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Introduction

0.1 Preface

0.1.1 Organisation

In Chapter I, Heller triangulated categories are defined and basic properties are derived. It has
been published as [36].

In Chapter II, stability properties of the Heller formalism are established. It has been prepub-
lished as [40].

In Chapter III, the difference between [8, 1.1.13] and [36, Def. 1.5.(ii.2)] is shown to be nonzero
by way of counterexample. It has been published as [39].

In Chapter IV, we make some remarks on spectral sequences from the point of view of spectral
objects, i.e. co-triangles. It has been published as [37].
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0.2 An introduction to the general theory
of Heller triangulated categories

0.2.1 Why derived categories?
0.2.1.1 Derived functors

Around 1960, GROTHENDIECK struggled with increasingly complicated spectral sequence com-
parisons (). These spectral sequences arose as follows.

Given left exact functors A —+ B-%+ C between abelian categories (?), under normal circum-
stances (3), the derived functor R"(FG) of the composite F'G can be approximated by the
composites of the derived functors (R‘F)(R/G), where ¢ + j = n. In other words, we have the
Grothendieck spectral sequence, which has Ey-terms (R'F)(R?G) and converges to R"(F'G).

For instance, roughly put, the first derivative
RY(FG)

consists of
a part of (R'F)(R°G) plus a part of (R°F)(R'G) ;

which can be read as an approximative “product rule for the first derivative” (4).

In practice, this is troublesome since it only yields an approximative relationship between
the derived functors of the composite and the composites of the derived functors ,

and since, moreover, this approximation is laborious.

Finally, if we want to compose three or more functors and relate their various derivatives, we
are stuck.

0.2.1.2 Derived functors, renovated
The construction of such a derived functor R*F proceeds in three steps.
(1) Resolve injectively.

(2) Apply the functor F.

(3) Take cohomology H'.

LAn example of an assertion of this kind may be seen in [18, 6.6.2]. According to ILLUSIE, GROTHENDIECK
said: “The second part of EGA III is a mess, so, please, clean this up by introducing derived categories, write
the Kiinneth formula in the general framework of derived categories.” [29, p. 1108].

2An abelian category has direct sums, kernels, cokernels, and the homomorphism theorem holds.

3The categories A and B are supposed to have enough injectives, and F to map injectives to G-acyclics.

4More precisely, R (FG) has a two-step filtration, one subfactor of which being a subfactor of (R!F)(R°G),
the other being a subfactor of (R°F)(R!G).
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GROTHENDIECK saw that the troubles were caused by the third step and that dropping the
third step, one should get a smooth formalism, in which the spectral sequence approximation
mentioned above is turned into the simple and precise rule

(+) R(FG) ~ (RF)(RG) .

The price to pay was the development of this formalism, undertaken by VERDIER around 1963
in [56].

Since we have dropped taking cohomology H?, the renovated derived functor RE now takes values
in complexes (over B). So in order to be able to compose, RF' should also take as arguments
complexes (over A).

Moreover, in order to ensure the validity of the composition rule (), one has to formally invert
morphisms of complexes that induce isomorphisms in cohomology, called quasi-isomorphisms.
This process yields the derived category

DT(A),
having as objects complexes (°) over A, and as morphisms fractions
fls,

where the numerator f is a morphism of complexes and where the denominator s is a quasi-
isomorphism of complexes.

So in full, the formula (%) reads

R(FG)

RF RG
).

(+') (D7 (A) pr(C) =~ (D"(A)—— D7 (B)— D7(C)

0.2.2 Why triangulated categories?
0.2.2.1 Verdier triangulated categories

The category A is abelian.
The derived category DT (A) is not abelian (°).
There exist hardly any short exact sequences in D™ (A), only split ones.

As substitute, the image in D*(A) of a short exact sequence of complexes X' —» X —+ X" fits

into a diagram
X/ . X ., X// . X/+1

called a distinguished triangle, where X'*! denotes the complex X', shifted one step to the
left (7).

X//
X —X

5Bounded to the left.
6Except if A is semisimple.
7And all differentials negated.
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Now any morphism Xj— Xy in DT(A) fits into such a distinguished triangle
X0 — Xpj0 — Xo HXlJr/B, and this completion is unique up to isomorphism (8). We call
Xy/1 the cone of the morphism X0 — Xa/0 (7).

The compatibility of taking cones with composition is expressed by the following Verdier octa-
hedron (1?), in which Xg+1/; = X;;(l] for 1 < i< 3.
O e X0+1/3

O*>X3/2 ‘>X0+1/2

|

0 Xon X3/1 — Xo+11
0 Xi/0 X2/0 X3/0 0

Here Xj/; is the cone on X;0— X, for 1 < i < j < 3. Moreover, X3/, is the cone on
Xoj— X3/1 .

A theory of Verdier triangulated categories was developed by VERDIER [56], which plays the
same role for DY (A) as the theory of abelian categories plays for A.

Here, a Verdier triangulated category is a triple (D, T, =), consisting of an additive category D,
an automorphism T = (—)*! of D, called shift, and a set = of distinguished triangles, satisfying
a list of axioms, including the existence of a Verdier octahedron on each pair of composable
morphisms. Then, = is called a Verdier triangulation on (D, T).

For example, the derived category D*(A) is Verdier triangulated. Also already the homotopy

8In contrast to what we are used to from kernels and cokernels in abelian categories, this isomorphism is not
uniquely determined in general.

9This notion is motivated by the homotopy category of CW-complexes, which becomes a Verdier triangulated
category after Spanier-Whitehead stabilisation, where this cone is an actual geometrically constructed cone.

0This alternative, non-octahedral form of this diagram was observed in [8, 1.1.14].
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category KT(A), obtained as the category of complexes (*') modulo split acyclic complexes, is
Verdier triangulated. More generally, the stable category of a Frobenius category (1?) is Verdier
triangulated; cf. [22, Th. 2.6].

One of the axioms records a curious phenomenon, without parallel in the context of abelian
categories. For every distinguished triangle

X0 — Xojo— Xo/1 —> Xl% ;
we get the rotated distinguished triangle

X2_/114’X1/04’X2/04'X2/1 ().
In a Verdier triangulated category, the cone of a morphism is at the same time a substitute
for its kernel and its cokernel, but only in a weak form (!*). Therefore, a Verdier triangulated
category is weakly abelian, i.e. it is an additive category in which each morphism is and has a
weak kernel and a weak cokernel.

A set = of distinguished triangles that satisfies the list of axioms except possibly for the existence
of a Verdier octahedron on each diagram X 0 — Xy/0 — X3¢, is called a Puppe triangulation
on (D, T) [51]. Cf. §0.2.3.1 below.

0.2.2.2 Exact functors between Verdier triangulated categories

A strictly exact functor between Verdier triangulated categories is a shiftcompatible additive
functor that maps distinguished triangles to distinguished triangles; i.e. that preserves cones.

Derived functors, such as the functor D (.A) 2E D*(B) from §0.2.1.2, are strictly exact.

=/

An ezact functor between Verdier triangulated categories (D, T,Z) and (D', T, Z') is a pair (V, a)
consisting of an additive functor V' : D — D’ and an isotransformation a : TV — V' T such
that each distinghuished triangle in D, mapped via V' and isomorphically replaced via a, yields
a distinguished triangle of D’.

So V : D— D' is strictly exact if and only if (V1) is exact.

0.2.2.3 Stability properties of the Verdier formalism

Adjoints of exact functors are exact [44, App. 2, Prop. 11] [34, 1.6]. Already GROTHENDIECK
and DELIGNE observed in Algebraic Geometry the appearance of exact functors that are not
derived functors, but adjoints to derived functors (1°).

"1 Bounded to the left.

12A Probenius category is an exact category with a sufficient supply of relatively bijective objects.

13With a sign inserted.

141n the notation above, Xo/0 —* Xy/1 is a weak cokernel of X;,g — Xy/o, i.e. it satisfies the universal

—1

property of a cokernel, except for uniqueness of the induced morphism. Moreover, X, — Xj,o is a weak

2/1
kernel of Xy, —> Xy/0, i.e. satisfies the universal property of a kernel, except for uniqueness of the induced
morphism.

15The functor Rf*, constructed for certain morphisms f of schemes, is only abusively written with a “R”; cf.

[19, Exp. XVIII, Th. 3.1.4].
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The Karoubi hull of an additive category is the universal additive category whose idempotents
split [30, ITL.IT]. We may form Karoubi hulls within the context of Verdier triangulated categories
and exact functors, as shown by BALMER and SCHLICHTING [2].

The localisation of a category at a subset of its morphisms is the universal category such that
morphisms of this subset become invertible. For instance, the derived category Dt (A) is the
localisation of the homotopy category K*(A) at the subset of quasiisomorphisms, i.e. at the
subset of morphisms with acyclic cone. We may form the localisation of a Verdier triangulated
category at the subset of morphisms with cone in a given thick subcategory ('°) within the realm
of Verdier triangulated categories and exact functors [56][53, Prop. 1.3].

0.2.3 Heller triangulated categories
0.2.3.1 Heller’s original theorem

Let D be a weakly abelian category; cf. §0.2.2.1. The Freyd category D is the universal abelian
category containing D [15]. Reducing modulo the full additive subcategory of projective objects,
we obtain the stable category D, which is Verdier triangulated (7).

Now suppose D to carry a shift functor T. Then D carries two shift functors, a first one induced
by T, a second one given by the Verdier triangulated structure on D.

HELLER discovered a bijection between the set of Puppe triangulations = on (D, T) and the
set of isomorphisms from the first shift functor to the third power of the second shift functor
satisfying an extra condition ('®) [24, Th. 16.4].

So such an isomorphism between these shift functors can be made responsable for a Puppe
triangulation, as the extra datum needed to upgrade a weakly abelian category with shift (D, T)
to a Puppe triangulated category (D, T, Z).

So we could just as well include this isomorphism instead of = in our data.

0.2.3.2 Extending Heller’s theorem

Let D be a weakly abelian category. Let T be an automorphism of D.

In order to extend HELLER’s result from Puppe triangulations to Verdier triangulations and
beyond, all we need is a suitable replacement for D.

A weak square in D is a commutative quadrangle that is at the same time a weak pullback and

16 A thick subcategory is a full subcategory closed under shift, formlng cones and taking summands.

1"The reason being that D is a big enough full subcategory in D consisting of bijective objects, so that Disa
Frobenius abelian category. Cf. [22, §2.1].

18Such an isomorphism can be pre- and postcomposed with the Verdier shift on Zj; the condition is that the
result of precomposition is the negative of the result of postcomposition.
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a weak pushout (12). A weak square is marked as

BN

Alternatively, a commutative quadrangle is a weak square if and only if its diagonal sequence is
exact in the middle when viewed in D.

Let DT (AY) be the category of diagrams in D of the form

0— >
n
00— Xot1jg —>- -
+ +
0—— Xo1 — Xot1)p —> -

+ +

0— X100 —=Xopp——0

R

OHXO/Z_l %Xl/Q—l HO

R

where we do not require any relation between Xpy+1,5 and X;r/% etc. Viewed in the abelian

category D, this is just the category of acyclic complexes consisting of objects in D.

Let D*(Af) be the category of diagrams in D of the form

0— >
+
00— Xo+1/3 —>---
+ +
0—— X33 — Xo+1)g —> -
+ + +
00— Xoj1 —> X1 — Xo+11 —> - -

+ + +

00— X190 — Xo0—> X30—=0

T + + +

0*>X0/3—1 »Xl/g—l »X2/3—1 —()

T

19The respective universal property is supposed to hold, except for the uniqueness of the induced morphism.
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where we do not require any relation between Xg+1,3 and X?% etc.
Etc.
For n > 0, we let
D (A})
be the reduction of DT (A#) modulo the full additive subcategory of diagrams all of whose

morphisms split. This category carries two shift functors, the outer shift [~]™! and the inner
shift [—*1], characterised by, respectively,

(X0 = Xariyp
(X Dgra = (Xgja)™

for X € ObD*(A#) = ObD*(A¥). In other words, the outer shift pulls the whole diagram

down left, the inner shift applies T pointwise.

Then
D*(AY) ~ D,
where
the outer shift corresponds to the third power of the Verdier shift ,
the inner shift corresponds to the functor induced by T .

So we can transport an isomorphism as in Heller’s theorem from §0.2.3.1 to an isomorphism
7 S
from the outer to the inner shift functor on D+ (A¥).

Using D (A¥) as a replacement for D will enable us, in §0.2.3.3 below, to extend from DT (A¥)

to DT (A#) for n > 0, so as to include octahedra and bigger diagrams [8, 1.1.14], and to drop

the extra condition on the isomorphism mentioned in §0.2.3.1.

0.2.3.3 Heller triangulated categories

Let D be a weakly abelian category. Let T be an automorphism of D.

Let a Heller triangulation on (D, T) be a tuple ¥ = (9,,),>0 of isomorphisms ¥,, : [—]*t — [ T]
from the outer shift [~]*! to the inner shift [~!] on D¥(A#) satisfying compatibilities with
quasicyclic operations () and with folding (*!).

_ # _
20Deleting and doubling rows and columns in a periodic manner yield functors D+ (A¥) L. p+ (A%). We
require that Xv,p#* = Xp#¥,, for X € Ob DT (A#) = ObDT(A¥).

ISuppose given n > 0 and X € ObD+(A ;) = ObDF(Af ,|). We can canonically (*?) construct an
object Xf € ObD*(AfH) = ObD*(Afﬂ) that has (Xf )ijo = Xnyijio1 for 1 <i<n+1; the diagram Xf

involves direct sums of objects occurring in X. The operation f can be turned into a functor from D*(A;ﬁn 1)

to D*(Afﬂ). We require that Xvan41f = Xf U541 Cf. [8, 1.1.13].
22Up to sign.
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A Heller triangulated category then is a triple (D, T,#) consisting of a weakly abelian category
D, an automorphism T of D and a Heller triangulation ¥ on (D, T); cf. Def. 1.5.(ii.1). Often, we
write just D := (D, T, 7).

For example, the derived category DT (A) is Heller triangulated. Also the homotopy category
K*(A) is Heller triangulated. More generally, the stable category of a Frobenius category is
Heller triangulated. Cf. Cor. 1.33, Prop. 11.36 (*3).

0.2.3.4 n-triangles

Suppose given a Heller triangulated category (D, T,d). Suppose given n > 0.
The base of a diagram X € ObD*(A¥) is its subdiagram

(X1/0 X2/0 e Xn-1/0 —= Xn)0) € ObD(A,)

on the linearly ordered set A,, := {1,2,...,n}.

A diagram X € ObD*(A¥) is called an n-triangle if Xv,, = 1. A morphism X ¥ between
n-triangles X and Y is called periodic if [f]™ = [fT!].

The restriction functor to the base, mapping from the category of n-triangles and periodic

morphisms to D(A,,), is full; cf. Lem. 1.19. If all idempotents split in D, then it is also surjective
on objects; cf. Lem. 1.18 (*4).

Such triangles are stable under quasicyclic operations and under folding; cf. Lem. 1.21.(1, 2).

0.2.3.5 Retrieving the Verdier context in the Heller context

Suppose given a Heller triangulated category (D, T, ) in which all idempotents split.

Let = be the set of 2-triangles in D. Then the triple (D, T, Z) is a Verdier triangulated category;
cf. Prop. 1.23 (*°).

Each 3-triangle is a Verdier octahedron; cf. §0.2.2.1. However, not every Verdier octahedron is
a 3-triangle; cf. Lem. IIL.6 (*9).

{distinguished triangles} = {2-triangles}
{Verdier octahedra} {3-triangles}

U

0.2.3.6 Exact functors between Heller triangulated categories

Suppose given Heller triangulated categories (D, T, ) and (D', T',¢').

Z(Cf. also Prop. 111.22.(1).

24More generally, this holds if D is a closed Heller triangulated category; cf. Lem. 11.20. Cf. also Rem. 1.20.
25More generally, this holds if D is a closed Heller triangulated category; cf. Rem. II.18.

26Not even when requiring that it contains the triangles described in [8, 1.1.13]; cf. Rem. IIL.7.
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A strictly exact functor from D to D’ is a shiftcompatible additive functor V' : D — D’ that
respects weak squares, and that satisfies

X0.VHAR) = XVHADY,

for all n > 0 and all X € ObD*(A#) = Ob D+ (A#), where VT (A¥) acts by pointwise applica-
tion of V.

An ezxact functor from D to D' is a pair (V,a) consisting of an additive functor V : D — D’
respecting weak squares, and an isotransformation @ : TV — V T’ such that

X0, VH(AY) - Xat (A¥) = XVT(AL)Y,

for all n > 0 and all X € ObD*(A#) = Ob D (A#).

So V : D—TD' is strictly exact if and only if (V1) is exact.

0.2.3.7 Stability properties of the Heller formalism

Adjoints of exact functors are exact; cf. Prop. 11.28.

We may form the Karoubi hull within the context of Heller triangulated categories and exact
functors; cf. Prop. 11.12.

We may form the localisation at the subset of morphisms with cone in a given thick subcategory
within the context of Heller triangulated categories and exact functors; cf. Prop. I1.38.

The derived functor D (.A) RE D*(B) from §0.2.1.2 is exact, using that A is supposed to have
enough injectives (*7).

It is also possible to characterise exactness of a functor, in a manner similar to §0.2.2.2, by
preservation of n-triangles; cf. Prop. I1.25. The reason behind that possibility is that closed (**)
Heller triangulated categories can, alternatively, be defined via sets of n-triangles for n > 0 with
suitable preservation properties with respect to quasicyclic operations and folding, as THOMAS
informed me.

0.2.3.8 Advantages of ¥

Having n-triangles at our disposal allows constructions that have not been possible within the
Verdier context. For instance, given two 3-triangles, a morphism between the bases can be
prolonged to a morphism between the 3-triangles. This is no longer true, in general, once we
replace “3-triangles” by “Verdier octahedra”; cf. Lem. IIL.6.

But why should we work primarily with 1J, and only secondarily with n-triangles? A possible
answer is that usage of ¥ allows low-effort proofs of the stability properties of the Heller formalism
explained in §0.2.3.7; cf. §11.2.2, 8I1.6, §11.5.2.

2TSomewhat provisionally still, we may use Prop. 11.28, Prop. 11.36, Cor. II1.21, Cor. 1.35 to arrive there. It
would be preferable to use the derived functor construction via ind-categories along the lines of [19, Exp. XVII,
§1.2].

28 A Heller triangulated category is called closed if it is closed under taking cones in its Karoubi hull.
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Of course, the price to pay is to get accustomed to the administration of the n-triangles being
done by a tuple of isomorphisms .

0.2.3.9 An amusing observation

Suppose given Heller triangulated category (D, T,9) in which all idempotents split (*).

A commutative quadrangle

in D is called a dweak square (3°) if its diagonal sequence

(fe) (—%”)

X—YaoX —Y

appears as part of a 2-triangle. So a dweak square is in particular a weak square; cf. §0.2.3.2.

Alternatively, a commutative quadrangle is a dweak square if and only if it appears in some
n-triangle for some n > 0.

Any corner 4\% can be completed to a dweak square. This completion is unique up to non-unique
isomorphism. Accordingly in the dual situation.

Suppose given n > 1. Consider the set Chain, of isoclasses of diagrams of the form

Xi—Xy— -+ —X,,_1— X, in D, ie. the set of isoclasses in D(4,). We obtain two
bijections

o, 7 : Chain,, =~ Chain,,

as follows.

Let 7 map the isoclass of X;—Xo— .- — X, ;1— X, to the isoclass of
XfrlHXQJFIH L. H)(+711 —>X+1 )

Let o be defined as follows. Suppose given X; — Xo— --- — X, ; — X,,. Prolong
this diagram by X, —0. Complete to dweak squares along X; —0, yielding a new
row 0— X)— -+ — X/ | — X —W;. Complete to dweak squares along X;—»0,
yielding a new row 0 — X§ — -+ — X/ | —» X" — W, . Etc. Then let ¢ map the isoclass
of X — Xy — -+ — X, — X, to the isoclass of W} — Wy — -« — W, —W,,.

Elementary properties of n-triangles force o = 7.

If we only require D to be Verdier triangulated, both ¢ and 7 are still definable, but it is unclear
to me whether they coincide (3').

29More generally, the following holds if D is a closed Heller triangulated category.

30An abbreviation for “distinguished weak square”. Also known as homotopy cartesian square, as homotopy
bicartesian square, or as Mayer-Vietoris square.

31Suppose that [8, 1.1.13] holds in our Verdier triangulated category. Then o and 7 coincide if n € {1,2,3}.
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0.2.4 Remarks on spectral sequences

0.2.4.1 Four indices

Suppose given an abelian category 4. Suppose given a filtered complex M with values in A, i.e.
a chain of monomorphisms

M(—00) = - —+w M(i) ~o= M(i + 1)~ -+ o M(+00),

indexed by {—oo} UZ U {+00}, that satisfies certain technical conditions (*?).

We shall use the linearly ordered set
Zoo = {i™" i€ {-cc}UZU{+o0}, k€ Z},

where formally i** is defined as the pair (i, k), and where i** < j ™ if k < £ or (k = £ and i < j).

Taking M as a base, we can form a diagram that is, morally, an oo-triangle. It consists of
shifted subfactor complexes M (3/a) for 371 < a < 8 < a*tin Z,, and is called spectral object
Sp(M) of M (**). For v/a < /83, i.e. ¥ < ¢ and a < 3, the induced morphism

M(y/a) — M(5/)
appears in this diagram Sp(M).
Let ME(5/3/~v/a) € Ob A be defined as the image of H® of this morphism, i.e.

M(y/a)H® =~ ME(5/8/v/a) ~~ M(5/5)H’ SO
These objects ME(6/3/~v/«) assemble to a big diagram with values in A, the spectral sequence
ME

of M (*9).

Suppose given e ' < a < <y <6 <e <atlin Z,, . We obtain the short exact sequence

ME(e/B)v/a) =~ ME(e/G]d/a) —~ ME(e/v]d/a),

which can be made responsible for all exact sequences in general spectral sequences known to
me. Cf. Lem. .26, generalising a particular case of [57, §11.4.2.6].

Dropping certain “initial terms” (*%) from the spectral sequence ME, we obtain the proper
spectral sequence

ME
of M.

32Viz. M(—o0) = 0, M (i) — M (i + 1) being pointwise split and the whole filtration being pointwise almost
everywhere constant. Cf. §IV.3.1.

33This term has been coined by VERDIER; cf. [57, §IL.4].

34This definition slightly generalises the definition given in [12, App.]. The original definition in [57, §11.4.2.3]
was closer to classical terminology, as found in [10, §XV.1].

35The classical spectral sequence terms are amongst the terms ME(5/3/~v/a) ; cf. §IV.3.5.

36E, -terms and similar ones; cf. §IV.3.6.
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0.2.4.2 Comparisons

0.2.4.2.1 Grothendieck spectral sequences
Maintain the situation of §0.2.1.1. So AL S ¢

Suppose given X € Ob.A. Resolve X injectively. This yields a complex with values in A.
Apply F pointwise. This yields a complex with values in B. Resolve this complex injectively,
via the method of Cartan-Eilenberg [10, §XVIIL.1]. This yields a double complex with values
in B. Apply G pointwise. This yields a double complex with values in C.

The total complex of this resulting double complex is obtained by forming direct sums over its
diagonals. Replacing an increasing number of rows in this double complex by zero rows, and then
taking the total complex, we obtain a descending chain of subcomplexes filtering our original
total complex.

This filtered complex gives rise to the Grothendieck spectral sequence X E%YG via the method
of §0.2.4.1. This yields a functor EgTG on A, mapping to the category of spectral sequences with
values in C.

So we had to “resolve X twice”, with an intermediate application of F', and a final application
of G, to carry out this construction.

0.2.4.2.2 First comparison

Suppose given abelian categories A, A’, B, C (*"). Suppose given objects X € Ob.A and
X' € ObA'. Let A x A' -2+ B be a biadditive functor such that (X,—)F and (—, X')F are left
exact. Let B-%+ C be a left exact functor. Suppose further conditions to hold; see §IV.5.1.

We have Grothendieck spectral sequence functors,

(va)F

B-S%.¢.

E?)?,_)F, o for A

(_1XI)F

B-S.c.

Eijx/)F’ g for A

We evaluate the former at X’ and the latter at X. Then the proper Grothendieck spectral
sequences are isomorphic, i.e.

X' E(G)g,—)F,G = XE?—r,X’)F,G;

cf. Th. IV.31. So instead of “resolving X’ twice”, we may just as well “resolve X twice”.

370f which A, A’ and B are supposed to have enough injectives.
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0.2.4.2.3 Second comparison

Suppose given abelian categories A, B, B', C (*®). Suppose given objects X € Ob.A and

Y € ObB. Let .,4i B’ be a left exact functor. Let B x B’ -~ C be a biadditive functor such
that (Y, —)G is left exact.

Let B € ObCl°(B) be a resolution of Y such that (B, —)G is exact for all & > 0. Let
A € ObCI°(A) be an injective resolution of X. Suppose further conditions to hold; see §IV.6.1.

X
A

y {F

B x B
VG

C

We have the Grothendieck spectral sequence functor

(Yv_)G

E%}‘(Y,*)G fOI‘ ./4 4F> B/ C )

which we evaluate at X.

On the other hand, we can consider the double complex (B, AF')G, where the indices of B count
rows and the indices of A count columns. As described in §0.2.4.2.1, we can associate a spectral
sequence to a double complex, in this case named EI((B ,AF )G)

Then the proper spectral sequences are isomorphic,

XEZy ¢ ~ Ei((B,AF)G) .

So instead of “resolving X twice”, we may just as well “resolve X once and Y once”.

0.2.4.2.4 Applications

The comparisons in §0.2.4.2.2 and §0.2.4.2.3 may be used to reprove the following two theorems
of BEYL.

The first theorem allows acyclic objects to be alternatively used to calculate Grothendieck spec-
tral sequences [7, Th. 3.4]; cf. Th. IV .40.

The second theorem allows the Hochschild-Serre-Hopf spectral sequence to be calculated with
injective or, equivalently, with projective resolutions; the former fitting in the context of

Grothendieck spectral sequences, the second being apt for manipulating concrete representing
cocycles of cohomology classes; cf. [7, Th. 3.5], Th. IV.52, IV.53.

Further applications can be found in §IV.8 (39).

380f which A and B’ are supposed to have enough injectives.

39Tf we were to reduce complexity in the assertions of §0.2.4.2, then, in the spirit of §0.2.1.2, we should directly
work with suitably defined derived categories of double complexes; I do not know how to do that. We would
probably get an additional shift functor.



0.3 References

L x© 3 =

=)

—
—_

—

- = = = =
=)

o~

Ut

—
[=2)

—

BN

[22]

[\V)

o o
L X N o g B K

[N}
N

[\

T P E 9O T e S
o0

ABE, E., Hopf algebras, Cambridge University Press, 1977.

BALMER, P., SCHLICHTING, M., Idempotent completion of triangulated categories, J. Alg. 236 (2), p. 819—
834, 2001.

BARNES, D. W., Spectral sequence constructors in algebra and topology, Mem. Am. Math. Soc. 317, 1985.

BaAues, H.-J.; Muro, F., The characteristic cohomology class of a triangulated category,
arxivimath. KT /0505540, 2005.

BELIGIANNIS, A., On the Freyd categories of an additive category, Homology Homotopy Appl., 2 (11),
p. 147-185, 2000.

BENSON, D. J., Representations and cohomology II, Cambridge, 1991.
BEYL, R., The spectral sequence of a group extension, Bull. Sc. math., 2¢ série, 105, p. 417434, 1981.
BERNSTEIN, J.; BEILINSON, A.A.; DELIGNE, P., Faisceaux pervers, Astérisque 100, 1982.

Bosma, W.; CANNON, J.; Prayoust, C., The Magma algebra system. I. The user language, J. Symbolic
Comput. 24 (3-4), p. 235-265, 1997 (cf. magma.maths.usyd.edu.au).

CARTAN, H., EILENBERG, S., Homological Algebra, Princeton, 1956.

DELIGNE, P., Catégories spectrales, manuscript, 1968.

DELIGNE, P., Décompositions dans la catégorie dérivée, Proc. Symp. Pure Math. 55 (1), p. 115-127, 1994.
ELMENDORF, A.D., A simple formula for cyclic duality, Proc. Am. Math. Soc. 118 (3), p. 709-711, 1993.

FRANKE, J., Uniqueness theorems for certain triangulated categories possessing an Adams spectral sequence,
www.math.uiuc.edu/K-theory/0139, 1996.

FREYD, P., Stable Homotopy, Proc. Conf. Categorical Algebra, La Jolla, p. 121-172, Springer, 1965.
GABRIEL, P., Des catégories abéliennes, Bull. Soc. Math. France 90, p. 323-448, 1962.
GROTHENDIECK, A., Sur quelques points d’algébre homologique, Tohoku Math. J. 9, p. 119-221, 1957.

GROTHENDIECK, A. (redigé en coll. avec DIEUDONNE, J.), Eléments de géométrie algébrique (rédigés avec la
collaboration de Jean Dieudonné) : III. Etude cohomologique des faisceauz cohérents, Pub. Math. IHES 17,
1963.

GROTHENDIECK, A. et al., Théorie des topos et cohomologie étale des schémas, SGA 4, SLN 269+4-270+305,
1972.

GROTHENDIECK, A., Les Dérivateurs, www.math.jussieu.fr/ maltsin/groth/Derivateurs.html,
around 1990.

Haas, R., Naturality of the Grothendieck spectral sequence, Dissertation, Case Western Reserve University,
Cleveland OH, available via University Microfilms International, Order No. 77-18823, 1977.

HapPEL, D., Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, LMS
LN 119, 1988.

HARTSHORNE, R., Algebraic Geometry, Springer GTM 52, 1977.

HELLER, A., Stable homotopy categories, Bull. Am. Math. Soc. 74, p. 28-63, 1968.

HELLER, A., Homotopy theories, Mem. Am. Math. Soc. 383, 1988.

ILvusie, L., Complexe cotangent et déformations. I., SLN 239, 1971.

ILLusie, L., Catégories dérivées et dualité, travauz de J.-L. Verdier, Enseig. Math. 36, p. 369-391, 1990.
ILLusie, L., Perversité et variation, Manuscr. Math. 112, p. 271-295, 2003.

ILLUSIE, L., Reminiscences of Grothendieck and His School, Notices AMS, Vol. 57 (9), October 2010.

23



W W W w w w w w
N O Ot ks W N =

o

o

W

=
=)

=
=

=

T TN
i A= N A

=
o)

=

KAROUBI, M., K-théorie, Conférences au séminaire d’été de Montréal No. 36, Presses de Montr2éal, 1969.
KELLER, B., Chain complexes and stable categories, Manuscr. Math. 67, p. 379-417, 1990.

KELLER, B., Derived categories and universal problems, Comm. Alg. 19 (3), p. 699-747, 1991.

KELLER, B., Deriving DG categories, Ann. scient. Ec. Norm. Sup. 4eme série, t. 27, p. 63-102, 1994.
KELLER, B., VOSSIECK, D., Sous les catégories dérivées, C. R. Acad. Sci. Paris, Série I, p. 225-228, 1987.
KUNZER, M., On derived categories, diploma thesis, Stuttgart, 1996.

KUNZER, M., Heller triangulated categories, Homol. Homot. Appl. 9 (2), p. 233-320, 2007.

KUNZER, M., Comparison of spectral sequences involving bifunctors, Documenta Math. 13, p. 677-737, 2008.
KUNZER, M., (Co)homologie von Gruppen, lecture script, Aachen, 2006.

KUNZER, M., Nonisomorphic Verdier octahedra on the same base, J. Homotopy and Related Structures 4 (1),
p- 7-38, 2009.

KUNZER, M., On ezact functors for Heller triangulated categories, preprint, arxiv 1301.0031, 2012.
LAUMON, G., Sur la catégorie derivée des D-modules filtrés, SLN 1016, p. 151-237, 1983.

MALTSINIOTIS, G., La K-théorie d’un dérivateur triangulé (with an app. by B. KELLER), in “Categories in
Algebra, Geometry and Mathematical Physics”, Contemp. Math. 431, p. 341-368, 2007.

MALTSINIOTIS, G., Catégories triangulées supérieures, pré-preprint,
www.math. jussieu.fr/"maltsin/ps/triansup.ps, 2005.

MaARragouis, H.R., Spectra and the Steenrod algebra, North-Holland, 1983.
MITCHELL, B., Rings with Several Objects, Adv. Math. 8, p. 1-161, 1972.
Mac LANE, S., Homology, Springer Grundlehren 114, 1975.

MONTGOMERY, S., Hopf Algebras and Their Actions on Rings, CBMS Regional Conference Series in Math-
ematics 82, AMS, 1993.

NEEMAN, A., The Deriwved Category of an Fxact Category, J. Alg. 135, p. 388-394, 1990.
NEEMAN, A., Some New Azioms for Triangulated Categories, J. Alg. 139, p. 221-255, 1991.

NEEMAN, A., The K-theory of triangulated categories, in FRIEDLANDER, E.M.; GrRAYSON, D.R. (eds.),
Handbook of K-theory, Springer, p. 1011-1078, 2005.

PuppE, D., On the formal structure of stable homotopy, Coll. on Algebraic Topology, Aarhus, p. 65-T71,
1962.

QUILLEN, D., Higher algebraic K-theory: I, SLN 341, p. 85-147, 1973.
RICKARD, J., Derived categories and stable equivalence, J. Pure Appl. Alg. 61, p. 303-317, 1989.

SCHNEIDER, H. J., Normal basis and transitivity of crossed products for Hopf algebras, J. Algebra 152 (2),
p. 289-312, 1992.

SWEEDLER, M., Hopf Algebras, Benjamin, 1969.

VERDIER, J.L., Catégories Derivées (état 0), published in SGA 4 1/2, SLN 569, p. 262-311, 1977 (written
1963).

VERDIER, J.L.; Des catégories derivées des catégories abl/iennes, éd. G. Maltsiniotis, Astérisque 239, 1996
(written 1967).

WALDHAUSEN, F., Algebraic K-theory of spaces, Algebraic and geometric topology, SLN 1126, p. 318-419,
1985.

WEIBEL, C. A., An introduction to homological algebra, Cambridge Stud. Adv. Math. 38, 1995.
WEIBEL, C.A., History of homological algebra, www.math.uiuc.edu/K-theory /0245, 1997.



Chapter 1

Heller triangulated categories

1.0 Introduction

1.0.1 Heller’s idea ()

1.0.1.1 Stable Frobenius categories and an isomorphism between outer and inner
shift

Let £ be a Frobenius category, i.e. an exact category with enough bijective objects. For instance,
the category of complexes with values in an additive category, equipped with pointwise split exact
sequences, is a Frobenius category.

Let £ denote the stable category of &; cf. §1.0.3. Assume that £ has split idempotents.

A complex with entries in £ is acyclic if any Hom functor turns it into an acyclic complex of
abelian groups. Let £ +(A§£) denote the category of acyclic complexes with entries in £ (?). Let
ET(A?) denote the homotopy category of the category ET(A¥) of acyclic complexes; that is,
the quotient category of acyclic complexes modulo split acyclic complexes.

There is a shift automorphism T on £. It induces a first, inner shift automorphism TT(A¥) on
ET(AT) by pointwise application.

There is also a shift automorphism T, on the diagram Af. It induces a second, outer shift
automorphism £+(Ty) on ET(AY), shifting a complex by three positions.

Both outer and inner shift induce automorphisms

EX(Ty) resp. TH(AY) on EY(AY) .

HELLER remarked that these functors are isomorphic. But there is no a priori given isomorphism.

So he chose an isomorphism
19 —
(L) = THAY).

10y

satisfying, for technical reasons, still a further compatibility.

'HELLER formulated his idea using Freyd categories. We will rephrase it using complexes, for this is the
language we will use below. Cf. §§1.0.2.2,1.0.2.4.
2The notation using the diagram A? is chosen to fit into a larger framework; see §1.0.2.2 for more details.
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Then he remarked that the choice of such an isomorphism vy determines a triangulation on £
in the sense of PUPPE [51, Sec. 2|; that is, it satisfies all the axioms of VERDIER [56, Def. 1-1]
except possibly for the octahedral axiom. Namely, as distinguished triangles we take acyclic
complexes on which outer and inner shift coincide (i.e., which are “3-periodic up to shift”) and
on which 1, is the identity.

Whether this observation now fathoms Puppe triangulations remains to be discussed. Whenever
two objects are isomorphic but lack a nature-given isomorphism, it is at any rate not unusual to
pick an isomorphism. Once a suitable isomorphism between our shift functors chosen, a Puppe
triangulation ensues. In nontechnical terms, we may let the relation between the two shifts
govern the Puppe triangulations. This is a possible point of view, which we shall adopt and put
into a larger framework; cf. §1.0.2.2.

HELLER used this construction to parametrise Puppe triangulations on £. The non-uniqueness
of such a Puppe triangulation on £, and hence the impossibility of an intrinsic definition of
distinguished triangles, thus can be regarded as rooted in the possible nontriviality of the au-
tomorphism group of the inner shift functor T*(A#), or, by choice, of the outer shift functor
E1(Ty). This is to be seen in contrast to the intrinsic characterisation of short exact sequences

in an abelian category.

1.0.1.2 The stable Frobenius case models a general definition of Puppe triangula-
tions

A weak kernel in an additive category is defined by the universal property of a kernel, except for
the uniqueness of the induced morphism; dually a weak cokernel.

A weakly abelian category is an additive category in which each morphism has a weak kernel
and a weak cokernel, and in which each morphism is a weak kernel and a weak cokernel. For
instance, the stable category £ appearing in §1.0.1.1 is a weakly abelian category.

Let C be a weakly abelian category with split idempotents carrying a shift automorphism T.
Now Heller’s construction yields an alternative, equivalent definition of a Puppe triangulation
on (C,T) as being an isomorphism

V2

CH(Ty) =~ THAD)

satisfying still a further compatibility. In other words, a Puppe triangulated category can be
defined to be such a triple (C, T, s).

1.0.1.3 From Puppe to Verdier and beyond

In a Puppe triangulated category, Verdier’s octahedral axiom [56, Def. 1-1] does not seem to
hold in general (3).

3The author lacks an example of a category that is Puppe but not Verdier triangulated, but strongly suspects
that such an example exists, i.e. that the octahedral axiom is not a consequence of Puppe’s axioms; cf. Question
1.6. In any case, such a deduction is unknown.
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In a Verdier triangulated category, in turn, it seems to be impossible to derive the existence
of the two extra triangles in a particular octahedron described in [8, 1.1.13], or to distinguish
crosses as in [28, App.].

Moreover, to define a K-theory simplicial set of a triangulated category, one is inclined to take ob-
jects as 1-simplices, distinguished triangles as 2-simplices, distinguished octahedra as 3-simplices,
etc.

So we enlarge the framework, generalising from C*(A¥) to C*(A#), as described next in §1.0.2.

I1.0.2 Definition of Heller triangulated categories
1.0.2.1 A diagram shape

Given n > 0, we let A, := {i € Z : 0 < i < n}, considered as a linearly ordered set. Let
A, be the periodic prolongation of A,, consisting of Z copies of A,, put in a row. This is a
periodic linearly ordered set; that is, a linearly ordered set equipped with a shift automorphism
i+—1t1. For instance, Ay = {...,271,0,1,2,0*!, ...}, equipped with i+—i*!. Let A be the
category consisting of periodic linearly ordered sets of the form A, as objects, and of monotone
shiftcompatible maps as morphisms.

Let A,(A;) denote the category of morphisms in A,,, i.e. the category of A,-valued diagrams of
shape A;. Given o, 3 € A, such that a < 3, the object (& — 3) in A, (A,) is abbreviated by

fla.

Let A% be the full subcategory of A,(A;) that consists of objects 3/a within a single period,
i.e. such that 7! < a < 8 < at!. For instance,

0—&—1/0—&-1*)...

2/2 ——= 012 —— ...

A¥ =
1/1 2/1 0t /1 —— -
0/0 1/0 2/0 0+ /0

.

1.0.2.2 Heller triangulations

Let C be a weakly abelian category; cf. §1.0.1.2. A sequence X oY 9 Zin C is called ezact
at Y if f is a weak kernel of g, or, equivalently, if g is a weak cokernel of f. A commutative
quadrangle in C whose diagonal sequence is exact at the middle object is called a weak square.

Let CT(A¥) be the category of C-valued diagrams of shape A# with a zero at a/a and at
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atl/a for each a € A, , and such that the quadrangle on (v/a, §/a,v/3,8//) is a weak square
whenever 671 < a <8<y <0< al. Let CH(A¥) be the quotient of C*(A#) modulo the full
subcategory of diagrams therein that consist entirely of split morphisms.

For instance, C*(A¥) is the category of C-valued acyclic complexes; and CJF(Aj’£ ) is its quotient

modulo split acyclic complexes, i.e. the homotopy category of C-valued acyclic complexes.

Furthermore, suppose given an automorphism T on C. We obtain two shift functors on C*(A%),

the inner shift given by pointwise application of T, and the outer shift induced by a diagram
shift j/i—it1/j.

A Heller triangulation on (C,T) is a tuple of isomorphisms ¥ = (¥,,)n>0, where ¥,, is an iso-
morphism from the outer to the inner shift on C*(A#). This tuple is required to be compatible

with the functors induced by periodic monotone maps between A,, and A,,, where m, n > 0.
Moreover, it is required to be compatible with an operation called folding, which emerges from
the fact that a weak square

entails a folded weak square

0 Y

L 1w
X’WX@Y’.

A Heller triangulated category is a triple (C, T,1) as just described, often just denoted by C.

An n-triangle in a Heller triangulated category C is an object X of C*(A¥) that is periodic in
the sense that outer shift and inner shift coincide on X, and that satisfies X¢,, = 1. The usual
properties of 2-triangles generalise to n-triangles.

If C is a Heller triangulated category in which idempotents split, then, taking the 2-triangles as
the distinguished triangles, it is also triangulated in the sense of VERDIER [56, Def. 1-1]; see
Proposition 1.23.

1.0.2.3 Strictly exact functors

An additive functor C —— C’ between Heller triangulated categories (C,T,¥) and (C', T, ¢') is
called strictly exact if, firstly, it respects weak kernels, or, equivalently, weak cokernels; if, sec-
ondly, F T' = T F; and if, thirdly, the functor

CH(AT)

n

C'H(A?) |

induced by pointwise application of F, satisfies F*(A#) %19 = 9, x FT(A¥) forn > 0.
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1.0.2.4 Emnlarge to simplify

Let A, = {i €Z : 1<i<n}. Wehave an embedding A, . A7 via ar——a/0. Let C be
a weakly abelian category. Let C (An) denote the category of C-valued diagrams of shape A,,.

Let C(A,) be the quotient of C(A,,) modulo the full subcategory of split diagrams. Restriction

induces an equivalence

A,

(%) CHAY) =+ CA),

which is also a useful technical tool; cf. Proposition 1.12.

At first sight, one might be inclined to prefer C(A,) over CT(A#). It contains smaller diagrams

and has a less elaborate definition. By transport of structure along (x), one obtains an outer

shift on C(A,) as well. By pointwise application of the shift functor on C, we also obtain an

inner shift on C(A,). These could be compared in order to write down a definition of Heller
triangulated categories.

So why then did we prefer to use C*(A#) in our definition of Heller triangulated categories in
§1.0.2.2? Working with C(A,,), the indirect definition of the outer shift would cause problems.

In practice, one would have to pass the equivalence (x) back and forth. The “blown-up variant”
C*H (A7) of C(A,) carries a directly defined outer shift functor and is thus easier to work with.

There is a further equivalence C(An) =~ C (A,_1), where C denotes the Freyd category of C,

i.e. the universal abelian category containing C, and where C(A,_;) is the quotient of C(A,_;)
modulo split diagrams with entries in C; cf. Proposition 1.16. Originally, HELLER worked with
C(A,_1) for n =2, i.e. with é/C

1.0.3 A result to begin with

Let £ be a Frobenius category. We define its stable category £ to be the quotient category of
the category of purely acyclic complexes with values in the bijective objects of £, modulo the
subcategory of split acyclic such complexes.

Then £ is equivalent to the classical stable category £ of £, defined as the quotient category of £
modulo bijective objects. But £ carries a shift automorphism T (invertible), whereas £ carries,
in general, only a shift autoequivalence (invertible up to isomorphism). In this sense, £ is a
“strictified version” of £.

Theorem (Corollary 1.33, Corollary 1.35). Given a Frobenius category £, there exists a Heller
triangulation ¥ on (£,T). An exact functor € L. & between Frobenius categories that sends

all bijective objects of € to bijective objects of £ induces a strictly exact functor € Eoe

The Verdier triangulated version of this theorem is due to HAPPEL [22, Th. 2.6].

1.0.4 A quasicyclic category

Let C be a Heller triangulated category.
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A quasicyclic category is a contravariant functor from A’ to the (1-)category of categories.
Letting qcyc,, C be the subcategory of isomorphisms in C*(A#) for n > 0, we obtain a quasicyclic
category qcyc, C. There is a quasicyclic subcategory qcyc?=!C that consists only of n-triangles
and their isomorphisms instead of all objects in C*(A#) and their isomorphisms (*).

Restricting qcyc?='C along the functor A° C+ A’ of “periodic prolongation”, this yields a
simplicial category, hence a topological space; depending functorially on C. This space is the
author’s tentative proposal for the definition of the K-theory of C; cf. [50, Rem. 63]. Of course,
this definition still needs to be justified by results one expects of such a K-theory, which has not
yet been attempted.

1.0.5 Some remarks

A comparison of our theory to the derivator approach and related constructions in [11],
[26, chap. V.1], [25], [20], [32], [14] and [42] would be interesting. One might ask whether the
base category of a triangulated derivator in the sense of [42] carries a Heller triangulation; and
if so, whether morphisms of triangulated derivators give rise to strictly exact functors.

Our approach differs from the derivator approach in that we consider a single category C with shift
and an “exactness structure”, i.e. a Heller triangulation, on it. The categories C*(A#) needed
to define this “exactness structure” on C consist of veritable C-valued diagrams; cf. §1.0.2. In
particular, a “structure preserving map” between two such categories C and C’, i.e. a strictly
exact functor, is a single additive functor C Lo compatible with the “exactness structures”
imposed on C and on C’. In contrast, a “structure preserving map” of triangulated derivators is
a compatible family of additive functors.

The generalised triangles in [8, 1.1.14] are, in our language, n-pretriangles for which the
2-pretriangle obtained by restriction along any periodic monotone map Ay — A, is a 2-triangle.
An n-triangle is such a generalised triangle, but the converse does not hold in general, as pointed
out to me by A. NEEMAN. For an example, see §II1.2.

It is conceivable that the concept of Heller triangulated categories is essentially equivalent to a
direct axiomatisation via n-triangles, as worked out independently by G. MALTSINIOTIS [43]
and myself [35]. To compare these approaches, on the one hand, the Heller triangulated category
should be closed in the sense of §111.4.2, Def. I11.13; on the other hand, the n-triangles should
be stable under folding as in Lemma 1.21.(2) (°).

Concerning the motivation to consider triangulated categories at all, and in particular derived
categories, conceived by GROTHENDIECK, we refer the reader to the introduction of the thesis
of VERDIER [57]; cf. also [27] and [60, p. 26].

[.0.6 Acknowledgements

[ thank A. WIEDEMANN for an introduction to derived categories. I thank A. BELIGIANNIS
for directing me to Heller’s parametrisation of Puppe triangulations, and for helpful remarks.

4Here, “9=1" is a mere symbol that should evoke the definition of n-triangles via 9.
5Jan. 2013: This is feasible, as I have been informed by S. THOMAS.
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I thank B. KELLER for the hint how to “strictify” the classical stable category of a Frobenius
category using acyclic complexes. I thank A. NEEMAN for the hint leading to the folding
operation, and for corrections.

More than once I returned to A. HELLER’s original construction [24, p. 53-54], the reference
not only for the basic idea, but also for arguments perfectly extendable to the more general
framework used here.

1.0.7 Notations and conventions

(i) The disjoint union of sets X and Y is written X UY".
(ii) Given a, b, ¢ € Z, the assertion a = b is defined to hold if there exists a z € Z such that a — b = cz.

(iii) For a, b € Z, we denote by [a,b] := {z € Z : a < z < b} the integral interval. Similarly, we let
@b ={z€Z : a<z<b},lab]={2€Z : a<z<b},Zyy:={2€Z : z2>0}and
Zgy:={z€Z : z<0}.

(iv) All categories are supposed to be small with respect to a sufficiently big universe.

(v) Given a category C, and objects X, Y in C, we denote the set of morphisms from X to Y by «X,Y), or
simply by (X,Y), if unambiguous.

(vi) Given a poset P, we frequently consider it as a category, letting p(x,y) contain one element y/z if x < y,
and letting it be empty if x € y, where z,y € Ob P = P.

(vil) Given n > 0, we denote by A, := [0,n] the linearly ordered set with ordering induced by the standard
ordering on Z. Let A, := A,, ~ {0} = [1,n], considered as a linearly ordered set.

(viii) Maps act on the right. Composition of maps, and of more general morphisms, is written on the right, i.e.

a b . ab
F G FG
(ix) Functors act on the right. Composition of functors is written on the right, i.e. — — = —.

Accordingly, the entry of a transformation a between functors at an object X will be written Xa.

The reason for this convention is that we will mainly consider functors of type “restriction to
a subdiagram” or “shift”, and such operations are usually written on the right.

(x) A functor is called strictly dense if its map on the objects is surjective. It is called dense if its induced
map on the isoclasses is surjective.

F F’
(xi) Given transformations ¢~ \a. C’ W C" , we write axa’ for the transformation from FF’ to GG’ given
o e

at X € ObC by X(a*d') := (XFd')(XaG') = (XaF')(XGa'). In this context, we also write the object
F for the identity 1 on this object, i.e. e.g. X(F *xad') = X(1p xa') = (XF)d'.

(xii) The inverse of an isomorphism f is denoted by f~. Note that if we denote an iterated shift automorphism
fft by f+ fT% for 2 € Z, then we have to distinguish f~ (inverse isomorphism if f is an
isomorphism) and f~! (inverse of the shift functor applied to f).

—~

xiii) In an exact category, pure monomorphy is indicated by X —s= Y, pure epimorphy by X —+Y.

(xiv) A morphism in an additive category A is split if it is isomorphic, in A(A1), to a morphism of the form
00
XaeY (IA Y & Z. A morphism being split is indicated by X >—=Y (not to be confused with
monomorphy). Accordingly, a morphism being a split monomorphism is indicated by X =Y , a
morphism being a split epimorphism by X >+—=Y . Cf. §1.6.2.1.

(xv) We say that idempotents split in an additive category A if every endomorphism e in A that satisfies e? = e
is split.
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(xvi)

(xvii)

(xviii)

(xix)

(xxii)

(xxiii)

(xxiv)

I.1

The category of functors and transformations from a category D to a category C is denoted by [ D,C1 or
by C(D). To objects in C(D), we also refer to as diagrams on D with values or entries in C.

If C and D are categories, and X € ObC(D), we usually write (d s e)X =: (Xq Ko, X.) for a morphism
d — ¢in D. If the morphism a is unambiguously given by the context, we also use small letters to write
(X2 X.) 1= (Xq 25 X,) (similarly X, —» X!, Vg —2e V., ..)

Let Add denote the 2-category of additive categories.

Given an additive category A and a full additive subcategory B C A, we denote by A/B the quotient of .4
by B, having as objects the objects of A and as morphisms equivalence classes of morphisms of A; where
two morphisms f and f’ are equivalent, written f =g f’, if their difference factors over an object of B.

In an exact category, an object P is called projective if (P, —) turns pure epimorphisms into epimorphisms.
An object I is called injective if (—, I) turns pure monomorphisms into epimorphisms. It is called bijective
if it is injective and projective. See §1.6.2 for details.

In an additive category, a morphism K —» X is called a weak kernel of a morphism X I Y if for every

morphism 7’ N X with tf = 0 there exists a morphism 7' L, K with /i = t. A weak cokernel is defined
dually. An additive category is called weakly abelian if every morphism has a weak kernel and a weak
cokernel, and is a weak kernel and a weak cokernel.

The Freyd category of a weakly abelian category C is written C. See 81.6.6.3 for details.

In an abelian category, a commutative quadrangle

X —=Y'

f

(= §) ()

is called a square if its diagonal sequence X ——> X' & Y — Y’ is short exact. Being a square is
indicated by a box sign “[J” in the quadrangle.

The quadrangle (X,Y, X’ Y’) is called a weak square if its diagonal sequence is exact in the middle; cf.
Definition 1.49. Being a weak square is indicated by a “+ ”-sign in the quadrangle.

In an exact category, (X,Y, X', Y”) is a pure square if it has a pure short exact diagonal sequence. Being
a pure square is indicated by a box sign “[J” in the quadrangle.

In a weakly abelian category, (X,Y, X', Y") is a weak square if it is a weak square in the Freyd category
of that weakly abelian category.

In an abelian category, given a morphism X 2 Y, we sometimes denote its kernel by K¢, and its cokernel
by Cf.

Definition of a Heller triangulated category

I.1.1 Periodic linearly ordered sets and their strips

Without further comment, we consider a poset D as a category, whose set of objects is given by
D, and for which # p(a, 8) = 1 if a < 3, and # p(a, 3) = 0 otherwise. If existent, i.e. if a« < f3,
the morphism from « to /3 is denoted by §/a. A full subposet of a category is a full subcategory

that is a poset. In particular, a full subposet of a poset is just a full subcategory of that poset.
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A periodic poset is a poset P together with an automorphism T : P~ P, ar—~a T =: o™l
Likewise, we denote o T™ =: o™ resp. a T™" =: a™™ for m € Zx. By abuse of notation, we
denote a periodic poset (P, T) simply by P.

A morphism of periodic posets P «<2— P’ is a monotone map p of the underlying posets such that
(aMp = ((o/)p) ™! for all o/ € P'. The category of periodic posets shall be denoted by pp.

A periodic linearly ordered set is a periodic poset the underlying poset of which is linearly ordered,
i.e. such that #(D(oz,ﬁ) U p(3, a)) =1forall a, B € D.

To any linearly ordered set D we can attach a periodic linearly ordered set D by letting D :=
DX Z,and (o,2) < (B,w) if 2 <w, orif (z =wand a < B in D). We let (o, 2)™ := (a, 2+ 1).
Sending D — D, ar+— (a,0), and identifying D with its image, we obtain (o, z) = a™*, and
the latter is the notation we will usually use. The periodic linearly ordered set D is called the
periodic repetition of D. Likewise, the functor D+ D from the category of linearly ordered
sets to the category of periodic linearly ordered sets is called periodic repetition.

Let A be the full subcategory of the category of linearly ordered sets defined by
Ob A = {An . n€Z>0}.

Let A be the full subcategory of the category of periodic linearly ordered sets defined by Ob A :=
{A, 1 neZs} (%).

The reason for considering periodic linearly ordered sets is that the functor periodic repetition from
A to A is dense and faithful but not full. We will require a naturality of a certain construction
with respect to P € Ob A, which is stronger than setting P = D and requiring naturality with
respect to D € Ob A.

Given n > 0, the underlying linearly ordered set of A, is isomorphic to Z via
a™+——a+ (n+ 1)z. We use this isomorphism to define the operation

A, xZ — A,, (a*%,2) — a4+ 2 = (aFa)TEretD

where we write k = (n + 1)k + k with k € Z and k € [0,n] for k € Z. For instance, if n = 3,
then 271 +7 = 173,

To a periodic linearly ordered set P, we attach the poset
P*:={B/ac P(A)) : Fr<a<B<at}

as a full subposet of P(A;), called the strip of P. A morphism therein from 3/« to ¢/~ is written
d/7/B/a, which is unique if it exists, i.e. if @ <y and 5 <.

