are
performed with different points of contact for the smaller radii. In Fig. 7.8 they are
displayed with open blue symbols. Due to the periodic boundaries one can choose
the x- and z-coordinate arbitrarily, so the averaged values stay the same but the
local probabilities of the surface change. This has a stronger influence on the small
radii since here the relative deviation towards the average is larger. For a radius
of R > 16 the effective height is changing within less than 0.1 lattice units, which
is about the accuracy of the simulation method. The effective height is increased
for smaller radii, but this is independent of the point of contact as one can see in
the open symbols in Fig. 7.8. Later in Fig. 7.11 it is shown that the converged
effective height reff for the lubrication is within a tolerance of less then 5% at the
same position as the effective height for a Poiseuille flow [74].

7.4.3 Roughness density

The next focus lies on randomly distributed roughness elements as depicted in
Fig 7.3b). The influence of the roughness density φ is investigated in more de-
tail and the height of the roughness elements is varied from r = 11 to r = 21 as
well. This is done to overcome possible problems with the resolution of the sur-
face. Fig. 7.9 depicts the effective boundary height reff normalised by the maximum
height r versus the covering percentage φ. The effective boundary position increases
rapidly with increasing φ and reaches reff > 0.9r for φ > 20%. For higher φ the
effective boundary converges slowly towards the height of the elements r. reff is
almost converged at φ = 50% which confirms the good agreement of the φ = 50%
case with a flat surface fit in Fig. 7.4. The fact that the boundary position for
φ = 50% is already reff > 0.95r is only surprising on the first look. It is known from
percolation-theory that in case of 50% porosity in 2D there exists no path from one
end to the other. Therefore, in the observed case of φ = 50% the fluid might not
flow within the roughness but must flow over an element in one point.
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Figure 7.8: Effective height reff versus the radius of the sphere R for a randomly
distributed roughness, at r = 10 and φ = 8%. The blue and open symbols show
different points of contact. For radii larger then 16 the effective height is converged.
At a radius of R > 40 finite size- and transient effects start to disturb the result.

A good agreement between the two values for r can be seen, demonstrating that
the resolution has only little influence on the behavior of the measured boundary
position. Most notably, this even holds if r is larger than the radius of the ap-
proached sphere R = 16. The deviation for the low densities has its origin in the
strong variation of the local roughness density and the fact that here the flow within
the roughness layer is much more dependent on the lower boundary than on the
roughness itself. The result shows that a small number of high roughness elements
can have a great influence on the lubrication and leads to the conclusion that the
influence of surface shape variations has to be very well controlled for high precision
microfluidic experiments. This has to be kept in mind when constructing surfaces
such as nanotube forests [66, 37, 7], or generally when dealing with roughness in
microfluidic systems.

7.4.4 Point of contact

In the following sections systems with a grooved surface are investigated, as depicted
in Fig. 7.3c. The main difference between grooves and the random surfaces is that
grooves are not isotropic. For a Poiseuille flow setup, this means that there are
two possible flow directions, either in the direction of the grooves (longitudinal)
or transversal to the groove structure. For sphere drainage this means that the
rotational symmetry is broken. A second effect is that the point of contact should
become important now due to the anisotropy, i.e. whether the point of contact is in
a ”valley” or on a ”hill”. For the simulations grooves with a squared cross section
are used. Therefore, the maximum height r and the groove width are identical. To
investigate the influence of the variation of the point of contact, simulations are
performed with a constant geometry, but the sphere is moved away from the center
by a distance δ in steps of one lattice unit. As surface grooves with r = 10 are
chosen.

Fig. 7.10 right shows the relative deviation δF = F −FMaude/FMaude between the
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Figure 7.9: Effective height reff normalized by the maximum height r versus the
surface coverage percentage φ for r = 11 and r = 21. The effective height raises
quickly with increasing φ and converges towards the maximum height r. Due to the
geometrical similarity the curves behave identically. The inset shows a magnification
of 0% < φ < 10%

measured simulated force and the theory according to Eq. 7.1 over the distance d∗

between the averaged effective height reff and the surface of the sphere. The average
effective height is calculated as the average of each effective height for the different
points of contact. The plot shows that at a distance of 6 the deviation becomes
smaller than 2%. In addition the plot shows that one single reff is able to cover all
points of contact on this geometry. Here, it has to be noted that the roughness with
r = 10 is not small compared to the distance d∗ and the radius R = 16. However,
only a small effect of the roughness is seen when it is treated in this way. Therefore,
it can be concluded that for the AFM experiments roughness can be treated as a
virtual smooth plane as it is suggested by Vinogradova [150] and Kunert [74].
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Figure 7.10: Force F/FSt versus the inverse distance R/d∗ and the relative error of
the lubrication force versus distance d∗ between the surface of the sphere and the
averaged effective boundary for different distances δ towards the center. The height
of the grooves is r = 10. The plot shows that an averaged effective boundary is
applicable, and that the deviation starts shortly before the boundary.
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7.4.5 Heights

