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Deutsche Zusammenfassung

In der vorliegenden Arbeit wird ein verallgemeinerter zeitstetiger Kiefer-Wolfowitz-
Prozess vorgeschlagen, der sich als Lösung der folgenden stochastischen Integralglei-
chung ergibt:

Zt = Z0 −
∫ t

0

as
2cs

{
f(Zs− + csei)− f(Zs− − csei)

}
i∈{1,...,d}

dRs −
∫ t

0

as
2cs

M(ds, Zs−).

Basierend auf den Arbeiten von Melnikov und Valkeila [22], Lazrieva et al. [18] und
vielen weiteren Arbeiten, die sich mit dem zeitdiskreten Kiefer-Wolfowitz-Prozess be-
schäftigen, werden in dieser Arbeit nicht nur die asymptotischen Eigenschaften des
Prozesses Zt, sondern auch die des gemittelten Prozesses Z̄t betrachtet.

Der Robbins-Monro- und der Kiefer-Wolfowitz-Prozess werden im ersten Kapitel so-
wohl als zeitdiskrete als auch als zeitstetige stochastische Approximationsverfahren
vorgestellt. Diese Darstellung soll für ein besseres Verständnis des Gebiets und der in
dieser Arbeit vorgenommenen Verallgemeinerung, bezogen auf die obige stochastische
Integralgleichung, sorgen.

Das zweite Kapitel geht auf Fragen nach der Konsistenz und der Konvergenzgeschwin-
digkeit des Prozesses Zt ein. Diese Fragen konnten ohne erhebliche Einschränkungen
hinsichtlich der Gestalt von Rt, at und ct geklärt werden, da nicht angenommen wer-
den musste, dass diese deterministisch sind. Beim Nachweis beider Resultate spielt ein
Lemma eine zentrale Rolle, das Aussagen über Konvergenzmengen von positiven spezi-
ellen Semimartingalen macht und im Wesentlichen auf deren multiplikativen Zerlegung
beruht. Die Resultate der Konsistenz und der Konvergenzgeschwindigkeit werden im
Itô-Fall und im zeitdiskreten Fall diskutiert. Hierbei ergeben sich drei bereits bekannte
und ein neues Resultat.

Der nächste Teil der Arbeit widmet sich der asymptotischen Normalität, in dem jedoch
nur deterministische Prozesse Rt und Dämpfungsprozesse der Gestalt at := a(1+Rt)−1

zugelassen werden. Im Fall von zwei bzw. dreimal differenzierbaren Regressionsfunk-
tionen f wird zunächst die Konvergenzgeschwindigkeit des Prozesses Zt in einem fast
L2-Sinne betrachtet und anschließend die Frage nach dessen asymptotischer Normalität
geklärt. Zum Nachweis der asymptotischen Normalität werden eine geeignete Darstel-
lung des Prozesses Zt, die fast L2-Konvergenzgeschwindigkeit unter Verwendung der
Markov-Ungleichung und ein zentraler Grenzwertsatz verwendet. Diese Resultate wer-
den wiederum im Itô-Fall und im zeitdiskreten Fall diskutiert. Im zeitdiskreten Fall
zeigt sich, dass das Resultat über die asymptotische Normalität mit bereits bekannten
Resultaten übereinstimmt. Ein entsprechendes Resultat im Itô-Fall war in der Literatur
bisher nicht zu finden.
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Im vierten Kapitel wird, aufbauend auf den Arbeiten [3], [4] und [5] von Dippon und
Renz im zeitdiskreten Fall, ein gemittelter Prozess Z̄t unter Verwendung von schwäche-
ren Dämpfungsprozessen der Gestalt at := a(1 + Rt)−α mit 5

6 < α < 1 präsentiert und
sowohl dessen Konsistenz als auch dessen asymptotische Normalität diskutiert. Wie
im vorangegangenen Kapitel wird auch hier davon ausgegangen, dass der Prozess Rt

deterministisch ist. Anschließend werden wieder der Itô-Fall und der zeitdiskrete Fall
diskutiert. Dabei ergibt sich im zeitdiskreten Fall ein bereits bekanntes und im Itô-Fall
ein neues Resultat.

Abschließend beschäftigt sich die Arbeit mit der Frage, wie sich der Kiefer-Wolfowitz-
Prozess bzw. der gemittelte Prozess asymptotisch verhält, wenn der Dämpfungspro-
zess zu einer Konstanten ausgeartet ist. Diese Frage war bei zeitstetigen Varianten
des Robbins-Monro-Prozesses bisher noch nicht geklärt. Das Augenmerk richtet sich
auf lineare Regressionsfunktionen; die Einschränkung, dass der Prozess Rt determinis-
tisch ist, wird aufgehoben. Unter Verwendung eines einfachen Beispieles wird gezeigt,
dass der Robbins-Monro-Prozess in diesem Fall nicht konsistent ist. Allerdings kann
vom gemittelten Prozess gezeigt werden, dass dieser asymptotisch normal ist. Auf die-
sen Resultaten aufbauend wird die eigentliche Fragestellung nach dem asymptotischen
Verhalten des Kiefer-Wolfowitz-Prozesses für den Fall einer quadratischen Regressions-
funktion geklärt. Anschließend werden der Itô-Fall, der zeitdiskrete Fall und der Fall
Rt := t + btc diskutiert. Für den zeitdiskreten Fall ergibt sich erneut ein bekanntes
und für den Itô-Fall ein neues Resultat. Von besonderem Interesse erweist sich die
Betrachtung von Rt := t + btc, da hier, im Gegensatz zum zeitdiskreten und zum Itô-
Fall, der konstante Dämpfungsparameter a in die Kovarianzmatrix der asymptotischen
Verteilung eingeht.
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1 Introduction

From Recursions to Semimartingale Approaches in Stochastic Approximation

The pioneering work [35] by Robbins and Monro in 1951 can be seen as the origin of
the field of stochastic approximation. Motivated by the problem of finding roots of a
function f : R→ R, where the precise form of f is not known and the experimenter is
only able to take “noisy” measurements, they suggested the recursion

Zn+1 − Zn = −an
(
f(Zn) +Mn

)
. (1)

According to the recursion, the experimenter obtains the next point Zn+1, if he takes
the observation at the point Zn that contains noise and is represented by f(Zn) +Mn,
damps it with the factor an and subtracts the result from the point Zn. A typical
weight sequence is an := a n−1, and its damping influence is obvious. In the same work
they proved that the process generated by the recursion converges in probability to the
root of the function.

Inspired by this work, Kiefer and Wolfowitz [13] suggested in 1952 the recursion

Zn+1 − Zn = − an
2cn

(
f(Zn + cn)− f(Zn − cn) +Mn

)
to find the stationary point instead of the root of the function f . The underlying
conception of the recursion is the use of the Robbins-Monro method to find the root of
the function ∇f(x). Since neither ∇f(x) nor noisy observations of it are available, the
practical idea is to approximate ∇f(x) by f(x+cn)−f(x−cn)

2cn . Here the weight sequence an
takes the damping part as in the Robbins-Monro method and the weight sequence cn is
needed in the approximation of the gradient. Typical choices of the sequences an and
cn are an := a n−1 and cn := c n−γ with γ ∈ (0, 1

2). As in the Robbins-Monro recursion,
they showed that the process generated by the recursion converges in probability to the
stationary point of the function f .

In 1954 Blum showed not only another concept of convergence [1], but he also suggested
a generalization for both recursions. He considered the Robbins-Monro recursion

Zn+1 − Zn = −an
(
f(Zn) +Mn

)
in the case of a function f : Rd → Rd and the Kiefer-Wolfowitz recursion

Zn+1 − Zn = −an
cn

{
f(Zn + cnei)− f(Zn − cnei) +M i

n

}
i∈{1,...,d}

in the case of a function f : Rd → R. In 1957 Sacks proved asymptotic normality for
both processes in [36].
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In 1967 Fabian found a weakness in the multidimensional version of the Kiefer-Wolfowitz
recursion suggested by Blum. He suggested a recursion with a modified design in [9]
and showed that the speed of convergence reaches the speed of the Robbins-Monro
process, which is

√
n, if the considered function f is in any order differentiable. Fur-

thermore the algorithm avoids the appearance of a bias, which is clearly visible in [3].
Since then, many different designs have been suggested and the resulting processes were
discussed.

A truly amazing new idea was introduced by Polyak concerning the Robbins-Monro
process in [31]. He used slowly decaying weights an := an−α with 0 < α < 1 in the
Robbins-Monro recursion and considered the averaged Robbins-Monro process instead
of the Robbins-Monro process itself. Surprisingly the averaged process offers some key
benefits—in terms of the asymptotic behavior and the stability—over the Robbins-
Monro process itself. Later on, Dippon and Renz suggested to consider a weighted
averaged process of the Kiefer-Wolfowitz process and showed that it has some advan-
tages over the traditional Kiefer-Wolfowitz process in [3], [4], and [5]. We refer the
reader to Chapter 4 or to the references above for details on the benefits.

Although Itô, with his groundbreaking work in the forties, opened the possibility to
consider stochastic differential or integral equations, his theory was not in the focus of
applied mathematics until the seventies. Perhaps the most famous application of the
theory is the work of Black, Scholes and Merton 1973 in the context of finance. In
the course of this development, in 1973, Nevel’son and Has’minskĩi did not only study
stochastic approximation processes generated by recursions [30], but also stochastic
approximation processes that were generated by stochastic integral equations of Itô
type. More precisely, they considered the solution of the d-dimensional stochastic
integral equation

Zt = Z0 −
∫ t

0
asf(Zs) ds−

∫ t

0
asσs(Zs) dWs (2)

as a continuous-time version of the Robbins-Monro process and the one-dimensional
stochastic integral equation

Zt = Z0 −
∫ t

0

as
2cs

(
f(Zs + cs)− f(Zs − cs)

)
ds−

∫ t

0

as
2cs

σs(Zs) dWs

as a continuous-time version of the Kiefer-Wolfowitz process. Here Wt represents a
Brownian motion. In the same monograph they investigated consistency for both pro-
cesses and, in the case of the Robbins-Monro process, speed of convergence and asymp-
totic normality. Here, in the proof of the asymptotic normality, they used among
others the well-known and helpful fact that an integral with the Brownian motion as
integrator is normally distributed. The issues of whether the Kiefer-Wolfowitz process
is asymptotic normal or how fast it converges, were not considered.
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Until about 1990, the continuous-time processes generated by Itô-type integral equa-
tions and the discrete-time processes generated by recursions were considered sepa-
rately. Initially, further development of stochastic analysis and a generalization of
stochastic integral equations of Itô type towards broader semimartingale integral equa-
tions made a unification of both concepts possible. Modern stochastic integration
theory leads to a self-contained integration theory. The concept of semimartingales is
essential in this theory. Roughly speaking, a semimartingale can be represented by a
sum of a process of finite variation and a local martingale. This approach makes the
embedding of both discrete- and continuous-time stochastic approximation procedures
in one framework possible, since the class of semimartingales contains jump processes.
This new perspective offers, on the one hand, the chance to consider both process types
using one general theory, and the chance to gain and consider further processes on the
other hand. In the eighties, Melnikov dealt in detail with strong solutions of stochastic
integral equations with respect to semimartingales and recognized the possibility of the
generalization. In [25] and [26], he suggested the solution of the stochastic integral
equation

Zt = Z0 −
∫ t

0
asf(Zs−) dRs −

∫ t

0
as dMs (3)

as a general continuous-time version of the Robbins-Monro process. Here Rt is a pre-
dictable, increasing càdlàg process and at is a weight process, both of which continuous
in time. Typical choices are Rt := t, Rt := btc and at := a(1 + Rt)−α with 0 < α ≤ 1.
The choices Rt := t and Mt := Wt with a Brownian motion Wt lead to an Itô setting.
Together with Rodkina [24], Melnikov also suggested the solution of the stochastic
integral equation

Zt = Z0 −
∫ t

0

as
2cs

{
f(Zs + csei)− f(Zs − csei)

}
i∈{1,...,d}

dRs −
∫ t

0

as
2cs

σs(Zs) dMs

as a general continuous-time version of the Kiefer-Wolfowitz process. However, they
considered only continuous processes Rt, Mt and consequently Zt. This strong continu-
ity restriction does not allow the embedding of discrete-time stochastic approximation
procedures. Under the assumption of the existence of a strong solution on [0,∞) the
consistency of the Kiefer-Wolfowitz process is treated in [24] and the consistency and
the asymptotic normality of the Robbins-Monro process as well as of the averaged
process is treated in [22]. The conditions used are very technical, strong and hard to
verify.

Lazrieva, Sharia and Toronjadze suggested—in [16], [17], and summary [18]—the solu-
tion of the stochastic integral equation

Zt = Z0 −
∫ t

0
Hs(Zs−) dRs −

∫ t

0
M(ds, Zs−) (4)
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as a general continuous-time version of the Robbins-Monro process. The choices
Hs(Zs−) := asf(Zs−) and M(ds, Zs−) := as dMs show clearly the embedding of (3)
in (4). They proved consistency of the process using a multiplicative decomposition
theorem, hence eliminating the technical, strong, and unnatural conditions. Of course,
they also assumed the existence of a strong solution of the equation. The interested
reader can find some notes on the existence and uniqueness of such stochastic integral
equations for instance in [6], [7], [10], [21], [27], [28], [29], [33], and [34]. Furthermore,
they proved asymptotic normality of the Robbins-Monro process and its associated
averaged process. In both models (3) and (4) asymptotic normality is considered only
in the case of a deterministic process Rt.

Why Bother with Semimartingale Models

Stochastic approximation arises from the problem of finding roots and locating station-
ary points of a function. Quite frequently, either the function has a very complicated
form, or its exact expression is not known explicitly. Hence we have to rely on measure-
ments only, which are typically corrupted by noise. As we assume noise and not inherent
errors, it seems quite natural to assume that in each observation the expectation of the
noise is zero, and the “best prediction” of the noise in the next observation—knowing
all observations and errors that appeared before—is also zero. Let us consider the
rewritten recursion (1)

Zn = Z1 −
n−1∑
j=1

ajf(Zj)−
n−1∑
j=1

ajMj.

The assumptions concerning the expectation and the “best prediction” are equivalent
to the fact that the sum ∑n−1

j=1 ajMj is a martingale. A martingale can be interpreted as
fair game, which means here that the error does not deliberately lead us on the wrong
track. If we want to consider a continuous-time version of the recursion above, it should
be clear that the sums turn into integrals. In a first step, we will get the stochastic
integral equation (2) and in further steps, we will obtain (3) and (4). We have pointed
out that the cumulated error should be a martingale or a local martingale, respectively;
of course this feature should also hold in a continuous-time version. Given the fact that
the semimartingale theory is the broadest closure integration theory that handles such
integrals with the desired martingale feature, it seems natural to prefer the general
theory and consider the stochastic approximation process Zn as a semimartingale. From
a mathematical point of view, a generalization is worthwhile, especially since the usage
of a semimartingale model allows the embedding of the discrete-time setting and the Itô
setting, which were treated separately before. Furthermore, it offers the opportunity
to discuss more general settings, for example situations in which the experimenter is
only able to take observations at random times.
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In many applications, a continuous-time model (2) or, more generally (3) and (4) seems
natural. In the context of finance it is common to model the price processes of the traded
assets using positive semimartingales. Here it is plausible to use semimartingale ap-
proximation processes instead of stochastic approximation recursions. Further example
where continuous-time models occur are signal models.

Considering continuous-time stochastic approximation processes can be justified from
another practical point of view. These processes can be used to approximate discrete-
time settings if the observations are taken rather frequently. Furthermore, a discussion
of continuous-time models raises the understanding of problems with high-frequency
sampling.

Summary of this Thesis

In this thesis we suggest a general continuous-time Kiefer-Wolfowitz process. The
Kiefer-Wolfowitz process is a solution of the stochastic integral equation

Zt = Z0 −
∫ t

0

as
2cs

{
f(Zs− + csei)− f(Zs− − csei)

}
i∈{1,...,d}

dRs −
∫ t

0

as
2cs

M(ds, Zs−).

Discussion of the asymptotic behavior of the process Zt and the averaged process Z̄t is
based on the work done by Lazrieva et al. in [18], Melnikov and Valkeila in [22] and
many papers dealing with the Kiefer-Wolfowitz process discrete in time.

This thesis consists of four further chapters, each with three sections. The theorems,
required lemmata and their proofs are presented in the first two sections of each chapter;
in the last one, we discuss the theorems using special settings. The discussion of
special settings illustrates the presented theorems and allows a comparison with known
results.

In the second chapter, we dwell on the question of consistency and speed of convergence
of the process Zt. This question is answered without major restrictions on the form of
Rt, at, and ct. In particular, the processes may not even be deterministic. In the proof
of both theorems a lemma about convergence sets of positive special semimartingales is
crucial while on the other hand the lemma is based on a multiplicative decomposition
of semimartingales. It follows a discussion of the theorems in the Itô setting and in the
discrete-time setting, yielding three known and one new result.

The third chapter is devoted to asymptotic normality. Here we assume that the process
Rt is deterministic and the weight process at is equal to a(1 +Rt)−1. First we establish
an almost L2-convergence rate and afterwards asymptotic normality in the case of a two
or three times differentiable regression function f . To manage the proof of asymptotic
normality, we present a handy representation of the process, which enables us to use the
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almost L2-convergence rate applying Markov’s inequality and a central limit theorem.
Afterwards we discuss asymptotic normality in the Itô setting and in the discrete-time
setting, reaching a well-known and a new result, respectively.

In the fourth chapter, we present an averaged process using slowly decaying weights
at := a(1 + Rt)−α with 5

6 < α < 1, which is based on the work done in [3], [4], and [5]
by Dippon and Renz. In the first section, we discuss consistency as well as asymptotic
normality. Here, as in the section before, we assume that the process Rt is deterministic.
In the last section, we consider the discrete-time and the Itô setting, obtaining a known
and a new result, respectively.

The last chapter investigates how the Kiefer-Wolfowitz process and the averaged pro-
cess behave asymptotically, if the weight process at is degenerated to a constant a. Since
this question is not answered in the case of the continuous-time Robbins-Monro pro-
cess, this is our starting point. Here the restriction that the process Rt is deterministic
is abrogated, but the discussion contains only linear regression functions. The contem-
plation of a simple example shows that the Robbins-Monro process is not consistent
in general. However we prove asymptotic normality of the averaged process. Then we
answer the main question of the asymptotic behavior of the averaged Kiefer-Wolfowitz
process with constant weights in the case of a quadratic regression function. In the
last section, we consider the results in the Itô setting, in the discrete-time setting, and
in the case of a process Rt := t + btc. As in the chapters before, we obtain in the
discrete-time setting a known result and in the Itô setting a new one. It turns out
that the process Rt := t + btc is of particular interest since here—in contrast to the
discrete-time and the Itô setting—the constant a enters into the covariance matrix of
the asymptotic distribution.
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2 Asymptotic Properties of the Process Using General
Weights

We suggest a solution of a stochastic integral equation as a general Kiefer-Wolfowitz
process continuous in time and discuss its asymptotic behavior. To consider a stochastic
integral equation, it is essential to talk about the stochastic basis and the objects
or processes and how they are connected. Let us fix a stochastic basis (Ω,F ,F =
(Ft)t≥0,P) satisfying the usual conditions, that is, F0 contains all P-null sets of F and
the filtration F is right-continuous. On this basis the objects (Rt)t≥0, (at)t≥0, (ct)t≥0,
Z0, and (M(t, u))t≥0 are given. Here Z0 is a F0-measurable random variable. The
process (Rt)t≥0 is increasing, càdlàg, adapted, predictable with respect to the filtration
F, and further R0 = 0 and ∆R0 = 0 hold. The processes (at)t≥0 and (ct)t≥0 are adapted
and predictable with respect to the filtration F and furthermore the process (at

ct
)t≥0 is

locally bounded. The random field M(t, u) is F-adapted, (M(t, u))t≥0 ∈M2
loc(P) holds

for every u ∈ Rd and furthermore (
∫ t

0
as
cs
M(ds, Zs−))t≥0 ∈ M2

loc(P). Here M2
loc(P)

denotes the class of F-adapted, càdlàg processes for which a localizing sequence (τn)n∈N
exists such that the stopped process (Xτn

t )t≥0 is, for every n ∈ N, a square-integrable
martingale with respect to the probability measure P and the filtration F.

As the setting is given, we are ready to set up the stochastic integral equation

Zt = Z0 −
∫ t

0

as
2cs

{
f(Zs− + csei)− f(Zs− − csei)

}
i∈{1,...,d}

dRs −
∫ t

0

as
2cs

M(ds, Zs−).

(5)

In this thesis, we focus on the asymptotic behavior of the process Zt. To this end
we assume the existence of a unique strong solution on [0,∞). The existence and
uniqueness of such stochastic integral equations is well-investigated for instance in [6],
[7], [10], [21], [27], [28], [29], [33], and [34]. We propose this unique strong solution as
general Kiefer-Wolfowitz process continuous in time.

Considering the stochastic integral equation, a further question arises. What is the
meaning of each process which appears? Z0 represents the starting point and is a
random variable or a fixed point. Often the statistician who searches for the stationary
point chooses Z0. As already mentioned in the introduction, the idea of the algorithm
as well as of the integral equation is the simultaneous approximation of x?, where
∇f(x?) = 0, using a process of Robbins-Monro type and of ∇f(x) by 1

2cs{f(x+ csei)−
f(x− csei)}i∈{1,...,d}. The process at is a weight process that has a damping effect and
is needed in the Robbins-Monro part of the approximation. The process ct is needed
in the approximation of ∇f(x) by 1

2cs{f(x + csei) − f(x − csei)}i∈{1,...,d}. Considering
the meaning of the processes as and cs, we will see later on that the statistician has to
choose them among others positive and decreasing to find the stationary point. Chapter
5 gives an exception of the choice of decreasing weights. Typical choices for at and ct
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are at := a (1+Rt)−1 and ct := c (1+Rt)−γ. Furthermore the process (at
ct

)t≥0 is assumed
to be predictable and locally bounded to ensure that the integral

∫ t
0
as
cs
M(ds, Zs−) exists

and is well defined in the context of semimartingales. The process Rt itself describes
the observation rate. Commonly the process Rt := btc or Rt := t is chosen. Thus
in the case Rt := btc new observations arrive only at times t ∈ N and thus only at
these times the data are updated and influence the process Zt. In the case Rt := t the
observations are continuous in time and hence the updating is continuous in time. But
there are much more interesting cases, for example stochastic processes Rt. The integral∫ t

0
as
2cs M(ds, Zs−) represents the noise in the data in which the damping factor is already

included. If we assume that the observation noise is white noise, we have the integral∫ t
0
as
2csσs(Zs−) dWs with a matrix-valued process σs(·) and the d-dimensional Brownian

motion Ws. This is one example of the quite general integral
∫ t

0
as
2cs M(ds, Zs−).

In the following, we use C as a constant that may vary from inequality to inequality.
If C depends on ω, we denote it by Cω. Furthermore we use the well-known Landau
symbols o, O to describe the asymptotic behavior of processes and the symbols ob, Ob
to note that they are bounded in addition.

Given that the sense in which most statements should be interpreted is obvious, we
accentuate it only in the statements of results or if it is not easy to distinguish. Most of
the statements involving random variables or stochastic processes should be interpreted
as almost sure if there is nothing mentioned.

2.1 Consistency

Here we address the issue of consistency of the process Zt or more precisely strong
consistency. The question of whether an estimator is consistent is quite natural in the
background of estimation theory and it is usually one of the first one should ask. A
discussion of consistency is a good starting point because further research is unnecessary
if the estimator is not consistent and, if the estimator is consistent, such a result is often
needed or helpful in doing further research, for example, when investigating speed of
convergence. We consider the following set of conditions:

(A) f : Rd → R has a Lipschitz-continuous gradient.

(B) There exists an x? with ∇f(x?) = 0.

(C) The gradient satisfies

∀
ε>0

∃
C(ε)>0

∀
{x∈Rd|ε≤‖x−x?‖≤1/ε}

〈∇f(x), x− x?〉 ≥ C(ε).
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(D) The processes as and cs, which the statistician has to choose, are left-continuous
and satisfy

as, cs > 0 as, cs ↓ 0∫ ∞
0

as dRs =∞
∫ ∞

0
ascs dRs <∞.

(E) For every i ∈ {1, .., d} and x ∈ Rd, we have
∫ ∞

0

as
2

cs2
hiis (Zs−)

1 + ‖Zs−‖2 dRs <∞, where hiis (x) := d d
∫ ·

0 Mi(dt, x)es
dRs

.

(F) If the process Rs is not continuous, then the following condition should also hold:∫ ∞
0

as
2∆Rs dRd

s <∞.

Now we explain the intuitive meaning of the conditions. To get a first impression, it is
helpful to reduce to the 1-dimensional case. Considering the conditions (A) and (B),
there is nothing to mention. Let x? = 0, it follows f ′(x)x > 0 from condition (C),
assuring that the gradient shows us the right direction to go. To recognize the need
for the first part of condition (D) we assume

∫∞
0 as dRs ≤ I < ∞. Now we regard

the integral equation in the case of a function f with bounded first derivative (e.g.
f(x) = 1 − exp(−0.5x2)) and the absence of “noise”. We use the mean-value theorem
and get

|Zt − Z0| = |
∫ t

0

as
2cs

(f(Zs− + cs)− f(Zs− − cs)) dRs|

=
∫ t

0
as|f ′(ξs)| dRs ≤ C

∫ t

0
as dRs ≤ C.

If the statistician chooses a bad starting point Z0 that is further away from x? than
C, the process Zt cannot reach x?. Since often the statistician has no or only vague
information about x?, the choice of Z0 should not be crucial. The second condition
in (D), namely

∫∞
0 ascs dRs < ∞, and the condition (E), which is often implied by∫∞

0
as2

cs2 dRs < ∞, affects the speed of the processes at, ct and their interplay. If we
interpret the Kiefer-Wolfowitz method as a simultaneous approximation of the gradi-
ent and of the stationary point using a Robbins-Monro-type method, these conditions
ensure a balance. Furthermore, the condition (E) connects Rt and Mi(dt, x). This is
quite natural since the “noise” is connected with observations, and the increasing rate
of the process Rt specifies the observation rate. Considering a time interval on which
Rt is constant, this connection is clearly apparent. Since the connection is given by
the predictable quadratic variation, it is important to note here that it is almost surely
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unique. Another important feature of the condition (E) is the fact that it asymptoti-
cally damps the effect of the “noise”. The condition (F) ensures that the damped jumps
as∆Rs converge to zero.

In the following, we assume the existence of a strong solution of the stochastic integral
equation (5) on R+ × Ω.

Theorem 2.1. Assume that the conditions (A)–(F) are fulfilled. Then the solution
Zt of the stochastic integral equation (5) converges almost surely towards the stationary
point of the function f .

Remark 2.1. Of course, convergence of the solution of (5), as claimed in Theorem 2.1,
implies consistency of the solution.
Remark 2.2. Assumption (E) holds, if, e.g., hiis (x) ≤ Ki

s(1 + ‖x‖2) with
∫∞

0
a2
s

c2s
Ki
s dRs <

∞ or especially hiis (x) ≤ C and
∫∞

0
a2
s

c2s
dRs <∞ are satisfied.

The following lemma, from Lazrieva et al. (see [16], Corollary 2.3), plays an important
role in the proof of Theorem 2.1. We recall this lemma and give a detailed proof.

Lemma 2.1. For an arbitrary non-negative special semimartingale Xt = X0 +At+Mt

satisfying At ∈ V ∩ P, Mt ∈Mloc,

At ≤ A1
t − A2

t , A1
t , A

2
t ∈ V+ ∩ P , and A1

t − At ∈ V+,

we have {∫ ∞
0

1
1 +Xs−

dA1
s <∞

}
⊆ {Xs →} ∩

{
A2
∞ <∞

}
.

Proof of Lemma 2.1
To begin with, the semimartingale Xt can be written in the form

Xt = X0 + At +Mt = X0 + A1
t − (A1

t − At) +Mt = X0 + A1
t − Ã2

t +Mt.

In view of the assumptions, it is easy to discover that A1
t and Ã2

t := A1
t−At are elements

of V+ and that the following implications

At ≤ A1
t − A2

t ⇒ At − A1
t ≤ −A2

t ⇒ A2
t ≤ A1

t − At

hold. Hence Ã2
t is non-negative and further the inequality

A2
∞ ≤ A1

∞ − A∞ = Ã2
∞ (6)

is evident.
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The rest of the proof is organized as follows: First we use the fact that a semimartingale
Zt with Zt ≥ 0 and Zt = Z0 +B1

t −B2
t + M̃t, B1

t , B
2
t ∈ V+, M̃t ∈Mloc, satisfies{∫ ∞

0

1
1 + Zs− +B2

s−
dB1

s <∞
}
⊆ {Zs →} ∩

{
B2
∞ <∞

}
(7)

to prove Lemma 2.1. Afterwards we will verify statement (7).

Applying (7) to Xs and using (6), A1
t , and Ã2

t , we obtain the statement of Lemma
2.1: {∫ ∞

0

1
1 +Xs−

dA1
s <∞

}
⊆
{∫ ∞

0

1
1 +Xs− + Ã2

s−
dA1

s <∞
}

(7)
⊆ {Xs →} ∩ {Ã2

∞ <∞}
(6)
⊆ {Xs →} ∩ {A2

∞ <∞}.

To complete the proof of the lemma, it remains to show (7). To this end we require the
following theorem on a multiplicative decomposition of positive semimartingales (see
[19], §5, Theorem 1, pp. 127):

If Ls is a special semimartingale with an additive decomposition

Lt = L0 + Ct +Nt

where Ct ∈ V ∩ P and Nt ∈Mloc, and

inf
s≤t

Ls > 0 and inf
0<s≤t

1
Ls−

∆Cs > −1,

then Ls can be represented in a multiplicative way as

Ls = L0Es(Ĉ)Es(N̂), (8)

where the processes Ĉs and N̂s are defined as

Ĉt :=
∫ t

0

1
Ls−

dCs and N̂t :=
∫ t

0

1
Ls− + ∆Cs

dNs

and Es(B̂), Es(N̂) are the stochastic exponentials thereof.

To use this result effectively, we look at the process Yt, given by

Yt := Y0 +B1
t + M̃t or Yt := 1 + Zt +B2

t

with Y0 := 1 + Z0. To apply the above theorem to Yt, we verify its assumptions. The
cumulative decomposition follows directly from the definition of Yt. Thus, it suffices to
check the two inequalities.
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Owing to

Yt = 1 + Zt +B2
t ≥ 1,

the first inequality

inf
s≤t

Ys > 0

is evident.

Now we prove the second inequality. Since B1
t is increasing, the jump process ∆B1

t

naturally fulfills ∆B1
t ≥ 0. As mentioned above, Yt is strongly positive, so

1
Ys−

∆B1
s ≥ 0 ⇒ inf

0<s≤t

(
1
Ys−

∆B1
s

)
> −1

holds. But that is the proof of the second inequality, so with (8) we get

Yt = Y0Et(Â)Et(M̂) (9)

where

Ât :=
∫ t

0

1
Ys−

dB1
s and M̂t :=

∫ t

0

1
Ys− + ∆B1

s

dM̃s.

Now we show that Et(Â) and Et(M̂) almost surely converge. Then with these statements
and (9), we get the almost surely convergence of Yt.
To prove almost sure convergence of Et(M̂), we apply a well-known convergence theorem
on positive supermartingales. First we verify non-negativity of Et(M̂). According to a
formula concerning stochastic exponentials, Et(M̂) can be written as

Et(M̂) = exp
(
M̂t −

1
2[M̂, M̂ ]t

) ∏
0<s≤t

(
1 + ∆M̂s

)
exp

(
−∆M̂s + 1

2(∆M̂s)2
)
.

