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Abstract

We experimentally investigate how the collapse dynamics of a 52Cr Bose-Einstein
condensate depends on the external harmonic trap geometry. When the collapse
is initiated by reducing the s-wave scattering length below its critical value, a
complex dynamics is observed, involving a d-wave symmetric explosion. We find
good agreement between our experiments and simulations of the Gross-Pitaevskii
equation including 3-body losses. In order to probe the phase-coherence of collapsed
condensates we induce the collapse in several condensates simultaneously and let
them interfere.





Zusammenfassung und wissenschaftlicher Kontext

Gegenstand der Dissertation ist die experimentelle Untersuchung der Kollapsdynamik eines
dipolaren Bose-Einstein Kondensates bestehend aus 52Cr Atomen. Der Schwerpunkt liegt
dabei auf der Beobachtung und Analyse der wechselwirkungsinduzierten Instabilität und
der damit verbundenen zeitlichen und räumlichen Entwicklung des Kondensates. Ziel der
Dissertation ist es zum allgemeinen Verständnis dipolarer Quantensysteme beizutragen.

Ausgangspunkt und Grundlage der durchgeführten Experimente ist ein Bose-Einstein
Kondensat (BEK). Ein BEK ist ein Vielteilchensystem, das aus Sicht der Quantenforschung
zwei Vorteile vereint: Während es einerseits ausreichend einfach ist, um es auf dem Quan-
tenniveau zu verstehen, ist es andererseits hinreichend komplex, um viele bisher ungeklärte
Quantenphänomene der Festkörperphysik zu enthalten. So ist etwa das wissenschaftliche
Verständnis der mikroskopischen bzw. mesoskopischen Vorgänge, die der Superfluidität
[1], Supraleitung [2] oder dem anormalen Elektronen-Transport in nieder-dimensionalen
Systemen [3–6] zu Grunde liegen noch immer unbefriedigend; diese Phänomene werden
durch starke Korrelationen und Quanteneffekte bestimmt, die den klassischen (nicht
quantenmechanischen) Erfahrungen widersprechen. Um diese Quantenphänomene besser
zu verstehen, ist es daher sinnvoll die Quantenwelt zunächst in einfacheren Modellsyste-
men zu erforschen, die keine Komplikationen (Unreinheiten, Korngrenzen, stochastische
Störstellen etc.) aufweisen. Quantenentartete Gase (sowohl bosonische [7–14] als auch
fermionische [15–18]) sind solche Modellsysteme. In ihnen lassen sich alle systemrelevanten
Parameter (externes Potential, inter-atomare Wechselwirkung etc.) dynamisch und mit
hoher Präzision einstellen, während sie nahezu keine Defekte aufweisen. Sie sind ideale
Quantensimulatoren [19], um theoretisch vorhergesagte Phänomene zu überprüfen und
neuartige Zustände der Quantenmaterie zu erzeugen. Zwar wurden sie bisher hauptsächlich
dazu benutzt, Fragen der Festkörper- und Vielteilchenphysik zu beantworten [20], jedoch
bieten sie fachübergreifende Einsatzmöglichkeiten, für sowohl die Atom- und Molekülphy-
sik als auch die Hochenergie-Physik. Die Experimente ermöglichen nicht nur fundamentale
Tests der Quantenmechanik, sondern liefern auch Impulse zur Weiterentwicklung der
Materialwissenschaften.

Im Laufe der letzten 15 Jahre entstand eine Vielfalt von Bose-Einstein Kondensaten, die
sich in ihren Eigenschaften erheblich voneinander unterscheiden. Der Charakter eines
BEKs wird im wesentlichen durch drei Faktoren bestimmt:
(1.) der Dimension der Wellenfunktion,
(2.) der Art der inter-atomaren Wechselwirkung1 sowie

1Während die ursprüngliche Idee eines Bose-Einstein Kondensates [21–24] ein Ensemble von nicht-
wechselwirkenden Teilchen behandelt, benutzen wir eine moderne Definition [25], bei der die Teilchen
miteinander wechselwirken. Ohne Wechselwirkung wäre ein BEK weder phasenkohärent noch superfluid
und würde somit zwei seiner spannendsten Eigenschaften verlieren [26, ch. 1.2].



(3.) der Wechselwirkung des BEKs mit seiner Umgebung.
Um diese drei Faktoren zu veranschaulichen, definieren wir das „Standardkondensat“
folgendermaßen:
(1.1) Es wird durch eine skalare Wellenfunktion beschrieben — d.h. seine Teilchen besitzen

keinen internen Freiheitsgrad.
(2.1) Die inter-atomare Wechselwirkung ist analog zur Kontaktwechselwirkung inelastischer

Kugeln, siehe Abb. 1(a) — d.h. sie ist sowohl
(a) kurzreichweitig, weil zwei Kugeln nur dann wechselwirken, wenn sie aneinander

stoßen, als auch
(b) isotrop, weil die Kugeln keine Vorzugsrichtung aufweisen.

(3.1) Das isotrope externe Fallenpotential ist entweder linear oder harmonisch (in Abb. 1
nicht dargestellt). Es entkoppelt das BEK vollständig von seiner Umgebung und
enthält keine Störstellen.

Wird eine dieser Eigenschaften grundlegend verändert, so verändert sich auch der Charakter
des BEKs. Beispiele hierfür sind (1.1) die Spinorkondensate [27, ch. 4], (2.1) Efimov
Zustände [28–32] und (3.1) die Kopplung eines BEKs mit einem Photon [33, 34] oder
nano-mechanischen Resonator [35, 36].

Die vorliegende Arbeit behandelt den Sonderfall eines dipolaren Bose-Einstein Kondensats
(DBEKs). Im allgemeinen unterscheidet sich ein DBEK vom „Standardkondensat“ indem
es die ersten beiden Eigenschaften, (1.1) und (2.1), durch folgende ersetzt:

(1.1)→(1.2) Es wird durch eine vektorielle Wellenfunktion beschrieben — d.h. die Teilchen
besitzen einen internen Freiheitsgrad (magnetisches oder elektrisches Dipolmoment),
so dass die räumliche Symmetrie, bei Fehlen eines externen (magnetischen oder
elektrischen) Feldes, spontan gebrochen werden kann.

(2.1)→(2.2) Die inter-atomare Dipol-Dipol Wechselwirkung (DDWW) ist sowohl
(a) langreichweitig, als auch
(b) anisotrop — d.h. abhängig von der Ausrichtung der beiden Dipole, ist sie

entweder anziehend oder abstoßend [37].

Die ersten BEK-Experimente mit beobachtbaren dipolaren Effekten (am MIT mit 23Na
und am NIST mit 87Rb) analysierten den vektoriellen Charakter der Wellenfunktion [27,
ch. 4]. Vor kurzem gelang es in Hannover [38, 39] und Berkeley [40–43] (jeweils mit 87Rb),
diese Experimente weiterzuführen. Im Gegensatz dazu verwenden die Experimente in
Stuttgart [44–46] und Paris [47, 48] mit 52Cr, Florenz [49] mit 39K sowie in Houston
[50] mit 6Li ein Magnetfeld, um die Dipole vollständig zu polarisieren. Der vektorielle
Charakter der Wellenfunktion geht durch die explizite Symmetriebrechung verloren. Diese
Experimente konzentrieren sich darauf, die Anisotropie der dipolaren Wechselwirkung zu
untersuchen [51, 52].



nicht-dipolares(a) dipolares(b) rein dipolares(c)

Abb. 1, Nicht-dipolares, dipolares, und rein dipolares BEK: Vernachlässigen
wir, dass die Atome eines BEKs ununterscheidbar sind und das sich ihre 1-
Teilchenwellenfunktionen überlappen, so kann ihre Wechselwirkung wie folgt
dargestellt werden: Ein nicht-dipolares BEK (a) besteht aus inelastischen Kugeln.
Ihre Kontaktwechselwirkung ist kurzreichweitig und isotrop. Im Gegensatz dazu
besteht das rein dipolare Kondensat (c) aus Magneten (hier werden magnetische
Dipole angenommen). Sie interagieren ausschließlich mittels der langreichweitigen
und anisotropen Dipol-Dipol Wechselwirkung. Grafik (b) veranschaulicht ein
dipolares BEK. Die Teilchen interagieren sowohl mittels der Kontakt- als auch
der dipolaren Wechselwirkung.

Die vorliegende Arbeit geht von den genannten Experimenten zur Untersuchung der
anisotropen Wechselwirkung aus und erweitert diese, indem sie die Dynamik von instabi-
len dipolaren Kondensaten erforscht. Zwar wurde die vielschichtige Dynamik instabiler
Kondensate bereits in 7Li [53–56] und 85Rb Kondensaten [57–60] sowie in 40K−87Rb Mi-
schungen [61, 62] beobachtet, jedoch weisen diese Systeme eine vernachlässigbare dipolare
Wechselwirkung auf. Die Hinzunahme der dipolaren Wechselwirkung ist deshalb inter-
essant, weil sie den Typus der Instabilität verändert: Abhängig von der Fallengeometrie
stabilisiert oder destabilisiert die dipolare Wechselwirkung das BEK. Dies modifiziert
nicht nur die zeitliche und räumliche Entwicklung des dipolaren Kondensates, sondern
steigert auch beträchtlich die Anzahl der zu beobachtenden physikalischen Phänomene.
Daher liegt der Schwerpunkt dieser Arbeit auf dem Verstehen der dipolaren Instabilität
und der damit verbundenen Dynamik. Insbesondere wird die fließende Veränderung der
Kollapsdynamik analysiert, wie sie im Übergang eines zigarrenförmigen (prolaten) zu
einem kugelsymmetrischen DBEKs zu beobachten ist. Der Vergleich der experimentellen
Daten mit den theoretischen Simulationen wird zeigen, wie die Grundgleichung dipolarer
BEKe erweitert werden muss, um kollabierende Kondensate zu beschreiben.

Vor diesem Hintergrund besteht die Relevanz der Arbeit zum einen darin, ein experimentell
bisher unerforschtes Feld zu erschließen. Die dabei beantworteten Fragen zur Abhängigkeit
der Kollapsdynamik von der Geometrie der harmonischen Falle schaffen eine Vergleichs-
und Verständnisgrundlage für weitere dipolare Kollaps-Experimente. Zum anderen dienen
die Ergebnisse als Validierung der bestehenden Gross-Pitaevskii Molekularfeld Theorie [63]
und tragen so zum generellen Verständnis dipolarer Kondensate bei. Die hier gewonnenen
Einsichten helfen, die theoretisch vorhergesagten Eigenschaften dipolarer Quantengase
— die Existenz eines Maxon-Roton Spektrums ähnlich dem superfluiden Heliums [64–
68], strukturierte Wellenfunktion [69–72] deren Kollaps einen nicht-verschwindenden



Drehimpuls aufweisen [73], zwei-dimensionale anisotrope Solitonen [74], eine Vielzahl
neuer Quantenphasen [75–78] etc. — auf ihre experimentelle Realisierbarkeit zu überprüfen
und ggf. alternative Nachweismethoden zu entwickeln.

Schließlich wird die besondere Bedeutung der Forschung an DBEKen auch daran deutlich,
dass, zeitlich parallel zu den hier vorgestellten Chrom-Experimenten, dipolare Alternativ-
experimente entwickelt werden. Zum einen gelang es 2006 (bzw. 2010) erstmalig atomares
Erbium [79] (bzw. Dysprosium [80]) zu kühlen und in magnetischen Fallen zu fangen. Diese
Atome weisen ein magnetisches Dipolmoment von 7 µB (bzw. 10 µB) auf und könnten
in Zukunft Chrom mit seinen 6 µB als „dipolaren Riesen“ der atomaren Kondensate
ablösen. Zum anderen bemühen sich verschiedene Arbeitsgruppen quantenentartete Gase
mit elektrischen Dipolmomenten zu erzeugen. Viel versprechend erscheinen derzeit etwa
hetero-nukleare Moleküle in ihrem jeweiligen rotations-vibrationalen Grundzustand (z.B.
40K−87Rb am NIST [81–85], 7Li−133Cs in Freiburg [86], oder 85Rb−133Cs in Yale [87]) und
Grundzustandsatome mit schwach beigemischten Rydbergzuständen [88]. Während die
hetero-nuklearen Moleküle ein elektrisches Dipolmoment von ca. einem Debye2 aufweisen,
besitzen Rydbergzustände einen zusätzlichen Faktor n2, wobei die Hauptquantenzahl n
leicht zwischen 30 und 40 liegen könnte. Diese Experimente würden erlauben den Bereich
der stark korrelierten dipolarer Quantensysteme zu erforschen — mit selbst-organisierten
Kristallen [89] und exotischen Quantenphasen [90, 91]. Im Gegensatz dazu dienen die hier
gewonnen Erkenntnisse als Verständnisgrundlage für schwach-korrelierte DBEKe.

2Die „natürliche Einheit“ eines magnetischen Dipols ist das Bohr’sche Magneton µB
def= e~/(2me) —

das entspricht dem Dipolmoment eines Elektrons auf der ersten Bohr’schen Bahn (Bahndrehimpuls
~). Die „natürliche Stärke“ der magnetischen Dipol-Dipol Wechselwirkung (DDWW) ist somit µ0µB

2.
Im Gegensatz dazu beträgt die „natürliche Einheit“ des elektrischen Dipols ein Debye d = e aB — das
entspricht dem Dipolmoment eines Elektron-Proton Paares, mit Abstand eines Bohr’schen Radius aB. Die
„natürliche Stärke“ der elektrischen DDWW beträgt somit d2/ε0. Deshalb ist die magnetische DDWW
„natürlicherweise“ um den Faktor [µB/(c0 d)]2 ≡ [α/2]2 kleiner als die elektrische, wobei α ≈ 1/137 die
Feinstrukturkonstante und c0

def= 1/√µ0ε0 die Lichtgeschwindigkeit im Vakuum bezeichnet.
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Abbreviations

Reference for abbreviations used in the text.
ac alternating current (opposite to dc)

AOD acusto-optical deflector
AOM acusto-optical modulator
BEC Bose-Einstein condensate (p. 19)
cw continuous wave

DBEC dipolar Bose-Einstein condensate
DDI dipole-dipole interaction (p. 108)
FB Feshbach (p. 47)
FT Fourier transform (p. 105)
HF high magnetic field

IGBT insulated-gate bipolar transistor
MOSFET metal-oxide-semiconductor field-effect transistor

MOT magneto-optical trap (p. 39)
MT magnetic trap

ODT optical dipole trap (p. 39)
ODT1 horizontal optical dipole trap
ODT2 vertical optical dipole trap

OL optical lattice (p. 39)
PDH Pound-Drever-Hall (p. 44)
RF radio frequency (p. 41)

TOF time-of-flight (p. 35)
TF Thomas-Fermi (p. 31)
ZS Zeeman slower (p. 39)

Nomenclature of units and natural constants.
aB 5.3× 10−11 m Bohr radius
kB 1.38× 10−23 J/K Boltzmann constant
µ0 4π × 10−7 Tm/A permeability of free space
µB 9.27× 10−23 J/T Bohr magneton (µB/h ≈ 1.4 MHz/G)
~ 1.05× 10−34 Js reduced Planck constant
Eh 4.36× 10−18 J Hartree energy
1 G 10−4 T conversion from Gauss to Tesla
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Glossary of definitions.

characteristic dipolar length add
µ0µ2

mm
12π~2 ∼ 16 aB

(effective) s-wave scattering length3 a

(effective) background scattering length3 abg ∼ 100 aB
harmonic oscillator length aho

√
~/(mω)

trap frequency in z-direction fz ≡ ωz/(2π)
mean trap frequency ω̄/(2π) (fxfyfz)1/3

(effective) contact coupling strength3 g 4π~2a/m

dipolar coupling strength gdd 4π~2add/m

interaction coupling strength gα, gint
dipolar anisotropic function fdip(κ) see appendix A.5.5

scattering amplitude fk(r) see eq. (2.1b)
dipolar parameter εdd

gdd
g
≡ add

a
≡ µ0µ2

mm
12π~2 a

chemical potential µ

magnetic moment µm µBgJJ/~
Lande g-factor gJ

healing OR eff. interaction length ξ

2-body interaction range r0 ∼ 100 aB
cloud size σ, `

Thomas-Fermi radius R

aspect ratio κ σρ/σz
trap ratio λ ωz/ωρ

(thermal) de-Broglie wavelength λth
√

2π~2/(mkBT )
spatial density n N/V

phase-space density D nλ3
th

3-body loss coefficient L3 ≤ 2× 10−28 cm6/s
2-body dipolar bare potential Udd(r) see eq. (A.15)

2-body dipolar pseudo-potential Vdd(r) see eq. (A.15)
long-range part of Vdd(r) V ′dd(r) see section 2.2.2

2-body interaction pseudo-potential Vint(r), V (2)
int (r) (contact + dipolar)

long-range part of Vint(r) V ′int(r)
N -body dipolar mean-field potential Φdip(r), Φ(N)

dip (r) see appendix A.5.4
long-range part of Φdip(r) Φ′dip(r)

N -body interaction mean-field potential Φint(r), Φ(N)
int (r) (contact + dipolar)

zero-point mean-field energy Ezero

dipolar mean-field energy Edip

long-range part of Edip E ′dip
interaction mean-field energy Eint (contact + dipolar)
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”To study the abnormal is the best way of understanding the normal.”
(William James)

1 Introduction and scientific background

The subject of this thesis is the experimental investigation of collapsed dipolar Bose-
Einstein condensates consisting of neutral 52Cr atoms. In particular, we observe and
analyse the interaction induced instability and the associated temporal and spatial
evolution of the condensate’s density. The aim of this thesis is to contribute to the general
understanding of dipolar quantum systems.

Starting point and basic principle of the performed experiments is a Bose-Einstein conden-
sate (BEC). A BEC is a many-body system, which, from the prospect of quantum science,
combines two advantages: On the one hand it is sufficiently simple to be understandable
on a quantum level, while on the other hand it is sufficiently complex to accommodate
many phenomena known from quantum matter in solid-state physics, which are not yet
understood. For example, our knowledge of the microscopic or mesoscopic mechanisms
which causes superfluidity [1], superconductivity [2], or anomalous transport of electrons
in low-dimensional systems [3–6] is still very limited. This is mostly due to the fact
that these properties are governed by strong correlations and quantum effects that are
counter-intuitive to our classical experience. Therefore, in order to understand these
phenomena it is reasonable to investigate the quantum world in simple model systems,
which are free of complications (impurities, grain boundaries, random perturbations etc.).
Quantum degenerate gases (bosonic [7–14] as well as fermionic [15–18]) are such model
systems. They provide dynamically tunable handles to all system relevant parameters
(external potential, inter-atomic interactions etc.), while being quasi-free of environmental
defects. They are versatile quantum simulators [19] allowing to check proposed phenomena
and to tailor novel states of quantum matter. Although they were so far mainly used to
study long-lasting questions of condensed matter or many-body physics [20], their field of
application is multi-disciplinary combining many modern research topics in such varied
fields as atomic, molecular, solid-state, or high energy physics — reaching from tests of
fundamental quantum mechanics to advances in material science.

During the last decade a diversity of BECs arose, with many distinguishable properties.
The character of a BEC is essentially governed by three factors:
(1.) the dimension of the wavefunction,

3The short-range part of the dipole-dipole interaction is included, see eq. (A.15) (page 108).
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(2.) the properties of the inter-atomic interactions4, and
(3.) the interaction of the BEC with its environment.
In order to illustrate these three criteria, we define the ”standard condensate” as follows:
(1.1) It is describable by a scalar wavefunction — i.e. the particles do not possess an

internal degree of freedom.
(2.1) The inter-particle interaction is analogous to the contact interaction of hard-spheres,

illustrated in fig. 1.1(a) — i.e. it is both
(a) short-range, because two spheres interact only if they meet each other, and
(b) isotropic, because a sphere does not feature a preferential direction.

(3.1) The isotropic external potential is either linear or harmonic (not shown in fig. 1.1).
It entirely decouples the BEC from the environment and does not contain any defect.

If one of these properties is fundamentally altered, the BEC changes its character. Ex-
amples are (1.1) spinor condensates [27, ch. 4], (2.1) Efimov states [28–32] and (3.1) the
coupling of a BEC to a photon [33, 34] or a nano-mechanical resonator [35, 36].

This thesis examines the special case of a dipolar Bose-Einstein condensate (DBEC). In
general, a DBEC differs from the ”standard condensate”, as the two properties (1.1) and
(2.1) get replaced by:

(1.1)→(1.2) It is describable by a vectorial wavefunction — i.e. the particles possess an internal
degree of freedom (magnetic of electric dipole moment). Thus, if the spatial symmetry
is not explicitly broken by an external (magnetic or electric) field, the dipoles might
break it spontaneously.

(2.1)→(2.2) The particles interact not only via the contact interaction, but additionally through
the dipole-dipole interaction (DDI), which is not only
(a) long-range, but also
(b) anisotropic — i.e. depending on the relative orientation of the two dipoles, it

is either attractive or repulsive [37].

The first BECs-experiments with observable dipolar effects (performed at MIT using 23Na
and at NIST using 87Rb) probed the vectorial character of the condensate’s wavefunction
[27, ch. 4]. Recently, these experiments have been extended in Hannover [38, 39] and
Berkeley [40–43] (both using 87Rb). In contrast, the experiments on 52Cr in Stuttgart
[44–46] and Paris [47, 48], on 39K in Florence [49], and on 6Li in Houston [50] use a
magnetic field to fully polarise the dipoles. The vectorial character of the condensate’s
wavefunction is lost due to the explicit symmetry breaking. These experiments concentrate
on the anisotropic character of the dipolar interaction [51, 52].

4Although the original idea of a Bose-Einstein condensate [21–24] examines an ensemble of non-interacting
particles (the so-called ideal gas model), we use a modern definition of a Bose-Einstein condensate [25],
where the particles interact with each other. Without interactions a BEC would neither be phase-coherent
nor superfluid. Therefore, ”[...] if the system truly were an ideal gas, there would be little left to study
[...]” (Eric Cornell, [26, ch. 1.2]).
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non-dipolar(a) dipolar(b) purely dipolar(c)

Fig. 1.1, Non-dipolar, dipolar, and purely dipolar BEC: Although the atoms
in a BEC are indistinguishable and their wavefunctions are overlapping, the
interactions can be illustrated as follows: A non-dipolar BEC (a) consist of hard
spheres, which interact only when they bounce into each other. Therefore, the
interaction is short-range and isotropic. In contrast, a purely dipolar condensate
(c) consists of dipoles (here assumed to be magnetic), which interact solely via
the long-range, anisotropic dipole-dipole interaction (DDI). Finally, a dipolar
BEC (b) comprises both interactions, contact and DDIs. In general, the dipoles
are non-polarised. Thus, the scalar wavefunction becomes a spinor [92].

This thesis is based on the studies of the anisotropic interaction and extends them by
exploring the dynamics of unstable dipolar condensates. The complex dynamics of unstable
condensates was already observed in 7Li [53–56], 85Rb [57–60] and in 40K−87Rb mixtures
[61, 62]. However, these systems have negligible dipolar interactions. Incorporating dipolar
interaction is desirable, because it alters the character of the instability: Depending on the
external potential, the dipolar interactions either stabilise or destabilise the condensate.
This modifies the temporal and spatial evolution of the condensate’s density considerably.
Therefore, the main objective of this thesis is to understand the occurrence of the instability
and the associated dynamics. In particular, we analyse how the collapse dynamics depends
on the trap geometry and examine its crossover from a cigar-shape (prolate) to a spherical
trapping potential. In addition, we probe the phase-coherence of collapsed condensates.
The comparison of the experimental and theoretical results will show, how the basic
mean-field equations (Gross-Pitaevskii theory) for dipolar BECs have to be extended in
order to describe collapsing condensates.

Within this background the relevance of this thesis is two-fold: On the one hand, it
experimentally investigates the yet unexplored field of collapsing DBECs. It demonstrates
how the collapse dynamics depends on the harmonic trap geometry and therefore provides
the basis of understanding for other collapse experiments. On the other hand, the obtained
results validate the existing Gross-Pitaevskii mean-field theory [63]. Thus, they contribute
to the general understanding and deepen the scientific insight of dipolar quantum gases.
This will help to experimentally realise the multitude of theoretical proposals for DBECs
— the existence of a maxon-roton spectrum as in superfluid helium [64–68], structured
wavefunctions [69–72] which lead to a collapse with non-vanishing angular momentum [73],
two-dimensional anisotropic bright solitons [74], as well as many novel quantum-phases
[75–78] etc.
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Finally, the impact of working with dipolar quantum gases becomes apparent by noticing
that, contemporaneous to the chromium experiments discussed in this thesis, alterna-
tives are developed. Recently, erbium [79] and dysprosium atoms [80] were cooled and
magnetically trapped. Their magnetic moments are 7 µB and 10 µB, respectively, while
chromium has a magnetic dipolar moment of ”only” 6 µB. In addition, there are several
groups trying to obtain a quantum degenerated gas of particles possessing electric dipole
moments. Propitious candidates are hetero-nuclear molecules in their ro-vibrational
ground-state (40K−87Rb at NIST [81–85], 7Li−133Cs in Freiburg [86], or 85Rb−133Cs
at Yale [87]) or ground-state atoms with weakly admixed Rydberg states [88]. While
the hetero-nuclear molecules would provide electric dipole moments of approximately
one Debye5, the dipole moment of atoms with weakly admixed Rydberg states has an
additional factor of n2, where the principal quantum number n could be easily 30 or 40.
Therefore, they would allow to investigate the regime of strongly-correlated quantum
systems, where dipolar interactions lead e.g. to self-organised crystals [89] and many new
exotic quantum phases [90, 91]. In contrast, the results presented in this thesis belong to
the regime of weakly-correlated dipolar quantum systems.

Outline
After a theoretical introduction to stationary DBECs in section 2, section 3 summarises
how we experimentally generate the chromium condensate. Special emphasis is put onto
the utilisation of a narrow Feshbach resonance in order to decrease the strength of the
contact interactions. Section 4 is dedicated to the different types of instabilities found
in dipolar condensates. It describes the phonon and roton instability, which are due to
local density fluctuations. In addition, it compares our experimental observations to the
predictions of the scaling instability model using a Gaussian wavefunction. The observed
crossover dynamics from cigar-shape (prolate) to pancake-shape (oblate) collapsed DBECs
are presented in section 5. Subsequently, in section 6, we analyse the phase-coherence of
the collapsed cloud by inducing the collapse in several oblate condensates simultaneously
and let them interfere. Finally, we summarise these findings in section 7 and give an
outlook to further experiments.

5The ”natural unit” of a magnetic dipole is the Bohr magneton µB
def= e~/(2me), which is the dipole

moment produced by an electron on the first Bohr orbit — its orbital angular momentum is ~. Therefore,
the ”natural strength” of magnetic DDIs is µ0µB

2. In contrast, the ”natural unit” of an electric dipole
is the Debye d = e aB, which is the dipole moment of an electron-proton pair separated by the Bohr
radius aB. Its ”natural” DDI strength is d2/ε0. Hence, magnetic DDIs are ”naturally” smaller than
electric DDIs by the factor [µB/(c0 d)]2 ≡ [α/2]2, where α ≈ 1/137 is the fine-structure constant and
c0

def= 1/√µ0ε0 is the speed of light in vacuum.
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”Some say that the only thing that quantum theory has going for it,
in fact, is that it is unquestionably correct.” (Michio Kaku)

2 From perturbations to strong dipolar effects:
Describing the ground-state of dipolar condensates

This section introduces the theory of dipolar condensates. Although we try to be as
accurate as possible, its aim is not to derive the equations, but to make the performed
experiments accessible to non-experts. Therefore, we emphasise the criteria needed for
the theory to be valid and illustrate the physics by discussing simplifications.

The section is structured as follows: After a short introduction to Bose-Einstein conden-
sates, we concentrate on inter-particle interactions. Summarising the scattering theory of
two particle in the case of contact and dipole-dipole interactions, we develop the concept
of pseudo-potentials. Then, using these 2-body results, the mean-field Gross-Pitaevskii
equation is derived and its validity criteria are presented. Finally, we describe the Thomas-
Fermi limit for dominant interactions and discuss the expansion dynamics if the condensate
is released from the trap.

2.1 Bose-Einstein condensation:
A purely statistical phase transition

Phase transitions happen in our every day lives. Popular examples are the melting of ice or
the evaporation of liquids. Common to these, as well as to most other phase transitions, is
that they are driven by the competition of different interactions: the system adjusts it short
and long-range order to store energy in more favourable degrees of freedom (translation,
vibration etc.). However, there are phase transitions which are purely statistical effects,
happening although interactions are absent. Translating the quantisation of phase-space
from photons [21, 22] to massive particles, Einstein was the first to realise [23, 24] that
even non-interacting particles would occupy the same quantum state if they were only
cold and dense enough.

A Bose-Einstein condensate is the phase, where a macroscopic fraction of the particles
(atoms [7–11], molecules [93, 94], exciton-polaritons6 [95] etc.) occupies the same ground-
state (modern definition [25]). Therefore, in order to observe the phase transition take
a system, where the number of energetically accessible states is approximately equal to
6A polariton is a half-light, half-matter quasi-particle. It arises if a photons couples strongly to ”an
excitation of the material”, such that they are mixed. One possible ”excitation of the material” is an
exciton: It consists of a bound electron-hole pair in insulators or semiconductors. Thus, an exciton-
polariton is a half-light, half-exciton quasi-particle.
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the number of particles. Adding particles to such a system or lowering its temperature
results in a degeneracy in phase-space7. Thus, the criteria for the condensation is that
the phase-space density D def= nλ3

th becomes on the order of unity8 [14, 63], where n is the
spatial density and λth def=

√
2π~2/(mkBT ) is the thermal de-Broglie wavelength. Although

Einstein used Bose’s statistic, which takes the particles to be indistinguishable, note that
the classical Boltzmann statistic, where the particles are assumed to be distinguishable,
predicts condensation as well. However, since the indistinguishability reduces the number
of distinct N -body states considerably9, the transition occurs at the (classically counter-
intuitive) critical temperature Tc ∼ N1/3 ~ω/kB � ~ω/kB, where ω/(2π) is the trap
frequency of the three-dimensional, spherical symmetric, harmonic confinement and
N � 1 the number of particles [99].

For more than one decade, Einstein’s prediction of condensing particles was thought as
a purely academic model. Partly this was due to the lack of insight: Quantum theory
was in its infancy, second-order phase transitions were misunderstood, and many-body
theory was not developed, yet10. However, the main problem was to find a substance
which does not liquefy or solidify during the cooling. An ideal gas at atmospheric pressure
and room temperature has the spatial density n = P/(kB T ) ' 1019 cm−3 and would
condense at temperatures below11 4.2 K. The only element which is known to maintain
weakly interacting at such temperatures is spin-polarised hydrogen [101–104]. Nevertheless,
spin-polarised hydrogen is not the only condensate which is available today12, it even was
not the first. The trick is to cool the ensemble ”fast enough” into a meta-stable gaseous
state: not giving the atoms the time to relax to their absolute ground-state (which is
a solid or liquid phase), but solely extracting the translational energy. Therefore, ”fast
enough” has to be understood with respect to the relaxation time.

In the experiments the only relevant relaxation processes are inelastic 3-body collisions,
where two atoms form a molecule (first step towards a solid) and the third atom ensures

7The distinction between bosons and fermions was worked out by Pauli and Dirac in the end twenties.
The proof that they have to obey different statistics was only given in 1940 [96].

8Approximating the momentum by p̄2/(2m) ∼ 3/2 kB T , the condensation condition — that the number
of states in phase-space V p̄3/h3 is equal to the number of particles N — provides D ∼ 1.4. This differs
from the exact result [97] only by a factor of 2.

9The indistinguishability of the Bose statistic [21, 22] reduces significantly the number of non-degenerate
configurations compared to the Boltzmann statistic [12], [98, ch. 1.1.3], if the number of accessible micro-
states is comparable to the number of particles. Hence, the Bose statistics increases the relative statistical
weight of degenerate configurations: Assume N particles have to be distributed ontoM > N micro-states.
In the case of distinguishable particles there are M !/(M −N)! non-degenerate configurations, while for
indistinguishable particles we additionally have to divide by N !, the number of particle permutations.
Hence, if M ∼ N , the Bose statistic weights the non-degenerate configuration, M !

N !(M−N)! ∼ 1, equal to
the fully degenerate configuration.

10A historical overview of the theoretical advances is given by Griffin [100], while experimental techniques
and technologies are summarised in [26].

11Use 1 ∼ D ≡ nλ3
th and n = P/(kB T ), assuming that the pressure is kept constant. If the spatial

density was kept constant, the ideal gas would condense at Tc ≈ 0.2 K.
12Condensed elements: 2H [104], 4He [105, 106], 7Li [11], 23Na [7], 39K [107], 41K [108], 40Ca [109], 52Cr
[110] , 84Sr [111, 112], 85Rb [113], 87Rb [8], 133Cs [114], 170Yb [115], 174Yb [116], 176Yb [117].
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the energy and momentum conservation13. Hence, by using very dilute samples (densities
on the order of 1014 cm−3) 3-body collisions become unlikely14, yielding lifetimes on the
order of seconds. If the relaxation time to the absolute ground-state is large compared to
the time needed to study the condensate, the atoms are said to be in a quasi-equilibrium
state; being in thermal equilibrium (translational degree of freedom), although not in
phase equilibrium (still a gas).

2.2 Describing binary interactions via pseudo-potentials

While interactions are most often negligible in a thermal gas, they become important for a
condensate and even dominant15 for T � Tc. Therefore, in order to describe condensates
the ideal gas model (used to describe the thermal gas) should be replaced by some model
including interactions. A dipolar condensate exhibits two kinds of 2-body interactions:
the short-range contact and the long-range dipole-dipole interaction. Due to their different
interaction ranges, they must be treated separately, which is done in the following sections.

2.2.1 2-body short-range interactions

This paragraph summarises the description of 2-body short-range interactions. Following
closely the review given by Castin [99, ch. 3], the scattering theory for ultra-cold gases
is developed and the concept of the so called pseudo-potential is introduced. Detailed
discussions are given in [121, 122] and [119, ch. 5].

From section 2.1 we know that condensates are produced as extremely dilute samples
in order to make 3-body collisions unlikely. Therefore, only 2-body interactions need
to be considered, which simplifies the theory significantly: For two colliding particles
the Schrödinger equation separates into a center-of-mass and a relative motion [123].
Transforming into the center-of-mass frame, only the latter is important. All parameters
introduced below correspond to the relative motion, i.e. wavevector k, position vector r,
wavefunction ψ(r), and reduced mass mred.