The position of the boundary as found in our current simulations can be compared
to the results for Poiseuille flow [74]. The behavior of reff with increasing roughness
r is investigated,i.e., a geometrically similar boundary with increasing height r is
simulated, but the sphere has a constant radius R = 16. Since it was showed earlier
that the actual point of impact and the radius can be neglected in the cases we are
interested in, it is sufficient to perform a single simulation for each height only.
As geometries different types of isotropic and anisotropic roughness are chosen.
The isotropic ones are random roughness heights between 0 and r as depicted in
Fig 7.3 a and randomly distributed roughness elements with a roughness density
φ = 8% (Fig. 7.3b). Further groved surfaces with a square crossection (Fig. 7.3c )
and a triangular crossection are used. Fig. 7.11 shows that the effective height reff

depends linearly on the maximum height r as it is expected and predicted by the
Poiseuille simulations presented in [74]. For a comparison, the results generated from
Poiseuille flow for a random heights geometry (reff = 0.92r) is plotted as line into the
same plot. The results show that for a random surface geometry the results fit very
well within error bars, which are of the size of the symbols. At the non-isotropic
groove surface, the results for the lubrication method are between the values for
longitudinal and the transversal Poiseuille flow, which are not shown in order to
keep the visibility. The lubrication flow has components in both directions thus
it is obvious that the position of its effective boundary is in between the effective
boundary for the both extreme cases. The actual position of reff is slightly higher
than the average between the longitudinal reff and the transversal effective boundary
height reff .
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Figure 7.11: Effective height reff versus the maximum height r for different surface
geometries. The line is for Poiseuille flow, points for lubrication flow. In the case
of an isotropic random surface both methods lead to the same effective height while
the non isotropic grooves lead to an intermediate result.
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Resume

In this chapter it is shown that the idea of an effective boundary is applicable even
for roughness that is not small compared to the radius of the sphere R or the effective
distance d∗ between the surface of the sphere and the boundary. Further, it is shown
that the effective height reff of the lubrication-based simulations is in good agreement
with the results from Poiseuille flow simulations in chapter 5. Further it was shown
that only a small fraction of roughness elements can result in an effective boundary
close to the highest point of the asperities.

The results show that surface roughness plays an issue in AFM-based slip exper-
iments but it can be treated in an easy manner by shifting the boundary and surface
position.



Chapter 8

Super-hydrophobic surfaces

As shown in chapter 3, the combination of hydrophobicity and roughness can lead to
so-called super-hydrophobicity. The understanding of this effect is very limited and,
both, experimental and analytical approaches, are difficult. Since a large reduction
of the friction close to the boundary is expected at super-hydrophobic surfaces, they
are technologically interesting. In the previous chapters the influence of roughness
on the flow close to the surface was discussed. The next step is to investigate which
effect the combination of roughness and hydrophobicity has on the slip length β.
Therefore, it is of interest to investigate the flow over bubbles that are trapped in
the surface topology. In this chapter the construction of super-hydrophobic cells is
presented. A whole surface can be formed by an array of such cells that is realized
by applying periodic boundaries. This enables the discussion of preliminary results
of fluid flow in the vicinity of such an array of unit cells. A slip effect is found, and
compared to analytical and experimental results.

8.1 Creation of a super-hydrophobic surface in

the lattice Boltzmann method

Before it is possible to investigate the behavior of super-hydrophobic surfaces it is
necessary to find a suitable setup. Due to the improved stability and the lower
computational effort, a Poiseuille flow setup is chosen. The flow is driven by a force
fx in x direction, which is equivalent to a pressure gradient ∂p

∂x
. In z direction simple

periodic boundary conditions are applied. Two surfaces, with a distance in between
them of 2d in the y dimension, form the remaining boundary. The upper plane is
hydrophilic (i.e. no slip BC) while the lower one consists of one super-hydrophobic
unit cell of the length L in x direction. Due to the periodicity only one cell is needed
to represent the whole surface. As described in chapter 4 a Shan-Chen model is able
to model a liquid-gas phase-transition. As reminder, in the model a force that is
directed opposed to the density gradient is applied to generate a phase separation
between a lighter (gas) and a denser (liquid) phase. The Shan-Chen force fSC in a
single component system is given by Eq. 4.64

fSC = Ψ(ρ(x))g
∑

i

ciΨ(ρ(x + ci))
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c
Figure 8.1: 3D visualization of a grooved surface. The width of the unit cell is L and
the width of a groove is defined by c. The red surface shows the boundary, while the
light blue bubble is given by an isosurface for ρ = 0.1, i.e., it lies in the interface layer
between the liquid and the vapor phase. The right plot shows a density profile in the
interface layer. Here, the density changes within five lattice sites from ρgas = 0.05
to ρliq = 2.26.

with the effective mass Ψ(ρ) = 1 − exp(−ρ
ρ0

) being a function of the fluid density

ρ(x) at position x. ρ0 = 1 is a reference density. The coupling constant g has to
be chosen carefully to achieve a large density difference between the dense (liquid)
phase and the light (gas) phase. For this work it was set to a value of g = 5.5 which
leads to a stable dense phase of ρliq = 2.26 and a stable low density of ρgas = 0.05
resulting in a density ratio of ρliq/ρgas = 45.2 which is close to the maximum that
was reported for diffuse interface lattice Boltzmann methods (Shan and Chen only
reported a density difference of ρliq/ρgas = 10 [124]). The interface layer requires
five lattice sites as it is shown in the density profile in Fig. 8.1, right.

