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D E U T S C H E Z U S A M M E N FA S S U N G

In der vorliegenden Dissertation betrachten wir Aspekte der nichtparametrischen
funktionalen Datenanalyse. Es wird der funktionale Zusammenhang zweier Zu-
fallsvariablen, einer erklärenden Zufallsvariablen X und einer abhängigen Zufalls-
variablen Y, untersucht. Dabei bezieht sich der Begriff funktional in funktionaler
Datenanalyse auf den Ursprung der erklärenden Zufallsvariablen X. Bei dieser
wird angenommen, dass sie aus einem Funktionenraum E stammt. Die abhängige
Zufallsvariable Y sei dagegen reellwertig.

Neben der Einführung in die nichtparametrische funktionale Datenanalyse in
Kapitel 1 beinhaltet diese Dissertation drei weitere Kapitel, deren Inhalt in den
nachfolgenden drei Absätzen zusammengefasst ist.

In Kapitel 2 betrachten wir die funktionale nichtparametrische Regression für α-
mischende Daten ((Xi, Yi))ni=1. Dabei ist man an einer Schätzung der unbekannten
Regressionsfunktion m(x) := E [Y|X = x] interessiert. Im Gegensatz zur paramet-
rischen Regression machen wir keine Annahmen über die Gestalt von m(x), wir
setzen lediglich gewisse Regularitätsannahmen voraus. Eine Methode zur Schät-
zung der Regressionsfunktion m(x) ist der k-Nächste Nachbarn Kernschätzer. Der
k-NN Kernschätzer gehört zu den lokalen Mittelungsschätzern. Bei diesem Ver-
fahren bildet man ein gewichtetes Mittel über die abhängigen Zufallsvariablen
Yi, die den k nächsten Nachbarn des Elementes x zugeordnet sind, um damit eine
Schätzung vonm(x) zu erhalten. Wir werden beweisen, dass der k-NN Schätzer für
α-mischende Daten punktweise konsistent ist, und wir geben, unter zwei sich un-
terscheidenden Voraussetzungen an den Kovarianzterm, jeweils die Konvergenz-
raten an.

Zu guter Letzt geben wir einen Ausblick, wie man die Anfälligkeit des k-NN
Kernschätzers gegenüber Ausreißern vermeiden kann. Wir umreißen dabei, wie
man diesen robusten k-NN Schätzer konstruiert und zu einer Konsistenzaussage
gelangt.

In Kapitel 3 befassen wir uns mit der gleichmäßigen Konvergenz von Kern-
schätzern auf einer kompakten Menge SE verschiedener bedingter Größen, wie
dem bedingten Erwartungswert, der bedingten Verteilungsfunktion und der bed-
ingten Dichtefunktion für α-mischende Daten. Wie bereits im zweiten Kapitel set-
zen wir für diese drei bedingten Größen lediglich gewisse Regularitätsannahmen
voraus. In den Beweisen für die Konvergenzraten der verschiedenen bedingten
Größen stellt sich heraus, dass ein Zusammenhang zwischen der Überdeckungs-
zahl von SE und der Art der Abhängigkeit der Daten vorliegt. Besitzt SE eine
exponentiell wachsende Überdeckungszahl, so ist es mit den uns bekannten Mit-
teln nicht möglich, gleichmäßige Konvergenzraten für allgemein α-mischende Zu-
fallsvariablen zu erhalten. Für Funktionenräume mit derartiger Eigenschaft von
kompakten Teilmengen müssen wir uns auf geometrisch α-mischende Zufallsvari-
ablen beschränken. Bei Mengen SE mit polynomial wachsenden Überdeckungs-
zahlen erhält man Resultate auch für arithmetisch α-mischende Zufallsvariablen.
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Des Weiteren präsentieren wir Resultate für den Kernschätzer der Regressions-
funktion, bei denen man unter zusätzlichen Voraussetzungen ähnliche Konvergen-
zraten erhält wie für unabhängige Daten. Mit leicht modifizierten Voraussetzun-
gen erhält man für die Kernschätzer der bedingten Verteilungs- und Dichtefunk-
tion ähnliche Aussagen. Dies führen wir aber in dieser Arbeit nicht aus. Darüber
hinaus geben wir für den Kernschätzer der Regressionsfunktion eine mögliche
Beweisidee, um für α-mischende Daten die Konsistenz der Kreuzvalidierung als
Bandbreitenwahl zu erhalten.

Im abschließenden Kapitel 4 beschäftigen wir uns mit einem lokalen datenab-
hängigen Verfahren der Bandbreitenwahl für den Kernschätzer der Regressions-
funktion. Als naheliegendes Maß für die Genauigkeit der Schätzung und somit
der Güte der Bandbreitenwahl bietet sich der punktweise L2–Fehler an. Da die
Regressionsfunktion m(·) unbekannt ist, ist dieser jedoch nicht bestimmbar und
es ist notwendig, eine geeignete Approximation zu finden. In der Literatur wer-
den hierzu verschiedene Methoden eingesetzt, wie z. B. Kreuzvalidierung oder
verschiedene Bootstrap-Methoden. Wir haben in unserer Arbeit ein Bootstrap-Ver-
fahren aufgegriffen und dieses auf den Fall der funktionalen nichtparametrischen
Regression übertragen. Hierzu beweisen wir, dass unsere Methode asymptotisch
gegen den zu approximierenden L2–Fehler konvergiert und wir vergleichen unser
Verfahren anschließend auf simulierten und realen Datensätzen mit einer lokalen
und globalen Version der Kreuzvalidierung. Die simulierten Daten sind derart kon-
struiert, dass verschiedene Stufen zwischen homogen und heterogen angenommen
werden. Bei den homogenen Daten erreichen, wie erwartet, die globale und die
lokale Methode eine ähnliche Genauigkeit. Bei immer stärker werdender Hetero-
genität der Daten hingegen, schneide das lokale Verfahren gegenüber der glob-
alen deutlich besser ab. Zudem konnten wir in allen Beispielen feststellen, dass
die Bootstrap-Methode zu einer höheren oder gleich guten Genauigkeit führt wie
die lokale Kreuzvalidierung. Der Vorteil des Bootstrap-Verfahrens gegenüber der
Kreuzvalidierung ist, dass man mit wenig Mehraufwand Konfidenzbänder berech-
nen kann. Man muss allerdings eine höhere Rechenzeit in Kauf nehmen, da man
für das Bootstrapping-Verfahren eine Pilot-Kernschätzung benötigt.
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1
I N T R O D U C T I O N T O N O N - PA R A M E T R I C F U N C T I O N A L D ATA
A N A LY S I S

1.1 regression analysis

Let (E,d) be a semi-metric space and (X, Y) be a pair of random variables valued in
the measurable space (E×R,Ed ⊗B(R)), where B(R) is the Borel σ–algebra and
Ed is the σ–algebra generated by the topology of E which is defined by the semi-
metric d. Any random variable considered in this work is defined on the same
probability space, namely (Ω,A,P).

In regression analysis, one is interested in how the response variable Y de-
pends on the observation X. The problem herein is to find a measurable function
f : E→ R, such that f(X) is a good approximation, in some sense, of Y. Since |f(X)−Y|

is a R–valued random variable, the Lp–risk is used to measure the accuracy

E [|Y − f(X)|p] ,

for some p ∈ N. In this work we consider the case p = 2. The advantage of the
L2–risk is that the solution can be explicitly calculated and the minimisation of the
L2–risk leads to estimates that can be computed quickly, see Györfi et al. [33, p. 2

or p. 158]. Therefore, we are interested in a measurable function f : E → R such
that this function minimises the mean squared error,

E
[
(Y −m(X))2

]
= min

f:E→R
measurable

E
[
(Y − f(X))2

]
. (1.1)

The regression function

m(x) = E [Y | X = x] (1.2)

is the explicit solution of the minimisation problem in (1.1).

1.2 description of the data and random design

Let (Xi, Yi)ni=1 be n pairs identically distributed as (X, Y). At the beginning, let us
start with some notation which we will use throughout this work.

Definition 1.2.1 We denote by a lower case letter x a non-random element of a functional
semi-metric space (E,d) and by a capital letter X a functional E-valued random variable.
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2 introduction to non-parametric functional data analysis

The word functional in non-parametric functional data analysis is linked with the
nature of the observation X, namely that it lives in an infinite-dimensional space
E. We identify these elements x and X as functions x : T → R and X : T → R,
where T is a subset of Rp for some p ∈ N. If we speak of curves, we have the
one-dimensional case in mind when T ⊂ R, for instance in the analysis of time
series. Another example is image analysis, where the colour gradient is examined
(T ⊂ R2), or the colour gradient of a 3-d image (T ⊂ R3).

The problem we examine is called regression estimation with random design.
Random design means that the observation is made at a random element X and
not at a fixed element chosen by the user. The estimate of the regression function
can then be characterised as follows: the statistician observes some response value
Yi of an unknown measurable function m(·) at some random function Xi with an
additive random error εi and he wants to recover m(Xi), the true value of the
function at these observation. In this model the data (Xi, Yi)ni=1 can be rewritten
as

Yi = m(Xi) + εi. (1.3)

It is assumed that the additive random error εi depends on the observation Xi
and satisfies E [εi|Xi] = 0. For a more detailed description of the difference of the
random and the fixed design, we refer to Györfi et al. [33, p. 15].

1.3 parametric versus non-parametric regression

In this analysis the notion of non-parametric is motivated by the space which we
assume the regression function belongs to. In the case of a parametric model the
statistician assumes that the structure of the regression function is known. For
example, one assumes that the regression function is linear. If the model is well-
chosen, an advantage of a parametric model is that the practitioner gets good
results for small sample sizes, otherwise the parametric model performs badly.
Another handicap one has in the multivariate case where it is difficult to visualise
the data and it therefore is that may be difficult to choose a suitable model. Even
in the univariate case this is sometimes difficult, see for instance the illustrative ex-
ample given by Györfi et al. [33, p. 10 et seq.], where they use a regression function
that is composed of different parametric models. This inflexibility of the paramet-
ric model leads to non-parametric regression estimates, where the statistician does
not assume that the regression function can be described by a finite number of
parameters.

Let us now present an example for a parametric model and a non-parametric
function regression model.

Examples:

1. Parametric functional model (see e.g. [30, p. 9] or [59]):
Let H be a Hilbert space, X a H-valued random variable and assume that the
regression function m(x) is a linear and continuous function, m : H→ R. By
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Riesz representation theorem, there exists a unique element h ∈ H such that
m(·) = 〈·,h〉H. The linear regression model may then be expressed as

Yi = 〈Xi,h〉H + εi.

2. Non-parametric functional model:
Let H be a Hilbert space, X a H-valued random variable and assume that the
regression function m(x) is continuous. This model may be expressed as

Yi = m(Xi) + εi.

Bosq [6] gives an good introduction into functional data analysis for linear pro-
cesses in function spaces, also Ramsay and Silverman treat functional linear re-
gression in [59] or [60]. The non-parametric functional model was examined in the
monograph by Ferraty and Vieu [30].

In this work, we examine the non-parametric functional regression model, more
precisely, we assume that the regression function is of one of the following two
types:

Definition 1.3.1 The regression function is of continuity-type, if

m ∈ C(E) :=
{
f : E→ R

∣∣f is continuous
}

.

Definition 1.3.2 The regression function is of Hölder-type, if

m ∈ Lβ(E) :=
{
f : E→ R

∣∣f is Hölder continuous with parameter β
}

with β > 0.

These assumptions may be be replaced by the following condition,

lim
h→0

1

µ (B(x,h))

∫
B(x,h)

|m(ω) −m(x)|dµ(ω) = 0 (1.4)

where B(x,h) is a closed ball centred at x with radius h, as Dabo-Niang and
Rhomari [18] did in their work. This assumption covers a wider class of regres-
sion functions m(·) than we use, e.g. m = 1[0,1]∩Q and µ as the Lebesgue measure
satisfies the condition in (1.4), but is obviously not continuous. For further discus-
sion of this example, we refer to Remarque 1 in [18]. Another discussion on this
assumption can be found in [13].

1.4 regression estimation, consistency, and rate of convergence

In practise, the distribution of the pair (X, Y) is unknown and so is the regression
function. Because of this, the regression function is estimated by a data set of
random variables (Xi, Yi)ni=1 which is identically distributed as (X, Y). We denote
the estimate by m̂(x) := m̂(x; (X1, Y1), . . . , (Xn, Yn)) : E → R, which is assumed
to be a measurable function of the data. Commonly the estimate m̂(x) will not be
equal to the true regression function. Because of this a measurement of accuracy is
needed. In the literature following distinct error criteria are used (see Györfi et al.
[33, p. 3]):
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• the pointwise error

|m̂(x) −m(x)|

for x ∈ E,

• the supremum norm error

sup
x∈SE

|m̂(x) −m(x)|,

where SE ⊂ E is a totally bounded set, and

• the pointwise Lp–error,

E [|m̂(x) −m(x)|p]

for p ∈N and x ∈ E.

Next, we present the type of convergence that we use in this work for defining con-
sistency. We will see later in the proofs in Chapter 2, 3, and 4, the almost complete
convergence is in some sense easier to state than the almost sure one. Further-
more, the almost complete convergence implies the almost sure convergence and
the convergence in probability. (For proofs see Ferraty and Vieu [25, p. 229 et seq.].)

Definition 1.4.1 (Ferraty and Vieu [30], p. 228) Let (Zn) be a sequence of random
variables. Then (Zn) converges almost completely to a random variable Z, if and only
if

∀ε > 0 :
∞∑
n=1

P (|Zn −Z| > ε) <∞,

in short: lim
n→∞Zn = Z almost completely.

The following definition is presented to introduce the notion of the almost com-
plete convergence rate, which was first introduced by Ferraty and Vieu.

Definition 1.4.2 (Ferraty and Vieu [30], p. 230) Let (Zn) be a sequence of random
variables and (un) a positive decreasing sequence converging to zero. Then the rate of
almost complete convergence of (Zn) to Z is said to be of order (un) , if and only if

∃ε0 > 0 :
∞∑
n=1

P (|Zn −Z| > ε0un) <∞,

in short: Zn −Z = Oa.co. (un) .
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1.5 construction of the non-parametric regression estimate

Györfi et al. [33, p. 18] describe four paradigms for non-parametric regression,
namely local averaging, local modelling, global modelling and penalised modelling. We
restrict ourselves to the examination of local averaging. Recall, that the data can be
written as in (1.3). By this, the fact that a function x is close, in some sense, to Xi
should imply that the estimate m̂(x) is close to the response Yi that is associated
to the observation Xi. Such an estimate is given as

m̂(x) =

n∑
i=1

YiWn,i(x), (1.5)

for x ∈ E and the weight function Wn,i(x) ∈ [0, 1] depends on the data. We as-
sume for this weight function that Wn,i(x) is close to 0 if Xi is far away from
x. We examine in this work the Naradaya-Watson kernel estimate and the k-Nearest
Neighbour kernel estimate (k-NN kernel estimate). In Györfi et al. [33, p. 19] one can
additionally find the partitioning estimate as an example of local averaging.

Nadaraya-Watson Kernel Estimate

This type of estimate was first proposed by Nadaraya [53] and Watson [70], so this
estimate is called the Nadaraya-Watson kernel estimate. For Rp-valued observa-
tions X this was extensively examined by Györfi et al. [33].

The weight function in (1.5) for this type of estimate is defined as

Wn,i(x) :=
K
(
h−1n d(x,Xi)

)
n∑
i=1

K
(
h−1n d(x,Xi)

) , (1.6)

where K : R → R+ is a kernel function, d the semi-metric of the function space
E and hn is a strictly positive decreasing sequence. We get then for the kernel
estimate

m̂(x) =

n∑
i=1

Yi
K
(
h−1n d(x,Xi)

)
n∑
i=1

K
(
h−1n d(x,Xi)

) , if
n∑
j=1

K
(
h−1n d(x,Xi)

)
6= 0, (1.7)

otherwise m̂(x) = 0 and x ∈ E. Hereafter, any reference to a kernel estimate should
be understood as a Nadaraya-Watson kernel estimate.

k-Nearest Neighbour Kernel Estimate

The k-NN kernel estimate differs from the Nadaraya-Watson kernel estimate in
how the smoothing parameter is chosen. The bandwidth is chosen here as the
radius of a ball with centre x such that k data points Xi are within the ball. More
precisely,

Hn,k := d(x,X(k)), (1.8)
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where the set (X(i), Y(i))ni=1 is the re-indexed set (Xi, Yi))ni=1 such that

d(x,X(1)) 6 d(x,X(2)) 6 . . . 6 d(x,X(n)).

By this definition (1.8) of the bandwidth, we find that Hn,k is a positive real-valued
random variable depending on the data (Xi, Yi)ni=1. The following theorem, proven
by Cover and Hart [15], shows that the choice of bandwidth in (1.8) is a sequence
converging to zero under some conditions.

Theorem 1.5.1 (Cover and Hart [15]) Denote by µ the probability measure of X. Let
(E,d) = (Rp,d) with a metric d, for x ∈ supp(µ), and lim

n→∞k/n = 0 we have

lim
n→∞Hn,k = lim

n→∞d(x,X(k)) = 0

with probability 1.

A proof of Theorem 1.5.1 can be found in the monograph of Devroye et al. [21, p.
63]. There it is given for (Rp,d) and for independent data, but it may be extended
to a general metric but separable space, see for instance [13]. Then the k-NN kernel
estimate is defined as

m̂k-NN(x) =

n∑
i=1

Yi
K
(
H−1
n,kd(x,Xi)

)
n∑
i=1

K
(
H−1
n,kd(x,Xi)

) , if
n∑
j=1

K
(
H−1
n,kd(x,Xi)

)
6= 0,

otherwise m̂k-NN(x) = 0 and x ∈ E.
In the next section we treat the kernel function K more precisely.

The Kernel Function and Some of its Properties

In contrast to the one-dimensional regression analysis, we have in the functional
and multivariate consideration only a positive input to the kernel function because
we are considering asymmetric kernel functions. We assume that the asymmetrical
kernel function has its peak at zero and decreases monotonically as the input
increases. This assumption ensures that if the function of interest x is close to Xi
the response value Yi plays in the estimate of m̂(x) a more important role as a Yj
which observation Xj is far from x. Figure 1.1 shows some typical kernel functions.

Moreover, as can be seen in (1.7), the kernel estimate depends on the parameter
hn. This smoothing parameter or bandwidth controls the width of this asymmetric
kernel function and, therefore, how many data points Xi are considered for the
prediction of the regression function at x. If the amount of data grows we assume
that hn → 0.

In the following, we specify the kernel function K more precisely.
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Figure 1.1: Four typical kernel functions.

Definition 1.5.1 (Ferraty and Vieu [30], p. 42) We consider two types of kernel func-
tions.

• A function K : R 7→ R+ such that
∫

R
K(u)du = 1 is called a kernel of dis-

continuous-type if there exist two constants 0 < C1 < C2 <∞ such that

∀u ∈ R : C11[0,1](u) 6 K(u) 6 C21[0,1](u).

• A function K : R 7→ R+ such that
∫

R
K(u)du = 1 is called a kernel of continuous-

type if its support is [0, 1], K is differentiable in [0, 1], K(1) = 0, and there exists two
constants −∞ < C1 < C2 < 0 such that

∀u ∈ [0, 1] : C1 6 K ′(u) 6 C2.

The box or the truncated Gaussian kernel function are two examples of discontinu-
ous-type kernel functions and the triangle or the quadratic kernel function are
two examples of continuous-type kernel functions. For these two types of kernel
functions we present some theoretical advances as we will use them throughout
in this dissertation. For the proof of these lemmas we refer to the monograph of
Ferraty and Vieu [30, p. 43 et seq.].
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Lemma 1.5.1 (Ferraty and Vieu [30], p. 43) Assume that K is a kernel function of dis-
continuous-type, then there are two constants C3,C4 ∈ (0,∞) such that

C3P (d(x,X) 6 hn) 6 E
[
K
(
h−1n d(x,X)

)]
6 C4P (d(x,X) 6 hn) .

Next, for the continuous-type kernel functions we get, with an additional assump-
tion, the same result as for discontinuous-type kernel functions.

Lemma 1.5.2 (Ferraty and Vieu [30], p. 44) Let X be an E-valued random variable and
assume K is a continuous-type kernel function, and there are two constants C5 > 0 and
ε0 > 0 such that we have

∀ε < ε0 :
ε∫
0

P (d(x,X) 6 u)du > C5εP (d(x,X) 6 ε) ,

where P (d(x,X) 6 ·) is the probability distribution function of X. Then we have for small
hn and for C6,C7 ∈ R+,

C6P (d(x,X) 6 hn) 6 E
[
K
(
h−1n d(x,X)

)]
6 C7P (d(x,X) 6 hn) .

As we will see, the small ball probability,

Fx(h) := P (d(x,X) 6 h) , (1.9)

plays a crucial role in functional data analysis. The index of the small ball proba-
bility Fx(h) shall emphasise that this concentration function depends on the non-
random element x ∈ E.

1.6 small ball probability

On infinite-dimensional spaces, we have no default measure, unlike the Lebesgue
measure in a finite-dimensional space. Therefore a density-free approach was devel-
oped. Because of this circumstance, the problem is deferred to the examination of
the small ball probability Fx(h). This function plays a role similar to the density
function in the finite-dimensional case. Both the density function and the small
ball probability are measures of the concentration of the random variable. Because
of this behaviour of Fx(h), it has an affect on

• the rate of convergence (see Ferraty and Vieu [30, p. 80]).

• the choice of the optimal bandwidth hn (see Rachdi and Vieu [58]).

• or the asymptotic evaluation of the Lp–error (see Delsol [20] or Ferraty et al.
[25]).
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We will give a short overview of this large and current field of research here. The
results presented here are taken from the monograph by Ferraty and Vieu [30],
Chapter 13, the paper by Ferraty et al. [25], Delsol [20], and the monograph by
Bogachev [4].

In the case of independent data, the kernel estimate m̂(x), introduced in (1.7),
converges to the regression function m(x) with rate

m̂(x) −m(x) = O
(
hβn
)
+Oa.co.

