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A B S T R A C T

The solution of sparse inverse problems has become a highly ac-
tive topic over the past decade. This thesis aims at providing new
methods for the regularization of sparse and possibly ill-posed
inverse problems. In this work a projection and a variational
regularization method for the solution of sparse inverse problems
are presented. The description and analysis of each of these two
methods is complemented by an additional related topic.

The projection method, developed in Chapter 4, is based on
an adaptive regularization method for a distributed parameter
in a parabolic Partial Differential Equation (PDE), originally in-
troduced by Chavent and coauthors [10, 17]. Here we adapt this
approach for general sparse inverse problems. Furthermore a
well-definedness result is presented and it is proven that the
minimizer achieved by the algorithm solves the original problem
in a least squares sense. Additionally, we illustrated the efficiency
of the algorithm by two numerical examples from applications in
systems biology and data analysis.

The sequence of subspaces adaptively chosen by the introduced
algorithm leads us to the analysis of regularization by discretiza-
tion in preimage space. This regularization method is known to
convergence only under additional assumptions on the solution.
In Chapter 5 regularization by discretization in case of noisy
data under a suitable source condition is considered. We present
some results of well-definedness, stability and convergence for
linear and nonlinear inverse problems in case the regularization
subspace is chosen by the discrepancy principle.

In Chapter 6 the second main part of this thesis starts. There
we present a variational method for sparse inverse problems.
Before introducing a new regularization functional, we take a
closer look at Bayesian regularization theory. We give a brief
introduction and present the connection between deterministic
Tikhonov regularization and stochastic Bayesian inversion in case
of Gaussian densities, developed in [51]. Then we discuss the
convergence results from [44] for the stochastic theory, which are
based on this close connection. Also we outline a concept for a
general convergence result and prove a generalization result for
the existence of a R-minimizing solution. Again we illustrate the
gained results with some numerical examples.

We use the close connection between stochastic and determin-
istic regularization to develop a new regularization functional for
sparse inverse problems in Chapter 7. There we establish well-
definedness, stability and convergence proofs for this functional,
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based on the results from [48]. Additionally, we prove conver-
gence rates for the new functional. However, only in a generalized
Bregman distance introduced in [31], as the generated regulariza-
tion term is not convex. The proposed functional is differentiable
and thus can be used in gradient based optimization methods,
e. g., a Quasi Newton method. We illustrate the efficiency and
accuracy of this approach again with some numerical examples.

The thesis starts with a general and detailed introduction into
inverse problems. First a motivation and introduction to inverse
problems is given in Chapter 1. Then a brief overview over recent
results in regularization theory is presented in Chapter 2. Finally
Chapter 3 closes the introductory part with a motivation and
some first notations on sparsity in inverse problems.

Z U S A M M E N FA S S U N G

In dieser Dissertationsschrift werden neue Methoden und Aspek-
te der Regularisierungstheorie für dünnbesetzte, schlecht ge-
stellte inverse Probleme diskutiert. Nachfolgend werden eine
Projektions- sowie eine Variationsmethode zur Lösung von dünn-
besetzten inversen Problemen vorgestellt. Ergänzend dazu wird
jeweils ein verwandtes Thema besprochen.

Die Projektionsmethode wird in Kapitel 4 entwickelt und ba-
siert auf einer adaptiven Regularisierungsmethode. Diese wur-
de ursprünglich von Chavent et al. [17, 10] vorgeschlagen, um
einen verteilten Parameter in einer parabolischen partiellen Dif-
ferentialgleichung zu identifizieren. Wir passen den Ansatz für
allgemeine, dünnbesetzte, inverse Probleme an. Für den dadurch
entstehenden Algorithmus zeigen wir die Wohldefiniertheit des
projizierten Minimierungsproblems. Zusätzlich wird bewiesen,
dass die Minimalstelle, welche der Algorithmus berechnet, das
ursprüngliche Problem in Sinne des kleinsten quadratischen Feh-
lers löst. Um die Effizienz der Methode zu veranschaulichen,
wird der Algorithmus auf ein Problem in der Systembiologie,
sowie ein Problem in der Datenanalyse angewendet.

Die adaptiv erzeugte Folge von Unterräumen, welche der obige
Algorithmus erzeugt, führt uns zum Thema des nächsten Kapi-
tels, der Regularisierung durch Diskretisierung im Urbildraum.
Obwohl bekannt ist, dass diese Methode nur unter Zusatzvoraus-
setzungen an die Lösung konvergiert, wird sie aufgrund ihrer
einfachen Implementation häufig verwendet. In Kapitel 5 bewei-
sen wir neue Ergebnisse zur Wohldefiniertheit, Stabilität und
Konvergenz für Regularisierung durch Diskretisierung im Ur-
bildraum für lineare, sowie nichtlineare inverse Probleme bei
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verrauschten Daten. Dabei setzen wir eine entsprechende Glatt-
heit der Lösung voraus, sowie dass das Diskrepanzprinzip zur
Wahl des regularisierenden Unterraums verwendet wird.

Mit Kapitel 6 beginnt der zweite große Teil dieser Arbeit. In
diesem Teil wird ein neues Regularisierungsfunktional für dünn-
besetzte inverse Probleme vorgestellt. Bevor wir allerdings dieses
neue Funktional besprechen, werden wir genauer auf die sto-
chastische Bayes Regularisierung eingehen. Zunächst gibt es eine
kurze Einführung in das Thema, bevor die für das nächste Kapitel
wichtige Verbindung zwischen stochastischer und determinis-
tischer Regularisierung gezeigt wird. Diese Verbindung wurde
schon in [51] von Kaipo und Somersalo ausführlich behandelt,
sowie von Hofinger und Pikkarainen [44] verwendet, um Konver-
genz der Posteriorverteilung gegen eine Punktverteilung zu zei-
gen. Wir diskutieren dieses Konvergenzkonzept und skizzieren
eine mögliche Erweiterung für allgemeine Verteilungen. Zusätz-
lich beweisen wir eine Verallgemeinerung des Existenzresultats
für R-minimierende Lösungen (vgl. Lemma 2.4). Auch dieses
Kapitel beinhaltet numerische Beispiele um die theoretischen
Resultate zu veranschaulichen.

Daraufhin wird im nächsten Kapitel die Verbindung zwischen
stochastischer und deterministischer Regularisierung verwen-
det, um ein neues Dünnbesetztheit förderndes Funktional zu
erzeugen. Wir zeigen in diesem Kapitel die Wohldefiniertheit,
Stabilität und Konvergenz für ein Tikhonov-Funktional mit die-
sem neuen Regularisierungsterm. Dazu verwenden wir die schon
bekannten Ergebnisse für allgemeine Tikhonovregularisierung
auf Banachräumen, vgl. [48]. Darüber hinaus beweisen wir Kon-
vergenzraten für das so entstandene Regularisierungsfunktional.
Da der erzeugte Regularisierungsterm nicht konvex ist, geschieht
dies in einer verallgemeinerten Bregman-Distanz, welche von
Grasmair, in [31], für nicht konvexe Funktionale eingeführt wur-
de. Das vorgeschlagene Funktional ist differenzierbar und kann
somit in effizienten Gradienten basierten Optimierungsverfah-
ren verwendet werden. Wir zeigen anhand einiger numerischer
Beispiele, wie ein solches Verfahren funktioniert und vergleichen
die Ergebnisse mit bereits bekannten Methoden für dünnbesetzte
inverse Probleme.

Die vorliegende Arbeit beginnt mit einer allgemeinen Einfüh-
rung in die Thematik der dünnbesetzten inversen Probleme. So
wird in Kapitel 1 zuerst einmal eine Einführung, sowie Moti-
vation für die Betrachtung von allgemeinen schlecht gestellten
inversen Problemen gegeben. Daraufhin werden in Kapitel 2

erste Lösungsmethoden für inverse Probleme vorgestellt. Bevor
schließlich anhand zweier Beispiele die Notationen, sowie die
Relevanz von dünnbesetzten inversen Problemen veranschaulicht
wird.
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Part I

I N T R O D U C T I O N T O I N V E R S E P R O B L E M S





1
G E N E R A L I N T R O D U C T I O N

This work deals mainly with the solution of sparse and ill-posed
inverse problems. Before going into details about the term sparse
or how to solve such problems, there will be a short introduction
into the topic of inverse problems. Many problems in physics
and mathematics can be formulated as an operator equation

F(x) = y. (1.1)

Here F : X→ Y denotes a nonlinear1 forward operator which
maps the solution x to the data y. The operator maps from
a Banach or Hilbert space X to a Banach or Hilbert space Y.
Usually one deals not with the exact data y, but with a noisy
version yδ, for which we assume

‖y− yδ‖ 6 δ, (1.2)

with δ > 0. The noise level δ indicates, how perturbed the data is.
It can be interpreted as the distance between the exact and the
noisy data. We will later on see, why such a bound is needed and
how we can use the information given in (1.2).

Given a solution x and returning the data y, is called the
forward or direct problem. Obviously we call the other way
round, gathering a solution out of given data, an inverse problem.
For example when dealing with a PDE containing parameters,
given the parameters and calculating a solution, is the direct
problem. Identifying the parameters from given measurements
of the solution, is the inverse problem. In general the direct
problem is a well-known and well-studied problem, whereas the
inverse problem is not so well-studied and most times also not
well-posed. But what does this mean "well-posed"?

A problem is called well-posed according to Hadamard [39] if:

(W1) For all admissible data, a solution exists.

(W2) For all admissible data, the solution is unique.

(W3) The solution depends continuously on the data.

A problem is called ill-posed if one of the above given items is
violated.

The first item is fulfilled, if Y lies in the range of F, R(F) = Y.
In other words all y ∈ Y are attainable and therefore a solution

1 Throughout this work F will generally denote a nonlinear operator, whereas A
will denote a linear forward operator.

3



4 general introduction

x that fulfills (1.1) always exists. The solution is unique in the
linear case, if the kernel of the forward operator consists of the
zero element only, i. e., N(F) := {x ∈ X : F(x) = 0} = 0. We further
note that the last condition for well-posedness, the continuous
dependence of the solution on the data, is violated in case that
F−1 is discontinuous, which can for instance occur if X and/or Y
are infinite dimensional.

The condition that y is attainable, is very restrictive. We can
overcome the lack of attainability by introducing a generalized
notion of solution. Actually this idea was first introduced by
Carl Friedrich Gauss, who used it to calculate the position of the
dwarf planet Ceres. The idea is not to search for an exact solution
but to search for the element of X which minimizes the quadratic
distance to the given data. In mathematical terms:

Definition 1.1. x̄ ∈ X is called a least squares solution of F(x) = y if

‖F(x̄) − y‖ = inf{‖F(z) − y‖ | z ∈ X}.

This generalization helps if item (W1) of the above noted well-
posedness definition is violated. But it will not necessarily lead
to a unique solution. For a unique solution we have to further
generalize the notion of a solution, which we will do in the
next chapter. Before we do so we will have a look at two short
examples of ill-posed operators, to illustrate what happens if the
inverse of the forward operator is not continuous, i. e., (W3) from
above is violated. We will come back to these examples later on.
Afterwards we generalize the solution concept and introduce
regularization theory, which can overcome the difficulties of ill-
posed problems.

Example 1 (Numerical Differentiation). This problem is probably
the best-known example of an inverse problem (see cf. [26, 47, 41]).
Obviously differentiation and integration are inverse to each other.
But only differentiation exhibits the typical characteristics of an
ill-posed problem. Let y(t) be any function in C1([0, 1]), δ ∈ (0, 1),
n ∈ IN(n > 2) arbitrary and define the noisy data as

yδ(t) := y(t) + δ sin(
nt

δ
), t ∈ [0, 1].

Then the derivative is given by

xδ(t) = yδ
′
(t) = y ′(t) +n cos(

nx

δ
).

Whereas the exact solution is x† = y ′(t). Therewith the difference
between noisy data and exact data in the uniform norm is just –
as we assumed generally –

‖y(t) − yδ(t)‖∞ = δ,
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Figure 1: Plot of exact and noisy data for the numerical differen-
tiation example. The dotted black line is the exact data
y(t) = sin(2πt) and the solid blue line is the noisy data.
A small amount of white Gaussian noise is added.

but the difference between the solutions is

‖xδ(t) − x†(t)‖∞ = n.

And as n is chosen arbitrary, the difference can be arbitrarily large.
But one has to keep in mind, that this arbitrary large difference
depends heavily on the choice of the norm. Using instead of the
uniform norm the C1-norm would not lead to such a large error,
see the remark on page 5 in [26].

In terms of an operator equation, differentiation can be mod-
eled as a linear inverse problem with forward operator

Ax(s) =

∫
[0,s]

x(t)dt = y(t),

which is an integral operator of the first kind.
The phenomenen of discontinuity of the inverse of the forward

operator can be pretty visualized by numerical differentiation.
Lets assume we have T = 1000 noisy measurements of the func-
tion y(t) := sin(2πt) (t ∈ [0, 1]), see Figure 1, where a slight
amount of Gaussian random noise is added to the exact data.
However there is almost no difference visible to the naked eye
between the exact data and the measurements.

Now we can apply the inverse of the forward operator A to
the noisy measurements. We compare this solution to the easily
calculated exact solution x(t) = 2π cos(2πt), see Figure 2. Here
the difference between calculated and exact solution is massive.

So why do these small measurement errors lead to such a
wrong solution? The answer is given by the condition of the
inverse of the forward operator A. If we use – as we did for the
plots – finite differences for the calculation of the derivative and a



6 general introduction

0 0.2 0.4 0.6 0.8 1
−60

−40

−20

0

20

40

60
Inverse

t

x
(t

)

 

 
Least Squares

x(t)=2 π cos(2 π t)

Figure 2: Solution of the inversion of A and the exact solution x(t) =
2π cos(2πt). The very small measurement errors are hugely
amplified.

simple trapezoidal rule for the integration, the forward operator
and its inverse are given by the matrices

A = h


1 0 · · · 0
...

. . . . . .
...

...
. . . 0

1 · · · · · · 1

 A−1 =
1

h


1 0 · · · 0

−1
. . . . . .

...

0
. . . . . . 0

0 0 −1 1

 ,

both ∈ IRT×T and h = 1/T the distance between the measurement
points. Now the only eigenvalue of A is just h and therefore the
only eigenvalue of A−1 is 1h . So if h is very small the condition
number of the matrix A is very large and small errors in the
measurements are largely amplified. Such problems are called
ill-conditioned, instead of ill-posed. As the inverse of A is not
discontinuous.

Example 2 (Parameter Identification). As a second example we
look at a parameter identification problem in a PDE setting. This
problem is also widely considered and we will come back to it
later on a few times.

We want to identify the source term q in the elliptic boundary
value problem

∆u = q in Ω (1.3)

u = 0 on ∂Ω

on the unit square Ω = [0, 1]× [0, 1] ⊂ IR2 from measurements
of u in the whole domain Ω. This leads to a well-studied linear
inverse problem

Aq = u , (1.4)

where q ∈ X = L2(Ω), u ∈ Y = L2(Ω), and A : X→ Y.
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Figure 3: On the left the exact solution u of the Poisson equation (1.3)
with sinusoid parameter. To the right a plot of the noisy data
uδ, with 1% random Gaussian noise.

Obviously the range of the forward operator A, mapping a
parameter q to the exact solution of the Poisson problem (1.3) is
actually H2(Ω)∩H10(Ω). On the other hand, only values but not
derivatives of u can be measured, so the natural choice of Y as a
Hilbert space is L2(Ω). This discrepancy of smoothness yields an
ill-posedness of degree two of the inverse problem, which can be
seen directly from the fact that we consider q and u in the same
space, but q is determined from u by application of the Laplace
operator, i. e., twice differentation. (For a definition of the degree
of ill-posedness of an inverse problem see Definition 2.42 in [46]).

Again we visualize the ill-posedness of the inverse problem
with a plot of the exact parameter and the parameter obtained
as a least squares solution to (1.4). We solve the forward PDE

problem by using the Finite Element Method (FEM). Hence Ω
is discretized with a triangle mesh and we provide an exact
parameter by defining the value at the midpoint of every triangle
by the function

q†(s, t) = 10 sin(πs) sin(πt) s ∈ [0, 1] , t ∈ [0, 1].

The corresponding exact solution of (1.3) can be seen in Figure
3. In comparison the noisy data is plotted, where we added
Gaussian noise with a noise level of 1%. The least squares solution
is plotted in Figure 4.

As in the above example the least squares solution and the
exact parameter look completely different. Again the noise is
hugely amplified, such that the result has nothing in common
with the chosen exact parameter.

We have seen in these two examples that ill-posed inverse prob-
lems can not be solved by just applying the inverse of the forward
operator or just solving the corresponding normal equation to
get a least squares solution. So now the question arises, how to
overcome the problem of discontinuity of the inverse operator.
We will see in the next chapter, that regularization theory is one
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Figure 4: Left: The exact parameter q†(s, t) = 10 · sin(πs) sin(πt). Right:
Least squares solution for a noise level of 1%.

way to overcome this problem. The key idea of regularization
theory is to approximate the inverse of the forward operator F by
a family of operators which map continuously from the data to
the solution.



2
R E G U L A R I Z AT I O N O F I N V E R S E P R O B L E M S

In this chapter we will give a brief introduction to regulariza-
tion theory of inverse problems. As here is not the place to
give a comprehensive overview, we will restrict ourselves to a
short overview on Tikhonov regularization and regularization
by projection, two techniques we will revisit later on. The reader
interested in a broader overview is referred to the monographs
[26, 60, 47, 63, 4, 37]. The below given exposition of Tikhonov
regularization follows very closely the analysis given in [73]. The
part on regularization by projection is mainly taken from [26].

2.1 tikhonov regularization

As said above the key idea of regularization theory is to approxi-
mate the (generalized) inverse of the forward operator by a family
of operators, which map continuously between Y and X. In 1977

Tikhonov proposed to minimize the following functional [87, 86],
instead of minimizing the least squares functional:

Jα(x) := S(F(x),yδ) +αR(x) (2.1)

Here S is a general data fitting term, measuring the error be-
tween F(x) and the noisy data yδ. α is the so-called regularization
parameter, which so to say controls the amount of regularization.
And finally R is a non-negative functional, called the regulariza-
tion functional or regularization term, see Table 1 and Chapter 3

in [73] for examples of S and R. Through adding the additional
term, the approximation of the least squares solution is stabilized.

We will analyze different different types of regularization func-
tionals R throughout this work, whereas S in the following will
be the squared norm on the space Y, as proposed by Gauss, i. e.,
S(y, ȳ) = ‖y− ȳ‖2Y.

Additionally we will see, that the choice of α is a crucial task.
Obviously for small α the solution will be determined by the data
fitting term S and with growing α the influence of the additional
regularization term is amplified, steering the solution towards
the minimizer of R.

With the above introduced Tikhonov functional the following
questions arise:

• Is there a minimizer for every α > 0 and every yδ ∈ Y?

• Does the minimizer xαδ depend continuously on yδ?

9
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• If S(y,yδ) < δ and α, δ→ 0, does the regularized solution
xαδ converge to a solution of (1.1)?

• Can we give an estimate how fast the minimizer xαδ con-
verges towards the solution?

In mathematical terms, these questions refer to the terms of well-
definedness, stability, convergence and convergence rates. In [73] and
[48] sufficient conditions for S,R and F are given to answer the
above questions. We recall these conditions, as we will return to
them later on, in Chapter 7.

Condition 1 (Assumption 1.3 in [73]). We assume

1. X and Y are vector spaces, with which there are associated topolo-
gies τX and τY.

2. The following conditions on S : Y× Y→ [0,∞) hold:

a) τY is weaker than the topology induced by S, i. e., if
S(yk,y)→ 0 then yk →τY y.

b) (y, ȳ) → S(y, ȳ) is sequentially lower semi-continuous
with respect to the τY topology, i. e., for yk →τY y and
ȳk →τY ȳ,

S(y, ȳ) 6 lim inf
k→∞ S(yk, ȳk).

c) limk→∞ S(y,yk) = 0 implies that for every ȳ ∈ Y with
S(ȳ,y) <∞, S(ȳ,yk)→ S(ȳ,y), (hence S(ȳ,y) is bound-
ed).

d) S(y, ȳ) = 0 is equivalent to y = ȳ.

3. F : D(F) ⊂ X → Y is continuous with respect to the topologies
τX and τY.

4. R : X→ [0,+∞] is proper and τX lower semi-continuous.

5. D(F) is closed with respect to τX and D := D(F)∩D(R) 6= ∅.

6. For every α > 0, y ∈ Y and M > 0 the level sets

Mα,y := {x ∈ X : Jα,y 6M}

are τX-sequentially compact. That is, every sequence (xk) in
Mα,y(M) has a subsequence, which is convergent in U with
respect to the τX-topology.

Before we start answering the above rose questions, we have
to come back to one of the urgent difficulties with ill-posed
problems. As said above one condition for well-posedness of a
problem is uniqueness of the solution. In general the solution of
(1.1) is not unique, and even the introduced generalized solution
concept, i. e., the least squares solution, is not unique. Therefore
we introduce the term of R-minimizing solutions, that is:
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Definition 2.1. We call an element x† ∈ D an R-minimizing solution
if

R(x†) = min{R(x) : F(x) = y} <∞.

The concept of an R-minimizing solution generalizes the con-
cept of a minimum norm solution, used in the general Hilbert
space setting.

Now we will answer the question if Tikhonov regularization is
well-defined.

2.1.1 Well-definedness

Lemma 2.2 (Theorem 1.6 in [73]). Let Condition 1 hold. Assume
that α > 0 and yδ ∈ Y, then there exists a minimizer of Jα.

As this and the following lemmas are nowadays quite common
results, we will only state the key ingredients of the proofs, rather
than citing the full proof.

Proof. As D 6= ∅ and yδ ∈ Y there is at least one x ∈ X such that
Jα <∞. Therefore there is a sequence (xk) ∈ D such that

lim
k→∞ Jα(xk) = c,

with c := inf{Jα(x) : x ∈ D}. This sequence is bounded and there-
fore has a τX convergent subsequence, whose limit is denoted by
x̂. Now with the τX lower semi continuity, continuity of F, and
the τX, τY sequentially lower continuity of R and S(F(·),yδ) it
follows

S(F(x̂),yδ) +αR(x̂) 6 lim inf
k→∞ S(F(xk),yδ) +α lim inf

k→∞ R(xk)

6 lim inf
k→∞

(
S(F(xk),yδ) +αR(xk)

)
.

Therefore x̂ minimizes Jα. ut

2.1.2 Stability

Lemma 2.3 (Theorem 1.7 in [73]). Let Condition 1 hold. Assume
limk→∞ S(yk,yδ)→ 0, then every sequence (xk) satisfying

xk ∈ arg min{S(F(x),yk) +αR(x̂) : x ∈ D} (2.2)

has a τX convergent subsequence and the limit of this subsequence x̂ is
a minimizer of Jα.

Additionally for every subsequence (xl), which converges with re-
spect to τX, R(xl)→ R(x̂).
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Proof. From the definition of xk it follows

S(F(x),yk) +αR(xk) 6 S(F(x†),yk) +αR(x†),

for x† an R-minimizing solution. Now with boundedness of S,
i. e., Item 2c) in Condition 1 and Item 6 we get that (uk) is
bounded and therefore has a τX convergent subsequence. The
limit is denoted by x̂.

Again with continuity of F and τX, τY lower semi continuity of
S and R we get the following inequalities

S(F(x̂),yδ) +αR(x̂) 6 lim inf
k→∞ S(F(xk),yk) +α lim inf

k→∞ R(xk)

6 lim sup
k→∞ (S(F(xk),yk) +αR(xk))

6 lim
k→∞ (S(F(x),yk) +αR(x))

6S(F(x),yδ) +αR(x),

for any x ∈ D.
Thus x̂ is a minimizer. Setting x = x̂ on the right hand side,

leads to

S(F(x̂),yδ) +αR(x̂) = lim
k→∞ (S(F(xk),yk) +αR(xk)) . (2.3)

Convergence of R(xl) to R(x̂) is shown by contradiction. Please
keep in mind that, because of the continuity of F and the τY lower
continuity of S, the following holds:

S(F(x̂),yδ) 6 lim inf
k→∞ (S(F(xk),yk). (2.4)

Assume now R(xl) does not converge to R(x̂). Since R is τX lower
semi continuous, we can conclude that

c := lim sup
l→∞ R(xl) > R(x̂).

Now take a subsequence, for simplicity again denoted by (xl),
such that R(xl)→ c. But from (2.3) we deduce

lim
l→∞(S(F(xl),yl) = S(F(x̂),yδ) +α(R(x̂) − c) < S(F(x̂),yδ).

This contradicts (2.4). Thus R(xl)→ R(x̂). ut

2.1.3 Existence

Lemma 2.4 (Theorem 1.9 in [73]). Let Condition 1 hold. If there
exists a solution of (1.1) then there exists an R-minimizing solution.

Remark 1. In Chapter 6 we will prove a generalization of this
lemma, in such a way that only the existence of a least squares
solution has to be assumed, see Proposition 6.5.
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Proof. The proof goes analogously to the one of Lemma 2.2 with
Jα replaced by R and D replaced by

D̃ := {x ∈ D : F(x) = y},

using the fact that for x ∈ D̃, we have Jα(x) = R(x). ut

2.1.4 Convergence

Lemma 2.5 (Theorem 1.10 in [73]). Let Condition 1 hold. Assume
there exists a solution of (1.1). Moreover assume that

• the sequence (δk) converges monotonically to zero,

• yk := yδk satisfies S(y,yk) 6 δk,

• the parameter choice α(δ) satisfies

α(δ)→ 0 and
δ

α(δ)
→ 0 as δ→ 0, (2.5)

• and α(·) is monotonically decreasing.

Then a sequence (xk) satisfying (2.2) exhibits a τX convergent subse-
quence, and the limit is an R-minimizing solution. If additionally the
R-minimizing solution x† is unique, then xk → x† with respect to τX.

Proof. We define αk := α(δk) and αmax = α1.
Since xk is defined as sequence of minimal arguments, we

conclude

S(F(xk),yk) +αkR(xk) 6 δk +αkR(x†). (2.6)

From this we can already deduce limk→∞ S(F(xk),y) = 0 and
lim supk→∞R(xk) 6 R(x†). With these inequalities it follows that
Jα(xk) is bounded. Thus according to Item 6 in Condition 1 (xk)

has a τX convergent subsequence, with limit x̂.
Now using the τX − τY continuity of F, inequality (2.6) and

item 2 a) of Condition 1, we can deduce F(x̂) = y.
With the lower semi continuity with respect to the τX topology

of R it follows that x̂ is a R-minimizing solution and additionally
R(xk)→ R(x†).

Finally the strong convergence follows, as in the Hilbert space
setting, with a subsequence-subsequence argument, and taking
advantage of the uniqueness of the R-minimizing solution. ut

2.1.5 Convergence Rates

For proving convergence rates a source condition is needed,
meaning that the solution is restricted to have a sufficient degree
of smoothness (cf. [26]). For nonlinear operators, the operator is
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assumed to be Fréchet differentiable and additionally an assump-
tion on the nonlinearity (a tangential cone / Scherzer condition)
is needed. Very recently, cf. [48], variational inequalities where
introduced to show convergence rates for nonlinear Tikhonov
regularization in Banach spaces. Moreover it has been shown [73],
that all of the assumptions and source conditions stated above
imply a variational inequality. Hence we will restrict our analysis
to the assumption of a variational inequality and will only state
these results without giving any proofs.

Before we introduce variational inequalities we have to intro-
duce the definition of Bregman distances. Bregman distances can
be used to measure distances in case of regularization in Banach
spaces [77].

Definition 2.6. The Bregman distance for a convex and proper func-
tional R : X → IR ∪ {+∞}, with subgradient ξ ∈ ∂R(x), is defined at
x ∈ X and ξ ∈ ∂R(x) ⊂ X∗ by

DR(x̃; x) := R(x̃) −R(x) − 〈ξ, x̃− x〉X∗,X, x̃ ∈ X.

The set

DB(R) := {x ∈ D(R) : ∂R(x) 6= ∅}

is called the Bregman domain.

Remark 2. Keep in mind that the functional in the above defi-
nition has to be convex, to ensure that the right hand side is
greater or equal to zero. We will later on see, how to generalize
the definition of the Bregman distance so that also non-convex
functionals can be covered. See the definition of W-convexity in
Section 7.3 of Chapter 7.

With the concept of Bregman distances, we can introduce a
variational inequality, see e. g., [77, 48].