To model a phase transition close to the boundary it is necessary to introduce
a fluid-boundary interaction, like it is done for the hydrophobicity in chapter 5.
Unlike to that approach one now needs a single component system and therefore,
the boundary now carries a virtual fluid-density ρw′

. To induce a vapor phase close
to the hydrophobic boundary, ρw′

should be set to a value close to the vapor density,
i.e., ρw′

= 0.05 for hydrophobic walls. Since the desired behavior is to have a vapor
bubble attached at the surface, it is necessary to have hydrophilic parts in the system
that keep the bubbles in place. They are realized by setting the virtual fluid density
in the boundary to a very high value of ρw′

= 3.05. This contact line pinning is
needed to keep the bubble in place and not to simulate one that starts to move
through the system.

To investigate the behavior of a gas phase pinned to the boundary two different
geometries are investigated, which are proposed in the literature [42]. The first
one consists of grooves as shown in Fig. 8.1. If not stated otherwise, the grooves
have a width of c = 20 lattice notes, the inner part of the groove is hydrophobic
(ρw′

= 0.05) and therefore filled with vapor. The grooves occupy the whole width of
the system, making them due to the periodic boundaries infinite cylinders, instead
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of round spherical bubbles1. Depending on the bulk pressure a meniscus is formed as
depicted in Fig. 8.2. The angle that is formed between the meniscus and the surface
is called the protrusion angle ϕ. Note that the bulk density is kept constant, since
there is a coexisting between the vapor and the liquid phase. The protrusion angle
ϕ is measured by fitting a circle towards the bubble. By this one can determine
the angle that is formed between the tangent on the circle and the surface. Since
the bubble interface is diffuse, the actual circle and therefore the protrusion angle ϕ
is not unique, which leads to an error in the protrusion angle measurement, which
influence is discussed later.

ϕ

Figure 8.2: Cross-section of a grooved unit cell. The colors indicate the density ρ,
i.e. blue stands for low density (vapor) and orange for high density (liquid). The
solid boundary is red. The protrusion angle ϕ = 30◦ is formed between the surface
and the bubble.

Such a grooved system has the advantage that one needs only a small simula-
tion volume when observing Poiseuille flow, since one can apply periodic boundary
conditions to the non wall sides, which allows to keep the simulated system as small
as L = 40 lattice nodes perpendicular to the grooves, 2dmax = 134 lattice nodes
between the two planes in y direction, and a width of only w = 4 lattice nodes, since
the system is a quasi 2D system. A similar system was investigated in the experi-
ments by Tsai et al. [142]. They investigated the flow field over grooves filled with
water, using the micro PIV technology and presented different flow profiles. The
behavior of the slip length from different geometrical parameters was investigated
and it was concluded that the behavior of the slip length β cannot be explained by
the theory of Philip [109]. Their explanation is that due to the meniscus, formed
at the grooves the no-shear (i.e. full-slip) parts develop an additional drag, simi-
lar to the effect reported by Richardson who showed that a rough no-shear surface
creates sufficient drag to obtain macroscopically a no-slip boundary [114]. Further,

1for simplicity the infinite cylinders are called bubble as well.
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Davis and Lauga developed a theoretical model valid for grooves covered with no-
shear ”bubbles”, to describe the slip length β in dependence on the protrusion angle
ϕ [32]. The main idea is that there is a no-shear meniscus on a no-slip plane. In
such a system two opposing effects can be observed: the larger the meniscus gets,
the longer the fluid is accelerated, but the stronger the drag becomes due to the
surface roughness created by the bubble. Their main result can be summarized
as follows: there exists a critical protrusion angle ϕc above which the effect of the
wall-attached bubbles displays a transition from reduced to enhanced fraction, i.e.
the slip length β becomes negative. They predict this angle to be ϕc = 65◦. They
predict as well a maximum protrusion angle ϕmax at which the drag reduction is
maximized. This angle depends on the ratio between the no-slip and the no-shear
part, however, for equally long no-slip and no-shear parts the maximum protrusion
angle is ϕmax = 25◦. Interestingly, they predict as well that for negative protrusion
angles there is no negative slip length.

Figure 8.3: Illustration of a 3D unit cell for a large bubble. The red surface shows
the boundary, while the light blue bubble is given by an isosurface for ρ = 0.1, i.e.,
it lies in the interface layer between the liquid and the vapor phase.

