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Abstract

Interactions between single atoms are fundamental to physics and to control them is an
ultimate goal. The exaggerated properties of Rydberg atoms offer to met the technical
challenges to isolate and control single interaction channels in ultracold gases. Here, I
present experiments on two subjects related to interactions of Rydberg atoms in dense
ultracold clouds. One subject concerns coherence in strongly interacting ensembles of
atoms, where the interaction between Rydberg atoms is induced via Stark-tuned Förster
resonances. Pulsed experiments, following the idea of Ramsey experiments, are used for
high resolution spectroscopy of the Förster defect and phase sensitive detection. Coher-
ent oscillations between pair states and an interaction-induced phase shift of Rydberg
atoms are measured. These experiments are accompanied by calculations of the interac-
tion strength and by simulations using the concept of a pair state interferometer. The
simulations nicely reproduce the experimental findings and support the observation that
the ensemble of atoms in the presence of interactions can be described and controlled
coherently.
The second subject of this thesis is the measurement of a permanent dipole moment in a
homonuclear diatomic molecule that arises by the interaction between a Rydberg atom
and a ground state atom. Usually parity symmetry prohibits a permanent dipole mo-
ment in diatomic molecules, but here the strong asymmetry between the constituents of
the ultralong-range Rydberg molecule allows breaking parity symmetry. These molecules
consist of one ground state atom bound inside the Rydberg electron wavefunction of a
highly excited atom. Calculations predict dipole moments on the order of 1Debye.
Experimental proof is reported on the measurement of a linear Stark effect of these
molecules, in excellent agreement with the calculations.
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Zusammenfassung

Ultrakalte Physik stellt zur Zeit eines der heißesten Forschungsgebiete der Physik dar.
Dabei bedeutet ’ultrakalt’ Temperaturen nahe dem absoluten Temperatur-Nullpunkt,
unter 1mK, bei denen quantenmechanische Effekte auftreten. Auch wenn diese Tem-
peraturen weit von alltäglichen Bedingungen entfernt sind, können viele offene Fragen
der Physik unter diesen Umständen untersucht werden und sogar einige Anwendungen
aus der ultrakalten Physik entstehen. Die fundamentale Idee ist, dass Atome sehr gut
verstanden und kontrolliert werden können, wenn sie sich an einer bekannten Position
befinden und aufgrund ihrer niedrigen Temperatur praktisch nicht bewegen.
Dabei ist die Kombination dieser ultrakalten Atome mit hochangeregten Atomen, so-
genannten Rydbergatomen, sehr vielversprechend, weil Rydbergatome und ultrakalte
Grundzustandsatome in vieler Hinsicht Gegensätze darstellen. Rydbergatome sind
mehrere Größenordnungen größer als Grundzustandsatome und wechselwirken stark,
wohingegen ultrakalte Atome im Grundzustand kleine Wechselwirkungen zeigen. Wer-
den diese Extrema kombiniert bieten sich interessante Möglichkeiten, sowohl für neue
Physik als auch für neue Anwendungen. Die meisten Experimente und theoretischen
Vorschläge der ultrakalten Rydbergphysik basieren auf diesen Gegensätzen.
In dieser Arbeit stelle ich zwei Arten von Experimenten vor. Zum einen befasse ich
mich mit Experimenten, bei denen Wechselwirkungen zwischen Rydbergatomen durch
Förster-Resonanzen induziert werden und die Stärke durch externe elektrische Felder
beeinflusst wird. Die starke Wechselwirkung zwischen den Rydbergatomen, verglichen
mit der Wechselwirkung zwischen den Grundzustandsatomen, ermöglicht es, einzelne
Wechselwirkungskanäle zu isolieren und kohärent zu kontrollieren. Zum anderen stelle
ich Experimente vor, die ein permanentes elektrisches Dipolmoment in einem homo-
nuklearen Rydbergmolekül nachweisen. Dieses Dipolmoment bildet sich aufgrund der
Größenunterschiede zwischen Rydberg- und Grundzustandsatomen. Die physikalischen
Hintergründe der Experimente sind sehr verschieden, trotzdem basieren beide auf Ryd-
berganregungen in ultrakalten Atomen und zeigen damit die Vielseitigkeit der ultra-
kalten Physik.
Seit der Erfindung der Laserkühlung und des Fangens von Atomen mit Laserlicht [1],
für die Steven Chu, Claude Cohen-Tannoudji und William D. Phillips 1997 mit dem
Nobelpreis ausgezeichnet wurden [2], hat sich die ultrakalte Physik rasant entwickelt.
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Zusammenfassung

Laserkühlung ermöglicht es, gasförmige Atome im Vakuum zu kühlen, ohne dass die
Atome zu einer Flüssigkeit oder einem Festkörper kondensieren. Dabei werden sie auf
so geringe Geschwindigkeiten abgebremst, dass quantenmechanische Effekte aufgrund
der geringen thermischen Energie autreten.
Aufgrund der guten Kontrolle von einzelnen Atomen oder von Atomwolken bei diesen
Temperaturen können verschiedene Themen untersucht werden. Dies führt zu besserem
Verständnis und besserer Kontrolle bekannter Bereiche der Physik als auch zu neuen
Bereichen, die bisher nicht realisiert werden konnten oder sogar völlig unbekannt waren.
Bisher ist in Hinsicht auf neue Bereiche der Physik die möglicherweise größte Errun-
genschaft der ultrakalten Physik die Erzeugung eines Bose-Einstein Kondensats, für das
2001 Eric A. Cornell, Wolfgang Ketterle und Carl E. Wieman mit dem Nobelpreis geehrt
wurden [3].
Neben diesen Aspekten der Grundlagenforschung bietet die ultrakalte Physik auch
vielfältige Anwendungsmöglicheiten. Eine bekannte Anwendung sind Atomuhren [4, 5],
die seit vielen Jahren den Zeitstandart festlegen und auf lasergekühlten Atomen basieren.
Ebenso können hochpräzise Messungen mit ultrakalten Atomen gemacht werden, soge-
nannte Quantenmetrologie [6]. Vielversprechend sind zum Beispiel hochpräzise Mes-
sungen der Gravitation [7]. Ein weiteres mögliches Anwendungsfeld, bereits 1982 von
Richard Feynman theoretisch begründet [8], ist Quanteninformationsverarbeitung und
Quantensimulation von komplexen quantenmechanischen Strukturen aus der Festkör-
perphysik oder Biophysik [9, 10]. Auch wenn noch große Schritte zu einer Anwen-
dung außerhalb der Grundlagenforschung fehlen, so sind die ersten Ansätze vorhan-
den. Neueste aufsehenerregende experimentelle Ergebnisse sind Simulationen einer
Ising-Kette in einem optischen Gitter als Modellsystem für ein magnetisches System
[11].
In Quantensimulatoren wird das quantenmechanische System als quantenmechanisches
Modellsystem, beispielsweise mithilfe von ultrakalten Atomen, Stück für Stück nachge-
baut und die Eigenschaften des Modells bestimmt. Ein wichtiger Bestandteil sind kon-
trollierbare, langreichweitige Wechselwirkungen zwischen den Atomen, um das Modell-
system zu erzeugen, das dem realen System entspricht. Neben polaren Molekülen [12]
sind hierzu auch Rydbergatome vorgeschlagen worden [10, 13].
In Rydbergatomen ist ein Elektron in einem hochangeregten Zustand, somit ist
die Ausdehnung der Elektronenwellenfunktion sehr groß. Dadurch werden Rydberg-
atome einfach polarisiert und zeigen starke Van-der-Waals-Wechselwirkungen [14]. Die
erste Beobachtung dieser Rydberg-Rydberg Wechselwirkung wurde bereits 1981 in
einem Atomstrahlexperiment gemacht [15]. Unter bestimmten Bedingungen können
Paarzustände, die aus den Energieniveaus zweier Atome bestehen, in externen Feldern
resonant werden. An diesen sogenannten Förster-Resonanzen kann die Wechselwirkung
einen dipolaren, langreichweitigen Charakter zeigen und die Stärke der Wechselwirkung
kann über das externe Feld als Kontrollparameter variiert werden. Förster-Resonanzen
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von Rydbergatomen sind das erste Mal in Atomstrahlexperimenten in Tom Gallaghers
Gruppe beobachtet worden. Dabei wurde 1981 ein statisches elektrisches Feld genutzt
[16], um die Resonanz zu erzeugen, und 1982 ein Mikrowellenfeld [17]. Insbesondere
die Möglichkeit, die Stärke der Wechselwirkung durch das externe Feld zu kontrollieren,
macht Förster-Resonanzen zwischen Rydbergatomen interessant. Sie wurden deshalb in
vielen Gruppen studiert [18, 19, 20, 21, 22, 23, 24, 25].
Rydberganregungen ultrakalter Atome bieten die Möglichkeit kohärenter Kontrolle der
Rydberganregung und der Wechselwirkungen zwischen den Atomen. Einzeln wurden
sowohl die kohärente Rydberganregung in mehreren Experimenten nachgewiesen [26, 27]
als auch die Kohärenz in der Kopplung zwischen Rydbergatomen an einer Förster-
Resonanz [28]. Kohärente Kontrolle ist eine fundamentale Voraussetzung für Quan-
teninformation und Quantensimulation. Neben der Simulation von Gleichgewichts-
zuständen kann auch die Zeitentwicklung eines stark korrelierten Vielteilchensystems
beobachtet werden. Solche dynamischen Quanteneffekte sind beispielsweise eine quan-
tenmechanische Zufallsbewegung [29] oder auch kohärente Energieübertragung [18].
Diese Energieübertragung ist insbesondere in der Biophysik interessant, bei der sie
in der Photosynthese und Photolumineszenz auftritt. Dieser sogenannte Förster-
Resonanzenergietransport (FRET) wurde zum ersten Mal 1948 von Theodor Förster
[30] als nicht-kohärenter, strahlungsfreier Energietransport zwischen zwei Molekülen
beschrieben, deren angeregte Zustände resonant sind. Die bereits angesprochenen
Förster-Resonanzen zwischen Rydbergatomen stellen ebenso eine resonante, strahlungs-
freie Kopplung zweier Übergangsdipole dar [31] und sind deshalb nach dem FRET-
Prozess benannt.
Entgegen der ursprünglichen Beschreibung als nicht-kohärenter Energietransport haben
Experimente an Photosynthesekomplexen mittlerweile gezeigt, dass unerwaret langle-
bige Kohärenzen eine Rolle bei der Energieübertragung spielen [32, 33]. Dies ist über-
raschend, weil innerhalb dieser Komplexe die Freiheitsgrade der Moleküle stark aneinan-
der gekoppelt sind und zusätzlich eine Kopplung an die Umgebung bei Raumtemperatur
besteht. In diesem System wird eine schnelle Dephasierung erwartet, im Gegensatz zu
einem System aus kontrollierten ultrakalten Atomen im Vakuum.
Ein intuitives Verständnis der Dephasierung in einem quantenmechanischen Netzwerk ist
schwierig und ein solches System zeigt überraschende Eigenschaften. Rechnungen haben
gezeigt, dass unter bestimmten Umständen eine Dephasierung den Energietransport
unterstützen kann und zu einer schnelleren und effektiveren Übertragung führt [34].
Somit könnten beispielsweise thermische Fluktuationen in den Photosynthesekomplexen
die Photosynthese unterstützen. Das theoretische Verständnis einzelner Prozesse ist be-
reits weit fortgeschritten [35], aber ein vollständiges Bild der komplexen Dynamik in der
Photosynthese ist schwierig. Dabei könnten experimentelle Quantensimulationen mit
ultrakalten Atomen und Rydberganregungen helfen [36, 37]. Die hohe Kontrollierbarkeit
ultrakalter Atome bietet die Möglichkeit, Dephasierungsprozesse gezielt einzusetzen und
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Zusammenfassung

die Einflüsse zu studieren. Rydbergatome liefern die notwendigen Wechselwirkungen um
den Energietransport zu simulieren.
Auch Quanteninformationsverarbeitung mit Rydberganregungen von neutralen Atomen
ist möglich. Bisher wurden die besten Demonstrationen von Quantencomputern mit
gefangenen Ionen gemacht. Diese geladenen Teile können einfach mit elektrischen
Feldern gefangen werden und zeigen sehr große Kohärenzzeiten [38]. Aber auch auf
dem Gebiet der ultrakalten, neutralen Atome wurden wichtige Fortschritte mithilfe
von Wechselwirkungen zwischen Rydbergatomen in den letzten Jahren gemacht. Hier-
zu zählt die Erzeugung von verschränkten Zuständen zwischen zwei Atomen und die
Realisation eines quantenmechanischen Gatters [39], das einen elementaren Rechen-
schritt eines Quantencomputers darstellt. Die Idee, Rydbergatome für Quanteninfor-
mationsverarbeitung zu verwenden, wurde bereits im Jahr 2000 für einzelne Atome
formuliert [40] und 2001 auf Mehrteilchensysteme erweitert [41]. Das einfachste Gat-
ter basiert auf der Rydbergblockade. Ein Atom im Rydbergzustand kann durch starke
Rydbergatom-Rydbergatom-Wechselwirkungen umliegende Atome derart beeinflussen,
dass sie nicht angeregt werden können. In dem Gatter fungiert ein Atom (oder eine
Wolke von Atomen) als Kontroll-Quantenbit das bestimmt, ob das andere Atom an-
geregt werden kann oder nicht. Dadurch kann ein Zwei-Quantenbit-Gatter aufgebaut
werden. Die Rydbergblockade zwischen zwei einzelnen Atomen wurde gleichzeitig von
zwei Gruppen nachgewiesen [42, 43] und kurz darauf wurde auch das Zwei-Quantenbit-
Gatter [44] realisiert.
Bereits in der ersten Veröffentlichung zu den Rydberg Gattern [40] wurde eine zweite
Variante, die auch auf Rydberg-Wechselwirkungen zwischen zwei Gruppen von Atomen
basiert, vorgeschlagen. Allerdings ist die Wechselwirkung zwischen Rydbergatomen
in dieser Variante schwächer und unterdrückt nicht die Anregung eines zweiten Ryd-
bergatoms, sondern beeinflusst nur dessen Zeitentwicklung. Dadurch erfährt das
Rydbergatom eine Phasenveränderung, die als Gatter umgesetzt werden kann.

In dieser Arbeit stelle ich Experimente vor, die nicht nur die inneren Freiheitsgrade
einzelner Atome, wie der elektronische Zustand und die Phase, sondern auch gleichzei-
tig die Wechselwirkung zwischen Rydbergatomen an einer Förster-Resonanz kohärent
kontrollieren. Als externes Kontrollfeld wird ein statisches elektrisches Feld genutzt,
um Paarzustände zweier Atome durch den Stark-Effekt in Resonanz zu schieben und
die Förster-Resonanz zu erzeugen. Diese Resonanzen werden in einer ultrakalten, mag-
netisch gefangenen Atomwolke mithilfe von Ramsey-Spektroskopie untersucht und eine
bisher unerreichte Auflösung des Energieunterschiedes der Paarzustände dieser Förster-
Resonanz erreicht. Die Ramsey-Spektroskopie stellt eine neue Methode dar, induzierte
Wechselwirkungen ultrakalter Rydbergatome zu studieren. Sie bietet den technischen
Vorteil, dass nur die gesamte Rydbergatomzahl gemessen werden muss und keine zu-
standssensitive Detektion notwendig ist.
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Diese interferometrische Methode ermöglicht auch, die Phase der Rydbergatome zu
messen und somit Informationen über die kohärente Entwicklung des Systems zu gewin-
nen. Mithilfe eines Doppel-Ramsey-Experiments, bei dem das elektrische Feld gepulst
wurde, um eine Ramsey-ähnliche Sequenz der Wechselwirkungsstärke zu erzeugen, konn-
ten kohärente Oszillationen im wechselwirkenden Paarzustandssystem gemessen wer-
den. Diese Messungen weisen direkt die kohärente Entwicklung der Paarzustände der
wechselwirkenden Atome nach. Gleichzeitig wird aber auch eine reduzierte Sichtbarkeit
des Ramsey-Interferenzmusters bei starken Wechselwirkungen während der Ramsey-
Messungen beobachtet.
Berechnungen der Wechselwirkungsstärke und der Winkelabhängigkeit der Wechsel-
wirkung zwischen zwei Rydbergatomen bei einer Förster-Resonanz ermöglichen eine
Simulation der Experimente. Dazu habe ich das Konzept eines Paarzustandsinterfero-
meters eingeführt. Die Ergebnisse der Simulationen stimmen sehr gut mit den Mes-
sungen überein und unterstützen die Beobachtung, dass sich das wechselwirkende
Mehrteilchensystem kohärent verhält. Der gemessene Verlust an Sichtbarkeit wird auch
in den vollständig kohärenten Simulationen beobachtet und kann auf Dephasierungen
innerhalb des kohärenten Paarzustandssystems zurückgeführt werden. Die Kohärenz
in einem solchen System ist eine grundlegende Voraussetzung für die Anwendungen im
Bereich der Quanteninformationsverarbeitung und Quantensimulation. Weitere Mes-
sungen und Simulationen zeigen eine Phasenverschiebung der Rydbergatome, die durch
die Rydberg-Wechselwirkung erzeugt wird. Die Stärke der wechselwirkungsinduzierten
Phasenverschiebung folgt einem dispersiven Verlauf im elektrischen Feld nahe der
Förster-Resonanz. Das zeigt, dass die Stärke der Wechselwirkung und das Vorzeichen,
von attraktiver zu repulsiver Wechselwirkung, durch das externe Kontrollfeld kohärent
variiert werden kann. Solche wechselwirkungsinduzierten Phasenverschiebungen können
beispielsweise das Zwei-Quantenbit-Gatter realisieren [40].

Ein weiteres sehr neues Forschungsgebiet ist die ultrakalte Chemie. Dieses Ge-
biet zwi schen ultrakalter Physik und Chemie mag irritierend wirken, weil bei ul-
trakalten Temperaturen, bei denen die Bewegung der Atome praktisch eingefroren
ist, auf den ersten Blick keine chemischen Reaktionen auftreten. Doch aufgrund
der quan tenme cha ni schen Wellennatur der Teilchen können bei diesen Temperaturen
durch Streuprozesse der Wellenfunktionen der Teilchen durchaus chemische Prozesse
auftreten. Bisher gibt es nur wenige Experimente, die dem Feld der ultrakalten Chemie
zugeordnet werden können, beispielsweise chemische Reaktionen ultrakalter Moleküle
[45], Bose-Einstein Kondensation von Molekülen [46, 47], Efimov Resonanzen [48] und
die Photoassoziation von langreichweitigen Rydbergmolekülen [49].
Diese Rydbergmoleküle zeigen einen neuen Bindungsmechanismus, der bisher in der
Chemie nicht bekannt war und aufgrund der geringen Bindungsenergien nur bei ul-
trakalten Temperaturen möglich ist. Die Moleküle stellen einen gebundenen Zustand
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Zusammenfassung

zwischen einem Atom im Rydberg-Zustand und einem Grundzustandsatom, das sich
innerhalb der Wellenfunktion des Rydbergelektrons befindet, dar. Das Rydbergelektron
streut an dem Grundzustandsatom und erzeugt dadurch ein attraktives Potential, das
zur Bindung führt.
Dieser Bindungsmechanismus stellt allerdings nicht die einzige überraschende Eigen-
schaft dieser Moleküle dar. Ich zeige in dieser Arbeit Messungen eines linearen Stark-
Effekts der Moleküle bei kleinen elektrischen Feldern, ein eindeutiger Hinweis auf ein
permanentes, räumlich ausgerichtetes Dipolmoment. Ein solches Dipolmoment ist aus
verschiedenen Gründen üblicherweise in zweiatomigen, homonuklearen Molekülen nicht
möglich.
Ein permanentes Dipolmoment erfordert eine Ladungstrennung innerhalb des Moleküls.
Dies tritt normalerweise in heteronuklearen Molekülen, die aus verschiedenen El-
ementen bestehen, durch verschiedene Elektroaffinitäten auf. In homonuklearen
Molekülen ist keines der beteiligten Atome ausgezeichnet und es entsteht keine po-
lare Ladungsverteilung. Bei den hier untersuchten Molekülen ist eine Ladungstrennung
trotzdem möglich, weil sich die Atome in deutlich verschiedenen Anregungszuständen
befinden und sich deshalb unterschiedlich verhalten. Im Falle einer solchen Ladungstren-
nung tritt jedoch nicht immer ein Dipolmoment entlang der Molekülachse auf, weil die
Zustände, bei denen die Ladungstrennung entgegengesetzt ist, ohne elektrisches Feld en-
tartet sind. Aufgrund dieses Symmetrieargumentes ist der Eigenzustand des Moleküls
eine Mischung beider Zustände, deren Effekt auf das Dipolmoment sich aufhebt. Bei
den langreichweitigen Rydbergmolekülen unterscheiden sich die zwei beteiligten Atome
aufgrund der Anregung des Rydbergatoms so deutlich in der Größe, dass ein Austausch
des Ladungsschwerpunktes sehr unwahrscheinlich ist. Das Molekül wird direkt in einem
Zustand, der eine Ladungstrennung aufweist, erzeugt und besitzt ein Dipolmoment ent-
lang der Molekülachse.
Dieses Dipolmoment entlang der Molekülachse zeigt sich allerdings nur dann im räumlich
festen Laborbezugssystem, wenn das Molekül sich nicht dreht und das Dipolmoment sich
folglich nicht zu null mittelt. Die langreichweitigen Rydbergmoleküle rotieren aufgrund
ihrer Größe sehr langsam. Innerhalb der Lebensdauer des Moleküls ist diese Bewegung
vernachlässigbar und das Molekül zeigt eine räumliche Orientierung der Ladungstren-
nung, ein permanentes Dipolmoment.
Die experimentell bestimmten Dipolmomente der langreichweitigen Rydbergmoleküle
stimmen exzellent mit Rechnungen überein [50], die in Kollaboration mit dem Max-
Planck-Institut für Physik komplexer Systeme in Dresden und dem Harvard-Smithonian
Center for Astrophysics in Cambridge, USA, durchgeführt wurden.
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Introduction

Within the many areas of physics one of the hottest fields is ultracold physics. This
regime can be defined as temperatures close to absolute zero, at 1mK and below, where
quantum-mechanical properties start to take over. Even though this is far from everyday
life, this field can address many of the open challenges in physics and may even result
in real-world applications based on quantum effects. The idea of this field, broken down
to the simplest words, is that atoms can be understood and controlled brilliantly once
they are brought to an almost perfect stop at a certain position in the laboratory.
Especially the combination of ultracold atoms with highly excited atoms, co-called Ryd-
berg atoms, is very promising. Ultracold ground state atoms and Rydberg atoms are
counterparts in many ways, for example in the size difference of three orders of magni-
tude and also in the interaction, which is very weak for ultracold ground state atoms but
very strong between Rydberg atoms. Combining these contrasts can lead to interesting
new physics and new applications and most of the interest in ultracold Rydberg atoms
relies on these extremes.
Here I will report on two kinds of experiments. The first one is dedicated to coherent
control of an ensemble of atoms in the presence of strong interactions, where the interac-
tions are induced by Förster resonances between Rydberg atoms. The extremely strong
interactions between Rydberg atoms, compared to ground state atoms, enable to isolate
and coherently control a single interaction channel. The second kind of experiments
concerns the electric properties of ultralong-range Rydberg molecules. Because of the
vast differences of length scales in these homonuclear diatomic Rydberg molecules a per-
manent electric dipole moment forms, contradicting the standard beliefs in chemistry
and physics. Both experiments, even though they are quite different, stem from the
combination of the research fields of ultracold atoms and Rydberg atoms and give an
idea of the versatility of this area of physics.
Ultracold atoms boosted since the achievement of cooling and trapping of atoms with
laser light [1], that was awarded with the Nobel prize for Steven Chu, Claude Cohen-
Tannoudji and William D. Phillips in 1997 [2]. This laser cooling technique enables to
decelerate gaseous atoms in a vacuum to velocities that can be neglected on the timescale
of the experiments, but without condensing them to a liquid or solid.
In these highly controllable systems, either single atoms or ensembles of atoms, a bunch
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of interesting things can be done. The prospects are a better understanding and control
of conventional physics subjects, but also fundamentally new physics that might have
been impossible in other regimes or even totally unknown before. So far the probably
biggest breakthrough was the achievement of Bose-Einstein condensation, honored with
the Nobel prize for Eric A. Cornell, Wolfgang Ketterle and Carl E. Wieman in 2001 [3].
Besides basic understanding of atomic and optical physics, applications can be found
in many other areas and I will only mention some of them. One well known example
of a real-world application of ultracold atoms are atomic clocks [4, 5], that serve as fre-
quency and time standards since years. Similar ultra-high-precision quantum metrology
[6] can also be done of gravitation [7]. Another popular field is quantum simulation,
envisioned by Richard Feynman already in 1982 [8], that potentially simulates vast fields
like condensed matter physics or even complex biological structures [9, 10]. One recent
breakthrough is the implementation of an Ising chain in an optical lattice [11].
In quantum simulators the quantum mechanical system of interest is modeled by an
artificial system that shows the same characteristics. An important tool in the toolbox
of quantum simulation is a tunable, long-range interaction to mimic the Hamiltonian
of choice. Besides polar molecules [12] also strongly interacting Rydberg atoms were
proposed to induce these interactions [10, 13].
In Rydberg atoms one electron is excited to a high principal quantum number, where
the extent of the Rydberg electron wavefunction is large. These atoms show strong
polarizabilities and usually interact via van der Waals interaction [14, 15]. Under certain
conditions the interaction can further be tuned by external fields to long-range dipole-
dipole interaction. These so-called Förster resonances in Rydberg atoms show many
advantages. Besides the long-range character they offer tunability of the strength and
the sign of the interaction, from attractive to repulsive, by external control fields. They
were first observed in two seminal experiments in Tom Gallagher’s group in atomic
beam experiments: in 1981 [16] using an electric field as the control parameter and in
1982 [17] using a microwave field. Especially the possibility to tune the strength of the
interaction attained much interest and Förster resonances have been studied in quite
some experiments in many groups [18, 19, 20, 21, 22, 23, 24, 25], using various control
parameters.
The extension of Rydberg excitation to ensembles of ultracold atoms offers the possibil-
ity of coherent Rydberg excitation [26, 27] and of coherent experiments in the energy
transfer [28] between pairs on interacting Rydberg atoms. As coherence is fundamental
for most applications of ultracold atoms, these experiments are a big step towards many
proposed applications. Besides the simulation of ground states of strongly correlated
many body systems also quantum dynamics in the time dependent development of the
system are envisioned. This can be for example a simulation of the quantum random
walk [29] or of coherent energy transport [18]. The latter is especially interesting in bio-
physics, where non-radiative exciton dynamics is relevant for fast and efficient energy
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transport in photosynthesis and photoluminescence [51]. This Förster resonant energy
transfer (FRET) was first described in a seminal contribution by Theodor Förster [30]
in 1948 as an incoherent, non-radiative energy transfer between two molecules, if their
excited states are in resonance. The Förster resonances between Rydberg atoms were
named after this FRET process in biophysics due to strong similarities [31], as both
arise by non-radiative coupling of oscillating dipole moments.
Despite the first description as an incoherent energy transport, recent experiments
showed that surprisingly long-lived coherence plays an important role in the FRET
process of photosynthetic complexes [32, 33]. This is remarkable as the internal de-
grees of freedom of the molecules in the photosynthetic complexes are strongly coupled
and also a strong coupling to the environment at room temperature exists, a situation
that is totally unfavorable to preserve coherence in contrast to the idealized situation of
ultracold atoms surrounded by vacuum.
Counter intuitively, a certain degree of dephasing in a quantum network can assist
transport phenomena, as shown in [34], and lead to faster and more efficient excitation
transport. Hence thermal fluctuations in the photosynthetic complexes might assist
efficient light harvesting. Even though the importance of coherence in biophysics has
been shown and the individual energy transport processes can be well explained the-
oretically [35], a throughout understanding of the highly complex dynamics in these
quantum aggregates might be obtained by modeling the system using well controlled
ultracold atoms. Experimental realizations of these quantum dynamics are proposed
using Rydberg atoms [36, 37].
Rydberg atoms are also promising for quantum information processing. These applica-
tions, e.g. encoding, communication and computation of information using quantum-
mechanical states, necessitates a highly controlled system as any form of dissipation or
dephasing degrades the quantum state that exhibits the information. The best demon-
strations of quantum computers are realized with trapped ions [38] because of easy
single-ion trapping with immense coherence times. However, important progress has
been made in neutral atom computing, especially by using Rydberg interactions to cre-
ate entanglement and gates [39]. The idea of using Rydberg atoms for quantum gates
was first formulated in 2000 [40] for single atoms and extended to ensembles of atoms in
2001 [41]. The basic idea of the two-qubit gate relies on the Rydberg blockade. One atom
(or atoms in one ensemble) in the Rydberg state can influence (due to Rydberg-Rydberg
interaction) the excitation of a second atom. Thereby one atom serves as a control qubit
that defines if the second atom (target) is exited or not, realizing a two-qubit gate. This
blockade effect between spatially separated single atoms was independently realized by
two groups [42, 43], quickly followed by the realization of the two-qubit blockade gate
[44].
Already in the first proposal of a Rydberg gate [40] a second type of gate protocol was
described. This two-qubit gate also relies on Rydberg-Rydberg interaction between the
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control and the target atom(s), but in contrast to the blockade gate here the interaction
is weaker and only influences the phase of the target. An accumulated phase shift of π
of the target atom realizes a gate operation.
Quantum communication and cryptography [52] need single photon sources. Besides
many other approaches [53], Rydberg excitations in ultracold atoms are proposed
[54, 55] and realized [56] as single photon sources.

Here, I present experiments that not only control the internal degrees of freedom of
the Rydberg atoms, the electronic state and the phase of single atoms, but also co-
herently control the relative phase of the electronic states of two Rydberg atoms via
controllable interactions close to a Förster resonance. This preservation of coherence
in strongly interacting ensembles of atoms provides an essential step for applications
of ultracold atoms in quantum simulation and quantum computing. For example, I
realize an interaction-induced phase shift of Rydberg atoms, necessary for the proposed
two-qubit phase gate [40].
It should be noted that ultracold atoms are not the only promising foundation for
coherent applications like quantum computing and simulation [57]. For example the
already mentioned trapped ions [38] or quantum dots in solid state materials [58]
also offer long coherence times. Every approach has its advantages and disadvantages
concerning interactions, coherent control and scalability.

Another new topic is ultracold chemistry on the borderline of chemistry and ultracold
physics, that can be specified as the regime where chemical processes are dominated by
single partial-wave scattering. This field developed fast in the last years as visible in
the number of citations of papers including ’ultracold chemistry’ in the topic (Figure
0.1). Ultracold chemistry may appear strange since the atoms basically rest at ultra-
cold temperatures and no chemical reactions are expected. But due to the quantum
mechanical wave nature of the particles at these temperatures s- and p-wave scattering
can have effects on chemical reactions. Experimental regimes where ultracold chemistry
is relevant are hard to reach and only recently progress in the production of ultracold
molecules [59, 12] enabled to study chemical reactions on the quantum level as it has
been done in [45].
However, only a limited number of experiments have been performed to date that can
be attributed to the field of ultracold chemistry. Besides the photoassociation of ul-
tracold molecules other examples are Bose-Einstein condensation of molecules [46, 47]
and Efimov resonances [48]. Among these few the photoassociation of ultralong-range
Rydberg molecules is exceptional [49]. It is not so much the chemical dynamics in the
production of the molecular state, but the binding mechanism itself that justifies this
statement [60]. This bound state between one Rydberg atom and one ground state
atom binds due to low energy scattering of the Rydberg electron off the ground state
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Figure 0.1: Number of citations per year of papers including ’ultracold chemistry’ in the
topic. Data downloaded from ’ISI web of knowledge’ April 23, 2012.

atom, a binding mechanism not known to chemistry before and due to the small binding
energy only possible at ultracold temperatures. Besides this astonishing binding these
molecules also feature an unexpected permanent dipole moment, usually forbidden in di-
atomic molecules due to symmetry arguments. I will present experimental proof for this
polar character, contradicting the long held belief that homonuclear diatomic molecules
cannot have permanent dipole moments. The experimental results are in perfect agree-
ment with calculations of the dipole moment [50], that were done in collaboration with
the Max-Planck-Institut für Physik komplexer Systeme in Dresden, Germany, and the
Harvard-Smithonian Center for Astrophysics in Cambridge, USA.
This outstanding example of ultracold chemistry is also a fine prototype of fundamen-
tally new and unexpected physics that emerge from the field of ultracold atoms. Like
most presented experiments on ultracold Rydberg atoms it relies on the extremes of
this field, as the size difference between the ground state atom and the Rydberg atom,
defining the binding length, permits the permanent dipole moment in the first place.
This shows that combining these counterparts may lead to many expected but also
unexpected results, in this thesis and in the future.

This thesis is structured as follows:

After a theoretical introduction to Rydberg atom physics and Ramsey experiments,
binary Rydberg-Rydberg interactions are calculated and the origin of the permanent
dipole moments in ultralong-range Rydberg molecules is described in chapter 1. Fol-
lowing this introduction, chapter 2 summarizes the experimental setup, including the
preparation of ultracold atoms and the narrowband laser excitation to Rydberg states.
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Experimental results are presented in chapter 3 and 4, where first Förster resonant
Rydberg-Rydberg interactions are studied using Ramsey experiments, starting from
highly resolved measurements of splittings of Stark-tuned Förster resonances in the
electric field over dephasing mechanisms at the resonances to the measurement of an
interaction-induced phase shift. Fully coherent simulations of these experiments using
the concept of a pair state interferometer complete the understanding of the coherent
dynamics of the interacting ensemble of ultracold atoms. Subsequently, in chapter 4, the
Stark effect of the ultralong-range Rydberg molecules is measured and the permanent
dipole moment is obtained.
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1 Theoretical foundations

This chapter focuses on a theoretical analysis of pairwise interactions between a pair of
Rydberg atoms, so-called binary interactions. I will establish the basics to understand
atom-light interaction in Ramsey experiments for two-level and many-level systems and
I will introduce the theoretical treatment of alkali Rydberg atoms, their behavior in
external electric and magnetic fields and especially their binary interactions.
The second part of this chapter describes the properties of ultralong-range Rydberg
molecules with a focus on the origin of their permanent electric dipole moment.