The description of the elastic scattering process of two particles considerably simplifies if
the asymptotic approximation is used. It assumes that

1. the 2-body interaction is described by a short-range potential U(r) [124]. A short-
range potential has either a finite-range b (that is U(r) 6= 0, only for |r| ≤ b) or

13We will encounter this relaxation process when discussing the dipolar collapse.
14The 3-body relaxation rate L3 is defined by ∂n/∂t = −L3n

3 for a homogeneous density [118, 119].
Typical values of L3 range from few times 10−28 cm6/s (for e.g. 23Na or 52Cr) to few times 10−30 cm6/s
(for e.g. 87Rb). Again, the quantum statistic helps: It suppresses 3-body recombinations by a factor of
6 compared to the thermal Boltzmann statistic, see [118, 120] and [119, ch. 13.2].

15A simple argument is given in the Thomas-Fermi limit of a purely contact interacting condensate [119,
ch. 6.2]. Here, the interaction energy per particle scales like Etot/N ∝ N2/5, which becomes large for
macroscopic ground-state occupation numbers N .
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an asymptotic power-law scaling 1/rn, where n > 3. Note that the dipole-dipole
potential is long-range, because it scales like 1/r3.

2. the point of interest r must be in the far-field, satisfying |r| � r0 and |r| �
kr2

0, where r0 is the characteristic range of the potential16. While r0 = b for a
potential with a finite-range b, the power-law potential U(r) = Cn/r

n provides
r0

def= (2mredCn/~2)1/(n−2). It is on the order of the size of the last bound-state17,
which is typically18 r0 ∼ 100 aB.

These two criteria ensure that most atoms are non-interacting at every instant in time, if
the gaseous ensemble is sufficiently diluted — the mean particle distance dmean ∼ n−1/3,
where n is the spatial density, must be much larger than r0. Assuming additionally that
the internal states of the atoms are maintained throughout the scattering process — only
a single scattering channel is considered — the stationary Schrödinger equation of the
relative motion with eigenenergy E = ~2k2/(2mred), where k is the relative wavevector
and mred is the reduced mass, yields the outgoing far-field solution

ψk(r) ≈ ψ0(r) + eikr
r
fk(r) (2.1a)

with the ingoing wavefunction ψ0(r), the scattering amplitude

fk(r) def= −mred

2π~2

∫
d3r′ e−ik er · r′ U(r′)ψ(r′) (2.1b)

the bare 2-body interaction potential19 U(r), and the unit vector er def= r/r. In principle
eq. (2.1) is solvable iteratively, however, the bare potential U(r) is extremely complicated;
it incorporates the van der Waals interactions as well as the complete atomic structure.
Therefore, the rest of this section explains the concept of a pseudo-potential V (r) for
2-body short-range interactions, which is an effective interaction potential. Being much
simpler than the bare 2-body potential U(r), it provides an easy expression for the
scattering amplitude (2.1b).

In order to obtain the validity criteria for describing the inter-particle interactions via a
pseudo-potential we will discuss the physics of the cooling process in some details. Thus,
we consider the ”low energy collisions” of two atoms with relative wavevector k ∼ 1/λth.
Starting with a thermal cloud at a few Kelvin, the thermal wavelength λth is on the order

16These conditions are reminiscent of the Fraunhofer diffraction criteria from linear optics [125].
17In the vicinity of a Feshbach resonance the characteristic range becomes macroscopic. A so called
”halo-state” is present.

18For 52Cr the C6-coefficient was measured [126, 127] to be (733± 70) Eha6
B, where Eh is the Hartree

energy and aB is the Bohr radius. Approximately the same result for r0 is obtained, if the C6-coefficient
for 6Li, 23Na, 40K, 87Rb, or 133Cs is used instead [128].

19We use ”bare potential” as a synonym of the position dependent potential, containing all details of
the 2-body interactions. This expression stems from quantum field theory, where it is also called
non-renormalised potential.
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of the Bohr radius and therefore smaller than the characteristic range r0 of the 2-body
potential. However, during the cooling process the temperature of the atoms decreases
by several orders of magnitude. The condensate’s temperature is typically TBEC ≤ 1 µK,
which corresponds to a de-Broglie wavelength on the micro-meter scale. Hence, during the
cooling process the atoms resolve less and less details of the 2-body interaction potential.
Details being smaller than 1/k are ”coarse grained” — they are integrated and contribute
only as their average to the effective 2-body potential [119, ch. 5]. If k r0 � 1, all details
are gone.

In addition, all partial waves, but the s-wave, freeze out during the cooling process. Since
each partial wave with orbital angular momentum L 6= 0 has a centrifugal barrier, which
lies typically at an inter-particle distance RL & r0, it can only probe the short wavelength
details of the 2-body interaction potential, if its energy is sufficient to overcome the
barrier. Therefore, during the cooling of the cloud the partial waves are successively
reflected from the centrifugal barrier; their contributions vanish [129, 130] — assuming
that shape-resonances20 are absent. The d-wave21 typically vanishes at a temperature
TL=2 ≈ ~2L(L + 1)/(2mr2

0kB) ∼ 1 mK. Below TL=2 the ensemble is said to be in the
ultra-low temperature regime, only the s-wave scattering contributes to the scattering
amplitude (2.1b). Hence, the outgoing wavefunction (2.1a) becomes spherically symmetric,
even if the 2-body potential is not!

Mathematically, the term e−ik er · r′ in eq. (2.1b) becomes unity and the scattering amplitude
fk(r) no longer depends on the scattering direction. Hence, in the far-field, at ultra-low
temperatures and in the absence of a shape-resonance eq. (2.1a) is given by

ψk(r) ≈ 1√
V

(
eik · r − a

r
eikr

)
(2.2)

where the ingoing wave is assumed to be a plane wave and the scattering amplitude is
replaced by (minus) the s-wave scattering length, limk→0 fk(r) = −a, to emphasise the
isotropy of the scattering amplitude. In general, the scattering length a differs from the
characteristic interaction range r0.

Although the details of the bare interaction potential determine the scattering length
a, their knowledge became irrelevant to describe interactions. This has three important
consequences:

1. It simplifies the experimental effort: Instead of probing the bare 2-body potential
at different inter-particle distances, it is sufficient to measure only the scattering
length a. Choosing a model potential (often called pseudo-potential) which yields
the measured scattering length, is enough to include interactions in our theory.

20If the potential supports a shape-resonance, the tunneling through the centrifugal barrier is non-negligible
and higher partial waves must be considered [122].

21For two indistinguishable bosons the scattering cross-sections for all partial waves with odd angular
momentum vanish, because the 2-body wavefunction is symmetric with respect to the exchange of
particles [119, ch. 5.2].
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2. Monte-Carlo simulations are possible: Since the condensate is only in a quasi-
equilibrium state, Monte-Carlo simulations using the bare 2-body potential would
not result in a description of the condensate, but of the true ground-state, which is
either a liquid or a solid. Therefore, using a pseudo-potential without bound-states,
makes exact numerical methods applicable.

3. The first-order Born approximation is valid, yielding a simple mean-field descrip-
tion: If the pseudo-potentials does not support a bound-state, the first-order Born
approximation converges for all collision energies [131] and therefore yields a simple
mean-field model22. In contrast, the bare potential poses a characteristic inter-
action range of r0 ∼ 100 aB and a depth of Umin ∼ 103 Kelvin, supporting many
bound-states23.

Due to all these complications the pseudo-potential approach is desirable — it can be
understood as a low-energy, low-density renormalisation scheme. The simplest pseudo-
potential describing 2-body short-range interactions is24

Vcontact(r) def= g δ(r) (2.3a)

with the so called contact coupling strength

g
def= 4π~2

m
a (2.3b)

for indistinguishable particles of mass m. Calculating eq. (2.1b), where the bare 2-body
potential is replaced by eq. (2.3), yields the exact result

ψk(r) = 1√
V

(
eik · r − a

1 + ika

eikr
r

)
(2.3c)

for the outgoing, scattered wavefunction. Therefore, eq. (2.2) is valid only if |k · a| � 1.
In the opposite limit, so called unitarity limit, |k · a| � 1, the scattering length in eq. (2.2)
has to be replaced by 1/k2.

Summarising this paragraph, we found a very satisfying result: Fulfilling the asymptotic
approximation, being at ultra-low temperatures and far from shape-resonances, the 2-body
short-range interactions are described by a Dirac δ-distribution (2.3).

22Note that the pseudo-potential supports a single bound-state in the vicinity of a Feshbach resonance —
in the region of positive scattering length [99, ch. 3.2.3].

23Bound-states are usually present if they are not inhibited by the zero-point energy (arising from
Heisenberg’s uncertainty principle). The zero-point energy prohibits bound-states if Ezero � Umin,
where Ezero ∼ ~2/(2mred r

2
0) for a confinement within a domain of radius r0.

24Choosing the 2-body interaction operator such that its action is given by 〈r1, r2|V̂contact|ψ〉
def=

g δ(r)
[
∂
∂r

(
r ψ(r)

)]
r=0

, ”repairs” 1/r-divergences in the wavefunction [132, ch. 13.8]. As before,

r
def= r2 − r1 is the relative position vector and ψ(r) is the relative 2-body wavefunction.
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Fig. 2.1, Dipole-dipole interactions: The long-range part of the DDI depends on
the relative distance r and the relative orientation ϑ of the polarised dipoles.
Assigning the parameters as shown in (a), the dipolar interactions changes its
sign at the magic angle ϑ∗ ≈ 55◦ : Being attractive (V ′dd < 0) in the head-to-tail
and repulsive (V ′dd > 0) in the side-by-side configuration (b). (Taken from [136])

2.2.2 Dipole-dipole interactions

While the bare short-range potential of two atoms includes all kinds of interactions and
therefore is extremely complicated, the bare dipole-dipole interaction (DDI) potential is
given by a simple formula, see eq. (2.4) below. However, at ultra-low collision energies the
scattering amplitude for short-range interactions turned out to be describable by a single,
scalar parameter yielding the strength of the interaction. This is not the case for DDIs.
Its scattering amplitude (2.1b) includes (in principle) all partial waves irrespectively of the
collision energy — an ultra-low temperature regime for dipolar interaction does not exists.
Therefore, the DDIs become much more complicated than the short-range interactions.
Nevertheless, a simple approximation can be obtained. Details are given in [133–135].

The bare magnetic dipole-dipole interaction potential is given by25 (appendix A.5.1)

Udd(r) = µ0 µ
2
m

4π
1− 3 cos2 ϑ

r3 − 2
3 µ0 µ

2
m δ(r) (2.4)

if the point-like magnetic dipole moments26 µm
def= µBgJ J/~ are permanent27 and polarised

by a static external magnetic field28, where ϑ is the angle between the polarisation direction

25Notation: µ0
def= 4π × 10−7 T m/A is the permeability of free space.

26Notation: µB
def= e~/(2me) ≈ h 1.4 MHz/G is the Bohr magneton and gJ is the Lande g-factor, where J

is the total angular momentum. Note that 52Cr does not have a nuclear spin.
27Induced dipole interactions, which are commonly known as van der Waals interactions, scale like 1/r6

(or 1/r7, if the retardation effect is included [137]). Hence, they are short-range and therefore subject of
the previous section. Förster resonances for quasi-degenerate 2-body states are discussed in [138–140].

28The DDI energy (at the mean inter-particle distance) becomes equal to the Zeeman energy for magnetic
fields on the order of 10 µG. Therefore, even the earth magnetic field, which is on the order of 0.5 G,
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(in the following always chosen to be the z-axis) and the relative position r of the dipoles,
see fig. 2.1(a). The characteristic dipolar length is

add
def= µ0 µ

2
mm

12π ~2 (2.5a)

which defines the dipolar coupling strength

gdd
def= 4π~2

m
add = µ0 µ

2
m

3 (2.5b)

The numerical factor in eq. (2.5a) will become clear later — it is defined such that a
three-dimensional, homogeneous dipolar condensate becomes unstable against local density
fluctuations, if the ratio between the dipolar and contact coupling strengths

εdd
def= gdd

g
= add

a
= µ0 µ

2
mm

12π ~2 a
(2.5c)

exceeds unity, see section 4.1.1.

In order to describe dipolar interactions in a condensate we need to construct a dipole-
dipole pseudo-potential such that its first-order Born approximation yields the complete
scattering amplitude. This is a formidable task, accommodating plenty of difficulties. The
origin of these difficulties is that all partial waves contribute to the scattering process29,
resulting e.g. in a logarithmically diverging scattering amplitude (2.1b) if the sample is
non-polarised [124]. Such a scattering process is not describable by a pseudo-potential
in general. Fortunately, if the sample is polarised, the scattering amplitude is finite
[141] and it was shown in [133, 134] that the dipole-dipole pseudo-potential Vdd(r) is
well approximated by the bare potential Udd(r). Using eq. (2.4) in the first-order Born
approximation yields the complete scattering amplitude within a few percent30.

The ”renormalised” DDI pseudo-potential, eq. (2.4), consists therefore of two terms: A
short-range and a long-range term. Indicating with a prime that the short-range term is
absorbed in the effective scattering length (discussed in the previous section), we denote
the long-range term by V ′dd(r). However, one has to remember that the effective scattering
length depends on the dipole-dipole interactions a(µm). Although this dependency is
usually weak it might become large in the vicinity of shape-resonances. In the following
we will omit this dependency, the general case is discussed in [135].

is sufficient to fully polarise the sample. Hence, the wavefunction becomes a spinor only at ultra-low
external magnetic fields [92]. Time-averaged potentials, resulting from a magnetic field rotating with
frequency fB � ftrap, where ftrap is the trap frequency, are discussed in [52, ch. 2.2].

29For short-range potentials V (r) ∝ r−n (where n > 3) the phase-shifts of all partial waves with angular
momentum L 6= 0 vanish in the ultra-low temperature limit as limk→0 δL ∝ k2L−1, while for bosonic
dipole-dipole interactions limk→0 δL ∝ k for all even and non-zero L, see [51, ch. 2.1].

30The multi-channel calculations were made for 7Li, 39K, 41K, 85Rb, and 87Rb, but not for 52Cr.
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Since the subject of this thesis are many-body dipolar interactions (rather than 2-body,
dipole-dipole interaction), we postpone the discussion about dipolar properties. Neverthe-
less, in order to contrast it with the pseudo-potential for 2-body short-range interactions
we like to point out its most important characteristic: its anisotropy. Being partly at-
tractive and partly repulsive, see fig. 2.1(b), the interaction between two dipoles depends
on their relative orientation. In the following we will encounter this dependency regu-
larly. Note that the long-range nature of the DDI is a prerequisite to obtain anisotropic
pseudo-potentials.

2.3 Mean-field description of dipolar condensates

While the previous paragraphs discuss the 2-body interactions, we will concentrate on
many-body interactions now. The simplest many-body model is the so called mean-
field model. By neglecting all correlations, it maps the N -body problem onto a single
particle problem31. The single test particle interacts with all the other particles in the
condensate. Hence, the effective potential of the test particle is an average of the many
2-body interaction potentials over different distances. However, care has to be taken
on how to include the interactions into this model. Fortunately, the pseudo-potential
for the contact and DDI interactions were constructed such, that their first-order Born
approximation coincide with the complete scattering amplitude. Therefore, the interactions
are automatically included correctly.

2.3.1 Validity criteria of the N-body mean-field description

The goal of this section is to provide the validity conditions for the mean-field approxima-
tion to be a good description of the condensate. Details can be found e.g. in [99, ch. 3.2.2
& 3.3].

For a purely contact interacting condensate the criteria are phenomenologically obvious:

1. Large atom number N � 1: The basic idea of the mean-field potential is to average
over many 2-body interaction potentials.

2. Low collision energy, k|a| � 1, and far from any shape-resonance: This ensures eq.
(2.2), which is only valid for ultra-low temperatures.

3. Weak contact interactions n1/3|a| � 1: Here ”weak” should be understood in the
sense of 2-particle correlations. Since the underlying idea of the mean-field model is
to remove the corpuscular nature of 2-body collisions and replace it by a continuous
potential, 2-body correlations are not included. Therefore, they must be negligible32.

31Without correlations all particles are equivalent, and it is sufficient to describe a single test particle.
32The interactions might be ”strong” in the sense that they dominate the quantum pressure term and
strongly affect the physical properties of the system (see section 2.3.4).
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The condensate should be describable by a single, macroscopic wavefunction33.
The given criterion is deduced from the argument that weak interactions should
leave the incident wavefunction almost unchanged. Equation (2.3c) satisfies this
request if |a|/r � 1. On average, the inter-particle distance r is given by n−1/3,
where n is the spatial density, which leads to the stated condition. Therefore, it is
a reformulation of the asymptotic approximation (see page 21), however, now for
many particles.

How to incorporate long-range interaction into these criteria is to my knowledge an open
question. For the case of dipolar interactions, I believe that the two last conditions should
be extended by adding

4. Low collision energy with respect to DDIs and weak coupling of the partial waves:
Relying on the numerical findings [133, 134], I am tempted to attribute k add � 1
to this condition. However, there is no analytic argument, why the dipole-dipole
pseudo-potential is well approximated by eq. (2.4).

5. Weak dipolar interactions34 n1/3 add � 1: The line of argument is analogous to the
third condition. The wavefunction of a pair of dipoles is strongly influenced by the
DDI for inter-particle distances r . add. However, this deformation is negligible
[144, 145], because the dipoles are on average separated by n−1/3 � add.

Despite the challenge to find precise criteria for the dipolar mean-field model to be valid,
it was shown that the mean-field model does accurately describe dipolar condensates if
the above criteria are satisfied. This was done in [146, 147] by comparing it to numerically
exact Monte-Carlo simulations. In addition, the authors showed that the dependency
of the scattering length on the dipolar interaction strength, a(µm), is negligible in the
case of 52Cr. It has to be taken into account, only if the characteristic dipolar length add
exceeds the characteristic range of the short-range potential r0.

In the experiments presented in this thesis the condensate’s temperature is on the order
of 500 nK, the spatial density n ≤ 1015 cm−3, the scattering length |a| ≤ 100 aB, and the
dipolar characteristic length add ≈ 16 aB. This yields k|a| ∼ 0.05, n1/3|a| ∼ 0.05, and
n1/3 add ∼ 0.01. Hence, the mean-field criteria are well satisfied.

2.3.2 Time dependent Gross-Pitaevskii equation

The aim of the previous sections was to prepare the basis for the mean-field description of
dipolar condensates. We will now combine these parts and present the Gross-Pitaevskii
equation (GPE). The GPE is a generalised Schrödinger equation in the sense that it

33In contrast, superfluid helium is strongly interacting [100, 142]: The depletion of the condensate is
approximately 90%.

34This term is non-uniquely defined: Comparing the energy scales, the authors in [143] define ”weak
dipolar interaction” by nµBµ2

m/(4π)� µ, where µ is the chemical potential.

28



incorporates 2-body interactions using a mean-field approximation35. While we obtain the
GPE starting with a quantum field theoretical model, alternative approaches are given
e.g. in [119, 151].

In quantum field theory the ”equation of motion” is given by the Heisenberg equation
[152–154]

i~
∂

∂t
Ψ̂(r) = [Ψ̂(r), Ĥ] (2.6a)

for the field operator Ψ̂(r), where Ĥ is the Hamilton operator. Whereas eq. (2.6a) is
most general, we now specify it to the case of interest: The effective Hamilton operator
describing a dipolar condensate confined in a harmonic trap, consisting of N particles36,
which interact solely via binary interactions, is given by [134, 155]

Ĥ =
∫
d3r Ψ̂†(r)

[
p̂2

2m + m

2 (ω · r̂)2 + 1
2 Φ̂(N)

int (r)
]
Ψ̂(r) (2.6b)

with the canonical momentum37 p̂, and the N-particle interaction operator

Φ̂(N)
int (r) def=

∫
d3r′ Ψ̂†(r′)V (2)

int (r − r′) Ψ̂(r′) (2.6c)

where

V
(2)
int (r) def= 4π~2

m
aδ(r) + µ0 µ

2
m

4π
1− 3 cos2 ϑ

r3 (2.6d)

is the 2-body contact and dipole-dipole pseudo-potential38 for polarised magnetic dipoles.
The field operator is normalised to the number of particles,

∫
d3r 〈Ψ̂†(r) Ψ̂(r)〉 = N , where

〈.〉 denotes the expectation value.

Next, the quantum correlations are neglected: Assuming that the number of particles in
the condensate N is large, the correspondence principle suggests to describe the BEC
by a classical, mesoscopic field Ψ(r). This was first realised by Bogoliubov, who argued
that the BEC density is not altered if a single particle is added or removed from the
35Formally, a Schrödinger equation must be linear in the wavefunction. Hence, the GPE is a generalisation,
which explains peculiar phenomena, e.g. bifurcation [148, 149] or solitary solutions [74], which are not
describable using the Schrödinger equation. An early review is given in [150].

36In quantum field theory the particle number is not fixed, but should be understood in the sense of a
grand canonical ensemble: The condensate is coupled to a particle bath.

37Formally, the effect of the magnetic field must be included. This would be done by using the kinetic
momentum mdr̂/dt def= Π̂ def= p̂ − eÂ/c instead of p̂, where Â is the vector potential. In addition,
the Pauli term Ĥpauli = µ̂spin ·B as well as the fine structure coupling ĤLS = 1

2µspin ·BLS — where
BLS = µ0

4π
Z e
mr3L and the 1/2 is the so called Thomas factor — need be added. However, we skip these

complications and add a Zeeman energy at the end of the calculations. The crossover from the Zeeman
to the Paschen-Back regime takes place at B ∼ 150 T, far beyond our applied magnetic fields.

38The factor 1/2 in front of the interaction potential (2.6b) accounts for the double counting, due to
r � r′ using eq. (2.6c). The short-range part of the dipolar interactions is absorbed in the effective
scattering length a.
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condensate36. Using the perturbation ansatz

Ψ̂(r) = Ψ(r) 1̂ + δΨ̂(r) (2.6e)

with the condensate’s wavefunction39 Ψ(r) def= 〈Ψ̂†(r) Ψ̂(r)〉
1/2

, and neglecting the fluctua-
tions40 δΨ̂(r) completely, we obtain the time dependent Gross-Pitaevskii equation of a
pure, dipolar condensate without spin degree of freedom41

i~
∂

∂t
Ψ(r) =

(
− ~2

2m∇2 + Vtrap(r) + Φ(N)
int (r)

)
Ψ(r) (2.7a)

with the N -particle mean-field interaction potential42

Φ(N)
int (r) def=

∫
d3r′ V

(2)
int (r − r′) |Ψ(r′)|2 (2.7b)

If particle losses due to 3-body collisions were added, this equation would ”explain” all the
experiments presented in this thesis. However, eq. (2.7a) is not very illustrative. Therefore,
we will simplify it further in the next paragraphs.

2.3.3 Stationary Gross-Pitaevskii equation and energy functional

Before studying the dynamics of a collapsing dipolar condensate in section 5, we first have
to understand how a condensate becomes unstable. To this end, we have to investigate
the physics of stable, stationary dipolar condensates. Deriving the time independent GPE
and discussing its energy contributions is done in the following section.

In order to obtain the stationary GPE we separate the time dependence of the wavefunction,
Ψ(r, t) = ψ(r) e−iĒt/~. Here ψ(r) def= Ψ(r, t = 0), and Ē is the mean energy per particle43,
which is identified with the chemical potential [158] µ def= (∂Etot/∂N)S,V ≈ Etot/N . Plug-
ging this ansatz into the time dependent GPE (2.7a) yields the stationary Gross-Pitaevskii

39Here we choose the phase of the condensate’s wavefunction and therefore spontaneously break the gauge
symmetry [156], [157, ch. 1].

40Even at vanishing temperature the interactions lead to a depletion of the condensate [119]. This depletion
is on the order of

√
na3 (for a purely contact interacting BEC) and therefore small for weak interactions

(compare validity criteria of the mean-field theory in section 2.3.1).
41A polarised dipolar condensate is considered. As the directions of all spins are fixed by a strong external
field, a single scalar wavefunction is sufficient to describe the condensate. Spinor (non-polarised)
condensates are reviewed in [27, 92]. Rescaling the GPE as in [149] is very useful for numerical
simulation, because it eliminates some free parameters.

42A mathematical introduction to dipole-dipole interactions and its mean-field potential is given in
appendix A.5.

43The macroscopic wavefunction ψ is a 1-particle wavefunction in the sense that it describes a single test
particle in the mean-field potential (see section 2.3). Therefore, we need to take the energy per particle.
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equation [119]

µψ(r) =
(
− ~2

2m∇2 + Vtrap(r) + Φ(N)
int (r)

)
ψ(r) (2.8)

The energy of the condensate’s wavefunction ψ(r) def= 〈r |ψ〉 is given by

E
def= 〈ψ|Ĥ|ψ〉 (2.9)

(2.6b)=
∫
d3r

+ ~2

2m |∇ψ(r)|2 +
Vtrap(r) + Φ(N)

int (r)
2

 |ψ(r)|2


and called the Gross-Pitaevskii energy functional [119, 151]. The three different terms
correspond to the kinetic44, potential, and interaction energy.

Equation (2.9) will turn out to be very useful, because it provides an intuitive understanding
of dipolar condensates. Although, in principle a dipolar condensate can be understood
either in terms of its 2-body forces or its mean-field interaction energy, the ”intuitive
usage” of the former does not agree with the observed many-body phenomena of dipolar
BECs. Only if we take into account that the relative positions of the atoms are not fixed,
but that they are free to move, the intuition is ”restored”. However, since this constitutes
an additional step, most of our understanding about dipolar condensates is based on
energy arguments deduced from eq. (2.9). Hence, we will encounter the energy picture
throughout the thesis — explaining why dipolar condensates are observed to elongate
along the external field direction or why the collapse is initiated by a contraction in radial
direction. Although the terms ”attractive” and ”repulsive” refer to forces, we will use
them in the energy picture as synonyms for ”energetically favourable” and ”unfavourable”
configuration, respectively.

2.3.4 Thomas-Fermi limit: dominant interactions

The solution ψ(r) of the GPE (2.8) describes the stationary state of a dipolar condensate.
However, due to the non-locality of the kinetic term and the non-local, non-linear interac-
tion term, it is only numerically solvable. Thus, analytic expressions for limiting cases are
valuable not only to check the numerics, but also to obtain intuitive insights. Two such
limiting cases are simple to calculate: (i) the non-interacting gas, where the interactions
are neglected and (ii) the so called Thomas-Fermi limit, neglecting the kinetic term. Both
cases are extensively discussed in the literature (for the purely contact interacting gas
[119, 157], and for the dipolar case see [159–161]), so we will concentrate on the most
important aspects for the experiments. Furthermore, we assume a cylindrical symmetric
trap, where the symmetry axis coincides with the polarisation axis of the dipoles, because
the analytic formulae are simple only in this configuration.

44For a pure condensate this is equal to the quantum pressure, see section 2.3.5.
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First, let us estimate at which point the interactions become dominant. Starting with a
non-interacting condensate, the condensate’s wavefunction is a Gaussian [152, ch. 2.3]. If
weak interactions are added, the wavefunction is only perturbed by the interactions, but
practically maintains its shape. The corresponding energies are (see appendix A.6.2)45

Ezero

N ~ω̄
= a2

ho
4

(
1
σ2
z

+ 2
σ2
ρ

)
(2.10a)

Eint

N ~ω̄
= N√

2π

(
aho
σρ

)2
a− add fdip(κ)

σz
(2.10b)

where σz and σρ are the axial and radial sizes of the condensate (with respect to the
polarisation axis), and aho def=

√
~/(mω̄) is the harmonic oscillator length with mean trap

energy ~ω̄ def= ~(ωxωyωz)1/3. The dipolar anisotropic function fdip(κ) depends on the aspect
ratio46 κ def= σρ/σz. It is presented in fig. 2.2 and derived in appendix A.5.5.

In order to estimate at which point the interaction energy dominates the kinetic energy,
we define the so called Thomas-Fermi parameter χTF

def= Eint/Ezero as their ratio, see eq.
(2.10). Since the sign as well as the magnitude of the dipolar contribution depends on the
aspect ratio κ, we need to distinguish three cases47

1. Spherical symmetric density distribution (σ def= σz = σρ)
For a spherical symmetric density distribution the dipolar mean-field energy vanishes
(see fig. 2.2). Thus, the Thomas-Fermi parameter for a purely contact interacting
gas, χTF ∼ N a/σ, is recovered.

2. Cigar-shape density distribution (σz � σρ)
The dipolar anisotropic function becomes 1 and χTF ∼ N (a− add)/σz.

3. Pancake-shape density distribution (σz � σρ)
Here, the dipolar anisotropic function becomes −2 and the Thomas-Fermi parameter
χTF ∼ N κ−2 (a+ 2add)/σz.

If the Thomas-Fermi parameter is much larger than unity, the interaction energy dominates
the zero-point energy. The assumption that the interaction is just a perturbation is
obviously not valid any more, but rather the kinetic term should be skipped in eq. (2.8).
Doing so is called the Thomas-Fermi (TF) approximation.

Deep in the three-dimensional Thomas-Fermi regime (χTF � 1 and µ� ~ω) the dipolar
mean-field interaction potential Φ(N)

dip (r) can be calculated analytically [159]. It is a
45Recall: Dipolar characteristic length add ≡ µ0µ

2
mm/(12π~2), see page 26.

46The parameter κ is defined as the ratio of the radial to the axial size of the condensate, with respect to
the polarisation axis of the dipoles. Depending on the context, the size is either the 1/e-radius of the
Gaussian wavefunction or the Thomas-Fermi radius (see text). We distinguish between aspect ratio,
which is the ratio of the cloud sizes, and the trap ratio, which is the ratio of the trap frequencies.

47The Thomas-Fermi parameter is not uniquely defined, see e.g. [160] for the definition in low-dimensional
systems.
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Fig. 2.2, Dipolar anisotropic function: fdip(κ) is a monotonic decreasing function
with fdip(0) = 1, crossing zero at κ = 1 (the dipolar mean-field interaction energy
vanishes for isotropic density distributions), and asymptotically approaching
fdip(∞) = −2.

parabolic potential, see appendix A.5.6. Furthermore, in this regime the spatial density
distribution is an inverted parabola [159, 161, 162]

n(r) = n0

1−
(
ρ

Rρ

)2

−
(
z

Rz

)2
 (2.11)

inside the condensate, (ρ/Rρ)2 + (z/Rz)2 ≤ 1, and zero otherwise48. The peak density
n0

def= 15N/(8π Rz R
2
ρ) is given by the atom number divided by the volume of the ellipsoid.

For a spherically symmetric density distribution (κ = 1) the long-range part of the
Thomas-Fermi dipolar interaction potential is given by49 [159, 162, 163]

Φ′(TF)
dip (r) = N

µ0µ
2
m

4π
1− 3 cos2 ϑ

r3
r5

R5 (2.12)

inside the condensate50, r ≤ R, where R def= Rρ = Rz, and ϑ is the angle between r and
the polarisation direction of the dipoles. Note that, just like the dipole-dipole potential
V ′dd(r), eq. (2.12) is d-wave symmetric!

As in the purely contact interacting case, analytic expressions are obtainable for the
different energy contributions — trapping potential and interaction energy (see section
4.2) — as well as for the chemical potential µ = n0 [g − gdd fdip(κ)] = (7/2)Eint/N .

48The physical density does not vanish abruptly, but smoothly on the scale set by the healing length, see
eq. (2.14b) below.

49Use eq. (A.28a), page 108.
50The Thomas-Fermi dipolar potential outside of the condensate is give in [159, 163].
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Fig. 2.3, Aspect ratio in the Thomas-Fermi regime: Decreasing the scattering
length in a chromium condensate enhances the dipolar interactions effects. This
is shown by plotting the real solution of eq. (2.13) for different scattering lengths
(the arrow crosses the curves εdd = 0, 1, 2, 10, and 103 subsequently). While for
εdd ≤ 1 the condensate only elongates along the polarisation axis (λ ≥ κ), the
function κ(λ) becomes multi-valued for εdd > 1, indicating the instability. The
inset highlights the ”small λ region”.

However, the dipolar Thomas-Fermi radii Rρ, Rz are coupled51 by52 [134, 159, 162]

λ = +κ
 1 + 2 εdd − 3 εdd fdip(κ)

1−κ2

1− εdd + κ2

2
3 εdd fdip(κ)

1−κ2

1/2

(2.13)

where λ def= ωz/ωρ is the trap ratio — analytic expressions for the radii are given in [159].
Although eq. (2.13) is not simple, it demonstrates two important properties of dipolar
condensates, see fig. 2.3. First, for εdd > 1 the function κ(λ) develops an imaginary
part (not shown) and becomes multi-valued. Both facts indicate the instability of the
condensate. Second, while the aspect ratio κ of a purely contact interacting condensate
(εdd = 0) is equal to the trap ratio λ, a dipolar condensate elongates along the polarisation
direction, λ ≥ κ. It becomes spherical (κ = 1) for53 λ = [(5 + 4 εdd)/(5− 2 εdd)]1/2, which
is real only if εdd < 5/2.

In order to estimate the relevance of the Thomas-Fermi regime for the experiment let us
put some typical numbers: The standard chromium BEC is produced in a crossed optical
dipole trap with mean trap frequency ω̄/(2π) ≈ 500 Hz, contains approximately 50 000
atoms, and has a (background) scattering length of a ≈ 100 aB. As a� add ≈ 16 aB, we
use the Thomas-Fermi parameters for a spherical cloud, obtaining χTF ∼ N |a|/aho ≈ 400.

51The coupling is due to the fact that the chemical potential is constant inside the condensate, see eq.
(2.8).

52Recall: The dimensionless dipolar parameter εdd is the ratio of the dipolar and contact interaction
coupling strengths. It is given by εdd ≡ add/a ≡ µ0µ

2
mm/(12π~2a), see page 26. If zero-point effects

were neglected, a Gaussian wavefunction would satisfy eq. (2.13), too.
53Take the limit limκ→1 fdip(κ)/(1− κ2) = 2/5 in eq. (2.13).
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Fig. 2.4, Density profiles with and without interactions: The radial Rρ and axial
Rz Thomas-Fermi radii differ by approximately a factor of two for a chromium
condensate consisting of N = 20 000 atoms in a spherical harmonic trap with
ω/(2π) = 500 Hz and a scattering length of a = add ≈ 16 aB. The Thomas-Fermi
density distribution for a purely contact interacting BEC (with a = 100 aB)
and the Gaussian distribution for an ideal gas are shown for comparison. Note
that the reduction of the scattering length from a = 100 aB to add reduces the
volume of the condensate such that the peak density increases by a factor of
∼ 10.

Thus, the Thomas-Fermi model describes the condensate very well. However, in order to
induce the collapse the scattering length is reduced. Close to the instability point the
atom number is on the order of 20 000 and the scattering length is |a| ≤ 10 aB, resulting
in χTF ≤ 20. Therefore, the Thomas-Fermi approximation breaks down [160] and the full
GPE (2.7a) should be used instead.

