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Preface

Mathematical theory of differential operators on graphs is an important and rapidly de-
veloping area of modern mathematical physics. A quantum graph is a metric graph with
second order self-adjoint differential operators acting on functions defined on the graph’s
one-dimensional edges. As a generalization of the one-dimensional Schrödinger operator, a
quantum graph describes the propagation of a quantum particle along the edges of the cor-
responding graph. In recent decades such objects have been studied as simplified models in
mathematics and sciencies, including physics, chemistry, nanotechnology, microelectronics
and medicine.

Quantum mechanics on graphs has a long history in physics and physical chemistry [43,80],
but recent progress in experimental solid state physics has renewed attention on them as
idealized models in thin domains. The problem of quantum systems in high dimensions
turns out to be difficult. Though there are analytic facts for the concrete computation of
specific states, the reduction of the problem to numerically accessible problems is nontriv-
ial. Quantum graphs however are because of their one-dimensional nature a considerably
easier model problem. Though the explicit analysis is still nontrivial, it is often possible to
make progress by using one-dimensional techniques. Because of this fact quantum graphs
have attracted attention of many researchers. The question whether spectral properties of
the Schrödinger operator on thin branching domains with Dirichlet or Neumann boundary
conditions can be approximated by the properties of the Schrödinger operator on the graph
turns out to be a highly non-trivial question.

There are plenty of applications in other areas like dynamical systems, photonic crystals,
quantum wires, quantum chaos, Anderson localization, optics and number theory. However,
we restrict ourselves to give an example of the first applications and one of the most recent
ones only.

The first one goes back to the 1930s when Pauling studied the spectrum of free electrons
in conjugated organic molecules like naphthalene, see Fig.1. In approximation the atoms are
considered as vertices and the σ−electrons are taken to be the edges of a graph on which
the free electrons are confined.

Figure 1. naphthalene

More recent applications of quantum graphs are in the field of nanotechnology where
the understanding of mesoscopic systems, i.e. systems built with a width on the scale of
nanometers, plays an important role. A thin quantum waveguide is considered here as a
fattened graph where the edges are thin tubes. It was shown in [28,29,84] that under certain
conditions the spectrum of the Laplace operator on this domain converges to the spectrum
of the Laplace operator on the graph. Fig. 2 shows a remarkable nanostructure. A carbon
nanotube is a cylindrical carbon molecule with a typical diameter of 1-2 nanometres, which
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is 80,000 times smaller than the thickness of a human hair. Not only are there potential
applications of carbon nanotubes in nanotechnology as energy-saving transistors or wires,
but they also can have the property of delivering medicine directly to a tumor.

Figure 2. carbon nanotube Figure 3. graphene

Carbon nano-structures are another example which recently have became very popular.
Fig. 3 shows graphene, whose structure is a two-dimensional honeycomb lattice consisting
of carbon atoms. It can also be considered as the limiting case of the family of flat poly-
cyclic aromatic hydrocarbons, in which Naphthalene is the simplest example. Graphene
can be rolled into a one-dimensional nanotube or stacked into three-dimensional graphite,
which both are its lower-energy states. In 2010 the Nobel Prize in Physics was awarded
to Andre Geim and Konstantin Novoselov for obtaining graphene by mechanical exfoliation
of graphite. Since then graphene has attracted great interest because of its properties like
being one of the strongest materials or having a remarkably high electron mobility. This
makes it to an attractive object in the production of transistors.

Another fact is that new progress in nanotechnology also makes it possible to test predic-
tions of quantum mechanics and to study various quantum effects from the theoretical and
experimental points of view.

A large literature on the subject of quantum graphs has arisen, for which we refer to the
bibliography given in [7, 12,27,54,61–65,88].

Fig. 1 is from http://en.wikipedia.org/wiki/Quantum−graph

Fig. 2,3 are from http://en.wikipedia.org/wiki/Graphene
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Abstract

We study some spectral problems for quantum graphs with a potential. On the one hand
we analyze the quantitative dependence of bound states of −d2/dx2 +V on the potential V .
On the other hand we generalize certain basic identities from the one-dimensional scattering
theory to quantum graphs.

The first paper is concerned with the study of the discrete negative spectra of quan-
tum graphs. We use the method of trace identities (sum rules) to derive inequalities of
Lieb-Thirring, Payne-Pólya-Weinberger, and Yang types, among others. We show that the
sharp constants of these inequalities and even their forms depend on the topology of the
graph. Conditions are identified under which the sharp constants are the same as for the
classical inequalities; in particular, this is true in the case of trees. We also provide some
counterexamples where the classical form of the inequalities is false.

The second paper deals with the scattering problem for the Schrödinger equation on the
half-line with the Robin boundary condition at the origin. We derive an expression for the
trace of the difference of the perturbed and unperturbed resolvent in terms of a Wronskian.
This leads to a representation for the perturbation determinant and to trace identities of
Buslaev-Faddeev type.

In the third paper we generalize results from the half-line case to the full graph case.
More precisely, we consider the Schrödinger problem on a star shaped graph with n edges
joined at a single vertex. A trace formula is derived for the difference of the perturbed
and unperturbed resolvent in terms of a Wronskian. This leads to representations for the
perturbation determinant and the spectral shift function, and to an analog of Levinson’s
formula.

Besides these three articles this thesis also contains some further results. The method of
sum rules is applied to the modified Schrödinger operator with variable coefficients to obtain
a Lieb-Thirring type inequality with optimal constant. Furthermore, Lieb-Thirring inequal-
ities are studied for star shaped graphs by using variational arguments and the method of
symmetry decomposition of the corresponding Hilbert space. In several cases this leads to
optimal constants in the inequalities.

Zusammenfassung

Diese Arbeit beinhaltet Untersuchungen von Spektralproblemen für Quantengraphen mit
Potential. Einerseits analysieren wir die quantitative Abhängigkeit der Eigenwerte von
−d2/dx2 + V vom Potential V . Andererseits verallgemeinern wir gewisse elementare Iden-
titäten von der eindimensionalen Streutheorie auf Quantengraphen.

Im ersten Artikel wird das diskrete negative Spektrum von Quantengraphen analysiert.
Dabei verwenden wir die Methode der Summenformeln, um Ungleichungen vom Lieb-Thirring-
, Payne-Pólya-Weinberger- und Yang- Typ herzuleiten. Wir zeigen, dass die scharfen Kon-
stanten für diese Ungleichungen, und sogar ihre Gestalt, von der Topologie des Graphen
abhängen. Es werden Bedingungen angegeben, unter welchen die scharfen Konstanten mit
den scharfen Konstanten für den klassischen Fall des Ganzraumes übereinstimmen. Insbeson-
dere ist dies der Fall für metrische Bäume. Desweiteren konstruieren wir Gegenbeispiele, für
welche die klassischen Konstanten falsch sind.
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Der zweite Artikel befasst sich mit dem Streuproblem für den Schödingeroperator auf der
Halbachse mit Robin-Randbedingung. Wir leiten einen Ausdruck für die Spur der Differenz
von der gestörten und der ungestörten Resolvente her, welche eine Wronski-Determinante
beinhaltet. Dies führt zu einer Darstellung der Störungsdeterminante und zu Spurformeln
vom Buslaev-Faddeev-Typ.

Im dritten Artikel werden Resultate aus dem zweiten Artikel verallgemeinert auf sternförmige
Quantengraphen, die aus n Halbachsen bestehen, welche in einem einzigen Knotenpunkt
verbunden sind. Wir beweisen eine Spurformel für die Differenz der gestörten und der
ungestörten Resolvente, welche eine Wronski-Determinante beinhaltet. Dies führt wiederum
zu einer Darstellung der Störungsdeterminante und zu einem Analogon der Levinson-Formel.

Über diese drei Hauptteile hinaus beinhaltet diese Arbeit mehrere weitere Resultate. Mit
der Methode der Summenformeln leiten wir für den modifizierten Schrödingeroperator mit
variablen Koeffizienten eine Lieb-Thirring-Ungleichung mit einer optimalen Konstante her.
Desweiteren werden mit Hilfe von Variationsargumenten und der Symmetriezerlegung des
entsprechenden Hilbertraumes Lieb-Thirring Ungleichungen für den sternförmigen Graphen
bewiesen. In zahlreichen Fällen erhalten wir dabei die optimale Konstante.
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1. Introduction

1.1. Quantum Graphs. Quantum graphs describe wave propagation on a graph and are
mostly important to model wave propagation in thin branching media such as thin waveg-
uides, quantum wires, photonic crystals and vessels. In this section we shall give a more
precise definition of quantum graphs. More details can be found in [65] .

A graph Γ consists of a finite or countably infinite set of vertices, denoted by V = {vi},
and a set of one-dimensional edges E = {ei} connecting the vertices. Each edge is identified
with its endpoints (vi, vj). We denote by Ev the set of edges containing the vertex v. The
number of edges emanating from the vertex v is called degree or valence dv of v and is
assumed to be finite and positive.

In this thesis we are not concerned with combinatorial objects, but with so-called metric
graphs.

Definition 1.1. A metric graph is a graph Γ where each edge e is identified with an interval
[0, ℓe]. Denoting the coordinate on the interval by xe, the vertex vi corresponds to xe = 0
and vj to xe = ℓe (or vice versa).
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Figure 4. A metric graph

A graph Γ can be equipped with a natural metric in the following way. The length ℓ of
a path formed by a sequence of edges {ei}ni=1 is defined as ℓ :=

∑n
i=1 ℓi, where the distance

ρ(vi, vj) of two vertices is defined as the shortest path between them. Similarly, the natural
distance ρ(x, y) for two arbitrary points on the graph is the shortest distance (measured
along the graph) between them. Edges with one free end are called leaves and may be of
finite or infinite length.

Unlike in the case of a discrete graph, the points of a metric graph are not only its vertices,
but also all points on the edges. Thus, it is possible to define a natural Lebesgue measure
on the graph as well as integration and differentiation along the edges of Γ. The following
Definition states that the Hilbert space of the graph, denoted by L2(Γ), is defined as the
orthogonal direct sum of spaces L2(e).

Definition 1.2. The space L2(Γ) on Γ consists of functions ψ that are in L2(e) for every
edge e of Γ and fullfill the condition

∥ψ∥2
L2(Γ) =

∑
e∈E

∥ψ∥2
L2(e) <∞. (1.1)

Definition 1.3. The Sobolev space H1(Γ) on Γ consists of functions ψ that are in H1(e)
for every edge e of Γ and fullfill the condition∑

e∈E
∥ψ∥2

H1(e) <∞. (1.2)

Further, ψ is continuous at each vertex v ∈ V and therefore on the whole graph Γ.
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Of course, conditions (1.1) and (1.2) are needed for infinite graphs, i.e. graphs with
infinitely many vertices, only.

A quantum graph is a metric graph with second order self-adjoint differential operators act-
ing on functions defined on the graph’s edges. In this thesis we will consider the Schrödinger
operator H on Γ defined as follows. H acts on each edge of Γ on a function ψ as

Hψ = − d2

dx2
ψ + βV ψ, β > 0, (1.3)

where V is the operator of multiplication by the real-valued function V (x), x ∈ Γ, satisfying
appropriate regularity and decay conditions (to be specified later). The operator (1.3) is
the stationary part of the Schrödinger equation, which describes the evolution of a particle
on Γ with mass 1/2 in the exterior electric potential βV . The wavefunction ψ ∈ L2(Γ)
with

∫
Γ |ψ|2 dx describes the state of the particle. The value |ψ(x)|2 is understood as the

probability density of finding a particle at x ∈ Γ. The quadratic form of the Schrödinger
operator (1.3) is given by ∫

Γ
|ψ′|2 dx+ β

∫
Γ
V |ψ|2 dx

and represents in the choice of mathematical units ~ = e = 1 the total energy (kinetic and
potential energy) of the system in the state ψ. We note that this definition is independent
of the orientation of the graph’s edges since ψ′ appears only in the absolute value.

The domain of H is denoted by D(H) and, provided V is sufficiently regular, consists of
all functions ψ which belong to H2(e) for each edge e and satisfy∑

e∈E
∥ψ∥2

H2(e) <∞.

Further, ψ has to satisfy ”appropriate” boundary conditions at each vertex v. There are
different descriptions of all vertex conditions that give rise to self-adjoint operators H, see
[32,44,61,65]. In what follows we will be concerned with the most common kind of boundary
condition, the Kirchhoff condition coming from the theory of electric networks. This vertex
condition states that ψ is continuous on Γ and fullfills at each vertex v the condition∑

e∈Ev

dψ

dxe
(v) = 0, (1.4)

where the derivatives are taken in outgoing directions from v. Condition (1.4) means that at
each vertex v the flux is conserved. In literature, this condition is also called as the natural
boundary condition, as the domain of the quadratic form of H does only require the con-
dition that a function is in the space H1(Γ) and thus continuous. Therefore, the Kirchhoff
condition is sometimes also called ”Neumann-Kirchhoff condition”. Setting Dirichlet bound-
ary condition at every vertex v gives rise to a disconnected graph with unrelated edges. In
this case the Schrödinger operator decouples into the direct sum of Schrödinger operators
on the edges. Similarly the operator decouples when Neumann boundary conditions are
imposed at all vertices. Indeed, the topology of a quantum graph is encoded in the vertex
conditions only.
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1.2. Weyl’s law and Lieb Thirring inequalities in Rd. Since our goal will be to prove
eigenvalue estimates for quantum graphs, we will first review related results on the euclidean
space Rd. In this section we give an overview of Weyl’s law and the so called Lieb-Thirring
inequalities. Let H be the Schrödinger operator on L2(Rd) defined by

H = −∆ + βV, β > 0, (1.5)

where the exterior potential V is a real-valued multiplication operator and goes to zero at
infinity. Given a certain local regularity of V , the spectrum of H consists of a continuous
spectrum on the positive semiaxis and a discrete spectrum consisting of negative eigenvalues
which are denoted by {λj(β)}j∈N in non-decreasing order and counting multiplicities. The
continuous spectrum is usually associated with scattering states whereas the negative eigen-
values correspond to the energies at which a particle might be trapped by the potential well
βV . There are only finitely many negative eigenvalues if V decays fast enough, otherwise
there are countably many negative eigenvalues with zero as the only accumulation point. In
the following, we consider the Riesz-means or moments of the negative eigenvalues of H,

Rγ(βV ) := Tr(−∆ + βV )γ− =
∑
j

|λj(β)|γ , γ ≥ 0, (1.6)

where x± := (|x| ± x)/2 denote the positive and negative part of numbers and operators,
respectively. The special case γ = 0 corresponds to the function N(−∆ + βV ) := #{j ∈ N :
λj < 0} counting negative eigenvalues. In what follows, we will consider spectral estimates
for (1.6).
Weyl’s law. In 1911 Hermann Weyl discovered a connection between the frequencies of an
oscillating membrane and the volume of the membrane, [95]. His result was highly important
for further studies in mathematical physics and spectral analysis. The study of frequencies
of an oscillating membrane corresponds in quantum mechanics to the study of the Dirichlet
Laplacian −∆D

Ω in a bounded domain Ω. Thereby, the frequencies are given by the discrete
eigenvalues of the Dirichlet Laplacian and the membrane is described by Ω. Let us denote
by ND

Ω (Λ) the number of eigenvalues of −∆D
Ω below Λ. Weyl’s result states that for all

bounded open domains the semiclassical limit

ND
Ω (Λ) =

Λd/2ωd
(2π)d

∫
Ω
dx+ o(Λd/2) as Λ → +∞, (1.7)

holds. Here ωd = πd/2/Γ(1 + d/2) denotes the volume of the unit ball in Rd. Weyl’s law
(1.7) can be generalized to the Schrödinger operator (1.5) and one obtains the asymptotic
behaviour of N(−∆ + βV ) in the strong coupling limit, i.e., when β tends to infinity,

N(−∆ + βV ) = βd/2
ωd

(2π)d

∫
Rd

V (x)d/2− dx+ o(βd/2), as β → +∞. (1.8)

Asymptotics (1.8) was first proved by Birman for compactly supported potentials V in
a compact domain with Dirichlet boundary condition, [10], and was later generalized in
[9, 58,74,91]. For higher moments γ > 0 the analog asymptotics reads as

Tr(−∆ + βV )γ− = βγ+d/2Lclγ,d

∫
Rd

V (x)γ+d/2− dx+ o(βγ+d/2), as β → +∞, (1.9)
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with the semiclassical constant

Lclγ,d :=
Γ(γ + 1)

2dπd/2Γ(γ + 1 + d/2)
.

Note that the Schrödinger operator (1.5) is associated with the classical Hamiltonian func-
tion H(x, ξ) = |ξ|2 + βV (x) defined on the classical phase space Rd × Rd. Therefore, the
semiclassical asymptotics (1.9) and (1.8) are determined by the phase space volume of the
Hamiltonian function, indeed

(2π)−d
∫

Rd

∫
Rd

H(x, ξ)γ− dx dξ = βγ+d/2Lclγ,d

∫
Rd

V (x)γ+d/2− dx.

Thus, this can be interpreted as each quantum state occupying a volume of (2π)d in the
classical phase space Rd×Rd. This agrees with the Bohr-Sommerfeld quantization rule from
early quantum mechanics, see also [30].
Lieb-Thirring inequalities. Sometimes, it is of interest not only to know the asymptotic
behaviour of (1.6) but to have also uniform bounds for them. Lieb-Thirring inequalities
provide an upper bound for the moments of the negative eigenvalues λj(β) of the Schrödinger
operator (1.5) in terms of integrals of V ,

∑
j

|λj(β)|γ ≤ βγ+d/2Lγ,d

∫
Rd

(V−(x))γ+d/2 dx (1.10)

for some constant Lγ,d ≥ Lclγ,d and V ∈ Lγ+d/2(Rd). This inequality holds true for various
ranges of γ ≥ 0 depending on the dimension d and was proved by Lieb and Thirring in the
case γ > max{0, 1 − d/2}, see [72]. If d ≥ 3, then (1.10) holds also in the endpoint case
γ = 0 and is known as the Cwikel-Lieb-Rozenblyum inequality, [18, 71, 83]. The endpoint
case d = 1, γ = 1/2 is due to Weidl, [94]. To summarize, inequality (1.10) is true in the
following cases,

γ ≥ 1
2

if d = 1,

γ > 0 if d = 2, (1.11)

γ ≥ 0 if d ≥ 3.

It is known that (1.10) fails in the cases d = 2, γ = 0 and d = 1, 0 ≤ γ < 1/2. In the
case d = 1, 2 and γ = 0 this is due to the fact that for d = 1 or d = 2 there exists at
least one negative eigenvalue for any negative potential V ̸= 0, [86]. Indeed, an inequality
of the form (1.10) with d = 1, 2 and γ = 0 would imply that there is no negative eigenvalue
if
∫

Rd V
d/2
− dx < 1/L0,d. The failure of (1.10) in the case d = 1, γ < 1/2 follows for

example from the behaviour of the lowest eigenvalue in the weak coupling limit β → 0, [86].
Alternatively, one can consider a sequence of potentials Vn which converges to the delta
function. Then, the right hand side in (1.10) converges to zero whereas the left hand side
tends to a positive number.

Lieb-Thirring inequalities have great importance in applications. They were first used by
Lieb and Thirring themselves in the study of the stability of matter. Also in the theory
of Navier-Stokes equations they turned out to be useful for estimates on dimensions of
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attractors. Another application concerns the Weyl-type asymptotics, which were originally
established for sufficiently regular potentials. With Lieb-Thirring estimates it was indeed
possible to generalize these asymptotics to all potenials V ∈ Lγ+d/2 in the cases (1.11).
Finally, we mention that Lieb-Thirring inequalities were considered in the study of the
continuous spectrum of Schrödinger operators, see [19,68]

While the question about the existence of uniform constants Lγ,d for which (1.10) holds
is answered completely, the sharp constants, i.e. the best possible constants in (1.10), are
only known in the cases d ≥ 1, γ ≥ 3/2 and for d = 1, γ = 1/2, [53]. In 1976, Lieb and
Thirring showed that Lγ,1 = Lclγ,1 for all γ ≥ 3/2, see [72]. This result was generalized to
higher dimensions by Laptev and Weidl, [70].

Recently, a new proof of sharp Lieb-Thirring inequalities for γ ≥ 2 and d ≥ 1 has been
given by Stubbe [90]. Remarkably, his proof shows that for γ ≥ 2 the semiclassical limit is
reached in a monotone way. His proof is based on general trace identities for operators [50]
known as sum rules. Before presenting the idea of his proof, we give an overview of the
analogs of Weyl’s law and Lieb-Thirring inequalities for the case of quantum graphs.

1.3. Weyl’s law and Lieb Thirring inequalities for quantum graphs. For quantum
graphs an analog of Weyl’s aymptotic formula (1.9) can be proved by the standard Dirichlet-
Neumann bracketing techniques, see [77, 82]. The corresponding Weyl-type asymptotic for-
mula states that

Tr
(
− d2

dx2
+ βV

)γ
−

= βγ+1/2Lclγ,1

∫
Γ
(V−(x))γ+1/2 dx+ o(βγ+1/2), (1.12)

as β → +∞, with the semiclassical constant

Lclγ,1 :=
Γ(γ + 1)

2π1/2Γ(γ + 3/2)
.

For the study of Lieb-Thirring inequalities for quantum graphs this means that we cannot
expect an inequality with a constant better than Lclγ,1. In other words, if for a given quantum
graph an inequality of this type holds with the semiclassical constant for the one-dimensional
Schrödinger operator, then the inequality for the quantum graph is sharp. Moreover, the
best possible constant Lγ for quantum graphs cannot be less than the best possible constant
Lγ,1 for the one-dimensional Schrödinger operator. This can be seen easily by considering a
metric graph which has at least one infinite edge. Shifting the potential V ∈ Lγ+1/2(Γ) on
the graph Γ to infinity, the spectrum of the quantum graph converges to the spectrum of
the one-dimensional Schrödinger operator.

The papers [24,31,78,89] contain inequalities about eigenvalues of Schrödinger operators
on metric graphs. In [24, 31] the authors prove Lieb-Thirring inequalities for regular metric
trees. A metric graph is called regular if the length of each edge and the branching number
of each vertex depend only on the distance to the root. Their result states that in this case
the Lieb-Thirring inequality

∑
j

(−λj)γ ≤ Cγ

∫
Γ

(V−(x))γ+1/2 dx

holds for all γ ≥ 1/2.
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Another result concerning the weak coupling for quantum graphs was obtained by Exner
in [26]. If the graph consists of N semi-infinite edges joined at a single vertex and the
corresponding quantum graph is given with Kirchhoff vertex condition, then an arbitrarily
weak attractive potential produces a bound state. More precisely, under the assumption that
Vj ∈ L2(R+, (1+ |x|)dx), 1 ≤ j ≤ N, the Schrödinger operator H = −d2/dx2 +βV in L2(Γ)
has for all sufficiently small β > 0, a single negative eigenvalue iff

∑N
j=1

∫∞
0 Vj(x) dx ≤ 0.

This generalizes the result of Simon [86] in the one-dimensional case.

1.4. Sum rules of Harrell and Stubbe. In [50] Harrell and Stubbe derived ”sum rule”
identities involving traces and commutators of certain self-adjoint operators H, including the
Dirichlet Laplacian on bounded Euclidean domains and Schrödinger operators with discrete
spectra. These ”sum rules” lead to universal bounds on spectral gaps and on moments of
eigenvalues, i.e. bounds which do not depend on the specific geometry of the domain or on
details of the potential.

In the following these sum rules and the idea of the proof is presented. Let H be a
self-adjoint operator with domain D(H) on a Hilbert space H with scalar product ⟨·, ·⟩.
Suppose that H has nonempty point spectrum, and that J is a finite-dimensional subspace
of H spanned by an orthonormal set {ϕj} of eigenfunctions of H. The discrete part of the
spectrum of H is denoted by J := {λj : Hϕj = λjϕj}. Further let PA denote the spectral
projector associated with H and a Borel set A. Assume that G is another self-adjoint
operator with domain D(G) and that G(J ) ⊆ D(H) ⊆ D(G). Then for any z the following
trace identity holds,

∑
λj∈J

(z − λj)2 ⟨[G, [H,G]]ϕj , ϕj⟩ − 2(z − λj) ⟨[H,G]ϕj , [H,G]ϕj⟩

= 2
∑
λj∈J

∫
κ∈Jc

(z − λj)(z − κ)(κ− λj) dG2
jκ, (1.13)

where dG2
jκ := | ⟨Gϕj , dPκGϕj⟩ |.

This sum rule is an abstract version of what is known in quantum theory as the oscillator-
strength sum rule of Thomas, Reiche, and Kuhn and the Bethe sum rule [8]. To prove (1.13),
note that by a straightforward calculation, the self-adjoint operators H and G satisfy

⟨[G, [H,G]]ϕj , ϕj⟩ = 2 ⟨(H − λj)Gϕj , Gϕj⟩ ,

which by the spectral theorem equals 2
∫

(κ− λj) ⟨dPκGϕj , Gϕj⟩. Thus,

⟨[G, [H,G]]ϕj , ϕj⟩ = 2
∫

(κ− λj) dG2
jκ.

Multiplying the last equation by (z − λj)2 and summing over λj ∈ J leads to

∑
λj∈J

(z − λj)2 ⟨[G, [H,G]]ϕj , ϕj⟩ = 2
∑
λj∈J

∫
(z − λj)2(κ− λj) dG2

jκ. (1.14)

Next, a direct computation shows that

⟨[H,G]ϕj , [H,G]ϕj⟩ =
∫

(κ− λj)2 dG2
jκ,
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which after multiplication by −2(z − λj) and summing over λj ∈ J turns into

−
∑
λj∈J

2(z − λj) ⟨[H,G]ϕj , [H,G]ϕj⟩ = −2
∑
λj∈J

∫
(z − λj)(κ− λj)2 dG2

jκ. (1.15)

Combining (1.14) with (1.15) proves sum rule (1.13).
Sum rule (1.13) was generalized in [51] to non-self-adjoint operators G. Assume that H

has purely discrete spectrum and fix a subset J of the spectrum. Under the assumption
that G is a linear operator with adjoint G∗ such that G(D(H)) ⊆ D(H) ⊆ D(G) and
G∗(D(H)) ⊆ D(H) ⊆ D(G∗), it follows that

1
2

∑
λj∈J

(z − λj)2 (⟨[G∗, [H,G]]ϕj , ϕj⟩ + ⟨[G, [H,G∗]]ϕj , ϕj⟩)

−(z − λj)
(
∥[H,G]ϕj∥2 + ∥[H,G∗]ϕj∥2

)
=
∑
λj∈J

∑
λk ̸∈J

(z − λj)(z − λk)(λk − λj)
(
| ⟨Gϕj , ϕk⟩ |2 + | ⟨G∗ϕj , ϕk⟩ |2

)
. (1.16)

Remark 1.4. Sum rule (1.16) can be extended to the case where continuous spectrum is
allowed in Jc lying above the discrete spectrum J . This follows exactly as in the proof of
(1.13).

Stubbe’s monotonicity argument. In [90] Stubbe gave a new proof of sharp Lieb-
Thirring inequalities for γ ≥ 2 and d ≥ 1. His proof is based on sum rules and provides also
monotonicity with respect to coupling constants. The monotonicity fact has not been known
so far and can be shown only for γ ≥ 2, indeed the harmonic oscillator is a counterexample.

Let us consider the operator
H = −~2∆ + V (x)

on L2(Rd), where ~ is the Planck’s constant. Rewriting (1.9) in terms of the Planck’s
constant, one obtains in the limit ~ → 0,

Tr(−~2∆ + V )γ− = ~−dLclγ,d

∫
Rd

(V−(x))γ+d/2 dx+ o(~d).

In what follows, we set ~2 = α and consider the Schrödinger operator

H(α) = −α∆ + V (x), α > 0 (1.17)

on L2(Rd).
Without loss of generality we may assume that V ∈ C∞

0 . Then, for any α > 0, the
spectrum of H(α) consists of a discrete spectrum J with at most a finite number of negative
eigenvalues λj(α) lying below the continuous spectrum Jc on the positive semiaxis. The nor-
malized eigenfunctions corresponding to the eigenvalues λj(α) are denoted by ϕj . Stubbe’s
Theorem states that under these assumptions, the mapping

α 7→ αd/2
∑

λj(α)<0

(−λj(α))2

is nonincreasing for all α > 0 and consequently
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αd/2
∑

λj(α)<0

(−λj(α))2 ≤ Lcl2,d

∫
Rd

(V−(x))2+d/2 dx

for all α > 0 and γ = 2. By the Aizenman-Lieb argument [1] analog inequalities hold for all
γ ≥ 2.

We now give the idea of his proof in a slightly different way as given in [90], namely by
a direct application of (1.13). Obviously, because of the choice of J and Jc, it follows from
(1.13) that

∑
λj∈J

(z − λj)2 ⟨[G, [H,G]]ϕj , ϕj⟩ − 2(z − λj) ⟨[H,G]ϕj , [H,G]ϕj⟩ ≤ 0. (1.18)

In order to present the main idea of the argument, we first ignore some technicalities and
give the details later. Let xa, a = 1, . . . , d denote the cartesian coordinates in Rd. Stubbe’s
idea was to choose G as the multiplication operator G = xa. (The problem with this choice
is that this G is not a bounded operator. We will find a way around this later.) For this
choice of G, the first and second commutators are given by

[H,G] = −2α
∂

∂xa
and [G, [H,G]] = 2α.

Inserting these in (1.18) and setting z = 0, we get∑
λj∈J

(−λj(α))22α∥ϕj∥2 − 2(−λj(α))4α2∥∂ϕj
∂xa

∥2 ≤ 0. (1.19)

Dividing by 2 and summing over all coordinates in (1.19), the following inequality holds

αd
∑
λj∈J

(−λj(α))2 − 4α2
∑
λj∈J

(−λj(α))∥∇ϕj∥2 ≤ 0. (1.20)

This important inequality is the point of departure of Stubbe’s monotonicity argument:
For any α > 0, the functions λj(α) are non-positive, continuous and increasing. λj(α) is
continuously differentiable except at countably many values where λj(α) fails to be isolated
or enters the continuum. By the Feynman-Hellman theorem,

d

dα
λj(α) = ⟨ϕj ,−∆ϕj⟩ = ∥∇ϕj∥2.

Thus, (1.20) can be rewritten as

α d
∑

λj(α)<0

(−λj(α))2 + 2α2 d

dα

∑
λj(α)<0

(−λj(α))2 ≤ 0.

For any α ∈]αN+1, αN [ the number of eigenvalues is constant, and therefore

d

dα

αd/2 ∑
λj(α)<0

(−λj(α))2

 ≤ 0.
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This means that αd/2
∑

λj(α)<0 λ
2
j (α) is monotone decreasing in α. Hence, by Weyl’s asymp-

totics,

αd/2
∑

λj(α)<0

λ2
j (α) ≤ lim

α→0+
αd/2

∑
λj(α)<0

λ2
j (α) = Lcl2,1

∫
Rd

(V−(x))2+d/2 dx.

Remark 1.5. Strictly speaking, the Feynman-Hellman theorem only holds for nondegenerate
eigenvalues. In the case of degenerate eigenvalues one has to take the right basis in the
corresponding degeneracy space and to change the numbering if necessary, see e.g. [92].

As we explained the above approach is not completely rigorous since the assumption
G(D(H)) ⊆ D(H) ⊆ D(G) is not satisfied. We now explain how to avoid this problem. (Our
approach is different from Stubbe’s who avoids the problem by considering the Dirichlet
problem on a bounded domain.) The reader who is mostly interested in a non-technical
overview may skip the remainder of this subsection. For the sake of simplicity we assume
that d = 1. We consider for a fixed ε > 0 and x ∈ R, the operator of multiplication by

Gε(x) :=
x√

1 + εx2
. (1.21)

Obviously, limε→0Gε(x) = x. We show that Gε fullfills the domain condition and further
it satisfies, in the limit when ε → 0, the desired inequality (1.19). To make the idea of the
proof clear, let us first work under the simplifying assumption the operator domain is H2(R)
(this is true, for instance, if V ∈ L2(R)). Afterwards, we will present a proof which uses
only the form domain of H.
Step one: The function Gε is a bounded function for all x ∈ R with the asymptotics
limx→−∞Gε(x) = −1/

√
ε and limx→∞Gε(x) = 1/

√
ε. If V ∈ L2(R), then D(H) = H2(R).

Obviously, D(H) ⊆ D(Gε), as D(Gε) = L2(R). We note that G′
ε and G′′

ε are uniformly
bounded functions in x ∈ R. Indeed,

G′
ε(x) =

1
(1 + εx2)3/2

,

hence by substituting t :=
√
εx, we have G′

ε(x) = h(
√
εx) with h(t) = (1 + t2)−3/2. Thus,

G′
ε is uniformly bounded by |G′

ε(x)| ≤ 1 for all x ∈ R. For the second derivative we have

G′′
ε(x) = −3

εx

(1 + εx2)5/2
=

√
εh̃(

√
εx),

where h̃(t) = −3t(1 + t2)−5/2, t :=
√
εx. Therefore, also G′′

ε is uniformly bounded in x by
|G′′

ε(x)| ≤
√
εc, c > 0. Hence, by the chain rule (which is valid for Sobolev functions as

well), (Gεψ)′ = G′
εψ + ψ′Gε ∈ L2. This implies Gε(D(H)) ⊂ D(H).