1.1 Atom-light interaction
All experiments in this thesis base upon optical excitation to Rydberg or Rydberg-
molecule states, which have to be described by near-resonant atom-light interaction.
An exact description of the interaction between light and atoms is often impossible, but
with reasonable approximations good results can be obtained. The major approxima-
tions that are used in this thesis are a monochromatic, classical light field that nearly
coincides in frequency with a transition frequency in the atoms (rotating wave approxi-
mation). The latter assumption is justified as the transition frequency to the Rydberg
states is about 1000THz whereas the usual detunings in the spectroscopy experiments
are on the order of MHz, nine orders of magnitude smaller and clearly near-resonant.
The approximation of monochromatic excitation is not fully justified for every performed
experiment, even for the used narrowband laser system. Deviations are especially vis-
ible in the pair state interferometer experiments in chapter 3.2.5. Effects beyond this
approximation will be discussed throughout the thesis whenever necessary.
Using these approximations the Hamiltonian that describes the atom-light system can
be written as

H = HA +HAL, (1.1)

where
HA = p̂2

2m +
∑
k

~Ωk |Ψk〉 〈Ψk| (1.2)

describes the unperturbed atom with the eigenfunctions |Ψk〉 and eigenenergies ~Ωk.
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1 Theoretical foundations

The interaction with the classical light field

~E(~r, t) = ~E0(~r) cos(ωLt+ φ)

with amplitude | ~E0(~r)|, phase φ, polarization ~E0(~r)
| ~E0(~r)| and frequency ωL is described by

the atom-light interaction Hamiltonian

HAL = −
∑
i 6=k

d̂ · ~E(~r, t) · |Ψk〉 〈Ψi|. (1.3)

d̂ = −er̂ is the dipole moment operator of the atom. Calculations of the dipole matrix
elements are explained in chapter 1.2.2.
The eigenfunctions |Ψk〉 of H0 are no eigenfunctions in the presence of the light field.
That leads to a mixing of the eigenstates of H0 [61]. Diagonalization of the full Hamil-
tonian H gives the new eigenfunctions and eigenenergies. The time evolution of an
arbitrary wavefunction |ψ〉 can be calculated by using the Schrödinger equation [62]

i~
∂

∂t
ψ(~r, t) = Hψ(~r, t). (1.4)

In the case of additional static or oscillating fields or interatomic interactions additional
terms in the total Hamiltonian might contribute. In any case, by defining the correct
Hamiltonian describing the system of interest and the initial state |ψ〉 the complete
dynamics can be derived. This will be used in the concept of the pair-state interferometer
in chapter 3.2.3.

1.1.1 Two-level system and optical Bloch equations
For an ideal two-level atom with the states |g〉 and |e〉 with the relative energy difference
~ωeg the time evolution under the influence of a near-resonant driving field can be
conveniently described by the optical Bloch equations (OBE). To derive the OBE the
density matrix ρ = |Ψi〉 〈Ψk| is introduced; details of this derivation can be found in
[63]. The diagonal elements ρii are the populations in the state i (either |g〉 or |e〉) and
the off-diagonal elements, so-called coherences, describe the response of the system to
the driving light field. The time evolution of the system in the density matrix formalism
can be calculated from the von-Neumann equation

∂

∂t
ρ = − i

~
[H, ρ]. (1.5)

The three components of the Bloch vector ~ρ can be defined as

u =ρge + ρeg

v =i(ρeg − ρge)
w =ρee − ρgg,

(1.6)
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1.1 Atom-light interaction

where w describes the inversion, i.e. the population difference in the ground and excited
state, and u, v describe the coherences. One can obtain the time evolution of the Bloch
vector from equation (1.5) and get the OBE in the rotating wave approximation [63]

u̇ =− δv
v̇ =δu+ Ω0w

ẇ =− Ω0v.

(1.7)

δ=ωL − ωeg is the detuning of the light relative to the atomic resonance frequency in
angular frequencies and Ω0 = 〈g|d̂· ~E|e〉

~ = dge| ~E|
~ is the Rabi frequency, describing the

strength of the coupling of the light field to the atom, with the dipole matrix element
dge = 〈g| d̂ |e〉. If the OBE is written as

d

dt


u

v

w

 =


−Ω0

0
δ

×

u

v

w

 (1.8)

the time evolution of the two-level system is described by a rotation of the Bloch vector
around Ω0~e1 + δ~e3. For the fundamental properties, and for the basic understanding of
Ramsey experiments in this thesis, two cases are most relevant. In the case of resonant
light (δ=0) the OBE describe a rotation around the u-axis with the oscillation fre-
quency Ω0. Thereby the population inversion w is changed periodically. This describes
well-known Rabi oscillations in a coherent system. For example, a resonant pulse of du-
ration t = π/Ω0, called a π-pulse, induces a rotation by π and inverses the population.
The absolute change of the inversion depends on v, hence it is called the absorptive
component of the Bloch vector.
In the case of a finite detuning but no light field (Ω0 =0) the Bloch vector oscillates
around w with the oscillation frequency given by the detuning δ. The inversion does
not change, but the components u and v. Generally, if the system is driven with near
resonant light, Ω0 6= 0 and δ 6= 0, the Bloch vector oscillates around Ω0~e1 + δ~e3. The
oscillation frequency is then enhanced to the effective Rabi frequency Ωeff =

√
Ω2

0 + δ2,
but the amplitude of the oscillation in w is reduced.
The optical Bloch equations fully describe the coherent evolution of an isolated two-level
atom in the presence of a near resonant light field, within the rotating wave approxima-
tion. In chapter 3.1.1 the OBE are used to explain the Rydberg Ramsey interferometer.
In real systems, a coupling to the environment usually generates dephasing and deco-
herence processes that damp the coherent oscillations. To include these processes the
OBE can be extended, analog to the nuclear spin equations first proposed by F. Bloch
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1 Theoretical foundations

in 1946 [64], by introducing the excited state lifetime T1 and the coherence time T2:

u̇ =− δv − u

T2

v̇ =δu+ Ω0w −
v

T2

ẇ =− Ω0v −
w + 1
T1

(1.9)

T1 describes the decay of the inversion, i.e. the excited state lifetime. T2 describes
a decay of the coherent oscillations without changing the inversion. These are energy
conserving processes that lead to a loss of coherence in the system. There are numerous
possible processes as scattering of radiation or inhomogeneous broadening due to, e.g.,
Doppler effects and magnetic or electric field gradients and so forth.
These optical Bloch equations including phenomenological decay constants (1.9) are
used in chapter 3.2.2 to obtain quantitative values for dephasing processes.

1.1.2 Ramsey experiments
Ramsey experiments are advantageous in many aspects to study the coherent evolution
of atoms. For a two-level system |g〉 and |e〉 with an energy difference of ~ω0 Ramsey
experiments can nicely be calculated and understood. Extensions to many-level systems
will be discussed in chapter 3.2.3.
In Ramsey experiments two short oscillatory field pulses couple the two-level system,
separated by a delay time during which no coupling occurs. The Ramsey pulse sequence
is shown in Figure 1.1 (d). Here, the coupling field is monochromatic and a fully coherent
system is assumed. In an experimental realization these assumptions are justified if the
Fourier width of the finite coupling pulse is considerably broader than the linewidth of
the coupling field and if the coherence length is longer than the experimental sequence.
Furthermore, here the system is only treated in the limit of small excitations to give a
good understanding of the fundamental processes. Beyond this limit the OBE (1.7) or
the Schrödinger equation (1.4) can numerically be solved for the Ramsey sequence, as
it is done for the simulations in chapter 3.
In the presence of a coupling field the wavefunction can be expressed as

|ψ〉 = cg(t)e−iωgt |g〉+ ce(t)e−iωet |e〉 . (1.10)

For weak excitations (ω0 − ωL)τ � 1 and near resonant light (rotating wave approxi-
mation) the time evolution of (1.10) is calculated from the Schrödinger equation (1.4)
and one obtains for the excited state coefficient [61]

ce = Ω∗ sin (δτ/2)
δ

= Ω∗τ
2 sinc(δ τ2). (1.11)
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1.1 Atom-light interaction

Figure 1.1: (a) Excitation spectra for a single light pulse of length τ and (b) for a Ramsey
sequence with two equally long pulses. The Fourier width ∆ωp of the single pulse and the
width of the Ramsey fringes ∆ωR are indicated. (c,d) show the pulse sequences of the single
pulse and Ramsey sequence.

The population |ce|2 hence shows a sinc2-function spectrum in the detuning of the
coupling field (see Figure 1.1 (a)). The full width at half maximum (FWHM) is

∆ωp = 5.29 · 1
τ

(1.12)

where τ is the pulse length of the excitation pulses. In the experiments in chapter 3
0.15µs excitation light pulses are used, which corresponds to a FWHM of 2π×5.61MHz.
For resonant light, δ = 0, the time dependence reduces to |ce|2 = Ω2τ2

4 and shows
a quadratic increase in time. This is, of course, only true in the approximation of
small excitations. For longer excitation pulses this quadratic increase crosses over to
oscillations, the so-called Rabi oscillations.
In the case of two separated pulses, as shown in Figure 1.1 (d), interference effects arise
and one obtains

ce(t) = Ω∗
2

(
1− eiδτ

δ
+ eiδ(T+τ) 1− eiδτ

δ

)
, (1.13)

similar to equation (1.11). The two terms of this expression can easily be understood.
The first term, identical to equation (1.11), describes the amplitude of the excited state
after the first pulse. The second term describes the second light pulse. Only the phase
of the second term is changed depending on the delay time T and the detuning δ. This
phase defines if the second pulse increases or decreases the population |c2(t)|2, that
corresponds to constructive and destructive interference.
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The population in the excited state yields

|ce(t)|2 = Ω2

4

∣∣∣∣∣1− eiδτδ

∣∣∣∣∣
2

·
∣∣∣1 + eiδ(T+τ)

∣∣∣2
=

∣∣∣∣∣Ωτ2
∣∣∣∣∣
2

sinc2(δτ/2) cos2 (δ(T + τ)/2)
(1.14)

and is plotted in Figure 1.1 (b). The envelope of this Ramsey spectrum shows the same
sinc-function as for the single pulse (1.11). The additional cosine term describes the
interference and leads to a modulation of the spectrum, the so-called Ramsey fringes.
The width of the fringes in frequency space is ∆ωR = 1

2(T+τ) . The fringe pattern in Ram-
sey experiments is inversely depending on the delay time between the pulses, whereas
the width of the envelope is inversely depending on the pulse length. This offers the
advantage that the spectral resolution of the Ramsey experiment can be considerably
better than the resolution of a single pulse experiment. For example, in the case of
equally long sequences of time TS, the Ramsey method with two short light pulses in
the beginning and the end of the sequence offers a resolution of 0.5 · 1

TS
, a factor of

1.7 better than in the case of one long excitation pulse with a resolution of 0.84 · 1
TS
.

However, this increase in resolution is only relevant if the phase is not disturbed between
the light pulses. The treatment so far has been done for a fully coherent system. A
loss of coherence due to dephasing and decoherence processes during the delay time, as
discussed in chapter 1.1.1, leads to less effective coupling of the second light pulse in
equation (1.13). The exact dependence of the Ramsey spectrum on the loss of coherence
depends on the involved processes. Phenomenological, the modulation in the Ramsey
fringes is reduced. To describe this effect the visibility V

V = Pmax − Pmin

Pmax + Pmin
(1.15)

is introduced, where Pmax (Pmin) describe the maximal (minimal) populations in the
excited state, as shown in Figure 1.2. The population in the excited state can then be
described by

P = |ce(t)|2 =
∣∣∣∣∣Ωτ2

∣∣∣∣∣
2

sinc2(δτ2 ) ·
(

2V
1 + V

· cos2(δ(T + τ)
2 ) + 1− V

1 + V

)
. (1.16)

This function is the basis for the fit function (3.3) that is used to characterize the
measured Ramsey spectra in this thesis.

1.2 Rydberg atoms
Rydberg atoms are highly excited atoms, where (at least) one electron is excited to a
high principal quantum number. They show exaggerated properties in many aspects.
Even so, they can be well described theoretically as they behave hydrogen-like.
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1.2 Rydberg atoms

Figure 1.2: Ramsey spectrum for a reduced visibility of V = 0.5 (solid line). The dashed
lines show the maximal and minimal populations in the excited state

The study of highly excited atoms reaches back to 1885, when an expression for the
energy levels of the Balmer-series in hydrogen was found [65]. This series could be
linked to the binding energy of the hydrogen electron in the Bohr atom model [66] and
can be expressed by fundamental constants as

En = −hcRy
n2 , (1.17)

where n is the principal quantum number and

Ry = e4me

2(4πε0~) = 13.6eV (1.18)

is the Rydberg constant, e the electron charge, me is the electron mass, ε0 the vacuum
permittivity and ~ the reduced Planck constant.
Quantum mechanics offers nowadays the exact calculation of the energy levels of
hydrogen and superseded the Bohr model. However, heavier atoms cannot be solved
analytically in quantum mechanics, but the Balmer-series still provides the correct
scaling of the energies.

In the following subsections I will introduce the basic formalism to describe energy
levels, wavefunctions and dipole matrix elements of alkali Rydberg atoms. A detailed
and comprehensive description can be found in [14].

1.2.1 Alkali Rydberg states
Alkali atoms are the workhorses in atomic physics and especially favorable for Rydberg
experiments as they have only one electron in the outermost shell. Even though divalent
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state n2s1/2 n2p1/2 n2p3/2 n2d3/2 n2d5/2 n2f5/2 n2f7/2

δ0 3.1311804 2.6548849 2.6416737 1.34809171 1.34646572 0.0165192 0.0165437
δ2 0.1784 0.2900 0.2950 -0.60286 -0.59600 -0.085 -0.086

Table 1.1: Quantum defect parameters for 85Rb

atoms, like strontium [67], might possess some advantages that open new opportunities
in the field of Rydberg physics, for most Rydberg experiments the advantages of alkali
atoms prevail. Multiple excitations of Rydberg electrons are not possible under usual
conditions and autoionization by two-electron excitation does not appear. Furthermore,
alkali Rydberg atoms behave very much like hydrogen. The inner, closed shells screen
the nucleus charge, resulting in a hydrogen-like net charge Z = 1 (in units of the electron
charge e) if the valence electron is located far outside the inner shells. This is thoroughly
the case for high angular momentum (quantum number l) Rydberg states, but electrons
in low angular momentum states still penetrate and polarize the inner shells. As a
result, the electron binding potential is angular momentum dependent and lower than
the Coulomb potential in hydrogen. This leads to a lifting of the l-degeneracy and to a
slightly stronger binding energy compared to hydrogen (cp. equation (1.17)).
These differences can be accounted for by quantum defect theory [68] that describes the
stronger binding energy by introducing an effective principal quantum number n? = n−
δnlj. The Balmer formula (1.17) is extended to

E ′n = −hc Ry

(n− δnlj)2 = −hc Ry

(n?)2 . (1.19)

The positive quantum defects δnlj, depending on the quantum numbers n, l, j, increase
the binding energy of the Rydberg states compared to hydrogen. They are calculated
from the Rydberg-Ritz formula

δnlj = δ0 + δ2

(n− δ0)2 + . . . , (1.20)

where higher order terms are usually omitted as they contribute only insignificantly.
The coefficients δ0 and δ2 for rubidium can be found in table 1.1. They are obtained
from microwave spectroscopy in 85Rb for the s,p and d states [69] and the f states [70].
For the g state a quantum defect was measured from resonant energy transfer [71] to be
δg = 0.00405. The fine structure splitting between g7/2 and g9/2 could not be resolved in
these measurements and the quantum defect was only obtained for n = 30, therefore no
extrapolation to higher quantum numbers using the Rydberg-Ritz formula in equation
(1.20) was possible. However, at high principal quantum numbers the variations of the
quantum defects with n are small and for the relevant Rydberg states here the n = 30
quantum defect is expected to give a reasonable estimate.
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1.2 Rydberg atoms

The hyperfine structure (HFS) in Rydberg states is very weak as the coupling of the
total angular momentum to the nuclear magnetic dipole moment is suppressed by the
large extend of the Rydberg electron wavefunction. The HFS scales as 1/n3 [69, 72] for s
and p states. For angular moments l > 1 no hyperfine structure was measured. Usually
this small hyperfine structure is neglected and n, l, j,mj are good quantum numbers to
define quantum defects and to describe the Rydberg states.
As the electron probability density shifts to bigger distances from the nucleus with higher
angular momentum, the quantum defects decrease. For Rydberg states with l > 4 no
quantum defects exist and the energy levels of the alkali Rydberg states coincide with
the hydrogen model in equation (1.17). Since the quantum defect of the ns Rydberg
states is about 3.13 the closest degenerate high-l Rydberg states are of principal quantum
number n-3. This can also be seen in Figure 1.3.

1.2.2 Calculation of wavefunctions and dipole matrix elements
To calculate wavefunctions and dipole matrix elements I use the program rydLib, that
is documented in the thesis of Björn Butscher [73]. Here, I will only illustrate the major
challenges for calculating wavefunctions and dipole matrix elements for alkali Rydberg
atoms and motivate the essential steps in rydLib.
In hydrogen, the non-relativistic wave functions ψ of the electron can be calculated
analytically in the absence of fine structure as solutions to the Schrödinger equation [62](

− ~2

2me

∇2 + V (r)
)
|ψ〉 = Eψ |ψ〉 (1.21)

with the radially symmetric coulomb potential V (r) and the energy Eψ of the state ψ.
Using the ansatz

ψ(r,Θ, φ) = 1
r
U(r)Ylm(Θ, φ) (1.22)

the wavefunction ψ(r,Θ, φ) can be separated into a radial part (1
r
U(r)) and an angular

part of the well-known spherical harmonics Ylm(Θ, φ). Equation (1.21) reduces to[
− ~2

2me

(
d2

dr2 + l(l + 1)
r2

)
+ V (r)

]
U(r) = EψU(r). (1.23)

In the case of the hydrogen atom (V (r) = − e2

4πε0r and Eψ = −hcRy
n2 ) this equation can

be solved analytically.
For alkali Rydberg atoms the energies are Eψ = −hc Ry

(n−δnlj)2 (1.19) and an effective
potential must be employed for V (r) in equation (1.23). This potential is perturbed
compared to the Coulomb potential by the core polarization, the screening of the nucleus
with Z 6= 1 and the spin-orbit interaction of the electron [74]. Taking into account the
new effective potential the radial equation (1.23) cannot be solved analytically anymore
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1 Theoretical foundations

to obtain U(r). It has to be integrated numerically from the classically forbidden range
at large r to 0 by using the Numerov method [75] or, as it is done by the program
rydLib, using a Runge-Kutta method [73].
From these wavefunctions transition dipole matrix elements between Rydberg states can
be calculated. The dipole operator

d̂ = −er̂. (1.24)

with the vector components dx, dy, dz in Cartesian coordinates can be expressed in a
spherical basis as

d+ = 1√
2

(dx + idy)

d− = 1√
2

(dx − idy)

dz =dz.

(1.25)

This representation is more convenient for the description of light-matter interaction.
Given the quantization axis z, a photon can have linear or circular polarizations and
the interaction with atoms is hence described by dz or d±, respectively.
The dipole matrix elements can be obtained by integration

〈n′l′j′m′j| di |nljmj〉 = 2π
∫ π

0

∫ r

0
ψ∗n′,l′,j′,m′

j
(r,Θ, φ)diψn,l,j,mj(r,Θ, φ)r2 sin(Θ)drdΘ.

(1.26)
The wavefunctions are described by quantum numbers n, l, j,mj and n′, l′, j′,m′j for the
initial and final state, respectively. The integration over φ is already carried out as di is
not depending on φ.
Magnetic dipole moments can be calculated similarly from the operator

µ̂ = µBĴ , (1.27)

where Ĵ = L̂+ 2Ŝ is the total angular momentum operator.
The calculation of the electric and magnetic dipole matrix elements is performed in the
program rydLib once and the matrix elements are stored in a database. For calcula-
tions of Stark shifts and interaction strength, for example, this database is used in the
following. Note that this approach of numerically calculating wavefunctions becomes in-
accurate for low-n and ground states. Here only dipole matrix elements between n > 10
Rydberg states are calculated.
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1.2 Rydberg atoms

1.2.3 Characteristics in electric and magnetic fields
To present the influence of electric and magnetic fields on Rydberg atoms I will first treat
both fields independently. This gives the best picture to understand the characteristics
of Rydberg atoms in weak external fields.
Subsequently I will present the situation in simultaneous electric and magnetic fields,
as it can be found in the experiment.

The Stark effect

Rydberg atoms, having a spatially large Rydberg electron wave function, are very sen-
sitive to electric fields and show strong Stark effects. As explained previously, from
quantum defect theory follows a lifting of the l-degeneracy for small angular moments.
Selection rules for the dipole operator prohibit a coupling between states with the same
angular momentum l because of equal parities and second order non-degenerate pertur-
bation theory can be employed for Rydberg states with l < 4 for small electric fields.
That results in a quadratic Stark effect

∆EStark =
∑
k 6=i

| 〈ψk| d̂ · ~E |ψi〉 |2

Ek − Ei
= −1

2α|
~E|2, (1.28)

where the subscript i denotes the initial state and the sum ranges over all other states
k. As the contribution of every state depends on the difference of the final state energy
Ek to the unperturbed initial state energy Ei as 1

Ek−Ei
, usually only some states close by

contribute significantly. This second order effect is quadratic in the electric field ~E and
can be described by the polarizability α. The polarizability depends on the absolute
value of the projection of the total angular momentum on the quantization axis |mj|.
In Table 1.2 polarizabilities of the relevant Rydberg and for comparison of the ground
state are displayed.
In the case of high angular moments, l > 4, no quantum defects exist and degenerate
states of opposite parity appear. These states can mix and form eigenstates with a
permanent electric dipole moment. There, a linear Stark effect arises in first order
perturbation theory.
For electric fields where ∆EStark is on the order of the energy difference to the next
dipole coupled state, the Stark effect cannot be treated perturbatively. Instead, the
Stark shifts are determined by diagonalizing the Hamiltonian

H = H0 +HE (1.29)

for different electric fields, where H0 denotes the eigenenergies of the zero-field Rydberg
states and HE = d̂ · ~E is the electric field Hamiltonian. The matrix elements of HE can
be obtained from (1.26). They decrease rapidly as the energy difference between the

23



1 Theoretical foundations

state α (B = 0G) α (B = 13.55G)

44 d5/2 85.0(1.6)MHz/(V/cm)2 85.557(1)MHz/(V/cm)2

43 s1/2 17.70(13)MHz/(V/cm)2 17.613(3)MHz/(V/cm)2

35 s1/2 4.202(36)MHz/(V/cm)2 4.196(6)MHz/(V/cm)2

5 s1/2 0.0794(16)Hz/(V/cm)2

Table 1.2: Polarizabilities of the relevant states for this work. The values at the magnetic
offset field of 13.55G originate in fits to calculated Stark effects up to 0.3V/cm, obtained by di-
agonalization of the Hamiltonian (1.32). This corresponds to the experimental situation in this
work. The polarizabilities for B = 13.55G agree within the error margins with measurements
at B = 0 [76, 77]. The polarizability of the 5s1/2 ground state is taken from [78]

initial and final state increases and thus the principal quantum number can be restricted
to n ± 5 [73], where n is the state of interest. Furthermore, the dipole operator only
couples states with |∆mj| ≤ 1 and only a limited set of basis states has to be considered.
Figure 1.3 shows the dependence of the eigenenergies on the electric field, a so-called
Stark-map, in the vicinity of the 44d state. The splitting of the states l < 5 is due to
the quantum defects. States with l ≥ 5 are degenerate and show a strong linear Stark
effect, resulting in the fan-like Stark structure. In Figure 1.3 (c) the splitting of the 44d
states is visible. The absolute value of the magnetic quantum number |mj| is a good
quantum number and the splitted states can be uniquely described.

The Zeeman effect

In a weak magnetic field the Zeeman effect can be treated perturbatively, which leads
to the shift

∆EZ = gjmjµBB, (1.30)

with the Landé-factor gj
gj ≈

3
2 + s(s+ 1)− l(l + 1)

2j(j + 1) (1.31)

and the Bohr magneton µB. The energy shift is linear in the magnetic field and depend-
ing on the projection of the total angular momentum on the quantization axis mj. Note
that the Stark effect is only depending on |mj|.
Rydberg d5/2 mj = 5/2 states with gj = 6/5 show a Zeeman shift of ∆EB = 3µBB,
which is about 57MHz at the maximum magnetic field of 13.55G in this work. This
is still smaller than the fine structure splitting between d5/2 and d3/2 of 137.5MHz (see
Figure 1.3 (c)) and perturbation theory is valid.
Table 1.3 shows the Zeeman shifts of the relevant states in this thesis. Note that in the
5s1/2 ground state the hyperfine coupling is relevant and f is a good quantum number,
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1.2 Rydberg atoms

Figure 1.3: Calculated Stark maps in the vicinity of 44d in a pure electric field (B = 0G).
(a) shows an overview of the Rydberg states. The magnification around the n = 43 manifold
at 29GHz (b) shows the linear Stark effect for high-l states. The f and g states with small
quantum defects show quadratic shifts for small electric fields and linear shifts for bigger fields.
The 44d states (c) show pure quadratic Stark effects. All energies are plotted relative to the
energy of the 44d5/2 state at | ~E| = 0.

whereas in the Rydberg states j is used. The ground state shows the same Zeeman
effect as the Rydberg s state and the transition between these states is not magnetic
field dependent. In contrast to that, the transition from the ground state to the Rydberg
nd5/2 state shows a differential Zeeman effect of 2µBB. That leads to a magnetic field
dependent line shift in spectroscopy and to a broadening of the spectroscopy line in an
inhomogeneous magnetic field, discussed in chapter 3.
So far, the Zeeman effect was treated perturbatively, valid for the magnetic fields used
here. However, in stronger magnetic fields or in combination with electric fields, pertur-
bation theory is not valid. There an exact solution can be obtained by a diagonalization
if the magnetic Hamiltonian HB = µ̂ · ~B with the magnetic dipole operator µ̂ (1.27) is
considered. The diagonal elements coincide with the energy shifts from equation (1.30)
in the limit of small magnetic fields.
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state m gj,f ∆EB

n d5/2 mj = 5/2 6/5 3µBB

n d3/2 mj = 3/2 4/5 6/5µBB

n s1/2 mj = 1/2 2 1µBB

5 s1/2 mf = 2 1/2 1µBB

Table 1.3: Zeeman effects for the Rydberg states ns1/2, nd3/2 and nd5/2 (in the ba-
sis (n,l,j,mj)) and for the ground state 5s1/2 (basis (n,l,f ,mf )). 1µBB is approximately
2π × 1.38MHz/G.

Combined electric and magnetic fields

The situation in combined electric and magnetic fields becomes more complicated and
can best be calculated by diagonalizing the full Hamiltonian

H = H0 +HE +HB, (1.32)

where H0 is the unperturbed atomic Hamiltonian and HE and HB account for the
influence of the electric and magnetic field, respectively.
Figure 1.4 shows the eigenenergies obtained at 13.55G magnetic field, as in the experi-
ments in chapter 3, and a varying electric field. In a pure magnetic field (| ~E| = 0) the
44d5/2 state splits six fold in mj (upper six states in Figure 1.4 (a)), the 44d3/2 fourfold
(lower four states). In a combined electric and magnetic field no generally good quantum
numbers exist. Therefore the states in Figure 1.4 are labeled by the quantum numbers
of the states they adiabatically connect to in zero electric field.
From a quadratic fit to the numerically obtained Stark shift of the Rydberg
state 44d5/2, mj = 5/2 between 0V/cm and 0.3V/cm a polarizability of α =
85.557(1)MHz/(V/cm)2 is determined. This perfectly agrees with the measured po-
larizability of 85.0(1.6)MHz/(V/cm)2 [77] at B = 0V/cm. The small electric fields can
be treated as a perturbation even in the presence of a magnetic field as long as the
Zeeman shift exeeds the Stark shift. Hence the polarizabilities at 13.55G and 0G are
the same.
However, in stronger electric fields, when the Zeeman shifts are no longer considerably
bigger than the Stark shifts, the situation becomes more complicated. The Stark and
Zeeman shifts can have different directions and level crossings between Zeeman split
magnetic substates occur at electric fields of about 0.8V/cm. The electric and magnetic
dipole operators do not couple states of different mj if the quantization axis is collinear
to both fields. However, for a finite angle θEB between the electric field direction and
the magnetic field direction the eigenstates of both fields mix. If the quantization axis
is chosen to be the magnetic field axis the electric dipole operator has to be expressed
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1.3 Binary interactions between Rydberg atoms

Figure 1.4: (a) Stark map of the 44d5/2 (upper six states) and 44d3/2 states (lower four
states) at a magnetic offset field of 13.55G, normalized to the unperturbed 44d5/2 state at
| ~E| = 0V/cm and B = 0G. (b) Magnification of the avoided crossings between the 44d5/2
mj = 5/2, 3/2 and 1/2 states. The solid lines are calculations for parallel electric and magnetic
fields, the dashed lines are under an angle of ΘEB = 15◦.

as
d̂ = dz cos ΘEB + 1√

2
(d− − d+) sin ΘEB. (1.33)

Additional couplings arise and induce avoided energy level crossings and slightly different
Stark effects. The strength of the avoided crossings depend on the angle θEB.
This effect can be seen in Figure 1.4, where the dashed lines show calculations taking
a 15◦-angle between the electric and magnetic field into account, and also in the ex-
perimental Stark spectra in Figure 3.3. The influence of the misalignment between the
electric and magnetic field axis is considerable at the electric field where the Zeeman
split states mix. For smaller electric fields almost no effect is visible.

1.3 Binary interactions between Rydberg atoms
Interactions are at the heart of physics, to understand and control them is an ultimate
goal in any field of physics. This is especially true for Rydberg atoms, as most proposals
including Rydberg atoms are based on their strong interactions. In this chapter I will
explain the origin and character of the electric-dipole interaction between two neutral
Rydberg atoms and the difference to induced permanent dipole interactions. I will first
present a simplified model system, which already reproduces all relevant features and
provides an easy understanding of the origin and the character of the Rydberg-Rydberg
interaction.
Subsequently I will present more advanced calculations in real many-level systems, tak-
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ing angular dependencies into account. These calculations are rather time consuming,
therefore I will finally close the circle by introducing again a simplified system that takes
a reduced number of states into account and also disregards the angular dependence.

1.3.1 Permanent-dipole interactions

Neutral Rydberg atoms can possess permanent electric dipole moments, given by the
slope of the energy of the Rydberg state in an electric field [79], as shown in Figure 1.3.
Such a dipole moment generates anisotropic long-range 1/r3 dipole-dipole interactions.
As noted previously, Rydberg states with angular momentum l > 4 are degenerate and
can have dipole moments as large as n2ea0, where e is the electron charge and a0 is the
Bohr length [80]. This corresponds to huge dipole moments of 4900Debye1 for n = 44.
The dipoles align along the applied electric field and the angular dependence of the
interaction Uperm is identical to the angular dependence of classical interacting dipoles

Uperm = p1p2

4πε0r3 (1− 3 cos2 Θ), (1.34)

where p1,2 are the permanent dipole moments of the two interacting atoms and Θ is the
angle between the interatomic axis and the direction of the electric field. Even though
these interactions can be huge, these high-l states are experimentally difficult to access
and not well suited to induce and study interactions.
Low-l Rydberg states do not show a permanent dipole moment in zero electric field.
But in an external field additional states of different parity are admixed, inducing the
Stark effect and also a electric dipole moment [81]. However, these dipole moments are
usually small. In large electric fields the low-l states intersect with the high-l manifold
states; for Rydberg states in the vicinity of n = 44 this happens at electric fields on the
order of 10V/cm. Near this intersection, states with large electric dipole moments and
low angular momentum can be found, that can be excited from the ground state.
Still, several disadvantages appear. The necessary electric fields have to be well con-
trolled, as the atoms are very sensitive to electric field noise or inhomogeneities due
to their dipole moments. Especially electric field noise influences the coupling to the
manifold states. That leads to a fast distribution of the population over all coupled
states and creates unwanted dephasing in coherent experiments. Furthermore, the nec-
essary mixing with the manifold states limits the oscillator strength from the ground
state. Due to these reasons, these induced strong dipole moments seem unpractical for
coherent experiments.

1 1Debye = 3.34× 10−30 Cm in SI units
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1.3 Binary interactions between Rydberg atoms

Figure 1.5: (a) Simplified system of two two-level atoms with transition frequencies ν1,2 in a
distance r. In the pair state basis four states appear (b). Only two pair states (|12′〉 and |1′2〉)
are nearly degenerate and show a small energy defect ∆. Atoms in these pair states experience
interactions.

1.3.2 The single interaction channel model
Electric dipole interactions are possible even in the absence of an electric field that mixes
states of different parity, if a degeneracy in the energy spectrum of dipole-dipole coupled
pair states exists. Dipole-dipole coupled means, that the two atoms can be transferred
between the pair states by the exchange of photons. Atoms in the near field, where the
interatomic distance is smaller than the transition wavelength, exchange no real photons
but virtual photon. Because of energy conservation this exchange to first order can only
appear in a degenerate pair state system.
Classically speaking, the transition in each atom corresponds to an oscillating electric
dipole. This dipole radiates an electric field and the oscillating dipole of the neighboring
atom couples to it, resulting in an interaction. This interaction shows many analogies
to classical dipole-dipole interaction between permanent dipoles, as explained in the
previous chapter. However, it is important to see that here two oscillating dipoles
interact. This changes especially the angular dependency of the interaction, as discussed
in chapter 1.3.5.
In order to describe binary interactions, i.e. interactions between only two atoms at a
time, I consider pair states as a direct product of the single-atom wavefunctions and
write |12′〉 for the pair state, where the first (second) number denotes the state of the
first (second) atom. Hence, |12′〉 is the pair state, where the first atom is in the state
1 and the second atom in the state 2’. The energy of the pair state is the sum of
the single-atom energies, E|12′〉 = E|1〉 + E|2′〉. Interactions arise if a second pair state
is nearly degenerate, E|12′〉 ≈ E|1′2〉. These pair states must be dipole-dipole coupled,
which means that both transitions, between |1〉 → |1′〉 and |2′〉 → |2〉, must be dipole
allowed.
In the very simplified system of two two-level atoms, as depicted in Figure 1.5, only
two dipole coupled pair states |12′〉 and |1′2〉 exist that are nearly degenerate. The
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Figure 1.6: Eigenenergies (solid lines) of the two pair states system as a function of the
interatomic distance for a finite energy defect ∆ = 5MHz (a) and degenerate pair states
∆ = 0MHz (b) with C3 = 1000MHzµm3. The dotted line shows a 1/r3, the dashed line
a 1/r6 dependence and the dashed-dotted line indicates the cross over distance rc. Strictly
speaking, the notation in terms of |12′〉 and |1′2〉 is only valid in the case of a finite energy
defect and infinite interatomic distance.

other two pair states show a large energy difference of ∆E,∆E ′ � ∆ to the initial pair
state |12′〉. Transitions to these pair states are energetically forbidden and only one
interaction channel significantly contributes.
In this approximation the system can be described in the basis (|1′2〉 , |12′〉) by the
Hamiltonian

H =

 0 U(r)
U(r) ∆

 , (1.35)

with the coupling strength U(r) = C3
r3 between |12′〉 and |1′2〉 that scales as 1/r3. The

coefficient C3 depends on the dipole matrix elements between the pair states and will
be described and calculated in detail later in chapter 1.3.5. ∆ = E|12′〉 − E|1′2〉 is the
energy defect of the pair states.
This Hamiltonian can analytically be diagonalized to obtain the eigenenergies

λ1,2 = 1
2(∆±

√
∆2 + 4U2). (1.36)

Figure 1.6 shows the distance dependent potential curves between the atoms. Two
branches are visible, where the interaction-induced energy shift differs in its sign. The
energy of one branch increases with decreasing interatomic distance (blue). The force,
as the derivative of the potential curve, points towards bigger interatomic distances in
this case, resulting in a repulsive interaction between the atoms. The other branch
(red) shows an attractive interaction. From equation (1.36) two limits are especially
interesting and will be inspected in the following.
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1.3 Binary interactions between Rydberg atoms

• ∆ � U In the case of nearly degenerate states the eigenenergies are λ1,2 = ±U .
This results in resonant 1/r3-dipole-dipole interaction that is expressed in the dis-
tance dependent energy shift. The attractive and repulsive interacting eigenstates
in this limit are |a〉 = 1√

2(|12′〉+ |21′〉) and |b〉 = 1√
2(|12′〉−|21′〉). In Figure 1.6 (b)

these states are plotted as a function of the interatomic distance in the case of
∆ = 0, when the approximation of resonant dipole-dipole interaction is valid for
all distances.

