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Introduction
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1. Introduction

The introduction of information processing to quantum science has led to a
great variety of innovations. Beside the perspective to simulate large quantum
systems exactly [31] or efficiently find the prime factors of large numbers [90]
the biggest achievement of quantum computing is that it established a common
language in quantum science. From electron spin resonance via supra conduct-
ing circuits to quantum dots and defect centers in diamond ideas and concepts
can be transfered by reducing the description to the application of so called
quantum gates, the quantum analogon to logic gates in classical information
processing. The precise implementation of such a gate may differ greatly in
the respective system, but the outcome and purpose remains the same. The
research for a quantum computer has led to many developments like quantum
cryptography [13], tailoring of matter on the nano scale [61, 69, 71, 33, 43] or
metrology of ambient fields [4, 26, 97] along the way. They are nowadays of
equal importance than the original goal itself. For example it is possible to
measure magnetic fields down to the attotesla range employing quantum de-
vices like SQUIDS [27] or nanotesla with a nanometer lateral resolution with
solid state spin systems [4]. In the pursue of a scalable quantum computer
DiVincenzo gave five criteria a given system has to fulfill in order to build a
scalable quantum device [24].

The first criterion is to have a scalable physical system with well charac-
terized qubits. This sounds simpler than it actually is. In order to be a well
characterized qubit the system has to be able to assume every possible state
of the single qubit Hilbert space independent of the other qubit states. One
could e.g. define two quantum dots sharing one electron as a two qubit system
with the eigenstates |10〉 (electron on the left dot) and |01〉 (electron on the
right dot). This would not constitute valid qubits because the |00〉 and |11〉
states can not be assumed. The double dot system forms a single qubit with
|0〉 (electron on the left dot) and |1〉 (electron on the right dot). In addition
the system has to be reproducible in a deterministic way in order to build an
arbitrary sized quantum computer. This second part is actually no problem
for mesoscopic systems like superconducting qubits, but solid state systems
can not be controlled on a sub nano scale in order to place single defects in
a solid state system. But implantation techniques are improved continuously
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4 1. Introduction

reaching a lateral resolution of few nanometer [88].
Secondly one has to be able to initialize the system into a simple pure state

like |000 . . .〉. From a classical computing point of view it is natural to have all
registers initialized in a known state. Additionally quantum error correction
needs a steady supply of low entropy anzilla qubits. So single qubits will have
to be continuously reinitialized to provide those anzilla qubits. Most systems
settle here with a pseudo pure state by going to cryogenic temperatures with
kB T � ∆E with ∆E the splitting of the two qubit states. Otherwise one
has to rely on algorithmic cooling techniques [9, 14, 83] to polarize the system
below the thermal state. One seldom implemented initialization method would
be by a projective measurement with an additional spin flip depending on the
measurement outcome.

It is also required that the coherence time of the qubits is much longer than
the gate operation time. By coupling to environmental degrees of freedom the
state of the qubits is changed. A superposition state |Ψ〉 = a |0〉 + b |1〉 is
transformed to an incoherent superposition ρ = |a|2 |0〉 〈0|+ |b|2 |1〉 〈1| by this
interaction. Accordingly the whole computation has to be done on a time scale
on that the system is not changed by the environment. As a figure of merit the
ratio of gate time over coherence time should be of the order of 10−4. Until
in 1995 it was discovered that quantum error correction is actually possible
[95] this would probably be unachievable. To understand the mechanisms of
decoherence is the main requirement to be able to engineer the environment
such, that coherence time is naturally prolonged or to be able to dynamically
decouple the system from a major part of the environmental degrees of freedom.
This is one of the major topics of this work.

DiVicenzos fourth criterion is to provide an universal set of quantum gates.
The dynamics of the quantum register is controlled by the application of uni-
tary operations. Each algorithm can be described as a series of unitary trans-
formations Û = Û1 + Û2 + . . . with Ûk = exp[−i Ĥk τk]. The theoretically
simplest solution would be to design the system such that the Hamiltonians
Ĥk are switched on and off for the duration τk. In practice this is not so simple
at all. The system imposes constraints on what unitary operations are feasible.
Understanding how much control is at least required is at the heart of this cri-
terion. It can be shown that arbitrary quantum processes can be re-expressed
as one and two body transformations [23]. For the two body interaction even
one type, the so called CNOT gate is sufficient [6]. So the CNOT gate plus
an arbitrary single qubit rotation together pose a set of universal gates as the
xor gate in classical computing.

Finally one has to be able to do a projective measurement on specific qubits.
In the ideal case any given qubit should be read with a quantum efficiency of
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one. In reality less is sufficient. As long as the measurement does not disturb
the rest of the system, measurements can be repeated in order to increase the
effective quantum efficiency of the system. It would be advantageous to be
able to perform a measurement on the time scale of a single gate application.
This would greatly simplify the quantum error correction.

Due to the relative nature of the above criteria it is possible to find a trade
of between them. If one requirement is very hard to achieve overachieving at
an an other might solve the problem, thus a variety of systems is thinkable.

Several different systems have been proposed as possible quantum computers
[56, 94, 103, 22]. After room temperature nuclear magnetic resonance (NMR)
has been shown to be essentially classical [38] efforts have focused on ultra cold
systems like trapped ions or superconducting circuits. In recent years however
the nitrogen vacancy (NV) center in diamond has advanced to one of the most
promising candidates for an actual quantum processor. Due to the embedding
in the extremely rigid and nearly spin free diamond lattice it is the only solid
state system that allows room temperature quantum experiments. Coherence
times up to the order of milliseconds have been observed [5]. With the aver-
age gate time about 10 ns actual quantum computing should be possible. It
features all optical initialization, control and readout on a single center level.





2. Diamond a Quantum Material

Figure 2.1.: from left to right: Catharine the Great with her scepter holding the
Orloff, Napoleon Bonaparte with the Regent diamond in the hilt of his
coronation sword, Queen Elizabeth with the Koh-I-Noor right in the
middle of the front cross and the Scepter with the cross housing the
biggest of the culligan diamonds is part of the English crown jewels as
well.

”Diamonds are a girls best friends” is the title of the famous song Marilyn
Monroe sang in the 1953 movie ”Gentlemen Prefer Blondes”. It tells that
girls prefer expensive gifts over courting with odes to their beauty, because
the latter will cease with time but diamonds are forever. Most people know
diamond as a vivid sparkling brilliant made into jewelery. To own diamonds
the bigger the better was a sign of wealth and prestige at all times. The biggest
and purest diamonds like the culligan, the blue Wittelsbacher, the Orloff or
the Dresden green diamond (fig. 2.1) are part of crown jewels of the most
influential royal families of europe. As a symbol of endless love, diamonds
are given by men to their loved ones. People are fascinated by the inner fire
and beauty of diamonds. All the myths and fairy tales around diamonds are
not without a reason. Diamond is not only extreme in its beauty but also in
most of its material properties as well. It is e.g. the hardest material there is,
only scratched by other diamond. Because the hardness is anisotropic with a
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Figure 2.2.: A Schematic of the diamond unit cell. The red globes indicate the eight
lattice sites assotiated with it. B The carbon phase diagram. Standard
conditions are located in the lower left corner.

maximum along the [111] direction this is possible at all. Its inner fire, the
sparkling when cut into facets originates of its immense index of refraction
n = 2.417. For comparison glass has about n = 1.5. The diamond lattice is
comprised purely of sp3 hybridized carbon atoms set with tetrahedral symme-
try. This leads to 8 carbon sites within one unit cell of 0.3567 nm (fig. 2.2)
with a bond length of 0.154 nm. The binding energy of C − C bonds is at
350 kJ/mol which is actually 260 kJ/mol less than the sp2 double binding of
graphite, but the graphite layers are only connected by Van-der-Waals-forces
which drastically weakens the overall structure. Due to this rigid lattice struc-
ture and strong bounds diamond also features the highest heat conductivity
(k = 900 − 2.320W m−1K−1) of any bulk material at room temperature.
Copper for example comes with k = 401W m−1K−1. The diamond crystal
structure and binding strength also results in a Debye temperature of 1860 K.
So virtually no phonons are excited at room temperature. Additionally the
most abundant isotope 12C which makes up 98.9 % of the natural occurring
carbon carries no nuclear spin. The diamond lattice is therefore essentially
spin free except for 1.1 % 13C with I = 1/2, thus enabling us to conduct room
temperature quantum experiments. Diamond is a high bandgap semiconduc-
tor with a bandgap of 5.5 eV which corresponds to deep ultra violet light with
a wavelength of 225 nm. So it is transparent to all visible wavelengths. A pure
diamond crystal thus appears colorless. Color originates from chemical im-
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purities such as nitrogen which is the most common impurity coloring yellow
or boron that leads to blue. Nitrogen also forms the nitrogen-vacancy (NV)
center that gives the diamond a pinkish red color.

In contrary to Marilyn Monroe’s song Diamonds are not forever. Actually
they are not stable under ambient conditions. The sp2 hybridized graphite
is the stable configuration there with an energy difference of of ≈ 2.9 kJ/mol.
Due to the high energy barrier of ≈ 728 kJ/mol the diamond to graphite tran-
sition is extremely slow. The activation energy is so high because there are
no other metastable structures to aid the transformation process. So a signifi-
cant number of bonds have to be broken to disrupt the diamond structure and
transform it into sp2 bonds. This may occur due to massive ion irradiation or
thermally above 800◦C in air or 1500◦C in vacuum.

Since in 1814 H. Davy discovered that diamond is made up of pure carbon
people have tried to turn cheap carbon material into diamond. Until 1879
James Ballantyne Hannay [42] discovered a way to do it. He put charcoal into
an iron crucible and heated it up to 3500◦C then he rapidly cooled the com-
partment with water. The contraction of the iron provided enough pressure
to turn the charcoal into diamond. Unfortunately his experiment could not
be reproduced. It took until 1955 when Hall used a so called belt press to
provide the pressure of 10 GPa that is necessary to turn carbon material into
diamond at 2000◦C. This high pressure high temperature (HPHT) method has
not changed since then. There are two major press designs the belt press where
two anvils provide pressure on top and bottom of a tube. On the bottom anvil
a seed diamond crystal is placed on top of that comes a metal slug with the
carbon material on top of it. Now pressure and temperature are raised to allow
diamond to grow. By a small temperature gradient of approximately 50 K the
carbon from the top of the tube is brought towards the diamond seed where
it crystalizes. The second design the cubic press employs six anvils around a
cubic sample. This in general smaller presses can reach the needed pressure
faster than the belt press, but are not scaled easily to larger volumes because
the required force is proportional to the area of the anvils, which can be kept
constant with the belt press but not with the cubic press. The first diamonds
produced that way were comparatively small yellowish crystals with rather bad
crystallinity not suitable for jewelry. Today it is possible to replace the nitro-
gen by titanium or aluminium to create white crystals or boron to make blue
ones for the price of lower crystallinity and hardness. Although since 1970 it is
possible to create gem quality crystals by the HPHT method it is widely used
today to manufacture small, nitrogen rich diamonds for industrial application
in tools. They are used to coat cutting tools as scalpels, heavy duty grinding
disks or drills to improve cutting performance and durability. Still it is desir-
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able to produce single crystal diamond for various applications beside jewelery
especially grown on non diamond surfaces like silicon or metals. A different
technique was developed in three independent groups of Eversole (1963), An-
gus (1968) and by Deryagin and Fedoseev in 1970. While Eversole and Angus
relied on single crystal diamonds as a substrate Deryagin and Fedoseev were
able to grow diamond on silicon and metal surfaces. All of them deposited the
carbon from a carbon plasma at rather mild temperatures of around 800◦C.
With this chemical vapor deposition (CVD) technique it is possible to engi-
neer the chemical composition to a very high degree. Diamonds with down
to 0.003 % of 13C have been produced by Twitchen [5] with nitrogen con-
centration below the ESR detection limit (∼ 1 ppb). These isotopically pure
CVD provide the perfect frame for room temperature quantum experiments.
Yet another method to generate diamond crystals is from explosives. Here
conventional carbon containing explosives are detonated in sealed chambers.
Heat and pressure are supplied by the explosion. The explosion chamber is
rapidly cooled down to prevent the new formed diamonds from transforming
into graphite. The crystals formed with this explosive growth technique have
sizes in the order of a few nm set into aggregates with lots of graphite which
is removed afterwards by acid treatment. Summarizing diamond is the only
solid allowing room temperature quantum experiments with optical access. It
can be manufactured at very high degree of crystallinity as well as chemical
and isotopical purity. So one can truly say ”diamonds are a physicists best
friend”

2.1. The Nitrogen-Vacancy-Center in Diamond as
a Quantum Register

The nitrogen vacancy (NV) center is formed by a substitutional nitrogen atom
with a vacant lattice site next to it. Three dangling bonds are reaching into the
vacancy from the remaining neighboring carbon sites. With the two unbound
atoms of the nitrogen this forms a a five electron system. Due to its embed-
ding in the diamond structure (fig. 2.3) its wave function has C3v symmetry
[62] resulting in one unpaired electron. In this uncharged state the NV0 has
therefore electron spin S = 1/2.

If the NV0 catches an additional electron the two unpaired electrons form
a 3A triplet ground state with a zero field splitting (ZFS) of D = 2.87 GHz
[62, 35](fig. 2.3). This stable configuration is called NV−. The resonant tran-
sition to the 3E excited state triplet (De = 1.42 GHz) is at a wavelength of
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Figure 2.3.: A Schematic of the diamond unit cell with an NV center inside. There
are four possible directions of the NV axis. The nitrogen could sub-
stitute the carbon atom of each lattice site around the vacancy. B
Confocal scan over a diamond area where NV centers are implanted in
a regular pattern. Only few feature more than one color center (red
dots). C Level structure of the NV center at zero magnetic field. The
ZFS in the ground state is D = 2.87 GHz, E varies between 0 and
5 MHz in bulk diamond. In the excited state De = 1.42 GHz, Ee varies
similar to E. D Exemplary measurement data of the g2 function con-
firming that only a single emitter resides in the confocal volume.

700 nm. Because the C3v symmetry groups irreducible representation is 3A,
1A and E, there has to be an additional singlet state, which has not been ob-
served experimentally. It probably plays a role in the additional decay channel
from the excited to the ground state. The dwell times in the excited state
for this relaxation process are spin dependent. For |±1e〉 it is 12 ns, for |0e〉
170 ns. The dwell time in the alternative decay channel is 150 ns. From there
the system relaxes into the |0e〉 ground state. This nonradiative decay pro-
cess quenches the fluorescence of the NV. Because the transition from |0e〉 is
negligible against the |±1e〉 the fluorescence intensity of the NV is spin state
dependent. This allows the optical detection of magnetic resonance (ODMR).
If a microwave frequency alternating magnetic field hits the NV’s spin transi-
tion while pumping the system with the green laser the fluorescence intensity
drops 30 %. Thus by tuning the microwave frequency the magnetic resonance
spectrum can be detected. Although the system can not be excited resonantly
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at room temperature but via its phononic side band the cycling transition is
nontheless spin conserving [36]. With an excited state radiative lifetime of
about 12 ns the NV center is a very brightly fluorescing defect which allows
optical detection on a single defect level. To prove that only one NV center
resides within a confocal spot the g2 autocorrelation function is measured by
a standard Hanbury Brown and Twiss setup [41, 16]. At time delay ∆t = 0
the autocorrelation function is

g2(0) =
〈n (n− 1)〉
〈n〉2

(2.1)

with n the photon number. For classical light g2(0) ≥ 1, for coherent light
(e.g. laser light) g2(∆t = 0) = 1 and for a single emitter g2(∆t = 0) = 0 (fig.
2.3).

To make quantum devices work it is mandatory to be able to produce them
deterministically. For NV centers this is possible by implanting nitrogen ions
into the diamond [79]. The implantation depth linearly depends on the acceler-
ation voltage with 1.4 nm/keV. There are various techniques e.g. implantation
through an AFM tip [80] or an electron beam lithographic mask [93] to in-
crease the lateral resolution of the process. So 5 nm lateral resolution on the
surface is feasible. With increasing implantation depth the straggle of the ions
increases with 0.46 nm/keV, counteracting the high precision on the surface.
In the implantation process the nitrogen ions generate lots of lattice damage
in their wake. Diamond is annealed for at least two hours at 800◦C in vac-
uum. Vacancies become mobile at that temperature. Thus NV centers which
are stable up to 1200◦C form and the remaining vacancies diffuse out of the
crystal regenerating the diamond structure. If however the lattice damage was
too substantial the area of the diamond graphitizes instead of regenerating the
diamond structure. The number of vacancies determines the NV yield after
annealing [78]. For deep implanted NV it can be as high as 21 % whereas it
is in the order of 1 % for shallow implants. The yield can be increased by
implanting additional carbon ions or by electron irradiation.

2.1.1. The NV’s Electron Spin Qubit

We utilize the electron spin of the NV− as our qubit. Normally a small mag-
netic field along the NV axis is applied to lift the degeneracy between the
mS = −1 and +1 to allow selective addressing of the two allowed microwave
transitions between mS = 0 and mS = ±1(fig. 2.3). Because the mS = ±1
states can not be distinguished by the ODMR read out scheme the mS = 0 to
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mS = −1 is normally used as the qubit transition. The system Hamiltonian
reads

HNV =

zero field splitting︷ ︸︸ ︷
D (Ŝ2

z − 2/31) + E (Ŝ2
x − Ŝ2

y) +

Zeeman splitting︷ ︸︸ ︷
µB

h
gNV B Ŝ . (2.2)

D = 2.87 GHz is the axial zero field splitting (ZFS) parameter due to the
dipole-dipole interaction of the 2 unpaired electrons. E denotes the non-axial
rhombic ZFS. For all systems with rotational symmetry as the NV E should
vanish, but lattice imperfections and impurities lead to distortions of the lattice
and thus to a slight breaking of the C3v symmetry, causing up to E = 5 MHz.

To use a two level system as a qubit one has to be able to initialize it into
a known pure state [24]. This is achieved by just shining laser light on the
NV. As long as population is left in the |±1〉 state the system will eventually
relax via the secondary decay channel into the |0〉 state undergoing cycling
transitions from there (fig. 2.4) [87].

Single qubit quantum gates are applied by resonant microwave frequency ac
magnetic fields that drive Rabi oscillations (see section 3.6) which are trun-
cated after the respective rotation angle is reached. Because the transition
to the mS = +1 state is well detuned and the pulse has to be non-selective
of eventual hyperfine splitting it can be driven with fairly high mw-powers,
allowing gate times in the order of 1 ns [34]. So in an average phase coherence
time T2 ≈ 300µs single quantum gates are achievable with an error per gate
of 1 %. This is sufficient for scalable quantum computing.

In order to read out the final state laser light is applied again. Because
the high probability to relax via the lightless alternate decay channel less
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photons are emitted if the NV is in the mS = ±1 state. The fluorescence
intensity is integrated over 2 ms until the system is again polarized into mS = 0
(fig. 2.4). This leads to a 30 % drop in fluorescence intensity if the electron
was prepared in |±1〉. Fluorescence intensities between 100 % (|0〉) and 70 %
(|±1〉) are linearly corresponding to the mixture of the spin state. Because
of the photon shot noise of the laser the signal-to-noise ratio is proportional
to the square root of the integration time. The phase coherence can not be
measured directly e.g. as transverse magnetization. It has to be transformed
into a population difference by a Hadamard gate. So all phase experiments like
dynamic decoupling with the NV center have an additional Hadamard gate at
the end of the sequence just before the read out laser pulse.

2.1.2. Nuclear Spin Qubits

The electron spin qubit itself is very useful e.g. for metrology of magnetic
and electric fields [4, 26] but for quantum communication and information
processing a register of qubits is required. Even small registers made up of 3
to 5 qubits can be utilized as nodes of a quantum repeater [52] or as an error
corrected meta qubit [89]. To build such a quantum register additional qubits
have to be addressed with single qubit gates and connected via two qubit gates
to all other qubits in the register. In case of the NV nuclear spins in its near
vicinity prove to be a convenient choice. Because only the electron spin qubit
can be red out optically the nuclear spin states have to be swapped onto the
electron spin for read out. That means only one qubit can be read out at a
time because the information on nearly all qubits is scrambled by the laser
pulse (see section 7).

13C Nuclear Spin with Exchange Coupling

The most commonly used nuclear spin qubits are 13C in the first or the third
shell of carbon sites around the vacancy. They feature a strong hyperfine cou-
pling of 120 MHz (14 MHz) in the first (third) shell due to exchange interaction
[35]. Roughly at the the second shell the NV’s wave function has a knot. So
there is no strong exchange interaction from 13C spins in the second shell. Fig.
2.5 shows some examples of ODMR spectra of NVs with up to three 13C in
the first three shells. Carbon spins with exchange coupling add

Ĥ13Cex =

13C︷ ︸︸ ︷
µn

h
g13C B Î +

exchange interaction︷ ︸︸ ︷
A

13C
Ŝ Î (2.3)
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to the system Hamiltonian with µn/h = 0.76 kHz/G is the nuclear magnetic
moment g13C = 1.40483, B the magnetic field and A the isotropic hyperfine
interaction tensor. It is assumed to be isotropic (120 MHz and 14 MHz respec-
tively) neglecting the reported anisotropy of Aaniso = 27 MHz [35]. There are
three lattice sites in the first shell and 16 in the third. So in principle one
could have 19 nuclear spin qubits this way. Because all transitions have to be
resolved in the ODMR spectrum to address every qubit separately up to 10
qubits at a single NV are possible [18]. Due to the fact that 13C can not be
placed deliberately in the lattice it is a probabilistic task to find a NV that
features the desired number of nuclear spin qubits. This is getting more and
more cumbersome the more 13C are of need especially in isotopically purified
diamonds. Thus not more than 3 such qubits have been reported up to now
[74, 67] (fig. 2.5).

Single qubit gates are realized by applying a resonant radio frequency (rf)
magnetic field on the hyperfine transitions as depicted in fig. 2.5. Because
the direct “multi quantum gate”-transitions are forbidden the corresponding
rotations are performed on the electron spin qubit and then swapped onto
the respective transitions. To incorporate this into a quantum algorithm the
initial state of the levels in question has to be swapped onto the NV spin prior
to the application of the actual gate. This renders the NV spin an ancilla
qubit ideally not contributing to the register other than gating. This is also
preferable because the 13C nuclei in the first and third shell feature coherence
times around two orders of magnitude longer than the electron spin even at
natural 13C abundance. In combination with the comparatively fast gates of
few nanoseconds with fidelities up to 98 % they are well suited for scaling up the
system. Due to the strong orthogonal hyperfine interaction the quantization
axis of the nuclei are tilted against the NV-axis even at aligned magnetic field.
It is therefore not possible to achieve single shot readout of these qubits by
the present scheme (sec. 7).