Step two: As the function Gε fullfills the domain conditions for fixed ε > 0, we can apply
inequality (1.18) to Gε,

∑
λj∈J

(z − λj)2 ⟨[Gε, [H,Gε]]ϕj , ϕj⟩ − 2(z − λj) ⟨[H,Gε]ϕj , [H,Gε]ϕj⟩ ≤ 0. (1.22)

It remains to show that the left-hand side tends for ε→ 0 to the desired inequality (1.19).
Step three: The first commutator is given by [H,Gε] = −2αG′

εd/dx − αG′′
ε and the second

one by [[H,Gε], Gε] = 2α(G′
ε)

2. Without loss of generality, we set α = 1. Then, for every
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ψ ∈ H1(R),
∥[H,Gε]ψ∥2 = 4∥G′

εψ
′∥2 + ∥G′′

εψ∥2 + 4 Re
⟨
G′
εψ

′, G′′
εψ
⟩
,

and for every ψ ∈ L2(R),

⟨[[H,Gε], Gε]ψ,ψ⟩ = 2
⟨
(G′

ε)
2ψ,ψ

⟩
.

Remember, that G′
ε(x) is uniformly bounded and further limε→0G

′
ε = 1 for all x ∈ R. Hence,

it follows by the dominated convergence that

lim
ε→0

∥G′
εψ

′∥2 = ∥ψ′∥2, lim
ε→0

⟨
(G′

ε)
2ψ,ψ

⟩
= ∥ψ∥2. (1.23)

Similarly, it follows that

lim
ε→0

∥G′′
εψ∥2 = 0, (1.24)

as G′′
ε is uniformly bounded and limε→0G

′′
ε = 0 for all x ∈ R. With (1.23) and (1.24) it

follows by the Cauchy-Schwarz inequality that

lim
ε→0

Re
⟨
G′
εψ

′, G′′
εψ
⟩

= 0. (1.25)

Step four: Passing to the limit ε→ 0 in (1.22), we obtain in view of (1.23), (1.24) and (1.25)
that the desired inequality ∑

λj∈J
(−λj)22∥ϕj∥2 − 2(−λj)4∥ϕ′j∥2 ≤ 0 (1.26)

holds.
Next, let us check the domain condition by using only the form domain of H. That is, we

assume that d(H) = H1(R). This is known to hold under rather weak conditions on V (e.g.
V ∈ Lp(R) for some p ≥ 1). By the definition of H via its quadratic form we have

D(H) = {ψ ∈ H1(R) : ∃f ∈ L2(R) ∀φ ∈ H1(R) : h[φ,ψ] = (φ, f)}. (1.27)

We also recall that for ψ ∈ D(H) the f is unique and given by f = Hψ. To show that
Gε(D(H)) ⊆ D(H), we set f̃ = Gεf−2G′

εψ
′−G′′

εψ ∈ L2(R) and show that then h[φ,Gεψ] =
(φ, f̃) holds for all φ ∈ H1(R). This will then imply that Gεψ ∈ D(H) and HGεψ = f̃ . The
identity h[φ,Gεψ] = (φ, f̃) is equivalent to∫

R

(
φ′(G′

εψ +Gεψ
′) + V φGεψ

)
dx =

∫
R
φ(Gεf − 2G′

εψ
′ −G′′

εψ) dx (1.28)

Replacing φ′Gε by (Gεφ)′ −Gεφ, (1.28) is equivalent to∫
R

(
(Gεφ)′ψ′ + V φGεψ

)
dx+

∫
R

(
φ′G′

εψ −G′
εφψ

′) dx =
∫

R
φ(Gεf − 2G′

εψ
′ −G′′

εψ) dx.

It follows from (1.27) with Gεφ ∈ H1(R) in place of φ that∫
R

(
(Gεφ)′ψ′ + V φGεψ

)
dx =

∫
R
φGεf dx.

Hence, it remains to show that the identity∫
R
φ′G′

εψ dx = −
∫

R
φG′

εψ
′ dx−

∫
R
φG′′

εψ dx (1.29)

holds for all φ ∈ H1(R). This follows simply by integrating the first integral in the right-hand
side in (1.29) by parts. This concludes our rigorous justification of inequality (1.19).
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Up to now we were concerned with the discrete spectrum of Schrödinger operators. In the
following, we turn our attention to the one-dimensional scattering theory, which is closely
related to the theory of the continuous spectrum of the Schrödinger operator.

1.5. Scattering on the real line and trace formulas of Buslaev-Faddeev type. In
this section, we present some results from the one-dimensional scattering theory. Details can
be found in many textbooks. Our presentation here follows [20, 98]. First, we recall some
results on solutions of the differential equation

− u′′ + V (x)u = zu, z = ζ2, (1.30)

where ζ ∈ C and x ∈ R. Throughout this section we assume that the function V satisfies
the assumption ∫ ∞

−∞
|V (x)| dx <∞. (1.31)

Then, the Schrödinger equation (1.30) has for all ζ ̸= 0 from the closed upper half-plane a
unique solution θ1(x, ζ) satisfying as x→ +∞ the conditions

θ1(x, ζ) = eiζx(1 + o(1)), θ′1(x, ζ) = iζeiζx(1 + o(1)) (1.32)

and a unique solution θ2(x, ζ) satisfying as x→ −∞ the conditions

θ2(x, ζ) = e−iζx(1 + o(1)), θ′2(x, ζ) = −iζe−iζx(1 + o(1)). (1.33)

The solutions θ1(x, ζ) and θ2(x, ζ) are called Jost solutions and are for any fixed x ∈ R
analytic in ζ up to the real axis, with a possible exception of the point ζ = 0. The Wronskian

w(ζ) = w{θ2(·, ζ), θ1(·, ζ)} = θ′2(·, ζ)θ1(·, ζ) − θ′1(·, ζ)θ2(·, ζ) (1.34)

is analytic in the upper half-plane and is continuous up to the real axis, with a possible
exception of the point ζ = 0. An important fact is that complex zeros of w(ζ) are simple
and lie on the imaginary axis. Moreover, w(ζ) = 0 if and only if ζ2 is an eigenvalue of the
Schrödinger operator H = −d2/dx2 + V on L2(R).
For k > 0, the Jost solutions have the property

θj(x,−k) = θj(x, k), j = 1, 2,

and the solutions θ1(·, k), θ1(·,−k) and θ2(·, k), θ2(·,−k) are linearly independent as can be
seen by the Wronskians,

w{θ1(·, k), θ1(·,−k)} = 2ik, w{θ2(·, k), θ2(·,−k)} = −2ik.

Thus for k > 0,
θ2(x, k) = (2ik)−1 (w0(k)θ1(x, k) − w(k)θ1(x,−k)) , (1.35)

where w0(k) = w{θ2(·, k), θ1(·,−k)}. Similarly,

θ1(x, k) = (2ik)−1
(
w0(k)θ2(x, k) − w(k)θ2(x,−k)

)
. (1.36)

From these representations, the following important property follows,

|w(k)|2 = 4k2 + |w0(k)|2. (1.37)

We introduce the Jost function

m(ζ) := −(2iζ)−1w(ζ),
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which is analytic for Im ζ > 0 and is continuous up to the boundary, except the point ζ = 0.
We normalize the functions θ1 and θ2 to obtain

ψ1(x, k) = m(k)−1θ1(x, k), ψ2(x, k) = m(k)−1θ2(x, k). (1.38)

In a sense that can be made precise, these functions can be interpreted as ”continuum
eigenfunctions” of H. Because of (1.35) and (1.36) it follows that

ψ1(x, k) = eikx + s21(k)e−ikx + o(1), x→ −∞,

ψ1(x, k) = s11(k)eikx + o(1), x→ ∞ (1.39)

and

ψ2(x, k) = e−ikx + s12(k)eikx + o(1), x→ ∞,

ψ2(x, k) = s22(k)e−ikx + o(1), x→ −∞, (1.40)

where

s11(k) = s22(k) = −2ikw(k)−1, s12(k) = −w0(k)w(k)−1, s21(k) = −w0(k)w(k)−1.

The coefficients sij(k) are determined uniquely by asymptotics (1.39) and (1.40). The scat-
tering matrix is defined as follows,

s(k) :=
(
s11(k) s12(k)
s21(k) s22(k)

)
= −w(k)−1

(
2ik w0(k)
w0(k) 2ik

)
.

It follows from (1.37) that the scattering matrix is unitary.
In quantum mechanics the asymptotic relations (1.39) and (1.40) are interpreted as follows.

The solution ψ1(x, k) describes a particle with energy k2 coming from −∞ and interacting
with the potential V (x). After interaction the reflected part s21(k)e−ikx goes back to −∞
and the transmitted part s11(k)eikx goes to +∞. Similarly, the solution ψ2(x, k) describes a
particle coming from +∞ and interacting with V (x). The coefficients s11(k) and s22(k) are
called transmission coefficients, whereas s12(k) and s21(k) are called reflection coefficients
to the right and to the left. The values |sij(k)|2 are interpreted as the probabilities of the
corresponding processes and fullfill |s1j(k)|2 + |s2j(k)|2 = 1 for j = 1, 2.

Next, let us state some results concerning the low-energy asymptotics. Under the assump-
tion ∫ ∞

−∞
(1 + |x|)|V (x)| dx <∞ (1.41)

the Jost solutions θj(x, ζ) and the Jost function w(ζ) are continuous as ζ → 0. The real
solutions θj(x) := θj(x, 0) satisfy the equation −u′′ + V u = 0 and w(0) = w(0) = w{θ2, θ1}.
For x→ ∞, we have the asymptotics

θ1(x) = 1 + o(1), θ′(x) = o(x−1). (1.42)

In the following, we have to distinguish the generic case w(0) ̸= 0 from the case w(0) = 0.
Under assumption (1.41) and w(0) ̸= 0 the scattering matrix S(λ) has for λ → 0, the finite
limit

S(0) =
(

0 −1
−1 0

)
.
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This shows that the transmission coefficients s11(k) and s22(k) are equal to zero which means
that for low energies a quantum particle cannot pass through a potential barrier or well V (x)
in the generic case.

Definition 1.6. Assume that (1.41) holds. If w(0) = 0, then one says that the Schrödinger
operator H has a zero-energy resonance.

This means that H has a zero-energy resonance if and only if the solutions θ1 and θ2 of
the homogenous Schrödinger equation are proportional, i.e.

θ1(x) = αθ2(x), α > 0.

Thus, in view of (1.42) this implies that equation (1.30) has a bounded solution (which is
not necessarily in L2(R)). In this case we have,

w(ζ) = −i(α+ α−1)ζ + o(|ζ|), |ζ| → 0

and
w0(k) = −i(α+ α−1)k + o(k), → 0.

Further, the scattering matrix S(λ) has a finite limit as λ→ 0 and

S(0) = (α+ α−1)−1

(
2 α−1 − α

α− α−1 2

)
.

Thus, there is a non-zero transmission probability in the limit λ→ 0.
Concerning the high-energy asymptotics, we note that under the assumption that V ∈

C∞(R) and for all j ∈ N0

|V (j)(x)| ≤ cj(1 + |x|)−ρ−j , ρ ∈ (1, 2], (1.43)

the asymptotic expansion

lnm(ζ) =
∞∑
n=1

ln(2iζ)−n (1.44)

as |ζ| → ∞, Im ζ ≥ 0, is true with real coefficients ln. If ζ = k > 0, we can write

m(k) = a(k)eiη(k) (1.45)

with a(k) = |m(k)| ≥ 1, because of (1.37). Here, the scattering phase is a continuous
function and is normalized by the condition η(∞) = 0. Seperating (1.44) in its real part and
imaginary part, we arrive at the asymptotic expansions as k → ∞,

ln a(k) =
∞∑
n=1

(−1)nl2n(2k)−2n and η(k) =
∞∑
n=1

(−1)n+1l2n+1(2k)−2n−1. (1.46)

Further, for k → ∞, the asymptotic behaviours

w0(k) = O(k−∞), a(k) = 1 +O(k−∞), ln a(k) = O(k−∞) (1.47)

and
s(k) = m(k)−1

1+O(k−∞), k → ∞ (1.48)

hold. Relation (1.48) shows that the reflection coefficients s12(k) = s21(k) = O(k−∞) as
k → ∞. This leads to the interpretation that for high energies a particle penetrates through
a potential barrier with a probability of almost one.
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The coefficients ln in (1.44) can be determined recursively. The first ones are given by

l1 = −
∫ ∞

−∞
V (x) dx, l3 =

∫ ∞

−∞
V 2(x) dx,

l5 = −
∫ ∞

−∞

(
V ′(x)2 + 2V 3(x)

)
dx.

The fact that ln = 0 for all even n follows from the asymptotic expansion (1.46) and the
asymptotic behaviour of ln a(k) in (1.47).

Assume now that (1.31) is satisfied. In order to derive the perturbation determinant for
the pair H0 = −d2/dx2, H = −d2/dx2 + V (x) in the space L2(R), one may first derive

Tr (R0(z) −R(z)) =
ṁ(ζ)

2ζm(ζ)
, ζ = z1/2, Im ζ > 0, (1.49)

where the derivative with respect to ζ is denoted by a dot ”·”. The condition (1.31) implies
that |V |1/2(H0 + 1)−α is a Hilbert-Schmidt operator for α ≥ 1/4. Therefore, the operator
R0(z) − R(z) is trace class and the modified perturbation determinant D(z) = det(1 +
sgnV |V |1/2R0(z)|V |1/2) is correctly defined. From the well-known relation

Tr (R0(z) −R(z)) = D−1(z)D′(z), z ∈ ρ(H), (1.50)

see e.g. [97], it follows together with (1.49) that

D(z) = Cm(z1/2).

As the perturbation determinant satisfies D(z) → 1 as |z| → ∞ (see e.g. [97]), and m(ζ) =
1 + o(1) as |ζ| → ∞, Im ζ ≥ 0, it follows that C = 1. The identity between the trace of the
resolvent difference and the logarithmic derivative of the Jost function m(z1/2) establishes
a connection between operator and spectral theory on one side and ODE on the other side.
Finally, let us state some results from [97] about the spectral shift function ξ. Assume that
(1.31) is satisfied. Then the spectral shift function satisfies the condition∫ ∞

−∞
|ξ(λ;H,H0)|(1 + |λ|)−1/2−ε dλ <∞, ∀ε > 0

and the trace formula

Tr (f(H) − f(H0)) =
∫ ∞

−∞
ξ(λ)f ′(λ) dλ

is true for all functions f with two locally bounded derivatives satisfying

f ′(λ) = O(λ−1/2−ε), f ′′(λ) = O(λ−1−ε), λ→ ∞,

for some ε > 0. In particular, one can take f(λ) = (λ − z)−1 such that the following
representation is valid,

Tr (R(z) −R0(z)) = −
∫ ∞

−∞
ξ(λ)(λ− z)−2 dλ. (1.51)

This formula remains true if an arbitrary constant is added to the spectral shift function ξ.
Furthermore, formula (1.51) leads together with (1.50) to the relation

lnD(z) =
∫ ∞

−∞
ξ(λ)(λ− z)−1 dλ,
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which implies that
ξ(λ) = π−1 lim

ε→0+
argD(λ+ iε).

In abstract scattering theory, the last identity is known as Krěın’s formula. In the context of
Schrödinger operators, however, D is a modified perturbation determinant and therefore the
verification of Krěın’s formula requires additional arguments. Another important result is
the Birman-Krěın formula, which relates the spectral shift function to the scattering matrix,

detS(λ) = e−2iπξ(λ).

For λ > 0 the spectral shift function ξ is related to the scattering phase η, defined in (1.45),
by

ξ(λ) = π−1η(λ1/2).

For the one-dimensional Schrödinger operator the Birman-Krěın formula can be verified
simply by a direct computation. Using (1.37),(1.45) and the definition of m(ζ), we derive

detS(k) = s11(k)s22(k) − s12(k)s21(k) = −w(k)−2(4k2 + |w0(k)|2) = e−2iη(k).

As an application of the scattering theory, we present two types of trace identities, the
Levinson formula and Buslaev-Faddeev formulas. Both of them relate the scattering data
η(k) and a(k) to the discrete spectrum of the Schrödinger operator in L2(R). Assume that
condition (1.41) is satisfied and that the Schrödinger operator in L2(R) has N negative
eigenvalues. Then the Levinson formula states that

η(∞) − η(0) = π(N − 1/2), if w(0) ̸= 0,

and
η(∞) − η(0) = πN, if w(0) = 0,

where η(∞) = 0 in view of (1.45), (1.47) and m(ζ) = 1 + o(1) as |ζ| → ∞, Im ζ ≥ 1.
Finally, we formulate a series of higher order trace identities known as Buslaev-Faddeev
formulas. Suppose that (1.41) and (1.43) are satisfied. Then for all n ∈ N,

N∑
j=1

|λj |n + (−1)nπ−12n
∫ ∞

0

η(k) − n−1∑
j=0

(−1)j+1l2j+1(2k)−2j−1

 k2n−1 dk = 0

and for all n ∈ N0,

N∑
j=1

|λj |n+1/2 + (−1)n+1π−1(2n+ 1)
∫ ∞

0
ln a(k)k2n dk = (2n+ 1)2−2n−2l2n+1. (1.52)

The proof of the Levinson formula uses the argument principle applied to the function m(ζ)
and an appropriate contour of integration. Buslaev-Faddeev trace identities are obtained
by applying Cauchy’s residue theorem to the function m(ζ). In both cases, the low- and
high-energy asymptotics are important ingredients. Also the fact, that m(ζ) = 0 if and only
if ζ2 is an eigenvalue of H, is essential.
Since ln a(k) ≥ 0 by (1.47), identities (1.52) imply spectral inequalities. For n = 0, we get a
lower bound for

∑N
j=1 |λj |1/2 which is also known as Schmincke’s inequality,
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− 1
4

∫ ∞

−∞
V (x) dx ≤

N∑
j=1

|λj |1/2 ≤ 1
2

∫ ∞

−∞
V−(x) dx. (1.53)

Remarkably, there is a two-sided estimate for the eigenvalues with moments 1/2. The up-
per bound in (1.53) was proved in [53,94]. We note, that the lower bound in (1.53) also im-
plies that the Schrödinger operatorH has at least one negative eigenvalue if

∫∞
−∞ V (x) dx < 0.

If n = 1, we obtain the following Lieb-Thirring inequality,

N∑
j=1

|λj |3/2 ≤ 3
16

∫ ∞

−∞
V 2(x) dx.

The constant 3/16 is the same constant as appears in the semi-classical limit, which means
that it is sharp. By the Aizenman-Lieb argument [1] this optimal Lieb-Thirring inequality
at γ = 3/2 implies optimal Lieb-Thirring inequalities for Riesz means of orders γ > 3/2.

1.6. Scattering on metric graphs. The scattering problem for quantum graphs was stud-
ied in [25,34,35,46]. Here, we give a brief overview of results obtained in [34].

Let Γ be a star shaped graph, which is a metric graph with a single vertex in which a
finite number of n ≥ 2 edges ej are joined. We assume that every edge has infinite length
and consider the scattering problem

− u′′ + V (x)u = zu, z = ζ2, (1.54)

where ζ ∈ C and x ∈ Γ. We call ψi(x) = {ψi1(x1, ζ), . . . , ψin(xn, ζ)}, 1 ≤ i ≤ n, a scattering
solution of the problem (1.54) if ψi(x) solves equation (1.54) with the Kirchhoff vertex
condition (1.4), and has the following asymptotic behaviour,

ψij(xj , ζ) = Tij(ζ)eiζxj + o(1), xj → ∞, i ̸= j,

ψii(xi, ζ) = e−iζxi +Rii(ζ)eiζxi + o(1), xi → ∞, 1 ≤ i ≤ n.

The coefficients Tij(ζ) and Rii(ζ) are called transmission coefficients and reflection coeffi-
cients, respectively. The scattering matrix S(ζ) is a matrix with the reflection coefficients
as diagonal entries and the transmission coefficients as off-diagonal entries. To construct
the scattering solutions of (1.54), the Jost solutions of (1.54) are introduced as solutions
satisfying the integral equations

θ1i(xi, ζ) = eiζxi −
∫ ∞

xi

ζ−1 sin(ζ(xi − yi))Vi(yi)θ1i(yi, ζ) dyi, (1.55)

θ2i(xi, ζ) = e−iζxi +
∫ xi

0
ζ−1 sin(ζ(xi − yi))Vi(yi)θ2i(yi, ζ) dyi. (1.56)

These solutions are characterized by their asymptotics as xi → ∞,

θ1i(xi, ζ) = eiζxi + o(1), θ2i(xi, ζ) = a1i(ζ)e−iζxi + b1i(ζ)eiζxi + o(1), (1.57)

where

a1i(ζ) = 1 − 1
2iζ

∫ ∞

0
eiζyiVi(yi)θ2i(yi, ζ) dyi, b1i(ζ) =

1
2iζ

∫ ∞

0
e−iζyiVi(yi)θ2i(yi, ζ) dyi.
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Note that the solutions θ1i(xi, ζ), θ2i(xi, ζ), xi ≥ 0, are identical with the Jost solutions
which arise in the study of the scattering problem for the whole-line Schrödinger operator
with potential V equal to zero for x ≤ 0 and Vi(xi) for x ≥ 0. Hence, they have the same
properties as the whole-line Jost solutions for x ≥ 0.

For n = 3, the scattering solution ψ1 is determined as follows,

ψ11(x1, ζ) = θ11(x1, ζ) +R11(ζ)θ11(x1, ζ),

ψ12(x2, ζ) = T12(ζ)θ12(x2, ζ),

ψ13(x3, ζ) = T13(ζ)θ13(x3, ζ).

ψ1(x, ζ) can be interpreted as a continuum eigenfunction of the operator H and is analytic
in the upper half-plane Im ζ > 0, see [34] for details. Similarly, the scattering solutions for
2 ≤ i ≤ n can be constructed via Jost solutions. The resulting scattering coefficients are
given by

Rii(ζ) =
2iζ

θ1i(0, ζ)θ1i(0, ζ)K(ζ)
− 1
a1i(ζ)θ1i(0, ζ)

+
b1i(ζ)
a1i(ζ)

,

Tij(ζ) =
2iζ

θ1i(0, ζ)θ1j(0, ζ)K(ζ)
, i ̸= j, (1.58)

where 1 ≤ i, j ≤ n, and K(ζ) =
∑n

i=1 θ
′
1i(0, ζ)/θ1i(0, ζ). In this context we mention that the

topic of inverse scattering on quantum graphs has attracted a lot of attention recently, see
e.g. [34,42,45]. Thereby, the question is to reconstruct the potential from the spectral data
or to reconstruct the graph from given eigenvalues.

As far as we know the spectral shift function, Levinson’s formula and trace identities have
not been studied on star-shaped quantum graphs. This will be the topic of the third article
”The spectral shift function and Levinson’s theorem for quantum star graphs” in this thesis.

2. Summary

In this section, we first give an overview of the articles

I. S. Demirel and E. M. Harrell, II, On semiclassical and universal inequalities for eigen-
values of quantum graphs, Reviews in Mathematical Physics 22 (2010) No. 3, 305-329.

II. S. Demirel and M. Usman, Trace formulas for Schrödinger operators on the half-line,
Bulletin of Mathematical Sciences 1, (2011) No. 2, Page 397-427.

III. S. Demirel, The spectral shift function and Levinson’s theorem for quantum star graphs,
Journal of Mathematical Physics, to appear.

Afterwards, we summarize further results on sum rules and on Lieb-Thirring inequalities for
star shaped graphs.

2.1. Overview of paper I. On semiclassical and universal inequalities for eigen-
values of quantum graphs. Inequalities for means, moments, and ratios of eigenvalues
are rather well studied for Laplacians on domains and for Schrödinger operators. For quan-
tum graphs however only little has been known so far. We study estimates for the discrete
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spectrum of quantum graphs with the method of sum rules. In particular, we derive upper
bounds for the negative eigenvalues of quantum graphs such as Lieb-Thirring inequalities
and universal inequalities of Payne-Pólya-Weinberger, and Yang types. We show that the
sharp constants of these inequalities depend on the topology of the graph and give conditions
under which the sharp constants are the same as for the classical inequalities in dimension
one. We also provide some counterexamples where the classical form of the inequalities is
false.

The first part of the article concerns Lieb-Thirring inequalities for quantum graphs. Let
Γ be a given metric graph. We consider the Schrödinger operator

H(α)ψ(x) = −αψ′′(x) + V (x)ψ(x), α > 0,

on L2(Γ), where the exterior potential V is a real-valued function. With Kirchhoff vertex
conditions and Dirichlet boundary conditions at the ends of exterior edges, the operator H
is self-adjoint. Assume that V decays at infinity in some averaged sense, then the quan-
tum graph H has continuous spectrum on the positive semi-axis and a discrete spectrum
consisting of negative eigenvalues Ej(α).

As already mentioned in the introduction, Lieb-Thirring inequalities for metric trees were
studied in [24, 31]. The result states that under some regularity conditions on the metric
tree Γ and on the potential V , the following Lieb-Thirring inequality holds for all γ ≥ 1/2
with a constant depending on γ,

∑
j

(−Ej)γ ≤ Cγ

∫
Γ

(V−(x))γ+1/2 dx. (2.1)

The essential question here is whether these inequalities hold with the same constants as in
dimension one or whether the connectedness of the graph can change the state of affairs. So
far, the question about the sharp constants in (2.1) was an open problem. Our first main
result gives an answer to this question for all γ ≥ 2.

Theorem 2.1. Assume that V ∈ Lγ+1/2(Γ). Then for any tree graph with a finite number
of vertices and edges, the mapping

α 7→ α1/2
∑

Ej(α)<0

(−Ej(α))γ

is nonincreasing for all α > 0 and γ ≥ 2. Consequently,

α1/2
∑

Ej(α)<0

(−Ej(α))γ ≤ Lclγ,1

∫
Γ

(V−(x))γ+1/2 dx

for all α > 0 and γ ≥ 2. Here, the semiclassical constant Lclγ,1 is the best posssible one.

Remark 2.2. Theorem 2.1 is first proved for the case γ = 2. Then, by a modification of
the principle of Aizenman and Lieb, [1], Theorem 2.1 is also true for eigenvalue moments of
order γ ≥ 2. A proof of how to extend the monotonicity of the eigenvalue moments with
respect to α from γ = 2 to higher orders γ > 2 is given in Section 4.3.

The proof of Theorem 2.1 uses Stubbe’s monotonicity argument, [90], which is based on
general trace identities for operators [49, 50] known as sum rules. Contrary to the proofs
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in [24,31] we do not use variational arguments, but combinatorial ideas instead. This allows
us to obtain sharp results.

We give some further examples of metric graphs for which the analog of Theorem 2.1 is
true.

We also provide a modified Lieb-Thirring inequality for a one-loop graph Γ consisting of
a circle of length 2L to which two leaves are attached as in the following figure.

Figure 5. one-loop graph Γ

Theorem 2.3. Let q := 2π/L. For all α > 0 and γ ≥ 2 the mapping

α 7→ α1/2
∑

Ej(α)<0

(
z − 3

16
αq2 − Ej

)γ
+

is nonincreasing. Furthermore, for all z ∈ R, all α > 0 and γ ≥ 2 the following sharp
Lieb-Thirring inequality holds:∑

Ej(α)<z

(z − Ej(α))γ+ ≤ α−1/2Lclγ,1

∫
Γ

(
V (x) −

(
z +

3
16
q2α

))γ+1/2

−
dx.

We conlude the first part by identifying conditions under which the sharp constants are
the same as for the classical inequalities.

The second part of the article deals with universal inqualities for quantum graphs. For
bounded domains in Rd it is known that the means of the first n eigenvalues of the Dirirchlet
Laplacian are bounded from below by the Berezin-Li-Yau inequality in terms of the volume of
the domain. Furthermore, there is a large family of universal bounds on the spectrum, dating
from the work of Payne, Pólya, and Weinberger [81], which give bounds on the spectrum
without any reference to properties of the domain, [4].

In dimension one these questions are trivial. But the spectrum of a quantum graph
responds, even in the absence of a potential, in complex ways to its connectedness. If the
total length is finite and appropriate boundary conditions are imposed at exterior vertices,
then the spectrum is positive and discrete {Ej}∞j=1, and questions about counting functions,
moments, etc. and their relation to the topology of the graph become interesting

It turns out that there are far-reaching analogies between these “universal” inequalities
for Dirichlet Laplacians and Lieb-Thirring inequalities, which have led to common proofs
based on sum rules. We show that the classic Payne, Pólya, and Weinberger and related
inequalities can be proved for the case of trees using the method of sum rules.

First, we derive Weyl-type bounds on the averages of the eigenvalues of the Dirichlet
Laplacian in L2(Γ). We use the following notation for the Riesz mean of order ρ,

Rρ(z) :=
∑
j

(z − Ej)
ρ
+, ρ > 0, z ∈ R.
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Theorem 2.4. Let |Γ| be the total length of a metric tree Γ. Then, for z ≥ 5E1,

16E−1/2
1

(z
5

)5/2
≤ R2(z) ≤ Lcl2,1|Γ|z5/2.

Similar estimates, related to higher eigenvalues are obtained in the following

Corollary 2.5. Let the means of eigenvalues Eℓ be denoted by Ej :=
1
j

∑
ℓ≤j Eℓ and suppose

that z ≥ 5Ej. Then

R2(z) ≥
16jz5/2

25(5Ej)1/2

and, therefore,

R1(z) ≥
4jz3/2

5(5Ej)1/2
.

Using the Legendre transform one can convert bounds on Rρ(z) into bounds on the spec-
trum. This leads to the following result.

Corollary 2.6. For k ≥ 6
5j, the means of the eigenvalues of the Dirichlet Laplacian on

an arbitrary metric tree with finitely many edges and vertices satisfy a universal Weyl-type
bound,

Ek

Ej
≤ 125

108

(
k

j

)2

.

2.2. Overview of paper II. Trace formulas for Schrödinger operators on the half-
line. In paper II we study the scattering problem for the Schrödinger equation on the
half-line with the Robin boundary condition at the origin.

Let H be the self-adjoint operator on L2[0,∞) defined by

H = H0 + V (x), H0 = − d2

dx2
, u′(0) = γu(0), (2.0)

where γ ∈ R. The potential V is real-valued and goes to zero at infinity (in some averaged
sense). Then H has a continuous spectrum on the positive semiaxis and discrete negative
spectrum, consisting of eigenvalues {λj}.

The Hamiltonian H describes a one-dimensional particle restricted to the positive semi-
axis. The parameter γ describes the strength of the interaction of the particle with the
boundary. Negative γ correspond to an attractive interaction and positive γ to a repulsive
one.

The study of trace formulas for the negative eigenvalues of H is connected with the
differential equation

− u′′ + V (x)u = zu, z = ζ2, (2.1)

where ζ ∈ C and x > 0. Equation (2.1) has two particular solutions. The regular solution φ
is characterized by the conditions

φ(0, ζ) = 1, φ′
x(0, ζ) = γ, (2.2)

and the Jost solution θ by the asymptotics θ(x, ζ) ∼ eiζx as x → ∞. By w(ζ) we denote
the Wronskian of the regular solution and the Jost solution, which turns ou to be w(ζ) =
γθ(0, ζ) − θ′(0, ζ). Our first main result gives an expression for the trace of the difference
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of the perturbed and unperturbed resolvent in terms of the Wronskian w(ζ). Let us denote
the resolvents of the unperturbed and perturbed operators by R0(z) = (H0 − z)−1 and
R(z) = (H − z)−1, respectively.

Theorem 2.7. Assume that ∫ ∞

0
|V (x)| dx <∞. (2.3)

Then

Tr(R0(z) −R(z)) =
1
2ζ

(
d
dζw(ζ)

w(ζ)
+

i

γ − iζ

)
, ζ = z1/2, Im ζ > 0. (2.4)

This result leads to a representation for the perturbation determinant and to infinitely
many trace identities of Buslaev-Faddeev type. For example, the second one in this series
states that

N∑
j=1

|λj | −M1(γ) −
2
π

∫ ∞

0

(
η(k) − 1

2k

∫ ∞

0
V (x) dx

)
k dk = −1

4
V (0), (2.5)

where M1(γ) = γ2 if γ < 0, and M1(γ) = 0 if γ ≥ 0. Here η(k) is the so-called limit phase
and has scattering theoretical nature. This formula can be interpreted as follows. We recall
that if γ ≥ 0, then H0 has purely absolutely continuous spectrum [0,∞). If γ < 0, then H0

has the simple negative eigenvalue −γ2 and purely absolutely continuous spectrum on [0,∞).
Hence the first two terms on the left-hand side of (2.5),

∑N
j=1 |λj |−M1(γ), correspond to the

shift of the discrete spectrum between H and H0. Similarly, the last term on the left-hand
side corresponds to the shift of the absolutely continuous spectrum. The trace formula (2.5)
and its higher order analogs proved below relate this shift of the spectrum to the potential
V .

In [15] trace formulas for the half-line Schrödinger operator are derived by the application
of the inverse spectral Gelfand-Levitan theory. However, these trace formulas contain norm-
ing constants and additional integrals over potentials which are obtained by the removal of
eigenvalues. The appearance of additional terms distinguishes their formulas from the trace
formulas of Buslaev-Faddeev type.