The strip P# carries the automorphism 3/a+— (3/a)™ := o™ /3 in pp, where §/a € P#.

If P = A,, we also write 3/a 2 (3/a)*".

This construction defines a functor

— _\#
A 91 pp
P +—~ P#

6The category A is isomorphic to the category L defined by ELMENDORF in [13].
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which sends a morphism P <2~ P’ in A to

i
—

P# P#
Bp/a'p ~— [ld

In fact, p* is welldefined, since if 37! < o/ < < o/t then (8'p)™! < o'p < BFp < (o/p)™h.
Moreover, p* is monotone and compatible with shift.

Example I.1 The periodic poset Af, i.e. the strip of the periodic repetition of A, can be displayed
as
1+1 / 1+ ...

T

O+1/0+1 . 1+1/0+1 ..

! !

2/2 ——= 0t /)2 ——= 111 /2 — ...

T ! T

1/1 2/1 0+1/1 ——=171/1
0/0 1/0 2/0 0+1/0

[

2-1/271 —» (/27! —1/271 —>2/271

o

1.1.2 Heller triangulated categories

Suppose given a weakly abelian category C; cf. Definition 1.66. From §I.1.2.1.3 on, we assume it
to be equipped with an automorphism

c L. C

(X Y) > (XT2LYT) = (x+1 " y+y),

u Tm u+m

Similarly, we denote (X T™ — Y T™) =: (X" — Y1) for m € Z.

Recall that its Freyd category C is an abelian Frobenius category, and that the image of C in C,
identified with C, is a sufficiently big subcategory of bijectives; cf. §1.6.6.3.

I.1.2.1 The stable category of pretriangles C*(P%)

1.1.2.1.1 Definition of C*(P%)

Concerning the Freyd category C of C, cf. §1.6.6.3. Concerning the notion of a weak square in C,
see Definition [.49. A weak square in C is a weak square in C that has all four objects in ObC.
Applying Remark 1.67, we obtain an elementary way to characterise weak squares as having a
diagonal sequence with first morphism being a weak kernel of the second; or, equivalently, with
second morphism being a weak cokernel of the first.
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Given a periodic linearly ordered set P, we let CT(P#) be the full subcategory of C(P#) defined
by

1) Xaja=0and X,+1/, =0 forall a € P.

2) Foralld'<a<pf<y<di<atinP,
the quadrangle

Ob CH(P#) := { X € ObC(P*) Xyp—— X8 ,

T+T

Xv/a—x>X5/a

is a weak square (as indicated by +).

\ Ve

Note that we do not require that (X,+1/, — Xg+1/5) = (X0 — Xs/5) " for v/a, §/3 € P*
with v/a < 0/0.

An object of C*(P#) is called a P-pretriangle. Given n > 0, an object of Ct(A#), ie. a
A,-pretriangle, is also called an n-pretriangle.

Roughly put, an n-pretriangle is a diagram on the strip A# of the periodic repetition A, of A,
consisting of weak squares with zeroes on the boundaries.

Example 1.2 A O-pretriangle consists of zero objects. A 1-pretriangle is just a sequence
-y Xo/1-1, X1/0, Xo+1/1,... of objects of C, decorated with some zero objects. A 2-pretriangle
is a complex in C which becomes acyclic in C — for short, which is acyclic —, decorated with some
zero objects.

A morphism in C is split in C if and only if it factors in C into a retraction followed by a
coretraction. Equivalently, its image, taken in C, is bijective as an object of C.

Let CT5Pli( P#) be the full subcategory of CT(P#) defined by

Ob CHPi(P#) = {X € Ob cH(pt) . Vi XgpissplitinC }

for all v/a, 6/3 € P# with v/a <&/
We denote the quotient category by

CH(PT) = CH(PF)/CTPR(PT)

called the stable category of P-pretriangles.

Example 1.3 We have C*(A¥) = C*(A¥) = 0. The category CT(A¥) can be regarded as the

homotopy category of the category of acyclic complexes with entries in C.

1.1.2.1.2 Naturality of CT(P#) in P

Suppose given periodic linearly ordered sets P, P’, and a morphism P# <L P'# of periodic
posets such that either (P = P’ and ¢ = T, the shift functor on P#) or ¢ = p* for some

morphism P «2- P’ of periodic linearly ordered sets.
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Recall that if P = A,,, then we write alternatively T,, for the shift functor T on A#.

We obtain an induced functor

cH(pF) S (P
X —— X(C'(g) = qX,
given by composition of ¢, followed by X.

In particular, the shift T on P# induces a functor

CH(P#) ¢ C*(P#)

X — (X' = X(CT(T)),

called the outer shift. Note that if P = A,, then [X]}) = X(g/a)1 = Xo+1/5 for f/a € A¥. On
the stable category, this functor induces a functor

C*(P#) m C*(P#)

X X",

likewise called the outer shift.

_ #
Given a morphism P <2~ P’ in A, we obtain an induced morphism P# ¥~ P'# and hence an

induced functor usually abbreviated by

C*(P#) ¥ =CrwT) C*(P'#)
X — Xp*:=X(CT(p?")).

Likewise on the stable categories; we abbreviate 1_9# = CT(p").

So altogether, we have defined Xp# := p# X (Xp#: operation induced by p, applied to X ; p” X:
composition of p# and X), which is a bit unfortunate, but convenient in practice.

Given a morphism P <~ P'in A and X € Ob C*(P#), we have
(X" = [Xp*]H,

natural in X. Likewise on the stable categories.

Given P, P’ € Ob A, a functor C*(P#) £ C*t(P'#) is called strictly periodic if
XFI™ = (X]7'F,

natural in X. Likewise on the stable categories.

1.1.2.1.3 Naturality of C*(P#) in C

An additive functor C —— €’ is called subezact if the induced additive functor € —— €’ is an exact
functor of abelian categories; cf. §1.6.6.3. Alternatively, it is subexact if and only if it preserves
weak kernels, or, equivalently, weak cokernels; cf. Remark 1.67.
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Suppose given a subexact functor C L, ¢ and P € ObA. We obtain an induced functor

cH(pt) L e (ph)
X — XFH(P#),
where, writing Y := X F+H(P#), we let
zF
(Yja =+ Ys/y) = (XpjaF =+ X5/, F)
for 3/, §/v € P# with B/a < d/7.
In particular, the automorphism C I+ C induces an automorphism
cr(pt) e (P
X — [XT] = X(T+(P#)) ,

called the inner shift. Note that if P = A, then [X ]/, = X;/la for 8/a € A¥.
On the stable category, this induces an automorphism

TH(PF)

ct(P¥) c*(P?)

X — [XT],

likewise called the inner shift.

1.1.2.2 Folding

The following construction arose from a hint of A. NEEMAN, who showed me a multitude of
2-triangles in an n-triangle similar to the two 2-triangles explained in [8, 1.1.13]; cf. Definition I.5.(ii)
below.

1.1.2.2.1 Some notation
Given P = (P, T) € Ob A, we denote by 2P the periodic poset (P, T?).
Given a linearly ordered set D, we let pU D be the linearly ordered set having as underlying set

{p} U D; and as partial order p <, p a for all « € D, and o <, p fif a, B € D and oo <p f.

Roughly put, 2P is P with doubled period, and pU D is D with an added initial object p.

Let n > 0. We have an isomorphism of periodic linearly ordered sets
20, = Ao

L k2 for | =5 0

(k+n+1)*=D2 for =1

and an isomorphism of linearly ordered sets

pUA, = A,
k' +— k+1 forke|0,n]

p — 0.
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In order to remain inside A resp. inside A, we use these isomorphisms as identifications.

Then P+ 2P is natural in P and therefore defines an endofunctor of A, and D+ p U D is
natural in D and therefore defines an endofunctor of A.

Given a linearly ordered set D, we will need to consider the periodic posets 2D and p LI D, formed
using periodic repetition.

1.1.2.2.2 The folding operation

Let n > 0. Let the strictly periodic functor

CH((2A)*) - ct(pUA,)

X +— Xf,
be determined on objects by the following data. Writing Y = X¥,,, we let
(Vaso = Yis) = (Xarrja —= Xgiijs)
(zz)
(Yoo =+ Yra) 1= (Xﬂ“/ﬁ — Xptijan @Xa+2/ﬁ)
y (%)
Yoja —Y5p,) o= (Xﬁ+1/a+1 D Xotzyg — Xgrijpn @ sz/a)
(Yopy = Yprrpy) = (Xé“/v+1 D Xor2s =) 7*2/7+1>

for a, 8, 7,0 € A, with a < 8, with v < § and with §/a < §/v. The remaining morphisms
are given by composition.

Note that X € Ob CT((2A,)%), so e.g. Xg+1,5 # 0 is possible, whereas Xg+2/5 =0 for 3 € A,,.

We claim that Xf, is an object of C*(p U An#).

In fact, by Lemma .54, applied in the abelian category C, we are reduced to considering the quad-
rangles of Y on (v/p, §/p, v/B, 6/0) for 5, v, 6 € A, with f <y < d;0n (v/a, d/a, v/, 0/3)
for a, 3, 7,6 € A, with a < 3 <y < 6; and on (y/a, p™/a, v/8, ptt/B) for a, B, 7 € A,
with a < 8 < 7.

The quadrangle of Y on (v/a, §/a, v/, §/3) is a weak square as the direct sum of two weak
squares.

For the remaining quadrangles to be treated, Lemma [.57 reduces us to considering

the quadrangles of Y on (a/p, B/p, a/a, B/a), on (B/p, p**/p, B/, p™'/a) and on
(B/a, ptt/a, B8, ptt/B) for o, B € A, with a < 3. These are in fact weak squares, as
ensues from Lemma .58 and its dual assertion. This proves our claim.

This construction of Y = X¥,, is functorial in X.

To prove that the folding operation passes to the stable categories, we have to show that for an
object X of C*Plit((2A,)#), the folded object Xf, is in CTPi(pUA,"). Denote Y := Xf,.
Since Y/, 2 Yg/, is split in C for all a, B € A, with a < 3, it suffices to prove the following
lemma.
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Lemma 1.4 Suppose given m > 0 and Z € Ob CT(A#) such that Za)o = Zg o is split in C for
all a, B € A, with 0 < o < 3. Then Z € Ob CHPIt(A#),

Proof. Consider the morphism Z, /, — Zs/p for v/a < 6/ in A¥. We have to show that it is
split in C, ie. that its image, taken in C, is bijective there. Unless o < 3 < v < 0 < o™, this
morphism is zero, hence split in C. If this condition holds, it is the diagonal morphism of the
weak square (Zy/a, Zsja, Zv/3, Zs/3)-

So by Lemma 1.59, applied in the abelian category é, we see that it suffices to show that the
(horizontal) morphism Zg3/, = /o 15 split in C and that the (vertical) morphism Z.,/, =, /8
is split in C for all a, 3, v in A,, with 7y ' <a <8<y <ath

The long exact sequence

in C shows that it suffices to show that the morphism ZMQL y/a s split in C for all
0<a<B<y< 0. In fact, first of all we may assume that 0 < o < 0%, so that
0<a<f<y<at <02 Henceeither 0 < a<B<y< 0, or 0Ky <ag<pB <0, or
0<p <y I<a< 0t

Now we may assume that 0 < « and apply Lemma 1.59 to the weak square
(Zsjo, Zyjo, Z8jas Zyja), in which Zﬁ/OHZ/D is split ifl C by assumption, in which
Zﬁ/OLZﬁ/a is split in C since Za/O"ZB/O is split in C by assumption, and in which
Zy /0 =z /o s split in C since Za)o /A /0 is split in C by assumption. o

So the folding operation passes to an operation

-n

on the stable categories.
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1.1.2.2.3 An example: folding from A¥ to A¥

Let D = A,. Note that 2As ~ Aj. Let X € Ob C*((2A3)%), depicted as follows.

+ +

+

c ]

00— X1+1/0+1 £ X2+1/0+1 £ X0+2/0+1 £ X1+2/0+1 £ X2+2/0+1 =0

+

x

+

x

+

x

+

x

|

()4>X0+1/2 —x>X1+1/2 —x>i>X0+2/2 L>X1+2/2 —(

+

x

+

x

+

x

+

x

+

04>X2/1 —Z>X0+1/1 J>L>X2+1/1 —I>X0+2/1 —(

0%X1/0$X2/0$

|

+

+

x

+

x

+

T

+ =

€T

+

x

+ =

+

Xa+10

+

0 %XO/Q—] in/Q—l £X2/271 ;X0+1/271 iX1+1/271 —(

-1

+

+

+

Note that p LI Ay ~ As. Folding turns X into Xf, € Ob Ct(p L Ay #), depicted as follows.

0

|

(zx)

+

0

(-%)

00—

+
0 X2+2/2+1 E —
+ x +
0 X2+1/1+1€9X1+2/2 i)X1+2/1+1 —_—
x 0
95+° (55) + @ +
X1+1/0+1 @X0+2/1 HJ: X2+1/0+1 ®X0+2/2 HJ: X0+2/0+1 —_—
+ (zx) + (zx) +
: e
+ o (%) +

0x

0 *>X2/271 *>X2/OEBX0+1/271 *>X2/1@X1+1/271 —_—=

|

+

+
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1.1.2.3 A definition of Heller triangulated categories and strictly exact functors

Recall that C is a weakly abelian category, and that T = (—)™! is an automorphism of C.

Suppose given n > 0. We have introduced the automorphisms

_ +
cr(ar) ST oA (outer shift; §1.1.2.1.2)
X — X"
F(AR)  _AD +(A# ~ ™
CT(A7) ————— CT (A7) (inner shift; §1.1.2.1.3)
X — [XT].

The outer shift shifts the whole diagram X € Ob C*(A¥) one step downwards — the object X,+1 /5
is the entry of [X]*! at position 3/a.

The inner shift applies the given shift automorphism (—)™! of C entrywise to a diagram
X € Ob CH(A¥).

Furthermore, we write [X9]** := X TH(A#)*CH(T,)? = XCT(T,)® TH(A#)? for a, b € Zx
and X € Ob C*(A%); similarly for a, b € Z. Likewise in the stable case.

Definition 1.5

(i) | A Heller triangulation on (C, T) is a tuple of isomorphisms of functors

9 = <C+(Tn) %’ TH(A7) ) - ( ks % =" >n>0

n>0

=

such that
(%) p#*ﬁm = ﬁn*p#
for all n, m > 0 and all periodic monotone maps A,, LA, in A, and such that

() foxUn = Yoy *f

for all n > 0.

Note that given n > 0, the isomorphism ¥,, consists of isomorphisms

In
[X}Jrl XT’ [XJrl]

in the stable category CT(A%) of n-pretriangles, where X runs over the set Ob CT(A¥) of
n-pretriangles.

Condition () asserts that the following diagram commutes in Add for all n, m > 0 and all
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(iii)

A = P X . =
periodic monotone maps A, <— A,, in A.

(ap) LT erag)
[+ / SN YIS Y ) PR
§ /# _— c§(Aé>
Condition (#x) asserts that the following diagram commutes in Add for all n > 0.
C*(Bf) —— c+(Af,)
\
-1+ | 19%/‘ (1] o | 2
/ \ /
C* (8 ) —— ct(A )

Given a Heller triangulation ¢ on (C, T), we use the following terminology.
(1) The triple (C,T,¢) forms a Heller triangulated category, usually
just denoted by C.
(2) Given n > 0, an n-triangle is an object X of CT(A#) for which
[X*+!] = [X]*! in Ob C*(A#), and for which

X9, = lixp = lixay (equality in CT(A¥)) .

A morphism of n-triangles is a morphism X — Y in C*(A#) be-
tween n-triangles X and Y such that [u]™ = [u™1].

The category of n-triangles and morphisms of n-triangles is denoted
by CHP=1(A%).

In the notation C*tY=!(A#), the index “ ¥=1 " is to be read as a symbol, not as an actual
equation.

The subcategory of n-triangles Ct>?=1(A%) in the category of n-pretriangles C*(A#) is not
full in general.

An additive functor C —— C' between Heller triangulated categories (C,T,v) and
(C', T, 9) is called strictly exact if the following conditions hold.

(1) FT =TF.
(2) F is subexact; cf. §1.1.2.1.3.
(3) We have
(%) V% FH(A?) = FT(A#) %9,

for all n > 0.
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Such a functor F' is called strictly exact because of the equality in (1).

Condition (*xx*) asserts that the following diagram commutes in Add for all n > 0.

Fr@Aaf)

CH(A%) C't(AF)
7.) /,
1“’\ /[ 1] [+ -’\ﬁ![ﬂ

FT(A?) !
cHAE) C+(AF)

To summarise Definition 1.5 roughly, a Heller triangulation is an isomorphism 4 from the outer
shift to the inner shift, varying with A,,, and compatible with folding. An n-triangle is a periodic
n-pretriangle at which ¢ is an identity. A strictly exact functor respects the weakly abelian structure
and is compatible with shift and 1J.

Note that if 9 is a Heller triangulation on (C, T), so is —9.

Definition 1.5 would make sense for periodic, but not necessarily linearly ordered posets, generalising
A,,. But then it is unknown whether, and, it seems to the author, not very probable that the stable
category of a Frobenius category is triangulated in this generalised sense. More specifically, it seems
to be impossible to generalise Proposition I.11 below accordingly, which is the technical core of our
approach.

Question 1.6 Does there exist an additive functor C L. C’ between Heller triangulated categories
that, in Definition I1.5.(iii), satisfies (1) and (2), but (3) only for n < 27 If F' is an identity, this
amounts to asking for the existence of two Heller triangulations ¢ and ¢’ on (C, T), C weakly abelian,
T automorphism of C, such that ¢, =¥/, only for n < 2.

I.2 Some equivalences

Suppose given n > 0. Suppose given a weakly abelian Category C, together with an automorphism
T:C—~C, X+ X' Concerning the Freyd category C of C, we refer to §1.6.6.3.

We shall show in Proposition 1.12 that the functor C(A#) — C(A,,), induced on the stable cate-

gories by restriction from A to A, = [1,n], is an equivalence.

I.2.1 Some notation
1.2.1.1 Some posets

Let A, = A, ~ {0} = [1,n], considered as a linearly ordered set. We have an injection
A, — A# i+—i/0, and identify A, with its image in A#.

We define two subposets of A% by

>

S 3>

}

= {B/acA¥ : 0<a
a<0}.

= {B/ac A¥ :

>
NN
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Then A, = (A2 N AY) ~ {0/0, 07'/0}.

1.2.1.2 Fixing parametrisations x*, k"

There exists a bijective morphism A2 — Z+ of posets (“refining the partial to a linear order”).
We fix such a morphism and denote by Z, = A% its inverse (as a map of sets; in general, x*
is not monotone). So whenever k*(¢) < k%(¢'), then ¢ < ¢'. In particular, k#(0) = 0/0.

There exists a bijective morphism AY — Z <, of posets. We fix such a morphism and denote by

YA i AY its inverse (as a map of sets). So whenever k" (¢) < k" (¢), then ¢ < /. In particular,
k7(0) = 0+ /0.

1.2.1.3 The categories C*(A2), CT(A2) etc.

Let A be an abelian category, and let B C A be a full subcategory. Let E C A¥ be a full
subposet.

For example, for F' we may take the subposets A%, AY or A2 N AY-*HL of A¥.

Moreover, for example, we may take A = C and for B either C or C.

Let B*(E) be the full subcategory of B(FE) defined by

( Forall o' <a<f<y<d<atlinA,

such that v/«, v/3, /o and §/f are in E,
the quadrangle

Ob B™*(E) := XeObB(E) : Xyp——Xssp >
IT —+ T:t

R

is a weak square (as indicated by +).

\ Ve

The symbol x should remind us of the fact that we still allow X, /, resp. X,+1, to be arbitrary
for a € A, such that a/a € E resp. a*!/a € E.

In turn, let BT (E) be the full subcategory of B™*(E) defined by

Xaja =0 for a € A, such that c E, and
Ob B+(E) = { X € Ob B+’*(E) / or « suc a a/a an }

Xot1/o =0 for a € A, such that o™ /a € E.
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1.2.1.4 Reindexing
Given a subposet E C A% we have a reindexing equivalence

C(E) —=~ C(E™
X — XD
X 4 X

defined by
(X)p/a = Xgjayr = Xajsr

where 3/a € ET!; and inversely by
(X(+l))g/a = X(ﬂ/a)+1 = Xa+1/ﬁ7

where 3/a € E. This equivalence restricts to an equivalence between C*(F) and C*(E1!).

For instance, if £ = A¥ then X! = [X]*!. The outer shift and reindexing will play different
roles, and so we distinguish in notation.

I.2.2 Density of the restriction functor from A# to A,

1.2.2.1 Upwards and downwards spread

Let the upwards spread S* be defined by

C(A,) - CHAY)
X - XS®,
where XS is given by
(XSA>0/0 =0
(XS®) 0 = Xz for B € A,
(XS*)g/a = Cokern(X, N Xg) fora, B € A, with a < 8
(XS*)g/a == 0 for a, B € A, with 07! < 8 < at! < 571

the diagram being completed with the induced morphisms between the cokernels and zero mor-
phisms elsewhere.

This construction is functorial in X. The functor S* is left adjoint to the restriction functor
from C*(A%) to C(A,), with unit being the identity, i.e. X = X S%|4 .

Dually, let the downwards spread S¥ be
C(A,) - CHAY)
X — XSV,
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where X SV is given by

(XS%)g+10 == 0

(XS%)as0 = X, for a € A,

(XS = Kern(X, - X3) fora, B € A, with a < S

(XSV)a/g—l = 0 fora, 3 € A, witha ' <B'<a<0,

the diagram being completed with the induced morphisms between the kernels and zero mor-
phisms elsewhere.

This construction is functorial in X. The functor SV is right adjoint to the restriction functor
from CT(AY) to C(A,), with counit being the identity, i.e. XS%|; = X.

1.2.2.2 Resolutions

1.2.2.2.1 A stability under pointwise pushouts and pullbacks

Let E C A¥ be a full subposet. Moreover, assume that E is a conver subposet, i.e. that whenever
given ¢, ¢ € F and n € A¥ such that £ <7 < (, thenn € E.

An element /5 € E is on the left boundary of E if we may conclude from v/ € FE and v < 9
that v = 6. It is on the lower boundary of E if we may conclude from §/a € F and a < [ that

a=p.

An element v/« € E'is on the right boundary of E if we may conclude from 6/a € E and v < ¢
that v = 4. It is on the upper boundary of E if we may conclude from /3 € E and a < 3 that

a = (.

Let A be an abelian category. Concerning pointwise pullbacks and pointwise pushouts, we refer
to §1.6.7.

Lemma 1.7 Suppose given ¢ € E and an object X of A™*(E).

(1) Given a monomorphism X, X in A, the pointwise pushout X1* of X along =’ is an
object of AT*(E) again.

(2) Given an epimorphism X, X A, the pointwise pullback X1, of X along x’ is an
object of Ob AT*(E) again.

(3) Suppose that € is on the left boundary or on the lower boundary of E. Given a morphism
X. 5+ X" in A, the pointwise pushout X1* of X along x' is an object of A**(E) again.

(4) Suppose that € is on the right boundary or on the upper boundary of E. Given a morphism
X€<iX’ in A, the pointwise pullback X 1, of X along x' is an object of Ob AT*(E)
again.

Proof. Ad (1). First we remark that by Lemma 1.55, the quadrangle
(Xs/as Xs/rs (X1) 50, (X1%)5/,) is a pushout for € < B/a < §/v in E.
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We have to show that the quadrangle of X1t* on (y/a,8/a,v/3,6/3), where
St<ag<p<y<i<a in A, is a weak square, provided its corners have indices in FE.
Using Lemmata 1.54, 1.56 and convexity of E, we are reduced to the case ¢ < 7/a. In this case,
the assertion follows by Lemma 1.55.

Ad (3). Here we need only Lemma .54 and convexity of E to reduce to the case ¢ < 7/a, the
rest of the argument is as in (1). Hence the morphism 2’ may be arbitrary. o

1.2.2.2.2 Upwards and downwards resolution

Remark 1.8

(1) Given a direct system Xg— X; — Xy —> --- in CT*(A2) such that its restriction to
any finite full subposet £ C A2 eventually becomes constant, then the direct limit h_n>11 X;

exists in CT*(A2).

(2) Given an inverse system Xg«~— X; +~— Xo«— -+ in é***(AZ) such that its restriction to
any finite subposet £ C AY eventually becomes constant, then the inverse limit mz X;

exists in CT*(AY).

For k > 0, we let
ObCH*(A2) fh  ObC+H*(A2)

X — Xp7®

') (X2 ey —0) if k2(k) € {a/a, atl/a} for some a € A, with 0 < «
x = _
(Xt ) . Xpoml) if k2(k) = B/ for some o, § € A, with 0 < a < 3 < o™

Define the upwards resolution map by
ObCH*(A%) L Ob c+(AL)
X +—= XR® :=lmXRj RS,
—

m

the direct system being given by the transition morphisms
XR(?"'RrAn — (XR(?"‘RrAJ 7An+1 .

We have XR® = X for X € Ob CT(A%).

Note that we apparently cannot turn the upwards resolution into a functor unless we are in a
particular case in which the map | on objects can be turned into a functor.

Dually, for & > 0, we let
ObCH*(AY) i ObCH(AY)
X — XTm”(k) 5



") (Xxo (k) ~—0) if k¥ (k) € {a/a, a™l/a} for some a € A, with a <0
x = _
(Xpv () ~— XuvyP) if 67(k) = B/a for some o, B € A, witha ™t <371 <a<0
Define the downwards resolution map by
ObCH*(AY) o Ob c+(AY)
X - XRY := limXRJ---RY,
%

m

the inverse system being given by the transition morphisms
XRg -+ R}, < (XR{ - R})Ry., -

We have XRY = X for X € Ob CT(AY).

Lemma 1.9

(1) Given a morphism Y —*~ X in C*(AL) with X € Ob CT(AL), there exists a factorisation

Y24 X) = (Y —-YR*—X).

(2) Given a morphism Y <2 X in CT(AY) with X € Ob CT(AY), there exists a factorisation
YL X) = (Y+~—YR"«X).
Proof. Ad (1). Since the entries of X are injective in C and since Xaja = 0 and X411/, = 0 for
a > 0, we obtain, using the universal property of the pointwise pushout, a factorisation
Y4 X) = (Y —YRy--- RS — X)
for every m > 0, compatible with the transition morphisms, resulting in a factorisation over

YR® =lim YRZ-- R, -
—m

1.2.2.2.3 Both-sided resolutions

Let the resolution map

Ob C(A,) £~ ObCt(A¥)

X — XR

be defined by gluing an upper and a lower part along A, as follows.

XR|ATAL = XSARA
XR|AZ = XSVRV

This is welldefined, since XS*R*|; = X = XSYR"|; . In particular, we obtain

XR|y = X.

We summarise.
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Proposition 1.10 The restriction functor
- (=) .
CH(Af) —* C(Ay)
Y +—— Y|An

18 strictly dense, i.e. it is surjective on objects.

I1.2.3 Fullness of the restriction functor from A¥ to A,

Proposition 1.11 The restriction functors

CHAE) = C(A,)

Y +—— Y|A

n

and 1, .
Ct(An) —+ C(An)
Y P YlAn
are full.

Proof. By duality and gluing along A,,, it suffices to consider the restriction from A% to A,. So
suppose given X, Y € Ob CT(A2) and a morphism X | A, I, Y|4, We have to find a morphism

X 4%V such that fela, = 1
We construct f£, o for £ > 0 by induction on /.

At k2(0), we let f}fA(o) := 1. Suppose given £ > 1. If k2(0) € A,, we let anA(é) = fuoe). If
k2(0) € {a/a, a™ /a} for some a > 0, we let fﬁA(Z) = 1g. If k2(0) =: B/awith0) < a < 3 < a™!,
then we let o := o — 1 be the predecessor of a in A,,, and we let 3’ := 3 — 1 be the predecessor
of B in A,, using that A, is linearly ordered. We may complete the diagram

Y

Y /a Yi/a
fA
o
Xp /o s Xo/a
y + y
x —+ x
. Yo /o " A Yo
X/ ; Xpjar
fA
to a commutative cuboid, inserting a morphism Xg/, Ble, Ys/a- o

~ 4 A, . .
Since we need the restriction functor C*(A¥) —=% C(A,) to be full, we are not able to generalise
from linearly ordered periodic posets to arbitrary periodic posets.
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1.2.4 The equivalence between C™(A#) and C(A,)

n

Let C(A,) be the full subcategory of C(A,) defined by
Ob CP(A,) := {X € Ob C(A,) : Xo— Xgissplitin C for all a, § € A, with o < S} .
We denote the quotient category by
w = C(A,)/CP(A,) .

Proposition 1.12 The functor

induced by restriction from A¥ to A, is an equivalence.

Proof. By Propositions 1.10 and 1.11, we may invoke Lemma 1.41. Moreover, Lemma [.4 gives
o Nl ‘ -

the inverse image of Ob C*i(A, ) under C*(A#) —=£ C(A,,) as Ob CHPlit(A#).

Consider a morphism X —2+ X in C*(A#) such that (X N X')|4, is zero in C(A,). We have

to prove that it factors over an object of C*sPit(A#).

Let Y2 be the cokernel in C(A2) of the counit XA, 5% — X|azs at X|[aa. Note that 2[5 = 0.

By Lemma 1.61, we have Y2 € Ob C*(A2). Consider the following diagram in C*(A2).

X5, 5% —=X|ag —> Y2 —=Y2R"

Ol fA%\L
Loy

X’]AnSA *>X’|A%
The indicated factorisation
flag

(X|as —> X'|as) = (X|as —Y* — X'|70)

ensues from the universal property of the cokernel Y. By Lemma 1.9.(1), we can factorise
further to obtain

flag

(**) (X\Ag — X”Ag) = (X’A,e HYARAHX"A%) .

Dually, we obtain a factorisation
flay
() (X]ay = X'ay) = X|ay —Y'R" — X'|57)
for some YV € Ob C*(AY) such that YV|5, =0.
Since Y2R*|5 = 0 = YYRY| , there is a unique N € Ob C*(A¥) such that N|z. = Y*R*
and N|zy = YYR". By Lemma L4, we have N € Ob CTPit(A%).

Moreover, since both factorisations (%) and (%) restrict to the factorisation

(Xla, == X'l5,) = (Xls, —0—X3)
in C(A,), we may glue to a factorisation
(+) (X LX) = (X —-N—X)

that restricts to (¥*) in C*(A2) and to (x7) in CT(AY). o
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I.2.5 Auxiliary equivalences

We shall extend the equivalence CT(A#) ~» C(A,,) to a diagram of equivalences

CHAE) == cH(AY) =+ C(Ay) =+ C(Any)

1.2.5.1 Factorisation into two equivalences

Abbreviate A2+ .= (A2)*1 C A# AVH .= (AY)*1 C A# and Af! .= (A,)T' C A¥,
Abbreviate A2 == A2NAVH = {B/a : a, 3 € A,, 0<a < B <0} CAF

Let C*sPlit(ALY) be the full subcategory of CT(ALY) defined by
Xy/a — X5, is split in C
Ob CT*PI (ALY = { X € Ob CT(AY) :  forall v/a, /6 € ALY
with v/a < 0/
We denote the quotient category by
C+(ATALV> = C+<A£V)/C+,split<A£V)

Lemma 1.13

(1) The restriction functors

(lagv

CHAY) — e CHAF) (A,

X X|ae

are full and strictly dense.

(2) The functors
(lagv

CHAY) —T CHAF) (A

X . X’A%V

n

induced by restriction, are equivalences.
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Proof. Ad (1). The composition

CHAL) — CHAY) — C(Ay)
X +— XlAﬁV — X|An
is strictly dense by Proposition 1.10 and full by Proposition 1.11. Therefore, the restriction
functor from C*(A) to C*(A,) is full and strictly dense.

We claim that the restriction functor from C*(A#) to CT(ALY) is strictly dense. Let

cf. §1.2.1.4. Similarly,
ObCH(ASTY) B0 Op ¢H(AL+)
X — (XEDRYED

Given X € Ob C*(ALY), we may define X’ € Ob CT(A#) letting

X,|ATAL,+1 = X‘Azl SA’+1RA’+1
X’|A%v = X
X'lay = X]|4,S"R".

We claim that the restriction functor from A# to A" is full. Suppose given X, Y € Ob C*(A¥)
and a morphism X |z S, Y|as. By Proposition 1.12 and a shift, there exists a morphism

X a1 B Y|ps.+1 such that f4]y+1 = f[i+1. By Proposition 1.12 and by duality, there exists a
morphism X|ay AR Y|ay such that fY|5 = f[s . We may define a morphism X Ly letting

f/’Aﬁ’_H = fA
f’|5%v = f
f”A,z = f7.

Ad (2). The composition

CHAf) — CHAY) — CAy

X +— X|A$Lv - X‘An

is an equivalence by Proposition 1.12. Therefore, the functor induced by restriction from A%
to ALY is faithful. By (1), it is full and dense, and so it is an equivalence. Therefore, also the
functor induced by restriction from A%" to A, is an equivalence. -

1.2.5.2 Cutting off the last object

Putting n = 2, the equivalence given in Lemma [.16, composed with the equivalence in Proposition
I.12, can be used to retrieve HELLER’s original isomorphism, called 6(A) in [24, p. 53].
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In this section, we suppose that n > 2. Consider the functor

K

X — XK = (XT0)|AH,17

where 0 denotes the morphism 0 2, X, ; cf. §1.6.7.

Explicitly, we have (XK); := Kern(X; — X,,) for i € [1,n — 1], taken in C, equipped with the
induced morphisms (XK); — (XK); for i, j € [1,n — 1] with ¢ < j, fitting into a pullback
(XK)i, (XK);, X, X;).

Let CP(A,,) C C(A,,) be the full subcategory defined by
Ob C*i(A,) = {X € Ob C(A,) : (X;— X;) is split in C for all 4, j € [1,n] with i < j},

and let C(A,) := C(A,)/CP(A,) and C(A,_1) i= C(A,_,)/CPH(A,_,).

For Y € ObC(A,) and i € [1,n], we let YR, := Y1Yi*e ObC(A,).

We have a resolution map

ObC(A,) T obc(A,)
Y = YR, :=YRy---R,.

If Y € ObC(A,) consists of monomorphisms, then so does Y R!,, whence YR/, € Ob CP1(A,).

Given a morphism Y — Y in C (An) with Y’ having bijective entries, this morphism factors
over Y —— Y R/ by injectivity of the entries of Y and by the universal property of the pointwise
pushout.

Lemma 1.14 The functor K is dense.

Proof. Suppose given X € ObC(A,_;). Let X’ € ObC(A,) be defined by X'lp,, = X and
X! :=0. Then X'R, € Ob C(A,) has (X'R,)K ~ X. .

Lemma 1.15 The functor K is full.

Proof. Suppose given X, Y € Ob C(A,) and a morphism X K JL Y K. We claim that there ex-
ists a morphism X ¥V such that fK = f. We construct its components f, by induction on /.

For ¢ = 1, we obtain a morphism X; -/~ ¥; such that ((XK)1, (YK)y, X1,Y1) commutes, by in-

jectivity of Y1 in C. For £ > 2, we obtain a morphism X, -/ Y} such that (XK)e, (YK), X0, Y0)
and (Xy_1,Y,_1, Xy, Yy) commute, by the fact that ((XK),_1, (X K)g, X1, X¢) is a weak square
and by injectivity of Yj. o

Proposition 1.16 The functor K induces an equivalence

K

C(A,) = C(A,)
X — XK.
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Proof. Let C C C denote the full subcategory of bijective objects in C. Every object in C is a
direct summand of an object in C. Let C**"(A,_;) € C(A,_1) be the full subcategory defined
by

ObCPi (A, ) == {X €C(A,_1) : (X;— X;) is split for all 4, j € [I,n — 1] with i < j},
Let Y be an object of C*"(A, ;). Then YR/

n—1

is an object of C**(A,_;) that has Y as a
direct summand since the identity on Y factors over Y Y R, ;.

Therefore, any morphism that factors over an object of CNSp“t(An,l) already factors over an object
of CP(A,,_;). We infer that

A

C(A,_1) = C(A,_1)/CP(A,_)).

Suppose given X € Ob C(A,). Denote X’ := XK € ObC(A,_y).

We claim that if X € Ob C®*(A,), then X' € ObC®(A, ;). First of all, X! is bijective
for i € [1,n — 1], since the image of X; — X, is bijective, and since X is the kernel of this
morphism. Now suppose given i, j € [1,n — 1] with i < j. In C, we let B be the image of
X;— Xj; and form a pullback (B, X}, B, X;). Then there is an induced morphism X — B’
turning (X!, B’, X;, B) into a commutative quadrangle, which is a pullback by composition to a
pullback (X}, X7, X;, X;). We insert the common kernel Z of Xj — X and X] — X.

ot ]

Hence Z —e» X! is split monomorphic, and therefore X’ —+ B’ is split epimorphic. Thus B’ is
bijective, and so finally B’ -~ X7 is split monomorphic. This proves the claim.

We claim that if X’ € ObC®(A,,_;), then X € Ob C®(A,). Suppose given i, j € [1,n — 1]
with 7 < j. We have to show that X; — X is split in C. In C, we insert the image B of
X; — Xj and form a pullback (B', X}, B, X;). Since (X}, B, Xj, B) is a square, and since X is
bijective, its diagonal sequence is split short exact. Hence B is bijective as a direct summand of

X; @& B’, which proves the claim.

Invoking Lemma [.41 to prove the equivalence, it remains to show that given X Jivince (An)
such that fK = 0, there exists an object V in CPi*(A,) such that there exists a factorisation

(X-Ly)=(X—V—Y).

Denote by XK’ € Ob C(An) the object that restricts to X K on A,,_; and that has (XK'"), :=0.
Let U be the cokernel of X K’ —~ X and consider the following diagram.

XK ——=X—+=U—->UR,

YE ——Y
The morphism U — Y is induced by the universal property of the cokernel. Its factorisation
(U—Y)=(U—-~UR,—Y) exists since Y consists of bijective objects.

Since the morphism X K’ —~ X consists of pullbacks, its cokernel U consists of monomorphisms.
Hence so does V := UR,,, which is therefore in Ob C*!(A,,), as required. o
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1.2.5.3 Not quite an equivalence

Let C*rperiodic(A#) he the subcategory of CT(A#) that consists of morphisms X L. ¥ for which
() = (X7

which is in general not a full subcategory. The objects Ct-Periodic(A#) are called periodic

n-pretriangles, the morphisms are called periodic morphisms of periodic n-pretriangles. Let
C—I—,split,periodic(A#) — C+,periodic(A#) N C+,Sp1it(A#)
n ° n n/*°

For instance, if (C, T,?) is a Heller triangulated category, then C*+?=1(A#) C ¢t periodic(A#) jg a
full subcategory.

For Y € Ob C(A,), we define Y'S € Ob C*(A#) by

YS|A,AL = YSA
YS’AZ = YSV 5

and similarly on morphisms. If Y € Ob C*%(A,), then Y'S € Ob Ct*it(A#) by Lemma 1.4,
since Y'S|; =Y € Ob CPIY(A,).

To any X € Ob CT(A¥) for which Xg/, is zero for all but finitely many 3/a € A# | we can

n

assign its periodification

X = @[X—H']—i c Ob C—&-,periodic(Af) :
i€Z
and similarly for morphisms between such objects.

If X € Ob C+Pit(A#), then X € Ol C-+plit.periodic(A#).

n
We have the restriction functor
A,

C—i—, split, periodic (A#) Csplit (A )
n n

X X]4,
which is not faithful in general, as the case n = 2 shows. In the inverse direction, we dispose of
the functor _
C+, split, periodic(A#) i Csplit(An)

S=YS ~— Y.
Lemma L.17 For X € Ob Csplit-periodic(A#) “ype have X ~ X|[4 S.
Note that we do not claim that 1 ~ (_)|An§ as endofunctors of C T split, periodic( A7)

Proof. We have a short exact sequence
X[a,8ay — Xl|ag — [X[4,97 aw

in CA(A,ALV), and it suffices to show that it splits. Write C' := X[ S|zav.
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It suffices to show that there exists a retraction to C'— X| Asv, which we will construct by
induction. Suppose given 0 < a < 3 < 07!, We may assume that after restriction of C'— X| Asv
to {6/y € A2 . §/v < (/a}, there exists a retraction. Let o’ := a — 1 be the predecessor
of a, and let 3 := 3 — 1 be the predecessor of 3, using that A, is linearly ordered. It suffices
to show that the morphism from the quadrangle (Cg /o, Cprja, Cg/ars Cpja) to the quadrangle
(Xﬁ//a/, Xﬁ//m Xﬁ/a/, Xﬁ/a) has a retraction.

Let (Xg/a/s Xp/ja, Xg/ar, T') be the pushout in C. The quadrangle (Cs/asCpljay Carars Cpja) is
a pushout. The induced morphism from (Cg /o, Cg /0 Cs/ars Cs/a) to (Xpr/ars Xgrjas Xgjars T')
has a retraction by functoriality of the pushout. The morphism T'— Xjg/, induced by
pushout is a monomorphism in C, since (X3 /0, X3/ ja, Xgjar, Xg/a) is a weak square. Note
that (Cg/a, T, Xp/a) is a commutative triangle.

The morphism T'— U3/, that is part of the retraction of quadrangles, factors as
(T'—Cpja) = (T'—>Xp/a —Cpja) ,

since C/, is injective in C as a summand of Cgro = Xpjo. Now X3/, — Cp/o completes the three
morphisms on the other vertices to a retraction of quadrangles from (Xg /a1, Xg//a, X5/0/, X5/a)
to (C@//a/, C@//a, Oﬁ/a/, Cﬁ/a) as sought. o

1.3 Verification of Verdier’s axioms

Let (C, T,¥) be a Heller triangulated category.

I.3.1 Restriction from C*"='(A#) to C(A,) is dense and full

Let n > 1. Let
CAL) S~ CHALM
U +— USY = (UFDSY)ED
be the conjugate by reindexing, i.e. a “shifted version” of SV; cf. §1.2.1.4. Note that

(USIV)/Q/Q = Kern(Ug+1/a —u> UOH/B)

fora, 3 € A, with 0 < a < 5 <0t

Lemma 1.18 Suppose that idempotents split in C. Given X € Ob C(A,), there exists an
n-triangle X € Ob CH9=1(A#) that restricts to

X|a, = X.

~ 4y ()l ‘
In other words, the restriction functor CHo=Y(A#) =2 C(A,) is strictly dense.

Proof. Let Y := XR € Ob CT(A#); cf. §1.2.2.2.3. We have an isomorphism [Y]*! e Y] in
CH(A#). Let [Y 1] -2 [Y]*! be a representative in C*(A#) of the inverse isomorphism (Y,,)”
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in C*(A#). Consider the morphism (7)

(6]~

Y] 30 AL YT g = Yaen

We have an induced pointwise epimorphism
Y|A7ALV —t— Y|A$13,vlﬁﬁv s
which we may use to form the pullback

J —+—— [Y+1]71|Azls/v|ﬁﬁv
-
f J{W]IA#S’VA%V

Y|ag —+—=Y |15 |ag

in the abelian category C(A2Y), i.e. pointwise. An application of Lemma 1.61.(2) to the diagonal
sequence of this pullback shows that Z € Ob é+’*(Aﬁv). We obtain Z,,, =0 forall 0 < oo < 07

and we obtain Zy+1,y = 0. Hence we have Z € Ob CHAY).
Suppose given 3/a € ALY, We claim that Zgq, Jose, Y3/ represents an isomorphism in C /C.
By Lemma [.64, it suffices to show that

([0~ x4+15") 5/a
(Y7 46155/ S (Y|4 ) g

represents an isomorphism in C /C.  Since evaluation at [/« induces a functor from
CH(ALY) /CHsPiY(ALY) to C/C, where CT 5Pt (AAY) denotes the full subcategory of C*(AAY) con-
sisting of diagrams all of whose morphisms split (in C or, equivalently, in C), it suffices to show
that

[9}71‘ . S/V‘,
Y4008 | A 2

- Y|p0 S |aw
represents an isomorphism in C*(AAY) /C+split(ALY),
Now (—)"Y5"|5s induces a functor from C(A,) to CH(ALY)/CHPit(ALY) since it maps

Clt(A,,) to CH Pt (ALY by Lemma 1.4, using that idempotents are assumed to split in C. There-
fore, it suffices to show that

-1 (+1)
(1 )0 2 o)™

n

(Y] z50)0HY

represents an isomorphism in C(A,,). Since (=17 as)Y = (=)| 4, , this means that it suffices
to show that o,
YA, = 74,

n

represents an isomorphism in C(A,,). Since (—)| A, induces a functor from C*(A#) to C(A,), it

suffices to show that
[Y—H] 49, [Y]—i—l

represents an isomorphism in C*(A%). This, however, follows by choice of . This proves the

claim.

"We recall the convention that the inverse of the outer shift applied to a morphism f is written [f]~!, whereas
f~ denotes the inverse morphism, if existent.
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Since idempotents are assumed to split in C, we can conclude from the claim that for all 5/« in
AL the entry Zg /o 18 isomorphic in C to an object in C, hence without loss of generality, the
entry Zg/, is an object of C. So Z € Ob C*(ALY).

We remark that
ZlA, Yla, = X
Zlan = Yy = (XTHEY,

(%)

where X1 arises from X by pointwise application of (—)*!. Concerning morphisms, we remark
that

f 1
(4) (Z—=—Y|aw)la, = (X—X)
f L0
(Z—=—Y|aw)larr = (YT =Y) a1

In fact, on A, the right hand side column of our pullback vanishes; and on A,f ! the lower row
of our pullback is an identity.

Now, () allows to define the periodic prolongation Z € Ob C*(A¥) of Z € Ob C*(A%) by
Z|as := Z and by the requirement that [Z]™ = [Z11].

We claim that Zv,, = 17+ in CT(A¥). Let Z ¥ be an inverse image of Z S, Y |asv under

—agw

CH(AH) Dlagg CT(ALY); of. Lemma 1.13.(1). By (*x), we get

_ 7 1
" (ZLy)s, = (X
> —1 !
(Z=Y)lapn = (VT ==Y)[ap
We consider the commutative quadrangle
2] 2o 2]
i | |+

Y] = [y

in C*t(A#). We restrict it to A, to obtain the commutative quadrangle

2175, — o (24 5,
[f]+1Ani i[f+1}An
Y| ;
Vg, — e [y
in C(A,), which, using ('), can be rewritten as
X+ Z0nlan Y+
6|Anl llx+l
Y]]y, e s x4t

where we did not distinguish in notation between |, and its residue class in C(A,,), etc.
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Since 8(Y9,) = 1jy+1) in CT(A¥), we have 0|5 (YU,|4 ) = 1x+1 in C(A,). Thus the last quad-
DhE oAy is

rangle shows that Zd,|y = 1x+1 = Lizm|a, in C(A,) as well. Since C*(A¥#)
an equivalence, we conclude that 24, = lizj+1 in C*(A#); cf. Proposition 1.12. This proves the

claim; i.e. we have shown that Z is an n-triangle.

Since Z|5 = X by (*), this proves the lemma. o

In the proof of Lemma 1.18, we needed the assumption that idempotents split in C in the equivalent
form that the residue class functor C — C/C maps precisely the objects isomorphic to objects of
C to zero — just as HELLER did at that point.

Lemma 1.19 Given n-triangles X and Y and a morphism
f
Xz, = Yla,

in C(A,), there exists a morphism X—f> Y of n-triangles such that f|An = f. In other words,
~ . (DA .
the restriction functor CH7=Y(A#) —=% C(A,) s full.

A, ;

Proof. Since the restriction functor C*(A#) —= C(A,) is full by Proposition 1.11, we find a
morphism X —%+ Y in C*(A#) such that g5 = f.

Let g denote the residue class of g in CT(A¥). Since 9, is a transformation, we have [¢]™ (Y,,) =
(X0,)[g™"]. Since X and Y are n-triangles, both XvJ,, and Y9, are identities, and this equality
amounts to [g]*! = [g*!], i.e. the difference [g]*! — [g*!] factors over an object of CT*Pit(A%).

Restricting to A,,, the difference

(™" = 1o Dla, = (glag)™ =1

factors over an object of C***(A,). Therefore, g|y+1 — ()Y factors over an object Z of
CPH(ALY), say, as

_(f+1)(71) a b
Vap) = (Klap =25 Vgp) -

9las1

(Xap

By periodic continuation, it suffices to find a morphism X |5 R Y|aer in CT(AL) such that
f‘An = f and such that f\A# = (f™)Y. Le. we have to find a morphism X |z N Y| asv
such that h|, = 0 and such that h|z+1 = ab, for then we may take fi= glaw — h.

Note that (ZS5"|au0)|4, = 0. Note that ZS'Y |4 is in CT(ALY), hence in CT*Pi(AL) by Lemma
[.4.

. . . . .. A . a'
Since S'V|zu is right adjoint to restriction to A}t', we have a morphism X |z — Z5"7|5a0 such
that CLI|A:1 = Q.

o ar ,
Since CT(ALY) 2 C(A!) is full by the dual and shifted assertion of Lemma 1.13.(1), there
is a morphism ZS" |z L Y|asv such that b'| 341 = 0.

We may take h := a'b'. o
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In Lemmata I.18 and I.19, we do not claim the existence of a coretraction from C(A,,) to T =1 (A#)

to restriction. The construction made in the proof of Lemma 1.19 involves e.g. a choice of a lift b’
of b. Cf. [57, 11.1.2.13].

The fullness used in the proof of Lemma I.19 to lift b, can also be used to lift a. We have used the
direct argument and thus seen that the lift a’ of a does not involve a choice.

Remark 1.20 Suppose that idempotents split in C. By Lemmata 1.18 and 1.19, the restriction
functor =y
CHITHAY) —* C(An)

is full and strictly dense. By Proposition .12, the restriction functor

CT(AH) (lwlAﬁ C(A,)

is an equivalence. Denoting by C*Y=1(A#) the image of C*?=1(A#) in C*(A¥), we obtain a

Ola, .

full and strictly dense functor Ct?=1(A#) C(A,). Since it factors as a faithful embed-

ding C*7=Y(A#) . C*(A¥#) followed by an equivalence, it is also faithful. We end up with

equivalences Ol
cH=NAE) =+ cA,) CHUTHAY) = (AT

n n

1.3.2 An omnibus lemma

Suppose given n, m > 1. Concerning the category CT:Pericdic(A#) of periodic n-pretriangles
and its full subcategory C*sPlit:periodic(A#) "of §1.2.5.3; concerning the category CTV=1(A¥) of
n-triangles, cf. Definition 1.5.(ii). Note that

CHI=I(A) C crreedie(A#) C CHAY),

n

and that the first inclusion is full.

Lemma I.21

(1) Let X be an n-triangle, and let A, 2= A, be a morphism of periodic linearly ordered sets.
Then Xp*, obtained by “restriction along p”, is an m-triangle.

(2) Let X be a (2n + 1)-triangle. Then Xf,, obtained by folding, is an (n + 1)-triangle.

(3) The category CHU=Y(A#) of n-triangles is a full additive subcategory of the category
CHiperiodic(A#) of periodic n-pretriangles, closed under direct summands.

(4) Suppose given an isomorphism X Ty in CHperiodic(A#) - [f X is an n-triangle, then Y
s an n-triangle.

(5) Let X oY be a morphism in CHperiodic(A#) such that f|s  is an isomorphism. Then f
18 an isomorphism.

(6) Let X and Y be n-triangles. Suppose given an isomorphism X|A —z»Y|An in C(A,).

Then there exists an isomorphism X ——Y in CHI=Y(A¥) such that Ulea,) = U
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(7) If X € Ob CHsplitperiodic(N#) “then X is an n-triangle.

Note that Lemma 1.21.(5) applies in particular to n-triangles and a morphism of n-triangles.

Proof. Ad (1). In C*(A%), we have

(Xp )0 = (X0)p" = (Ixp)p” = Tpxpser -

Ad (2). In C*(Afﬂ), we have
(Xf )0ni1 = (XV2n41)f, = (Lxpe)f, = Lixg e
Ad (3). We have to show that
X, Y € Ob CTHV=1(A¥) — XaY € ObCh'=H (A .

But since 9,, is a morphism between additive functors, we have (X & Y)d, = Iixgy)+r if and
only if X4, = 1[X]+1 and Y9, = 1[y]+1. In fact, (X ©® Y)ﬁn identifies with (Xg" Y%n)'

Ad (4). Since f|4, is an isomorphism in C(A,), so is its image in C(A,,). Hence the image of f

in C*(A¥) is an isomorphism by Proposition 1.12. Consider the commutative quadrangle

+1
X]7 e

Xﬁnil llYﬁn

+1
[X+1] LNL [Y+1]

in CY(A¥). Since [f]*! = [f™] by assumption, we conclude from X¥, = ljxj« that YV, =

1[y]+1.

Ad (5). It suffices to show that given 0 <14 < j < n, the morphism f;/; is an isomorphism in C.
In fact, we have a morphism of exact sequences

(fios Fisos Fiis Fibos Fi0)
inC , whose entries except possibly f;/; are isomorphisms; hence also f;/; is isomorphic.
Ad (6). This follows by Lemma I1.19 using (5).
Ad (7). We have [X]*' =~ 0 in C*(AF), whence X0, = Ly € oy aa([X]T [X]F). o

I[.3.3 Turning n-triangles
Let n > 2.

Lemma 1.22 Given an n-triangle X € Ob CHY=1(A#), we define Y € Ob CtPeriocdic(A#) py

n

letting
(Y= Yirp) = (Xprryy — Xpwry)

for0<i<j<nand0<i <j <n such that i <i' and j < j', and by letting
(Yoji == Yorr i) = (Xirrjn —> Xy jon1)

for 0 <i<n. Then [X]irl =Y is an n-triangle.
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Proof. Let

L Tt =0
0tuHh/2 if j =51,
where i € [0,n — 1] and j € Z. The map h,, is a morphism of periodic posets. We claim that
Y = Xh¥f, .

Once this claim is shown, we are done by Lemma 1.21.(1, 2).

Note that (Xh#)ix = Xin, kn, for k, 1 € 27,1 with k <I. For 0 <i<nand1<j<0™, we
obtain

( (Xh#)(j—l)ﬂ/(j—l) fori=0and 1 < ] <n
(Xh#f 1) = (Xh#>(i—1)+2/(i—1)+1 forl<i<nandj= 0f!
nin—=L1/j/t .
(Xh#)(j_l)ﬂ/(i_l)ﬂ ©® (Xh#)(i_l)m/(j_l) fori1<i<j<n
L 0 for i =0 and j = 0™!
( Xot1y;  fori=0and 1<j<n

Xt for 1 <i<n and j=0*!
Xi+1/j forlgz\jgn
0 fori=0and j =07,

\

and also the morphisms result as claimed. o

I[.3.4 Application to the axioms of Verdier

Recall that (C, T,4) is a Heller triangulated category.

Proposition 1.23 Suppose that idempotents split in C. The tuple (C,T), equipped with the set of
2-triangles as the set of distinguished triangles, is a triangulated category in the sense of Verdier
[56, Def. 1-1].

Proof. We number the axioms of Verdier as in loc. cit.

Ad (TR 1). Stability under isomorphism of the set of distinguished triangles follows from Lemma
1.21.(4).