A different, three dimensional, super-hydrophobic cell is given by a circular cylin-
drical hole with hydrophobic inner walls. A bubble is formed inside the hole. In
Fig. 8.3 the red surface shows the boundary of a cylindrical hole with an inner radius
of R = 18 in a 80 × 80 lattice units large cell. The light blue bubble is created by
showing an iso-surface for a density of ρ = 0.1, i.e., a value to depict the interface
layer between the vapor bubble and the liquid. Such a model was investigated by
Hyväluoma and Harting using lattice Boltzmann simulations of Couette flow in the
vicinity of such a surface [59]. They found a shear dependent slip length, which has
its origin in the deformation of the meniscus. In contrast to the results by Davis
and Lauga they found the maximum slip length at a protrusion angle of ϕmax = 0◦.
However, the qualitative behavior is the same namely that at a critical protrusion
angle ϕc ≈ 65◦ the slip length becomes negative. However, there is a principle dif-
ference between the works: Hyväluoma and Harting investigate 3D structures, while
Davis and Lauga’s calculations are valid for a quasi 2D structure.

To investigate the flow over the presented surfaces, a Poiseuille flow setup is
chosen in this chapter. In contrast to the previous chapters one surface consist of
a single super-hydrophobic unit cell and the other surface is a flat no-slip surface.
The distance between the two surfaces is chosen as 2d = 134. This distance has
to be large compared to the height of the bubble, because otherwise the bubble
disturbs the bulk flow strongly, making it impossible to define an averaged effect of
the super-hydrophobicity. The flow is driven by a constant body force. This is a
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difference towards a Couette flow setup since the body force fx acts as well inside
the bubble and additionally accelerates the vapor. The slip length is measured in
the same way as in chapter 5, namely by fitting the theoretical flow profile, which
includes the slip length, towards the simulated data. Since one plane has a no-slip
boundary condition it is not possible to apply Eq. 5.1 where two equal slip-planes
are assumed. Instead a flow profile is used, which assumes no slip v(y = 2d) = 0 at
the upper boundary and a slip boundary condition u(y = 0) = β ∂v

∂y
|y=0 at the lower

surface. Such a profile reads as

ux(y) =
d2

2µ

∂p

∂x

[

y2

2d2
− y

d + β
− β

d + β

]

. (8.1)

The viscosity is kept at a value of µ = 0.1. Since the cross-section of the channel is
not constant, it is again necessary to average over many flow profiles. In this case
it is possible to average over the length of a whole unit cell L what is, due to the
periodic boundaries, the total average velocity.

8.2 Results

In this section the preliminary results of flow over an periodic array of the presented
super-hydrophobic unit cells are presented and compared with experimental and
analytical findings. A slip effect is detected and several dependencies are studied.

8.2.1 Flow profiles

A surface structure that has been studied both experimentally and theoretically in
great detail consists of longitudinal grooves etched in a smooth surface. If such
grooves are hydrophobic, they can be filled with vapor forming cylindrical bubbles
that are surrounded by liquid. The surface between individual grooves is hydrophilic
causing an effective pinning of the three-phase contact line.

A similar system was investigated in the experiments by Tsai et al. [142]. They
studied the flow field over gas filled grooves oriented in flow direction by using
micro particle image velocimetry (micro PIV). In [142] they presented measured
flow profiles and the corresponding effective slip lengths. There work showed, that
there is a significant difference between the flow over slip-no slip stripes and the flow
over a bubble surface. As well there system shows a disturbance in the flow profile
that is dumped quickly.

Following the work of Tsai et al. simulations of flow over grooves oriented in
flow direction are presented. The width of the groove is chosen to be c/L = 0.5.
The protrusion angle in the experiments and in the simulations is chosen to be
ϕ = −10◦, i.e., the liquid-gas interface forms a dimple rather than a bubble. The
meniscus increases the vapor covered area (no-shear surface) but also introduces
roughness that leads to a higher friction and therefore a reduced slip. In Fig. 8.4
the flow profile over one groove for different distances from the surface is shown.
At a very close distance x = 0.25c the bubble has a strong influence on the flow,
since the velocity in the centre of the groove is more than twice as large as the
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Figure 8.4: Flow profile perpendicular to the grooves for flow parallel (left) and
perpendicular (right) to the grooves at different x positions over the surface. The
groove is located in the centre of the system between 0.25L and 0.75L. In the left
panel a strong increase of the velocity in close vicinity to the bubble can be seen
that relaxes within 1.0c to an almost undisturbed flow. The right plot demonstrates
that flow perpendicular to the grooves causes more significant disturbances, which
get still damped rather quickly.

velocity in the centre of the void space. This effect is damped very quickly, i.e.,
at x = 1.0c the velocity increase in the area above the bubble is less than 10%
compared to the undisturbed case. The strong damping allows the treatment of
such a grooved surface as a surface with an effective boundary position as long as
the typical channel width d is larger then the system length L. The flow profiles
are consistent with the results of Tsai et al. who also found a strong increase of the
velocity above the grooves that is damped strongly further in the bulk. Further, the
measured and the simulated slip lengths β/L are of the order of half the theoretical
prediction by Philip [109]. The reason for this is the assumption of a flat surface with
stripes of no-slip and no-shear, while in the case of vapor filled grooves a meniscus
is formed introducing an additional roughness that reduces the slip of the fluid over
the surface.