Further, we study the modified perturbation determinant

D(z) := det(1+
√
V R0(z)

√
|V |), z ∈ ρ(H0),

which is well-defined under assumption (2.3) . Here ρ(H0) denotes the resolvent set of the
operator H0 and

√
V := sgn(V )

√
|V |. We prove that D(z) is related to the Jost function

by,

D(z) =
w(

√
z)

γ − i
√
z
,

where Im z1/2 > 0.
Finally, we prove the Levinson formula which can be perceived as a trace formula of order

zero. It relates the number of negative eigenvalues of H to the phase shift η.

Theorem 2.8. Suppose that
∫∞
0 (1 + x)|V (x)| dx <∞ and let N be the number of negative

eigenvalues of the operator H. Then, the following formulas hold.
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For w(0) ̸= 0,

η(∞) − η(0) =


πN if γ > 0,

π(N − 1
2) if γ = 0,

π(N − 1) if γ < 0.

(2.6)

For w(0) = 0,

η(∞) − η(0) =


π(N + 1

2) if γ > 0,

πN if γ = 0,

π(N − 1
2) if γ < 0.

(2.7)

We note that η satisfies for k ∈ R the identity η(k) = Im lnD(k) and therefore it follows
from the asymptotics limIm z→∞D(z) = 1 that η(∞) = 0.

2.3. Overview of paper III. The spectral shift function and Levinson’s theorem
for quantum star graphs. The results from the previous paper, obtained for the half-
line Schrödinger operator, are generalized to star shaped metric graphs Γ with n half-lines
ej = [0,∞) joined at the origin. We consider the Schrödinger operator

H = H0 + V, H0 = − d2

dx2

on L2(Γ) with Kirchhoff vertex condition and denote Vj := V |ej . Let R(z) be the resolvent
of the operator H. Similarly, R0(z) denotes the resolvent of the unperturbed operator H0

on L2(Γ) with Kirchhoff vertex condition. Then, the analog of Theorem 2.7 is given by

Theorem 2.9. Let Γ be a star shaped graph and assume that
∫
ej
|Vj(x)| dx <∞ is satisfied

for 1 ≤ j ≤ n. Then, for the Schrödinger operator on L2(Γ) with Kirchhoff vertex condition,
the following trace formula holds,

Tr(R0(z) −R(z)) =
1
2ζ

d

dζ
ln

K(ζ)
ζ

n∏
j=1

wj(ζ)

 , ζ = z1/2, Im ζ > 0. (2.8)

Here, K(ζ) =
∑n

j=1 θ
′
j(0, ζ)/θj(0, ζ) with θj(x, ζ) denoting the Jost solution on ej, and

wj(ζ) = θj(0, ζ).

Remark 2.10. We note that identity (2.8) is equivalent to the identity

Tr(R0(z) −R(z)) =
1
2ζ

 n∑
j=1

d
dζwj(ζ)

wj(ζ)
+

d
dζK(ζ)

K(ζ)
− 1
ζ

 .

This should be compared with the analog of (2.4) for the Dirichlet case which is a classical
result [16, 57], see also [87, 98]. Namely, for the half-line Schrödinger operator HD with
Dirichlet boundary condition the following identity holds,

Tr(R0,D(z) −RD(z)) =
d
dζw(ζ)

2ζw(ζ)
.

Here, w(ζ) = θ(0, ζ) is the corresponding Jost function on the half-line.
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We note that the right-hand side of (2.8) has appeared in [46] as a Jost function in a
related context.

Formula (2.8) allows us again to derive the perturbation determinant D(ζ) and the spec-
tral shift function ξ(λ;H,H0). Furthermore, we derive the Levinson formula for star shaped
graphs Γ. We say that the operator H on L2(Γ) has a resonance at ζ = 0 if the equation
−u′′+V u = 0 has a non-trivial bounded solution satisfying the continuity and Kirchhoff con-
ditions. By definition, the multiplicity of the resonance is the dimension of the corresponding
solution space.

Theorem 2.11. Assume that
∫
ej

(1 + x)|Vj(x)| dx < ∞ is satisfied for all 1 ≤ j ≤ n and,
if ζ = 0 is a resonance of multiplicity one, assume that

∫
ej

(1 + x2)|Vj(x)| dx < ∞ for all
1 ≤ j ≤ n. Then,

lim
λ→0+

ξ(λ) = −
(
N +

m− 1
2

)
, (2.9)

where N is the number of negative eigenvalues of H and where m ≥ 1 is the multiplicity if
ζ = 0 is a resonance and m = 0 if ζ = 0 is not a resonance.

Remark 2.12. We know that limλ→0− ξ(λ) = −N , which is an easy consequence of the
definition of the spectral shift function.

In [17] a Levinson typ formula was proved for discrete graphs with only one path going
to infinity. Note that in our case of the quantum star graph we have n infinite edges, which
makes the situation considerably more complicated. Indeed, it was mention at the end of [17]
as an interesting question to extend the result to a graph with n semi-infinite paths attached.

2.4. Further results. Additionally to the articles I-III, this thesis contains further results
on questions arising from these articles. The first paper gives rise to the question whether it
is possible to apply the sum rule method to other operators than the Schrödinger operator.
In this context we consider the operator with variable coefficients. Let us define

H(α) = −α
(
d

dx
ρ(x)

d

dx

)
+ V (x), α > 0, (2.10)

in L2(I), where I ⊂ R is an open interval. At its endpoints (if any) we impose Dirichlet
boundary conditions. The function ρ is assumed to be positive in the interior of I. For
simplicity we assume that the real-valued function V is bounded and of compact support in
I. Then, for any α > 0, H(α) has at most a finite number of negative eigenvalues Ej(α).
With the method of sum rules we prove Lieb-Thirring type inequalities for H.

Theorem 2.13. Let ρ be a C2-function and ρ > 0 in the interior of I. Assume that ρ3/4(x)
is convex. Then the mapping

α 7→ α1/2
∑

Ej(α)<0

(Ej(α))2

is nonincreasing for all α > 0. Consequently∑
Ej(α)<0

(Ej(α))2 ≤
∫
R

∫
R

(ρ(x)|ξ|2 + V (x))2−
dx dξ

2π
√
α

= α−1/2Lcl2,1

∫
R

V
5/2
− (x)√
ρ(x)

dx

for all α > 0.
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Using a different method we also show that the Lieb-Thirring inequality holds with the
semi-classical constant already for γ ≥ 3/2 (but we do not consider semi-classical mono-
tonicity).

The next question arising from the first and third paper concerns Lieb-Thirring inequalities
for quantum graphs. Remember that the sharp Lieb-Thirring inequalities, obtained in the
first paper with the method of sum rules, do hold for γ ≥ 2. In the classical case of the full
space R however it is known that Lieb-Thirring inequalities hold for moments γ ≥ 1/2. In
particular, these inequalities hold with the semiclassical (and thus sharp) constants Lcl3/2,d,
for all d ≥ 1 [70, 72]. We recall that it was shown in [24] that Lieb-Thirring inequalities
hold for Schrödinger operators on regular metric trees for any γ ≥ 1/2. The sharp constants
however have not been known so far and hence the question about the sharp constants
for 1/2 ≤ γ < 2 is still an open problem. Therefore, it is natural to ask whether Lieb-
Thirring inequalities with moments γ ≥ 1/2 do hold for quantum graphs with the same
sharp constants Lγ,1 as for the whole-line case. We emphasize that the failing of the sum-
rule proof for moments γ < 2 is not an artifact of the method but due to the fact that
the proof provides also monotonicity of the eigenvalue moments with respect to coupling
constants. However, in general the monotonicity property is no longer true for γ < 2, [90].
Hence, we have to use different methods for the case γ ≥ 1/2. For a star shaped graph
Γ we study the Lieb-Thirring inequalities with moments γ ≥ 1/2 by applying variational
arguments and the method of symmetric decomposition of the corresponding Hilbert space
L2(Γ) . In summary, we prove the following

Theorem 2.14. Assume that Γ is a star shaped graph with n edges joined at the origin
and let H be the Schrödinger operator in L2(Γ) with potential V ∈ Lγ+1/2(Γ) and Kirchhoff
vertex condition. Assume that either

(1) n is even
or

(2) V is radially symmetric.
Then for γ ≥ 1/2,

Tr
(
−d2/dx2 + V

)γ
− ≤ Lγ,1

∫
Γ
(V−(x))γ+1/2 dx,

where Lγ,1 is the best possible Lieb-Thirring constant for the whole-line Schrödinger operator.
We note that Lγ,1 ≤ 2Lclγ,1 if γ ≥ 1/2 and Lγ,1 = Lclγ,1 if γ ≥ 3/2.

Remark 2.15. The proof fails to give the semi-classical constant if the graph has an odd
number of edges, but it gives very good and asymptotically optimal (as n→ ∞) constants,
nonetheless. We prove that if n is odd and V ∈ Lγ+1/2(Γ) is non-symmetric, then

Tr
(
−d2/dx2 + V

)γ
− ≤

(
n+ 1
n

)
Lγ,1

∫
Γ
(V−(x))γ+1/2 dx

for all γ ≥ 1/2.

We think that it is an interesting open question whether the Lieb-Thirring inequality on
a star-shaped graph with an odd number of edges holds with the whole-line constant.



3. On semiclassical and universal inequalities for eigenvalues of quantum

graphs

Semra Demirel and Evans M. Harrell II

Abstract. We study the spectra of quantum graphs with the method of trace identities

(sum rules), which are used to derive inequalities of Lieb-Thirring, Payne-Pólya-Weinberger,

and Yang types, among others. We show that the sharp constants of these inequalities and

even their forms depend on the topology of the graph. Conditions are identified under

which the sharp constants are the same as for the classical inequalities; in particular, this

is true in the case of trees. We also provide some counterexamples where the classical form

of the inequalities is false.

3.1. Introduction. This article is focused on inequalities for the means, moments, and
ratios of eigenvalues of quantum graphs. A quantum graph is a metric graph with one-
dimensional Schrödinger operators acting on the edges and appropriate boundary conditions
imposed at the vertices and at the finite external ends, if any. Here we shall define the
Hamiltonian H on a quantum graph as the minimal (Friedrichs) self-adjoint extension of the
quadratic form

ϕ ∈ C∞
c 7→ E(ϕ) :=

∫
Γ
|ϕ′|2ds, (3.1)

which leads to vanishing Dirichlet boundary conditions at the ends of exterior edges and to
the conditions at each vertex vk that ϕ is continuous and moreover∑

j

∂ϕ

∂xkj
(0+) = 0, (3.2)

where the sum runs over all edges emanating from vk, and xkj designates the distance from
vk along the j-th edge. (Edges connecting vk to itself are accounted twice.) In the literature
these vertex conditions are usually known as Kirchhoff or Neumann conditions. Other vertex
conditions are possible, and are amenable to our methods with some complications, but they
will not be considered in this article. For details about the definition of H we refer to [66].

Quantum mechanics on graphs has a long history in physics and physical chemistry [43,80],
but recent progress in experimental solid state physics has renewed attention on them as
idealized models for thin domains. While the problem of quantum systems in high dimensions
has to be solved numerically, since quantum graphs are locally one dimensional their spectra
can often be determined explicitly. A large literature on the subject has arisen, for which
we refer to the bibliography given in [7, 27].

The subject of inequalities for means, moments, and ratios of eigenvalues is rather well
developed for Laplacians on domains and for Schrödinger operators, and it is our aim to
determine the extent to which analogous theorems apply to quantum graphs. For exam-
ple, when there is a potential energy V (x) in appropriate function spaces, Lieb-Thirring
inequalities provide an upper bound for the moments of the negative eigenvalues Ej(α) of
the Schrödinger operator H(α) = −α∇2 + V (x) in L2(Rd), α > 0, of the form

34
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αd/2
∑

Ej(α)<0

(−Ej(α))γ ≤ Lγ,d

∫
Rd

(V−(x))γ+d/2 dx (3.3)

for some constant Lγ,d ≥ Lclγ,d, where Lclγ,d, known as the classical constant, is given by

Lclγ,d =
1

(4π)d/2
Γ(γ + 1)

Γ(γ + d/2 + 1)
.

It is known that (3.3) holds true for various ranges of γ ≥ 0 depending on the dimension d;
see [18,52,71,72,83,94]. In particular, in [70] Laptev and Weidl proved that Lγ,d = Lclγ,d for
all γ ≥ 3/2 and d ≥ 1, and Stubbe [90] has recently given a new proof of sharp Lieb-Thirring
inequalities for γ ≥ 2 and d ≥ 1 by showing monotonicity with respect to coupling constants.
His proof is based on general trace identities for operators [49,50] known as sum rules, which
will again be used as the foundation of the present article.

When there is no potential energy but instead the Laplacian is given Dirichlet conditions
on the boundary of a bounded domain, then the means of the first n eigenvalues are bounded
from below by the Berezin-Li-Yau inequality in terms of the volume of the domain, and in
addition there is a large family of universal bounds on the spectrum, dating from the work
of Payne, Pólya, and Weinberger [81], which constrain the spectrum without any reference
to properties of the domain. (For a review of the subject, see [4].) It turns out that there
are far-reaching analogies between these “universal” inequalities for Dirichlet Laplacians and
Lieb-Thirring inequalities, which have led to common proofs based on sum rules [47–51,90].
More precisely, some sharp Lieb-Thirring inequalities and some universal inequalities of the
PPW family can be viewed as corollaries of a “Yang-type” inequality like (3.11) below, which
in turn follows from a sum rule identity.

In one dimension a domain is merely an interval and the spectrum of the Dirichlet Lapla-
cian is a familiar elementary calculation, for which the question of universal bounds is trivial
and uninteresting. A quantum graph, however, has a spectrum that responds in complex
ways to its connectedness; if the total length is finite and appropriate boundary conditions
are imposed at exterior vertices, then the spectrum is discrete, and questions about counting
functions, moments, etc. and their relation to the topology of the graph become interesting,
even in the absence of a potential energy. Below we shall prove several inequalities for the
spectra of finite quantum graphs, with the aid of the same trace identities we use to derive
Lieb-Thirring inequalities.

For Lieb-Thirring inequalities on quantum graphs the essential question is whether a form
of (3.3) holds with the sharp constant for d = 1, or whether the connectedness of the graph
can change the state of affairs. In [24] T. Ekholm, R. L. Frank and H. Kovař́ık proved Lieb-
Thirring inequalities for Schrödinger operators on regular metric trees for any γ ≥ 1/2, but
without sharp constants. We shall show below that trees enjoy a Lieb-Thirring inequality
with the sharp constant when γ ≥ 2, but that this circumstance depends on the topology of
the graph.

We begin with some simple explicit examples showing that neither the expected Lieb-
Thirring inequality nor the analogous universal inequalities for finite quantum graphs with-
out potential hold in complete generality. As it will be convenient to have a uniform way
of describing examples, we shall let xij denote the distance from vertex vi along the j-th
edge Γj emanating from vi. We note that every edge corresponds to two distinct coordinates
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xij = L− xi′j′ where L is the length of the edge, and that a homoclinic loop from a vertex
vi to itself is accounted as two edges.

For the operator − d2

dx2 on an interval, with vanishing Dirichlet boundary conditions, the
universal inequality of Payne-Pólya-Weinberger reduces to E2/E1 ≤ 5, and the Ashbaugh-
Benguria theorem becomes E2/E1 ≤ 4, both of which are trivial in one dimension. But
for which quantum graphs do these classic inequalities continue to be valid? We shall show
below that the classic PPW and related inequalities can be proved for the case of trees,
with Dirichlet boundary conditions imposed at all external ends of edges, using the method
of sum rules. The sum-rule proof does not work for every graph, however, so the question
naturally arises whether the topology makes a real difference, or whether a better method
of proof is required. The following examples show that the failure of the sum-rule proof in
the case of multiply connected graphs is not an artifact of the method but due to a true
topological effect.

We refer to graphs consisting of a circle attached to a single external edge as “simple bal-
loon graphs.” The external edge may either be infinite or of finite length with a vanishing
boundary condition at its exterior end. Consider first the graph Γ := Γ1∪Γ2, which consists
of a loop Γ1 to which a finite external interval Γ2 is attached at a vertex v1. Without loss
of generality we may fix the length of the loop as 2π, while the “string” will be of length L.

Γ1

Γ2
v1

Figure 6. “balloon graph”

Example 3.1. (Violation of the analogue of PPW.) Let us begin with the case of a balloon
graph with L < ∞, and assume that there is no potential. We set α = 1. Thus H locally
has the form − d2

dx2 with Dirichlet condition at the end of the string Γ2 and vertex condition
(3.2) at v1 connecting it to the loop.

For convenience we slightly simplify the coordinate system, letting xs := x12 be the
distance on Γs := Γ2 from the node, and xℓ := x11 − π on Γ1. Thus xℓ increases from −π at
v1 to x2 = +π when it joins it again. It is possible to analyze the eigenvalues of the balloon
graph quite explicitly: With a Dirichlet condition at xs = L, any eigenfunction must be of
the form a sin(k(L − xs)) on Γs. On Γ1 symmetry dictates that the eigenfunction must be
proportional to either sin kxℓ or cos kxℓ. There are thus two categories of eigenfunctions and
eigenvalues. Eigenfunctions of the form sin kxℓ contribute nothing to the vertex condition
(3.2) (because the outward derivatives at the node are equal in magnitude with opposite
signs), and therefore the derivative of a sin(k(L − xs)) must vanish at xs = 0. If k is a
positive integer, then k2 is an eigenvalue corresponding to an eigenfunction that vanishes on
Γs. Otherwise, the conditions on Γs cannot be achieved without violating the condition of
continuity with the eigenfunction on Γ1. To summarize: the eigenvalues of the first category
are the squares of positive integers.
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The second category of eigenfunctions match cos kxℓ on the loop to a sin(k(L − xs)) on
the interval. The boundary conditions and continuity lead after a standard calculation to
the transcendental equation

cot kL = 2 tan kπ. (3.4)

There are three interesting situations to consider. In the limit L→ 0, an asymptotic analysis
of (3.4) shows that the eigenvalues tend to {

(
n
2

)2}. In the limit L→ ∞, the lower eigenvalues
tend to {

(
n+ 1

2

)2 π2

L2 }, which are the eigenvalues of an interval of length L with Dirichlet
conditions at L and Neumann conditions at 0. The ratio of the first two eigenvalues in this
limit is approximately 9, which is already greater than the classically anticipated value of 5
or 4. The highest value of the ratio is, somewhat surprisingly, attained for an intermediate
value of L, viz., L = π, for which (3.4) can be easily solved, yielding k = ± 1

π arctan 1√
2

+ j

for a positive integer j. The corresponding fundamental ratio of the lowest two eigenvalues
becomes

E2

E1
=

(
π − arctan 1√

2

arctan 1√
2

)2

=̇16.8453.

(We spare the reader the direct calculation showing that the critical value of the ratio occurs
precisely at L = π, establishing this value as the maximum among all simple balloons.)

Example 3.2. (Showing that E2/E1 can be arbitrarily large.) A modification of Example
1.1 with more complex topology shows that no upper bound on the ratio of the first two
eigenvalues is possible for the graph analogue of the Dirichlet problem. We again set α = 1
and assume V = 0, and consider a “fancy balloon” graph consisting of an external edge, Γs,
the “string,” of length π joined at v1 to N edges Γm,m = 1 . . . N of length π, all of which
meet at a second vertex v2. We observe that the eigenfunctions may be chosen either even
or odd under pairwise permutation of the edges Γm. This is because if Pf represents the
linear transformation of a function f defined on the graph by permuting two of the variables
{x21, . . . , x2N}, and ϕj is an eigenfunction of the quantum graph with eigenvalue Ej , then
so are ϕj ±Pϕj . (In particular, continuity and (3.2) are preserved by these superpositions.)
Moreover, the fundamental eigenfunction is even under any permutation, because it is unique
and does not change sign.

By continuity and the conditions (3.2) at the vertices, as in Example 1.1, a straightforward

exercise shows that E1 =
(

1
π arctan( 1√

N
)
)2

, and that there are other even-parity eigenvalues(
j ± 1

π
arctan

(
1√
N

))2

for all positive integers j. Odd parity, when combined with continuity, forces the eigen-
functions to vanish at the nodes, and thus leads to eigenvalues of the form j2, for positive
integers j. The fundamental ratio E2/E1 for this example can be seen to beπ − arctan

(
1√
N

)
arctan

(
1√
N

)
2

,

which is roughly π2N for large N .

Remarks
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1. With no external edges, the lowest eigenvalue of a quantum graph is E1 = 0, so one
might intuitively argue that for a graph with a large and complex interior part the effect
of an exterior edge with a boundary condition is small. The theorems and examples given
below, however, point towards a more nuanced intuition.

2. Another instructive example is the “bunch-of-balloons” graph, with many noninter-
secting loops attached to the string at v1. We leave the details to the interested reader.

Example 3.3. (Violation of classical Lieb-Thirring.) Next consider a balloon graph with
L = ∞ and the Schrödinger operator H(l) := − d2

dx2 + V (x) on L2(Γ) with vertex conditions
(3.2). Let the potential V be given by

V (x) :=


V1(x) :=

−2a2

cosh2(ax)
, xℓ ∈ Γ1 = [−π, π]

V2(x) := 0 , xs ∈ Γ2 = [0,∞)

.

Then the eigenfunction corresponding to the eigenvalue −a2 is given by C cosh−1(axℓ) on
Γ1 and by e−axs on Γ2. The continuity condition gives C = cosh(aπ) and the condition (3.2)
at v1 leads to the equation

tanh(aπ) =
1
2
. (3.5)

Denoting the ratio

Q(γ, V ) :=
|E1|γ∫

Γ

|V (x)|γ+1/2 dx
,

we compute

Q(3/2, V ) =
a3

2
π∫
0

4a4

cosh4(axℓ)
dxℓ

=

8

aπ∫
0

1
cosh4(y)

dy

−1

=
(

8
3
tanh(aπ)(2 + sech2(aπ))

)−1

.

Because of (3.5), sech2(aπ) = 1 − tanh2(aπ) = 3
4 , and therefore

Q(3/2, V ) =
3
11

>
3
16

= Lcl3/2,1. (3.6)

Note that the ratio Q(3/2, V ) is independent of the length of the loop, as expected because
any length L can be achieved by a change of scale.
The ratio Q(γ, V ) can also be calculated explicitly for the case γ = 2. In this case

Q(2, V ) =
[
27/2

(
3
4
arctan(tanh(aπ/2)) +

3
16

sech(aπ) +
1
8
sech3(aπ)

)]−1

=̇ 0.2009 > Lcl2,1 =
8

15π
=̇0.1697.

3.2. Lieb-Thirring inequalities for quantum graphs.

3.2.1. Classical Lieb-Thirring inequality for metric trees. Our point of departure is the fam-
ily of sum-rule identities from [49, 50]. Let H and G be abstract self-adjoint operators
satisfying certain mapping conditions. We suppose that H has nonempty discrete spectrum
lying below the continuum, {Ej : Hϕj = Ejϕj}. In the situations of interest in this article
the spectrum will either be entirely discrete, in which case we focus on spectral subsets of the
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form J := {Ej , j = 1 . . . k}, or else, when there is a continuum, it will lie on the positive real
axis and we shall take J as the negative part of the spectrum. Let PA denote the spectral
projector associated with H and a Borel set A.

Then, given a pair of self-adjoint operators H and G with domains D(H) and D(G), such
that G(J ) ⊂ D(H) ⊂ D(G), where J is the subspace spanned by the eigenfunctions ϕj
corresponding to the eigenvalues Ej , it is shown in [49,50] that:∑

Ej∈J
(z − Ej)2 ⟨[G, [H,G]]ϕj , ϕj⟩ − 2(z − Ej) ⟨[H,G]ϕj , [H,G]ϕj⟩

= 2
∑
Ej∈J

∫
κ∈Jc

(z − Ej)(z − κ)(κ− Ej) dG2
jκ, (3.7)

where dG2
jκ := | ⟨Gϕj , dPκGϕj⟩ | corresponds to the matrix elements of the operator G with

respect to the spectral projections onto J and Jc. Because of our choice of J ,∑
Ej∈J

(z − Ej)2 ⟨[G, [H,G]]ϕj , ϕj⟩ − 2(z − Ej) ⟨[H,G]ϕj , [H,G]ϕj⟩ ≤ 0. (3.8)

In this section H is the Schrödinger operator on the graph Γ, namely

H(α) = −α d2

dx2
+ V (x) in L2(Γ), α > 0,

with the usual conditions (3.2) at each vertex vi. In particular, if any leaves (i.e. edges with
one free end) are of finite length, vanishing Dirichlet boundary conditions are imposed at their
ends. Without loss of generality we may assume that V ∈ C∞

0 for the operator H(α). Under
this assumption, for any α > 0, H(α) has at most a finite number of negative eigenvalues. We
denote negative eigenvalues ofH(α) by Ej(α) corresponding to the normalized eigenfunctions
ϕj .

We shall be able to derive inequalities of the standard one-dimensional type when it is
possible to choose G to be multiplication by the arclength along some distinguished subsets
of the graph. This depends on the following:

Lemma 3.4. Suppose that there exists a continuous, piecewise-linear function G on the
graph Γ, such that at each vertex vk ∑

j

∂G

∂xkj
(0+) = 0. (3.9)

Suppose that Γ = ∪mΓm with (G′)2 = am on Γm. If the spectrum has nonempty essential
spectrum, assume that z ≤ inf σess(H). Then∑

j,m

(z − Ej)2+am∥χΓmϕj∥2 − 4α(z − Ej)+am∥χΓmϕ
′
j∥2 ≤ 0. (3.10)

We observe that χΓm = 1 ⇔ am ̸= 0.

Proof. The formula (3.10) is a direct application of (3.8), when we note that locally, [H,G] =
−2G′ d

dxkj
−G′′ and [G, [H,G]] = 2(G′)2. (A factor of 2α has been divided out.) The reason
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for the condition (3.9) is that Gϕj must be in the domain of definition of H, which requires
that at each vertex,

0 =
∑
j

∂Gϕj
∂xkj

(0+) = G
∑
j

∂ϕj
∂xkj

(0+) + ϕj
∑
j

∂G

∂xkj
(0+) = ϕj

∑
j

∂G

∂xkj
(0+).

�

If we are so fortunate that (G′)2 is the same constant on every edge, then (3.10) reduces
to the quadratic inequality ∑

j

(z − Ej)2+ − 4α(z − Ej)+∥ϕ′j∥2 ≤ 0, (3.11)

familiar from [47–50, 90], where it was shown that it implies universal spectral bounds for
Laplacians and Lieb-Thirring inequalities for Schrödinger operators in routine ways. Equa-
tion (3.11) can be considered as a Yang-type inequality, after [99].

Stubbe’s monotonicity argument. In [90] Stubbe showed that some of the classical
sharp Lieb-Thirring inequalities follow from the quadratic inequality (3.11). Here we apply
the same argument to quantum graphs: For any α > 0, the functions Ej(α) are non-positive,
continuous and increasing. Ej(α) is continuously differentiable except at countably many
values where Ej(α) fails to be isolated or enters the continuum. By the Feynman-Hellman
theorem,

d

dα
Ej(α) =

⟨
ϕj ,−ϕ′′j

⟩
= ∥ϕ′j∥2.

Setting z = 0, (3.11) reads

α
∑

Ej(α)<0

(−Ej(α))2 + 2α2 d

dα

∑
Ej(α)<0

(−Ej(α))2 ≤ 0.

For any α ∈]αN+1, αN [ the number of eigenvalues is constant, and therefore

d

dα

α1/2
∑

Ej(α)<0

(−Ej(α))2

 ≤ 0.

This means that α1/2
∑

Ej(α)<0(−Ej(α))2 is monotone decreasing in α. Hence, by Weyl’s
asymptotics (see [10,95]),

α1/2
∑

Ej(α)<0

(−Ej(α))2 ≤ lim
α→0+

α1/2
∑

Ej(α)<0

(−Ej(α))2 = Lcl2,1

∫
Γ

(V−(x))2+1/2 dx.

Remark 3.5. Strictly speaking the Feynman-Hellman theorem only holds for nondegenerate
eigenvalues. In the case of degenerate eigenvalues one has to take the right basis in the
corresponding degeneracy space and to change the numbering if necessary, see e.g. [92].

The balloon counterexamples given above might lead one to think that the existence of
cycles poses a barrier for a quantum graph to have an inequality of the form (3.11). Consider,
however the following example.
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Example 3.6. (Hash graphs.) Let Γ be a planar graph consisting of (or metrically iso-
morphic to) the union of a closed family of vertical lines and line segments Fv and a closed
family of horizontal lines and line segments Fh. We assume that for some δ > 0 the distance
between any two lines or line segments in Fv is at least δ, and that the same is true of Fh.
(The assumption on the spacing of the lines allows an unproblematic definition of the vertex
conditions (3.2).) We impose Dirichlet boundary conditions at any ends of finite line seg-
ments. We also suppose a “crossing condition,” that there are no vertices touching exactly
three edges. (I.e., no line segment from Fv has an end point in Fh and vice versa.)
Regarding the graph as a subset of the xy-plane, we let G(x, y) = x + y. It is immediate
from the crossing condition that G satisfies (3.9). Furthermore, the derivative of G along
every edge is 1, and therefore the quadratic inequality (3.11) holds.

A quadratic inequality (3.11) can arise in a different way, if there is a family of piecewise
affine functions Gℓ each with a range of values aℓm, but such that

∑
ℓ aℓm = 1 (or any other

fixed positive constant). This occurs in our next example. Even when this is not possible,
if we can arrange that 0 < amin ≤

∑
ℓ aℓm ≤ amax, then the resulting weaker quadratic

inequality ∑
j

(z −Ej)2+ − 4α
amax

amin
(z − Ej)+∥ϕ′j∥2 ≤ 0, (3.12)

will still lead to universal spectral bounds that may be useful. We speculate about this
circumstance below.

Example 3.7. (Y -graph) As the next example we consider a simple graph, namely the
Y -graph, which is a star-shaped graph with three positive halfaxes Γi, i = 1, 2, 3, joined at
a single vertex v1. If we set

G1(x) :=


g1 := 0 , x11 ∈ Γ1

g2 := −x12 , x12 ∈ Γ2

g3 := x13 , x13 ∈ Γ3

,

then obviously G(J ) ⊂ D(HΓ(α)) holds, and with Lemma 3.4 we get∑
j

(z − Ej)2+
(
∥χΓ2ϕj∥2 + ∥χΓ3ϕj∥2

)
− 4α(z − Ej)+

(
∥χΓ2ϕ

′
j∥2 + ∥χΓ3ϕ

′
j∥2
)
≤ 0. (3.13)

As Γ1 doesn’t contribute to this inequality, we cyclically permute the zero part of G, i.e.
we next choose G2(x), such that g2 = 0, g1 = x11 and g3 = −x13, and finally G3(x), such
that g3 = 0, g1 = x11 and g2 = −x12. These give us two further inequalities analogous to
(3.13). Summing all three inequalities, and noting that on every edge,

∑3
ℓ=1 aℓm = 2, we

finally obtain ∑
j

2(z − Ej)2+ − 8α(z − Ej)+∥ϕ′j∥2 ≤ 0, (3.14)

which when divided by 2 yields the quadratic inequality (3.11).

We next extend the averaging argument to prove (3.11) for arbitrary metric trees. A
metric tree Γ consists of a set of vertices, a set of leaves and a set of edges, i.e., segments of
the real axis, which connect the vertices, such that there is exactly one path connecting any
two vertices. It is common in graph theory to distinguish between edges and leaves; a leaf is
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joined to a vertex at only one of its endpoints, ie. there is a free end, at which we shall set
Dirichlet boundary conditions. (When the distinction is not material we shall refer to both
edges and leaves as edges. It is also common to regard one free end as the distinguished
“root” r of the tree, but for our purposes all free ends of the graph have the same status.)
We denote the vertices by vi, i = 1, . . . , n. The edges including leaves will be denoted by e.
We shall explicitly write lj for leaves when the distinction matters.

Theorem 3.8. For any tree graph with a finite number of vertices and edges, the mapping

α 7→ α1/2
∑

Ej(α)<0

(−Ej(α))2

is nonincreasing for all α > 0. Consequently

α1/2
∑

Ej(α)<0

(−Ej(α))2 ≤ Lcl2,1

∫
Γ

(V−(x))2+1/2 dx

for all α > 0.

Remark 3.9. By the monotonicity principle of Aizenman and Lieb (see [1]), Theorem 3.8
is also true with the sharp constant for higher moments of eigenvalues. Alternatively, the
extension to higher values of γ can be obtained directly from the trace inequality of [51]
for power functions with γ > 2. Furthermore, Theorem 3.8 can be extended by a density
argument to potentials V ∈ Lγ+1/2(Γ).

To prepare the proof of Theorem 3.8, we first formulate some auxiliary results.

Lemma 3.10. For all n ∈ N,

[n−1
2 ]∑

k=0

(
n− 1
2k

)
=

[n
2 ]−1∑
k=0

(
n− 1
2k + 1

)
. (3.15)

Proof. This is a simple computation. �

Definition 3.11. Let E be the set of all edges e ⊂ Γ. We call the mapping C : E → {0, 1} a
coloring and say that C is an admissible coloring if at each vertex v ∈ Γ the number

#{e : e emanates from v : C(e) = 1}

is even. We let A(Γ) denote the set of all admissible colorings on Γ.