To show positivity of the right side of the above equation, it suffices to show ∆M̂s > −1,
which follows from

∆M̂s = ∆
(∫ s

0

1
Yr− + ∆B1

r

dM̃r

)
= 1
Ys− + ∆B1

s

(∆M̃s)

= Ys
Ys− + ∆B1

s

− Ys− + ∆B1
s

Ys− + ∆B1
s

= Ys
Ys− + ∆B1

s

− 1 > −1

using ∆M̃s = ∆(Ys−B1
s ) = ∆Ys−∆B1

s = Ys− (Ys−+ ∆B1
s ). Thus Et(M̂) > 0 holds.

Recall that

Mt is a non-negative local martingale ⇒ Mt is a supermartingale (10)
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Since Et(M̂) is given as the solution of a stochastic integral equation driven by M̃t, it is
a local martingale, and, as shown above, it is positive. Furthermore, by (10), Et(M̂) is
a non-negative supermartingale. This proves almost sure convergence of the stochastic
exponential of M̂t towards a real-valued random variable due to the supermartingale
convergence theorem, in short{

ω ∈ Ω | Et(M̂)(ω)→
}

= Ω.

Coming back to the process Et(Â), we know that Ât is monotonically increasing. Ac-
cording to a formula concerning stochastic exponentials, Et(Â) can be written as

Et(Â) = exp
(
Ât
) ∏

0<s≤t

(
1 + ∆Âs

)
exp

(
−∆Âs

)
.

Since Ât is monotonously increasing, the inequalities

0 ≤
(
1 + ∆Âs

)
exp

(
−∆Âs

)
≤ 1

hold and we get {
Â∞ <∞

}
=
{
Ât →

}
=
{
Et(Â)→

}
.

Combining the above results, we obtain{
Â∞ <∞

}
=
{
Â∞ <∞

}
∩
{
Et(M̂)→

}
=
{
Ât →

}
∩
{
Et(M̂)→

}
=
{
Et(Â)→

}
∩
{
Et(M̂)→

}
⊆
{
Yt →

}
.

We know that B2
t is increasing and that Zt and B2

t fulfill Zt, B2
t ≥ 0. Hence, with

Yt = 1 + Zt +B2
t , we get

{Yt →} ⊆ {Zt →} ∩
{
B2
∞ <∞

}
.

This shows (7) and completes the proof of Lemma 2.1. �

Proof of Theorem 2.1
(a) Proof of almost sure convergence of Zt. We assume without loss of generality that
the stationary point of the function f is x? = 0. Using Itô’s formula we get

d 〈Zs, Zs〉 =
d∑
i=1

d
(
Zi
s

)2
=

d∑
i=1

(
2Zi

s− dZi
s + d[Zi]s

)
. (11)

Now we are studying the terms appearing in (11). Using the stochastic integral equation
(5) to represent dZi

s, we get

Zi
s− dZi

s = −asZi
s−

1
2cs
{·}i dRs −

as
2cs

Zi
s−Mi(ds, Zs−) (12)
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for the first summand and

d[Zi]s = as
2

4cs2

(
{·}2

i∆Rs dRd
s + 2{·}i∆RsM

d
i (ds, Zs−) + d[

∫ ·
0
Mi(dt, Zt−)]s

)
(13)

for the second one. Hence, by (12) and (13) the differential in (11) can be written as

d 〈Zs, Zs〉 = −2
d∑
i=1

asZ
i
s−
{·}i
2cs

dRs − 2
d∑
i=1

as
2cs

Zi
s−Mi(ds, Zs−) +

d∑
i=1

as
2

4cs2{·}
2
i∆Rs dRd

s

+ 2
d∑
i=1

as
2

4cs2{·}i∆RsM
d
i (ds, Zs−) +

d∑
i=1

as
2

4cs2 d[
∫ ·

0
Mi(dt, Zt−)]s.

With the two processes At and M̃t, given by

At := −2
d∑
i=1

∫ t

0
asZ

i
s−

1
2cs
{·}i dRs +

d∑
i=1

∫ t

0

as
2

4cs2{·}
2
i∆Rs dRd

s

+
d∑
i=1

∫ t

0

as
2

4cs2 dd
∫ ·

0
Mi(dt, Zt−)es

M̃t := −2
d∑
i=1

∫ t

0

as
2cs

Zi
s−Mi(ds, Zs−) + 2

d∑
i=1

∫ t

0

as
2

4cs2{·}i∆RsM
d
i (ds, Zs−)

+
d∑
i=1

∫ t

0

as
2

4cs2 d
(

[
∫ ·

0
Mi(dt, Zt−)]s − d

∫ ·
0
Mi(dt, Zt−)es

)

we obtain

〈Zt, Zt〉 = 〈Z0, Z0〉+ At + M̃t.

To finish the proof of Theorem 2.1, we apply Lemma 2.1 to the process 〈Zt, Zt〉. First
we verify that At ∈ V ∩ P and M̃t ∈ Mloc. Considering the integrals that appear in
the definition of At, we see that all integrators are increasing, hence almost all paths of
At are of finite variation on each compact interval of R+. In the definition of M̃t there
are only local martingales as integrators, thus M̃t itself must be a local martingale.

Now, we seek two processes A1
t , A

2
t ∈ V+∩P that satisfy At ≤ A1

t−A2
t and A1

t−At ∈ V+.
These two processes will be defined later on. Beforehand we give some inequalities
required to understand the definitions of the processes. The first inequality is

−2as
d∑
i=1

(
Zi
s−

1
2cs
{·}i

)
= −2as

〈
Zs−,

1
2cs
{·}·

〉
= −2as

〈
Zs−,

1
2cs
{·}· −∇f(Zs−) +∇f(Zs−)

〉
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≤ −2as 〈Zs−,∇f(Zs−)〉+ 2as|〈Zs−,
1

2cs
{·}· −∇f(Zs−)〉|

(α)
≤ −2as 〈Zs−,∇f(Zs−)〉+ 2as ‖Zs−‖ ‖

1
2cs
{·}· −∇f(Zs−)‖

(β)
≤ −2as 〈Zs−,∇f(Zs−)〉+

√
dLascs ‖Zs−‖ , (14)

where (α) follows by the Cauchy-Schwarz inequality and (β) follows by∥∥∥∥ 1
2cs
{·}· −∇f(Zs−)

∥∥∥∥ = 1
2cs
‖{·}· − 2cs∇f(Zs−)‖

= 1
2cs
‖{f(Zs− + csei)− f(Zs− − csei)− 〈2csei,∇f(Zs−)〉}·‖

= 1
2cs

√√√√ d∑
i=1
|f(Zs− + csei)− f(Zs− − csei)− 〈2csei,∇f(Zs−)〉|2

≤ 1
2cs

√
dL2c4

s = 1
2
√
dLcs (15)

with a Taylor expansion (see (17)).

The other inequality strived for is

d∑
i=1

as
2

4cs2{·}
2
i∆Rs =

d∑
i=1

a2
s

∣∣∣∣ 1
2cs
{·}i

∣∣∣∣2 ∆Rs

(γ)
≤

d∑
i=1

a2
s

(
|∇if(Zs−)|+ 1

2Lcs
)2

∆Rs

= a2
s‖∇f(Zs−)‖2∆Rs + La2

scs
d∑
i=1
|∇if(Zs−)|∆Rs + 1

4dL
2a2
sc

2
s∆Rs

(δ)
≤ a2

s‖∇f(Zs−)‖2∆Rs + Lda2
scs‖∇f(Zs−)‖∆Rs + 1

4dL
2a2
sc

2
s∆Rs,

(16)

where we get (γ) by∣∣∣∣ 1
2cs
{·}i

∣∣∣∣ =
∣∣∣∣ 1
2cs

(
f(Zs− + csei)− f(Zs− − csei)− 〈2csei,∇f(Zs−)〉

)
+ 〈ei,∇f(Zs−)〉

∣∣∣∣
≤ 1

2cs
|f(Zs− + csei)− f(Zs− − csei)− 〈2csei,∇f(Zs−)〉|+ |〈ei,∇f(Zs−)〉|

= 1
2cs

∣∣∣∣∫ 1

−1
〈csei,∇f(Zs− + tcsei)−∇f(Zs−)〉 dt

∣∣∣∣+ |∇if(Zs−)|

≤ 1
2cs
‖csei‖

∫ 1

−1
L|t|‖csei‖dt+ |∇if(Zs−)|

= 1
2Lcs + |∇if(Zs−)| (17)
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once again with a Taylor expansion (see (15)). The inequality (δ) follows from Cheby-
shev’s inequality.

We define two increasing processes by

A1
t :=
√
dL

∫ t

0
ascs ‖Zs−‖ dRs +

∫ t

0
a2
s‖∇f(Zs−)‖2∆Rs dRd

s

+ Ld
∫ t

0
a2
scs‖∇f(Zs−)‖∆Rs dRd

s + 1
4dL

2
∫ t

0
a2
sc

2
s∆Rs dRd

s

+
d∑
i=1

∫ t

0

as
2

4cs2 dd
∫ ·

0
Mi(dt, Zt−)es

A2
t := 2

∫ t

0
as 〈Zs−,∇f(Zs−)〉 dRs.

Now, according to inequalities (14) and (16), we can ensure At ≤ A1
t − A2

t . To apply
Lemma 2.1, we only have to verify A1

t − At ∈ V+. Hence, we focus our attention on

A1
t − At =

√
dL

∫ t

0
ascs ‖Zs−‖ dRs +

∫ t

0
a2
s‖∇f(Zs−)‖2∆Rs dRd

s

+ Ld
∫ t

0
a2
scs‖∇f(Zs−)‖∆Rs dRd

s + 1
4dL

2
∫ t

0
a2
sc

2
s∆Rs dRd

s

+
d∑
i=1

∫ t

0

as
2

4cs2 dd
∫ ·

0
Mi(dt, Zt−)es + 2

d∑
i=1

∫ t

0
asZ

i
s−

1
2cs
{·}i dRs

−
d∑
i=1

∫ t

0

as
2

4cs2{·}
2
i∆Rs dRd

s −
d∑
i=1

∫ t

0

as
2

4cs2 dd
∫ ·

0
Mi(Zt−, dt)es

=
∫ t

0
as

(√
dLcs ‖Zs−‖+ 2

d∑
i=1

Zi
s−

1
2cs
{·}i

)
dRs

+
∫ t

0
a2
s

(
‖∇f(Zs−)‖2 + Ldcs‖∇f(Zs−)‖+ dL2

4 c2
s −

d∑
i=1

{·}2
i

4cs2

)
∆Rs dRs.

(18)

To prove that A1
t −At is increasing, it will suffice to show that the expressions in both

brackets in (18) are non-negative, because the integrators Rt and Rd
t are increasing.

Concerning the expression in the first bracket, the inequality we have is

√
dLcs ‖Zs−‖+ 2

d∑
i=1

Zi
s−

1
2cs
{·}i

(14)
≥ 2 〈Zs−,∇f(Zs−)〉 ≥ 0.

The second bracket satisfies

‖∇f(Zs−)‖2 + Ldcs‖∇f(Zs−)‖+ 1
4dL

2c2
s −

d∑
i=1

1
4cs2{·}

2
i
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= ‖∇f(Zs−)‖2 + Ldcs‖∇f(Zs)‖+ 1
4dL

2c2
s −

d∑
i=1

( 1
2cs
{·}i

)2

(16)
≥ 0.

Hence Lemma 2.1 is applicable to ‖Zs‖2, and we obtain{∫ ∞
0

1
1 + ‖Zs−‖2 dA1

s <∞
}
⊆
{
‖Zs‖2 →

}
∩
{
A2
∞ <∞

}
. (19)

To complete the proof of convergence of the process Zs, it is sufficient to show{∫ ∞
0

1
1 + ‖Zs−‖2 dA1

s <∞
}

= Ω. (20)

Since∫ ∞
0

1
1 + ‖Zs−‖2 dA1

s

=
√
dL

∫ ∞
0

‖Zs−‖
1 + ‖Zs−‖2ascs dRs +

∫ ∞
0

‖∇f(Zs−)‖2

1 + ‖Zs−‖2 a
2
s∆Rs dRd

s

+ Ld
∫ ∞

0

‖∇f(Zs−)‖
1 + ‖Zs−‖2 a

2
scs∆Rs dRd

s + 1
4dL

2
∫ ∞

0

1
1 + ‖Zs−‖2a

2
sc

2
s∆Rs dRd

s

+
d∑
i=1

∫ ∞
0

1
1 + ‖Zs−‖2

as
2

4cs2 dd
∫ ·

0
Mi(dt, Zt−)es,

it suffices to show that all integrals appearing on the right-hand side are almost surely
finite: ∫ ∞

0

‖Zs−‖
1 + ‖Zs−‖2ascs dRs ≤

∫ ∞
0

ascs dRs <∞∫ ∞
0

‖∇f(Zs−)‖2

1 + ‖Zs−‖2 a
2
s∆Rs dRd

s ≤ C
∫ ∞

0

‖Zs−‖2

1 + ‖Zs−‖2a
2
s∆Rs dRd

s

≤ C
∫ ∞

0
a2
s∆Rs dRd

s <∞∫ ∞
0

‖∇f(Zs−)‖
1 + ‖Zs−‖2 a

2
scs∆Rs dRd

s ≤ C
∫ ∞

0

‖Zs−‖
1 + ‖Zs−‖2a

2
scs∆Rs dRd

s

≤ C
∫ ∞

0
a2
s∆Rs dRd

s <∞∫ ∞
0

1
1 + ‖Zs−‖2a

2
sc

2
s∆Rs dRd

s ≤
∫ ∞

0
a2
sc

2
s∆Rs dRd

s ≤ C
∫ ∞

0
a2
s∆Rs dRd

s <∞
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and finally
∫ ∞

0

as
2

4cs2
1

1 + ‖Zs−‖2 dd
∫ ·

0
Mi(dt, Zt−)es =

∫ ∞
0

as
2

4cs2
hiis (Zs−)

1 + ‖Zs−‖2 dRs <∞.

This proves almost sure convergence of ‖Zt‖2 and consequently of Zt.

(b) Proof of almost sure convergence of Zt to the stationary point of f . We have to
show that Zs converges almost surely to 0. From (19) and (20) in the proof of part (a),
we know that

Ω = {‖Zs‖2 →} ∩ {A2
∞ <∞}

and

Ω = {A2
∞ <∞},

hold. The convergence of Zs to 0 will be proved by contradiction. Therefore we assume
that there exists a set N of non-zero probability on which the solution of the stochastic
integral equation does not converge to 0. Now we will deduce a contradiction to

Ω = {A2
∞ <∞} (21)

that holds according to (19) and (20) in the proof of part (a). Note that

A2
∞ =

∫ ∞
0

dA2
s + A2

0 = 2
∫ ∞

0
as 〈Zs−,∇f(Zs−)〉 dRs + A2

0.

As proved in part (a), Zs converges for almost all ω ∈ Ω, but for all ω ∈ N the process
does not converge to 0. Thus it follows that for almost all ω ∈ N

∃
ε?>0

∃
s0

∀
s≥s0

ε? ≤ ‖Zs‖ ≤ 1/ε?. (22)

Using (22) we find that for almost all ω ∈ N

A2
∞ = 2

∫ ∞
0

as 〈Zs−,∇f(Zs−)〉 dRs + A2
0

= 2
∫ s0

0
as 〈Zs−,∇f(Zs−)〉 dRs + 2

∫ ∞
s0+

as 〈Zs−,∇f(Zs−)〉 dRs + A2
0

≥ Cω + 2C(ε?)
∫ ∞
s0+

as dRs =∞

which contradicts (21). Hence such a set N cannot exist. This completes the proof. �
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2.2 Almost Sure Convergence Rate

Since we have verified consistency, it raises the question how fast Zt converges. We
seek a result of the form

γt(δ)‖Zt − x?‖ → 0 a.s. where γt(δ) := Et(δ
∫ ·

0
as dRs)

and Et(·) is the stochastic exponential. Naturally stronger assumptions are needed to
get convergence rates than to get the consistency. Therefore we consider the following
additional set of conditions here:

(D2) ∫ ∞
0

γs−(δ)ascs dRs <∞

(D3) ∫ ∞
0

γs−(δ)asc2
s dRs <∞

(Ẽ) For every i ∈ {1, .., d} and x ∈ Rd, we have∫ ∞
0

a2
s

c2
s

γ2
s−(δ)hiis (Zs−)

1 + γ2
s−(δ)‖Zs−‖2 dRs <∞, where hiis (x) := d d

∫ ·
0 Mi(dt, x)es

dRs

.

Except for the fact that the process γs−(δ) describes the speed, the conditions above
are quite similar to the conditions presented in the section before. Therefore we do not
give further explanations here.
Remark 2.3. Considering processes γs−(δ) obeying condition (D2) or (D3), it turns out
that only weight processes at that are mainly of the form at := a(1 + Rt)−1 come into
consideration. But here we do not assume that the process Rt and thus the weight
processes at and ct are deterministic. This is the first reason to present Theorem 2.2 in
this chapter. The other reason is the fact that the theorem, and especially the proof,
can be used as a starting point for considerations on weight processes of different design.
To make an entry into such a consideration easier we use general representations in the
proof of the theorem.

Theorem 2.2. Let the conditions (A)–(F), which ensure the consistency, be fulfilled.
We assume that f is two or three times differentiable at x?, in both cases with a continu-
ous Hessian H around x?. Furthermore, let conditions (Ẽ) and (D2) or (D3) hold, if f
is two or three times differentiable at x?, respectively. Then we get for all 0 ≤ δ < λmin

γt(δ) ‖Zt − x?‖ t→∞−→ 0 a.s..
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Proof of Theorem 2.2
In both parts we follow the path suggested in Theorem 2.1. Without loss of generality
we assume x? = 0. Then we examine the positive process γ2

t (δ)‖Zt‖2 instead of ‖Zt‖2.
By

γ2
t (δ) = γt(δ)γt(δ) = Et(2δ

∫ ·
0
as dRs + δ2

∫ ·
0
a2
s d[R,R]s)

= Et(2δ
∫ ·

0
as dRs + δ2

∫ ·
0
a2
s∆Rs dRs)

we find

γ2
t (δ)〈Zt, Zt〉 − γ2

0(δ)〈Z0, Z0〉

=
d∑
i=1

(∫ t

0
γ2
s−(δ) dZi2

s +
∫ t

0
Zi2

s− dγ2
s (δ) +

∫ t

0
d[γ2(δ), Zi2 ]s

)

=
d∑
i=1

(∫ t

0
γ2
s−(δ) dZi2

s +
∫ t

0
Zi2

s− dγ2
s (δ) +

∫ t

0
∆γ2

s (δ) dZi2

s

)

=
d∑
i=1

(∫ t

0
γ2
s−(δ) dZi2

s +
∫ t

0
Zi2

s− dγ2
s (δ) +

∫ t

0
(γ2
s (δ)− γ2

s−(δ)) dZi2

s

)

= −2
∫ t

0
γ2
s (δ)as

d∑
i=1

Zi
s−

1
2cs
{·}i dRs +

∫ t

0
γ2
s (δ)a2

s

d∑
i=1

1
4cs2{·}

2
i∆Rs dRd

s

+
d∑
i=1

∫ t

0
γ2
s (δ)

as
2

4cs2 dd
∫ ·

0
Mi(dt, Zt−)es + 2δ

∫ t

0
asγ

2
s−(δ)‖Zs−‖2 dRs

+ δ2
∫ t

0
γ2
s−(δ)‖Zs−‖2a2

s∆Rs dRs +
∫ t

0
dM̃s (23)

and seek, as in the proof of Theorem 2.1, two suitable processes, A1
t and A2

t , to apply
Lemma 2.1. Before we define these processes, we require some inequalities. Since f
is two or three times differentiable at 0, the Lipschitz-continuous gradient ∇f and the
Hessian H0 exist. We obtain

1
2cs
{·}i = 1

2

∫ 1

−1
∇if(Zs− + tcsei) dt =: Ci

s

= 1
2

∫ 1

−1
∇if(Zs−) dt+

︷ ︸︸ ︷
1
2

∫ 1

−1
(∇if(Zs− + tcsei)−∇if(Zs−)) dt

=
d∑
j=1

H ij
0 Z

j
s− +∇if(Zs−)−

d∑
j=1

H ij
0 Z

j
s−︸ ︷︷ ︸

+Ci
s

=: Bi
s

=
d∑
j=1

H ij
0 Z

j
s− +Bi

s + Ci
s. (24)
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Therefore we get

1
4c2
s

d∑
i=1
{·}2

i = ‖ 1
2cs
{·}· ‖

2 = ‖H0Zs− +Bs + Cs‖2 ≤ 3‖H0Zs−‖2 + 3‖Bs‖2 + 3‖Cs‖2

≤ 3λ2
max‖Zs−‖2 + 3‖Bs‖2 + 3‖Cs‖2 (25)

and

− 1
2cs

d∑
i=1
{·}i Z

i
s− = −

d∑
i=1

 d∑
j=1

H ij
0 Z

j
s− +Bi

s + Ci
s

Zi
s−

≤ −ZT
s−H0Zs−︸ ︷︷ ︸+|〈Bs, Zs−〉|+ |〈Cs, Zs−〉|

= −〈T TDTZs−, Zs−〉 ≤ −λmin‖TZs−‖2 = −λmin‖Zs−‖2

≤ −λmin‖Zs−‖2 + (‖Bs‖+ ‖Cs‖)‖Zs−‖. (26)

Later on it will be advantageous to have, on the one hand, decreasing rates and on the
other hand, bounds for the processes ‖Bs‖ and ‖Cs‖. Since we assume that Zs is a
strong solution of the stochastic integral equation on [0,∞), we know that there are no
explosion times. Furthermore, we know from Theorem 2.1 that Zs converges to zero.
If we combine these two statements, we get sups ‖Zs‖ ≤ C(ω) <∞, which we need to
prove bounds. Since f has a Lipschitz-continuous gradient, we obtain the bounds

‖Bs‖ = ‖∇f(Zs−)−H0Zs−‖ ≤ ‖∇f(Zs−)‖+ ‖H0‖ ‖Zs−‖
≤ (L+ λmax) ‖Zs−‖ ≤ C ‖Zs−‖ ≤ Cω <∞

and

‖Cs‖ =
(

d∑
i=1
|Ci

s|2
)0.5

≤ 1
2

(
d∑
i=1

(∫ 1

−1
|∇if(Zs− + tcsei)−∇if(Zs−)| dt

)2)0.5

≤ 1
2

(
d∑
i=1

(
Lcs

∫ 1

−1
|t| dt

)2)0.5

≤ 1
2
√
dL2c2

s ≤ L
√
d cs ≤ L

√
d c0.

If f is two times differentiable at 0, we use the statement ‖Cs‖ ≤ L
√
d cs above to

obtain the asymptotic behavior of ‖Cs‖. Now we consider the asymptotic behavior of
‖Cs‖ in the case where f is three times differentiable at 0. Since ‖Zs‖ and ‖cs‖ converge
to zero, they are for sufficiently large time in a small neighborhood of 0. In addition,
we know from the assumptions that the Hessian is continuous in a small neighborhood
of 0 and therefore we may use a Taylor expansion at 0. Furthermore, we use the fact
that the second partial derivative is differentiable at 0. We obtain

Ci
s = 1

2cs
{·}i −∇if(Zs−)
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= 1
2cs

∑
l,k

(
∂2f

∂xl∂xk
(Zs− + θ1

scsei)−
∂2f

∂xl∂xk
(Zs− − θ2

scsei)
)

(csei)l(csei)k

= cs
4

(
∂2f

(∂xi)2 (Zs− + θ1
scsei)−

∂2f

(∂xi)2 (Zs− − θ2
scsei)

)

= θ1
s + θ2

s

4
∂3f

(∂xi)3 (0)c2
s + o(cs‖Zs−‖+ c2

s) = O(c2
s) + o(cs‖Zs−‖) + o(c2

s)

= o(cs‖Zs−‖) +O(c2
s).

and ‖Cs‖ = o(cs‖Zs−‖) +O(c2
s).

The asymptotic behavior of ‖Bs‖ is given by

‖Bs‖ = ‖∇f(Zs−)−H0Zs−‖ = ‖∇f(0) +H0Zs− + o(‖Zs−‖)−H0Zs−‖ = o(‖Zs−‖)

and holds in the cases of a two and three times differentiable f . We notice that the faster
convergence rate in case of a three times differentiable f follows from the difference in
the asymptotic behavior of ‖Bs‖+ ‖Cs‖, that is

‖Bs‖+ ‖Cs‖ =

o(‖Zs−‖) + L
√
dcs = o(‖Zs−‖) +O(cs), if f is 2× diff.

o(‖Zs−‖) + o(cs‖Zs−‖) +O(c2
s) = o(‖Zs−‖) +O(c2

s), if f is 3× diff.

Coming back to (23) we seek two processes A1
t and A2

t satisfying the assumptions of
Lemma 2.1 and

γt(δ)〈Zt, Zt〉 − γ0(δ)〈Z0, Z0〉 ≤ A1
t − A2

t + M̃t.

These can be find using the above inequalities:

A2
t := 2

∫ t

0
γ2
s (δ)as

(
(δ − λmin) ‖Zs−‖2 + ‖Bs‖‖Zs−‖

)−
dRs

A1
t := 2

∫ t

0
γ2
s (δ)as

(
(δ − λmin) ‖Zs−‖2 + ‖Bs‖‖Zs−‖

)+
dRs

+ 3
∫ t

0
γ2
s (δ)a2

s‖Bs‖2∆Rs dRd
s + (3λ2

max + δ2)
∫ t

0
γ2
s (δ)a2

s‖Zs−‖2∆Rs dRd
s

+ 2
∫ t

0
γ2
s (δ)as‖Cs‖‖Zs−‖ dRs + 3

∫ t

0
γ2
s (δ)a2

s‖Cs‖2∆Rs dRd
s

+
d∑
i=1

∫ t

0
γ2
s (δ)

as
2

4cs2 dd
∫ ·

0
Mi(dt, Zt−)es.

Now it is sufficient to prove∫ ∞
0

1
1 + γ2

s−(δ)〈Zs−, Zs−〉
dA1

s <∞. (27)
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The following representation helps us to use 1/(1 + γ2
s−(δ)〈Zs−, Zs−〉) effectively.

γt(δ) = Et(δ
∫ ·

0
as dRs) = exp(δ

∫ t

0
as dRs)

∏
0<s≤t

(1 + δas∆Rs) exp(−δas∆Rs)

= exp(δat∆Rt)
(

exp(δ
∫ t−

0
as dRs)

∏
0<s<t

(1 + δas∆Rs) exp(−δas∆Rs)
)

· (1 + δat∆Rt) exp(−δat∆Rt)
= γt−(δ)(1 + δat∆Rt) (28)

From the assumptions
∫∞
0 a2

s∆Rs dRd
s <∞,

∫∞
0 as dRs =∞, and (28) it follows

γt(δ)
γt−(δ) = (1 + δat∆Rt) = (1 + ob(1)) = Cω.

In view of the first summand in the expanded form of (27), it will suffice to show in
both cases that

∃
s0(ω)

∀
s≥s0(ω)

(
(δ − λmin) ‖Zs−‖2 + ‖Bs‖‖Zs−‖

)+
= 0.

Using λmin > δ and the fact that ‖Bs‖ = o(‖Zs−‖) for increasing s, the term in the
bracket is negative for sufficiently large s0. Furthermore, we have∫ s0(ω)

0

(
(δ − λmin) ‖Zs−‖2 + ‖Bs‖‖Zs−‖

)+
γ2
s (δ)as dRs ≤ Cω

∫ s0(ω)

0
γ2
s (δ)as dRs <∞.

In both cases, the third summand can be estimated by
∫ ∞

0

(
γs(δ)
γs−(δ)

)2
γ2
s−(δ)‖Zs−‖2

1 + γ2
s−(δ)‖Zs−‖2a

2
s∆Rs dRd

s ≤ Cω
∫ ∞

0
a2
s∆Rs dRd

s <∞.

In both cases, the last summand can be estimated by
∫ ∞

0

(
γs(δ)
γs−(δ)

)2
γ2
s−(δ)

1 + γ2
s−(δ)‖Zs−‖2

as
2

cs2 dd
∫ ·

0
Mi(dt, Zt−)es

≤ Cω
∫ ∞

0

γ2
s−(δ)hiis (Zs−)

1 + γ2
s−(δ)‖Zs−‖2

as
2

cs2 dRs <∞.

For the remaining summands we use the fact that the asymptotic behavior of ‖Bs‖
and ‖Cs‖ is known and that both are bounded. Since ‖Zs‖ and cs converge to zero
there exists a time τ(ω) <∞ such that the estimates Cct and C‖Zt‖ follows from o(ct)
and O(‖Zt‖), respectively, for all t ≥ τ(ω) and for almost all ω ∈ Ω. For the second
summand we get∫ ∞

0

γ2
s (δ)‖Bs‖2

1 + γ2
s−(δ)‖Zs−‖2a

2
s∆Rs dRd

s
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≤ Cω + Cω
∫ ∞
τ(ω)

(
γs(δ)
γs−(δ)

)2
γ2
s−(δ)‖Zs−‖2

1 + γ2
s−(δ)‖Zs−‖2a

2
s∆Rs dRd

s

≤ Cω + Cω
∫ ∞

0
a2
s∆Rs dRd

s <∞.

Consider the fourth summand. In the case where f is two times differentiable at 0, we
have∫ ∞

0

(
γs(δ)
γs−(δ)

)2
γs−(δ)‖Zs−‖

1 + γ2
s−(δ)‖Zs−‖2‖Cs‖γs−(δ)as dRs ≤ Cω

∫ ∞
0

γs−(δ)ascs dRs <∞

and in the case where f is three times differentiable at 0,∫ ∞
0

γ2
s (δ)‖Cs‖‖Zs−‖

1 + γ2
s−(δ)‖Zs−‖2as dRs

≤ Cω + Cω
∫ ∞
τ(ω)

(
γs(δ)
γs−(δ)

)2 (cs‖Zs−‖+ c2
s)γ2

s−(δ)‖Zs−‖
1 + γ2

s−(δ)‖Zs−‖2 as dRs

≤ Cω + Cω
∫ ∞

0
ascs dRs + Cω

∫ ∞
0

γs−(δ)asc2
s dRs <∞.

In the case where f is two times differentiable at 0, we get for the fifth summand∫ ∞
0

γ2
s (δ)‖Cs‖2a2

s∆Rs dRs ≤ Cω + Cω
∫ ∞
τ(ω)

(γs−(δ)cs)2a2
s∆Rs dRd

s <∞

using
∫∞

0 γs−(δ)ascs dRs < ∞,
∫∞

0 as dRs = ∞ and hence γs−(δ)cs → 0. In the case
where f is three times differentiable at 0, we get∫ ∞

0

(
γs(δ)
γs−(δ)

)2
γ2
s−(δ)‖Cs‖2

1 + γ2
s−(δ)‖Zs−‖2 a

2
s∆Rs dRs

≤ Cω + Cω
∫ ∞
τ(ω)

(
c2
s + γ2

s−(δ) c4
s

)
a2
s∆Rs dRs <∞

as ‖Cs‖2 ≤ Cω(c2
s‖Zs−‖2 + c4

s) holds for s larger than τ(ω). Now, the convergence of
γ2
t (δ)‖Zt‖2 follows from Lemma 2.1.

To show almost sure convergence of γ2
t (δ)‖Zt‖2 to 0 we use the whole conclusion of

Lemma 2.1

Ω = {γ2
s (δ)‖Zs‖2 →} ∩ {A2

∞ <∞}.

