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Nomenclature

The following is a list of the most frequently occurring symbols used in this thesis.

Symbols not defined here are defined at their first place of use.
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iv Nomenclature

F [ρ] total Helmholtz free energy functional

β = 1/kBT inverse thermal energy

r particle position in two dimensions

u(r, t) flow field velocity

ρ(r, t) probability density

Γ(r) position dependent mobility matrix

Φ(r) external potential with surface confinement

Ψ(|ri − rj|) interaction potential between particles

η(r, t) stochastic force

∇ = (∂x, ∂y, ∂z)

P (r, t) non-equilibrium probability density

W half channel width

L half channel length

Wi half width of region in which particles can move

di particle radio

R circular cylinder radius

d minimal distance between the center of mass of two particles

u0 velocity at the channel center

D wall-particle distance dependent diffusivity

J total probability flow

j probability flow of each particle

Re Reynolds number

Q throughput

ρeq equilibrium probability density

R(x1 − x2, y1, y2) particle position in three dimensions

C(R) stationary non-equilibrium probability density

U(R) flow field velocity

V(R) total interaction potential

∇R = (∂x1−x2
, ∂y1 , ∂y2)

Rh hydrodynamic radius

Rg gyration radius

Pe Pèclet number

l distance between two particles

Lx, Ly lateral distance lengths

c velocity of upper and down channel walls

ν self-avoiding walk exponent
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Chapter 1

Introduction

The discipline called soft condensed matter (or complex fluids) has experienced sig-

nificant growth over the last decades, becoming an important field of research for

the understanding of the physical properties of the above mentioned fluids. However,

nowadays, there still remain some open problems in the soft condensed matter field.

Soft condensed matter displays many fascinating properties. The dynamics of

complex fluids in non-equilibrium situations1 are characterized by multiple length

and time scales. These non-equilibrium processes are irreversible; i.e., the entropy

increases in time such that one cannot come back to the initial state. The properties

of such systems cannot be described by the equilibrium statistical mechanics only,

but rather, the description should include the dynamics.

Nevertheless, under certain special conditions, the behavior of a large number of

systems can be described by the formalism of the equilibrium statistical mechanics

when they are in local equilibrium. Otherwise, the non-equilibrium systems occur

more frequently than the equilibrium systems, but also, in many cases, they cannot

be treated by the Boltzmann-Gibbs formalism. In the last 30 years, there have been

notable efforts to characterize non-equilibrium systems.

This chapter is intended to provide a short review of the main topics related to

the present work.

1.1 Complex fluids

This thesis is concentrated in a theoretical framework of soft condensed matter

physics, which is the study of materials such as polymer solutions, liquid crystals,

1By non-equilibrium systems we refer both to systems held far from thermal equilibrium by

an external driving force, and the complementary situation of systems relaxing towards thermal

equilibrium.

1



2 1. Introduction

surfactant solutions, colloidal suspensions, and fluids but also granular media, foams,

and most biological matter. Soft condensed matter can also be found in the display of

our laptop computer, in the food we eat, and the cells in our bodies. Soft condensed

matter means everything which is dense on the one hand — in the sense that many

particles interact with each other — but which can easily be deformed by external

stresses, electromagnetic fields, and thermal fluctuations, on the other hand. The

macroscopic physical properties of complex fluids, such as rheological, viscoelastic,

wetting, etc., cannot be described by usual hydrodynamics equations.

Amongst the physical properties arising out of these structures and characteriz-

ing soft matter, are non-linear mechanical properties (e.g., shear thinning and shear

bands), structural phase transitions and non-Newtonian flow properties. One charac-

teristic of these complex fluids is the ability to self-assemble into complex organized

structures. On the other hand, due to the softness of these fluids, fluctuations and

disorder are important, and one needs a proper description to understand their behav-

ior. The most important characteristic of complex fluids is the existence of interplay

between mesoscopic length and time scales, which is one of the many obstacles for a

theoretical understanding of complex fluids unpredictable. The mechanical response

of these fluids depends usually on time.

As mentioned above, these fluids have to be described by the non-equilibrium

statistical mechanics because they are composed of a large number of species. Un-

derstanding the nature of the structure and behavior of this wide class of materials

has been a challenging and interesting field of investigation. Interesting problems

associated with the dynamics of these fluids are the development of a theory and

numerical tools and simulations for predicting the behavior of this kind of fluid in

addition to the study of instabilities in the flow, both in its interior and at its inter-

faces. In the last decades, progress in the field of soft condensed matter physics has

been achieved due to the development of novel experimental and theoretical methods

and the increasing use of numerical simulations such as molecular dynamics, lattice

Boltzmann, and stochastic rotation dynamics. A theoretical approximation is con-

sidering only one of the mesoscopic species constituting a complex fluid explicitly. In

this approximate theory, the particles are submitted to effective interactions which

take into account the direct interactions between them and the indirect interactions

mediated by the particles of the other species.

And so then, in this thesis, our interest is in the dynamics of the two most repre-

sentative kinds of complex fluids: colloidal suspensions and polymer solutions.
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Colloidal suspensions

Colloids are well-defined mesoscopic particles2 which are suspended in a fluid. These

particles are larger than solvent particles, but still small enough to exhibit thermal

motion (Brownian motion) [30]. Due to different length scales, the description of

mesoscopic particles at non-equilibrium seems to be a difficult theoretical approach.

Many fluids in our everyday life are suspensions; however, we hardly recognize them

as such. Examples of suspensions are milk (fat globules in water), and blood [see

Fig. 1.2 b ], amongst others. Colloidal particles are larger than molecules and

ordinary ions.

The colloids interact in a different way than the solvent molecules in a fluid: they

have a slower dynamics and because of their size, they generate structures that easily

move away from the equilibrium. The dynamics of this kind of particles differs from

the dynamics of atoms because colloids diffuses in a suspension and they exhibit

hydrodynamic interactions that affect other colloidal particles in their motion, while

this interaction is hardly relevant for atoms. These hydrodynamic interactions are an

important characteristic of this kind of particles, in particular when they are out of

equilibrium. Another important characteristic of colloidal particles is their stability

against sedimentation. This stability results from the action of Brownian motion.

The last important characteristic is the size of the particles and the rigidity of the

particles. The latter one is only important in concentrated suspensions but not in

dilute suspensions.

This characteristic has already been studied in the last decades. Sedimentation

of the particles was studied by Batchelor [8]. The role of hydrodynamic interactions

were studied in the context of two spheres far from bounding walls [25], or of a

single sphere in the presence of one wall [102], or of two walls [72] or between many

spheres [134].

Polymer solutions

It is obvious that polymers solutions are a mixture of larger polymer chains and

smaller solvent molecules, just as colloidal suspensions are. They are the best-known

soft matter structures. The polymer can adopt different architectures; the simplest

one is a linear chain. Fig. 1.1 shows typical types of polymer chains: as a semiflexible

molecule, as coil polymer, star polymer and brush polymer. Other special types

of branched polymers include comb polymers, dendronized polymers, ladders, and

dendrimers. As in the case of colloidal suspensions, there are more examples of

2Mesoscopic particle size varies from 10 nm up to a few µm.
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(a) (b)

(c) (d)

Figure 1.1: Commonly representations of polymer chains. (a) Linear chain, (b) coil

polymer, (c) star polymer, and (d) brush polymer.

polymers around us in our everyday life than one may think. Biological molecules like

DNA, RNA, and proteins are all polymers. Furthermore, a large fraction of objects

are made with plastics which are just synthetic polymers. Now, more than ever,

polymers are finding their way into new areas of application, such as light-emitting

diodes, electric circuitry, computer memory, and solar cells.

The polymer solutions are, in general, highly viscous. Viscosity depends on the

chemical structure of the polymer, on the interactions with the solvent, the concen-

trations, and on the molecular weight. Normally, a molecule of high molecular weight

in a good solvent acquires an open coil conformation with a large hydrodynamic vol-

ume leading to a large viscosity of the solution. The hydrodynamic volume is the

volume ocuppied by a polymer coil (the form that adopts a polymeric molecule when

it is in a solution) when it is in solution. The hydrodynamic volume can change

depending on how the polymer acts with the solvent and on the molecular weight

of the polymer. To understand the behavior of the polymer solution, it is necessary

to know the contributions of the potential energies to the free energy as well as the

influence of hydrodynamic interactions on the dynamics. Besides, understanding of

the polymer chains’ dynamics enables us to explain and predict many properties of

polymer solutions, such as diffusion coefficients, viscosity, sedimentation coefficient,

and various rheological properties [32].
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Polymer solutions play an important role in many commercial applications in

which the polymer solutions are used to control the rheological properties as well

as the stability of these commercial systems; at the same time, they are used to

characterize the polymer structure through such different techniques as viscosimetry,

chromatography of molecular exclusion, and light scattering, amongst other. Some

examples of polymer solutions are paints, medical products, crude and processed

foods.

1.2 Role of Hydrodynamic Interactions

It is well known that in the range of microscale and nanoscale, inertia plays a negligible

role. In fact, the dynamics of complex fluids takes place at very low Reynolds num-

bers, and consequently, the viscous forces dominate over the inertial effects. Hence,

complex fluids dynamics will be governed by hydrodynamic interactions (HI). But

why are the hydrodynamic modes in Brownian motion important? When a particle

diffuses in a viscous fluid, the above-mentioned particle disturbs the velocity field of

the fluid (induces a flow field in the solvent) propagating through the solvent which

will be felt by all the other particles. And thus, the motion of nearby particles will

be affected, even in the absence of direct inter-particle interactions. As a result,

these particles experience a force which is called hydrodynamic interaction with the

original particle [46]. This hydrodynamic interaction between two particles retards

the motion of the particles. However, if there is no hydrodynamic interaction, then

each particle interacts with a flow field that is unaltered by the addition of other

particles. Dieter Langbein [67, 68] has a couple very nice articles showing coupling

effects for two spheres moving in a fluid, for various configurations of the spheres

(parallel, serial, etc).

It is well known that the study of the dynamics of colloidal suspensions or polymer

solutions should take into account the hydrodynamic interactions between particles,

but up to now, there are still many obstacles to understanding the dynamics of com-

plex fluids. One of these obstacles is the long-range hydrodynamic interactions be-

tween particles in dense systems. There are a number of interesting problems, where

inter-particle HI may play such crucial roles such as in colloidal phase separation, ag-

gregation, and gel formation. The role of hydrodynamic interactions in complex fluids

has been studied in the past decades. Prof. Zimmerman’s group [135] who studies

a single polymer diffusing in a Poiseuille flow inside a channel and Prof. Winkler’s

group [24] who simulate a flexible polymer inside a channel. There are also studies

by Nägele et al [97] and Zhan et al [133] related to the problem of hydrodynamic
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interactions for a suspension of colloidal particles.

1.3 Nano- and microfluidics

When complex fluids are inside nanoscale channels where the surface-volume ratio is

high, the colloids and molecules feel the walls very strongly. Consequently, depletion

layers appear if repulsive forces prevent the particles from reaching the walls. This

effect cannot be ignored by the particles, and therefore, it affects the motion or the

transport of the particles. In other words, the behavior of the complex fluids when

they are in confinement is strongly modified by the effect of the impenetrable surfaces

on the particles. The behavior of these molecules is different in a microchannel, due

to the greater distance between the particles and the walls in comparison with the

distance between the two items in a nanochannel. The effect of the surface, roughness,

Debye layer, and other factors can no longer be ignored.

In recent years, understanding of the impact of the surface on the molecules has

increased. On the other hand, that phenomenon has been observed in many experi-

ments, but up to now we do not understand it completely. There are experimental

papers exploring the possibility of controlling the transport parameters of differently

charged species inside nanochannels by electrokinetics [see ref. 104,125-127 of [120]].

Some of these experiments were conducted for DNA and for proteins. Adequate un-

derstanding of complex nanoscale processes and new phenomena at the nanoscale is

still missing.

The transport of suspended particles within microfluidic and nanofluidic channels

is of central importance to many biologically and industrially relevant processes. The

dominant interest in the field is flow control, separation of molecules by size, and

analysis of biological molecules. Within nanofluidics, we are able to isolate a single

molecule, and that enables us to analyze the dynamics of a single particle [90].

One of the interests in the field is the necessity of finding a theory for the dynamics

at molecular level to describe the ”lab-on-chip” [see Fig. 1.2 c]. These chips have an

analogy with the chips of microelectronics. The difference between them is that in lab-

on-chip systems, fluids are transported through micro and nanoscale channels while

in microelectronics charges are transported through nanoscale conductors. They are

dominated by surface confinement and also by long-range intermolecular interactions,

by thermal fluctuations, or by the size of the molecules. The efficient design of the

above mentioned mechanisms needs a theory for the dynamics at the molecular level.

To date, there are some first applications in the nanofluidic regime, for example,

enzymatic analysis, and DNA sequencing.
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(a) (b)

Figure 1.2: a) a) Blood vessel [45]. The blood is a fluid which contains mesoscopic

particles, such as polymers or colloidal particles. b) Lab-On-Chip Device [100]

Another point of interest is understanding the transport process inside the blood

so as to be able to predict cancer early and the separation mechanism which can

enable us to separate cancer cells from a blood sample with very few insidious cells.

This difficult but fascinating field of investigation requires a narrow relation between

such different fields as chemistry, physics, and biology. For this reason, development

is slow. In physics, it is still necessary to develop in depth fluid mechanics in order

to be capable of separating large molecules inside a fluid. One more point of interest

is the understanding of diffusion transport inside the ionic channel.

Also, fluid flow on nanoscale is relevant to many other industrial processes, envi-

ronmental protection, biomedical applications, and microfluidics. It has been com-

putationally challenging: large range of scales in spatial and time domains have to be

covered. Colloidal systems and Brownian motion in confined geometries have received

considerable attention in the last century.

1.4 Aim of the present work

The aim of this thesis is to put the spotlight on fluid mechanics in the nano- and

microscale in order to develop understanding of the separation process (the hydrody-

namic chromatography mechanism) as well as the influence of both surface confine-

ment and direct and hydrodynamic interactions on the transport of complex fluids

from a theoretical point of view (by means of numerical and analytical work). When

the time comes for tackling the problem of transport process both theoretically and

numerically, the most difficult problems to solve come from the control of the trans-

port process by advection and from the hydrodynamic interactions among the solid

particles. The thesis is mainly focused on colloidal suspensions and polymer solutions
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and studies the dynamics of suspended mesoscopic particles in small channels in the

flow. This does not include the feedback of the particle motion on the solvent flow

field, which was discussed in a previous work by Krüger [64, 65, 104].

In particular, this work focuses on the hydrodynamic interaction of immersed

particles in a fluid and the effect of these on the fluid dynamics. The particles move

due the force exerted by the fluid. We are mainly interested in the influence of

hydrodynamic interactions which play a major role in the transport of suspensions

through nano-channels. The separation process will be hindered by the hydrodynamic

interactions. With hydrodynamic chromatography as an application in mind, we aim

for a better understanding of these transport processes.

Hydrodynamic chromatography

Chromatography is a technique capable of separating and analyzing chemical species

of smaller molecular mass. Hydrodynamic chromatography technique (HDC, some-

times called separation by flow) has been used experimentally for the separation of

macromolecules in systems with small channels [14, 122, 124, 125]. It was conceived

to reduce the time involved in measuring the size of colloids, and thus to understand

better the behavior of such systems and enable to control them. In this technique,

colloidal forces, tubular pinch effects, and interactions with solid walls play an im-

portant role [125]. The large molecules will not be able to approach the wall as close

as smaller molecules, and thus, larger molecules will have a larger average velocity.

The basis of HDC consists of the study of a complex fluid confined between two

walls (Fig. 1.3), where the particles are advected with a parabolic flow (Poisseuille

Flow) and interact with the channel walls. This technique takes place when the

suspended particles are much larger than the solvent molecules. These particles can

move through the entire channel except for an excluded region near the channel walls

with a thickness related to the particle radius. The small ones can move up and

down. The particles tend to follow the flow streamlines. In particular, we look at

the experiment conducted by Tijssen [124]. He studied the transport of polymers in

a solvent through a microcapillary cylindrical tube. The idea of this experiment was

to separate polymer particles (big particles) in the solvent by size. This was possible

due to the fact that large particles will not be able to approach the wall as close as

smaller particles because of the bigger excluded zone. Therefore, the larger particles

will have a larger velocity. For this reason, it is possible to separate the bigger

particle from smaller particles by hydrodynamic chromatography and to study the

hydrodynamic interactions between the particle and between the particles and the

wall. In his experiment, he used a microcapillary as a hydrodynamic chromatography
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y

x

Figure 1.3: Fundaments of the hydrodynamic chromatography mechanism.

device (see Fig. 1.4 a).

The microcapillary is filled with the solvent, and at some moment, the polymers

particles are injected. Fig. 1.4 b shows the separation effect of the particle and wall

interaction for three different column radii. Each peak corresponds to polymers of

a certain size or to the solvent. The first peak on the right corresponds to toluene

particles and the other peaks correspond to the polystyrenes particles of different

molecular weight. The peaks are the signal of the individual components, well sepa-

rated, that are detected by the detector.

Despite many attempts in the past years to explain the hydrodynamic properties,

they remain unexplained in some systems, for example, in colloidal systems. Previ-

ously experimental and theoretical studies are based on the study of the dynamics

of one single spherical particle in the presence of one or two walls [35] or for two

spherical particles far from bounding or near a flat plate [36]. The theory of Brow-

nian motion is used as an example of non-equilibrium dynamics which is still close

to thermal equilibrium. Since the transport of an isolated particle has been studied

experimentally previously and does not introduce any new aspect, we want to take a

step forward in the understanding of the transport process. Therefore, we concentrate

only on the study of a two dimensional system of two particles at non-equilibrium,

taking into account the hydrodynamic interactions. This simplified model can give us

an idea of the behavior of the general case of many suspended particles (a concentrate

solution).

This thesis is organized as follows. In the second chapter of this thesis, we will

introduce the dynamical density functional theory, and we will give some reasons for

the failure of this theory of the transport processes. We will also introduce the model

used during all this work to understand the influence of interactions on the transport

process. In chapter 3, we will discuss the influence of the direct interactions on the
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a)

b)

Figure 1.4: Microcapillary hydrodynamic chromatography device. a) The microcapil-

lary is filled with the solvent and at some moment, the polymer particles are injected.

b) Each peak corresponds to a type of polymer particles. The first peak on the right

corresponds to the toluene particle and the rest correspond to the polystyrenes par-

ticles for different molecular weight. [125]
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particles distribution along the channel as well as on the flow. In chapter 4 we will

discuss the influence of hydrodynamic interactions. We will obtain the diffusion tensor

including these interactions. In chapter 5, we will investigate a more real system, the

polymer distribution along the channel, as well as the flow for each polymer in a

dilute solution. In particular, we will discuss soft particles in a good solvent. Finally,

in chapter 6, we conclude and give an outlook to possible future work.

The results contained in this thesis have been published or are planned to be

published in the following articles:

• L. Almenar and M. Rauscher, Dynamics of Colloids in confined Geometries, J.

Phys.: Condens. Matter, in print (2010)

• L. Almenar and M. Rauscher, Limits of DDFT for sheared suspensions, in

preparation.
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Chapter 2

Dynamics of suspended particles in

confined geometries

The behavior of a confined fluid can be different in many aspects from the behavior

of a free fluid, i.e., in the absence of walls. First of all, the confinement induces

inhomogeneities in the density. The presence of walls, which not only changes the

fluid properties of equilibrium, but also affects its behavior dependent on time, like

diffusion. Consequently, the behavior of a fluid that moves through microchannels

and nanochannels, as much in systems in equilibrium as in systems out of equilibrium,

has become the subject of both experimental and theoretical studies and has wide

relevance in many biological and industrial processes.

The transport of suspended particles in confined geometries has been studied

extensively in the last century, because the transport of suspended particles within

microfluidic and nanofluidic channels is of central importance to many biologically

and industrially relevant processes. Up to now, there have been experimental and

theoretical studies based on the study of the dynamics for one single sphere in the

presence of one wall [102] or two walls [40, 72, 73]; for two spheres far from the

wall [25, 89]; for a hard-sphere system between parallel hard walls [6] or anisotropic

particles confined between two soft walls [110]. The properties of interest are the

self-diffusion coefficient and the viscosity. Up to now the behavior of such systems at

non-equilibrium is not well understood — both in bulk and in confinement — in spite

of many previous investigations both experimental and theoretical. In these works,

various applied theories are used to describe the system. Consequently, the question

of which theory can best describe this kind of system remains controversial.