In order to compare the results to the theoretical results of Lauga and Davis [32],
grooves which are oriented perpendicular to the flow are considered. In the right
panel of Fig. 8.4, the flow profile in the vicinity of a perpendicular groove as it
is assumed by the theory is shown. Interestingly, here the flow velocity does not
increase as strongly as in the aligned case above the groove but right after it. Again,
a deceleration in front of the groove can be observed and the flow profiles are not
symmetric towards the centre of a unit cell which is caused by the driving direction of
the flow. The disturbances caused by the bubble are not damped as quickly as in the
case of longitudinal grooves. For example, even at y = 1.0c the flow velocity changes
between 0.45umax and 0.59umax. Further the disturbance close to the boundary is
much stronger. At x = 0.25c one can see a strong decrease of the velocity at the
beginning of the groove and a strong increase at the end. The reason is the dimple
shape of the meniscus. This leads to a compression of the streamlines at the end of
the meniscus which is equivalent to an increased velocity. The dependence of the
slip length on the orientation is consistent with the work of Bazant et al. who have
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shown for flat stripes that a generalized tensor form would be required to describe
the surface properly [7].
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Figure 8.5: Flow velocity profiles perpendicular to the flow direction ux(y) for ϕ =
−23◦ (red) and ϕ = 31◦ (blue). For comparison the theoretical no-slip profile is
plotted as well. For each protrusion angle the cross-section at y = {0...20} is plotted
leading to the strong deviations close to the super-hydrophobic boundary. The
protrusion angle has a strong influence on the maximum velocity which can be
explained by a protrusion angle dependent slip length β(ϕ).

After the flow profile in flow direction the cross-section perpendicular to the flow
direction is investigated. In Fig. 8.5 the flow profiles for ϕ = −23◦ and ϕ = 31◦

are shown. The first one is chosen since it shows a similar protrusion angle as the
experimental data from Tsai et al. The second value ϕ = 31◦ is chosen because here
the maximum slip can be detected. In the plots all x-positions in flow direction are
plotted. Close to the bubble boundary the velocity shows strong variations which
are a result of the acceleration and deceleration due to the bubble. The two velocity
profiles follow a Poiseuille flow solution as shown in Eq. 8.1 but show different slip
lengths β. Therefore, it is possible to determine the slip length β by a fit towards
the flow profile. Further, the protrusion angle dependence of the slip length can be
investigated.

8.2.2 Slip near super-hydrophobic surfaces

The shape of the meniscus has a significant influence on the slip length. The above
mentioned analytical approach of Davis and Lauga described the effective slip length
in dependence on the protrusion angle ϕ on a surface with grooves perpendicular
to the flow direction [32]. The theory assumes rigid bubbles with a full-slip surface,
which corresponds an infinitely thin liquid-gas interface and vanishing gas density.
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In this case the slip length is given by

β

c
= π

(

c

L

)
∫ ∞

0
A(s)ds, (8.2)

with

A(s) =
s

sinh 2s(π − ϕ) + s sin 2ϕ
×

[

cos 2ϕ +
s sin 2ϕ cosh sπ + sinh s(π − 2ϕ)

sinh sπ

]

.

(8.3)
The only parameters entering the calculation of the effective slip length β are the
protrusion angle ϕ and the ratio between the width of a groove c and the length of
a unit cell L. The actual values of the slip length have to be calculated numerically.

 0

 0.1

 0.2

-80 -40  0  40  80

di
m

en
si

on
le

ss
 s

lip
 le

ng
th

 β
 /L

protrusion angle ϕ

2% ρlq
4% ρlq

50% ρlq
90% ρlq

Davis and Lauga

Figure 8.6: Slip length versus protrusion angle ϕ for different threshold values. The
groove has a width of c = 30 and the system length is L = 40. Since the multiphase
lattice Boltzmann model used is a diffuse interface model, the protrusion angle is
not defined uniquely but depends on where the actual interface position is assumed,
i.e. which threshold ρt is chosen. Due to the non perfect slip on the vapor phase the
analytical solution by Lauga et al. is scaled down by a factor of 0.75.

In Fig. 8.6 the dimensionless slip length β/L versus the protrusion angle ϕ is
shown as given by Eq. 8.2 and by the simulation. The system length in this case
is L = 40 lattice units and the width of a groove is c = 30 lattice units. Since the
interface between the vapor and the liquid is diffuse, the actual bubble position is
not strictly defined. This is in contrast to the theoretical solution and renders the
determination of the protrusion angle difficult. Therefore, different threshold values
ρt for the fluid density at the interface are chosen to determine the protrusion angle.
This value has to be somewhere between the high (liquid) density ρliq = 2.2 and the
lower (gas) density ρg = 0.05. In Fig. 8.6 the effect of choosing different threshold
values between ρt = 0.02ρliq and 0.9ρliq is demonstrated. Here, it can be observed
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that a variation of the threshold can lead to a shift in the protrusion angle of more
than 20◦.