Therefore we know that Ω = {A2
∞ < ∞} holds. Convergence of γ2

t (δ)‖Zt‖2 to 0 will
be proved by contradiction. To this end, we assume that there exists a set N of non-
zero probability on which γ2

t (δ)‖Zt‖2 does not converge to 0. Now we will deduce a
contradiction to Ω = {A2

∞ <∞}. Note

A2
∞ =

∫ ∞
0

dA2
s + A2

0 = 2
∫ ∞

0
γ2
s (δ)as

(
(δ − λmin) ‖Zs−‖2 + ‖Bs‖‖Zs−‖

)−
dRs + A2

0
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and further, since ‖Bs‖ = o(‖Zs−‖) holds, the existence of s1
0(ω) <∞ such that for all

s ≥ s1
0(ω) the relation ‖Bs‖ ≤ 1

2(λmin − δ)‖Zs−‖ holds. We assess the term in brackets
for s ≥ s1

0(ω) and observe

(
(δ − λmin) ‖Zs−‖2 + ‖Bs‖‖Zs−‖

)−
≥
(

(δ − λmin) ‖Zs−‖2 + 1
2(λmin − δ)‖Zs−‖2

)−
= 1

2(λmin − δ)‖Zs−‖2 with λmin > δ.

As proved before, γ2
t (δ)‖Zt‖2 converges for almost all ω ∈ Ω, but for all ω ∈ N the

expression does not converge to 0. Thus it follows that, for almost all ω ∈ N ,

∃
ε?>0

∃
s20

∀
s≥s20

ε? ≤ γ2
t−(δ)‖Zt−‖2.

Using the equation above with s0 := max{s1
0, s

2
0}, we have

A2
∞ = 2

∫ ∞
0

(
(δ − λmin) ‖Zs−‖2 + ‖Bs‖‖Zs−‖

)−
asγ

2
s (δ) dRs + A2

0

≥ (λmin − δ)
∫ ∞
s0

asγ
2
s−(δ)‖Zs−‖2 dRs ≥ (λmin − δ)ε?

∫ ∞
s0

as dRs

≥ (λmin − δ)ε?︸ ︷︷ ︸
∫ ∞

0
as dRs︸ ︷︷ ︸−

∫ s0

0
as dRs︸ ︷︷ ︸

 =∞

> 0 =∞ ≤ (Rs0 −R0) <∞

for almost all ω ∈ N , which contradicts Ω = {A2
∞ <∞}. Hence such a set N does not

exist. This completes the proof. �

2.3 Discussion of Special Settings

Here we illustrate the theorems presented in this chapter in the case of two common
settings. One treats the discrete-time setting, the other treats the Itô setting. We
obtain three known and one new result.

The following assumptions are needed in the special situation of a stochastic integral
equation of Itô type, which will be considered in Corollary 2.1.

(D′) The processes as and cs, which the statistician has to choose, are left-continuous
and satisfy as, cs > 0, as, cs ↓ 0 and∫ ∞

0
as ds =∞

∫ ∞
0

ascs ds <∞.
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(E ′) For every i, j ∈ {1, .., d} we have∫ ∞
0

σijs (Zs)2

1 + ‖Zs‖2
as

2

cs2 ds <∞.

Corollary 2.1. Consider the Itô-type stochastic integral equation

Zt = Z0 −
∫ t

0

as
2cs

f(Zs + csei)− f(Zs − csei) ds+
d∑
j=1

σijs (Zs) dW j
s


i∈{1,...,d}

(29)

with σij : R+ × Rd → R and independent standard Brownian motions W j
t defined on

our standard stochastic basis. If assumptions (A), (B), (C), (D′), and (E ′) hold, then
the strong solution Zt of (29) converges almost surely to the stationary point of the
function f .
Remark 2.4. If in Corollary 2.1 we assume the stronger restrictions σijt (x) ≤ C(1+‖x‖)
and

∫∞
0 as

2cs
−2 ds <∞ instead of (E ′), Corollary 2.1 is well-known (see e.g. [30]).

Figure 1 shows a simulated path of the process Zt given in (29). We choose f(x) =
0.5xTx, x ∈ R2, Z0 = (5, 6)T , as = (1 + s)−3/4, cs = (1 + s)−1/4, σs(·) = I and use the
Milstein scheme (see, e.g., [14]) to simulate the path. Furthermore, Figure 2 illustrates
how the process f(Zt) behaves on the surface of the considered function f by taking
the same path of Zt as in Figure 1.

The next assumptions are needed in the special situation of a recursive scheme that
will be considered in Corollary 2.2.

(D′′) The sequences an and cn, which the statistician has to choose, satisfy an, cn > 0,
an, cn ↓ 0 and

∞∑
n=1

an =∞
∞∑
n=1

ancn <∞
∞∑
n=1

a2
n

c2
n

<∞.

(E ′′) We have

sup
n∈N

E‖Vn‖2 <∞ and E (Vn|Fn−1) = 0

where Fn := F(Z1, V1, . . . , Zn, Vn).
Corollary 2.2. If the assumptions (A), (B), (C), (D′′), and (E ′′) hold, then the
sequence Zn generated by the recursive scheme

Zn − Zn−1 = − an
2cn

{
f(Zn−1 + cnei)− f(Zn−1 − cnei) + V i

n

}
i∈{1,...,d}

(30)

converges almost surely to the stationary point of the function f .

This Corollary 2.2 is well-known (see e.g. [20]).
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Figure 1: Simulation of a path of the process Zt of (29).

Corollary 2.3. Consider the stochastic integral equation (29) of Itô type as given in
Corollary 2.1 with the restriction ∑d

j=1 σ
ij
s (x) ≤ C(1 + ‖x‖) for all i ∈ {1, . . . , d} and

assume (A), (B), (C), and (E ′).

(a) If f is twice differentiable at x?, Hessian H is continuous around x?, and λmin >
1
4a holds, we get

(1 + t)δ‖Zt − x?‖ → 0 a.s.

for all δ ∈ (0, 1
4), where cs := c(1 + s)− 1

4 and as := a(1 + s)−1.

(b) If f is three times differentiable at x?, Hessian H is continuous around x?, and
λmin >

1
3a holds, we get

(1 + t)δ‖Zt − x?‖ → 0 a.s.

for all δ ∈ (0, 1
3), where cs := c(1 + s)− 1

6 and as := a(1 + s)−1.
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Figure 2: Simulation of a path of the process f(Zt), with the same path of Zt as depicted
in Figure 1.

Corollary 2.4. Consider recursion (30) of Corollary 2.2 and assume (A), (B), (C),
and (E ′′).

(a) If f is twice differentiable at x?, Hessian H is continuous around x?, and λmin >
1
4a holds, we get

nδ‖Zn − x?‖ → 0 a.s.

for all δ ∈ (0, 1
4), where cn := cn−

1
4 and an := an−1.

(b) If f is three times differentiable at x?, Hessian H is continuous around x?, and
λmin >

1
3a holds, we get

nδ‖Zn − x?‖ → 0 a.s.

for all δ ∈ (0, 1
3), where cn := cn−

1
6 and an := an−1.

Proof of Corollary 2.1
If we use the continuous processes Rs := s and Mi(ds, x) := ∑d

j=1 σ
ij
s (x) dW j

s in (5),
the solution of (5) is also continuous and we get (29). Hence it is sufficient to verify
the assumptions needed in Theorem 2.1 with respect to these special processes Rs and
Mi(ds, x). Assumption (F) directly follows from the continuity of Rs. By

d
∫ ·

0
Mi(ds, Js)et = d

∫ ·
0

d∑
j=1

σijs (Js) dW j
s et =

d∑
j,l=1
d
∫ ·

0
σijs (Js) dW j

s ,
∫ ·

0
σils (Js) dW l

set
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=
∫ t

0

d∑
j,l=1

σijs (Js)σils (Js) ddW j,W les =
∫ t

0

d∑
j,l=1

σijs (Js)σils (Js)1{j=l} ds

=
∫ t

0

d∑
j=1

σijs (Js)2 ds

we obtain hiis (·) = ∑d
j=1 σ

ij
s (·)2, and therefore validity of (E) follows from (E ′). �

Proof of Corollary 2.2
We extend the sequence Vn to the process Ṽt continuous in time by

Ṽt :=

V1 for t = 0
Vn for n− 1 < t ≤ n and n ∈ N

and introduce the following processes:

Rs := max
n∈N0,n≤s

(n) = bsc for s ≥ 0 and M(ds, x) := Ṽs dRs.

With these definitions we have∫ t

0
Mi(ds, x) =

∫ t

0
Ṽ i
s dRs =

∑
n≤t
n∈N

Ṽ i
n(∆Rn) =

∑
n≤t
n∈N

Ṽ i
n =

∑
n≤t
n∈N

V i
n =: H i

t .

First we show that
∫ t

0 M(ds, x) is a martingale with respect to F̃t := FRt , t ≥ 0.

E
(
Ht

∣∣∣F̃s) = E
(
Ht

∣∣∣Fbsc) =
∑
n≤t
n∈N

E
(
Vn
∣∣∣Fbsc)

=
∑
n≤bsc
n∈N

E
(
Vn
∣∣∣Fbsc)+

∑
bsc<n≤t
n∈N

E
(
Vn
∣∣∣Fbsc) =

∑
n≤bsc
n∈N

Vn + 0 =
∑
n≤s
n∈N

Vn

= Hs

With (5) and the processes above defined we get for n ∈ N

Zi
n − Zi

0 = −
∫ n

0

as
2cs

(f(Zs− + csei)− f(Zs− − csei)) dRs −
∫ n

0

as
2cs

Mi(ds, Zs−)

= −
n∑
j=1

aj
2cj

(f(Zj−1 + cjei)− f(Zj−1 − cjei)) (∆Rj)−
n∑
j=1

aj
2cj

V i
j (∆Rj)

= −
n∑
j=1

aj
2cj

(f(Zj−1 + cjei)− f(Zj−1 − cjei))−
n∑
j=1

aj
2cj

V i
j .
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The recursive scheme (30) can be written in the form

Zi
n − Zi

0 =
n∑
j=1

(Zi
j − Zi

j−1) = −
n∑
j=1

aj
2cj

(f(Zj−1 + cjei)− f(Zj−1 − cjei))−
n∑
j=1

aj
2cj

V i
j .

Therefore it suffices to verify the assumptions needed in Theorem 2.1. The assumptions
(D) and (F) can be verified in a similar way to∫ ∞

0
as dRs =

∞∑
j=1

aj(∆Rj) =
∞∑
j=1

aj <∞.

Using

d
∫ ·

0
Mi(ds, x)et = d

∫ ·
0
Ṽ i
s dRset =

∑
n≤t
n∈N

E
(
V i2

n (∆Rn)2 |Fn−1
)

=
∑
n≤t
n∈N

E
(
V i2

n |Fn−1
)
,

it remains to verify∫ ∞
0

as
2

cs2
hiis (Zs−)

1 + ‖Zs−‖2 dRs ≤
∑
n∈N

an
2

cn2 E
(
V i2

n |Fn−1
)
<∞.

Since all summands and thus the sum itself are positive, it is sufficient to show that
the expectation

E
∑
n∈N

an
2

cn2 E
(
V i2

n |Fn−1
) (?)=

∑
n∈N

an
2

cn2 E|V i
n|2 ≤

(
sup
n∈N

E‖Vn‖2
) ∑
n∈N

an
2

cn2 <∞

is finite, where (?) follows from the monotone convergence theorem. �

Proof of Corollary 2.3
We verify only part (a), since part (b) follows analogously. First we define some pro-
cesses needed later to apply Theorem 2.2. The continuous processes Rs := s and
Mi(ds, x) := ∑d

j=1 σ
ij
s (x) dW j(s) are defined as in the proof of Corollary 2.1. It is ob-

vious that (D′) holds. Since Rs is continuous, γt(δ) is also continuous. We show that
γt(δ), which determines the speed of convergence, is given by

γt(δ) = Et(δ
∫ ·

0
as dRs) = exp (δa

∫ t

0

1
1 + s

ds) = exp (δa ln (1 + t)) = (1 + t)aδ.

To obtain the desired result, we have to verify that for all δ ∈ (0, 1
4a) assumptions (Ẽ)

and (D2) hold. Due to the assumption on λmin we have 0 ≤ δ < λmin. Assumption
(D2) follows from∫ ∞

0
γs−(δ)ascs dRs = ac

∫ ∞
0

(1 + s)aδ− 5
4 ds ≤ ac

∫ ∞
0

(1 + s) 1
4−ε−

5
4 ds <∞.
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Finally, assumption (Ẽ) follows from
∫ ∞

0

γ2
s−(δ)hiis (Zs−)

1 + γ2
s−(δ)‖Zs−‖2

a2
s

c2
s

dRs =
d∑
j=1

∫ ∞
0

γ2
s (δ)σijs (Zs)2

1 + γ2
s (δ)‖Zs‖2

a2
s

c2
s

ds

≤ C
∫ ∞

0

γ2
s (δ)(1 + ‖Zs‖)2

1 + γ2
s (δ)‖Zs‖2

a2
s

c2
s

ds ≤ C
∫ ∞

0
γ2
s (δ)

a2
s

c2
s

ds

≤ C
∫ ∞

0
(1 + s) 1

2−ε−
3
2 ds ≤ C

∫ ∞
0

(1 + s)−1−ε ds <∞.

�

Proof of Corollary 2.4
As in the proof of Corollary 2.3, we verify only part (a), since part (b) follows analo-
gously. We define the processes Ṽt, Rs, and M(ds, x) as in the proof of Corollary 2.2.
Now we apply Theorem 2.2. From the choices Rs := bsc and as := as−1 we obtain by
Taylor expansion

γt(δ) = Et(aδ
∫ ·

0

1
s

dRs) =
btc∏
i=1

(1 + aδ

i
) = exp (

btc∑
i=1

ln (1 + aδ

i
)) = Cbtc exp (aδ

btc∑
i=1

1
i
)

where Cbtc → C. Furthermore, we get the following two inequalities

exp (aδ
btc∑
i=1

1
i
) ≥ exp (aδ

∫ btc
1

1
x

dx) = btcaδ

and

exp (aδ
btc∑
i=1

1
i
) = exp (aδ + aδ

btc∑
i=2

1
i
) ≤ exp (aδ + aδ

∫ btc
1

1
x

dx) = exp (aδ)btcaδ.

Hence, it is sufficient to verify the assumptions of Theorem 2.2 for btcaδ instead of γt−(δ).
To obtain the desired result, we have to check that, for all δ ∈ (0, 1

4a), the assumptions
(Ẽ) and (D2) are satisfied. Due to the assumption on λmin we have 0 ≤ δ < λmin. The
assumption (D2) follows from∫ ∞

0
bscaδascs dRs ≤ ac

∑
n∈N

naδn−
5
4 = C

∑
n∈N

n
1
4−ε−

5
4 <∞.

Finally the validation of assumption (Ẽ) is missing. The processes bsc2aδ a
2
s

c2s
hiis (Zs−) and

∆Rs itself, which appear in the assumption, are always positive. Hence, the assumption
(Ẽ) follows from E

∫∞
0 hiis (Zs−)bsc2aδ a

2
s

c2s
dRs <∞. Therefore we show

E
∫ ∞

0
hiis (Zs−)bsc2aδ a

2
s

c2
s

dRs ≤ C E
∑
n∈N

E
(
V i2

n |Fn−1
)
n2aδn−

3
2
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(α)
≤ C

(
sup
n∈N

E‖Vn‖2
) ∑
n∈N

n
1
2−ε−

3
2 ≤ C

∑
n∈N

n−1−ε <∞

where we get hiis (·) as in the proof of Corollary 2.2 and (α) using the monotone con-
vergence theorem. �
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3 Asymptotic Properties of the Process Using Special
Weights

This chapter is devoted to asymptotic normality which is of major interest since we get
the speed of convergence in a special sense. Furthermore, the knowledge of the limit
distribution is very useful. Indeed, if the limit distribution is known, it can be used, for
example, to identify optimal design parameters. Here, the design parameters are, for
example, a and c. All theorems presented in this chapter assume that the process Rt

is deterministic but there are also some lemmata which do not need this assumption.
The theorem dealing with the asymptotic normality is presented in Section 3.2.

3.1 Almost L2-Convergence Rate

In this section, we establish a result on an almost L2-convergence rate. To this end we
say that a process Zt converges in the almost L2-convergence sense, if, for any ε > 0,
Zt1Aε converges in L2 for a suitable set Aε of probability ≥ 1− ε.

In the next section we will see that a theorem on an almost L2-convergence rate is
a useful tool to prove asymptotic normality. Here we make the restrictions that the
process Rt is deterministic and as, cs are chosen as

as := a

(1 +Rs−)α and cs := c

(1 +Rs−)γ

for some fixed a, c > 0 and 0 < α, γ ≤ 1. In this setting, which is a special case of (5),
the following theorem presents an almost L2-convergence rate.

Theorem 3.1. We assume the existence of a positive, deterministic, monotonously
increasing process (Ss)s≥0 with Ss ↑ ∞ and Ss‖Zs‖ → 0. Let conditions (A), (B),
and (D)–(F) be valid. Assume that f is two or three times differentiable at x? with a
continuous Hessian around x? and

(E?)


∀

i,j∈{1,...,d}
∀

0<S<∞
∃

0<K<∞
‖x‖ ≤ S ⇒ |hijt (x)| ≤ K∫∞

0 a2
s c
−2
s dRs <∞.

In the case α < 1, we assume that the Hessian is positive definite at x?, and in the
special, yet important, case α = 1 we further stipulate λmin >

1−2γ
2a . Then, for all ε > 0,

there exists a process Yt such that

P
[
∀
t≥0

Yt = Zt

]
≥ 1− ε
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and

E‖Yt − x?‖2 = O((1 +Rt)β)

with

β :=

max {1− α− 2γ, 1− 2α + 2γ}, if f is 2× differentiable atx?

max {1− α− 4γ, 1− 2α + 2γ}, if f is 3× differentiable atx?.

Remark 3.1. The assumption (E?) is no major restriction. The second part holds, for
example, if ht(x) is bounded in both arguments or if hijt (x) ≤ C(1 + ‖x‖) holds.
Remark 3.2. Considering the assumptions in Theorem 3.1, we see that the process with
standard weights, that is α = 1, leads to a restriction on the smallest eigenvalue. This
restriction on the smallest eigenvalue is λmin >

1−2γ
2a and appears also when we treat

asymptotic normality using standard weights. Observing the proof, we easily see why
the assumption disappears in the case α < 1. In this case one process appearing in the
insight of the bracket term of (37) is (1 + Rt)α−1, converges to zero and therefore the
restriction on the eigenvalue turns out to be superfluous.
Remark 3.3. The theorem above is of particular interest when we consider convergence
in probability. Indeed, in this case the processes Zt and Yt are interchangeable.

Lemma 3.1. If there is a strictly positive, monotone increasing process (St)t≥0 that
satisfies St ↑ ∞ and St‖Zt‖ → 0, then, for all ε, δ > 0, a deterministic time T (ε, δ)
exists with

P
[

sup
t≥T (ε,δ)

‖Zt‖ > δ

]
< ε.

Proof of Lemma 3.1
We write T := T (ε, δ) to shorten notations. Since St is monotonously increasing and
strictly positive, we obtain

sup
t≥T
‖Zt‖ = sup

t≥T

(
S−1
t St ‖Zt‖

)
≤ S−1

T sup
t

(St ‖Zt‖)︸ ︷︷ ︸ .
(?)
≤ C(ω) <∞

Because we assume that Zs is a strong solution of the stochastic integral equation
on [0,∞), we know that there are no explosion times. We further know from the
assumptions that St ‖Zt‖ converges to 0. If we combine these two statements we get
(?). Therefore, we have
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P
[
sup
t≥T
‖Zt‖ > δ

]
≤ P

[
C(ω) > δ ST︸︷︷︸

]
↑ ∞

and thus it suffices to verify

∃
T∈R+

P [C(ω) > δST ] < ε (T independent of ω)

to prove the lemma. This will be proved by contradiction. We assume

∀
T∈R+

P [C(ω) > δST ] ≥ ε.

Since the above holds for all T ∈ R+, it holds in particular for all T ∈ N. Moreover, P
as a probability measure, is continuous, and it follows

P
( ∞⋂
n=1

[C(ω) > δSn]
)

= lim
N→∞

P
(

N⋂
n=1

[C(ω) > δSn]
)

= lim
N→∞

P [C(ω) > δSN ]︸ ︷︷ ︸ ≥ ε.

≥ ε ∀
N∈N

Thus we have
∞⋂
n=1

[C(ω) > δSn] = [C(ω) =∞]

and in particular

P [C(ω) =∞] ≥ ε,

which contradicts the fact that C is almost surely bounded (i.e. C(ω) < ∞ almost
surely). �

Proof of Theorem 3.1
Without loss of generality we assume x? = 0. We will prove the assertion of the theorem
by constructing the process Yt and verifying its L2-convergence rate. However, before
we construct the process, we need some approximations and notations. We know that
f is differentiable on Rd and at least two times differentiable at x? = 0. This ensures
the existence of ∇f(x) and H0. Furthermore we get for i ∈ {1, . . . , d}

1
2c{f(x+ cei)− f(x− cei)} = (H0x)i +

1
2

∫ 1

−1
∇if(x+ tcei) dt− (H0x)i︸ ︷︷ ︸

 .
=: V i(x, c)
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Note that for an f two or three times differentiable at x? = 0, the gradient is one or
two times differentiable at x? = 0. For a fixed c > 0 we obtain on the one hand,

V i(x, c) = 1
2

∫ 1

−1
∇if(x+ tcei)︸ ︷︷ ︸ dt− (H0x)i = o(‖x‖+ c) = o(‖x‖) + o(c) (31)

= ∇if(0) + 〈H · i0 , x+ tcei〉+ o(‖x+ tcei‖)

and on the other hand

V i(x, c) = 1
2

∫ 1

−1
∇if(x+ tcei)︸ ︷︷ ︸ dt− (H0x)i = O(‖x‖2) +O(c2) + o(‖x+ c‖2)

= ∇if(0) + 〈H · i0 , x+ tcei〉+ o(‖x+ tcei‖2)

+ 1
2
∑
l,k

∂3f

∂xi∂xl∂xk
(0)(x+ tcei)l(x+ tcei)k

= O(‖x‖2) +O(c2) + o(‖x‖2) + o(c2) = O(‖x‖2) +O(c2). (32)

By combining (31) and (32), we have

1
2c{·}· =

H0x+ V (x, c) with V (x, c) = o(‖x‖) + o(c) , if f is 2× diff. atx? = 0
H0x+ V (x, c) with V (x, c) = O(‖x‖2) +O(c2), if f is 3× diff. atx? = 0.

This describes the behavior of V (x, c) for small x and c. In the following we consider
a process very similar to the process (1 + Rt)p

?E‖Zt‖2. To this end we need some
further definitions. We distinguish between the cases α = 1 and α < 1. In the case
α = 1 we have 2aλmin > 1 − 2γ, thus there exists a strictly positive p? < 1 with
2aλmin > p? > 1 − 2γ. In the case α < 1 there exists a strictly positive p? < 1 with
p? > 1− 2γ.

(a) Case: f is two times differentiable at x? = 0. We choose

κ :=


2aλmin−p?

6a if α = 1
2
9λmin if α < 1

, thus we have κ > 0.

Using V (x, c) = o(‖x‖) + o(c), we get

∀
ρ>0

∃
δ1>0

∃
δ2>0

∀
‖x‖<δ1

∀
c<δ2

‖V (x, c)‖ ≤ ρ‖x‖+ ρc.

Now we choose ρ = κ. This is possible because κ > 0 holds. Since ε > 0 is fixed and
we choose δ := min{δ1, 1} > 0, the statement of Lemma 3.1 guarantees the existence
of a deterministic (!) time T (ε, δ) <∞ with

P
[

sup
t≥T (ε,δ)

‖Zt‖ ≤ δ

]
≥ 1− ε.
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Set as := a(1 +Rs−)−α. Since (Rs)s≥0 is a deterministic process and∫ ∞
0

as dRs =∞ ∧
∫ ∞

0
a2
s∆Rs dRs <∞ =⇒ ∆Rs

(1 +Rs−)α → 0,

we get for α = 1

∃
s0
∀

s≥s0

(
as∆Rs ≤

2aλmin − p?

4a(λmax + κ)2 ∧ cs ≤ δ2

)

and for α < 1

∃
s1
∀

s≥s1

(
as∆Rs ≤

λmin

3(λmax + κ)2 ∧ (1 +Rs−)α−1 ≤ 2aλmin

3p? ∧ cs ≤ δ2

)
.

Recall that the times T (ε, δ), s0, and s1 are all deterministic. Consequently

T :=

max {T (ε, δ), s0} if α = 1
max {T (ε, δ), s1} if α < 1

is also deterministic and hence a stopping time. Then

D := inf{t > T : ‖Zt‖ > δ}

is also a stopping time. Now we define the process (Yt)t≥0 by

Yt : = Zt1[0,T )(t) + ZD
T 1[T,∞)(t)1[T 6=D] +

∫ t∧D

T+
dZs

= Zt1[0,T )(t) + ZT1[T,∞)(t)1[T 6=D] −
∫ t

T+

as
2cs
{·}·1(T,D](s) dRs

−
∫ t

T+

as
2cs

1(T,D](s)M(ds, Zs−).

If we consider the process Yt on the set [D =∞]

Zt1[0,T )(t) + 1[T,∞)(t)
(
ZT +

∫ t

T+
dZs

)
= Zt1[0,T )(t) + 1[T,∞)(t)Zt = Zt

we see that the process Yt may differ from the process Zt only on the set [D <∞]. But
the measurement of such a set is at most ε, because we have

P
[
Zt = Yt ∀

t≥0

]
≥ P[D =∞] = P

[
sup
t≥T
‖Zt‖ ≤ δ

]
≥ 1− ε.

In the following, we assume that t > T holds. Using (12) and (13) we obtain

‖Yt‖2 = ‖YT‖2 +
∫ t

T+
d‖Ys‖2
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=
∥∥∥ZD

T 1[T 6=D]

∥∥∥2
+M?

t +
d∑
i=1

(∫ t

T+

as
2

4cs2h
ii
s (Zs−)1(T,D](s) dRs

−2
∫ t

T+
as
{·}i
2cs

Zi
s−1(T,D](s) dRs +

∫ t

T+
a2
s

{·}2
i

4cs21(T,D](s)∆Rs dRd
s

)

with the local martingale

M?
t =

d∑
i=1

(∫ t

T+

as
2

2cs2{·}i∆Rs1(T,D](s)Md
i (ds, Zs−)−

∫ t

T+

as
cs
Zi
s−1(T,D](s)Mi(ds, Zs−)

+
∫ t

T+

as
2

4cs21(T,D](s)
(

[Mi(dr, Zr−)]s − dMi(dr, Zr−)es
))

.

Furthermore, we have

1(T,D](t)Yt = ZD
T 1(T,D](t)1[T 6=D] + 1(T,D](t)

∫ t∧D

T+
dZs

= ZD
T 1(T,D](t) + 1(T,D](t)

∫ t∧D

T+
dZs = 1(T,D](t)

(
ZD
T +

∫ t

T+
dZD

s

)
= 1(T,D](t)ZD

t = 1(T,D](t)Zt

and

1(T,D](t)‖Yt−‖ = 1(T,D](t)‖Zt−‖ ≤ δ1(T,D](t).

Now we need some inequalities to handle the terms 1
2cs
∑d
i=1 Z

i
s−{·}i and 1

4cs2
∑d
i=1{·}2

i .
To obtain these inequalities we use the asymptotic results that we derived at the be-
ginning of this proof. Let s be a time such that s > T . Then we observe

1
2cs
{·}i =

d∑
j=1

H ij
0 Z

j
s− + V i(Zs−, cs) (33)

and obtain both

− 1
2cs

d∑
i=1

Zi
s−{·}i = −

d∑
i=1

 d∑
j=1

H ij
0 Z

j
s− + V i(Zs−, cs)

Zi
s−

≤ −ZT
s−H0Zs− + |〈V (Zs−, cs), Zs−〉|

≤ −λmin‖Zs−‖2 + ‖V (Zs−, cs)‖‖Zs−‖

≤ −λmin‖Zs−‖2 + 3
2κ‖Zs−‖

2 + 1
2κc

2
s (34)

and

1
4cs2

d∑
i=1
{·}2

i = 〈 1
2cs
{·}·,

1
2cs
{·}·〉 =

∥∥∥ 1
2cs
{·}·

∥∥∥2
≤
(
‖H0Zs−‖+ ‖V (Zs−, cs)‖

)2
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≤ 2 (λmax + κ)2 ‖Zs−‖2 + 2κ2c2
s. (35)

Now we show that the expectation of the local martingale (M?
t )t≥T is zero. To this

end we can use the fact that the expectation of a martingale starting at zero is zero
(which, of course, is not generally the case for a local martingale). To show that a local
martingale Mt is even a martingale, it suffices to verify EdMet < ∞ for all t. The
second local martingale in M?

t gives

sup
t>T

E
⌈

d∑
i=1

∫ ·
T+

as
2cs

Zi
s−1(T,D](s)Mi(ds, Zs−)

⌉
t

= sup
t>T

E
d∑

i,j=1

∫ t

T+

a2
s

4c2
s

Zi
s−Z

j
s−1(T,D](s) dMi(dr, Zr−),Mj(dr, Zr−)es

=
d∑

i,j=1
sup
t>T

E
∫ t

T+

a2
s

4c2
s

Zi
s−Z

j
s−1(T,D](s)hijs (Zs−) dRs ≤ C

∫ ∞
0

a2
s

c2
s

dRs <∞

hence it is a martingale. In view of the first local martingale we may write Mi(ds, Zs−)
instead of Md

i (ds, Zs−), because the process ∆Rs appears as an integrand.
as

2

4cs2{·}i∆RsMi(ds, Zs−) = as
2

4cs2{·}i∆RsM
c
i (ds, Zs−) + as

2

4cs2{·}i∆RsM
d
i (ds, Zs−)

= as
2

4cs2{·}i∆RsM
d
i (ds, Zs−)

The first local martingale in M?
t gives

sup
t>T

E
⌈

d∑
i=1

∫ ·
T+

as
2

4cs2{·}i1(T,D](s)∆RsMi(ds, Zs−)
⌉
t

= sup
t>T

E
d∑

i,j=1

∫ t

T+

a4
s

16c4
s

{·}i{·}j(∆Rs)2hijs (Zs−)1(T,D](s) dRs

= C sup
t>T

E
∫ t

T+

a4
s

c2
s

(
d∑
l=1

1
2cs
{·}l

)2

1(T,D](s)(∆Rs)2 dRs

(35)
≤ C

∫ ∞
0

a4
s

c2
s

(∆Rs)2 dRs ≤ C
∫ ∞

0

as
2

cs2 (as∆Rs)2 dRs

= C
∫ ∞

0
a2
sc
−2
s ob(1) dRs < C

∫ ∞
0

a2
sc
−2
s dRs <∞

and it follows that the local martingale is even a martingale. In order to show that the
expectation of the last local martingale in M?

t is zero, we use the following criterion:
For a locally square integrable martingale Mt starting at zero we have E[M ]t = EdMet
for all t. For the last local martingale in M?

t we have

E
∫ t

T+

ar
2

4cr21(T,D](r)
(

[Mi(dl, Zl−)]r − dMi(dl, Zl−)er
)
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= E

∫ ·
T+

ar
2cr

1(T,D](r)Mi(dr, Zr−)︸ ︷︷ ︸

t

− E


∫ ·
T+

ar
2cr

1(T,D](r)Mi(dr, Zr−)︸ ︷︷ ︸

t

∈M2
loc ∈M2

loc

= 0.

Let us now turn to the examination of

d
(
(1 +Rt)p

?E‖Yt‖2
)

= (1 +Rt−)p?dE‖Yt‖2 + E‖Yt−‖2 d(1 +Rt)p
?