(√
logn
nFx(hn)

)
, (1.10)

for x ∈ E and β is the Hölder constant. For conditions see Theorem 6.11 [30, p. 80].
As can be seen in (1.10), the rate of convergence is governed by two parts. Here,
we have to consider for the choice of the bandwidth hn that there is a trade-off
between the first and the second term. By the first term one wants to choose a
fast decaying smoothing parameter hn, but in such a case, the second term blows
up, as Fx(hn) → 0 for hn → 0. The bandwidth hn also has to fulfil the condition
nFx(hn) → ∞. Therefore the concentration of the random variable X determines
how to choose the sequence hn. If the data X1, . . . ,Xn is dispersed, we get a slow
rate. On the other hand, for concentrated data, we have a more efficient rate. Before
giving some examples for Fx(h), we will discuss the link of functional data analysis
to the finite-dimensional case.

Let d be the standard Euclidian metric in E = Rp, X be a random variable
whose probability distribution function is absolutely continuous with respect to
the Lebesgue measure. Assume that the density function f is continuous and
strictly positive for all x ∈ Rp, then the small ball probability is expressed as

Fx(ε) = Cε
p + o (εp)

for some C > 0, see Lemma 13.13 [30, p. 219]. Then the almost complete conver-
gence rate of the kernel regression estimate is expressed as

m̂(x) −m(x) = Oa.co.

((
logn
n

) β
2β+p

)
, (1.11)

for x ∈ Rp. For kernel estimates of the non-parametric regression function, Stone
[66] proved that this rate is optimal. Therefore, Ferraty and Vieu ansatz to func-
tional data analysis includes the finite-dimensional approaches. However, the rate
for the kernel estimate given in (1.10) is just an upper bound, the optimality having
not yet proven.

Next, the definition of two types of small ball probabilities is presented. We write
f(ε) ∼ Cg(ε), iff

∣∣ f(ε)
g(ε) −C

∣∣→ 0 for ε→ 0.

Definition 1.6.1 (Ferraty and Vieu, [30], p. 207 and p. 209) Let (E,d) be a semi-met-
ric space, X be an E-valued random variable, and x ∈ E fixed.

• X is considered of fractal-type with order τ > 0 with respect to d, if there exists a
positive and finite constant C such that

Fx(ε) ∼ Cε
τ for ε→ 0. (1.12)
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• X is considered of exponential-type with order (τ1, τ2), τ1, τ2 > 0, with respect to
d, if there exists a positive and finite constant C such that

Fx(ε) ∼ C exp
(
−
1

ετ1
log
(
1

ε

)τ2)
for ε→ 0. (1.13)

The constants in the definition may depend on x.

The fractal-type random variable was introduced by Ferraty and Vieu [28]. They
transferred the idea of fractal-dimensions from applications in physics (Pesin [56]),
to functional data analysis. In the paper of Ferraty et al. [22] such fractal-type
processes were examined for functionally dependent data in the case of a non-
parametric functional model. Moreover, they prove the uniform convergence on a
compact set of the non-parametric regression kernel estimate for a random variable
of that type.

If we have a E-valued random variables X of fractal-type, similar convergence
rates are obtained as for Rp-valued random variables. For independent data dis-
tributed as a fractal-type random variable X with order τ we have the rate

m̂(x) −m(x) = Oa.co.

((
logn
n

) β
2β+τ

)
, (1.14)

for x ∈ E. In comparison to (1.11), we have for fractal-type random variables sim-
ilar rates (1.14) as for Rp-valued random variables. Unfortunately, most E-valued
random variables are of the exponential-type. Dabo-Niang and Rhomari [18] ex-
tended the fractal-type ansatz of Ferraty and Vieu [28] to exponential-type random
variables, such as for example the following.

Example for an Exponential-Type Random Variable, Ferraty et al. [24] and Bogachev [4]

Let PW be the Wiener measure on the space C([0, 1], R) that is equipped with
supremum norm

‖x‖∞ = sup
t∈[0,1]

|x(t)|.

(For a definition of Wiener measure we refer to Bogachev [4, p. 42 and p. 54],
Definition 2.2.1 and Example 2.3.11 therein.) Then we have for small centred balls
(ε > 0)

PW (x ∈ C([0, 1], R) : ‖x‖∞ < ε) ∼ 4
π

exp
(
−
π2

8ε2

)
, (1.15)

see Bogachev [4, p. 187]. In accordance with Bogachev [4, p. 61] Theorem 2.4.5 we
get the following Reproducing Kernel Hilbert Space

H :=
{
x ∈ C([0, T ], R) : PW � PWx ∧ PW � PWx

}
,
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where PWx (·) := PW(·− x) is the translated measure of PW and PW � PWx means
that PWx is absolutely continuous with respect to PW . By this, the above result in
(1.15) can be extended and we get for ε > 0

∀ x̃ ∈ H : PW (x ∈ H : ‖x− x̃‖∞ < ε) ∼ Cx̃ 4
π

exp
(
−
π2

8ε2

)
.

Let (Bt)t∈[0,1] be a Brownian motion with B0 := 0 and let S := (St)t∈[0,1] with
S0 := 0, the Ornstein-Uhlenbeck process, which is defined as the solution of the
stochastic differential equation

dSt = −
1

2
Stdt+ dBt ∀ t ∈ (0, 1].

The Ornstein-Uhlenbeck process has a probability measure that is absolutely con-
tinuous with respect to the Wiener measure PW , so that we have for ε > 0

∀ x̃ ∈ H : P (S ∈ B(x̃, ε)) ∼ Cx̃
4

π
exp

(
−
π2

8ε2

)
.

Therefore, S is of exponential-type with order (τ1, τ2) = (2, 0).
More examples can be found in Bogachev [4, Chapter 4.10 p. 197 et seqq.], Fer-

raty et al. [24], in the references given in the monograph by Ferraty and Vieu [25,
p. 209 et seq.], or in the paper by Van der Vaart and Van Zanten [69].

It is a disadvantage of exponential-type random variables that the rate of con-
vergence of the regression function estimation is only of order (logn)−t for some
t > 0. In the case that E is a separable Hilbert space, this disadvantage can be
overcome by choosing a semi-metric d adapted to the functional variable X. A
statistician is able to transform X to a random variable of fractal-type by using a
projection-based semi-metric, as for instance functional principal component anal-
ysis, Fourier basis, wavelets, see Lemma 13.6 [30, p. 213]. This idea also effects
dimension reduction in the finite-dimensional non-parametric regression. If one
uses a projection-based semi-metric instead of a metric (see Ferraty and Vieu [30,
p. 221] Lemma 13.15 and Proposition 13.16 therein), it is possible to get, with some
additional assumptions, a faster rate than with respect to the Euclidian metric, as
in

m̂(x) −m(x) = O

((
logn
n

) β
2β+p

)
.

To apply this projection-based semi-metric to non-parametric multivariate regres-
sion the absolute continuity with respect to the Lebesgue measure of the projected
part of the random variable X has to be assumed. For more references see Delsol
[20] or Ferraty and Vieu [30, p. 210].

Furthermore, as it can be seen in the definition (1.9) of the small ball probability
Fx(h), the choice of the semi-metric d plays an important role. What follows is a
brief discussion of this issue. For functional data analysis the choice of the semi-
metric is still an open field of research. A recent publication on the choice of the
semi-metric in functional data analysis is the paper of Ferraty and Vieu [32].
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1.7 aspects of uniform convergence in functional spaces

For the examination of almost complete convergence in the supremum norm,
namely let

sup
x∈SE

|m̂(x) −m(x)|,

with SE ⊂ E be compact, that is to say there has to exist for all ε > 0 finitely many
balls with radius ε such that these balls cover SE. This covering property is not
only needed for the convergence in the supremum norm. It is also used in proving
the optimality of methods for bandwidth estimation, cross-validation, see Rachdi
and Vieu [58] or Benhenni et al. [3], or bootstrapping Chapter 4, or for building
confidence intervals by bootstrapping Ferraty and Vieu [27]. More details on this
topic are given in Chapter 3.

1.8 modelling of weak dependence of random variables

This section gives a short introduction to the concept of α-mixing. This type of
dependence of random variables was first introduced by Rosenblatt [63]. There are
some other ways of modelling the dependence of a sequence of random variables
in the case of mixing, see for example the survey of Bradley [7], or for a deeper
study [8], [9], or [10].

To start with, some notations are introduced. Let (Xn) be a sequence of random
variables on the probability space (Ω,A, P), which takes values in the measurable
space (Ω̃, Ã). Denote Akj , −∞ 6 j 6 k 6 ∞, the σ-algebra, which is generated by
the random variables {Xj, . . . ,Xk}.

Definition 1.8.1 The strong mixing coefficient of a sequence (Xn) of random variables is
defined as

α(n) = sup
k

sup
A∈Ak−∞

sup
B∈A∞k+n

|P (A∩B) − P (A)P (B) |.

The sequence (Xn) is called α-mixing (or strong mixing), if

lim
n→∞α(n) = 0.

Depending on the rate of convergence of α(n) one considers two cases.

Definition 1.8.2 A sequence (Xn) is called arithmetic α-mixing (or algebraic) with rate
b > 0 if

∃C > 0 : α(n) 6 Cn−b.

The sequence is called geometric α-mixing if

∃b > 0, C > 0 : α(n) 6 exp
(
−Cnb

)
.

For mixing in the functional context, we refer to the monograph of Ferraty and
Vieu [25, p. 155], especially Proposition 10.3 and 10.4.
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1.9 summary of this thesis

Besides the introduction this dissertation contains three more chapters. In the fol-
lowing paragraphs we will give a short summary for each of them.

In Chapter 2 we examine non-parametric regression for α-mixing functional data.
A method for estimating the regression function m(x) is the k-nearest neighbour
kernel estimate. We prove that the k-NN kernel estimate is pointwise almost com-
plete consistent for α-mixing data and we present, for two different assumptions
on the covariance term, the almost complete convergence rate. The results are ob-
tained on the one hand by using results of the functional kernel estimate, where
a deterministic bandwidth sequence is used, and on the other hand by applying
lemmas from Bradley [5, p. 18] and Burba et al. [11].

Finally, we give an outline on how to avoid the drawback of susceptibility of the
k-NN kernel estimate to outliers. We adumbrate on how to construct such a robust
kernel estimate and on how get almost complete convergence.

Chapter 3 is focused on uniform convergence rates on a compact set SE of non-
parametric estimates for α-mixing random variables of various conditional quan-
tities, such as the conditional expectation, the conditional distribution function,
and the conditional density function. It turns out in our proofs that there is a
link between the covering number of the set SE and the type of α-mixing. Indeed,
there are many functional spaces on which a compact set has a covering number
that grows exponentially. For such sets SE it is not possible to get uniform almost
complete rates for general α-mixing random variable, there we have to restrict on
geometric α-mixing random variables. Instead, if the covering number grows poly-
nomially, we get almost complete rates for general α-mixing random variables. Fur-
thermore, we present two results for the kernel estimate of the regression function,
where we get with some additional conditions similar rates as in the independent
case. With slightly modified assumptions, not listed in this thesis, we get similar
results for the kernel estimate of the conditional distribution function and the con-
ditional density function. Moreover, we comment on the uniform almost complete
rate for the estimate of the non-parametric regression function and outline how to
possibly prove the validity of a cross-validation bandwidth selection procedure for
α-mixing functional data.

In the last Chapter 4 we discuss the issue of a local adaptive bandwidth selection
procedure for the kernel estimate of the regression function. Here, an obvious mea-
sure for the optimality of the parameter selection is the pointwise mean squared
error. As the regression function m(·) is unknown, we cannot calculate it. In the lit-
erature different approximation methods as cross-validation or bootstrapping are
presented. We pick up a bootstrap method for approximating this pointwise mean
squared error for non-parametric functional regression. We prove that our approxi-
mation converges against the true error and afterwards we compare our method on
simulated and real world data with a global and local version of a cross-validation
method. The simulated data is constructed such that we have different nuances
between homogenous and heterogenous data. The results differ then in the fol-
lowing way. On the one hand if the data is more homogenous, global and local
methods perform similarly, on the other hand if the data gets more heterogenous,
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the local methods outperform the global bandwidth selection procedure more and
more. In addition, we notice that in all examples the bootstrap method performs
better or equal than the local cross-validation procedure. Moreover, it is possible to
calculate confidence intervals from the bootstrapped data. As we need a pilot ker-
nel estimate for bootstrapping, more calculation time is needed for that bootstrap
procedure.



2
K - N N K E R N E L E S T I M AT E F O R N O N - PA R A M E T R I C
F U N C T I O N A L R E G R E S S I O N I N T I M E S E R I E S A N A LY S I S

2.1 introduction

In this chapter we examine the functional k-nearest neighbours, shortly k-NN, non-
parametric regression estimate in case of α-mixing data. The classical non-paramet-
ric regression estimate introduced in (1.5), Section 1.1, depends on a real-valued
non-random bandwidth sequence hn. On the contrary, the smoothing parameter
of the k-NN regression estimate depends on the numbers of neighbours at the
point of interest at which we want to make a prediction. In cases where data is
sparse, the k-NN kernel estimate has a significant advantage over the classical
kernel estimate. The k-NN kernel estimate is also automatically able to take into
account the local structure of the data. This advantage, however, may turn into
a disadvantage. If there is an outlier in the dataset, the local prediction may be
bad. To avoid this, a robust non-parametric regression ansatz may be chosen (for
references on this topic see Section 2.6). Selecting the bandwidth depending on the
data turns the bandwidth into a random variable. Hence we are no longer able to
use the same techniques in the consistency proofs as in the case of a non-random
bandwidth sequence.

The k-NN kernel estimate is a widely studied estimate if the explanatory vari-
able is an element of a finite-dimensional space, see Györfi et al. [33]. In the func-
tional case with real-valued response, two different approaches for the k-NN re-
gression estimation exist. The first one, published by Laloë [45], examines a k-
NN kernel estimate when the functional variable is an element of a separable
Hilbert space. For that case Laloë establishes a weak consistency result. However,
his ansatz is not completely functional. Laloë’s strategy is to reduce the dimension
of the input variable by using a projection onto a finite-dimensional subspace and
then applying multivariate techniques on the projected data. The second result,
from Burba et al. [11], is based on a pure functional approach instead. Burba et
al. examine the problem on a semi-metric functional space. They proved almost
complete convergence and rates for independent data. Furthermore, Burba et al.
extended a lemma that we will also use in our proofs. This lemma originates from
Collomb [14]. We will cite it in Section 2.4 and make some additional comments on
it. Additionally, the k-NN kernel estimate is examined for classification in infinite
dimension by Cérou and Guyader [13] and there exists a convergence result for
the k-NN regression estimate when the response is an element of a Hilbert space
(see Lian [47]).

15
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In the case of a finite-dimensional explanatory variable, the k-NN kernel esti-
mate for α-mixing random variables is treated by Tran [67] and Lu and Cheng
[48]. Both results are based on Collomb’s [14] results. We combined their idea with
Burba et alii’s [11] results to prove consistency and the rate.

This chapter is organised as follows. In Section 2.2 we present the k-NN ker-
nel estimate. Afterwards, we introduce the assumptions and the main result, the
almost complete convergence and the convergence rate. In Section 2.4, some tech-
nical auxiliary results are deployed and in Section 2.5, we show the proofs of our
main result. In the end, we outline some applications and discuss how to get a
robust k-NN kernel estimate.

2.2 method and assumptions

Let (Xi, Yi)ni=1 be n pairs identically distributed as (X, Y), the latter being a random
pair with values in the measurable space (E×R,Ed ⊗B). Here (E,d) is a semi-
metric space and Ed is the σ–algebra generated by the topology of E that is defined
by the semi-metric d, and B is the Borel σ–algebra. In order to characterise the
model of dependence, we use the notion of α-mixing.

We examine the k-NN kernel estimate that is defined for x ∈ E as

m̂k-NN(x) =

n∑
i=1

Yi
K
(
H−1
n,kd(x,Xi)

)
n∑
i=1

K
(
H−1
n,kd(x,Xi)

) , if
n∑
j=1

K
(
H−1
n,kd(x,Xi)

)
6= 0, (2.1)

otherwise m̂k-NN(x) = 0. K : R → R+ is a kernel function and Hn,k is the band-
width that is defined as

Hn,k := d(x,X(k)), (2.2)

where the sequence (X(i), Y(i))ni=1 is the re-indexed sequence (Xi, Yi)ni=1 such that

d(x,X(1)) 6 d(x,X(2)) 6 . . . 6 d(x,X(n)).

From now on, when we refer to the bandwidth of the k-NN kernel estimate, we
mean the number of neighbours k we are considering.

To prove the almost complete convergence of the k-NN kernel estimate, we need
some results of the Nadaraya-Watson kernel estimate. Hereafter, the notion kernel
estimate will refer to the Nadaraya-Watson kernel estimate. Let x ∈ E, then

m̂(x) =

n∑
i=1

Yi
K
(
h−1n d(x,Xi)

)
n∑
i=1

K
(
h−1n d(x,Xi)

) , if
n∑
j=1

K
(
h−1n d(x,Xi)

)
6= 0, (2.3)

otherwise m̂(x) = 0. K is a kernel function and h := hn is a non-random band-
width.

Prior to the presentation of our main results, we outline the assumptions.
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Condition on the small ball probability

(F) Let x ∈ E. Assume that the probability of observing the functional random
variable X around x is strictly positive, that means

∀ε > 0 : Fx(ε) := P (d(x,X) 6 ε) > 0.

Condition on the kernel function K

(K) Assume that the kernel function K is of continuous- or of discontinuous-
type. Furthermore, assume for continuous-type kernel functions following
technical assumption

∃C > 0 ∃ε0 > 0 ∀ 0 < ε < ε0 :
ε∫
0

F(u)du > CεF(ε).

Condition on the response variable Y

(M) Assume that the conditional moments of Y are bounded,

∀m ∈N : E [|Y|m|X = x] < σm(x) <∞,

with σm(·) continuous at x.

Condition on the mixing coefficient

(A) Assume that the sequence (Xi, Yi) is arithmetic α-mixing (or algebraic),

∃C > 0 : α(n) 6 Cn−b

for some C > 0 and rate b > 0, which is defined more exactly in the theorems.

Condition on the covariance terms

The terms of covariance, which are a measure of dependence, are here denoted by

sn,1(x) =

n∑
i,j=1

|Cov(∆i(x),∆j(x))| and

sn,2(x) =

n∑
i,j=1

|Cov(Yi∆i(x), Yj∆j(x))|,

where

∆i(x) :=
K(h−1d(x,Xi))

E [K(h−1d(x,X1))]
.

Note that we can split for example sn,2(x) as

sn,2(x) =

n∑
i=1

Var [Yi∆i(x)]

︸ ︷︷ ︸
I

+

n∑
i,j=1
j6=i

|Cov(Yi∆i(x), Yj∆j(x))|

︸ ︷︷ ︸
II

. (2.4)



18 non-parametric k-nn kernel estimate in time series analysis

Term II in (2.4) is a measure of the dependence of the random variables. We want
to remark, if the Xi are α-mixing then also the ∆i(x) are α-mixing, see e.g. Lemma
10.3 in [30, p. 155].

(D) Assume for the covariance term sn(x) := max {sn,1(x), sn,2(x)} that there ex-
ists a θ > 2 such that

s
−(b+1)
n = o

(
n−θ

)
,

where b is the rate of the mixing coefficient.

Condition on the bandwidth

(B) Assume for the sequence of bandwidths k := kn that there exists a γ ∈ (0, 1)
such that

k ∼ nγ.

Condition (B) is not more restrictive than in the independent case. However, for
their consistency result Burba et al. [11] need the following two conditions,

k

n
→ 0 and

logn
k
→ 0 as n→∞,

so k must exceed logarithmic order. As Lian comments in [47], in most cases in
the functional context the small ball probability is of exponential-type. Hence the
convergence speed is logarithmic, no matter if the number of neighbours k in-
creases logarithmically or polynomially. For example, if we have for the small ball
probability

Fx(h) ∼ exp
(
−
1

hτ

)
, then F−1

(
k

n

)
∼

(
1

log
(
k
n

))τ ,

where F−1x (y) := inf{h|Fx(h) > y} (see [47]). It can be easily seen that the order of k
is less important for such small probabilities.

Condition on the distribution and joint distribution function

(D1) This condition is on the distribution of two distinct pairs (Xi, Yi) and (Xj, Yj).
We assume that

∀i 6= j : E
[
YiYj|XiXj

]
6 C <∞,

and the joint distribution functions P
(
Xi ∈ B(x,h), Xj ∈ B(x,h)

)
satisfy

∃ε1 ∈ (0, 1] : 0 < Gx(h) = O
(
Fx(h)

1+ε1
)

,

where

Gx(h) := max
i,j∈{1,...,n},i 6=j

P
(
Xi ∈ B(x,h), Xj ∈ B(x,h)

)
.
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Condition (D1) is, as Ferraty and Vieu [30, p. 163] in Note 11.2 describe, not too
restrictive. For example, if we choose E = Rp, then ε1 = 1 as soon as each pair of
random variables (Xi,Xj) has a bounded density fi,j with respect to the Lebesgue
measure.

Next, we formulate a more general condition on the joint distribution function.

(D2) Define χ(x,h) := max
{
1, Gx(h)
Fx(h)2

}
and s = 1/(b+ 1) with b as the rate of the

mixing coefficient. Then assume that

log (n)χ(x,h)1−sn1+s

k2
→ 0.

2.3 almost complete convergence and almost complete conver-
gence rate

Before we present the consistency result of the k-NN kernel estimate the almost
complete convergence result of the kernel regression estimate m̂(x) of Ferraty and
Vieu [30] is presented.

Theorem 2.3.1 (Ferraty and Vieu [30], p. 63) Assume that the regression function is
of continuity-type (Def. 1.3.1), furthermore assume (F), (M), (A), and (K). Additionally,
suppose for the bandwidth that hn → 0 and logn

nFx(hn)
→ 0 as n → ∞. Then we have for

the Nadaraya-Watson kernel estimate for x ∈ E

lim
n→∞ m̂(x) = m(x) almost completely.

The following theorem gives almost complete rates.

Theorem 2.3.2 (Ferraty and Vieu [30], p. 80) Assume the same conditions as in Theo-
rem 2.3.1, and a Hölder-type model (Def. 1.3.2) instead of a continuity-type model. Then
we have for the Nadaraya-Watson kernel estimate for x ∈ E

m̂(x) −m(x) = O
(
hβ
)
+Oa.co.

(√
sn(x) logn

n

)
.

Now we state the almost complete convergence result for the non-parametric k-NN
kernel estimate, introduced in (2.1).

