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Abstract

This work aims to contribute to the research on the constitutive modeling of solid ma-
terials, by investigating three particular micromechanical phenomena on three different
length scales. The first microscopic phenomenon to be considered on the macroscopic
scale is the process of failure in solid materials. Its characteristic non-smoothness in the
displacement field results in the need for sophisticated numerical techniques in case one
aims to capture those failure zones in a discrete way. One of the few finite element based
methods successfully applied to such challenging problems is the so called strong discon-
tinuity approach, for which failure can be described within the individual finite elements.
To avoid stress locking, a higher order approximation of the resulting strong disconti-
nuities is developed in the first part of this work for both, purely mechanical as well as
electromechanical coupled materials. A sophisticated crack propagation concept relying
on a combination of the widely used global tracking algorithm and the computer graph-
ics based marching cubes algorithm is employed to obtain realistic crack paths in three
dimensional simulations. Secondly, materials with an inherent network microstructures
such as elastomers, hydrogels, non-woven fabrics or biological tissues are considered. The
development of advanced homogenization principles accounting for such microstructures
is the main focus in the second part of this work to better understand the mechanical
and time-dependent effects displayed by such soft materials. Finally, the incorporation
of wave functions into finite element based electronic structure calculations at the mi-
croscopic scale aims to account for the fact that the properties of condensed matter as
for example electric conductivity, magnetism as well as the mechanical response upon
external excitations are determined by the electronic structure of a material.

Zusammenfassung

Diese Arbeit beschéftigt sich mit der konstitutiven Modellierung von Festkorpern, indem
drei spezifische mikromechanische Phanomene auf drei unterschiedlichen Léangenskalen
analysiert werden. Der erste Teil der Arbeit befasst sich mit dem durch makroskopis-
che Risse charakterisierten Phanomen des Materialversagens. Die dadurch resultierenden
Unstetigkeiten im Verschiebungsfeld stellen eine immense Herausforderung an numerische
Berechnungsverfahren dar. Eine der wenigen numerischen Methoden, die in der Lage ist
diesen Anforderungen gerecht zu werden, ist die sogenannte Finite Element Methode mit
eingebetteten starken Diskontinuitaten. Zur Vermeidung von Locking Phanomenen wer-
den in dieser Arbeit neue finite Elemente mit einer hoheren kinematischen Approximation
der starken Diskontinuitaten fiir rein mechanische als auch elektromechanisch gekoppelte
Materialien entwickelt. Realistische Rissfortschreitungen durch dreidimensionale Materi-
alien werden mittels einer Kopplung von globalen Tracking Algorithmen und dem March-
ing Cubes Algorithmus erreicht. Im zweiten Teil dieser Arbeit werden Materialien mit
netzwerkartiger Mikrostruktur, wie Elastomere, wassrige Losungen, nicht-gewebte Tex-
tilien oder biologischen Materialien untersucht. Deren charakteristische Mikrostruktur
findet Eingang in die entwickelten Homogenisierungsmethoden auf dieser mesoskopischen
Skala, welche zum besseren Verstandnis der mechanischen Eigenschaften solch weicher
Materie fiihrt. Schlussendlich befasst sich die Arbeit noch mit Finite Elemente basierten
Elektronenstrukturberechnungen auf der mikroskopischen Skala, um deren Einfluss auf
die Eigenschaft kondensierter Materien, wie jene der elektrischen Konduktivitit, der Mag-
netisierung oder auch der mechanischen Eigenschaften, zu bewerten.
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1 Introduction

The goal of this work is to summarize the effort spent by the “Micromechanics of ma-
terials group” headed by the author of this work on the development of new physical
motivated models at microscopic scales together with the development of new numerical
frameworks to allow for their incorporation into efficient simulation tools. In doing so,
the group could contribute to the Vision I entitled “From empirical material description
towards computational material design” of the Excellence Cluster Simulation Technology
at the University of Stuttgart. The final goal of this vision is to develop new advanced
materials, which are essential for the evolution of our society. To do so, properties of soft
matter such as liquids, colloids, polymers, foams, gels, granular materials, and biologi-
cal materials are combined with those of hard matter such as metallic alloys, ceramics,
or glasses as illustrated in Figure 1.1. The simulation of such materials plays a central
role within simulation technology. Besides applications in the classical disciplines of civil,
environmental, mechanical, automotive, and aerospace engineering, the miniaturization
of everyday-objects leads to the demand for highly sophisticated and new materials also
within the disciplines of computer science or chemical and bio-engineering. Such simula-
tions involve multi-field problems, such as electromechanical coupling effects, and span a
multi-scale cascade of length and time scales. Focusing on civil engineering applications,
Figure 1.2 illustrates possible new ways in designing our future built environment.

Whereas the final goal of SimTech’s Vision I aims for the highly challenging task of
coupling those cascades of all the different scales together based on newly developed scale
bridging techniques, this work is restricted to a coupling of at most two neighboring
length scales. It will though be shown that depending on, at which scale the target
application resides, different micromechanical phenomena can be incorporated. Clearly,
a micromechanical phenomenon to be incorporated at the macroscopic scale, like a crack
to model a failing solid, is very different from a micromechanical phenomenon to be
incorporated at the mesoscopic scale, like the evolution of stretch and re-orientation of
fibers in a soft matter material such as an elastomer or a biopolymer gel, and differs even
more from the modeling of wave functions when computing the electronic structure of
single atoms or molecules. In this work it will be shown, how by a physical based modeling
exactly those three micromechanical phenomena can be incorporated theoretically and
numerically into the next larger scale partially through newly developed homogenization
principles. The modeling of those three phenomena will be distinguished based on the
length- and time-scale into which they will be incorporated as it is illustrated in Figure
1.3, with the detailed explanation of those results postponed to the individual parts of
this work.

In particular, it will be shown in Part I of this work, entitled “Modeling solids undergoing
failure at the macroscopic scale”, how a crack can be incorporated into the numerical
framework of the finite element method to model solids at failure. Part II, entitled
“Modeling materials with network microstructures at the mesoscopic scale”, targets the
modeling of elastic and time dependent effects in soft materials characterized by a random
network microstructure. The final Part III is entitled “Modeling the electronic structure
of solids at the microscopic scale” and will outline a finite element based framework of the
density functional theory to compute the electronic structure of solid materials. Clearly,
on each scale there exist many more physical phenomena, which could be modeled, and
surely, coupling those phenomena over several length scales is intended to be the major
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Figure 1.1: In Vision I of SimTech, properties of soft matter such as liquids, colloids, poly-
mers, foams, gels, granular materials, and biological materials are combined with those of
hard matter such as metallic alloys, ceramics, or glasses to develop new advanced engineering
based materials.

Figure 1.2: Illustration of a future built environment made possible by the developed new
materials arising from concepts developed in simulation technology.
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Figure 1.3: [Illustration of the length- and time-scales of interest in this work with one
of the numerical results shown on each scale and explained in detail in the corresponding
Parts I, 11, and III.

goal of future research.

In the following Sections 1.1, 1.2, and 1.3, a short introduction to the above mentioned
three phenomena to be modeled in this work on the macro-, the meso-, and the micro-
scale is provided. The chapter closes with Section 1.4, which provides a more detailed
overview of the content of this work.

1.1 Modeling solids undergoing failure at the macroscopic scale

The modeling of solids at failure has attracted theoretical as well as computational experts
from fields like engineering, physics and chemistry, or mathematics ever since. This re-
search field combines various multiphysical challenges at multiple length- and time scales.
Over the past decades a huge amount of information has been gathered to increase our
understanding of why and how solids fail but there is still a long way to go until we
fully understand the various phenomena of fracture. The appearance of defects as a cer-
tain deviation from a state otherwise being considered as perfect is characteristic for the
engineering based design of structures and materials. Especially when it comes to the
development of new materials the influence of possible defects must be accounted for, to
better predict their properties like durability or strength. It is the goal of Part I of this
work to contribute to the development of numerical methods capable of accounting for
defects at the macroscopic level in a class of materials such as those illustrated in Figure
1.4.

A framework widely and successfully applied to model solids is the framework of contin-
uum mechanics [360, 361]. To incorporate microstructural information into the frame-
work, extended continuum theories have been developed [89, 90, 250] and later applied
to investigate shear banding in DE BORST [70], STEINMANN [335], or EHLERS & VOLK
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Figure 1.4: Illustration of materials at failure. Left: Bridge collapsing under an earthquake
excitation. Center: Crack branching observed in brittle materials at dynamic loading. Right:
Fracture in advanced electromechanical coupled materials.

(83, 84], among others, with detailed overviews provided in ERINGEN [87, 88] or FOREST
& SIEVERT [110]. The incorporation of failure mechanisms into continuum theories can
alternatively established through the framework of fracture mechanics. The foundation
of continuum fracture mechanics can be dated back to the two seminal papers by GRIF-
FITH [128, 129], where he showed that scratches drastically increase the stress level. With
extension of IRWIN [161] and OROWAN [272] to metals, these concepts serve as the foun-
dation of classical linear elastic fracture mechanics. This elegant and powerful description
of phenomena describing the failing solid, such as cracks or shear bands on a macroscopic
length scale, ceases to be valid when significant plastic deformation precedes failure. This
is overcome based on the developments in DUGDALE [78] or BARENBLATT [20], among
others. Based on the contributions by ESHELBY [92, 93] and RICE [306] the J-integral, a
line integral evaluated along an arbitrary contour around a crack, has been developed be-
ing a major component of the study of configurational mechanics [133, 176, 201, 228, 337,
among others].

1.1.1 Numerical modeling of solids at failure

With the development of the finite element method [4, 63, 69, among others|, a promis-
ing numerical tool was created for the investigation of solids at failure. Immediately,
difficulties arose in the attempts to model cracks or shear bands through jumps in the
displacement field, so called strong discontinuities, since in the finite element commu-
nity the standard displacement field generally is represented by smooth polynomials. To
overcome these problems, damage models were used allowing for an incorporation of the
materials damage through a constitutive model for which the stresses tend to zero when
subjected to sufficient large strain fields. Improvements were made in the smeared crack
model [297] or the band smeared crack model [28], where a proper account of the dissipated
energy is made. Alternative approaches to circumvent problems during strain softening
through the incorporation of a characteristic length are non-local continuum models [27],
higher gradient models [65], or Cosserat continua [71]. Due to the difficulties of represent-
ing displacement jumps within the individual finite elements, the cohesive finite element
method [258] restricts the singularities to appear along the element boundaries through the
incorporation of so called cohesive finite elements, employing cohesive traction-separation
laws along those elements. SIMO ET AL. [331] were among the first ones to incorporate
a strong discontinuity directly within the individual finite elements. The straightforward
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implementation into standard finite element codes, available extensions to two- and three
dimensional problems [265, 379] also within the geometrically nonlinear setting [12] of
this methodology, often referred to as the strong discontinuity approach or the embedded
finite element method, makes it appealing to a large number of scientists.

It is extended to three dimensions [96, 253, 269], to porous media [59, 336], or to beams and
plates [10, 86]. In LINDER & ARMERO [205], ARMERO & LINDER [14, 15|, and LINDER
[203] the formulation is extended to account for a higher order kinematic resolution of the
failure zone in the 2D continuum, in ARMERO & KiM [13] to account for an improved
kinematic relation in 3D, in ARMERO (9] for antiplane/torsional problems, in LINDER &
RAINA [208] and RAINA & LINDER [294] onto multiple levels, and combined with the
marging cubes algorithm to improve the 3D crack propagation in LINDER & ZHANG [209]
and ZHANG & LINDER [399].

Another method, receiving much attention lately, is the extended finite element method
proposed in BELYTSCHKO & BLACK [31] and MOES ET AL. [251] or the related method
based on HANSBO & HANSBO [136], see also [235, 236]. Also in this approach the strong
discontinuities are allowed to propagate through the individual finite elements. The im-
proved kinematical description of the singularities comes along with the addition of global
degrees of freedom making the method no longer that easily incorporable into standard
finite element packages [32, 380, 381, among others|. Employing ideas coming from con-
figurational mechanics, MIEHE & GURSES [240], MIEHE ET AL. [245], and GURSES &
MIEHE [132] suggest a finite element implementation of brittle fracture based on a varia-
tional principle and energy minimization. Contrary to such discrete account for cracks or
shear bands, in phase field models [51, 111, 246, 247] the strong discontinuity is smeared
over a finite width with the advantage of allowing for a straightforward application to
complicated cracking patterns without the need of complicated crack tracking algorithms,
which especially in 3D become a tedious task. On the other hand, those methods though
require heavily refined finite element discretizations in the region where failure occurs.

1.1.2 Numerical modeling of dynamic fracture problems

Modeling of fracture becomes an even more challenging problem when dynamic insta-
bilities of the crack tip play a crucial role resulting in notable discrepancies between
experimental and theoretical results. Once the flux of energy to a crack tip passes a crit-
ical value, the crack becomes unstable and propagates in increasingly complicated ways.
As a result, the crack cannot travel as quickly as theory predicts, fracture surfaces become
rough, microcracks that propagate away from the main crack begin to form and finally
crack branching occurs so that the energy cost for crack motion increases considerably.

Early experimental literature about dynamic fracture can be found in experiments [178,
179, 295], and RAMULU ET AL. [296] on thin sheets of a brittle material Homalite-100
who attributed the phenomena of crack branching to the critical stress intensity factor
at the crack-tip. Further experiments [299, 300, 301] of dynamic fracture also found
similar relations of crack branching with the critical stress intensity factor. More recent
experiments [98, 99, 321] as well as SHARON & FINEBERG [320] performed on the brittle
material PMMA shed more light on the instabilities associated with the fast moving crack
in dynamic fracture where micro- branching phenomena were observed before the main
branching, which tend to take place at a critical main crack-tip velocity as suggested by
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YOFFE [395]. A huge amount of literature is available with regard to numerical simulations
of dynamic fracture using cohesive finite elements [389], the embedded finite element
method [154], and the extended finite element method [32], to mention just a few among
many.

The application of the finite elements with embedded strong discontinuities to the dynamic
range is rare. In HUESPE ET AL. [154], solutions are presented with triangular elements
with a constant approximation of the displacement jumps. This is extended in ARMERO
& LINDER [16] and LINDER & ARMERO [206] to quadrilateral finite elements in the
fully transient setting to simulate problems in dynamic fracture like crack branching or
failure mode transitions with a higher order approximation of the displacement jumps. In
particular, in the latter reference, the modeling of crack branching was accomplished by
the design of new finite elements capable of modeling such phenomenon in a single finite
element, a so called finite element with embedded branching. Additional contributions
of the author in modeling dynamic fracture using the multilevel strong discontinuity
approach are given in [292, 293].

1.1.3 Numerical modeling of failure in electromechanical coupled materials

The constitutive models mostly employed so far within the strong discontinuity approach
are purely mechanical based models with strong discontinuities appearing in the resulting
displacement field of the solid undergoing failure. Extensions to account for fluid-saturated
porous media are developed in STEINMANN [336] and the incorporation of poroplastic
effects is performed in CALLARI & ARMERO [59] where additional discontinuities in the
fluid flow must be accounted for. It is therefore the goal to suggest a possible account
for such coupled materials within the strong discontinuity approach where in addition to
the jumps in the displacement field jumps in the electric potential must be accounted
for in order to represent the failing electromechanical coupled material. This is achieved
in Part T of this work by following the recently publications of LINDER ET AL. [210],
LINDER & MIEHE [207], and LINDER [204], in which the original strong discontinuity
approach is extended to account for electromechanical coupled effects present in piezo-
and ferroelectric ceramics.

Experimental results of the fracture behavior of piezoelectric ceramics can be found in
PARK & SUN [280] where in addition a finite element based investigation of possible
fracture criteria is performed. In this latter work it is shown that the ultimate load of a
piezoelectric ceramics depends on the sign of the applied electric field. In particular, a
negative electric field impedes crack growth and therefore raises the ultimate load, whereas
a positive electric field enhances crack growth and therefore lowers the ultimate load. It
is noted though that the physics of failure in electromechanical coupled solids remains
controversial which becomes apparent when looking at the experimental results reported
in WANG & SINGH [375] or Fu & ZHANG [113] showing an independence of the crack
propagation on the sign of the electric field.

General frameworks describing electromechanical coupled materials are provided in TRUES-
DELL & TOUPIN [361] or LANDAU & LirsHITZ [193], among many others. Applications
in smart systems in the form of actuators and sensors led to a drastic increase of the
demand of such smart materials over the previous decades. One particular class of such
materials are piezoelectric materials which are widely used in various fields of engineer-
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ing. An early reference within the linear theory is given by NOWACKI [262]. A survey of
numerical studies for geometrically linear piezoelectric systems is given in BENJEDDOU
[33] with a recent emphasis to develop invariant formulations in SCHRODER & GROSS
[317]. Review articles concerning microscopically motivated and phenomenological mod-
els for piezoceramics can be found in KAMLAH [173], LANDIS [196], or HUBER [152].
Such materials can be classified as highly brittle due to their high ultimate strength and
extremely low fracture energy and therefor are prone to defects like cracks. Theoretical
investigations of fracture in piezoelectric ceramics are provided in PARTON [281], SuO
ET AL. [342], MCMEEKING [229], or ZHANG ET AL. [396] among many others. Further
references can be found in the recent review articles in Kuna [191, 192] outlining open
problems and possible future research areas.

One particular area of controversy exists when it comes to the choice of appropriate
boundary conditions along existing and propagating crack faces [74, 138, 195, 230, among
others]. The choice of crack boundary condition becomes relevant when modeling the
failure in such materials through the discrete account of the strong discontinuities. Con-
stitutive models allowing for discontinuities in the displacement field as well as in the
electric potential along the finite element boundaries are developed in ARIAS ET AL. [5]
and VERHOOSEL & GUTIERREZ [368]. Simulations of cohesive fatigue effects in grain
boundaries of a piezoelectric mesostructure are performed in UTZINGER ET AL. [364].
An application of nodally enriched techniques where the discontinuities are allowed to
propagate through the individual finite elements of piezoelectric materials is achieved in
BECHET ET AL. [29] by the incorporation of electric enrichment functions accounting for
the appearing singularities of the electric fields within the assumptions of linear elastic
fracture mechanics. Phase field models of fracture in electromechanical coupled materials
are recently developed in VERHOOSEL ET AL. [369], MIEHE ET AL. [248], or ABDOLLAHI
& ARIAs [1].

The scale of interest in most of the above mentioned techniques and the results shown
in Part I of this work is the macroscale with length scales in the order of mm to m.
Mesoscopic simulation methods operate on a smaller spatial scale when compared to
the above mentioned macroscale approaches. Rather than putting a focus towards the
incorporation of failure phenomena at the mesoscopic scale, in Part II of this work, the
physical phenomena to be captured are those which can be related to the random network
microstructures of soft matter materials.

1.2 Modeling materials with network microstructures at the meso-
scopic scale

Network microstructures are commonly encountered in materials of artificial as well as
natural origin. Elastomers [354], hydrogels and soft biological tissues [44, 85, 150, 174,
216], non-woven fabrics [142, 287, cellular foams [122], and muscles [48, 310, 311] are all on
the microscopic level composed of elongated one-dimensional elements one can generally
address as fibers, with some of them illustrated in Figure 1.5. When these soft materials
are subject to a macroscopic strain or start to grow [3, 148, 184, 187, 234, 298, 371, 400],
the underlying microstructure undergoes a peculiar deformation. The forces produced
by the deformed filaments and their interaction within the irregular three-dimensional
network constitute the macroscopic stress response of the material. The knowledge about
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scale

(e) (f)

Figure 1.5: [Illustration of (a) a cytoskeleton, (b) a piece of wood, (¢) a shape memory
polymer foam, (d) a nonwoven material, (e) an actin network, and (f) a collagen gel as
examples of materials with network microstructures.

the micromechanics of random networks is therefore crucial for the understanding of
mechanical properties like elasticity or time dependent effects displayed by the above
mentioned soft materials. This is achieved in Part II of this work by following our recent
work in LINDER ET AL. [211] and TKACHUK & LINDER [350].

1.2.1 Static network theories

From a molecular point of view, polymeric materials are characterized by a chain-like
conformation of covalently linked atoms [104]. The countless non-regular conformations
such chain my inhabit based on possible rotations of atoms around their covalent bonds
results in the necessity of describing their properties within the framework of statistical
mechanics. The probable most idealized approximation is the one denoted as the freely
jointed chain (F.JC) for which no constraints with regard to the orientation of the individ-
ual monomers, all assumed to be identical, in reference to their neighbors is made. This
approximation results in typically coil-like random conformations of the chain together
with a Gaussian distribution of the chain’s end-to-end vector. Through the Boltzmann
relation, this results in expressions through which the entropy and the free energy of the
resulting Gaussian chain can be computed [134, 188, 189]. For highly stretched chains,
this approximation loses its validity and must be replaced by a non-Gaussian relation
[190], for which the maximal attainable chain length can not be surpassed. Those ap-
proximations build the foundation of frameworks capable to describe the behavior of long
macromolecules in rubber-like polymers. An excellent monograph on the modeling of
rubber-like polymers is given in REESE [302] with further noteworthy contributions in
BOL & REESE [46, 47].
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Ultimately, rather than being interested in the behavior of individual chains, in this work
a focus is laid towards improving our understanding of the role of the individual chains
when being part of a network. Depending on the assumptions laid onto the individual
chains, different network models emerge. A network comprised of Gaussian chains is
called a Gaussian network model [102, 103, 166, 356, 357, 372], whereas one in which
the chains comply with the maximal chain length constraint through a modified density
functional distribution based on the inverse Langevin function is called non-Gaussian
network model. Into the latter category fall the three-chain model of JAMES & GUTH
[166] and WANG & GUTH [376], the four-chain model of TRELOAR [358] developed based
on the model of FLORY & REHNER JR. [102], or the often used eight-chain model of
ARRUDA & BOYCE [17]. There, the microstretch of non-Gaussian chains in directions
depending on the principal stretches are related to the macroscopic applied deformation
and results in the material response through averaging techniques. Those models can be
interpreted as approximations of the affine network model [355, 388]. In the latter model,
non-Gaussian chains with an identical initial length and an isotropic and homogeneous
orientation are deformed in an affine way. The free energy then follows from an integra-
tion of the chain distribution vectors over a microsphere rather than based on a standard
summation. Still, in particular the eight-chain model results in a more accurate agree-
ment with experimental data due to its capability of allowing for possible re-orientation
processes for the stretches of highly elongated chains. Such deformation at the microscale
being different from the macroscopic applied deformation is commonly denoted as non-
affine deformation. Even though good parameter fits can be achieved by many of those
models, the overall complexity of a real polymeric network being comprised of randomly
oriented polymer chains cannot be adequately described with those models, therefore sup-
porting the content of Part I in which, following our recent work in TKACHUK & LINDER
[350], a new micromechanical motivated network model is developed.

Even though the underlying mechanisms of the individual chain segments in these the-
ories account for their finite extensibility, the possible chain conformations in between
two junction points is not influenced by the surrounding polymer chain segments. This
is on the contrary done within constrained junction theories [91, 105, 108, 109, 312] and
within constrained segment theories [73, 82, 143, 144, 145, 171]. In MIEHE ET AL. [244] a
micromechanically motivated network model, including a micro-tube constraint based on
EDWARDS [81] to account for the surrounding polymer chains, together with a non-affine
micro-to-macro transition based on a homogenization procedure defined on a micro-sphere
of space orientations is developed. The resulting framework, called the non-affine micro-
sphere model, yields an excellent performance in homogeneous and non-homogeneous
tests. Further references on the elastic behavior of rubber-like materials can be found
in TRELOAR [354] and the review articles by BOYCE & ARRUDA [53] or MARCKMANN
& VERRON [224].

1.2.2 Transient network theories

Besides the elastic ground response of rubber-like materials, captured by the above out-
lined static network theories, their behavior is characterized by a finite viscoelastic over-
stress which governs rate-dependent effects such as relaxation and creep phenomena as
well as frequency dependent hysteresis curves in cyclic loading processes. Experimental
observations of such effects are reported in COTTEN & BOONSTRA [68], FERRY [97],
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SULLIVAN [341], L1oN [213], MIEHE & KECK [241], or MIEHE & GOKTEPE [239], among
others.

When it comes to the numerical modeling of such phenomena, one again may distinguish
purely phenomenological models with a strong focus on the numerical implementation
developed within the mechanics and engineering community and approaches originating
from physical chemistry and material science where the focus lies on molecular models
of these phenomena and their experimental justification by microscopic studies. Within
the phenomenological approaches, one can find models based on stress-type variables
in the form of convolution integrals in the works of HOLZAPFEL & Simo [151], LiON
[213], or KALISKE & ROTHERT [172]. Alternatively, the multiplicative split of the de-
formation gradient, originally suggested by LEE [197] in the context of elastoplasticity
and by SIDOROFF [323] in non-linear viscoelasticity, into elastic and inelastic parts is
used in LUBLINER [220], SiMO [332], BOYCE ET AL. [54], REESE & GOVINDJEE [303],
GOVINDJEE & REESE [126], or BERGSTROM & BOYCE [34]. The description of the
time dependent viscous effects based on the evolution of viscous metric tensors is chosen
in MIEHE & KECK [241]. An extension of the above mentioned micro-sphere model of
rubber elasticity to account for viscous effects is achieved in MIEHE & GOKTEPE [239)
and GOKTEPE & MIEHE [125], whereas our recent contribution in LINDER ET AL. [211]
is arising from the concept of a polymer chain undergoing a Brownian motion.

An alternative to these continuum approaches are the molecular-based theories. These
have been developed recently to describe the viscous behavior of molten polymers and
amorphous rubber-like materials. The bead-spring model [37], the reptation-type tube
models [72, 75], and the transient network models [127, 348] are mentioned as examples
in this area. Recently, an increasing activity in combining these two approaches can be
observed, resulting in so called micromechanically motivated approaches [18, 34, 55, 211].

1.2.3 Semiflexible biopolymer network theories

In addition to networks made of freely jointed chains, the second part of this work also
deals with networks made of semiflexible macromolecules, which differ from the flexible
chains by the presence of a strong backbone, which results in much straighter chains and
also is responsible for the appearance of distinct directions in biological materials. Again, a
statistical mechanics based framework is exploited for the determination of the individual
chain properties [349, 350, 351]. At zero temperature and without external loading such
description results in the prediction of a totally straight chain without any appearance of
bending and therefore minimal energy. Increasing the temperature changes this behavior
and results in curved chain conformations with a probability density distribution given
based on the Boltzmann relation. The higher is the temperature 7', the higher is the
probability of finding curved chain conformations, leading to a decrease of the end-to-end
vector’s length. In addition to the contour length, also the persistence length /¢, which
serves as an indicator for the stiffness of the polymer chain and is related to the bending
stiffness x of the chain by ¢, o x/(kgT) with kp as the Boltzmann constant, plays a
dominant role in the prediction of the semiflexible chain properties.

The quantitative description of semiflexible polymer chains, the derivation of the statis-
tical distribution of its end-to-end vector, the computation of its free energy, as well as
the derivation of its elongation versus force behavior relies on the computation of proper
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partition functions, whose derivation strongly depends on the assumptions made. Many
of the currently used models of polymeric materials with stiff chemical bonds between the
monomers can be traced back to the work of POROD [289] and KRATKY & POROD [182].
There is assumed that each chain conformation can be related to a spatial curve with the
curvature at each point being of stochastic nature [107]. This results in extended worm-
like conformations so that often those chains are denoted as worm like chains (WLC).
Simplifying assumptions of the relation between persistence length ¢, and overall chain
length L eventually lead to closed form solutions of the partition function for semiflexible
polymer chains. In the limit ¢, < L the Gaussian solution with twice the persistence
length as the Kuhn length is recovered. This assumption is used in the work of MARKO
& SIGGIA [225] when investigating the stretch behavior of DNA. The opposite limit-
ing case ¢, > L is characterized by short (L is small) or stiff (x and therefore ¢, are
large) semiflexible chains and investigated in WINKLER [387]. The assumption of small
transversal movements of the semiflexible chains out of their main orientation in MACK-
INTOSH ET AL. [223] results in a further simplification of the mathematical complexity
and though leading to a linear force-extension relation is capable of capturing the correct
inverse scaling of the longitudinal stiffness of straight chain segments with their length.
More sophisticated models of semiflexible polymer chains are e.g. given in BLUNDELL
& TERENTJEV [40, 42], which on the one hand boil down to the results obtained in
MARKO & SIGGIA [225] in the Gaussian limit, but on the other hand also results in an
accurate description of the force-extension relation for different stiffnesses and stretches.
A particular difference is given by an introduced non-entropic term not vanishing at zero
temperature in BLUNDELL & TERENTJEV [42] mimicking the potential energy of an elas-
tic spring undergoing bending. A good comparison between the properties of FJC models
and WLC models is provided e.g. in KUHL ET AL. [185].

Also for semiflexible chains, the ultimate goal lies in obtaining an improved understand-
ing of their role when being part of a network as it appears in dilute solutions, melts,
nematic crystals, amorphous or semi-crystalline plastics or rubber-like polymers and in
that way drastically influencing their elastic properties. Depending on the nature of how
the individual chains are connected, one distinguishes between permanent links, like in
the case of elastomers or gels, and temporal links, as they appear e.g. in solutions, melts,
natural rubber, or non-crosslinked gels. Whereas the elastic properties of a macroscop-
ically stretched network consisting of FJC is simply governed by the change in entropy
due to a reduction of the possible conformations of the thermal fluctuating chain, the
elastic behavior of biopolymer networks made of WLC is much more complicated. It can
be characterized by the following three mechanisms:

(7) Axial stretching of semiflexible filaments as a result of the macroscopic deformation
and the corresponding increase of junction-to-junction distances. This response
may be entropic and soft when the chain is elongated below its contour length
and can take curved confirmations through thermal fluctuations at an energetic
cost comparable to kgT. Conversely, the filaments may display a stiffer athermal
behavior for high extensions and bending stiffnesses corresponding to a mechanical
deformation of interatomic bonds in the polymer backbone.

(77) Fibers that extend continuously over the junctions can also undergo instant bending.
Initially straight or slightly undulated filaments may become essentially curved due
to the out-of-line displacements of the junctions. The potential of this alternative
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kinematic mechanism in complying with the macroscopic deformations of the poly-
mer network depends on its geometry and connectivity, whereas the magnitude of
the stress component associated with the bending forces is defined by the properties
of the filaments themselves.

(7ii) In addition, the semiflexible molecules interact with the solvent, which has a great
impact on the rheology of semiflexible biopolymer networks. This affects the behav-
ior of single filaments favoring either their elongated straight conformations with
a high exposure to the solvent, or alternatively, the compact folded states if such
contact is avoided. The fluid enclosed in the polymer network largely defines the
volumetric response of the network.

Which of those three mechanisms is activated strongly depends on the network geometry
and the chain properties. Whereas in networks made of flexible polymer chains the average
distance /. between the cross links is the sole relevant quantity characterizing the network
geometry, a number of parameters are used to do so for networks made of WLC. Those
are the concentration c¢ of chains, defined as their overall length in a unit volume of the
network, which scales invers with /., the averaged length L of the polydisperse single
filaments, as well as the persistence length ¢,. It is to be noted that the identity of
a semiflexible chain over the spacing distance /. of its cross links remains due to its
continuous orientation over those connection points. The interplay of all these parameters
drastically influences the overall behavior of the biopolymer network [140, 141]. For small
concentrations as well as for short chain lengths, the material behaves like a solution or
a loose gel with vanishing shear modulus. An increased concentration, leading to the
appearance of a large enough number of cross links of a single chain affecting in this way
the overall network, as well as an elongation of the chain so that L is in the order of £,
increases the network stiffness. When surpassing the percolation threshold, a highly non-
affine behavior is obtained, which is characterized by bending of the semiflexible chain
over the cross links due to a macroscopic applied deformation, rather than by the, in this
case, energetic disadvantageous chain stretch. A further increase of the concentration or
in the case of a network with even longer chains results in an affine network behavior
caused majorly by stretching of the chains. Whether this stretch is of entropic or of
mechanical origin depends on the persistence length £,. In case ¢, is smaller or in the
order of /. this results in thermal transversal- and bending fluctuations and therefore in
an entropic behavior. For chains with a large persistence length, bending of the short
semiflexible chains between the cross links requires a larger energy than kg7 so that
thermal fluctuations are suppressed and the stretch has a mechanical origin.

It is the aim of Part II of this work to describe those challenging physical properties
of materials with random network microstructures with newly developed computational
models. This can be achieved either by discrete network models briefly discussed in the
subsequent Section 1.2.4, or alternatively by a new class of homogenized network models
briefly introduced in Section 1.2.5 and discussed in more detail in Part I of this work.

1.2.4 Discrete network theories

In the former approach, the structural elements of the network in the form of chains
and cross links are discretely approximated. Various models exist in the literature, based
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on which such networks can be generated. Mikado type models [140] place filaments in
a 2D simulation box in such a way, that both, location of their centers of mass and
their orientation, are chosen arbitrarily. Their crossing points are identified as cross
links and loose ends, having no effect on the mechanical response, are removed. Such
networks are primarily useful for networks made of stiff chains and are restricted to a
coordination number of four. Such model is used in HEAD ET AL. [140] at small strains
for the determination of the percolation limit. Under the assumption that the filaments
in the network react purely mechanical when axially or transversally stretched, a critical
behavior of L/¢. when going from a solution to a shear resisting material, is observed. The
obtained shear modulus scales with the ratio of bending and axial filament stiffness and
identifies the transition from the non-affine, bending dominated soft behavior to the affine,
stretching dominated behavior. Contrary to this work, where the chain rotations at the
cross links are not restricted, additional rotational constraints are introduced in WILHELM
& FREY [384]. The typical worm-like conformation of chains in semiflexible biopolymer
networks is incorporated into the generation of networks stretched up to 25% in ONCK
ET AL. [271]. In that way, the transition from the bending dominated regime at small
stretches to the stretching dominated regime at large deformations and the accompanied
non-affinity caused by chain re-orientation could be modeled. It is shown how undulations
postpone the onset of the transition from the soft to the stiff regime but that the affine
stretch of filaments is not majorly influenced. An extension to three dimensional networks
was performed in HUISMAN ET AL. [157].

An alternative way to generate arbitrary networks is based on the idea to introduce
disorder into an initially regular network. Starting from regular triangular, rectangular,
or hexagonal networks, networks with functionality of 3, 4, and 6 are generated in PLAZA
[288]. The disadvantage of such networks is the fact that the identity of long biopolymer
chains beyond the individual cross links is lost. As a result, bending deformations can only
be modeled by rigid cross links. Such networks are often used to model bone materials
rather than real biopolymer networks and allow to qualitatively capture the dependency
of the network on the orientation and deformation energy of its filaments. It was shown
that networks with high connectivity and filaments with large bending stiffness deform
in an affine manner resulting in highly stretched filaments in the direction of the applied
macroscopic stretch. On the other hand, networks with low connectivity and moderately
curved filaments deform in a non-affine way, resulting in high bending of the filaments
transversal to its loading direction.

1.2.5 Homogenized network models

Rather than focusing on discrete network models, Part IT of this work will put an emphasis
towards the development of new homogenization approaches to computationally capture
the response of materials made of random network microstructures.

Doing so, polymer networks are described based on characteristic parameters, like the
distribution of the average chain length between crossing points. Those undergo changes
when the overall network deforms. In case the network reacts to such deformation solely
by stretches with no mechanical bending deformation, the network deformation is mostly
approximated in an affine manner. As a result, the chain segments change their length
as if the cross links are pinned onto the macroscopic solid material. The free energy of
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the overall network follows then from averaging the energy of the individual chains in
the deformed configuration. Such procedure is chosen in STORM ET AL. [338] with the
distribution of chain lengths taken from WILHELM & FREY [383]. The obtained results
indicated a missing isotropic compression to assure a stress free initial configuration. In
BLUNDELL & TERENTJEV [41], the distribution calculated in HA & THIRUMALAI [135]
is used for the undeformed network, which allowed them to compute the transition from
the entropically caused stretching regime to the mechanically driven stretching regime.
For networks with filaments deformed based on bending over the cross links, the affine
assumption is not applicable. In HEUSSINGER ET AL. [147], such deformation modes
are made possible by the kinematics of so called “foppy modes”, which would appear in
polymer networks made of flexible chains. The statistics of those bending modes then
allows for the computation of averaged stresses in the network.

The, through the homogenization approach, obtained averaged characteristic quantities
of the network serve now convenient for the continuum based computation of the material
response based on numerical methods like the finite element method. Networks of semi-
flexible polymer chains are important structural elements in artificial as well as in biolog-
ical materials. Their elastic properties and peculiar stiffening behavior is responsible for
the needed protection of tissues and organs. The achievement of an improved understand-
ing of the stress-strain behavior of such materials with inherent network microstructures
through large-scale continuum based calculations is therefore of utmost importance. Tra-
ditionally, semiflexible polymer models are employed to describe DNA as in MARKO &
SIGGIA [225]. In BISCHOFF ET AL. [38, 39] and GARIKIPATI ET AL. [118], WLC models
are used to describe the collagen triple-helix. An extension of the eight-chain model for
the application of biopolymer networks is made possible in OGDEN ET AL. [263] or KUHL
ET AL. [185] through the incorporation of the WLC statistics and an extension to account
for the inherent anisotropy in such materials in the latter work, with a careful convex-
ity analysis in KUHL ET AL. [186]. An extension of the “micro-sphere models” [244] to
include anisotropic initial chain orientations and account for the WLC statistics rather
than the FJC properties is achieved in MENZEL & WAFFENSCHMIDT [233] and applied
to model biological tissues. The actin cytoskeleton is modeled based on a modified eight-
chain model in PALMER & BOYCE [277] and continuum based models for blood vessels
can be found in DRIESSEN ET AL. [76], GASSER ET AL. [120] or ALASTRUE ET AL. [2].

To summarize, materials with random network microstructures composed of semiflexible
biopolymers are characterized through a complex non-linear behavior. A number of mech-
anisms, all strongly employed in biological materials to prevent failure, allow for various
ways on how the applied loading is altering the individual chains of the network. Con-
tributing to the research on transferring such mechanisms to engineering based materials
is the major motivation for the research summarized in Part II of this work.

1.3 Modeling the electronic structure of solids at the microscopic
scale

The properties of condensed matter as for example electric conductivity, magnetism as
well as the mechanical response upon external excitations are determined by the electronic
structure of a material. The governing Schrodinger equation represents a coupled, quan-
tum mechanical many body problem, consisting of the positively charged atomic cores
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and the negatively charged, fermionic electrons. The determination of its exact solution
is only possible in trivial cases like that of an ionized atom with a single electron [64]. A
variety of methods for gaining approximations for its solution were created [344].

One of the most successful approaches for electronic structure calculations is the density
functional theory, founded by the Hohenberg-Kohn theorem in [149], which replaces the
many body problem for the ground state calculation with an effective single electron prob-
lem. In principle it represents an exact theory, however it requires exchange correlation
functionals, which can only be approximations, often adapted to model special kind of
material properties, like for example the van der Waals forces. This also makes it diffi-
cult to improve calculations systematically as in the Hartree Fock case, where enlarging
the ansatz is possible [344]. Nevertheless many successful applications have been found
over the last decades and made the density functional theory a valuable tool in getting
insight into the electronic structure of materials, which can also be attributed to the rise
of available computational resources. In recent years however, a qualitative change in the
increase of the computational resources has taken place, where because of technological
obstacles like the rising power dissipation with increasing clock rate, the computational
power available now only rises due to the higher amount of processors in the so called
multicore-architecture. This development also effects the software side, where programs
are more and more forced to take advantage of the new facilities. Algorithms, which
were preferred on a single process might now lose their superior performance, due to their
bad scaling properties when transferred to a multiprocessor environment so that many
accepted standard solutions must be rethought.

This also affects algorithms for the numerical solution of density functional theory, where
also another new aspect is gaining importance for the numerical implementation, the so
called order-N methods, which intend the computational cost of a simulation to scale
linearly with the system size. Classical solution procedures of the Kohn-Sham equations
imply the orthogonalization of a set of wave functions, which only scales cubic with the
amount of those wave functions. The so called nearsightedness suggests that many prop-
erties of the electronic structure, like for example the chemical bond, are only influenced
by its close neighborhood. Even in the metallic case the locality concept still remains
valid under certain circumstances. This observation leads to the development of new lin-
ear scaling electronic structure methods, which have as a common feature the requirement
of a local basis set [52, 117, 124]. For the numerical minimization of the Kohn-Sham en-
ergy functional, different basis sets have been applied. One quite successful basis consists
of plane wave functions, which are globally defined in the domain and the Fast Fourier
Transformation can be successfully applied. However due to these globally defined basis
functions, this approach is less efficient to parallelize. It is restricted to periodic boundary
conditions on simple domain shapes, and as mentioned above, does not fall into the cat-
egory of linear scaling algorithms [117, 333], which require localized basis sets. Solution
procedures, which do not make use of the Fourier transformation are called real space in
the context of density functional theory. In chemistry, usually in the spirit of the linear
combination of atomic orbitals (LCAO) method, basis functions with the form of atomic
orbitals are used. Examples are the Gaussian and the Slater type orbitals [180], which are
centered at the atomic positions. Due to their orbital-like shape, often relatively small
basis sets are sufficient to adequately describe the electronic wave functions properly.
However they do not form a complete basis in space and there are situations where the
introduction of additional linear-independent basis functions becomes difficult.
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Following our recent work in SCHAUER & LINDER [316], in Part III of this work the finite
element basis set is employed for minimizing the density functional. It represents a com-
plete basis, which is due to its flexibility already widely spread in engineering disciplines.
Its basis functions consist of low order local polynomials, whose position is related to a
geometrical entity on a mesh of the physical domain, also called the grid. It has simple in-
terpolation properties and additional basis functions can be added locally and adaptively
through a refinement of the underlying grid. The locality of the basis functions results
in sparse matrices, which are suitable for the application of fast iterative Krylow space
methods for solving linear equations. Additionally the locality enables the parallelization
via domain decomposition. Early implementations of the finite element method in the
context of electronic structure theory date back to the 1980s [146, 219, 382]. In the latter
of these references orthogonalized finite element basis functions have been constructed in
order to reduce the involved generalized eigenvalue problem to a standard one. Some of
the early works make use of the symmetry in simple radial- or axi-symmetric configu-
rations like single atoms or diatomic systems and therefore only lower-dimensional finite
elements were applied. The application to Kohn-Sham density functional theory was
first accomplished by TSUCHIDA & TSUKADA [362], which also exploited successfully the
adaptivity of the finite element basis in [363] together with a transformation to curvilin-
ear coordinates for simplifying the solution process. The application to pseudopotentials
has been done in PASK & STERNE [282] together with the usage of periodic boundary
conditions. The I'-convergence of the finite element discretization was proven in SURYA-
NARAYANA ET AL. [343]. In the recent works [200, 254], the authors investigate in detail
the performance of all-electron calculations with the finite element basis and it is here,
where this work intends to contribute [314, 315, 316].

1.4 Outline of the work

In line with the titles of the previous three sections, this work is divided into three parts,
briefly summarized below.

Part T is concerned with the modeling of solids undergoing failure at the macroscopic
scale. Its first Chapter 2 describes in detail the strong discontinuity approach as the
multiscale framework to be employed for the incorporation of strong discontinuities into
the individual finite elements. It, in particular, emphasizes on a recent extension of this
approach applicable for a higher kinematic approximation of the failure surface in three
dimensions and employs a combination of a global tracking algorithm and the marching
cubes algorithm as a sophisticated crack propagation framework. Chapter 3 then focuses
on the extension of the mostly purely mechanical constitutive relations used within the
strong discontinuity approach to model failure in electromechanical coupled materials
in the plane and the three dimensional setting. The concept of electric displacement
saturation is investigated for the hysteretic behavior of ferroelectric ceramics and the
initiation and propagation of cracks in piezoelectric ceramics.

Part II is concerned with a smaller length scale and aims to contribute to the vast re-
search area of the computational modeling of materials with network microstructures at
the mesoscopic scale. In Chapter 4 an advanced homogenization approach applicable to
materials with random network microstructures such as elastomers, hydrogels, soft bio-
logical tissues, non-woven fabrics, or cellular foams is developed. In that way, the effect of
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microscopic quantities relevant for the characterization of such networks, like their func-
tionality, their molecular weight, or the stretch and force in the fibers comprising those
networks can be incorporated into constitutive relations at the continuum scale. A suc-
cessful scale bridging then permits the computational study of the performance of such
advanced materials when used as sustainable building materials in large scale civil and
environmental engineering applications. Chapter 5 presents a newly developed microme-
chanical constitutive model to predict the viscous behavior of rubber-like polymers. The
model originates from diffusion processes of the highly mobile polymer chains described
within the formalism of Brownian motion. Its combination with the non-affine micro-
sphere model to represent the elastic response of the polymer yields to an overall good
agreement of the computational results with those reported in experiments.

Finally, Part III is concerned with the quantum mechanical problem of modeling the
electronic structure of solids. Here, the focus is laid on all-electron calculations of the
Kohn-Sham density functional theory making use of the hierarchy of finite element bases.
Chapter 6 presents a careful numerical analysis pointing out the numerical intricacies
originating from the singularity of the nuclei and the necessity numerical approximations.
The performance and reached chemical accuracy is reported for computations on noble
gases and calculations of the bond-length and the dipole moment of the carbon monoxide
molecule, finishing with the impact of an external electric field onto a single neon atom.

The work closes with some concluding remarks and possible future research directions in
this field in Chapter 7.
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2 The strong discontinuity approach for purely me-
chanical solids

In this chapter a particular methodology to model solids at failure is introduced. In the
literature this approach is often called strong discontinuity approach (SDA) or embedded
finite element method (EFEM). The framework allows for the incorporation of strong
discontinuities, representing cracks or shear bands as the physical phenomena appearing
at the macroscale in solids at failure, into the finite element framework, and in particular
for its treatment within the individual finite elements. This method will present the basis
for the remaining chapters of Part I, which focuses on the computational modeling of
micromechanical phenomena in solids at the macroscopic scale. This current Chapter 2
will provide a brief review of this methodology for the application of purely mechanical
solid materials in three dimensional boundary value problems. The discussion in this
chapter is based on the recent work of LINDER & ZHANG [209], where a marching cubes
based failure surface propagation concept for 3D finite elements with non-planar embedded
strong discontinuities of higher order kinematics is proposed. The subsequent Chapter
3 will show an extension of the strong discontinuity approach to account for failure in
electromechanical coupled solids in two- and three dimensions.

2.1 Introduction

Failure in solids is characterized by the appearance of localized zones along which the
fracture process takes place. When considering the macroscale as the scale of interest in
this Part I of the work, such zones may represent cracks or shear bands along which strong
discontinuities in the form of jumps of the primary variables like the displacement field in
a purely mechanical based material appear. It is of particular importance to realize the
challenge one faces when it comes to the constitutive modeling and the account of such
zones within numerical methodologies like the finite element method as the formulation
to be employed in this work. One distinguishes two basic approaches depending on the
resolution of these localized zones which can either be accounted for in a smeared way or
by a discrete modeling. The former approach accounts for the failure through a gradual
growth of microcracks and microvoids resulting through homogenization techniques in
constitutive damage type material models which are capable of representing softening
mechanisms characteristic for solids at failure like the local damage models in ROTS
ET AL. [313]. To describe size effects on the continuum level, nonlocal or gradient-type
damage models need to be applied [71, 218]. Phase field models of fracture like the
thermodynamic consistent variational formulation in MIEHE ET AL. [246, 247] also treat
the localized zones in a smeared way. If such zone is discretely resolved one distinguishes
between formulations where cohesive zones are added along the element boundaries and
formulations where the localized zones are allowed to propagate through the individual
finite elements. References associated with the former formulation include NEEDLEMAN
[258], where traction separation laws are developed to describe the constitutive response
along the strong discontinuity. Three dimensional simulations are performed in ORTIZ &
PANDOLFI [274] including configurational-force driven propagation criteria in MIEHE &
GURSES [240] or GURSES & MIEHE [132]. When the strong discontinuities are allowed
to propagate through the individual finite elements, one distinguishes two further types
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of methods based on the storage of the additional degrees of freedom needed for the
description of the strong discontinuity being either locally on the element level [80, 265,
331] or globally at the finite element nodes [31, 136, 251].

The strong discontinuity approach, for which the localized zones of interest for the de-
scription of the failure process are allowed to go through the individual finite elements
with a storage locally at the element level, is the method to be considered in Part I of
this work. Originated in SIMO ET AL. [331] in a one dimensional context it was extended
to a two dimensions setting in SIMO & OLIVER [328] through the introduction of a regu-
larization parameter which became redundant in ARMERO & GARIKIPATI [11] where the
formulation was embedded within the context of enhanced strain methods [329]. Exten-
sions to the finite deformation theory are performed in ARMERO & GARIKIPATI [12] and
the account for the propagation of the localized zones through three dimensional finite
elements is accomplished in WELLS [378] or MOSLER & MESCHKE [253], among others.
In ARMERO [7] the formulation is characterized as a multiscale approach where the local-
ized zones are treated as the small scales appearing within the large scales representing
the overall problem to be solved. This separation of the problem at hand serves conve-
nient when extending the approach to beams in EHRLICH & ARMERO [86] and plates in
ARMERO & EHRLICH [10]. Improvements with regard to the kinematic representation of
the strong discontinuities for plane continuum problems are made in LINDER & ARMERO
[205] within the infinitesimal theory and in ARMERO & LINDER [15] within the finite
deformation context with the goal to avoid locking phenomena through the incorporation
of mechanical separation modes directly into the formulation otherwise appearing within
standard quadrilateral finite elements. Due to the challenges arising for the modeling of
dynamic fracture, extensions from the quasi-static to the fully transient setting are only
recently reported in HUESPE ET AL. [153] within a regularized approach and in ARMERO
& LINDER [16] without the need for an additional regularization parameter. In LINDER
& ARMERO [206] an investigation of dynamic fracture in the form of crack branching
simulations in polymethylmethacrylate (PMMA) is performed.

In the following it is shown, how a discrete account of the arising strong discontinuities,
appearing as jumps in the displacement field for the purely mechanical solids, can be
achieved. It will be shown how their propagation through the individual finite elements
without the need of remeshing or refinement strategies will be made possible. The de-
composition of that methodology into a global problem, representing here the mechanical
boundary value problem, and a local problem through which the strong discontinuities
are introduced, is shown in Section 2.2. This serves convenient when developing the cor-
responding finite elements based on the requirement to avoid stress locking phenomena in
Section 2.3. Numerical aspects are discussed in Section 2.4 including possibilities to initi-
ate and propagate failure surfaces through an arbitrary three dimensional finite element
mesh. For the latter, a marching cubes based propagation concept is combined with the
global tracking algorithm [267, 269] and the strong discontinuity approach. After resolving
scenarios of predicted non-planar failure surfaces by the marching cubes algorithm, the
numerical implementation is outlined in detail in Section 2.4. Finally, the performance of
the developed finite elements is illustrated in Section 2.5 based on several representative
numerical simulations and compared with experimental results available in the literature.



2.2 The purely mechanical strong discontinuity framework 23

2.2 The purely mechanical strong discontinuity framework

Following the developments in ARMERO [7, 8], in this section it will be briefly reviewed,
how failure can be modeled for purely mechanical solids based on a sharp resolution of
the failure zone by discontinuities in the displacement field. This will be done separately
for the continuum framework in Section 2.2.1 and the finite element framework in Section
2.2.2.

2.2.1 Continuum modeling of failure in purely mechanical solids

The section starts with a brief summary of the mechanical boundary value problem at
the infinitesimal range in Section 2.2.1.1 and continues in Section 2.2.1.2 by incorporating
the required discontinuities into the formulation to model failure.

2.2.1.1 The mechanical boundary value problem. Let the purely mechanical solid
% occupy a configuration B C R™im for 1 < ngy, < 3 characterized by the mechanical
displacement field w : B — R™im as the primary unknown within the infinitesimal range
of interest here. Associated with the solids material points labeled by their position € B
is the infinitesimal strain tensor € : B — Rgdm ™ "dim with Rgdim * "dim representing the
space of symmetric tensors, defined by

e(u) =sym[Vu] = 1 [Vu+ (Vu)’] (2.1)

in terms of the standard gradient operator V with respect to the coordinate . In addition,
the stress tensor o : B — Ridim* "dim is introduced as

oc=Ce with C=A1®1+2ul (2.2)

in terms of the usual Lamé constants A and p as well as the second- and fourth order
identity tensors (1);; = ¢;; and (I);u = %(&kéﬂ + 040;;). Together with the external
volumetric loading pb, the governing field equation follows as

div[e]+pb=0 (2.3)

in B for the quasi-static case considered here. Within the purely mechanical setting, the
boundary 9B is separated into the parts 0B = 0,8 U 9,8, where 0,8 represents the part
of the boundary with imposed displacement field w = w and 9,8 represents the part of
the boundary with imposed traction on = t as it is illustrated in Figure 2.1. The usual
argument of the form 9,8 N 0,8 = () applies to ensure a well-posed problem.

The weak equations corresponding to the above field equation (2.3) now follows from
standard arguments as

/pb~5udV—|—/ t-5udA—/0':sym[V5u]dV:O (2.4)
B OB B

for all admissible variations du with Ju = 0 on 0,8 C 9B. This equation (2.4) represents
the starting point for a standard finite element approximation of a purely mechanical prob-
lem at hand without the appearance of strong discontinuities in the mechanical primary
unknown. Such discontinuities are though required for the modeling of the characteristics
of solids at failure and are therefore introduced in the subsequent Section 2.2.1.2.
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Figure 2.1: Incorporation of strong discontinuities into the continuum setting of a purely
mechanical solid material. The global solution u at a material point x is equipped with the
possibility of forming a strong discontinuity I',, in the local mechanical problem characterized
by jumps [u,] in the displacement field.