Definition 2.7. We say a variational inequality holds, if there exist
numbers β1,β2 ∈ [0,∞) with β1 < 1 and ξ ∈ ∂R(x†) such that

〈ξ, x† − x〉 6 β1DR(x; x†) +β2S
(
F(x), F(x†)

)
(2.7)

for all x ∈Mα,y.

With this variational inequality convergence rates for nonlinear
Tikhonov regularization on Banach spaces can be proved. But
additional to Condition 1, we have to assume that the functional
R is convex, the data fitting functional S fulfills the triangle
inequality, i. e.,

S(y1,y2) 6 S(y1,y2) + S(y2,y3), ∀y1,y2,y3 ∈ Y,

and that the R-minimizing solution is an element of the Bregman
domain of R, see Assumption 1.13 in [73] for details.
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Lemma 2.8 (Theorem 1.14 in [73]). Let

Jα := S(F(x),yδ)r +αR(x),

and Condition 1 hold. Additionally let X,Y be Banach spaces with
duals X∗,Y∗, the functional R be convex, and S satisfy the triangle
inequality. If there exists a R-minimizing solution x†, which is an el-
ement of the Bregman domain of R, S(y,yδ) 6 δ and if a variational
inequality (2.7) holds, then we have

• in case r > 1: For α : (0,∞) → (0,∞) satisfying cδr−1 6
α(δ) 6 Cδr−1 (0 < c 6 C)

DR(x
α
δ , x†) = O(δ) and S(F(xαδ ),y

δ) = O(δ).

• in case r = 1: For α : (0,∞)→ (0,∞) satisfying cδε 6 α(δ) 6
Cδε (0 < c 6 C, 0 < ε < 1)

DR(x
α
δ , x†) = O(δ1−ε) and S(F(xαδ ),y

δ) = O(δ).

Proof. See proof of Theorem 1.14 in [73]. ut

We will see later on how this convergence rates result can
be generalized also for non-convex regularization terms, see
Theorem 7.13.

As we have seen in Example 1, if we just apply the inverse of
the forward operator A onto the noisy data the resulting solution
does not have anything in common with the exact solution. But
what happens if we use Tikhonov regularization to solve the
inverse problem?

It can be shown in an easy calculation (see Theorem 5.1 in [26])
that in the linear case the minimizer of the Tikhonov functional
is given by

xαδ = (A∗A+αI)−1A∗yδ. (2.8)

Now one can see the stabilizing effect of α. The inversion of
A∗A is approximated through inverting (A∗A+ αI). Addition-
ally through adding α, the smallest singular value is bounded
from below by α. See Figure 5 for a plot of the regularized so-
lution for the numerical differentation problem using Tikhonov
regularization in comparison to the least squares solution.

For Figure 5 the regularization parameter α has been tuned
by hand to get the best possible result. The choice of the reg-
ularization parameter has a crucial influence on the computed
approximation. In Figure 6 there are two approximations gained
by Tikhonov regularization with other parameter values for the
numerical differentiation example. Once the regularization pa-
rameter α is chosen very large, then the approximation is de-
termined by the regularization term alone and therefore tends
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Figure 5: Tikhonov solution of the numerical differentiation example.
Additionally the exact solution and the least squares solution
are depicted. It can be seen clearly that the noise amplification
is damped or even vanishes in the regularized solution.

0 0.2 0.4 0.6 0.8 1
−8

−6

−4

−2

0

2

4

6

8

t

x
(t

)

α too large

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

t

x
(t

)

α too small

 

 
Tikhonov

x(t)=2 π cos(2 π t)
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to 0. And once the parameter is chosen very small, then the
approximation tends towards the least squares solution.

So of course the question arises, how to choose the regular-
ization parameter α? There are many possible parameter choice
rules (see Chapter 4 in [26] or the review [8]). One widely used
rule for theoretical results is the Discrepancy Principle [68]. As
we will use it later on in Chapter 5, we will state it here. The
idea is to choose α as large as possible, in such a way that the
discrepancy between F(xαδ ) and yδ is about δ. Hence α is chosen
by

α(δ) := sup{α > 0 | ‖F(xαδ ) − yδ‖ 6 τδ}, (2.9)

with τ > 1.
In Chapter 5 we used the discrepancy principle to choose a

finite subspace of X, on which we restrict the forward operator.
This technique – solving the inverse problem on different sub-
spaces – is called regularization by projection or discretization
and we will give a brief introduction into this topic in the next
section.

2.2 regularization by projection

The key idea of regularization by projection is to project the least
squares minimization on a finite-dimensional subspace and hence
avoid the discontinuity of the inverse of the forward operator.
We can distinguish two different cases of regularization by pro-
jection. First is regularization in preimage space and second is
regularization in image space. For both we will sketch the mere
idea, before in Chapter 5, we take a closer look at regularization
by discretization in preimage space. There the interested reader
will also find references on the detailed standard works about
regularization by projection.

2.2.1 Discretization in Preimage Space

Let

X1 ⊂ X2 ⊂ X3 ⊂ ...

be a sequence of nested finite dimensional subspaces of the preim-
age space, whose union is dense in X. Now we solve the least
squares problem on one of these finite dimensional subspaces:

xδn ∈ arg min{‖F(zn) − yδ‖2 | zn ∈ D∩Xn}.

In the linear case, we can define An := APn with Pn the orthog-
onal projection on to Xn. Now as An : Xn → Y, it has a closed
range, and hence the operator A†n, which maps the data to the
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best approximate solution of the subspace Xn, is bounded. There-
fore the operator maps continuously between Y and Xn, making
this approach a stable approximation of x†.

Also one can show, that under additional assumptions on the
operator A, the sequence (xδn) converges towards x†, see Theorem
3.20 in [26].

In Chapter 5 convergence under certain conditions is shown, if
the subspace on which the inversion is carried out is chosen ac-
cording to the discrepancy principle for linear as well as nonlinear
operators (5 and [57]).

The concept of regularization by discretization in image space
is now quite obvious.

2.2.2 Discretization in Image Space

Regularization by discretization in image space (also called the
dual least squares method or self regularization) has been well
investigated in the literature (see, e. g., [69, 72, 89] for the linear
case, as well as [49, 52] for the nonlinear case). Instead of taking a
sequence of subspaces of the preimage space, we take a sequence
of subspaces of the image space Y. Consider a nested sequence
of finite dimensional subspaces

Y1 ⊂ Y2 ⊂ Y3 ⊂ ...

of R(A) ⊂ Y. Now we define xδn as the least squares solution of
minimal norm of the equation

Anx = yn, An := QnA, yn := Qny,

with Qn the orthogonal projection onto Yn. Again this is a stable
approximation of x†.

In contrast to regularization in preimage space, regularization
in image space is guaranteed to converge, without additional
assumption on the forward operator, see Theorem 3.24 in [26].

We illustrate regularization by discretization in preimage space
by the above introduced parameter identification problem, cf.
Example 2. As we solve the underlying PDE with the FEM the
different subspaces correspond to different mesh sizes. Below is
a picture of the least squares solution of (1.4) on a much coarser
mesh than in Example 2, see Figure 7.

The approximation on the coarser mesh is still not a very good
approximation of the exact parameter, depending also on the very
large mesh size. But at least the approximation on the coarse mesh
resembles the exact parameter better than the approximation on
the finer mesh, where strong noise propagation occurs.

In the above sections we have introduced different methods
to regularize ill-posed inverse problems. In the next chapter, we
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Figure 7: Comparison of least squares approximations on different
meshes. Clearly the inversion on the coarser mesh is also
a difficult task (lower row to the right), but the approximation
is much better than the one carried out on the finer mesh (up-
per row right side). At least the scaling of the exact parameter
(left picture upper row) is almost reached.

will consider a special class of inverse problems with special
requirements on the solution, for which the above techniques fail
almost in the same way as simply calculating the least squares
solution to an ill-posed problem.1

1 In fact this statement is not exactly true. We will see later on, how Tikhonov
regularization can be adapted, such that it can also handle the kind of problems
we introduce in the next chapter.



3
S PA R S E I N V E R S E P R O B L E M S

In the recent years the regularization of sparse inverse problems
has received much attention. Starting with carrying over the
results from compressed sensing [22] onto infinite dimensional
inverse problems by Daubechies et al. [19], the focus shifted
towards the regularization properties of Tikhonov regularization
with sparsity enforcing regularization terms, cf. [93, 33, 12, 80].
Also iterative methods [19, 11] and projection methods [58] have
been analyzed.

So what makes sparse inverse problems so special? Or first
of all, what is a sparse inverse problem? We consider here in-
verse problems as sparse, if the solution x† of (1.1) has a sparse
representation with respect to a given basis, that is:

x† =
∑
i∈I

xiφi.

Here (φi)i∈IN is a (orthonormal) basis of the separable Hilbert
space1 X and I is a finite set. This means, many of the coefficients
xi of x† are zero or stated the other way round: x† has only finitely
many non-zero coefficients with respect to the basis (φi)i∈IN. The
choice of the underlying basis is crucial for sparsity. A vector
maybe sparse with respect to one basis, but does not have a
sparse representation in a different basis.

A first example for a sparse inverse problem can be imple-
mented with the numerical differentiation problem, introduced
above in Example 1. If the exact solution x(t) is, instead of the
continuous sine function, a piecewise constant function (a square
wave) we get a nice sparse inverse problem. See Figure 8 for a
picture of the exact piecewise constant function.

Now as we know already from Example 1 above, that the
inversion of the forward integral operator is an ill-conditioned
problem, we use standard Tikhonov regularization with squared
error norm on L2 to stabilize the inversion. In Figure 9 you find a
picture of the regularized solution, with α tuned by hand to get
a best possible result.

At first sight the Tikhonov solution does not give a completely
wrong approximation, but there are two main features of the exact
solution the Tikhonov approximation is totally lacking. Firstly

1 In case of sparse inverse problems X generally denotes a separable Hilbert
space, such that there are at least countable many basis functions. Please be
aware that the results on regularization theory mentioned before are also valid
even on non-separable Banach spaces and that some of the results stated later
on, are also valid on Banach spaces.

21
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Figure 8: A sparse exact solution for the inverse problem of numerical
differentiation (left) and the according exact and noisy data.
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the sharp edges of the exact solution. The square wave is by
no means a continuous function, whereas the approximation by
Tikhonov regularization with squared error norm regularization
term provides a quite smooth estimate. And secondly the exact
solution is composed out of a large part, where the function
is zero and a second part where it is non-zero (in this case 1).
Comparing the Tikhonov approximate there are hardly any zeros
at all.

This loss of zeros can be seen even better in an also very well-
known and often used example of a sparse inverse problem. The
problem of compressed sensing [23].

Example 3. In compressed sensing one wants to reconstruct a sig-
nal from few linear measurements. Our test case is implemented
in the `1 magic packet from Candes and Romberg [15] and also
used in e. g., [35, 62, 28]. We create a measurement operator
A ∈ IRK×N, K << N, fill it up with standard Gaussian random
numbers and orthogonalize the rows. Through this orthogonal-
ization the matrix fulfills the restricted isometry property [7],
which means that all submatrices with a small number of rows
have singular values close to one.

Additionally a signal of length N, with only T randomly dis-
tributed spikes with height ±1 is created, see Figure 10. Then
the data is constructed by multiplying x by A and adding some
Gaussian random noise, y = Ax+ e.
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Figure 10: Plot of the exact solution (left), a signal of 20 non-zero peaks
and the according exact and noisy data (right).

As before we apply standard Tikhonov regularization with
squared error norm regularization functional to the data and
compare the resulting approximation to the exact solution, see
Figure 11.

Again the Tikhonov minimizer does not give a good approxi-
mate to the exact solution. As in the case of the numerical differ-
entiation there are hardly any zeros and the spikes of the exact
signal are not even detectable from the approximation.

So how to solve sparse inverse problems? A first hint has al-
ready been given in the introductory paragraph to this section
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Figure 11: Comparison between Tikhonov minimizer and the exact
signal.

and in Table 1: we might use Tikhonov regularization with a dif-
ferent regularization term R which enforces sparsity. Prominent
examples are the `1 norm [19, 35, 85, 74] and starting from there
also the `p norms with 0 6 p < 2 were examined [33, 34, 93],
whereas one has to keep in mind, that for p < 1 the resulting
regularization term is no norm and non-convex, hence the results
from Chapter 2 can not be applied. In Chapter 7 of this work,
we will also present a regularization term, which enforces the
Tikhonov approximate to be sparse and which additionally is
differentiable.

Another way to solve sparse inverse problems are greedy algo-
rithms [65, 20, 88]. Here the idea is to search for those coefficients
which will lead to the largest change of the cost functional value
and only change them, leaving the others unchanged, e. g., zero –
on this account they are called greedy. In the next chapter we will
present a new algorithm for sparse inverse problems which can
also be considered as a greedy type of algorithm, but in another
way also as regularization by projection.



Part II

S PA R S I T Y T H R O U G H P R O J E C T I O N





4
R E F I N E M E N T A N D C O A R S E N I N G A L G O R I T H M

As we have seen in the last chapter sparse inverse problems can
not be solved by standard regularization techniques. In this chap-
ter we will introduce an algorithm for efficiently solving sparse
inverse problems. This algorithm is based on a well-established
adaptive method proposed by Chavent and coauthors (cf., e. g.,
[10], [17], see also [5]) for the identification of a distributed pa-
rameter in a parabolic PDE.

Adaptive discretization has become an important task in in-
verse problems for PDEs. The key idea is to use as few degrees
of freedom as possible to achieve a prescribed accuracy, which
obviously gives a relation to sparse inverse problems. Our aim is
to both extend the ideas in [10], [17] to an adaptive method for
general inverse problems and to re-interpret it as a method for
finding sparse solutions.

The chapter is structured as follows: In Section 4.1 we will
construct an adaptive algorithm based on refinement and coars-
ening indicators, analyze its well-definedness and convergence,
and discuss its relation to the method from [10], [17]. Afterwards
we will apply the proposed method to a sparse test problem
from Systems Biology. A field of research, where many inverse
problems occur, cf. [27]. Here we use the algorithm to recover
the structure of gene networks, see Section 4.2. Then we will
come back to the compressed sensing application, introduced in
Example 3 of the previous chapter.

4.1 adaptive discretization

As said in the introductory part on sparse inverse problems, the
forward operator F of our inverse operator equation (1.1) is now
assumed to map from the separable Hilbert space X to the not
necessarily separable Hilbert space Y. We assume throughout
this chapter that an exact solution x† to (1.1) exists, but is not
necessarily unique, and, as usual, that there is a bound on the
noise, i. e., (1.2) holds.

As X is separable we can assume that there is a discretization
X = span{φ1,φ2, . . . ,φN} (possibly N =∞), i. e.,

∀x ∈ X ∃x = (x1, x2, . . . , xN) ∈ IRN : x =

N∑
i=1

xiφi, (4.1)

27
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where the sum is supposed to converge in X if N = ∞ and
‖φi‖ = 1. Note that {φ1,φ2, . . . ,φN} need not necessarily be
linear independent and we do not impose x to be in `2.

We consider the least square minimization problem without
regularization

min
x∈IR|I|

1

2

∥∥∥∥∥F(∑
i∈I

xiφi) − y
δ

∥∥∥∥∥
2

︸ ︷︷ ︸
=J(x)

(PI)

or equivalently

min
x∈span{φi : i∈I}

1

2

∥∥F(x) − yδ∥∥2︸ ︷︷ ︸
=J(x)

(4.2)

for some (finite) index set I ⊆ {1, 2, . . . ,N}, where |I| = card(I),
and denote its solution(s) by xI, as well as

xI =

N∑
i=1

xIiφi .

For simplicity of notation we identify x ∈ IR|I| with x ∈ IRN by
just filling the gaps for indices outside I with zeros.
Obviously, with

x† =

N∑
i=1

x
†
iφi , (4.3)

I† := {i ∈ {1, . . . ,N} | x
†
i 6= 0} , (4.4)

we have that x† solves (PI
†
) with δ = 0, i. e., y = yδ.

Starting with some small index set I0 (corresponding to a
coarse discretization), we will successively add and remove in-
dices to obtain the correct index set I† and therewith, via (PI

†
),

the solution x†.
First of all, we derive a possible generalization of the refinement

indicators from papers by Ben Ameur, Bissell, Chavent and Jaffré.
For some current index set Ik, for which we assume that we

have already obtained a solution xI
k

of (PI
k
), we want to decide,

whether we should add some index i∗ to decrease the data misfit

J(x) =
1

2

∥∥F(x) − yδ∥∥2 , (4.5)

or in terms of the coefficients

J(x) =
1

2

∥∥∥∥∥F(
N∑
i=1

xiφi) − y
δ

∥∥∥∥∥
2

,
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i. e., we would like to achieve

min
x∈IR|Ik∪{i∗}|

1

2

∥∥∥∥∥∥F(
∑

i∈Ik∪{i∗}

xiφi) − y
δ

∥∥∥∥∥∥
2

< min
x∈IR|Ik|

1

2

∥∥∥∥∥∥F(
∑
i∈Ik

xiφi) − y
δ

∥∥∥∥∥∥
2

.

Note that we know the minimal value (and a minimizer) on
the right hand side of this inequality, and we want to predict
whether this inequality is likely to hold for i∗, without having to
compute the minimizer on the left hand side. The key idea is to
do some linearization.

For this purpose, we consider the constrained minimization
problem

min
x∈IR|Ik∪{i∗}|

1

2

∥∥∥∥∥∥F(
∑

i∈Ik∪{i∗}

xiφi) − y
δ

∥∥∥∥∥∥
2

︸ ︷︷ ︸
=J((xi)i∈Ik∪{i∗})

s.t. xi∗ = β (PI
k∪{i∗}
β )

for some small β ∈ IR, with the Lagrange function

L(x, λ) =
1

2

∥∥∥∥∥∥F(
∑

i∈Ik∪{i∗}

xiφi) − y
δ

∥∥∥∥∥∥
2

+ λ(β− xi∗).

It is readily checked that the linear independendence constraint
qualification holds: there is only one constraint, whose gradient
is just the i∗th unit vector. Hence, the first order necessary opti-

mality conditions imply that for a solution xβ of (PI
k∪{i∗}
β ), there

exists a λβ such that ∇xL(xβ, λβ) = 0, i. e., (xβ, λβ) = 0, i. e.,

0 =
∂L

∂xi∗
(xβ, λβ)

=〈F(
∑

i∈Ik∪{i∗}

xβ ,iφi) − y
δ, F ′(

∑
i∈Ik∪{i∗}

xβ ,iφi)φi∗〉

− λβ.
(4.6)

And ∀j ∈ Ik :

0 =
∂L

∂xj
(xβ, λβ)

=〈F(
∑

i∈Ik∪{i∗}

xβ ,iφi) − y
δ, F ′(

∑
i∈Ik∪{i∗}

xβ ,iφi)φj〉

0 =β− xi∗ .
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Now we take into account the fact that the Lagrange multiplier
gives the sensitivity of the optimal value with respect to pertur-
bations in the corresponding constraint:

d

dβ
J(xβ) =

d

dβ
L(xβ, λβ) = λβ

where in the first equality we have used feasibility of xβ for

(P
Ik∪{i∗}
β ) which implies that the term multiplied by λβ in

L(xβ, λβ) vanishes.
Thus, in the first order Taylor expansion of the optimal value

we have

J(xβ) ≈ J(x0) +
d

dβ
J(x0)β = J(x0) + λ0 β (4.7)

The quantities J(x0), λ0 are known or cheaply computable: Ob-
viously x0 is just a solution of (PI

k
), which we have already,

namely the coefficients of xI
k
; the Lagrange multiplier λ0 can be

computed from (4.6) with β = 0:

λ0 = 〈F(
∑

i∈Ik∪{i∗}

x0 ,iφi) − y
δ, F ′(

∑
i∈Ik∪{i∗}

x0 ,iφi)φi∗〉

= 〈F(xIk) − yδ, F ′(xI
k

)φi∗〉 . (4.8)

By (4.7), the magnitude of λ0 indicates, whether there can be a
potential decrease in the optimal value if we add i∗ to the degrees
of freedom, so we define the refinement indicator

ri∗ := |λ0| = |〈F(xIk) − yδ, F ′(xI
k

)φi∗〉| = |J ′(xI
k

)φi∗ | (4.9)

Similarly to the idea of coarsening indicators by Ben Ameur,
Bissell, Chavent and Jaffré, one can use Lagrange multipliers
and first order Taylor expansion to remove degrees of freedom
if possible. For this purpose, we assume that a solution xĨ

k
of

(PĨ
k
) is known and consider, for some l∗ ∈ Ĩk, the constrained

minimization problem

min
x∈IR|Ĩk|

1

2

∥∥∥∥∥∥F(
∑
i∈Ĩk

xiφi) − y
δ

∥∥∥∥∥∥
2

︸ ︷︷ ︸
=J((xi)i∈Ĩk)

s.t. xl∗ = γ (P̃Ĩ
k

γ )

so that xĨ
k

obviously solves this problem with

γ := γ∗ := x
Ĩk

l∗ ,

and on the other hand, a solution to (P̃Ĩ
k

γ ) with γ = 0 solves
(PĨ

k\{l∗}).
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With the Lagrange function

L̃(x,µ) =
1

2

∥∥∥∥∥∥F(
∑
i∈Ĩk

xiφi) − y
δ

∥∥∥∥∥∥
2

+ µ(γ− xl∗)

we get that a solution xγ to (P̃Ĩ
k

γ ) along with some Lagrange
multiplier µγ satisfies the first order optimality conditions

0 =
∂L̃

∂xl∗
(xγ,µγ)

= 〈F(
∑
i∈Ĩk

xγ ,iφi) − y
δ, F ′(

∑
i∈Ĩk

xγ ,iφi)φi∗〉− µγ. (4.10)

Additionally we get ∀l ∈ Ĩk \ l∗ :

0 =
∂L̃

∂xl
(xγ,µγ)

= 〈F(
∑
i∈Ĩk

xγ ,iφi) − y
δ, F ′(

∑
i∈Ĩk

xγ ,iφi)φl〉.

And

0 = γ− xi∗ .

Analogously to (4.7), we get

J(x0) ≈ J(xγ) −
d

dγ
J(xγ)γ

with
d

dγ
J(xγ) =

d

dγ
L̃(xγ,µγ) = µγ ,

and

µγ∗ = 〈F(
∑
i∈Ĩk

xγ∗ ,iφi) − y
δ, F ′(

∑
i∈Ĩk

xγ∗ ,iφi)φi∗〉

= 〈F(xĨk) − yδ, F ′(xĨ
k

)φl∗〉

by (4.10), so that

cl∗ := µγ∗ γ∗ = 〈F(xĨ
k

)−yδ, F ′(xĨ
k

)φl∗〉γ∗ = x
Ĩk

l∗ J
′(xI

k

)φl∗ (4.11)

serves as an easily computable coarsening indicator.
Therewith, we arrive at the following multilevel adaptive re-

finement and coarsening algorithm:

Algorithm 1.
1 k := 0.
2 Choose coarsest index set I0.
3 Compute a solution x0 of PI

0
and set J0 = J(x0).

4 Compute ri∗ , i∗ ∈ {1, 2, . . . N} \ I0 according to (4.9).
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5 Set r0max := maxi∗∈{1,2,...N}\I0 r
i∗ .

6 While rkmax > ε do

7 Set I∗ := {i∗ ∈ {1, 2, . . . N} \ Ik | ri∗ = rkmax}

8 For all i∗ ∈ I∗: compute a solution xI
k∪{i∗}

to (PI
k∪{i∗})

9 Select i+ ∈ argmini∗∈I∗J(x
Ik∪{i∗})

10 Set Ĩk = Ik ∪ {i+}.
11 If J(xĨ

k
) < J(xk) do

12 Compute cl∗ , l∗ ∈ Ik according to (4.11)
13 Set ckmax := maxl∗∈Ik c

l∗ .
14 Set L∗ := {l∗ ∈ {1, 2, . . . N} \ Ik | cl∗ = ckmax > 0}

15 For all l∗ ∈ L∗: compute solution xĨ
k\{l∗}

to (PĨ
k\{l∗})

16 Select l+ ∈ argminl∗∈L∗J(x
Ĩk\{l∗})

17 If J(xĨ
k\{l+}) 6 (1−ρ)J(xk)+ρJ(xĨ

k
) set Ik+1 = Ĩk \ {l+})

18 else set Ik+1 = Ĩk.
19 else set Ik+1 = Ĩk.
20 Set xk+1 := solution of (PI

k+1
) and Jk+1 = J(xk+1).

21 Compute ri∗ , i∗ ∈ {1, 2, . . . N} \ Ik+1 according to (4.9).
22 Set rk+1max := maxi∗∈{1,2,...N}\Ik+1 r

i∗ .
23 k = k+ 1.

Remark 3. Here, line 7 might be replaced by, e. g.,
7 Select I∗ := {i∗ ∈ {1, 2, . . . N} \ Ik | ri∗ > θrkmax}

or by
7 Select I∗ := {i1∗ , . . . , is∗} the index set of the s largest

values of

ri∗ , i∗ ∈ {1, 2, . . . N} \ Ik

with a typical value θ = 0.8. Note that xk+1 on line 20 is one
of the already computed solutions on line 8 or 15. Coarsening
is only carried out if the actual misfit reduction is positive (line
11) and comparable to the reduction by refinement (line 17). If
N =∞ and the maximum on lines 5 and 22 is not attained, we
define I∗ such that ri > supi∗∈IN\I0 r

i∗ − εk for all i ∈ I∗, where
εk ↘ ε.

Note that the misfit functional J (or J) might be replaced by any
differentiable cost functional. Therewith, the proposed algorithm
becomes a method for finding sparse solutions to general (un-
constrained) minimization problems. Indeed, Algorithm 1 can be
viewed as a special case of the following more general algorithm
for minimizing a cost functional J over a separable Hilbert space
X with (4.1):

Algorithm 2. .
1 Choose coarsest index set I0.
2 Compute a minimizer x0 of J over span{φi : i ∈ I0}
3 While max{|J ′(xk)φi∗ | : i∗ ∈ {1, . . . ,N} \ Ik} > ε do

4 Compute (x̃k, i+) as

argmin{J(x) : x ∈ span{φi : i ∈ Ik ∪ {i∗}}, i∗ ∈ I∗}



4.1 adaptive discretization 33

5 where I∗ = argmax{|J ′(xk)φi∗ | : i∗ ∈ {1, . . . ,N} \ Ik}

6 and set Ĩk := Ik ∪ {i+}.
7 If J(x̃k) < J(xk) and l+ ∈ Ik can be selected such that

8 min{J(x) : x ∈ span{φi : i ∈ Ĩk \ {l+}}}
6 (1− ρ)J(xk) + ρJ(x̃k)

9 set Ik+1 = Ĩk \ {l+}

10 and xk+1 ∈ argmin{J(x) : x ∈ span{φi : i ∈ Ĩk \ {l+}}}
11 else

12 set Ik+1 = Ĩk

13 and xk+1 = x̃k.

According to a standard result in optimization, the minimiza-
tion problems on lines 2, 4, and 8 of Algorithm 2 (correspondingly
lines 3, 8, and 15 of Algorithm 1) are solvable if J is bounded
from below, coercive (i. e., from boundedness of J(x) bounded-
ness of x follows), and weakly lower semicontinuous. For the
misfit functional J as in (4.5), these properties can be concluded
under appropriate assumptions on F:

Lemma 4.1. Assume that a sparse solution x† to (1.1) exists, i. e., such
that I† in (4.3), (4.4) is finite. Let F be weakly continuous and Gateaux
differentiable and let its derivative satisfy nullspace invariance

∃C > 0 ∀x ∈ X ∃Rx : Y→ Y : F ′(x) = RxF
′(x†) with ‖R−1x ‖ 6 C

(4.12)

as well as finite basis injectivity at x†, i. e.,

For any finite index set Ĩ ⊆ {1, . . . ,N}, the restriction of
F ′(x†) to span{φ(N)

i : i ∈ Ĩ} is injective.

Then for any finite index set I ⊆ {1, . . . ,N} the restricted misfit
functional J|span{φi : i∈I} with J as in (4.5) is bounded from below, co-
ercive, and weakly lower semicontinuous.

Hence, there exists a minimizer of (4.2) and therfore, via (4.1), of
(PI).

Consequently, if I0 is finite, then Algorithm 1 is well-defined.