Theorem 2.3.3 In the case of a continuity-type model, we suppose condition (F) for the
small ball probability, (K) for the kernel function, (B) for the bandwidth k. Either assume
that Condition (D1) holds with

b > max
{
3

2γ
− 1,

2− γ

ε1(1− γ)

}
,

where γ is the constant in Condition (B) and ε1 the constant in Condition (D1). Or assume
that Condition (D2) is enforced, with rate

b >
3

2γ
− 1.
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Then we have for the k-NN kernel estimate for x ∈ E

lim
n→∞ m̂k-NN(x) = m(x) almost completely.

Theorem 2.3.4 In the case of a Hölder-type model, we suppose condition (F) for the small
ball probability, (K) the kernel function, (B) the bandwidth k.

If Condition (D1) holds with

b > max
{
3

2γ
− 1,

2− γ

ε1(1− γ)

}
,

where γ is the constant in Condition (B) and ε1 the constant in Condition (D1). Then we
have for the k-NN kernel estimate for x ∈ E

m̂k-NN(x) −m(x) = O

((
F−1x

(
k

n

))β)
+Oa.co.

(√
logn
k

)
. (2.5)

If (D2) holds instead of (D1) with

b >
3

2γ
− 1,

then we have for the k-NN kernel estimate for x ∈ E

m̂k-NN(x) −m(x) = O

((
F−1x

(
k

n

))β)
+Oa.co.

(√
logn
k

)

+Oa.co.

√n1+s logn
k2

χ

(
x, F−1x

(
k

n

))1−s , (2.6)

where χ(x,h) := max
{
1, Gx(h)
Fx(h)2

}
.

The covariance term sn(x) disappears in (2.5). The Condition (D1) and the condi-
tion on the rate b implies that term II in (2.4) decays faster than term I. We get

sn(x) = O

(
n

Fx(h)

)
,

see Lemma 11.5 in [30, p. 166]. If Condition (D2) instead of (D1) is assumed we
get three terms for the rate (see (2.6)). The first one in (2.6) has its origin in the
regularity of the regression function, the second one stems from term I in (2.4) and
the third one represents the dependence of the random variables (compare term II
in (2.4)).

2.4 technical tools

Because of the randomness of the smoothing parameter Hn,k, it is not possible to
use the same tools for proving the consistency as in the kernel estimation. The
necessary tools are presented in this section. The following two lemmas of Burba
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et al. [11] are generalisations of a result firstly presented by Collomb [14]. In our
opinion, Burba et alii’s [11] Lemmas 2.4.1 and 2.4.2 are valid for dependent random
variables as in the original lemma from Collomb [14]. We checked the proof from
Burba et al. against Collomb’s proof; we did not find any reason why Burba et al.
[11] assume independence. On reflection, this assumption appears unnecessary.

Let (Ai,Bi)ni=1 be a sequence of random variables with values in (Ω×R,A⊗B),
not necessarily identically distributed or independent. Let k : R×Ω → R+ be a
measurable function with the property

z 6 z ′ ⇒ ∀ω ∈ Ω : k(z,ω) 6 k(z ′,ω).

Let H be a real-valued random variable. Then define

∀n ∈N : cn(H) =

n∑
i=1

Bik(H,Ai)

n∑
i=1

k(H,Ai)
. (2.7)

Lemma 2.4.1 (Burba et al. [11]) Let (Dn) be a sequence of real random variables and
(un) be a decreasing sequence of positive numbers.

• If l = lim
n
un 6= 0 and if, for all increasing sequences βn ∈ (0, 1), there exist

two sequences of real random variables (D−
n(βn)) and (D+

n(βn)) (depending on the
sequence (βn)) such that

(L1) ∀n ∈N D−
n 6 D

+
n and 1[D−

n6Dn6D
+
n ]
→ 1 almost completely,

(L2)

n∑
i=1
k(D−

n ,Ai)

n∑
i=1
k(D+

n ,Ai)
−βn = Oa.co. (un) ,

(L3) Assume there exists a real positive number c such that
cn(D

−
n) − c = Oa.co. (un) and cn(D+

n) − c = Oa.co. (un).

Then cn(Dn) − c = Oa.co. (un).

• If l = 0 and if (L1), (L2), and (L3) hold for any increasing sequence βn ∈ (0, 1)
with limit 1, the same conclusion holds.

Lemma 2.4.2 (Burba et al. [11]) Let (Dn) be a sequence of real random variables and
(vn)n a decreasing positive sequence.

• If l ′ = lim
n
vn 6= 0 and if, for all increasing sequences βn ∈ (0, 1), there exist two

sequences of real random variables (D−
n(βn)) and (D+

n(βn)) such that

(L1’) D−
n 6 D

+
n ∀n ∈N and 1[D−

n6Dn6D
+
n ]
→ 1 almost completely,

(L2’)

n∑
i=1
k(D−

n ,Ai)

n∑
i=1
k(D+

n ,Ai)
−βn = oa.co.(vn),

(L3’) Assume there exists a real positive number c such that
cn(D

−
n) − c = oa.co.(vn) and cn(D+

n) − c = oa.co.(vn).
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Then cn(Dn) − c = oa.co.(vn),

• If l ′ = 0 and if (L1’), (L2’), and (L3’) are checked for any increasing sequence
βn ∈ (0, 1) with limit 1, the same result holds.

Burba et al. [11] use in their consistency proof of the k-NN kernel estimate for
independent data a Chernoff-type exponential inequality to ckeck Conditions (L1)
or (L1’). In the case of α-mixing random variables however, we cannot use that
exponential inequality. Instead we use the following lemma of Bradley [5] and
Lemma 2.4.4.

Lemma 2.4.3 (Bradley [5], p. 20) Let (X, Y) be a Rr ×R valued random vector, such
that Y ∈ Lp(P) for some p ∈ [1,∞]. Let d be a real number such that ‖Y + d‖p > 0 and
ε ∈ (0, ‖Y + d‖p]. Then there exists a random variable Z such that

• PZ = PY and Z is independent of X,

• P (|Z− Y| > ε) 6 11
(
‖Y+d‖p
ε

) p
2p+1

[α(σ(X),σ(Y))]
p

2p+1 , where σ(X) is the σ-
Algebra generated by X.

The following lemma is needed in our proofs for technical reasons.

Lemma 2.4.4 Let (Xi) be an arithmetically α-mixing sequence in the semi-metric space
(E,d), α(n) 6 cn−b, with b, c > 0. Define ∆i(x) := 1B(x,h)(Xi). Then we have

n∑
i,j=1

|Cov
(
∆i(x),∆j(x)

)
| = O (nFx(h)) +O

(
χ(x,h)1−sn1+s

)
,

where χ(x,h) := max {Gx(h), Fx(h)2} and s = 1
b+1 .

Proof of Lemma 2.4.4:
The proof of this lemma is identical to that of Lemma 3.2 in [29], except for the
choice of the parameter s.

�

2.5 proofs

Proof of Theorem 2.3.3:
To prove this theorem we apply Lemma 2.4.2. The main difference to the proof of
the independent case in [11] concerns verification of (L1’). To verify (L2’) and (L3’)
we need only small modifications.

Let vn = 1, cn(Hn,k) = m̂k-NN(x) and c = m(x). Choose β ∈ (0, 1) arbitrarily,
D+
n and D−

n such that

Fx(D
+
n) =

1√
β

k

n
, and Fx(D

−
n) =

√
β
k

n
.

Define h+ := D+
n = F−1

(√
β kn
)

and h− := D−
n = F−1

(
1√
β
k
n

)
.
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To apply Theorem 2.3.1, we have to show that the covariance term sn fulfils
following condition: there exists a θ > 2 such that

s
−(b+1)
n = o

(
n−θ

)
, (2.8)

where b is the rate of the mixing coefficient. If (D1) and the condition on the rate
b of the mixing coefficient holds, we have by Lemma 11.5 in [30, p. 166]

sn(x) = O

(
n

Fx(h+)

)
= O

(
n2

k

)
.

The same is true for the bandwidth h−. It can be easily seen that there exists an
θ > 2 such that (2.8) holds. In the case of (D2), we have

sn(x) = O

(
n2

k

)
+O

(
χ(x,h+)1−sn1+s

)
.

Since χ(x,h+)1−sn1+s > 0 for all n, it turns out that (2.8) holds under Condition
(D2) as well.

Consequently, we are able to apply Theorem 2.3.1 to quarantee

cn(D
+
n)→ c almost completely, and

cn(D
−
n)→ c almost completely.

Thus Condition (L3’) is verified.
In [30, p. 162] Ferraty and Vieu proved under the conditions of Theorem 2.3.1

that

1

nFx(h)

n∑
i=1

K(h−1d(x,Xi))→ 1 almost completely. (2.9)

By (2.9) we have

1

nFx(h+)

n∑
i=1

K(h+
−1
d(x,Xi))→ 1 almost completely and

1

nFx(h−)

n∑
i=1

K(h−
−1
d(x,Xi))→ 1 almost completely.

We get

n∑
i=1

K(h+
−1
d(x,Xi))

n∑
i=1

K(h−
−1
d(x,Xi))

→ β.

Condition (L2’) is proved.
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Finally, we check (L1’),

∀ε > 0 :
∞∑
n=1

P
(
|1{D−

n6Hn,k6D
+
n}

− 1| > ε
)
<∞.

Let ε > 0 be fixed. We know that

P
(
|1{D−

n6Hn,k6D
+
n}

− 1| > ε
)
6 P

(
Hn,k < D

−
n

)
+ P

(
Hn,k > D

+
n

)
. (2.10)

For the two terms in (2.10) we obtain

P
(
Hn,k < D

−
n

)
6 P

(
n∑
i=1

1B(x,D−
n)
(Xi) > k

)

6 P

(
n∑
i=1

(
1B(x,D−

n)
(Xi) − Fx(D

−
n)
)
> k−nFx(D

−
n)

)
=: P1n (2.11)

and

P
(
Hn,k > D

+
n

)
6 P

(
n∑
i=1

1B(x,D+
n)
(Xi) < k

)

6 P

(
n∑
i=1

(
1B(x,D+

n)
(Xi) − Fx(D

+
n)
)
< k−nFx(D

+
n)

)
=: P2n (2.12)

In the second step of (2.11) and (2.12), we centred the random variables
1B(x,D−

n)
(Xi) and 1B(x,D+

n)
(Xi). It holds

E
[
1B(x,D−

n)
(Xi)

]
= Fx(D

−
n) and E

[
1B(x,D+

n)
(Xi)

]
= Fx(D

+
n).

At this step, Burba et al. [11] use the independence of the random variables. The
plan here is to split the data into a block scheme as is done by Modha and Masry
[52], Oliveira [54], Tran [67] or Lu and Cheng [48]. Afterwards we are applying
Lemma 2.4.3.

Divide the set {1, . . . ,n} into blocks of length 2ln, set mn = [n/2ln], where [·] is
the Gaussian bracket and fn = n− 2lnmn < 2ln. The sequences are chosen such
that mn →∞ and fn →∞. ln is specified later on in the proof, see (2.16). By this
choice we have n = 2lnmn + fn.

Firstly, we examine term P1n. Let

Un(j) :=

jln∑
i=(j−1)ln+1

(
1B(x,D−

n)
(Xi) − Fx(D

−
n)
)

,

and define

Bn1 :=

mn∑
j=1

Un(2j− 1), Bn2 :=

mn∑
j=1

Un(2j), and

Rn :=

n∑
i=2lnmn+1

(
1B(x,D−

n)
(Xi) − Fx(D

−
n)
)

.
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We get

P1n 6 P
(
Bn1 >

k−nFx(D
−
n)

3

)
+ P

(
Bn2 >

k−nFx(D
−
n)

3

)
+ P

(
Rn >

k−nFx(D
−
n)

3

)
=: P(1)

1n + P(2)
1n + P(3)

1n (2.13)

Let us consider P(1)
1n .

Lemma 2.4.3 with d := lnmn leads to

0 < lnmn 6 ‖Un(2j− 1) + dn‖∞ 6 2ln + lnmn.

Because of mnln = O (n) and k
n → 0, we have

ε :=
k−nFx(D

−
n)

6mn
=
k(1−

√
β)

6mn
∈ (0, ‖Un(2j− 1) + dn‖∞].

This choice of ε is motivated by (2.15) below. By Lemma 2.4.3 we can construct(
Ũn(2j− 1)

)mn

j=1
such that

• the random variables
(
Ũn(2j− 1)

)mn

j=1
are independent,

• Ũn(2j− 1) has the same distribution as Un(2j− 1) for j = 1, . . . ,mn,

• and

P
(
|Ũn(2j− 1) −Un(2j− 1)| > ε

)
611

(
‖Un(2j− 1) + d‖∞

ε

) 1
2

·

· sup |P (AB) − P (A)P (B) |,

where the supremum is taken over all sets A and B with

A,B ∈ σ (Un(1),Un(3), . . . ,Un(2mn − 1)) .

This leads to

P(1)
1n = P

mn∑
j=1

[
Ũn(2j− 1) + (Un(2j− 1) − Ũn(2j− 1))

]
>
k−nFx(D

−
n)

3


6 P

mn∑
j=1

Ũn(2j− 1) >
k−nFx(D

−
n)

6


+ P

mn∑
j=1

(Un(2j− 1) − Ũn(2j− 1)) >
k−nFx(D

−
n)

6


=: P(11)

1n + P(12)
1n . (2.14)
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Applying Lemma 2.4.3 on P(12)
1n ,

P(12)
1n 6

mn∑
j=1

P
(
(Un(2j− 1) − Ũn(2j− 1)) >

k−nFx(D
−
n)

6mn

)
(2.15)

6 mn

(
6mnln(mn + 1)

k(1−
√
β)

) 1
2

α(ln)

=

(
6m3nl

4
n(mn + 1)

l3nk(1−
√
β)

) 1
2

α(ln)

6 C
n2

l
3
2
nk
α(ln).

We choose the sequence ln such that

lan =
n2

2arak
, (2.16)

where r is a positive constant specified below and a > 2/γ− 1. By the condition
on the mixing coefficient b and some calculations

n2

l
3/2
n k

α(ln) = C

(
n2/a

k1/a

)a−3/2(
n2/a

k1/a

)−b

= Cn(2−γ)(a−3/2−b)/a

6 n−l

for some l > 1. Consequently, by the assumptions we arrive at∞∑
n=1

P(12)
1n <∞. (2.17)

Apply now Markov’s inequality on term P(11)
1n for some t > 0,

P

mn∑
j=1

Ũn(2j− 1) >
k−nFx(D

−
n)

6


6 exp

(
−t
k−nFx(D

−
n)

6

)
E

exp

t mn∑
j=1

Ũn(2j− 1)

 . (2.18)

Due to the independence of the random variables (Ũn(2j− 1))
mn

j=1, we have

E

exp

t mn∑
j=1

Ũn(2j− 1)

 =

mn∏
j=1

E
[
exp (tŨn(2j− 1))

]
. (2.19)

Choose t := r logn/k, then we obtain together with ln as defined in (2.16)

t|Ũn(2j− 1)| 6
2rln logn

k

=
log (n)n

2
a

k1+
1
a

= logn
(
n2

ka+1

) 1
a

.
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In this step, we need the number of neighbours to be a power in n, i.e. k ∼ nγ. By
the choice of a > 2/γ− 1, we have for large n that t|Ũn(2j− 1)| 6 1. In the next
step we use the same idea as Craig [16] in his proof. We have for large n

exp
(
tŨn(2j− 1)

)
6 1+ tŨn(2j− 1) + t

2Ũn(2j− 1)
2.

The random variable Ũn(2j− 1) has the same distribution as the centred random
variable Un(2j− 1). Hence we know that the expectation of the linear term is zero,
E
[
Ũn(2j− 1)

]
= 0. With this and 1+ x 6 exp (x) we get

E
[
exp

(
tŨn(2j− 1)

)]
6 1+ E

[
t2Ũn(2j− 1)

2
]

6 exp
(
t2E

[
Ũn(2j− 1)

2
])

. (2.20)

Furthermore, because Ũn(2j− 1) and Un(2j− 1) have the same distribution func-
tion and by some calculations, it follows that

mn∑
j=1

E
[
Ũn(2j− 1)

2
]
6

n∑
i,j=1

∣∣Cov(1B(x,D−
n)
(Xi), 1B(x,D−

n)
(Xj))

∣∣.
Since Fx(D−

n) =
√
β kn and k ∼ nγ, we know that

Fx(D
−
n) = O

(
nγ−1

)
.

We apply Lemma 2.4.4 and get in the case of (D2)

mn∑
j=1

E
[
Ũn(2j− 1)

2
]
6 C1nFx(D

−
n) +C2χ(D

−
n)
1−sn1+s

= C1
√
βk+C2χ(D

−
n)
1−sn1+s, (2.21)

and in the case of (D1)

mn∑
j=1

E
[
Ũn(2j− 1)

2
]
6 C1nFx(D

−
n)

= C1
√
βk.

Below, we present the arguments if Condition (D2) holds, because in the case of
(D1) the rationale follows the same line. By (2.19), (2.20), (2.21), and t := r logn/k,
we have for the second term in (2.18)

E

exp

t mn∑
j=1

Ũn(2j− 1)

 6 exp
(
C1
√
βr2

(logn)2

k

)
·

· exp
(
C2
√
βr2

(logn)2χ(D−
n)
1−sn1+s

k2

)
.

(2.22)

By k ∼ nγ, we know that the first term in (2.22) satisfies

exp
(
C1
√
βr2

(logn)2

k

)
→ 1 as n→∞.
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If (D2) holds, we have for the second term in (2.22)

exp
(
C2
√
βµ2

(logn)2χ(D−
n)
1−sn1+s

k2

)
→ 1 as n→∞.

Since Fx(D−
n) =

√
β kn , t = r logn/k, and by choosing r > 6/(1−

√
β), we find for

the first term in (2.18)

exp
(
−t
k−nFx(D

−
n)

6

)
= exp

(
−
r(1−

√
β)

6
log (n)

)
= n−

r(1−
√
β)

6

6 n−l

for some l > 1. By this,

∞∑
n=1

P(11)
1n <∞ (2.23)

Now, combine relations (2.17) and (2.23) to obtain

∞∑
n=1

P(1)
1n 6

∞∑
n=1

P(11)
1n +

∞∑
n=1

P(12)
1n <∞.

By similar arguments as for P(1)
1n we receive

∞∑
n=1

P(2)
1n <∞.

Finally, we examine

P(3)
1n = P

(
Rn >

k−nFx(D
−
n)

3

)
.

We know that

|Rn| =

∣∣∣∣∣∣
n∑

i=2lnmn+1

(
1B(x,D−

n)
(Xi) − Fx(D

−
n)
)∣∣∣∣∣∣

6
n∑

i=2lnmn+1

(1B(x,D−
n)
(Xi) + Fx(D

−
n))

6 2
n∑

i=2lnmn+1

6 4ln.

and

k−nFx(D
−
n)

3
= O (k) .
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Together with the choice of ln in (2.16) and the condition on the parameter
a > 2/γ− 1 we have k > ln for large n. This implies

∞∑
n=1

P(3)
1n <∞.

Finally, we get

∞∑
n=1

P1n 6
∞∑
n=1

P(1)
1n +

∞∑
n=1

P(2)
1n +

∞∑
n=1

P(3)
1n <∞.

Analysis of P2n is similar to that of P1n. By the definition of nFx(D+
n)

k−nFx(D
+
n) = k

√
β− 1√
β

< 0,

we find

P2n = P

(
n∑
i=1

(
Fx(D

+
n) − 1B(x,D+

n)
(Xi)

)
> nFx(D

+
n) − k

)
.

Then by similar reasoning as for P1n, we get

∞∑
n=1

P2n <∞.

This finishes the proof of Condition (L1’), which states that

1[D−
n6Dn6D

+
n ]
→ 1 almost completely.

Now, we are in the position to apply Lemma 2.4.2 to obtain the desired result,

lim
n→∞ m̂k-NN(x) = m(x) almost completely.

�

Proof of Theorem 2.3.4:
To prove this theorem we use Lemma 2.4.1 from Burba et al. [11]. The conditions
of Lemma 2.4.1 are proven in a similar manner as in the proof of Theorem 2.3.4.
Condition (L1) is the same as (L1’) of Lemma 2.4.2. So the proof can be omitted
here. Conditions (L2) and (L3) are checked in a similar way as in the proof of The-
orem 2.3.3. In [30, p. 162] Ferraty and Vieu prove under the conditions of Theorem
2.3.2 that

1

n

n∑
i=1

K(h−1d(x,Xi)) = Oa.co.

(√
sn(x) logn

n

)
. (2.24)

Choose βn as an increasing sequence in (0, 1) with limit 1. Furthermore, choose
D+
n and D−

n such that

Fx(D
+
n) =

1√
βn

k

n
and Fx(D

−
n) =

√
βn
k

n
.
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If (D1) holds, then

sn(x) = O

(
n

Fx(h+)

)
= O

(
n2

k

)
. (2.25)

Similar is true for the bandwidth h−. In the case of (D2), we have for both band-
width sequences h− and h+

sn(x) = O

(
n2

k

)
+O

(
χ(x,h)1−sn1+s

)
. (2.26)

Now we are able to apply Theorem 2.3.2 with

h+ = D+
n = F−1

(√
βn
k

n

)
and h− = D−

n = F−1
(

1√
βn

k

n

)
to get

cn(D
+
n) = O

((
F−1x

(
k

n

))β)
+Oa.co.

(√
sn(x) logn

n

)
and

cn(D
−
n) = O

((
F−1x

(
k

n

))β)
+Oa.co.

(√
sn(x) logn

n

)
.

That verifies Condition (L3’) is verified. Now, by (2.24) and the same choice of h+

and h− as above, we have

1

nFx(h+)

n∑
i=1

K(h+
−1
d(x,Xi)) =

√
βn
k

n
+Oa.co.

(√
sn(x) logn

n

)
and

1

nFx(h−)

n∑
i=1

K(h−
−1
d(x,Xi)) =

√
βn
k

n
+Oa.co.

(√
sn(x) logn

n

)
.

By this, we obtain

n∑
i=1

K(h+
−1
d(x,Xi))

n∑
i=1

K(h−
−1
d(x,Xi))

−βn = Oa.co.

(√
sn(x) logn

n

)
.