2.2.1.2 The continuous incorporation of strong discontinuities in the displace-
ments. The main purpose of this Chapter 2 is to computationally model purely mechan-
ical solids at failure where in addition to the global response of the solid in terms of the
displacement field w of the previous section, localized zones of failure I';, C R™im ! are
present in the form of cracks or shear bands. Such zones can locally be modeled by a
strong discontinuity in the displacement field, meaning that the opening or sliding of such
zone is represented by jumps [o] = o — o~ in the displacement field. Use is made of
the convention to denote the side towards which the normal of the discontinuity surface

points as the + side and the opposite side as the — side.

To capture both, the global as well as the local response, the following decomposition of
the displacement field in the form of

w, = ut i([,]) (2.5)

is proposed for a material point & € B, of a local neighborhood B, C B. In (2.5), the
arising local displacement field u,, is decomposed into contributions from the global dis-
placement field u and a discontinuous contribution @ depending on the jumps [u,] along
the localized zone represented by the strong discontinuity I',. The fact that each material
point € B, is now equipped with the possibility of forming such strong discontinuities
in the displacement field is illustrated in Figure 2.1.

This decomposition of the local displacement field can be extended to the definition of
the local strain field defined as

e, = e(u) + &([w,]) (2.6)

valid only in B,\I';, neglecting the resulting singular Dirac delta measures on I',. Again,
(2.6) consists of contributions from the global strain field € defined in (2.1) and a contri-
bution & depending on the introduced displacement jumps [u,] along the arising strong
discontinuity. For a material point where now failure takes place, the constitutive relation
(2.2) is replaced by

oc=Ceg, inBN\I, (2.7)

now given in terms of the local strain field €,,. The introduction of the new unknown in the
form of the jump in the displacement field [u,] does require an additional equations for
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its determination, which is provided by the enforcement of equilibrium along the strong
discontinuity I',. It is required that the traction ¢ = on coming from the bulk of the
material is in equilibrium with the traction tr resulting from a constitutive relation along
the discontinuity I', such as

tr = tr([u,]) (2.8)

capable of describing an expected damage response of the traction vector with an increased
opening of the strong discontinuity. Following ARMERO [7, 8], this requirement can be
written in an integral sense as

/ 5Tu,] - (om — 1) dA =0 (2.9)
T

for all test functions §[u,] : I'; — R"™m. It has to be kept in mind that the equations
in (2.9) are local in nature and only have to be satisfied in the presence of a strong
discontinuity I',. This is emphasized in ARMERO [8], where it is shown that the existence
of solutions of (2.9) is obtained in the limit

p, = measue(By) (2.10)
measure(I',)

2.2.2 Finite element modeling of failure in purely mechanical solids

Following the developments in ARMERO [7, 8], in an analogous way as in the previous
section, the problem at hand is divided into a global problem consisting now of the
discrete form of the mechanical boundary value problem, which will be discussed in Section
2.2.2.1 and a local problem representing the incorporation of strong discontinuities into
the formulation to numerically model failure discussed in Section 2.2.2.2.

2.2.2.1 The discrete mechanical boundary value problem. The spatial discretiza-
tion of the body % is performed by in total neen isoparametric finite elements B ap-
proximating the configuration B ~ B" = [JI<» B" as it is illustrated in Figure 2.2 with
the proper characterization of the boundary region 0B" = 9,B" U d,B". The primary
unknowns in the form of the displacement field u” at a point " € B" is approximated by

Mnode

u'(@") =) N}z")ds=N,d (2.11)
A=1

in terms of standard shape functions N and the corresponding values of the displacement
field d4 of node A with in total npoqe nodes. The approximation of the strain field €” is
then given as

Vul(zh) = e"(a") = Y B,(z")ds = B.d (2.12)

in terms of the generic “B-bar” matrices Bf, outlining the generality of the proposed

formulation with regard to mixed, assumed, or enhanced methodologies [329].

Assuming a Bubnov Galerkin formulation [155], the corresponding variations of the dis-
placement field and its gradient are approximated in terms of the same shape functions
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Figure 2.2: Incorporation of strong discontinuities into the finite element setting of purely
mechanical solids. Each finite element B” of the global problem is equipped with the possi-
bility of forming a strong discontinuity I'* in the local problem characterized by jumps [[uﬁ]]
in the displacement field.

and “B-bar” matrices. Insertion into the continuum representation (2.4) then results in
the discrete form of the global mechanical problem at hand as

Nelem _ Nelem _ _ o
R, =~ A [ BlodV with = A ( / pNbav+ [ Nt dA) (2.13)
e=1 JB! e=1 Bh 0:Bh

in terms of the assembly of the internal response of the body based on standard integration
techniques over the individual finite elements and the assembled external force vector f<*.
The solution of the global problem proceeds by bringing to zero the residual equations
in (2.13) based on an iterative solution procedure like Newton’s method, requiring in
addition the linearization of that residual equation as it will be outlined in Section 2.4.5.

To make the discrete formulation capable of representing failure in purely mechanical
solids, strong discontinuities, which have not been accounted for in the global problem
considered in this section, need to be incorporated. This is done in the discrete local
problem defined in the subsequent Section 2.2.2.2.

2.2.2.2 The discrete incorporation of strong discontinuities in the displace-
ments. In this section the discrete counterpart to Section 2.2.1.2 is presented with the
goal of incorporating the required strong discontinuities locally into the individual finite
elements to model the fracture process within the purely mechanical solid.

To do so, consider a single finite element B C B" in which based on some criterion failure
is detected along a localized zone I'", as illustrated in Figure 2.2. The primary result of
such detection is the appearance of a strong discontinuity [[uﬁ]] in the displacement field,
modeling the mechanical response of the material with regard to failure. Within the
discrete setting considered in this section, an approximation of this field is made in an
analogous way as it is done for the global quantities in Section 2.2.2.1. Since valid along

the localized zone I'", it can be interpolated along that zone as

[[’U,Z]] (37 t) = 3u<37 t)ﬁu (2'14>

in terms of the associated jump interpolation function J,(s,t) depending on local coordi-
nates s and ¢ in the artificial plane computed in Section 2.4.4 as an approximation to the
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possible non-planar actual failure surface ' illustrated in Figure 2.2 and newly introduced
degrees of freedom &, containing the geometric information of the strong discontinuity
within a certain element.

Motivated by the decomposition of the local displacement and strain field in (2.5) and
(2.6), their discrete forms are given as

el =e(d) +&"(¢,) (2.15)

where the global term €”(d) is given in (2.12) based on the linear operator B,, acting on
the nodal displacements d. A similar dependence is chosen for the local term &"(¢,) in
terms of newly introduced operator €, resulting in

— B,d+ €8, (2.16)

acting on the in (2.14) introduced internal degrees of freedom &,. The operator €, is
denoted as “compatibility operator” due to its appearance within the kinematic relation
in (2.16). It will be outlined in detail in Section 2.3 how these operators can be determined.

One additional equation is introduced in Section 2.2.1.2 with the aim to yield additional
information for the determination of the newly introduced jumps in the displacement
field in that section. It remains to be shown in this section, how this additional equation
in (2.9) can be approximated in a discrete setting. To do so, the approach proposed
in LINDER & ARMERO [205] for the plane setting extended in ARMERO & Kim [13] is
followed, which yields

rg:—/ czfadV—/ Itr dA (2.17)
Bl rh

in terms of the “equilibrium operator” &, enforcing equilibrium along the discontinuity
I'". This operator represents a projection of the stresses o from the integration points
onto I'". In particular, for an approximation of the variations of the displacement jumps
in (2.14) as polynomials of order ¢ of the local coordinates s and ¢ in the form

q

Sup] = > sPogl) (2.18)
<a

the equilibrium operator is given as

- [@(00} @) @lor) g(20) ge(11) (02) } where €W el — _ie<ii><n®5€<ﬁ>)s
u ) Y Y ) ) AR u u h u

’ (2.19)
in terms of the element size h, = Vgn/Arr and polynomial functions ¢l (2,5, 2). These
are approximations of the integrand on in (2.9) of order up to p within a local Cartesian
frame {x,y, 2} of an element B, given as

(i) : (i) _ =L 40
e (@,y, 2 Z a(;],] TV 2 with [a(;],j,k)] = [Viij).omon.o)] [A&,n,o)] (2.20)
k=0
i+g’+k§p
where

1 - ~ 1 -
[Visjik),(momo)]| = Vor /Bh gitmyitn ko gy and [Agfﬂno)} = ™ /Fh st My 2° dA

(2.21)
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for all m,n,0=0,1,...,p with m +n + o < p with the property of satisfying

1
Vs

/ eV (2, y, 2)a™y"2° dV = / s a™y" 2" dA (2.22)
Bh rh

1
AFQ
needed for the conversion of the discontinuity to the bulk integral.

Writing the variations of the introduced local parameters in (2.18) in the local basis
{mn, s,t} in terms of the orthonormal unit normal and tangent vectors n, s, and t as

£ = gl 4 g9 g 4 glitly (2.23)

results in the following expression for the equilibrium operator

Gu — [egoon)’ @2005)’ egoot)’ eilon)’ GSOS>, eglot)’ eiom)’ @2015)’ eiolt)’ N ] (2.24)
RS &io) o)

u

when working in that local basis with the components

e = _Linen), e - _Liings) and € = Leim o
(2.25)

h he he he

Remark 2.1. In the two dimensional setting it is shown in LINDER & ARMERO [205],
that an approzimation of the variation of the displacement jumps

q
Sfup] = stoely (2.26)
£=0

in terms of one coordinate s € [~lpn/2,lrn /2] along the one dimensional failure surface
results in the expression for the equilibrium operator as

1
¢, =[eP el . e where €Ml = —h—e<*>(n ® 0eM)s (2.27)

e

in terms of the element size he = Agn /lrn and polynomial functions ¢® (2, y). In the plane
setting, these are approximations of the integrand on in (2.9) of order up to p within a
local Cartesian frame {x,y} of an element B, given as

P
& _ © i g . ® 1 _ =116
e (z,y) = Z ag Ty with [a’(i,j)} = [AG,mm) [E(m,n)} (2.28)
i,j=0
i+jj§p
where
[A }_ 1 i+mj+ndv d [f@ ]_i EmndA (229)
Ganmm] = | 2"y and |l =7 57" -

for allm,n=20,1,...,p with m +n < p with the property of satisfying

1 1
/ ¢z, )™y dV = — [ sta™y" dA. (2.30)
Apr I len Jrn
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2.3 Finite element design

This section follows the approaches suggested in LINDER & ARMERO [205] for the com-
putation of the compatibility operator €, in the plane setting and the one in ARMERO
& K [13] in the three dimensional theory and outlines the development of three di-
mensional finite elements capable of modeling solids at failure. The strategy for the
determination of the missing quantities based on a certain separation mode is as follows:
Consider a single finite element in the 3D setting and assume that a discontinuity surface
fully separates the element into two parts by a fully softened strong discontinuity. The
nodal displacement field of this mode represents the global degrees of freedom, which are
chosen for the separation mode in such a way that a jump of the corresponding quantity
exists along the failure surface. A decomposition of the strain field as in (2.15) is assumed
also for the separation mode under consideration. The separation mode should be chosen
in a physical meaningful way since it is directly incorporated into the finite element for-
mulation avoiding the existence of stress locking phenomena otherwise possibly appearing
for such mode. Furthermore, the separation mode should be chosen in a way, such that
the exact solution of the total part of the quantities stored at the integration points can be
computed. With all this at hand, it is then possible to extract the missing information of
the jump interpolation function J, as well as the compatibility operator €,, leading to the
development of new finite elements. This is done in ARMERO & EHRLICH [10], EHRLICH
& ARMERO [86] for beams and plates, in ARMERO & LINDER [15], LINDER & ARMERO
[205] for the 2D continuum and recently in ARMERO & KiM [13] for the 3D continuum.
In this latter reference, in total nine separation modes are identified to be of major im-
portance for the 3D modeling of solids at failure. Those are three constant translation
modes, three rotation modes, two stretch modes, and one in-plane shear mode. In this
work, the rotation mode around the normal of the failure surface used in ARMERO &
Kim [13] is replaced by an additional in-plane shear mode resulting in a slight difference
in the closed form expressions of the operator.

2.3.1 Constant separation modes

Consider a single finite element B and assume that a discontinuity I'* fully separates
the element into two parts BZJF and B, For the constant separation mode illustrated in
Figure 2.3, the displacement field is chosen as

q {j;oo) = ¢ 4 g 4+ ¢ for node A € BZJF
0 =

2.31
0 otherwise ( )

in terms of the unit normal vector n and the unit tangent vectors s and t of the discon-
tinuity plane and in terms of the ngy, local degrees of freedom €/ = [ €80 g0
where &30011) represents the constant normal and §1<A°°S> and §1<f°t> represent the tangential
separation of the two parts of the single finite element, as illustrated in Figure 2.3. The
jump interpolation matrix then follows from the computation of the actual displacement

jump along the strong discontinuity for the separation mode given in (2.31) as
[wilioe) = 3507| , = €5"m+ 60 s + €00t (2.32)

Since based on the first equation in (2.14) the displacement jumps can be written also

as [u] (00) = JJ"’)E&"), one can directly read off the jump interpolation matrix for the
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Figure 2.3: Illustration of the constant separation modes in terms of one constant normal

opening ££°°n> in m direction and two constant tangential openings §1<,°°S> and E&om) in s and

t direction, respectively.

constant separation mode as
Jeoh=1[m, s, t] (2.33)

an interpolation matrix depending on the unit normal and tangent vectors m, s, and ¢
only.

Next, the compatibility operator ¢l corresponding to the constant separation mode is
derived based on the decomposition of the strain field as in (2.15). For the constant
separation mode in (2.31), one can write

€l ooy = Efooy + CIELY (2.34)

1,(00) u Su

where the global contribution can be easily computed and the final resulting strain is
known corresponding to the fact that there are no strains appearing in both parts of the
separated single finite element based on this separation mode, i.e.

EIZOO) = Z Bfﬂgjw and EZ,<OO> = 0. (235)

AeBht

Therefore, an equation, based on which the operator ¢ can be computed, is obtained.
The final result can be written as ¢° = [Qﬁffon) , @ loos , ¢ loon ] where

u
Aepht Aepht Aepht

€= 3 Bln, € == Y Ble ma €= ¥ Bl )

are given as summations of the linearized strain operator matrix B, over the nodes on
one side of the discontinuity multiplying the normal and tangent vectors m, s, and ¢,
respectively.

Remark 2.2. The results obtained in LINDER & ARMERO [205] for the plane setting

in the local basis {mn,m} for the jump interpolation matriz and the components of the

compatibility operator ¢l = [Cﬁfm, fom)] for the constant separation mode boil down to

Jlor = [n, m} and ¢ = — Z Bfn, glom — _ Z B'm. (2.37)

u u
AeBht AeBh™
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Figure 2.4: Illustration of the linear separation modes along the s-direction in terms of

one rotational mode fﬁlon) around the t-direction, one stretch mode fﬁlos) in s—direction,

and one shear mode fﬁlm, respectively.

2.3.2 Linear separation modes

To improve the kinematics of the strong discontinuity, in ARMERO & KiM [13] six linear
separation modes are identified in addition to the usually used three constant separa-
tion modes. All those are directly incorporated into the finite element framework with
embedded strong discontinuities so that their exact representation can be assured. As
a slight difference, rather than choosing three rotation modes, two stretch modes, and
one in-plane shear mode as in ARMERO & Kim [13], in this work the rotational mode
around the normal direction is replaced by an additional in-plane shear mode resulting
in slight differences of the closed form solutions for the compatibility operator, which is
the key kinematic quantity in the framework of the finite elements with embedded strong
discontinuities.

To do so, consider again a single finite element B and assume that a discontinuity I'* fully
separates the element into two parts BZJF and B"". First, the linear separation modes
along the s-direction illustrated in Figure 2.4 are considered for which the displacement
field is chosen as

+(10) 7 (10) 1A ht
d(Alo> _ {JA = L™ z" for node A € B (2.38)

0 otherwise

with

L) = ebon)(p @ 5) 4 0% (s @ 5) + £ (t @ 8)* and &4 = 2 — @ (2.39)

u

where (e ®0)* = (e®0) — (o®e). Use is made of the ngim, local degrees of freedom £ =

[ €09 o0 where ¢ represents the linear normal and £5°% and £5"°" represent

the linear tangential separation of the two parts of the single finite element, as illustrated
in Figure 2.4. The jump interpolation matrix then follows from the computation of the
actual displacement jump along the strong discontinuity for the separation mode given in
(2.38) as

[y = 357 |, = s60°n + 560 s + sV, (2.40)

re

Since based on the first equation in (2.14) the displacement jumps can be written also as
H’U,Z]] (o) = 318”)5;10), one can directly read off the jump interpolation matrix for the linear

separation mode along the s-direction as

I =] sn, ss, st | (2.41)
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T

/

Figure 2.5: Ilustration of the linear separation modes along the t¢-direction in terms of

) around the s-direction, one stretch mode §1<L°ls> in t—direction,

one rotational mode §u°
and one shear mode £1S°lt>, respectively.

an interpolation matrix depending on the unit normal and tangent vectors m, s, and ¢
only and the coordinate s along the tangential direction s.

Next, the compatibility operator e corresponding to this linear separation mode is
derived based on the decomposition of the strain field as in (2.15). For the linear separation
mode in (2.38), one can write

€Z,(1o) — €]<—L10> -+ Q:<10>£<lo> (242>

u u

where the global contribution can be easily computed and the final resulting strain is
known corresponding to the fact that there are no strains appearing due to the appearance
of &Slom but that a strain is expected due to the appearance of &3108) and fffow , 1.e.

S5A (10 108 1
o) = Z B, j and e} = (€0 (s @ 8) + &N (t @ 8) | Hpn  (2.43)

My
AeBht

where the Heaviside function Hpr is introduced, which takes the value 1 in BZ+ and 0 in
B . Insertion of (2.43) into (2.42) results in an equation based on which the operator

¢ can be computed. The final result can be written as el = [Qﬁﬁmn), Q:ﬁfos), Qﬁﬁf‘)t)}
where B
con = — 3" Bl (n®s)z, (2.44)
Aepht
as well as

¢lros) — (s®8)Hpn — Z Bf(s@s)i‘A and €Y = (t@s)Hrn— Z Bf(t@s)“a‘:/‘.
AeBh™ AeBl™
(2.45)

Secondly, when considering the linear separation modes along the ¢-direction illustrated
in Figure 2.5 analogous expressions are obtained as above. Those are summarized as

Jlov) — [ tn, ts, tt ], gl — _ Z Bf(n@;t)“;f;A
AeBht
eV = (s@t)Hry — Y Bi(s@t)zs, and €M =(t@t)Hy - Y B (t@t)za
AeBh* Aesp®

(2.46)
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In general, the linear separation mode is considered in addition to the constant separation
mode so that the final jump interpolation matrix and the final compatibility operator have
the form

oy = [3200)7 ~glo>’ 3201)] and €, = [Q:;oo)’ Q:glo>7 Q:(ol)] (2.47)

u

with the individual contributions given in (2.33), (2.36), (2.41), and (2.44)-(2.46), respec-
tively.

Remark 2.3. The results obtained in LINDER & ARMERO [205] for the plane setting in
the local basis {n,m} and a linear separation mode boil down to

I = [ sn, sm ] (2.48)
(n) g fam)

for the jump interpolation matriz and to el = [ u u } for the compatibility operator
with its components as

cim=— 3" Binem)'zs and € =(mem)Hy — Y Bl(mem)ia.
AeBhT AeBh*

(2.49)

2.4 Numerical aspects

In this section, the focus is directed towards numerical aspects. Section 2.4.1 will sum-
marize a criterion commonly used to identify crack initiation, whereas in Section 2.4.2
the actual failure surface propagation will be discussed based on an adoption of the well
established global tracking algorithm. Section 2.4.3 includes an adaption of the marching
cubes algorithm to be used in conjunction with the global tracking algorithm and the finite
elements with embedded strong discontinuities whereas Section 2.4.4 outlines a remedy
of the arising non-planar failure surfaces arising based on the marching cubes algorithm.
Finally, Section 2.4.5 illustrates in detail aspects of the numerical implementation of the
proposed framework.

2.4.1 Strong discontinuity initiation

A criterion is needed to decide when and in which direction the discontinuity is propagat-
ing through the specimen. A common criterion is based on the loss of ellipticity condition
of the underlying problem in the bulk characterized by the singularity of the associated
acoustic tensor of the problem at hand. An application of this criterion for purely me-
chanical models is presented in SIMO ET AL. [331] within the infinitesimal theory and
extended in ARMERO & GARIKIPATI [11] or OLIVER ET AL. [268] to finite deformations.
Extensions to the fully transient case resulting in a criterion based on the loss of hyper-
bolicity are applied in dynamic fracture problems in BELYTSCHKO ET AL. [32], among
others.

Within the infinitesimal theory one seeks a solution to (2.3) for the particular constitutive
relations outlined in (2.3) of the form

u(z,t) = a kel (2.50)
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where a is a constant quantity characterizing the amplitude of the harmonic wave, k = kn
with - n = 1 is the constant wave vector where k represents the wave number with n
as the propagation direction, and w is the constant frequency of the wave. Insertion of
(2.50) into (2.3) yields

Almam =0 where Alm = Cklmnknkk (251)

is the so called acoustic tensor. Under the assumptions that the elasticity moduli is
positive definite, i.e. Uy CriynUmn > 0 for all U,,, with at least one non-zero element, it
follows from (2.51) that

alAlmam >0 (252)

for all non-zero vectors a. This relation is the condition for ellipticity of the underlying
equations of equilibrium in (2.3) which can also be viewed as a condition for the material
stability since when (2.52) is satisfied it can be viewed as a stable response of an infinite
medium in a uniform state of stress subjected to perturbations in the form (2.50).

For Rankine type models representing the mechanical response based on a yield criterion
of the form

¢=max{n-on} —{fi, — fla)} <0 (2.53)

|In||=1
where f;, is the tensile strength of the material against normal separation and f is the
thermodynamic force conjugate to the rate of the internal variable a characterizing the
softening response, the elastic moduli C in (2.51) given in (2.2) needs to be replaced by
the elastic-plastic counterpart defined for the case of no hardening as

1

CP=C-—
A2

[C(n®n)®C(nen)) (2.54)

in terms of the maximum principal stress direction n. Then the condition (2.52) results
in
nea;C - amn, = p[l — (n - a)?] (2.55)

which can be interpreted in the way that when a = n, where n is the maximum principal
stress direction the fracture criterion is met with the propagation direction n resulting in
a Mode I fracture. It is to be noted, that the proposed propagation concept does not rely
on the particular constitutive response in 2.53 and is applicable as long as failure can be
detected locally at the individual material points.

2.4.2 Strong discontinuity propagation

This obtained criterion in (2.55) based on the loss of ellipticity for the detection of the
crack initiation and the crack propagation direction is successfully applied in many works
focusing on the two-dimensional setting [12, 205, 268]. Starting with an already existing
crack tip or alternatively a point of crack initiation at the boundary of the two dimensional
solid, the crack initiation criterion is checked in the corresponding finite element. When
failure is detected, the failure line with the normal computed by the fracture criterion
(2.55) is propagated through that finite element. After determination of the point at
which this surface again emerges out of that finite element, the corresponding neighboring
element is found and the procedure starts again with no limitation of the number of
elements developing a strong discontinuity in a single time step.
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Figure 2.6: Illustration of a possible failure surface and propagation front using a simplified
local algorithm to determine the crack propagation direction solely on the principal directions
{n, s,t} of a single finite element (left) and a more advanced global tracking algorithm
(right).

Extending such local propagation criterion to three dimensional simulations is easily pos-
sible but in general may lead to problems for complicated fracture surfaces. Even for a
single propagating failure surface one may encounter scenarios like the one depicted in
Figure 2.6 for which the crack path continuity in the overall domain may be lost. As a
remedy, a global tracking algorithm is proposed in OLIVER ET AL. [267, 269], which even
is applicable for scenarios where multiple strong discontinuities are present with possible
interaction scenarios like coalescence, crossing or branching, which though lie out of the
scope of this work.

The global tracking algorithm makes use of a globally obtained scalar level set function
O(x), which satisfies the conditions

s-VO=0 and t-VO0=0 (2.56)

where s and t are the two principal directions, which, in a three dimensional setting, span
the failure surface orthogonal to the major principal direction n obtained by the criterion
outlined in (2.55). It is proposed in OLIVER ET AL. [267, 269], that the level set 0(x)
can be obtained by the solution of a simplified heat-conduction-like problem by making
to zero the divergence of a heat flux-like quantity

V-q=0 inB with g=—ky-Vb (2.57)
in terms of the anisotropic conductivity-like tensor given as
Kog=8SRs+tRt+el (2.58)

where € > 0 is a small perturbation parameter needed to overcome singularity problems
[267, 269]. In the numerical simulations presented in Section 2.5, ¢ = 10™* is chosen. For
the numerical implementation, one may choose approximations of the form

Nnode

0" (x") = > N (@")04 = Nyb (2.59)

for all " € B" in terms of temperature like nodal values #4 and the shape functions

Ngt, which are equivalent to those used for the approximation of the displacement field

in (2.11). The nodal level set values @ are finally obtained by solving the global system
TNelem

K@OZO where K@Z A/ VNgKBQVNg dV (260)
Bg

e=1
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edge k — 1

two dimensional problem (1)

three dimensional problem (—)

Figure 2.7: Tllustration of the determination of § for two- and three-dimensional problems
based on (2.61).

which is solved on the same finite element discretization as used for the computation
of the mechanical boundary value problem with the boundary decomposed into 0B" =
oBh U OB!. The boundary conditions are such that ¢, = q-v = 0 for the outward normal
v on 883 of the solids boundary and that the temperature is prescribed as 6 = 6 in
OBl which consists of at least two points of the overall boundary to provide a unique
solution other than the trivial result of a constant level set value [267, 269]. An alternative
approach is presented in ARMERO & KiMm [13], where rather than solving (2.60) globally,
it is solved locally only for those finite elements ahead of a pre-existing failure surface but
still assuring a globally smooth failure surface.

Once the global level set is obtained by solving (2.60), the two dimensional case proceeds
by the computation of the level set § in the element ahead of the crack tip by a linear
interpolation of the global values ' and 6? along the edge of the element with the crack
tip. Instead of a single crack tip, in three dimensional simulations a one dimensional
propagation front is present as illustrated in Figure 2.7, which may span over various

finite elements. To obtain the value for §, an average of the values k = 1,...,n™" values

_ edge
0 for all the ngfgn; edges of elements intersecting the propagation front is computed as

front
edge

- 1 _ _
0= ot Z 0 where 0 = M0y + (1 — )07 (2.61)
edge k=1

with 7, = |z} — xL|/|xk — 22| € [0,1] as illustrated in Figure 2.7. Note that (2.61)
simplifies for the two dimensional setting since then ni’fg = 1. Having identified the level
set value of the crack front, the isosurface corresponding to this value are used as the
potential propagating failure surface. It is to be noted, that the actual value of the level
set can be artificially steered based on its applied value on 9Bj) and does not necessarily

have to be zero.

2.4.3 The marching cubes algorithm

The main goal is now to determine how the failure surface continues to propagate through
an element ahead of the propagation front in case the fracture criterion (2.55) is met.
Depending on the nodal values of 64 of all nodes in the element under consideration
and the level set value § obtained by (2.61), various scenarios might arise on how the
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Figure 2.8: Classification of all 2* configurations of the marching square algorithm includ-
ing the ambiguous cases 0101 and 1010 and characterization based on the 4-bit integer and
decimal number. Filled nodes e have values greater than 6 whereas empty nodes o have
values smaller than 6.

failure surface may propagate through that element. To investigate all possibilities and to
ensure a globally smooth failure surface, the marching squares algorithm is exploited for
two dimensional simulations and the marching cubes algorithm proposed in LORENSEN &
CLINE [217] in the field of computer graphics is exploited for three dimensional fracture
simulations and combined with the global tracking algorithm and the finite elements with
embedded strong discontinuities in this work. The marching cubes concept is a computer
graphics algorithm for extracting a polygonal mesh of an isosurface from a 3D scalar field,
called voxels. In REMPLER [305], those voxels are replaced by an eight node hexahedral
finite element and the isosurface is replaced by the failure surface predicted from the
global tracking algorithm. Doing so, use can be made of the table given in LORENSEN
& CLINE [217] identifying the 15 unique possibilities out of all the 2% = 256 cases of
how a constant isosurface can intersect a voxel. One particular property of those unique
cases is the fact that they are chosen in such a way that a smooth failure surface without
the appearance of artifacts or holes is guaranteed. Neglecting some of those cases should
therefore be avoided. Extensions of the original marching cubes algorithm are suggested
in the literature [62, 259, 260], which though are not accounted for in this work.

The discussion starts by an explanation of the concept for the two dimensional case, where
the square in the marching squares algorithm is represented by a plane quadrilateral finite
element. Even though the advantages of the concept are not that apparent in the plane
setting, it allows to explain the concept in detail. Thereafter the concept is extended
to three dimensions, where rather than using a tetrahedral finite element, for which the
advantages are again not that apparent, this work will focus on the exploitation of the
marching cubes algorithm for the prediction of the failure surface in a hexahedron finite
element.

Considering first a plane quadrilateral finite element, there are 2* = 16 possible configura-
tions of whether the nodal values of 84 for A =1, ..., 4 are larger or smaller than §. The
particular configuration number is determined by the construction of a binary number
(4-bits). As illustrated in Figure 2.8, surrounding the cell represented by the plane ele-
ment in an anti-clockwise manner, a zero is obtained for 8,4 < 6 (represented by an empty
node o in Figure 2.8) whereas a one is obtained for 84 > 6 (represented by a filled node
e in Figure 2.8). Within all the cases the qualitative location of the isoline with constant
value 6 is depicted. It is this isoline, which can then be used to predict the propagation of
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the strong discontinuity through that element under consideration. A particular emphasis
is given to the cases 0101 and 1010 for which first of all two isolines appear within the
finite element which in addition are not unique. This ambiguity is resolved in NIELSON
& HAMANN [260] by taking into account the data value at the center of the cell. For both
cases 0101 and 1010, if the center value is below 6, then the opposite case is considered.
For the determination of which configuration to choose, one now has to take into account
the location of the crack tip. If we consider e.g. that it is located on the fourth edge, and
if we assume that 6; < 6 and 6, > 0, the necessary cases to be considered are the cases
0001, 0011, 0111, and 0101 including the above mentioned resolution of ambiguity for
the latter. It then also becomes clear, that even though two constant isosurfaces appear
in case 0101, that only the one intersecting edge 4 is of interest in this example.

As mentioned above, the full potential of this procedure is observed for three dimensional
applications when using eight node hexahedron finite elements, this being also the major
reason for using those elements in the simulations provided in Section 2.5. In such case,
the marching cubes algorithm results in 28 = 256 possible configurations of whether
the nodal values of 04 for A = 1,...,8 are larger or smaller than . Based on the
exploitation of rotational and reflective symmetries as well as sign changes, LORENSEN
& CLINE [217] developed a table of 15 unique possibilities of how the isosurfaces with
constant value § can be depicted. Those are illustrated in Figure 2.9 and can now be
characterized by an 8-bit binary number constructed in the same way as above for the
plane setting. These cases now serve as possible failure zone cases through the element
under consideration. After identification of the proper case to be considered based on the
nodal values 4 and the computed value of the isoline § in (2.61) and after taking into
account the actual position of the crack tip, the propagation of the strong discontinuity
through that element is determined. It is to be noted, that the 15 configurations are
chosen in such a way that a smooth failure surface without the appearance of wholes is
guaranteed. As an example, a rotation of the cell in case 10100000 allows to conceptually
put this cell onto the one of case 10010110. To avoid ambiguous cases as illustrated in
Figure 2.8 for the plane quadrilaterals also in three dimensional simulations, extensions
of the original marching cubes algorithm are suggested in NIELSON & HAMANN [260],
CHERNYAEV [62], or NIELSON [259], which though are not accounted for in this work.
A summary box showcasing the incorporation of the marching cubes algorithm into the
global tracking algorithm and the strong discontinuity framework is given in Table 2.1.
There the two arrays named “predicted crack front list” and “actual crack front list” are
not to be confused. The former is a list of elements, within which the isosurface with
constant value 6 is present, whereas the latter is a list of elements sharing a surface with
an already existing crack front.

2.4.4 Treatment of non-planar failure surfaces

As expected in a complex three dimensional failure propagation through the solid, the
marching cubes algorithm in Section 2.4.3 includes cases of failure surfaces in Figure 2.9,
which are non-planar. This is in contradiction with the assumption of the introduced local
degrees of freedom &, in (2.14) and the identified local frame {n,s,t} used in Section
2.3 for the determination of the compatibility- and the equilibrium operators. Those
constant quantities within the element, carrying e.g. the kinematic information of the
amount of normal opening in direction n or slip in the tangential directions s and t are
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A. After convergence of the mechanical BVP, determine principal directions n, s, and t:

1. Compute the stresses o at each integration point based on the solution of the
mechanical boundary value problem by bringing to zero the residual (2.13).

2. Compute the principal directions n, s, and t at each integration point based on

the stresses obtained in step (Al).

B. Computate the level set value § based on the solution of (2.60) with the principal
directions n, s, and t from step (A2) as input parameters.

C. Predict the possible crack surfaces using the marching cubes algorithm:

1. Loop over all the finite elements in the “predicted crack front list” and perform
the steps (C2)-(C7).
2. Number the 8 nodes and 12 edges of each hexahedral element as shown in Figure

2.9.

3. Compare the value 04 at each node A with # obtained in step (B) to get an 8-bit
binary integer index. A zero is obtained for 64 < 6 whereas a one is obtained
for 64 > 6.

4. For the given 8-bit integer, obtain a list of edge numbers from the marching cubes
table to determine the individual triangles spanning the non-planar isosurface
(e.g. 1,9,4 and 2,11, 3 for the depicted configuration 10100000 in Figure 2.9).

5. Compute the local interpolation parameter n used in (2.61) on each edge in-
tersected by the isosurface made up by the detected triangles identified in step
(C4).

6. For a configuration with multiple constant isosurfaces through the element (cases
3,6,7,10-13 in Figure 2.9), choose the one, which assures global continuity.

7. Having identified the proper isosurface within the element under consideration,
the new neighboring elements are added to the “predicted crack front list”.

D. Perform the crack propagation:

1. Loop over all the elements in the “actual crack front list”.
2. Check if the failure criterion (2.55) is met in those elements.
3. If yes:

(a) Propagate the failure surface along the isosurface determined in step (C).

(b) Compute the artificial plane crack surface based on the discussion in Section
2.4.4.

(c) Update the “actual crack front list”.

4. If no: Proceed to the next element in the “actual crack front list”.

Table 2.1: Summary box of the incorporation of the marching cubes algorithm into the
global tracking algorithm and the strong discontinuity framework for a single loading step.



40 The strong discontinuity approach for purely mechanical solids
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Figure 2.9: Classification of the 15 unique configurations of the marching cubes algorithm
and characterization based on the 8-bit integer and decimal number. Filled nodes e have
values greater than 6 whereas empty nodes o have values smaller than 6.

interpretable as such only for a planar failure surface on which also their role in specific
traction separation laws is valid. Therefore in such scenario, in this work an artificial plane
failure surface is constructed with the minimal distance to the actual non-planar failure
surface as illustrated in Figure 2.10. On this artificial failure surface, the interpretation
of the local degrees of freedom &, in (2.14) is valid and the integrations in (2.17) or (2.21)
can be performed in a more straightforward way.

To do so, the normal vector n of the artificial plane needs to ensure the condition

nl
1 nodes
I(n,d) = - Z[n~wi—d]2—>min with n-n=1 (2.62)
nodes ;—1
where nl_ .. represents the number of nodes on the original surface, being between 3 and 6

for a hexahedral finite element as can be seen in Figure 2.9, x; are the coordinates of those
nodes and the constant scalar value d is given as d = n - ] with &} as the point located
on the artificial plane corresponding to x; where the vector from x; to x; is parallel to
n. To solve the constrained minimization problem in (2.62), one makes stationary the
Lagrangian

T
1 Mhodes

L(n,d,\) = — Z [n-x; —d)?> — M\(n-n — 1) — stationary (2.63)
n

nodes ;—1
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Figure 2.10: Ilustration of the actual non-planar failure surface with ngodes = 5 nodes
and the constructed planar artificial failure surface defined by the normal vector n.
by setting to zero its derivative with respect to d to get
'I’LF TLF
aL 1 nodes ~ ~ 1 nodes
—:F—ZZ[n-azi—d]:0 — d=mn-T where = < x;.
ad Mhodes i=1 Mnodes i=1
(2.64)

Substitution of the result for d in (2.64) into (2.63) yields after taking a derivative with
respect to n

T

L 1 Thodes
oL _ — > 2 (xi— &) (z,— &) —2)n =0 (2.65)

nodes ;—1

on  n
which can be rewritten as a standard eigenvalue problem of the form

r
aL 1 nnodes
— =Mn=0 with M = d (@i—&) @@ —&) - AL (2.66)

T
on Mhodes i=1

in terms of the fourth order identity I. The eigenvector corresponding to the minimal
eigenvalue of (2.66) will finally yield the solution for the normal n, which together with
Z in (2.64) identifies the artificial failure surface.

2.4.5 Numerical implementation

Following ARMERO [7, 8], LINDER & ARMERO [205], or ARMERO & Kim [13], the
numerical aspects of implementing this framework are summarized. The global residual
equation given in (2.13) and the local residual equation given in (2.17) are collected here
as

TNelem _
R,(d,&,) = £ — A/ BodV and re(d,gu):—/
Be

¢laadv — / Iltr dA.
e=1 BQ FQ

(2.67)

Those have to be brought to zero through a Newton iterative procedure, which requires
their linearization given as

Nelem

Melem
A [K;’;Ad’;ﬂ +K§§Ag’g+1} = AR, and K AdI! + K AL =12 (2.68)
e=1

u
e=1
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with the second set of equations in (2.67) and (2.68) only present for those element with
a strong discontinuity. The global and local quantities are then updated based on

d = dF 4+ AdT and €M = €8+ AgH! (2.69)

in terms of the iteration index k. The individual contributions in (2.68) are given as

zd :/ BzCBu d‘/a 25 :/ BUCQU dVv,
Bl Bl

] : (2.70)
K¢, = / ¢/CB,dV, and K = / ¢l oe, dv + / ILCrJ, dA
Bh Bh rh

for the stiffness matrices, respectively. The tangent C in the bulk B! as well as its
counterpart along the strong discontinuity Cr in (2.70) are defined based on

Ao = CAel, and Aty = CrA[ul] (2.71)

with Au),] = J,AE,.

One major advantage of the considered formulation is the computational efficiency which
comes with the fact that the internal degrees of freedom for the description of the strong
discontinuity can be statically condensed out at the element level. From the second
equation in (2.68) the increments of the enhanced parameters can be computed as

A = (Kg) ' 1S — KgAdE] (2.72)

locally for the elements with a strong discontinuity. Insertion of (2.72) into the first
equation in (2.68) yields the statically condensed system

KFAdF! = RF (2.73)

in terms of the effective residual R¥ = Aldem RS and the effective stiffness matrix K' =
ko
A K given as

RS =R - K5 (Kg)'rd and K¢ =K - Ko (Kg)'Kg,  (2.74)
in terms of the iteration index k. It is emphasized that the structure of the numerical
implementation reported in LINDER & ARMERO [205] for the plane setting does not
change when extending it to the three dimensional setting in ARMERO & Kim [13],
which is also apparent here in this section.

2.5 Numerical simulations

This section presents the results obtained in a series of numerical tests designed to evaluate
and illustrate the performance of the three dimensional finite elements with the incorpo-
rated linear separation modes as well as the performance of the proposed coupling of the
marching cubes algorithm with the global tracking algorithm and the strong discontinuity
framework. Asin LINDER & ARMERO [205] for the plane setting and in ARMERO & KiM
[13] for the three dimensional setting, we start in Section 2.5.1 with a number of single
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element tests to outline the improved behavior originating from the incorporation of the
higher order kinematics along the failure surface.

Next, a series of representative numerical simulations are presented to demonstrate the
performance of the failure surface propagation concept proposed in this work. It is empha-
sized that rather than prescribing the failure surface propagation path, all the presented
simulations in this section determine the crack path based on the proposed combination of
the global tracking algorithm, the marching cubes algorithm, and the strong discontinuity
framework. All the simulations are carried out with eight node hexahedral finite elements
(bricks) through which the propagation of the failure surface is possible based on the 28
cases of the marching cubes algorithm categorized into the 15 unique configurations given
in Figure 2.9. In Section 2.5.2, the classical concrete benchmark problem of a three-point
bending test is investigated. The complexity of the almost planar failure surface in that
test is increased in Section 2.5.3, where an L-shape concrete specimen is numerically in-
vestigated. Next, the Brokenshire torsion test is simulated in Section 2.5.4 resulting in
a highly complicated curved failure surface justifying the advanced propagation concept
proposed in this work. Finally, Sections 2.5.5 and 2.5.6 outline the applicability of that
concept to cases where multiple failure surfaces appear within the solid based on a ten-
sile test with two notches and two holes as well as based on a double notched four-point
bending test, respectively.

2.5.1 Single element tests

In line with LINDER & ARMERO [205] in the plane setting and ARMERO & Kim [13]
for the three dimensional formulation, single element tests are considered to outline the
obtained improved behavior of the higher order kinematic approximation of the failure
zone. In the following a partial bending test, a partial tension test, a partial shear,
and a partial rotation test are considered. All tests are discretized by a single finite
element of dimension 200 x 200 x 200 mm?®. To emphasize the general applicability of the
strong discontinuity approach, in addition to the standard trilinear displacement based
Q1 element, the 3D mixed element Q1/P0 [155], and the enhanced strain elements Q1/E9
and Q1/E12 [330] are used based on a proper modification of the B, matrix in (2.12). The
bulk is modeled as linear elastic with a Young’s modulus of £ = 30 GPa and a Poisson
ratio of ¥ = 0.0. Whereas no initial strong discontinuity is present in the partial bending
test, all other tests assume that the block is separated from the onset by a fully softened
discontinuity through its center in two parts.

The constitutive model used along the strong discontinuity for the partial bending test is
a traction-separation law with linear softening given as

tr, = max{0, fi, +S[[uﬁn]]} and ftp,, = ks,tﬂuﬁsyt (2.75)

in terms of the tensile strength f;, = 3 MPa and the softening modulus § = —45 MPa/mm,
which corresponds to a fracture energy of Gy = f2 /(2|S]) = 0.1N/mm as well as the
small value ks, = 3-10~* GPa/mm in tangential direction to avoid possible singularities in
the fully softened regime even though no tangential jumps are expected in this example.
The boundary conditions are shown in Figure 2.11. Up to a a displacement 6 = 0.1 mm, at
which the strong discontinuity is formed based on the failure criterion (2.55), the bottom
and top corners are equally pulled apart in horizontal direction. Thereafter, the bottom
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Figure 2.11: Single element tests. Illustration of geometry, boundary conditions, loading,
and numerical results for the partial bending test.
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Figure 2.12: Single element tests. Illustration of geometry, boundary conditions, loading,
and numerical results for the partial tension test.

displacement ¢y, increases twice as fast as the top displacement d;op. The numerical
results are compared with the analytical solution derived in LINDER & ARMERO [205].
This comparison outlines the drastic improvement obtained by the higher order kinematic
resolution of the strong discontinuity when compared to the constant jump approxima-
tion, which, as in the plane setting, clearly leads to stress locking in the sense that the
reaction cannot be relaxed completely for a fully opened discontinuity, neither with the
standard displacement based element nor with the enhanced finite elements as illustrated
in Figure 2.11.

For the remaining single element tests a pre-existing fully softened (i, ,, = 0) strong
discontinuity is assumed to be present through the center of the element comprising the
block of the same dimension and material parameters as in the previous partial bending
test. The loading is such that for the partial tension test the four nodes on one side B+
are equally pulled apart by § in ¢ direction so that in that part of the element the stress
component ¢ = F§/a, with a as half the side length of the cube, is present as the only
non-zero stress component. The results of the numerical simulation illustrated in Figure
2.12 reveal that no stresses are transferred over the fully softened strong discontinuity and
that the only non-zero displacement jump present is §1<L°ls> when considering the higher
order kinematic approximation of the displacement jumps, whereas the interpolations
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Figure 2.13: Single element tests. Illustration of geometry, boundary conditions, loading,
and numerical results for the partial shear test.

T T T
", analytical solution

+ 1", Q1 const. jumps.

O 1", Qllinear jumps +*

Stresses Tin B* [MPa]
+

. . . . . . . . .
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05
Imposed Displacement & [mm]

Figure 2.14: Single element tests. Illustration of geometry, boundary conditions, loading,
and numerical results for the partial rotation test.

with constant jumps exhibit a transfer of the stress components and leads to the wrong
results since that particular linear separation mode is not exactly captured.

In the partial shear test illustrated in Figure 2.13 the upper nodes in B"* are displaced
by § in s direction, whereas the bottom nodes in B"* are displaced by ¢ in the negative s
direction. The finite elements with linear displacement jumps are capable to predict the
expected shear stress 7 = Ed/a in B4 based on developing the only non-zero displacement
jumps ffflt), whereas the finite elements with constant displacement jumps again lead to
a transfer of stress into the whole block.

Finally, the partial rotation test is considered, where the nodes in B are displaced such
that this part undergoes an infinitesimal rotation around n. Clearly, no stress is expected
in any of the two parts of the block due to the fully softened strong discontinuity present
from the onset. The rotation is captured nicely for the finite elements with a higher order
kinematic representation of the failure zone by a combination of nonzero ffflt) and fff"t)
displacement jumps. Those are not present for the elements with constant displacement
jumps so that for those the wrong result is predicted with a transfer of stress components
into the whole block as shown in Figure 2.14.
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Figure 2.15: Three-point bending test: illustration of geometry (length units in mm),
loading, and support of the notched concrete beam.
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(b) unstructured mesh with 5525 brick elements

Figure 2.16: Three-point bending test: illustration of the finite element discretization
using a structured- and an unstructured mesh.

2.5.2 Three-point bending test

In this first example the classical benchmark failure problem in the form of the three-point
bending test is investigated. It consists of a notched concrete beam, which is supported
on the two bottom edges and loaded at the center of the top surface as illustrated in
Figure 2.15. The material response of the concrete beam is modeled as linear elastic with
a Young’s modulus of £ = 30 GPa and a Poisson ratio of ¥ = 0.2 in the bulk. Failure is
detected based on the criterion outlined in Section 2.4.1 as soon as the tensile strength
of f;, = 3.33 MPa is surpassed. To model the material response within the propagating
failure surface, the cohesive law considered in ARMERO & Kim [13], LINDER & ARMERO
[205] is used for the response of the discontinuity in the normal direction as

L
a [uﬂnﬂ
Jin (1 - (%) 5—) for  [uy,] < da
- ) (2.76)

lr, = k
g (1 ~ (L) ) for [t ] > 6,
(%)

in terms of the parameters k£ = 0.5, §, = 0.015, and §y = 0.16, which corresponds to a
fracture energy Gy = 0.124N/mm. The linear relations tp, = ki[u | and tr, = k/[u],
with the reduced shear stiffness of k, and k; equal to 3- 1072 GPa/mm are considered for
the response of the discontinuity in the two tangential directions s and t of the artificial
planar failure surface constructed based on the discussion of Section 2.4.4.
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(e) u=0.75

7 (;1) u=0.60

(f) ©=0.90
Figure 2.17: Three-point bending test: illustration of the evolution of different possi-
ble failure surfaces for different displacements » in mm predicted by the global tracking
algorithm in conjunction with the marching cubes algorithm.

ﬂﬂﬂﬂ(d) u=0.60 ﬂﬂﬂﬂ(f) u=0.90

(1)
side
view

(8)
top
view

Figure 2.18: Three-point bending test: illustration of the actual failure surface for different
applied loading stages v in mm (a-f) and a closer look at the final failure surface (g-i) from
different perspectives.
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Figure 2.19: Three-point bending test: reaction force versus applied displacement relation
for displacement based Q1 and mixed Q1/P0 elements with constant and linear jumps for
structured and unstructured meshes.

The finite element discretization considers a structured mesh made of 6000 eight node hex-
ahedral finite elements and an unstructured mesh consisting of 5525 bricks, both meshes
with five element layers in thickness direction as shown in Figure 2.16. Displacement
based Q1 elements as well as mixed Q1/P0 elements are used together with the constant
as well as the linear separation modes initially developed in ARMERO & Kim [13] and
illustrated with a slight modification in Figures 2.3-2.5. Figure 2.17 shows the resulting
constant level set surfaces within the individual bricks of the unstructured mesh. Those
surfaces are obtained based on the global tracking algorithm, where an initial value of
0 = +1 at the left and right layer of nodes of the elements at which the failure surface is
assumed to start is chosen, and the marching cubes algorithm allowing for the represen-
tation of those surfaces within the individual bricks. It is apparent in Figure 2.17 that
those surfaces corresponding to a certain constant level set value do evolve for a changing
applied load. As illustrated in Figure 2.18(a-f) for the different loading stages, the level
set value obtained by the averaging procedure (2.61) determines the iso-surface to be
used for the subsequent failure surface propagation in the elements for which the failure
criterion (2.55) is satisfied. A closer investigation of the final failure surface illustrated
in Figure 2.18(g-i) from the top, the front, and the side reveals in addition to the appar-
ent non-symmetry in x; direction due to the non-symmetric unstructured finite element
mesh in this direction also its slight non-symmetry in x3 direction arising from the non-
symmetric partition of the failure surfaces into triangles when performing integrations
over the strong discontinuity:.

Finally, the reaction force R versus applied displacement u relation is plotted in Figure 2.19
for both, the unstructured and the structured meshes illustrated in Figure 2.16 consisting
of displacement based Q1 elements as well as mixed Q1/P0 elements and distinguished
for the case when constant and when linear separation modes are allowed within the eight
node hexahedral finite elements. In line with the results obtained in ARMERO & KiMm
[13], using the elements with a higher order approximation of the failure surface improves
on the numerical results agreeing better with the experimental envelope presented in
PETERSSON [286], ROTS ET AL. [313].
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Figure 2.20: L-shape concrete specimen test: illustration of geometry (length units in
mm), loading, and support of the L-shape concrete specimen on the left and illustration of
the finite element discretization using an unstructured mesh on the right.
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Figure 2.21: L-shape concrete specimen test: illustration of the evolution (v in mm) of
different possible failure surfaces predicted by the global tracking algorithm in conjunction

with the marching cubes algorithm.

2.5.3 L-shape concrete specimen test

In a similar manner, next the L-shape concrete specimen, whose geometry, loading (up-
wards displacement applied at the front edge), and boundary conditions (fully restrained
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Figure 2.22: L-shape concrete specimen test:
different applied loading stages (u in mm) (a-h)
(i-k) from different perspectives.
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Figure 2.23: L-shape concrete specimen test: Left: reaction force versus applied displace-
ment relation for displacement based Q1 and mixed Q1/P0 elements with constant and

linear jumps. Right: reaction force versus applied displacement relation for the different
meshes illustrated in the top row (a-d) of Figure 2.24.
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(735 ele- (1860 el- (3545 el- (7125 el-
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Figure 2.24: L-shape concrete specimen test: illustration of the actual failure surface (e-p)
for different applied loading stages and different finite element discretizations (a-d) using
displacement based Q1 elements with linear approximations of the displacement jumps.
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at the bottom surface) are depicted in Figure 2.20(a), is investigated and compared with
experimental results presented in WINKLER ET AL. [385], WINKLER [386] and alterna-
tive numerical results presented e.g. in DUMSTORFF & MESCHKE [79], HUND & RAMM
[159], JAGER ET AL. [163], based on which a more complicated failure surface is expected.
Whereas the material response of the concrete bulk is modeled similar as in the previous
problem in Section 2.5.2 but now with a Young’s modulus £ = 25.85 GPa and a Poisson
ratio of v = 0.18, the constitutive model along the propagating failure surface makes use
of an exponential softening law given as

tr, = max{0, fi, ~exp(—a[[uﬁn )} (2.77)

in normal direction of the artificial planar failure surface. A softening exponent of a =
41.54mm™! and a tensile strength of f, = 2.65MPa is chosen. Along the two tangential
directions, a reduced stiffness of ks = k; = 0.3 MPa/mm is used.

The discretization of the specimen is performed with the in Figure 2.20(b) illustrated 3545
displacement based eight node brick elements with five layers of elements in the thickness
direction. Again, the discussion starts with an illustration of the resulting constant level
set surfaces in Figure 2.21, which are obtained using the global tracking algorithm with
initial values of # = +1 at the top and bottom layer of nodes of the elements at which the
failure surface is assumed to start. Again it is apparent that those surfaces evolve with an
increased loading. The iso-surface finally chosen based on the averaged value of the level
set at the crack front based on (2.61) as the actual failure surface is illustrated in Figure
2.22. Whereas Figure 2.22(a-h) shows how this surface evolves for an increasing applied
displacement, Figure 2.22(i-k) illustrate the final failure zone from different perspectives,
which turns out to be in close agreement with experimental results reported in WINKLER
[386]. The potentially possible non-symmetry in thickness direction seems to vanish in
this test when having a closer look at the illustrations in Figure 2.22(ik).

Next, the reaction force R versus applied displacement u relation is plotted on the left of
Figure 2.23 for both, displacement based Q1 elements as well as mixed Q1/P0 elements
and distinguished for the case when constant and when linear separation modes are allowed
within the eight node hexahedral finite elements. Again, using the elements with a higher
order approximation of the failure surface improves on the numerical results agreeing
better with the experimental envelope presented in [386]. Finally, on the right of Figure
2.23 is shown the reaction force versus displacement relation for a varying density in the
finite element discretization using displacement based Q1 elements with linear separation
modes. The resulting influence of the different finite element meshes on the obtained
failure surface is illustrated in Figure 2.24.