Proof. J is obviously bounded from below by zero, and weak
lower semicontinuity follows from weak continuity of F and
weak lower semicontinuity of the norm. So it only remains to
show coercivity: By the second triangle inequality and (1.2), we
have

J(x) >
1

2

(∥∥∥F(x) − F(x†)∥∥∥− δ)2
where by Gateaux differentiability and (4.12), we can write∥∥∥F(x) − F(x†)∥∥∥ =

∥∥∥∥∥
∫1
0

Rx(x
† + θ(x− x†))dθF ′(x†)(x− x†)

∥∥∥∥∥
>
1

C

∥∥∥F ′(x†)(x− x†)∥∥∥
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so that finite basis injectivity applied to the index set I∪ I† implies
coercivity. ut

Proposition 4.2. Let the assumptions of Lemma 4.1 be satisfied and
let the sequences xk, Ik, Jk be generated by Algorithm 1. Then

(i) The sequence Jk of cost function values is monotonically decreas-
ing.

(ii) Algorithm 1 stops after K 6 2N (i. e., finitely many, if X is finite
dimensional) steps.

(iii) If δ = 0, ε = 0 then

(a) If Algorithm 1 stops after K steps (e. g., if X is finite di-
mensional, cf (ii)), then xK =

∑
i∈IK x

K
i φi solves (1.1) in

a least squares sense, i. e., for x∗ = xK

J ′(x∗) = F ′(x∗)∗(F(x∗) − y) = 0 (4.13)

(b) If Algorithm 1 does not stop after finitely many steps (hence
N =∞ by (ii)), then

sup{|〈F(xk) − y, F ′(xk)φi〉| : i ∈ IN}→ 0 as k→∞
(4.14)

Hence, if additionally the mapping X→ l∞, x 7→ (〈F(x) −
y, F ′(x)φi〉)i∈IN is (weakly) sequentially closed, then ev-
ery (weak) accumulation point x∗ of (xk =

∑
i∈Ik x

k
iφi)k

solves (4.13).

Proof. Monotonicity (i) of the cost function values follows from
the fact that

• refinement increases the subspace over which the minimum
is taken and

• coarsening is only done if refinement has yielded a strict
decrease and coarsening does not deteriorate this decrease
too much. (It is readily checked that lines 11 and 17 imply
that the cost function value after coarsening is strictly lower
than the one before refinement)

To see (ii) note that there are at most 2N possiblilities for
choosing Ik. Moreover, the strategy of coarsening only if the cost
function is reduced, avoids cycles as follows: Assume that for
some k,m ∈ IN, we have Ik+m = Ik, hence Jk+m = Jk. Due to
the fact that the function values are monotonically decreasing, we
have Jk = Jk+1 = · · · = Jk+m, so no coarsening is done during
these steps and therefore |Ik+m| = |Ik+m−1|+ 1 = · · · |Ik|+m,
which gives a contradiction to Ik+m = Ik.
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Assertion (iii)(a) follows from the fact that if the stopping
criterion is reached after finitely many steps, the algorithm yields
a stationary point of the misfit function: Namely, for i ∈ IK,
∂J
∂xKi

(xK) vanishes since xK solves (PI
K
), and for i 6∈ IK∗ , ∂J

∂xKi
(xK)

vanishes since 0 = λi = | ∂J
∂xKi

(xK)| by (4.6). Hence, we get, for

xK =
∑
i∈IK x

K
i φi:

∀i ∈ {1, . . . ,N} : 0 =
∂J

∂xKi
(xK) = J ′(xK)φi

hence, by taking all possible linear combinations, for all x ∈ X :

J ′(xK)x = 0, i. e., (4.13) holds.
To see assertion (iv), we use the fact that for any cost function

Ĵ that is bounded from below and has Lipschitz continuous
derivative on its level set {x ∈ X̂ : Ĵ(x) 6 Ĵ(x0)}, to any descent
direction d at x, there exists an efficient stepsize choice teff (e. g.,
according to the Wolfe Powell rule, see, e. g., Theorem 5.3 in [29])
such that

Ĵ(x̂+ teffd) 6 Ĵ(x) − θ(Ĵ
′(x)d/ ‖d‖)2

with θ ∈ (0, 1) independent of the dimension of X̂. Applying this
to X̂ = span{φi : i ∈ Ĩk = Ik ∪ {i+}} J̃ = J|X̂, x = xk and d = φi+ ,
we get that after refinement

J(x̃k) = min{J(x) : x ∈ X̂}
6 J(xk + teffφi+) 6 J(x

k) − θ|J ′(xk)φi+ |
2

= J(xk) − θ(sup{|J ′(xk)φi| : i ∈ IN}− εk)
2 (4.15)

where x̃k =
∑
i∈Ĩk x̃

k
iφi, εk ↘ 0 (cf. Remark 3), and where we

have used the definition of i+ as well as the fact that J ′(xk)φi = 0
for i ∈ Ik in the last equality. If we do coarsening, we have

J(xk+1) 6 (1− ρ)J(xk) + ρJ(x̃k)

6 J(xk) − ρθ(sup{|J ′(xk)φi| : i ∈ IN}− εk)
2

by (4.15), so

(sup{|J ′(xk)φi| : i ∈ IN}− εk)
2 6

1

ρθ
(J(xk) − J(xk+1) . (4.16)

If no coarsening is carried out, then (4.16) remains valid since
ρ ∈ (0, 1). Taking the sum on both sides of (4.16) yields

∞∑
k=0

(sup{|J ′(xk)φi| : i ∈ IN}− εk)
2 6

1

ρθ
J(x0) ,

which implies (4.14). ut

The assertions of Proposition 4.2 obviously remain valid for
the more general setting of Algorithm 2 for any J that is bounded
from below, coercive, and weakly lower semicontinuous.

Some further remarks are in order:
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Remark 4. Obviously, the refinement indicators are just entries
of the gradient vector. Nevertheless, Algorithm 1 is not just a
gradient method, since no gradient steps are taken, but first order
sensitivity information is only used to select degrees of freedom.
The actual step is done by solving a minimization problem over
the selected index set. One could possibly enhance the method
by additionally using second order sensitivity information for
selecting indices. On the other hand, the strategy of adding the
degree of freedom that yields the largest misfit decrease reminds
of a Greedy type algorithm (cf., e. g., [14], [21], [88]).

Remark 5. At this point we would like to clarify the correspon-
dence of our setting to the concepts from [10], [9], [17]:

• The searched for quantity in [10], [9], [17] is a transmissivity
function that is allowed to take different values on each cell
of an underlying computational grid; i. e., X is the space of
piecewise constant functions with possible discontinuities
over all grid lines.

• In [10], [9], [17], two different ways of grouping cells are
used, namely zones and cuts. There is an obviuos one-to-one
correspondence between

– specifying the values of transmissivities on each zone
of a zonation and

– specifying the jumps of these transmissivities over
each interface (cut) generating this zonation.

Here we do not distinguish between zones representation
and cuts representation. Note that the φi in (4.1) need not
be linear independent.

• Therewith, our degrees of freedom i correspond to cuts and
the relation (4.1) corresponds to the first part of the proof
of Lemma 2 in [9], which consists of showing that each cell
can be represented by a linear combination of cuts.

• The natural relation between single cells (namely by spatial
closeness to each other) is used to motivate coarsening in
[10], [17]: There, coarsening is attempted whenever a cut
divides a zone into more than two sub-zones. Since we
do not distinguish between the zone representation and
the cuts representation there is no analog to this condition
for coarsening here. Instead we use a criterion based on
cost function values (see Remark 3 above). For particular
applications one might think of finding problem specific
analogs to the coarsening condition from [10], [17].

Remark 6. For ill-posed operator equations

F(x) = y (4.17)
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on an infinite dimensional Hilbert space X∞ with F : X∞ → Y

Algorithm 1 can be used in several ways:

• The most straightforward approach is to apply it to the
Tikhonov regularized version of (4.17), i. e., to replace J by
J+ αR with α > 0 and R some regularization term, e. g.,
R = ‖x− x0‖2.

• As in [9], one might think of Algorithm 1 as a method
for solving a finite dimensional approximation of (4.17):
Considering a sequence Xn = span{φ(n)

1 ,φ(n)
2 , . . . ,φ(n)

n } of
finite dimensional subspaces of X∞, we therewith obtain
a solution xK := x∗n to the projected normal equation type
problem

ProjXnF
′(x∗n)

∗(F(x∗n) − y
δ) = 0 and x∗n ∈ Xn

(cf. (4.13)). Convergence to a solution of the infinite dimen-
sional problem F(x) = y in the sense of a regularization
method therefore pertains to regularization by discretiza-
tion in pre-image space, as introduced in Chapter 2.

• Possible regularizating properties of Algorithm 1 itself for
N =∞ might rely

(a) on regularization by discretization with the special
choice of the added (and removed) degrees of free-
dom according to the criteria on lines 7, 9, 14, 16 of
Algorithm 1;

(b) on early stopping, according to line 6 of Algorithm 1,
with ε chosen in dependence of the noise level, as can
be seen in the numerical experiments.

Referring to (a) note that if coarsening is omitted, the meth-
od is similar to regularization by discretization in preimage
space, but here the sequence of nested spaces

Xk = span{φi : i ∈ Ik}

is not given a priori but chosen a posteriori such that
Ik = Ik−1 + i+ with |J ′(xk)φi+ | = maxi∈IN |J ′(xk)φi|. In
this context, we mention that in the example of noncon-
vergence of regularization by discretization in pre-image
space as given in [38], application of our refinement strategy
indeed leads to convergence.

4.2 an application in systems biology

4.2.1 Motivation

The reconstruction of gene networks has recently become a chal-
lenge in the area of genetics and bioinformatics. This is due
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to advances in the micro-array technologies, which enable to
measure gene expression levels on a genome wide scale. Using
this micro-array data sets it is possible to do reverse engineer-
ing of the underlying network structures. This is in general a
highly underdetermined sparse inverse problem, because only
few measurements are available and not all genes interact with
each other.

There have been different approaches to identify such networks,
namely Bayesian methods, Boolean networks and Ordinary Dif-
ferential Equation (ODE) models (see, e. g., [84] for an overview
and further references)

4.2.2 Modelling

For modelling a gene network we used the ODE approach intro-
duced by Yeung, Tegner and Collins [92], which was also used by
[71, 84]. There, the dynamics of the gene regulation are modelled
by a simple linear ODE system consisting of N equations, one for
every gene. For a system of N genes, the expression level of the
i-th gene is modelled by:

u̇i(t) = −λiui(t) +

N∑
j=1

wijuj(t) + bi(t) + εi(t) (4.18)

where the λis are the self-degradation rates of the i-th gene (cf.
[2]), the bis represent external perturbations or stimuli, and εi
stands for noise. The constants wij, which denote the influence of
the j-th gene on the i-th, are the most interesting ones. If wij > 0,
the gene j activates the i-th gene, if wij < 0, j represses i and
if wij = 0, there is no interaction between these two genes. As
mentioned above, not all genes interact with each other, so the
matrix W = (wij)i,j∈N has only a few non-zero entries. There
are some additional assumptions on gene networks. In detail,
gene networks are thought as “small-world” networks, mean-
ing they have a small characteristic path length, smaller than
regular random networks, but could also have a high cluster-
ing coefficient, cf. [90, 6]. The “small-world” phenomenon was
first introduced by the famous social psychologist Stanley Mil-
gram, who examined the average path length for social networks.
Another example for the "small-world" phenomena would be
the Erdös Number Project, which studies research collaboration
among mathematicians.

The main task in gene network reconstruction is to identify the
sparse connectivity matrix W̃ of the N genes. With W̃ =W − λI,
and λT = (λ1, .., λN), (4.18) can be rewritten as

u̇ = W̃u+ b+ ε (4.19)

where bT = (b1, ..,bN) and εT = (ε1, .., εN).
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We test our algorithm for this model (4.19), once with zero
noise and once with a small noise level. Here we set the per-
turbations b to zero and assume, that we have measurements
for u and u̇. Therewith, given (u1, . . . uT ) = (u(t1), . . . ,u(tT )),
at T time instances t1 . . . , tT , the forward operator A : W̃ 7→
(u̇(t1), . . . , u̇(tT )) is linear and {φi : i ∈ {1, . . . ,N2}} is just the
canonical basis of IRN×N.

4.2.3 Network Generator

In order to define test examples, we use the gene network gen-
erator from Steinke et al., which can be downloaded under the
link given in [84]. The network generator samples small-world
networks according to the description given in [1]. For the dynam-
ics of the network see the additional file of [84]. The generator
provides among others a matrix W̃. This matrix is sparse, incorpo-
rates “small-world” phenomena and most of its non-zero entries
are in [−1, 1]. There are seldom entries greater than one, see the
remark in the additional files to [84]. We took this matrix as the
system matrix of (4.19) to get an exact solution of the inverse
problem. In Figure 12 a random network with 20 genes created
with the generator is visualized.

Figure 12: Picture of a random network consisting of 20 genes, created
with the gene network generator in [84] and Cytoscape [82].

4.2.4 Numerical Results

As mentioned earlier we test Algorithm 1 for equation (4.19),
with zero perturbations and first of all with exact data, assuming
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that we have measurements for u and u̇. For comparison, we also
apply the wellknown Iterative Soft Thresholding (IST) algorithm
from Daubechies, Defrise and DeMol, see [19], making use of the
description given in [35]:

xn+1 = Sγω(xn − γA∗(Axn − yδ))

where we choose γ such that the restriction to the forward op-
erator ||A∗A|| < 1, mentioned in [19], holds. In the shrinkage
operator Sγω defined component wise by

Sw(x)i = Sw(xi) = max{0, |xi|−w}sgn(xi)

we choose a small threshold ω = 0, 001.
As can be seen in Figure 12 every gene sampled by the net-

work generator regulates itself. This is the case for almost every
sampled network. Therefore we start Algorithm 1 not with an
arbitrary index set, but with the the one corresponding to a di-
agonal matrix W̃. It is one of the advantages of the proposed
method, that one can choose the coarsest index set according to
some a priori knowledge about the solution. In our case, even if
one of the sampled genes is not selfregulatory, the wrong edge is
deleted during the iteration, because of the coarsening process.

For comparison of the two algorithms we count the number of
discrepancies E between the real network W̃ex and the identified
ones WRefCoa,WIST . This is done by checking the accordance of
every entry of W̃RefCoa and W̃IST to the corresponding entry of
W̃ex (the same error measure is used in [92]):

E =

N∑
i=1

N∑
j=1

eij

with

eij :=

1 if |w̃exij − w̃RefCoaij | > ε̃

0 else

and ε̃ some prescribed value, chosen according to the noise level
(for exact data we take ε̃ = 10−3). In Figure 13 the number of
wrong edges E versus the number of measurements T is plotted
for a gene network with N = 30 genes. Additionally we display
the required computational time for both algorithms.

In Figure 13, we can see that for a small number of measure-
ments there are many wrong edges, whereas with increasing T
the error decays until we have exact recovery of the network. The
IST however is sometimes not able to detect the right solution and
produces a persistently higher number of wrong edges. The com-
putational time required with the IST grows much stronger with
the number of given measurements than the time for Algorithm
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Figure 13: Number of wrong edges versus number of measurements for
Algorithm 1 and for the Iterative Soft Thresholding algorithm
(left); Computational time for both algorithms (right); Both
for a network of 30 genes.

1. This happens because the matrix used in both algorithm gets
larger with growing number of measurements. But in Algorithm
1, we only solve a smaller problem in each iteration step, depend-
ing on the used index set. With this reduced problem, the size of
the used matrix in the k-th iteration step reduces from NT ×N2
to NT × |Ik|, with |Ik| much smaller than N2.

Figure 14: Number of wrong edges E for gene networks with N =

30, 40, 50, 60, 70 genes as a function of the number of mea-
surements T .

In Figure 14 the numbers of wrong edges for N = 30, 40, 50, 60
and 70 genes are plotted for the Algorithm 1. Here, a similar
behaviour can be seen as in Figure 13. For a sufficient large
number of measurements the network is exactly recovered.
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Figure 15: Comparison of Algorithm 1 with the Iterative Soft Threshold-
ing algorithm for 1% Gaussian noise in the measurements.
Number of wrong edges versus Number of measurements
(left); Total error (right).

In our next test, we add a one per cent Gaussian noise to the
data and compare the two algorithms for a network with 10

genes, see Figure 15. Both algorithms cannot recover the exact
network. But the number of wrong edges is significantly lower
for the refinement and coarsening strategy than for the iterative
thresholding algorithm. The same holds true for the total error,
which we measured in the Frobenius Norm

Etotal = ||W̃ex − W̃REFCOA/IST ||Fro

(see right side of Figure 15), so that we get the difference between
the exact network entries and the computed ones. It can be seen
that the error tends to almost zero for a sufficiently large number
of measurements, similarly to the exact case.

For larger noise level and larger number of genes, the condition
of the problem gets even worse. We applied both algorithms to
a test network of N = 40 genes and added δl∞ = 5% gaussian
noise to every measurement. As in the case of the smaller noise
level the exact network structure is not reconstructed exactly (see
Figure 16). Once again the number of wrong edges and the com-
putational time for the Iterative Soft Thresholding is significantly
higher than of Algorithm 1. IST produces more than 100 wrong
edges out of 1600 possible connections, whereas the number for
Algorithm 1 is less than 50, see Figure 17. The threshold ε̃ for
counting the wrong edges is set to ε̃ = 0.02 here. For both algo-
rithms the total error, which is plotted in a logarithmic scale on
right side of Figure 16, gets smaller for larger number of mea-
surements.
To obtain these results, we have to regularize according to the

noise level. We achieve the required regularization by early stop-
ping the refinement and coarsening procedure. For this purpose,
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Figure 16: Comparison of Algorithm 1 to the Iterative Soft Thresholding
for a network with 40 Genes and 5% gaussian noise on the
data.

Figure 17: Nonzero entries of the connectivity matrix for the network of
Figure 16 taking into account 40 measurements. (Generated
with the Matlab function spy())
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we choose the tolerance ε in line 6 of Algorithm 1 proportional
to the noise level, realizing a generalized discrepancy princi-
ple. Note that as opposed to the classical discrepancy principle,
where the stopping rule is

∥∥F(x) − yδ∥∥
L2
6 τδL2 , we here have∥∥(〈F ′(x)∗F(x) − yδ,φi〉)i∈{1,...,N}

∥∥
l∞ 6 ε with ε proportional to

an appropriate power of δL2 or δl∞ , which is yet to be investigated
theoretically. In our computations for Figure 16 and Figure 17,
the threshold is set to ε = 0.38 ∗ δl2 . The same has to be done for
the IST, where we have to choose the threshold value according
to the noise level (for Figure 16 and Figure 17, the threshold is
set to ω = 0.49 ∗ δl2).

4.3 back to compressed sensing

As we have seen the algorithm is very efficient for sparse linear
inverse problems, where really few non-zero entries of x† exist.
So it might be a good choice for the above introduced example
of compressed sensing (Example 3). In Figure 18 a comparison
of the Tikhonov solution with `2 regularization term against the
minimizer of the Refinement and Coarsening Algorithm in case
of exact data is shown. There is almost no difference between the
exact solution and the achieved minimizer of the Refinement and
Coarsening Algorithm.
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Figure 18: Comparison of Tikhonov solution with `2 squared error
norm against the solution of the Refinement and Coarsening
algorithm in case of noise free data. The error of the RefCoa
solution is 3.3 · 10−14.

In case of noisy data the Refinement and Coarsening Algorithm
still provides a good approximation of the exact solution, see
Figure 19. However there are some wrong spikes, with very small
value outside the support of x†.

In Chapter 7 we will again consider the compressed sensing
example. There we will reconstruct the exact signal additionally
with some other wellknown algorithms for sparse inverse prob-
lems and provide an error analysis of the different minimizers.
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But we want to mention already here, that with none of the other
methods we used, we got as good results. Hence the Refinement
and Coarsening algorithm seems to be almost perfect for the
problem of compressed sensing.
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Figure 19: Solution of the Refinement and Coarsening Algorithm
against the exact solution, where 5% Gaussian noise is added
to the data. The exact solution (dashed line) is hardly distin-
guishable.

4.4 summary

In this chapter, we used ideas from [10], [9], [17] to generate
an adaptive sparsity enhancing algorithm for general inverse
problems. In our numerical tests we saw, firstly that the resulting
method is able to determine the exact solution of a linear sparse
inverse problems (or in words of the Systems Biology application,
can determine the exact network structure given a sufficient
large number of measurements). And secondly that the proposed
method is very well suited for problems with a very small number
of non-zero coefficients.

Therewith, we have introduced our first approach to solve
sparse inverse problems. A deterministic projection algorithm.
With this algorithm it is possible to identify gene networks, with-
out supplementary procedures, like experimental design (cf. [84])
or robust regression (cf. [92]). Additionally we applied the algo-
rithm to the test problem of compressed sensing, for which the
algorithm yields very good reconstruction in the noise free, as
well as in the noisy case.

In the next chapter we will have a closer look at regularization
in preimage space, already considered in Remark 6 of this chapter
as well as introduced in Chapter 1.





5
C O N V E R G E N C E A N A LY S I S O F
R E G U L A R I Z AT I O N I N P R E I M A G E S PA C E

In the last chapter we came across the approach of regularization
by discretization in preimage space. In this chapter we will pro-
vide a convergence analysis for regularization in preimage space
for the linear case, and later on for the general nonlinear situation.
For the latter generalization we follow two approaches, namely
a variational formulation and an operator equation formulation.
This analysis is motivated by the fact that on one hand in practice
very often inverse problems are just discretized and then solved,
on the other hand this discretization itself can be expected to
have a regularizing effect. Again we present some numerical
results at the end of this chapter to illustrate the results of our
convergence analysis. This time we will come back to Example 2,
the parameter identification in a PDE setting.

5.1 introduction

Regularization by discetization in preimage space (called least
squares method in [69]) is often used in practice due to its easy
implementation. Additionally it is of particular interest due to
the possibility of using problem adapted ansatz functions for
the inverse problem solution. As already mentioned in the intro-
duction, previous results in the literature on this approach for
linear ill-posed problems [38, 40, 64], and especially a counterex-
ample by Seidman [81] indicate, that convergence can not occur
for general x† ∈ X but only under special assumptions on the
solution.

Here we formulate a convergence condition that assumes suf-
ficiently fast convergence of the approximation error in image
space to compensate for the growth of the norm of the inverse
of the projected forward operator. This sufficiently fast conver-
gence of the approximation error in its turn will be implied by a
sufficiently strong source condition and hence is satisfied for suf-
ficiently regular solutions, along with appropriate approximation
properties of the ansatz spaces Xn.

We wish to mention that the regularizing effect of discretiza-
tion has been studied in a very general setting with possible
discretization of both preimage and image space, e. g., in Chapter
3 of [60] and in [66] for the linear case. The latter also provides
results on convergence and convergence rates for noisy data with

47
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an a priori and a Lepskii type a posteriori discretization level
choice.

The results of this chapter especially pertain to taking into
account noisy data by means of a discrepancy principle type a
posteriori discretization level choice, as well as to extension to
the nonlinear situation.

Before we go on, we recall some of the basics already intro-
duced in Chapter 2. We consider a sequence (Xn)n∈IN of finite
dimensional subspaces of the preimage space Xn ⊆ X, along
with the corresponding orthogonal projections Pn := ProjXn , and
assume that ‖(I− Pn)x†‖ → 0 as n → ∞. (The latter is the case
e. g., if Xn+1 ⊆ Xn and

⋃
n∈IN Xn = X.) Therewith we define a

regularized approximation as a solution of the finite dimensional
minimization problem

xδn ∈ argmin{‖F(zn) − yδ‖2 : zn ∈ D∩Xn} , (5.1)

an approach which is also often called least squares projection.
The discretization level n has to be chosen appropriately in

order to balance between the approximation error, that decays
as n→∞ and the noise propagation, that becomes stronger for
larger n. We here determine n∗ by the discrepancy principle

n∗ = min{n ∈ IN : ‖F(xδn) − yδ‖ 6 τδ} (5.2)

(with τ > 1 in the linear case, and τ > 1+η
1−η , with η ∈ (0, 1) as

in (5.3) below in the nonlinear case). This corresponds to the
discrepancy principle for choosing the regularization parameter
α, as stated in the introduction see (2.9).

A very efficient approach especially in the context of nonlinear
problems is to apply a multilevel strategy for the computation of
the regularized solution, i. e., to start on the coarsest level n = 1

of projection and successively compute the solution on level n
making use of information on the solution on level n− 1, see,
e. g., [53, 59, 54, 55, 56]. When doing so, the discrepancy principle
just acts as a stopping rule for this multilevel iteration.

It is well-known that a convergence analysis for nonlinear ill-
posed problems requires some assumption on the structure of the
nonlinearity. Here we will assume that the often used Scherzer
condition (also called tangential cone condition, cf. [79]) holds:∥∥F(x) − F(x̄) − F ′(x)(x− x̄)∥∥ 6 η ‖F(x) − F(x̄)‖ ∀x, x̄ ∈ D (5.3)

with η ∈ (0, 1), which implies

‖F(x) − F(x̄)‖ 6 1

1− η

∥∥F ′(x)(x− x̄)∥∥
and, ∥∥F ′(x)(x− x̄)∥∥ 6 (1+ η) ‖F(x) − F(x̄)‖ .



5.2 the linear case 49

Note that for this purpose F ′(x) needs not necessarily be a Fréchet
derivative. It suffices to have a bounded linear operator called
F ′(x) mapping between X and Y and such that (5.3) holds.

In what follows we will assume that an exact solution x† of
(1.1) exists, i. e., F(x†) = y. Moreover, to simplify the exposition
we assume that

∀x ∈ D : N(F ′(x)) = {0}

which implies uniqueness of the solution to F(x) = y in the linear
case and by (5.3) also in the nonlinear case: From

0 = ‖F(x) − F(x̃)‖ > 1

1+ η
‖F ′(x)(x− x̃)‖

it follows that x− x̃ ∈ N(F ′(x)) = {0}. Note however, that most
of our results can be generalized to operators with nontrivial
nullspaces.

5.2 the linear case

In this section we first of all consider the linear case A ∈ L(X,Y),
so that (1.1) becomes

Ax = y . (5.4)

The first order necessary condition for a minimizer of (5.1), i. e.,
of

min
zn∈Xn

‖Azn − yδ‖2 = min
zn∈Xn

‖APnzn − yδ‖2 (5.5)

implies

(APn)
∗(APnzn − yδ) = 0 (5.6)

hence

APnzn − yδ ∈ N((APn)
∗) = R(APn)

⊥ = Y⊥n .

i. e.,

Qn(APnx
δ
n − yδ) = 0 (5.7)

with the orthogonal projections Qn := ProjYn , and the subspaces
Yn := AXn ⊆ Y, see also [60, 61, 66] for a convergence analysis
of xδn defined by (5.7) with general Yn, i. e., not necessarily Yn =

AXn.
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5.2.1.1 Well-definedness

Lemma 5.1. The index n∗ according to the discrepancy principle (5.2)
with τ > 1 is well-defined.

Proof. The residual can be represented as follows:

Axδn − yδ =(I−Qn)(Ax
δ
n − yδ) = −(I−Qn)y

δ

=− (I−Qn)Ax
† + (I−Qn)(y− y

δ)

=− (I−Qn)A(I− Pn)x
†+

(I−Qn)(y− y
δ)

(5.8)

where we have used Axδn ∈ Yn in the second and APnx† ∈ Yn in
the fourth equality. From (5.8), and ‖I−Qn‖ 6 1 we get

‖Axδn − yδ‖ 6 ‖A‖ ‖(I− Pn)x†‖︸ ︷︷ ︸
→0 as n→∞

+δ

hence ‖Axδn − yδ‖ 6 τδ for n sufficiently large. ut

Denote

αn := ‖(I− Pn)x†‖ , βn := ‖A(I− Pn)x†‖ (5.9)

γn := inf
zn∈Xn
zn 6=0

‖Azn‖
‖zn‖

= inf
zn∈Xn
zn 6=0

‖Azn‖
‖(APn)†APnzn‖

=

= inf
wn∈AXn
wn 6=0

‖wn‖
‖(APn)†wn‖

=
1

‖(APn)†‖
, (5.10)

where we have used the fact that by N(A) = {0} we have

N(APn)
⊥ = R(PnA∗) = PnR(A∗) = PnN(A)⊥ = PnX = Xn.