Due to the massive effort devoted to the understanding of systems at thermo-

dynamic equilibrium, new techniques were developed in the 70’s. The density func-

tional theory (DFT) has been used in recent years to understand the static proper-

13



14 2. Dynamics of suspended particles in confined geometries

ties of many particle systems and inhomogeneous classical fluids in equilibrium. The

DFT establishes that the grand canonical functional Ω[ρ] = F [ρ]−
∫

µρdV (with the

Helmholtz free energy functional F [ρ]) is mininized by the equilibrium density dis-

tribution. This theory has been applied successfully in the case of anisotropic fluids,

the structure of confined liquids, wetting, and fluid-fluid interfaces, to name a few. A

good agreement between the theory and the simulation results has been demonstrated

(For a review see [132]). Due to the capability of the DFT to describe such systems,

there have been attempts to extend the theory to understand the dynamics of the

above systems which are dependent on time, out of equilibrium. In recent years,

a new theory, the dynamical density functional theory (DDFT), was proposed by

Marconi and Tarazona [83, 84] to study the dynamics of colloidal particles dispersed

in a molecular solvent for non equilibrium as an extension of the classical DFT to

phenomena dependent on time. The foundations of the DDF theory are presented

in the section 2.1. However, this theory has not been successfully used to describe

some systems; the reasons for this failure are presented in the section 2.2. Also, in

the section 2.3, a specific system that cannot be described by the dynamical density

functional theory is presented.

2.1 Foundations of dynamical density functional

theory

The basis of the DDFT is the assumption of local equilibrium, i.e., that the two

particle correlations in the time-dependent systems (out of equilibrium) are well de-

scribed by the correlation of equivalent systems; in which the instantaneous density

field ρ(r, t) of the dynamical system is equal to that of the one-particle density in

equilibrium ρeq(r), i.e., ρ
(2)(r, r′, t) ≈ ρ

(2)
eq (r, r′). This assumption is possible in the

case of overdamped Brownian particles for which the momentum degrees of freedom

relax faster than the velocity, allowing the DDFT formalism to be applicable. For

a system of N interacting Brownian particles advected in a solvent with velocity

u(r, t), one can write the time evolution of the ensemble averaged one body den-

sity correlation function as a functional of the density under the local equilibrium

approximation [104],

∂ρ(r, t)

∂t
+∇ · [u(r, t) ρ(r, t)] = ∇ ·

[

Γρ(r, t)∇
δF [ρ]

δρ

∣

∣

∣

∣

ρ(r,t)

]

(2.1)

with Γ as the mobility coefficient, and µ = δF [ρ]
δρ

as the local chemical potential, which

is not constant throughout the system (as it would be in equilibrium) and the total
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Helmholtz free energy functional

F [ρ] = kBT

∫

drρ(r)
{

ln
[

ρ(r)λ3
]

− 1
}

+

∫

drρ(r)Φ(r) + ∆F [ρ] (2.2)

with λ as the thermal de Broglie wavelength. The Helmholtz free energy functional

is the sum of three terms: the exact ideal gas entropy, the external potential con-

tribution, and the third one includes the effects of interactions and correlations be-

tween the particles and is called excess free energy ∆F . Eq. (2.1) governs the trans-

port of the particles at non-equilibrium and has the form of a continuity equation

∂tρ(r, t) +∇j = 0. It is a generalized convection diffusion equation. The drift term

describes the advection of the particles. Within this theory, the solvent flow field is

independent of the particle positions and the hydrodynamic interactions among the

particles are neglected. For a simple system of non interacting Brownian particles,

the DDFT is exact and it reduces to a simple one-particle drift-diffusion equation.

For the time being, the Helmholtz free energy functional is only known analytically

for two systems — non-interacting particles and hard rods in one space dimension. In

practice one can only obtain an approximation to the exact functional employing the

mean field or random-phase approximation and the Rosenfeld Fundamental Measure

Theory for hard spheres [113, 114]. DDFT is not applicable to situations in which

hydrodynamic modes are relevant because there is no such functional available even

for non-interacting particles. However, a classical version of the quantum mechanical

proof of existence of DDFT by Runge and Gross [116] exists, which also includes

hydrodynamic modes, see [23]. In the last few years a new version of the DDFT

including hydrodynamic interactions was developed by Löwen et al [109] by adding

two more terms corresponding to the correlations induced by the hydrodynamic in-

teractions.

The DDFT has been applied satisfactorily for 1D hard-rod system employing

the exact functional and approximated density functional [83, 84], to spinodal de-

composition in colloidal fluids (which exhibits liquid-gas phase separation or more

generally fluid-fluid phase separation) [5], for driving colloidal particles in polymer

solutions [95], for anisotropic particles in stationary external potential [38] and with

rotational dynamics [110], for a simple system of mutually non-interacting spherical

Brownian particles [65], for driven systems with oscillating external potentials [104],

and for mixtures [6]. All of the above works, however, have neglected the hydrody-

namic interactions and an excellent agreement between the DDFT and the simula-

tions results was found. More recently, the hydrodynamic interaction in the DDFT

has been considered. It can be included by replacing the mobility Γ in Eq. (2.1) by

a space dependent and symmetric mobility tensor Γ(ri) [108, 109] or by treating the
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HI in a mean field manner [115]. The inertia effects of the particles [86,87] have also

been considered. Tarazona and Marconi [86] believe that the use of the DDFT is jus-

tified when the currents are of diffusive character, while in the cases where convective

terms are present, it is necessary to include extra terms which describe the transport

of momentum and energy. Melchionna [82] found that the DDFT can only deal with

colloidal fluids and is not apt to describe the hydrodynamic behavior of a molecular

fluid.

To summarize, the DDF theory is well suited to describe mixtures of point par-

ticles with direct pairs or many body interactions and advected in a solvent. There

are still open questions relating to the DDFT, such as how to apply the DDFT when

fluctuations and hydrodynamic interactions play a role in the transport of suspended

particles, and how to threat active particles. Up to now, there is no consensus in

which functional — approximate or exact — should be used [2]. The advantages of

the DDF formalism is based on a closed equation for time evolution of ρ(r, t).

2.2 Limits and problems of DDFT when hydrody-

namics modes are considered

Despite these studies, the present work shows how the DDFT fails to describe the sta-

tionary transport properties of Brownian particles in a channel advected by a flowing

solvent. In the later chapters, the above mentioned affirmation will be demonstrated,

but for now we will give the arguments on which this failure is based.

The case considered in this work is a two dimensional non-equilibrium steady

state1 ∂tρ(r, t) = 0, where there exists a translation invariance along the x-axis, the

velocity field depends only on the y-coordinate perpendicular to the channel bound-

aries and it is unidirectional in the x-direction parallel to the channel boundaries.

Moreover the mobility depends on the y-direction. By simmetry, the steady state of

Eq. (2.1) is solved by the equilibrium solution only ρ = ρeq for which
δF [ρ]
δρ

∣

∣

∣

ρeq
= const.,

0 =
∂

∂y
· Γyy(y)

[

ρ(y)
∂

∂y

δF [ρ]

δρ

∣

∣

∣

∣

ρ(r,t)

]

(2.3)

Therefore within the DDF formalism, the convection term in Eq. (2.1) which gener-

ates the non-equilibrium is equal to zero and then the effects of the forces that move

a fluid vanishes. Thus, the characteristics of the particle dynamic are not described

1Non-equilibrium steady states are characterized by the presence of a constant current of particles.

This behavior is due to the dissipative nature of the system.
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by the DDF theory, although they are present in the system. Within the DDFT for

this kind of system, the density profile is not changed by the flow. It is well-known

that for a non-equilibrium system, the properties of this kind of systems are not only

dominated by the statics but also by the dynamics [81]. Consequently, the system is

not accurately described and a new formalism for that kind of system is necessary.

Therefore, hydrodynamic instability is not well described by the DDF theory.

Independent of the functional used, dynamic density functional theory fails to

capture three key features of the transport of advected Brownian particles in a narrow

channel: the change of the density distribution across the channel induced by the

solvent, the non-linear dependency of the throughputs on the solvent flow velocity,

and the fact that the throughputs have to be equal for particles which cannot pass

each other. Although it will be further demonstrated throughout this work, this

chapter will give a brief overview of the reasons for this failure.

As mentioned above in Section 2.1, the DDFT formalism is settled by the local

equilibrium approximation, by the use of an approximate free energy functional and

by not taking into account hydrodynamic interactions. The density distribution in

the DDFT is considered as a grand canonical ensemble where the particles number

can fluctuate keeping the chemical potential µ constant. Equilibrium density func-

tional theory is valid in the grand canonical ensemble. Closed systems with a small

number of particles, which can only be changed through the system boundaries in the

absence of chemical reactions, are described by the canonical ensemble. The consid-

ered system is a closed system with a fixed number of particles, therefore one needs

in the DDFT formalism new functionals governed by the canonical ensemble. This

was already observed in [83, 84]; they found small discrepancies between the DDFT

results compared with the Brownian dynamic results, which they attribute to the

error of taking the grand canonical functional in the DDFT.

When a system is in a steady state at non-equilibrium, spatial long range corre-

lations develop — this is a universal characteristic of non-equilibrium systems [93].

It has also been demonstrated that steady state systems at non-equilibrium tend

to develop long-ranged correlations even if the correlations in the equivalent equi-

librium system are short ranged [29, 117, 121]. In this context long ranged means

long as compared to the characteristic microscopic length scales, usually the particle

size or the range of the intermolecular interactions. Therefore, the local equilibrium

approximation is not valid in non-equilibrium steady state systems.

And on the other hand the DDF formalism in Eq. (2.1) is not applicable when hy-

drodynamic modes are relevant for the above reason and when two or more particles

move in a viscous fluid, the hydrodynamic interactions govern the dynamics of col-
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loidal suspensions and the transport process depends on the advective and diffusive

terms. However, it is well known that the transport of suspended particles cannot be

explained without taking the hydrodynamic interactions into account [30], because

the effects of the solvent dominate the behavior of two or more colloidal particles,

due to their long-range nature.

Due to all these reasons explained above, we present in this thesis a simple system

in which DDFT fails to describe some aspects of the transport properties but which

we can treat directly and efficiently: Two Brownian particles in a 2D channel advected

by a flowing solvent.

2.3 Model system

Suspended particles in confined geometries interact with other particles or with con-

tainer walls in many ways. When an object moves in a fluid, forces exist between the

fluid and the object that depend on the velocity. The forces between the colloidal

particles are due to the large quantity of surface that exists in these systems. This

surface has associated energy greater than the thermal energy kBT , therefore the

interactions between colloidal particles are very important. In a moving fluid, the

pressure will be not constant in all the system and in some points there would be

maxima or minima, depending on the velocity at each point of the system.

Colloidal particle dynamics is determined by the direct particle interactions, the

effect of the solvent that transmits hydrodynamic forces between the suspended par-

ticles, the so-called hydrodynamic interactions through the solvent, and electrical

interactions. The last one appears when the colloidal particles are charged. Many

colloidal particles present a charge, but the analysis will be very complicated due to

the solvent charge. However, for high enough salt concentration, the range of the

screened electrostatic interactions is small as compared to the particle size. In two

dimensions, hydrodynamics is ill defined: Hydrodynamic interactions do not go to

zero at large distances. However, we can mimick some aspects of 3D hydrodynamic

interactions, in particular the reduction of the mobility in the vicinity of channel

walls in a phenomenological way even in 2D systems.

In this work we concentrate only in the basic mechanism of the influence of both

direct and hydrodynamic interactions on the particle separation in channel flows. In

particular, we study the dynamic behavior of the transport of suspended particles

in confined geometries in two dimensions on the separation process. We assume low

Reynolds number (Re << 1) to be consistent with nanoscale parameters, hence it

is assumed that the fluid is so viscous that the effects of inertia can be neglected,
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therefore the dynamics of the particles are overdamped and Brownian. With hydrody-

namic chromatography as an application in mind, we aim for a better understanding

of these transport processes. The separation of particles of different size diffusing

through a fluid in stationary state is possible with this technique. The separation of

the particles is achieved because the larger particles are confined to the channel center

where the flow velocity is larger, while the small particles spend more time at the

channel walls where the flow is slower. Therefore, the larger particles will travel faster

through the channel, allowing us to separate the larger particles from the smaller.

We assume as the length scale the scale of the suspended particles and the time scale

of the order of the diffusion time scale where the effects of hydrodynamic interactions

are most prominent.

The dynamics of the suspended particles can be modeled by the Langevin equation

of an ensemble of N advected interacting particles in the overdamped limit:

∂ri
∂t

= u(ri)− Γ ·∇i

[

Φi(ri) +
N
∑

j=1

Ψ(|ri − rj|)
]

+ ηi(ri, t) (2.4)

with ∇i = (∂xi
, ∂yi). Being Γ the position dependent mobility matrix, Φi(ri) the

external potential of each particle with channel walls, Ψ(|ri − rj|) the interaction

potential between the particles and ηi(ri, t) the stochastic force. This equation de-

scribes the transport of Brownian particles in a mesoscopic way and is governed by

the sum of direct and stochastic forces.

One is typically not interested in the position of all individual particles but rather

in the probability of finding any particle at a certain position r at time t. The cor-

responding Fokker-Planck (FP) equation to the above Langevin Eq. (2.4) for the

non-equilibrium probability density P (ri, t) for finding the particles at time t at po-

sitions ri [104,112] is

∂P (ri, t)

∂t
= −

N
∑

i=1

∇i

[

Γ

(

u(ri)

Γ
−∇iΦ(ri)−

N
∑

j=1

Ψ(|ri − rj|)− kBT∇i

)

P (ri, t)

]

(2.5)

By using the Smoluchowski equation the description of the complex fluid is reduced

to the dynamics of a deterministic function of the position coordinates of the colloids.

In describing hydrodynamic interaction between Brownian particles, both trans-

lational and rotational motions are of importance, since both induce a fluid flow

velocity that affects other particles in their motion. In 3D the particles may either

translate or rotate. It is evident that both motions exhibit symmetry concerning

the xz plane. The velocity gradient can induce the large particles feeling extremely

different velocities at opposite sides. The difference of these velocities induce that
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the particle rotate. Through a spherical isotropic body which exhibits the same

resistance to translational motion no matter what orientation it has relative to a

uniformly moving fluid, it will not rotate if suspended freely in any orientation in

a uniformly fluid [47]. Reichert [105] found that longitudinal translations and the

rotations about the axis do not couple to each other because of the different parities

of translations and rotations. If the particles are spheres, it is possible to analyze the

translational motion without considering the rotational motion. In this case, the hy-

drodynamic torques are equal to the total torques and equal to zero on the Brownian

time scale [30]. Therefore, it is possible to describe completely the dynamics of the

particles considering only the translational motion.

The evaluation of the transport of N particles in narrow channels is more complex

than for two particles. Up to know, there are only computer simulations for systems of

N particles [97] or experimental works for only one particle between two walls [40,72]

considering in both cases hydrodynamic interactions, but there are no analytical

works due to the unavailability of a solution for the FP Eq. (2.5). Since we are looking

for non-equilibrium steady state situations and analytical steady state solutions of

the FP Eq. (2.5) are not available due to the interactions among the particles. In this

work we concentrate on the study of a simplified toy model system of a mixture of two

colloidal suspended particles of different size. The particles diffuse through a two-

dimensional narrow channel of width 2W with the channel walls located in the planes

y = −W and y = W as indicated in Fig. 2.1 and length 2L with periodic boundary

conditions in x-direction. The channel walls are planar, fixed and impermeable. The

particles are at position r1(x1, y1) and r2(x2, y2) respectively. The distance between

the particles is considered to be sufficiently close to allow the particles to interact.

The particles are considered as uncharged particles. The no-slip boundary conditions

are satisfied on the walls and the particles surfaces, that is, the velocity flow field

would be zero for whatever surface limits the fluid motion.

The behavior of the suspended particles will be modified by the channel walls

in contrast to the case without confinement and will be affected by the presence of

boundary conditions. The particles will be repelled by the walls, creating a zone

which the particles cannot enter — the width of this region is related to the particle

radius. In our model, the width of the region in which the particles can move through

the channel will be denoted by 2W1 and 2W2 respectively; and the thickness of the

forbidden region for each particle near the wall is denoted by d1 = W − W1 and

d2 = W −W2 respectively, see Fig. 2.1. The accessible volume of the small particle

is limited by the large particle due to the excluded zone of the large particle. Both

particles cannot overlap and the excluded zone between the particles consist of a
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Figure 2.1: Two particles of different size at positions r1 and r2 in a channel of width

2W and length 2L, which is assumed to be longer than any other length in the system

but finite; the width of the region where each particle can move through the channel

is denoted by 2W1 and 2W2; and the forbidden region for each particle near the wall

is denoted by d1 = W −W1 and d2 = W −W2. Both particles cannot overlap: their

minimum distance is d.

sphere of radius d = d1 + d2. The large particle is restricted to the channel center,

where the solvent velocity is higher than at the channel walls.

The flow field that crosses the system is at non-equilibrium. As the colloidal

particles are much larger than the solvent particles, the fluid can be considered to be

continuous on the length scale of the suspended particles. The effect of the collisions

between the solvent particles and the colloids is summarized in the noise term ηi

in Eq. (2.4) which gives rise to the last term on the right hand side of Eq. (2.5).

The drag due to the solvent flow around the particles is summarized in the mobility

coefficient. The particles are advected with a parabolic Poisseuille velocity profile

u(y) = u(y)ex with

ux(y) = u0(W
2 − y2)/W 2 (2.6)

and u0 the velocity at the channel center, see Fig. 2.2. The flow depends only on

the y coordinate, i.e., it increases (decreases) with position in the y-direction and it

is unidirectional along the x-direction. Due to the considered Poiseuille flow, the big

particles should move faster than the smaller ones.

In a general case, the particles can interact both directly and hydrodynamically

with the channel walls and among each other. The interaction with the channel

walls is created by the surface and depends only in the y-direction. One can model

the dynamics for the transport of an ensemble of two advected interacting particles

through a system of two Langevin equations corresponding to each particle in the
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Figure 2.2: Velocity profile u(y) for a fluid flow between two planes in a two dimen-

sional channel normalized by u0.

overdamped limit:

∂tr1 = u(y1)− Γ1(r1) ·∇1 [Φ1(y1) + Ψ(|r1 − r2|)] + η1(r1, t) (2.7a)

∂tr2 = u(y2)− Γ2(r2) ·∇2 [Φ2(y2) + Ψ(|r1 − r2|)] + η2(r2, t) (2.7b)

with ∇1 = (∂x1
, ∂y1) and ∇2 = (∂x2

, ∂y2), respectively. The term between the square

brackets corresponds to the colloids and the noise is due to the chaotic random motion

of the solvent molecules and represents the fluctuations. The stochastic force has zero

mean 〈ηi(ri, t)〉 = 0 and the correlator is chosen such that the fluctuation dissipation

theorem is observed, i.e.,

〈ηi(ri, t) ηj(rj, t′)〉 = 2 kB T Γij(ri) δ(t− t′)δif (2.8)

with the thermal energy kB T .

The thermal noise in Eq. (2.4) is multiplicative in the sense that the noise ηi is

multiplied by the fluctuating variable ri, see the correlator in Eq. (2.8). This usually

raises the question about the calculus to be used (i.e., Stratonovich or Ito calculus).

Here, we know that the calculus has to be chosen such that for u = 0, the equilibrium

solution of the Fokker-Planck equation corresponding to Eq. (2.4) must be

Peq(x1 − x2, y1, y2) = Z−1 e
−β

[

Φ1(y1)+Φ2(y2)+Ψ
(√

(x1−x2)2+(y1−y2)2
)]

(2.9)
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with β = (kB T )
−1 the inverse thermal energy and the canonical partition function

Z =

W
∫∫

−W

L
∫∫

−L

e
−β

[

Φ1(y1)+Φ2(y2)+Ψ
(√

(x1−x2)2+(y1−y2)2
)]

dx1 dx2 dy1 dy2
λ21 λ

2
2

. (2.10)

λ1/2 is the thermal wavelength of each particle and it is mainly used to make Z di-

mensionless. Formally, the partition sum diverges for L→ ∞, but all thermodynamic

quantities remain well defined.