The possible extension of a morphism to a distinguished triangle follows by Lemma I.18.

The distinguished triangle (X, X,0) on the identity of an object X in C follows by Lemma
[.21.(7). Alternatively, one can use that each morphism is contained in a distinguished triangle
and the fact that a distinguished triangle is a long exact sequence in C.

Ad (TR 2). Suppose given a distinguished triangle

X 4%y Y oz X oxth
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By Lemma 1.22, we obtain the distinguished triangle

+1 +1 _pt1
X+1 L» Y+1 L Z+1 L X+2 )

By Lemma 1.21.(1), applied to the morphism Ay ~— A, that sends 0 to 27, 1 to 0 and 2 to 1,
we obtain the distinguished triangle

y oz 2% xtt Ly

By Lemma 1.21.(4), we obtain the distinguished triangle

1 —utt
—_

y % 7 Yoxt y+t,

Ad (TR 3). The possible completion of a morphism in C(A;) to a morphism of distinguished
triangles follows from Lemma [.19.

Ad (TR 4). The octahedral axiom, i.e. the compatibility of forming cones with composition of
morphisms, follows from Lemma 1.18, applied to the case n = 3, for by Lemma 1.21.(6), we may
arbitrarily choose completions to distinguished triangles. o

Note that 3-triangles are particular octahedra, in the language of [8, 1.1.6]. Using 3-triangles,
we will now verify the axiom proposed in [8, 1.1.13].

Lemma 1.24 Suppose given a 3-triangle T in Ob C*7=1((2A,)%), depicted as follows.

0

+ vtl
00— 2"~y
T oL
0—=Y > 7/ > xH1
T + Ty + z  +
0 X Y —Z 0
Then W'
TH = (v 2 gz &) Z”@X“(ii) Y+
and /

1y (yv) Y

Tstf = (70t y Y yig g (‘J 7'

are distinguished triangles, where 2A1 ~—2A is the morphism of periodic posets determined by
0s =171, 1s=0, 0"'s =1 and 1*'s = 0.

Proof. This follows by Lemma 1.21.(1, 2). 0
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I.3.5 n-triangles and strictly exact functors

Let C-2+C be a strictly exact functor between Heller triangulated categories (C,T,4) and
(C', T 9. Let n > 0.

Lemma 1.25 Given an n-triangle X € Ob CTY=Y(A#), the diagram X (F*(A¥)), obtained by

pointwise application of F to X, is an n-triangle, i.e. an object of C'HV'"=1(A#).

Proof. Using FT' =T F as well as [X]|™! = [XT!], we obtain

[XFHADIT = X(FHAD)CH(T) = X(FH(Tw)
= X(CHT)HFHAY) = [XIPU(FHAY))
= [XT(FH(AY)) = X(TT(AD)FH(AY))
= X((TF)"(A])) = X((FT)"(AY))
X(FHAD)TTAL) = [(XEHA))M].
Moreover,
X(FHA), = X0.(FH(A]) = lxpa(F(AL) = Lpeagy -

[.3.6 A remark on spectral sequences

VERDIER calls certain pretriangles objets spectraux (spectral objects); cf. [57, Sec. I11.4]. We shall
explain the connection to spectral sequences in our language.

Consider the linearly ordered set Z, := {—oco}UZ{+00}. Let Z## be the subposet of Z% (A;)
consisting of those d/5/~/a for which
' <a<B<y<s<att,

where o, 3,7, 0 € Zs. A spectral object, in a slightly different sense from [57, 11.4.1.2], is an
object of C*(Z%). The spectral sequence functor

cHZt) 2 C(zt)
X +— XE,

is defined by
XE@/B)v/a) = Im(X,/a — X5/5)
for 6/8/v/a € Z%#, equipped with the induced morphisms.

Lemma 1.26 Given o, (3, 7, 9, ¢ € Zs such that
el <a<f<y<i<e <atl,
and given X € Ob C*(Z%), the morphisms appearing in XE form a short exact sequence

XE(e/B[v/a) =~ XE(e/B)6/a) -~ XE(e/v/d/a) .
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Proof. This follows by Lemma [.62, applied to the diagram

(Xy/as Xojas Xesas Xoyss Xops Xeygy Xopys Xopyy Xepy) -
~—~—

=0

Note that we may apply a shift 3/a > at!/3 to the indices, i.e. an outer shift to X, before
applying Lemma 1.26, to get another short exact sequence.

The usual exact sequences of spectral sequence terms can be derived from Lemma 1.26. Cf.
[57, 11.4.2.6], [12, App.].

I.4 The stable category of a Frobenius category is
Heller triangulated

Let F = (F,T,l,¢,P,m) be a functorial Frobenius category; cf. Definition 1.45.(3). Let B C F
denote the full subcategory of objects in the image of I, coinciding with the full subcategory of
the objects in the image of P; then B is a sufficiently big full subcategory of bijectives in F.

We shall prove in Theorem 1.32 below that the classical stable category F carries a Heller triangu-
lation.

I.4.1 Definition of FZ (A

n

), modelling FT(A%)

We shall model, in the sense of Proposition 1.31 below, the category £t (A#) by a category F5 (A#).
Morally, we represent weak squares (+) in F by pure squares (O) in F. To do so, we have to represent
the zeroes on the boundaries by bijective objects.

Let n > 0. Concerning the notion of a pure square, see §1.6.4. Let F2(A#) C F(A¥) be the
full subcategory defined by

(

1) Xajo and Xy+1), are in Ob B for all a € A,

2) Foralli'<a<pB<y<di<atinA,,
the quadrangle

Ob FE(A#) == { X € ObF(A¥#) X8 — Xs/8

4 - T :

Xojo == Xs/a

is a pure square.

\ J

Given n, m > 0, a morphism A, <2~ A,, induces a morphism F"(p#), usually, and by abuse of
notation, denoted by p*.

Given an exact functor F — F between functorial Frobenius categories that sends bijectives to
_ O(A# O

bijectives, we obtain an induced functor FO(A#) D F S(A#) by pointwise application

of F.
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Denote by
M

—

) !
) M
)

5
Sy

>
=4

+

/——\1— —
> >

S¥ S

—

MH

—

SR

F N oF
FA) XoF

the respective residue class functors, welldefined by Lemma 1.71. In particular, M = M'M".

1.4.2 Folding for FU(A#)

We model, in the sense of Remark 1.27, the folding operation f introduced in §1.1.2.2.

Suppose given n > 0. Let the periodic functor

F@QAF) I FOpUA,Y)
X — X,

be determined by the following data. Writing YV := X ]En, we let

(Ya/pLY/@/p) = ( atl/a = X5+1/ﬂ>
Yo =0
Y;;Jrl/p = 0
(Yo/p—Yssa) = <X6+1/ﬁ S5 Xt g @Xa+2/ﬁ)
y (x 0)

(YQ/QHYZ;/,Y) = <X5+1/04+1 S X at?/g T X5+1/’Y+1 DX +2/5>
(Y;;/,y—y> +1 ) = Xs+1 /041 D X 42 <;x>> X 42 /41

Pt/ ot /y v+2/6 T2 /y

for a, 5, 7,0 € A, with a < 8, with v < § and with §/a < §/v. The remaining morphisms
are given by composition.

We claim that X, is an object of F2(p L An#).

In fact, by Lemma 1.52, we are reduced to considering the quadrangles of ¥ inside A%V i.e. the
quadrangles

(i) on (v/a, §/a, v/B, 6/B) for a, B, 7,5 € A, with a« < 5 <y < 6;
(ii) on (v/p, 6/p, /B, 8/F) for B, v, 6 € A, with < v < 0;
(i) on (v/a, p™/a, v/B, p*/B) for o, B, v € A, with o < 3 < ;

(iv) and on (8/p, p™/p, B/a, p™/a) for a, B € A, with a < .
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Another application of loc. cit. reduces case (i) to case (ii) (or (iii)). Still another application
of loc. cit. reduces the cases (ii) and (iii) to case (iv). Now the quadrangle in case (iv) is in fact
a pure square, as follows from X € Ob FZ(A#) and the definition of a pure square via its pure
short exact diagonal sequence.

The construction of Y is functorial in X.

Remark 1.27 We have f, M’ = M'f,,, and thus f,M = Mjf forn > 0.

FIAH) = T A

M’ lM’
FH((2A)*) "> £+ U A
M// iMU

Example 1.28 Let n = 2. Note that 2Ay ~ As. Let X € Ob F7((2A2)#), depicted as follows.

ol ol el ot o]

X0+1/0+1 é X1+1/0+1 g X2+1/0+1 é X0+2/0+1 g X1+2/0+1 g X2+2/0+1 é X0+3/0+1

T O T O T O T O x O IT
Xojg —% Xot1)g —Z Xp15 % Zs Kotz g —2> Xyv2 /g —2 Xoi2 )9
T O T O T O T O x O x
X112 Xojy —% Xot1/g —% s Xor1)) —E= X2 ) —2> Xp42))
T o = O T O T O T O x
Xo/o L X1/0 I Xa2/0 £ Ly Xi+1/0 s Xo+1/0 LS Xo+2/0
zT o =z o =z g z O T O z
X271/271 5 X0/2—1 £ X1/2—1 £ X2/2—1 =3 X0+1/2—1 =z X1+1/271 £ X2+1/271
T O T O d d O

Note that the objects on the boundary of the diagram,

oy Xo—iyo-ry Xogo, Xujis Xojo, Xotijorn, ..
oy Xotryg-1, Xotzgo, Xz, Xovzsn, Xowsjon

are all supposed to be in Ob B.
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Note that p LI Ay ~ As. Folding turns X into Xf, € Ob FJ (m#), depicted as follows.

0——
- O
Xo+1 /911 @ Xar2 /g —5 Xor2 jgt1 —>

(59 O | O

z 0 x

O —
X1+1/1+1 @X1+2/1 —x> X2+1/1+1 ®X1+2/2 —x> X1+2/1+1 —

z 0 <%g) xDO (:82 a T ! -

KXo jor1 © Xo+2 0 n? Xy41 001 © X2 /1 s’ X1 s @ X2 3 —2 Ko jo1 —>

() 0D (o) O (zo) o
B R
o (-%) o (-z) o (-2)

T z 0 z 0
X271/271 EBX2/272(;1>)X2/271 (Iil X2/0®X0+1/271 (Oiz Xg/l @X1+1/271 M X2/2@X2+1/271

T 0 T D 0

I.4.3 Some l-epimorphic functors

Let n > 0. Concerning 1-epimorphy, cf. §1.6.8.

Lemma 1.29 The restriction functor

x (=)l ;
FAAD =+ F(A)

X — X‘An

1s 1-epimorphic.

Proof. We claim that the functor (—)|4 satisfies the requirements (i, ii) of Corollary 1.76, which
then implies that it is 1-epimorphic.

Suppose given Y € Ob F(A,). We construct an object Y of FP(A#) such that Y/|An =Y by
the following procedure.

Write A2 := A2 {0/0} and AV := AY \ {011/0}; cf. §1.2.1.1.

On A%, we proceed by induction to construct a diagram for which, moreover, the morphisms
Y,
moreover, for which Y,+1,, = 0 for all 0 < a.

Ja — Y, 3 are purely monomorphic for all o, 3, v € A, with 0 < a < <7 < o, and,

First of all, let Y/|An =Y.

Assume given ¢ > 0 such that Y/HW/), together with all diagram morphisms pointing to position
k®({'), is already constructed for all #/ < ¢, but such that Y. is not yet constructed; cf. §1.2.1.2.

If k2(¢) is of the form a/a for some o € A, with 0 < «, then choose a pure monomorphism

Yo/(a—1) = Y4 o into an object Ya/a of B
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We do not necessarily choose }7(, /(a—1) ¢ here.

If K2(¢) = a*'/a for some a € A, with 0 < «, then let Y1/, := 0.

If k2(¢) is of the form §/a for some a, 3 € A, with 0 < a < 8 < a™!, then we let

(Yio—1)/(a-1)» Ya-1)/05 Y8/a-1)+ Y5/a )

be a pushout. Recall that by induction assumption, }7(5,1) J(a—1) —** )7(5,1) /o is purely monomor-
phic. So Y3/(a—1) = Y3/o is purely monomorphic as well.

On AY:", we proceed dually, and finally glue along A, to obtain the sought Y.

A,

Ad (i). The restriction map f(A#)(f/l, Y,) —=% Fa(Y1,Y2) is surjective for Y1, Yy €
Ob F (An), as we see by induction, using bijectivity to prolong morphisms and universal prop-
erties of occurring pushouts and pullbacks.

Ad (ii). Suppose given X € ObFZ(A#). Let X" := (X|y ) € ObFIA#). Let X' €
Ob FY(A¥) be defined by X'|z2.- = X”|5s.- and by X'[57.- = X|z7.-.

There is a morphism X’ — X that restricts to the identity of X|sv.- on AY> and hence to the
identity of X |4 on A,.

There is a morphism X’ — X" that restricts to the identity of X”|5s. on A%, and hence to

the identity of X|4 on A,.

Now suppose given X1, X, € ObF2(A#) such that X[y = X,|5 . Then there is a sequence

of morphisms
X — X — X{=X] —X, —X,

each of which restricts to the identity of X;|5 = X4 on A,,, as required. o

Lemma 1.30 The functors

F(A) Y& FA,)

are 1-epimorphic.

Proof. Since N’ is full and dense, it is 1-epimorphic by Corollary 1.77. Therefore, it suffices to
show that N(A,) is 1-epimorphic.

We will apply Lemma 1.75. Choosing representatives of the occurring morphisms Z; — Z; ;1 in
an object Z of F(A,), where i € [1,n — 1], we see that N(A,) is dense.

To fulfill condition (C) of loc. cit., we will show that given X, Y € Ob F (A,) and a morphism
(X)(N(A,)) L (Y)(N(A,)), there are morphisms X’ —~ X and X' -/~ Y in F(A,) such that
(h)(N(A,)) is an isomorphism and such that (h)(N(A,))f = (f)(N(A,)).

We proceed by induction on k € [1,n]. Suppose given a diagram

7 ~

X1$X2mX3x"' Xpo1—

fll le fgl yfnli

V=Y, Yy s Y, >

!
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in F such that xﬁ+L = fuy for i € [1,k — 1], and such that #fi,, =g fiy for i € [k, n],
and a morphism X X in F (A,) such that (h)(N(A,)) is an isomorphism and such that
(h)(N(A,))f is the morphism in F(A,,) represented by f.

If k < n, we shall construct a morphism X’ o XinF (A,,) with each iL;N being an isomorphism,
and a diagram

~ ~/ ~ ~

XXX X - R
f{J/ fél fl i f;gl
V, =Y, Yy Y, sy,

in F such that @' f/,, = fly for i € [1, k], such that &' f!,, — fly =5 0 for i € [k + 1,n], and such
that h.f; — f/ =3 0 for all i € [1,n]. For then we obtain a commutative diagram in F(A,,)

X’/

X ? Y )
in which we denoted morphisms by their representatives.

Let X, “~Bbea pure monomorphism to an object B in B, and let ifkﬂ — fuy = jg. Let

TS SR G S N SIS
and let
. fi forie [1,n] ~{k+1} .y lg, fori e [1,n] ~ {k+ 1}
e (f@;) fori—k+1 e (1’?;;“) fori—=k+1

Proposition 1.31 The residue class functor F2(A¥) —M>f+(5#) is 1-epimorphic.

Proof. Consider the commutative quadrangle

~ Sl
Therein, the functor FY(A#) % F (A,) is l-epimorphic by Lemma 1.29. The functor

. A ’ . _ A
F(A,) N@&n) N F(A,) is 1-epimorphic by Lemma 1.30. The functor F+(A¥) Dlay .7:(A )

is an equivalence by Proposition 1.12. Hence by Remark 1.74, the functor FZ(A¥) Mr H(AF)
is 1-epimorphic.

m}

_ A# _
We do not claim that the residue class functor F5(A#) ple F+(A¥) is 1-epimorphic.
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1.4.4 Construction of ¥

Let n > 0. In the notation of Lemma .72, we let C' := A¥; the role of the category called &
there is played by F here; we let G := fD(A#) and finally, we let H := F*(A¥). Note that
FT (A7) is a characteristic subcategory of F(A¥).

The tuples

(I ﬂ/a Blachi )XeObe(A#)

(=)

Xﬁ/ﬁ %) Xa+1/a —_—t Xaﬂ/ﬂ

Xﬁ/a ) #) _
Bla€AL ) xcob FO(AY)

X /o™
e g )
o oo s aent XeOobFI(A¥)

X@/a

( (x.5/4) p/achff >XeObe(Aff)

are Aff-resolving systems, inducing an isomorphism Ty, —"27®. T, by Lemma 1.72.(2).
Recall that ZF+(A#) 25 F+(A#) denotes the residue class functor. We have

Ty M" = MZE(T,) = M[-]"
Ty M = MTHA,) = M[-1].

Since M is 1-epimorphic by Proposition 1.31, we obtain

Tr(n)
FIAH) T [es@ FH(AY)
Lo
M M
- (-]t
FHAD T I TFEAD),

(=1
where 1, is characterised by this commutative diagram, i.e. by
AJ(n), J(n) * M" = M*ﬁn

Since a(n), j(n) s an isomorphism, so is ¥,,. Varying n, this defines ¥ = (¥, )n>0.
Theorem 1.32 The tuple ¥ = (V,,)n>0 is a Heller triangulation on F.

Proof. According to Definition 1.5.(i), we have to show that the following conditions (*) and
(*x) hold.

(¥) For m, n > 0, for a morphism A,, <2~ A,, and for an object Y € Ob F*(A#), we have

(V") = (YUn)p"
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(#*) For n > 0 and for an object Y € Ob F*((2A,,)#), we have
Y )01 = (Yonia)f, -

Ad (). Recall that p# stands for F*(p#), and that p# stands for Z2(p#). By Proposition .31,
we may assume Y = XM for some X € Ob FZ(A#). Then

(XMp*)0,, = (Xp*M)dy, = (Xp"arm), sm) M"
(XM, )p* = (Xarw), smM")p* = (Xarm), smp?)M",
so that it suffices to show that Xp#al(m),J(m) = Xal(n)“](n)p#.

Starting with Xp” , the object Xp* Tr(m) is calculated by means of (Ixp#, 5/a) BjachAt > whereas
X Ty(ny is calculated by means of (Ix, /) 5/veAl » SO that X Ty, p* can be regarded as being
calculated by means of (Ix, gp/ap) 5/aeaz - But

(z ) (-2)
Ix, gpjap = (Xﬁp/ap%Xﬁp/ﬁp D X(ap)+1/ap+’X(ap)+1/ﬁp) = Ixp# /o »

whence Xp# Tim) = X Tin) p*.
Next, starting with Xp# , the object Xp* Tjm) is calculated by means of (JXp#vﬁ/a)ﬁ/aGA# ;
whereas X T, p? can be regarded as being calculated by means of (Jx, gp/ap) sjacAt - But

+1
Bp/ap™

X/BP/OPL +1 2 +1
Xﬁp/apl =X P ————— X = JXp#,B/a >

JX, Bp/ap — (Xﬁp/ap Bp/ap Bp/ap
whence Xp# TJ(m) =X TJ(n) p#.

Now .
X «@ m m
Xp# Tim) P A (m), I Xp# T m)

is induced by (IXP#’B/Q)B/QEAﬁ and by (JXP#7ﬁ/a)ﬁ/aeAﬁ ; whereas

X Ty p? 00 X Ty p*

can be regarded as being induced by (IXyﬂp/ap)g/aeAﬁ and by (JX7ﬁp/ap>B/a€Aﬁ. We have just
seen, however, that these pairs of tuples coincide.

Ad (xx). By Proposition 1.31, we may assume Y = XM for some X € ObF2((2A,)#). By
Remark 1.27, we have

(XM} o1 = (XfuM)Pnis = (XFur(ns), sna1)) M
(XMVyn11)f = (Xagonsn), senryM”)f = (Xar@nt1), s@nsnfn) M,

so that it suffices to show that X%nal(%l),](nﬂ) = Xarent1), s@n+1)fn -

Starting with X ]En , the object X %n Ti(n+1) is calculated by means of (1 XFn. 5 /a) Bjac oAt whereas

X Ti2n+1) fn can be regarded as being calculated by means of the tuple of pure short exact
sequences consisting of

0 at (p/p)*, = € Z

Ix, (a+1 /0yt at (a/p)™*, a € A,,z€Z

Ix (g+1/aryes @ Ix, (@r2p= at (B/a)™, o, f € Ay, a< P, 2€Z.
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We have ]Xi“(p/p)ﬂ =0 for z € Z. For a € A,,, we have
[an,a/p = Xa+1/a — Xqat1/+1 b Xa+2/a +>Xa+2/a+1 = [X,a+1/a ,

and accordingly at («/p)** for z € Z. Moreover, for a, § € A, with a < 3, we have

L

K o8 o
N——

0
(62 0-2) To-

(Xﬁ“/a“ ©® Xa+2/ﬁ Xﬁ+1/5+1 S5 X5+2/5 © Xa+3/a+1 ) Xa+2/a+2 — Xa+3/ﬁ+1 ) Xﬂ+2/a+2>

and

SN

[X,ﬂ""l/a""l D ]X,oﬁ‘?/ﬁ = B
( O—w)

(662)

o8 8

<X5+1/a+1 SY) Xa+2/,8 Xﬁ+1/ﬂ+1 %) Xa+3/a+1 S%) Xa+2/a+2 ©® Xﬁ+2/5 —— Xoﬁ?’/,@“ @& Xﬁ+2/a+2>

Accordingly at (3/a)** for z € Z.

Since there is an isomorphism from [ X, a/p 1O Ix g+1/0+1 @ Ix o+2/5 that has identities on the
first and on the third terms of the short exact sequences, completed by

000
0 01
1 00
0-10

Xﬁ+1/3+1 S%) Xﬁ+2/ﬁ SP, Xa+3/a+1 S5 Xa+2/o¢+2 Xﬁ+1/ﬁ+1 7] Xa+3/o¢+1 ISP, Xoﬂf?/a*? S5 Xﬁ+2/5

on the second terms, the characterisation in Lemma 1.72.(1) shows that we end up altogether
with X7, T](n+1) =X TI(2n+1) fn-

Starting with X7f,, the object Xf, Tjm+1) is calculated by means of (JX?n,B/a)ﬁ/aepuT#3
whereas X Tj2,41) fn can be regarded as being calculated by means of the tuple of pure short
exact sequences consisting of

0 at (p/p)™*, 2 € Z
JX, (a1 ja)te at (a/p)™, a €A, , z€Z
Jx, (341 /a1yt ® Jx, (ar2/p)r= at (B/a)™* o, B € Ay, a< B, 2€Z.

We have I, (oot =0 for z € Z. For a € A,,, we have

+1
oa+_1/oz7r

X
Xawjal = X P = X2) = xana

on+1/o¢ L

JX%,a/p = (Xa+1/a
and accordingly at (a/p)™* for z € Z.

Moreover, for a, § € A, with a < 3, we have

(X101 ®X 12,5) L
———»

’]X}n,ﬁ/a = (Xgﬂ/aﬂ @Xa+2/ﬁ

L Katt/at1®Xop2 ) m
(Xﬁ+1/a+1 &) Xa+2/5) | = (X5+1/a+1 b Xa+2/5)+ P i

Xa+3/5+1 D Xﬁ+2/a+2> = JX75+1/Q+1 D JX,a+2/B ,
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and accordingly at (/a)** for z € Z.
Hence altogether, we conclude that X ]En Trtn1) = X Tr2nt1) fu

Now ~
XfnQr(nt1), J(nt1)

X%n TI(n+1) ~ Xi"b TJ(”+1)

is induced by UX%,ﬂ/a)ﬁ/aeAfH and by (JX%,ﬁ/a)ﬁ/aeAfH ; whereas

Xarent1), 7(2nt1)fn

X TI(2n+1) fn ~ X TJ(2n+1) fn

can be regarded as being induced by the tuple consisting of

0 at (p/p)**, 2z € Z
Ix, (a+1/a)+ at (a/p)*™*, a € A,,2€Z
Ix, (g+1/at1)+: @ Ix, (o284 at (B/a)™, o, B € Ap,a< B, 2€7Z.

and by (Jx}n,ﬁ/a)ﬂ/aeﬁfﬂ'

Since the respective former tuples are isomorphic by a tuple of isomorphisms that has iden-
tities on the first and on the third term, and since the respective latter tuples are equal, the
characterisation in Lemma 1.72.(3) shows that in fact Xf,ar(mi1), snt1) = Xr@n41), J@nt1)fn- o

Corollary 1.33 Let € be a Frobenius category. There exists a Heller triangulation on (£, T).

Concerning the stable category £, cf. Definition 1.47.

Proof. Let B C £ be the full subcategory of bijectives. The category B¢ is functorially Frobe-
nius by Example 1.46. Hence £ = B*, equipped with the complex shift T, carries a Heller
triangulation by virtue of Theorem 1.32. o

I.4.5 Exact functors induce strictly exact functors

Proposition 1.34 Suppose given an exact functor

F

F - F

between functorial Frobenius categories F = (F,T,1,¢,P,m) and F = (]:",T,T, r, |5,7~T) that satis-
fies

FT = TF

Fl = IF

FP = PF.
Then the induced functor

F = F

18 strictly exact with respect to the Heller triangulations introduced in Theorem 1.32.
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Proof. Condition (1) of Definition I1.5.(iii) is satisfied. Condition (2) of loc. cit. holds since each
morphism has a weak kernel that is sent to a weak kernel of its image; and dually. In fact, given

f
a morphism represented by X . Y, the residue class of the kernel of X @& Y P(ﬁ) Y in F,
i
composed with X @Y P <+0)> X, is a weak kernel of the residue class of X Ty by Lemma .71
and Remark 1.67. Since pure short exact sequences and bijectives are preserved by F', this weak

kernel is preserved by F.

Consider condition (3) of loc. cit. Let 9 resp. ¥ be the Heller triangulation on F resp. on F
characterised as in Theorem 1.32 by

aI(n),J(n)M// = M4,

NV
Yy, jmM" = MU,

where M, M’, M", I(n) resp. J(n) is defined over F as M, M’, M", I(n) resp. J(n) is over F.
To prove (3), i.e. to show that for n > 0 and Y € Ob F*(A%), we have

(YU.)FH(AF) = (YEH(AE))D,,

we may assume by Proposition 1.31 that Y = XM for some X € Ob FZ(A%#). Since

(XMO,)FH(A#) = (Xagm),smM"VFH(AY) = (Xagm,sm)EFt(AF)M"
(XMF*(Af)D, = (XFE(A#)M)D, = (XFIAF) oz jm)M"

it suffices to show that X o), s F+(AF) = XFO(AE) i jm)-

Starting with XFY(A#), the object XFO(A#)T; is calculated by means of
) N «#; whereas X T;, , FT(A#) can be regarded as being calculated by means
XFO(AY),8/a) BlacAt I(n) n

of (Ix,3/aF) B/acAt: where Ix 3/, F is defined by an application of F' to all three terms and both
morphisms of the pure short exact sequence Ix 3/. Since I’ is additive, we get

(IXFD(A#),ﬂ/a>,8/aeA# - (IXvﬁ/aF)ﬁ/aGAff ’
whence X FU(A#) Ty = X Ti) F*(AY).

Starting with XFY(A#), the object XFS(A¥) Tjpy 18 calculated by means of
(jXFD(A#) 5/0)3jacay  Whereas X T, F* (A7) can be regarded as being calculated by means of
(Jx,3/aF) 8/acht where Jx, g/oF" is obtained by entrywise application of F'. Since F' commutes
with P and P, and with | and I, we get

(Jxro@ag), sralpraeat = (Ixp/aF)gpaeatt -
whence X FU(A#) i) =X Tim) FH(AY).

Moreover, since the defining pairs of tuples coincide, we finally get X FD(A#)O@(”)’ Jm) =
Xagm), smET(AF). ;

Suppose given an exact functor
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between Frobenius categories £ and € that sends all bijective objects in € to bijective objects in
E. Let B C £ resp. B C & be the respective subcategories of bijectives. We obtain an induced
functor B 2 B?¢, inducing in turn a functor

E=FE* : £=B* — B*=¢

modulo split acyclic complexes; cf. Example 1.46.(2).

Corollary 1.35 The induced functor

is strictly exact with respect to the Heller triangulations on £ and on § introduced in Theorem
[.32 via the functorial Frobenius categories B* and B*.

Proof. We may apply Proposition 1.34 to (fi F) = (B L B). 5

I.5 Some quasicyclic categories

In the definition of a Heller triangulated category, the categories C* (A% ) occur. Replacing this clas-
sical stable category by its stable counterpart, these turn out to be Heller triangulated themselves.
So we can iterate. Cf. [5, Prop. 8.4].

Let C be a weakly abelian category. Let n > 0.

I.5.1 The category C*(A¥) is Frobenius

1.5.1.1 The category A°(A#) is Frobenius

n

We proceed in a slightly more general manner than necessary. We generalise the fact that the
category of complexes A° (Af) over an additive category A is a Frobenius category, to a category
A°(A#) for n > 0; cf. Lemma 1.37 below. Then we will specialise to our weakly abelian category C
and pass to the full subcategory C*(A#) C C°(A#); cf. Proposition 1.40 below.

1.5.1.1.1 Notation
Let A be an additive category. Let A°(A#) be the full subcategory of A(A#) defined by

Ob A°(A#) := {X € ObA(AY) : Xojo =0and Xpr1/,=0foralla € A, } .

A sequence X' e X P X7 in AY(A#) is called pointwise split short evact if the sequence
XéﬁXgﬁXg is split short exact for all £ € A#. A morphism is called pointwise split
monomorphic (resp. epimorphic) if it appears as a kernel (resp. cokernel) in a pointwise split
short exact sequence.

The category A°(A¥#) carries an outer shift functor X — [X]*!, where [X];/la = X@/t =
Xa+1/5 for ﬂ/Oé S A#
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Recall that A, together with the set of split short exact sequences, is an exact category; cf.
Example 1.43. So the additive category A°(A#), equipped with the set of pointwise split short
exact sequences as pure short exact sequences, is an exact category; cf. Example 1.44.

Given 3/a, 6/v € A¥, we write 3/a < /v if a <+ and 3 < 4.

Given A € Ob.A and 8/a € A¥, we denote by Ay, 5 the object in A°(A#) consisting of identical
morphisms wherever possible and having

A ifa/f7<d/y < B/a

0 else

(Ajap)sy = {

for §/ € A#. Such an object is called an extended interval.

Intuitively, it is a rectangle with upper right corner at 3/, and as large as possible in A°(A¥).

Let A+ sPit(A#) be the full subcategory of A°(A#) consisting of objects isomorphic to summands
of objects of the form

D (As)os

Bla € Af

where Ag/, € Ob A for 3/a € A¥. This direct sum exists since it is a finite direct sum at each
§/v € A#. Concerning the notation A Pit(A#) cf. also Remark 1.38 below.

1.5.1.1.2 The periodic case

Let A’ be an additive category, equipped with a graduation shift automorphism X +—— X[+1].
We write X — X[m)] for its m-th iteration, where m € Z.

By entrywise application, there is also a graduation shift on A°(A%), likewise denoted by
X — X[+1].

As in §1.2.5.3, we define the subcategory A0Periodic(A#) C A0(A#) to consist of the morphisms
f v x :
X Y in AP(A#) that satisfy
(XY = (X7 v

So the subcategory A'0Periodic(A#) C A0(A#) is not full in general.

Given A € Ob A" and 0 < i < j < n, we denote by A, ; the object in A(A#) consisting only
of zero and identical morphisms and having

Alm] if (/7)™ < §/v < (j/i)™™ for some m € Z

0 else

(Ajig)esy = {
for §/v € A#.

Intuitively, it is a rectangle with upper right corner at j/i, and as large as possible in
A0 periodic(A#) “repeated Z-periodically up to according graduation shift.
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Let AT split,periodic(A#) he the full subcategory of A% Periodic(A#) consisting of objects isomorphic
to summands of objects of the form
@ (A],l)]z,j] )

0<i<j<n

where A;; € Ob A" for 0 <7 < j < n. Such an object is called a periodic extended interval.

Lemma 1.36 The category A"Periodic(A#)  equipped with the pointwise split short ezact se-
quences, is a Frobenius category, having A'*-sPlitperiodic(A#) 45 jits subcategory of bijectives.

Proof. By duality, it suffices to show that the following assertions (1,2) hold.

(1) The object Ay ;) is injective in A periodic(A#) for any A € Ob A’ and any 0 <i < j < n.

(2) For each object of A'%Periedic(A#) " there exists a pure monomorphism into an object of
A/—f—, split, periodic (A#) )

Ad (1). Note that we have an adjunction isomorphism

A0, pcriodic(A#)(Xﬂ A]’L,j]) - AI(X]/’L ) A)
f = f i/i s
where X € Ob A0-pericdic(A#) Suppose given a pure monomorphism Ay ; —+ X for some
A e ObA'. Let (A—-X;;—++A) = 14. Let X — Ay} correspond to X;/,; -+ A. The
composition (Aj; j —+= X —= Aj; ;1) restricts to 14 at j/i, hence equals 14, .
Ad (2). Suppose given X € Ob A"0-periodic(A#) " Given 0 < i < j < n, we let

Xsj/i
X — (X

be the morphism corresponding to 1y, . by adjunction, which is natural in X. Collecting these
morphisms yields a morphism

Xs
X= B X

0<i<j<n

which is pointwise split monomorphic since at j/i, its component X, — Xj; is an identity. o

1.5.1.1.3 The general case

Lemma 1.37 The category A°(A¥), equipped with the pointwise split short ezact sequences, is
a Frobenius category, having AT *PiY(A#) as its subcategory of bijectives.

Proof. To prove that A°(A%) is a Frobenius category, we more precisely claim that A% SPit(A#)
is a sufficiently big category of bijective objects in the exact category A°(A%).

Abbreviate A% := A(Z), where Z denotes the discrete category with Ob Z = Z and only identical
morphisms. The category A% carries the graduation shift automorphism
AZ ~ AZ
fl+1 fit1
(X . V) +— (X[+]] el [+1]) = (Xip1 = Yis1)iez -



79
We have an isomorphism of categories

At (A#) 2, (AZ)+periodic( A #)
X ((Xjay+i)icz) g near

((Ys/0)0) gjacar ~— Y.
Both categories are exact when equipped with pointwise split short exact sequences, and ¢ and
®~1 are exact functors. We have A1 SPIt(A#)P = (A%)Fsplit, periodic( A#)
Putting A’ := A%, the result follows by Lemma 1.36. o

If A= C is a weakly abelian category, we have two definitions of C* sPit(A#).

The first one, given in §1.1.2.1.1, defines this category as a full subcategory of C*(A#) containing
those diagrams in which all morphisms are split in C.

The second one, just given, defines this category as a full subcategory of C°(A#) containing, up
to isomorphism, summands of direct sums of extended intervals.

Remark 1.38 If A =C is a weakly abelian category, then the two aforementioned definitions of
CH P (A#) coincide.

Proof. First, we notice that an extended interval lies in C*(A¥), and that all its diagram
morphisms are split in C.

It remains to be shown that an object in C*(A%#) all of whose diagram morphisms are split in

A

C, is, up to isomorphism, a summand of a direct sum of extended intervals.

Passing to (C%)*-periodic(A#) " we have to show that an object X € Ob(CZ)T periodic(A#) 3]l of
whose diagram morphisms are split in CZ, is, up to isomorphism, a summand of a direct sum of
periodic extended intervals.

By Lemma 1.65, applied to the abelian Frobenius category CZ, the object X|4, € Ob CZ(AH) is
isomorphic to a summand of a finite direct sum of intervals. Hence, by Lemma 1.17, the object X
is isomorphic to a summand of a finite direct sum of images of intervals under S, i.e. of periodic
extended intervals, as was to be shown. o

I.5.1.2 The subcategory CT(A#) C CO(A¥)

Recall that C is a weakly abelian category.

Lemma 1.39 Suppose given a pure short exact sequence
X s X 4 X

in CO(A¥). If two out of the three objects X', X and X" are in C*(A¥), so is the third.



80

Proof. For an object X € Ob C°(A,,) to lie in Ob C*(A,), it suffices to know that the complex

X(Oé,ﬁ,’}/) = ( — X[g/,y—l — Xﬁ/a — vja T N/B Xa+1/ﬁ — )

is acyclic in C for all a, 3,7 € A, with a < 3 < v < ot!; which is true, as we take from
Lemma [.57; cf. Remark 1.67.

Now the long exact homology sequence, applied in C to the short exact sequence
X'(a, B,7) = X(a, B,7) -+ X" (v, 3,7) of complexes, shows that if two of these complexes
are acyclic, so is the third. o

Proposition 1.40

(1) The category C*(A¥), equipped with the pointwise split short exact sequences, is a Frobenius
category, having CTPU(A#) as its subcategory of bijectives.

Hence its stable category CT(A¥) is equivalent to its classical stable category Ct(A#) =

CH(A#)/CH =PI (A#). So both CT(A¥) and C*(A¥) are weakly abelian.

(2) Suppose C to be equipped with an automorphism X — X*1. The category C*-periodic( A#)
(cf. §1.2.5.3), equipped with the pointwise split short exact sequences, is an additively func-
torial Frobenius category, having C*sPlit-periodic (A#) g5 its subcategory of bijectives.

We remark that CT(A#) appears in Definition 1.5.

Proof. Ad (1). To prove that C*(A#) is an exact category, it remains to be shown, in view of
Lemma 1.37 and of §1.6.2.2, that a pure short exact sequence in C°(A#) that has the first and
the third term in Ob C* (A7), has the second term in Ob C*(A%#), too. This follows by Lemma
[.39.

To prove that C*(A%#) is Frobenius, we may use that C°(A¥) is Frobenius, with the bijective
objects already lying in CT(A¥), thus being a fortiori bijective with respect to C*(A#). By
duality, it remains to be shown that the kernel of a pointwise split epimorphism of a bijective
object to a given object in C*t(A#) is again in C*(A#), thus showing that this epimorphism is
actually pure in C*(A%). This follows by Lemma 1.39.

Ad (2). In view of Lemma 1.36, this follows as (1). o



I do not know whether C*-?=}(A#) is Frobenius. It seems doubtful, since this question is
reminiscent of the example of A. NEEMAN that shows that the mapping cone of a morphism of
distinguished triangles in the sense of Verdier need not be distinguished [49, p. 234].

1.5.1.3 Two examples

Suppose C to be equipped with an automorphism X — X1,

The category C>Periodic(A#) heing a Frobenius category by Proposition 1.40.(2), its classical stable
category CT-Pericdic(A#) carries a Heller operator, defined on X € Ob C*:Periedic(A#) a5 the kernel
of B—> X, where B € Ob ¢t split, periodic(A#) * Ag examples, we calculate the Heller operator for
n € {2,3} on periodic n-pretriangles.

Suppose n = 2. Let X € Ob Ct periOdiC(Af) be a periodic 2-pretriangle. We obtain

X
X0 - ~ Xon
/ [1-2]
X2_/11 - > Xl/O
[1 -] [1 -] Y
001 Xin®X3
)=
[1 —x] [1 —a:] Y [(1)8] Y
[(1)8] X200 X2/, Xz/l@Xf/B [m]
1
R (11 T
Xg/ll@Xl/o X1/00X2/0
[1] [1] '
X370
[;1-'] l:f] 1 ) I 1/(
Xo/1 > Xf—/o
| | /
X1/0 - - X2/0

In particular, if X is a 2-triangle, i.e. an object of C‘*‘vﬂ:l(ﬁf), then this Heller shift of X is also a
2-triangle; cf. Lemma 1.22.
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I.5.2 A quasicyclic category

The category of quasicyclic categories is defined to be the category of contravariant functors from
A’ to the (1-)category (Cat) of categories. Recall that we have a functor A — A, A, — A,
that allows to restrict a quasicyclic category to its underlying simplicial category.

Given a category U, we denote by Iso U C U its subcategory consisting of isomorphisms. Given
a functor U 2= U’ , we denote by Iso F' : Iso Y — Iso U’ the induced functor.

We define c
A’ TS (Cat)

IsoCt(p#
- =

(A~ A,) <IsoC+(A#) >150c+(A;;ﬁ)).

More intuitively written, qcyc, C := IsoC*(AZ). Note that qcyc, C consists only of zero-objects.

A strictly exact functor C — €’ induces a functor CH(AH) AR C'T(A¥) for n > 0, and
thus a morphism
qeye, € 0 qeye, €
of quasicyclic categories.
As variants, we mention
qeycperiodic ¢ g+ periodic( A#)
qcyc?=tC = IsoCTHI=Y(AY).

I.5.3 A biquasicyclic category

As an attempt in the direction described in [58, p. 330], we define a first step of an “iteration” of
the construction C - qcyc, C.

By Proposition 1.40, we may form the category C*(A#)T(A#). Note that a morphism

Ap~L A of periodic linearly ordered sets induces a functor C*(A#)*(f#) in the second

variable.

By Lemma 1.34, a morphism A,, <2~ A, of periodic linearly ordered sets induces a strictly exact
functor C*(g#), and so a functor C*(g#)"(A%) in the first variable for m > 0.

The functors induced by f and by g commute.

We may define
qcyce, C = Tso <C+(Ai¢)+(5#)) ,

which yields a biquasicyclic category, i.e. a functor from A’ x A’ to the (1-)category (Cat) of
categories.

@AY

~

By Lemma 1.34, a strictly exact functor C —— C’ induces a functor C*(A#) C'T(A¥)

for n > 0, and thus a morphism

qCYCqq F

quC.. C quC.. C,
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of quasicyclic categories.

As variants, we mention

qcycl.)friodic C = Iso C—f—(AfE)—i—, periodic(Afk))

(
qeycds1C = Iso (C*(A#)*vﬁ:l(A#».

Cf. Remark I.20.

This procedure can be iterated to obtain triquasicyclic categories etc.

1.6 Some general lemmata

This appendix is a tool kit consisting of folklore lemmata (with proof) and known results (mainly without proof).
We do not claim originality.

1.6.1 An additive lemma

Let A and B be additive categories, and let A i B be a full and dense additive functor. Let A’ C B be a full
additive subcategory. Let M C A be the full subcategory determined by

ObM := {A € ObA : AF is isomorphic to an object of N'} .

Lemma 1.41 Suppose that for each morphism A s A" in A such that agF =0, there exists a factorisation

ao

(A2 A = (A2% My 20 4

with My € Ob M. Then the induced functor
AM - BIN
(A2 A) — (AF 25 A'F)

is an equivalence.

Proof. We have to show that F' is faithful. Suppose given A —+ A" in A such that
(AF 5 A'F) = (AF 2+ N -2+ A'F)

where N € Ob . Since F is dense, we may assume N = MF for some M € Ob M. Since F is full, there exist
a’ and a” in A with o' F =V and o F =b". Then

oI
a a

(A—>A) = (A

ao

AY+(A— A

with agF = 0. Since a’a” factors over M € Ob M, and since ag factors over an object of M by assumption on
F, we conclude that a factors over an object of M. o

1.6.2 Exact categories

1.6.2.1 Definition

The concept of exact categories is due to QUILLEN [52], who uses a different, but equivalent set of axioms. In
[31, App. A], KELLER has cut down redundancies in this set of axioms. We give still another equivalent reformula-
tion.
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An additive category A is a category with zero object, binary products and binary coproducts such that the
natural map from the coproduct to the product is an isomorphism; which allows to define a commutative and
associative addition (+) on 4(X,Y’), where X, Y € Ob.A4; and such that there exists an endomorphism —1x for
each X € Ob A that is characterised by 1x + (—1x) = Ox.

A sequence X 2 Y %+ Z in Ais called short ezact if f is a kernel of g and g is a cokernel of f.

A short exact sequence isomorphic to a short exact sequence of the form

0
XHX@YQ»Y,

where X, Y € Ob A, is called split short exact. A morphism appearing as a kernel in a split short exact sequence
is split monomorphic, a morphism appearing as a cokernel in a split short exact sequence is called split epimorphic.
A split short exact sequence is isomorphic to a sequence of the form just displayed by an isomorphism having an
identity on the first and on the third term.

An ezact category (€,8) consists of an additive category £ and an isomorphism closed set S of short exact
sequences in &, called pure short evact sequences (%), such that the following axioms (Ex 1, 2, 3, 1°, 2°, 3°) are
satisfied.

A monomorphism fitting into a pure short exact sequence is called a pure monomorphism, denoted by —e—: an
epimorphism fitting into a pure short exact sequence is called a pure epimorphism, denoted by —— . A morphism
which can be written as a composition of a pure epimorphism followed by a pure monomorphism is called pure.

Ex 1) Split monomorphisms are pure monomorphisms.

Ex 1°)  Split epimorphisms are pure epimorphisms.

(
(
(Ex 2)  The composite of two pure monomorphisms is purely monomorphic.
(Ex 2°) The composite of two pure epimorphisms is purely epimorphic.

(

Ex 3)  Given a commutative diagram
Y
X———=7,

we may insert it into a commutative diagram

A———>1B

~N
SN

X———>7

with (X,Y, B) and (A,Y, Z) pure short exact sequences.

8 This notion is borrowed from the particular cases of pure short exact sequences of lattices over orders and of ®-pure short exact
sequences of modules. Other frequently used names are admissible short exact sequence, consisting of an admissible monomorphism
and an admissible epimorphism; and conflation, consisting of an inflation and a deflation.
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(Ex 3°) Given a commutative diagram
Y
X ———Z,

we may insert it into a commutative diagram

A—+—B

N
L,

with (XY, B) and (A,Y, Z) pure short exact sequences.

An ezxact functor from an exact category (£,S) to an exact category (F,7) is given by an additive functor

F
& — F such that SF C 7, where, by abuse of notation, I’ also denotes the functor induced by F' on diagrams
of shape @ —> o —o.

Frequently, the exact category (€, S) is simply referred to by .

Example 1.42

(1) An abelian category, equipped with the set of all short exact sequences as pure short exact sequences, is
an exact category.

(2) If £ is an exact category, so is £°, equipped with the pure short exact sequences of £ considered as short
exact sequences in £°, with the roles of kernel and cokernel interchanged.

Example 1.43 An additive category A, equipped with the set of split short exact sequences as pure short exact
sequences, is an exact category.

In fact, (Ex 1, 2) are fulfilled, and it remains to prove (Ex 3); then the dual axioms ensue by duality. Given

XeoYoZz 10

(01

O—a
(001) ((1) (1)

XoYoZ

(10a) <%?>
00

(10)

we get

where X — Z is the third component of the given morphism X — X ¢Y ¢ Z.

Example 1.44 Suppose given an exact category £ and a category D. Let a short exact sequence (X,Y,7) in
E(D) be pure if the sequence (X4, Yy, Z4) is a pure short exact sequence in € for all d € Ob D. Then £(D) is an
exact category.
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1.6.2.2 Embedding exact categories

By a theorem

e stated by QUILLEN [52, p. 100],

e proven by LAuMmON [41, Th. 1.0.3],

e re-proven by KELLER [31, Prop. A.2],

e where QUILLEN resp. KELLER refer to [16] for a similar resp. an auxiliary technique,

for any exact category &, there exists an abelian category I3 containing £ as a full subcategory closed under
extensions, the pure short exact sequences in £ being the short exact sequences in & with all three objects in

Ob¢&.

Conversely, suppose given an exact category £ and a full subcategory & C & such that whenever (X,Y,Z7) is a
pure short exact sequence in £ with X, Z € Ob¢&’, then also Y € Ob&’. Then the subcategory &', equipped
with the pure short exact sequences in £ with all three terms in Ob £’ as pure short exact sequences in £’, is an

exact category.

1.6.2.3 Frobenius categories: definitions

Definition 1.45

(1)

(2)

(3)

A bijective object in an exact category & is an object B for which ¢ B, —) and g—, B) are exact functors
from & resp. from £° to Z-Mod.

A Frobenius category is an exact category for which each object X allows for a diagram B —+ X —e— B’
with B and B’ bijective.

Suppose given an exact category F carrying a shift automorphism T : X — X T = X*! and two additive

endofunctors | and P together with natural transformations 17 —“+ land P 1 # such that TP = |
and such that -
XX xi=xtpilx+

is a pure short exact sequence with bijective middle term for all X € ObC. Then (F,T,l, ¢, P, 7) is called
a functorial Frobenius category. Often we write just F for (F,T,l,¢,P,m).

Example 1.46

(1)

Let A be an additive category. Let Z denote the discrete category with ObZ = Z and only identical
morphisms. The category A(Z) carries the shift functor X+ X**! where (X*t1)? = X1 An
object in the category C(A) of complexes with entries in A is written (X*,d*), where X is an object
of A(Z) and where X* Xt with dedet! — 0. The category C(A), equipped with pointwise split
short exact sequences, is an exact category; cf. Examples .43, 1.44. Given a complex (X*,d*), we let
(X*,d*) T = (X*,d*)"! = (X*t —d*t1) and

(X°®,d®)e (x*,d*)*n

(X*,d*)1 = (X*,d*)*'P

()

((X.,d') (X',d')Jrl)

(14d*)

= ((X',d') (x* @ X+ (99)) (X*+, —d'+1)) :

Then (C(A), T,l,¢,P,m) is a functorial Frobenius category.

Suppose € to be a Frobenius category. Let B C &£ be a sufficiently big full subcategory of bijective objects,
i.e. each object of B is bijective in £, and each object X of £ admits B -+ X —— B’ with B, B’ € ObB.
In other words, each bijective object of £ is isomorphic to a direct summand of an object of .
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Let B2¢ C C(B) denote the full subcategory of purely acyclic complexes, i.e. complexes (X*®,d*) such
. d . — . — .

that all differentials X? —» X! are pure, factoring in £ as d = dd with d purely epi- and d purely

monomorphic, and such that all resulting sequences (d, d) are purely short exact. For short, a complex is

purely acyclic if it decomposes into pure short exact sequences.

Then B?¢ is a functorial Frobenius category, equipped with the restricted functors and transformations of
C(B) as defined in (1); cf. [48, Lem. 1.1]. Let B%P2¢ C B2¢ be the full subcategory of split acyclic complexes,
i.e. of complexes isomorphic to a complex of the form (T® @ T*+1, (? 8)) for some T* € ObB(Z). Then

ac

Bsrac is a sufficiently big full subcategory of bijective objects in B2°.

Definition 1.47 Suppose given a Frobenius category £, and a sufficiently big full subcategory B C £ of bijectives.
Let

ion
i

E/B be the classical stable category of & ;
Ba</BPa¢ be the stable category of £ .

In other words, the stable category £ of £ is defined to be the classical stable category B¢ of B?°. The shift
functor induced by the automorphism T of B* on £ is also denoted by T.

Ion

Lemma 1.48 The functor

induces an equivalence

Cf. [33, Sec. 4.3].

Proof. This is an application of Lemma 1.41. o

N
We choose an inverse equivalence R to I. We have the residue class functor &€ — £, and, by abuse of notation,

a second residue class functor (€ N &)= (& N, I % £).

7
A morphism X —f> Y is zero in £ if and only if for any monomorphism X —— X’ and any epimorphism Y’ j—> Y,
there is a factorisation f = if’p. This defines £ without mentioning bijective objects in £. So one might speculate
whether the class of Frobenius categories within the class of exact categories could be extended still without losing
essential properties of Frobenius categories.

1.6.3 Kernel-cokernel-criteria

Let A be an abelian category. The circumference lemma states that given a commutative triangle in A, the
induced sequence on kernels and cokernels, with zeroes attached to the ends, is long exact.

Definition 1.49 A weak square in A is a commutative quadrangle (A, B,C, D) in A whose diagonal sequence
(A,B® C,D) is exact at B® C. It is denoted by a “+”-sign in the commutative diagram,

C——=D

|+ ]

A——1DB.
A pullback is a weak square with first morphism in the diagonal sequence being monomorphic. It is denoted

C——D

o]

A——B.
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A pushout is a weak square with second morphism in the diagonal sequence being epimorphic. It is denoted

C——D
A——DB.
A square is a commutative quadrangle that is a pullback and a pushout, i.e. that has a short exact diagonal

sequence. It is denoted

HD
° |

—B.

»— 0

Remark 1.50 If a commutative quadrangle in A

h— >0
mTU

—_—
b

d
is a square, then the induced morphism from the kernel of A —2+ C to the kernel of B— D is an isomorphism

a d
and the induced morphism from the cokernel of A — C to the cokernel of B— D is an isomorphism.

Proof. 1f (A, B,C, D) is a square, then the circumference lemma, applied to the commutative triangle

C

—~
=)
~—r

a BeC

%)

A ;

yields a long exact sequence

0 —K, 2> B %D %, —0,

where K, —+ Ais the kernel of a, and where C £, C, is the cokernel of a. Since ib = j and ¢b = p, the induced
morphisms on the kernels and on the cokernels of a and d are isomorphisms. o

Lemma 1.51 A commutative quadrangle in A
—°<D

d

h— >0

— B

is a weak square if and only if the induced morphism K, — Ky from the kernel of A —2+ C to the kernel of
B a4 D is an epimorphism and the induced morphism C, — Cy from the cokernel of A —2+ C to the cokernel

of B 2, D is a monomorphism.
It is a pullback if and only if K, —> Ky and C, —— Cg,.
It is a pushout if and only if K, =+ Ky and C, = Cg,.

It is a square if and only if K, = K4 and C, = Cy.
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Proof. Let A’ be the pullback of (C, B, D), and let D’ be the pushout of (A’, C, B). We obtain induced morphisms
A— A’ and D’ —s> D. The circumference lemma, applied to (B, D', D), shows Cp_,ps == Cp_,p.

The quadrangle (A, B, C, D) is a weak square if and only if A -+ A’; which in turn, by the circumference lemma
applied to (A, A’, C), is equivalent to K4 _,c =+ Ku ¢ and C4_.c =+ C4/_¢; which, by composition and by
Remark 1.50, applied to the square (A’, B,C, D), is equivalent to K4_.c +> Kp_p and C4_,c = Cp_.p.

The quadrangle (A, B, C, D) is a pullback if and only if A =+ A’; which in turn, by the circumference lemma
applied to (A, A’,C), is equivalent to Ka_,c =+ Ka/_,¢ and Cy_c —> Ca/_¢; which, by composition and by
Remark 1.50, applied to the square (A’, B,C, D’), is equivalent to Ky_.c =+ Kpg_,p and C4_.c - Cp_p.

The quadrangle (A, B, C, D) is a square if and only if A =+ A’ and D’ = D; which in turn, by the circumference
lemma applied to (A, A’,C), is equivalent to Ka_.c =+~Ka ¢, Cac =+ Ca_¢c and Cp_p =+ Cp_p;
which, by composition and by Remark 1.50, applied to the square (A’, B, C, D"), is equivalent to K4 _.c =+ Kp_p
and CAHCNHCBHD. u]

1.6.4 An exact lemma

Let £ be an exact category. A pure square in £ is a commutative quadrangle (A4, B,C, D) in £ that has a pure
short exact diagonal sequence (A4, B @ C, D). Just as a square in abelian categories, a pure square is denoted by
a box “7.

Lemma 1.52 Suppose given a composition

X —Y —7

1

X—Y—>Z7
of commutative quadrangles in E. If two out of the three quadrangles (X, Y, X' Y"), (Y,Z,Y',Z"), (X, Z, X', Z")

are pure squares, so is the third.

Proof. In an abelian category, this follows from Lemma 1.51.