To check Condition (L2’) we estimate sn(x) by bounds obtained either by Condition
(D1) and b > (2−γ)/(ε1(1−γ)) or by (D2), see (2.25) or (2.26). This completes this
proof. �

2.6 applications and related results

Applications

In the context of functional data analysis the k-NN kernel estimate was first intro-
duced in the monograph of Ferraty and Vieu [30]. There the authors give numerical



2.6 applications and related results 31

examples for the k-NN estimate. They tested it on different data sets, such as elec-
trical consumption in the U.S. [30, p. 200]. In [26], Ferraty et al. examined a data
set describing the El Niño phenomenon. Other interesting examples can be found
in the R-package fds (functional data sets) or Bosq [6, pp. 247]. For both data sets
the assumption of α-mixing is plausible. If we have for example a look on the elec-
trical consumption data set, it makes sense that the electrical consumption of the
year which we want to predict is more dependent on the near past than on years
afterwards.

Related Results

Here we want to outline how to make a robust k-NN kernel estimate. As already
mentioned in the introduction, the k-NN estimate is prone to outliers. This disad-
vantage can be treated by robust regression estimation. For functional data anal-
ysis Azzedine et al. [2] introduce a robust non-parametric regression estimate for
independent data. Attouch et al. [1] prove the asymptotic normality for the non-
parametric regression estimate for α-mixing data. Crambes et al. [17] present re-
sults dealing with the Lp error for independent and α-mixing data.

In robust estimation the non-parametric model θx can be defined as the root t
of the following equation

Ψ(x, t) := E [ψx(Y, t)|X = x] = 0. (2.27)

The model θx is called the ψx(Y, t)-regression and is a generalisation of the clas-
sical regression function. If we choose for example ψx(Y, t) = Y − t then we have
θx = m(x).

In the case of α-mixing data almost complete convergence and almost complete
convergence rate are not yet proven for robust kernel estimate. These results can be
easily obtained by arguments similar to those of Azzedine et al. [2] and those for
the classical regression function estimation. By such a result and similar arguments
as in this section: we get almost complete convergence and related rates for a robust
k-NN non-parametric estimate.

Attouch et al. [1], Azzedine et al. [2], or Crambes et al. [17] suggest in their
application the L1-L2 function

ψ(t) = t/
√
(1+ t2)/2

and ψx(t) := ψ (t/M(x)), where M(x) := med|Y − med(Y|X = x)| with med(Y|X =

x) as the conditional median of Y given X = x. We get the consistency for the
kernel estimate of conditional distribution function directly by choosing in (2.7)
for Bi = 1(−∞,y](Yi) with Yi as a real valued random variable distributed as Y, and
by this a consistent kernel estimate of med(Y|X = x).

Alternatively, if one has consistency results for a robust k-NN kernel estimate,
we can choose ψx(Y, t) = 1[Y>t] − 1/2, to get immediately the consistency for the
kernel estimate of the conditional distribution function.





3
U N I F O R M A L M O S T C O M P L E T E C O N V E R G E N C E R AT E S F O R
N O N - PA R A M E T R I C E S T I M AT E S F O R α - M I X I N G
F U N C T I O N A L D ATA

3.1 introduction

This chapter focuses on the uniform convergence of non-parametric estimates of
various conditional quantities, such as the conditional expectation, the conditional
distribution function, and the conditional density function, assuming α-mixing
functional random variables. Uniform convergence with such conditional quanti-
ties has been successfully applied for independent data by Ferraty et al. [23]. For
the dependent α-mixing case, we have the same applications as in the independent
case, as for example bandwidth selection, Behenni et al. [3], Rachdi and Vieu [58],
or Chapter 4, additive prediction and boosting, Ferraty and Vieu [32], or building
confidence bands by bootstrapping [27]. More references to applications can be
found in [23].

In view of non-parametric functional regression, Ferraty and Vieu examine the
uniform convergence for α-mixing data in [29] and the errata [31]. The same au-
thors, in an earlier publication [22], analyse the uniform convergence for depen-
dent data where random variables are of the fractal-type. In the errata [31] of [29]
Ferraty and Vieu state that the assumption of compactness on the set, where the
uniform convergence is proven, is a necessity, namely a finite number of open balls
is needed for covering the set of investigation. Since Ferraty and Vieu give no proof
of almost complete uniform convergence in [29] and [31], we carry it out here in
detail with some modified assumptions. The idea is based on an ably decomposi-
tion and the Fuk-Nagaev exponential inequality, see [51] or [62]. In addition to the
proof of the kernel estimate of the conditional expectation, we prove almost com-
plete uniform convergence for the kernel estimates of the other above-mentioned
conditional quantities. The pointwise almost complete convergence and the rate of
these kernel estimates for α-mixing random variables can be found in the mono-
graph of Ferraty and Vieu [30]. To date, the uniform convergence for the kernel
estimate of the conditional distribution function and the conditional density func-
tion has not been examined for functional α-mixing data. The independent case is
examined by Ferraty et al. [23].

The second reason why we examine uniform convergence is that Ferraty and
Vieu assume in [29] and [31] that the covering numbers increases polynomially. In
the examples in Section 3.2.2 or Ferraty et al. [29] it can be seen that interesting
function spaces exist that have covering number that grow exponentially. For inde-

33
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pendent data, Ferraty et al. [29] expand the result of uniform convergence to such
a class of function spaces. We take this step for dependent data in this chapter. The
price we have to pay for this is that we have to weaken the dependence of the func-
tional random variables. After a closer look at the proofs, it can be seen that under
the condition of arithmetic mixing, the extension to a wider function class does not
work. We have to assume that the data is geometrically mixing. Furthermore, to
estimate the conditional expectation we have to assume that the tails of the prob-
ability distribution function of the response variable Y decays exponentially. For
all estimates we split our results into two parts; the first for arithmetically mixing
random variables and the second for geometrically mixing random variables.

This chapter is organised as follows: Firstly, in Section 3.2.1 we introduce the
general description of the exponential inequality used in the proofs and after that
two versions of that inequality corresponding to the two mixing conditions. In
Section 3.2.2, we present some topological terms and definitions. Furthermore, we
give some examples of covering numbers for some commonly used function spaces.
In Section 3.3 we give the almost complete convergence rate of the kernel estimate
of the generalised regression function. As already mentioned, we examine the two
cases of mixing separately. In the sections thereafter we show in the same manner,
the almost complete convergence rate of the kernel estimate of the non-parametric
conditional distribution function and the kernel estimate of the non-parametric
conditional density function.

3.2 preliminaries

3.2.1 Exponential Inequalities for Mixing Random Variables

This section begins by introducing the Fuk-Nagaev exponential inequality. It is
the main tool for proving the uniform convergence of all kernel estimates that are
examined in this chapter. The proof of this inequality can be found in Theorem 6.2
in the monograph of Rio [62, p. 84].

Theorem 3.2.1 (Rio [62]) Let (Xi) be a real-valued and centered α-mixing sequence. Let
Q = sup

i

Qi, where

Qi(u) := inf {t | P(|Xi| > t) 6 u} and sn :=

n∑
i,j=1

|Cov(Xi,Xj)|.

Let R(u) := α−1(u)Q(u) and H(u) := R−1(u) be the generalised inverse of R. Then we
have for λ > 0 and r > 1

P

(
sup
k∈[1,n]

|Sk| > 4λ

)
6 4

(
1+

λ2

rsn

)− r
2

+ 4
n

λ

H(λr )∫
0

Q(u)du, (3.1)

where Sk :=
k∑
i=1

Xi.
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For arithmetical or geometrical mixing random variables, we get different esti-
mates for the integral in (3.1) Corollary 3.2.1 is for the arithmetical case and Corol-
lary 3.2.2 for the geometrical case.

Corollary 3.2.1 (Rio [62]) In addition to the conditions of Theorem 3.2.1, assume that

∃c > 1, b > 1 : α(n) 6 cn−b for all n > 0.

Assume for all i ∈N and some p > 2

P (|Xi| > t) 6 t
−p,

then we have

4

λ

H(λr )∫
0

Q(u)du 6 4
C

r

(
λ

r

)−(b+1)p/(b+p)

,

where C = 2p
(2p−1)(2

bc)(p−1)/(b+p). If the Xi are bounded, ‖Xi‖∞ <∞, then we have

4

λ

H(λr )∫
0

Q(u)du 6 2
c

r

(
λ

r

)−(b+1)

.

Corollary 3.2.2 (Merlevede et al. [51], Rio [62]) In addition to the conditions of Theo-
rem 3.2.1, assume that

∃b, c > 0 : α(n) 6 exp
(
−cnb

)
for all n > 0,

further there exists a constant p ∈ (0,∞] and C > 0 such that

sup
i

P (|Xi| > t) 6 C exp (−tp) for all t > 0.

If the random variables are bounded, ‖Xi‖∞ < ∞ for all i ∈ N we have p = ∞. Let
1
a = 1

b + 1
p , then we have for all λ > 0 and r > 1

4

λ

H(λ/r)∫
0

Q(u)du 6 4
C

λ
exp

(
−c

(
λ

r

)a)
.

The following corollary is quoted from Ferraty and Vieu [30], Corollary A.12. The
formulation will be for arithmetic mixing random variables, but it can be easily
seen that the conditions for the geometric mixing case, see Corollary 3.2.2, are also
fulfilled.

Corollary 3.2.3 (Ferraty and Vieu [30], p. 237 et seq.) Assume we have a sequence
(Xi,n) of mixing random variables, depending on n, with arithmetic coefficient b > 1.
Let un := n−2sn logn be a deterministic sequence. Furthermore, assume that one of the
following two conditions are satisfied
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i) ∃p > 2, ∃θ > 2, ∃Mn < ∞, such that ∀t > Mn we have P (|X1| > t) 6 t−p and
s
−(b+1)p/(b+p)
n = O(n−θ).

ii) ∃Mn <∞, ∃θ > 2 such that |X1,n| 6Mn and s−(b+1)
n = O(n−θ).

Then we have

1

n

n∑
i=1

Xi,n = Oa.co. (
√
un) .

3.2.2 Topological Aspects

In this section, we introduce some topological terms, such as pre-compact, covering
number and entropy. Afterwards, we present some examples of covering numbers
for some commonly used spaces.

3.2.2.1 Basic Notations

Let (E,d) be a semi-metric space and SE ⊂ E be a closed and totally bounded set. As
in the case of pointwise convergence, an assumption on the small ball probability
of the functional variable X for the uniform convergence on SE is needed.

Condition on the small ball probability

Assume that there exists uniformly for all x ∈ SE a function F(h) such that

(F) ∃C,C ′ > 0 and ∀x ∈ SE :

0 < CF(h) 6 P(X ∈ B(x,h)) 6 C ′F(h) <∞.

This is a strict assumption in view of pointwise convergence as we need such a
concentration function for all x ∈ SE. By this function F, the concentration of the
random variable in a ball with radius h can be uniformly controlled. Recall that
in Section 1.6 we gave an example of an exponential-type process (the Ornstein-
Uhlenbeck process). By choosing

C ′ = sup
x∈SE

Cx and C = inf
x∈SE

Cx,

we have an example of the existence of such a measure on a compact set. Ferraty
et al. [23] present the Onsager-Machlup function,

∀x,y ∈ SE : FX(x,y) := log
(

lim
h→0

P (B(x,h))
P (B(y,h))

)
for verifying that condition. If we have for the Onsager-Machlup function

∀x ∈ SE : |FX(x, 0)| 6 C <∞,

then Condition (F) is verified. For more references we refer to Ferraty et al. [23].
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As Lian [47, p. 34] describes, Condition (F) automatically implies the total
boundedness of the set SE. Therefore, the total boundedness of SE is not explic-
itly listed.

For some more references on that topic, we refer to Section 1.6. For completeness
we introduce the definition of pre-compact and some related notions. Afterwards,
we present some examples.

Definition 3.2.1 A set S of a space E is called pre-compact or totally bounded, if we have
for all ε > 0 a finite number of elements x1, . . . , xk ∈ E, such that

S =

k⋃
i=1

B(xi, ε),

where B(xi, ε) := {x ∈ S|d(x, xi) < ε} is an open ball in E. The covering number
N(S,d, ε) is then the smallest n ∈N such that SE is covered by n-balls.

Similar to , there exists the entropy number.

Definition 3.2.2 Let n ∈N be fixed, S be a pre-compact set in E, then the entropy number
is defined as

εn(S) := inf {ε > 0|∃ε-net for S in E with q 6 n elements}

= inf {ε > 0|N(S,d, ε) 6 n}.

For a deeper insight on entropy numbers, we refer to the monograph of Carl und
Stephani [12]. In our proofs, we will use the following notion:

Definition 3.2.3 Let ε > 0 be fixed, S be a pre-compact space and N(S,d, ε) the smallest
covering number of open balls that covers the space S. Then

KS(ε) := log (N(S,d, ε))

is known as the Kolmogorov ε–entropy.

The concept of ε–entropy is first introduced by Kolmogorov and Tihomirov [43];
the paper cited here is an English translation of the original Russian paper.

3.2.2.2 Some Examples for the Kolmogorov ε–Entropy

The intention of this section is to present some spaces with their corresponding
Kolmogorov ε–entropy. We extract these examples out of the paper of Ferraty et
al. [23], the monograph of Steinwart and Christmann [65], and the monograph of
Carl and Stephani [12].

Closed Set in a Finite-dimensional Banach Space (Carl and Stephani [12, p. 9])

Let E be a m-dimensional Banach space, m ∈ N. Let UE be the closed unit ball in
E; then we have for the entropy

n− 1
m 6 εn(UE) 6 4n

− 1
m ,

and we get then for the Kolmogorov ε–entropy

m log
(
1

ε

)
6 KUE(ε) 6 m

(
log (4) + log

(
1

ε

))
.
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Compact Set in a Hilbert Space with a Projection-based Semi-metric (Ferraty et al. [27])

Let S ⊂ H be a compact set in a Hilbert space H. Ferraty et al. [27] prove in their
Proposition 3.1.1 that in the case of a projection-based semi-metric,

d(x,y) =

√√√√ k∑
i=1

< x− y,ui >2,

where x,y ∈ S, (ui) is an orthonormal basis of H and k ∈N, the ε–entropy behaves
like the entropy of a finite-dimensional Banach space, namely

k log
(
1

ε

)
6 KS(ε) 6 k

(
log (4) + log

(
1

ε

))
.

Closed Ball in a Sobolev Space (Ferraty et al. [23])

Let Wl
2(r) be the space of functions f(t) that are defined on the interval [0, 2π) with

periodic boundary conditions, and let the following inequality be valid

1

2π

2π∫
0

f2(t)dt+
1

2π

2π∫
0

f(l)
2

(t)dt 6 r,

then

KWl
2(r)

(ε) 6 C
( r
ε

) 1
m

.

Open Ball in a Sobolev Space (Steinwart und Christmann [65, p. 518])

Let X be an open ball in Rd. Then we have for all m > d
2 two positive constants

cm(X) and c̃m(X), such that

cm(X)n−m
d 6 en(id :Wm(X)→ L∞(X)) 6 c̃m(X)n−m

d . (3.2)

For the L2-norm and for all m > 0, there exist also two constants, different from
the ones above, such that

cm(X)n−m
d 6 en(id :Wm(X)→ L2(X)) 6 c̃m(X)n−m

d , (3.3)

where en is known as the dyadic entropy number. By Lemma 6.2.1 [65, p. 221] we
get for these two cases, (3.2) and (3.3), following Kolmogorov ε–entropy

KS(ε) 6 log (4)

(
c̃m(X)

ε

) d
m

.

Unitball of the Cameron-Martin Space (Ferraty et al. [23])

This example originates from the publication by van der Vaart and van Zanten [68].
Let µ be a spectral measure on R with the following condition,∫

exp (δ|λ|)µ(dλ) <∞
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for some δ > 0. Let W := (Wt : t > 0) be a centred, mean-square continuous Gaus-
sian process. By Lemma 2.1 of van der Vaart und van Zanten [68] the Reproducing
Kernel Hilbert Space H is expressed as

H = {t 7→ Re ((Fh) (t)) |h ∈ L2(µ)} with t ∈ [0, 1].

(Fh)(t) is the Fourier transformation Fh : R→ C of the functions h relative to the
spectral measure µ,

(Fh)(t) =

∫
exp (itλ)h(λ)µ(dλ).

As a result of Lemma 2.3 of [68] we have for the Kolmogorov ε–entropy relative to
the supremum norm of the unit ball UH in H

KS(ε) 6 C

(
log
(
1

ε

))2
.

Link between the Kolmogorov ε–Entropy and the Small Ball Probability

A precise link between the small ball probability of a Gaussian measure on a sep-
arable Banach space and the Kolmogorov ε–entropy of the unit ball of the RKHS
H generated by the Gaussian measure was discovered by Kuelbs and Li [44]. With
this result it is possible to calculate the small ball probability from the Kolmogorov
ε–entropy and vice versa. As already shown in the dependent case, the uniform
convergence for functional data depends on the behaviour of the small ball proba-
bility and the Kolmogorov ε–entropy. The link between these two properties may
be interesting, therefore an example is presented. We outline a result of the paper
by Li and Linde [46], which is an extension of the paper of Kuelbs and Li [44].

Let P be a centred Gaussian measure on a real separable Banach space
(E, ‖ · ‖) and HP the Hilbert space generated by P, see Li and Linde [46]. Then,
as a consequence of the Theorem 1.1 and Theorem 1.2 from Li and Linde’s paper
[46] we have the equivalence of

− log P (‖X‖ 6 ε) ∼ ε−α
(

log
(
1

ε

))β
and

KUX(ε) ∼ ε
− 2α
2+α

(
log
(
1

ε

)) 2β
2+α

,

where β ∈ R, α > 0 and UX is the unit ball in HP.
For some more examples and a wider reference we refer to Section 1.6 and the

papers cited above. In Subsection 3.3.3, after the main results and the proofs, we
will make some more comments on that circumstance in view of our considera-
tions.
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3.3 the regression function

3.3.1 Notations and Assumptions

In this section, we focus on the generalised regression function

mϕ(·) = E [ϕ(Y)|X = ·] ,

where ϕ : R → R is a Borel-measurable function. We deviate from the notion of
the chapters before, because the results we get in this section can be directly trans-
ferred to the conditional distribution function by the choice ϕ(Y) := 1[−∞,y](Y).

The kernel estimate of the generalised regression function is given for x ∈ E as

m̂ϕ(x) =

n∑
i=1

ϕ(Yi)
K
(
h−1n d(x,Xi)

)
n∑
j=1

K
(
h−1n d(x,Xj)

) , if
n∑
j=1

K
(
h−1n d(x,Xi)

)
6= 0, (3.4)

otherwise m̂ϕ(x) = 0. The terms of covariance, which are a measure of depen-
dence, are denoted by

sn,1(x) :=

n∑
i,j=1

|Cov(∆i(x),∆j(x))| and

sn,2(x) :=

n∑
i,j=1

|Cov(Yi∆i(x), Yj∆j(x))|,

where

∆i(x) :=
K(h−1d(x,Xi))

E [K(h−1d(x,X1))]
.

Furthermore, we define

s∗n,1 := sup
x∈SE

sn,1(x) and

s∗n,2 := sup
x∈SE

sn,2(x).

We will prove the almost complete uniform convergence of the kernel estimate
defined in (3.4) on a compact subset SE of a function semi-metric space E.

In the next section, we present the assumptions.

Condition on the regularity of the generalised regression function

(R1) Assume that the generalised regression function is of Hölder-type,

mϕ ∈ Lβ(E),

for some β > 0.
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Condition on the response variable Y

(M1) Assume that the conditioned moments of ϕ(Y) are uniformly bounded,

∀m > 2 : E [|ϕ(Y)|m|X = x] = δm(x) < C <∞.

Condition on the kernel function K

(K) Assume that the kernel function K is of continuous- or of discontinuous-type.
Furthermore, assume for continuous-type kernel functions that there exists
C > 0 and ε0 > 0

∀ 0 < ε < ε0 :
ε∫
0

F(u)du > CεF(ε).

Condition on the Kolmogorov ε–entropy

Initially, we consider arithmetically mixing random variables. As can be seen in
the proof of Theorem 3.3.1 and the related lemmas, the covering number of the
compact set SE is of a polynomial order.

(E1) Let (E,d) be a semi-metric space, let ε > 0 and C > 0, then the condition
needs to hold

KSE (ε) 6 C̃τ log
(
1

ε

)
,

where τ on E.

If we take a closer look at the examples of Section 3.2.2, it can be seen that Condi-
tion (E1) is restrictive. Under this assumption, we do not get a uniform convergence
result for some interesting function spaces. In the set of our examples, we are re-
stricted to finite-dimensional Banach spaces. As we can see in the second example,
this problem can be avoided on compact subsets of infinite-dimensional Hilbert
spaces by using a projection-based semi-metric. There exist also some non finite
dimensional examples, see e. g. Ferraty et al. [23] or Ferraty et al. [27]. Therefore,
this assumption (E1) can be weakened so that the uniform convergence results are
valid on a larger class of function spaces.

Conditions on the mixing coefficient α(n)

(A1) Assume the data (Xi, Yi)ni=1 is α-mixing with mixing coefficient,

∃c > 0, a > 0 : α(n) 6 cn−b,

with b > 1.

Conditions on the covariance term sn

(D1) Let sn := max {s∗n,1, s∗n,2}, then assume that

s
−p(b+1)
2(b+p)
n = o(n−θ)

for a θ > τ+ 2, where τ is defined as in (E1).

Furthermore, C is in all proofs a generic positive and finite constant.
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3.3.2 Main Results

The Arithmetically Mixing Case

We rewrite the generalised regression estimate as follows

m̂ϕ(x) =
ĝϕ(x)

f̂(x)
,

where

ĝϕ(x) :=
1

n

n∑
i=1

ϕ(Yi)∆i(x), f̂(x) :=
1

n

n∑
i=1

∆i(x). (3.5)

Theorem 3.3.1 (Arithmetically Mixing) With Conditions (F), (K), (R1), (M1), (E1),
(A1), and (D1), we have

sup
x∈SE

|m̂ϕ(x) −mϕ(x)| = O
(
hβ
)
+Oa.co.

(√
sn logn
n

)
.