The probability P (ri, t) to find particle one at position r1 and particle two at

position r2 (i.e., the correlation function) for non-equilibrium is described by the

Fokker-Planck equation

∂tP +∇1[u(r1) · P ] +∇2[u(r2) · P ] =
Γ1(r1) [∇1Φ(r1) +∇1Ψ(|r1 − r2|) + kBT∇1]P

+ Γ2(r2) [∇2Φ(r2) +∇2Ψ(|r1 − r2|) + kBT∇2]P (2.11)

where the hydrodynamic interactions between the particles and the wall are included

as a wall-particle distance dependent diffusivity Di(yi) = kBTΓi. Particle-wall inter-

actions are parameterized by Φ1(y1) and Φ2(y2), respectively and the direct interac-

tion between the particles by Ψ(|r1 − r2|). The probability density depends on the

particle position inside the channel. Since the diffusion tensor Di depends only in the

y-direction, the system is translationally invariant along the x-axis and the mobility

matrices and Di are diagonal.

For interacting particles in the non-equilibrium case, the probability P (ri, t) to

find particle one at position r1 and particle two at position r2 (i.e., the correlation

function) is a function that depends on four space variables x1, x2, y1, y2 and one

temporal variable (time). In other words, the Fokker-Planck equation, also known as

the Smoluchowski equation, is an equation of four spatial dimensions. This equation

can only be solved analytically if the particles do not interact or for the equilibrium

case, otherwise it is very difficult to solve due to the lack of possibility to separate the

variables. The Fokker-Planck equation can be written as a continuity equation for

the non-equilibrium probability density ∂tP (ri, t) +∇ · J(ri, t) = 0 where J = j1 + j2

is the total probability flow that is the sum of the probability flow of each particle

given by

j1/2(ri, t) = u(r1/2)P − Γ1/2

[

∇1/2Φ(r1/2) +∇1/2Ψ(|r1 − r2|) + kBT∇1/2

]

P (2.12)

From now on, we are focusing on stationary, ∂tP = 0, and translational invariant

solutions of Eq. 2.11, i.e., solutions of the form P (x1 − x2, y1, y2), from which we can
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calculate the throughput of particle one and two as a function of u0. With this ansatz

in Eq. 2.11, we get with ξ = x1 − x2:

∂ξ [(u(y1)− u(y2)) P ] = ∂ξ {[D1xx(y1) +D2xx(y2)] (∂ξP + β P ∂ξΨ)}
+ ∂y1 {D1yy(y1) [∂y1P + β P ∂y1 (Φ1 +Ψ)]}
+ ∂y2 {D2yy(y2) [∂y2P + β P ∂y2 (Φ2 +Ψ)]} (2.13)

Fourier transformation with respect to ξ cannot be used to solve the equation since

Ψ explicitly depends on ξ. The velocities u(y1) and u(y2) have to be parallel to the

channel walls in order to allow for translationally invariant stationary solutions.

In this thesis, we are interested in the variation of the throughput of particle one

and two through the channel, which are given by the integral of the particle current

through a plane perpendicular to the channel. The coordinates of the other particle

has to be integrated out. The correlation function P (ξ, y1, y2) actually depends on ξ

and both the advective and diffusive currents have to be taken into account, leaving

Q1/2 =

L
∫

−L

W
∫∫

W

{

u(y1/2)P (ξ, y1, y2)

∓D1/2xx(y1/2)
[

∂ξP (ξ, y1, y2) + β P (ξ, y1, y2)∂ξΨ
(

√

ξ2 + (y1 − y2)2
)]}

dy1 dy2 dξ

(2.14)

2.3.1 Non-interacting particles

Now we are looking at the case of non-interacting Brownian particles, that is, Brow-

nian particles which do not interact with each other in any way. This is the case

for very dilute dispersions. In this case, the particles are so far from each other

that they are not affected by the presence of other particle. If the particles do not

interact with each other, i.e., if the interaction potential Ψ is equal to zero, the solu-

tion of Eq. (2.11) factorizes and it is independent of ξ. For this kind of system, the

equilibrium solution of Eq. (2.11) with u0 = 0 is given by the canonical distribution

function

Peq(r1, r2) = Z−1
1/2 exp {−β [Φ1(r1) + Φ2(r2)]} (2.15)

with the partition sum Z. Peq is independent of the lateral positions x1 and x2. The

density distribution of each particle is

ρeq
1/2

(r1/2) =

∫

Peq(r1, r2)d
3r2/1 (2.16)

which only depend on y1 and y2, respectively. That means that the ρeq
1/2

is inde-

pendent of the other particle position and of the diffusion tensor. The hydrodynamic
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interactions, the dynamic forces, have no effect on the static equilibrium proper-

ties. The particle distributions give a complete but compact description of the fluid

structure.

In this case, the equilibrium probability density decomposes into a product of two

equilibrium probability densities of particle one and two, ρeq(ξ, y1, y2) = ρeq
1
(y1) ρeq

2
(y2),

which are defined by

ρeq
1/2

= Z−1
1/2 exp

[

−β Φ1/2

]

(2.17)

with

Z1/2 =
2L

λ21/2

∫ W

−W

exp[−β Φ1/2(y)] dy (2.18)

denoting the individual partition sum of particle one and two, respectively.

The flux caused by the flow is equal to the flux given by the equilibrium density,

which implies that the throughput will be the integration of J in y-direction. The

throughput of each type of particle is then given by

Q1/2 =

W
∫

−W

u(y) ρeq
1/2

(y) dy. (2.19)

If the particles are repelled strongly from the channel walls, the equilibrium distribu-

tion reaches its maximum at the channel center where the flow velocity is maximal.

If the particles are repelled less strongly, or if they are even attracted to the chan-

nels walls, ρeq
1/2

will not have a pronounced peak at the channel center and the

resulting throughput will be smaller. This is the basic idea underlying hydrodynamic

chromatography.

2.3.2 Interacting particles

If the particles interact with each other, then we can interpret the two particle two-

dimension systems described in section 2.3 like a three dimension one particle system.

In a stationary problem, the system has translational invariance along the channel;

one can reduce the system to a three dimensional static problem, i.e., to a three

dimensional channel of length 2L which is aligned with the ξ-axis with the stationary

correlation function P (x1 − x2, y1, y2) = C(R), which is the solution of Eq. (2.13).

This function is reduced to a three space variable problem and it is the probability

to find a particle at position R = (ξ, y1, y2) = (X, Y, Z). That simplifies Eq. (2.13)

which can be written as an advection-diffusion equation of the form

∇R · (U(R)C(R)) = ∇R · {D(Y, Z) · [∇RC(R) + β C(R)∇RV (R)]} (2.20)
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with ∇R = (∂X , ∂Y , ∂Z), the flow field velocity in the channel U = (U(Y, Z), 0, 0) =

(u(Y )− u(Z), 0, 0) [see Fig. 2.3]; note: ∂x1 = ∂X and ∂x2 = −∂X , V (R) = Φ1(Y ) +

Φ2(Z) + Ψ
[

√

X2 + (Y − Z)2
]

the interaction potential between the particles and

with the channel walls. The 3× 3 diagonal diffusion tensor can be writen as

D(Y, Z) =







D1xx(Y ) +D2xx(Z) 0 0

0 D1yy(Y ) 0

0 0 D2yy(Z)






(2.21)

which contain the effects induced by the invisible solvent onto the dynamics of the

observed particles, known as hydrodynamic interactions. Di is the single particle

diffusion coefficient [47] related to the Temperature T , the Boltzmann constant kB

and the single particle mobility Γi by the Einstein’s relation, that is, Di = kBTΓi.

The diffusion tend to homogenize concentrations. (Theoretically, but this cannot

happen due to other factors like the solvent flow). Therefore, the flow velocity profile

of Eq. (2.6) will be given in the 3D problem as

UX(Y, Z) = u0(1− Y 2/W 2)− (1− Z2/W 2) (2.22)
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Figure 2.3: Effective flow profile UX(R) in the three-dimensional channel as a function

of Y = y1 and Z = y2 for the parabolic flow profile in the two-dimensional channel

shown in Fig. 2.2. A contour plot with 9 levels from UX/u0 = −0.8 to 0.8 is also

shown on the base plane. The flow is clearly not rotation free and therefore not a

potential flow.

Eq. (2.20) is a differential equation that describes how the distribution function

C(R) changes with respect to the position of the particles in the fluid.
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If the forbidden zones of both particles are not equal, d1 6= d2, the particles

will explore a part of the channel with a net flow, although there is no net solvent

flow through the channel (
∫W

−W

∫W

−W
U(Y, Z) dY dZ = 0). This will break the point

symmetry of the solution with respect to the origin of the coordinate system and

therefore will lead to a difference of throughput of particle one and two even in the

case that there is no interaction between them Ψ = 0, as discussed in the previous

subsection.

In this section the mathematical description for a general case has been presented.

Since we are interested in studying the behavior of both ideal and soft particles, in

chapter 3 the idealized case of hard spheres particles will be considered and neglecting

the hydrodynamic interactions. It will be seen how the DDFT fails to describe the

above system. Chapter 4 will take into account the hydrodynamic interactions with

the channel walls and discuss the relevance of the hydrodynamic interactions among

the particles. And in Chapter 5 a more realistic case will be considered. The particles,

instead of hard-spheres as soft particles in a good solvent, will be treated.
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Chapter 3

Hard spheres particles

As mentioned in section 2.3, there are two types of interparticle interactions treated

in this thesis that affect the transport process. The first one, the direct interaction

caused by surface interactions is characterized by interaction potentials. They become

significant when the particles are close to each other or close to walls usually when the

clearance between particle surfaces is much smaller than the linear size of the particles

[118]. The second type of interaction considered, the hydrodynamic interaction is

dominant in dilute bulk systems.

Having presented the model to study the dynamics of two suspended particles

diffusing through a narrow channel in the last section of the previous chapter, now we

will proceed to describe the same system for the particular case of spherical particles

with the first type of interaction and neglecting the second type. The hydrodynamic

interactions will be treated in the next chapter 4. For hard spheres one can separate

the effects due to hydrodynamic interactions from those due to direct interactions.

A more realistic system will be considered in Chapter 5 in which particles will be

treated like soft particles interacting via a Gaussian potential.

The aim of this chapter is to assess the influence of the direct interactions on

the particle dynamics by calculating various dynamical properties and pointing to

interesting features of the separation process using the described model in Section 2.3

for the case of hard spheres interaction. Additionally, we present the results which

demonstrate the failure of the DDFT to describe such kind of systems.

By comparison with macroscopic channels, in micro and nanochannels the influ-

ence of the surface and the particle size on the fluid transport cannot be neglected

and needs to be understood in detail [55]. The walls or the presence of other parti-

cles induce a strong resistance of the particles to the flow and modify the rheological

behavior due to the interaction with the walls or between them. The presence of the

walls limits the particle motion. To enhance this understanding, we study the influ-

29
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ence of the interactions among the particles and among the walls of the confinement.

Hard spheres do not exist in nature, although to all the effects in many cases,

colloidal particles behave as hard spheres. It is an academic model used both theo-

retically and experimentally. In general, all the particles that can form a fluid interact

with a strong repulsion at short distance. This repulsion does not generate an ex-

cluded volume strictly speaking, but the energy cost of bringing the particles nearer

is so high that in practice it is very improbable.

In reality, the particles may or may not be hard-spheres. Other characteristics of

the particles can also influence in the interaction among the particles and between the

particles and the walls. For example, if the particles are polymers [see Fig. 3.1 b],

it is very difficult to define the radius of the particle. Depending on the situation one

has to consider the gyration radius of the polymers Rg or the hydrodynamic radius

Rh which is smaller than the gyration radius. The polymer can also interact with the

walls and with other polymers. In the last case; their polymer chains can interlace

and for confined polymers, they will be reflected by the walls due to the fact that they

are not hard spheres. However, if the polymer is in a bad-solvent the chain collapses

and cannot fluctuate and can behave in some effects as a sphere.

d

1

r2

r
r1

2r

(a)

d

R

R

R

g1

g2

Rh h

(b)

Figure 3.1: a) Two hard spheres of radius r1 and r2 separated a distance d = r1 + r2

between their centers. The dashed lines correspond to the excluded zone around each

sphere. The center of mass of the other sphere cannot penetrate in these regions. b)

Two soft particles separated a distance d being Rgi the gyration radius and Rh the

hydrodynamic radius. The particles can overlap; the center of mass can penetrate

And there is no excluded zone.

Other kinds of real particles are small colloids which can be charged positively or

negatively. Their interaction depends on the charge of each particle. The particles

can keep enough isolated to prevent the effects of aggregation or flocculation due to
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the long-range repulsion produced by the charges. As the particles are charged, these

present a surface charge density which induces the appearance of a double layer at

the particle surface and consequently an increase in the exclusion diameter of the

particle. Therefore, the accessible volume is affected by this change. The screening

by the solvent is an important factor determining colloidal interactions. When the

particles are charged, the electrostatic potential has to be taken into account in the

Fokker-Planck Eq. (2.11). The effect of charged particles will show in the density

distribution of each particle due to the electrostatic force that causes the particles to

be repelled from each other.

Hard spheres are widely used as model particles in the statistical mechanical

theory of fluids and solids. First, the hard sphere model will be described which has

represented a very important role in the development of the theory of liquids and

solids, and now also plays an important role in the theory of colloidal systems. The

fundamental concepts of this model are the excluded and accessible volume. Hard

spheres are defined simply as impenetrable spheres that cannot overlap in space [see

Fig. 3.1 a] and have a smooth surface. Due to that, the spheres have an exclusion

zone around the sphere of radius d = ri+rj, being ri,j the radius of each sphere. Inside

the exclusion zone there cannot be any center of mass of other spheres, otherwise the

particles overlap. The spheres can only approximate up to a distance greater than or

equal to d = ri + rj.

They mimic the extremely strong repulsion that hard particles experience at very

close distances. Hard sphere systems are studied analytically, using molecular dy-

namics simulations, and also experimentally with certain colloidal model systems.

Hard spheres particles interact as if they were billiar balls. They bounce off each

other when they are a certain distance apart, otherwise they do not interact [44].

The interaction potential for a pair of hard spheres particles is

Ψ =

{

0 for d > ri + rj

∞ for d < ri + rj
(3.1)

This functional form of Ψ says the following: when the distance is greater than d,

there is no force acting on the particles, i.e., there is no interaction, and as soon as the

distance is d, an infinitely large force arises to push the particles in another direction

to avoid overlap, the particles are repelled with a intensity ∞ at contact. This is

forbidden for any configuration in which there are two or more particles overlapping.

In this chapter, the simplest case will be considered: the particles behave like

uncharged hard spheres and cannot overlap, and so these particles interact with a

hard interaction (of exclusion). At this stage, the hydrodynamic interactions are
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neglected. From here on the excluded volume will also be referred to as a forbidden

zone.

3.1 Effects of confining walls on the transport of

colloids

A suspension of hard spheres of radius ri that move along a pipe behaves as if there

was a layer free of particles in the immediate neighborhood of the wall; the thickness

of the above mentioned layer is di. The walls exert on the particles a force that

prevents the particle from reaching the wall. The particles will move only due to

the Brownian motion, the advection due to the solvent flow field and the external

forces (interactions forces) which constitute a decisive factor on the properties of

the colloidal dispersions, including the rheological behavior. The particles interact

directly only at contact. The interaction with the walls will be relevant when the

particles are close to the walls.

Since the particles are considered as hard spheres, the interaction among the parti-

cles and between the particles and the channel walls (so-called depletion interactions)

are assumed as hard core interaction Eq. (3.1). Therefore, the interactions of particle

one and two in the two-dimensional channel [see Fig. 2.1] with the walls and with

each other are of the form

Φ1/2(y1/2) =

{

0 for −W1/2 < y1/2 < W1/2

∞ else
(3.2a)

Ψ(r) =

{

0 for r > d

∞ else
(3.2b)

such that particle one and two can approach the channels walls only up to a distance

d1 = W −W1 and d2 = W −W2 corresponding to the wall interaction radius of each

particle, respectively, and they can approach each other up to a distance d (for solid

particles and in the case of additive interactions d = d1 + d2).

The accessible volume for the effective 3D diffusion for both particles in the chan-

nel will be given by the interaction potential among the particles that becomes infinity

for two touching particles, which corresponds in Fig. 3.2 to the elliptical cylindrical

volume with radii d and R = d · cos 45◦ and by the direct interaction with the walls

which corresponds with the vertical and horizontal confinement. In the Fig. 3.2 a,

the outer box represents the channel walls, the inner box the surface forbidden zone

due to hard particle-wall interaction and the cylinder the surface of the forbidden
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Figure 3.2: a) Three-dimensional representation of the domain in which Eq. ((3.4)) is

solved. The walls in Y and Z-direction of the rectangular channel (inside rectangle)

are defined by the potentials Φ1 and Φ2, respectively, and the surface of the elliptic

cylinder by the potential Ψ. For d < d1 + d2 the effective particles can bypass the

cylinder. b) Front view of a).

zone due to hard particle-particle interaction. Consequently, the accessible volume

will be the volume within the inner box without the volume occupied by the cylinder.

In the 3D problem, the hard core interaction with the channel walls and among

the colloids leads to no-flux boundary conditions at the surface of the forbidden zone,

i.e., the interaction potentials Ψ, Φ1 and Φ2 are replaced by a no-flux boundary

condition at the cylinder surface X2+(Y −Z)2 = d2 and at Y = ±W1 and Z = ±W2

shown in Fig. 3.2 a . The no-flux boundary condition is

n̂ · (UC(R)−D∇RC) = 0 (3.3)

with the normal vector n̂ on the domain boundary and is applied on all the domain

boundaries except for both channel end planes X = ±L where periodic conditions

are applied. Within this domain the potentials are zero and Eq. (2.20) reduces to

U(R)C(R) = ∇RD(Y, Z)∇RC(R) (3.4)

At this stage, the perturbation of the solvent flow field by the colloidal particles,

i.e., hydrodynamic interactions are not taken into account. In principle, without hy-

drodynamic interactions, each particle interacts with the flow field which is unaltered

by the other particles. This means that the particles do not feel each other unless
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they touch each other and interact directly. For the case focused on in this chapter,

neglect of HI, the particles move with a certain velocity through the channel due to

the repulsion force and the periodic boundary conditions. When the hydrodynamic

interactions are neglected, the diffusion coefficients $Dixx and Diyy in Eq. (2.21) are

isotropic and homogeneous and can be replaced by Di0, with which is the Stokes-

Einstein diffusion coefficient [30]. For simplicity we assume the diffusion coefficients

of the two particles to be equal Di0 = D10 = D20 = D.

The flux of particle one or two through the channel from Eq. (2.14) is then given

by the integration over the accessible volume Ω to the effective particle (see Fig. 3.2)

of the flow velocity by the density probability plus or minus the diffusion coefficient

multiplied by the partial derivative of C(R) with respect to X, i.e.,

Q1/2 =

∫∫

Ω

[

u(y1/2)P (ξ, y1, y2)∓D1/2xx(y1/2) ∂ξP (ξ, y1, y2)
]

dy1 dy2 dξ. (3.5)

and in the 3d stationary problem for hard spheres,

Q1(X, Y, Z) =

∫

[U(Y )C(R)−D1∂XC(R)] dXdY dZ (3.6a)

Q2(X, Y, Z) =

∫

[U(Z)C(R) +D2∂XC(R)] dXdY dZ (3.6b)

The differences in sign of the diffusion terms originates in ∂x1/2
= ±∂X .

3.1.1 Hard core interaction among particles

Let us examine the geometric form for the surface which replaces the particle-particle

interaction potential Ψ. It is given by the equation d2 = X2+(Y −Z)2 which describes

an elliptic cylinder1 with the cylinder axis given by (0, l, l), l ∈ ℜ. Each cut of this

cylinder by the X−Y -plane or by the X−Z-plane is a circle with radius d. Therefore

cutting the cylinder with a plane normal to its axis gives an ellipse with half axes

a = 2R = 2d/
√
2 in the Y − Z-plane and b = 2d in the direction of the X-axis.