As explained in §1.6.2.2, we may embed & fully, faithfully and additively into an abelian category £ such that
the pure short exact sequences in £ are precisely the short exact sequences in & with all three objects in Ob¢&.
In particular, the pure squares in £ are precisely the squares in € with all four objects in Ob &, and the assertion
in & follows from the assertion in &. o

1.6.5 Some abelian lemmata

Let A be an abelian category.

Lemma 1.53 Inserting images, a weak square (A, B,C, D) in A decomposes into
C—+—=> —=D
ot
—t— ——
Pt
A—+—> —e>PB

Proof. The assertion follows using the characterisation of weak squares, pullbacks and pushouts given in Lemma
1.51. o
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Lemma 1.54 If, in a commutative diagram

X —Y —7

L] -]

X—Y—>7
in A, the quadrangles (X,Y,X")Y') and (Y,Z,Y',Z') are weak squares, then the composite quadrangle
(X,Z,X’',7") is also a weak square.

Proof. The assertion follows using the characterisation of weak squares given in Lemma 1.51. o

Lemma 1.55 If, in a commutative diagram
X —Y —7
N
X—Y—>7

in A, the left hand side quadrangle (X,Y,X',Y’) is a pushout, as indicated, and the outer quadrangle
(X,Z,X',7") is a weak square, then the right hand side quadrangle (Y,Z,Y', Z') is also a weak square.

If the left hand side quadrangle (X,Y, X', Y") and the outer quadrangle (X, Z, X', Z') are pushouts, then the right
hand side quadrangle (Y, Z,Y' Z") is also a pushout.

Proof. This follows using Lemma 1.51. o

Lemma 1.56 If, in a commutative quadrangle in A

X —Y’

]

X—Y,

the morphism X —Y is an epimorphism and the morphism X' — Y is a monomorphism, then the quadrangle
is a weak square.

Proof. This follows using Lemma 1.51, applied horizontally. o

Lemma 1.57 Given a commutative diagram

I

in A such that (X,Z,0,7") and (Y,0,Y', W') are weak squares, then (Y,Z,Y',Z') is a weak square.
Proof. This follows using Lemma 1.51. o

Lemma 1.58 Given a diagram
0 >y L”> Al

R

X Ly —2L s g

o) ]

X Y 0
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i A consisting of weak squares, as indicated by +, the sequence

Xﬂly/w Y”@Z/(iljz AU

is exact atY' and atY" © Z'.

Proof. At'Y’, we reduce to the case u, v/, x and y monomorphic and (X,Y, X', Y”’) being a pullback via Lemma
1.53. Suppose given T’ e ¥ with ty' = 0 and tv' = 0. First of all, there exist T —» X’ and T o ¥ such

that au’ = ¢t = by. Thus there exists T —+ X such that cz = a and cu = b. In particular, cxu’ = au’ = t. Hence
a factorisation of ¢ over zu’ exists. Uniqueness follows by monomorphy of zu’. o

Lemma I.59

(1) Suppose given a weak square in A
X — V!

Lo

with X' bijective. If the images of X — Y, of X — X’ and of Y — Y’ are bijective, then the images
of X' —Y' and of X — Y’ are bijective, too.

(2) Suppose given a weak square in A
XI > Y/

Lo

with Y bijective. If the images of X' —Y', of X — X’ and of Y — Y’ are bijective, then the images
of X — Y and of X — Y’ are bijective, too.

Proof. Ad (1). We decompose (X,Y, X’ Y') according to Lemma 1.53 and denote the image of X —Y by
ImX7y, etc.

The diagonal sequence of the square (Imx y, Y, Imyx y/, Imyy~) shows that Imy y- is bijective.

The diagonal sequence of the square (Imx x/, Imx y/, X', Imx/ y/) shows that Imx/ y- is bijective. o
Lemma 1.60 Given a pullback
L
X' — Y/ )
f/

in A with Y injective, the morphism (X', Y") (o) (X,Y) is split monomorphic in A(A1). More precisely, any

retraction for x may be extended to a retraction for (z,y).

Proof. Let xza’ = 1x,. We form the pushout.

Y
f //
X=——pP /,
X' —>Y'
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There is an induced morphism P —Y"’ such that (X —P—Y’') = (X zJ, Y’) and such that
Y'—P—Y') = (Y vy Y’). Since Y’ is injective, we obtain a factorisation (P—Y') =
(P—rY —Y). -

Lemma 1.61 Suppose given a morphism X —Y of commutative quadrangles in A, i.e. a morphism in A(Aq X
Aq).
(1) If X is a pushout and Y is a weak square, then the cokernel of X —Y is a weak square.

(2) If X is a weak square and Y is a pullback, then the kernel of X —Y is a weak square.

Proof. Ad (1). A morphism of commutative quadrangles gives rise to a morphism of the diagonal sequences;
namely from a sequence that is exact in the middle and has an epimorphic second morphism, stemming from
X, to a sequence that is exact in the middle, stemming from Y. In order to prove that the cokernel sequence is
exact in the middle, we reduce by insertion of the image of the first morphism of the diagonal sequence and by an
application of the circumference lemma to the case in which the sequence stemming from Y has a monomorphic
first morphism. Then the snake lemma yields the result. o

Lemma 1.62 Suppose given a diagram
0——Y'"——2"
1]
X —Y —7
1]
X—Y——7
in A, consisting of weak squares. The induced morphisms furnish a short exact sequence
Im(X —2') — Im(Y —Z2) — Im(Y —2Z2").
Proof. Abbreviate Im(X — Z’) by Imx 7 etc. The morphism Imy 7+ — Imy,z/ is monomorphic by composi-

tion, and, dually, the morphism Imy z» — Imy, z~ is epimorphic. Now since Imx, x» — Imy z/ is epimorphic
and Imy,z» — Imy» 7z~ is monomorphic, it suffices to show that

ImX,X’ — ImY,Z’ — ImY”,Z”

is exact at Imy,z/. This follows from the diagram obtained by Lemma 1.53

0 y” t— Imy zn
X’ Y’ = Imy/ 7

ImX,X/ E— Imy’y/ —t— Imy’Z/ s

since by Lemma 1.54, weak squares are stable under composition. o

[.6.6 On Frobenius categories

1.6.6.1 Some Frobenius-abelian lemmata

Suppose given an abelian Frobenius category A; cf. Definition 1.45. Let B be its full subcategory of bijective
objects. Recall that the classical stable category of A is defined as A = A/B; cf. Definition 1.47. A morphism in
A whose residue class in A is an isomorphism is called a homotopism. A morphism in A whose residue class in
A is a retraction is called a retraction up to homotopy.
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Y
Lemma 1.63 Given a retraction up to homotopy X N Y and an epimorphism Y' ——Y in A, in the pullback

X —> X

f’i " lf
y

Y —+—=Y,

the morphism X' i Y’ is a retraction up to homotopy, too. More precisely, if gf =5 ly, then we may find a
morphism g’ with ¢'f' =5 1y as a pullback of g along x.
Proof. Let Y —%+ X be such that gf =1y + h, where
h h h
Y—Y) = (Y —>B—>Y)
h/
for some B € Ob B and some morphisms h; and hy in A. Let B —2> Y’ be a morphism such that
h} Y h
(B—2Y' —4+Y) = (B—Y),
which exists since B is projective and y is epimorphic. The commutative quadrangle
Yy
Y ——Y
1y/+yh1h/2l \Lly-ﬁ—h
Yy
Y ——Y

is a pullback since the induced morphism on the horizontal kernels is an identity; cf. Lemma 1.51. So we may
form the diagram

y
Y ——Y

|7

X —+—=X

f’l " if
Yy
Y/H—>Y7

in which ¢’ with ¢’z = yg and ¢'f’ = 1ys + yh1h) is induced by the universal property of the lower pullback
(X', X,Y’Y), and in which the resulting upper quadrangle (Y’,Y, X', X) is a pullback by Lemma I.51. o

Y
Lemma 1.64 Given a homotopism X N Y and an epimorphism Y’ ——Y in A, in the pullback
X —+—=X
r
f’l if
Yy
Y/ —t— Y )
the morphism X' L Y’ is a homotopism, too.
Proof. Let gf = 1y and fg =5 1x. By Lemma 1.63, we may form the diagram
Yy
Y ——Y

1

X —+—=X

R

Y —+—Y,
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in which ¢’f’ =5 1lys. Since g is a retraction up to homotopy, so is ¢’ by Lemma 1.63. Therefore ¢’ is a
homotopism. Hence also f’ is a homotopism. o

1.6.6.2 Decomposing split diagrams in intervals

Let A be an abelian Frobenius category, and let B be its full subcategory of bijective objects. Suppose given
n > 1. Write A, := A, ~ {0}. An object X in A(A,) is called split if X}, — X, is split for all k, [ € [1,n]
with k& < [.

Given C € Ob A and k, | € [1,n] with k <[, we denote by Cf; ;) the object of A(An) given by (Cp); = 0 for

. . 1 .o .
JE [Ln] ~ [kal}v by (C[k,l])] = C for J€E [kvl]v and by ((C[k,l])j — (C[k,l])j’) = (C — C) for Js J/ € [k,l] with
J < j'. An object in A(A,) of the form Cy ;) for some C' € Ob A and some k, [ € [1,n] with k <, is called an
interval.

Lemma 1.65 Any split object in B(An) 1s isomorphic to a finite direct sum of intervals.

Proof. We proceed by induction on n. Suppose given a split object X in B(An) Let X’ := X1 be defined as

a pointwise pullback at n, using 0 2, X, (cf. §1.6.7 below). We have X’ € ObB(A,,) with X] = 0. Hence, by
induction, X’ is isomorphic to a finite direct sum of intervals. There is a pure monomorphism X’ —e—+ X whose
cokernel is a diagram in Ob B(An) consisting of split monomorphisms; cf. Lemma 1.51. Moreover, by an iterated
application of Lemma I1.60, starting at position 1, this pure monomorphism X’ —e—+ X is split as a morphism of
A(A,) (°). Thus X is isomorphic to the direct sum of X’ and the cokernel of X’ —s» X, and it remains to be
shown that this cokernel is isomorphic to a finite direct sum of intervals.

Therefore, we may assume that X consists of split monomorphisms X >s—= X; for k, [ € [1,n]. We have a

i
monomorphism (X1) ,,) > X. Choosing a retraction to X, > X, and composing, we obtain a coretrac-
tion to 4, so that X is isomorphic to the direct sum of the interval (Xi)p,) and the cokernel of i. Since the
cokernel of 7 has a zero term at position 1, we are done by induction. o

1.6.6.3 A Freyd category reminder

The construction of the Freyd category and its properties are due to FREYD [15, Th. 3.1].

Definition 1.66 Suppose given an additive category C and a morphism X N Y in C.

(1) A morphism K —'+ X is a weak kernel of X —» Y if the sequence of abelian groups

(=)i

(1, k) (1, x) AL

(T.Y)
is exact at (T, X) for every T € ObC.
(2) A morphism Y L+ C is a weak cokernel of X I Y if the sequence of abelian groups
x.1) ¥ (1) ¥ (1)

is exact at (Y, T) for every T € ObC.

(3) The category C is called weakly abelian if every morphism has a weak kernel and a weak cokernel, and if
every morphism is a weak kernel (of some morphism) and a weak cokernel (of some morphism).

9 At this point, we use that A, is linearly ordered.
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Let C be a weakly abelian category. Let C°(A1) be the full subcategory of C(A;) whose objects are zero morphisms.
The Freyd category C of C is defined to be the quotient category

C = C(A)/CO(A)) .

We collect some elementary facts and constructions and mention some conventions.

(1) The category C is abelian. The kernel and the cokernel of a morphism X I Y represented by (f', f")
are constructed as

[ I’ 1y

K X' Y’ Y’
’LZJ/ Il ly J{yp
X xnm X " y p C ,

where 4 is a chosen weak kernel and p a chosen weak cokernel of the diagonal morphism f'y = zf”. If
1 ! 1 "
fly=axf" =0, we choose X' —> X’ as weak kernel and Y/ = Y as weak cokernel.

Choosing a kernel and a cokernel for each object in C (A1), we obtain a kernel and a cokernel functor
C(Ay) —= C, as for any abelian category.

(2) We stipulate that the pullback resp. the pushout of an identity morphism along a morphism is chosen to
be an identity morphism.

(3) We have a full and faithful functor C — C, X — (X X x ). Its image, identified with C, consists of
bijective objects.

(4) For each X = (X' -~ X") € Ob(, we may define objects and morphisms

X X
XP 4> X — X

lxl x
X/ > X'/ > X

T Txn
X/ — > X// > X// .

As already mentioned in (3), the objects X P and X | are bijective, and thus C is Frobenius.
Sometimes, we write just ¢ for X¢ and 7 for X7. Note that X7 =1x and X =1x if X € ObC.

X7 X T
This construction X P — X ——> X | is not meant to be functorial in (X’ — X'’), however.

Remark 1.67 Suppose given morphisms X N Y 2~ Z in C. The following assertions are equivalent.

(i) The morphism f is a weak kernel of g.
(ii) The morphism g is a weak cokernel of f.

(iii) The sequence (f,g) is exact at Y when considered in C.

Proof. Ad (i) = (iii). Suppose that f is a weak kernel of g. Let K —+ ¥ be the kernel of gin C. Factor f = f'i.
Since f is a weak kernel of g in C, we may factor (K7)i = uf, whence K7 = uf’. Hence f’ is epimorphic.

Ad (iii) = (i). Suppose (f,g) to be exact at Y. Let T —'+ ¥ in C be such that tg = 0. Then t factors over the
kernel of g, taken in C, and therefore, by projectivity of T" in C, also over X. o

Remark 1.68 A morphism X I Y in C is monomorphic if and only if it is a coretraction. Dually, it is
epimorphic if and only if it is a retraction.
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Proof. Suppose f to be monomorphic in C. It suffices to show that f is monomorphic in C, for then f is a

coretraction since X is injective in C. Let K —> X be the kernel of f in C. From (Kn)if = 0, we conclude
(K7)i =0 since f is monomorphic in C, and thus K ~ 0 since K7 is epimorphic and 4 is monomorphic in C. o

In particular, an abelian category is weakly abelian if and only if it is semisimple, i.e. if and only if every morphism
in A splits. Hence the notion “weakly abelian” is slightly abusive.

Let £ be a Frobenius category; cf. §1.6.2.3.

i p
Lemma 1.69 Suppose given a pure short exact sequence X' —+ X —— X" in £. In £, the residue class iN is
a weak kernel of pIN, and the residue class pN is a weak cokernel of iN.

Proof. By duality, it suffices to show that iV is a weak kernel of pN. So suppose given T—t> X in & with
tp =g 0. We have to show that there exists a morphism T L+ X’ such that t's =pt. Let (T ox I X" =
(T - p-L X"), where B is bijective. Let P '+ B be the pullback of p along g. We have a factorisation
(T—t> X) = (T — P -+ X). We have a factorisation (X' -+ X) = (X' —> P — X); moreover, (i,7) is
a pure short exact sequence, hence split by projectivity of B; cf. Lemma 1.51 and §1.6.2.2. Let ¢r = 1. Then
ri—1 =5 0, since it factors over B. We obtain (vr)i = vriw = vw = t. o

Remark 1.70 The stable category £ and the classical stable category £ of the Frobenius category £ are weakly
abelian. The stable category £ carries an automorphism T, induced by shifting an acyclic complex to the left by
one position and negating the differentials.

Cf. Definition 1.47.

Proof. By Lemma 1.48, it remains to prove that £ is weakly abelian. Suppose given a morphism X I Y in £.

By duality, it suffices to show that the residue class of X . Y in £ is a weak cokernel and has a weak kernel.
Substituting isomorphically in £ by adding a bijective object to X, we may assume f to be a pure epimorphism
in £. So we may complete to a pure short exact sequence and apply Lemma 1.69. o

4 p
Lemma 1.71 A pure short exact sequence X' ——+ X —+ X" in £ is mapped via the residue class functor N to
a sequence in £ that is exact at X when considered in the Freyd category € of £. In particular, a pure square in
& is mapped to a weak square in .

Proof. By Remark 1.67, we may apply Lemma 1.69. o

1.6.6.4 Heller operators for diagrams

In Definition I.5, the central role is attributed to the tuple 9 = (¥5,),>0 of isomorphisms. In the case of C being the
stable category of a Frobenius category, such an isomorphism ¥,, arises from different choices of pure monomorphisms
into bijective objects. To that end, we provide a comparison lemma, which suitably organises wellknown facts.

Let C be a category.
Given a category D and a full subcategory U C D(C), we say that U is characteristic in D(C) if the image of U

A
under A(C) is contained in U for any autoequivalence D — D, and if U is closed under isomorphy in D(C), i.e.
X ~ X' in D(C) and X’ € Ob U implies X € Ob U.

Let £ be a Frobenius category. Denote by £ its classical stable category, and denote by £ 2 & the residue class
functor. Let G C £(C) be a full additive subcategory. Let H C £(C) be a full additive characteristic subcategory
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such that (G)(N(C)) C H.
Gg——=£(0)

i iN(C)

H—=£(C)
A C-resolving system I consists of pure short exact sequences

PX,c

I = ((XAXk»IX%X> ) ,
ccObC/xe0bg

with bijective objects Ix . in £ as middle terms.

Lemma 1.72

(1) Given a C-resolving system

iX,c PX,c ~
() )
ceObC/XcObg

)

there exists a functor
g H
that is uniquely characterised by the following properties.
On objects X € ObG C Ob&(C), the image X T; € ObH C Ob&(C) is characterised as follows.

(*)  For any (¢ —= d) € C, there eist
(X TI)‘Y

e a representative (X T)5 in € of the evaluation (X Tr)e —— (X Tr)a in € at

¢ —+ d of the diagram X T; € ObH C Ob&(C), and
e a morphism Ix . — Ix q in &

such that

iX,c PX,c

X, —o—>Ix.—+—= (XTr)

T

Xy —>1Ixq Ea L (XTr)a

s a morphism of pure short exact sequences.

T
On morphisms (X = Y) e G C &), the image (X T; — Y T;) € H CE(C) is characterised as
follows.

(xx)  For any ¢ € ObC, there exist
(fTr)e
o a representative (f Tr)Y in € of the evaluation (X Ty). REEQ YTp)e in & at
fT
¢ of the diagram morphism (X Ty BN YTr) e HCEC), and

e a morphism Ix . — Iy in &
such that

X, s Ix e 255 (X T)e

{ ] e

iy, Py,c

YVCH—>,U IY,C > (YTI)C

is a morphism of pure short exact sequences.
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(2) Given C-resolving systems

i1X,c PX,c ~
I = XCA‘_’IX#:H_’XC 5
c€ObC/Xec0Obg
i% e Pxe o
I = ((X R (. £ Xg) ) ,
ceObC/Xe0Obg

there exists an isomorphism

aI,I’
T, — Trp

that is uniquely characterised by the following property.

(xxx)  For any X € ObG C Ob&(C) and for any ¢ € Ob C, there exist

(Xa e
o a representative (Xay )™ in & of the evaluation (X Tr)e —K (XT)e in

Xa 7
& at ¢ of the evaluation X T; — XTp inHCEC) ofarr at X, and
o a morphism Ix . — I}(,C in &
such that

c PX,c

X, S Ix e 5 (X T)e

Px.,c

Xc 4,’0_>IA/X,C —— (XTI’)C

l(XO‘I,I/)N

is a morphism of pure short exact sequences.

Proof. Let us first assume that H = £(C). Having proven all assertions in this case, it then finally will remain
to be shown that given H C £(C) and a C-resolving system I, we have X T; € Ob'H C Ob£&(C) for X € Obg.

We remark that starting from a morphism U —+ U’ in € and from chosen pure short exact sequences (U, B, V)
and (U’, B’, V') with bijective middle terms B resp. B’, we may define a morphism V' —» V' in & by the existence
of a morphism

i P
—e—> B —t—>

Vv
i/ pl J/

! .>B/ >V

<LQ{

-~

-

of pure short exact sequences in &£, where V' —+ V' is the image in £ of the morphism V V' iné&.

Ad (1). Given X € ObG, we define X T; € £(C) at the morphism ¢ — d of C' by the diagram in (x). The
characterisation (x) shows that X T is in fact in Ob £(C).

Given a morphism X I, Y in G, we define the morphism X T; EAS Y T; in £(C) at ¢ € Ob C by the diagram
in (xx). Combining (x) and (#x), we see that f Ty is in fact in £(C). From (**) we conclude that T; is indeed a
functor.

Xag o
Ad (2). Given X € Ob g, we define X Ty —% X T, at c € ObC by the diagram in (sx5k).

Xa ’
Combining (x*x) and (%), we see that X T; —% X T is indeed in £(C). Combining (%) and (xx), we see
that oy v is indeed a transformation.

Suppose given resolving systems I, I’ and I”. The characterisation of oy ;- etc. implies that ay pay v = oy v
and that ar; = 17,. Hence in particular, oy oy = 17, and ap rarp = 11, and so ar 1 is an isomorphism
from Ty to Ty.
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Consider the case C' = Ay, i.e. the terminal category, let G = E(Ag) = € and let H = £(Ag) = €. For a

T
Ag-resolving system J, we obtain a functor &€ —> £ that factors as

In fact, for a morphism b that factors over a bijective object B, we can choose 0 as a representative of bT ;,
inserting the pure short exact sequence (B, B,0). Moreover, T is an equivalence, for it is full; faithful, using the
dual of the argument just given; and dense, since given a morphism of short exact sequences in £ with bijective
middle terms and an identity on the kernels, the morphism on the cokernels is a homotopism.

Now return to the general case H C £(C). Let J’ be a C-resolving system consisting of pure short exact sequences
with bijective middle term that already occur in the chosen Ag-resolving system J. Then, for X € ObgG, we
have X Ty = X(N(C))(T;(C)). Since X(N(C)) € Ob’H by assumption, and since, moreover, H is assumed
to be a characteristic subcategory of £(C), we conclude that X (N(C))(T;(C)) = X T, is in ObH. Finally,

let I be an arbitrary C-resolving system. We have X T; ITJL X Ty in £(C), and thus X T, € ObH implies
X T; € ObH, since a characteristic subcategory of £(C) is, by definition, closed under isomorphy. o

1.6.7 Pointwise pullback and pushout

Suppose given an abelian category A, a poset F and an element ¢ € E. Let E° := E U {e’} be the poset defined

by requiring that € < ¢/, that a € ¢/ whenever a € ¢ and that ¢’ € « for all a € E; and the remaining relations
within £ C E° inherited from E. We define the pushout at

(-1

AE®) —  A(E)

X o X7

’

X'
where X := X'|, and (X! —— X!) = (X! =% X!,); and a transformation

i = iX' ,

X'p=X X1

natural in X', by the following construction. Abbreviating X i by X, we let

~n¢/5

.~ X -
é,:XEHXa

.
x’T Tia
X

ale

g X&

for « € ¥ with € < a. Ifa;{a,weletXa:Xa and iq = 1x_.

Given a < #in E, we let

- X3) be induced by _pushout ife<a<g,
(Ko 228 %5) = (X2 x5 " Xy) ifegabute<g,
(Ko 228 X)) = (Xa 222 Xp) ifeg §.

The morphism X —+ X 17 is the solution to the following universal problem. Suppose given a morphism
X-trvin A(E) such that at e € E we have a factorisation

fa z’
(X, —Y,) = (Xe— X, —Y,).
Then there is a unique morphism X 12" 2oV such that

X Lry) = (xS x17 Loy,
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Dually, let E. := E'U{e'} be the poset defined by requiring that ¢ > &', that a 2 &’ whenever a # ¢ and that
¢’ % a for all @ € FE; and the remaining relations within £ C E. inherited from E. We define the pullback at &

A(E) T AE)

X — X1,

where X := X'|g, and (X, — X!) = (X!, —/*~ Xere, X!); and a transformation

p = pX'

X'|p=X Xt

natural in X, being the solution to the universal problem dual to the one described above.

1.6.8 1-epimorphic functors

F
Let C — D be a functor between categories C and D.

F
Definition 1.73 The functor C — D is 1-epimorphic if the induced functor “restriction along F'”

o)

IC,&1 D, &1
G
is full and faithful for any category £. In particular, given functors D — £ with FFG ~ FH, we can conclude
H

that G ~ H; whence the notion of 1-epimorphy.

Remark 1.74 Suppose given a diagram of categories and functors
c——>p
Sil ZiT
o' Y

with equivalences S and T, and with FT ~ SF'. Then F is 1-epimorphic if and only if F' is 1-epimorphic.

Let C, C' € ObC. An F-epizigzag (resp. an F-monozigzag) C ~> C' is a finite sequence of morphisms

/ /
uQ u2 u) Uk—1
C:CO—>20501H21<—01H~-~ "ZCleZklﬁCk:C’

in C of length k > 0 such that u}F is an isomorphism for all 7 € [0, k], and such that
uF = (uoF)(uoF) (1 F)(W)F)” - - (up_1F)(u),_F)~ : CF — C'F

is a retraction (resp. a coretraction) in D.

Lemma 1.75 Suppose the functor

c op

to be dense, and to satisfy the following condition (C).

Given objects C, ¢’ € Ob C and a morphism CF 4 C'F in D, there exists

an F-epizigzag Cs ~5 C, an F-monozigzag C” A C{ and a morphism Cj — C{
such that

cF
(CF 25 oF e o' F S5 oF) = (0 F - OlF).




102

Then F is 1-epimorphic.
Proof. Since F is dense, Remark 1.74 allows to assume that F is surjective on objects, i.e. (ObC)F = ObD.

B G
Let us prove that £(C) S &(D) is faithful. Suppose given functors C i D — £ and morphisms G - H

and G — H such that Fvy = Fv'. Given D € ObD, we have to show that Dﬂy = D~'. Writing D = CF for
some C' € Ob(, this follows from Dy = CFy = CF+' = Dvy'.

) .

5
E(D) is full. Suppose given functors C i D —; € and a morphism FG — FH.

Let us prove that £(C)
5 H

Define G —2» H by (CF)é := C6 for C € ObC.

We have to prove that D§ is a welldefined morphism for D € ObD. So suppose that D = CF = C'F. We
have to show that Cé = C’§. By assumption (C), applied to d = 1p = lgr = lev, there exist an F-epizigzag

Cs % C, an F-monozigzag C’ <5 C! and a morphism Cs — C/ such that (csF)(c|F) = cF. We obtain
(s FG)(CO) (¢, FH) =

cFG)( 5)
s F'G)(c F'G)(C16)
(s FG)(C'6) (e, FH) ,

whence C'§ = C’6 by epimorphy of ¢, FG and by monomorphy of ¢, FH.

We have to prove that § is natural. Suppose given C'F a4 C'F in D for some C, C' € ObC. We have to
show that (dG)((C'F)d) = ((CF)d)(dH), i.e. that (dG)(C'd) = (CH)(dH). By assumption (C), there exist an
F-epizigzag Cs <5 C, an F-monozigzag C’ ~5 C! and a morphism Cs —» C! such that (c.F)d(c|F) = cF. We
obtain

(FG)AG)C) (G FH) = (e:FG)(dG) (¢ FG)(CY9)
cFG)(CY9)

(

(
(Csd)(cFH)
(Cs9)

(c

$0)(cs FH)(dH) (¢, FH)
SFG)(CO)(dH) (¢, FH) ,
whence (dG)(C'§) = (CH)(dH) by epimorphy of ¢, F'G and by monomorphy of ¢{ FH. o

Corollary 1.76 IfC i D is a functor such that (i, ii) hold, then F is 1-epimorphic.

(i) For all morphisms D L i D, there 1s a morphism C —+ C" in C such that
(C—+C"\F = (D-2+ D).
(ii) For any C, C" € ObC such that CF = C'F, there exists a finite sequence of morphisms

/ / /
U2 Uy _o Uk —1

C=Co % Zy ~2 0 > Z) <2 0y 2 0 &0, 25 7, <20, = O

from C to C" such that w;F = u,F = lcp = lorp for all i € [0, k].

Proof. The functor F' is dense, even surjective on objects, because identities have inverse images under F'. To
d
fulfill condition (C) of Lemma 1.75, given objects C, C' € ObC and a morphism CF — C'F in D, we may

, d
take some morphism Cs — C/ in C such that (Cs — C[)F = (CF —— C'F), we may take for ¢, a sequence as
given by assumption because of CsF = C'F, and we may take for ¢; a sequence as given by assumption because
of C{F = C'F. o

Corollary 1.77 IfC i D is a full and dense functor, then F' is 1-epimorphic.

Proof. In fact, in condition (C) of Lemma 1.75, we may take an F-monozigzag and an F-epizigzag of length 0. o



Chapter 11

On exact functors for Heller
triangulated categories

II.0 Introduction

I1.0.1 Extending from Verdier to Heller

The following facts are part of the classical theory that Verdier triangulated categories.

e Verdier triangulated categories are stable under formation of the Karoubi hull [2].

e The Karoubi hull construction is functorial within Verdier triangulated categories and
exact functors [2].

e Verdier triangulated categories are stable under localisation at a thick subcategory [56].

e Such a localisation has a universal property within Verdier triangulated categories and
exact functors [56].

e An adjoint functor of an exact functor is exact [44, App. 2, Prop. 11], [34, 1.6].
We extend these assertions somewhat to fit into the Heller triangulated setting.

e Heller triangulated categories are stable under formation of the Karoubi hull; cf. Proposi-
tion II1.12.

e The Karoubi hull construction is functorial within Heller triangulated categories and exact
functors; cf. Proposition 11.13.

e Closed Heller triangulated categories are stable under localisation at a thick subcategory;
cf. Proposition I1.36. (Concerning closedness, see remark below.)

e Such a localisation has a universal property within closed Heller triangulated categories
and exact functors; cf. Proposition 11.38.

103



104

e An adjoint functor of an exact functor is exact; cf. Proposition 11.28.

In a general Heller triangulated category, it is unknown whether there exists a cone on a given
morphism. This however is true if all idempotents split; cf. Lem. [.18. It is technically convenient
to extend this assertion in the following manner. Define a Heller triangulated category to be
closed if this property holds; cf. Def. I11.13, Definition I1.14, Remark I1.15, Lemma II.20. Prove
that certain constructions yield closed Heller triangulated categories or preserve closedness; cf.
Cor. II1.21, Proposition II.36.

An exact functor between Heller triangulated categories (C, T, ) and (C', T',9') is a pair (F,a)
consisting of a subexact functor F' and an isotransformation a : TF — F T’ such that 9, ¢’
and a are compatible; cf. [34, Def. 1.4], Definition II.1. Exactness of such a pair can also be
characterised via n-triangles; cf. Proposition I1.25. The deeper reason behind that fact is that
closed Heller triangulated categories can, alternatively, be defined via sets of n-triangles for
n > 0 with suitable properties with respect to quasicyclic and folding operations, as S. THOMAS
informed me.

The proof of the exactness of an adjoint of an exact functor does not have to make recourse to
n-triangles. Neither does the construction of the Heller triangulation on the Karoubi hull. This
shows the convenience of the definition of a triangulation via a tuple ¥ = (1J,,),>0 of isomorphisms
between certain shift functors, and to view the n-triangles as accessory, if useful; which is no
longer the point of view taken in [35].

11.0.2 Desirables

Still missing is a precise formulation in which sense the dual of a Heller triangulated category
is again a Heller triangulated category, and also in which sense the constructions above are
compatible with duality. Moreover, we do not treat exactness of derived functors, except im-
plicitly, in those cases where a derived functor can be written as a composite of an adjoint of
a localisation functor, an exact functor and another localisation functor. Still missing, in the
Heller triangulated context, is furthermore the exactness of the lift of the inclusion of the heart
to a functor on the bounded derived category [8, Prop. 3.1.10], or more generally, the functor
Z appearing in the construction of [34, Ex. 2.3]; cf. [34, Th. 3.2].

I1.0.3 Notations and conventions

We use the notations and conventions from Chapter I. In particular, we write composition of

morphisms and functors in the natural order; viz. morphisms as RN TR | R TN
F G FG FxG o .
functors as — — = — = —/— . Similarly for transformations.

Epic and epimorphic are synonymous, and so are monic and monomorphic.

1I.1 Exact functors

Let (C,T,9), (C',T',9") and (C",T",9") be Heller triangulated categories; cf. Def. 1.5.(ii).
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In Def. 1.5.(iii), we required a strictly exact functor C — C’ to satisfy ' T' = T F. The adjoint
functor of a strictly exact functor does not always seem to be strictly exact. Following KELLER and
VOSSIECK, we shall prove below that if we call a functor ezxact, if it satisfies the weakened condition
F T ~ TF instead (and an accordingly modified compatibility with the Heller triangulations),
then an adjoint of an exact functor is exact; cf. [34, 1.4].

Nonetheless, generally speaking, usually one deals with strictly exact functors. Hence we shall
also state an extra condition of shiftcompatibility on the adjunction that ensures a shiftcompatibly
adjoint functor of a strictly exact functor to be strictly exact.

G
Given n > 0 and a transformation G —%~ G’ between subexact additive functors C — C’, we
G/

A a A¥ A . .
denote by G*(A¥) L G'T(A¥) the transformation given by

(X(a™(AD))) g0 = Xpjat : XpfaG — Xp/aG'

B/a

for X € ObC(A¥), and for 3/a € A¥ |ie. for a, B € A, with 37! < a < 3 < a™l. Moreover,
at(Af)

we denote by GT(A¥) G (A#) the induced transformation between the induced

functors on the stable categories.

at(A¥)

n

Sometimes, we abbreviate (G N G') = (GT(AY) Gt (A})).

Definition II.1

A pair (F), a), consisting of an additive functor C L, ¢’ and a transformation T F —“~ F T,
is called an exact pair, or an exact functor, if the following conditions hold.
(1) ais an isotransformation.

(2) F issubexact, i.e. its induced functor ¢ L+ ¢ on the Freyd categories is exact.
(3) We have

n

(O x FX(AT)) - a™(A]) = FH(AL) v,

for all n > 0.

In particular, provided TF = F T, then (F,1) is exact if and only if F' is strictly exact; cf.
Def. 1.5.(iii). In this case, we sometimes identify F" and (F|1).

Calling a pair (F,a) an exact functor instead of an exact pair is an abuse of notation.

We shall not discuss whether condition (1) is redundant; we need it for the construction of Y in
6I1.4, but that may be due to the order of our arguments.

Condition (3) asserts that the following cylindrical diagram commutes for all n > 0.

- FH (A ~
CH(AY) C(A¥)
Z7
1 ’
_1+1 In _+1 24 _1+1 Un _+1
-1 | == |[-"] 17 | =[]
ot (AF)
FH(AF)

>
Sk

CrH(
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Le., using the abbreviation just introduced, we require X, F - Xa = X F1¥, to hold in C'*(A¥) for
all X € ObC*H(A#) = ObCH(A¥).

Definition I1.2 Suppose given exact functors (F,a) from C to C', and (F’,a’) from C’ to C”.
The composite of (F,a) and (F’,a’) is defined to be

(Fya)* (F',d') = (F,a)(F',d") := (FF', (aF')(Fd')) = (F*F', (axF')-(Fxd)).
Composition is associative.
Remark I1.3 If (F,a) and (F',d’) are exact, then so is their composite (F,a)(F’, a’).

Proof. To be able to distinguish more easily, we shall make use, from the second to the last but
first step, of the notation a x F' = aF, FF'x F' = FF' etc. Given n > 0, we obtain

n

(ﬁn « (F % F')+(A#)) ((ax F') - (Fxd)) (AF)

_ (ﬁn*FJF(A#)*F”r(A#)) . (a*(Aﬁ)*F”F(A#)) : (F+(A#)*a’+(5#)>

)

= (P v« AR - (A cat (A

s

— FHAR) < FHAE) « 0

= (FxF)*(A®) x9" .

Definition II1.4 Suppose given exact functors (F,a) and (G,b) from (C, T,d) to (C',T',¢').
A transformation F' —~ G such that (Txs)-b=a- (s%T) holds, is called periodic.

The periodicity condition requires that

Xtls

X—HF X—HG

Xal? Zle
(Xs)*t!

(XF)T 22 (X G)H

commute for all X € ObC(C.

Remark I1.5 Suppose given exact functors (F,a), (G,b) and (H,¢) from C to C’, and periodic

S
. t
transformations /' — G — H.
S/

(1) The composite F - H is periodic.
9) The identity F —» F is periodic.
( y

(3) If s is a periodic isotransformation from (F,a) to (G,b), then s~ is a periodic isotransfor-
mation from (G,b) to (F,a).
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(4) The difference F' “*L G of two periodic transformations is periodic.

(5) The direct sum (F,a) ® (G,b) == (F & G,a®b) = (F & G, ({})) is exact, with periodic
inclusions from and periodic projections to (F,a) and (G,b).

Definition I1.6 Write [C,C'l,, for the category of the exact functors and periodic transfor-

mations from C to C’; cf. Definitions II.1, I1.4, Remark IL.5.

Write [C,C 4 ex for the full subcategory of [C,C' 1. of the strictly exact functors and periodic
transformations from C to C'.

I1I.2 Idempotents and cones

Let (C,T,¥) be a Heller triangulated category; cf. Def. 1.5.

I1.2.1 A general remark on residue classes

Concerning Frobenius categories, cf. e.g. §1.6.2.3.

Remark I1.7 Given a full and faithful exact functor G : F — F' of Frobenius categories that
sends all bijective objects to bijective objects. Then the induced functor G : F — F' on the
classical stable categories is full and faithful.

Proof. By construction, it is full. We claim that it is faithful. Suppose given X — Y in F such
that
(XG—YG) = (XG—B —YG)

in C’ for some bijective object B’ of C'. Choose X —e~ B in C with B bijective in C. Since G
preserves pure monomorphy, XG — B’ factors over XG —e~ BG, whence XG — Y G factors
over XG ——~ BG, whence X — Y factors over X —— B. o

Suppose given weakly abelian categories A and A’. Suppose given a subexact functor A =iy
Suppose given n > 0. We obtain an induced functor

FH(AF) « AY(AT) — AT(A])

on the respective stable categories of n-pretriangles. Cf. §1.1.2.1.3,81.6.6.3.

Remark I1.8 If F is full and faithful, so is F*(A¥).

In particular, if F is the embedding of a full subcategory, we may and will also consider F*(A¥)
to be the embedding of a full subcategory.

Proof. By Prop. 1.40, both A*(A#) and A'"(A#) are Frobenius categories; and the full and
faithful functor F+H(A#) : AY(A#) — A" (A#) induced by F preserves bijective objects, viz.
split objects, and pure short exact sequences, viz. pointwise split short exact sequences. So by

Remark II.7, the assertion follows. 0
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I1.2.2 A Heller triangulation on the Karoubi hull

Let C denote the Freyd category of C; cf. e.g. § 1.6.6.3. We consider the full and faithful functor
C —» C as an embedding of a full subcategory. Let C denote the full subcategory of bijectives in
the abelian Frobenius category C. So we have full subcategories

ccccc

Since the image of C in Cisa big enough subcategory of bijectives, the embedding C C—» C is a
Karoubi hull of C; cf. [30, IILII]. Cf. also Remark 11.43, Lemma I1.44 — which we will not use
and argue directly instead.

We shall give a Heller triangulation on this Karoubi hull C of C. The Verdier triangulated version
of this construction is due to BALMER and SCHLICHTING; cf. [2, Th. 1.12].

As a full subcategory of bijective objects in abelian Frobenius category, the category C is weakly
abelian.

The shift T on C induces a shift T on C , which restricts to a shift TonC.

Remark IL1.9 Suppose given n > 0 and X € Ob CH(A#). There exists Z € Ob CT(A¥)
such that X is isomorphic to a direct summand of Z in é*(A#) . In other words, there exists
Z € Ob C*H(A¥) and a split monomorphism X e Zin CtH(A#).

Proof. By Prop. 1.12, it suffices to prove that given X € Ob C(A,,), there exists Z € Ob C(A,)

such that X is isomorphic, in C(4A,), to a direct summand of Z.

It suffices to prove the existence of a split monomorphism X —» Z in C(A,) with Z € ObC(A,).

For i € [1,n], let Y; € Ob C be such that X; @ Y; is isomorphic to an object in C. Let
Y € Ob C(A,)) have entry Y; at position i for 1 < ¢ < n and the morphism from position i
to position j be zero for 1 < ¢ < j < n. The diagram X & Y has X as a summand and is

isomorphic to an object in C(A,,). o

Remark I1.10 Givenn > 0, a diagram X € Ob C~+(A#) , a split monomorphism X — Z with

Z € Ob CT(A#) and a morphism X —~ X', then there exists a commutative quadrangle

X=X

o

ZJ—=7
in CT(A#) with Z' € Ob CH(A#).

Moreover, if X — X' is a split monomorphism, we may choose Z — Z' to be a split monomor-
phism.

Proof. We form
X = X’

(10)$ I(lo)

XY —XY,

(59)
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where X @Y ~ Z. By Remark I1.9, there is a split monomorphism from X’ & Y to an object
Z' of Ob C*(A#).

z0
Moreover, if X %~ X’ is split monic, so is the composite (X &Y (6) XY —27). o

Construction IT.11 Given n > 0, we define [—]*1 2= [—“] on Ct(A#) as follows.

Given X € Ob C~+(A#) choose a split monomorphism X —~ Z with Z € Ob C*(A¥), existent
by Remark I1.9, and choose a retraction p to 7. Define

1X19 1Zq9

i+
(X7 (X)) = (X —— [2]" 207 2 e
To prove that X9, is welldefined, we shall first show that it is independent of the choice of the
retraction p. Given d : Z — X with id = 0, we have to show that [i]™ Z49,[d"!] = 0. Since [*]

is monic, it suffices to show that [i]™!Z9,[d™]|[i*] = 0. In fact,
[ 20, [d i) = [T 29, [(di))TY] = [1]T[di] T 29, = [id) T [itY) 29, = 0,

since di is in CT(A¥).

Now assume given another split monomorphism X — Z' with Z’ € ObC*(A#). By Re-
mark II. 10 we may assume that this split monomorphism factors into two split monomorphisms
X%z %7 Let ip=1and i'p’ = 1. Then (ii')(p'p) = 1, and we may conclude

] 20010 = WP (20 ) = () 20.) T = 6 200t

since p' is in CT(A¥).

To show that 1, is a transformation, we suppose given a morphism X S X' in (,:'JF(A#) and

have to show that X,[f"] = [f]T'X"0,,. By Remarks I1.9 and I1.10, we find a commutative
quadrangle

Xy

7=z
in Ct(A#) with Z, Z' € Ob CT(A#). Choose p and p such that ip = 1 and i'p’ = 1. It suffices
to show that X3, [f+1][i"1] = [f]*1X"0,[¢"!] by monomorphy of [i**1]. In fact,

X0 [ f ][] = XU[i*"[g"] = [ Z0[p ][]
= [i"'Z0.[(pig)*"] = [ pig]" 20 = [ig]™ 2",
= [fI]7 20, = (M2, = [T 2000
= [T 20PN = XL

Note that Z1,, = Z0, for Z € Ob Ct(A#).

End of construction.
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Proposition 11.12

(1) The tuple 9 := (9,)ns0 is the unique Heller triangulation on (C,T) such that the full and
faithful inclusion functor C v C is strictly ezact; cf. Def. I.5. (i, 11).

(2) An n-pretriangle U € Ob C*(A#) is an n-triangle with respect to (C, T,9) if and only if it

is an n-triangle with respect to (C, T, 15)

Proof. Ad (1). We have to show that given m, n > 0 and a periodic monotone map A, <~ A,
we have Q#*ﬁm = Oy *]_9#. Let us verify this at X € Ob é*(A# ). Choose a split monomorphism
X -~ Z with Z € Ob C*(A¥) by Remark IL9. It suffices to show that (X]_o#)zgm[(ig#)“] =
(X9,)p*((ip#)*!]. In fact, we obtain

(Xp")Iu(ip?)™] = [ip*]" (Zp*)0n = [ip*]"H(20,)p*
= ([T 20.)p% = (X0 )p* = (X0.)p*[(ip*) ] .

We have to show that given n > 0, we have fn * 1§n+1 . i%nﬂ * fn. Let us verify this at
X € 0b C*(A%,,,). Choose a split monomorphism X ' Z with Z € Ob C*(A%...) by Re-
mark I1.9. It suffices to show that (Xin)zgnﬂ[(il‘n)“] = (Xonir)f [(if )™']. In fact, we obtain

-n

(X5 Vnia[(GF )] = [0 J7H(ZF JOnsa = [ifn1~+1(Z192n+1)fn )
({17 Z02mi)f, = (XO2uni[iT'])f = (X0anr0)f [(f )F]

-n -n

The inclusion functor C C—» C is strictly exact since it strictly commutes with shift by construc-

tion, since it is subexact because the induced functor on the Freyd categories is an equivalence,
and since Z9,, = Z9,, for Z € Ob C*(A#).

Now suppose that both ¥ and ¢’ are Heller triangulations on (C~ , -T') such that C  C is strictly
exact. Suppose given n > 0 and X € Ob é*(A#) . We have to show that X4, = X@L . Choose

a split monomorphism X — Z with Z € Ob C*(A¥); cf. Remark I1.9. It suffices to show that
X0,[itY] = X9 [i+1]. In fact,

X0, = [i]*129, = [i|*'29, = [i|T'20), = X0 [t .
Ad (2). Suppose given an n-pretriangle U € Ob CT(A#). Now U is an n-triangle with respect

to (C,T,9) if and only if U9, = 1, and with respect to (C, T,d) if and only if U?, = 1; cf.
Def. 1.5.(ii). Since U¥,, = U4, , these assertions are equivalent. Cf. also Lem. 1.25. -

I1.2.3 Functoriality of the Karoubi hull

We shall prove the universal property of the Karoubi hull directly, without making recourse to
Remark I1.43 and Lemma I1.44. We will make use of the universal property and the abelianness of
the Freyd category, however.



111

Proposition I1.13 Suppose given Heller triangulated categories (C,T,19), (C',T',9"). Call the
strictly ezact inclusion functors K :C —C and K': C' —C'.

(1) Suppose given an exact functor (F,a) from C to C'.

We may construct an exact functor (F, a) from C to C' such that

i\

-~
A<= 0
1
\S/I
=0
X

l\,

commutes, i.e. such that (F,a)(K',1) = (K,1)(F,a), i.e. such that F x K' = K« and
ax K =Kxa, i.e. such that uF' = uF for w € MorC and Za = Za for Z € ObC.

The functor F and the condition axK' = K a uniquely determines a. Ifa =1, thena = 1.
(2) Given two exact functors (Fy, i) and (Fy, dy) such that (F,a)(K',1) = (K, 1)(E}, a1) =
(K, 1)(Fy, @3), there exists a unique isotransformation Fy —~ Fy such that Kxp = 1, i.e.
such that Zo =1 for Z € ObC. This isotransformation ¢ is periodic.
(3) Suppose given exact functors (F,a) and (G,b) from C to C'. Suppose given a periodic
transformation s from F to G.
Construct (F,a) and (G,b) as in (1).

There exists a unique periodic transformation § from F to G such that K«5 = s« K/, i.e.
such that Zs = Zs for Z € ObC.

Proof. Given X € Obé, we choose X X, zx X, X in C such that ix - px = lx and such
that ZX c ObC.

Moreover, choose these objects and morphisms in such a way that Z,+ = Zx T, iy5 =1 «T and
px7 =px 1 for X € ObC.

Furthermore, if X € Ob(C, then choose Zx = X and ix = 1x and px = 1x .
Given X — Y in é, we let Zy = Zy be defined by z, : = px - u - iy ; cf. Remark I1.39.

Ad (1). Since F is subexact, F is exact. Since W is a summand of an object in C, also WF is a
summand of an object in C’, hence bijective. So I’ := F |g/ is welldefined.

We want to show that the functor F preserves weak kernels and is therefore subexact; cf.
Lemma I1.41. In fact, given W —» B -1+ C in C such that w is a weak kernel of f, we get a

factorisation w = w'i, where K —«~ B is a kernel of fin C. Considering an epimorphism P K
in C with P € ObC, we obtain a factorisation pi = p'w = p'w'i, whence p = p'w', whence w' is
epic. Since w'F is epic and iF is a kernel of fF . we obtain that wE = wF is a weak kernel of
fF = fF.

The universal property of the Freyd construction yields a transformation a : T FT. Welet
the transformation @ : TE — F'T be defined on X € ObC C ObCas Xa:= Xa. In particular,
Za = Za for Z € ObC.
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Given n > 0, it remains to be shown that Ft(A#) x 7/, = (0 x FH(A#)) - at(A#); cf. Defini-
tion I1.1. Let us verify this at X € Ob CT(A#). Let X —'+ Z be a split monomorphism with
7 € Ob CT(A¥), existent by Remark I1.9. It suffices to show that

| ~

(XEHAD), - [GEF AN = (X0)EF(AY) - Xat (A - [(iF(AF) ™.

In fact, we obtain

(XECAE), - [(FF(AN)T] = GESAH - (ZEHA1)7,
—  GETAHT - (ZFHAE)Y,
BL R (AR (Z20,) FH(AY) - Zat (AF)
—  GFH(AHT - (20,)FH(AF) - Zat (AF)
—  [{[TFC(AY) - (20, FH(AY) - Zat(AY)
—  (XO)FF(AR) - [PEH(AY) - Zat(AF)
—  (X0,)F(AR) - Xat(AR) - [(iF(A#)™]

Ifa=1,thena=1,s0a=1.

It remains to show that @ is uniquely determined by F' and the condition a « K' = K+ a. In fact,
given X € ObC, we have

X&Zxﬁ‘f/ == Zx—fﬁZX& == z'XTZ*:’-ZXa,
and iXFT/ is monic.
Ad (2). Define ¢ : Fy =~ [, at X € ObC by

ix 1

Fl 4>ZxF

ZXF px F1 X

cf. Remark I1.40.

The tuple ¢ = (X¢) ycope is actually a transformation from Fi to Fy, for given X —~Y in C,
we obtain

pXﬁ’l . Uﬁ’l . YQO . inQ =

pxFy - (u-iy)Fy
pxFy - ixFy - 2, By
(zu - (py - iy))F
(2u - py) Fo iy Fy
pxFy - uly iy Fy

and px F7 is epic and iy F5 is monic.

pXﬁl 'UFNH 'iYF1

= pxFy - (ix - 20) Py

= ((px ix) - z)F

= 2y py By iy E

= (px-u)Fy-iyFy

= pxF - Xo-uby iy Fy
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Note that commutativity of the diagram above is also necessary, for we require K+ ¢ = 1. This
ensures uniqueness of .

It remains to show that ¢ is a periodic transformation from (Fy , a;) to (Fy, az). In fact, given
X € ObC, we get

Xay - XoT - ixBT = Xay-ixBT
= ixTF - Zxa = iyiFy - Zxay
= i F - Zxa = iy Fy - Zxag
= XTyp-iyiFy-Zxiay = XTo-ixTE, - Zxiy

~/

X—T—QOXCNLQ 'ixﬁQT s

and 4 XFQ-TJ is monic.
Ad (3). Define §: F—» G at X € ObC by

Zx P XL 7o F

cf. Remark II.40.

The tuple s = (X's) ycope is actually a transformation from F to G, for given X —~Y in C, we

obtain o . o .
pxFquglyG - pxF'uF'in'ZyS

= pxﬁ’ (u - Zy)F - Jys = pXF (ix - zu)ﬁ’ A
= pxFixF-2,F - Zys = ((px ~ix) - zu)F - Zys
= (2w (py - iv))F-Zys = Zxs-(zu-(py iy))G
= Zxs-2,G pyG-iyG = Zys- (Zu'py)é'iyé
= ZXS-(pX-u)é-iyé = ZXs-pXG-ué-iyé
= pxF-X5-uG - iyG

Vo)

and px F is epic and iy G is monic.

Note that commutativity of the diagram above is also necessary, for we require Kx5 = s K'.
This ensures uniqueness of s.

It remains to show that s is a periodic transformation from (F ,a) to (é, 5) In fact, given
X € ObC, we get
Xa- X5T -ixGT = Xa-ixFT -ZxsT

= ’LX—T—F : ZXgL : ZXs—T—/ = ZX—T-F . ZXd : ZX,S—TJ

= il Zxa-ZxsT = iy+F-ZxTs-Zxb

= iysF - ZxTs-Zxb = iyiF-Zyzs- Zxb

= XT§-iy:G-Zxb = XT3-ixTG - Zxb

— XT35-Xb-ixGT |
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. )~ ~/ . .
and ixG T is monic. o

I1.2.4 Closed Heller triangulated categories

Recall that given a Heller triangulated category (C, T, #), its Karoubi hull C is Heller triangulated,
too; cf. Proposition I1.12.(1). More precisely, (C,T,¥) is Heller triangulated, where 7" and ) are

as in §11.2.2.

Definition 11.14

A Heller triangulated category (C, T, ) is called closed if whenever (X,Y, Z) is a 2-triangle
in Cand X, Y € Ob C, then Z is isomorphic to an object of C.

Cf. Def. 1.5.(1, iii).
I do not know an example of a non-closed Heller triangulated category.

As usual, we will call Z the cone of X — Y, being unique up to isomorphism. Thus we may
rephrase that by definition, (C, T, ) is closed if it is closed under taking cones in the Karoubi
hull C.

Remark I1.15 The Heller triangulated category (C,T,9) is closed if and only if given X Ty
i C, there exists a 2-triangle X oy vz Xt incC

Cf. Def. II1.13.

Proof. If (C,T,¥) is closed, then given XLy in C, there exists a 2-triangle

XLy 7 +Xx+iné by Lem. I.18, and we may substitute Z isomorphically by an object
Z in Ob C, so we are done by Lem. 1.21.(4).

Conversely, if we dispose of this existence property, and if we are given a 2-triangle (XY, Z ) in
C with X, Y € Ob C, then there exists a 2-triangle (X,Y, Z) with Z € Ob C, too, and we may
apply Lem. 1.21.(6) to conclude that Z ~ Z. So (C, T, ) is closed. o

Remark I1.16 [f idempotents split in C, then (C,T,0) is closed.
Proof. 1f idempotents split in C, then C = C. o

Remark I1.17 Suppose given Heller triangulated categories (C,T,d), (C', T',9") and a full and
faithful strictly exact functor ct.c. Furthermore, suppose that whenever given a 2-triangle
(XEYF,Z') inC', where X, Y € Ob C, then there exists Z € Ob C such that Z' ~ ZF.

Suppose that C' is closed. Then C is closed.
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Proof. Suppose given X LoV in €. There exists a 2-triangle XFEyr w7z XxFH
in C'. By assumption, there exists Z € ObC such that ZF ~ Z'. By isomorphic substitution
and fullness of F', we obtain a 2-triangle X F’ L yrp s zp M X P in C'; cf. Lem. 1.21.(4).
Since

(X,Y, Z)0.F T (AY) = (X,Y,Z2)FT(AY)0y = (XF,YF,ZF)J, = 1,

we conclude by faithfulness of F*(A¥) that (X,Y, Z)0, = 1; cf. Remark I8, Def. 15.(ii). So

we are done by Remark II.15. o
Remark I1.18 A closed Heller triangulated category is Verdier triangulated.

Proof. Its Karoubian hull is Verdier triangulated by Prop. [.23. An additive shift-closed sub-
category of a Verdier triangulated category that is closed under forming cones is Verdier trian-
gulated. o

Definition I1.19 Suppose given a closed Heller triangulated category (C, T, ).
Suppose given 7 > 0 and Y € Ob C(A,) and X € Ob C*Y='(A#) such that X, =Y.
Then Y is called the base of the n-triangle X.