2.5.4 Brokenshire torsion test

As the third example, the Brokenshire torsion test is investigated and compared with ex-
perimental results performed in BROKENSHIRE [58] and alternative numerical simulation
found e.g. in JEFFERSON ET AL. [169], GURSES & MIEHE [132], GASSER & HOLZAPFEL
[119], or FRIES & BAYDOUN [112]. The problem setting is given in Figure 2.25 showing
a prismatic concrete beam with a notch, inclined by 45°, through the center of the top
surface. The beam is supported by two rigid anchors at both ends and loaded in torsion
based on a downward displacement at one corner of one of the anchors. The material
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Figure 2.25: Brokenshire torsion test: illustration of geometry (length units in mm),
loading, and support of the notched prismatic beam fixed by two rigid anchors on the left
and right side.

&,
h.“".',..l
R

Figure 2.26: Brokenshire torsion test: illustration of the finite element discretization using
an unstructured mesh with 2314 brick elements.

response of the concrete beam is modeled again as linear elastic with a Young’s modulus
of £ = 34.9 GPa and a Poisson ratio of ¥ = 0.2 in the bulk. After surpassing the tensile
strength of f; = 2.3 MPa a failure surface is supposed to initiate at the tip of the pre-
existing notch and supposed to propagate downwards until reaching the bottom surface.
The same exponential softening law as in (2.77) is used with the same softening exponent
in normal direction and the same reduced stiffness is used in the linear laws in tangential
direction.

The finite element discretization consists of 2314 brick elements as illustrated in Figure
2.26. No repeated layers of elements are possible for this test due to the inclined pre-
existing notch resulting in a fully unstructured mesh in all three directions, therefore
serving as an excellent example for the proposed crack propagation concept in this work.
The discussion again starts with an illustration of the resulting constant level set surfaces
in Figure 2.27. Those are obtained by choosing § = +£1 for the nodes of elements on either
side of the center of the pre-existing notch front in the global tracking algorithm. Figure
2.27 clearly shows the evolution of the very complex isosurfaces with increased loading.
The iso-surface finally chosen based on the averaged value of the level set at the crack front
based on (2.61) as the actual failure surface is illustrated in Figure 2.28. Whereas Figure
2.28(a-d) shows how this surface evolves for an increasing applied displacement, Figure
2.28(e-h) illustrate the final failure zone from different perspectives. A highly complex,
double curved but very smooth failure surface is obtained based on the proposed crack
propagation concept agreeing well with other numerical results reported in GASSER &
HoLzAPFEL [119], GURSES & MIEHE [132], or FRIES & BAYDOUN [112].



54 The strong discontinuity approach for purely mechanical solids

(c) u=0.30mm (d) v =0.40mm

Figure 2.27: Brokenshire torsion test: illustration of the evolution of different possible
failure surfaces predicted by the global tracking algorithm in conjunction with the marching
cubes algorithm.

(c) u=0.30mm (d) v =0.40mm

(e) top view (f) front (2) (h)
view side notch
view view

Figure 2.28: Brokenshire torsion test: illustration of the actual failure surface for different
applied loading stages (a-d) and a closer look at the final failure surface (e-h) from different
perspectives.

The complexity of the obtained constant level set isosurfaces serving as prediction for
the actual failure surface becomes apparent when counting the number of elements being
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load unique configurations in the marching cubes algorithm
(mm) 1 2 |34 5|67 | 8|9 10%| 11" |12 | 13* | 14
I 59 | 64 | 2 | 51| 34 4 1
IT 79 | 68 52 | 38 12 | 2 2
11 100 | 111 | 1 | 75 | 57 15|14 3 1 1
0.10 | IV 66 | 136 48 | 33 9 |1 1
\Y% 107 | 150 | 1 | 80 | 37 | 2 1312 1 1 3
VI 73 | 91 54 | 45 9 |1 1
VII 51 | 72 | 2 | 45 | 42 5 1
I 83 [ 119 | 1 | 53 | 36 14 | 2 1
IT 68 | 119 62 | 40 5
I11 73 | 95 48 | 28 14
0.20 | IV 56 | 113 45 | 23 7
\Y% 79 | 113 69 | 33 8 1
VI 87 | 102 67 | 49 10 2 2
VII 65 | 82 56 | 43 4 |1 1
I 71 | 124 59 | 38 6 |1
IT 77| 104 56 | 38 13
11 56 | 121 44 | 14 7
0.30 | IV 65 | 92 51 | 24 8 1
\Y% 83 | 100 69 | 20 9
VI 75 | 107 62 | 29 8
VII 80 | 8 | 2 |62 37 8 2] 2
I 68 | 110 51 | 28 10
IT 57 | 104 43 | 21 9
11 55 | 111 48 | 15 4
0.40 | IV 67 | 104 47 | 23 12 |1
A% 77 | 100 65 | 33 6 |2
VI 72 108 | 1 | 57| 31 8 1
VII 82 | 76 | 1 | 24| 34 101 1

Table 2.2: Brokenshire torsion test: number of elements categorized into the 15 unique
configurations of the marching cubes algorithm illustrated in Figure 2.9 for the different
loading stages shown in Figure 2.27 and different level set values distinguished by color (I-
red, IT-yellow, I1I-light green, IV—dark green, V-turquoise, VI-cyan, and VII-blue). The 7

configurations with multiple isosurfaces in Figure 2.9 are marked by the superscript *.

categorized into the individual 15 unique configurations of the marching cubes algorithm
illustrated in Figure 2.9. An overview is provided in Table 2.2 for the four loading stages
with the isosurfaces illustrated in Figure 2.27. It becomes apparent, that even the cases
with multiple discontinuities illustrated in Figure 2.9 are present, for which eventually the
one continuous to the existing crack front is chosen. This confirms the assumption, that
none of the 15 unique cases in Figure 2.9 can be neglected.

2.5.5 Tensile test with two notches and holes

Next, the tensile test with two pre-existing notches an two holes is investigated and
compared with alternative numerical results given e.g. in BOUCHARD ET AL. [49, 50],
MIEHE & GURSES [240] to demonstrate the versatility of the proposed crack propagation
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Figure 2.29: Tensile test: illustration of geometry (length units in mm), loading, and sup-
port of the concrete specimen on the left and illustration of the finite element discretization
on the right.

concept to be used for multiple failure surfaces. The problem setting is illustrated in
Figure 2.29(a) including the boundary condition being fixed at the bottom surface and the
loading being applied in vertical direction along the top surface. The material is modeled
as linear elastic in the bulk with a Young’s modulus of £ = 25.85 GPa and a Poisson ratio
of v = 0.18. Two failure surfaces are supposed to initiate from the pre-existing notches
after the tensile strength of f; = 2.7 MPa is surpassed. The same constitutive response
along the failure surface is chosen as in the previous two examples of Sections 2.5.3 and
2.5.4.

The simulation is performed with the finite element mesh depicted in Figure 2.29(b)
consisting of 8640 eight node brick elements. The pre-existing notch is modeled with finite
elements having a fully softened strong discontinuity. The global tracking algorithm is run
with initial values of 8 = +1 at the bottom and top nodes of those elements in the initial
crack front. In conjunction with the marching cubes algorithm, the constant isosurfaces
shown in Figure 2.30 are obtained for different loading stages. The actual failure surface
is illustrated in Figure 2.31, again at the different loading stages. It is seen, that the crack
propagation concept indeed is capable of representing multiple failure surfaces as long as
scenarios of multiple failure surfaces within a single finite element is circumvented.

2.5.6 Four-point bending test with two notches

Finally, the double notched four-point bending test is considered to further outline the
applicability of the propagation concept for cases of multiple propagating failure surfaces.
The problem setting is illustrated in Figure 2.32(a) including the boundary conditions
and loading scenario. The concrete beam with dimension 900 x 200 x 100 mm? with
the two center notches of dimension 5 x 40 x 100 mm? is supported at two steel caps at
the lower surface over the whole thickness. The load is not applied as in the previous
examples directly through an imposed displacement but rather through eccentric loads
5/6 P and 1/6 P at two steel caps on the upper surface. The load varies through an
arc-length solution procedure that increases linearly in terms of the crack mouth opening
displacement (cmod) w as the horizontal relative separation of the bottom edge of the
notch. The material in the bulk is modeled as in the previous sections as linear elastic with
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(c) u=0.03mm

Figure 2.30: Tensile test: illustration of the evolution of different possible failure surfaces
predicted by the global tracking algorithm in conjunction with the marching cubes algorithm.
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Figure 2.31: Tensile test: illustration of the actual failure surface for different applied
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Figure 2.32: Four-point bending test: illustration of geometry (length units in mm),
loading, and support of the concrete specimen in the upper row and illustration of the finite
element discretization using an unstructured mesh in the lower row.
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(a) (b) (c)
cmod=0.005 cmod=0.035 cmod=0.065

(d)
cmod=0.095 cmod=0.125

(f) cmod=0.155

Figure 2.33: Four-point bending test: illustration of the evolution of different possible
failure surfaces (cmod in mm) predicted by the global tracking algorithm in conjunction
with the marching cubes algorithm.
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Figure 2.34: Four-point bending test: illustration of the actual failure surface for different

cmod (in mm) stages (a-f) and a closer look at the final failure surface (g-i) compared with
the experimental result (j).
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Figure 2.35: Four-point bending test: reaction force versus crack mouth opening displace-

ment relation for displacement based Q1 and mixed Q1/P0 elements with constant and
linear jumps.
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a Young’s modulus of £/ = 27 GPa and a Poisson ratio of v = 0.18. Experimental results
in BoccA ET AL. [45] and alternative numerical results for two- and three dimensional
simulations [266, 269, 270, 291, 347, 393| indicate the appearance of two complicated
failure surfaces originating from the pre-existing notches. To model the material behavior
within an arising strong discontinuity, the same constitutive response (2.77) is used as in
the previous examples but with a tensile strength of f;, = 2 MPa and a softening exponent

of a =20mm™1.

The finite element discretization consists of 6395 eight node hexahedral finite elements as
illustrated in Figure 2.32(b). Also in this simulation, the discussion starts with an illus-
tration of the resulting constant level set surfaces in Figure 2.33. Those are obtained by
choosing 6 = £1 at the nodes along the edges of the two pre-existing notches. Again, the
evolution of those isosurfaces with an increasing load controlled by the crack mouth open-
ing displacement is observed. The two isosurfaces finally chosen based on the averaged
value of the level set at the two crack fronts based on (2.61) as the actual failure surfaces
are illustrated in Figure 2.34. Whereas Figure 2.34(a-f) shows how this surface evolves for
an increasing applied load, Figure 2.34(g-i) illustrates the final failure zone from different
perspectives and compares the obtained numerical solution with the experimental result
in Figure 2.34(j), which outlines the good performance of the proposed crack propagation
concept obtained as a combination of the global tracking algorithm and the marching
cubes algorithm. Similar as for the three-point bending test in Section 2.5.2, a closer look
at Figure 2.34(h,i) reveals a slight non-symmetry in the thickness direction again being
the result of a possible non-symmetric partition of the failure surface into triangles when
performing integrations over the strong discontinuity.

Finally, the reaction force versus crack mouth opening displacement relation is plotted in
Figure 2.35. The result obtained in this work is close to the numerical results reported
in OLIVER ET AL. [270] since only a slight deviation of the results with a constant and a
linear approximation of the displacement jumps is observed for both, displacement based
Q1 and mixed Q1/P0 elements.
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3 The strong discontinuity approach for electrome-
chanical problems

This chapter extends the strong discontinuity approach introduced in the previous Chap-
ter 2 for purely mechanical solids to electromechanical coupled materials like piezo- and
ferroelectric ceramics and closely investigates the physical phenomenon of electric dis-
placement saturation on the influence of crack initiation and failure surface propagation.
The recent publications of LINDER ET AL. [210], LINDER & MIEHE [207], and LINDER
[204] serve as the basis for the content of this chapter.

3.1 Introduction

Making use of the decomposition of the strong discontinuity approach into a global prob-
lem, representing here the standard electromechanical boundary value problem, the strong
discontinuities in the form of jumps in the displacement fields as well as jumps in the elec-
tric potential are subsequently incorporated through the local problem representing the
localized zones of failure. This decomposition is further beneficiary when it comes to
the development of constitutive relations along the strong discontinuities where now the
mechanical displacement and the electric potential need to be related to the mechanical
traction and the surface charge density, respectively. This can be achieved by the de-
velopment of a localized electromechanical damage model along the strong discontinuity
resulting from an anisotropic continuum based damage model developed in SiMO & JU
[327] for a purely mechanical based material in the same line as the resulting mechanical
damage model along the discontinuity is developed in ARMERO [6]. Localized constitutive
relations in elastoplastic solids are developed in MIEHE & SCHRODER [243]. The decom-
position of the method into global and local part can also be exploited within the resulting
discrete finite element setting. Whereas the global problem is discretized with standard
displacement based, mixed, or enhanced finite elements, the localized zones can be repre-
sented by finite elements equipped with the possibility of forming strong discontinuities
in the displacement field as well as in the electric potential again based on underlying
finite elements being either of displacement based, mixed, or enhanced type. To avoid
locking phenomena, electric separation modes are introduced along the same line as the
mechanical separation modes in the plane mechanical continuum problem are proposed
in LINDER & ARMERO [205] resulting in the development of new finite elements which
are capable of representing the electromechanical coupled failure. It is emphasized that
the computational efficient property of the strong discontinuity approach can be kept due
to the possibility to statically condense out all the information needed to describe the
discontinuities in the mechanical and the electrical fields at the finite element level.

This chapter presents further a computational investigation of a proposed simplified ac-
count for electric displacement saturation on the hysteretic behavior of initially unpoled
ferroelectric ceramics as well as on the initiation and propagation of cracks in poled
ferroelectric ceramics within the linear regime of piezoelectricity. For the latter case,
experimental observations suggest an odd dependency of the onset of crack initiation in
these brittle materials on the orientation of the applied electric field with respect to their
poling direction which contradicts theoretical results which propose an even dependency
of the energy release rate on the applied electric field within the framework of anisotropic
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linear piezoelectricity. Electric non-linearities arising at regions of inhomogeneities such
as inclusions or at the crack tip are proposed in the literature to avoid this discrepancy.
Electric displacement saturation is one such non-linear effect which is investigated in this
work. A simplified account of this effect is proposed based on an exponential saturation
model of the identified material parameters which can be related to this non-linearity. Its
advantage over the superposition of a complex function onto the singular solution of a
crack within the framework of linear piezoelectricity lies in the straightforward extension
of the proposed approach to problems where no analytical solutions exist. This is outlined
based on its incorporation into a rate-dependent ferroelectric model accounting for po-
larization switching as well as based on its incorporation into a finite element framework
capable of simulating the initiation and propagation of cracks in piezoelectric ceramics
through strong discontinuities in the displacement field and the electric potential. It is
shown that besides the determination of the crack initiation onset also the crack propa-
gation direction is influenced by the appearance of saturation zones arising at the crack
tip normal to the polarization direction. The numerically obtained crack paths are found
to be close to the experimentally reported results.

The chapter is organized as follows. Following the developments in Chapter 2 for purely
mechanical based materials, strong discontinuities are incorporated into the coupled elec-
tromechanical problem in Section 3.2. This is done first within the continuum framework
in Section 3.2.1. Additionally, the required constitutive relations in the bulk and along
the strong discontinuity are introduced where a restriction to piezoelectric materials in
the bulk is made even though the proposed formulation allows for more general ferro-
electric dissipative material responses. The employed decomposition into global and local
problem then allows for the incorporation of the strong discontinuities in both, the me-
chanical and the electric fields, within the discrete finite element setting in Section 3.2.2.
Section 3.3 develops new finite elements based on the introduction of certain electric sep-
aration modes with the purpose of avoiding locking phenomena of the electromechanical
coupled problem. Numerical aspects like failure initiation in electromechanical coupled
materials or failure propagation through those as well as the development of a compact
notation for its implementation is discussed in Section 3.4. The simplified account for the
electric displacement saturation is discussed in Section 3.5, including its derivation for
piezoelectric ceramics in Section 3.5.1, a complex variable solution in Section 3.5.1, and
an extension to ferroelectric ceramics in Section 3.5.3. Finally, Section 3.6 outlines the
performance of the new finite elements based on two simple academic single element tests
and two realistic numerical simulations in the form of a compact tension test and a three
point bending test for piezoelectric ceramics. Comparisons of the two latter simulations
with experimental results in PARK & SUN [280] are made and the influence of electric
displacement saturation is investigated in detail.

3.2 The electromechanical coupled strong discontinuity frame-
work

Following the developments in Chapter 2, in this section it will be outlined how failure
can be modeled within electromechanical coupled solids based on a sharp resolution of
the failure zone by discontinuities in the mechanical as well as the electrical primary
unknowns. This will be done separately for the continuum framework in Section 3.2.1
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Figure 3.1: The electromechanical boundary value problem (BVP) of piezoelectric ce-
ramics. The mechanical loading pb, t and corresponding decomposition of the mechanical
boundary 0B = 9,8 U B is shown on the left whereas the electrical loading p¢, ¢ and
corresponding decomposition of the boundary 08 = 0,8 U 9,8 is illustrated on the right.

and the finite element framework in Section 3.2.2.

3.2.1 Continuum modeling of failure in electromechanical coupled solids

The section starts with a brief summary of the electromechanical boundary value problem
at the infinitesimal range in Section 3.2.1.1 and continues in Section 3.2.1.2 by incorpo-
rating the required discontinuities into the formulation to model failure.

3.2.1.1 The electromechanical coupled boundary value problem. Let the elec-
tromechanical coupled solid # occupy a configuration B C R™im for 1 < ngy, < 3
characterized by the mechanical displacement field w : B — R™im as well as the electric
potential ¢ : B — R! as the primary unknowns within the infinitesimal range of interest
here. Associated with the solids material points labeled by their position € B is again
the infinitesimal strain tensor € defined in (2.1) but now in addition also the electric field

e : B — R™im defined by
e(p) = —Vyp (3.1)

in terms of the standard gradient operator V with respect to the coordinate . In addition,
the stresses o introduced in (2.2) as well as the electric displacement field d : B — R"dim
are introduced, which together with the external volumetric loading pb and the density
of free charge carriers p® form the governing field equations (2.3) and now in addition

div [d] = p° (3.2)

in B for the quasi-static case considered here. Within the electromechanical coupled prob-
lem, the boundary 0B is separated into mechanical and electrical parts 0B = 9,B U 0,8
and 0B = 0,B U 0,8, respectively. 0,B and 0,8 represent the parts of the boundary with
imposed displacement field u = w and imposed electric potential ¢ = ¢, whereas 0,8 and
J,B represent the parts of the boundary with imposed traction on = ¢t and imposed
surface charge density d - n = —q as it is illustrated in Figure 3.1. The usual arguments
of the form 0,8N 08 = () and 9,8 N 9,8 = 0 apply to ensure a well-posed problem.

The weak equations corresponding to (2.3) is given in (2.4) whereas the one corresponding
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Figure 3.2: Incorporation of strong discontinuities into the continuum setting of piezo-
electric ceramics. The global solution {u,p} at a material point x is equipped with the
possibility of forming a strong discontinuity I',, in the local mechanical and electrical prob-
lems characterized by jumps {[u], [¢]} in the displacement field and the electric potential.

to (3.2) follows from standard arguments as
/pe-égodV—l—/ (j~5<pdA+/d~V5g0dV:O (3.3)
B 0,8 B

for all admissible variations d¢ with d¢ = 0 on 9,8 C 0B.

The equations in (2.4) and (3.3) represent the starting point for a standard finite element
approximation of the electromechanical coupled problem at hand without the appearance
of strong discontinuities in the mechanical as well as the electrical components. These
are required though for the modeling of the characteristics of solids at failure and are
therefore introduced in the subsequent Section 3.2.1.2.

3.2.1.2 The continuous incorporation of strong discontinuities in the electric
potential. The main purpose of this section is to model electromechanical coupled
solids at failure where in addition to the global response of the solid in terms of the
displacement field w and the electric potential ¢ of the previous section, localized zones
of failure I', C R™m ! are present in the form of cracks or shear bands. In addition to
strong discontinuities in the displacement field introduced in Section 2.2.1.2, now also the
electric potential as the second primary electric unknown in the problem at hand, will
experience a discontinuity which can be modeled by a jump in the value of the electric
potential on either side of the discontinuity.

To capture both, the global as well as the local response, the decomposition of the dis-
placement field given in (2.5) is appended by the decomposition of the electric potential
in the form

Ou =@+ @(H‘Puﬂ) (3.4)

for a material point @ € B, of a local neighborhood B, C B. In (2.5) and (3.4), the
local primary unknowns {u,,, ¢, } are decomposed into the global unknowns {u, ¢} of the
global electromechanical boundary value problem and the discontinuous contributions
{@, ¢} depending on the jumps {[u,], [¢.]} along the localized zone represented by the
strong discontinuity I',. The fact that each material point & € B, is now equipped with
the possibility of forming such strong discontinuities in the displacement field as well as
the electric potential is illustrated in Figure 3.2.
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This decomposition of the local fields into global and discontinuous counterpart is ex-
tended to the strain field in (2.6) and can analogously be extended to the electric field
defined in (3.1) as

e, = e() + &(lp,]) (3.5)
valid only in B,\I';, neglecting the resulting singular Dirac delta measures on I',.

The introduction of the new unknowns in the form of the jumps in the displacement field
[u,] and the electric potential [¢,] do require additional equations for their determina-
tion, which is provided by the enforcement of equilibrium along the strong discontinuity
I',. It is required that the traction ¢ = en coming from the bulk of the material is in
equilibrium with the traction tr resulting from a constitutive relation along the disconti-
nuity, which is assured in a weak sense by (2.9). In addition, now the equilibrium between
the surface charge density ¢ = —d - n and the counterpart gr is satisfied by

[ dled@ nta)da=o (3.6)

in an integral sense along the strong discontinuity. It has to be kept in mind that the
equations in (2.9) and (3.6) are local in nature and only have to be satisfied in the presence
of a strong discontinuity I',.

3.2.1.3 The constitutive model problem. Based on the above decomposition of
the total problem into a global and a local problem, where the latter is responsible for
the incorporation of the strong discontinuities, constitutive models for both problems are
required. In particular, the models should be able to reflect the electromechanical coupled
behavior of the material considered in this work as well as a required damage behavior
for the modeling of failure along the strong discontinuity.

In the subsequent derivation of the constitutive model, a compact notation is used, where
corresponding mechanical and electrical quantities are combined as

e-lo) o=l ol -G e

This allows to write the dependence of the electric enthalpy H commonly used for the
constitutive modeling of electromechanical coupled materials [262] on the strain field €,
and electric field e, as

H=H(&T) (3.8)

where the dependence on a set of internal variables Z is added to capture the damage
response along the strong discontinuity. The energy dissipation in a neighborhood B, of
a part of the body in the local problem is then given as

D= [ [6:6—-H|dV (3.9)

in terms of the electric enthalpy in (3.8). It turns out that a complementary form of the
constitutive model is beneficiary when it comes to the modeling of the damage response
along the strong discontinuity since in such case use can be made of stress-like based
damage criteria to represent the failing material. A stress based continuum damage model
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is developed in SiMO & Ju [327]. In ARMERO [6] a stress based damage model along a
discontinuity is developed for a purely mechanical response of the material. Following this
strategy an extension for electromechanical materials is considered in this section yielding
a localized anisotropic electromechanical damage model along the strong discontinuity.
To do so, a Legendre transformation is performed to obtain the complementary electric
enthalpy as

X(6;7) = mégx{@ & - H(&T)} (3.10)

with a dependence now on the stresses o and the negative electric displacement field —d,
which are combined in the vector & as outlined in (3.7). The energy dissipation (3.9)
then becomes

D= [x-6:&]av (3.11)

B

in terms of the complementary electric enthalpy defined in (3.10). Following ARMERO
[6] a decoupling of the material response into a part reflecting the constitutive response
in the bulk and into a part reflecting the response along the strong discontinuity can be
achieved by the decomposition of the energy dissipation as

D= (X5 — & : &) dV+/ [Xr — tr - j] dA, (3.12)

Bx\I'x Jr. y
TV - Vv

DB Dr

where use is made of a chosen decomposition of the complementary electric enthalpy
X into a part characteristic for the response in the bulk yz and a part valid along the
strong discontinuity yr with the dependence on the product of the rate of tr and j, both
introduced in (3.7). Motivated by the approach outlined in ORrT1Z [273] and SimO & JuU
[327] for a purely mechanical continuum model, the response in the bulk xz is chosen
to depend on the compliance tensor of the material Dz as well as a scalar variable ap
characterizing the softening response in the bulk as the internal variables in addition to the
primary dependence on &. Assuming an analogous dependence of xr on the corresponding
quantities along the strong discontinuity results in the decoupled representation of the
complementary electric enthalpy in the form

X = 36 :Dg6& — H#(ap) + 3t - Drtr — A (ar) (3.13)
X5 xc

with the corresponding fourth and second order compliance tensors Dy and Dr relating
the strain and stress like quantities in the bulk as well as along the strong discontinuity
in the form & = D& and j = Drtr, respectively. This fully decoupled representation in
(3.12) and (3.13) allows now for the choice of constitutive models in the bulk based on Dy
and yp totally independent from the choice of the constitutive models along the strong
discontinuity based on Dr and xr. Both responses are briefly discussed in the subsequent
paragraphs.

A linear piezoelectric material model in the bulk. The constitutive model in
the bulk of the material is based on the part Dp of the energy dissipation in (3.12).
As in ARMERO [6] it is assumed that the damage mechanisms are associated only with
the discontinuity I', so that Ds = constant and ag = 0 in (3.13). This yields to a
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complementary electric enthalpy xz = x5(S) without a dependence on any internal
variable related to the damage of the material. It is noted though that an additional
dependence on internal variables in the form of e.g. the remanent polarization describing
more general ferroelectric effects as considered in Section 3.5.3 can still be incorporated.
To ease the notation, such a dependence is left aside in this section.

Since no damage of the bulk material is expected, it is convenient to again make use of the
electric enthalpy Hp(&') of the bulk instead of its complementary representation xz(S).
Doing so, the energy dissipation locally at a material point is given as

Dp=6:&— Hg(&) >0 (3.14)
with a resulting zero dissipation Dg = 0 for stress like variables given as
S = 0sHp(&) (3.15)
in terms of the partial derivative of Hg(&) with respect to the strain-like variables &.

Remarks 3.1. (a) In linear piezoelectricity the electric enthalpy Hgp(&) is given as
Hp(&) = Se,:Ce, —e,-he, — e, be, (3.16)

in terms of the fourth order tensor C as the elasticity moduli, the third order tensor h of
piezoelectric moduli, and the second order tensor b known as the dielectric moduli, which
take the form [173, 817, among others| given in index notation

Cijrt = Ao + (0051 + dadjn)
hiww = —Praidn — Beazara; — %53(@1% + dipay) (3.17)
by = € du

in terms of the Lamé constants A and p, the piezoelectric material parameters [y, Bo,
Bs, the dielectric material parameter € as the electric permittivity, and 6;; as the standard
Kronecker delta. The vector a represents the constant polarization director a = p/p with
p = |p| = /PP in terms of the polarization vector p describing the separation of the
barycenters of negative and positive charges associated with a typical piezoelectric volume
element. Based on (3.15), the stresses o and the electric displacement d follow then as

o=Ce,—h"e, and d=he,+be,. (3.18)

The relations & = Cgé& and & = D& yield then the explicit forms of the material tangent
Cgp and the bulk compliance tensor Dg = C™! used in (5.13) as

_mT x T
C —h C h ] (3.19)

Cp = {—]h —Ib} and Dp= l_]h* b

where C* = C71, h* = b 'hC™!, and b* = b~! when accounting for the fact that
O(b'hC'h) = O(C'hTb~th) = (max3;)?/(Fe) < 1 with € and 3; introduced in
(3.17) for i = 1,2,3. Note that when there is no discontinuity present at the material
point for which the constitutive relation is embarked, the global expressions {e,e} should
be used in the relation (3.18) instead of the local fields {€,,e,}.
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(b) Following the invariant formulation proposed in SCHRODER & GROSS [317], for which
H(e,e,a) = HQeQ",Qe,Qa) V Q € G where G = {Q € O(3)|Qa = a} has to hold,

the electric enthalpy is given as
Hp = Hp(l; |l_y) = Hp,(I1, I, I3, 1y) + Hp,(I5, Is) + Hp, (11, I3, 15, Is, I7)  (3.20)

where the purely mechanical contribution Hp,, the purely electrical contribution Hp,, and
the electromechanical coupled part Hg, are given as

1
Hp, = 5)\[12 + pdy + ardy + 042[§ +azl I3, Hp, =115+ ’72[627 Hp, = B1111s + Pal3ls + P17
(3.21)

m terms Of the invariants Il = i, _[2 = &ij€ji, Ig = Q;&;;ay, I4 = Q;EikEk; A5, I5 = €;€;,
Is = e;a;, Ir = a;g;je; and the material parameters A\, p, o, oo, as, By, B2, B3, 11, and
va. Insertion of (3.20)-(3.21) into (3.15) results in the expressions for the stresses and
the electric displacement given in index notation as

7
0H 0I,
Tij = z:: a—lnaé?@'j = (AL + asls)di; + 2uei; + aq[gpara; + aiarer;] + (2als + asli)a;a;
+  Bilsdij + Balsaia; + %63 le;a; + aje;] (3.22)
7
0H 0I,
d; = Z oI, De, —2v1€; — 272lga; — [(Bily + Bals)a; + Bseiwar] (3.23)

where 0;; is the standard Kronecker delta. The sensitivities of the stresses and the electric
displacement with respect to the strains and the electric field are given in terms of the
fourth-order elasticity tensor Cijp, the third-order tensor of piezoelectric moduli h;y, and
the second-order tensor of dielectric moduli by as

80'2“
Cz‘jkl 85 J = )\(5@'j5kl + M((s@'k(sﬂ —+ 5i15jk> -+ ag(éijakal -+ aiajékl) -+ 2a2aiajakal

Kl

+ al%((;ikajal + 5ilajak + (li(;j[(lk + ai5jkal) (324)
od,;

=B T — 100 — Paasarar — Ba(duar + dipay) (3.25)
ad;

b = = _27152%3 - Q’VQCLZ'ak (326)
8ek

replacing the expressions in (3.17) for the isotropic model when used in (3.18). A matriz
representation of (3.17) in the case of transverse isotropy with x3 as the preferred direction
a is obtained by insertion of @ = [0 0 1] into (3.24)-(3.26) as

_0'11_ —011 Ci2 Ci13 0 0 0 17T €11 i [ 0 0 631_

099 Cig C11 C13 0 0 0 €929 0 0 €31 e

o3| _ |c13 C13 Cs3 0 0 O gss| |0 0 ess el (3.27)
012 0 0 0 %(CH — 012) 0 0 2812 0 0 0 62 ’
023 0 0 0 0 car 0| [2e2 0 e OfL7°

| 013 | L 0 0 0 0 0 Cy4 | _2513_ | €15 0 0 i
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€11
d 0 0 0 0 0 es] |2 en 0 07 [e
| = |0 0 0 0 es 0 2533 +10 e 0] |e (3.28)
dg €31 €31 €31 0 0 0 c12 0 0 €33 €3

2523

_2813_

with the relation between the material parameters used in (3.21)-(3.26) and those used in
(8.27)-(3.28) given as A = c1a, p = (c11—C12)/2, ag = 2¢44+ 12— 11, @ = (c11+¢33) /2 —
2c44 — C13, Qi3 = C13 — C12, 1 = —e31, Po = —eg3 + 2e15 + €31, f3 = —2e15, 11 = —€11/2,
and o = (€11 — €33)/2.

A localized electromechanical damage model along the strong discontinuity.
The constitutive model along the strong discontinuity is based on the part Dr of the energy
dissipation in (3.12). Insertion of the dependence of xr in (3.13) into Dr in (3.12) then
results in the energy dissipation locally at a material point along the strong discontinuity
as

Dr(tr;Dr,ar) = 2 (tr @ tp) Dr+ 8- ér >0 (3.29)

identifying % (tr @ tr) as the thermodynamic force conjugate to the rate of the internal
variable ]D)p and f = —ds /dar as the one conjugate to ¢r. Note that Dr as the coun-
terpart along the strong discontinuity of the compliance Dg in the bulk given in (3.19) as
well as its inverse Cr = D' now take the form

_[Cr -hi (et
CF— |:—1hr‘ _.[bF:| and ]D)F— |:—1hlt —.[blt (330)

when written in terms of the counterparts Cr, hy, by, Cy, hyi, and b} along the strong
discontinuity of the piezoelectric quantities in (3.19), respectively.

Following ARMERO [6], the softening response of the localized constitutive model is char-
acterized by ng,r damage surfaces ¢;(tr ® tp, 8) for j = 1,..., ngyr so that the damage
evolution equations are obtained based on the principle of mazimum damage dissipation
[327] in the form

Nsurf

Lr=—Dr+) 76i(tr ®tr, ) (3.31)

J=1

in terms of the negative dissipation —Dr with Dr given in (3.29) under the ng,, constraints
with regard to the damage surfaces of the form

oi(tr @ tr, ) <0 (3.32)
enforced by the introduction of the consistency parameters 7; introducing the Kuhn-
Tucker complementary conditions for j =1, ..., ng,r in the form

Minimization of Lr then results in

Dr = %27»76% and ar = niuf’y% (3.34)
Jj=1 ]8(tF ® tF) ’ op

J=1
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which together with the consistency condition ngéj = 0 for ¢; = 0 finalize the damage
evolution equations. It is noted that the extension to electromechanical materials can be
easily performed based on the developments in ARMERO [6] for purely mechanical based
materials when using the compact notation introduced in the beginning of this section,
resulting in the complete same structure of the equations as for the mechanical materials.

Remarks 3.2. (a) In ARMERO [6] a purely mechanical Mode I damage model in normal
direction of the strong discontinuity is chosen, which is characterized by a damage surface
and a softening response of the form

. Sn
O =1tr, + Blar) — fi, <0 with Blar) = fi, (1 — exp(f—ap)) (3.35)
tn
in terms of the traction tr, in normal direction and the tensile strength f;, of the material
against normal separation as well as the softening modulus S,, < 0 in normal direction to
the strong discontinuity. For the ng,s = 1 damage surfaces considered in this case, the
evolution equations in (3.34) simplify to

Dr, =2y L:fy— and Oé[‘:"}/n%:’}/n.

FET " i (3.36)

n

It is noted that all other components of Dr do vanish in this specific case. This is also not
changed when choosing a response parallel to the strong discontinuity based on a constant
degraded compliance Dr,,,, = ky,, > 0 [6].

Note that as a consequence of v, > 0 based on (3.33) and tr, > 0 (since no self penetration
is allowed), ]D)p,m > 0 shows the increase of degradation within the material for increas-
ing damage. Combining both equations in (3.36) results in the relation Dy, = ér/tr, .
Inserting the resulting expression of tr, at ¢, =0 from (3.35) into this relation results in

Dr,, = —exp (— S—Oép) ar, (3.37)
tn ftn
which yields after integration
1 S 1 Ji
Dr,, = & [1—exp (= Star)| = = (1 - 3=). 3.38
Tnn Sn eXp ( ftn OZI‘) Sn ( tFn ) ( )

Since [u,,] = Dr,.tr,, the final result of the purely mechanical Mode I damage model
yields a relation between the normal jumps [u,,, ] and the corresponding traction in normal
direction tr,, of the form

tr,, = max {0, fi, + Sn[w..]} (3.39)

which is also used in Chapter 2 in (2.75). Positiveness of the dissipation defined in (3.29)
can be assured by the fact that tr, < f;, always holds as one may observe based on the

left illustration of Figure 3.3 which in turn satisfies the resulting dissipation requirement
at ¢, = 0.

(b) In a similar way as in part (a) above, a purely electrical damage model and softening
response along the strong discontinuity can be characterized by

¢y = —lar| + Blor) — f, <0 with Blar) = f,(1 - eXp(%Oér)) (3.40)
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Figure 3.3: Mechanical (left) and electrical (right) constitutive damage relations along
the strong discontinuity representing the results obtained in (3.39) and (3.42) based on the
proposed localized electromechanical damage model along the strong discontinuity.

in terms of the surface charge density qr and a quantity f, representing the normal com-
ponent of the electric displacement present when the discontinuity is initiated as well as
the softening modulus S, < 0 of the electric fields. Analogous to part (a), the evolution
equations can now be derived as

=——= and ar =1, (3.41)

with vanishing other components of Dr. Note again that as a consequence of Yo = 0
based on (3.33) Dpw < 0 holds. Since Dp,, = —by based on (8.30), b > 0 holds
and ensures that by < 0 along the strong discontinuity. This is in agreement with the
fact that the permittivity of the through the discontinuity created free space is much less
than the permittivity of the original dielectric medium before the appearance of the strong
discontinuity. Following the remaining steps of part (a) above, the final form of the
relation between the jumps [p,]] in the electric potential and the corresponding surface
charge density qr is obtained in the form

—qr = 0] max
= [o] {0, fo + Sellnll}- (3.42)

Positiveness of the dissipation defined in (3.29) can again be assured by the fact that
lar| < f, always holds as one may observe based on the right illustration of Figure 3.3
which in turn satisfies the resulting dissipation requirement at ¢, = 0.

(c) Employing both, the mechanical damage model in normal direction of the strong dis-
continuity of part (a) and the electrical damage model of part (b) yields a decoupled elec-
tromechanical damage model along the strong discontinuity. Electromechanical coupled
damage models can be obtained and incorporated by a modification of the damage surfaces
used in (3.35) for the purely mechanical case and in (3.40) for the purely electrical case.

(d) Whereas the crack boundary conditions with regard to the mechanical quantities like
the relation between the traction and the corresponding displacement jumps have a clear
physical interpretation, the correct choice of the electric crack boundary condition is not
that straightforward. In the mechanical case, illustrated on the left of Figure 3.3, the
crack is initially “closed”. After surpassing a critical strength in the form of a limiting
traction component f;, in normal direction to the crack, the normal traction component
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decreases with increasing crack face separation [u,,] based on e.g. the linear softening
relation (3.39) in terms of the linear softening modulus S, until the point where a zero
traction is obtained. From that point on, the crack is considered mechanically “fully
softened”. Since the area below the softening curve represents the fracture energy Gy
a clear physical interpretation is given. A similar interpretation can be obtained for the
electric crack boundary conditions outlined on the right of Figure 3.3 where the two limiting
cases are now denoted as the “permeable” and the “impermeable” case, respectively. To
the authors knowledge though, no physical interpretation of the area below the resulting
normal component of the electric displacement versus jump in the electric potential curve
1s gwen in the literature. When considering one of the two extreme cases, a general
consensus arises though, that the impermeable case is physically more realistic. It is for
this reason, that this limiting case is considered throughout the numerical simulations
presented in Section 3.6.

The correct choice of the electric boundary condition is receiving a large amount of atten-
tion in the literature [202]. The permeable boundary condition proposed in PARTON [281]
results in a model where the electric field will experience a distribution as if the crack
does not exist. On the other hand, the impermeable crack boundary condition proposed
in DEEG [7/] assumes that the permittivity of the crack gap can be approzimated as zero
resulting in a zero normal component of the electric displacement field. Ezxact or semi-
impermeable boundary conditions are proposed in HAO & SHEN [138] which assume that
the crack gap behaves like a linear dielectric material. Closer investigations of that model
by MCMEEKING [230] revealed though a discrepancy between the total energy release rate
and the crack tip energy release rate of that model. To resolve that problem, LANDIS [195]
proposed the so called energetically consistent boundary conditions by adding additional
closing traction on the crack faces.

3.2.2 Finite element modeling of failure in electromechanical coupled solids

In an analogous way as in the previous Section 3.2.1 for the continuum setting, now the
discrete problem is divided into a global problem consisting now of the discrete form
of the electromechanical boundary value problem, which will be discussed in Section
3.2.2.1, and a local problem outlined in Section 3.2.2.1, to representing the incorporation
of strong discontinuities in the electric potential into the formulation to numerically model
failure, analogous as done in Section 2.2.2 for the incorporation of discrete jumps in the
displacement field of the mechanical boundary value problem.

3.2.2.1 The discrete electromechanical boundary value problem. Again, the
spatial discretization of the body £ is performed by in total ngen, isoparametric finite
elements B approximating the configuration B ~ B" = J's» B! as it is illustrated in
Figure 3.4 with the proper characterization of the boundary regions 08" = 9,B" U 0,B"
and OB" = 9,B" U 9,B" for the mechanical and electrical components, respectively. The
primary unknowns in the form of the displacement field u” is approximated as in (2.11)
and the additional primary unknown in the form of the electric potential " at a point
x" € B" is approximated by

Mnode

(@) = N (@")pa = Nyob (3.43)
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n
©
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Figure 3.4: The discrete electromechanical boundary value problem. Decomposition of the
body B" into nelem finite elements B(’j with mechanical loading £ and electrical loading g. The

mechanical problem with the proper decomposition of the boundary in B" = 9,B" U 9;B"
and the electrical problem with the boundary regions 0B" = 0,B" U 9,B" are illustrated.

in terms of standard shape functions Nj;‘ and the corresponding values of the electric
potential ¢4 of node A with in total n,,q. nodes. The approximation of the strain field
el is given in (2.11) and the electric field e" is approximated as

Mnode

Vel = —e"(a") = Y Bl(x")¢a = B¢ (3.44)
A=1

in terms of the generic “B-bar” matrices 32 for the electric fields, outlining again the gen-
erality of the proposed formulation with regard to mixed, assumed, or enhanced method-
ologies in the mechanical as well as the electrical contribution [326, 329, 345].

Assuming again a Bubnov Galerkin formulation [155], the corresponding variations of the
displacement field, the electric potential as well as their gradients are approximated in
terms of the same shape functions and “B-bar” matrices. Insertion into the continuum
representation (2.4) and (3.3) then results in the discrete form of the global mechanical
problem given in (2.13) and the global electrical problem given as

_ eext Nelem _ T . ext Nelem _T . 7
R, =f2+ A [ Bldav with £ = A( | N v thN“"qu) (3.45)

in terms of the assembly of the internal response of the body based on standard integration
techniques over the individual finite elements. The solution of the global problem proceeds
by bringing to zero the residual equations in (2.13) and (3.45) based on an iterative
solution procedure like Newton’s method, requiring in addition the linearization of that
residual equation as it will be outlined in Section 3.4.3.

To make the discrete formulation capable of representing failure in electromechanical
coupled solids, strong discontinuities, which have not been accounted for in the discrete
global problem considered in this section, need to be incorporated. This is done in the
discrete local problem defined in the subsequent Section 3.2.2.2.

3.2.2.2 The discrete incorporation of strong discontinuities in the electric po-
tential. In this section the discrete counterpart to Section 2.2.2.2 is presented with the
goal of incorporating the required strong discontinuities in the electric potential locally
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global

local mechanical \%Z discrete problem local electrical
discrete problem n

discrete problem

Figure 3.5: Incorporation of strong discontinuities into the finite element setting of piezo-
electric ceramics. Each finite element B” of the global problem is equipped with the possi-
bility of forming a strong discontinuity I'" in the local mechanical and electrical problems
characterized by jumps {[u"], [¢/]} in the displacement field and the electric potential.

into the individual finite elements to model the fracture process within the electrome-
chanical solid.

To do so, consider a single finite element B" C B" in which, based on the criterion to be
discussed in Section 3.4.1, failure is detected along a localized zone I'", as illustrated in
Figure 3.5. The primary result of such detection is the appearance of a strong discontinu-
ity ﬂuﬁ]] in the displacement field, modeling the mechanical response of the material with
regard to failure as outlined in detail in Section 2.2.2.2. Due to such mechanical disconti-
nuity, the distribution of the electric fields is altered in a way such that as a consequence

also strong discontinuities ﬂcpﬁ]] in the electric potential arise.

Within the discrete setting considered in this section, approximations of electric potential
are made in an analogous way as it is done for the global quantities in Section 3.2.2.1.
Since valid along the localized zone I'?, it can be interpolated along that zone as

lepl(s.t) = Jo(s.)€, (3.46)

in terms of the associated jump interpolation functions J,(s,t) depending on local co-
ordinates s and ¢ in the artificial plane computed in Section 2.4.4 as an approximation
to the possible non-planar actual failure surface I'* also illustrated in Figure 3.5 and
newly introduced degrees of freedom &, containing the electric information of the strong
discontinuity within a certain element.

Motivated by the decomposition of the total electric potential and the electric field into
local and discontinuous counterparts in (3.4) and (3.5), the discrete forms of the total
electric field is given as

e, =e"(¢) +e"(&,) (3.47)

where the global term e"(¢) is given in (3.44) based on the linear operator B, acting on
the nodal electric potential ¢. A similar dependence is chosen for the discontinuous term
e" (€,) in terms of the newly introduced operator &, resulting in the discrete local electric
field approximation

BZ - _Bso¢ - €<P€<p (348)

acting on the in (3.46) introduced internal degrees of freedom €,. This represents an
extension of the analogous introduction of the “compatibility operator” in (2.16) to elec-
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tromechanical coupled materials by introducing the electric counterpart €, in (3.48). It
will be outlined in detail in Section 3.3 how this operator can be determined.

One additional equation is introduced in Section 3.2.1.2 with the aim to yield additional
information for the determination of the newly introduced jumps in the electric potential
in that section. It remains to be shown in this section, how this additional equation (3.6)
can be approximated in a discrete setting. Analogous to the purely mechanical case one
gets

r, = /Bg e ddV — /Fg Jlqr dA (3.49)
in terms of the electric counterpart €, of the “equilibrium operator” €, enforcing equilib-
rium along the discontinuity T'* for the electric components. This operator represents a
projection of the normal component of the electric displacement field d from the integra-
tion points onto I'*. In particular, for an approximation of the variations of the electric
potential jumps in (3.46) as polynomials of order ¢ of the local coordinates s and ¢ in the

form
q

S[eh] = > sPsely (3.50)
ih<q

the electric counterpart of the equilibrium operator is given as

1 1 2, 11 2 ij I
¢, = [elo gl @l ¢l ¢l @n ] where €Y= —h—ee<">n (3.51)
in terms of the element size h, and polynomial functions ¢/ already introduced in Section
2.2.2.2. These are now approximations of the integrand d - n in (3.6) of order up to p
within a local Cartesian frame {z,y, z} of an element B".

Remark 3.1. In the two dimensional setting it is shown in LINDER ET AL. [210], that
an approximation of the variation of the electric potential jumps

q
o[k =) steel (3.52)
=0

in terms of one coordinate s € [—lpn/2,1lpn /2] along the one dimensional failure surface
results in the expression for the electric counterpart of the equilibrium operator as

1
¢, =[el el . W] where €= —h—ee@n (3.53)
in terms of the element size h, = Agn/lrn and polynomial functions ¢ (z,y). In the
plane setting, these are now approximations of the integrand d - n in (3.6) of order up to

p within a local Cartesian frame {x,y} of an element B, given in (2.28).

3.3 Finite element design

This section follows the approach suggested in LINDER ET AL. [210] for the computation of
the electric counterpart €, of the compatibility operator in the plane setting put extends it
to the fully three dimensional framework. The same strategy of incorporating certain, now
electrical, separation modes directly into the strong discontinuity framework is followed
as in Section 2.3 for the mechanical separation modes.
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Figure 3.6: Electrical separation modes. The constant electrical separation mode is shown

on the left in terms of the constant jump 55,00) in the electric potential characterized by the
difference in color, whereas the linear separation mode along the s-direction is given in the

center in terms of 55,10), and the linear separation model along the t¢-direction is shown on

the right in terms of §§,°l>. The two latter are characterized by a linear jump distribution of

the electric potential in the tangential directions s and ¢ of the strong discontinuity surface.

3.3.1 Constant separation mode

The electrical counterpart of the displacement field in terms of which the mechanical
separation modes are given in (2.31) and (2.38) is the electric potential, a scalar degree of
freedom at each node of the finite element under consideration. It is therefore reasonable
to propose an electrical separation mode in terms of a distribution of the electric potential
with a jump along the strong discontinuity.

Starting with one, which has a constant jump along the strong discontinuity I'* as it is
illustrated on the left of Figure 3.6, the constant electrical separation mode representing
the electrical counterpart of (2.31) is given as

¢1(400) _ {jé,oo) = 55,00) for node A € B"* (3.54)

0 otherwise

based on which the constant electric jump interpolation function can be directly obtained
as

[[@Z]](oo) = jé’oo)}r}; - §;00>- (355)
Since based on (3.46) the electric potential jumps can be written also as [[(pl’j]] (00) =

35; °)§§,°°>, one can directly read off the jump interpolation function for the constant electric
separation mode as

Jeor =1 (3.56)

When incorporating a mechanical separation mode, the mode is chosen in a way such
that the solution of the local strain field of both parts of the separated element can be
determined exactly. In this section, when making a proper choice of an electric separation
mode like the one given in (3.54), the mode has to be chosen in a way such that the
local electric field e, which can be computed based on (3.1) as the negative gradient of
the electric potential can be determined exactly in both parts of the separated element.
Then, based on the decomposition of the local electric field in (3.47) for the particular
mode (3.54) yields

e oy = ey — EDE (3.57)
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i.e. an equation is obtained based on which the operator Q(Oo °) can be derived. For the
constant electric separation mode in (3.54) the local and the global electric fields are given
as
A
e" oy =0 and e?oo> = — Z ngg"’), (3.58)

p5{00)
AeBh™

which yields after insertion into (3.57) the electric counterpart of the constant mechanical
compatibility operator ¢ in (2.36) as

¢ =— N B (3.59)

@ @
AeBh™

again as a summation of the now electric part of the “B-bar” matrix over the nodes
residing on the + side of the element under consideration.

3.3.2 Linear separation modes

In this section the constant electrical separation mode is improved by allowing in addition
for a linear separation in the electric potential along the discontinuity I'* of the element
under consideration. To do so, the electric potential is first chosen as illustrated in the
center of Figure 3.6 in terms of the linear separation mode along the s-direction given as

(10) _ (10) o o ht
S) _ {Ow =¢s ' s-xy fornode A € B (3.60)

otherwise

where s - &4 = s can be expressed in terms of the local coordinate s of node A in one

of the tangential directions of the failure surface. The linear electric jump interpolation
function follows from the evaluation of the jump along I'* based on
= s, (3.61)

-(10

h
[[(pu]](lo) = ]Lp >}FQ

Since based on (3.46) the electric potential jumps can be written also as [[cpZ]] (10) =

35}‘))5&10) , one can directly read off the jump interpolation function for the linear elec-

tric separation mode as

e =, (3.62)

The operator Qﬁf; ) corresponding to the linear separation mode (3.60) can then be com-
puted again based on the decomposition of the local electric field as

= €y — EPeh) (3.63)

h
€ 10) ® 5@

1,(10)
into global and discontinuous contribution. For the linear electric separation mode, the

local and the global parts are given as

1 RAc
eh ) = —550 O>SHF£L and e](llo) = — Z SABQO&O 0>’ (364)

{10
Aepht

which yields after insertion into (3.63) the electric counterpart of the linear mechanical
compatibility operator €5 in (2.44) and (2.45) as

€l = sHp — > s'B

AeBht

A
®

(3.65)
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again as a summation of the electric part of the “B-bar” matrix over the nodes residing
on the + side of the element under consideration and an additional contribution written
in terms of the Heaviside function Hpr accounting for the nonzero total electric field of
the linear electrical separation mode at hand.

Secondly, when considering the linear electrical separation mode along the t-direction
illustrated on the right of Figure 3.6, analogous expressions are obtained as above. Those
are summarized as

JOU =+ and Qg’” =tHrr — Z tAB:j- (3.66)

)
AeBht

Remarks 3.3. (a) Comparing the results obtained in this Section 3.3 for the three di-
mensional framework with those in LINDER ET AL. [210] for the plane setting reveals that
the only additional contribution is the one given in (3.66) since the planar failure surface
18 now given in terms of the two unit tangent vectors s and t.

(b) It is outlined in detail in LINDER & ARMERO [205] that the choice of one side or
the other for the definition of B{f does not affect the elements considered in Chapter 2
for the purely mechanical part. This independence can be extended also for the electrical
counterpart by showing the invariance under change of sides BQJF and B~ of the enhanced
electric operators in (3.59), (3.65), and (3.66). One can immediately deduce the required
conclusion from the requirement of the electric patch test to correctly represent constant
electric field modes.

Starting with the constant electric operator Cfaoo) given in (3.59) and assuming a constant
distribution of the electric potential ¢ for all nodes A of the element one gets

Mnode Mnode

0= Bl¢5 — 0= B, - Y Bi=-> B, (367
A=1 A=1

Aepht AeBh™

showing that the constant electric mode can equally be represented by —fé,oo) with the
reversal of the local coordinate system {n,s,t} leading to a summation over B"™ instead

of B" in (3.59).

To deduce a similar conclusion for the linear electrical separation modes in (3.65) and
(3.66) one can start with a constant electric field distribution over the whole element
in tangential direction to the discontinuity based on a linear distribution of the electric
potential ¢ = X -xp = M\ in terms of the local coordinate \* for all nodes A of the
element. Thus, the relation

Nnode
“A=-Byo'=-> MB, - > NMBj=x- ) MB] (3.68)
A=1 AeBh™ AeBh™

holds, which after insertion into (3.65) and (3.66) for X = {s,t} respectively, results in
the equality

e — > MBL = -A(1—Hp)+ > MB] (3.69)
AeBh™ AeBh™

showing that the linear electric modes can equally be represented by —félo) or —§§,°l> with
the reversal of the local coordinate system {m,s,t} leading to a summation over B~
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instead of B in (8.65) and (3.66) as well as a reversal in the term containing the
Heaviside function Hpn.