With the cylinder axis given by (0, l, l), l ∈ ℜ. Each cut of this cylinder by the

X − Y -plane or by the X − Z-plane is a circle with radius d. Therefore cutting the

cylinder with a plane normal to its axis gives an ellipse with half axes a = R = d/
√
2

in the Y − Z-plane and b = d in the direction of the X-axis. For technical reasons,

we approximate the interaction potential among the particles as a circular cylinder of

radius d/
√
2, which has the same width in the Y −Z-plane as the elliptical cylinder,

but which is by a factor
√
2 thinner in X-direction.

1This equation has the form of a quadric equation and in particular is an elliptic cylinder equation

of the form a−2x2+b−2y2 = 1 with a−2 = b−2 = d, x2 = X2 and y2 = (Y −Z)2 as shown in Fig. 3.2.
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Before continuing, we want to check whether the above approximation is ap-

plicable. Since for non-interacting particles we are not able to calculate the flux

analytically due to the interaction, we make use of a finite element program, COM-

SOL [1], to solve Eq. (3.5) numerically. We compare the throughput Qi of each

particle through the channel using both parameterizations to see which is the error

of using the circular cylinder approximation instead of the real interaction potential

among the particles, i.e., the elliptic cylinder.

In the COMSOL software, we use the steady-state convection and diffusion mode.

The geometry used is the accessible volume shown in Fig. 3.2 for the elliptic cylinder

case, and the same for the circular cylinder case but now used to consider the radius

of the cylinder R. We input the starting condition C = 1, the flow velocity UX(Y, Z)

and the diffusion tensor considering the diffusion coefficient of each particle equal

DiX = D1X = D2X = D and imposing no-flux boundary conditions in all the domain

except in the two channel ends where periodic conditions are imposed to allow the

motion of the particles.

For the circular cylinder case, we performed calculations for a cylinder radius

R = 0.5W varying the sizes of both particles through the excluded zones di from 0W

to 0.8W . We solve the Eq. (3.4) for the concentration C and integrating through the

entire domain we obtain the throughput for each particle according to Eq. (3.6).

In the case that the interaction potential is treated as an elliptic cylinder, we

perform the following calculations. We compare the throughputs Q1 and Q2 for an

elliptic cylinder with semiaxes a = 0.5W b = 0.7W ; and a circular cylinder of radius

a/2 = b/2 = 0.7W .

For a smaller a the space for the particles to bypass the cylinder is bigger, but for

larger values of a this space will be very small or nonexistent (case of fixed b = 0.5W ).

Therefore, we fix a = 0.5W and then we vary b. The results for the elliptic cylinder

is collected in Table 3.1 together with the measured values for the circular cylinder

case. One can see that the throughputs for circular and elliptic cylinders differ only

in the third digit, i.e., the error is ±0.002D/W 2 or 0.3%.

Since the error on the throughputs Qi(d) of taking into account the interaction

potential among the particles as a cylinder is very small, henceforth in this thesis we

will work with it instead of the elliptic cylinder for technical reasons.

3.1.2 Influence of direct interactions

Why is it important to understand the interactions among the particles and among

the confinement? The understanding of the influence of the direct interactions can

help us to get a picture of the structural properties of the system and also of the



36 3. Hard spheres particles

Table 3.1: Comparison of Qi for both circular cylinder with radius a/2 = b/2 =

0.7W and elliptic cylinder with semiaxes a = 0.5W b = 0.7W corresponding to the

interaction potential among the particles.

a = b = 0.7W a = 0.5W b = 0.7W

W1/W W2/W Q1[D/W
2] Q2[D/W

2] Q1[D/W
2] Q2[D/W

2]

0.5 1 0.952 0.943 0.951 0.943

0.5 1.5 0.961 0.826 0.959 0.826

1 1.5 0.909 0.817 0.908 0.816

1 2 0.909 0.666 0.908 0.663

2 2 0.664 0.664 0.663 0.663

dynamics of colloidal suspensions. The colloidal particles are subjected to forces

both of attraction and of repulsion; these forces are due to the confinement and the

large quantity of surface that exist in this kind of system. The importance of these

forces is related to the particle size and to the separation of the particles to the

confinement.

To assess the influence on the motion of the particles size on rheological properties,

we determine the fluxes of the two particles through the channel by solving the

effective 3D problem. The effective 3D diffusion problem can be solved analytically in

the absence of flow (u0 = 0, the equilibrium case) or for non-interacting systems (R =

0W with R = d · cos 45◦ being the cylinder radius). Analytically for non-interacting

particles (ψ = 0), the concentration C(R) is equal to C(R) = 1/(16W1W2L
2) = const

for |y1/2| < W1/2 and to zero else. Eq. (3.6) reduces only to the first term of the

integral and then the fluxes become:

Q1/2 =
u0
2L

[

1− 1

3

(

W1/2

W

)2
]

(3.7)

The smaller W1/2 the larger is the flux Q1/2.

However for interacting particles, we are not able to calculate the flux analytically

due to the interaction; therefore we make use of COMSOL to solve Eq. (3.5) numeri-

cally for the concentration C. The geometry used is only the accessible volume shown

in Fig. 3.2 using the interaction potential among the particles as circular cylinder of

radius R as in section 3.1.1. The distance d between both center of mass is related

with the cylinder radius of the interaction potential ψ as d = R/ cos 45◦ = R
√
2.

We allow di and d for vary independently. We performed simulations for a cylinder
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radius R = 0.5W , i.e., d =
√
2/2W varying the sizes of both particles through the

excluded zones di from 0W to 0.8W .

In the symmetric case W1 = W2 (d1 = d2), the solution C(X, Y, Z) of Eq. (3.4) is

point symmetric with respect to the origin Fig. 3.3 a, but for W1 < W2 (d1 > d2)

Fig. 3.3 b, the solution is asymmetric with C larger at the left hand side of the

cylinder (X < 0) than at the right hand side of the cylinder (X > 0).

(a)

(b)

Figure 3.3: Stationary solution C(X,Y,Z) of Eq. (3.4) for Pe = u0W
D

= 1 and L = 5W

for two cases. a) Symmetric case W1 = W2 = 0.5W (d1 = d2). The color scale encode

the value of C ranging from a minimum value (dark red) to a maximum value (bright

yellow); b) Particle of different sizeW1 < W2 (d1 > d2) withW1 = 0.5W andW2 = W

The color scale encode the value of C ranging from a minimum value (dark red) to a

maximum value (bright yellow).

Fig. 3.4 shows the absolute flux for d =
√
2/2W (R = 0.5W ) for different

thickness of the forbidden zone d1 and d2 from 0W to 0.8W , i.e., for different particles

size. The values of Qi(d) are obtained intergrating through the entire domain for each
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particles according to Eq. (3.6) and they are normalized by the value for the non-

interacting case Q1/2 in Eq. (3.7). One can see from Fig. 3.4 that for d1 < d2, the

 0
 0.2

 0.4
 0.6

 0.8

 0 0.2 0.4 0.6 0.8

 0.6
 0.7
 0.8
 0.9

 1

Qi[D/W2]
Q1
Q2

d1 [W]

d2 [W]

Qi[D/W2]

Figure 3.4: Absolute flux in 3D for both particles for a cylinder radius R = 0.5

(d = R/ cos 45◦) for different thickness of the forbidden zone d1 and d2. • Both

particles travel together. The behavior is symmetric for d1 = d2. • The particles

cannot pass d1 + d2 + d > W .

flux of the first particle Q1 increases with d1 in contrast to the flux of the second

particle Q2 that decreases. And for d1 > d2, the flux of the first particle Q1 decreases

in contrast to the flux of the second particle Q2 that increases as expected. In the

case that both particles have equal size d1 = d2, then both fluxes are equal Q1 = Q2

and increase when the size of the forbidden zones di increases, i.e., when the size of

the particles increases. Therefore, the two particles travel together. If the particles

cannot pass each other because they are to big, they have equal flux as expected.

This is due to the periodic boundary conditions.

To see the influence of the interactions on the throughput, we also compare the

flux for two different cases of the separation distance d =
√
2/2W (R = 0.5W ) and

d =
√
2W (R = W ), but now we fix the size of one particle d1 = 0.25W (W1 = 0.75W )

and we vary the size of the second particle. The results are shown in Fig. 3.5. We

notice that the throughput of the larger particle is increased and of the smaller

particles is reduced when the interaction between the particles is considered. We
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Figure 3.5: Comparison of the relative flux for both cylinder radius R = 0.5W and

R = W (d = R/ cos 45◦) for a fixed d1 = 0.25W and variable d2.

observe that the fluxes become more similar for increasing R and equal in the limit

that the particles cannot pass each other, which is the case for d =
√
2W (R = W )

and d2 > 0.34W .

3.1.3 Distribution of particles

The interactions between the particles also affects the particle distribution across the

channel. For an N particle system, it is well known that the small particles can nestle

between the interstices of the large particles. The size relation between the small

and large particles is also important. Consequently the interactions are an important

issue in the transport of colloidal particles.

To understand the hydrodynamic chromatography method, we need to know how

the particles are distributed across the channel, i.e., we have to look at the fluid

density for each particle. If one particle is close to one wall and the other particle is

close to the other wall, they have more space to move horizontally without colliding

than if they are both at the center. Therefore we expect the density to increase near

the walls.

The density profiles are defined according to Eq. (2.16) for the 3D problem as
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follows:

ρ1(Z) =

∫

C(X, Y, Z) dX dY (3.8a)

ρ2(Y ) =

∫

C(X, Y, Z) dX dZ (3.8b)

In equilibrium, u0 = 0, the density profiles ρeq1/2 can be calculated analytically

using geometric considerations. Apart from a normalizing prefactor, ρeq1(y1) and

ρeq2(y2) are given by the area of the cut of the accessible volume in Fig. 3.2 b by the

plane Y = y1 and Z = y2, respectively. This area is given by the area of a rectangle of

length L and width W1 and W2, respectively, minus the intersection of the rectangle

and a circle of radius d centered at Z = y1 and Y = y2, respectively. In order to

calculate the area of the cut, we calculate the area of the part of the circle of radius

d outside of the rectangle (the area of a circular segment) with width Wi = W − d1/2

A(Y,Wi, d) =



















ap(Y,Wi, d) for |W − i− y| < d;

πd2 for y > Wi + d;

0 for y < Wi − d.

(3.9)

with

ap(Y,Wi, d) = cos−1

[

Wi − Y

d

]

d2 − sin

(

cos−1

[

Wi − Y

d

])

(Wi − Y )d (3.10)

Therefore, the density profile ρeq(Y,Wi, d, L) will be given by the total area of a

rectangle (WiL) minus the area of the circle of radius d, i.e., d2π, minus the area of

the circular segment above the rectangle which is A(Y,Wi, d) minus the area of the

circular segment below the rectangle, i.e., A(−Y,Wi, d):

ρeq(Y,Wi, d, L) = 4WiL− d2π − [A(Y,Wi, d) + A(−Y,Wi, d)]√
2

(3.11)

For non-interacting particles (Φ = 0), the expression in Eq.(2.17) reduces to a con-

stant density ρeq
1/2

= 1/(4W1/2L).

Within the framework of (dynamic or equilibrium) density functional theory the

equilibrium density distributions for each particle are given by the stationary points

of the grand canonical functional

Ω[ρ1, ρ2] = F [ρ1, ρ2]−
∫

[µ1 ρ1(r) + µ2 ρ2(r)] d
2r, (3.12)

with the chemical potentials µ1/2 of particle type 1 and 2. These are chosen such that

ρ1 and ρ2 are normalized to one. The corresponding Euler-Lagrange equations are
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δF/δρℓ = µℓ. As a consequence, the values obtained for the densities depend on the

particular choice of the functional F . Simple functionals which are quadratic in ρ1/2

(i.e., the random phase approximation) do not yield the exact density distributions

in Eq. (3.11).

In this case, we study the density profiles for each particle through the channel

again using COMSOL. The density is normalized such that there is one particle of

each type in the system. On increasing the flow, the parabolic form of the Poiseuille

flow will increase, consequently affecting the particles’ velocity as well as their distri-

bution in the channel.

We solve Eq.(3.4) numerically using COMSOL as described above. We evaluate

the density distribution profiles of particle 1 and 2 averaging along the X direction

and the Y or Z direction of the variable C defined on some 3-dimensional domain

in the yz-plane by calculating the integrals in Eq. (3.8), respectively. The data was

later normalized and directly compared with the analytical equilibrium results. The

analysis was realized for a set of parameters for which the particles can still pass each

other and for which the particles cannot pass each other and for flow velocities u0 up

to 50D/W corresponding to Peclet numbers Pe = u0W/D up to 50. For Pe < 1 it is

expected that the Brownian motion dominates the motion of the particles, i.e., the

right hand side of Eq. (3.4) dominates. For bigger Pe the motion will be dominated

by the advection, i.e., the left hand side of Eq. (3.4) dominates. In other words, the

Peclet number indicates the amount of diffusion; for low Pe numbers, the diffusion

is faster than the convection. For higher values, the diffusion is slower, i.e., their

relative motion is therefore reduced.

The three different considered cases are: a) one big particle W1 = 0.25W with

a small particle W2 = 0.5W for a channel length L = W and a distance of both

center of mass d = 0.7W (particles can pass each other); b) for a symmetric case

with two equal and small particles W1 = W2 = W , a channel length of L = 5W , and

the same d as in the first case; and c) one big particle W1 = 0.25W and one small

particle W2 = W with the same channel length as case b) but with d = 1.4W which

corresponds to the case that the particles cannot pass each other.

The behavior of ρi(y) inside the channel are shown in Fig. 3.6 for flow velocities u0

up to 50D/W corresponding to Peclet numbers Pe = u0W/D up to 50. It is observed

that the flux also changes the distribution of the particles across the channel. In

Fig. 3.6 a, one observes that in equilibrium the smaller particle is more likely to be

found near the channel wall and the big particle is almost homogeneously distributed

across the channel center. In this case, the numerical data agrees with the analytical

prediction. For a flowing solvent, we observe that the big particle moves even further
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Figure 3.6: Normalized density profile for a) W1 = 0.25W , W2 = W , d = 0.7W

and L = W . The small particles are pushed towards the wall. b) W1 = W2 = W ,

d = 0.7W and L = 5W . The particles will move at the center of the channel or near

to the walls. c) W1 = 0.25W , W2 = W , d = 1.4W and L = 5W .
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towards the center of the channel and the small particle is pushed towards the wall

(where the flow velocity is smaller than in the center). A stronger effect is observed

for increasing flow velocity. We found a good agreement between our results and

the basic picture of the mechanism underlying the hydrodynamic chromatography

technique which is that larger particles move faster than smaller ones because large

particles are more strongly confined to the center of the channel where the flow

velocity is bigger.

For the symmetric case, d1 = d2, the influence of the flow on the particle distri-

bution is much weaker. There one observes a tendency of the density to form two

symmetrical regions of reduced density at both sides of the channel center due to the

presence of the channel walls, as it is appreciated in the Fig. 3.6 b. The presence of

the walls makes the flow tend to move the particles towards the center and the walls,

resulting in a W-shaped distribution. A good agreement between the numerical data

and the analytical prediction was also found for the equilibrium case.

If the particles cannot pass each other, see Fig. 3.6 c, an almost uniform dis-

tribution is observed in the regions far from the walls and the one-body density ρi

increases at the channel walls. Both particles are pushed towards the wall by the

flow, in contrast to the case when they can pass, where the big ones go to the channel

center.

It is expected that besides increasing the flow, an increase of the separation of

the particles inside the channel should take place. Therefore the next step was to

analyze the throughput of each particle Qi as a function of the flow u0 for the same

three cases, i.e., as a function of the Peclet number. We realize the same procedure

as in section 3.1.2. The throughput of each particle Qi is normalized by the solvent

flow velocity u0. The behavior of the throughput is shown in Fig. 3.7. We have

represented Qi/Pe as a function of Pe.

The results show an enhancement of the separation with flux. Without interac-

tion, the flux is proportional to u0, i.e., to the Peclet number. With interaction the

flux increases more than linearly for the larger particles and less than linearly for the

smaller particles as shown in Fig. 3.7 a. The variation of flux (variation between Q1

and Q2) increase with the increase of the flow velocity u0. The bigger particles move

towards the center of the channel where the flow is stronger while the smaller ones

are pushed towards the wall where the flow is weaker. For the symmetric case, the

flux for both particles is equal and for increasing u0 and it increases almost linearly

with u0 Fig. 3.7 b. When the particles cannot pass each other Fig. 3.7 c, both

particles have to have equal flux but it increases less than linearly with u0. This is a

consequence of both particles being pushed towards the wall, where the flow velocity
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Figure 3.7: The throughput of each particle Qi normalized to the solvent flow velocity

as a function of the Pe number for: a)W1 = 0.25W ,W2 = 0.5W , d = 0.7 and L = 5W

b) W1 = W2 = W , d = 0.7 and L = 5W c) W1 = 0.25W , W2 = W , d = 1.4 and

L = 5W
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is smaller than at the channel center. The smaller particles are accelerated due to

the fact that they travel together with the large particles and consequently, the large

particles are decelerated for the same reason.

Let us now compare our model results with the dynamic density functional theory.

As mentioned in section 2.2, since the velocity field depends only on the y-coordinate

and is unidirectional in the x-direction the steady state solution of Eq. (2.1) is given

by the equilibrium solution (i.e., the minimum of Ω[ρ1, ρ2] in Eq. (3.12)), which by

symmetry only depends on y: the left hand side of Eq. (2.1) is equal to zero and the

right hand side is zero for ρ1/2 = ρeq
1/2

. Therefore throughput through the channel

is only generated by advection:

QDDFT
1/2 =

∫

ρeq
1/2

(y) ux(y) dx dy. (3.13)

Within the framework of DDFT, the density distribution in the channel is indepen-

dent of the solvent flow and the throughput is strictly linear in the flow velocity.

In addition, the throughputs are not necessarily equal for particles that cannot pass

each other.

3.2 Conclusions

In order to assess the effect of the direct interaction on the transport of suspended

particles we have considered in Section 3.1.2 the particles in a simplistic model as

hard spheres and hence the direct interactions among the particles and walls as a

hard-sphere repulsion. This allows us to calculate out the throughputs and density

distributions of each particle as a function of the particle size and flow velocity.

We have observed that the distribution of the particles through the channel

changes as a function of the flow velocity u0 and also depends on the size of the

considered particles as expected. While at equilibrium the big particle is homoge-

neously distributed across the channel center, the small one is concentrated at the

channel walls. When the solvent flow is switched on, it was observed how the larger

particles push the smaller ones to the channel walls while remaining at the channel

center. This effect is stronger as the solvent flow increases. This change on the den-

sity distribution across the channel induced by the solvent flow is not reproduced by

the DDFT formalism. Why can DDFT not describe the distribution in the channel?

Because the equilibrium assumption for two-point correlations ρ(2) = ρ
(2)
eq implies

ρ = ρeq. Maybe this can be overcome by truncating the BGY-hierarchy at higher

orders in the DDFT or by factorizing higher correlations functions.
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With regards to the throughputs of each particle, for the case that the particles

can pass each other we observed as the flux for the first particle increases the flux of

the second one decreases and the variation of the flux increases with the particle size.

For the last two considered cases — the symmetric and particles cannot pass each

other cases — we observed that the fluxes of both particles are equal. The last result

also can not be obtained with the DDF theory, because in this theory it is not possible

to input that the particles cannot pass each other. That the throughputs of particles

which cannot pass are not equal in DDFT might be related to the grand canonical

character of the theory: particles can swith places by moving into a reservoir and

back into the channel even if they cannot pass each other. But the main reason for

the failure of the DDF theory is the equilibrium approximation for the correlation

functions. The flow breaks the mirror symmetry of the system with respect to x→ −x
which is not reflected in the equilibrium correlation function used in the DDFT:

the equilibrium correlation function is mirror symmetric. Marconi and Tarazona

[83,84] put forward the discrepancies between their results with DDFT and Langevin

simulations due to the interpretation of the density distribution in the grand-canonical

ensemble in the DDFT and the interpretation of it in the canonical ensemble in the

Langevin simulations.

In conclusion, we have used the hard sphere model in order to study the ideal

case of suspended particles, which further allows for studying the role of the direct

interactions.