Theorem 3.12. Let Γn be a metric tree with n vertices. For an edge e ⊂ Γn, we denote by

a(e, n) := #{C(Γn) ∈ A : C(e) = 1}

the number of all admissible mappings C ∈ A(Γn), such that C(e) = 1 for e ⊂ Γn. Then

a(e, n) is independent of e ⊂ Γn. (3.16)

Proof. We shall prove (3.16) by induction over the number of vertices of Γ. The case with
one vertex v1 is trivial because of the symmetry of the graph. Given a metric tree Γn with n
vertices, we can decompose it as follows. Γn consists of a metric tree Γn−1 with n−1 vertices
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to which m− 1 leaves lj , j = 2, . . . ,m, are attached to the free end of a leaf l1 ⊂ Γn−1. We
call the vertex at which the leaves lj , j = 1, . . . ,m, are joined vn. Hence,

Γn := Γn−1 ∪ vn ∪
m∪
j=2

lj .

By the induction hypothesis,

a(e, n− 1) := #{C ∈ A(Γn−1) : C(e) = 1} is independent of e ⊂ Γn−1. (3.17)

Obviously for every edge or leaf e ̸= l1 in Γn−1, we have

a(e, n−1) = #{C ∈ A(Γn−1) : C(e) = 1∧C(l1) = 1}+#{C ∈ A(Γn−1) : C(e) = 1∧C(l1) = 0}.
(3.18)

Now, we have to show that a(e, n) is independent of e ⊂ Γn. Note first that for each fixed
leaf lj of the subgraph Γ∗ = vn ∪

∪m
j=1 lj , we have

µ1 := #{C ∈ A(Γ∗) : C(lj) = 1, lj ∈ Γ∗} =
[m

2 ]−1∑
k=0

(
m− 1
2k + 1

)
(3.19)

and

µ0 := #{C ∈ A(Γ∗) : C(lj) = 0, lj ∈ Γ∗} =
[m−1

2 ]∑
k=0

(
m− 1

2k

)
. (3.20)

Hence, for arbitrary neighboring edges e′, e′′ ⊂ Γn−1 the following equality holds,

a(e′, n) = µ1#{C ∈ A(Γn−1) : C(e′) = 1 ∧ C(l1) = 1}
+ µ0#{C ∈ A(Γn−1) : C(e′) = 1 ∧ C(l1) = 0}, (3.21)

and respectively

a(e′′, n) = µ1#{C ∈ A(Γn−1) : C(e′′) = 1 ∧ C(l1) = 1}
+ µ0#{C ∈ A(Γn−1) : C(e′′) = 1 ∧ C(l1) = 0}. (3.22)

By Lemma 3.10, µ := µ0 = µ1. Therefore, with (3.18) the equalities (3.21) and (3.22) read

a(e′, n) = µa(e′, n− 1),

a(e′′, n) = µa(e′′, n− 1).

Furthermore, by the induction hypothesis,

a(e′, n− 1) = a(e′′, n− 1),

from which it immediately follows that

a(e′, n) = µa(e′, n− 1) = µa(e′′, n− 1) = a(e′′, n).

This proves Theorem 3.12. �

Proof of Theorem 3.8. In order to apply Stubbe’s monotonicity argument [90], we need
to establish inequality (3.11) for metric trees. To do this, we proceed as for the example
of the Y -graph. Let J denote the subspace spanned by the eigenfunctions ϕj on L2(Γ)
corresponding to the eigenvalues Ej . Note first that there exist self-adjoint operators G,
which are given by piecewise affine functions gi on the edges (or leaves) of Γ, such that
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G(J ) ⊂ D(H(α)) ⊂ D(G). Edges (or leaves) on which constant functions gi are given,
do not contribute to the sum rule. Therefore we average over a family of operators G,
such that every edge e (or leaf) of the tree appears equally often in association with an
affine function having G′ = ±1 on e. We let G denote the set of continuous operators
G(x) = {gi(x) affine, x ∈ ei (or li)}, which satisfy (3.2) at the vertices v of Γ. Indeed it
is not necessary to average over all the operators G ∈ G, because it makes no difference in
Lemma 3.4, for instance, whether g′i = 1 or g′i = −1. Therefore we define an equivalence
relation ∼G on G as follows: Let G̃ = {g̃i(x) affine, x ∈ ei, (or li)} be another operator in
G. We say that G ∼ G̃ ⇔ ∀i ∈ {1, . . . , n} : |g′i(x)| = |g̃′i(x)|. We define G∗ := G/ ∼. Then
we can consider the isomorphism

I : A(Γ) → G∗, (3.23)

where for each C ∈ A(Γ) we choose an affine function GC ∈ G∗ on Γ, such that |G′
C(e)| = C(e)

for every e ⊂ Γ . By Theorem 3.12, we know that #{C ∈ A(Γ) : C(e) = 1} is independent of e ⊂
Γ. This means that summing up all inequalities corresponding to (3.10), which we get from
each GC ∈ G∗, leads to ∑

j

(z − Ej)2+p− 4α(z − Ej)+p∥ϕ′j∥2 ≤ 0, (3.24)

where p :=
∑

ℓ aℓm = #{C ∈ A(Γ) : C(e) = 1} and we have used the normalization
∥ϕj∥ = 1. Having the anologue of inequality (3.11) for metric trees, we can reformulate the
monotonicity argument for our case. This proves Theorem 3.8. 2
Remark 3.13. The proof applies equally to metric trees with leaves of infinite lengths.

3.2.2. Modified Lieb-Thirring inequalities for one-loop graphs. In this section we consider
the graph Γ consisting of a circle to which two leaves are attached. It is not hard to see
that the construction leading to Lieb-Thirring inequalities with the sharp classical constant
fails for one-loop graphs, because no family of auxiliary functions Gℓ exists with the side
condition that

∑
ℓ aℓm = 1 throughout Γ. Unlike the case of the balloon graph, it is possible

to replace the classical inequality with a weakened version (3.12) as mentioned above. There
is, however another option, based on commutators with exponential functions, following an
idea of [51]: As usual, we define the one-parameter familiy of Schrödinger operators

H(α) = −α d2

dx2
+ V (x), α > 0,

in L2(Γ) with the usual conditions (3.2) at each vertex vi of Γ. The leaves are denoted by
Γ1 := [0,∞) and Γ2 := [0,∞), while we write Γ3 and Γ4 for the semicircles with lengths L.
Let ϕj be the eigenfunctions of H(α) corresponding to the eigenvalues Ej(α).

Theorem 3.14. Let q := 2π/L. For all α > 0 the mapping

α 7→ α1/2
∑

Ej(α)<0

(
z − 3

16
αq2 − Ej

)2

+

(3.25)

is nonincreasing. Furthermore, for all z ∈ R and all α > 0 the following sharp Lieb-Thirring
inequality holds:

R2(z, α) ≤ α−1/2Lcl2,1

∫
Γ

(
V (x) −

(
z +

3
16
q2α

))2+1/2

−
dx, (3.26)
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where
R2(z, α) :=

∑
Ej(α)<z

(z − Ej(α))2+ .

Remark 3.15. Once again, Theorem 3.14 can be extended to potentials V ∈ Lγ+1/2(Γ) and
is true for all γ ≥ 2, either by the monotonicity principle of Aizenman and Lieb [1] or by
the trace formula of [51] for γ ≥ 2.

For the proof of Theorem 3.14, we make use of a theorem of Harrell and Stubbe:

Theorem 3.16 ( [51, Theorem 2.1]). Let H be a self-adjoint operator on H, with a nonempty
set J of finitely degenerate eigenvalues lying below the rest of the spectrum Jc and {ϕj} an
orthonormal set of eigenfunctions of H. Let G be a linear operator with domain DG and
adjoint G∗ defined on DG∗ such that G(DH) ⊆ DH ⊆ DG and G∗(DH) ⊆ DH ⊆ DG∗,
respectively. Then

1
2

∑
Ej∈J

(z − Ej)2
(
⟨[G∗, [H,G]]ϕj , ϕj⟩ + ⟨[G, [H,G∗]]ϕj , ϕj⟩

)
≤
∑
Ej∈J

(z − Ej)
(
∥[H,G]ϕj∥2 + ∥[H,G∗]ϕj∥2

)
.

(3.27)

Remark 3.17. Strictly speaking, in [51] it was assumed that the spectrum was purely discrete.
However, the extension to the case where continuous spectrum is allowed in Jc follows exactly
as in Theorem 2.1 of [50].

Proof of Theorem 3.14. In this case it is not possible to get a quadratic inequality from
Lemma 3.4 without worsening the constants. This follows from the fact that the conditions
ϕ3(0) = ϕ4(0) and ϕ3(L) = ϕ4(L) imply that the piecewise linear function G has to be
defined equally on Γ3 and Γ4. Consequently, the condition (3.2) can be satisfied only with
different values of am as in (3.12), namely a1 = a2 = 4a3 = 4a4. Our proof of Theorem
3.14 consists of three steps. First we apply Lemma 3.4, after which we apply Theorem 3.16.
Finally we combine both results and apply the line of argument given in [51].
First step: Using Lemma 3.4 with the choice,

G(x) :=



g1 := −2x11 , x11 ∈ Γ1

g2 := 2x22 + L , x22 ∈ Γ2

g3 := x13 , x13 ∈ Γ3

g4 := x14 , x14 ∈ Γ4

,

we obtain

4

 ∑
Ej(α)<0

(z − Ej(α))2+p12(j) − 4α
∑

Ej(α)<0

(z − Ej(α))+p′12(j)


+

∑
Ej(α)<0

(z − Ej(α))2+p34(j) − 4α
∑

Ej(α)<0

(z − Ej(α))+p′34(j) ≤ 0, (3.28)
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where pik(j) := ∥χΓiϕj∥2 + ∥χΓk
ϕj∥2 and p′ik(j) := ∥χΓiϕ

′
j∥2 + ∥χΓk

ϕ′j∥2.
Second step: Next, in Theorem 3.16 we set

G(x) :=



g1 := 1 , x11 ∈ Γ1

g2 := 1 , x22 ∈ Γ2

g3 := e−i2πx13/L , x13 ∈ Γ3

g4 := ei2πx14/L , x14 ∈ Γ4

.

It is easy to see that Gϕj ∈ D(Hα). With q := 2π/L, the first commutators work out to be

[Hj , gj ] = 0, j = 1, 2,

[H3, g3] = e−iqx13α
(
q2 + 2iqd/dx

)
, [H4, g4] = eiqx14α

(
q2 − 2iqd/dx

)
;

whereas for the second commutators,

[g∗j , [Hj , gj ]] = [gj , [Hj , g
∗
j ]] = 0, j = 1, 2, (3.29)

[g∗j , [Hj , gj ]] = [gj , [Hj , g
∗
j ]] = 2αq2, j = 3, 4.

From inequality (3.27), we get∑
Ej(α)∈J

(z −Ej(α))2p34(j) ≤ α
∑

Ej(α)∈J

(z − Ej(α))
(
q2p34(j) + 4p′34(j)

)
. (3.30)

Third step: Adding (3.28) and (3.30) we finally obtain

2
(
R2(z, α) + 2α

d

dα
R2(z, α)

)
≤ αq2

3
2

∑
Ej∈J

(z −Ej)p34(j), (3.31)

or

2R2(z, α) + 4α
d

dα
R2(z, α) − αq2

3
2
R1 ≤ 0, (3.32)

which is equivalent to
∂

∂α

(
α1/2R2(z, α)

)
≤ 3q2

8
α1/2R1(z, α). (3.33)

Letting U(z, α) := α1/2R2(z, α), the inequality has the form

∂U

∂α
≤ 3

16
q2
∂U

∂z
. (3.34)

Since the expression in (3.26) can be written as U(z− 3
16q

2α, α), an application of the chain
rule shows that the monotonicity claimed in (3.26) follows from (3.34). (We note that (3.34)
can be solved by changing to characteristic variables ξ := α− 16z

3q2
, η := α+ 16z

3q2
, in terms of

which
∂U

∂ξ
≤ 0. (3.35)

I.e., U decreases as ξ increases while η is fixed.) By shifting the variable in (3.35), we also
obtain

U(z, α) ≤ U

(
z +

3
16
q2(α− αs), αs

)
(3.36)
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for α ≥ αs. By Weyl’s asymptotics, for all γ ≥ 0,

lim
α→0+

αd/2
∑

Ej(α)<z

(z − Ej(α))γ = Lclγ,d

∫
Γ

(V (x) − z)γ+d/2− dx, (3.37)

see [10,95]. Hence, as αs → 0, the right side of (3.36) tends to

Lcl2,1

∫
Γ

(
V (x) −

(
z +

3
16
q2α

))2+1/2

−
dx,

so the conclusion of Theorem 3.14 follows. 2

Remark 3.18. Theorem 3.14 can be generalized to one-loop graphs to which 2n, n ∈ N
equidistant semiaxis are attached.

To summarize, in this section we have seen that for some classes of quantum graphs a
quadratic inequality (3.11) can be proved with the classical constants, and that for some
other classes of graphs similar statements can be proved at the price of worse constants as
in (3.12), or of a shift in the zero-point energy as in (3.26).

It is reasonable to ask whether one can look at the connectness of a graph and say whether
a weak Yang-type inequality (3.12) can be proved. As we have seen, this is the case if there
exists a family of continuous functions Gℓ on the graph such that

• On each edge, all the derivatives {G′
ℓ} are constant.

• At each vertex vk, each function Gℓ satisfies∑
j

dGℓ
dxkj

(0+) = 0.

• For each edge e there exists at least one function Gℓ with G′
ℓ ̸= 0.

Interestingly, the question of the existence of such a family of functions can be rephrased
in terms of the theory of electrical resistive circuits, a subject dating from the mid nineteenth
century [60]. We first note that for a suitable family of functions to exist, there must be
at least two leaves, which can be regarded as external leads of an electric circuit, bearing
some resistance. (In the finite case let the resistance be equivalent to the length of the leaf,
and in the infinite case let it be some fixed finite value, at least as large as the length of
any finite leaf.) Each internal edge is regarded as a wire bearing a resistance equal to the
length of the edge. If we regard the value of G′

ℓ as a current, then Kirchhoff’s condition at
the vertex of an electric circuit is exactly the condition (3.2) that

∑
j
dGℓ
dxkj

(0+) = 0, and the
condition that the electric potential Gℓ must be uniquely defined at all vertices is equivalent
to global continuity of Gℓ. It has been known since Weyl [96] that the currents and potentials
in an electric circuit are uniquely determined by the voltages applied at the leads. There
are, however, circuits such that no matter what voltages are applied to the external leads,
there will be an internal wire where no current flows; the most well-known of these is the
Wheatstone bridge. (See, for instance, the Wikipedia article on the Wheatstone bridge.)

Let us call a metric graph a generalized Wheatstone bridge when the corresponding circuit
has exactly two external leads and a configuration for which no current will flow in at least
one of its wires. Then we conjecture that there are only two impediments to the existence of
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a suitable family of functions Gℓ, and therefore to a weakened quadratic inequality (3.12),
namely: Unless a quantum graph contains either

• a) a subgraph that can be disconnected from all leaves by the removal of one point
(such as a balloon graph or a graph shaped like the letter α); or

• b) a subgraph that when disconnected from the graph by cutting two edges is a
generalized Wheatstone bridge,

then an inequality of the form (3.12) holds. Otherwise the best that can be obtained may
be a modified quadratic inequality with a variable shift, as in Theorem 3.14.

Figure 7. “Wheatstone bridge”

3.3. Universal bounds for finite quantum graphs. In this section we derive differential
inequalities for Riesz means of eigenvalues of the Dirichlet Laplacian on bounded metric trees
Γ with at least one leaf (free edge). From these inequalities we derive Weyl-type bounds on
the averages of the eigenvalues of the Dirichlet Laplacian

HD :=
(
− d2

dx2

)
D

in L2(Γ),

with the conditions (3.2) at each vertex vi. At the ends of the leaves, vanishing Dirichlet
boundary conditions are imposed. We recall that with the methods of [47, 49] these are
consequences of the same quadratic inequality (3.11) as was used above to prove Lieb-
Thirring inequalities. When the total length of the graph is finite, the operator HD on
D(HD) has a positive discrete spectrum {Ej}∞j=1, allowing us to define the Riesz mean of
order ρ,

Rρ(z) :=
∑
j

(z − Ej)
ρ
+ (3.38)

for ρ > 0 and real z.

Theorem 3.19. Let Γ be a metric tree of finite length and with finitely many edges and
vertices, and let HD be the Dirichlet Laplacian in L2(Γ) with domain D(HD). Then for
z > 0,

R1(z) ≥
5
4z
R2(z); (3.39)

R′
2(z) ≥

5
2z
R2(z); (3.40)

and consequently
R2(z)
z5/2

is a nondecreasing function of z.
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Proof. The claims are vacuous for z ≤ E1, so we henceforth assume z > E1. The line of
reasoning of the proof of Theorem 3.8 applies just as well to the operator HD on D(HD),
yielding ∑

j

(z − Ej)2+ − 4(z − Ej)+∥ϕ′j∥2 ≤ 0. (3.41)

Since V ≡ 0, ∥ϕ′j∥2 = Ej . Observing that∑
j

(z − Ej)+Ej = zR1(z) −R2(z),

we get from (3.41)

5R2(z) − 4zR1(z) ≤ 0.

This proves (3.39). Inequality (3.40) follows from (3.39), as R′
2(z) = 2R1(z). �

Since by the Theorem 3.19, R2(z)z−5/2 is a nondecreasing function, we obtain a lower
bound of the form R2(z) ≥ Cz5/2 for all z ≥ z0 in terms of R2(z0). Upper bounds can
be obtained from the limiting behavior of R2(z) as z → ∞, as given by the Weyl law. In
the following, we want to follow [47] to derive Weyl-type bounds on the averages of the
eigenvalues of HD in L2(Γ).

Corollary 3.20. For z ≥ 5E1,

16E−1/2
1

(z
5

)5/2
≤ R2(z) ≤ Lcl2,1|Γ|z5/2,

where Lcl2,1 :=
Γ(3)

(4π)1/2Γ(7/2)
, and |Γ| is the total length of the tree.

Proof. By Theorem 3.19, for all z ≥ z0,

R2(z)
z5/2

≥ R2(z0)

z
5/2
0

. (3.42)

As R2(z0) ≥ (z0 − E1)2+ for any z0 > E1, it follows from (3.42) that

R2(z) ≥ (z0 −E1)2+

(
z

z0

)5/2

.

The coefficient
(z0 − E1)2+

z
5/2
0

is maximized when z0 = 5E1. Thus we get

16E−1/2
1

(z
5

)5/2
≤ R2(z).

For metric trees with total length |Γ|, the Weyl law states that

lim
n→∞

√
En
n

=
π

|Γ|
, (3.43)

(see [67]). It follows that
R2(z)
z5/2

→ Lcl2,1|Γ|,
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as z → ∞. Since
R2(z)
z5/2

is nondecreasing, we get

R2(z)
z5/2

≤ Lcl2,1|Γ|, ∀z <∞.

�

In summary, we get from Theorem 3.19 and Corollary 3.20 the following two-sided estimate:

4E−1/2
1

(z
5

)3/2
≤ 5

4z
R2(z) ≤ R1(z). (3.44)

In order to obtain similar estimates, related to higher eigenvalues, we introduce the
notation

Ej :=
1
j

∑
ℓ≤j

Eℓ

for the means of eigenvalues Eℓ; similarly, the means of the squared eigenvalues are denoted

E2
j :=

1
j

∑
ℓ≤j

E2
ℓ .

For a given z, we let ind(z) be the greatest integer i such that Ei ≤ z. Then obviously,

R2(z) = ind(z)(z2 − 2zEind(z) + E2
ind(z)).

As for any integer j and all z ≥ Ej , ind(z) ≥ j, we get

R2(z) ≥ D(z, j) := j(z2 − 2zEj +E2
j ).

Using Theorem 3.19 for z ≥ zj ≥ Ej , it follows that

R2(z) ≥ D(zj , j)
(
z

zj

)5/2

. (3.45)

Furthermore, Ej
2 ≤ E2

j by the Cauchy-Schwarz inequality, and hence

D(z, j) = j
(
(z − Ej)2 + E2

j − Ej
2
)
≥ j(z − Ej)2. (3.46)

This establishes the following

Corollary 3.21. Suppose that z ≥ 5Ej. Then

R2(z) ≥
16jz5/2

25(5Ej)1/2
(3.47)

and, therefore,

R1(z) ≥
4jz3/2

5(5Ej)1/2
. (3.48)

Proof. Combining equations (3.45) and (3.46), we get

R2(z) ≥ j(zj − Ej)2
(
z

zj

)5/2

.

Inserting zj = 5Ej the first statement follows. (This choice of zj maximizes the constant
appearing in (3.47).) The second statement results from substituting the first statement into
(3.44). �
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The Legendre transform is an effective tool for converting bounds on Rρ(z) into bounds
on the spectrum, as has been realized previously, e.g., in [69]. Recall that if f(z) is a convex
function on R+ that is superlinear in z as z → +∞, its Legendre transform

L[f ](w) := sup
z
{wz − f(z)}

is likewise a superlinear convex function. Moreover, for each w, the supremum in this
formula is attained at some finite value of z. We also note that if f(z) ≥ g(z) for all z, then
L[g](w) ≤ L[f ](w) for all w. The Legendre transform of the two sides of inequality (3.48) is
a straightforward calculation (e.g., see [47]). The result is

(w − [w])E[w]+1 + [w]E[w] ≤
w3

j2
125
108

Ej , (3.49)

for certain values of w and j. In Corollary 3.21 it is supposed that z ≥ 5Ej . Let zmax be
the value for which L[f ](w) = wzmax − f(zmax), where f is the right side of (3.48). Then by
an elementary calculation,

w =
6j
5

(
zmax

5Ej

)1/2

.

It follows that inequality (3.49) is valid for w ≥ 6j/5. Meanwhile, for any w we can always
find an integer k such that on the left side of (3.49), k − 1 ≤ w < k. If k > 6j/5 and if we
let approach k from below, we obtain from (3.49)

Ek + (k − 1)Ek−1 ≤ k3

j2
125
108

Ej .

The left side of this equation is the sum of the eigenvalues E1 through Ek, so we get the
following:

Corollary 3.22. For k ≥ 6
5j, the means of the eigenvalues of the Dirichlet Laplacian on

an arbitrary metric tree with finitely many edges and vertices satisfy a universal Weyl-type
bound,

Ek

Ej
≤ 125

108

(
k

j

)2

. (3.50)

In [51] it was shown that a similar inequality with a different constant can be proved for
all k ≥ j in the context of the Dirichlet Laplacian on Euclidian domains. The very same
argument applies to quantum graphs with V = 0. With this assumption ∥ϕ′j∥2 = Ej , so
with α = 1 (3.11) can be rewritten as a quadratic inequality,

Pj(z) :=
j∑
ℓ=1

(z − Eℓ)(z − 5Eℓ) ≤ 0 (3.51)

for z ∈ [Ej , Ej+1] (cf. [51], eq. (4.6)). From (3.39) and (3.42) for z ≥ z0 ≥ Ej ,

R1(z) ≥
5
4z
R2(z) ≥

5
4
z3/2z

−5/2
0

j∑
ℓ=1

(z0 − Ej)2. (3.52)

The derivative of the right side of (3.52) with respect to z0, by a calculation, is a negative
quantity times Pj(z0), and therefore an optimal choice for the value of (3.52) is the root

z0 = 3Ej +
√
Dj ≤ 5Ej , (3.53)
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where Dj is the discriminant of Pj . The inequality in (3.53) results from the Cauchy-Schwarz
inequality as in [49,51]. Because Pj(z0) = 0,

0 =
j∑
ℓ=1

(z0 − Eℓ)(z0 − 5Eℓ) = 5
j∑
ℓ=1

(z0 − Eℓ)2 − 4z0
j∑
ℓ=1

(z0 − Eℓ),

so (3.52) reads

R1(z) ≥
(
z

z0

)3/2 j∑
ℓ=1

(z0 − Eℓ) =
(
z

z0

)3/2

j(z0 − Ej).

From the left side of (3.53), z0 − Ej ≥ 2
3z0, so

R1(z) ≥
(

2
3
jz

−1/2
0

)
z3/2. (3.54)

The Legendre transform of (3.54) is

kEk ≤
z0
3j2

k3, (3.55)

and a calculation of the maximizing z in the Legendre transform of the right side of (3.54)
shows that (3.55) is valid for all k > j. In particular, with the inequality on the right side
of (3.53), we have established the following:

Corollary 3.23. For k ≥ j, the means of the eigenvalues of HD in L2(Γ) satisfy

Ek

Ej
≤ 5

3

(
k

j

)2

. (3.56)

Remark 3.24. Relaxing the assumption to k ≥ j comes at the price of making the constant
on the right side larger. It would be possible to interpolate between (3.56) and (3.50) for
k ∈ [j, 6j/5] with a slightly better inequality.

Acknowledgments. The authors are grateful to several people for useful comments,
including Rupert L. Frank, Lotfi Hermi, Thomas Morley, Joachim Stubbe, and Timo Weidl,
and to Michael Music for calculations and insights generated by them. We also wish to
express our appreciation to the Mathematisches Forschungsinstitut Oberwolfach for hosting
a workshop in February, 2009, where this collaboration began, and to the Erwin Schrödinger
Institut for hospitality.





54

4. Two remarks on sum rules

4.1. A direct proof of the main inequality. In the previous sections we have seen that
inequality (3.8) is the starting point and key element for Stubbe’s monotonicity argument.
Remember that in the study of the discrete spectum of the Schrödinger operator this in-
equality follows from the sum rule (1.13). In this section we show that the main inequality
(3.8) can also be obtained by a direct computation.

Theorem 4.1. Let H and G be self-adjoint operators in the Hilbert space H. We denote
by DH and DG the domain of H and G respectively. Assume that G(DH) ⊆ DH ⊆ DG and
that H has below a number z only finitely many negative eigenvalues Ej < 0, corresponding
to the normalized eigenfunctions ϕj. Then, inequality (3.8) holds, that is,∑

Ej<0

(z − Ej)2 ⟨[G, [H,G]]ϕj , ϕj⟩ − 2(z − Ej) ⟨[H,G]ϕj , [H,G]ϕj⟩ ≤ 0. (4.1)

Proof. Without loss of generality, we may assume that z = 0. In what follows, we use the
notation H = H+ −H−, where H− and H+ denote respectively the negative part and the
positive part ofH. Thus, H−ϕj = −Ejϕj , where H− has finite rank and hence is a trace class
operator. We first note that [H,G]∗ = −[H,G] and therefore inequality (4.1) is equivalent
to the following inequality

Tr
(
H2

−[G, [H,G]]
)

+ 2 Tr(H−[H,G]2) ≤ 0. (4.2)

In what follows we compute the sum in the left-hand side of (4.2) with the help of spectral
theoretic rules and show that this sum is less or equal to zero. Working out the commutators,
we get

H2
−[G, [H,G]] + 2H−[H,G]2

= H2
−GHG−H2

−G
2H −H2

−HG
2 +H2

−GHG

+2
(
H−HGHG−H−HG

2H −H−GH
2G+H−GHGH

)
. (4.3)

Using the relation H−H = HH− = −H2
− and the cyclic property of the trace, the trace of

the right-hand side in equation (4.3) equals

Tr
(
2H2

−GHG−H2
−G

2H −H2
−HG

2
)

+ 2 Tr
(
−H2

−GHG+H2
−G

2H −H−GH
2G−H2

−GHG
)

= Tr(−2H2
−GHG+H2

−G
2H −H2

−HG
2 − 2H−GH

2G)

= Tr
(
−2H2

−GHG− 2H−GH
2G
)
. (4.4)

The last identity follows as both terms Tr(H2
−G

2H) and Tr(H2
−HG

2) are equal because
of the cyclic property of the trace. Now, we replace H by H+ − H−. Then in view of
H+H− = H−H+ = 0, (4.4) equals to

Tr
(
−2H2

−GH+G+ 2H2
−GH−G− 2H−GH

2
+G− 2H−GH

2
−G
)

= −2 Tr
(
H2

−GH+G+H−GH
2
+G
)
. (4.5)

Recall that for operators A,B,C the identity (ABC)∗ = (BC)∗A∗ = C∗B∗A∗ is true and
further A∗A > 0. Together with the self-adjointness of the operators H±,

√
H±, G, this

implies that (4.5) equals
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−2Tr
(
H−G

√
H+

√
H+GH− +H+G

√
H−
√
H−GH+

)
,

which is obviously non-positive.
�

4.2. Application of the monotonicity argument to operators with variable coeffi-
cients. Now, we apply the monotonicity argument to an operator with variable coefficients
ρ(x).

Consider the operator

H(α) = −α
(
d

dx
ρ(x)

d

dx

)
+ V (x), α > 0, (4.6)

in L2(I), where I ⊂ R is an open interval. We assume that ρ > 0 in the interior of I. For
simplicity we restrict our attention to real-valued functions V which are bounded and have
compact support in I. More precisely, H(α) is defined via the quadratic form∫

I

(
αρ(x)|ϕ′(x)|2 + V (x)|ϕ(x)|2

)
dx (4.7)

with form domain given by the closure of C∞
0 (I) with respect to

∫
I ρ(x)|ϕ

′(x)|2 dx. Under
the conditions below the operator H(α) has for any α > 0 at most a finite number of
negative eigenvalues. We denote negative eigenvalues of H(α) by Ej(α) corresponding to
the normalized eigenfunctions ϕj .

Theorem 4.2. Let ρ be a C2-function and ρ > 0 in the interior of I. Assume that ρ3/4(x)
is convex. Then the mapping

α 7→ α1/2
∑

Ej(α)<0

(−Ej(α))γ

is nonincreasing for all α > 0 and γ ≥ 2. Consequently

∑
Ej(α)<0

(−Ej(α))γ ≤
∫
R

∫
I

(ρ(x)|ξ|2 + V (x))γ−
dx dξ

2π
√
α

= α−1/2Lclγ,1

∫
I

V
γ+1/2
− (x)√
ρ(x)

dx

for all α > 0 and γ ≥ 2.

Remark 4.3. Theorem 4.2 is first proved for the case γ = 2. Then, by a modification of the
monotonicity principle of Aizenman and Lieb (see [1]), Theorem 4.2 is also true with the
sharp constant for higher moments of eigenvalues, see section 4.3.

For the proof of Theorem 4.2, we will use the following

Lemma 4.4. Let ρ(x) be a C2-function and ρ > 0 in the interior of I. Then the inequality

1
4
(ρ′(x))2 − ρ(x)ρ′′(x) ≤ 0

is equivalent to the convexity of the function ρ3/4(x).
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Proof. Let α be a positive number. Then the function ρα(x) is convex if and only if
(ρα(x))′′ ≥ 0 for all x ∈ R. As αρα−2(x) ≥ 0, we see immediately from

(ρα(x))′′ = αρα−2(x)
(
(α− 1)(ρ′(x))2 + ρ(x)ρ′′(x)

)
,

that the convexity of ρα(x) is equivalent to the inequality

(α− 1)(ρ′(x))2 + ρ(x)ρ′′(x) ≥ 0.

Lemma 4.4 follows by setting α = 3/4. �

Proof of Theorem 4.2. Let H(α) be the operator in (4.6) and G multiplication by a real-
valued function G. Then the commutators are given by

[H,G]ϕ = −α(ρ′(x)G′ϕ+ ρ(x)G′′ϕ+ 2ρ(x)G′ϕ′)

and
[G, [H,G]]ϕ = 2αρ(x)(G′)2.

In inequality (3.8) we choose G to be the multiplication operator

G(x) =
∫ x 1√

ρ(y)
dy.

Then,

G′ =
1√
ρ(x)

, G′′ = − ρ′(x)
2ρ3/2(x)

.

Hence, the first commutator works out to be

[H,G] = −α

(
1
2
ρ′(x)√
ρ(x)

+ 2
√
ρ(x)d/dx

)
;

whereas for the second commutator,

[G, [H,G]] = 2α.

Next, we compute for any ϕ ∈ C∞
0 ,

⟨[G, [H,G]]ϕj , ϕj⟩ = 2α∥ϕj∥2

and

⟨[H,G]ϕj , [H,G]ϕj⟩ = α2

(
∥1
2
ρ′(x)√
ρ(x)

ϕj∥2 + ∥2
√
ρ(x)ϕ′j∥2 + 2Re

∫
ρ′(x)ϕjϕ′j dx

)
.

We rewrite the last term in the right-hand side as

2Re
∫
ρ′(x)ϕjϕ′j dx =

∫
ρ′(x)(|ϕj |2)′ dx = −

∫
ρ′′(x)|ϕj |2 dx

and note that

∥1
2
ρ′(x)√
ρ(x)

ϕj∥2 −
∫
ρ′′(x)|ϕj |2 dx =

⟨
1
4(ρ′(x))2 − ρ(x)ρ′′(x)

ρ(x)
ϕj , ϕj

⟩
.