One major building block of quantum information processing is the genera-
tion of maximally entangled states with a high fidelity. This is demonstrated
with a register of the NV electron spin and two carbon nuclear spins [74]. All
four Bell states

Φ± =
1√
2

(|00〉 ± |11〉) (2.4)

Ψ± =
1√
2

(|01〉 ± |10〉) (2.5)

are generated on the two nuclear spin qubits (qubit 1 and 2), the states tomo-
graphed and their phase coherence time is measured. From the tomogram the
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Figure 2.5.: A ODMR spectra of the hyperfine splitting of zero to three (top to
bottom) 13C in the first shell. The blue solid lines are simulated by
exact diagonalization of the system Hamiltonian. B ODMR spectra of
one/two 13C in the third shell and C one in the first and one in the third
shell. D shows a schematic of the allowed transitions of the microwave
(blue) and radio frequency (orange and red) for two 13C qubits. The
orange arrows indicate the single qubit gate transitions of 13C qubit
one, red for two. Gates on the forbidden transitions are generated by
combined pulses on allowed transitions. E Schematic of the NV’s level
structure with up to 3 13C. Because the spin quantum number is no
good quantum number in the energy eigenbasis the levels are named in
binary to emphasize the qubit character. Note that |011n〉 and |100n〉
are not in the counting order to indicate that one (two) physical spins
have been flipped.

fidelity, concurrence and the eigenvalues of the partial transpose are calculated
as an entanglement measure. The quantum circuit to generate the Φ− state
among the two nuclear spin qubits is depicted in fig. 2.6. First the system is
initialized by optical pumping. Only the electron spin is initialized that way,
the nuclear spins remain in the totally mixed state. By the initial CCNOT
gate |00n〉 is subselected. All other nuclear spin states do not contribute to the
signal. Thus the measured contrast is reduced to 1/4. For enhanced contrast
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Figure 2.6.: A Quantum circuits to generate the Bell states. Replacement of the π/2
rotation of the controlled Hadamard gate by a 3π/2 rotation results
in the respective + state. B Tomography circuit for an arbitrary 3
qubit state. ϕxy denotes a π/2x, π/2y, πx or no pulse respectively. C
The chosen frequency offsets and fitted frequency ωfit of the Ramsey
fringes in MHz are (I) ∆ω1 = ∆ω2 = 0.5, ωfit = 1.0, (II) ∆ω1 = 0,
∆ω2 = 0.5, ωfit = 0.5, (III) ∆ω1 = −0.3, ∆ω2 = 1.0, ωfit = 1.3, (IV)
∆ω1 = 0, ∆ω2 = 0.4, ωfit = 0.4. All fitting the expected frequencies.
D exemplary state tomogram of the Φ− and the Ψ+ state.

the nuclear spins can in principle be polarized before the algorithm [29, 49].
Because the direct transition |1e00n〉 ↔ |1e11n〉 is forbidden the generation of
the Bell state is split into two gates. First a controlled Hadamart gate (one
controlled by the electron qubit zero controlled by qubit 2) on qubit 1 gener-
ates an equal superposition state which is swapped by a Toffoli gate onto the
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|1e00n〉 ↔ |1e11n〉 transition

1

4
|0e00n〉 〈0e00n|+ |0e01n〉 〈0e01n|+ |0e10n〉 〈0e10n|+ |0e11n〉 〈0e11n|

CCNOTe−→ |1e00n〉
CHn1−→ 1√

2
(|1e00n〉+ |1e01n〉)

CCNOTn2−→ 1√
2

(|1e00n〉 − |1e11n〉). (2.6)

The other Bell states are generated in an analog fashion.
In order to analyze the generated states a full state tomography is carried

out. It relies on the phase dependence of the entangled state. If like in the
FID experiment (sec. 3.7) the state is generated by slightly detuned radio
frequency fields (∆ω1, ∆ω2) in the rotating frame the state precesses with the
detuning frequency about the quantization axis (z-direction) after the pulse.
The corresponding Hamiltonian is

Ĥ = ∆ω1 Îz1 + ∆ω2 Îz2. (2.7)

It leads to a time evolution operator

Uz = e−i Ĥ τ = e−i (∆ω1mI1+∆ω1mI2) τ (2.8)

This is equivalent to the acquisition of a global phase ϑ(mI1,mI2) = ∆ω1mI1+
∆ω1mI2. Because of the dependence on the quantum numbers mI the result-
ing phases ϕ = ϑ(m′I1,m

′
I2)− ϑ(mI1,mI2) of different entangled states evolve

differently

ϕΦ =ϑ(1/2, 1/2)− ϑ(−1/2,−1/2) = (∆ω1mI1 + ∆ω1mI2) τ (2.9)

ϕΨ =ϑ(1/2,−1/2)− ϑ(−1/2, 1/2) = (∆ω1mI1 −∆ω1mI2) τ (2.10)

The + and - states are discriminated by their π-phase difference. Results shown
in fig. 2.6 are precisely matching the expected frequencies. The T ∗2 times of the
coherence is measured this way. It turned out that is limited by the T1 ≈ 8 ms
time of the electron spin. For the actual tomography the expectation values of
all basis operators have to be measured. Because we are only able to read out
the NV’s electron spin we have to do the full tomography successive transition
after transition swapping them onto a “working transition”. We choose the
|1e00n〉 ↔ |1e01n〉 in this case. For a TLS the basis operators are σ̂x, σ̂y, σ̂z,
σ̂1. To precisely measure their expectation values Rabi oscillations by π phase
shifted radio frequencies (x-, y driving field) are recorded. After a π/2xy-pulse
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Figure 2.7.: A Quantum circuits to generate the GHZ state. B Tomography circuit
for the four ideally nonzero entries of the GHZ density operator. It
follows the same ideas as for the Bell states. C FID of the GHZ state
showing the sum of the off diagonal entries ρGHZ

18 + ρGHZ
81 . The fitted

decay exp[−(τ/T ∗2 )2] yields T ∗2 = 1.3 ± 0.2µs. D state tomogram of
the relevant matrix elements at τ = 0µs on top and τ = 2.4µs at the
bottom. The off diagonal elements have decayed completely by then.

the measured value represents the expectation value σ̂x, σ̂y. The “no pulse”
expectation value together with a π-pulse determine the σ̂z, σ̂1 values. from the
full density matrix (fig. 2.7) we deduce the fidelity as well as the concurrence
and the negative partial transpose of all four bell states

Bell state Fidelity Concurrence Partial transpose
Ψ+ 0.80± 0.07 0.65+0.15

−0.08 −0.31+0.06
−0.05

Ψ− 0.81± 0.06 0.65± 0.11 −0.32+0.06
−0.05

Φ+ 0.98± 0.05 0.96+0.09
−0.04 −0.49+0.05

−0.04

Φ− 0.96± 0.05 0.92+0.08
−0.07 −0.47± 0.46

To demonstrate tripartite entanglement a Greenberger–Horne–Zeilinger (GHZ)
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state [39] and the W state [28] were generated and analyzed. The GHZ state

|GHZ〉 =
1√
2

(|000〉+ eiφ |111〉) (2.11)

with φ an arbitrary phase is the multi qubit analogon to the Bell states. It
features threefold entanglement only. If one qubit is lost we are left with

tr3

{
1

2
(|000〉+ |111〉) (〈000|+ 〈111|)

}
=

1

2
(|00〉 〈00|+ |11〉 〈11|) (2.12)

which is a mixed state with no remaining entanglement. If the “lost” qubit was
measured by a projective measurement the remaining state would be projected
into a pure state |00〉 or |11〉 according to the measurement outcome. Although
there exists no standard measure of multipartide entanglement the GHZ state
is considered maximally entangled because of its analogy to the Bell states.
Starting from the generation of the Φ+ state the GHZ state is prepared by
an additional CCNOT gate that swaps the coherence of the |1e00n〉 ↔ |1e11n〉
to the |0e00n〉 ↔ |1e11n〉 transition (fig. 2.7). Because the fidelity of a pure
state depends only on the density operator entries that are nonzero in the
goal operator it is sufficient to do a matrix tomography only for those matrix
elements (fig. 2.7). We achieved the fidelity F = 0.87 ± 0.06 with the phase
coherence time of T ∗2 = 1.3± 0.2µs.

Another maximally entangled three qubit state is the W state

|W 〉 =
1√
3

(
|110〉+ eiφ |101〉+ ei θ |011〉

)
. (2.13)

It features bipartite entanglement between all pairs of qubits but the three-
tangle vanishes. Thus it is fundamentally different from the GHZ state. If one
qubit is lost, regardless whether it was measured or it just rapidly dephased,
the remaining system is still entangled. The GHZ state and the W state
represent the two non biseparable classes of three qubit states that can not
be transformed into one another by local quantum operations not even by
local projections. The generation is a little more complicated than for the Bell
and GHZ states because the coherence has to be distributed among several
transitions. In order to generate a 1/3 to 2/3 distribution a 2 arccos

√
2/3

pulse is applied on the |1e10n〉 ↔ |1e11n〉 transition. Then half of the remaining
population (2/3) of the |1e11n〉 level is transfered to |1e01n〉. The system is now
in the state 1/

√
3 (|1e10n〉+ |1e11n〉+ |1e01n〉). Finally the |1e11n〉 population

is swapped onto |0e11n〉 by a microwave π pulse completing the W state (fig.
2.8). The state tomography of the three relevant transitions revealed a fidelity
of F = 0.85+0.05

−0.1 . The T ∗2 times are
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Figure 2.8.: A Quantum circuits to generate the W state. ϕ = 2 arccos
√

2/3 to
distribute the entanglement equally on all three states. B Schemes to
swap the state of the three relevant transitions on the working transition
|1e10n〉 ↔ |1e11n〉. The color code corresponds to subfigure C and D. C
FID of the three coherences. exp{−(τ/T ∗2 )2} yields T ∗2 23 = 1.6± 0.3µs
and T ∗2 25 = 1.2±0.3µs. In ρW

35 the NV’s electron spin is not involved so
the coherence time is limited by the electrons T1 as at the Bell states.
It does not decay at all over the observation time. The red horizontal
line is a guide to the eye. D state tomogram of the relevant matrix
elements at τ = 0µs on top and τ = 4.4µs at the bottom. The gray
entries have not been measured.

Transition T ∗2
|1e10n〉 ↔ |0e11n〉 1.2± 0.2µs
|1e01n〉 ↔ |0e11n〉 1.6± 0.3µs
|1e10n〉 ↔ |1e01n〉 � 2µs.

Because the electron spin qubit is not involved in the |1e10n〉 ↔ |1e01n〉 coher-
ence it shows no decay at all on the measured time scale up to 4.4µs. Its T ∗2
time is as the Bell states rather limited by the T1 ≈ 8 ms time of the NV spin.
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Dipole-Dipole Coupled Carbon Nuclear Spins

Most carbon spins in the lattice have no exchange interaction with the NV,
they couple via dipole-dipole interaction. Normally the axial components of
these interactions are distributed so densely that they do not split the line. So
those 13C spins are not feasible as a qubit but contribute to inhomogeneous
line broadening. If however the 13C density is very low the inhomogeneous
line width ∆ω = 2 π/T ∗2 eventually reaches the order of 50 kHz and below
(sec. 5). In this regime the strongest interacting carbon spins split the line
and thus become addressable as qubits. The part of the system Hamiltonian
corresponding to such a qubit is

Ĥ13C =

13C︷ ︸︸ ︷
µn

h
g13C B Î −

dipole-dipole interaction︷ ︸︸ ︷
µ0

2 ~
µB µn gNV g13C

|r|3

(
3(Ŝ r) (Î r)

|r|2
− Ŝ Î

)
(2.14)

with µ0 the permeability of free space, µB (µn) the Bohr (nuclear) magneton
and gNV (g13C) the electron (13C) g-factor. r is the vector connecting the NV
and the 13C site.

Two qubit gates of dipole-dipole coupled nuclei and the NV electron spin
are comparatively slow in the order of µs. Even with T ∗2 ≈ 25 ms at natural
abundance this does not allow scaling of the register. Due to the weak coupling
to the NV center at sufficiently high magnetic fields the quantization axis of
such qubits is not deviated from the the magnetic field direction in first order.
This should allow single shot read out on those spins (sec. 7).

Nitrogen Nuclear Spin

A nuclear spin that is always present is the one of the nitrogen atom. It has
two stable isotopes 14N and 15N . 99.63 % of the natural occurrence is 14N . It
has nuclear spin Î = 1 whereas 15N has Î = 1/2. The nitrogen nuclear spin is
represented by

ĤiN =

nitrogen︷ ︸︸ ︷
Q Î2

z +
µn

h
giN B Î +

exchange interaction︷ ︸︸ ︷
AiN Ŝ Î (2.15)

in the Hamiltonian of the quantum register. The operators Î are chosen ac-
cording to the isotope involved. Here giN = 0.4038 (−0.5600) is the gyro
magnetic ratio of 14N (15N). AiN = 2.3 MHz is the isotropic hyperfine cou-
pling strength with the NV. The zero field splitting Q = −5.04 MHz of the 14N
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nucleus [96] originates from the nuclear quadrupole tensor induced by electric
field gradients at the nitrogen location. Because the nitrogen spin is located
on the NV’s symmetry axis this tensor is assumed to be parallel to the NV
axis. So the nitrogen nuclear spins quantization axis is always parallel to the
NV’s as long as the magnetic field is oriented in the same direction as well.
This will prove to be a very important feature later on (sec. 7).

Because in the ground state the NV’s wave function has next to no amplitude
[35] at the nitrogen atom the exchange interaction is only 2.3 kHz. Thus gates
with the nitrogen nuclear spin are comparatively slow in the order of a few µs.
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3.1. Operator Representations

In order to describe a quantum mechanic system one can not rely on the clas-
sical phase space but has to use the eigenvalues of Hermitian operators. Their
representation is defined according to an appropriate frame of reference. These
are called operator representations. They form a basis of the corresponding
Hilbert space. Therefore all basis operators B̂ have to be pairwise linear inde-
pendent. Normally they are chosen to be orthonomal

tr[B̂†i B̂j] = 0 (3.1)

tr[B̂†i B̂i] = 1 (3.2)

for all i, j. In general the choice of the basis is arbitrary and can be adapted
to the problem at hand (see sec. 3.4). The experiment however imposes a
certain basis on the system, the energy eigenbasis in spectroscopy or a rotating
frame for phase experiments like dynamic decoupling, quantum computing or
quantum metrology (sec. 3.7). Some of the more common representations,
relevant for this thesis are presented in the following section.

3.1.1. Transition Operator Representation

If one is interested in a discrete finite k-dimensional Hilbert space H it can be
described in the complete orthogonal state basis |i〉 with

〈i| j〉 = δij with i, j = 1, 2, . . . , k. (3.3)

we can now define k2 transition operators

P̂ij = |i〉 〈j| (3.4)

which in general are non-Hermitian but nevertheless orthonormal

Tr P̂ijP̂
†
i′j′ = δii′δjj′ (3.5)

25
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if the trace operation Tr . . . is used to calculate the norm, this is called tra-
cenorm.

The transition operators form a complete basis in the accounting Liouville
space L [37]. All Operators Ô can be expanded into this basis

Ô =
∑
ij

OijP̂ij, (3.6)

where the Oij are the expansion coefficients

Oij = Tr{ÔP̂ †ij} = 〈i| Ô |j〉 (3.7)

This makes a total of 2k2 parameters due to the fact that coefficients Oij in
general are complex. In case of a Hermitian operator all Oij are real because

with Ô = Ô† and P̂ij = P̂ †ij

Ô =
∑
ij

OijP̂ij (3.8)

Ô† =
∑
ij

O∗ijP̂
†
ij (3.9)

⇒ Oij = O∗ij. (3.10)

So we need k2 coefficients Oij to define a Hermitian operator uniquely.

3.1.2. Generators of the SU

It is convenient, especially for spin systems, to use the generators of the SU(k)
as a complete orthogonal basis of the Hilbert space. They are therefore often
called spin operators. For k = 2 these are the Pauli operators σ̂i with i =
x, y, z, 0. In terms of transition operators the Pauli operators are

σ̂x =P̂12 + P̂21, (3.11)

σ̂y =i (P̂21 − P̂12), (3.12)

σ̂z =P̂11 − P̂22, (3.13)

σ̂0 =12. (3.14)

They are Hermitian and, except σ̂0, traceless. Some important relations for
the Pauli operators are

(σ̂i)
2 = 12, (3.15)

[σ̂x, σ̂y] = 2iσ̂z, (3.16)
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and cyclic permutations of (3.16). Additionally, raising and lowering operators

σ̂+ = σ̂x + i σ̂y (3.17)

σ̂− = σ̂x − i σ̂y (3.18)

can be introduced. For k > 3 the operators that generate rotations about the
spacial directions do not form a full basis anymore. Nonetheless they are very
useful to set up a spin Hamiltonian in the laboratory frame. The operators that
complete the basis can be found as products of these ”Cartesian” rotations.
For k = 3 the generators of these rotations are

Ŝx =P̂12 + P̂12 + P̂13 + P̂31 (3.19)

Ŝy =i (P̂21 − P̂12 + P̂31 − P̂13) (3.20)

Ŝz =P̂33 − P̂11. (3.21)

The operators completing the basis are Ŝ2
x, Ŝ2

y, Ŝ2
z , Ŝx Ŝy, Ŝy Ŝx,and 13. The

Gell Mann matrices also generate the SU(3) but they do not feature the rota-
tions about the Cartesian coordinates which makes them undesirable for spin
Hamiltonians. We use Îi to denote the spin operators of nuclear spins with the
respective dimension.

3.2. The Density Operator

Probably the most versatile way to describe an arbitrary quantum state is by
the density operator ρ̂. Its matrix representation is given by

ρ̂ =
k∑

i,j=1

ρij P̂ij. (3.22)

In order to describe a real quantum system, ρ̂ is subject to the condition

Tr ρ̂ =
∑
i

ρii = 1 (3.23)

and has to be a positive definite Hermitian operator. The matrix elements can
be projected out again with the aid of the state vectors

ρij = 〈i| ρ̂ |j〉 . (3.24)

The expectation value of an arbitrary operator Ô for the state ρ̂ is given by〈
Ô
〉

= Tr Ô ρ̂. (3.25)
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3.2.1. Composite Quantum Systems

If the system of interest is composed of several interacting spin systems the
Hamiltonian of the ith subsystem Ĥ iso

i is incorporated by multiplying 1d of
sufficient dimension

db =
i−1∏
k=1

dim(Ĥk) (3.26)

da =
n∏

k=i+1

dim(Ĥk) (3.27)

by a dyadic product

Ĥsys
i = 1db

⊗ Ĥ iso
i ⊗ 1da . (3.28)

Interaction between two subsystems (i, j) is written

Ĥ int
ij =

∑
{l,m}={x,y,z}

λij lmŜil Ŝjm. (3.29)

For convenience the indices of the system ij are omitted.
Because (3.23) holds true for all subsystems the state of a single subsys-

tem can be determined by applying the partial trace operation on all other
subsystems

ρ̂iso
i = tr{N<g\i}ρ̂ =

∑
v={N<g\i}

kv∑
w=1

k∏
j=1

ρ̂jww (3.30)

with g the number of subsystems. All correlations to other subsystems are
lost. So only for a factorizeable state holds

ρ̂ =
∏
i

ρ̂iso
i . (3.31)

3.3. Dynamics of Closed Quantum Systems

According to quantum mechanics the time dependence of a state Ψ(t) is given
by the Schrödinger equation

i ~
d

dt
|Ψ(t)〉 = Ĥ |Ψ(t)〉 . (3.32)
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A formal solution to this equation is given by the unitary time evolution op-
erator

|Ψ(t)〉 = Û(t, t0) |Ψ(t0)〉 . (3.33)

It only depends on the initial time t0, t and the system’s Hamiltonian. Substi-
tuting (3.33) in the Schrödinger equation (3.32) we get the time dependence
of Û(t, t0)

i ~
∂

∂t
Û(t, t0) = Ĥ Û(t, t0). (3.34)

If Ĥ is time independent we are able to integrate this equation of motion

Û(t, t0) = e−
i
~ Ĥ(t−t0). (3.35)

If the initial state is not a pure state it is reasonable to use the density
matrix formalism to keep track of the system’s state

ρ̂(t0) =
∑
ij

pij |Ψi(t0)〉 〈Ψj(t0)| . (3.36)

Using the time evolution operator (3.33) gives us

ρ̂(t) =
∑
i

wi Û(t, t0) |Ψi(t0)〉 〈Ψi(t0)| Û(t, t0)† = Û(t, t0) ρ̂(t0) Û(t, t0)†. (3.37)

After differentiating this equation [15] one eventually finds the Liouville von
Neumann equation

d ρ̂

dt
= − i

~
[Ĥ, ρ̂]. (3.38)

3.4. Pictures of Quantum mechanics

In the Schrödinger picture the dynamics of the state ρ̂(t) are governed by the
Liouville von Neumann equation (3.38). An equivalent description is the so
called Heisenberg picture where the Hilbert space operators ÂH(t) undergo the
time evolution instead of the density matrix. The density operator ρ̂H stays
constant in time. It is assumed that at the initial time t0 the quantum state of
both pictures coincides ρ̂(t0) = ρ̂H. Note that the Heisenberg picture operators
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are indicated by an index H. The operators of both pictures are connected via
the time evolution operator

ÂH(t) = Û(t, t0)† Â(t) Û(t, t0). (3.39)

Note that the ÂH(t) rotates exactly in the counter direction of ρ̂(t) in the
Schrödinger picture. Expectation values of a given operator Â are the same in
either picture

〈Â(t)〉 = tr{Â(t) ρ̂(t)} = tr{ÂH(t) ρ̂H}. (3.40)

With (3.38) and the transformation relation (3.39) it is straightforward to
derive the equation of motion in the Heisenberg picture

d ÂH(t)

dt
= − i

~
[ĤH(t), ÂH(t)] +

∂ ÂH(t)

∂t
. (3.41)

The Schrödinger and the Heisenberg picture form the extremal cases of a
third picture, called the interaction picture. To derive this we have to separate
the Hamiltonian into two parts

Ĥ(t) = Ĥ0 + ĤI. (3.42)

In general Ĥ0 gives the energies of the subsystems neglecting the interaction
between them. Usually this part is time independent. ĤI describes the inter-
action between the subsystems. We now introduce two partial time evolution
operators

Û0(t, t0) = e−
i
~ Ĥ0(t−t0) (3.43)

ÛI(t, t0) = e−
i
~ ĤI(t−t0) = Û †0(t, t0) Û(t, t0). (3.44)

Now the time evolution of the expectation value of Â(t) can be written as

〈Â(t)〉 = tr{Û †0(t, t0) Â(t) Û0(t, t0) ÛI(t, t0) ρ̂(t) Û †I (t, t0)} (3.45)

= tr{ÂI(t) ρ̂I(t)}

with ÂI(t) = Û †0(t, t0) Â(t) Û0(t, t0) and ρ̂I(t) = ÛI(t, t0) ρ̂(t) Û †I (t, t0) the oper-
ators in the interaction picture. The equation of motion takes the form

d ρ̂I(t)

dt
= − i

~
[ĤI(t), ρ̂I(t)] (3.46)
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analog to the Liouville von Neumann equation. Some times it is convenient to
apply this equation in its equivalent integral form

ρ̂I(t) = ρ̂I(t0)− i

~

t∫
t0

[ĤI(s), ρ̂I(s)] ds. (3.47)

Foremost at perturbative or other approximate approaches this form is conve-
nient because it is easily iterated.