Chapter 4

How hydrodynamic interactions

influences colloidal particles’

dynamics

In the previous chapter, we discussed the influence of direct interactions on the trans-

port of colloidal particles ignoring hydrodynamic interactions (HI). Hydrodynamic

interactions have to be taken into account — although up to now there is no agree-

ment between the experimenters and theorists about the relevance of hydrodynamic

interactions. In the present chapter, the effect of the second sphere and the effect of

the walls in an bounded fluid — i.e., the hydrodynamic effect — will be discussed,

and we will learn how the hydrodynamic interactions can influence the transport of

colloidal particles. Upon considering the hydrodynamics interactions, the disturbance

to the flow caused by the interaction with the other particles is taken into account.

In dilute systems, the hydrodynamic interaction has more influence on the particle

motion, on the motion of the neighboring particles in particular, than the direct

interaction. In addition to the hydrodynamic interaction between two particles, the

interaction between three and more particles should be also considered for N-particles

systems. The understanding of the resistance to motion felt by a sphere in a fluid in

the presence of both a second sphere and two parallel walls can help us to understand

the behavior of many particles systems.

The hydrodynamic interactions are capable of transferring local effects in a point

of the fluid to very distant regions. Each particle in its motion creates a flow field

in the solvent which will be felt by the other particles. The motion of one particle is

affected by the motion of neighboring particles and by surfaces. As a result, each par-

ticle experiences a force which is related to hydrodynamics. The particles experience

hydrodynamic interactions with each other and with the walls of the container. For

47
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large separations, hydrodynamic interactions are the only interactions between sus-

pended particles (electrostatic interactions are usually screened by the solvent). For

very small distances, direct interactions should dominate. Hydrodynamic coupling is

only possible if the particles are well-separated and move slowly through a viscous

fluid [46]. Due to the hydrodynamic interactions and the confinement of the colloidal

particles, the quantitative and qualitative description of the particle dynamics is a

very complicated many-body problem. There are four factors that can influence HI:

the distance between the walls and the particles, Reynolds number Re, surface shape

and wall curvature. Calculating HI is a challenge in particular in confined systems

where closed analytic forms are not available. In this thesis, we consider planar walls

and low Reynolds number (Re << 1); therefore, the only factors that can influence

the particle transport are the first two factors.

In Section 4.1 will be discussed the expected effect of the full hydrodynamic

interactions and how they can be incorporated in the transport process. To assess

the influence of the hydrodynamic interactions on the velocity of the particles and the

particle distributions inside the channel, it is possible to study separately the particle-

particle HI and the particle-wall HI. The influence of hydrodynamic interaction among

the particles will be discussed in Section 4.2 and we will show that they affect the

transport properties only weakly and therefore can be neglected. In Section 4.3, we

will include the influence of HI between the particles and the walls as a diffusivity

tensor and will discuss the necessity of achieving the expression for the diffusivity

tensor in the case of many particles system.

4.1 Effect of hydrodynamic interactions

The effects of the hydrodynamic interactions between the particles should decrease

with increasing separation distance. That means that hydrodynamic forces are a

function of the separation between the particles. The expected effect of the hydro-

dynamic interactions is to retard the motion of the particles compared for the case

without hydrodynamic interactions [63]. It is expected in confined systems that the

effects of the surfaces on the particles will be similar to and stronger than those due

to particle-particle interactions because the flow field is also affected by the channel

walls. This implies that the flow field moves around the particle, i.e., the fluid passes

between the particle and the wall. Therefore, there is a reduction of the hydrody-

namic mobility of a particle diffusing close to a wall.

The hydrodynamic effect of the walls on a single particle is well known, but not

so well known for many particles. Its influence was analyzed in a theoretical way by
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Brenner [47]. Brenner establishes the basis of the influence of either other particles or

a flat wall on the hydrodynamic drag force acting on a nearby isolated particle. The

theory is based on the measure of the drag force acting between a sphere at certain

distance to parallel walls at low Reynolds numbers and in the absence of walls and

consequently the mobility and diffusion tensors. This formulation is very complicated

to apply and is only applicable for some particle-wall configurations. Some authors

have applied successfully both in the absence of walls like Crocker [25] and Meiners

and Quake [89] and with walls like Lin et al [72], Faucheux et al [40] and Lobry et

al [73], just to mention a few. However, for many particles systems, both in bulk and

in confinement, there is still some theoretical uncertainty.

There are some other ways to incorporate the effect of the full hydrodynamic

interactions on the transport process. One can include in the mobility tensor a

term that depends on the density. This is only valid for low densities, for dilute

fluid suspension which have a volume fraction of the sphere c much smaller than

unity. This approximation was suggested by [8] for the case of spherical particles

falling through a fluid. Batchelor studied the sedimentation of spherical particles.

This can help us as a first estimation of the effect of these interactions. The relation

between the mobility tensor Γ with the density probability function ρ can be obtained

through the particles velocity and the interaction force. With this approximation,

it is expected that the effect of the hydrodynamic interactions will be greater where

there is more density.

Other ways to assess the influence of hydrodynamic interactions on transport

properties are based on the calculation of the time dependent correlation function

between two charged or neutral particles or between a particle with the confined

walls using the Ornstein-Zernike equation and the Percus-Yevick approximation for

hard spheres which has been demonstrated appropriate. This correlation function

measures the influence of particle one on particle two at a certain distance. This

formulation was applied successfully by Pesche and Nägele [97,98] and more recently

by Löwen et al [109]. Löwen introduces the hydrodynamics interactions among the

particles on the DDFT considering the correlations among the particles using the

Ornstein-Zernike equation and the Percus-Yevick approximation for the hard sphere

case. For the last case, the calculation of the density function would be necessary, and

hence the calculation of the N-body densities. For lack of time, it was not possible

to perform the calculations and will not be used in this work. To give a little more

clarity to the effects of the hydrodynamic interactions, we center on the study of

these interactions for the case described in chapter 2, i.e., on two spherical particles

diffusing through a narrow channel.
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The most usual way to study the effect of the hydrodynamic interactions in the

case as particle-wall interactions is including their effect on the mobility tensor as a

function of the distance between the particles and the wall. This will be discussed in

Section 4.3.

Most of the works on this subject are experimental or computational simulations,

due to the difficulty in solving the Schmoluchowski equation. There are not many

analytical studies on this subject. Lobry et al [73] used a semi-analytical treatment

to calculate the diffusion coefficient for a single particle in the presence of two walls.

Another analytically study by Bhattacharya is published in [11,12].

Pesche [97] demonstrates that the effects of the HI on a confined system are

enhanced in comparison with the case of an isolated colloid for charged colloidal

particles. However, these kinds of effects are not expected for uncharged colloids for

the case of HI between the particles and the walls.

4.2 Influence of hydrodynamic interactions among

the particles

A particle that moves in a fluid induces a perturbation in the fluid flow velocity field

whose magnitude decreases with the distance. The attenuation of the perturbation is

slow, and when another particle is within reach of the above mentioned perturbation,

the velocity of both particles diminishes.

The hydrodynamic interactions depend on the particle’s size. The bigger the

particle is, the greater amount of fluid will be displaced in their movement. Also,

the resistance increases with size. The HI also depends on the distance between the

particles l, the distance between the two wallsW and the distance of the particles from

the walls. For distance l ≪ W , the particles behave as if they were isolated [11,12]

The present Section presents the influence of the hydrodynamic interactions among

the particles on the separation process, disregarding the particle-wall HI effects. To

study this influence, one can make use of the method of reflections [30, 52, 63] or de-

termine the time dependent correlation function. The use of the method of reflections

implies an infinite number of images in the case of confinement of particles between

two walls but it is not useful in more complex channel geometries. For this reason we

solve the Stokes equation directly in order to assess their relevance for our system of

interest.

Let us consider a simple spherical colloidal particle of radius R at the center of

a three-dimensional channel of length Lx = 200R and Ly = 200R dragged through

an incompressible viscous Newtonian solvent with velocity c in the x-direction at low
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Reynolds number, see Fig. 4.1. We formulate the problem in a frame of reference

co-moving with the sphere. Then the upper and bottom channel walls move in the

c

Figure 4.1: A simple spherical particle of radius R = 1 at the center of a three-

dimensional channel of length Lx = 200 and Ly = 200 dragged through an unbounded

incompressible viscous solvent with velocity c.

negative x-direction with velocity −c. We impose no-slip boundary conditions on

the surface of the spherical particle and slip boundary condition on the side walls at

y = ±Ly. At the front and back wall at x = ±Lx, we use an influx boundary condition

with inflow velocity −cêx and an outflow boundary condition with pressure p = 0,

respectively. In the co-moving frame of reference, the no-slip boundary condition

requires that the fluid velocity is zero on the surface of the sphere. The pressure of

the fluid, the normal force per unit area, is greater in front of the sphere than on the

back. As the particle is at the center of the channel, for every point where a force is

experienced and hence a torque exerted, there will be a diametrically opposite point

where the torque will be exerted in the opposite direction, and hence, there will be

no net rotation. We put the sphere at the channel center to prevent the rotation,

because at this position the momentum on the sphere is equal up and down of the

sphere. For position away from the center, we would have to consider also the sphere

rotation which is nummerically challenging.

The system is described well by the Stokes equation for very low Reynolds num-
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bers:

∇p− µ∇2u = 0 (4.1)

∇ · u = 0 (4.2)

with the viscosity µ, the presure p, and the flow field u.

In a 3D bulk system the flow field u(r), in a frame of reference commoving with

the colloid at r =, is given by the solution of the following Stokes equation [104]:

u(r) =
3R

4r

(

1 +
R2

3r2

)

c+
3R

4r3
r(r · c)

(

1− R2

r2

)

− c (4.3)

with c the solvent velocity. As we consider the flow on the x-axis, then the resulting

flow field for a sphere of radius R in x-direction and y-direction will be

ux(x) =

[

3R

2r

(

1 +
R2

3r2

)

ex − ex

]

c (4.4)

ux(y) =

[

3R

4r

(

1 +
R2

3r2

)

ex − ex

]

c (4.5)

The force exerted over the sphere inside a channel should be bigger than for a sphere

in bulk.

We perform a numerical solution of the incompressible Navier-Stokes equation

ρ(u ·∇)u = −∇p+ µ∇2u (4.6)

∇ · u = 0 (4.7)

using the COMSOL software, ρ being the fluid mass density within the above de-

scribed channel geometry. To stay within the microfluidic regime Re << 1, we

impose the density to be very small in comparison with the viscosity to obtain a

Re = 1 · 10−7. We determine the flow field of the particle for different channel width

from W = 4R till W = 200R for a fixed lateral channel dimensions Lx = 200R and

Ly = 200R to see both the effect of the particle and the walls on the flow field. Later,

these results were compared with the flow field in bulk Eq. (4.4). The results are

presented in Fig. 4.2.

In a channel as a function of the distance from the sphere, the flow field decays

more quickly to the limiting value cêx than in a bulk system and the decay is faster

for thinner channels. For intermediate distances larger than W and smaller than the

size of the numerical box, we observe an approximate power law behaviour ux ∝ x−2

along the channel axis, and in bulk we get ux ∝ x−1. At the channel walls at x = Lx

and at y = Ly, the flow field goes to −c.
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Figure 4.2: (a) Double-logarithmic graph of the x-component of the flow field as a

function of x for different channel width from W = 2R till W = 100R and in the

bulk. (b) Graph of x-component of the flow field as a function of y for different lateral

walls width between W = 2R and W = 100R. Also shown is the bulk solution from

Eq. (4.3)
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Figure 4.3: Double-logarithmic graph of the x-component of the flow field for the

channel length L = 100R and L = 200R and for two different channel width W = 5R

and W = 100R.
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We also assess the influence of the finite size of the numerical box by comparing

the x-component of the flow field along the channel axis for two values Lx = 100R

and Lx = 200R and for W = 5R and W = 100R as shown in Fig. 4.3. We found

that the channel ends do not influence the flow field. In other words, the flow field is

independent of the channel length.

We can conclude that neglecting hydrodynamic interactions among the particles

in our two interacting particles model is better justified than in a bulk system because

the flow field induced by the first particle decays with the second power of the distance

rather with the first as in bulk. That is, each particle does feel the effect of the other

particle on the solvent much less. Consequently, the influence of the hydrodynamic

interactions among the particles is smaller than for the bulk case. Therefore, the

hydrodynamic interactions among the particles are less important, and they will be

neglected as compared to the direct interactions. So that the hydrodynamics forces

are weak as compared to the direct forces.

4.3 Hydrodynamic interactions with channel walls

As we have found in the previous Section that the channel walls in the z-direction

may affect the fluid motion, let us consider the case of particle-wall hydrodynamic

interaction ignoring the particle-particle hydrodynamic interaction. To look in more

detail at the effect of the particle-wall hydrodynamic interaction, this interaction will

be incorporated in the diffusion coefficient which depends on the distance between

the particle and the wall.

Due to the neglect of particle-particle hydrodynamic interactions, the diffusion

tensor will not depend on the position of the other particle but depend on the relative

distance of each particle with the wall. The mobility tensor decreases in the vicinity

of the wall. As a consequence, the particles are accelerated or desaccelerated and the

fluid is displace away from the walls.

Heretofore, all the analysis has always been carried out regarding the diffusion

coefficient for each particle as a constant for reasons of simplicity. The hydrodynamic

interactions with the channel walls can be introduced into the advection diffusion

Eq. (3.4) as a wall-particle distance dependent diffusivity tensor Dij(r).

The influence of the hydrodynamic coupling on the transport properties of a

particle in bulk or near a wall has been studied by many authors [10, 25, 47,72], just

to mention a few. The drag force, the hydrodynamic force, which is exerted on a

hard sphere with radius R moving with velocity u in a quiescent fluid of viscosity η,

is opposed to its direction of motion if there is no slip at the boundary between the
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sphere and the fluid. This drag force was proposed by Stokes [47] and is given by

F0 = −6πηRu (4.8)

Consequently, the diffusion coefficient D0 of the sphere is given by the Stokes-Einstein

relation

D0 =
kBT

6πηR
(4.9)

with kB the Boltzmann constant and T the temperature of the system.

By contrast, if the particle is near a rigid wall or is confined between two walls, it is

known that the drag force increases. The particle diffusion is hindered and depends on

the distance to the wall y and varies with the distance to the wall like D(y/R) [10,35].

In other words, the particle experiences a different diffusion coefficient at each height.

When a particle is close to a wall, the force exerted on the particle is larger, and

consequently, the diffusion coefficient is smaller than if the particle is far away from

the wall. That could be due to the wall causing the fluid to flow around the particle

away from the wall because the available space between the wall and the particles

is very small and there the fluid cannot flow. It is expected that there are similar

effects for the case of confined particles between two walls.

Fig. 4.4 displays the predicted value of the normal component D‖/D0 and the

perpendicular component D⊥/D0 of the diffusion coefficient as a function of the

related distance to the wall (y − R)/R for an isolated sphere far from one flat wall.

Nearness to the wall is expected to reduce both the sphere’s hydrodynamic mobility

and its diffusion coefficient [10]. Both are reduced by the same factor.

Coming back to the topic under discussion, for two confined particles diffusing

through a narrow channel in two dimensions, the hydrodynamic coupling can not

be studied. For a two-dimensional fluid flow (the particles and the flow moves in a

plane), the flow field around a circle does not decay with distance. 2D hydrodynamics

is ill defined1. However, the purpose of the 2D model presented in section 2.3 is to

model the basic effects of direct and hydrodynamic interactions in 3D systems. In

this spirit, we take the main result from [10] the reduced mobility of a sphere in the

vicinity of a surface and transfer it to the simple 2D-model.

In two dimensions, there are two diffusion coefficients, one for each direction.

These diffusivity tensors can be separated into two different and independent compo-

nents, one related to the motion parallel to the walls D‖ = Dxx and the other related

to motions orthogonal to the walls D⊥ = Dyy. Both of these diffusion components

1Although there are some theoretical studies [39, 57, 99] and simulations [128,131] on the 1970’s

and more recently [34, 49] about the transport coefficients in two dimensions, there is not yet a

concluding theory.
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0D/D

(y−R)/R

Figure 4.4: Dependence of the tangential and normal diffusivity on the distance to a

no-slip wall [10]. The mobility is significantly reduced near the wall.

D‖ and D⊥ are a function of both the distance of the sphere from the walls and the

separation of the walls for each other. They are given by

Di(y) =

(

Dixx(yi) 0

0 Diyy(yi)

)

(4.10)

Brenner derived the exact solution for Diyy for a sphere moving near a flat wall.

Typically, one uses an approximation for the correction factors. In the 3D effective

stationary problem Eq. (2.20) there is only one diffusivity tensor which will be a

combination of both diffusivity tensors in the two-dimensional problem.

The orthogonal diffusion coefficient has been obtained experimentally both asymp-

totically [35] and by the method of reflections [10, 47, 70]. Experimentally, it is only

possible to measure the normal diffusion coefficient. It is well known that the normal

diffusion coefficient for a particle far from the wall reaches the bulk value, and when

the particle is close to the wall, it reaches the zero value. Prieve et al [10] predict

for the parallel component that it should reach the bulk value far from the wall and

close to the wall should be approximately 30% of the bulk value.

Therefore, we approximate both components of the diffusion tensor for the case

of a particle in a channel following the experimental data obtained for a particle near

the wall and in bulk. The bulk value is assumed to be reached when the particle

is in the middle of the channel. Close to the channel walls, the same values will be
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achieved as in the case of one particle in the vicinity of a wall, i.e., 0.3 for the parallel

component and 0 for the tangent component. As a result, the diffusion tensor will be

given by Eq. (2.21)

D(Y, Z) =







D1xx(Y ) +D2xx(Z) 0 0

0 D1yy(Y ) 0

0 0 D2yy(Z)






(4.11)

with the following parametrization

Dixx(Y/Z)

Di0

= 0.3 + 0.7
(Wi/2)

2 − y2

(Wi/2)
2 (4.12)

Diyy(Y/Z)

Di0

=
(Wi/2)

2 − y2

(Wi/2)
2 (4.13)

We are able to model the diffusion coefficient of both Brownian spheres in a chan-

nel. Fig. 4.5 displays the assumed behavior for the tangential component Dixx(yi)

and for the normal components Diyy(yi) normalized by Di0. It shows the reduction

of the diffusion coefficients close to the walls. As the particles approach the walls,

their normal and parallel diffusion coefficient vanishes or goes to 0.3D0, respectively,

and it reaches the bulk value at the channel center.
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Figure 4.5: Parametrization of the tangential and normal components of the diffusion

tensor D(y, z).
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In order to measure the influence of the hydrodynamic interaction with the two

confining planes, let us now determine the fluxes of each type of particle. The through-

put Eq. (3.5) for hydrodynamically interacting particles with the walls leads to

Q1 =

∫ L

−L

∫ W1

−W1

∫ W2

−W2

[u(Y )C(X, Y, Z)−D1xx(Y ) ∂XC(X, Y, Z)] dY dZ dX.

(4.14a)

Q2 =

∫ L

−L

∫ W1

−W1

∫ W2

−W2

[u(Z)C(X, Y, Z) +D2xx(Z) ∂XC(X, Y, Z)] dY dZ dX.

(4.14b)

in the effective 3D stationary problem.

The throughput with hydrodynamic interactions between the particles and the

walls is compared with the corresponding result when particle-wall hydrodynamic

interactions are disregarded. We perform the same procedure as in Section 3.1.3

using COMSOL for the symmetric cases from W1 = W2 = 0.25W till W1 = W2 = W

for a channel length L = 5W and a minimal distance between both center of mass

d = 0.7W . We calculate the fluxes for each particle as a function of di. We impose

the same boundary conditions as in Section 3.1 and we assume D10 = D20 = 1. This

comparison is show in Fig. 4.6. As seen, in Fig. 4.6, the flux including particle-wall

hydrodynamic interactions is slightly larger than without particle-wall hydrodynamic

interactions, however, this difference is hardly significant as it is on the limit of

numerical accuracy. This difference is very small independent of the minimal distance

d of the center of mass; even the difference decreases for increasing d. We observe

that a hard sphere system does not produce any hydrodynamic effect. Looking at

the solution C(X, Y, Z), we observed that the distribution of the particles through

the channel is only weakly affected by the hydrodynamic interaction with the channel

walls. The big one still moves in the channel center and the small one is pushed to

the channel walls.

4.4 Conclusions

This chapter has presented analytical and numerical results for the hydrodynamic

interactions on the separation process using the finite element software COMSOL.

Our study has been focused on the influence, effect, and dependence of these hydro-

dynamic forces.