• ∆ � U In the limit of large defects ∆ the eigenstates remain almost unper-
turbed and the eigenenergies are λ1 = ∆ + U2

∆ and λ2 = −U2

∆ . Both states scale
as 1/r6 with the interatomic distance. This is the limit of van der Waals interac-
tion or induced dipole interaction that can also be calculated from second order
perturbation theory when the interaction is treated as a small perturbation.

In Figure 1.6 (a) both limits are indicated by the dashed and the dotted lines. For a finite
energy defect the states show a van der Waals interaction at large internuclear distances,
when ∆ � U is fulfilled. With smaller distances the coupling strength U(r) = C3/r

3

rises and the system eventually reaches the limit of resonant dipole-dipole interaction
(U(r)� ∆).
The transition from van der Waals to dipole-dipole interaction appears when the cou-
pling strength equals the energy defect, U ≈ ∆. The crossover distance rc can thereby
be defined as

rc = 3

√
C3

∆ . (1.37)

The dashed-dotted line in Figure 1.6 (a) indicates this distance. For ∆ = 0 (Figure
1.6 (b)) the interaction is entirely of dipole-dipole character and no transition appears.

1.3.3 Förster resonances
Previously we saw that strong interactions can arise if dipole coupled pair states are
degenerate. That can happen whenever two degenerate dipole transitions couple non-
radiatively in atoms, molecules or even more complex biological objects and is called a
Förster resonance. In biological systems this leads to the Förster resonant energy transfer
(FRET), responsible for the efficient and fast energy transport in photosynthesis.
Similar Förster resonances can also be found in atoms. As radiation less couplings,
Förster resonances appear only in the near field when the wavelength of the transition
λ is longer than the interparticle distance r. At typical length scales of up to some
tens of µm in ultra-cold atoms this corresponds to transition frequencies below 10THz
to fulfill the near field approximation. Transitions from the atomic ground state can
typically not realize non-radiative dipole couplings. In Rydberg states, however, the
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transition frequencies are in the microwave range, deep in the near field limit, and
Förster resonances can occur.
In the simplest case consider one atom in a Rydberg ns state and the other atom in a
np state. Then, dipole-dipole transitions can exchange the energy between the atoms

np + ns↔ ns + np. (1.38)

The two oscillating dipoles between ns and np couple and induce an interaction. This
transition is always, independent of external fields, exactly resonant.
However, experimentally this situation is difficult to realize as the atoms have to be
prepared in different states. Similar resonances can also appear between different atomic
states, if the corresponding pair states are degenerate. In this case, the oscillating
transition dipoles of the two interacting atoms are in general different in the polarization,
in contrast to usual Förster resonances, but still induce interactions between the atoms.
Despite the typographical error in their paper [31], we follow Walker and Saffman and
also call these resonances Förster resonances in analogy to the FRET processes.
Due to the lifting of the l-degeneracy by the quantum defects in low-l Rydberg states
accidental pair degeneracies are unlikely. But several possibilities exist to tune the pair
states into resonance. That can happen by radio-frequency fields [25], microwave fields
[17] or AC-Stark effects [82]. In these approaches an oscillating field realizes the control
parameter for tuning the resonances and they require an additional radio-frequency or
microwave source. Spatially resolved control of these fields to control the interaction is
challenging.
DC-Stark shifts [16] by small electric fields can also tune pair states into degeneracy. The
use of Stark-tuned Förster resonances offers many advantages, such as easy tunability
and small technical effort to generate the static electric field that serves as a control
parameter. They are widely used and have been studied in many laboratories for more
than 30 years. They are also used in the experiments of this thesis and I will concentrate
on them in the following.
The pronounced Stark shift of Rydberg states and its dependence on the internal state
allows tuning the energy defect between pair states, in the context of Förster resonances
called Förster defect, by static electric fields. Many possible pair states can be used,
but outstanding is the Förster resonance

44d5/2 + 44d5/2 → 46p3/2 + 42f (1.39)

in 87Rb. First of all, 87Rb is well known in ultra-cold physics and easily controllable.
This particular Förster resonance is furthermore advantageous as it appears at small
electric fields, it is well separated from other resonances and it allows preparing the
atoms in one single state that is accessible by two-photon excitation.
Figure 1.7 shows the Stark map and an energy level diagram of the relevant states at
13.55G magnetic offset field, as it is used in the experiment. The 44d5/2 state lies
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Figure 1.7: Stark map of the relevant single-atom states for the discussed Förster resonance
at 13.55G magnetic offset field, aligned parallel to the electric field. The 44d states are ap-
proximately midway between the dipole coupled 42f and 46p states. The transition frequencies
at 0.231V/cm, marked by the vertical arrows, are ∆νF = 58.248GHz. The right side shows an
energy level diagram of the Zeeman split states and the possible transitions from the 44d5/2,
mj = 5/2 state. Note that the shown Zeeman split states are no eigenstates in combined
magnetic and electric fields.

approximately midway between the 42f and the 46p states. Especially due to the 42f
Stark effect of about 2GHz/(V/cm)2, that clearly exceeds all other Stark effects, the
transition frequencies ∆νF shift in the electric field. The frequency of about 58.2GHz
corresponds to a wavelength of 5mm that exceeds all other length scales in a typical
ultra-cold atom experiment and allows for non-radiative coupling.
Due to the magnetic offset field the magnetic substates split. The energy level diagram
in Figure 1.7 shows this splitting. Starting from the 44d5/2, mj = 5/2 state, as it is
done in the experiments in this thesis, only one of the 46p states is coupled, namely
46p3/2, mj = 3/2. However, dipole coupling to several 42f states is allowed. The
transition dipoles to these magnetic substates differ in the polarization. Different angular
dependencies arise, which will be discussed in chapter 1.3.5. The description in the
energy level diagram in Figure 1.7 is only valid in a pure magnetic field. In combined
electric and magnetic fields the energy levels shown will be mixed.
Figure 1.8 shows the energy levels of the pair states from equation (1.39), using the
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Figure 1.8: (a) Stark map for the relevant pair states (see text) in zero magnetic field. (b)
shows the Stark map at a magnetic offset field of 13.55G aligned parallel to the electric field.
The dashed line is the 2·(44d5/2,mj = 5/2) pair state, the solid lines are the (46p3/2,mj = 3/2)
+ 42f pair states.

notation |dd〉 for two atoms in the 44d5/2, mj = 5/2 state and |pfi〉 for the state (46p3/2,
mj = 3/2) + 42f. Different Stark and Zeeman effects of the involved single-atom 42f
states induce a splitting into several |pfi〉 pair states, indicated by the subscript i. In zero
magnetic and electric field the Förster defect ∆i = E|pfi〉 − E|dd〉, the energy difference
between the pair states, is 65MHz (see Figure 1.8 (a)). At certain electric fields the |dd〉
state becomes degenerate with a |pfi〉 state and a Förster resonance arises.
In an additional magnetic field, shown in Figure 1.8 (b), the Zeeman effect shifts the pair
states in zero electric field. As the Stark effect is unidirectional, some pair states cannot
be shifted into resonance by the additional electric field. However, different magnetic
substates |pf1〉 - |pf6〉 are tuned into resonance at different electric fields (0.234, 0.184,
0.127, 0.115, 0.058, 0.055V/cm), leading to several distinct resonances. The involved
single-atom f states are no eigenstates of Ĵz in the combined magnetic and electric fields
and cannot be uniquely described by the quantum numbers l,j and mj. Figure 1.9
shows the fractional composition of the states in the respective fields of the Förster
resonances. The resonance in the highest electric field at 0.234V/cm, |pf1〉, is an almost
pure (46p3/2, mj = 3/2) + (42f7/2, mj = 7/2) state, as it is the stretched configuration
where all spins are aligned in parallel. The other states are widely mixed. However, I
will denote these states by |pfi〉 in the following even though they are no eigenstates in
l,j and mj. The involved p and d states remain almost pure states and do not change
their character.
The magnetic field dependence of the electric fields necessary to tune the pair states
into resonance is shown in detail in Figure 1.10 by the solid lines. The dots indicate the
interaction strength of the resonances, that will be calculated in chapter 1.3.5. The color
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1.3 Binary interactions between Rydberg atoms

and the diameter of the dots, that linearly increases with the strength of the resonance,
show the angular maximum of the interaction strength Umax. Some pair states can be
tuned into resonance by a certain electric field, but as the involved states are not dipole
coupled they do not induce interactions. This can be seen by the solid lines that have
no additional dots.
In zero magnetic field four resonances appear. This can be understood if the fine struc-
ture splitting of the f state is omitted [79]. In a basis formed of magnetic quantum
numbers for electron spin and orbital angular momentum of the f state (|ms,ml〉) the
pair states that couple to |dd〉 at B = 0G can be identified as |12 , 3〉,|

1
2 , 2〉 and |

1
2 , 1〉

for the resonances at | ~E| = 0.234V/cm, | ~E| = 0.182V/cm and | ~E| = 0.164V/cm, re-
spectively. The state |12 , 0〉 at | ~E| = 0.159V/cm is not coupled to |dd〉 and hence does
not induce interactions. This is visible in Figure 1.10 by the lacking dot, describing the
strength of the interaction. Differences to [79] arise due to slightly different quantum
defects used, predominantly by the g quantum defect that was not considered before.
The magnetic field leads to shifts of the resonant electric fields and to additional and
stronger splitting of the resonance, advantageous to resolve and individually address
the resonances. The resonance at 0.234V/cm is not shifted by the magnetic field. It is
an almost pure, maximally aligned state consisting of (46p3/2, mj = 3/2) and (42f7/2,
mj = 7/2). Upon inserting mj = j into equations (1.30) and (1.31) the Zeeman shift
can be calculated for maximally aligned states to be ∆EB = (l + 2s) · µBB. Hence
Förster resonances of the type

n, l + n, l→ n′(l + 1) + n′′(l − 1) (1.40)

do show magnetic field independent resonances between the maximally aligned states.
Not maximally aligned states show complicated shifts in combined electric and magnetic
fields and accidental magnetic field independent resonances are unlikely. In the case of
resonances like

n, l + n, l→ n′(l ± 1) + n′′(l ± 1), (1.41)

e.g. between 37p3/2+37p3/2 and 37s1/2+38s1/2 [24], the maximally aligned states do not
show magnetic field independent resonances.
The predominant source of inaccuracy in these calculations is the g quantum defect,
which is not precisely known for the 42g state relevant here. The only measured value is
the g quantum defect for 85Rb n = 30 [71]. In table 1.4 the dependence of the calculated
Förster resonance positions on the g quantum defect is shown. The difference of about
15% is notable and a precise knowledge of the correct quantum defect would be necessary
for accurate predictions of the Förster resonance positions.
Comparing the electric fields of the Förster resonances to the single-atom level crossings
in Figure 1.4, where single-atom diabatic losses may occur, one can see that at 13.55G
these crossings at 0.8V/cm are far outside the experimentally relevant electric field range
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Figure 1.9: Fractional composition of the involved f state in the pair states at the respective
electric fields where they are tuned into resonance.

Figure 1.10: Magnetic field dependence of the electric fields | ~E| required to tune the pair
states into Förster resonance for parallel magnetic and electric field (dots and lines). The
angular maximum of the interaction strength Umax of the resonances is indicated by the color
and the diameter of the dots, that linearly increases with the strength of the resonance. The
strongest resonance is at | ~B| = 0G and | ~E| = 0.234V/cm with a strength of 1556MHz·µm3.
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electric fields [V/cm]

δg = 0.00405 [71] 0.234 0.184 0.127 0.115 0.058 0.055

δg = 0 0.266 0.210 0.146 0.132 0.066 0.062

Table 1.4: Comparison of the calculated electric fields to tune pair states into Förster reso-
nance with and without a quantum defect of the g states.

for the Förster resonances of below 0.3V/cm. However, at smaller offset magnetic fields
below 4G both effects arise at similar electric fields. Therefore this particular Förster
resonance has to be studied either in absence of a magnetic field or at strong enough
magnetic offset fields.

1.3.4 The dipole-dipole interaction operator

The strength of the interaction between two neutral atoms, having oscillating electric
dipole moments, can be calculated as a coupling between the radiated field of one atom
and the dipole moment of the second atom. Atom 1 with an oscillating transition dipole
moment ~d1(t) = ~d1e

−iωt, where ~ω is the transition energy, radiates an electric dipole
field ~E1(~r, t). This fields interacts with the electric dipole moment of atom 2 to give the
interaction energy ~E1(~r) · ~d2(t). The energy can be expressed in multipole expansion, in
leading order as the dipole-dipole interaction [83, 84]

U(r) = 1
4πε0

~d1 · ~d2 − 3(~n · ~d1)(~n · ~d2)
r3 , (1.42)

where r is the internuclear distance and ~n the unit vector connecting the atoms (see
Figure 1.11). This approximation is valid in the near field of the oscillating dipole where
the internuclear distance is considerably smaller than the wavelength of the transition
and when the electron wavefunctions of the two atoms do not overlap. The dipolar
interaction resembles the classical dipole-dipole interaction between permanent dipole
moments, which leads to the interaction (1.34) if aligned along the electric field.
In a quantum mechanical analog the dipole moment ~d is exchanged by the dipole oper-
ator d̂ to obtain the quantum mechanical dipole-dipole interaction, following the calcu-
lations from Reinhard et al. [79]. For the geometry depicted in Figure 1.11, the dipole
operator can be expressed in the spherical basis d+, d−, dz (equations (1.25)), using

~n = sin Θ~ex + cos Θ~ez (1.43)
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Figure 1.11: Geometry of the considered two-atom system with dipole moments d1,2 and the
quantization axis along the electric field ~E.

with the unit vectors ~ex,z. One obtains for the dipole-dipole interaction operator Vdd

Vdd = 1
4πε0

d̂1 · d̂2 − 3(~n · d̂1)(~n · d̂2)
r3

= 1
4πε0

d1+d2− + d1−d2+ + d1zd2z(1− 3 cos2 Θ)
r3

−
3
2 sin2 Θ(d1+d2+ + d1+d2− + d1−d2+ + d1−d2−)

r3

−
3√
2 sin Θ cos Θ(d1+d2z + d1−d2z + d1zd2+ + d1zd2−)

r3 .

(1.44)

The first subscript k = 1, 2 indicates the atom, the second subscript indicates the
polarization of the oscillating dipole moment that can be circular (+,−) or linear (z)
polarized. The operator Vdd acts on pair states |12〉 and the coupling strength in dipole-
dipole approximation between two pair states can be expressed by the corresponding
matrix element of the dipole-dipole interaction operator.
These matrix elements are also relevant for the calculation of binary interactions, as will
be explained in the following sections. Each term

〈1′2| d1id2j |12′〉 = 〈1′| d1i |1〉 〈2| d2j |2′〉 (1.45)

of the matrix elements of Vdd, involving products of single-atom matrix elements
〈k′| dki |k〉 (1.26), describes the coupling between two oscillating dipoles of polarization
i and j (i, j = +,−, z). This polarization is given by the polarization of the corre-
sponding transitions, depending on the magnetic quantum numbers involved as shown
in the energy level diagram in Figure 1.7. However, the good quantization axis for the
polarization of the oscillating dipoles is the interatomic axis and not necessarily the
quantization axis of the atoms, given by the external field.
In the case of Θ = 0 the interatomic axis and the external field axis are parallel. Then a
unique correspondence between the magnetic quantum numbers and the polarization of
the transition exists. Transitions with ∆mj = +1,−1, 0 show non-zero matrix elements
only of d+, d−, dz, respectively. In the case of a finite angle Θ this correspondence is not
fulfilled and the interpretation of the coupling becomes more involved.
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1.3.5 Resonant dipole-dipole interaction
In the case of degenerate dipole-dipole coupled pair states, resonant dipole-dipole in-
teraction occurs. That can be seen as resulting from first order perturbation theory,
leading to the interaction strength

Udd = ±〈1′2|Vdd |12′〉 , (1.46)

with the dipole-dipole interaction operator Vdd (1.44). Diagonalization of the Hamil-
tonian of the single interaction channel model (1.35) results in the same interaction
strength.
Resonant dipole-dipole interaction due to the Förster resonance (1.39) occurs only when
the pair states are shifted into exact resonance, for example by small electric fields.
Hence, to calculate the strength and the angular dependence of the Förster resonance
the eigenstates in the electric field, where the pair states are tuned into resonance,
must be calculated (see Figure 1.9). From these eigenstates the interaction can be
calculated for every Förster resonance simultaneously, similar to equation (1.46). Since
it is not possible to differenciate between the two alike atoms the coupled pair state
is 1√

2(|pfi〉 + |fip〉), with the degenerate states |pfi〉 and |fip〉. The antisymmetric
combination of pair states does not lead to an interaction. This results in

Udd =± 1√
2

(〈pfi|+ 〈fip|)Vdd |dd〉

=±
√

2 〈pfi|Vdd |dd〉 ,
(1.47)

which can be expressed as Udd = ±C3
r3 with the C3-coefficient as in the single interaction

channel model (1.35). The sign is given by the phase between |pfi〉 and |dd〉. Figure
1.10 shows this strength of the resonances. The resonance at the highest electric field
shows the strongest interaction.
The θ-dependence of the operator Vdd results in an angular dependence of the strength
of the dipole-dipole interaction, that is plotted in Figure 1.12 at the distinct electric
fields where the Förster resonances occur. Different angular symmetries are visible for
the different resonances.
Let’s focus on the simple configuration where the atoms are aligned along their quanti-
zation axis, i.e. Θ = 0. The transition between 44d5/2 and 46p3/2 is always ∆mj = −1
(cp. Figure 1.7) and only terms including at least one dk,− in the interaction operator
(1.44) contribute. Furthermore, since Θ = 0, most other terms drop out and we are left
with

〈pf |Vdd |dd〉 = 1
4πε0

〈pf | d1−d2+ + d1+d2−

r3 |dd〉 . (1.48)

Interpreting this equation we see that only transitions where one atom is excited to
42f7/2, mj = 7/2 and the other atom to 46p3/2, mj = 3/2 are allowed as they are the
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Figure 1.12: Angular dependence of the strength of the resonant dipole-dipole interaction
at 13.55G magnetic offset field along the quantization axis at the respective electric fields to
tune the pair states into resonance.

only transitions with both, ∆mj = +1 for one atom and ∆mj = −1 for the other
atom. This can also be seen from angular momentum conservation. One transition
with ∆mj = −1 demands another transition with ∆mj = +1 to preserve the angular
momentum.
Figure 1.9 shows that only resonance |pf1〉 is dominantly composed of the 42f7/2, mj =
7/2 state and induces an interaction at Θ = 0, visible in Figure 1.12. It shows the
same angular dependence (∝ 1 − 3

2 sin2 Θ) as the classical dipole interaction between
permanent dipoles and shows no interaction under an angle of 54.7◦, called the magic
angle. Integration over the full solid angle results in zero interaction, which means that
a homogeneous infinite sample at this Förster resonance does not experience an energy
shift due to the interaction.
For a finite angle Θ the polarization axis of the oscillating dipoles is not identical with
the quantization of the atoms and the connection between ∆mj and the polarization
of the dipole moments becomes complicated. Other transitions are allowed where the
projection of the angular momentum onto the quantization axis is not conserved and
additional resonances appear. Some of these resonances show an angular dependence
that does not result in zero when integrating over the full solid angle, namely |pf4〉 and
|pf5〉.

1.3.6 van der Waals interaction
When no degenerate pair states exist, interactions can be calculated from second order
perturbation theory and van der Waals interaction occurs. As already seen in the single
interaction channel model the energies of the pair states depend on U2

∆ and scale as 1/r6.
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In many-level atoms these contributions from every single interaction channel have to
be summarized, leading to the van der Waals interaction UvdW

UvdW = −
∑
k′′k′

| 〈k′′k′|Vdd |kk〉 |2

∆k′′k′
, (1.49)

expressed as an interaction-induced energy shift of the pair states. |k′′k′〉 denotes all
pair states that are dipole-dipole coupled to the initial pair state |kk〉 and ∆k′′k′ =
E|k′′k′〉 − E|kk〉 is the infinite separation energy defect between the pair states. In the
presence of magnetic and electric fields the pair states consist of single-atom eigenstates
in the respective field. Since Vdd ∝ 1/r3 follows UvdW ∝ 1/r6. The van der Waals
interaction is often expressed as UvdW = −C6

r6 with the van der Waals-coefficient C6

describing the strength of the interaction.
The contribution of every single interaction channel scales as 1/∆ and usually only some
energetically close by pair states contribute significantly. In the calculations here only
interaction channels with |∆| < 10GHz are considered. Furthermore, as the single-atom
matrix elements 〈k′| di |k〉 decrease rapidly with increasing energy difference between
initial and final state, the calculations are restricted to principal quantum numbers
n± 5 around the quantum number n of the initial state. j and mj can also be limited
to j,mj ≤ 11/2 as dipole transitions couple only l′ = l ± 1, 0. In the case of van der
Waals interaction of the 44d5/2 state this reduces the relevant pair states to about 40000.
Especially close to a Förster resonance, where some pair states are nearly degenerate,
the system can be severely reduced, as it is done in chapter 1.3.7.
The calculated van der Waals interaction of two atoms in the 44d5/2, mj = 5/2 state as a
function of the angle Θ between the interatomic axis and the quantization axis is shown
in Figure 1.13. In zero electric field the interaction-induced energy shift is negative, i.e.
the van der Waals interaction is attractive, and the interaction is almost isotropic in
the angle Θ. Close to the Förster resonance at 0.234V/cm (see Figure 1.8) however a
pronounced angular dependence is visible and the interaction is clearly enhanced under
some angles. Additionally the interaction changes from attractive below the resonance
at 0.2V/cm to repulsive above the resonance at 0.26V/cm.
The angular dependence can be understood from the following: Close to the Förster
resonance only one interaction channel dominates. All other terms in the sum (1.49)
result in an almost isotropic background. The dominant term accounts for the strong and
anisotropic interaction proportional to |Udd|2. Hence the van der Waals interaction close
to a Förster resonance mirrors the angular dependence of the dipole-dipole interaction
at resonance squared (see equation (1.47) and Figure 1.12).
The strength of the van der Waals interaction for different angles is shown in Figure
1.14 as a function of the electric field. At the electric fields where the Förster resonances
appear, as calculated in chapter 1.3.3, the van der Waals interaction diverges. The
change of the interaction from attractive at electric fields smaller than the electric field
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Figure 1.13: Calculated angular dependent van der Waals interaction for two atoms in the
44d5/2, mj = 5/2 state at 13.55G magnetic offset field for zero electric field and electric fields
close to the Förster resonance of |pf1〉 ( ~E ‖ ~B).

Figure 1.14: Electric field dependence of the strength of the van der Waals interaction for
Θ = 0◦ and 90◦ and close to the magic angle of 54.7◦ at 13.55G magnetic offset field.
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of the Förster resonance to repulsive at higher fields is again visible in the sign of the
energy shift.
When the atoms are aligned along the fields (Θ = 0) only one resonance appears because
of angular momentum conservation, as in the case of resonant dipole-dipole interaction.
Under the magic angle of 54.7◦ the resonance in the highest electric field does not appear.
In Figure 1.14 a very small signal at 0.234V/cm is visible since the calculation was done
at 54◦, not exactly at the magic angle.
Care has to be taken here as these calculations are results of a perturbative approach.
When the interaction strength−C6/r

6 equals the energy defect a cross-over to the dipole-
dipole interaction occurs (chapter 1.3.2) and equation (1.49) is no longer valid. This
cross-over is a function of the interatomic distance and of the electric field. The van der
Waals interaction provides good results for large interatomic distances and large energy
defects only, i.e. detuned in the electric field from the Förster resonances. Close to
the resonances, where the van der Waals interaction strength diverges, the perturbative
approach fails and the results in Figure 1.14 are not correct.

1.3.7 Full diagonalization of the essential pair state system

Close to the Förster resonance the number of relevant states can be greatly reduced, be-
cause only a limited number of interaction channels with a small energy defect dominate.
Other pair states contribute only insignificantly and can be omitted.
Figure 1.15 shows a pair state Stark map of the relevant Rydberg pair states at the
Förster resonance. Only the |pfi〉 states show a small energy defect and have to be
considered besides the |dd〉 state. Since the states |pfi〉 and |fip〉 are degenerate but
only the symmetric combination of both couples to |dd〉, the pair states relevant for the
Rydberg-Rydberg interaction are 1√

2( |pfi〉 + |fip〉) and |dd〉. To reduce the number of
state further only i = 1 . . . 4 was considered here, as the resonances of |pf5〉 and |pf6〉
appear at small electric fields that cannot be realized in the experiments.
In the presence of an excitation laser field that couples additionally the ground state
5s, denoted by g, to the 44d state, additional states have to be included. Every atom
couples independently to the light field and the excitation has to be described as a single
atom process. Therefore the additional states are |gg〉 and 1√

2( |gd〉+ |dg〉) and no direct
coupling from |gg〉 to |dd〉 exists. The antisymmetric combination is, again, not coupled
by the field and needs not to be taken into account.
In the basis ( |gg〉 , 1√

2( |gd〉+ |dg〉), |dd〉, 1√
2( |pf1〉+ |f1p〉), 1√

2( |pf2〉+ |f2p〉), 1√
2( |pf3〉+

|f3p〉) and 1√
2( |pf4〉 + |f4p〉)) the Hamiltonian can be written in the dressed states
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Figure 1.15: (a) Stark map of the relevant Rydberg pair states (see text). (b) shows a mag-
nification of the Stark map at the electric field where the pair states are tuned into resonance.
The dashed lines denote the pair state energies without coupling; the solid lines include a
dipole-dipole coupling. The energy differences at the resonant electric field Eres and at a
detuned electric field Edet are indicated.

picture as

H =



0 Ω√
2 0 0 0 0 0

Ω√
2 δL + Ed

Ω√
2 0 0 0 0

0 Ω√
2 2δL + 2Ed U1(r,Θ) U2(r,Θ) U3(r,Θ) U4(r,Θ)

0 0 U1(r,Θ) 2δL + Epf1 0 0 0
0 0 U2(r,Θ) 0 2δL + Epf2 0 0
0 0 U3(r,Θ) 0 0 2δL + Epf3 0
0 0 U4(r,Θ) 0 0 0 2δL + Epf4


(1.50)

where Ed is the Stark shift of one atom in the 44d state, Epfi the shift of the |pfi〉
pair state and δL the detuning of the laser to the 44d state. Ω is the Rabi frequency
of the laser coupling between the 5s1/2 ground state and the 44d5/2 Rydberg state.
The strength of the pair state couplings is given by the dipole-dipole operator matrix
elements Ui =

√
2 〈pfi|Vdd |dd〉, depending on the interatomic distance r and the angle

Θ (Figure 1.11).
Diagonalization of this Hamiltonian gives the pair state energies as a function of the in-
teratomic distance. Figure 1.16 shows the energy levels of the Rydberg atom pair states
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Figure 1.16: Potential energy curves obtained from the diagonalization of Hamiltonian (1.50)
for | ~E| = 0.26V/cm and Θ = 30◦. The labeling of the states at infinite interatomic distance r
follows Figure 1.15. The results from perturbation theory are plotted as dotted lines (resonant
dipole-dipole interaction) and dashed lines (van der Waals interaction).

for Ω = 0, Θ = 30◦ and | ~E| = 0.26V/cm. The angle of Θ = 30◦ was exemplarily chosen
so that all resonances appear. These calculations agree with the van der Waals inter-
action (dashed line, calculated from (1.49)) of the 44d pair state for large interatomic
distances, even though these calculations are performed with a considerably reduced pair
state basis. The repulsive potential at small distances can be roughly reproduced by the
dipole-dipole interaction (equation (1.42), dotted line), but a clear deviation is visible.
Diagonalization results in a stronger interaction than the pure dipole-dipole interaction
due to the coupling to all four |pfi〉 states. The attractively interacting states show a
number of avoided crossings at small distances and do not agree with the perturbative
results as several near-resonant interaction channels contribute.
This approach of full diagonalization of a reduced pair state system offers many advan-
tages. Besides the reduced computational effort compared to the calculation of van der
Waals interactions, also the cross-over region can be addressed, where neither the reso-
nant dipole-dipole nor the van der Waals interaction provide good results. Furthermore
this approach allows calculating the time evolution of the pair state system by use of
the Schrödinger equation (1.4), that is fundamentally important for describing a pulsed
experiment. This is done in the concept of the pair state interferometer in section 3.2.3.
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1.3.8 Rydberg blockade and collective excitation
An important consequence of the Rydberg-Rydberg interaction is the so-called Rydberg
blockade, which limits the population of the excited Rydberg state. This local blockade
of Rydberg excitation has been widely studied theoretically [85] and experimentally in
ultracold gases, employing van der Waals interaction [86], induced permanent dipole-
dipole interaction in an electric field [81] and resonant dipole-dipole interaction at a
Förster resonance [20].
In the case of two two-level atoms, with a coupling laser tuned on resonance to the
ground state-Rydberg state transition with the Rabi frequency Ω0, one atom can be
excited to the Rydberg state. Due to the interaction between two atoms in the Rydberg
state, the transition of the second atom to the excited state is shifted in energy by the
interaction energy U(r), depending on the interatomic distance r. This transition can
only be driven by the laser if the interaction energy shift is smaller than the excitation
linewidth, given by the Rabi frequency Ω or the total excitation linewidth ∆ω, in the
case of additional broadening mechanisms exceeding the power broadening. This leads
to the condition

~∆ω ≤ |U(r)| (1.51)
for the suppression of the excitation to the doubly excited state. Depending on the
type of interaction it creates a blockade sphere of radius r ≤ k

√
|Ck|
∆ω where the doubly

excited state is suppressed, with k = 3 for dipole-dipole and k = 6 for van der Waals
interaction. The picture of a spherical blockaded volume is, of course, only true for
isotropic interaction. In the case of angular dependent dipole-dipole interaction this is
more like a blockade ellipsoid and even shows no blockade effect under the magic angle
of 54.7◦.
In the limit of strong blockade (U � ~∆ω) this effect is not dependent on the actual
character of the interaction. This makes the Rydberg blockade possible with arbitrary
interactions and independent of fluctuations in the interaction strength due to fluctua-
tions in the interatomic distance. Especially these properties of Rydberg atoms raised
the growing interest in ultracold Rydberg atoms as building blocks for quantum logic
gates [41] or single photon sources [56, 54].
For typical interaction strength at Θ = 0◦ of the Rydberg states used here (C3 =
±2π × 1556MHzµm3 at the resonance at | ~E| = 0.214V/cm, C6 = −2π × 28GHzµm6

at | ~E| = 0V/cm) one obtains blockade radii of 17.5µm at resonance and 6.7µm at
E = 0, with a linewidth of 2π × 300 kHz. At typical ground state atom densities
of ρ = 1010 cm−3 up to ρ = 1013 cm−3 in ultracold atomic samples realized in the
experiments here the blockade radius is considerably larger than the nearest neighbor
distances between 2.8µm and 0.3µm, calculated from the Wigner Seitz radius [87]

rWS = 3

√
3

2πρ. (1.52)
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More than two atoms are within the blockade sphere and the excitations are delocalized
and shared collectively among all N atoms inside the blockade sphere. The single excited
state is

|N, 1〉 = 1√
N

N∑
i=1
|g1, g2, . . . , ri, . . . , gN〉 , (1.53)

where g denotes the ground state, r the Rydberg state and the subscript labels the atoms.
The coupling to the ground state |N, 0〉, described by a collective Rabi frequency Ωeff

Ωeff = 〈N, 1|HAL |N, 0〉 =
√
NΩ0, (1.54)

shows a collective enhancement by
√
N . The ensemble of N atoms behaves as a single

atom, often called ’superatom’ [88], with a Rabi frequency of Ωeff. This enhancement of
the Rabi frequency was nicely shown in [42, 43] in the case of two atoms.
In an ensemble of atoms, however, the spatial density distribution of the trapped cloud
of ultracold atoms creates a band of collective Rabi frequencies in the system [89]. In the
presence of a driving laser field no Rabi oscillations are visible as the spatially different
oscillations add up. The excitation of such an ensemble shows a roughly linear increase
with time up to a saturation in the Rydberg atom number, limited by the Rydberg
blockade.
It is interesting to note that the Rydberg blockade significantly changes the excitation
dynamics even when the system is not driven into saturation because the collective
enhancement of the excitation dynamics appears already at small Rydberg densities.
This behavior is important for the modeling of the pair state interferometer in chapter
3.2.3.
The concept of blockaded ’superatoms’ has to be applied carefully, especially in the case
of strong interactions between the Rydberg atoms. Strictly speaking, it is only valid in
the case of strong blockade of an ensemble smaller than the blockade radius and with
pure binary van der Waals interactions. In the case of dipole interaction (∝ 1/r3) it
was shown [90] that already in the case of three interacting atoms noninteracting states
exist, even for strong two-body interactions. In the case of Förster resonances additional
states can appear that do not show interactions, so-called Förster-zero states [31]. These
states break the Rydberg blockade and enable multiple excitations.
However, a careful consideration of the model often leads to reasonable results with the
great advantage that the number of atoms in such models can be strongly reduced. It
is also used to simulate interaction-induced effects in section 3.2.3.
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1.4 Ultralong-range Rydberg molecules

The unusual, often exaggerated properties of Rydberg atoms not only lead to interesting
single-atom and collective effects, but also open the way to developments in the emerging
field of ultracold chemistry. Ultracold is usually defined as the regime where collision
dynamics of particles are dominated by single partial-wave scattering [12]. Only very
few observations have been made so far that are specific to the ultracold chemistry
regime, like photoassociation of ultracold molecules [59], Bose-Einstein condensation of
molecules [46, 47] and Efimov resonances [48].
The interaction of a weakly bound Rydberg electron with ground state atoms within
the electron’s wavefunction can indeed solely be described by s- and p-wave scattering
because of the low average velocity of the Rydberg electron. It leads to the binding
of molecular states, first proposed in 2000 [91] and recently created and observed in
photoassociation spectroscopy [49] in our group, with very low binding energies of some
tens of MHz.
The binding mechanism is novel in the sense that it cannot be described by the classical
binding mechanisms known to chemistry, that are covalent, ionic and van der Waals
binding. Besides this peculiar character, which already shows the wide potential of ul-
tracold chemistry with Rydberg atoms, ultralong-range Rydberg molecules show several
unusual properties that have been studied in the last years. Examples are direct three
body photoassociation to a trimer state [92], quantum reflection [92], coherent control
of the binding [93] and the lifetime and decay process of the molecules [94].
Here, I will report on an additional, maybe even more stunning peculiarity of these
molecules: the emergence of a permanent dipole moment in a homonuclear diatomic
molecule. I will first describe the binding mechanism before I will explain how this dipole
moment forms, that contradicts classical textbook knowledge. The exact calculation
of the permanent electric dipole moment was done in a collaboration with theoretical
physicists from the Max-Planck-Institute for the Physics of Complex Systems in Dresden
and from the Harvard-Smithonian Center for Astrophysics in Cambridge, USA [50].