+ d[(1 +R)p? ,E‖Y ‖2]t. (36)

We seek an estimate of the first summand:

E ‖Yt‖2 = E
∥∥∥ZD

T 1[T 6=D]

∥∥∥2
+
∫ t

T+
a2
sE
(

d∑
i=1

{·}2
i

4cs21(T,D](s)
)

∆Rs dRd
s

+
∫ t

T+

as
2

4cs2 E
(

d∑
i=1

hiis (Zs−)1(T,D](s)
)

dRs

− 2
∫ t

T+
asE

(
d∑
i=1

{·}i
2cs

Zi
s−1(T,D](s)

)
dRs.

Using (34) and (35) we get for the first summand in (36),∫ t

T+
(1 +Rs−)p?dE‖Ys‖2

≤ 2a
∫ t

T+

(
−λmin + (λmax + κ)2 a∆Rs

(1 +Rs−)α + 3κ
2

)
(1 +Rs−)p?−αE‖Ys−‖2 dRs

+ C
∫ t

T+
(1 +Rs−)p?−α−2γ dRs + C

∫ t

T+
(1 +Rs−)p?−2α+2γ dRs

≤ 2a
∫ t

T+

(
−λmin + vs + 3κ

2

)
(1 +Rs−)p?−αE‖Ys−‖2 dRs

+ C
∫ t

T+
(1 +Rs−)p?+β−1dRs,

where vs := (λmax + κ)2 a∆Rs
(1+Rs−)α and β := max{1 − α − 2γ, 1 − 2α + 2γ}. Using the

standard Itô formula and a Taylor expansion around Rs−, we obtain

(1 +Rt)p
? − 1 =

∫ t

0+
p?(1 +Rs−)p?−1 dRs

+
∑

0<s≤t
{(1 +Rs)p

? − (1 +Rs−)p? − p?(1 +Rs−)p?−1∆Rs}

=
∫ t

0+
p?(1 +Rs−)p?−1 dRs
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+
∑

0<s≤t

1
2p

?︸︷︷︸ (p? − 1)︸ ︷︷ ︸ (1 +Rs− + ϑs∆Rs)p
?−2(∆Rs)2︸ ︷︷ ︸


≥ 0 < 0 ≥ 0

≤
∫ t

0+
p?(1 +Rs−)p?−1 dRs

and for the second summand in (36)∫ t

T+
E‖Ys−‖2d(1 +Rs)p

? ≤ p?
∫ t

T+
(1 +Rs−)p?−1E‖Ys−‖2dRs.

Since

0 ≤ ∆(1 +Rt)p
? = (1 +Rt)p

? − (1 +Rt−)p? = p?(1 +Rt− + ϑt∆Rt)p
?−1∆Rt

≤ p?(1 +Rt−)p?−1∆Rt

holds, we get for the last summand in (36)∫ t

T+
d
[
(1 +R)p? ,E‖Y ‖2

]
s

=
∫ t

T+
∆(1 +Rs)p

? dE‖Ys‖2

≤ 2a
∫ t

T+

(
−λmin + vs + 3κ

2

)
(1 +Rs−)−αE‖Ys−‖2∆(1 +Rs)p

? dRs

+ C
∫ t

T+
(1 +Rs−)β−1∆(1 +Rs)p

? dRs

(?)
≤ C

∫ t

T+
(1 +Rs−)p?−1+β−1∆Rs dRs

where (?) is discussed below. Note that all terms appearing above, in particular vs, are
purely deterministic! Combining all estimates we have∫ t

T+
d
(
(1 +Rs)p

?E‖Ys‖2
)

≤ C
∫ t

T+

(
−λmin + vs + 3κ

2 + p?

2a(1 +Rs−)α−1
)

(1 +Rs−)p?−αE‖Ys−‖2 dRs

+ C
∫ t

T+
(1 +Rs−)p?+β−1dRs (37)

(?)
≤ C

∫ t

T+
(1 +Rs−)p?+β−1dRs

where we used ∆Rs
(1+Rs)α = ob(1) and (?).

We get (?) in the case α = 1 by

− λmin + (λmax + κ)2 a∆Rs

(1 +Rs−) + 3
2κ+ p?

2a
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≤ −λmin + (λmax + κ)2 2aλmin − p?

4a(λmax + κ)2 + 3
2

2aλmin − p?

6a + p?

2a = 0

and in the case α < 1 by

− λmin + (λmax + κ)2 a∆Rs

(1 +Rs−)α + 3κ
2 + p?

2a(1 +Rs−)α−1

≤ −λmin + (λmax + κ)2 λmin

3(λmax + κ)2 + 3
2

2λmin

9 + p?

2a
2aλmin

3p? = 0.

Using the statement above and Itô’s formula, we find∫ t

T+
d
(
(1 +Rs)p

?E‖Ys‖2
)
≤ C

∫ t

T+
(1 +Rs−)p?+β−1dRs

= C
∫ t

T+
d(1 +Rs)p

?+β + C
∫ t

T+
(1 +Rs−)p?+β−2∆Rs dRs.

Since
∫∞

0 (1 +Rs−)−2α∆Rs dRs <∞ holds, we obtain by∫ ∞
0

∆Rs

(1 +Rs−)2α dRs <∞ =⇒
∫ t
T+(1 +Rs−)p?+β−2∆Rs dRs

(1 +Rt)p?+β+2α−2 → 0

a convergence rate of the second summand. Hence we have
(1 +Rt)p

?E‖Yt‖2 ≤ 1(1 +RT )p? + C(1 +Rt)p
?+β + o(1)(1 +Rt)p

?+β+2α−2

and
E‖Yt‖2 ≤ C(1 +Rt)−p

? + C(1 +Rt)β + o(1)(1 +Rt)β+2α−2.

The assumptions and the choice of p? ensure α ≤ 1 and −p? < 2γ−1 ≤ 1−2α+2γ ≤ β.
Thus it follows that

E‖Yt‖2 ≤ O
(
(1 +Rt)β

)
. (38)

(b) Case: f is three times differentiable at x?. By V (x, c) = O(‖x‖2)+O(c2) we have

∃
ρ>0

∃
δ1>0

∃
δ2>0

∀
‖x‖<δ1

∀
c<δ2

‖V (x, c)‖ ≤ ρ‖x‖2 + ρc2,

where ρ is finite. However, since the bound includes ‖x‖2 instead of ‖x‖, we can handle
it. We choose κ as in the case of a twice differentiable f and define δ := min{δ1, 1, κρ} >
0. Therefore we have, for s larger than a sufficiently large T ,

‖V (Zs−, cs)‖ ≤ ρ‖Zs−‖2 + ρc2
s ≤ ρ

κ

ρ
‖Zs−‖+ ρc2

s = κ‖Zs−‖+ ρc2
s

on a set of P-measure greater than 1 − ε. Proceeding further, as in the case of an
f that is twice differentiable at x?, we get the bound (38) but with a modified β :=
max{1− α− 4γ, 1− 2α+ 2γ}. The modification of the first term, in the argument list
of the maximum, is due to the term O(c2) instead of o(c). The second argument does
not change, as it is related to the process

∫ as
4csM(Zs−, ds). �
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3.2 Asymptotic Normality

Before we start to deal with asymptotic normality, we give some notations, assumptions,
and lemmata.

3.2.1 General Settings and Required Tools

Now we present some notations, assumptions, and lemmata that we will use in the proof
of asymptotic normality of the standard as well as of the averaged Kiefer-Wolfowitz
process. The first lemma explains how to deal with the inverse stochastic exponential
and the second presents a useful representation of the Kiefer-Wolfowitz process.

In the entire section we assume that the Hessian H of the function f exists at least at
x? and consequently the representation

1
2cs

{
f(Zs− + csei)− f(Zs− − csei)

}
i∈{1,...,d}

= Hx?Zs− + V (Zs−, cs)

exists (compare Section 3.1 for a further discussion of V (·, ·)). Furthermore, we assume
that the Hessian H is positive definite at x? and continuous around x?, therefore it can
be diagonalized T THx?T = D. The diagonal elements λi of the diagonal matrix D are
the eigenvalues of the matrix Hx? . Of course, the matrix T holds TT T = I. In the
following, we need the matrix-valued process φt whose diagonal elements are defined
as

φiit := Et
(
−
∫ ·

0
aλi

s(1 +Rs−)−α dRs

)
where aλ

s

i := aλi1{aλi∆Rs 6=(1+Rs−)α}

and the non-diagonal elements are defined as zero. Furthermore we often need the
inverse of the process φt, whose non-diagonal elements are also zero. The process aλsi
is used to ensure the invertibility of φt (compare Lemma 3.2). The common stochastic
exponential gives

Et(R) = 1 +
∫ t

0
Es−(R) dRs. (39)

We note that in the integral representation of E−1
t (R) the process E−1

s (R) appears as
opposed to the left-continuous modification Es−(R) in the representation of Et(R).

Lemma 3.2. Let (Rt)t∈R+ be a monotonously increasing stochastic process with R0 =
0. Then the inverse of the stochastic exponential E−1

t (R) gives

E−1
t (R) = 1−

∫ t

0
E−1
s (R) dRs and E−1

t (R) = Et
(
−
∫ ·

0

1
1 + ∆Rs

dRs

)
.
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Furthermore, if the process (Rt)t∈R+ satisfies −∆Rs 6= 1 for all s ∈ R+, we have

E−1
t (−R) = 1 +

∫ t

0
E−1
s (−R) dRs and E−1

t (−R) = Et
( ∫ ·

0

1
1−∆Rs

dRs

)
.

Now we give another representation of the Kiefer-Wolfowitz process. We consider only
processes as := a(1+Rs−)−α and cs := c(1+Rs−)−γ for fixed 0 ≤ α, γ ≤ 1, to get such a
representation. This representation is helpful in the proof of the asymptotic normality
and gives a better understanding of the insights of the stochastic integral equation.

Lemma 3.3. The Kiefer-Wolfowitz stochastic integral equation (5) is solved by

Zt = Tφt

(
T TZ0 −

a

2c

∫ t

0
(1 +Rs−)γ−αφ−1

s T T M(ds, x?)−
∫ t

0
φ−1
s T T dR̃s

)
(40)

where

R̃i
t := a

∫ t

0
V i(Zs−, cs)(1 +Rs−)−α dRs +

∑
j,k

TijT
T
jk

∑
s≤t

Zk
s−1{aλj∆Rs=(1+Rs−)α}

+ a

2c

∫ t

0
(1 +Rs−)γ−α

(
Mi(ds, Zs−)−Mi(ds, x?)

)
.

Proof of Lemma 3.2
First we show

E−1
t (R) = Et

(
−
∫ ·

0

1
1 + ∆Rs

dRs

)
.

Since Rt is monotonously increasing, we get

[−
∫ ·

0

1
1 + ∆Rs

dRs]t =
∑
s≤t

(
∆Rs

1 + ∆Rs

)2

and ∆
∫ t

0

1
1 + ∆Rs

dRs = ∆Rt

1 + ∆Rt

.

Hence using the formula for the stochastic exponential we conclude

Et
(
−
∫ ·

0

1
1 + ∆Rs

dRs

)
= exp

(
−
∫ t

0

1
1 + ∆Rs

dRs −
1
2
∑
s≤t

( ∆Rs

1 + ∆Rs

)2 )
·
∏
s≤t

(
1− ∆Rs

1 + ∆Rs

) exp ( ∆Rs

1 + ∆Rs

+ 1
2( ∆Rs

1 + ∆Rs

)2)

= exp (−
∫ t

0

1
1 + ∆Rs

dRs)
∏
s≤t

(1− ∆Rs

1 + ∆Rs

) exp ( ∆Rs

1 + ∆Rs

)

= exp (−
∫ t

0

1 + ∆Rs −∆Rs

1 + ∆Rs

dRs)
∏
s≤t

(1− ∆Rs

1 + ∆Rs

) exp ( ∆Rs

1 + ∆Rs

)
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= exp (−
∫ t

0
dRs)

∏
s≤t

( 1
1 + ∆Rs

) exp ( ∆Rs

1 + ∆Rs

+ (∆Rs)2

1 + ∆Rs

)

= exp (−Rt)
∏
s≤t

( 1
1 + ∆Rs

)
exp (∆Rs) (41)

=
(

exp (Rt)
∏
s≤t

(1 + ∆Rs) exp (−∆Rs)
)−1

= E−1
t (R). (42)

Now we verify

E−1
t (R) = 1−

∫ t

0
E−1
s (R) dRs.

Using (42) and (39), we have

E−1
t (R) = Et(−

∫ ·
0

1
1 + ∆Rs

dRs) = 1−
∫ t

0
Es−(−

∫ ·
0

1
1 + ∆Rs

dRs)
1

1 + ∆Rs

dRs

(?)= 1−
∫ t

0
E−1
s (R) dRs,

where we get (?) using (41)

1
1 + ∆Rt

Et−(−
∫ ·

0

1
1 + ∆Rs

dRs)
(41)= 1

1 + ∆Rt

exp (−Rt−)
∏
s<t

exp (∆Rs)
1 + ∆Rs

= exp (−Rt−)
1 + ∆Rt

1 + ∆Rt

exp (∆Rt)
∏
s≤t

exp (∆Rs)
1 + ∆Rs

= exp (−Rt)
∏
s≤t

exp (∆Rs)
1 + ∆Rs

(41)= E−1
t (R).

Thus we have proven the first two equalities for E−1
t (R). Verification of the other two

equalities for E−1
t (−R) can be done in an analogous manner. Here we only have to

ensure that ∆Rs 6= −1 holds, otherwise the process 1
1+∆Rs is not well defined. But this

is excluded by assumption. Such a complication does not appear in the first part of
the proof because Rs is monotonously increasing, ∆Rs is positive and 1 + ∆Rs ≥ 1
holds. �

Proof of Lemma 3.3
We have

Zt = Z0 −
∫ t

0
as

1
2cs
{·}· dRs −

∫ t

0

as
2cs

M(ds, Zs−)

= Z0 − a
∫ t

0
(Hx?Zs− + V (Zs−, cs)) (1 +Rs−)−α dRs −

∫ t

0

a

2c(1 +Rs−)γ−αM(ds, Zs−)
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= Z0 − T
∫ t

0
DsT

TZs−(1 +Rs−)−α dRs −
∫ t

0

a

2c(1 +Rs−)γ−αM(ds, x?)− R̃t, (43)

where Ds := {aλi
s
δij}ij. Now we show that

Zt = Tφt

(
T TZ0 −

a

2c

∫ t

0
φ−1
s T T (1 +Rs−)γ−αM(ds, x?)−

∫ t

0
φ−1
s T TdR̃s

)
(44)

solves the stochastic integral equation (43). We will show this by applying Zt as given
in (44) on the left hand side and on the right hand side of (43). Then we will verify
the equality of the expressions for every coordinate i ∈ {1, . . . , d}. To do so, we use the
i-th coordinate

dZi
t = −

∑
j,k

TijT
T
jkaλj

s
Zk
s−(1 +Rs−)−α dRs −

a

2c(1 +Rs−)γ−αMi(ds, x?)− dR̃i
t

from (43) and the i-th coordinate

d(φ−1
t T TZt)i = − a

2c
∑
k

T Tikφ
ii−1

t (1 +Rt−)γ−αMk(dt, x?)−
∑
k

T Tikφ
ii−1

t dR̃k
t

=
∑
k

T Tikφ
ii−1

t

(
− a

2c(1 +Rt−)γ−αMk(dt, x?)− dR̃k
t

)

which we easily get from (44). The i-th coordinate of the left hand side of (43) obeys

dZi
t = d(Tφtφ−1

t T TZt)i =
∑
j,k

TijT
T
jkd(φjjt φjj

−1

t Zk
t )

=
∑
j,k

TijT
T
jk

(
φjjt−d(φjj

−1

t Zk
t ) + (φjj

−1

t− Zk
t−)dφjjt + d[φjj, φjj−1

Zk]t
)

(?)=
∑
j,k

TijT
T
jk

(
φjjt d(φjj

−1

t Zk
t )−∆φjjt d(φjj

−1

t Zk
t ) + (φjj

−1

t− Zk
t−)dφjjt + ∆φjjt d(φjj

−1

t Zk
t )
)

=
∑
j,k

TijT
T
jkφ

jj
t d(φjj

−1

t Zk
t ) +

∑
j,k

TijT
T
jkφ

jj−1

t− Zk
t−dφjjt

=
∑
j

Tijφ
jj
t d(φjj

−1

t

∑
k

T TjkZ
k
t )︸ ︷︷ ︸+

∑
j,k

TijT
T
jkφ

jj−1

t− Zk
t−dφjjt

= d(φ−1
t T TZt)j

=
∑
k

∑
j

TijT
T
jk︸ ︷︷ ︸
(
− a

2c(1 +Rt−)γ−αMk(dt, x?)− dR̃k
t

)
+
∑
j,k

TijT
T
jkφ

jj−1

t− Zk
t−dφjjt

= (TT T )ik = Iik = δik

= − a

2c(1 +Rt−)γ−αMi(dt, x?)− dR̃i
t +

∑
j,k

TijT
T
jkφ

jj−1

t− Zk
t−dφjjt .
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To show (?), that is, d[φjj, φjj−1
Zk]t = ∆φjjt d(φjj

−1

t Zk
t ), we recall that φjjt is a process

of finite variation. The i-th coordinate on the right hand side of (43) gives

dZi
t = −

∑
j,k

TijT
T
jkZ

k
t− aλj

t(1 +Rt−)−α dRt︸ ︷︷ ︸− a

2c(1 +Rt−)γ−αMi(dt, x?)− dR̃i
t

= −φjj
−1

t− (−φjjt−aλj
t(1 +Rt−)−α) dRt = −φjj

−1

t− dφjjt
=
∑
j,k

TijT
T
jkZ

k
t−φ

jj−1

t− dφjjt −
a

2c(1 +Rt−)γ−αMi(dt, x?)− dR̃i
t.

So, using Zt from (44), the left- and the right-hand side of (43) are equal. Thus, Zt
given by (44) solves the stochastic integral equation (43) and the lemma is proven. �

3.2.2 Asymptotic Normality of the Process Using Standard Weights

Here we consider the process that is given by (5) or, equivalently, by (40), with the
choices as := a(1+Rs−)−1 and cs := c(1+Rs−)−γ. Furthermore, we make the restriction
that the processRt is deterministic. To prove asymptotic normality this process requires
a restriction on the smallest eigenvalue of the Hessian Hx? at x?, which is usually
unknown. We will discuss and eliminate this problem using slowly decaying weights
and the averaged process in the next chapter.

Theorem 3.2. Let the assumptions of Theorem 3.1 with α = 1 be valid. Further we
assume ∑0≤s 1{aλi∆Rs=(1+Rs−)} <∞ for all i ∈ {1, . . . , d},

lim
s→∞
x→x?

hs(x, x?) = lim
s→∞
x→x?

hs(x) = h(x?) where hs(x, y) := dd
∫ ·
0 M(dt, x),

∫ ·
0 M(dt, y)es

dRs

and, for all ε ∈ (0, 1],∫ t
0

(1+Rs)2aλmin

(1+Rs−)2−2γ

∫
Gεs,t

xTx νM
?(ds, dx)

(1 +Rt)2aλmin+2γ−1
P−→ 0 (t→∞),

where M?
t :=

∫ t
0 M(ds, x?), Gε

s,t :=
{
x ∈ Rd

∣∣∣ ‖x‖ > ε (1+Rt)γ−
1
2 +aλmin

(1+Rs−)γ−1(1+Rs)aλmin

}
, and νM? is

the compensator of the jump-measure µM? of the local martingale M?
t .

(a) If f is twice differentiable at x? and γ = 1
4 , we get

(1 +Rt)
1
4 (Zt − x?) D−→ N(0,Σ),

where T THx?T = D, Σ := TUT T , and

Ukv :=
a2
(
T Th(x?)T

)
kv

4c2(a(λk + λv)− 1
2) .
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(b) If f is three times differentiable at x? and γ = 1
6 , we get

(1 +Rt)
1
3 (Zt − x?) D−→ N(µ,Σ),

where T THx?T = D, Σ := TUT T ,

µ := −ac
2

6 (aHx? −
1
3I)−1

(
∂3f

(∂xi)3 (x?)
)
i∈{1,...,d}

, and Ukv :=
a2
(
T Th(x?)T

)
kv

4c2(a(λk + λv)− 2
3) .

To ensure asymptotic normality in Theorem 3.2, we use a condition on the jumps of
the local martingale of a Lindeberg type. The measure νM? plays a major role as
compensator of the jump-measure µM? of the process M?

t . Assumptions of this type
are well-known in the theory of limit theorems of martingales and semimartingales, in
particular for continuous-time processes (see, e.g., [19]). Roughly speaking it is sufficient
to verify the “classical” condition of uniform asymptotic negligibility of jumps and the
convergence in probability of the quadratic variation process to ensure convergence
in distribution of a local martingale or a normalized local martingale to a Brownian
motion. But the detection of convergence in probability of the predictable quadratic
variation and the “classical” condition is not sufficient (see, for example, [12]). In our
case, it is impossible to obtain convergence only on the basis of dMet =

∫ t
0 hs dRs and

not-too-restrictive assumptions on h and R.

Subsequent to the theorem above, which includes a condition of the Lindeberg type,
we present a lemma that does not use the jump measure or its compensator explicitly.
Conditions (S1) and (S2) in Lemma 3.4 are easier to interpret than the condition of
the Lindeberg type.

Lemma 3.4. If we replace the condition

∫ t
0

(1+Rs)2aλmin

(1+Rs−)2−2γ

∫
Gεs,t

xTx νM
?(ds, dx)

(1 +Rt)2aλmin+2γ−1
P−→ 0 (t→∞),

which appears in Theorem 3.2, with the two conditions

(S1)
E sup0≤s≤t(1 +Rs−)2aλmin+2γ−2‖∆M?

s ‖2

(1 +Rt)2aλmin+2γ−1
t→∞−→ 0

(S2) E∑
s≤t(∆M?m

s ∆M?n

s )2(1 +Rs−)4aλmin+4γ−4

(1 +Rt)4aλmin+4γ−2
t→∞−→ 0,

then the conclusion of Theorem 3.2 also holds.
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Proof of Theorem 3.2
Without loss of generality we assume x? = 0. If we use the representation of Zt
presented in Lemma 3.3, it is easy to see that we can split the proof into three parts.

(I) (1 +Rt)
1
2−γTφtT

TZ0
P−→ ~0

(II)

(a) (1 +Rt)
1
4Tφt

∫ t
0 φ
−1
s T T dR̃s

P−→ ~0
(b) (1 +Rt)

1
3Tφt

∫ t
0 φ
−1
s T T dR̃s

P−→ ac2

6 (aH0 − 1
3I)−1

(
∂3f

(∂xi)3 (0)
)
i∈{1,...,d}

(III) (1 +Rt)
1
2−γTφt

a

2c

∫ t

0
(1 +Rs−)γ−1φ−1

s T T M(ds, 0) D−→ N(0,Σ)

Using Slutsky’s theorem we get the desired result.

The matrix-valued process φs appears in all parts, therefore we consider it more closely.
First, it will be helpful to examine the integral that appears in the course of φs.

−
∫ t

0

aλi
s

(1 +Rs−)α dRs = −aλi
∫ t

0
(1 +Rs−)−α1{aλi∆Rs 6=(1+Rs−)α} dRs

= −aλi
∫ t

0
(1 +Rs−)−α dRs + aλi

∫ t

0
(1 +Rs−)−α1{aλi∆Rs=(1+Rs−)α} dRs

= −aλi
∫ t

0
(1 +Rs−)−α dRs +

∑
s≤t

aλi∆Rs

(1 +Rs−)α1{aλi∆Rs=(1+Rs−)α}

= −aλi
∫ t

0
(1 +Rs−)−α dRs +

∑
s≤t

1{aλi∆Rs=(1+Rs−)α} (45)

In the case α = 1, using Itô’s formula with f ′(x) := (1 + x)−1, we have

− aλi
∫ t

0
(1 +Rs−)−1 dRs

= −aλi ln (1 +Rt) + aλi
∑
s≤t

{
ln (1 +Rs)− ln (1 +Rs−)− ∆Rs

1 +Rs−

}

= −aλi ln (1 +Rt) + aλi
∑
s≤t

{
ln
(

1 +Rs

1 +Rs−

)
− ∆Rs

1 +Rs−

}

= −aλi ln (1 +Rt) + aλi
∑
s≤t

{
ln
(

1 + ∆Rs

1 +Rs−

)
− ∆Rs

1 +Rs−

}

and by (45)

−∆
∫ t

0

aλi
s

(1 +Rs−) dRs = −aλi∆
∫ t

0
(1 +Rs−)−1 dRs + ∆

∑
s≤t

1{aλi∆Rs=(1+Rs−)}

= −aλi∆Rt

1 +Rt−
+ 1{aλi∆Rt=(1+Rt−)}.
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Thus the formula Et(X) = eXt−X0−0.5[X,X]ct
∏
s≤t(1 + ∆Xs)e−∆Xs for the stochastic ex-

ponential leads to

φiit = Et(−
∫ ·

0

aλi
s

(1 +Rs−) dRs)

= exp
−aλi ln (1 +Rt) + aλi

∑
s≤t

{
ln
(

1 + ∆Rs

1 +Rs−

)
− ∆Rs

1 +Rs−

}
+
∑
s≤t

1{ aλi∆Rs(1+Rs−) =1}


∏
s≤t

(
1− aλi∆Rs

1 +Rs−
+ 1{aλi∆Rs=(1+Rs−)}

)
exp

(
aλi∆Rs

1 +Rs−
− 1{aλi∆Rs=(1+Rs−)}

)

= (1 +Rt)−aλi
∏

0<s≤t

(
(1− aλi∆Rs

1 +Rs−
+ 1{aλi∆Rs=(1+Rs−)})(1 + ∆Rs

1 +Rs−
)aλi

)
︸ ︷︷ ︸

=: Πaλi
0,t

= (1 +Rt)−aλi Πaλi
0,t .

To show that Πaλi
0,t converges, we split the product and take the logarithm to rewrite

one part of the product as a sum. To split the product, we use the time

τ 1 := min
{
t ∈ R+ : ∆Rs

1 +Rs−
<

1
aλmax + 1 ∀

s>t

}
.

From the assumption, that is ∆Rs
1+Rs− → 0, follows that τ 1 < ∞. Then we use a Taylor

expansion to obtain(
ln(1− aλi∆Rs

1 +Rs−
) + aλi ln(1 + ∆Rs

1 +Rs−
)
)

=
(
−aλi2 −

a2λ2
i

2 + ρs

)(
∆Rs

1 +Rs−

)2

where ρs → 0.

Now we define the time

τ := min
{
t ≥ τ 1 : |ρs| < 1 ∀

s>t

}
to split the product. By ρs → 0 it follows τ <∞. We write

Πaλi
0,t = Πaλi

0,τ Πaλi
τ,t .

Thus it is sufficient to verify |Πaλi
0,τ | <∞ and convergence of Πaλi

τ,t (where, in the product
Πaλi
τ,t , only positive terms appear). To verify convergence of Πaλi

τ,t , as mentioned above,
it is reasonable to rewrite the product into a sum using logarithms

ln(Πaλi
τ,t ) =

∑
τ<s≤t

ln
(

(1− aλi∆Rs

1 +Rs−
+ 1{aλi∆Rs=(1+Rs−)})(1 + ∆Rs

1 +Rs−
)aλi

)
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=
∑
τ<s≤t

ln
(

(1− aλi∆Rs

1 +Rs−
)(1 + ∆Rs

1 +Rs−
)aλi

)

=
∑
τ<s≤t

(
ln(1− aλi∆Rs

1 +Rs−
) + aλi ln(1 + ∆Rs

1 +Rs−
)
)

=
∑
τ<s≤t

(
−aλi2 −

a2λ2
i

2 + ρs

)(
∆Rs

1 +Rs−

)2

.

Convergence of ln(Πaλi
τ,t ) follows from ρs → 0, |ρs| < 1,

∑
0<s≤∞

(
∆Rs

1 +Rs−

)2

= 1
a2

∑
0<s≤∞

a2
s (∆Rs)2 = 1

a2

∫ ∞
0

a2
s∆Rs dRd

s <∞

and thus Πaλi
τ,t converges, too.

Now we verify boundedness of |Πaλi
0,τ |. We write

Πaλi
0,τ =

 ∏
0<s≤τ

(1− aλi∆Rs

1 +Rs−
+ 1{aλi∆Rs=(1+Rs−)})

 ∏
0<s≤τ

(1 + ∆Rs

1 +Rs−
)
aλi

and seek a bound of both factors. The last factor satisfies

ln
 ∏

0<s≤τ
(1 + ∆Rs

1 +Rs−
)
 =

∑
0<s≤τ

ln
(

1 + ∆Rs

1 +Rs−

)
≤

∑
0<s≤τ

∆Rs

1 +Rs−
≤

∑
0<s≤τ

∆Rs

≤ Rd
τ <∞

and thus it is bounded. Now we show that the first factor is bounded. From the
assumptions it follows that the set{

s ∈ R+ : aλi∆Rs = (1 +Rs−)
}

is finite. Hence we can neglect the term 1{aλi∆Rs=(1+Rs−)}. Furthermore, we split the
product into two products. The first one contains all factors with a norm smaller than
one and thus the norm of this product is bounded by one. The last step will show that
the second product has only a finite number of factors. We have∣∣∣∣∣1− aλi∆Rs

1 +Rs−

∣∣∣∣∣ > 1 =⇒ ∆Rs ≥
2
aλi

.

The finiteness of the set {
s ∈ R+ : s ≤ τ ∧ ∆Rs ≥

2
aλi

}
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follows from Rd
τ <∞. Hence convergence of Πaλi

0,t is proven. In the following we use

φiit = Et(−
∫ ·

0

aλi
s

(1 +Rs−) dRs) = (1 +Rt)−aλiΠaλi
0,t where Πaλi

0,t
t→∞−→ Πaλi

∞ .

Part (I): Obviously we have

(1 +Rt)
1
2−γ(1 +Rt)−aλmin → 0 =⇒ (1 +Rt)

1
2−γTφtT

TZ0
P−→ ~0.

Since Rt ↑ ∞ holds, the left hand side follows from λmin >
1−2γ

2a , which in turn is a
consequence of the assumptions.

Part (II): (a) Case: f is two times differentiable at 0. We mention that we have
γ = 1

4 , and hence 1
2 − γ = 1

4 . But here we use the expression 1
2 − γ in order to reuse

the arguments and steps also in part (b). Using

φt =
(

Πaλi
0,t

(1 +Rt)aλi
δij

)
ij

,

it remains to verify (1 +Rt)
1
2−γTφt

∫ t
0 φ
−1
s T T dR̃s

P→ ~0 or
d∑

j,k=1
(1 +Rt)

1
2−γ−aλkTikT

T
kj

∫ t

0

Πaλk
0,t

Πaλk
0,s

(1 +Rs)aλk dR̃s
j


i∈{1,...,d}

P→ ~0.

Again this can be simplified by the following arguments. The assumption λmin >
1−2γ

2a
implies (1 +Rt)

1
2−γ−aλi → 0. Furthermore, for all i ∈ {1, . . . , d} we find

|Πaλi
0,t | ≤ C <∞ ∧ Πaλi

0,t → Πaλi
∞ =⇒

Πaλi
0,t

Πaλi
0,s

= Πaλi
s,t = (1 + ob(1)).