To provide a description of the hydrodynamic interactions, we have carried out

a detailed study of their influence in Section 4.2. We have modeled the flow field

corresponding to a Stokes flow for a single particle moving through a narrow channel.
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Figure 4.6: Comparison of the flux Qi for the symmetric case normalized by Qi(d = 0)

as a function of the width of the forbidden zone d1 = d2 for the diffusion coefficient

with particle-wall hydrodynamic interactions (p-w HI) D(y, z) and without p-w HI.

We consider only two particles and neglect the hydrodynamic interactions among

them. This is in contradiction with experimental works, which report an effect of the

hydrodynamic interactions for non-confined particles. The reason for this difference

is the confinement. However, even the effect of the hydrodynamic particle-wall in-

teractions is weak as we have seen, maybe as weak as the hydrodynamic interactions

among the particles. The next step would be to take into account the hydrodynamic

interactions for N -particle systems where higher densities can be reached such that

many-body hydrodynamic interactions can become relevant.

An important result of this chapter is that the hydrodynamic interactions between

the particles are influenced by the lateral channel walls: they are significantly reduced.

An important result of this chapter is to demonstrate that the particles are af-

fected by the lateral channel walls, both directly and hydrodynamically. This can be

achieved including the hydrodynamic interactions on the diffusion tensor.

In order to assess the effect of hydrodynamic interactions with the walls on the

transport of suspended particles, we have considered in Section 4.3 the diffusion

tensor depending on the distance to the channel walls. This allows us to figure out

the fluxes of each particle as a function of the particle size. We have shown how the

hydrodynamic interactions with the walls hardly modify the behavior of the particles
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inside the channel. Indeed, our numerical results for the diffusion tensor confirm that

there is some kind of hydrodynamic effect due to the walls, and the effect is quite

weak. It is also important to remark, however, that the dependence of the diffusion

tensor on the distance to the wall should be calculated or measured more acurately

for a better understanding of the hydrodynamic forces.

At the moment, the R. Weeber at the University of Stuttgart and A. Straube

at the “Humboldt Universität” in Berlin are doing some simulations to obtain the

dependence of the diffusion tensor with the distance to the wall. Up to now, the use

of the Stockesian dynamics is not possible due to the impossibility to fix the no-slip

at low Reynolds numbers.



Chapter 5

Soft particles

The present chapter concerns a more realistic case. A second kind of complex fluids

will be discussed, those composed of polymers instead of colloids. The polymer fluid

will be studied in confinement where the dynamic properties are strongly modified in

the presence of walls in comparison to bulk systems. The hard sphere model, discussed

in chapters 3 and 4, is a good model to describe compact colloidal particles, but it

cannot model polymer coils due to the effective forces between soft particles. In this

chapter, we model the polymer coils by soft particles, i.e., as penetrable spheres in

which an effective interaction acts between the centers of mass of different polymer

coils as shown in Fig. 3.1 b. Soft particles are a simplistic model for polymers in a

good solvent. Many-body hydrodynamic effects arise from the disturbance of the flow

field around one particle by neighboring particles and the walls. A polymer behaves

quite differently in a flow field than a rigid sphere. However, in the soft particle model

these differences are not taken into account.

As in colloidal suspensions, the impenetrable walls will exert an effective repulsion

on the polymer coils, while with penetrable walls, the polymer chain can be fully or

partially absorbed by the walls. The penetrable surface case lies beyond the scope

of the present study. The study of this effective force between the polymer coils and

the walls can give us a good initial description of the behavior of the polymers in a

confined solution and on the transport process. The soft particle picture has been

used before by other authors, among others Louis et al [16, 76].

Some polymer properties influence the transport process, such as the size of the

polymer chain, which affects the chain mobility; the kind and goodness of the solvent;

the interactions — between the polymers and the solvent, between the polymer and

the walls of the confinement, and among the polymers —, various chemical properties

such as the melting and boiling point; and also other properties that are beyond the

scope of the present study.

61
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There are two types of models to describe polymer chains. The simplest polymer

model is a Gaussian random walk. In this model the interactions between monomers

are neglected. A further simplification has been introduced by Asakura and Oosawa

(AO) in 1958 who model the polymers as interpenetrable spheres [7]. Nevertheless, in

real polymers two segments can interact even if they are separated by a long distance

(inside the chain). The polymer chain cannot cross itself, which is a manifestation of

the Pauli exclusion principle; therefore, the effect of excluded volume appears. This

is named a ”self-avoiding random walk” in which the size of the polymer is larger.

The free energy increases, which is equivalent to a repulsive interaction. In this work,

we focus our attention on real polymers, the Gaussian polymers, in a good solvent in

particular. We neglect all chemical details of polymer systems except the excluded

volume.

When polymers are in a bad solvent, the polymer chain has the tendency to be

more compact, like a sphere. A poor solvent causes the polymer coil to shrink. The

polymer in good solvents adopts the form of a coil and it is called a polymer coil.

The solvent causes the polymer coil to swell because the solvent-polymer contacts

are favored. When the polymer chain expands, it fluctuates and has a different

behavior than when the polymer chain is compact. The behavior of polymers in a

good solvent is more complex than in a bad solvent. For reasons of simplicity, in this

work the polymers will be considered as an ideal chain in a good solvent. The effective

interaction between the centers of mass of two polymer coils is well known and decays

rapidly beyond the radius of gyration of the coils [75]. The radius of gyration is the

average distance between the center of mass of the chain and the chain itself, and

it expresses the space occupied by a polymer molecule, see Fig. 3.1 b. Also those

changes in the coil dimension affect the viscosity.

In a good solvent, the attraction between the polymer and the solvent particles

is stronger than the attraction between two segments of the polymeric chain. Con-

sequently, the chain gains free energy upon expanding [94]. The polymer coil size is

reduced due to monomer-monomer attraction. The effect of this attraction is greater

at lower temperature, causing a reduction in the size of the coil.

As in hard spheres situation, the walls create a depletion layer due to the fact

that the polymers have fewer possible configurations near the wall. A depletion zone

is also created around the polymers: when two polymers are brought together at

low densities, the polymers avoid the depletion layer (they cannot overlap). But for

larger densities, the polymers can penetrate the depletion layer (they can overlap).

Consequently, the accessible volume is greater than for spheres which do not overlap.

In fact, the particles interact with a strong repulsion which does not generate an
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excluded volume strictly speaking.

The resulting effective interaction among the particles is repulsive and it is well

approximated by a Gaussian potential. There can also be attractive forces between

polymers and walls. Then the polymers exhibit an absorption transition. It appears

as if the qualitative behavior of the absorption transition does not strongly depend

on the type of attractive surface interaction. In our simplification effort we have

neglected the polymer wall attractions.

Polymer solutions have been studied by many authors in the last few decades.

Louis et al. [77] studied a polymer solution in which a single hard sphere has been

added and they reduced the number of configurations available to polymers. Krüger

[64–66,104] focused on a single hard sphere added to a polymer solution and studied

the behavior of the flux when the particles travel together side by side or one before

the other. Likos et al. [54] focused on the effective interactions between star polymers

and a colloidal spherical particle in a good solvent. In contrast with the previous

studies, we are interested to know how the dynamic properties of the polymers will

be affected by the confinement walls on both the transport and separation process as

in the case of hard spheres. We will look again at the density distributions and fluxes.

In Section 5.1, we will discuss the interaction potential between the particles and the

walls as a hard core type interaction and in Section 5.2 as a soft type interaction.

5.1 Particle wall potential as hard core repulsion

In polymers the excluded volume can be of a hard or soft core type. The choice

of wall-particle potential influences the behavior of the polymer particles inside the

channel. We have to choose the interaction potential in such away that it diverges

such that the particles cannot penetrate the wall. In this section, as a first step will

consider the excluded volume of the polymer both of a hard and soft core type. The

hard core type will be used for the interaction potential between the particles and the

channel wall and the soft core type will be for the interaction potential among the

particles. Hence at this stage, the particle wall interaction repulsion Φi will be of the

form of Eq (3.2), i.e., the polymer segments cannot penetrate the walls and then the

polymers are repelled with a infinite intensity. In the next section 5.2, we will treat

the excluded volume for this kind of interaction as a soft core type. The particle-

wall interaction will be as thus for polymers in a good solvent. The hydrodynamic

interactions will be neglected through this entire chapter.

This idealization of the direct interaction as hard type has already been discussed

by other authors (see [66]) in the case of an interaction between a hard sphere particle
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with a polymer. But they consider that the hydrodynamic radius can be smaller than

the interaction radius.

Therefore, in this chapter the physical system considered consists of two polymers

particles advected by a Poisseuille flow inside a narrow channel according to Eq. (2.6)

[see Fig. 5.1]. As the relevant length scale in suspensions is the particle size, this

d2

d1

d

−W

−L

2W 2W2 1

x

y

u(y) r2

r1

W

L

Figure 5.1: Two polymer coils of different size at positions r1 and r2 in a channel of

width 2W and length 2L, which is assumed to be longer than any other length in the

system but finite; the region of each particle, where the particle can move through

the channel, is denoted by 2W1 and 2W2; and the forbidden region for each particle

near the wall is denoted by d1 and d2.

once more allows us to treat the solvent as a continuum. The statistical analysis of

a system of many-body interactions is of significant physical interest.

Here the same parameters as in the preceding sections will be studied: the fluxes

and the densities profiles. At this stage, we neglect the hydrodynamic interactions

both with channel walls and among particles. According to direct interactions as

mentioned above, the interaction potential of the polymer coils with the walls Φ1

and Φ2 will be a hard sphere repulsion potential [see Eq. (3.2) a]. The statistical

description for the interaction potential between the center of mass of two polymers

in a dilute solvent is well described by an interaction of a Gaussian form — the

polymers interact via a Gaussian pair potential [95]. This potential has the form [see

Fig. 5.2]:

Ψ(r) = Ψ0e
−r2/d2 (5.1)

where r is the interparticle distance and d determines the range of the pair interaction

and is approximately the radius of gyration of the polymers. Thus the polymer-

polymer interaction mimics the interaction among polymer coils in a good solvent
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[103]. This Gaussian potential was proposed first by Flory and Krigbaum [43] and

later was applied by Stillinger et al. [123].
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r/d. The color scale encode the value of C ranging from a minimum value (black) to

a maximum value (bright yellow).; b) Comparison of the interaction potential among

the particles for colloid particles and for polymers as a function of the radius.

As the Gaussian potential (the interaction potential among the particles) depends

on the temperature, the density distribution and the fluxes will also depend on the

temperature through the narrow channel. Another aspect that changes with the

temperature is the goodness of the solvent which lies beyond the scope of the present

study. On the other hand, upon having increased the temperature of the system,

the solvent viscosity decreases and therefore the friction of the particles. This leads

to a larger diffusivity. Now, we turn our efforts to the temperature dependence,

analyzing the equilibrium density [see Eq. (2.15)], Peq = 1
Z
e−βΨ, with the potential

given in Eq. (5.1). This dependence is shown in Fig. 5.3. With a smaller value

of the interparticle interaction potential βΨ0 = Ψ0(kBT )
−1, the particles can pass

each other and with larger value, they cannot pass each other. In other words, by

increasing β (decreasing T ) the difficulty for the particles to pass each other increases

to the point where a value is reached at which it is no longer possible. For our study,

the low temperature at which the particles can pass each other is T = Ψ0(10KB)
−1.

Increasing T the particles can pass.
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Figure 5.3: Behavior of the equilibrium density distribution as a function of the

interparticle distance for d = 0.7W at varies temperatures βΨ0 = 1 to βΨ0 = 10.

Throughput

Our starting point to study the throughput of the dilute polymers in a good solvent

will be the advection diffusion equation Eq. (2.20). We consider the Brownian motion

of the polymers. As the interaction with the channel walls will be treated as hard

spheres, the total interaction potential V will be equal to the interaction potential

between the polymers V = Ψ and with a vertical and horizontal confinement coming

from the interaction of the two particles with the channel walls, respectively. Then,

Eq. (2.20) can be rewritten as

∇R · [−D(Y, Z)∇RC(R) + (U(R)− βD(Y, Z)∇RV (R)) · C(R)] = 0 (5.2)

Due to the neglect of hydrodynamic interactions, the diffusion tensor D will be con-

stant and given by Eq. (2.21) with Dixx = Diyy = D.

To study the throughput for each particle we solve Eq. (5.2) numerically using the

finite element software COMSOL. In particular we use the steady-state convection

and diffusion analysis. The geometry used is a rectangular channel where the walls in

Y and Z are defined by the hard wall potentials φ1 and φ2 respectively [see Fig. 5.4] so

that the polymer segments cannot penetrate the walls. To introduce the interparticle

potential interaction Ψ(R) in COMSOL, we have to define an effective flow velocity as
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XY

Z

Figure 5.4: Rectangular channel of size W1 = 0.5W , W2 = 0.75W and L = 5W

where the walls in Y and Z are defined by the infinitely repulsive potentials φ1 and

φ2 respectively. The color scale encode the value of C ranging from a minimum value

(dark blue) to a maximum value (dark red) for Pe = 1 and βΨ0 = 1.

U∗(R) = U(Y, Z)−βD(Y, Z) · ∇RΨ(R). We impose no-flux boundary conditions in

the entire domain except in the two channel ends X = ±L where periodic conditions

are imposed in order to allow for a steady state to develop.

Hence, to assess the throughput the potential term should be introduced in

Eq. (3.6) which leads

Q1/2(X, Y, Z) =

∫

Ω

{

U(Y/Z)C(R)−D1/2 [∂XC(R) + βC(R)∂XΨ(R)]
}

dXdY dZ

(5.3)

with Ω the integration volume which corresponds with Fig. 5.4

At first we focus on the variation of the fluxes for each particle as a function

of the thickness of the forbidden zone di on the channel for different particle sizes.

We observe that the qualitative behavior of Qi are the same as for hard spheres.

That means the flux Qi increases as di increases. In addition, if one increases d1, Q2

decreases and Q1 decreases as d2 is increased.

Next, we turn our attention to the variation of the fluxes with the solvent flow

velocity u0 (with the Pèclet number). The considered cases are the same as those

for hard spheres: (a) one large particle W1 = 0.25W (d1 = 0.75W ) with a small

particle W2 = 0.5W (d2 = 0.5W ) for a channel length 2L = 10W and a interparticle
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interaction range d = 0.7W ; (b) the second case named as symmetric case will be for

two equal and small particles W1 = W2 = W (d1 = d2 = 0W ) with a channel length

of 2L = 10W for the same d as the first case; and the last one (c) considering one big

particle W1 = 0.25W and one small particle W2 = W with the same channel length

as case (b) but with a interaction range of d = 1.4W . For all cases, we observed that

the particles can pass each other or they can travel together for increasing velocity in

contrast to hard particles where the particles cannot pass each other in some cases

depending of the size of the hard spheres and/or the interaction distance d between

them.

As the temperature can influence the behavior of the fluxes inside the channel

through the Gaussian potential, we look at the fluxes Qi as a function of the solvent

flow velocity and for the same values of temperature used in Fig. 5.3. We are looking

for different values of the solvent flow from u0 ≥ 0 till u0 = 50W/D, i.e., for different

values of the Pèclet number from Pe = u0W/D = 0 till Pe = 50. Upon increasing

the flow solvent, we have different parabolic profiles, these profiles are sharper for

increasing flow solvent. For example, we look at the case (a) in section 3.1.3 — two

particle of size W1 = 0.25W and W2 = 0.5W — but now for a channel length of

2L = 40W and for a d = 2W . We solve numerically Eq. (5.3) using COMSOL due to

the impossibility to solve analytically because of the dependence of the potential on

X. The behavior of the throughput for different values of βΨ0 is shown in Fig. 5.5.

The fluxes of each particle Qi is normalized by the solvent flow velocity u0. For

increasing Pe the difference in throughputs decreases. This effect is most pronounced

for Ψ0β = 5 and least pronounced for Ψ0β = 1. For Ψ0β = 10 we expect to see the

same effect at larger Pe. At this value the particles can hardly pass each other. In

all cases the throughputs are larger than for the non-interacting case Ψ0β = 0. We

attribute this to the interplay between the flux and the interaction potential: The

polymer particles are pushed together as the solvent flow increases. Looking these

results, one can expect that in the middle of the channel at Y = Z = 0 the solution

C(X, Y, Z) will be inhomogeneous and on both sides of the channel homogeneous.

The comparison of the throughput for both cases, hard particles and soft particles,

will be the next object for study. To be able to compare both cases, we have to look

at the case βΨ0 = 1 in soft particles see Fig. 5.6. For soft particles, the separation

efficiency, i.e., the differenc of Q1 and Q2, decreases as the Pèclet number increases

inside the channel in contrast to hard spheres where the separation increases with

the flow.
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Figure 5.5: Throughput of each particle Qi normalized to the solvent flow velocity

as a function of u0, i.e., as a function of the Pe number for the case of a big particle

W1 = 0.25W with a small particle W2 = 0.5W for an interaction distance between

both center of mass of d = 2W and a channel length of 2L = 40W for different values

of βΨ0 a) βΨ0 = 1, b) βΨ0 = 2 c) βΨ0 = 5 and d) βΨ0 = 10.
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Density profiles

As we are interested on the separation process, the next step was to evaluate the

density profiles of each particle ρi as a function of the solvent flow u0 for the following

case: two particle of sizeW1 = 0.25W andW1 = W for a channel length of 2L = 40W

and for an interaction distance between both center of mass of d = 2W and for

three different values of the temperature βΨ0 = 0.1, 1, 10. We continue with the

same analysis by COMSOL: the advection-diffusion model. We evaluate the density

distribution profiles of particle 1 and 2 averaging along the X direction and the Y or

Z direction of the variable C defined on some 3-dimensional domain in the yz-plane

by calculating the integral on Eq. (3.8), respectively.

For the intermediate value βΨ0 = 1 [see Fig. 5.7 (b)], we observe that both

particles —the smaller particle and the larger one — move closer to the channel walls.

By increasing Pe, the modulation of the density profiles increase homogeneously and

monotonously, and there is more probability of finding the particles at the channel

walls than at the middle of the channel. For βΨ0 = 10 [see Fig. 5.7 (c)] (when

particles can hardly pass each other), both particles are closer to the channel walls.

The modulation of the density profiles now increase monotonic till Pe = 10 and

then starts to decreases. The probability of finding the particles at the wall increases
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Figure 5.7: Normalized density profiles ρi for one big particle W1 = 0.25W with a

small particle W2 = W for a distance between both center of mass d = 2W and with

a channel length of 2L = 40W for three increasing temperature cases: a) βΨ0 = 0.1;

b) βΨ0 = 1; and c) βΨ0 = 10
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with increasing u0 until the value Pe = 10 is achieved, and then the probability

starts to decreases very slowly. For the small value of βΨ0 = 0.1 (for larger T ) [see

Fig. 5.7 (a)], we observe that both particles move closer to the channel walls than

at the middle of the channel. We observe the same modulation of the density profiles

for all the values of Pe and therefore the probability densities ρi are independent of

the Pèclet number Pe. This case corresponds with a weak interparticle interaction

potential, i.e., with a high temperature.

We can conclude that independently of the temperature and the polymer size,

the polymer particles tend to move closer to the channel walls in contrast with col-

loidal particles [see Fig. 3.6], of which only the smaller ones tend to move closer to

the channel walls. Our result differs for those obtained in the group of Winkler in

”Forschungszentrum Jülich” for the case of a flexible, single polymer in a channel.

Winkler saw that the polymer was located in the central part of the channel. Maybe

this difference is due to our neglecting of the hydrodynamic interactions with the

walls, which were taken into account in the simulation by Winkler.

Louis et al [77] compare their results for polymer interactions with the polymers

being modeled as polymers with that being modeled by the hard-sphere model. They

found that the HS model is not a good model to describe the polymer interactions.

Krüger [66] found that a particle is much less hindered in its motion by a suspension

of equal sized polymers than by a suspension of equal sized spheres. The particle and

the polymer interact less strongly via the solvent.

5.2 Soft wall potentials

The aim of this section is to model the interaction of the polymers with the channel

walls as a soft type interaction. In order to compare the soft wall with the hard wall,

we looked at the case of an ideal chain in a good solvent instead of a coil polymer.

If we should treat it like a coil polymer, we would have to consider the interactions

within the chain. In this case, the polymer can be described by a random walk.