1.4.1 Binding mechanism

Ultralong-range Rydberg molecules are a bound state formed of one atom in a highly
excited Rydberg state and a ground state atom. The binding relies on frequent scattering
of the Rydberg electron off the ground state atom. The electron itself is only weakly
bound to the ionic core of the Rydberg atom via Coulomb interaction and can be treated
as a quasi-free particle of very low kinetic energy. The ground state atom forms a weak
perturber within the electron’s wavefunction that can be described by a zero-range
Fermi pseudopotential interaction of a free, low-energy electron and a ground state
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atom [95, 96] as2

V̂ (~r, ~R) = 2πAs(k)δ(~r − ~R) + 6πAp(k)3δ(~r − ~R)|∇|2 (1.55)

in s- and p-wave scattering. The positions of the ground state atom ~R and of the Rydberg
electron ~r are expressed relative to the Rydberg atom core and As(k) and Ap(k) are the
energy dependent s- and p-wave scattering lengths of the electron-ground state atom
scattering [96, 97]. In the case of Rubidium, the triplet spin scattering length (S = 1)
is negative (As(k = 0) = −16.05a0 [98, 99] and Ap(k = 0) = −21.15a0 [92]) and leads to
an attractive potential, whereas the singlet (S = 0) scattering length is positive [100].
Therefore only atoms in the triplet state can bind and are considered here.
In a semiclassical picture the electron momentum is calculated from the classical energy
equation Eb = k2

2 −
1
R
for a bound particle of binding energy Eb in a Coulomb potential.

The simplest approach to calculate the effect of this scattering is to adopt Fermi’s idea
of a pseudopotential

VFermi = 〈Ψ35s(~r)| V̂ (~r, ~R) |Ψ35s(~r)〉 . (1.56)

In these Fermi-scattering calculations the interaction operator (1.55) acted on the un-
perturbed 35s Rydberg electron wavefunction only and influences of nearby states and
perturbations of the electron wavefunction by the ground state perturber are omitted.
These aspects will be discussed subsequently.
Figure 1.17 shows the calculated Fermi pseudopotential. At large interatomic distances,
where the electron momentum is small, s-wave scattering dominates and the molecular
potential resembles the oscillatory character of the electron wave function, creating a
potential well that supports a bound state [91]. At smaller distances, where the electron
momentum is bigger, the p-wave contribution becomes significant and the oscillatory
behavior is strongly modified.
This Fermi-scattering theory approach yields an instructive description of the funda-
mentals of the novel binding mechanism and allows calculating a bound molecular state
involving a ns Rydberg state by calculating the Fermi-pseudopotential. However, in the
vicinity of the p-wave shape resonance this approach fails, because an avoided crossing
at the resonance appears [102]. More accurate nonperturbative Green’s function calcu-
lations [92] were used to calculate the molecular potential even for smaller interatomic
distances. Another way to calculate the full potential is to diagonalize the Hamiltonian
H = HA + V̂ , where HA is the unperturbed Rydberg atom Hamiltonian. For a large
enough basis set this results in the same potential as the Green’s function approach [50].
Figure 1.18 (b) shows this potential together with the corresponding excited states. The
potential exhibits a deep drop at R ≈ 1200 a.u. due to an avoided crossing at the shape
resonance and a wide plateau between 1200 a.u. and 2000 a.u. Besides the vibrational
ground state of the molecule at -23MHz it features vibrationally excited states which

2All formulas in this chapter are in atomic units using the Bohr length a0 = 0.529× 10−10 m.
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Figure 1.17: Calculated 35s electron probability density R2|Ψ|2 (upper panel) and molecular
potential VFermi from equation (1.56) (lower panel) as a function of the interatomic distance
R. The solid potential shows the pure s-wave contribution, the dotted line the pure p-wave
contribution and the dashed line the full potential using the interaction operator from equation
(1.55). The outermost potential well at 1900 a.u. (≈ 100 nm) arises predominately by s-wave
scattering and supports a bound state with a binding energy of 23MHz, which vibrational
wavefunction is indicated. Figure adapted from [101].

are delocalized over the potential plateau and are strongly influenced by the shape
resonance. They are not conventionally bound in potential minima, but the binding
emerges by quantum reflection at the sharp potential drop at the shape resonance [92].
Experimentally these molecules were created by direct photoassociation from unbound
ground state atoms. In spectroscopy experiments they show up as additional resonances
at slightly lower excitation frequencies compared to the atomic Rydberg line, where the
frequency difference corresponds to the binding energy. Such a spectroscopy signal can
be seen in Figure 1.18 (c), where the molecular ground states as well as several excited
states are resolved.
So far only Rydberg ns states were considered, which are energetically well separated
from other Rydberg states because of a large quantum defect. As the Rydberg electron
wavefunction is spherically symmetric and non-degenerate no electric dipole moment
was predicted in these states [91]. A pure quadratic Stark shift was expected, arising
from the polarizability of the Rydberg atom. First measurements of the Stark effect
for electric fields up to 3V/cm [49] could not detect a deviation to this quadratic shift
within the experimental resolution. However, recent results with higher resolution [50]
show that this original picture is not complete and that these molecules indeed possess
an electric dipole moment. I will report on the origin of this dipole moment in the next
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Figure 1.18: Calculated molecular potential, vibrational wavefunctions and dipole moment
of the ultralong-range Rydberg molecule 3Σ(5s−35s). (a) shows the calculated dipole moment
as a function of the internuclear distance R. (b) The molecular potential obtained by diag-
onalization of the perturbed Hamiltonian shows a deep drop at ≈ 1200 a.u. due to a p-wave
shape resonance (solid black line). The vibrational ground state of the molecule at -23MHz
is localized in the outermost potential well at ≈ 1900 a.u. (red shaded area) while the vibra-
tionally excited molecular states (gray shaded areas) are bound via quantum reflection to the
potential plateau. (c) shows a measured Rydberg spectrum featuring the ground and excited
states in good agreement with the theory.
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section and on the high resolution measurements in chapter 4.
Another class of molecules are formed if the Rydberg atom is in a high-l state. In
the case of high-l Rydberg states many quasi-degenerate Rydberg levels exist, leading
to a mixing of the states. Calculations of the molecular potential [91] show a less
pronounced oscillatory behavior due to the mixing of the states, but one deep potential
well that supports many bound states. Besides the orders of magnitude increased binding
energy these molecules are also predicted to have huge permanent dipole moments.
The necessary charge separation shows in a characteristic polar electron probability
distribution reminiscent of trilobites, hence these states are called trilobite states.

1.4.2 Rydberg molecules in electric fields
To understand the behavior of molecules in electric fields a comprehensive understanding
of dipole moments is necessary. An electric dipole moment ~d forms by a charge separation
and is defined by the separated charge q times the distance ~r

~d = q · ~r. (1.57)

It induces a Stark effect of
∆EStark = ~d · ~E (1.58)

and its unit is ea0 in atomic units or Debye, where 1Debye = 3.34 × 10−30 Cm in SI
units.
This charge separation can either be permanent or induced. An induced charge separa-
tion is created by an electric field that polarizes the atom or molecule, described by the
polarizability α, and leads to an induced dipole moment ~d = α~E. Atoms or molecules
possess an induced dipole moment in a finite electric field even if they do not show a
dipole moment in the absence of an electric field. Inserting the induced dipole moment
into equation (1.58) leads to a quadratic Stark effect in the electric field. Note that this
description in terms of a polarization is only valid for small electric fields that do not
mix several states. Beyond this a linear Stark effect emerges.
A charge separation in the absence of an electric field forms a permanent dipole moment.
However, it is necessary to distinguish between the body-fixed reference frame, that is
aligned along the molecular axis, and the space-fixed laboratory frame, that is aligned,
e.g., along the external electric field. A charge separation in the eigenstates of the
molecule always results in a body-fixed dipole moment. A space-fixed dipole moment
forms if the dipole moment is not averaged out by a rotation of the molecule. Only if
a permanent dipole moment ~d in the laboratory reference frame exists a linear Stark
effect emerges, following equation (1.58). Therefore a linear Stark effect at small electric
fields is clear evidence for a space-fixed permanent dipole moment.
Homonuclear molecules as dioxygen (O2) or nitrogen (N2) or ultracold homonuclear
molecules as Cs2 [103], consisting of two same atoms, do usually not possess a perma-
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nent dipole moment due to symmetry reasons. None of the atoms is superior and no
charge separation occurs. Instead, they can be polarized and an induced dipole mo-
ment forms that leads to a quadratic shift of the molecular excitation line in an applied
electric field. A linear Stark shift, as an evidence for a permanent space-fixed dipole
moment, can only occur in the case of different electronegativities of the constituents
in heteronuclear molecules [104]. This classical argumentation can be found in many
physics and chemistry textbooks [105, 106].
In the following I will explain how the permanent, space-fixed dipole moment in the
ultralong-range Rydberg molecule forms. I will first explain the occurrence of the charge
separation in this homonuclear molecule, that is the origin of a body-fixed dipole mo-
ment. Subsequently I will show why this body-fixed dipole moment is oriented in space
to form a space-fixed dipole moment, resulting in a linear Stark effect.
The body-fixed dipole moment in the homonuclear ultralong-range Rydberg molecules
forms due to the unusual binding mechanism. Frequent attractive electron-ground state
atom collisions bind the ground state atom to the Rydberg electron wavefunction, as
explained in the preceding chapter. The back action of this interaction also changes the
electron wavefunction and localizes the Rydberg electron slightly to the position of the
ground state perturber. The original Fermi-scattering approach [91] omits this effect
and does not predict a charge separation. Complete diagonalization however includes
the back action and results in slightly perturbed eigenfunctions. Figure 1.19 shows the
perturbed probability density |Ψ|2 of the Rydberg electron in the presence of the ground
state atom. Although the overall shape of the wavefunction is still nearly spherically
symmetric, a localization to the region of the ground state atom is visible. This results
in a charge separation in the body-fixed frame of these states.
Usually exchange symmetry prohibits a permanent body-fixed dipole moment of eigen-
states of a homonuclear molecule, even if molecular states with a charge separation exist.
Two states, where e.g. the body-fixed permanent dipole moment points up (|↑〉) and
down (|↓〉), are degenerate in zero electric field and the eigenstates 1√

2(|↑〉 ± |↓〉) of the
molecule do not show a permanent dipole moment. Here, the two atoms differ consid-
erably in their electronic state and thereby in the size of the electron wave functions.
The ground state electron wavefunction is many orders of magnitude smaller than the
Rydberg electron wavefunction. An exchange between the states |↑〉 and |↓〉 can either
happen if the Rydberg excitation is transferred to the initial ground state atom or if
the electrons are interchanged between the atoms. Excitation transfer is suppressed by
a small overlap integral between both wavefunctions due to the size difference and since
the corresponding transition between the 5s ground state atom and the ns Rydberg
atom is not dipole allowed. Parity exchange by an interchange between the electrons
has to happen via tunneling of the ground state electron to the ionic core of the Ryd-
berg atom, about 100 nm away. The strength of the coupling between the two states is
proportional to the tunneling amplitude and exponentially small in the binding length.
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Figure 1.19: (a) A surface plot of the perturbed Rydberg electron probability density ρ|Ψ|2

in the 3Σ(5s−35s) molecular state in cylindrical coordinates, where ρ is the radial coordinate.
(b) Subtracting the unperturbed Ψ35s Rydberg atom wavefunction shows the locally enhanced
probability density of the perturbed wavefunction at the position of the ground state atom at
ρ = 0 a.u. and z = 1900 a.u., featuring a Cologne Cathedral-like structure. The probability
density in (b) is scaled by a factor 200 compared to (a). Note that the minimum at the axis
ρ = 0 a.u. stems from the presentation in cylindrical coordinates, where the probability density
is multiplied by ρ.

The corresponding delocalization time is longer than the time of the universe and no
parity exchange will happen during the lifetime of the molecule. In a photoassociation
experiment any external field will break this symmetry and the molecule is directly
created in one localized state and due to the improbable parity exchange a body-fixed
permanent dipole moment in a homonuclear molecule occurs.
Even in the case of a body-fixed dipole moment, both for the ultralong-range Rydberg
molecules and for heteronuclear linear molecules with different electronegativities of the
constituents, on time average the space-fixed dipole moment is zero as in free space
the linear molecule rotates uniformly top over top. In a quantum mechanical object
this is expressed by rotationally invariant rovibratonal eigenfunctions. A permanent
dipole moment in a quantum mechanical object requires a charge separation to form
a body-fixed dipole moment and degenerate opposite parity eigenstates that mix to
form rotationally non-invariant states [105]. This applies also to polar molecules in
the ro-vibrational ground state, as KRb [107] or LiCs [108]. The closest eigenstates
in the case of KRb, e.g., are rotational states splitted by the rotational constant B =
1GHz [107]. These eigenstates can mix in the presence of strong electric fields that
lead to an orientation of the molecule in the external field and to a space-fixed dipole
moment, measurable as a linear Stark effect in these strong fields. But for small fields
the rotational states are non-degenerate and only a quadratic Stark effect is visible.
These polar molecules have no permanent space-fixed dipole moment.
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In the case of ultralong-range Rydberg molecules the situation is completely different as
the rotational constant B

B = ~2

2I , (1.59)

with the moment of inertia I = µR2, is small. For the homonuclear 3Σ(5s−35s) molecule
(reduced mass µ = 1/2 · mRb) one obtains B = 11.5 kHz because of the huge binding
length of R ≈ 100nm. This is considerably smaller than the molecular linewidth of
∆ν = 142 kHz [94], hence the rotational states are nearly degenerate and mix within
the linewidth to form localized electronic states producing a permanent dipole moment
and a linear Stark effect even at the smallest electric field. This can also be seen as
taking T = 1

2π∆ν = 1µs long snapshots, limited by the lifetime of the molecule, during
which the dipole moment only rotates through a negligibly small angle with respect to
the external field [109]. The molecule appears oriented in space and a body-fixed dipole
moment also shows as a space-fixed dipole moment, leading to a linear Stark effect at
small electric fields.
In conclusion, the fundamental difference of the ultralong-range Rydberg molecules
to usual homonuclear diatomic molecules is its huge binding length and its unusual
binding mechanism. The nature of the binding, which is only moderated by the highly
excited Rydberg electron, leads to a charge separation in the molecules. In contrast
to the delocalized Rydberg electron the electron of the ground state atom is strongly
localized. This vast difference in the length scale suppress the exchange of the charge
separation and enables this molecule to possess an body-fixed electric dipole moment.
Furthermore, the huge binding length allows a slow rotation that can be neglected on
the timescale of the lifetime. Thereby a permanent space-fixed electric dipole moment
forms, contradicting the long-held belief of textbook physics that homonuclear diatomic
molecules are never polar.

To calculate this permanent electric dipole moment d the matrix element of the dipole
operator z has to be calculated as

d(R) = 〈Ψ(r, R)| z |Ψ(r, R)〉 . (1.60)

The perturbed wavefunction |Ψ(r, R)〉 of the Rydberg electron in the presence of the
bound ground state atom is calculated by diagonalizing the Hamiltonian

H = HA + V̂ , (1.61)

where HA is the unperturbed atomic Hamiltonian and V̂ the interaction operator (1.55).
The dipole moment, shown in Figure 1.18 (a) as a function of the interatomic distance
R, is on the order of 1Debye and somewhat follows the oscillations of the molecular
potential. Whenever the potential shows clear dips due to a strong scattering process
also the dipole moment is strong.
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The dipole moment of the vibrational states is calculated by averaging the distance-
dependent dipole moment d(R) over the distribution of the vibrational wave function,
plotted in Figure 1.18 (b). For the vibrational ground state of the 3Σ(5s−35s) molecule
an expectation value of the dipole moment of d = 1.17Debye was found and a decrease
of the dipole moment with 1/(n?)2, where n? is the effective quantum number. The
calculated dipole moments for a wide range of principal quantum numbers, together
with measured values, can be found in chapter 4.2 and Figure 4.5 (a).
This scaling can be understood as the perturbation of the electron probability density
stems from a mixing with degenerate high-l molecular states ΨnT , so-called trilobite
states. This mixing is clearly visible in the characteristic probability distribution in
Figure 1.19 (b). Non-degenerate p states can also be mixed to generate a dipole moment,
but as their dipole moment is small this mixing is not relevant for the derivation of the
scaling law. The perturbed wavefunction can be written as

Ψ(r, R) = Ψns(r) + ε(R)ΨnT (r, R), (1.62)

where ε(R) is the mixing fraction. The trilobite wavefunction ΨnT (r, R) is the wave-
function of the Rydberg electron at position r in the high-l state in the presence of
the ground state atom at position R. The trilobite states possess a permanent dipole
moment of magnitude [91]

dT ≈ R− 1
2(n?)2 (1.63)

in atomic units, that scales as (n?)−2 due to mixing of degenerate states in the Rydberg
manifold. The unperturbed Ψns(r) wavefunction does not exhibit a dipole moment.
The permanent dipole moment of the low-l molecule state (1.62) is

d(R) = 〈Ψ(r, R)| z |Ψ(r, R)〉 = ε(R)2dT (R). (1.64)

The mixing fraction scales as ε ∝ (n?)−2 [50] and will be calculated in the following.
Using (1.63), one obtains the scaling of the dipole moment

d(R) ∝ 1/(n?)2 (1.65)

that was also numerically observed.

The scaling of the mixing fraction ε can be obtaind by minimizing the pure s-wave
molecular potential

V (R) = 〈Ψ(r, R)|H0 + 2πAsδ(R− r) |Ψ(r, R)〉 (1.66)

using the perturbed wavefunction (1.62). If the energy is normalized to the Rydberg s
state (Ens = 0) one obtains

V (R) = ε∆T + 2πAs|Ψns(R)|2 + 2πAsε2|ΨnT (R,R)|2

+ ε · 2πAsRe [Ψ∗ns(R)ΨnT (R,R)]
(1.67)
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with the energy gap ∆T = E(n−3)(l>3) − Ens between the Rydberg s state and the next
(n − 3) Rydberg manifold (see 1.3) that scales as (n?)−3. The p-wave contribution is
considerably smaller for this particular molecular state, where the molecule is in the
vibrational ground state, and is neglected. Minimization of the second order polynomial
(1.67) leads to

ε = −2πAsRe [Ψ∗ns(R)ΨnT (R,R)]
2(∆T + 2πAs|ΨnT (R,R)|2) . (1.68)

The second term in the denominator describes the binding energy of the trilobite, that
is smaller than the energy gap ∆T and can be neglected.
The scaling of the mixing fraction with n can now be discussed term by term. From
the scaling of the size of the Rydberg wavefunction with (n?)2 and from the wavefunc-
tion normalization follows |Ψnl(R)|2 ∝ 1/V ∝ (n?)−6 and especially Ψns(R) ∝ (n?)−3.
Together with ∆T ∝ (n?)−3 one obtains

ε ∝ ΨnT (R,R). (1.69)

The trilobite wavefunction constitutes of all quasidegenerate high-l states (l ≥ lmin = 3)
and the scaling of the probability amplitude at position R can be calculated to be [91]

|ΨnT (R,R)|2 =
n−1∑
l=lmin

2l + 1
4π |Ψnl(R)|2

∝ (n?)2

(n?)6 ∝
1

(n?)4 ,

(1.70)

since the sum over l scales as (n?)2 and |Ψnl(R)|2 ∝ (n?)−6. This results in a scaling of
the mixing fraction as ε ∝ (n?)−2.
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2 Experimental setup

The fundamental topics of the experiments in this thesis, as coherent control of inter-
acting atoms and ultralong-range Rydberg molecules, impose challenging requirements
on the experimental setup. Coherent control necessitates long coherence times, that can
especially be realized at ultracold temperatures. Controlled interactions are offered by
Rydberg atoms and apparently it is favorable to combine ultracold atoms with Ryd-
berg excitation to realize coherent control of interactions. Furthermore, the creation of
ultralong-range Rydberg molecules, need dense and cold samples that can be achieved
in ultracold atoms as well. Hence evaporatively cooled atomic samples provide an ideal
environment for these experiments. The element of choice in this case is 87Rb, as trap-
ping and evaporative cooling of 87Rb atoms in a magnetic trap is well understood and
performed in many other experiments. Here, the fundamental difference to most other
BEC and cold atom experiments is the expansion of the setup to excite and detect
Rydberg atoms. This includes a high stability laser system for two-photon excitation,
electric field control and ion detection.
Therefore I divide the description of the setup into two parts: The preparation of the
ultracold atoms that is mostly well known in the field of atomic physics and quantum
optics, and a second part that describes the essential components for dealing with Ryd-
berg atoms. As the fundamental experimental setup was already set up and described by
my predecessors [73, 101, 110, 111, 112] and only selectively improved during this thesis
I will only describe the parts that differ from previous work or that are fundamentally
important in the course of this work.

2.1 Preparation of ultracold atoms
For the preparation of ultracold atoms a magnetic trap in combination with an
increasing-field Zeeman slower loaded magneto-optical trap (MOT) is used. The se-
quence starts with an 8 s long MOT loading phase where the 160◦C hot atom beam
from the Rubidium oven is slowed in a Zeeman slower [112, 113] and trapped in the
MOT. The magnetic fields for the MOT are generated by small currents of 19.6A in
the pinch coils (see Figure 2.2 and explanation of the cloverleaf trap later in this chap-
ter), generating an axial gradient of 19G/cm and a radial gradient of 9.5G/cm. A
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Figure 2.1: Relative frequencies in MHz of the laser beams necessary for cooling and trapping.
The Ti:sapphire laser is locked via polarization spectroscopy 408.8MHz below the (f = 2 →
f ′ = 3) transition and divided into four beams. The cooling beams (MOT and dark MOT),
the beam for optical pumping, for absorption imaging and for the Zeeman slower (see text
for details) are shifted by double pass AOMs to the respective frequencies. The laser for
the repumping beams for the MOT and for the Zeeman slower is a diode laser locked via
polarization spectroscopy to the (f = 1 → f ′ = 1) transition and shifted via double-pass
AOMs to the Zeeman shifted repumper transition 5s1/2 (f = 1 → f ′ = 2) in the respective
magnetic fields of the MOT and the Zeeman slower.

Titanium-Sapphire laser system (Ti:sapphire) (Figure 2.1) provides the six MOT beams
with a detuning of about 2Γ and intensities of 9.5 · Isat radially and 5.1 · Isat axially,
driving the cooling transition 5s1/2 (f = 2 → f ′ = 3) in 87Rb with a natural linewidth
of Γ = 2π×6.1MHz and a saturation intensity of 1.6W/m2 [78]. The same laser is used
for the slowing beam in the Zeeman slower. The cooling transition is not a perfectly
closed transition, hence atoms decaying to the f = 1 state have to be pumped back. A
diode laser system drives the repumper transition 5s1/2 (f = 1 → f ′ = 2) and pumps
atoms to the f ′ = 2 state. From there they can decay back to the f = 2 ground state
and into the cooling transition. The diode laser also provides a repumper beam for the
Zeeman slower. The relative frequencies of the beams are shown in Figure 2.1.
After loading of the MOT the slower is turned off and a mechanical shutter prevents the
atom beam to heat the trapped atoms. In the MOT the atoms experience a repulsive
force due to reabsorption of scattered photons (radiation trapping) [114]. This force
equals the trapping force at some atom density and a further increase of the number of
trapped atoms will only increase the size of the cloud. This limitation can be circum-
vented by a dark MOT phase [115, 116], where the intensity of the repumper light is
reduced to about 0.01W/m2. This collects atoms in the dark hyperfine ground state
that is independent of the cooling light. At the same time, the magnetic field gradients
are reduced to 10.2G/cm axially and 5.1G/cm radially at a current in the pinch coils of
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10.5A and the detuning of the MOT light is increased to about 10Γ. Thereby the num-
ber of scattered photons and with it the repulsive interaction due to radiation trapping
is reduced and higher densities are achieved, advantageous to efficiently load the atoms
into the magnetic trap. Also the trapping forces are smaller than in the MOT phase but
as no further atoms are loaded into the trap and only cold atoms are confined smaller
forces are sufficient.
Next in the experimental sequence the magnetic field for the MOT is completely turned
off to further cool the atoms for 5 s in a molasses phase [117] before the magnetic
trapping fields are turned on and the atoms are transferred into a shallow magnetic
trap first before the trap is compressed to increase the density. In the magnetic trap
the atoms experience a potential due to their magnetic moments, depending on the
magnetic substate. Therefore the unpolarized atoms from the MOT and molasses have
to be optically pumped into the f = 2, mf = 2 state. The circularly polarized pumping
light is also generated by the Ti:Sapphire laser system (Figure 2.1). About 8 × 108

atoms can be transferred from the molasses to the magnetic trap at a final temperature
of 350µK in the compressed magnetic trap. The additional dark MOT phase decreased
this temperature in the magnetic trap by a factor of two compared to the experimental
situation before [110].
A schematic of the setup is shown in Figure 2.2. Due to the symmetry of the magnetic
trap the z-axis is called the axial direction whereas the x- and y-axes form the radial
direction. The magnetic trapping fields are generated by a set of coils in cloverleaf
configuation [118, 119]. In this configuation only coils in one plane in the setup (the
x-y-plane) are needed, allowing full 2π optical access in the symmetry plane of the setup,
only limited by the vacuum chamber. Two ’pinch coils’, creating an axial trapping, are
surrounded by four ’cloverleaf coils’ each. Figure 2.2 (b) shows the arrangement of these
coils, reminiscent of a four-leaf clover. It creates a local minimum in the magnetic field
strength at the symmetry point inbetween the two sets of coils. However, this minimum
is at a high magnetic offset field that is compensated for by two additional ’bias coils’
in Helmholtz configuation. The setup is optimized to result in a small offset magnetic
field. This bias field is ideally about B0 = 1G if the pinch and bias coils are connected
in series at a current of 400A. Details about the trap design and the current control
can be found in [110]. Due to misalignments of the coils the bias field is 13.55G in the
experiment, if it is not compensated by additional magnetic fields.
After loading the atoms into the magnetic trap the temperature of the cloud is reduced
and the density increased by evaporative cooling. A radio frequency source drives tran-
sitions between the mF and mF ± 1 substates of the f = 2 ground state atoms, that
are splitted in the magnetic field. The radio frequency is scanned from 45MHz down
to about 1MHz in 38 s and transfers atoms to untrapped mF ≤ 0 states. Since the
splitting between mF and mF ± 1 increases with the magnetic field strength, atoms are
lost from the high magnetic field regions that can only be reached by the hottest atoms.
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Figure 2.2: (a) Schematic of the vacuum chamber, coil assembly, cooling, imaging and exci-
tation light in the y-z plane. The cloverleaf geometry of the 12 coils lies in the radial plane
(x-y plane). The trapped atoms form a cigar-shaped cloud with the symmetry axis along the
axial direction (z-axis) in the middle of the vaccum champer. Along this axis two MOT beams,
but also the Rydberg excitation beams, propagate. The beam for absorption imaging lies in
the y-axis. The field plates and the ion detectors (MCP) are inside the vacuum chamber and
shown in Figure 2.6 in detail. (b) Coil assembly of the cloverleaf trap. The inner (outer) coils
are the pinch (bias) coils, centered on the symmetry axis of the trap (z-axis). The eight clover
leaf coils are off axis.

This loss of hot atoms reduces the temperature of the remaining, rethermalized cloud.
Because of the necessary rethermalization during the cooling process, evaporative cooling
is most efficient at high atom densities that can be achieved in a tight trap at small bias
fields in this setup. An additional current in the bias coils is applied that compensates
for the misalignment of the coils and reduces the bias field to 1G for the evaporative
cooling. After this cooling sequence the cloud consists typically of about 4.5×106 atoms
at a density of 1 × 1013 cm−3 and a temperature of 4.5µK. If the evaporative cooling
is continued the phase transition to a Bose-Einstein condensate can be crossed in this
apparatus. The radio frequency also populates the (f = 2, mf = 1) state, which is also
trapped. Atoms in this state generate additional signals in the Rydberg spectroscopy in
chapter 3.
The atom density can be varied after cooling by a Landau-Zener sweep [120, 121]. A
microwave is ramped through the resonant frequency of about 6.8GHz between the
trapped 5s1/2 f = 2 state and the untrapped f ′ = 1 state, effectively removing atoms
from the cloud. The fraction of adiabatically transferred atoms can be adjusted by the
ramp time to vary the atom density.
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2.2 The Rydberg excitation and detection

After evaporative cooling the magnetic offset field can be varied by reducing the addi-
tional current in the bias coils to adiabatically change the magnetic offset field to values
between 1G and 13.55G. The radio frequency is increased from its minimum value at
the same time to adjust for the increased Zeeman splitting of the ground state. It serves
as a radio frequency knive to remove hot atoms. The offset field also changes the trap
frequencies (see [112]). The higher the offset field B0 the shallower the trap which means
that the density and the temperature of the atoms are reduced if the offset magnetic
field is ramped up. Usually the magnetic offset field was measured in this experiment by
microwave spectroscopy between the trapped (f = 2, mf = 2) state and the untrapped
(f = 1, mf = 1) ground state [73]. Here, Rydberg spectroscopy was used (Figure 3.3),
as it was found to give more accurate and faster measurements of the magnetic offset
field.
Most experiments in this thesis are performed at the highest experimentally possible
offset field of 13.55G. This is advantageous in respect of Rydberg interactions, as will be
discussed in chapter 3, but also because no additional current in the bias coils is applied,
reducing the magnetic field noise and instability. At this field the trap frequencies were
measured to be ωz = 2π× 16.6Hz and ωr = 2π× 85.1Hz. Even though clear differences
of the used trap to the ideal cloverleaf situation exist, visible in the high bias field,
a cigar-shaped harmonic trapping potential with the measured trapping frequencies is
present. For the trapped cloud the 1/

√
e-width σi (i = r, z)

σi = 1
ωi

√
kBT

m
(2.1)

can be calculated from the measured temperature and the peak density ρ of the Gaussian
density distribution

ρ = N

(2π)3/2σ2
rσz

(2.2)

can be calculated from the atom number N . After ramping the magnetic field to 13.55G
typically 3× 106 atoms at a temperature of 700 nK are in the trap, leading to widths of
σr = 15.3µm and σz = 80.7µm and a peak density of 2× 1012 cm−3.
The measured atom numbers and the temperatures of the sample are obtained by time-
of-flight (TOF) measurements [110]. These can either be performed by fluorescence
measurements in big, usually hot samples or by absorption imaging. The absorption
of a resonant beam in y-direction (Figure 2.2) is measured using a CCD camera after
passing through the chamber.

2.2 The Rydberg excitation and detection
Rydberg excitation of the ultracold atoms from the 5s1/2 ground state to Rydberg ns
and nd states is done by direct two-photon excitation, 400MHz blue detuned from the
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intermediate 5p3/2 state to preserve the coherence in the excitation process, as shown
in Figure 2.3. I will only briefly describe the laser setup, more details can be found in
[73, 122, 123].
Two laser systems (Figure 2.4), consisting of extended cavity diode lasers in master-
slave configuration each, are used to provide light at 780 nm for the lower transition
and at 960 nm, which is subsequently frequency doubled to generate light at 480 nm
for the upper transition. Both master lasers are stabilized to a passively stable cavity
via a Pound-Drever-Hall locking scheme to a linewidth of below 20 kHz each. The
total linewidth of the two-photon transition was measured to be 60 kHz. Temperature
drifts of the setup result in considerable frequency drifts of up to 30 kHz/min for the
two-photon transition to the Rydberg state, as shown in Figure 2.5. Double-pass AOMs
between both master and slave lasers are used to shift and scan the excitation frequencies
without intensity fluctuations in the experiment. For spectroscopy in ultracold gases the
780 nm light is scanned over a range of up to 60MHz. Additional single-pass AOMs can
switch both beams within 10 ns before they are coupled into optical fibers, directing the
excitation light to the main experimental setup. Excitation times between some tens
of nanoseconds up to some tens of microseconds per pulse are realizable, where various
pulses can be combined to excitation pulse trains.
In Figure 2.2 (a) the red and blue excitation light in the vacuum chamber is indicated.
The beams are counter propagating in the axial direction to reduce the Doppler width
and focused into the chamber to 1/e2-diameters of 500µm and 85µm, respectively,
at the position of the atoms. The power of the blue beam is 70mW, the used red
power in this work is up to 10µW to realize two-photon Rabi frequencies of up to
Ω0 = 2π × 100 kHz. The red power and simultaneously the two-photon Rabi frequency
can be varied by a variable attenuator in the red beam (Figure 2.2). The polarizations of
the Rydberg excitation beams are adjusted using λ/2 and λ/4 waveplates directly after
the fibers (Figure 2.2) to access ns and nd states, as shown in Figure 2.3. However, in
the inhomogeneous fields in the magnetic trap the polarization is not well defined for
the whole atomic cloud and excitations to different states do also appear.
The excitation is directly followed by field ionization where high voltages are applied to
the field plates B (2 kV) and H (2.5 kV) inside the vacuum chamber, shown in Figure 2.6.
Strong electric fields are generated that ionize the Rydberg atoms, but not the ground
state atoms. The generated ions are pushed towards the ion detector, a multi channel
plate (MCP), and detected. From the amplified MCP signal the Rydberg atom number
created by the excitation pulse sequence is obtained. Details can be found in [101, 122].
The field ionization is not state selective in this experiment and only the total number
of atoms excited to Rydberg states n & 30 can be measured.
Even though the rise time of the fields is about 20 ns and the time of flight of the ions is
below 1µs the whole sequence of ionization and detection takes about 8ms, where most
time is spent to allow for the electric fields to decay. Thereafter the whole sequence of
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2.2 The Rydberg excitation and detection

Figure 2.3: Level scheme of the finestructure, hyperfine structure and magnetic field splitting
(from left to right) of the relevant atomic levels of 87Rb. The Rydberg states 44d and 43s only
show negligibly small hyperfine splittings that scale as (n?)−3 [69, 72] and are described in the
j,mj-basis, whereas 5s and 5p are described in f,mf -basis. The ideal excitation paths to s
and d states are indicated on the right hand side and differ in the polarization of the upper
transition. Details about the magnetic field dependence can be found in chapter 1.2.3.
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Figure 2.4: Laser system for the two-photon Rydberg excitation including two master-slave
laser systems at 780 nm and 960 nm, passively stable resonators for Pound-Drever-Hall locking
schemes (PDD), AOMs for frequency shifts and a second harmonic generation setup, including
a tapered amplifier (TA), for frequency doubling to generate 480 nm light.