3.5. Magnetic Dipole-Dipole Interaction

The predominant interaction between separated spin systems is the magnetic
dipole-dipole interaction. It depends on the magnitude and relative direction
of the involved magnetic moments and the separation vector r between them.
Hence we focus on solid state systems, r is taken as constant in time which is a
reasonable approximation especially in diamond. Effects of motional narrowing
[91] as in liquids or gases will be omitted. The dipole dipole Hamiltonian reads

Ĥdip =
µ0 µ1 µ2 g1 g2

2 ~ |r|3

(
3

(Ŝ
(1)
r) (Ŝ

(2)
r)

|r|2
− Ŝ

(1)
Ŝ

(2)

)
(3.48)

with µ0 the permeability constant, µi the magnetic moments of the two spins
and g1 their respective g-factors. To further examine the Hamiltonian we
introduce raising and lowering operators

Ŝ+ = Ŝx + i Ŝy (3.49)

Ŝ− = Ŝx − i Ŝy (3.50)

to the bases operators and rewrite [2]

Ĥdip =
µ0 µ1 µ2 g1 g2

2 ~ |r|3

{
Ŝ

(1)
Ŝ

(2)
−

− 3

[
Ŝ(1)

z cos θ +
1

2
sin θ

(
Ŝ

(1)
+ e−iφ + Ŝ

(1)
− eiφ

)]
·

·
[
Ŝ(2)

z cos θ +
1

2
sin θ

(
Ŝ

(2)
+ e−iφ + Ŝ

(2)
− eiφ

)]}
(3.51)

=
µ0 µ1 µ2 g1 g2

2 ~ |r|3
(A+B + C +D + E + F ). (3.52)
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The coefficients A to F are

A =Ŝ(1)
z Ŝ(2)

z (1− 3 cos2 θ) (3.53)

B =− (Ŝ
(1)
+ Ŝ

(2)
− + Ŝ

(1)
− Ŝ

(2)
+ )

1

4
(1− 3 cos2 θ) (3.54)

C =− (Ŝ(1)
z Ŝ

(2)
+ + Ŝ(2)

z Ŝ
(1)
+ )

3

2
sin θ cos θ e−iφ (3.55)

D =C∗ = −(Ŝ(1)
z Ŝ

(2)
− + Ŝ(2)

z Ŝ
(1)
− )

3

2
sin θ cos θ eiφ (3.56)

E =− Ŝ(1)
+ Ŝ

(1)
+

3

4
sin2 θ e−i 2φ (3.57)

F =E∗ = −Ŝ(1)
− Ŝ

(1)
−

3

4
sin2 θ ei 2φ. (3.58)

These six terms affect the interacting spin systems in a qualitatively different
way. To neatly distinguish the effects we look at the change of the spin states
m1 and m2 of the unperturbed spin states

A ∆m1 = 0 ∆m2 = 0 ∆(m1 +m2) = 0
B ∆m1 = ±1 ∆m2 = ∓1 ∆(m1 +m2) = 0

C ∆m1 =

{
0

+1
∆m2 =

{
+1

0
∆(m1 +m2) = +1

D ∆m1 =

{
0

−1
∆m2 =

{
−1

0
∆(m1 +m2) = −1

E ∆m1 = +1 ∆m2 = +1 ∆(m1 +m2) = +2
F ∆m1 = −1 ∆m2 = −1 ∆(m1 +m2) = −2.

A has the form of two classical interacting dipoles. It describes the magnetic
field of the other spin at each spin site and thus splits the energy levels of both
spins without causing dynamics. B allows energy transfer between the spins. It
is called the flip flop term or Förster coupling [32]. In analogy to an ac-field in
the rotating frame the amplitude of the flip flop dynamics diminishes like 1/δ2

with δ = ω1−ω2 the difference of the energy splittings of the interacting spins.
ThusB is only relevant to similarly split spins. Because A andB commute with
the unperturbed Hamiltonian they are often called the adiabatic or secular part
of Ĥdip. They do not introduce excitation or deexcitation to the full system.
Terms like C introduce mixing of the unperturbed energy eigenstates of the
system. Eigenstates e.g. are of the form |m〉+ α |m− 1〉+ . . . with α a small
value. Thus weak additional peaks at sums and differences of the unperturbed
energy splittings appear in the ESR spectrum although the ac field can only
excite ∆m = ±1. Amplitudes of these lines are in the order of α2.
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The dipole coupling to uncontrolled spins in the lattice leads to inhomo-
geneous broadening of the transition line with of the controlled spins. The
Hamiltonian of the system is

Ĥ = ĤS +
∑
i

ĤBiĤdipi (3.59)

with index S indicating the system Hamiltonian and B the Hamiltonian of
a bath spin. In case of different spin species (e.g. a central electron spin
interacting with a bath of nuclear spins) to first order the dynamics of B due
to the A is strongly suppressed because of the big energy differences. The bath
spins generally are randomly distributed on the lattice. Thus their interaction
strength is randomly distributed too. So the splittings from the A terms result
in an approximately Gaussian shaped line [25].

If spins are localized close by, their dipole-dipole interaction is responsible
for the zero field splitting of the composite system. To see that we rewrite
(3.48) in the form

Ĥdip = Ŝ
(1)
d Ŝ

(2)
(3.60)

with

dij =
µ0 µ1 µ2 g1 g2

2 ~

(
3 ri rj − |r|2 δij

|r|5

)
. (3.61)

Now we proceed to the combined spin operator Ŝ. (3.60) can now be written
as

Ĥdip = Ŝ D Ŝ. (3.62)

The zero field matrix D is now

dij =
1

2S (2S − 1)

µ0 µ1 µ2 g1 g2

2 ~

(
3 ri rj − |r|2 δij

|r|5

)
. (3.63)

In its diagonal form the traceless matrix D can be rewritten as

D = −1

3
(D + E) P̂11 +−1

3
(D − E) P̂22 +

2

3
D P̂33. (3.64)

In this notation |E/D| < 1/3. Naturally the point dipole approximation does
not hold for close by spins. So r has to be integrated over the whole wave func-
tion. This makes it non trivial to determine the zero field splitting from first
principles. It can be shown that for wave functions with rotational symmetry
E is always equal to zero.



34 3. Basic Quantum Mechanics

3.6. Treatment of Alternating Magnetic Fields

A two level system (TLS) subjected to an alternating magnetic field is a very
common situation. For example all optical quantum control can be modeled
this way. The system has the Hamiltonian

Ĥ = ĤS + Ĥac (3.65)

with the TLS’s Hamiltonian

ĤS = ωL σ̂z. (3.66)

The linear polarized alternating magnetic field has the Hamiltonian

Ĥac = g sin (ω t) σ̂x (3.67)

ω is the oscillation frequency of the field and g the interaction strength which
is proportional to the dipole matrix element of the respective transition and
the amplitude of the magnetic field. We divide the linear polarization into two
circular polarized parts

Ĥac =
1

2
g
(

eiω t Ŝk + e−iω t Ŝk

)
. (3.68)

Where the second term is representing non energy conserving so called counter
propagating wave. This term leads to energy shifts like Lamb shift or Bloch-
Siegert shift. They are neglected by the rotating wave approximation (RWA).
We now transform into a rotating frame of reference to get rid of the time
dependence of Ĥ by applying the time dependent transformation

Û(t) = e−i ĤS t. (3.69)

ĤS commutes with Û(t) so it remains constant in time. The Hamiltonian is
now

Ĥ ′S = ĤS +
1

2
g σ̂x. (3.70)

The second term in (3.68) would have caused an additional time dependent
part

Ĥcr =
1

2
g e−i (ω+ωL) σ̂x t (3.71)
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hence “counter rotating” part. Injected into the Schrödinger equation (3.32)
we arrive at

i ~
d

dt
|Ψ(t)〉′ =

(
Ĥ ′ + ~ωLP̂11

)
|Ψ(t)〉′ (3.72)

With P̂11 the projection operator on the |−1/2〉 state. In the rotating frame the
energy eigenvalues of Ĥ ′S become degenerate. The new effective Hamiltonian
is

Ĥeff = Ĥ ′ + ~ωLP̂11. (3.73)

We substitute ω = ωL +δ with δ the detuning frequency. Formally the solution
to the problem is

ρ̂′(t) = ρ̂0 ei Ĥeff t. (3.74)

It results in an oscillation of the magnetization

µz = 〈Ŝz〉 = trρ̂(t) Ŝz = −1 +
2 g2

g2 + δ2
sin2

(ωR

2
t
)

(3.75)

with the Rabi frequency

ωR =
√
g2 + δ2. (3.76)

As can be seen from (3.75) the amplitude of the observed oscillation is reduced
by 1/δ. If δ2 � g2 it gets negligible small. If this is the case for all but one
transition we talk of a selective pulse, because only on this single transition
dynamics are introduced. This means in reverse that in order to drive selective
Rabi oscillations on a system with a small difference between two transition
energies the intensity of the radiation and therefore the radiation frequency
has to be lowered down to meet the above requirement.

In a classical picture one would imagine a magnetic moment precessing about
the external fields. The dynamics of the spin is analog to the classical dynamic
if we express the quantum state as a vector in the Hilbert space pointing from
the center of the sphere to the actual quantum state. The Hilbert space is
depicted by a n-sphere. In the special case of a TLS a 3-sphere. The pure
states form the edge of the Hilbert space. They all lie on the surface of the
sphere. This representation of the Hilbert space is called the Bloch sphere
(fig. 3.1). If the state vector points somewhere inside the Bloch sphere the
quantum state is not a pure state. The incoherent mixtures are located on
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Figure 3.1.: Bloch sphere representation of the TLS Hilbert space. The blue vector
is the state vector pointing to the actual quantum state within the
sphere. The red line along the z-axis indicates the classical incoherent
mixture of the two states |0〉 and |1〉.

the the quantization axis which is set to the z-axis. In a classical picture the
dynamics is governed by the Bloch equations

dM(t)

dt
= γ (M(t)B(t)) . (3.77)

The analog calculation can be done in the quantum case [91]. As a result the
Bloch vector precesses on the surface of the Bloch sphere. In the case of zero
detuning δ it precesses in a plain perpendicular to the alternating field. The
Bloch sphere is a very useful method to visualize quantum dynamics. It is also
possible to introduce relaxation into the picture in a phenomenological way
[91] by extending (3.77) to

dMx(t)

dt
= γ (Mx(t)Bx(t)) +

M∗
x

T2ρ

(3.78)

dMy(t)

dt
= γ (My(t)By(t)) +

M∗
y

T2ρ

(3.79)

dMz(t)

dt
= γ (Mz(t)Bz(t)) +

M0 −Mz

T1

(3.80)

with M0 the steady state magnetization T2ρ the pure transverse dephasing
time and T1 the longitudinal relaxation time. This set of equations leads to
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an exponential decay of the magnetization with the two aforementioned time
constants. One can also use the Bloch 3-sphere to visualize 2D subspaces of
bigger Hilbert spaces. It is valid to do so as long as dynamics in the other
dimensions are negligible on the examined timescale.

By the application of resonant ac fields with power (∼ g) low enough to
affect only a single transition all operations necessary for modern quantum
applications can in fact be implemented. Some are detailed below.

3.7. An Introduction to Quantum Computing and
Dynamic Decoupling

It is instructive to approach pulsed measurements from an algorithmic point of
view. All quantum dynamics can be expressed by the application of a unitary
operator to the initial quantum state (3.33). In analogy to logical operations
on classical bits they are called quantum gates. The two level quantum system
(TLS) in question is referred to as qubit. Because the NV center features a
S = 1 ground state we normally apply a magnetic field to lift the degeneracy
of the mS = ±1 levels and use |0〉 and |−1〉 as our qubit states. We label
the eigenstates of the qubit as |0〉 and |1〉. Unitarity is the only constraint
on logic operations performed on quantum systems. The big advantage of
such a description is that it is independent of the specific physical realization
of the qubit. If one is confronted with a new type of quantum system one
needs only to understand the control mechanics and can directly apply any
given algorithm. In the following we give an overview of quantum control
operations.

A quantum system has to fulfill five criteria given by DiVincenzo [24] in
order to achieve scalable quantum computing. These five criteria say that for
a system to be a candidate for an implementation of quantum computation, it
should

• Be a scalable physical system with well-defined qubits

• Be initializable to a pure state

• Have a universal set of quantum gates with an error per gate less than
5 %

• Have long coherence times compared to a single gate operation

• Permit high quantum efficiency, qubit-specific measurements
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Postponing the scalability criterion one has to be able to initialize the qubit
to a known pure state. In case of the NV center this is done by just shining
green laser light on the defect center. By relaxation via the alternative decay
channel the system is polarized into the mS = 0 state.

3.7.1. Single Qubit gates

The single qubit gates introduced below can all be implemented by an arbitrary
rotation gate. These special gates simplify algorithms by defining special often
needed angles. They are realized by driving Rabi oscillations on the qubits
transition that are truncated after the required rotation. Thus an arbitrary
rotation gate is possible.

In case of the NV center the driving field is in the microwave range. Opera-
tions are therefore called mw-pulses. The nuclear spins that couple to the NV
are addressed in the radio frequency range (rf-pulse). For simplicity all gate
operations are described for TLS as qubits. It is completely analogous for the
NV because the third level of the S = 1 system is neglected so far. Although
the three level qutrid may prove relevant for more complicated algorithms in
the future.

The Hadamard gate transforms the |0〉 state into the coherent superposition
(|1〉 + |0〉)/

√
2 and |1〉 into (|1〉 − |0〉)/

√
2. It is represented by the unitary

operator

ÛH =
1√
2

(
1 1
1 −1

)
(3.81)

It corresponds to a π/2 rotation of the Bloch vector about the x-direction and
is thus often simply called π/2-pulse.

The Pauli gate is the quantum pendant to a classical NOT-gate. It trans-
forms |0〉 to |1〉 and vise versa. The unitary operator of the Pauli gate depends
on the rotation direction. There are three realizations

ÛPx = ÛP =

(
0 1
1 0

)
(3.82)

ÛPy =

(
0 −i
i 0

)
(3.83)

ÛPz =

(
1 0
0 −1

)
(3.84)

In some algorithms it is relevant to rotate in a specific direction. If not specified
ÛPx is used. The Pauli gate is also called π-pulse because it performs a π
rotation of the Bloch vector.
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Figure 3.2.: A shows the quantum circuit symbol of the Hadamard gate. B gives
the Bloch sphere representation of the gate. It is also often just called
π/2-pulse. C depicts the transitions in a two qubit register that have
to be addressed to apply the gate.

3.7.2. Two qubit gates

At multi qubit gates we restrict ourself to two qubit operations. Higher gates
work in principle the same way. Nonetheless two qubit gates are sufficient for
quantum computing. They are implemented by truncated Rabi oscillations on
the respective transition. If the coupling between the qubits is not larger than
the line width the transition can not be addressed directly or the transition can
not be driven selectively. One has to resort to variants of the DEER sequence
[57] as described in chapter 6 to realize the gates. If the respective transition is
forbidden the gate can be implemented on a allowed transition e.g. an ancilla
qubit. The outcome is then swapped onto the target pair (sec. 2.1.2).

The most important two qubit gate is the controlled-NOT-gate (CNOT),
the quantum analog to a XOR-operation. It flips the controlled qubit only if
the control qubit is |1〉. The unitary operator representation of the CNOT-gate
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Figure 3.3.: A shows the quantum circuit symbol of the Pauli gate. B gives the
Bloch sphere representation of the gate. It is also often just called π-
pulse. C depicts the transitions in a two qubit register that have to be
addressed to apply the gate. If only one transition is driven a CNOT
is applied instead of a Pauli gate.

is

ÛCNOT =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 or


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 (3.85)

if the second qubit is the controlling one. The Hadamard gate and the CNOT-
gate form a set of universal gates [76]. Every quantum gate can be approx-
imated by combinations of these two. As a variant the target qubit can be
flipped if the controlling qubit is |0〉. This is indicated by a small circle in-
stead of a dot in the quantum circuit. Sometimes it is necessary to apply an
arbitrary controlled rotation Ô on a register

ÛCop =

 Ô 0 0
0 1 0
0 0 1

 . (3.86)
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Figure 3.4.: A shows the quantum circuit symbol of the CNOT gate and a zero
controlled arbitrary rotation Ô. The qubit with the dot acts as the
control qubit while the other (crossed circle) is flipped if the control
qubit is |1〉. If the target qubit is flipped if the control qubit is |0〉 it
is indicated by a small circle instead of the dot. In B the Bloch sphere
representation of the CNOT is shown. The rotation is independent
of the actual initial state. C indicates the transitions that have to
be selectively driven to implement the CNOT gate. The single qubit
transition energy has to be different to allow a direct implementation
of the quantum gate.

If e.g. a controlled Hadamard gate is required it is indicated in the quantum
circuit by the accounting gate symbol with the “control dots“ attached. In
the case of three qubits with two controlling qubits this operation is called
CCNOT or Toffoli gate.

The SWAP gate interchanges the states of the two qubits

ÛSWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (3.87)

It can be substituted by 3 consecutive CNOT-gates as depicted in fig. 3.5.
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Figure 3.5.: A The SWAP gate can be decomposed into 3 consecutively applied
CNOT gates. In combination with Hadamard gate the CNOT is uni-
versal. In B the Bloch sphere representation of the CNOT is shown.
The rotation is independent of the actual initial state. C depicts the di-
rect swap transition (green) as well as the decomposition into 3 CNOT
transitions.

3.7.3. Single Qubit Algorithms

The simplest quantum algorithms are those that involve only a single qubit.
They are designed to measure and/or prolong the phase coherence time or to
measure the accumulation of a phase for metrology reasons. From a quantum
information perspective long coherence time is indispensable because all algo-
rithms have to be implemented within the shortest phase memory time of all
qubits involved. Otherwise the quantum character of the register is lost.

Free Induction Decay

The most simple algorithm is the free induction decay (FID) experiment.
There are two variants, one to measure the spin relaxation time T1 the other to
gauge the dephasing time T ∗2 . The T1 describes the system’s relaxation from a
pure state towards a steady state e.g. the thermal equilibrium. To probe this
the system is initialized into a pure state, then evolves freely for a time τ and is
measured. In the Bloch sphere picture the spin is initialized on the z direction,
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Figure 3.6.: In this figure three descriptions of the FID are displayed. In the Bloch
sphere the effect of the corresponding quantum gates and free induction
times is illustrated.

then shrinks along the axis until it reaches its steady state. Therefore the T1

process is also called longitudinal relaxation.
For the second variant we start each sequence with a polarized state of the

spin system. With the application of a Hadamard gate we rotate the Bloch
vector into the equatorial plain of the Bloch sphere generating a superposition
state. In the rotating frame in absents of external disturbance this state shows
no further dynamics. If not controllable external fields now detune the transi-
tion frequency from the rotating frame the Bloch vector starts precessing about
the z-axis. Due to paramagnetic defects in the vicinity the local field may be
different for every repetition of the sequence in a integrated measurement and
thus the precession speed of the Bloch vector. All these statistically rotated
vectors for a given free precession time add up to a reduction of the length of
the Bloch vector. If we repeat this experiment with different induction times
τ and track the length of the Bloch vector we see it decay with increasing τ .
A visualization of the sequence as a quantum circuit and in Bloch spheres is
shown in fig. 3.6. Because this process shrinks the Bloch vector along the x
axis towards the z axis the loss of phase coherence is called transverse relax-
ation in contrast to longitudinal relaxation. By solving the Bloch equations
(3.78)-(3.80) we find that

1

T ∗2
=

1

2T1

+
1

T2ρ

. (3.88)

So in the case that T1 � T2ρ we can approximate T ∗2 = T2ρ. On the other hand



44 3. Basic Quantum Mechanics

y

x

z

y

x

z

y

x

z

H
π
2LaserLaser

y

x

z

y

x

z

y

x

z

H
π
2 LaserLaserπ

P2
τ

2
τ

2
τ

2
τ

Figure 3.7.: The Hahn echo sequence is depicted by its quantum logical circuit and
its pulse scheme. The Bloch spheres depict how the refocusing takes
place.

T ∗2 can in principle be as long as 2T1. Which is never reached in a physical
system because the local fields can not be completely stabilized.

In order to improve the visibility of the decay one can detune the control field
from the respective transition. Additionally to the process described above the
state vector now precesses with the detuning frequency in the rotating frame.
The decay manifests now in a dumped oscillation which is easier discriminated
from the shot noise background. These oscillations are called Ramsey fringes
[81].

Because the precession frequency is linked to the detuning δ of the transition
frequency from the ac-field by

ω = ei δ t (3.89)

the Fourier transform of the FID signal is equal to the ESR spectrum of the
probed quantum system. Normally the spectra acquired by FID have better
resolution than spectra by ODMR.

Spin Echo

One method to prolong the phase coherence time is to apply a spin echo se-
quence or dynamic decoupling sequence. The most simple and most often
applied one is the so called Hahn echo [40] depicted in fig. 3.7. It was discov-
ered by Erwin Hahn just after finishing his graduate studies, thus kicking off
the whole field of pulsed ESR and NMR experiments. Leading to an inconceiv-
able amount of discoveries in molecular structure analysis, medical imaging,
and to some extend quantum information processing. It is considered one of



3.7. An Introduction to Quantum Computing and Dynamic Decoupling 45

the most important contributions to NMR. We start with the creation of an
superposition state from a energy eigenstate by applying a Hadamard gate.
Now we wait for a time τ/2. A FID occurs. Now we flip the Bloch vector
over by applying a π-pulse. If the fluctuating local field does not change over
the course of one application of the echo sequence the Bloch vector continues
to rotate in the same direction with the same angular velocity as before the
π-pulse. After a second free induction time τ/2 the vector arrives at a state
which has π phase difference to the state created by the initial π/2-pulse. This
holds true for every realization of the echo sequence. The integrated Bloch
vector does not decay at all with time. The system has been decoupled from
noise that fluctuates much slower than τ by the dynamic imposed on the sys-
tem hence ”dynamic decoupling”. Field fluctuations during the application of
the echo sequence are not refocused. They lead to a decay of the coherence.
This coherence time is called T2. There are more elaborated dynamic decou-
pling sequences like the ”Carr, Purcell, Meiboom, Gill” sequence (CPMG) [19]
or ”Uhrig dynamic decoupling” (UDD) [100]. Their application prolongs T2

beyond the Hahn echo result. In chapter 8.3 we examine these sequences in
detail.

3.7.4. Multi Qubit algorithms - The DEER Sequence

Multi qubit quantum algorithms are described the same way by their circuit
diagram. As an example we introduce the double electron electron resonance
(DEER) sequence, an algorithm designed to probe the Ŝz ⊗ Ŝz component
of an interaction Hamiltonian e.g. the A term of the dipolar coupling (sec.
3.5). The basic idea is to detect the line shift caused by the interaction by
measuring the phase accumulation of a controlled spin. DEER is applied e.g.
if the splitting of interest is smaller than the ESR line width. When just
taking the Fourier transform of the FID does not resolve the splitting. In
order to effectively narrow down the line width of the observed line (spin A) a
Hahn echo sequence that refocuses all slow modulations is applied. Thus the
measurements precision is limited by T2 rather than T ∗2 of the FID. To render
the probe spin sensitive to the interaction to the second spin that spin is flipped
during the second free precession time of the echo. If the spin is flipped at the
end of the Hahn echo sequence it is completely refocused assuming T

(B)
1 � τ .

If spin B is flipped at a time τ/2+T with T < τ/2 a net phase is accumulated.
During the Hahn echo spin A accumulates the phase φ1 = γ Bint τ/2 until the
Pauli gate by the magnetic field of spin B Bint. The Pauli gate inverts the
phase and it starts to refocus φ2 = −φ1 + γ Bint T . After spin B is flipped the



46 3. Basic Quantum Mechanics

phase accumulation inverts its direction again

φf = φ2 − γ Bint (τ/2− T ) = γ Bint (τ − 2T ). (3.90)

So if τ is kept constant and T is varied the signal oscillates with twice the
interaction frequency. Of course this only works if spin B was polarized in the
beginning. For a mixed state of B spin A only feels the net magnetic field.