This leads to the relation

⟨[H,G]ϕj , [H,G]ϕj⟩ ≤ α2∥2
√
ρ(x)ϕ′j∥2 ⇔ 1

4
(ρ′(x))2 − ρ(x)ρ′′(x) ≤ 0,
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which by Lemma 4.4 is equivalent to the condition that ρ3/4(x) is a convex function. So, for
ρ3/4(x) convex, we have∑

Ej(α)<0

α |Ej(α)|2 − α2|Ej(α)|∥2
√
ρ(x)ϕ′j∥2

≤
∑

Ej(α)<0

α|Ej(α)|2 − α2|Ej(α)| ⟨[H,G]ϕj , [H,G]ϕj⟩ ≤ 0,

and therefore

α
∑

Ej(α)<0

|Ej(α)|2 − α2
∑

Ej(α)<0

4|Ej(α)|∥
√
ρ(x)ϕ′j∥2 ≤ 0. (4.8)

This inequality is the analog of the quadratic inequality (3.11) for Schrödinger operators and
allows us again to apply the monotonicity argument. Namely, by the Feynman-Hellmann
Theorem,

d

dα
Ej(α) = ∥

√
ρ(x)ϕ′j∥2,

such that inequality (4.8) is equivalent to

α
∑

Ej(α)<0

|Ej(α)|2 + 2α2 d

dα

∑
Ej(α)<0

|Ej(α)|2 ≤ 0,

or

d

dα

α1/2
∑

Ej(α)<0

|Ej(α)|2
 ≤ 0. (4.9)

It follows immediately from (4.9) and Weyl’s asymptotics that,

α1/2
∑

Ej(α)<0

|Ej(α)|2 ≤ lim
α→0+

α1/2
∑

Ej(α)<0

|Ej(α)|2

=
∫
R

∫
I

(ρ(x)|ξ|2 + V (x))2−
dx dξ

2π
= Lcl2,1

∫
I

V
5/2
− (x)√
ρ(x)

dx.

This proves Theorem 4.2. �

In the following theorem we show that the Lieb-Thirring inequality in Theorem 4.2 can
be extended to all moments γ ≥ 3/2 by a Liouville transformation. However, the proof
does not provide the monotonicity in α as in Theorem 4.2. Remarkably, we will see in what
follows that the proof of the following theorem requires the same convexity condition on the
function ρ(x).

Theorem 4.5. Let ρ be a C2-function and ρ > 0 in the interior of I. Assume that ρ3/4(x)
is convex. Then for all γ ≥ 3/2 and for all α > 0,

∑
Ej(α)<0

(−Ej(α))γ ≤ α−1/2Lclγ,1

∫
I

V
γ+1/2
− (x)√
ρ(x)

dx.
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Proof. We consider the quadratic form (4.7) which is associated with the operator (4.6).
Without loss of generality we set α = 1. We define the transformation ϕ(x) = φ(x)v(ψ(x))
and choose

φ(x) = ρ−1/4(x) and ψ(x) =
∫ x

c
ρ−1/2(y) dy, (4.10)

where c ∈ (a, b) is fixed and where a := inf I, b := sup I. Hence |φ(x)|2 = |ψ′(x)| =
(|φ(x)|2ρ(x))−1. Note that if ϕ satisfies Dirichlet boundary conditions at the ends of I, then v
satisfies Dirichlet boundary conditions at the ends of Ĩ :=

(
−
∫ c
a ρ

−1/2(y) dy,
∫ b
c ρ

−1/2(y) dy
)
.

First step: First, we show that if ρ3/4(x) is convex, then

h[ϕ] :=
∫
I

(
ρ(x)|ϕ′(x)|2 + V (x)|ϕ(x)|2

)
dx ≥

∫
Ĩ

(
|v′(t)|2 + Ṽ (t)|v(t)|2

)
dt =: h̃[v], (4.11)

where t = ψ(x) and V (x) = Ṽ
(∫ x

ρ−1/2(y) dy
)
.

To show (4.11), we compute∫
I
ρ(x)|ϕ′(x)|2 dx =

∫
I
ρ(x)

(
|φ(x)v′(ψ(x))ψ′(x)|2 + |φ′(x)v(ψ(x))|2

)
dx+ R, (4.12)

where

R = 2Re
∫
I
ρ(x)φ(x)v′(ψ(x))ψ′(x)φ′(x)v(ψ(x)) dx =

∫
I
ρ(x)φ(x)φ′(x)

d

dx
|v(ψ(x))|2 dx.

Integrating the last term by parts we get

R = −
∫
I
|v(ψ(x))|2

(
|φ′(x)|2ρ(x) + φ(x)(ρ(x)φ′(x))′

)
dx,

which in view of (4.12) implies that

h[ϕ] : =
∫
I
ρ(x)|ϕ′(x)|2 + V (x)|ϕ(x)|2 dx

=
∫
I
ρ(x)|φ(x)v′(ψ(x))ψ′(x)|2 + V (x)|φ(x)|2|v(ψ(x))|2 dx+ S, (4.13)

where S = −
∫
I |v(ψ(x))|2φ(x)(ρ(x)φ′(x))′ dx. With the choice (4.10) equation (4.13) is

equivalent to

h[ϕ] =
∫
I
|v′(ψ(x))|2|ψ′(x)| + V (x)|ψ′(x)||v(ψ(x))|2 dx+ S. (4.14)

Under the assumption that the function ρ3/4 is convex, S is non-negative by Lemma 4.4.
Indeed, we can rewrite S as

S =
1
4

∫
I
|v(ψ(x))|2φ(x)(ρ(x))−5/4

(
−1

4
(ρ′(x))2 + ρ(x)ρ′′(x)

)
dx

=
1
3

∫
I
|v(ψ(x))|2φ(x)

(
ρ3/4(x)

)′′
dx. (4.15)

Hence, if ρ3/4 is convex then (4.11) follows from (4.14).
Second step: We note that, with the choice (4.10) the transformation ϕ(x) = φ(x)v(ψ(x)) is
unitary. Indeed∫

I
|ϕ(x)|2 dx =

∫
I
|φ(x)|2|v(ψ(x))|2 dx =

∫
I
|ψ′(x)||v(ψ(x))|2 dx. (4.16)
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Substituting t = ψ(x) on the right-hand side of (4.16) we get∫
I
|ϕ(x)|2 dx =

∫
Ĩ
|v(t)|2 dt.

Further, we substitute t = ψ(x) in (4.15) and denote S̃ =
∫
Ĩ |v(t)|

2Ũρ(t) dt with Ũρ(ψ(x)) =
(1/3)ρ1/4(x)

(
ρ3/4(x)

)′′
. Then, the operator H given in (4.6) is unitarily equivalent to the

operator H̃ + Ũρ, where H̃ = − d2

dt2
+ Ṽ is associated with the closed quadratic form h̃[v].

Hence, we have for the negative eigenvalues

Ej(H) = Ej(H̃ + Ũρ).

As Ũρ ≥ 0 under the condition that ρ3/4(x) is convex, it follows that |Ej(H)| ≤ |Ej(H̃)| for
all j, and hence for all γ > 0, ∑

j

|Ej(H)|γ ≤
∑
j

|Ej(H̃)|γ .

Now, we can use the well-known Lieb-Thirring inequality for the operator H̃ = − d2

dt2
+ Ṽ in

L2(Ĩ) and get for all γ ≥ 3/2,∑
j

|Ej(H)|γ ≤
∑
j

|Ej(H̃)|γ ≤ Lclγ,1

∫
Ĩ
(Ṽ−(t))γ+1/2 dt.

Noting that
∫
Ĩ(Ṽ−(t))γ+1/2 dt =

∫
I(V−(x))γ+1/2ρ−1/2(x) dx, the assertion of the theorem

follows .
�

4.3. The monotonicity principle. We recall that Theorem 2.1 and Theorem 4.2 were first
proved for the case γ = 2. By a modification of the principle of Aizenman and Lieb, [1], the
monotonicity property of the eigenvalue moments with respect to α can be extended from
γ = 2 to higher orders γ > 2.

For δ > 0 consider the integral I :=
∫ 1
0 λ

−1+δ(1− λ)γ dλ <∞. Then, we get for E < 0 by
scaling that

|E|γ+δ = I−1

∫ ∞

0
λ−1+δ(E + λ)γ− dλ

and hence for γ = 2 and δ > 0,

d

dα

α1/2
∑

Ej(α)<0

|Ej(α)|2+δ

 = I−1

∫ ∞

0
λ−1+δ

 d

dα
α1/2

∑
Ej(α)<0

(Ej(α) + λ)2−

 dλ.

Since
∑

Ej(α)<0(Ej(α) + λ)2− is the second eigenvalue moment for the Schrödinger operator
−αd2/dx2 + V + λ, the theorem, applied to this operator, yields

d

dα

α1/2
∑

Ej(α)<0

(Ej(α) + λ)2−

 ≤ 0.

Hence, d
dα

(
α1/2

∑
Ej(α)<0 |Ej(α)|2+δ

)
≤ 0, as claimed.
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5. Trace formulas for Schrödinger operators on the half-line

Semra Demirel and Muhammad Usman

Abstract. We study the scattering problem for the Schrödinger equation on the half-line

with the Robin boundary condition at the origin. We derive an expression for the trace

of the difference of the perturbed and unperturbed resolvent in terms of a Wronskian.

This leads to a representation for the perturbation determinant and to trace identities of

Buslaev-Faddeev type.

5.1. Introduction. Let H be the self-adjoint operator on L2[0,∞) defined by

H = H0 + V (x), H0 = − d2

dx2
, u′(0) = γu(0), (5.1)

where γ ∈ R. The potential V is real-valued and goes to zero at infinity (in some averaged
sense). Then H has a continuous spectrum on the positive semiaxis and discrete negative
spectrum, consisting of eigenvalues {λj}. If V decays fast enough, then there are only finitely
many negative eigenvalues.

The Hamiltonian H describes a one-dimensional particle restricted to the positive semi-
axis. The parameter γ describes the strength of the interaction of the particle with the
boundary. Negative γ correspond to an attractive interaction and positive γ to a repulsive
one.

In this paper we derive trace formulas for the negative eigenvalues of H. Formulas of this
type first appeared in 1953 in the paper of Gel’fand and Levitan, [33], where some identities
for the eigenvalues of a regular Sturm-Liouville operator were obtained. Later, also Dikĭı
studied similar formulas, see [22]. The next important contribution in this direction was
made by Buslaev and Faddeev [16] in 1960. They studied the singular Sturm-Liouville
operator on the half-line with Dirichlet boundary condition at the origin. Under some
assumptions on the short range potential (i.e. integrable on (0,∞) with finite first moment),
they proved a series of trace identities. The second one in this series states that

N∑
j=1

|λj | −
2
π

∫ ∞

0

(
η̃(k) − 1

2k

∫ ∞

0
V (x) dx

)
k dk =

1
4
V (0), (5.2)

where η̃(k) is the so-called limit phase and has a scattering theoretical nature. A more
precise definition will be given later. This result was extended in 1997 by Rybkin to long-
range potentials (nonintegrable on (0,∞)), [6, 85]. Analog formulas for charged particles
were obtained already in 1972 by Yafaev [55].

Trace formulas for the whole line Schrödinger operator as well as their generalizations
to the multi-dimensional case have already been studied extensively (see, e.g., the surveys
[11,13,39,59]). Numerous papers are devoted to the subject of inverse spectral problems for
Schrödinger operators, where trace identities turn out to be a central object, see e.g. [2,20,38]
and references therein. The first application of sum rules goes back to Levinson [71] in 1949
when he studied the uniqueness of the potential in the Schrödinger equation for a given
limit phase. In the context of inverse scattering, the connection between conservation laws
for nonlinear evolution equations and trace formulas was studied in [13, 76, 100] and in [36]
for more general settings. Other trace formulas in connection with periodic potentials and
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certain classes of almost periodic potentials have been important in solving the associated
inverse spectral problem, see [37] and references therein. Finally, we mention that various
trace identities are used also in the area of statistical mechanics and plasma physics, see [13].

An important consequence are the well-known Lieb-Thirring inequalities, which in di-
mension one follow from the third Faddeev-Zakharov trace formula, see [100] and [72]. This
formula was extended in [70] by Laptev and Weidl to systems of Schrödinger operators,
which leads to sharp Lieb-Thirring inequalities in all dimensions. These inequalities provide
an upper bound for the moments of the negative eigenvalues of the corresponding Schrödinger
operator and can be extended also to magnetic Schrödinger operators and Pauli operators.
See also [15] for spectral estimates in the case of the half-line Schrödinger operator. Con-
sequences for the absolutely continuous spectrum of one-dimensional Schrödinger operators
were obtained by Deift and Killip in [19].

Our goal is to prove the analog of the Buslaev-Faddeev trace formulas for the half-line
Schrödinger operator with Robin boundary conditions (5.1). Thereby, we follow Yafaev’s
book ”Mathematical Scattering Theory, Analytic Theory” [98], which contains complete
proofs in the case of Dirichlet boundary conditions. We aim to point out the differences
arising from the Robin boundary conditions and to give an interpretation for them.

The outline of this paper is as follows. We consider the differential equation

− u′′ + V (x)u = zu, z = ζ2, (5.3)

where ζ ∈ C and x > 0. We are concerned with two particular solutions of this equation, the
regular solution φ and the Jost solution θ. The first one is characterized by the conditions

φ(0, ζ) = 1, φ′
x(0, ζ) = γ, (5.4)

and the latter one by the asymptotics θ(x, ζ) ∼ eiζx as x→ ∞.
In section 2 we prove existence and uniqueness of the regular solution. The corresponding

properties of the Jost solution are well-known. Further, we introduce a quantity w(ζ), which
we call the Jost function. We emphasize that this function depends on γ and does not
coincide with what is called the Jost function in the Dirichlet case. More precisely , w(ζ) is
defined as the Wronskian of the regular solution and the Jost solution of (5.3). It turns out
that

w(ζ) = γθ(0, ζ) − θ′(0, ζ).

Section 3 contains our first main result. Denoting the resolvents of the unperturbed and
perturbed operators by R0(z) = (H0 − z)−1 and R(z) = (H − z)−1, respectively, we derive
an expression for Tr(R(z) −R0(z)) in terms of the Jost function.

Theorem 5.1. Assume that
∫∞
0 |V (x)| dx <∞. Then

Tr(R0(z) −R(z)) =
1
2ζ

(
ẇ(ζ)
w(ζ)

+
i

γ − iζ

)
, ζ = z1/2, Im ζ > 0. (5.5)

From this relation we get a representation for the perturbation determinant in terms of w(ζ).
Section 4 deals with the asymptotic expansion of the perturbation determinant, which

we shall use to derive trace identities in Section 5. For complex numbers s, we define the
function

Ms(γ) :=

{
(−γ)2s if γ < 0,

0 if γ ≥ 0.
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Under some regularity and decay assumptions on the potential V we prove infinitely many
trace identities. The analogue to (5.2) will be given by

N∑
j=1

|λj | −M1(γ) −
2
π

∫ ∞

0

(
η(k) − 1

2k

∫ ∞

0
V (x) dx

)
k dk = −1

4
V (0), (5.6)

where η(k) is now the corresponding limit phase for the Robin boundary problem. We recall
that if γ ≥ 0, then H0 has purely absolutely continuous spectrum [0,∞). If γ < 0, then H0

has the simple negative eigenvalue −γ2 and purely absolutely continuous spectrum on [0,∞).
Hence the first two terms on the left-hand side of (5.6),

∑N
j=1 |λj |−M1(γ), correspond to the

shift of the discrete spectrum between H and H0. Similarly, the last term on the left-hand
side corresponds to the shift of the absolutely continuous spectrum. The trace formula (5.6)
and its higher order analogs proved below relate this shift of the spectrum to the potential
V .

Finally, in Theorem 5.21 we prove a trace formula of order zero. Namely, the so-called
Levinson formula for the Schrödinger operator H with Robin boundary condition.

Acknowledgments. The authors are grateful to A. Laptev, T. Weidl and D. Yafaev
for helpful inputs and to F. Hantsch for providing Fig.1. Many thanks to Rupert Frank
for informative discussions and references. Financial support via DAAD, grant 50022370, is
gratefully acknowledged.

5.2. The regular solution and the Jost solution. In this section, we prove existence and
uniqueness of the regular solution and recall some elementary results on the Jost solution.
The γ-dependent Jost function is studied.

5.2.1. The associated Volterra equation and auxiliary estimates. Existence and uniqueness
of the regular solution of (5.3) can be proved by using Volterra integral equations. For
different boundary conditions, equation (5.3) is associated with different Volterra integral
equations.

Lemma 5.2. Let V ∈ L
(loc)
1 ([0,∞)) and consider equation (5.3) on functions φ ∈ C1([0,∞)),

such that φ′ is absolutely continuous. Then (5.3) with boundary conditions (5.4) is equivalent
to the Volterra equation

φ(x, ζ) = cos(ζx) +
γ

ζ
sin(ζx) +

1
ζ

∫ x

0
sin(ζ(x− y))V (y)φ(y, ζ) dy, (5.7)

considered on locally bounded functions φ.

Proof. Suppose that equation (5.3) holds for φ. Then the equality∫ x

0
ζ−1 sin(ζ(x− y))V (y)φ(y, ζ) dy =

∫ x

0
ζ−1 sin(ζ(x− y))

(
φ′′(y, ζ) + ζ2φ(y, ζ)

)
dy

is true. We integrate the right-hand side twice by parts. Taking into account boundary
conditions (5.4), we see that the right-hand side equals φ(x, ζ) − cos(ζx) − γ

ζ sin(ζx). Thus
equation (5.7) follows. Conversely, assume that equation (5.7) holds. Then φ ∈ C1

loc([0,∞))
and

φ′(x, ζ) = −ζ sin(ζx) + γ cos(ζx) +
∫ x

0
cos(ζ(x− y))V (y)φ(y, ζ) dy. (5.8)



63

Therefore φ′ is absolutely continuous and

φ′′(x, ζ) = −ζ2 cos(ζx) − γζ sin(ζx) − ζ

∫ x

0
sin(ζ(x− y))V (y)φ(y, ζ) dy. (5.9)

Comparing (5.9) with (5.7), we obtain equation (5.3). Inserting x = 0 in (5.7) and (5.8) for
φ(x, ζ) and φ′(x, ζ), we see that boundary conditions (5.4) are fullfilled. �

In the following Lemma it is proved that the regular solution φ(x, ζ) of (5.3) with boundary
conditions (5.4) exists uniquely. For the case of Dirichlet boundary condition, this result
was represented e.g. by Yafaev in [98].

Lemma 5.3. Let V ∈ L
(loc)
1 ([0,∞)). Then for all ζ ∈ C, equation (5.3) has a unique solution

φ(x, ζ) satisfying (5.4). For any fixed x ≥ 0, φ(x, ζ) = φ(x,−ζ) is an entire function of the
variable z = ζ2. Moreover, for γ ̸= 0 we have the estimate∣∣∣∣φ(x, ζ) − cos(ζx) − γ

ζ
sin(ζx)

∣∣∣∣ ≤ c̃|γ|xe| Im ζ|x
(

exp
(
c
∫ x
0 |V (y)|(1 + |γ|y) dy

|γ|

)
− 1
)
.

(5.10)
If γ = 0, then the estimate

|φ(x, ζ) − cos(ζx)| ≤ c̃e| Im ζ|x
(

exp
(
cx

∫ x

0
|V (y)| dy

)
− 1
)

(5.11)

holds.

Proof. We construct a solution of integral equation (5.7), which by Lemma 5.2 is equivalent
to the solution of (5.3). Set φ0(x, ζ) = cos(ζx) + γ

ζ sin(ζx),

φn+1(x, ζ) =
∫ x

0
ζ−1 sin(ζ(x− y))V (y)φn(y, ζ) dy, n ≥ 0. (5.12)

Inductively one shows that all φn(x, ζ) are entire functions of ζ2. First, we consider the case
when γ ̸= 0. Using the estimates

∣∣∣∣sin(ζ(x− y))
ζ

∣∣∣∣ ≤ c|x− y|e| Im ζ|(x−y) and
∣∣∣∣cos(ζx) +

γ

ζ
sin(ζx)

∣∣∣∣ ≤ c̃e| Im ζ|x(1 + |γ|x),

(5.13)
we obtain

|φ1(x, ζ)| ≤ cc̃xe| Im ζ|x
∫ x

0
|V (y)|(1 + |γ| y) dy.

Successively, we have or all n ≥ 1,

|φn(x, ζ)| ≤
cnc̃

n! |γ|n−1xe
| Im ζ|x

(∫ x

0
|V (y)|(1 + |γ| y) dy

)n
, (5.14)

which follows by an induction argument. Indeed, it follows from (5.12), (5.13) and (5.14)
that

|φn+1(x, ζ)| ≤
cn+1c̃

n! |γ|n−1 e
| Im ζ|x

∫ x

0
(x− y)y|V (y)|

(∫ y

0
|V (t)|(1 + |γ| t) dt

)n
dy. (5.15)
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As |γ| > 0, we have y ≤ |γ|−1 (1 + |γ|y). Thus, the right-hand side in equation (5.15) is
bounded by

cn+1c̃

n!|γ|n
e| Im ζ|x

∫ x

0
(1 + |γ|y)(x− y)|V (y)|

(∫ y

0
|V (t)|(1 + |γ|t) dt

)n
dy,

which is the same as

cn+1c̃

n!|γ|n
e| Im ζ|x

∫ x

0

(x− y)
n+ 1

d

dy

(∫ y

0
|V (t)|(1 + |γ|t) dt

)n+1

dy.

Finally, the last term is bounded from above by

cn+1c̃

(n+ 1)!|γ|n
e| Im ζ|xx

(∫ x

0
|V (y)|(1 + |γ|y) dy

)n+1

.

Thus, the limit

φ(x, ζ) := lim
N→∞

N∑
n=0

φn(x, ζ) (5.16)

exists uniformly for bounded ζ, x and |γ| > 0. Putting together definitions (5.12) and (5.16),
we see that
N∑
n=0

φn(x, ζ) = cos(ζx)+
γ

ζ
sin(ζx)−φN+1(x, ζ)+

∫ x

0
ζ−1 sin(ζ(x−y))V (y)

(
N∑
n=0

φn(y, ζ)

)
dy.

From this equation, we obtain in the limit N → ∞ equation (5.7). To prove estimate (5.10),
we consider ∣∣∣∣φ(x, ζ) − cos(ζx) − γ

ζ
sin(ζx)

∣∣∣∣ =
∣∣∣∣∣ lim
N→∞

N∑
n=1

φn(x, ζ)

∣∣∣∣∣ . (5.17)

Because of (5.14), the right-hand side in (5.17) is bounded from above by

c̃|γ|xe| Im ζ|x
∞∑
n=1

(n!)−1

(
c
∫ x
0 |V (y)|(1 + |γ|y) dy

|γ|

)n
= c̃|γ|xe| Im ζ|x

(
exp

(
c
∫ x
0 |V (y)|(1 + |γ|y) dy

|γ|

)
− 1
)
.

If γ = 0, then we use the same estimates (5.13) and get successively,

|φn(x, ζ)| ≤
cnc̃xn

n!
e| Im ζ|x

(∫ x

0
|V (y)| dy

)n
.

From this estimate it follows that

|φ(x, ζ) − cos(ζx)| ≤ c̃e| Im ζ|x
∞∑
n=1

1
n!

(
cx

∫ x

0
|V (y)| dy

)n
= c̃e| Im ζ|x

(
exp

(
cx

∫ x

0
|V (y)| dy

)
− 1
)
,

which proves estimate (5.11). The uniqueness of a bounded solution of equation (5.7) can
be proved by contradiction. Suppose that φ1 and φ2 are two different solutions of equation
(5.7). Then φ1 − φ2 satisfies the corresponding homogeneous equation and is bounded for
an arbitrary n, by the right-hand side of (5.14) and hence is zero. Therefore φ1 = φ2. �
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5.2.2. The Jost solution and the Jost function. The so-called Jost solution, which was first
studied by Jost, is important in scattering theory. This solution of equation (5.3) is charac-
terized by the asymptotics θ(x, ζ) ∼ eiζx as x → ∞. It is proved, e.g., in [98], that under
the assumption ∫ ∞

0
|V (x)| dx <∞, (5.18)

equation (5.3) has for all ζ ̸= 0, Im ζ > 0, a unique solution θ(x, ζ) satisfying as x→ ∞ the
conditions

θ(x, ζ) = eiζx(1 + o(1)), θ′(x, ζ) = iζeiζx(1 + o(1)). (5.19)

For any fixed x ≥ 0, the function θ(x, ζ) is analytic in ζ in the upper half-plane Im ζ > 0 and
continuous in ζ up to the real axis with a possible exception of the point ζ = 0. Moreover,
it satisfies the estimates

|θ(x, ζ) − eiζx| ≤ e− Im ζx

(
exp(|ζ|−1

∫ ∞

x
|V (y)| dy) − 1

)
and consequently, for |ζ| ≥ c > 0,

|θ(x, ζ) − eiζx| ≤ C|ζ|−1e− Im ζx

∫ ∞

x
|V (y)| dy, (5.20)

where C depends on c and the value of the integral (5.18) only. We will need an analog of
estimate (5.20) for the derivative of the Jost solution.

Lemma 5.4. Assume condition (5.18) and ζ ̸= 0, Im ζ > 0. Then for the derivative of the
solution θ(x, ζ) with asymptotics (5.19), the following estimate holds

|θ′(x, ζ) − iζeiζx| ≤ e− Im ζx|ζ|
(

exp
(
|ζ|−1

∫ ∞

x
|V (y)| dy

)
− 1
)
. (5.21)

Moreover, for |ζ| ≥ k > 0, we have

|θ′(x, ζ) − iζeiζx| ≤ Ke− Im ζx

∫ ∞

x
|V (y)| dy, (5.22)

where K depends only on k and the value of the integral (5.18).

The proof of this Lemma follows closely the arguments of [98]. For the sake of complete-
ness, we provide the necessary modifications in the appendix.

Next, we study some properties of the γ-dependent Jost function. Below we suppose that
condition (5.18) is satisfied and that Im ζ ≥ 0.

Definition 5.5. We denote by

w(ζ) := φ′(x, ζ)θ(x, ζ) − θ′(x, ζ)φ(x, ζ) (5.23)

the Wronskian of the regular solution and the Jost solution of the Schrödinger equation
(5.3). The Wronskian w(ζ) is called Jost function.

Setting x = 0 in (5.23), we see that

w(ζ) = γθ(0, ζ) − θ′(0, ζ). (5.24)
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This is the definition of w(ζ) that was used in the introduction. The Jost function w(ζ) is
analytic in ζ in the upper halfplane Im ζ > 0 and is continuous in ζ up to the real axis, with
a possible exception of the point ζ = 0. Moreover, it follows from (5.20) and (5.22) that

w(ζ) = −iζ +O(1), |ζ| → ∞, Im ζ ≥ 0. (5.25)

Remark 5.6. Usually, in the literature the Wronskian wD of the Jost solution and the regular
solution satisfying a Dirichlet boundary condition is called Jost function. In our case of Robin
boundary condition (5.4), the Wronskian differs from the usual one and depends on γ. We
emphasize, that for every γ ∈ R, the function w(ζ) grows linearly in ζ as |ζ| → ∞, whereas in
the Dirichlet case we have for the corresponding Jost function wD(ζ) = 1+O(|ζ|−1), |ζ| → ∞.

Our next goal is to give an integral representation for w(ζ).

Lemma 5.7. For Im ζ ≥ 0, ζ ̸= 0, the following representation for the Jost function holds

w(ζ) = γ − iζ +
∫ ∞

0
eiζyV (y)φ(y, ζ) dy. (5.26)

The proof of this Lemma relies on the following formula. For Im ζ > 0,

lim
x→∞

eiζx
(
φ′(x, ζ) − iζφ(x, ζ)

)
= w(ζ). (5.27)

To show this, one can introduce, as in [98], for all ζ with Im ζ > 0 a solution of equation
(5.3), which is linearly independent of θ(x, ζ). Set

τ(x, ζ) = −2iζθ(x, ζ)
∫ x

x0

θ(y, ζ)−2 dy, x ≥ x0,

where x0 = x0(ζ) is chosen such that θ(x, ζ) ̸= 0 for all x ≥ x0. Then τ(x, ζ) satisfies
equation (5.3) and according to (5.19),

τ(x, ζ) = e−iζx(1 + o(1)), τ ′(x, ζ) = −iζe−iζx(1 + o(1)),

as x→ ∞. Since W{θ(ζ), τ(ζ)} = 2iζ, we find that

φ(x, ζ) =
1

2iζ
(
(γτ(0, ζ) − τ ′(0, ζ))θ(x, ζ) − (γθ(0, ζ) − θ′(0, ζ))τ(x, ζ)

)
. (5.28)

Equation (5.27) now follows from (5.28). Given (5.27), we can prove Lemma 5.7.

Proof of Lemma 5.7. The differential equation (5.3) implies that∫ x

0
eiζyV (y)φ(y, ζ) dy =

∫ x

0
eiζyφ′′(y, ζ) dy + ζ2

∫ x

0
eiζyφ(y, ζ) dy.

We integrate the first integral in the right-hand side twice by parts and get∫ x

0
eiζyV (y)φ(y, ζ) dy = eiζx

(
φ′(x, ζ) − iζφ(x, ζ)

)
− γ + iζ.

Passing to the limit x → ∞ in the above equation and using (5.27), we arrive at (5.26) for
Im ζ > 0. By continuity, (5.26) can be extended to the real axis. �
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As the Jost solution of equation (5.3) is unique, it follows that

θ(x, ζ) = θ(x,−ζ), θ′(x, ζ) = θ′(x,−ζ) and hence w(ζ) = w(−ζ). (5.29)

For real numbers k > 0 both Jost solutions θ(x, k) and θ(x,−k) of the equation

− u′′ + V (x)u = k2u, k > 0, (5.30)

are correctly defined and their Wronskian W{θ(·, k), θ(·,−k)} equals 2ik. Thus, they are
linearly independent. In particular, we get from (5.29),

θ(x,−k) = θ(x, k) and hence w(−k) = w(k). (5.31)

It is useful to express the regular solution in terms of the Jost solutions as follows,

φ(x, k) =
1

2ik
(θ(x, k)w(−k) − θ(x,−k)w(k)) . (5.32)

Indeed, it is easy to verify that the right-hand side of (5.32) satisfies equation (5.30) and
conditions (5.4).

Now, we introduce the limit amplitude and phase shift for real values of k.

Definition 5.8. Set

w(k) = a(k)eiη(k)(γ − ik), a(k) =
|w(k)|√
γ2 + k2

. (5.33)

The functions a(k) and η(k) are called the limit amplitude and the limit phase, respectively.

These functions determine the asymptotics of the regular solution of the Schrödinger
equation as x→ ∞. Indeed, comparing (5.19) and (5.32), we find

φ(x, k) =
1

2ik

(
eikxw(−k) − e−ikxw(k)

)
+ o(1), x→ ∞.

Furthermore,

w(−k) = w(k) = a(k)e−iη(k)(γ + ik).

Thus,

φ(x, k) = a(k)
1

2ik

(
(γ + ik)ei(kx−η(k)) − (γ − ik)e−i(kx−η(k))

)
+ o(1), x→ ∞.

This asymptotic behavior should be compared with the exact expression for the solution
φ0(x, ζ) of the equation −φ′′ = ζ2φ satisfying the conditions (5.4), namely,

φ0(x, ζ) = (2iζ)−1((γ + iζ)eiζx − (γ − iζ)e−iζx).

Finally, we note that

w(k) ̸= 0 for all k > 0. (5.34)

Indeed, if there was a number k such that w(k) = 0, then it would follow from relations
(5.31) and (5.32) that φ(x, k) = 0 for all x.
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5.3. A Trace formula and the perturbation determinant. We consider the Hamilton-
ian

H = − d2

dx2
+ V (x), V = V , (5.35)

with boundary condition (5.4) in the space L2(R+). More precisely, H is defined through
the quadratic form ∫ ∞

0

(
|u′(x)|2 + V (x)|u(x)|2

)
dx+ γ|u(0)|2

with form domain H1(R+). By H0 = − d2

dx2 we denote the free Hamiltonian with the same
boundary condition (5.4) but with V ≡ 0. The resolvents of H and H0 are denoted by R(z)
and R0(z), respectively.

In this section, we derive an expression for Tr (R(z) −R0(z)) in terms of the Jost function.
From this relation we get a representation for the perturbation determinant.

It is a well-known fact that R(z) can be constructed in terms of solutions φ(x, ζ) and
θ(x, ζ) of equation (5.3) and their Wronskian (5.23). Suppose that (5.18) holds. Then for
all z such that Im z ̸= 0 and w(ζ) ̸= 0, the resolvent is the integral operator with kernel

R(x, y; z) = w−1(ζ)φ(x, ζ)θ(y, ζ), x ≤ y, ζ = z1/2, (5.36)

and R(x, y; z) = R(y, x; z). Moreover, the estimate

|R(x, y; z)| ≤ c|w(ζ)|−1|ζ|−1 exp(− Im ζ|x− y|)

holds. We note that in the particular case V ≡ 0, the unperturbed resolvent R0(z) has the
integral kernel

R0(x, y; z) = R0(y, x; z) =
((γ + iζ)eiζx − (γ − iζ)e−iζx)eiζy

2iζ(γ − iζ)
, x ≤ y. (5.37)

The self-adjoint operator H has discrete negative spectrum, which consists of negative
eigenvalues λj = (iκj)2, κj > 0, which possibly accumulate at zero. It is important to note
that the zeros of the function w(ζ) and the eigenvalues of H are related as follows.