Figure 2.5: Frequency drift of the Rydberg excitation line versus time. (a) shows the color
coded spectroscopy data and (b) the extracted relative line position. At time=0min the
experiment was turned on, clearly followed by a frequency drift of the locking point, probably
due to a changed temperature in the lab, changing the resonance frequency of the cavity.
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2.2 The Rydberg excitation and detection

Figure 2.6: (a) Setup of the field plates and ion detectors inside the vacuum chamber. The
plates B and H are used for field ionization, A and C for applying small electric fields during
the excitation. The lower ion detector is not used. (b) Sequence of preparation (cooling and
trapping of atoms), excitation, ion detection and absorption imaging. The time axis is not to
scale.

excitation and detection can be repeated. As only a very limited fraction of atoms is
excited to the Rydberg state, typically about 10−4, 401 sequences are performed in a
series within one cloud in these experiments. During these 3.2 s of Rydberg excitation
and detection the cloud is not severely heated and no additional cooling is necessary.
This results in an average repetition rate of 8Hz, even though the evaporative cooling
sequence in this experiment is long.
During the excitation additional electric fields can be applied to the remaining six field
plates. To create an almost homogeneous field along the axial direction (parallel to the
offset magnetic field) the field plates A and C are used. Versatile voltage sequences up
to 10V can be applied by an arbitrary waveform generator1 with a rise time of 30 ns.

In conclusion, this experimental setup offers narrowband laser excitation to Rydberg
states in dense and ultracold samples. The density and the magnetic offset field can be
controlled and electric fields can be switched in arbitrary sequences during the excitation.
This provides ideal situations for coherent control of Rydberg interactions and for the
creation of ultralong-range Rydberg molecules. However, despite absorption imaging
of ground state atoms to obtain temperatures and densities of ultracold atoms, the
only observable in the case of Rydberg atoms is the total Rydberg atom number. This
necessitates that every demanded quantity of the Rydberg atoms has to be mapped
onto the Rydberg atom number to be measureable. Spectroscopy with complex pulse
sequences can realize it in this setup, based on the possible high number of excitation and

1Keithley 3390
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detection cycles within one atomic sample, the narrowband excitation and the flexible
control of the excitation pulse sequence and electric field sequence.
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3 Coherence at Förster resonances

Understanding the fundamental interactions between single atoms lies at the heart of
physics. The area of ultracold atomic physics goes even further and aims at coherent
control of interactions. This is of great interest as ultracold strongly interacting atoms
can serve as model systems for correlated quantum many-body physics, for example in
quantum computing [8, 57, 124] but also in order to understand nature [51]. Very promis-
ing candiates in this respect are Rydberg atoms with strong and tunable interactions, for
which many proposals for quantum information processing [39, 40, 41] and simulation
[13] exist. Especially in quantum computing strong progress has been achieved in the
last years with the realization of two-qubit gates with neutral atoms using the Rydberg
blockade [42, 43, 44]. Another possibility to realize quantum computing with neutral
atoms is the phase gate [40], that relies on a controlled interaction-induced phase shift
in the atoms.
Furthermore coherent Rydberg interactions are expected to not only create exotic ground
states and quantum phase transitions [125] but also realize quantum dynamics, for
example in coherent energy transport in strongly correlated many-body systems [18, 29].
In biophysics these non-radiative exciton dynamics are relevant for photosynthesis in
certain biological systems [51] and might be modeled using strongly interacting ultracold
atoms [34].
One promising possibility to induce and control interactions between Rydberg atoms
are Förster resonances. Coherence at Förster resonances has been studied by means of
Ramsey techniques in the coupling between pair states [28] and by direct observation
of Rabi oscillations between the ground and the Rydberg state [26]. Still, complete
coherent control and a full understanding of the decoherence mechanisms, especially in
the case of a macroscopic ensemble of interacting atoms, remains an open field.
In this chapter I will present experiments realizing coherent control of the electronic state
and the phase of an ensemble of ultracold atoms. Furthermore I will present experiments
resolving several Förster resonances to an unprecedented accuracy in the Förster defect
and study the coherence at these resonances. The results show that coherent coupling
between the involved pair states in the presence of strong interactions is possible, but
also they show additional sources of dephasing. Still, it can be shown that a coherent,
interaction-induced phase shift of the atoms is possible. This realizes coherent control
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Figure 3.1: Linewidth measurement for the 43s1/2 and 44d5/2 state. a) shows the excitation
spectrum of the 44d state at the lowest Rabi frequency of about 1 kHz (data points, averaged
over 10 measurements). The solid line is a lorentzian fit to the data, resulting in a linewidth
(FWHM) of 300 kHz. b) Dependence of the FWHM on the red excitation power for the 43S
(diamonds) and 44d (circles) and a square root fit to guide the eye.

of the interaction, where the strength and the sign of the interaction, from attractive to
repulsive, can be easily tuned.
Coherent control is limited to timescales given by the coherence times. Ultimately,
they are limited by the excitation linewidth to the Rydberg states. To measure the
excitation linewidth spectra consisting of 401 Rydberg excitation measurements with
excitation times of 20µs were taken in a magnetic offset field of 13.55G. A detailed
description of the excitation and detection sequence can be found in chapter 2.2. Figure
3.1 (a) shows such a spectrum of the 44D5/2, mj = 5/2 resonance at the lowest possible
Rabi frequency of about 2π × 1 kHz (limited by the detection efficiency) together with
a lorentzian fit to obtain the linewidth. Power broadening increases the linewidth with
increasing intensity of the 780 nm excitation laser, that is driving the lower part of the
two-photon excitation to the Rydberg state, and the linewidth follows the Rabi frequency
Ω0 ∝

√
I, as seen in Figure 3.1 (b). The square root fit shows that this proportionality

is nicely reproduced in the experiment. From an extrapolation to negligible intensities
the minimal linewidth was obtained to be ∆ν = 300 kHz for the 44d state. The 43s
state shows a considerably smaller linewidth of 110 kHz.
Several mechanisms can account for the linewidth, e.g. the lifetime of the excited state
or the linewidth of the excitation lasers, but also effects like Doppler broadening or
magnetic and electric field broadenings. The lifetime of the Rydberg state is on the order
of 50µs for the 44d state [126], creating a natural linewidth of 3 kHz. This is considerably
smaller than the linewidth of the lasers that was measured to be about 60 kHz, and the
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Doppler broadening of about 20 kHz at 700 nK for counter propagating red and blue
excitation lasers [122]. Thus, the natural linewidth and the Doppler broadening alone
do not explain the observed linewidth. Instead, the excitation to the 44d state shows
stronger dependencies on the magnetic and electric fields as the 43s state, that can
explain the observed broadening and are discussed in the following.
In a magnetic trap the atoms experience a spatially dependent magnetic field. This can
lead to differential Zeeman shifts for transitions between different states, as shown in
Table 1.3. Transitions between the ground state with l=0 and an s Rydberg state do
not show this differential shift. But the transition to Rydberg d states is dependent on
the magnetic field with a differential Zeeman shift of 2µBB. In a magnetically trapped
cloud this creates a broadening of the transition depending on the temperature of the
atoms. For a temperature of 700 nK one calculates a width of 50 kHz.
Inhomogeneous electric fields or noise in the electric field broadens the excitation spec-
trum as well. The ground state shows only a small dependence on the electric field and
the differential Stark shift of the excitation transition can directly be calculated from
the polarizabilities of the Rydberg states (Table 1.2). The 44d state experiences a five
times stronger broadening by electric fields as the 43s state. For a realistic estimate of
the electric field variation of 0.001 V/cm (for electric field noise as well as for the inho-
mogeneity of the field) one obtains broadenings on the order of 50 kHz at offset electric
fields in the order of 0.5 V/cm.
In conclusion, the observed broadened linewidth of ∆ν = 300 kHz of the 44d transition
compared to the narrower 43s transition can be explained by a combined effect of the
stronger dependence on electric fields and the magnetic field broadening. The coherence
times are limited to T < 1

2π∆ν =0.53µs. In the experiments here also the 43s excitation
shows a broadened minimal linewidth of 110 kHz compared to earlier experiments at low
magnetic offset fields, where a linewidth of 60 kHz was measured [73]. This discrepancy
can be attributed to the larger extent of the atomic cloud at higher magnetic offset fields
that result in a stronger sensitivity on electric field inhomogenities.
Other sources of dephasing are couplings to additional atomic states. In the experiments
here, an offset magnetic field bigger than 0.5 G in the magnetic trap is unavoidable. This
leads to a Zeeman splitting of the magnetic substates. If the splitting is smaller than
the linewidth of the excitation, all states can be excited which will lead to a dephasing.
The magnetic field has to be strong enough so that the Zeeman effect clearly exceeds
the excitation linewidth. For pulsed experiments the Fourier-broadened linewidth can
reach several MHz, necessitating offset magnetic fields on the order of some Gauss.
Additional to the magnetic field an electric field of about 0.2V/cm is needed to shift
pair states into resonance to create Förster resonance conditions, as explained in chap-
ter 1.3.3. The atoms experience a Zeeman and a Stark shift which can create crossings
between different mj-levels. To shift these crossings to electric fields outside the experi-
mentally interesting range again a big magnetic offset field is needed. The experiments
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Figure 3.2: Excitation spectrum showing the transitions from the 5s1/2 (f = 2, mf = 1)
ground state to the 44d5/2 mj = 3/2 (left peak at -18.8(1)MHz) and mj = 5/2 (right peak
at 9.9(1)MHz) states and from the 5s1/2 (f = 2, mf = 2) to the 44d5/2 mj = 5/2 state (cf.
level scheme in Figure 2.3) at the highest experimentally realizable magnetic offset field in zero
electric field.

in this thesis are performed at the highest experimentally possible offset magnetic field.
To calibrate the offset magnetic field the Zeeman splitting of the 44d5/2 substates
mj = 5/2 and mj = 3/2 was spectroscopically measured. The transition from the
mf = 2 ground state to the mj = 3/2 Rydberg state is suppressed by the polarization
of the excitation light (see Figure 2.3). This is not the case for transitions from the
mf = 1 ground state, that is unintentionally populated by microwave transitions during
evaporative cooling, making this unwanted peculiarity actually profitable for a fast cal-
ibration of the magnetic field. Hence, spectroscopy of ground state atoms in the 5s1/2

(f = 2, mf = 1) state in a pure magnetic field was used for calibration, as shown in
Figure 3.2. From the differential Zeeman shift of 1.2µBB (Table 1.3) the magnetic field
is obtained to be 13.55(6)G.
To study the single-atom shifts in combined electric and magnetic fields single-pulse
spectra of 20µs were taken in variable electric fields at the magnetic offset field of
13.55G, resulting in the two-dimensional Stark map in Figure 3.3. Several transitions are
resolved in the spectroscopy signal. They adiabatically connect to the transitions from
the 5s1/2 (f = 2, mf = 2) ground state to 44d5/2, mj = 5/2 (0MHz), 44d5/2, mj = 3/2 (-
22MHz) and 44d5/2, mj = 1/2 (-45MHz) in zero electric field. The additional resonance
at -13MHz is a transition from the 5s1/2 (f = 2, mf = 1) ground state to 44d5/2,
mj = 3/2. These splittings are sufficient that a single Rydberg state can be excited
even in the pulsed experiments in this thesis.
With increasing electric field the states experience differential Stark shifts, resulting in
degeneracies at certain electric fields. For a finite angle between ~E and ~B these levels
couple and avoided crossings appears, as it can be seen in Figure 3.3. This effect is
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Figure 3.3: Stark map of the 44d state and calculations for B=13.55G at an angle of
θEB =15◦ between the electric and magnetic field. The calculations (white lines) are plot-
ted versus the total electric field | ~E|. The measured spectra are plotted versus the applied
electric field Ez and the normalized Rydberg atom number NRyd is color coded.

described in chapter 1.4 and in detail in [73]. As a single-atom effect it can easily cover
binary interaction effects and it leads to a dephasing of the single-atom states. However,
at 13.55G the single-atom crossings are shifted to electric fields of 0.7 V/cm, far outside
the experimentally interesting regime of about 0.2V/cm.
The white lines in Figure 3.3 are calculated by diagonalizing the single atom Hamiltonian
(1.32) at 13.55G offset field and an angle of θEB = 15◦ between the electric and the
magnetic fields. This measurement is also used to calibrate the electric field by finding
the best agreement for the quadratic slope of themj = 5/2 state between the experiment
and the calculation. Since the Stark effect ∆EStark is in good approximation quadratic
in the total electric field | ~E|,

∆EStark = −α2 |
~E|2 = −α2 (E2

z + E2
r ), (3.1)

where α is the polarizability, a constant radial electric field Er will lead to a constant
energy shift. This gives an offset in the Stark map that cannot be detected in the
experiment. Hence only the electric field Ez in one direction can be calibrated. From
the size of the avoided crossing the angle θEB can be obtained. The best agreement was
found at B = 13.55G and an angle of θEB = 15◦, as shown in Figure 3.3.
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3 Coherence at Förster resonances

3.1 Coherent control of Rydberg atoms
Studying the coherence of a system is a challenging task, as the coherence is no observ-
able. Here, as in most Rydberg experiments, the Rydberg atom number is measured and
the coherence properties of the atoms have to be mapped onto the atom number. Several
approaches exist, for example rotary-echo experiments [27, 127] or direct observation of
Rabi oscillations. All of these approaches offer information about coherence times and
can study dephasing and decoherence mechanisms, but they suffer from various dis-
advantages. In rotary echo experiments the phase of the atoms is not measured and
some information about the coherent evolution is lost. The latter approach is limited
to special systems where the Rabi frequency of the driving excitation field is spatially
constant [128], a complicated task due to the collective nature of the Rydberg excitation
(chapter 1.3.8). It can be realized in single atom systems [129] or with great technical
effort in macroscopic samples [26].
Another type of experiments to study coherence are Ramsey experiments with the ad-
vantage to gain insight into both, decoherent but also coherent processes in strongly
interacting Rydberg gases. Ramsey experiments are well suited as the level of coherence
and the phase of the atoms is interferometrically mapped onto the state of the atoms
and thereby onto the Rydberg atom number. Norman Ramsey’s idea [130], already for-
mulated in 1950, relies on separated oscillatory fields. In the original experiment the two
fields were spatially separated and a molecular beam passed through the fields one after
another. This idea can be expanded also to a pulsed experiment where the separation
is not in space but in time.
Ramsey experiments have been applied to Rydberg systems to study coherence in single-
atom traps [131], in the energy transfer between pair states in a MOT [28], in resonant
microwave coupling of Rydberg atoms [132] and in the photoassociation of ultralong-
range Rydberg molecules [93]. Here I will use Ramsey methods to study the coherent
two-body dynamics at a Förster resonance.

3.1.1 An optical Rydberg Ramsey interferometer

The basic idea behind Ramsey experiments is the following: First the oscillating field
couples two atomic states shortly. After some time, where the system can evolve, the
states are probed by a second coupling field. Interference effects appear, resulting in the
classical Ramsey fringes if the delay time between the two pulses or the detuning of the
coupling field to the atomic resonance (Figure 1.2) are varied.
In chapter 1.1.2 the appearance of the fringes was derived from the time evolution of
the atoms in the case of a two level system and understood as an atom interacting
with a classical light field. However, these experiments can also be viewed as an atom
interferometer [133]. The two states, coupled by the field, are the two arms of the
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Figure 3.4: Schematic of the Ramsey interferometer. The system starts in the ground state
and the pulsed coupling fields interfere the ground and excited state. After the Ramsey
sequence the population in the excited state is detected.

interferometer and the field acts as a beam splitter when it couples the two states. In
contrast to well-known setups as a Mach-Zehnder or a Michelson interferometer the
splitting of the two beams does not happen in space, but in the electronic state of the
atom. In absence of the coupling field and within the lifetime of the excited state the
arms are not coupled and can evolve independently, as necessary for an interferometer.
A schematic is shown in Figure 3.4. Here, the Ramsey sequence is realized by two
optical excitation pulses coupling to a Rydberg state, separated by a variable delay
time. After this sequence the Rydberg atom number is measured by field ionization
and ion detection. Hence, if the delay time or the detuning is varied, oscillations in the
Rydberg atom number will occur (see Figure 3.5 (a)).
Ramsey’s method is advantageous to single pulse experiments in many aspects. It does
not only offer the possibility of an enhanced resolution, it also is independent of spatial
inhomogenities of the strength of the oscillatory field. This is important in the exper-
iment here as the Rabi frequency is not constant over the sample. It spatially varies
because of the Gaussian intensity profile of the exciting lasers and because of the density
dependent enhancement of the collective excitation of Rydberg atoms (equation (1.54)).
This gives rise to a suppression of direct Rabi oscillations [89]. Ramsey experiments,
similar to rotary-echo experiments [27], can refocus this dephasing and are not sensitive
to a spatially varying strength of the coupling field. Furthermore, interferometric Ram-
sey experiments offer phase sensitivity, providing the possibility to use them as a tool
to study coherent effects by measuring the population in one arm only.
The Ramsey experiments in the following are done in a magnetically trapped and evap-
oratively cooled atomic cloud at a density of 1.2× 1012 cm−3 and a temperature of 1µK
in a magnetic offset field of 13.55G. To obtain spectra two short laser pulses (upper part
of Figure 3.5 (b)) of τp=0.15µs duration, separated by a delay time of 1µs, are applied
to the atoms. The Rydberg atom number is measured after the second light pulse. This
sequence of excitation and detection is repeated 401 times in one atomic cloud. The
excitation lasers are scanned from -6MHz to +6MHz relative to the atomic resonance
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Figure 3.5: (a) single shot Ramsey spectrum for τp=0.15µs, τdel=1µs and Ez =0.3V/cm
(dots) and least square fit to the data (solid line). ν is the detuning of the exciting laser
relative to the atomic resonance. (b) Ramsey pulse sequence for the excitation light and for
the electric field used as a phase shifter.

throughout these measurements. Thereby one entire Ramsey spectrum is measured in
one atomic cloud in steps of 30 kHz, which is below the excitation line width. The single
atom Rabi frequency is about 2π × 100 kHz for the two-photon excitation.
Figure 3.5 (a) shows a typical Ramsey spectrum. The width of the signal of about 6MHz
is given by the Fourier width of the τp=0.15 µs long excitation pulses. Ramsey fringes in
frequency space are clearly visible in these single shot data. No averaging over different
atomic clouds is necessary.
The appearance of a Ramsey pattern in frequency space directly proves the coherence
of the excitation process on the timescales of the experiment. More information about
the coherent nature of the experiment can be obtained from the phase φ of the fringe
pattern and the visibility V

V = max(NRyd)−min(NRyd)
max(NRyd) + min(NRyd) . (3.2)

The phase of the Ramsey fringes offers an observable for coherent processes changing the
time evolution of the atoms. Incoherent processes will not shift the phase. The visibility
describes the depth of the Ramsey fringes and is a measure for the coherence in the
system. Any loss of coherence will lead to less effective interference between the ground
and excited state during the second Ramsey pulse and thereby reduce the visibility of the
Ramsey fringes in the spectrum. However, from a single Ramsey spectrum dephasing
and decoherence cannot be differentiated.
To extract these observables the Rydberg spectrum depending on the frequency of the
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excitation laser ω = 2π × ν (Figure 3.5 (a)) is fitted by

NRyd = a · sinc2
(

(ω − ω0)τp
2

)
·
(

2V
1 + V

cos2
(

(ω − ω0)(τd + τdel)
2 + φ

)
+ 1− V

1 + V

)
+N0,

(3.3)
including seven free fit parameters, following equation (1.16) obtained from the Optical
Bloch equations (1.1.1) for the approximation Ω � (ω − ω0) [73, 130]. Ω is the Rabi
frequency, ω0 an offset in the detuning, φ the phase of the Ramsey fringes, a is a scaling
factor and N0 an offset in the Rydberg population. The sinc2-term describes the Fourier
broadened envelope of the Ramsey spectrum whereas the cos2-term accounts for the
Ramsey fringes. As the approximation Ω � (ω − ω0) is not fulfilled for the whole
spectrum, deviations between the fit and the data for big detuning are visible. However,
the function reliably reproduces the visibility and the phase of the Ramsey spectrum
and is used throughout this thesis.
The visibility in the experiment is not only reduced by a loss of coherence of the atoms.
It is also influenced by technical constraints, especially by the ion detection. The ion
detector and the following amplifier show saturation with higher ion signals. This leads
to a non-linear response of the ion detection and reduces the visibility for high Rydberg
atom numbers. Figure 3.6 shows visibilities and maximal pulse areas of the ion detector
signal at the 43s Rydberg line for varying powers of the 780 nm excitation laser. A
rather weakly interacting s state was chosen to reduce the influence of interactions in this
measurement. With higher excitation powers the pulse area increases, as expected due
to the increased number of excited Rydberg atoms at higher Rabi frequencies. Similarly
the visibility is reduced that can have several reasons, possibly a reduced coherence time
due to power broadening of the excitation.
These measurements were repeated for otherwise constant experimental conditions with
two different acceleration voltages (1750V and 2000V) applied between the front and
the back of the ion detector, plotted in Figure 3.6. Higher acceleration voltages amplify
the ion signal by an amplification of the secondary emission of electrons [122] and create
stronger ion signals, as expected. Also a clear deviation in the visibility between both
measurements is observed for powers above 10µW, that corresponds to a maximum pulse
area of about 1000 arb.u. While the overall loss of visibility with higher powers can have
several reasons, this deviation can be attributed to the non-linear response of detector
and amplifier. From this qualitative comparison of the data one can estimate that the
influence of the detector does not dominate for spectra with a maximum pulse area of
below 1000 arb.u. The following experiments in this thesis were done at an acceleration
voltage of 1750V and at excitation powers small enough to limit the pulse area to below
1000 arb.u. Because of this limitation the maximal possible Rydberg atom number
in these experiments is limited to a value considerably below the maximum Rydberg
fraction possible due to Rydberg blockade.
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3 Coherence at Förster resonances

Figure 3.6: (a) Dependence of the visibility on the power P of the 780 nm excitation laser.
Diamonds (circles) show measurements with an acceleration voltage of 2000V (1750V) at the
ion detector (MCP). (b) shows the maximum pulse area of the detector signal for the same
measurements. The unit of the pulse area follows the calibration of the atom number [134]. Due
to aging of the MCP the actual Rydberg atom number probably differs, but the measurement
at 2000V acceleration voltage gives a rough estimate for the Rydberg atom number.

3.1.2 A controlled Stark-tuned phase shifter
Ramsey experiments realize atom interferometers, where the two paths of the interfero-
meter are atoms in the ground state and atoms in the excited state. Even though the
paths of the Ramsey interferometer are not separated in space, they can be distinguished
via the Stark effect and phase shifts in only one path can be generated to control the
relative phase in the interferometer.
Rydberg atoms show very strong Stark effects because of the large extent of the Ryd-
berg electron wave function. In contrast, ground state atoms are rather insensitive to
electric fields. The 44d state shows a quadratic Stark effect with a polarizability of
α=85.557(1)MHz/(V/cm)2 (Table 1.2), orders of magnitude bigger than for ground
state Rb-atoms with a polarizability of 0.0794(16)Hz/(V/cm)2 [78]. Thus, in the inter-
ferometer the electric field can be seen as only affecting the Rydberg state.
If an electric field is applied during the delay time between the Ramsey pulses, as in the
sequence in Figure 3.5 (b), a quadratic phase shift

φ = −2π
∫ α

2 |
~E(t)|2dt (3.4)

accumulates between the Rydberg and the ground state atoms and generates a phase
shift of the Ramsey fringes. The envelope of the Ramsey spectrum, however, is not
shifted as the electric field is not present during the excitation.
Figure 3.7 shows such Ramsey spectra versus the pulsed electric field Ez. Every column
shows a Ramsey spectrum consisting of 401 sequences of excitation and detection as
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3.1 Coherent control of Rydberg atoms

Figure 3.7: Color coded Ramsey spectra for varying pulsed electric fields. With increasing
field a phase shift of the fringes occurs that depends quadratically on the electric field.

explained in chapter 2.2 and is measured in one atomic sample. To measure the influence
of an electric field these measurements were repeated with varying electric fields between
Ez = 0.05V/cm and Ez = 0.36V/cm.
Clearly a quadratic phase shift of the fringes is visible in Figure 3.7. With increasing
electric field the fringes are shifted towards smaller detuning, revealing the negative Stark
effect of the Rydberg atoms. Even for electric fields of up to 0.36V/cm, where phase
shifts of 12π are realized, no loss of visibility is observed. As the visibility is a measure
for the coherence in the system, this shows a remarkable stability of the coherence with
respect to homogeneous fields. In a spatially constant electric field, the Stark effect acts
as a homogeneous single atom effect. This does not disturb the coherence.
From a fit to every spectrum, as discussed in chapter 3.1.1, the phase φ can be obtained
and is plotted in Figure 3.8. Due to historical and aesthetic reasons −φ is plotted versus
the electric field, leading to quadratic increase in the plot. The measured phase shift
can be compared to calculations of the phase shift of a 1µs long electric square pulse,
following equation (3.4). Apart from the phase in zero electric field, Figure 3.8 shows
a perfect agreement between the calculated and the measured phase, showing the high
precision of the electric field calibration. Nonetheless, a radial electric field does not
contribute to the Stark effect here, just like for the Stark map in Figure 3.3.
The phase in zero electric field is expected to be zero, but a finite phase is obtained in
the experiment. This has technical reasons in the experiment. One whole spectrum is
measured in one atomic sample. Because of the field ionization in every sequence, but
possibly also because of other loss mechanisms, the atom number is reduced from the
beginning of each spectrum to the end, here towards bigger detuning. A quantitative
analysis of this loss and its effect on the spectrum is difficult, but it effectively shifts the
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3 Coherence at Förster resonances

Figure 3.8: Phase of the Ramsey fringes obtained from a least square fit to the Ramsey
spectra in Fig. 3.7 (data points). The error of the fit is on the order of the width of the line
and therefore not shown. The dashed line is a parabola following the Stark effect expected
from calculations, where only the offset is adjusted to the data.

envelope of the spectrum towards smaller detuning. The measured phase is the phase
difference of the Ramsey fringes to the center of the envelope function, as can be seen
in the fit function (3.3). A shift of the envelope function because of atom losses thereby
results in a constant phase shift in the evaluation, which is responsible for the phase
shift in zero electric field.
These results show that the phase of the Rydberg atoms can arbitrarily be shifted by
the electric field. Together with the coherent excitation process coherent control of the
electronic state and phase of the atoms is obtained. Thereby a full coherent control of
the internal degrees of freedom of single atoms can be realized on the µs timescale. This
is a crucial ingredient for applications like quantum information processing or quantum
simulation in ultracold atoms. Even if these applications can, possibly, not be realized
in an experiment like this, these experiments show the possibility to coherently control
ensembles of atoms between the ground and Rydberg state as a basis for further progress
in coherent Rydberg physics.

3.2 Coherence in the presence of strong interactions
Besides the coherent control of the atoms, strong tunable interactions are necessary for
most proposed applications of ultracold atoms. These interactions can be induced by
Förster resonances in Rydberg systems, as explained in detail in chapter 1.3.3, and will
be investigated in the following chapters.
Interactions between the atoms complicate coherent control as even binary interactions
can lead to various sources of dephasing that can be understood using the fully co-
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herent concept of a pair state interferometer. I show here that the evolution of the
atoms remains coherent in the presence of the strong Förster resonance induced interac-
tions, despite these dephasing processes. This internal coherence leads to a measurable
interaction-induced phase shift of the Rydberg atoms, which was not measured before.

3.2.1 High resolution spectroscopy of Förster resonances
In order to induce and coherently control interactions between Rydberg atoms in an
ensemble of ultracold atoms the Stark tuned Förster resonance

44d5/2 + 44d5/2 → 46p3/2 + 42f (3.5)

is used, that was presented in chapter 1.3.3. When the energy of these pair states is tuned
into resonance, for example by an electric field of about 0.2V/cm, strong interactions
between the atoms arise. The electric field can be seen as a control parameter for the
strength of the interactions. Taking a closer look into Figure 3.7 we see a reduced
visibility of the Ramsey fringes at about 0.08V/cm, 0.13V/cm and 0.21V/cm that can
be attributed to the Förster resonances. This structure in the visibility can be extracted
by the fit to the Ramsey spectra, shown in Figure 3.5, that was also used to extract the
phase in the previous chapter.
Figure 3.9 shows this fitted visibility of the Ramsey fringes versus the electric field Ez
that is obtained from the calibration of the Stark effect (cp. Figure 3.3). Three clearly
distinct dips in the visibility can be seen. Also shown are results of the same experiment
at different densities of ground state atoms. With decreasing density of ground state
atoms, but constant Rabi frequency, the density of Rydberg atoms is reduced. The
measurements show that the dips diminish with decreasing densities. For the lowest
attainable density of 1×1010 cm−3 the noise level is increased due to the weak ion signal
in the spectroscopy. However, none of the dips are visible. The disappearance of the
features at low densities is a clear sign for an interaction process. We attribute these
features to Förster resonance interactions.
The origin of the loss in visibility in the Ramsey spectroscopy at the Förster resonance
is dephasing due to the increased interaction. It will be simulated and explained using
the concept of a pair state interferometer in chapter 3.2.3. Here I will only focus on the
position of the Förster resonances in the electric field.
In Figure 3.9 the calculated electric fields to tune the pair states into resonance are indi-
cated by diamonds in units of the total electric field | ~E|. The measured and calculated
resonance positions show a slight mismatch, which can be attributed to an insufficient
electric field calibration and to an imprecisely known quantum defect of the Rydberg g
states. Due to these error sources an identification of the different resonances in detail
is complicated. Information can be obtained by measuring the magnetic field depen-
dence of the resonance positions. The experiment shown in Figure 3.7 was repeated
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3 Coherence at Förster resonances

Figure 3.9: The visibility normalized to the mean value V̄ of each dataset is plotted versus
the electric field for different densities of ground state atoms. The uppermost panel at ρ =
1.2 × 1012 cm−3 is the same dataset as in Figure 3.7 and 3.8. The magnetic field is 13.55G
and the Rabi frequency (Ω0 = 100 kHz) is constant for all measurements. The lower electric
field axis, valid for all datasets, denotes the calibrated electric field component Ez. The dashed
vertical lines denote the Förster resonant fields obtained from the measurements. On the upper
electric field axis (total electric field | ~E|, including an experimentally noncontrollable radial
component) the calculated resonant electric fields are indicated by diamonds.

82



3.2 Coherence in the presence of strong interactions

Figure 3.10: Magnetic field dependence of the electric fields where the Förster resonances
appear. Dots show the strongest calculated resonances with an angular maximum in the
interaction strength of Umax > 2π × 100MHzµm3 (versus the total electric field | ~E|) and
diamonds show measured values (versus the calibrated electric field Ez).

in different magnetic fields and the electric fields where the dips in the visibility occur
were determined. Figure 3.10 shows the calculated electric fields where the strongest
resonances appear as a function of the magnetic field and the measured positions of the
resonances at 3.9G, 10.6G and 13.55G. The measured resonance at Ez = 0.21V/cm
does not show a dependence on the magnetic field and can clearly be assigned to the
calculated resonance at | ~E| = 0.234V/cm (|pf1〉). The assignment of the other observed
resonances is not definitely clear. From the fact that all three resonances are visible at
3.9G they can probably be attributed to the calculated resonances |pf3〉 / |pf4〉, that
cannot be resolved, and |pf5〉.
A radial electric field Er cannot be included in the calibration as it is not measured
in the differential Stark effect. This stray field will increase the strength of the actual
electric field relative to the value obtained from the calibration and shift the measured
calibrated component of the resonant electric field to smaller values. Figure 3.11 shows
the shifts of the electric fields Ez, where the Förster resonances appear, as a function
of the radial stray field. The calculations were done as in chapter 1.3.3. At a radial
electric offset field of about 0.08V/cm the best agreement with the measured value for
the definitely identified resonance |pf1〉 at the strongest electric field is obtained.
However, additionally the electric and magnetic field in the experiment are not parallel
and the angle between the radial stray field and the plane of the calibrated electric field
and the magnetic field is unknown. A quantitative analysis of this effect seems not
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Figure 3.11: Calculated electric fields Ez to tune pair states into Förster resonance as a
function of a constant radial electric stray field Er (solid lines). The dashed lines indicate the
calibrated component of the electric field of the measured resonances. The schematic shows
the geometry of the calculations.

reasonable as too many unknown parameters contribute.
Furthermore, the position of the calculated resonances is imprecise due to the unknown
quantum defect for the relevant 42g state here. The error in the calculations might
be as large as 10% (Table 1.4), on the same order as the mismatch to the experiment.
Therefore neither a precise calibration of the electric fields in the experiment, nor a
determination of the g quantum defect is possible.
However, several resonances can be resolved. From the width of the signal in Figure
3.9 at Ez = 0.21V/cm of ∼ 0.01V/cm a resolution of ∼ 5MHz in the Förster defect
can be calculated from the differential Stark shifts of the pair states (cp. Figure 1.8).
This is clearly below the splitting of the resonances and opens the possibility to tune
the angular dependence of the interaction, shown in Figure 1.12. In experiments on this
Förster resonance so far the resolution was on the same order as the splitting [82]. For
another microwave-assisted Stark tuned Förster resonance in 85Rb a considerably better
resolution of 0.6MHz was reported [25].