Figure 2.4 shows the Thomas-Fermi density profile, eq. (2.11), for εdd = 1. The repulsive
interactions between the atoms widens and flattens the density distribution compared to
the non-interacting gas. However, the axial diameter is still only ∼ 5.5 µm, which is on
the order of the spatial resolution of the experimental imaging system54. Therefore, it is
necessary to expand the condensate first and then taking the image. Hence, the expansion
process must be understood in order to extract information about the in-trap condensate
from the expanded cloud. This is the subject of the following section.

2.3.5 Expansion dynamics

Releasing the condensate from the trap initiates the expansion dynamics. During the
expansion, the interaction energy transforms into kinetic energy. Therefore, neglecting the
kinetic energy completely (as in the Thomas-Fermi approximation) is certainly not wise.
The trick is to separate the two kinetic contributions: The negligible in-trap zero-point
54In our experimental set-up the imaging system is a 1 : 1.12 map of the atoms onto a CCD camera
(PCO: ”pixelfly qe”), which has a pixel area of 6.45× 6.45 µm2.
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energy and the velocity obtained during the expansion. In the following, we consider a
condensate in the Thomas-Fermi regime, initially confined in a harmonic trap, from which
it is released at time t = 0 s. A comprehensive discussion for purely contact interacting
condensates is given in [99, 164], the dipolar case is explained in [161, 162].

The separation of the two contributions is done by expressing the condensate’s wavefunction
as an amplitude and a phase, ψ(r) =

√
n(r) eiS(r). Identifying the density variation ∇n(r)

with the zero-point energy (also called quantum pressure) and the phase variation ∇S(r)
with the velocity obtained during the expansion results in the hydrodynamic equations,
see appendix A.5.8. If the characteristic length related to the quantum pressure,

`zero
def=
[
(∇2√n)/

√
n
]1/2

(2.14a)

which becomes `zero ∼ R in the Thomas-Fermi regime, is much larger than the healing
length (characteristic length related to the interactions)

ξ
def= ~/

√
2mµ (2.14b)

the quantum pressure can be neglected and the classical hydrodynamic equations

F (r) = m
∂2

∂t2
r = −∇

(
Vtrap(r) + Φ(N)

int (r)
)

(2.15)

are obtained. Formally, they resemble a collisionless classical gas. While for a purely
contact interacting condensate (in the TF regime) the acceleration is linear [99, 164]
(both, the trap potential as well as the interaction potential, g n(r), depend quadratically
on r, see eq. (2.11)), the expansion dynamics for a dipolar condensate is much more
complicated. It is described by the scaling solution [161] (see appendix A.5.9 for misprints
in the publication)

bj(t) def= Rj(t)/Rj(0) (2.16a)
d2

dt2
bj(t) = 1

bx(t) by(t) bz(t)
ω2
j (0)
bj(t)

(
1 + εddA[κ, fdip,

∂ fdip
∂κ

]
)

(2.16b)

with the initial trap frequencies ωj(0)/(2π), where j = x, y, z. The dipolar contribution
εddA[κ, fdip, ∂fdip/∂κ] depends on the dipolar anisotropic function fdip(κ) as well as its
derivative ∂fdip/∂κ. Therefore, the expansion becomes non-linear55.

The non-linear expansion was used already in [44], where the authors observed the first
evidence of ”weak” (εdd ≈ 0.16) dipolar effects in condensates. However, the dipolar
expansion is not important to understand their findings, because they basically measured
the change of the in-trap density distribution due to dipolar interactions. Therefore, the
results remain qualitatively valid if the expansion would be linear. Only in [165], when

55Internal link to the program ’TOF-DipolarExpansion02.nb’.
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Fig. 2.5, Dipolar expansion dynamics: Measured aspect ratio for two traps (red and
blue data points) with interchanged y and z trap frequencies (see sketches above
graphs). The solid lines are the solutions of the hydrodynamic eqs. (2.16), with
εdd = 0.16, B ‖ x in (a) and εdd = 0.75, B ‖ z in (b). The error bar in panel (b)
shows the typical uncertainty over several runs. While in (a) both configurations
yield the same aspect ratio, the aspect ratio in (b) differ, because the dipolar
interactions break the spatial symmetry. Notably, K2 remains smaller than
unity for all times. Hence, the dipoles inhibit the inversion of ellipticity. The
trap frequencies of trap 1 are (fx, fy, fz) ≈ (660, 370, 540) Hz. Both aspect
ratios K1,2 are defined as the ratio of the short to the long condensate radius.
(For details see [165].)

we observed the first ”strong” dipolar effects in quantum degenerate gases, the dipolar
expansion became essential: By reducing the scattering length, the contact interactions
become almost equal to the dipolar interactions (εdd ≈ 0.75). Therefore, the dipolar
contribution to the expansion dynamics is enhanced such that the condensate does not
invert its ellipticity during the free expansion, see fig. 2.5.

In the context of the dipolar collapse the described hydrodynamic expansion is only of
secondary importance. If the scattering length becomes close to zero or later even negative,
the total interaction energy (contact + dipolar) is not necessarily much larger than the
quantum pressure. Hence, the assumption `zero � ξ is not satisfied, the condensate is not
in the Thomas-Fermi regime and the full GPE should be used instead. Nevertheless, it has
a technical relevance for this thesis: In the experiment we need to calibrate the magnetic
field which determines the scattering length. This is done by expanding the cloud at
different magnetic field strengths, where the condensate is well within the Thomas-Fermi
regime, and by fitting a calculated hydrodynamic expansion curve to the measured axial
and radial radii. For details see section 3.3.2
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”In the end we retain from our studies only that which we practically
apply.” (Johann Wolfgang von Goethe)

3 Generating a chromium condensate

This section describes the experimental set-up and sequence used to produce a 52Cr
condensate. Since the chromium-BEC project started more than a decade ago, many
people contributed to and reported about the current set-up. Therefore, we mainly
summarise their work [127, 136, 166–172]. An overview about techniques used to produce
alkali condensate is given in [14, 173].

3.1 Experimental sequence

The experimental set-up consists of two joined vacuum chambers: the oven and the main
chamber. In the oven chamber a high temperature effusion cell56 produces the chromium
vapor57. It operates at Toven ≈ 1450◦C, which provides a pressure of approximately
10−9 mbar. At this pressure the lifetime of stored atoms would be less than a second, due
to collisions with the background gases. In order to obtain lifetimes of several minutes the
pressure must be reduced by approximately two orders of magnitude. This is achieved
by a spin-flip Zeeman slower (ZS) [166, 174, 175], which acts as a differential pumping
stage connecting the oven and the main chamber. In addition, the ZS decelerates and
pre-cools58 the atoms. This is necessary, because the maximum of the Boltzmann velocity
distribution59 is approximately 900 m/s, whereas the deepest atom traps are provided by
the so called magneto-optical trap (MOT) [166, 173], possessing depths of a few Kelvin
(corresponding to velocities of 10 m/s− 40 m/s).

The level scheme60 of 52Cr is sketched in fig. 3.1. Using the differential Zeeman shift of
the states |7S3,mJ = +3〉 and |7P4,mJ = +4〉 the ZS adapts the resonant absorption line
56CreaTec
57Distributor from 99.99+% chromium: ”Goodfellow”.
58Deceleration refers to the decrease of the velocity, while cooling emphasises the increase in phase-space
density [176].

59Consider a beam of atoms, which escapes from the oven in z-direction. Their velocity distribution
[173, ch. 5.2] is given by f(vz) = v3

z

2 v4
th

exp
(
− v2

z

2 v2
th

)
, where vth

def=
√
kBT/m. Its average velocity is

vave
def= 〈vz〉 =

√
9π/8 vth, the root mean square velocity vrms = 2 vth, and the most probable velocity is

given by vmp =
√

3 vth and stated in the text.
60We use the NIST nomenclature for the LS coupling: A state specifies all quantum numbers
|nβ 2S+1LJ,mJ〉. To emphasise this fact, we sometimes call it a Zeeman sub-state. A level |nβ 2S+1LJ〉
refers to all states disregarding the magnetic quantum number mJ, and a term |nβ 2S+1L〉 does not
specify the quantum number of the total angular momentum J . Usually, we omit the main quantum
number n and the spectroscopic shorthand notation β for low and high terms. The group of transitions
are denoted line component, line, and multiplet, respectively.
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Fig. 3.1, Level scheme and experimental sequence: (a) The Zeeman slower (ZS)
and the magneto-optical trap (MOT) operate between the ground-level62 7S3
and the excited-level 7P4, which has a linewidth of Γ/(2π) ≈ 5 MHz. The atoms
spontaneously decay with a probability of 1 : 250 000 into the 5D4 level, where
they are magnetically stored due to their large magnetic moments. (b) Only
after the MOT light is switched-off, the meta-stable 5D4 atoms are repumped to
the 7P3 level, from where they spontaneously decay. (c) Since dipolar relaxations
become severe during the RF-cooling, the atoms are transferred into an optical
dipole trap (ODT) and are optically pumped via the 7S3 → 7P3 transitions to
the lowest Zeeman sub-state.

component to compensate the decreasing Doppler shift due to the photon kicks [173].
Thereby, it decelerates all atoms having an initial longitudinal velocities v ≤ vmax ≈
580 m/s to a final velocity ∼ 30 m/s. The transversal velocity component of the atoms is
hardly effected by the ZS61. Therefore, we first spatially filtered the transversal velocity
component by apertures and subsequently cooled it by a two-dimensional molasses [173]
at the entrance of the ZS [177, ch. A.1]. Collimating the atom beam, the two-dimensional
molasses increases the loading rate of the MOT [178, 179] by approximately a factor of
two.

The decelerated atoms reach the main chamber, where they are captured by the MOT63

[182]. In order to obtain a large capture volume64 the magnetic field gradients during

61Formally, the re-emission of the photons has to be described by a two-dimensional random walk.
62Note that 52Cr does not satisfy Hund’s law [180, 181]: Since the electronic 4s-orbital has a non-vanishing
overlap with the nucleus, it is energetically lower than the 3d-orbital. Nevertheless, the ground-state of
52Cr has the configuration [Ar] 4s1 3d5, which support a magnetic moment of 6 µB, and not [Ar] 4s2 3d4.

63For reasons discussed below, we use a two-dimensional MOT plus a one-dimensional optical molasses,
instead of a three-dimensional MOT.

64The MOT-light (λMOT ' 425 nm) is red-detuned by δMOT/(2π) ≈ −2 γ with respect to an atom at
rest, where γ def= Γ/(2π) ≈ 5 MHz is the natural linewidth of the 7P4 level. Its radial capture radius is
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the MOT phase are weak. Therefore, for alkali atoms the magnetic force µmb′ is not
sufficient to compensate the gravitational force m g. Atoms in states which are decoupled
from the MOT light would be lost if they were not continuously repumped into the MOT
circle. For chromium the situation is somehow inverted: Probably due to excited-state
collisions, the number of atoms circulating in the MOT transition is limited to only
NMOT ∼ 107. This would not be sufficient to produce a condensate. However, due to
the large magnetic moment of chromium, 6 µB, even a shallow magnetic field gradient
is enough to magnetically trap the atoms. Therefore, we continuously load meta-stable
5D4 atoms into a cloverleaf magnetic trap (MT) [14, ch. 2.3.2]. Most of these meta-stable
atoms are already cooled to the Doppler temperature ~Γ/(2 kB) ≈ 120 µK, because of
the branching ratio of 250 000 : 1 between the electric dipole transition 7P4 → 7S3 and
the magnetic dipole transition 7P4 → 5D4. In addition, we enlarge the magnetic trap
volume and thus increases the number of trapped atom by using a two-dimensional
MOT plus a one-dimensional optical molasses [183, 184], instead of a three-dimensional
MOT. Decoupled from the MOT-light, approximately 2 · 108 atoms accumulate in the
magnetically trapped 5D4 level, which is sufficient to produce a condensate.

After switching off the MOT-light, the repump laser (λ ' 663 nm) transfers the atoms
from the meta-stable 5D4 level into the 7P3 level. From here most atoms spontaneously
decay into the ground-level 7S3. However, this is not a good starting point for efficient
evaporative cooling yet, because the elastic scattering rate is given by Γel

def= nσat v, with
the spatial density n ∝ ω̄2

trap (where ω̄trap/(2π) is the mean frequency of the harmonic
trap), the inter-atomic scattering cross-section σat, and the atom velocity v. Hence, Γel

scales with ω̄2
trap for a given temperature [26, ch. 2.10] and therefore the re-thermalisation

time is long in soft trapping potentials. Thus, we first stiffen the magnetic potential by
”adiabatically” compressing65 the cloud. Subsequently, an axial66 Doppler shot cools the
sample to a temperature T ∼ 240 µK and a phase-space density D ∼ 10−7. Beside its
simplicity this cooling scheme is applicable to dense samples [185].

While for most alkali atoms these starting conditions would be sufficient to produce
condensates by radio-frequency cooling (RF-cooling), this is not the case for chromium:
The working principle of RF-cooling [119, 186–188] is to remove selectively only the hottest
atoms from the trap. The remaining atoms re-thermalise at a lower temperature due
to elastic collisions, while simultaneously their spatial density increases — because the
effective trapping volume decreases. In the case of chromium the increase of the spatial
density has a severe effect, because dipolar relaxations [170, 189, 190] are only negligible

given by Rρ = ~ δMOT/(∆µ b′ρ) ≈ 7.3 mm, where b′ρ ≈ 9.7 G/cm is the radial magnetic field gradient,
and ∆µ is the difference of the magnetic moments of the 7S3 and 7P4 levels.

65Violating the adiabaticity criterion dωtrap/dt� ω2
trap does not have severe consequences, see e.g. [14,

ch. 2.3].
66The atomic velocity components perpendicular to the propagation direction of the laser beam are cooled
by re-absorbing spontaneously emitted photons [185].
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for sufficiently low densities67. Removing preferably the coldest atoms — from the center
of the trap, where the density has its maximum — dipolar relaxations are a heating
process, which counteracts the RF-cooling.

The relaxation mechanism is the dipole-dipole interaction (DDI), which does not conserve
the magnetic quantum number mJ of an atom (see appendix A.5.3). Since the atoms are
initially in an excited Zeeman sub-state, mJ, they relax to energetically lower Zeeman
sub-states, mJ′ < mJ, to minimise their Zeeman energy68, µB gJmJB. While relaxations
into the positive mJ′-states heat the sample, the atoms are lost from the magnetic trap
if they reach a state with mJ′ ≤ 0. Compared to alkali atoms dipolar relaxations are
strongly enhanced in chromium samples, because in its simplest form it scales with S3,
where S is the spin quantum number of a single atom [189].

In order to overcome the dipolar relaxations we only pre-cool the ensemble to a temperature
of TRF ≈ 40 µK using the RF-cooling technique69, while simultaneously transferring them
into a far-detuned optical dipole trap (ODT) — details are given in section 3.2.4 below.
An ODT uses the ac-Stark shift to trap the atoms (see appendix A.1). Its trap depth
is almost equal for all Zeeman sub-states. Therefore, the atoms can be stored in the
ground-state |7S3,mJ = −3〉, where dipolar relaxations would cool70 the sample. Using a
prolate magnetic trap and a laser beam which propagates in horizontal direction — in the
following called ODT1 — maximises the overlap between both traps and thus the transfer
efficiency becomes 40%.

After switching off the magnetic trap, the atoms are optically pumped via the 7P3 level
into the ground-state. Then, the intensity of a second optical dipole trap — propagating
in vertical direction, and called ODT2 — is increased, forming a dimple in ODT1. The
dimple not only adiabatically changes the trap geometry and thereby increases the local
phase-space density [176, 192, 193], but also provides high elastic scattering rates, which
allows very efficient evaporative cooling [194].

The standard 52Cr BEC is achieved by decreasing the intensity of ODT1 [110, 167].
However, in order to obtain a BEC with strong or even dominant dipolar effects we need
to utilise a Feshbach resonance (FR) — introduced in section 3.3 below. Unfortunately,
the FRs in chromium are narrow compared to most alkali atoms [128], which complicates
the control of the scattering length. Furthermore, as only the 14th FR has a width, which
is larger than 1 G, we need to cross the thirteen others. Hence, we need to avoid large

67Using the relaxation rate coefficient βdr = (2.5± 0.5)× 10−11 cm3/s (measured at 27 G in [189]), the
lifetime of a 52Cr condensate would be less than 1 ms (assuming n ∼ 1014 cm−3).

68The ground-state |7S3,mJ = −3〉 is a ”strong magnetic field seeker”, which is not trapable (in three-
dimensions) with static magnetic fields [191].

69In order to minimise the heating rate it is very important to fine-tune the magnetic offset field to a
value of ∼ 35 mG during the RF-ramps [167, ch. 4.7.2].

70Although demagnetization cooling [46] was shown to be perfectly suited for chromium, it is not used at
the moment, because it demands a ultra-high control of the magnetic field. However, it is planed to be
implemented in an upcoming set-up, where a deeper ODT will be used. Allowing to stop the RF ramps
earlier, the deep ODT relaxes the requirement on the magnetic field control.
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densities during the crossings, because it would be accompanied by strong atomic losses
and heating71. Therefore, instead of first producing the condensate and subsequently
crossing the FRs, we split the forced evaporation into two parts: First, we pre-cool the
ensemble in the crossed ODTs at a low magnetic field (B ∼ 10 G), where the evaporative
cooling is especially efficient, then we switch on the magnetic field to Bevap ≈ 600 G
crossing all the FRs, and finally we condense in high magnetic field [172].

A condensate at Bevap containing N ≈ 50 000 atoms is the starting point for all experiments
presented in this thesis. After generating the BEC, we change the trapping potential by
adjusting the powers in both ODTs and (if needed) by adding a one-dimensional optical
lattice (OL) — a standing wave produced by two laser beams crossing under a ”small”
angle (see section 3.2.5 below). Finally, we decrease the contact interactions by ramping
the magnetic field to a value Bf close to the FR [136]. We hold the atoms at Bf in the trap
for a variable time, before releasing them [44, 165] and taking an absorption image after
a time-of-flight. Although imaging the atoms at high magnetic fields Bf is in principle
possible, it reduces the quality of the pictures, because the direction of Bf is perpendicular
to the imaging axis, see [172, ch. C.3]. Therefore, after 4 ms of free expansion, we replace
Bf by a field along the imaging axis, Bimage ≈ 11 G, and take the absorption image on the
|7S3,mJ = −3〉 → |7P4,mJ = −4〉 line component.

3.2 Laser systems

As discussed in the previous paragraph, several lasers are needed to obtain a chromium
condensate. Since the system is continuously developed and extended, the following
section is a status report of the current system. Its aim is not to provide an introduction
but a technical overview. A comprehensive and detailed discussion of the optical set-up is
given in [167].

3.2.1 Magneto-optical trap and Zeeman slower (425 nm)

The blue-violet 425 nm light for the MOT and the ZS constitutes the heart of the
experiment. It is generated in three steps: (i) a diode-pumped solid state laser72 produces
approximately 15.5 W of green (λ ' 532 nm) light. This is used to (ii) pump a titanium-
sapphire laser73, which produces typically 2.8 W of infrared (λTi:Sa ' 851 nm) light. Then,
the infrared light is (iii) coupled into a home build monolithic bow-tie cavity [171], where
a Brewster cut lithium triborat (LBO) crystal generates ∼ 800 mW of the frequency
doubled 425 nm light. The length of the bow-tie cavity is feedback controlled via a
Hänsch-Couillaud lock [195], which does not need any frequency modulation.
71The rate of 3-body losses scales with a4, if the scattering length a is ”large” [20]. At a FR the scattering
length diverges.

72Coherent, Verdi V18. Reliable replacement for an argon-ion laser (Coherent, Sabre R 25 TSM).
73Coherent, MBR110.
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Tab. 3.1, Optimised light power for the experiment: The current set-up is com-
pared to the ”old” set-up, when the two-dimensional molasses cooling in front
of the ZS was not implemented. The powers for the ZS, MOT, and molasses
are the frequency shifted values, measured behind the AOMs.

”old” power current power77 AOM configuration
bow-tie cavity 600 mW 800 mW no AOM (lock point)

ZS 150 mW 200 mW no AOM (lock point)
MOT 130 mW 140 mW double-pass

2d-molasses 0 mW 180 mW single-pass

The absolute frequency of the Ti:Sa-light is locked by using the polarisation spectroscopy74
technique [197, 198] in a chromium hollow cathode lamb75 [199]. Since the 425 nm power
level is very important to obtain stable atom numbers after the magnetic trap and because
most of the light is consumed by the ZS (see tab. 3.1), the spectroscopy is locked to the ZS
frequency, which is 200 MHz detuned with respect to an atom at rest. However, since the
optimal frequency for the two-dimensional molasses (in front of the ZS) is approximately
equal to the frequency of the MOT, it might be desirable to set the lock point between
the frequency of the two and to shift the ZS frequency in a single pass AOM configuration
in the future76.

3.2.2 Repump laser (663 nm)

In former experiments two repump laser were used: one for the 5D4 →7P3 transition
(λ ' 663 nm) and one for the 5D3 → 7P3 line (λ ' 654 nm). However, we currently only
use the 663 nm laser. It is a home built external cavity diode laser producing ∼ 10 mW.
The laser wavelength is stabilised via the external grating, which is locked onto an etalon78
using the Pound-Drever-Hall (PDH) technique [201–203].

74We significantly improved the day-to-day stability by generating a low-noise spectroscopy error signal.
In order to minimise the effect of pick-up noise we use a light balanced detection circuit and amplifying
the signal before sending it to the lock-in amplifier [196, ch. 3].

75In contrast to alkali atoms the vapor pressure of chromium is negligible at room temperature. Therefore,
we produce the chromium vapor by sputtering.

76The alignment of the ZS beam is less sensitive than the alignment of the MOT beams. Therefore, a
single pass AOM configuration might be practicable. The 10 mW for the axial Doppler cooling, which is
frequency shifted by ∼ +4.5 Γ/(2π) with respect to the MOT frequency, could be generated by a double
pass AOM configuration, which is fed by the frequency shifted ZS beam. Since the beam profile of the
two-dimensional molasses is not too important, one could even use the zero-th order of the ZS-AOM in
this configuration.

77Status: 04.2010.
78The etalon has a free spectral range of c/(2 `) ≈ 75 MHz and a thermal drift ∼ 2 MHz/h. Due to its
bad finesse, it will be replaced in the near future by a Fabry-Perot similar to the one described in [200].
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Fig. 3.2, Sketch of the experimental set-up: (a) The coordinate system is defined by
the imaging axis (x-direction), the propagation direction of ODT2 (y-direction),
and the offset coils (z-direction). While for the experiments presented in
this thesis ODT1 propagated along the z-direction, in the current set-up it
is shifted and tilted, propagating in the (x, z)-plane. The two green laser
beams comprise an angle of θlat ≈ 8.2◦. Their counter-propagating components
form the one-dimensional optical lattice in z-direction with lattice spacing
dlat = (7.4± 0.2) µm, which is shown in (b).

3.2.3 Optical pumping (427 nm)

In order to optically pump the atoms from the |7S3,mJ = +3〉 state via the 7P3 level into
the ground-state |7S3,mJ = −3〉 we start with ∼ 70 mW of infrared light (λ ' 855 nm)
produced by a home build external cavity diode laser79. Its wavelength is (grating)
stabilised onto the same etalon as the repump laser via a PDH lock. The infrared light is
fed into a home build bow-tie cavity [204], which’s length is stabilised by a second PDH
lock. By frequency doubling the seeded power, a potassium-niobate (KNbO3) crystal
produces approximately 10 mW of blue-violet light (λ ' 427 nm).

3.2.4 Crossed optical dipole trap (1076 nm)

Since the ground-state |7S3,mJ = −3〉 is not trapable with static magnetic fields [191],
but dipolar relaxations prevent us to obtain condensates in other Zeeman sub-states, we
use an optical dipole trap (ODT) to produce the chromium BEC. The working principle
of the ODT can be illustrated classically using the Lorentz model [198, ch. 2.6.2]: In this
model each atomic transition is described as an eigenfrequency of a harmonic oscillator,
the laser frequency as the driving force of the oscillations, and the spontaneous decay as
damping process. The results do not differ from the quantum mechanical model of dressed
eigenstates [173, 205]. While appendix A.1 summarises useful formulae and definitions,

79Toptica laser diode: ”LD-0850-0100-1, SDL-5411-G1”.
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here we want to point that for a far-detuned laser beam80 the rotating wave approximation
[173, ch. 1.2] is not applicable. Of course, it is still true that the depth of the optical
potential decreases with increasing detuning and so does the spontaneous scattering rate,
however, in order to obtain the correct depth and scattering rates a numerical calculation
including all atomic levels should be performed81.

Figure 3.2 sketches the experimental set-up, which is used to generate the condensate.
The two Gaussian laser beams ODT1 and ODT2 are produced by the same source: a
continuous ytterbium fiber laser82. Its wavelength is λODT ' 1076 nm and its linewidth
(FWHM) ∆λODT ' 2.3 nm. Both beams are linearly polarised, they cross under an
angle of 90◦ such that their relative polarisation is perpendicular to each other. Their
1/e2-waists (of the intensities) at the position of the atoms are83 wODT1 ≈ 30 µm and
wODT2 ≈ 50 µm, respectively. While ODT1 has a maximal power of 16 W and propagates
in the horizontal direction84 (taken to be the z-axis), ODT2 has a maximal power of 9 W
and propagates in the vertical direction (taken to be the y-axis). Although not feedback
controlled, the pointing stability of each beam is ∼ 1 µm. This was achieved by using
quartz lenses [136, ch. 3.2.3] as well as a two-frequency AOM drivers, which compensate
the thermal lensing effect in the AOMs related to the change of RF-power [172, ch. A],
[207].

3.2.5 One-dimensional optical lattice (1064 nm)

To obtain oblate (pancake-shape) traps we use a one-dimensional optical lattice [136, 208].
The optical lattice (OL) is produced by superimposing two laser beams of wavelengths
λOL ' 1064 nm under an angle of θlat ≈ 8.2◦. This results in a measured lattice spacing
of dlat = λOL/[2 sin (θlat/2)] = (7.4± 0.2) µm, see section 6.1. In order to ensure phase-
coherence the two beams are generated by the same continuous ytterbium fiber laser85.
The linewidth (FWHM) of ∆f ≤ 70 kHz provides a coherence length of c/∆f ≥ 4 km.
Both beams are linearly polarised, their polarisation axes being parallel (along the y-axis).
Their 1/e2 waists (of the intensities) are wOL = (110± 5) µm and the maximal power per
beam is about 5 W. Using these parameters, the optical potential can be easily calculated
numerically86.
80Suppose all atoms are in the state |α〉. A laser is far-detuned, if it does not ”connect” the state |α〉 to
any other state |α′〉. More technical, if |ωlaser − ωα,α′ | ≈ |ωlaser + ωα,α′ | for all α′, where ωα,α′/(2π) is
the atomic transition frequency |α〉 → |α′〉.

81Internal link to the program ’StarkShift.nb’.
82IPG: ”VLR-100-LP”.
83These waists where measured by detecting the laser power behind a razor plate on a translation stage.
Alternatively, one could use the atoms as in [206].

84In the experiments presented in this thesis, the ODT1 beam was still propagating in z-direction.
However, in the current set-up it is shifted and titled, because of a dark spot on the entrance window
of the chamber. The current set-up is shown in fig. A.7 (page 126).

85IPG: ”YLR-20-1064-LP-SF”.
86Internal link to the program ’OpticalPotentialDepth.tgz’, calculating the optical potential for the crossed
ODT plus optical lattice.
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3.3 Feshbach resonances

In section 2.2.1 we argued that the details of the bare 2-body interaction potentials are
unimportant to describe the scattering process of two colliding ultra-cold atoms. All what
matters is the scattering length, which is obtained by ”averaging over the short wavelength
details” of the bare potential. However, changing the details may result in a tremendous
change of the scattering length and this is what happens in the vicinity of a Feshbach
resonance. In the following we present a simple model to understand Feshbach resonances
in chromium condensates. A detailed analysis is given in [20, 126–128, 209, 210].

3.3.1 Underlying idea of Feshbach resonances

Consider the elastic collision of two atoms. Again, by separating the center-of-mass and
the relative motion of the atoms and by transforming into the center-of-mass frame, the
scattering process is described by the motion of a single particle in a 2-body interaction
pseudo-potential. In the simplest model the pseudo-potential is taken to be the spherical
square well potential, defined as V (r) = −κ2 [1−Θ(r − b)], where κ2 is the potential
depth, and b is the potential range, with the Heaviside function Θ(r). The single particle
describes the relative wavefunction of the two atoms. Changing the potential depth κ2,
results is a different kinetic energy inside the well. Therefore, the interaction time (the
time the particle spends inside the potential well) depends on κ2. As the scattering
process is assumed to be elastic, the potential does not change the energy of the outgoing
wavefunction — as in section 2.2 we are only interested in the asymptotic behaviour
(r � b) of the wavefunction. Therefore, the change in the interaction time converts only
in a phase shift δ, which is related to the scattering length a, see e.g. [123].

Changing the potential depth continuously, results in a resonance of the scattering length,
whenever the potential supports a new bound-state. From a semi-classical picture this
is reasonable: If the energy of a bound-state matches the kinetic energy of the incident
particle, the particle transforms all its kinetic energy into potential energy. It stops
inside the potential, the interaction time becomes infinite. However, if the energy of the
bound-state slightly mismatches the kinetic energy, the ”velocity” of the particle inside
the potential strongly depends on the sign of the mismatch: If Ebound < Ekin the velocity
is small, while for Ebound > Ekin it would be huge, because the bound-state is out of reach.
Thus, the interaction time of the particle is influenced by the last bound-state inside
the potential well. Therefore, small changes in the potential may tremendously change
the scattering length. ”All” we need to do is either changing the kinetic energy of the
colliding atoms, or tune the details of the bare 2-body interaction potential such that the
pseudo-potential changes dramatically.

In the case of ultra-cold atoms the kinetic energies of the particles are fixed to almost zero
while the shape of the interaction potential is not changed easily. However, atoms are not
point-like particles, but exhibit an internal structure. Therefore, instead of a single 2-body
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Fig. 3.3, Feshbach resonance: (a) The coupling between two molecular potentials
allows to tune the scattering length. Whenever a bound-state matches the
kinetic energy of the colliding atoms, a Feshbach resonance appears in the
scattering length. (b) Behaviour of the scattering length in the vicinity of a
magnetic Feshbach resonance, with width ∆B and position B0.

potential, they furnish a manifold of 2-body molecular potentials. The different molecular
potentials are coupled and hence atoms approaching each other along one potential may
be influenced by the other potentials. This is where the concept of Feshbach resonances
in ultra-cold atom samples is founded.

Consider the two molecular potentials shown fig. 3.3(a). Starting the scattering process
with two asymptotically free atoms — each of them in its internal 1-body ground-state87
|a〉 and |b〉— the 2-body internal molecular state is given by |a, b〉. The molecular potential
associated with this state is called open scattering channel Vopen(r). It asymptotically
approaches zero, Vopen(∞) = 0, see fig. 3.3(a). The second molecular potential, associated
with a different internal 2-body structure |c, d〉, is called closed scattering channel Vclosed(r),
because it is asymptotically forbidden, Vclosed(∞) > Ekin. The coupling between the two
channels is due to some interactions, which mixes the states |a, b〉, |c, d〉. While in the
case of alkali atoms this interaction is mainly ”exchange energy”, it is the DDI in the case
of 52Cr, see appendix A.5.3. Therefore, while the two atoms always start their scattering
process in the open channel (red curve), the coupling admixes states which evolve in
the closed channel (blue curve). By changing the energy difference between the two
channels, the closed channel is lifted or lowered, which results in tuning its bound-states
into resonance. The tuning is most often done via the relative Zeeman energy ∆µB of
the two molecular potentials, where ∆µ def= µ|c,d〉 − µ|a,b〉 is the difference of the magnetic
moments associated with the potentials88.

87The atoms do not have to be distinguishable. Here our aim is to obtain a very simple description.
88An optical Feshbach resonance was used e.g. in [211].
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In the vicinity of an isolated, magnetic Feshbach resonance the scattering length has the
simple form [20, 128, 209, 210]

a(B) = abg

(
1− ∆B

B −B0

)
(3.1)

where abg is the background scattering length, B0 is the ”position” of the resonance, and
∆B is its width (see fig. 3.3b). ”Broad” Feshbach resonances are found, if the coupling
between the molecular potentials is ”strong” and if the difference of their magnetic
moments ∆µ is ”small”. A ”small” background scattering length abg is desirable, if one is
interested in fine-tuning a(B) around the zero-crossing. In the performed experiments
we utilised a Feshbach resonance at the position B0 ≈ 589.1 G, which poses a width of
∆B ≈ 1.4 G. The background scattering of 52Cr is abg ≈ 100 aB.

3.3.2 Calibrating the scattering length

In the experiment we calibrate the scattering length by calibrating the current in the
offset coils. Using the atoms as a probe, this is done in three steps (see as well [136, ch.
4.4.2]):

1. The condensate is freely expanded for ∼ 8 ms at different magnetic fields, before an
absorption image is taken. From the absorption image we deduce the axial Rz(B)
and radial Rρ(B) Thomas-Fermi radii as well as the condensate’s atom number N .
Each magnetic field data point is typically averaged five times.

2. We calculate the Thomas-Fermi radii after the expansion for different scattering
length Rρ(a) and Rz(a) using the dipolar hydrodynamic89 eq. (2.16) and (A.42).

3. Comparing both data sets yields the scattering length as a function of magnetic
field a(B), see fig. 3.4.

In principle the procedure is straight forward. The only constrain one needs to satisfy is
that all data points are within the Thomas-Fermi regime. Otherwise the hydrodynamic
equations becomes invalid (see section 2.3.5) and the solution of the full GPE must be
used instead. Well within the Thomas-Fermi regime the contact interactions dominate
the expansion dynamics. Therefore, we will start the discussion by considering a purely
contact interacting condensate.

After a sufficient long expansion times (t � 1/fmax, where fmax is the largest trap
frequency) the atoms are not interacting any more and the initial interaction energy
(per particle) µ ∝ (N a)2/5 is completely transformed into kinetic energy m (v∗)2/2. The
cloud expands like an ideal gas R(t) = R∗0 + v∗ t, where R∗0 is a constant (not the in-
trap radius) and v∗ is the asymptotic expansion velocity in the center-of-mass frame.