Since we have

P
[
‖Xt‖ > ε

]
= P

[ d∑
i=1

X i2

t > ε2
]
≤ P

( d⋃
i=1

[X i2

t (ω) > ε2

d
]
)
≤

d∑
i=1

P
[
X i2

t (ω) > ε2

d

]

=
d∑
i=1

P
[
|X i

t | > ε?
]
,

it is sufficient to consider only convergence in probability of each coordinate. We have
to prove, for all i, j ∈ {1, . . . , d}, that

(1 +Rt)
1
2−γ−aλi

∫ t

0
(1 +Rs)aλi dR̃s

j ' H1
t +H2

t +H3
t

P→ 0,
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where

H1
t := a(1 +Rt)

1
2−γ−aλi

∫ t

0
(1 +Rs−)aλi−1V j(Zs−, cs) dRs

H2
t := a

2c(1 +Rt)
1
2−γ−aλi

∫ t

0
(1 +Rs−)aλi+γ−1(Mj(ds, Zs−)−Mj(ds, 0))

H3
t :=

∑
l,k

(1 +Rt)
1
2−γ−aλi

∑
s≤t

(1 +Rs−)aλiTjlT TlkZk
s−1{λl∆Rs=(1+Rs−)}.

The above expressions are asymptotically equal only because on the right side we used
the integrands (1 +Rs−)aλi instead of (1 +Rs)aλi . But this substitution does not have
an effect on the asymptotic results as aλmin >

1
2 − γ and thus (1 + Rt)

1
2−γ−aλi t→∞−→ 0

holds, and by ∆Rs
1+Rs− → 0 it follows

(1 +Rs)aλi =
(

1 +Rs

1 +Rs−

)aλi
(1 +Rs−)aλi =

(
1 + ∆Rs

1 +Rs−

)aλi
︸ ︷︷ ︸(1 +Rs−)aλi . (46)

s→∞−→ 1

Finally, we have to verify

(i) H1
t

P→ 0 (ii) H2
t

P→ 0 (iii) H3
t

P→ 0.

Proof of (i): We will show

∀
ε1>0

∀
ε2>0

∃
t0
∀
t≥t0

P
[∣∣∣∣∣
∫ t

0

(1 +Rs−)aλi−1

(1 +Rt)γ+aλi− 1
2
V j(Zs−, cs) dRs

∣∣∣∣∣ > ε1

]
≤ ε2. (47)

Let ε1, ε2 > 0 be arbitrary but fixed. Application of Theorem 3.1 with ε := ε2
8 and

γ := 1
4 (or γ := 1

6 in (b)) results in a T1 such that, for all t ≥ T1, we have

E‖Yt‖2 ≤ K(1 +Rt)−p and P [∀t≥0 Yt = Zt] ≥ 1− ε2
8

for p := 1
2 (or p := 2

3 in (b)). From the assumption on the differentiability of the
function f and (31) it follows V j(x, b) = o(‖x‖) + o(b), and hence we have

∃
ρ>0

∀
‖x‖,b≤ρ

|V j(x, b)| ≤
ε1ε2(aλi − p

2)
64
√
K

‖x‖+ ε1(aλi − γ)
8c b.

Furthermore, Lemma 3.1, with the choices ε := ε2
4 and δ := ρ, ensures the existence of

a T2 such that

P
[
sup
t≥T2

‖Zt‖ ≤ ρ

]
≥ 1− ε2

4
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holds. The existence of a T3 <∞ such that, for all t > T3, we have ct ≤ ρ follows from
cs → 0. We choose T := max{T1, T2, T3}. Consequently T is deterministic and T <∞
holds. To verify (47), it suffices to show

P
[∣∣∣∣∣
∫ T

0

·
·
V j(Zs−, cs) dRs +

∫ t

T+

·
·
V j(Zs−, cs) dRs

∣∣∣∣∣ > ε1

]

≤ P
([∣∣∣∣∣

∫ T

0

·
·
V j(Zs−, cs) dRs

∣∣∣∣∣ ≥ ε1
2

]
∪
[∣∣∣∣∫ t

T+

·
·
V j(Zs−, cs) dRs

∣∣∣∣ ≥ ε1
2

])

≤ P
[∣∣∣∣∣
∫ T

0

·
·
V j(Zs−, cs) dRs

∣∣∣∣∣ ≥ ε1
2

]
︸ ︷︷ ︸+ P

[∣∣∣∣∫ t

T+

·
·
V j(Zs−, cs) dRs

∣∣∣∣ ≥ ε1
2

]
︸ ︷︷ ︸ .

≤ ε2
2 ≤ ε2

2
Here we used ·

· instead of the real fraction to shorten notations. To prove the first
bound “≤ ε2

2 ”, we need an inequality for V j(·). Since ∇f(x) is Lipschitz-continuous we
have

|V j(x, c)| = |12

∫ 1

−1
∇jf(x+ tcej) dt− (H0x)j|

≤ 1
2

∫ 1

−1
‖∇f(x+ tcej)−∇f(0)‖ dt+ ‖H0‖‖x‖

≤ L‖x‖+ Lc

2 + λmax‖x‖ = (L+ λmax)‖x‖+ Lc

2 .

Given that Zs is a strong solution of the stochastic integral equation on [0,∞), we
know that no explosion times exist and we further know that Zs → x? = 0 holds. By
combining these two statements, we get ‖Zs‖ ≤ C(ω) < ∞. Furthermore, we have
cs = c(1 +Rs−)−γ ≤ c and we find

|V j(Zs−, cs)| ≤ (L+ λmax)‖Zs−‖+ L

2 cs ≤ (L+ λmax)C(ω) + Lc

2 .

Therefore we get

|(1 +Rt)
1
2−γ−aλi

∫ T

0
(1 +Rs−)aλi−1V j(Zs−, cs) dRs|

≤ (1 +Rt)
1
2−γ−aλi

∫ T

0
(1 +Rs−)aλi−1

(
(L+ λmax)C(ω) + Lc

2

)
dRs

≤ (1 +Rt)
1
2−γ−aλi︸ ︷︷ ︸

(
(L+ λmax)C(ω) + Lc

2

)
︸ ︷︷ ︸

∫ T

0
(1 +Rs−)aλi−1 dRs︸ ︷︷ ︸,

→ 0 <∞ <∞
yielding almost sure convergence, thus convergence in probability of the left hand side.
Then, we have

∃
t10

∀
t≥t10

P
[∣∣∣∣∣(1 +Rt)

1
2−γ−aλi

∫ T

0
(1 +Rs−)aλi−1V j(Zs−, cs) dRs

∣∣∣∣∣ ≥ ε1
2

]
≤ ε2

2
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which ensures the first bound above. To verify the second bound “≤ ε2
2 ”, we consider

P
[∣∣∣∣∫ t

T+

·
·
V j(Zs−, cs) dRs

∣∣∣∣ ≥ ε1
2

]
≤ P

([∣∣∣∣∫ t

T+

·
·
V j(Zs−, cs) dRs

∣∣∣∣ ≥ ε1
2

]
∩
[
sup
t≥T
‖Zt‖ < ρ

])
+ P

[
sup
t≥T
‖Zt‖ ≥ ρ

]

≤ P
[∣∣∣∣∣
∫ t

T+

·
·

(
ε1ε2(aλi − p

2)
64
√
K

‖Zs−‖+ ε1(aλi − γ)
8c cs

)
dRs

∣∣∣∣∣ ≥ ε1
2

]
+ P

[
sup
t≥T
‖Zt‖ ≥ ρ

]

≤ P
([∣∣∣∣∣

∫ t

T+

·
·
ε1ε2(aλi − p

2)
64
√
K

‖Zs−‖ dRs

∣∣∣∣∣ ≥ ε1
4

]
∪
[∣∣∣∣∣
∫ t

T+

·
·
ε1(aλi − γ)

8c cs dRs

∣∣∣∣∣ ≥ ε1
4

])

+ P
[
sup
t≥T
‖Zt‖ ≥ ρ

]

≤ P
[∫ t

T+

·
·
‖Zs−‖ dRs ≥

16
√
K

ε2(aλi − p
2)

]
︸ ︷︷ ︸+ P

[∫ t

T+

·
·
cs dRs ≥

2c
aλi − γ

]
︸ ︷︷ ︸+ε24 .

(A1)
≤ ε2

4
(A2)= 0

We need to show (A1) and (A2).
To (A1): We have

P
[∣∣∣∣∫ t

T+

·
·
‖Zs−‖ dRs

∣∣∣∣ ≥ 16
√
K

ε2(aλi − p
2)

]

≤ P
[
∀
t≥0

Zt = Yt

]C
+ P

([∣∣∣∣∫ t

T+

·
·
‖Zs−‖ dRs

∣∣∣∣ ≥ 16
√
K

ε2(aλi − p
2)

]
∩
[
∀
t≥0

Zt = Yt

])

≤ P
[
∀
t≥0

Zt = Yt

]C
︸ ︷︷ ︸+ P

[∣∣∣∣∫ t

T+

·
·
‖Ys−‖ dRs

∣∣∣∣ ≥ 16
√
K

ε2(aλi − p
2)

]
︸ ︷︷ ︸ ≤

ε2
4 .

≤ ε2
8

(?)
≤ ε2

8
Now we verify (?). Using

E‖Yt‖2 ≤ K(1 +Rt)−p =⇒ E‖Yt‖ ≤
√
K(1 +Rt)−

p
2

and Markov’s inequality we get

P
[∣∣∣∣∫ t

T+

·
·
‖Ys−‖ dRs

∣∣∣∣ ≥ 16
√
K

ε2(aλi − p
2)

]
≤
ε2(aλi − p

2)
16
√
K

∫ t

T+

·
·
E‖Ys−‖︸ ︷︷ ︸ dRs

≤
√
K(1 +Rs−)−

p
2

≤
ε2(aλi − p

2)
16 (1 +Rt)

1
2−γ−aλi

∫ t

0
(1 +Rs−)aλi−1− p2 dRs
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for p := 1
2 (or p := 2

3 in (b)). With Itô’s formula and an obvious Taylor expansion
around Rs−, there exists some ϑs ∈ (0, 1) with
∫ t

0
(1 +Rs−)aλi−1− p2 dRs

= (1 +Rt)aλi−
p
2 − 1

aλi − p
2

−
∑
s≤t

{
∆(1 +Rs)aλi−

p
2

aλi − p
2

− (1 +Rs−)aλi−1− p2 ∆Rs

}

= (1 +Rt)aλi−
p
2 − 1

aλi − p
2

− (aλi −
p

2 − 1)
∑
s≤t

(1 +Rs− + ϑs∆Rs)aλi−
p
2−2(∆Rs)2

≤ (1 +Rt)aλi−
p
2 − 1

aλi − p
2

+ C
∑
s≤t

(∆Rs)2(1 +Rs− + ϑs∆Rs)−2− p2 (1 +Rs− + ϑs∆Rs)aλi

≤ (1 +Rt)aλi−
p
2 − 1

aλi − p
2

+ C
∑
s≤t

(∆Rs)2(1 +Rs−)−2− p2 (1 +Rs)aλi

= (1 +Rt)aλi−
p
2 − 1

aλi − p
2

+ C
∑
s≤t

 1 +Rs

1 +Rs−︸ ︷︷ ︸

aλi

(∆Rs)2(1 +Rs−)aλi−2− p2 . (48)

= 1 + ∆Rs

1 +Rs−
= 1 + ob(1)

Thus we obtain

ε2(aλi − p
2)

16

∫ t

0

(1 +Rs−)aλi−1− p2

(1 +Rt)−
1
2 +γ+aλi

dRs

≤ ε2
16 (1 +Rt)

1
2−

p
2−γ

︸ ︷︷ ︸
+ C

∑
s≤t

(1 +Rs−)aλi−2− p2

(1 +Rt)−
1
2 +γ+aλi

(∆Rs)2

︸ ︷︷ ︸ −→
ε2
16 .

= 1, as p2 + γ = 1
2 → 0

If the implied convergence of the second summand above holds, then the bound (?) is
valid for any sufficiently large t. To prove convergence of the sum, we use Kronecker’s
lemma and obtain with p

2 + γ = 1
2

∑
0<s

(1 +Rs−)aλi−2− p2

(1 +Rs)−
1
2 +γ+aλi

(∆Rs)2 ≤ C
∫ ∞

0
a2
s∆Rs dRd

s <∞.

To (A2): For a sufficiently large t we have

(1 +Rt)
1
2−γ−aλi

∫ t

T+
c(1 +Rs−)aλi−1−γdRs
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≤ c

aλi − γ
(1 +Rt)

1
2−2γ

︸ ︷︷ ︸+ C
∑
s≤t

(∆Rs)2 (1 +Rs−)aλi−2−γ

(1 +Rt)aλi+γ−
1
2︸ ︷︷ ︸

= 1, as 1
2 − 2γ = 0 → 0 see above

<
2c

aλi − γ
.

Hence the desired bound (A2) is justified.

Verification of (ii): Now we prove

(1 +Rt)
1
2−γ−aλi

∫ t

0
(1 +Rs−)aλi+γ−1(Mj(ds, Zs−)−Mj(ds, 0)) P→ 0.

We detect convergence in probability by using the Lenglart-Rebolledo inequality (com-
pare [19], p. 66, Theorem 3). For the processes Xt and Yt, which appear in the theorem,
we choose

Xt :=
∫ t

0

Mj(ds, Zs−)−Mj(ds, 0)
(1 +Rs−)1−aλi−γ

and Yt := dXet .

Yt represents the predictable compensator of X2
t , thus X2

t − Yt ∈ Mloc. By Theorem
3 in [19] on p. 33 we have EXτ = EYτ for every stopping time τ . Now we apply the
Lenglart-Rebolledo inequality to the processes Xt and Yt. For arbitrary ε1, ε2 > 0 and
sufficiently large t, we obtain

P
[∣∣∣∣(1 +Rt)

1
2−γ−aλi

∫ t

0
(1 +Rs−)aλi+γ−1(Mj(ds, Zs−)−Mj(ds, 0))

∣∣∣∣ > ε1

]
= P

[
X2
t > ε21(1 +Rt)2aλi+2γ−1

]
≤ P

[
sup
s≤t

X2
s > ε21(1 +Rt)2aλi+2γ−1

]

≤ b

ε21(1 +Rt)2aλi+2γ−1 + P [Yt ≥ b] (?)= ε2
2 + ε2

2 = ε2.

Here we get (?) for the choice b := ε21ε2
2 (1 +Rt)2aλi+2γ−1 > 0. The implication

(hjjs (Zs−)− 2hjjs (Zs−, 0) + hjjs (0))→ 0 =⇒
∫ t

0
hjjs (Zs−)−2hjjs (Zs−,0)+hjjs (0)

(1+Rs−)2−2aλi−2γ dRs

(1 +Rt)2γ+2aλi−1 → 0

follows from Toeplitz’s lemma.

Verification of (iii): The assumption ∑0≤s 1{aλi∆Rs=(1+Rs−)} <∞ ensures

|H3
t | ≤ C(1 +Rt)

1
2−γ−aλi

∑
l

∑
s≤t
‖Zs−‖2

1{aλl∆Rs=(1+Rs−)}
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≤ Cω︸︷︷︸
(1 +Rt)

1
2−γ−aλi

︸ ︷︷ ︸
∑
l

∑
0≤s

1{aλl∆Rs=(1+Rs−)}︸ ︷︷ ︸,
<∞ → 0 <∞

and hence the required convergence.

(b) Case: f is three times differentiable at 0. We reconsider the proof of (a) to obtain
the desired result. In part (a) we have V j(x, b) = o(‖x‖) + o(b) and hence

∃
ρ>0

∀
‖x‖,b≤ρ

|V j(x, b)| ≤
ε1ε2(aλi − p

2)
64K ‖x‖+ ε1(aλi − γ)

8c b.

We see that the major difference is the process V (Zs−, cs). Therefore we will consider
this process in the case of three times differentiable f more closely. Afterwards we will
use an analogous argument as in part (a). We seek a handy representation of V (x, c),
where V (x, c) is given by{

f(x+ cei)− f(x− cei)
2c

}
i∈{1,...,d}

= H0x+ V (x, c).

Using Taylor’s formula, in which the remainder is represented as an integral, we find

∇f(x) = ∇f(0) +H0x+ 1
2D

3f(0)[x, x] + r(0, x) with r(0, x) = o(‖x‖2),

since ∇f is still two times differentiable at 0. The formula above results in

f(x+ cei)− f(x− cei)
2c = 1

2c

∫ 1

−1
〈cei,∇f(x+ tcei)〉 dt = 1

2

∫ 1

−1
∇if(x+ tcei) dt

= 1
2

∫ 1

−1

(
∇f(0) +H0(x+ tcei) + 1

2D
3f(0)[(x+ tcei), (x+ tcei)] + r(0, x+ tcei)

)
i
dt

= 1
2

∫ 1

−1

H0x+ 1
2
∑
l,k

∂2∇f
∂xl∂xk

(0)
(
xlxk + t2c2δilδik

)
+ r(0, x+ tcei)


i

dt

and{
f(x+ cei)− f(x− cei)

2c

}
i∈{1,...,d}

= H0x+ 1
2
∑
l,k

∂2∇f
∂xl∂xk

(0)xlxk + 1
6c

2
(
∂3f

(∂xi)3 (0)
)
i∈{1,...,d}

+ o(‖x‖2) + o(c2).

With A3 :=
(

∂3f
(∂xi)3 (0)

)
i∈{1,...,d}

or Ai3 = ∂3f
(∂xi)3 (0), we obtain for V (Zs−, cs)

V (Zs−, cs) = 1
6A3c

2
s +O(‖Zs−‖2) + o(c2

s) = 1
6A3c

2
s + o(‖Zs−‖) + o(c2

s) (49)
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= 1
6A3c

2
s + Ṽ (Zs−, cs).

Thus, compared to
∫ t

0
·
·V

j(Zs−, cs) dRs
P→ 0 in part (a), we have to prove∫ t

0

·
·
Ṽ j(Zs−, cs) dRs

P→ 0

and

a
d∑
j,k

(1 +Rt)
1
2−γ−aλkTikT

T
kj

∫ t

0
(1 +Rs−)aλk−1 1

6A
j
3c

2
s dRs

P−→
(
ac2

6 (aH0 −
1
3I)−1A3

)
i

.

The first part follows from the work we have done in part (a). Here in the case where f
is three times differentiable, we obtain the desired speed in (A1) since p equals 2

3 instead
of 1

2 and in (A2) because we have c2
s instead of cs. We note here that it is important to

have o(c2
s) and not only O(c2

s). That is the reason why we separate the term including
1
6A3c

2
s above. Now we consider the second part and get, as we are interested in the

asymptotic behavior,

(1 +Rt)
1
2−γ−aλk

∫ t

0
(1 +Rs−)aλk−1c2

s dRs = c2(1 +Rt)
1
3−aλk

∫ t

0
(1 +Rs−)aλk− 4

3 dRs

' c2

aλk − 1
3

(1 +Rt)
1
3−aλk(1 +Rt)aλk−

1
3 = c2

aλk − 1
3
.

Furthermore we get

a

6

d∑
j,k

TikT
T
kj

∫ t
0(1 +Rs−)aλk−1c2

s dRs

(1 +Rt)aλk+γ− 1
2

Aj3
P−→ ac2

6

d∑
j,k

Tik(aDkk −
1
3Ikk)

−1T TkjA
j
3.

Here the limit is
ac2

6
∑
j,k

Tik

(
aDkk −

1
3Ikk

)−1
T TkjA

j
3 = ac2

6

(
T (aD − 1

3I)−1T TA3

)
i

= ac2

6

(
(aH0 −

1
3I)−1A3

)
i
.

Part (III): We will prove

(1 +Rt)
1
2−γTφt

a

2c

∫ t

0
(1 +Rs−)γ−1φ−1

s T T M(ds, 0) D−→ N(0,Σ).

We restrict ourselves to sequences to prove the statement. We will show that, for an
arbitrarily increasing sequence tn with tn ↑ ∞, we have

(1 +Rtn) 1
2−γTφtn

a

2c

∫ tn

0
(1 +Rs−)γ−1φ−1

s T T M(ds, 0) D−→ N(0,Σ).
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The limit distribution does not depend on the choice of the explicit sequence tn. Let
tn be arbitrary but fixed. To apply a central limit theorem, we consider the sequence
Mn

s

Mn
s := (1 +Rtn) 1

2−γTφtn
a

2c

∫ stn

0
(1 +Rr−)γ−1φ−1

r T T M(dr, 0)

which represents a sequence of locally square integrable martingales. We have to show

Mn
1
D−→M where M ∼ N(0,Σ).

For this purpose we use the vector-valued version of Theorem 4 on page 435 in [19]:

Let (Xn
t ) be a sequence of locally square integrable martingales and S a non-empty set

of R+. Further let the assumptions

(i) ∀
δ∈(0,1]

∀
t∈S

xTx1[‖x‖>δ] ∗ νnt
P−→ 0,

(ii) ∀
t∈S

dXnet
P−→ dXet,

then

Xn
t

Df (S)−→ X (n→∞).

Now we choose S = {1} and prove assumptions (i) and (ii).

Verification of (i): νn (that is, here, νMn) is the compensator of the jump measure
µn of the process Mn

s . Since the assumptions of Theorem 3.2 only apply to the local
martingale M?

t :=
∫ t

0 M(ds, 0), which appears in the stochastic integral equation, we
should include only its compensator νM? . To obtain this, we consider xTx and 1[‖x‖>δ],
which corresponds to (∆Mn

s )T (∆Mn
s ) and 1[‖∆Mn

s ‖>δ] here. First to (∆Mn
s )T (∆Mn

s ).
We have

∆Mn
s = a

2c
(1 +Rtn) 1

2−γ

(1 +Rstn−)1−γ Tφtnφ
−1
stnT

T∆M?
stn ,

and therefore

(∆Mn
s )T (∆Mn

s ) = ‖∆Mn
s ‖2 = a2

4c2
(1 +Rtn)1−2γ

(1 +Rstn−)2−2γ ‖Tφtnφ
−1
stnT

T∆M?
stn‖

2

≤ a2

4c2
(1 +Rtn)1−2γ

(1 +Rstn−)2−2γ ‖Tφtnφ
−1
stnT

T‖2‖∆M?
stn‖

2

(?)
≤ C (1 +Rstn−)2γ−2(1 +Rstn)2aλmin

(1 +Rtn)2γ+2aλmin−1 ∆M?T

stn∆M?
stn .
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Here, (?) follows from aλmin > 0 and
(

1+Rstn
1+Rtn

)aλi ≤ (
1+Rstn
1+Rtn

)aλmin . Furthermore, we
have

[‖∆Mn
s ‖ > δ] =

∥∥∥ a

2c
(1 +Rtn) 1

2−γ

(1 +Rstn−)1−γ Tφtnφ
−1
stnT

T∆M?
stn

∥∥∥ > δ


=
‖Tφtnφ−1

stnT
T∆M?

stn‖ >
2cδ
a

(1 +Rtn)γ− 1
2

(1 +Rstn−)γ−1


⊂

‖φtnφ−1
stn‖‖∆M

?
stn‖ >

2cδ
a‖T‖2

(1 +Rtn)γ− 1
2

(1 +Rstn−)γ−1


⊂

‖∆M?
stn‖ > δC (1 +Rtn)γ− 1

2 +aλmin

(1 +Rstn−)γ−1(1 +Rstn)aλmin

 .

Thus it is sufficient to consider—instead of [‖∆Mn
s ‖ > δ] for all δ ∈ (0, 1]—the set

Gε
s,tn :=

x ∈ Rd

∣∣∣∣ ‖x‖ > ε
(1 +Rtn)γ− 1

2 +aλmin

(1 +Rstn−)γ−1(1 +Rstn)aλmin


for all ε ∈ (0, 1]. We find with the inequalities above, S = {1}, and t = 1

xTx1[‖x‖>δ] ∗ νM
n

t = xTx1[‖x‖>δ] ∗ νM
n

1 =
∫ 1

0

∫
Rd
xTx1[‖x‖>δ] ν

Mn(ds, dx)

≤ C
∫ tn

0

∫
Gεs,tn

(1 +Rs−)2γ−2(1 +Rs)2aλmin

(1 +Rtn)2γ+2aλmin−1 xTx νM
?(ds, dx)

≤ C
∫ tn

0
(1+Rs)2aλmin

(1+Rs−)2−2γ

∫
Gεs,tn

xTx νM
?(ds, dx)

(1 +Rtn)2aλmin+2γ−1
P−→ 0 (n→∞).

Verification of (ii): We have to show dMne1
P−→ dMe1, which is equivalent to

dMni ,Mnje1
P−→ dM i,M je1

for all i, j ∈ {1, . . . , d}. Because φt is a diagonal matrix, we obtain

d
(
Tφtnφ

−1
r T T M(dr, 0)

)
i
,
(
Tφtnφ

−1
r T T M(dr, 0)

)
j
es

= d
∑
l,k

Tikφ
kk
tn φ

kk−1

s T TklMl(ds, 0),
∑
u,v

Tjvφ
vv
tnφ

vv−1

s T TvuMu(ds, 0)e

=
∑
l,k,v,u

Tikφ
kk
tn φ

kk−1

s T TklTjvφ
vv
tnφ

vv−1

s T TvudMl(ds, 0) , Mu(ds, 0) e
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=
∑
l,k,v,u

Tik
Πaλk

0,tnΠaλv
0,tn

(1 +Rtn)a(λk+λv)T
T
klTjv

(1 +Rs)a(λv+λk)

Πaλv
0,s Πaλk

0,s
T Tvuh

lu
s (0) dRs

=
∑
k,v

TikT
T
vjΠ

aλk
s,tnΠaλv

s,tn

(1 +Rs)a(λv+λk)

(1 +Rtn)a(λk+λv)

(
T Ths(0)T

)
kv

dRs

and

dMni ,Mnje1

= a2

4c2

∫ tn

0

(1 +Rs−)2γ−2

(1 +Rtn)2γ−1 dd
(
Tφtnφ

−1
r T T M(dr, 0)

)
i
,
(
Tφtnφ

−1
r T T M(dr, 0)

)
j
es

= a2

4c2

∑
k,v

TikT
T
vj

(
T Th(0)T

)
kv

∫ tn
0 (1 + ob(1))(1 +Rs−)2γ−2+a(λv+λk) dRs

(1 +Rtn)2γ−1+a(λv+λk)

' a2

4c2

∑
k,v

TikT
T
vj

(
T Th(0)T

)
kv

∫ tn
0 (1 +Rs−)2γ−2+a(λv+λk) dRs

(1 +Rtn)2γ−1+a(λk+λv)︸ ︷︷ ︸
n→∞−→ 1

2γ + a(λk + λv)− 1

−→
∑
k,v

Tik
a2
(
T Th(0)T

)
kv

4c2(2γ + a(λk + λv)− 1)︸ ︷︷ ︸T
T
vj =

∑
k,v

TikUkvT
T
vj

:= Ukv

=
(
T U T T

)
ij

= Σij

where we used ' to indicate that the expressions on both sides of this sign are asymp-
totically identical. �

Proof of Lemma 3.4
Considering the assumptions and the conclusion of Lemma 3.4, we immediately see that
we have to change only Part (III) in the proof of Theorem 3.2. To prove convergence,
we use a recent result of Crimaldi and Pratelli. Their Theorem 2.2 in [2] says:

On a probability space (Ω,A,P), endowed with a filtration F = (Ft)t≥0 that satisfies
the usual conditions, let M̃ = (M̃t)t≥0 be a (right-continuous with limits from the left)
d-dimensional martingale. Further let (ãt)t≥0 be a family of invertible d × d-matrices.
Let us suppose that the following conditions hold (as t→∞):

(a) ‖ãt‖ → 0

(b) E
(

sup
0≤s≤t

‖ãt∆M̃s‖
)
→ 0
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(c) ãt[M̃ ]tãTt
P−→ Σ.

Then the random vector ãtMt converges A-stably to the Gaussian kernel N(0,Σ).

It is an easy task to generalize Theorem 2.2 to the case of a local martingale. To apply
the theorem above, we consider

ãt := a

2c(1 +Rt)
1
2−γTφt M̃t :=

∫ t

0
(1 +Rs−)γ−1φ−1

s T TM(ds, 0)

and verify the assumptions (a), (b), and (c) of the theorem of Crimaldi and Pratelli.
Then, Lemma 3.4 follows from this theorem.

Verification of (a): According to the definition of ãt, the already calculated φt, and
λmin >

1−2γ
2a , we have

‖ãt‖2 ≤ C(1 +Rt)1−2γ‖φt‖2 ≤ C(1 +Rt)1−2γ(1 +Rt)−2aλmin → 0

and hence ‖ãt‖ → 0.

Verification of (b): We consider the squared process and obtain(
E sup

0≤s≤t
‖ãt∆M̃s‖

)2

≤ E sup
0≤s≤t

‖ãt∆M̃s‖2 ≤ E sup
0≤s≤t

d∑
i=1

 d∑
j=1

ãijt ∆M̃ j
s

2

≤ E sup
0≤s≤t

d∑
i=1

 d∑
j=1

(1 +Rs

1 +Rt

)aλj
︸ ︷︷ ︸

Πaλj
0,t

Πaλj
0,s
Tij

(1 +Rt)
1
2−γ

(1 +Rs−)1−γ

d∑
l=1

T Tjl |∆M?l

s |


2

≤
(1 +Rs

1 +Rt

)aλmin

, as 1 +Rs

1 +Rt

∈ (0, 1]

≤ E sup
0≤s≤t

d∑
i=1

 d∑
j=1

Πaλj
s,t

(
1 + ∆Rs

1 +Rs−

)aλmin

︸ ︷︷ ︸Tij
(1 +Rt)

1
2−γ−aλmin

(1 +Rs−)1−γ−aλmin

d∑
l=1

T Tjl |∆M?l

s |


2

≤ C

≤ C E sup
0≤s≤t

d∑
i=1

(1 +Rs−)aλmin+γ−1

(1 +Rt)aλmin+γ− 1
2

d∑
l=1

d∑
j=1

TijT
T
jl︸ ︷︷ ︸
|∆M?l

s |


2

= (TT T )il = Iil = δil

≤ C
E sup0≤s≤t(1 +Rs−)2aλmin+2γ−2‖∆M?

s ‖2

(1 +Rt)2aλmin+2γ−1
t→∞−→ 0.

Verification of (c): We will show

(i) ãtdM̃etãTt
P→ Σ and (ii) ãt

(
[M̃ ]t − dM̃et

)
ãTt

P→ 0.
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According to (a) we have ‖ãt‖ → 0 and hence we can use the argumentation (46). To
this end substitution of the process (1 + Rs)aλi by the process (1 + Rs−)aλi does not
effect the asymptotic result.
To (i): Let us now examine the matrix-valued process dM̃et

dM̃eijt =
∫ t

0
(1 +Rs−)2γ−2d

(
φ−1T T M(dr, 0)

)
i
,
(
φ−1T T M(dr, 0)

)
j
es

=
∫ t

0

(1 +Rs−)2γ−2+aλi+aλj

Πaλi
0,s Πaλj

0,s

∑
l,k

T Tikh
kl
s (0)Tlj dRs

=
∫ t

0

(1 +Rs−)2γ−2+aλi+aλj

Πaλi
0,s Πaλj

0,s
(T Ths(0)T )ij dRs. (50)

Thus, because φ is a diagonal matrix, we obtain

a2

4c2 (1 +Rt)1−2γ
(
φtdM̃etφTt

)
ij

= a2

4c2 (1 +Rt)1−2γφiit dM̃e
ij
t φ

jj
t

= a2

4c2

∫ t
0 Πaλi

s,t Πaλj
s,t (1 +Rs−)2γ−2+aλi+aλj(T Ths(0)T )ij dRs

(1 +Rt)2γ−1+aλi+aλj

= a2

4c2 (T T (0)T )ij
∫ t
0(1 + ob(1))(1 +Rs−)2γ−2+aλi+aλj dRs

(1 +Rt)2γ−1+aλi+aλj︸ ︷︷ ︸ .
→ 1

aλi + aλj + 2γ − 1

Consequently we have

ãtdM̃etãTt
P→ Σ where Uij := a2(T Th(0)T )ij

4c2(a(λi + λj) + 2γ − 1) and Σ = TUT T .