3.2.2 Measurement of decoherence times of the Ramsey interfero-
meter

At the position of the Förster resonances a reduced visibility is measured as a sign for
a loss of coherence in the Ramsey interferometer. The visibility itself is a non-trivial
function in the coherence and additionally it is affected by technical issues, mainly the
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Figure 3.12: Ramsey experiment with variable delay times between τd = 0µs and τd = 2µs
at an atom density of 1.2× 1012 cm−3. (a) Color coded, normalized experimental data and (b)
data obtained by a numerical fit, both at Ez = 0.21V/cm.

ion detector and signal amplifier (see Figure 3.6 (a)). It is not suited for a quantitative
analysis of the loss of coherence at the Förster resonance. Instead coherence times
can describe the coherence in the system, based on the optical Bloch equations (1.9)
including phenomenological decay constants.
To obtain the coherence times, Ramsey spectra with varying delay times were measured
for pulsed electric fields of strength Ez, using the sequence in Figure 3.5 (b). Every
spectrum consists of 401 measurements of the Rydberg atom number NRyd and is done
in one atomic sample. The measurement of these spectra was repeated 21 times with
delay times between τd = 0µs and 2µs, where the electric field pulse length always
equals the delay time. A typical dataset of 21 spectra at a pulsed electric field of
Ez = 0.21V/cm is shown in Figure 3.12 (a). With increasing delay time the Ramsey
fringe frequency rises, as expected from (1.13). The clear asymmetry stems from the
unidirectional Stark effect in the pulsed electric field with varying length. No oscillations
in the delay time are visible at a detuning of -1.9MHz, as this detuning equals the Stark
effect at 0.21V/cm for a polarizability of 85.6MHz/(V/cm)2 (Table 1.2).
With increasing delay times the visibility of the fringes is reduced as an effect of the loss
of coherence. This can be described by the coherence time in terms of the Optical Bloch
equations. To obtain this coherence time a numerical solution of the Optical Bloch
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Figure 3.13: Upper panel: coherence time T2 obtained from numerical fits to datasets at
different electric fields Ez. Lower panel: Rydberg atom number in arbitrary units obtained
from the fit. The errorbars denote the standard deviation of the fit parameters.

equations (1.9), including the phenomenological decay constants T1 and T2, is fitted to
the experimental data. The result of such a fit is plotted in Figure 3.12 (b). As the
excited state lifetime T1 is much longer than the duration of each sequence it is fixed
to the calculated lifetime of the 44d5/2 state of T1 = 47µs [126]. Fits with T1 = 100µs
and T2 = 25µs show that the results vary only within the standard deviation of the
fit. The remaining fit parameters are the coherence time T2 and a numerical factor N ,
proportional to the Rydberg atom number.
The measurement of 21 spectra, consisting of 401 data points each, is repeated for 14
different electric fields close to the strongest Förster resonance. The results of fits to
these 14 sets of measurements are plotted in Figure 3.13. The Rydberg atom number
is almost constant in these experiments. This is expected since the varied electric field
during the delay time does not influence the maximal number of excited atoms. The
slight variation is because of slow drifts of the performance of the experiment on the
time scale of these measurements that take about 30min per data point.
The coherence time shows a clear dip at 0.214V/cm, in good agreement with the obser-
vation in Figure 3.9. At electric fields detuned from the resonance a constant coherence
time of about 0.5µs is measured. This corresponds to the linewidth of the excita-
tion to the 44d state of ∆ν = 300 kHz (Figure 3.1 (b)), giving a coherence time of
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τ = 1
2π∆ν = 0.53µs. Hence, the maximal coherence time is limited by technical con-

strains on the magnetic and electric field homogeneity and stability as the source of the
excitation line broadening and not by interaction effects. The reduced coherence time at
the Förster resonance to about 0.32µs can clearly be attributed to interaction-induced
dephasing processes.
Assuming that the total dephasing rate Γtot = 1/0.32µs at the resonance is linear in
the technical dephasing rate Γtech = 1/0.53µs and in the interaction-induced dephasing
rate Γint

Γtot = Γtech + Γint (3.6)

one can calculate an interaction-induced coherence time of T int
2 = 1/Γint = 0.7µs.

Treating the system at Förster resonance by the two-level optical Bloch equations is
a substantial approximation. It totally neglects interactions between the atoms and
couplings to other states. In this model, every effect beyond the two-level system is
regarded by the coherence time only. Thus, couplings to other states and interactions
will contribute to the observed coherence time, even though these couplings may be
fully coherent. For a comprehensive understanding of strongly interacting atoms at the
Förster resonance pair states have to be considered. An extended model based on pair
states will be treated in chapter 3.2.3.
However, the approach of the optical Bloch equations offers to extract quantitative val-
ues for the observed loss in coherence, which justifies this evaluation. Based on this
quantitative analysis the observed loss of coherence can be compared to other experi-
ments. In [131] a coherence time of 3.6µs for single atoms in a dipole trap was measured
by Ramsey spectroscopy, but this coherence time was limited by technical constrains on
the motional dephasing and magnetic field fluctuations. Damped Rabi oscillations in an
ensemble of atoms was measured in [128], but here the coherence time was limited by
the laser linewidth. An interaction-dependent damping of oscillations could be observed
in [129] in the case of 1-10 atoms with coherence times in the µs regime. Unfortunately
no exact values are given.

3.2.3 The concept of a pair state interferometer
In the preceding chapters the electric fields to tune the system into Förster resonance
were obtained and a loss of visibility in the Ramsey interferometer at resonance was
measured. This loss could be quantified in terms of a coherence time in a two-level
single-atom model, but so far no source of this loss of visibility was identified. Especially
interesting is the character of the processes that are responsible for the loss of visibility in
these experiments, to understand if an ensemble of atoms with induced Förster resonance
interactions can be coherently controlled.
At the Förster resonance binary interactions between Rydberg atoms are expected that
cannot be included in a single-atom model. Instead atom pair states have to be con-
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Figure 3.14: (a) Schematic of the pair state interferometer. A pulsed Ramsey field couples
the lower three states simultaneously. A Rydberg detector detects the number of Rydberg
atoms NRyd, resulting in a Ramsey spectrum. Interactions between Rydberg atoms couple
only the |rr〉 state to the |r′r′′〉 state, thereby inducing a population transfer to |r′r′′〉 and a
phase shift ϕ(U) of |rr〉 relative to the other states. This phase shift translates to a phase shift
φ of the Ramsey fringes. (b) shows the transfer function for 0.6π-Ramsey pulses describing
the dependence of the fitted phase of the Ramsey fringes φ on the phase shift ϕ in the |rr〉
path for small phase shifts.

sidered, which can describe interactions and couplings to other pair states of atoms as
shown in chapter 1.3.2. I will introduce the concept of a pair state Ramsey interfero-
meter in the following, extending the usual two-level atom interferometer (described in
chapter 3.1.1 with the excitation light sequence as in Figure 3.5) to two interacting atoms
coupled to the optical excitation field. Besides the ground state |gg〉 and the doubly
excited state |rr〉 there are two singly excited states |gr〉 and |rg〉. Only the symmetric
combination of the two couples to the Ramsey field. Hence a pair state interferometer
consists of three simultaneously interfering paths instead of two in the usual two-level
interferometer. Only one of these states, the doubly excited state, experiences strong
interactions as it is coupled to other doubly exited states |r′r′′〉.
Figure 3.14 shows a schematic of the relevant pair states for a Ramsey interferometer
in an ensemble of atoms with switchable interaction. The system starts in the state
where both atoms are in the ground state |gg〉. Optical light pulses excite single atoms
to the Rydberg state and induce couplings between |gg〉, 1√

2(|gr〉 + |rg〉) and |rr〉. A
direct excitation from |gg〉 to |rr〉 is suppressed as it is a second order process. Usually
a population of 1√

2(|gr〉+ |rg〉) after the excitation pulses cannot be omitted. A differ-
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ent situation occurs for π/2 pulses, that transfer the atoms completely to the excited
state. The singly excited state is not populated and the system can again be reduced to
two interfering paths. In single atom experiments this can indeed be realized, but in an
ensemble of atoms, as in the experiments here, π/2 excitation pulses are not possible be-
cause of spatially inhomogeneous Rabi frequencies (chapter 1.3.8). A description based
on pair state interferometry with three simultaneously interfering paths is necessary.
Another previously unpopulated Rydberg pair state |r′r′′〉 can be coupled to the |rr〉
state by a switchable interaction during the delay time between the two Ramsey pulses
before the lower three states are coupled again by the optical light field. After this
sequence the total number of Rydberg atoms is detected in a Rydberg detector.
This concept of a pair state interferometer is valid for any tunable interaction like
induced permanent dipole-dipole interaction or Förster resonances with the control pa-
rameters static electric or oscillating fields. The actual form of the interaction is not
relevant, but the strength of the interaction determines the response of the interfero-
meter on the interaction. In the case of weak interactions that are slowly turned on
the atoms in the state |rr〉 can adiabatically follow the interaction-induced energy shift.
In this adiabatic regime, the atoms remain in the |rr〉 state but the energy shift accu-
mulates to a phase shift ϕ(U) relative to the interaction independent states |gg〉 and

1√
2(|gr〉+ |rg〉). This phase shift can be calculated from

ϕ(U) = U(r)
2 τd, (3.7)

since the energy shift of the |rr〉 state is half of the interaction energy U(r). τd is the time
where the interaction is switched on. At the Förster resonance at | ~E| = 0.234V/cm,
exhibiting a calculated strength of 2π × 1556MHz·µm3, and at the blockade radius of
6.7µm at | ~E| = 0V/cm (cp. chapter 1.3.8) the atoms will pick up a phase shift of 2π
in about τd = 0.4µs if the interaction is switched adiabatically. In the case of strong
or spontaneously switched interactions, the atom pair cannot follow adiabatically and
a population transfer to |r′r′′〉 appears, usually additional to a phase shift between |rr〉
and 1√

2(|gr〉+ |rg〉).
The probability for a diabatic transition can be calculated from the Landau-Zehner
formula [120]

p = e−
U2
~ /| ddt (E|pf〉−E|dd〉)|, (3.8)

where U is the coupling strength between the coupled pair states and E|dd〉, E|pf〉 are the
energies of the pair states. Realistic parameters in the experiments here are a coupling
strength of U = 2π × 1MHz, a switching time of T = 20ns of the electric fields and a
change of energy of

∣∣∣ d
dt

(E|pf〉 − E|dd〉)
∣∣∣ = 2π × 140MHz/T (Figure 1.15). One obtains a

probability of P = 0.994 for a diabatic passage, almost pure diabaticity.
This pair state interferometer behaves considerably different than a two-path interfero-
meter. For example, even in the case of adiabatically switched interactions and an
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Figure 3.15: The solid lines show Ramsey spectra, phase shifted by ϕ. If these spectra are
summed (dotted line) a reduced visibility occurs and a smaller phase shift φ is measured.

individual pair of atoms, a coherent phase shift ϕ(U) in the |rr〉 path leads to a loss of
visibility in the Ramsey spectrum. This can be understood from a simplified Ramsey
interferometer, where simultaneously two independent Ramsey spectra are measured,
whereof one is phase shifted relative to the other. Figure 3.15 shows two such spectra
(solid lines). If the sum of both spectra is measured (dotted line) a reduced visibility
is obtained. In the pair state interferometer these two spectra occur as 1√

2(|gr〉 + |rg〉)
interferes simultaneously with |gg〉 and |rr〉. Both interferences generate a Ramsey spec-
trum, but only one is phase shifted by the interaction. This leads to a reduced visibility
depending on the strength of the interaction, even in a fully coherent system.
Compared to Figure 3.15 the actual situation is more involved as both interferences are
not independent and interfere the same 1√

2(|gr〉 + |rg〉) state. The Ramsey spectrum
in the pair state interferometer is a non-trivial function in the populations of the pair
states. This population depends on the pulse area of the excitation pulses and is de-
pending on the detuning of the laser. Therefore the Ramsey spectra of the pair state
interferometer differ from the model of Figure 3.15. However, the simple picture offers
an easy understanding of one origin of the observed loss in visibility.
Furthermore in the pair state interferometer the observed phase shift φ is reduced com-
pared to the interaction-induced phase shift ϕ(U) of |rr〉, also visible from the model
in Figure 3.15. Again, the actual pair state interferometer is more involved and the
transfer function from the interaction-induced phase shift ϕ(U) to the phase shift of the
Ramsey fringes φ is a non-trivial function in the experimental parameters.
To gain more insight into the behavior of the interferometer it can be simulated by
numerically solving the Schrï£¡dinger equation (1.4) with the Hamiltonian (1.50) for
the actual situation in the experiments presented here. The interaction is tuned by
Stark shifting the Förster resonance between |dd〉 and |pf1〉. The contributions of other
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resonances are omitted for simplicity, reducing the system to only four states |gg〉,
1√
2(|gd〉+ |dg〉), |dd〉 and 1√

2(|pf1〉+ |f1p〉) that correspond to the states of the pair state
interferometer in Figure 3.14. It can be described by the four dimensional Hamiltonian

H =



0 Ωeff√
2 0 0

Ωeff√
2 δL + Ed

Ωeff√
2 0

0 Ωeff√
2 2δL + 2Ed U1(r,Θ)

0 0 U1(r,Θ) 2δL + Epf1

 (3.9)

with the exemplary but realistic parameters Ωeff = 2π × 2MHz for the effective Rabi
frequency, U1 = 2π × 1556MHz·µm for the interaction strength and the interatomic
distance r = 5µm. δL is the detuning of the exciting laser relative to the atomic
resonance, Ed the Stark effect of the 44d state and Epf1 the Stark shift of the |pf1〉 pair
state.
Figure 3.16 shows the time evolution of the populations in the four pair states for a
typical pulse sequence like in Figure 3.5. During the optical excitation pulse (shaded
area) a population of 1√

2(|gd〉 + |dg〉) and of |dd〉 is created. In between the optical
Ramsey pulses, when the system is tuned close to the Förster resonance by an applied
electric field, population oscillates between the |dd〉 and the 1√

2(|pf1〉 + |f1p〉) state.
In the simulation the fields are switched spontaneously, hence this population transfer
occurs for all interaction strengths. This is a good approximation of the almost pure
diabatic switching of the field in the experiment. When the second Ramsey field pulse
is applied, the electric field is tuned to zero. A remaining coherence between |dd〉 and

1√
2(|pf1〉+ |f1p〉) still leads to small oscillations with the Förster defect ∆ = 63MHz at

zero electric field, but dominantly the lower three pair states are interfered again.
The Rydberg atom detection in the experiments presented in this work is not state se-
lective and only the total number of Rydberg atoms can be measured. To simulate these
experiments the (normalized) number of Rydberg atoms NRyd is obtained by summing
the populations pi of the four states at the end of the sequence, as shown in Figure 3.16,
as NRyd = p|gd〉 + 2p|dd〉 + 2p|pf1〉. The full simulated spectrum consists of simulations
for 201 detunings δL between -6MHz and +6MHz. This Ramsey spectrum in frequency
space can be fitted using equation (3.3) as in the experiment to obtain the visibility and
the phase φ of the Ramsey fringes.
This phase differs from the interaction-induced phase shift ϕ of the |dd〉 state as de-
scribed previously in terms of the transfer function. To obtain this transfer function no
interaction (U1 = 0MHz·µm3) but a fixed phase shift e−i ϕ2π of the |dd〉 state between
the two Ramsey pulses was included. Figure 3.14 shows the simulated transfer function
in the case of 0.6π Ramsey pulses. For small interaction-induced phase shifts ϕ(U) the
transfer function is a monotonic function in ϕ(U). Close to ϕ(U) = π the Ramsey fringe
pattern is strongly disturbed so that the fit function (3.3) is not a good approximation
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3 Coherence at Förster resonances

Figure 3.16: Evolution of the populations in the pair states of the interferometer for the
pulse sequence in the inset using experimentally realistic parameters for the Förster resonance
at the highest electric field. The shaded areas indicate the time of the excitation pulses.

of the simulated spectrum and the phase is not well defined. The actual dependence of
φ on ϕ(U) is depending on the pulse area of the Ramsey pulses. However, under any
circumstances the effective phase shift φ is smaller than the phase shift of the doubly
excited state ϕ(U).
This totally coherent model of a pair state interferometer is used to simulate the experi-
ments in the following chapters, using different electric field pulse sequences. However, in
an ensemble of atoms with strong binary interactions the ensemble average over different
interaction strength U(Θ, r) due to the distance and angular dependence of the interac-
tion even at constant density results in an additional dephasing. This can be attributed
for if the angular dependence and different interatomic distances are averaged. Irrespec-
tive of the situation exactly on Förster resonance, the interaction is predominantly of van
der Waals type, with scales as r−6 with the interatomic distance. This features a short
range interaction which effect can be described in good approximation by calculating
the next neighbor contribution. The dephasing due to the different interaction strengths
can hence be simulated by averaging over the next neighbor distribution, which is given
by the Chandrasekhar distribution [87, 135]

P (r) = e−r
3/r3

03r2/r3
0 (3.10)

in the case of a random distribution of particles with average distance r0.
The angular dependence of the interaction is averaged out in an extended ensemble
considerably larger than the next neighbor distance between Rydberg atoms. As the
van der Waals interaction (1.49) is calculated from | 〈k′′k′|Vdd(Θ, r) |kk〉 |2, the quadratic
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mean of the angular dependence of the dipole-dipole interaction between two states

Ū(r) =
√

1
π

∫ π

0
(Udd(Θ, r))2 dΘ (3.11)

is calculated and included in the simulations of the pair state interferometer.
This ensemble averaging is a necessary simplification of the system to describe it in
the two-atom picture, but limits the accuracy of the simulations. Moreover, an inho-
mogeneous density distribution will lead to yet another source of dephasing, especially
because of inhomogeneous collective Rabi frequencies. Furthermore in the experiment
decoherence due to a finite excitation linewidth is present. These dephasing mechanisms
are not included in the concept of the pair state interferometer and have to be considered
if the simulations are compared to actual experiments.
The pair state interferometer simplifies the experiments in many other ways. Besides the
ensemble averaging for the angular dependence and the inhomogeneous atom distribu-
tion only binary interactions are calculated and the many-body nature of the experiment
is considered solely by a collective enhancement of the Rabi frequency. Direct three-
or four-body interactions are only expected when respective many-body states become
resonant [136]. But even in absence of direct many-body interaction higher order terms
in the interaction can play profound roles [137] and additional dynamics can arise in a
many-body system even with pure binary interactions [22, 28]. These additional pro-
cesses can enhance and broaden the interaction effects and should be kept in mind to
evaluate the results correctly. However, the considered binary interactions still play the
dominant role and the concept of a pair state interferometer describes the fundamental
characteristics of the experiments here.

3.2.4 Coherent evolution of pair states
Dephasing mechanisms lead to a loss of coherence in single-pulse experiments. Here,
this dephasing appears for example between pair states because of inhomogeneous in-
teraction strengths in the atomic ensemble. Some of the inhomogeneous dephasing
mechanisms can be refocused by using Ramsey type pulse sequences for the interaction
strength. That means that the interaction strength has to be pulsed like in a Ramsey
sequence to refocus the dephased pair state system into the initial state. Thereby Ram-
sey experiments are not sensitive to inhomogeneous coupling strengths of the Ramsey
pulses, which enable to directly observe the coherent evolution of the ensemble even in
the presence of inhomogeneous interaction strengths.
The interaction strength can be tuned by the electric field and a Ramsey type pulse
sequence in the interaction strength can be realized by the pulsed electric field sequence
from Figure 3.17 (a). The electric field is first pulsed for tres = 200 ns to the electric
field Eres with a rise time of 20 ns to tune the pair states into Förster resonance. After
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3 Coherence at Förster resonances

Figure 3.17: (a) Pulse sequence of the double Ramsey experiment. (b) Relevant avoided
crossing between the |dd〉 and the |pf1〉 state with the coupling strength U1. The resonant
electric field Eres and a detuned electric field Edet are indicated and the respective energy
differences are specified.

a variable delay time td between 0 ns and 400 ns a second 200 ns pulse at Eres is applied.
Between and after these two Ramsey-like pulses the electric field is detuned from exact
resonance to a variable value Edet (td and t′d). The total length of this electric field pulse
train matches the delay time of τdel = 800ns between the 150 ns optical Ramsey pulses.
The single atom Rabi frequency is about Ω0 = 2π × 25 kHz and the peak ground state
atom density is 2× 1012 cm−3. Using this double Ramsey sequence 401 times with laser
detunings ranging from -6MHz to +6MHz Ramsey spectra were taken for different delay
times td and different electric fields Edet. From a fit of (3.3) to every Ramsey spectrum
the visibility and phase can be obtained.
This particular sequence offers the advantage that the total time at the resonant electric
field (2×td) and at the detuned field (td+t′d) are constant throughout one measurement.
Additional losses of coherence, e.g. dephasing due to inhomogeneous atom distributions
or due to a finite laser linewidth, reduce the visibility to a constant value throughout
one measurement. Oscillations in the visibility when varying the delay time between
the resonant pulses can clearly be separated. This is, for example, not the case for the
pulse sequence in Figure 3.19, that will be discussed later.
In the experiment the Förster resonance at the highest electric field of Eres = 0.213V/cm,
obtained from Figure 3.9, is used. The avoided crossing between the relevant pair states
is shown in Figure 3.17 (b) together with the electric fields Eres and Edet. This resonance
is used as it can clearly be attributed to the calculations and it shows the strongest
interaction. Measurements were done at detuned electric fields between 0.181V/cm and
0.241V/cm. Figure 3.18 (a) shows the fitted visibility for some of these measurements
versus the delay time td between the resonant electric field pulses. Clear oscillations in
the visibility can be seen, that show no damping on the timescale of the experiments.
The observed oscillations directly proof the coherent coupling between Rydberg pair
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states, similar to the observation of [28]. The oscillation frequency is smaller the closer
the detuned electric field Edet is to the resonant field Eres. From sinusoidal fits to the
visibility, which are shown in Figure 3.18 (a) as well, the frequency of the oscillations is
obtained.
The Förster defect at the detuned electric field Edet can be calculated from the differ-
ential Stark shift of the pair states, as shown in Figure 3.17. Here, the slight deviation
of the calculated electric field to tune the pair states into Förster resonance to the mea-
surements can be compensated by a constant offset field of 0.018V/cm. This linear
approximation is reasonable for the resonance used here, since the calibrated electric
field is bigger than the expected radial stray field Ez � Er and only measurements at
electric fields close to the Förster resonance are performed.
Figure 3.18 (b) shows the fitted oscillation frequency of the measurements versus the
Förster defect. The measured oscillation frequency follows the Förster defect ∆ and
shows a minimum at the position of the resonance. Close to the resonance the amplitude
of the oscillations (Figure 3.18 (c)) is strongly reduced and no oscillation frequency could
be measured.
This experiment can be regarded as a Ramsey-like experiment between the |dd〉 and
the |pf〉 states only. The first resonant electric field pulse resonantly couples the |dd〉
state to the |pf〉 state, generating a coherence between these states. During the delay
time td the electric field is detuned from exact resonance. In contrast to usual Ramsey
experiments the two states are still coupled and the atom pairs will oscillate between
|dd〉 and |pf〉 with the oscillation frequency ν(∆) =

√
U2

1 + ∆2. The second resonant
electric field pulse interferes both pair states again. The maximum visibility in the
Ramsey spectrum occurs at an electric field Edet where after the delay time td and the
second resonant electric field pulse the atom pairs are refocused into the |dd〉 state. The
oscillations between the pair states are now visible as oscillations in the visibility when
the delay time td is varied.
From this interpretation of the experiment one expects that the oscillation frequency
equals the Förster defect ∆ for ∆ � U1, as observed in Figure 3.18 (b). Close to the
resonance, however, a deviation of this linear behavior is expected following ν(∆) =√
U2

1 + ∆2. In the experiment this is not observed for Förster defects of |∆| & 2MHz.
Closer to the resonance (|∆| . 2MHz corresponds to Ez ≈ 0.209 . . . 0.217V/cm) no
oscillations could be measured. This can be understood as follows: Strong dephasing
occurs when the system is dominated by the interaction between the pair states (∆ .
U1), as this interaction forms a broad band due to the dependence on the interatomic
distance. However, the coupling between single pair states is coherent on the timescale
of the experiment. This coherence leads to the observed oscillations in the interferometer
if the time evolution is dominated by the spatially constant Förster defect.
The smallest measured oscillation frequency is about 2MHz, giving an upper limit for
the average interaction strength. At the Förster resonance used here, with an angular
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Figure 3.18: (a) Oscillations in the visibility are measured in the double Ramsey pulse se-
quence. The electric field during the delay time Edet is indicated by the solid black lines. The
oscillations in the visibility (data points with error bars resulting from the standard devia-
tion of the fit to the Ramsey spectrum) are normalized and centered on the applied electric
field. The solid lines are sinusoidal fits to the data. The dashed lines are simulations of the
experiment. The dotted horizontal line indicates the electric field to tune the pair states into
Förster resonance. (b,c) Measured (data points with errorbars obtained from fit) and simu-
lated (dashed line) dependence of the frequency and the amplitude of the oscillations in the
visibility on the Förster defect. The solid line in (b) shows ν = |∆|. The Blue (red) data
indicate positive (negative) Förster defects.
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averaged interaction strength of 2π×719MHz·µm3, interaction strength of about 2MHz
are expected at interatomic distances between Rydberg atoms of 7µm. This estimate
gives a lower limit on the interatomic distance. It matches the blockade radius of 6.7µm
(chapter 1.3.8) during the Rydberg excitation at Ez = 0. In the experiment the system
is not driven into the saturated Rydberg density and bigger interatomic distances are
expected, in perfect accordance to the estimate of the lower limit on the distance.
Using the concept of the pair state interferometer from chapter 3.2.3 and the experi-
mental pulse sequence (Figure 3.17 (a)) the results of this experiment can be simulated
by numerically solving the Hamiltonian (3.9). As these experiments are very close to
a single Förster resonance the dynamics are dominated by a single resonance and can
be described by four pair states |gg〉, 1√

2(|gd〉 + |dg〉), |dd〉 and 1√
2(|pf1〉 + |f1p〉). To

estimate the collective Rabi frequency Ωeff =
√
NBΩ0 the number of Rydberg atoms per

blockade sphere NB has to be calculated. The blockade radius during the excitation at
Ez = 0 is 6.7µm (chapter 1.3.8). At a density of ρ = 2× 1012 cm−3 this corresponds to
NB = 2600 and a 50-times enhancement of the Rabi frequency to Ωeff = 2π× 1.27MHz.
In the simulations a collective Rabi frequency of Ωeff = 2π× 1MHz is used, close to the
estimated value. Test simulations with higher Rabi frequencies showed similar results
that only slightly varied in the amplitude of the oscillations. The interatomic distance
is fixed to 9µm, reasonably bigger than the estimated lower limit of the interatomic
distance of about 7µm.
The simulated visibility is shown as dashed black lines in Figure 3.18 and agrees remark-
ably well with the measurements. The dependence of the simulated oscillation frequency
on the Förster defect perfectly matches the expected

√
U2

1 + ∆2 behavior. It shows the
expected linear increase with the Förster defect for |∆| � U1 and the deviation from the
linear ν = |∆| behavior at small Förster defects. Figure 3.18 (c) displays the simulated
and observed amplitude of the oscillation in the visibility. The amplitude features a
pronounced dip at the resonance and a periodic variation of the amplitude with the
Förster defect. This oscillation cannot be resolved in the experiment. The interaction
strength might be measureable in the regime, where the interaction strength is at least
on the same order as the Förster defect. This appears at Förster defects, where the
oscillation frequency shows the deviation from the linear behavior in Figure 3.18 (b).
Unfortunately this is the same regime where also the dip in the amplitude occurs. No
experimental results could be obtained in this regime.
The amplitude is in perfect agreement to the measurements. The agreement in the
amplitude might come as some surprise as the total value of the visibility is strongly
affected by technical reasons, e.g. the excitation linewidth, that is not included in the
simulations. However, the Ramsey-like sequence in the interaction strength is indepen-
dent of the initial phase of the |dd〉 pair state after the excitation pulse. Thereby the
observed oscillations are independent from the laser-induced dephasing that only reduces
the overall visibility in the experiment. This explains the agreement in the amplitude
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3 Coherence at Förster resonances

Figure 3.19: Simulated (a) and measured (b) visibility versus the length of the single electric
field pulse tres. The errorbars denote the standard deviation of the fit to the Ramsey spectrum.
The dashed lines are results of fits to the simulated and experimental data. The inset in (a)
shows the pulse sequence for this experiment.

of the oscillations in contrast to the absolute visibility.
In these simulations no averaging over the density distribution of the Rydberg atoms was
done, as suggested in connection with equation (3.10). Test calculations averaging over
several interatomic distances between 2µm and 25µm, weighted by the next neighbor
distribution (3.10) with an average interatomic distance r0 = 9µm, did not show a strong
influence for |∆| > 2MHz. This can be understood as for |∆| > 2MHz the evolution is
dominated by the Förster defect and not the interaction strength. The computationally
expensive averaging was omitted here.
In the experimental sequence used so far the evolution exactly on resonance, where the
system is completely dominated by the interaction strength, cannot be studied. For
Edet → Eres the sequence consists of one single electric field pulse and does not depend
on the delay time. However, in principle direct Rabi oscillations could be measured using
a single resonant electric field pulse Eres = 0.213V/cm with variable length, as shown
in Figure 3.19. For this experiment the delay time between the 150 ns optical Ramsey
pulses was chosen to be 1000 ns and the length of the electric field pulse was varied
between tres = 0ns and tres = 1000ns in 101 steps. The results of this measurement are
shown in Figure 3.19 (b). Instead of Rabi oscillations only an exponential decay of the
visibility occurs with a time constant of 213 ns. This can be explained by dephasing due
to the inhomogeneous interaction strength, as predicted in [135] based on Monte Carlo
calculations for an ensemble of atoms. The measured time constant agrees rather well
with the obtained total coherence time of 320 ns from chapter 3.2.2.
To simulate this experiment the next neighbor distribution of Rydberg atoms has to be
accounted for, as this distribution dominates the observed dephasing. The experimental
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sequence is simulated for 93 interatomic distances between 2µm and 25µm and the
Ramsey spectra are weighted and averaged according to a Chandrasekhar distribution
(3.10) with an average interatomic distance of r0 = 9µm. These averaged spectra are
fitted as in the experiment. The result of these simulations is shown in Figure 3.19 (a)
and shows an exponential decay as well. The small oscillations are due to the finite
number of averaged distances.
The overall visibility is higher by a factor of three to four in the simulations compare
to the measurements. This might be explained by additional dephasing due to the
finite linewidth of the excitation. It was measured to be 300 kHz for the 44d state in
the high magnetic offset field. This corresponds to a coherence time of 0.53µs and
reduces the visibility on the 1µs time scale of the experiment, that was also shown in
the measurements of the coherence time T2 in chapter 3.2.2. This effect is not included
in the simulations.
An exponential fit to the simulation results in a time constant of 175 ns, in pretty good
agreement to the experimental value given that the used model simplifies the system
in many ways. For example, exactly on resonance the atoms experience a 1/r3 long-
range interaction. Calculating solely the next neighbor contribution, as done in the
simulations, is not sufficient. Instead the contributions of all atoms have to be taken
into account, effectively reducing the width of the band of interaction strength. This
might result in a lower dephasing in the experiment. Furthermore the angular averaging
of the interaction strength is valid for van der Waals interaction but not for resonant
dipole-dipole interaction. There the angular average would result in zero interaction for
a spherical sample and possibly reducing the interaction and with it the dephasing in
the cigar shaped system here.
However, the simulations reproduce the fundamental characteristics of the many-body
system excellent and demonstrate the validity of the presented physical picture of a
pair state interferometer to describe the fully coherent evolution of the ensemble of
strongly interacting Rydberg atoms. This coherent evolution is remarkable as there
is no real experimental control over the interatomic spacings, strongly affecting the
interaction strength and generating dephasing. These experiments show the coherence
of the coupling between pair states in Rydberg systems and are a significant step towards
coherent many-body control.