89Internal link to the program ’TOF-DipolarExpansion.nb’.
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Fig. 3.4, Calibration of the scattering length: (a) In the experiment neither the
absolute position of the Feshbach resonance B0, nor the magnetic step size
between the data points are known accurately. The dependency a(B) is obtained
by comparing each measured Thomas-Fermi radius R (shown in a) to a simulated
hydrodynamic expansion (shown in b) — this maps the circled data point in (a)
onto that in (b). The shown data is for N = 30 000 and a trap with frequencies
(fx, fy, fz) ≈ (650, 380, 520) Hz where B ‖ ez.

Due to the conservation of energy, the asymptotic velocity is proportional to µ1/2, thus
R(t) ∝ (N a)1/5 t. The dipolar contribution to the expansion should be visible as a
derivation of this behaviour.

This motivated us to take rj(a) def= R5
j (a)/N , where j = y, z, as the relevant parameters.

Figure 3.4(b) presents the simulated axial and radial r(a) functions after an expansion of
8 ms. It shows that taking the axial Thomas-Fermi for the calibration has two advantages
compared to the radial radius90: (i) its absolute size is larger (if a ”oblate” κy,z column
density is used) — therefore the finite resolution of the CCD camera91 has less influence
— and (ii) its slope is steeper, which allows to distinguish small differences in a and
therefore yields a higher precision. However, it is less linear92. Therefore, we cross-checked
the calibration by evaluating both radii, the radial and the axial. While for the axial
radius each measured data point must be compared to the simulation, the linearity of
the radial Thomas-Fermi radius allows to approximate ry(a) ≈ ma + b, which yields
the simple expression a(B) ≈

(
R5
y/N − b

)
/m to calculate the scattering length from the

measurement. Both methods provide the same result, within the error bars.

90Two remarks: First, the arguments get inverted if a prolate trap is used. Second, if the shot-to-shot
fluctuations in the atom number N are severe, the aspect ration κ ≡ Ry/Rz should be taken instead
[45].

91The radial Thomas-Fermi radius varies from ∼ 70 µm at a = 100 aB to ∼ 50 µm at a = 30 aB. This
must be compared to the 6.45× 6.45 µm2 pixel size of the CCD camera.

92This is due to the fact that the maximal dipole-dipole attraction is twice as strong as its repulsion.
The minimum at a ∼ 18 aB in fig. 3.4(b) indicates the crossover from the purely contact (εdd � 1) to
purely dipolar (εdd � 1) expansion dynamics, which finally results in the break down of the model due
to the dipolar instability, see section 4.
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As the calibration of the scattering length depends on the absolute size of the expanded
condensate, the magnification factor of the imaging system must be accurately measured.
This was done by diffracting the atoms from a standing light field [212–215]: Just after
releasing an ultra-cold cloud from the trap, a laser93 with wavelength λpuls ' 532 nm illu-
minates them for tpuls ∼ 5 µs. The laser beam is retro-reflected such that an atom obtains
the momentum 2h/λpuls if it absorbs a single photon from the laser beam propagating
in one direction and re-emits it into the laser beam which propagates in the opposite
direction. This provides an accurate measurement of the resolution of the imaging system,
because the relative position of the atoms is not disturbed by magnetic field gradients, but
only by curvatures. Fitting the distance between the diffraction peaks after 7 ms of free
expansion, we found an magnification factor of 1.12 for the imaging system [177, ch. 3.5].
All experimental Thomas-Fermi radii are rescaled by this factor. Note that the imaging
of the cloud should be done in high magnetic field (B ∼ 600 G), because magnetic field
curvatures during the switch-off might disturb the size of the cloud94.

3.3.3 Experimental tasks: Working with a Feshbach resonance

Using a Feshbach resonance induces several experimental challenges. These are:

1. atom losses: Crossing or holding the condensate in the vicinity of a Feshbach
resonance (on either side) is accompanied by strong atom losses. For ”large” scat-
tering lengths (a� r0) the losses scale with a4 and increase with increasing spatial
density95 [216, 217]. Therefore, in order to obtain large condensates at B ∼ 600 G
we need to cross the 14 Feshbach resonances sufficiently fast with a low spatial
density. The switch-on of the magnetic Feshbach field is done96 in less than 6 ms,
crossing the broadest resonance with a slope Ḃ ' 130 G/ms, and a density of
n ≈ 1013 cm−3. The atom losses for a condensate in the vicinity of the Feshbach
resonance at B0 ≈ 589 G are shown in fig. 3.5. A simple estimate of the 3-body loss
coefficient provides L3 . 2 · 10−28 cm6/s for a ≤ abg.

93This laser is only used for this measurement. It has a 1/e2 waist (of the intensity) wpuls ≈ 110 µm,
a maximal power Ppuls ≈ 5 W, and it is retro-reflected. Do not confuse it with the one-dimensional
1064 nm optical lattice used to shape the trap. For details see [177].

94The absorption image shown in fig. 5.1 (page 72) shows a change in the size of the collapsed cloud.
However, we never checked if a non-collapse cloud, which satisfies the Thomas-Fermi conditions, exhibits
the same effect.

95A naive estimate provides na3: In order to get 3-body losses all three particles need to be within a
sphere of radius R, where R is the 2-body interaction range. The (uncorrelated) probability that this
happens is given by n 4π R3/3. Taking R to be on the order of the scattering length a results in the
scaling na3.

96The coil configuration is given in tab. A.1 (page 104). Alternatively, one could use Helmholtz coils with
a ”small” radius and only a few windings to achieve a faster switching, while using coils with a ”large”
radius and many windings to obtain a stable offset-field. However, these are not available in the current
set-up.
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Fig. 3.5, Lifetime of the condensate and 3-body losses: The 1/e lifetime of the
condensate around the Feshbach resonance is estimated by fitting an exponential
N(t) = N0 e−t/τlife . Using this estimate the 3-body relaxation coefficient is
approximated by 1/τlife ∼ −L3 n

2. A sophisticated measurement of L3 is given
in [118]. (Taken from [136])

2. curvature compensation: Any imperfection in the arrangement of the magnetic
field coils results in magnetic field gradients b′z, b′ρ and curvatures b′′z , b′′ρ. Whereas the
gradients are only on the order of the 1.2 G/cm and therefore are negligible across
the condensate97, the curvatures must be carefully compensated. Otherwise ”hot”
atoms which are evaporated from the crossed ODT are trapped by the resulting
magnetic trap.

The compensation is done by the pinch coils, which have curvatures approximately
25 times larger than those of the offset coils, at the same current. Note that the
radial and axial curvatures produced by a cylindrical coil are coupled [172, ch. C2],
which provides the relation f 2

z = −2 f 2
ρ for the trap frequencies. Therefore, the

curvatures produced by the offset coils can not be exactly compensated by the pinch
coils. The atoms are either trapped in radial or in axial direction. For an efficient
evaporative cooling process we choose anti-trapping in radial (two-dimensions) and
trapping in axial direction. Axially as well as radially the trapping frequency is less
than 10 Hz. The final optimisation was done by maximising the number of atoms in
the condensate. For more details see [172].

3. eddy currents: The experiments are performed in a stainless steel chamber with
coils outside of the vacuum system and the entrance windows flanged using copper
gaskets. Therefore, changing the magnetic field induces eddy currents in the gaskets.
We measured the 1/e lifetime of the eddy currents to be τB = (0.57± 0.05) ms using
Zeeman spectroscopy. Therefore, even if the magnetic field produced by the offset

97The gradients mainly result in a shift of the trap equilibrium position. This shift is approximately
equal to the gravitational sag (mg/µm ≈ 1.5 G/cm) and therefore they are negligible in sufficiently
strong trapping potentials.

52



coils B0(t) were changed abruptly, the atoms would experience a smooth change,
according to B(t) = B0(t)− τBḂ(t).

4. current noise: As the current noise in the offset coils translates into an uncertainty
of the scattering length, we need to control it as accurate as possible. This is done
by controlling the resistance of an MOSFET98 via a PI-loop99. Using high-stable
power supplies100 and a high-precision current transducer101 the (peak-to-peak)
noise-to-signal ratio102 was measured to be ∆I/I = 4.5× 10−5, for details see [136,
ch. 4.2]. However, the PI contains a second integration stage, which is currently not
used. In principle it should increase the gain at low frequencies and thereby improve
the current stabilisation further103.

5. high-field imaging: In order to optimise the evaporation ramps an imaging system
was build to probe the atoms with linear polarised light at a 600 G magnetic offset
field. However, because both, the propagation direction as well as the polarisation
axis of the probe beam, are perpendicular to the magnetic field, the probe light
needs to be decomposed point-wise into σ± light [172, ch. 4.4]. The atomic column
density (integrated over the x-axis, which is defined to be the line-of-sight) is given
by

n(y, z) = − 1
σres

ln
(

2 Iout(y, z)
Iin(y, z) − 1

)
(3.2)

where104 σres def= 3λ2/(2π) is the resonant absorption cross-section for σ− light [173],
and Iin and Iout are the in- and out-going intensities [167, ch. 3.1]. Note that this
is equivalent to n(y, z) = − 2

σres
ln
(
Iout(y,z)
Iin(y,z)

)
only in the limit of low optical density.

Thus, only in this limit the total cross-section is given by σres/2.

Conclusion:
Applying the techniques discussed in this section, we obtain a 52Cr condensate composed
of 50 000 atoms at 600 G. By using the Feshbach resonance at 589.1 G, we are able to
reduce the usual contact interactions such that the anisotropic dipolar interactions become
dominant. This allows us not only to observe strong dipolar effects, e.g. the elongation of
the condensate along the magnetic field direction or the suppression of the inversion of
the ellipticity during free expansion, but also to induce a dipolar instability. The dipolar
instability is the subject of the following section.
98Care has to be taken by choosing the correct MOSFET (metal-oxide-semiconductor field-effect transistor).
We currently use two ”DYNEX: DIM400BSS12-A000” in parallel. However, this configuration will be
replaced by a single ”DIM1200DM12-E000” in the future.

99Designed by Marco Fattori and Werner Braun: ”ELAB 30/05 b” (changed 18.11.2008).
100Agilent: ”6682A”.
101Danfysik: ”Ultrastab 860 R”.
102Due to eddy currents in the copper gaskets of the experimental chamber, only the current noise in the

frequency range 1 Hz to 10 kHz is important. The measurement was done as in [136, ch. B], but using
high-quality resistors and a low-noise voltage source in the PI-loop. These minor changes improved
the current stability by a factor of 1.4.

103However, one has to carefully choose its operational amplifier.
104The Clebsch-Gordan is unity for the |7S3,mJ = −3〉 → |7P4,mJ = −4〉 transition.
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”If I can’t picture it, I can’t understand it.” (Albert Einstein)

4 Instabilities of dipolar condensates

Now we focus on the main subject of this thesis: unstable dipolar condensates. Unstable
and collapsing condensates were first observed in 7Li [56] and 85Rb [57]. Having negligible
dipolar interactions, these instabilities were fully explained by considering contact interac-
tions only. However, inducing the instability in a condensate with non-negligible dipolar
interactions changes the discussion considerably. Therefore, the main objective of this sec-
tion is to understand the occurrence of an instability in a dipolar condensate. The collapse
dynamics is discussed in section 5 together with the experimental measurements105.

4.1 Instability due to local density fluctuations

The instability reveals itself by generating unphysical solutions indicating the breakdown
of the model used to describe the condensate. For example, the eigenenergy of the ground-
state becomes negative or complex valued, or the condensate’s size becomes non-positive,
manifesting an tremendous increase of the density106. Fortunately, the eigenenergy of the
ground-state is an easily calculated quantity. Therefore, we will use it to consider first
the case of three and two-dimensional homogeneous condensates, before discussing the
experimentally most relevant configuration of a confined dipolar condensate.

4.1.1 Three-dimensional homogeneous dipolar condensates

A homogeneous condensate is an infinitely extended BEC with constant density. In the
following it is assumed to be dipolar and pure107. The purely contact interacting case is
summarised in [218].

Since the energy contribution from the dipolar interactions vanishes for any spherical
symmetric density distribution (see appendix A.5.7), the stability criterion for a truly
homogeneous condensate is the same as in the purely contact interacting case: the

105While instability refers to the threshold between the stable and the unstable region in the stability
diagram, the term collapse refers to the dynamics of the condensate if this threshold is crossed. The
collapse will be defined more precisely in section 5.

106The break down of the mathematical model is not enough to conclude that the condensate becomes
unstable. Additionally, we have to identify a physical mechanism, which is responsible for the instability:
E.g., in the case of the phonon-instability 3-body collisions result in the production of molecules.

107The thermal cloud is neglected, all atoms are assumed to be part of the condensate.
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Fig. 4.1, Bogoliubov excitation spectrum: (a) The anisotropy of the dipolar inter-
actions stiffens the excitation spectrum (4.1) for phonons travelling parallel
(α = 0) to the polarised dipoles µm compared to a purely contact interacting
BEC. In contrast, phonons travelling perpendicular (α = π/2) to µm are soft-
ened. (b) If the contact interactions were reduced such that εdd exceeds unity109,
the soft mode becomes imaginary for ”small” phonon wavevectors |q| indicating
the dipolar instability. The healing length is given by ξα ≡ ~/

√
2mn0 |gα|. The

calculation assumes a 52Cr condensate with n0 = 1014 cm−3.

scattering length must be positive108 (repulsive contact interactions). However, allowing
local density perturbations, the dipolar contribution do no longer vanish and must be
taken into account. Assuming that travelling plane waves with wavevector q perturb the
system, the Bogoliubov excitation spectrum (see appendix A.5.8)

E(q) =
√
Efree(q)

[
Efree(q) + 2n0 Ṽint(q)

]
(4.1)

is obtained, where Efree(q) def= (~q)2/(2m) is the free particle dispersion relation, n0 the
non-perturbed equilibrium value of the spatial density, and Ṽint(q) is the Fourier transform
of the 2-body interaction potential. The effective coupling strength including dipolar
interactions is defined by gα

def= Ṽint(q) = g + gdd (3 cos2 α − 1), where α is the angle
between the fully polarised magnetic moments µm and the wavevector q. The Bogoliubov
spectrum (4.1) can either be understood as a collective excitation of many interacting
atoms, or as the production of non-interacting quasi-particles (see appendix A.5.8). Since
the quasi-momentum q vanishes linearly for zero excitation energy, these quasi-particles
are called phonons [180, 219]. Due to the conservation of angular momentum, they have
to obey Bose-Einstein statistic110. The crossover from a linear (collective) into a quadratic

108This condition can be deduced from thermodynamics [157, ch. 4.1]: For the homogeneous case, the
quantum pressure vanishes and the total energy E is equal to the interaction energyN n0 g/2. Hence, the
pressure is given by P def= −∂E/∂V = n2

0 g/2, yielding the compressibility κcomp
def= − 1

V
∂ V
∂P = 1/(n2

0 g),
which must be positive in order to obtain a stable system.

109Recall: εdd is the ratio between the dipolar and the contact coupling strength, see page 26.
110The excitation spectrum of a bosonic system has to obey Bose-Einstein statistic [220, ch. 66].
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Fig. 4.2, Illustrating the phonon instability: A density wave generates stacks of
condensates. In the extreme case it effectively reduces the dimensionality of the
interactions by one. Depending on the direction of the density wave, either the
repulsive or the attractive part of the DDIs is effected. (a) Phonons travelling
parallel to the dipoles reduce the attractive part by producing pancake-shape
BECs. In contrast, radial phonons (b) reduce the repulsive part of dipolar
interactions. The total energy decreases, an instability even at positive scattering
length is possible. The left and the right picture illustrate the two and three-
dimensional case, respectively.

(single free particle like) excitation occurs at qα ∼ 1/ξα, where ξα def= ~/
√

2mn0 |gα| is the
healing length associated with gα.

Figure 4.1(a) presents the excitation spectrum for phonons produced in a homogeneous
chromium condensate (εdd ≈ 0.16) and compares it to the purely contact interacting case
(εdd = 0). For repulsive contact interactions (g > 0), it can be illustrated as follows: Place
the atoms on an equally spaced two-dimensional grid and fix their relative positions by
springs. Due to the anisotropy of the dipolar interactions, the spring constant between
axial and radial neighbours are not chosen equal, but according to the effective coupling
gα. Hence, it is stiffer between two axial neighbours111. For the chromium background
scattering length (εdd ≈ 0.16) this simple picture illustrates why density waves (phonons)
travelling parallel (α = 0) to the polarised dipoles have a stiffer excitation spectrum than
density waves travelling perpendicular (α = π/2) to the polarisation direction [180, ch.
4.1].

For density waves propagating parallel (α = 0) to the polarised dipoles µm the spring
model works for all positive scattering lengths εdd > 0. However, it breaks down for
density waves propagating perpendicular (α = π/2) to µm if the contact interactions were
decreased such that the dipolar interactions become dominant (εdd > 1). Here, the radial
spring constants would become negative resulting in an imaginary energy for excitations

111As mentioned in section 2.3.3, the mean-field dipolar interaction becomes ”counter-intuitive” in the
2-body forces-picture. By choosing the spring constant according to gα, we remain in the energy-picture.
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with wavevectors
q < qunstable

def=
√

16 π n0 (add − a) (4.2)

as shown in fig. 4.1(b). This can be understood in the following way: Modulating the
atomic density radially, these phonons generate stacks of prolate condensates, see fig.
4.2(b), where the dipoles interact foremost attractively. Therefore, the dipolar interactions
decrease the total energy and eventually induce an instability. In contrast, for density
waves propagating parallel to the dipoles (α = 0) the condensate remains stable, because
the dipoles interact mainly repulsively. We will encounter the radial character of the
instability throughout this thesis.

Although homogeneous condensates are unphysical due to their infinite extension, they
do provide valuable information for experiments. Despite their simplicity — which
makes them numerically simple and sometimes even analytically solvable systems — they
describe trapped condensates if the change in density is small within the wavelength of
the excitation (e.g., for a condensate with Thomas-Fermi radius R the condition reads
R� 1/q). If this is fulfilled, the single harmonically confined condensate can be treated
as a collection of homogeneous condensates, with each of them having its own local density
[221]. Coming back to the stability criterion (4.2), we may reverse this argument: Since
homogeneous condensates describe only the short wavelengths properties of a trapped
condensate, the condensate is stable if112 qunstable ≤ qmin

def= π/Rρ.

4.1.2 Two-dimensional homogeneous dipolar condensates

In the following section we will confine the dipolar condensate in one direction. Although
this configuration is considerably more complicated than the three-dimensional homoge-
neous case, it still permits to work with analytic expressions. However, studying dipolar
condensates in reduced dimensions allows to discuss one of the most thrilling aspects
of dipolar condensates: its maxon-roton excitation spectrum [64]. Thus, the discussion
provides a deeper understanding of dipolar condensates confined in three-dimensions.

Assuming a strong confinement in only one direction, the excitation spectrum transverse
to this direction remains continuous. From the discussion in the previous section we know
that the excitation spectrum is most interesting in the direction perpendicular to the dipole
axis (α = π/2). Therefore, we consider the configuration where the dipoles are polarised
parallel to the confinement direction113, with µm ‖ z and the trap frequency ωz/(2π) > 0.
For a sufficiently strong confinement, ~ωz � µ, the two-dimensional transverse excitation

112Loosely speaking, the condensate is stable if the wavelength associated with the instability is to large
to fit into the BEC.

113The case where the dipoles are oriented in the plane of strong confinement is discussed in [222].
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spectrum reads114 [65, 66]

E(qρ) =
√
Efree(qρ)

[
Efree(qρ) + 2n2d Ṽ (2d)

int (qρ)
]

(4.3a)

with the Fourier transform of the two-dimensional 2-body interaction potential115

Ṽ
(2d)
int (k̄ρ) def=

∫ ∞
−∞

dk̄z |ñ(k̄z)|2 Ṽint(k̄) (4.3b)

= 1√
2πσz

[
g + 2 gddH2d(

√
2πk̄ρ σz)

]
(4.3c)

where qρ ≡ k̄ρ/(2π) is the transverse wavevector, n2d def=
√

2πσz n3d the two-dimensional
homogeneous density, σz =

√
~/(mωz) is the width of the Gaussian wavefunction in

z-direction, and H2d(χ) def= 1− 3/2
√
π |χ| exp (χ2) erfc(χ) with the complementary error

function erfc(χ). In order to discuss the stability of the condensate and to emphasise
the similarity to the previous section, we define the two-dimensional effective coupling
strength g(2d)

int (χ) def= g+2 gddH2d(χ)√
2πσz

. The chemical potential is given by µ2d = n2d g
(2d)
int (0).

The major difference between the two-dimensional excitation spectrum (4.3a) and the
three-dimensional one, eq. (4.1), is the momentum dependency of the effective coupling
strength throughH2d(χ), see fig. 4.3: It is a strictly monotonic decreasing function, starting
at unity, crossing zero at χ/

√
2 ≈ 1 and asymptotically approaching −1/2. Therefore, the

114The system freezes in the z-direction into the ground-state of the harmonic oscillator, φ0(z) ≡
exp [−z2/(2σ2

z)]/(π1/4√σz). Therefore, the wavefunction factorises, Ψ(r) = ψ(ρ)φ0(z).
115For deriving the formula use Parseval’s theorem as in section A.5.4, consider a Gaussian wavefunction

in the direction z of strong confinement, and integrate over the z-direction using
∫∞
−∞ dkz (−1 +

3 k2
z

k2
ρ+k2

z
) exp[−(σz kz)2/2] = σz/

√
2πH2d(kρ σz/

√
2).
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phononic stability condition is given by

lim
qρ→0

g
(2d)
int (qρ) = g + 2 gdd√

2πσz
≥ 0 (4.4)

If condition (4.4) fails, the chemical potential becomes negative, indicating that a ground-
state does not exist and that the model breaks down. However, since H2d(qρ) decreases
with increasing qρ, eq. (4.4) is only a necessary condition to ensure a stable condensate.
Additionally, the rotonic stability condition

lim
qρ→∞

g
(2d)
int (qρ) = g − gdd√

2πσz
> 0 (4.5)

must be satisfied to prevent an instability at finite transverse wavevector and sufficient
large densities n2d. Note that although the system would become unstable if condition
(4.5) was not fulfilled, the chemical potential would remain positive. This suggests that a
new ground-state exists, which probably exhibits a periodic density modulation.

From these considerations it is obvious that the role of the dipolar interactions depends
on the sign and magnitude of the scattering length. Therefore, three cases must be
distinguished116:

1. Purely dipolar interactions (g = 0)
Condition (4.4) is always fulfilled, and the system is stable against phonons. However,
for sufficient large densities the dipoles drive the condensate into a roton instability.

2. Repulsive contact interactions (g > 0)
Again condition (4.4) is always satisfied, and a phonon instability does not occur.
However, if the dipolar coupling strength exceeds the contact coupling strength
(gdd > g), the dipoles drive the condensate into a roton instability for sufficient large
densities. In contrast, if the contact interactions dominate (gdd < g), the condensate
is stable against phonons as well as rotons.

3. Attractive contact interactions (g < 0)
For sufficient attractive contact interactions (|g| > 2 gdd) the condensate is unstable
against phonons for any density. However, for small enough contact interactions
the dipoles stabilise the phonon instability. Only for sufficient large densities the
condensate becomes unstable against rotons. Depending on the wavevector of the
most unstable mode, the instability is either driven by the contact interactions alone
or by both, the contact as well as dipolar interactions.

116Here, we assume a positive dipolar coupling constant gdd, because rotating magnetic fields are unrealistic
in our current set-up.
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Fig. 4.4, Roton excitation spectrum: While (a) presents the total excitation energy
(4.3a) for a single condensate for two different negative scattering lengths, (b)
shows the dipolar, contact, and free-particle contributions for a = −14 aB. In
both graphs the density is given by n3d = 1015 cm−3 and the confinement by
ωz = 2π · 10 kHz. Note that the dipolar contribution is still positive at the
roton minimum — the role of the dipoles is to stabilise the ”short” wavelength
excitation, but not to destabilise the system at the roton minimum.

4.1.3 Rotonic excitations

The origin of the roton instability lies in the momentum dependency of the inter-particle
interactions and is an unique feature of long-range interactions in low-dimensional sys-
tems117. Although the anisotropy of the dipolar interaction enhances this effect, it is not
necessary to obtain a roton spectrum. This was shown in [228], where an isotropic, but
long-range interaction potential was used.

For the case of chromium the experimentally most promising configuration to observe
rotonic effects is the case of attractive contact interactions (g < 0). The different
contributions to the excitation spectrum (4.3a) are presented in fig. 4.4. However, even in
this ”simple case” the necessary densities are experimentally very demanding118. Thus, it
is unlikely to observe a roton instability119 with a chromium BEC and very challenging to

117In contrast, the maxon-roton spectrum in superfluid 4He is a consequence of its proximity to a solid
phase: Density fluctuations with a wavelength λ ∼ 1/klat, where klat is the reciprocal lattice vector of
solid helium, are enhanced [157, 218, 223–227].

118With decreasing density the roton minimum moves to smaller transversal momenta qρ and to smaller
scattering length a. This can be easily seen from eq. (4.3a) if we rescale qρ →

√
n2d q

′
ρ.

119A roton instability would occur if the excitation energy associated with the local minimum at momentum
qρ ∼ 0.6/σz became negative.
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Fig. 4.5, Roton softening in a stack of condensates: Using the configuration
sketched in (a), the inter-site dipolar coupling hybridises the maxon-roton spec-
trum. This is shown in (b) for Ns = 40 lattice sites, lattice spacing dlat = 530 nm,
spatial peak density n0 = 1014 cm−3, scattering length a = −19 aB, and recoil
energy Erec = ~2/(md2

lat). While some eigenmodes possess a stiffer excitation
spectrum than in the single condensate case (Ns = 1), some become softer and
develop a roton minimum. (Taken from [233])

measurement the roton signature in Faraday patterns [229] or the angular collapse [73].
Although Bragg spectroscopy is in principle possible [221, 230–232], the limited optical
access of the current experimental set-up rules it out.

Therefore, the following configuration is more realistic [233, 234]: Instead of a single
condensate, consider a stack of oblate condensates confined on different sites of a one-
dimensional optical lattice with lattice spacing dlat, see fig. 4.5. The optical lattice is
assumed to be sufficiently deep such that tunneling is strongly suppressed. The otherwise
isolated condensates are only coupled by the long-range dipolar interactions. While this
configuration maintains the on-site repulsion, the inter-layer interaction of the sites j
and j′ is strongly attractive for a characteristic wavevector kj,j′ ∼ 1/(|j − j′| dlat). The
hybridisation of different modes leads to a softening of the roton mode. Effectively,
the function H2d(qρ) is replaced by a function H

(Nlat)
2d (qρ), which decreases faster with

increasing number of sites Nlat.

Surely, the roton instability is a very interesting effect, which could be present in dipolar
condensates. However, its relevance to the experiments presented in this thesis are not
completely clear and still under debate.

4.2 Instability due to scaling deformations

Although the discussion of homogeneous dipolar condensates illustrates the instability, it
does not provide a reliable description for the experimental results. Thus, we like to take
the next step towards a quantitative description of a dipolar condensate in this section
by considering the energy functional and ask: How does the trap geometry affect the
stability? From the picture presented in the previous section, we expect condensates to be
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more stable in pancake-shape (oblate) than in cigar-shape (prolate) external potentials.
A more detailed discussion of the purely contact interacting case is given in [119, ch. 6.2],
[157, ch. 11.6], and [59, 235, 236]. Our results for the dipolar case are published in [237]
and discussed in [136, 144, 145, 238]. In appendix A.6.2 we generalise the calculations from
a single BEC and include the inter-site dipolar interactions for a stack of pancake-shape
condensates.

In order to get a simple quantitative model for the instability the mean-field energy (2.9)
for different cylindrically symmetric, harmonic confinements is calculated. However, since
we do not know the Gross-Pitaevskii solution ψ(r), we use an educated guess: While in
the non-interacting case the wavefunction is given by the Gaussian

ψ(r) def=
√
N

π3/4 σρ σ
1/2
z

exp
(
− ρ2

2σ2
ρ

− z2

2σ2
z

)
(4.6)

the Thomas-Fermi density profile is a parabola, see eq. (2.11). Not only do these density
distributions allow to check the limiting cases of negligible and dominant interactions, but
the energy can be calculated analytically. The different energy contributions (quantum
pressure, potential trap energy, contact interaction energy, and dipolar interaction energy)
are given by (per atom in units of ~ω̄) [161, 237, 239]120

Gaussian Thomas-Fermi
Ezero
N~ω̄

a2
ho
4

(
2
`2ρ

+ 1
`2z

)
0

Etrap
N~ω̄

2 `2ρ+λ2 `2z
4 a2

ho λ
2/3

2 `2ρ+λ2 `2z
14 a2

ho λ
2/3

Econtact
N~ω̄

N√
2π

(
aho
`ρ

)2
a
`z

15N
7

(
aho
`ρ

)2
a
`z

Edip
N~ω̄ − N√

2π

(
aho
`ρ

)2 add fdip(κ)
`z

−15N
7

(
aho
`ρ

)2 add fdip(κ)
`z

(4.7)

where ω̄ def= (ω2
ρ ωz)1/3 is the mean angular trap frequency. In these formulae the only

free parameters are the condensate sizes `ρ and `z. Surprisingly, the Gaussian and the
parabola density distribution exhibit the same energy scaling, if the sizes are used as
variational parameters to minimise the total energy. Only the numerical weights differ. To
simplify the following discussion, the contact and the dipolar interactions are combined
by defining an effective interaction length L(κ) def= a− add fdip(κ).

The simplest case is obtained by taking the limit N →∞. Since the zero-point and the
potential trap energy (per atom) do not depend on N , they are negligible and the Gaussian,
as well as the Thomas-Fermi energy reduces to Etot ∝ L(κ). Hence, the instability occurs

120Recall: trap ratio λ ≡ ωz/ωρ, harmonic oscillator length aho ≡
√
~/(mω̄), and aspect ratio κ ≡ `ρ/`z

with cloud size ` = σ,R for the Gaussian and Thomas-Fermi profile, respectively. The anisotropic
dipolar function fdip(κ) is discussed in appendix A.5.5.
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Fig. 4.6, Stability diagram for a single dipolar condensate: (a) Shown is the
critical scattering length for different cylindrically symmetric trap geometries
[237]. The mean trap frequency is ω̄/(2π) = 700 Hz, and the atom number N =
20 000. While the Gaussian ansatz without dipolar interactions (red) is almost
constant, we find good agreement with the measured data points, if dipolar
interactions are included (blue). The Gaussian stability curve for N →∞ is
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ground-state (shape of a red blood cell). The iso-energy landscapes E(`ρ, `z)
shown in (b-e) are for λ = 10 and a = (18, 10,−8.5,−32) aB. (Discussed in the
text)

at L(κ) = 0, corresponding to a critical scattering length acrit(κ) def= add fdip(κ). For the
Thomas-Fermi energy this remains valid for all N , because the potential trap energy scales
like `2 and therefore is always negligible for sufficient small `, whereas the interaction
energy increases with decreasing `. Therefore, the instability found for a Thomas-Fermi
distribution is equal to the critical scattering length acrit(κ) found with a Gaussian density
distribution for N →∞ (see fig. 4.7), if the coupling of the radii via eq. (2.13) is omitted121.
Doing so, we consider only Gaussian density distributions in the following.

Studying the scaling of the Gaussian energy (4.7), it is obvious that only the interaction
energies are responsible for the instability, because both the quantum-pressure and the
potential trap energy are positive. Therefore, if L(κ) > 0 the condensate is stable. Plotting
the corresponding iso-energy landscape 4.6(b) shows that a single global minimum exists.

A necessary condition for the instability is L(κ) < 0. Investigating the `ρ-scaling of
the energies, one easily finds that a global minimum appears at `ρ = 0 if the instability
criterion

N L(κ)
`z

< −
√
π/2 (4.8)

121Including the coupling of the radii the condensate becomes more stable in oblate traps, while it becomes
less stable in prolate traps.
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is fulfilled. However, for sufficient weak interactions (Lcrit(κ) < L(κ) < 0) a local minimum
still exists122 at finite `ρ and it is separated from the global minimum by a barrier, as shown
in fig. 4.6(c). Therefore, assuming that the condensate is not excited (e.g. due to non-
adiabatic changes of the trap frequencies), the condensate remains in this local minimum
for all experimental relevant time scales. It is said to be meta-stable. Only if the barrier
vanishes and with it the local minimum, the condensate becomes unstable, as shown in fig.
4.6(d). The disappearance of the local minimum is used to define the critical interaction
length123 Lcrit(κ), which yields the critical scattering length acrit(κ) def= Lcrit(κ)+add fdip(κ).

Using the same kind of argument for the axial direction, one finds that the quantum
pressure always stabilises the condensate for `z → 0 but that a minimum at finite `z and
negative energy might exist if

N L(κ)
`z

< −
√
π/2 κ2

2

1 +
(
λ1/3 `z

aho

)4
 (4.9)

is fulfilled124. It is not related to an instability, but to the formation of a soliton [65]. This
condition is only relevant for κ <

√
2.

It follows from the above discussion that in cigar-shape traps the instability is induced by
dipolar interactions, while it is driven by the contact interactions in pancake-shape traps.
Due to the different role of the dipolar interactions the stability diagram is divided into
two regions: the region of the dipolar instability (acrit > 0) and of dipolar stabilisation
(acrit < 0). Figure 4.6(a) compares the critical scattering length acrit(κ) obtained from
the Gaussian energy to experimental data for different trap geometries. It shows that
the simple Gaussian model agrees well with the measured data [237] and that the full
numerical solution ψ(r) of the Gross-Pitaevskii equation improves the description of the
measurements further. All data points lie within the region of the dipolar instability,
except λ ' 10. This last trap configuration constitutes the first purely dipolar condensate.
The error bars are mainly due to uncertainties in the trap frequencies, which enter via the
calibration of the scattering length (section 3.3.2).

We would like to close this paragraph with a remark about the applicability of the Gaussian
model, its predicting power and the conclusion one may draw. Figure 4.7 presents the
critical scattering length found with the Gaussian density for different atom numbers N .
It shows that the critical scattering length becomes zero at λ0 ≈ 5.17. Therefore, it exists
a critical trap ratio λ0 for which the aspect ratio is oblate (κ ≥ 1) for all purely dipolar
condensates — independent of the dipolar interactions strength. The dipolar contribution
is repulsive in these traps, thus, the condensate is stable. This conclusion is drawn in
122For the Thomas-Fermi density profile local minima do exist as well. This is due to eq. (2.13), which

couples both Thomas-Fermi radii. Examples are given in [240].
123At the critical scattering length the local minimum becomes a saddle point ∂Etot/∂`ρ = 0 = ∂Etot/∂`z

and (∂2Etot/∂`
2
ρ) (∂2Etot/∂`

2
z) = (∂2Etot/∂`ρ∂`z)2. This is discussed in [144, 145, 238].

124Note that the Thomas-Fermi wavefunction supports axial contraction to a ”point-like state”.
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several articles [134, 144, 159]. However, one should be aware that the Gaussian model is
a severe simplification and therefore its predictive power is limited.