Lemma I1.20 Suppose given a closed Heller triangulated category (C,T,9¥) and n > 0. The

restriction functor Ct9=1(A¥) C(A,) is strictly dense, i.e. surjective on objects. In other

words, each object Y € Ob C(A,) is the base of an n-triangle.

la,

So weakening the assumption in Lem. I.18 that idempotents be split in C to the assumption that C
be closed, we nonetheless obtain the conclusion of loc. cit.

Proof. Suppose given Y € Ob C(A,,). By Lem. 1.18, we obtain an n-triangle X € Ob CH?=1(A#)
such that X[, =Y.

By Lem. 1.21.(1), we have a triangle (X./0, Xs/0, X3/a) whenever 0 < a < 3 < 0*!. Since
C is closed, X 3/a 18 isomorphic to an object of C. Isomorphic substitution, which is permitted
without leaving C*?='(A#) by Lem. 1.21.(4), yields an n-triangle in C*?='(A#) that restricts
to Y on A, ; cf. Proposition I11.12.(2). g

I1.3 Heller triangulated subcategories

Definition I1.21 Given a Heller triangulated category (C', T',1), a full subcategory C C C’ is
called a full Heller triangulated subcategory of C' if there exist T and ¥ such that (C,T,?) is a
Heller triangulated category and such that the inclusion functor C ¢ (' is strictly exact.

We remark that in this case, the automorphism T and the tuple of transformations ¥ are uniquely
determined by (C', T, 1) as respective restrictions; cf. Def. 1.5.(iii), Remark II.8.
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Example I1.22 Let (C, T,?) be a Heller triangulated category. Let C be the Karoubi hull of
C, and let (é, T,9,) be the Heller triangulated category from Construction II.11. By Proposi-
tion 11.12.(1), C is a Heller triangulated subcategory of C.

Lemma I1.23 Suppose given a closed Heller triangulated category (C', T',9'), and a full subcat-
egory C C C' such that the following conditions (1,2) hold.

(1) CcT =C.

(2) Given a 2-triangle (X,Y,Z") in C" with X, Y € Ob C, then Z' is isomorphic to an object
of C.

Then C, equipped with the shift T and the tuple ¥ obtained by restriction from T' and ¥, respec-
tively, is a Heller triangulated subcategory of C'. Moreover, (C, T,4) is closed.

Proof. Let T denote the restriction of T to an automorphism of C, which exists by assumption (1).

Write C C_Z> C' for the inclusion functor.

Since C' is closed, assumption (2) allows to conclude that C is a full additive subcategory of C’,
and moreover, that C is weakly abelian such that ¢ is subexact; cf. Lemma I1.41.

Given n > 0 and X € ObC*(A¥), we define, by restriction, ([X]HX—%[X“]) =

([X]HH X, [X*1]). Since CT(A#) —t~ C*(A#) is full and faithful by Remark IL8, this is

a welldefined transformation satisfying ¥, xi =i x 9/, .
Given m, n > 0 and a periodic monotone map A, <~ A,, , we have Q# *1=1x% E#’ whence

prxUmxi = pFrixt, = ixp?F 0, = iV, kp¥F = U, xinp® = Uy xp”*i,

3

so that we may conclude that ]2# * 0, =9, * 1_)#, for ¢ is faithful.

Given n > 0, we have f xi =14*f , whence
. . . / . . / . . / _ . . .
foxtnpixt = xixt,q = ixf x4y = 140,y *f = Doppixinf = doppixf x4,

so that we may conclude that fn * Vi1 = Vopay * in , for 7 is faithful.

Hence ¢ is a Heller triangulation on (C, T); cf. Def. 1.5.(i). By construction, C 'L s strictly
exact.

By (2) and Remark I1.17, the Heller triangulated category (C, T, ) is closed. o

II.4 Functors are exact if and only if they are compatible
with n-triangles

Suppose given Heller triangulated categories (C, T, ) and (C', T',¢').

Concerning the notion of n-triangles in a Heller triangulated category, cf. Def. 1.5.(ii).



117

For n > 0, an object Y in C(A¥

#) is called periodic if [Y]™! = [Y 1]
Suppose given an additive functor C L, ¢ and an isomorphism T F —» F T".

a®
For z € Z, we let T* F' —— F T'* be defined by

att) = (Txa®) - (axT7?) for 2 >0
aF Y = (T %a®) - (T xa" *T*") for <0

Then (T?xa™) - (a®) x T™) = a=*) . T*T F > FT*™ for 2, w € Z.

Given a periodic n-pretriangle X € Ob CH-pericdic(A#) " for sake of brevity we denote in this
chapter by
Y = X(F(A%)) € Ob C'(A¥)

the diagram obtained by pointwise application of F' to X. We have
A Xla,, (a(An)) A
Yigp = X[4,(TF)(A,) === X4 (FT)(A) = (Y|z,)".
Isomorphic substitution along this isomorphism turns Y|5.v into a diagram }u/] Asv for a periodic

object Y € Ob C(A#) thus defined. We have an isomorphism Y —» Y in €’(A#) that at (3/a)**
for 0 <a<f<nand z € Zis given by

a S a(®
<Y(ﬁ/a>+z e Y(B/M“) = <Xﬂ/aT‘zF /e XB/aFT/Z>.

In fact, given 0 < a < n and z € Z, we obtain a commutative quadrangle

Xn/a Tz F zT?* F Xa/O TZ+1 F
X’n/oc a(Z)\LZ ZlXa/o alz+1)
zFT'*)(Xy/0aT?
Xn/aF T/Z ( ) /0 ) XQ/OF T/ZJrl ’

for

(Xn/a @) (@F T%)(XapaT?) = (2T F)(Xap Ta®)(XapaT?) = (2T F)(Xap0a®™) .

The remaining commutativities required for the naturality of Y —i» Y follow by naturality of a(*).
We remark that als, = 1p4,,) -

If F' is subexact, then Y is an n-pretriangle and Y is a periodic n-pretriangle.

Lemma I1.24 Suppose given an exact functor (F,a).

Then for each n-triangle X of C, i.e. X € ObC?’=LF(A
(1) and (2) is an n-triangle of C’, i.e. Y € Ob C'=hF (A

), the object Y of C'(A#) defined by
).

S S 4

(1) We have [Y]* = [V H].
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)|azv by isomorphic substitution

(2) On A2V, the object )U/|A%v arises from Y = X(F(A#
A

n J |
along Y00 = X|a (TAD(F(A) “CY X[ (F(A))(T/(A) = (V]5,)*

Cf. Lem. 1.25 for the case of a strictly exact functor.

Proof. Suppose given n > 0 and an n-triangle X € Ob C*Y=1(A#). By construction, Y is
periodic. We have to show that Y9/, = L . We obtain

v, = X(FHA#)«0,)
- X ((m *F+(A#)) -a*(&f))
— (19 *x FH(A¥ )> - Xat(A¥)

= Xat(A¥).

In particular, Yo'[5 = X|4 ( »). Hence, restricting the stably commutative quadrangle

1

Y]+ vy

m;l l%ﬂn

+1y 187 ey
Y] ==

to A, , we obtain the stably commutative quadrangle

X|a,a(An)

Yiap (Y]a,)"
X|Ana(An)i if’%lAn
(Vg )" ——=(]5,)"
whence Y/ | A, = Ly, )+ - Since the functor from C*H(A#) to C(A,,) induced by restriction is
an equivalence by Prop. 1.12, this implies that Yﬁ’n =l o

Proposition I1.25 Suppose C to be closed.
The pair (F,a) is an exact functor if and only if for each n-triangle X of C, the object Y of
C'(A¥) defined by (1,2) is an n-triangle of C'.
(1) We have [Y]* = [V H].
)|aasv by isomorphic substitution

(2) On A2V, the object }U/|A%v arises from Y = X(F(A#
A

av, A
along Y00 = X|a (TAD(F(A) “CY X[ (F(A))(T/(A) = (V]5,)*

Proof. In view of Lemma II1.24, it suffices to show that if each n-triangle X in C yields an
n-triangle Y in ' by (1,2), then (F,a) is exact.

We claim that F is subexact. By Lemma I1.41, it suffices to show that given a morphism S > T
in C, there exists a weak cokernel of p that is mapped by F' to a weak cokernel. Since C is a
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closed Heller triangulated category, a weak cokernel of p is contained in the the completion of
S L+ T to a 2-triangle X by Lemma I1.20. We form the corresponding 2-triangle Y defined
by (1,2). Since it contains a weak cokernel of SF’ P TF, and since Y is isomorphic, in C'+ (A#),
to X (F*(AZ)), the image under F of the weak cokernel of p that is contained in the 2-triangle
X is in fact a weak cokernel of pF'. This proves the claim.

We claim that
(Un+ FH(AR)) - a* (AF) = FT(AF) x 0,

for all n > 0. Suppose given X € Ob C*(A#). Since C is a closed Heller triangulated category,
there exists an n-triangle X' such that X'|; = X|4 ; cf. Lemma I1.20. By Prop. [.12, we

have an isomorphism X L X' in Ct(A#) that restricts to the identity on A, . We dispose of a
commutative diagram

[+ = (X
[f]“l l[f“]
(X 2 [

in C*(A¥). Since, by construction, X9, = 1, we have Xv,, = [f]T1 - [fT1]~ in Ct(A¥).

Likewise, we have a commutative quadrangle

(X FH(A,)]

[FF*(An >1+1l
(X' F+(A,

in C'"t(A#). We want to calculate its lower arrow. Since X’ is an n-triangle, we have an

isomorphism Y’ g» Y’ formed as above, where Y’ v = 1. The stably commutative quadrangle

n+1 [a'+! O 1+1
YT —[Y1*

Y’ﬁ;l iif’ﬂ’n =1

yields by restriction to A, the commutative diagram

, . X'|a, a(An) , o
XA, (TF)(Ay) X'[a, (FFT)(Ay)
N+1 [é]H'An 111
Y14, Y14,
[Y/—H”An 1 D“/H-l”An 7

whence Y'9[x = X'|o a(A,) = X'a*(A#)|4 . Since the functor from C'*(A#) to C'(A,)
induced by restriction is an equivalence by Prop. 1.12, this implies that

X'FH A9, = Y9, = X'a* (A]).
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So we can conclude that
XFHA)0, = [fEX Q)] XFH A, - [(fEH(A) 7]
(A 5 (FEH A
= [fFHADIT - X'at (AL - (FET)(AF)”
= [fFEADIT - (fTE)NAL) - Xat (Af)
= (- HIE
= X, * FH(A?)) Xat (A7) .

= [fFH (A" X'at (A

(A - Xat(Af)

This proves the claim. o

Corollary I1.26 Suppose (C, T,9) to be closed.
Suppose given an additive functor C Lo such that TF =F T.

Then F is strictly exact if and only if for each n > 0 and each n-triangle X € Ob CT7=Y(A#),
the diagram X (F(A¥)) € Ob C'(A#), obtained by pointwise application of F, is an n-triangle.

Proof. In this case, we have a = 11p = 1y and Y = Y = X(F(A#)). Since (F,1) is exact if
and only if F' is strictly exact, the assertion follows by Proposition I1.25. 0

I1.5 Adjoints

I1.5.1 Adjoints and shifts

Suppose given categories A and A’. Suppose given an endofunctor T' of A. Suppose given an

endofunctor 7" of A'.
F

Suppose given functors A == A’ such that F' 4 G via unit 1 — FG and counit GF — 1, i.e.
G

(Ge)(nG) = 1¢ and (eF)(Fn) = 1p.

Suppose given TF —~ FT".

Let

GT -2 17'6) = (6T <% 6TrG &% arr'c ™5 T'G) |

So we have the commutative diagram

GT INE

GT&\L TnT’ G

GITFG——GFT'G.
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Lemma I1.27

(1) We have the commutative diagram

TF FT’
aTFl TFT’n
FBF
FGTF FT'GF .
(2) We have the commutative quadrangle
T—>FGT
Tsl J{Fﬁ
TFG— 7 FT'G .
(2°) We have the commutative quadrangle
GTF —*GFT’
T
T'GF ———T'.

(3) Suppose that T and T' are autofunctors. Write G' = T'GT~. If « is an isotransformation,
then so is 3, where

(1'G¢ 2 ar) =

T'GT~eT

T'GTFGT =

T'"GT~a~T'-GT

(T'G =T'GT-T

T'GT-FT'"T"-GT T'GT-TFT"GT =

T'nT'~GT
—_—

T'GFT'-GT T’T"GT:GT) .

(3°) Suppose that T and T are autofunctors. If 3 is an isotransformation, then so is «, where

a—

(FT' 2~ TF) =

TeT~FT'

TFGT-FT' =

TFT'~-3-T~FT'

(FI' =TT FT'

TFT"-T'GT-FT' TFT'-GTT FT' =

TFT'—nT’

TFT"-GFT'

TFT'-T'=TF).
Proof. Ad (2). We have

(T)(FB) = (eT)(FGTe)(FGaG)(FyT'G)
Te)(eTFG)(FGaG)(FnT'G)
Te)(aG)(eFT'G)(FnT'G)

)

(
(
(
(Te)(aq) .
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Ad (1). We have

—~
N
~

(eTF)(FBF)(FT'n) (TeF)(aGF)(FT'n)
(TeF)(TFn)a

.

Ad (3). We have

B (T'GT~eT)(T'GT-o~T'"-GT)(T'nT'~GT)
= (BT-T)(T'GT-<T)(T'GT~a~T'~GT)(T'nT'"-GT)
= (GTT-eT)(BT-FGT)(T'GT~oa~T'-GT)(T'yT'~GT)
(GeT)(BT-FT'T-GT)(T'GT o~ T'-GT)(T'yT'~GT)
= (GeT)(GTT-a~T~GT)(BT-TFT-GT)(T'nT'~GT)
(Ga~T'-GT)(BFT'~GT)(T'nT'"-GT)
(
(nG

- (T GT~eT)(T'GT-FT'T-3)(T'GT- o~ T'-T'G)(T"nG)
T'GT-FB)(T'GT o~ G)(T'nG)

= (T'GT Te)(T'GT~aG)(T'"GTa~G)(T"nG)

= (T'Ge)(T"G)

= 1.

)
= (GeT)
E)(GeT)(GaT-GT)(GaT'-GT)(nT'T'"-GT)
(GeT)(nGT)
= 1
and
(T'GT=T)(T'GT~a~T"~GT)(T'yT'~GT) -
= (I'GTeT)(T'GT- o~ T'-GT)(T'yT"~GT)(T'T'"~3)
(T'GT~eT)(T'GT~a~T'-GT)(T'GFT'~3)(T'nT'~T'G)
= (T'"GT D) (T'GT o~ T-GT)(T'GT-TFT'~3)(T'nG)
)
)

I1.5.2 An adjoint of an exact functor is exact

The Verdier triangulated version of the following proposition is due to MARGOLIS
[44, App. 2, Prop. 11], and, in a more general form, to KELLER and VOSSIECK [34, 1.6].

Proposition I1.28 Suppose given Heller triangulated categories (C, T,9) and (C', T',v').
Suppose given an exact functor (F,a) from C to C'; cf. Definition 11.1.
Suppose given a functor C Lo

'
So C—C and TF -2 FT'.
G

(1) If F 4 G, then there exists an isomorphism T' G 2+ GT such that (G,b) is an exact functor
from C' to C.
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Choose a unit 1o — FG and a counit GF -~ 1¢ . Then, more precisely, we may choose

(TG 26T = @7 % aT1Fre 2% arTa 4

TG) .
(1°) If G 4 F, then there exists an isomorphism T' G 2+ GT such that (G,b) is an exact functor
from C" to C.

Choose a unit 1o/ — GF and a counit FG —~ 1¢ . Then, more precisely, we may choose

Tae 2 am) = (Tae 25 grre “S gTrre L ).

Proof. Ad (1). By Lemma 11.42.(1°), G is subexact.
Lemma I1.27.(3) yields the isotransformation b~ := (G T¢e)(GaG)(n T' G).

Suppose given n > 0. We shall make use of the abbreviation G = G*(A¥), etc. We have to
show that
(W0, %G)-b = G*9,,

i.e. that

(Gx0y,) b~ = V. «G,

i.e. that
(G#0,) - (GxTxe) (GraxG)-(nxT' +xG) = 0, xG

Recall that [—]™! denotes the outer shift, that [—T'| denotes the inner shift and that
Uyt [T == [ 1] on CH(A¥); similarly on C'F(A¥).

We obtain
(Gx0n) (GxTxg) (GraxG) - (nxT'xG)
= (G*Vn) (Gx[-H]xe) (GraxG) (n*xT'xG)
= (Gx[=]"xe) (GxVUn*x EFxG)- (Ga*G)-(n*T xG)
= (Gx[]"xe) (Gx((Un* L) a)*G) - (nxT'xG)
P (G [ e) (G E 9, G) - (nx T/ G)
= (Gxr[]"xe) (G Ex0,xG) - (nx[-F]xG)
= (Gx[]Txe) - (nx [T G) - (U, % G)
(Grex[-]T) - (px G [-]") - (U, % G)
= U xG.
Ad (1°). Cf. Lemma I1.27.(1). g

Example I1.29 Suppose we are in the situation of Proposition 11.28.(1). Then ¢ and 7 are
periodic; cf. Definition I1.4.

Ad € : 1— FG. The functor (F,a)(G,b) = (FG, aG - Fb) is exact; cf. Remark II1.3. The
functor (1c, 1) is exact. The quadrangle

T-EsTFRG

! Jacy

T FpGT
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commutes by Lemma [1.27.(2).

Ad n : GF —1. The functor (G,b)(F,a) = (GF, bF - Ga) is exact; cf. Remark II.3. The
functor (1¢/, 1) is exact. The quadrangle

T
TGF —>T

il
nT

GFT —T

bF-Gai
commutes by Lemma I1.27.(2°).

I1.5.3 A functor shiftcompatibly adjoint to a strictly exact functor
is strictly exact

Suppose given closed Heller triangulated categories (C, T,4) and (C', T',¢)

Recall that an additive functor F' : C — (' is strictly exact if and only if (F,1) is exact; cf.
Def. 1.5.(iii), Definition IL.1.

Corollary 11.30

Suppose given a strictly exact functor C L.

Suppose given a functor C L.

(1) If F 4 G, with unit € : 1 — FG and counit n : GF — 1 such that (GTe)(nT' G) = 1,
then G is strictly exact.

(1°) If G 4 F, with unit € : 1 — FG and counit n : GF —1 such that (¢ T'G)(GTn) =1,
then G 1is strictly exact.

Proof. Ad (1). In the notation of Proposition I1.28.(1), we have a = 1, and, consequently,
b= (GTe)(nT G) = 1. Hence by loc. cit., (G, 1) is exact, i.e. G is strictly exact. o

II.6 Localisation

We prove that the localisation C /N of a Heller triangulated category C at a thick subcategory
N is Heller triangulated in such a way that the localisation functor C Lc JN is strictly ex-
act; cf. Def. 1.5. There is considerable overlap with the classical localisation theory of Verdier
triangulated categories, due to VERDIER [56], which we include for sake of self-containedness.

Let (C,T,9) be a closed Heller triangulated category; cf. Definition I1.14.

Definition I1.31 A full additive subcategory N C C is called thick if the conditions (1,2, 3) are
satisfied; cf. [53, Prop. 1.3]
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(1) We have N = N (closed under shift).

(2) Given a 2-triangle (X,Y, Z) in C with X and Y in ObA/, then Z € ObN
(closed under taking cones).

(3) Given X, Y € ObC with X @Y in ObN, then X € ObN
(closed under taking summands).

Let A be a thick subcategory of C. By Lemma I1.23, conditions (1) and (2) of Definition II.31
yield that A is a Heller triangulated subcategory of C.

Let M(N) := {(X 2+ Y) € C : the cone of f is in ObA’}. An element of M(N) is called an
M (N)-isomorphism or often just an N-isomorphism (not to be confused with “an isomorphism
in V7). If N is unambiguous, then an N-isomorphism is denoted by X = Y. For instance,
X = 0 if and only if 0 = X if and only if X € ObW.

Lemma I1.32 The subset M(N') of N-isomorphisms in C is a multiplicative system in C in the
sense of Definition 11.45.

Proof. Ad (Fr 2). Suppose given X g = X2/0i> X3/0 = Xy/0 such that X = X3/0 and
Xo/0 — X4j0 are M-isomorphisms. We complete to a 4-triangle X € ObCH7=L(A%) using
closedness of C; cf. Lemma I1.20. By Lem. 1.21.(1,6), we have X5,1, X4 € ObN. We have
to show that X5/, X3/2, X4/3, X4;1 € ObN. Let the periodic monotone map As; 2+ A, be
defined by Op := 1, 1p := 1, 2p := 2, 3p := 3, 4p := 4 and 5p := 4. The 2-triangle Xp*f, €
ObCH?=1(A¥) is given by

0
0 Xot14
=+ x
0 X1+1/2 X1+1/4
G
(10) <7m>
0)—— X4/3 — X4/3@X1+1/2 — X1+1/3

+ x

0 X3/ Xan

+

xT

(zz)

Xus2

+

0,

cf. Lem. 1.21.(1,2), §1.1.2.1.2, §1.1.2.2.2. Since X3/, X4/2 € ObN, and since N is closed under
cones, we have Xy/3 ® Xy+1/ € ObN. Since NV is closed under summands and under shift, we
obtain X,/3, X5/1 € ObN. Since N is closed under cones and under shift, X,; € Ob A ensues.
Considering X again, since A is closed under cones, we finally obtain X5/, € Ob .

Ad (Fr 3). Let XLV bea morphism in C such that there exists Y == Z with fs = 0.
We obtain a factorisation (X—f>Y) = (X% N-Y) with N € ObN. Completing
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(Th /0 L Ty L Ts0) = (X —~~ N-Y) to a 3-triangle by Lemma II.20, we obtain
Ty /51 L T /o, which composes to zero with (77 N T30) = (X . Y).

Ad (Fr 4). Suppose given
X/

|

X=—=Y
in C. Prolonging X — X’ to a 2-triangle (X", X, X’), then completing X" — X — Y to a
3-triangle using Lemma I1.20, we obtain, by Lem. 1.21.(6), a 3-triangle 7" with (750 . Ts)0) =
(X = Y) and (Tyjo — To1) = (X — X'). Then Ty, € Ob N, whence Tyyy = Ty . The
weak square (150,730,751, T5/1) is a completion as sought. o

Note that if X € (ObC) ~ (ObN), then (0,0,0,X) is a weak square in which 0 —= 0 is an
MN-isomorphism, but 0 — X is not.

The localisation of C at M (N), defined as in §I1.7.4, is also called the localisation of C at N, and
also written C JN := Cav). Concerning the localisation functor C LN CJN, we refer to §I1.7.4.

Recall that an additive functor between weakly abelian categories is called subexact if it induces
an exact functor on the Freyd categories; cf. §1.1.2.1.3; cf. also Lemma I1.41.

Lemma 11.33 The category CJN is weakly abelian. The functor C LN CJN is subezact.

Proof. By Remark I1.51, the category C/N is additive, and the localisation functor
L:C—CJN is additive. We claim that L maps weak kernels to weak kernels. Let X v be
a weak kernel of Y —~ Z in C. We claim that it remains a weak kernel in C /. Suppose given
a morphism T’ '+ Y in C such that tg =0 in C/N, which we, by isomorphic replacement, may
assume given. Let 77 == T be such that stg = 0 in C; cf. Remark 11.47. Since f is a weak
kernel of ¢ in C, we have a factorisation st = uf. Hence ¢t = (s~ 'u)f is a factorisation of ¢ over

finCJN.

Substituting isomorphically in C /A and using duality, for C /N to be weakly abelian, it suffices
to show that each morphism X LV has a weak kernel resp. is a weak kernel in C/N. But by
the property of L just shown, we may use a weak kernel of f in C resp. a morphism f is a weak
kernel of in C. o

Remark 11.34 The category CJN  carries a  shift automorphism C///\/'—T> CIN,
f/t— T/ttt We have LT = TL.

Proof. This functor is welldefined since NV, and hence M (N), is closed under shift in C. Likewise,
its inverse f/t+— f~1/t71 is welldefined. o

Lemma I1.35 Suppose given a Heller triangulated category (D, T,0).

Suppose given a weakly abelian category D' and an automorphism D’ i, Suppose given a

subezact additive functor DS p strictly compatible with shift, i.e. GT = TG. Suppose that

D(An)%‘) D'(A,) is 1-epimorphic for n > 0.
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Gt (A¥)

Then the functor D+ (A¥)

D' (A#) is 1-epimorphic.

Moreover, there exists a unique Heller triangulation ¢’ on (D', T') such that D D gs strictly
exact; cf. Def. L.5.

Proof. Given n > 0. Since the residue class functors D(A,,) — D(A,,) and D'(A,)) — D'(A,)
are full and dense, they are l-epimorphic by Cor. I.77; concerning notation, cf. §1.2.4. The

commutative quadrangle

GAn)
D(A,) —=TD'(A,)

A
D(lAw = D'<£n>

shows that G(A,,) is 1-epimorphic. Restriction induces equivalences Dt (A#) Ola, (A,) and

D't (A¥) Ol D'(A,) by Prop. 1.12. Therefore, the commutative quadrangle

D(A,) DI(A,)
(_)|AnT T(—)Mn
B + (A% B
D (A¥) EEE i (A%)

shows that G*(A#) is 1-epimorphic; concerning notation, cf. §1.1.2.1.1, §1.1.2.1.3. Therefore, we

may define a transformation ¢, for D’ by the requirement that

GH(AY)

be commutative, i.e. that 6, x G*(A#) = GT(A#)x 6 . In other words, there exists a unique 6/,
making this diagram commutative.

Let 6 := (#)ns0, where for n = 0, we make use of D'"(A¥) = 0. We claim that ¢’ is a
Heller triangulation on (D', T'), i.e. that (D', T',#') is a Heller triangulated category. Once this

is proven, we see that by construction, D Ypis strictly exact; cf. Def. 1.5.(iii).

Suppose given m,n > 0 and a periodic monotone map A,<>-A,,. To prove that
| —
p* %0, = 0/« p*, we may precompose with the 1-epimorphic functor G*(A#) to obtain

GH(AF) > p# 0, = PP GHAE) %0, = p* %0, xGT(AY)
(P10 O % p* * GT(AL) = 0, xGH(AF)xp* = GT(AF)* 0, xp* .

Heller triangulated
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Suppose given n > 0. To prove that in*H;l 1 = 05 i1 *f , we may precompose with the

l-epimorphic functor G*(A¥, ) to obtain

GH(AE ) *f <0, = §xGHAE,) 0

n+1 1 n+1

- B % O < GH(ATL)

(D,T,0) ~
= Orni1*x§f xGT(A
Heller triangulated et jn M

= Oon+1 * G+(A§z+1) *f = G+(A§L+1) * 0,11 *in :

n

Proposition I1.36 Recall that (C, T,¥) is a closed Heller triangulated category, and that N is
a thick subcategory of C.

There exists a unique Heller triangulation 6 on (CJN,T) such that C N CIN is strictly exact;
cf. Def. L5.

Then (CJN,T,0) is a closed Heller triangulated category; cf. Definition 11.14.

Proof. By Lemma I1.33, the category C /N is weakly abelian, and L : C — C J N is subexact. By
Remark 11.34, C /N carries a shift automorphism, and L is compatible with the shift automor-

phisms on C and on C JA. By Lemma I1.50, the functor C(A,,) L&) (CJN)(A,) is 1-epimorphic
for n > 0. Therefore, existence and uniqueness of ¢ follow by Lemma II.35.

It remains to be shown that C /N is closed. By isomorphic substitution, it suffices to show that
each morphism in the image of L has a cone in C /N ; cf. Lem. 1.21.(6). But this follows from C
being closed and from L being strictly exact. o

An object (X = x ) of the Freyd category C is called N-zero if x factors over an object of A ;
concerning C, cf. §1.6.6.3. Note that an object of C that is isomorphic to a summand of an A-zero
object is itself Azero.

Remark I1.37 A morphism in C is an N-isomorphism if and only if its kernel and its cokernel,
taken in C, are N-zero.

Note that this criterion does not make reference to the Heller triangulated structure on C, but only to
the fact that C is weakly abelian. One might ask for conditions on N that only use weak abelianess
of C, and that nonetheless suffice to turn C(xr) into a weakly abelian category — where now M (N)
is the subset of morphisms of C defined by the criterion given in Remark I1.37.

Proof of Remark 11.37. Suppose that X = Y is an A isomorphism in C. Then it has a weak kernel
N and a weak cokernel M in Ob V. By construction of the kernel in C, it is of the form (N — X).
Dually, the cokernel is of the form (Y — M); cf. §1.6.6.3.

Conversely, suppose that the kernel and the cokernel of the morphism X I, Y, taken in C, are

N-zero. Consider the exact functor C —. (CJN) that prolongs L on the level of Freyd categories.
It maps f to an isomorphism, since in the abelian category (C /N, the image of f has zero kernel
and zero cokernel. Since CJN — (C/N) is full and faithful, the image of f under L in C/N is an
isomorphism, too. Hence f is an A-isomorphism in C; cf. Remark II.46. o
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Proposition I1.38 (universal property)  Recall that (C,T,9) is a closed Heller triangu-
lated category, and that N is a thick subcategory of C.

Let 0 be the unique Heller triangulation on (CJN, T) such that the localisation functor C N CIN
is strictly exact; cf. Proposition 11.36. Suppose given a Heller triangulated category (C',T',1).

Recall that we write [LC,C'1 for the category of exact functors and periodic transformations
from C to C'; cf. Definition I1.6.

Write 1C,C'lex, ;v C [LC,C' e for the full subcategory consisting of exact functors (F,a) such
that NF ~ 0 for all N € Ob .

Recall that we write [LC,C' I o for the category of strictly exact functors and periodic transfor-
mations from C to C'; cf. Definition 11.6.

Write LC,C' lgex, 4 C [LC,C gt ex for the full subcategory consisting of strictly exact functors F
such that NF ~ 0 for all N € ObN.

(1) We have a strictly dense equivalence

[C,CTe x 2 [CIN, C'T.s

(LxG,Lxb) = (L,1)* (G,b) ~—— (G,D).

(2) We have a strictly dense equivalence

[C,CTgen 2 LCJN, C'Tyex

LxG —— G.

Proof.

Ad (1). Welldefinedness of the functor L« (—) follows from L being strictly exact and exact
functors being stable under composition; cf. Proposition I1.36, Remark II1.3.

We make use of the universal property of the localisation to the extent stated in Remark I1.51.

(Fla)
Suppose given exact functors C — C' and a periodic transformation F —— G.

(G.b)
Let F: CJN —C' be defined by L« F' := F. Let G : CJN —~C’ be defined by L+ G := G.

Recall that the shift on C/N is, abusively, also denoted by T, so that TxL = LxT. Let the
transformations @ and b be defined by

La(ToE - FxT) 1= (T«F-+F%T)
La(TxG - GxT) = (T+G-2-G*T).

Let the transformation F —“~ G be defined by
Lk (P G) = (F-%G) .

We have to show that (F, @) is exact and that @ is periodic.
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Ad F ezact. Since Xi@ = XL& = Xa is an isomorphism for X € ObCJN = ObC, the

transformation a is an isotransformation.

To show that F' is subexact, by Lemma I1.41, it suffices to show that given a morphism f in
C /N, it has a weak cokernel that is preserved by F. By isomorphic substitution, we may assume
that f = f’L for some morphism f’ in C. Let (f’,¢',h’) be a 2-triangle in C; cf. Lemma II.20.
Since L is strictly exact, the 2-triangle (f, ¢’ L, ' L) results. In particular, ¢’ L is a weak cokernel
of f. Since F is subexact, ¢F = ¢’ L F is a weak cokernel of f'F = f'LF = fF.

Suppose given n > 0. We shall make use of the abbreviation F' = F*(A#) | etc. It remains to
show that

9 9

(O« F) & = Fxv,.

Since L = LT (A¥) is 1-epimorphic by Lemmata I1.50 and I1.35, it suffices to show that

Lx (6, F)-d) = L xo, .

In fact,

Ad u periodic. We have to show that
(Txit)-b = a-(ixT)
as transformations from T F to G « T". By Remark I1.51, it suffices to show that

Lo ((Txit) - b) = Lx(a-(ixT).

In fact,
La((Txa)-b) = (LaTxi)-(Lkxb)
—  (TxLxit)- (LxD)
= (T*u)-b

CET G (uk T
= (Lxa)-(Lxu*T")
= Lx(a-(axT)).
Ad (2). Welldefinedness of the functor L (—) follows from L being strictly exact and strictly
exact functors being stable under composition; cf. Proposition 11.36, Remark I1.3.

Keep the notation of the proof of (1). Given an exact functor (F, a) from C to C’, we infer from

a =1, using Lxa = a, that a = 1. 0
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II.7 Some general assertions

This appendix serves as a tool kit consisting of known results and folklore lemmata. We do not
claim originality.

11.7.1 Remarks on coretractions and retractions

Remark 11.39 Let A be a category.
Suppose given X, Z in Ob A, and morphisms X . 7 L+ X such that ip=1x.
Suppose given Y, W in Ob A, and morphisms Y g, W -4 Y such that jg=1y.

Suppose given X s Y in A. Let Z—> W be defined by v := puj. Then vqg = pu and iv = uj.

7—"Ls>x—"syz
W*>Y*>W
Proof. We have vq = pujq = pu and iv = ipuj = uj. o

Remark I1.40 Let A be a category. Suppose given Z, X, Z', W, Y, W' € Ob A.
Suppose given morphisms X N Z 2+ X such that ip=1x.

Suppose given morphisms X - 4 v, X such that i'p’ =1x .

Suppose given morphisms Y . W —> Y such that jg=1y.

Suppose given morphisms Y I w’ A, Y such that j'q' = 1y .

Suppose given Z —> W and Z' - W' such that pi'v' = vqj’.

Then there exists a unique morphism X —+Y in A such that vqg = pu and i'v' = uj’.

i

e Gy
W*>Y*>W’

If v and V' are isomorphisms, so is u.

Proof. Uniqueness follows from p being epic and j' being monic.

For existence, we let u := ivqg = i'v'q’, the latter equality holding because of pivgj’ = pipi'v' = pi'v' = vqj’ =
vqj'q'j' = pi'v'q’'j’, using p epic and j' monic. Then pu = pi'v'¢’ = vqj'q’ = vq and uj’ = ivqj’ = ipi'v’ =i'v'.

If v and v’ are isomorphisms, then let «' := jo~p = j0'7p’ to get wu' = dvgj’v'~p' = ipi'v/v'"p’ = 1 and
u'u=jv pi'v'q = jvTvgj'q’ =1, so that v’ = u~. In particular, u is an isomorphism. o

I1.7.2 Two lemmata on subexact functors
Suppose given weakly abelian categories A and A’; cf. e.g. Def. 1.66.(3). Suppose given an additive functor

F : A— A’. Recall that F is called subexact if the induced functor F : 4 — A’ on the Freyd categories is
exact; cf. §1.1.2.1.3.
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Lemma I1.41 The following assertions (1,2,3,3°,4,4°) are equivalent.

) The functor F is subexact.
) The functor F' preserves weak kernels and weak cokernels.
3) The functor F preserves weak kernels.
)

The functor F preserves weak cokernels.

(4) For each morphism X Y in A, there exists a weak kernel W —~ X such that wF is a weak kernel

of tF.

(4°) For each morphism X v in A, there ezists a weak cokernel Y o W' such that w'F is a weak cokernel

of tF.

Proof. Ad (1) = (4). Suppose given a morphism X e ¥Yin A. Let K —— X be a kernel of ¢t in A. Choose

b ~ ~ "Ya ~ a ~ ~ ~
A —+— K with A € Ob A. Since F is exact, AF OOE xf e Y is exact at XE. So (bi)F = (bi)F is a weak

kernel of tF' = tF in A'.

Ad (4) = (3). Given a morphism X '+ ¥ in A and a weak kernel W —» X, a morphism V — X is a weak
kernel of ¢ if and only if both (w factors over v) and (v factors over w). So if wF is a weak kernel of tF, so is
vF. Consequently, if F' preserves a single weak kernel of ¢, it preserves all of them.

Ad (3) = (2). This follows by Rem. 1.67.

Ad (2) = (1). Using duality and uniqueness of the kernel up to isomorphism, it suffices to show that F maps a
chosen kernel of a given morphism to a kernel of its image under F. Since F preserves weak kernels, this follows
by construction of a kernel; cf. e.g. §1.6.6.3, item (1) before Rem. 1.67. o

F G
Lemma I1.42 Suppose that C — C' is subexact. Suppose given a functor C <—C'.

(1) If GAF, then G is subezact.
(1°) If F 4 G, then G is subexact.

Proof. Ad (1). As an adjoint functor between additive categories, G is additive.
Let 1 — GF be a unit and FG — 1 a counit of the adjunction G - F.

By Lemma I1.41, it suffices to show that G preserves weak cokernels. Suppose given X’ s X "+ X” such
that v is a weak cokernel of u. We have to show that Gv is a weak cokernel of Gu. Suppose given t : XG — T
such that uG -t = 0. Then

u-Xe-tF = X'e-uGF -tF = X'e- (uG-t)F = 0.
Since v is a weak cokernel of u, we obtain a morphism s : X" — T'F such that v-s = Xe-tF. Then

vG - (sG-Tn) = XeG-tFG-Tn = XeG-XGn-t = t.

I1.7.3 Karoubi hull

The construction of the Karoubi hull is due to KAROUBI; cf. [30, IIL.II].

Suppose given an additive category A. The Karoubi hull A has

ObA := {(Aye) : Ac ObA, e € 4A, A) withe? =¢}
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and, given (A, e), (B, f) € Ob A,

A((A,e), (B,f)) = {ue€ AAB):e-u-f=u}.

Then A is an additive category, in which all idempotents are split.
Composition is inherited from A. We have a full and faithful additive functor

K ~

A — A
(X—>Y) — ((X,1)—(¥,1)),

which we often consider as an inclusion of a full subcategory.

Suppose given an additive category B in which all idempotents are split.

Remark I1.43 Write [ A, B1,qq for the category of additive functors and transformations between such from A

Kx (— -
to B. The induced functor [A, BT bl A, B1 restricts to a strictly dense equivalence

Kx (=) ~
[A, B]add I — [.A,B]add.

I
Lemma I1.44 Suppose given an additive functor A — A’ to an additive category A’ in which all idempotents
split. By Remark I1.43, we obtain a functor J : A — A’, unique up to isomorphism, such that the following
triangle of functors commutes.

1 A

=

X
-
\\\

b

If I is full and faithful, and if every object of A’ is a direct summand of an object in the image of I, then J is
an equivalence.

By abuse of notation, in the situation of Lemma II.44, we also write A = A’ and consider I to be an inclusion
of a full subcategory.

I1.7.4 Multiplicative systems

The construction of the quotient category of a Verdier triangulated category is due to VERDIER; cf. [56].

Suppose given a category C.

Definition I1.45 A set M of morphisms of C is called a multiplicative system in C if (Fr 1-4) are satisfied. An
element of M is called an M-isomorphism and denoted by X =Y.

(Fr1) Each identity in C is an M-isomorphism.

h
(Fr2) Suppose given X I Y -2~ Z —+ W in C such that fg and gh are M-isomorphisms.
Then f, g, h and f-g-h are M-isomorphisms.

f
(Fr3) Suppose given X —7 Y in C. There exists an M-isomorphism s such that sf = sg if and only if there
9

exists an M-isomorphism ¢ such that ft = gt.
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(Fr4) Given i in C, there exists a completion to a commutative quadrangle i J/
X/ X/ ﬁ Y/
Y X=—=Y
Dually, given l in C, there exists a completion to a commutative quadrangle l l
X/ > Y/ X/ e Y/

Cf. [56, §2, no. 1].

Suppose given a multiplicative system M in C. Using (Fr2), we note that in the first assertion of (Fr4),
if X — X’ is an M-isomorphism, then there exists a commutative completion with Y — Y’ being an
M-isomorphism. And dually.

The category Cy; , called localisation of C at M, is defined as follows. Let ObCjy; := ObC. A morphism from X
to Y is a double fraction, which is an equivalence class of diagrams of the following form.

f
) d =y

X Y

The diagrams (s, f,t) and (s's,s'ft',tt') are declared to be elementarily equivalent, provided s’ and t' are
M-isomorphisms. To form double fractions, we take the equivalence relation generated by elementary equi-
valence.

The equivalence class of the diagram (s, f,t) is written s\ f/t. So s\ f/t = 3\ f/f if and only if there exist

M-isomorphisms u, @, v, ¥ such that us = @8 and tv = 0 and ufv = 4 f0.

T e <
NN
I

T = <&f/l—=

P

Write f/t := 1\ f/t, called a right fraction, and s\ f := s\ f/1, called a left fraction. Using (Fr4), each morphism
in Cps can be represented both by a left fraction and by a right fraction. Given right fractions f/t and f /t, they
are equal if there exist M-isomorphisms u, v and @ such that wfv = ufo and tv = #0. By (Fr3), this implies the
existence of M-isomorphisms v, & and ' such that f(ve') = f(ou') and t(ve) = #(ou'). Dually for left fractions.

So double fractions are a self-dual way to represent morphisms in Cp; . Right or left fractions are more efficient in
many arguments.

The composite of two double fractions s\ f/¢ and u\ g/v is defined, using (Fr4) for the commutative diagram
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to be equivalently s\ f¢'/vy or xs\ f'g/v. By (Fr4,2,3), this definition is independent of the chosen completion
with ¢’ and y, and, likewise, of the chosen completion with z and f’.

Independence of the choice of the representative s\ f/t is seen considering an elementary equivalence and using
(Fr4,2), thus obtaining an elementary equivalence of the two possible representatives of the composite. Likewise
independence of the representative u\ g/v.

Associativity follows using right fractions and a commutative diagram constructed by means of (Fr4),

\
\/

X/\Y/\Z/\W.

Given f € MorC, we also write 1\ f/1 =: f in Cj, by abuse of notation. Note that in Cps, we have s\ f/t =
sTft.

Remark I1.46 A double fraction s\ f/t represents an isomorphism in Cpr if and only if f is an M-isomorphism.

Sketch. First, using (Fr 2), we reduce to the case of a right fraction g/u. For a right fraction in turn, the assertion
follows applying (Fr2) to an associativity diagram as above. o

f
Remark I1.47 Given X —J Y in C, we have f = g in Cps if and only if there exists an M-isomorphism ¢ such
g

that ft = gt in C, or, equivalently, if and only if there exists an M-isomorphism s such that sf = sg in C.

Remark I1.48 We have a functor C — Car, f—1\f/1=f, called localisation functor.

Given a category T, we let LC,T 1p; be the full subcategory of LC, T 1 consisting of functors that send all
M -isomorphisms in C to isomorphisms in T. The induced functor

Lx(—) _
0C, Ty ~—— [Cy,TT

is a strictly dense equivalence, i.e. it is surjective on objects, full and faithful.

Sketch. Given a functor F' € Ob[LC, 7 1, we may define FonCy by letting XF:=XFfor X € ObCy = ObC
and by (s\ f/t)F := (sF)~ - (fF)- (tF)~. Then L+ F = F.

Given a transformation (F—u> G) € MorlC, T Ty, we may define P G by setting Xt := Xu for
X € ObCypr = ObC. Then Lxi = u. o

Lemma I1.49 Given n > 0, the functor

C(An) 2 (A,

given by pointwise application of L, is dense.

Proof. We may assume n > 1.
Suppose given X € ObCxs(A,). To prove that for i € [1,n — 1] there exists an X’ € ObCyps(A,,) isomorphic to
X such that X; = Xy/‘+1 is in the image of L for j € [1,7 — 1], we proceed by induction on i > 1. Suppose the

assertion to be true for i. Let us prove the assertion for i + 1. Write X] —» X/ 41 as a right fraction f/s. If
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i =n — 1, we replace X/ | by the target of f, and f/s by f. If i <n —2, we write X] BLE Xi,, as a right

fraction g/u and construct the following commutative diagram using (Fr4).

" 9/7 X/
/in+1\s g/’ X

/ / /
Xi XiJrl Xi+2

We replacing the object X7, by X/ |, the morphism f/s by f and the morphism g/u by ¢'/us’.

In both cases, we obtain a diagram isomorphic to X’ that conincides with X’ on [1,¢] and whose morphism from

1 to i+ 1 is in the image of L.

Lemma I1.50 Given n > 0, the functor

is 1-epimorphic.

Proof. We shall apply Lem. 1.75. By Lemma I1.49, L(A,,) is dense.

[m]

Suppose given X, Y € ObC(A,) and a morphism X L(A,) = Y L(A,) in Cp(A,). Let g; be represented by

a right fraction f;/s; for i € [1,n].

We claim that for ¢ € [1,n], we can find representatives f]’»/s; for j € [1,i] such that there exist h; with
sthy =ys’ , and fihj = xf],, inC for j € [1,i—1]. Let f{ := f1 and s} := 51 . Proceeding by induction on i, we
have to write the right fraction f;;1/s;41 suitably as f;,,/s; . First of all, by (Fr4), we find an M-isomorphism
o and a morphism § such that yo = s;¢ in C. We have f/{o™ = xfiy1s;; in Cpy. Using (Fr4) and (Fr2), we

find M-isomorphisms s’ and ¢’ such that os’ = s;410’ in C. Hence

figs' = figs's o7 sip0" = fl€oTsi0’ = afiyissi0’ = xfina0’

in Cps. Composing with a further M-isomorphism, we may assume that f/¢s’ = zf;110" in C; cf. Remark 11.47.

We take h; := &s” and s} = s;410" and f{, | = fij10”.

Xi i Xi+1

fi
S
3
—_—
S{H \+1ﬂ
y

Y; Yip

fi+1

This proves the claim, in particular for i = n.

X1 z X2 e Xn—l Z Xn

ﬁl fél fzﬂi lf&
h1 hnfl

K Y I

Yy

Y, — =Y, Y1 Y,

Condition (C) of loc. cit. is satisfied letting the epizigzag have length 0, letting the monozigzag be the single
backwards diagram morphism consisting of the morphisms s, and letting the required diagram morphism in the

image of L(A,,) consist of the morphisms f/.

[m]
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Remark I1.51 Suppose the category C to be additive.

(1) An object X is isomorphic to 0 in Cpr if and only if X = 0, or, equivalently, if and only if 0 = X.
(2) The category Cas is additive, and the functor L : C — Cps is additive.

(3) Given an additive category T, the strictly dense equivalence

Lx(—) _
[C,T Iy [Cy, T1]

restricts to a strictly dense equivalence from the category of additive functors from Cp; to T to the category
of additive functors from C to T that sends all M-isomorphisms to isomorphisms, written

Lx(—
[C,T]add,M J [CJVIaT]add-

Sketch.
Ad (1). If X is isomorphic to 0, then X = X’ <= 0; cf. Remark I1.46. By (Fr4), we conclude that 0 = X.

(10) (01)
Ad (2). Given X, Y € ObC, the direct sum X @Y, together with X —— X @Y and Y —— X @Y, remains

a coproduct in Cyy .

For existence of an induced morphism from the coproduct, we use (Fr4,2) to produce a common denominator
of two right fractions.

To prove uniqueness of the induced morphism, we suppose given (f;) /s and (; :) /s, without loss of generality

with common denominator, such that f/s = (10) - (g)/s = (10)- (’gc,)/s = f'/s and g/s = (01) - (g)/s =
(01) - (g,)/s = g¢'/s in Cps. So there exists an M-isomorphism u such that fu = f'u, and an M-isomorphism
v such that gv = g’v, both in C. By (Fr4,2), we obtain a common M-isomorphism w such that fw = f'w and
gw = ¢'w in C. Hence (g) w = (g:) w in C. Therefore (g)/s = (g:)/s in Cpr.

Moreover, the automorphism (% (1)) of X & X remains an automorphism in Cj; .

Ad (3). Since L is additive, L+ (—) sends additive functors to additive functors. Conversely, given an additive
functor F': C — 7, the functor F as constructed in the proof of Remark I1.48 is additive. o
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Chapter 111

Nonisomorphic Verdier octahedra on
the same base

II1.0 Introduction

I11.0.1 Is being a 3-triangle characterised by 2-triangles?

VERDIER (implicitly) defined a Verdier octahedron to be a diagram in a triangulated category
in the shape of an octahedron, four of whose triangles are distinguished, the four others com-
mutative [56, Def. 1-1]; cf. also [8, 1.1.6]. It arises as follows.

To a morphism in a triangulated category, we can attach an object, called its cone. The morphism
we start with and its cone are contained in a distinguished triangle. To the morphism we started
with, we refer as the base of this distinguished triangle.

Now given a commutative triangle, we can form the cone on the first morphism, on the second
morphism and on their composite, yielding three distinguished triangles. These three cones
in turn are contained in a fourth distinguished triangle. The whole diagram obtained by this
construction is a Verdier octahedron. We shall refer to the commutative triangle we started with
as the base of this Verdier octahedron.

A distinguished triangle has the property of being determined up to isomorphism by its base.
Moreover, any morphism between the bases of two distinguished triangles can be extended to a
morphism between the whole distinguished triangles.

We shall show that the analogous assertion is not true for Verdier octahedra. In §III.3, we
give an example of two nonisomorphic Verdier octahedra on the same base. In particular, the
identity morphism between the bases cannot be prolonged to a morphism between the whole
Verdier octahedra.

The reader particularly interested in Verdier octahedra can read §IIT.1.1, §II1.1.2, §II1.1.4 and
6IIL.3.

In the terminology of Heller triangulated categories, a Verdier octahedron is a periodic
3-pretriangle X such that Xd# is a 2-triangle (i.e. a distinguished triangle) for all injective
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- ~ d x
periodic monotone maps Az <— A,.

One of the two Verdier octahedra in our example will be a 3-triangle in the sense of Def. 1.5, i.e.
a “distinguished octahedron”, whereas the other will not.

Note that unlike a Verdier octahedron, a 3-triangle is uniquely determined up to isomorphism
by its base in the Heller triangulated context; cf. Lem. 1.21.(6).

I11.0.2 Is being an n-triangle characterised by (n — 1)-triangles?

The situation of §II1.0.1 can be generalised in the following manner.
Suppose given a closed Heller triangulated category (C, T,4); cf. Def. 1.5, Definition I11.13.

The Heller triangulation ¥ = (¥,,)n>0 on (C, T) can be viewed as a means to distinguish certain
periodic n-pretriangles as n-triangles. Namely, a periodic n-pretriangle X is, by definition, an
n-triangle if X4, = 1; cf. Def. 1.5.(ii.2). For instance, 2-triangles are distinguished triangles in
the sense of Verdier; 3-triangles are particular, “distinguished” Verdier octahedra.

111.0.2.1 The example

Let n > 3. Let X be a periodic n-pretriangle. Suppose that Xd# is an (n — 1)-triangle for all

injective periodic monotone maps A, 4 A,_1. One might ask whether X is an n-triangle.

We shall show in §III1.2 by an example that this is, in general, not the case.

111.0.2.2 Consequences

Suppose given n > 3 and a subset of the set of periodic n-pretriangles. We shall say for the
moment that determination holds for this subset if for X and X out of this subset, X| A, = X| A,
implies that there is a periodic isomorphism X ~ X. We shall say that prolongation holds for
this subset, if for X and X out of this subset and a morphism X| A, — X A, there exists a
periodic morphism X —» X that restricts on A,, to that given morphism. If prolongation holds,
then determination holds.

e Consider the subset of periodic n-pretriangles X such that Xd# is an (n — 1)-triangle for
all injective periodic monotone maps A, S A, _;. Our example shows that in general,
determination and prolongation do not hold for this subset. In fact, if X is such an

n-pretriangle, but not an n-triangle, then the n-triangle on the base X | is not isomorphic
to X; cf. Lem. 1.21.(1,4).

e BERNSTEIN, BEILINSON and DELIGNE considered the subset of periodic n-pretriangles
X such that Xd# is a 2-triangle (i.e. a distinguished triangle) for all injective periodic
monotone maps A, S A, [8, 1.1.14]. Our example shows that in general, determination
and prolongation do not hold for this subset. In fact, this subset contains the previously
described subset.
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In both of the cases above, if n = 3, then the condition singles out the subset of Verdier
octahedra.

e By Lem. [.21.(6), Lem. 1.19, determination and prolongation hold for the set of n-triangles.

So morally, our example shows that it makes sense to let the Heller triangulation ¥ distinguish
n-triangles for all n > 0. There is no “sufficiently large” n we could be content with.

I11.0.3 An appendix on transport of structure

Suppose given a Frobenius category &; that is, an exact category with enough bijective objects
(relative to pure short exact sequences). Let B C £ denote the full subcategory of bijective
objects.

There are two variants of the stable category of £. First, there is the classical stable category
&, defined as the quotient of £ modulo B. Second, there is the stable category £, defined as the
quotient of the category of purely acyclic complexes with entries in B modulo the category of
split acyclic complexes with entries in B. The categories £ and £ are equivalent. The advantage
of the variant £ is that it carries a shift automorphism, whereas £ carries a shift autoequivalence.

In Cor. 1.33, we have endowed £ with a Heller triangulation. Now in our particular situation,
also &£ carries a shift automorphism. Since £ is better suited for calculations within that cate-
gory, the question arises whether the equivalence £ >~ £ can be used to transport the structure
of a Heller triangulated category from £ to £. This is indeed the case; cf. Proposition 111.22.(1).
Moreover, we give recipes how to detect and how to construct n-triangles in &; cf. Proposi-
tions 111.22.(2, 3), I11.25.

Roughly put, the variant £ is rather suited for theoretical purposes, the variant £ is rather suited
for practical purposes, and we had to pass a result from £ to £. Not surprisingly, to do so, we
had to grapple with the various equivalences and isomorphisms involved.

I11.0.4 Acknowledgements

I thank AMNON NEEMAN for pointing out, years ago, why a counterexample as in §I11.2 should
exist, contrary to what I had believed.

This example has been found using the computer algebra system MAGMA [9]. T thank MARKUS
KIrRSCHMER for help with a Magma program.

I thank the referee for helpful comments.

I11.0.5 Notations and conventions
We use the conventions listed in §1.0.7. In addition, we use the following conventions.

(i) If « and y are elements of a set, we let 0, , = 1if z =y, and we let 0, := 0 if x # y.

(ii) Given a € Z, we write Z/a := Z/aZ.
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(iii)

(iv)

Given a ring R and R-modules X and Y, we write, by choice, p(X,Y) = r-Mmod(X,Y) = Homp(X,Y).
Moreover, given k > 0, we write X% .= Dicpn X

An automorphism T of a category C is an endofunctor on C for which there exists an endofunctor S such
that ST = 1¢ and T'S = 1¢. An autoequivalence T of a category C is an endofunctor on C for which there
exists an endofunctor S such that ST ~ 1 and T'S ~ 1¢.

Let n > 0. Recall that A2 = {8/a € A¥ : 0 < a < f < 0t} C A#. We will often display an
n-triangle or a periodic n-pretriangle in a Heller triangulated category C by showing its restriction to
ALY N ({afa @ 0 < a < 0P} u{0t/0}). This is possible without loss of information, for we can
reconstruct the whole diagram by adding zeroes on a/a for 0 < a < 07! and on 0%!/0, and then by
periodic prolongation.

Suppose given a Heller triangulated category C. A Verdier octahedron in C is a periodic 3-pretriangle
X € Ob ¢hperiodic(A#) such that Xd# e Ob ¢t periodic(A%) s a 2-triangle for all injective periodic

_ d -
monotone maps Az <—— As.

Henceforth, let p > 2 be a prime.

I11.