Proof:
As the denominator of the kernel estimate depends on the random variables, we
need to decompose the difference between the estimator and the regression func-
tion. This decomposition is as in the proof of the pointwise convergence

m̂ϕ(x) −mϕ(x)

=
1

f̂(x)
[ĝϕ(x) − E [ĝϕ(x)] − (mϕ(x) − E [ĝϕ(x))]] −

mϕ(x)

f̂(x)

[
f̂(x) − 1

]
. (3.6)

With (3.6), we get with some calculations

sup
x∈SE

|m̂ϕ(x) −mϕ(x)| 6
1

inf
x∈SE

|f̂(x)|
sup
x∈SE

|ĝϕ(x) − E [ĝϕ(x)] |︸ ︷︷ ︸
I

+

1

inf
x∈SE

|f̂(x)|
sup
x∈SE

|mϕ(x) − E [ĝϕ(x)] |︸ ︷︷ ︸
II

+

sup
x∈SE

|mϕ(x)|

inf
x∈SE

|f̂(x)|
sup
x∈SE

|f̂(x) − 1|︸ ︷︷ ︸
III

. (3.7)

For the bias term II only deterministic properties are needed, therefore there is no
difference from the proof of the pointwise independent case. Term I is examined
in Lemma 3.3.3 and term III in Lemma 3.3.1. For the infimum of f̂(x), see Lemma
3.3.2. �

First of all, we will take a closer look at term III of (3.7). We have E
[
f̂(x)

]
= 1.
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Lemma 3.3.1 With Conditions of Theorem 3.3.1, we have

sup
x∈SE

∣∣f̂(x) − E
[
f̂(x)

]∣∣ = Oa.co.


√
s∗n,1 logn

n

 .

Proof:
The proof of this lemma is based on the proof of uniform convergence for inde-
pendent random variables, see Ferraty et al. [23]. Analogously, we estimate the
supremum by three terms A1, A2, and A3. The difference from the independent
case is that we use another exponential inequality here for α-mixing random vari-
ables. The Fuk-Nagaev exponential inequality is applied here, see in Section 3.2.1
Theorem 3.2.1, Corollary 3.2.1, and Corollary 3.2.2.

Choose for the ε–net ε := logn
n and denote as xk(x) the closest point of the ε–net

xk to x ∈ SE. Let us have a closer look at the following decomposition

sup
x∈SE

∣∣f̂(x) − E
[
f̂(x)

]∣∣ 6 A1 +A2 +A3,

where

A1 = sup
x∈SE

∣∣f̂(x) − f̂(xk(x))∣∣ ,
A2 = sup

x∈SE

∣∣f̂(xk(x)) − E
[
f̂(xk(x))

]∣∣ , and

A3 = sup
x∈SE

∣∣E [f̂(xk(x))]− E
[
f̂(x)

]∣∣ .
First, we examine, as in [23], the case of continuous-type kernel functions. Because
of the condition K(1) = 0, we have that K is Lipschitz continuous in [0, 1]. Define
Kh(·) := K(h−1(·)), then we have

A1 =
1

n
sup
x∈SE

n∑
i=1

∣∣∣∣∣ Kh(d(x,Xi))
E [Kh(d(x,X1))]

−
Kh(d(xk(x),Xi))

E
[
Kh(d(xk(x),X1))

]∣∣∣∣∣
6 sup
x∈SE

C

nF(h)

n∑
i=1

|Kh(d(x,Xi)) −Kh(d(xk(x),Xi))|

= sup
x∈SE

C

nF(h)

n∑
i=1

|Kh(d(x,Xi)) −Kh(d(xk(x),Xi))|1B(xk(x),h)∪B(x,h)(Xi)

6 sup
x∈SE

C

nhF(h)

n∑
i=1

ε1B(xk(x),h)∪B(x,h)(Xi).

We got the last step by using the Lipschitz continuity of the kernel function K. Let

Wi :=
Cε

hF(h)
1B(xk(x),h)∪B(x,h)(Xi),

then the random variable Wi is bounded,

|W1| 6
Cε

hF(h)
=:Mn <∞. (3.8)
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Because of (3.8) and the Conditions (A1) and (D1), we are able to apply Corol-
lary 3.2.3,

A1 = Oa.co.


√
s∗n,1 logn

n

 .

For continuous-type kernel functions we have the problem that this type is only
Lipschitz continuous on the interval [0, 1). Therefore, we use the term A1 for the
same decomposition as in the paper of Ferraty et al. [23] in the independent case
as follows

A1 = sup
x∈SE

∣∣f̂(x) − f̂(xk(x))∣∣
6 C(A11 +A12 +A13), (3.9)

where

A11 = sup
x∈SE

1

nF(h)
|Kh(d(x,Xi)) −Kh(d(xk(x),Xi))|1B(xk(x),h)∩B(x,h)(Xi),

A12 = sup
x∈SE

1

nF(h)

n∑
i=1

Kh(d(x,Xi))1B(xk(x),h)∩B(x,h)(Xi), and

A13 = sup
x∈SE

1

nF(h)

n∑
i=1

Kh(d(xk(x),Xi))1B(x,h)∩B(xk(x),h)(Xi).

On the basis of this estimate, we are now able to use in the case of term A11 the
Lipschitz continuity of the kernel function. Furthermore, A11 is bounded so that
we are able to apply Corollary 3.2.3 by the same arguments as in continuous-type
kernel functions,

A11 = Oa.co.


√
s∗n,1 logn

n

 . (3.10)

For the terms A12 and A13, we use the fact that the kernel functions are bounded.
By Corollary 3.2.3, we get

A12 = Oa.co.


√
s∗n,1 logn

n

 and A13 = Oa.co.


√
s∗n,1 logn

n

 . (3.11)

Following (3.10) and (3.11), we have

A1 = Oa.co.


√
s∗n,1 logn

n

 .

Next, examine term A2,

A2 = sup
x∈SE

∣∣f̂(xk(x)) − E
[
f̂(xk(x))

]∣∣
= max
k=1,...,N(SE,d,ε)

∣∣f̂(xk(x)) − E
[
f̂(xk(x))

]∣∣ . (3.12)
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We obtain

f̂(xk(x)) − E
[
f̂(xk(x))

]
=
1

n

n∑
i=1

(
∆i(xk(x)) − E

[
∆i(xk(x))

])
=
1

n

n∑
i=1

Wki.

With the help of Conditions (K) and (F) we receive

|Wk1| 6 CF(h)
−1. (3.13)

Now we apply the Fuk-Nagaev inequality. Let η > 0 and r > 1,

P

(
max

k=1,...,N(SE,d,ε)

1

n

∣∣∣∣∣
n∑
i=1

Wki

∣∣∣∣∣ > η
)

6
N(SE,d,ε)∑
k=1

P

(∣∣∣∣∣
n∑
i=1

Wki

∣∣∣∣∣ > nη
)

6 N(SE,d, ε) max
k=1,...,N(SE,d,ε)

P

(∣∣∣∣∣
n∑
i=1

Wki

∣∣∣∣∣ > nη
)

6 N(SE,d, ε)

nC
r

(
r

nη

)a+1
+ 4

(
1+

η2n2

rs∗n,1

)− r
2


=: T1n + T2n. (3.14)

Choose r := (logn)1+γ for some γ > 0 and η := η0

√
s∗n,1 logn
n for some η0 > 0. We

find for term T1n,

T1n = CN(SE,d, ε)

 n

(logn)1+γ

 n(logn)1+γ

nη0

√
s∗n,1 logn

b+1


= Cη
−(b+1)
0 N(SE,d, ε)(logn)

2b(γ+1)−1
2 ns∗

−
(b+1)
2

n,1

6 Cη−(b+1)
0 (logn)

2b(γ+1)−1
2 −τn1+τ−θ.

The last line results from the Condition s∗
−

(b+1)
2(b+p)

n,1 = o(n−θ) and Condition (E1). For
θ > τ+ 2 and b > 1 we obtain∞∑

n=1

T1n 6 Cη
−(b+1)
0

∞∑
n=1

(logn)
2b(γ+1)−1

2 −τn1+τ−θ <∞.

Finally, we consider term T2n,

T2n = 4N(SE,d, ε)

(
1+

η2n2

rs∗n,1

)− r
2

= 4N(SE,d, ε)

(
1+

η2n2

(logn)1+γs∗n,1

)−
(logn)1+γ

2

.
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Because of the choice of r, we are able to use the Taylor expansion of
log (1+ x) = x− x2

2 + o(x2) for x→ 0 and with the above choice of η we arrive at

T2n = 4N(SE,d, ε) exp

(
−
(logn)1+γ

2
log

(
1+

η2n2

(logn)1+γs∗n,1

))

= 4N(SE,d, ε) exp
(
−
(logn)1+γ

2
log
(
1+ η20(logn)−γ

))
6 4N(SE,d, ε) exp

(
−
1

2
Cη20 logn

)
.

Choose η0 such that l := 1
2Cη

2
0 > τ+ 1. We receive

T2n = 4N(SE,d, ε)n−l

6 Cnτ−l.

Out of it, we obtain

∞∑
n=1

T2n 6
∞∑
n=1

Cnτ−l <∞.

Hence it follows

A2 = Oa.co.


√
s∗n,1 logn

n

 .

For the third term in (3.9)

A3 = sup
x∈SE

∣∣E [f̂(xk(x))]− E
[
f̂(x)

]∣∣
6 E

[
sup
x∈SE

∣∣f̂(xk(x)) − f̂(x)∣∣
]

we obtain, by similar arguments as for A1,

A3 = Oa.co.


√
s∗n,1 logn

n

 .

�

In the decomposition in (3.6), we have to handle the reciprocal of the infimum of
f̂(x).

Lemma 3.3.2 (Ferraty et al. [23]) With Conditions (F), (K), (E1), (A1), and (D1), we
have

∞∑
n=1

P
(

inf
x∈SE

f̂(x) <
1

2

)
<∞.
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Proof:
This proof differs from the case of independent random variables only in the way
that Lemma 3.3.1 is applied here instead of Lemma 8 as in the paper by Ferraty et
al. [23].

�

Lemma 3.3.3 With Conditions (F), (K), (E1), (M1), (A1), and (D1), we have

sup
x∈SE

|ĝϕ(x) − E [ĝϕ(x)] | = Oa.co.


√
s∗n,2 logn

n

 .

Proof:
The proof of this lemma is similar to the proof of the previous Lemma 3.3.1. In
addition, we have the response variable Y here. Therefore, we have to apply the
Fuk-Nagaev exponential inequality for unbounded random variables. First decom-
pose the supremum into three terms as follows and examine them separately,

sup
x∈SE

|ĝϕ(x) − E [ĝϕ(x)]| 6 A1 +A2 +A3,

with

A1 = sup
x∈SE

∣∣ĝϕ(x) − ĝϕ(xk(x))∣∣ ,
A2 = sup

x∈SE

∣∣ĝϕ(xk(x)) − E
[
ĝϕ(xk(x))

]∣∣ , and

A3 = sup
x∈SE

∣∣E [ĝϕ(xk(x))]− E [ĝϕ(x)]
∣∣ .

The proof of the rate of convergence of the terms A1 and A3 is analogous to the
terms A1 and A3 in the proof of Lemma 3.3.1. Here we use the same case-by-
case study of two types of kernel functions. By Condition (M1) we can then apply
Corollary 3.2.3 for unbounded random variables and we obtain

A1 = Oa.co.


√
s∗n,2 logn

n

 and A3 = Oa.co.


√
s∗n,2 logn

n

 .

Term A2 needs some more careful consideration. As for A2 in the proof of Lemma
3.3.1, we apply the Fuk-Nagaev inequality here to receive

A2 = sup
x∈SE

∣∣ĝϕ(xk(x)) − E
[
ĝϕ(xk(x))

]∣∣
= max
k=1,...,N(SE,d,ε)

∣∣ĝϕ(xk(x)) − E
[
ĝϕ(xk(x))

]∣∣ .
We arrive at

ĝϕ(xk(x)) − E
[
ĝϕ(xk(x))

]
=
1

n

n∑
i=1

(
∆i(xk(x))ϕ(Yi) − E

[
∆i(xk(x))ϕ(Yi)

])
=
1

n

n∑
i=1

Wki.
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Now we have to check the conditions of Corollary 3.2.1 for the random variable
Wki. The calculation of this verification is nearly identical to the independent case
and can be found in the proof of Lemma 6.3 in [30, p. 65]. The difference is that
the measurable function ϕ is applied to the response variable.

As the conditions of Corollary 3.2.1 are now verified, we are now able to apply
the Fuk-Nagaev inequality as we did in Lemma 3.3.1,

P (A2 > η) = P

(
max

k=1,...,N(SE,d,ε)

1

n

∣∣∣∣∣
n∑
i=1

Wki

∣∣∣∣∣ > η
)

6
N(SE,d,ε)∑
k=1

P

(∣∣∣∣∣
n∑
i=1

Wki

∣∣∣∣∣ > nη
)

6 N(SE,d, ε) max
k=1,...,N(SE,d,ε)

P

(∣∣∣∣∣
n∑
i=1

Wki

∣∣∣∣∣ > nη
)

6 N(SE,d, ε)

nC
r

(
r

nη

) (b+1)p
b+p

+ 4

(
1+

η2n2

rs∗n,2

)− r
2


=: T1n + T2n.

We treat the term T2n as we did in the proof of Lemma 3.3.1, but because of the
unbounded response variable Y, the examination of the term T1n is different from
that in Lemma 3.3.1,

T1n = CN(SE,d, ε)

 n

(logn)1+γ

 n(logn)1+γ

nη0

√
s∗n,2 logn


(b+1)p
b+p


6 Cη

−
(b+1)p
b+p

0 N(SE,d, ε) logn1+γ+
(1/2+γ)(b+1)p

(b+p) ns∗
−

(b+1)p
2(b+p)

n,2

6 Cη
−

(b+1)p
b+p

0 N(SE,d, ε) logn1+γ+
(1/2+)γ(b+1)p

(b+p) n1−θ

6 Cη
−

(b+1)p
b+p

0 logn1+b+
(1/2+γ)(b+1)p

(b+p) n1+τ−θ.

For θ > τ+ 2, we arrive at

A2 = Oa.co.


√
s∗n,2 logn

n

 .

This finishes the proof. �

The Geometrically Mixing Case

To get uniform convergence results for a larger class of function spaces a price
has to be paid, namely the sequence of random variables has to be geometrically
mixing, we have to be more restrictive regarding the response variable Y, and we
need some restriction on the covariance term sn.
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Condition on the mixing coefficient

(A2) Assume the data (Xi, Yi)ni=1 is α-mixing with exponentially decaying mixing
coefficient, i.e.

∃c, b > 0 : α(n) 6 exp
(
−cnb

)
.

Condition on the response variable Y

Furthermore, here we need the tails of the probability distribution function of the
response variable Y to decline exponentially.

(M2) Assume for response variable Y

P (|Y| > t) 6 C exp (−tp),

for some C > 0 and p ∈ (0,∞], where p = ∞ means that the response
variable Y is bounded.

Condition on the Kolmogorov ε–entropy

The extension of the result from Section 3.3.2 is that now the entropy number
grows polynomially and no longer needs logarithmic growth as in Condition (E1).
This generalisation increases the amount of function spaces, see Section 3.2.2. In
addition, for this case we need a lower bound on the entropy number so that it
does not decrease too quickly.

(E2) Assume that we have for the Kolmogorov ε–entropy

KS (ε) ∼ ε
−α,

with α ∈ (0, 1).

Condition on the covariance term sn

(D2) Assume for the covariance term sn that we have for some δ > 0 arbitrarily
small, α same as in (E2), and a = bp/(b+ p) large enough, with b from (A2)
and p from (M2), that

C1n
α(1+ 2

a+δ) < sn < C2n
2−α. (3.15)

The lower bound in 3.15 is needed for the estimate where the exponential inequal-
ity is applied, the upper bound such that the convergence rate of Theorem 3.3.2
does not degenerate. As we saw in Chapter 2, the covariance term sn depends on
the small ball probability F(h) and the joint distribution function G(h), so the band-
width has to be chosen correctly in this sense. We refer for this to the following
Section 3.3.3.

Theorem 3.3.2 (Geometrically Mixing) With Conditions (F), (K), (R), (M2), (E2), (A2),
and (D2), we have

sup
x∈SE

|m̂ϕ(x) −mϕ(x)| = O
(
hβ
)
+Oa.co.


√
s∗n,1KSE

(
1
n

)
n

 .
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Proof:
This proof is based on the same decomposition as in Theorem 3.3.1. The assertion
follows then from Lemma 3.3.2 and the successive Lemma 3.3.4 and Lemma 3.3.5.

�

Lemma 3.3.4 With the conditions from Theorem 3.3.2, we have

sup
x∈SE

|ĝϕ(x) − E [ĝϕ(x)] | = Oa.co.


√
s∗n,2KSE

(
1
n

)
n

 .

Proof:
Decompose sup

x∈SE

|ĝϕ(x) − E [ĝϕ(x)]| as in Lemma 3.3.3 into three terms,

A1 = sup
x∈SE

∣∣ĝϕ(x) − ĝϕ(xk(x))∣∣ ,
A2 = sup

x∈SE

∣∣ĝϕ(xk(x)) − E
[
ĝϕ(xk(x))

]∣∣ , and

A3 = sup
x∈SE

∣∣E [ĝϕ(xk(x))]− E [ĝϕ(x)]
∣∣ .

First, let us have a closer look at A2 and denote ε := 1/n. As in the proof of Lemma
3.3.3 we get

A2 = sup
x∈SE

∣∣ĝϕ(xk(x)) − E
[
ĝϕ(xk(x))

]∣∣
= max
k=1,...,N(SE,d,ε)

∣∣ĝϕ(xk(x)) − E
[
ĝϕ(xk(x))

]∣∣ .
Let us examine

ĝϕ(xk(x)) − E
[
ĝϕ(xk(x))

]
=
1

n

n∑
i=1

(
∆i(xk(x))ϕ(Yi) − E

[
∆i(xk(x))ϕ(Yi)

])
=
1

n

n∑
i=1

Wki.

By applying Theorem 3.2.1 and Corollary 3.2.2, we find

P (A2 > η) 6 N(SE,d, ε) max
k=1,...,N(SE,d,ε)

P

(∣∣∣∣∣
n∑
i=1

Wki

∣∣∣∣∣ > nη
)

6 N(SE,d, ε)

4n C
nη

exp
(
−c
(nη
r

)a)
+ 4

(
1+

η2n2

rs∗n,2

)− r
2


=: T1n + T2n, (3.16)

where a = pb/(b+ p).
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To begin with, we examine term T2n. Choose η := η0

√
s∗n,2KSE (1/n) /n

2 with

some η0 > 0 and choose r := nα+δ for δ > 0. We obtain

T2n = 4N(SE,d, ε) exp

(
−
nα+δ

2
log

(
1+

η2n2

s∗n,2n
nα+δ

))

= 4N(SE,d, ε) exp
(
−
nα+δ

2
log
(
1+

η20KSE (ε)

nα+δ

))
. (3.17)

We have η20KSE (ε) /n
α+δ → 0 as n → ∞. Because of this we can use the Taylor-

expansion of log (1+ x) = x− x2

2 + o(x2) as x→ 0,

T2n 6 exp
((
1−

η20
2

)
KSE (ε)

)
.

As soon as we choose η0 such that η20/2 is larger than 1, we get for large n

T2n 6 n
−1−κ1 (3.18)

for a κ1 > 0.
Next, we examine term T1n, η and r are the same as above. We receive then by

some calculation and Conditions (E2) and (D2)

T1n = 4Cη−10 N(SE,d, ε)
1√

s∗n,2KSE (ε)
exp

(
−cηa0n

−a(α+δ)(s∗n,2KSE (ε))
a
2

)
= 4Cη−10

1√
s∗n,2KSE (ε)

exp
(
KSE (ε) − cη

a
0n

−a(α+δ)(s∗n,2KSE (ε))
a
2

)
6 4Cη−10

1√
s∗n,2KSE (ε)

exp
(
C1n

α −C2η
a
0n

−a(α+δ)(s∗n,2n
α)

a
2

)
= 4Cη−10

1√
s∗n,2KSE (ε)

exp
(
C1n

α −Cηa0n
−a(α2+δ)(s∗n,2)

a
2

)
6 4Cη−10

1√
Cn1+α+δ

exp
(
nα(C1 −Cη

a
0n

−a(α2+δ)−α(s∗n,2)
a
2

)
< 4Cη−10

1√
Cn1+α+δ

exp
(
nα(C1 −Cη

a
0n
t)
)

(3.19)

for some t > 0. So there exists a constant κ2 > 0 such that

T1n 6 n
−1−κ2 . (3.20)

Combine relations (3.18) and (3.20) to achieve

A2 = Oa.co.


√
s∗n,2KSE

(
1
n

)
n

 .

Finally, we have to examine the terms A1 and A3. As in the proof of Lemma 3.3.1,
we need a case-by-case analysis for the two types of kernel functions. Here we
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have that the terms of investigation are uniform in x, as can be seen in the proof of
Lemma 3.3.1. Therefore the calculation of the terms A1 and A3 is easier than that
of term A2. By applying Corollary 3.2.3, we arrive at

A1 = Oa.co.


√
s∗n,2KSE

(
1
n

)
n

 and A3 = Oa.co.


√
s∗n,2KSE

(
1
n

)
n

 .

This finishes the proof of this lemma. �

Lemma 3.3.5 With Conditions (F), (K), (E2), (A2), and (D2), we have

sup
x∈SE

|f̂(x) − 1| = Oa.co.


√
s∗n,1KSE

(
1
n

)
n

 .

Proof:
This proof is similar to the proof of Lemma 3.3.1 and Lemma 3.3.4. As we did there,
the difference |f̂(x)− 1| is decomposed into three parts, denoted by A1, A2, and A3.
As in the proof of Lemma 3.3.4, A2 is treated in the same way as the term A2 in
the proof of Lemma 3.3.4. Furthermore, we get the desired result for both terms
A1 and A3 with the same arguments as in Lemma 3.3.4 for the terms A1 and A3.

�

3.3.3 Comments and Application

The aim of this subsection is to give some comments on the convergence rate,
especially on the choice of the upper bound of the Kolmogorov ε–entropy. To
avoid getting a degenerate convergence rate, one needs to control the covariance
term sn, see Condition (D2). On this account and for simplicity we adopt a result
of Ferraty and Vieu’s [30] for the covariance term sn. We assume that the joint
distribution function declines fast enough so that the small ball probability would
dominate the convergence rate.

On the Covariance Term sn

For a start, we need a condition related to the joint distribution of (Xj,Xi).

(G) Assume that there exists as in Condition (F) a function G(h) such that we
have for all x in SE

0 < C1G(h) 6 sup
i 6=j

P
(
(Xj,Xi) ∈ B(x,h)×B(x,h)

)
6 C2G(h) <∞.

for some C1,C2 > 0.