(5.11)

In the following proofs we will use the error decomposition

xδn − x† =xδn − Pnx
† − (I− Pn)x

†

=(APn)
†APn(x

δ
n − Pnx

†) − (I− Pn)x
†

=(APn)
†(yδ −APnx

†) − (I− Pn)x
†

=(APn)
†(yδ − y)+

(APn)
†A(I− Pn)x

† − (I− Pn)x
† ,

(5.12)

where we have used (5.7) and (5.11).
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5.2.1.2 Stability for fixed discretization level

Proposition 5.2. Let n be fixed and let (yk)k∈IN be a sequence con-
verging to yδ: ‖yk − yδ‖ → 0 as k→∞ and denote by xkn the corre-
sponding regularized solutions according to (5.7) with yδ replaced by
yk.

Then
‖xkn − xδn‖ → 0 as k→∞

Proof. From (5.12) we obtain

‖xkn − xδn‖ = ‖(APn)†(yk − yδ)‖ 6 ‖(APn)†‖‖yk − yδ‖ → 0

as k→∞. ut

5.2.1.3 Convergence

Theorem 5.3. If

βn

γn
→ 0 ,

βn−1
γn

→ 0 , αn → 0 , as n→∞ (5.13)

then for n∗ = n∗(δ) according to (5.2)

‖xδn∗(δ) − x
†‖ → 0 as δ→ 0 .

Proof. From (5.12) we get

‖xδn − x†‖ 6 δ

γn
+
βn

γn
+αn . (5.14)

Let δm be an arbitrary sequence converging to zero and ym a
sequence of data satisfying ‖ym − y‖ 6 δm. We denote by nm
the corresponding index according to the discrepancy principle
and by xδmnm the approximation on level nm according to (5.7)
with yδ replaced by ym.

Consider first the case that nm →∞ as m→∞. Then accord-
ing to (5.8) we can estimate as follows:

τδm 6 ‖Axδmnm−1−ym‖ 6 ‖(I−Qnm−1)A(I−Pnm−1)x
†‖+ δm ,

(5.15)

hence

δm

γnm
6

1

τ− 1

βnm−1

γnm
, (5.16)

so by (5.14) we get

‖xδmnm − x†‖ 6 1

τ− 1

βnm−1

γnm
+
βnm
γnm

+αnm → 0

as m→∞.
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In the alternative case that (nm) has a finite accumulation point
there exists an N ∈ IN and a subsequence (mk)k∈IN such that

∀k ∈ IN : nmk
= N .

From (5.8) we get

τδmk
> ‖Axδmknmk

− ymk
‖ > ‖(I−QN)A(I− PN)x†‖− δmk

hence

(τ+ 1)δmk
> ‖(I−QN)A(I− PN)x†‖ (5.17)

which with k→∞ implies

(I−QN)Ax
† = (I−QN)A(I− PN)x

† = 0

i. e., Ax† ∈ AXN, i. e., ∃zN ∈ XN : Ax† = AzN i. e., ∃zN ∈ XN :

x† − zN ∈ N(A) = {0}, i. e., x† ∈ XN, i. e., (I− PN)x† = 0, hence
by (5.14)

‖xδmknmk
− x†‖ 6 δmk

γN
→ 0

as k→∞. ut

Remark 7. Note that the convergence conditions of this theorem
imply the convergence criterion lim supn→∞ ‖xn‖ 6 ‖x†‖ for
exact data from [38], since

‖(APn)†y‖ 6 ‖(APn)†APnx†‖+ ‖(APn)†A(I− Pn)x†‖
6 ‖Qnx†‖+ ‖(APn)†‖ ‖A(I− Pn)x†‖ .

The difference to the convergence results from Chapter 3 in
[60] is that we consider convergence not for all x† ∈ X but for
a particular x† that might have higher regularity than typical
elements of X so that divergence to infinity of the factor 1

γn

due to unboundedness of A† might indeed be compensated by
sufficiently fast convergence of the approximation error βn.

Indeed, note that ‖A(I − Pn)x†‖ is likely to go to zero at a
faster rate than ‖(I− Pn)x†‖, since A typically has a smoothing
property. Under an additional source condition,

x† = (A∗A)νw

for some index ν > 0 and some w ∈ X the rate of convergence of
βn to zero will still be improved: If the smoothing property of
A can be quantified via boundedness as a mapping in a scale of
spaces:

‖(A∗A)ν‖X→Xν 6 Cν

and the approximation property of Xn scales according to

‖I− Pn−1‖Xν→X 6 fν(n) , ‖I− Pn−1‖X1/2→X 6 f1/2(n) ,
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(one might think of Xn being finite element spaces with mesh
sizes h = 1

n and of Xν being Sobolev spaces of order s = s(ν)),
then ∥∥∥A(I− Pn−1)x†∥∥∥ =

∥∥∥(A∗A)1/2(I− Pn−1)2(A∗A)νw∥∥∥
6
∥∥∥(I− Pn−1)(A∗A)1/2∥∥∥ ·
‖(I− Pn−1)(A∗A)ν‖ ‖w‖

6fν(n)f1/2(n) ‖w‖ (5.18)

Typically, for sufficiently good approximation spaces (in the con-
text of finite elements these will have to be of sufficiently high
order) the decay of fν(n) will be faster for larger ν. On the
other hand, γn is independent of the solution, hence the product
fν(n)f1/2(n)

1
γn

will tend to zero for ν sufficiently large, i. e., for
sufficiently smooth solutions.

Note the necessity of considering a particular solution instead
of norm estimates in view of the fact that e. g., in case of nested
spaces Xn−1 ⊆ Xn we have

γn 6 inf
zn∈Xn∩X⊥n−1

zn 6=0

‖Azn‖
‖zn‖

= inf
zn∈Xn∩X⊥n−1

zn 6=0

‖A(I− Pn−1)zn‖
‖zn‖

6 ‖A(I− Pn−1)‖ ,

such that estimating βn−1 6 ‖A(I− Pn−1)‖
∥∥x†∥∥ would not en-

able (5.13).

Expressing a possible rate of convergence in (5.13) in terms of
β̃n := ‖(I−Qn)A(I−Pn)x†‖, we can easily deduce a convergence
rates result in terms of δ.

Corollary 5.4. Let, with some functions g1,g2,g3 : IR+ → IR+ sat-
isfying

gi(0) = 0 , gi monotonically increasing (5.19)

and

∀C > 1 ∃C̄(C) > 0 ∀λ > 0 : gi(Cλ) 6 C̄(C)gi(λ) (5.20)

for i = 1, 2, 3, the following rates hold in (5.13)

βn

γn
= O(g1(β̃n)) ,

β̃n−1
γn

= O(g2(β̃n)) ,

αn =O(g3(β̃n)) , (5.21)

as n→∞. Then

‖xδn∗(δ) − x
†‖ = O(max{g1(δ),g2(δ),g3(δ)}) as δ→ 0
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Proof. Analogously to (5.16), (5.17) we get

δ

γn∗
6

1

τ− 1

β̃n∗−1
γn∗

, (τ+ 1)δ > β̃n∗ .

Inserting this and the rates assumptions (5.21) into (5.14), we
directly get the assertion. ut

Remark 8. Typical functions satisfying (5.19), (5.20) are σ 7→ σκ,
σ 7→ | lnσ|−q with κ,q > 0.

Consider the special case ofA being compact and the subspaces
Xn = span{u1, . . . ,un}, where (σj,uj, vj)j∈IN is a singular system
for A (i. e., the method reduces to truncated singular value decom-
position). Then a source condition of the form x† = f((A∗A))w,
with an index function f, (i. e., f(0) = 0, f monotonically increas-
ing) implies

β̃n = βn =
( ∞∑
j=n+1

σ2j f(σ
2
j )
2〈w,uj〉2

)1/2
,

γn > σn,

αn =
( ∞∑
j=n+1

f(σ2j )
2〈w,uj〉2

)1/2
,

so provided the function Θ(λ) =
√
λf(λ) is strictly monotonically

increasing (e. g., if f(λ) > 0 for λ > 0), we obtain that (5.21) holds
with g1 = g2 = g3 = f ◦Θ−1, which yields the usual rates under
such source conditions, see, e. g., Corollary 1 in [66].

5.3 the nonlinear case

In the linear case we have seen that the essential quantities for
showing convergence are αn, βn, γn defined as in (5.9), (5.10).
To deal with the nonlinear situation we define αn,βn(x),γn(x)
as in (5.9), (5.10) with A replaced by F ′(x).

In view of the two formulations (5.5), (5.6) we consider two
possible generalizations of the linear case, namely a variational
one and one based on a projected operator equation.

5.3.1 Nonlinear case via global minimizer

5.3.1.1 Well-definedness

First of all we show well-definedness of xδn according to (5.1).

Proposition 5.5. Assume that D ∩ Xn 6= ∅, and that F is weakly
sequentially closed, i. e., for all sequences (xk)k∈IN ⊆ D∩Xn(

xk ⇀ x∧ F(xk) ⇀ f
)
⇒

(
x ∈ D∧ F(x) = f

)
.

Then there exists a minimizer of the cost function Jn : D∩Xn → IR,
Jn(zn) = ‖F(zn) − yδ‖.
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Note that by membership of xk in the finite dimensional space
Xn, continuity of F and closedness of D∩Xn (see the assumptions
of Proposition 5.7 and Theorem 5.8 below) are sufficient for the
assumtions of Proposition 5.5.

Proof. Jn is coercive (i. e., boundedness of cost function values
implies boundedness of arguments): By (5.3) we have for all
zn ∈ D∩Xn and some fixed xn ∈ D∩Xn:

‖F(zn) − yδ‖ = ‖F(zn) − F(xn) + F(xn) − yδ‖

>
1

1+ η
‖F ′(zn)Pn(zn − xn)‖− ‖F(xn) − yδ‖

hence by (5.11) (with A replaced by F ′(xn)) we get

‖zn − xn‖ = ‖(F ′(xn)Pn)†F ′(xn)Pn(zn − xn)‖

6
1

γn(xn)
((1+ η)Jn(zn) + ‖F(xn) − yδ‖) .

Moreover, Jn is weakly lower semicontinuous due to weak
sequential closedness of F and weak lower semicontinuity of the
norm.

By a standard argument we therefore get existence of a mini-
mizer. ut

In the rest of this subsection we assume that xδn ∈ Xn is defined
as a (not necessarily unique) global minimizer of (5.1) according
to Proposition 5.5 and that

Pnx
† ∈ D , n ∈ IN (5.22)

Lemma 5.6. Let F be continuous, Pnx† → x† as n → ∞, and (5.22)
hold, and let for all n xδn be defined by (5.1).

Then the index n∗ according to the discrepancy principle (5.2) with
τ > 1 is well-defined.

Proof. By minimality of xδn and (5.22) we get the following esti-
mate of the residual

‖F(xδn) − yδ‖ 6‖F(Pnx†) − yδ‖
6‖F(Pnx†) − F(x†)‖+ δ (5.23)

Hence, by continuity of F and Pnx
† → x† as n → ∞ we get

‖F(xδn) − yδ‖ 6 τδ for n sufficiently large. ut

The following estimate of the error will be useful in our stability
and convergence proofs: By (5.3) we have

‖F ′(xδn)Pn(xδn − x†)‖− ‖F ′(xδn)(I− Pn)x†‖
6 ‖F ′(xδn)(xδn − x†)‖ 6 (1+ η)(‖F(xδn) − yδ‖+ δ) (5.24)
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hence by (5.10) with A replaced by F ′(xδn), (5.11), and (5.23)

‖xδn − x†‖ 6‖xδn − Pnx
†‖+ ‖(I− Pn)x†‖

6
1

γn(xδn)

(
‖F ′(xδn)(I− Pn)x†‖+

(1+ η)(‖F(xδn) − yδ‖+ δ)
)
+ ‖(I− Pn)x†‖

(5.25)

5.3.1.2 Stability for fixed discretization level

Proposition 5.7. Let F be continuous and satisfy (5.3), fix n, and let
(yk)k∈IN be a sequence converging to yδ: ‖yk − yδ‖ → 0 as k →∞, denote by xkn the corresponding regularized solutions according to
(5.1) with yδ replaced by yk and assume that D ∩ Xn is closed and
nonempty.

Then (xkn)k∈IN has a convergent subsequence and the limit of any
convergent subsequence of (xkn)k∈IN is a global minimizer of (5.1). If
this global minimizer is unique, then

‖xkn − xδn‖ → 0 as k→∞ .

Proof. Analogously to (5.23) we get by minimality of xkn and xδn
on one hand

‖F(xkn) − yk‖ 6 ‖F(xδn) − yk‖ 6 ‖F(xδn) − yδ‖+ ‖yk − yδ‖

‖F(xδn) − yδ‖ 6 ‖F(xkn) − yδ‖ 6 ‖F(xkn) − yk‖+ ‖yk − yδ‖

hence

|‖F(xkn)−yk‖−‖F(xδn)−yδ‖| 6 ‖yk−yδ‖ → 0 as k→∞ . (5.26)

On the other hand, for some fixed xn ∈ D ∩ Xn, we get by
minimality,

‖F ′(xδn)(xkn − xδn)‖ 6(1+ η)‖F(xkn) − F(xδn)‖

6(1+ η)
(
‖F(xkn) − yk‖+

‖F(xδn) − yδ‖+ ‖yk − yδ‖
)

6(1+ η)
(
‖F(xn) − yk‖

+ ‖F(xn) − yδ‖+ ‖yk − yδ‖
)

62(1+ η)
(
‖F(xn) − yδ‖+ c

)
where c is such that (by convergence) ‖yk − yδ‖ 6 c, hence by
(5.10) with A replaced by F ′(xδn) and (5.11),

‖xkn − xδn‖ 6
1+ η

γn(xδn)
(2‖F(xn) − yδ‖+ 2c) =: r ,
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so the sequence xkn lies in the bounded closed and finite di-
mensional – hence compact – set Br(xδn)∩Xn and therefore has
a convergent subsequence (xkmn )m∈IN. For any convergent sub-
sequence (xkmn )m∈IN of (xkn)k∈IN with limit x̃, by (5.26) and a
standard argument (see [25]) from ‖yk − yδ‖ → 0, continuity of
F and closedness of D∩Xn it follows that x̃ lies in D∩Xn and is
a global minimizer of ‖F(·) − yδ‖ over D∩Xn. Namely, we have
by minimality of xkn for all ∀xn ∈ D∩Xn :

‖F(xn) − yδ‖ > lim sup
k→∞

(
‖F(xn) − yk‖− ‖yk − yδ‖

)
> lim sup

k→∞
(
‖F(xkn) − yk‖− ‖yk − yδ‖

)
> ‖F(x̃) − yδ‖ .

In case of uniqueness of this global minimizer, a subsequence
subsequence argument yields convergence. ut

5.3.1.3 Convergence of global minimizers

Theorem 5.8. Let F be continuous and satisfy (5.3), assume that for
all n ∈ IN, D∩Xn is closed and nonempty, that (5.22) holds and that
xδn is defined as a solution to (5.1).

If

sup
x∈D∩Xn

βn(x)

γn(x)
→ 0 , sup

x̃,x∈D∩Xn

βn−1(x̃)

γn(x)
→ 0 , αn → 0 (5.27)

as n→∞, then for n∗ = n∗(δ) according to (5.2)

‖xδn∗(δ) − x
†‖ → 0 as δ→ 0

Remark 9. Instead of (5.27) we only need

βn(x
δ
n)

γn(xδn)
→ 0 ,

βn−1(Pn−1x
†)

γn(xδn)
→ 0 , αn → 0 , as n→∞

Proof. Analogously to the linear case we distinguish between two
cases

If nm →∞ as m→∞, then we use (5.23) to obtain

τδm 6 ‖F(xδmnm−1) − ym‖

6 ‖F(Pnm−1x
†) − F(x†)‖+ δm

6
1

1− η
‖F ′(Pnm−1x

†)(Pnm−1x
† − x†)‖+ δm (5.28)

hence
δm

γnm(x
δm
nm)

6
1

τ− 1

1

1− η

βnm−1(Pnm−1x
†)

γnm(x
δm
nm)

,
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so by (5.25) we get

‖xδmnm −x†‖ 6
βnm(x

δm
nm

))

γnm(x
δm
nm)

+
1+ η

1− η

τ+ 1

τ− 1

βnm−1(Pnm−1x
†)

γnm(x
δm
nm)

+αnm︸ ︷︷ ︸
→0

as m→∞.
If there exists an N ∈ IN and a subsequence (mk)k∈IN such that

nmk
= N for all k ∈ IN, we get

τδmk
> ‖F(xδmknmk

) − ymk
‖ = ‖F(xδmkN ) − ymk

‖

hence taking the limit on both sides and using stability for fixed
N (see Proposition 5.7) we get that x

δmk
N has a convergent subse-

quence and the limit x̃ of any convergent subsequence of x
δmk
N

satisfies F(x̃) = y, so x̃ is a solution.
By uniqueness of this solution, a subsequence subsequence

argument yields convergence. ut

5.3.2 Nonlinear case via Euler equation

5.3.2.1 Well-definedness

If the global minimizer according to Proposition 5.5 lies in the
interior of D, it will also satisfy the Euler equation

(F ′(xδn)Pn)
∗(F(xδn) − y

δ) = 0 , (5.29)

which implies

Qn(x
δ
n)(F(x

δ
n) − y

δ) = 0 (5.30)

with Qn(x) = ProjYn(x) and Yn(x) := F ′(x)Xn. Our following
investigations on the formulation (5.29) are also motivated by the
fact that a numerical optimization method will usually not yield
a global minimizer but a stationary point.

In this subsection we assume that xδn is defined (not necessarily
uniquely) by (5.30), which is possible, e. g., under the assumptions
of Proposition 5.5 provided the minimizer lies in the interior of D,
or alternatively by a fixed point argument analogously to Lemma
2 in [52].

Again we start with a result on the discrepancy principle.

Lemma 5.9. Let (5.3) be satisfied, F ′(x) be uniformly bounded on D,
Pnx

† → x† as n→∞, and let for all n xδn be defined by (5.30).
Then the index n∗ according to the discrepancy principle (5.2) with

τ > 1+η
1−η is well-defined.
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Proof.

F(xδn) − y
δ =(I−Qn(x

δ
n))(F(x

δ
n) − y

δ)

=(I−Qn(x
δ
n)) ·

(
F ′(xδn)(xn − x†)+

F(xδn) − F(x
†) − F ′(xδn)(xn − x†) + y− yδ

)
=(I−Qn(x

δ
n)) ·

(
F ′(xδn)(Pnx

† − x†)+

F(xδn) − F(x
†) − F ′(xδn)(xn − x†) + y− yδ

)
(5.31)

since (I−Qn(x
δ
n))F

′(xδn)x
δ
n = 0 = (I−Qn(x

δ
n))F

′(xδn)Pnx
†, and

hence, due to (5.3)

‖F(xδn) − yδ‖ 6
1

1− η
·(

‖(I−Qn(xδn))(F ′(xδn)(I− Pn)x†‖+ (1+ η)δ
)

(5.32)

and therewith ‖F(xδn) − yδ‖ 6 τδ for n sufficiently large. ut

The error decomposition (5.12) in the nonlinear case becomes

xδn − x† = (F ′(xδn)Pn)
†(yδ − y)+

(F ′(xδn)Pn)
†F ′(xδn)(I− Pn)x

† − (I− Pn)x
†+

(F ′(xδn)Pn)
†(F(x†) − F(xδn) − F

′(xδn)(x
† − xδn)) ,

(5.33)

where we have used the identity

(F ′(xδn)Pn)
†(yδ− F(xδn)) = (F ′(xδn)Pn)

†Qn(x
δ
n)(y

δ− F(xδn)) = 0

and (5.11).

5.3.2.2 Stability for fixed discretization level

Proposition 5.10. Let n be fixed and let (yk)k∈IN be a sequence con-
verging to yδ: ‖yk − yδ‖ → 0 as k→∞ and denote by xkn the corre-
sponding regularized solutions according to (5.30) with yδ replaced by
yk. Additionally, assume that F, F ′ are continuous, satisfy (5.3), that
D∩Xn is closed and that

∃γ
n
> 0 ∀x ∈ D∩Xn : γn(x) > γn > 0 (5.34)

as well as

∃βn > 0 ∀x ∈ D∩Xn : βn(x) 6 βn (5.35)

holds.
Then (xkn)k∈IN has a convergent subsequence and the limit of any

convergent subsequence of (xkn)k∈IN solves (5.30). If this solution is
unique, then

‖xkn − xδn‖ → 0 as k→∞ .
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Proof. From (5.32), (5.33), which remain valid under the present
assumptions, we obtain

‖xkn − Pnx
†‖ 6 1

γn(xkn)
·(

‖yk − y‖+βn(xkn) + η‖F(xkn) − F(x†)‖
)

6
1

γn(xkn)
·(

δk +βn(x
k
n) + η(δk +

1

1− η
(βn(x

k
n)+

(1+ η)δk))
)

with δk := ‖yk − yδ‖+ δ, which by (5.34), (5.35) implies bound-
edness of xkn. Hence by compactness of balls in the finite dimen-
sional subspace Xn we get existence of a convergent subsequence
of xkn. By continuity of F and F ′, as well as

(F ′(xkn)Pn)
∗(F(xkn) − y

k
n) = 0,

the limit x̃ of any convergent subsequence of xkn satisfies

(F ′(x̃)Pn)
∗(F(x̃) − yδ) = 0.

ut

5.3.2.3 Convergence of solutions to Euler equations

Theorem 5.11. Assume that xδn is defined as a solution to (5.30), that
F, F ′ are continuous with F ′(x) uniformly bounded and satisfy (5.3),
that D∩Xn is closed and that

sup
x∈D∩Xn

βn(x)

γn(x)
→ 0 , sup

x̃,x∈D∩Xn

βn−1(x̃)

γn(x)
→ 0 , αn → 0 (5.36)

as n→∞ holds.
Then for n∗ = n∗(δ) according to (5.2)

‖xδn∗(δ) − x
†‖ → 0 as δ→ 0

Remark 10. More precisely we actually need

βn(x
δ
n)

γn(xδn)
→ 0 ,

βn−1(x
δ
n−1)

γn(xδn)
→ 0 , αn → 0 , as n→∞

in place of (5.36).

Proof. With (5.33), by (5.3) we get

‖xδn − x†‖ 6 δ

γn(xδn)
+
βn(x

δ
n)

γn(xδn)
+αn +

η‖F(xδn) − F(x†)‖
γn(xδn)

6
1

1− η

δ

γn(xδn)
+

1

1− η

βn(x
δ
n)

γn(xδn)
+αn (5.37)
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where analogously to (5.31), (5.32) we have

F(xδn) − F(x
†) =(I−Qn(x

δ
n))·(

F ′(xδn)(Pnx
† − x†) + F(xδn) − F(x

†)−

F ′(xδn)(xn − x†)
)
+Qn(y

δ − y)

hence, using once more (5.3),

‖F(xδn) − F(x†)‖ 6
1

1− η

(
‖(I−Qn(xδn))F ′(xδn)(Pnx† − x†)‖+ δ

)
.

The rest of the proof goes analogously to the linear case:
In case of nm →∞, in place of (5.15), we get by (5.32)

τδm 6 ‖F(xδmnm−1) − ym‖

6
1

1− η

(
‖(F ′(xδmnm−1)(I− Pnm−1)x

†‖+ (1+ η)δm

)
,

and therewith, instead of (5.16),

δm

γnm(x
δm
nm)

6
1

τ− 1+η
1−η

βnm−1(x
δm
nm−1)

γnm(x
δm
nm)

. (5.38)

For the case with a finite accumulation point N of the discretiza-
tion levels nm, we estimate, using (5.31),

τδmk
> ‖F(xδmknmk

) − ymk
‖

>
1

1+ η
‖(I−QN(x

δmk
N ))F ′(x

δmk
N )(I− PN)x

†‖

− (1+ η)δmk

(τ+ η+ 1)(1+ η)δmk
> ‖(I−QN(x

δmk
N ))F ′(x

δmk
N )(I− PN)x

†‖ .

Taking on both sides the limit along a subsequence kl for which

x
δmkl
N converges to some x0N according to Proposition 5.10 and

arguing similar to the stability proof, we get

0 = ‖(I−QN(x0N))F ′(x0N)(I− PN)x†‖ ,

which analogously to the linear case implies (I − PN)x
† = 0,

hence convergence. ut

Remark 11. By inspection of the proof we see that instead of
solving (5.29) exactly, it suffices to find xδn such that

‖(F ′(xδn)Pn)∗(F(xδn) − yδ)‖ 6 cγn(xδn)δ , (5.39)

with 0 < c < τ(1− η) − (1+ η). In our computations we use the
heuristic tolerance

‖(F ′(xδn)Pn)∗(F(xδn) − yδ)‖ 6 cδ2 , (5.40)
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which can not be shown to yield convergence though, since in
place of (5.38) we get an expression that is quadratic in δ

γn(xδn)
,

namely

δm

γnm(x
δm
nm)

6
1

τ− 1+η
1−η

βnm−1(x
δm
nm−1)

γnm(x
δm
nm)

+ c

(
δm

γnm(x
δm
nm)

)2
,

which does not exclude large values of δ
γn(xδn)

.
Condition (5.39) (or (5.40)) can be used as a stopping criterion

in the iterative solution of the Euler equation.

5.4 numerical results

5.4.1 Test Problem

For illustrating the theoretical results from above, we consider
the test problem of identifying the source term q in the PDE

−∆u+ qu = f in Ω (5.41)

u = 0 on ∂Ω

on the unit square Ω = [0, 1]× [0, 1] ⊂ IR2 from measurements
u in the whole domain Ω. Please be aware, that in contrast to
Example 2 of the introduction, defining F as the parameter-to
somution map for the PDE (5.41) leads to a nonlinear inverse
problem. Such that we want to solve the inverse problem,

F(q) = u , (5.42)

where q ∈ X = L2(Ω), u ∈ Y = L2(Ω), and F : X → Y, whose
properties have been studied e. g., in [25], [42], where also the
Scherzer condition (5.3) has been verified.

In order to achieve a nonempty interior of the domain, similarly
to [42], we set

D ={q ∈ L2(Ω) | ‖q− q̂‖L2(Ω) 6 β

for some q̂ ∈ L∞(Ω) with q̂ > 0 a.e.} ,
(5.43)

where 1
β is larger than the norm of the continuous embedding

H10(Ω)→ L4(Ω).
As in Example 2 the range of the forward operator F is H2(Ω)∩

H10(Ω) due to convexity of Ω (cf., e. g., [36]) and Y is the Hilbert
space L2(Ω), so this yields an ill-posedness of degree two.

We consider three test cases for the parameter q, which in the
first two cases is defined as a Gaussian density function:

q†(x,y) =
1

2π‖Σ‖
e

(x−µ)TΣ−1(y−µ)
2
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Figure 20: Exact parameters on fine grid.

with Σ = 0.005Id, and Σ = 0.03Id, respectively, where in both
cases µ = (12 , 12). The third test parameter is piecewise constant
and supported on three non-intersecting circles

q†(x,y) =

2 if (x,y) ∈ K1 ∪K2 ∪K3

0 else

where K1,K2,K3 are three circles with radius r = 0.05 and mid-
points M1(

1
4/
1
4), M2(

1
4/
3
4) and M3(

3
4/
3
4). See Figure 20 for a

plot of the three test parameters on a very fine grid, with about
16.000 triangles. The corresponding solutions u of (5.41) to the
different parameters are shown in fig. 21.

Figure 21: Exact solutions to the corresping source parameter on fine
grid.

5.4.2 Numerical Implementation

For generating synthetic data and for solving the forward prob-
lem (5.41) we use the FEM as provided in a Matlab routine, that is
capable to generate different meshes (pn, tn), consisting of the set
of points pn and the set of triangles tn. Since the discretizations
of the parameter q are defined on the triangles and those of the
the PDE solutions on the set of points, the natural choice of Xn
is the space of piecewise constant functions with possible jumps
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over the triangle edges, whereas by choosing a very fine mesh for
u we get an — up to a small approximation error — exact PDE

solution. Considering L levels of discretization, labeling by 1 the
coarsest and by L the finest one, we carry out the PDE solution
for data generation on level L whereas all other PDE solutions are
computed on level L− 1 in order to avoid an inverse crime (see
e. g., [51, 61]). For the projection spaces Xn the level n runs from
1 to L− 1.

Hence the discretized forward operator consists of two com-
ponents: interpolation from mesh (pn, tn) to mesh (pL−1, tL−1)
and solving the underlying boundary value problem on the finest
mesh.