1 The classical stable category of (Z/p™)-mod

I11.1.1 The category (Z/p™)-mod

Let m > 0. By € := (Z/p™)-mod we understand the following category.

The objects are indexed by tuples (a;)icjo,m) With a; € Zxy. To such an index, we attach the

object

P /v .

1€[0,m]

As morphisms, we take Z/p™-linear maps.

Note that we have not chosen a skeleton. The trick here is to pick several zero objects.

The duality contrafunctor zs,m(—,Z/p™) on &, which sends Z/p’ to Z/p" for i € [1,m], shows
that an object in this category is injective if and only if it is projective. An object of &€ is

bijective if and only if it is isomorphic to a finite direct sum of copies of Z/p™. The category
£ is an abelian Frobenius category, with all short exact sequences stipulated to be pure; cf. e.g.
Def. 1.45.
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I11.1.2 The shift on (Z/p™)-mod

To define a shift automorphism on the classical stable category € = (Z/p™)-mod, we shall
distinguish certain (pure) short exact sequences in &; cf. §111.4.4.2.1, Def. 1.47.

Let B, := (1 1) denote the unit matrix of size k x k; let E := (1 1) denote the reversed
unit matrix of size k x k.
As distinguished (pure) short exact sequences we take those of the form

P Eaqq

p'm—lEa1

pOEanL E;

Diciom(Z/p)™ . (Z/pm)®>ictom R Diciom (Z/p")

So roughly speaking, distinguished short exact sequences are direct sums of those of the form
X m—1i 1 .
Z/p’ P s Z/p" =~ Z/p"",
where i € [0, m]; we reorder the summands the cokernel term consists of.

With this choice, conditions (i, ii, ii) of §I11.4.4.2.1 are satisfied.

On indecomposable objects and morphisms between them, the shift automorphism induced on
& by our set of distinguished short exact sequences is given by

a

(Z/p — Z/)T =z T g

where i, j € [0,m], and where a is a representative in Z. Note that if i < j, then a is divisible
by pI~t.
Note that Z/p’ —%~ Z /p’ represents zero in & if and only if a is divisible by p™n(m=i7),

I11.1.3 A Heller triangulation on (Z/p™)-mod

Concerning the notation EY(AY), cf. §111.4.3. Given n > 0 and X € Ob&Z(AL), we form
X7 € Ob g+ periodic (ALY with respect to the set of distinguished short exact sequences of §111.1.2
as described in §I11.4.4.2.3. That is, we replace the rightmost column of X by the column
obtained using distinguished short exact sequences, so that (X7)g+1/ = ((X7)s0)™ = (X, 0)th;
of. §111.4.4.2.3.

Remark I11.1 If the short exact sequences

Xa/o A Xaja ® Xot+1)0 o Xot+1/a

appearing in the diagram X for 1 < a < n already are distinguished, then the image of X in
Ob ET(ALY) equals X™.

Concerning the notion of a closed Heller triangulated category, cf. Definition I11.13 in §I11.4.2.
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Remark I11.2 The classical stable category

&
lation such that given n > 0 and X € ObEZ(ALY), the periodic prolongation of X™ to an object
of ET-periodic(A#Y s an n-triangle.

= (Z/p™)-mod carries a closed Heller triangu-

Proof. The assertion follows by Proposition I11.22.(1) in §I11.4.4.2.1 and Proposition I11.25 in
§111.4.4.2.4. .

I11.1.4 A Verdier triangulation on (Z/p™)-mod

By [22, Th. 2.6], £ = (Z/p™)-mod is a Verdier triangulated category, i.e. a triangulated category
in the sense of VERDIER [56, Def. 1-1].

This also follows by Remark II1.2 and by Prop. 1.23, which says that any Heller triangulated category
in which idempotents split is also Verdier triangulated. The 2-triangles in the Heller context are
the distinguished triangles in the Verdier context.

Given a morphism X Jiving , using the distinguished short exact sequence X —s~ B —+ X1,
where B is bijective, we can form the morphism

Y—o—>Z—|—>X+1
1
X—o—>B—|—>X+1

of short exact sequences, from which the sequence
4 1
X—Y o>/ —+—> X+

represents a distinguished triangle in the Verdier triangulated category £.

II1.2 Nonisomorphic periodic n-pretriangles

Nonisomorphic periodic n-pretriangles whose periodic (n — 1)-pretriangles are all (n — 1)-triangles,
to be specific.

Let n > 3. Let C := (Z/p**)-mod, and let it be endowed with a shift automorphism as in
6II1.1.2 and a Heller triangulation as in §II1.1.3.



145

I11.2.1 A (2n — 1)-triangle

Let Y be the following (2n — 1)-triangle in C.

Z/pl p ... p; Z/pZn—4 p R Z/pZn—3 —p; Z/p2n—2

P P P 3 P no P n—
Z/p' Z/p* e Z/p* 3 ——Z/p*"? ——Z/p*" !
IT 1T 1 1
P P 3 P p _9 P n—
Z/pt —Z/p? Z/p? - Z/p*? ——Z/p" !

Here we have made use of the convention from §II1.0.5 that we display of Y only its restriction to

the subposet {3/a € A% | : 0<a < <0, B/a # 0t /0}, which is possible without loss of
information. Similarly below.

It arises from a diagram on A2V with values in (Z/p?")-mod that consists of squares, has entry
Z/p* at position 071 /0, and has the quadrangle

Z/p2n—2 —p Z/p2n—1

IT T_l

Z/pQ”_l p Z/p2n

in its lower right corner. This diagram contains the necessary distinguished short exact sequences
with the necessary signs inserted for Y to be in fact a (2n — 1)-triangle; cf. Remarks II1.1, T11.2.
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I11.2.2 An n-triangle and a periodic n-pretriangle

We apply the folding operator f,_; to the (2n — 1)-triangle Y obtained in §I11.2.1, yielding the
n-triangle Yf,_1, which we shall display now; cf. Lem. 1.21.(2), §1.1.2.2.3.

Z/p"

n—1 p

-1
Z/pl @Z/an—l - Z/pn

10
py ) |
Z/pl@z/an—l < Z/pQ@Z/an—Q 5 Z/pn
10 10
(Op) (Op) P

(1 (a2 e
(I (59) (%)

01
Z/p'@Z/p* Tt == == Z[p" TP OL p T = L p" TP OL /P Z/p"

(9] tF (i p
Z/p'eZ/p* (i)Z/ ‘Z/p™ 2(8?) @)Z/p"‘Q@Z/p”“ i Z/p" ' @Z/p"t! =) Z/p
= ) (1-1%) (-9
2t e 2y ey e gy gy

Let X be the n-triangle obtained from Yf,_; by isomorphic substitution along (é_(l)) on all
terms consisting of two summands; cf. Lem. 1.21.(4). So X can be displayed as follows.

Z/p"
_pnfl p
1
Z/p'@Z/p* T —=Z/p"
(1 0 p

Op n—2
0 -p
b ()

01
Z/pl EBZ/an—l < Z/pZEBz/p2n—2 5 Z/pn

(05) (65) v

pO pO (o5 pO (07 <7P2> ’
z/pl@Z/pz"*l(g)- -L)Z/p" 3@Z/p”+sgz/p" ‘eZ/pmtt—12/p"
N

Z/ @Z/ 2n—2 '—>Z/p" 2EBZ/p"+2—>Z/p" 1@Z/pn+l(ﬁ> Z/p

p0

Z/pl@Z/an 1( )

%wnw me2> (177) (1n)

Z/p" ——=Z[p" £ Z/pt —— o — L 7 z Z/p"
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Let X be the following periodic n-pretriangle.

Z/p"

n—1 p

—-p
1
Z/p'@Z/p T —=Z/p"

10
8(1) (Op 7p;,—2 p
Z/pl EBZ/p2n—1 < Z/pQEBz/p2n—2 5 Z/pn

(05

) 0
p

)

p0

(0

(0p

)

(1)

P

p

01
e Z/pn 3@Z/pn+3(‘>)z/pn Q@Z/pn+2 < Z/pn

10 1 0
an )]y
— =L/ TPOL " =T [p" T SL p T —Z[p"

(1p2)(pn 31)

P

Z/pl@Z/p2n71 N

. (10)T .
2 1(p ) 2n—2 81)
Z/p'®Z/p*"™ %Z/p ®Z/p*" :
T(wl) T(w”)

z/p" R

(1p)

Z/p"

d Z/p"

Z/p"

To verify that X actually is an n-pretriangle, a comparison with X reduces us to show that the
three quadrangles depicted in full in the lower right corner of X are weak squares. Of these three,
the middle quadrangle arises from the corresponding one of X by an isomorphic substitution

(1)
along Z/p" ' @ Z/p" T MV —r
we may apply Lem. 1.57 to the diagram (X1/0, X, 1/05 Xn/o, X0+1/0, Xl/l, X, 115 Xn/l, X0+1/1)
and compare with X to show that it is a weak square. For the right hand side one, we may apply
Lem. 1.57 to the diagram (Xn/o, Xn/1, Xn/g, Xn/n, X0+1/0, X0+1/1, X0+1/2, X0+1/n) and compare
with X to show that it is a weak square.

Z/p" ' ®Z/p"!, and thus is a weak square. For the lower one,

we let An& A,_1 be the periodic monotone map determined by

(k).

Given k € [0,n],
[0,n —1]d, = [0,n] ~

Lemma II1.3 Suppose given k € [0,n].

(1) The diagram Xdi is an (n — 1)-triangle.

(2) We have Xdf ~ Xdk# in C**periOdiC(Affl).

Proof. Since X is an n-triangle, Xd¥ is an (n — 1)-triangle; cf. Lem. 1.21.(1). Since Xdk#|An_1 =
Xdf| A,_,» the diagram Xdf is an (n — 1)-triangle if and only if it is isomorphic to Xd} in
CHperiodic (A% ) of Lem. 1.21.(4,6). So assertions (1) and (2) are equivalent. We will prove (2).

When referring to an object on a certain position in the diagram X dk# resp. X dk#7 we shall also

mention in parentheses its position as an object in the diagram X resp. X for ease of orientation.
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When constructing a morphism in CHPeriedic(A# ) we will give its components on
{j/i :0<i<j<n—1}C A# . the remaining components result thereof by periodic rep-

n—1>
etition.

Case k € {1, n}. We have Xd¥ = Xd¥ and Xd# = Xd#.
Case k = 0. We claim that Xd# is isomorphic to )Z'dz)éE in C+’peri°di°(5#_1). In fact, an isomor-
phism Xd¥ =~ Xd7 is given by ( . O)
n—3
Z/p" @ Z/ptT AUUNLVN Z/p" e Z/pt

at position (n — 1)/0 (position n/1 in X resp. X), and by the identity elsewhere. This proves
the claim.

Case k € [2,n — 1]. We claim that Xd} is isomorphic to Xdj* in ¢TPeriedic(A# ) In fact, an
isomorphism X d,f& -~ X dk# is given as follows.

At position j/0 for j € [1,n — 1] (position j/0if j < k—1 and (j +1)/0if j > k in X resp. X),
it is given by the identity on Z/p".

At position j/i for 4, j € [1,k — 1] such that i < j (position j/i in X resp. X), it is given by
the identity on Z/p~" @ Z/p*" 7.

At position j/i for i, j € [k,n — 1] such that 7 < j (position (j +1)/(i + 1) in X resp. X), it is
given by the identity on Z/pi=" @ Z /p*" 7T,

At position j/i for i € [1,k — 1] and j € [k,n — 1] such that j/i # (n —1)/1 (position (j + 1)/i
in X resp. X), it is given by

1 0
j—1—i g

Z/pj—i—l—i ® Z/an—j—1+i (*P _ ) Z/pj-I—l—i @ Z/p2n—j—1+i

At position (n—1)/1 (position n/1 in X resp. X), it is given by the identity on Z/p"~' @& Z/p"t!.

This proves the claim. o

Lemma I11.4 X is not isomorphic to X in CTPeriodic(A#),

n

In particular, X is not an n-triangle; cf. Lem. 1.21.(6).

Proof. We assume the contrary. By Lem. 1.21.(4), X and X are n-triangles. Thus, by
Lem. .21.(6), there is an isomorphism X —~~ X that is identical at i/0 and at 0% /i for ¢ € [1,n].

Let
( ‘;Z/k p 4 )
Z/pffk@z/anféJrk L/k L/k . Z/pffk@z/anféJrk

denote the entry of this isomorphism at ¢/k, where 1 <k < ¢ < n.

2n—20+2k b@/k

If ¢ — k > 2, we have the following commutative quadrangle in C on £/k — (/(k + 1).

(o5)

Z/pffk@z/p2n72+k Z/pffkfl @Z/p2nff+k+1

(G‘Z/k an—2£+2ka/k) (ae/(k+1) p2n—2€+2k+2be/(k+1))
Co/k dy/g, Co/(k+1) dg/(ka1)

Z/pé—k ey Z/p2n—f+k

Z/pﬁ—k:—l @Z/pZn—E—HH-l
(ég) = O¢/k,n/1 (pn0—3 8)
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We read off the congruences

(i) Cé/k_aé/k,n/lpnﬁgdé/k =pi—k-1  PCe/(k+1)
(ii) bk =pe-r-1 Pbyyrgry -

From (i) we infer

(iii) cn/l—pn_gdn/l =,n—2 plcn/g =,n—2 pQCn/g =2 ... =pn2 p”_an/(n_l) =2 0.
From (ii) we infer

(iv) bnji =pn-2 DPbpja =pn—2 prn/g =2 ... =p-2 p”_zbn/(n,l) =n2 0.

On n/1—07'/1, we have the following commutative quadrangle in C.

—-p

Z/pnfl@z/anrl ( 1> Z/pn
Ap ) pzbn/
(Cn/l1 dn/ll>l
Z/ptOL/p" T =2 /p"
(1)
We read off the congruence

(v) —pCpji Fdpyy Zp1 1.

On n/0—n/1, we have the following commutative quadrangle in C.

n(lp) n— n
Z/p"—=Z/p" ' ®ZL/p"T!

(an/l p2bn/1
Cn/1 dn/l

n n—1 n+1
Z/p" gy /0" L)
We read off the congruence
(vi) Popyr +dppy =g 1.

By (iii) resp. (iv) we conclude from (v) resp. (vi) that

(V/) (1—pn_2>dn/1 =pn-1 1
(Vi/) dn/l =pn-1 1.

Substituting (vi’) into (v'), we obtain

which is absurd. o
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II1.3 Nonisomorphic Verdier octahedra

Since in §I11.2, the category C is also a Verdier triangulated category, specialising to n = 3 yields
two nonisomorphic Verdier octahedra on the same base. In this particular case, we shall now give
a somewhat longer argument alternative to that given in §II1.2 that is independent of Chapter I,
whose techniques might not be familiar to all readers. Nonetheless, §II1.3 is a particular case of
6I11.2.

Let C := (Z/p®)-mod, and let it be endowed with a shift automorphism as in §II1.1.2 and a
Verdier triangulation as in §I11.1.4.

Let the diagram X be given by

Z/p’

,plz) TP

Z/JOITZ/ZD5 — Z/Tp3

oy (07) I

Z/pl@Z/p5@Z/pz@z/p“@*Z/p3
T(m?) Tup)

Z/p*—"—Z[p ————Z/p’

Let the diagram X be given by

Z/p’

_],12) TP

Z/p'®Z/p° —=Z1/p®
e I
Z/p'©Z/p —=Z/p*DL/p* —=Z/p®

T(lpz) Tum

Z/p?———Z/p  ———=Z/p’

Lemma II1.5 Both X and X are Verdier octahedra.

In contrast to the procedure in §III.2, to prove this, we will not make use of the folding operation.

Proof. For the periodic monotone map As S A, that maps 0«0, 1 <1 and 2 <2, we obtain
X d?f =X df, horizontally displayed as

(%)

3_P 5 (17°) 5 3
Z/pP——1/p——1L/pDL/p> —Z/p’ .
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The following morphism of short exact sequences in (Z/p%) -mod shows XdZ to be a distinguished
triangle.

I

| Jon
pS

Z/p’ Z/p ———Z/p*

For the periodic monotone map As A A, that maps 0<—0, 241 and 3 <2, we obtain the
distinguished triangle X ¥ = X dfﬁ =X df again.

For the periodic monotone map As L A, that maps 0<—+0, 1«41 and 3 <2, we obtain the
diagram X A7 =X d# , horizontally displayed as

(1)

3 P’ 3 (1p) 2 4 3
Z)pP ——1/p° ——=Z/p°®L/p* —=Z/p’ .

The following morphism of short exact sequences in (Z/p%) -mod shows XdZ to be a distinguished

(1)

Z/p? ) Z/p*®L/p* —+>7Z/p?

’| Jon
p3

Z/p’ A ——

triangle.

For the periodic monotone map As o A, that maps 140, 241 and 3 <42, we obtain the
periodic isomorphism X do# -~ X d# , horizontally displayed as

(8 (52) (973

Z/psZ/p’ Z/p°0L/p* —=Z/pDL[p Z/p®Z/p’
(29) W?) 1) (93"
Z/poZ/p° Z/p*®L/p' —=L/p®ZL/p° Z/p®Z/p> .

So we are reduced to show that X d# is a distinguished triangle, which it is as a direct sum of
two distinguished triangles, as the following morphisms of short exact sequences in (Z/p®)-mod

o Z/p—*=Z/p* ——~Z[p Z/pt 5= Z/p> ——~Z/p
] ]
Z)p =7/ ——Z[p Z)p =7/ ——~Z[p

Lemma II1.6 The Verdier octahedra X and X are not isomorphic in C+’peri°dic(ﬁf).

That is, there is no isomorphism between the displayed parts of X resp. of X such that its entries
on the rightmost vertical column arise by an application of the shift functor of C to its entries
on the lower row.
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We will not use the fact that X is a 3-triangle, which in conjunction with Lem. 1.21.(4,6) would
permit us to restrict ourselves to consider isomorphisms that are identical on the lower row and the
rightmost vertical column, as we did in Lemma I11.4.

Proof. We assume the contrary and depict an isomorphism X -~ X as follows.

Z/p
Z/poZ/p° & Z/p

£9) s @, S w

01 1 .
Z/p&Z/p® ———=Z/p*®L/p' ————L/p’

(y V .

(‘C’ff PZ?’/’)
z/p’ . z/p’ . z/p’ , Z/p®

(Z,’ p29/> (Zptzib) <_%2> /

Z/p®Z/p° —— | —>ZL[p°
" (y /
pO —-p
Z/pSZ/p° @ — Z/p*®Z/p* L Z/p®
( y (1r)

Z/p’ : z/p’ . zZ/p’

Note that all vertical quadrangles commute in C.

The commutative quadrangles on 1/0 —2/0—3/0 yield u =,2 v =2 w.
The commutative quadrangle on 3/0 — 3/1 yields pb + d =,2 w.

The commutative quadrangle on 3/1—» 07! /1 yields —pc + d =2 u.

The commutative quadrangle on 3/1 — 3/2 yields b =, 0 and ¢ =, d.

Altogether, we have

U = w = pbt+d = d =p utpe =2 utpd,

whence
0= d= w.

Since Z/p® —~ Z/p® is an isomorphism in C, we have w Z#p, 0. This is absurd. o

In [8, 1.1.13], it is described how an octahedron gives rise to two “extra” triangles. As cone of
the diagonal of a quadrangle appearing in that octahedron, we take the direct sum of the non-
diagonal terms of the subsequent quadrangle, the morphisms being taken from the octahedron,
with one minus sign inserted to ensure that the composition of two morphisms in the constructed
triangle vanishes.

Remark IIL.7 The triangles arising from X and from X as described in [8, 1.1.13] are distin-
guished.
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Proof. () The morphism of short exact sequences in (Z/p®)-mod

() ()

Z)pP———Z/p®Z/p° D L/p L /p* D ZL/p*

() oy 16710

01
Z/p' & Z/p? ——L[p° © L/p® ———Z[p* ® Z/p'

and the isomorphism of diagrams with coefficients in C

Z/p’ 27 =) Z/p@Z/pS@Z/p?’&Z/JDQ@ZW&Z/}?’
PRI
Z/p 34>(Z/ SL/P)®L/p — = ZL/p*SL/p" Z/p’

show one of the triangles mentioned in loc. cit. to be distinguished in X and in X.
The morphism of short exact sequences in (Z/p®)-mod

(o) ()

Z/p*®Z/p* Z/p®Z/p ®L/p? ——=1L/p’
T(mﬁ) T(Olo)
3 1

Z/p’ : Z/p ————Z/)p’

and the isomorphism of diagrams with coefficients in C

=

(v 9%) (0p-1) »

zZ/p’ Z/p*®Z/p" (Z/poZ/p°)®Z/p’ Z/p’
10—p?
o1 1 2
10 p) (1 0 1+P> < pl
-1 p-—-1 P
Z/p’ Z/p*®Z/p* (Z/p®Z/p)©Z/p® Z/p’
show the other of the triangles mentioned in loc. cit. to be distinguished in X and in X. 0

I1I1.4 Transport of structure

We use the notation of §I.1, §1.2.

I1I.4.1 Transport of a Heller triangulation

Concerning weakly abelian categories, see e.g. §1.6.6.3. Recall that an additive functor between weakly abelian
categories is called subexact if it induces an exact functor on the Freyd categories; cf. §1.1.2.1.3. For instance, an
equivalence is subexact.

1Strictly speaking, we should reorder summands in the diagrams that follow; cf. §II1.1.1. But then the proof
would be more difficult to read.
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Setup III1.8

Suppose given a Heller triangulated category (C, T,4); cf. Def. I.5. Suppose given a weakly abelian
category C’ and an automorphism T’ on C’, called shift; cf. Def. 1.66.

F G
Assume given subexact functors C — €’ and ¢’ — C, and isotransformations 1¢/ —+ GF and
TG—=~GT.

Suppose given n > 0. By abuse of notation, we write F := FT¥(A#) : CT(A#) — C'*(A¥) for the functor
obtained by pointwise application of F.

Similarly, we write € := et (A¥) : (1) (A#) = (GF)*(A¥) for the isotransformation obtained by pointwise

application of ¢.

More generally speaking, for notational convenience, induced functors of type AT (A#) will often be abbrevi-
ated by A, and induced transformations of type a*(A#) will often be abbreviated by a. For instance, given
X € Ob Ct(A¥#), we will allow ourselves to write X T = XTT(A#) ( = [X*1]).

- —_ X/ﬁ/
Given X’ € Ob C'*(A¥) = Ob C't(A¥), we define the isomorphism [X']*! —
following commutative diagram.

[X'*'] in C't(AF) by the

[X/]-i-l X%% [X/+1]
[X/E]-H\LZ Zl[X"H]E
[(X'GF|* (X' *GF
X’chlZ

[X'GITF ﬂ [(X'G)TF

In other words, we let
X' = ([X'e™(X'GO, F) (X o  F)([ X e™) .

As a composite of isotransformations, (X'0;,) v, ¢ oy, c+(A#) Is an isotransformation. Let V= (90

Lemma IIL.9 The triple (C', T',9') is a Heller triangulated category.

Cf. Def. 1.5. We will say that ¢ is transported from (C,T,9) via F and G. Strictly speaking, we should mention
¢ and o here as well.

Proof. Suppose given m, n > 0, a periodic monotone map A, ~— A,, and X’ € Ob C"*(A#). We claim that
X'q#0,, = X9/, q%. We have

X'g#ﬁ;n = ([X’g#5]+1)(X’g#GﬁmF)(X’g#U_F)([X’g#+1]g_),
X’ﬂ;lg# = ([X’e}“‘lg#)(X'Gﬁan#)(X’J_Fg#)([X"H]e_g#).

By respective pointwise definition, we have [X’g#eﬁ'1 = [X’€]+1g# (using that ¢ is periodic), X’g#o_F =
X'o~Fg# and [X'g#+l]6_ = [X'*1]e=¢#. Moreover, since (C,T,?) is Heller triangulated, we get

X'¢# GO F = X'Gg"9,, F = X'GY,¢"F = X'GY, Fq*
This proves the claim.

Suppose given n > 0 and X’ € Ob C"“(Afnﬂ) We claim that X'f 07, = X0, 4f . We have

X'f iy = (X)X GO F)(X'F 0" F)([X'f Te™)
X", 0, = (X'e]f ) (X' GOanga Ff (X 0~ Ff (X' f ).
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By additivity of F, G and T" and by respective pointwise definition, we have [X ’jngﬁ = [X ’5]+1jn (using
shiftcompatibility of f ), X'f o= F = X'0~Ff and [X'jnﬂ}e’ = [X/H]E’jn. Moreover, since (C, T,d) is Heller
triangulated, we get

X'§ GOpi1F = X'Gf 9y F = X'GOopirf F = X'Glzi1 FY .

This proves the claim. o

I11.4.2 Detecting n-triangles

Setup II1.10

Suppose given a Heller triangulated category (C,T,®); cf. Def. 1.5. Suppose given an additive
category C’ and an automorphism T’ on C’, called shift.

F G
Suppose given mutually inverse equivalences C — C’ and C' — C. Note that G - F, whence

there exist isotransformations 1¢- —j» GF and FG—Z» 1c such that both (Fe)(nF) = 1p and
(eG)(Gn) = 1¢ hold. We fix such € and 7.

Suppose given an isotransformation T' G —Z» GT.

Note that C’ is weakly abelian, being equivalent to the weakly abelian category C.

Let ¢ be transported from (C,T,d) via F and G.

That is, we let X9, = ([X'e]t)(X'GY,.F)(X'c~F)([X'T!e™) for n > 0 and X' € Ob C'*(A¥), defining
V= (97 )nz0-

By Lemma IIL.9, the triple (C’, T',9’) is a Heller triangulated category.

Moreover, let

TFLFT) = (TP FaTF 2L FT G5 FTY) .
Notation ITI.11 Suppose given n > 0. Concerning the full subposet
AY = {Blac AT :0<a< B0} C AF,

cf. §1.2.5.1.

(1) Suppose given X’ € Ob C'*:periodic(A#) ' where periodic means [X']T! = [X'*1]; cf. §1.2.5.1. Consider the
diagram X'G|za . Denote by X'G|‘éﬁv € Ob C'T(A¥) the diagram X'G|aee with (X'G)o+1/; = Xé+1/iG =
X T' G isomorphically replaced via X0 by X;,GT. Denote by X'G” € Ob Ctperiodic (A7) jtg
periodic prolongation, characterised by X'G%[zas = X'G|% 0 cf. §1.2.5.1. Using, for k > 0,

([X/G]+k;>[X/G+1]+(k—l);> %[X’G““])‘

)

Abv
given by
T/k710T0 T/k—Za_Tl TIOO'Tk71
/ _ / 1k 0 / 1k—1 1 ’ 10 k
X(j/i)+kG = Xj/l-T GT° — Xj/iT GT° — — XJ/ZT GT

J— - =

-
at j/i for 0 <i < j < 07!, and similarly for k¥ < 0, using T'" G —— G T, we obtain an isomorphism

X'G 2+ X'G" in CT(A¥) such that ¢; /0 = Lx; o and @i/ = X} )go forie [l n].

uppose given X € speriodic(A#) - Consider the diagram Aav. Denote by xav € A

2) S iven X € Ob ('t periodic(A#). Consider the d XF|a. Denote by XF|% . € Ob C*+(A#
the diagram XF|x. with (XF)o+1/; = Xo+1,F = X0 TF isomorphically replaced via X;/0p by
X, /0F T'. Denote by XF? € Ob C'T-periedic(A#) its periodic prolongation, characterised by XFP|gav =
XF|% 05 cf. §1.2.5.1.

Similarly as in (1), we have an isomorphism XF—f»XF” in C'*(A¥) such that Yijo = 1x,,,r and
Yo+1; = Xijo p for i € [1,n].
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Lemma II1.12 Suppose given n > 0.

(1) Suppose given X' € Ob C/+>periodic(A#) - Then X' is an n-triangle if and only if X'G? is an n-triangle.
)

(
(2) Suppose given X € Ob Ct pericdic(A#) - Then X is an n-triangle if and only if X F? is an n-triangle.

Cf. Def. L5.(ii.2).

Proof. Ad (1). Since ¥, is a transformation, there exists a commutative quadrangle

xGoltt X ey
ZT[W]“ ?T[Wl]
XGr —X9 (xGy

in C*(A¥). Therefore, X'G? is an n-triangle if and only if [¢]*! = (X'GY,,)[pT]. By Prop. .12, this equation
is equivalent to [¢]*!4 = (X'GUn)|5 [¢T"]|5, ; cf. §1.2.1.1; in other words, to

)(/O'lA71 = X’G’l?n‘An

as morphisms from X' T'G|y to X'GT|z in C(A,). This, in turn, is equivalent to X'c = X'G7, as
morphisms from X' T'G to X’G T in C*(A¥#) by Prop. L.12.

Now X' being an n-triangle is equivalent to X'1¥), = 1; i.e. to

(X' e X' GO F) (X 0" F)([X'e) = 1.
Since [X']*!1 = [X'*1], we have [X'e]™! = [X'|T!e = [X'*!]e, whence this equation is equivalent to
(X'GVY,F)(X'c~F) = 1. Since F is an equivalence, this amounts to (X'Gv,,)(X’0c~) = 1, as was to be shown.
Ad (2). Since 9), is a transformation, there exists a commutative quadrangle

XFry!,

~

(X Fe]t [(XFP)H]

ZTM“ ZT[w“]
XFv

[(XFJH ——— [(XF)*]
in C'*(A¥). Therefore, X F? is an n-triangle if and only if [/]*! = (X F¥,,)[¢™!]. By Prop. .12, this equation
is equivalent to [¢] ™'z = (XF,)|5 [¢1']|4 ; in other words, to
Xp|An = XFI%JAH

as morphisms from X T F|4 to XF T |A, in C'(A,,). This, in turn, is equivalent to Xp = X F’, as morphisms
from X TF to XF T in C'*(A#) by Prop. [.12. Which amounts to

(Xn"TF)XFo F)(XFT'e) = (XFe]"™ ) (XFGY,F)(XFo~ F)([XF*)e);
i.e. to
Xn~TF = ([Xn FI"")(XFGY,F) .

Since [Xn~ F]™ = [X7~|T1F and since ¥,, is a transformation, the right hand side equals (X9, F)([(Xn ™) F),
and therefore we can continue the string of equivalent assertions with

Xy~ TF = (X0.F)((Xn")*1F) ;
ie. with X9, F = 1; i.e. with Xd,, = 1; i.e. with X being an n-triangle. o
Definition ITI.13 A Heller triangulated category (C,T,d) is said to be closed if every morphism X I Y

therein can be completed to a 2-triangle; i.e. if for all morphisms X = Y in C, there exists U € Ob C* ’9:1(53#)
with (X I Y) = (Ui s Us o). If this is the case, then also the Heller triangulation ¥ is called closed.
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For instance, a Heller triangulated category whose idempotents split is closed; cf. Prop. 1.23. Cf. §11.2.4.
Recall that ¢’ is transported from (C, T,d) via F and G.

Lemma II1.14 If (C,T,9) is a closed Heller triangulated category, then (C',T',19) is a closed Heller triangulated
category.

Proof. By Lemma II1.9, it remains to prove closedness of (C’, T',9'). Suppose given X’ —+ Y in €. We have
to prove that it can be prolonged to a 2-triangle. Using closedness of (C, T,9), we find a 2-triangle

XG —YG s Z - X'GT .
We claim that
Moo (X/ l’, v/ (Y'e)(vF) 7F (W) (X'o" F)(X'T'e™) X/ T,)

is a 2-triangle in C’. By Lemma II1.12.(1), it suffices to show that M’'G? is a 2-triangle in C. Consider the
periodic isomorphism with upper row M’G? and lower row a 2-triangle

Yo e Ve (Y'eG)(vFG) . (WFG)(X'o™ FG) (X' T’ e_G)(X'a)X,G T
e
X'G G e . Z v X'GT .
In fact, we have (Y'eG)(vFG) = (Y'Gn~)(wFG) =v(Zn~) and
(Zn ) wFG)(X'o"FG) (X' T e G)(X'o0) = w(X'GTn ) (X'o"FG)(X'T e~ G)(X'o)

= wX'o ) X' TG )X T e~ G)(X'0)
= w(X'o™)(X'0)

This shows that M'G? is a 2-triangle; cf. Lem. 1.21.(4). This proves the claim. o

Remark ITII.15 Suppose given n > 0.

(1) Given X € Ob CT(A¥), we have (X0,F)(Xp) = XFV,, in C'T (A¥).
(2) Given X' € Ob C'H(A¥), we have (X'9,G)(X'0) = X'GY,, in CT(AF).

n

Proof. Ad (1). We have

(X0,F)(Xp) = (X0.F) (X0~ TF)(XFo F)(XFT e)

X0 F)([(Xn™)TF)(XFo~ F)([XF*H]e™)

(X0 [T F)(XFGO, F) (X Fo~ F)([XF+']e™)

(X0~ FI*Y)(XFGY, F)(XFo~ F)([XF+'e")
(X Fe]*1)(XFGY, F)(XFo~ F)([XF+e™)

= XF9,.

(
(
(
(
(

Ad (2). We have
(X"9,G)(X'0) = ([X'eMG)(X'GY.FG
[X'e] MG (X'GY,. FG
[X'e] MG (X'GY. FG)(|
[X'eG)™)(X'GY, FG)([X
[X'Gn~[P)(X' GO, FG)([X'GH
[X'G) ™) (X'GY, FG)([X'GH!
(X'GO,) (X G+ ) (X' )
= X'GY,

X'o"FG)([X']e~G)(X'0)
X'o” FG)([X1Gn)(X'0)
X'GHn)(X'07)(X'o)

‘G n)

— — — —

(
(
(
(
n)

(
(
(
(
(
( n)

}
]
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I11.4.3 Some lemmata

Let £ be a Frobenius category, let B C & be its full subcategory of bijective objects; cf. e.g. Def. 1.45. We use
the notations and conventions of §1.6.2.3, in particular those of Ex. 1.46.(2).

Let n > 0. Let E C A¥ be a convex full subposet, i.e. whenever £, ( € E and A € A such that £ < X < ¢,
then A € E; cf. §1.2.2.2.1. For instance, A%Y C A% is such a convex full subposet; cf. Notation ITI.11.

A pure square in £ is a commutative quadrangle (A4, B,C,D) with pure short exact diagonal sequence
(A,B® C,D); cf. §1.6.4.

Denote by E9(E) C £(E) the full subcategory determined by

1) Xa/qisin ObB for all a € A,, such that a/a € E, and
X414 is in Ob B for all & € A,, such that o™ /a € E.
2) Forallé '<a<pf<y<dé<atlinA,
such that v/a, /3, 0/c and §/3 are in E,

Ob&V(E) = X € Ob&(E) the quadrangle
X8 —== X5/

TDT

Xy/a —> Xs/a

is a pure square.

A particular case of this definition has been considered in §1.4.1.

111.4.3.1 Cleaning the diagonal

Lemma IT1.16 Suppose given X € ObEZ(ALY). Suppose given B € A,, such that 0 < § < 01,
There exists X € ObED(ALY) such that the following conditions (1a, 1b,2) hold.

(1a) We have f(a/a =X, /o for 0 <a < 0% such that a # 3.
(1b) We have )N(ﬁ/g =0.

(2) There exists an isomorphism X <~ X in E(ALY).

Proof. Pars pro toto, we consider the case n =4 and § = 2. We display X as follows.

Xo+1/0+1

.

Xajs —=> Xot1/4

T (] x

X33 —> Xys3 —> Xo+1/3

T O T O x
Xojg —5 X3 — Xy)3 — Xot1/2

a:T O x O x O x
X —5 Xopy — Xg)1 —— Xy —= Xpt11

xT O a:T O x O x O x
Xoj0 —5= Xy )0 —5= Xo )9 —5 X3/0 —5= Xy )0 —= Xo+1 /0
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Set X to be the following diagram.

X0+1/0+1
X4/4%X0+1/4
x O x
X3/3 z Xay3 z Xo+1/3
T O T O T
0 X3/2 z X2 z Xo+1/2
s (o] sl s
(5% (5%
Xin Xo/1 X31®Xo)y — Xy 1B Xgj9 — X116 X290
o e e L) I o (39)
Xo/0 B X1/0 - X2/0 X300 Xa/2s — Xy/0 ® Xo/2 — Xo+1/0 © Xo/2

Using the Gabriel-Quillen-Laumon embedding theorem, we see that X is actually an object of 5D(Aﬁv);
cf. §1.6.2.2, Lem. 1.51.

Since Xy is bijective, inserting the zero morphism on all copies of X5, and the identity on all other summands
yields an isomorphism X —~» X in £(A4Y). o

Lemma ITL1.17 Suppose given X € ObEF(ALY).
There exists X' € ObED(ALY) such that the following conditions (1,2) hold.

(1) We have X'

a/a

=0 for alla € A, such that 0 < o < 01,

(2) There exists an isomorphism X' —» X in E(ALY).

Proof. This follows by application of Lemma, II1.16 consecutively for 3 =0, 3=1, ..., 3 =0%'. o

111.4.3.2 Horseshoe lemma

Recall that B2 denotes the category of purely acyclic complexes with entries in B, i.e. of complexes with entries
in B that decompose into pure short exact sequences in &; cf. §1.6.2.3.

Suppose given Y € Ob&. An object B of B2¢ is called a (both-sided) bijective resolution of Y if Y is isomorphic
to Im(BY — B'). Note that a bijective resolution of a bijective object is split acyclic.

We have a full and dense functor (?)

B  +— Im(B"— BY)

We make the additional convention that if the image factorisation of a pure morphism d in £ is chosen to be
d = dd, then we choose the image factorisation —d = d(—d) over the same image object.

_ P _
Pointwise application yields a functor B2(A5Y) — E(AALY), which is an abuse of notation.

2A functor induced by F will play the role of F' of Setup III.10; cf. §111.4.4.2.2 below.
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Suppose given X € ObEY(ALY) such that X, /, = 0 for all 0 < o < 0*1.
In particular, X3/, —> X,/o — X, is a pure short exact sequence for 0 <a << v < 0+l

Recall that for n € A,,, we have n +1 = 01'; cf. §1.1.1.

Lemma III.18 Suppose given a bijective resolution Coy1/a 0f Xay1/a for all a € A, such that 0 < a < n.

Then there exists B € Ob(B*)2(ALY) such that (1,2,3) hold.

(1) We have BE ~ X in ED(A#).
e have B, /o = or a <a< .
2) Weh B / 0 f 1o 0+t

(3) We have Byy1/a = Cog1/a for all a € A, such that 0 < o < n.

If n = 2, and if we restrict to {1/0, 2/0, 2/1} C A4Y, we recover the classical horseshoe lemma in its bothsided
Frobenius category variant.

d N
Proof. For 0 < o < n, we denote (Cgﬂ/a —f XaJrl/a) = (Cgﬂ/a —+> Cop1/aF — Xa+1/a)'

By duality and by induction, it suffices to find a morphism ¥ — X in EP(AAY) such that (i, ii, iii) hold.

(i) We have Y3/, € ObB for all 0 < a < f < 0te.

(ii) We have Y,/ =0 for all 0 < a < 01

d _
(iii) We have (Yot1/a — Xat1/a) = (Cgﬂ/a —++ Xot1/a) for all @ € A, such that 0 < a < n.

Note that any morphism Y — X fulfilling (i, ii, iii) consists pointwise of pure epimorphisms, and that the kernel
of such a morphism ¥ —» X taken in £(A2Y) is in ObEP(ALY).

To construct Y — X, we let

— 0
Yia = D Chap
BEA,, ag<f<y

for 0 < a <y < 0™ For v/a < 4/, the diagram morphism Y/, —> Y,/ is stipulated to be identical on
the summands C’gﬂ/ﬁ with o/ < 3 < v and zero elsewhere. This yields Y € Ob £J(ALY).

Given 0 < a < v < 07!, we let Y,/a = X,/o be defined as follows. For 0 < B < mn, we choose
Ys11/8 - Xpy1/0 such that
€ xr (i

(Yat1/8 — Xpr10 — Xpr1/8) = (Yo — Xpra/s) -

The component of the morphism
0
(Yw/ag’ 'y/a) = @ CB+1/[3 " Aq/a
BEA,, a<f<y

at 3 is defined to be the composite

(Chiryp— Xr/0) = (Chrays— Xpr1/0 —> Xy/a) -
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111.4.3.3 Applying F to a standard pure short exact sequence

Recall that for X € ObB?*, we have chosen, in a functorial manner, a pure short exact sequence
X ——> X | -+ X T with a bijective middle term X |, where the letter | stands for “injective”; cf. §1.6.2.3.

Lemma II1.19 Suppose given X € Ob B?. There exists an isomorphism of pure short exact sequences in € as
follows.

XF———=XI|F—+—>XTF
|
XF————>X!—+—XTF
Therein, the upper sequence results from an application ofF to the pure short exact sequence X —o—+ X | —++ X T

in B2°. The lower sequence is taken from the purely acyclic complex X .

Proof. Consider the following part of the pure short exact sequence X ——+= X | =+ X T in B?¢; cf. Ex. 1.46.

—d
X? o X2 @ X3 ( %1) X3

(1d)

XO

d . d 5 .8
We have added the image factorisations X0 —++ X F' —e+ X! and X%0X! —+» X | FF —— X'®X? of the respective
differentials, resulting from an application of F. Factoring the differential of X T as

_ d . —d
(X1 —t X2> - (Xl +>XTF+>X2>
follows the additional convention made above.
(1)
1 10
Moreover, we have added the image factorisation X°@X! —+» X! G X'@®X? and, accordingly, the isomorphism

X' -2+ X | F that satisfies k6 = (10) and (9) k = 4.

. d d .
The horizontal pure short exact sequence X F' —e~ X! —+ X T F lets all four arising parallelograms commute.
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Now the sequence X —= X| 4= X T maps to XF LN XIF ol XTF, for the commutativities
(dk)§ = d (14) and §(k—d) = (*gl) d hold.

In particular, the sequence (X —> X | = X T)F actually is purely short exact. o

I11.4.4 Stable vs. classically stable

Let £ be a Frobenius category, let B C £ be its full subcategory of bijective objects.

111.4.4.1 n-triangles in the stable category

Recall that B¢ denotes the category of purely acyclic complexes with entries in B; cf. §111.4.3.2. Let B%P2¢ C B?¢
denote the subcategory of split acyclic complexes. Let £ = B2¢/B°P2¢ denote the stable category of &; cf.
Def. 1.47. Let T be the automorphism on £ that shifts a complex to the left by one position, inserting signs; cf.
Ex. 1.46.(1). Then (£, T) carries a Heller triangulation ¢; cf. Cor. 1.33. In fact, we may, and will, choose the
tuple of isotransformations ¢ = (¢,)n>0 constructed in the proof of Th. 1.32.

Suppose given n > 0 and X € Ob(B*¢)2(A#); cf. §1.4.1 or §111.4.3. Now X maps to an object X € Ob&ET(A#);

XUIn . x . .
cf. Lem. 1.69. Thus we have an isomorphism [X]*? — [X*!] in £+(A¥). By the construction in the proof

X0 .
of Th. .32, there is a representative [X]*! — [X 1] in £T(A¥#) of X¥,, such that in particular, there exists a
morphism of pure short exact sequences

x

(z )

Xi/o0 Xiyi®Xo+1/0 s Xot1/i
l lxéi/o
1
Xijg —e Xijol % X:;O

for each i € [1,n]; where X 0, /0 is a representative in B¢ for the morphism X6,/ in £; where the upper pure
short exact sequence stems from the diagram X; and where the lower pure short exact sequence is the standard
one as in Ex. 1.46.(1). In particular, X6; o is an isomorphism in £.

Let X? € Obgt periodic(A#) be defined as periodic prolongation of the image of the diagram X| Ase in

ObET(ALY) with Xg+1/; isomorphically replaced via X6, /o by X;;(l) for all 7 € [1,n]. For short, the rightmost

column of the image of X| Asv becomes standardised; cf. §1.2.1.3. Using
([X]+k M R >, [X+k])’
A
for k > 0, and similarly for k < 0, we obtain an isomorphism X — X? in ET(A¥) such that w; /o = lx,,, and
wot1/; = X0;0 for i € [1,n]; cf. Notation TIT.11.(1).

Lemma II1.20 Given n >0 and X € Ob(B*)Y(A#), the periodic n-pretriangle XV is an n-triangle.
The following proof is similar to the proof of Lemma II1.12.

Proof. We have to show that X?9,, = 1; cf. Def. 1.5.(ii.2). Since ¥,, is a transformation, we have a commutative
quadrangle

[XV]+! X9 [(X?)+]
zT[w]+1 ?T[WH]
X]H 2 [X Y]
in ET(A#). So we have to show that (X¥,)w™'] = [w]t'. By Prop. 112, it suffices to show that

(XVn) |A,,L [w+1]

A, = W4, - Now [wH]|5 = 1ix+1y, and, by construction, (Xv,)[z = [w]T[4 - o
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Corollary II1.21 The Heller triangulated category (£, T,¥) is closed.

Cf. Definition III.13.

Proof. We can extend any morphism X g — X3/ of B* to an object of (BaC)D(A;%) by choosing X7 /o —+> X1 /1
with X/ bijective and by choosing X¢+1,9 = 0, then forming pushouts, then choosing X5/, — X5/, with X35
bijective, etc. Dually in the other direction. Then we apply Lemma III.20. o

111.4.4.2 The classical stable category under an additional hypothesis

111.4.4.2.1 The hypothesis
Let £ := £/B denote the classical stable category of £.

Suppose given a set D of distinguished pure short exact sequences in £ such that the following conditions hold.

(i) The middle term of each distinguished pure short exact sequence is bijective.
(ii) For all X € Ob¢&, there exists a unique distinguished pure short exact sequence with kernel term X.

(iii) For all X € Ob &, there exists a unique distinguished pure short exact sequence with cokernel term X.

111.4.4.2.2 Consequences

We shall define an endofunctor T’ of £.

On objects. Given X € Ob& = Ob &, there exists a unique distinguished pure short exact sequence with kernel
term X. Let X T’ be the cokernel term of this sequence.

On morphisms. The image under T’ of the residue class in £ of a morphism X 2 Y in & is represented by the
morphism X T’ —+ Y T’ in € if there exists a morphism of distinguished pure short exact sequences as follows.
X—>B—4+>XT
]k
Y —>C—+—>YT
Then T’ is an automorphism of &; i.e. there exists an inverse T'~, constructed dually, such that T' T'~ = 1¢ and

T T = 1¢.
As usual, we shall write X! := X T’ for X € Ob¢&; etc.

The functor
& — £
B +— Im(B°— B

induced by F' is an equivalence; cf. §111.4.3.2, Lem. 1.41. Splicing purely acyclic complexes from distinguished

pure short exact sequences, we obtain an inverse equivalence £ e E. Define T'G—>GTatY € ObE = Ob€&
by letting

(YUi) = (—1(yg)i+1)i .
Note that YoF = 1y v gr = lygTF; cf. §111.4.3.2.

Suppose given Y € Ob&. We have a commutative diagram

(Ya)!
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consisting of two image factorisations of the differential (Y G)? — (Y G)! and the induced isomorphism between
the images Y —= Y GF that makes the upper and the lower triangle in this diagram commute.

The residue class in £ of this induced morphism Y =+ Y GF shall be denoted by Y ¥> YGF. Letting Y

vary, this gives rise to an isotransformation 1g —~ GF. Since ¢ is a transformation, we have (Ye)(YGFe) =

(Ye)(YeGF), whence GFe = eGF. Thus there is an isotransformation FG —~ lg such that (¢G)(Gn) = g
and (Fe)(nF) = 1p. Namely, for 7 we may take the inverse image under F of Fe™.

So we are in the situation of Setup III.10 of §I11.4.2. Define (T F’ £, FT') as in §111.4.2.

Proposition I11.22

(1) By transport from (£, T,9) via F and G, we obtain a closed Heller triangulation 9 on (£, T').
(2) Suppose given X' € Ob gt periodic(A#) - Then X' is an n-triangle if and only if X'G is an n-triangle.

(3) Suppose given X € Ob periodic(A#) " Then X is an n-triangle if and only if X F? is an n-triangle.

Proof. Assertion (1) follows by Lemmata I11.9 and I11.14; cf. Corollary II1.21. Assertions (2,3) follow by
Lemma ITI.12. o

Recall that XF = X F in Ob& =0b¢& for X € Ob& = Ob B*.

Lemma II1.23 Suppose given X € Ob B?*°. We have a morphism of pure short exact sequences

X! —+—=XTF

L

XF—— (XFG)! —+— XFT

XF

in & such that its morphism X TF — XF T’ represents Xp in €. Here, the upper pure short exact sequence is
taken from the purely acyclic complexr X ; the lower pure short exact sequence is distinguished.

Proof. Given X € Ob B?°, we can form a commutative diagram in £ as follows.

X2 (XFG)?

\

XFT e

XT XFT — = XFT GF=XFGTF

L

XF XF

Vs
v

XO

The morphisms (XFG)? —++ XF, XF — (XFG)!, (XFG)! 4+ XFT and XFT' —e> (XFG)? appear in
distinguished pure short exact sequences. Moreover, by abuse of notation, we have written X Fe resp. XF T’ e
for representatives in £ of the respective morphisms in £.
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Xn~
The partially displayed morphism of complexes X — X F'G represents X 2. XFG in &, for F' maps the
morphism represented by X —= X FG to XFe = Xn~F.

Therefore, the composite morphism

, XFT'e
(XTF — XFT

XFT GF = XFGTF)

from this diagram represents
Jo-
(X = XFQ)TF;

note that there are no signs to be inserted at the respective pure epimorphisms of the image factorisation chosen
by F; cf. §111.4.3.2. Thus the morphism X T F — XF T’ from this diagram represents

X T XPGTF = XFTGF —2T°

(XTF XFT') = (XTF =2 XFT').

111.4.4.2.3 Standardisation by substitution of the rightmost column

We mimic the construction X > X7 made in §II1.4.4.1, now for £ instead of B2,

Denote by EF(ALY) 2, 5*(5% ) the residue class functor; cf. §111.4.3, §1.2.1.3, §1.4.1. Denote by £+ () (AA7)
the full subcategory of E1(AAY) whose set of objects is given by

ober (ALY .= (ObER(AL)) M’
So £ () (AAY) is defined to be the “full image” in £ (ALY) of the residue class functor M’.

Suppose given n > 0 and X € ObEJ(ALY). Recall that A,, = [1,n] is identified with {i/0 : i € [1,n]} C ALY,
Write X, )0 = X4 = (i X;j0) € Ob&(A,) and Xg+1/, := (i Xo+1/;) € Ob&(A,,), analogously for
morphisms; analogously for objects in £7(A4") and their morphisms.

Let the isomorphism Xg+1 /, % Xj/lo in& (A ) be defined by morphisms of pure short exact sequences

x

(zz)

Xi/o Xi/i®Xo+1/9 s Xot1/i
l lm
Xijg—s Bijo % X0

for i € [1,n]; where X7; is a representative in & for the morphism X7; in £; where the upper pure short exact
sequence stems from the diagram X; and where the lower pure short exact sequence is distinguished.

In this way, we get an isotransformation 7 between the functors (—)g+1/, and (— )+/10 from £ (AL to £(A,,).

Let £F periodic(AAV) he the (in general not full) subcategory of £7(AAY) given by the set of objects
Ob £+ periodic (ALY {Y € ObEH(AL) : Ypur = Y} in Ob§(An)} ,
and by the set of morphisms
§+,periodic(gﬁw(y’ V) = {fe §+(A,AL\7)(Y7 Y') . foti/e = f:r/t in 5( n)}

for Y, Y’ € Ob gt periodic(ALV)

Given X € Ob&D(AL), We 1et X7 € Ob gt periedic(AM) he defined as the diagram X with Xg+1 /. isomorphi-
cally replaced via X7 by X/ . For short, the rightmost column of X becomes standardised to obtain X7.
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Given X, X’ € Ob&P(ALY), a morphism XL X' in ET(ALY) induces a morphism x L xm
gt periodic (AAY) - Namely, we let fija = fpja for 0 < o < f < n, and we let fg+1/* be characterised by
the commutative quadrangle

in £(A,). In particular, since 7 is an isotransformation, we have fi., , = ( *T/O)“.

Remark I11.24 The constructions made above define a functor

£0O(ag)

X +— X7.

5+, periodic (AAV)
& n

111.4.4.2.4 n-triangles in the classical stable category

Proposition ITI1.25 Suppose given n >0 and X € ObEP(ALY),

The periodic prolongation of X™ € Ob £ periodic(ALYY) 44 qn object of £+ Periodic(A#) js an n-triangle with respect
to the triangulation 9" on (€, T') obtained as in Proposition 111.22.

Proof. By Lemma II1.17, there exists X’ € Ob&P(ALY) such that Xy o =0forall 0 <a< 0" and such that

X is isomorphic to X’ in £1(A%7). By Remark I11.24, the object X7 is isomorphic to X' in £+ periodic(ALV),
Thus the periodic prolongation of X7 is an n-triangle if and only if that of X'7 is; cf. Lem. 1.21.(4).

Therefore, we may assume that X/, ~ 0 for all 0 < a < 0te.

Let X € Ob(B*)7(A%Y) be such that there exists an isomorphism X %f(ﬁ in 9(ALY) and such that
Xa/a =0forall 0 <o < 07!; cf. Lemma IIL.18. Denote by X —2+ XF the isomorphism in ET(ALY) represented
by X — X F.

Let X € Ob(B**)P(A#) be such that ):(\ATALV = X. By Lemma II1.20, the periodic n-pretriangle X7 ¢
Ob gt periodic(A#) is an n-triangle. Note that ):(19 depends only on X, not on the choice of ):(

Thus, by Proposition I11.22.(3), X F? € Ob £t periodic(A#) i an n-triangle. Therefore, it suffices to show that

X7 and XVFP|zs are isomorphic in £ Periodic(AAY) for then their periodic prolongations are isomorphic in
gt periodic (A#) "wwhich in turn shows the periodic prolongation of X™ to be an n-triangle; cf. Lem. 1.21.(4).

We have a composite isomorphism
T~ L ~ w9 ~ w0
X I — X reong XF = XFlAAv —— X FlAAv e X F |AAV

in £7(ALY). We claim that it lies in £+ Periodic(ALV),
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Suppose given i € [1,n]. On /0, this composite equals a; /- Thus we have to show that on 0*1/i, this composite
equals aj/lo =a;)o T’. Consider, to this end, the following morphisms of pure short exact sequences in &.

Xi/O (X,L/()G)l H%X’L/O T/
x T —x TX%I‘
Xi/O X0+1/0 %ﬂX@ﬁ—l/i

Zl@i/o

Xi/OF 4;—> X0+1/OF ;T—> Xm—l/iF

| l 00t

XZ/OF%XZ/OIFA‘HHXZ/OTF

| | |

Xl —— (Xi/O)l — X’i/O TF

| l l

X,/OF — > (X,/OFG)I —t— X7/OF Tl

Z\LdDJrl/O Z\LdOJrl/i

The fourth sequence is purely short exact by Lemma II1.19.

The first morphism from above arises by definition of 7;; cf. §111.4.4.2.3. The second morphism is taken from a.
The third morphism arises by definition of 6;,y and an application of F; cf. §111.4.4.1. The fourth morphism is
given by Lemma II1.19. The fifth morphism is given by Lemma III1.23.

The first and the sixth pure short exact sequence are distinguished, and so the claim and hence the proposition
follow.
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Chapter 1V

Comparison of spectral sequences
involving bifunctors

IV.0 Introduction

To calculate Ext™(X,Y), one can either resolve X projectively or Y injectively; the result is, up
to isomorphism, the same. To show this, one uses the double complex arising when one resolves
both X and Y’; cf. [10, Chap. V, Th. 8.1].