Lemma 5.9. Complex zeros of the function w(ζ) are simple and lie on the imaginary axis.
Moreover, w(ζ) = 0 if and only if λ = ζ2 is a negative eigenvalue of the operator H.

Proof. First, assume that w(ζ) = 0 for Im ζ > 0. Then the Jost function θ(x, ζ) fullfills
boundary conditions (5.4) and is in the space L2(R+) because of (5.19) and the positive
imaginary part of ζ. Thus θ(x, ζ) is an eigenfunction of the operator H corresponding to the
eigenvalue λ = ζ2. Since H is self-adjoint, it follows that λ < 0. Conversely, assume that λ
is an eigenvalue of H. Then its resolvent R(z) has a pole in λ. Therefore, it follows from
(5.36) that w(ζ) = 0. As the resolvent of a self-adjoint operator has only simple poles, the
zeros of w(ζ) are simple. �

Remark 5.10. It follows from the proporties of the regular solution and Jost solution, that
the resolvent kernel (5.36) is an analytic function in the upper half-plane Im ζ > 0, except
for simple poles at eigenvalues of H. In view of (5.34), the resolvent kernel is a continuous
function of z up to the cut along [0,∞) with the possible exception of the point z = 0.
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Proposition 5.11. Assume condition (5.18), then

Tr(R0(z) −R(z)) =
1
2ζ

(
ẇ(ζ)
w(ζ)

+
i

γ − iζ

)
, ζ = z1/2, Im ζ > 0. (5.38)

Proof. Since R − R0 is a trace class operator and kernels of the operators R and R0 are
continuous functions, we have

Tr(R(z) −R0(z)) = lim
x→∞

∫ x

0
(R(y, y; z) −R0(y, y; z)) dy. (5.39)

Using (5.37), we first compute

2ζ
∫ x

0
R0(y, y; z) dy =

1
i(γ − iζ)

(
γ + iζ

2iζ
e2iζx − (γ − iζ)x− γ + iζ

2iζ

)
. (5.40)

The following equation is true for any two arbitrary solutions of equation (5.3)

2ζφ(x, ζ)θ(x, ζ) = (φ′(x, ζ)θ̇(x, ζ) − φ(x, ζ)θ̇′(x, ζ))′. (5.41)

Applying (5.41) to the regular solution φ(x, ζ) and the Jost solution θ(x, ζ), we get

2ζw(ζ)
∫ x

0
R(y, y; z) dy = 2ζ

∫ x

0
φ(y, ζ)θ(y, ζ) dy

=
[
φ′(y, ζ)θ̇(y, ζ) − φ(y, ζ)θ̇′(y, ζ)

]x
0
. (5.42)

Note that the contribution of the right-hand side in (5.42) for y = 0 is

φ′(0, ζ)θ̇(0, ζ) − φ(0, ζ)θ̇′(0, ζ) = γθ̇(0, ζ) − θ̇′(0, ζ) = ẇ(ζ). (5.43)

Consider now the case of potentials of compact support. Then, for all ζ ∈ C , we have
θ(x, ζ) = eiζx for sufficiently large x. Further, in this case we can generalize (5.32) to
complex ζ, namely

φ(x, ζ) =
1

2iζ
(θ(x, ζ)w(−ζ) − θ(x,−ζ)w(ζ)) . (5.44)

For large x we have,

θ(x, ζ) = eixζ , θ′(x, ζ) = iζeixζ , θ̇(x, ζ) = ixeixζ , θ̇′(x, ζ) = (i− xζ)eixζ .

Taking into account, that since Im ζ > 0, the terms containing e2ixζ tend to zero as x→ ∞
and using (5.44), we get for sufficiently large x

φ′(x, ζ)θ̇(x, ζ) − φ(x, ζ)θ̇′(x, ζ) = (ix+ (2ζ)−1)w(ζ) + o(1). (5.45)

Combining (5.43) and (5.45), we arrive at

2ζ
∫ x

0
R(y, y; z) dy = ix+

1
2ζ

− ẇ(ζ)
w(ζ)

+ o(1). (5.46)

Finally, we conclude from (5.40) and (5.46) that

lim
x→∞

∫ x

0
(R0(y, y; z) −R(y, y; z)) dy =

1
2ζ

(
ẇ(ζ)
w(ζ)

+
i

γ − iζ

)
+ o(1).

This proves (5.38) for compactly supported potentials V . By density arguments (see [98,
Prop. 4.5.3]) based on the fact, that

√
|V |(H0 +1)−1/2 is a Hilbert-Schmidt operator under

condition (5.18), the result can be extended to all potentials V satisfying this condition. �
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We conclude this section by relating the Jost function to the perturbation determinant.
Since

√
|V |(H0 + 1)−1/2 is a Hilbert-Schmidt operator, the operator

√
V R0(z)

√
|V | is a

trace class operator (here
√
V := (sgnV )

√
|V |) and therefore the (modified) perturbation

determinant

D(z) := det(1+
√
V R0(z)

√
|V |), z ∈ ρ(H0)

is well-defined. Here ρ(H0) denotes the resolvent set of the operator H0. Furthermore, it can
easily be verified that the perturbation determinant is related to the trace of the resolvent
difference by

D′(z)
D(z)

= Tr(R0(z) −R(z)), z ∈ ρ(H0) ∩ ρ(H).

Thus, it follows from (5.38) that

D′(z)
D(z)

=
1
2ζ

d

dζ
(lnw(ζ) − ln(γ − iζ)) =

1
2ζ

d

dζ
ln
(
w(ζ)
γ − iζ

)
=

(
w(

√
z)

γ−i
√
z

)′(
w(

√
z)

γ−i
√
z

) .
Therefore, we conclude that D(z) = Cw(

√
z)/(γ− i

√
z). Because of the asymptotics (5.25),

it follows that

D(z) =
w(

√
z)

γ − i
√
z
.

This is the sought after relation.

5.4. Low and High-energy asymptotics. Here we derive an asymptotic expansion of the
perturbation determinant D(ζ) as |ζ| → ∞.

5.4.1. High-energy asymptotics. In this subsection, we assume that V ∈ C∞(R+) and that

|V (j)(x)| ≤ Cj(1 + x)−ρ−j , ρ ∈ (1, 2], j ∈ N0. (5.47)

The asymptotic expansion of the Jost solution θ(x, ζ) for |ζ| → ∞ can be found, e.g., in [98].
Thereby, it is more convenient to consider the function b(x, ζ) defined by

b(x, ζ) := e−ixζθ(x, ζ). (5.48)

Note that equation (5.3) for θ(x, ζ) is equivalent to the equation

− b′′(x, ζ) − 2iζb′(x, ζ) + V (x)b(x, ζ) = 0. (5.49)

It follows from (5.48) that asymptotics (5.19) and the asymptotics

b(x, ζ) = 1 + o(1), b′(x, ζ) = o(1), x→ ∞, (5.50)

are equivalent to each other. For an arbitrary N , the equality

b(x, ζ) =
N∑
n=0

bn(x)(2iζ)−n + rN (x, ζ) (5.51)

holds with the remainder satisfying the estimates

|∂jrN (x, ζ)/∂xj | ≤ CN,j |ζ|−N−1(1 + |x|)−(N+1)(ρ−1)−j , j ∈ N0,
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for all x ≥ 0 and Im ζ ≥ 0, |ζ| ≥ c > 0. Here b0(x) = 1 and bn(x) are real C∞ functions
defined by the recurrent relation

bn+1(x) = −b′n(x) −
∫ ∞

x
V (y)bn(y) dy.

Further the following estimates hold,

b(j)n (x) = O(x−n(ρ−1)−j), j ∈ N0, x→ ∞.

Now, we can prove the asymptotic expansion of the perturbation determinant for |ζ| → ∞.

Lemma 5.12. Suppose V ∈ C∞(R+) and (5.47). Then the perturbation determinant admits
the expansion in the asymptotic series

D(ζ) =
∞∑
n=0

dn(2iζ)−n, (5.52)

as |ζ| → ∞, Im ζ ≥ 0. The coefficients dn are given by

d0 = 1, dn := bn(0) + 2
n−1∑
m=1

b′m(0)(2γ)n−m−1, n ≥ 1. (5.53)

We emphasize that expansion (5.52) is understood in the sense of an asymptotic series.

Proof. It follows from (5.51) that

b′(x, ζ) + (iζ − γ)b(x, ζ)
iζ − γ

=
1

iζ − γ

∞∑
n=0

b′n(x)(2iζ)
−n +

∞∑
n=0

bn(x)(2iζ)−n. (5.54)

Applying the geometric series to the first sum in the right-hand side of (5.54) for |ζ| > γ,
we conclude

b′(x, ζ) + (iζ − γ)b(x, ζ)
iζ − γ

= b0(x) +
∞∑
n=1

(
bn(x) + 2

n−1∑
m=0

b′m(x)(2γ)n−m−1

)
(2iζ)−n. (5.55)

On the other hand, it is easy to see that

b′(x, ζ) + (iζ − γ)b(x, ζ) = e−iζx(θ′(x, ζ) − γθ(x, ζ)) (5.56)

Thus, setting x = 0 and combining (5.55) with (5.56), we arrive at (5.52). �

Note that because of (5.25), we have for |ζ| → ∞, Im ζ ≥ 0,

D(ζ) =
w(ζ)
γ − iζ

= 1 +O(|ζ|−1). (5.57)

Thus, we can fix the branch of the function lnD by the condition lnD(ζ) → 0 as |ζ| → ∞.
The following Corollary is an immediate consequence of Lemma 5.12.

Corollary 5.13. Suppose V ∈ C∞(R+) and (5.47). Then for |ζ| → ∞, Im ζ ≥ 0, we have

lnD(ζ) =
∞∑
n=1

ℓn(2iζ)−n,
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where the coefficients ℓn are given by

ℓ1 := d1, ℓn := dn − n−1
n−1∑
j=1

jdn−jℓj , n ≥ 2. (5.58)

The first coefficients ℓn work out to be

ℓ1 = −
∫ ∞

0
V (x) dx, ℓ2 = V (0), ℓ3 = 4γV (0) − V ′(0) +

∫ ∞

0
V 2(x) dx,

ℓ4 = V ′′(0) − 2V 2(0) − 4γV ′(0) + 8γ2V (0).

From (5.33) it follows for k ∈ R that

lnD(k) = ln
(
w(k)
γ − ik

)
= ln a(k) + iη(k).

Seperating in Corollary 5.13 the function lnD(k) into its real and imaginary part, we finally
conclude, that for k → ∞,

ln a(k) =
∞∑
n=1

(−1)nℓ2n(2k)−2n, (5.59)

η(k) =
∞∑
n=0

(−1)n+1ℓ2n+1(2k)−2n−1.

5.4.2. Low-energy asymptotics. In this section we assume that∫ ∞

0
(1 + x)|V (x)| dx <∞. (5.60)

We denote the regular solution for ζ = 0 by φ(x). This is the solution of the integral equation
(5.7),

φ(x) = 1 + xγ +
∫ x

0
(x− y)V (y)φ(y) dy. (5.61)

This solution exists under condition (5.18). As shown in [98], the stronger condition (5.60)
guarantees the existence of a Jost solution θ(x, ζ) at ζ = 0. For any fixed x ≥ 0, the Jost
solution θ(x, ζ) is continuous as ζ → 0, Im ζ ≥ 0. Moreover,

|θ(x, ζ) − eiζx| ≤ e− Im ζx

(
exp

(
C

∫ ∞

x
y|V (y)| dy

)
− 1
)
,

where C does not depend on ζ and x. The function θ(x) := θ(x, 0) = θ(x, 0) satisfies the
equation

− u′′ + V (x)u = 0 (5.62)

and, as x→ ∞,

θ(x) = 1 +O

(∫ ∞

x
y|V (y)| dy

)
= 1 + o(1), θ′(x) = O

(∫ ∞

x
|V (y)| dy

)
= o(x−1). (5.63)

Indeed, asymptotics (5.63) follow from the integral equation (6.1) for ζ = 0, namely,

θ(x) = 1 +
∫ ∞

x
(y − x)V (y)θ(y) dy.
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One can also show that the Jost function w(ζ) is continuous as ζ → 0, Im ζ ≥ 0, and from
(5.26) we get for ζ = 0

w(0) = γ +
∫ ∞

0
V (y)φ(y) dy. (5.64)

If (5.60) holds, then the integral in (5.64) is convergent, in view of the estimate

|φ(x, 0) − 1| ≤ ĉγx,

following from (5.10). Moreover, we have w(0) = w(0).
After these preliminaries we claim that the operator H has no zero eigenvalue. Indeed,

the function defined by

τ(x) = θ(x)
∫ x

x0

θ(y)−2 dy, x ≥ x0,

is a solution of equation (5.62) and is linearly independent of θ(x). Again, x0 is an arbitrary
point such that θ(x) ̸= 0 for x ≥ x0. Further,

τ(x) = x+ o(x), τ ′(x) = 1 + o(1) as x→ ∞ and W{θ, τ} = −1.

Thus, the equation (5.62) does not have solutions, tending to zero at infinity, as claimed.
While the operator does not have a zero eigenvalue, it may have a so-called zero resonance.

Definition 5.14. Under assumption (5.60), one says that the operator H has a resonance
at ζ = 0 if w(0) = 0.

Since the Jost function is the Wronskian of the Jost and the regular solution, the resonance
condition means that φ is a multiple of θ and therefore that equation (5.62) has a bounded
solution satisfying boundary condition (5.4).

Now, we want to analyze the behavior of the Jost function w(ζ) as ζ → 0. More precisely,
we want to show, that if w(0) = 0, then it vanishes not faster than linearly. In order to
prove this, we need the following technical Lemma.

Lemma 5.15. Assume (5.60) and let w(0) = 0. Then

|φ(x, ζ) − φ(x)| ≤ C|ζ|xeIm ζx, Im ζ ≥ 0. (5.65)

Proof. We set Ω(x, ζ) = φ(x, ζ) − φ(x) and

Ω0(x, ζ) = cos(ζx) +
γ

ζ
sin(ζx) − 1 − xγ −

∫ x

0
(x− y)V (y)φ(y) dy

+
∫ x

0
ζ−1 sin(ζ(x− y))V (y)φ(y) dy. (5.66)

It follows from (5.7) and (5.61) that

Ω(x, ζ) = Ω0(x, ζ) +
∫ x

0
ζ−1 sin(ζ(x− y))V (y)Ω(y, ζ) dy.

We first prove that
|Ω0(x, ζ)| ≤ C|ζ|xeIm ζx. (5.67)

Note that the condition w(0) = 0 is equivalent to the condition
∫∞
0 V (y)φ(y) dy = −γ.

Therefore, we can rewrite (5.66) as

Ω0(x, ζ) = cos(ζx) − 1 − (ζ−1 sin(ζx) − x)
∫ ∞

x
V (y)φ(y) dy +

∫ x

0
K(x, y, ζ)V (y)φ(y) dy,

(5.68)
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where

K(x, y, ζ) = −ζ−1 sin(ζx) + y + ζ−1 sin(ζ(x− y)).

The third and fourth term in the right-hand side of (5.68) are bounded from above by
C|ζ|xeIm ζx. This follows in the same way as shown in [98], which only uses that φ(x) is
bounded. It remains to give an estimate for the first and second term in (5.68), which we
write as

cos(ζx) − 1 = −2 sin2(ζx/2).

Using the estimates

| sin(ζx/2)| ≤ ce| Im ζ|x/2 and | sin(ζx/2)| ≤ c|ζ|xe| Im ζ|x/2,

we get

| cos(ζx) − 1| ≤ c|ζ|xe| Im ζ|x.

Thus, we conclude (5.67). This inequality implies (5.65) by Gronwall’s Lemma exactly as
in [98, Lemma 4.3.6]. �

Proposition 5.16. Under the assumption (5.60) and w(0) = 0 we have the following asymp-
totics for the Jost function,

w(ζ) = −iw0ζ + o(ζ), ζ → 0, (5.69)

where w0 = 1 −
∫∞
0 yV (y)φ(y) dy ̸= 0.

Proof. Since w(0) = 0, we have
∫∞
0 V (y)φ(y) dy = −γ and therefore it follows from repre-

sentation (5.26) that

w(ζ) =
∫ ∞

0

(
eiζxφ(x, ζ) − φ(x)

)
V (x) dx− iζ

= −iw0ζ +
∫ ∞

0

(
eiζx − 1 − iζx

)
φ(x)V (x) dx

+
∫ ∞

0
eiζx (φ(x, ζ) − φ(x))V (x) dx. (5.70)

It can be shown as follows that both integrals in the right-hand side of (5.70) are o(ζ) as
ζ → 0. Since the function eiζx − 1 − iζx is bounded by C|ζ|x and is O(|ζ|2) for all fixed x,
it follows that the first integral in the right-hand side is o(ζ) as φ(x) is a bounded function.
The second integral in the right-hand side of (5.70) is also o(ζ). Indeed it follows from
Lemma 5.15 that the function eiζx (φ(x, ζ) − φ(x)) is bounded by C|ζ|x and further it is
O(|ζ|2) for all fixed x as the function φ is analytic in ζ2. Thus the asymptotics (5.69) holds.

In order to prove that w0 ̸= 0, we use equation (5.61) to write

φ(x) = x

(
γ +

∫ ∞

0
V (y)φ(y) dy

)
+ w0 − x

∫ ∞

x
V (y)φ(y) dy +

∫ ∞

x
yV (y)φ(y) dy

= w0 + o(1)

as x → ∞. On the other hand, φ is proportional to θ, which satisfies (5.63). This shows
that w0 ̸= 0, as claimed. �
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5.5. Trace identities. We now put the material from the previous sections together to
prove our main result, namely, a family of trace formulas for the operatorH. These identities
provide a relation between the shift of the spectra betweenH andH0 and quantities involving
the potential V . The spectral shift consists of two parts, one coming from the discrete
spectrum (expressed in terms of the eigenvalues of H and H0) and the other one coming
from the continuous spectrum (expressed in terms of the quantities η and a).

In this section we assume that
∫∞
0 (1 + x)|V (x)| dx < ∞ which guarantees that H has

only a finite number N of negative eigenvalues λ1, . . . , λN . We recall that H0 has a single
negative eigenvalue −γ2 if γ < 0 and no negative eigenvalues if γ ≥ 0. We also recall that
Ms(γ) was defined at the end of the introduction.

While we are mainly interested in trace formulas of integer and half-integer order, we
prove a version of these formulas for every complex s with Re s > 0. We proceed by analytic
continuation, where the starting point is the following proposition.

Proposition 5.17. Suppose that (5.60) holds and define for s ∈ C, 0 < Re s < 1/2, the
functions

F (s) :=
∫ ∞

0
ln a(k)k2s−1 dk, G(s) :=

∫ ∞

0
η(k)k2s−1 dk. (5.71)

Then
π

2s

N∑
j=1

|λj |s −
π

2s
Ms(γ) = sin(πs)F (s) − cos(πs)G(s). (5.72)

Proof. Let ΓR,ε be the contour (with counterclockwise direction) which consists of the half-
circles C+

R = {|ζ| = R, Im ζ ≥ 0} and C+
ε = {|ζ| = ε, Im ζ ≥ 0} and the intervals (ε,R) and

(−R,−ε).

b

b

b

iκ1

iκ2

iκ3
C+
R

C+
ε

Figure 8. contour of integration

The argument of ζ ∈ C is fixed by the condition 0 ≤ arg ζ ≤ π. We consider the integral∫
ΓR,ε

d
dζ

(
w(ζ)
γ−iζ

)
(
w(ζ)
γ−iζ

) ζ2s dζ.

The set of the singularities of the integrand is the set of zeros of the function w(ζ)/(γ − iζ).
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Calculating the integral by residues, we see that for κj = |λj |1/2∫
ΓR,ε

d
dζ

(
w(ζ)
γ−iζ

)
(
w(ζ)
γ−iζ

) ζ2s dζ = 2πi
N∑
j=1

Resζ=iκj

d
dζ

(
w(ζ)
γ−iζ

)
(
w(ζ)
γ−iζ

) ζ2s

− 2πi

Resζ=−iγ
d
dζ

“

w(ζ)
γ−iζ

”

“

w(ζ)
γ−iζ

” ζ2s, if γ < 0

0, if γ ≥ 0.
(5.73)

Since by Lemma 5.9, zeros iκj of w(ζ) are simple, the residues work out to be eiπsκ2s
j . Hence,∫

ΓR,ε

d
dζ

(
w(ζ)
γ−iζ

)
(
w(ζ)
γ−iζ

) ζ2s dζ = 2πi eiπs
N∑
j=1

κ2s
j − 2πi eiπsMs(γ). (5.74)

Next, we show that the integral over the semicircle C+
r tends to zero as r → ∞ or r → 0.

Integrating by parts, we see that∫
C+

r

d
dζ

(
w(ζ)
γ−iζ

)
(
w(ζ)
γ−iζ

) ζ2s dζ = − 2s
∫
C+

r

ln
(
w(ζ)
γ − iζ

)
ζ2s−1 dζ + ln

(
w(−r)
γ + ir

)
(−r)2s

− ln
(
w(r)
γ − ir

)
r2s.

Note that we can choose ln(w(ζ)/(γ − iζ)) as a continuous function on C+
r . If r → ∞, then

this integral tends to zero for Re s < 1/2 because of (5.57). If r → 0, then the integral also
tends to zero. Indeed, this follows from the fact that either w(0) ̸= 0 or w(ζ) satisfies (5.69)
with w0 ̸= 0. Therefore passing to the limits R→ ∞ and ε→ 0 in equality (5.74), we obtain
that

∫ ∞

−∞

d
dk

(
w(k)
γ−ik

)
(
w(k)
γ−ik

) k2s dk = 2πi eiπs
N∑
j=1

κ2s
j − 2πi eiπs

{
(−γ)2s, if γ < 0

0, if γ ≥ 0.
(5.75)

Integrating in the left-hand side by parts and taking into account relations (5.31) and (5.33),
we obtain ∫ ∞

−∞

d
dk

(
w(k)
γ−ik

)
(
w(k)
γ−ik

) k2s dk = −2s
∫ ∞

−∞
ln
(
w(k)
γ − ik

)
k2s−1 dk

= −2s
∫ ∞

−∞
(ln a(k) + iη(k))k2s−1 dk

= −2s
∫ ∞

0
(ln a(k) + iη(k))k2s−1 dk + 2se2iπs

∫ ∞

0
(ln a(k) − iη(k))k2s−1 dk

= 2s(e2iπs − 1)F (s) − 2is(e2iπs + 1)G(s).

Comparing this equation with (5.75), we arrive at (5.72). �

In order to prove trace identities for arbitrary powers s ∈ C+, we need the analytic
continuation of the functions F (s) and G(s) to the entire half-plane Re s > 0.
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Lemma 5.18. Let estimates (5.47) and (5.60) be satisfied. Then the functions F and G

are meromorphic in the half-plane Re s > 0. The function F is analytic everywhere except
for simple poles at integer points s = n, n ∈ N, with residues

Ress=nF (s) = (−1)n+12−2n−1ℓ2n, n ∈ N.

If Re s < 1, then representation (5.71) for F (s) remains true. If n < Re s < n+ 1, then

F (s) =
∫ ∞

0

ln a(k) −
n∑
j=1

(−1)jℓ2j(2k)−2j

 k2s−1 dk.

The function G is analytic everywhere except for simple poles at half-integer points s =
n+ 1/2, n ∈ N0, with residues

Ress=n+1/2G(s) = (−1)n2−2n−2ℓ2n+1, n ∈ N0.

If n ≥ 1 and n− 1/2 < Re s < n+ 1/2, then

G(s) =
∫ ∞

0

η(k) − n−1∑
j=0

(−1)j+1ℓ2j+1(2k)−2j−1

 k2s−1 dk. (5.76)

Proof. We can write the function F , given in Lemma 5.18 as follows

F (s) =
∫ 1

0
ln a(k)k2s−1 dk +

∫ ∞

1

ln a(k) −
n∑
j=1

(−1)jℓ2j(2k)−2j

 k2s−1 dk (5.77)

−
∫ 1

0

n∑
j=1

(−1)jℓ2j(2k)−2jk2s−1 dk.

The first integral in the right-hand side of equation (5.77) is an analytic function of s in the
entire half-plane Re s > 0. The second integral is in view of (5.59) an analytic function of s
in the strip 0 < Re s < n+ 1. For Re s > n, we have∫ 1

0

n∑
j=1

(−1)jℓ2j(2k)−2jk2s−1 dk =
n∑
j=1

(−1)j2−2j−1ℓ2j(s− j)−1.

Thus, the function F is an analytic function in the strip n < Re s < n+ 1.
Similarly, we split the integral in the right-hand side of (5.76). Note that we now have for
n ≥ 1 and Re s > n− 1/2,∫ 1

0

n−1∑
j=0

(−1)j+1ℓ2j+1(2k)−2j−1k2s−1 dk =
n−1∑
j=0

(−1)j+1ℓ2j+12−2j−2(s− j − 1/2)−1.

Therefore, it follows with analog arguments as for F that the function G, given in (5.76), is
an analytic function of s in the strip n− 1/2 < Re s < n+ 1/2. �

Theorem 5.19. Let estimates (5.47) and (5.60) be satisfied. Then
N∑
j=1

|λj |1/2 −M1/2(γ) −
1
π

∫ ∞

0
ln a(k) dk =

1
4
ℓ1 (5.78)
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and for n ≥ 1, n ∈ N,

N∑
j=1

|λj |n−Mn(γ)+(−1)n
2n
π

∫ ∞

0

η(k) − n−1∑
j=0

(−1)j+1ℓ2j+1(2k)−2j−1

 k2n−1 dk = − n

22n
ℓ2n,

(5.79)

N∑
j=1

|λj |n+1/2 − Mn+1/2(γ) + (−1)n+1 2n+ 1
π

∫ ∞

0

ln a(k) −
n∑
j=1

(−1)jℓ2j(2k)−2j

 k2n dk

=
2n+ 1
22n+2

ℓ2n+1. (5.80)

The coefficients ℓn are given as in (5.58).

Proof. Using the analytic continuation, given in Lemma 5.18, formula (5.72) can be extended
to all s in the half-plane Re s > 0. In particular, setting s = n, n ∈ N, we obtain

π

2n

N∑
j=1

|λj |n −
π

2n
Mn(γ) = (−1)n (π Ress=nF (s) −G(n)) .

Taking into account Lemma 5.18, we conclude formula (5.79). Similarly, we have for s =
n+ 1/2, where n ∈ N0, the following identity

π

2n+ 1

N∑
j=1

|λj |n+1/2 − π

2n+ 1
Mn+1/2(γ) = (−1)n

(
F (n+ 1/2) + π Ress=n+1/2G(s)

)
.

Again, in view of Lemma 5.18, we conclude formulas (5.78) and (5.80). �

We compute the first four trace formulas.

Corollary 5.20. Let estimates (5.47) and (5.60) be satisfied. Then
N∑
j=1

|λj |1/2 −M1/2(γ) −
1
π

∫ ∞

0
ln a(k) dk = −1

4

∫ ∞

0
V (x) dx,

N∑
j=1

|λj | −M1(γ) −
2
π

∫ ∞

0

(
η(k) −

∫∞
0 V (x) dx

2k

)
k dk = −1

4
V (0),

N∑
j=1

|λj |3/2 −M3/2(γ) +
3
π

∫ ∞

0

(
ln a(k) +

V (0)
(2k)2

)
k2 dk =

3
16
ℓ3,

where
ℓ3 =

∫ ∞

0
V 2(x) dx− V ′(0) + 4γV (0),

N∑
j=1

|λj |2 − M2(γ) +
4
π

∫ ∞

0

(
η(k) −

∫∞
0 V (x) dx

2k
−
∫∞
0 V 2(x) dx+ 4γV (0) − V ′(0)

(2k)3

)
k3 dk

= −1
8
ℓ4,

where
ℓ4 = V ′′(0) + 8γ2V (0) − 4γV ′(0) − 2V 2(0).
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Finally, we prove a trace formula of order zero for the operatorH with boundary conditions
(5.4). Such formulas are called in the literature the Levinson formula and relate the number
of negative eigenvalues of H to the phase shift η.

We define η(0) = limζ→0+ η(ζ). Obviously this limit exists if w(0) ̸= 0. In the case
w(0) = 0 the existence follows from asymptotics (5.69).

Theorem 5.21. Suppose (5.60) and let N be the number of negative eigenvalues of the
operator H with boundary condition (5.4). Then, the following formulas hold.
For w(0) ̸= 0,

η(∞) − η(0) =


πN if γ > 0,

π(N − 1
2) if γ = 0,

π(N − 1) if γ < 0.

(5.81)

For w(0) = 0,

η(∞) − η(0) =


π(N + 1

2) if γ > 0,

πN if γ = 0,

π(N − 1
2) if γ < 0.

(5.82)

Proof. We apply the argument principle to the function D(ζ) and the contour ΓR,ε given
in Figure 1. We choose R and ε such that all of the N negative eigenvalues of H lie inside
the contour ΓR,ε. Remember that if γ < 0, then H0 has a simple negative eigenvalue −γ2.
Thus, it follows with Lemma 5.9 that∫

ΓR,ε

d
dζ

(
w(ζ)
γ−iζ

)
(
w(ζ)
γ−iζ

) dζ =

{
2πiN if γ ≥ 0,

2πi(N − 1) if γ < 0.
(5.83)

Note that the branch of the function lnD(ζ) was fixed by the condition lnD(ζ) → 0 as
|ζ| → ∞. Thus, we have lnD(ζ) = ln |D(ζ)| + iarg D(ζ). As for k ∈ R, arg D(k) = η(k)
and η(−k) = −η(k), it follows from equation (5.83) that

2(η(R) − η(ε)) + varC+
R
arg D(ζ) + varC+

ε
arg D(ζ) =

{
2πN if γ ≥ 0,

2π(N − 1) if γ < 0.
(5.84)

Note that limR→∞ varC+
R
arg D(ζ) = 0 because of (5.57). To compute limε→0 varC+

ε
arg D(ζ),

we rewrite
varC+

ε
arg D(ζ) = varC+

ε
arg w(ζ) − varC+

ε
arg(γ − iζ). (5.85)

Considering (5.69), we get

lim
ε→0

varC+
ε
arg w(ζ) =

{
0 if w(0) ̸= 0,

−π if w(0) = 0.
(5.86)

The second term in the right-hand side of (5.85) depends on the sign of γ and turns out to
be in the limit,

lim
ε→0

varC+
ε
arg(γ − iζ) =


0 if γ > 0,

−π if γ = 0,

0 if γ < 0.

(5.87)
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Combining (5.86) and (5.87) with equation (5.84), formulas (5.81) and (5.82) follow imme-
diately. �

6. Appendix A. Proof of Lemma 5.4

For the sake of completeness, we prove here Lemma 5.4. In order to do so, we have to recall
the construction of the Jost solution from [98, Lemma 4.1.4] .

Instead of constructing θ(x, ζ), it is more convenient to construct the function b(x, ζ),
defined in (5.48) with asymptotics (5.50). The differential equation (5.49) is equivalent to
the integral equation

b(x, ζ) = 1 + (2iζ)−1

∫ ∞

x
(e2iζ(y−x) − 1)V (y)b(y, ζ) dy (6.1)

considered on the class of bounded functions b(x, ζ). Its solution b(x, ζ) can be constructed
by the method of successive approximations. Set b0(x, ζ) = 1 and

bn+1(x, ζ) = (2iζ)−1

∫ ∞

x
(e2iζ(y−x) − 1)V (y)bn(y, ζ) dy. (6.2)

Under assumption (5.18), it follows successively that

|bn(x, ζ)| ≤ |ζ|−n(n!)−1

(∫ ∞

x
|V (y)| dy

)n
. (6.3)

This follows inductively as follows. Using the estimate

|e2iζ(y−x) − 1| ≤ 2, x ≤ y, Im ζ ≥ 0,

we get from (6.2) the estimate

|bn+1(x, ζ)| ≤ |ζ|−n−1(n!)−1

∫ ∞

x
|V (y)|

(∫ ∞

y
|V (t)| dt

)n
dy

= |ζ|−n−1(n!)−1(n+ 1)−1

∫ ∞

x

d

dy

(∫ ∞

y
|V (t)| dt

)n+1

dy.

Thus, |bn+1(x, ζ)| is bounded from above by |ζ|−n−1((n + 1)!)−1
(∫∞
x |V (y)| dy

)n+1, which
proves (6.3). For any fixed x ≥ 0, every function bn(x, ζ) is analytic in ζ in the upper half-
plane Im ζ > 0 and is continuous in ζ up to the real axis, with exception of the point ζ = 0.
It follows from (6.3) that the limit

b(x, ζ) := lim
N→∞

b(N)(x, ζ), where b(N)(x, ζ) =
N∑
n=0

bn(x, ζ), (6.4)

exists for all x ≥ 0 uniformly with respect to ζ for |ζ| ≥ c > 0. Therefore the function
b(x, ζ) has the same analytic properties in the variable ζ as the functions bn(x, ζ). Moreover,
estimates (6.3) show that b(x, ζ) is a bounded function of x. Putting together definitions
(6.2) and (6.4), we see that

b(N)(x, ζ) = 1 − bN+1(x, ζ) + (2iζ)−1

∫ ∞

x
(e2iζ(y−x) − 1)V (y)b(N)(y, ζ) dy.