To (ii): Using the calculation of dM̃eijt and proceeding with [M̃ ]ijt analogously, we get,
for all i, j ∈ {1, . . . , n},(
ãt
(
[M̃ ]t − dM̃et

)
ãTt
)
ij

=: Lmns

=
∑

l,k,m,n

T TlmT
T
knTilT

T
kj

∫ t

0
(1 + ob(1)) (1 +Rt)1−2γ−a(λl+λk)

(1 +Rs−)2−2γ−a(λl+λk) d
(︷ ︸︸ ︷

[M?]mns − dM?emns
)
.

Then, it is sufficient to verify

(1 +Rt)1−2γ−a(λl+λk)
∫ t

0
(1 +Rs−)2γ−2+a(λl+λk) dLmns

P→ 0, (51)

because the term ob(1), appearing above in (1 + ob(1)), does not effect the asymptotic
result. Using the definition of a compensator, we get Lmnt ∈ Mloc, because dM?et is
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the compensator of [M?]t. Now we use the Davis inequality ([19], p. 70, Theorem 6),
which states

cE
√

[M ]T ≤ E sup
s≤T
|Ms| ≤ C E

√
[M ]T . (52)

To verify (51) it suffices to show

(1 +Rt)1−2γ−a(λl+λk)E sup
s≤t

∣∣∣∣∫ s

0
(1 +Rr−)2γ−2+a(λl+λk) dLmnr

∣∣∣∣→ 0.

To this end we apply (52) in a first step and find

(1 +Rt)1−2γ−a(λl+λk) E sup
s≤t

∣∣∣∣∫ s

0
(1 +Rr−)a(λl+λk)−2+2γ dLmnr

∣∣∣∣
(52)
≤ C (1 +Rt)1−2γ−a(λl+λk)E

√∫ t

0
(1 +Rs−)2a(λl+λk)−4+4γ d [L]mns

(?)
≤ C

E
√∑

s≤t(∆M?m
s ∆M?n

s )2(1 +Rs−)2a(λl+λk)+4γ−4

(1 +Rt)a(λl+λk)+2γ−1

+ C

√√√√∫ t0(1 +Rs−)2a(λl+λk)+4γ−4hmns (0)2∆Rs dRs

(1 +Rt)2a(λl+λk)+4γ−2 . (53)

Here we get (?) by
√
a+ b ≤

√
a+
√
b (if a, b ≥ 0) and

[L]mnt =
∑
s≤t

(∆Lmns )2 =
∑
s≤t

(∆[M?]mns −∆dM?emns )2

=
∑
s≤t

(
∆M?m

s ∆M?n

s −∆
∫ s

0
hmnr (0) dRr

)2

=
∑
s≤t

(
∆M?m

s ∆M?n

s − hmns (0)∆Rs

)2
≤ 2

∑
s≤t

(
(∆M?m

s ∆M?n

s )2 + (hmns (0)∆Rs)2
)

= 2
∑
s≤t

(∆M?m

s ∆M?n

s )2 + 2
∫ t

0
hmns (0)2∆Rs dRs.

Now we utilize a generalization of Kronecker’s lemma ([19], Lemma 3, p. 141) to verify
the convergence of the second summand in (53). This version of Kronecker’s lemma
says:

Let X be a semimartingale and L be a predictable increasing process, then we have{
L∞ =∞

}
∩
{∫ 1

1 + Ls
dXs →

}
⊆
{
X

L
→ 0

}
.

From the lemma and∫ t

0

(1 +Rs−)2a(λl+λk)+4γ−4hmns (0)2∆Rs

1 + (1 +Rs−)2a(λl+λk)+4γ−2 dRs ≤ C
∫ t

0

∆Rs

(1 +Rs−)2 dRs
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= C
∫ t

0
a2
s∆Rs dRs <∞

the desired convergence result follows. To verify convergence of the first summand in
(53), we utilize Jensen’s inequality and obtainE

√∑
s≤t(∆M?m

s ∆M?n
s )2(1 +Rs−)2a(λl+λk)+4γ−4

(1 +Rt)a(λl+λk)+2γ−1

2

≤
E∑

s≤t(∆M?m

s ∆M?n

s )2(1 +Rs−)4aλmin+4γ−4

(1 +Rt)4aλmin+4γ−2
t→∞−→ 0.

�

3.3 Discussion of Special Settings

Here we specialize Theorem 3.2 to the discrete-time setting and the Itô setting. It turns
out that one result, presented here as a corollary, coincides with a known result in the
literature dealing with the discrete-time setting. In the Itô setting, we obtain a new
result.

Corollary 3.1. We consider the stochastic integral equation (29) of the Itô type as
given in Corollary 2.1 and 2.3, respectively, and assume that the conditions (A), (B),
(C), (E ′),

σijs (x) ≤ C(1 + ‖x‖), and lim
s→∞
x→x?

σijs (x) = σij(x?)

hold for all i, j ∈ {1, . . . , d}.

(a) If f is twice differentiable at x?, Hessian is continuous around x?, γ = 1
4 , and

λmin >
1
4a holds, we get

(1 + t) 1
4 (Zt − x?) D−→ N(0,Σ),

where T THx?T = D, Σ = TUT T , and

Ukv :=
a2
(
T Tσ(x?)σT (x?)T

)
kv

4c2(a(λk + λv)− 1
2) .

(b) If f is three times differentiable at x?, Hessian is continuous around x?, γ = 1
6 ,

and λmin >
1
3a holds, we get

(1 + t) 1
3 (Zt − x?) D−→ N(µ,Σ),
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where T THx?T = D, Σ = TUT T ,

µ := −ac
2

6 (aHx? −
1
3I)−1

(
∂3f

(∂xi)3 (x?)
)
i∈{1,...,d}

,

and

Ukv :=
a2
(
T Tσ(x?)σT (x?)T

)
kv

4c2(a(λk + λv)− 2
3) .

Figures 3 and 4 show the density of the limit distribution of the processes (1+t)1/4(Zt−
x?) and (1 + t)1/3(Zt−x?) considered in part (a) and part (b) of Corollary 3.1. In both
figures, the histogram is constructed by an evaluation of paths of the corresponding
processes at time t = 250. The density of the theoretical limit distribution as given in
Corollary 3.1 are presented as well. We choose f(x) = 0.5xTx, x ∈ R2, as = (1 + s)−1,
σs(·) = I, cs = (1 + s)−1/4 in Figure 3, cs = (1 + s)−1/6 in Figure 4 and use the Milstein
scheme (see, e.g., [14]) to simulate paths of the process Zt. The starting points are
taken from a uniform distribution on [−4, 4]× [−4, 4].

Corollary 3.2. We consider the recursion (30) of Corollary 2.2 and 2.4, respectively,
and assume that the conditions (A), (B), (C), (E ′′),

(E ′′′) sup
n

E
(
‖Vn‖2|Fn−1

)
<∞,

(F ) E
(
V i
nV

j
n |Fn−1

)
n→∞−→ hij (1 ≤ i, j ≤ d),

and the Lyapunov-type condition

(L) sup
n

E‖Vn‖2+δ <∞ for a δ > 0

hold.

(a) If f is twice differentiable at x?, Hessian is continuous around x?, γ = 1
4 , and

λmin >
1
4a holds, we get

n
1
4 (Zn − x?) D−→ N(0,Σ),

where T THx?T = D, Σ = TUT T , and

Ukv := a2(T ThT )kv
a(λk + λv)− 1

2) .
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(b) If f is three times differentiable at x?, Hessian is continuous around x?, γ = 1
6 ,

and λmin >
1
3a holds, we get

n
1
3 (Zn − x?) D−→ N(µ,Σ),

where T THx?T = D, Σ = TUT T ,

µ := −ac
2

6 (aHx? −
1
3I)−1

(
∂3f

(∂xi)3 (x?)
)
i∈{1,...,d}

, and Ukv := a2(T ThT )kv
4c2(a(λk + λv)− 2

3) .

We mention here that condition (L) is stronger than the first part of condition (E ′′)
appeared in Section 2.3.

Figure 3: This plot shows the histogram as an empirical approximation of the density
of the limit distribution of the process (1 + t)1/4Zt considered in Corollary
3.1 (a) and the density of the theoretical asymptotic distribution overlaid in
blue.

Remark 3.4. We compare part (a) of Theorem 3.2 with Theorem 5.17. and part (b)
with Remark 5.18 on page 38 in [20]. There a2ρ2

c2(2af ′′(x?)− 1
2 ) and a2ρ2

c2(2af ′′(x?)− 2
3 ) are given as

variance, 0 and − ac2f ′′′(x?)
6af ′′(x?)−2 as bias of the limit distribution, respectively. It is impor-

tant to mention that there an algorithm including the term “−2 an
2cnVn” is considered.

Consequently, to compare the variances we have to multiply them by the factor 1
4 .



Discussion of Special Settings 79

Concerning the 1-dimensional situation we have T = 1 and λk + λv = 2f ′′(x?) in the
corollary above. Therefore, we have shown that our corollary coincides with known
results in the 1-dimensional situation.

Figure 4: This plot shows the histogram as an empirical approximation of the density
of the limit distribution of the process (1 + t)1/3Zt considered in Corollary
3.1 (b) and the density of the theoretical asymptotic distribution overlaid in
blue.

Proof of Corollary 3.1
We will verify the assumptions of Theorem 3.2. Since (A), (B), (C), and (E ′) are
valid, the assumptions of Corollary 2.3 are also valid. This ensures the existence of a
strictly positive monotonously increasing process St with St ↑ ∞ and St‖Zt‖ → 0. We
reuse the notation of Corollary 2.1, Corollary 2.3 and their proofs. Since the Brownian
motion is continuous, it certainly fulfills the Lindeberg condition, because

µW ([0, t]× Γ) =
∑

0<s≤t
1{∆Ws∈Γ} =

∑
0<s≤t

1{0∈Γ} =
∑

0<s≤t
0 = 0 Γ ∈ Bd(R \ {0}) t ∈ R+,

which results in νW ([0, t]× Γ) = 0 for all Γ ∈ Bd(R \ {0}) and t ∈ R+. Since Rs := s is
continuous, we have

∆Rs = ∆s = 0 =⇒
∑
0≤s

1{aλi∆Rs=(1+Rs−)} <∞.



80 Asymptotic Properties of the Process Using Special Weights

Considering

d
∫ ·

0
Mi(ds, Js),

∫ ·
0
Mj(ds, Js)et =

∫ t

0

∑
l,k

σils (Js)σjks (Js) ddW l,W kes

=
∫ t

0

∑
l,k

σils (Js)σjks (Js) δlk ds =
∫ t

0

d∑
k=1

σiks (Js)σjks (Js) ds

we obtain hijs (x) = ∑d
k=1 σ

ik
s (x)σjks (x) and thus

lim
s→∞
x→x?

hijs (x) =
d∑

k=1
lim
s→∞
x→x?

(
σiks (x)σjks (x)

)
=

d∑
k=1

σik(x?)σjk(x?)

=
(
σ(x?)σT (x?)

)
ij

=: hij(x?).

Furthermore by ‖x‖ ≤ S we have

|hijs (x)| = |
d∑

k=1
σiks (x)σjks (x)| ≤

d∑
k=1
|σiks (x)||σjks (x)| ≤ dC2(1 + ‖x‖)2 ≤ C.

�

Proof of Corollary 3.2
We will verify the assumptions of Theorem 3.2. Since (A), (B), (C), and (E ′′) are
valid, the assumptions of Corollary 2.4 are also valid. This ensures the existence of a
strictly positive monotonously increasing process St with St ↑ ∞ and St‖Zt‖ → 0. We
reuse the notation from Corollary 2.2, Corollary 2.4 and their proofs. The quadratic
variation gives[∫ ·

0
Mi(ds, x)

]
t

=
[∫ ·

0
Ṽ i
s dRs

]
t

=
∑
n≤t
n∈N

V i2

n (∆Rn)2 =
∑
n≤t
n∈N

V i2

n

and hence the predictable quadratic variation satisfies⌈∫ ·
0
Mi(ds, x)

⌉
t

=
∑
n≤t
n∈N

E
(
V i2

n |Fn−1
)

=
∑
n≤t
n∈N

E
(
V i2

n |Fn−1
)
.

We have hijn := E (V i
nV

j
n |Fn−1) and we obtain convergence and boundedness of hn by

hijn = E
(
V i
nV

j
n |Fn−1

)
n→∞−→ hij and sup

n
hiin = sup

n
E
(
V i2

n |Fn−1
)
<∞.

Since no argument occurs at hiin , we get

E
(
hiis (Zs−)− 2hii(Zs−, 0) + hiis (0)

)
= E

(
hiis − 2hiis + hiis

)
= 0.
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Furthermore, we have

E
[∫ ·

0

as
cs
Mi(ds, x)

]
t

≤ E
∑
n≤t
n∈N

V i2

n =
∑
n≤t
n∈N

EV i2

n ≤
(

sup
n

E‖Vn‖2
)
btc <∞

and

∑
0≤s

1{aλi∆Rs=(1+Rs−)} =
∞∑
j=1

1{aλi=j} ≤
baλmaxc∑
j=1

≤ aλmax <∞.

Now we show that the condition of the Lindeberg type holds. Considering a triangle
schemata, it is known that the Lyapunov-type condition implies the Lindeberg-type
condition. Now we prove the Lindeberg-type condition using assumption (L), which is
a Lyapunov-type condition. We have
∫ t
0

(1+Rs)2aλmin

(1+Rs−)2−2γ

∫
Gεs,t

xTx νM
?(ds, dx)

(1 +Rt)2aλmin+2γ−1 ≤
∫ t

0
(1+Rs)2aλmin

(1+Rs−)2−2γ

∫
Rd x

Tx νM
?(ds, dx)

(1 +Rt)2aλmin+2γ−1

=
∫ t

0
(1+Rs)2aλmin

(1+Rs−)2−2γ

∫
Rd ‖x‖2Ns(ω, dx) dCs

(1 +Rt)2aλmin+2γ−1 ≤ C
∫ t
0

(1+Rs)2aλmin

(1+Rs−)2−2γ

∫
Rd ‖x‖2Ns(ω, dx) dRs

(1 +Rt)2aλmin+2γ−1

≤ C
∑btc
i=1

(1+i)2aλmin

i2−2γ

∫
Rd ‖x‖2 Ni(ω, dx)

(1 + btc)2aλmin+2γ−1 ≤ C
∑btc
i=1

i2aλmin
i2−2γ

∫
Rd ‖x‖2 PVi|Fi−1(dx)

btc2aλmin+2γ−1

≤ C
∑btc
i=1 i

2aλmin+2γ−2E (‖Vi‖2|Fi−1)
btc2aλmin+2γ−1 = C

∑n
i=1 i

2aλmin+2γ−2E (‖Vi‖2|Fi−1)
n2aλmin+2γ−1 (54)

for t = n ∈ N. Here we used

νM
?(ω, dt, dx) = Nt(ω, dx) dCt, where Ct =

d∑
i=1
dM?iet

and Ni(ω,A) = P(Vi ∈ A|Fi−1). More detailed information on this can be found, for
example, in [12], [37] or [38]. To finally ensure that expression (54) converges to zero
in probability, we observe
(

E
∑n
i=1 i

2aλmin+2γ−2E (‖Vi‖2|Fi−1)
n2aλmin+2γ−1

)1+δ/2

≤ E
∑n
i=1 i

(2aλmin+2γ−2)(1+δ/2)E
(
‖Vi‖2+δ|Fi−1

)
n(2aλmin+2γ−1)(1+δ/2) =

∑n
i=1 i

(2aλmin+2γ−2)(1+δ/2)E‖Vi‖2+δ

n(2aλmin+2γ−1)(1+δ/2)

≤
(

sup
j

E‖Vj‖2+δ
) ∑n

i=1 i
(2aλmin+2γ−2)(1+δ/2)

n(2aλmin+2γ−1)(1+δ/2) ≤ C
∑n
i=1 i

(2aλmin+2γ−2)(1+δ/2)

n(2aλmin+2γ−1)(1+δ/2)
n→∞−→ 0.



82 Asymptotic Properties of the Process Using Special Weights

We obtain the last convergence claim by Kronecker’s lemma
∞∑
i=1

i(2aλmin+2γ−2)(1+δ/2)

i(2aλmin+2γ−1)(1+δ/2) =
∞∑
i=1

i−(1+δ/2) <∞ =⇒ lim
n→∞

∑n
i=1 i

(2aλmin+2γ−2)(1+δ/2)

n(2aλmin+2γ−1)(1+δ/2) = 0.

�
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4 Asymptotic Properties of the Averaged Process
Using Slowly Decaying Weights

Below we deal with the averaged process

Z̄δ,t := 1 + δ

(1 +Rt)1+δ

∫ t

0
(1 +Rs−)δZs dRs. (55)

Here we presuppose that the process Rt is deterministic, as := a
(1+Rs−)α , and cs :=

c
(1+Rs−)γ with 0 < γ, α < 1. We study the asymptotic behavior of Z̄δ,t in detail to
compare it with the behavior of Zt. It should be noted that the integral which appears
in (55) is a Riemann-Stieltjes integral and not a stochastic integral in its narrow sense.
Therefore we can use Zs instead of Zs− at this point. Let us consider the discrete-time
version of Z̄δ,t to get a better understanding. If we use Rt := btc, the process results
in

Z̄δ,t = 1 + δ

(1 +Rt)1+δ

∫ t

0
(1 +Rs−)δZs dRs = 1 + δ

(1 + btc)1+δ

btc∑
i=0

iδZi∆Ri

= 1 + δ

(1 + n)1+δ

n∑
i=1

iδZi for t = n ∈ N

allowing a comparison with the averaged process

X̃δ,n := 1 + δ

n1+δ

n∑
i=1

iδXi

which was considered in [3] and [4]. Thus it is clear that we can interpret the averaged
process as a weighted mean.

4.1 Consistency

We want to investigate which one of the two processes, Z̄δ,t and Zt, has preferable
asymptotic properties. We come to the first crucial question: Is the averaged process
consistent? It turns out that consistency of the averaged process follows directly from
the consistency of the process Zt.

Theorem 4.1. Let the process Zt be the unique strong solution of the stochastic
integral equation (5) and let Z̄δ,t be the corresponding averaged process (55). If Zt is
consistent, that is, Zt → x? almost surely, then the corresponding averaged process Z̄δ,t
is also consistent for δ > −1, that is

Z̄δ,t
t→∞−→ x? a.s..



84 Asymptotic Properties of the Averaged Process Using Slowly Decaying Weights

In the theorem above we assure the consistency of the process Zt. Requirements that
assure consistency of the process are given in Theorem 2.1.

Figure 5 compares paths of the processes Zt of (5) and Z̄δ,t of (55) in the Itô setting.
The path of the process Z̄δ,t is based on the presented path of the process Zt. We
choose f(x) = 0.5xTx, x ∈ R2, Z0 = (5, 6)T , a = c = 1, α = 0.75, γ = 0.25, δ = 1,
σs(·) = I and use the Milstein scheme (see, e.g., [14]) to simulate a path of the process
Zt in the special situation of (29). Furthermore Figure 6 illustrates how the processes
f(Zt) and f(Z̄δ,t) behave on the surface of the function f by showing a path of each
process. Here we take the same choices and especially the same paths of Zt and Z̄δ,t as
in Figure 5.

−0.5  0.0  0.5  1.0  1.5  2.0  2.5

−
0.

5
 0

.0
 0

.5
 1

.0
 1

.5
 2

.0
 2

.5
 3

.0

 0

 5

10

15

20

25

x

T
im

e

y

Figure 5: Simulation of a path of the process Zt from (29) (Itô type) in red. The
corresponding averaged process Z̄δ,t from (55) of the same path is overlaid in
blue.
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Figure 6: Simulation of a path of the process f(Zt) in red and of the process f(Z̄1,t) in
blue. The paths of both processes are based on the simulated paths of Figure
5.

Proof of Theorem 4.1
We rewrite the process Z̄δ,t slightly and use the Toeplitz lemma to prove the theorem.
First, we rewrite the denominator of Z̄δ,t a little by using Itô’s formula and a Taylor
expansion

(1 +Rt)1+δ − 1
1 + δ

=
∫ t

0
(1 +Rs−)δ dRs + δ

∑
0<s≤t

(1 +Rs− + ξs∆Rs)δ−1(∆Rs)2

=
∫ t

0
(1 +Rs−)δ dRs + δ

∑
0<s≤t

(1 +Rs−)δ
(

1 + ξs∆Rs

1 +Rs−

)δ−1 (∆Rs)2

1 +Rs−

=
∫ t

0
(1 +Rs−)δ dRs +

∑
0<s≤t

(1 +Rs−)δ (1 + ob(1))δ−1 ob(1)∆Rs

=
∫ t

0
(1 +Rs−)δ dRs +

∑
0<s≤t

(1 +Rs−)δob(1)∆Rs.

All the above processes are deterministic and we are only interested in the asymptotic
behavior. Hence we have

lim
t→∞

Z̄δ,t = (1 + δ) lim
t→∞

∫ t
0(1 +Rs−)δZs dRs

(1 +Rt)1+δ = (1 + δ) lim
t→∞

∫ t
0(1 +Rs−)δZs dRs

(1 + δ)
∫ t
0(1 +Rs−)δ dRs

= lim
t→∞

(1 +Rt−)δZt
(1 +Rt−)δ = lim

t→∞
Zt = x? a.s.



86 Asymptotic Properties of the Averaged Process Using Slowly Decaying Weights

because (1 +Rt)1+δ ↑ ∞ holds for all δ > −1. This proves consistency of the averaged
process Z̄δ,t. �

4.2 Asymptotic Normality

In the previous section we introduced the averaged process Z̄δ,t which was built with
slowly decaying weights at := a

(1+Rs−)α and ct := c
(1+Rs−)γ with 0 < γ, α < 1. Then

we proved consistency of the process Z̄δ,t. Hence there are two consistent processes
available. For the standard process we achieved, after careful consideration, asymptotic
normality. To compare the two processes we need a closer inspection of the asymptotic
behavior of the process Z̄δ,t. Theorem 4.2 states a result for asymptotic normality of
the process Z̄δ,t. For both processes the limit distribution is normal, but with different
means and variances.

Theorem 4.2. Let f be three times differentiable at x?, Hessian continuous around
x?, γ = 1

6 , and the assumptions of Theorem 3.1 with α ∈ (5
6 , 1) be valid. Furthermore,

assume δ > −2
3 ,
∑

0<s 1{aλi∆Rs=(1+Rs−)} <∞ for all i ∈ {1, . . . , d},

lim
s→∞
x→x?

hs(x, x?) = lim
s→∞
x→x?

hs(x) = h(x?) where hs(x, y) := dd
∫ ·

0 M(dt, x),
∫ ·

0 M(dt, y)es
dRs

and, for all ε ∈ (0, 1],
∫ t

0
(1+Rs)2δ+2α

(1+Rs−)2α−2γ

∫
Gεs,t

xTx νM
?(ds, dx)

(1 +Rt)1+2γ+2δ
P−→ 0 (t→∞),

where M?
t :=

∫ t
0 M(ds, x?), Gε

s,t :=
{
x ∈ Rd

∣∣∣ ‖x‖2 > ε (1+Rt)
2
3 +δ

(1+Rs)δ+α(1+Rs−)γ−α

}
, and νM? is

the compensator of the jump-measure µM? of the local martingale M?
t .

We get

(1 +Rt)
1
3 (Z̄δ,t − x?) D−→ N(µ̃, Σ̃),

where

µ̃ := −c
2(1 + δ)
4 + 6δ H−1

x?

(
∂3f

(∂xi)3 (x?)
)
i∈{1,...,d}

and Σ̃ := 3(1 + δ)2

8c2(2 + 3δ) H
−1
x? h(x?)H−1

x? .

Remark 4.1. In Theorem 3.2(b) a bias occurred, if f is three times differentiable at x?.
Considering the theorem above and in particular µ̃, we find that here a bias appears,
too. This is a well-known phenomenon that is due to the “basic” approximation with
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finite differences. Using modified differences, the bias can be eliminated. The articles
[3], [4], and [9] are recommended to interested readers. Among other things, they
illustrate why the bias does not occur in the case f is two times differentiable (compare
Theorem 3.2(a)).
Remark 4.2. The restriction α ∈ (5

6 , 1) in Theorem 4.2 is stronger than the restric-
tion α ∈ (2

3 , 1) which is generally used in the discrete-time setting. But if we con-
sider the averaged Robbins-Monro process, the stronger condition seems natural in the
continuous-time setting. There, in the continuous-time setting the restriction α ∈ (5

6 , 1)
is also needed as opposed to the discrete-time setting.
Remark 4.3. If we consider the assumptions of the Theorem 4.2, we find that the
condition on the eigenvalue λmin >

1−2γ
2a is not needed. This is one of the most useful

benefits of the averaged process, because considering the standard process and in partic-
ular Theorem 3.2, we recognize the following dilemma. A minimization of the variance
concerning the parameter a, which appears in the limit distribution, is desirable. But
to keep the condition λmin >

1−2γ
2a , which guarantees stability, and simultaneously to

minimize the variance concerning the parameter a is not possible without knowledge
of λmin, which is generally unknown.
Remark 4.4. The condition λmin >

1−2γ
2a can be omitted since we consider at with α < 1.

We have already seen a similar conclusion in Theorem 3.1.
Remark 4.5. We point out that the averaged process does not perform well until the
standard process is in a small neighborhood of x?. Before we reach such a region we
should prefer the standard process. On the other hand, the averaged process mostly
performs well if the standard process oscillates around x?, otherwise we should prefer
the standard process as well.

Proof of Theorem 4.2
Without loss of generality we assume x? = 0. Frequently we write γ instead of 1

6 to get
a tight notation. We consider the averaged process Z̄δ,t using the explicit representation
of Zt, that is with (40)

Z̄δ,t = 1 + δ

(1 +Rt)1+δ

∫ t

0
Zs(1 +Rs−)δ dRs

= 1 + δ

(1 +Rt)1+δ

∫ t

0
(1 +Rs−)δ

(
Tφs

(
T TZ0

− a

2c

∫ s

0
(1 +Rr−)γ−αφ−1

r T T M(dr, 0)−
∫ s

0
φ−1
r T T dR̃r

))
dRs

= 1 + δ

(1 +Rt)1+δ

(∫ t

0
(1 +Rs−)δTφsT TZ0 dRs −

∫ t

0
(1 +Rs−)δTφs

∫ s

0
φ−1
r T T dR̃r dRs

−
∫ t

0
(1 +Rs−)δTφs

a

2c

∫ s

0
(1 +Rr−)γ−αφ−1

r T T M(dr, 0) dRs

)
= At −Bt − Ct.
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Now we show

(I) (1 +Rt)
1
3 At

P→ 0

(II) (1 +Rt)
1
3 Bt

P→ c2(1 + δ)
4 + 6δ H−1

0

(
∂3f

(∂xi)3 (0)
)
i∈{1,...,d}

(III) (1 +Rt)
1
3 Ct

D→ N(0, Σ̃) where Σ̃ := 3(1 + δ)2

8c2(2 + 3δ) H
−1
0 h(0)H−1

0 .

Thus we achieve the desired result using Slutsky’s Theorem.

But before we prove (I), (II), and (III), we pursue the same strategy as in the proof
of the asymptotic normality of the standard process. Because the process φt appears
above, we consider it in more detail as in the proof of Theorem 3.2. In the proof of
Theorem 3.2 we studied the case α = 1, now we consider the case α ∈ (5

6 , 1). We use
(45),

− aλi
∫ t

0
(1 +Rs−)−α dRs

= − aλi
1− α

(1 +Rt)1−α − 1−
∑
s≤t

(
∆(1 +Rs)1−α − (1− α)(1 +Rs−)−α∆Rs

)
and with the formula Et(X) = eXt−X0−0.5[X,X]ct

∏
s≤t(1 + ∆Xs)e−∆Xs we obtain

φiit = exp
(
− aλi

1− α(1 +Rt)1−α
)

Πaλi
0,t

where

Πaλi
0,t := e

aλi
1−α

∏
s≤t

(
exp

( aλi
1− α∆(1 +Rs)1−α

) (
1− aλi∆Rs

(1 +Rs−)α + 1{ aλi∆Rs
(1+Rs−)α=1}

))
.

Now we show that the process Πaλi
0,t converges. In a first step we conclude

∫ ∞
0

as dRs =∞ ∧
∫ ∞

0
a2
s∆Rs dRd

s <∞ =⇒ as∆Rs = a∆Rs

(1 +Rs)α
→ 0.

In a second step we use a Taylor expansion and see, for sufficiently large s, that the
product

ln
∏
s≤t

(
exp

( aλi
1− α∆(1 +Rt)1−α

) (
1− aλi∆Rt

(1 +Rt−)α
))

=
∑
s≤t

(
aλi

1− α∆(1 +Rt)1−α + ln
(

1− aλi∆Rt

(1 +Rt−)α
))
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≤
∑
s≤t

(
ρt −

a2λ2
i

2

)(
∆Rt

(1 +Rt)α

)2

with ρt → 0

converges. By combining both steps, it is easy to transfer the arguments from the proof
of convergence of Πaλi

0,t (in the case α = 1) in Theorem 3.2. In the following, we use

φiit = exp
(
− aλi

1− α(1 +Rt)1−α
)

Πaλi
0,t where Πaλi

0,t → Πaλi
0,∞ <∞.

Part (I): To prove (1 +Rt)
1
3 At

P→ 0, it suffices to show for all i ∈ {1, . . . , d}

(1 + δ)(1 +Rt)−
2
3−δ

∫ t

0
(1 +Rs−)δφiis dRs −→ 0.

All the above processes are purely deterministic, although we use a generalization of
Kronecker’s lemma ([19], p. 141, Lemma 3), because we have already used this several
times. Thus it suffices to show(1 +Rt)

2
3 +δ →∞

 ∩ [∫ ∞
0

(1 +Rs−)δφjjs
(1 +Rs)

2
3 +δ

dRs <∞
]

= Ω.

Using the assumption δ > −2
3 , the first set equals Ω. The same is true for the second

set, because ∫ ∞
0

(1 +Rs−)δφjjs
(1 +Rs)

2
3 +δ

dRs ≤
∫ ∞

0

φjjs

(1 +Rs)
2
3

dRs <∞.

This completes verification of (I).

Part (II): Here the process R̃t of Lemma 3.3 appears. Therefore we have

R̃t = a
∫ t

0
V (Zs−, cs)(1 +Rs−)−α dRs +K1

t +K2
t

where

K1
t := a

2c

∫ t

0
(1 +Rs−)γ−α (M(ds, Zs−)−M(ds, 0))

K2
t :=

∑
j,k

TijT
T
jk

∑
s≤t

Zk
s−1{aλj∆Rs=(1+Rs−)α}


i∈{1,...,d}

.

As V (·, ·) appears, we use representation (49)

V (Zs−, cs) = 1
6A3c

2
s +O(‖Zs−‖2) + o(c2

s)
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and obtain

a(1 +Rs−)−αV (Zs−, cs) = (1 +Rs−)−α
(
a

6A3c
2
s +O(‖Zs−‖2) + o(c2

s)
)
.