Although we neglect the solvent flow, we treat the interaction between the polymer

and the walls as if this was in a good solvent but disregard the interaction between

the solvent and the polymer and disregard the dependence of the type of solvent with

the size of the polymer. As mentioned before, solvent goodness plays a role. If the

polymer chain is in a good solvent, then a difficulty of bringing the polymers close

exists due to the enthalpic repulsion caused by the solvent.

As discussed in the previous section, the interactions among the monomers will

not be considered, only the interactions with the channel walls and among other



5.2. Soft wall potentials 73

polymers. The interaction potential or energy will be independent of the polymer

shape. The monomers will be reflected by the confinement walls.

First, we will introduce some basic concepts related to polymer physics, in particu-

lar to the ideal chain in a good solvent. A full statistical mechanics description of poly-

mer physics is out of the scope of the thesis and can be found elsewhere [28,32,56,94].

An ideal chain trapped in a channel

The chain is captured in a cylindrical tube of diameter h≪ R being R the end-to-end

vector with hard nonabsorbing walls. In an ideal chain, the short range interactions

between segments, which are located close to each other along the chain, are included

but the long range interactions are ignored [32]. The free energy of a confined ideal

chain squeezed between two walls for short distances between the walls is given by

F ≃ kBT

(

R

h

)2

(5.4)

where R2 = Nb2 is the chain extension (the end-to-end distance) being b the segment

length or Kuhn length, and h is the distance between the walls [28]. The channel

walls will repel the chain strongly but will not affect the components of the random

walk parallel to the channel axis [28]. Basically, one counts the number of encounters

a random walk makes with the confining walls. One needs about g segments to reach

the walls with h2 = gb2. Thus, there are N/g collisions with the wall, each of which

contributes an amount of order kBT .

The cut-off at large distances is given by the spatial distribution of the density,

i.e., e−ch/R with c being a constant. Thus altogether one has

F ≃ kBT

(

R

h

)2

e−ch/R (5.5)

for the free energy. In a good solvent — real polymers — the monomers cannot

intersect. The extension of the polymer is greater and one has to consider the excluded

volume. The average size of an excluded volume chain is larger than that of an ideal

chain. If one adds the restriction that no overlapping is permitted, one would expect

the size distribution to be shifted to larger values, and so the excluded volume chain

is larger than the ideal chain of the same length [32]. It is no longer a random walk,

it is the so-called self-avoiding walk. Therefore, for three dimensions, the exponent

2 in Eq. (5.5) has to be replaced by 1/ν with ν = 0.588 being the self-avoiding walk

(SAW) exponent. This ν parameter includes the excluded volume effects and it is

related to chain size. The free energy increases, i.e., it is equivalent to a repulsive

interaction. In the SAW, the walk can never intersect itself in contrast with the
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random walk. The SAW model is the normal description of a dilute polymer coil in

solution. The confinement energy for real polymers is larger than for ideal chains.

Therefore, the free energy F for real polymers in confinement will be:

F ≃ kBT

(

R

h

)1/ν

(5.6)

for short distances from the wall and

F ≃ kBT

(

R

h

)1/ν

e−ch/R (5.7)

for large distances.

The self-avoiding property reflects the fact that two monomers cannot occupy the

same point in space. The SAW constraint causes the walk to spread out. The model

of a self-avoiding walk (SAW) on a lattice has been widely used as a convenient

representation of a polymer molecule in which the excluded volume is taken into

account in a realistic manner.

The Gaussian character is already ”used” in the leading factor and a Gaussian

cut-off is not obviously worse or better. Louis and Hansen [15,16,76,77] have looked at

the effective interaction between a polymer and a wall. They calculated numerically

the polymer-wall interaction potential for polymers in a good solvent considering

the SAW model and found that the effective wall-polymer repulsion increases with

increasing concentration and becomes more repulsive with density.

Two polymers in a narrow channel

As we focus on a narrow channel, we don’t need to know exactly the expression for

the polymer-wall potential. We are interested only in the case that the polymers are

close to the walls. We need only the qualitative behavior of this potential because for

narrow channel we expect subtle differences not to induce a great difference on the

density profiles or throughput. In the experiments one has to do a lot of measuring

and refining of the measurements to obtain the exponential behavior.

For reasons of simplicity, we chose the interaction of the particles with the walls

in such a way that it mimics the entropic repulsion from a solid wall. This interaction

potential will correspond with the case that the particles are very close to the walls

which is related to the free energy close from the walls Eq. (5.4). So the particle-wall

interaction potential in the case of two polymers in a narrow channel will be given

by:

Φi(y,W ) = Φ0i(Wi,W )

[

(W )1/ν

(y −W )1/ν
+

(W )1/ν

(y +W )1/ν
− 2

]

(5.8)
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with the potential strengths Φ0i choosed such that Φ0i(Wi,W ) = kBT . For simplicity

we set ν = 0.5. On the other hand, the polymer-polymer interaction potential will be

the same as in preceding section, i.e., it will be a Gaussian pair potential. To allow

us to compare with the hard spheres model, we set βΨ0 = 1.

Having deduced the expression of the polymer wall repulsion from the ideal chain

interaction with the walls, we can now simulate the throughput using again the finite

element software COMSOL. The analysis used is the advection-diffusion equation

with the particle diffusivities assumed equal, and the flow velocity and the interac-

tions potentials introduced in the effective flow velocity U∗ = U(Y, Z)− βD(Y, Z) ·
∇R(Ψ(R) + Φ1(Y ) + Φ2(Z)), see Section 5.1.

As the polymer-wall repulsion Φi is divergent on the walls, we are not able to

solve numerically the advection-diffusion equation with COMSOL. The next step is

to solve analytically. Our first attempt to eliminate the transport on the walls was to

assume as a solution a convergence function f(x, y, z) = CeΦ1+Φ2 which only depends

on the particle wall potentials and replacing C in Eq. (2.20). With this assumption,

one arrives to the advection-diffusion equation for this convergent function f with a

modified mobility tensor which depends on both particle wall potentials and therefore

the diffusion tensor should also be modified and it is given by:

D(y, z)/D =







2e−Φ1−Φ2 0 0

0 e−Φ1−Φ2 0

0 0 e−Φ1−Φ2






(5.9)

This modified diffusion tensor tends to zero on the walls. The same occurs when

we attempt to solve with another convergence function like f(x, y, z) = CeΦ1+Φ2+Ψ,

where D tends to zero on the walls. With this approximation we are also not able to

solve numerically due to the singularity of the diffusion tensor. This is only possible

if one moves the walls some quantity δ to eliminate the divergency in the region of

interest.

Before doing the above approximation with COMSOL, we looked for another

solution of the partial differential equation. We are interested to extend or expand

the double layer near a wall. Then the new solution will be C = f(x)e−Φ1−Φ2−Ψ.

After some calculation we achieve that this is not a solution of the partial differential

equation because the inhomogeneous solution depends on y and z and it should

depend only on x. In conclusion, the advection-diffusion equation does not have an

analytically solution.

We finally turn our attention to solve numerically the advection-diffusion equa-

tion Eq. (5.2). The analysis used with COMSOL is the steady-state convection and

diffusion. We realize the following approximation: we reduce volume of integration,
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i.e., we reduce the channel width and height by a small quantity δ to eliminate the

divergence of the polymer-wall potential on the walls [see Fig. 5.8 (a)]. We solve

δ

δ

Z

Y

X
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Figure 5.8: (a) Reduction of the channel width and height (Y and Z direction)

a quantity δ to eliminate the polymer-wall potential divergence; (b) Polymer-wall

potential for the first particle as a function to the distance to the wall

with COMSOL being the walls now at −W + δ and W − δ. We choose the smallest

possible value of δ which allows for a numerical solution. We consider the diffusion

coefficient of each particle equal Di = D1 = D2 = D. We impose no-flux boundary

conditions in the entire domain except in the two channel ends X = ±L/2 where

periodic conditions are imposed to allow for the motion of the particles.

We analyze the throughput for each particle Qi as a function of the Pèclet num-

ber. The throughput of each particle Qi is normalized by the Pèclet number. We

consider four different cases with the channel length 2L = 10W and the interpar-

ticle interaction range d = 2W : (a) W1 = 0.25W , W2 = 0.5W (b) W1 = 0.25W ,

W2 = 0.75W (c) W1 = 0.5W , W2 = 0.75W (d) W1 = 0.75W , W2 = 0.75W . We

must vary δ for each case due to the dependence of the polymer-wall potential with

the distance to the wall [see Fig. 5.8 (b)]. The behavior is shown in Fig. 5.9. We

have represented Qi/Pe as a function of Pe. The results show a reduction of the

separation efficiency with flux in contrast with the HS model where flux enhanced

the separation efficiency as shown in Fig. 3.7 a. This is the same behavior as for

hard particle wall interaction potentials, see Fig. 5.5.

Hydrodynamic effect on polymers

As for colloidal suspensions, it is well-known the hydrodynamic interactions cannot

be ignored in dilute solution and they contribute to the rheological behavior of these
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Figure 5.9: The throughput of each particle Qi normalized to the Pèclet number as a

function of Pe for a interparticle interaction range of d = 2W and a channel length of

2L = 10W : (a) W1 = 0.25W , W2 = 0.5W , δ = 0.4W (b) W1 = 0.25W , W2 = 0.75W ,

δ = 0.4W (c) W1 = 0.5W , W2 = 0.75W , δ = 0.22W (d) W1 = 0.75W , W2 = 0.75W ,

δ = 0.18W
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solutions. In polymer solutions, this is modelled by the Zimm model in good solvent

which takes into account the hydrodynamic interactions between the polymer beads

by using the Oseen tensor and predicts the dependency of the diffusion coefficient on

the chain size as D ∼ R1 [33]. On the other hand, polymer-surface hydrodynamic

interactions determine the polymer dynamics. But how is the form of the diffusion

tensor for the case of two ideal chain polymers inside a channel? And which is the

influence of HI in good solvents? At the moment these questions are still open.

The Zimm model has been already used to study the hydrodynamic interactions

of DNA polymers in shear flow [51]. Previously the hydrodynamic interactions were

studied for polymers immersed in a Newtonian flow with the method of induced

forces [74]. More recently, Krüger [66] studied them for the case of a spherical particle

in a polymer solution defining a time dependent diffusion coefficient D(t) with two

time limits, short and long corresponding with the short and long time diffusion

coefficients respectively. He demonstrate that at time t = 0 the distribution of

polymers around the sphere is still in equilibrium and the short time mobility is solely

determined by the hydrodynamic force on the spherical particle. On the other hand,

Winkler et al [20] have studied the hydrodynamic effect on a flexible polymer inside

a channel and they saw how the hydrodynamic interactions are partially screened by

the presence of the surfaces and there is still a pronounced migration.

As we have seen in Chapter 4, the hydrodynamic interactions between the particles

and the walls alter the mobility tensor µij and do not change the direct interactions

potentials. Since we are neglecting the interaction among the beads or monomers,

to take into account the hydrodynamic interactions between the polymer coils or

between the polymer coil and the walls, we must choose an appropriate Oseen tensor.

Once more we have to be sure about the dependence of the diffusion coefficient with

R as in chapter 4. On the other hand, we are not able to study the influence and

effect of the hydrodynamic interactions due to the impossibility at the moment of

analytically solving the advection-diffusion equation and also due to the use of an

uncontrolled numerically approximation.

5.3 Conclusion

This chapter focused on the understanding of the effect of direct interactions for

polymers on the transport process. We have modeled the polymers as soft particles,

but also as a hard core type for the case shown in Section 5.1

While for hard particles the only relevant parameters are the Pèclet number and

the three lengths di and d, the situation is different for soft particles [103]. There,



5.3. Conclusion 79

the dimensionless potential strength Ψo/(kBT ) is a fifth relevant parameter — the

wall potential strengths Ψ0i can be related to the lengths di. For hard particles,

one only distinguishes between small Pèclet numbers Pe ≪ 1, for which diffusion

dominates over advection, and large Pèclet numbers Pe ≫ 1, for which advection

dominates. For soft particles, in addition one has to distinguish between weak and

strong interactions potentials.

The dependence of the polymer-polymer interaction potential and the density

profiles on the temperature was shown. By increasing βΨ0 the difficulty for the

particles to pass each other increases till a value is reached at which it is no longer

possible. Related to the density profiles, it was shown that independently of the

value of βΨ0 both particles tends to move closer to the walls than at the middle of

the channel.

We can conclude that independent of the temperature and the polymer size, the

polymer particles tends to move closer to the channel walls in contrast to colloidal

particles for which only the smaller ones tends to move closer to the channel walls.

That is in contradiction with the results of Snook et al [119] for flexible polymers

particles who find a greater probability of being in the centre of the channel than

near the wall.

We have presented in Section 5.2 an approximation for the soft behavior in the

case of the polymer-wall interaction potential. We have seen that it is not possible

to analytically solve the advection-diffusion equation due to the divergence of the

potentials. To have an idea of the throughput for each particle, we have realized an

approximation of our integration volume to eliminate the divergence of the polymer

wall potential on the walls. It was shown that the polymer separation efficiency is

decreases with the flow.
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Chapter 6

Summary and outlook

The purpose of this thesis has been to study the influence of the interactions and

surface confinement on the transport process of suspended particles from a theoret-

ical perspective. For the understanding of the transport process in the nano- and

microscale, we focused on the dynamics of complex fluids, in particular colloidal sus-

pensions and polymer solutions in a hydrodynamic chromatography setup. Since

under confinement conditions the rheological properties of the complex fluids are af-

fected both by the walls of the confinement as well as by the interactions present in

the system, the focus of this work was mainly to assess the influence of interactions

among the particles and between the particles and the channel walls.

Although the DDF formalism successfully describes mixtures of point particles

with direct pair interactions and with many body interactions and advected in a

solvent, we have showed how it fails when it comes to dense non-equilibrium steady

states. In the first part of this thesis we discussed the failure of the dynamic density

functional theory to describe a two dimensional problem: the non-equilibrium steady

state of the transport properties of Brownian particles advected by a flowing solvent

in a narrow channel. In particular for steady state systems, the solution of the DDFT

equation is equal to the equilibrium density distribution and therefore the dynamics

of the transport process are not described.

As a demonstration of the failure, we have analyzed the dynamics of a mixture

of two colloidal suspended particles of different sizes diffusing and advected through

a two dimensional narrow channel at low Reynolds numbers. We directly solved the

Smoluchowski equation for two particles. We found that the DDFT fails to describe

some aspects related to the transport properties. On the one hand we obtained a

change of the density distribution across the channel induced by the solvent flow.

This change cannot be detected by the DDF formalism due to the independency of

the density distribution of the solvent flow in this theory. Additionally we observed

81
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that the flux must be equal in the case that the particles cannot pass each other which

is no attainable in the DDF formalism since it is impossible to input that the particles

cannot pass each other. We related these discrepancies between our results and the

DDF formalism to the grand canonical character of the density functional and to the

equilibrium assumption for the correlations functions (the local equilibrium) within

the framework of DDFT.

For further studies, it would be interesting to think about the limit of the DDFT.

One has to think about how to overcome this problem, perhaps by truncating the

BGY-hierarchy in the DDFT at higher orders or by factorizing higher correlation

functions.

For these reasons, we resorted to a simple two-dimensional two-particle system in

order to get insight into the transport of colloidal suspensions in thin channels. In

order to study the transport phenomena, we start with the Smoluchowski equation for

the non-equilibrium density probabilities also called drift-diffusion equation. On the

other hand we focused on the understanding of the hydrodynamic chromatography

mechanism and the transport process. For that purpose we calculated the fluxes and

density profiles for each particle. We found a good agreement between our results and

the basic picture of the mechanism underlying the hydrodynamic chromatography

technique when we took only the direct interactions into account. The separation

process is achieved because large particles are confined to channel center where the

velocity is bigger such that they travel faster than smaller ones. An enhancement of

the particles separation with solvent flux was observed. The reason is that smaller

ones are pushed to the channel walls by larger ones. However, the separation efficiency

is reduced by direct interactions: smaller ones are accelerated and bigger ones are

decelerated in collisions.

Given that the hydrodynamic interactions are most important in dilute bulk sys-

tems and have more influence on the particle motion, it is significant to assess the

effect of these solvent mediated interactions. First we looked at the influence of the

hydrodynamic interaction among the particles. We solved the Stokes equation for a

sphere fully immersed in a channel. In comparison with the bulk, we found that the

flow field decays proportionally to 1/x2 with x being the distance along the channel

axis. Therefore the effect on the other particles is smaller than in a bulk system where

the flow field decays proportional to 1/x. We also observed a faster decay for thinner

channels. An important result for particle-particle hydrodynamic interactions is that

they are significantly reduced by the lateral channel walls.

Finally we studied the hydrodynamic interactions with the confinement surface. As

the two dimension hydrodynamics is ill defined, we modeled the basic effects of the
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particle surface hydrodynamic interaction in a three dimensional problem: the diffu-

sivity near the channel walls is reduced. In accordance with the corresponding results

for a three-dimensional sphere near a wall, we take the diffusivity normal to the wall

to vanish at contact and the diffusivity parallel to the wall to be reduced to 1/3 of

the bulk diffusivity. The influence of the reduced mobility on the particle distribution

within the channel as well as on the throughput and the separation efficiency is very

small.

At this moment we do not have information about experimental investigations for

two particles between parallel walls, and consequently we cannot do comparisons with

experimental results. For further studies, it would be interesting to know exactly the

dependence of the particle mobilities on the distance to the wall and on the distance

to other particles for a better understanding of the hydrodynamic forces. It is well

known that the separation of the hydrodynamic effect on the particles into particle-

wall and particle-particle interactions is rather ambiguous.

Many colloidal particles are non-spherical. For these kinds of particles, it would

be interesting to see the relevance of the hydrodynamic interactions. For a better

understanding of the dynamics of real suspended particles, one can include in further

studies their rotational motion. In our model we neglected the rotational motion be-

cause it is not relevant for spherical particles. If one considers asymmetric particles, it

is well known that translational and rotational motion can induce a fluid flow velocity

that affects other particles in their motion. One has to add a term depending of the

rotational diffusion coefficient in the Smoluchowski equation (2.5) as shown in [110].

Hydrodynamic torque induced by hydrodynamic interactions has been calculated for

hard spheres in [50].

It would be also interesting to consider charged particles instead of uncharged

particles. If the particles are charged then the electrostatic interaction between the

charged spheres and the walls must be taken into account. One have two cases to

analyze: a) when the suspended particles and the surface confinement have different

electric charges, then an attractive force between them exists, and b) when both —

particles and wall — have the same charge, then the particles would be repelled by

the surface. This phenomenon is generated by a double layer near the particles and

the wall. The main challenge here is to take into account the dynamics of this double

layer in the solvent flow.

In the last part of this thesis, we draw special attention to a more realistic case:

the transport of polymer solutions in narrow channels. For that purpose we modeled

the polymers as soft point particles. While for hard particles the only relevant pa-

rameters are the Peclet number and the hard core interaction distances between the
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particles and the wall as well as among the particles, the situation is different for soft

particles [103]. There, the dimensionless inter-particle interaction potential strength

(normalized by the thermal energy) is a fifth relevant parameter — the wall poten-

tial strengths can be related to particle-wall hard core distances. For hard particles,

one only distinguishes between small Peclet numbers Pe ≪ 1, for which diffusion

dominates over advection, and large Peclet numbers Pe ≫ 1, for which advection

dominates. For soft particles, in addition one has to distinguish between weak and

strong interactions potentials.

First, we analyzed the dependence of the system on the interaction potential

between the polymers, which we model as a Gaussian. By increasing the interaction

strength, the difficulty for the particles to pass each other increases and for large

enough values it is hardly possible for them to pass each other. Additionally, by

increasing the interaction strengh both particles — the smaller particle and the larger

one — move closer to the channel walls. But for weak potentials, we observed that

the large particle is homogenously distributed across the channel while the small

particle tends to move closer to the channel walls. The last result is inconsistent with

the simulation by Winkler. The explanation for this discrepancy can come from our

disregarding of the hydrodynamic interactions and of the internal structure of the

polymer coil.

Concerning to the interaction potential of the polymers with the walls, we ana-

lyzed two cases. The first case considered the interaction potential as a hard core type.