In order to be able to transfer information on the parameter q
over different grid levels in an exact manner, we generate nested
grids, i. e., such that

pn−1 ⊆ pn and ∀ω ∈ tn ∃ω̃ ∈ tn−1 : ω ⊆ ω̃ , (5.44)

for n = 2, . . . ,L− 1, where ω, ω̃ denote triangles. Again, in order
to avoid an inverse crime, the finest mesh for data generation is
designed such that it is not part of the hierarchical mesh structure.
For this purpose we initialize our computations by generating a
hierarchical sequence of grids and one additional very fine grid
for data generation, as well as by computing a PDE solution on the
finest grid. The solution is then corrupted with random noise of
a given percentage of the data norm as listed in the tables below.
Then we solve (5.42) with qn element of different subspaces Xn
(given by respective meshes) as described in the previous section.
Summarizing, we have implemented the following procedure:

1. Generate L finite element meshes (p1, t1), . . . , (pL, tL) satis-
fying (5.44);

2. Solve (5.41) with given q† on mesh L to get data u;

3. Interpolate u to the L− 1-th mesh to avoid an inverse crime;

4. Add random noise to u according to the desired noise level
δ in order to get uδ;

5. Solve (5.1) with Xn defined by tn, n = 1, . . . ,L− 1;

For validating the regularizing property of discretization in
preimage space, we solve (5.42) in a least-squares sense, i. e., such
that

∥∥F(q) − uδ∥∥2 is minimal, which is the method described
and analyzed in the previous sections of this chapter. For the
minimization of the least squares functional we used a Quasi-
Newton algorithm with BFGS update, as implemented in the
Matlab function fminunc, where we provided the gradient

(F ′(xδn)Pn)
∗(F(xδn) − y

δ),
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Figure 22: The L = 6 different meshes for the Gaussian parameter
together with their corresponding maximum edge length.

which is computed using the adjoint technique. The algorithm
stops if

‖∇J(x)‖ = ‖(F ′(xδn)Pn)∗(F(xδn − yδ))‖ 6 cδ2

according to equation (5.40) with c = 8 · 10−3.

5.4.3 Results

For each of the test examples, we generated a sequence of L = 6

meshes (see fig. 22) and interpolated the data to the fifth mesh,
with ≈ 4000 triangles for the circle parameter and ≈ 9000 tri-
angles in case of gaussian parameters. We corrupted the exact
data with white Gaussian noise according to different noise levels
δ = 0.5%, 1%, 2%, 4%, 8%. Then we solved the inverse problem
on each subspace Xn, n = 1, . . . ,L in the least squares sense
(5.1). For comparison of the different solutions we computed the
relative error:

er =

∥∥q− q†∥∥
‖q†‖

with q† given on (p5, t5). For computing this error, we interpo-
lated qk, k = 1, .., 4 to mesh 5, such that every small triangle from
the fine mesh obtains the value from its surrounding triangle
of the coarser mesh. This is possible because of the hierarchical
structure of the mesh sequence.

In addition, for every solution we computed the correspond-
ing ratio between discrepancy and noise level, to see if we can
numerically validate the theoretically investigated discrepancy
principle:

τ̃ =

∥∥F(q) − uδ∥∥
δ

.

In Table 2 we list the relative error er and the associated ratio τ̃
for the five different meshes and the different noise levels for the
Gaussian parameter with the least squares solution. Additionally
we mention the computation time t for the minimization process
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Table 2: Gaussian Parameter with small Σ, i. e., Σ = 5 · 10−3Id

Mesh 1 2 3 4 5

Edge Length 0.25 0.125 0.0625 0.03125 0.016

Noise Level

8 % er 0.8570 0.7935 0.9413 0.9999 0.9999

τ̃ 1.0721 1.0742 1.8609 2.1985 2.1985

t 1.3220 1.3203 1.2083 0.1461 0.1659

#It 3 3 1 0 0

4 % er 0.9533 0.7809 0.8143 0.8778 0.9999

τ̃ 1.0783 1.1862 1.5464 2.4434 4.0388

t 2.8897 1.4680 1.3593 1.4594 0.1679

#It 15 4 2 1 0

2 % er 0.9568 0.5297 0.7710 0.8014 0.9659

τ̃ 1.2571 1.0665 1.5834 2.1592 6.9880

t 3.0220 2.7704 1.6703 1.9957 2.5002

#It 16 14 4 2 1

1 % er 1.1083 0.5224 0.4721 0.7759 0.8174

τ̃ 1.7815 1.2184 1.2824 2.8203 5.1237

t 6.7834 3.0331 3.0807 2.4399 8.3380

#It 45 16 13 3 2

0.5 % er 1.2973 0.4612 0.4492 0.4475 0.7684

τ̃ 3.0110 1.1056 1.6886 1.8145 5.2024

t 11.4500 6.6803 3.4147 7.1335 18.6847

#It 80 43 15 13 4
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on the domain and the number of iterations the Quasi Newton
solver carried out. There are three different features to mention.

Firstly, if we look at a fixed noise level, e. g., δ = 1%, we see
the well-known error behavior of regularization methods for ill-
posed problems (see [26]): For finer grids the error gets smaller
but when the mesh size gets too small the error grows again.
Thus there is an optimal discretization level, for which the error
is minimal.

Secondly it can be seen, that we are able to validate the discrep-
ancy principle also numerically. If we look at the smallest error
(the bold numbers) we see that the corresponding ratio τ̃ ≈ 1,
which confirms our convergence analysis. Also for smaller noise
level the best n determining the projection space Xn gets larger,
e. g., for the gaussian parameter with Σ = 0.03Id and 0.5% noise,
we achieved the smallest error on the finest mesh.

Additionally, we find that for δ→ 0 the estimated parameter q
tends towards the exact parameter q†, see the bold error numbers
e. g., in Table 3

In case of the circle parameter, see Table 4, errors are higher
than in the gaussian case, even in case of δ = 0.25% noise, which
is probably due to the non smoothness of the parameter.

5.5 summary

In this chapter we have seen some new results on conditional
convergence and convergence rates for regularization by dis-
cretization in preimage space, including noisy data and nonlinear
problems. We were motivated by the fact that in practice many
ill-posed problems are regularized by discretization in preimage
space and aware of the fact that this does not yield convergence
in general.

In the next chapter we will have a closer look at a stochastic
method to solve inverse problems, namely the Bayesian approach.
We will see, how in this approach data and solution are modelled
as random variables and how a point with highest probability
is used as a solution. Additionally we will point out the close
relation between stochastic modelling of inverse problems and
deterministic Tikhonov regularization. This connection will lead
us back to our main topic in Chapter 7, the solution of sparse
inverse problems.
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Table 3: Gaussian Parameter with larger Σ, i. e., Σ = 3 · 10−2Id

Mesh 1 2 3 4 5

Edge Length 0.25 0.125 0.0625 0.03125 0.016

Noise Level

8.000 % er 0.3072 0.2823 0.9994 0.9994 0.9994

τ̃ 1.0006 1.0241 1.5076 1.5076 1.5076

t 1.3217 1.1925 0.1383 0.1454 0.1669

#It 3 2 0 0 0

4.000 % er 0.3012 0.2119 0.2497 0.9994 0.9994

τ̃ 1.0050 1.0083 1.0797 2.4754 2.4754

t 1.3407 1.3273 1.3917 0.1467 0.1655

#It 3 3 2 0 0

2.000 % er 0.3088 0.2159 0.1896 0.2176 0.9994

τ̃ 1.0053 1.0073 1.0211 1.1550 4.6261

t 1.4493 1.4552 1.5153 1.9793 0.1683

#It 4 4 3 2 0

1.000 % er 0.3017 0.2181 0.1900 0.1848 0.2607

τ̃ 1.0022 1.0170 1.0195 1.0358 2.0177

t 1.9879 1.4568 1.6819 2.4417 8.3386

#It 8 4 4 3 2

0.500 % er 0.2862 0.2034 0.1887 0.1838 0.1816

τ̃ 1.0142 1.0259 1.1019 1.1643 1.3474

t 4.6533 2.1385 1.6900 2.4584 13.4880

#It 28 9 4 3 3
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Table 4: Circle Parameter

Mesh 1 2 3 4 5

Edge Length 0.500 0.250 0.125 0.062 0.031

Noise Level

8.000 % er 1.0165 0.7526 0.9180 0.8370 0.9519

τ̃ 1.0123 1.0081 1.0745 1.0292 1.0953

t 0.4930 0.4989 0.5019 0.6032 0.8584

#It 2 2 1 1 1

4.000 % er 1.0182 0.7734 0.9251 0.8501 0.9561

τ̃ 1.0287 1.0190 1.2275 1.0863 1.2891

t 0.5498 0.4992 0.5027 0.6034 0.8595

#It 3 2 1 1 1

2.000 % er 1.3231 0.6318 0.7663 0.8462 0.9553

τ̃ 1.0854 1.0312 1.1211 1.3619 1.9426

t 1.0880 0.7182 0.5602 0.6040 0.8599

#It 13 6 2 1 1

1.000 % er 1.2857 0.5813 0.6211 0.7685 0.7739

τ̃ 1.2855 1.0110 1.1025 1.3473 1.3788

t 1.1296 1.0419 0.8014 0.7344 2.0487

#It 14 12 6 2 2

0.500 % er 1.2617 0.5591 0.5157 0.6126 0.7751

τ̃ 1.9447 1.0184 1.0481 1.3632 2.1241

t 1.2188 1.4464 1.1634 1.2503 2.0698

#It 15 19 12 6 2

0.250 % er 1.2706 0.5562 0.4845 0.5097 0.6230

τ̃ 3.3979 1.0105 1.0822 1.1901 2.1400

t 1.9215 2.9264 1.5109 1.9494 6.3133

#It 28 46 18 12 6
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6
E X C U R S U S I N B AY E S I A N I N V E R S I O N T H E O RY

In this chapter we build a bridge between convergence concepts
used in statistical Bayesian learning approaches and the regular-
ization theory of ill-posed inverse problems. For this purpose, we
first review the relevant results about convergence in the field
of statistical learning theory in Section 6.2. Relations between
statistical and deterministic inversion theory in the special case
of linear inverse problems are explained in Section 6.3. We then
extract ideas from both theories that can be used towards a more
general theory about convergence for structurally non-identifiable
problems and postulate a general convergence conjecture for the
posterior distribution in this setting. This is presented in Sec-
tion 6.4. There we will also give a slight generalization of the
above introduced existence proof of an R-minimizing solution,
see Lemma 2.4. A conclusion and an outlook on open issues is
given in Section 6.5. But first it is demonstrated, why it is of gen-
eral interest to carry over convergence results from deterministic
regularization theory to the stochastic inversion approach for
structurally non-identifiable problems.

6.1 structurally and practically non-identifiable

problems

When considering the inverse problem of fitting a model that
is parametrized by a vector1 x to experimental data y, this is
usually formulated as an optimization problem. In this formula-
tion an objective function J(x,y), for example the sum of squared
errors or the likelihood function, is optimized with respect to
x. These standard approaches generally give satisfactory results
if all parameters are identifiable, i. e., if the objective function
has a unique global optimum. In case the data do not contain
enough information to identify all parameters, optimization of
those standard objective functions leads to poor results. This is
the case if either only few data points are available compared to
the number of parameters to be estimated, or if the kind of obser-
vations generally do not allow for a unique identification (see for
example [75] and references therein). An example for the former
is the identification of parameters for a dynamic model, e. g.,

1 In the Bayesian context the searched for quantity is mostly denoted by θ.
To keep the here given exposition consistent with the previous chapters, we
denote it with x instead. Readers more familiar with the Bayesian synopsis may
exchange x with θ.

73
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parameter estimation for an ODE from longitudinal data, where
the state of the system is measured at discrete time points for
different initial conditions. If the number of time points is small,
this can lead to practically non-identifiable optimization problems,
where the objective function usually has a unique optimum, but
with infinite confidence intervals. Practical non-identifiability can
be overcome by increasing the sample size.

On the contrary, if the kind of data generally does not allow
for a unique identification of parameter values independently of
the sample size, this results in structural non-identifiability. Struc-
turally non-identifiable problems are strongly related to ill-posed
inverse problems: The objective function does not have a unique
optimum, but several parameter combinations have the same ob-
jective function value. Structural non-identifiability for parameter
estimation of ODEs can be caused by non-observable (hidden)
variables, if only steady state information is available. Or in case,
only states can be measured up to a normalization constant, as
it is often the case for biological systems ([91]). In many cases
the set of optima defines a manifold in the parameter space. A
simple example for a structurally non-identifiable problem is the
following: We use mass action kinetics to construct an ODE model
for a reversible chemical reaction A 
 B, where A and B are
different molecular species.

ȧ = −k+a+ k−b,

ḃ = k+a− k−b. (6.1)

Here, a and b denote concentrations of A and B, and k+ and
k− are reaction rate constants. System (6.1) describes a closed
system in which the total number of molecules is conserved,
a+ b = N. The system approaches its equilibrium state from all
initial conditions. We assume that we want to estimate k+ and k−,
i. e., x = (k+,k−), and can observe the equilibrium concentrations
āi and b̄i in i = 1, . . . T different experimental settings, e. g., for
different initial conditions and different numbers of molecules,
N. Thus y is given by y = {(āi, b̄i)}i=1,...,T . Setting the left hand
sides in system (6.1) to zero, the ratio between ā and b̄ is given
by the equilibrium constant Keq:

Keq =
k+

k−
=
b̄

ā
(6.2)

Taking the sum of squared errors as objective function, this leads
to

J(x,y) =
T∑
i=1

(
b̄i
āi

−
k+

k−

)2
, (6.3)

whose level sets are described by k+ = ck−. The individual
values k+ and k− are structurally not identifiable. Hence the
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optimization problem does not have a unique solution, but so-
lutions lie on a manifold described by k+ = coptk−, where
copt = T−1

∑T
i=1

b̄i
āi

is the mean of all experimentally observed
ratios, which minimizes J(x,y).

If we now think back to the term of well-posedness introduced in
Chapter 1, than we can conclude that structurally non-identifiable
problems belong to the class of ill-posed inverse problems, as the
solution might not be unique. We have seen in the introduction
how regularization theory and the introduction of a generalized
solution concept can overcome the problems of ill-posedness
and how convergence results for the regularized solution can be
established.

Inverse problems can also be considered in a statistical learn-
ing framework, where the negative log-likelihood function of a
stochastic model is often taken as the standard objective function.
Regularization of these problems can for example be achieved in
a Bayesian context, where both the data y and the parameters x
are interpreted as random variables, and the objective function is
the posterior distribution p(x|y), see section 6.2 below.

For structurally identifiable problems, in the limit of infinite
sample sizes, the posterior distribution converges to a Gaussian
distribution with covariance given by the inverse of the Fisher
information times the sample size, which assures that the maxi-
mum a posteriori point estimate x̂MAP converges in probability.
Since the influence of the regularization term vanishes with in-
creasing sample size, under some regularity conditions these
results are independent of the choice of this term, and derived
from frequency properties of stochastic processes (see for exam-
ple Chapter 4 in [30] and references therein). This concept of
convergence does not work for structurally non-identifiable likeli-
hoods, i. e., ill-posed inverse problems. Here, the influence of the
regularization term does not vanish even in the limit of infinitely
large sample sizes, and convergence of the posterior requires
also convergence of the regularization term additional to infinite
sample sizes. Such a convergence concept was applied to show
convergence of the point estimator of Tikhonov regularized linear
and nonlinear inverse problems to the minimum least squares
solution ([26, 67]). Furthermore, this result has been used by [44]
to show convergence of the posterior distribution in a respective
Bayesian setting with conjugate Gaussian distributions.

We will now have a closer look at the statistical Bayesian in-
version theory, before we outline the convergence results for the
posterior distribution and later on point out how to generalize
this convergence concept for general distributions.
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6.2 stochastic background

6.2.1 Statistical Bayesian approaches and asymptotic theory

Statistical approaches assume a stochastic modeling framework,
in which the data y = {yi} is interpreted as set of random variates
drawn from an underlying distribution. Given y, the probability
pL(y|x) states how likely it is to see y under model parameters x.
This probability is called likelihood function. A standard statistical
inference approach is to maximize this function or, equivalently,
minimize the negative logarithm, ly(x) = − logpL(y|x), with
respect to the parameter x. In case of sufficiently large sam-
ple sizes this maximum likelihood estimator (Maximum Likelihood
Estimate (MLE)) x̂ML gives often good results. It is a consistent and
unbiased estimator with nice convergence properties. The MLE de-
scribes, however, a pure data fit, and hence in case of sparse data
suffers from the same problems as other approaches along this
line: The optimization problem may become ill-posed, i. e., for
example has no unique solution, or ill-conditioned, i. e., although
a unique global optimum might exist, parameters are practically
non-identifiable because the confidence intervals of this optimum
are infinite. In these cases, solutions have to be stabilized by an
appropriate restriction of the solution space. This can be achieved
by using a statistical Bayesian approach, in which the data y and
the parameters x are both treated as random variables with joint
distribution

p(y, x) = p(y)p(x|y) = p(x)p(y|x). (6.4)

Objective function is the posterior distribution p(x|y), the distribu-
tion over x after having seen the data y,

p(x|y) =
pP(x)pL(y|x)

p(y)
, (6.5)

which is proportional to the product of the likelihood function
pL(y|x) and the prior distribution pP(x) that encodes our prior
belief about the true parameter values. In a Bayesian learning
framework pP(x) and pL(y|x) are usually given, and the evidence
p(y) is obtained by marginalizing over x, i. e.,

p(y) =

∫
X

pP(x)pL(y|x)dx. (6.6)

Parameter estimation in the Bayesian framework translates to an
investigation of the posterior distribution, also called posterior
inference. For example, point estimates are the posterior mode,
denoted Maximum A Posteriori Estimate (MAP)

x̂MAP = argmax
x
p(x|y),
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or the mean Ep(x|y)(x). Furthermore, the posterior also contains
information about the confidence of these point estimates. The
posterior’s variance or entropy can be used as appropriate sum-
maries for this purpose. Local approximations also work with
the Fisher information matrix.

The asymptotic theory makes statements about convergence of
the posterior distribution in the limit of infinitely large sample
sizes. Results hold in probability, meaning that we assume the
data y = (y1, . . . ,yn) to be generated by a stochastic process, i. e.,
the yi are independently drawn from a true underlying sampling
distribution f(yi), and convergence results hold for repeated
sampling from this distribution and increasing the sample size
n. A main result of this theory is that the posterior distribution
approaches normality,

p(x|y)
n→∞−−−−→ N(x̄, Γpost)

with mean x̄ which minimizes the Kullback-Leibler distance
between the true distribution f(y) =

∏n
i=1 f(y

i) and the family
F of model distributions pL(y|x),

x̄ = arg min
x with pL(y|x) ∈ F

KLD(f(y) ‖ pL(y|x)). (6.7)

The posterior mode is a consistent estimator, meaning that its
distribution converges to a point mass about x̄ as n → ∞. The
covariance Γpost equals the inverse of the product of sample size n
and the Fisher information matrix, Γpost = (nI(xpost))

−1. This can
be seen by a Taylor series expansion of logp(x|y) up to second
order about its mode.

The asymptotic theory holds if the prior influence vanishes in
the limit of large sample sizes. This is only the case for structurally
identifiable problems, where the kind of data generally allows to
identify x uniquely, and if x̄ is not excluded by the prior or is at
the boundary of its support.

The latter problem can in practice easily be overcome by choos-
ing prior distributions that assign positive probabilities even to x
values that are a priori assumed to be not very plausible, and we
do not further consider this problem here.

For identifiable problems the likelihood dominates the prior
for large n, and convergence results are thus independent of the
prior. This simplifies the whole analysis, since properties of the
posterior can be inferred from those of the likelihood function
regardless of the prior.

For non-identifiable problems the posterior mode is not always
a consistent estimator (for practical examples see [75, 91]), and
the normal approximation of the posterior can fail. Furthermore,
concepts from the asymptotic theory cannot be directly applied,
and a new convergence concept is needed that includes the effect
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of the prior in the limit of large sample sizes. For this conver-
gence concept we have to consider Tikhonov regularization in a
Bayesian way.

6.3 bayesian tikhonov regularization

Tikhonov regularized linear inverse problems have been consid-
ered in a Bayesian framework, and convergence of the posterior
distribution has been shown in [44]. In this Bayesian framework,
the random variables X and Y are connected via the linear model

Y = AX+ E (6.8)

with E denoting a noise term. If we use a Gaussian distribu-
tion for the prior and assume E to be Gaussian distributed, the
posterior distribution

p(x|y) ∝ pP(x)pL(y|x)

can explicitly be computed, since Gaussian priors are the conju-
gate priors for Gaussian likelihoods (see e. g., the section about
exponential families in Chapter 2 of [30]). With the underlying
linear model we have Y|X ∼ N(y−Ax,σ2I), as for X fixed, Y is
distributed as E = AX− Y.

Theorem 6.1 (Theorem 3.7 in [51]). If X : Ω → IRn and E : Ω →
IRm are mutually independent Gaussian random variables,

X ∼ N(x0,γ2I) E ∼ N(0,σ2I).

And X and E are connected corresponding to (6.8), with A ∈ IRm×n

a known matrix. Then the posterior is Gaussian distributed,

p(x|y) = N(x̄, Γpost)

with

x̄ =

(
ATA+

σ2

γ2
I

)−1

·
(
ATy+

σ2

γ2
x0

)
(6.9)

and

Γpost = σ
2

(
ATA+

σ2

γ2

)−1

. (6.10)

Proof. The proof can be carried out through tedious matrix mul-
tiplications or by the Schur identity, see Chapter 3 of [51] for
details. ut
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Remark 12. If we now compare the deterministic Tikhonov reg-
ularized solution of (1.1), given in (2.8), with x̄ that is given in
(6.9), we see that they are equivalent. Except, the regularization
parameter α now equals the quotient between noise and prior
variance,α = σ2

γ2
.

Another equivalence occurs when comparing the maximization
of the posterior to the minimization of the negative logarithm of
the posterior. This can be seen most easily in the one dimensional
case, then the posterior is given by

p(x|y) =
1

2πσγ
e
−

(y−Ax)2

2σ2
− x2

2γ2 ,

and hence taking the negative logarithm, ignoring the constant
terms, leads to the minimization problem

min J(x) = min
{
(y−Ax)2 +

σ2

γ2
x2
}

.

Which is obviously just standard Tikhonov regularization with
regularization parameter σ

2

γ2
. So taking the negative logarithm is

a quite interesting feature, to link stochastic and deterministic
terms. A feature which we will use in the next section, to show
convergence of the posterior distribution to a point measure.
Additionally we will use it in the next chapter to generate a new
sparsity enforcing regularization term.

6.3.1 Convergence results

In this section, we give a brief summary of the obtained results
in a series of works on the close connection between Tikhonov
regularization and Bayesian learning. The main results were pub-
lished in the article "Convergence rate for the Bayesian approach
to linear inverse problems" by Hofinger and Pikkarainen [44],
who consider convergence and convergence rates for Bayesian
inference of linear inverse problems with independently and
Gaussian distributed additive measurement noise. An extension
to the multivariate case with arbitrary covariance matrix can be
found in their follow-up paper ([45]) and additionally an exten-
sion to the infinite dimensional case is developed in [70]. Basic
concept of these papers is to show convergence of the posterior
distribution p(x|y) to a point measure δx† in an appropriate met-
ric and investigate convergence rates if the noise variance tends
to zero. We will start by presenting the main convergence result
and continue with the derivation of this concept.
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6.3.1.1 Main result

Theorem 6.2 ([44], Theorem 13 and 15). Let X and E be two in-
dependently Gaussian distributed random variables,

pP(x) = N(x0,γ2I) and pE(e) = N(0,σ2I),

which are connected via (6.8), and let x0 be an element in the comple-
ment of N(A), x0 ∈ N(A)⊥. If γ(σ) satisfies:

σ

γ(σ)
→ 0 and γ(σ)

√
− log(C(m)σ2κ(m))→ 0 (6.11)

as σ → 0, where C(m) and κ(m) are given in Proposition 6.3 (see
below), then

ρP(p(x|y), δx†)→ 0

as σ→ 0.

Here, ρP denotes the Prokhorov metric (see [43, 24]). Comparing
this theorem with Lemma 2.5, limσ→0 σ

γ(σ) → 0 corresponds

to limδ→0 α(δ) = 0, since α = σ2

δ2
. This means that the influ-

ence of the regularization term has to vanish in the limit of
infinitely small measurement noise. Furthermore, from the condi-

tion limσ→0 γ(σ)
√
− log(C(m)σ2κ(m))→ 0 we can conclude the

following: First,

lim
σ→0

γ(σ)→ 0,

since

lim
σ→0

√
− log(C(m)σ2κ(m))→∞,

which means that the prior distribution has to become more
informative in the limit. Second, this has to happen with a rate
that is fast enough, such that the product still goes to zero in
the limit. A possible choice in two dimensions for γ(σ) is e. g.,
γ(σ) =

√
σ, according to Theorem 7 in [45]. The proofs of the

theorem strongly exploit that the posterior is explicitly known
and that it is a Gaussian distribution. Thus a direct transfer to
more general settings with other distributions seems to be very
difficult, which is also confirmed in the conclusions of [44].

6.3.1.2 Derivation of Theorem 6.2

Here we give a very coarse excerpt of the derivation and focus
on the main ingredients, for more details we refer to [44]. With
equation (6.11), the required ratio between noise and regulariza-
tion or prior influence is already given, but as we know from
Chapter 1, the deterministic theory also requires a bound on the
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noise, cf. (1.2). Since in the Bayesian setting the information on
the noise is only given as a random distribution an explicit bound
like in Lemma 2.5 is not possible. The required bound has to be
translated into a proposition on the noise distribution. This is
done in the following lemma, which is crucial to prove Theorem
6.2.

Proposition 6.3 ([44], Lemma 7). Let ξ be a random variable with
values in IRm. Assume that the distribution of ξ is N(y0,Σ). Let us
define κ(m) := max{1,m− 2} and C(m) to be

C(m) :=

 2π
(m+1)2

if m is odd

2m

m2 if m is even

Then there exists a positive constant η(m) such that

ρK(ξ,y0) 6
√
−‖Σ‖ log(C(m)‖Σ‖κ(m)) (6.12)

for all ‖Σ‖ < η(m).

The proof of this proposition is rather technical with several
different cases. It uses the probabilistic definition of the Ky Fan
metric ρK (cf. [24]) and the equivalence of the Ky Fan and the
Prokhorov metric. Convergence of a random variable in the Ky
Fan metric leads to convergence in probability, and is thus equiv-
alent to convergence of the posterior in the asymptotic theory. In
the proof one needs to evaluate the probability that a random
variate z of a Gaussian distribution has a distance greater than
a given value c from its mean m, which is given by an integral
of the Gaussian distribution over the range ‖ z−m ‖> c. Most
of the proof is then concerned with finding an upper bound for
this integral in dependence of the covariance matrix Σ for various
cases. Through the proof of the upper bound the constants κ(m)

and C(m) given in proposition (6.12) and used in Theorem (6.2)
are established. It is important to notice, that they depend on the
dimension of the problem, which is different from deterministic
inverse problems (compare Lemma 2.5).

With this upper bound and the known bounds for the Tikhonov
regularization, we can obtain the convergence of the posterior
distribution to a point measure. This is done by dividing their
distance in the Prokhorov metric into a stochastic term and a
deterministic term:

ρP(p(x|y), δx†) 6 ρP(p(x|y), δx̄) + ρP(δx̄, δx†)

= ρP(p(x|y), δx̄) + ρK(x̄, x†) (6.13)

= ρP(p(x|y), δx̄) + ‖x̄− x†‖,

where x̄ is the mean of the posterior distribution, which is equal to
x̂MAP in case of a Gaussian posterior. Here we have used the fact,
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that the Prokhorov metric between delta distributions equals the
Ky Fan distance between the center points of those distributions.
Moreover the Ky Fan distance between deterministic elements
(or rather almost surely constant random variables) equals their
Banach space distance, such that we can split the equation in a
stochastic distance between the posterior and a delta distribution
centered at the posterior mean and a deterministic part, the
distance between the MAP and the minimum norm least squares
solution.

Now we can estimate the first term with the bound (6.12) and
the identity of ρP = ρK for delta measures. The second term is a
deterministic term, which we can approximate by the determinis-
tic results, since x̄ is the mean of the posterior distribution, which
is just the solution of the Tikhonov regularization as said above.