(B1) Assume that there exists a constant ε1 ∈ (0, 1] such that

G(h) = O
(
F(h)1+ε1

)



3.3 the regression function 53

For some comments on Condition (B1) we refer to the Condition (D1) in Chapter 2.
Furthermore, we need the conditional expectation of the response variable to be
bounded.

(B2) Assume for the bandwidth h that

∃ε2 ∈ (0, 1) F(h) = O
(
n−ε2

)
.

(Z) Assume we have for a positive and finite constant C

sup
i 6=j

E
[
|YiYj||(Xi,Xj)

]
6 C.

Ferraty and Vieu consider the following lemma in the case of pointwise conver-
gence, see their monograph [30]. The proof of the expansion to the case of uniform
convergence is similar to their proof.

Lemma 3.3.6 (Ferraty and Vieu [30], p. 163 et seq.) Assume Conditions (F), (K),
(B1), (B2), and (Z). Then we have in the case of geometrically mixing random variables

sn = O

(
n

F(h)

)
.

For the case of arithmetically mixing random variables, the same result is obtained by an
additional condition on the rate, we need

b >
1+ ε1
ε1ε2

.

If Condition (B1) is omitted, we get, as already seen in Chapter 2, an additional
term which presents the dependence of the random variables. We consider here
now just the case when Condition (B1) is in force, as the arguments would be
the same if the term of dependence were being discussed. By this we get for the
arithmetical case.

Theorem 3.3.3 With Conditions of Theorem 3.3.1 and additionally with the Conditions
(G), (B1), (B2), and (Z), we have

sup
x∈SE

|m̂ϕ(x) −mϕ(x)| = O
(
hβ
)
+Oa.co.

(√
logn
nF(h)

)
.

We get a similar result for the geometrically mixing case.

Theorem 3.3.4 With Conditions of Theorem 3.3.2 and additionally with Conditions (G),
(B1), (B2), and (Z), we have

sup
x∈SE

|m̂ϕ(x) −mϕ(x)| = O
(
hβ
)
+Oa.co.

√KSE

(
1
n

)
nF(h)

 .
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A Comment on the Convergence Rate and the Kolmogorov ε–entropy

Firstly, if we do not want to get a degenerated convergence rate, we need for
n→∞ that

KSE

(
1
n

)
nF(h)

→ 0.

As the small ball probability F(h) → 0 for n → ∞, we get by a suitably chosen
bandwidth h,

nF(h) = O
(
nt
)

for some t ∈ (0, 1). Secondly, if we have a look at the proof of Theorem 3.3.2,
especially at the examination of the term T1n, see (3.16) and (3.19), it is not possible
to select a faster increasing denominator as for example nτF(h) for some τ > 1.
It is for this reason not possible by means of the techniques used in the proof of
Theorem 3.3.2 to get a convergence result for functional spaces, whose Kolmogorov
ε–entropy is of higher order than nα for an α ∈ (0, 1).

If we have a look at the example in Section 3.2.2, where we examined a direct
link between the small ball probability and the Kolmogorov ε–entropy, we can see
that a process that allows a useful result exists. It would be interesting if such links
also existed for the other results in the example Section 3.2.2.

Application of the Uniform Convergence for Bandwidth Selection and an Open Problem

An application of the results obtained in Section 3.3 is for instance the bandwidth
selection, for example by bootstrapping or by cross-validation. Here we give an
outlook upon the bandwidth selection by cross-validation in the α-mixing case.
The case of finite-dimensional density estimation for dependent random variables
is examined by Hart and Vieu [40] or by Kim [42]. The case of non-parametric
regression is examined by Härdle and Vieu [39]. The previously cited papers prove
their results under the condition that the random variable X is R–valued. One of
the main tools in their proof is to apply Davidoff’s inequality. In the examination
of cross-validation a term of the form

g(Xj(1), . . . ,Xj(p)) =
q∏

r,s=1
s6=r

K
(
h−1(Xj(r) −Xj(s))

)βr,s
p∏
i=1

gj(i)(Xj(i)) (3.21)

is obtained. For more details see Proposition 1 in Hart and Vieu [40]. To apply
Davidoff’s inequality the authors used the Fourier transformation for separating
the random variables in the kernel function K

(
h−1(Xj(r) −Xj(s))

)
such that the

form
p∏
r=1

hr(Xj(r))

is obtained for the term in (3.21). In the multivariate case or in the functional case,
this idea of using Fourier transformation, does not work, as we have as input of
the kernel function

K
(
h−1‖Xj(r) −Xj(s)‖

)
or K

(
h−1d(Xj(r) −Xj(s))

)
,
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nonlinear expressions. Because of this we are not able to use the properties of the
Euler function to separate the random variables Xj(r) and Xj(s) in d(Xj(r) −Xj(s)).

Possibly, instead of using Davidoff’s Lemma, Bradley’s Lemma, see Lemma 2.4.3
in Chapter 2, can be used to solve this problem in the multivariate and functional
context.
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3.4 the conditional distribution function

3.4.1 Notations and Assumptions

The objective of this section is to focus on the non-parametric kernel estimate of
the conditional distribution function for α-mixing data,

Fx(y) = P(Y 6 y|X = x), (3.22)

where x ∈ E and y ∈ R. We will assume that this function exists. For a discussion
of its existence and for a bibliography, we refer to the monograph by Ferraty and
Vieu [30, p. 51].

The conditional distribution function can be written as the conditional expecta-
tion of an indicator function

Fx(y) = E
[
1[−∞,y](Y)|X = x

]
.

Now let us have a look at the generalised regression function in Section 3.3. If we
choose there

ϕ(Yi) := 1[−∞,y](Yi),

we directly obtain a non-smooth kernel estimate of the conditional distribution
function

F̂
x
(y) =

n∑
i=1

1[−∞,y](Yi)
K
(
h−1n d(x,Xi)

)
n∑
i=1

K
(
h−1n d(x,Xi)

) , if
n∑
j=1

K
(
h−1n d(x,Xi)

)
6= 0,

otherwise F̂
x
(y) = 0, for x ∈ E and y ∈ R. Thus, we receive an uniform convergence

result on a compact set SE by applying the theorems in Section 3.3.

Theorem 3.4.1 With Conditions (F), (K), (R1), (M1), (E1), (A1), and (D1), we have

sup
x∈SE

|F̂
x
(y) − Fx(y)| = O

(
hβ
)
+Oa.co.

(√
sn logn
n

)
.

In the case of geometric mixing, we get for the same reason a convergence result
on the set SE.

Following the arguments of Ferraty and Vieu [30] and their denoted references,
a smooth version of this kernel estimate can be designed. To do this a another type
of kernel function can be defined.

Definition 3.4.1 We call a kernel function K0 of classical-type, if
∫
K0(u)du = 1, K0 has

the support [−1, 1], and K0(u) > 0 for all u ∈ [−1, 1].

For example, the symmetric boxed or symmetric quadratic kernel function in Fig-
ure 3.1 are of classical-type.
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(b) Quadratic kernel

Figure 3.1: Two common symmetric kernel functions of classical-type.

If in addition we smooth the response variable Y, we get a smooth kernel esti-
mate of the conditional distribution function,

F̂
x
(y) =

n∑
i=1

Γi(y)
K
(
h−1n d(x,Xi)

)
n∑
j=1

K
(
h−1n d(x,Xj)

) , if
n∑
j=1

K
(
h−1n d(x,Xi)

)
6= 0,

otherwise F̂
x
(y) = 0, for x ∈ E and y ∈ R, with

Γi(y) := H(g−1(y− Yi)).

H is an integrated kernel

H(u) :=

u∫
−∞

K0(v)dv,

where K0 is a kernel function of classical-type and g := gn is a smoothing param-
eter. The integrated kernel H acts as a local weighting in the response variable. If
y is smaller than Yi, then we have a small weight, on the other hand if y is larger
than Yi, the weight is closer to one. A price of getting a smooth estimate which a
practitioner has to pay is that now two optimal smoothing parameters have to be
estimated. For a more detailed reference to this type of kernel estimate we refer
again to the monograph by Ferraty and Vieu [30, p. 55 et seqq.].

As in Section 3.3 we split the kernel estimate into a numerator and denominator,

m̂x3(y) =
1

n

n∑
i=1

Γi(y)∆i(x), where ∆i(x) :=
K(h−1d(x,Xi))

E [K(h−1d(x,X1))]
,

then we can write

F̂
x
(y) =

m̂x3(y)

f̂(x)
,
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(a) Integrated box kernel
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(b) Integrated quadratic kernel

Figure 3.2: This Figure shows two common integrated kernel functions.

where f̂(x) is defined as in (3.5). Before we present the uniform convergence results,
we introduce some conditions. Here we replace the covariance term sn,2 of the
generalised regression function defined in Section 3.3 by the following covariance
term

sn,3(x,y) :=
n∑

i,j=1

|Cov(Γi(y)∆i(x), Γj(y)∆j(x))| x ∈ SE, y ∈ SR.

To get a convergence result in both variables x,y, we examine the case, where
SR ⊂ R is compact.

Condition on the regularity of the conditional distribution function

(R2) Assume that the conditional distribution function is of Hölder-type. Let
C1,C2 > 0 and β1,β2 > 0, such that for all y1,y2 ∈ SR and x1, x2 ∈ SE

we have

|Fx1(y1) − F
x2(y2)| 6 C1d(x1, x2)β1 +C2|y1 − y2|β2 .

Condition on the covariance terms

(D2) Define s∗n,3 := sup
x∈SE

sup
y∈SR

(sn,3(x,y)) and define sn := max(s∗n,1, s∗n,3), then

assume analogous to Condition (D1)

s
−(a+1)
n = o(n−θ)

for some θ > τ+ β2
2 + 2, where β2 is the constant from Condition (R) and τ

from Condition (E1).

As in the case of non-parametric generalised regression estimate, we divide the
results here again into two parts.
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3.4.2 Main Results

The Arithmetically Mixing Case

Theorem 3.4.2 (Arithmetically Mixing) Assume the Conditions (F), (K), (R2), (E1),
(A1), and (D2) hold and we have for the bandwidth g that lim

n→∞gnβ2/2 = ∞, where β2
is the second Hölder constant of Condition (R). Then we have

sup
x∈SE

sup
y∈SR

|F̂
x
(y) − Fx(y)| = O

(
hβ1

)
+O

(
gβ2

)
+Oa.co.

(√
sn logn
n

)
.

Proof:
Ferraty and Vieu prove in their monograph [30, p. 186] the uniform convergence in
y for the kernel estimate on a compact set in R for the α-mixing case. In the paper
by Ferraty et al. [23] uniform convergence for the non-smooth kernel estimate in
both variables is proven for dependent data.

Here, we combine the ideas of those two proofs and the idea we used in the
proof of the generalised regression function. The following decomposition in (3.23)
is based on the proofs mentioned in [30, p. 186] or [23],

F̂
x
(y) − Fx(y) =

1

f̂(x)
(m̂x3(y) − E [m̂x3(y)] − (Fx(y) − E [m̂x3(y))])

+
Fx(y)
f̂(x)

(
E
[
f̂(x)

]
− f̂(x)

)
. (3.23)

From (3.23) we get

sup
x∈SE

sup
y∈SR

∣∣∣F̂x(y) − Fx(y)
∣∣∣ 6 1

inf
x∈SE

f̂(x)
sup
x∈SE

sup
y∈SR

|m̂x3(y) − E [m̂x3(y)]|

+
1

inf
x∈SE

f̂(x)
sup
x∈SE

sup
y∈SR

|Fx(y) − E [m̂x3(y))]|

+

sup
x∈SE

sup
y∈SR

Fx(y)

inf
x∈SE

f̂(x)
sup
x∈SE

∣∣E [f̂(x)]− f̂(x)∣∣ .
This theorem is then a result of Lemma 3.3.1 and Lemma 3.3.2 of Section 3.3 and
the successive Lemma 3.4.1 and Lemma 3.4.2. �

Lemma 3.4.1 Under the conditions of Theorem 3.4.2, we have

sup
x∈SE

sup
y∈SR

|E [m̂3(x)] − Fx(y)| = O
(
hβ1

)
+O

(
gβ2

)
.

Proof:
As in the independent case, just the Hölder continuity of the conditional distribu-
tion function is used. The result can be taken from Ferraty and Vieu [30, p. 84].

�
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Lemma 3.4.2 With the Conditions of Theorem 3.4.2, we have

sup
x∈SE

sup
y∈SR

|m̂x3(y) − E [m̂x3(y)] | = Oa.co.

(√
sn logn
n

)
.

Proof:
This proof is analogous to the proof in the independent case, see [23], and the
pointwise case of α-mixing random variables, see Proposition 11.20 in the mono-
graph by Ferraty and Vieu [30, p. 185]. Because SR is a compact set in R, there
exists a finite number zn of open balls with radius rn such that the union of these
balls contains the set SR, namely

SR ⊂
zn⋃
k=1

(tk − rn, tk + rn).

Choose the radius of the balls as rn = n−β2/2, then the covering number grows
polynomially, we have zn 6 nβ2/2. Denote the closest point tk to y ∈ SR as t(y),

t(y) := arg min
{t1,...,tzn}

|tk − y|.

Now we decompose the difference as follows

sup
x∈SE

sup
y∈SR

|m̂x3(y) − E [m̂x3(y)] | 6 A1 +A2 +A3 +A4 +A5,

where

A1 = sup
x∈SE

sup
y∈SR

∣∣∣m̂x3(y) − m̂
xk(x)
3 (y)

∣∣∣ ,
A2 = sup

x∈SE

sup
y∈SR

∣∣∣m̂xk(x)3 (y) − m̂
xk(x)
3 (t(y))

∣∣∣ ,
A3 = sup

x∈SE

sup
y∈SR

∣∣∣m̂xk(x)3 (t(y)) − E
[
m̂
xk(x)
3 (t(y))

]∣∣∣ ,
A4 = sup

x∈SE

sup
y∈SR

∣∣∣E [m̂xk(x)3 (t(y))
]
− E

[
m̂
xk(x)
3 (y)

]∣∣∣ , and

A5 = sup
x∈SE

sup
y∈SR

∣∣∣E [m̂xk(x)3 (y)
]
− E [m̂x3(y)]

∣∣∣ .
First we examine term A1,

A1 = sup
x∈SE

sup
y∈SR

∣∣∣∣∣
n∑
i=1

Γi(y)
(
∆i(x) −∆i(xk(x))

)∣∣∣∣∣ ,
and then term A5,

A5 = sup
x∈SE

sup
y∈SR

∣∣∣E [m̂xk(x)3 (y)
]
− E [m̂x3(y)]

∣∣∣
6E

[
sup
x∈SE

sup
y∈SR

∣∣∣m̂xk(x)3 (y) − m̂x3(y)
∣∣∣] .
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Using for A1 and A5 the same case-by-case study for the two types of kernel
functions as in the proof of Theorem 3.3.1 for the terms A1 and A3, we obtain

A1 = Oa.co.


√
s∗n,3 logn

n

 and A5 = Oa.co.


√
s∗n,3 logn

n

 .

Next, examine the term A2. As H(1) = K0, we know that the integrated kernel
function H is Hölder continuous with order 1, we get by some calculations

|m̂
xk(x)
3 (y) − m̂

xk(x)
3 (t(y))| =

1

n

n∑
i=1

∆i(xk(x)) (Γi(y) − Γi(t(y)))

6
|y− t(y)|

g

1

n

n∑
i=1

∆i(xk(x))

6
1

n

n∑
i=1

∆i(xk(x))

gn
β2
2

=
1

n

n∑
i=1

Wik.

As a consequence of

|W1k| 6
C

gn
β2
2 F(h)

<∞
and Condition (D2), we can apply Corollary 3.2.3. In this case we consider a slightly
modified covariance term

s̃n,1(x) =

n∑
i,j=1

∣∣∣∣Cov( ∆i(x)

gnβ2/2
,
∆j(x)

gnβ2/2

)∣∣∣∣ ,
with s̃n,1(x) = 1/(g2nβ2) sn,1(x). Since gnβ2/2 → ∞ as n → ∞, sn,1(x) is an
upper bound of s̃n,1(x). Apply Corollary 3.2.3 to find

sup
x∈SE

sup
y∈SR

|m̂
xk(x)
3 (y) − m̂

xk(x)
3 (t(y))| = Oa.co.


√
s̃∗n,1 logn

n

 ,

where s̃∗n,1 := sup
x∈SE

(s̃n,1(x)) and due to

P (|X| > w2) 6 P (|X| > w1) (3.24)

for w1 6 w2 and s̃n,1(x) 6 sn,1(x) we arrive at

A2 = Oa.co.


√
s∗n,1 logn

n

 .
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By a similar argument, we find for A4,

A4 = Oa.co.


√
s∗n,1 logn

n

 .

Again, similarly to the proof of Theorem 3.3.1, we have a closer look at the term in
the middle,

A3 = sup
x∈SE

sup
y∈SR

∣∣∣m̂xk(x)3 (t(y)) − E
[
m̂
xk(x)
3 (t(y))

]∣∣∣
= max
xk∈{x1,...,xN(SE,d,ε)}

max
t∈{t1,...,tzn}

∣∣m̂xk3 (t) − E
[
m̂xk3 (t)

]∣∣ .
Rewrite this difference

m̂xk3 (t) − E
[
m̂xk3 (t)

]
=
1

n

n∑
i=1

(∆i(xk)Γi(y) − E [∆i(xk)Γi(y)])

=
1

n

n∑
i=1

Wki(t).

As a result of the boundedness of the kernel function K and the integrated ker-
nel function H and Conditions (F) and (K), the random variable Wki is bounded.
Apply Theorem 3.2.1 and Corollary 3.2.1 to obtain

P (A3 > η) = P

(
max

k∈{1,...,N(SE,d,ε)}
max

t∈{t1,...,tzn}

∣∣∣∣∣ 1n
n∑
i=1

Wki(t)

∣∣∣∣∣ > η
)

6 znN(SE,d, ε)max
k

max
t

P

(∣∣∣∣∣
n∑
i=1

Wki(t)

∣∣∣∣∣ > nη
)

6 znN(SE,d, ε)

nC
r

(
r

nη

)a+1
+ 4

(
1+

η2n2

rs∗n,3

)− r
2


=: T1n + T2n. (3.25)

Similarly to the proof of Lemma 3.3.1 we get for the terms T1n and T2n an estima-
tion as follows, but additional to the proof of Lemma 3.3.1 we get here the extra
term zn, the covering number of the compact set SR. Let η := η0

√
sn logn/n for

some η0 > 0 and r := (logn)1+b for b > 0. Then we have

T1n = CznN(SE,d, ε)

 n

(logn)1+b

(
n(logn)1+b

nη0s
∗
n,3

√
logn

)a+1
= Cη

−(a+1)
0 znN(SE,d, ε)(logn)

2a(b+1)−1
2 ns∗

−(a+1)

n,3

6 Cη−(a+1)
0 (logn)

2a(b+1)−1
2 −τn1+τ+

β2
2 −θ.

For θ > β2
2 + τ+ 2, we get

∞∑
n=1

(logn)
2a(b+1)−1

2 −τn1+τ+
β2
2 −θ <∞. (3.26)
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By a similar argument as in the proof of Lemma 3.3.1 we get for the second term
in (3.25),

T2n 6 4znN(SE,d, ε) exp
(
−
1

2
Cη20 logn

)
.

Choose η0 such that

l =
1

2
Cη20 >

β2
2

+ τ+ 1.

Then, we obtain by the properties on the covering number of SE and SR, namely

N(SE,d, ε) 6 Cnτ and zn 6 Cnβ2/2,

the following estimate

T2n = 4znN(SE,d, ε)n−l

6 Cn
β2
2 +τ−l.

This implies

∞∑
i=1

nβ/2+τ−β <∞. (3.27)

Finally, combine relations (3.26) and (3.27) to find

A3 = Oa.co.


√
s∗n,3 logn

n

 .

This finishes the proof. �

The Geometrically Mixing Case

Similarly as in the case of the regression function we get the uniform convergence
rates for a larger class of functional spaces for geometrically mixing random vari-
ables. For the conditional distribution function we do not need Condition (M2) on
the response variable. Because of this, we get here for the constant p =∞ and out
of this we have a = b.

Theorem 3.4.3 (Geometrically Mixing) With Conditions (F), (K), (R2), (E2), (A2),
and (D2), we have

sup
x∈SE

sup
y∈SR

|F̂
x
(y) − Fx(y)| = O

(
hβ1

)
+O

(
gβ2

)
+Oa.co.


√
snKSE

(
1
n

)
n

 .

Proof:
By the same decomposition as in the case of arithmetically mixing random vari-
ables in the proof of Theorem 3.4.2 and by applying then Lemma 3.3.2, Lemma
3.3.5, Lemma 3.4.1, and the successive Lemma 3.4.3, we finish the proof. �
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Lemma 3.4.3 By the same Conditions as in Theorem 3.4.3, we have

sup
x∈SE

sup
y∈SR

|m̂x3(y) − E [m̂x3(y)] | = Oa.co.


√
snKSE

(
1
n

)
n

 .

Proof:
To prove this lemma we need just minimal modifications of the proof for the gen-
eralised regression function. In addition to the proof of the regression function
estimate we have here the covering number zn of the compact space SR. If we
have a closer look at the proof of Lemma 3.3.4, it can be seen that this additional
factor in the estimation has just minor influence in the proof, since the covering
number of SE is of exponential order. Another difference to the proof of Lemma
3.3.4 is that we have to consider the terms D2 and D4 similarly as in the proof of
Lemma 3.4.2, where the assumption gnβ2/2 → ∞ as n → ∞ is needed. By doing
this, this lemma is proven. �
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3.5 the conditional density function

3.5.1 Notations and Assumptions

In this section the kernel estimate of the conditional density function for α-mixing
random variables is examined. We assume here that the probability distribution
of Y given X is absolutely continuous with respect to the Lebesgue measure on R.
Then we denote fx(y) as the corresponding density function for the pair (x,y). If
it is assumed that the conditional distribution function is differentiable in y, the
density can be written as

∀y ∈ R : fx(y) =
∂

∂y
Fx(y).