We observed that the behavior of the polymer is quite different than the behavior

of hard spheres. The particles were found to be closer to each other in comparison

with colloidal particles and this effect is strong as the flow velocity increases. Fi-

nally, we considered the interaction potential as a soft type. We modeled the wall

interactions as that of an ideal chain diffusing in a good solvent and neglecting the

dependency of the solvent on the temperature. We chose this potential so that it

mimicked the entropic repulsion from a solid wall. We found some problems to solve

the corresponding Smoluchowski equation both analytically and numerically due to

the divergence of this potential at the walls. We used an uncontrolled approximation

to eliminate the divergence on the walls by reducing the volume of integration. We

observed the same behavior on the separation of particles as in the case of hard core

type interaction potential.

Once the understanding of the transport process corresponding to a mixture of

two suspended particles is achieved, another interesting thing would be to extend the

studies to N -body systems and to time dependent problems, i.e., to transient states.

To take a step forward in the understanding on the transport process, one can study
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a mixture of particles (colloids and polymers).



86 6. Summary and outlook



Zusammenfassung

Die vorliegende Arbeit behandelt den Bereich der statistischen Mechanik der komple-

xen Flüssigkeiten. Die Motivation war es den Einfluss von Wechselwirkungen und den

Effekt der Einschreibung der Geometrie auf dem Transportprozess von suspendier-

ten Partikeln aus theoretische Sicht zu studieren. Für das Verstehen des Transport-

prozesses auf der Nano- und der Mikroskala wurde sich auf die Dynamik von Wei-

cher Materie, insbesondere die kolloidale Suspensionen und Polymer-Lösungen durch

die hydrodynamischen Chromatographie konzentriert. In eingeschränkten Geometri-

en werden die rheologischen Eigenschaften der komplexe Flüssigkeiten beide durch

die Wände sowie durch die Wechselwirkungen im System beeinflusst. Diese Arbeit ist

fokussierte darauf, den Einfluss von Wechselwirkungen zwischen den Partikeln und

den Kanalwänden ebenso wie die Wechselwirkung zwischen Partikeln abzuschätzen.

Obwohl die dynamische Dichtefunktionaltheorie (DDFT) erfolgreiche Mischungen

von Punktteilchen mit direkten Wechselwirkungen und advektiert in einem Lösungs-

mittel beschreibt, haben wir den Misserfolg der DDFT beim dichtem Nichtgleichge-

wicht des stationären Zustandes aufgezeigt. In dem ersten Teil der Arbeit erläutern

wir den Misserfolg der DDFT am Beispiel eines zweidimensionalen Problems: der

Stationäre Nichtgleichgewichtszustand von Brownschen Teilchen advektiert durch ein

Lösungsmittel im schmalen Kanal. Insbesondere für den stationären Zustand, ist die

Lösung von der DDFT Gleichung durch die Gleichgewichtslösung beschrieben. Die

Dynamik des Transportprozesses wird nicht dargestellt.

Wie der Nachweis von dem Misserfolg zeigt, haben wir die Dynamik von einer

Mischung aus zwei Kolloidteilchen verschiedener Größe welche durch einen zweidi-

mensional schmalen Kanal bei niedrigen Reynolds-Zahlen diffundieren analysieren.

Wir lösten direkt die Smoluchowski Gleichung für zwei Teilchen. Wir fanden dass die

DDF Theorie manche Aspekte des Transportes nicht beschreibt. Einerseits erhiel-

ten wir eine Strömungsinduzierte Änderung der Dichteverteilung ins Kanal. Diese

Änderung kann der DDF Formalismus aufgrund der Unabhängigkeit der Dichtever-

teilung von Lösungsmittelfluss in dieser Theorie nicht reproduzieren. Zusätzlich beob-

achteten wir, dass die Transportrate gleich sein muss in dem Fall, dass die Partikeln
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einander nicht überholen können. Dieses ist im DDF Formalismus nicht erreichbar da

es unmöglich ist, die Tatsache, dass Teilchen sich nicht überholen können zu imple-

mentieren. Wir brachten diese Diskrepanzen zwischen unseren Ergebnissen und dem

DDF Formalismus in Verbindung mit den großkanonischen Charakter des Funktio-

nals und mit der lokalen Gleichgewichtsannahme für die Korrelationsfunktionen (das

lokale Gleichgewicht) innerhalb der DDFT.

Aus diesen Gründen beschränkten wir uns auf ein einfaches zweidimensionales

Zwei-Teilchen-System, um den Transport von den kolloidalen Suspensionen in dünnen

Kanälen zu verstehen. Um die Transportphänomene zu studieren, fingen wir mit der

Smoluchowski Gleichung für die Wahrscheinlichkeitsdichte im nicht-Gleichgewicht,

auch Advektions-Diffusions-Gleichung genannt, an. Andererseits konzentrierten wir

uns auf das Verstehen des Mechanismus der hydrodynamischen Chromatographie und

des Transportprozesses. Für dieses Ziel berechneten wir die Transportrate und die

Dichte Verteilungen für jeden Teilchen. Wir fanden eine gute Übereinstimmung zwi-

schen unseren Ergebnissen und dem grundlegenden Bild des Mechanismus der hydro-

dynamischen Chromatographie wenn wir nur die direkten Wechselwirkungen betrach-

teten. Die Auftrennung nach Teilchengröße wird erreicht, weil die großen Partikel auf

das Zentrum des Kanals eingeschränkt sind, wo die Lösungsmittel-Geschwindigkeit

größer ist so dass sie sich schneller bewegen als die kleineren. Eine Verbesserung der

Auftrennung mit den Lösungsmittelfluss wurde beobachtet. Der Grund ist, dass die

kleineren durch die größen Teilchen an die Kanalwänden gedrückt werden. Aller-

dings wird die Trennungseffizienz durch direkte Wechselwirkungen reduziert: kleinere

Teilchen werden beschleunigt und größere werden in Kollisionen verlangsamt.

Hydrodynamische Wechselwirkungen sind in verdünnten Lösungen und für von

Wänden sehr wichtig. Da sie Einfluss auf die Teilchenbewegungen haben, es ist wich-

tig den Effekt von diesen Lösungsmittelinduzierten Wechselwirkungen zu berechnen.

Erst betrachten wir den Einfluss von hydrodynamischen Wechselwirkungen zwischen

Partikeln. Wir lösten die Stokes Gleichung für eine Kugel in einem Kanal. Im Ver-

gleich zum Volumen, fanden wir, dass das Strömungsfeld proportional zu 1/x2 abfällt,

wobei x der Abstand entlang der Kanalachse ist. Deshalb ist der Einfluss auf die an-

deren Partikel kleiner als im Volumen wo das Strömungsfeld proportional zum 1/x

abfällt. Außerdem beobachteten wir einen schnelleren Abfall bei dünneren Kanälen.

Ein wichtiges Ergebnis in Bezug auf die hydrodynamischen Wechselwirkungen zwi-

schen den Teilchen ist, dass sie durch die Kanalwände signifikant reduziert werden.

Am Ende studierten wir die hydrodynamischen Wechselwirkungen mit den Kanal-

wänden. Weil die zweidimensionale Hydrodynamik schlecht definiert ist, wählten wir

für die grundlegenden Effekte der hydrodynamischen Wechselwirkung zwischen den
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Teilchen und der Kanalwand in einem dreidimensionalen Problem eines phänomeno-

logischen Ansatz: Die Diffusivität in der Nähe der Kanalwände wurde reduziert. In

Übereinstimmung mit den entsprechenden Ergebnissen für ein dreidimensionales Sys-

tem in der Nähe von einer Wand nehmen wir an, dass die Diffusivität normal zur

Wand am Kontakt verschwindet und dass die Diffusivität parallel zur Wand auf 1/3

des Volumenwertes reduziert wird. Der Einfluss der reduzierten Mobilität auf die Ver-

teilung der Teilchen innerhalb des Kanals sowie auf die Transportrate und Effizienz

der Trennung ist sehr klein.

In dem letzten Teil dieser Arbeit lenkten wir die spezielle Aufmerksamkeit auf

einen realistischeren Fall: den Transport von Polymerlösungen in schmalen Kanälen.

Zu diesem Zweck modellierten wir die Polymere als weiche Punkt-Teilchen. Während

für harte Teilchen die einzigen relevant Parameter die Pèclet-Zahl und die harten

Wechselwirkungsabstände zwischen den Teilchen und der Wand sowie zwischen den

Teilchen sind, ist die Situation anders für weiche Teilchen. Dort ist, die dimension-

lose Stärke der Wechselwirkung zwischen den Teilchen (bezogen auf die thermische

Energie) ein fünfter relevanter Parameter — die Wandpotenzialstärken ergeben sich

aus den Teilchen-Wand-Wechselwirkungsabständen. Für harte Partikel unterscheidet

man nur zwischen kleiner Pèclet-Zahlen Pe << 1, wo die Diffusion über Advektion

dominiert, und grosser Pèclet-Zahl Pe >> 1, wo die Advektion dominiert. Für weiche

Partikeln muss man außerdem zwischen schwachen und starken Wechselwirkungspo-

tenzialen unterscheiden.

Zunächst analysierten wir die Abhängigkeit des Systems von Wechselwirkungspo-

tenzial zwischen den Polymern, welches wir als Gauß’sch modellieren. Bei steigender

Wechselwirkungskraft steigt die Schwierigkeit für die Partikel einander zu passieren

und für große genug Werte ist es für diese kaum möglich um einander zu passieren.

Zusätzlich, bei größerer Wechselwirkungskraft bewegen sich beide Partikel — die klei-

neren Partikel und die größere — näher bei den Kanalwänden. Aber für schwache

Potenziale bemerkten wir, dass das große Partikel über den Kanal homogen verteilt

wird, während das kleiner Partikel dazu tendiert sich näher zu den Kanalwänden zu

bewegen. Das letzte Ergebnis war mit der Simulation durch Winkler inkonsequent.

Ein Erklärung dieses Unterschieds kann sein, dass wir die hydrodynamischen Wech-

selwirkungen und der innere Struktur des Polymerknäuels vernachlässigt haben.

In Bezug auf das Wechselwirkungspotenzial des Polymers mit den Wänden ana-

lysierten wir zwei Fälle. Der erste Fall betrachtete das Wechselwirkungspotenzial

als das einer harten Wand. Wir beobachten, dass das Verhalten des Polymers sehr

verschieden von das Verhalten von harten Kugeln ist. Man hat gefunden, dass die

Polymerteilchen einander näher waren als die kolloidalen Teilchen und dieser Effekt
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ist stärker je höher die Strömungsgeschwindigkeit des Lösungsmittel ist. Schließlich

betrachteten wir ein weiches Wechselwirkungspotenzial. Wir modellierten die Wand-

wechselwirkungen als die einer idealen Kette, die sich in einem guten Lösungsmittel

befindet und wir vernachlässigen die Abhängigkeit des Lösungsmittels von der Tem-

peratur. Wir wählten dieses Potenzial, so dass es die entropische Abstoßung von einer

festen Wand imitiert. Wir fanden einige Probleme bei der Lösung der Smoluchow-

ski Gleichung, sowohl analytisch als auch numerisch, aufgrund der Divergenz dieses

Potenzials an den Wänden. Wir benutzen eine nicht kontrollierte Näherung, um die

Divergenz an den Wänden zu eliminieren, indem wir das Integrationsvolumen redu-

zierten. Wir beobachteten den selben Einfluss des Wandpotentials auf die Trennung

von Teilchen wie im Fall des harten Wandpotentials.



Resumen

El presente trabajo esta enmarcado en el ámbito de la Mecánica Estad́ıstica de fluidos

complejos confinados. El propósito fue estudiar la influencia de las interacciones y el

efecto del confinamiento en el proceso de transporte de part́ıculas suspendidas desde

un punto de vista teórico. Para comprender el proceso de transporte a escala nano y

micro, nos concentramos en la dinámica de fluidos complejos, en particular suspensio-

nes coloidales y soluciones poliméricas mediante cromatograf́ıa hidrodinámica. Como

bajo condiciones de confinamiento las propiedades reológicas de los fluidos comple-

jos se ven afectadas tanto por las paredes que confinan el sistema aśı como por las

interacciones presentes dentro del sistema, este trabajo se enfocó principalmente en

evaluar la influencia de las interacciones entre part́ıculas aśı como la influencia de las

interacciones entre las part́ıculas y las paredes de canal.

Aunque la teoŕıa del funcional de la densidad dinámico (DDFT) describe con éxito

mezclas de part́ıculas con interacciones directas entre dos part́ıculas puntuales y entre

varias part́ıculas y transportadas (adveccionadas) en un disolvente, mostramos como

esta teoŕıa falla a la hora de describir estados estacionarios densos fuera del equilibrio.

En la primera parte de esta tesis explicamos el fracaso de la teoŕıa del funcional de

la densidad dinámico para describir un problema bidimensional: las propiedades de

transporte de part́ıculas brownianas disueltas y transportadas por un disolvente en

un canal estrecho y en un estado estacionario fuera del equilibrio. En particular para

sistemas estacionarios, la solución de la ecuación DDFT es igual a la distribución de

densidad de equilibrio y por lo tanto la dinámica del proceso de transporte no esta

descrita.

Como demostración del fracaso de la teoŕıa, hemos analizado la dinámica de una

mezcla de dos part́ıculas coloidales de diferentes tamaños suspendidas y transportadas

en un canal estrecho en dos dimensiones para números de Reynolds bajos. Resolvimos

directamente la ecuación de Smoluchowski para dos part́ıculas. Encontramos que la

DDFT no describe algunos aspectos relacionados con las propiedades de transporte.

Por una parte obtuvimos un cambio de la distribución de densidad a través del

canal inducido por el flujo del disolvente. Este cambio no puede ser descrito por el
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formalismo DDF debido a la independencia de la distribución de densidad del flujo

del disolvente en esta teoŕıa. Además, observamos que el flujo debe ser igual en el

caso de que las part́ıculas no se pueden adelantar lo cual no es alcanzable en el

formalismo del DDF debido a la imposibilidad de introducir que las part́ıculas no se

pueden adelantar. Nosotros relacionamos estas discrepancias entre nuestros resultados

y los resultados dados por la teoŕıa DDF con el carácter canónico del funcional de

la densidad y con la aceptación de equilibrio local para las funciones de correlación

(equilibrio local) dentro del marco de la DDFT.

Por estos motivos, nos circunscribimos a un sistema simple bidimensional de dos

part́ıculas con la finalidad de entender el transporte de suspensiones coloidales en

canales estrechos. Para estudiar los fenómenos de transporte preferimos partir de

la ecuación de Smoluchowski para las probabilidades fuera de equilibrio denomina-

da también ecuación de difusión advección. Por otra parte, nos concentramos en el

entendimiento del mecanismo hidrodinámico de cromatograf́ıa y el proceso de trans-

porte. Para dicho propósito calculamos el porcentaje de particulas transportadas y

las distribuciones de densidad para cada part́ıcula. Encontramos concordancia entre

nuestros resultados y la descripción básica del mecanismo de la técnica de cromato-

graf́ıa hidrodinámica cuando tomamos solamente en cuenta las interacciones directas.

El proceso de separación se logra porque las part́ıculas grandes están confinadas en

el centro del canal donde la velocidad del flujo es mayor por lo cual estas viajan más

rápido que las part́ıculas pequeñas. Se observó un aumento de la separación entre

part́ıculas dentro del canal al aumentar el flujo. Esto es debido a que las part́ıculas

pequeñas son empujadas hacia las paredes del canal por las part́ıculas grandes. Sin

embargo, la eficacia de separación se ve reducida por las interacciones directas: las

part́ıculas más pequeñas son aceleradas y las más grandes son desaceleradas en las

colisiones.

Considerando que las interacciones hidrodinámicas son las más importantes en

sistemas diluidos en bulto y tienen más influencia en el movimiento de part́ıculas,

esto es significativo para evaluar el efecto de estos disolventes mediante interacciones.

Primero nos fijamos en la influencia de la interacción hidrodinámica entre las part́ıcu-

las. Resolvimos la ecuación de Stokes para una esfera totalmente sumergida en un

canal. En comparación con el bulto, encontramos que el campo de flujo disminuye

proporcionalmente como 1/x2 siendo x la distancia a lo largo del eje del canal. Por

lo tanto, la influencia en las otras part́ıculas es más pequeña que en un sistema de

bulto dónde el campo de flujo decae proporcional al 1/x. Además observamos una

disminución más rápida para canales más estrechos. Un resultado importante para

las interacciones hidrodinámicas entre part́ıculas consiste en que estas son reducidas
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considerablemente por las paredes laterales del canal.

Finalmente, estudiamos las interacciones hidrodinámicas con las paredes del canal.

Como la hidrodinámica en dos dimensiones no esta bien definida, modelamos los

efectos básicos de la interacción hidrodinámica entre la part́ıcula y la pared en un

problema tridimensional: la difusividad en las proximidades de las paredes de canal

es reducida. De acuerdo con los resultados correspondientes para una esfera tridi-

mensional cerca de una pared, tomamos la componente normal de la difusividad con

la pared de tal forma que desaparezca al contacto y la componente paralela de la

difusividad con la pared de tal forma que se ve reducida a 1/3 de la difusividad co-

rrespondiente al bulto. La influencia de la movilidad reducida en la distribución de las

part́ıculas dentro del canal aśı como en el rendimiento de transporte y en la eficacia

de separación es muy pequeña.

En la última parte de este trabajo, dirigimos nuestra atención hacia un caso más

realista: el transporte de soluciones poliméricas en canales estrechos. Para dicho ob-

jetivo modelamos los poĺımeros como part́ıculas de punto blandas. Mientras que para

part́ıculas duras los únicos parámetros relevantes son el número de Pèclet y las dis-

tancias de interacción entre las part́ıculas y la pared aśı como entre las part́ıculas,

la situación es diferente para part́ıculas blandas. Alĺı, la intensidad de la interacción

entre part́ıculas (que es una magnitud adimensional) normalizada por la enerǵıa ter-

mica es un quinto parámetro relevante—las intensidades del potencial con la pared

pueden estar relacionadas con la distancia entre la pared y la part́ıcula de esferas du-

ras. Para part́ıculas duras, se distingue únicamente entre números de Pèclet pequeños

Pe << 1, donde la difusión domina sobre la advección, y números de Pèclet grandes

Pe >> 1, donde la advección predomina. Para part́ıculas blandas, además se tiene

que distinguir entre potenciales de interacciones débiles y fuertes.

En un primer lugar, analizamos la dependencia del sistema con el potencial de

interacción entre los poĺımeros, que modelamos como gaussiano. Aumentando la

fuerza de interacción, la dificultad de que las part́ıculas se puedan adelantar en-

tre ellas aumenta y para valores bastante grandes apenas es posible que las part́ıculas

puedan adelantarse. Además, aumentando la intensidad de las interacciones, ambas

part́ıculas—la part́ıcula pequeña y la grande—se aproximan a las paredes del canal.

Pero para potenciales débiles, observamos que la part́ıcula grande se encuentra dis-

tribuida homogéneamente a través del canal mientras la part́ıcula pequeña tiende a

aproximarse a las paredes del canal. El último resultado es inconsecuente con la si-

mulación realizada por Winkler. La explicación de esta discrepancia puede venir por

haber despreciado las interacciones hidrodinámicas y la estructura interna del ovillo

polimérico en nuestro análisis.
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En relación al potencial de interacción de los poĺımeros con las paredes, anali-

zamos dos casos. En el primer caso consideramos el potencial de interacción como

una interacción dura de exclusión. Observamos que el comportamiento del poĺımero

es completamente diferente al comportamiento de las esferas duras. Se encontró que

las part́ıculas se encuentran más próximas entre śı en comparación con las part́ıculas

coloidales y este efecto es más fuerte según aumentamos la velocidad de flujo. Final-

mente, consideramos un potencial de interacción blando. Modelamos las interacciones

con la pared como las de una cadena ideal difundiéndose en un buen disolvente y des-

preciamos la dependencia del disolvente con la temperatura. Elegimos este potencial

de modo que imitara la repulsión entropica de una pared sólida. Encontramos algu-

nos problemas para resolver la ecuación de Smoluchowski tanto anaĺıticamente como

numéricamente debido a la divergencia del potencial en las paredes. Usamos una

aproximación incontrolada para eliminar la divergencia en las paredes reduciendo el

volumen de integración. Observamos el mismo comportamiento sobre la separación

de part́ıculas como en caso del potencial de interacción de tipo duro.
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