Passing here to the limit N → ∞, we arrive at equation (6.1). The uniqueness of a bounded
solution b(x, ζ) of equation (6.1) follows from estimate (6.3) for a solution of the correspond-
ing homogeneous equation. This estimate implies that b(x, ζ) = 0.
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Proof of Lemma 5.4. By (6.4), we have

θ(x, ζ) = eiζx lim
N→∞

N∑
n=0

bn(x, ζ), (6.5)

where bn(x, ζ) is given as in (6.2). As the limit in (6.5) exists for all x ≥ 0 uniformly with
respect to ζ for |ζ| ≥ c > 0, it follows that

θ′(x, ζ) = iζeiζx lim
N→∞

N∑
n=0

bn(x, ζ) + eiζx lim
N→∞

N∑
n=0

b′n(x, ζ).

Obviously, we have b′0(x, ζ) = 0 and from (6.2), we derive

b′n(x, ζ) = −
∫ ∞

x
e2iζ(y−x)V (y)bn−1(y, ζ) dy.

Thus, ∣∣∣θ′(x, ζ) − iζeiζx
∣∣∣ = e− Im ζx|ζ|

∣∣∣∣∣ lim
N→∞

N∑
n=1

bn(x, ζ) +
1
iζ
b′n(x, ζ)

∣∣∣∣∣
=

e− Im ζx

2

∣∣∣∣∣ lim
N→∞

N∑
n=1

∫ ∞

x

(
e2iζ(y−x) + 1

)
V (y)bn−1(y, ζ) dy

∣∣∣∣∣ . (6.6)

Using the estimate
|e2iζ(y−x) + 1| ≤ 2, x ≤ y, Im ζ ≥ 0,

we see that the term in (6.6) does not exceed

e− Im ζx lim
N→∞

N∑
n=0

∫ ∞

x
|V (y)| |bn(y, ζ)| dy. (6.7)

Because of (6.3), expression (6.7) is less or equal

e− Im ζx lim
N→∞

N∑
n=0

|ζ|−n(n!)−1

∫ ∞

x
|V (y)|

(∫ ∞

y
|V (t)| dt

)n
dy,

which is equivalent to

e− Im ζx|ζ|
(

exp
(
|ζ|−1

∫ ∞

x
|V (y)| dy

)
− 1
)
.

This proves (5.21). If |ζ| ≥ k > 0 and condition (5.18) is satisfied, then estimate (5.22)
follows from (5.21). �
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7. The spectral shift function and Levinson’s theorem for quantum star

graphs

Semra Demirel

Abstract. We consider the Schrödinger operator on a star shaped graph with n edges

joined at a single vertex. We derive an expression for the trace of the difference of the

perturbed and unperturbed resolvent in terms of a Wronskian. This leads to representa-

tions for the perturbation determinant and the spectral shift function, and to an analog of

Levinson’s formula.

7.1. Introduction and main results.

7.1.1. Introduction. This article focuses on the study of the spectral shift function and a
Levinson theorem for Schrödinger operators on star shaped graphs. Quantum mechanics
on graphs has a long history in physics and physical chemistry [43, 80], but recent progress
in experimental solid state physics has renewed attention on them as idealized models for
thin domains. A large literature on the subject has arisen and we refer, for instance, to the
bibliography given in [7, 27].

A star graph is a metric graph Γ with a single vertex in which a finite number n ≥ 2 of
edges ej are joined. We assume throughout that all edges ej are infinite and we identify
ej = [0,∞). We assume that the potential V is a real-valued function on Γ satisfying∫

ej

|Vj(xj)| dxj <∞ for all 1 ≤ j ≤ n, (7.1)

where we denoted the restriction of V to the edge ej by Vj(xj) = V (x)|ej . Under this
condition, we can define the Schrödinger operator

Hψ := −ψ′′ + V ψ (7.2)

with continuity and Kirchhoff vertex conditions

ψ1(0) = . . . = ψn(0) =: ψ(0),
n∑
j=1

ψ′
j(0) = 0, (7.3)

as a self-adjoint operator in the Hilbert space L2(Γ) = ⊕n
j=1L2(ej). In (7.3) we denoted

by ψj the restriction of ψ to the edge ej . More precisely, we define the operator H via the
closed quadratic form

h[ϕ] :=
∫

Γ
|ϕ′(x)|2 dx+

∫
Γ
V (x)|ϕ(x)|2 dx ,

with form domain d(h) = H1(Γ) consisting of all continuous functions ϕ on Γ such that
ϕj ∈ H1(ej) for every j. If V is sufficiently regular in a neighborhood of the vertex, then
functions ϕ in the operator domain of H satisfy the Kirchhoff vertex condition in (7.3);
otherwise this condition has to be interpreted in a generalized sense.

Our two main results are formulas for the spectral shift function and the perturbation
determinant of H with respect to the unperturbed operator H0 (which is defined similarly
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as H, but with V ≡ 0) and an analog of Levinson’s theorem. Special attention will be paid
to the existence or absence of zero energy resonances.

There are several motivations for this study. The first one is the scattering theory of
quantum graphs. While star graphs are certainly very special graphs, it is generally believed
that they are a correct model example for a scattering process in the presence of a vertex.
The direct and indirect scattering theory on star graphs has been studied in great detail
in [34] and [46]. Our results complement theirs and, in contrast to them, we advertise
a more operator theoretic approach including, for instance, Fredholm determinants, trace
class estimates and Krěın’s resolvent formula.

A second motivation is a line of thought that goes back at least to Jost and Pais [57]; see
also [40, 79, 87]. In these works, a perturbation determinant, which is a Fredholm determi-
nant in an infinite dimensional space, is shown to be equal to a much simpler determinant,
typically in a finite dimensional space, such as a Wronski determinant. While such formulas
appear in different set-ups, there seems to be no general method of knowing in advance the
form of the ‘simpler determinant’. One of the achievements of this paper is to derive a new
formula of this kind for a star graph.

A third motivation comes from the general interest in zero energy resonances because of
their key role in several diverse problems of mathematical physics; for instance, the Efimov
effect in many-body quantum mechanics [23] and the time decay of wave functions [56]. Also
in the study of convergence of ‘thick quantum graphs’ resonances play an important role.
It was shown in [41] that squeezing a fattened graph with Dirichlet boundary condition can
lead in the limit to a nontrivial coupling due to threshold resonances. (While this coupling is
not necessarily Kirchhoff, the squeezing of a Neumann tubular manifold leads generically to
Kirchhoff vertex conditions.) We also refer to the survey [13,14]. In particular, we hope that
our results will allow us to remove the non-resonance assumption in the recent dispersive
estimates on star graphs [75]; see also [93] for similar bounds in the whole line case.

Finally, we note that the derivation of a Levinson theorem for a graph with a finite number
of unbounded edges was mentioned as an open problem in [17] (who considered the discrete
case). While the compact part of the graph still has to be better understood, our analysis
explains how to deal with several unbounded edges and will be useful, we believe, in further
developments in this direction.

7.1.2. Main results. To state our main result, namely a trace formula for the operator (7.2)
with vertex condition (7.3), we need some notations. By HD,j we denote the half-line
Schrödinger operator with potential Vj = V |ej and Dirichlet boundary condition at the
origin. The self-adjoint operator

HD,j = − d2

dx2
j

+ Vj

on L2(ej) is associated with the quadratic form

hD,j [ϕj ] :=
∫
ej

|ϕ′j(xj)|2 dxj +
∫
ej

Vj(xj)|ϕj(xj)|2 dxj , ϕj ∈ H0,1(ej),

where the form domain is given by d(hD,j) = H0,1(ej) = {ϕj ∈ H1(ej) : ϕj(0) = 0}. If the
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condition (7.1) is satisfied, then the equation

−u′′ + V u = zu, z = ζ2

has two particular solutions, the regular solution φj and the Jost solution θj . The first one
is characterized by the conditions

φj(0, ζ) = 0, φ′
j(0, ζ) = 1

and the latter one by the asymptotics θj(x, ζ) = eixζ(1 + o(1)) as |ζ| → ∞. Both solutions
are unique, see for instance [98]. The Jost function wj(ζ) is defined as the Wronskian of the
regular solution and the Jost solution and turns out to be wj(ζ) = θj(0, ζ).

0
...•

Figure 9. star graph Γ

Our first main result is

Theorem 7.1. Let Γ be a star shaped graph and assume that (7.1) is satisfied for 1 ≤ j ≤ n.
Then, for the Schrödinger operator (7.2) on L2(Γ) with Kirchhoff vertex condition (7.3), the
following trace formula holds,

Tr
(
(H0 − ζ2)−1 − (H − ζ2)−1

)
=

1
2ζ

d

dζ
ln

K(ζ)
ζ

n∏
j=1

wj(ζ)

 , Im ζ > 0, (7.4)

where K(ζ) =
∑n

j=1 θ
′
j(0, ζ)/θj(0, ζ) and wj(ζ) = θj(0, ζ).

Remark 7.2. We note that identity (7.4) is equivalent to the identity

Tr
(
(H0 − ζ2)−1 − (H − ζ2)−1

)
=

1
2ζ

 n∑
j=1

d
dζwj(ζ)

wj(ζ)
+

d
dζK(ζ)

K(ζ)
− 1
ζ

 ,

which should be compared with the classical result [16,57], see also [87,98],

Tr
(
(HD,j,0 − ζ2)−1 − (HD,j − ζ2)−1

)
=

d
dζwj(ζ)

2ζwj(ζ)
. (7.5)

From equation (7.4), we conclude in Section 7.3 an explicit expression for the perturbation
determinant D(z) and the spectral shift function ξ(λ;H,H0). We recall that the spectral
shift function can be characterized by the formula

Tr (f(H) − f(H0)) =
∫ ∞

−∞
ξ(λ;H,H0)f ′(λ) dλ,
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for any f ∈ C∞
0 (R) (together with the condition ξ(λ;H,H0) = 0 for λ < inf σ(H)). An ex-

tension of this formula for a broader class of functions, as well as several equivalent definitions
are discussed in Section 3.

In Section 7.4 we study the low-energy asymptotics of D(z) as |z| → 0. This allows us to
prove an analog of Levinson’s formula for the star graph. We say that the operator H on
L2(Γ), given in (7.2), has a resonance at ζ = 0 if the equation −u′′ + V u = 0 has a non-
trivial bounded solution satisfying the continuity and Kirchhoff conditions. By definition,
the multiplicity of the resonance is the dimension of the corresponding solution space.

Theorem 7.3. Assume that∫
ej

(1 + x)|Vj(x)| dx <∞ for all 1 ≤ j ≤ n, (7.6)

is satisfied and, if ζ = 0 is a resonance of multiplicity one, assume that∫
ej

(1 + x2)|Vj(x)| dx <∞ for all 1 ≤ j ≤ n. (7.7)

Then,

lim
λ→0+

ξ(λ) = −
(
N +

m− 1
2

)
, (7.8)

where N is the number of negative eigenvalues of H and where m ≥ 1 is the multiplicity if
ζ = 0 is a resonance and m = 0 if ζ = 0 is not a resonance.

Remark 7.4. We know from Bargmann’s bound that N < ∞ if (7.6) is satisfied, [5]. We
also know that limλ→0− ξ(λ) = −N , which is an easy consequence of the definition of the
spectral shift function.

7.2. A Trace formula for Star Graphs. In this section, our goal is to prove a trace
formula for star graphs. More precisely, we will find an expression for Tr(R(z) − R0(z))
in terms of the Jost solutions θj on the edges ej . Here and in the following we write
R(z) = (H − z)−1 and R0(z) = (H0 − z)−1 for the perturbed and unperturbed resolvent,
respectively. When deriving an expression for the resolvent R(z), we will make use of Krěın’s
formula for which we refer to [3] and, in particular, to an article by Exner [26] where this
formula was used in a similar context. Thereby, we need to decouple the operator H which
we achieve by imposing Dirichlet vertex conditions on each edge ej , i.e., ψj(0) = 0 for all
1 ≤ j ≤ n. Then the operator (7.2) is decoupled and the half-lines are disconnected. We
denote the decoupled operator by

H∞ =
n⊕
j=1

HD,j

and its resolvent by R∞(z) = (H∞ − z)−1. In what follows, we will skip for simplicity the
indices at the coordinates and use the notation ψj(x) := ψj(xj), 1 ≤ j ≤ n, for a function
defined on the edge ej of Γ.

Proof of Theorem 7.1. It is a well-known fact, see e.g. [98], that under assumption (7.1) for
all z = ζ2 such that Im z ̸= 0 and wj(ζ) ̸= 0, the resolvent RD,j(z) = (HD,j − z)−1 is an
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integral operator with kernel

RD,j(x, y; z) :=
φj(x, ζ)θj(y, ζ)

wj(ζ)
, x ≤ y, ζ = z1/2,

and RD,j(x, y; z) = RD,j(y, x; z). Hence, the resolvent R∞(z) is a matrix integral operator
with the kernel

R∞
j,ℓ(x, y; z) := δj,ℓRD,j(x, y, z), 1 ≤ j, ℓ ≤ n.

Having the resolvent kernel R∞
j,ℓ of the decoupled operator H∞, we can use Krěın’s formula

[3] to determine the kernel of the resolvent R(z). Let ρ(H) be the resolvent set of the operator
H and ρ(H0) the resolvent set of H0. The formula states that for any ζ, such that Im ζ ≥ 0
and z = ζ2 ∈ ρ(H∞) ∩ ρ(H), the resolvent R(z) is a matrix integral operator with kernel
Rj,ℓ(x, y; z) = R∞

j,ℓ(x, y; z) + λjℓθj(x, ζ)θℓ(y, ζ). In order to determine the coefficients λjℓ
we proceed as follows. For any f = (f1(x), . . . , fn(x))T ∈ L2(Γ), the function ψ(x) :=∫
R(x, y; z)f(y) dy has to satisfy the equation Hψ = ζ2ψ + f and the Kirchhoff vertex

condition. This leads to a system of n linear equations for the coefficients λjℓ. It turns
out that λjℓ = (−K(ζ)θj(0, ζ)θℓ(0, ζ))−1, with K(ζ) =

∑n
j=1 θ

′
j(0, ζ)/θj(0, ζ), see also [26].

Thus,

Rj,ℓ(x, y; z) := R∞
j,ℓ(x, y; z) −

θj(x, ζ)θℓ(y, ζ)
K(ζ)θj(0, ζ)θℓ(0, ζ)

. (7.9)

This representation allows us to compute Tr(R(z) − R0(z)). First, we note that the op-
erator R(z) − R0(z) is a trace class operator. This can be seen as follows. As the quo-
tient in (7.9) is a perturbation of finite rank, we only have to show that the difference
R∞(z) − R

(0)
∞ (z) is trace class. Here R(0)

∞ (z) is the resolvent of the unperturbed decoupled
operator H(0)

∞ =
⊕n

j=1

(
−d2/dx2

)
on
⊕n

j=1 L2(ej). Similarly, we denote by R
(0)
D,j(z) the

resolvent of the unperturbed operator H(0)
D,j = −d2/dx2 on L2(ej). Under condition (7.1)

the operator
√

|Vj |
(
R

(0)
D,j(z)

)α
is Hilbert-Schmidt for all α > 1/4 and all 1 ≤ j ≤ n, as

can be easily checked, see e.g. [Lemma 4.5.1, [98]]. Hence, the Birman-Schwinger operator√
|Vj |R(0)

D,j(z)
√
Vj , with

√
Vj := sgn(Vj)

√
|Vj |, is trace class and has for z ∈ ρ(HD,j) no

eigenvalue −1. Thus, the following resolvent identity for the half-line Schrödinger operator
holds,

RD,j(z) −R
(0)
D,j(z) = −R(0)

D,j(z)
√
Vj

(
1+

√
|Vj |R(0)

D,j(z)
√
Vj

)−1√
|Vj |R(0)

D,j(z).

It follows from this resolvent identity that R∞(z)−R(0)
∞ (z) is a trace class operator. In view

of (7.9) it follows that also R(z) −R0(z) is a trace class operator and

Tr(R(z) −R0(z)) =
n∑
j=1

∫
ej

(
RD,j(x, x, z) −R

(0)
D,j(x, x, z)

)
dx (7.10)

+
n∑
j=1

∫
ej

(
−

θ2
j (x, ζ)

θ2
j (0, ζ)K(ζ)

+
e2ixζ

niζ

)
dx.
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The computation of the first integral on the right-hand side is the classical Jost-Pais result
[57] recalled in Remark 7.2,∫

ej

(
RD,j(x, x, z) −R

(0)
D,j(x, x, z)

)
dx = − ẇj(ζ)

2ζwj(ζ)
. (7.11)

Here the derivative with respect to ζ is denoted by a dot, ”· = d/dζ”. To compute the
second integral, we use the following equation which is true for any two arbitrary solutions
of the equation HD,jψj = ζ2ψj , namely

2ζuj(x, ζ)vj(x, ζ) = (u′j(x, ζ)v̇j(x, ζ) − uj(x, ζ)v̇′j(x, ζ))
′.

Applying this identity to uj = vj = θj , we get

∫
R+

θ2
j (x, ζ)

K(ζ)θ2
j (0, ζ)

dx =

[
θ′j(x, ζ)θ̇j(x, ζ) − θj(x, ζ)θ̇′j(x, ζ)

]∞
0

2ζK(ζ)θ2
j (0, ζ)

.

First, we consider the case of compactly supported potential Vj . Then, for large x the Jost
solution for the half-line Schrödinger operator HD,j is given by θj(x, ζ) = eiζx and we have

θ′j(x, ζ) = iζeiζx, θ̇j(x, ζ) = ixeiζx, θ̇′j(x, ζ) = (i− xζ)eiζx.

Therefore, for large x,

θ′j(x, ζ)θ̇j(x, ζ) − θj(x, ζ)θ̇′j(x, ζ) = ie2iζx.

Note that the function e2iζx vanishes for x→ ∞, as Im ζ > 0. We therefore get

n∑
j=1

∫
R+

−
θ2
j (y, ζ)

θ2
j (0, ζ)K(ζ)

dy =
n∑
j=1

θ′j(0, ζ)θ̇j(0, ζ) − θj(0, ζ)θ̇′j(0, ζ)
2ζK(ζ)θ2

j (0, ζ)
= −

d
dζK(ζ)

2ζK(ζ)
. (7.12)

By density arguments (see [Prop. 4.5.3, [98]]), based on the fact that
√
|V |(HD,0+1)−1/2 is a

Hilbert-Schmidt operator under condition (7.1), the result can be extended to all potentials
Vj satisfying (7.1). Similarly, we consider the case V = 0 and obtain

n∑
j=1

∫
R+

e2iyζ

niζ
dy =

1
2ζ2

. (7.13)

Combining (7.11), (7.12) and (7.13) with (7.10), we finally arrive at

Tr(R(z) −R0(z)) =
1
2ζ

−K̇(ζ)
K(ζ)

+
1
ζ
−

n∑
j=1

ẇj(ζ)
wj(ζ)

 (7.14)

=
1
2ζ

− d

dζ
(lnK(ζ)) +

d

dζ
(ln ζ) −

n∑
j=1

d

dζ
(lnwj(ζ))


= − 1

2ζ

 d

dζ
ln

ζ−1K(ζ)
n∏
j=1

wj(ζ)

 .

This is the claimed formula. �
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7.3. The perturbation determinant and the spectral shift function. Identity (7.4)
implies an explicit expression for the perturbation determinant

D(z) := det(1+
√
V R0(z)

√
|V |), z ∈ ρ(H0),

where
√
V = (sgnV )

√
|V |. Strictly speaking this is the modified perturbation determinant,

nevertheless we shall refer to it simply as the perturbation determinant in what follows.
Note that under the assumption (7.1) the perturbation determinant D(z) is well-defined
since the operator

√
|V |(H0 − z)−1/2 is Hilbert-Schmidt and therefore

√
V R0(z)

√
|V | is

trace class. This follows as above from the fact that
√

|Vj |
(
R

(0)
D,j(z)

)1/2
is Hilbert-Schmidt

for all 1 ≤ j ≤ n together with (7.9) for V ≡ 0 as the corresponding second term on the
right-hand side of (7.9) is of finite rank.

Furthermore, a simple computation shows, see also [(0.9.36), [97]], that the perturbation
determinant is related to the trace of the resolvent difference by

D−1(z)D′(z) = Tr(R0(z) −R(z)), z ∈ ρ(H0) ∩ ρ(H). (7.15)

Hence, in view of Theorem 7.1 we conclude that

D−1(z)D′(z) =
d
dz

(
z−1/2K(z1/2)

∏
j wj(z

1/2)
)

z−1/2K(z1/2)
∏
j wj(z1/2)

,

here we choose the square root of z such that Im z1/2 > 0. From which it follows that
D(z) = Cz−1/2K(z1/2)

∏n
j=1wj(z

1/2), for some C ∈ C. The coefficient C is fixed by the
asymptotics of a perturbation determinant, namely

lim
| Im z|→∞

D(z) = 1. (7.16)

This asymptotics is true if the operator |V |1/2(H0 − z)−1/2 is Hilbert-Schmidt, see e.g.
[(0.9.37), [97]]. As |ζ| → ∞, we have [21,98]

wj(ζ) = θj(0, ζ) = 1 +O(|ζ|−1) and K(ζ) = niζ +O(1). (7.17)

This implies that C = 1/in. Thus, we have proved

Corollary 7.5. Assume that (7.1) is satisfied. Then, for z ∈ ρ(H), the perturbation deter-
minant of H with respect to H0 is given by

D(z) =
K(z1/2)
inz1/2

n∏
j=1

wj(z1/2), (7.18)

where Im z1/2 > 0.

Our next goal is to determine an explicit expression for the spectral shift function ξ(λ;H,H0)
for the pair of operators H,H0 in L2(Γ). If (7.1) is satisfied, then by the argumentation
above the resolvent difference R(z) − R0(z) is trace class for all z ∈ ρ(H). In this case it
is known from general theory that for all −c < inf σ(H) there exists a real-valued function
ξc(λ) for the pair of operators R(−c), R0(−c) such that the relation

Tr (f(R(−c)) − f(R0(−c))) =
∫ ∞

−∞
ξc(λ)f ′(λ) dλ (7.19)

is true for all functions f ∈ C∞
0 (R). This formula goes back to Lifshits [73].
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The spectral shift function for the pair H,H0 is defined by the relation

ξ(λ;H,H0) := −ξc((λ+ c)−1, R(−c), R0(−c)) (7.20)

for λ > −c and ξ(λ;H,H0) := 0 for λ ≤ −c. It can be shown that this definition is
independent of the choice of c. By a change of variables the formula (7.19) for the pair R,R0

can then be transformed into a formula for the pair H,H0 and yields

Tr (f(H) − f(H0)) =
∫ ∞

−∞
ξ(λ;H,H0)f ′(λ) dλ, (7.21)

for all functions f ∈ C∞
0 (R).

The next theorem among other things extends the class of admissible functions f in this
trace formula.

Theorem 7.6. Let H be the Schrödinger operator in L2(Γ) given in (7.2) with the Kirchhoff
vertex condition and H0 = −d2/dx2 the corresponding unperturbed operator. Assume that
condition (7.1) is satisfied. Then, the spectral shift function for the pair of operators H,H0

is given by
ξ(λ;H,H0) = π−1 lim

ε→0+
argD(λ+ iε),

where argD(z) = Im lnD(z) is defined via lnD(z) → 0 as dist(z, σ(H0)) → ∞.

Moreover,

lnD(z) =
∫ ∞

−∞
ξ(λ;H,H0)(λ− z)−1 dλ, z ∈ ρ(H0) ∩ ρ(H), (7.22)

and (7.21) holds provided f has two locally bounded derivatives and for any ε > 0, m > −1/2
as λ→ ∞,

f ′(λ) = O(λ−m−1−ε), f ′′(λ) = O(λ−2m−2). (7.23)

Finally for m > −1/2, ∫ ∞

−∞
|ξ(λ;H,H0)|(1 + |λ|)−m−1 dλ <∞.

In the proof of Theorem 7.6 we make use of some results from abstract scattering theory
which we collect for the reader’s convenience in the following proposition. These results can
be found e.g. in [Chapter 0.9, [98]].

Proposition 7.7. Let h and h0 be lower semi-bounded operators on a Hilbert space and
v = h − h0. Assume that the operator

√
|v| (r0(−c))1/2 is Hilbert-Schmidt for some c <

inf(σ(h)∪σ(h0)), where r0(−c) = (h0 + c)−1 and r(−c) = (h+ c)−1. Moreover, assume that∫ ∞

c
∥r(−t) − r0(−t)∥1t

−m dt <∞ (7.24)

for some m ∈ (−1, 0). Let the spectral shift function ξ(λ;h, h0) be defined as above and the
(modified) perturbation determinant by

d(z) = det(1+ sgn v
√

|v|r0(z)
√

|v|), z ∈ ρ(h0).

Then, d(z) → 1 as dist(z, σ(h0)) → ∞ and

ξ(λ;h, h0) = π−1 lim
ε→0+

arg d(λ+ iε), (7.25)
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where arg d(z) = Im ln d(z) is defined via ln d(z) → 0 as dist(z, σ(h0)) → ∞. Moreover,

ln d(z) =
∫ ∞

−∞
ξ(λ;h, h0)(λ− z)−1 dλ, z ∈ ρ(h0) ∩ ρ(h), (7.26)

and

Tr(f(h) − f(h0)) =
∫ ∞

−∞
ξ(λ;h, h0)f ′(λ) dλ (7.27)

provided f is as in (7.23). Finally,∫ ∞

−∞
|ξ(λ;h, h0)|(1 + |λ|)−m−1 dλ <∞.

In what follows, we prove that for the case of star graphs Γ the condition (7.24) is satisfied
for all m > −1/2. Then, by Proposition 7.7 the assertions of Theorem 7.6 will follow. We
need to compute the trace norm of a rank two operator.

Lemma 7.8. Let H be a Hilbert space and f, g ∈ H. Further, assume that R = (·, f)f−(·, g)g
is an operator of rank two on H. Then, the trace norm of R is given by

∥R∥1 =
(
(∥f∥2 + ∥g∥2)2 − 4|(f, g)|2

)1/2
. (7.28)

Proof. We may assume that f ̸= 0, for otherwise formula (7.28) is obvious. We construct an
orthonormal bases on Ran(R) by applying the Gram Schmidt process,

B = {f/∥f∥,
(
g − (f, g)f/∥f∥2

)
/
(
∥g∥2 − |(f, g)|2/∥f∥2

)−1/2}.

The operator R is described by a 2 × 2 matrix M = (m)kℓ, where

m11 = ∥f∥2 − |(f, g)|2/∥f∥2, m22 = −∥g∥2 + |(f, g)|2/∥f∥2,

m12 = m21 = − ((f, g)/∥f∥)
(
∥g∥2 − |(f, g)|2/∥f∥2

)1/2
.

The singular values of M turn out to be

s1 =
1
2
(∥f∥2 − ∥g∥2 + ω), s2 =

1
2
(ω − ∥f∥2 + ∥g∥2),

where ω :=
(
(∥f∥2 + ∥g∥2)2 − 4|(f, g)|2

)1/2
. Hence, ∥R∥1 = s1 + s2 = ω. This proves

(7.28). �

Lemma 7.9. Let H be the Schrödinger operator in L2(Γ) given in (7.2) with the Kirchhoff
vertex condition and H0 = −d2/dx2 the corresponding unperturbed operator. Assume that
condition (7.1) is satisfied. Then, the resolvents R(z) and R0(z) satisfy for all ε > 0 and
for t big enough,

∥R(−t) −R0(−t)∥1 ≤ Cεt
−3/2+ε.

Proof. By adding zero we estimate the trace norm by

∥R(−t) −R0(−t)∥1 ≤ ∥R∥1 + ∥R∞(−t) −R(0)
∞ (−t)∥1, (7.29)

where R := R(−t) − R∞(−t) + R
(0)
∞ (−t) − R0(−t) is an operator of rank two. The second

norm in the right-hand side of (7.29) can be estimated by ∥R∞(−t)−R(0)
∞ (−t)∥1 ≤ ct−3/2+ε,
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see [Lemma 4.5.6., [98]] Thus it remains to bound the norm of the rank two operator R.
From Krěın’s formula (7.9) we have

(R0(xk, xℓ,−t) −R(0)
∞ (xk, xℓ,−t))kℓ = fk(xk)fℓ(xℓ), fk(xk) =

e−
√
txk

√
nt1/4

,

and hence,
R0(−t) −R(0)

∞ (−t) = (·, f)f, f = (f1, . . . , fn)T .

Further,

(R(xk, xℓ,−t) −R∞(xk, xℓ,−t))kℓ = gk(xk)gℓ(xℓ), gk(xk) =
θk(xk, i

√
t)√

−K(i
√
t)θk(0, i

√
t)
,

and
R(−t) −R∞(−t) = (·, g)g, g = (g1, . . . , gn)T .

In view of (7.28) we have

∥R(−t) −R∞(−t) +R(0)
∞ (−t) −R0(−t)∥1 =

(
(∥f∥2 + ∥g∥2)2 − 4|(f, g)|2

)1/2
. (7.30)

In the remaining part we show that (∥f∥2+∥g∥2)2−4|(f, g)|2 = O(t−3) as t→ ∞. Let us set
g = f + h and note that h is a real-valued function. Then by applying the Cauchy-Schwarz
inequality and the arithmetic inequality,

(∥f∥2 + ∥g∥2)2 − 4|(f, g)|2 = 4(∥f∥2 + (f, h))∥h∥2 + ∥h∥4 ≤ 6∥h∥2∥f∥2 + 3∥h∥4. (7.31)

We compute

∥f∥2 =
n∑
j=1

∫ ∞

0

e−2
√
txj

n
√
t

dxj = (2t)−1. (7.32)

Next, we consider h = h1 + h2 , where hk = (hk,1, . . . , hk,n)T , k = 1, 2,

h1,j =
(√

−K(i
√
t)θj(0, i

√
t)
)−1 (

θj(xj , i
√
t) − e−

√
txj

)
,

h2,j =

((√
−K(i

√
t)θj(0, i

√
t)
)−1

−
(√

nt1/4
)−1

)
e−

√
txj .

Because of (7.17) we have as t→ ∞,∣∣∣∣√−K(i
√
t)θj(0, i

√
t)
∣∣∣∣−1

= O(t−1/4) (7.33)

and further, see e.g. [Lemma 4.1.4., [98]],∣∣∣θj(xj , i√t) − e−
√
txj

∣∣∣ ≤ c√
t
e−

√
txj , c ∈ R. (7.34)

Hence, in view of (7.33) and (7.34), ∥h1∥ = O(t−1). To compute the asymptotics for h2 we
rewrite

h2,j =
(√

nt1/4 −
√

−K(i
√
t)θj(0, i

√
t)
)(√

−K(i
√
t)θj(0, i

√
t)
)−1

fj(xj)

=

(
n
√
t+K(i

√
t)θ2

j (0, i
√
t)
)

√
nt1/4 +

√
−K(i

√
t)θj(0, i

√
t)

fj(xj)√
−K(i

√
t)θj(0, i

√
t)
.
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Together with (7.32) and (7.33), this leads to ∥h2∥ = O(t−1) and therefore, ∥h∥ = O(t−1).
This yields in view of (7.28) and (7.31) that ∥R∥1 = O(t−3/2). This proves the assertion of
the lemma. �

With Lemma 7.9 all assumptions of Proposition 7.7 are fullfilled and therefore the spectral
shift function for the pair H,H0 in L2(Γ) satisfies the relations (7.26) and (7.27). Especially,
we have proved Theorem 7.6.

Remark 7.10. Lemma 7.9 implies that (H+c)β−(H0+c)β is trace class for β < 1/2, see [98].

7.4. Low-energy asymptotics and Levinson’s formula. In this section we study the
low-energy asymptotics ofD(z) as |z| → 0. This will allow us to prove an analog of Levinson’s
formula for star shaped quantum graphs. Throughout this section we assume that (7.6) is
satisfied.

Definition 7.11. We say that the operator H in L2(Γ), given in (7.2), has a resonance at
ζ = 0 if the equation

− u′′ + V u = 0 (7.35)

has a non-trivial bounded solution satisfying the continuity and Kirchhoff conditions. By
definition, the multiplicity of the resonance is the dimension of the corresponding solution
space.

Remark 7.12. We shall show below that ζ = 0 is never an eigenvalue.

We recall some auxiliary results on half-line Schrödinger operators. For the half-line
Schrödinger operator the Jost solution of the equation Hju = ζ2u was characterized by its
asymptotics θj(x, ζ) = eixζ(1 + o(1)) as |ζ| → ∞. Further, the function θj(x, 0) satisfies the
equation Hju = 0 and its behavior at ζ = 0 is given by

θj(x, 0) = 1 +O

(∫ ∞

x
y|Vj(y)| dy

)
= 1 + o(1), as x→ ∞, (7.36)

(see e.g. Lemma 4.3.1., [98]). Recall also that the Jost function is wj(ζ) = θj(0, ζ). If
wj(0) = 0, the low-energy asymptotics

wj(ζ) = −iw(j)
0 ζ + o(ζ), ζ → 0 (7.37)

is true with some constant w(j)
0 ̸= 0.