A comparison of the simulation data to the results of Davis and Lauga Eq. 8.2,
shows that the qualitative shape of the curve is well reproduced, i.e., the slip length
first increases with rising ϕ up to a maximum at ϕmax and then follows a steep
decrease for high ϕ. It can even become negative. However, in addition to the
possible variation of ϕ a second deviation between theory and simulation is found:
the detected slip length b is lower than predicted by Davis and Lauga. To be able to
compare theory and simulation, the theoretical values are scaled by a factor of 0.75
to fit the data. This can be explained by the fact that the diffuse interface must
not be described by a smooth full slip cap. Instead it shows a finite slip due to the
friction within the interface region. Further, the density ratio between liquid and
vapor is limited in the lattice Boltzmann model used. In the presented case it is
only 1/44. Therefore, the shear resistance on the bubble surface is only reduced by
this factor, while in a real system consisting of, e.g., water and air, this ratio would
be of the order of 1/1000 rendering the assumption of no shear more realistic. Apart
from the shift due to the finite interface width, the simulation is able to recover the
main conclusions from the theory, namely the strong dependence on the protrusion
angle ϕ.
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Figure 8.7: Normalized slip length b/L versus the protrusion angle ϕ, for different
ratios between the width of the grooves c and the system length L. The behavior
is similar to the prediction of Eq. 8.2. Further, a larger φ = c/L leads to a strong
increase of the slip length.

Further the influence of the area covered by the bubble φ = c/L on the slip
length is investigated. Different channel widths are considered for different protru-
sion angles ϕ. The threshold value determining the interface position was chosen
to be ρt = 0.04ρliq. A lower threshold would be beneficial, but is hard to realize,
since in some cases this leads to an undefined protrusion angle. Results are shown in
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Fig. 8.7. The qualitative behavior of the results again follows Eq. 8.2. The maximum
slip length is increased very strongly by increasing the relative width of the groove.
An increase of the surface coverage from φ = 0.5 to 0.8 leads to an increase of the
dimensionless slip length where the values for the respective maxima range from
b/L = 0.07 to 0.19. Such a strong increase is also predicted by Eq. 8.2. Further,
due to the influence of the increased roughness for ϕ > 60◦ the slip length becomes
smaller for larger ϕ. Also for ϕ < −40◦ the slip becomes smaller than b < 0.05L
and nearly independent on the surface coverage φ.
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Figure 8.8: Normalized slip length β/L versus the maximum flow velocity umax

plotted on a logarithmic scale. Due to the deformation the slip length decreases at
high velocities.

Figure 8.9: Density in a deformed bubble. The white line shows the contour of an
undeformed bubble.

Finally, the shear rate dependency of the slip length is analyzed. Hyväluoma and
Harting [59] found a shear dependency due to the deformation of the bubble under
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shear, that results in a decreasing slip length. In the Poiseuille flow setup a shear
dependency would mean a flow velocity dependency. Therefore, simulations on a
groove geometry with different maximum flow velocities ranging from vmax = 0.0001
to vmax = 0.12 are performed. As protrusion angle ϕ = 55◦ is chosen since the bubble
has to range sufficiently far into the system in order to be deformed. Further, the slip
length of β/L = 0.05 in this system is still sufficiently large to see any deviations2.
The results are shown in Fig. 8.8. Here, the reduction of the slip length from
β/L = 0.05 down to β/L = 0.04 is observed. A further reduction could not be
observed for two reasons. The first is that a velocity of umax > 0.12 results in too
high Mach numbers. Since the lattice Boltzmann method, as it is presented, is only
valid for non compressible fluids, the simulation method could not be applied at
higher Mach numbers. The second reason is the small deformability of the bubble.
To increase it, a larger bubble should be simulated. To show the deformation in
Fig. 8.9 the density profile for the bubble at vmax = 0.12 is shown. For comparison,
an isosurface of the boundary layer of an undeformed bubble is shown as a white
line. As far as the results can be compared the shear dependency is consistent with
the findings of Hyväluoma and Harting. In their work the reduction at higher shear
rates is more dramatic, because the bubbles are less stiff since they are larger.

Resume

In this chapter Poiseuille flow over super-hydrophobic surfaces is applied to inves-
tigate the behavior of the slip length on different parameters. Mainly vapor filled
grooves are investigated which can be compared to the theoretical work of Davis
and Lauga [32] and the micro PIV experiments by Tsai et al. [142]. Further, a single
bubble similar to the simulations of Hyväluoma and Harting [59] is investigated.
It was shown that the flow profiles are in good agreement with the experimental
findings of Tsai et al. [142]. Further, the dependence of the slip length on the pro-
trusion angle is compared with the theoretical work. Here, a very good agreement
in the critical protrusion angle ϕc and the angle of the maximum slip length ϕmax

was observed. Finally, it is possible to show that a deformation of the bubble under
shear leads to a decreased slip length.