6.3.1.3 Connections between large sample inference and convergence
in the deterministic sense

In the following we connect the two theories further by showin
the equivalence between n → ∞ in the asymptotic theory of
large samples and σ→ 0 in the theory of ill-posed, linear, inverse
problems, in case of Gaussian distributions. Assume samples
y = (y1, . . . ,yn) to be drawn independently from a Gaussian
distribution,

Yi ∼ N(f(x∗),σ2I), (6.14)

with yi ∈ IRm, x ∈ IRk and f : IRk → IRm invertible. The likeli-
hood is given by

pL(y|x) =

n∏
i=1

p(yi|f(x)). (6.15)

According to the central limit theorem, the sample mean ȳ can
be seen as a random variable that approaches a Gaussian dis-
tribution for infinite sample sizes with mean f(x∗) and variance
σ2/nI,

p(ȳ|x∗) = N(f(x∗),
σ2

n
I) (6.16)

=
1√
2πσ

2

n

exp

−
1

2

(
ȳ− f(x∗)

σ√
n

)2. (6.17)

This can also be regarded as distribution over f(x∗),

p(f(x∗)|y) = N(ȳ,
σ2

n
I).

The sampling distribution of the linear inverse problem (without
any regularization) is given by pL(y|x) = N(Ax,σ2I). Regarding
this as a distribution over x leads to

p(x|y) = N(A−1y,σ2I),
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in case A would be invertible. Comparing the variances of these
two expressions, it is easy to see that decreasing σ by a factor k
corresponds to increasing the sample size n by a factor k, and
thus the limit n→∞ in the large sample theory corresponds to
the limit σ2 → 0 in Tikhonov regularized inverse problems, i. e.,
better estimates can be obtained by measuring more accurately
or by increasing the sample size.

6.3.1.4 Numerical Illustration

We use a simple linear problem to illustrate the above explained
theoretical results, where we want to identify the parameter
x ∈ R2 out of noisy measurements yδ ∈ R2. Let A : IR2 → IR2 be
an ill-conditioned matrix

A :=
1

2

(
1 −1

−1 1

)
.

For simulating the Bayesian inference approach, we sampled a
random vector ε out of the noise distribution pE(e) = N(0,σ2I)
with σ = k−2 and k = 2, . . . , 5 and added it to the exact data y,
which was created by y = Ax† with x† = (1,−1)T . The posterior
distribution was calculated according to equations (6.9) and (6.10),
with x0 = (0, 0) ∈ N(A)⊥. We produced a contour plot of the like-
lihood and the prior distribution, together with 300 samples from
the posterior distribution (blue dots) and marked the position of
x̂MAP (red cross). In Figure 23 (left) the regularization parameter
α := σ

γ(σ) and additionally γ
√
− log(σ) tends to zero. With this

configuration the constraints on σ and γ from Theorem 6.2 are
fulfilled and the posterior distribution convergences apparently
towards a point mass at the true solution x†. Additionally we
have chosen a slightly different configuration on σ and γ (Figure
23 right), such that the regularization parameter α tends to zero,

but the second condition, that γ(σ)
√
− log(C(m)σ2κ(m))→ 0, is

not fulfilled. In this case the posterior mass does not converge to
a point, and thus the posterior does not converge in probability.
The mode is defined by the prior distribution, but the mass is
distributed along the minimum least squares line even for very
small measurement noise.

From the above given analysis we can see, that convergence
results for structurally non-identifiable problems in the Bayesian
learning theory are possible, if we take in account results from the
deterministic theory on ill-posed inverse problems. The addition
of a prior probability distribution generally leads to well-posed
inverse problems, and the connection to Tikhonov regularization
leads to convergence. To use this connection we had to translate
the general requirements from the deterministic convergence
results and restrict ourself to Gaussian distributions for prior and
likelihood. In the next section we will extend this approach.
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Figure 23: Contour plot of the likelihood and the prior distribution
(dashed line) together with 300 samples from the posterior
distribution (the blue dots) for the above explained numerical
example. Left: σ := 1

t2
for k = 2, .., 4, γ(σ) =

√
σ according

to Theorem 7 in [45], and x0 := (0, 0)T . Clearly the posterior
distribution mass gets closer and more centered at x† =

(1,−1)T as α → 0 (x† is marked with a red cross). Right:
Same σ and x0, but γ = 2 for all t. The posterior does not
converge in probability.
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6.4 towards convergence

If we sum up the last two sections, we see that results of the
asymptotic theory in the Bayesian learning framework only apply
to structurally identifiable problems. In this case the prior influ-
ence vanishes in the large sample limit and we get asymptotic
normality of the posterior. However, a different convergence con-
cept is needed for structurally non-identifiable problems which
includes the influence of the prior distribution in the limit n→∞.
Results from the inverse problem theory provide the basis for
such a new convergence concept, where mainly convergence of
point estimates is considered so far. This has been extended to
convergence of the whole posterior distribution in case of linear
models with conjugate Gaussian distributions for prior and noise
variables.

If we now want to generalize this convergence concept to
other pairs of distributions, or state a generalized concept for
structurally non identifiable problems, we can outline a scheme
from the above given introduction. A possible result would state:

Conjecture 1. We are given a data set y = {yi} ∈ Y that consists of
i = 1, . . . ,n random variates drawn independently from an underlying
distribution f(yi), a stochastic model class p(y|x) =

∏n
i=1 p(y

i|x)

with variance V(data) that is parametrized by a vector x and which is
assumed to describe the generation of the data set, and a prior distribu-
tion pP(x) on x whose variance V(prior) can be chosen in dependence
of the sample size n. Assume furthermore that

1. the posterior distribution p(x|y) exhibits a unique maximum
x̂MAP for all possible data sets y,

2. the distance between a randomly drawn Y ∼
∏n
i p(y|x) and the

data y∗ that is most likely generated by sampling from the prod-
uct
∏n
i p(y|x), i. e., y∗ = arg maxy

∏n
i=1 p(y|x), is bounded

from above in the Ky Fan metric like in equation (6.12).

We consider the large sample size limit n→∞.
If the variance of the prior distribution V(prior) is appropriately

chosen in dependence of the data set size such that

1. it approaches zero for large sample sizes and

2. convergence to zero is in an appropriate sense slower than con-
vergence of the variance V(data) of the likelihood function,

then

ρP(p(x|y), δx̂MPMLE)
n→∞−−−−→ 0 (6.18)

where δx̂MPMLE is a point measure concentrated at

x̂MPMLE ∈ arg max
x

{p(x) | x ∈ arg max
ν
p(y|ν)},

the Maximum Prior Maximum Likelihood Estimate (MPMLE).
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The conjecture states convergence of the posterior distribu-
tion in probability or in an appropriate metric towards a point
measure centered at a given point, if the noise tends to zero,
or similarly, as the number of data points increase. Loosely this
would mean, the mass of the posterior distribution should be
concentrated at a given point, if we know the data better and
better.

The parameter x̂MPMLE describes from the set of maximum
likelihood estimators x̂ML the one which also maximizes the prior
pP(x). The definition of x̂MPMLE is related to the definition of the
R-minimizing solution in the deterministic setting, cf. Definition
(2.1), and leads to identifiability also in case of structurally non
identifiable problems.

From the deterministic theory, see Chapter 2, we can explicitly
state sufficient conditions for existence and uniqueness of the
minimum norm least squares solution for a general regularization
functional, as well as for the convergence of the point estimate
to the minimum norm least squares solution, see Condition 1.
This translates into conditions on the prior distribution and the
posterior distribution. We will now state sufficient conditions
under which an MLE and an MPMLE exist.

Proposition 6.4. Assume the linear model (6.8) holds and y ∈ R(A).
If pE(0) = max{pE(x)|x ∈ X}, i. e., the noise distribution reaches its
global maximum in zero, then there exists an MLE.

Proof. As we assume the linear model (6.8) to hold, the likelihood
pL(y|x) is is distributed like the noise pE(e) and evaluated at
e = Ax− y.

Since y ∈ R(A) there exists an x̃ ∈ X, such that Ax̃ = y and
hence

pL(y|x̃) = pE(Ax̃− y) = pE(0) > pE(x), ∀x ∈ X.

Therewith x̃ is an MLE. ut

Now we state the conditions under which an MPMLE exists.

Proposition 6.5. Assume the linear model (6.8) holds. Let the likeli-
hood function pL(·) and the prior distribution pP(·) in conjecture 1 be
weakly upper semi continuous. Additionally let − log(pP(·)) be coer-
cive, for all x ∈ X, X a reflexive Banach space. Assume there exists a
MLE x̂ML, then there exists a MPMLE x̂MPMLE.

Remark 13. A sufficient condition for the coercivity assumption
in Proposition 6.5 is

pP(x) 6 e
−C‖x‖

for all x ∈ X and a constant C > 0.
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Proof. Instead of showing the existence of a Maximum Prior
Maximum Likelihood Estimate, we will show the existence of
a minimum element for − log(pP(·)) in the set of minima of
ly = − logpL(y|x). As this minimum element also maximizes
the prior distribution and is in the set of maximum likelihood
estimates.

Let MMLE := {x̃ : ly(x̃) = min{ly(x) : x ∈ X}}, the set of all
minimum negative log-likelihood estimates. We first show the
weak closedness of the set of MLEs.

Let (xk) ∈MMLE, with xk ⇀ x. Now as pL(·) is weakly upper
semi continuous, ly(·) is weakly lower semi continuous, because

pL(x) > lim suppL(xk)

logpL(x) > lim sup logpL(xk)

− logpL(x) 6 − lim sup logpL(xk)

− logpL(x) 6 lim inf(− logpL(xk))

Therewith

ly(x) 6 lim inf ly(xk) 6 ly(x̃),

for all x̃ ∈ X. The last inequality follows, because the xks are
minima of ly(·). Hence x ∈ MMLE, and the set of minima is
weakly closed.

Set c := inf{− log(pP(x)) : x ∈ MMLE}. Since MMLE 6= ∅,
pP(x) 6 1 and suppP(x) > 0 we have c ∈ IR. Now there is a
sequence (xk) ∈MMLE with − log(pP(xk))→ c.

Hereby − log(pP(xk)) is bounded. Hence by our coercivity
assumption of − log(pP(·)) also (xk) is bounded and thus has a
weak convergent subsequence (xkl) ⇀ x̂.

Again as pP(x) is weakly upper semi continuous, − log(pP(·))
is weakly lower semi continuous. And hence,

− log(pP(x̂)) 6 lim inf− log(pP(xkl)) = c.

Thus − log(pP(x̂)) = c and as the set MMLE is weakly closed,
x̂ ∈MMLE. Now x̂ = x̂MPMLE ut

Remark 14. For the deterministic setting and nonlinear inverse
problems Christiane Pöschl showed in Theorem 1.9 of [73] the
existence of a R-minimizing solution if a solution of the inverse
problem exists, cf. Lemma 2.4 in Chapter 2. The concept of a
R-minimizing solution is equivalent to the prior maximizing
solution introduced above, but for the above existence proof in
the context of linear inverse problems, we only assumed that a
maximum likelihood estimate exists.

In the next subsection we will use a simple numerical example
to illustrate the above introduced conjecture.
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B ∅
k3 k4

k2

k1

Figure 24: Chemical reaction system that is used to illustrate conver-
gence of the posterior distribution for nonlinear problems.

6.4.1 Numerical example

We consider the chemical reaction system shown in Figure 24

and use again mass action kinetics to describe its dynamics with
ODEs:

ȧ = k1 − (k2 + k3)a (6.19)

ḃ = k3a− k4b (6.20)

This system approaches an equilibrium state, which is described
by ā = k1

k2+k3
and b̄ = k3ā

k4
. Assume that we know the value of

the degradation rate constant k4, we can measure b̄, and we want
to infer the equilibrium concentration ā of species A and the
conversion rate constant k3, i. e., x = (ā,k3). The rate constants
k1 and k2 are also unknown but not of our primary interest. The
data is measured with an additive Gaussian measurement error
with mean 0 and variance σ2, and the measurement is repeated
T times. The negative log likelihood function is in this case given
by

ly(x) ∝
T∑
i=1

(
yi −

x1x2
k4

)2
, (6.21)

whose level sets are described by x1 = c/x2. Therefore the so-
lution is not unique and the parameters are structurally not
identifiable. Solutions lie on the manifold x1 = copt/x2 with
copt = k4/T

∑T
i=1 yi.

Figure 25 shows the contour plots of a Gaussian prior pP(x) =
N(0,γ2I) (left), the negative log likelihood ly(x1, x2) for copt = 1

(center) and the resulting posterior distributions (right) for differ-
ent σ = 1

n2
with n = 1, . . . , 5. As before, the variance γ of the

prior distribution was chosen γ(σ) =
√
σ. The posterior mass

cumulates at

x̂ = arg max
x

(
pP(x)|x1x2 = c

opt) , (6.22)

which is here given by x = (1, 1) and which demonstrates conver-
gence in probability.
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Figure 25: A non identifiable problem. Here the likelihood distribution
(middle column) reaches its maximum on the manifold x2 =
1
x1

, such that a maximum likelihood estimator is not feasible.
If we add a suitable prior(left column), then the posterior
(right column) cumulates at x† = (1, 1)T . Again we set σ :=
1
t2

for t = 1, .., 5 and γ(σ) =
√
σ.
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In comparison, Figure 26 (upper row) shows results if the
variance of the prior is set to a fixed value γ = 2 and not adapted
to σ. For large n the posterior is dominated by the likelihood
term and the posterior mass does not cumulate about a specific
value. The inverse problem is still ill-conditioned. Similarly, if γ
decreases faster than σ, the posterior distribution becomes closer
to the prior distribution regardless of the likelihood function, and
the posterior converges to the maximum of the prior.
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Figure 26: Here the relation between prior distribution and likelihood
is not chosen correctly. In the upper row the influence of
the prior is too weak, γ = 2 and σ = 0.2. Therefore the
posterior resembles the likelihood. Whereas in the lower row,
the influence of the prior distribution is too strong (γ = 1

3

and σ = 0.5) and the posterior approaches the prior.

6.5 summary and discussion

In this chapter we compared convergence concepts and results
from the theory of ill-posed inverse problems and regularization
theory in order to set up a similar convergence theory for the sta-
tistical inference of structurally non-identifiable problems, where
the asymptotic theory fails. For these problems, the posterior
distribution in a Bayesian setting depends on the prior distribu-
tion even in the large sample size limit. Moreover, for arbitrary
but fixed prior distribution although the mode might converge,
the posterior does usually not converge in probability, since the
mass does not become more and more concentrated in a point.
This has to be taken into account when setting up a framework
for convergence of the posterior. Additional to the limit of large
sample sizes, for convergence in probability the prior has to be-
come more and more informative as well, which is already used
in the deterministic theory of ill-posed inverse problems. While
convergence of point estimates has already been studied for var-
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ious objective functionals, convergence of the whole posterior
distribution in a statistical Bayesian framework is only poorly
investigated so far.

In the last section we presented ideas how to generalize the
work of Hofinger et al. in this direction, who derived convergence
results of the posterior distribution in case of linear problems
and Gaussian prior and measurement noise. A generalization of
the lines of proofs in their work did not seem to be possible for
several reasons. Most importantly, it is exploited that the posterior
is a multivariate Gaussian distribution and can explicitly be
computed in this special setting. This allows to estimate an upper
bound for the distance between a posterior random variable and
its mean value, for which a straightforward generalization does
not seem possible at the moment. Moreover, these theorems also
use the fact, that only the mean of the posterior does depend
on the data and is a random variable, while the covariance is
deterministic. Thus, the posterior distribution itself can easily be
treated as a random variable. As far as we know, this opportunity
to regard the posterior as a random variable is only valid in case
of Gaussian distributions and is perhaps not possible in case of
other pairings of likelihood and prior.

In a non-conjugate framework, where the posterior is not given
in explicit form, we need other techniques to show convergence.
However, we presented ideas how the concept can be generalized,
and illustrated these ideas with numerical examples. Additionally
we provided a slight generalization of the existence results for
maximum prior maximum likelihood estimates, or equivalently
R-minimizing solutions.

In the next chapter we will use the close connection between
deterministic Tikhonov regularization and the stochastic Bayesian
inversion, presented in Theorem 6.1. As we have seen, taking
the negative logarithm of the posterior density function leads
to an equivalent minimization problem as in the deterministic
case. Such that, we could use results from deterministic theory
to extend the stochastic theory. Now, we will go the other way
around, using well-known sparsity enforcing prior distributions
to generate a new regularization functional for deterministic
Tikhonov regularization.





7
C A U C H Y F U N C T I O N A L

In the following we will use the close connection between stochas-
tic and deterministic regularization theory to develop a new
sparsity enforcing regularization functional, namely the Cauchy
functional. It is based on the Cauchy probability density function,
very slowly growing at zero and thus differentiable. We show that
the generated Tikhonov functional with Cauchy regularization
term is a proper regularization method in Section 7.2. Our proofs
are based on the results on Tikhonov regularization in Banach
spaces with general regularization term, which we introduced
in Chapter 2. In Section 7.3 we show convergence rates for the
new functional, but as the Cauchy term is not convex, we can
not use the approaches we covered in Chapter 2. Instead we have
to introduce a new notion of convexity, based on the work of
Markus Grasmair [32]. Finally, we will come back to the exam-
ples of sparse inverse problems, which motivated our analysis
in Chapter 3. We solve them with the proposed regularization
approach and compare the numerical results to other sparsity
promoting approaches.

7.1 introduction

In the last chapter we have seen that if the likelihood and the prior
distribution are Gaussian distributions, the negative logarithm
of the posterior distribution directly leads to the Tikhonov func-
tional with quadratic regularization term (Theorem 6.1). Starting
from this close connection, we can search for sparsity promoting
regularization functionals by considering sparsity enforcing prior
distributions and we can investigate the resulting regularization
functionals by taking the negative logarithm of the distribution.

One example is the betaprime distribution, given by

p(x) = p(x|α,β) =
1

B(α,β))
xα−1(1+ x)−α−β.

Setting α = 1 and β = 0 this prior distribution results in the
regularization term R(x) =

∑
log(1+ xi), whose regularization

properties have already been shown in Example 3.12 (A slowly
growing function) of [12].

Another interesting prior distribution for sparse inverse prob-
lems is the Cauchy distribution. It is used in [51] to infer sparsity
in a Bayesian setting. The Cauchy distribution is defined via:

p(x|ω) =
ω

π
· 1

1+ω2x2
.

93
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Figure 27: Plot of the one dimensional Cauchy regularization term for
different ω-values. The dotted line is the absolute value for
comparison.

This definition holds for one-dimensional variables and can be
extended to the multivariate case by taking the product over all
dimensions. Considering the negative logarithm and disregarding
the constant term, then leads to:

RC(x) =

N∑
i=1

log(1+ω2x2i ).

This is a differentiable penalty term, where the penalization of
small entries is controlled by the parameterω. With higher values
of ω, small values of x will be penalized stronger, see Figure 27.

As we want to deal with problems in possibly infinite dimen-
sional Hilbert spaces, we further generalize the regularization
term to

RC(x) :=
∑
i∈I

log(1+ω2〈x,φi〉2),

where φ = (φi)i∈I is a complete orthonormal basis (or more
generally a frame) of a separable Hilbert space X. We assume
that I is countable.

We are now interested in the behavior of the Tikhonov func-
tional with Cauchy regularization term, i. e.,

Jα(x) = ‖F(x) − yδ‖2Y +RC(x). (7.1)

Together with the general assumption on the noisy data, cf. (1.2):

‖y− yδ‖Y = ‖F(x†) − yδ‖Y 6 δ.



7.2 wellposedness 95

7.2 wellposedness

In Condition 1 of Chapter 2 we stated sufficient assumptions
for a general Tikhonov functional Jα = S(F(x),yδ) + αR(x) to
be a proper regularization method. Now, we only have to ver-
ify this conditions in terms of the Cauchy-Tikhonov functional
introduced in (7.1).

Assumption 1. Throughout this chapter we assume the following:

1. Let τX and τY be the weak topologies on the Hilbert spaces X

and Y.

2. The data-fitting term S is the squared error norm given on the
Hilbert space Y, i. e., S(y, ȳ) := ‖y− ȳ‖2Y.

3. The forward operator F is weakly continuous, D(F) is weakly
closed and D(F)∩D(R) 6= ∅.

With this choice of S we can state that the conditions from Con-
dition 1 on the data term are satisfied. Obviously the conditions
on F are also satisfied. Therefore we only have to verify the as-
sumptions on R, which are stated in item 4 and 6 of Condition 1.

Lemma 7.1. Let Assumption 1 hold. The Cauchy regularization term
RC(x) is weakly lower semi continuous.

Proof. We have to show that:

lim inf
k→∞ RC(xk) > RC(x).

Now, if RC(x) <∞:

RC(x) =
∑
i∈I

log(1+ω2〈x,φi〉2)

=
∑
i∈I

log(1+ω2(lim inf
k→∞ 〈xk,φi〉︸ ︷︷ ︸

=〈x,φi〉

)2)

=
∑
i∈I

log
(

lim inf
k→∞

(
1+ω2〈xk,φi〉2

))
=
∑
i∈I

lim inf
k→∞ log(1+ω2〈xk,φi〉2)

= lim inf
k→∞

∑
i∈I

log(1+ω2〈xk,φi〉2) = lim inf
k→∞ RC(xk).

Here the first equality holds just because of the weak convergence
of xk ⇀ x and the Riesz representation theorem. Then we can
exchange the limit with the logarithm, because of the continu-
ity of the quadratic and the logarithm function. Finally we can
exchange summation and limit, because the sum is absolutely
convergent.
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Now consider the case RC(x) =∞. Then for an arbitrary M ∈
IR+, there exists i0 ∈ IN such that

i0∑
i=1

log(1+ω2〈x,φi〉2) > 2M.

Additionally, because of the weak convergence xk ⇀ x:

∀ε > 0 ∃ki0 ∀k > ki0 : |〈xk,φi〉− 〈x,φi〉| < ε

holds. And as f(x) := log(1+ω2x2) is continuous, there exists a
δ > 0 such that

∀x1, x2 : |x1 − x2| < δ⇒ |f(x1) − f(x2)| <
M

i0
.

Now let ε := δ, then for all k > max{k10, ...,ki00 }:

RC(xk) >
i0∑
i=1

log(1+ω2〈xk,φi〉2)

=

i0∑
i=1

log(1+ω2〈x,φi〉2)−

i0∑
i=1

(
log(1+ω2〈x,φi〉2)−

log(1+ω2〈xk,φi〉2)
)

>2M−

i0∑
i=1

(
log(1+ω2〈x,φi〉2) − log(1+ω2〈xk,φi〉2)

)
︸ ︷︷ ︸

6M
i0

∀k>max{k10,...,ki00 }

>2M−M =M,

i. e., lim infk→∞RC(xk) =∞, since M was arbitrary. ut

Lemma 7.2. Let Assumption 1 hold. For every α > 0, y ∈ Y and
M > 0 the level sets

Mα,y := {x ∈ X : Jα = ‖F(x) − yδ‖2Y +RC(x) 6M}

are weakly sequentially compact.

Proof. To show that the level sets are weakly sequentially compact
we use the fact that every bounded sequence in a reflexive Banach
space exhibits a weakly convergent subsequence. Therefore it is
sufficient to show that any sequence (xk) ∈ Mα,y is bounded,
and that the weak limit lies in Mα,y.

As in case of the classical Tikhonov regularization, the follow-
ing inequality holds:

αRC(x) 6 Jα,y(x) 6M⇒ RC(x) 6
M

α
:=M ∀x ∈Mα,y.
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Therefore it is sufficient to show that from boundedness of
RC(xk), boundedness of xk follows. Which we will show by
contradiction and hence assume (xk)k∈IN to be unbounded. Thus
there exists a subsequence, for simplicity denoted by (xk)k∈IN

again, such that

‖xk‖ →∞ as k→∞. (7.2)

First note, that generally for every C > 0 there exists an η > 0
such that:

log(1+ω2x2) > ηx2, (7.3)

for all x ∈ [0,C]. Which follows from the fact, that log(1+ω2x2),
as well as x2, are monotonically increasing.

Now, we can conclude from

RC(xk) :=
∑
i∈I

log(1+ω2〈xk,φi〉2) 6M, (7.4)

that for all k ∈ IN and for all i ∈ I: log(1+ω2〈xk,φi〉2) 6 M.
And therewith

〈xk,φi〉 6
√
eM − 1

ω2
=: C, ∀k ∈ IN, ∀i ∈ I.

Hence, there exists an η such that:

RC(xk) =
∑
i∈I

log(1+ω2〈xk,φi〉2)

>
∑
i∈I

η〈xk,φi〉2 = η‖xk‖2 →∞ by (7.2),

which contradicts (7.4). Here the first inequality follows from
(7.3) and the second equality is just the Parseval equality.

Therewith ‖xk‖ is bounded and hence also the sequence (xk)

is bounded and exhibits a weakly convergent subsequence. By
weak lower semicontinuity of Jα (cf. point 3 in Assumption 1,
as well as weak lower semicontinuity of the norm and of RC,
according to Lemma 7.1) the weak limit lies in Mα,y. Thus the
level sets Mα,y are weakly sequentially compact. ut

Remark 15. The main idea, Inequality (7.3), of the proof is taken
from the proof of Lemma 3.3 in [12], where coercivity for a wide
range of regularization functionals is shown. But as the Cauchy
regularization term does not fit completely in the framework
established in [12], see also Remark 16 below, we have given the
complete proof here.

With Lemmas 7.1, 7.2, and the fact that due to RC(0) = 0, the
functional RC is proper, all points from Condition 1 are satisfied
and we end up with the following theorem:
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Theorem 7.3. Let Assumption 1 hold. The Cauchy Tikhonov func-
tional is a stable, well-posed and convergent regularization functional.

a) (stability) The minimizers of Jα are stable with respect to the
data yδ. That is, for every sequence yk → y, the sequence of
minimizers (xk), xk := arg min Jα(x) has a subsequence, which
converges weakly, and the limit of every subsequence is a mini-
mizer of Jα.

b) (well-definedness) If there exists a solution to F(x) = y, then
there exists a RC-minimizing solution, that is,

x† ∈ arg min{RC(x) : x ∈ X, F(x) = y}.

c) (weak convergence) Assume there exists a solution to F(x) = y.
Then, for a parameter choice with

α→ 0,
δ2

α
→ 0, for δ→ 0,

there exists a subsequence of (xαδ ) which converges weakly to a
RC-minimizing solution x† of F(x) = y. Additionally

RC(x
α
δ )→ RC(x

†).

Proof. For the proof of the theorem, we can refer back to the re-
sults on general Tikhonov regularization introduced in Chapter 2.
The above stated results follow from Lemma 2.2, Lemma 2.3,
Lemma 2.4 and Lemma 2.5, which are based on the Theorems
3.2, 3.4 and 3.5 in [48], the assertion RC(x

α
δ ) → RC(x

†) being
contained in the proof of Theorem 3.5. ut

Let from now on X = `2(IN), the space of square-summable
sequences. If X = `2(IN) we can also show strong convergence of
the minimizers, because the Cauchy regularization term satisfies
the Kadec property.

Lemma 7.4 (Strong convergence). Let Assumption 1 hold and as-
sume that X = `2(IN). Then for a parameter choice according to c)
of Theorem 7.3 it follows that (xαδ ) has a strong convergent subse-
quence and each limit of the subsequence is a RC-minimizing solution
of F(x) = y.

Proof. The proof follows the lines of the proof of Lemma 3.6 and
Remark 3.7 in [12]. For simplicity we define r(x) := log(1+ω2x2)
and consider

R̃C(x) :=
∑
i∈IN

r(|xi|),
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which is equivalent to RC(x). Now we can define r on r : [0,∞)→
[0,∞), where it is strict monotonically increasing and invertible,
with r−1(y)2 = 1

ω2
(ey − 1).

According to Theorem 7.3 c), xαδ has a weakly convergent subse-
quence, which we denote by xn and xn ⇀ x† in `2. Additionally
according to Theorem 7.3 c) R̃C(x

n)→ R̃C(x
†) <∞.

As we are dealing with x in the Hilbert spaces `2 it is enough
to show ‖xn‖ → ‖x†‖, which implies strong convergence.

Since the xn converge weakly, they are uniformly bounded by
a constant L > 0, such that |xni |, |x

†
i | < L for all i,n. Additionally

xni → x
†
i for n→∞ holds for all i.

Now as the |xni |, |x
†
i | are bounded and r−1(x)2 is locally Lip-

schitz continuous, there is a second constant C(L) such that∣∣r−1(|xni |)2 − r−1(|x†i |)2∣∣ 6 C(L)∣∣|xni |− |x
†
i |
∣∣.