Hence, it suffices to verify the following five convergences to prove (II):

(i) −
∑
j,k

TijT
T
jkA

k
3
a(1 + δ)

6

∫ t
0(1 +Rs−)δφjjs

∫ s
0 φ

jj−1
r (1 +Rr−)−αc2

r dRr dRs

(1 +Rt)
2
3 +δ

→ µ̃

where µ̃ := −c
2(1 + δ)
4 + 6δ H−1

0

(
∂3f

(∂xi)3 (0)
)
i∈{1,...,d}

(ii)
∫ t

0(1 +Rs−)δφjjs
∫ s

0 φ
jj−1
r (1 +Rr−)−αO(‖Zr−‖2) dRr dRs

(1 +Rt)
2
3 +δ

P→ 0

(iii)
∫ t

0(1 +Rs−)δφjjs
∫ s

0 φ
jj−1
r (1 +Rr−)−αo(c2

r) dRr dRs

(1 +Rt)
2
3 +δ

→ 0

(iv)
∫ t

0(1 +Rs−)δφjjs
∫ s

0 φ
jj−1
r (1 +Rr−)γ−α (Mk(dr, Zr−)−Mk(dr, 0)) dRs

(1 +Rt)
2
3 +δ

P→ 0

(v)
∫ t

0(1 +Rs−)δφjjs
∑
r≤s φ

jj−1
r Zk

r−1{aλj∆Rr=(1+Rr−)α} dRs

(1 +Rt)
2
3 +δ

P→ 0.

Verification of (i): It suffices to show∫ t
0(1 +Rs−)δφjjs

∫ s
0 φ

jj−1
r (1 +Rr−)−α−2γ dRr dRs

(1 +Rt)
2
3 +δ

−→ 1
aλj(2

3 + δ) .

Let us consider the process (1 +Rt)δφjj
−1

t for large t. We use integration by parts and
obtain two processes:

(1 +Rt)δφjj
−1

t = 1 +
∫ t

0
φjj

−1

s d(1 +Rs)δ +
∫ t

0
(1 +Rs−)δ dφjj−1

s .

The first process satisfies∫ t

0
φjj

−1

s d(1 +Rs)δ = C
∫ t

0
φjj

−1

s (1 +Rs−)δ−1 dRs +
∫ t

0
φjj

−1

s (1 +Rs−)δ−1ob(1) dRd
s

≤ C
∫ t

0
φjj

−1

s (1 +Rs−)δ−1 dRs

and the second process satisfies∫ t

0
(1 +Rs−)δ dφjj−1

s = C
∫ t

0
φjj

−1

s (1 +Rs−)δ−α dRs.
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It is obvious that the first process is of a lower order. Since we are only interested in
the asymptotic behavior, we will neglect processes of lower order in the following. We
use the Toeplitz lemma and get

( 2
3 + δ

)
lim
t→∞

∫ t
0(1 +Rs−)δφjjs

∫ s
0 φ

jj−1
s (1 +Rr−)−α−2γ dRr dRs

(1 +Rt)
2
3 +δ

=
( 2

3 + δ
)

lim
t→∞

∫ t
0(1 +Rs−)δφjjs

∫ s
0 φ

jj−1
s (1 +Rr−)−α− 1

3 dRr dRs

(2
3 + δ)

∫ t
0(1 +Rs−)δ− 1

3 dRs

= lim
t→∞

(1 +Rt−)δφjjt
∫ t

0 φ
jj−1
s (1 +Rs−)−α− 1

3 dRs

(1 +Rt−)δ− 1
3

= lim
t→∞

∫ t
0 φ

jj−1
s (1 +Rs−)−α− 1

3 dRs

φjj
−1

t (1 +Rt−)− 1
3

= lim
t→∞

∫ t
0 φ

jj−1
s (1 +Rs−)−α− 1

3 dRs∫ t
0(1 +Rs−)− 1

3 dφjj
−1

s

= lim
t→∞

∫ t
0 φ

jj−1
s (1 +Rs−)−α− 1

3 dRs∫ t
0(1 +Rs−)− 1

3−αaλj
s
φjj

−1
s dRs

= lim
t→∞

φjj
−1

t (1 +Rt−)−α− 1
3

aλj(1 +Rt−)− 1
3−αφjj

−1

t

= 1
aλj

.

Verification of (ii): We consider L1-convergence as we are interested in the convergence
in probability and neglect processes of lower order. We use Fubini’s theorem and
Theorem 3.1. It remains to prove∫ t

0(1 +Rs−)δφjjs
∫ s
0 φ

jj−1
r (1 +Rr−)−αE‖Yr−‖2 dRr dRs

(1 +Rt)
2
3 +δ

→ 0

where Yt follows from Theorem 3.1. In a first step we assume∫ t
0 φ

jj−1
s (1 +Rs−)−αE‖Ys−‖2 dRs

φjj
−1

t (1 +Rt−)− 1
3

−→ 0 (56)

and with the Toeplitz lemma we obtain

lim
t

∫ t
0(1 +Rs−)δφjjs

∫ s
0 φ

jj−1
r (1 +Rr−)−αE‖Yr−‖2 dRr dRs

(1 +Rt)
2
3 +δ

= lim
t

∫ t
0(1 +Rs−)δφjjs

∫ s
0 φ

jj−1
r (1 +Rr−)−αE‖Yr−‖2 dRr dRs∫ t

0(1 +Rs−)δ− 1
3 dRs

= lim
t

∫ t
0 φ

jj−1
s (1 +Rs−)−αE‖Ys−‖2 dRs

φjj
−1

t (1 +Rt−)− 1
3

= 0.
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Finally we need to prove (56). From Theorem 3.1 with γ = 1
6 and α ∈ (5

6 , 1) the
L2-convergence rate of the process of Yt is given by

E‖Yt‖2 ≤ C(1 +Rt)
4
3−2α

and (56) follows from

lim
t

∫ t
0 φ

jj−1
s (1 +Rs−)−αE‖Ys−‖2 dRs

φjj
−1

t (1 +Rt−)− 1
3

≤ C lim
t

∫ t
0 φ

jj−1
s (1 +Rs−) 4

3−3α dRs

φjj
−1

t (1 +Rt−)− 1
3

= C lim
t

∫ t
0(1 +Rs−) 4

3−2α dφjj−1
s∫ t

0(1 +Rs−)− 1
3 dφjj

−1
s

= C lim
t

(1 +Rs−) 5
3−2α = 0 α ∈

( 5
6 , 1

)
.

Verification of (iii): Since A3c
2
s appears with the convergence to µ̃ in (i) and o(c2

s) with
the convergence to 0 in (iii), (iii) follows from (i).

Verification of (iv): Follows immediately from the proof of part (III), the assumption

lim
s→∞
x→x?

hs(x, x?) = lim
s→∞
x→x?

hs(x) = h(x?),

and the fact that (M(dr, Zr−)−M(dr, 0)) appears as integrator instead of M(dr, 0).

Verification of (v): We will show∫ t
0(1 +Rs−)δφjjs

∑
r≤s φ

jj−1
r Zk

r−1{aλj∆Rr=(1+Rr−)α} dRs

(1 +Rt)
2
3 +δ

P→ 0.

Using∑
0≤s

1{aλj∆Rs=(1+Rs−)α} <∞ =⇒
∑
0≤r

φjj
−1

r Zk
r−1{aλj∆Rr=(1+Rr−)α} ≤ Cω <∞,

we easily get∫ t
0(1 +Rs−)δφjjs

∑
r≤s φ

jj−1
r Zk

r−1{aλj∆Rr=(1+Rr−)α} dRs

(1 +Rt)
2
3 +δ

≤ Cω
∫ t
0(1 +Rs−)δφjjs dRs

(1 +Rt)
2
3 +δ︸ ︷︷ ︸

→ 0

by φjjs = exp (− aλi
1−α(1 +Rs)1−α)Πaλi

0,s → 0.

Part (III): Our next goal is the proof of part (III), that is, verification of (1+Rt)
1
3Ct

D→
N(0, Σ̃) and, more precisely,a(1 + δ)

2c

d∑
j,k=1

TijT
T
jk(1 +Rt)−

2
3−δXk

t


i∈{1,...,d}

D−→ N(0, Σ̃)
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where

Xk
t :=

∫ t

0
(1 +Rs−)δφjjs

∫ s

0
(1 +Rr−)γ−αφjj−1

r Mk(dr, 0) dRs.

We investigate the process Xk
t using Lt :=

∫ t
0(1 + Rr−)γ−αφjj−1

r Mk(dr, 0) and Nt :=∫ t
0(1 +Rs−)δφjjs dRs. Then we have

Xk
t =

∫ t

0
(1 +Rs−)δφjjs

∫ s

0
(1 +Rr−)γ−αφjj−1

r Mk(dr, 0) dRs =
∫ t

0
Ls dNs

=
∫ t

0
Ls− dNs +

∫ t

0
∆Ls dNs = LtNt −

∫ t

0
Ns− dLs

= Nt

∫ t

0
dLs −

∫ t

0
Ns− dLs =

∫ t

0
Nt dLs −

∫ t

0
Ns− dLs

=
∫ t

0
(Nt −Ns−) dLs.

To use the representation above effectively, we show that
∫ t

0 φ
jj
s−(1 + Rs−)δ dRs can be

used instead of Nt:

Nt =
∫ t

0
(1 +Rs−)δφjjs dRs =

∫ t

0
(1 +Rs−)δ(φjjs− + ∆φjjs ) dRs

=
∫ t

0
(1 +Rs−)δ

(
φjjs− −∆

∫ s

0
aλj

s
φjjs−(1 +Rs−)−α dRs

)
dRs

=
∫ t

0
φjjs−

(
1− aλj

s∆Rs

(1 +Rs−)α
)

(1 +Rs−)δ dRs

=
∫ t

0
φjjs−(1 +Rs−)δ dRs +

∫ t

0
φjjs−ob(1)(1 +Rs−)δ dRs.

We use the crucial trick

Nt −Ns− =
∫ t

s
φjjr−(1 +Rr−)δ dRr

(?)= − 1
aλj

∫ t

s
(1 +Rr−)δ+α dφjjr

= − 1
aλj

(
(1 +Rt)δ+αφjjt − (1 +Rs)δ+αφjjs −

∫ t

s
φjjr d(1 +Rr)δ+α

)
.

Here (?), that is aλj
s = aλj1{aλj∆Rs 6=(1+Rs−)α} = aλj, holds for sufficiently large s, since

∆Rs
(1+Rs−)α → 0. We have

lim
t→∞

aλjX
k
t

(1 +Rt)
1
2 +γ+δ

= lim
t→∞

aλj
∫ t
0(Nt −Ns−) dLs

(1 +Rt)
1
2 +γ+δ

= lim
t→∞

Mk
t,1 − lim

t→∞
Mk

t,2 + lim
t→∞

Mk
t,3,

where

Mk
t,1 :=

∫ t
0(1 +Rs)δ+α(1 +Rs−)γ−αMk(ds, 0)

(1 +Rt)
1
2 +γ+δ
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Mk
t,2 :=

∫ t
0(1 +Rs−)γ−αφjj−1

s Mk(ds, 0)
(1 +Rt)

1
2 +γ−αφjj

−1

t

Mk
t,3 :=

∫ t
0(1 +Rs−)γ−αφjj−1

s

∫ t
s φ

jj
r d(1 +Rr)α+δMk(ds, 0)

(1 +Rt)
1
2 +γ+δ

.

Now we show

Mt,1
D−→ N

(
0, h(0)

1 + 2γ + 2δ

)
and Mt,2, Mt,3

P−→ 0.

If this is true, then
d∑

j,k=1

a(1 + δ)
2acλj

TijT
T
jkM

k
t,1


i∈{1,...,d}

= (1 + δ)
2c

(
TD−1T T

)
Mt,1

= 1 + δ

2c H−1
0 Mt,1

D−→ N(0, Σ̃)

is also true and by Slutsky’s theorem it follows

(1 +Rt)
1
2−γCt

D−→ N(0, Σ̃).

To show Mt,2
P−→ 0 we use

E‖Mt,2‖2 −→ 0 =⇒ Mt,2
P−→ 0.

Using the Itô isometry, we find

E
(
Mk

t,2

)2
=

E
(∫ t

0(1 +Rs−)γ−αφjj−1
s Mk(ds, 0)

)2

(1 +Rt)1+2γ−2αφjj
−2

t

= Ed
∫ t
0(1 +Rs−)γ−αφjj−1

s Mk(ds, 0)e
(1 +Rt)1+2γ−2αφjj

−2

t

≤ φjj
2

t

∫ t
0(1 +Rs−)2γ−2αφjj

−2
s hkks (0) dRs

(1 +Rt)1+2γ−2α

≤ C (1 +Rt)−1−2γ+2αφjj
2

t

∫ t

0
(1 +Rs−)2γ−αφjj

−1

s dφjj−1

s︸ ︷︷ ︸
≤ (1 +Rt)2γ−αφjj

−1

t (φjj
−1

t − φjj
−1

0 )
≤ C (1 +Rt)α−1 → 0.

To verify Mt,3
P−→ 0, we proceed as in the investigation of Mt,2. We obtain

E
(
Mk

t,3

)2
≤ C

∫ t
0(1 +Rs−)2γ−2αφjj

−2
s

(∫ t
s φ

jj
r d(1 +Rr)α+δ

)2
dRs

(1 +Rt)1+2γ+2δ .
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We use φjjs− instead of φjjs in the inner integral as φjjs = φjjs−

(
1 + aλj

s∆Rs
(1+Rs−)α

)
holds. If s

and t are sufficiently large, we get∫ t

s
φjjr− d(1 +Rr)α+δ

≤
∫ t

s
φjjr−(1 +Rr−)α+δ−1 dRr + C

∑
s<r≤t

φjjr−(1 +Rr− + ξr∆Rr)α+δ−2(∆Rr)2

≤
∫ t

s
φjjr−(1 +Rr−)α+δ−1 dRr + C

∑
s<r≤t

φjjr−(1 +Rr−)α+δ−1ob(1)∆Rr

≤ C
∫ t

s
φjjr−(1 +Rr−)α+δ−1 dRr = C |

∫ t

s

1
aλj

r (1 +Rr−)2α+δ−1 dφjjr |

≤ C 1
aλj
|
∫ t

s
(1 +Rr−)2α+δ−1 dφjjr |

(?)
≤ C

(
(1 +Rs−)2α+δ−1 + (1 +Rt)2α+δ−1

)
φjjs

with (?) because of 2α + δ − 1 ≥ 0. Consequently, we have

E
(
Mk

t,3

)2
≤ C

∫ t
0(1 +Rs−)2γ+2α+2δ−2 dRs

(1 +Rt)1+2γ+2δ︸ ︷︷ ︸+ C
∫ t

0(1 +Rs−)2γ−2α dRs

(1 +Rt)3−4α+2γ︸ ︷︷ ︸ .
→ 0 → 0

Convergence results of this type often appeared in Chapter 3. Essentially, here we
obtain them by

∞ >
∫ ∞

0
(1 +Rs−)2α−3 dRs =


∫∞

0
(1+Rs−)2γ+2α+2δ−2

(1+Rs−)1+2γ+2δ dRs∫∞
0

(1+Rs−)2γ−2α

(1+Rs−)3−4α+2γ dRs

.

Now we show

Mt,1 =
∫ t

0(1 +Rs)δ+α(1 +Rs−)γ−αM(ds, 0)
(1 +Rt)

1
2 +γ+δ

D−→ N

(
0, h(0)

1 + 2γ + 2δ

)
.

We use the same arguments as in the proof of asymptotic normality of the standard
process, that is, we use sequences. Let tn be an increasing, arbitrary but fixed sequence
with tn ↑ ∞. To use a central limit theorem, we consider the sequence Mn

s

Mn
s := (1 +Rtn)− 1

2−γ−δ
∫ stn

0
(1 +Rr)δ+α(1 +Rr−)γ−αM(dr, 0)

which is a sequence of locally square integrable martingales. Thus, we have to show

Mn
1
D−→M where M ∼ N

(
0, h(0)

1 + 2γ + 2δ

)
.



96 Asymptotic Properties of the Averaged Process Using Slowly Decaying Weights

For this purpose we use, as in the proof of Theorem 3.2, the vector-valued version of
Theorem 4 on page 435 in [19]. To apply this theorem, we have to prove the assump-
tions

(i) ∀
δ∈(0,1]

xTx1[‖x‖>δ] ∗ νM
n

1
P−→ 0,

(ii) dMne1
P−→ dMe1,

of the theorem.

Verification of (i): Here the measure νn (that is νMn) occurs, which is the compensator
of the jump measure µn of the process Mn

s . Because the assumptions of Theorem 4.2
are related to the local martingale M?

t :=
∫ t

0 M(ds, 0), which occurs in the stochastic
integral equation, we should only use its associated compensator νM? . To obtain this,
we consider xTx and 1[‖x‖>ε], which correspond to the examination of (∆Mn

s )T (∆Mn
s )

and 1[‖∆Mn
s ‖>ε]. We have

∆Mn
s = (1 +Rstn)δ+α(1 +Rstn−)γ−α

(1 +Rtn) 1
2 +γ+δ

∆M?
stn

and an easy calculation shows

(∆Mn
s )T (∆Mn

s ) = (1 +Rstn)2δ+2α(1 +Rstn−)2γ−2α

(1 +Rtn)1+2γ+2δ ∆M?T

stn∆M?
stn .

Furthermore, it follows that

[‖∆Mn
s ‖ > ε] =

[
‖(1 +Rstn)δ+α(1 +Rstn−)γ−α

(1 +Rtn) 1
2 +γ+δ

∆M?
stn‖ > ε

]

=
‖∆M?

stn‖ >
ε(1 +Rtn) 1

2 +γ+δ

(1 +Rstn)δ+α(1 +Rstn−)γ−α

 .
Hence it suffices to use, for all ε ∈ (0, 1],x ∈ Rd

∣∣∣∣ ‖x‖ > ε
(1 +Rtn) 1

2 +γ+δ

(1 +Rstn)δ+α(1 +Rstn−)γ−α


instead of [‖∆Mn

s ‖ > ε] for all ε ∈ (0, 1]. Summarizing the above inequalities, choosing
S = {1} and thus t = 1, we get

xTx1[‖x‖>δ] ∗ νM
n

t = xTx1[‖x‖>δ] ∗ νM
n

1 =
∫ 1

0

∫
Rd
xTx1[‖x‖>δ] ν

Mn(ds, dx)

≤
∫ tn

0

∫
Gεs,tn

(1 +Rs)2δ+2α(1 +Rs−)2γ−2α

(1 +Rtn)1+2γ+2δ xTx νM
?(ds, dx)
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≤
∫ tn

0
(1+Rs)2δ+2α

(1+Rs−)2α−2γ

∫
Gεs,tn

xTx νM
?(ds, dx)

(1 +Rtn)1+2γ+2δ
P−→ 0 (n→∞).

Verification of (ii): We have to show

dMni ,Mnje1
P−→ dM i,M je1

for all i, j ∈ {1, . . . , d}. We have

dMni ,Mnje1

= (1 +Rtn)−1−2γ−2δ
∫ tn

0
(1 +Rr)2δ+2α(1 +Rr−)2γ−2α dMi(dr, 0),Mj(dr, 0)es

= (1 +Rtn)−1−2γ−2δ
∫ tn

0
(1 +Rr)2δ+2α(1 +Rr−)2γ−2αhijs (0) dRs

= (1 +Rtn)−1−2γ−2δ
∫ tn

0

(
1 + ∆Rr

1 +Rr−

)2δ+2α
(1 +Rr−)2γ−2α+2δ+2αhijs (0) dRs

' hij(0)
∫ tn

0 (1 + ob(1))2δ+2α(1 +Rr−)2γ+2δ(1 + ob(1)) dRs

(1 +Rtn)1+2γ+2δ −→ hij(0)
1 + 2γ + 2δ ,

since hs(0)→ h(0), 1 + 2γ + 2δ > 0, and
∫ tn

0 (1+Rr−)2γ+2δdRs
(1+Rtn )1+2γ+2δ −→ 1

1+2γ+2δ hold. �

4.3 Discussion of Special Settings

We consider Theorem 4.2 in the discrete-time and in the Itô setting. It turns out that
the result in the discrete-time setting presented here as a corollary coincides with a
known result in the literature. In the Itô setting, we obtain a new result.
Corollary 4.1. We consider the stochastic integral equation (29) of the Itô type of
Corollary 2.1 with α ∈ (5

6 , 1). Let the Hessian be positive definite at x?, continuous
around x? and the conditions (A), (B), (C), and (E ′) be valid. We further assume, for
all i, j ∈ {1, . . . , d},

d∑
j=1

σijs (x) ≤ C(1 + ‖x‖) and lim
s→∞
x→x?

σijs (x) = σij(x?).

If f is three times differentiable at x?, γ = 1
6 , and δ > −

2
3 holds, we get

(1 + t) 1
3 (Z̄δ,t − x?) D−→ N(µ̃, Σ̃),

where

µ̃ := −c
2(1 + δ)
4 + 6δ H−1

x?

(
∂3f

(∂xi)3 (x?)
)
i∈{1,...,d}

and Σ̃ := 3(1 + δ)2

8c2(2 + 3δ) H
−1
x? h(x?)H−1

x? .
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Figure 7 shows the density of the limit distribution of the process (1 + t)1/3(Zt − x?)
considered in Corollary 4.1. The histogram is constructed by evaluation of paths of
the corresponding process at time t = 250. Also the density of the theoretical limit
distribution as given in Corollary 4.1 is presented. We choose f(x) = 0.5xTx, x ∈ R2,
a = 3, c = 1, α = 11/12, γ = 1/6, σ = I, δ = −1/3 and use the Milstein scheme (see,
e.g., [14]) to simulate paths of the process Zt. The starting points are taken from a
uniform distribution on [−4, 4]× [−4, 4].

Figure 7: This plot shows the histogram as an empirical approximation of the density
of the limit distribution of the process (1 + t)1/3Zt considered in the example
below Corollary 4.1 and the density of the theoretical asymptotic distribution
overlaid in blue.

Corollary 4.2. We consider recursion (30) of Corollary 2.2 with α ∈ (5
6 , 1). Let the

Hessian be positive definite at x?, continuous around x?, and conditions (A), (B), (C),
and (E ′′) be valid. Furthermore, we assume for all i, j ∈ {1, . . . , d}

(E ′′′) sup
n

E
(
‖Vn‖2|Fn−1

)
<∞,

(F ) E
(
V i
nV

j
n |Fn−1

)
n→∞−→ hij (1 ≤ i, j ≤ d),

and the Lyapunov-type condition

(L) sup
n

E‖Vn‖2+κ <∞ for a κ > 0.
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If f is three times differentiable at x?, γ = 1
6 , and δ > −

2
3 hold, we get

(1 + t) 1
3 (Z̄δ,n − x?) D−→ N(µ̃, Σ̃),

where

µ̃ := −c
2(1 + δ)
4 + 6δ H−1

x?

(
∂3f

(∂xi)3 (x?)
)
i∈{1,...,d}

and Σ̃ := 3(1 + δ)2

8c2(2 + 3δ) H
−1
x? hH

−1
x? .

Proof of Corollary 4.1
We reuse the notation of Corollary 2.1, Corollary 2.3, and their proofs. Since the Brow-
nian motion is continuous, it certainly fulfills the Lindeberg-type condition, because

µW ([0, t]× Γ) =
∑

0<s≤t
1{∆Ws∈Γ} =

∑
0<s≤t

1{0∈Γ} =
∑

0<s≤t
0 = 0 Γ ∈ Bd(R \ {0}) t ∈ R+,

which results in νW ([0, t]× Γ) = 0 for all Γ ∈ Bd(R \ {0}) and t ∈ R+. Since Rs := s is
continuous, we have

∆Rs = ∆s = 0 =⇒
∑
0≤s

1{aλi∆Rs=(1+Rs−)} <∞.

Since hijs (x) = ∑d
k=1 σ

ik
s (x)σjks (x) holds,

lim
s→∞
x→x?

hijs (x) =
d∑

k=1
lim
s→∞
x→x?

(
σiks (x)σjks (x)

)
=

d∑
k=1

σik(x?)σjk(x?) =
(
σ(x?)σT (x?)

)
ij

=: hij(x?)

follows. The assumptions ensure positive definiteness of Hx? and that conditions (A),
(B), (C), and (E ′) are valid. From a consideration of the assumptions of Corollary 2.3
and its proof, we easily obtain the existence of a κ > 0 such that (1 + t)κ‖Zt‖ → 0
holds. �

Proof of Corollary 4.2
We will verify the assumptions of the Theorem 4.2. For the quadratic variation we
get [∫ ·

0
Mi(ds, x)

]
t

=
[∫ ·

0
Ṽ i
s dRs

]
t

=
∑
n≤t
n∈N

V i2

n (∆Rn)2 =
∑
n≤t
n∈N

V i2

n ,

and hence for the predictable quadratic variation⌈∫ ·
0
Mi(ds, x)

⌉
t

=
∑
n≤t
n∈N

E
(
V i2

n |Fn−1
)

=
∑
n≤t
n∈N

E
(
V i2

n |Fn−1
)
.
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Therefore, we have hijn := E (V i
nV

j
n |Fn−1) and obtain convergence

hijn = E
(
V i
nV

j
n |Fn−1

)
n→∞−→ hij.

Furthermore,

∑
0≤s

1{aλi∆Rs=(1+Rs−)} =
∞∑
j=1

1{aλi=j} ≤ aλmax <∞

holds. The assumptions ensure positive definiteness of Hx? and validity of conditions
(A), (B), (C), and (E ′′). From a consideration of the assumptions of Corollary 2.4 and
its proof, we easily obtain the existence of a κ > 0 such that nκ‖Zn‖ → 0 holds.

Let us now turn to the proof of the condition of Lindeberg type. Considering a triangle
scheme, it is well-known that the Lyapunov condition implies the Lindeberg condition.
We prove validity of the Lindeberg condition using assumption (L), which corresponds
to a Lyapunov condition. We have∫ t

0
(1+Rs)2δ+2α

(1+Rs−)2α−2γ

∫
Gεs,t
‖x‖2 νM

?(ds, dx)
(1 +Rt)1+2δ+2γ ≤

∫ t
0

(1+Rs)2δ+2α

(1+Rs−)2α−2γ

∫
Rd ‖x‖2 νM

?(ds, dx)
(1 +Rt)1+2δ+2γ

=
∫ t
0

(1+Rs)2δ+2α

(1+Rs−)2α−2γ

∫
Rd ‖x‖2Ns(ω, dx) dCs

(1 +Rt)1+2δ+2γ ≤ C
∫ t
0

(1+Rs)2δ+2α

(1+Rs−)2α−2γ

∫
Rd ‖x‖2Ns(ω, dx) dRs

(1 +Rt)1+2δ+2γ

≤ C
∑btc
i=1

(1+i)2δ+2α

i2α−2γ

∫
Rd ‖x‖2 Ni(ω, dx)

(1 + btc)1+2δ+2γ ≤ C
∑btc
i=1 i

2δ+2α−2α+2γ ∫
Rd ‖x‖2 PVi|Fi−1(dx)

btc1+2δ+2γ

≤ C
∑btc
i=1(i+ 1)2δ+2γE (‖Vi‖2|Fi−1)

btc1+2δ+2γ = C
∑n
i=1 i

2δ+2γE (‖Vi‖2|Fi−1)
n1+2δ+2γ (57)

with t = n ∈ N. Here we used

νM
?(ω, dt, dx) = Nt(ω, dx) dCt, where Ct =

d∑
i=1
dM?iet

and Ni(ω,A) = P(Vi ∈ A|Fi−1). More detailed information on this can be found, for
example, in [12], [37], or [38]. To finally ensure that expression (57) converges to zero
in probability, we observe
(

E
∑n
i=1 i

2δ+2γE (‖Vi‖2|Fi−1)
n1+2δ+2γ

)1+κ/2

≤ E
∑n
i=1 i

(2δ+2γ)(1+κ/2)E
(
‖Vi‖2+δ|Fi−1

)
n(1+2δ+2γ)(1+κ/2)

=
∑n
i=1 i

(2δ+2γ)(1+κ/2)E‖Vi‖2+δ

n(1+2δ+2γ)(1+κ/2) ≤
(

sup
j

E‖Vj‖2+κ
) ∑n

i=1 i
(2δ+2γ)(1+κ/2)

n(1+2δ+2γ)(1+κ/2)

≤ C
∑n
i=1 i

(2δ+2γ)(1+κ/2)

n(1+2δ+2γ)(1+κ/2)
n→∞−→ 0
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which follows by Kronecker’s lemma and
∞∑
i=1

i(2δ+2γ)(1+κ/2)

i(1+2δ+2γ)(1+κ/2) =
∞∑
i=1

i−(1+κ/2) <∞ =⇒ lim
n→∞

∑n
i=1 i

(2δ+2γ)(1+κ/2)

n(1+2δ+2γ)(1+κ/2) = 0.

�
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5 Asymptotic Properties of the Averaged Process
Using Constant Weights

5.1 Asymptotic Properties of the Averaged Robbins-Monro
Process in the Linear Case

In this section we discuss what happens in the case of a constant weight as := a. To
study this more precisely, we consider a continuous-time version of a linear Robbins-
Monro process that is the solution of the stochastic integral equation

Zt = Z0 − a
∫ t

0
(AZs− − b) dRs − aMt. (58)

As before we assume the existence of a strong solution on [0,∞). We call this solution
the linear Robbins-Monro process with constant weights.

5.1.1 Unavailable Consistency

For weights of the form as := a(1+Rs−)α where 0 < α ≤ 1 instead of a constant weight
a, the solution converges, under some assumptions, almost surely to the solution x? =
A−1b. But what happens in the case of constant weights? To answer this question, we
consider the process under simple conditions. In doing so, we study the one-dimensional
version with a matrix A and a vector b that are degenerated to the value 1 and 0,
respectively. Furthermore, let Z0 be deterministic, Rs := bsc, and Ms := ∑bsc

i=1Xi with
i.i.d sequence (Xi), which satisfies P[Xi = 1] = 1

2 and P[Xi = −1] = 1
2 . We have

Zn = Z0 − a
n∑
i=1

Zi−1 − aMn = Z0 − a
n−1∑
i=0

Zi − a
n−1∑
i=0

Xi.

Using

Zn+1 − Zn = −aZn − aXn =⇒ Zn+1 = (1− a)Zn − aXn,

the recursion can be solved by

Zn = (1− a)nZ0 − a
n∑
i=1

(1− a)i−1Xn−i.

Since we are interested in the asymptotic behavior and in the consistency in particular,
we consider the first two moments of Zn instead of almost sure convergence. We have

EZn = (1− a)nZ0 − a
n∑
i=1

(1− a)i−1EXn−i = (1− a)nZ0
n→∞−→ 0,
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if |1− a| < 1 holds. Furthermore, we find

E(Zn − EZn)2 = E
(
−a

n∑
i=1

(1− a)i−1Xn−i

)2

= a2
n∑

i,j=1
(1− a)i+j−2 E (Xn−iXn−j)︸ ︷︷ ︸ = a2

n∑
i=1

(1− a)2(i−1)EX2
n−i

= 0 for i 6= j

= a2
n−1∑
i=0

(1− a)2i = a2 1− (1− a)2n

2a− a2 → a

2− a 6= 0.

Therefore, Zn is an asymptotically unbiased estimator for x?, which equals 0 in our
example. However, the variance of Zn does not converge to 0 and hence the process
cannot be a consistent estimator for x?. More precisely, the process fluctuates around
the point we are looking for. The same behavior is visible in the continuous-time setting.
At this point, we content ourselves to Figure 8. This figure shows a simulated path of
the process Zt of (58) in the Itô setting. The large-scale fluctuation of the process Zt
around 0 is clearly visible. We choose A = I, b = 0, Z0 = (5, 6)T , as = 1, Mt = Wt with
a two-dimensional Brownian motion Wt and use the Milstein scheme (see, e.g., [14])
to simulate a path of the resulting process Zt. As this simple version of a Robbins-
Monro process is not consistent, further research in this direction is superfluous, not to
mention a Kiefer-Wolfowitz version. Surprisingly, in considering the averaged process
we will find some nice features. The question of the asymptotic behavior of the averaged
process will be answered in the next section.
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Figure 8: Simulation of a path of the Robbins-Monro process (58) in the Itô setting.