That the predicted ”absolute stability” for purely dipolar condensates confined in oblate
traps withλ ≥ λ0 is not physical and only a peculiarity of the Gaussian model was shown
in [70, 134, 240], where more sophisticated numerical calculations were used125. The
authors conclude that the Gaussian model is a good description of the full GPE for a
wide parameter range. However, the agreement between both models is excellent only for
cigar-shape traps. This can be understood as follows: In cigar-shape traps both energy
contributions (from the trap and the interactions) favour the elongation of the condensate
along the polarisation direction. Hence, it is ”natural” that the peak density is located in
the center of the trap, which is consistent with the Gaussian density profile. In contrast,
in pancake-shape traps the contribution of the dipolar interactions competes with the
potential energy of the trap. Therefore, a structured density distribution whose peak
density is located at the periphery of the condensate (`ρ 6= 0) is possible [67, 70, 71],
see fig. 4.6(a). However, the Gaussian trial wavefunction is incapable of describing this
density distribution126. Therefore, in oblate traps different mechanisms are expected to be
responsible for the instability. The most prominent mechanism is the softening of a roton
mode, which is driven by local density fluctuations. It was suggested in [243] that the
difference between the measured critical scattering length and the Gaussian acrit(κ) (blue
solid line in fig. 4.6(a)) indicates the onset of the ”rotonisation”. However, such indirect

125A simple argument, showing the limits of the Gaussian model, is the following: Since the aspect ratio κ
approaches the trap ratio λ with increasing atom number, the Gaussian model predicts that for λ > λ0
the condensate becomes more stable with increasing N , see fig. 4.7. However, this contradicts our
expectations that by increasing the non-linearity in the GPE, the condensate should become less stable.
This is also reflected in the Bogoliubov spectrum of a homogeneous condensate, eq. (4.1), where the
condensate becomes less stable if either the atom number or the dipolar interaction strength increases.

126The bi-concave wavefunction, which solves the full GPE, is well approximated by a sum of Gaussian
wavefunctions with different widths and statistical weigths [241, 242].
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evidences should be taken as motivation to directly measure the roton127. In the following
we will not refer to the roton instability, although we will present the collapse dynamics
of a condensate with trap ratio λ ' 10.

127Note that our Gaussian ansatz assumes a cylindrical symmetric density distribution. However, in the
region around κ ' 1 this is not the case.
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”Suicide may also be regarded as an experiment — a question which
man puts to Nature, trying to force her to answer.”
(Arthur Schopenhauer)

5 Collapse of dipolar condensates

The subject of this section is the controlled collapse of dipolar condensates in different
harmonic trapping potentials. While we obtained the threshold between a stable and an
unstable dipolar condensate in the previous section, we will now present its time evolution,
if this threshold is passed. After describing the experimental procedure used to induce
the collapse, we compare the experimental data with three-dimensional simulations of
the Gross-Pitaevskii equation (GPE) including 3-body losses. Since the anisotropy of
the dipolar interactions breaks the spatial symmetry, four different trap geometries are
studied: a prolate trap, two non-cylindrical traps with interchanged trap frequencies
(fy ↔ fz), and an oblate trap. Parts of this section are published in [244, 245] in a close
collaboration with Ueda’s theory group in Tokyo.

5.1 Phenomenological description of the collapse

The collapse of a purely contact interacting condensate was first experimentally observed
in 7Li [9–11, 56] and 85Rb [57, 59, 113]. It is a complex phenomenon exhibiting many
surprising effects such as anisotropic atom bursts, radial jets, or the formation of remnant
soliton trains [246, 247]. Nevertheless, these extensive studies resulted in a consistent
and simple explanation [248, 249], whose basic principle is similar to the dipolar case.
Therefore, we start by summarising the collapse for purely contact interacting condensates.

Suppose the collapse is initiated in a spherical harmonic trap by abruptly changing the
scattering length from repulsive to attractive interactions. When the scattering length
becomes sufficiently negative128, the quantum pressure (arising from the Heisenberg’s
uncertainty principle) does no longer counter balance the inter-particle attractions. The
cloud starts to shrink. Thereby, the density increases, and thus enhances the attraction.
However, the contraction accelerates non-uniformly over the cloud — it is largest in the
region close to the trap center, where the density has its maximum. This non-uniform
acceleration is important, because it allows for a local collapse.

The local collapse can be understood as follows: Initially, just after the abrupt change of
the scattering length, the spatial density is well approximated by a Gaussian distribution.
However, the non-uniform acceleration slowly generates a narrow density peak on top of
it [249]. Although it might take several trap periods to develop this non Gaussian density

128In the context of the section 4.2 (scaling instability model) the local minimum has to disappear.
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distribution (depending on how deep the scattering length was ramped down into the
unstable region), eventually this central peak rapidly grows. Within a fraction of the trap
period it increases by orders of magnitude — the condensate collapses.

Up to this point the standard time dependent GPE (2.7a) is sufficient to describe the
dynamics. However, due to the tremendously increasing density, the 3-body collision
rate becomes non-negligible. A 3-body collision allows for the production of a dimer,
where the third contributing atom is needed to fulfill energy and momentum conservation.
The binding energy which is absorbed by the atom and the molecule in form of kinetic
energy is sufficient for both to escape from the trap129. Hence, instead of reaching a fully
contracted, point-like state, more and more atoms are lost so that finally the quantum
pressure dominates over the remaining interaction energy.

Then, the dynamics inverts. The atoms from the central region accelerate outwards to
the new equilibrium state. Since the 3-body losses have changed the total energy, this
new equilibrium state differs from the initial one. Therefore, the outwards accelerating
atoms (stemming from the central peak) are observed as bursts. With the atoms removed
from the central region, subsequent collapses and bursts are possible. Furthermore, since
the atom bursts belong to the condensate, they are expected to be coherent. Therefore,
if two local collapses are simultaneously induced in a prolate trap, their bursts produce
radial interference fringes. These interferences are the so called jets, observed in [57].

A collapsing dipolar condensate is expected to constitute the same three-fold action as just
described for the case of a purely contact interacting BEC — (i) a ”slow” contraction initi-
ating the collapse, followed by (ii) the collapse130: a ”fast” contraction of the condensate,
which is accompanied by atom losses, and which results in (iii) an explosion. However,
the details of its dynamics are expected to be quite different: While in the case of purely
contact interacting condensates it is surprising that the atom bursts are not isotropic, one
would expect to find something anisotropic in the dipolar case. Furthermore, we know
from the discussion in section 4 that the cloud’s aspect ratio κ determines the dipolar
energy contribution. Therefore, depending on κ, the dipolar interactions either induce or
stabilise the condensate against the collapse. Hence, one expects that the dynamics of the
collapse strongly depend on the trap geometry.

Time scale of the collapse
For purely contact interacting condensates the time scale which governs the ”usual
dynamics” of a non-collapsing cloud is set by the largest trap frequency. In contrast,

129A sample is in the collisionless (hydrodynamic) regime if the mean free path between two collisions
is much larger (smaller) than the size of the condensate [250]. Assuming a homogeneous condensate
with spatial density n = 1015 cm−3 and scattering length a ≈ add, the mean free path is given by
1/(
√

2nσat) ≈ 40 µm, where σat ≡ 8πa2 is the atom-atom scattering cross-section.
130Some authors use different definitions of the collapse. However, for us it is a fast and non-reversible

process.
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for dipolar condensates this time scale is given by the largest radial trap frequency131
τx

def= 2π/ωx, because the collapse is induced in radial direction (see section 4.2).

5.2 Collapse of dipolar condensates for different harmonic trap
geometries

It follows from the above discussion that a Gaussian wavefunction would certainly not
be sufficient to describe the rich dynamics of a collapsing dipolar condensate. It is even
not a priori clear, whether the three-dimensional time dependent GPE (2.7a) provides a
good description. The collapse could induce many-body quantum correlations, which are
not included in the mean-field description of the GPE. However, we will find excellent
agreement between the experiment and the simulations using the generalised Gross-
Pitaevskii equation

i~
∂

∂t
Ψ(r) =

(
− ~2

2m∇2 + Vtrap(r) + Φ(N)
int (r)− i~

2 L3 |Ψ(r)|4
)

Ψ(r) (5.1)

where the non-hermitian term − i~
2 L3 |Ψ(r)|4 describes 3-body losses. The 3-body loss

coefficient L3 was estimated132 to be L3 . 2 · 10−28 cm6/s by measuring the 1/e lifetime
of the condensate in the vicinity of the Feshbach resonance, see fig. 3.5. The codes for
the fully numerical three-dimensional simulations of the GPE (5.1) have been developed
recently and are now available in several groups (e.g., Ueda et al. in Tokyo [244], Wunner
et al. in Stuttgart [71], or Bohn et al. in Boulder [251]).

5.2.1 Experimental sequence to induce the collapse

In order to produce a BEC dominated by dipolar interactions we use the experimental
procedure described in section 3 and sketched in fig. 5.1: We condense approximately
50 000 atoms in a far detuned crossed optical dipole trap at B ≈ 600 G corresponding to
a scattering length aevap ≈ 85 aB. The magnetic field is directed along the z-direction and
fully polarises the atoms. Then, we shape the external confining potential to obtain the
desired ratio of the trapping frequencies λ ≡ ωz/ωy by adjusting the power in each beam
— only for pancake-shape traps (λ > 1) we superimpose an additional one-dimensional
optical lattice along the z-direction. Afterwards, we first adiabatically ramp the current in
the offset coils linearly in 8 ms to a scattering length ai close to the point where the collapse
occurs, and wait for 1 ms for eddy currents to faint out (see section 3.3.3). Subsequently,
we decrease the current linearly within 1 ms to a value corresponding to the scattering af,
which lies below the critical scattering length acrit(λ) for the given trapping potential, see

131In the following, this will always be the x-direction (imaging axis), due to the configuration of the
laser beams.

132A sophisticated measurement of L3 as in [118] was not performed.
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Fig. 5.1, Experimental sequence and image processing: A sketch of the laser and
magnetic field ramps used to measure the collapse is shown in (a) and (b).
While (c) highlights the magnetic fields produced by the offset coils without
B̃(t) and with B(t) eddy currents, the corresponding scattering lengths133 are
shown in (d). One example of a single absorption image is presented in (e). By
fitting a Gaussian distribution to the wings of the image — excluding the central
region — the thermal background is removed and (g) is obtained. While (g) was
taken at Bx ≈ 11 G after switching-off the Feshbach field, (f) shows the image
for the same experimental parameters taken at Bz ≈ 600 G. Comparing (f)
and (g) shows, that the switch-off does not disturb the shape of the expanding
condensate. (Details to (e-g) are given in section 5.2.3)

section 4.2. We hold the atoms in the trap for a variable time thold at af before releasing
them and taking an absorption image after 8 ms of expansion.

In order to get the maximal light absorption cross-section (see section 3.3.3) we split the
time-of-flight into two parts: a first part, lasting 4 ms, at the magnetic field corresponding
to af (in order not to disturb the dynamics) and a second part, lasting again 4 ms, where
the large magnetic field along z is replaced by a field of 11 G along the x-direction.
However, because the PI-loop99 — which controls the current in the offset coils (producing

133Internal link to the program ’EddyCurrents.nb’.
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the Feshbach field) — is much slower than the push-pull [252] — used to switch-off
the current in the pinch coils (producing the curvature compensation) — their relative
switch-off timing becomes important. Pre-triggering the PI-loop by 0.2 ms, we checked
that the total magnetic field switches-off faster than 0.3 ms and that it does not disturb
the shape of the expanding cloud, compare fig. 5.1(f, g). However, the switch off slightly
magnifies the size of the condensate. Therefore, it should not be used for calibrating the
scattering length (section 3.3.2).

The measured column density consists of two parts: (i) a broad isotropic thermal cloud,
which is well fitted by a Gaussian distribution, and (ii) a dense, highly anisotropic central
structure, which is interpreted as the remnant BEC134, fig. 5.1(e). Since the size of the
thermal cloud as well as its atom number does not depend on the holding time thold
(within the shot-to-shot fluctuations), it is believed not to contribute to the physics of the
collapse, but only be a spectator. Furthermore, we will find excellent agreement between
the experiments and the simulations of the GPE for T = 0 K. Therefore, we will subtract
the thermal cloud from the images and adjust the color scale of each picture separately to
maximise the contrast.

In the upcoming section we will study the dependence of the dipolar collapse dynamics
on the trap geometry. In order to simplify its understanding we like to go ahead and
put the experiments already now into their context. In addition, we will point out their
shortcomings and how we overcome them. As mentioned in section 4.2 the important
parameter for the instability of a dipolar condensate is the effective interaction length
L(κ) ≡ a − addfdip(κ). Thus, we will focus on the aspect ratio κ ≡ σρ/σz and not on
the trap ratio λ ≡ ωz/ωρ; only in the extreme cases of prolate (λ� 1) and oblate traps
(λ � 1) their distinction becomes obsolete. Up to this point we always considered the
total energy, which describes the onset of the dipolar collapse. In contrast, its dynamics
is governed by the dipolar force. Only because both are closely related, we expect to find
the strongest dependency of the dynamics on the trap geometry in the crossover region
from a spherical trap (λ = 1) — where only the dipolar interactions break the spatial
symmetry — to a spherical aspect ratio (κ = 1, corresponding to λ ≈ 5.2, if a Gaussian
density distribution is assumed, see section 4.2) — where fluctuations would seed the
dipolar dynamics. Therefore, the ”perfect experiments” would measure the following:

1. the collapse in a prolate trap (λ� 1),

2. the collapse at several points in the ”prolate crossover regime”, from λ = 1 to κ = 1,

3. the collapse in the ”oblate crossover regime”, say from κ = 1 to κ ' 5,

4. and finally the collapse in an oblate trap (λ� 1).

However, these experiments are at the edge of what is technological possible. Furthermore,
these ”perfect experiments” have to put in contrast to the current experimental set-up.

134We do not distinguish between a remnant BEC and a coherent matter-wave.
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The two most limiting factors are: the eddy currents and the configuration of the crossed
ODT. On the one hand, the eddy currents are on the same order of magnitude as the
time scale set by the inverse of the trapping frequencies as well as the lifetime of the
atoms135. Therefore, they prohibit ”abrupt” changes of the scattering length and give rise
to non-negligible atom losses during the preparation sequence preceding the collapse. On
the other hand, the crossed ODT does not allow cylindrical symmetric trapping potentials,
if all three trap frequencies are on the same order of magnitude136. Therefore, we will study
the crossover of the dynamics from a condensate with mostly attractive dipolar interactions
(analog to a prolate cloud) to a condensate with almost equally strong attractive and
repulsive dipolar interactions (analog to the spherical cloud) using asymmetric traps, with
three distinct trap frequencies. Although the three-dimensional dynamics significantly
complicates the understanding of our measurements, their interpretation is still possible
by comparing them to numerical simulations. Hence, the experimental challenge is to
fine-tune all parameters of the quantum system in order to obtain a good agreement with
the simulations.

5.2.2 Collapse of prolate dipolar condensates

Figure 5.2 presents the dynamics of a dipolar condensate in a prolate trap with trap
frequencies (fx, fy, fz) = (1350± 40, 1340± 30, 140± 25) Hz, which corresponds to a
trap ratio of λ ' 0.12. The initial scattering length ai = (35± 2) aB is ramped to
af = (8± 3) aB, which lies below the critical scattering length acrit ≈ 12 aB (obtained
from the full GPE solution). However, on the time scale of the fastest radial trap period
τx ≈ 0.76 ms the condensate only starts to split. This is explicitly shown in fig. 5.2(c):
The atom number does not drop ”abruptly” to its final value, but changes linearly on
the time scale τx. Therefore, this time evolution does not fulfill the above definition of a
collapse.

Nevertheless, we call this dynamics a ”moderate collapse” for two reasons, solely based
on the simulations: (i) the spatial peak density increases during the first 0.1 ms, only
subsequently does the condensate split, and (ii) if the final scattering length af is reduced
further, only the ”speed” of the collapse changes, but the shape of the density distribution
(which drives the dynamics) is maintained. Therefore, apart from rescaling the time axis,
the collapse is insensitive to the final scattering length af. However, note that the splitting
of the condensate is not a direct evidence of the collapse. If the final scattering length is
ramped only to af = 17 aB > acrit(λ) the cloud splits as well. We checked experimentally

135Note that the time scale τdd for DDIs is of the order of 10 ns and therefore not limiting us.
136Whereas ODT1 propagates along the z-direction, ODT2 propagates along the y-direction. Therefore,

neglecting the longitudinal contribution of each laser beam, the trap frequencies fx and fy always
differ. While the difference is small for prolate traps, it is large if all three trap frequencies are on the
same order of magnitude. The measurements, where we additionally used one of the ”lattice beams”,
were never completed.
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Fig. 5.2, Collapse of a prolate dipolar condensate: Comparison of the experimental
absorption images (a) with the simulations (b) for different in-trap holding times
thold, which are given above each image. The trap frequencies are (fx, fy, fz) =
(1350± 40, 1340± 30, 140± 25) Hz, the final scattering length is af = (8± 3) aB.
Each image shows the averaged column density of five pictures taken after 8 ms
of expansion. The field of view is 250× 250 µm2. The remnant condensate
atom number is shown in (c) as a function of the holding time in units of the
fastest radial trap period τx ≡ 1/fx ' 0.76 ms. The solid line is the result of
the numerical simulation without any adjustable parameter.

that the splitting is not due to excitations during the magnetic field ramps: When we
decrease the speed of the ramps by a factor of three137 we still obtain equivalent dynamics.
Therefore, we attribute the splitting to the dipolar interactions in the three-dimensional138
cigar-shape cloud139.

5.2.3 Collapse of dipolar condensates in asymmetric traps: Crossover from
prolate to round column density

This section presents the crossover in the collapse dynamics from a condensate with mainly
attractive dipolar interactions to a condensate with almost equally strong attractive as
repulsive dipolar interactions. However, this is not straight forward, because the set-up
does not allow for cylindrically symmetric trapping potentials, and thus we have to use
asymmetric traps with three distinct trap frequencies instead. The question is, how to
reduce the coupled parameter space (fx, fy, fz) in order to observe a crossover which is
similar to those along the (fx = fy = const)-line?

137Note that even this ”slow” ramp does not fulfill the adiabaticity criterion ȧ/a� fmin, but only provides
max{|ȧ/a|} ≈ 700 Hz. (Internal link to the program ’EddyCurrents.nb’.)

138The condensate is not in the quasi one-dimensional regime (kBT, µ� ~ωρ), because ~ωρ/kB ≈ 60 nK
and its temperature is T ≥ 100 nK.

139The aspect ratio κ ≡ `ρ/`z exceeds unity for thold = 0 ms, although a condensate with strong dipolar
interactions does not invert its ellipticity during the time-of-flight.
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It turned out that this technical complication is ”resolved” by fixing the trap frequency
parallel to the imaging axis140 (x-direction). Imposing this artificial constraint simplifies
the interpretation of our measurements, because it defines a single line in parameter space
along which we observe the crossover behaviour141. Furthermore, by choosing fx > fy we
ensure that the collapse is always initiated in x-direction.

In the following we will present two data sets with interchanged trap frequencies, fy ↔ fz.
Since the trap is not cylindrical symmetric in the crossover region, neither a prolate nor
spherical cloud does exist. However, regarding the desired attractive and repulsive forces,
these terms are replaced by a cloud with a prolate142 column density (κy,z def= σy/σz < 1)
and a cloud with a round column density (κy,z = 1) with respect to the line-of-sight.

Trap 1: Prolate column density
Figure 5.3 shows the collapse in a trap with trapping frequencies (fx, fy, fz) = (650± 30,
520± 20, 400± 20) Hz, corresponding to τx ≈ 1.5 ms. In the experiment we start with
NBEC = 13 500± 1 500 atoms before ramping the scattering length non-adiabatically from
ai = (35± 2) aB to af = (8± 3) aB, which lies 4 aB below the critical scattering length
obtained by solving the full GPE. However, the simulations agree better, if a(sim)

f = 2 aB
is used instead. This discrepancy is most probably due to slow drifts in the magnetic
fields and/or the alignment of the crossed ODT. Since the experimental calibration of the
scattering length rely on data not taken at the same day as the measurements shown in
fig. 5.3, the experimental scattering lengths contain an additional systematic error (not
included in the stated errors). Therefore, we compare the experimental data to simulations
performed for af = 2 aB.

The presented absorption images indicate a highly anisotropic dynamics, which consist
of three different stages: First, for thold = 0 ms, the condensate is strongly elongated
along the magnetic field direction, demonstrating dominant dipolar interactions [165].
Second, we observe an inversion of ellipticity after thold ≈ 0.3 ms corresponding to 0.2 τx.
This is a consequence of the radial implosion and subsequent explosion, because a stable
cigar-shape condensate with sufficient strong dipolar interactions does not invert its
ellipticity during the free expansion (see section 2.3.5). Note that if the 3-body atom losses
were absent only the implosion would occur, but not the explosion. Third, we observe
a splitting of the condensate in axial direction, similar to fig. 5.2. For longer holding
times the splitting becomes more pronounced. However, the dynamics is completed after
140The fixed trap frequency fx is not large enough to be in the quasi two-dimensional regime. Thus,

the constraint does not freeze the dynamics in x-direction. The dynamics of the condensate remains
three-dimensional.

141As we are using a crossed ODT, only two trap frequencies can be chosen independently. Therefore,
the constraint fx = const defines a single line in the three-dimensional parameter space (fx, fy, fz).

142Notation: We refer to a prolate (oblate) column density, when the major (minor) axis of the elliptical
x-integrated column density is parallel to the magnetic field direction. As the shape of the condensate
will change with the holding time thold, the prolate (oblate) column density refers only to the time
thold = 0 s, when the collapse is initiated.
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Fig. 5.3, Collapse of a cloud with prolate column density: The simulated in-trap
column density for thold = 0 ms is shown in (a) together with absorption images
of condensates after 8 ms of free expansion. The condensates are kept for a
variable time thold (indicated above each image) in a trap with frequencies
(fx, fy, fz) = (650± 30, 520± 20, 400± 20) Hz. While the upper graphs present
measured single absorption images, the lower graphs are obtained by numerically
solving eq. (5.1). The field of view is 250× 250 µm2 for all expanded clouds
and 6.9× 6.9 µm2 for the in-trap image. While the measured final scattering
lengths is af = (8± 3) aB the simulations use a(sim)

f = 2 aB (see text). The
measured (crosses) and simulated (solid curve) atom number is shown in (c) as
a function of the holding time thold in units of τx ≡ 1/fx.

thold = 0.8 ms ≈ 0.5 τx. Therefore, this evolution satisfies our definition of a collapse, with
its rich dynamics on a time scale shorter than the fastest radial trap period.

That the dynamics is completed after thold ≈ 0.5 τx is explicitly shown in fig. 5.3(b): The
atom number of the remnant condensate NBEC(t) drops from 12 000 to 4 000 within this
time scale. Although the simulations exhibit atom losses for thold ≥ 0.8 ms, which are
produced in the two dense ”blobs” of the remnant condensate, these atom losses are weak
and do neither induce a second collapse, nor change the expected dynamics.

Trap 2: Round column density
In order to initiate the collapse in a condensate with a round κy,z column density we
use a trap with frequencies (fx, fy, fz) = (660± 40, 380± 20, 530± 25) Hz and ramp non-
adiabatically from ai ≈ 30 aB to af ≈ 5 aB. The fixed trap frequency fx provides again
the time scale for the collapse, τx ≈ 1.5 ms. The final scattering length af is well below
the critical scattering length acrit = (15± 3) aB calculated from the full GPE.

Figure 5.4 compares the measured dynamics to simulations of the generalised GPE (5.1)
with no adjustable parameter. Since the dipolar interactions break the spatial symmetry,
the interchange of the trap frequencies fy ↔ fz does not correspond to the a rotation of
the absorption image by 90◦, but results in a new dynamics. Therefore, the absorption
images differ significantly from those of the previous collapse. Nevertheless, the crossover
in the collapse dynamics from a condensate with mainly attractive dipolar interactions
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Fig. 5.4, d-wave collapse of a BEC with round column density: (a) Com-
parison of the measured (upper row) and simulated (lower row) dynamics
for different holding times thold of a condensate confined in a (fx, fy, fz) =
(660± 40, 380± 20, 530± 25) Hz trap. Each picture is an average of five ab-
sorption images after 8 ms of expansion. The field of view is 130× 130 µm2 for
all expanded clouds and 5× 5 µm2 for the thold = 0 ms in-trap column density.
(b) Measured (blue circles) and simulated (red solid curve) condensate atom
number during the collapse in units of τx ≡ 1/fx.

to a condensate providing strong attractive as well as repulsive dipolar interactions is
clearly visible: Again, the radial contraction is inverted into a radial explosion. However,
this time the axial attraction is weaker. Thus, the condensate almost maintains its axial
size. It generates an anisotropic structure, whose x-integrated column density obtains
a cloverleaf-like shape143 for ”long” thold. While this pattern was only vaguely sketched
in the simulated thold = 0.3 ms image in fig. 5.3(a), the round column density amplifies
it. It becomes prominent. Figure 5.4(b) shows that the dynamics is completed after
thold ' 0.4 τx. Therefore, for longer holding times we merely observed the reflection of the
remnant condensate from the trapping potential — due to the different trap frequencies
the refocusing of the cloud is imperfect, see fig. 5.5.

The simulations reveal that the three-dimensional density distribution n(r) ≡ |ψ(r)|2,
whose projection provides the cloverleaf-like pattern, resembles the shape of a donut144
plus a dumbbell. Therefore, the collapse of the round in-trap column density exhibits
the d-wave symmetry Y2,0(ϑ) of the dipole-dipole interaction potential145 Vdd(r), see
appendix A.5.1 (page 108). The d-wave pattern can be understood by the fact that the
collapse happens during the free expansion for all images shown in fig. 5.4(a), except for
thold = 0.5 ms: Since the trap is already switched off when the collapse occurs, it does not

143The presented pictures are raw absorption images. However, a Savitzky-Golay filter (internal link to
the program ’SavGol2D.m’) was useful at first place. It helped to identify the pattern.

144The donut radius depends on the azimuthal angle ϕ, due to the non-cylindrical trap symmetry, see fig.
5.6.

145In section 2.3.4 (page 31) we have shown that the dipolar mean-field potential Φ′dip(r) preserves the
d-wave symmetry of the dipole-dipole interaction potential V ′dd(r) for a spherical symmetric density
distribution in the Thomas-Fermi limit. Here, the condensate has only a round κy,z column density
and it is not in the Thomas-Fermi regime. The experimental observation suggests that Φ′dip(r) remains
d-wave symmetric, nevertheless.
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Fig. 5.5, Refocusing of the collapsed condensate: The experimental data (upper
row) and simulation (lower row) are for the same parameters as in fig. 5.4, but
for longer holding times thold. The cloverleaf-like pattern refocuses due to the
presence of the trapping potential.

disturb the explosion dynamics of the remnant condensate. It only influences the initial
potential landscape (Vtrap + Φint) in which the collapse is initiated. Therefore, the round
column density reflects the anisotropy of the dipolar mean-field interaction potential.

Furthermore, the simulations do not only provide the density n(r), but the complete
wavefunction ψ(r) =

√
n(r) eiS(r) including the phase S(r). They predict the generation

of two vortex rings with opposite charges ±1. Vortices are quantised topological defects,
which are closely connected to the concept of superfluidity. They appear, because a
superfluid has a well defined macroscopic phase (see section 6). Therefore, it does not
accommodate any angular momentum, unless the superfluid density vanishes at the center
of the rotational flow [253–255].

Figure 5.6(a) shows an simulated in-trap iso-density surface for thold = 0.8 ms, which
exhibits the two vortex rings (indicated in red). They are produced by the collapse, which
generates an anisotropic flow of density. This is shown in fig. 5.6(b), which presents the
velocity field v(r) def= ~

m
∇S(r) of the condensate in the x = 0 plane. Although the radial

explosion occurred already, and therefore the flow of the spatial density points radially
outward, the axial spatial density still flows inwards. Hence, the collapse produces a
circulation of the density, which gives rise to the four non-superfluid spots.

The existence of the vortex rings is specific to the dipolar collapse. Although the bursts
break the spatial symmetry, the collapse and explosion of purely contact interacting
condensates is mainly isotropic and does not give rise to vortex rings [256]. However, we
did not observe vortex rings in the experiment, but only measured density distributions,
which are consistent with their presence.

Unfortunately, neither did we observe the crossover from a cloud having a round column
density to a cloud having an oblate column density (κy,z > 1), because the gravitational
force does not allow to decrease the power of the ODT1 further without loosing the
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Fig. 5.6, Vortex rings: Having access to both, the amplitude and the phase of the
condensate’s wavefunction, the simulations predict topological defects located
on a ring. While (a) presents the three-dimensional in-trap iso-density surface
for thold = 0.8 ms (the vortex rings are indicated in red), the corresponding
velocity field of the density v(r) ≡ ~/m∇S(r) in the x = 0 plane is shown in
(b). The field of view is 2.5× 2.5 µm2, the color scale represents the modulus
of the velocity field (blue is slower, red is faster). The black arrows emphasise
the ”quadrupole mode”.

atoms146. Therefore, the following section discusses only the dipolar collapse of an oblate
condensate. However, before doing so, we like to comment on the debate of local vs. global
collapse.

Local vs. global collapse
In [257] a definition of the character of the collapse is given: ”global and local collapse
depending, respectively, upon whether [the modulus of] the (imaginary) healing length [...]
is of the same order as, or much smaller than the size of the BEC.” The authors analyse
our measurements [237, 244, 258] of the dipolar collapse and conclude that ”the system
appears to undergo a global collapse via a quadrupole mode.” However, the authors in
[73, 243] obtain exactly the opposite conclusion: Referring to the same measurements,
they compare the instability diagram obtained from the Gaussian model and for the full
GPE (section 4.2). Attributing their deviation to the onset of a rotonic structure, they
write ”the data supports the idea of a local collapse.”

The origin of this apparent contradiction is that the authors define the term ”collapse”
differently147 — neither definition agrees with the definition we put forward in section 5.1.
In order to resolve the contradiction we present the simulated in-trap images in fig. 5.7.
It shows that the ”slow” radial contraction incorporates the hole cloud, while the ”fast”
contraction and the subsequent explosion happen only in a small region in the center of

146In order to measure both crossovers in the current set-up one would have to increase the power in both
beams (ODT1 and ODT2) and to re-measure the collapse for the prolate and round column density.

147They agrees on the physics (the dynamics of an unstable dipolar condensate), but they attribute
different meanings to the word ”collapse”.
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Fig. 5.7, Local dipolar collapses: The images in (a) and (b) show the simulated in-trap
absorption images for the cloud with a prolate and almost round κy,z column
density (same parameters as in fig. 5.3 and 5.4). As the radial contraction and
subsequent explosion occur only in the central region of the condensates, these
are both local collapses.

the condensate. Therefore, the collapse is global, if it includes the ”slow” contraction.
In contrast, it is local if it includes only the ”fast” contraction — definition of the term
”collapse” in this thesis. However, note that the condensate’s wavefunction (prior to the
collapse) does not exhibit a bi-concave density distribution.

5.2.4 Collapse of oblate dipolar condensates

The pancake-shape BEC is generated by first producing a condensate in the crossed
ODT and subsequently superimposing a one-dimensional optical lattice, with lattice
spacing dlat = (7.4± 0.2) µm in the z-direction (see section 3.2.5). Depending on the
non-stabilised relative phase of the two laser beams forming the optical lattice, it is in
principle possible that the condensate splits into two. However, we have never observed
interference fringes in the experiments, even for expansion times ttof long enough such that
the fringe spacing Λ ≡ httof/(mdlat) exceeded our resolution limit. The trap frequencies
of the oblate condensate are given by (fx, fy, fz) = (400± 30, 400± 30, 3400± 130) Hz.
While we used the technique of parametric heating [259, 260] to obtain the trap frequency
in z-direction, all other trap frequencies stated in this thesis were measured by ”kicking”
the condensate out of its equilibrium position and observing its center-of-mass oscillation
[136, ch. 5.2.2].

Figure 5.8(a) compares the measured and simulated absorption images for different holding
times. As before, both agree well. For all shown thold the collapse happens during the free
expansion such that the remnant condensate is not disturbed by the presence of the trap.
In addition, fig. 5.8(b) and (c) show three-dimensional iso-density surfaces n(ρ, z) for
different optical densities and thold = 0.4 ms. They are recovered from the two-dimensional

81



( )a

( )b

( )c

( )d

0.2 ms 0.4 ms0.0 ms

y

B

z

(a)

(b)

0.0 ms 0.2 ms 0.4 ms
(c)

(d)

Fig. 5.8, Collapse of an oblate dipolar condensate: (a) The collapse dynamics for
different holding times thold in a pancake-shape trap, which corresponds to
trap-frequencies (fx, fy, fz) = (400± 30, 400± 30, 3400± 130) Hz, trap ratio
λ ≈ 8.5 and radial period τx ' 2.5 ms. The upper row present the average
of five absorption images after 8 ms of free expansion. The final ramp starts
at ai = (30± 2) aB and stops at af = (−13± 2) aB. The simulations provide
acrit = (−1.5± 0.5) aB. The field of view is 250× 250 µm. Iso-density surfaces
for ”high” (b) and ”low” (c) densities of the thold = 0.4 ms image obtained from
the Abel transformation.

density distribution nabs(y, z) of the measured absorption image by using the inverse Abel
transformation (see appendix A.4)

n(ρ, z) = 1
2π

∫ ∞
0

dk k · J0(k · ρ)
∫ ∞
−∞

dy nabs(y, z) exp (−ik · y) (5.2)

where J0(x) is the Bessel function of the first kind. As in the case of the cloud with a
round in-trap column density, the remnant condensate exhibits the d-wave symmetry
Y2,0(ϑ). Although the released kinetic energy is obtainable from the three-dimensional
density distribution n(ρ, z) in principle, we could not reliably extract it from the images
of the collapsed condensates, because the Abel transformation is very sensitive to noise.

Summary
This section presented the dynamics of collapsing dipolar condensates in different trap
geometries. Independent of the confining potential the collapse was initiated by ramping
the scattering length across the stability threshold acrit(λ). This resulted in a radial
contraction followed by a radial explosion — except for the prolate trap, where the
condensate merely splitted axially. The anisotropy of the dipolar interactions became
particularly prominent in the case where all three trap frequencies were similar. All
experiments were well reproduced by three-dimensional simulations of the Gross-Pitaevskii
equation including 3-body losses.
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”A physicist is just an atom’s way of looking at itself.” (Niels Bohr)

6 Phase-coherence of collapsed matter-waves

Analysing the collapse of dipolar condensates in different harmonic trapping potentials
in the previous section, we showed that the collapsed cloud exhibits two parts: one part,
which is well described by a thermal Gaussian distribution, and a second part, which we
interpreted, because of its high optical density, as a remnant condensate. In order to
confirm this interpretation we will check the phase-coherence of the collapsed cloud in the
case of an array of pancake-shape traps148.