Two problems in this spirit occur in the context of Grothendieck spectral sequences; cf.
§61V.0.2, IV.0.3.

IV.0.1 Language

In §IV.3, we give a brief introduction to the Deligne-Verdier spectral sequence language; cf.
[57, 11.84], [12, App.]; or, on a more basic level, cf. [38, Kap. 4]. This language amounts
to considering a diagram E(X) containing all the images between the homology groups of the
subquotients of a given filtered complex X, instead of, as is classical, only selected ones. This
helps to gain some elbow room in practice: to govern the objects of the diagram E(X) we can
make use of a certain short exact sequence; cf. §1V.3.4.

Dropping the E;-terms and similar ones, we obtain the proper spectral sequence E(X ) of our
filtered complex X. Amongst others, it contains all E;-terms for k£ > 2 in the classical language;
cf. §61V.3.6, IV.3.5.

IV.0.2 First comparison

Suppose given abelian categories A, A" and B with enough injectives and an abelian category
C. Suppose given objects X € Ob A and X’ € Ob A", Let A x A’ L, B be a biadditive functor
such that F(X,—) and F(—, X’) are left exact. Let B ©.C be a left exact functor. Suppose
further conditions to hold; see §I1V.5.1.

We have a Grothendieck spectral sequence for the composition G o F'(X, —) and a Grothendieck
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spectral sequence for the composition Go F(—, X’). We evaluate the former at X’ and the latter
at X.

In both cases, the Ep-terms are (R'G)(R'F)(X,X’). Moreover, they both converge to
(R (G o F))(X, X"). So the following assertion is well-motivated.

Theorem IV.31. The proper Grothendieck spectral sequences just described are isomorphic;
1.€.

EgEX,—),G(X,) = ng—,X/),G(X)-

So instead of “resolving X’ twice”, we may just as well “resolve X twice”.

In fact, the underlying double complexes are connected by a chain of double homotopisms, i.e.

isomorphisms in the homotopy category as defined in [10, IV.§4], and rowwise homotopisms (the

double TOWW. TOWW. double
° ° ° o)

proof uses a chain e . These morphisms then induce isomorphisms

on the associated proper first spectral sequences.

IV.0.3 Second comparison

Suppose given abelian categories A and B’ with enough injectives and abelian categories B and
C. Suppose given objects X € Ob A and Y € ObB. Let AL+ B be a left exact functor. Let

B x B' -5+ C be a biadditive functor such that G(Y,—) is left exact.

Let B € ObCl(B) be a resolution of Y, i.e. a complex B admitting a quasiisomorphism
ConcY — B. Suppose that G(B*,—) is exact for all k > 0. Let A € ObCl(A) be, say,
an injective resolution of X. Suppose further conditions to hold; see §IV.6.1.

We have a Grothendieck spectral sequence for the composition G(Y, —) o F', which we evaluate
at X. On the other hand, we can consider the double complex G(B, F'A), where the indices of
B count rows and the indices of A count columns. To the first filtration of its total complex, we
can associate the proper spectral sequence EI(G(B ,F A))

If B has enough injectives and B is an injective resolution of Y, then in both cases the Es-terms
are a priori seen to be (R‘G)(Y, (R7F)(X)). So also the following assertion is well-motivated.

Theorem IV.34. We have Eg,ro(y,—)(X) ~ EI(G(B,FA)) .
So instead of “resolving X twice”, we may just as well “resolve X once and Y once”.

The left hand side spectral sequence converges to (R (G(Y, —) o F))(X). By this theorem, so
does the right hand side one.

The underlying double complexes are connected by two morphisms of double complexes
(in the directions e — e <— @) that induce isomorphisms on the associated proper spectral
sequences.

Of course, Theorems 1V.31 and IV.34 have dual counterparts.
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IV.0.4 Results of Beyl and Barnes

Let R be a commutative ring. Let G be a group. Let N < GG be a normal subgroup. Let M be
an RG-module.

BEYL generalises Grothendieck’s setup, allowing for a variant of a Cartan-Eilenberg resolution
that consists of acyclic, but no longer necessarily injective objects [7, Th. 3.4]. We have docu-
mented BEYL’s Theorem as Theorem IV.40 in our framework, without claiming originality.

BEYL uses his Theorem to prove that, from the Es-term on, the Grothendieck spectral

sequence for RG-Mod (il RN —Mod(ﬂV R-Mod at M is isomorphic to the Lyndon-
Hochschild-Serre spectral sequence, i.e. the spectral sequence associated to the double com-
plex po(Barg/n,r ®g Barg,r, M); cf. [7, Th. 3.5], [6, §3.5]. This is now also a consequence of
Theorems IV.31 and 1V.34, as explained in §§1V.8.2, TV.8.3.

BARNES works in a slightly different setup. He supposes given a commutative ring R, abelian
categories A, B and C of R-modules, and left exact functors F': A— B and G : B—C, where
F' is supposed to have an exact left adjoint J : B — A that satisfies F' o J = 15. Moreover, he
assumes A to have ample injectives and C to have enough injectives. In this setup, he obtains a
general comparison theorem. See [3, Sec. X.5, Def. X.2.5, Th. X.5.4].

BEYL [7] and BARNES [3] also consider cup products; in this article, we do not.

IV.0.5 Acknowledgements

Results of BEYL and HAAS are included for sake of documentation that they work within our
framework; cf. Theorem IV.40 and §IV.4. No originality from my part is claimed.

I thank B. KELLER for directing me to [46, XII.§11]. I thank the referee for helping to con-
siderably improve the presentation, and for suggesting Lemma IV.47 and §IV.8.2. 1 thank
G. CARNOVALE and G. Hiss for help with Hopf algebras.

Conventions

Throughout these conventions, let C and D be categories, let A be an additive category, let B and B’ be abelian
categories, and let £ be an exact category in which all idempotents split.

e Fora,b € Z, we write [a,b] :={c€Z : a<c<b},[a,b:={c€Z : a<c<b}, etc.
o GivenI CZandi€Z, wewrite Iy, :={jel : j>itand I;:={j €l : j<i}.

e The disjoint union of sets A and B is denoted by A U B.

b b
e Composition of morphisms is written on the right, i.e. S 2 = B
F G GoF
e Functors act on the left. Composition of functors is written on the left, ie. — — = ——

e Given objects X, Y in C, we denote the set of morphisms from X to Y by (X,Y).
e The category of functors from C to D and transformations between them is denoted by [C,D1.
e Denote by C(.A) the category of complexes

X = (- 4, oximr L x4y i....)
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with values in A. Denote by CI%(A) the full subcategory of C(A) consisting of complexes X with X =0

Conc
for i < 0. We have a full embedding A — CI°(A), where, given X € Ob A, the complex Conc X has
entry X at position 0 and zero elsewhere.

Given a complex X € ObC(A) and k € Z, we denote by X*** the complex that has differential
L1k d
xitk G w14k between positions i and i + 1. We also write X*~! := X*+(=1) etc.

Suppose given a full additive subcategory M C A. Then A/M denotes the quotient of A by M, which
has the same objects as A, and which has as morphisms residue classes of morphisms of A, where two
morphisms are in the same residue class if their difference factors over an object of M.
A morphism in A is split if it isomorphic, as a diagram on e — e, to a morphism of the form
10
00
XoY (—l X @& Z. A complex X € ObC(A) is split if all of its differentials are split.

An elementary split acyclic complex in C(A) is a complex of the form

where the entry T is at positions k and k + 1 for some k € Z. A split acyclic complex is a complex
isomorphic to a direct sum of elementary split acyclic complexes, i.e. a complex isomorphic to a complex

of the form 00) (00) (00 (00)
A0 T @ T 1o TiHL @ Tit2 10 Tit2 g Tit3 10

Let Cgpac(A) € C(A) denote the full additive subcategory of split acyclic complexes. Let K(A) :=
C(A)/Cspac(A) denote the homotopy category of complexes with values in A. Let KI°(A) denote the
image of Cl°(A) in K(A). A morphism in C(A) is a homotopism if its image in K(A) is an isomorphism.

We denote by Inj B C B the full subcategory of injective objects.

Concerning exact categories, introduced by QUILLEN [52, p. 15], we use the conventions of §1.6.2. In
particular, a commutative quadrangle in £ being a pullback is indicated by

A—B
o
Cc——D,

a commutative quadrangle being a pushout by

Q=<—n
L
O<~—1

Given X € ObC(€) with pure differentials, and given k¥ € Z, we denote by Z*¥X the kernel of the
differential X* — X*+1 by Z’* X the cokernel of the differential X*~1 — X*, and by B* X the image of
the differential X*—! — X*. Furthermore, we have pure short exact sequences B¥ X —— Z¥ X ——~ H* X
and H* X —e» 7Z'* X —» BFH1 X.

A morphism X — Y in C(€) between complexes X and Y with pure differentials is a quasiisomorphism
if H* applied to it yields an isomorphism for all k € Z. A complex X with pure differentials is acyclic if
HEX ~ 0 for all k£ > 0. Such a complex is also called a purely acyclic complex.

F
Suppose that B has enough injectives. Given a left exact functor B— B’, an object X € ObB is F-
acyclic if R“FX ~ 0 for all i > 1. In other words, X is F-acyclic if for an injective resolution I € CI°(Inj B)
of X (and then for all such injective resolutions), we have H'F'I ~ 0 for all i > 1.

By a module, we understand a left module, unless stated otherwise. If A is a ring, we abbreviate 4(—,=) :=
A—Mod(_a :) = HOl’nA(—, :)



173
IV.1 Double and triple complexes

We fix some notations and sign conventions.

Let A and B be additive categories. Let C(A) . B be an additive functor.

IV.1.1 Double complexes

IV.1.1.1 Definition

A double complex with entries in A is a diagram

9 9 9
d . . d . . d . X d

e 2y X7,+2,] %y X7,+2,]+1 % XZ+27J+2 = ...
9 d 9

X — L e PELIGLe RS WAS LGSO W DL
1o) 0 o

4o xi 4, xigtl — L o yigr2 4 ..
d 9 9

in A such that dd = 0, 90 = 0 and d0 = 0d everywhere. As morphisms between double
complexes, we take all diagram morphisms. Let CC(.A) denote the category of double complexes.

We may identify CC(A) = C(C(A)).
The double complexes considered in this §IV.1.1 are stipulated to have entries in A.

Let CC-(A) := CP(CP(A)) be the category of first quadrant double compleves, consisting of
double complexes X such that X/ = 0 whenever i < 0 or j < 0.

Given a double complex X and i € Z, we let X** € Ob C(A) denote the complex that has entry
X% at position j € Z, the differentials taken accordingly; X** is called the ith row of X.

Similarly, given j € Z, X*/ € Ob C(.A) denotes the jth column of X.

IV.1.1.2 Applying H in different directions

Given X € ObCC(A), we let H(X*~) € ObC(A) denote the complex that has H(X*7) at posi-
tion j € Z, and as differential H(X*J) — H(X*t!) the image of the morphism X*J —» X*J+1
of complexes under H. Similarly, H(X*) € Ob C(A) has H(X’*) at position j € Z.

In other words, a “«” denotes the index direction to which H is applied, a “—” denotes the surviving
index direction. For short, “x” before “—”
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IV.1.1.3 Concentrated double complexes

Given a complex U € Ob C°(A), we denote by Conc, U € Ob CC-(.A) the double complex whose
Oth row is given by U, and whose other rows are zero; i.e. given j € Z, then (Concy U)™ equals
U7 if i = 0, and 0 otherwise, the differentials taken accordingly. Similarly, Conc; U € Ob CC-(B)
denotes the double complex whose Oth column is given by U, and whose other columns are zero.

IV.1.1.4 Row- and columnwise notions

A morphism X e ¥V of double complexes is called a rowwise homotopism if X** Il yicis a
homotopism for all i € Z. Provided A is abelian, it is called a rowwise quasiisomorphism if
XL yis ig a quasiisomorphism for all i € Z.

A morphism X LV of double complexes is called a columnwise homotopism if X*J I yei s
a homotopism for all j € Z. Provided A is abelian, it is called a columnwise quasiisomorphism
if X*J /7L y*J is a quasiisomorphism for all j € Z.

Provided A is abelian, a double complex X is called rowwise split if X** is split for all i € Z; a
short exact sequence X' — X — X" of double complexes is called rowwise split short exact if
X' — X% — X"0* is split short exact for all i € Z.

A double complex X is called rowwise split acyclic if X** is a split acyclic complex for all i € Z.
It is called columnwise split acyclic if X* is a split acyclic complex for all j € Z.

IV.1.1.5 Horizontally and vertically split acyclic double complexes

An elementary horizontally split acyclic double complex is a double complex of the form

Ti+1 0
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A horizontally split acyclic double complex is a double complex isomorphic to a direct sum of
elementary horizontally split acyclic double complexes, i.e. to one of the form

(V5)
Ti+Li it Lt Lo

(05) (05)
(%5)

TiHLitL@Pitlit2 — > ...

T i+ i+l gy Trisi+2

An elementary vertically split acyclic double complex is a double complex of the form

0 0
Ti d Tz’+1
T d T+
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A wertically split acyclic double complex is a double complex isomorphic to a direct sum of
elementary vertically split acyclic double complexes, i.e. to one of the form

do

Ti+1j @TH—QJ

(%5) (10)
()

TiHLitL @ Tit2+l — > ...

i @Ti—i—l,j TH3+1 @Ti—&-l,j—&-l o ...

A horizontally split acyclic double complex is in particular rowwise split acyclic. A vertically
split acyclic double complex is in particular columnwise split acyclic.

A double complex is called split acyclic if it is isomorphic to the direct sum of a horizontally and
a vertically split acyclic double complex. Let CCqp,c(A) denote the full additive subcategory of
split acyclic double complexes. Let

KK(A) := CC(A)/CCgpac(A) ;

cf. [10, IV.§4]. A morphism in CC(A) that is mapped to an isomorphism in KK(.A) is called a
double homotopism.

A speculative aside. The category K(A) is Heller triangulated; cf. Def. 1.5.(i), Th. 1.32. Such a
Heller triangulation hinges on two induced shift functors, one of them induced by the shift functor

on K(A). Now KK(A) carries two shift functors, and so there might be more isomorphisms between
induced shift functors one can fix. How can the formal structure of KK(.A) be described?

IV.1.1.6 Total complex

Let KK“(.A) be the full image of CC-(A) in KK(A).
The total complex tX of a double complex X € Ob CC-(A) is given by the complex

d 0 00
0—-d—-90 0
0 0 do
—_—

in ObClP(A). Using the induced morphisms, we obtain a total complex functor

d 0 0

tX — (Xo,o (d9) X0l x 10 (O—d—a) X02q x11g x20 X3 X2 X2l X0 )

CC-(A) - CI(A). Since t maps elementary horizontally or vertically split acyclic double com-
plexes to split acyclic complexes, it induces a functor KK*“(.A) . KIO(A). If, in addition, A
is abelian, the total complex functor maps rowwise quasiisomorphisms and columnwise quasi-
isomorphisms to quasiisomorphisms, as one sees using the long exact homology sequence and
induction on a suitable filtration.

Note that we have an isomorphism U =t Conc; U, natural in U € Ob CI°(A), having entries
vy, vy, —1u,, —1u,, g, ete. Moreover, U =t Concy U, natural in U € Ob CI0(A).
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IV.1.1.7 The homotopy category of first quadrant double complexes as a quotient

Lemma IV.1 The residue class functor CC(A) — KK(A), restricted to CC-(A) — KK"-(A),

induces an equivalence

CC(A)/(CCopac(A) N CC(A)) =+ KK(A).

Proof. We have to show faithfulness; i.e. that if a morphism X — Y in CC-(A) factors over
a split acyclic double complex, then it factors over a split acyclic double complex that lies
in Ob CC-(A). By symmetry and additivity, it suffices to show that if a morphism X — Y in
CC-(.A) factors over a horizontally split acyclic double complex, then it factors over a horizontally
split acyclic double complex that lies in Ob CC-(.A). Furthermore, we may assume X — Y to
factor over an elementary horizontally split acyclic double complex S concentrated in the columns
k and k + 1 for some k € Z. We may assume that S/ =0 for i < 0 and j € Z. If K < 0, and in
particular, if k = —1, then X — Y is zero because S —» Y is zero, so that in this case we may
assume S = 0. On the other hand, if £ > 0, then S € Ob CC*-(A). g

Cf. also the similar Remark IV.2.

IV.1.2 'Triple complexes
IV.1.2.1 Definition

Let CCC(A) := C(C(C(.A))) be the category of triple complexes. A triple complex Y has entries
yREm for k, £, m € Z.

. L L d d

We denote the differentials in the three directions by Y*6m 2L yktlbm yktm 2, yki+lm and
d .

yhtm B yktmtl regpectively.

Let k, ¢, m € Z. We shall use the notation Y =%~ for the double complex having at position
(k,m) the entry Y*t™ differentials taken accordingly. Similarly the complex Y*4* etc.

Given a triple complex Y € Ob CCC(A), we write HY —=* € Ob CC(.A) for the double complex
having at position (k,¢) the entry H(Y*%*), differentials taken accordingly.

Denote by CCC*(A) C CCC(A) the full subcategory of first octant triple complezes; i.e. triple
complexes Y having Y*4™ = ( whenever k < 0 or £ < 0 or m < 0.

IV.1.2.2 Planewise total complex

For Y € Ob CCC*(A) we denote by t12Y € Ob CC-(A) the planewise total complex of Y, defined
for m € Z as

(t12Y)"™ = t(Y7™)
with the differentials of t; Y in the horizontal direction being induced by the differentials in
the third index direction of Y, and with the differentials of t; 2Y" in the vertical direction being
given by the total complex differentials. Explicitly, given k, ¢ > 0, we have

M= @ v

,j 20, i+j=k
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By means of induced morphisms, this furnishes a functor

CCC(A) 23 CC-(A)
Y +— tLQY.

IV.2 Cartan-Eilenberg resolutions

We shall use QUILLEN’s language of exact categories [52, p. 15] to deal with Cartan-Eilenberg
resolutions [10, XVIL.§1], as it has been done by MAC LANE already before this language was
available; cf. [46, XII.§11]. The assertions in this section are for the most part wellknown.

IV.2.1 A remark

Remark IV.2 Let A be an additive category. Then CI(A)/(CLP(A) N Cypac(A)) — KIO(A) is

an equivalence.

Proof. Faithfulness is to be shown. A morphism X — Y in CI°(A) that factors over an elemen-
tary split acyclic complex of the form (-« —0—T =T —0— ---) with T in positions
k and k + 1 is zero, provided £k < 0. o

IV.2.2 Exact categories

Concerning the terminology of exact categories, introduced by QUILLEN [52, p. 15], we refer to
61.6.2.

Let £ be an exact category in which all idempotents split. An object I € Ob¢& is called
relatively injective, or a relative injective (relative to the set of pure short exact sequences, that
is), if —,I) maps pure short exact sequences of £ to short exact sequences. We say that &
has enough relative injectives, if for all X € Ob &, there exists a relative injective I and a pure
monomorphism X —e— [.

In case £ is an abelian category, with all short exact sequences stipulated to be pure, then we
omit “relative” and speak of “injectives” etc.

Definition IV.3 Suppose given a complex X € Ob Cl°(€) with pure differentials. A relatively
injective complex resolution of X is a complex I € Ob Cl%(&), together with a quasiisomorphism
X — I, such that the following properties are satisfied.

(1) The object entries of I are relatively injective.
(2) The differentials of I are pure.

(3) The quasiisomorphism X — I consists of pure monomorphisms.

We often refer to such a relatively injective complex resolution just by I.
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A relatively injective object resolution, or just a relatively injective resolution, of an object Y €
Ob £ is a relatively injective complex resolution of ConcY .

A relatively injective resolution is the complex of a relatively injective object resolution of some
object in £.

Remark IV.4 Suppose that € has enough relative injectives. Every compler X € ObCl(&)
with pure differentials has a relatively injective complex resolution I € Ob Cl0(E).

In particular, every object Y € Ob& has a relatively injective resolution J € Ob Cl0(&).

Proof. Let X° -~ I° be a pure monomorphism into a relatively injective object I°. Forming
a pushout along X° — I°, we obtain a pointwise purely monomorphic morphism of complexes
X — X’ with X% = I° and X’* = X* for k > 2. By considering its cokernel, we see that it is
a quasiisomorphism. So we may assume X° to be relatively injective.

Let X! —~I! be a pure monomorphism into a relatively injective object I'. Form a pushout
along X! -~ I etc. o

Remark IV.5 Suppose given X € ObCl%(&) with pure differentials such that H*X ~ 0 for
k > 1. Suppose given I € ObCL(&) such that I* is purely injective for k > 0, and such that the
differential I° % I' has a kernel in E. Then the map

ko)X, ) — g(Kern(XOi»Xl), Kern([oill))

that sends a representing morphism of complexes to the morphism induced on the mentioned
kernels, is bijective.

Suppose £ to have enough relative injectives. Let Z C £ denote the full subcategory of relative
injectives. Let CI®™5(T) denote the full subcategory of CI°(Z) consisting of complexes X with
pure differentials such that H*X ~ 0 for k& > 1. Let K[®(Z) denote the image of C*™(Z) in
K(E).

Remark IV.6 The functor C% (7)) — &, X — H%(X), induces an equivalence
KOres(7) =~ ¢
Proof. This functor is dense by Remark IV.4, and full and faithful by Remark I'V.5. o

Remark IV.7 (exact Horseshoe Lemma)

Given a pure short exact sequence X' — X —= X" and relatively injective resolutions I' of X'
and I" of X", there exists a relatively injective resolution I of X and a pointwise split short
exact sequence I' — I — I" that maps under H® to X' — X — X".

Proof. Choose pure monomorphisms X’ —= " and X” —~ I"? into relative injectives I"° and
I". Embed them into a morphism from the pure short exact sequence X’ -+ X - X" to
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0
the split short exact sequence I’ Qo) @ 1" Q» I". Insert the pushout T of X' -+ X along

X' —~I"" and the pullback of I @ I"® 4 I" along X" -~ I'"° to see that X — 1" @ I'° is
purely monomorphic. So we can take the cokernel B/’ — B'J —~ B!I” of this morphism of pure
short exact sequences. Considering the cokernels on the commutative triangle (X, T, I"° & I'°)
of pure monomorphisms, we obtain a bicartesian square (T, I @ I"°, B'I’, B'T) and conclude
that the sequence of cokernels is itself purely short exact. So we can iterate. o

IV.2.3 An exact category structure on C(A)

Let A be an abelian category with enough injectives.

Remark IV.8 The following conditions on a short exact sequence X' — X — X" in C(A)
are equivalent.

1) All connectors in its long exact homology sequence are equal to zero.

2) The sequence BFX' — BX — B* X" is short exact for all k € Z.

(

(

(3) The morphism Z¥X — 7Z¥ X" is epimorphic for all k € Z.
(3') The morphism Z'* X' — 7'* X is monomorphic for all k € Z.
(

4) The diagram

BF X' ZF X' HrF X!
BFX 7k X Hk X

]

BkX// ZkX// HkX//

has short exact rows and short exact columns for all k € Z.

Proof. We consider the diagram in (4) as a (horizontal) short exact sequence of (vertical)
complexes and regard its long exact homology sequence. Taking into account that all asser-
tions are supposed to hold for all £ € Z, we can employ the long exact homology sequence on
X'— X — X" to prove the equivalence of (1), (2), (3) and (4).

Now the assertion (1) <= (3) is dual to the assertion (1) <= (3'). g

Remark IV.9 The category C(A), equipped with the set of short exact sequences that have zero
connectors on homology as pure short exact sequences, is an exact category with enough relatively
ingective objects in which all idempotents split. With respect to this exact category structure on
C(A), a complex is relatively injective if and only if it is split and has injective object entries.

Cf. [46, XI1.§11], where pure short exact sequences are called proper. A relatively injective object
in C(A) is also referred to as an injectively split complex. To a relatively injective resolution
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of a complex X € ObC(A), we also refer as a Cartan-FEilenberg-resolution, or, for short, as a
CE-resolution of X; cf. [10, XVIL.§1]. A CE-resolution is a CE-resolution of some complex.
Considered as a double complex, it is in particular rowwise split and has injective object entries.

Given a morphism X I, X’ in C(A), CE-resolutions J of X and J’ of X', a morphism gLy
in CC(A) such that (Ji L5 Jd) = (0 — 0) for i < 0 and such that

HO(— {0 o) = (x LX)
is called a CE-resolution of X —» X'. By Remarks IV.9 and IV.6, each morphism in C(A) has
a CE-resolution.

Proof of Remark IV.9. We claim that C(A), equipped with the said set of short exact sequences,
is an exact category. We verify the conditions (Ex 1,2,3) listed in §1.6.2. The conditions
(Ex 1°,2°,3°) then follow by duality.

Note that by Remark IV.8.(3’), a monomorphism X —Y in C(A) is pure if and only if
Z'*(X —Y) is monomorphic in A for all k € Z.

Ad (Ex 1). To see that a split monomorphism is pure, we may use additivity of the functor Z’*
for k € Z.

Ad (Ex 2). To see that the composition of two pure monomorphisms is pure, we may use Z’*
being a functor for k£ € Z.

Ad (Ex 3). Suppose given a commutative triangle

SN

in C(A). Applying the functor Z™* to it, for k € Z, we conclude that Z*(X — Y") is monomor-
phic, whence X — Y is purely monomorphic. So we may complete to

/B
AN

A

X Z,

\\Y
/

A
X

in C(A) with (X,Y,B) and (A,Y, Z) pure short exact sequences. Applying Z* to this dia-
gram, we conclude that Z’*(A — B) is a monomorphism for k € Z, whence A — B is a pure
monomorphism.

This proves the claim.
Note that idempotents in C(.A) are split since C(.A) is also an abelian category.

We claim relative injectivity of complexes with split differentials and injective object entries.
By a direct sum decomposition, and using the fact that any monomorphism from an elementary
split acyclic complex with injective entries to an arbitrary complex is split, we are reduced to
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showing that a pure monomorphism from a complex with a single nonzero injective entry, at
position 0, say, to an arbitrary complex is split. So suppose given I € ObInj. A, X € ObC(A)
and a pure monomorphism Conc [ -~ X. Using Remark IV.8.(3"), we may choose a retraction
to the composite (I — X% — 7°X). This yields a retraction to I — X° that composes to 0
with X! — X° which can be employed for the sought retraction X — Conc . This proves
the claim.

Let X € ObC(A). We claim that there exists a pure monomorphism from X to a relatively
injective complex. Since A has enough injectives, by a direct sum decomposition we are reduced
to finding a pure monomorphism from X to a split complex. Consider the following morphism
oy of complexes for k € Z,

(10)

0 X* Xka 7k X 0
RN
e > Xk:fQ *d> kal d Xk d Xk+1 cee

where X* Y+ 7*X is taken from X. The functor Z* maps it to the identity. We take the
direct sum of the upper complexes over k € Z and let the morphisms ¢ be the components of a
morphism ¢ from X to this direct sum. At position £, this morphism ¢ is monomorphic because
oy is. Moreover, Z'*(¢p) is a monomorphism because Z™*(yy,) is. Hence ¢ is purely monomorphic
by condition (3') of Remark IV.8. This proves the claim. -

Remark IV.10 Write £ := C(A). Given { > 0, we have a homology functor g A, which

14
induces a functor C(E) ear) C(A). Suppose given a purely acyclic complez X € ObC(E). Then
C(H)X € ObC(A) is acyclic.

Proof. This follows using the definition of pure short exact sequences, i.e. Remark IV.8.(1). o

IV.2.4 An exact category structure on CI(A)

Write CC-“(Inj A) for the full subcategory of CC-(.A) whose objects are CE-resolutions. Write
KK““®(Inj A) for the full subcategory of KK“(.A) whose objects are CE-resolutions.

Remark IV.11 The category CI°(A), equipped with the short eract sequences that lie in CI°(A)
and that are pure in C(A) in the sense of Remark IV.9 as pure short exact sequences, is an
exact category wherein idempotents are split. It has enough relative injectives, viz. injectively
split complexes that lie in CI(A).

Proof. To show that it has enough relative injectives, we replace ¢ in the proof of Remark IV.9

by X 26, Clonc XY, defined by X, 1xo, Xp at position 0. o

IV.2.5 The Cartan-Eilenberg resolution of a quasiisomorphism

Abbreviate £ := C(A), which is an exact category as in Remark IV.9. Consider CC-(A) C
Cl0(&), where the second index of X € Ob CC-(A) counts the positions in & = C(A); i.e. when
X is viewed as a complex with values in £, its entry at position k is given by X** € £ = C(A).
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Remark IV.12 Suppose given a split acyclic compler X € Ob Cl°(A). There exists a horizon-
tally split acyclic CE-resolution J € Ob CC-“¥(Inj A) of X.

Proof. This holds for an elementary split acyclic complex, and thus also in the general case by
taking a direct sum. o

Lemma IV.13 Suppose given X € ObCC-(A) with pure differentials when considered as an
object of C(E), and with H*(X*~) ~ 0 in CO(A) for k > 1.

Suppose given J € Ob CC-(Inj A) with split rows J** for k > 1. In other words, J is supposed
to consist of relative injective object entries when considered as an object of CI0(E).

Then the map

HO((-)"~)

(%) ki (4 X, ) ko(H* (X°7), H'(J77))

15 bijective.

Proof. First, we observe that by Remark IV.5, we have

() ko X, J) M (O (X)), HO(J%7)) .

So it remains to show that (x) is injective. Let X L. Jbea morphism that vanishes under (x).
Then H°(X*~) — HO(J*~) factors over a split acyclic complex S € Ob CI°(A); cf. Remark IV.2.
Let K be a horizontally split acyclic CE-resolution of S; cf. Remark IV.12. By Remark IV.5,
we obtain a morphism X — K that lifts H° (X*’*) — S and a morphism K — J that lifts
S —HO(J*7). The composite X — K — J vanishes in KK"(A). The difference

(X L)) = (X —K—J)
lifts HO(X*7) 2 H(J*~). Hence by (*x), it vanishes in KI°(£) and so a fortiori in KK“(A).
Altogether, X —L+ .J vanishes in KK"(A). -

Of(_\*,—
Proposition IV.14 The functor CC-“F(Inj A) w{er) Cl(A) induces an equivalence

Of(_\*,—
KK~ (Inj4) 20 gog) .
Proof. By Lemma V.13, this functor is full and faithful. By Remark IV.4, it is dense. 0
Corollary IV.15 Suppose given X, X' € ObCI°(A). Let J be a CE-resolution of X. Let .J' be
a CE-resolution of X'. If X and X' are isomorphic in KI°(A), then J and J' are isomorphic in
KK-(A).

The following lemma is to be compared to Remark IV.12.

Lemma IV.16 Suppose given an acyclic compler X € Ob CI°(A). There exists a rowwise split
acyclic CE-resolution J of X. Each CE-resolution of X is isomorphic to J in KK-(A).
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Proof. By Corollary IV.15, it suffices to show that there exists a rowwise split acyclic
CE-resolution of X. Recall that a CE-resolution of an arbitrary complex Y € ObCI°(A) can
be constructed by a choice of injective resolutions of H*Y and B*Y for k& € Z, followed by an
application of the abelian Horseshoe Lemma to the short exact sequences BFY — Z*Y — H*Y
for k € Z and then to Z*Y — Y* — B¥1Y for k € Z; cf. [10, Chap. XVII, Prop. 1.2]. Since
HEX = 0 for k € Z, we may choose the zero resolution for it. Applying this construction, we
obtain a rowwise split acyclic CE-resolution. o

Given X L+ X’ in Cl°(A4), a morphism J e rin CC-(A) is called a CE-resolution of X ox
if HO(f*~) ~ f, as diagrams of the form e — . By Remark IV.5, given CE-resolutions J of X
and J' of X', there exists a CE-resolution JLe 7ot X L x,

Proposition IV.17  Let X o X be a quasiisomorphism in CPO(A).  Let JLe g be a
CE-resolution of X Je X' Then f can be written as a composite in CC-°F(Inj A) of a rowwise
homotopism, followed by a double homotopism.

Proof. Choose a pointwise split monomorphism X — A into a split acyclic complex X. We can
factor (1)
(X Lo xy = (X‘f—“’» X' @AY X’) ,

so that (fa) is a pointwise split monomorphism. Let B be a CE-resolution of A. Choosing a
CE-resolution b of a, we obtain the factorisation

. . 1
(J-Le gy = (J(f—bl rep ), J’) .
(0) (o)
Since X'@A —% X' is a homotopism, J'@&B — J is a double homotopism; cf. Corollary IV.15.
Hence f is a composite of a rowwise homotopism and a double homotopism if and only if this

holds for (fb). So we may assume that f is pointwise split monomorphic, so in particular,
monomorphic.

By Proposition 1V.14, we may replace the given CE-resolution f by an arbitrary CE-resolution
of f between J and an arbitrarily chosen CE-resolution of X’ without changing the property
of being a composite of a rowwise homotopism and a double homotopism for this newly chosen
CE-resolution of f.

Let X+ X'+ X be a short exact sequence in C°(A). Since f is a quasiisomorphism, X €
Ob C°(A) is acyclic. Let J be a rowwise split acyclic CE-resolution of X; cf. Lemma IV.16.
The short exact sequence X Jox v Xis pure by acyclicity of X; cf. Remark IV.8.(1). Hence
by the exact Horseshoe Lemma, there exists a rowwise split short exact sequence J — J —J
of CE-resolutions that maps to X Lo X' — X under H°((=)*"); cf. Remark IV.7. Since
J is rowwise split acyclic and since the sequence J — J' — J is rowwise split short exact,
J — J' is a rowwise homotopism. Since J —» J' is a CE-resolution of X o x , this proves the
proposition. o

IV.3 Formalism of spectral sequences

We follow essentially VERDIER [57, I11.4]; cf. [12, App.]; on a more basic level, cf. [38, Kap. 4].



185

Let A be an abelian category.

IV.3.1 Pointwise split and pointwise finitely filtered complexes

Let Zo, := {—o0} UZ LI {oo}, considered as a linearly ordered set, and thus as a category. Write
la, Bl ={0€Zy : a<o<f}fora, B € Zy such that o < [3; ete.

Given X € OblZy,C(A)l, the morphism of X on o« < [ in Z, shall be denoted by
X(a) = X(B).

An object X € Ob[Z,,,C(A)T is called a pointwise split and pointwise finitely filtered complex
(with values in A), provided (SFF 1,2,3) hold.

(SFF 1) We have X (—o0) = 0.
(SFF 2) The morphism X («)* i X ()" is split monomorphic for all ¢ € Z and all o < § in Z..

(SFF 3) For all i € Z, there exist 3y, ap € Z such that X(«)’ =, X(B)" is an identity whenever
a<B<Bora <a<fin Zy.

The pointwise split and pointwise finitely filtered complexes with values in A form a full sub-

category SFFC(A) C [Z,C(A)J.

Suppose given a pointwise split and pointwise finitely filtered complex X with values in A for
the rest of the present §IV.3.

Let o € Zoo. Write X () := Cokern (X (o — 1) — X(a)) for a € Z. Given i € Z, we obtain
X(@)' = @B, 0.0 X (0)', which is a finite direct sum. We identify along this isomorphism. In
particular, we get as a matrix representation for the differential

(X(a>i4d>X(Oé)i+l) _ @ X (o) oo X

0€]—00,0] TE]—00,0]

where df” = 0 whenever o < 7; a kind of lower triangular matrix.

IV.3.2 Spectral objects

Let Zyo := Zoo X Z. Write a** := (a, k), where o € Z, and k € Z. Let a*F < g+ in Z, if
k< /lor (k={and a < f3), ie. let Zs be linearly ordered via a lexicographical ordering. We
have an automorphism a®* — a™**! of the poset Z,, to which we refer as shift. Note that

—ootk = (—o00) Tk,

We have an order preserving injection Zs — Zoo, a—a?.  We use this injection as an

identification of Z., with its image in Z, , i.e. we sometimes write o := a*® by abuse of
notation.

Let Z% = {(a,3) € Zoo X Zoo : B! < a < B <att}. We usually write 3/a = (a, ) € Z%;
reminiscent of a quotient. The set Z# is partially ordered by 8/a < 3/’ <= (8 < 3" and
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a < o). We have an automorphism 3/ar+— (8/a)*! := a™1/8 of the poset Z¥  to which,
again, we refer as shift.

We write Z% := {3/a € Z#, : —oo < a < 3 < oo}. Note that any element of Z% can uniquely
be written as (3/a)™ for some §/a € Z¥, and some k € Z.

We shall construct the spectral object Sp(X) € Ob[Z%,K(A)T1. The morphism of Sp(X) on
B/a < B'/a’ in Z¥ shall be denoted by X (8/a) > X(5'/a).

We require that

o+k
(X((B/0)™) = X((3/a)™) = (X(8/0) =+ X(5/a))"
for B/a < B'/a’ in ZZ; i.e., roughly put, that Sp(X) be periodic up to shift of complexes.

Define
X (B/a) := Cokern (X (a) — X(8))

for 8/a € Z%. By periodicity, we conclude that X (a/a) = 0 and X (o™ /a) = 0 for all @ € Z.

Write

Dijaprjor = (y)ocla), relorg) @ X(B/a) — X(3'/a’) !
fori € Z and 3/a, 3 /o’ € Z..
Given —oo < a < <y <ooandi € Z, we let

10)

(X/ay = xtrjay) = (X L% X(3a) e X(/0))
(xsar = xeysy) = (xegar e xeyey Uk i)
(/0 = xlatyy) = (X 2 X ).

By periodicity up to shift of complexes, this defines Sp(X). The construction is functorial in
X € ObSFFC(A).

IV.3.3 Spectral sequences

Let Z%# = {(y/a,0/B) € Z# x Z¥% : ' <a<B<y<6<att) Given (v/a,8/8) € ZZF,
we usually write 0/3/v/a = (v/a,§/3). The set Z## is partially ordered by
0/B)v/a< /By /d = (v/a<y'/a"and 6/8 <'/F).
Define the spectral sequence E(X) € Ob LZ%# AT of X by letting its value on
0/Bv/e < &/B' ) [

in Z7# be the morphism that appears in the middle column of the diagram

H (X (v/a)) —+—E(0/8/~/a)(X) H°(X(5/9))

HO(:c)i ei H%)l

HO(X (v /a)) ——=E(0'/3'+'/a/)(X) —=H(X(&"/8)) -
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Given 6/3)v/a € Z%# and k € Z, we also write
B(8/B/7/a)H(X) = B((5/8)" ) (v/a)*)(X).
Altogether,
[Zo,C(A)] D SFFC(A) — [Z# K(A)T — [Z## AT
X — Sp(X) — E(X).
IV.3.4 A short exact sequence

Lemma IV.18 Given e ' <a <<y <d<e<al! inZy, we have a short exact sequence

E(e/B)v/a)(X) = E(g/B)5/a)(X) —+ E(c/y/8/a)(X).
Proof. See Lemma, 1.26. 0

Lemma IV.19 Givene !'<a<pB<y<di<e<attin Z.., we have a short exact sequence
E(e/7/6/a)(X) - E(e/7/8/8)(X) — BE(a™'/v/5/8)(X).

Proof. Apply the functor induced by 3/a+——a™ /3 to Sp(X). Then apply Lemma 1.26. o

The short exact sequence in Lemma IV.18 is called a fundamental short exact sequence (in first
notation), the short exact sequence in Lemma IV.19 is called a fundamental short exact sequence
(in second notation). They will be used without further comment.

IV.3.5 Classical indexing
Let 1 <r < oo andlet p, ¢ € Z. Denote
BN = ERI(X) = E(-p—1+7/—p—1/=p/—p—1)""(X),

where 7 + 00 := 00 and 7 — o0 := —oo for all i € Z.

Example IV.20 The short exact sequences in Lemmata IV.18, IV.19 allow to derive the exact
couples of Massey. Write D&/ = D& (X) 1= E(—i/—oof —i—r+1/—00)THI(X) for i, j € Z and
r > 1. We obtain an exact sequence

ijj e, ijl,j+1 e, Ei+r727jfr+2 e, Di+rflyjfr+2 e, Di+7“727j*r+3

by Lemmata IV.18, IV.19.
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IV.3.6 Comparing proper spectral sequences

Let X 4~V bea morphism in SFFC(.A), i.e. a morphism of pointwise split and pointwise finitely
filtered complexes with values in A. Write E(X) B, E(Y) for the induced morphism on the
spectral sequences.

For o, B € Z, we write o < 3 if
(a<B) o (a=p and a€{cc™ : keZ}U{-o0™ : keZ}).

We write .
777 = {0/B)v/a € Zr* . '<a<pB<y<s<a).

We write _
E = BE(X) = E(X)|;4+ € ObLZ%#, Al

for the proper spectral sequence of X; analogously for the morphisms.

Lemma IV.21 IfE(a+1/a—1)a/a—2)"*(f) is an isomorphism for all « € Z and all k € Z,
then B(f) is an isomorphism.

Proof. Claim 1. We have an isomorphism E(v/3 — 1/3/8 — 2)**(f) for all k € Z, all 8 € Z
and all v € Z such that v > 3. We have an isomorphism E(8 + 1/8 — 1/3/a — 1)™*(f) for all
keZ,all f€Z and all o € Z such that o < (.

The assertions follow by induction using the exact sequences

E(y+2/v/v+1/8)" 5 BE(v/B-1)8/8—2)"F =+ E(v+1/8-1/8/8—2)"" — 0

and
0 — E(B+1/6-1)3/a=2)"" = E(B+1/6-1)3/a—1)"* = E(f—1/a—2)a—1/a—3)" .

Claim 2. We have an isomorphism E(y/8 — 1)3/a — 1)™*(f) forallk € Z and all o, 3, v € Z
such that a < 5 < 7.

We proceed by induction on v — a. By Claim 1, we may assume that a < f -1 < 8+ 1 < 7.
Consider the image diagram

E(y —1/8 —1)B/a—1)"* S~ E(v/8 —1/8/a —1)"* —~ E(v/8 —1/5/a)* .

Claim 3. We have an isomorphism E(§/8/~v/a)**(f) for all k € Z and all a, (3, v, § € Z such
that a < < v <.

We may assume that v — 3 > 1, for E(§/8/8/a)™ = 0. We proceed by induction on v — 3. By
Claim 2, we may assume that v — 3 > 2. Consider the short exact sequence

E(6/B)y — 1/a)™ —~ B(5/8/v/a)t — BE(d/v — 1)v/a)™ .

Claim 4. We have an isomorphism E(6/8/~/a)™(f) for all k € Z and all «, 3, 7, § € Zq such
that a < < v <.
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In view of Claim 3, it suffices to choose @ € Z small enough such that E(§/3/v/a)™(f) =
E(3/8//—00)™(f); ete.

Claim 5. We have an isomorphism E(6/8/~/a)™(f) for all k € Z and all o, 3, 7, § € Zq such
that a < 8 < v < 4.

In view of Claim 4, it suffices to choose 3 € Z small enough such that E(6/3/~/—o0)t*(f) =
E(d/—00/v/—00)**(f); ete.

Claim 6. We have an isomorphism E(6/3/~/a)**(f) for all k € Z and all a, 3, v, § € Z, such
that —co < ' <a<pf<y<oo< —oott <d<atl

In view of Claim 5, it suffices to consider the short exact sequence
E(o0/B)/7/8 ) ~= E(oo/B/v/a)™* —- E(/B)/a)* .

Claim 7. The morphism E(f) is an isomorphism.

Suppose given a, 3, v, § € Zs such that 67! < a < 8 < v < < atl. Via a shift, we may
assume that we are in the situation of Claim 5 or of Claim 6. o

IV.3.7 The first spectral sequence of a double complex

Let A be an abelian category. Let X € ObCC-(A). Given n € Z,, we write X™* for
the double complex arising from X by replacing X% by 0 for all i € [0,n]. We define a
pointwise split and pointwise finitely filtered complex t;.X, called the first filtration of tX, by
letting t;.X () := tX[* for a € Z.; and by letting t;X (o) — t;X () be the pointwise split
inclusion tX[=** —tXI=#* for o, 3 € Zg, such that a < 3. Let Ey = Ej(X) := E(t;X). This
construction is functorial in X € Ob CC-(A). Note that t;X (a) = X ~vk+e,

We record the following wellknown lemma in the language we use here.

Lemma IV.22 Let a €|—00,0]. Let k € Z such that k > —a. We have

Ei(a/a —1)aja —1)TH(X) = HFe(X™o)
Ei(a+1/a—1ja/a—2)"X) = H>H"X)),

naturally in X € Ob CC-(A).

Proof. The first equality follows by Ej(a/a — 1/a/a — 1) = H*t; X (a/a — 1) = HFFo(X %),

The morphism X (a/a — 1) — X ((« —2)™ Ja —1) = ;X (o — 1/a — 2)-+1 from Sp(t;X) is
at position k£ > 0 given by

(-D*9

tI_X(a)k — X*a,kJra Xfa+1,k+a — tI_X(Oé _ 1)k+1 :

cf. 8IV.1.1.6. In particular, the morphisms

Eif(a+1/aja+1/a)™ 1 5 Ela/a—1)a/a—1)"* S Ef(a—1/a —2)a—1/a —2)k!
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are given by

L) (—1)HN* (9)

Hk—l—a(X—a—l,*)

Hk+a (X—a,*) Hk—i—a(X—oH—l,*) '

Now the second equality follows by the diagram

/ﬁl/a 1//a/&i‘\
Ei(a/a —1/a/a &\ /E/I(ajl/a 1o/ — 1)+
Ei(a+1/afa+1/a)™ 1 —=Ea/a - 1faja— 1) —>E(a—1/a—2/a—1/a—2)*1,

[m]

Remark 1V.23 Let XJeY be a rowwise quasiisomorphism in CC-(A). Then
Er(6/8/)v/a)*(f) is an isomorphism for 6 ' < a <3< y<d<att inZy and k € Z.

Proof. Tt suffices to show that the morphism Sp(t;f) in I1Z% , K(A)1 is pointwise a quasiisomor-
phism. To have this, it suffices to show that t f** is a quasiisomorphism for k£ > 0. But f** is
a rowwise quasiisomorphism for k£ > 0; cf. §IV.1.1.6. o

Lemma IV.24 The functor CC-(A) B [Zfo#, Al factors over

KK*(A) 2. [Z## A7 .

Proof. By Lemma IV.1, we have to show that E; annihilates all elementary horizontally split
acyclic double complexes in Ob CC-(A) and all elementary vertically split acyclic double com-
plexes in Ob CC-(A).

Let U € ObCC-(A) be an elementary vertically split acyclic double complex concentrated in
rows ¢ and i + 1, where i > 0. Let V€ Ob CC“-(A) be an elementary horizontally split acyclic
double complex concentrated in columns j and j + 1, where 5 > 0.

Since V is rowwise acyclic, E; annihilates V' by Remark IV.23, whence so does Ej.

Suppose given
(%) —o<a<f<y<di<

in Zo, and k € Z. We claim that the functor Ey(6/3/~/a)** annihilates U. We may assume
that 8 < v. Note that E;(6/3/~v/a)**(U) is the image of

H* (41U (v/a)) — H¥(t:1U(5/8)) .

The double complex U=%*/U=8* is columnwise acyclic except possibly if —3 = i + 1 or if
—§ = i+1. The double complex U* /Ul=%* is columnwise acyclic except possibly if —a = i+ 1
or if —y =i+ 1. All three remaining combinations of these exceptional cases are excluded by
(%), however. Hence Ej(§/3/~/a)™ (U) = 0. This proves the claim.
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Suppose given
(%) Sl'<a<pB<y<oo<—ot<i<att.

in Zo, and k € Z. We claim that the functor E;(§/3/~/a)** annihilates U. We may assume
that 3 < 7 and that 6= < a. Note that E;(§/8/~/a)**(U) is the image of

HE (U (v/)) — HE (4U(3/671) |

The double complex Ul=%*/U=07)* is columnwise acyclic except possibly if —(671) =i+ 1 or if
—f3 = i+1. The double complex U=* /U=%* is columnwise acyclic except possibly if —y = i+1
or if —av =i+ 1. Both remaining combinations of these exceptional cases are excluded by (),
however. Hence E;(6/3/~/a)*t*(U) = 0. This proves the claim.

Both claims taken together show that E; annihilates U. o

IV.4 Grothendieck spectral sequences

IV.4.1 Certain quasiisomorphisms are preserved by a left exact func-
tor

Suppose given abelian categories A, B, and suppose that A has enough injectives. Let A . B
be a left exact functor.

Remark IV.25 Suppose given an F-acyclic object X € Ob A and an injective resolution
I €ObCP(InjA) of X. Let Conc X L+ T be its quasiisomorphism. Then Conc rx L pr
1S a quasisomorphism.

Proof. This follows since F is left exact and since H (FI) ~ (R'F)X ~ 0 for i > 1. o

Remark IV.26 Suppose given a compler U € Ob CI(A) consisting of F-acyclic objects. There
exists an injective complex resolution I € ObCl(Inj . A) of U such that its quasiisomorphism
UL maps to a quasiisomorphism FU P,

Proof. Let J € Ob CC-“¥(Inj A) be a CE-resolution of U; cf. Remark IV.9. Since the morphism
of double complexes Concy U — J is a columnwise quasiisomorphism consisting of monomor-
phisms, taking the total complex, we obtain a quasiisomorphism U — t.J consisting of monomor-
phisms. By F-acyclicity of the entries of U, the image Concy FU — F'J under F' is a columnwise
quasiisomorphism, too; cf. Remark IV.25. Hence F maps the quasiisomorphism U — tJ to the
quasiisomorphism FU — F'tJ. So we may take [ :=tJ. o

Lemma IV.27 Suppose given a compler U € Ob CI°(A) consisting of F-acyclic objects and an
injective complex resolution I € ObCI(Inj A) of U. Let U T T be its quasiisomorphism. Then
FUXL FrIisa quasiisomorphism.
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Proof. Let U — I’ be a quasiisomorphism to an injective complex resolution I’ that is mapped to
a quasiisomorphism by F'; c¢f. Remark IV.26. Since U — I’ is a quasiisomorphism, the induced
map g(a(U, 1) ~— k!’ I) is surjective, so that there exists a morphism I' — I such that
U—1'—1I) = (U—f> I) in K(A). Since, moreover, U L+ I is a quasiisomorphism, I’ — I
is a homotopism. Since FFU — FI' is a quasiisomorphism and F'I’ — F'I is a homotopism, we
conclude that FFU — F'I is a quasiisomorphism. o

IV.4.2 Definition of the Grothendieck spectral sequence functor

Suppose given abelian categories A, B and C, and suppose that A and B have enough injectives.
Let A"+ B and B-S+ C be left exact functors.

A (F, G)-acyclic resolution of X € Ob A is a complex A € Ob CI°(A), together with a quasiiso-
morphism Conc X — A, such that the following hold.

(A1) The object A* is F-acyclic for i > 0.
(A 2) The object A’ is (G o F)-acyclic for i > 0.

(A 3) The object FA" is G-acyclic for i > 0.

An object X € Ob A that possesses an (F, G)-acyclic resolution is called (F, G)-acyclicly resolv-
able. The full subcategory of (F, G)-acyclicly resolvable objects in A is denoted by A(rq).

A complex A € ObCl(A), together with a quasiisomorphism Conc X — A, is called an
F-acyclic resolution of X € Ob A if (A 2) holds.

Remark IV.28 If F' carries injective objects to G-acyclic objects, then (A1) and (A 3) imply
(A2).

Proof. Given i > 0, we let I be an injective resolution of A%, and I the acyclic complex obtained
by appending A° to I in position —1. Since A’ is F-acyclic, the complex F is acyclic; cf. Remark
IV.25. Note that F'B°T ~ FA" is G-acyclic by assumption. Since

(RFG)FI? — (R*G)FB'*'] — (R*'G)FB/]
is exact in the middle for j > 0 and k£ > 1, we may conclude by induction on j and by G-acyclicity
assumption on FI7 that FB/I is G-acyclic for j > 0. In particular, we have (R'G)(FB’I) ~ 0
for 5 > 0, whence
GFBI — GFI — GFB*']
is short exact for j > 0. We conclude that (G o F)I is acyclic. Hence A’ is (G o F)-acyclic. o

To see Remark IV.28, one could also use a Grothendieck spectral sequence, once established.

Remark IV.29 Suppose given X € Ob A, an injective resolution I of X and an F-acyclic
resolution A of X. Then there exists a quasiisomorphism A — I that is mapped to 1x by H°.
Moreover, any morphism A —— I that is mapped to 1x by H° is a quasiisomorphism and is

mapped to a quasiisomorphism F A Ly o by F.



193

Proof. Let I’ be an injective complex resolution of A such that its quasiisomorphism A — I’ is
mapped to a quasiisomorphism by F’; cf. Remark IV.26. We use the composite quasiisomorphism
Conc X — A — I’ to resolve X by I'.

To prove the first assertion, note that there is a homotopism I’ — I resolving 1x; whence the
composite (A—» ' — I) is a quasiisomorphism resolving 1x.

To prove the second assertion, note that the induced map (A4, 1) ~— kafI’, 1) is surjective,
whence there is a factorisation (A — I’ — I) = (A —~ I) in K(A) for some morphism I’ — I,
which, since resolving 1x as well, is a homotopism. In particular, A — I is a quasiisomorphism.
Finally, since F'I’ — F'I is a homotopism, also F'A T Flisa quasiisomorphism. o

Alternatively, in the last step of the preceding proof we could have invoked Lemma IV.27.

The following construction originates in [10, XVIL.§7] and [17, Th. 2.4.1]. In its present form, it
has been carried out by HAAS in the classical framework [21]. We do not claim any originality.

I do not know whether the use of injectives in A in the following construction can be avoided; in
any case, it would be desirable to do so.

We set out to define the proper Grothendieck spectral sequence functor
) g
A(Rg) — [ZOO ,CI.

We define E%YG on objects. Suppose given X € Ob A(p). Choose an (F, G)-acyclic resolution
Ax € ObCI(A) of X. Choose a CE-resolution Jx € ObCC-(InjB) of FAx. Let E§%(X) =
Ei(GJx) = E(t;:GJx) € ObLZ## C1 be the Grothendieck spectral sequence of X with respect
to F' and G. Accordingly, let

E%rG(X) = EI(GJX> = E(tIGJ)() e Ob [Zfo#,C]

be the proper Grothendieck spectral sequence of X with respect to F' and G.

We define E%TG on morphisms. Suppose given X € Ob A(r¢), and let Ax and Jx be as above.
Choose an injective resolution Iy € Ob C[O(Inj A) of X. Choose a quasiisomorphism Ax X Ty
that is mapped to 1x by H® and to a quasiisomorphism by F; cf. Remark IV.29. Choose a
CE-resolution Kx € ObCC-(Inj B) of FIx. Choose a morphism Jx 2~ Kx in CC-(Inj B) that
is mapped to Fpy by H?((—=)*7); cf. Remark IV.6.

Note that Jx 2 Kx can be written as a composite in CC=“F(Inj B) of a rowwise homotopism,
ax

followed by a double homotopism; cf. Proposition IV.17. Hence, so can GJx Gix, K x. Thus
Ei(GJy) _EnGax) | E1(GKx) is an isomorphism; cf. Remark IV.23, Lemma IV.24.