In addition to the detection of the coupling the observed oscillation can
be utilized to substitute a selective pulse on the flip flop transition. T is then
chosen such that the desired phase is accumulated (sec. 6). The phase rotation
is translated into a population difference by the final Hadamard gate. This
gates precision again is limited by T2 of qubit A and thus applicable even if
the splitting due to the coupling is not resolved in the ESR spectrum.

For S = 1 systems there are several possibilities to perform the DEER
sequence. If the Hahn echo gates are applied on the |0〉 ↔ |±1〉 transition and
spin B is flipped from |0〉 to |±1〉 there is no phase accumulation until spin
B is flipped (φ1 = φ2 = 0). Thus the signal oscillates with the interaction
frequency

φf = φ2 − γ Bint (τ/2− T ) = −γ Bint (τ/2− T ). (3.91)

It is also possible to initialize spin B into |±1〉 and flip it to |∓1〉. Then
again the double frequency is observed. To apply the Hahn echo on the double
transition |±1〉 ↔ |∓1〉 of spin A doubles the phase acquisition. The signal
therefore oscillates with

φf =

{
γ Bint (τ − 2T ) for spin B |0〉 → |±1〉
γ Bint (τ − 4T ) for spin B |±1〉 → |∓1〉 .

(3.92)

The quantum circuits of all DEER variants are depicted in fig. 3.8.

3.8. Evaluation of Quantum States - Fidelity and
Entanglement Measures

The implementation of quantum gates on a real physical system is never as
perfect as assumed up until now. The gate durations are estimated by an initial
Rabi oscillation which is prone to environmental noise and shot noise from the
laser there are already small errors at the fit of the oscillation and thus to the
pulse durations. In addition the acquisition of the data needs either a time
average or an ensemble average. Small changes to the transition frequencies
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Figure 3.8.: A The quantum circuit of two S = 1/2 spins. The resulting signal
oscillates with twice the coupling frequency. B-D show possible DEER
algorithms for two S = 1 spins. The transitions the gates have to be
applied to are marked by the indices − for |0〉 ↔ |−1〉, + for |0〉 ↔
|+1〉 and ± for |−1〉 ↔ |+1〉. The signal corresponds to the coupling
frequency once (C), twice (B) and four times (D) the coupling.

e.g. due to temperature changes or field inhomogeneities lead to pulse errors
over the course of the measurement. Furthermore the gates can not be applied
instantaneously but have some duration which normally is short compared to
the experiment duration τ but nonetheless allows system dynamics on other
transitions during the pulse. As the transition frequencies get dense either to
similar interaction frequencies or the increasing number of qubits the control
pulses are not perfectly spin selective any more. So transitions that are not part
of the desired gate are weakly driven as well, causing additional errors to the
gate result. There are three major questions to ask to address this situation.
How can the performance of a gate operation be quantized? How much error
per gate can a quantum algorithm take? How can errors be corrected? The
first two questions are addressed here. Quantum error correction is a field of
its own and not discussed in this work. Although dynamical decoupling (sec.
3.7) can be viewed as single qubit error correction. The simplest possibility
to evaluate the performance of a gate is to define a distance measure on the
Hilbert space and measure how close a generated state gets to the ideal target
state. Such a measure is the fidelity F of a quantum state. It is taken from
classical probability theory. Where the fidelity of two random variables p and
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q it is defined as

F (p, q) =
∑
i

√
pi qi. (3.93)

It is easy to see that

0 ≤ F (p, q) ≤ 1 (3.94)

and F = 1 if and only if p = q. It is the overlap of the two random variables.
The same notion transfered to pure quantum states |Φ〉 and |Ψ〉 leads to the
definition

F (|Φ〉 , |Ψ〉) = | 〈Φ|Ψ〉 |2 (3.95)

If one state is represented by a density operator ρ̂ this is generalized to

F (|Φ〉 , ρ̂) = 〈Φ| ρ̂ |Φ〉 = trϕ̂ ρ̂ (3.96)

with ϕ̂ = |Φ〉 〈Φ|. This definition is used most frequently to determine how
close an experimentally generated quantum state is to the ideal result of the
algorithm. From the product ϕ̂ ρ̂ in (3.96) one can directly see, that only
entries that are nonzero in both density operators contribute to the fidelity.
Therefore only nonzero components of the density operator of the generated
state need to be measured to calculate the fidelity of an algorithm or gate. To
scale up a quantum register an error per gate (1− F (|Φ〉 , ρ̂)) of 0.05 or less is
required [58]. The definition (3.96) fails however if none of the two states is a
pure state. As introduced by Jozsa [55] the correct extension is

F (σ̂, ρ̂) =

(
tr

√√
ρ̂ σ̂
√
ρ̂

)2

(3.97)

The fidelity is basis invariant

F (σ̂, ρ̂) = F (Û σ̂ Û∗, Û ρ̂ Û∗) (3.98)

as well as symmetric in its arguments

F (σ̂, ρ̂) = F (ρ̂, σ̂). (3.99)

In the special case of entangled states the fidelity can only tell that there is
no entanglement if F ≤ 0.5. In order to decide whether or not the generated
state is entangled or not an entanglement witness has to be utilized. For
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bipartite systems the Peres-Horodecki criterion or positive partial transpose
(PPT) is such a witness [77]. It gives a necessary criterion for the separability
of a state ρ̂. As proven by Horodecki [44] for systems of the form 2 ⊗ 2 and
3⊗ 2 it is even sufficient. With

ρ̂ = ρ̂A ⊗ ρ̂B = ρA
ij ρ

B
αβ = ρiα jβ (3.100)

we introduce four indices to the density operator. By interchanging one set
(Latin or Greek letter indices) the matrix is partially transposed (pT)

pT(ρiα jβ) = ξjα iβ. (3.101)

This is no unitary transformation but leaves ξ̂ a Hermitian operator nonethe-
less. If ρ̂ is separable, that means it can be written as a sum of direct products

ρ̂ =
∑
k

wk ρ̂
A
k ⊗ ρ̂B

k , (3.102)

the partial transpose is

ξjα iβ = pT(ρiα jβ) =
∑
k

wk (ρ̂A
k )T ⊗ ρ̂B

k . (3.103)

ξ̂ is again a valid density matrix. Therefore none of its eigenvalues can be
negative. If the partial transpose leads to one or more negative eigenvalues
the state can not be separable and must therefore be entangled. The inverse
statement, that if all eigenvalues are positive the state is separable, is only
true for 2 ⊗ 2 and 3 ⊗ 2 systems. The drawback of the partial transpose is
that it makes only a Boolean statement whether a given state is separable or
not. It does not quantify the amount of entanglement. To do so one needs to
find a figure of merit that is monotonous in the amount of entanglement in the
system. For pure states of bipartite the von Neumann entropy

S(Ψ) = −tr{ρ̂A ln ρ̂A} = −tr{ρ̂B ln ρ̂B} (3.104)

is such a measure. Since the local state obtained by the partial trace operation

ρ̂A(B) = trB(A) |Ψ〉 〈Psi| (3.105)

is pure (S(Ψ) = 0) if the system was not entangled and a maximally mixed
state (S(Ψ) = log2N) if maximally entangled, with N the Hilbert space di-
mension. Due to classical correlations mixed states can however have nonzero
local entropy even if the global state is not entangled. This makes the von
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Neumann entropy a very fragile entanglement measure. In order to maintain
the entropy idea the entanglement of formation measure was defined as the
minimum of an average entropy of the state over all pure state decompositions
of the state [11]

Ef(ρ̂) = min
∑
i

piS(Ψi). (3.106)

This poses a reliable measure of bipartite entanglement. The major drawback
is that there is no explicit formula for the entanglement of formation except
for 2 ⊗ 2 systems [105]. Here Wootters has shown that the entanglement of
formation of a two qubit state is related to a quantity called concurrence as

Ef(ρ̂) = H(
1

2
+

1

2

√
1− C2) (3.107)

With H(x) = −1 lnx− (1− x) ln (1− x) the binary entropy and the concur-
rence

C(ρ̂) = max{0, λ1 − λ2 − λ3 − λ4}, (3.108)

where λi are the non negative eigenvalues, in decreasing order, of the Hermitian
Matrix

R̂ =

√√
ρ̂ ˜̂ρ
√
ρ̂. (3.109)

Hereby ˜̂ρ the spin flipped state of ρ̂ is defined as

˜̂ρ = (σ̂y ⊗ σ̂y) ρ̂∗ (σ̂y ⊗ σ̂y), (3.110)

with ρ̂∗ the complex conjugate of ρ̂. Because the entanglement of formation
is a monotonic function of the concurrence the latter can directly used as an
measure of bipartite entanglement.

Multipartite entanglement is way richer than bipartite entanglement because
there is not only the distinction between separable and entangled but also
partial separability is possible. As a straight forward generalization of the two
particle case a m-particle state is fully separable if it can be written as

ρ̂ =
∑
i

piρ̂
1
i ⊗ · · · ⊗ ρ̂mi . (3.111)

The other way round it is fully entangled if it can not be written that way. A
state is separable with respect to a given partition {I1, . . . , Ik}, where the Ii
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are disjoint subsets of the indices {1, . . . ,m}, if and only if it can be written
as

ρ̂ =
∑
i

piρ̂
p1
i ⊗ · · · ⊗ ρ̂

pk
i . (3.112)

A state is called semiseparable if it is separable with respect to all partitions.
There is also more than one notion of a maximally entangled state. There
could be m-fold entanglement or any combination of partitioned entanglement
pairwise, triplewise, . . . over all partitions. There are several measures for
multipartite entanglement. A. Miyake showed that hyperdeterminants are
monotonous functions of entanglement [66]. The bipartite concurrence hereby
is the first order whereas the 3-tangle of tripartite systems

τ(I1 : I2 : I3) = C(I1 : I2 I3)2 − C(I1 I2)2 − C(I1 I3)2 (3.113)

is the second order hyperdeterminant. The 3-tangle is permutationally invari-
ant and vanishes on all states that are separable under any cut. Even for states
that feature bipartite entanglement such that it is not separable with respect
to any cut τ(I1 : I2 : I3) = 0 still holds.

These measures are sufficient to characterize all quantum states examined
in this work. For further information on the rich physics of quantum entan-
glement see [45].





Part II.

Main

53





4. Rabi Oscillations at Low
Magnetic Field

In S = 1 Systems like the NV− there are two allowed transitions |0〉 ↔ |±1〉.
The mS = ±1 levels are separated from mS = 0 by the zero field splitting due
to internal interaction (sec. 3.5). If the mS = ±1 levels are well separated e.g.
by a magnetic field and the ac-field frequency is close to resonance with one
transition we are in the limit of δ2 � g2 (sec. 3.6) for the other transition. In
this case there is no effective difference to the TLS case described in section
3.6, resulting in Rabi oscillations

µz = −1 +
2 g2

g2 + δ2
sin2

(√
g2 + δ2

2
t

)
(4.1)

If however at low magnetic fields the mS = ±1 levels are only slightly split
or even degenerate both transitions are driven simultaneously. This makes a
more involved description necessary [30].

Starting from the system Hamiltonian

ĤS = D (Ŝ2
z − 2/31) + γ B Ŝ (4.2)

we apply a driving field in the semi classical description

Ĥac = g sin (ω t) Ŝx (4.3)

to the system. Here we assume that the transitions |0〉 ↔ |±1〉 have equal tran-
sition matrix elements which is reasonable for most experimental situations.
After the RWA and transformation into the rotating frame the Hamiltonian
has the form

Ĥrot =

 ∆− δ g 0
g 0 g
0 g ∆ + δ

 (4.4)
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Figure 4.1.: A the NVs ground state level scheme. ∆ and δ denote the detuning
of the driving field from the two transitions and D is the zero field
splitting. B Level scheme after the rotating wave approximation. The
driving field is transformed in an time independent coupling g. C Final
basis transform to the |±〉 basis states.

with δ = ∆E±1/2 and ∆ the detuning of the microwave from |−1〉 + δ (fig.
4.2). To obtain the new Rabi frequency we transform Ĥrot into a new basis

|+〉 = |−1〉+ |+1〉 (4.5)

|−〉 = |−1〉 − |+1〉 (4.6)

|0〉 = |0〉 . (4.7)

By the transformation

Û =

 1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2

 . (4.8)

There the Hamiltonian reads

Ĥ ′rot =

 ∆ 0 −δ
0 0

√
2 g

−δ
√

2 g ∆

 . (4.9)

Only one effective transition is driven in this basis. In order to obtain compact
analytical eigenvalues we set ∆ = 0. This leads to a Rabi frequency of

ω′R =
√

2 g2 + δ2. (4.10)

If the |±1〉 states are degenerate or g � δ the Rabi frequency observed by
driving two transitions at once is

√
2 faster than driving a single level. We
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now consider the time evolution of the system with initial state |0〉. The
dynamics of |0〉 are

ρ|0〉 =

(
δ2 + 2 g2 cos

[√
2 g2 + δ2 t

])2

(2 g2 + δ2)2
. (4.11)

From expanding the numerator we see, that there are actually two frequencies
involved, corresponding to the cos and cos2 terms. If |±1〉 are again degenerate
or g � δ the dominant frequency corresponds to cos2. Thus the observed Rabi
frequency of such a triplet system is

ω′R eff = 2
√

2 g2 + δ2. (4.12)

Experimental verification of these frequencies is shown in fig. 4.2. In the data
hyperfine splitting due to the 14N nuclear spin is present. Because the the
nuclear spin is in its totally mixed state the three resulting Rabi oscillation are
independent of one another. They are all carried out simultaneously, resulting
in a beating of the oscillation amplitude.
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Figure 4.2.: A Level scheme of the recorded Rabi oscillations. For the sake of sim-
plicity the contribution of the mS = 0 hyperfine splitting was neglected.
The three separate three level Rabi oscillations cause the beating ob-
served in C. B ODMR spectrum of the second NV center without DC
bias field. The two hyperfine triplets corresponding to the ms = −1
and ms = +1 spin levels overlap in the central dip. C Rabi oscillations
of the system shown in B. The solid blue line depicts the experimental
data. The solid magenta line represents the calculated beatings. Black
and green markers denote the extracted beat frequencies. D Fourier
transform of the oscillations in 13C.



5. Coherence of the NV Center in
13C Environments with Varying
Density
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Figure 5.1: A Hahn echo decays at vary-
ing 13C concentrations (1.1 %,
8.4 %, 20.7 %). The black
dots mark the measurement
data, the red lines are fit-
ted according to [21] with
exp{(t/T2)3}. B 13C concen-
tration (f) dependence of T2.
The red line is the best fit 1/f
curve.

For all applications like quantum computing, communication and metrology
[50, 29, 74, 53, 64, 4, 63] it is of uttermost importance that the quantum regis-
ter remains in a coherent state for as long as possible. In a quantum computer
the coherence time of the qubits should be much bigger than the gate time.
The number of gates possible limits the complexity of a quantum algorithm. In
quantum communication the coherence time of the qubits involved limits the
communication distance. And in metrology the achievable sensitivity is deter-
mined by the lifetime of the sensor qubit. To prolong the coherence time one
has to understand the mechanisms of decoherence. In most solid state systems
the spin lattice relaxation is dominant. Experiments can only be conducted at
low temperatures. In diamond even at room temperature few phonon modes
are excited thus enabling room temperature quantum experiments. In quan-
tum dot systems nuclear spins of the semiconductor material cause fast decay.
Diamond lattice in contrast is essentially spin free because the most abundant
carbon isotope (12C) carries no nuclear spin. At natural abundance there is
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1.1 % of 13C in the lattice carrying a I = 1/2 nuclear spin. To confirm that
the carbon nuclear spins are the main source of dephasing measurements of T2

as well as T ∗2 have been performed on various NV centers in diamond samples
with 13C concentration (f) varying from 0, 03 % to ∼ 100 %. Here the 0.03 %
and the 100 % diamonds are grown with HPHT method utilizing getters that
prevented the incorporation of Nitrogen into the lattice. The samples with
0.35 %, 1.1 %, 8.4 % and 20.7 % 13C are CVD grown. The Nitrogen concen-
tration was below the ESR detection limit (1 pbb) in those crystals. In the
HPHT diamonds it was around 1 ppm.

The T2 time was found to be inversely proportional with the carbon con-
centration as depicted in fig. 5.1. This is in accordance with results found by
disjoint cluster expansion [64]. The HPHT diamonds are excluded from this
analysis because the generation of paramagnetic impurities could not be sup-
pressed during the growth process. T ∗2 i.e. on the other hand shows T ∗2 ∼ f−

1
2

dependence with the carbon concentration f . As depicted in fig. 5.2 there
are two regimes. In the high concentration regime above 1.1 % 13C the line
width ∆ω = 2

√
ln 2/π T ∗2 is dominated by exchange interaction between the

NV electron spin and the closest 13C nuclear spins. This is similar to P donors
in 29Si. Here the average line width is well described by [1, 59]

∆ω = 2
√

2 ln 2

[
f
∑
l

(al
2

)2
] 1

2

(5.1)

with al the exchange interaction. The sum runs over all lattice sites. The
first three shells around the vacancy account for over 90 % of the linewidth.
In the low concentration regime the inhomogeneous broadening is governed by
dipole-dipole interaction. To calculate the ODMR line width of the NV center
we apply the method of moments.

5.0.1. Method of Moments

In principle it is possible to calculate the inhomogeneous broadening of a tran-
sition by applying Gibbs model of ac-field absorption [2]. It considers the
Hamiltonian of the central system ĤS and its spin environment

Ĥ = ĤS +
∑
i

ĤBi + ĤISBi +
∑
j>i

ĤIBBij (5.2)

with ĤBi the Hamiltonian of a bath spin, ĤISBi the system - environment

interaction and ĤIBBij the inter bath interactions. If an ac magnetic field



61

0.1

1

10

Li
ne

 w
id

th
 [M

H
z]

0.1 1 10 100
13C concentration [%]

contact regime

dipole regime

frequency  [MHz]
0-50 50

1.1%

8.4%

20.7%

1 2-1-2
freq.  [MHz]

Figure 5.2.: A Examples of ODMR lines at different 13C concentrations (1.1 %,
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g cos (ω t) Ŝx is applied one arrives at the dynamics of the magnetization along
the x-axis

Mx = g (χ′(ω) cos (ω t) + χ′′(ω) sin (ω t)). (5.3)

After transforming to the Heisenberg picture and some algebra we arrive at

χ′′(ω) = C

∞∫
0

cos (ω t′)G(t′) dt′, (5.4)

where G(t′) is the time correlation function of the magnetization operator in
the Heisenberg picture

G(t) = tr(M̂x(t) M̂x). (5.5)
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Because the size of the Hilbert space scales with 2N , with N the number of
spins, no exact solution to this problem is feasible. Still we are able to calculate
the moments Mn of the transition line [101]. They are a set of numbers that
are used to characterize the shape of a distribution. If the distribution is
symmetric to its peak all odd moments vanish. The second moment M2 is a
measure of the width of the distribution. It is called the variance. The fourth
moment M4 the kurtosis is a measure of the wings of the distribution. It
describes whether they are sharp or flat. The nth moment of a real valued
function f(x) is defined as

Mn =

∞∫
−∞

(x− x0)n f(x) dx. (5.6)

The main problem with the calculation of the moments of the inhomogeneous
broadened ODMR line is that we have to exclude interactions that lead to a
splitting rather than a broadening. Easy to see that if a spin of the bath is
interacting stronger with the central spin than the line width introduced by
the other environmental spins it has to be discarded. This is especially true
for 13C spins within the first and third shell of lattice sites around the vacancy
site. They interact with 130 MHz and 14 MHz respectively [67]. For simplicity
we neglect the first 3 shells. A second possibility for additional lines is the
contribution of the non secular part of the dipole-dipole Hamiltonian. It allows
transition frequencies of 2ω0, 3ω0 etc. if ω0 is the transition frequency. These
lines have very small amplitudes, but due to their high frequency difference
they would change the moments of the distribution drastically. In order to
get the correct line width we have to restrict ourself to the secular part of the
dipole-dipole interaction

HIi = γe γn~2 1− 3 cos2 θ

r3
Ŝz ⊗ Îzi. (5.7)

It is again easy to see that the line is symmetric to its central frequency.
Every shift δ of the resonance frequency ω0 by the above interaction will be
exactly inverted by flipping all the spins responsible for the shift

ω0 + δ
spin flip⇒ ω0 − δ. (5.8)

At high temperatures both orientations are equally probable. Thus the line
is symmetric. All odd moments therefore vanish. Since moments of a curve
are proportional to the derivatives at the origin of its Fourier transform we
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start from (5.4) with their derivation [2]. We introduce the normalized shape
function f(ω) and rewrite (5.4)

f(ω) = A

∞∫
0

cos (ω t)G(t) dt. (5.9)

A is determined by the normalization of f(x) and G(t). And therefore

G(t) =
2

π A

∞∫
0

cos (ω t) f(ω) dω. (5.10)

Since in the Heisenberg picture ĤHS commutes with HHIi we may write

G(t) = tr
(

ei HS t ei ĤI t M̂x e−i ĤI t e−i ĤS t M̂x

)
(5.11)

With the trace operation invariant to cyclic permutation of its components we
can write

G(t) = tr
(

ei ĤI t M̂x e−i ĤI t e−i ĤS t M̂x ei HS t
)
. (5.12)

exp(i ĤS t) generates a rotation about the z-axis by the angle ω0 t. So we can
simplify

G(t) = cos (ω0 t) tr
(

ei ĤI t M̂x e−i ĤI t M̂x

)
+sin (ω0 t) tr

(
ei ĤI t M̂x e−i ĤI t M̂y

)
.