(c) It is outlined in detail in LINDER & ARMERO [205] in the plane setting and in
ARMERO & Kim [13] in the three dimensional setting, that the linear independence of
the columns of the operator €, in (2.47) is required to perform the inversion of the matriz
KEE needed in (2.72). For the mechanical contribution a linear dependence can be observed
between the constant and linear mechanical modes for the special case of a single node being
separated by the discontinuity. Investigation of this special situation for the electrical
separation modes which yield the columns fof‘)), €S°>, and €§fl> in (3.59), (3.65), and

. or that special case where only a single node 1 1s in results in
(5.66) for that special h ly a single node I is in B results i
CN = Ay — AB], = NHpy + A el (3.70)

so that due to the Heaviside function a direct dependence of the two columns is avoided.

3.4 Numerical aspects

Analogous to Section 2.4 of the mechanical boundary value problem, in this section numer-
ical aspects of modeling failure within an electromechanical coupled solid are discussed.
In particular, Section 3.4.1 is concerned with the detection of failure, whereas Section
3.4.2 discusses aspects of the failure surface propagation. Finally, Section 3.4.3 outlines
the numerical implementation using the compact notation introduced in Section 3.2.1.3.

3.4.1 Strong discontinuity initiation

A criterion is needed to decide when and in which direction the discontinuity is propa-
gating through the electromechanical coupled specimen. In Section 2.4.1 the commonly
used criterion based on the loss of ellipticity condition of the underlying problem in the
bulk characterized by the singularity of the associated acoustic tensor of the problem at
hand is illustrated for the mechanical boundary value problem. In the following the loss
of ellipticity condition is employed for finding also a propagation criterion for piezoelectric
materials considered in this Chapter 3. Following standard arguments in wave propaga-
tion calculations in piezoelectric materials [19, 325] one seeks solutions to (2.3) and (3.2)
for the particular constitutive relations outlined in (3.18) of the form

k-x—wt)

u(z,t) = a €'l and  ¢(x,t) = a k@ (3.71)

where a and a are constant quantities characterizing the amplitude of the harmonic wave,
k = kn with n - n = 1 is the constant wave vector where k represents the wave number
with n as the propagation direction, and w is the constant frequency of the wave. Insertion
of (3.71) into (2.3) and (3.2) yields

I'ynay +Ta=0 and —T,,a,, +Ta=0, (3.72)
where the newly introduced quantities are given as

Ui = Crimnknkr, 11 =hpuknke, and I = bykik (3.73)
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in terms of the elasticity moduli C, the piezoelectric moduli h, and the dielectric moduli
b given in (3.17) in closed form for an isotropic linear piezoelectric material response.
The second equation in (3.73) allows for the computation of a which can then be inserted
into the first equation in (3.73) to yield

I,
r

Ay, =0, where Ap, =y, + (3.74)
is called the electro-acoustic tensor. Under the assumptions that the elasticity moduli
and the dielectric moduli are positive definite, i.e. Uy CrimnUmn > 0 and uipbgu; > 0
for all U,,, and u; with at least one non-zero element, it follows that based on (3.73)
a;Lynam > 0 and I' > 0 so that from (3.74) one gets

alAlmam =ql'am + %(alFl)Q >0 (375)
for all non-zero vectors a. This relation is the condition for ellipticity of the underlying
equations of equilibrium in (2.3) and (3.2), which can also be viewed as a condition for
the material stability since when (3.75) is satisfied it can be viewed as a stable response
of an infinite medium in a uniform state of stress and electric displacement distribution
subjected to perturbations in the form (3.71). The obtained result can also be viewed
as an extension of the discontinuous material bifurcation outlined in OLIVER & HUESPE
[266] within the strong discontinuity approach to electromechanical coupled materials.

A simplification of the fracture criterion (3.75) proposed in LINDER ET AL. [210] for
piezoelectric materials is to separately enforce conditions with regard to the mechanical

and the electrical part as
all'ymam >0 and T'>0 (3.76)

where the second part is always satisfied for materials with a dielectric moduli of the form
(3.17)5 when € > 0. Therefore, the fracture criterion for piezoelectric materials boils down
to the fracture criterion for purely mechanical materials by checking the first condition in

(3.76).

3.4.2 Strong discontinuity propagation

After detecting the onset of failure based on (3.76), the strong discontinuity must be
propagated through the finite element mesh. For the two dimensional simulations shown
in Section 3.6.3 and 3.6.4, a commonly used local propagation concept is used, whereas
in Section 3.6.5 an extension to three dimensional simulations of the global tracking
algorithm and its combination with the marching cubes algorithm as illustrated in Sections
2.4.2 and 2.4.3 is used.

3.4.3 Numerical implementation

Using the compact notation introduced in (3.7), the global residual equations stated in
(2.13) and (3.45) can be compactly written as

Nelem _ _
R = > — é B G dV with = / N6 dV + / N"tdA (3.77)
T an Bh 8Bk
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whereas the local residual equation stated in (2.17) and (3.49) can be written in compact
form as

r¢ = — / e’'Gav — / I dA (3.78)
Bl

re

in terms of the additionally introduced combined arrays
R,] . [r¢ [N, O] 5 [B, O
Rl -l =[] oo los)
| pb €, 0 1€ 0] L 3.0
_[pe]’g_{o Qj’ G_{o e, "V 703,

The form of the residual equations as they appear in (3.77) and (3.78) is furthermore
beneficiary when it comes to their linearization as

(3.79)

Nelem ek k1 ek k1 Nelem ek

A Kioaol™! +KGeAet | = AR (3.80)

B ek ek “ ek .
K A0F ! + Kg AL =

where use of the compact notation @ = [d ¢]” and &€ = [£, &,]" is made. Note further
that the second equation is valid for finite elements with a strong discontinuity T'* only.
The global and local quantities are then updated based on

M =oF + ADM and €M = gF + Aght! (3.81)

in terms of the iteration index k. The compact notation used here allows for the following
individual contributions in (3.80) as

K¢, = / B CsB dvV, K¢, = / B Cge dv,
Bh Bh

Kg, = / ¢TCyB dV, and (3.82)
Bl

Kg, = / ¢'CpdV + / J'Cry dA
B re

for the stiffness matrices, respectively. The tangent Cg in the bulk B" as well as its
counterpart along the strong discontinuity Cr in (3.82) are given in (3.19) and (3.30),
respectively.

One major advantage of the considered formulation is the computational efficiency which
comes with the fact that the internal degrees of freedom for the description of the strong
discontinuity can be statically condensed out at the element level. From the second
equation in (3.80) the increments of the enhanced parameters can be computed as

AR = (Kg) [ — KA+ (3.83)

locally for the elements with a strong discontinuity. Insertion of (3.83) into the first
equation in (3.80) yields the statically condensed system

KFAAH! = RF (3.84)
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in terms of the effective residual R¥ = At Rik and the effective stiffness matrix K* =

k
Nelem € 3
Al KS given as

k

k k k ky_q k k k ky_q k
in terms of the iteration index k. The compact notation turns out to be convenient since
when employed, the numerical implementation of the electromechanical coupled problem
resembles the same structure as for the purely mechanical problem, whose numerical
implementation is given in Section 2.4.5.

3.5 Effect of electric displacement saturation

One key question to be answered by a suitable framework of linear piezoelectricity is the
one on the dependency of the applied electric field on the crack initiation. Whereas the en-
ergy release rate concept results in an even dependency, i.e. regardless of the orientation of
the applied electric field with respect to the polarization direction the initiation of cracks
perpendicular to the poling direction is always inhibited, experimental results outline an
odd dependency. The experimentally observed odd dependency in TOBIN & PAK [352]
and PARK & SuN [280] shows that positive electric fields (i.e. applied with an orientation
equivalent to the poling direction) enhance crack growth whereas negative electric fields
(i.e. applied opposite to the poling direction) impede crack growth. The opposite linear
dependency is experimentally observed in WANG & SINGH [375] or FU & ZHANG [113],
which shows the complexity of crack initiation prediction in ferroelectric ceramics. One
approach to better predict experimental results is the modification of the energy release
rate by neglecting the direct influence of the electric quantities as proposed in PARK &
SUN [279], resulting in the mechanical energy release rate or strain energy release rate as
fracture criterion capable of predicting the experimental results in PARK & SuN [280].
This suggestion though caused criticism by its lack of physical foundation [114, 116, 229].
In the approach proposed in GAO ET AL. [116] the discrepancy between experimental
and theoretical results is resolved by the account of a particular electric non-linearity,
resulting in the electric displacement saturation model. Motivated by physical arguments
arising for ferroelectric ceramics, which show a reduction of the ionic movement in such
materials when high electric fields are applied [170] they propose the existence of a strip
in front of the crack tip along which the electric displacement in poling direction is lim-
ited to a saturation parameter. Similar to the approach chosen in DUGDALE [78] for the
incorporation of plasticity into material models of metals, the resulting saturation zone
in GAO ET AL. [116] is incorporated analytically into a simplified piezoelectric material
model depending on three characteristic material parameters. Subsequently, they showed
that a new local energy release rate arises when computing it by a path integral within
the electric saturation zone. In GAO & BARNETT [115] the invariance of the saturation
model with respect to the saturation parameter of the electric displacement is outlined.
The resulting local energy release rate obeys the same characteristics as the mechanical
energy release rate proposed in PARK & SUN [279] and is therefore capable of reproducing
the odd dependency of the crack initiation on the applied electric field observed in exper-
iments. In FULTON & GAO [114] the saturation model is combined with an account of
permeable crack boundary conditions and extended to account for anisotropy in WANG
[377]. MCMEEKING [229] pointed out that the saturation in the electric displacement
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has led to a physically wrong analogy between the mechanical stresses and the electric
displacement field. Despite their mathematical analogy through their divergence conser-
vation, the physical analogy should connect the mechanical stresses, which are saturated
in the Dugdale model, to the electric field. This led to the development of the dielec-
tric breakdown model [397, 398] where rather than limiting the electric displacement, the
electric field is limited along a strip in front of the crack tip. The two models are shown
to give the same predictions on the nature of the dependence of crack initiation on the
applied electric field in WANG & ZHANG [374]. Most of the studies accounting for such
electric non-linearities are done analytically. A simplified incorporation within the finite
element methodology is performed in SZE & PAN [346] or L1U ET AL. [214] for stationary
cracks. The method developed in FAN ET AL. [94] is capable of accounting for electric
displacement saturation as well as dielectric breakdown for problems where no analytical
solutions exist.

The scope of this section is to propose a simplified account for the electric displacement
saturation and outline its effect on the hysteretic behavior of ferroelectric ceramics and the
initiation and propagation of cracks in piezoelectric ceramics. It is shown in Section 3.5.1
how the shape of the characteristic dielectric hystereses curves of ferroelectric ceramics are
modified based on the electric saturation model originally proposed in GAO ET AL. [116].
Rather than following their approach by superposing a complex function onto the singular
solution of a crack within linear piezoelectricity, which is possible only for problems where
analytical results do exist, a different strategy is proposed in this work. The material
parameters within an invariant and fully anisotropic setting of linear piezoelectricity which
are effected by the electric displacement saturation are identified and varied to determine
their influence on the analytical obtained values for the total and the mechanical energy
release rates for the problem of a crack in an infinite medium in Section 3.5.2. An
exponential saturation type response of the identified parts in the electric enthalpy due to
the electric displacement saturation is proposed to outline the effect of this electric non-
linearity on these problems. The introduction of an additional parameter in the form of a
saturation exponent outlines the difference to the original proposed treatment of electric
displacement saturation in GAO ET AL. [116]. The advantage of this approach lies in the
straightforward extension to problems for which no analytical solutions are valid.

3.5.1 The exponential electric displacement saturation model

It should be noted that the relation between the applied electric field and the obtained
electric displacement is driven by the sensitivity b;;, which based on (3.26) yields a
constant slope in terms of the dielectric material parameters v, 9 or alternatively based
on (3.28) a constant slope in terms of the dielectric material parameters €;; and €33 when
no electric non-linearities are considered. In the presence of material inhomogeneities like
inclusions, voids, or cracks this relationship may no longer be valid and must be replaced
by a framework which takes into account electric non-linearities [137, 221, 392]. A possible
source of non-linearity might arise in ferroelectric crystals [170] whose electric polarization
is driven by ionic movement which reduces in the presence of high electric fields [116].
This saturation of the electric displacement is accounted for in the electric displacement
saturation model developed in GAO ET AL. [116]. In their proposed multiscale view
of piezoelectric fracture they consider the piezoelectric material as mechanically brittle
and electrically ductile with the electric yielding zone confined to a strip ahead of the
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Figure 3.7: Illustration of the electric displacement saturation model confined to a strip
ahead of the crack tip with saturated electric displacement of d = ds (left). Illustration
of the dielectric hysteresis curve in ferroelectric ceramics and the expected change due to
electric displacement saturation (right).

piezoelectric crack tip oriented perpendicular to the poling direction as outlined in Figure
3.7. In GAO ET AL. [116] the electric yielding is accounted for based on a generalization
of the approach developed by DUGDALE [78] for the modeling of the plastic deformation
in a thin metal sheet. A proposed distinction of two energy release rates in GAO ET AL.
[116], the global energy release rate and the local energy release rate, allows for the
identification of the latter as a possible fracture criterion which is in agreement with
observed experimental results showing an odd dependence of the crack growth on the sign
of the applied electric field. As mentioned in L1U ET AL. [214], like the Dugdale model [78],
the developed analytical solution in GAO ET AL. [116] is obtained by a superposition of
two singular solutions limiting the applicability of the model to cases where such analytical
solutions do exist.

In this section, the effect of electric displacement saturation is investigated numerically
in the subsequent Section 3.6 for problems where no analytical solutions exist. There-
fore, rather than linearly superposing a complex function to account for the electric dis-
placement saturation onto the singular solution of a piezoelectric crack as done in GAO
ET AL. [116] for a simplified electroelasticity model in terms of three independent mate-
rial constants, a different strategy is followed in this section. The effect of the electric
displacement saturation on the dielectric hysteresis curve arising in ferroelectric ceramics
is outlined in Figure 3.7. The limitation of the ionic movement on the polarization further
influences the electrostrictive strain resulting also in a modified butterfly hysteresis [137].
The limitation of the electric displacement perpendicular to the poling direction ahead
of the crack tip to d = d, results in a vanishing slope and therefore vanishing dielectric
material parameters v;, v, or equivalently vanishing €1, €33.

The term responsible for the constant slope in the dielectric hysteresis illustrated in Fig-
ure 3.7 is the purely electrical part Hg, given in (3.21). Based on a saturation type
modification of this term proposed in this section as

I
HE' = Hpg, - exp ( - |§—6|) (3.86)

the electric displacement is saturated towards a limiting value depending on the choice of
the saturation exponent ¢ in the direction normal to the polarization direction a assured
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through the dependency of the electric displacement saturation model of (3.86) on the
invariant I = e-a. This agrees with the initially proposed saturation strip model in GAO
ET AL. [116], where the strip is aligned ahead of a crack tip normal to the polarization
direction. For a saturation exponent of £ — oo the proposed modification of Hpg, in
(3.86) recovers the non-saturated case. It is noted that no additional dissipative effect is
introduced in the approach considered in this work, which is contrary to the approach
considered in SZE & PAN [346] in which electric displacement saturation is modeled
similar to the treatment of plasticity with an additive decomposition of the electric field
into “elastic” and “plastic” parts.

3.5.2 Effect of electric displacement saturation on the complex variable solu-
tion of a crack in an infinite medium

Even though in this section, the electric non-linearity in the form of electric displacement
saturation is initially investigated for the problem of a crack in an infinite anisotropic
piezoelectric material loaded so that linear piezoelectricity applies, in the subsequent Sec-
tion 3.6 the effect of electric displacement saturation is investigated numerically for more
realistic problems. Given the treatment proposed in Section 3.5.1, it is straightforward
to apply standard complex variable solutions available in the literature [21, 339, 342] to
investigate the influence of electric displacement saturation on the fracture behavior in
ferroelectric ceramics, as it is done in this section.

Following SUO ET AL. [342], a short summary of the complex variable solution of a crack
in an infinite anisotropic poled ferroelectric ceramic material is given in Section 3.5.2.1
and then applied in Sections 3.5.2.2 and 3.5.2.3 to a Mode IIT and a Mode I problem,
respectively, where the emphasis is directed towards the investigation of the influence of
electric displacement saturation.

3.5.2.1 Complex variable solution of a crack in poled ferroelectric ceramics for
the framework of linear piezoelectricity. Rewriting (3.18) in terms of the primary
unknowns in the form of the displacement field u, and the electric potential ¢, and
insertion of (2.1) into (2.3) and (3.1) into (3.2) for the case of p® = 0, one obtains

(Cijriug + i) i =0 and  (hygur — bag) i = 0. (3.87)

Following SUO ET AL. [342] and focusing on two-dimensional problems in the {z, y }-plane,
the general solution {ug, v} is obtained by considering an arbitrary function comprised
of a linear combination of z and y as {uy, ¢} = af((1z + (oy), where a = {ag, a4}, ¢, for
a = 1,2 are chosen without loss of generality as (; = 1, (, = p, and f is obtained from
the given boundary conditions. The column a and the number p are determined from the
complex eigenvalue problem

((Dajkgak + Ihgjaa4)CaC5 = 0 and (Ihakﬁak — Ibaﬁa4)CaC5 = 0 (388)

with «, f = 1,2. One can show [342] that a non-trivial solution of a exists when p is a root
of the determinant polynomial and further that the eight roots form four conjugate pairs.
With p, for s = 1,...,4 being the roots with positive imaginary parts, the corresponding
columns a,, and z(s) = = + p,y, the most general solution for {u, p} and subsequently
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Elastic constants Piezoelectric constants Dielectric constants

(10* N/mm?) (C/m?) (1073 mC/(kV m))
C11 C12 C13 C33 Ca4 €31 €33 €15 €11 €33
13.9 7.78 743 11.3 256 —6.98 13.84 1344 6.0 5.47

Table 3.1: Material parameters used for the modeling of lead zirconate titanate PZT-4
ferroelectric ceramics with a poling induced anisotropy where x3 is the poling direction and
the 1 — 2 plane is the isotropic plane.

for the stresses and electric displacements {o,;, ds} with a = 1,2 is finally obtained as

4
{ug, p} = 2ReZasfs(zs) and  {04;,ds} =2(—1)" lReZ bsp? ' fl(2s),  (3.89)

where for a pair {p, a} the associated b = {b;, by} is given as

bj = ((ngkﬁak + ﬂlﬁjgd4)€5 and b4 = (]hgkgak — bQﬁazl)Cﬁ. (390)

Forming the two 4 x 4 matrices 2l = [ay, as, a3, as] and B = [by, by, b3, by] and enforcing
the normalization property [21]

4
Z msa%sg + leﬁ%sa = 5046 (391)

s=1

the Irwin matrix [160] follows as % = 2Re# with % = —iAB~! where i = v/—1. The
total energy release rate is then obtained as ¢ = %kT%ﬂk in terms of k = [Ky, K1, Ky, KIV]T
for the stress intensity factors of the three mechanical as well as the electrical mode.
The strain energy release rate or mechanical energy release rate, suggested in PARK
& SUN [279] as a suitable fracture criterion in poled ferroelectric ceramics, follows as

gmech lkT he%ﬂk where kmech = [KH, KI, KH[]T-

4 "Vmec

Next, those two release rates are computed analytically for a Mode Il and a Mode I crack
of length 2 units within the framework of linear piezoelectricity to evaluate the effect of the
electric non-linearity in the form of electric displacement saturation. The poling direction
is chosen as the zs-axis so that the matrix representation of (3.27) and (3.28) can be
applied for the anisotropic piezoelectric material model. The chosen material parameters
consistent with this problem are summarized in Table 3.1 modeling a PZT-4 ferroelectric
ceramic material.

3.5.2.2 Effect of electric displacement saturation on the analytical results for
the anti-plane case of a Mode III crack. To model the anti-plane case of a Mode
[T crack within the framework of linear piezoelectricity and x3 as the poling direction,
the computational {z,y}-domain for the evaluation of the energy release rates in Section
3.5.2.1 is transferred by * — x; and y — 5. In this case the crack front is parallel to
the poling direction so that the in-plane deformation in the x, xo-plane is decoupled from
the anti-plane deformation in z3 direction and the electric potential . Focusing on the
latter, closed form solutions for an applied far field loading in terms of o955 and d5° are
derived in PAK [275, 276], SUO ET AL. [342], or PARK & SUN [279] yielding the Irwin
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matrix

I 2 {611 €15 } (3.92)

Cas€11 + €235 €15 —Cu

as well as the total energy release rate ¢/ and the strain energy release rate 41l of
the Mode III problem

[611[(?11 + 615KIHKIV]

9 2
enKi +2es KKy — cuky | and @11 —
ech — 2( 2
Cas€11 + €35)

2(cas€r1 + €35) "

g]ll —_ [

(3.93)

Insertion of K;j; = v/am 055 and Ky = /am dy° results for the half crack length of a =1
units in the expressions

ﬂ[euaggQ + 2e15055d° — c44d§°2} ond @1 7T[€110§§2 + 615U§§d§°] (3.94)
2(cas€r1 + €35) mech 2(cas€11 + €35) S

g]ll _

If the boundary conditions are changed from a far field electric displacement d5° to a
far field electric field e5°, the relation [278] d° = (e15/ca4)055 + (€11 + €35 /cas)es° can be
inserted into (3.94) to obtain

2

mr 1 Cui€11 + € mr 1l e

17 _ 002 44€11 15 o02 17 _ 002 15 00 oo

g — = [_023 - 762 ] and gmech — = [_023 + _02362 ] (395)
2 Leas Cq4 2 Leaa Cq4

With the closed form solutions of the energy release rates in (3.94) and (3.95) it is now
straightforward to investigate the influence of the electric displacement saturation by the
proper modification of the dielectric material parameters €;; and e33. In Figures 3.8 and
3.9 this is done by a comparison of the unsaturated piezoelectric material with a fully
electric displacement saturated piezoelectric material for which in particular €;; = €33 = 0
is used. The illustration of (3.94) is carried out in Figure 3.8 where based on a varying far
field loading in terms of 055 and d5° the total and strain energy release rates are plotted
for the case without saturation (solid lines) and with full electric displacement saturation
(dashed lines). Analogous, the illustration of (3.95) is shown in Figure 3.9.

A closer look at the top row of Figure 3.8 shows that the quadratic dependency of both
energy release rates on the far field stresses 055 when no electric displacement saturation is
accounted for is replaced by a linear dependency when full electric displacement saturation
is assumed. It is interesting that the case with full electric displacement saturation result
in tangents to the case without electric displacement saturation for the total energy release
rate in the top left illustration of Figure 3.8 with intersection points at 09 = c44/e15 d5°
and common slopes m/ej5d3y° at these points. The results with and without electric
displacement saturation for the strain energy release rate illustrated in the top right
illustration of Figure 3.8 coincide at applied far field stresses 095 = 0 and 055 = ca4/€15 d5°.
Furthermore, all the results shown in this illustration have a zero strain energy release
rate at a zero far field stress loading. When varying the far field electric displacement d5°
for the three different far field stresses 095 the total energy release rates in the bottom left
illustration of Figure 3.8 shows that the two quadratic curves with and without electric
displacement saturation again meet at one particular point where d3° = ey5/c4q 055 with
an exactly horizontal tangent. The results of the strain energy release rate plotted in the
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within the framework of linear piezoelectricity. Illustration of the total energy release rate
(left column) and the strain energy release rate (right column) versus ¢$3 under constant
electric displacements d3° = 0 and d3° = +2 - 1074 C/m? (top row) and versus d3° under
constant mechanical loadings 055 = 0 and 055 = +0.4 M Pa (bottom row) without (solid
lines) and with full (dashed lines) electric displacement saturation.
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Figure 3.9: Complex variable solution of a center crack of 2 units loaded in Mode III
within the framework of linear piezoelectricity. Illustration of the total energy release rate
(left column) and the strain energy release rate (right column) versus ¢$3 under constant
electric fields e5° = 0 and e3® = £20kV/em (top row) and versus e5° under constant
mechanical loadings 055 = 0 and 055 = +0.4 M Pa (bottom row) without (solid lines) and
with full (dashed lines) electric displacement saturation.
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bottom right illustration of Figure 3.8 also coincide at d3° = e15/c4q 055 for the case with
and without electric displacement saturation.

The illustration of (3.95)s reveals a disappearance of the influence by the dielectric mate-
rial parameters on the strain energy release rate by changing the far field electric displace-
ment d5° to a far field electric field e5°. This is also apparent in the illustrations of the
strain energy release rate in the right column of Figure 3.9 where no effect of the account
for electric displacement saturation can be observed. The total energy release rate though
is effected by the account of electric displacement saturation as seen in the left column of
Figure 3.9. The difference arises for a non-zero applied electric field e3° = +20kV/cm in
the top left illustration of Figure 3.9. The quadratic shape is retained for all the results
of the total energy release rate. It can be observed in the bottom left illustration of Fig-
ure 3.9 that the account of electric displacement saturation reduces the influence of the
applied electric field e3° on the total energy release rate for this Mode III crack example.

3.5.2.3 Effect of electric displacement saturation on the analytical results for
the plane strain case of a Mode I crack. To model the plane strain case of a Mode
I crack within the framework of linear piezoelectricity and x3 as the poling direction,
the computational {z,y}-domain for the evaluation of the energy release rates above is
transferred by © — x; and y — x3. Here the crack front lies parallel to the z; axis. The
applied far field loading in this case are the stresses 055 and the electric displacement
d¥ or equivalently the electric field e3° with their relation given as [278] d° = (ci1e33 —

cizes1)/(cricss — ¢i3)055 + ((csze3; — 2cizesiess + cries)/(cricss — i) + €ss)es”.
Based on the eigenvalue problem summarized in Section 3.5.2.1 the total energy release

rate 47 and the strain energy release rate 4., of the Mode I problem for the material
parameters given in Table 3.1 are computed as

™

™
@l = 5 (9330557 + 2 gaa055dy’ + guady?] and ZL., = ) [933.mecn 055" + 31.mecn 05357
(3.96)
in terms of the applied far field loading 055 and d35° or as
T [e'e] - o0 00 - [e’e] Tr o0 = o 00
g = B [9330'332 + 2 g3a033€3” + Gaa€s 2] and gnllech ) [g33,mecha332 + 934,mech033€3 }
(3.97)

in terms of the applied far field loading 055 and e5°. The individual parameters introduced
in (3.96) and (3.97) are computed numerically and are summarized in Table 3.2 for the
case without and with electric displacement saturation, where for the latter the dielectric
material parameters in Table 3.1 are replaced by €7 = €33 = 0. It should be noted
that the final values for the computed components in Table 3.2 without saturation differ
from the values reported in PARK [278] and PARK & SuUN [279]. Due to a mismatch
in the original equations (2.12), (2.38), and (2.41) resulting in the permutation of the
definitions R and R” in (2.38) of PARK [278], the computation of b is carried out by
bj = (Cgjrear +ojpas)(s and by = (hggear —begas)(s in their work instead of the correct
expression (3.90) used in this section.

With the computed analytical solution an investigation of electric displacement saturation
analogous to the Mode III case in Section 3.5.2.2 is now performed for the Mode I crack in
an infinite piezoelectric material. The illustration of (3.96) is given in Figure 3.10 where
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Figure 3.10: Complex variable solution of a center crack of 2 units loaded in Mode I
within the framework of linear piezoelectricity. Illustration of the total energy release rate
(left column) and the strain energy release rate (right column) versus o$3 under constant
electric displacements d§° = 0 and d3° = £+2 - 107*C/m? (top row) and versus d3° under
constant mechanical loadings 055 = 0 and 055 = +0.4 M Pa (bottom row) without (solid
lines) and with full (dashed lines) electric displacement saturation.
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Figure 3.11: Complex variable solution of a center crack of 2 units loaded in Mode I within
the framework of linear piezoelectricity. Illustration of the total energy release rate (left
column) and the strain energy release rate (right column) versus 055 under constant electric
fields e§® = 0 and e$® = £20kV/cm (top row) and versus e3® under constant mechanical
loadings 055 = 0 and 0355 = £0.4 M Pa without (solid lines) and with full (dashed lines)
electric displacement saturation.
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933 934 G4 933.mech 934.mech

(10=5mm?2/N)  (1072m?/C)  (10'kVm/mC) (1075mm?/N)  (1072m?/C)
w/o saturation 1.7495 2.2146 —8.7430 1.7495 2.2146
w/ saturation 0.9176 4.2713 —17.6237 0.9176 4.2713
933 934 Ja4 §33,mech §34,mech

(10=>mm?2/N) (10~°mm?/V) (1073N/kV?)  (10°mm?/N) (10~ 5mm?/V)
w/o saturation 2.3088 2.3745 —8.8016 2.2804 22.2201
w/ saturation 1.9527 0.4177 —3.6701 1.9417 19.4920

Table 3.2: Computed values of the components used in (3.96) and (3.97) for the expression
of the total energy release rate and the strain energy release rate without and with electric
displacement saturation of the analytical solution obtained for a Mode I crack within the
framework of linear piezoelectricity.

based on a varying far field loading in terms of 055 and d5° the total and the strain energy
release rates are plotted for the case without saturation (solid lines) and with full electric
displacement saturation (dashed lines). Analogous, the illustration of (3.97) is shown in
Figure 3.11.

For the Mode I crack a detailed discussion becomes more difficult since its result is derived
in terms of the numerical values shown in Table 3.2 rather than analytical and directly
in terms of the material parameters shown in Table 3.1 as it is done for the Mode III
crack. In the top row of Figure 3.10 a quadratic dependency of both energy release rates
on the applied far field stress 055 can be observed even for the full electric displacement
saturation. As for the Mode III crack, the strain energy release rate becomes zero for
a zero applied stress field as it can be seen in the top right illustration of Figure 3.10.
When varying the applied electric displacement d5° in the bottom row of Figure 3.10
one observes that now the total energy release rates only coincide for the case with and
without electric displacement saturation when 055 = d5° = 0. The linear dependency on
the applied electric displacement outlined in the bottom right illustration of Figure 3.10
arises from the absence of a parameter giqmesn in Table 3.2. When again changing the
loading from a far field electric displacement d3° to a far field electric field e3°, (3.97) is
investigated through the illustrations in Figure 3.11. Contrary to the Mode III crack,
now also the strain energy release rate is effected by the electric displacement saturation.
Interesting is the second row in Figure 3.11 which shows a reduction of the dependency
of both energy release rates on the applied electric field.

Finally, in Figure 3.12 a direct comparison of the total energy release rate and the strain
energy release rate for Mode 11T and Mode I is made without and with electric displacement
saturation. For Mode III, electric displacement saturation reduces the influence of the
total energy release rate on the applied electric field, keeping though the even dependency
resulting in an impeded crack growth regardless of the orientation of the applied electric
field with regard to the polarization direction. For the strain energy release rate on
the other hand, no influence of the electric displacement saturation can be observed.
This is clear from (3.95), since there is no dependence of the strain energy release rate
on the dielectric material parameters, which is different though in the representation
(3.94)5 when a far field electric displacement is applied. Looking at the results for the
Mode I crack illustrated on the right of Figure 3.12, it can be observed that electric
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Figure 3.12: Complex variable solution of a center crack of 2 units loaded in Mode III
and Mode I within the framework of linear piezoelectricity. Illustration of the total energy
release rate and the strain energy release rate for Mode III versus e3® under a constant
mechanical loading 055 = 0.4 M Pa on the left and for Mode I versus e3° under a constant
mechanical loading 033 = 0.4 M Pa on the right without (solid lines) and with full (dashed
lines) electric displacement saturation.

displacement saturation reduces for both, the total as well as the strain energy release
rate, the dependency on the applied electric field, keeping the even dependency on the
orientation of the electric field for the total energy release rate and the odd dependency
of the strain energy release rate so that for the latter a positive electric field (acting along
the polarization direction) enhances crack growth, whereas a negative electric field (acting
opposite to the polarization direction) impedes crack growth.

3.5.3 The exponential electric displacement saturation model for ferroelectric
ceramics

In this section, the exponential electric displacement saturation model proposed in Section
3.5.1 for piezoelectric ceramics is incorporated into a model of rate-dependent ferroelec-
tricity recently proposed by MIEHE & ROSATO [242], where the polarization vector field
is used to describe the hysteretic electromechanical response. After a theoretical incor-
poration of the electric non-linearity in this section, a numerical evaluation is performed
in Section 3.6.1 for initially unpoled ferroelectric ceramic specimens with and without
inhomogeneities.

Ferroelectric materials in general are polycrystalline materials consisting of a large number
of crystals which itself are subdivided into domains of equal polarization separated by
domain walls [162, 212, 255]. When applying a large enough macroscopic electric field
above the coercive field strength e., the microscopic polarizations undergo polarization
switching and eventually become aligned with the orientation of the applied electric field.
The dissipative character is governed by the remanent polarization p” which remains even
after removing the applied electric field. Accompanied with this process is a deformation
of the polycrystal in the form of the remanent strain €. A schematic illustration of the
characteristic dielectric hysteresis curve is given in Figure 3.7.

A typical strategy [173, 194] is an additive decomposition of the strain field and the
electric displacement into reversible and remanent parts of the form

e=¢e4+¢e" and d=d°+p", (3.98)
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where €” is called the remanent strain and p” is the remanent polarization. Choosing these
remanent quantities {&", p"} as internal variables in the electric enthalpy function obeys
the dependency Hz = Hg(e,e,e”,p’). Insertion into the dissipation inequality (3.14)
results, in addition to the expressions for the stresses o and the electric displacement d
given in (3.15), in the thermodynamic forces conjugate to the remanent quantities

6 =—0oHg and &= —0,Hp (3.99)
so that the dissipation inequality (3.14) turns into
D=6:é+e p >0. (3.100)

A number of authors [173, 231] have suggested a reasonable assumption valid for strong
electric fields and small stresses [162] to obtain a relationship between the two remanent
quantities in the form

‘s

e =¢&"(p') = gsg%(a’“ ©a —11) (3.101)
S

considerably reducing the complexity of the formulation. Here p" = |p"| = /p" - p" is the
amount of remanent polarization which tends to the value p’ when all the microscopic po-
larizations undergo polarization switching, a” = p”/p” is the polarization director which
contrary to the framework of linear piezoelectricity considered in Section 3.2.1.3 no longer
is constant, and €7 is the maximum achievable remanent strain due to remanent polariza-
tion in the direction a”. The evolution of the remaining internal variable p” is obtained
in MIEHE & ROSATO [242] as

P =0:9, (3.102)
in terms of the dual dissipation potential function
~ ec ~ 14+m
(&) = ——(€/e.— 1 3.103
(8) = s (efen - 1) (5109

where € = Vé- e, e. > 0 is the coercive field strength, (e) = (e + | @ |)/2 is the ramp
function, and n > 0, m > 0 are material parameters which govern the viscosity of the
remanent polarization process. Details with regard to the underlying variational structure
of this ferroelectricity model and its numerical implementation are given in the recent
work by MIEHE & ROSATO [242] and the general treatment of MIEHE ET AL. [249] on
variational principles in electro-magneto-mechanics.

What remains is to specify the electric enthalpy function Hy for the ferroelectric material
that takes into account the anisotropy in the mechanical, the electrical as well as in the
electromechanical coupled contributions. Following conceptually a representation in terms
of invariants as considered in SCHRODER & ROMANOWSKI [318], the following form

Hg=Hs(J;|2)) = Hp, (N1, Jo, T3, Ja) + He,(Js, Jo) + Hp, (J1, Tz, Js, Jo, Jo, Js)
+ HB4<J6, Jg) + H35<Jg) (3.104)

is proposed in this section. The purely mechanical contribution PNIBI and the purely
electrical contribution Hp, are identical to those of the piezoelectric material given in
(3.21), namely

~ 1 ~
HBl = 5)\J12 + IU/JQ + 041J4 + O{QJ?? + Oé3J1J3 and H82 = 71J5 -+ ’)/QJ(? (3105)
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Following SCHRODER & ROMANOWSKI [318] and MIEHE & ROSATO [242], the electrome-
chanical coupled part H B, and the additional contributions H B, and Hp, to account the
polarization switching are chosen as

J ~
[51J1J6 + BaJs s + 53J7} pg, Hy = —Js Js, (3.106)
and
. 1 Js 1 Jg\ 2
Hs = [Jg artanh( ) + —p.ln (1 — (—8> )] (3.107)
¢ P/ 2 Ps
in terms of the invariants Jy = ef;, Jo = €5, J3 = ajef;aj, Jy = ajefep;al, J5 = ee,
Jo = eia;, J; = ajeg;ej, Jg = p', with f; = e;; — l;(p},), and the parameter ¢ governing

the slope of the hysteresis curve.

This constitutive framework of unpoled ferroelectric ceramics can again be easily modified
to take into account the additional electric non-linearity in the form of the electric dis-
placement saturation introduced in the previous Section 3.5.1 for piezoelectric ceramics.
The main reason for the incorporation of this additional non-linearity lies in the experi-
mentally observed saturation of the electric displacement field for strong enough applied
electric fields. In the current model for ferroelectric ceramics characterized though the
electric enthalpy function proposed in (3.104)-(3.107), the electric displacement is not
bounded and therefore is not capable of accounting for the electric displacement satura-
tion. The term responsible for the constant slope in the dielectric hysteresis illustrated in
Figure 3.7 is the purely electrical part Hg, given in (3.105). Based on a saturation type
modification of this term analogous to (3.87) as

~ J
gt = Hy, - exp (— %) (3.108)
the electric displacement is again saturated towards a limiting value depending on the
choice of the saturation exponent £ in the direction normal to the polarization direction a”
assured through the dependency of the electric displacement saturation model of (3.108)
now on the invariant Jg = e - a’.

3.6 Representative numerical simulations

The numerical simulations presented in this section outline the performance of the de-
veloped finite elements capable of incorporating failure into electromechanical coupled
materials and investigate the influence of electric displacement saturation on ferroelectric
ceramics and on the initiation and propagation of strong discontinuities in piezoelectric
ceramics. Section 3.6.1 considers a ferroelectric response and investigates the influence
of electric displacement saturation for examples with no propagating failure zone. Based
on single element tests, Section 3.6.2 validates the correctness of the incorporated electric
separation modes into the strong discontinuity approach. In Sections 3.6.3 and 3.6.4 a
propagating failure zone is investigated within the framework of linear piezoelectricity
and an account for electric displacement saturation. Finally, in Section 3.6.5 three dimen-
sional simulations of a compact tension test and different three point bending tests with
various notch locations are performed.



3.6 Representative numerical simulations 95
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Figure 3.13: Numerical evaluation of electric displacement saturation in a rate-dependent
ferroelectric material model through a square plate with a centered hole. Geometric proper-
ties as well as mechanical and electric boundary conditions for a square plate with dimensions
10 mm x 10 mm of initially unpoled ferroelectric ceramics. While mechanically restrained
in vertical direction at the bottom and top surface and free in horizontal direction, a zero
electric potential is applied at the left surface and a non-zero cyclic electric potential is
applied at the right surface.
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Figure 3.14: Numerical evaluation of electric displacement saturation in a rate-dependent
ferroelectric material model through a uniaxial test with cyclic electric loading. The influence
of electric displacement saturation is outlined for the dielectric hysteresis (left) as well as the
butterfly hysteresis (right). The results without electric displacement saturation (obtained
by £ — o) do change only for the dielectric hysteresis when electric displacement saturation
is present for the two values of £ = 20 kV/mm and £ = 10 kV/mm.

3.6.1 Electric displacement saturation for ferroelectric ceramics

In this section a numerical evaluation of electric displacement saturation in a rate-dependent
ferroelectric material with the piezoelectric material parameters given in Table 3.1 and
the additionally required ferroelectric material parameters summarized in Table 3.3 is pro-
vided. In Section 3.6.1.1 a uniaxial test with cyclic electric loading is shown. A centered
hole is incorporated into a square plate in Section 3.6.1.2 to obtain a first impression
on how the numerical account for electric displacement saturation proposed in (3.108)
performs for an introduced inhomogeneity.

3.6.1.1 Uniaxial test with cyclic electric loading. In this section, the character-
istic hysteresis curves and their dependency on the electric displacement saturation for
the ferroelectric material with the properties outlined in Tables 3.1 and 3.3 are computed
for a homogeneous specimen of dimension 10 mm x 10 mm. The geometry as well as the
mechanical and electric boundary conditions are illustrated in Figure 3.13. Mechanically,
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Name Parameter Value Unit
coercive electric field €c 1.0 kEV/mm
saturation polarization JA 26 x 1072 C/m?
saturation strain S 1073 —
hysteresis slope parameter ¢ 1.0 —
viscosity of polarization n 1072 mm?/(C s)
viscosity shape exponent m 2 —

Table 3.3: Additional material parameters to the ones supplied in Table 3.1 of lead zir-
conate titanate PZT-4 ferroelectric ceramics for the numerical simulations of the poling
process through the rate-dependent ferroelectric material model of Section 3.5.3.

the specimen is restrained in vertical direction at the bottom and the top surface but is
free to move in horizontal direction. Electrodes are placed at the left and right surfaces.
While the electrode at the left surface is grounded, a periodic electric potential ¢ is applied
at the right surface altering between £100 £V every 2s. Such a large amount is chosen
to emphasize the response in the hystereses curves after full switching is achieved, which
is the region for which the electric displacement saturation influences the constitutive
behavior.

The numerical results in the form of the dielectric and the butterfly hysteresis are il-
lustrated in Figure 3.14. Starting from the virgin unpoled material, the electric field is
increased until it approaches the coercive field strength e.. Thereafter electric poling is
observed for which the majority of the microscopic polarization is aligned with the ori-
entation of the applied electric field. Increasing the electric field even further, electric
displacement saturation influences the dielectric hysteresis curve by affecting the slope in
the electric displacement versus electric field relation. For a saturation exponent of £ — oo
electric displacement saturation is not accounted for resulting in this slope remaining con-
stant and an unbounded increase of the electric displacement. For & = 20 kV/mm, this
slope becomes flatter and eventually for & = 10 kV/mm approaches an almost horizontal
relation, bounding the maximal achievable electric displacement. As a measure for the
electric displacement saturation, the value 1 — exp(—|Js|/€) can be used which for this
homogeneous test takes the values 1 —exp(—0.5) = 0.3935 and 1 —exp(—1.0) = 0.6321 at
time t = 1 s, i.e. saturations of 39.35% and 63.21% are achieved for the two saturation ex-
ponents £ = 20 kV/mm and £ = 10 kV/mm, respectively. A subsequent reduction of the
applied electric field results in polarization switching when the electric field approaches
—e.. Again, electric displacement saturation is observed in the dielectric hysteresis for
¢ < 0o. The butterfly hysteresis, for which the remanent strain develops when |e;| — e,
remains unchanged by the proposed simplified incorporation of electric displacement satu-
ration through (3.108), showing that it cannot account for an in reality expected modified
strain response due to electric displacement saturation [137].

3.6.1.2 Square plate with a centered hole. Next, a square plate with a centered
hole is employed to investigate the influence of electric displacement saturation. This prob-
lem is chosen since it provides a first evaluation of the proposed incorporation of electric
displacement saturation on materials with inhomogeneities. Geometry and boundary con-
ditions in the mechanical and electric fields are illustrated in Figure 3.15. The plate with
dimensions 10 mm x 10 mm is mechanically restrained in horizontal and vertical direction
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Figure 3.15: Numerical evaluation of electric displacement saturation in a rate-dependent
ferroelectric material model through a square plate with a centered hole. Geometric prop-
erties as well as mechanical and electric boundary conditions for a square plate with di-
mensions 10 mm x 10mm and a centered hole of diameter 3 mm of unpoled ferroelectric
ceramics. While mechanically restrained in horizontal and vertical direction at the left and
right surface and free at the bottom and top surface, a cyclic electric potential is applied at
the left and the right surface.

at the left and the right surface but mechanically free to move at the bottom and the top
surfaces. FElectrodes are again placed at the left and right surfaces where now through
both a cyclic electric potential is applied to the specimen. Starting from the virgin un-
poled state, the electric potential reaches 20 £V at the left surface and —20kV at the
right surface at a time of 1s. Subsequently, every 2 s the electric potential continuously
changes from £20 £V to F20 £V at the vertical surfaces of the specimen.

The numerical results of this test are shown in Figure 3.16 where the electric potential
v, the remanent polarization p”, and the distribution of the electric displacement satu-
ration by plotting the value 1 — exp(—|Js|/&) are shown at four different time instances
t =1,2,3,4s when electric displacement saturation is accounted for by a saturation ex-
ponent of £ = 10 kV/mm. A comparison of the results obtained for the electric potential
distribution and the remanent polarization given in the left and center columns of Fig-
ure 3.16 when electric displacement saturation is accounted for, with the results without
electric displacement saturation given in MIEHE & ROSATO [242], where also slightly
different material parameters are used in their work resulting in an isotropic purely me-
chanical and electrical response, almost no difference can be observed. Still, the electric
displacement is saturated in the upper and lower region of the centered hole as it can
be observed in the right columns of Figure 3.16. The maximum achieved value of the
electric displacement saturation achieves around 36% at ¢ = 1s right above and below
the centered hole.

3.6.2 Fracture in piezoelectric ceramics - Single element tests

The incorporation of electric separation modes in Section 3.3 resulted in the development
of new finite elements for the modeling of fracture in electromechanical coupled problems.
The way how such separation modes are constructed is based on the goal to avoid locking
phenomena which otherwise result in an overstiff response of the material. It remains to
confirm the locking-free property of the resulting finite elements based on numerical sim-
ulations. In this section two academic numerical simulations are chosen which specifically
address this issue in the form of a simple patch test for elements with discontinuities in the
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Figure 3.16: Numerical evaluation of electric displacement saturation in a rate-dependent
ferroelectric material model through a square plate with a centered hole. The left column
shows the distribution of the electric potential, the center column shows the orientation
of the remanent polarization vector p”, and the right column shows the electric displace-
ment saturation evolving at the top and bottom part of the hole by plotting the value
1 — exp(—|Js|/€) at different time instances t = 1,2,3,4s (from the top to the bottom)
when using a saturation exponent of £ = 10 kV/mm.
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Figure 3.17: Single element tests. Illustration of the element test employed for the eval-
uation of the locking-free properties of the formulation based on a constant electrical sepa-
ration mode. A single element has a mechanical fully softened and electrical impermeable
pre-existing crack and is loaded by the application of an electric potential on the nodes in B
of the element whereas the displacement of all nodes are zero, resulting in a constant elec-
tric potential distribution in B*. The computed resulting electric field parallel to the strong
discontinuity in both parts of the body is illustrated on the right which exactly captures the
analytical solution in (3.109).
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Figure 3.18: Single element tests. Illustration of the element test employed for the evalu-
ation of the locking-free properties of the formulation based on a linear electric separation
mode. A single element has a mechanical fully softened and electrical impermeable pre-
existing crack and is loaded by the application of an electrical potential on the nodes in Bt
of the element whereas the displacement of all nodes are zero, resulting in a linear electric
potential distribution in BT. The computed resulting electric field parallel to the strong
discontinuity in both parts of the body is illustrated on the right which exactly captures the
analytical solution in (3.110).

electric fields. One may conduct CHAPELLE & BATHE [61] for a more rigorous evaluation
of the stability of finite elements without strong discontinuities whose extension to the
developed finite elements here is out of the scope of the present work.

A block with dimensions of a xa where a = 1 is discretized by a single bilinear quadrilateral
finite element. All four nodes of the element are mechanically restrained so that no
mechanical displacements arise. Furthermore, the element is assumed to have a pre-
existing mechanically fully softened and electrically impermeable strong discontinuity
through its centroid separating the two parts B~ and B of the element and ensuring a
completely decoupled response of these two parts of the element, if represented correctly.
The first single element test then proceeds by the application of a nonzero electric potential
d at all nodes in B* like it is illustrated on the left of Figure 3.17. Due to the pre-existing
electrical impermeable strong discontinuity I', the electric potential remains zero in the



100 The strong discontinuity approach for electromechanical problems

part B~ of the element. The analytical solution for the electric field as the negative
gradient of the electric potential can be easily obtained as

e=0 inB and e=0 inB* (3.109)

for both parts of the element. This further allows for a straightforward comparison of
the analytical result in (3.109) with the obtained numerical results, as illustrated on the
right of Figure 3.17. One can observe that in the numerical simulation the electric field
remains zero in both parts of the element, as expected. This confirms the locking-free
property of the element developed based on the incorporation of the constant electrical
separation mode in Section 3.3.1.

In the second element test considered here, an electric potential distribution in BT is
chosen so that a nonzero constant electric field is obtained in that part. This can be
easily achieved by applied nodal values of the electric potential as illustrated on the left
of Figure 3.18. The analytical solution for the electric field can again be obtained as the
negative gradient of the electric potential as

20
e=0 inB and e,=0, em = — in B* (3.110)

for both parts of the element where e, and e,, denote the electric field in the direction
normal and tangential to the strong discontinuity I', respectively. The numerical results
shown on the right of Figure 3.18 exactly capture the analytical results in (3.110) for the
linear electrical separation mode of Section 3.3.2, which again outlines the locking-free
property of this formulation.

With the basic requirement of preventing locking phenomena for a constant and linear
electrical separation mode satisfied, it remains to apply the new formulation for more
realistic numerical simulations for which also experimental results are available, which
then can be employed to examine the performance of the resulting new finite elements
based on a proper comparison.

3.6.3 Fracture in piezoelectric ceramics - Compact tension test

In this first realistic example a plate with dimensions 25.5 x 19.1 x 5.1 mm? made out of
a PZT-4 piezoelectric ceramic material with material parameters given in Table 3.1 and
a vertically centered horizontal pre-existing notch of the length 11.5mm and thickness
0.46 mm is loaded mechanically and electrically as shown in Figure 3.19. The pre-existing
notch is rounded at its tip with a notch eccentricity of ¢ = 4. The mechanical loading
is tensile and applied through rigid circular bars of diameter 3.2 mm placed 4.6 mm hor-
izontally and vertically away from the left bottom and the left top corners. Electrically,
the plate is loaded by the application of non-zero electric potentials ¢}°® = —9.55 kV and
©? = —19.1kV at the top surface in the way shown in Figure 3.19 whereas the electric
potential is assumed zero throughout the bottom surface. The poling direction of the
specimen is assumed vertically oriented from the bottom to the top surface. Experimen-
tal results presented in PARK & SUN [280] show the development of a horizontal crack
from the tip of the pre-existing notch towards the right surface of the specimen.

This experimental setup is modeled with the anisotropic piezoelectric constitutive relation
of Section 3.2.1.3 and in particular given in (3.20)-(3.26) as well as the incorporation of
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electric displacement saturation through the modification proposed in (3.86) in terms of a
to be determined saturation exponent . Different finite element discretizations consisting
of standard displacement based Q1 finite elements in the plane setting are chosen. For
the determination of the saturation exponent £ coarse and fine finite element meshes are
chosen which are refined at the tip of the pre-existing notch and consist of 3190 and 5319
Q1 elements, respectively. For the modeling of the propagating crack, the refinement is
extended over the whole length of the region where the crack is supposed to propagate
resulting in finite element meshes consisting of 6159 and 10083 Q1 finite elements. An
illustration of all the four meshes is given in Figure 3.20.

Before simulating the expected propagation of the crack, the saturation exponent ¢ in-
troduced in this work to model the electric displacement saturation through (3.86), needs
to be computed based on a parameter study whose result is illustrated in Figure 3.21. In
this study, the saturation exponent is varied from & — oo, corresponding to no electric
displacement saturation, to & = 1 kV/mm resulting in a large electric displacement sat-
uration zone, using the coarse and fine finite element meshes illustrated in the top row
of Figure 3.20. Electric potentials of ¢i® = —9.55kV and ¢y = —19.1kV are applied
at the top surface and the fracture loads at the point of crack initiation for the different
values of & are compared with the experimental results in PARK & SUN [280]. Since no
value for the tensile strength f; of the material against normal separation needed for
the constitutive model along the strong discontinuity in (3.39) is provided in the experi-
ments given by PARK & SUN [280], values ranging from 60 — 100 N/mm? are chosen in
this parameter study. The experimental fracture initiation loads are illustrated for the
two electric potentials as circles at the vertical left axes in the plots of Figure 3.21. The
numerical computed fracture initiation obtained without electric displacement saturation
are shown by the filled markers at the right vertical axes of Figure 3.21 for the different
values of the tensile strengths. When accounting for the electric displacement saturation,
one can observe an increase of the fracture initiation load for larger saturation zones,
i.e. for smaller values of the saturation exponent. With the goal to fit the two parame-
ters of the saturation exponent and the tensile strength to get close to the experimental
reported fracture initiation loads one can identify the two values £ = 10kV/mm and
fi, = 80 kV/mm?. Those are subsequently used for all the remaining simulations in this
section. The obtained value for the tensile strength is, as it turned out after performing
this parameter study, in very good agreement with the tensile strength of 75.8 N/mm?
reported in PARK [278] used for exactly these experiments.