2Note that the absolute slip length is β = 0.05 × 40 = 2.0 lattice units
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Chapter 9

Conclusion

This thesis focuses on lattice Boltzmann simulations of the influence of roughness
and hydrophobicity in microfluidic systems. Therefore, typical experimental setups
like Poiseuille flow and a lubrication force measurement experiment are simulated.
Unlike typical idealizations, the investigated surfaces can be randomly rough instead
of being perfectly smooth or having only a simple periodic roughness. Due to this in-
creased realism, this work gives a deeper insight, how roughness and hydrophobicity
have to be treated in the data analysis of experiments.

In chapter 3, an overview on the slip phenomenon is given. It can be said that the
field of microfluidics provides a variety of interesting physical phenomena that are
hard to describe by analytical theories. Experimental results on slip phenomena are
often inconsistent with each other, which makes a common understanding hard to
achieve. Computer simulations can help to draw a clearer picture of slip phenomena.
However, the simulation method has to be chosen carefully. Classical CFD methods
need a founded analytical theory to model sub continuum effects. Since such a
theory is missing, they are less helpful in the case of micro-fluidic slip phenomena.
Molecular dynamics has the advantage that it can utilize first principles, but suffers
form a large computational effort. Therefore, the time and length scales one can
achieve by these methods are too small. A possible solution are so-called mesoscopic
methods.

Chapter 4 gives an overview on the lattice Boltzmann (LB) method that is uti-
lized in this thesis. By using a discretized version of Boltzmann’s equation, the LB
approach allows to fully resolve the hydrodynamics [129].

Massive particles are described by a continuously moving boundary which is dis-
cretized on the lattice. Momentum from the particle to the fluid is transferred such
that the fluid velocity at the boundary equals the particle’s surface velocity. Since
the momentum transferred from the fluid to the particle is known, the hydrodynamic
force can be recorded. Hydrophobic interactions and liquid-vapor phase separation
are modeled by a Shan-Chen approach. In short, this is a force that is proportional
to the local fluid density and the neighboring, or a virtual boundary density.

By applying a Poiseuille flow setup between rough boundaries, it is possible to
demonstrate in chapter 5 that not properly taking into account surface structures
of confining geometries can lead to substantial misinterpretations of measured flow
properties. It is demonstrated that rough surfaces alone can lead to large apparent
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slip if the distance between boundaries is small [74]. These findings show that
the concept of an imaginary effective plane where the no-slip boundary condition
is valid, is a good description of a rough boundary. The results are compared to
analytical calculations of Panzer et al. and found to be in good agreement for small
variations. Large and more realistic perturbations can only be covered by simulations
as presented here. By simulating flow of water along a gold coated surface and a
randomly generated one with identical height distribution, it is shown that the
position of the effective plane is independent of the boundary structure and that only
the height distribution is relevant. Further, these simulations depict the applicability
of the lattice Boltzmann method to real surface data. Simulations of flow along
surfaces generated from AFM data allow to determine how detected slip might have
to be corrected to take surface structures into account. Further, it is shown that
the interplay of roughness and hydrophobicity can lead to both, an increase as well
as decrease of the measured slip length. This can explain the different experimental
findings concerning the roughness dependency of the slip phenomenon[74, 76, 49].

In chapter 6, finite size and discretization effects of a sphere approaching a flat
surface are investigated. This work is essential for the following investigation utiliz-
ing lubrication force measurements. As the solution of Maude (6.4) is reproducible,
it demonstrates that at a ratio R/n = 1/32 finite size effects are below 2% and can be
neglected near the boundary. It is also demonstrated that a sphere radius of R = 8
provides a sufficient resolution. Based on this calibration it is possible to investigate
the influence of different surface properties. Further, the influence of a hydrophobic
interaction between the approached surface and the fluid is investigated. It is shown
that such an interaction leads to a slip with a slip length, which is equivalent to
the one found in a Poiseuille flow setup. The chapter shows to what extent such an
approach is valid. Further, it shows that such lattice Boltzmann simulations have
enough resolution to cover the surface effects that are in the focus of this thesis [77].

Based on these results, it is possible to investigate the influence of roughness
on the lubrication force in chapter 7. The main conclusion is that such a flow
is fully equivalent to one which would be created past an effective no-slip smooth
surface, located at the intermediate position between top and bottom of asperities.
Its location is controlled by the density of roughness elements but independent on
the flow properties. These results extend the findings of chapter 5.

It is shown that apparent slip created by a hydrophobic surface can be distin-
guished from roughness which should be treated as an effective boundary. The idea
of an effective boundary is applicable even for roughness that is not small compared
to the radius of the sphere R or the effective distance d∗ between the surface of the
sphere and the boundary. Further, it is shown that the effective height reff of the
lubrication based simulations is in agreement with the results from Poiseuille flow
simulations. The results show that surface roughness is an issue in AFM-based slip
experiments, but it can be treated in an easy manner by shifting the boundary and
surface position. The results could have a direct impact on the analysis of SFA/AFM
data and other experimental configurations. In addition, they enable the detection
of measurement artefacts that lead to erroneous conclusions [78].