The present section is structured as follows: First, we give a short introduction to the
physics of interfering condensates. After discussing a one-dimensional model containing
two isolated point-like condensates, we extend the description to the interference of
multiple isolated BECs. Finally, we present the coherence experiments performed with
the collapsed dipolar condensates.

6.1 Simple model of two interfering condensates

The phase-coherence (also called first-order coherence) is one of the most fascinating aspect
of BECs. Giving rise to long-range order and therefore to a macroscopic wavefunction,
it lies at the heart of superfluidity [20, appendix]. However, it was not clear a priori
if this description of a condensate — having a macroscopic wavefunction — is correct.
As the atom number is fixed, the condensate’s wavefunction should be describable by
a Fock number state |N〉 as well. Therefore, the question, whether or not two isolated
condensates generate interference patterns similar to those of lasers [261, 262], was only
settled after their first observation149 [264, 265].

Following the discussions in [119, 156, 266, 267], we use a one-dimensional model to
describe the interference of two isolated condensates. Neglecting the extension of the
condensates, the many-body wavefunction of the combined system is given by the sum of
the individual condensate’s wavefunctions

ψ(z, t) = √n1 eiS1(z,t) eiα1 +√n2 eiS2(z,t) eiα2 (6.1a)

148According to the definition (section 2.1), the atoms need to be in the ground-state of an external
potential to generate a BEC. Therefore, a freely expanding cloud is formally not a condensate. However,
since we are only interested in the coherence of the collapsed cloud, we will not distinguish between a
”coherent matter-wave” and a ”condensate”.

149The analogous question for superfluids is, if two weakly coupled superfluids would result in an observable
dc Josephson effect [263].
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where nj is the spatial density of the jth condensate (j = 1, 2), Sj(z, t) is its macroscopic
phase, and αj is an arbitrary but fixed global phase. Releasing both condensates from the
trap at t = 0 s, the optical density of an absorption image is proportional to

|ψ(z, t)|2 ∝ 1 + 2
√
n1 n2

n1 + n2
cos

[
∆S(z, t) + ∆α

]
(6.1b)

While ∆α def= α1 − α2 is arbitrary and varies for each experimental realisation, the phase
difference ∆S def= S1 − S2 is fixed and determines the spacing Λ def= 2π

∆S z of the interference
fringes.

In order to estimate the spacing of the interference fringes Λ we assume a sufficient
long expansion time (t = ttof � 1/fz, where fz is the trap frequency) such that the
in-trap extension of the condensate as well as the inter-particle interaction is negligible.
In this limit the velocity of each condensate is constant150. It depends linearly on the
position z/ttof = vj ≡ ~/m∇zSj(z, ttof), and we obtain a Gaussian wavefunction151 with
Sj(z, ttof) = mz2/(2~ttof). Being initially located at z1,2 = ±dlat/2, the phase difference of
the condensates is ∆S = m

2~ttof

[
(z + dlat/2)2 − (z − dlat/2)2

]
. Therefore, the spacing of the

interference fringes Λ = httof/(mdlat) increases with the time-of-flight.

We estimate the lattice spacing to be dlat = (7.4± 0.2) µm by measuring the fringe
spacing Λ for different ttof ranging from 12 ms to 22 ms, see [136, ch. 5.2.2]. Although the
model assumes negligible interactions, we expanded the condensates at the background
scattering length a ≈ 100 aB. This was done for two reasons: First, a large scattering
length minimises dipolar effects — while the contact interaction is isotropic, dominant
dipolar interactions would modify the initial momentum distribution and thus complicate
the dynamics. Second, the time-of-flights are too short to be well within the asymptotic
regime152. Therefore, we utilise the transformation of interaction energy into kinetic
energy to compensate this shortcoming.

The relation between the lattice spacing dlat and the fringe spacing Λ is a general property
of the free expansion. The time-of-flight transforms each in-trap length scale x to a length
scale X ' httof/(mx) after the expansion [156, 268, 269]. The only two requirements are
that (i) the inter-particle interaction is ”negligible”, and that (ii) the image is taken in
the asymptotic regime, where the in-trap density distribution can be treated as point-like.
As we have just seen, the former condition is not very strict.

150In the experimental set-up the gravitation is perpendicular to the z-direction. If they were parallel,
one would need to transform into the center-of-mass frame.

151This was expected, because we neglected interactions. Expressing the time evolution of the wavefunction
in its Fourier representation, ψ(z, t) =

∫
dk̄ e−i2πk̄z ψ̃(k̄, t) =

∫
dk̄ e−i2πk̄z e−iE(k̄)t/~ ψ̃(k̄, 0), and using

that (i) the wavefunction of an ideal gas in an harmonic trap is a Gaussian, ψ(z, 0) = g(z, 0), (ii) the
Fourier transform of a Gaussian is a Gaussian, and (iii) the dispersion of a free particle is quadratic
in the wavevector, E(k) = (~k)2/(2m) such that e−iE(k̄)t/~ becomes a Gaussian as well, we conclude
that the time evolution does not change the Gaussian shape of the density |g(z, t)|2, but only its size.

152The wavefunction of an ideal gas would spread over approximately three neighbouring lattice sites
within the given 22 ms of free expansion.
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6.2 Interference of many non-collapsed condensates

In the experiment we superimpose the two beams of the optical lattice before finishing
the evaporation to reach quantum degeneracy. Therefore, we obtain (depending on the
relative phase of the two laser beams with respect to the atoms) between three to five
condensates located on adjacent sites. These condensates have a random relative phase,
because we start with a thermal cloud and the single particle tunneling rate is vanishingly
small — for a deep lattice (U0 � ER) the single particle tunneling rate is given by [208]

J

h
≈ 4√

π

ER

h

(
U0

ER

)3/4
exp (−2

√
U0/ER) (6.2)

with the potential depth U0, the recoil energy ER
def= (~klat)2/(2m) and the lattice wavevec-

tor klat def= π/dlat. Putting the experimental parameters dlat ≈ 7.4 µm and U0/kB ≈ 20 µK,
the tunneling rate becomes J/h ∼ 10−135 s−1.

Extending the model of the previous section to more than two interfering condensates,
one might expect that the interference pattern washes out as in the transition from a
superfluid to a Mott phase [270]. Although this is correct in principle, it is not enough to
take only a few (say 30) isolated condensates. This can be easily seen from the following
model: Again, the total in-trap wavefunction ψtot(z, 0) is taken as a superposition of
wavefunctions ψj(z, 0), which are localised on the jth lattice site. For simplicity each
localised wavefunction153 is assumed to be a Gaussian of width σj containing Nj atoms.
After the time-of-flight the total wavefunction becomes [268, 272]

ψtot(z, ttof) def=
∑
j

ψj(z, ttof) (6.3)

ψj(z, ttof) =
∫ ∞
−∞

dk̄ ei2πk̄z ψ̃j(k̄, 0) exp
(
− i
~

(hk̄)2

2m ttof

)

=

√
Nj eiαj

π1/4
√
σj (1 + ittof/t0,j)

exp
−1

2

(
z − z0 − j dlat

`j(ttof)

)2


with the complex ”coherence length” `j(t) def= σj
√

1 + it/t0,j, the time t0,j def= mσ2
j/~, and

where z0 accounts for the relative phase of the two laser beams. Equation (6.3) can be
easily checked: By removing the random phases αj and assuming equal atom numbers N
and sizes σ for each lattice site, this situation is equivalent to the diffraction of a plane
wave from a grating [273, 274].

153The overlap between the wavefunction at neighbouring lattice sites is underestimated, if Gaussians are
used instead of Wannier functions. In the asymptotic limit the Wannier functions decay exponentially
[271].
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Fig. 6.1, Simulated interference fringes: The in-trap density distribution |ψtot(z, t =
0)|2 for two realisations of eq. (6.3) are shown in (a). The envelope function
Nj (atom distribution across the lattice sites) as well as the wavefunction on
each lattice site ψj is a Gaussian. Their 1/e radii are σN = dlat = 7.6 µm and
σj = 0.8 µm, respectively. The corresponding densities after ttof = 18 ms of free
expansion are presented in (b). Each realisation generates interference fringes
(black and green curve) with a periodicity ∼ Λ. If many different realisations
are summed, the fringes disappear and only the Gaussian envelope remains.
This is shown for Z = 100 summands in blue and for Z = 1000 in red. Each
density distribution is scaled by 1/

√
Z.

Figure 6.1 shows the typical interference fringes obtained from simulating eq. (6.3) for our
experimental parameters154. For a single realisation the interference maxima are clearly
visible and separated by approximately Λ. Therefore, we conclude that the ”noise” αj
is not sufficient to destroy the underlying order of the lattice. Only if we averaged over
many different realisations, the interference fringes wash out such that solely the Gaussian
envelope remains.

Figure 6.2(a) shows an absorption image after ttof = 18 ms of free expansion at the
background scattering length, a ' 100 aB. The interference pattern is clearly visible. The
comparison to the ideal gas model discussed above is done by taking a horizontal cut
154In order to take the finite size of the system into account and that we loaded thermal atoms into

the lattice the in-trap density distribution is taken to be a Gaussian across the different lattice
sites, Nj ∝ exp [− 1

2 (j/σN )2]. We checked that a Thomas-Fermi profile and a uniform atom number
distribution produces similar fringes. However, the fringes of the uniform distribution disappear
first, if different realisations are averaged. This can be understood as follows [268]: The wings of the
Thomas-Fermi and the Gaussian profile contain less atoms. Therefore, the ”equivalent uniform system”
contains fewer condensates. (Internal link to the program ’Interferences.nb’.)
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Fig. 6.2, Measured interference fringes of non-collapsed condensates: A single
absorption image is shown in (a), the colorbar indicates the optical column
density ODy,z. The image is taken after 18 ms of free expansion at the back-
ground scattering length. A horizontal cut through the center of this image is
presented in (b) as blue curve. In addition, the best fit of eq. (6.4) is shown in
red, yielding a fringe spacing Λfit ≈ 19.3 µm and a contrast C(cut)

fit ≈ 0.94. The
ideal gas model predicts Λtheo = 18.5 µm.

(along the z-direction) through the center of the absorption image, see fig. 6.2(b), and
fitting it with the function

n2d(y, z) def=
∫
dx n3d(x, y, z) (6.4)

= A(y) e−( z−z0
σ )2 [

1 + C cos
(2π

Λ (z − z0) + ∆α
)]

where C def= (nmax − nmin)/(nmax + nmin) is the contrast. The fit provides the fringe spacing
Λfit ≈ 19.3 µm and C(cut)

fit ≈ 0.94. This is in excellent agreement with the ideal gas model,
which yields Λtheo = 18.5 µm. The deviation of the contrast C(cut)

fit from unity is attributed
to the following three experimental limitations [275, 276]: (i) the inhomogeneous trapping
potential, (ii) the interaction during the time-of-flight, which causes a broadening of the
momentum distribution, and (iii) the finite expansion time ttof. The first constraint is due
to the fact that the atom number is position dependent. This diminishes the contrast, as
can be seen from eq. (6.1b). The two other limitations are closely connected. They wash
out the interference pattern, because they limit the coherence lengths: The coherence
length of each condensate is inversely proportional to the local momentum spread. It
was shown in [277–279] that for a trapped condensate it is equal to the size of the BEC.
However, when the condensate is released from the trapping potential the coherence
length grows, because the local momentum spread decreases due to the separation of
different velocity classes. Therefore, the contrast increases with the time-of-flight such
that even thermal atoms155 exhibit high contrast interference fringes after sufficient long
free expansions [280].

155These experiments probed the auto-correlation (self-coherence of a single cloud), whereas we probe the
cross-correlation (coherence between different clouds).
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6.3 Probing the phase-coherence of collapsed matter-waves

While the last section discussed the phase-coherence of a stack of stable condensates,
we will show in this section that the phase-coherence is maintained during the collapse.
Again, we produce three to five condensates, but now we reduce the scattering length
below its critical value and induce the collapse.

Figure 6.3 presents typical absorption images obtained after ttof = 18 ms of free expansion.
Whereas the absolute position of the interference fringes changes from shot-to-shot, they
can be clearly seen on each image. However, for the holding times156 0.2 ms ≤ thold ≤
0.5 ms the interference fringes are only visible in the wings, but ”not” in the central region
of the image.

Taking a close look at the central region of the absorption images thold = 0.2 ms and
0.4 ms, we note that

1. Atoms are present in this central region: As the optical density is much larger than
the background noise157 atoms do exist. However, they do not exhibit a periodic
high contrast interference pattern.

2. The absorption images are non-uniform in y-direction:

(a) If horizontal cuts for different y-values are taken, only some exhibit maxima
and minima which exceed the noise level.

(b) If a cut exhibits interference fringes, the fringes seem to be phase shifted with
respect to those in the wings158.

(c) If cuts for different y-values are compared, the interference fringes are ”disor-
ganised”: They do not appear at the same z-position.

Hence a single horizontal cut does not reflect the recorded density distribution. Therefore,
the lower row in fig. 6.3 does not present an horizontal cut through the center of each
cloud, but the one-dimensional optical column densities

ODz
def=
∑
y

ODy,z (6.5)

where ODy,z is the two-dimensional optical column density recorded by the imaging system
[281]. We checked that for ”short” (thold = 0 ms) and ”long” (thold ≥ 0.6 ms) holding times

156We took data in steps of 0.1 ms. Figure 6.3 presents only a part of the measurement.
157Using the non-coherent light of a LED (light-emitting diode), we measured the background noise to be

5%, which is only slightly above the 1/
√
N laser shot-noise limit of 3%.

158A quantitative statement about the period of the central interference fringes is not possible. The
central region is too small.
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Fig. 6.3, Phase-coherence of collapsed condensates: Single absorption images (up-
per row) after ttof = 18 ms free expansion for different holding times thold in
the oblate trapping potential (fx, fy, fz) = (400± 30, 400± 30, 3400± 130) Hz.
The graphs in the lower row show the optical column densities ∑y ODy,z,
which are additionally summed over the y-direction. The field of view is
(y, z) = (110, 690) µm.

the summed optical density of each image provides the same contrast, C(sum)
fit ≈ (0.5− 0.6)

as the horizontal cut through the center of the interference pattern159.

What causes the disorganisation of the interference fringes? A possible interpretation
is provided by the fact that the collapse does not happen in-trap, but during the time-
of-flight: For thold = 0 ms the condensates do not collapse; neither in-trap nor during
the time-of-flight. Therefore, the observed fringes are similar to those in fig. 6.2. For
0.2 ms ≤ thold ≤ 0.5 ms the condensates do collapse. However, the collapse happens during
the time-of-flight and after the clouds overlapped — e.g. for thold = 0.4 ms the clouds
start to overlap at ttof = 0.4 ms, but they collapse at ttof = 0.8 ms. As the collapse is a
violent process, it probably induces a complicated phase distribution in the ensemble.
We suspect that this complicated phase distribution is not uniform along the x-direction.
Therefore, the integration over the line-of-sight during the imaging process washes-out
the interference fringes160. On the other hand, if the collapse happens in-trap — e.g. for
thold = 0.8 ms — the fringes are formed by the remnant condensate. Again, we observe
the fringes as if the atoms would belong to stable condensates. We checked that for
holding times larger than thold = 0.6 ms (and at least up to161 1.8 ms) the fringes in the

159These values must be compared to the contrast obtained for non-collapsed condensates. If the optical
density in fig. 6.2 is summed up along the y-direction, eq. (6.5), we obtain the contrast C(sum)

fit ≈ 0.71.
160Note that the interference pattern is produced during the imaging process [156, 266]. This is true

if the condensates are described as a superposition of coherent states, as in eq. (6.1a), but also if
they are described by a 2-body Fock state, ψ ∝ |N1, N2〉: While in the case of two isolated coherent
states the imaging fixes the otherwise unknown relative phase between the condensates, in the case of
Fock number states the duration of the imaging process is important. The atoms are not measured
simultaneously, but one after the other. The subsequent measurements always reduces the Fock state
by one, |N1, N2〉 →

√
N1|N1 − 1, N2〉+

√
N2|N1, N2 − 1〉, which induces quantum correlations of the

Hanbury-Brown-Twiss type.
161We expect that only the lifetime of the condensates limits the observation of the interference fringes.
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central region remain clearly visible. Thus, we have proven that a coherent matter-wave162
survives the collapse.

Summary
In order to probe the phase-coherence of collapsed condensates we induced the collapse in
several (three to five) isolated dipolar condensates simultaneously and let them interfere.
For sufficient long holding times we observed high contrast interference fringes, proving
the existence of a coherent matter-wave.

162We did not check whether the trapped atoms are excited or not.
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”Prediction is very difficult, especially about the future.”
(Niels Bohr)

7 Summary and outlook

The central subject of the thesis was the time evolution of an unstable chromium condensate.
By utilising a Feshbach resonance, we reduced the s-wave scattering length and studied
the collapse dynamics in four different trap configurations: (i) a strongly prolate trap with
trap ratio λ ≡ ωz/ωρ ≈ 0.12, (ii) a weakly prolate, λ ∼ 0.7, non-cylindrical trap, (iii) a
non-cylindrical trap which offered a round in-trap κy,z-column density, and (iv) a strongly
oblate trap with λ ≈ 8.5. Being a topic of fundamental research, its aim was two-fold:
First, investigating how the symmetry of the interactions (d-wave for the long-range and
s-wave for the short-range interactions) influences the collapse dynamics — temporal and
spatial evolution of the condensate’s density — and second, testing weather or not the
standard mean-field theory — the Gross-Pitaevskii equation — can be used to describe
condensates in such extreme conditions.

The investigation of collapsing dipolar condensates focused on the anisotropic explosion
triggered by the collapse. Instead of reflecting the symmetry of the trapping potential,
the remnant cloud exhibited an anisotropic density distribution, which resembled the
symmetry of the dipolar interactions. While for both prolate traps, (i) and (ii), the
remnant exploding cloud obtained a dumbbell-like shape after a sufficient long in-trap
holding time, the d-wave symmetry of the dipolar interactions manifested itself most
clearly in the case of the non-cylindrical trap (iii) by displaying a cloverleaf-like shape.
This showed not only that the collapse dynamics strongly depends on the character of the
mean-field dipolar interaction potential — changing the trapping potential from prolate to
oblate transforms the character of the dipolar interactions from ”inducing the instability”
to ”stabilising the condensate against the instability” — but it also was the first time that
this most distinctive feature of dipolar interactions was directly observed. Furthermore,
we investigated the phase-coherence of the collapsed cloud. Producing an array of three
to five condensates, we observed high contrast interference fringes. This demonstrates
that the remnant cloud maintains its phase-coherence, if the collapse happens in-trap.

The experimental results were well reproduced by three-dimensional simulations of the
Gross-Pitaevskii equation (GPE) including 3-body losses (performed by Masahito Ueda
and coworkers), although the simulations do not contain any adjustable parameter. Being
a mean-field theory, the GPE does not take correlation into account. Hence, the good
agreement between experiment and simulations strongly suggests that the collapse does
not induce severe many-body quantum correlations.
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Directly related prospects:
The experiments presented in this thesis constitute the basis for many further investigations.
Therefore, this work opens numerous perspectives. For example to generate dipolar soliton
trains in a prolate trap [246, 247], to induce the collapse in a condensate with spherical
density distribution by using an additional laser beam, to obtain experimental evidence
for the predicted vortex rings [244] by using e.g. the interferometric technique of section
6, to extend the phononic stability diagram by including the number of condensates, or
to investigate the collapse of a structured ground-state by inducing an angular collapse
[73]. Since the ongoing experiment focuses on the stability diagram of a stack of dipolar
condensates, we like to discuss it in some details. The angular collapse is considered in
the subsequent paragraph.

Stability diagram of a stack of dipolar condensates
All our experiments conducted so far focused on the anisotropy of the dipolar interaction.
Its long-range character was only probed directly using Rydberg atoms [282–284]. Therefore,
the following experiment would be the first demonstration of the long-range character of
the dipolar interactions for ground-state atoms.

The stability diagram of a dipolar condensate does not only depend on the aspect ratio of
the condensate, but, if it is coupled to other condensates, also on the overall geometry. This
can be easily understood as follows: Consider a single cigar-shape dipolar condensate with
a trap ratio λ ≡ ωz/ωρ = 10−2. According to the discussion in section 4.2 the condensate
becomes unstable against phonons at a critical scattering length acrit(λ) ≈ add. But, what
happens if we slice this single cigar-shape condensate into a stack of many pancake-shape
condensates, each having a trap ratio of λ′ = 102? Neglecting the inter-site interactions,
the critical scattering length of a single condensate is acrit(λ′) ≈ −2add, see section 4.2.
However, the long-range dipolar interaction provides a negative energy contribution163
such that the overall geometry matters. Therefore, a stack of pancake-shape condensates,
each having a trap ratio λ′, is less stable than the isolated condensate with the same trap
ratio λ′. A detailed calculation is given in appendix164 A.6.2.

Further prospects:
Further perspectives, not directly related to the collapse of a dipolar condensate, but
nevertheless on our agenda, are the indirect evidence of the maxon-roton spectrum
by observing the characteristic abrupt changes of the Faraday pattern [229, 285], two-
dimensional bright solitons [74], or multi-well dipolar physics [78]. As the last perspective
is very demanding in terms of optical access and therefore not accessible with the current
experimental apparatus (a new set-up is currently build), we will concentrate on the two
others in the following. However, note that none is experimentally simple.

163Since the on-site dipolar interaction energy in each pancake is positive (”repulsive”), but the total
dipolar energy remained constant, the inter-site dipolar energy must be negative (”attractive”). For a
numerical confirmation see appendix A.6.

164Internal link to the preliminary program ’CollapseLattice.tgz’.
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Fig. 7.1, Angular collapse: The red areas in the stability diagram (a) indicate the
parameter space where the ground-state has a bi-concave shape. Initiating
the collapse by ”slowly” ramping the scattering length across this region (from
ai = 10 aB to af = 4 aB in 8 ms) results in the absorption image shown in (b).
The parameters for the simulations are: mean trap frequency ω̄/(2π) = 700 Hz,
aspect ratio λ ∼ 8, atom number N = 2 × 104, time-of-flight ttof = 10.5 ms,
3-body loss coefficient L3 = 2× 10−28 cm6/s, and an overall undetermined angle
of rotation of the pattern α = 0. (Taken from [73])

Rotons in dipolar condensates
Rotons in dipolar condensates are associated with a characteristic length, which manifests
itself in many new physical phenomena. However, since the current experimental set-up
does not allow to resolve the in-trap density distributions the condensate has to be
expanded before imaging. Unfortunately, the dipolar expansion is non-linear and washes-
out many phenomena associated with rotons. Therefore, only two rotonic effects are very
promising: the angular collapse [73] and the Faraday pattern [229, 285]. Both utilise the
expansion165.

The angular collapse is illustrated in fig. 7.1: In certain parameter regions the ground-state
density exhibits a bi-concave density distribution, where the maximum of the density
occurs at the periphery of the condensate rather than at its center. This non-trivially
structured ground-state is associated with the dipolar roton. The most unstable mode
around these structured ground-states is one with m = 3, where m is the projection of
the quasi-momentum onto the magnetic field axis (taken as z-direction). Ramping the
scattering length across this regime results in an absorption image166 similar to the one
shown in 7.1(b).

165Strictly speaking, the Faraday pattern presented in [229, 285] are in-trap phenomena, which are not
resolvable in the current experimental set-up, due to our limited spatial resolution. However, assuming
a time-of-flight, we argue that the abrupt changes in the Faraday patterns transform into abrupt
changes of the condensate’s size. Therefore, the proposed experiment utilises the time-of-flight to
obtain information about the in-trap momentum distribution.

166Note that (i) the imaging axis in fig. 7.1(b) is parallel to the magnetic field (z-axis), while we usually
image along the x-direction, and (ii) the density distribution is almost cylindrical symmetric for
shorter (7.5 ms) and longer (14.5 ms) free expansion times, see [73, fig. 6]. Therefore, in order to
observe this structure using our standard imaging axis the expansion time ttof must be within a certain
time-window.
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Fig. 7.2, Faraday pattern: The maxon-roton spectrum is shown in (a) in units of
the two-dimensional chemical potential µ2d ∼ kB240 Hz and the healing length
ξ ≡ ~/

√
2mµ2d. While the excitation modes are non-degenerated in region ”A”

and ”C”, they are three-fold degenerated in region ”B”. If the non-linearity of
the condensate is modulated with a frequency fmod, such that fmod/2 lies within
the region ”A”, the most unstable mode qnmax is the qex-mode with the largest
wavevector within the region ”B”, which fulfills the condition for parametric
resonances167. Therefore, if fmod is decreased such that a new mode moves from
”C” to ”B”, the dominant mode changes abruptly, as shown in (b). As the
density after a sufficiently long time-of-flight is related to the in-trap momentum
distribution, the abrupt change of the Faraday pattern should be visible as an
abrupt change of the condensate’s size. (Taken from [229])

Alternatively, the effect of Faraday patterns, shown in fig. 7.2, can be used to observe
the roton indirectly: The dipoles are assumed to be fully polarised by an external field,
which is parallel to the symmetry axis of the confining pancake-shape trap potential.
Due to the roton minimum, modes corresponding to different radial wavevectors qex are
three-fold degenerated, see fig. 7.2(a). Surprisingly, this has a severe effect, if we generate
excitations by periodically varying the non-linearity (either by modulating the scattering
length or the spatial density). Doing so, the most unstable mode is not the fundamental
mode (n = 1) fulfilling the parametric resonance condition167, but the higher harmonic
(n ≥ 2) which (i) lies in region ”B” of fig. 7.2(a) and (ii) has the largest wavevector167
qn. The reason for this unusual behaviour is that the wavevector corresponding to the
higher harmonic (n ≥ 2) is ”abnormally” large, compared to the case of a purely contact
interacting condensate168.

167The wavevector qex and its associated excitation frequency fex
def= E(qex)/h are assumed to be

continuous variables and related by eq. (A.30), see page 117. Using a modulation frequency fmod,
we excite only the modes which fulfill the parametric resonances condition fex = fn

def= n fmod/2,
where n = 1, 2, ... . Accordingly, for a single modulation frequency fmod we obtain a discrete set of
wavevectors {qn : n = 1, 2, ...}. Each qn is associated with a frequency fn = E(qn)/h.

168Note that it is not the degeneracy but the ”abnormal” large wavevector, which makes these modes
very unstable: ”the most unstable mode for all driving frequencies [fmod] within regime A is given by
the largest momenta ... [qex] compatible with the first harmonic ... [n = 2] lying in regime B (or, if
none, the first harmonic lying in regime C).” (R. Nath [229]). Mathematically, this is expressed in [229,
eq. (9)], where probably a factor 1/16 is missing.
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This results in a highly non-trivial dependence of the dominant excitation-mode on the
modulation frequency. In order to illustrate fig. 7.2(b) let us assume we start by modulating
the spatial density with a frequency fmod such that the modes qn where n = 1 and n = 2
are within the region ”A” and ”B”, respectively. According to the above arguments, the
n = 2 mode is the most unstable, hence, it dominates the Faraday pattern. If we decrease
fmod such that the mode n = 3 moves from region ”C” to ”B” — while the mode n = 2 is
assumed to be still within region ”B” —, the most unstable mode nmax changes abruptly
from nmax = 2 to nmax = 3. Therefore, the wavevector qnmax (associated with the most
unstable mode) jumps from qnmax=2 to qnmax=3. As discussed in [234], using a stack of
pancake-shape condensates rather than a single BEC has two effects: (i) it lowers the
required spatial density, and (ii) it shifts the roton minimum to higher qex-values and
therefore the largest wavevector within region ”B” increases. Both effects facilitate the
experimental constrains. However, two questions remain open. First, what is the density
scales for the Faraday patterns? If the in-trap density varies only on the few percent level,
the non-linear dipolar expansion might wash out the effect. And second, do the pattern
appear also for shorter modulation times? The publication discusses modulation times on
the order of 40 ms at a scattering length a ∼ −10 aB. This would not be feasible, due to
the limited lifetime in the vicinity of the Feshbach resonance.

Two-dimensional anisotropic soliton
The two-dimensional anisotropic soliton proposed in [74] is fundamentally different from
the solitons in purely contact interacting condensates. This is not only because it is
two-dimensional and anisotropic, but also because two colliding solitons would merge and
form a single soliton [65].

In order to investigate these dipolar solitons the authors consider a condensate which is
fully polarised in z-direction while confined only in the y-direction. Assuming a three-
dimensional Gaussian trial wavefunction, the Gross-Pitaevskii energy functional (2.9) [74,
eq. (5)]169

Etot

N~ωy
∝ 1

4

(
1
σ̃2
x

+ 1
σ̃2
y

+ 1
σ̃2
z

)
+
σ̃2
y

4 + N√
2π

ã− ãddfdip (κ̃x, κ̃y)
σ̃xσ̃yσ̃z

(7.1a)

fdip(κx, κy) def= 1− 3
∫ 1

0
dx x2 κx√

1 + (κ2
x − 1)x2

κy√
1 + (κ2

y − 1)x2
(7.1b)

is obtained, where the parameters indicated by a tilde are rescaled by the harmonic oscilla-
tor length `y def=

√
~/(mωy) in the confinement direction. Thus, they are dimensionless170.

The aspect ratios are defined by κx def= σx/σz and κy def= σy/σz. The basic idea is to use the

169In order to obtain fdip(κ, κ) = fdip(κ) we included an additional minus sign in eq. (7.1a).
170Notation: Dimensionless condensate’s size in j-direction σ̃j ≡ σj/`y, dimensionless scattering length
ã ≡ a/`y, and dimensionless dipolar interaction strength ãdd ≡ µ0µ

2m/(12π~2`y).
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Fig. 7.3, Two-dimensional dipolar anisotropic function: fdip(κx, κy) is a mono-
ton decreasing function in both directions, because the condensate becomes
more pancake-shape for increasing κx or κy. It is symmetric in its two
parameters,κx ↔ κy , and we recover the standard dipolar anisotropic function
fdip(κ) in the case of a cylindrical symmetric condensate, κx = κy.

condensate’s sizes as variational parameters and to search for a local energy minimum
with finite condensate sizes, σx,y,z > 0.

In order to understand the appearance of the soliton let us study the behaviour of the
energy functional. It is analogous to the one discussed in section 4.1.2, except that
the dipolar anisotropic function fdip(κ) for cylindrical symmetric dipolar condensates
(see appendix A.5.5) is replaced by its generalised version fdip(κx, κy) for non-cylindrical
condensates169 [161, eq. (17-19)]. Figure 7.3 demonstrates fdip(κ, κ). Most importantly, it
is a monoton decreasing function for κx and κy — the dipolar energy contribution benefits
from being elongated along the polarisation axis compared to both radial directions
(κx, κy < 1). Therefore, fdip(κ, κ) favours ”small” radial sizes, σ̃x and σ̃y, while a ”large”
condensate’s size in the polarisation direction, z. Hence, we only have to insure that
(i) the dipolar contribution is dominant (a necessary condition is ã − ãddfdip(0, 0) < 0,
where fdip(0, 0) = 1), and (ii) the condensate is stable against the radial shrinking as
well as the axial expansion. However, this is straight forward: the quantum pressure
(first term in eq. (7.1a)) stabilises the condensate against the radial contracting, while the
dipolar energy (last term in eq. (7.1a)) limits the axial expansion, due to its 1/σz-scaling.
Thus, if the spatial density (or the dipolar interaction strength) is sufficiently high, the
energy functional becomes negative at finite condensate sizes (σx, σy, σz), supporting an
anisotropic soliton171.

171Note that the arguments above suggest that cylindrical symmetric dipolar solitons might exists even
for positive dipolar interaction strength gdd. The criterion gdd < 0 given in [65, eq. (6)] is based on
the limit κ ≡ σρ/σz →∞, which contradicts the condition σz > σρ.
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How to detect the soliton in an experiment is still an open question. From simulations
[286] we know that all three trap frequencies need to be ramped simultaneously in order to
form the soliton172. This ramping time is ∼ 40 ms and generates breathing-oscillations of
the condensate’s sizes. The radial and axial breathing frequencies depend on the scattering
length and varies between (9− 13) Hz. Detecting such a small variation of the breathing
frequency is experimentally challenging. Therefore, other signatures of the soliton would
be desirable.

172The standing wave, which produces the confinement in y-direction, would also produce a residual
confinement in x and z-direction. The simulations assume a residual confinement of 5 Hz.
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A Appendix

A.1 Measured differential ac-Stark shift

This section is not related to the rest of the thesis. We include it nevertheless in order to
give a reference to those, who have to re-measure the ac-Stark shift of 52Cr.

The ac-Stark effect is the 1-particle phenomena enabling laser trapping of atoms. It is
the energy shift, which an atomic state |α〉 experiences, if it is exposed to a (classical)
light field — the light couples the state of interest |α〉 to all the other atomic state |α′〉.
Although the ac-Stark shift is a ”well know” and widely applied effect, almost every
article, phd-thesis, or book discussing its details has some errors or at least a non-SI unit
system. Therefore, we present in this section the definitions which we used to calculate
the ac-Stark shift for 52Cr based on the NIST-data173.

The light field, which couples the state of interest174 |α〉 to the other atomic states |α′〉,
is provided by a far-detuned175 Gaussian laser beam of power P0, waist176 w0, wavelength
λlaser, and polarisation εq. In this scenario the ac-Stark shift of the state |α〉 is given by177
[173, 287–293]

∆E(q)
α = E2

0
4π~c

∑
α′

signα′,α µ2
α′,q,α

λα′,α λ
2
laser

λ2
laser − λ2

α′,α

(A.1a)

with the atomic transition wavelength λα′,α and the (electric dipole) transition matrix
element

µα′,q,α
def= e 〈α′|r · εq|α〉 (A.1b)
= e 〈γ′n′(SL′)J ′mJ′ |r · εq|γn(SL)JmJ〉

The only approximations made are: (i) the electric dipole approximation, assuming that
the size of the atom (∼ 10 aB) is much smaller than the laser wavelength (∼ 1 µm),
(ii) that each valence electron can be treated independently and therefore the different
transitions are summed incoherently, and (iii) the atom behaves like a two-level system.
For 52Cr, which has a vanishing nuclear spin, only the fine-structure must be considered.
However, care has to be taken on how the NIST database defines its physical quantities

173Status: 07.2009.
174Notation: α is used as a multi-index to select a specific state, e.g. |z 7S3,mJ = −3〉.
175In the following, we ignore the laser linewidth, because it is much smaller than any other frequency.
176We define the waist of a Gaussian laser beam as the 1/e2-radius of the intensity. Therefore, the

following relations hold: peak intensity I0 = 2P0/(πw2
0), peak electric field strength E0 =

√
2I0/(ε0c).