With these two fitted parameters at hand it is now possible to perform numerical simula-
tions of the actual crack propagation. The determination of the onset of crack initiation
and its propagation direction is based on the loss of ellipticity condition given in (3.76).
After its onset, the crack propagates with boundary conditions assumed as fully soft-
ened and electrical impermeable. Whereas the fully softened crack boundary condition
is clearly justified for such highly brittle materials with fracture energies in the order of
2.34 N/mm [280], the justification for the electrical crack boundary condition is not that
straightforward [74, 138, 195, 281]. The numerical results are shown in Figures 3.22 and
3.23 for the coarse and fine finite element meshes shown in the bottom row of Figure 3.20.
They show the evolution of the electric potential and the electric displacement saturation
as the crack is propagating from the tip of the pre-existing notch horizontally towards the
right surface. A comparison of the results without electric displacement saturation (two
left columns in these figures) and with electric displacement saturation using a saturation
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Figure 3.19: Compact tension test. Illustration of the geometry and loading of the PZT-4
piezoelectric ceramic plate with a pre-existing horizontal notch. The specimen is loaded
mechanically by the application of a tensile stretch through the application of displacements

through rigid circular bars near the left top and bottom corners. The electric loading is

achieved through a zero electric potential pP°"°™ at the bottom surface and a non-zero

electric potential ©*P at the top surface where the poling direction is vertical from the
bottom towards the top. Experiments [280] report the appearance of a crack propagating
from the tip of the notch horizontally towards the right surface.
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Figure 3.20: Compact tension test. Illustration of the finite element meshes used for the
determination of the electric saturation exponent ¢ (top row) and for the simulations of the
propagating crack (bottom row). The meshes for the evaluation of the saturation exponent
are only refined at tip of the notch and consist of 3190 Q1 finite elements for the coarse mesh
(left) and 5319 Q1 finite elements for the fine mesh (right). The meshes for the simulation
of the propagating crack are refined throughout the horizontal region from the tip of the

notch towards the right edge and consist of 6159 and 10083 Q1 finite elements for the coarse
and the fine mesh, respectively.
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Figure 3.21: Compact tension test. Influence of the electric saturation parameter ¢ and
the tensile normal strength f; on the fracture load of the tension test using a coarse and a
fine mesh given in the top row of Figure 3.20. The experimental data are shown by circles,
the values for £ — oo corresponding to the case without electric displacement saturation are
shown by filled markers for the different tensile strengths.

exponent of £ = 10 kV/mm (two right columns in these figures) is performed. Whereas
almost no difference can be observed for the electric potential distribution, the electric
displacement saturation makes the crack start to propagate later, which is consistent
with the plots given in Figure 3.21, but subsequently allows the crack to propagate faster
through the finite element mesh. The illustration of the saturation zone is performed by
plotting the value 1 — exp(—|/g|/£) in the right columns of Figures 3.22 and 3.23. It can
be observed that the resulting electric displacement saturation zone is small and travels
together with the crack tip towards the right edge.

Finally, the reaction force versus applied displacement for the two meshes in the bottom
row of Figure 3.20 is illustrated in Figure 3.24 for different saturation exponents & =
3,5,10,20,00 kV/mm. It can be observed that for smaller values of &, i.e. larger electric
displacement saturation zones, the initiation load increases but thereafter shows a faster
decay of the reaction force so that the speed with which the crack propagates through the
finite element mesh increases for smaller values of £. To achieve this characteristic, the
finite element mesh has to be sufficiently refined at the zone where the crack is propagating
to capture the correct size of the electric displacement saturation zone. The locking-
free properties of the elements used within the strong discontinuity approach can be
observed since the reaction forces tend to zero when the crack is fully propagated through
the mesh. The result for the coarse and fine mesh are almost identical confirming the
mesh-independency of the employed formulation and proposed incorporation of electric
displacement saturation.
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Figure 3.22: Compact tension test. Influence of the electric displacement saturation on the
crack propagation which is shown as yellow line using the coarse mesh shown in the bottom
row of Figure 3.20. The two columns on the left show the electric saturation and electric
potential as it changes for the propagating crack without electric displacement saturation.
The two columns on the right show the same results for an active electric displacement
saturation using a saturation exponent of £ = 10kV/mm. The value 1 — exp(—|Is|/€) is
used to illustrate the electric displacement saturation which can be observed to be small and
travels along with the propagating crack tip.
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Figure 3.23: Compact tension test. Influence of the electric displacement saturation on
the crack propagation which is shown as yellow line using the fine mesh shown in the bottom
row of Figure 3.20. The two columns on the left show the electric saturation and electric
potential as it changes for the propagating crack without electric displacement saturation.
The two columns on the right show the same results for an active electric displacement
saturation using a saturation exponent of £ = 10kV/mm. The value 1 — exp(—|Is|/€) is
used to illustrate the electric displacement saturation which can be observed to be small and
travels along with the propagating crack tip.
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Figure 3.24: Compact tension test. Reaction force versus applied displacement relation
for the coarse (left) and the fine (right) finite element mesh shown in the bottom row of
Figure 3.20 and for different saturation exponents & = 3, 5,10, 20, 0o kV/mm. The smaller
&, the larger the electric displacement saturation zone, the higher the reaction force at which
the specimen fractures, and the faster is the resulting crack propagation from the tip of the
pre-existing notch towards the right surface.

3.6.4 Fracture in piezoelectric ceramics - Three point bending test

The second performed numerical simulation, for which also experimental results are re-
ported in PARK & SuUN [280], is the off-centered three point bending test of the same
PZT-4 piezoelectric ceramic material used in the previous Section 3.6.3. Again the ma-
terial parameters are the ones summarized in Table 3.1. In this example, the plate has
dimensions 19.1 x 9 x 5.1 mm3 with a pre-existing notch, which is now starting at the
bottom surface, extends 4 mm upwards, is placed off-centered by 4 mm, and has a thick-
ness of 0.46 mm. Again the notch tip is rounded using a notch eccentricity of € = 4. The
mechanical loading is performed by the application of a displacement at the center of
the top surface. Electrically the poled material, with poling direction oriented from the
left towards the right, is loaded by a zero electric potential ' at the left surface and
a nonzero electric potential 8% at the right surface with final value golfght = —9.55kV
after a short rise time of 0.1 us. The experimental results presented in PARK & SUN
[280] show the development of a curved crack which starts almost vertically from the
pre-existing notch tip but turns to the right towards the point where the mechanical load
is applied.

The numerical simulation again makes use of the anisotropic piezoelectric constitutive
relation of Section 3.2.1.3 and the incorporation of the electric displacement saturation
through the modification proposed in (3.86) in term of the saturation exponent which is
chosen as £ = 10 kV/mm based on the parameter study performed in Section 3.6.3. Again,
two different finite element discritizations are used to outline the mesh independency of
the employed strong discontinuity approach and the proposed account of the electric dis-
placement saturation in Section 3.5. The coarse mesh consists of 1506 Q1 finite elements
and the fine mesh has 2692 Q1 elements. Both are refined in the region where the crack
is supposed to propagate which is illustrated in Figure 3.26.

Next, the numerical simulation of the crack propagation is performed for the above spec-
ified material parameters and loading conditions. The evolution of the crack path over
time/applied displacment when no account of electric displacement saturation is made is
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Figure 3.25: Off-centered three point bending test. Illustration of the geometry and
loading of the PZT-4 piezoelectric ceramic plate with a pre-existing off-centered vertical
notch. The specimen is loaded mechanical by an imposed displacement at the center of the
top surface. The electrical loading is applied in the form of a zero electric potential ' at
the left surface and a non-zero electric potential ¢ at the right surface with the poling
direction being oriented from the left towards the right surface.
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Figure 3.26: Off-centered three point bending test. Illustration of the coarse (left) and fine
(right) finite element meshes consisting of 1506 and 2692 Q1 finite elements, respectively.
Both meshes are refined in the region where the crack is supposed to propagate.

shown in Figure 3.27. One can see for the coarse and the fine finite element meshes, that
the crack turns to the right as it progresses in vertical direction. Of course, no electric
displacement saturation zone develops. When accounting for the electric displacement
saturation one obtains the results shown in Figure 3.28 which even show a more distinct
vertical orientation when the crack starts from the tip of the pre-existing notch. Again, a
electric displacement saturation zone develops and travels with the crack tip. Note that
for this example the range of the plotted parameter 1 — exp(—|Is|/€) is [0,0.5] to make
the otherwise even smaller saturation zone more visible. It can furthermore be seen, that
the orientation of the electric saturation zone is normal to the horizontal poling direction
rather than tangential to the crack path orientation which is consistent with the originally
proposed strip saturation model of GAO ET AL. [116]. It can be observed in both Figures
3.27 and 3.28 that the crack advances earlier for the coarse mesh but the final result of
the crack path remains mesh independent.

A final study of the effect of the saturation exponent ¢ is made in Figure 3.29. There
the final crack path using the coarse and fine finite element discretization is shown for
different values ¢ = 3,5, 10,20, 00 kV/mm and compared with the experimental results
reported in PARK [278] and PARK & SUN [280]. Again, one can observe that the smaller
the saturation exponent, i.e. the larger the electric displacement saturation zone, the more
vertical does the crack propagate. For too small values of £ an unphysical final crack path
is obtained due to the appearance of a too large electric displacement saturation zone.
Without electric displacement saturation the crack turns to the right too early which can
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Figure 3.27: Off-centered three point bending test. Illustration of the crack propagation
path when electric displacement saturation is not accounted for, i.e. £ — oo for the coarse
mesh (left column) and the fine mesh (right column). The crack turns to the right towards
the point where the mechanical loading is applied. The crack starts to propagate earlier for
the coarse mesh but the final crack paths are mesh independent.
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Figure 3.28: Off-centered three point bending test. Illustration of the crack propagation
path when electric displacement saturation is accounted for by a saturation exponent of
& =10 kV/mm. Plotted is the value 1—exp(—|Is|/&) which shows that the electric saturation
zone is propagation along with the advancing crack tip. The crack is oriented even more
vertical in the beginning of the propagation and subsequently also turns to the right towards
the point where the mechanical loading is applied. The crack starts to propagate earlier for
the coarse mesh but the final crack paths are mesh independent.
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Figure 3.29: Off-centered three point bending test. Illustration of the final crack path for
different values of the saturation exponent £ = 3, 5,10, 20, co kV/mm and for the coarse (left
column) and fine (right column) finite element discretization. The smaller the saturation
exponent, the more vertical is the crack path. Too small values of £ result in non-physical
crack path. When not accounting for electric displacement saturation the initial vertical
crack path of the experimental results can not be re-produced. The choice of £ = 10 kV/mm
is in good agreement with the experimentally observed crack path.
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Figure 3.30: Finite element discretization of the (a) compact tension test in terms of
5385 Q1 finite elements and the three point bending test with notch location A in (b), notch
location B in (c), and notch location C in (d) in terms of 5660, 5575, and 6765 Q1 finite
elements, respectively.
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Figure 3.31: 3D compact tension test. Numerical results for the crack path in an inter-
mediate (a) and the final (c) stage as well as corresponding electric potential distributions
(b,d).
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Figure 3.32: 3D three-point bending test. Numerical results in terms of intermediate
(a,c,e) and final (b,d,f) crack paths corresponding to the different notch locations A, B, and
C together with a front view for the latter two (g,h).
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especially be seen for the coarse mesh. The proposed value of £ = 10 kV/mm is able to
capture the experimental results very well also for this off-centered three point bending
test.

It is emphasized that previous numerical studies [210, 248, 369] could not reproduce the
curved crack path as observed in the experiments of PARK & SUN [280]. To the authors
knowledge, the simulations presented in this work for the first time provide numerical
results consistent with the experimental data obtained in PARK & SUN [280] when it
comes to the computational prediction of the crack path for the off-centered three point
bending test.

3.6.5 Fracture in piezoelectric ceramics - 3D simulations

Finally, the new finite elements to account for failure in electromechanical coupled mate-
rials within the three-dimensional setting developed in Section 3.3 by the incorporation of
new constant and linear separation modes are employed for the modeling of fracture in 3D
piezoelectric ceramics. The two examples of interest are again the compact tension test
and the three point bending test with different notch locations A, B, and C distinguished
by their distance from the beam’s central axis given as 0, 2,4 mm, respectively. Geometry,
loading as well as material parameters are the same as used in the previous two Sections
3.6.3 and 3.6.4 but without an account for the effect of electric displacement saturation.
The finite element discretization consisting of 5 element layers in thickness direction is
illustrated in Figure 3.30.

The numerical results for the compact tension test are shown in Figure 3.31 in terms of an
intermediate and the final crack path as well as the electric potential distribution, agreeing
well with the results obtained in Section 3.6.3 for the plane setting. The numerical results
in terms of the obtained crack paths for the three point bending test and the various
notch locations are given in Figure 3.32, again agreeing well with the results from the
plane setting. For the determination of the crack paths, the proposed combination of the
global tracking algorithm in Section 2.4.2 and the marching cubes algorithm in Section
2.4.3 for purely mechanical materials is extended in this section to electromechanical
coupled materials.
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4 The maximal advance path constraint

This chapter presents a non-affine homogenization scheme for materials with random net-
work microstructure following our recently published work in TKACHUK & LINDER [350)].
It is based on a newly developed kinematic constraint that links the microscopic deforma-
tion of the network to the macroscopic strain of the material. This relation accounts for
the network functionality and is established by means of maximal advance paths that are
long enough to reach the macroscopic scales of the continuous body and deform accord-
ingly but are also composed of the microscopic fibers that follow the network deformation.
The exact distribution of the variable fiber stretch is determined by the principle of min-
imum averaged free energy, which ultimately allows to derive the homogenized elastic
response of the network at equilibrium. Besides the general formulation, the model is
presented in detail for the case of tetrafunctional networks, for which the micro-macro
relation and the expression for the homogenized elastic stress are derived in a compact
and interpretable tensorial form. The performance of the model as well as the convexity
and stability of the obtained homogenized response of the material is examined for net-
works composed of two different types of fibers, namely flexible chains and stiff filaments.
The qualitative behavior of the networks predicted for the two considered cases agrees
with experimentally observed phenomena for soft materials. This includes a consistent
explanation for the difference in the stiffness of elastomers at uniaxial and equibiaxial
extension as well as a validation of recent experimental investigations of atypical normal
stress amplitudes in biopolymer gels under shear loading.

4.1 Introduction

Materials with random network microstructures are essentially discrete mechanical sys-
tems, where single fibers are the basic structural units. The existing theories and models
of random networks in the literature can be categorized as done in Table 4.1. The first
category includes the discrete models that reproduce the microstructure in detail. Such
approach allows to examine networks of different nature and capture the effect of various
specific phenomena such as the entropic and enthalpic response of fibers to axial straining
and their instant bending [158, 367, 384], initial internal stresses [156, 271], or thermal
fluctuations of network junctions [43]. The network simulations provide deep insight into
the microscopic mechanisms of the macroscopic response produced by these soft materials.
Nevertheless, they often require an enormous computational effort and produce results
that display statistic scattering which is different from one generated random network to
another.

The alternative class of models discussed in Table 4.1 is based on the mean field approach
for the description of random networks. They are commonly used to constitute the ma-
terial response of continuous solids in finite element simulations. These theories treat the
large microscopic networks in terms of average distributions instead of resolving them in
detail. In particular, the considered statistical quantities describe the microdeformation
of the network. Their relation to the macroscopic strain, which is the main external ac-
tion on the material, is the key question addressed by these mean field models in different
ways. The most obvious assumption is that the microdeformation and the mean quan-
tities defining it change affinely with the deformation gradient of the solid. This can be
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Refs.

Geometry

Kinematics

Microdeformation

Discrete models

[43, 156, 158, 271,

367, 384]

randomly generated
discrete network of
fibers

stretch and bending
of fibers by the cor-
responding degrees of
freedom

generic network defor-
mation as a result of
statical or thermody-
namical equilibrium

Network average models

[41, 190, 338, 355]

[17, 185, 186, 277]

183, 244]

statistical ~ distribu-
tion of fiber geometry
in the network

eight fibers placed on
the diagonals of a
rectangular box

isotropic distribution
of fiber orientations

axial stretch of fibers
from this distribution

identical axial stretch
of these eight fibers

axial stretch as a
function of the initial
orientation

affine deformation

of the
distributions

the rectangular
deforms with principal
stretches

microstretch

box
non-affine microstretch

minimizing the
aged energy

aver-

Table 4.1: Overview of random network models.

quite commonly observed in the classical models for rubber elasticity [190, 355] as well
as for more recent works on semiflexible networks [41, 338]. Comparison to the experi-
mental data [224] as well as the results of discrete network simulations [158, 367] indicate
though that the affine assumption is not universally valid. It does not explain numerous
phenomena known for soft matter that are attributed to the non-affine character of the
microdeformation. In this work two of them are addressed. Those are the difference in
the locking strain for uniaxial and equibiaxial loadings of elastomers composed of flex-
ible chains with limiting extensibility [224, 244, 353] as well as the transition from the
soft bending dominated to the stiffened stretching dominated response of dilute biological
gels composed of semiflexible filaments [147, 158, 271, 367]. In reality the non-affinity
comes from both, the peculiar response of fibers and their interaction in the network that
is in common highly non-linear, and the complex kinematics of the networks described
by the internal degrees of freedom. The latter issue, the adequate representation of the
network microdeformation, is a central point for the development of micromechanically
based models of soft matter.

Several non-affine models have so far been developed to resolve this issue. The eight-chain
model proposed in ARRUDA & BOYCE [17] for rubber-like elastomers and later adopted
for other materials [185, 186, 277] postulates the distribution of stretch identical to the
stretch of eight particularly aligned filaments. In the seminal work of MIEHE ET AL.
[244], the non-affine microsphere model suggests certain variations of stretch constrained
by a specific relation to the macroscopic deformation with the exact distribution of stretch
determined by the principle of minimal free energy. A similar approach can be found in
the analytical model of GLATTING ET AL. [123] with respect to the principle of maximal
entropy. The two latter models introduce a concept of the relaxing variable microdefor-
mation that is subject to the kinematic constraints of the macroscopic strain. A different
way to introduce non-affinity can be found in KROON [183] where a phenomenological
compliance stretch is considered. The concept is in a good agreement with the nature
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of the elastic response produced by the microstructure of a solid at equilibrium. Nev-
ertheless, the already existing non-affine network models of this type can be improved
by replacing the often artificial design of the micro-macro relation with a physical based
relation.

In this chapter a new micromechanically justified construction of the kinematic constraints
based on the formalism of mazimal advance paths in the network is proposed. These
paths allow to perform the transition between the microscopic scale of single fibers to
the macroscopic scale of the deforming continuous solid. These constraints result in an
efficient homogenization scheme inspired by the orientation-based approach proposed of
MIEHE ET AL. [244], which is characterized by a well interpretable expression of the
homogenized stress in terms of the microscopic fiber forces.

The chapter is organized as follows. In Section 4.2, the statistical description of the
network and its microdeformation is introduced. Section 4.3 is devoted to the formulation
of the mazimal advance path constraint for an arbitrary functionality of the network which
is the main contribution of this work. Next, a particular case of tetrafunctional networks
is chosen and treated in more detail to illustrate the performance of the proposed model.
Section 4.4 concerns the relaxation of the microstretch in the network governed by the
principle of the minimum averaged free energy and the derivation of the homogenized
elastic response of the material at equilibrium. Finally, the performance of the model is
investigated in Section 4.5 for two qualitatively different types of fiber response in the
form of flexible chains as well as stiff filaments. The predicted non-affine deformation in
networks comprised of such fibers allows to explain the difference in stiffening of elastomers
under uniaxial and equibiaxial extension as well as the atypical stress responses recently
observed in experiments on biopolymer gels.

4.2 Statistical description of random networks

Microscopic networks considered in this chapter have an irregular three-dimensional struc-
ture. They are formed by a large number of fibers connected together at junction points.
Since one of their dimension dominates over the others, these fibers can be considered
essentially as one-dimensional entities like displayed in Figure 4.1.

Following the motivation given in the introductory Section 4.1, this chapter is based on
the statistical approach to the treatment of random networks. Within this approach
individual fibers are not treated separately but are included into a statistical assembly
in which they are differentiated by certain key attributes. In particular, the statistical
description proposed in this section classifies the fibers of the network by their initial
orientation in the undeformed state similar to WU & VAN DER GIESSEN [388] or MIEHE
ET AL. [244]. The deformation of the network is correspondingly not determined by the
deformation of single fibers but by the distribution of the deformation parameters over
the introduced assembly of fibers. The network total quantities such as the elastic energy
are then consistently derived by distribution averaging. This formalism naturally provides
the homogenization of random network microstructures.

The proposed statistical description is based on the following assumptions about the
network composition, geometry and deformation:

(A1) junction points do not perform any thermal motion, hence they do take certain
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Figure 4.1: The random network microstructure of a continuous solid B at a material
point P (on the left) formed by long fibers (straight lines) with the end-to-end vectors plotted
at one of the junctions (black arrows). Statistical description of a random network (on the
right) as an assembly of fibers with initial isotropic orientations Ag uniformly distributed on
a unit sphere Sy and the network deformation defined by the microstretch vector function
)\()\0)1)\0€S0P—))\€SACIR3.

positions in space;

(A2) all the fibers in the network are of one single type and have uniform properties
(equal molecular weight, contour length, stiffness etc.);

(A3) in the initial network configuration all the fibers have the same end-to-end distance
Ry and are oriented isotropically in all the directions;

(A4) the deformation of fibers with equal initial orientation coincides strictly.

With these assumptions, the identification of the network with the assembly of fibers
distinguished only by their initial orientation is justified.

Without loss of generality it can be assumed that in the initial configuration all the
fibers have a unit stretch |Ag| = 1 where the initial stretch vector Ag = Ry/Ry is the
end-to-end vector Ry scaled by the initial end-to-end distance Ry. The dimensionless
stretch vector is preferred over the end-to-end vector for the characterization of the fiber
microdeformation. This allows to avoid an otherwise needed account of the length R,
of the fibers which is whatsoever uniform in the network. Therefore, A is a unit vector
representing the initial orientation of the fibers by which they are distinguished in the
undeformed network. The assembly of all the fibers can furthermore be associated with
a unit sphere Sy, each point on the sphere corresponding to a certain fiber orientation X
as shown in Figure 4.1. Since all the fibers initially are assumed to be equally distributed
in all the directions, or correspondingly over the unit sphere Sy, the orientation density
function scaled by the factor 1/ |Sy| = 1/(47) has a uniform unit value in the undeformed
state, namely pg(Ag) = 1. This function expresses the fraction of fibers in the network
with an initial orientation in the infinitesimal vicinity d\g of Ag as

Po()\o) |d)\0| |d)\o| (4-1)

ISI ISI

The averaging over the network of an arbitrary quantity ¢ = ((Ag) that depends on the
initial fiber orientation is then performed by means of the surface integral

1

(€)= 5ol /s

C()\o) |[dXol - (4.2)
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The deformation of the network within the proposed formalism is described by a vector-
valued function A(Xg). Its value is the microstretch vector defined as A = R/Ry where
R is the end-to-end vector of the deformed fibers with reference orientation Ag. This
function maps the microsphere Sy into R? or more particularly, provided the function
A(Ag) is continuous, onto a stretch surface Sy as shown in Figure 4.1 based on

)\()\0) t Ao € S(] —>AE S, C R3. (43)

In the deformed state the averaging of a stretch dependent quantity ¢ = ((\) is performed
similar to (4.2) as

1

(QZ@ i

C(A(X0)) [dXol - (4.4)

0

The proposed statistical description contains the most essential information about the net-
work and its deformation that is provided by the stretch vector function. This is essential
for the development of the model presented in this chapter. Other orientation-based net-
works models operate with scalar fields such as the absolute value of the fiber stretch
[183, 244], the orientation density function [365, 388], or the end-to-end vector distribu-
tion density [123, 211}, which is less informative. As an exception, the microsphere-based
model in MENZEL & WAFFENSCHMIDT [233] incorporates a variable vector field which
though is different to the one presented in this chapter. It does not describe the actual
stretch of the fibers but their referential reorientation due to the remodeling of a soft
tissue. In this chapter the evolution of the fiber stretch vector represents the two main
deformation mechanisms in the network: the axial straining of fibers and their reorien-
tation. The response of fibers to the axial stretch is used to constitute the homogenized
elastic properties of the material in Section 4.4. Still, as introduced so far the distribution
of the microstretch is arbitrary. Its relation to the macroscopic deformation is established
by a special kinematic constraint derived in the next section.

Remarks 4.1. (i) Only half of the microsphere matters for the above network characteri-
zation, since there is no essential difference between the orientations Ag and —Xg. To not
favour one particular hemisphere it is assumed that the fibers are equally divided between
opposite directions.

(ii) To preserve the intrinsic central symmetry of the stretch vector distribution within
the proposed statistical description, the map (4.3) has to satisfy the condition A(—Xg) =
—A(Ao).

(7i1) The developed model deals with finite material strains as well as large fiber deforma-
tions and correspondingly is set up within the non-linear geometry framework. Neverthe-
less, the tensorial derivations performed in this chapter are for simplicity presented with
respect to orthonormal cartesian coordinates. Hence, metric tensors are overall omitted.

4.3 The maximal advance path constraint
In this work, network paths are considered to formulate the constraints relating the mi-

crodeformation of the network to the macrodeformation of the continuum body. These
paths are formed by the fibers connecting the junctions of the network. As long as the
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Figure 4.2: The maximal advance path constraint. Illustration of a cross-link belonging to
a path and the chain with maximal advance £™ along the direction ly on the left. Illustration
of the effect of functionality f on the straightness of the path on the right where two networks
with f = 3 (solid lines) and f = 4 (additional segments plotted in dashed lines) and the two
resulting maximal advance paths are shown. The higher the functionality, the straighter the
paths become.

network is static, like in the case of elasticity, these paths remain unbroken during defor-
mation. A path, consisting of ¢ microscopic fibers with stretch vectors A;, can connect
points of the body at a distance above the microscale of the network, hence ascending to
the scale of the macroscopic continuum. The path is though still restricted to the material
point level so that the overall deformation is characterized by the deformation gradient
F'. This allows to establish the connection between the network scales and the material
point scales linking the microdeformation to the macrodeformation.

In particular, specific paths that have the maximal advance in a certain direction, called
maximal advance paths are considered in this work. They are defined in the initial un-
deformed configuration of the network where all the chains have unit stretch and are
oriented equally in all directions. Let Iy with |ly| = 1 be a certain direction of interest.
Then the advance of a fiber with orientation Ay along I is

£= Ao lo. (4.5)
The cumulative distribution function for this random scalar variable is
1 r+1
10| Jso. 2

where Sy, = {Xo € Sp : Ag - lp < x} is the subset of orientations in which the advance in
direction I is lesser than or equal to z. The corresponding probability density function
is then computed as

pe(z) = - Fela) = 5. (4.7

Consider now a junction, which belongs to a maximal advance path schematically illus-
trated in Figure 4.2. It is connected to f fibers with initial orientations {Aj}/_,, where
f is the functionality of the network. Provided the path has come to the junction by
the fiber )\g , there will be f — 1 remaining fibers along which it may propagate further.
These fibers have orientation vectors {)\6}{;11, being random variables distributed uni-
formly over the unit sphere Sy and are assumed to be non-correlating. The advance in
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the direction I, along these fibers is given by f — 1 random variables £ = /\6 -1y, each
having the distribution (4.6). The maximal advance from the junction in the direction Iy
is then given by

€™ = max{¢'}/_} (4.8)

which is a random quantity characterized by the cumulative distribution function

/-1 T f-1
Feola) = PE" = max{ ) <o = [[ P <o) = (F54) )

and the corresponding probability density function

F—T1/a+1\/2
eI

Whereas the average advance in the network (£) = 0, the average maximal advance

(4.10)

€ = /1x dFem(z) = % (4.11)

is non-zero. In addition to the value of the maximal advance {™ it is important to know
by which fiber it is attained. Let AT = argmax{Ag - lo, Ao € {A;} 7'} be the fiber with
the maximal advance in the direction Iy and belong to the path. Then it has a distribution

. 1\ /-2
M) (4.12)

P"(Xo, bo) = (f — 1)( 5

which is radially symmetric on the unit sphere of orientations Sy relative to the I, axis.
It represents the assembly of fibers A{" in the maximal advance path in the direction I
and has the property

1 f—2
AT = —— [ Ao ™ (No, Lo) |[dNg| =
<0> \So| Soop(oa 0)| 0\ 7

The end-to-end vector Ry, of a long maximal advance path composed of n;, fibers, where
ny, is large, is then given by

. (4.13)

Fo2
f

in terms of the average of the orientation vector in the path (4.13). Once the length of
such path is large enough it becomes a macroscopic object. Correspondingly, one can
expect that with the macroscopic deformation its end-to-end vector will change affinely
following the deformation gradient map F', i.e.

-2
R, =FR,, = nlORof—l where [ = Fl,. (4.15)

f

On the other hand this deformed path is composed of the deformed fibers A™ = A(A{")
from the assembly (4.12) and R; is alternatively given by the path average

Rlo = Ny, <R0)\gb> = nlORO lo (414)

Rl = Ny, <R0)\m> . (416)
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Matching (4.15) and (4.16), one obtains for all path directions I, the relation

- g : A(X0)p™ (Ao, Lo) [dXo| = gFlo (4.17)

W= m 7

which provides, since Iy € Sj, an infinite set of constraints to the variable microscopic
deformation field A(Ag). The derived constraint (4.17) is denoted as the mazimal advance
path constraint (MAPC).

At least one microdeformation will always satisfy the constraint, namely the affine stretch
A(Xg) = FX¢. In case all the fibers AJ' in the path deform affinely as A" = FA]" the
path itself will also undergo an affine deformation

1 < f—=2
= [ AX0)p™ (X0, bo) [dXo| = ——Fly. (4.18)
50| /s, f
The full affine network models (FANM) [355, 388] postulate that the networks strictly
follow this microdeformation in response to the macroscopic strain disregarding the nature
of fibers in the network. In contrast, the proposed approach in this work suggests that
A is just one of the many other variations of the microstretch kinematically compatible
with the macroscopic deformation. The response of the affine network is later compared
to the alternative behavior predicted by the proposed model in Section 4.5.

(A7) = F (A7)

The micro-macro relation (4.17) takes the form of a linear 1-type Fredholm integral equa-
tion and depends on the function A(Ag) which has an essential property of negative
symmetry as pointed out in Remark 4.1. Therefore only its values in one hemisphere of
orientations matter so that the average of the fiber stretch vector in the deformed path
can be alternatively written as

1 ~m
(A") === [ A(X0)D™(Xos o) [dAo] (4.19)
150l Js,
where ﬁm<>\0, l()) = % [pm<>\0, lo) - pm<—>\0, lo)] Since ﬁm()\o, —lo) = —ﬁm<>\0, l(]), an-
other property of the assembly average is

1 ~m m
lo=—1o = 17 [ AMX0)D" (Ao, —lo) [dAg| = — (A™) . (4.20)
S0l Js

0

(A™)

As long as the right hand side of (4.17) is an odd function of [ it is sufficient that the
equality is satisfied for path directions I spanning only half of the orientation space, i.e.
the constraint (4.17) is a Fredholm type equation on a hemisphere Sé/ %

1 . f—2 1/2
AT Ao Io) ldho| = L —2Fl, Vi, €S
Sol SR Qo b} [dda] = 5= Flo ¥ ko € 5, (4.21)

with A: SY2 5 R, A(=Xo) = —Aho), 7" (Ao lo) 1 SI2 x SI2 5 R

A closer examination of the kernel function p™ (A, ly) of the Fredholm integral operator
in (4.21) reveals that it is a polynomial for the natural values of the network functionality
f € N. It can be written as a finite series expansion

P (R0, ko) = Y da(No)tha(lo) (4.22)
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where v € {1,...,a} = A and {¢pa(Ao)}%_; and {¢a(lo)}2_, are linearly independent so

a=1
that the Fredholm integral operator has a finite rank and its image is a linear combination

of {¢a(lo) }ozr-
As long as the affine stretch satisfies the maximal advance path constraint (4.18), the
integral equation (4.21) can be rewritten in a homogeneous form as

1

5oy Jo[AG) = A0)] 70, Lo} [dAo] = 0 (4.23)

0

in terms of the difference of the microstretch A and the affine stretch A. Using the series
expansion (4.22), one can further derive

> {gld /S [A(A0) = A(X0)] dalAo) \d)\0|} Yallo) =0 Vip €S,  (4.24)

a=1 0

Due to the linear independence of {1, (lo)}%_;, (4.24) is satisfied if and only if

a=1

ﬁ | A0 = A)] @R [dXo] =0 Vo€ A (4.25)

0

so that the maximal advance path constraint (4.21) is essentially equivalent to a finite set
of constraints (4.25).

For an illustrative purpose the detailed presentation of the maximal advance path con-
straint and the resulting homogenization scheme in the remaining part of this work is
limited to networks of functionality f = 4. Firstly, such networks are most typical for
vulcanized rubbers and biopolymers [106]. Secondly, for this value of functionality the
proposed micro-macro constraint takes a very particular intuitive form. The average
maximal advance (4.11) in the undeformed configuration takes with f = 4 the value
(&™) = 1/2. This means that the maximal advance paths in tetrafunctional networks are
quite far from being straight. Correspondingly, one can expect an essential non-affinity
due to the potential stretch redistribution which is subject to the constraint (4.21). To
obtain the equivalent finite set of constraints (4.25), consider the particular expression
the kernel p™ takes for f =4, i.e.

1

ﬁm(ko,lo)z—[3( 5 5 =Xl (4.26)

T2

! )\0~l0+1)2_3<—)\0-l0—|—1>2} 3

which is a polynomial in terms of cartesian coordinates of the initial orientation vector
Ao = [%o, Yo, 20] and the path direction vector ly = [Zo, 9o, Zo] With Ag - lg = 20Z¢ + Yoo +
20Z0. The kernel can be written in the form of the series expansion (4.22) with

{%(/\0)}2:1 = {0, y0,2} and {@Da(lo)}i:l = {330, 290, 3%} . (4.27)

With the particular set of linearly independent {¢n(Xo)}>_, given in (4.27) the three
vectorial constraints (4.25) can be represented in the following tensorial form

ﬁ S[A()\o) — A(Xo)] @ Ag [dXo] = 0. (4.28)

0
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The average of the dyadic product <5\ ® /\0> can be easily found as

A(Xg) ® Ao |[dXo| = F

0

1
Ao ® Ao |dXo| = = F (4.29)

150l Js 1ol Js 3

0

with the help of the identity (Ao ® Ao) = 31. This ultimately allows to obtain the
formulation of the maximal advance path constraint for tetrafunctional networks in the
form

1
A(Xo) ® Ao |dAo| = = F (4.30)

150! Js 3

0

which appears to be very natural. Indeed, the term A® A¢ in a certain way represents the
deformation of a single fiber, as it maps the initial unit orientation vector Ag of the fiber
onto the fiber stretch vector A. Correspondingly, (4.30) can be viewed as the relation
between the averaged network microdeformation and the local macroscopic deformation
represented by F'.

To conclude, this section gives the general formulation of the maximal advance path
constraint (4.21). It relates the microdeformation of the network described within the
statistical representation introduced in Section 4.2 to the local macroscopic deformation
of the material. It is shown that for a given functionality f of the network only a finite set
of constraints (4.25) is imposed onto the microstretch A(Ag). The functionality included
into the formulation of the constraints is a very important characteristics of the network
topology. Its qualitative influence on the kinematics of the network is discussed in the
section and the remarks below. Ultimately, for the case of f = 4, to which the remaining
part of this work corresponds, the maximal advance path constraint is derived in the
particular tensorial form (4.30).

Remarks 4.2. (i) The higher the functionality of the network the larger and closer to
1 is the value of the average maximal advance (4.11) due to the availability of straighter
paths in networks with greater number of fibers at each junction.

(17) An increased functionality f of the network results in an increase of the number of the
degree of the polynomial (4.22) as well as an increase of independent constraints (4.25) on
the microstretch A. Correspondingly, for higher values of the network functionality one
will observe a smaller deviation from the affine stretches X in the network. This agrees
with the above remark on the straightness of the maximal advance path. In a path which
is too straight there is almost no place for stretch redistribution.

(1i1) Although the set (4.27) makes use of a particular orthonormal coordinate system in
the reference configuration it is invariant to coordinate transformation. That is if one
performs a coordinate transformation Q : [xo, Yo, 20] — [T(, Yo, 20) the set (4.27) can be
restored in its particular form by a linear recombination.

4.4 Network relaxation and homogenized response at equilib-
rium

The maximal advance path constraint formulated in the previous section does not define
the microstretch A but only restricts its variation at a given macroscopic strain. To
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constitute ultimately the microdeformation of the network, the principle of minimum
free energy is used in this work. It states that within all the kinematically possible
microdeformations the fibers will deform so that the total network energy is minimized.
This approach was initially proposed in MIEHE ET AL. [244] for the formulation of the non-
affine microsphere model of rubber elasticity, which establishes a general homogenization
scheme adopted in this work to incorporate the kinematic micro-macro relation developed
in the previous section. The elastic response of the network retrieved by this principle
can be viewed as a result of microstructure relaxation by the internal degrees of freedom.
The latter are statistically represented by the fiber stretch function A(Ag) as described in
Section 4.2.

The statistical representation of the network microdeformation exploited so far contains
only information about the stretch of the fibers. Consequently, within the proposed ap-
proach one can only consider the situation in which the free energy allows for an expression
in terms of the fiber stretch. In particular, this can certainly be done in the case when the
networks are composed of fibers that only interact at the junctions and themselves have
a free energy that simply changes with the axial strain. Unentangled networks of flexible
polymer molecules in some swelled and dry elastomers as well as semiflexible biopolymer
networks and networks with stiff mechanical filaments fit well into this category.

As long as the energy originates from separate fibers the network total energy V,.; can
be generally computed by the sum of energy contributions ¢ ;(|A|) of all its fibers, which
can be expressed in terms of the network average as

Wnet[A] = n (s (IA]) - (4.31)

Here n is the initial network density expressing the number of fibers in the unit volume
of the undeformed material, to which also the homogenized free energy W, is referred.
With respect to the given form of the network energy in (4.31) one can specifically address
the variational principle stated above as the minimum averaged free energy principle. Its
mathematical formulation restricted to the central case of tetrafunctional networks with
f = 4 is based on the tensorial version of the maximal advance path constraint (4.30) and
reads as:

WoalN] ~ (0g) = 5 [ M| o min

! Wi) (4.32)
<>\®>\0> - T >\(>\0) ®>\0‘d)\0‘ = —F
|SO| So 3

The fiber energy 1 is assumed to be a convex, continuous and differentiable function
of |A|. By the first assumption fiber instabilities are excluded from consideration. The
second one guarantees that the functional W,,.;[A] or the average fiber energy (1;), when
defined, are differentiable with respect to the microstretch function A. There are some
further properties of 1 that define whether the constrained minimization problem (4.32)
is well-posed. These are discussed in the next section with respect to two practically
important types of fiber responses. So far the existence and uniqueness of a stretch
solution A* is postulated for a yet unspecified set of deformations §. The minimizing
stretch can be, correspondingly, viewed as a function A* = A*(F) of the deformation
gradient F' € § C SO(3).
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In the remaining part of this section the properties of the equilibrium microdeformation
of the network and its relaxed homogenized response resulting from (4.32) are examined.
For this purpose consider the Lagrangian of the constrained minimization problem (4.32)
which can be written as

1 1 1
LA = g [ A x = (57 [ A @ Mo lixil = 3F ) 439
[Sol Js S0l /s 3
where v is the second order tensor of Lagrange multipliers, as long as the micro-marcro
constraint (4.30) is tensorial for the considered case of tetrafunctional networks. The
Euler-Lagrange equation enforces the vanishing variation of L with the microstretch A at

A*. The stationarity condition gives the relation

A*

Fi= 1N D3

where f ; = 01y /OX is the stretch conjugate fiber force which relaxes towards f} = f ;(X)
at equilibrium and fy = 0y;/0|A| is its magnitude proportional to the actual fiber force
Fy =0y /0|R].

Once the equilibrium microstretch response A* is known for any admissible deformation
F € § the homogenized properties of the material can be determined. In particular,
one can find the change of the total free energy of the relaxed network with the variable
macroscopic deformation

WL (F) = n (0 (A°]) = ﬁ / G (N) |l (4.35)

Furthermore, the homogenized mechanical stress can be obtained by the standard reason-
ing of thermodynamics [66] as the derivative of the free energy with respect to the strain
field. The derivation in the deformation gradient results in the first Piola-Kirchhoff stress
tensor computed as

P = 0pV; =0 Oty (M) = nige / |d}\0| (4.36)
0

The integral in the right hand side of this equation can be further transformed into the
sum

u || (4.37)

1 S5 g+ o [

in which the second term is identically zero. To prove this claim, note that the constraint
in the form (4.28) is invariantly satisfied by the equilibrium stretch A* for all F' so that

(A" =X)®@X)=0 = (Ip(A* =) @A) =0. (4.38)
Contracting this identity with the tensor v of Lagrange multipliers yields the equation

1 O = X
5 2 % x| = 0 (4.39)
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in which the left hand side can be identified as the second integral in (4.37) using the
relation (4.34). With the help of the identity dpA = 1 ® A the remaining part of the
expression gives the elastic stress in the form

1

P =n—
|Sol

[S £ M ldXo| = 1 (£ © Ao) (4.40)

in terms of fiber forces in the relaxed network. Again, just as the constraint (4.30) the
stress is obtained in a very natural form. Similar expressions are generally derived for
continuous bodies in which the stress is transmitted by microscopic axial forces [75]. This,
in particular, indicates that the statistical description of the microdeformation proposed
in Section 4.2 and the maximal-advance path constraint developed in Section 4.3 together
adequately represent the kinematics of the network and the continuous solid. With the
expression (4.34) for the fiber force vector f7%, the first Piola-Kirchhoff stress tensor can
be alternatively derived in a compact way as
1

P =n{(vX) ® Ag) = 3 (4.41)

which establishes the stress-like nature of the Lagrange multiplier tensor v.

It is again emphasized that the obtained particular results are derived in this section
for the tetrafunctional networks with f = 4 for which the micro-macro constraint is
given by (4.30) and the energy related to fiber straining is given by (4.31). Nevertheless
the proposed homogenization approach can be easily extended to networks of arbitrary
functionality with a free energy other than the one in (4.31). Firstly, one can make use of
the more general form of the micro-macro relation (4.25) in the case of f # 4. Secondly,
the variational principle stated in this section is universal and not limited to a particular
expression of the free energy.

As concerns the particular model developed in this section, it allows for an efficient nu-
merical implementation by means of a unit sphere discretization and quadrature formulas
proposed in [26]. The numerical results illustrating the performance of the proposed ap-
proach are given next in Section 4.5 where the non-affine network response is examined
qualitatively for two different types of fibers.

4.5 Predicted non-affine microdeformation of flexible and stiff
networks

Within the proposed approach the elastic response of soft materials with random mi-
crostructures is related to the relaxation of internal degrees of freedom in the network
subject to the constraint of the macroscopic deformation. The statistical description of
the fiber stretch in the network, the maximal advance path constraint that relates it to the
local deformation gradient of the material, and the principle of the averaged free energy
that finally constitutes the equilibrium microdeformation are most generally presented in
the previous sections. For tetrafunctional networks composed of fibers that only respond
to the axial straining the tensorial constraint (4.30) and the identity (4.34) for the stretch
and force vectors of the fibers at equilibrium, as well as the expression for the homoge-
nized mechanical stress (4.40) are derived. The presented results are so far obtained for
fibers of arbitrary nature, the only assumption taken about their free energy ¢ is that it
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can be expressed as a convex, continuous and differentiable function of the stretch vector
|A|. In this section two particular cases corresponding to two qualitatively different types
of fibers are examined in more detail.

The distinction is made with respect to the absolute value of the stretch at which the
minimum of the fiber free energy is attained. Some flexible fibers have the free energy
with a minimum at zero end-to-end distance. The response of such fibers is primarily
entropic and their zero stretch corresponds to the most probable configuration. Such
behavior is typical of flexible polymer chains with the persistence length much smaller
than the length of the chain between the adjacent junctions [106]. In the opposite case
the fibers are stiff and have the minimal free energy at non-zero elongation. Such response
is displayed either by semiflexible biopolymer molecules or by stiff mechanical filaments
and corresponds to the limit when the persistence length is comparable or much larger
than the fiber dimensions [42]. The network response differs qualitatively for the two
considered cases, which altogether cover a broad class of materials [287]. Therefore, the
investigation given below is of high relevance.

The main subjects that this examination addresses are the existence and uniqueness of the
equilibrium microstretch as the solution to the constrained minimization problem (4.32)
as well as the stability of the homogenized material. Furthermore, the peculiar properties
of the non-affine networks predicted by the proposed model are discussed based on their
correspondence with experimentally observed phenomena.

4.5.1 MAPC predicted non-affine deformation in networks of flexible chains

A free energy with the minimum at zero end-to-end distance is predicted for flexible chains
by several models of highest importance for polymer mechanics. Though being a result
of idealization, it applies to many real polymer molecules that constitute natural and
synthetic elastomers and biogels. With a certain degree of approximation such molecules
are viewed as chains of segments that are either freely connected or rotating around the
bonds, or, alternatively, can change their orientation relative to the adjacent segments
for an enthalpic cost that is small compared to kgT. The latter quantity given in terms
of kp, the Boltzmann’s constant, and 7', the temperature, is the characteristic kinetic
energy of thermal fluctuations. The response to the change of the end-to-end distance
R = |R| produced by such chains is mainly entropic and is in particular described by the
Gaussian chain [134, 188], the non-Gaussian freely rotating chain [190] and the worm-like
chain [182] models developed within the framework of statistical mechanics. These three
mentioned models are summarized in Table 4.2 that contains the particular expressions
for their free energy and their chain force plotted qualitatively in Figure 4.3.

In this subsection the microdeformation of networks made of such flexible chains is exam-
ined within the proposed homogenization approach. The uniqueness of the equilibrium
microstretch is in general proved for this case. It is furthermore shown that the resulting
homogenized network stress is stable at finite strains in the case of material incompress-
ibility. The two particular above mentioned chain models, namely the linear Gaussian
chain and the nonlinear Langevin chain, are considered in detail. It is shown for the lat-
ter case that the microstretch in the network becomes substantially non-affine as chains
approach their limiting extensibility. This effect explains qualitatively the character of
stress stiffening observed in elastomers at uniaxial and biaxial tension.



4.5 Predicted non-affine microdeformation of flexible and stiff networks 131

Model Free energy ¢ Thermodynamic force Fy
Gaussian §k: TR—2 3k Ti

) 2B Np2 BY Np?
chain

-1 L) 1.
Freely rotat- NkBT<)\r £ (\) +In —1) ksT~L'(\,)
. . sinh £71(\,) b
ing chain
. kgT R? 1 kgT 1 R 1

Worm-like e [2 + 7] — [4— +—-1
chain * 4l, L 1—R/L al, 'L (1 —-R/L)?

Table 4.2: Flexible chain models. * N is the number of chain segments, b is the Kuhn
segment length. # A, = R/L is the relative stretch with L = Nb being the contour length
of the chain, £71 is the inverse to the Langevin function £(-) = coth(-) — 1/(+). * Given is
the approximation of [225] valid in the limit I, < L where I, is the persistence length of the
worm-like chain and L is its contour length.
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Figure 4.3: The qualitative plots of the free energy (on the left) and the force (on the right)
of a flexible chain according to the Gaussian approximation, the freely rotating chain (FRC)
and the worm-like chain (WLC) models. The latter two incorporate finite extensibility and
display infinite chain stiffening as the end-to-end distance R approaches the limiting value.

To begin with the proof of uniqueness note first that the models of flexible thermally
fluctuating chains in common predict a free energy that is always a monotone convex
function of the end-to-end distance |R| or equivalently the stretch |A| as well as the
positive entropic force that increases with straining starting with a zero value at the
zero separation of the chain ends (see Figure 4.3). This implies that the chain energy as
the function of the stretch vector ¢;(X) = ¢;(|A]) is strictly convex in R3, i.e. for any
A1, A2 € R? and any « € [0, 1]

r(IAD) < Pplafd] + (1 = a) [Ag]) < atp([M]) + (1 = @)ibr(Az]) (4.42)

where A = aA; + (1 — a)Ay. As long as the energy of a single fiber is convex in A the
network total energy W, or equivalently the network average (1) minimized in (4.32)
are also convex with respect to the distribution of stretch in terms of the variable func-
tion A(Xg) : Sp — R?. Taking into account that the minimized network energy is
bounded below by zero and continuous in A as well as the linearity of the maximal ad-
vance path constraint, the solution of the constrained minimization problem (4.32) exists
and is unique unless the objective ¥,;[A] is undefined in the whole constraint subspace.
This may occur at high macroscopic deformations in networks with infinitely stiffening
chains when the network can not deform without violating the limiting extensibility of
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the filaments. As long as this scenario is avoided, the deformation gradient F' belongs to
the admissible set § that can be shown to be convex and the network responds to it with
the equilibrium microstretch A*(F').

Together with the relaxed microdeformation A*(F') the homogenized network free energy
(4.35) is as well defined as a function of the macroscopic strain ¥} _,(F') for all F' € §.
Furthermore it will be strictly convex in F' in the whole domain . Indeed, consider two
different deformation gradients F'y, F's € & and their linear combination F = aF + (1 —
a)Fy € § with a € [0,1]. Let A} and Aj be the equilibrium microdeformations for F
and F'y, respectively, then their linear combination A = aA] + (1 — a)A; will satisfy the
linear micro-macro relation for F'. Correspondingly, the network energy W, [A] at this
microdeformation will be greater or equal than the minimum ¥ _,(F') = ¥, ,[A*(F')]. On

the other hand, due to (4.42) it will not exceed the linear combination of W,.[A]] and
U,0¢[A5]. As a result, the inequality

Ut (F) S WAl < aWy,(F1) + (1= a)Ur  (Fy) (4.43)

net net

will always hold. The homogenized network free energy, which is convex in F' as obtained
for the considered type of the fiber response, does not appropriately constitute the elastic
behavior of a solid. The so far considered networks of flexible chains will collapse into a
point, since their energy is minimal at zero fiber stretch. In reality the steric repulsions
between chains as well as their interaction with the solvent molecules in the case of swelling
will counterbalance this tendency so that the material attains a certain finite equilibrium
volume [287]. One way to account for this effect is to add a repulsive term to the free
energy of single fibers as in [185, 186] which shifts the equilibrium stretch of an unloaded
fiber to the non-zero value and corresponds to the case considered in the next subsection
4.5.2. In reality, the volumetric forces are essentially intramolecular and should not be
referred to single fibers and therefore be represented in forms other than (4.31). To not
get beyond the scope of this work, these intramolecular interactions are assumed to have
no effect on the network mechanics. They can be associated phenomenologically with the
essential incompressibility of the material and introduced by the additional term W, (J),
where J = det F', accounting for the volumetric deformation in the total free energy of
the material given as

U(F) = Wou(J) + U

net (F)- (4.44)
Such additive split is commonly adopted for hyperelastic materials. The bulk energy
U, represents a steep convex potential well at the minimum J = 1 since the steric
forces have usually a much greater magnitude compared to the response of flexible chains.
These forces are then responsible for the hydrostatic stress contribution resulting from
negligible small volume changes. It should be noted that the homogenized free energy
given by (4.44) is a polyconvex function of the deformation gradient, since W, (J) is

convex in J and ¥’ _,(F') is convex in F', and hence constitutes a stable elastic solid [324].

Consider now in particular the case of a network with Gaussian chains. As long as the
initial end-to-end distance of chains is equal to the most probable value Ry = v/Nb, which
is a common assumption [17, 244], the free energy can be expressed as 1)y = %k:BT |)\|2.
The axial stretch conjugate chain force f; = 3kgT |A| is then linear in |A|, which allows
to solve (4.34) for the equilibrium stretch vector as

*

A v
sV =vh @ kT

Xo. (4.45)
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Figure 4.4: Mechanical stresses predicted by the proposed model (MAPC) and the full
affine network model (FANM) for uniaxial tension (top row) and equibiaxial tension (bot-
tom row) of a model incompressible material with unit modulus y = nkgT = 1, network
functionality f = 4 in the MAPC model, and three different values of chain extensibility
limit v N = 2, 4, 8. The proposed non-affine network response is softer and results in differ-
ent limiting stretches in uniaxial and equibiaxial loading which is not the case for the affine

model.

One can see that this microstretch results from an affine transformation of the initial
orientations Ag by the map v/3kgT which can only satisfy the constraint (4.30) if

1 v 1 v
AR N == =-F < =F. 4.46
N @X) = 5307 = 3 3kpT (4.46)
Correspondingly, A* = A = F\,, which implies that the network of Gaussian chains will
always deform affinely with the macroscopic strain.

The chain stretch will only redistribute non-affinely if the chain response is substantially
non-linear. To illustrate this, the networks composed of non-Gaussian freely rotating
chains that possess this property are considered next. For this case the solution to the
constrained minimization problem (4.32) can not be derived in closed form. Therefore the
equilibrium network microstretch A and the homogenized stress P are found numerically.
Examined are three model networks with chain sizes N = 4, 16, 64 and corresponding
limiting stretch values A" = /N = 2, 4, 8. Although the situation of a chain length
being equal to only four statistical segments is not well described by the inverse Langevin
approximation and is rarely found in real elastomer networks, it is considered here for an
illustrative purpose. The proposed model predicts the response of these networks in an
essentially different way as the full affine network models [355, 388].

Due to the internal relaxation of the microdeformation accounted by the maximal advance
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Figure 4.5: Variation of the maximal absolute value of the microstretch A™** with the
increase of the macroscopic strain in the uniaxial and equibiaxial tension predicted by the
MAPC model for three networks of functionality f = 4 composed of chains with different
values of extensibility limit v/ N = 2, 4, 8 represented by dotted horizontal lines. When
AT approaches this limit the network stiffens as shown in Figure 4.4.

path constraint, the non-affine network behaves softer. One can conclude this by the
elastic stresses that are produced by the affine and non-affine networks and compared in
Figure 4.4. The nominal stresses are computed with account of material incompressibility
at isochoric uniaxial and equibiaxial tension for the three considered networks. It can
be noticed that for the same chain parameters the affine network stiffens at significantly
lower strains than the non-affine one. The affinely deformed chains reach the extensibility
limit as soon as at least one of the principal stretches approaches A™. As a result in both,
the uniaxial and the equibiaxial tension, the stress goes to infinity when A, gets close to
2, 4, 8 depending on the chain length. The non-affine networks predicted by the proposed
approach do behave differently. Once the chains that are aligned closely to the direction
of tension get highly extended, the stretch in the network is redistributed so that the
already highly stretched chains get lower stretch by means of straining and reorientation
of the other chains which results in a decreasing network total energy.