3.2.5 Interaction-induced phase shifts in a pair state interferometer
In chapter 3.2.1 a reduced visibility at Förster resonance was measured, that was quali-
tatively explained in terms of the pair state interferometer in chapter 3.2.3. The double
Ramsey experiments in chapter 3.2.4 showed that, despite the dephasing within the
interferometer, a coherent evolution of atom pairs occurs. This is an essential prerequi-
site for an interaction-induced phase shift, as necessary for a proposed quantum phase
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Figure 3.20: Measured (a) and simulated (b) color coded Ramsey spectra versus the electric
field. A loss of visibility and a dispersive phase shift at the Förster resonances is visible in
both data sets.

gate [40, 39]. The concept of the pair state interferometer predicts the occurrence of
this interaction-induced phase shift and the possibility to observe the phase shift in the
Ramsey interferometer close to a Förster resonance (cp. Figure 3.14).
Here I will show experiments using the same pulse sequence with only slightly optimized
timing as in chapter 3.2.1 to measure this Förster interaction-induced phase shift and
I will present simulations reproducing the experimental findings. To the best of our
knowledge this phase shift was not observed before.
In these experiments a single electric field pulse of τdel = 800 ns was applied between
two τp = 150ns optical Ramsey pulses (see Figure 3.5). Compared to the measurements
in chapter 3.2.1 the timing was optimized to a slightly shorter sequence and a smaller
single atom Rabi frequency of Ω0 = 2π× 25 kHz was used. This enhances the coherence
and enables the observation of the interaction-induced phase shift. 401 Ramsey pulse
sequences followed by field ionization and ion detection were used in series on the same
atomic sample to measure one Ramsey spectrum. These measurements were performed
for 322 pulsed electric fields between Ez = 0.060V/cm and 0.161V/cm as well as be-
tween 0.188V/cm and 0.234V/cm. The range between 0.161V/cm and 0.188V/cm was
excluded to reduce the experimental effort as there no Förster resonances are observed
(see Figure 3.7).
Figure 3.20 shows the color coded Ramsey spectra versus the pulsed electric field. Again,
a loss of visibility at the Förster resonances at 0.084V/cm, 0.132V/cm and 0.213V/cm
occurs. Despite this loss, a small deviation in the quadratic phase shift around the
Förster resonances is visible, indicating a coherent interaction between the Rydberg
atoms.
The experiment is numerically simulated by the full seven dimensional Hamiltonian
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(1.50), taking all Förster resonances into account. This is necessary as the electric
field is scanned over all resonances in this experiment. The spectra were averaged and
weighted by the next neighbor distribution (3.10) to damp oscillations in the resonant
energy transfer, as expected in an ensemble of atoms. The best results were obtained
from simulations with a collective Rabi frequency of Ωeff = 2π × 2MHz, slightly bigger
than the estimated collective Rabi frequency of 2π × 1.27MHz at the experimental
peak density of 2 × 1012 cm−3, and an average Rydberg atom distance of r0 = 9µm,
reasonably exceeding the blockade radius of 6.7µm during the excitation. The simulated
Ramsey spectra are shown in Figure 3.20 as well. The experimental data and the
simulations seem not to agree at the first glance. The overall visibility in the simulations
is considerably higher and fools the eye. A more quantitative analysis of these data is
necessary. However, despite this mismatch in visibility a phase shift at the Förster
resonances, as predicted from the pair state interferometer model and as observed in the
measurements, is reproduced.
The more quantitative analysis of the experiment and of the simulations is done by
fitting every Ramsey spectrum with the function (3.3). The visibility V and phase φ
of the Ramsey fringes are plotted in Figure 3.21. A comparison of the measured and
simulated visibility show very similar losses of visibility at the resonances, but also clear
differences. Apart from the absolute positions of the Förster resonances in the electric
field, that are discussed in chapter 3.2.1, the measured visibility is about a factor of four
smaller than in the simulations. This can be explained by the dephasing due to the finite
excitation linewidth that is not included in the simulations. Furthermore the measured
dips are broader, possibly also because of additional dephasing processes beyond the
pair state model, e.g. resonant energy transfer in many-body systems [28]. However,
quantitatively the observed visibility at the Förster resonance can be reproduced with
the two-body calculations.
The phase is not expected to be substantially disturbed by an additional loss of coher-
ence. The middle panel in Figure 3.21 shows the expected quadratic dependence on the
applied electric field in the measurements and the simulations because of the quadratic
Stark effect (1.28). To observe a deviation from this single-atom effect the quadratic
dependence was fitted and subtracted from the data. The difference is shown in the
lower panels in Figure 3.21. The measured data clearly features a dispersive shape of
the phase of the Ramsey fringes in the electric field centered around the resonant electric
fields where the Förster resonances occur. This dependence is perfectly reproduced by
the simulation even in the amplitude of the phase shift.
The interaction-induced phase signal not only directly verifies the coherence of the in-
teraction but also contains information about the character of the interaction. The sign
of the phase shift is determined by the direction of the interaction energy shift of |dd〉,
hence depending on the direction of the interaction. In the limit of van der Waals inter-
action it depends on 1/∆. This changes sign at the resonance position from attractive
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Figure 3.21: Visibility and phase obtained from fits to the measured (a) and simulated (b)
Ramsey spectra versus the electric field. Note that the experimental spectra are plotted versus
the calibrated component of the electric field Ez and the simulated data versus the total electric
field | ~E|. The uppermost panels show the visibility, the middle panels show the phase of the
Ramsey fringes (solid line) and a quadratic fit to the data (dotted line) and the lower panels
show the difference of the measured phase from the pure quadratic behavior. Some example
error bars are plotted, denoting the standard deviation of the fit parameter. The vertical
dashed lines indicate the positions of the resonances.
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at electric fields smaller than the resonant field Eres to repulsive interaction above the
resonance, leading to the dispersive phase signal. The dispersive signal also shows that
the interaction is stronger for smaller Förster defects close to the resonance. Exactly on
resonance two equally spaced states in the avoided crossing (see Figure 3.17) above and
below the unperturbed states appear. Under these conditions the system is diabatically
switched from the unperturbed |dd〉 state at E = 0V/cm to the perturbed states at Eres,
generating a superposition state that does not experience interactions and no phase shift
occurs.
For a first rough estimate of the amplitude of the phase shift (3.7) at an interaction
strength of 2π × 1MHz between two Rydberg atoms and an interaction time of 0.8µs
one would expect a phase shift of the pair state of ϕ = 0.8π. The transfer function of
the pair state interferometer (Figure 3.14) lowers the observed shift φ. This estimate
agrees reasonably well with the observed shift.
Complete simulations of the pair state interferometer exhibit the same dependence of
the phase on the electric field and even agree in amplitude of the phase shift (Figure
3.21 (b)). This is remarkable as the pair state model is a considerable simplification of
the experimental situation, especially the assumed constant Rabi frequency and density.
In a trapped cloud the ground state density is inhomogeneous and will alter the next
neighbor distribution and the collective Rabi frequency. This clearly influences the
populations of the coupled |dd〉 and |pf〉 states as well as the population of the 1√

2(|gd〉+
|dg〉) state, that is interfered with |dd〉 by the light field. The measured phase of the
Ramsey fringes is a non-trivial function in these populations, expressed by the transfer
function, and hence strongly influenced by this inhomogeneity of the Rabi frequency.
Another simplification in the model is the assumed next neighbor distribution of the
Rydberg atoms that might be influenced by the Rydberg blockade effect. Even though
the blockade effect between two atoms during the excitation is included in the simula-
tions, it is not included in the Chandrasekhar distribution function used in the model.
It could be addressed by a density distribution that is zero for distances smaller than
the blockade radius, effectively narrowing the Rydberg atom distribution.
Despite all these reasons the simulations agree with the experiment and show the ap-
plicability of the fully coherent pair state interferometer. It supports the fundamental
understanding of the system and offers important inside into the dephasing processes
that are unavoidable in an ensemble of atoms. Experiments aiming at using the coherent
interaction-induced phase shift have to be considered carefully to suppress or refocus
the dephasing.
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Ultralong-range Rydberg molecules open the field of Rydberg physics towards ultracold
chemistry, exhibiting versatile new and interesting properties. However, the creation of
the molecules itselve is a challenge that was first met in 2010 in our group [49] by direct
photoassociation in an ultracold gas of Rubidium atoms. The experimental requirements
are strict. Because of the small binding energies on the order of 10MHz ultracold
temperatures are necessary. Furthermore only close-by atom pairs at the binding length
of r ≈ 100nm can be photoassociated to the molecular state. High atomic densities
above 1× 1012 cm−3 are necessary to generate these atom pairs.
All these requirements are perfectly met in trapped, evaporatively cooled gases. A
magnetic trapping, in comparison to a dipole trap, is especially favourable as it offers
a narrowband excitation and high precision spectroscopy. Therefore the experimental
setup here in combination with the narrowband excitation laser system is well suited to
create these unusual molecules and to study their properties.

4.1 Stark effect measurements
The ultralong-range Rydberg molecules are created via two-photon photoassociation
directly to the bound molecular state and detected by field ionization and ion detection,
just as in the case of Rydberg atoms explained in chapter 2.2. The molecules can be
excited at slightly lower excitation frequencies than the atomic Rydberg line, where the
excitation energy difference is the binding energy. Hence the molecules appear as an
additional signal in the spectroscopy, some MHz red detuned to the atomic Rydberg line,
which is shown in Figure 4.1 for the 3Σ(5s−35s) molecules. For photoassociation of the
3Σ(5s− 35s) molecules a σ+ (780 nm excitation laser) and σ− (480 nm excitation laser)
excitation scheme is used, as shown in Figure 2.3, to fulfill the angular momentum
conservation in the excitation. The photoassociation pulses are typically 15µs long
with Rabi frequencies on the order of 2π × 100 kHz for the excitation to single atom
Rydberg states. The experiments are performed at a peak ground state atom density
of ρ = 1013 cm−3, a temperature of 3µK and an offset magnetic field of 1G. Details on
the photoassociation can be found in [101].
Here, the behavior of the molecules in static electric fields will be studied in spectroscopy

105



4 A polar homonuclear molecule

Figure 4.1: Spectroscopy close to the 35s Rydberg line at an electric field of | ~E| = 0V/cm
(solid line) and | ~E| = 3V/cm (dashed line). The frequency axis is relativ to the atomic
resonance (35s1/2, mj = 1/2 at 0MHz) in each measurement. The additional transition at
-3MHz is the Zeeman splitted mj = −1/2 Rydberg state (see Figure 2.3). The molecular
ground state generates a signal at the binding energy of -23MHz and two vibrationally excited
states are at -17MHz and -9MHz. At the atomic resonance the ion detector is fully saturated.

experiments. Each measurement of a spectrum consists of a series of 481 sequences of
excitation and detection, where the scan range is always chosen relativ to the atomic
Rydberg line. Upon applying an electric field during the excitation this resonance fre-
quency is shifted by the Stark effect of the Rydberg atoms and the scan range is simul-
taneously changed. These spectra are measured for 19 electric fields between -9V/cm
and +9V/cm. Such a set of measurements is shown in Figure 4.2, displaying a clearly
quadratic Stark effect as expected for the Rydberg atoms (equation (1.28)). The molec-
ular line, at slightly smaller frequencies left to the atomic line in Figure 4.2, shows the
same shift at first glance.
So far, measurements were not able to detect a deviation of the molecular Stark effect
from this quadratic shift within their experimental resolution [101]. The experiments
were interpreted by assuming that the molecule possesses only an induced dipole moment
that arises from the polarizability of the Rydberg atom. With other words, the bound
ground state atom does not perturb the wavefunction of the Rydberg electron and the
molecular Stark effect is equal to the atomic Stark effect. The measurement in Figure
4.2 shows this quadratic Stark effect at electric fields of some V/cm, where the molecular
Stark effect is indeed dominated by the Rydberg atom.
In order to detect small deviations due to the molecular nature the quadratic Stark effect
is subtracted from the spectra. Figure 4.1 shows, besides the spectrum at | ~E| = 0V/cm,
a shifted spectrum at | ~E| = 3V/cm. The frequency axis in both spectra is relativ to
the atomic Rydberg line, i.e. the atomic Stark effect is subtracted. The width and the
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4.1 Stark effect measurements

Figure 4.2: Color coded two-dimensional Stark spectrum of the atomic 35s Rydberg line
(white dots) and the molecular 3Σ(5s − 35s) lines (left to the atomic line). The white line
shows a quadratic fit to the atomic line.

amplitude of the atomic Rydberg line are unchanged, but the ground state molecular
line clearly shows a broadening and a shift of the line center relative to the atomic
Rydberg line. As the atomic Stark effect is subtracted, this additional effect is a pure
molecular Stark effect due to a perturbed Rydberg electron wavefunction in the presence
of the bound ground state atom. In Figure 4.3 (c) the full high resolution molecular
Stark spectrum is shown, where the frequency range is chosen such that the strong and
saturated atomic Rydberg line is excluded. This is the same data as in Figure 4.2, where
the atomic Stark effect is subtracted. No splitting of rotational states is visible, but a
continuous broadening of the molecular lines, resulting in a Stark-fan. Note that this
shift is on the order of some MHz at 9V/cm, whereas the quadratic atomic Stark shift
is about 170MHz at the same field.
Figure 4.3 also shows calculated Stark spectra of the 3Σ(5s− 35s) molecules, that were
calculated at the Max-Planck-Institut für Physik komplexer Systeme in Dresden [50].
In these calculations the molecular potential is calculated by direct diagonalization of

H = HA + V̂ + ~E~r, (4.1)

where HA is the unperturbed Rydberg atom Hamiltonian, V̂ the Fermi pseudopotential
interaction (1.55) and ~E~r describes the interaction with the external electric field ~E.
This diagonalization is done for many different molecular orientations to calculate the
ro-vibrational states of the molecule in this potential. A considerably reduced basis size
was used to reduce the computational effort, but that also leads to an error of about
1MHz in the binding energies of the molecules.
Figure 4.3 (a) shows the Stark shifts of the pure ro-vibrational states. Even in zero
electric field the vibrational states, already shown in Figure 1.18, split in rotationally
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4 A polar homonuclear molecule

Figure 4.3: Two-dimensional Stark spectra of 3Σ(5s− 35s) molecules. The frequency axis is
relative to the atomic Rydberg line in every spectrum. (a) The calculated Stark spectrum of
several angular states of the ro-vibrational lines including their theoretically predicted min-
imum linewidth. (b) Thermal averaged theoretical photoassociation spectrum including the
experimentally obtained minimal linewidth of 142 kHz. Note that many of the states shown
in (a) are not present because of the vanishing angular overlap with the initial thermal gas
state. (c) Measured Stark spectrum. The absolute frequency deviation of about 1MHz to the
calculated spectra is because of a reduced basis set in the calculations.
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4.2 Determination of the permanent dipole moment

Figure 4.4: High resolution molecular Stark maps of the 3Σ(5s − 35s) molecule, where the
atomic Stark effect is subtracted. (a) shows measured data and (b) shows calculations. The
frequency axis is relative to the atomic Rydberg resonance. The dashed lines are results of the
fits to the wings of the Stark fan to determine the dipole moment.

excited substates. These calculations include only the lifetime-limited linewidth of the
molecular state, but no experimental broadening or thermal effects.
Figure 4.3 (b) includes the experimentally obtained linewidth of the molecular state of
142 kHz [93] and a thermal averaging. In photoassociation the final rotational state
is determined by the initial angular momentum of the atoms before photoassociation.
A thermal distribution at 3µK defines the possible angular momenta and the Frank-
Condon overlap of the initial and final states. From this overlap the strength of the
respective resonance in the photoassociation spectrum can be calculated and is included
in Figure 4.3 (b). Many of the ro-vibrational states are not visible here as their angu-
lar momenta do not appear in the thermal gas. This photoassociation spectrum is in
remarkable agreement with the measurements (Figure 4.3 (c)) without any adjustible
parameters.

4.2 Determination of the permanent dipole moment
The permanent space-fixed dipole moment, that was calculated in chapter 1.4.2, mani-
fests itself as a linear Stark shift of the molecular line at small electric fields. In strong
electric fields the induced dipole moment exceeds the permanent dipole moment and the
linear Stark shift is covered by the dominating quadratic Stark effect, as visible from
Figure 4.2. Therefore high precision spectroscopy of the Stark effect at small electric
fields is necessary to determine the permanent dipole moment. Figure 4.4 (a) shows such
a high resolution spectrum of the molecular ground state, where the quadratic Stark ef-
fect is already subtracted as in Figure 4.3 (c). For these measurements a 4MHz wide
spectrum consisting of 101 datapoints centered at the molecular resonance followed by
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4 A polar homonuclear molecule

Figure 4.5: Permanent electric dipole moment d of the molecular 3Σ(5s − ns) ground state
as a function of the effective principal quantum number n?. The dots show the results of
the numerical calculations and the datapoints represent the experimentally obtained dipole
moments, including errorbars from the standard deviation of the fits to the experimental data.
The solid line is a (n?)−2 fit to the calculated data, indicating the scaling behavior.

a 20MHz wide spectrum of 201 datapoints at the atomic resonance was measured in
one atomic sample for every electric field. Thereby the molecular and the atomic Stark
shift could be measured simultaneously and the atomic Stark effect could be subtracted
from the molecular shift.
The origin of this continuous Stark fan can be understood quite simple. In the ex-
periments the orientation of the molecular axis is not controlled and the molecules are
created in charge-localized, randomly oriented states. The strongest and weakest Stark
effects appear for molecules aligned parallel and antiparallel to the electric field. In-
between these extrema an intermediate Stark effect emerges and a fan is visible in the
electric field in Figure 4.4. The limits of the fan are given by the Stark effects ∆EStark

of the parallel and antiparallel orientations. The gradient at | ~E| = 0V/cm of these
maximal shifts corresponds to the dipole moment as

d = h · ∂(∆EStark)
∂| ~E|

∣∣∣∣∣
| ~E|=0V/cm

. (4.2)

To determine the permanent dipole moment from the experimental data the points at
which the Rydberg signal drops to half its maximal value were found for each electric
field. A fit of a second-order polynomial to these data (dashed lines in Figure 4.4) yields
the permanent electric dipole moment as the gradient at zero electric field, following
equation (4.2). This procedere was also applied to the numerically calculated spectra
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4.2 Determination of the permanent dipole moment

(Figure 4.4 (b)) and an agreement with the calculated dipole moment was found within
the standard deviation of the fit.
In the case of the 3Σ(5s−35s) molecule, that is shown in Figure 4.4, the obtained value
of the dipole moment is 1.16(5)Debye. A similar measurement for the 3Σ(5s − 43s)
molecular state yields 0.70(5)Debye. These values are in exellent agreement with the
theoretical values of 1.17Debye and 0.75Debye, as also visible in Figure 4.5.

This measurement of a linear Stark effect at small electric fields is the first experimental
proof of a permanent space-fixed dipole moment in a homonuclear molecule. A similar
but larger dipole moment was proposed in pure high-l trilobite molecules, but these
states have not yet been observed. However, these experiments show that even the low-l
molecules feature a considerable mixing with the trilobite state that leads to the observed
permanent dipole moment. Therefore the low-l ultralong-range Rydberg molecules can
also be attributed to the class of trilobite molecules. This character is explicitly apparent
in the probability density of the Rydberg electron in Figure 1.19.
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5 Conclusion and outlook

Conclusion

The presented work consists of two parts. In one part Stark-tuned Förster resonances
between 44d states were studied using a pulsed Ramsey excitation scheme. The resolu-
tion of the Förster defect in the electric field exceeds all previous studies of this resonance
thanks to the narrow linewidth laser system. The Ramsey technique forms a novel ap-
proach to study the involved pair states by measuring the total Rydberg atom number
only. Previous approaches used technically more demanding state selective field ioniza-
tion. Besides the spectral resolution, Ramsey spectroscopy offers to obtain information
about the coherence in the system. The extension to double Ramsey experiments, where
a pulsed sequence in the interaction strength is realized, even allows following the co-
herent time evolution of the pair state system at Förster resonance. Oscillations with
the effective Rabi frequency between coupled pair states were observed and a Förster
interaction-induced phase shift of the Rydberg atoms could be measured and controlled
by the electric field.
Calculations of the resonant electric fields and of the angular dependence and strength of
the resonances form the basis to simulate the experiments using the introduced pair state
interferometer. These fully coherent many-level simulations are in very good agreement
with the observations and prove the coherent evolution of the ensemble of atoms in the
presence of interactions. An observed loss of visibility in the interference fringes of the
Ramsey experiments in the presence of strong interactions could be reproduced in the
fully coherent simulations and clearly be attributed to a dephasing within the coherent
pair state system.
A second part of this work focuses on the permanent electric dipole moment of the
ultralong-range Rydberg molecules. Usually, symmetry arguments do not allow for per-
manent dipole moments in homonuclear diatomic molecules. Here, the unusual binding
mechanism, based on electron scattering, gives rise to a body-fixed dipole moment. The
huge binding length originates in unusually long exchange times and a large rotational
constant, which are responsible that the body-fixed dipole moment also appears as a
measureable space-fixed dipole moment, effectively leading to a symmetry breaking on
the timescale of the experiments.
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5 Conclusion and outlook

In high-resolution spectroscopy of the molecular Stark effect a linear Stark shift was
measured and the permanent dipole moment was obtained, in perfect agreement to
theoretical predictions.

Outlook
Ultracold Rydberg physics is a rich field that will surely show many advances and sur-
prising results in the future. Many proposals exist, but often the technical limitations
are more restricting than the theoretical ideas. Therefore I will first discuss improve-
ments of the current experiments before I point out additional experiments that are of
interest.

Improvement of the current experiments
The presented Ramsey-like experiments at the Förster resonance are limited by several
effects. One simple point is the diabatic, sudden switching of the Förster defect by the
electric field pulse in the measurement of the phase shift (see Figure 3.14). In the case
of adiabatic switching, where the system remains in the initial state |rr〉, no population
transfer to |r′r′′〉 occurs. This would have two advantages. First of all, a large phase
shift directly at the resonant electric field of the Förster resonance, where so far no
phase shift occured because of mixing of different states, would be observable. Secondly,
the population transfer to |r′r′′〉 in the case of diabatic switching leads to a loss of
visibility. If the electric fields are adiabatically switched no atoms are transferred and a
higher visibility is measured, making it easier to observe the phase shift. This adiabatic
switching can easily be realized by ramping the electric fields close to the Förster
resonance. Care has to be taken not to adiabatically transfer the atoms at resonances
in lower fields (|pf2〉− |pf4〉 in Figure 1.15), similar to a Landau-Zener sweep. Therefore
the electric field can either be switched diabatically to about | ~E| = 0.21V/cm, above
|pf2〉, and then ramped adiabatically to the resonant field, or the excitation is already
done in a high electric field. Then the resonance can be addressed by ramping the
electric field down.

A fundamental limitation of the coherence in these experiments is the finite excitation
linewidth of 300 kHz, as nicely visible in the measurement of the maximum coherence
time of 0.5µs in chapter 3.2.2. This linewidth is generated by a magnetic field depen-
dence of the excitation transition to the Rydberg d state and possibly by electric field
inhomogeneities. Reducing this linewidth would allow to apply longer pulse sequences
and enhance for example the observed phase shift.
This can be done in several ways. While improving the electric field homogeneity is only
a technical challenge, the broadening by the magnetic field dependence of the excitation
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Figure 5.1: Resonant electric fields (blue diamonds and left axis) and zero-field Förster defects
(green crosses and right axis) for the resonances ns1/2 + (n + 1)s1/2 → np3/2 + np3/2 versus
the principal quantum number n.

to the d state cannot be avoided in a magnetic trap. One possible solution is a blue
detuned dipole trap, a so-called ’bottle beam’ trap [138]. In these blue detuned traps
the atoms are low field seekers and a local minimum in the intensity profile has to be
generated, usually by interferometric methods. While usual red detuned dipole traps do
not trap Rydberg atoms due to different polarizabilities of ground and Rydberg state,
these bottle beam traps can operate at a magic wavelength (about 430 nm for 87Rb), that
simultaneously traps ground state and Rydberg atoms [139]. In these traps the magnetic
field is a fully free parameter and the transition to the d state is not broadened by the
inhomogeneous fields.
Another possibility to avoid the magnetic field broadening in the magnetic trap is to
use an excitation to an s state, that is not magnetic field dependent (Table 1.3). Förster
resonances can also be found for s states; however, two different Rydberg s states have
to be addressed for the Förster resonance

ns1/2 + (n+ 1)s1/2 → np3/2 + np3/2 (5.1)

that is, for example, used in [24]. Figure 5.1 shows the electric fields to tune the
pair states into resonance and the Förster defect at | ~E| = 0V/cm versus the principal
quantum number. These pair states cannot be Stark-tuned into resonance for n > 37.
However, the resonant electric fields are magnetic field dependent (see Chapter 1.3.3)
because of the Zeeman shifts between the s and the p states. The differential Zeeman
shift of the pair states is 2µBB for the resonance including the stretched states. Hence
a broadening of the Förster resonance on the order of 100 kHz, similar to the magnetic
field dependent transition to the d states, is expected in the magnetic trap that reduces
coherence times at resonance.
But this resonance shows another advantage. The initially excited s states split twofold
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in the magnetic field, but both Zeeman states show the same Stark effect. In contrast
to d states (Figure 3.3) no crossings of single-atom states appear in a combined electric
and magnetic field that lead to dephasing. Therefore the experimentally accessible
magnetic field range is broader.

One striking advantage of the performed Ramsey experiments with switched interactions
is that the interaction strength during the delay time is not limited by the excitation
linewidth. In single pulse Rydberg experiments the interaction strength between two
atoms cannot exceed the laser linewidth or the Rabi frequency, whatever is bigger,
because of the blockade effect. But if the interaction strength is increased after excitation
this limitation can be avoided, as in the experiments presented here. Of course this
depends on the range over which the interaction strength can be tuned. Best results
can be obtained if the system shows a very large Förster defect (small interactions) in
zero field, that can be tuned to resonance in a finite field. The resonance 2× 44d5/2 →
42f+ 46p3/2 used in this work shows ∆ = 63MHz Förster defect. This can be increased
to 300MHz at 50d5/2 [79]. Using the resonance in equation (5.1) the Förster defect can
exceed 1000MHz (cp. Figure 5.1). This would reduce the interaction during excitation
and support the tunability of the interaction and the coherent control.
A disadvantage of the resonance in equation (5.1) is a rather strong electric field to
tune the pair states into resonance. This imposes bigger demands onto the electric field
stability. Furthermore, these experiments are technically considerably more difficult as
the excitation of two Rydberg states requires two laser systems for the upper Rydberg
transition of about 480 nm.

Rydberg correlation function and interaction strength
An interesting situation occurs if the ensemble is driven into a steady state situation.
Under certain parameters the ground state of the system is expected to form a crystalline
structure [125, 140, 141] of the Rydberg excitation and shows a quantum phase transi-
tion. This is reached by adiabatically ramping the Rabi frequency and the detuning of
the excitation lasers from the ground state of all atoms to the ground state of the system
in the presence of the Rydberg excitation. Coherent control of the strongly interacting
system, as shown in this thesis, is a fundamental requirement for these proposals.
Non-adiabatic switching of the excitation lasers would not create a perfect crystalline
structure. Nevertheless it could lead to a locally ordered state, showing a structured Ryd-
berg correlation function, if the system is driven into full blockade where the Rydberg-
Rydberg distance is given by the blockade radius. This can be experimentally difficult
due to limited Rabi frequencies or, as in the experimental setup here, because a too high
Rydberg atom number saturates the detector.
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However, also the detection of the structured Rydberg distribution is challenging. One
possibility might be offered by the presented Ramsey experiments. In this crystalline
structure the dephasing due to the inhomogeneous distribution of Rydberg atoms, that
creates a band of interaction strengths, is reduced [135]. Especially in the case of short-
range van der Waals interactions, where next neighbor interactions are dominant, a
fully crystalline or at least locally correlated Rydberg distribution would result in a
narrow distribution in the interaction strength. The coupling strength in these systems
would cause oscillations with the effective Rabi frequency in the presented double Ram-
sey experiments at small Förster defects. Single pulse experiments (chapter 3.2.4) at
Förster resonance would possibly show direct Rabi oscillations between the involved pair
states. Both approaches would be a direct measure of the interaction strength, that was
calculated in chapter 1.3.5, and at the same time a measure of the Rydberg-Rydberg
correlation function, possibly showing a hint to the crystalline structure.
In order to measure the interaction strength this crystalline structure could also be
artificially generated, if a high optical resolution below the scale of the blockade radius
allows exciting spatially resolved single Rydberg atoms.
However, the measurement of the interaction strength would necessitate a very pro-
nounced Rydberg correlation function. To measure the coupling strength by pair state
oscillations the coupling strength has to be at least on the order of the Förster de-
fect. This is also the border between van der Waals and long-range dipole-dipole in-
teraction, where next-next neighbors might contribute and it makes the interaction
strength more sensitive to inhomogeneities in the possible crystal. Also, the 1/r3- or
even 1/r6-dependence of the interaction strength at resonance is very sensitive to even
small variations in the Rydberg-Rydberg distance, leading to a damping of Rabi oscil-
lations between the pair states. Therefore especially the experiments at resonance seem
challenging, but there might be a range of small Förster defects that allow measuring
the interaction strength and getting information about the correlation length in the
oscillations between pair states.

Angular interaction dependence
Besides the interaction strength also the angular dependence of the interaction at a
Förster resonance is of interest. The different Förster resonances show different angular
dependencies because of couplings between oscillating dipole moments of different po-
larization. This dependency can be measured by rotating the electric field in a sample of
reduced dimensionality. Angular dependent interaction strengths would show as angular
dependent excitation numbers due to the blockade effect. In [142] this angular depen-
dence was measured in an almost one-dimensional excitation volume at a Stark-tuned
Förster resonance. In this experiment several states contributed to the observed angu-
lar dependence. Making use of the high resolution in the Förster defect as presented in
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this thesis, it should be possible to resolve the different angular dependencies of several
resonances, as shown in Figure 1.12.
Another, more indirect way to measure the angular dependence could be using rotary
echo or Ramsey-like experiments in the interaction strength. By switching the electric
field from one resonance to another resonance, showing a different angular dependence,
revivals in the coherence could be observed. These revivals would depend on the dif-
ferences in the angular dependence and the strength of the interaction between the
resonances.

Rydberg dressing
Another topic that gained much research interest in the last years is Rydberg dressing
[143, 144]. The idea is the following: Off-resonant excitation of a Bose-Einstein con-
densate on the ms-timescale to an interacting Rydberg state admixes a small fraction
of Rydberg excitation to the ground state atoms. Due to the detuning this fraction is
small to ensure long enough lifetimes of the dressed states, but it still induces interaction
between the trapped atoms. This may lead to a large variety of effects like modified
ground state trapping potentials [145], crystalline phases [146], solitons [147] and rotons
[148].
Rydberg dressing is a prototype case for a situation, where the possibilities are clearly
limited by experimental constraints and not by theoretical ideas. Especially limited Rabi
frequencies and insufficient control over density, stability and purity of Bose-Einstein
condensates precluded a conclusive experimental observation so far.
However, experimentally Rydberg dressing might benefit from Förster resonances. The
possible tuning of the strength, the sign and the angular dependence of the interaction
at resonance can offer an important tool to indicate the effects of Rydberg dressing and
to differentiate between dressing and thermal effects. This would possibly also offer to
measure the angular dependence of the interaction.

Energy transport processes
Energy transport processes received much attention since the experimental observa-
tion of quantum coherence in photosynthetic complexes [32, 33]. Energy transport in
these quantum aggregates is driven by non-radiativ coupling of degenerate dipole transi-
tions, so called Förster resonance energy transfer (FRET). These processes can possibly
be simulated using ultracold atoms and Förster resonances between Rydberg atoms.
The molecular aggregates strongly couple to the environment causing dephasing, which
complicates the theoretical description and understanding. Contrary, ultracold atoms
usually hardly couple to the environment, but such a dephasing can be induced by ex-
ternal fields. This allows adding controlled dephasing mechanisms to study influences
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Figure 5.2: Sketch of the initial Rydberg atom distribution in the linear chain. The spatially
resolvable excitation laser is indicated.

of different couplings and to test theoretical treatments in detail.
Before simulating complex quantum aggregates including dephasing, e.g. the FMO
complex in photosynthesis [34], energy transfer in linear chains would be the first goal
[29, 37, 149]. Therefore a linear chain of Rydberg atoms, for example in s states, has
to be prepared with single Rydberg atoms as impurities in a p state (Figure 5.2). This
can either happen by a chain of atomic traps in an optical lattice or micro-lens array,
each holding one Rydberg excitation, or by spatially resolved excitation of the Rydberg
chain in an experiment offering optical resolution below the blockade radius. Since the
s and p state atoms non-radiatively couple the impurity will delocalize over the chain
to form an exciton. The exciton dynamics can then be studied in the presence of an
energy gradient along the chain or in the presence of noise.
Excitation of the p state demands an additional microwave field that couples the p state
to the s state. As microwave fields do not offer spatial resolution, this resolution in the
excitation of single p state Rydberg atoms has to be realized by electric field gradients
or direct three photon excitation, where the optical transitions are spatially resolved as
shown in Figure 5.2. A possible spatially resolved detection scheme relies on a Raman
transition to a considerably different Rydberg state and state selective field ionization.
In order to understand more complex quantum aggregates the role of dephasing and
noise due to the coupling to the environment must be studied. In an ultracold atom
system this dephasing can be induced by electric field noise and inhomogeneities. If
Stark-tuned Förster resonances are used even spatially different coupling strengths can
be realized by spatial control of electric fields.

Single photon source

Another recent development are single photon sources based on Rydberg excitation
in ultracold atoms [56], following a similar proposal from Saffman and Walker [54].
Single photon sources are an important building block for quantum communication and
cryptography applications. In [56], the atoms were spatially confined in a 1D optical
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lattice loaded from an optical molasses to a size smaller than the blockade sphere.
The single photon source is realized by a four-wave mixing process including a high-
lying Rydberg state. A two-photon excitation (795 nm and 475 nm) generates a single
collective Rydberg excitation, also described by a spin wave, in the sample. Several
excitations are impossible due to the Rydberg blockade. After a storage time another
laser pulse at 475 nm, forming a read-out pulse, converts the spin wave into an emitted
phase-matched photon at 795 nm to fulfill the four-wave mixing process. As Rydberg
blockade allows only a single Rydberg excitation in the spatially confined ensemble, only
a single photon is emitted, realizing a single photon source.
This idea can be expanded to ensembles bigger than the blockade sphere, as proposed
in [55]. Multiple Rydberg excitations are not prevented, but instead the collective
Rydberg state is dephased due to interactions during the storage time in the case of
more than one Rydberg excitation. This dephasing suppresses the four-wave mixing
process by destructive interference of distinct atom pair contributions and no phase-
matched photons are generated. Only in the case of a single Rydberg excitation no
interactions arise and the system does not dephase, resulting in the generation of a
single photon.
The necessary interactions can be induced by coupling additional states with microwaves,
as proposed in [55], or with Stark-tuned Förster resonances, exactly as it is done in chap-
ter 3.2.2. The decoherence that is used in the proposed single photon source is visible
as a loss of visibility in the Ramsey experiments at the Förster resonance. The realized
interaction-induced coherence time of 0.7µs at resonance is within the experimental
storage times reported in [56].
In the experiments in this work always a great number of Rydberg excitations were
generated in the cloud and the distances between the excitations were therefore small.
This enhances the interaction and the dephasing, but for the single photon source even
two excitations at the largest possible distance in the cloud have to dephase. It can
only be realized if the interaction between all possible distributions of two excitations
in the sample is strong enough to dephase the collective states during the storage time.
This increases the dephasing times and puts some limits on the size of the sample.
The experimental setup here produces thermal clouds of about 80µm length, which
corresponds to the parameters used in [55]. This reduces the interaction to some kHz
at the Förster resonance used in this work and necessitates long storage times of several
tens of µs that are challenging to realize. But for example in experiments offering
spatial resolution of the exciting lasers the interaction volume can easily be reduced and
this proposed single photon source using Rydberg interaction induced dephasing seems
realistic.
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Figure 5.3: Stark spectra in the vicinity of the 35s state (a) and the 43s state (b). The
manifold states cross with the s states in strong fields. The plotted trilobite line (dashed line)
is only a rough indicator and no result of calculations.

Ultralong-range Rydberg molecules
Ultralong-range Rydberg molecules showed surprising properties in many fields and
there are more to expect. Recent work indicates that the magnetic field dependence
can be described as a coupled three spin system [150]. The Rydberg electron (spin 1/2)
couples to the bound ground state atom in the s state including electron and nuclear
spin. This leads to more splittings in the magnetic field compared to the atomic state
and is studied by high-resolution spectroscopy in varying magnetic fields.
Another interesting molecular state arises from a Rydberg atom in a high-l state. The
molecular bound states between one high-l Rydberg atom and one ground state atom,
called trilobite states, show binding energies of about 15GHz for n = 32. Their perma-
nent dipole moments are on the order of 1000Debye, three orders of magnitude larger
than the observed dipole moments in this work. As no direct two-photon excitation to
high-l states is possible additional microwave fields are necessary for photoassociation
at zero electric field.
In strong electric fields direct two-photon excitation is possible due to a mixing of
several states. For example, the 35s state forms avoided crossings with the n = 32
manifold at about 15V/cm, visible in Figure 5.3 (a). At slightly smaller fields of about
11V/cm the molecular trilobite states have about 5-10% contribution of the atomic s
state, enabling direct two-photon photoassociation of the trilobites. The molecules have
binding energies of 1.5GHz in that field (indicated by the dashed line in Figure 5.3)
and can spectroscopically be found on the order of 1GHz blue detuned to the atomic
s state resonance [151]. For higher principal quantum numbers the excitation might be
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possible at smaller electric fields. The level spacing scales with 1/n3 and the necessary
mixing between manifold and the s state occurs at smaller electric fields, for example
for the 43s state at 5.5V/cm 5.3 (b).
Despite the fact that this offers direct photoassociation the experimental challenge would
be to find the photoassociation line of the molecules in a spectrum at GHz detuning to
the atomic reference line. Furthermore, due to the large permanent dipole moment the
trilobite line is very sensitive to electric fields. On the short timescales of the experiment
the molecules are directly excited in charge localized but randomly oriented states, giving
rise to a fan-like broadening of the excitation line similar to the observation in Figure
4.4.

122



REFERENCES

References

[1] C. N. Cohen-Tannoudji and W. D. Phillips, New Mechanisms for Laser Cooling,
Physics Today, 43, 33 (1990).

[2] Nobelprize.org, The Nobel Prize in Physics 1997, http://www.nobelprize.org.

[3] Nobelprize.org, The Nobel Prize in Physics 2001, http://www.nobelprize.org.

[4] M. Kasevich, E. Riis, S. Chu and R. DeVoe, rf spectroscopy in an atomic fountain,
Physical Review Letters, 63, 612–615 (1989).