(5.13)

The second term vanishes because a π-rotation about the x-axis changes the
sign of M̂y but not of M̂x and the other way round for a y-rotation. We get
the reduced correlation function about ω0

G1(t) = tr
(

ei ĤI t M̂x e−i ĤI t M̂x

)
. (5.14)

By substituting

G(t) = G1(t) cos (ω0 t) (5.15)

in equation (5.10) one gets

G1(t) cos (ω t) =
2

π A

∞∫
−ω0

cos ((ω0 + u) t) f(ω0 + u) du. (5.16)
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by substituting h(u) = F (ω0 +u) and extending the lower limit of the integral
to −∞, which is legitimate if the line width is small against ω0 we arrive at

G1(t) =
2

π A

∞∫
−∞

cos (u t)h(u) du. (5.17)

The moments of the new distribution h(u) about ω0 are now given as

Mn =

∞∫
−∞

h(u)undu. (5.18)

The odd moments vanish so via the Fourier transform we get

M2n = (−1)n
π

2
A

[
d2nG1(t)

dt2n

]
t=0

=
(−1)n

G1(0)

[
d2nG1(t)

dt2n

]
t=0

. (5.19)

We obtain the moments by expanding (5.17) in powers of t. The expansion
coefficients are traces of polynomial functions of ĤI and M̂x. The trace opera-
tion is invariant to basis transforms. Therefore the moments are independent
of the choice of basis they are calculated in. So we can choose e.g. a basis where
the mIi of the single spins i are good quantum numbers. Thus we circumvent
the problem of finding the eigenstates of the complete Hamiltonian (5.2). By
expanding the equation of motion for the magnetization

d M̂x

dt
= i
[
ĤI, M̂x

]
(5.20)

into a series

M̂x(t) = M̂x(0) + M̂ (1)
x (t) + · · ·+ M̂ (n)

x (t) (5.21)

where the respective parts can be iterated by

M̂ (n)
x (t) = i

t∫
0

[
ĤI, M̂

(n−1)
x (t′)

]
dt′, (5.22)

we acquire the (2n)th derivative of G1(t)

[
d2nG1(t)

dt2n

]
t=0

= i2n tr
{ 2n times︷ ︸︸ ︷

[ĤI, [ĤI, [. . . , [ĤI, M̂x] . . . ]M̂x]M̂x]
}
. (5.23)
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The second moment is therefore

M2 = −tr{[ĤI, Îx]2}
tr{Î2

x}
(5.24)

where we replace M̂x by the spin operator Îx which is proportional to it.
To calculate the commutator [ĤI, Îx] for our specific case we insert the in-

teraction Hamiltonian (5.7) finding

[ĤI, Îx] = γe γn ~
∑
j<k

3

2 r3
jk

(1− 3 cos2 (Θjk)) [Îjz Î
k
z , Î

j
x + Îkx ] (5.25)

Since Îjx + Îkx commutes with Î
j
Î
k

the commutator [ĤI, Îx] is unaffected by any
inter bath interaction that commutes with Îx. By applying basic commutator
relations we simplify (5.25) to

[ĤI, Îx] = i
3

2
γe γn ~

∑
j<k

(1− 3 cos2 (Θjk))

r3
jk

(Îjz Î
k
y + Îkz Î

j
y). (5.26)

Inserting this into (5.24) we arrive at

−tr{[ĤI, Îx]2} =
2

9
γ2

e γ
2
n ~2 I2(I + 1)2 (2 I + 1)N

∑
j<k

b2
jk, (5.27)

tr{Î2
x} =

∑
j

tr{Îjx}2 =
1

3
N I (I + 1) (2 I + 1)N , (5.28)

with

b2
jk =

3

2

(1− 3 cos2 (Θjk))

r3
jk

(5.29)

and N is the number of spins measured. Because far away from the surface∑
j<k

b2
jk is absolutely convergent we are allowed to rearrange the terms

∑
j<k

b2
jk =

1

2

∑
j 6=k

b2
jk =

1

2
N
∑
k

b2
jk (5.30)

The second equality holds if the sum is equal for all spins measured. We arrive
at the Van Vleck formula for the second moment [101]

M2 =
1

3
γ2

e γ
2
n ~2 I(I + 1)

∑
k

b2
jk. (5.31)
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We extend the lattice sum to a statistically occupied lattice by introducing a
functional

F (k, f) =

{
1 if lattice site k carries a nuclear spin

0 else.
(5.32)

f is the concentration of 13C in the lattice. For a partially filled lattice the
second moment is then

M2 = ∆ω2 =
1

3
γ2

e γ
2
n ~2 I(I + 1)

∑
k

F (k, f) b2
jk. (5.33)

On average F (k, f) is replaced by the probability to find a 13C at a lattice site
f . M2 is therefore proportional to f and therefore

∆ω ∼
√
f. (5.34)

The exact dependence is obtained by taking the whole lattice sum∑
k

b2
jk ≈ 1.278 · 1059 m−6 (5.35)

which is convergent after taking roughly 4 nm around the NV site into account.
Plugged into (5.33) we get

∆ω = γe γn ~ 1.787 · 1023
√
f MHz (5.36)

As can be seen from fig. 5.2 this fits well to the experimental data.

5.0.2. Conclusion

We have conclusively shown that 13C is the main source of decoherence of the
NV center in otherwise pure diamond. In highly isotopically purified crys-
tals (under 0.01 % 13C) other sources like uncontrollable defects or fluctuating
charges become relevant. Coherence times of up to T2 = 1.8 ms have been
observed in such isotopically engineered diamonds [5]. This suggests that NVs
that are separated some tens of nanometers can directly be coupled in such
crystals (sec. 6). It also allows the detection of external magnetic fields with
a sensitivity up to 4 nT/

√
Hz at spatial resolution around 1 nm.



6. A Quantum Register Based on
Coupled NV Centers

Because the number of nuclear spin qubits accessible from the NV center is
severely limited (sec. 2.1.2) one essential step in scaling up the quantum register
is the implementation of quantum gates connecting multiple NV centers.

So we aim to couple two close by color centers via their magnetic dipole
dipole coupling to increase the local register size. To generate entanglement
the coupling has to be faster than the decoherence of the system. The coupling
scales like

Edip ∼
µ0 µ

2
B g

2
NV

2 ~ |r|3
(6.1)

with |r| the distance between the spins. µ0 is the permeability of free space, µB

the Bohr magneton and gNV the electron g-factor. At a distance of 10 nm this
is about 70 kHz. This corresponds to a time scale of 14.3µs for the coupling.
Diamond can be isotopically purified to such degrees that the decoherence
process is not governed by the nuclear spin bath anymore. In such diamonds
T2 times in the order of ms where reported [5] so at a NV-NV distance of
≈ 10 nm the creation of entanglement is achievable.

The primary experimental challenge is to implant Nitrogen such that exactly
two NV centers form within a few nm from one another. If the magnetic field
is aligned along one NV axis the other three possible directions are spectrally
degenerate, thus they can not be addressed selectively without the application
of a magnetic field gradient, which is not applicable at the moment. With two
addressable centers every additional one would introduce redundancy, but due
to different coupling between pulse errors are inevitable.

In essence there are two possibilities to implant nitrogen ions into the di-
amond in order to generate such a close by pair. Either at low implantation
energy nitrogen is deposited few nm below the diamond surface or at high
energies µm deep into the bulk material. Shallow implanted nitrogen ions can
deterministically be placed close by each other by implanting through a pho-
toresist mask or an AFM tip with around 20 nm resolution [78]. But the NV
yield after annealing is only in the order of a few percent [71]. Thus many

67
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nitrogen ions have to be implanted in order to generate a close by pair with an
acceptable probability. The untransformed nitrogen atoms then contaminate
the environment of the NVs, lowering their coherence time. Even if carbon
ions are implanted after a few nitrogen ions the shallow NV feel electron spins
at the surface of the crystal. This limits the coherence properties as well.
Due to the large number of vacancies created along the implantation path at
high energies the NV creation efficiency is increased to ≈ 20% after annealing.
But the straggle of the ions increases by 0.46 nm/keV implantation energy pre-
venting the deterministic placement of the NV [54]. Nevertheless exceptionally
long coherence times are only observed deep within the diamond crystal where
surface effects are negligible.

In the reported case [73] patterns of high energy nitrogen ions have been
implanted into 99.99% isotopically pure 12C diamond. Fig. 6.1 shows such a
pattern with two NVs per site on average. The presence of two close by NVs
was confirmed by measuring the fluorescence autocorrelation function g2(τ) as
well as by stimulated emission depletion microscopy (STED) [84].

The two NV system is described by the Hamiltonian

Ĥ =

ĤA+ĤB︷ ︸︸ ︷∑
i={A,B}

ŜiDi
Ŝi + µB gNV B Ŝi +

Ĥdip︷ ︸︸ ︷
µ0 µ

2
B g

2
NV

2 ~ |r|3
(

3(ŜA r) (ŜB r)− ŜA ŜB

)
(6.2)

Here D
i

is the zero field splitting tensor. D
A

is assumed to be aligned with the
magnetic field while D

B
is tilted by the tetrahedron-angle of 109.5◦. Due to

the tilted zero field tensor the spin states are mixed in the energy eigenbasis.
Due to the huge D ∼ Ŝ2

z part of the zero field splitting the mixing of |0〉 with
|±1〉 is negligible. The optical detection of the spin state remains possible for
the tilted NV. We name the energy eigenvalues of NVB |0〉B, |+〉B and |−〉B.
Due to the tilted zero field splitting tensor the ODMR resonance lines of the
two centers are separated (fig. 6.1). Thus allowing selective control over the
two spin states.

To measure the coupling strength it is appropriate to measure Ramsey
fringes (sec. 3.7) on NVA while the NVB is prepared in one of its 3 energy
eigenstates The A component of the dipole-dipole interaction provides an off-
set field dependent on the spin state of NVB at the site of NVA, thus the
detuning frequency observed by the Ramsey fringes is

∆ωA = ∆ωdet
A + ωdip

AB m
B
S . (6.3)
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Figure 6.1.: A Confocal scan of the nitrogen implanted area. Red dots mark sin-
gle centers while more yellowish dots represent multiple NVs inside the
confocal spot. The encircled spot is the NV pair the experiments were
conducted on. B shows the two point autocorrelation function confirm-
ing there are two emitters inside the focus by dropping to 0.5 instead
of 0 at τ = 0. The picture is the STED image of the pair site. The
elongation of the spot indicates two NVs but they are not resolved. C
ODMR spectrum of the two NV centers. Due to different orientation
on the lattice the degeneracy of the mS = ±1 energy levels is lifted by
a small magnetic field (≈ 43 G) along the axis of NVA. D splitting of
one spectral line due to the interaction between the two color centers
obtained from the fast Fourier transform of the Ramsey fringes of NVA

after initializing NVB in mS = {0,±1} respectively.

The Fourier transform of the three experiments is shown in fig. 6.1. This
method measures the Ŝz ⊗ Ŝz-component of the interaction. Non axial inter-
action enters as second order perturbation and is thus negligible. In order to
further analyze the coupling the separation vector r has to be determined.
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6.1. Relative Position of the Two NVs

In order to infer the separation vector r we need to take a closer look on the
system’s Hamiltonian (6.2). As long as the magnetic field is aligned with the
axis of a single NV the system behaves as described in sec. 2.1 but as soon
as there is a component perpendicular to the axis B⊥ the quantization axis
of the NV tilts away from the NV axis. In first order this does not influence
the magnetic moment of the mS = ±1 states. The mS = 0 state however
acquires a magnetic moment perpendicular to the NV axis that is proportional
to B⊥. This magnetic moment influences the dipole-dipole coupling strength
depending on the amplitude and direction of B⊥. For at least one of the
two NV centers B⊥ is always present because the zero field splitting tensors
D
i

are tilted against each other. By the magnetic field dependence of the
interaction strength the separation vector r can thus be determined. From the
diagonalized Hamiltonian the interaction strength of the respective transitions
is computed as

ω−1−1 = [E(|−1 0〉 − |0 0〉)− E(|−1 − 1〉 − |0 − 1〉)]/~ (6.4)

ω−1+1 = [E(|−1 0〉 − |0 0〉)− E(|−1 + 1〉 − |0 + 1〉)]/~ (6.5)

ω+1−1 = [E(|+1 0〉 − |0 0〉)− E(|+1 − 1〉 − |0 − 1〉)]/~ (6.6)

ω+1+1 = [E(|+1 0〉 − |0 0〉)− E(|+1 + 1〉 − |0 + 1〉)]/~. (6.7)

These energies are fitted to the experimental results by moving NVB around
while NVA resides at the center of the coordinate system. This leaves an ambi-
guity along an equipotential line of the interaction Hamiltonian. Acquisition of
a second data set with different field direction lifts this ambiguity. By rotating
the magnetic field the quantization axis of both NVs is tilted. Thus a different
projection of the interaction Hamiltonian is detected. NVB is located at the
crossing of the two equipotential lines. The interaction energies corresponding
to the double transition of NVB

ω−1d = [E(|−1 − 1〉 − |0 − 1〉)− E(|−1 + 1〉 − |0 + 1〉)]/~ (6.8)

ω+1d = [E(|+1 − 1〉 − |0 − 1〉)− E(|+1 + 1〉 − |0 + 1〉)]/~ (6.9)

should remain unaffected by the magnetic field strength. This is measured to
verify the model.

Experimentally the interaction strength is measured best by double elec-
tron electron resonance (DEER) (sec. 3.7), which is designed to detect the
z-component of interaction between two electron spins. This echo based mea-
surement scheme is making use of the normally two orders of magnitude longer
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Figure 6.2.: A Quantum circuit of the DEER sequence. The indices (±1) indi-
cate whether the gate is implemented on the transition |0〉 ↔ |−1〉 or
|0〉 ↔ |+1〉. B exemplary DEER measurement results for one magnetic
field direction. As expected the oscillation corresponding to the double
transition of NVB has the double frequency of the single transitions.
C Magnetic field dependence of the interaction strength for B aligned
to the axis of NVA. The model is fitted to the single transition data.
It describes the double transition data very well. D Reconstruction
of the system geometry. Details of the uncertainty area are shown on
the lower part. The possible location sites are highlighted as bigger
spheres.

T2 time instead of T ∗2 of the Ramsey fringes. As an adaption to the NV’s S = 1
the sequence is carried out three times for each of the two transitions of NVA

the “echo spin” (fig. 6.2), flipping NVB from |0〉 to |−1〉, then to |+1〉 and
finally from |−1〉 to |+1〉. In fig. 6.2 the measurement data with the fitted
field dependence is depicted showing very good agreement with the model.

As depicted in fig. 6.2 this method narrowed the potential location of NVB

down to six lattice sites within the measurement error. It is located 9.8 nm
apart from NVA, 8.8 nm in the lateral direction. This was confirmed optically
by fluorescence lifetime imaging (FLIM) analysis [17]. This method relies on
different fluorescence lifetimes of the emitters inside the confocal spot. It col-
lects lifetime information of every pixel. In the case of two emitters with
different fluorescence lifetime two exponentials can be fitted to the data. The
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amplitudes of the two exponentials contain the pixel information for two sep-
arate images of the two emitters. A 2D correlation of these two images results
in a Gaussian like distribution. The vector from the center to the peak of
that Gaussian is the displacement vector of the two centers. In order to in-
troduce different radiative lifetimes to the two NV centers we make use of its
spin dependence of around 12 ns for the mS = 0 states and 7 ns for ms = ±1
[8]. We have to make sure that one NV is in |0〉 the other is not. This is
achieved by moving to higher magnetic fields (700 G in our case). While the
magnetic field is aligned to NVA is causes mixing of |0〉 and |±1〉 for NVB.
For NVA |0〉 remains a good quantum number and the system is polarized into
this eigenstate. NVB however is polarized into a mixture of |0〉 and |±1〉. The
radiative lifetime of NVB is shortened while NVA’s is not, thus enabling the
FLIM analysis. For our NV pair this resulted in a lateral distance of 8± 3 nm.
This fits very well to the 8.8 nm measured by the DEER method.

6.2. Entanglement Generation

The source of the superiority of quantum computing over classical computing
is entanglement. In order to harness its possibilities one has at least to be able
to generate bipartite entanglement between every pair of qubits in a register.
Hence we devised a quantum algorithm that acts as an entanglement gate
between the two NV centers. It is again based on the DEER sequence. Both
NVs are initialized into |0〉.

|Φ〉i = |00〉 (6.10)

Instead of a Pauli gate we apply a Hadamard gate on NVB right after the Pauli
gate of the Hahn echo of NVA generating the state

|Φ〉1 =
1

2
(|−1− 1〉+ |0− 1〉+ i (|−10〉+ |00〉)) (6.11)

By fixing the echo duration τ = 2 (2n − 1) π/(Edip δB) with n ∈ N we allow
the dipole-dipole coupling to swap the superposition on NVB between the two
NVs. Thus implementing a phase shift gate resulting in

|Φ〉2 =
1

2
(i (|−1− 1〉+ |−10〉) + |0− 1〉+ |00〉). (6.12)

The final Hadamard gate on NVA transforms the system state into a maximally
entangled state

|Φ〉f =
1√
2

(i |−1− 1〉 − |00〉) (6.13)
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Figure 6.3.: A Quantum circuit of the entanglement sequence. The indices (±1)
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If this final Hadamard gate is replaced by a 3π/2 pulse a Ψ type entangled
state

|Ψ〉f =
1√
2

(i |−10〉 − |0− 1〉) (6.14)

is generated instead.
For experimental purposes the echo duration is modulated to observe an

oscillation between the not entangled superposition state of NVB (i |0− 1〉 −
|00〉)/

√
2 at τ = 2 (2n)π/(Edip δB) with n ∈ N and the Bell state (6.13).

Examining the occupation probabilities of the two states we see that |Φ〉f has
the lower fluorescence intensity because both NVs feature a mixture between
the |0〉 and |−1〉 state while in the unentangled state NVA is in the |0〉 state.
For the Ψ states the superposition state of NVB is (i |−1− 1〉 − |−10〉)/

√
2

with lower intensity than (6.14) (fig. 6.3).
The scheme is limited by the coherence time of the single NVs in comparison

to the duration of the entanglement gate, especially since to swap the coherence
on a working transition for a state tomography (sec. 2.1.2) the entanglement
gate has to be applied a second time. Because the T2 times of the measured
NV pair are surprisingly short (TA

2 = 110µs and TB
2 = 2µs) no entanglement

could be created experimentally. We simulated the result for various coherence
times by applying the unitary transformations for the gates to an initially
polarized state ρ̂i = |00〉 〈00|. The free induction times where modulated
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by applying the time evolution operator of the closed system Hamiltonian
(6.2). To incorporate the decay of the coherences the result of the closed free
induction is multiplied by an array of exponential decay functions with the
corresponding decay constants (1/TA

2 , 1/TB
2 for state including |0〉 〈±1|{A,B},

2/TA
2 , 2/TB

2 for the double transitions |±1〉 〈∓1|{A,B}). From these results the
expected fidelity of the generated Bell states is calculated. The simulation
matches the measured data (fig. 6.3) very well. The maximum fidelity of F =
0.47 confirms that no entanglement was created. If however a pair with longer
T2 times was examined the fidelity would reach F = 0.9 for TAB

2 = 200µs. At
T2 times above 1 ms as already observed in isotopically enriched diamond [5]
the fidelities above F = 0.99 can be expected.

It is possible to improve the ratio of the entanglement gate time to the
coherence time by a factor of two by applying the entanglement gate on the
double transition. To do that the Hahn echo is carried out on the double
transition and NVB is flipped from |−1〉 to |+1〉. This increases the observed
DEER oscillating frequency by a factor of 4 while the coherence time of the
double transition is half as long as the single transitions. So even for shorter
coherence times than 200µs high fidelity entanglement between two NV spins
is feasible. In order to exploit T2 rather than T ∗2 of NVB the entanglement
sequence can be modified such that on both NVs a Hahn echo is implemented.
If the τ again is fixed to τ = 2 (2n− 1) π/(Edip δB) the Bell state

|Φ〉f =
1√
2

(|−1− 1〉 − |00〉) (6.15)

is generated. Yet a different approach would be to implement the entanglement
gate at zero magnetic field. Here the energy eigenstates are |0〉 and |−1〉±|+1〉.
Thus by applying a π-pulse between |0〉 and |−1〉+ |+1〉 the “double quantum
coherence” is already created. Furthermore the spectra of the two NVs are
degenerate. Mutual flip flops thus are allowed. Instead of exploiting only
the axial interaction (Ŝz⊗ Ŝz) as with Ramsey fringes and the DEER sequence
the off diagonal part of the interaction Hamiltonian now takes the leading role.
Depending on the separation vector of the two NVs it can be stronger as well as
weaker than the axial component. Entanglement is generated just by waiting
for a π/2 partial swap to occur. Disadvantage of this scheme is that for many
quantum algorithms the single nodes have to be addressed individually. This
is not possible at zero field. In order to implement algorithms the magnetic
field has to be switched during the computation. Due to long rise times of the
magnets this is not experimentally feasible at the moment.



7. Quantum-Non-Demolition
Measurement

For many quantum algorithms it is sufficient to read the result by performing
a time average of many repetitions of the same experiment. That way statis-
tical information about the final spin state is gathered and thus the entries
of the density operator are measured. The precision of such an integrating
measurement is in our case limited by shot noise from the read out laser. Due
to its statistical nature the measurement accuracy is proportional to 1/

√
N if

N is the number of repetitions. One step further would be to do a projective
measurement of the qubit after each run of the algorithm. Two types of such
projective measurements are distinguished.

Single shot read out projects the system onto an eigenstate and reads out
the result, but destroys it in the process. It is commonly featured by photon
qubits where the Photon is destroyed by the detection. To be able to perform
single shot readout on a quantum register enables a wide field of quantum
experiments. One can for example test Bell type inequalities [10] or perform
teleportation experiments [12].

Quantum-non-demolition (QND) measurement projects the system onto an
eigenstate and reads out the state without destroying it. The projected qubit
can be manipulated after the read out starting from the eigenstate it was
projected in, this allows e.g. to measure the quantum zeno effect [65]. Some
types of quantum error correction algorithms rely on projective measurements
as well.

Are projective measurements feasible for the NV center? To answer this
question all possible qubits of the register have to be checked, starting with
the electron spin.

QND measurement of the electron spin can be ruled out because the optical
readout polarizes the qubit into mS = 0. To implement single shot readout
however the transition in the alternative decay channel has to be observed
directly. This can be realized by increasing the collection efficiency of the
fluorescence light and/or the radiative lifetime would be reduced. We would
benefit both ways by putting the NV center inside an optical cavity. Most of
the fluorescence light is emitted into the cavity mode and by the Purcell effect
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the radiative lifetime is lowered. At the moment we collect about 2 % of the
fluorescence light which means roughly 1 photon in 4µs while the decay via
the alternate channel takes about 255 ns. Even a low Q cavity with a quality
factor Q ≈ 10 would already be sufficient to demonstrate optical single shot
read out of the NV’s electron spin. Unfortunately there are no such systems
feasible at the moment.

For nuclear spin qubits direct measurement is not possible on a single spin
level. They have to be read via the electron spin. So single shot is feasible
as soon as it is for the electron spin by swapping the nuclear spin state onto
the electron spin. If the readout of the electron qubit could be decoupled
from the nuclear spin dynamic the nuclear state could be extracted from the
time averaged measurement of the electron qubit by correlating the electron
qubit with a nuclear qubit. This process would be an implementation of a
quantum-non-demolition measurement because only the ancilla qubit is reseted
by the readout. In the following we discuss under which conditions such a
measurement scheme is possible.

At low magnetic fields (B < 100 G) laser irradiation polarizes the electron
spin into mS = 0 and scrambles the state of nuclear spins coupling to the
NV. Weak coupling carbon nuclear spins can be used for a repetitive read out
scheme [51]. As detailed below the loss of the nuclear spin state is due to mixing
of the nuclear and electron spin states in the electronic excited state of the
NV near its level anti crossing (LAC) at ∼ 500 G. By increasing the magnetic
field well above this we effectively decouple the nuclear spin dynamics from the
electron spin. This enables us to conserve the nuclear spin state of the nitrogen
atom during a laser pulse. The readout scheme follows suit as depicted in fig.
7.1. We correlate the electron spin state with the nuclear spin state we want
to read by applying a CNOT gate. The nuclear spin selective microwave pulse
flips the electron state from |0e〉 to |−1e〉 depending on the nuclear spin state.
Then we read out and repolarize the electron spin by shining a short laser
pulse on the system. One such step gives us 0.2 photons on average. Thus we
have to repeat this process. Because the nuclear spin state remains virtually
untouched by the short laser pulse we accumulate information about one single
nuclear state. The CNOT pulse takes 1300 ns the read out/reinitialize laser
pulse has a duration of 200 ns but 1000 ns wait time is necessary to make sure
the NV center has returned into its electronic ground state. 2000 repetitions
are necessary to estimate the spin state. Thus the measurement takes 5 ms.
Continuous repetition of this scheme reveals two discrete fluorescence levels
(fig. 7.1) revealing the projective character of the measurement. To quantify
the measurement data, we take the histogram of the intensities time trace.
Revealing two distinct Poissonian distributions with a slight overlap (fig. 7.1).
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Figure 7.1.: (A) The quantum circuit of the single shot read out of the nuclear spin
state |Ψn〉. (B) The normalized fluorescence time traces of continu-
ous readout. Each data point represents 2000 integrated repetitions
of the scheme corresponding to 5 ms acquisition time. High intensity
corresponds to the nuclear spin state |0n〉 or |+1n〉 the low intensity to
|−1n〉. Without the microwave pulses the intensity stays high, because
the NV is not correlated with the nuclear spin and thus remains in |0e〉.
(C) The photon count histogram shows two Poissonian peaks. The
threshold marks the count rate above which the state is counted to be
either |0n〉 or |+1n〉. Below the state is |−1n〉.