By this a kernel estimate f̂
x
(y) of fx(y) follows directly as

f̂
x
(y) =

n∑
i=1

g−1n K0(g
−1
n (y− Yi))

K
(
h−1n d(x,Xi)

)
n∑
j=1

K
(
h−1n d(x,Xj)

)
if

n∑
j=1

K
(
h−1n d(x,Xi)

)
6= 0,

otherwise f̂
x
(y) = 0, for x ∈ E and y ∈ R. K0 is a classical-type kernel function

and h := hn and g := gn are bandwidths. Define as in the sections before the
corresponding covariance term

sn,4(x,y) :=
n∑

i,j=1

|Cov(Ωi(y)∆i(x),Ωj(y)∆j(x))|,

where

Ωi(y) := g
−1K0(g

−1(y− Yi)) and ∆i(x) :=
K(h−1d(x,Xi))

E [K(h−1d(x,X1))]
.

Let SR ⊂ R be compact.

Condition on the classical-type kernel function

(H1) Assume that the classical-type kernel function K0 is Lipschitz continuous and
bounded, namely let C > 0 and for all u1,u2 ∈ R we have

|K0(u1) −K0(u2)| 6 C|u1 − u2|.

(H2) Furthermore, assume for the classical-type kernel function K0∫
|t|β2K0(t)dt <∞ and∫
K20(t)dt <∞.
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Condition on the regularity of the conditional density function

(R3) Assume that the conditional density function fx(y) is of Hölder-type. There
exist constants C1,C2 > 0 such that we have for all x1, x2 ∈ SE and
y1,y2 ∈ R

|fx1(y1) − fx2(y2)| 6 C1(d(x1, x2))β1 +C2|y1 − y2|β2 .

Condition on the covariance terms

(D3) Define s∗n,4 := sup
x∈SR

sup
y∈SE

(sn,4(x,y)) and sn := max
{
s∗n,1, s∗n,4

}
, then assume

s
−(a+1)
n = o(n−θ),

where θ > τ + β2 + 2 and β2 is the constant of Condition (R) and τ the
constant of Condition (E1).

3.5.2 Main Results

The Arithmetically Mixing Case

Theorem 3.5.1 (Arithmetically Mixing) Assume Conditions (F), (K), (R3), (E1), (H1),
(H2), (R), (A1), and (D3) hold, and we have for the bandwidth g that lim

n→∞gnβ2/2 =∞,
where β2 is the second Hölder constant of Condition (R3), then we have

sup
x∈SE

sup
y∈SR

|f̂
x
(y) − fx(y)| = O

(
hβ1

)
+O

(
gβ2

)
+Oa.co.

(√
sn logn
n

)
.

Proof:
Analogously to the proofs of Theorem 3.3.1 or Theorem 3.4.2 we fall back to the
ideas of proving uniform consistency in the independent case, Theorem 5 of Fer-
raty et al. [23] or Ferraty and Vieu [30]. First, the difference of the kernel estimate
and the conditional density function is divided as in the independent case as fol-
lows

f̂
x
(y) − fx(y) =

1

f̂(x)
(m̂x4(y) − E [m̂x4(y)] − (fx(y) − E [m̂x4(y))])

+
fx(y)
f̂(x)

(
E
[
f̂(x)

]
− f̂(x)

)
, (3.28)

where

m̂x4(y) =
1

n

n∑
i=1

Ωin(y)∆i(x).

Apply the supremum on these terms as in the proof of Theorem 3.3.1 or Theorem
3.4.2. Afterwards, the proof is a conclusion of Lemma 3.3.1 and Lemma 3.3.2 of
Section 3.3 and the successive Lemma 3.5.1 and Lemma 3.5.2. �
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Lemma 3.5.1 By Conditions (F), (K), (H1), (H2), and (R), we have

sup
x∈SE

sup
y∈SR

|fx(y) − E [m̂x4(y)] | = O(h
β1) +O(gβ2).

Proof:
This proof is the same as in the independent case. The result is obtained by using
the Hölder continuity (H1) and the Condition (H2). For the proof see Lemma 14 in
the paper by Ferraty et al. [23]. �

Lemma 3.5.2 With Conditions of Theorem 3.5.1, we have

sup
x∈SE

sup
y∈SR

|m̂x4(y) − E [m̂x4(y)] | = Oa.co.

(√
sn logn
n

)
.

Proof:
Analogously to the proof of the consistency of the conditional distribution function
in Theorem 3.4.2, the compact set SR can be covered by a finite number of open
balls, namely

SR ⊂
zn⋃
k=1

(tk − rn, tk + rn).

By choosing the radius of the balls as rn = Cn−β2 , we get for the covering number
zn 6 nβ2 . Let t(y) be the closest point of the centres of the balls to a point y ∈ SR,

t(y) := arg min
{t1,...,tzn}

|tk − y|.

Decompose the difference as follows

sup
x∈SE

sup
y∈SR

∣∣m̂x4(y) − E
[
m̂x4(y)

]∣∣ 6 A1 +A2 +A3 +A4 +A5,

where

A1 = sup
x∈SE

sup
y∈SR

∣∣∣m̂x4(y) − m̂
xk(x)
4 (y)

∣∣∣ ,
A2 = sup

x∈SE

sup
y∈SR

∣∣∣m̂xk(x)4 (y) − m̂
xk(x)
4 (t(y))

∣∣∣ ,
A3 = sup

x∈SE

sup
y∈SR

∣∣∣m̂xk(x)4 (t(y)) − E
[
m̂
xk(x)
4 (t(y))

]∣∣∣ ,
A4 = sup

x∈SE

sup
y∈SR

∣∣∣E [m̂xk(x)4 (t(y))
]
− E

[
m̂
xk(x)
4 (y)

]∣∣∣ , and

A5 = sup
x∈SE

sup
y∈SR

∣∣∣E [m̂xk(x)4 (y)
]
− E [m̂x4(y)]

∣∣∣ .
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The proof for the terms A1 and A5 is analogous to the terms A1 and A3 in the
proof of Lemma 3.3.1. Similarly to there, a case-by-case analysis for the two type
of kernel functions has to be done here. We obtain

A1 = Oa.co.


√
s∗n,4 logn

n

 and A5 = Oa.co.


√
s∗n,4 logn

n

 .

Term A2 and A4 are similar to D2 and D4 in the proof of the conditional distri-
bution function in Lemma 3.4.2. Rewrite the sum, apply Condition (H1) and the
Lipschitz continuity of the kernel function K0,

|m̂
xk(x)
4 (y) − m̂

xk(x)
4 (t(y))| =

∣∣∣∣∣ 1n
n∑
i=1

(Ωi(y) −Ωi(t(y)))∆i(xk(x))

∣∣∣∣∣
6

∣∣∣∣∣ |y− t(y)|g2n

n∑
i=1

∆i(xk(x))

∣∣∣∣∣
6

∣∣∣∣∣ rng2n
n∑
i=1

∆i(xk(x))

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

∆i(xk(x))

g2nβ2

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

Wki

∣∣∣∣∣ .
Due to

|Wk1| 6
C

g2nβ2F(h)
,

and by Condition (D3), we can now apply Corollary 3.2.3. Analogously to the proof
of Lemma 3.4.2 we have here a slightly modified covariance term

s̃n,1(x) =

n∑
i,j=1

∣∣∣∣Cov( ∆i(x)g2nβ2
,
∆j(x)

g2nβ2

)∣∣∣∣ .
Similarly, we have that s̃n,1(x) = 1/(g

4n2β2) sn,1(x). Since gnβ2/2 →∞ as n→∞,
sn,1(x) is an upper bound of s̃n,1(x). By applying now Corollary 3.2.3, we get

sup
x∈SE

sup
y∈SR

|m̂
xk(x)
4 (y) − m̂

xk(x)
4 (t(y))| = Oa.co.


√
s̃∗n,1 logn

n

 . (3.29)

Finally, out of (3.29) and the fact of (3.24), we arrive at

sup
x∈SE

sup
y∈SR

|m̂
xk(x)
4 (y) − m̂

xk(x)
4 (t(y))| = Oa.co.

(√
sn logn
n

)
.
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The rate for A4 we get by

A4 = sup
x∈SE

sup
y∈SR

∣∣∣E [m̂xk(x)4 (t(y))
]
− E

[
m̂
xk(x)
4 (y)

]∣∣∣
6 E

[
sup
x∈SE

sup
y∈SR

∣∣∣m̂xk(x)4 (t(y)) − m̂
xk(x)
4 (y)

∣∣∣]
and a similar calculation as for A2. Finally, term A3 has to be examined. This
calculation is analogous to that of term D3 in the proof of Lemma 3.4.2. We just
replace the definition of the covering number from zn 6 Cnβ2/2 by zn 6 Cnβ2

and use instead of (D2) the Condition (D3). We arrive at

A3 = Oa.co.


√
s∗n,4 logn

n

 .

�

The Geometrically Mixing Case

Similarly to the conditional distribution function we just need to examine the bias
term m̂x4(y) − E

[
m̂x4(y)

]
of the decomposition in (3.28) to get the uniform almost

complete convergence result.

Theorem 3.5.2 (Geometrically Mixing) Assume Conditions (F), (K), (R3), (E2), (H1),
(H2), (A2), and (D2) hold, where in (D2) the covariance term sn is defined as in (D3),
and assume for the bandwidth g that lim

n→∞gnβ2/2 = ∞, where β2 is the second Hölder
constant of Condition (R3), then we have

sup
x∈SE

sup
y∈SR

|f̂
x
(y) − fx(y)| = O

(
hβ1

)
+O

(
gβ2

)
+Oa.co.


√
snKSE

(
1
n

)
n

 .

Proof:
By the same decomposition as in the case of arithmetically mixing random vari-
ables in the proof of Theorem 3.5.1 and by applying then Lemma 3.3.2, the re-
ciprocal of f̂(x), Lemma 3.3.5, the rate of f̂(x) − 1, Lemma 3.4.1, the bias and the
successive Lemma 3.5.3, we get the result. �

Lemma 3.5.3 With the Conditions of Theorem 3.5.2, we have

sup
x∈SE

sup
y∈SR

|m̂x4(y) − E [m̂x4(y)] | = Oa.co.


√
snKSE

(
1
n

)
n

 .

Proof:
The argumentation of the proof of this lemma is the same as that for Lemma 3.4.3.

�





4
B O O T S T R A P P I N G I N N O N - PA R A M E T R I C R E G R E S S I O N F O R
B A N D W I D T H S E L E C T I O N

4.1 introduction

This chapter focuses on the issue of bandwidth choice in non-parametric functional
regression. The primary emphasis is on a data-driven local selection procedure.
Traditionally, the mean squared error is used as a measure of accuracy for choosing
the smoothing parameter. As we want a local method, the pointwise mean squared
error is considered. We present a bootstrap method for choosing the bandwidth
by using this accuracy measure and we prove the asymptotic optimality of this
selection procedure. As an open problem, such a method is firstly mentioned in
the functional context by Ferraty et al. [25]. In Ferraty et al. [27] the validity of
the bootstrap in non-parametric regression is treated. There they proved that the
distribution of m(x) − m̂(x) can be approximated by a bootstrap kernel estimate.
Our proof is strongly connected to the lemmas and proofs of that work.

This bootstrap procedure enlarges the numbers of methods for choosing the
smoothing parameter in the non-parametric functional regression analysis. Rachdi
and Vieu [58] prove the asymptotic optimality of global cross-validation. Behenni
et al. [3] adapt the global cross-validation method to a local one. The optimal band-
width, in the sense of minimising the mean squared error, can also be estimated
by a plugin approach, for example by estimation of the constants in the expansion
of the mean squared error, see Theorem 4.3.1.

The ideas in this section my be extended to the k-NN kernel estimate, where the
bandwidth depends on how concentrated the data is around the point of interest
x. Burba et al. [11] prove the almost complete convergence, a validation of a cross-
validation or bootstrap procedure for the k-NN kernel estimate is outstanding.
Ouyang et al. [55] treated cross-validation for the k-NN kernel estimate, maybe it
can be transferred.

71
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4.2 preliminaries

4.2.1 Description of the Kernel Estimate

On the basis of i. i. d. observations Dn := ((X1, Y1), (X2, Y2), . . . , (Xn, Yn)) dis-
tributed as (X, Y) with unknown distribution P, we focus on the functional non-
parametric regression model

Yi = m(Xi) + εi.

The errors εi are distributed as a random variable ε that satisfies

E [ε|X] = 0

and we denote by

σ2ε(X) := E
[
ε2
∣∣X]

the second conditional moment. If σ2ε(X) ≡ const, we speak of homoscedastic
residuals else we speak of heteroscedastic residuals. The kernel estimate of the
regression function m(x) is expressed by

m̂hn(x) =

n∑
i=1

Yi
K
(
h−1n d(x,Xi)

)
n∑
i=1

K
(
h−1n d(x,Xi)

) , if
n∑
j=1

K
(
h−1n d(x,Xi)

)
6= 0, (4.1)

otherwise m̂hn(x) = 0, for x ∈ E fixed. K is a kernel function and h := hn is a
positive sequence. We differ in this chapter from the notation of the kernel estimate
of the previous chapters as we examine the choice of the bandwidth here.

4.2.2 Motivation of this Bandwidth Selection Procedure

It is natural to measure the performance of a regression function estimate by a L2–
error criterion. Recall Section 1.1, where we are looking for a measurable function
f : E→ R such that

E
[
(Y − f(X))2

]
is minimal. The solution of this minimisation is the regression function m(X). It
can be proven that the regression function is also the solution of minimising the
following term

E
[
(Y − f(X))2|X = x

]
.

This regression function is then approximated by the kernel estimate given in (4.1).
Thus, we want to choose a bandwidth h depending on x ∈ E such that

E
[
(Y − m̂h(X))

2|X = x
]

is close to E
[
(Y −m(X))2|X = x

]
.
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By adding a null and a simple calculation, we find

E
[
(Y − m̂h(X))

2|X = x
]
= E

[
(Y −m(X) +m(X) − m̂h(X))

2|X = x
]

= E
[
(m(X) − m̂h(X))

2|X = x
]

+ E
[
(Y −m(X))2|X = x

]
. (4.2)

The left side in (4.2) decreases as soon as m̂h(x) is close to m(x). As the dis-
tribution of (X, Y) is unknown and therefore m(x), it is not feasible to calculate
(m(x) − m̂h(x))

2. One possible way out is bootstrapping. In functional non-param-
etric regression Ferraty et al. [27] show that the distribution of m(x) − m̂h(x) can
be approximated by a bootstrap approximation m∗gh(x) − m̂g(x), with m∗gh(x) as
the bootstrap kernel estimate, which will be defined later on, and m̂g(x) as the
pilot kernel estimate with bandwidth g. We will show in the following sections
how to construct that bootstrap kernel estimate m∗gh(x) and prove the asymptotic
optimality of the bootstrap method for bandwidth selection. To be more precise,
we will show

nFx(h)
(
E
[
(m∗gh(x) − m̂g(x))

2|Dn
]
− E

[
(m(x) − m̂h(x))

2
])
→ 0 a.s. n→∞.

4.3 bootstrap in functional non-parametric regression

Ferraty et al. [27] prove the validity of the residual and wild bootstrap in non-
parametric functional regression. As already mentioned above, they use the boot-
strap procedure for approximating the distribution function of m(·)− m̂h(·) by the
conditioned distribution function of m∗gh(x) − m̂g(x) on the data, more precisely

sup
y∈R

∣∣∣P(√nFx(h)(m(x) − m̂h(x)) 6 y
)

− P
(√

nFx(h)(m
∗
gh(x) − m̂g(x)) 6 y

∣∣Dn)∣∣∣→ 0 a.s.

There are a few more techniques for proving the validity of a bootstrap procedure,
see e.g. the monograph of Shao and Tu [64].

The idea that we are using for proving the asymptotic validity of this adaptive
bandwidth selection procedure is based on the work of Manteiga et al. [50] or Hall
et al. [35]. In both papers the authors prove in the finite-dimensional case that the
bootstrap procedure for choosing the optimal bandwidth is valid.

4.3.1 Bootstrap Procedure

Herein the procedure for residual and wild bootstrapping is presented. As the
response variable Y is a real-valued random variable, the error ε, which is boot-
strapped in this functional context, as for instance in [37], is also a real-valued
random variable. In the case of residual bootstrap we assume that the error is
homoscedastic, i. e. σ2ε(X) ≡ const. On the next lines we present the bootstrap
procedure used in non-parametric regression, see e.g. [27].

S1 : Use data Dn to get a kernel estimate m̂g(x) with a bandwidth g, chosen by a
consistent bandwidth selection procedure, for example cross-validation. The
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bandwidth g is called the pilot bandwidth and m̂g(x) the pilot kernel estimate.
Calculate with this pilot kernel estimate the residuals

ε̂i,g = Yi − m̂g(Xi) for i = 1, . . . ,n.

S2 : This step is divided into the homoscedastic and the heteroscedastic case.

a) Residual Bootstrapping, σ2ε(X) ≡ const
Draw n i. i. d. random variables ε∗1, . . . , ε∗n from the cumulative distri-
bution of the centred residuals

(ε̃1,g, . . . , ε̃n,g) = (ε̂1,g − ε̂g, . . . , ε̂n,g − ε̂g),

where ε̂g is the empirical mean of the residuals ε̂1,g, . . . , ε̂n,g.

b) Wild Bootstrapping
The bootstrap residuals are defined as

ε∗i = ε̂i,gVi for i = 1, . . . ,n,

where V1, . . . ,Vn are i. i. d. real-valued random variables with the prop-
erties

E [V1] = 0 and E
[
V21
]
= 1.

S3 : Define the bootstrap response variables as follows,

Y∗i = m̂g(Xi) + ε
∗
i .

S4 : Calculate, based on this bootstrapped data (X1, Y∗1), . . . , (Xn, Y∗n), the kernel
estimate m̂∗hg(x) with bandwidth h. The index indicates that this estimate
depends on the pilot kernel estimate m̂g and on bandwidth h.

Repeat this bootstrap procedure B times and use the empirical distribution of
m̂∗hg(x) − m̂g(x) for selecting the bandwidth. More precisely, let H be a fixed set of
bandwidths, for example the distances to the k nearest neighbours of the element
x, then

h∗(x) := arg min
h∈H

1

B

B∑
b=1

(m̂∗hg(x) − m̂g(x))
2.

In wild bootstrapping a random variable Vi is used for getting the residuals. In
Step 2 of the above procedure Mammen [49] suggests for the Vi the following
continuous auxiliary distribution

Vi := (1− 2 · 20−
2
3 )
1
2Wi + 20

− 1
3 (W2

i − 1),

where theWi are i. i. d. asN(0, 1). In practice the choice of this continuous auxiliary
distribution provides good results. Alternatively, a two-point distribution can be
chosen for the auxiliary distribution Vi. For a discussion on such alternative Vi’s
we refer to Davidson et al. [19].

The theoretical validation of this adaptive bandwidth selection method is given
in Subsection 4.3.3.
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4.3.2 Assumptions, Notations, and Asymptotic Expansion

All of the conditions and notations are introduced and commented on in the two
papers of Ferraty, [25] and [27], as long as the consistency result here is based on
the lemmas of the cited papers.

Let Bh(x) := {x1 ∈ E : d(x1, x) 6 h} be a ball centred in x ∈ E with radius h and
Fx(h) = P(d(X, x) 6 h). Furthermore, denote

M0(x) = K(1) −

1∫
0

(sK(s)) ′τ0x(s)ds,

M1(x) = K(1) −

1∫
0

K ′(s)τ0x(s)ds, and

M2(x) = K
2(1) −

1∫
0

(K2) ′(s)τ0x(s)ds,

where τ0x(s) = lim
h→0+

τhx(s) with

τhx(s) = Fx(sh)/Fx(h) = P(d(x,X) 6 sh | d(x,X) 6 h).

For example, if the small ball probability is of fractal-type, namely Fx(h) ∼ Chτ for
some τ,C > 0, then τ0x(s) = sτ. The proof and some more examples can be found
in Proposition 1 of Ferraty et al. [30] and for some deeper discussion on that topic
see Section 4 therein.

Conditions on the regularity

(M) Assume that the regression function m(x), the second conditional moment
σ2ε(x), and the conditional expectation E

[
|Y|
∣∣X = x

]
are continuous in a neigh-

bourhood of x. Furthermore, assume that

∃ε > 0 ∀m ∈N : sup
x1∈E: d(x1,x)<ε

E [ |Y|m|X = x1] <∞.

Conditions on the conditional expectation

(D) Define

φx(s) := E [m(X) −m(x)|d(X, x) = s] ,

then assume for all elements (x1, s) in a neighbourhood of (x, 0) that
φx1(0) = 0, φ

′
x1
(s) exists, φ ′x1(0) 6= 0, and φ ′x1(s) is uniformly Hölder contin-

uous of order 0 < α 6 1 in (x1, s).

This condition is a workaround in non-parametric functional regression analysis
for calculating the derivative of the regression function m(x). For a link between
the function φx(s) and m ′(x) and for some more comments we refer to Ferraty et
al. [30].
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Conditions on the small ball probability

(F) Assume for all x1 ∈ E that Fx1(0) = 0 and further on assume Fx1(t)/Fx(t) is
Hölder continuous of order α in x1, uniformly in t in a neighbourhood of 0,
with the same α as in (D).

Conditions on τhx(s)

(T) Assume for all x1 ∈ E and 0 6 s 6 1 that τ0x1(s) exists and

sup
x1∈E
06s61

|τhx1(s) − τ0x1(s)| = o(1).

Furthermore, assume

M0(x) > 0, M1(x) > 0, and inf
d(x1,x)<ε

M2(x) > 0

for some ε > 0 and suppose for k = 1, 2, 3, that Mk(x1) is Hölder continuous
of order α, with α defined in (D).

Conditions on the kernel function

(K) The support of the kernel function K is [0, 1), K ∈ C1[0, 1), K ′(s) 6 0 for
0 6 s < 1 and K(1) > 0.

In this chapter a slightly different definition of the kernel functions is used, as
different properties are used here. Most kernel functions introduced in Chapter 1

can be modified such that they fulfil these assumptions.

Conditions on the bandwidths

(B) Let h := hn and g := gn. We assume that the bandwidth h is of the same
order as the optimal bandwidth, namely

h = O
(
(nFx(h))

−1/2
)

.

The pilot bandwidth g satisfies g→ 0 and h/g→ 0 for n→∞.

The following conditions are of a technical nature. Assume nFx(h) → ∞,
h
√
nFx(h) = O(1), g1+α

√
nFx(h) = o(1), Fx(h + g)/Fx(g) → 1,

logn(Fx(h)/Fx(g)) = o(1) and ghα−1 = O(1), where α is the Hölder con-
stant defined in (D).