This redistribution is illustrated in Figures 4.5 and 4.6. The former displays the evolu-
tion of the maximal absolute stretch value A% = max{|A(Xg)|, Ao € So} in the three
examined networks with the macroscopic deformation for both types of loading. It can
be clearly seen that \™** is smaller than the principal stretch A, and reaches the ex-
tensibility limit A\ depicted by dotted horizontal lines for the considered chain lengths
N =4, 16, 64 at a much higher macroscopic deformations, compared to the affine case.
The difference of the stretch at which the affine and the non-affine network stiffen is sig-
nificant and is nearly as large as 50% in the case of uniaxial loading. Due to the stretch
redistribution the network of chains with limiting extensibility A = 8 can attain the
elongation A\, up to 11.72. In the case of the equibiaxial deformation the difference is not
that profound but still present.

This can be further examined by the example of another model network with chains of
length N = 9 and extensibility limit A\ = 3. The distribution of the microstretch A
of this network at two different macroscopic strains is shown in Figure 4.6. At both
deformations the maximal absolute stretch is close to the limit of 3. However at the
uniaxial tension the network is stretched up to A\, = 4, which is much larger than the
stretch of A\, = A, = 3.5 the network can undergo in the equibiaxial tension. When the
material is strained in two directions the network paths oriented closely to the plane of
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Figure 4.6: Non-affine microstretch A* predicted by the MAPC model (filled circles)
in a network of chains with extensibility limit v/N = 3 compared to the affine stretch A
(empty circles) for uniaxial tension with A\, = 4 (top row) and equibiaxial tension with
Az = Ay = 3.5 (bottom row). The plotted dots display the end points of the fiber stretch
vectors in x — y and z — y plane projections. The fibers have the initial discrete orientations
corresponding to the quadrature formula [26] used for the numerical solution.

the biaxial strain have to be also axially strained due to the reasoning given in Section
4.3. This imposes much stronger kinematic constraints on the microstretch of the fibers
compared to the uniaxial case for which only a relatively small fraction of paths aligned
with the principle direction are significantly extended. As a result there is less freedom
for the stretch redistribution and it deviates lesser from the affine distribution, which can
be evidently seen in Figure 4.6.

4.5.2 MAPC predicted non-affine deformation in networks of stiff filaments

In this subsection networks comprised out of stiff filaments are considered. These filaments
attain the minimum of the free energy at an end-to-end distance which is non-zero. Cor-
respondingly, such fibers can support both tensile and compressive axial loadings which
is in contrast to the flexible chains considered in the previous subsection 4.5.1 which only
produce positive thermodynamic forces. This behavior is typical for mechanical micro-
scopic fibers that constitute paper and various non-woven materials [287]. Semiflexible
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Table 4.3: Stiff filament models. ” Ry is the initial length of a fiber, s is the axial stiffness;
for an elastic bar Ry = L is the length of the bar, kK = FA, where F is the elastic modulus
and A is the cross-section area. ® In [42] a force to extension relation in terms of the
filament contour length L and the persistence length I, = »/kgT is suggested; s is the
bending stiffness; the filament end-to-end distance Ry in the unloaded state is defined by
1— (Ro/L)? =2L/ (x%/21,).
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Figure 4.7: Free energy (on the left) and thermodynamic force (on the right) scaled by the
stiffness 9%y /OR? at R = Ry of a linear spring and a semiflexible filament. The latter type
of fibers demonstrate anisotropy of the response with respect to tension and compression as
well as infinite stiffening when strained up to the full contour length.
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biopolymers also belong to the category of stiff filaments. Their mixed entropic/enthalpic
response is characterized by an essential anisotropy with respect to tension and compres-
sion. Mechanics of semiflexible polymer strands is described by numerous models mainly
based on the Kratky-Porod chain representation [40, 182, 222, 223, 383, 387]. A particular
model for semiflexible filaments suggested in [42] and the linear elastic spring model are
used for the network simulations presented in this subsection and are briefly summarized
in Table 4.3. The change of free energy and the predicted axial force due to extension of
these two models are shown in Figure 4.7.

What is expected in such situation is that the three-dimensional networks of the initially
undeformed fibers display a stable rigidity with respect to all types of deformation in-
cluding compression, tension and shear, at least when they are small. A more detailed
examination of the networks composed of fibers that only resist to axial straining indicates
that their rigidity depends on the network geometry and, in particular, the functional-
ity. Maxwell counting of the degrees of freedom owned by the network junctions and the
constraints introduced by the fibers shows that the minimal functionality required for the
rigidity is six [43, 156, 175]. The networks of functionality f = 4 chosen to illustrate the
homogenization approach proposed in this work are therefore unstable, unless reinforced
by the elasticity mechanisms supplementary to the axial straining of fibers. In particular
instant mechanical bending of filaments may be addressed in this respect as an important
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Figure 4.8: Schematic representation of the deformation gradient space SO(3) and its
partition into the domain § for which networks display a stable equilibrium response and
the domain § where the networks lose stability by fiber reorientation together with the
isochoric deformation F'; from § and the deformation F's with negative volumetric change
located on the boundary between § and §.

factor sustaining the rigidity of the floppy tetrafunctional networks [139, 140, 384]. The
bending is not incorporated into the presented homogenization approach in this work.
The non-affine relaxed network microdeformation predicted by the MAPC model can be
viewed therefore as an approximation in the limit when the contribution of the stabilizing
bending forces is small compared to the axial straining of the fibers.

The non-affine stretch redistribution in case of stiff tetrafunctional networks is generally
shown to be qualitatively different to that of the flexible fiber networks. As illustrated
in Figure 4.7, the free energy vy of stiff fibers is not a convex function of the stretch
vector A € R? anymore, although it may be convex in |A| as for the linear spring. In
particular, the energy is non-convex when the fibers are in contraction |A| < 1 and
hence exert negative forces. As a consequence the network will not display a stable
behavior at arbitrary macroscopic strains in contrast to the situation considered in the
previous subsection 4.5.1. The networks loose stability in a specific manner, namely, fibers
only reorient with no axial deformation. Within the statistical description this peculiar
microdeformation is defined by a stretch vector that is unit for all orientations Ay, namely

In such state the network attains the minimal possible total energy and produces no
mechanical stress, since all the fiber forces are zero. The macroscopic deformations from
a set § C SO(3) at which this yield response is observed can be specifically characterized.

Consider an arbitrary unit microstretch (4.47) that occurs at some macroscopic deforma-
tion with the deformation gradient F'. The latter can be polar decomposed as F = VR,
where R is the rotational part of the deformation, V' = diag[A;, Ay, A.] is the stretch
part. The maximal advance path constraint (4.30) gives then the following identity for
the macroscopic stretch

A ® RAy) = %v. (4.48)

The trace of the left hand side (4.48) is equal to (A- RAg) which does not exceed 1,
since both vectors A and R\ are unit. The trace of the right hand side satisfies another
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inequality, namely %trV = %()\x + Ay +A) > (AA )3, since all the principal stretches
are positive. Combining these two observations one can finally deduce that the network
can loose stability due to the fiber reorientation if only the macroscopic volumetric defor-
mation is negative. That is, the deformation gradients from § have a Jacobian smaller
than 1, i.e. J = det F' < 1. Correspondingly, the admissible set § contains at least all
the macroscopic deformations for which J > 1.

The stable response for F' € § is produced by the equilibrium microscopic stretch and
can uniquely be determined by (4.34) as

V)\O
‘V)\()‘

= 7 () (4.49)

where the inverse fiber force function f, ! is well defined and gives for positive [vAg| an
absolute value of stretch

N = f7 (Jwo]) > 1 (4.50)

which is greater than 1 as can be seen in Figure 4.7. As a consequence, the stable microde-
formation of stiff tetrafunctional networks with no other mechanisms like bending, which
could support the rigidity, requires that all the fibers constituting it are in tension. Once
with the change of the macroscopic deformation the stretch in the network approaches a
unit value the network starts folding by means of the abundant kinematic modes, which
Maxwell counting predicts in the case of functionality f = 4. The transition between the
stable network deformation regime at F' € § and the floppy reorientation at F € § is
illustrated in Figure 4.8. It shows schematically the division of the deformation gradient
space SO(3) into a stable and unstable domain.

Furthermore, the two types of the microdeformation discussed above are demonstrated
for the example of uniaxial tension considering the network of linear elastic bars with
the response outlined in Table 4.3. When subject to isochoric uniaxial tension F'; =
diag[1.4,0.8452,0.8452] this network will attain a stable equilibrium stretch shown in the
top row of Figure 4.9. In full accordance with (4.50) at the relaxed state all fibers are elon-
gated. In the situation when fiber forces are positive, the same holds true for the resulting
homogenized normal stresses found as éPl = diag[0.0412,0.0180,0.0180]. If not con-
strained in the direction perpendicular to the applied axial strain, this material will tend
to contract gradually in the transverse direction, so that the stress components P, P.,
vanish. This will be only achieved at the macroscopic strain Fy = diag[1.4,0.5979, 0.5979]
at which the fibers will become unloaded as shown in the bottom row of Figure 4.9. This
state is at the boundary between the two regions & and §. Remarkably the axial stress
P, will also vanish at this point, which means that the network will display no resistance
to the uniaxial tension, provided it can shrink freely.

The above demonstrated specific volumetric response is investigated separately. The
nearly 50% shrinking predicted by the MAPC model for the network of elastic fibers is
not typical, for most materials show a volumetric expansion when axially strained. The
affine network models do not capture this specific shrinkage effect. The same network
as considered above but deformed affinely produces at the isochoric macroscopic strain
F'; the homogenized stress ipaﬂine = diag[0.0723, —0.0123, —0.0123] which is negative
in the transverse direction, in which the fibers will be compressed. Correspondingly, such
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Figure 4.9: Illustration of the two types of microdeformation in stiff tetrafunctional net-
works of linear springs predicted by the MAPC model. The stable equilibrium microstretch
of the network attained at isochoric uniaxial strain F'y (top row) and the acquisition of unit
stretch in the network with the loss of rigidity after the shrinkage in the transverse direction
at strain F'5 (bottom row). The same graphical representation of the microstretch as in
Figure 4.6 is used. The unit dashed circle is plotted to assist the identification of elongated
fibers in the first case and reoriented fibers with the unit stretch in the second case.

network will expand transversely and the volume will increase if the material is only
loaded in axial direction.

As shown above, the maximal advance path constraint model predicts a non-trivial non-
affine deformation for networks with fibers that produce forces simply linear in extension.
One can expect an even more peculiar behavior in the case of semiflexible filaments
which display essentially non-linear stiffening as outlined in Figure 4.7. This in particular
is illustrated by the following example of a model semiflexible network subject to the
macroscopic shear F' = 1 + v,,e, ® e, where e, and e, are two basis vectors of a
Cartesian coordinate system. This deformation is isochoric and therefore (as shown above)
the equilibrium microdeformation exists and is stable, unless the shear +,, is too high
so that the filaments reach the limiting extensibility. The test parameter set for the
semiflexible fibers described by the model outlined in Table 4.3 is chosen so that the
unloaded fibers have the initial end-to-end distance close to the contour length Ry = 0.9L.
Correspondingly, the limiting stretch value is as large as A = 1.11. The mechanical
response of this network predicted by the MAPC model and the full affine network model
is presented in Figure 4.10 by the two components of the Piola-Kirchhoff stress tensor,
the shear stress P,, and the normal stress P,,, that define the traction on the horizontal
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Figure 4.10: Dimensionless mechanical stresses of network made of semiflexible filaments
predicted by the MAPC model (on the left) and the full affine network model (on the right)
for macroscopic shear with 7, = 0.5. The shear stress P,, and the normal stress P, are
scaled by the characteristic modulus p = nkgT.
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Figure 4.11: Microstretch at an applied shear deformation in a network made of semi-
flexible filaments. The same graphical representation of the microstretch as in Figure 4.6 is
used. The unit dashed circled is plotted to demonstrate that all the fibers are elongated as
stated in (4.50) for the stable equilibrium microdeformation.

surface where the shear deformation is applied. Just as in the case of flexible chains with
limiting extensibility, the non-affine redistribution allows the network to undergo much
larger strains. If in the affine case the fibers aligned initially at 45° with respect to the
shear direction reach the extensibility limit A" = 1.11 at 7,, = 0.2121, the non-affine
network described by the proposed MAPC model can be sheared up to v, = 0.5 and
beyond. The microstretch in the network at this macroscopic deformation is shown in
Figure 4.11. The fibers at this equilibrium state of the network are all in tension. The
magnitude of fiber stretch, remarkably, displays very small variations from |[A*| = 1.0443
to |A*| = 1.0603 that can hardly be seen in the Figure, unlike the affine deformation for
which the stretch alters from compression ‘5\‘ = 0.7906 to tension }5\} = 1.2748.

Finally, two other interesting features of the non-affine network, which are not related to
the stiffening of the considered semiflexible filaments and concern the response at small
and moderate deformations, are investigated. Firstly, the magnitude of the value for the
normal stress P, appears to be higher than the value of the shear stress P,,. Neither the
affine network, in particular, nor conventional solid materials, in general, display such a
behavior at an applied shear deformation. Recent experimental investigations of biopoly-
mer gels report though a similar atypical normal stress response of the magnitudes that
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substantially exceed the values of the shear stress [67, 168]. The non-affine redistribution
of filament stretch in the network gives an adequate qualitative explanation of this phe-
nomenon. The second feature of the response predicted by the MAPC is the scaling of
the stresses with small values of shear strain. For conventional materials the shear stress
displays a linear proportionality P, ~ 7, when +,, is close to zero, whereas the normal
stress scales with the square of shear P, ~ %%y- This regularity is also valid for the
homogenized response of the affine network (see Figure 4.10). The non-affine network, on
the contrary, produces mechanical stresses that scale as Py, ~ 73, and P, ~ ~2,, which
again demonstrates that the shear stress response is softer than the normal stress. The
network displays zero stiffness in the initial undeformed state when all the fibers are not
stretched and, therefore, does not resist to shear at «,, = 0.
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5 A diffusion-based transient network model for finite
rubber viscoelasticity

This chapter presents the development of a physical based constitutive model for the repre-
sentation of viscous effects in rubber-like materials and is based on the recently published
work of LINDER ET AL. [211]. The proposed model originates from micromechanically
motivated diffusion processes of the highly mobile polymer chains described within the for-
malism of Brownian motion. Following the basic assumption of accounting for the elastic
and the viscous effects in rubber viscoelasticity by their representation through a separate
elastic ground network and several viscous subnetworks, respectively, the kinetic theory
of rubber elasticity is followed and extended to represent also the viscous contribution
in this work. It is assumed that the stretch probability of certain chain segments within
an individual viscous subnetwork evolves based on the movement of the chain endpoints
described by the Smoluchowski equation extended in this work from non-interacting point
particles in a viscous surrounding to flexible polymer chains. An equivalent tensorial rep-
resentation for this evolution is chosen which allows for the closed form solution of the
macroscopic free energy and the macroscopic viscous overstress based on a homogeniza-
tion over the probability space of the introduced micro-objects. The resulting model of
the viscous subnetwork is subsequently combined with the non-affine microsphere model
and applied in homogeneous and non-homogeneous tests. Finally, the model capacity is
outlined based on a comparison with in the literature available experimental data sets.

5.1 Introduction

Polymers are characterized by remarkable properties making them qualified for applica-
tions in all areas of engineering. They can appear in liquid or amorphous solid form,
behave ductile in the case of glassy polymers or rubber-like for elastomers. The latter, to
be considered in this work, can in particular be characterized by the large deformations
they can sustain as well as the rate and history dependence of the resulting stresses in
the material. This response is attributed to their peculiar microstructure including a
network of highly mobile and flexible polymer chains formed by their three-dimensional
cross-linking. From a constitutive modeling point of view the challenge lies in the devel-
opment of physical based models to depict this behavior. In that regard one distinguishes
static network theories for the modeling of elastic effects and transient network theories
for the modeling of time dependent effects in rubber-like materials. A brief review of
those is provided here. The scope of this work lies within the development of a new tran-
sient network theory for rubber-like materials. Its incorporation into finite viscoelastic
constitutive models, as well as the resulting implementation and application to realistic
experiments and its qualitative comparison with existing experimental data sets are the
main contributions of this chapter.

Early experimental results in TRELOAR [353] indicate the characteristic S-shaped load
versus stretch curve for the elastic nature of rubber materials in uniaxial tensile tests in
the form of an initially decreasing stiffness of the material and a rapid increase thereafter.
The reported deformation range, up to an eightfold extension of the material with an
almost full recovery of its initial shape upon unloading, outlines one of their main me-
chanical characteristics and reason for their applicability in various areas of engineering
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and material science. Further experimental results are given in RIVLIN & SAUNDERS
[308], JAMES ET AL. [165], and JAMES & GREEN [164], among others. The latter intro-
duced a graphical presentation of the results which allowed for a more convenient fit of
the material data of constitutive models in terms of their strain energy function. Inspired
by the form of such a function for an isotropic, incompressible, hyperelastic material
various strain-invariant based phenomenological expressions are proposed to capture the
characteristic response of rubber [252, 264, 307, 394]. These empirical theories lack a
direct physical justification of the parameters appearing in the proposed expressions of
the strain energy function.

On the contrary, the kinetic theory of elasticity [237] accounts for the underlying physics
by assuming that the material consists of a large number of polymer chains which do
form a static network by being permanently cross-linked at junction points. A chain
segment, considered as part of a polymer molecule approximated as an idealized chain
of freely rotating links, between two such junction points possesses a large number of
possible conformations in terms of translational and rotational degrees of freedom which
are driven by the influence of the thermal motion of the chain endpoints. Since the angles
between adjacent bonds are considered to be random with equally distributed probability,
the bond orientations do not correlate resulting in a Gaussian distribution of the end-to-
end vector of an unrestrained chain segment. This probability can then be linked through
the Boltzmann relation to the entropy and the free energy of a single chain [134, 188, 189].
This, as Gaussian statistics denoted background for the single entropic chain segments,
is used for the derivation of the Gaussian network models [102, 103, 166, 356, 357, 373]
consisting of a highly cross-linked network of such Gaussian chains providing a link of the
micromechanical polymer model to macroscopic scales. The agreement of those models
with the experimental results are acceptable up to stretch regions where the individual
chain segments are far from being fully extended.

Such limitation is overcome in the non-Gaussian statistics of KUHN & GRUN [190] and
later by FLORY [100] based on their account of the finiteness of the chain extensibility
where the modified probability density function of a chain with a certain length and its
resulting entropy is expressed in closed form in terms of the inverse Langevin function. An
account for such a finite extensibility of the individual chain segments in network models
results in so called non-Gaussian network models. Examples within that frameworks are
the three-chain model considered in JAMES & GUTH [166] and WANG & GUTH [376], the
four-chain model by TRELOAR [358] as an extension of the model in FLORY & REHNER
JR. [102], or the more recently developed eight-chain model by ARRUDA & BOYCE [17]
which successfully is able to represent the response of these materials in uniaxial extension
and compression, biaxial extension, plane strain compression, and pure shear problems.
A full network theory is proposed in TRELOAR [359] and TRELOAR & RIDING [355] for
uniaxial extension and biaxial tensile deformation, respectively, and extended in Wu &
VAN DER GIESSEN [388] to fully three-dimensional deformation processes. It is noted
that whereas the three chain model and the full network theory result in affine network
formulations, meaning that they preserve the affinity of the network deformation with
regard to the macroscopically applied deformation, the remaining non-affine network
models do come along without such restriction. Chains oriented in the direction of loading
display a higher resistance to the stretch when approaching their limiting value compared
to other chains in the network. Hence, the internal structure of the polymer becomes
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heterogeneous, which leads to a deviation of chain stretches when compared to those
resulting from the macrostrain. Only the non-affine models allow for such adjustment of
the polymer microstructure.

Rather than focusing on static network theories, the current chapter is concerned with
the development of a physically interpretable and fully micromechanically motivated tran-
sient network model for the description of the polymer chain movement to describe the
viscous effects in rubber-like materials. For polymers, consisting of long-chain molecules
as proposed in STAUDINGER [334], such movement can be understood by entanglement
mechanisms in the physical sense or by secondary bonds, such as hydrogen bonds, which
unlike the primary chemical bonds between polymer chains of the elastic network in rub-
bers are weak and highly dynamical. One of the early entanglement models goes back
to the work in GREEN & TOBOLSKY [127] where it is assumed that such entanglements
are steadily created and destroyed. In particular, when a new chain joins the network
based on an appearing entanglement, it is assumed that this chain reforms in a stress-free
state resulting in a steady decrease of the network stresses in time being characteristic
for stress relaxation phenomena. With regard to the equal rate, at which entanglement
junctions are assumed to be created and broken, a linear evolution is derived, limiting the
applicability to problems with small perturbations from the thermodynamic equilibrium.
An extension of the transient network model in GREEN & TOBOLSKY [127] is achieved in
YAMAMOTO [390, 391] by accounting for the dependency of the probability of the chain
breakage rate on the tension acting in the network and by LODGE [215] allowing for an
anisotropy of the deforming network and the existence of many stress relaxation periods
as well as its extension in BERNSTEIN ET AL. [35]. In REESE & WRIGGERS [304] the
original model by GREEN & TOBOLSKY [127] is generalized to allow for states away
from the thermodynamic equilibrium by the introduction of a stress-free intermediate
configuration.

In line with these approaches, the aim of this work is to develop a new micromechanically
motivated model for the description of the transient network to describe viscous effects
in polymers. The key aspect in the proposed model is the stochastic motion within the
viscoelastic part of the network including the re-orientation and stretch relaxation of chain
segments. This process is seen as a Brownian motion performed by the chain segment
end points within a viscous surrounding idealizing the neighboring chains in the network.
Motivated by the description of the movement of non-interacting point particles in a
viscous fluid described by the Smoluchowski equation obtained as a generalization of the
diffusion equation in Do1 & EDWARDS [75], this is extended to describe the motion of
the chain segment end points governing a change of the distribution of stretch within the
subnetwork due to the macrodeformation and internal relaxation of the microstructure.
It is further shown that an equivalent tensorial formulation of this micromechanically
based model can be derived resulting in evolution equations of the internal variables
and closed form expressions of the free energy as in GREEN & TOBOLSKY [127]. The
thermodynamical consistency comes intrinsically from the micromechanical origin which
is outlined in detail. This description of the transient network is subsequently combined
with the non-affine microsphere model developed in MIEHE ET AL. [244] to represent the
elastic ground network and applied to homogeneous and non-homogeneous experimental
data sets.

The chapter is organized as follows. In Section 5.2 the basic network mechanisms of finite
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rubber viscoelasticity of a nearly incompressible solid is summarized which provides the
description of the characteristic finite deformation and the basic thermodynamics of the
continuum. It is assumed that the response of the rubber-like material can be decomposed
into an elastic ground network and a highly mobile viscous subnetwork. For the latter, a
micromechanically motivated model is proposed in Section 5.3. Starting with an entropic
spring representation of a single polymer chain based on its equilibrium kinetics, a model
for the mobile subnetwork evolution based on the concept of Brownian motion is developed
and applied to the network chains whose end points are treated as point particles moving
in a viscous surrounding. The final outcome is the flow equation with respect to the
stretch probability field that describes the microdeformation of a single subnetwork. In
Section 5.4 an equivalent tensorial representation of the stretch probability evolution is
developed which allows for the closed form computation of the macroscopic free energy
and the macroscopic viscous overstress. Finally, Section 5.5 outlines the performance of
the model when combined with the non-affine microsphere model for the representation of
the elastic ground network on a set of homogeneous and non-homogeneous representative
problems. The model capacity is evaluated based on comparisons of all tests with available
experimental data sets in the literature.

5.2 Basic network mechanisms of finite rubber viscoelasticity

This section briefly summarizes the resulting constitutive equations of finite rubber vis-
coelasticity under the basic assumption of the polymer microstructure being assembled
by several idealized polymer networks. Motivated by the discussion in Section 5.1, the
response of the rubber-like material is considered to be decomposed into a ground network
formed by strongly cross-linked macromolecules and a subnetwork consisting of highly mo-
bile and based on temporary entanglement mechanisms linked macromolecules. Whereas
the ground network is associated with the elastic response of the material, the subnetwork
is responsible for the description of the viscous material properties in the form of the ap-
pearance of a viscous overstress. An illustration of the resulting viscoelastic behavior is
given in Figure 5.1 displaying a schematic representation of the individual networks under
an applied macrodeformation. Based on such deformation, the ground network stretches
and drags the mobile subnetwork along with it. After a sufficient amount of time at a
constant deformation, the subnetwork relaxes towards a state at which it produces no vis-
cous overstress. Whereas the elastic ground network can be represented by models such
as the eight-chain model developed in ARRUDA & BOYCE [17] or the non-affine network
model developed in MIEHE ET AL. [244], among many others, the emphasis of this work
is to develop a diffusion-based micromechanically motivated model for the representation
of the viscous mobile subnetwork. In fact, the numerical simulations presented in Section
5.5 make use of the model developed in MIEHE ET AL. [244] for the representation of the
elastic ground network but it should be kept in mind that the developed model of the
viscous subnetwork does not rely on a particular model choice for the description of the
elastic properties.

Following the geometric setting of finite inelasticity outlined in MIEHE [238], the macro-
scopic finite rubber viscoelastic response is based on a volumetric-isochoric decomposition,
where the isochoric part itself is decomposed into an elastic equilibrium and a viscous over-
stress response, as it is briefly summarized in this section. To do so, consider a body to
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be a collection of material points which at time ¢ € R, occupies a spatial configuration
S C R™im in terms of the space dimension 1 < ngi, < 3. An individual material point of
the body at time ¢ is located at position € S. The change of properties of such material
point in the body is described relative to a fixed reference configuration B C R"™dim which
for instance can represent the configuration occupied by the body at the instant time ¢y in
which the material point is located at position X € B. To avoid any explicit reference to
the body itself, the nonlinear deformation map ¢(X) : X — & = (X;t) is introduced
which maps positions X € B onto positions € §. Key kinematic quantities are the
local deformation gradient F' = V x (X ;t) representing the linear map between tangent
vectors in the reference and the spatial configuration, respectively, where the Jacobian
J = det F has to satisfy J > 0, as well as the covariant Cartesian metric tensors G = d4p
and g = d4 of those configurations written in terms of the Kronecker symbol 6. The
boundary value problem of the macroscopic finite viscoelastic problem at hand for the
quasi-static case is then governed by the balance of linear momentum

divx[tTF 7]+ B=0 (5.1)

written in terms of the divergence operator div x with respect to the reference position
X together with prescribed displacement boundary conditions ¢ = @(X;t) on 9B, and
prescribed traction [TF~T]N = T(X;t) on 0B, with outward normal N. The usual
conditions 0B, N 0B, = 0 and 0B, UdB, = 0B have to hold in each component of
the deformation mapping to ensure a well-posed problem. In (5.1), the prescribed body
force field B with respect to the unit volume of the reference configuration as well as the
Kirchhoff stress tensor 7 are introduced. The latter is assumed to be a function of the local
deformation gradient F' and some internal variables Z responsible for the characterization
of the viscous structural changes. The Kirchhoff stress 7 and its associated moduli are
given as

T=20,9(9,Z;F) and C=40,V(g, L F) (5.2)

in terms of the macroscopic free energy per unit volume of the reference configuration
[226, 238] stored in a deformed polymer network with the requirement of being material
frame invariant in the sense that ¥(g,Z; QF') = V(g,Z; F) for all rotations Q € SO(3).

The rubber-like material considered in this work is assumed to be nearly incompressible
which motivates a decoupled volumetric-isochoric formulation based on the decomposition
of the macroscopic free energy as

U =U(J)+¥(g,T; F) (5.3)

in terms of the volumetric and isochoric contributions, respectively. The numerical simu-
lations presented in Section 5.5 make use of U = (J?—1—21n J)/4 for the former contri-
bution. The latter is given in terms of the unimodular part of the deformation gradient
defined as F' = J~'/3F which is assumed to drive the deviatoric part 7+ = 20,V(g,Z; F)
of the total stresses decomposed into spherical and deviatoric contribution as

T=pg '+7:P (5.4)

with p = JU’(J) and the fourth-order deviatoric projection tensor P%.; = [§%.6% +
§946°.) /2—6%5,4/3. This decomposition carries along into the representation of the moduli
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Figure 5.1: Network representation of the microscopic response of rubber-like materials.
The schematic response of the material decomposed into a strongly cross-linked ground
network (representing the elastic response) and a mobile subnetwork (formed by temporary
entanglement mechanisms representing the viscous response) is illustrated under an applied
arbitrary macrodeformation.
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Figure 5.2: Macroscopic representation of finite rubber viscoelasticity. The Maxwellian
type rheological model of the isochoric response of the material consists of a single elastic
branch representing the elastic ground network in Figure 5.1 as well as s viscous branches
each of them representing a single mobile viscous subnetwork in Figure 5.1.

C written in terms of the deviatoric part C = 4839@(9,.’[; F) as
~1 —1 ro[a 2 2, _ 11 -
C=(ptrg ©g —2pl+P : C+§(T:g)ﬂ—§(7®g +g ®T)]:IP’ (5.5)

with k = J2U”(J) and in terms of the fourth-order identity tensor I%¢ = [§%5bd +
5ad5bc]/2'

To account for the actual behavior of rubber viscoelasticity, the isochoric part of the
above model is further decomposed into elastic and viscous parts in accordance with the
representation of the polymer network structure into an elastic ground network and a
viscous subnetwork illustrated in Figure 5.1. In case of s viscous subnetworks which are
introduced to obtain a discrete spectrum of relaxation times related to different viscosities
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{ni}5_,, the isochoric part W in (5.3) of the free energy can be additively split into

U =U%g; F)+9°(g,I; F) where U(g,T;F)=> W(g,Z;F) (5.6

i=1

is given as a summation over each of the s viscous subnetworks. The corresponding
rheological model for such an isochoric response of the material is illustrated in Figure
5.2. This further yields to the decomposition of the deviatoric part of the stresses into an
elastic equilibrium stress response and a viscous overstress response according to

T=7"4+7" with 7°=209,0%g;F) and 7'=20,0"(g,L;F).  (5.7)

Whereas the response of the elastic equilibrium stress is assumed to be isotropic, resulting
in the condition ¥¢(g; FQ) = ¥¢(g; F) ¥V Q € SO(3), a deformation induced anisotropy
is provided by the dissipative viscous overstress which is characterized by the evolution
of the internal variables Z in time. To obtain a formulation consistent with the second
axiom of thermodynamics the local dissipation has to satisfy the inequality

Dloc = _al'\il . I = Z Dloc,i >0 where Dloc,i = —811\1’ . Iz (58)

i=1

After presenting a brief overview of the basic network mechanisms of rubber viscoelasticity
and its incorporation into standard finite rubber viscoelasticity, the remaining part of the
work is concerned with the development of a diffusion-based, from a microscopic point
of view physically motivated, transient network model resulting in expressions for the
viscous part ¥ of the isochoric free energy as well as for the viscous overstress response
7". Whereas Section 5.3 will develop the diffusion-based micromechanical polymer model,
its incorporation into the macroscopic framework above is achieved in Section 5.4 and
finally evaluated through representative numerical simulations in Section 5.5 based on
homogeneous and non-homogeneous tests.

5.3 Microscopic formulation of the diffusion-based transient net-
work model

In this section a micromechanical model for the description of the polymer chain movement
is developed. The model makes use of the concept of diffusion to approximate the time
evolution of the probability density function associated with the end-to-end vector of
the individual chain segments undergoing a Brownian movement. The application of
statistical methods for the description of micromechanical states of rubber-like polymers
is justified by the enormous number of conformations in time based on the rotation of
chemical bonds such materials may undergo. In Section 5.3.1 the Gaussian statistics of a
single chain is briefly reviewed. To account for viscoelastic phenomena in polymers related
to the dissipation of mechanical work, the framework of non-equilibrium thermodynamics
is introduced in Section 5.3.2 when describing a diffusion-based process of the Brownian
motion of non-interacting point particles. This framework is extended in Section 5.3.3
to describe the Brownian motion of polymer chains representing the core part of the
developed micromechanical polymer model in this section.
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5.3.1 Gaussian statistics of a single polymer chain

Following the classical work in KUHN [188, 189] or the more recent contribution of
TRELOAR [354] or Dor & EDWARDS [75], in this section a brief review of the statis-
tics of a single polymer chain is provided in the form of the most simple case of a freely
jointed model. The model, which already captures many of the characteristic properties
of a single polymer chain, rests upon the assumption that such chain consists of N links,
each of length b, whose orientations are assumed to be random and independent of each
other. The conformation of such freely jointed chain is determined either by (/N + 1) posi-
tion vectors {7, }_ of the joints including the two end points or alternatively by a set of
N independent bond vectors {bn}nN:1 with b, =r, —r,_1 forn=1,..., N. Viewing the
chain as a statistical system, the probability of a particular chain conformation {b,}"_,
can be computed by

p({ba}oy) = [[ p(bn) with p(by)

n=1

1

- 471'625(|bn| - b) (5-9)
as the product of the isotropic distribution of the individual random bond vectors with
fixed length b expressed in R? by the single-layer potential p(b,,) given in terms of |b,| =
Vb, - b, and normalized according to the condition fRB p(b,)db, = 1. The size of the
polymer chain can then be characterized by the end-to-end vector r defined as r =
TN — 79 =Y.~ b, with the corresponding mean value (r) = S (b,) = 0 and mean-

n=1

square value (r?) = ZnNm:1 (b, - b,,) = NV, for sufficiently large N. Here, (o) denotes the
mean value of a random quantity (e) that is computed as an integral over the probability

Space as

(o) = / (o) d{b, Y. (5.10)

The above mean values do not provide sufficient information to describe the statistical
system of the freely jointed model. What is required is the knowledge about the corre-
sponding statistical distribution of the end-to-end vector r given as

3 37,2

N 3

) = [pe L 0o(r= 30 0) alb = (5o) e [~ 5] (511
whose solution is given (see Do1 & EDWARDS [75] for a detailed derivation) in terms of
r = |r| and rZ = (r?) in the form of a Gaussian distribution. It is emphasized that as
a result of the central limit theorem in statistics, for N > 1 the obtained result (5.11)
of the freely jointed model holds even for a more general class of models with the only
difference of the actual bond length b being replaced by an effective counterpart [75].
On the other hand, the solution obtained in (5.11) has the non-physical feature that the
probability of finding end-to-end vectors with r > Nb, where Nb represents the length of
a fully extended chain, is non-zero. Nonetheless, it provides a good estimate for models in
which highly stretched states of the polymer chains do not play an important role, as it is
the case for the diffusion-based micromechanical polymer model developed in this section
for the representation of the mobile viscous subnetworks introduced in Section 5.2.

The distribution p(r) in (5.11) can be understood as a measure of the number of con-
formations of a chain and can therefore be directly linked to the entropy. Considering
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a thermodynamical system of a polymer chain with the constrained position of the ends
one can postulate the entropy S in the form of Boltzmann’s relation

3 2
S(r)=kpglnp(r) = —§k3% + terms independent of r (5.12)
0

where kg is the Boltzmann constant. When rotations about the bonds in the molecular
polymer chain are considered to be unrestricted, the internal energy will remain the same
for all conformations [354] so that the Helmholtz free energy can be solely computed based
on the entropy in (5.12) as

3 2

A(r) = —-0S8(r) = 5]{;3«9:—2 + terms independent of r (5.13)
0

in terms of the known temperature 6 of the polymer. In analogy to existing bead spring
models [37], this viewpoint motivates the interpretation of a polymer chain with fixed end
points and different conformations in between those by an entropic spring expressing the
average response from the thermal motion of the chain segments. The thermodynamic
force acting on the fixed ends of such spring then becomes

_0A

,
F, =2 = 3kpo—. 5.14
or B re ( )

The simplified theory discussed in this section neglects possible temporary constraints like
bonding or detachment of polymer chain segments leading to time-dependent phenomena
such as viscoelasticity. The incorporation of such effects is achieved within the framework
of non-equilibrium thermodynamics in the subsequent Section 5.3.2.

5.3.2 Brownian motion of non-interacting point particles

The incorporation of viscoelasticity as a time dependent phenomena of polymers related
to the dissipation of mechanical work on the micromechanical level is achieved by the
development of a model which treats the viscoelastic relaxation of the microstructure
as a diffusion-based process allowing for the incorporation of the formalism of Brownian
motion. Following the phenomenological approach in Do1 & EDWARDS [75], the Brownian
motion can be interpreted as a stochastic process that is governed by known macroscopic
laws applied to microscopic objects. Such a treatment is restricted to time- and length-
scales larger than those characteristic of equilibrium thermal oscillations. The resulting
phenomenological evolution equation in the form of the Smoluchowski equation is derived
from the generalization of the diffusion equation and can be related to the thermodynamics
of irreversible processes. To allow for a concise derivation of the Smoluchowski equation,
in the following the Brownian motion of non-interacting point particles is restricted to
translational degrees of freedom.

To do so, consider a system with a large number of point particles submerged in a viscous
medium as it is illustrated on the left of Figure 5.3. The phenomena of diffusion can be
observed in such a system when the distribution of particles in the medium is not uniform
resulting in a flux which is proportional to the spatial gradient of the concentration of
particles. The microscopic origin of the macroscopically observed flux is motivated in
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Do1 & EDWARDS [75] by the random thermal motion of the particles in the sense that
in case of a non-uniform concentration, the number of particles flowing from regions of
higher concentration to regions of lower concentration surpasses the number of particles
moving in the opposite direction.

To describe this process, consider the probability of finding a particle in a certain state
governed by its position & at a certain time ¢ expressed by the probability function p(x,t)
which can be viewed as the concentration of particles ¢(x, t) scaled to the total number of
particles n as c(x,t) = np(x,t). This distribution evolves in time based on the continuity
equation

dplz,t) = —div 4 h(z, 1) (5.15)

where h(x,t) consists of the flux h.(x,t) induced by the thermal motion of the particles
and an additional flux arising from the motion of the surrounding viscous medium. The
former is given as

1
ho(x,t) = —p(x,t) EVx Uep where Ug(x,t) = kgflnp(x,t) +U(x) (5.16)

is called the chemical potential resulting in a flux contribution coming from the thermal
motion of the particles in the presence of a non-uniform concentration —DV, p(x,t) in
terms of the diffusion constant D = kgf/n with n > 0 as the viscosity and the additional
contribution —p(x,t)/n V.U(x) induced by the presence of a stationary potential U(x).
The chemical potential U.,(x,t) in (5.16) expresses the energy of a certain particle at
state & and time ¢ so that the resulting evolution of the particle distribution based on
(5.15) can be interpreted as the motion of particles from states with high energy towards
states with lower energy. This motion is driven by a chemical force f., that in addition
determines the average velocity (v.,) of the particles relative to the viscous medium. Both
are given in terms of the chemical potential as

1 1
fch = _vach and <v0h> = ;fCh = _;vaCh <517>

so that the flux in (5.16) is found as hg,(x,t) = p(x,t) (ven). The second contribution
to the flux h(x,t) in (5.15) comes from the macroscopic motion of the viscous medium
surrounding and influencing the flow of the particles. To account for such movement one
has to add the contribution of the macroscopic velocity v(x,t) to the average particle
velocity (v.,) arising from the chemical potential resulting in a total average velocity (v)
and a total flux h(x,t) given as

(v)y =0+ (vy) and h(x,t) = p(x,t) (v) (5.18)

respectively. Insertion of these expressions into (5.15) leads to the final form of the Smolu-
chowski equation describing the Brownian motion of particles subjected to an external
potential force field in a moving viscous medium as

Op(z,t) = —div , [p(x, t)v] + %divw [p(z, )V, (kpf Inp(z,t) + U(z))]. (5.19)
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Figure 5.3: Brownian motion of non-interacting point particles. A non-uniform distribu-
tion of particles results in a flow proportional to the spatial gradient of particles from regions
of high concentration to regions of low concentration as shown on the left. The right figure
shows the resulting average velocity (v) of point particles submerged in a, with velocity o,
moving viscous medium.

Remarks 5.1. (a) The Smoluchowski equation (5.19) is dissipative which can be o0b-

(b)

served based on the introduction of

A(p) = n/p(w,t)Uch |dx| (5.20)

representing the dynamic free energy of the thermodynamic system of Brownian
particles [75] in terms of the distribution p(x,t) summing up the chemical potential
Uen, over all the n particles in the system. For the case of a mon-moving viscous
surrounding (v = 0) under isothermal conditions (=constant) together with using
(5.16), (5.19), [ Owp|dz| =0 and integration by parts, where the contribution of the
boundary integral is assumed to vanish, one can show that the time change of A,
given as

dA n
— =— hop(x,t) - hep(x,t) |de| <0 5.21
= [ s bl )o@ lda] < (5.21)
is negative. The inequality emphasizes the fact that diffusion drives the relaxation of
the system towards the equilibrium state where he,(x,t) given in (5.16) is responsible
for the resulting dissipative flow.

The equilibrium state is attained in the absence of macroscopic flow of the surround-
ing medium for a vanishing flux he, = 0 so that NV, U., = 0 results in the equilibrium
distribution

pa(@) = e [~ 2] / [exp [~ 2} o (5.22)

where the denominator results from the normalization condition [ pe,|dz| = 1. In
the equilibrium state (5.22) the inequality in (5.21) becomes an equality with van-
ishing change of the free energy in time.

5.3.3 Brownian motion of flexible polymer chains

In this section the presented model of the previous section is extended to describe the
Brownian motion of flexible polymer chains. Analogous to the point particles in Section
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5.3.2, the proposed model assumes that the polymer chains are immersed into a viscous
medium representing the surrounding polymer network. Contrary to the previous section
where the state of the individual particles was described by their position x, the state
of the polymer chain is described in terms of the in Section 5.3.1 introduced end-to-end
vector r or analogously in terms of the newly introduced vector A = r/ry as a measure
of the rotation and stretch of the chain. The state of the overall thermodynamic system
consisting of a large number of such chains in the vicinity of a material point can then be
described by the distribution p(A,t) in R3.

Each polymer chain is now modeled as an entropic spring with the energy given based on
(5.13) as

UA) = gk:BHAQ + terms independent of A (5.23)

where A = |A| = r/ro. It is further assumed that the viscosity is concentrated at the ends
of the polymer chains, where we refer as the — and the + end as the starting and the
end point of the end-to-end vector r, respectively. This results in the kinematic relation
illustrated in Figure 5.4 where on average the two end points are moving according to

(vF) =" + (v3,) (5.24)

in terms of the velocity ©* resulting from the motion of the surrounding viscous medium
and the motion of the thermally active polymer chains <v§1> given as

o* = i%r _ ol A

1 1
and (v};) = :FZVTUch(r,t) = :F—W VaUer (A1) (5.25)
0

respectively. The first part % of the end point velocities in (5.24) corresponds to the
changes in the mobile network following the macroscopic velocity gradient I = FF™!
with F' being the deformation gradient. The second part <'vcih> = F3, /n introduces the
diffusion-based average motion of chain segments relative to the viscous medium under
the action of the chemical forces th = FV.,. Uy, = FVaAU. /1o conjugate to the length r
of the spring or its stretch A drawing their ends. Summing up the velocities of the end
points one derives the average transient change of the end-to-end vector (r) = (v*)—(v™)
which can be expressed in terms of the evolution of the stretch as

2kgpl

5
nTro

: 3
(A) =IX — D’V[Ilnp(A, t) + 5)\2} where D* = (5.26)
The result in (5.26) makes use of the chemical potential U, (A, t) defined in stretch space
analogous to (5.16) as

3
Uan(A ) = kpfInp(A, 1) + S ksf)” (5.27)

The resulting diffusion process of the polymer chains can hence be interpreted as re-
orientation and re-distribution of polymer chain stretches which, in analogy to (5.15), can
be described as

Op(A,t) = —div A [p(A, ) (A)] = =div x (Prew + Pass).- (5.28)
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Figure 5.4: Lagrangian description of the Brownian motion of flexible polymer chains.
The polymer chain with end-to-end vector r is modeled as an entropic spring and placed
into a viscous moving surrounding representing the remaining polymer network where the
viscosity is concentrated at the chain end points. The resulting relative movement of these
end points is described by the kinetic relation (5.26).

The two equations (5.26) and (5.28) can be viewed as the Lagrangian and the Eulerian
description of the microscopic diffusional motion. Whereas the former follows a particular
chain stretch and tracks the average velocity (A) of its endpoints, the resulting Smolu-
chowski equation in (5.28) is concerned with the change of the probability of a certain
state A in time.

One can further observe both, a reversible and dissipative part of the evolution equation
for the probability distribution in (5.28) in terms of the corresponding fluxes defined as

Rrew(A 1) = p(A, )IX  and hdis(/\,t):—D*p(,\,t)w[lnp(x,t)+§AZ] (5.29)

respectively. The reversible part arises due to the motion of the polymer chain in ac-
cordance with the surrounding macromedium whereas the dissipative part results from
the diffusion and stretch relaxation. The dependence of the latter contribution on the
mean-square length 7o through D* emphasizes further the influence of the chain length
on the diffusion process. The shorter the chain, the higher is its mobility.

Remarks 5.2. (a) The dynamic free energy of the thermodynamic system is again ob-
tained as an integral of the chemical potential (5.27) over all the possible states A
in the stretch space represented by R® as

A:n/ PO U, [N znkBG/ p<>\,t)[1np<>\,t)+§v A (5.30)
R3

R3

where n represents now the number of polymer chains in the system. For the case of
a non-moving viscous surrounding (I = 0) under isothermal conditions (§=constant)
it can be further shown that the free energy is again decreasing in time as already
outlined in Remark 5.1 for the point particles.

(b) The equilibrium state is characterized by a natural unperturbed state of the end-to-
end vector probability

Peq(A) = exp [— g)\ﬂ//ﬂ§3 exp [— ;)\2] |[dA| = (%)3/2 exp [— ;)\2] (5.31)

representing a Gaussian bell-shaped distribution for which the flur hgs in (5.29)
vanishes.
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A3

Figure 5.5: Eulerian description of the Brownian motion of flexible polymer chains. A
perturbation of the probability distribution p(A,t) due to an instantaneous macroscopic
deformation schematically shown on the left results in an inhomogeneity of the chemical
potential field Uy (A, t) and a resulting flow based on (5.29) leading to a change of probability
according to the Smoluchowski equation in (5.28).

The resulting mechanism of viscoelasticity can now be understood by considering a macro-
scopic motion defined by the macrodeformation represented in terms of the velocity gradi-
ent ¢ which pulls the system out of equilibrium and deforms the initial distribution (5.31)
as depicted on the left of Figure 5.5. This results in a change in the chemical potential
U., making it inhomogeneous so that the chemical force f.;, driving the diffusion process,
develops. When the macrodeformation freezes, meaning that it remains constant for a
sufficiently long time, this process will return the system to the unperturbed state based
on a diffusional flow depicted on the right of Figure 5.5 in which mechanical work will be
dissipated.

5.4 Macroscopic formulation of the diffusion-based transient net-
work model

The goal of this section is to embed the diffusion-based micromechanical polymer model
developed in the previous Section 5.3 into the framework of finite rubber viscoelasticity
by the construction of closed form expressions for the viscous part of the isochoric free
energy UV in (5.6) as well as the corresponding viscous overstresses 7 in (5.7) for a single
viscous subnetwork illustrated in Figure 5.2.

Above, the microscopic model of Section 5.3.2 is treated as a thermodynamic system of
Brownian point particles which is extended in Section 5.3.3 towards the description of the
Brownian motion of flexible polymer chains. It is shown that the temporary state of such
a system is described by the probability function p(A) whose evolution in time is driven
by (5.28) in the form of the Smoluchowski equation. Solving this parabolic differential
equation directly does not allow for solutions of the free energy W or the viscous overstress
7% which can be expressed in closed form. It is for this reason that a particular choice
for the change of the probability function p(\) is assumed in Section 5.4.1 in the form of
a tensorial representation of its evolution resulting in the desired closed form solutions of
theses quantities. Section 5.4.2 then derives these closed form solutions of the viscous part
of the isochoric free energy as well as for the viscous overstress and gives a proof of the
satisfaction of the thermodynamic consistency of the proposed model. Finally, Section
5.4.3 summarizes the algorithmic representation and implementation of the model.
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5.4.1 Tensorial representation of the probability function evolution

In the following a tensorial representation of the evolution of the probability function
is assumed, which allows for a closed form representation of the macroscopic quantities
within the finite rubber viscoelasticity model. In particular, this section outlines how
the Smoluchowski equation (5.28) can equivalently be described based on an ordinary
differential equation in one tensorial quantity.

To do so, use is made of the representation of changes of the solids macroscopic properties
in the current configuration S with respect to a reference configuration B, as it is outlined
briefly in Section 5.2, where the deformation gradient F' acts as the linear map between
tangent vectors of those spaces. The property of interest in this setting is now given by
the probability function p(A) : £, — R where £, = R? is the stretch space connected
locally to a material point with position « in the current configuration §. Its evolution
is described with respect to an introduced referential probability function P living in a
stretch space Lx = R? connected to a material point with position X in the reference
configuration B. This initial probability function is assumed to be given as

P(A) = (%)3/2 exp [— gAQ} (5.32)

in the form of a Gaussian distribution in terms of the norm of the referential stretch vector
A. The two stretch spaces are linked by a microdeformation map
) LX — ﬁm
P'{ A — A=PA (5.33)
as it is illustrated in Figure 5.6. The evolution of p(A) with respect to P(A) is then
assumed to depend on this microdeformation map in (5.33) based on the relation

p(A) = deip P(A). (5.34)

A schematic representation of the relation between those probability functions is outlined
in Figure 5.6. It shows the change of the probability function p(A) of a point  in the
current configuration based on the application of an arbitrary microdeformation map
P when starting from an unperturbed probability function P(A) of the same material
point X in the reference configuration. It is noted that the spaces Lx and £, contain
microscopic objects such as their corresponding stretch vectors A and A, respectively.
Even though those objects are not considered within an infinitesimal setting, they belong
to such a small scale that they can interfere with objects from the tangent spaces of the
body’s configurations B and S. Such property is exploited in Section 5.3.3 by adding the
macrovelocity ©* to the microvelocities <'vcih> in (5.24). Moreover they share the metric
tensors G and g of the tangential spaces introduced in Section 5.2.

The microscopic origin of the cause for the evolution of the stretch probability p(\) is
given by the chemical potential (5.27) which, based on (5.32) and (5.34), takes the form

Uam(A) = kBG{ - gAQ ~In(det P) + gv} (5.35)

when neglecting expressions constant in A. The resulting expression in (5.35) is quadratic
in terms of the stretches A = [Al; = vA-gAand A = [Alg = VA -GA = VA- P TGP~ '\
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Figure 5.6: Tensorial representation of the probability function evolution. The stretch
spaces Lx and L, connected to a material point with position X and « in the reference-
and the current configuration and its relation through the microdeformation map P is
outlined in the top figure. The figure below schematically shows the change in probability
p(A) in Ly starting from the equilibrium distribution P(A) in £x due to some arbitrary
microdeformation P.

This result allows for the computation of the average rate of change of the stretch vector
based on (5.26) as

(A) =Ix=3Dg7' (- P TGP 'A+g}) (5.36)

written now in terms of the micro-deformation map P of (5.33). The obtained expression
in (5.36) is linear in A from which it follows that the relation between the probability
functions in (5.34) is preserved, validating the equivalent representation of the Smolu-
chowski equation in terms of the tensorial representation introduced above. Insertion of
(5.33) into (5.36) results in

PP A= [l — 3D (- P TGP + g)} A (5.37)

which results, after multiplying with the metric tensor g from the left and after expressing
the velocity gradient I in terms of the isochoric part of the deformation gradient F', in
the evolution equation for the tensorial micro-deformation map P as

gPP ' —gFF ' —3D)(— P TGP ' +g). (5.38)

This evolution equation consists of a reversible part related to the macrodeformation
represented by I = FF ' and a dissipative part due to the diffusion-based mechanism
introduced in Section 5.3 in terms of the diffusion coefficient D* defined in (5.26). To avoid
a dependence of the evolution of the microdeformation map on the macrodeformation,
the tensor P is split into P = FPx in terms of a newly introduced tensorial quantity
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Px : Lx — Lx denoted as pre-deformation map. The corresponding evolution equation
can then be derived from (5.38) as

Py — 3DA(F*19*1F*TP;(TG - PX) (5.39)

solely in terms of microscopic object. Since Px in general is a non-symmetric tensor,
it includes both, information with regard to pre-stretch and pre-rotation where the lat-
ter does not influence the overall free energy and can therefore be excluded from the
formulation. This is achieved by the introduction of the symmetric tensorial quantity

A=PxG'P% (5.40)

that contains all the required information about the microdeformation of the viscoelastic
subnetwork. The evolution of that expression can be obtained by plugging (5.40) into
(5.39) which results in

A= l(é‘l - A) with + — 6 D> (5.41)
T T

an evolution equation which surprisingly has a form close to existing models of finite
viscoelasticity. Conduct Remarks 5.3 with regard to a further discussion on similarities
with already existing models in the literature. The developed evolution equation in (5.41)
allows for an interpretation of the introduced symmetric tensor A in (5.40) as some inter-
mediate metric whose Chan%e is driven by its difference when compared to the referential
metric €~ where C = F gF is the isochoric part of the right Cauchy Green tensor.
An equilibrium state is obtained as soon as those two metric tensors coincide for which a
fully relaxed subnetwork is expected.

5.4.2 Isochoric viscous free energy and viscous overstress expressions

The goal of this section is to show that the tensorial representation of the change in the
probability function determined by (5.41) allows further for a closed form expression of
the viscous part of the isochoric free energy and the viscous overstress.