The readout fidelity reaches F = 92± 2 % in our measurements. It is limited
by the measurement time for a single acquisition, bound by the T1 time of the
nuclear spin, the fluorescence count rate and the magnetic resonance contrast.
Since the 14N nucleus has I = 1 we are able to track all three possible spin
states by setting the CNOT gate alternating to be conditional to |−1n〉, |0n〉
and |+1n〉. Thus we have three fluorescence traces that determine the full
state of the nuclear spin as depicted in fig. 7.2. By collecting statistics of the
quantum jumps we are able to tomograph the full density matrix of the nuclear
spin state.

A consecutive measurement has a probability of F 2 =≈ 82.5 % to give the
same result as the measurement before. Application of a π-pulse on the nuclear
spin drops the probability to ≈ 33 %. Thus Rabi oscillations of the nuclear
spin can be detected (fig. 7.3). The full Rabi contrast is not realized because
the NV is sometimes switched from NV− to NV0 by the laser, thus scrambling
the spin state. Truncation of the occurrences of NV− gives the full contrast
[102].

The high probability to return the same result in a consecutive measurement



78 7. Quantum-Non-Demolition Measurement

t(s)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.7

1.0I
(a.u.)

|-1n⟩
|0n⟩
|+1n⟩

0.2
0.4
0.6
0.8

30
60
90
120

S
pi

n 
fli

p 
ra

te
 [H

z]

S
pi

n 
oc

cu
pa

tio
n/

fli
p

pr
ob

ab
ili

ty

A
Q

A

|-1n⟩ |0n⟩ |+1n⟩

|0e⟩

|-1e⟩

A B C

|-1n⟩
|-1n⟩|0n⟩

|0n⟩
|+1n⟩

|+1n⟩

Figure 7.2.: A Schematic of the hyperfine transitions that have to be addressed to
implement the CNOT gate controlled by the respective nuclear spin
state. B Time trace of all three nuclear spin levels mI = {0,±1}. In
the lower half the measured spin state is indicated. The violation of
the ∆mI = ±1 selection rule at t = 3 s as well as the “state conflict”
at t = 0.34 s may be due to a fast double jump faster than our 15µs
detection interval. C Tomography of the states density matrix deduced
from the jumping rates and dwell times.

hints, that the measurement is a QND measurement. To perform a QND
measurement in essence 3 requirements to the system Hamiltonian have to be
met [48, 20]. The Hamiltonian is

Ĥ = D Ŝ2
z + ge µB Bz Ŝz︸ ︷︷ ︸

Ĥe

+Q Î2
z + gn µnBz Îz︸ ︷︷ ︸

Ĥn

+

=ĤI︷ ︸︸ ︷
Ŝ A Î︸ ︷︷ ︸
Ĥhf

+Ĥp (7.1)

with Ĥe the NV’s Hamiltonian, Ĥn the nitrogen Hamiltonian, Ĥhf the hyperfine
interaction and Ĥp the control pulses. Ĥhf and Ĥp form the full interaction

Hamiltonian ĤI.
The first requirement is that the probe observable (in our case Ŝz) must be

influenced by the observable (Îz) we want to measure. That means ĤI has to
depend on Îz and must not commute with Ŝz

[Ŝz, ĤI]
!

6= 0 (7.2)

This is fulfilled for the CNOT gate. With preparing the electron spin in a
superposition state rather than in an energy eigenstate this dependence can
be tuned. In the equal superposition the population of the electron spin is
independent of the nuclear spin state. The strength of the QND measurement
can be tuned this way enabling us to conduct weak measurements as well [3].
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Figure 7.3.: (A) The quantum circuit of the Rabi oscillation of the nuclear spin state
|Ψn〉. (B) shows Rabi oscillation with the histograms of a consecutive
measurement to the left with a probability of ≈ 82 % to find the system
in the initial state again. On the right is the histogram after a π-pulse.
There is still a ≈ 33 % chance left to find the initial state again. For
an ideal π-pulse the probability should be 0.

The second requirement is that there is no back action on the measured
spin by the measurement except projecting it into an eigenstate. Because the
measurement imposes maximum uncertainty of the conjugate operators (Îx

and Îy) of the observable Îz. So the system Hamiltonian Ĥ should not be a
function of those. Which is the case if the magnetic field is aligned along the
NV axis reducing the Zeeman Hamiltonian to

ĤZ n = gn µnBz Îz (7.3)

as put in (7.1). Independent from the magnetic field direction the system
Hamiltonian becomes a function of Îx and Îy if the quantization axis of the
nuclear spin is not parallel to the NV axis. This limits the choice of nuclear
spins we are able to perform a single shot readout with. Strictly speaking
the nitrogen spin of the NV itself, 13C spins along the NV axis and on the
equatorial plane are a suited. Because otherwise the dipole-dipole interaction
with the NV tilts their quantization axis from the NV axis. Tilting of a strong
magnetic field from the NV axis in order to realign the quantization axis of the
NV and the nucleus leads to mixing of the |0e〉 and |±1e〉 states, rendering the
optical readout impossible. The tilt of the quantization axis however becomes
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negligible for weak coupling 13C nuclear spins at high magnetic fields, where
EZeeman � Edipole. If the T2 times are long enough to execute the CNOT gate
QND measurement is in principle possible with weak coupling 13C spins.

The third condition is that the observables of the probe system Ŝz and the
target system Îz should not be mixed by any interaction. The interaction
Hamiltonian ĤI has to commute with the observable

[ĤI, Îz]
!

= 0. (7.4)

In a perfect QND measurement no quantum jumps would occur after the
first measurement. But due to the relaxation dynamics of the nuclear spin
we observe quantum jumps as depicted in fig. 7.2. Since purely longitudinal
interaction can not be generated exactly by dipole-dipole coupling we slightly
lift the requirement by demanding the interaction has to be negligible against
the measurement duration i.e. the longitudinal relaxation time T1 of the nuclear
spin has to be much longer than the measurement time

[ĤI, Îz]
!

= 0⇒ T1 � τreadout. (7.5)

This is the case for the NV-14N system at magnetic fields above 0.4 T. In the
following the relaxation mechanisms are discussed.

7.1. Relaxation of the Nitrogen Nuclear Spin

In general two longitudinal relaxation mechanisms are assumed for nuclear
spins in solids. They are Flip flop processes with environmental spins and
coupling to phonons. In addition the quadrupole splitting of the I = 1 nitro-
gen spin makes it susceptible to variations of the electric field like fluctuating
charges as well.

Spin baths are negligible for longitudinal relaxation. The most abundant
spin species in the diamond lattice is the 13C spin which has T1 � 20 ms
and even at natural abundance of 1.1 % it is considered to be very dilute.
Otherwise the lattice is spin free except for Nitrogen electron and nuclear spins.
They occur with concentrations around 1 ppb, which makes them negligible in
average as well [67].

Phonons can be discarded as a relaxation source as well, because in the
electronic ground state there is no spin orbit coupling whereas in the excited
state at room temperature it is averaged out leaving the electron g-factor
[7, 34, 72]. Due to the lack of spin orbit coupling the interaction with phonons
is very low, therefore no major effect is expected.
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The nuclear quadrupole moment along with the hyperfine coupling might
lead to a spin flip upon the change of the electronic state of the NV because this
changes the electric field gradient to which the quadrupole moment is sensitive.
This effect gets stronger the more the quantization axis of the electronic ground
and excited state are tilted from another. Due to symmetry reasons the two
hyperfine tensors of ground and excited state should be collinear [96]. So this
does not lead to a spin flip as long as there is no other electronic fluctuations
in the close proximity of the NV. Ionization of the NV under laser irradiation
would cause such a change in the local field. Without further knowledge on
such processes we can not predict its effect on the nuclear spin state.

There is one additional mechanism left to cause spin flips of the 14N nuclear
spin [96]. To understand this mechanism we take a closer look at the system
Hamiltonian. The only part featuring off diagonal entries in the Spin basis
with the rf-field Hamiltonian Ĥp off is the hyperfine Hamiltonian Ĥhf. We
rewrite it as

Ĥhf = Ŝ A Î = A‖ Ŝz Îz + A⊥ (Ŝ+ Î− + Ŝ− Î+) (7.6)

with Ŝ± and Î± the rising and lowering operators of the electron spin and the
nuclear spin respectively. We assume farther that the transversal component
A⊥ of the hyperfine tensor is

A⊥ ≈ A‖ = AE ≈ 40 MHz. (7.7)

Because of symmetry reasons the hyperfine tensor can be expected to be axial
rather than isotropic. So this isotropy assumption is a worst case estimation.
Because there is no actual data available we stick to this approximation as
an upper bound. At the level anticrossing (LAC) between the |0e〉 and |±1e〉
in the excited state at ∓500 G (fig. 7.4) the high field eigenstates mix, thus
allowing mutual electron nuclear spin flip flops in certain spin states. With
the repeated repolarization of the electron spin state into |0e〉 this leads to
polarization of the nuclear spin into |−1n〉 (|+1n〉 at −50 G) [49]. See fig. 7.4
for a schematic of the state mixing. The probability for such a spin flip in
dependence of the magnetic field has the shape of two Lorentzian distributions
with maxima at ±500 G and widths in the order of the hyperfine coupling
A⊥. The experiments were carried out at 6500 G far away of both LACs. The
effect can therefore be considered as roughly equal in the mS = ±1 and very
small. Nevertheless it is the dominant mechanic due to the absence of other
mechanisms

To simulate the effect of the LAC on the 14N nuclear spin state under laser
irradiation we apply 3 Hamiltonians. One for the electronic ground ĤG and
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Figure 7.4.: A Schematic level scheme of the exited state level-anti-crossing. B The
decay of the NV-N-system under laser irradiation is sketched here. The
upper branch depicts the dynamics at the LAC at −500 G where the
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excited state ĤE and one for the metastable singlet state ĤS.

ĤG = DG Ŝ
2
z + ge µBBz Ŝz +Q Î2

z + gn µn Bz Îz+

+ AG (Ŝz Îz + Ŝ+ Î− + Ŝ− Î+) (7.8)

ĤE = DE Ŝ
2
z + ge µBBz Ŝz +Q Î2

z + gn µn Bz Îz+

+ AE (Ŝz Îz + Ŝ+ Î− + Ŝ− Î+) (7.9)

ĤS = Q Î2
z + gn µnBz Îz (7.10)

We start in the electronic ground state with various spin product states. To
simulate the effect of the laser we introduce jumping probabilities pi according
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to the measured dwell times

tG→E = 12 ns (7.11)

tE→G = 20 ns (7.12)

tE(0)→S = 167 ns (7.13)

tE(±1)→S = 12 ns (7.14)

and our time grating ∆t = 0.1 ns

pi =
∆t

ti
. (7.15)

Based on these jumping probabilities we did a Monte Carlo simulation on the
hopping between the three possible electronic states and calculated the closed
system dynamics during the dwell times. Because the jumping probability
to the metastable singlet state pE→S is spin state dependent we weighted the
jumping probability by the electronic spin state ρE e(t) = trnρE(t)

pE→S = ρE e 11 pE(±1)→S + ρE e 22 pE(0)→S + ρE e 33 pE(±1)→S. (7.16)

The cycling transition between ground and excited state is assumed to be
spin conserving [36] while the transition into the metastable state erases the
electron spin state but conserves the nuclear spin state ρS(tS i) = treρE(tE f).
After relaxation from the singlet state the electron spin state is set to |0e〉
leaving us with

ρG(tG i) = |0e〉 〈0e| ⊗ ρS(tS f). (7.17)

Whenever the system returns to the ground state the nuclear spin state ρn(t) =
treρG(tG i) is recorded. This shows the dynamics as depicted in fig. 7.5B. We
fitted single exponentials to extract the T1 times and steady state occupation
probabilities of the different nuclear spin states. The magnetic field dependence
of T1 and the steady states are depicted in fig. 7.5B. The expected lifetimes
rise approximately quadratic with the magnetic field and are minimal at the
excited state LAC (≈ 50 mT) Which was to be expected for the mixing is a
second order perturbation. The mS = 0 state decays approximately twice as
fast as mS = ±1 because it has two allowed transitions instead of one and is
thus affected by both LACs. The steady states become equal as the 100 mT
between the two LACs gets small against the Zeeman splitting.

The average lifetime measured at 450 mT turned out to be T probed
1 avg = 70.1 ms

for the probed mI = −1 state and T remain
1 avg = 43.4 ms for remaining unresolved
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Figure 7.5.: (A) shows the simulated lifetime of the 14N nuclear spin under laser
illumination dependent of the magnetic field. The red circles represent
the mI = 0 state, green mI = −1 and blue mI = +1. (B) The above
figure represents the steady state occupation probabilities of the 14N
nuclear spin under laser irradiation. The further the magnetic field de-
tunes the system from the excited state LAC the closer the occupation
probabilities of mI = ±1 become. Below is an example of the relax-
ation dynamics of the 14N nuclear spin under laser radiation at 450 mT.
(C) shows the measured magnetic field dependence of the nuclear spin
T1 times with 200 ns laser and 2300 ns per repetition without . Both
(A) and (C) show quadratic magnetic field dependence indicating the
governing dynamics are captured by the simulation.
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states mI = {0,+1}. This is a mixture of the lifetimes with T1 laser and without
laser irradiation T1 no laser. They combine as

T1 avg =
∆tlaser + ∆tno laser

∆tlaser

T1 laser
+ ∆tno laser

T1 no laser

(7.18)

to the effective lifetime. In order to retrieve T1 laser and T1 no laser from T1 avg

the lifetime was measured with increasing periods with the laser switched off
while keeping the laser periods fixed to ∆tlaser = 200 ns. (7.18) is fitted to the
data as shown in fig. 7.5. The fitted values are

mI = −1 mI = {0,+1}
T1 laser 2.8± 0.2 ms 5.6± 0.4 ms

T1 no laser 390± 20 ms 760± 30 ms.

The measured lifetimes of the nuclear spin under laser radiation are of the
same order as the calculated values. The deviation most likely originates from
A⊥ which was assumed too high.

As mentioned before the electron spin state can be correlated to the oc-
cupation probability of every one of the nitrogen nuclear spin states. So the
“probed” lifetimes of all three nuclear spin levels could be measured

probed: |−1n〉 |0n〉 |+1n〉
T probed

1 43 ms 18 ms 38 ms
T remain

1 70 ms 22 ms 40 ms.

As the simulation indicated T probed
1 of the mI = 0 state is shorter than the

other two by roughly a factor of two. The other notable fact is that T1 of
|−1n〉 is a little longer than of |+1n〉. This may be due to a reduced flip-flop
probability because by the CNOT gate the system is partially transfered into
|−1e − 1n〉. This state is not subject to mixing. Thus the flip-flop probability
is reduced according to the occupation probability of |−1e − 1n〉.

The measured magnetic field dependence of T1 (fig. 7.5) exhibits a quadratic
behavior. This finally leads to the conclusion that the mixing in the electronic
excited state is the leading mechanism for the longitudinal relaxation of the
nitrogen nuclear spin. By further increasing the magnetic field the T1 time
can in principle be increased up to T1 no laser ≈ 800 ms where other relaxation
mechanisms get relevant.
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7.2. Conclusion

We have shown that an approximate quantum-non-demolition measurement
comparable to trapped ions [68] is feasible with NV centers in diamond by
correlating the 14N ’s nuclear spin state of interest to the NV’s electron spin,
reading out the latter. Although the illumination with laser light imposes
complicated dynamics on the spin system we found the relaxation of the nuclear
governed by state mixing in the electronic excited state which diminishes with
increasing magnetic field. That allows us to decouple the dynamics of nuclear
and electron spin by increasing the magnetic field. The longer the nuclear
spin is unaffected by relaxation the longer the signal can be integrated. Thus
reducing the shot noise and therefore improving the read out fidelity.

In principle it is possible to extend the single shot readout to 13C nuclear
spins in the vicinity of the NV. Best suited are carbon spins located along the
NV axis or on its equatorial plane. If the NV’s coherence time is long enough
to perform the CNOT gate weak coupling 13C would be sufficient as well.

The realization of single shot read out has put the diamond among the
leading systems of quantum information processing. With the achieved read
out fidelity of ∼ 92 % we are close to the 95 % error per gate at least required to
apply quantum error correction suitable for a scalable quantum computer [58]
which should be reachable by further increasing the magnetic field. We are now
able to test nonclassical correlations on a single qubit by testing the temporal
Bell inequalities [60, 46, 47]. When able to perform the QND measurement on a
larger register also the test of Bells inequalities and teleportation of quantum
states becomes possible. Even in the field of metrology e.g. the sensing of
magnetic fields the single shot readout could be a vast improvement because
in contrast to conventional photon counting it is not limited by photon shot
noise.



8. A Noise Spectral Density
Approach to Dynamic
Decoupling

In order to understand or even device sophisticated dynamic decoupling se-
quences like ”Carr, Purcell, Meiboom, Gill” sequence (CPMG) [19] or ”Uhrig
dynamic decoupling” (UDD) [99] one has to understand how these algorithms
decouple the target qubit from its environment. Therefore one needs to apply
a more sophisticated model than the Bloch sphere picture, which depicts am-
bient noise varying on a time scale much slower than the measurement time
τ . Here UDD and CPMG function the same way as the Hahn echo. Even
if artificial damping is introduced to the Bloch equations (3.78)-(3.80) the ef-
fects of these sequences is not captured. The difference becomes obvious if we
introduce noise fluctuating faster than 1/τ .

As described in more detail below the environment of every spin has its char-
acteristic frequencies represented by its noise spectral density (NSD) Γ(ω). In
the commonly used description a positive and a negative frequency branch is
used to depict environment induced excitation (negative branch) and deexcita-
tion (positive branch). In a thermal environment a Boltzmann factor connects
the noise amplitude of two corresponding frequencies. This makes sure that
the steady state of the system is the thermal state. In the low frequency range
we are interested in, both branches are equal. Since the oscillation amplitude
declines like δ2 with the detuning δ of the two resonance frequencies flip-flop
processes of the central spin are allowed primarily with bath entities of match-
ing frequency. The relaxation time T1 is therefore determined by the noise
amplitude at the splitting of the observed transition.

Static, secular noise commutes with the time independent Hamiltonian of
a static system at all times. It can not induce transitions, but it introduces
phase shifts like fluctuating classical fields. The pure dephasing time T2ρ is
therefore governed by the static noise at ω = 0.

By applying microwave radiation we introduce a time dependence to the
system Hamiltonian. One of the simplest cases is driving a continuous Rabi

87
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oscillation of the spin (sec. 3.6). Now field noise at the Rabi frequency com-
mutes with the system Hamiltonian. The system is effectively gapped by the
Rabi frequency. Noise of the corresponding frequency now contributes to the
damping of the Rabi oscillations with the time constant T1ρ.

Measurements however have finite duration. This truncation introduces a
time dependence to the system. Essentially the system becomes sensitive to the
“harmonics” of the measurement time τ . This is represented in the frequency
domain by a so called filter function S(τ, ω) (fig. 8). It depicts continuously
the sensitivity to frequencies around the frequency probed by an infinitely
long measurement. In the case of dephasing experiments this would be ω = 0.
By increasing τ in the course of the measurement the “harmonics” change
by moving closer to the center frequency. Therefore with a series of different
τ different noise frequencies are probed. The application of quantum gates
during the measurement time reshapes the filter function. For the sake of
simplicity we restrict ourself to Hadamard and Pauli gates that are applied
instantaneous in time. This so called δ-pulse regime is effectively reached
in the experiment if the respective pulse duration is about three orders of
magnitude shorter than τ [99]. If the gates are applied in a clever way the
system becomes insensitive to the center frequency and thus to the foremost
decay source. This is called dynamic decoupling. As discussed for the Hahn
echo sequence in sec. 3.7.3 the application of a Pauli gate effectively inverts
the phase dynamics. This leads to a refocusation of the phase coherence the
spin echo. If one is only interested in the dynamics of the echo amplitude this
refocussing dynamics is equivalent to the system not being sensitive to the
noise which effect was refocused. This insensitivity is captured by S(τ, ω).

Due to the high Debye temperature of diamond, phonons do not play a major
role even at room temperature. Thus the noise floor is more or less constant
in the applicable frequency range. T1 is therefore insensitive to changes of
the system splitting e.g. application of a low magnetic field. Because we are
interested in prolonging the T2 time we look at in the low frequency range of
the NSD concentrating on magnetic nuclear spin noise. It originates on the
one hand from mutual flip-flops among bath spins and on the other hand from
single spin Larmor precession.

Measured Hahn echoes of NV centers show periodic collapses and revivals
of the system coherence (fig. 8). This can be explained by coherent interaction
with close by 13C nuclei [21]. While the NV is in the mS = 0 state the nuclear
spins undergo Larmor precession with ωL0 = γB. In the mS = ±1 state their
frequency changes to ωL±1 = γB+ĤB

I i with ĤB
I i the A-term of the dipole-dipole

interaction. In principle both oscillations are visible in the NV’s coherence.
Different interaction strengths with the NV average out. Thus rendering the



89

300 0 2 4 6 8 10

fil
te

r 
fu

nc
tio

n 
[a

.u
.] 

frequency [a.u.]

200100

measurement time [μs]

no
rm

al
iz

ed
 fl

uo
re

sc
en

ce
 [a

.u
.]

0.0

0.2

0.4

0.6

0.8

1.0

A

τ4 > τ3 > τ2 > τ1

ω-2 envelope

ph
as

e 
co

he
re

nc
e

time τ [a.u.]

0 2 31
0.0

0.2

0.4

0.6

0.8

1.0

frequency [a.u.]

no
is

e 
am

pl
itu

de
 [a

.u
.]

20 40 60
0

2

4

6

8

10
C D

B

Figure 8.1.: A experimental Hahn echo data showing collapse and revivals caused
by the Larmor precession of the 13C. B The filter function S(τ, ω)
for a Hahn echo experiment. With increasing τ the “harmonics“ of
the sequence duration move towards the center frequency ω0 = 0. C
Calculated Hahn echo signal by means of the filter function S(τ, ω)
and the noise spectral density. D Schematic of a NSD with a distinct
feature.

process an incoherent relaxation to half the Rabi amplitude. The ωL0 however
coincide for all 13C. The coherence is therefore recovered at times 1/ωL0.

In the framework of the NSD and the filter function the collapses and revivals
appear due to passing of the sensitivity peaks of S(τ, ω) over a dominant feature
in the NSD at ωL0. While being sensitive to this strong noise source leads to a
collapse of the coherence, it is preserved while insensitive to it. As depicted in
fig. 8.2 we are able to qualitatively predict the measurement outcome of any
given pulse scheme with this simple approach. We will now elaborate on a
more detailed picture in order to do quantitative calculations.
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Figure 8.2.: Comparison between the calculated A and the measured B outcome of
an UDD10 sequence. The calculation was done just assuming a single
narrow noise feature at the 13C Larmor frequency.