To make the bootstrap procedure work, the pilot bandwidth g has to be asymp-
totically of larger order than h. This condition is similar to the finite-dimensional
case of non-parametric regression. Härdle and Marron [38] illustrate this by an
asymptotic analysis of the bias term and the asymptotic analysis of the bias of
the bootstrap approximation. It turns out in the proof of Lemma 4 in Ferraty et al.
[27] that in the infinite-dimensional non-parametric regression this over-smoothing
of the pilot kernel estimate is also needed, for the same reasons as in the finite-
dimensional considerations.
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For finite-dimensional non-parametric regression some alternative techniques to
over-smoothing the pilot kernel estimate are developed for handling the bias term.
For example, Härdle and Bowman [38] mirrore the bias-variance trade-off to the
bootstrap kernel estimate. To do that they view an approximation of a decompo-
sition of m(x) − m̂(x), and use the terms of this decomposition to construct an
unbiased bootstrap kernel estimate. Another method is introduced by Hall [34]
who estimates the bias term by subsampling. Hall samples from a smaller data
set Dmn , mn < n, and he defines in this data set a kernel estimate. Due to the
dependence of the bandwidth on the sample size, the optimal bandwidth hmn on
the data set Dmn is different to the optimal bandwidth hn on the full data set Dn.
Then the bias term can be estimated by the difference of the kernel estimates on
Dmn and Dn.

Technical condition

(E) For each n, there exists rn > 1, ln > 0 and curves t1n, . . . , trnn ∈ E such that
we have a finite covering around x,

B(x,h) ⊂
rn⋃
i=1

B(tin, ln),

with rn = O(ng/h) and ln = o(g(
√
nFx(h))

−1).

It is assumed that the covering number is of a polynomial order. In view of the
paper by Ferraty et al. [23] Condition (E) can be generalised to function spaces,
where the covering number is of exponential order. To get such a result, the cover-
ing number has to fulfil Condition (H5b) in Ferraty et al. [23]. Then by a modifica-
tion of the proof of Lemma 6 in [27], one obtains the validity of bootstrapping in
non-parametric functional regression on a larger class of function spaces.

4.3.2.1 Mean Squared Error and the Choice of the Bandwidth

This subsection focuses on the choice of the bandwidth in view of the mean
squared error. Ferraty et al. [25] give an asymptotic evaluation of the mean squared
error of the kernel estimate. This asymptotic evaluation is generalised by Delsol
[20] to higher moments and α-mixing functional random variables. Before we give
some comments on the choice of the bandwidth, we present the results from Fer-
raty et al. [25].

Theorem 4.3.1 (Ferraty et al. [25]) Under Conditions (M), (D), (F), (T), (K), and (B),
we have for the kernel estimate the following asymptotic development,

E [m̂h(x)] −m(x) = φ ′(0)
M0(x)

M1(x)
h+O

(
(nFx(h))

−1
)
+ o(h) and (4.3)

Var [m̂h(x)] =
1

nFx(h)

M2(x)

M2
1(x)

+ o
(
(nFx(h))

−1
)

. (4.4)
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It turns out that we have similar characteristics in the functional non-parametric
regression as to finite-dimensional case, see for example Györfi et al. [33]. Analo-
gously to the almost complete convergence rate, see Chapter 1, we have to control
the bandwidth h for n → ∞. Firstly, as a result of examining the bias term (4.3),
one would choose a bandwidth h that converges fast to zero. But, if we consider
the variance term (4.4), we need nFx(h)→∞. Thus, a bandwidth selection method
has to control this bias-variance trade-off.

4.3.3 Main Result

In the following theorem we show that the bootstrap method can be used for
adaptive bandwidth selection in non-parametric functional regression.

Theorem 4.3.2 Under Conditions (M), (D), (F), (T), (K), (B), and (E), we have

nFx(h)
(
E
[
(m̂∗hg(x) − m̂g(x))

2
∣∣Dn]− E

[
(m̂h(x) −m(x))2

])
→ 0 a.s.

as n→∞. This theorem holds for residual as well as for wild bootstrapping.

We want to remark that the statement of our result in Theorem 4.3.2 is equivalent
to the following

E
[
(m̂ĥ(x) −m(x))2

]
inf
h∈Hn

E [(m̂h(x) −m(x))2]
→ 1 a.s.

as n → ∞, where ĥ(x) := arg min
h∈H

E
[
(m̂∗hg(x) − m̂g(x))

2
∣∣Dn] and Hn is a set of

bandwidths that is of the same order as the optimal bandwidth, namely
O
(
(nFx(h))

−1/2
)

. The idea of the proof of equivalence can be found in [36, p.
199].

Proof
First, note that the mean squared error can be described by the following bias-
variance decomposition,

E
[
(m̂h(x) −m(x))2

]
=(E [m̂h(x)] −m(x))2 + Var [m̂h(x)] and

E
[
(m̂∗hg(x) − m̂g(x))

2
∣∣Dn] = (E [m̂∗hg(x)∣∣Dn]− m̂h(x))2

+ Var
[
m̂∗hg(x)

∣∣Dn] .

With the help of Lemma 3 and Remark 2 of Ferraty et al. [27] we have for residual
and wild bootstrapping

Var
[
m̂∗hg(x)

∣∣Dn] = Var [m̂h(x)] + o
(
(nFx(h))

−1
)

a.s.

Out of it we obtain

Var
[
m̂∗hg(x)

∣∣Dn]− Var [m̂h(x)] = o
(
(nFx(h))

−1
)

a.s.
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Now, consider the bias terms,

(E [m̂h(x)] −m(x))2 −
(
E
[
m̂∗hg(x)

∣∣Dn]− m̂h(x))2 =: B1n ·B2n,

where

B1n = E [m̂h(x)] −m(x) −
(
E
[
m̂∗hg(x)

∣∣Dn]− m̂h(x)) and

B2n = E [m̂h(x)] −m(x) + E
[
m̂∗hg(x)

∣∣Dn]− m̂h(x).
By Lemma 4 of Ferraty et al. [27] we get

B1n = E
[
m̂∗hg(x)

∣∣Dn]− m̂h(x) − E [m̂h(x)] +m(x)

= o
(
(nFx(h))

−1/2
)

a.s. (4.5)

For the second term we have

B2n = E [m̂h(x)] −m(x) + E
[
m̂∗hg(x)

∣∣Dn]− m̂h(x)
= 2 (E [m̂h(x)] −m(x)) +B1n. (4.6)

The choice of the bandwidth h in Condition (B) and (4.3) lead to

E [m̂h(x)] −m(x) = o
(
(nFx(h))

−1/2
)

. (4.7)

Finally, combine relation (4.5), (4.6), and (4.7) to find

(E [m̂h(x)] −m(x))2 −
(
E
[
m̂∗hg(x)

∣∣Dn]− m̂h(x))2 = o((nFx(h))−1) a.s.

This finishes the proof. �

4.4 application

The intention of this section is to analyse the practical aspects of the proposal
bandwidth selection. For all experiments we choose B = 100 bootstrap replications,
as larger numbers of bootstrap replication do not improve the results. The set of
bandwidths is defined as a set of the k nearest neighbours of the function of interest
x ∈ E, h = h(x) ∈ H = {h1, . . . ,hk}, where hi is the distance to the ith neighbour of
x with respect to the semi-metric d and k is chosen depending on the size of the
data set. For kernel function we use the asymmetrical quadratic kernel function,
namely

K(u) =
3

2
(1− u2)1[0,1](u).

As semi-metric we choose the L2–norm of the qth derivatives of the curves,

(
dderivq (x1, x2)

)2
=

b∫
a

(x
(q)
1 (t) − x

(q)
2 (t))2dt, (4.8)

where q ∈N is chosen depending on the data set. Procedure 1 provides the struc-
ture of our implementation. For calculating the residuals we used in all test sets
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wild bootstrapping following continuous auxiliary distribution, as suggested in
[49],

Vi := (1− 2 · 20−
2
3 )
1
2Wi + 20

− 1
3 (W2

i − 1),

where the Wi are standard normally distributed random variables.

Procedure 1 Calculate h∗(x) = arg min 1
B

B∑
b=1

(m̂∗hg(x) − m̂g(x))
2

Calculate pilot kernel estimate m̂g(x)
MSEmin← 0; l∗ ← 1

for l = 1 to |H| do
MSE← 0

for i = 1 to B do
Calculate residuals

(
ε∗k
)n
k=1

Calculate new response variable Y∗k = m̂g(Xk) + ε
∗
k for k = 1, . . . ,n

Calculate new kernel estimate m̂∗hl,g(x) based on this set and band-
width hl
MSE← MSE +(m̂g(x) − m̂

∗
hl,g(x))

2

end for
if l == 1 then

MSEmin← MSE
else

if MSE < MSEmin then
l∗ ← l

end if
end if

end for
h∗(x)← hl∗

Simulated Data

In this subsection the bootstrap method is compared to global cross-validation that
is introduced for non-parametric functional regression by Rachdi and Vieu [58]. In
the following we speak of homogenous functional data, if the small ball probability
P ((d(x,X) 6 ε) behaves similar in ε for all x ∈ E. We speak of heterogenous data,
if the small ball probability changes its behaviour, e.g. from exponential to fractal-
type on the function space E.

The Data Set of Burba et al. [11]

We simulated n = 1000 pairs of data (Xi, Yi) with

Xi(t) = ai cos (t), (4.9)

where t is a vector of equidistant points of the interval [0, 2π]. For i = 1, . . . , 500
ai is distributed as N(0, 1) and for i = 501, . . . , 1000 ai is distributed as N(3,σ2),
where σ ∈ {0.1, 1}.
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(a) A sample of 100 curves of the ho-
mogenous data set, where we have
σ = 1.

index

em
pi

ri
ca

ls
m

al
lb

al
lp

ro
ba

bi
lit

y

0.0

0.2

0.4

0.6

0.8

1.0

200 400 600 800 1000 02468101214

(b) F̂Xi
(hopt) for the homogenous

data set, where we have σ = 1.
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(c) A sample of 100 curves of the het-
erogenous data set, where we have
σ = 0.1.
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(d) F̂Xi
(hopt) for the heterogenous

data set, where we have σ = 0.1.

Figure 4.1: A sample of curves generated by (4.9) and values of the small ball probability
F̂Xi(hopt). The blue curves / dots belong to the set, where ai ∼ N(0, 1) and the
red ones to ai ∼ N(3,σ)

We examine the regression model

Yi = m(Xi) + εi,

where εi are distributed as N(0, 0.05) and the regression function is chosen as

m(Xi) = a
2
i for i = 1, . . . ,n.
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As Burba et al. introduced in [11], the empirical small ball probability

F̂x(h) =
1

n

n∑
k=1

1B(x,h)(Xk) (4.10)

can be used to illustrate the difference between homogenous and heterogenous
data. As in the plot of the empirical small ball probability F̂Xi(hopt), the hetero-
geneity and the homogeneity of the data can be visualised, whereas these char-
acteristica may be difficult to see in the plot of the curves. As for example in the
above introduced data set we have in the case of σ = 1 homogenous data and in
the case of σ = 0.1 heterogenous data. In Fig. 4.1 we plotted a sample of the curves
and the associated small ball probability with a density estimate of the image of
distribution of the empirical small ball probability.
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(a) F̂Xi
(hopt), where hopt is chosen by global

cross-validation.
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(b) F̂Xi
(hopt(Xi)), where hopt(Xk) is chosen for

each Xk in the test set by bootstrapping.

Figure 4.2: The empirical small ball probability resulting from global and local bandwidth
selection methods, respectively, for the same test set.

To illustrate heterogenous data sets, first an optimal bandwidth hopt is chosen
by a global method, here global cross-validation, then the empirical small ball prob-
ability is calculated for each data element Xi with hopt and we get

(
F̂Xi(hopt)

)n
i=1

.
If the data is homogenous, then we have for each ball B(Xi,hopt) a similar amount
of data points therein. Firstly, we splitted the data in a learning and testing set.
The learning set is used for calculating the optimal global bandwidth by cross-
validation. In Fig. 4.2 we plotted then the empirical small ball probability for the
test set. In Fig. 4.2 (a) we used the global bandwidth received by cross-validation.
In Fig. 4.2 (b) we calculated for each element in the test set a local optimal band-
width by bootstrapping. As can be seen in the figure, we have in the case of local
bandwidth selection for all elements in the test set a similar number of neighbours.
If one looks at Fig. 4.2 one may suspect that for homogenous data Xi the density
estimate is unimodal and multi-modal for heterogenous data. Based on this pre-
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sumption it would be probably possible to decide automatically between global
and local bandwidth selection procedure.

Comparing the Performance

In this section we compare our local bootstrap bandwidth selection method to
the global cross-validation procedure. For pilot bandwidth estimation for our pro-
cedure we use the global cross-validation method, which is introduced for func-
tional data analysis by Rachdi and Vieu [58]. We denote the pilot kernel estimate
by m̂g(x) and the bootstrap kernel estimate by m̂∗gh(x).

For comparing the performance, we used 500 randomly chosen data pairs
(Xi, Yi) for learning and the remaining 500 pairs for testing. Afterwards, the perfor-
mance of the prediction is evaluated by the empirical mean squared error (EMSE)
on the test sample,

1

500

∑
k

(Yk − m̂(Xk))
2 ,

where m̂(Xk) is one of the kernel estimates introduced above. We repeated that
procedure 200 times, each time with randomly arranged learning and testing sets.
The EMSE are plotted for each procedure into a box plot. Furthermore, we apply
a two-sided Wilcoxon rank sum test on the EMSE values.

m̂g(Xi)

Yi

0

5

10

15

20

25

30

0 5 10 15 20 25 30
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(b) Bootstrapping

Figure 4.3: The homogenous case σ = 1.
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Figure 4.4: The homogenous case σ = 1. The p-value of the two-sided Wilcoxon rank sum
test is p = 0.006447.

The result of the simulation for the homogenous case σ = 1 can be seen in
Fig. 4.3. Fig. 4.3 (a) and Fig. 4.3 (b) show the prediction versus the true response.
In Fig. 4.3 (a) we used global cross-validation and in Fig. 4.3 (b) the bootstrap
procedure for the bandwidth selection for one sample. In this homogenous case
the global cross-validation method delivers significant better predictions than the
bootstrap procedure, see the p-value in the caption of Fig.4.4. We assume that the
bootstrap procedure performs worse because of the outliers we got by the high
and sparse values of the second group of the ai.

Next, we examine the heterogenous case σ = 0.1.
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Figure 4.5: The heterogenous case σ = 0.1.
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Figure 4.6: Boxplot of the mean squared error over 200 runs. The p-value of the two-sided
Wilcoxon rank sum test is p < 1e− 4.

As presumed Fig. 4.6 shows that in the case of heterogenous data we have a
significant improvement of the prediction by the bootstrap procedure.

Real World Data

In this section we examine the bootstrap procedure for choosing the bandwidth on
three real world data sets. All data sets are spectrometric data sets. The task here is
to predict some value of interest based on the near-infrared absorbance spectrum.

For all three data sets we used 50% of randomly chosen data for learning and
the remaining 50% for testing. This was repeated 200 times. For the fat and the
moisture data set we used the L2–norm of the second derivatives as semi-metric
and for the octane data set the L2–norm of the first derivative, see (4.8).

In the data sets the curves display the near-infrared absorbance spectrum on
pieces of meat, wheat, or oil. For each of these pieces we have some real-valued
response variable Y that represents in the case of meat the percentage of fat, for
the moisture data set the percentage of the moisture of the piece of wheat and
for the oil data set it represents the octane number. The first data set is widely
studied in functional data analysis, see [25], [27] or [58]. In the context of functional
data analysis the moisture and the octane data set were examined by Reiss and
Ogden [61]. All three data sets can be found in the R package functional data sets
downloadable on CRAN, [57].

The spectral curves and the corresponding empirical small ball probability cal-
culated by global cross-validation bandwidth can be seen for the fat data set in Fig.
4.7, for the moisture data set in Fig. 4.8, and for the octane data set in Fig. 4.9.
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(a) The spectrum of the fat data set.
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(b) The empirical small ball probability with band-
width from global cross-validation.

Figure 4.7: The near-infrared absorbance spectrum of the fat data set and the correspond-
ing empirical small ball probability.
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(a) The spectrum of the moisture data set.
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(b) The empirical small ball probability with band-
width from global cross-validation.

Figure 4.8: The near-infrared absorbance spectrum of the moisture data set and the corre-
sponding empirical small ball probability.
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(a) The spectrum of the octane data set.
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(b) The empirical small ball probability with band-
width from global cross-validation.

Figure 4.9: The near-infrared absorbance spectrum of the octane data set and the corre-
sponding empirical small ball probability.

By the distribution of the empirical small ball probability in subplot (b) of Fig.
4.7, Fig. 4.8, and Fig. 4.9 it can be expected that a kernel estimate with local band-
width selection outperforms a kernel estimate with global bandwidth selection. It
seems that the fat data set is more heterogenous than the moisture data set that is
more heterogenous than the octane data set. But for the last two sets we have just
a small sample size.
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Figure 4.10: Prediction of the percentage of fat versus the true values.
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Figure 4.11: Comparison of the performance of global and local bandwidth selection pro-
cedure for the fat data set. The p-value of the two-sided Wilcoxon rank sum
test is p < 1e− 4.
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Figure 4.12: Prediction of the percentage of moisture versus the true values.
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Figure 4.13: Comparison of the performance of global and local bandwidth selection pro-
cedure for the moisture data set. The p-value of the two-sided Wilcoxon rank
sum test is: p 6 1e− 4.
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Figure 4.14: Prediction of the octane number versus the true values.
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Figure 4.15: Comparison of the performance of global and local bandwidth selection pro-
cedure for the octane data set. The p-value of the two-sided Wilcoxon rank
sum test is p < 1e− 04.

In all three data sets the bootstrap procedure for bandwidth selection performs
significantly better than the global cross-validation method for bandwidth selec-
tion, see the box plots in Fig. 4.11, Fig. 4.13, and Fig. 4.15.

Both, the simulation data sets and the real world data sets suggest that the distri-
bution of the empirical small ball probability with bandwidth obtained by global
cross-validation can be used for the decision of using a local or a global bandwidth
selection method. For measuring the homogeneity of the data Xi one can use the
measure of homogeneity introduced by Ferraty and Vieu [30]. Alternatively, this
can be decided by a Hartigans’ Dip test on unimodality [41] of the density estimate
of the empirical small ball probability. However, we do not pursue this idea in this
work.

An apparent disadvantage of our method is that it needs more computation time
than the cross-validation method, as we need it for calculating the pilot kernel
estimate m̂g(x). However, with just little additional effort it is possible to build
confidence intervals based on the bootstrapped data (Xi, Y∗i ). Furthermore, we
compared in our simulations the bootstrap procedure with the k-nearest neigh-
bour kernel estimate using global cross-validation as bandwidth selection method.
We got for the k-NN kernel estimate a similar precision of the prediction as for
our bandwidth selection method, so the advantage of better prediction disappears
here.
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miscellaneous

a := b a is defined by b

C,C1, · · · ,C6 unspecified generic constants

n sample size

(Xi) short form for the sequence of f. r. v. (Xi)i>1
(ui) short form for the sequence of real numbers (ui)i>1

h,hn,g,gn generic notation for bandwidths

k,kn generic notation of the number of neighbours

sets

R, R+ set of real numbers, set of positive numbers including 0

(a,b), [a,b] open or closed intervals in R

N set of positive integers

Z set of positive and negative integers including null

SR generic compact set of R

functions

1A(x) indicator function, 1A(x) = 1, if x ∈ A, else 1A(x) = 0

[·] Gaussian bracket, [x] = max {y ∈ Z| z 6 x}, x ∈ R

f−1(y) generalised inverse, f−1(y) = inf {x| f(x) > y}

max, min maximum, minimum

sup, inf supremum, infimum

log natural logarithm

spaces

E generic functional space

(E,d) generic semi-metric space

SE generic compact set of E

C(E) space of continuous functions f : E→ R

Lβ(E) space of Hölder continuous functions

f : E→ R with parameter β > 0
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norms and semi-metric

d(·, ·) semi-metric

‖ · ‖∞ supremum norm

other symbols related to semi-metric spaces

B(x,h) open ball with centre x and radius h in semi-metric in E

N(S,d, ε) covering number

KS(ε) logarithm of N(S,d, ε), Kolmogorov’s ε-entropy

εn(S) entropy number

en dyadic entropy number

measures , probability distributions , and distribution functions

(Ω,A) generic measurable space with σ-algebra A

(Ω,A,P) probability space with distribution P

P probability distribution

P (·|X = x) conditional distribution, shortly P (·|x)
B(R) Borel σ-algebra on R

Ed σ-algebra generated by the topology of E w. r. t. d

µ, ν unspecified measures

µ� ν ν is absolutely continuous w. r. t. µ

supp(µ) support of the measure µ

Fx(h) measure of B(x,h) w. r. t. P

random variables and related quantities

X,Xi generic f. r. v., explanatory variable

Y, Yi generic r. r. v., response variable

Hn,k positive r. r. v., k-NN bandwidth

E [Y|X = x] conditional expectation of a r.r.v. Y given the f.r.v. X

E [Y] expectation of a r. r. v. Y w.r.t. P

Var [Y] variance of a r. r. v. Y

Cov
(
Yi, Yj

)
covariance of two r. r. v. Yi and Yj



estimators

m(·) nonlinear regression function

m̂(·), m̂h(·) estimate of m(·)
m̂k−NN(·) k-NN kernel estimate of m(·)
Fx(y) conditional distribution of some r. r. v. Y given the f.r.v. X

F̂x(y) estimate of Fx(y)

fx(y) conditional density of some r. r. v. Y given the f.r.v. X

f̂x(y) estimate of fx(y)

kernel functions

K generic notation of a asymmetrical kernel function

K0 generic notation of a symmetrical kernel function

H generic notation of a integrated kernel function

other symbols related to estimation and convergence

O(·) Landau symbol

o(·) Landau symbol

Oa.co. (·) rate of almost complete convergence

L I S T O F A B B R E V I AT I O N S

i. i. d. independent and identically distributed

w. r. t. with respect to

r. r. v. real random variable (R-valued)

f. r. v. functional random variable (E-valued)

a. s. almost surely

k-NN k nearest neighbour

et seq. and the following

et seqq.

RKHS Reproducing Kernel Hilbert Space
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