In chapter 8, Poiseuille flow in the vicinity of super-hydrophobic surfaces is sim-
ulated. Preliminary results show that the simulated velocity profiles qualitatively
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correspond with experimental data of Tsai et al. [142]. The slip length is found to
depend on the protrusion angle as predicted from the analytic studies by Davis and
Lauga [32]. Further, a reduction of the slip length due to the deformation of the
bubble at high flow velocities is detected. It is therefore shown that the utilized
simulation method is able to model super-hydrophobic systems.

For future work different super-hydrophobic surfaces should be investigated.
Those could include a model of stiff rods like it is seen in carbon nanotube forests.
Other geometries would include grooves with a larger vapor to solid surface ratio.
Also more studies on the Wenzel state could be performed were the interplay of
roughness and hydrophobicity is even more crucial. Further some experiments re-
port of an increased slip length for increasing shear. It was argued that in this case
the bubbles will not only be deformed, but the contact line will move over the sur-
face. Therefore, a non pinned contact line would be a possible continuation of this
work.

Further, it would be desirable to investigate the influence of a super-hydrophobic
surface on the lubrication force. In such a case, the anisotropy of the grooved surface
should influence the results. This is possible in principle, but requires much more
computer power and larger systems than the current ones. The reason is that it is
necessary to resolve the force curve down to a small fraction of the spheres radius,
while having large bubbles on the lattice scale. The bubble, however, may not be
entered by the sphere. Therefore, the sphere has to be significantly larger than it is
in the presented work for the rough surfaces.

Other super-hydrophobic like behavior could also be created by having a mixture
of two liquids, with the less viscous liquid attracted by the surface. Such a system
could consist either of water and oil or of polymer melts with an inhomogeneous
molecular weight distribution. In this case, the low viscous fluid would cover the
surface roughness, leading to a drag reduction. In principle, it is possible to simulate
this as well with a lattice Boltzmann model.

In conclusion, it is shown that the effect of roughness and slippage are two distin-
guishable phenomena, which are highly related. While roughness leads to a shift of
the boundary position, slippage, as it can be created by hydrophobic surfaces, leads
to a real increased fluid velocity at the boundary. To obtain a correct description
of the boundary condition, both phenomena have to be taken into account. This
is especially important in the case of so called super-hydrophobic surfaces where
vapor is trapped in the asperities of the surface roughness. It is shown that the
lattice Boltzmann method is able to describe such phenomena. Therefore, it can
be used as a tool to design surfaces with special properties like a high slippage or
simulate more complex microfluidic devices, including the complex behavior close
to the boundaries. Further, the findings of this work influence the analysis of slip
experiments which analyze the fundamental question which boundary condition one
has to apply in fluid flow.
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[59] J. Hyväluoma and J. Harting. Slip flow over structured surfaces with entrapped
microbubbles. Phys. Rev. Lett., 100:246001, 2008.

[60] T. Ihle and D. M. Kroll. Stochastic rotation dynamics: a Galilean-invariant
mesoscopis model for fluid flow. Phys. Rev. E, 63:020201(R), 2001.

[61] T. Ihle and D. M. Kroll. Stochastic rotation dynamics I: formalism, galilean
invariance, Green-Kubo relations. Phys. Rev. E, 67(6):066705, 2003.

[62] T. Inamuro, M. Yoshino, and F. Ogino. A non-slip boundary condition for
lattice Boltzmann simulations. Phys. Fluids, 7(12):2928, 1995.

[63] A. Jabbarzadeh, J. D. Atkinson, and R. I. Tanner. Effect of the wall rough-
ness on slip and rheological properties of hexadecane in molecular dynamics
simulation of couette shear flow between two sinusoidal walls. Phys. Rev. E,
61:690, 2000.

[64] K. M. Jansons. Determination of the macroscopic (partial) slip boundary
condition for a viscous flow over randomly rough surface with perfect slip
microscopic boundary condition. Phys. Fluids, 31:15, 1987.

[65] J. E. Jones. On the determination of molecular fields. ii. from the equation of
state of a gas. Proc. R. Soc. Lond. A, 463:463, 1924.

[66] P. Joseph, C. Cottin-Bizonne, J. M. Benoit, C. Ybert, C. Journet, P. Tabeling,
and L. Bocquet. Slippage of water past superhydrophobic carbon nanotube
forests in microchannels. Phys. Rev. Lett., 97:156104, 2006.

[67] P. Joseph and P. Tabeling. Direct measurement of the apparent slip length.
Phys. Rev. E, 71:035303, 2005.

[68] M. Junk, A. Klar, and L.-S. Luo. Asymptotic analysis of the lattice Boltzmann
equation. J. Comp. Phys., 210:676, 2005.

[69] G. Karniadakis, A. Beskok, and N. Aluru. Microflows and nanoflows, funda-
mentals and simulation. Springer, 2005.

[70] M. Knudsen. Experimentelle Bestimmung des Druckes gesättigter Quecksil-
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[100] A. Narváez, T. Zauner, F. Raischel, R. Hilfer, and J. Harting. lattice-
Boltzmann simulations for permeability calculations in porous media. IN
PREPARATION, 2009.
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