[5] G. K. Campbell and W. D. Phillips, Ultracold atoms and precise time standards,
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 369, 4078–4089 (2011).

[6] V. Giovannetti, S. Lloyd and L. Maccone, Advances in quantum metrology, Nature
Photonics, 5, 222–229 (2011).

[7] S. Dimopoulos, P. Graham, J. Hogan and M. Kasevich, Testing General Relativity
with Atom Interferometry, Physical Review Letters, 98 (2007).

[8] R. P. Feynman, Simulating physics with computers, International Journal of The-
oretical Physics, 21, 467–488 (1982).

[9] I. Buluta and F. Nori, Quantum Simulators, Science, 326, 108–111 (2009).

[10] I. Bloch, J. Dalibard and S. Nascimbène, Quantum simulations with ultracold
quantum gases, Nature Physics, 8, 267–276 (2012).

[11] J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss and M. Greiner, Quantum
simulation of antiferromagnetic spin chains in an optical lattice, Nature, 472,
307–312 (2011).

[12] L. D. Carr, D. DeMille, R. V. Krems and J. Ye, Cold and ultracold molecules:
science, technology and applications, New Journal of Physics, 11, 055049 (2009).

[13] H. Weimer, M. Müller, I. Lesanovsky, P. Zoller and H. P. Büchler, A Rydberg
quantum simulator, Nature Physics, 6, 382–388 (2010).

[14] T. F. Gallagher, Rydberg atoms, Cambridge University Press, Cambridge, 1 edition
(1994).

[15] J. M. Raimond, G. Vitrant and S. Haroche, Spectral line broadening due to the
interaction between very excited atoms: ’the dense Rydberg gas’, Journal of Physics
B: Atomic and Molecular Physics, 14, L655–L660 (1981).

[16] K. Safinya, J. Delpech, F. Gounand, W. Sandner and T. Gallagher, Resonant
Rydberg-Atom-Rydberg-Atom Collisions, Physical Review Letters, 47, 405–408

123



REFERENCES

(1981).

[17] R. Kachru, N. Tran and T. Gallagher, Microwave-Assisted Resonant Collisional
Energy Transfer in Na Rydberg States, Physical Review Letters, 49, 191–194
(1982).

[18] S. Westermann, T. Amthor, A. L. d. Oliveira, J. Deiglmayr, M. Reetz-Lamour
and M. Weidemüller, Dynamics of resonant energy transfer in a cold Rydberg gas,
The European Physical Journal D, 40, 37–43 (2006).

[19] R. Zanon, K. Magalhães, A. d. Oliveira and L. Marcassa, Time-resolved study of
energy-transfer collisions in a sample of cold rubidium atoms, Physical Review A,
65 (2002).

[20] T. Vogt, M. Viteau, J. Zhao, A. Chotia, D. Comparat and P. Pillet, Dipole Block-
ade at Förster Resonances in High Resolution Laser Excitation of Rydberg States
of Cesium Atoms, Physical Review Letters, 97, 083003 (2006).

[21] K. Afrousheh, P. Bohlouli-Zanjani, D. Vagale, A. Mugford, M. Fedorov and J. Mar-
tin, Spectroscopic Observation of Resonant Electric Dipole-Dipole Interactions be-
tween Cold Rydberg Atoms, Physical Review Letters, 93, 233001 (2004).

[22] I. Mourachko, W. Li and T. Gallagher, Controlled many-body interactions in a
frozen Rydberg gas, Physical Review A, 70, 031401 (2004).

[23] A. Reinhard, K. Younge, T. Liebisch, B. Knuffman, P. Berman and G. Raithel,
Double-Resonance Spectroscopy of Interacting Rydberg-Atom Systems, Physical
Review Letters, 100, 233201 (2008).

[24] I. I. Ryabtsev, D. B. Tretyakov, I. I. Beterov and V. M. Entin, Observation of the
Stark-Tuned Förster Resonance between Two Rydberg Atoms, Physical Review
Letters, 104, 073003 (2010).

[25] A. Tauschinsky, C. van Ditzhuijzen, L. Noordam and H. van den Heuvell, Radio-
frequency-driven dipole-dipole interactions in spatially separated volumes, Physical
Review A, 78, 063409 (2008).

[26] M. Reetz-Lamour, T. Amthor, J. Deiglmayr and M. Weidemüller, Rabi Oscilla-
tions and Excitation Trapping in the Coherent Excitation of a Mesoscopic Frozen
Rydberg Gas, Physical Review Letters, 100, 253001 (2008).

[27] U. Raitzsch, V. Bendkowsky, R. Heidemann, B. Butscher, R. Löw and T. Pfau,
Echo Experiments in a Strongly Interacting Rydberg Gas, Physical Review Letters,
100, 013002 (2008).

[28] W. Anderson, M. Robinson, J. Martin and T. Gallagher, Dephasing of resonant
energy transfer in a cold Rydberg gas, Physical Review A, 65, 063404 (2002).

124



REFERENCES

[29] R. Côté, A. Russell, E. E. Eyler and P. L. Gould, Quantum random walk with
Rydberg atoms in an optical lattice, New Journal of Physics, 8, 156 (2006).

[30] T. Förster, Zwischenmolekulare Energiewanderung und Fluoreszenz, Annalen der
Physik, 437, 55–75 (1948).

[31] T. G. Walker and M. Saffman, Zeros of Rydberg–Rydberg Föster interactions,
Journal of Physics B: Atomic, Molecular and Optical Physics, 38, S309–S319
(2005).

[32] G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E.
Blankenship and G. R. Fleming, Evidence for wavelike energy transfer through
quantum coherence in photosynthetic systems, Nature, 446, 782–786 (2007).

[33] G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Wen,
R. E. Blankenship and G. S. Engel, Long-lived quantum coherence in photo-
synthetic complexes at physiological temperature, Proceedings of the National
Academy of Sciences, 107, 12766–12770 (2010).

[34] M. B. Plenio and S. F. Huelga, Dephasing-assisted transport: quantum networks
and biomolecules, New Journal of Physics, 10, 113019 (2008).

[35] C. Olbrich, T. L. C. Jansen, J. Liebers, M. Aghtar, J. Strümpfer, K. Schulten,
J. Knoester and U. Kleinekathöfer, From Atomistic Modeling to Excitation Trans-
fer and Two-Dimensional Spectra of the FMO Light-Harvesting Complex, The
Journal of Physical Chemistry B, 115, 8609–8621 (2011).

[36] O. Mülken, A. Blumen, T. Amthor, C. Giese, M. Reetz-Lamour and M. Wei-
demüller, Survival Probabilities in Coherent Exciton Transfer with Trapping, Phys-
ical Review Letters, 99, 090601 (2007).

[37] S. Möbius, S. Wüster, C. Ates, A. Eisfeld and J. M. Rost, Adiabatic entanglement
transport in Rydberg aggregates, Journal of Physics B: Atomic, Molecular and
Optical Physics, 44, 184011 (2011).

[38] R. Blatt and D. Wineland, Entangled states of trapped atomic ions, Nature, 453,
1008–1015 (2008).

[39] M. Saffman, T. Walker and K. Mølmer, Quantum information with Rydberg atoms,
Reviews of Modern Physics, 82, 2313–2363 (2010).

[40] D. Jaksch, J. I. Cirac, P. Zoller, R. Côté and M. D. Lukin, Fast Quantum Gates
for Neutral Atoms, Physical Review Letters, 85, 2208–2211 (2000).

[41] M. D. Lukin, M. Fleischhauer and R. Cote, Dipole Blockade and Quantum Infor-
mation Processing in Mesoscopic Atomic Ensembles, Physical Review Letters, 87,
037901 (2001).

125



REFERENCES

[42] A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat,
P. Pillet, A. Browaeys and P. Grangier, Observation of collective excitation of
two individual atoms in the Rydberg blockade regime, Nature Physics, 5, 115–118
(2009).

[43] E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker and
M. Saffman, Observation of Rydberg blockade between two atoms, Nature Physics,
5, 110–114 (2009).

[44] L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson,
T. G. Walker and M. Saffman, Demonstration of a Neutral Atom Controlled-NOT
Quantum Gate, Physical Review Letters, 104 (2010).

[45] S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. d. Miranda, B. Neyenhuis,
G. Quemener, P. S. Julienne, J. L. Bohn, D. S. Jin and J. Ye, Quantum-State
Controlled Chemical Reactions of Ultracold Potassium-Rubidium Molecules, Sci-
ence, 327, 853–857 (2010).

[46] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin,
J. Hecker Denschlag and R. Grimm, Bose-Einstein Condensation of Molecules,
Science, 302, 2101–2103 (2003).

[47] M. Zwierlein, C. Stan, C. Schunck, S. Raupach, S. Gupta, Z. Hadzibabic and
W. Ketterle, Observation of Bose-Einstein Condensation of Molecules, Physical
Review Letters, 91, 250401 (2003).

[48] T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B. Engeser, A. D.
Lange, K. Pilch, A. Jaakkola, H.-C. Nägerl and R. Grimm, Evidence for Efimov
quantum states in an ultracold gas of caesium atoms, Nature, 440, 315–318 (2006).

[49] V. Bendkowsky, B. Butscher, J. Nipper, J. P. Shaffer, R. Löw and T. Pfau, Ob-
servation of ultralong-range Rydberg molecules, Nature, 458, 1005–1008 (2009).

[50] W. Li, T. Pohl, J. M. Rost, S. T. Rittenhouse, H. R. Sadeghpour, J. Nipper,
B. Butscher, J. B. Balewski, V. Bendkowsky, R. Low and T. Pfau, A Homonu-
clear Molecule with a Permanent Electric Dipole Moment, Science, 334, 1110–1114
(2011).

[51] T. Ritz, A. Damjanovic and K. Schulten, The Quantum Physics of Photosynthesis,
Chem. Phys. Chem., 3, 243–248 (2002).

[52] C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution
and coin tossing, Theoretical Computer Science (2011).

[53] M. D. Eisaman, J. Fan, A. Migdall and S. V. Polyakov, Invited Review Article:
Single-photon sources and detectors, Review of Scientific Instruments, 82, 071101

126



REFERENCES

(2011).

[54] M. Saffman and T. Walker, Creating single-atom and single-photon sources from
entangled atomic ensembles, Physical Review A, 66, 065403 (2002).

[55] F. Bariani, Y. Dudin, T. Kennedy and A. Kuzmich, Dephasing of Multiparticle
Rydberg Excitations for Fast Entanglement Generation, Physical Review Letters,
108, 030501 (2012).

[56] Y. O. Dudin and A. Kuzmich, Strongly Interacting Rydberg Excitations of a Cold
Atomic Gas, Science (2012).

[57] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe and J. L. O’Brien,
Quantum computers, Nature, 464, 45–53 (2010).

[58] D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots, Physical
Review A, 57, 120–126 (1998).

[59] A. Fioretti, D. Comparat, A. Crubellier, O. Dulieu, F. Masnou-Seeuws and P. Pil-
let, Formation of Cold Cs2 Molecules through Photoassociation, Physical Review
Letters, 80, 4402–4405 (1998).

[60] S. D. Hogan and F. Merkt, A New Perspective on the Binding Power of an Elec-
tron, ChemPhysChem, 10, 2931–2934 (2009).

[61] C. Foot, Atomic physics, Oxford University Press, Oxford (2003).

[62] J. J. Sakurai, Modern quantum mechanics, Addison-Wesley Longman, Reading,
rev. edition (2010).

[63] L. Allen and J. H. Eberly, Optical resonance and two-level atoms, Dover, New
York (1987).

[64] F. Bloch, Nuclear Induction, Physical Review, 70, 460–474 (1946).

[65] J.J. Balmer, Notiz über die Spectrallinien des Wasserstoffs, Annalen der Physik,
261, 80–87 (1885).

[66] N. Bohr, On the Constitution of Atoms and Molecules: Part I, Philosophical Mag-
azine, 26, 1–25 (1913).

[67] J. Millen, G. Lochead, G. R. Corbett, R. M. Potvliege and M. P. A. Jones, Spec-
troscopy of a cold strontium Rydberg gas, Journal of Physics B: Atomic, Molecular
and Optical Physics, 44, 184001 (2011).

[68] M. J. Seaton, Quantum defect theory, Reports on Progress in Physics, 46, 167–257
(1983).

[69] W. Li, I. Mourachko, M. Noel and T. Gallagher, Millimeter-wave spectroscopy of
cold Rb Rydberg atoms in a magneto-optical trap: Quantum defects of the ns, np,

127



REFERENCES

and nd series, Physical Review A, 67, 052502 (2003).

[70] J. Han, Y. Jamil, D. Norum, P. Tanner and T. Gallagher, Rb nf quantum defects
from millimeter-wave spectroscopy of cold 85Rb Rydberg atoms, Physical Review
A, 74, 054502 (2006).

[71] K. Afrousheh, P. Bohlouli-Zanjani, J. Petrus and J. Martin, Determination of the
85Rb ng-series quantum defect by electric-field-induced resonant energy transfer
between cold Rydberg atoms, Physical Review A, 74, 062712 (2006).

[72] M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen, D. Cano and
J. Fortágh, Measurement of absolute transition frequencies of 87Rb to nS and nD
Rydberg states by means of electromagnetically induced transparency, Physical Re-
view A, 83, 052515 (2011).

[73] B. Butscher, A Rydberg Interferometer: From coherent formation of ultralong-
range Rydberg molecules to state tomography of Rydberg atoms, Ph.D. thesis, Uni-
versität Stuttgart, Stuttgart (2011).

[74] M. L. Zimmerman, M. G. Littman, M. M. Kash and D. Kleppner, Stark structure
of the Rydberg states of alkali-metal atoms, Physical Review A, 20, 2251–2275
(1979).

[75] J. M. Blatt, Practical points concerning the solution of the Schrödinger equation,
Journal of Computational Physics, 1, 382–396 (1967).

[76] M. O’Sullivan and B. Stoicheff, Scalar polarizabilities and avoided crossings of high
Rydberg states in Rb, Physical Review A, 31, 2718–2720 (1985).

[77] M. O’Sullivan and B. Stoicheff, Scalar and tensor polarizabilities of 2D Rydberg
states in Rb, Physical Review A, 33, 1640–1645 (1986).

[78] Daniel A. Steck, Rubidium 87 d line data, http://steck.us/alkalidata/ (2010).

[79] A. Reinhard, T. Liebisch, B. Knuffman and G. Raithel, Level shifts of rubidium
Rydberg states due to binary interactions, Physical Review A, 75, 032712 (2007).

[80] M. R. Flannery, D. Vrinceanu and V. N. Ostrovsky, Long-range interaction between
polar Rydberg atoms, Journal of Physics B: Atomic, Molecular and Optical Physics,
38, S279–S293 (2005).

[81] T. Vogt, M. Viteau, A. Chotia, J. Zhao, D. Comparat and P. Pillet, Electric-Field
Induced Dipole Blockade with Rydberg Atoms, Physical Review Letters, 99, 073002
(2007).

[82] P. Bohlouli-Zanjani, J. Petrus and J. Martin, Enhancement of Rydberg Atom In-
teractions Using ac Stark Shifts, Physical Review Letters, 98, 203005 (2007).

128



REFERENCES

[83] D. Comparat and P. Pillet, Dipole blockade in a cold Rydberg atomic sample [In-
vited], Journal of the Optical Society of America B, 27, A208–A232 (2010).

[84] J. D. Jackson, Classical electrodynamics, Wiley, New York, 3 edition (1999).

[85] F. Robicheaux and J. Hernández, Many-body wave function in a dipole blockade
configuration, Physical Review A, 72, 063403 (2005).

[86] D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Côté, E. E.
Eyler and P. L. Gould, Local Blockade of Rydberg Excitation in an Ultracold Gas,
Physical Review Letters, 93, 063001 (2004).

[87] S. Chandrasekhar, Stochastic Problems in Physics and Astronomy, Reviews of
Modern Physics, 15, 1–89 (1943).

[88] V. Vuletic, Quantum networks: When superatoms talk photons, Nature Physics,
2, 801–802 (2006).

[89] R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher, R. Löw, L. Santos
and T. Pfau, Evidence for Coherent Collective Rydberg Excitation in the Strong
Blockade Regime, Physical Review Letters, 99, 163601 (2007).

[90] T. Pohl and P. Berman, Breaking the Dipole Blockade: Nearly Resonant Dipole
Interactions in Few-Atom Systems, Physical Review Letters, 102, 013004 (2009).

[91] C. Greene, A. Dickinson and H. Sadeghpour, Creation of Polar and Nonpolar
Ultra-Long-Range Rydberg Molecules, Physical Review Letters, 85, 2458–2461
(2000).

[92] V. Bendkowsky, B. Butscher, J. Nipper, J. Balewski, J. Shaffer, R. Löw, T. Pfau,
W. Li, J. Stanojevic, T. Pohl and J. Rost, Rydberg Trimers and Excited Dimers
Bound by Internal Quantum Reflection, Physical Review Letters, 105, 163201
(2010).

[93] B. Butscher, J. Nipper, J. B. Balewski, L. Kukota, V. Bendkowsky, R. Löw and
T. Pfau, Atom–molecule coherence for ultralong-range Rydberg dimers, Nature
Physics, 6, 970–974 (2010).

[94] B. Butscher, V. Bendkowsky, J. Nipper, J. B. Balewski, L. Kukota, R. Löw,
T. Pfau, W. Li, T. Pohl and J. M. Rost, Lifetimes of ultralong-range Rydberg
molecules in vibrational ground and excited states, Journal of Physics B: Atomic,
Molecular and Optical Physics, 44, 184004 (2011).

[95] E. Fermi, Sopra lo Spostamento per Pressione delle Righe Elevate delle Serie Spet-
trali, Il Nuovo Cimento, 11, 157–166 (1934).

[96] A. Omont, On the theory of collisions of atoms in rydberg states with neutral
particles, Journal de Physique, 38, 1343–1359 (1977).

129



REFERENCES

[97] T. F. O’Malley, L. Spruch and L. Rosenberg, Modification of Effective-Range The-
ory in the Presence of a Long-Range (r−4) Potential, Journal of Mathematical
Physics, 2, 491 (1961).

[98] C. Bahrim and U. Thumm, Low-lying 3Po and 3Se states of Rb−, Cs−, and Fr−,
Physical Review A, 61, 022722 (2000).

[99] A. Khuskivadze, M. Chibisov and I. Fabrikant, Adiabatic energy levels and electric
dipole moments of Rydberg states of Rb2 and Cs2 dimers, Physical Review A, 66,
042709 (2002).

[100] I. I. Fabrikant, Interaction of Rydberg atoms and thermal electrons with K, Rb and
Cs atoms, Journal of Physics B: Atomic and Molecular Physics, 19, 1527–1540
(1986).

[101] V. Bendkowsky, Ultralong-range Rydberg molecules: Investigation of a novel bind-
ing, Ph.D. thesis, Universität Stuttgart, Stuttgart (2010).

[102] E. L. Hamilton, C. H. Greene and H. R. Sadeghpour, Shape-resonance-induced
long-range molecular Rydberg states, Journal of Physics B: Atomic, Molecular and
Optical Physics, 35, L199–L206 (2002).

[103] J. G. Danzl, E. Haller, M. Gustavsson, M. J. Mark, R. Hart, N. Bouloufa,
O. Dulieu, H. Ritsch and H.-C. Nagerl, Quantum Gas of Deeply Bound Ground
State Molecules, Science, 321, 1062–1066 (2008).

[104] W. Klemperer, K. K. Lehmann, J. K. G. Watson and S. C. Wofsy, Can molecules
have permanent electric dipole moments?, The Journal of Physical Chemistry, 97,
2413–2416 (1993).

[105] H. W. Kroto, Molecular rotation spectra, Dover Publications, Mineola and N.Y
(2003).

[106] W. Demtröder,Molekülphysik: Theoretische Grundlagen und experimentelle Meth-
oden, Oldenbourg, München (2003).

[107] K.-K. Ni, S. Ospelkaus, M. H. G. d. Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel,
S. Kotochigova, P. S. Julienne, D. S. Jin and J. Ye, A High Phase-Space-Density
Gas of Polar Molecules, Science, 322, 231–235 (2008).

[108] J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange,
O. Dulieu, R. Wester and M. Weidemüller, Formation of Ultracold Polar Molecules
in the Rovibrational Ground State, Physical Review Letters, 101, 133004 (2008).

[109] M. S. Schoffler, J. Titze, N. Petridis, T. Jahnke, K. Cole, L. P. H. Schmidt, A. Cza-
sch, D. Akoury, O. Jagutzki, J. B. Williams, N. A. Cherepkov, S. K. Semenov,
C. W. McCurdy, T. N. Rescigno, C. L. Cocke, T. Osipov, S. Lee, M. H. Prior,

130



REFERENCES

A. Belkacem, A. L. Landers, H. Schmidt-Bocking, T. Weber and R. Dorner, Ul-
trafast Probing of Core Hole Localization in N2, Science, 320, 920–923 (2008).

[110] R. Löw, A versatile setup for experiments with Rubidium Bose Einstein conden-
sates: From optical lattices to Rydberg matter, Ph.D. thesis, Universität Stuttgart,
Stuttgart (2006).

[111] R. Heidemann, Rydberg excitation of Bose-Einstein condensates, coherent collec-
tive dynamics, Ph.D. thesis, Universität Stuttgart, Stuttgart (2008).

[112] Ulrich Raitzsch, Aufbau einer UHV-Kammer zur Durchführung von Experi-
menten mit Bose-Einstein-Kondensaten in optischen Gittern: Diploma, Univer-
sität Stuttgart, Stuttgart (2006).

[113] W. Phillips and H. Metcalf, Laser Deceleration of an Atomic Beam, Physical
Review Letters, 48, 596–599 (1982).

[114] T. Walker, D. Sesko and C. Wieman, Collective behavior of optically trapped neu-
tral atoms, Physical Review Letters, 64, 408–411 (1990).

[115] W. Ketterle, K. Davis, M. Joffe, A. Martin and D. Pritchard, High densities of
cold atoms in a dark spontaneous-force optical trap, Physical Review Letters, 70,
2253–2256 (1993).

[116] M. Anderson, W. Petrich, J. Ensher and E. Cornell, Reduction of light-assisted
collisional loss rate from a low-pressure vapor-cell trap, Physical Review A, 50,
R3597–R3600 (1994).

[117] D. Boiron, A. Michaud, P. Lemonde, Y. Castin, C. Salomon, S. Weyers, K. Szy-
maniec, L. Cognet and A. Clairon, Laser cooling of cesium atoms in gray optical
molasses down to 1.1 muK, Physical Review A, 53, R3734–R3737 (1996).

[118] M.-O. Mewes, M. Andrews, N. van Druten, D. Kurn, D. Durfee and W. Ketterle,
Bose-Einstein Condensation in a Tightly Confining dc Magnetic Trap, Physical
Review Letters, 77, 416–419 (1996).

[119] W. Ketterle, D. Durfee and D. Stamper-Kurn, Making, probing and understanding
Bose-Einstein condensates, arxiv, 9904034v2 (1999).

[120] C. Zener, Non-Adiabatic Crossing of Energy Levels, Proceedings of the Royal So-
ciety A: Mathematical, Physical and Engineering Sciences, 137, 696–702 (1932).

[121] U. Krohn, Universal scaling and coherence properties of an ultracold Rydberg gas,
Ph.D. thesis, Universität Stuttgart, Stuttgart (2011).

[122] J. Balewski, Hochauflösende Photoassoziationsspektroskopie von Rydberg-Dimeren
und Trimeren: Diplomarbeit, Universität Stuttgart, Stuttgart (2009).

131



REFERENCES

[123] R. Löw, H. Weimer, J. Nipper, J. B. Balewski, B. Butscher, H. P. Büchler and
T. Pfau, An experimental and theoretical guide to strongly interacting Rydberg
gases, Journal of Physics B: Atomic, Molecular and Optical Physics, 45, 113001
(2012).

[124] D. P. DiVincenzo, Quantum Computation, Science, 270, 255–261 (1995).

[125] H. Weimer, R. Löw, T. Pfau and H. P. Büchler, Quantum Critical Behavior in
Strongly Interacting Rydberg Gases, Physical Review Letters, 101, 250601 (2008).

[126] I. Beterov, I. Ryabtsev, D. Tretyakov and V. Entin, Quasiclassical calculations of
blackbody-radiation-induced depopulation rates and effective lifetimes of Rydberg
nS, nP, and nD alkali-metal atoms with n≤80, Physical Review A, 79, 052504
(2009).

[127] K. C. Younge and G. Raithel, Rotary echo tests of coherence in Rydberg-atom
excitation, New Journal of Physics, 11, 043006 (2009).

[128] M. Reetz-Lamour, J. Deiglmayr, T. Amthor and M. Weidemüller, Rabi oscillations
between ground and Rydberg states and van der Waals blockade in a mesoscopic
frozen Rydberg gas, New Journal of Physics, 10, 045026 (2008).

[129] T. Johnson, E. Urban, T. Henage, L. Isenhower, D. Yavuz, T. Walker and
M. Saffman, Rabi Oscillations between Ground and Rydberg States with Dipole-
Dipole Atomic Interactions, Physical Review Letters, 100, 113003 (2008).

[130] N. Ramsey, A Molecular Beam Resonance Method with Separated Oscillating
Fields, Physical Review, 78, 695–699 (1950).

[131] M. Saffman, X. L. Zhang, A. T. Gill, L. Isenhower and T. G. Walker, Rydberg
state mediated quantum gates and entanglement of pairs of neutral atoms, Journal
of Physics: Conference Series, 264, 012023 (2011).

[132] I. I. Ryabtsev, D. B. Tretyakov and I. I. Beterov, Stark-switching technique for
fast quantum gates in Rydberg atoms, Journal of Physics B: Atomic, Molecular
and Optical Physics, 36, 297–306 (2003).

[133] A. D. Cronin, J. Schmiedmayer and D. E. Pritchard, Optics and interferometry
with atoms and molecules, Reviews of Modern Physics, 81, 1051–1129 (2009).

[134] B. Butscher, Kollektive kohaerente Anregung von ultrakalten Rydberg-Atomen,
Universität Stuttgart, Stuttgart (2007).

[135] I. Ryabtsev, D. Tretyakov, I. Beterov, V. Entin and E. Yakshina, Stark-tuned
Förster resonance and dipole blockade for two to five cold Rydberg atoms: Monte
Carlo simulations for various spatial configurations, Physical Review A, 82,
053409 (2010).

132



REFERENCES

[136] J. Gurian, P. Cheinet, P. Huillery, A. Fioretti, J. Zhao, P. Gould, D. Comparat
and P. Pillet, Observation of a Resonant Four-Body Interaction in Cold Cesium
Rydberg Atoms, Physical Review Letters, 108, 023005 (2012).

[137] K. Younge, A. Reinhard, T. Pohl, P. Berman and G. Raithel, Mesoscopic Rydberg
ensembles: Beyond the pairwise-interaction approximation, Physical Review A,
79, 043420 (2009).

[138] L. Isenhower, W. Williams, A. Dally and M. Saffman, Atom trapping in an inter-
ferometrically generated bottle beam trap, Optics Letters, 34, 1159 (2009).

[139] M. Saffman and T. Walker, Analysis of a quantum logic device based on dipole-
dipole interactions of optically trapped Rydberg atoms, Physical Review A, 72,
022347 (2005).

[140] R. M. W. van Bijnen, S. Smit, K. A. H. van Leeuwen, E. J. D. Vredenbregt and
S. J. J. M. F. Kokkelmans, Adiabatic formation of Rydberg crystals with chirped
laser pulses, Journal of Physics B: Atomic, Molecular and Optical Physics, 44,
184008 (2011).

[141] T. Pohl, E. Demler and M. D. Lukin, Dynamical Crystallization in the Dipole
Blockade of Ultracold Atoms, Physical Review Letters, 104, 043002 (2010).

[142] T. Carroll, K. Claringbould, A. Goodsell, M. Lim and M. Noel, Angular Depen-
dence of the Dipole-Dipole Interaction in a Nearly One-Dimensional Sample of
Rydberg Atoms, Physical Review Letters, 93, 153001 (2004).

[143] J. Johnson and S. Rolston, Interactions between Rydberg-dressed atoms, Physical
Review A, 82, 033412 (2010).

[144] J. Honer, H. Weimer, T. Pfau and H. Büchler, Collective Many-Body Interaction
in Rydberg Dressed Atoms, Physical Review Letters, 105, 160404 (2010).

[145] M. Mayle, I. Lesanovsky and P. Schmelcher, Dressing of ultracold atoms by their
Rydberg states in a Ioffe–Pritchard trap, Journal of Physics B: Atomic, Molecular
and Optical Physics, 43, 155003 (2010).

[146] G. Pupillo, A. Micheli, M. Boninsegni, I. Lesanovsky and P. Zoller, Strongly Corre-
lated Gases of Rydberg-Dressed Atoms: Quantum and Classical Dynamics, Physi-
cal Review Letters, 104, 223002 (2010).

[147] F. Maucher, N. Henkel, M. Saffman, W. Królikowski, S. Skupin and T. Pohl,
Rydberg-Induced Solitons: Three-Dimensional Self-Trapping of Matter Waves,
Physical Review Letters, 106, 170401 (2011).

[148] N. Henkel, R. Nath and T. Pohl, Three-Dimensional Roton Excitations and Super-
solid Formation in Rydberg-Excited Bose-Einstein Condensates, Physical Review

133



REFERENCES

Letters, 104, 195302 (2010).

[149] S. Wüster, C. Ates, A. Eisfeld and J. Rost, Newton’s Cradle and Entanglement
Transport in a Flexible Rydberg Chain, Physical Review Letters, 105, 053004
(2010).

[150] Ludmila Kukota, Zeemanlinien und kohärentes Verhalten der Rydberg-Moleküle,
Universität Stuttgart, Stuttgart (2012).

[151] Seth Rittenhouse, Private Communication (05.04.2011).

134



Danksagung

Zum Abschluss möchte ich all jenen danken, ohne deren Beitrag diese Arbeit nicht
möglich gewesen wäre. Allen voran Professor Tilman Pfau, nicht nur für die umfangrei-
che finanzielle Ausstattung und die wissenschaftlichen Ideen, sondern vor allem für die
Leitung der Arbeitsgruppe in einer Art und Weise die sowohl konzentrierte, zielorien-
tierte wissenschaftliche Arbeit ermöglichte, als auch ein freundliches Arbeitsumfeld in
einem sympathischen Team bot.
Ich habe die Arbeit an meiner Promotion sehr genossen, woran das Team an unserem
Experiment, Vera, Björn, Jonathan, Alexander und Robert, einen entscheidenden Anteil
hatte. Björn und Vera, von euch habe ich als Frischling fachlich viel gelernt und profi-
tiert. Ihr habt das Experiment auf die Überholspur gelenkt und in einem vielversprechen-
den Zustand an mich weitergegeben. Ich möchte euch auch danken dass ihr durch eure
gemeinsame Entwicklung frischen Wind in die trockene Wissenschaft brachtet!
Ein sehr großer Dank gebührt Jonathan. Ich habe Dich als perfekten Kollegen kennen-
gelernt und ich glaube wir wissen beide, dass Dein Beitrag, sowohl experimentell als
auch in unseren Diskussionen, nicht unterschätzt werden kann. Ohne Dich wäre das
Experiment nicht so erfolgreich. Ich hoffe das Biest, das sich Experiment schimpft, lässt
sich auch von Dir melken und ich wünsche Dir dass ich recht behalte was die Zukunft
angeht!
Robert, du hattest immer ein offenes Ohr für Probleme und Fragen. Ich weiß es zu
schätzen dass ich auch mit den dummen Fragen zu Dir kommen konnte, ohne dass du
mich ausgelacht hast.
Vielen Dank für Deine Hilfe, Alexander, ich hoffe das Experiment wird sich auch in
Zukunft erfolgreich weiterentwickeln.
Sebastian, auch wenn du erst gegen Ende meiner Promotion dazugestoßen bist, so habe
ich die Diskussionen mit Dir gerne gesucht und geführt. Du hast eindeutig neue Im-
pulse durch andere Sichtweisen gegeben und neuen Spaß an der Wissenschaft geweckt.
Vermutlich werde ich ewig überlegen, ob Dein Angebot nicht die bessere Wahl gewesen
wäre!
Außerhalb des direkten Teams um unser Experiment möchte ich der gesamten Arbeits-
gruppe des PI5, inklusive der geduldigen Administration, danken. Das positive, men-
schliche Umfeld ist sicherlich eines der Aushängeschilder des PI5 und entscheidend für

135



den Wohlfühlfaktor. Danke euch allen!
Außerdem möchte ich Professor Wrachtrup für die Korrektur der Arbeit und Professor
Wunner für die Übernahme des Prüfungsvorsitzes danken.
Nicht vergessen möchte ich auch den Beitrag meiner Familie. Vera, ohne Dich wären
wir nie in Stuttgart gelandet, auch Dir habe ich diese Zeit zu verdanken. Vielen Dank
für deine Unterstützung und dein Verständnis.
Vielen Dank auch an meine Eltern und Emanuel. Ohne euch hätte ich den Weg bis
hierher niemals geschafft, euch habe ich zu verdanken dass ich all jenen danken kann,
denen ich bereits gedankt habe!

136


	Table of Contents
	Zusammenfassung
	Introduction
	1 Theoretical foundations
	1.1 Atom-light interaction
	1.1.1 Two-level system and optical Bloch equations
	1.1.2 Ramsey experiments

	1.2 Rydberg atoms
	1.2.1 Alkali Rydberg states
	1.2.2 Calculation of wavefunctions and dipole matrix elements
	1.2.3 Characteristics in electric and magnetic fields

	1.3 Binary interactions between Rydberg atoms
	1.3.1 Permanent-dipole interactions
	1.3.2 The single interaction channel model
	1.3.3 Förster resonances
	1.3.4 The dipole-dipole interaction operator
	1.3.5 Resonant dipole-dipole interaction
	1.3.6 van der Waals interaction
	1.3.7 Full diagonalization of the essential pair state system
	1.3.8 Rydberg blockade and collective excitation

	1.4 Ultralong-range Rydberg molecules
	1.4.1 Binding mechanism
	1.4.2 Rydberg molecules in electric fields


	2 Experimental setup
	2.1 Preparation of ultracold atoms
	2.2 The Rydberg excitation and detection

	3 Coherence at Förster resonances
	3.1 Coherent control of Rydberg atoms
	3.1.1 An optical Rydberg Ramsey interferometer
	3.1.2 A controlled Stark-tuned phase shifter

	3.2 Coherence in the presence of strong interactions
	3.2.1 High resolution spectroscopy of Förster resonances
	3.2.2 Measurement of decoherence times of the Ramsey interferometer
	3.2.3 The concept of a pair state interferometer
	3.2.4 Coherent evolution of pair states
	3.2.5 Interaction-induced phase shifts in a pair state interferometer


	4 A polar homonuclear molecule
	4.1 Stark effect measurements
	4.2 Determination of the permanent dipole moment

	5 Conclusion and outlook
	Bibliography