8.1. The Noise Spectral Density

The NSD description of dephasing is closely related to the application of a
quantum master equation. It is introduced in the process of eliminating the
bath degrees of freedom from the description of the system. Following [15] we
derivate a Redfield master equation and introduce the NSD in the process. To
describe the influence of a the quantum environment on a central spin system
we start from the system Hamiltonian

Ĥ = ĤS + ĤB + ĤI. (8.1)

ĤS denotes the free system Hamiltonian and ĤB the environment Hamiltonian
respectively. ĤI represents the interactions between system and the environ-
ment. The dynamics in the interaction picture are given by (3.47)

ρ̂I(t) = ρ̂(t0)− i

~

t∫
t0

[ĤI(s), ρ̂I(s)] ds. (8.2)

If we insert the differential form (3.46) and take the partial trace over the bath
we obtain

d ρ̂S(t)

dt
= trB[ĤI(t), ρ̂I(0)]−

t∫
t0

trB[ĤI(t), [ĤI(s), ρ̂I(s)]] ds. (8.3)

We further assume that trB[ĤI(t), ρ̂I(0)] = 0. In order to replace the full
system density matrix ρ̂I(t) on the right hand side of the equation by the
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system Hamiltonian ρ̂S(t) we perform the Born approximation. It assumes
weak coupling between system and bath, such that the influence of the former
on the latter is small. In other words the state of the system does not affect
the state of the bath.

ρ̂(t)I ≈ ρ̂S(t)⊗ ρ̂B. (8.4)

In the case of the NV center this does not hold true in a strict sense. The
interaction energy between the NV and the nearest surrounding nuclei is big
compared to their splitting. So the bath Hamiltonian ĤB changes dramatically
depending on the state of the NV spin. But room temperature experiments
justify taking the high temperature limit. So the thermal state of any given
nuclear spin in the environment is ρ̂Bnuc = 1/21 regardless of its splitting. That
allows us to apply the approximation nonetheless. Inserting (8.4) into (8.3) we
get a closed equation of motion for the system state alone

d ρ̂S(t)

dt
= −

t∫
t0

trB[ĤI(t), [ĤI(s), ρ̂S(s)⊗ ρ̂B]] ds. (8.5)

It is still impossible to solve this equation for most cases.
One way to introduce further simplification is to apply the Markov approx-

imation. Here we assume that the system state is independent of its history.
Thus defining the integration kernel of (8.5) local in time. So we substitute
ρ̂S(s) with ρ̂S(t) and arrive at the Redfield equation [82]

d ρ̂S(t)

dt
= −

t∫
t0

trB[ĤI(t), [ĤI(s), ρ̂S(t)⊗ ρ̂B]] ds. (8.6)

To finally arrive at a true Markovian master equation one needs to transform
(8.6) to have dynamic semigroup properties [85]

d ρ̂S(t)

dt
= −

t∫
t0

trB[ĤI(t), [ĤI(t− s), ρ̂S(t)⊗ ρ̂B]] ds. (8.7)

The time locality constraint infers that there is no coherence “returning“ from
the environment to the NV. Thus the phase coherence should in principle
never rise above its previous value. Coherence may flow back to the central
spin system on a time scale of the the baths correlation time τB. So the master
equation only captures dynamics on a time scale longer than that.
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To further simplify the master equation we apply the secular or rotating wave
approximation by averaging over the rapidly oscillating terms in the master
equation. For this purpose we take a closer look at the interaction Hamiltonian
ĤI. Its most general form is

ĤI =
∑
k

ĤS
Ik ⊗ ĤB

I k (8.8)

where all ĤS
I k and ĤB

I k are self-adjoint operators. First we decompose the
system sided operators ĤS

I k into eigenoperators of the system Hamiltonian ĤS.
Let the eigenvalues of ĤS be ε and the according projection operators Π̂(ε).
After the transformation

ĤS
I k(ω) =

∑
ε′−ε=ω

Π̂(ε) ĤS
I k Π̂(ε) (8.9)

the ĤS
I k(ω) are eigenoperators of ĤS which means

[ĤS, Ĥ
S
I k(ω)] = −ω ĤS

I k(ω) (8.10)

[ĤS, Ĥ
S †
I k (ω)] = +ω ĤS †

I k (ω) (8.11)

[ĤS, Ĥ
S †
I k (ω) ĤS

I k(ω)] = 0 (8.12)

ĤS
I k(−ω) = ĤS †

I k (ω). (8.13)

Applying the completeness relation we get∑
ω

ĤS
I k(ω) =

∑
ω

ĤS †
I k (ω) = Ak. (8.14)

Inserted into (8.8) the interaction Hamiltonian takes form

ĤI =
∑
k,ω

ĤS
I k(ω)⊗ ĤB

I k =
∑
k,ω

Ĥ
S †(ω)
I k ⊗ ĤB †

I k . (8.15)

After this decomposition ĤI is transformed into the interaction picture

ĤI(t) =
∑
k,ω

e−iω t ĤS
I k(ω)⊗ ĤB

I k(t) =
∑
k,ω

eiω tĤS †
I k (ω)⊗ ĤB †

I k (t). (8.16)

Inserting this in (8.7) leads after some calculation to

d ρ̂S(t)

dt
=
∑
ω,ω′

∑
k,l

ei (ω′−ω) t Γ̂kl(ω)·

·
(
Âl(ω) ρ̂S(t) ĤS †

I k (ω′)− ĤS †
I k (ω′) Âl(ω) ρ̂S(t)

)
+ h.c. (8.17)
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Here Γ̂kl(ω) is the one-sided Fourier transform

Γ̂kl(ω) =

∞∫
0

eiω s 〈ĤB †
I k (t) ĤB

I l(t−s)〉 ds (8.18)

of the bath correlation function

G(t) = 〈ĤB †
I k (t) ĤB

I l(t−s)〉 = trB{ĤB †
I k (t) ĤB

I l(t−s) ρ̂B}. (8.19)

If ρ̂B is in a stationary state of the environment, which is true for a thermal
bath, the bath correlation function is homogeneous in time. So we can write

〈ĤB †
I k (t) ĤB

I l(t−s)〉 = 〈ĤB †
I k (s) ĤB

I l(0)〉. (8.20)

Now we are able to complete the secular approximation by discarding fast
oscillating terms in (8.17) leaving us with

d ρ̂S(t)

dt
=
∑
ω

∑
k,l

Γ̂kl(ω)
(
Âl(ω) ρ̂S(t) ĤS †

I k (ω)− ĤS †
I k (ω) Âl(ω) ρ̂S(t)

)
+

+ h.c.. (8.21)

This equation can be brought to Lindblad form [15].
In the context of the noise environment Γ̂kl(ω) is of great interest. In order

to investigate it further we split it in

Γ̂kl(ω) =
1

2
γ̂kl(ω) + i Ŝkl(ω). (8.22)

The two parts are

γ̂kl(ω) =Γ̂kl(ω) + Γ̂∗kl(ω) (8.23)

Ŝkl(ω) =
1

2 i
(Γ̂kl(ω)− Γ̂∗kl(ω)). (8.24)

Ŝkl(ω) commutes with the system Hamiltonian ĤS. Therefore it is responsible
for Lamb shift like renormalization of the systems energy levels

ĤLS =
∑
ω

∑
k,l

Ŝkl(ω) ĤS †
I k (ω) Âl(ω). (8.25)

Reinserted in (8.21) γ̂kl(ω) constitutes the dissipator

D(ρ̂S) =
∑
ω

∑
k,l

γ̂kl(ω)

(
Âl(ω) ρ̂S(t) ĤS †

I k (ω)− 1

2

[
ĤS †

I k (ω) Âl(ω) ρ̂S(t)
])

.
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(8.26)

γ̂kl(ω) is called noise spectral density. It is the real part of the Fourier trans-
form of the bath correlation function (8.18). In a classical picture it depicts
the amplitude of a fluctuating field at any given frequency. The frequencies
are selected by the system Hamiltonian ĤS in the interaction picture. For pure
dephasing static noise (γ̂kl(0)) in combination with the frequencies introduced
by the filter function of the respective quantum algorithm are relevant.

8.2. Calculation of the NSD

We can distinguish between two types of magnetic field noise originating from
the 13C nuclei. On the one hand there are mutual flip flops between the
nuclei. They interact via dipole-dipole interaction which is of the order of
few kHz and less. On the other hand every nuclear spin undergoes Larmor
precession in the combined external and NV magnetic field. Both dynamics
lead to a fluctuating magnetic field at the site of the NV. As can be seen from
(8.26) γ̂kl(ω) acts on one single transition kl. If the mS = 0 state is part of the
observed superposition state there is no dipolar interaction between the NV
spin and the 13C nuclei. Thus the Larmor frequency of all 13C spins is their
Zeeman splitting. Even at low magnetic fields this leads to a predominant
peak at the free Larmor frequency in the NSD. In all other cases the Larmor
frequencies are wide spread due to the dipole-dipole coupling to the NV. A
”Larmor peak“ emerges when the magnetic field strength is of the order of the
hyperfine interaction (fig. 8.3).

8.2.1. Discrete Noise Features

Following [92] the flip-flop part of the noise spectral density is calculated as
follows. We rewrite the Hamiltonian (8.1) as

Ĥ = ĤS + Ĥn
Z + Ĥn

int︸ ︷︷ ︸
ĤB

+Ĥint. (8.27)

ĤS is the NV Hamiltonian (2.2) while

Ĥn
Z = −γnB

∑
i

Î i (8.28)
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Figure 8.3.: the measurement data compares Hahn echo data of the ”single“ mS =
0 ↔ mS = −1 transition and the ”double“ mS = −1 ↔ mS = +1
transition. It confirms that with increasing magnetic field the Larmor
noise leads to collapses and revivals even if the mS = 0 level is not
involved in the observed coherence.

is the nuclear Zeeman splitting and

Ĥn
int = γ2

n ~
∑
i<j

Î i Îj − 3 (Î i rij) (Îj rij)

r3
ij

(8.29)

Ĥint = γe γn ~
∑
i

Ŝ Îj − 3 (Ŝ ri) (Î i ri)

r3
ij

. (8.30)

are the dipole-dipole interaction Hamiltonians among the 13C and between
the NV and the nuclei. rij (ri) is the normalized vector between two given
13C nuclei (the NV site and a 13C nucleus). A short look at Ĥn

Z and Ĥn
int

shows that the transformation into the interaction picture will give rise to a
very complicated time dependence of the interaction Hamiltonian ĤI int. For
simplicity we assume that the magnetic field is oriented parallel to the NV axis
in z-direction. As a further simplification we omit terms in (8.29) that do not
conserve the nuclear Zeeman energy and rewrite

Ĥn
int ≈

1

4
γ2

n ~
∑
i<j

1− 3 cos2 θij
r3
ij

(Î+ i Î− j + Î− i Î+ j − 4 Îz i Îz j). (8.31)
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θij is the angle between rij and the z-direction. With (8.4) the dynamics of
the 13C nuclear spins are governed by the effective Hamiltonian

Heff
n =

∑
i<j

γnB (Îz i + Îz j) +
1

2
(ĤB

I i Îz i + ĤB
I j Îz j)

+
1

4
γ2

n ~
1− 3 cos2 θij

r3
ij

(Î+ i Î− j + Î− i Î+ j − 4 Îz i Îz j). (8.32)

Due to the zero field splitting of the NV flip-flop processes with a nuclear spin
are energy forbidden. Therefore we can separate the dynamics and restrict
ourself to the subspace of the single electronic spin states (mS = 0, ±1). The
resulting NSD is the same for mS = ±1 as is easily confirmed by substituting
ĤB

I i = −ĤB
I i for all i. For mS = 0 the situation is significantly different because

ĤB
I i = 0 in first order which is of great importance for the single spin part of

the noise. Now we can proceed to the interaction picture time correlation
function.

G(t) =

〈∑
i

ĤB
I i Îz i(t)

∑
j

ĤB
I j Îz j(0)

〉
=
∑
i

ĤB
I i

2
〈Îz i(t) Îz i(0)〉+

∑
i,j 6=i

ĤB
I iĤ

B
I j 〈Îz i(t) Îz j(0)〉 (8.33)

To further investigate we do a pair approximation by discarding all higher
order correlations.

〈Îz i(t) Îz i(0)〉 ≈
∑
j 6=i

〈Îz i(t) Îz i(0)〉ij (8.34)

〈Îz i(t) Îz j(0)〉 ≈ 〈Îz i(t) Îz j(0)〉ij (8.35)

where 〈〉ij denotes the thermal average restricted to the Hilbert space of the
pair ij. This approximation is valid in sparsely populated environments like
13C in diamond. The weak intra bath interactions reduce the third order
interaction to a timescale not relevant for our purposes. However in dense spin
environments as encountered e.g. in quantum dots model calculations of exact
diagonalization of small spin ensembles show that higher order correlations are
important. Entering this approximation into (8.33) and some algebra we get

G(t) ≈
∑
i<j

〈(
ĤB

I i Îz i(t) + ĤB
I j Îz j(t)

) (
ĤB

I i Îz i(0) + ĤB
I j Îz j(0)

)〉
ij

(8.36)
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Doing the Fourier transform and expansion of G(t) into eigenstates of (8.32)
gives the NSD

Γij(ω) =
∑
α,β

pα| 〈α| ĤB
I i Îz i(t) + ĤB

I j Îz j(t) |β〉 |2 δ(ω − Eβα) (8.37)

with Eβα = Eβ−Eα the transition energy between two energy eigenstates |α〉,
|β〉 with the occupation probability pα. The NSD is essentially a sum over
all transition frequencies introduced by ĤB

I i Îz i(t) + ĤB
I j Îz j(t). For I = 1/2

nuclear spins like the 13C the ij pair Hamiltonian (8.32) has the eigenenergies

E↑↑ = γnB − bij + aij (8.38)

E+ = bij +
√
b2
ij + ∆2

ij (8.39)

E− = bij −
√
b2
ij + ∆2

ij (8.40)

E↓↓ = −γnB − bij − aij (8.41)

with

bij =
1

4
γ2

n ~
1− 3 cos2 θij

r3
ij

(8.42)

the dipole-dipole interaction strength between the nuclei ij and

aij =
1

4
(ĤB

I i + ĤB
I j) (8.43)

∆ij =
1

4
(ĤB

I i − ĤB
I j) (8.44)

defining the dipole-dipole interaction strength towards the NV. The transition
frequency of the flip-flop process is the difference between E+ and E−

E+− = 2
√
b2
ij + ∆2

ij. (8.45)

It has the transition matrix element

〈−| ĤB
I i Îz i(t) + ĤB

I j Îz j(t) |+〉 = −2∆ij sin θ (8.46)

Inserting into (8.37) leads to the noise spectrum

Γij(ω) = Arms
ij

2 δ(ω)+4
b2
ij ∆2

ij

b2
ij + ∆2

ij

[p+ δ(ω + E+−) + p− δ(ω − E+−)] (8.47)
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with the static part

Arms
ij

2 =4

[
(p↑↑ + p↓↓) a

2
ij + (p+ + p−)

∆4
ij

b2
ij + ∆2

ij

]
− 4

[
(p↑↑ − p↓↓) aij + (p+ − p−)

∆2
ij

b2
ij + ∆2

ij

]2

. (8.48)

We now apply this known method to derive the ”flip-flop” part to derive
the ”Larmor“ part of the NSD by restricting ourselves to the single nucleus
subspace. In terms of Larmor precession the interaction to neighboring nuclei
only leads to line broadening which is taken into account later on. The bath
Hamiltonian is reduced to its Zeeman part (8.28)

Ĥ = ĤS + Ĥn Z︸︷︷︸
ĤB

+Ĥint. (8.49)

In this rather simple case the interaction picture time correlation function
(8.19) is analytically solvable for arbitrary magnetic field directions. First we
expand ĤI int into eigenoperators of ĤS and truncate terms that do not couple
to the Sz operator of the NV

ĤI int ≈
∑
i

∑
j={x, y, z}

cij Sz ⊗ Ij. (8.50)

The cij are

cix =
3

4

γe γn ~2

r3
i

cos (φi) sin (2 θi) (8.51)

ciy =
3

2

γe γn ~2

r3
i

cos (θi) sin (θi) cos (φi) (8.52)

ciz =
1

4

γe γn ~2

r3
i

(1 + 3 cos (2 θi)) (8.53)

with ri, φi and θi the spheric coordinates of 13Ci while the NV is in the center.
The time correlation function (8.19) is

Gi(t) =Gix(t) +Giy(t) +Giz(t)

=
1

4
c2
ix [B2

x + (B2
y +B2

z ) cos {(γn ~
√
B2

x +B2
y +B2

z +Bi) t}+

+
1

4
c2
iy [B2

y + (B2
x +B2

z ) cos {(γn ~
√
B2

x +B2
y +B2

z +Bi) t}+

+
1

4
c2
iz [B2

z + (B2
x +B2

y) cos {(γn ~
√
B2

x +B2
y +B2

z +Bi) t}. (8.54)
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The NSD follows

Γi(ω) =

√
π

2

1

4 (B2
x +B2

y +B2
z )

2 (B2
x c

2
ix +B2

y c
2
iy +B2

z c
2
iz) δ(ω)+

+
(
B2

x (c2
iy + c2

iz) +B2
y (c2

ix + c2
iz) +B2

z (c2
ix + c2

iy)
)
·

· δ
(
ω ± (γn ~

√
B2

x +B2
y +B2

z +Bi)
)
. (8.55)

Again there is a static component which is immanent in (8.48) and thus ignored
here. If the magnetic field is aligned to the NV axis Γ(ω) is reduced to

Γi(ω) =

√
π

2

1

4
(c2
ix + c2

iy) δ (ω ± (γn ~B +Bi)) . (8.56)

Due to the angular dependence of cx and cy only spins located around the
”magic angle“ θNV = 54.7◦ contribute to the Larmor noise. Especially at lower
13C concentrations, this makes the peak less pronounced and may even vanish
if there are on nuclear spins are located along the magic angle cone. This is
in agreement with ESEEM. Here the modulation amplitude depends on the
tilt of the nuclear spin quantization axis when the electron spin is flipped [86].
The quantization axis does not change if the 13C nucleus is located along the
NV quantization axis or on its equatorial plane. Because this Larmor kind of
noise does not depend on the initial polarization of the 13C nuclei the noise
amplitude of the Larmor peak scales linearly with the 13C concentration.

8.2.2. Introduction of Broadening to the NSD

Up to now the NSD consists of several δ-shaped lines due to mutual flip-flops
and Larmor precession of the nuclei. We can further increase the number
of lines e.g. by lifting the pair approximation (8.35). Increasing the size of
clusters will give rise to some new transition frequencies but on top of that
the multi spin interactions will introduce lifetime broadening to the existing
lines. This broadening is estimated by a mean field theory closely following
the method of moments introduced in chapter 5.0.1. We use the Van Vleck
formula for the second moment to estimate the ”line width“ ∆ω of the single
spin feature of the NSD

M2 = σ2
i =

3

4
γ4
n~2I (I + 1)

∑
i

(1− 3 cos2 θi)
2

r6
i

(8.57)

with σ the line width. For the flip-flop part we have to slightly modify the
procedure. in the high temperature limit this part of the NSD for N -coupled
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nuclei is

Γij(ω) =
∑
α,β

1

N
| 〈α| ĤB

I i Îz i(t) + ĤB
I j Îz j(t) |β〉 |2 δ(ω − Eβα). (8.58)

We directly calculate the 2nd moment

∞∫
−∞

Γij(ω) dω = − 1

2N

∑
α,β

〈α| ĤB
I i Îz i(t) + ĤB

I j Îz j(t) |β〉 〈β| ĤB
I i Îz i(t) + ĤB

I j Îz j(t) |α〉

=
1

2
ĤB

I i

2∑
k 6=i

b2
ik − b2

ij Ĥ
B
I i Ĥ

B
I j +

1

2
ĤB

I j

2∑
k 6=j

b2
jk (8.59)

The δ-peaks in (8.37) are now replaced by normalized Gaussian functions. The
noise spectrum becomes

Γij(ω) =
∑
α,β

pα| 〈α| ĤB
I i Îz i(t) + ĤB

I j Îz j(t) |β〉 |2
1√

2π σ2
αβ

e
−

(ω−Eαβ)2

2σ2
αβ (8.60)

The 2nd moment of this function approximates to

∞∫
−∞

Γij(ω) dω ≈
∑
α,β

1

4
| 〈α| ĤB

I i Îz i(t) + ĤB
I j Îz j(t) |β〉 |2 (σ2

α,β +E2
α,β). (8.61)

By combining (8.59) an (8.61) we can calculate the line widths

σ2
ij +− =

b2
ij + ∆2

ij

4 b2
ij ∆2

ij

∑
k 6=i,j

b2
ik Ĥ

B
I i

2
+ b2

jk Ĥ
B
I j

2
. (8.62)

σ+− denotes the equal broadening of the two corresponding peaks at ω =
±E+−. We can discriminate several cases. If σij +− � |ĤB

I i − ĤB
I j| distinct

peaks show in the NSD, while in the case of σij +− � |ĤB
I i − ĤB

I j| the two
peaks merge to a single peak with a maximum at ω = 0. This is visualized
in fig. 8.4. In case of the NV even at natural 13C abundance the bath is so
diluted that the first case is most likely. If ∆ij < bij the broadening of the line
is in the order of the nuclear line width after the Van Vleck formula (8.57).
If on the other hand ∆ij � bij leads to σij +− ∼ ∆ij and σij +− ≈ Eij again
these lines merge and form a single peak at ω = 0. Far parted spin pairs
thus form the low frequency part of the NSD, While close by pairs give rise to
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Figure 8.4.: Broadening of the noise peaks. If the line width is smaller than the
frequency of the noise peak distinct features remain. Otherwise the
two corresponding peaks merge to a single peak at ω = 0.

distinct features which are in principle possible to detect as a echo amplitude
modulation. We are now able to write the complete NSD for aligned magnetic
field. In the high temperature limit It is symmetric to ω = 0, we thus restrict
ourself to the positive branch

Γ(ω) =
∑
i

∑
j>i

1

8
(c2
ix + c2

iy)
1

σi
e
− (ω−Ei)

2

2σ2
i

+ Arms
ij

2 δ(ω) + 4
b2
ij ∆2

ij

b2
ij + ∆2

ij

1√
2 π σ2

ij

e
−

(ω−Eij)2

2σ2
ij , (8.63)

with Ei the Larmor frequency of 13Ci.
If the mS = 0 state is part of the observed superposition state ĤB

I i = 0 in
first order. So all ”Larmor“ contributions to the noise pile at the unperturbed
Larmor frequency ωL = γn ~2B forming a dominant feature (fig. 8.5. For the

double quantum transition at slightly higher magnetic fields where ωL >
¯̂
HB

I i

the combined Larmor lines form again such a feature. At natural and lower
abundance the flip-flop part is an order of magnitude lower than the Larmor
part and may thus be neglected at the calculation of spin echo data. The
static part Arms 2 on the other hand is of the same order of magnitude than
the Larmor peak and is responsible for the rapid decay of the FID signal.
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Figure 8.5.: A Shows an example of the flip-flop-part of the NSD at 1.1% 13C abun-
dance. Carbon sites within 5 nm of the NV were taken into account. B
Full noise spectral density at 1.1% 13C abundance again calculated up
to 5 nm distance from the NV. The secondary maxima originate from
close by 13C sites in the mS = −1 part of the NSD.