Set L̃ = r(L) and x̂ := r(|xni |), x̄ := r(|x†i |), then as r is strictly
monotonically increasing, |x̂|, |x̄| 6 L̃. Hence∣∣r−1(x̂)2 − r−1(x̄)2∣∣ 6 C(L̃)∣∣x̂− x̄∣∣,
which is equivalent to∣∣|xni |2 − |x

†
i |
2
∣∣ 6 C(L̃)∣∣r(|xni |) − r(|x†i |)∣∣.

From this we can conclude∣∣‖xn‖2 − ‖x†‖2∣∣ 6 C(L̃)∑
i∈IN

∣∣r(|xni |) − r(|x†i |)∣∣. (7.5)

Define now x̃nk := min{r(|xnk |), r(|x
†
k|)}. Since r is continuous,

limn→∞ x̃nk = r(|x†k|) and as R̃C(x
†) < ∞ we get by dominated

convergence

lim
n→∞

∑
i∈IN

x̃nk = R̃C(x
†).

As |a− b| = a+ b− 2min{a,b}, we see that∑
i∈IN

∣∣r(|xni |) − r(|x†i |)∣∣ =∑
i∈IN

r(|xni |) + r(|x
†
i |) − 2x̃

n
i > 0.

Hence taking the limit n→∞ and keeping in mind that R̃C(x
n)

converges to R̃C(x
†) leads to

lim
n→∞

∑
i∈IN

∣∣r(|xni |) − r(|x†i |)∣∣ = 2R̃C(x
†) − 2 lim

n→∞
∑
k∈IN

x̃nk = 0,

which together with (7.5) proves the assertion. ut
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7.3 convergence rate

As the Cauchy term is not convex, the standard approaches to
show convergence rates (see [73]) cannot be applied, because
they rely on convexity of the regularization term as a crucial as-
sumption. Recently, Markus Grasmair has shown in [31] how it is
possible to generalize the proof of convergence rates for Tikhonov
functionals even in the case of a non-convex regularization term.
For this purpose he had to introduce a slightly weaker form of
convexity, called W-convexity. In the next few paragraphs, we
will outline his approach, introduce the notion of W-convexity,
and finally demonstrate how we can use this generalization to
show convergence rates for the Cauchy regularization term.

7.3.1 Generalized convexity

The generalization of convexity mainly follows the exposition
in [31], which is based on the derivation in [83]. Before giving
a generalized notion of convexity, we have to introduce some
notation for addition and subtraction on the extended real line
IR∪ {+∞}∪ {−∞}.

Definition 7.5 (Definition 2.1 in [31]). We define the upper and
lower addition and subtraction on IR ∪ {±∞} as the extensions of the
usual definitions satisfying:

+∞+̇(−∞) = −∞+̇∞ = +∞
+∞+

·
(−∞) = −∞+

·
∞ = −∞

+∞−̇(+∞) = −∞−̇(−∞) = +∞
+∞−

·
(+∞) = −∞−

·
(−∞) = −∞

Definition 7.6 (Definition 2.2 in [31]). Let X be some set and W a
family of functions w : X → IR. The (generalized) Fenchel conjugate
of a function R : X → IR ∪ {±∞} with respect to W is the function
R∗ :W → IR∪ {±∞} defined by:

R∗(w) := sup
x∈X

[w(x) −
·
R(x)].

The double conjugate of R is the function R∗∗ : X → IR ∪ {±∞} :

given by

R∗∗(x) := sup
w∈W

[w(x)−
·
R∗(w)] = sup

w∈W
inf
x̃∈X

[w(x)+
·
(R(x̃)−̇w(x̃)].

Now we call a function R convex with respect to W, if R = R∗∗. We
call it locally convex at x ∈ X with respect to W, if R(x) = R∗∗(x).
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If we look at the definition of the double conjugate in more
detail, we see that we call a function locally convex at x ∈ X with
respect to W, if and only if for every ε > 0 there exists wε ∈W
such that

R(x̃) > R(x)+̇(wε(x̃) −
·
wε(x)) − ε (7.6)

for all x̃ ∈ X (cf. Remark 2.1 in [31]). With this generalized defini-
tion of the Fenchel conjugate, we can introduce a generalization
of the subdifferential of a function R.

In the following, we always assume that W is a non empty
family of functions w : X→ IR∪ {±∞}.

Definition 7.7 (Definition 2.3 in [31]). Let R be locally convex at
x ∈ X with respect toW and assume R(x) ∈ IR. TheW-subdifferential
of R at x ∈ X, denoted by ∂WR(x), is defined as the set of all w ∈ W
that satisfy w(x) ∈ IR and

R(x̃) > R(x) + (w(x̃) −w(x))

for all x̃ ∈ X.

Definition 7.8 (Definition 2.4 in [31]). Let R be locally convex at
x ∈ X with respect to W and assume ∂WR(x) 6= ∅. For w ∈ ∂WR(x)

and x̃ ∈ X we define the W-Bregman distance between x and x̃ with
respect to w as

DwW(x; x̃) := (R(x̃) −R(x))−̇(w(x̃) −w(x)).

TheW-Bregman distance is non-negative and satisfies DwW(x; x) = 0.

We will now have a closer look at a small example, once again
taken from [31]. We will use the insights gained from the example
later on to show that the Cauchy regularization term is locally
convex with respect to W2 introduced in Definition 7.9 below.

Example 4. Let us consider the family of all locally negative semi-
definite, continuous quadratic functions on a locally convex space
X, which we denote by W. That is

w ∈W ⇔ w(x) = c+ 〈ξ, x〉−A(x, x) ∀x ∈ U,

with c ∈ IR, ξ ∈ X∗ and A a positive semi-definite, symmetric
bounded quadratic form on X. Here U is a neighborhood of an
element x0 ∈ X.

If we now apply the definition of local convexity of (7.6), then
a function R : X → IR ∪ {±∞} is locally convex at x ∈ X with
respect to W, if and only if there exists for every ε > 0 a ξε ∈ X∗

and a positive semi-definite, symmetric, bounded quadratic form
Aε on X such that

R(x̃) + ε > R(x) + 〈ξε, x̃〉−Aε(x̃, x̃) − 〈ξε, x〉+Aε(x, x)

= R(x) + 〈ξε, x̃− x〉−
Aε(x̃− x, x̃− x) − 2Aε(x, x̃− x)
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for all x̃ ∈ U. Now we can define ξ̃ε ∈ X∗ by 〈ξ̃ε, x̂〉 := 〈ξε, x̂〉−
2Aε(x, x̂) and obtain that R is locally convex at x ∈ X with respect
to W if and only if for every ε > 0 there exists a ξ̃ε ∈ X∗ and a
positive semi-definite, symmetric, bounded quadratic form Aε
on X such that

R(x̃) + ε > R(x) + 〈ξ̃ε, x̃− x〉−Aε(x̃− x, x̃− x) (7.7)

for all x̃ ∈ U. This directly influences the definition of the W-
subdifferential. The W-subdifferential of R(x) at x consists of all
functions w(x̃) = a+ 〈ξ, x̃− x〉−A(x̃− x, x̃− x) that satisfy

R(x̃) > R(x) + 〈ξ, x̃− x〉−A(x̃− x, x̃− x) (7.8)

for all x̃ ∈ U.
The last equation shows a great similarity to the notion of a

proximal subdifferential of a function R(x) (see [18]).

We will now show the W-convexity of the Cauchy regulariza-
tion term. For this purpose, differentiability of the Cauchy term
will be essential.

7.3.2 W-convexity of RC(x)

First we introduce the family of functions for which the Cauchy
regularization term is W-convex.

Definition 7.9 (Definition 5.1 in [31]). We define W2 as the set of
all functions w : `2(IN)→ IR for which there exists ρ > 0, an element
x0 ∈ `2(IN), ξ ∈ `2(IN) and c > 0 such that

w(x̃) = 〈ξ, x̃− x0〉− c
∑
i∈IN

|x̃i − x0i|
2 (7.9)

for all x̃ ∈ `2(IN) with ‖x̃− x0‖ < ρ.

Using Example 4 with a = −〈ξ, x0〉, A(x̃, x̄) = c
∑
i∈IN(x0i −

x̃i)(x0i − x̄i), we obtain that a functional R : X → IR ∪ {±∞} is
locally convex at x ∈ X with respect to W2 if and only if for every
ε > 0 there exists a ξ̃ε ∈ X∗, and x0 ∈ X, and a cε > 0 such that

R(x̃) + ε > R(x) + 〈ξ̃ε, x̃− x〉− cε‖x0 − x̃+ x‖2

for all x̃ ∈ X. Moreover, the W2-subdifferential of such an R

consists of all w of the form (7.9) such that for all x̃ ∈ `2(IN) with
‖x̃− x0‖ < ρ,

R(x̃) > R(x) + 〈ξ, x̃− x〉− c(‖x0 − x̃‖2 − ‖x0 − x‖2) ,

and therefore especially contains all w of the form (7.9) with
x0 = x such that for all x̃ ∈ `2(IN) with ‖x̃− x‖ < ρ,

R(x̃) > R(x) + 〈ξ, x̃− x〉− c‖x− x̃‖2 .
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Lemma 7.10. The following holds for the Cauchy regularization term.

i) The Cauchy regularization term

RC(x) =
∑
i∈I

log(1+ω2〈x,φi〉2)

is locally W2-convex.

ii) Moreover, the W2-subdifferential of RC at x contains all func-
tions of the form w(x̃) = 〈ξ, x̃ − x〉 − c‖x̃ − x‖2 such that
ξi =

2ω2xi
1+ω2x2i

and c > ω2.

The proof of Lemma 7.10 is a combination of the differentiabil-
ity of RC(x) and the example given above. All we have to show
for i) is that there exists a ξ and a c > 0 such that (7.7) holds with
A(x, x̃) = c

∑
i∈IN xix̃i. It turns out that ξ is just the gradient of

RC(x) and c a bound for the second derivative. We will show the
existence of the second derivative for more general regularization
functionals of the form R(x) =

∑
i∈I r(xi).

Lemma 7.11. Let R(x) :=
∑
i∈IN r(xi), x ∈ `2(IN), with r(x) > 0. If

r is differentiable and

• ‖ (r ′(xi))i∈IN ‖`2 <∞ for x ∈ `2(IN).

• |r ′(x1) − r
′(x2)| 6 L1|x1 − x2| for x1, x2 ∈ IR and L1 > 0

then R(x) is Fréchet differentiable, with

R ′(x)[h] =
∑
i∈IN

r ′(xi)hi,

h = (hi)i∈IN ∈ `2(IN). If additionally r is twice differentiable and

•
∑
i∈IN r

′′(xi)h1ih2i <∞ for x ∈ `2(IN) and h1,h2 ∈ `2(IN)

• |r ′′(x1) − r
′′(x2)| 6 L2|x1 − x2| for x1, x2 ∈ IR and L2 > 0

then R ′(x) is Fréchet differentiable, with

R ′′(x)[h1,h2] =
∑
i∈IN

r ′′(xi)h1ih2i .

Proof. We will first show, that

|R(x+ h) −R(x) −R ′(x)[h]| = o(‖h‖`2),

for h ∈ `2(IN), with R ′(x)[h] =
∑
i∈IN r

′(xi)hi. To do so, we can
use

|R(x+h)−R(x)−R ′(x)[h]| = |
∑
i∈IN

r(xi+hi)− r(xi)− r
′(xi)hi|,
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as
∑
i∈IN r

′(xi)hi < ∞ by the assumption ‖ (r ′(xi))i∈IN ‖`2 < ∞
and the Cauchy Schwarz inequality:∑

i∈IN

r ′(xi)hi 6 ‖
(
r ′(xi)

)
i∈IN ‖`2‖h‖`2 .

Now

|
∑
i∈IN

r(xi + hi) − r(xi) − r
′(xi)hi|

=|
∑
i∈IN

∫1
0

r ′(xi + thi)dthi − r
′(xi)hi|

=|
∑
i∈IN

∫1
0

(r ′(xi + thi) − r
′(xi))hidt|

6
∑
i∈IN

∫1
0

(|r ′(xi + thi) − r
′(xi)|)hidt

6
∑
i∈IN

∫1
0

(L1thi)hidt

=
L1
2

∑
i∈IN

h2i =
L1
2
‖h‖2`2 = o(‖h‖`2),

where the second inequality hold, because of the assumed Lip-
schitz continuity of r ′(x). This shows Fréchet differentiability
of R(x) =

∑
i∈IN r(xi), and R ′(x)[h] =

∑
i∈IN r

′(xi)hi. In the
same way, we can show Fréchet differentiability of R ′(x) and
R ′′(x)[h1,h2] =

∑
i∈IN r

′′(xi)h1ih2i .
If
∑
i∈IN r

′′(xi)h1ih2i <∞
|R ′(x+ h2)[h1] −R ′(x)[h1] −R ′′(x)[h1,h2]|

= |
∑
i∈IN

r ′(xi + h2i)h1i − r
′(xi)h1i − r

′′(xi)h1ih2i |.

Now as before

|
∑
i∈IN

r ′(xi + h2i)h1i − r
′(xi)h1i − r

′′(xi)h1ih2i |

= |
∑
i∈IN

h1i

(∫1
0

r ′′(xi + th2i)dth2i − r
′′(xi)h2i

)
|

6
∑
i∈IN

|h1i |
L2
2
h22i

6 max
i∈IN

{|h1i |}
L2
2

∑
i∈IN

h22i = o(‖h2‖`2).

Once again the first inequality holds, because of the Lipschitz
continuity of r ′′(x). ut

Now we can prove Lemma 7.10 by showing that the required
properties from Lemma 7.11 hold for r(x) := log(1+ω2x2).



7.3 convergence rate 105

Proof of Lemma 7.10. In case of the Cauchy regularization term
r(x) = log(1+ω2x2). Therewith

r ′(x) =
2ω2x

1+ω2x2
,

r ′′(x) = 2ω2
1−ω2x2

(1+ω2x2)2
,

r ′′′(x) = 4ω4
x(ω2x2 − 3)

(1+ω2x2)3
.

Now Lipschitz continuity of r ′(x) follows, because r ′′(x) is bound-
ed from above, |r ′′(x)| 6 2ω2. The same holds true for r ′′(x), as

|r ′′′(x)| < 4ω3
√
3
√
5−5

(4−
√
5)3

. The latter can be seen by computing the

extremal values of r ′′′ and using the fact that r ′′′(x) → 0 for
x→∞.

For x ∈ `2(IN)

‖(r ′(xi))i∈IN‖`2 =
∑
i∈IN

(
2ω2

xi

1+ω2x2i

)2
6 4ω4

∑
i∈IN

x2i

= 4ω4‖x‖2`2 <∞.

Additionally for h1,h2 ∈ `2∑
i∈IN

r ′′(x)h1ih2i =
∑
i∈IN

2ω2
1−ω2x2i
1+ω2x2i︸ ︷︷ ︸

61

h1ih2i

6 2ω2
∑
i∈IN

h1ih2i

6 2ω2‖h1‖`2‖h2‖`2 <∞.

Hence Lemma 7.11 applies. Now RC(x̃) −RC(x) =
∑
i∈IN r(x̃i) −

r(xi) with r(λ) := log(1+ω2λ2). As r(λ) is twice differentiable,
we can consider the Taylor expansion with remainder and get:

RC(x̃) −RC(x) =
∑
i∈IN

(
r ′(xi)(x̃i − xi) +

1

2
r ′′(zi)(x̃i − xi)

2

)
,

with zi an element of the line segment between x̃i and xi. Setting
ξ = (ξi)i∈IN = (r ′(xi))i∈IN leads to

RC(x̃) −RC(x) = 〈ξ, x̃− x〉`2(IN) +
1

2

∑
i∈IN

r ′′(zi)(x̃i − xi)
2.

Additionally, r ′′(λ) is bounded, namely |r ′′(λ)| 6 2ω2 for all λ,
and therefore

RC(x̃) −RC(x) = 〈ξ, x̃− x〉+ 1
2

∑
i∈IN

r ′′(zi)(x̃i − xi)
2

> 〈ξ, x̃− x〉−ω2
∑
i∈IN

(x̃i − xi)
2,

which proves the assertion. ut
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With the local W2-convexity of RC we can apply the results by
Grasmair to establish a convergence rate for the Cauchy-Tikhonov
regularization functional.

7.3.3 Convergence rates under a variational inequality

Grasmair actually shows his results for a general regularization
functional, with general data-fitting term and general regulariza-
tion functional:

Jα(x,y) := S(F(x),y) +αR(x).

As the results stated below hold in this general setting, we will
also formulate them generally here, despite the fact that our
analysis is mainly concerned with the special Cauchy-Tikhonov
functional introduced in (7.1).

We now introduce the generalized variational inequality neces-
sary for the derivation of convergence rates.

Definition 7.12 (Definition 3.1 in [31]). Let W be a family of ex-
tended real valued functions on X and assume that R(x) is W-convex
at x† and ∂WR(x†) 6= ∅. We say that the regularization method sat-
isfies a variational inequality at x† ∈ X with respect to W if there
exist β > 0, ε > 0, a neighborhood U of x†, w ∈ ∂WR(x†) and a
concave, continuous, strictly increasing function Φ : [0,∞)→ [0,∞)

satisfying Φ(0) = 0 such that

βDwW(x†; x) 6 (R(x) −R(x†)) +Φ(S(F(x), F(x†))) (7.10)

for all x ∈ D(F)∩U satisfying |R(x†) −R(x)| < ε.

This generalized variational inequality can now be applied to
prove convergence rates for Tikhonov regularization functionals,
with non-convex but locally W-convex regularization terms.

Theorem 7.13 (Theorem 3.1 in [31]). Assume that a variational
inequality at x† ∈ X with respect to W is satisfied and let β > 0

and Φ : [0,∞) → [0,∞) be as in definition 7.12. Let δ > 0 and
assume that yδ ∈ Y satisfies S(y,yδ) 6 δ. Moreover, let xαδ :=

arg minx∈X Jα(x,y). Then for δ small enough, such that |R(xαδ ) −

R(x†)| < ε as in definition 7.12, the following hold.

i) If γ := limt→0+
Φ(t)
t < +∞ and α 6 1

γs , we have the estimate

βDwW(x†; x) 6
δ

α
+Φ(sδ).

ii) If limt→0+
Φ(t)
t = +∞, let Ψ : IR>0 → IR>0 be a conjugate

of the convex mapping t 7→ Φ−1(st). Then we have, for a suffi-
ciently small α, the estimate

βDwW(x†; x) 6
δ

α
+Φ(sδ) +

Ψ(α)

α
.
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Proof. See proof of Theorem 3.1 in [31]. Please be aware that,
as the regularization method is convergent (Theorem 7.3) we
assume xαδ to be in an ε-ball around x† and that δ has to be small
enough, such that |R(xαδ ) −R(x†)| < ε. ut

Corollary 7.14 (Corollary 3.1 in [31]). Let the assumptions of Theo-
rem 7.13 be satisfied.

(i) If γ := limt→0+
Φ(t)
t < +∞ we have for a constant parameter

choice α 6 1
γs the convergence rate

DwW(x†; xαδ ) = O(δ).

(ii) If limt→0+
Φ(t)
t = +∞, then we have for a parameter choice

α ∼ δ
Φ(sδ) the convergence rate

DwW(x†; xαδ ) = O(Φ(sδ)).

Proof. See proof of Corollary 3.1 in [31]. ut

Corollary 7.15. Let a variational inequality (7.10) with W := W2
according to Definition 7.9 hold at x†. Then the rates given in Theorem
7.13 i), ii) and Corollary 7.14 i), ii) are also valid for the Tikhonov
functional with Cauchy regularization term.

Proof. According to Lemma 7.10, RC is W2 convex and therefore
Theorem 7.13 can be applied. ut

Remark 16. For results on convergence rates under a source condi-
tion we first of all refer to work by Markus Grasmair. He showed
convergence rates under a source condition and the restricted
injectivity condition. Additionally, he required a growth condi-
tion at zero for the regularization term (see Theorem 5.1 in [31]).
Actually, this growth condition is not fulfilled by the Cauchy
term.

In [32], Grasmair showed linear convergence rates for the sub-
linear `p regularization term with 0 < p < 1. But again he needed
a growth condition on the regularization term, which does not
hold for the Cauchy functional.

Also recently, Kristian Bredies and Dirk Lorenz showed in
[12] convergence rates for regularization terms with separable
constraints. They considered terms of the general type R(x) =∑
i∈I r(|xi|), with r(x) an arbitrary function. As Grasmair, they

showed linear convergence rates in the l1-norm, but demanded
r(x) to grow faster than y = x at zero (Assumption 4.2 b) in [12]).
Obviously the Cauchy term grows much slower. Another inter-
esting approach by Bredies and Lorenz is to show convergence
rates not in a given norm or other distance measure, but in the
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regularization term itself, i. e., R(xαδ − x†) = O(δ). But for this
approach, the regularization term has to fulfill

x,y > 0 ⇒ r(x) − r(y) 6 Cr(|x− y|),

for a C > 1 (Assumption 4.3 b) in [12]). This condition does not
hold for the Cauchy term, as

lim
h→0

log(1+ω2x2) − log(1+ω2(x+ h)2)
log(1+ω2h2)

=∞,

for x 6= 0.

7.4 numerical results

In this section we present numerical examples to show the per-
formance of Tikhonov regularization with Cauchy regularization
term. We compare the results to Tikhonov regularization with
`1 regularization term and to the Refining and Coarsening al-
gorithm introduced in Chapter 4. Due to differentiability of the
Cauchy regularization term, it cannot be proven to yield sparse
solutions. However, the results presented in this section show that
it is very well able to enhance sparsity in practice, as expected
from its role as a sparsity promoting prior in Bayesian inversion,
cf. [51].

The MATLAB routine fminunc was used for minimizing the
Cauchy-Tikhonov functional. As the Cauchy-Tikhonov functional
is differentiable the analytical gradient of Jα could be provided
leading to a Quasi Newton method with BFGS update of the
Hessian.

The `1 Tikhonov functional is minimized by using the well-
known IST algorithm proposed by Daubechies, Defrise, De Mol
[19]. It is known to perform slowly, but is one of the first algo-
rithms to minimize infinite dimensional sparse inverse problems.
For comparison we used the Semi Smooth Newton (SSN) method
proposed by Griesse and Lorenz in [35], which applies an active
set strategy and is faster than IST.

7.4.1 Compressed Sensing

Our first test relates back to the example of compressed sensing,
cf. Example 3 of Chapter 3.

We set N = 2048, K = 480 and T = 80. Also we added 5%
Gaussian noise to the exact data. In Figure 28, a comparison
of the different minimizers is shown. For the Cauchy-Tikhonov
minimization we used α = 4 ·10−3 and set the sparsity promoting
parameter ω = 35. The shrinkage operator for the IST was set to
γ̄ = 2 · 10−2. The free parameters of the Semi Smooth Newton
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Figure 28: Comparison of the minimizers computed by the different
algorithms. In the upper left, the original signal x is plot-
ted.The upper right picture shows the minimizer obtained
with Iterative Soft Thresholding. In the second row on the
left is the minimizer of the Cauchy-Tikhonov functional and
on the right is the minimizer of the Tikhonov functional with
`1 term, obtained with the Semi Smooth Newton method. In
the third row the filtered Cauchy minimizer and the solution
of the Refinement and Coarsening algorithm are depicted
on the left and right respectively.
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method were set to γ̃ = 105 and ω̃ = 0.127. We stopped the
Refinement and Coarsening iteration if the maximum refining
index was smaller than r̄ = 0.01. All parameters were adjusted
by hand to gain the smallest possible error.

Apparently, the result of the SSN method is not as close to the
exact signal as the results of the other algorithms, which can
also be read off from the much higher error number listed in
Table 5. However, the SSN method is much faster than the other
algorithms. The minimization of the Cauchy-Tikhonov functional
is faster than the IST algorithm and results in only half of the
error of the IST. However as already mentioned in Chapter 4, the
Refinement and Coarsening algorithm clearly provides the best
result. It produces the smallest error number together with a fast
computation time. None of the other strategies results in such a
good approximation.

Therefore in this test case, the Cauchy-Tikhonov minimiza-
tion produces an accurate solution in acceptable time. However
the minimizer of the Cauchy functional is not an actual sparse
solution, as can be seen by the number of non-zero entries of
the minimizer, also listed in Table 5. Here, the SSN method and
the Refinement and Coarsening algorithm perform best. This is
because of their active set and projection strategies. Note that
the coefficients of the Cauchy solution outside the support of
the exact signal are very small. In this example, the maximum
absolute value of a coefficient outside the support of the exact
solution was 3 · 10−3. Filtering the solution with a shrinkage
operator as used in IST and SSN hence leads to a truly sparse
solution, see also the last row of Table 5. There, the `1-error and
the number of non-zero entries are listed for a filtered minimizer
of the Cauchy-Tikhonov functional. We used a hard thresholding
filter with the same thresholding value as for the IST, γ̄ = 2 · 10−2.
The filtered Cauchy solution is then comparable to the result of
the Refinement and Coarsening algorithm. It even provides a
better reconstruction of the exact set of non-zero coefficients of
x†, see the last column of table 5.

7.4.2 Inverse Integration

As a second example we used the Cauchy-Tikhonov regulariza-
tion to solve the inverse problem of inverse integration, i. e., Exam-
ple 1 introduced in Chapter 1. Again we assumed a given sparse
exact solution x† and sampled the noisy data by yδ = Ax† + e,
where e is standard Gaussian noise. The data is given on N = 600

discretization points of the interval [0, 1].
For the exact solution we generated a piecewise constant func-

tion, which zero is on large parts, see Figure 29. Additionally, we
added 5% Gaussian noise to the exact data. The parameters in
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Figure 29: Different minimizers for the inverse integration example. In
the first row on the left the exact signal is plotted, which
consists of 6 small non-zero plateaus. The upper right plot
depicts the minimizer of the iterative thresholding algorithm.
In the second row again the minimizer of the Cauchy regular-
ization and the Semi Smooth Newton algorithm are plotted.
In the third row the filtered Cauchy and the Refinement and
Coarsening approximates are depicted.
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Table 5: The errors in `1 norm for the Compressed Sensing example.
In the second column the computation time in seconds and in
the third column the number of non-zero coefficients for the
different strategies are given.

‖x† − xαδ ‖`1 t in s nnz

Iterative Soft Thresholding 7.2670 23.0503 223

Tikhonov with Cauchy 3.4499 16.7167 2048

Semi Smooth Newton 48.0093 0.1699 96

Refinement and Coarsening 1.3347 8.3980 83

Cauchy with Filter 2.0696 80

this test case were again tuned by hand to gain the best possible
results. For the IST, the thresholding parameter γ̄ = 10−2 was
used. The parameters of the Cauchy-Tikhonov functional were
set to α = 10−3 and ω = 6. For the SSN, we used γ̃ = 105 and
ω̃ = 3.5 · 10−3. The Refinement and Coarsening strategy stopped,
if the maximum refining indicator was smaller than r̄ = 0.001.

Again we compared the four different reconstructions. This
time the result of the Refinement and Coarsening algorithm
poorly approximates the exact function. This can also be seen by
the large relative error given in Table 6.

If one compares the plot of Cauchy minimizer with the mini-
mizer of the SSN algorithm visually, they both give a good approx-
imation of the exact solution. However, the minimizer achieved
with the Cauchy-Tikhonov functional yields only half of the
relative error of the SSN minimizer.

Comparing the time the algorithms required, the IST is, as
expected, much slower than minimizing the Cauchy Tikhonov
functional. Both cannot compete with the SSN or the Refinement
and Coarsening approach.

This time, the Cauchy-Tikhonov functional provides the most
accurate solution. But we have to admit that the SSN algorithm
can be more accurate in other cases, e.g. when using the exact
example function proposed by Griesse and Lorenz in [35]. There
they used an exact function with only four small non-zero peaks,
see Figure 1 in [35]. With this exact solution, the SSN method
yields better error numbers than the Cauchy approach, see table 7.
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Table 6: Illustration of the relative errors in `1 norm for the exact func-
tion of Figure 29, the computation time in seconds and the
number of non-zero coefficients for the inverse integration
example.

‖x†−xαδ ‖`1
‖x†‖`1

t in s nnz

Iterative Soft Thresholding 0.7326 15.0984 103

Tikhonov with Cauchy 0.3457 5.2523 600

Semi Smooth Newton 0.6960 0.1487 34

Refinement and Coarsening 1.6955 0.2700 14

Cauchy with Filter 0.3446 223

Table 7: Illustration of the relative errors in `1 norm for the exact func-
tion from [35], the computation time in seconds and the number
of non-zero coefficients for the inverse integration example.