In particular, the macroscopic free energy is obtained by homogenization of the free energy
of the thermodynamic system in (5.30) for the particular form p(X) and U, () in (5.34)
and (5.35) over the stretch space as

- n/ PN (N)]dA] = 1° [/ﬁ P(A)( - ;A2 + gv) [dA| — In(det P)|  (5.42)

where the constant terms are neglected in the latter expression and the viscous overstress
moduli is introduced as pu’ = nkgf. The integration over Lx can then be computed
by separating the integration over the stretch value A and the stretch orientation T =
A/A € S? living on the 2-sphere S2. This leads to A2 = X - g\ = A°T - P'gPT and
|dA| = A*dA|dT| so that the integral in (5.42) becomes

/ P(A)(—%A2+g)\2>|dA| :g/ P(A)A4dA-/ (T - P"gPT — 1) |dT|. (5.43)
Lx 0 S2
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Using (5.32) it can easily be shown that the first integral on the right hand side of (5.43)
becomes

/ h P(A)AYA = =T (5.44)

The identity ﬁ [ T®T|dT| = G~ together with (5.40) allows to convert the second
integral on the right hand side of (5.43) into

1 1.
@/SQT-PTQPTWT| = gA . C. (5.45)

Finally one obtains, neglecting again the constant terms, the closed form expression for
the viscous part of the isochoric free energy as

T = 0(C.A) = op[(A: C—3) ~n (det 4)] (5.46)

a neo-Hookean type expression independent of the influence of possible rotations of the
microstructure based on the chosen form in (5.40). Consult again Remarks 5.3 for a
comparison of the resulting model with already existing models in the literature.

The resulting closed form expression for the viscous part of the isochoric free energy in
(5.46) allows finally for the computation of a closed form expression for the corresponding
viscous overstress based on (5.7) as

7= F(Q 90" (C, A))FT — W"FAF". (5.47)

Remarks 5.3. (a) Interestingly, the proposed model for the representation of the tran-
sient network to describe the rate-dependence yields the same expressions for the
viscous part of the isochoric macroscopic free energy in (5.46) as well as for the
corresponding viscous overstress in (5.47) as in GREEN & TOBOLSKY [127]. The
transient changes in the network in GREEN & TOBOLSKY [127] are explained by
breakage and re-creation mechanisms with their rates being the main phenomenolog-
ical quantities. Contrary, the current work introduces effective viscous mechanisms,
representing the temporal chain interactions, through a phenomenological viscosity 7).
Based on the resulting identical expressions for the free energy and the overstresses,
the same limitations do apply for both models.

(b) In the application of the transient model of GREEN & TOBOLSKY [127] in LUBLINER
[220] it is assumed that the determinant of the internal variable in (5.40) is con-
strained to be det A =1 so that the last term in the expression of the isochoric part
of the free energy in (5.46) cancels. In this work, det A = 1 in the initial state
as well as after obtaining a fully relaxed state, but it may deviate from that value
for states in between. Still, as outlined below, thermodynamic consistency of the
formulation can be shown.

To outline the thermodynamic consistency of the proposed model one could easily refer to
the starting point of the model in the form of the Smoluchowski equation which is shown
to be dissipative in Remarks 5.1. To assure that all the transformations performed in this
section do not yield a different result, the proof is illustrated in detail.
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Since the introduced internal variable A in (5.40) is independent of the macrodeformation,
the reduced dissipation inequality follows from (5.8) as

_ 1.
Dige = —20a0": 5A >0 (5.48)

with the satisfaction of the inequality to be shown in the following. Based on (5.46), the
first term in (5.48) follows simply as 204" = u¥(C — A™') so that together with the
evolution equation in (5.41) the dissipation can be expressed as

D=L (C- A7) (€7 - 4) >0 (5.49)

where the inequality follows from the result of Theorem 1.

Theorem 1. Let C be the isochoric part of the right Cauchy Green tensor and A the
symmetric tensorial internal variable of the developed diffusion-based micromechanical
polymer model. Then the following inequality holds

(C—AY):(C'-A) <o, (5.50)

Proof. Consider a polar decomposition of the two symmetric tensors C and A as well
as their inverses in the form

Ndim Ndim Ndim Ndim

~ 2: ~ }: ~ ~—1 }: -1 -1 }: —1x

C = )\zuz X u;, A= ;U5 & V; and C = >\z u; @ u;, A = ,uj V; X V;
1=1 j=1 i=1 j=1

(5.51)

where A\; > 0, p; > 0 are the positive eigenvalues and {uw;,w;}, {v;,0;} are the orthogonal
eigenvectors of C and A, respectively. Since Y . u; @U; = Ej v;QV;=1and1:1 =3
the left hand side of (5.50) becomes

(C' — Ail) : (é_l — A) =06— Z P\iﬂj + )\Z-_l,uj_l] (u, & il,,) : (’Uj X ’l~)j). (552)

/[:7.7

To establish the inequality in (5.50), use is made of the identities o+ o=t > 2 for a > 0
so that Nipy + A7 st > 2 and (uw; @ @;) 1 (v; © 9;) = (u; - v;) (@ - 0;) = (u; - v;)? >0
and finally

(C-AY:(CT"'-A)<6-2-1:1=0 (5.53)

showing (5.50). O

5.4.3 Algorithmic representation and implementation

The algorithmic setting and implementation of the proposed model for the representa-
tion of the mobile viscous subnetworks within a time incremental formulation is briefly
discussed in this section.

To do so, the evolution equation (5.41) of the symmetric tensorial internal variable A needs
to be discretized in time to advance from a given discrete time t,, towards ¢, = t, + At
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within a single time step At. Application of an unconditional stable implicit backward
Euler integration of (5.41) results in the update of the internal variable A of a single
viscous subnetwork as

1 At - 1
Ay =—17—F7IA,+—C 5.54

i 1—|—At/7{ i T "+1] (5:54)
in terms of the relaxation time 7 = 1/6D* with D* given in terms of solely microscopic
objects in (5.26). Due to the linearity of the evolution equation (5.41), its algorithmic
update in (5.54) is obtained in closed form. With the updated internal variable evaluated,
the viscous overstress contribution follows from (5.47) as

v v ) v — T At

Too1 = WFu1Ap = 1 m |:Fn+1AnFn+1 + 79%1] (5.55)
in terms of the overstress moduli ;¥ = n k6. Finally, the sensitivity of the overstress up-
date (5.55) to the variations of the deformation at time instance ¢, yield the algorithmic

tangent moduli in the form

At/

¢ 1+ At/T g

ml = 2097, = —4p” (5.56)

where H;bfld = [(g71)*(g 1)+ (g~1)*¥(g~1)>]/2 is the fourth order identity tensor written
in terms of the inverse metric g—*.

Remarks 5.4. (a) It is emphasized that the result in (5.55) has to be combined with
the elastic response coming from a chosen model for the elastic ground network in
the way outlined in (5.7). The resulting isochoric response then further has to be
combined with the spherical part as shown in (5.4) to obtain the final form of the
stresses. In an analogous way the sensitivity of the final stresses is obtained where
the expression in (5.56) results only from the sensitivity of the viscous overstress in
(5.55) with regard to variations in the deformation.

(b) The results in (5.54)-(5.56) hold for a single viscous subnetwork in terms of mi-
croscopically motivated parameters T and p®. The proposed viscous model though
consists of s viscous subnetworks resulting in totally 2 s parameters. In particular,
the s different relaxzation times {7;};_, represent the broad dissipation spectra of the
model whereas the s viscous overstress moduli {p¥}s_, allow for different overstress
stiffnesses of the model. Finally, the history of each of the branches is described by
a separate internal variable A; resulting in the required storage of in total 6 s scalar
variables due to the symmetry of A.

5.5 Representative numerical simulations

This section evaluates the capacity of the proposed diffusion-based viscoelasticity model
by a comparison of the obtained numerical results with in the literature available exper-
imental data sets. The essential requirement of the model is its ability to capture the
specific viscoelastic response for different test scenarios of rubber-like materials at vary-
ing finite strains within a broad range of applied loading velocities. The material used
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throughout this section is a highly saturated nitrile butadiene rubber HNBR50 for which
in Section 5.5.1 the parameters of the numerical model are fitted based on homogeneous
uniaxial cyclic tests for an applied stretch A; within the interval \; € [0.75, 2.0]. Sec-
tion 5.5.2 then evaluates the model by simulating a similar uniaxial cyclic test but for
an applied stretch within the purely compressive interval A\; € [0.75, 1.0] as well as for
an applied stretch within the interval A; € [0.75, 2.0] including several relaxation breaks.
Finally, a non-homogeneous three-dimensional shear test is simulated in Section 5.5.3 for
different loading conditions and compared with available experimental results.

5.5.1 Parameter fitting procedure

The experimental data set for this problem is taken from MIEHE & GOKTEPE [239] for
a set of homogeneous uniaxial cyclic tests of a highly saturated nitrile butadiene rubber
HNBR50 produced by the Robert Bosch GmbH. It is outlined in detail in MIEHE &
GOKTEPE [239] that this material does not exhibit an equilibrium hysteresis so that its
response can be considered as purely viscoelastic. In the following, the characteristic
parameters of the model are fitted based on a homogeneous uniaxial cyclic test for an
applied stretch A\; within the interval A\; € [0.75, 2.0]. Based on the decomposition of
the polymer microstrucure into an elastic ground network and a viscous subnetwork, the
corresponding parameters of the models representing both need to be fitted to the actual
experimental results.

It is mentioned in Section 5.2 that the developed diffusion-based viscoelastic polymer
model does not rely on the choice of a particular model for the representation of the
elastic ground network. Therefore, throughout Section 5.5 the non-affine network model
of MIEHE ET AL. [244] is chosen for the representation of the elastic response of the
rubber-like material which is capable to produce an excellent fit when compared to the
equilibrium response of HNBR50 for the homogeneous uniaxial experiments as outlined in
MiIEHE & GOKTEPE [239]. In particular, in this work parameters close to those used in
MIEHE & GOKTEPE [239] are obtained following the parameter fitting procedure outline
in their work. The corresponding values are given as N = 5.2207, u = 0.1602 M Pa,
p = 1.0666, U = 11.2122, and ¢ = 0.2013, representing the number of chain segments in
the elastic ground network, the ground state stiffness, the non-affine stretch parameter,
the tube geometry parameter and the non-affine tube parameter, respectively, for the
homogeneous uniaxial cyclic test outlined below.

To fit the parameters for the developed viscoelastic part, a homogeneous uniaxial cyclic
test performed at three different absolute loading rates |A\;| = 5 - 107 2min~t, |\| =
5-10" min~!, and |\| = 5-10°min~" of that same material is used. It is emphasized that
the actual loading rates might deviate from these values due to a decreasing accuracy of
the experimental measurements especially for low loading rates. The stretch region of the
specimen is assumed to fall within the closed interval A\; € [0.75, 2.0]. The experimental
stress-stretch curves in terms of the P;; component of the First Piola Kirchhoff stress
tensor P = 7F 7 are depicted in the upper left illustration of Figure 5.9 below. One
observes a characteristic response for viscoelastic materials in the form of a stiffer behavior
for an increasing loading rate. Also the area of the resulting hysteresis curves, representing
the amount of dissipated energy per cycle, gets larger as the loading rate increases from
5-1072min~"! to 5-10°min~!. Finally, one can observe the difference between the first
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Figure 5.7: Parameter fitting procedure. The illustration outlines the viscous response
produced by a single branch. The relative overstress P11 /u? for loading periods T' much
lesser, comparable, and much greater than the relaxation time 7 is shown on the left. The
dependence of the relative hysteresis area H/u® of the first cycle on the ratio T'/7 between
the loading time and the relaxation time is shown on the right.
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Figure 5.8: Parameter fitting procedure. The illustration outlines the normalized
overstress profiles for the s = 5 viscous branches with the relaxation times {7;};_; =
{10°, 10%, 102, 103, 10} s and unit overstress moduli {i?}5_; = 1MPa for the three
considered uniaxial cyclic tests with different loading rates [A1| = 5 - 10%min=1, |A;| =

5-10"'min~', and |A;| =5-10"2min~'.
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Figure 5.9: Parameter fitting procedure. The illustration outlines a comparison of experi-
mental results with the numerical results of the homogeneous uniaxial cyclic test for stretch
values A; € [0.75, 2.0]. The upper left figure compares solely the experimental results [239)
for three different loading rates. The remaining illustrations compare these experimental re-
sults with the numerical obtained results for |)\1| =5-10%min~! in the top right figure, for
A1l = 5-10"'min~"! in the bottom left figure, and for |A;| = 5-10"2min~" in the bottom
right figure using {r;}5_, = {10°, 10%, 102, 103, 10*} s for the relaxation time spectra and
{p¥}:i_, ={0.5357,0.0762,0.1205,0.0213,0.0229} M Pa for the viscous overstress moduli.

and second cycles of the loading being more distinct for higher loading velocities. In
particular one should notice the change of the viscoelastic modulus after the first cycle of
loading.

To determine whether the proposed model is capable of capturing such an experimentally
observed viscoelastic response a parametric analysis is performed. A single viscous sub-
network responsible for the resulting viscous overstress is considered in terms of the two
parameters in the form of the viscous overstress modulus p* and the relaxation time 7.
Whereas the former trivially scales the amount of the overstress, the latter has a more
peculiar impact which can be illustrated for the cyclic uniaxial test considered here. In par-
ticular, the left illustration of Figure 5.7 shows the overstress produced by the considered
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viscous branch depending on the period of the altering stretch 7' = 2 (A7a% — Xmin) /| \; |,
One can observe that the response differs from the stiff quasi-elastic one for T//7 < 1
corresponding to a very quick loading to an almost vanishing one for T'/7 > 1 corre-
sponding to an extremely slow loading. In the first case there is no time for any changes
to occur in the viscous subnetwork during the loading period whereas in the latter case
the loading is so slow that the subnetwork has more than sufficient time to relax fully
to an unperturbed stress-free configuration. The viscous hysteresis is only observed at
loading rates for which the stretch period T is comparable to the relaxation time 7. This
fact is illustrated by the diagram on the right of Figure 5.7 depicting the dependence of
the amount of the energy dissipated during the first cycle on the ratio 7'/7. This curve
shows that a single viscous branch with a given relaxation time will produce any viscous
hysteresis only within a certain range of loading velocities. Its span can be limited to a
change of magnitude of approximately 2 orders of the T'/7 ratio.

For the representation of the real relaxation spectrum several viscous branches need to be
considered. In particular, to fit the parameters of the experimental stress-stretch curves
in the upper left illustration of Figure 5.9, a discrete spectrum of s = 5 relaxation times
{r}, = {10° 10', 10%, 103, 101} s is chosen. With the elastic part of the deviatoric
stresses obtained through the non-affine network model in MIEHE ET AL. [244], the only
remaining parameters to be identified are the corresponding overstress moduli {u}}_;.
Their values are determined by a simple procedure exploiting the linear dependence of
the total overstress on the viscous moduli. To do so, the deviatoric part of the stresses is
computed based on (5.7) as

S
() =7(t) + ) _T() (5.57)
i=1
in terms of the elastic equilibrium stress 7¢ and the viscous overstresses {77}?_;. Denoting

the cyclic tests in Figure 5.9 by the indices a, b, and ¢ for the different loading rates, one
can compute the stress as a mere combination

() = () 4 S ) (5.59)
i=1
where {:T'f’abc}le are the normalized overstress profiles shown in Figure 5.8 that can be

computed separately for each of the s branches with a unit moduli assigned as {fi}};_, =
1 M Pa and the loading rates corresponding to the tests a, b, and c¢. The overstress
moduli {uf}7_; are then obtained by minimizing the discrepancy of the stress-strain curves
computed by (5.58) to the experimental ones illustrated in the upper left illustration of
Figure 5.9.

Overstress moduli {p¥}5_, = {0.5357,0.0762,0.1205,0.0213,0.0229} M Pa are finally ob-
tained as the result of this procedure. The obtained fit for the cyclic uniaxial tension-
compression tests is depicted in the illustrations of Figure 5.9 for the different applied
loading rates. The experimental features of the true viscoelastic response are captured
reasonable well by this fit. The level of the stresses and the thickness of the individual
hysteresis curves achieved at the three different loading rates comply rather well with
the experimental data. Some discrepancy can be observed when looking at the difference
between the first and the second cycles of the loading which is predicted smaller by the
simulations when compared to the actual experimental results.
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Figure 5.10: Model verification through uniaxial cyclic tests. Comparison of experimen-
tal results with the numerical results for compressive stretch values Ay € [0.75, 1.0]. The
upper left figure compares solely the experimental results [239] for three different loading
rates. The remaining illustrations compare these experimental results with the numerical
obtained results for [A;| = 5-10°min~" in the top right figure, for [A;| = 5- 10~ min ="
in the bottom left figure, and for [A;] = 5-10"2min~"! in the bottom right figure us-
ing {r;}5_, = {10° 10%, 102, 103, 10*} s for the relaxation time spectra and {u¢};_, =
{0.5357,0.0762,0.1205,0.0213,0.0229} M Pa for the viscous overstress moduli.

5.5.2 Model verification through uniaxial cyclic tests

After having obtained the characteristic model parameters through the fitting procedure
described above in Section 5.5.1, the model with those material parameters is used to
simulate two further tests, different from the one above. A comparison with available
experimental results will then allow for an evaluation of the quality of the model.

The first example is a purely compressive uniaxial tests performed for the same HNBR50
material [239]. The considered stretch values fall within the compressive interval \; €
[0.75, 1.0] at three different loading rates |[A;| = 51072 min~!, 5- 10! min~! and 5 -

10°min~t. The above mentioned features of the viscoelastic response at cyclic loading
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Figure 5.11: Model verification through uniaxial cyclic tests. Comparison of experimental
results [239] with the numerical results for stretch values A; € [0.75, 2.0] including relaxation
breaks at stretch values \; = 0.75, 0.875, 1.0, 1.25, 1.5, 1.75, 2.0. The strain-stress diagram
comparison is shown on the left whereas the stress-time relation is shown on the right
using {7;}5_; = {10° 10%, 102, 103, 10} s for the relaxation time spectra and {u?}:_; =
{0.5357,0.0762,0.1205,0.0213,0.0229} M Pa for the viscous overstress moduli.

such as the rate-dependent stiffening, hysteresis growth and difference of the first cycle
to the subsequent ones are captured also for this test as it is illustrated in Figure 5.10.
However, the experimental data outlined in the top left illustration of Figure 5.10 are not
fully reproduced by the simulation. Particularly, it can be seen that the viscoelastic moduli
are underestimated so that substantially a softer response is predicted by the model with
the parameter fit obtained above. The fitting illustrated in Figure 5.9 captures nicely only
the value of the tangent modulus on the second cycle of the loading, whereas its value in
the beginning of the loading, which coincides for the compressive and tensile dominated
tests, remains underestimated.

The second example to verify the quality of the developed model studies a homogeneous
experiment on HNBR5H0 [239] which captures the relaxation during breaks in tension-
compression cyclic tests. The same specimen as in the preceding tests is subsequently
loaded and unloaded in a stepwise manner. At each step the stretch changes from one
intermediate value to the next one with an absolute loading rate of |)\1| = 3-10°min™!
which is kept at a constant deformation thereafter for a one-hour period. The hold stretch
values are \; = 0.75, 0.875, 1.0, 1.25, 1.5, 1.75, and 2.0. Altogether the experiment
involves twelve relaxation tests, which allow to observe the overstress development at
different stretch levels as well as its relaxation in detail. When comparing the numerical
and experimental results based on the illustration in Figure 5.11, one observes that the fit
is quite good in the compressive part of the test and at the moderate tensile stretches up to
the second break. In particular, the relaxation of the viscoelastic stress during the breaks
is captured well in time. To the contrary, at higher tensile stretches the development of
the overstress does not match the experimental data. According to the proposed model,
the evolution of the overstress is linearly proportional to the deformation velocity I (in
particular to its component l;; = )\1 /A1 in the case of the uniaxial loading), which for the
given stretch velocity |)\1| gets smaller at higher stretches. Correspondingly, the overstress
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Figure 5.12: Model verification through non-homogeneous 3D shear tests. The geometry of
the rubber specimen with dimensions in mm together with the finite element discretization
of one quarter of the specimen is shown on the left. The boundary conditions are such that
the bottom surface is fully restrained and the whole top surface is displaced by wu(t) in -
direction. The individual loading conditions are shown on the right in the form of two cyclic
loadings u1 (t) and ug(t) for different loading rates |u1| = 40 mm/min and |is| = 4 mm/min
and in the form of a relaxation loading us3(t) where ug is held constant for 60 s after reaching
uz = 20mm in 30 s.

[i1] = 40 mm/min [ia| = 4 mm/min
400f — Simulation / 400f — Simulation
---Experiment 7 ---Experiment

200 2001

-200f —200f

-400f —400f

-10 -5 5 10 -10 -5 5 10

u(t) Tmm] u(t) Tmm]

Figure 5.13: Model verification through non-homogeneous 3D shear tests. Illustration of
the load-deflection diagrams obtained for the cyclic loading conditions and comparison with
the experimental results from MIEHE & GOKTEPE [239] for |u1]| = 40 mm/min on the left
and |uz| = 4 mm/min on the right. A good agreement of the attained extremal force values
and the shape of the hysteresis can be observed.

and the thickness of the hysteresis between the second and the sixth break get lower as
the stretch increases.

5.5.3 Model verification through non-homogeneous 3D shear tests

Next, the proposed model is evaluated based on its performance when solving a three-
dimensional (3D) problem. The numerical implementation follows the discussion outlined
in Section 5.4.3. Considered is a non-homogeneous shear experiment in 3D. The specimen
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Figure 5.14: Model verification through non-homogeneous 3D shear tests. At the top,
an illustration of the obtained stress distribution o,. of the specimen for the third loading
condition at the beginning of the relaxation process at time ¢ = 30s is shown. Below
follow illustrations of the internal state of the material point placed in the geometric center
of the specimen based on the stretch distribution p;(X), the orientation density function
(ODF) ¢;(t), and the affine microstretch distribution A;(¢) of the five subnetworks for the
chosen relaxation times {7; }5_; = {10°, 101, 102, 103, 10*} s. In addition the average stretch
distribution p(A) and the average ODF c¢(t) are shown.

is a body of revolution with a concave toroidal lateral surface. Its geometry and dimensions
are illustrated on the left of Figure 5.12. The boundary conditions are such that during
the experiment the whole bottom face of the specimen is fixed whereas the whole top
face is subjected to a horizontal displacement in z-direction. The material of the rubber
block, for which experimental results are available from MIEHE & GOKTEPE [239), is the
one used before in the form of a highly saturated nitrile butadiene rubber HNBR50. The
elastic and viscous parameters needed for the numerical simulation are the ones obtained
through the parameter fitting procedure in Section 5.5.1.

Three loading functions {u;(¢)}?_, for the horizontal displacement are considered of which
two correspond to cyclic deformations for u € [—10, 10] mm at two different loading
velocities |4;| = 40mm/min and |is] = 4mm/min. The third loading represents a
relaxation test at which the top surface is moved in 30 seconds at a constant rate |us| =
40 mm/min up to a displacement of uz = 20 mm after which a relaxation period of 60
seconds follows. An illustration of the loading processes is given on the right of Figure
5.12.

The obtained numerical results of this rubber specimen are simulated using 1152 eight-
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Figure 5.15: Model verification through non-homogeneous 3D shear tests. At the top,
an illustration of the obtained stress distribution o, of the specimen for the third loading
condition at the end of the relaxation process at time ¢ = 90 s is shown. Below follow il-
lustrations of the internal state of the material point placed in the geometric center of the
specimen based on the stretch distribution p;(A), the orientation density function (ODF)
¢i(t), and the affine microstretch distribution A;(¢) of the five subnetworks for the cho-
sen relaxation times {r;}5_; = {10°, 10%, 102, 103, 10*} s. In addition the average stretch
distribution p(A) and the average ODF c¢(t) are shown.

node Q1/P0 mixed brick finite elements. A comparison with the experimental results for
the two cyclic tests is shown in Figure 5.13 in the form of the obtained load-deflection
diagrams for the loading rate || = 40 mm/min on the left and |is| = 4 mm/min on the
right of that illustration. The results show good agreement since the extremal force values
attained in both tests as well as the shape of the viscous hysteresis do agree with quite
good precision. Again, the initial response to the first loading (from v = 0 to u = 10 mm)
is reproduced not as good as the subsequent cycles.

The third loading scenario is evaluated in Figures 5.14 and 5.15, showing the true shear
stress contours at the end of the loading at time ¢t = 30 s and after the relaxation period
at time ¢ = 90 s, respectively. One can observe quite a substantial relaxation of the stress
depicted at the top of both figures in the form of the outlined o,, stress distribution.
The perturbation induced by the initial deformation of the material decays due to the
diffusion mechanisms discussed in Section 5.4. The extend to which the microdeformation
relaxes is naturally different for the five mobile subnetworks. An important observation
is, that the diffusional motion of the mobile chains results both, in re-orientation and
stretch relaxation as further shown in Figures 5.14 and 5.15. Observed is the evolution
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of the internal state of the material point placed in the geometric center of the specimen.
This is given by the partial distributions of the stretch p;(A) = P(P;'X)/det(P;) in the
five mobile subnetworks. The average stretch distribution in the overall mobile network
p(A) = 1/n 37 nipi(X) represents the total re-distribution of the stretch vector. This
re-distribution incorporates both re-orientation and stretch relaxation. The former is il-
lustrated by the orientation density functions plotted over the spatial directions ¢ in the
orientation space and retrieved for each of the subnetworks as ¢;(¢) = 4w [ p(AE)A? dX
where the factor 47 comes from the convention that a homogeneous distribution corre-
sponds to ¢;(t) = 1. The average for all the mobile polymer chains c(t) = 1/n 3 _, n;ci(t)
is shown on the right of that row. The stretch relaxation is presented by the distribution
of the affine microstretch over the directions \;(t) = (P;'t- P; 't)~/? shown at the very
bottom of Figures 5.14 and 5.15.
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6 A finite element based Kohn-Sham density func-
tional theory

The properties of condensed matter like electric conductivity, magnetism as well as the
mechanical response upon external excitations are determined by the electronic structure
of a material. Therefore, a variety of methods have been developed over the years to
theoretically and numerically account for such dependency. The approach followed in
this Chapter is the density functional theory founded by the Hohenberg-Kohn theorem in
[149]. Following our recent work in SCHAUER & LINDER [316], in this part of the work, a
real space formulation of the Kohn-Sham equations, making use of the hierarchy of finite
element bases from different polynomial order, is developed.

6.1 Introduction

The focus in this chapter is laid on all-electron calculations, having the highest require-
ment onto the basis set, which must be able to represent the orthogonal eigenfunctions
as well as the electrostatic potential. A careful numerical analysis is performed, which
points out the numerical intricacies originating from the singularity of the nuclei and the
necessity for approximations in the numerical setting, with the ambition to enable solu-
tions within a predefined accuracy. In this context the influence of counter-charges in the
Poisson equation, the requirement of a finite domain size, numerical quadratures and the
mesh refinement are examined as well as the representation of the electrostatic potential
in a high order finite element space. The performance and accuracy of the method is
demonstrated in computations on noble gases. In addition the finite element basis proves
its flexibility in the calculation of the bond-length as well as the dipole moment of the
carbon monoxide molecule.

A fully general finite-element framework without the exploitation of given symmetries is
developed for calculating the electronic structure with the Kohn-Sham algorithm. Tetra-
hedral finite elements of up to fourth order are applied, and the hierarchy of these basis
sets is exploited, thereby simplifying the implementation and gaining major advantages
in performance. Especially, as a new contribution to the treatment of Kohn-Sham den-
sity functional theory with finite elements, a p-refinement approach is introduced, where
first an approximate solution is calculated within the subspace of lower polynomial de-
gree, which renders the starting configuration for the higher order calculation, yielding
an overall speed up of the algorithm. We thoroughly analyze the behavior of the numer-
ical method and thereby study the impact on the calculated energies, where special care
is taken with regard to the treatment of the neutralizing charge density in the Poisson
equation and the core singularity. In addition the finite element space for the electro-
static potential, effects from the boundary condition, the domain size, and the order of
the chosen quadrature rule are examined. We do report on the alignment of orbitals and
convergence properties depending on the occupation number in the case of single atoms
without closed shells, like the carbon atom, and calculate the dipole moment and the
binding properties of the carbon-monoxide molecule in the finite element basis, where
especially the correct representation of the polarization properties is known to be highly
demanding onto the basis set. Also, total energy calculations on large single atoms like
the xenon atom with 54 electrons in 27 orthogonal wave functions are performed, posing
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high requirements onto the finite element method based Kohn-Sham density functional
framework for all-electron calculations, where both the wave functions as well as the elec-
trostatic potential are represented in the finite element basis. Finally the flexibility and
generality of the finite element basis is shown again demonstrated for the first time in the
case of an applied homogeneous external electric field, where the energy and dipole mo-
ment of the polarized atom can be determined without the requirement of an additional
increase of the finite element basis, as it is the case e.g. for the Gaussian type orbitals.

The outline of this chapter is as follows. In Section 6.2 the theoretical background of
density functional theory is provided and the self-consistent field (SCF) algorithm is
described. Section 6.3 introduces the weak formulation of the Kohn-Sham equations
and provides a short overview about basis sets used in this context. It is shown, how the
hierarchy of the finite element basis can be exploited and the different components of the
implementation are presented. In Section 6.4 an extensive numerical analysis is performed
upon several approximations involved in the numerical setting of all-electron calculations.
Section 6.5 presents a number of results on noble gas atoms together with calculations
on the bond length and polarization of the carbon monoxide molecule, finishing with the
impact of an external electric fields onto a single neon atom.

6.2 Theoretical background based on density functional theory

In the Born-Oppenheimer approximation the stationary, non-relativistic Schréodinger equa-
tion of an atomistic system consisting of N electrons and M atomic nuclei, is given by
the eigenvalue problem

HU = EV (6.1)
in terms of the electronic wave function W(ry,...,ry) and the Hamilton operator
| N N Mo, N
A
=32V ZZjﬁZZ— (62)
i=1 i=1 A=1 " i=1 j>i T

containing the operator for the kinetic energy and the electrostatic interaction between
electrons and nuclei. Here r;; = |r;—r;| and 7,4 = |r;—R 4| are the distances from electron
7 to electron j or nuclei A, respectively. In the whole work, atomic units are used, where
Planck’s constant A, the electron mass m,, the charge e, and Coulomb’s constant 1/(4meg)
are all set to unity. Length scales are given in the Bohr radius ay and energies in Hartree
Ey. For reasons of simplicity the spin degrees of freedom are not taken into account,
but their inclusion does not pose a major problem. The electrostatic interaction couples
the electrons with each other, yielding the problem intractable for an analytic solution
except for trivial single electron examples. Ab initio methods like the Hartree and the
Hartree-Fock method introduce a simplified ansatz for the wave functions like a product
of single electron wave functions or a single Slater determinant, which renders the system
accessible for the numerical treatment. A different, very successful approach is density
functional theory, based on the theorems of Hohenberg and Kohn [149], which brings the
ground state electron density

= // Uy(r,ra, ..., ry)Yo(r,re, ..., ry)dry. .. dry (6.3)
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into focus by showing that this quantity already contains the whole information about the
system at hand. Density functional theory replaces the calculation of the ground state
electronic structure of an atomic system from the full quantum mechanical Schrodinger
equation through the minimization of an energy functional

Eolp] = Eunlp] + Eulp] + Eext[p, {Ra}] + Ezz({Ra}) +  Exy] (6.4)
kinetic energy classical ele(:;;ostatic parts quantum corrections

depending on the electron density p(r) and the atomic positions {R4}. The electron
density is constrained by the condition

/p(r) dr=N (6.5)

assuring the correct amount of electrons in the system. The energies of the electrostatic
interaction are given by the repulsive Hartree energy Fy, which accounts for the inter-
action between the electrons, the attractive i.e. negative energy from the interaction of
the electrons with the nuclei F., which can be regarded as having its origin in an exter-
nal potential acting upon the electrons, and the electrostatic contribution Eyz from the
interaction between the nuclei, all given as

_ %//%drdr’ (6.6)

. ZA
Eex ) R = . ‘/ex d th ‘/ex = - I
o 1R} /|r—RA| /p<r) dr with - Veolr) ;H—RM
(6.7)
M M
ZAZB

Ezz({Ra}) Z Z (6.8)

A=1 B=A+11 ‘RA_RB|

Due to the lack of an appropriate expression for the kinetic energy of the electrons in
terms of a functional in p, the kinetic energy

Bunlp] = TX%p] = —= Zn / ; V2 dr (6.9)

of a non interacting system is introduced, and the density sums up from orthogonal single
electron wave functions ¢;(r) as po(r) = >, ng;(r)]?, where 9 with 0 < nge < 2
represents the occupation number of the orbital ¢;(r), obeying to the relation ), nY* = N
[181]. In this work the local density approximation (LDA) for the exchange and correlation
energy is applied, which takes the form

EPAp] = / pexc(p)dr with  exc(p) = ex(p) + ec(p) - (6.10)

3

The exchange energy ec(p) = —3 (W) 1/3 p'/3 is taken from the homogeneous electron gas

and the correlation energy was fitted to Quantum Monte-Carlo simulations from [60],
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where different interpolations of this data exist. In this work, the one from [285] is used,
which determines the correlation energy as

{ —0.1423/(1 + 1.0529,/7, + 0.3334r,) re> 1
e(rs) =

(6.11)
0.0311logrs — 0.0480 4 0.00207s logrs — 0.01167, 74 < 1

where r, = (3/(47p))"? is defined as the radius of a sphere containing one electron, which
can be regarded as a measure for the average distance between the electrons. Basically
two common procedures exist for finding such minimum. On the one hand one can try
to directly minimize the functional (6.4) by inserting an ansatz for the wave functions
1; and using Newton- and gradient descent methodologies, thereby taking care of the or-
thogonality constraint of the wave functions. Alternatively the variation of the functional
with respect to the wave functions 1); is taken to set up the Euler-Lagrange equations
of the system, which are called the Kohn-Sham equations in this context. Due to the
orthogonality constraint, they represent an eigenvalues problem, where the Lagrange pa-
rameter renders the eigenvalue. Since the energy functional depends non-quadratically
on the wave functions v;, there are nonlinear terms in the Kohn-Sham equations. This
leads to an iterative solution procedure, the so called self-consistent field (SCF) algorithm,
illustrated in Figure 6.1, which is also the path followed in this work.

For reasons of simplicity, only spin unpolarized systems are treated, however the extension
to polarized systems is straightforward. The Kohn-Sham equations then represent an
effective single electron eigenvalue problem given by

58+ Varle) | a0) = 1 ) (6.12)

with the effective potential

1
Valt) = Z = RA| o1

accounting for the interactions between the electrons in an averaged way. It consists of
the exchange-correlation potential Vi (p(r)) given as

0 e Oexe(p(r))
op(r) Ip(r)

and the electrostatic potential ¢(r) built by the electrons and nuclei, which can be gained
from the Poisson equation

—A¢ = 4m (p(r) —Y Zad(r- RA)> : (6.15)
A=1

As mentioned above, the non-linearity in these equations requires an iterative solution
procedure to achieve self-consistency, which is illustrated in the flowchart in Figure 6.1.
The total energy of the ground state is then given by

Vie(p) =

= exe(p(r)) + p(r) (6.14)

_ KS ol de o L[ PP L
By = T+ [ Vet e+ 5 [ [ B avar' B0+ e (5.0



6.2 Theoretical background based on density functional theory 179

¥

Poisson-EQ: —A¢y, = 4m(pp + D> 4b4) = Ves
v
KS-EQ: [—3A + Veg(r)] ¥ = eith; = pry1 = 3o, ng ;|2
v

Self-consistency ? _—

Yes

Figure 6.1: Self consistent field algorithm: With an initial density p, the Poisson equation
determines the electrostatic contribution of the effective potential, where b4 represents the
charge distribution of the atomic nuclei. The Kohn-Sham eigenvalue problem then yields an
updated density p,+1. To bring the algorithm to convergence, mixing with former densities
is performed and the algorithm restarted.

or in terms of the eigenvalues [227] a

Zal // |r_r,| ) drar’ — /55 p(r)dr + Eylp] + Ezz  (6.17)

where
251 TES[p] + / Vegr(r)p(r) dr . (6.18)

The physical situation treated in this work comprises a localized charge distribution, for
example single atoms, molecules or a small cluster of atoms, in contrast to the expanded
case of an crystal. Since the wave functions of bound states decay exponentially, ho-
mogeneous boundary conditions are chosen for the Kohn-Sham equations on a compact
domain © C R3. In a charge neutral or positively ionized system, the assumption of a
bound ground state can be physically justified, however in the case of a negatively charged
system the wave functions generally do not vanish in infinity, yielding free electrons, a
case which is therefore excluded here. The Poisson equation is solved on the same do-
main (), but dependent upon the specific problem and the size of the domain €2 also
non-zero Dirichlet boundary conditions are applied, where a multipole decomposition of
the potential up to the electrostatic quadrupole

¢<r>:9+—+ ZQM

Tk - Tl

(6.19)

with total charge @) of electrons and nuclei, electric dipole p and the traceless quadrupole
tensor QQy; given as

p= / p(r)r dr and Q= / p(r)(3ryr; — 1?0y dr (6.20)
Q Q
is employed in order to determine the potential on the boundary, defined by the function

w. The Poisson problem then reads

—Adp = Ampuoy 0 (6.21)
b = © o9Q. (6.22)
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The boundary value problem can then be transformed to the homogeneous case in the
usual way by a continuation w of the boundary function @ into the interior domain and
applying the Ansatz ¢ = ¢y + w, where ¢y merely has to fulfill homogeneous boundary
conditions [57]

—A¢py = 4Tpior + Aw Q (6.23)
do = 0 o0, (6.24)

Therefore in the following only the homogeneous case is considered. In both cases how-
ever a reasonably large physical domain Q C R? is required in order to not disturb the
system through boundary effects. A closer look at the influence of the domain size on the
numerical results is taken later in Section 6.4.2.2.

6.3 Discretization with finite elements and its numerical imple-
mentation

In this section the Kohn-Sham equation (6.12) and the Poisson equation (6.15) are cast
into an algebraic form with the help of a finite dimensional basis set. Different possible
basis sets are presented, especially the finite element basis and its hierarchic properties,
which are further employed in this work. Furthermore a description of the implementation
within C++4 and its several components is provided.

6.3.1 Weak formulation and discretization in the finite element basis

Instead of solving the strong form directly, the weak solution of both the Kohn-Sham
and the Poisson equation is pursued. The weak formulation is generated by a Galerkin
projection of the symmetric problem. For that purpose, equation (6.12) is multiplied
with a sufficiently regular test function ¢ from the left and integrated over the physical
domain, employing Green’s theorem

% /QV<p - Vb(r) dr + /Q © Veg(r) ¥y(r) dr = ¢ /Q w;(r) dr, (6.25)

where the requirement of a vanishing test function on the boundary was made. The space
of definition of both 1; and ¢ is now generalized to H} (), where the vanishing trace of
the wave function on the boundary is reasonably fulfilled for localized, neutrally charged
systems on large physical domains, the case examined in this work. For the Poisson
equation the weak formulation is built analogously. The discretization is achieved by
reducing the variational formulation (6.25) to a finite dimensional function space X C
H{(€2), in which the wave functions 9; and the electrostatic potential ¢ are expanded in
terms of basis functions ¢,, € X}, given as

Y= g, and ¢=Y d'g,. (6.26)

In general also a different subspace Xj, with a basis set {(,} can be chosen in the ansatz
of ¢, which might possess improved interpolation properties for the potential ¢, as il-
lustrated in Section 6.4.1.2. According to the fundamental lemma of the calculus of
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variations, equation (6.25) has to be obeyed by any testfunction ¢ and especially by the
basis functions in X}, yielding the generalized eigenvalue problem

(Kmn + an) C;L = & an C? (627)

in terms of the matrix elements
1
M., = / Om + opdr, K, = 5 / Vo -Ve,dr, and V,,, = / Om Vet orndr, (6.28)
Q Q Q

where K is called the stiffness matrix and M the overlap matrix, respectively. If orthonor-
mal basis functions were used, the overlap matrix M,,, boils down to the identity matrix
and the problem reduces to a standard eigenvalue problem. The algebraic form of the
Poisson equation

K,,, d" = 47?/ Om Prot AT (6.29)
Q

represents a linear equation, again with the positive symmetric stiffness matrix K,,,,
where in p;; the positive and negative charge densities are combined. If non-zero Dirichlet
boundary conditions are introduced, an additional term appears on the right hand side.
So far the basis functions in the discretization have not been determined. In the case of
a linear equation, Céa’s lemma

=l <€ inf [Ju= o] (630

tells us for an elliptic operator, that the interpolation properties of the basis with respect
to the solution play an important role in reducing the numerical error [57]. Here u is the
weak solution in the Hilbert space X with the given norm || - || and wy, is its counterpart
in the finite dimensional subspace X; C X, so that the discretization error on the left
side of (6.30) is bounded by the interpolation property of w in the subspace X with a
proportionality factor C' depending on the constants for coerciveness and continuity of
the given operator. Therefore, one can also assume the importance of the interpolation
properties in the given nonlinear case, where each iteration consists of a linear problem.

Two types of basis sets are widely spread in physics and chemistry. On the one hand
are the plane waves and their variations, which represent a complete, orthogonal basis
with globally defined basis functions [227]. They are usually used in combination with
pseudopotentials [177], as the strong inner oscillations of the core electrons are expensive
to represent in this basis and also the singularity in the potential of the nuclei would
sensitively slow the convergence rate. A drawback of the plane wave basis is the restriction
to periodic boundary conditions together with regularity requirements on the shape of the
physical domain. On the other hand in the context of the LCAO-method, atomic orbital
like basis functions are used, which are often related to the eigenfunctions of a radial
symmetric single electron problem together with some problem dependent adaptations
[180, 333]. In reference to Céa’s lemma (6.30), these basis functions posses superior
interpolation properties having already the form of atomic orbitals. Nevertheless these
basis functions have been and still are optimized in order to reach a minimal basis set
with maximal speed in calculations. The basis functions are local, usually defined at the
position of the atoms and therefore the basis cannot be systematically increased to form
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Figure 6.2: Isoparametric approach in one dimension. Linear functions N (€), N2(§) are
mapped from the reference element [—1, 1] onto the basis function ¢,, in the physical domain,
where the wave functions ¢§**°* is approximated at the location x as ¥!'(z) =Y, cPpy.

a complete basis of the physical domain. For such choice, the electrostatic potential of
the electrons is directly integrated from the orbitals, which is possible since only a small
number of basis functions is required, rather than solving the Poisson equation.

In this work finite element basis functions are applied, which build a non-orthogonal,
local basis, consisting of low order polynomials, where the order is determined by the
highest polynomial degree. The amount of linear independent monomials of order p in d
dimensions is given by (der 71), which sums up to an amount of (d;p) linear independent
polynomials of order equal or lower than p, where for the relevant space dimension d = 3,
the numbers are given in Table 6.1. The basis functions are defined on a tetrahedral
(P1 to P4) or cubic (Q1,Q2) reference element, and are then mapped into the real space
by a geometrical transformation of the reference domain onto a mesh 7' of the physical
domain €2, as illustrated in Figure 6.2 within a one-dimensional context. These so called
isoparametric basis functions are continuous but not smooth across the element border
and can be generated from Lagrange polynomials [155], where the basis functions ¢; have
to fulfill the interpolation property ¢;(z;) = 0;; on a set of interpolation points {x;} of the
reference element. The resulting basis functions are different from zero only locally within
the element and its direct neighbors yielding sparse matrices in the discrete scheme. The
basis sets build a hierarchy with respect to the polynomial order, i.e.

P1 c P2 ¢ P3 C P4 on the same mesh T (6.31)

as well as to the mesh refinement in space, i.e. if the mesh T} is a subgrid of T5, then
the finite element space defined on T is completely contained in the one defined on T5.
This property of a hierarchic function space is exploited in two ways. In the case of a
missing good initial starting electron density p, the Kohn-Sham equations are first solved
on a subgrid of the mesh, which can be done much faster due to the reduced degrees of
freedom. Since the solution is also contained in the finite element space created on the
initial mesh, it can directly be employed as starting density to proceed the calculation on
the fine mesh (so called h-refinement). The same idea of first solving with a reduced basis

Order p 01 2 3 4 5 6 7 8
amount of monomials of orderp 1 3 6 10 15 21 28 36 45
amount of polynomials of orderp 1 4 10 20 35 56 84 120 165

Table 6.1: Amount of monomials and polynomials of order p in three dimensions.
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set can also be realized by performing first a calculation with low order polynomial basis
functions, followed by a high order calculation (so called p-refinement). Depending on
the initial guess, this procedure was found capable to accelerate the convergence process
and therefore notably reduces the total computational cost of the SCF algorithm. For
example for a single neon atom with an initial Gaussian density distribution, the total
computational cost for the SCF algorithm reduces by a factor of approximately 2.5, if
an initial finite element calculation with low order polynomials preceded, whose output
yields the starting configuration of the subsequent high order finite element calculation.
In all examples here, a linear mixing scheme is applied in combination with a relatively
low convergence criteria of 0.001FE},. Similar an acceleration of about a factor 1.4 is found
for the carbon monoxide molecule as well as for the benzene molecule, when starting
with an calculation on P3 finite elements as input for a subsequent P4 simulation. The
required amount of iterations in order to reach the convergence criteria in the high order
run thereby usually more than halves, where however additional time is spent for the low
order run. Naturally smaller speed up factors occur if more restrictive convergence criteria
are chosen, as the resulting additional SCF iterations require roughly the same additional
amount of time with or without the p-refinement approach. Also the application of a
more sophisticated mixing scheme, like e.g. the Pulay mixing [290], might also decrease
the advantage, as each iteration gives information that is used in the update calculation,
whereas the densities of the lower order iterations are usually not taken into account in
the Pulay scheme. The given numbers though should only be taken as a rough estimate,
since the savings are also mesh dependent and large speed ups can especially be found,
if the final total energy of the lower polynomial calculation reached close to the final
energy of the higher order calculation. Otherwise the time saved form the reduction of
iteration on the higher order SCF algorithm could be lost in the time spent in the low
order calculation again, as an only slightly improved initial starting configuration has
little impact. It also should be noted, that similar accelerations arise by the h-refinement,
however the h-refinement method possesses different requirements onto the grid, as an
unrefined version of the final grid must be available, whereas in the p-refinement, the final
grid on which the energy should be calculated can be constructed directly.

A repetition on even smaller meshes with lower polynomial order or any combination of
both is possible. The second case, where our implementation takes advantage of the hier-
archic properties of the finite element spaces is in the interpolation of the electron density
p(x) = >, n|¢;(z)]* from the set of atomic orbitals 1; = Y. ¢ ¢,. The electron den-
sity cannot be represented in the same finite element basis as the wave functions without
making a major approximation, which was found to be too invasive with respect to the
accuracy requirements. Instead of storing all the coefficients ¢} in consecutive loops of
the SCF algorithm, the exact density p(x) is interpolated in the finite element space of
the double polynomial order. E.g. we do not store the P2 wave function of former itera-
tions, but sample the corresponding density in the P4 finite element space, which contains
the square of all the local polynomials of the P2 space and the density can therefore be
expressed without any approximation. Dependent upon the number of eigenfunctions
required and the order of the finite element space, this not only simplifies the implemen-
tation especially of the mixing schemes, but also reduces the memory requirements. It
should however be noted, that alternative ways to store the density are also possible and
efficient, like for example the storage of the density merely at the quadrature points, as
the density in the SCF algorithm is only evaluated at these points. However in this case
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no direct access to the density at off-quadrature positions exists and dependent upon the
involved integrands and quadrature rules, even more storage might be required.

For reasons of simplicity the physical domain for the Poisson and the Kohn-Sham equation
are chosen as being identical. The solution of the Kohn-Sham equation with the rapidly
decaying wave functions on a decisively smaller domain can further reduce the degrees of
freedom [121].

6.3.2 Numerical implementation

The program code is implemented in C++ within the finite element framework of DUNE
[23]. The Dune modules provide the finite element basis functions for basic finite element
types together with routines for accessing the elements of the grid. There also exist
methods to connect user data with the entities of the grid and setting up the matrices
involved in the SCF algorithm. Since all matrices are sparse, matrix-vector products
can be executed in linear time, rendering them suitable for the application of iterative
procedures for solving linear equations. These linear solvers are taken from the iterative
solver template library ISTL [22]. In particular for solving the Poisson equation as well
as in the equation required by the eigenvalue solver, a conjugate gradient solver is used,
together with an SSOR preconditioner or alternatively the algebraic multigrid solver of
the ISTL library.

The eigenvalues and vectors are calculated with the iterative Arnoldi process, provided
through the Fortran based ARPACK package [198] or its parallel version PARPACK
[199], which is able to extract the largest m eigenvalues and corresponding eigenvectors in
a generalized eigenvalue problem. In order to enhance the convergence towards a desired
portion of the spectrum, a shift of the spectrum is performed via the transformation

1

E—O0

(K+V—-0oM)'Mc = vec with v= (6.32)
rendering the Arnoldi process capable of finding eigenvalues close to the shift parameter
o [198]. The involved multiplication of a vector x = Mc with (K +V — cM)™! is
reformulated in the usual way by solving a linear equation

K+V-oM)'x=y< (K+V-oM)y=x. (6.33)

It is this equation, which has to be solved repeatedly, that renders the calculations nu-
merical expensive.

The parallelization is realized via domain decomposition with the grid partitioner Metis
and the communication between the processes is handled by the message passing interface
from OpenMpi. For the mesh creation, which together with the polynomial order of the
basis functions determines the finite element basis set, a procedure is generated to set
nodal points on geometrical figures, mainly the corner and edge points of polyhedrons
around the positions of the atom nuclei, similar to the description in [200]. The atomic
position, being usually an extremal point of the wave functions v; as well as the electro-
static potential ¢, is also occupied by a node. For molecules additional nodes are placed
into the binding region between the atoms to ensure a sufficient interpolation of the bond
orbitals. The mesh generator TETGEN [322] creates a tetrahedral grid from these nodal
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Figure 6.3: Left: Sliced mesh created for a single atom in the center with nodes on cubes of
increasing size around the central atom position. Center: Cross-section through the mesh.
Right: Cross-section from globally refined mesh.

Figure 6.4: Cross section through triangularizations. Left: Single atom mesh from rhom-
bicuboctahedron and deltoidal icositetetrahedron. Right: Mesh for a diatomic molecule with
additional elements in the binding region.

points, which can be read by the DUNE interface. Cross-sections through meshes for
single atoms and a binary molecule are shown in Figures 6.3 and 6.4.

To achieve convergence in the SCF algorithm, a mixing scheme of the input and output
electron density of a SCF iteration is required. The simplest one consists of a linear
mixing given as

p ) = qp™ 4 (1— a)p(new) = p™ 4+ aAp™ (6.34)

new

where p™ is the input density of iteration n, p™®) is the density of the orbitals calculated
in the n-th iteration, Ap = p™ — p{"®) and « is a mixing coeflicient, usually chosen
between 0.5 — 0.8. In order to fasten the convergence process, a Pulay mixing scheme
[290] is added to the SCF algorithm.

6.4 Numerical analysis of the implementation

In this section, the influence of the different components in the presented finite element
implementation of the Kohn-Sham equations is examined. The intended “chemical accu-
racy” in the energy calculations, is considered to lie at around 107 £y, per atom and has
to be interpreted in the sense that for a given basis set, the minimum energy has to be
found within that range. A relative error criterion is also possible, but since we present
some of the numerical analysis in the from of concrete energy values, this kind of error
measure is chosen in this work.
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In Section 6.4.1, the treatment of the electrostatic interaction in the Poisson equation
and the effective potential is considered. In particular the aspect of the singularity in
the potential arising from the point charge of the atomic nuclei is investigated. Different
neutralizing charge distributions in the Poisson equation are discussed and an exploration
of the electrostatic potential ¢ in terms of high order finite element shape functions is
provided. Next, in Section 6.4.2 the necessary approximations of a finite domain size,
numerical integration and boundary conditions for the Poisson equation are investigated.
Finally, Section 6.4.3 deals with convergence properties of the SCF algorithm with respect
to the occupation number as well as the mixing scheme, the impact of the mesh refinement
around the nuclei, and ends with some comments upon different parameters, which have to
be adjusted in a simulation, like the tolerances in the linear solvers or the shift parameter
in the eigenvalue problem.

The numerical analysis is performed by executing test calculations, which are discussed
in the following. As generic example serves in several cases a single neon atom, for which
the simulation conditions are adapted to the situation under investigation. We restrict
to all-electron calculations, because here the requirements onto the basis set are most
demanding, since it must be capable of representing the electrostatic potential ¢ together
with all the orthogonal electronic eigenfunctions simultaneously, which highly oscillate at
the positions of the atomic cores.

6.4.1 Treatment of the core singularity in all-electron calculations

In the length scale of common density-functional simulations, the positive atomic nucleus
effectively represents a point charge described by a delta-function at the nucleus position,
generating a contribution proportional to 1/7 in the electrostatic potential of the total
charge. Unlike in calculations using pseudopotentials, this singularity must be dealt with
in all-electron calculations. The singularity is integrable in dimensions larger than one.
However, the numerical integration with Gaussian quadrature rules has to be performed
carefully, as relevant discrepancies can emerge in the resulting energies or matrix elements,
if the polynomial quadrature rule is not large enough or the extent of the finite element
around the singularity is not small enough, respectively. Alternatively to integrating the
singularity with Gaussian quadratures, a coordinate transformation can be performed
(77, 256].