8.2.3. The Filter function

The second step in understanding dynamic decoupling is the application of the
filter function S(τ, ω). For purely classical noise represented by a fluctuating
magnetic field B(t) with B̄(t) = 0 one would calculate the outcome of e.g. a
Hahn echo experiment 3.7 by

〈1|ψ(t)〉 ∝

τ
2∫

0

B(t) dt−
τ∫

τ
2

B(t) dt (8.64)

where at t = 0 the first Hadamard gate started the sequence. At t = τ/2 the
Pauli gate inverted the dynamic by flipping the spin. Finally at t = τ we read
out the result. To simplify (8.64) we introduce a filter function (see fig. 8.6)

S̃(τ, t) =


0 for t < 0

1 for 0 < t < τ
2

−1 for τ
2
< t < τ

0 for τ < t.

(8.65)

This lets us write

〈1|ψ(t)〉 ∝
∞∫

−∞

S̃(t)B(t) dt. (8.66)
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Figure 8.6.: On the right hand side the transition from the pulse sequence of the
Hahn echo (a) to the time domain filter function S̃(τ, t) (b) is shown.
The corresponding frequency domain filter function S(τ, ω) on the right
(c) is the Fourier transform squared of S̃(τ, t).

The same thing can be done in the quantum case. As established in section
8.1 the system is sensitive to frequencies present in the system Hamiltonian.
All the single frequency dynamics superpose

ρ11(t, τ) =
∏
i

ρ11(ωi, t). (8.67)

These dynamics are solutions to the Lindblad master equation (8.21)

ρ11(ωi, t) = e(−S(ωi) Γ̃(ωi) t). (8.68)

We end up with a decay parameter

R =
∞∑
i=0

S(ωi) Γ̃(ωi)⇒
∞∫

0

S(ω) Γ̃(ω) dω. (8.69)

Because the NV Hamiltonian is time independent the filter function only de-
pends on the application of microwave radiation to the system. In order to
describe pulsed experiments we assume the pulse duration to be short against
the free induction time between the pulses. These so called delta shaped pulses
do not cause a sensitivity component at the Rabi frequency. So the outcome
of an echo experiment is independent of the microwave intensity as long as the
above assumption holds. The control pulses lead to the same filter function
S̃(τ, t) as in the classical case. In the frequency domain this gives us the filter
function

S(τ, ω) = |
∞∫

−∞

eiω s S̃(τ, t) ds|2. (8.70)
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For the above Hahn echo this is

S(τ, ω) = (2(−1 + cos2 τ ω)2)/(π ω2). (8.71)

In the following we discuss the most relevant dynamic decoupling sequences
with their filter functions, in the presence of distinct features in the NSD.

8.3. Simulated Measurement Outcomes

As we have seen the NSD in combination with the filter function defines the
decay parameter R. Because the filter function depends on the duration of the
experiment τ R is as well

R⇒ R(τ), (8.72)

which in general makes the decay not mono-exponential as the Lindblad equa-
tion would suggest. The coherence can actually assume a bigger value for a
bigger τ . One could argue that therefore non Markovian effects are introduced
to the system. But these revivals are not due to the system-bath interaction.
The dynamics of the system that lead to the spin echo at t = τ are not captured
by changing τ . As sketched in (fig. 3.7) a free induction decay takes place after
the preparation of the initial state and is followed by a series of echoes. These
dynamics can be observed e.g. in ESR measurements. The decay monitored
by our measurement scheme only captures the τ dependence of the spin echo
amplitude. Non Markovian environmental effects would show in the dynamics
of the spin system rather than in the observed value.

In the following we will discuss the application of several pulse sequences to
the NV with emphasis on the effect of the Larmor noise.

8.3.1. Free Induction Decay

is the simplest decoherence experiment. It is described in section 3.7. The
filter function

S̃(τ, t) =


0 for t < 0

1 for 0 < t < τ

0 for τ < t.

(8.73)

leads to

S(τ, ω) =
2 sin2 (ω t)

π ω2
. (8.74)
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Figure 8.7.: On the right hand side the transition from the pulse sequence of the
Hahn echo (a) to the time domain filter function S̃(τ, t) (b) is shown.
The corresponding frequency domain filter function S(τ, ω) on the right
(c) is the Fourier transform squared of S̃(τ, t).

As we can see from fig. 8.7 this sequence is maximally sensitive at ω = 0.
On the one hand it gathers all low frequency components of Γ(ω) especially
Arms. Therefore T ∗2 is normally 2 orders of magnitude shorter than T2 of the
same NV. On the other hand one is able to measure small dc-fields with this
pulse sequence.

8.3.2. Hahn Echo

The Hahn echo sequence is described in in section 3.7. Its sensitivity function
is (8.71) is shown in fig. 8.6

SHahn(τ, ω) =
2(−1 + cos2 τ ω)2

π ω2
. (8.75)

With the application of this sequence the system becomes completely insen-
sitive to the dc-part of the NSD. In the low frequency limit the sensitivity
increases quadratically with the frequency. Therefore it is a first order dy-
namic decoupling. At low magnetic fields the Larmor noise is the dominant
source of decoherence. Its amplitude scales linearly with the 13C concentra-
tion. T2 should therefore scale the same way. The measurement data shown
in fig. 5.1 supports this dependence.

8.3.3. Carr, Purcell, Meiboom, Gill sequence

The Carr, Purcell, Meiboom, Gill sequence or short CPMG is one natural
extension to the Hahn echo sequence [19]. The idea is to successively refocus
the spin echo by attaching the same echo sequence over and over again. In
the original sequence τ is kept constant and one echo is attached with each
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Figure 8.8.: A Filter functions of the CPMG pulse sequences of the order one,
four and seven at the same τ . The insensitive low frequency region
is expanded as well as the number of secondary peaks increases. B
Exemplary CPMG signal with constant order and varying τ calculated
with a NSD as in fig. 8.6.

iteration of the measurement. For better comparison with other sequences it
is also possible to fix the number of π-pulses, the order n of the sequence and
vary the measurement time τ . The fraction of τ at which the jth π-pulse occurs
is given by

δCPMG(j, n) =
2 ∗ j − 1

2 ∗ n
. (8.76)

From there we easily get S̃(τ, t). The analytic expressions for S(τ, ω) get some-
what cumbersome. Compared with the Hahn echo filter function the CPMG
features a wider insensitive area at low frequencies. Similar to diffraction at
a lattice secondary sensitivity peaks arise with rising order while the main
peaks become sharper. The 1/ω2 envelope remains in all orders. Therefore
the CPMG is well suited to scan the NSD for distinct features with fixed high
as possible order with increasing τ . To maximally prolong the coherence time
it is best to choose τn=1 such that it is insensitive to any noise peaks and from
there increasing the order and τ accordingly [70].

8.3.4. Uhrig Dynamic Decoupling

The Uhrig dynamic decoupling sequence (UDD) is the most sophisticated dy-
namic decoupling sequence at the moment [99]. It is proven best to maintain
the coherence of a TLS. Best in the sense that it has the flattest low frequency
sensitivity for a given order. The π-pulses are not evenly distributed over τ
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Figure 8.9.: A A filter function of the UDD pulse sequences of the order 7. Due to
the non equidistant pulses the filter function is complicated above the
cutoff frequency. B Comparison of the low frequency behavior of the
CPMG sequence (blue) and the UDD sequence (green) both of order
7. The UDD remains flat while CPMG has its first secondary peak.

but like

δUDD(j, n) := sin2

(
π j

2 ∗ n+ 2

)
. (8.77)

This variety of time spaces introduce a lot of frequencies to the filter function.
After the first rise of sensitivity SUDD(τ, ω) never approaches zero again for
a sufficiently long frequency space to become insensitive to the Larmor peak.
Thus there are no revivals of the coherence after the first drop. Nonetheless it
maintains the coherence longest before that.

To check whether the first and second order correlation functions are suf-
ficient we performed disjoint cluster expansion [104, 64] simulations of the
various pulse sequences. Including 1000 13C in clusters up to 6 nuclear spins
we include correlation functions up to the 6th order. The chopped interactions
are in the order of Hz so they should have no effect on the system dynamics
in the µs range of the measurements conducted.

8.4. Sensing Spins Outside the Diamond

Now that we have a pretty good understanding of decoherence due to 13C inside
the diamond we like to go a step further to sense other noise sources coupling
to the NV. One possibility would be to sense the closest 13C or 13C-pairs [106].
One step further it would be great to sense spins outside the diamond, probing
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Figure 8.10.: The black line shows Hahn echo data of a NV close to the PMMA
coated diamond surface. The red line represents the estimated signal
assuming two strong noise features one at the carbon and one at the
hydrogen Larmor frequency. The presence of the hydrogen line could
not be confirmed by CPMG or UDD, so it is unclear whether it is really
the hydrogen on top of the diamond, that causes this echo modulation.

its chemical environment. To do so the NV center has to be very close to the
diamond surface. 3 to 5 nm are feasible without complications like blinking
[98]. Because the noise amplitude scales like r−6 one needs 6.5 · 105 times the
spin density at 5 nm or 2.2 · 10−4 at 4 nm to have the same noise amplitude. If
the spin species we want to detect is rather dense outside the diamond it could
produce a sufficiently strong Larmor peak in the NSD. The hydrogen nuclear
spin seems to be a good candidate for such an approach. It is abundant in
organic compounds and can thus easily be applied to the diamond surface. We
used PMMA ((C5O2H8)n) to coat the diamond. This should give rise to an
additional peak in the NSD of NVs close to the surface. Because of its sharp
sensitivity peaks the CPMG sequence should be best suited to sense small
features in the NSD. UDD has the advantage that it is in essence insensitive
to all noise below its cutoff frequency. It may be interesting to sense noise
features of higher frequency than the 13C Larmor. For the ease of application
we also take the Hahn echo sequence into account. To estimate the effect we
assumed various peak amplitudes relative to the carbon peak at the hydrogen
Larmor frequency. The g-factor of hydrogen is 4, 258 kHz/G roughly 4 times
the 13C g-factor. The hydrogen signature should therefore be visible as Echo
amplitude modulation before the first collapse. In the following figures 8.11-
8.14 qualitative results are shown. For a H-Larmor-peak of the same amplitude
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and roughly the threefold width of the 13C-peak the hydrogen fingerprint is
visible even in the Hahn echo (fig. 8.11). If the peak has less amplitude the
signature vanishes(fig. 8.12). The application of the CPMG sequence gives
better results even at as low order as CPMG10. Here the full signal of the
H CPMG is visible before the first drop due to the carbon Larmor (fig. 8.13
and 8.12). The problem is the small amplitude of the hydrogen signature in
combination with the anyway complicated structure of the CPMG signal. It
can easily be mistaken as shot noise or coherently coupling 13C nuclei. The
sharpening of the 13C revivals can not be taken as an indication, because the
width of the revivals varies with the 13C configuration from NV to NV.

In fig. 8.10 Hahn echo measurement data of the PMMA-coated diamond is
shown. It features the threefold structure like in fig. 8.11. So this could be due
to the hydrogen spins on the surface of the diamond. Without the PMMA it
does not show these modulations, so the effect originates from the surface. At
higher magnetic fields this threefold feature is replaced by a twofold feature we
can not account for at the moment (fig. 8.10). To be sure we have to retrieve
the NSD from the measurement data and confirm the Larmor frequency.
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Figure 8.11.: On the left hand side the NSD used to calculate the Hahn echo signal
on the right. The first line shows the signal in the presence of a 13C
peak as well a H peak of equal strength. The second line depicts
the carbon signal only, while the third line shows the hydrogen only
result. The signature of the H line is clearly visible as a three fold
modulation on the 13C dominated decay of the NV’s coherence.
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Figure 8.12.: If the relative amplitude of the H peak is reduced its imprint gets lost.
At the ratio of 1/10 virtually nothing is left.
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Figure 8.13.: Here the application of a CPMG10 sequence is simulated for the case of
comparable strong noise features of 13C a H. Before the first drop one
can clearly see the complete H signature. At higher τ the unperturbed
signal is altered drastically as well.
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hydrogen fingerprint before the first drop as well as later on.
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A. Conclusion

In the present work we have expanded the understanding of the dynamics
of the NV center in diamond in itself as well as with its environment in the
diamond lattice. By doing so we further approached the DiVincenzo criteria
for a scalable quantum computer [24].

The first criterion is to have a scalable physical system with well charac-
terized qubits. The NV quantum register is built as follows: First of all the
electron spin of the system functions as a central qubit. All additional qubits
are addressed via the electron spin, so it normally takes the role of an anzilla
qubit. Nuclear spins in the near vicinity serve as the actual computing register.
The nitrogen nuclear spin and 13C nuclear spins both with strong coupling by
contact interaction or weak coupling by magnetic dipole dipole interaction are
feasible qubits that are accessible via the NV. To further increase the register
additional NVs have to be addressed.

As a second criterion one has to be able to initialize the qubits into a simple
pure state. The electron spin qubit is initialized by shining laser light on the
system. By previous means additional spins are initialized by selective gates
followed by manipulation in the mS = −1 manifold of the electron qubit [74].
We are now able to polarize additional nuclear spins by conducting a projective
quantum non-demolition measurement [75]. Weakly coupling nuclear spins can
thus be polarized.

DiVincenzos third criterion is to have long coherence times in comparison
with the gate duration. We found that the main source of decoherence in the
diamond lattice is the 13C nuclear spin population. T ∗2 scales like the square
root of the 13C concentration in the lattice while T2 shows linear dependency
[67]. With that knowledge isotopically pure diamond samples were manufac-
tured. That drastically increased the coherence times up to milliseconds [5]
allowing in principle to access more remote 13C nuclear spins as qubits. The
elongation additionally enabled us to implement quantum gates between two
NV electron qubits located approximately 10 nm apart from one another.

This directly leads us to the fourth criterion, the ability to apply a universal
set of quantum gates. A universal set is the application of a CNOT gate
and arbitrary single qubit phase gates. We demonstrated the CNOT gate
between the two electron spins by observing dynamics of qubit A that depend
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on the state of qubit B. In addition we effectively applied the combination
of a Hadamard gate and a CNOT to generate entanglement between the two
qubits. Unfortunately the coherence times of the observed spin pair were too
short to actually observe entanglement.

The final criterion is to have the capability to do qubit specific measurement.
Because our quantum register is accessible only via the electron qubit this is
the requirement that is most complicated to accomplish for the NV center. The
strong interacting carbon qubits are scrambled by the read out laser pulse, so
they are contrary to the former opinion not really good candidates for qubits of
the register. We found a scheme to perform a quantum-non-demolition (QND)
measurement on the nitrogen nuclear spin [75], which is the most versatile
form of measurement of a quantum system. For example QND measurement
on single qubits simplifies quantum error correction and allows to observe the
quantum zeno effect. In principle it is possible to perform QND measurements
on weak coupled 13C qubits as well. Because they are not perturbed by the
readout laser sequential readout of the every nuclear spin qubit of the register
should be possible, thus fullfilling DeVincenzo’s requirement.

Additionally we understood the special shape of the spin echo signal of the
electron qubit in the presence of the 13C bath. Collapses and revivals of the
signal are ascribed to incoherent Larmor precession of the carbon spins. Thus
even the complicated shape of more advanced dynamic decoupling sequences
like CPMG or UDD could be accounted for. It was shown that the first order
correlations are responsible for most of the decoherence. The second order
contribution is two orders of magnitude smaller already. By the understanding
of this mechanism the effect of nuclear spins on the surface of the diamond
could be predicted. Preliminary measurements with NVs close to the diamond
surface hint that the predictions are correct.

In the future the inversion of the performed calculation will provide a reliable
method to identify these external spins. That way the chemical environment
of the diamond will be measurable. Applied on nano diamonds this may e.g.
open new possibilities in bio diagnostics.



B. Zusammenfassung

Mit der vorliegenden Arbeit wurde das Verständnis der Dynamik des Nitrogen-
Vacancy (NV) Farbzentrums in Diamant, vor allem auch in Hinblick auf seine
Kopplung an die Quantenumgebung im Diamant, erweitert. Das NV-Zentrum
besteht aus einer Gitterfehlstelle mit einem Stickstoffatom auf einer benach-
barten Gitterstelle. Die Einbettung in den Diamant als sehr steife, fast spin-
freie Umgebung erlaubt es Quantenexperimente bei Raumtemperatur durch-
zuführen. Eine geschickte Möglichkeit ein Quantensystem einzuordnen ist an-
hand der so genannten DiVincenzo-Kriterien [24]. Sie dienen als Richtlinie
welche Eigenschaften ein skalierbarer Quantencomputer aufweisen sollte.

Das erste Kriterium ist es, ein skalierbares Quantensystem mit wohl de-
finierten Qubits zu haben. Das zentrale Qubit des NV-Registers bildet der
Elektronenspin des Farbzentrums. Über ihn werden alle weiteren Qubits des
Registers adressiert und ausgelesen, deswegen kommt ihm zumeist die Rolle
eines Anzilla-Qubits zu. Meistens werden die durch Austauschwechselwirkung
stark koppelnden 13C-Kernspins der ersten und dritten Schale um die Fehl-
stelle als Qubits verwendet. Im Laufe dieser Arbeit wurde auch der schwach
koppelnde Kernspin des Stickstoffatoms nutzbar gemacht. Prinzipiell können
zwischenzeitlich auch entferntere 13C-Kernspins als Qubits adressiert werden.
Um das Register weiter zu vergrößern kann man weitere NV-Zentren hinzu
nehmen.

Zweitens sollte man in der Lage sein, alle Qubits in einen einfachen, reinen
Zustand zu initialisieren. Der NV-Elektronenspin (NV-Spin) wird über seinen
intrinsischen Relaxationsmechanismus durch bestrahlen mit grünem Laser in-
itialisiert. Bisher bestand nur die Möglichkeit Kernspin-Qubits durch selektive
Quantengatter und darauf folgende Manipulation im |−1〉 Subraum quasi zu
initialisieren. Dies reduziert allerdings den Auslesekontrast auf 1/n + 1, mit
n als der Anzahl der auf diese Weise initialisierten Qubits [74]. Durch eine
rückwirkungsfreie Messung (QND) [75] ist es nun möglich, den Stickstoffkern-
spin ebenfalls in einen Energie-Eigenzustand zu projizieren und damit zu in-
itialisieren. Das selbe Verfahren ist prinzipiell auch bei schwach koppelnden
13C-Kernspins möglich.

Die dritte Anforderung ist es, über eine lange Kohärenzzeit relativ zur Dauer
eines Quantengatters zu verfügen. Wir haben herausgefunden, dass die Haupt-
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ursache von Dekohärenz das 13C-Spinbad des Diamantgitters ist. Die T ∗2 -Zeit
skaliert mit der Wurzel der 13C-Konzentration während die T2-Zeit einen linea-
ren Zusammenhang aufweist [67]. Ausgehend davon wurden die Experimente
auf isotopenreine Diamanten verlagert, was die T2-Zeit in die Größenordnung
von Millisekunden verlängerte [5]. Dadurch können sowohl weiter entfernte
13C-Kernspins als Qubits herangezogen werden, als auch Quantengatter zwi-
schen zwei bis zu 30 nm voneinander entfernen NV-Zentren implementiert wer-
den [73].

Das bringt uns zum vierten DiVincenzo Kriterium, die Fähigkeit universel-
le Quantengatter auf dem Register auszuführen. Das CNOT-Gatter in Ver-
bindung mit beliebigen Einzel-Qubit-Gattern ist ein solches universelles Set.
Einzel-Qubit-Operationen sind ohne Schwierigkeiten möglich. Wir haben zusätzlich
ein CNOT-Gatter zwischen zwei NV-Spins demonstriert, indem wir auf dem
einen Qubit Dynamik nachgewiesen haben die vom Zustand des zweiten Qubit
abhängt. Zusätzlich wurde effektiv die nacheinander Ausführung eines Hadamard-
und eines CNOT-Gatters gezeigt, die Verschränkung zwischen den beiden
Qubits erzeugt. Leider waren die Kohärenzzeiten des gemessenen Paares zu
kurz um diese Verschränkung noch nachzuweisen.

Das letzte Kriterium ist, die einzelnen Qubits des Registers selektiv auslesen
zu können. Es ist das mit dem NV am schwersten zu realisierende Kriterium,
da man nur über den Elektronenspin Zugang zum Register hat. Die stark kop-
pelnden 13C-Kernspins werden vom Auslese-Laser-Puls sehr stark in Mitleiden-
schaft gezogen. Sie sind daher doch keine optimale Wahl als Register-Qubits.
Wir habe jedoch eine Möglichkeit gefunden eine rückwirkungsfreie Messung
(QND) am Stickstoffkernspin durchzuführen. Die QND-Messung ist die vielsei-
tigste Form der Messung an einem Quantensystem, sie findet z.B Anwendung
bei der Quantenfehlerkorrektur und mit ihrer Hilfe ist es möglich, den Quanten-
Zenoeffekt zu beobachten. Es ist prinzipiell möglich QND-Messungen auch an
schwach koppelnden 13C-Kernspins auszuführen. Da diese vom Auslese-Laser-
Puls nur schwach gestört werden, ist es möglich, das gesamte Register sequen-
tiell auszulesen. Dadurch würde das fünfte DiVincenzo-Kriterium erfüllt.

Wir haben auch die spezielle Form von Spinechos des Elektronenspins in
Gegenwart eines 13C Spinbads besser verstanden, indem der periodische Zu-
sammenbruch und die Wiederkehr der Kohärenz dem inkohärenten Larmorrau-
schen zugeschrieben wurden. Durch Berechnung der spektralen Rauschdichte
konnte auch den komplizierten Signalformen der komplexeren Entkopplungs-
sequenzen wie CPMG oder UDD Rechnung getragen werden. Dabei sind die
Korrelationen erster Ordnung um circa zwei Größenordnungen schwächer als
die erster Ordnung. Über die Methode der spektralen Rauschdichte konnte
auch der Effekt von Kernspins auf der Oberfläche des Diamanten auf ober-
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flächennahe NVs berechnet werden. Vorläufige Messungen an solchen NVs wei-
sen darauf hin, dass die Vorhersagen korrekt sind. In Zukunft wird die Umkeh-
rung dieser Methode, also die Berechnung der spektralen Rauschdichte aus den
Messdaten, eine wirkungsvolle Methode darstellen, um diese Obenflächenspins
zu identifizieren und damit die chemische Umgebung des Diamanten zu ana-
lysieren. Dies könnte bei Nanodiamanten zu interessanten Möglichkeiten zum
Beispiel in der Biophysik führen.





Symbols

Mathematical Conventions

Ô Quantum operator
V Vector
M Matrix
Mn nth moment

Physical Symbols

τ Duration of a dynamic decoupling sequence
E Rhombic zero field splitting
D Longitudinal zero field splitting
Q Quatrupole
ωR Rabi frequency

T2 Phase coherence time after dynamical decoupling
T ∗2 Phase coherence time
T1 Longitudinal relaxation time
T2 ρ Pure dephasing time

Ŝi Generator of rotations about kartesian coordinates for the electron spin

Îi Generator of rotations about kartesian coordinates for the nuclear spins

Ĥdip Dipole-dipole interaction Hamiltonian

Ĥac Hamiltonian of an alternating magnetic field

ĤS System Hamiltonian

S(τ, ω) Filter function
Γ(ω) Noise spectral density
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Abbreviations

AFM Atomic force microscope
CNOT Controlled not gate
CPMG Carr, Purcell, Meiboom, Gill sequence
DEER Double electron electron resonance sequence
GHZ Greenberger–Horne–Zeilinger state
HPHT High pressure high temperature method of growing diamond
LAC Level anticrossing
NSD Noise spectral density
NV Nitrogen-vacancy center
ODMR Optically detected magnetic resonance
STED Stimulated emission depletion microscopy
UDD Uhrig dynamic decoupling
ZFS Zero field splitting
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