177The sign of the ac-Stark shift should be put by hand: signα′,α = −1 for the energetically lower state,
while it is +1 for the upper state. (Internal link to the program ’Stark_Shift.nb’).

99

http://physics.nist.gov/PhysRefData/ASD/lines_form.html
https://bodensee.pi5.physik.uni-stuttgart.de/mediawiki/index.php/Stark_Shift


[289]:
∣∣∣µα′,q,α∣∣∣2 ≡ ∣∣∣〈γ′n′(SL′)J ′mJ′|d · εq|γn(SL)JmJ〉

∣∣∣2 (A.2a)

=
∣∣∣〈γ′n′(SL′)J ′||d · εq||γn(SL)J〉

∣∣∣2 × ( J ′ 1 J

−mJ′ q m

)2

(A.2b)

=
3 ε0 hλ3

α′,α

16π3 (2J ′ + 1)A(NIST)
α′,α ×

(
J ′ 1 J

−mJ′ q m

)2

(A.2c)

=
3 ε0 hλ3

α′,α

16π3 A
(NIST)
α′,α × 〈γnJ 1mJ q |γ′n′(J1)J ′mJ′〉2 (A.2d)

where the round bracket denotes the Wigner-3j symbol, 〈.||d · εq||.〉 is the reduced ma-
trix element, and 〈γnJLmJmL |γ′n′(JL)J ′mJ′〉 refer to the Clebsch-Gordan coefficient.
Putting everything together yields178

E(q)
α (P0) = h

16 π2 c

∑
α′

signα′,α A2
α′,α

P0

Psat

λ2
laser λα′,α

λ2
laser − λ2

α′,α

(A.4)

× 〈γnJ 1mJ q |γ′n′(J1)J ′mJ′〉2

with the ingoing laser power P0, and the ”saturation power” Psat ≡ πw2
0

2 Isat. The saturation
intensity is defined by Isat def= πhcAα′,α/(3λ3

α′,α).

Instead of measuring the ac-Stark shift of a single state, we measured the differential
shift between two states. These states are the ground-state |a 7S3,mJ = −3〉 and the
excited-state |z 7P4,mJ = −4〉, which is used for imaging. The shift is produced by the
ODT1 laser, which is circularly polarised (the quality of the polarisation was measured
to be179 Q ≥ 95%), has a wavelength of λlaser = 1076 nm, and propagates along the
z-direction. In order to obtain σ±-light the magnetic offset field B±z is chosen to be
parallel or anti-parallel to the propagation direction of ODT1. We probe the differential
ac-Stark shift ∆E(q)

α,α′(P0) def= E
(q)
α′ (P0)− E(q)

α (P0) by determining the resonant absorption
178If the nuclear spin Ispin does not vanish, the formula is given by [291]

Ej = 3π
2 c2 I

∑
k

Ak,j
ω3
k,j

(
1

ωk,j + ωlaser
+ 1
ωk,j − ωlaser

)
(A.3)

× (2 Jk + 1) (2Fj + 1) (2Fk + 1)

×
∣∣∣∣( Jk 1 Jj
−Mk q Mj

){
Jk Ispin Fk
Fj 1 Jj

}∣∣∣∣2
Notation: The indices j and k are for the energetically lower and upper state, q specifies the polarisation
of the light (q = 0,±1 for π, σ(±) light), and the round ”(. . . )” and curly ”{. . . }” brackets denote the
Wigner-3j and Wigner-6j symbols, respectively.

179The self-build polarimeter uses a hollow shaft stepper motor (Nanotec: ”ST2818L1006-LA”, with the
driver Nanotec: ”SMCI33-1”) and a high contrast IR polarisation filter (Edmund: ”47327”). The
quality of the polarisation was obtained by measuring the contrast C ≡ (Imax − Imin)/(Imax + Imin)
before and after the chamber. The entrance windows do not spoil the contrast by more than 2%. The
quality of the polarisation is taken to be Q def= 1− C.
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Fig. A.1, Differerential ac-Stark shift measurement 1: The light shift produced
on the line component |a 7S3,mJ = −3〉→|z 7P3,mJ = −4〉 is measured for
different powers P0 of the ODT1 laser (λlaser = 1076 nm). Graph (a) presents
the shift of the resonant probe frequency for σ1-light182 at a magnetic offset
field Bz ≈ 11 G, yielding ∆E(σ1)/(hP0) = (−0.14± 0.02) MHz/W, while (b)
shows the shift for σ2-light, ∆E(σ2)/(hP0) = (−0.24± 0.02) MHz/W, where
the magnetic field points in the opposite direction. We obtain the same result if
instead of the magnetic field, the ODT1 λ/4-wave plate is rotated. The probe
light is always σ− polarised, its frequency drift is not included in the errors.

frequency of the imaging laser for different laser powers P0 of ODT1. The probe beam
propagates along the x-direction and is linearly polarised along the y-axis. Therefore, the
probe light must be decomposed point-wise into a superposition of σ+ and σ− light180
[172, ch. C.3]. The magnetic offset field Bz = 11 G detunes the σ+ component by 3 natural
linewidths. Therefore, the absorption of σ+-light is suppressed by the factor181 ∼ 103.

Figure A.1 presents the measured differential ac-Stark shift for the two circular polar-
isations182 σ1,2. The polarisation of the laser is changed by flipping the magnetic field
direction183. Both measurements are done using thermal atoms with a temperature of a
few micro-Kelvins and a ”small” magnetic offset field, Bz ≈ 11 G. However, both shifts are
negative. Therefore, independent of the polarisation the two states shift closer together,
whereas the simulations184 predict ∆E(±)/(hP0) ≈ ±0.2 MHz/W for σ± light.

180In the measurement we neither change the probe intensity, nor its polarisation. Thus, the measured
Stark shift is produced only by the 1076 nm light of the ODT1 beam. The 425 nm imaging light merely
probes this shift.

181The probe intensity was 0.4 mW/cm2 so that the on-resonant saturation parameter s0 ≡ I/Isat becomes
approximately 0.05. This yields a suppression of (1 + s0)/[1 + s0 + (2δ/γ)2] ≈ 35, see [173, ch. 2.4]. In
addition, the square of the Clebsch-Gordan coefficient provides a factor of 28.

182We did not measured the absolute polarisation. We only know that one is σ− and the other is σ+.
Therefore, we denote them as σ1 and σ2.

183We obtained the same shift, if we rotate the λ/4-wave plate for the ODT1. However, by flipping the
magnetic field we obtained a polarisation of Q ≥ 95%, while rotating the λ/4-wave plate only provides
Q ≥ 90%.

184Internal link to the program ’StarkShift.nb’.
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Fig. A.2, Differerential ac-Stark shift measurement 2: In order to rule out
any experimental error a Bz ≈ 600 G offset field is used. The differential
Stark shift for the two different polarisations (a, b) are ∆E(σ1)/(hP0) =
(−0.14± 0.02) MHz/W, and ∆E(σ2)/(hP0) = (−0.29± 0.01) MHz/W. The
arrows indicate the frequency drift of the probe laser. The sign problem
remains.

A possible explanation for the ”wrong” sign is that the atomic sample was not well
polarised. Some atoms could have been in different magnetic Zeeman sub-states and not
in the absolute ground-state mJ = −3. In order to rule out this experimental error we
performed a second measurement shown in fig. A.2. Here, the magnetic offset field is
Bz ≈ 600 G. By checking several times during data taking that we obtain a ”high-field
BEC”, we ensured that the sample is fully polarised. Furthermore, instead of measuring
the ac-Stark shift for many different ODT1 laser powers, we alternately measured for
P0 = 4 W and P0 = 13 W several times. Therefore, we obtain an estimate for the frequency
drift of the probe laser. However, the sign problem remains.

A.2 Magnetic fields

The following formulae are useful to estimate the magnetic field strength produced by the
coils in our experimental set-up:

• An infinitesimal thick, straight wire ranging from (x′, y′, z′) = (−a, 0, 0) to (b, 0, 0)
and carrying the current I produces the magnetic field

|B(0, 0, z)| =
∣∣∣∣∣µ0 I

4π

[
b

z
√
b2 + z2

+ a

z
√
a2 + z2

]∣∣∣∣∣ ey (A.5)

at the point r = (0, 0, z).

• An infinitesimal thick, rectangular wire in the (x, y)-plane and centered at the origin
(distances between opposite sites are 2a and 2b, respectively) produces the magnetic
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field185 [295]

|B(0, 0, z)| =
∣∣∣∣∣µ0 I

π

a b√
a2 + b2 + z2

[ 1
a2 + z2 + 1

b2 + z2

]∣∣∣∣∣ ez (A.6)

• A circular wire of radius R (otherwise the same specification as the rectangular wire)
produces the magnetic field

|B(0, 0, z)| =
∣∣∣∣∣µ0 I

2
R2

(R2 + z2)3/2

∣∣∣∣∣ ez (A.7)

• The cloverleaf coils produce the magnetic field [14, ch. 2′3.2]

B(x, y, z) ≈ B0


0
0
1

+ b′


x

−y
0

− b′′

2


x z

y z
x2+y2

2 − z2

 (A.8)

185Note that a rectangular coil in ”Helmholtz configuration” produces a magnetic field, which is almost
uniform over a greater volume than a circular Helmholtz coil of comparable dimensions [294].

186The fabrication properties of the different coils are documented in [166, page 59+ff], e.g. inner and
outer diameter of the coils and the diameter of the used wire. A comprehensive diagram of the coil
configuration is given in [172, page 45].

187During the time-of-flight at ”high magnetic field”, B ∼ 600 G, the atoms accelerate with ∼ 10 m/s in
the (negative) z-direction as well. This might be due to a short in one of the offset coils, resulting in a
strong axial gradient. (Internal link to the program ’MagneticFields.m’ to calculate the magnetic field
produced by the offset and pinch coils.)

188These are the semiaxes of the ellipse, not the diameters.
189Sizes of the rectangular coils.
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Tab. A.1, Magnetic coils and there corresponding magnetic fields in radial (ρ) and axial
(z) direction, with respect to the symmetry axis of the coils186. Measured
values are in bold font.
coils fields windings diameter distance

[in mm] [in mm]
offset187 17 133 133/2

bias field B0/I 1.67 G/A
curvature b′′z/I 0.044 G/(cm2A) ref. [172]

pinch 8 29 26
bias field B0/I 1.72 G/A
curvature b′′z/I 1.09 G/(cm2A) ref. [166]

cloverleaf 16 (22, 36)188 26
gradient b′ρ/I 0.73 G/(cmA) ref. [166]

curvature b′′/I ??? G/(cm2A)
add. offset X ∼ 40 ∼ 100 ∼ 190
bias field B0/I ∼ 0.4 G/A
add. offset Y ∼ 40 ∼ (160, 120)189 ∼ 300
bias field B0/I ∼ 1 G/A
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”Two Pi or not two Pi: That is the question!” (Robert Löw)

A.3 Mathematical definitions

• Fourier transformation: Throughout the manuscript we use the definition of
[296]: Suppose f(x) is an arbitrary function defined on the real axis (−∞,∞). First,
we define a periodic function f`(x) with period 2`, which coincides with f(x) in the
interval (−`, `). The Fourier series of f`(x) is defined by

f`(x) def= 1
2`

∞∑
n=−∞

ei2πk̄nx f̃`(k̄n) (A.9a)

where k̄n def= n/(2`) and

f̃`(k̄n) =
∫ `

−`
dx e−i2πk̄nx f(x) (A.9b)

is the Fourier transform of f`(x). In the limit `→∞ we obtain190

f(x) def= F [f̃ ](x) def=
∫ ∞
−∞

dk̄ ei2πk̄xf̃(k̄) (A.10a)

f̃(k̄) def= F−1[f ](k̄) def=
∫ ∞
−∞

dx e−i2πk̄xf(x) (A.10b)

In this notation the Dirac δ-distribution is given by

δ(x− x0) def=
∫ +∞

−∞
dk̄ e+i2πk̄(x−x0) with δ̃(k̄) = e−i2πk̄x0 (A.11a)

and consequently

δ(k̄ − k̄0) def=
∫ +∞

−∞
dx e−i2π(k̄−k̄0)x with δ̃(x) = e+i2πk̄0x (A.11b)

• Hankel transformation: The Hankel transformation and its inverse are given by

g(k̄) def= 2π
∫ ∞

0
dr r f(r) J0(2πk̄r) (A.12a)

f(r) def= 2π
∫ ∞

0
dk̄ k̄ g(k̄) J0(2πk̄r) (A.12b)

where J0(z) is the Bessel function of first kind and zero order [297, ch. 9.1.20].

190The notation k̄ emphasises the factor 2π, which is used to get an angular frequency ω from a frequency
ν, f(t) def= F [f̃ ](t) def=

∫∞
−∞ dν ei2πνtf̃(ν).
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Fig. A.3, Inverse Abel transformation: Integrating the two-dimensional, cylindrical
symmetric density distribution f(x, y) along the x-direction maintains the full
two-dimensional information. Therefore, f(x, y) can be reconstructed from the
one-dimensional projection F (y′) using the inverse Abel transformation (A.13).

A.4 Inverse Abel transformation

Symmetries reduce the degrees of freedom and hence simplify the system. E.g., a three-
dimensional, cylindrical symmetric density distribution f(r) = f(r, ϑ) is fully characterizes
by only two variables. Hence, if f(r) is integrated along an axis perpendicular to the
symmetry axis (here taken to be the z-direction) the three-dimensional information
is maintained. Therefore, the three-dimensional density distribution f(r, ϑ) can be
reconstructed from the two-dimensional projection F (y′, z). This is commonly done by
the inverse Abel transformation

f(x, y, z) = 1
2π

∫ ∞
0

dk k · J0(k · ρ)
∫ +∞

−∞
dy′ F (y′, z) e−ik · y′ (A.13)

with the polar coordinate ρ def=
√
x2 + y2.

Explicit calculation:
In order to use the Abel transformation the projection axis (x-direction) must be perpen-
dicular to the symmetry axis (z-direction). In the following we simplify the notation and
discuss how to obtain the two-dimensional spatial density f(x, y, z0) for an arbitrary but
fixed z0 from the one-dimensional projection F (y′, z0) as sketched in fig. A.3. Carrying
out the procedure for each z0-plane separately yields the three-dimensional spatial density
distribution f(x, y, z). From now on, the index z0 will be omitted.
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The projection, which we want to invert, is given by191

F (y′) def=
∫ ∞
−∞

dx
∫ ∞
−∞

dy f(x, y) δ(y′ − y) (A.14a)
(A.11)=

∫
dxdy

∫ ∞
−∞

dk̄ f(x, y) e+i2πk̄ · (y′−y)

def=
∫
dk̄ e+i2πk̄ y′ h(k̄) (A.14b)

where we defined h(k̄) such that on the one hand side it is the Fourier transform of F (y′)

h(k̄) (A.14b)= F̃ (k̄) ≡
∫ +∞

−∞
dy′ e−i2πk̄ y′F (y′) (A.14c)

while on the other hand side it is given by

h(k̄) ≡
∫
dxdy f(x, y) e−i2πk̄ y

=
∫ ∞

0
dρ
∫ 2π

0
dϕ ρ f(ρ) e−i2πk̄ · ρ sinϕ

≡ 2π
∫
dρ ρ f(ρ) J0(2πk̄ · ρ) (A.14d)

Here, the integral representation of the Bessel function J0(z) of first kind and zeroth order
was used192. The last expression is just the Hankel transformation, hence,

f(x, y) =̂ f(ρ) (A.12b)= 2π
∫ ∞

0
dk̄ k̄ J0(2πk̄ · ρ)h(k̄)

(A.14c)= 2π
∫
dk̄ k̄ J0(2πk̄ · ρ)

∫
dy′ e−i2πk̄y′ F (y′)

which provides eq. (A.13) with k̄ def= k/(2π). The alternative form [298]

f(x, y) = − 1
π

∫ ∞
ρ

dy′
∂ F

∂y′
1√

y′2 − ρ2 (A.14e)

is obtained, by using the identity k e−iky′ = i ∂
∂y′

(
e−iky′

)
, integrating by parts193, and

Fourier transforming the Bessel function. However, in eq. (A.14e) the derivative of F (y′)
must be calculated numerically, which produces additional errors and also complicates
the usage of filters [299].

191Since the integral boundaries do not change, they are explicitly written only when they appear for the
first time.

192Use J0(z) def= 1
π

∫ π
0 dϕ eiz cosϕ (see [297, ch. 9.1.20]), then 2

∫ π
0 ... =

∫ 2π
0 ... and replace cosϕ by sinϕ.

Thus, J0(z) def= 1
2π
∫ 2π

0 dϕ eiz sinϕ. Finally note that J0(z) is an even function, J0(z) = J0(−z).
193Use that the spatial density distribution F (y′) vanishes for y → ±∞.
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A.5 Dipolar interactions: Some basic calculations

This section contains some detailed calculations for dipolar condensates. None of these
calculations is new and presumably none is mathematically rigorous. Nevertheless, they
deepened my understanding of the system at hand and might be useful to others.

A.5.1 Dipole-dipole interaction in position space

The dipole-dipole interaction potential (bare as well as pseudo)

Vdd(r) = µ0

4π
µm1 ·µm2 − 3 (µm1 · er) · (µm2 · er)

r3 − 2
3 µ0 µ

2
m δ(r) (A.15a)

describes the interaction of two permanent magnetic dipoles µm1 and µm2 , which are
separated by r def= r er. If the dipoles are polarised in the z-direction the interaction
potential becomes

Vdd(r) = µ0 µ
2
m

4π
1− 3 (z/r)2

r3 − 2
3 µ0 µ

2
m δ(r)

= gdd

(
3

4π
1− 3 cos2 ϑ

r3 − 2 δ(r)
)

(A.15b)

where gdd ≡ 4π~2 add/m ≡ g εdd. It consists of two terms: a long-range term, which is
proportional to the spherical harmonic Y2,0(ϑ), and a short-range term, which incorporates
the view that the magnetic moment stems from a ”current loop” of infinitesimal size [300,
301].

Derivation via the ”magnetic potential”
A simple way to motivate the interaction potential for magnetic DDIs, eq. (A.15b), is to
stress the similarity with electric dipoles [300].

The standard derivation of the conservative (irrotational) electric DDI considers two
opposite electric charges ±e placed at the origin and separated by the vector r12. The
electrical dipole moment d = er12 produces an electric potential

ϕel(r) = − 1
4πε0

d ·∇ 1
|r|

(A.16)

at the position r if r � r12. The electric field is defined by E(r) = −∇ϕel(r). In order
to obtain the electric potential assume to place a fictive test dipole d′ at the position r.
The fictive dipole does not have any effect on d, but only probes the electric interaction
potential, which is given by Vdd(r) = −d′ ·E(r).

Although tempting, the magnetic potential ϕmag(r) produced by a magnetic dipole is
not obtained by just replacing {d, ε0} → {µm, 1/µ0}, but we have to allow for an extra
term in order to fulfill Maxwell’s equation of the non-existence of magnetic monopoles,
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∇ ·B = 0. Therefore, we start with the ansatz

B(r) = −∇ϕB(r) = −∇ϕmag(r) + fB(r) (A.17a)

where the ”magnetic potential” is defined as194

ϕB(r) def= ϕmag(r)− FB(r) (A.17b)

with

ϕmag(r) def= −µ0

4πµm ·∇
1
|r|

(A.17c)

and some unknown vector fB(r) def= ∇FB(r). This unknown vector needs to be specified
from195 0 = ∇ ·B(r) = ∇ · [−µ0µmδ(r) + fB(r)]. Doing so, the magnetic field196

B(r) = −∇ϕmag(r) + µ0µmδ(r)

= −µ0

4π
r2µm − 3(µm · r) r

r5 + 2
3 µ0µmδ(r)

produced by the magnetic moment µm is obtained. If a fictive magnetic test dipole
µm′ = µm is placed at the position r, the dipole-dipole interaction potential is given by

Vdd(r) = −µm′ ·B(r) = −µ0

4π (µm ·∇)2 1
|r|
− µ0µ

2
mδ(r)

= −µ0

4π µ
2
m
∂2

∂z2
1
|r|
− µ0µ

2
mδ(r) (A.18)

= µ0 µ
2
m

4π
1− 3 (z/r)2

r3 − 2
3 µ0 µ

2
m δ(r)

In the last two equations the dipoles are assumed to be polarised in z-direction.

194To emphasise that this is only a construction, which simplifies the mathematics, we refer to eq. (A.17b)
by putting the term ’magnetic potential’ in quotes.

195Use: (∇ ·∇)(µ ·∇) = ∇2(µ ·∇) = (µ ·∇)∇2 = ∇ · (µ∇2) and ∇21/|r| = −4πδ(r), see [301, ch. 1.7].
196The function 1/r is singular at the origin and has to be replaced by a function which is regular

everywhere, e.g. 1/r = limε→0 1/
√
r2 + ε2. Use [159]

∂2

∂xi∂xj

1
r

= 3xixj − r2 δi,j
r5 − lim

ε→0
gε(r)

where gε(r) def= ε2/(r2 + ε2)5/2 and show that this function tends to 4π
3 δ(r) in the limit ε→ 0. The

simplest way to convince oneself, is to integrate it over a sphere of radius R > 0.
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A.5.2 Dipole-dipole interaction in Fourier space

Since the short-range contribution of the DDI (A.15b) can be absorbed by the contact
interaction, we will concentrate on the long-range term197

V ′dd(r) def= µ0

4π
r2 µ2

m − 3 (µm · r)2

r5 (A.19a)

(A.18)= −µ0

4π (µm ·∇)2 1
r
− µ0 µ

2
m

3 δ(r) (A.19b)

The aim of this section is to derive its Fourier transform

Ṽ ′dd(k) = −µ0

3

(
µ2
m − 3(µm ·k)2

|k|2

)
= −gdd

(
1− 3 (eµm · ek)2

)
(A.20)

which was first done in [69]. In the following two different derivations are presented.

Brute force integration
Here the regularised expression of the DDI (A.19a) is used and the integrals are evaluated
step by step. We found this derivation in Axel Pelster’s lecture notes [302].

The Fourier transformation is defined in eq. (A.10). Due to the symmetry of the DDI,
spherical coordinates

ek̄
def=


0
0
1

 , eµm
def=


sinϑ cosϕ
sinϑ sinϕ

cosϑ

 , er
def=


sinα cos β
sinα sin β

cosα


are appropriate. Expressing the Fourier transform of eq. (A.19a) in these coordinates
results in

Ṽ ′dd(k̄, a) def=
∫ ∞
a

dr
∫ π

0
dα

∫ 2π

0
dβ r2 sinαV ′dd(r) e−i 2πk̄ · r (A.21)

= −µ0µ
2
m

4π

∫ ∞
a

dr

r

∫ π

0
dα sinα e−i 2π k̄r cosα

∫ 2π

0
dβ

×
{

3 sin2 ϑ sin2 α
[
cos2 ϕ cos2 β + 2 sinϕ cosϕ sin β cos β + sin2 ϕ cos2 β

]
+ 6 sinϑ cosϑ sinα cosα [cosϕ cos β + sinϕ sin β]

+ 3 cos2 ϑ cos2 α− 1
}

197Notation: The prime indicates that only the long-range part of the dipole-dipole interaction (A.15b) is
used.
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where the cut-off parameter a is introduced to regularise UV divergences198. Evaluating
the β-integral reduces eq. (A.21) to

Ṽ ′dd(k̄, a) = µ0µ
2
m

4
(
1− 3 cos2 ϑ

) ∫ ∞
a

dr

r

∫ π

0
dα sinα e−i 2π k̄r cosα

(
3 cos2 α− 1

)
and the α-integration provides

Ṽ ′dd(k̄, a) = µ0µ
2
m

(
1− 3 cos2 ϑ

) ∫ ∞
a

dr

r

{
3cos kr

(kr)2 − 3sin kr
(kr)3 + sin kr

kr

}

with k ≡ 2πk̄. The final r-integral is evaluated using partial integration,

Ṽ ′dd(k̄, a) = µ0µ
2
m

(
1− 3 cos2 ϑ

){cos ka
(ka)2 −

sin ka
(ka)3

}
(A.22)

which is the intermediate result stated in [69]. Since the final results must not depend
on the cut-off parameter, it is now removed by taking the limit a→ 0+. Using cosϑ =
µm ·k/(µmk), we obtain eq. (A.20).

Utilising the ”magnetic potential”
As in the derivation of the DDI potential via the ”magnetic potential” (see section A.5.1)
we encounter the problem that 1/r is singular at the origin and therefore its derivative
must be evaluated carefully. However, derivatives become simple in Fourier space, and
this is the trick we gone use.

The challenge is to calculate the the Fourier transformation of 1/r. Fortunately, this
is just the Fourier transform of the Coulomb potential, which is well known in atomic
physics. Inserting199

1
r

=
∫
d3k̄ e+i 2πk̄ · r 1

π k̄2

into eq. (A.19b) the Fourier transformation (A.10) yields

Ṽ ′dd(k̄′) = −µ0 µ
2
m

3 − µ0

4π

∫
d3r e−i 2πk̄′ · r(µm ·∇)2

[∫
d3k̄ e+i 2πk̄ · r 1

π k̄2

]
The rest is simple. Just evaluate the derivative

Ṽ ′dd(k̄′) = −µ0 µ
2
m

3 − µ0

4π

∫
d3r

∫
d3k̄

(µm · i 2π k̄)2

π k̄2 ei 2π(k̄−k̄′) · r

198Physically, the cut-off parameter a accounts for the fact that two atoms can not overlap. Hence, it is
identified with twice the atomic radius.

199In order to get an expression which is regular everywhere calculate the Fourier transform of e−λr/r
and take the limit λ→ 0+.
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and use the Fourier representation of the Dirac δ-distribution, eq. (A.11b), to obtain200

Ṽ ′dd(k̄′) = −µ0 µ
2
m

3 + µ0

∫
d3k̄

(
µm ·

k̄

k̄

)2

δ(k̄ − k̄′)

This results in eq. (A.20).

A.5.3 Dipolar coupling of different atomic states

The underlying mechanism of Feshbach resonances is the coupling of different molecular
states. In the case of 52Cr the dominant contribution comes from the DDI [126, 127]. The
DDI mixes states with different orbital angular momentum l

def= r × p and/or magnetic
quantum number ml. Therefore, if two atoms meet, which were initially in the asymptotic
2-body state |l,ml〉, they may end up in the state |l′,ml′〉 after the scattering process.
The same mechanism is responsible for dipolar relaxations [119, 123, 170, 189].

Consider two atoms n = 1, 2. Each atom exhibits a total angular momentum Jn =
(Jnx, Jny, Jnz), which translates into a magnetic moment µmn ≡ gnµB Jn/~. The two
particles are separated by r def= r2 − r1. In order to convince oneself that the DDI mixes
states with different orbital angular momentum we can assume a fully polarised sample
and therefore use eq. (A.15b). Noting that the spherical harmonics Y2,0(ϑ) is proportional
to 1 − 3 cos2 ϑ, we immediately see that states with orbital angular momentum l and
l′ = l± 2 are mixed (the details are presented below). However, to see that the magnetic
quantum numbers ml get mixed as well, we need to use the non-polarised version of the
dipole-dipole potential instead, eq. (A.15a).

The calculation is tedious, but straight forward. We express the relative position vector
r from eq. (A.15a) in spherical coordinates (r, ϑ, ϕ) and use the ladder operators Ĵn± def=
Ĵnx ± i Ĵny to obtain [119, 123, 189]

Ĥdd = − µ0

4πr3
µB

2g1g2

~2 ·
√

6π
5

∑
l,ml

T̂l,ml (A.23)

where

∑
l,ml

T̂l,ml = Y2,−2 Ĵ1+ Ĵ2+ + Y2,−1 (Ĵ1z Ĵ2+ + Ĵ1+ Ĵ2z)

+ 4
√

1
6 Y2,0 Ĵ1z Ĵ2z −

√
1
6 Y2,0

(
Ĵ1+ Ĵ2− + Ĵ1− Ĵ2+

)
− Y2,1 (Ĵ1z Ĵ2− + Ĵ1− Ĵ2z) + Y2,2 Ĵ1− Ĵ2−

200Note δ(αz) = δ(z)/|α|, which provides δ(−z) = δ(z).
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is the so called tensor interaction201. In this representation it is obvious that the DDI
does neither preserve the magnetic quantum numbers mJ1 ,mJ2 — because Ĵn±|mn〉 ∝
|mn ± 1〉 — nor the relative orbital angular momentum l of the two particles — because∫
d3r Y ?

l′,ml′
Y2,qYl,m is non-vanishing only if202 |l − l′| = 0, 2 and ml′ = ml + q (except for

l = l′ = 0, because the vectors must build a triangle: l′ = l + ”2”). Therefore, the 2-body
state |n, l,ml〉 |mJ1 ;mJ2〉 is coupled via the DDI to |n′, l′,ml′〉 |mJ′1 ;mJ′2〉.

Let us now specify to the system at hand: Consider two 52Cr atoms, which are well
separated and polarised by a strong external magnetic field B. Since the energy of the
different molecular potentials is dominated by the Zeeman energy, each atom is in its
1-body ground-state |7S3,mJn = −3〉 with n = 1, 2. Hence, the asymptotic molecular
state is given by |l,ml〉|j,mj〉 = |l,ml〉|6,−6〉, where the quantum numbers j corresponds
to the 2-body total angular momentum203 j

def= J1 + J2.

However, if the two atoms approach each other, we have just seen that the DDI couples
this state to different molecular states |l′,ml′〉|j′,mj′〉, with l′− l = 0,±2 and ml′ +mj′ =
ml +mj. Hence, we expand the initial 2-body state into the 1-body basis,

|j,mj〉 =
∑

mJ1 ,mJ2

〈J1,mJ1 , J2,mJ2 |j,mj〉 |J1,mJ1 , J2,mJ2〉 (A.24)

where 〈J1,mJ1 , J2,mJ2 |j,mj〉 denotes the Clebsch-Gordan coefficient. Using eq. (A.23),
Mathematica easily evaluates the overlap between different molecular states204.

A.5.4 Mean-field dipolar interaction energy

If, instead of only two dipoles, (macroscopic) many dipoles are interacting via the DDI,
the different 2-particle potentials are averaged and a mean-field potential arises. Each
particle can be thought of moving in a potential, which is produced by the other dipoles.

201The position vector r is the relative vector of the two particles, and hence the spherical harmonics
Yl,m act on the relative orbital angular momentum l. The quantum numbers J1 and J2 correspond to
the total angular momenta of the single particles.

202Use the relation∫
d2Ω Yl′,m′ Ylq,mq Yl,m =

√
(2 l′ + 1) (2 lq + 1) (2 l + 1)

4π

(
l′ lq l
0 0 0

) (
l′ lq l
m′ mq m

)
where the brackets denote the Wigner 3j-symbols.

203Since 52Cr atoms do not have a nuclear spin (I = 0) and the orbital angular momentum in the
ground-state vanishes (L = 0), its total angular momentum is given by the atomic spin, J = S.
Therefore, the potentials are most often labeled by S.

204For example, consider the state |l,ml〉|j,mj〉 = |0, 0〉|6,−6〉. It is coupled by the term Y2,−2 Ĵ1+ Ĵ2+ to
〈l′,ml′ |〈j′,mj′ | = 〈2,−2|〈4,−4| and to 〈2,−2|〈6,−4|, while Y2,−1 (Ĵ1z Ĵ2+ + Ĵ1+ Ĵ2z) couples it only
to 〈2,−1|〈6,−5|. The coupling of the latter term to 〈2,−1|〈5,−5| is canceled, because the associated
Clebsch-Gordan coefficients interfere destructively.
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In this section we will show that the dipolar mean-field energy205

Edip
def= 1

2

∫
d3r n(r)Φ(N)

dip (r) (A.25a)

where

Φ(N)
dip (r) def=

∫
d3r′ Vdd(r − r′)n(r′) (A.25b)

is the dipolar mean-field potential206, can be expressed as

Edip = 1
2

∫
d3k̄ |ñ(k̄)|2 Ṽdd(k̄) (A.26)

in Fourier space. This is a neat result, because the double three-dimensional integral in
eq. (A.25a) is reduced to a single three-dimensional integral.

Proof
As in the previous section, we will make use of the Fourier transform. However, this
time we use that the dipolar potential (A.25b) is a convolution and Fourier transforms of
convolutions are easy to evaluate.

Using Parseval’s theorem207 and that the density has to be real, eq. (A.25a) reads

Edip = 1
2

∫
d3k̄ ñ?(k̄) Φ̃(N)

dip (k̄)

where the tilde (̃ ) indicates the Fourier transform, and the star (?) the complex conjugate
of the corresponding function. Using the convolution theorem208 we end up with eq.
(A.26).

A.5.5 Anisotropic function for cylindrical symmetric dipolar condensates

A Gaussian density distribution describes most of the effects observed in dipolar conden-
sates. Remarkably, it agrees not only qualitatively, but also quantitatively. Therefore,

205The derivation of eq. (A.25a) is analog to the case of a purely contact interacting condensate [63,
119, 151]. The two requirements for its derivation are that (i) the potential Vdd(r) considers 2-body
interactions only, and (ii) the screened of the dipole-dipole interaction (by other dipoles lying between
the two interacting dipoles) is negligible.

206Different notations are found in the literature and even within the Stuttgart group: Φdd, Vdd, Udd. In
this thesis we refer to it as Φdip (or Φ(N)

dip , if the N -particle nature is emphasise), whereas we use Vdd
for the 2-particle DDI only.

207Parseval’s theorem states that
∫
dx f(x) g?(x) =

∫
dk̄ f̃(k̄) g̃?(k̄), where the star indicates complex

conjugation [296, ch. 2.1].
208A convolution of two functions f(t) and g(t) is defined as [f ? g] (t) def=

∫∞
−∞ dt′ f(t− t′) g(t′) and its

Fourier transform is the product of the individual Fourier transforms, F{f ? g}(x) = F{f}(x) · F{g}(x).
The last identity is named convolution theorem.
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it is worth to calculate the dipolar mean-field interaction energy, eq. (A.26), for a in
z-direction polarised, dipolar interacting, pure condensate in a cylindrical symmetric
harmonic potential. Again, only the long-range term of the DDI is considered, which
yields

E ′dip = −N
2 ~ω̄√
2π

add
σz

(
aho
σρ

)2

fdip(κ) (A.27a)

= −N
2 gdd√
2π

1
σz σ2

ρ

fdip(κ)
4π (A.27b)

with the dipolar anisotropic function209 [133, 159]

fdip(κ) def= 1 + 2κ2

1− κ2 −
3κ2arctanh[

√
1− κ2]

(1− κ2)3/2 (A.27c)

the mean trapping energy ~ω̄ def= ~(ω2
ρωz)1/3, the harmonic oscillator length aho def=

√
~/(mω̄),

the dipolar lengths add def= mµ0µ
2
m/(12π~2), the Gaussian widths of the wavefunction in

transversal σρ and longitudinal σz direction, and the aspect ratio κ def= σρ/σz. Note that
eq. (A.27c) holds in cylindrical symmetric traps for Gaussian as well as Thomas-Fermi
wavefunctions. A three-dimensional version is given in [161].