6.4.1.1 Neutralizing charge distribution in the Poisson equation. In the finite
element basis, the electrostatic potential of the electrons practically cannot be directly
integrated from the electron charge density via the Green’s function of the Poisson equa-
tion, as it is the case for atomic orbital basis functions [180], due to the decisively higher
amount of involved basis functions and the resulting numerical expense. Instead, the
Poisson problem (6.15) is solved with adequate boundary conditions, which on the other
hand cannot be effectively accomplished in the atomic orbital basis, since it does not
constitute a complete basis. In the Poisson equation a localized, neutral charge distribu-
tion is favorable on the right hand side, as then the electrostatic potential decreases at
least quadratic in the distance r to the charge distribution, rendering valid the approx-
imation of a finite domain of appropriate size with homogeneous boundary conditions.
In the SCF algorithm however, the potential of the electron density alone is required for



6.4 Numerical analysis of the implementation 187

2 T T T T T 8 T T T

Gaussian, 0=0.3

— — —Gaussian, 0=0.4
— = Gaussian, 0=0.5
i

Gaussian distr.

erf (z)

Potential

Figure 6.5: Schematic plots to illustrate the nature of the neutralizing charges. Left:
Error function erf (z). Right: Gaussian charge distributions 1/(7%/203)exp (—r2/0?) for
varying width parameter o (upper half) and the corresponding potentials erf (r/o)/r (lower
half) approaching the 1/r function with decreasing width parameter o.

example in the calculation of the Hartree energy shown in (6.6) or (6.39). Therefore a
positive, neutralizing charge distribution is added on the right hand side of the Poisson
equation, whose potential for homogeneous boundary conditions on an infinite domain
is analytically known and can be subtracted from the numerical solution of the joint po-
tential in order to receive the potential of the electrons. In this approach, the analytic
potential of the neutralizing charge density is expected to annihilate the contribution to
the numerical one, an assumption whose justification depends of course on the quality
of the numerical approximation. Alternatively it would also be possible to solve for the
electrostatic potential of solely the electrons by imposing appropriate non-zero boundary
values, originating from the negative potential of the nuclear point charges, replacing the
homogeneous boundary conditions. With this approach the discretization error from the
mixed analytical and numerical treatment of the potential could be avoided as well as the
necessity to represent the singularity in the total electrostatic potential on the grid. This
approach has however not been followed in this work.

The compensatory charge distributions applied in this work are on the one hand a Gaus-
sian charge distribution [309], whose potential is related to erf (r)/r, with the error func-
tion

erf (z) = % /Ol‘ e dt = % % %x%“ (6.35)

canceling the singularity at the origin, as shown in Figure 6.5. On the other hand a point
charge, represented by a regularized delta function is chosen, whose potential decays
proportional to 1/r. The regularization is introduced to satisfy the requirements of the
weak Poisson equation on the right hand side for an solution in H'!, without effectively
changing the point charge properties and could be thought of for example as the just
given Gaussian charge distribution close to the limit ¢ — 0. Other possible neutralizing
densities are p,., = €~ "/r, a spherical ball of constant density [30] or the smooth, strictly
local densities introduced in [283].

When the point charge is chosen, the electrostatic potential ¢, following from the Poisson
equation, directly accounts for the joint potential of the nuclei and the electrons, as
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can be seen from (6.15) and (6.37). However the 1/r singularity of the potential at the
atomic position has to be represented in the numerical basis, which requires an adequate
resolution of the finite element mesh around the nuclei. The numerical solution of the
electrostatic potential then yields a relatively large but finite value at the nuclei positions,
which yet does not spoil the numerical setting, as only integrals of the potential are of
importance and here the required accuracy can be reached, as shown in the numerical
analysis in Section 6.4.2.1. In the SCF algorithm no further treatment of the 1/r potential
is required. However in order to calculate the contribution of the Hartree- or the electron-
nuclei interaction energy in the total energy (6.17), an integration over the singularity
is required, as outlined in equation (6.39). In these integrations, special care about the
singularity has to be taken and therefore numerical quadrature rules of up to order 30
were employed to ensure the chemical accuracy in this term. In order to represent the
1/r potential adequately, already increased refinements in the grids around the atomic
positions have to be used, which however are required anyway due to the representation
of the electrostatic potential and the oscillating wave functions. On these refined meshes,
the integrals can be performed with the required accuracy.

In the case of a Gaussian charge distribution, the analytic solution of the Poisson equa-
tion for the neutralizing charge distribution (6.36) is subtracted from the joint numerical
solution ¢ of the Poisson problem (6.37) to gain the electrostatic potential of the elec-
trons, which is required in the assembly of the Kohn-Sham matrix (6.38) as well as in
the calculation of the Hartree energy (6.39). The external potential built by the nuclei is
directly described by a singular 1/r potential, which enters the evaluation of the Kohn-
Sham matrix elements and the E,,; energy, so again integrations need careful treatment.
The potential ¢ however does not need to represent a singular point at the origin, which
reduces the requirements onto the basis set, i.e. a lower refinement of the mesh around
the origin is possible. However the mesh must still allow for an adequate integration of
the 1/r singularity in the matrix elements and the representation of the orthogonal wave
functions, which highly oscillate at the origin.

Point charge Gaussian charge distribution

Normalizing charge distribution

Z Z r? ~ erf (%)
Pneu = ZA6(7") & Pneu = 24 Pneu = 3714 €exp (_7> & Pneu = Za = (6-36)
T T2 03 [oa
Poisson equation for electrons and neutralizing charge
~ ZA r— RA 2
—A¢p = 4r p—ZZA(S(RA)> —Ap=dr(p—> —F—exp (—( . ) (6.37)
A A m203 o
Electrostatic contribution of electrons and nuclei to Vg in the Kohn-Sham matrix
- Z perf (m) Za

KES — (i1l KES = (¢, g — j 6.38
i = (pildles) b (¢z|(¢+XA: T TR, ) P (639)

Calculation of the Hartree energy

1 Za 1 - Zaert (2=Ral)
EH2/<¢+2A:rRA>p(r)dr EH2/<¢+2A:|1'RA|>p(r)dr (6.39)

Table 6.2: Governing equations in the treatment of the electrostatic interaction with a
point-like or Gaussian neutralizing charge distribution.
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Method Ref Etot al Ekin EH Eext EXC 1s 2s 2 14

Point. 0 -128.2102 127.7419 65.7454 -309.9918 -11.7057 -30.29649 -1.31837 -0.49310
Gauss. 0 -128.2141 127.7521 65.7426 -310.0028 -11.7060 -30.29992 -1.31842 -0.49305
Point. 1 -128.2268 127.7667 65.7550 -310.0408 -11.7078 -30.30043 -1.31820 -0.49313
Gauss. 1 -128.2270 127.7669 65.7550 -310.0411 -11.7078 -30.30050 -1.31820 -0.49313
Point. 2 -128.2272 127.7674 65.7552 -310.0418 -11.7078 -30.30054 -1.31820 -0.49313

Table 6.3: Comparison of energy contributions and eigenvalues in [Ey] for P4 calculations
on a single neon atom employing a Gaussian- or a point charge as neutralizing charge
distribution. All calculations are performed on the identical mesh with different global
refinements (Ref), where the last row from the twice refined point charge approach can be
regarded as the reference result.

In order to compare these two approaches, test calculations are performed using different
finite element types and different grids. In Table 6.3 the results for P4 finite elements
are given, where the width parameter of the Gaussian distribution is set to o = 0.5. It is
observed, that the Gaussian approach possesses advantages, as it can reproduce accurate
results already on meshes of lower refinement, i.e. the energy contributions from the
Gaussian approach of the same global refinement already approach values from a higher
refinement of the point charge approach. The lower 1s and FE.y energies of the Gaussian
approach on the identical mesh result from the direct inclusion of the nuclei potential
in the effective operator (6.38), yielding a deeper potential. Therefore the Gaussian-
approach allows calculations with lower grid refinements and can be regarded as superior.
However within our exactness, both approaches converge to the same values and are able
to describe the atomic system. Due to evolutionary reasons, in the rest of this work, the
point charge approach is applied.

It should also be noted, that the integration over the singularity can be avoided by a
mixed procedure, taking the point charge approach in the SCF algorithm and after con-
vergence, employing the Gaussian charge distribution in order to obtain the electrostatic
potential for the energy calculation. However in this procedure, the mesh requirements
for representing a potential ¢ with singular point still remain valid. In [283] a procedure
is described, how this integration could also be circumvented.

6.4.1.2 Higher order finite elements for the electrostatic potential. Apart from
this section, equal finite element spaces are used for the electrostatic potential ¢ as well
as the electronic wave functions ); in this work. It might however be advantageous to
represent the electrostatic potential in a finite element space of higher polynomial order,
as this could improve the representation of the 1/r singularity at the nuclei position.
In addition the electron density p on the right hand side of the Poisson equation (6.15)
is of twice the polynomial order as the wave functions 1; in the Kohn-Sham equations.
Therefore the Poisson equation is solved in the finite element space of the electron density,
which can be generalized to an arbitrary order. Table 6.4 compares the results between
calculations where first ¢ is interpolated in the same polynomial order as the wave func-
tions 1; (given by P3 and P4 respectively) and a calculation where ¢ takes twice the
order (P6, P8), the basis in which the density p on the right hand side of the Poisson
equation is represented. For both cases an identical underlying finite element grid is em-
ployed. The final results show a notable improvement towards energy values that could be
gained only on meshes with higher resolution, especially the 1s eigenvalue, representing
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Y ¢ Etotal Exin Ey Fext Fxc 1s 2s 2p

P3 P3 -128.2255 127.7648 65.7543 -310.0370 -11.7076 -30.30011 -1.31822 -0.49313
P3 P6 -128.2258 127.7659 65.7540 -310.0380 -11.7076 -30.30041 -1.31823 -0.49313
P4 P4 -128.2253 127.7645 65.7541 -310.0363 -11.7076 -30.30007 -1.31822 -0.49312
P4 P8 -128.2258 127.7659 65.7539 -310.0380 -11.7076 -30.30042 -1.31822 -0.49312

Table 6.4: Comparison of energy contributions and eigenvalues for a high (P6, P8) and
a low (P3, P4) polynomial order in the basis functions of the electrostatic potential ¢,
where the wave functions 1; are represented in the low order basis respectively. All energy
contribution in [E}].

the ground state in the effective potential, is lowered by 3 -10~* £}, and also the external
energy increases, so the electron density is shifted towards the nuclei position. However
the memory requirements increase drastically if the stiffness matrix (6.28) is assembled
in the high order finite element space containing much more degrees of freedom, at least
if no matrix-free calculations are employed, and also the sparsity of this matrix reduces.
Furthermore, it is known, that in order to represent a singularity, not the polynomial
order of the finite elements should be increased, but the refinement at the position of
the singularity [56, 261]. In summary, these two facts weight up the computational gains
from the calculations. Refering to the Gaussian neutralizing charge distribution of the
last section, there the potential is much smoother without singular point and therefore a
lower order interpolation of the potential is recommended. It should however be noted,
that in order to maintain the variational character of the total energy, a higher order
representation of the potential ¢ can be necessary in order to satisfy the relation between
the electrostatic potential and the charge distribution from (6.13).

6.4.2 Analysis of the numerical approximations

In order to solve the Kohn-Sham equations numerically, a series of approximations have to
be introduced. The basic approximation in the numerical solution scheme is the represen-
tation of the Kohn-Sham equations within a finite dimensional function space as outlined
in Section 6.3.1, however additional approximations are required. For example the do-
main has to be limited to a finite size of reasonable extent in order to not qualitatively
change the system under consideration. Especially the slowly decaying electrostatic po-
tential ¢ should not be influenced, where appropriate boundary conditions for the Poisson
equation can be provided. Similarly the integrals in the calculation of matrix elements
and energies cannot be evaluated analytically but numerical integration with Gaussian
quadrature rules is employed. Therefore in this section the influence of quadrature rules,
the domain size and the boundary conditions on the developed real space framework of
density functional theory is investigated.

6.4.2.1 Numerical integration with quadrature rules. In simple scalar products
of finite element basis functions or their derivatives, the quadrature rule for an exact
integration, i.e. without a numerical error, follows directly from the polynomial degree of
the shape functions. Alternatively these integrals can also be evaluated analytically by
taking the geometric transformation of the reference element into account. However due
to the nonlinearity of the problem, the matrix elements of the Kohn-Sham equations and
the involved energies contain also integrals with rational powers or even logarithms of the
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q Etotal FExin En Fext Fxc 1s 2s 2p

6 -128.22530 127.76417 65.75413 -310.03603 -11.70757 -30.30006 -1.31824 -0.49314
8  -128.22529 127.76437 65.75412 -310.03619 -11.70759 -30.30007 -1.31823 -0.49313
10 -128.22529 127.76450 65.75414 -310.03635 -11.70759 -30.30006 -1.31821 -0.49311
12 -128.22529 127.76433 65.75410 -310.03614 -11.70758 -30.30008 -1.31824 -0.49314
14 -128.22529 127.76446 65.75414 -310.03630 -11.70759 -30.30007 -1.31822 -0.49312

Table 6.5: Effect of the quadrature rule upon eigenvalues and energies for a single neon
atom with P4 finite elements. First column polynomial order g to which the quadrature rule
is exact, then energy contributions followed by the eigenvalues in [F},].

electron density and therefore of the basis functions. In the same way the right hand side of
the Poisson equation contains an integration over the product of the density p with a test
function ¢; (6.29), where p is build from the squared wave functions 1; yielding in total
an integral over the product of three finite element basis functions, which therefore also
yields a higher polynomial degree than the scalar product. Furthermore, in our approach
the 1/r singularity from the potential of the nuclei is integrated in the evaluation of
the electrostatic energies. Therefore a systematic investigation of the influence of the
numerical quadrature rule is carried out, based upon the calculation of the electronic
structure of the neon atom. Quadrature rules of different polynomial order ¢ are employed
in the assembly of the Kohn-Sham matrix as well as evaluating the energy contributions
of the kinetic and the exchange-correlation energy. However for the integration of the
1/r-singularity in the Hartree- (6.39) and the external energy (6.7), which in principle
is only necessary at the end of the simulation in order to determine the final energies,
always a much higher quadrature rule of constant order 28 is applied. Alternatively, also
adaptive quadrature rules could be applied [257].

In general the errors from numerical integration reduce, if the mesh is refined, as the
quadrature is applied in each element and therefore much more quadrature points are
taken into account. Since the results therefore depend upon the mesh and its degree of
refinement, the impact of the quadrature rule is calculated exemplarily for a single neon
atom on a mesh of intermediate refinement and it is assumed, that the findings can be
transferred to other configurations, at least in the way of an upper limit for the error.

It was found that the quadrature rule should at least be capable of exactly integrating
the scalar products of the derived basis functions in the stiffness matrix. If this was not
the case, the changes in the SCF algorithm were too invasive, and completely different
eigenvalues and eigenfunctions could result. However if this criterion is met, different
quadrature rules resulted in changes in the energy components only in the 4th digit,
well below the stated accuracy threshold of 1072 £y, as illustrated in Table 6.5. The
eigenvalues only minimally change with the quadrature rule, however the electron density
still changes, as can be seen from the difference in the kinetic energy. These energy
changes however seem to annihilate the changes in the potential energies, as the total
energy remains unaffected in the digits presented.

In order to quantify discrepancies from the integration over the 1/r-singularity, a test
integration over the “screened potential” e™"/r is performed, for which the analytic result
on a sphere is given as

—|r| r ,
/ € dr = dxlim [ Fedr = dn (1—=lim(r+1)e™") = 4n. (6.40)
R3

‘T| r—oo J r—00
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Inner grid length 0.002aq Inner grid length 0.01ag
Order q Total value Difference to 4w Total value Difference to 47
5 12.5656921760985 —6.78 - 10~ 12.5700713175014 +3.70- 1073
10 12.5663705999356 —1.44-108 12.5663705187223 —9.56-1078
15 12.5663706124750 —1.88-107° 12.5663705859752 —2.83-1078
20 12.5663706139124  —4.47-10710 12.5663706086168 —5.74-107°
25 12.5663706140282 —-3.31-10710 12.5663706097417 —4.62-107°
30 12.5663706142010  —1.58 - 10710 12.5663706127643 —1.59-107?

Table 6.6: Differences in the numerical integration of the screened potential e=" /7.

The finite domain radius of the mesh is chosen as 40, where however the volume outside a
sphere of radius 30 only contributes less than 47 (30 +1)e™3° < 3.65- 107! to the integral,
so that the difference of the employed grid to a radial sphere, i.e. the shape of the domain
being polyhedral instead of spherical, does not contribute relevantly to the integral. The
integration was performed on two grids which only differ in the refinement around the
origin, where the grid length at the atom position was 0.01ay and 0.002ag, respectively.
The discrepancies of the numerical integration to the value of 47 are given in Table 6.6.
One can see from the data, that a high order quadrature is able to achieve an exactness
at around 107! in the result. In the SCF algorithm the electron density p replaces the
exponential e~ in the integrand, which could weight stronger the values at the singular
point. In calculations with the neon atom, the discrepancies in the calculations with
quadrature rules between 25 and 30 on the same mesh, have been found in the order of
10~*E,. Therefore, if higher accuracies in the total energy are required, it is possible to
avoid the integration over the singularity by applying the Gaussian neutralizing charge
distribution (6.36) and reside to the energy calculation from (6.17). Alternatively, a
geometric transformation [77, 256] can be performed, which then allows for an accurate
integration. However it should be emphasized again, that only the final energy calculation
is affected by this issue, but neither the eigenvalues nor the electron density itself.

6.4.2.2 Influence of a finite domain size. The domain of definition of the Kohn-
Sham equations (6.12) consists of the complete real space R?, which can numerically be
realized only with non-standard methods like e.g. infinite elements [36] or coordinate
transformations [130]. In the numerical setting the domain is therefore restricted to a size
on which the fast decaying atomic orbitals of the atoms and molecules have effectively
vanished and the slowly decaying electrostatic potential can be modeled with appropriate
boundary values. The effect of the finite domain size is now studied for our generic test
configuration of a single neon atom, where calculations are performed on domains of
increasing extent using homogeneous boundary conditions, which are suitable in this case
since the total charge, the dipole, and all higher electric multipoles vanish in the analytic
solution of the noble gas atom. The comparability of the results from different domains is
assured by employing identical meshes in the interior domain, enlarged to the new domain
size by additional elements. In the case of P4 finite elements, the energy contributions
and eigenvalues on domains of different radii are given in Table 6.7.

Two antagonizing effects are observed in the data, which can be physically interpreted.
The binding energy between the electrons and the nuclei increases on the smaller domain,
since the electrons reside closer to the nuclei thereby increasing the external energy. This
results also in an increase of the exchange-correlation energy, as the electron density is
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ﬁ[ao] ETotal Exin Ey FEext Exc 1s 2s 2p
5 -127.555 130.841 69.627 -315.826 -12.197 -29.732 -0.949 -0.075
10 -128.221 127.801 65.850 -310.154 -11.719 -30.288 -1.309 -0.484
20 -128.225 127.764 65.754 -310.036 -11.708 -30.300 -1.318 -0.493
160 -128.225 127.764 65.754 -310.036 -11.708 -30.300 -1.318 -0.493

Table 6.7: Effect of the domain size on a single neon atom calculation using P4 shape
functions. The first column shows the diameter of the domain. Next the energy contributions
followed by the eigenvalues in [E}] are given.

more localized. Therefore both binding contributions in the total energy increase their
energies. With respect to the anti-binding energy components however, the localization
of the electrons yields stronger distractive forces thereby likewise increasing the Hartree
energy. The kinetic energy also increases, since the wave functions have to oscillate and
drop to zero on the boundary within a smaller region, yielding higher gradients and
therefore a higher kinetic energy. Thus the absolute value of the binding as well as the
anti-binding contributions to the total energy raises on a smaller domain. Altogether the
total energy however increases as expected, since an additional constraint is imposed from
the domain upon the variational space of the wave functions in the minimization problem.
In a strict way, the minimum property is lifted by the introduction of the numerical
solution of the Poisson equation for determining the electrostatic potential resulting in
deviations from the initial relation (6.13). However if this relation is reasonably fulfilled,
the minimum property remains valid. The constraint in the small domains directly affects
the form of the wave functions 1;, whereas on medium sized domains (especially in cases
with non-vanishing electric poles) it is expected to mainly influence the Poisson equation
and therefore only indirectly the wave functions ;, merely yielding smaller changes in
the energy values.

The increase of the eigenvalues on the smaller domain, gives evidence that the depth
and the width of the effective potential reduce, being a well known effect in quantum
mechanics [64]. After a certain domain size has been reached (a diameter of about 20ag
in the presented neon example), the difference between the energy components merely
fluctuates on smaller energy scales.

6.4.2.3 Boundary conditions in the Poisson equation. After having estimated
the influence of the finite domain size, the impact of the boundary conditions in the
Poisson equation is studied for the carbon monoxide molecule, which possesses an inherent
dipole. A comparatively small domain with a diameter of 18 aq is chosen and a bond length
between the atoms of 1.7 aq in order to assure the presence of a non-vanishing dipole. At
this atomic distance, the CO molecule shows a dipole of around —0.36 eag, calculated on
a domain of diameter 80 ay in Section 6.5.2.

We compare the differences between calculations with homogeneous boundary conditions
and when non-zero Dirichlet boundary conditions from the electrostatic dipole are applied,
which can be regarded as the natural boundary condition in this case. As expected, the
system with the dipole correction showed an improved accuracy, with a slightly lower total
energy (6-107* Ey,) close to our accuracy requirement and the negative dipole decreased
by 0.01 eay.
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6.4.3 Analysis of simulation parameters

After setting up the SCF algorithm including the above mentioned approximations, there
are further parameters left for adjustment, which affect the accuracy of our simulation. In
particular, these are the basis set, i.e. the polynomial degree of shape functions together
with the density of the finite element mesh, the shift of the eigenvalue spectrum in the
Arnoldi process, the tolerances for the linear solvers as well as the eigenvalue solver,
the mixing parameter « in linear and Pulay mixing, and the occupation number of the
atomic orbitals. While some of these parameters, like the mixing parameter and the
solver tolerances are straightforward to adjust, as their influence can directly be seen on
the quality of the results or the duration of the convergence process, there are others,
which show a more subtle influence, and therefore need a more thorough investigation
given below.

6.4.3.1 Convergence of closed shell calculations - dependence on the occupa-
tion number. For simplicity, the calculations performed in this work are closed shell
calculations, i.e. without spin polarization. When performing calculations on single atoms
like carbon or oxygen with partially filled p-shells, scenarios are observed, in which the
SCF algorithm enters a loop between three different total energy values, originating from
different 2p-shell orbitals, as illustrated in Figure 6.6 for a carbon atom. This behavior
can be explained by the symmetry breaking of the numerical solution procedure. Since
the Kohn-Sham equations for a single atom possess radial symmetry, there is no direction
in space determined a priori, along which the three 2p-orbitals of the carbon atom should
align. However the triangulation of the physical domain around the nuclei cannot possess
radial symmetry and therefore certain directions are preferred through the finite element
mesh, along which the system can minimize its energy best.

Induced by the degeneracy of the energy eigenvalues of the three orthogonal 2p-orbitals,
it happens, that in each SCF iteration a different 2p-orbital is obtained. This orbital then
enters the density calculation and therefore determines the new effective potential in the
next loop, which now however prefers a different 2p-orbital as having minimal energy,
since the former one entered the distracting Hartree potential. By this mechanism the
SCF iterations do not converge. The density mixing procedures only reduce the effect and
lead to densities containing parts of all the degenerate orbitals. This phenomena is also
known as “charge sloshing”, since the density changes non-smoothly in every iteration.
The energy difference between the SCF iterations is in the order of 7 - 107° E}, for the
carbon atom, which is slightly below our requirement for chemical accuracy. The same
effect is also observed for oxygen. To resolve this situation, all the degenerate orbitals of
a SCF iteration are identified in the density calculation and considered with equal weight,
yielding a convergent algorithm. For more involved atomic configurations, with previously
unknown energy eigenvalues at the Fermi level, one would have to resort to more general
approaches, like e.g. the partial occupation according to the Fermi-Dirac distribution.

6.4.3.2 Mesh refinement at nuclei position. The position of the nuclei represents
an extremal point for the wave functions due to the singularity in the external field.
Therefore it is occupied by a node of the finite element mesh. The mesh refinement,
representing the amount of basis functions available to interpolate the wave functions and
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Figure 6.6: 2p-orbital of the highest occupied eigenfunctions of the C-atom during the con-
vergence process. Inside the red (blue) ball, the wave function takes values larger (smaller)
than 0.1 (-0.1). Left: Partial orbital together with a cut through the underlying finite
element grid, where the color code on the mesh indicates the value of the wave functions
between > 0.1 (red) over 0.0 (grey) to < —0.1 (blue). Right: Highest occupied eigenfunction
changes its orientation in every convergence step between these three configurations.

the electrostatic potential in this sensitive area, where the all-electron wave function highly
oscillates, should therefore significantly influence the quality of the simulation. In Table
6.8, this influence is studied for P4 finite elements on the neon atom, where all calculations
use the identical mesh except for the direct neighborhood of the nucleus position, where
more and more elements are placed, halving the grid length at the nucleus respectively,
as illustrated in Figure 6.7. For larger atoms, a higher refinement is required, due to
the deeper potential and the larger amount of wave functions. For large grid lengths,
a relevant change of the total energy is observed, which at a grid length of 0.064 even
lowers the total energy, where all other approximations in the numerical setting so far
had the tendency to raise the total energy, expressing the nonvariational character of the
presented finite element formulation of the Kohn-Sham equations, which arose due to the
introduction of the Poisson equation as well as the application of numerical quadratures.
It should be noted, that in this special case, due to the rough refinement, the integration of
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Figure 6.7: Zoom into the cross-section of the employed meshes with decreasing grid length
at the center, ranging from 0.032 (left) and 0.016 (center) to 0.008 (right), where the outer
parts remain basically unchanged.
[ao] Erotal Exin Ey FEext FExc 1s 2s 2p
0.064 -128.22868 127.96198 65.72153 -310.20264 -11.70956 -30.31783 -1.31909 -0.49301
0.032 -128.22458 127.78016 65.75032 -310.04730 -11.70776 -30.30158 -1.31830 -0.49312
0.016 -128.22515 127.76605 65.75366 -310.03724 -11.70761 -30.30023 -1.31823 -0.49312
0.008 -128.22527 127.76463 65.75405 -310.03634 -11.70759 -30.30009 -1.31823 -0.49312
0.004 -128.22529 127.76444 65.75413 -310.03645 -11.70759 -30.30006 -1.31822 -0.49312
0.002 -128.22531 127.76449 65.75413 -310.03633 -11.70759 -30.30007 -1.31822 -0.49312
0.001 -128.22531 127.76446 65.75412 -310.03630 -11.70759 -30.30007 -1.31822 -0.49312

Table 6.8: Effect of the inner refinement using P4 shape functions for a single neon atom.
The first column shows the grid length of the tetrahedrons directly at the origin. Next the
total, kinetic, external and exchange-correlation energy followed by the eigenvalues 1s, 2s,
and 2p in [Ey] are given.

the singularity does not possess the common accuracy, as outlined in Section 6.4.2.1, and
therefore the total energy might even be slightly lower or higher. However the eigenvalues
as well as the kinetic and exchange-correlation energy are not influenced by this issue and
they both relevantly change. One can also see from the data that, as expected, mainly
the lowest eigenvalue 1s is effected. Only for the grid length 0.064 the 2p changes, as
manifestation of the fundamental impact of the reduced basis set in this configuration.
Therefore a sufficient refinement at the nuclei position in simulations is important, however
one should also note the convergence of the energy contributions, for high refinements,
where no further significant changes appear, which is one of the characteristics of the
finite element method close to the exact solution.

6.4.3.3 Tolerances in linear solver, mixing parameter, shift eigenvalue solver.
The convergence criterion of the SCF algorithm should take into account the chosen chem-
ical accuracy of 1072 E},. The criteria for finishing the SCF algorithm should therefore
guarantee the achievement of this limit. The exit criterion is attached to the change in the
total energy of consecutive iterations, which is determined to vary by less than a value be-
tween 10~* and 107% £y, where the fulfillment of the criteria in two consecutive iterations
was usually enough to reach the chemical accuracy. The tolerances of the linear solver
of the Poisson equation and the linear equation involved in Arnoldi process (6.33) should
therefore be reasonably lower than the intended accuracy of the SCF algorithm and we
increased the tolerances in early iterations, in which the density still varies strongly in
every loop. With respect to the mixing coefficients in (6.34), a default value of a = 0.65
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is used. However it was sometimes necessary to increase the parameter in order to reach
convergence. Especially changes in the finite element discretization around the nuclei
position and therefore the basis set could relevantly change the convergence behavior. In
that respect an additional change of the shift parameter in the Arnoldi process was re-
quired at times, as extremal eigenvalues could not be found with the previous shift value,
reflecting altered interpolation capabilities with respect to the eigenfunctions. Similarly
the domain size influenced the convergence. However in all calculations, it was sufficient
to have a single shift, but applying two or more different shifts in order to extract eigen-
values is also possible or even necessary for more complicated atomic configurations and
might even be advantageous with respect to the computational costs.

6.5 Representative numerical results

In this section the SCF algorithm is applied to simple atomic systems in order to show
that the results and accuracies met with the finite element basis are in line with standard
chemical software packages. All-electron calculations are performed with the point charge
approach in the Poisson equation for the nuclei (see Section 6.4.1) and identical shape
functions for the electrostatic potential as for the wave functions. First, calculations
on noble gases are accomplished, where for the xenon atom, the basis has to be able to
interpolate at once 27 orthogonal atomic orbitals together with the Poisson potential. The
generality of the basis set is then shown in the case of the molecules carbon monoxide
and benzene, where for carbon monoxide no special orbitals for the polarization have
to be introduced, but a reasonable mesh of the binding domain suffices, similar as in
the concluding example of an external homogeneous field polarizing a single neon atom.
Other examples for like H, or a graphene sheet containing 100 atoms can be found in
[95, 200, 254], showing the ability of the finite element method to succeed in sophisticated
configurations.

6.5.1 All-electron calculations on noble gases

Since the orthogonal electronic eigenfunctions of the all-electron calculations highly fluc-
tuate at the positions of the nuclei, the resolution of the finite element mesh was chosen
much higher in the environment of the atomic core and continuously coarsens towards the
domain boundary. The same coarsening is also required by the electrostatic potential,
showing a singularity at the origin. For noble gases the electronic structure is calculated
and compared with Kohn-Sham calculations performed with the electronic structure code
NWChem [366] with the basis sets aug-cc-pv6z (He, Ne, Ar), aug-cc-pvbz (He, Ne, Ar,
Kr), aug-cc-pv4z (Kr) and for xenon only the rather small dzvp and 3-21G basis set were
available for all-electron calculations. For large basis sets, these basis functions tend to
become linear dependent, requiring an exclusion of single functions in order to achieve
convergence of the SCF algorithm, which was especially the case for the aug-cc-pv6z basis.
This behavior already illustrates one strength of the finite element basis in the all-electron
case, where the basis set is constructed naturally from the triangularization of the real
space, without the issue of linear dependencies of the basis functions and therefore also
accurate all-electron finite element basis sets for large atoms like xenon can be constructed
straightforward. The results are given in Table 6.9, with the basis set specified in brackets.
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P2 P3 P4 NWChem NWChem
He -2.834252  -2.834296  -2.834284  -2.834244 (aug-cc-pv5z) -2.834282 (aug-cc-pv6z)
Ne -128.22300 -128.22682 -128.22723 -128.22703 (aug-cc-pvhz) -128.22725 (aug-cc-pv6z)
Ar  -525.9190 -525.9352  -525.9377  -525.9365 (aug-cc-pvbz)  -525.9375 (aug-cc-pv6z)
Kr -2749.823  -2750.072  -2750.130  -2750.113 (aug-cc-pvdz)  -2750.120 (aug-cc-pvHz)
Xe -T7227.913  -7228.647  -T7228.829 -7197.513 (3-21G) -7228.011 (dzvp)

Table 6.9: Total energies obtained from calculations on single noble gas atoms using finite
elements of different polynomial order compared with values calculated from NWChem [366)
for two different basis sets, where all energies are given in [Ey].
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Figure 6.8: Left: Comparison of the relative error in the total energy with the compu-
tational cost for calculations on a single neon atom with different finite elements. Right:
Radial density distribution of the neon atom.

For helium and neon (except for the P2 basis) the solutions are converged with respect to
grid refinement up to the third digit. The total energies of the P4 finite element seem to be
of about the same quality as the aug-cc-pv6z results for He, Ne and Ar, where for larger
noble gases this basis set is not available in NWChem and therefore smaller bases are
employed. For larger atoms, the finite element solutions are not converged with respect
to the mesh refinement, i.e. a uniform mesh refinement would still change the values in
the digits presented, as can be seen from the different results for different finite element
shape functions. Such refined calculations however rendered numerically too expensive,
what implies that a discrepancy between the total energy values shows off, especially in
the case of P2 and P3 finite elements.

Concerning the performance of the different finite element bases it is generally found, that
better results with respect to the invested computational time were attained with higher
order finite elements, as illustrated in Figure 6.8. The calculations were performed on
a local computer cluster, where an external influence due to the varying load cannot be
completely avoided. However the trend of improved performance in high order elements
was generally observed. The P1 elements, which are not shown here, result in an inferior
behavior, which can be explained by the poor interpolation properties of piecewise linear
wave functions, where for example the kinetic energy, involving the derivative of the
wave function, is simply approximated as a constant within each finite element domain.
Similarly, a linear electrostatic potential can only describe potentials with a constant
electric field within each element. The overall run times reached from several CPU minutes
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Bond length 1.7 1.8 1.9 2.0 2.1 2.2 2.3

P2, Binding energy -0.355 -0.460 -0.525 -0.555 -0.565 -0.560 -0.541
P2, Dipole moment -0.360 -0.302 -0.242 -0.178 -0.113 -0.045 0.024
P3, Binding energy -0.375 -0.475 -0.535 -0.566 -0.577 -0.575 -0.559
P3, Dipole moment -0.358 -0.301 -0.240 -0.176 -0.110 -0.042 0.026
P4, Binding energy -0.376 -0.475 -0.535 -0.566 -0.578 -0.575 -0.564
P4, Dipole moment -0.358 -0.301 -0.240 -0.176 -0.110 -0.042 0.027

aug-cc-pvtz, Binding energy -0.371 -0.471 -0.532 -0.564 -0.576 -0.574 -0.563
aug-cc-pvtz, Dipole moment -0.360 -0.303 -0.242 -0.179 -0.113 -0.045 0.024
aug-cc-pvbz, Binding energy -0.376 -0.475 -0.535 -0.566 -0.578 -0.576 -0.564
aug-cc-pvhz, Dipole moment -0.358 -0.301 -0.241 -0.178 -0.112 -0.044 0.024

Table 6.10: Binding energy in Fj and dipole moment in eaq at different atomic distances
in ag for the CO molecule from different finite element calculations and from the software
package NWChem. Experiments found a bond length of 2.13 ap with a binding energy of
—0.41 Ey, [131].

for smaller atoms up to several CPU days in the larger xenon calculations with about
1.5 - 10° degrees of freedom. Similar results for the superior performance of higher order
elements were also found in [254], where mainly hexahedral elements were examined.

In Figure 6.8 the radial density distribution for the neon atom is illustrated, clearly show-
ing the shell structure of the density. Generally one can state that the results completely
meet the accuracies of common electronic structure software packages.

6.5.2 Calculation on small molecules

In calculations with molecules, more care must be taken in the generation of the finite
element meshes, especially in the binding area between the atoms additional elements are
required. As example, the carbon monoxide molecule CO is investigated, which possesses
an inherent dipole moment. Therefore the dipole correction of the electrostatic potential
is chosen on the boundary for the Poisson equation (6.15), where the dipole moment itself
represents a basis sensitive quantity. The calculations are conducted with P2, P3, and P4
shape functions on a domain of diameter 80 ay and the distance between the atoms is varied
in steps of 0.1 ag in order to calculate the bond length, which is found around 2.1 ay. For
comparison, other DFT calculations employing the correlation functional from PERDEW
& WANG [284] report a bond length of 2.08 ag or employing the VWN5 functional [370] one
of 2.125 aq [343], the Hartree-Fock method gives a bond-length of 2.08 ag, and experiments
result in a value of 2.13 ay [131]. A cross-section of the density distribution for an atomic
distance of 2.2 ag together with the mesh points in the section plane is given on the left of
Figure 6.9, whereas the highest occupied molecular orbital (HOMO) is presented in the
center, and the binding energy versus bond length plot is given on the right of that figure.
The dipole moments switch the sign between 2.2 and 2.3 ay and are in good agreement
with calculations from NWChem employing the aug-cc-pvtz and the aug-cc-pvbz basis
set. This is also true for the binding energy, which is found at 0.578 E}, for P4 finite
elements at an atomic distance of 2.1 ag, as shown in Table 6.10.

As a second example, the benzene molecule C;Hg is examined, rendering another bench-
mark problem, which has already been treated in the context of the finite element method
[200]. The planar molecule is thereby aligned in the z = 0 plane with atomic coor-
dinates C (0,42.63804,0), C (£2.28461,+1.31902,0), H (0, £4.684606,0), as well as H
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Figure 6.9: Left: Density distribution with vertices of the underlying FEM-mesh, where
the C-atom is positioned on the left-hand side. Center: Binding molecular orbital (HOMO)
of the carbon monoxide molecule. Right: Binding energy vs. bond length for the carbon
molecule from P4 calculations.

(£4.056988, £2.342303, 0), where all coordinates are given in [ao]. The total energy of the
benzene molecule was found as —229.492F,, for P2, —230.187E}, for P3 and —230.201 F},
for P4 finite elements, where in all three calculations the identical grid is used. For
comparison the P4 result in [200] yielded a total energy of —230.193F}, employing the
exchange-correlation functional from PERDEW & WANG [284]. Reference calculations
with NWChem employing the cc-pvtz basis resulted in a total energy of —230.170F)}, and
the cc-pvqz basis yielded —230.185F},, so that also in this case the accuracy of standard
software packages are achieved.

6.5.3 External electric field

This final section deals with the atomic response of the neon atom due to the application
of a homogeneous external electric field, resulting in the polarization of the atom. This
effect is known to be sensitive with respect to the basis set as well as the electron cor-
relation [319]. Within the finite element representation, the basis is again just given by
the polynomial order and the triangularization of the physical domain, whereas special
basis function are usually added to the Gaussian type basis sets in order to describe the
polarized state of the atom. The basis sets used so far with NWChem (aug-cc-pvXz)
contain already these additional basis functions. The homogeneous field is aligned along
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Figure 6.10: Left: Schematic plot to illustrate the change of the external potential by the
homogeneous external field. Right: Linear dependence of the incited dipole upon the field
strength and change of energy for a neon atom, calculated from P4 finite elements.
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Basis set P4 aug-cc-pvdz  aug-cc-pvbz  aug-cc-pv6z
Polarizability  3.0439 2.9058 2.9981 3.0308

Table 6.11: Comparison of the polarizability of the neon atom between calculation from
P4 finite elements with calculations of different all-electron basis sets with NWChem.

the x-direction and the excited dipole moment is found to increase almost linear with the
field strength over the evaluated range between 107% and 1072 E},/(eaq), as can be seen
in Figure 6.10 for P4 finite elements. The average polarizability in atomic units lies at
3.0439, and reference calculations in NWChem revealed the requirements onto the basis
set, where only the largest available basis for the neon atom, the aug-cc-pv6z basis, could
reach a similar value for the polarizability to within one percent, whereas the other em-
ployed basis sets resulted in lower polarizabilities. The involved polarization functions in
these basis sets were therefore not fully able to catch the magnitude of the polarization
adequately, as can be seen in Table 6.11. The total energy decreases slightly less than
quadratic, but is still in good agreement with the quadratic Stark effect [64].
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7 Conclusion and outlook

7.1 Modeling solids undergoing failure at the macroscopic scale

Part I of this work starts with a brief review of the strong discontinuity approach used
to incorporate failure into the numerical framework of the finite element method. The
marching cubes based algorithm initially developed to extract a polygonal mesh of an
isosurface from a 3D scalar field in the field of computer graphics is adapted in this work
to combine it with the global tracking algorithm and the finite elements with embedded
strong discontinuities to simulate a propagating failure surface through a 3D failing solid.
Its potential is fully exploited when using eight node hexahedral finite elements for which
28 constant isosurface configurations exist for the particular nodal level set values obtained
from the global tracking algorithm initially developed in OLIVER ET AL. [267, 269]. Ex-
ploiting rotational and reflective symmetries as well as sign changes, the marching cubes
algorithm proposes a reduction of those 256 cases to 15 unique configurations, which are
used for the prediction of the propagating failure surface through the finite element under
consideration. Such element must be capable of describing a failure zone represented by
a strong discontinuity, i.e. a jump in the displacement field. This is achieved in this
work based on the well established strong discontinuity approach, following the recent
extension in ARMERO & KiM [13] to account for higher order separation modes in 3D,
with only a slight modification based on replacing the rotational mode around the normal
direction by an additional in-plane shear mode resulting in slight differences of the closed
form solutions for the compatibility operator. A particular emphasis is directed towards
the configurations of the marching cubes algorithm predicting non-planar failure surfaces.
To retain a physical meaningful interpretation of the local element parameters of the
strong discontinuity approach, an artificial planar failure surface is constructed in each
finite element with a strong discontinuity, not violating though the important require-
ment of global continuity of the actual non-planar failure surface. Various representative
numerical simulations show the performance of the proposed concept including a carefully
investigation of its behavior for propagating highly curved failure surfaces. An extension
of the concept to use the marching cubes algorithm for the prediction of crack branching
scenarios is currently under investigation. Also, its exploitation in other finite element
frameworks capable of describing a strong discontinuity within the individual finite ele-
ments is possible. Extension of the proposed marching cubes based propagation concept
for more advanced electromechanical coupled material than those in Section 3.6.5 or for
soft matter materials are also topics of future research in this direction.

Thereafter, new finite elements to account for strong discontinuities in the mechanical
displacement field and the electric potential are presented to model failure in electrome-
chanical coupled materials. The new finite elements have been obtained by the proposal
of new electrical separation modes which are directly incorporated into the strong dis-
continuity approach with the goal to avoid locking along the same lines applied within
purely mechanical based materials. Constitutive relations along the resulting strong dis-
continuities, sharply representing the localized zones of failure in the form of a crack, of
the electric quantities have been derived based on the development of a localized elec-
tromechanical damage law along the crack faces. The performance of the resulting finite
elements is tested based on two academic single element tests to confirm their locking
free property and then applied to realistic simulations in the form of a compact tension
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test and a three point bending test of piezoelectric ceramics for which a comparison with
experimental results is performed. This has led to the conclusion that the main char-
acteristics of the dependence of the ultimate load of these specimens on the sign of the
applied electric field as proposed in PARK & SUN [280] can be captured with the proposed
framework. Despite these promising result there is still room for improvements which are
planned to be addressed in future publications. A closer investigation with regard to the
applicability and limitations of the propagation criterion for electromechanical coupled
materials will be made. Further, the modeling of the crack boundary conditions as being
electrically impermeable is probably the main reason for the underestimation of the effect
of the applied electric field even though the same tendency can be captured as in PARK
& SuN [280]. Therefore studies on the influence of the electric crack boundary condition
need to be performed in the future. Even though applied in the numerical simulation
for piezoelectric ceramics, the approach results in the development of new finite elements
capable to model the electromechanical response for a class of materials with even more
general ferroelectric effects. An application of the methodology to such materials may be
addressed in future publications.

Further, the effect of electric displacement saturation on problems related to the hysteretic
behavior of ferroelectric ceramics and the initiation and propagation of cracks in piezo-
electric ceramics is carefully investigated in this work. The physical motivation stemming
from a reduction of the ionic movement in such materials at high applied electric fields
suggests a saturation of the electric displacement which is proposed in this work to be
incorporated in a simplified way by identification of the material parameters effected by
this non-linearity and their saturation based on an exponential saturation law. In a first
step the saturation of the identified dielectric material parameters is investigated ana-
lytically for a problem of a crack in an infinite domain within the framework of linear
piezoelectricity. It is shown that both, the total as well as the strain energy release rate,
for a Mode IIT and a Mode I crack are effected by this non-linearity. Keeping their respec-
tively even and odd dependency on the orientation of the applied electric field a reduced
dependency of the energy release rates is the result of the electric displacement satura-
tion. The advantage of the proposed incorporation of this effect in this work lies in the
straightforward extension to problems where no analytical solutions exist. That allows to
outline its effect on the hysteresis curves when adding it to a rate-dependent ferroelectric
material model applicable to simulate initially unpoled ferroelectric ceramics. It is shown
that the dielectric hysteresis curve is clearly effected at high positive and negative applied
electric fields with respect to the polarization direction whereas the butterfly hysteresis
curve shows no change. Finally, its influence is explored when it comes to crack prop-
agation in piezoelectric ceramics outlining a clear dependency of the crack path on the
size of the electric saturation zone which is controlled by the newly introduced saturation
exponent. To numerically simulate crack propagation in piezoelectric ceramics includ-
ing electric displacement saturation, the strong discontinuity approach, which allows to
capture and describe the propagation of jumps in the displacement field and the electric
potential through the individual finite elements, is extended. The performed numerical
simulations of a compact tension test and an off-centered three point bending test show
excellent agreements with experimental results given in the literature. In particular, the
curved crack path obtained for the latter test, is to the authors knowledge, for the first
time numerically reproduced in such close agreement with the experiments. An extension
of the simplified electric displacement saturation model to account also for a resulting
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modification of the electrostrictive strains is currently under investigation. The determi-
nation of the influence of alternative electrical boundary conditions along the crack path
is an active research activity which can be extended to the proposed model of electric
displacement saturation in the future.

7.2 Modeling materials with network microstructures at the meso-
scopic scale

Part II of this work explores the mechanics of materials with random network microstruc-
tures. It presents a new kinematic constraint relating the microscopic deformation of
fibers to the macroscopic strain of the continuous solid that results in an efficient ho-
mogenization of the elastic response produced by these soft materials. This relation is
established with the help of a special statistical description of the network microdefor-
mation that provides extensive information about the reorientation and axial straining
of the fibers. The design of the constraint is based on kinematics of maximal advance
paths, which allows for a robust transition from the microscopic scales of the network
to macroscopic scales of the deformed material. The maximal advance path constraint
imposes restrictions not on the stretch of a single fiber but on the microdeformation of the
network as a whole. Furthermore it includes important topological characteristics of the
network like the functionality of the junctions. Remarkably, for the case of tetrafunctional
networks the constraint takes a compact tensorial form which can be clearly interpreted.
It is shown that the exact distribution of the variable microscopic stretch defined by this
network model can be determined by the principle of minimum averaged free energy, which
ultimately leads to the derivation of the homogenized elastic response of the relaxed net-
work at equilibrium. The predicted equilibrium microstretch is non-trivially distributed
and depends on the particular response of the chains. The qualitative difference of the mi-
crodeformation and the homogenized stress response is shown for tetrafunctional networks
with two different types of fibers, namely, flexible chains and stiff filaments.

In the former case, the networks are shown to undergo an essential non-affine deformation
when their fibers approach their finite extensibility. This gives a consistent explanation for
the difference in the stiffening of elastomers at uniaxial and equibiaxial extension which
is well known since the first publication of the experimental data for vulcanized rubber in
TRELOAR [353]. In this respect the model supports the justification of other non-affine
models like the 8-chain model [17] and the non-affine microsphere model [244] which both
suggest a redistribution of chain stretch in the polymer networks. Moreover, in agreement
to the latter model this non-affine deformation is associated with the relaxation of the
network by the internal degrees of freedom.

A very peculiar behavior is also predicted for networks composed of stiff filaments. The
microscopic stretch is shown to be non-affine not only at larger macroscopic strains when
the fibers get highly elongated but also at small strains. Furthermore, one can identify
a specific soft regime in which the network deforms solely by reorientation without axial
straining of the stiff fibers and therefore produces no mechanical response. The transition
from this unstable regime to the stable equilibrium behavior results in a particular scaling
of shear and normal stresses obtained for simple shear loading and represents a limiting
case. As argued in Part II, the stretch of fibers in the real semiflexible networks is
stabilized by bending. The response of stiff filaments to bending is commonly much
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smaller than their response to axial straining. Nevertheless, in the situation when fiber
axial forces become zero, which is the case for the fiber reorientation in the predicted
unstable regime, bending can become the dominant mechanism of network elasticity.
Instead of the loss of rigidity by the network in the undeformed state as demonstrated in
this work, a soft but stable elastic response of the material supported by filament bending
as reported in the literature [147, 158, 271, 367] is expected.

The presented homogenization scheme is universally applicable to the materials with
random network microstructures formed by fibers of different nature. The use of the
maximal advance path constraint is especially justified in cases when the microscopic
deformation significantly deviates from the affine stretch, for it effectively captures on
average the complex kinematics of connected fibers. Furthermore, the proposed model
provides a broad framework for future extensions. For flexible chains, the model gives a
very realistic picture of the network microdeformation. Nevertheless, the elastic properties
of real elastomers can not be described in terms of the conformational statistics of single
chains only. Thermal fluctuations of the junction points [101, 167] and interaction of
chains over their length [73, 82, 143, 144] play an essential role and have a corresponding
energetic contribution. The incorporation of these factors into the developed description
of the network micromechanics reaches far beyond the illustrative objectives of this work
and is a subject for future extensions. For stiff filaments, the proposed maximal advance
path constraint model is valid for the stretching-dominated regime. The incorporation of
the instant bending of fibers into the proposed model will allow to capture the response
of the stiff networks in the whole range of macroscopic deformations.

The approach proposed in this work provides two main contributions to the mechanics
of soft materials. Firstly, it constitutes a universal framework for the development of
computational models that can be utilized for the finite element analysis. It is not overly
complex and at the same time is quite flexible and suitable for different types of networks.
Secondly, the approach has an essential micromechanical justification. As a consequence,
it allows not only to obtain averaged mechanical properties of the material but also to
explain how particularly they originate at the microstructure level. Besides the values of
the macroscopic quantities such as mechanical stress the resulting models are capable to
predict by which microscopic forces and which deformed microscopic fibers it is created.
This information is crucial for the understanding of elasticity as discussed in this work,
as well as other phenomena in soft materials with random network microstructure. In
particular, the knowledge of the microstretch distribution gives the key to the failure of
such materials and its modeling in the context of the advanced finite element techniques
described in the first part of this work.

As the second key ingredient of Part II serves a new micromechanically motivated transient
network model, which is incorporated into the framework of finite rubber viscoelasticity.
The model is based on diffusion processes of the highly mobile macromolecules forming
the individual polymer chains. These processes result in the evolution of the probability
for finding chain segments within a certain stretch state which is governed by the gen-
eralization of the Smoluchowski equation from non-interacting particles towards flexible
polymer chains in this work. It is shown how a tensorial representation of such evolution
yields closed form expressions of the viscous part of the isochoric free energy as well as
for the viscous overstress which interestingly agree with the corresponding expressions
obtained in the transient network theory of GREEN & TOBOLSKY [127], even though the
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underlying micromechanical model differs. Finally, the model is evaluated based on its
application in homogeneous and non-homogeneous tests where the numerical results are
compared with in the literature available experimental data sets. In those simulations,
the non-affine network model of MIEHE ET AL. [244] is chosen for the representation of
the elastic response. The obtained results are satisfactory when taken into account the
simplicity of the obtained viscous response in the proposed transient network model.

Modifications of the micromechanically motivated model in the sense that it results in
more advanced evolution laws for the polymer stretch probability may be achieved by dif-
ferently accounting for translational and rotational degrees of freedom on the microscopic
level. It is furthermore desired to develop a microscopic model which yields a physical
based discrete relaxation spectra. These are possible directions for future research in this
area.

7.3 Modeling the electronic structure of solids at the microscopic
scale

In Part IIT of this work a numerical procedure for the solution of the Kohn-Sham equations
based on finite element basis functions is provided, thereby making use of the hierarchy of
the involved bases in modeling the electron density p and the introduction of a staggered
solution procedure, especially in the form of a p-refinement, which was examined for the
first time in the context of Kohn-Sham density functional theory. The focus is laid on all-
electron calculations, since here the highest requirements upon the basis set are in place.
An intensive numerical analysis is provided, where the different approximations involved
in the numerical setting are pointed out and examined. For that reason, exemplary
calculations are performed, mainly for the neon atom, and it is found, that with a correct
treatment a numerical accuracy of 0.001 £}, per atom can be achieved. The approach of a
neutralizing Gaussian density distribution in the Poisson equation turns out to be superior
compared to the point charge approach, yielding better energy values on the same mesh.
The interpolation of the electrostatic potential in the higher order basis also lead to better
results, however the computational costs also rise in such scenario. The influence of the
numerical quadrature, the domain size, the boundary conditions, and other parameters
are shown to be controllable with a proper configuration of the numerical setting. In
calculations on noble gases, the accuracies of standard chemical software packages could
be reached, without the problem of linear dependence in the basis set. However the
computational costs are relevantly higher due to the much higher amount of basis functions
involved in the finite element approach and the generalized eigenvalue problem. Here the
higher order finite elements revealed major advantages compared to the low order ones
for tetrahedral finite elements, where similar results as for mainly hexahedral elements in
MOTAMARRI ET AL. [254] could be recovered. The universality of the finite element basis
was demonstrated in the calculation of the polarized carbon monoxide molecule, where
the dipole and binding energy could be well exerted. Especially the application of an
external homogeneous field has not been examined in the finite element approach so far.
In the subsequent application example of a single neon atom, it was possible to extract
the static electric polarizability without the need of any additional changes in the finite
element basis, as it is the case for Gaussian type orbitals based basis sets, demonstrating
explicitly the generality and flexibility of the finite element basis.
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In the future, a reduction of the computational costs is intended, which result mainly
from the high amount of basis functions, required to represent the wave functions ade-
quately and from the generalized eigenvalue problem, due to the non-orthogonality of the
basis functions. The application of spectral finite elements [24, 25] essentially improves
upon both issues and in a recent work [254], it has been shown to close the gap to the
performance of the plane wave basis in the case of isolated systems. Another remarkable
innovation comes from the partition of unity method [232, 340], where the enrichment of
the basis with adequate additional functions with superior interpolation properties be-
comes possible. Also the inconvenient requirement to mesh the domain, which also has
to be adapted, when the atoms are moved, might be released to some extent with this
approach.
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