Suppose given X Jevin A(r,c). Choose a morphism Iy i Iy in CI°(A) that is mapped to f
by HO. Choose a morphism Ky < Ky in CC~(Inj B) that is mapped to F f" by H°((=)*"); cf.
Remark IV.6. Let

EI(Gf”)

EGL(X Ley) = (EI(GJX) BGe) | B (GEKy) Bi(GEKy) ~HGe) EI(GJY)> .
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The procedure can be adumbrated as follows.

f//

KX KY
q)y’ qx/
JX JY
Ix s Iy
p)y‘ pV
Ax Ay
X ! Y

We show that this defines a functor ES%, : Apcy — IZ##, C1. We need to show independence
of the construction from the choices of f" and f”, for then functoriality follows by appropriate

choices.

Let Iy N Iy and Kx i Ky be alternative choices. The residue classes of f’ and ' in KI°(A)
coincide, whence so do the residue classes of Ff' and Ff’ in K(B). Therefore, the residue
classes of f” and f” in KK"(B) coincide; cf. Proposition IV.14. Hence, so do the residue classes
of Gf" and Gf" in KK-(C). Thus E(Gf") = Ei(Gf"); cf. Lemma IV.24.

We show that alternative choices of Ax, Ix and px, and of Jx, Kx and qx, yield isomorphic
proper Grothendieck spectral sequence functors.

Let flx Px fX and jX ax, f(X be alternative choices, where X runs through Ob A ).

Suppose given X Jevin A(rc). We resolve the commutative quadrangle

in A to a commutative quadrangle

]Xi)IY

uxl lw
i1
in KI°(A), in which uyx and uy are homotopisms; cf. Remark IV.6. Then we resolve the com-
mutative quadrangle
FIy 2 Fry

Fuxl iFuy
-~  Fjf -
FIxy—FlIy
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in K°(B) to a commutative quadrangle

KXLKY

vxl lvy
Ky A Ry
in KK-(B); cf. Proposition IV.14. Therein, vy and vy are each composed of a rowwise homo-

topism, followed by a double homotopism; cf. Proposition IV.17. So are Gvx and Gvy. An
application of EI(G (—)) yields the sought isotransformation, viz.

(EI(GJX) w» EI(GKX) EI(GNUX) EI(GRX) EI(S@X) EI(GJX)>

at X € Ob A(pe); cf. Remark 1V.23, Lemma IV.24.

Finally, we recall the starting point of the whole enterprise.

Remark IV.30 ([10, XVIL§7], [17, Th. 2.4.1]) Suppose given X € ObApq) and k, { €
Z>y. We have

B (—k+1/—k —1)—k/—k —2)"(X) ~ (R'G)(R'F)(X)

Efi(00/ —00//00/ —00) FH(X) ~ (RMY(GoF))(X),

naturally in X.

Proof. Keep the notation of the definition of E%YG .

We shall prove the first isomorphism. By Lemma V.22, we have
ESG(—k+1/—k—1)—k/—k —2)™(X) ~ HYHY(GI™)).

Since Jy is rowwise split, we have HY(GJy™) ~ G(H‘Jy™). Note that H'J"" is an injective
44

resolution of H'F A y; cf. Remark IV.8.(1). By Remark IV.29, H' FAx /¥ H'F I ~ (R‘F)(X).

So

HE(HY(GJT")) ~ HYGHTLY)) ~ (RFG)(HFAx) ~ (RFG)(RF)(X) .

We shall prove naturality of the first isomorphism. Suppose given X LY in A(r,). Consider
the following commutative diagram. Abbreviate £ := E(—k + 1/—k — 1) —k/—k — 2)T++¢,

E(t1Ggx) E(ti1Gf") E(t1Gqy)

E(tiGJx) - E(tiGKx) E(tiGKy) - E(t1GJy)
1§ 1§ 1§ 1§
. HkHqu)—(,x . HFHEG 11— . HkHeGq;’* .
HFH!G Ty ——— > HFH!GK HFH!GK " ~—————— HFH!GJ,
1§ 1§ 1§ 1§
. HkGHéq;{,* . HkGHlf//—.* . HkGHEq;,* .
HFGH Ty HFGHK H*GH'K HFGHJy
1§ 14 1§ 1§
RFG)H'F RFG)HFf! RFG)H'F
(REG)HIFAx — I pegyitpr, — 2T jeaymtrry, <0 geayatR Ay
1§ 1§
R*G)(R'F
(REG)(RCF)(X) 2 (REG)(REF) (V)
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We shall prove the second isomorphism. By Lemma IV.27, the quasiisomorphism FAx — tJx
maps to a quasiisomorphism GF Ay — tGJx ~ GtJx. By Lemma IV.27, the quasiisomorphism
Ax 2% Iy maps to a quasiisomorphism GFAx Gipy GFIx. So
ngG(oo/—oo//oo/—oo)J“k”(X) ~ HM(tGJx) ~ HMYGtJx) ~ HFY(GFAy)
~ HYGFIx) ~ (R’”e(G o F))(X) .

We shall prove naturality of the second isomorphism. Consider the following diagram. Abbre-
viate E := Efi;(00/—00 oo/ —o0) T,
E(tIqu)

E(t1Gf") E(t1Gqy)

E(t:GJx) — E(t1GKx) E(tiGKy) — E(t;GJy)
1§ 1§ 1§ 13
HEHGTy — O g, T kg, <O kg,
1§ 1§ 1§ 13
HAH Gt — O ey, —— O Gy, O Gy
1§ 13
HAHGFAy — O phegrr, wrery HEH G, <GP piiegra,
1§ 1§
(RE+(G o 1)) (X) D (i@ ) (v)

IV.4.3 Haas transformations

The following transformations have been constructed in the classical framework by HaAs [21]. We
do not claim any originality.

IV.4.3.1 Situation

Consider the following diagram of abelian categories, left exact functors and transformations,
A—L-p—C>c
Ul o Vl V/WJ/
A/ L) B i/) c’ ,

ie. F'oU - VoF and G' oV -~ W o G. Suppose that the conditions (1,2, 3) hold.

(1) The categories A, B, A" and B’ have enough injectives.
(2) The functors U and V carry injectives to injectives.

(3) The functor F' carries injective to G-acyclic objects. The functor F’ carries injective to
G'-acyclic objects.
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We have A(p) = A since an injective resolution is an (F, G)-acyclic resolution. Likewise, we
have Afp gy = A’

Note in particular the case U =14,V =1gand W = 1¢.
We set out to define the Haas transformations

~Gr hL SGr by ~Gr
EF’,G’ (U(_)) - EF,G’OV( - ) - EF,WOG( - ) )

where hL depends on F, F', G', U, V and p, and where hl! depends on F, G, G, V, W and v.

IV.4.3.2 Construction of the first Haas transformation

Given T' € Ob A, we let E%,YG(T ) be defined via an injective resolution Iz of 7" and via a CE-
resolution Jr of Flp; cf. §1V.4.2.

Given 7" € Ob A, we let E%{G, (T") be defined via an injective resolution I7, of 7" and via a
CE-resolution JJ, of F'I},; cf. §1V.4.2.

We define hL. Let X € Ob.A. By Remark IV.5, there is a unique morphism I}, LSS Ulyx in

KI(A") that maps to 1yx under H°. Let J}, y "XV Jx be the unique morphism in KK*"(B’) that

maps to the composite morphism (F’I(’]X FhY F'UIyx -2~ VFIX) in KO(B') under H((—)"7);

cf. Lemma IV.13. Let the first Haas transformation be defined by

1
hl, X

(B e (UX) 25 B (X)) = (EI(G'Jg,X) B1(GX)

EI(G’VJX)) .

We show that hL 1s a transformation. Let XLV be a morphism in A. Let Ix £, Iy re-
solve X Lo V. Let Jy AR Jy resolve F'lx i FIy. Let I}, i I};y resolve UX YL Uy, Let

JUx L Tyy resolve F'Iyx 24 F'Iyy. The quadrangle

UX=—7=UX
Ufl iUf
Uy —=UY

commutes in A’. Hence, by Remark IV.5, applied to Ij;y and Uly, the resolved quadrangle

Iy 5 Ulx

o

/
IUY W U[Y
commutes in K(A’). Hence both quadrangles in

FiI " pury —A > VFIy
F/JF/\L lF/Uf/ J(VFJN
F'ljyy — s F'UIy VFIy

w
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commute in KI°(B'). By Lemma IV.13, applied to Ji;x and VJy, the outer quadrangle in the
latter diagram can be resolved to the commutative quadrangle

h'X

/- Vi
]E// \L lvf//
‘][/JY W'y VJY

in KK“(B'). Applying E;(G'(—)) and employing the definitions of E%{G/ , E%’erov and hi, we
obtain the sought commutative diagram

I

. h, X .
B o (UX) —— Ef oy (X)

ng’G/(Uf)i J{Elg,rG’oV(f)

ES o (UY)

Eg,rG/oV (Y>

in [Z##, C'1.

IV.4.3.3 Construction of the second Haas transformation

We maintain the notation of §IV.4.3.2.
Given X € Ob A, we let the second Haas transformation be defined by
il x Ei(v)

(ngGov(X) by X ngWOG(X)> - (EI(G’VJX) Ex) EI(WGJX)> .

It is a transformation since v is.

IV.5 The first comparison

IV.5.1 The first comparison isomorphism

Suppose given abelian categories A, A’ and B with enough injectives and an abelian category C.
Let A x A’ B be a biadditive functor. Let B -5~ C be an additive functor.

Suppose given objects X € Ob.A and X’ € Ob A’. Suppose the following properties to hold.

(a) The functor F'(—, X') : A— B is left exact.

(a') The functor F(X,—) : A'— B is left exact.

(b) The functor G is left exact.

(¢) The object X possesses a (F(—, X’), G)-acyclic resolution A € ObCL(A).

(¢) The object X' possesses a (F(X,—), G)-acyclic resolution A" € Ob C(A).
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Moreover, the resolutions appearing in (c) and (¢’) are stipulated to have the following properties.

(d) For all & > 0, the quasiisomorphism Conc X — A is mapped to a quasiisomorphism
Conc F (X, A%) — F(A, A’*) under F(—, A%).

(d') For all k& > 0, the quasiisomorphism Conc X' — A’ is mapped to a quasiisomorphism
Conc F(A*, X') — F(A*, A’) under F(A* —).

The conditions (d,d’) are e.g. satisfied if F((—, A’*) and F(A*, —) are exact for all k > 0.

Theorem IV.31 (first comparison) The proper Grothendieck spectral sequence for the func-
tors FI(X,—) and G, evaluated at X', is isomorphic to the proper Grothendieck spectral sequence
for the functors F(—,X") and G, evaluated at X; i.e.

B e(X) = BE_ ) a(X)

in LZ## C1.

Proof. Let Ja, Jar, Jaa € ObCC-(InjB) be CE-resolutions of the complexes
F(A, X', F(X,A"), tF(A, A") € ObCl(B), respectively.

The quasiisomorphism Conc X — A induces a morphism F(Conc X, A") — F(A, A’), yielding
F(X,A") —tF(A, A"), which is a quasiisomorphism since Conc F(X, A*) — F(A, A*) is a
quasiisomorphism for all k£ > 0 by (d).

Choose a CE-resolution Jy — Jqa of F(X, A")—tF(A,A"); cf. Remark IV.6. Since
the morphism F(X,A") —tF (A, A’) is a quasiisomorphism, J4 — J4 4 is a composite in
CC““E(Inj B) of a rowwise homotopism and a double homotopism; cf. Proposition IV.17. So is
GJa — GJa 4. Hence, by Remark IV.23 and by Lemma IV.24, we obtain an isomorphism of
the proper spectral sequences of the first filtrations of the total complexes,

Efix 6(X) = El(GJa) = Ei(GJan) -
Likewise, we have an isomorphism
ng—,x'),G(X) = EI(GJA) — EI(GJA,A/).

We compose to an isomorphism ngx,-),@(*x,) s Ef:g_’X,) o(X) as sought. -

IV.5.2 Naturality of the first comparison isomorphism

We narrow down the assumptions just as we have done for the introduction of the Haas transfor-
mations in §IV.4.3.1 in order to be able to express, in this narrower case, a naturality of the first
comparison isomorphism from Theorem IV.31.

Suppose given abelian categories A, A" and B with enough injectives and an abelian category C.

Let A x A’ -5+ B be a biadditive functor. Let B —C, C be an additive functor.

Suppose that the following properties hold.



(a) The functor F(—, X') : A— B is left exact for all X’ € Ob A’

(a') The functor F'(X,—) : A'— B is left exact for all X € Ob A.

(b) The functor G is left exact.

(c) For all X’ € Ob A, the functor F/(—, X') carries injective objects to G-acyclic objects.
(¢) For all X € Ob A, the functor F'(X, —) carries injective objects to G-acyclic objects.
(d) The functor F'(I,—) is exact for all I € ObInj.A.

(d’) The functor F'(—, ") is exact for all I’ € ObInj.A’.

Proposition IV.32 Suppose given X —» X in A and X’ € Ob A’. Note that we have a trans-

formation F(z,—) : F(X,—) — F(X,—). The following quadrangle, whose vertical isomor-
phisms are given by the construction in the proof of Theorem IV.31, commutes.

I
hip(z,—) X’

E%rx,f),G(X/)

¥

B v a(X)

Gr
ErzoeX)

iz

Gr
F—x,c®) S

B v a(X)

For the definition of the first Haas transformation h}( see §IV.4.3.2.

z,—)’
An analogous assertion holds with interchanged roles of A and A’.

Proof of Proposition IV.32. Let I resp. I be an injective resolution of X resp. X in A. Let

I -2+ T be a resolution of X -~ X. Let I’ be an injective resolution of X’ in A’
Let JI(,X) resp. 75 be a CE-resolution of F(X,I') resp. F(X,TI').

Let Jrp resp. J; ;, be a CE-resolution of tF(1,I') resp. tF(I,I).

Let J; resp. J; be a CE-resolution of F(I, X") resp. F(I, X").

We have a commutative diagram
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in CI°(B), hence in KI°(B). By Proposition IV.14, it can be resolved to a commutative diagram

JX) — g

|

JI7I/ _— Jf,[’

]

Jp——J;
in KK"(B). Application of EI(G (—)) vields the result; cf. Lemma IV.24.

We refrain from investigating naturality of the first comparison isomorphism in G.

IV.6 The second comparison

IV.6.1 The second comparison isomorphism

Suppose given abelian categories A and B’ with enough injectives, and abelian categories B and

C.
Let .A—F> B’ be an additive functor. Let B x B’ C, C be a biadditive functor.

Suppose given objects X € ObA and Y € ObB. Let B € ObCl°(B) be a resolution of Y, i.e.
suppose a quasiisomorphism ConcY — B to exist. Suppose the following properties to hold.

a) The functor F' is left exact.

(
(b) The functor G(Y, —) is left exact.
(

(d

)
)
c¢) The object X possesses an (F, G(Y, —))-acyclic resolution A € Ob Cl°(A).
) The functor G(B*, —) is exact for all k > 0.

)

(e) The functor G(—, I’) is exact for all I’ € ObInjB'.

Remark IV.33 Suppose given a morphism D D in CC-(C). IfHY(f~*) is a quasiisomor-
phism for all £ > 0, then f induces an isomorphism

Ei(D) "L B(D)

of proper spectral sequences.

Proof. By Lemma IV.21, it suffices to show that Ef(a+1/a—1/a/a—2)**(f) is an isomorphism
for all « € Z and all k € Z. By Lemma IV.22, this amounts to isomorphisms H*H*(f~*) for all
k, ¢ > 0, i.e. to quasiisomorphisms H(f~*) for all £ > 0. o

Consider the double complex G(B, FA) € ObCC*(C), where the indices of B count rows and
the indices of A count columns. To the first filtration of its total complex, we can associate the
proper spectral sequence Ej(G(B, FA)) € Ob LZ%# CI.
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Theorem IV.34 (second comparison) The proper Grothendieck spectral sequence for the
functors F and G(Y, =), evaluated at X, is isomorphic to Ei(G(B, FA)); i.e.

B,y (X) =~ Ei(G(B, FA))

l

in TZ##,C1.

Proof. Let J' € ObCC-(InjB’) be a CE-resolution of FA. By definition, ngG(Kf)(X) =
Ei(G(Y,.J"). By Remark IV.33, it suffices to find D € ObCC-(C) and two morphisms of
double complexes

G(B,FA) %~ D <~ G(v,.J)
such that Hf(u™*) and H(v™—*) are quasiisomorphisms for all £ > 0.

Given a complex U € ObCI(B), recall that we denote by Concy' € Ob CC-(B) the double

complex whose row number 0 is given by U, and whose other rows are zero.

We have a diagram
G(B,Concy FA) — G(B,J') ~— G(ConcY, J')
in CCC*(C). Let £ > 0. Application of H((—)™=") yields a diagram
(%) H'(G(B, Conc, FA)™=*) — HY(G(B,J')"™*) «— H(G(ConcY,J') =)
in CC-(C). We have
H'(G(B, Concy FA)™ =) =~ G(B , H*((Conc, FA)”*)) = ((B,ConcH'(FA))

and

HY(G(B,J) ™) =~ G(B,HYJ™)),

since the functor G(B*, —) is exact for all k > 0 by (d), or, since the CE-resolution J is rowwise
split. Since the CE-resolution J’ is rowwise split, we moreover have

H'(G(ConcY, J')=*) =~ G(ConcY,H(J'™)).
So the diagram (x) is isomorphic to the diagram
(%) G(B, Conc HK(FA)) — G(B7H5(J’*v*)) ~— G(Conc, Hf({]lf,*)) ’

whose left hand side morphism is induced by the quasiisomorphism Conc HY(FA) — H¢(J'~*),
and whose right hand side morphism is induced by the quasiisomorphism ConcY — B.

By exactness of G(B*, —) for k > 0, the left hand side morphism of (xx*) is a rowwise quasiiso-
morphism. Since H¢(J’**) is injective, the functor G(—, H*(J™**)) is exact by (e), and therefore
the right hand side morphism of (xx) is a columnwise quasiisomorphism. Thus an application
of t to (#x) yields two quasiisomorphisms; cf. §IV.1.1.6. Hence, also an application of t to (x)
yields two quasiisomorphisms in the diagram

tHﬁ<G(B,COHC2 FA)_’:’*) — tHK(G(B“]/)_v:v*) - tHE(G(COHCY, J,)_’:’*) ‘
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Note that t o H((—=)™7*) = H((—) ") ot1,2, where t; » denotes taking the total complex in the
first and the second index of a triple complex; cf. §IV.1.2.2. Hence we have a diagram

H'(((t12G(B, Coney FA)) ™) — H'((112G(B, ) ") +— H'((115G(Conc, 1)) ™)
consisting of two quasiisomorphisms. This diagram in turn, is isomorphic to
H%G(B,FA)"*) . H€<(t172G(B,J’))_’*> — Hg((G(Y, J’))‘*),
where the left hand side morphism is obtained by precomposition with the isomorphism

G(B, FAF) =+t Conc, G(B, FA*) = (t12G(B, Concy FA)) ™", where k > 0; cf. §IV.1.1.6.

Hence we may take

(G(B,FA) ~ D < G(B,J)) := <G(B,FA) e 41,G(B, J) ~— G(Y, J’)> .

IV.6.2 Naturality of the second comparison isomorphism

Again, we narrow down the assumptions just as we have done for the introduction of the Haas
transformations in §IV.4.3.1 to express a naturality of the second comparison isomorphism from
Theorem 1V.34.

Suppose given abelian categories A and B’ with enough injectives, and abelian categories B and

F ~
C. Suppose given additive functors A — B’ and a transformation F —~ F. Let B x B’ <. Che

a biadditive functor. F

Suppose given a morphism X ——~ X in A and an object Y € ObB. Let B € ObCI(B) be a
resolution of Y, i.e. suppose a quasiisomorphism ConcY —» B to exist. Suppose the following
properties to hold.

(a) The functors F' and F' are left exact and carry injective to G(Y, —)-acyclic objects.
(b) The functor G(Y, —) is left exact.
(¢) The functor G(B*, —) is exact for all k > 0.

(d) The functor G(—,I') is exact for all I" € ObInjB'.

Let A"+ A in Cl°(Inj.A) be an injective resolution of X —~ X in A. Note that we have a

commutative quadrangle

G(B,pA)

G(B,FA) G(B,FA)

G(B,Fa)l iG(B,ﬁa)

G(B, FA) 229 (B, FA)

in CC-(C).
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Note that once chosen injective resolutions A of X and A of X, the image of G(B,Fa)
in KK“(C) does not depend on the choice of the resolution A—~A of X —» X, for

ClO(A) GBFO), CC-(C) maps an elementary split acyclic complex to an elementary horizon-
tally split acyclic complex.

Lemma IV.35 The quadrangle

“Gr ngG(Y,_)(;B) . ~
Ezc«i,c(y,f)(X) E%G(Y ) (X)

(. ;

E(G(B, FA) 22 By(G(B, FA))

commutes, where the vertical isomorphisms are those constructed in the proof of Theorem 1V.34.

a

Proof. Let J' —%~ J' be a CE-resolution of F A% FA. Consider the following commutative

diagram in CC-(C).
G(Y.a)

G, J) G(Y, J
t1.G(B, J) 220 (B, I
G(B, FA) S5
An application of E; yields the result. o
Lemma IV.36 The quadrangle
. h}PX “Gr
B (X) BS L (X)

| |

E(G(B, FA) — B i (B, FA))

commutes, where the vertical morphisms are those constructed in the proof of Theorem IV.34.

For the definition of the first Haas transformation h}(xﬁ), see §1V.4.3.2.

Proof. Let J' 2+ J' be a CE-resolution of FA % FA. Consider the following commutative
diagram in CC-(C).

G(Y.)

G(Y,J") G(Y,J")
l/ 1 2G 5 l v
t1,2G(B, J’)t 2 12G(BJ')
G(B, FA) S (B, FA)
An application of E; yields the result. o

We refrain from investigating naturality of the second comparison isomorphism in Y.
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IV.7 Acyclic CE-resolutions

We record BEYL’s Theorem [7, Th. 3.4] (here Theorem IV.40) in order to document that it fits
in our context. The argumentation is entirely due to BEYL [7, Sec. 3], so we do not claim any
originality.

Let A, B and C be abelian categories. Suppose A and B to have enough injectives. Let
Ao B9 C be left exact functors.

IV.7.1 Definition

Let T € ObC(B). In this §IV.7, a CE-resolution of T" will synonymously (and not quite correctly)
be called an injective CE-resolution, to emphasise the fact that its object entries are injective.

We regard CI°(B) as an exact category as in Remarks IV.9 and IV.11.

Definition IV.37 A double complex B € CC-(B) is called a G-acyclic CE-resolution of T' if
the following conditions are satisfied.
(1) We have H(B*~) ~ T and H¥(B*~) ~ 0 for all k > 1.

(2) The morphism of complexes B¥* — B¥+L* consisting of vertical differentials of B, is a
pure morphism for all £ > 0.

(3) The object BY(B**) is G-acyclic for all k, £ > 0.

(4) The object Z*(B**) is G-acyclic for all k, £ > 0.
A G-acyclic CE-resolution is a G-acyclic CE-resolution of some T' € Ob CI°(B).

From (3,4) and the short exact sequence Z‘(B**) — B*f — B1(B**) we conclude that B**
is G-acyclic for all k, ¢ > 0.

From (3,4) and the short exact sequence Bf(B**) — Z¢(B**) — H*(B**), we conclude that
HY(B**) is G-acyclic for all k, £ > 0.

Example IV.38 An injective CE-resolution of 7" is in particular a G-acyclic CE-resolution of
T.

Note that given Y € Ob C(B) and ¢ € Z, we have Z‘GY ~ GZ'Y, whence the universal property
of the cokernel H'GY of GY*~! — Z‘GY induces a morphism H‘GY — GH'Y. This furnishes
a transformation HY(GX**) 2% GHY(X**), natural in X € Ob CC-(B).

Remark IV.39 If B is a G-acyclic CE-resolution, then HY(GB™*) S5 GHY(B~*) is an iso-
morphism for all £ > 0.
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Proof. The sequences

GBZ(Bk’*) . GZZ(BIC’*) . GHZ(Bk,*)
Gzéfl(Bk,*) . GBk,Zfl ., GB@(Bk,*)

are short exact for k, £ > 0 by G-acyclicity of B¢(B**) resp. of Z*~1(B**). In particular, the
cokernel of GB**~1 — GZ(B**) is given by GH*(B**). .

IV.7.2 A theorem of Beyl

Let X € Ob A(rg). Let A € ObClP(A) be a (F, G)-acyclic resolution of X. Let B € CC-(B) be
a G-acyclic CE-resolution of FA.

Theorem IV.40 (BEYL, [7, Th. 3.4]) We have an isomorphism of proper spectral sequences
B (X) ~ E(GB)

in LZ## C1.

Proof. Since the proper Grothendieck spectral sequence is, up to isomorphism, independent of
the choice of an injective CE-resolution, as pointed out in §IV.4.2, our assertion is equivalent
to the existence of an injective CE-resolution J of FA such that E(GJ) ~ Ei(GB). So
by Remark IV.33, it suffices to show that there exists an injective CE-resolution J of FA and
a morphism B — J that induces a quasiisomorphism HY(GB~*) — HY(GJ~*) for all £ > 0.
By Remark IV.39 and Example IV.38, it suffices to show that GHY(B~*) — GH*(J*) is a
quasiisomorphism for all ¢ > 0.

By the conditions (1,2) on B and by G-acyclicity of H(B**) for k, ¢ > 0, the complex H*(B~*)
is a G-acyclic resolution of HY(FA); cf. Remark IV.10.

By Remark IV.4, there exists J € ObCC-(InjB) with vertical pure morphisms and
split rows, and a morphism B — J consisting rowwise of pure monomorphisms such that
H*(B*~) — H(J*7) is an isomorphism of complexes for all £ > 0. In particular, the com-
posite (Concy FA— B — J) turns J into an injective CE-resolution of FA.

Let ¢>0. Since B is a G-acyclic and J an injective CE-resolution of FA, both
Conc HY(FA) — HY(B~*) and ConcHY(FA) — H(J~*) are quasiisomorphisms.  Hence
HYB~*) —HYJ~*) is a quasiisomorphism, too. Now Lemma IV.27 shows that
GHY(B~*) — GH*(J~*) is a quasiisomorphism as well. -

IV.8 Applications

We will apply Theorems IV.31 and IV.34 in various algebraic situations. In particular, we will
re-prove a theorem of Beyl; viz. Theorem IV.53 in §IV.8.3.

In several instances below, we will make tacit use of the fact that a left exact functor between
abelian categories respects injectivity of objects provided it has an exact left adjoint.
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IV.8.1 A Hopf algebra lemma

We will establish Lemma IV.47 in §IV.8.1.4, needed to prove an acyclicity that enters the proof of
the comparison result Theorem IV.52 in §IV.8.2 for Hopf algebra cohomology, which in turn allows
to derive comparison results for group cohomology and Lie algebra cohomology; cf. §§1V.8.3, IV.8.4.

IV.8.1.1 Definition

Let R be a commutative ring. Write ® := ®gr. A Hopf algebra over R is an R-algebra H
together with R-algebra morphisms H —» R (counit) and H S HeoH (comultiplication), and
an R-linear map H —>~ H (antipode) such that the following conditions (i-iv) hold.

Write zA = >, zu; ® zv; for x € H, where u; and v; are chosen maps from H to H, and
where ¢ runs over a suitable indexing set. Note that > .(r-z+s - y)u; @ (r-z+s-y)y; =
e (O eu @av) + s (O, yu @yu;) for v,y € H and r, s € R, whereas u; and v; are not
necessarily R-linear maps.

The elegant Sweedler notation [55, §1.2] for the images under A(A ® 1) etc. led the author, being
new to Hopf algebras, to confusion in a certain case. So we will express them in these more naive
terms.

WriteH@HiH, r@y+— -y and R —> H, r+—1r-1y. Write HQH — HQH, 2Qy — yR.

(i) We have A(e ® idy) = (z+— 1z ® x), i.e. Y, xue - xv; = x for x € H.
(') We have A(idy ®e) = (2 ® 1g), i.e. >, zu; - av,e =z for v € H.

(i) We have A(idy ®A) = A(A®idp), Le. 3, ; 2w @ 2viu; @ wowy = 3, - Tuiu; @ Tuv; @ 20;
forz € H.

(iii) We have A(S ® idy)V =en, i.e. Y 2u;S - zv; = xe- 1y for v € H.
(iii") We have A(idy ®S)V =en, ie. Y, xu; - 20,8 = xe - 1y for x € H.

(iv) We have S? = idy.

In particular, imposing (iv), we stipulate a Hopf algebra to have an involutive antipode.

IV.8.1.2 Some basic properties
In an attempt to be reasonably self-contained, we recall some basic facts on Hopf algebras needed

for Lemma IV .47 below; cf. [565, Ch. IV], [1, §2], [47, §§1-3]. In doing so, we shall use direct
arguments.

Suppose given a Hopf algebra H over R.

Remark IV.41 ([55, Prop. 4.0.1], [1, Th. 2.1.4], [47, 3.4.2])
The following hold.



(1) We have Y (z - y)u; @ (x - y)vi = >, (2w - yuy) @ (vv; - yvy) forz,y € H.
(2) We have 155 = 1g.

(3) We have (z-y)S =yS - xS forz,y € H.

(4) We have Se = ¢.

(5) We have A(S ® S)T = SA, i.e. Y 2u;S @ xv;S =), x5Sv; ® xSu; for x € H.
(6) We have z-y =", (Zj(xuz)uj Yy (azui)vj5> ~av; forz,y € H.

(6") We havey -z =), xu; - (Zj(xvi)ujs Yy (mvi)v]) forz,y € H.

(7) We have ), xv; - xu;S = xe - 1y for v € H.

(7") We have Y, xv;S - xu; = xe - 1y for x € H.

Proof. Ad (1). Given z, y € H, we obtain
Yoi@y)u @ (zy)v; = (vy)A = zA-yA = Z”(xuz Cyuy) @ (2o - yvj)

Ad (2). Remarking that 15A = 15 ® 1y, we obtain

iii

125 = 1uAS @idn)V 2 1ge- 1y = 1y

Ad (3). Given z, y € H, we obtain

2 x (i)

(x-y)S Zk(xuZ S TUE - YUy, - YURE)S

~~
=
j=H
~

ZJk(xuz YU - YURE)S - TUu; - TU058

—~~
—-
=
=

N

mvu(:pui Syug)S - TV - YURLy - YURUES - TU05S

[N
X
=
=
=

—~
—_
~—

i@ yug)upS - (wug - yug)vy - yopS - 2v;S

—
=
j=H
=

=

ik (@u - yug)e - yopS - 2v;S

>
>
2
D jre(TUNG - Yupue) S - Tuv; - yugve - yorS - 108
2
>
2

i,k(yuk5 cyv)S - (xuie - xv;)S

~~
(=
=

no
Bl

yS - xS .
Ad (4). Note that (ye-z)e =ye-ze = (y-z)e for y, z € H. Given x € H, we obtain

xS 2 (> xuie - av;)Se = (D xwe - xv;S)e = (D ,xu; - xv;8)e () (xe-1g)e

xre .



Ad (5). Given z € H, we obtain

AS® )T LS (zue - 20)AS ® S)7
= > (awe-1g)A-2v;AS® S)T

(&) > (TS - vuv)) A - wo AS @ S)T
= > T SA - zuv A - v A(S @ )T
i > iy TuSA - pva A - wvv; A(S ®@ S)T
= Zi,j,kl zu; SA - (zvujug ® zviuvg) - (200008 ® Tv;vjueS)

= Zi,j,k,e zu SA - (xviujug - T0U0S & TVU U - TUV;US)

= D ix TwSA - (zviug - (2v;008 - Vv uRE)S @ 1p)

= Z” zu SA - (v - xv;v;8 @ 1)
=" Y e SA - (zve - 1y ® 1g)

= > .(zu; - zve)SA

© TrSA .

Ad (6). Given z, y € H, we obtain

(i)

(iii) (ii)
Ty = Y Tu Y TVE =Y U Y TOupS 0 =Y Ty Y - 08 - vy

Ad (6'). Given x € H, we obtain

(iii’

® ) (i)
Yor = D TWE Y TV = D TUNG  TUUS Y TV =Y U - TUUS - Y - TU0;

Ad (7). Given z € H, we have

= Zi,j,kl Tu; SA - (VU - TV URUES @ TVV U - TV UUS)
= Zi,j,k,f zu; SA - (xviuj - TV UES & TV VUL - TV V;URVS)

= Z”k zu SA - (v - 200068 @ TV;vuRE - 1)

209

> TS ) ZixSQinbﬂuiS © ZixSuiS-xSwSQ ) > wSu S xS () xSe-1ly @ xe- 1y .

Ad (7). Given x € H, we have

> av S T, © Zi:cSzviSmSQui ©) ZixSuiS2-xSviS o > aSu-xSvS (i) xSe-1y

In the present §IV.8.1, we shall refer to the assertions Remark IV.41.(1-7') just by (1-7').

IV.8.1.3 Normality

:):1:6~1H.

Suppose given a Hopf algebra H over R, and an R-subalgebra K C H. Suppose H and K to be

flat as modules over R.
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Note that K ® K — H ® H is injective. We will identify K ® K with its image.

The R-subalgebra K C H is called a Hopf-subalgebra if KA C K ® K and KS C K. In this
case, we may and will suppose the maps u; and v; to restrict to maps from K to K.

Suppose K C H to be a Hopf-subalgebra. It is called normal, if for all a € K and all x € H, we
have

Yoau-a-xvS € K and YoauS-a-xv; € K.

An ideal I C H is called a Hopf ideal if IA C I ® H + H ® I (where we have identified I @ H
and H ® I with their images in H ® H), Ie = 0 and IS C I. In this case, the quotient H/I
carries a Hopf algebra structure via

H/I -~ R, r+1 +— xc
H/I 2~ H/I®H/I, v+1 — .(rui+1)® (zv;+ 1)
H/I >+ HJ/I, z+1 — xS5+1.

Suppose K C H to be a normal Hopf subalgebra. Write K+ := Kern(K —~ R). By (6,6',3,4)
and by writing
for k € K, the ideal HK™ = K1t H is a Hopf ideal in H.

IV.8.1.4 Some remarks and a lemma

Suppose given a Hopf algebra H over R and a normal Hopf-subalgebra K C H. Suppose H and
K to be flat as modules over R.

Write H := H/HK*. Given x € H, write 7 := x + HK* € H for its residue class.

Let N, N, M, M’ and () be H-modules. Let P be an H-module, which we also consider as an
H-module via H — H, z+— Z.

We write (N, M) = g(N|k, M|k) for the R-module of K-linear maps from N to M.

Remark IV.42 Given f € N, M) and x € H, we define x - f € (N, M) by

n](x- f) = > xu; - [zv;S - nlf
forn € N. This defines a left H-module structure on g(N, M).

Formally, squared brackets mean the same as parentheses. Informally, squared brackets are to
accentuate the arguments of certain maps.

Proof. We claim that o’ - (x - f) = (' - ) - f for z, 2’ € H. Suppose given n € N. We obtain
)" (z- ) = 2@ [0S - nl(z - f)

> i i w20 S - 'S - nl f

Zi,j(x’ui cxuj) - [(@'v; - 2v;)S - n) f

Y@ x)u - [(af - 2)uS - nlf

= [l -2)-f).

—
w
=

—~
[
~
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We claim that 1y - f = f. Suppose given n € N. We obtain

(L - f) = Soluui [LgviS - nlf = Ly (S -nlf € [n]f

remarking that 1zA =15 ® 1. o

I owe to G. Hiss the hint to improve a previous weaker version of Corollary IV.45 below by means
of the following Remark IV.43.

Denote by
MY .= {meM :a-m=as-mforalac K}
the fixed point module of M under K.

Remark IV.43 Lettingz-m := x-m forx € H and m € M¥, we define an H-module structure
on M¥.

Proof. The value of the product z-m does not depend on the chosen representative x of z since,
given y € H, a € K+ and m € M*¥, we have

It remains to be shown that given € H and m € M¥, the element x - m lies in M¥. In fact,
given a € K, we obtain

-m

a-z-m L Y - (Zj(;wi)ujg a- (J;Ui>vj>
Zi Tu; - <Zj($vi)uj5 -a- (xvi)vj>5 -m

= > TU; - TV;u;SE - aE - TVVE - M
= Z” TU; - TVUGE - AE - TVVHE - M
= D TUU; - TUVE - GE - TVE
= ) . TU; - GE - TVE - M

= ag-xr-m.

Remark IV.44 We have (N, M))" = (N, M), as subsets of N, M).

Proof. The module ( g N, M))™ consists of the R-linear maps N Lo M that satisfy
doau - [zvS - nlf = xe-[n]f .
for x € H and n € N. The module g(N, M) consists of the R-linear maps N Lo M that satisfy
[z n]f = x-[n]f

for # € H and n € N. By (iii’), we have (g N, M))* D (N, M).
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It remains to show that (g N, M))* C (N, M). Given f € (4 N,M))*, z € H and n € N, we
obtain

’

—~~
—
N

- [nlf

>, - xve - [n) f
= Y .zu;- [zve-n|f

(iii

=

= ;2w [zopS - xvwp - nl f
W > ruing - [ruvpS - v - nl f

Yo xuE - [xv; - n)f
[z-n]f .

—
=

Corollary 1V.45 Given f € (N, M) and x € H, we define T - f € (N, M) by
((z - f) = Xwui - [wviS - n]f
forn € N. This defines a left H-module structure on g(N, M).

Proof. By Remark IV.42) we may apply Remark 1V.43 to g N, M). By Remark 1V.44, the
assertion follows. o

Remark IV.46 Given [ € x(N,M), x € H, and H-linear maps N' =~ N, M £~ M', we
obtain

v(@- flp = 2 (vfp) .

Proof. Given n’ € N’, we obtain

(@ fu) = (Caw - [poiS - nV]f)p = Yo - [xoS-n|(vfp) = )@ @fp) .o

The following Lemma IV.47 has been suggested by the referee, and has been achieved with the
help of G. CARNOVALE. It is reminiscent of [54, Cor. 4.3], but easier. It resembles a bit a Fourier
inversion.

Note that the right H-module structure on H induces a left H-module structure on z(H, M).

Lemma IV.47 We have the following mutually inverse isomorphisms of H-modules.

x(H, M) — g(H, M)
) =" R(H>M)
(= > 205 - [zu;Slg) ~— g
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Proof. We claim that ® is a welldefined map. We have to show that f® is welldefined, i.e. that
its value at T does not depend on the representing element z. Suppose given y € H anda € K.
We obtain

Siayus- (oSl 2 X,y au; - [(yor - avy)S)f
= > yuiauj - [av;S - yvuiSlf
= D yui-auj - aviS - [yvS|f

(i) > yu - ag - [yvS|f
= 0.

We claim that ® is H-linear. Suppose given y € H and « € H. We obtain

[Z]((7f)®) 22w - [zvi S (5 f)

Zi’j xu; - yu; - [yv; S - xS f
Zi,j zu; - yuj - [(2v; - yv;) S| f
i@ yu - (2 y)uS]f

[z](g(f®)) -

—
w
=

—
=l
=

We claim that ¥ is a welldefined map. We have to show that g¥ is K-linear. Suppose given
a € K and x € H. Note that au; € K for all 7, whence also au;S € K, and therefore
au;S =i+ au;Se - 1. We obtain

la-z](g¥)

Zj(a ~z)vj - [(a-z)u;Slg

Dy 0vi - ;- |

> i j Qi - TU; - [2u;S - au;S g

Dy avi - ;- |

> i QuiE - av; - zvj - [zugSlg

> a v [zu;S g
a-[z](g¥) -

—
—
~—

(aw; - zu;)Slg

—
w
=

xujS au;Se g

—
N
=

—~
—-
=

We claim that ®WU = id (g ). Suppose given x € H. We obtain

2l(few) = X0 [2w;S(FP)
= Zm zv; - xu;Su; - [vu SvS| f
= Z” xv; - xuvS - [wuuS? f

= Zzg Tv; ~xujvi5' [ﬂcu]uz]f

—~
=
=3

=

Zi,j Tvv; - 20w - (v f
>, e - [zl f
[2]f .

—
-~
~

—
=
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We claim that W& = id (g »p). Suppose given x € H. We obtain

[Z](g¥®) = > wu;- [2viS](g¥)
= ZZJ zu; - 70;Sv; - [2v;5u;5 |g
© D i T - TVugS - [zvw;S?)g
L Z” zu; - xviuS - [T0;0; |g
w Do TU - UV - [xvi]g
=Y aue- [T
0O
= [7lg.
Finally, it follows by H-linearity of ® and by ¥ = ®~! that ¥ is H-linear. o

The tensor product N ® M is an H-module via A. Note that R is an H-module via . Note
that R M ~ M ~ M ® R as H-modules by (i,1).

Remark IV.48 (cf. [6, Lemma 3.5.1]) We have mutually inverse isomorphisms of R-modules

f
P, K(Q,M))
(p—~(g—~[p®4qlg))

WP Q. M) = gP®Q,M)
—  (p®q—[d(pf))
L qPeQ M)

— g,

natural in P € Ob H-Mod, Q € Ob H-Mod and M € Ob H-Mod.

Proof. We claim that « is welldefined. We have to show that fa is H-linear. Suppose given

x € H. We obtain

r-(p®q) =

> T p® v - q

== Yl - (T - p)f)

= ilzui

ql(zui - (pf))

= > ruy - [TuS - zv; - q)(pf)

= 3w [rviugS - zvw; - ) (pf)

(%) > - [rvie - ql(pf)
Qs

ql(fa) .

We claim that [ is welldefined. First, we have to show that [p](¢g() is K-linear. Suppose given

a € K. We obtain

[pl(98)

(i) _____ _
a-q — p®a-qlg = Y Jawe -p®@av;-qlg = > ,[au; - p®av;-qlg =

a-[p®dqlg.



215

Second, we have to show that g3 is H-linear. Suppose given € H. We obtain

z-p 2 (g2 p®dlg)

= (g X ;[Tu zvE - p @ q)]g)

= (g X7 - p @ zvu; - 2v0;5 - q)]g)
= (g 2yylTwm - p @ vuv; - 2uiS - q)lg)
= (g X, 2u; - [p®aviS - qlg)

= Z-(¢g—~[p®dlg).

Finally, @ and 8 are mutually inverse. o

Corollary IV.49 We have (P, M%) ~ P, (R, M)) =~ g(P, M) as R-modules, natural in P
and M.

Proof. Note that M ~ g R, M) as H-modules, whence M¥ ~ (R, M) as H-modules by
Remarks IV.43, IV.44. Now the assertion follows from Remark IV.48, letting @) = R. 0

IV.8.2 Comparing Hochschild-Serre-Hopf with Grothendieck

Let R be a commutative ring. Suppose given a Hopf algebra H over R (with involutive antipode)
and a normal Hopf-subalgebra K C H; cf. §IV.8.1.3. Write H := H/HK™*. Suppose H, K and
H to be projective as modules over R. Suppose H to be projective as a module over K.

Let B € ObC(H-Mod) be a projective resolution of R over H. Let B € ObC(H-Mod) be a
projective resolution of R over H. Note that since H is projective over R, B|p € Ob C(R-Mod)
is a projective resolution of R over R. Let M be an H-module.

By Corollary IV.45 and by Remark IV.46, we have a biadditive functor

(H-Mod)°* x H-Mod -% H-Mod

(X , X — U(X,X') = (X, X').
Write B B
(H-Mod)°> x H-Mod -“~ R-Mod
Yy ., Y — V(YY) = gV, Y)
for the usual Hom-functor.

In particular, we shall consider the functors

g-Mod "7 Anod Y RMod
X — U(R,X)~ XK
Y —  V(RY)~YH.

On the other hand, we shall consider the double complex

D(M) = D~=(M) := V(B_, U(B_, M)) = g(B_, {(B-, M)) .
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Note that D(M) is isomorphic in CC-(R-Mod) to py(B_ ®p B—, M), naturally in M; cf. Re-
mark IV.48.

Lemma IV.50 The H-module U(H, M) is V(R, —)-acyclic.

Proof. By Lemma IV.47, this amounts to showing that g(H, M) is V (R, —)-acyclic, which in
turn amounts to showing that V(B, HH, M)) = H(B, RH, M)) has vanishing cohomology in
degrees > 1. Now,

H(B,R(FI,M)) ~ fH®zg B, M) ~ B, M),

whose cohomology in degree i > 1 is Extl(R, M) ~ 0. o
Lemma IV.51 Given a projective H-module P, the H-module U(P, M) is V (R, —)-acyclic.

Proof. It suffices to show that U([[p H, M) ~ [[{U(H, M) is V(R,—)-acyclic for any in-
dexing set I'. By Lemma IV.50, it remains to be shown that R‘V(R,[];Y) is isomorphic to
[Ir R'V(R,Y) for a given H-module Y and for i > 1. Having chosen an injective resolution .J
of Y, we may choose the injective resolution [[. J of [[ Y. Then

V(R,T[;Y) ~ HV(R,[[+J) ~ H'I[V(R,J) ~ [[[ HV(R,J) ~ [[[ RV(R,Y).

Theorem IV.52 The proper spectral sequences
EI(D(M)) and EU(R ),V (R,—)(M)

are isomorphic (in EZfo#, R-Mod 1), naturally in M € Ob H-Mod.

Proof. To apply Theorem IV.31 with, in the notation of §IV.5.1,
(Axa L B-Cwc) = ((H-Mod) x H-Mod —+ f-Mod ") R-Mod )

and with X = R and X’ = M, we verify the conditions (a—d’) of loc. cit. in this case.

Ad (c). We claim that Bis a (U(—, M), V(R, —))-acyclic resolution of R. We have to show that
U(B;, M) is V(R, —)-acyclic for ¢ > 0; cf. §IV.4.2. Since B; is projective over H, this follows by
Lemma IV.51. This proves the claim.

Ad (/). Let I be an injective resolution of M over H. We claim that I is a (U(R,—), V(R, —))-
acyclic resolution of M. We have to show that U(R, I*) is V (R, —)-acyclic for 7 > 0. In fact, by
Corollary 1V.49, U(R, I') is an injective H-module. This proves the claim.

Ad (d,d’). We claim that U(B;, —) and U(—, I*) are exact for i > 0; cf. §IV.5.1. The former

follows from H being projective over K. The latter is a consequence of I’|x being injective in

K-Mod by exactness of K-Mod "EKC I7-Mod. This proves the claim.
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So an application of Theorem IV.31 yields
Bty vr—y (M) = EG_ anvr-)(R) -

To apply Theorem IV.34 with, in the notation of §IV.6.1,

(A8, BxB —Sec) = ((HMod)” S HoMod , (H-Mod)® x H-Mod —C) |

and with X = R and Y = R, we verify the conditions (a—e) of loc. cit. in this case.
Ad (c). We have already remarked that B is a (U(—, M), V(R, —))-acyclic resolution of R.
Ad (d). As a resolution of R over H, we choose B.

So an application of Theorem 1V.34 yields
Eg(—,M),V(R,—)(R) ~ T (V(B—, U(B-, M))) :

Naturality in M € Ob H-Mod remains to be shown. Suppose given M -2~ M in H-Mod. Note
that the requirements of §IV.5.2 are met. By Proposition IV.32, with roles of A and A’ inter-
changed, we have the following commutative quadrangle.

Gr
EGir, ), v, (™)

EgER,f),V(R,f) (M) ESER,f),V(R,f) (M)

i ) I

. R .
Gr U(=,m) Gr
EU(—,M),V(R,_) (R) EU(f,M),V(R,f)(R)

Note that the requirements of §IV.6.2 are met. By Lemma IV.36, we have the following com-
mutative quadrangle.
h}](—,m)R

G ~Gr
EU(—,M),V(R,—)(R> EU(—,M),V(R,—)

o) (V(B_, U(B-, M))) ErV(B-, U(B=m)) EI(V(B_, U(B-, M)))

(R)

IV.8.3 Comparing Lyndon-Hochschild-Serre with Grothendieck

Let R be a commutative ring. Let G be a group and let N << G be a normal subgroup. Write
G := G/N. Let M be an RG-module. Write Barg.zr € Ob C(RG -Mod) for the bar resolution of
R over RG, having (Barg.g); = RG®0+Y for i > 0, the tensor product being taken over R.

Note that RG is a Hopf algebra over R via

RG — RG®RG, g — g®g
RG -°- RG, g — g!

RG =~ R, g +— 1,
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where g € G; cf. §IV.8.1.1. Moreover, RN is a normal Hopf subalgebra of RG such that
RG/(RG)(RN)* ~ RG; cf. §IV.8.1.3.

Note that RG, RN and RG are projective over R, and that RG is projective over RN.
We have functors RG -Mod (il RG -Mod (_—)G> R-Mod, taking respective fixed points.
Theorem IV.53 (BEYL, [7, Th. 3.5]) The proper spectral sequences

E?’f)N’ (7)@(M) and Fr < Rg((Bar(;;R), ®r (Barg.r)=, M))
are isomorphic (in [Zfo#, R-Mod 1), naturally in M € Ob RG -Mod.

BEYL uses his Theorem 1V.40 to prove Theorem 1V.53. We shall re-derive it from Theorem IV.52,
which in turn relies on the Theorems IV.31 and IV.34.

Proof. This follows by Theorem 1V.52. o

IV.8.4 Comparing Hochschild-Serre with Grothendieck

Let R be a commutative ring. Let g be a Lie algebra over R that is free as an R-module. Let
n < g be an ideal such that n and g := g/n are free as R-modules. Let M be a g-module, i.e. a
U(g)-module. Write Bargzr € Ob C(U(g)-Mod) for the Chevalley-Eilenberg resolution of R over
U(g), having (Bargg); = U(g) ®r A'g for i > 0; cf. [10, XIIL§7] or [59, Th. 7.7.2].

Note that U(g) is a Hopf algebra over R via

Ug) = U@ U, g — gol+lag
Ug) > Ug), g — —g
Z/{(g) - R7 g 07

where g € g; cf. §IV.8.1.1.

Note that U(g), U(n) and U(g) are projective over R, and that U(g) is projective over U(n);
cf. [59, Cor. 7.3.9].

We have functors U(g)-Mod D u (g) -Mod i R-Mod, taking respective annihilated sub-
modules; cf. [59, p. 221].

Theorem IV.54 The proper spectral sequences
B o) and Ei(u((Bargn)- @ (Bargr)=, M))
are isomorphic (in [2?0#, R-Mod 1), naturally in M € ObU(g)-Mod.

Cf. BARNES, [3, Sec. IV.4, Ch. VII].

Proof. This follows by Theorem 1V.52. o
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IV.8.5 Comparing two spectral sequences for a change of rings
The following application is taken from [10, XVI.§6].

Let R be a commutative ring. Let A —*~ B be a morphism of R-algebras. Consider the functors
A-Mod “Z B-Mod and (B-Mod)® x B-Mod 2=% R-Mod.

Let X be an A-module, let Y be a B-module.

We shall compare two spectral sequences with Eo-terms Ext’ (Y, Exti‘(B,X )), converging to
Ext’7 (Y, X). If one views Xﬂf ;= A(B,X) as a way to induce from A-Mod to B-Mod, this

measures the failure of the Eckmann-Shapiro-type formula Ext’y (Y, Xﬂi) < Ext’y (Y, X), which
holds if B is projective over A.

Let I € Ob Cl°(A-Mod) be an injective resolution of X. Let P € Ob Cl°(B-Mod) be a projective
resolution of Y.

Proposition IV.55 The proper spectral sequences
B on(X)  and B (P, AB,1)))

are isomorphic (in [Zfo#, R-Mod 1).

Proof. To apply Theorem 1V.34, if suffices to remark that for each injective A-module I’, the
B-module 4(B, ') is injective, and thus pg(Y, —)-acyclic. o

Remark IV.56 The functor 4(B,—) can be replaced by 4(M,—), where M is an A-B-bimodule
that is flat over B.

IV.8.6 Comparing two spectral sequences for Ext and ®

Let R be a commutative ring. Let S be a ring. Let A be an R-algebra. Let M be an
R-S-bimodule. Let X and X’ be A-modules. Assume that X is flat over R. Assume that
Exth (M, X') ~ 0 for i > 1.

Example IV.57 Let T be a discrete valuation ring, with maximal ideal generated by ¢. Let
R = T/t for some £ > 1. Let S = T/t* where 1 < k < £. Let G be a finite group, and let
A=RG. Let M = S. Let X and X’ be RG-modules that are both finitely generated and free
over R.

Consider the functors

(A-Mod)® x A-Mod =% R-Mod "3 5 Mod
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Proposition IV.58  The proper Grothendieck spectral sequences
~Gr ~Gr
Bl (X and BT o an o (X)

are isomorphic (in [Zfo#, S-Mod 1).

Both have E,-terms Ext’, (M, Ext, (X, X')) and converge to Ext’7 (X ®r M, X"). In particular,

in the situation of Example IV.57, both have E,-terms Ext’, (S, Exth. (X, X’ )) and converge to

Extiyd (X/tF, X').

Proof of Proposition 1V.58. To apply Theorem IV.31, we comment on the conditions in §IV.5.1.
(c) Given a projective A-module P, we want to show that the R-module 4P, X’) is

/M, —)-acyclic. We may assume that P = A, which is to be viewed as an A-R-bimodule.
Now, we have Extly (M, o(A, X")) ~ Extlz(M, X’) ~ 0 for i > 1 by assumption.

(¢/) Given an injective A-module I’, the R-module 4(X,I’) is injective since X is flat over R
by assumption. .

IV.8.7 Comparing two spectral sequences for &xt of sheaves

Let T+ S be a flat morphism of ringed spaces, i.e. suppose that
OT ®f—1os — f_IOS -Mod — OT -Mod

is exact. Consequently, f*: Og-Mod — Or-Mod is exact.

Given Os-modules F and F', we abbreviate ofF,F’) := Home (F,F') € Ob R-Mod and
ol(F, F") := Homoy(F, F') € Ob Os-Mod.

Let F be an Os-module that has a locally free resolution B € ObC(Os-Mod); cf.
[23, Prop. I11.6.5]. Let G € ObOr-Mod. Let A € ObCl(Or-Mod) be an injective resolu-
tion of G.

og(—=)

Consider the functors Or-Mod LN Os-Mod and (Os-Mod)° x Og-Mod Os -Mod.

Proposition IV.59 The proper spectral sequences
EF oG and  Ei(od(B-, fAT)

are isomorphic (in [z;ﬁ#, Os-Mod 1).

In particular, both spectral sequences have Es-terms Sxté,s(f , (R f*)(g)) and converge to
(RTE)(G), where Te(—) = ol(F, f«(—)) = fio(f*F,—)). For example, if S = {x} is
a one-point-space and if we write R := Og(S), then we can identify Og-Mod = R-Mod. If, in
this case, 7 = R/rR for some r € R, then I'y/,z(G) ~T'(T,G)[r] :={g € G(T) : rg =0}

Proof of Proposition IV.59. To apply Theorem 1V.34, we comment on the conditions in §IV.6.1.
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(c) Since f. maps injective Op-modules to injective Os-modules by flatness of T’ .5 , the
complex A is an ( fes ol(F, —)))—acyclic resolution of G.

(e) If Z is an injective Os-module and U C S is an open subset, then Z|y is an injective
Op-module; cf. [23, Lem. I11.6.1]. Hence oJ(—,Z)) turns a short exact sequence of Os-
modules into a sequence that is short exact as a sequence of abelian presheaves, and hence
a fortiori short exact as a sequence of Og-modules. In other words, the functor oJ(—,Z))
is exact. o
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