‖x†−xαδ ‖`1
‖x†‖`1

t in s nnz

Tikhonov with Cauchy 0.4378 5.1623 600

Semi Smooth Newton 0.2202 0.0837 27

Cauchy with Filter 0.4346 84
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7.4.3 Inverse Source Problem

The third test case brings us back to Example 2 of Chapter 1. We
use Cauchy regularization for identifying the source term q in
the elliptic PDE

−∆u = q in Ω (7.11)

u = 0 on ∂Ω

on the unit square Ω = [0, 1]× [0, 1] ⊂ IR2.
As before, we solved the underlying forward problem by using

the MATLAB FEM routine, and minimized the Cauchy-Tikhonov
functional in L2 using the semi smooth Newton method imple-
ment in fminunc.

We modeled the exact parameter q† by a Gaussian density
function

q†(x,y) =
1

2π‖Σ‖
e

(x−µ)TΣ−1(y−µ)
2 ,

with Σ = 0.005Id, and µ = (12 , 12). The value of each triangle of
the FEM grid is assigned according to the midpoint of the triangle,
thus resulting in a piecewise linear parameter. See Figure 30 for
a plot of the exact parameter and the corresponding solution of
(1.3), respectively the data of (1.4).

Figure 30: The exact data u† (left picture) of (1.4) and the corresponding
exact solution q† (right picture).

To illustrate the convergence behavior of the Cauchy-Tikhonov
functional, we solved the inverse problem (1.4) according to
different noise levels and calculated the relative error of the
produced minimizers, see Table 8. There one can see that the
relative errors decreases with decreasing noise levels. For the
numerical implementation we fixed ω = 16 and α = 10−7. In
Figure 31, we depicted the identified parameter for 1% noise
added to the data.

7.5 summary

In this chapter we used the connection between Bayesian in-
version and Tikhonov regularization to come back to the main
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Noiselevel ‖q†−qδα‖L2
‖q†‖

L2

5 % 0.49535

4 % 0.41966

2 % 0.38505

1 % 0.36253

0.5 % 0.36179

Table 8: Relative errors of the calculated parameter for the inverse
source problem. In the left row, the noise level δ in percent is
specified.
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Figure 31: Plot of the identified parameter qδα for 1% Gaussian noise.
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topic of this work, the solution of sparse inverse problems. The
proposed Cauchy functional is a promising alternative to other
sparsity promoting functionals as it is differentiable and can
therefore be used in gradient based minimization algorithms,
e. g., Quasi-Newton methods.

We have seen that Tikhonov regularization with Cauchy pen-
alty term is a proper regularization method and furthermore that
it is possible to derive a convergence rate O(δ) under a variational
inequality. As the Cauchy term is non convex these rates hold
only in a generalized Bregman distance and not in a given norm.

Additionally, the numerical test cases show that the Cauchy
regularization term can be used to calculate accurate results in a
fast way. In particular, the Cauchy-Tikhonov minimization leads
to accurate results in all three test cases, whereas the other ap-
proaches produce results with varying accuracy, for the different
test cases.



8
C O N C L U S I O N A N D O U T L O O K

The main topic of the thesis at hand was the solution of sparse
inverse problems. Throughout the chapters of this work, we pro-
vided an overview over different methods to solve sparse inverse
problems and established two new methods to identify sparse so-
lutions of ill-posed inverse problems. Besides the projection and
the regularization method discussed in Chapter 4 and Chapter 7,
two other related topics were studied, namely regularization by
discretization in Chapter 5 and the Bayesian inversion theory in
Chapter 6.

We started our analysis motivated by the fact that standard reg-
ularization methods, as introduced in Chapter 2, are not capable
of solving sparse inverse problems. As we saw, e. g., in Example
3, it is a challenging task to recover zeros or sharp edges of an
exact signal. Tikhonov regularization with a standard quadratic
regularization term for example is not able to recover such edges
or zeros as it will lead to smooth and fully populated solutions.

Therefore, we introduced a generalization of an adaptive me-
thod proposed by Chavent et al.. This generalization leads to a
projection method for sparse inverse problems which we called
the Refinement and Coarsening Algorithm. The key idea of this
algorithm is to solve the considered inverse problem on an adap-
tively chosen subspace. The algorithm does not change the parts
of the solution outside this chosen subspace, but sets them to zero.
We proposed two indicators for choosing the adaptive subspace.
One indicating in which direction to expand the subspace and
one indicating which dimensions of the subspace to abandon.
Thus the gained solution is element of a subspace which is as
large as needed and as small as possible. Since the underlying
minimization problem is only solved on this, in general, smaller
subspace, the minimization can be carried out in a very fast
way. Additionally, we showed that the projected minimization
problem is well-posed, i. e., there exists a minimizer, and that,
if the algorithm stops after finitely many steps, the generated
approximation solves the inverse problem in a least squares sense.

Starting from the idea of adaptively chosen subspaces in the
Refinement and Coarsening Algorithm we took a closer look at
regularization by discretization in preimage space in Chapter 5.
Regularization by discretization in preimage space is known to
converge only if additional assumptions on the solution or on
the forward operator are valid. Here we showed convergence
of the approximation sequence under a strong source condition
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and under the condition that the subspace is chosen according
to the discrepancy principle, cf. equation (5.2). With this assump-
tions we were able to show well-posedness of the regularization
approach for linear as well as nonlinear forward operators. The
theoretical results are illustrated by a nonlinear inverse problem
similar to Example 2, which we solved numerically on differ-
ent discretization levels. As postulated in the theoretical part of
Chapter 5, the best possible result was achieved on the subspace,
which comes closest to fulfill (5.2).

In the third part of this work we established a new regular-
ization functional for Tikhonov regularization which promotes
sparsity. This functional was generated by using the close connec-
tion between stochastic and deterministic regularization theory.

The connection between stochastic and deterministic theory
was developed in Theorem 6.1 in Chapter 6. The theorem states
equivalence between Bayes regularization with Gaussian distribu-
tions and Tikhonov regularization with a quadratic regularization
term. Before providing this theorem, we had a closer look at the
stochastic regularization approach. There, one tries to maximize
the posterior distribution instead of minimizing a cost functional.
The corresponding maximizer then serves as a solution, instead
of the minimum least squares approximation in the deterministic
case. In Chapter 6 we stated a general convergence conjecture for
a posterior distribution generated by a general pair of noise and
prior distribution. Additionally, we proved a slight generalization
of the existence theorem for the MAP estimate, which also holds
true for an R-minimizing solution.

In the last chapter, we finally introduced the Cauchy regular-
ization functional which occurs when considering the negative
logarithm of the Cauchy distribution. The Cauchy distribution
is a probability distribution used to infer sparse solutions in
the Bayesian regularization theory. We examined the functional
and showed well-posedness of the corresponding Tikhonov func-
tional. For this purpose, we used the recent results for regular-
ization in Banach spaces introduced in Chapter 2. Besides the
well-posedness, we showed differentiability of the new regular-
ization functional. One can use fast gradient based optimization
methods for the minimization of the Cauchy-Tikhonov functional.
However on the theoretical side, the Cauchy functional suffers
one big drawback: it is not convex. Due to its non-convexity,
we could not apply the results on convergence rates for general
Tikhonov regularization, established in [48] and mentioned in
Chapter 2. To show a convergence rate at least for a given varia-
tional inequality, we had to introduce the notion of W-convexity,
a less strict version of convexity, which is fulfilled by the Cauchy
term.
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The Cauchy functional concluded our analysis of the solution
of sparse ill-posed inverse problems. We gave two possible an-
swers to the question raised at the beginning – how to solve
sparse inverse problems – by proposing two new techniques,
a projection and a variational regularization method for sparse
inverse problems.

8.1 outlook

This thesis adresses a wide spectrum of topics related to sparse
inverse problems. However, there are of course questions we
could not answer up to now, as well as new questions that arose
throughout the development of the above given results.

After showing well-posedness for the Cauchy-Tikhonov func-
tional, the question arises, whether there are other probability
density functions which can be carried over to deterministic reg-
ularization functionals (for sparsity or other purposes). Next the
proof of well-posedness for the generated functionals, or bet-
ter for general regularization functionals is a crucial task. There
are recent works focusing on general non-convex regularization
functionals, i. e., [12, 32, 31]. But as we have seen, the Cauchy
regularization term does not fit completely in neither of these
approaches. Thus, a theory for general non-convex regularization
terms is still missing.

Another open issue is the convergence proof for arbitrary pairs
of probability density functions in the Bayesian inversion theory.
As we have seen the close connection can only be established in
case of a pair of Gaussian distribution. The proof of convergence
for a general posterior density function can be a very valuable
result for both the deterministic and the stochastic approach.
However, due to the above given reasons it is very challenging to
prove such a general result, see Chapter 6.

Concerning the first part of this work, a theoretical investiga-
tion of the sophisticated stopping rule used in the numerical test
cases in Chapter 5, cf. equation (5.40), could be of interest. As we
have seen in our numerical results these inexact solution of the
Euler equation leads to good results.

As indicated in Chapter 4, the Refinement and Coarsening
algorithm can be used for the minimization of any differentiable
misfit functional. It would hence be an interesting approach to
combine a specialized Tikhonov functional, e. g., Table 1, with
the refining and coarsening strategy to get a fast and efficient
algorithm for solving specific inverse problems.





B I B L I O G R A P H Y

[1] R. Albert and A. L. Barabási. Statistical mechanics of com-
plex networks. Reviews of Modern Physics, 74(1):47–97, 2002.

[2] U. Alon. An Introduction to Systems Biology: Design Principles
of Biological Circuits (Chapman & Hall/CRC Mathematical &
Computational Biology). Chapman and Hall/CRC, 1 edition,
2006.

[3] U. Amato and W. Hughes. Maximum entropy regularization
of fredholm integral equations of the first kind. Inverse
Problems, 7(6):793+, 1991.

[4] A.B. Bakushinsky and M. Yu Kokurin. Iterative Methods for
Approximate Solution of Inverse Problems. Springer, Dordrecht,
2004.

[5] W. Bangerth. Adaptive finite element methods for the identifi-
cation of distributed parameters in partial differential equations.
PhD thesis, University of Heidelberg, Germany, 2002.

[6] A. Barabasi and Z. N. Oltvai. Network biology: under-
standing the cell’s functional organization. Nature Reviews
Genetics, 5(2):101–113, 2004.

[7] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin. A
simple proof of the restricted isometry property for random
matrices. Constructive Approximation, 28(3):253–263, 2008.

[8] F. Bauer and M. A. Lukas. Comparing parameter choice
methods for regularization of ill-posed problems. Mathemat-
ics and Computers in Simulation, 81(9):1795–1841, 2011.

[9] H. Ben Ameur and B. Kaltenbacher. Regularization of param-
eter estimation by adaptive discretization using refinement
and coarsening indicators. Journal of Inverse and Ill-Posed
Problems, 10(6), 2002.

[10] H. Ben Ameur, G. Chavent, and J. Jaffre. Refinement and
coarsening indicators for adaptive parametrization: applica-
tion to the estimation of hydraulic transmissivities. Inverse
Problems, 18(3):775–794, 2002.

[11] K. Bredies and D. A. Lorenz. Iterated Hard Shrinkage for
Minimization Problems with Sparsity Constraints. SIAM
Journal on Scientific Computing, 30(2):657–683, 2008.

121



122 bibliography

[12] K. Bredies and D. A. Lorenz. Regularization with non-
convex separable constraints. Inverse Problems, 25(8):085011+,
2009.

[13] R. Bringhurst. The Elements of Typographic Style. Version 2.5.
Hartley & Marks, Publishers, Point Roberts, WA, USA, 2002.

[14] M. Burger and A. Hofinger. Regularized greedy algorithms
for network training with data noise. Computing, 74:1–22,
2005.

[15] E. Candes and J. Romberg. l1-magic: Recovery of sparse
signals via convex programming. Technical report, Califor-
nia Institute of Technology, 2005. URL http://www-stat.

stanford.edu/~candes/l1magic/.

[16] A. Chambolle. An algorithm for total variation minimization
and applications. Journal of Mathematical Imaging and Vision,
20:89–97, 2004.

[17] G. Chavent and R. Bissell. Indicator for the refinement of
parametrization. In Proceedings of the International Symposium
in Inverse Problems in Engineering Mechanics, Nagano, Japan,
1998.

[18] F. H. Clarke, Y. S. Ledyaev, R. J. Stern, and P. R. Wolen-
ski. Nonsmooth Analysis and Control Theory (Graduate Texts in
Mathematics). Springer, 1 edition, 1997.

[19] I. Daubechies, M. Defrise, and C. De Mol. An iterative
thresholding algorithm for linear inverse problems with
a sparsity constraint. Communications on Pure and Applied
Mathematics, 57(11):1413–1457, 2004.

[20] G. Davis, S. Mallat, and M. Avellaneda. Adaptive greedy ap-
proximations. Constructive Approximation, 13(1):57–98, 1997.

[21] L. Denis, D. A. Lorenz, and D. Trede. Greedy solution of ill-
posed problems: error bounds and exact inversion. Inverse
Problems, 25(11):115017+, 2009.

[22] D. L. Donoho. De-noising by soft-thresholding. IEEE Trans-
actions on Information Theory, 41(3):613–627, 2002.

[23] D. L. Donoho. Compressed sensing. IEEE Trans. Inform.
Theory, 52:1289–1306, 2006.

[24] R. M. Dudley. Real Analysis and Probability. Cambridge
University Press, 2nd edition, 2002.

[25] H. W. Engl, K. Kunisch, and A. Neubauer. Convergence rates
for Tikhonov regularisation of nonlinear ill-posed problems.
Inverse Problems, 5(4):523–540, 1989.

http://www-stat.stanford.edu/~candes/l1magic/
http://www-stat.stanford.edu/~candes/l1magic/


bibliography 123

[26] H. W. Engl, M. Hanke, and A. Neubauer. Regularization of
Inverse Problems, volume 375 of Mathematics and Its Applica-
tions. Kluwer Academic Publishers, Dordrecht, 1996.

[27] H. W. Engl, C. Flamm, P. Kügler, J. Lu, S. Müller, and
P. Schuster. Inverse problems in systems biology. Inverse
Problems, 25(12):123014+, 2009.

[28] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright. Gradient
Projection for Sparse Reconstruction: Application to Com-
pressed Sensing and Other Inverse Problems. Selected Topics
in Signal Processing, IEEE Journal of, 1(4):586–597, 2007.

[29] C. Geiger and C. Kanzow. Numerische Verfahren zur Lösung
unrestringierter Optimierungsaufgaben. Springer, Berlin Hei-
delberg New York, 1999.

[30] A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin. Bayesian
data analysis. Texts in Statistical Science. Chapman & Hall,
CRC, 2 edition, 2004.

[31] M. Grasmair. Generalized Bregman distances and conver-
gence rates for non-convex regularization methods. Inverse
Problems, 26(11):115014+, 2010.

[32] M. Grasmair. Non-convex sparse regularisation. Journal of
Mathematical Analysis and Applications, 365(1):19–28, 2010.

[33] M. Grasmair, M. Haltmeier, and O. Scherzer. Sparse regular-
ization with lq penalty term. Inverse Problems, 24(5):055020+,
2008.

[34] M. Grasmair, O. Scherzer, and M. Haltmeier. Necessary
and sufficient conditions for linear convergence of `1-
regularization. Communications on Pure and Applied Math-
ematics, 64(2):161–182, 2011.

[35] R. Griesse and D. A. Lorenz. A semismooth Newton method
for Tikhonov functionals with sparsity constraints. Inverse
Problems, 24(3), 2008.

[36] P. Grisvard. Elliptic problems in nonsmooth domains. Pitman,
1985.

[37] C.W. Groetsch. Inverse Problems in Mathematical Sciences.
Vieweg, Braunschweig, 1993.

[38] C.W. Groetsch and A. Neubauer. Convergence of a general
projection method for an operator equation of the first kind.
Houston Journal of Mathematics, 14:201–208, 1988.



124 bibliography

[39] J. Hadamard. Sur les problèmes aux dérivés partielles et
leur signification physique. Princeton University Bulletin, 13:
49–52, 1902.

[40] U. Hämarik, E. Avi, and A. Ganina. On the solution of
ill-posed problems by projection methods with a posteriori
choice of the discretization level. Mathematical Modelling and
Analysis, 7:241–252, 2002.

[41] M. Hanke and O. Scherzer. Inverse Problems Light: Numer-
ical Differentiation. The American Mathematical Monthly, 108

(6), 2001.

[42] M. Hanke, A. Neubauer, and O. Scherzer. A convergence
analysis of the landweber iteration for nonlinear ill-posed
problems. Numerische Mathematik, 72:21–37, 1995.

[43] A. Hofinger. The metrics of Prokhorov and Ky Fan for
assessing uncertainty in inverse problems. Technical report,
2006.

[44] A. Hofinger and H. K. Pikkarainen. Convergence rate for
the Bayesian approach to linear inverse problems. Inverse
Problems, 23(6):2469–2484, 2007.

[45] A. Hofinger and H. K. Pikkarainen. Convergence Rates
for Linear Inverse Problems in the Presence of an Additive
Normal Noise. Stochastic Analysis and Applications, 27(2):
240–257, 2009.

[46] B. Hofmann. Regularization for applied inverse and ill-posed
problems. Teubner Texte zur Mathematik. Teubner, Leipzig,
1986.

[47] B. Hofmann. Mathematik inverser Probleme. Teubner Verlag,
1999.

[48] B. Hofmann, B. Kaltenbacher, C. Pöschl, and O. Scherzer.
A convergence rates result for Tikhonov regularization in
Banach spaces with non-smooth operators. Inverse Problems,
23(3):987–1010, 2007.

[49] B. Hofmann, P. Mathé, and S.V. Pereverzev. Regularization
by projection: Approximation theoretic aspects and distance
functions. Journal of Inverse and Ill-Posed Problems, 15:527–545,
2007.

[50] T. Hohage and F. Werner. Iteratively regularized newton
methods with general data misfit functionals and applica-
tions to poisson data. May 2011. URL http://arxiv.org/

abs/1105.2690.

http://arxiv.org/abs/1105.2690
http://arxiv.org/abs/1105.2690


bibliography 125

[51] J. Kaipio and E. Somersalo. Statistical and Computational
Inverse Problems, volume 160 of Applied Mathematical Sciences.
Springer, 2005.

[52] B. Kaltenbacher. Regularization by projection with a pos-
teriori discretization level choice for linear and nonlinear
ill-posed problems. Inverse Problems, 16(5):1523–1539, 2000.

[53] B. Kaltenbacher. On the regularizing properties of a full
multigrid method for ill-posed problems. Inverse Problems,
17:767–788, 2001.

[54] B. Kaltenbacher. V-cycle convergence of some multigrid
methods for ill-posed problems. Mathematics of Computation,
72:1711–1730, 2003.

[55] B. Kaltenbacher. Towards global convergence for strongly
nonlinear ill-posed problems via a regularizing multilevel
approach. Numerical Functional Analysis and Optimization, 27:
637 – 665, 2006.

[56] B. Kaltenbacher. Convergence rates of a multilevel method
for the regularization of nonlinear ill-posed problems. Jour-
nal of Integral Equations and Applications, 20(2):201–228, 2008.

[57] B. Kaltenbacher and J. Offtermatt. A convergence analysis of
regularization by discretization in preimage space. Technical
report, University of Stuttgart, 2010.

[58] B. Kaltenbacher and J. Offtermatt. A Refinement and Coars-
ening Indicator Algorithm for Finding Sparse Solutions of
Inverse Problems. Inverse Problems and Imaging, 5(2):391–406,
2011.

[59] B. Kaltenbacher and J. Schicho. A multi-grid method with
a priori and a posteriori level choice for the regularization
of nonlinear ill-posed problems. Numerische Mathematik, 93:
77–107, 2002.

[60] A. Kirsch. An Introduction to the Mathematical Theory of In-
verse Problems. Springer, New York, 1996.

[61] R. Kress. Linear Integral Equations. Springer, Heidelberg,
1989, 2nd ed. 1999.

[62] D. A. Lorenz. On the role of sparsity in inverse problems.
Journal of Inverse and Ill-posed Problems, 17(1):61–68, 2009.

[63] A. K. Louis. Inverse und schlecht gestellte Probleme. Teubner,
Stuttgart, 1989.



126 bibliography

[64] G.R. Luecke and K.R. Hickey. Convergence of approximate
solutions of an operator equation. Houston Journal of Mathe-
matics, 11(3):345–354, 1985.

[65] S. G. Mallat and Z. Zhang. Matching pursuits with time-
frequency dictionaries. IEEE Transactions on Signal Process-
ing, 41(12):3397–3415, 1993.

[66] P. Mathé and N. Schöne. Regularization by projection in
variable Hilbert scales. Applicable Analysis, 87:201–219, 2008.

[67] V.A. Morozov. Methods for Solving Incorrectly Posed Problems.
Springer, 1984.

[68] V.A. Morozov. Regularization Methods for Ill-Posed Problems.
CRC Press, Boca Raton, 1993.

[69] F. Natterer. Regularisierung schecht gestellter Probleme
durch Projektionsverfahren. Numerische Mathematik, 28:329–
341, 1977.

[70] A. Neubauer and H. K. Pikkarainen. Convergence results for
the Bayesian inversion theory. Journal of Inverse and Ill-posed
Problems, 16(6):601–613, 2008.

[71] R. Peeters and R. Westra. On the identification of sparse
gene regulatory networks. In Proc 16th Intern Symp on Math-
ematical Theory of Networks, 2004.

[72] S.V. Pereverzev and S. Prössdorf. On the characterization of
self-regularization properties of a fully discrete projection
method for symm’s integral equation. Journal of Integral
Equations and Applications, 12(2):113–130, 2000.

[73] C. Pöschl. Tikhonov Regularization with General Residual Term.
PhD thesis, Leopold Franzens Universität Innsbruck, 2008.

[74] R. Ramlau. Regularization Properties of Tikhonov Regular-
ization with Sparsity Constraints. Electronic Transactions on
Numerical Analysis, 30, 2008.

[75] A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling,
U. Klingmüller, and J. Timmer. Structural and practical iden-
tifiability anaylsis of partially observed dynamical models
by exploiting the profile likelihood. Bioinformatics, 25(15):
1923–1929, 2009.

[76] E. Resmerita and R. S. Anderssen. Joint additive Kullback-
Leibler residual minimization and regularization for linear
inverse problems. Mathematical Methods in the Applied Sci-
ences, 30(13):1527–1544, 2007.



bibliography 127

[77] E. Resmerita and O. Scherzer. Error estimates for non-
quadratic regularization and the relation to enhancement.
Inverse Problems, 22(3):801+, 2006.

[78] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total vari-
ation based noise removal algorithms. Physica D Nonlinear
Phenomena, 60(1-4):259–268, 1992.

[79] O. Scherzer. Convergence criteria of iterative methods based
on Landweber iteration for solving nonlinear problems. Jour-
nal of Mathematical Analysis and Applications, 194(3):911–933,
1995.

[80] O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, and
F. Lenzen. Variational Methods in Imaging. Springer, 2008.

[81] T.I. Seidman. Nonconvergence results for the application
of least squares estimation to ill-posed problems. Journal of
Optimization Theory and Applications, 30:535–547, 1980.

[82] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang,
D. Ramage, N. Amin, B. Schwikowski, and T. Ideker. Cy-
toscape: a software environment for integrated models of
biomolecular interaction networks. Genome research, 13(11):
2498–2504, 2003.

[83] I. Singer. Abstract Convex Analysis. Wiley-Interscience and
Canadian Mathematics Series of Monographs and Texts, 1

edition, 1997.

[84] F. Steinke, M. Seeger, and K. Tsuda. Experimental design
for efficient identification of gene regulatory networks using
sparse Bayesian models. BMC Systems Biology, 1(51), 2007.

[85] G. Teschke and R. Ramlau. An iterative algorithm for non-
linear inverse problems with joint sparsity constraints in
vector-valued regimes and an application to color image
inpainting. Inverse Problems, 23, 2007.

[86] A. N. Tikhonov and V. A. Arsenin. Methods for Solving Ill-
Posed Problems. Nauka, Moscow, 1979.

[87] A. N. Tikhonov and V. Y. Arsenin. Solutions of ill-posed Prob-
lems. John Wiley & Sons, Washington, D.C., 1977.

[88] J. A. Tropp. Greed is Good: Algorithmic Results for Sparse
Approximation. IEEE Transactions on Information Theory, 50

(10):2231–2242, 2004.

[89] G. Vainikko and U. Hämarik. Projection methods and self-
regularization in ill-posed problems. Soviet Mathematics, 29:
1–20, 1985. in Russian.



128 bibliography

[90] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-
world’ networks. Nature, 393(6684):440–442, 1998.

[91] P. Weber, J. Hasenauer, F. Allgöwer, and N. Radde. Parameter
estimation and identifiability of biological networks using
relative data. acccepted for Proceedings of the IFAC World
Congress, 2011, 2011.

[92] M. K. Yeung, J. Tegnér, and J. Collins. Reverse engineer-
ing gene networks using singular value decomposition and
robust regression. Proceedings of the National Academy of Sci-
ences of the United States of America, 99(9):6163–6168, 2002.

[93] C. A. Zarzer. On Tikhonov regularization with non-convex
sparsity constraints. Inverse Problems, 25(2):025006+, 2009.



I N D E X

adaptive, 27

Bayesian inversion, 73

Betaprime distribution, 93

Bregman distance, 15

Cauchy distribution, 93

Cauchy regularization term,
94

coarsening, 27

compressed sensing, 23, 44

convergence, 11, 51, 57, 60

convergence rate, 11, 53, 106

convexity (generalized), 100

discrepancy principle, 18, 48

Fenchel conjugate, 100

Fisher information matrix, 77

Fréchet derivative, 15, 49, 103

gene network, 37

greedy, 24, 36

ill-conditioned, 6

ill-posed, 3

image space, 19

Kadec property, 98

Kullback Leibler distance, 77

Ky Fan metric, 81

Lagrange function, 29

large sample inference, 82

least squares method, 47

level sets, 96

likelihood distribution, 76

maximum a posteriori esti-
mate, 76

maximum likelihood estimate,
76

maximum prior maximum like-
lihood estimate, 86

non-identifiability, 73

numerical differentiation, 4

parameter choice rule, 18

parameter identification, 6, 62

poisson equation, 7

posterior distribution, 76

practically non-identifiable, 73

preimage space, 18, 47

prior distribution, 76

Prokhorov metric, 80

refinement, 27

regularization parameter, 9,
18

separable, 21, 27

source condition, 14, 52

sparse, 21, 38

sparsity, 21

stability, 11, 51, 56, 59, 98

stochastic, 73

strong convergence, 98

structurally non-identifiable,
73

tangential cone condition, 15,
48

thresholding, 40, 108

Tikhonov functional, 9

variational inequality, 15, 106

W-Bregman distance, 101

W-convex, 100

weak convergence, 98

weakly lower semi continu-
ous, 95

weakly sequentially compact,
96

well-definedness, 11, 33, 50,
54, 58, 98

well-posed, 3, 95

W-subdifferential, 101

129





N O M E N C L AT U R E

α regularization parameter

A linear forward operator

D domain of F, A or D(F)∩D(R)

δ noise bound

δx point measure concentrated at x

DR Bregman distance with respect to R

DwW W-Bregman distance with respect to w

E random variable depicting noise

F nonlinear forward operator

γ prior variance

J general cost functional

Jα general Tikhonov functional

KL Kullback-Leibler functional

L Lagrange function

ly negative logarithm of the likelihood distribution

Mα,y level sets of J with respect to α and y

N(µ,σ) Gaussian distribution with mean µ and variance σ

p probability density function

pE noise distribution

(Φi) basis of X

pL likelihood distribution

Pn projection onto the n-th subspace of X

pP prior distribution

Qn projection onto the n-th subspace of Y

R general regularization functional

RC Cauchy regularization functional

131



132 nomenclature

ρK Ky Fan metric

ρP Prokhorov metric

R∗ (generalized) Fenchel conjugate of R

R∗∗ double Fenchel conjugate of R

S general data fitting functional

σ noise variance

Sω thresholding operator

τX topology on X

τY topology on Y

W2 family of all negative semi-definite, continuous quadratic
functions

X preimage space

X random variable depicting the solution

xi i-th coefficient of x

x† exact solution

x̂MAP maximum a posteriori estimate (MAP)

x̂ML maximum likelihood estimate (MLE)

x̂MPMLE maximum prior maximum likelihood estimate (MPMLE)

Xn n-th subspace of X

Y image space

Y random variable depicting data

y exact data

yδ noisy data

Yn n-th subspace of Y
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