Lemma 7.13. If Θ(x, 0) is a bounded solution of equation (7.35), then for some cj ∈ C,

Θ(x, 0) =
n⊕
j=1

cjθj(x, 0). (7.38)

Moreover, the operator H cannot have a zero eigenvalue.

Proof. If Θ(x, 0) solves the equation (7.35) with ζ = 0, then the restriction of Θ(x, 0) to
the edge ej is a solution of the corresponding zero-energy equation on the half-line for every
1 ≤ j ≤ n. As stated above, the function θj(x, 0) solves the zero-energy equation and is
bounded at infinity by (7.36). We note that θj(x, 0) is the only solution of the zero-energy
equation on the half-line, which is bounded at infinity. Indeed, the solution

τj(x, 0) = θj(x, 0)
∫ x

x0

θj(y, 0)−2 dy, x ≥ x0
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which is linearly independent of θj(x, 0) has as x→ ∞, the asymptotics

τj(x, 0) = x+ o(x)

for all 1 ≤ j ≤ n, (Lemma 4.3.2, [98]). Here x0 is an arbitrary point such that θ(x) ̸= 0
for x ≥ x0. Finally, equation (7.35) cannot have a nontrivial solution belonging to L2(Γ) at
infinity as Θj(x, 0) = cj + o(1) for x→ ∞.

�
Lemma 7.14. Let M := #{j : wj(0) = 0}.

(1) If ζ = 0 is not a resonance, then either M = 0 and K(0) ̸= 0 or M = 1 and K(ζ)
has a pole at ζ = 0.

(2) Assume that ζ = 0 is a resonance of multiplicity m ≥ 1, then either
a) any resonance function vanishes at the vertex and m = M − 1 ≥ 1, or
b) the resonance is of multiplicity one, the corresponding resonance function is non-
zero at the vertex and m = 1, M = 0 and K(0) = 0.

Proof. We first note that if M ≥ 1, i.e. θj(0, 0) = 0 for some j, then any resonance function
must vanish at ζ = 0 because of the continuity condition.

(1) If M ≥ 2, then it is always possible to construct a zero-energy function by setting
cj = 0 if wj(0) ̸= 0 and determining the cj ’s such that the Kirchhoff vertex condition
is fullfilled if wj(0) = 0. Hence, if ζ = 0 is not a resonance, then necessarily M ≤ 1.
If M = 1, then obviously K(ζ) has a pole at ζ = 0. Moreover, if M = 0 and ζ = 0
is not a resonance, then K(0) ̸= 0, because if K(ζ) would vanish in ζ = 0, then it
would follow from

K(0) =
n∑
j=1

θ′j(0, 0)
θj(0, 0)

=
n∑
j=1

cjθ
′
j(0, 0)

cjθj(0, 0)
= 0 (7.39)

that the function Θ(x, 0) given in (7.38) is a zero-energy resonance function for
suitable cj . Hence, K(0) ̸= 0 if ζ = 0 is not a resonance.

(2) a) If ζ = 0 is a resonance, then M ̸= 1, as it is not possible to construct a resonance
function satisfying the vertex conditions and having support on only one edge of Γ.
If M ≥ 2, then because of the continuity condition any resonance function has to
vanish at the vertex. Further, we set cj = 0 for all j with wj(0) ̸= 0, then there are
M − 1 linearly independent choices for the remaining cj ’s such that the Kirchhoff
vertex condition is fullfilled. Hence, the multiplicity of the resonance function is
m = M − 1 ≥ 1.
b) If ζ is a resonance with M = 0, then θj(0, 0) ̸= 0 for all j and the coefficents cj
are determined uniquely by the n− 1 continuity conditions and the Kirchhoff vertex
condition. Further, this implies because of (7.39) that K(0) = 0.

�

In the following proposition, we give the low-energy asymptotics for D(z) as |z| → 0.

Proposition 7.15. Let m be the multiplicity of the resonance ζ = 0, with the convention
that m = 0 if ζ = 0 is not a resonance. If m = 1, we assume in addition that condition
(7.7) is satisfied for all 1 ≤ j ≤ n. Then, as ζ → 0,

D(z) = cζm−1(1 + o(1)), z = ζ2, (7.40)
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with c ̸= 0.

For the proof of Proposition 7.15 we shall need the following

Lemma 7.16. Let HD = −d2/dx2 + V (x) in L2([0,∞)) be given with Dirichlet boundary
condition at the origin and assume that

∫∞
0 (1 + x)|V (x)| dx < ∞. Let θ(x, ζ) be the Jost

solution on the half-line.

(1) If θ(0, 0) = 0, then

θ̇(0, 0)θ′(0, 0) = −i. (7.41)

(2) If θ(0, 0) ̸= 0 and
∫∞
0 (1 + x2)|V (x)| dx <∞, then

θ̇(0, 0)θ′(0, 0) − θ̇′(0, 0)θ(0, 0) = −i. (7.42)

Proof. If θ(0, 0) = 0, then θ̇(0, 0) is defined for V having a first moment and θ̇(0, 0) =
−ic0, c0 ̸= 0, by [Proposition 4.3.7., [98]] Further, it was shown in [(4.3.11), [98]], that

φ(x, 0) = c0θ(x, 0), (7.43)

where φ is the regular solution of −u′′ + V u = ζ2u. Taking the derivative with respect to x
on both sides of (7.43) and setting x = 0 yields that 1 = c0θ

′(0, 0), as the regular solution
of the Dirichlet problem was defined by the condition φ′(0, ζ) = 1. Hence, equation (7.41)
follows. If θ(0, 0) ̸= 0, then θ̇(0, 0) is only defined for V having a second moment and

φ(x, 0) = iθ̇(0, 0)θ(x, 0) − iθ(0, 0)θ̇(x, 0) (7.44)

by [Corollary 4.3.11., [98]]. Again, taking on both sides of (7.44) the derivative with respect
to x and setting x = 0 leads to (7.42).

�

Proof of Proposition 7.15. We consider the explicit expression for the perturbation determi-
nant D(z) which was given in (7.18),

D(z) =
K(ζ)
inζ

n∏
j=1

wj(ζ), z = ζ2. (7.45)

Let us first consider the case M = 0. Then by Lemma 7.14 either ζ = 0 is not a resonance
and K(0) ̸= 0 or ζ = 0 is a resonance and K(0) = 0. If ζ = 0 is not a resonance, then
we see from (7.45) that as ζ → 0, D(z) = cζ−1(1 + o(1)), c ̸= 0. If ζ = 0 is a resonance,
then we consider K̇(0) =

∑n
j=1

(
θ̇′j(0, 0)θj(0, 0) − θ′j(0, 0)θ̇j(0, 0)

)
θ−2
j (0, 0) which by (7.42)

is the same as K̇(0) =
∑n

j=1 iθ
−2
j (0, 0) ̸= 0. Hence, by applying l’Hospital we have as ζ → 0,

D(z) → c ̸= 0.
Next, we consider case M ≥ 1. Without loss of generality let θ1(0, 0) = . . . = θM (0, 0) = 0.

We rewrite (7.45) as

D(z) =
1
inζ

 M∑
j=1

θ′j(0, ζ)
θj(0, ζ)

n∏
k=1

θk(0, ζ) +
n∑

j=M+1

θ′j(0, ζ)
θj(0, ζ)

n∏
k=1

θk(0, ζ)

 , z = ζ2. (7.46)
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Obviously, the second term on the right-hand side is O(ζM ). In the first term on the right-
hand side we have for each 1 ≤ j ≤M , as ζ → 0

θ′j(0, ζ)
θj(0, ζ)

n∏
k=1

θk(0, ζ) = θ′j(0, ζ)
n∏
k=1
k ̸=j

θk(0, ζ)

= ζM−1θ′j(0, 0)
M∏
k=1
k ̸=j

θ̇k(0, 0)
n∏

k=M+1

θk(0, 0) +O(ζM )

= ζM−1
θ′j(0, 0)

θ̇j(0, 0)

M∏
k=1

θ̇k(0, 0)
n∏

k=M+1

θk(0, 0) +O(ζM ).

In view of (7.41) and (7.46) we arrive at

D(z) =
ζM−1

inζ

 M∏
k=1

θ̇k(0, 0)
n∏

k=M+1

θk(0, 0)i
M∑
j=1

(θ′j(0, 0))2 +O(ζ)


= cζM−2 +O(ζM−1), c ̸= 0, z = ζ2.

�

In the remaining part we prove an analog of Levinson’s formula for star shaped graphs.
For k ∈ R, we set D(k2) = a(k)eiη(k), where a(k) = |D(k2)|. Then it follows from the
representation D(k2) = (K(k)/(ink))

∏n
j=1wj(k) that

− η(k) = η(−k). (7.47)

Indeed, it follows from the uniqueness of the Jost solutions θj(x, ζ) that θj(x, k) = θj(x,−k),
and θ′j(x, k) = θ′j(x,−k), and hence also wj(k) = θj(0, k) = wj(−k).

Proof of Theorem 7.3. First, we note that there is a spectral theoretical result relating the
zeros of the perturbation determinant to the eigenfunctions of H as follows. The function
D(ζ2) has a zero in ζ of order r if and only if ζ2 is an eigenvalue of multiplicity r of the
operator H, [97]. Obviously, the zeros of D(ζ2) lie on the positive imaginary axis as H is a
self-adjoint operator and therefore it may have only real eigenvalues.

We apply the argument principle to the functionD(ζ2) and the contour ΓR,ε which consists
of the half-circles C+

R = {|ζ| = R, Im ζ ≥ 0} and C+
ε = {|ζ| = ε, Im ζ ≥ 0} and the intervals

(ε,R) and (−R,−ε). We choose R and ε such that all of the N negative eigenvalues of H
lie inside the contour ΓR,ε. The function D(ζ2) is analytic inside and on ΓR,ε as wj(ζ) is
analytic in the the upper half-plane Im ζ > 0. Thus,∫

ΓR,ε

d
dζD(ζ2)

D(ζ2)
dζ = 2πiN. (7.48)

Remember that limIm ζ→∞D(ζ2) = limIm ζ→∞K(ζ)
∏n
j=1wj(ζ)/(niζ) = 1+O(|ζ|−1). Thus,

we can fix the branch of the function lnD(ζ2) by the condition lnD(ζ2) → 0 as Im ζ → ∞.

Then, we have lnD(ζ2) = ln |D(ζ2)| + iarg D(ζ2). Equation (7.48) implies that

varΓR,ε
arg D(ζ2) = 2πN. (7.49)
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We define η(0) := limk→0+ η(k). This limit exists because of asymptotics (7.40). It follows
with (7.47) that,

varΓR,ε
arg D(ζ2) = 2(η(R) − η(ε)) + varC+

R
arg D(ζ2) + varC+

ε
arg D(ζ2).

b

b

b

b

iκ1

iκ2

iκ3
iκ4

C+
R

C+
ε

Figure 10. contour of integration ΓR,ε

Now, we let R → ∞ and ε → 0. Because of (7.16), limR→∞ varC+
R
arg D(ζ2) = 0. Hence, it

follows from (7.49) that

η(∞) − η(ε) = πN − 1
2
varC+

ε
arg D(ζ2).

By Proposition 7.15, limε→0 varC+
ε
arg D(ζ2) = −(m− 1)π. Thus,

η(∞) − η(0) = π

(
N +

m− 1
2

)
. (7.50)

Note that η(∞) = 0 since lnD(ζ2) → 0 as |ζ| → ∞. It remains to note that in view of
Theorem 7.6, the following identity is true for λ = k2, k > 0,

ξ(λ) = π−1 lim
ε→0+

arg D(λ+ iε) = π−1η(λ1/2), λ > 0. (7.51)

The assertion of Theorem 7.3 then follows by combining (7.50) and (7.51).
�
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8. Remarks on Lieb-Thirring inequalities for quantum graphs

In paper I we proved that for metric trees sharp Lieb-Thirring inequalities do hold for
all moments γ ≥ 2 with the semiclassical constants Lclγ,1. In the classical case of the full
space Rd however it is known that Lieb-Thirring inequalities hold for moments γ ≥ 1/2. In
particular, these inequalities hold with the semiclassical (and thus sharp) constants Lcl3/2,d,
for all d ≥ 1 [70]. Hence, it is natural to ask whether Lieb-Thirring inequalities with moments
γ ≥ 3/2 do hold for quantum graphs with the same semiclassical constant Lcl3/2,1. The method
of sum rules applied in paper I fails in the case γ < 2 as it provides also monotonicity of
the eigenvalue moments with respect to coupling constants, which in general is not true
if γ < 2. Thus, we have to use different methods in order to obtain inequalities for the
case γ ≥ 1/2. For star shaped graphs Γ we derive Lieb-Thirring inequalities with moments
γ ≥ 1/2 by using variational arguments. If the graph has an even number of edges, this
leads to sharp Lieb-Thirring inequalities for γ = 1/2 and for all γ ≥ 3/2 with the same
constants as in the full space case. The variational methods fail if the graph has an odd
number of edges. In this case we decompose the Hilbert space L2(Γ) symmetrically which
leads to sharp Lieb-Thirring inequalities for spherically symmetric potentials.

Let us first recall the variational principle from general theory, see [82] for more details.

The variational principle. In the study of spectral properties of self-adjoint operators
the variational principle is a tool which is used very often to characterize the eigenvalues of
a given self-adjoint operator. Here we shall state the variational principle in the form which
we will refer to later when studying star shaped graphs. For more details, see [82].

Suppose that the operator H on a Hilbert space H is self-adjoint and bounded from below.
Let h[ϕ] denote the quadratic form with which H is associated. By d(h) we denote the form
domain of the operator H. Define

µk = max
ψ1,...,ψk−1∈H

inf
ϕ∈d(h);∥ϕ∥=1

ϕ∈[ψ1,...,ψk−1]⊥

h[ϕ], (8.1)

where ϕ ∈ [ψ1, . . . , ψk−1]⊥ is shorthand for {ϕ : (ϕ, ψi) = 0, i = 1, . . . , k − 1}. Then for
each fixed k ∈ N either there are k eigenvalues (counting multiplicity) below the bottom of
the essential spectrum of H and µk is the k-th eigenvalue counting multiplicity; or µk is the
bottom of the essential spectrum of H and there are at most k − 1 eigenvalues (counting
multiplicity) below µk.

The variational principle permits to compare eigenvalues of two self-djoint operators A
and B that are bounded from below. Let d[a] and d[b] denote the form domains of A and
B respectively. We say that A ≤ B if and only if d[b] ⊂ d[a] and (φ,Aφ) ≤ (φ,Bφ) for all
φ ∈ d[b]. As a consequence, the min-max Theorem implies that

µn(A) ≤ µn(B) for any n if A ≤ B.

8.1. Variational principle for quantum graphs. We consider a star graph which is a
metric graph Γ with a single vertex in which a finite number n ≥ 2 of edges ej are joined.
We assume throughout that all edges ej are infinite and we identify ej = [0,∞). We assume
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that the potential V is a real-valued function on Γ satisfying∫
ej

|Vj(xj)| dxj <∞ for all 1 ≤ j ≤ n, (8.2)

where we denoted the restriction of V to the edge ej by Vj(xj) = V (x)|ej . Under this
condition, we can define the Schrödinger operator

Hψ := −ψ′′ + V ψ (8.3)

with continuity and Kirchhoff vertex conditions

ψ1(0) = . . . = ψn(0) =: ψ(0),
n∑
j=1

ψ′
j(0) = 0, (8.4)

as a self-adjoint operator in the Hilbert space L2(Γ) = ⊕n
j=1L2(ej). In (8.4) we denoted

by ψj the restriction of ψ to the edge ej . More precisely, we define the operator H via the
closed quadratic form

h[ϕ] :=
∫

Γ
|ϕ′(x)|2 dx+

∫
Γ
V (x)|ϕ(x)|2 dx ,

with form domain d(h) = H1(Γ) consisting of all continuous functions ϕ on Γ such that
ϕj ∈ H1(ej) for every j. If V is sufficiently regular in a neighborhood of the vertex, then
functions ϕ in the operator domain of H satisfy the Kirchhoff vertex condition in (8.4);
otherwise this condition has to be interpreted in a generalized sense. Under these conditions
the spectrum of H consists of a continuous spectrum on the positive semiaxis and a discrete
spectrum of negative eigenvalues Ek.

Imposing Neumann vertex condition at the origin disconnects the graph Γ into n positive
half-lines. By variational arguments, the spectrum of a half-line Schrödinger operator can
then be estimated from above by the spectrum of a whole-line Schrödinger operator for
which Lieb-Thirring inequalities are known. In order to do this, we define the self-adjoint
Schrödinger operator

HN (V ) = − d2

dx2
+ V (x)

in L2(Γ) which is associated with the closed quadratic form

hN [ϕ] :=
∫

Γ
|ϕ′(x)|2 dx+

∫
Γ
V (x)|ϕ(x)|2 dx,

where ϕ is a function belonging to the form domain d(hN ) =
⊕n

j=1H
1(ej). If V is sufficiently

regular in a neighborhood of the vertex, then functions ψ in the operator domain of H satisfy
the Neumann condition ψ′

j(0) = 0 for all 1 ≤ j ≤ n. We note that the Neumann condition
disconnects the graph Γ in n positive half-lines and the operator HN =

⊕n
j=1HN (Vj) is

decoupled. Obviously, d(h) ⊂ d(hN ) and it follows from the variational principle that
HN ≤ H. Denoting the negative eigenvalues of HN (Vj) in L2(ej) by E(N)

k (Vj), the following
inequality yields ∑

k

|Ek|γ ≤
n∑
j=1

∑
k

|E(N)
k (Vj)|γ . (8.5)

Extending Vj to a symmetric function Ṽj in R, the right-hand side of (8.5) can be esti-
mated from above by the corresponding moments of the whole-line operator. Indeed, the
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Schrödinger operator on the whole-line with symmetric potential has alternating only Neu-
mann and Dirichlet eigenvalues, where the ground state corresponds to a Neumann eigen-
value. Denoting the best possible Lieb-Thirring constant for the whole-line Schrödinger
operator by Lγ,1, we arrive at∑

k

|E(N)
k (Vj)|γ ≤ Lγ,1

∫
R
(Ṽj(x))

γ+1/2
− dx = 2Lγ,1

∫
ej

(Vj(x))
γ+1/2
− dx. (8.6)

We note that Lγ,1 ≤ 2Lclγ,1 if γ ≥ 1/2 and Lγ,1 = Lclγ,1 if γ ≥ 3/2. Summing over j in (8.6)
and combining (8.5) with (8.6) leads finally to

∑
k

|Ek|γ ≤ 2Lγ,1
∫

Γ
(V−(x))γ+1/2 dx, γ ≥ 1/2. (8.7)

Remark 8.1. As mentioned before, the best possible Lieb-Thirring constant for the quantum
graph is always greater or equal to the best possible constant for the whole-line Schrödinger
operator.

The Lieb-Thirring inequalities given in (8.7) are not sharp. In fact, the constants can be
improved when we distinguish the case in which Γ has an even number of edges from the
case with an odd number of edges.

Theorem 8.2. Assume that Γ has an even number of edges, i.e. n = 2m, m ∈ N, and that
V ∈ Lγ+1/2(Γ). Then, the following inequalities hold,∑

k

|Ek|γ ≤ Lγ,1

∫
Γ
(V−(x))γ+1/2 dx, γ ≥ 1/2. (8.8)

Proof. Given a star graph with 2m half-lines, we can disconnect the graph such that we
obtain m whole-lines. The whole-line Schrödinger operators in L2(R) are denoted by

HR(Vi) = − d2

dx2
+ Vi(x), (8.9)

where the potentials Vi, i = 1, . . . ,m, on the disconnected lines are identified with the
potential V defined on the graph. We compare the quadratic form domain of H with the
quadratic form domain of

⊕m
i=1HR(Vi). The quadratic form domain of H is, as stated above,

d(h) = H1(Γ). Whereas, the Schrödinger operator HR(Vi) in L2(R) is associated with the
closed quadratic form given by

hR,i[f ] :=
∫

R
|f ′(x)|2 dx+

∫
R
Vi(x)|f(x)|2 dx, f ∈ d(hR,i) := H1(R).

We denote the quadratic form domain of
⊕m

i=1HR(Vi) by
⊕m

i=1 d(hR,i). Obviously,

d(h) ⊂
m⊕
i=1

d(hR,i), (8.10)

and
⊕m

i=1HR(Vi) ≤ H. Denoting the negative eigenvalues of the whole-line Schrödinger
operator HR(Vi) on the i-th line by Ek(Hi), we obtain∑

k

|Ek|γ ≤
m∑
i=1

∑
k

|Ek(Hi)|γ . (8.11)
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It follows from the well-known Lieb-Thirring inequalities for the whole-line that the right-
hand side in (8.11) is bounded from above by

m∑
i=1

Lγ,1

∫
R
(Vi(x))

γ+1/2
− dx = Lγ,1

∫
Γ
(V−(x))γ+1/2 dx.

This proves Theorem 8.2. �

Inequality (8.8) is sharp for γ = 1/2 and γ ≥ 3/2. As this proof does not work in the case
when Γ has an odd number of edges, we shall apply other arguments to derive Lieb-Thirring
inequalities in this case.

Theorem 8.3. Assume that Γ has an odd number of edges, i.e. n = 2m + 1, m ∈ N, and
that V ∈ Lγ+1/2(Γ) Then, for all γ ≥ 1/2 the following estimates hold,∑

k

|Ek|γ ≤
(
n+ 1
n

)
Lγ,1

∫
Γ
(V−(x))γ+1/2 dx. (8.12)

Proof. Given a star graph with 2m + 1 half-lines, we can disconnect the graph such that
we obtain m whole lines and one half-line. Again, the potentials on the disconnected lines
are identified with the potential V defined on the graph. We choose the half-line to be the
(2m+ 1)-th edge of the graph on which the potential V2m+1 is defined. On the half-line we
define the Schrödinger operator

HN (V2m+1) = − d2

dx2
+ V2m+1(x)

in L2(R+) with Neumann boundary condition, i.e. any function φ belonging to the operator
domain of HN satisfies the condition φ′(0) = 0. The self-adjoint operator HN is associated
with the closed quadratic form given by

hN [f ] :=
∫
e2m+1

|f ′(x)|2 dx+
∫
e2m+1

V2m+1(x)|f(x)|2 dx, f ∈ d(hN ) := H1(e2m+1).

For the quadratic form domains of H, HR(Vi) and HN (V2m+1), we have the relation

d(h) ⊂
m⊕
i=1

d(hR,i) ⊕ d(hN ). (8.13)

With the argument of extending V2m+1 to an even function on R, the eigenvalues of the
Neumann Schrödinger operator on the half-line can be estimated from above with twice
the Lieb-Thirring constant for the whole-line Schrödinger operator. Whereas for the m

whole-line Schrödinger operators we have the sharp estimates from Theorem 8.2. This leads
together with (8.13) to the following estimate for γ ≥ 1/2,

∑
k

|Ek|γ ≤
2m∑
j=1

Lγ,1

∫
ej

(Vj(x))
γ+1/2
− dx+ 2Lγ,1

∫
e2m+1

(V2m+1(x))
γ+1/2
− (x) dx. (8.14)

We can apply the same procedure to the case where the half-line is now identified with
another edge of Γ. Altogether we have 2m + 1 choices to do this, where all of them give
analog inequalities of (8.14). Averaging over all of these 2m + 1 inequalities, we conclude
Theorem 8.3. �
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8.2. Symmetric Decomposition for quantum graphs. We consider the star graph given
in the previous section. Let H be the self-adjoint Schrödinger operator defined in (8.3) with
the Kirchhoff matching condition (8.4). The symmetry of Γ allows one to construct an
orthogonal decomposition of the space L2(Γ) which reduces the Kirchhoff Laplacian. If,
in addition V is symmetric, it also reduces the operator H. The study of the spectrum
of H is then reduced to the study of the spectrum of the orthogonal components in the
decomposition, where each component can be identified with a differential operator acting
in the space L2(R+).

In [31, 77, 89] a decomposition of the L2 space was given for the case of regular, rooted
metric trees. In what follows, we reformulate the decomposition of L2(Γ) for our purposes
in the special case of star graphs with finitely many edges n.

We define by H(0) the closed subspace of L2(Γ) which contains all symmetric functions
on Γ, i.e.,

H(0) := {ψ ∈ L2(Γ) : ∀r : ψ(r) := ψ1(r) = ψ2(r) = . . . = ψn(r)},

where ψj := ψ|ej . Any symmetric function ψ on Γ can be identified with the function
s := Rψ on the half-line [0,∞), such that ψ(x) = s(|x|) for each x ∈ Γ, and∫

Γ
|ψ(x)|2 dx = n

∫ ∞

0
|s(x)|2 dx, ψ ∈ H(0), s = Rψ.

Thus, the operator
√
nR defines an isometry of the subspace H(0) onto the space L2(R+).

Further, ∫
Γ
|ψ′(x)|2 dx = n

∫ ∞

0
|s′(x)|2 dx, ψ ∈ H(0) ∩H1(Γ).

To state the orthogonal decomposition of L2(Γ) we define for 1 ≤ ℓ ≤ n − 1, the following
orthogonal subspaces H(ℓ) which are all isometric to L2(R+),

H(ℓ) := {ψ ∈ L2(Γ) : ∀j, r : ψj+1(r) = ei2π(ℓ/n)ψj(r) mod n} ∼ L2(R+).

Lemma 8.4. Let Γ be a star graph. Then the subspaces H(ℓ), ℓ = 0, . . . , n−1, are mutually
orthogonal and

L2(Γ) =
n−1⊕
ℓ=0

H(ℓ). (8.15)

Proof. First, we show that L2(Γ) = span {H(ℓ) : ℓ}, i.e., for every function ψ ∈ L2(Γ) there
exists a function ψ(ℓ) ∈ H(ℓ) such that ψ =

∑n−1
ℓ=1 cℓψ

(ℓ).

Note that for n = 2 this corresponds to the fact that every function on the real line is
given as a sum of even and odd functions. Namely, any function ψ1 = ψ|e1 on the first edge
can be written as

ψ1(r) =
1
2

(ψ1(r) + ψ2(r)) +
1
2
(
ψ1(r) + e−iπψ2(r)

)
, r ∈ [0,∞),

where obviously ψ1(r) + ψ2(r) ∈ H(0) is an even function and ψ1(r) + e−iπψ2(r) ∈ H(1) is
odd. Simlarly, ψ2(r) is given as a sum of an even and an odd function,

ψ2(r) =
1
2

(ψ1(r) + ψ2(r)) +
1
2
(
ψ2(r) + eiπψ1(r)

)
, r ∈ [0,∞).
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Returning to the general case of a star graph with n edges, any function on the k-th edge
can be presented as

ψk =
1
n

n∑
j=1

ψj +
n−1∑
ℓ=1

1
n

ψk +
∑
j ̸=k

ei2πℓ/nψj

 , (8.16)

where for each 1 ≤ ℓ ≤ n − 1 the function ψk +
∑

j ̸=k e
i2πℓ/nψj is in the subspace H(ℓ).

Indeed, the right-hand side in (8.16) can be rewritten as

ψk +
1
n

∑
j ̸=k

ψj +
1
n

n−1∑
ℓ=1

∑
j ̸=k

ei2πℓ/nψj = ψk +
1
n

∑
j ̸=k

ψj

n−1∑
ℓ=0

ei2πℓ/n.

As
n−1∑
ℓ=0

ei2πℓ/n =
n−1∑
ℓ=0

(
ei2π/n

)ℓ
=

(
ei2π/n

)n − 1(
ei2π/n

)
− 1

= 0,

equality (8.16) follows. It remains to prove that the spaces H(ℓ), 0 ≤ ℓ ≤ n−1, are mutually
orthogonal. For ψ(ℓ) ∈ H(ℓ) and ψ(m) ∈ H(m), with ℓ ̸= m, consider

∫
Γ
ψ(ℓ)ψ(m) dx =

n∑
j=1

∫
ej

ψ
(ℓ)
j ψ

(m)
j dx =

n∑
j=1

∫
ej

e2iπℓ(j−1)/nψ
(ℓ)
1 e−2iπm(j−1)/nψ

(m)
1 dx

=
∫
e1

ψ
(ℓ)
1 ψ

(m)
1 dx

n∑
j=1

(
e2iπ(ℓ−m)/n

)j−1
. (8.17)

The right-hand side in (8.17) equals zero, as

n∑
j=1

(
e2iπ(ℓ−m)/n

)j−1
=

n−1∑
j=0

(
e2iπ(ℓ−m)/n

)j
=

(
ei2π(ℓ−m)/n

)n − 1(
ei2π(ℓ−m)/n

)
− 1

= 0.

Hence, the spaces H(ℓ), 0 ≤ ℓ ≤ n− 1, are mutually orthogonal.
�

We introduce the following notation for functions ψ(ℓ) ∈ H(ℓ) and their derivatives ,

ψ(ℓ)(x) =
(
ψ

(ℓ)
1 , . . . , ψ(ℓ)

n

)T
, (ψ(ℓ))′(x) =

((
ψ

(ℓ)
1

)′
(x), . . . ,

(
ψ(ℓ)
n

)′
(x)
)T

.

We recall that for all H(ℓ) there exists an isometry onto the space L2(R+) and that every
function ψ(ℓ) ∈ H(ℓ) can be constructed if one of the components ψ(ℓ)

j on the j-th edge

is known. So, in order to determine ψ ∈ L2(Γ) we only need ψ
(ℓ)
j , ℓ = 0, . . . , n − 1. In

the following, we assume that the potential V is symmetric. Then, the operator H|H(0) is
unitary equivalent to a self-adjoint half-line Schrödinger operator H(0) in L2(R+) associated
with the quadratic form h(0) with form domain d(h(0)) = H1(R+). Similarly the operators
H|H(ℓ) , ℓ = 1, . . . , n − 1, are unitary equivalent to half-line Schrödinger operators H(ℓ) on
L2(R+) associated with closed quadratic forms h(ℓ) with form domains d(h(ℓ)) = H1,0(R+) =
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{ϕ ∈ H1(R+) : ϕ(0) = 0}. For ϕ ∈ H1(Γ) and ϕ(ℓ) ∈ h(ℓ) the equality∫
Γ

(
|ϕ′|2 + V |ϕ|2

)
dx =

n−1∑
ℓ=0

∫ ∞

0

(
|ϕ(ℓ)′ |2 + V |ϕ(ℓ)|2

)
dx,

is true, see e.g. [31]. Hence, the operator H on L2(Γ) is unitary equivalent to the orthogonal
sum of the operators H(ℓ) on L2(R+),

H ∼ HU =
n−1⊕
ℓ=0

H(ℓ), (8.18)

where functions from the operator domain of H(0) satisfy Neumann boundary condition
at the origin, whereas functions belonging to the operator domain of H(ℓ) for 1 ≤ ℓ ≤
n − 1 satisfy Dirichlet boundary condition at the origin. According to this statement, the
description of the spectrum σ(H) reduces to the description of the spectrum σ(H(ℓ)). Namely,
it is well-known from general spectral theory that

σ(H) = ∪n−1
ℓ=0 σ

(
H(ℓ)

)
, (8.19)

where the multiplicities of the eigenvalues are equal at both sides. As a consequence, we get∑
k

|Ek|γ =
∑
k

|E(N)
k |γ + (n− 1)

∑
k

|E(D)
k |γ ,

where E(N)
k and E(D)

k denote the eigenvalues of the operators H(0) and H(ℓ), ℓ = 1, . . . , n−1,
respectively.

Consider now the Schrödinger operator

HR = − d2

dx2
+ Ṽ ,

in L2(R), where the potential Ṽ denotes the symmetric extension of the potential V |ej to
the whole-line. Then, it follows from (8.18) that

H ∼ ⊕n−1
ℓ=2H

(ℓ) ⊕HR,

and hence, ∑
k

|Ek|γ =
∑
k

|Ẽk|γ + (n− 2)
∑
k

|E(D)
k |γ ,

where we have denoted by Ẽk the negative eigenvalues of HR. Thus, we have proved the
following

Corollary 8.5. Let V ∈ L2(Γ) be spherically symmetric on a star graph Γ with n ≥ 2 edges.
Then, the following trace identity holds∑

k

|Ek|γ =
∑
k

|Ẽk|γ + (n− 2)
∑
k

|E(D)
k |γ . (8.20)

We note that the Lieb-Thirring inequalities for the whole-line Schrödinger operator hold
also for the Dirichlet half-line Schrödinger operator with the same constants. Therefore,
identity (8.20) implies sharp Lieb-Thirring inequalities for the Schrödinger operator H in
L2(Γ) with symmetric potential and Kirchhoff vertex condition.
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Theorem 8.6. Let H be the Schrödinger operator defined in (7.2) with spherically symmetric
potential V ∈ Lγ+1/2(Γ) and Kirchhoff vertex condition (7.3). Then,∑

k

|Ek|γ ≤ Lγ,1

∫
Γ
(V−(x))γ+1/2 dx, γ ≥ 1/2. (8.21)

Remark 8.7. These inequalities are sharp for γ = 1/2 and γ ≥ 3/2. Further, they hold for
the star graph with an arbitrary number of edges as soon as the potential is symmetric. This
gives rise to the conjecture that also the inequalities in Theorem 8.3 should hold with the
sharp constants given in (8.21). We think that it is an interesting open question whether
the Lieb-Thirring inequality on a star-shaped graph with an odd number of edges holds with
the whole-line constant.
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