Explicit calculation
We assume that the wavefunction of the condensate is given by

ψ(r) =
√
N g(σx)(x) g(σy)(y) g(σz)(z)

where g(σ)(x) def= 1
π1/4 σ1/2 exp [−x2/(2σ2)] is a Gaussian normalised to one,

∫
dx|g(σ)(x)|2 =

1, and N is the atom number. Using eq. (A.26) and that the density is given by
n(r) def= |ψ(r)|2 , and therefore ñ(k̄) = N exp [−(πσ · k̄)2], we obtain

Edip = −N2 gdd
2

∫
d3k̄ (1− 3 cos2 ϑ) e−2(π σ · k̄)2

= −N2 gdd
2

∫ ∞
0

dk̄
∫ +1

−1
dξ
∫ 2π

0
dϕ (1− 3 ξ2) e−2k̄2 (π σρ)2 [(1−ξ2)+ξ2/κ2]

= −N2 gdd√
2π σ2

ρ σz

1
8π κ

∫ +1

−1
dξ

1− 3 ξ2[
1 + ( 1

κ2 − 1)ξ2
]3/2

where in the second line we used spherical coordinates and substituted ξ = cosϑ. The final
integral is tedious to calculate, however, it is not complicated210 and yields eq. (A.27).

209Note that many authors include an additional minus sign in the definition of fdip(κ). Although I
agree that this sign convention simplifies discussions involving the dipolar mean-field energy, I use eq.
(A.27c) nevertheless in order to be consistent with our publication [237].

210Subsequent substitute (i)
√
aξ = sinh y, with a = κ−2 − 1, and (ii) z = tanh y. Use ∂

∂ξ
ξ

(1+aξ2)1/2 =
1

(1+aξ2)3/2 to evaluate the integrals. Finally, in order to to obtain arcsinh(
√
a) = arctanh(

√
1− κ2)
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Fig. A.4, Thomas-Fermi dipolar potential: The shape of the dipolar mean-field
potential (in the TF limit) depends on the signs of the coefficients cρ and cz in
eq. (A.28a). If we increase κ starting at small κ, the mean-field potential has
initially the shape of a positive curves parabola. When cz becomes positive
at κ ≈ 0.46, it becomes a saddle and finally, when cρ becomes negative at
κ ≈ 1.66, we obtain a negative curved parabola.

A.5.6 Mean-field dipolar potential in the Thomas-Fermi limit

The long-range part of the dipolar mean-field potential (of a pure condensate in the
Thomas-Fermi limit and confined in a cylindrical symmetric harmonic trap) is [159, 162,
163]

Φ′(TF)
dip (r) = n0 gdd

[
−fdip(κ) + cρ ρ

2 − 2 cz z2

R2
z

]
(A.28a)

inside the BEC211, (ρ/Rρ)2 + (z/Rz)2 < 1. The Thomas-Fermi radius in z-direction212 is
Rz and the coefficients cρ and cz are given by

cρ
def= 1
κ2 + 3

2
fdip(κ)
κ2 − 1 (A.28b)

cz
def= 1 + 3

2
fdip(κ)
κ2 − 1 (A.28c)

This is a ”saddle potential” only in a small region around κ = 1: In order to obtain a
saddle potential the coefficients cρ and cz must have the same sign — the additional term
fdip(κ) is unimportant, because it just produces an offset. Figure A.4 shows that both

we make use of the two identities (i) arcsinh(x) = ln(x +
√

1 + x2) and (ii) arctanh(x) =
1
2 [ln(1 + z)− ln(1− z)].

211The Thomas-Fermi dipolar potential outside of the condensate is give in [159, 163].
212The dipoles are assumed to be polarised in z-direction.
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coefficients are monoton and each has a single root. Therefore, the potential has the shape
of a saddle only if the aspect ratio κ lies within the range ∼ (0.46, 1.66).

A.5.7 Dipolar interactions for isotropic density distributions

The dipolar anisotropic function fdip(κ) vanishes for κ = 1. Thus, for an isotropic Gaussian
or Thomas-Fermi density profile the long-range part of the dipolar mean-field energy E ′dip
vanishes, see eq. (4.7) (page 63). In the following we will show that this is a general
property of the DDI, and therefore true for any spherical symmetric wavefunction213.

Proof
If the spatial density distribution (not the trapping potential, because the dipoles elongate
along the z-direction) is spherical symmetric, we can easily show that the long-range part
of the dipole-dipole potential vanishes, eq. (A.15b). Just use

− 4πδ(r) = ∇2 1
|r|

=
(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
1
|r|

= 3 ∂
2

∂z2
1
|r|

(A.29a)

and insert it into
1− 3(z/r)2

r3 = −4π
3 δ(r)− ∂2

∂z2
1
|r|

(A.29b)

A.5.8 Dipolar Bogoliubov spectrum

In this appendix we explicitly derive the famous (phononic) Bogoliubov spectrum for
homogeneous dipolar condensates [159]

E(q) =
√
Efree(q)

(
Efree(q) + 2neq [g − gdd(1− 3 cos2 α)]

)
(A.30)

where Efree(q) def= (~q)2/(2m) is the free particle dispersion relation, neq the equilibrium
value of the spatial density, and α is the angle between the fully polarised magnetic
moments µm and the wavevector q of the phonon. The steps of the calculations are
identical to those without dipolar interactions, the only difference is to take the Fourier
transform of both interaction potentials, contact and dipolar, instead of only the contact
potential.

Method 1: Using the hydro-dynamical equation
This paragraph emphasises the collective character of the excitation. The starting point

213This implies that the long-range part of the dipolar mean-field potential Φ′dip(r), eq. (A.25b), vanishes
at the origin, r = 0. It does not vanish everywhere, e.g. in the Thomas-Fermi limit we obtain the
saddle potential shown in fig. A.4.
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is the time-dependent GPE (2.7a)

i~
∂

∂t
Ψ =

(
− ~2

2m∇
2 + Vtrap + Φ(N)

int

)
Ψ

By expressing the wavefunction into an amplitude and a phase214, Ψ =
√
n eiS, we obtain

for the imaginary part
∂ n

∂t
= − ~

m
∇ · (n∇S)

which is equivalent to the continuity equation215

∂ n

∂t
+ ∇ · (nv) = 0 (A.31a)

and for the real part

− ~
∂ S

∂t
= − ~2

2m
∇2√n√

n
+ 1

2 mv
2 + Vtrap + Φ(N)

int (A.31b)

where v = |v|. Taking the gradient of eq. (A.31b), provides the hydrodynamic equation of
motion216

m
∂ v

∂t
= −∇

(
Vqp + Vkin + Vtrap + Φ(N)

int

)
(A.32a)

with the quantum pressure, kinetic energy, and the mean-field interaction potential

Vzero ≡ Vqp
def= − ~2

2m
∇2

√
n(r)√

n(r)
(A.32b)

Vkin
def= 1

2 mv
2(r) (A.32c)

Φ(N)
int

def= Φ(N)
contact(r) + Φ(N)

dip (r) (A.32d)

where Φ(N)
contact(r) is defined analogously to Φ(N)

dip (r) — just replace the dipole-dipole
potential Vdd(r) in eq. (A.25b) by the 2-body contact potential, eq. (2.3).

As in the purely contact interacting case, elementary excitations can be investigated
by considering small perturbations of the equilibrium state. Therefore, the continuity
equation (A.31a) and the hydrodynamic equation of motion (A.32a) are linearised in the
velocity, v = veq + δv ≈ δv, and density, n = neq + δn, around their equilibrium values.
Taking the time derivative of eq. (A.31a) and eliminating the velocity by using eq. (A.32a),

214Choosing the global phase of the wavefunction formally breaks the gauge symmetry.
215Here n def= |Ψ(r)|2 is the spatial density and v def= ~

2mi ·
Ψ?∇Ψ−Ψ∇Ψ?

n = ~
m∇S is the velocity of the

condensate. Use ∇2Ψ =
[
∇2f − f (∇S)2 + i f ∇2S + 2i(∇S) · (∇f)

]
eiS .

216Apart from the so quantum pressure, it has the form of the Navier-Stokes equation used in classical
hydrodynamics.
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the hydrodynamic equation for the perturbation217

m
∂2

∂t2

(
δn
)

= ∇ · (neq ∇δµ) (A.33)

is obtained, with the chemical potential µ def= Vqp(r) + Vtrap(r) + Φ(N)
int (r). Now, beside of

specifying these equations for the case of a homogeneous condensate (neq(r) = const and
Vtrap(r) = 0) one has to choose an appropriate ansatz for the solution one is interested in.
Here, we choose a perturbativ ansatz, n(r) ≡ nq(r) = neq + δnq(r), and because we are
interested in phonon-solutions, we use218 plane waves with momentum ~q and energy ~ω
as perturbations219, δnq(r) = uq · exp [i(q · r − ωt)] + v−q · exp [−i(q · r − ωt)].

Insert this ansatz into the the chemical potential and retaining only first order terms220
yields221

δµ ≡ δµq(r) = δVqp(r) + δΦ(N)
contact(r) + δΦ(N)

dip (r) (A.34a)

δVqp(r) = + (~ q)2

4mneq
δnq(r) (A.34b)

δΦ(N)
contact(r) = g δnq(r) (A.34c)
δΦ(N)

dip (r) = Ṽdd(q) δnq(r) (A.34d)

where Ṽdd(q) is the Fourier transform of the DDI (A.20). Since δµq(r) is linear in δnq(r)
with a pre-factor, which is independent of the position r, inserting eq. (A.34a) into eq.
(A.33) is straight forward222, resulting in eq. (A.30).

Method 2: Using quantum field theory
Deriving the Bogoliubov spectrum using the quantum field theoretical description empha-
sises the single particle character of the excitation. The collective excitation is described
by a single quasi-particle, the phonon. This is a mean-field description in the sense that
there is no interaction between two phonons and therefore there are no phonon-phonon

217δµ indicates the (linear) perturbation of the chemical potential.
218It is crucial to understand that this ansatz limits the obtainable solutions. One can only find what one

is looking for.
219Since an infinite, homogeneous BEC is translation invariant, one expects the eigenstates of the system

to be eigenstates of the momentum operator (plane waves). If inhomogeneous systems are considered,
the coefficients {uq, v−q} become position dependent {uq(r), v−q(r)}, whereas if the particle number
is not conserved, they become complex (recall, v ∝ Ψ∇Ψ? − h.c.). Note that in our ansatz both plane
waves travel in the same direction.

220The zero order terms fulfills the hydrodynamic equation of motion (A.33). Therefore, they cancel each
other.

221Taylor expand the square root for the quantum pressure term, 1√
n

∇2√n ≈ 1
2neq

∇2δnq, and use
that the Fourier transform of the dipole-dipole potential does only depend on the angle between the
magnetic moments µm and the wavevector q of the excitation, but neither on the magnitude nor the
sign of q.

222Use m ∂2

∂t2

(
δnq

)
= −mω2δnq and ∇2(δnq) = −q2δnq.
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correlations. The calculation for a purely contact interacting condensate is given in [63,
119]. The dipolar case is done in [303] using the Green’s function method.

Starting point is the field theoretical Hamilton operator [134]

Ĥ =
∫
d3r

[
− ~2

2m
∣∣∣∇Ψ̂(r)

∣∣∣2 − µΨ̂†(r)Ψ̂(r) (A.35)

+ 1
2

∫
d3r′ Ψ̂†(r)Ψ̂†(r′)V (2)

int (r − r′)Ψ̂(r′)Ψ̂(r)
]

with the 2-body interaction potential V (2)
int (r) def= gδ(r) + Vdd(r) and the field operator in

Fourier representation223 Ψ̂(r) def= 1√
V

∑
k âk eik · r, where V is the volume of the system.

The annihilation (creation) operator âk (â†k) destroys (creates) one quantum224 in the
state |k〉, which is a plane wave with momentum ~k in the position representation,
〈r |k〉 = eik · r. They satisfy the bosonic algebra

[âk, â†k′ ] = δk,k′ (A.36)
[âk, âk′ ] = 0 = [â†k, â

†
k′ ]

Defining the number state of the k-th mode by |Nk〉 def= (â†k)Nk |0〉/
√
Nk!, where |0〉 is the vac-

uum state, and expressing the Hamilton operator in this basis, Ĥ = ∑
k,k′ |k〉〈k|Ĥ|k′〉〈k′|,

eq. (A.35) becomes [155]

Ĥ =
∑
k

(
Efree(k)− µ

)
â†kâk + 1

2V
∑
k,k′,q

Ṽ
(2)
int (q) â†k+qâ

†
k′−qâk′ âk (A.37)

where Efree(k) def= (~k)2/(2m) is the free particle dispersion relation and Ṽ
(2)
int (q) is the

Fourier transform of the 2-body interaction potential. Note that the creation and annihi-
lation operators occur in such a way that they maintain the total momentum.

Now we use the Bogoliubov approximation, which assumes that

1. almost all particles are in the ground-state225, Ntot ≈ N0
def= Nk=0 � 1, so that

〈N0 + 1|â†0|N0〉 =
√
N0 + 1 ≈

√
N0. Therefore, we replace the operators226 â0 and

â†0 by the number
√
N0. This is equivalent to the statement that the ground-state

operators commute, [â0, â†0] = 0, while the creation and annihilation operators for
modes with k 6= 0 still obey the standard bosonic commutation relation (A.36).

223Each Fourier mode k of the field is treated as an independent oscillator with its own creation and
annihilation operator.

224Since they create/destroy one discrete entity the excitation is often called a ”particle”. These particles
are not localised in position space: â†k creates a particle in the momentum eigenstate |k〉.

225This implies a low temperature.
226Only the creation and annihilation operators for the ground-state are replaced. Those for excited-states

(k 6= 0) remain operators.
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2. the interaction between two excitations is negligible, because the gas is very dilute
and the number of excitations is small compared to total atom number.

Using these two assumptions and separating the ”ground-state” (k = 0) from the ”excita-
tions” (k 6= 0), we find227

Ĥ =−N0µ+ N2
0 Ṽint(0)

2V (A.38)

+
∑
q 6=0

[(
Efree(q) + n0[Ṽint(0) + Ṽint(q)]− µ

)
â†qâq + n0Ṽint(q)

2
(
â†qâ

†
−q + âqâ−q

)]

with the ground-state density n0. Finally, we use that for a homogeneous condensate
the chemical potential is given by µ = n0 Ṽint(0) and that the Fourier transform of the
interaction potential does neither depend on the magnitude nor sign of q so that we
symmetrise â†qâq → (â†qâq + â†−qâ−q)/2 to write the Hamiltonian in the bilinear form

Ĥ = −µN0 + N2
0

2V + 1
2
∑
q 6=0

(
â†q â−q

) (
ε1 ε2
ε2 ε1

) (
â†q

â−q

)
(A.39)

with ε1
def= Efree(q) + n0Ṽint(q) and ε2

def= n0Ṽint(q). The rest, although tedious, is the
standard Bogoliubov transformation and can be found e.g. in [119, ch. 8]:

1. Define new creation/annihilation operators
(

b̂q
b̂†−q

)
def=
(
uq vq
vq uq

)(
âq

â†−q

)
(A.40)

2. Demand that the new operators fulfill the standard bosonic algebra228, analog to eq.
(A.36)

3. Choose {uq, vq} such that the Hamilton operator becomes diagonal229

Ĥ = (some terms)1̂ +
∑
q 6=0

E(q)b̂†qb̂q (A.41)

where E(q) is given by eq. (A.30).

227The Fourier transform of the DDI is evaluated at the origin, where it is ill defined. Therefore, we
average over the directions of the wavevector q, which yields Ṽint(0) = g n.

228This leads to the condition u2
q − v2

q = 1, if uq, vq ∈ R. Therefore, the transformation is a hyperbolic
rotation and by choosing the convention uq ≥ 0, we define the angle θq by {uq, vq}

def= {sinh θq, cosh θq}.
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A.5.9 Corrected dipolar expansion formulae

To calibration the scattering length we used the hydrodynamic equations in the Thomas-
Fermi limit. Unfortunately, the in-trap formulae [161, eq. (20) – (22)] are wrong. They
should read

ω2
x = ω̄2

x

[
1− εdd

(
fdip + κxy

∂ fdip
∂κxy

+ κxz
∂ fdip
∂κxz

)]

ω2
y = ω̄2

y

[
1− εdd

(
fdip − κxy

∂ fdip
∂κxy

)]

ω2
z = ω̄2

z

[
1− εdd

(
fdip − κxz

∂ fdip
∂κxz

)]

where fdip def= fdip(κxy, κxz), n0
def= 15N/(8π RxRyRz), and ω̄2

j
def= 2 g n0/(mR2

j ) with j =
x, y, z. Note that in these formulae the polarisation axis is chosen to be the x-direction.
The sign problem is present throughout the publication and results in wrong expansion
equations [161, eq. (31)]. The set of differential equations should read230

∂2bx
∂t2

= ω̄2
x

b2
x by bz

1− εdd f(by
bx
κ0
y,
bz
bx
κ0
z) + εdd bx

∂ f( by
bx
κ0
y,

bz
bx
κ0
z)

∂bx

 (A.42a)

∂2by
∂t2

=
ω̄2
y

bx b2
y bz

1− εdd f(by
bx
κ0
y,
bz
bx
κ0
z) + εdd by

∂ f( by
bx
κ0
y,

bz
bx
κ0
z)

∂by

 (A.42b)

∂2bz
∂t2

= ω̄2
z

bx by b2
z

1− εdd f(by
bx
κ0
y,
bz
bx
κ0
z) + εdd bz

∂ f( by
bx
κ0
y,

bz
bx
κ0
z)

∂bz

 (A.42c)

229Expressing the ”old” operators in the ”new” basis,

â†q âq = u2
qb̂†qb̂q + v2

qb̂−qb̂†−q − uqvq(b̂qb̂−q + b̂†qb̂†−q)

â†−q â−q = u2
qb̂†−qb̂−q + v2

qb̂qb̂†q − uqvq(b̂qb̂−q + b̂†qb̂†−q)

âq â−q = u2
qb̂qb̂−q + v2

qb̂†qb̂†−q − uqvq(b̂qb̂†q + b̂†−qb̂−q)

â†q â†−q = v2
qb̂qb̂−q + u2

qb̂†qb̂†−q − uqvq(b̂qb̂†q + b̂†−qb̂−q)

one finds

tanh (2θq) = 2 tanh θq
1 + tanh2 θq

= ε2
ε1

vq = sinh θq =

√
1
2

(
ε1
E(q) − 1

)

uq = cosh θq =

√
1
2

(
ε1
E(q) + 1

)

with E(q) def= +
√
ε21 − ε22. This E(q) becomes the excitation energy of the Bogoliubov spectrum (A.30).

230Internal link to the program ’TOF-DipolarExpansion02.nb’.
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where the trap is assumed to be switched off completely, ω(t) = 0 for t ≥ 0 s.

A.6 Inter-site dipolar interactions in an optical lattice

So far we were concerned about the description of a single condensate confined in a
cylindrical symmetric trap. Now we extend this description by considering stacks of
pancake-shape dipolar condensates, which are coupled by the long-range part of the
dipolar interactions, see fig. A.5(a). First, we calculate the inter-site dipolar mean-field
potential Φ′dip(r) for a pair of two-dimensional discs, see fig. A.5(b). The dipoles are
assumed to be polarised either parallel or perpendicular to the symmetry axis of the
confinement. In the second part of this section we derive the Gross-Pitaevskii energy
functional E ′dip for a stack of three-dimensional Gaussian wavefunctions.

A.6.1 Inter-site dipolar mean-field potential

Consider a stack of dipolar condensates, which are confined on adjacent sites of a one-
dimensional optical lattice. Due to the dipolar coupling between the sites the properties of
each condensate depend on the overall geometry of the stack. This can be seen as follows:
Whereas each condensate has a pancake-shape aspect ratio κ > 1, the stacking leads to a
cigar-shape overall geometry. Hence, in the limit of infinitesimal lattice spacing, dlat → 0,
the stack becomes a single cigar-shape condensate. Thus, the dipolar mean-field energy
changes from being ”repulsive” to ”attractive” and the condensate becomes less stable, see
section 5. In the following we calculate the inter-site dipolar mean-field potential Φ′dip(r),
eq. (A.25b), for a pair of condensates.

In order to understand the inter-site interactions it is useful to start with a simple model
and to increase the complexity gradually. Therefore, consider the interactions between
two discs of radius R and vanishing axial extension, see fig. A.5(b). Their spatial density
distribution (uniform in two-dimensions) is given by

n3d(r) =
∑
j=1,2

n2d Θ(ρ−R) δ(z − j · dlat) (A.43)

where Θ(ρ) is the Heaviside function and the dipoles are assumed to be fully polarised in
the z-direction.

Figure A.5(c) presents the inter-site dipolar mean-field potential (A.25b) produced by a
uniform area-density, n2d = Natoms/(πR2). In the trap center231 the potential is negative
(”attractive”) and almost constant. The reason for this behaviour is the interplay between
the anisotropy of the dipolar interactions and its 1/r3-dependence: Only the part of the

231The inter-site potential at the trap center given by Φ′dip(ρ = 0) = − µ0 µ
2
m n2d R

2

2 (R2+d2
lat)3/2 and therefore

Φ′dip(0) ≈ − 3
2 gdd

n2d
R for R� dlat.
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Fig. A.5, Inter-site potential for dipoles polarised in z-direction: If a cigar-shape
condensate is sliced into a stack of pancake-shape BECs, as shown in (a), the
inter-site dipolar potential is not negligible. Calculating the dipolar interaction
potential (A.25b) between two in z-direction polarised dipolar BECs at a point
ρ, only the red area sketched in (b) provides a negative contribution. In (c) the
inter-site potential is calculated233 for a pair of two-dimensional discs of radius
R with uniform spatial density, eq. (A.43), whereas in (d) a two-dimensional
Gaussian density, eq. (A.44), is considered.

upper disc which lies within the magic angle 0 ≤ ϑ ≤ ϑmagic (indicated in fig. A.5(b) by the
red area) gives an ”attractive” contribution to the inter-site potential at a point ρ of the
lower disc. Therefore, most dipoles interact ”repulsively”. However, the points within the
magic angle are closer to the ”receiving point” ρ, their contributions are weighted stronger.
Thus, the mean-field potential is still negative, the inter-site interaction destabilises the
condensates. That the potential is not constant, but decreases with increasing ρ, is a
finite size effect232.

Next, let us redefining the model to assimilate with the experiment. Therefore, we assume
a spatial density distribution

n(r) =
∑
j=1,2

g
(σρ)
2d (ρ) δ(z − j · dlat) (A.44)

where g(σρ)
2d (ρ) = n0 exp (−ρ2/σ2

ρ) is a two-dimensional Gaussian, with peak density
n0 = Natoms/(πσ2

ρ). Fig. A.5(d) presents the dipolar mean-field potential produced by
the site j = 2 at the position of the neighbouring site j = 1. As expected, the inter-

232Moving the ”receiving point” ρ = ρdisc1 towards the edge of the disc, maintains the ”attractive”
contribution as long as the area covered by the magic angle lies within the upper disc. However, it
decreases the ”repulsive” contribution, because it increases the distance to the dipoles sitting at the
opposite edge. The potential reaches its minimum at a distance ρdisc1 = R − ρext from the center,
where ρext/dlat = tanϑmagic ≈ 0.82. Moving further outwards, decreases the ”attractive” contributions
as well. Thus, the inter-site potential has a maximum at ρ = R+ ρext, which lies outside of the disc.
The same reasoning explains, why the modulus of the minimum value and the maximum are unequal.

233These calculations are made for a lattice spacing of dlat = (532/2) nm, a disc radius R = 10 µm , and
a Gaussian width σρ = 2 µm, but the scaling of the potential make it quite robust.

124



(a)

y [in R/5] x [in R/5]

uniform (b)

y [in σ
ρ ] x [in σρ]

Gaussian

Fig. A.6, Inter-site potential with dipoles polarised in x-direction: (a, b) The
inter-site dipolar mean-field potential (A.25b) between a pair of condensates
(in units of gdd n2d/R and gdd n0/R, respectively). The spatial density is given
by (A.43) and eq. (A.44), respectively. The parameters for the calculations are:
dlat = 532/2 nm, σρ = 2 µm, and R = 10 µm.

site potential has a minimum at the center234. Furthermore, as the spatial density
decreases with increasing radial coordinate, the finite size effect is strongly suppressed.
The potential vanishes at235 ρ0 ≈ 1.35 σρ and becomes only ”slightly” positive for ρ > ρ0.
The central region of the inter-site potential is well described by a Gaussian with a width
σdd/σρ = 0.82 < 1. Hence, despite its simplicity the model incorporates the elongation of
a three-dimensional dipolar condensate along the polarisation direction.

Figure A.6 presents the inter-site dipolar mean-field potential for the case, where the
dipoles are polarised perpendicular to the normal axis of the optical lattice. The arguments
which explain the shape of the potentials are similar to those above.

A.6.2 Instability for a stack of dipolar condensates

In this section we derive the inter-site mean-field interaction energy E ′dip, eq. (A.25a), for
a stack of dipolar condensates. A possible experimental set-up is sketched in fig. A.7. This
work is closely related to [237], only the mean-field dipolar inter-site interaction is added.
Because the zero-point energy, the potential trapping energy, and the energy arising from
the contact interaction are straight forward to calculate236, solely the long-range part of
the dipolar interactions is treated in the following section.

234Φ′dip(ρ = 0) = −µ0µ
2
m n0

2σ

[
−2dlat

σ +
√
π
(

1 + 2d
2
lat
σ2

)
exp (d2

lat/σ
2) Γ(dlat

σ )
]
.

235The zero crossing of the inter-site potential is larger than ρ = σρ + dlat tanϑmagic, because the spatial
density decreases continuously, rather than abruptly as in the disc case.

236As these energies do not depend on the inter-site interactions, they are given in [237].
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Fig. A.7, Sketch of the experimental setup: The coordinate system is defined by
the offset coils (z-direction), the imaging axis (x-direction) and the propagation
direction of ODT2 (y-direction). ODT1 propagates in the (x, z)-plane, whereas
the 532-OL forms in the (y, z)-plane. Both beams are tilted with respect to the
polarisation axis of the atoms (z-direction). However, these tilts are neglected
in the calculations, because they are expected to only perturb the results
within the experimental uncertainties, while increasing the numerical effort
tremendously.

The inter-site interaction energy

E
′ (`,j)
dip

(A.25a)=
∫
d3r n`(r)×

∫
d3r′ V ′dd(r − r′)nj(r′) (A.45a)

(A.26)=
∫
d3k̄ ñ?`(k̄) · ñj(k̄)Ṽ ′dd(k̄) (A.45b)

contains the Fourier transform of the atomic densities of the two interacting sites j and `.
We start simplifying the integral by making the following assumptions:

1. The wavefunction of the condensate on the `th lattice site is given by237

ψ(`)(r) def=
√
N

(`)
atoms g

(σx,`)(x) g(σy,`)(y) g(σz,`)(z) (A.46)

where g(σ)(x) def= 1
π1/4σ1/2 exp

(
− x2

2σ2

)
is a Gaussian with width σ and normalised to

one,
∫∞
−∞ dx |g(σ)(x)|2 = 1.

2. The wavefunction is cylindrical symmetric: σρ,` def= σx,` = σy,`.

237The gravitational sag is neglected, because it is expected to not alter the results, if tight enough
trapping potentials are used. A Gaussian distribution of the atom numbers over the different lattice
sites is easily included at this point.
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3. The lattice spacing in z-direction is dlat, each lattice site is occupied by the same
atom number, N (`)

atoms → Natoms, and their widths are site-independent, σρ,` → σρ
and σz,` → σz.

4. The wavefunction of individual sites do not overlap238.

Using these assumptions, the Fourier transformation of the density separates into three
terms

ñ(`)(k̄) = ñx(k̄x) · ñy(k̄y) · ñ(`)
z (k̄z) (A.47)

with

ñx(k̄) = ñy(k̄) def= N
1/3
atoms e−(π σρ k̄)2

ñ(`)
z (k̄) def= N

1/3
atoms e−(π σz k̄)2 · ei2πk̄`dlat

Hence, the inter-site dipolar energy for the `th lattice site

E
′ (`)
dip =

∑
j 6=`

E
′ (`,j)
dip (A.48)

= 1
2

∫
d3k̄ |ñ(k̄)|2 Ṽ ′dd(k̄)︸ ︷︷ ︸

standard on-site DDI

×2
∑
j 6=`

ei2πk̄zdlat(`−j)

consists of two factors: the standard on-site dipolar interactions and a ”lattice factor”.
Knowing from the previous section that the inter-site dipolar energy lowers the total
energy, we concentrate in the following on the central lattice site (` = 0), because here the
instability occurs first. Using the geometric series ∑jlat

n=0 q
n = (1− q1+jlat)/(1− q) with

q = ei2α the ”lattice factor” simplifies to

−1 +
jlat∑

n=−jlat

qn = −2 +
jlat∑
n=0

qn +
jlat∑
n=0

q−n

= . . . = −1 + sin (α[2jlat + 1])
sin (α) = −1 + sin (Nlatα)

sin (α)

238The total density is given by

ntot(r) def= |ψtot|2 ≈
jlat∑

`=−jlat

|ψ(`)(r)|2

= Natoms |g(σx)(x)|2 |g(σy)(y)|2
jlat∑

`=−jlat

|g(σz)(z + `dlat)|2

which, in the limit jlat →∞, is equivalent to a convolution of a Gaussian g(σz)(z) with an Dirac comb
d(dlat)(z) def=

∑∞
`=−∞ δ(z − `dlat).
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The last term is well known from linear optics: Its the diffraction term of a plane wave
from a grating, see e.g. [273, ch. 52.4.2]. In the limit Nlat →∞ it simplifies further to a
Dirac comb239.

Cylindrical coordinates are especially suited to evaluate the resulting integral. The
integrand does not depend on the azimuthal reciprocal angle k̄ϕ and the k̄ρ-integration is
the same standard integral240 as in [237]. So we are left with the k̄z-integral, which after
rescaling to a dimensionless form (ξ def=

√
2πσzk̄z) yields the total (on-site and inter-site)

dipolar energy per atom in units of ~ω̄

E
′ (`=0)
dip

Natoms ~ω̄
= Natoms√

2π
add
σz

(
aho
σρ

)2 ∫ ∞
−∞

dξ√
π
e−ξ2 {−1 + 3κ2ξ2 e+κ2ξ2 Γ

[
0, κ2ξ2

]}
×
(
−1 + 2 sin [Nlat ·α(ξ)]

sin [α(ξ)]

)
(A.49)

with α(ξ) def= ξ dlat/(
√

2σz), the harmonic oscillator length aho
def=
√
~/(mω̄), the upper

incomplete Gamma function241 Γ [α, x] def=
∫∞
x dt tα−1e−t for α = 0, the aspect ratio

κ
def= σρ/σz, the dipolar length add def= µ0 µ

2
mm/(12π~2), and the mean trap energy ~ω̄ def=

~(ωzω2
ρ)1/3. For Nlat → 1 the integral in eq. (A.49) reduces to −fdip(κ) and the result of

[237] is obtained. In the opposite limit, Nlat →∞, the ”lattice factor” becomes a Dirac
comb, resulting in

lim
Nlat→∞

E
′ (`=0)
dip

Natoms ~ω̄
= Natoms√

2π
add
σz

(
aho
σρ

)2 [
+ fdip(κ) (A.50)

+ 2√
π
φ lim
jlat→∞

jlat∑
j=−jlat

e−φ2
j

{
−1 + 3κ2φ2

j e+κ2φ2
j Γ

[
0, κ2φ2

j

]} ]

with φ
def=
√

2πσz/dlat and φj
def= φ · j. As expected, the dipolar energy does depend on

the aspect ration κ and on the ratio φ ∝ σz/dlat. The other energy functionals are as in
[237]242

239As stated above, in this limit the total density is given by a convolution of a Gaussian and a Dirac
comb. The Fourier transform of a Dirac comb is a Dirac comb: limNlat→∞

sin (Nlatα)
sin (α) = d(2π/dlat)(k̄z).

Simpler, F
{∑∞

n=−∞ cnei2πz/`
}

(k̄) =
∑∞
n=−∞ cnδ(k̄ − n/`), see e.g. [296, ch. 5.1].

240Here we use the substitution χ2 def= k̄2
ρ + k̄2

z for the k̄ρ-integration. This shifts the coupling of k̄ρ and k̄z
from the denominator into the lower boundary of the χ-integral and provides the incomplete Gamma
function.

241In order to simplify the numerical calculation the asymptotic expansion [304] Γ[0, x] ∼ x−1 e−x
(
1−

1/x+ 2/x2 + . . .
)
is used for ”large” values of κ ξ, and the Taylor series x exΓ[0, x] ∼ −[γ + ln(x)]x+

[1− γ − ln(x)]x2 + 1
4 [3− 2γ − 2 ln(x)]x3 +O(x4), where γ ≈ 0.577 is the Euler-Mascheroni constant,

for ”small” values, respectively.
242Recall: The atom number per lattice site is Natoms, while the total atom number is Ntot.
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• zero-point energy

Ezero

Ntot~ω̄
= 1
Natoms~ω̄

~2

2m

∫
d3r |∇ψ`|2 = a2

ho
4

(
1
σ2
z

+ 2
σ2
ρ

)
(A.51)

• trapping potential243

Etrap

Ntot~ω̄
= 1
Natoms~ω̄

∫
d3r Vtrap n`(r) =

2σ2
ρ + λ2σ2

z

4 a2
ho λ

2/3 (A.52)

• contact interaction energy

Econtact

Ntot~ω̄
= 1
Natoms~ω̄

1
2

∫
d3r g n2

`(r) = Natoms
a√

2π σz

(
aho
σρ

)2

(A.53)

which is the pre-factor of eq. (A.49) if the scattering length a is replaced by the
dipolar length add.

243Ratio of the trapping frequencies λ def= ωz/ωr.
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Wie nun, wenn du deines lahmen Fußes wegen nicht alleine imstande
bist, die Schanze zu ersteigen, dies aber mit Hilfe eines andern dir
möglich wäre?“ (Marc Aurel)
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