5.1.2 Asymptotic Normality

In the previous section we dwelt on the question of whether the linear Robbins-Monro
process with constant weights, which is the solution of the integral equation

Zt = Z0 − a
∫ t

0
(AZs− − b) dRs − aMt,

is consistent. Here, we investigate the averaged process, which we obtain using the
above process. Theorem 5.1 states a result for asymptotic normality of the averaged
process (59), the appearing rate described by

√
Rt is the maximum achievable.

Remark 5.1. We emphasize that an advantage of using constant weights is the faster
movement. If we use common weights at := a(1 + Rt−)α with 0 < α ≤ 1, then the
condition

∫∞
0 as dRs =∞ ensures that arbitrary distant points x? can be reached. This

condition is an essential to obtain consistency. But for decaying weights the process
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moves slowly for large t or large Rt. Hence a good choice of the starting point is
important, because, if it is far away from x?, the process will still reach x?, but needs
a long time. Of course, in an asymptotic consideration this may be obscured. Thus
from a theoretical point of view it is not really a problem, but from a practical one it
really matters. As we mentioned above, the process with constant weights has a faster
movement but, as a restriction, we have to say that the parameter a, which defines the
speed, cannot be chosen freely. We will see that the condition 0 < a < 2

Jλmax
ensures

the stability of the process if jumps exist. Here we again encounter the problem of
maximizing a, while also keeping to the conditions. This problem cannot be solved
without knowing λmax, which is generally unknown.

In the following, we investigate the averaged process Z̄t

Z̄t := 1
1 +Rt

∫ t

0
Zs dRs (59)

with Zs as the solution of the stochastic integral equation (58). In view of the objects
appearing in (58), we note the following restrictions. Let A be a positive definite
matrix such that T TAT = D holds where D is a diagonal matrix with its diagonal
entries λi. Furthermore, let Mt be a locally square integrable martingale and Rt be the
process described in Chapter 2. In view of applying Theorem 5.1 to a special Kiefer-
Wolfowitz process, the assumption on the matrix A is not restrictive, because in such
an application the Hessian plays the part of the matrix A. The following theorem states
asymptotic normality of the process Z̄t. Figure 9 shows how the process Z̄t (59) works
in the Itô setting. There, a simulated path of the process Z̄t as well as of the underlying
process Zt of (58) are depicted.

Theorem 5.1. Let x? be the unique solution of Ax = b. We assume a ∈ R+, ∆Rt ≤
C(ω) <∞, aλj∆Rt 6= 1 for all j ∈ {1, . . . , d}, and

(N) a
∫ t

0 Tφ
−1
s

∫ t
s φr dRr T

T dMs

(1 +Rt)
1
2

D−→ N(0,Σ),

where φijt := Et(−aλiR) δij. Then we have

(1 +Rt)
1
2 (Z̄t − x?) D−→ N(0,Σ).

We discuss condition (N) appearing in Theorem 5.1 in Section 5.3 to get a better
understanding of it.
Remark 5.2. In the theorem above, condition (N) saves us some work. Considering the
condition in more detail, the question arises of whether it can be simplified. If we had
the process φr− instead of φr in

∫ t
s φr dRr, we could easily simplify the condition since∫ t

s
φiir− dRr = 1

aλi
(φs − φt)



106 Asymptotic Properties of the Averaged Process Using Constant Weights

−1.5 −1.0 −0.5  0.0  0.5  1.0  1.5

−
1.

5
−

1.
0

−
0.

5
 0

.0
 0

.5
 1

.0
 1

.5

  0

 20

 40

 60

 80

100

120

140

160

x

T
im

e

y

Figure 9: The plot shows the simulated path (red) of the process (58) and the corre-
sponding averaged path (blue) of process (59).

holds. As a result, we will see later on that proving the condition is very easy in the
case that Rt is a continuous process or a pure-jump process. In the case of a general
process Rt, we have an extra process

∫ t
s ∆φr dRr. If we have no knowledge about the

process Rt, φr is a product of a continuous process and a pure-jump process, hence the
calculation of such an integral is not easy. However, if we have some knowledge of the
process Rt, it may be possible to calculate the integral.
Remark 5.3. The assumptions that the matrix A is symmetric and aλj∆Rt 6= 1 for all
j ∈ {1, . . . , d} are just for simplicity and can easily be relaxed.

Proof of Theorem 5.1
To prove asymptotic normality of the process Z̄t, we apply Lemma 3.3 to obtain another
representation of (58). Choose

(AZs− − b) instead of (Hx?Zs− + V (Zs−, cs)),
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α = γ = 0, 2c = 1, and M(dt, Zt−) = dMt. With these choices the stochastic integral
equation (5) leads to (58), which we consider here. We get the representation

Zt = TφtT
TZ0 − aTφt

∫ t

0
φ−1
s T T dMs + aTφt

∫ t

0
φ−1
s dRs T

T b (60)

where the process φt is given by

φiit := Et(−
∫ ·

0
aλi dRs) = Et(−aλiRt).

Here λi is the i-th eigenvalue of the matrix A and T TAT = D holds. Furthermore, we
have φiit− = exp(−aλiRc

t)
∏
s<t(1− aλi∆Rs) and

∆φiit = φiit − φiit− = exp(−aλiRc
t)
(∏
s<t

(1− aλi∆Rs)
)

(1− aλi∆Rt − 1)

= −aλi∆Rtφ
ii
t−. (61)

Now we consider the averaged process Z̄t in more detail. We obtain

Z̄t = (1 +Rt)−1
∫ t

0
Zs dRs

= T (1 +Rt)−1
∫ t

0
φs dRsT

TZ0 − aT (1 +Rt)−1
∫ t

0
φs

∫ s

0
φ−1
r T T dMr dRs

+ (1 +Rt)−1aT
∫ t

0
φs

∫ s

0
φ−1
r dRr dRs T

T b.

To prove the assertion of the theorem, that is (1 + Rt)
1
2 (Z̄t − x?) D→ N(0,Σ), we will

show

(I) T (1 +Rt)−
1
2

∫ t

0
φs dRsT

TZ0
P→ 0

(II) (1 +Rt)
1
2

(
(1 +Rt)−1aT

∫ t

0
φs

∫ s

0
φ−1
r dRr dRs T

T b− x?
)

P→ 0

(III) aT (1 +Rt)−
1
2

∫ t

0
φs

∫ s

0
φ−1
r T T dMr dRs

D→ N(0,Σ).

Using Slutsky’s theorem, we then get the desired result.

Part (I): We have

|(1 +Rt)−
1
2

∫ t

0
φiis dRs| = |(1 +Rt)−

1
2

∫ t

0
(φiis− + ∆φiis ) dRs|

= (1 +Rt)−
1
2 |
∫ t

0
(1− aλi∆Rs)φiis− dRs|

≤ |1− aλiC(ω)|
aλi

1− φiit
(1 +Rt)

1
2
→ 0.
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Part (II): We observe

∫ s

0
φii
−1

r dRr = 1
aλi

∫ s

0
aλiφ

ii−1

r dRr = 1
aλi

∫ s

0
dφii−1

r = φii
−1

s − 1
aλi

and obtain

‖(1 +Rt)−1aT
∫ t

0
φs

∫ s

0
φ−1
r dRr dRs T

T b− x?‖

= ‖(1 +Rt)−1T
∫ t

0
φs (φ−1

s − I)D−1 dRs T
T b− x?‖

≤ ‖ Rt

(1 +Rt)
TD−1T T b− x?‖+ ‖(1 +Rt)−1T

∫ t

0
φs dRsD

−1T T b‖

= ‖ Rt

(1 +Rt)
A−1b− x?‖+ Cω(1 +Rt)−1 = ‖

(
Rt − (1 +Rt)

(1 +Rt)

)
x?‖+ Cω(1 +Rt)−1

= Cω(1 +Rt)−1.

Part (III): We have to verify

a (1 +Rt)−
1
2

∫ t

0
Tφs

∫ s

0
φ−1
r T T dMr dRs

D→ N(0,Σ).

Here the problem is that the integrand is a local martingale and not the integrator.
Hence in this representation it is hard to prove asymptotic normality. Therefore, we
will use the product rule to rewrite the above process. We rewrite the process as stated
above and explain the steps. First, we consider

a
d∑

j,k=1
TijT

T
jk(1 +Rt)−

1
2

∫ t

0
φjjs

∫ s

0
φjj

−1

r dMk
r dRs︸ ︷︷ ︸ .

=: Xt

Then we deal with the process Xt more precisely using Lt :=
∫ t

0 φ
jj−1
r dMk

r and Bt :=∫ t
0 φ

jj
s dRs. Using the representation

Xt =
∫ t

0
Ls dBs =

∫ t

0
Ls− dBs +

∫ t

0
∆Ls dBs

= BtLt −
∫ t

0
Bs− dLs − [B,L]t +

∫ t

0
∆Ls dBs

= BtLt −
∫ t

0
Bs− dLs =

∫ t

0
(Bt −Bs−) dLs

=
∫ t

0
φjj

−1

s

∫ t

s
φjjr dRr dMk

s
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and the assumption (N), we obtain

a(1 +Rt)−
1
2

∫ t

0
Tφs

∫ s

0
φ−1
r T T dMr dRs = a(1 +Rt)−

1
2

∫ t

0
Tφ−1

s

∫ t

s
φr dRr T

T dMs︸ ︷︷ ︸ .
D−→ N(0,Σ)

Hence we have proven the conclusion of the theorem. �

5.2 Asymptotic Normality of the Averaged Kiefer-Wolfowitz
Process in the Case of a Quadratic Regression Function

Here we discuss the averaged Kiefer-Wolfowitz process with constant weights using the
discussion of the averaged linear Robbins-Monro process in the previous section. We
consider the stochastic integral equation (5) with constant weights at := a, ct := c that
is α = γ = 0 and the simplification M(ds, Zs−) = dMs. From (5) we get the stochastic
integral equation

Zt = Z0 − a
∫ t

0

1
2c
{
f(Zs− + cei)− f(Zs− − cei)

}
i∈{1,...,d}

dRs −
∫ t

0

a

2c dMs. (62)

We focus our attention on quadratic regression functions f with

f(x) = xTAx+ bTx+ d (63)

and a symmetric, positive definite matrix A which allows us to apply Theorem 5.1.
Then

∇f(x) = 2Ax+ b, H = 2A,

and there exists a T such that T THT = D holds where D is a diagonal matrix with its
diagonal entries λi. Furthermore, we obtain

1
2c{f(x+ cei)− f(x− cei)} =

d∑
j=1

Ajixj +
d∑
j=1

Aijxj + bi = (2Ax+ b)i

and thus {
f(Zs− + cei)− f(Zs− − cei)

2c

}
i∈{1,...,d}

= HZs− + b. (64)

This representation is useful to apply Theorem 5.1. The following theorem gives the
asymptotic behavior of the averaged Kiefer-Wolfowitz process with constant weights in
the case of a quadratic regression function.
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Theorem 5.2. Let f be a function of type (63) with the stationary point x? and Z̄t be
the averaged process (59), which uses the unique solution of (62). We assume a ∈ R+,
c ∈ R+, ∆Rt ≤ C(ω) <∞, aλj∆Rt 6= 1 for all j ∈ {1, . . . , d}, and

(M)
a
2c
∫ t
0 Tφ

−1
s

∫ t
s φr dRr T

T dMs

(1 +Rt)
1
2

D−→ N(0,Σ)

where φijt := Et(−aλiR) δij. Then we have

(1 +Rt)
1
2 (Z̄t − x?) D−→ N(0,Σ).

Remark 5.4. In view of the validity of (M) and the precise form of Σ the figure of Rt is
crucial. In Corollary 5.1 and its proof is a verification of (N), that is nearly the same
as (M), done in the standard setting, which means the recursion with Rt = btc, in the
Itô setting with Rt = t and in a further setting. As we considered this condition in
Corollary 5.1 we do not focus our attention on it again.
Remark 5.5. Considering (M) we recognize the influence of 1

2c on the matrix Σ.

Proof of Theorem 5.2
Without loss of generality we assume x? = 0 and therefore implicitly b = 0. Since we
consider Z̄t − x?, this is not restrictive. Furthermore we assume in a first step 2c = 1.
Applying (64) to (62) leads to

Zt = Z0 − a
∫ t

0
HZs−dRs − aMt,

which equals (58) using H instead of A. We apply Theorem 5.1 on Zt. Validity of the
assumptions in Theorem 5.1 follows from the assumptions in Theorem 5.2 directly. In
the next step we examine the case of a general c and get

Zt = Z0 − a
∫ t

0
HZs−dRs −

a

2cMt.

Considering the proof of Theorem 5.1, we find the process a
2cMt instead of aMt, which

effects only assumption (N). Hence we have proven the theorem since the assumption
(M) includes the term a

2c and the assumption (N) includes the term a. �

5.3 Discussion of Special Settings

Here we discuss Theorem 5.1 in the case of special figures of Rt and present the results
in Corollary 5.1. In these special settings we eliminate the technical condition (N),
which we need in Theorem 5.1.
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Corollary 5.1. We consider Theorem 5.1 in the case of a

(a) continuous deterministic process (Rt)t≥0, that is, ∆Rs ≡ 0.

(b) deterministic pure-jump process (Rt)t≥0 with fixed jump heights J , that is, Rc
s ≡ 0

and ∆Rs = J1{∆Rs 6=0}. Here we assume a < 2
λmaxJ

.

(c) process Rt := t+ btc, which is a sum of a continuous and a pure-jump process, a
degenerated matrix A = λ, and a one-dimensional process Mt. Here we assume
a < 2

λ
.

If in each case we have

(L)
∫ t

0
∫
Gεt
‖x‖2 νM(ds, dx)

1 +Rt

P−→ 0 (t→∞)

for all ε ∈ (0, 1) where Gε
t := {x ∈ Rd : ‖x‖ > ε(1 + Rt)

1
2}, hs is bounded and

lims→∞ hs = h with dMet =
∫ t

0 hs dRs, then condition (N) is fulfilled. We further have

(1 +Rt)
1
2 (Z̄t − x?) D−→ N(0,Σ)

where Σ := A−1hA−1 in part (a), part (b), and

Σ :=
(
λ−2 − a

λ(1− aλ) + a3λ
e2aλ(1 + a2λ2)− (1− aλ)2

4(1− aλ)2(1− aλ− eaλ)2

)
h

in part (c).

Figure 10 shows the density of the limit distribution of the processes (1 + t)1/2(Z̄t−x?)
considered in Corollary 5.1. The histogram is constructed by evaluation of paths of
the corresponding process at the time t = 250. The density of the theoretical limit
distribution as given in Corollary 5.1 are presented as well. We choose A = 0.5I, a = 2
and use the Milstein scheme (see, e.g., [14]) to simulate paths of the process Zt. The
starting points are taken from a uniform distribution on [−4, 4]× [−4, 4].
Remark 5.6. We see that the Itô version of (58) is included, since Rt = t is continuous
and the Brownian motion that appears as a martingale is also continuous. Furthermore,
the standard recursion of (58) is included, since Rt = btc is a pure-jump process with
the unique jump height 1. To get an indication of how to verify the Lindeberg-type
condition (L), it is helpful to consider Corollaries 3.2, 4.2, and their proofs.
Remark 5.7. In view of the proof of Theorem 5.1 and Corollary 5.1, it is easy to see
that the asymptotic results also hold for processes with jumps that “die” out.
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Remark 5.8. In part (c) of Corollary 5.1 we considered the 1-dimensional case. With
exactly the same ideas and methods it is possible to prove a d-dimensional version of
the statement. In the case of a continuous process (see (a)) or a jump process (see (b))
we see that the constant weight a does not influence the variance matrix. This is a
well-known phenomenon in the discrete-time setting (see [11] and [32]). But considering
a mixture as in part (c), the special feature is that the constant weight a influences the
matrix.
Remark 5.9. The boundedness condition on hs is just for simplicity and can easily be
relaxed.

Figure 10: This plot shows the histogram as an empirical approximation of the density
of the limit distribution of the process considered in Corollary 5.1(a) and
the density of the theoretical asymptotic distribution overlaid in blue.

Proof of Corollary 5.1
We will verify the corollary using Theorem 5.1. Essentially we have to prove condition
(N). First we consider φt, which appears in (N), in more detail. Let J be the jump
height of the process Rs. Using ∆Rs = J1{∆Rs 6=0} and #s := Rds

J
, we get

φiit = Et(−aλiRt) = exp(−aλiRt)
∏
s≤t

(1 + ∆(−aλiRs)) exp(−∆(−aλiRs))

= exp(−aλiRt)
∏
s≤t

∆Rs 6=0

(1− aλiJ)
∏
r≤t

exp(aλi∆Rr)
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= exp(−aλiRt)(1− aλiJ)#t exp(aλi
∑
r≤t

∆Rr)

= exp(−aλiRt)(1− aλiJ)#t exp(aλiRd
t ) = exp(−aλiRc

t) (1− aλiJ)#t , (65)

and hence

φiit = exp(−aλiRc
t) (1− aλiJ)#t where

(1− aλiJ)#t → 0 if #t →∞
(1− aλiJ)#t → G <∞ if #t < K <∞.

It still remains to prove the indicated convergences. Here we distinguish between #t →
∞ and #t < K. In the case #t < K there is nothing to verify. In the case #t → ∞
we have

(1− aλiJ)#t → 0 ⇐⇒ |1− aλiJ | < 1.

We use

0 < a <
2

λmax J
=⇒ |1− aλiJ | < 1

and obtain convergence. Furthermore, we have φiit− = exp(−aλiRc
t)
∏
s<t(1−aλi∆Rs),

∆φiit = φiit − φiit− = exp(−aλiRc
t)
(∏
s<t

(1− aλi∆Rs)
)

(1− aλi∆Rt − 1)

= −aλi∆Rtφ
ii
t−, (66)

and φii−1
t = exp(aλiRc

t) (1− aλiJ)−#t .

(a) Case: Rt is a continuous deterministic process. This is the easiest case as we already
mentioned in the remark. Since the process Rt is continuous, we get for condition (N)

a(1 +Rt)−
1
2

∫ t

0
Tφ−1

s

∫ t

s
φr dRr︸ ︷︷ ︸ T T dMs

=
∫ t

s
φr− dRr = −1

a
D−1

∫ t

s
dφr = 1

a
(D−1φs −D−1φt)

= (1 +Rt)−
1
2

∫ t

0
Tφ−1

s D−1φs T
T dMs − (1 +Rt)−

1
2

∫ t

0
Tφ−1

s D−1φt T
T dMs

(?)= TD−1T T︸ ︷︷ ︸
∫ t

0 dMs

(1 +Rt)
1
2︸ ︷︷ ︸−TD

−1 φt
∫ t

0 φ
−1
s T T dMs

(1 +Rt)
1
2︸ ︷︷ ︸ .

A−1 = D−→ N(0, h) P−→ 0

Here (?) holds, since φ, D, and D−1 are diagonal matrices. Using Slutsky’s theorem, we
get the desired result D−→ N(0,Σ), where Σ = A−1hA−1. First, we verify convergence
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in probability to 0 of the third indicated term. We use an L2-view, because we want to
apply the Itô isometry. It is sufficient to verify

E
(∫ t

0 φ
jj−1
s dMk

s

)2

(1 +Rt)φjj
−2

t

= Ed
∫ t
0 φ

jj−1
s dMk

s e
(1 +Rt)φjj

−2

t

= E
∫ t
0 φ

jj−2
s hkks dRs

(1 +Rt)φjj
−2

t

≤ C
∫ t
0 φ

jj−1
s dRs

(1 +Rt)φjj
−1

t

= C φjj
−1

t

(1 +Rt)φjj
−1

t

= C(1 +Rt)−1 → 0.

Now we verify convergence in distribution of the second indicated term. To this end
we restrict ourselves to sequences and use a variant of a central limit theorem (see part
(III) of the proof of Theorem 3.2 or 4.2). Mainly we have to prove the convergence of
the predictable quadratic variation⌈ ∫ ·tn

0 dMs

(1 +Rtn) 1
2

⌉ij
1

=
∫ tn
0 ddMes
(1 +Rtn) =

∫ tn
0 hijs dRs

(1 +Rtn) = hij
∫ tn

0 (1 + ob(1)) dRs

(1 +Rtn)
P−→ hij

and the Lindeberg-type condition. With Mn
s := (1 +Rtn)− 1

2Mstn we get for ε ∈ (0, 1)∫ 1

0

∫
Rd
‖x‖2

1{‖x‖>ε} ν
Mn(ds, dx) ≤

∫ tn
0
∫
Gεtn
‖x‖2 νM(ds, dx)
1 +Rtn

P−→ 0

where Gε
tn := {x ∈ Rd : ‖x‖ > ε(1 +Rtn) 1

2}.

(b) Case: Rt is a deterministic pure-jump process with fixed jump heights J . The process
Rt is a pure-jump process with constant jump height J , that is, ∆Rs = J1{∆Rs 6=0}. As
we have already mentioned, we have to use a different strategy to in part (a) because
here we have jumps and hence we get a further process

∫ t
s ∆φr dRr, which creates some

problems. We have

a(1 +Rt)−
1
2

∫ t

0
Tφ−1

s

∫ t

s
φr dRr T

T dMs

=
∫ t
0 T

(
aφ−1

s

∫ t
s φr dRr −D−1

)
T T dMs

(1 +Rt)
1
2

+
∫ t

0 TD
−1 T T dMs

(1 +Rt)
1
2

=
∫ t
0 T

(
aφ−1

s

∫ t
s φr dRr −D−1

)
T T dMs

(1 +Rt)
1
2︸ ︷︷ ︸+A−1 Mt −M0

(1 +Rt)
1
2︸ ︷︷ ︸ .

P−→ 0 D−→ N(0, h)

Thus we get the desired conclusion D−→ N(0, h), where Σ = A−1hA−1 using Slutsky’s
theorem. The proof of convergence in distribution can essentially be done as in (a).
Now we verify convergence in probability to 0. We use a L2-argument and obtain

lim
t

E
(∫ t

0 ( aφii−1
s

∫ t
s φ

ii
r dRr − 1

λi
) dMk

s

)2

(1 +Rt)
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= lim
t

E
∫ t
0

(
aφii

−1
s

∫ t
s φ

ii
r dRr − 1

λi

)2
hkks dRs

(1 +Rt)

= C lim
t

∫ t
0

(
aφii

−1
s

∫ t
s φ

ii
r dRr − 1

λi

)2
dRs

(1 +Rt)
(?)= 0.

The verification of (?) remains. Usage of the fact that Rt is a jump process, (65), and
(66) gives

φiit = (1− Jaλi)#t and ∆φiit = −aλi∆Rtφ
ii
t−.

By summing up a finite geometric series, we obtain

φii
−1

s

∫ t

s
φiir dRr = J(1− Jaλi)−#s

∑
s≤r≤t
∆Rr 6=0

(1− Jaλi)#r = J(1− Jaλi)−#s

#t∑
k=#s

(1− Jaλi)k

= J(1− Jaλi)−#s

 #t∑
k=0

(1− Jaλi)k −
#s−1∑
k=0

(1− Jaλi)k


= J

Jaλi
(1− Jaλi)−#s

(
(1− Jaλi)#s − (1− Jaλi)#t+1

)
= 1
aλi

(
1− (1− Jaλi)#t−#s+1

)
,

and hence

φii
−1

s

∫ t

s
φiir dRr = 1

aλi
− 1
aλi

(1− Jaλi)#t−#s+1,

if #s− 6= #t holds, and 0 otherwise. Now convergence follows∫ t
0

(
aφii

−1
s

∫ t
s φ

ii
r dRr − 1

λi

)2
dRs

(1 +Rt)
= J

a2λ2
i

∑
0≤s≤t 1{∆Rs 6=0}(1− Jaλi)2#t−2#s+2

(1 +Rt)

= C
∑#t

k=0(1− Jaλi)2k

(1 +Rt)
= C(1 +Rt)−1 t→∞−→ 0,

because the implication

#t = #s− ⇒ Rr ≡ Rd
r is constant on [s, t]

is true.

(c) Case: Rt := t + btc. We consider the process Rt = t + btc, which is a sum of a
continuous process Rc

t = t and a pure-jump process Rd
t = btc. We have∫ t

s
φr dRr =

∫ t

s
φr− dRr +

∫ t

s
∆φr dRr = φs

aλ
− φt
aλ
− aλ

∫ t

s
∆Rrφr− dRr
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= φs
aλ
− φt
aλ
− aλ

btc∑
j=dse

e−aλj(1− aλ)j−1

= φs
aλ
− φt
aλ

+ c̃

(
1− aλ
eaλ

)dse
− c̃

(
1− aλ
eaλ

)btc+1

where c̃ := aλeaλ

(1−aλ)(1−aλ−eaλ) , and thus

φ−1
s

∫ t

s
φr dRr = 1

aλ
+ c̃e−aλ(dse−s)(1− aλ)dse−bsc − φ−1

s φt
aλ

− c̃φ−1
s

(
1− aλ
eaλ

)btc+1

.

Here we see clearly why the situation changes, if we consider a process which is a
mixture of a continuous and a pure-jump process. Now we separate the first two and
the last two processes, since the first two processes influence the matrix and the last
two do not. We write

a(1 +Rt)−
1
2

∫ t

0
φ−1
s

∫ t

s
φr dRr dMs = M̃t − M̂1

t − M̂2
t ,

where

M̃t := a(1 +Rt)−
1
2

∫ t

0

( 1
aλ

+ c̃ e−aλ(dse−s)(1− aλ)dse−bsc
)

dMs

M̂1
t := λ−1(1 +Rt)−

1
2

∫ t

0
φ−1
s φt dMs

M̂2
t := ac̃(1 +Rt)−

1
2

∫ t

0
φ−1
s

(
1− aλ
eaλ

)btc+1

dMs.

We will show

(i) M̂1
t

P−→ 0 (ii) M̂2
t

P−→ 0 (iii) M̃t
D−→ N(0,Σ).

Analyzing the proof of part (a) and part (b), (i) follows easily. We consider

φ−1
s

(
1− aλ
eaλ

)btc+1

=
(

1− aλ
eaλ

)
φ−1
s e−aλbtc(1− aλ)btc

=
(

1− aλ
eaλ

)
φ−1
s φte

−aλ(t−btc) ≤ C φ−1
s φt

to verify (ii) and it turns out that (i) implies (ii). The proof of (iii) remains. Here we
take the scheme we used several times before, that is, we restrict ourselves to sequences
and apply Theorem 4 on page 435 in [19]. We consider the sequence of locally square
integrable martingales

M̃n
s := a(1 +Rtn)− 1

2

∫ stn

0

( 1
aλ

+ c̃ e−aλ(dre−r)(1− aλ)dre−brc
)

dMr.
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The predictable quadratic variation satisfies

dM̃ne1 = a2(1 +Rtn)−1
∫ tn

0

( 1
aλ

+ c̃e−aλ(dse−s)(1− aλ)dse−bsc
)2
hs dRs.

Since (1+Rtn)−1 appears, hs → h, and h is bounded, we substitute hs by h. We expand
the integrand and obtain afterwards three processes. In view of the first process, we
get

1
λ2

∫ tn
0 hs dRs

1 +Rtn

→ h

λ2 .

In view of the second process, we have

2ahc̃
λ

∫ tn
0 e−aλ(dse−s)(1− aλ)dse−bsc dRs

1 +Rtn

= 2ahc̃
λ

(∫ tn
0 e−aλ(dse−s)(1− aλ)dse−bsc ds

1 +Rtn

+
∫ tn

0 e−aλ(dse−s)(1− aλ)dse−bsc dbsc
1 +Rtn

)

(?)= 2ahc̃
λ

(1− aλ)
∑btnc
i=1

∫ i
i−1 e

−aλ(dse−s) ds+
∫ tn
btnc e

−aλ(dse−s) ds
1 +Rtn

+
∫ tn

0 dbsc
1 +Rtn


= 2ahc̃

λ

1− aλ
eaλ

btnc
∫ 1
0 e

aλs ds
1 +Rtn

+ (1− aλ)
∫ tn
btnc e

−aλ(dse−s) ds
1 +Rtn

+ btnc
1 +Rtn


= 2ahc̃

λ

btnc
1 + tn + btnc︸ ︷︷ ︸

(1− aλ)(eaλ − 1)
aλeaλ

+
∫ tn
btnc e

−aλ(dse−s) ds
btnc︸ ︷︷ ︸(1− aλ) + 1


→ 1

2 | · | ≤ Cbtnc−1 → 0

−→ ahc̃

λ

(
(1− aλ)(eaλ − 1)

aλeaλ
+ 1

)
= − a

λ(1− aλ)h

with (?) as dse − bsc = 1 for s /∈ N and s ∈ N does not matter, because we integrate
with respect to the Lebesgue measure. Furthermore dse − bsc = dse − s = 0 holds for
s ∈ N. In view of the last process, we have

a2c̃2h

∫ t
0 e
−2aλ(dse−s)(1− aλ)2(dse−bsc) dRs

1 +Rt

→ a3λ
e2aλ(1 + a2λ2)− (1− aλ)2

4(1− aλ)2(1− aλ− eaλ)2 h.

We add the results above and obtain the variance term, which appears in the limit
distribution. It remains to verify the Lindeberg condition. Considering |∆M̃n

s |2 and
1{|∆M̃n

s |>δ}, we obtain

∆M̃n
s = a(1 +Rtn)− 1

2

( 1
aλ

+ c̃ e−aλ(dstne−stn)(1− aλ)dstne−bstnc
)

∆Mstn
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≤ C (1 +Rtn)− 1
2 ∆Mstn

with C independent of t. Thus it is sufficient, ifMt in connection with (1+Rt)−
1
2 fulfills

the Lindeberg condition, which is ensured by assumption. �
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Notations

{X + ei}i∈{1,...,d} another notation for X +~1

e1, . . . , ed the unit vectors of the Euclidean space Rd

Wt Brownian motion

Mloc the collection of local martingales

M2
loc the collection of locally square integrable martingales

〈·, ·〉 the usual inner product of the Euclidean space Rd

[X]t quadratic variation of the process X

‖ · ‖ the usual norm of the Euclidean space Rd

[X, Y ]t covariation of the processes X and Y

dXet predictable quadratic variation of the process X

dX, Y et predictable covariation of the processes X and Y

M c
t purely continuous part of the local martingale Mt (M c

t⊥Md
t )

Md
t purely discontinuous part of the local martingale Mt (M c

t⊥Md
t )

Rc
t continuous part of the process Rt

Rd
t sum of the jumps of the process Rs up to the time t

∆Xt jump height of the process X at time t

{X →} set where X∞ exists and is a finite random variable

{·}i short notation for {f(Zs− + csei)− f(Zs− − csei)}

{·}· another notation for {{·}i}i∈{1,...,d}
Xt− left continuous version of the process Xt

∇f(x) gradient of the function f at the point x

∇if(x) i-th coordinate of ∇f(x)

E(M)t stochastic exponential of the process M

1 indicator function

Hx Hessian at the point x of a considered function f

λi i-th eigenvalue of the Hessian
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λmin lowest eigenvalue of the Hessian

λmax highest eigenvalue of the Hessian

o(·) Landau symbol

O(·) Landau symbol

E expectation

P probability measure

ZD
t process Zt stopped at time D

I identity matrix

T T transpose of the matrix T

δij Kronecker’s delta (equals one if i = j and zero otherwise)

b·c Gauss bracket

max maximum

sup supremum

inf infimum
P→ convergence in probability
D→ convergence in distribution

' asymptotically equal

bP set of bounded predictable processes

P set of predictable processes

V set of all real-valued processes that are càdlàg, adapted, starting at
zero and whose each path has a finite-variation on a finite interval

V+ set of all real-valued processes that are càdlàg, adapted, starting at
zero and whose each path is non-decreasing
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