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0.2 An introduction to the general theory

of Heller triangulated categories

0.2.1 Why derived categories?

0.2.1.1 Derived functors

Around 1960, Grothendieck struggled with increasingly complicated spectral sequence com-

parisons (1). These spectral sequences arose as follows.

Given left exact functors A -F B -G C between abelian categories (2), under normal circum-

stances (3), the derived functor Rn(FG) of the composite FG can be approximated by the

composites of the derived functors (RiF )(RjG), where i + j = n. In other words, we have the

Grothendieck spectral sequence, which has E2 -terms (RiF )(RjG) and converges to Rn(FG).

For instance, roughly put, the first derivative

R1(FG)

consists of

a part of (R1F )(R0G) plus a part of (R0F )(R1G) ;

which can be read as an approximative “product rule for the first derivative” (4).

In practice, this is troublesome since it only yields an approximative relationship between

the derived functors of the composite and the composites of the derived functors ,

and since, moreover, this approximation is laborious.

Finally, if we want to compose three or more functors and relate their various derivatives, we

are stuck.

0.2.1.2 Derived functors, renovated

The construction of such a derived functor RiF proceeds in three steps.

(1) Resolve injectively.

(2) Apply the functor F .

(3) Take cohomology Hi.

1An example of an assertion of this kind may be seen in [18, 6.6.2]. According to Illusie, Grothendieck

said : “The second part of EGA III is a mess, so, please, clean this up by introducing derived categories, write
the Künneth formula in the general framework of derived categories.” [29, p. 1108].

2An abelian category has direct sums, kernels, cokernels, and the homomorphism theorem holds.
3The categories A and B are supposed to have enough injectives, and F to map injectives to G-acyclics.
4More precisely, R1(FG) has a two-step filtration, one subfactor of which being a subfactor of (R1F )(R0G),

the other being a subfactor of (R0F )(R1G) .
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Grothendieck saw that the troubles were caused by the third step and that dropping the

third step, one should get a smooth formalism, in which the spectral sequence approximation

mentioned above is turned into the simple and precise rule

(∗) R(FG) ' (RF )(RG) .

The price to pay was the development of this formalism, undertaken by Verdier around 1963

in [56].

Since we have dropped taking cohomology Hi, the renovated derived functor RF now takes values

in complexes (over B). So in order to be able to compose, RF should also take as arguments

complexes (over A).

Moreover, in order to ensure the validity of the composition rule (∗), one has to formally invert

morphisms of complexes that induce isomorphisms in cohomology, called quasi-isomorphisms.

This process yields the derived category

D+(A) ,

having as objects complexes (5) over A, and as morphisms fractions

f/s ,

where the numerator f is a morphism of complexes and where the denominator s is a quasi-

isomorphism of complexes.

So in full, the formula (∗) reads

(∗′)
(
D+(A) -R(FG)

D+(C)
)
'

(
D+(A) -RF

D+(B) -RG
D+(C)

)
.

0.2.2 Why triangulated categories?

0.2.2.1 Verdier triangulated categories

The category A is abelian.

The derived category D+(A) is not abelian (6).

There exist hardly any short exact sequences in D+(A), only split ones.

As substitute, the image in D+(A) of a short exact sequence of complexes X ′ -r X -X ′′ fits

into a diagram

X ′ - X - X ′′ - X ′+1 ,

called a distinguished triangle, where X ′+1 denotes the complex X ′, shifted one step to the

left (7).

X ′′

��
X ′ // X

ZZ666666

5Bounded to the left.
6Except if A is semisimple.
7And all differentials negated.
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Now any morphism X1/0
-X2/0 in D+(A) fits into such a distinguished triangle

X1/0
-X2/0

-X2/1
-X+1

1/0 , and this completion is unique up to isomorphism (8). We call

X2/1 the cone of the morphism X1/0
-X2/0 (9).

The compatibility of taking cones with composition is expressed by the following Verdier octa-

hedron (10), in which X0+1/i = X+1
i/0 for 1 6 i 6 3.

0

0 // X0+1/3

OO

0 // X3/2
//

OO

X0+1/2

OO

0 // X2/1
//

OO

X3/1
//

OO

X0+1/1

OO

0 // X1/0
//

OO

X2/0
//

OO

X3/0
//

OO

0

OO

Here Xj/i is the cone on Xi/0
-Xj/0 for 1 6 i < j 6 3. Moreover, X3/2 is the cone on

X2/1
-X3/1 .

X3/0

&&LLLLLLLLLLLLLLLLLLL

���������������

X3/1
tt

// X3/2
tt

}}

X1/0
//

;;vvvvvvvvvvvvvvvvvvvvv
X2/0

ZZ5555555555555555

��																

X2/1

cc
1111111111111111

XX

A theory of Verdier triangulated categories was developed by Verdier [56], which plays the

same role for D+(A) as the theory of abelian categories plays for A.

Here, a Verdier triangulated category is a triple (D,T,Ξ), consisting of an additive category D,

an automorphism T = (−)+1 of D, called shift, and a set Ξ of distinguished triangles, satisfying

a list of axioms, including the existence of a Verdier octahedron on each pair of composable

morphisms. Then, Ξ is called a Verdier triangulation on (D,T).

For example, the derived category D+(A) is Verdier triangulated. Also already the homotopy

8In contrast to what we are used to from kernels and cokernels in abelian categories, this isomorphism is not
uniquely determined in general.

9This notion is motivated by the homotopy category of CW-complexes, which becomes a Verdier triangulated
category after Spanier-Whitehead stabilisation, where this cone is an actual geometrically constructed cone.

10This alternative, non-octahedral form of this diagram was observed in [8, 1.1.14].
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category K+(A), obtained as the category of complexes (11) modulo split acyclic complexes, is

Verdier triangulated. More generally, the stable category of a Frobenius category (12) is Verdier

triangulated; cf. [22, Th. 2.6].

One of the axioms records a curious phenomenon, without parallel in the context of abelian

categories. For every distinguished triangle

X1/0
-X2/0

-X2/1
-X+1

1/0 ,

we get the rotated distinguished triangle

X−1
2/1

-X1/0
-X2/0

-X2/1 (13) .

In a Verdier triangulated category, the cone of a morphism is at the same time a substitute

for its kernel and its cokernel, but only in a weak form (14). Therefore, a Verdier triangulated

category is weakly abelian, i.e. it is an additive category in which each morphism is and has a

weak kernel and a weak cokernel.

A set Ξ of distinguished triangles that satisfies the list of axioms except possibly for the existence

of a Verdier octahedron on each diagram X1/0
-X2/0

-X3/0 , is called a Puppe triangulation

on (D,T) [51]. Cf. §0.2.3.1 below.

0.2.2.2 Exact functors between Verdier triangulated categories

A strictly exact functor between Verdier triangulated categories is a shiftcompatible additive

functor that maps distinguished triangles to distinguished triangles; i.e. that preserves cones.

Derived functors, such as the functor D+(A) -RF D+(B) from §0.2.1.2, are strictly exact.

An exact functor between Verdier triangulated categories (D,T,Ξ) and (D′,T′,Ξ′) is a pair (V, a)

consisting of an additive functor V : D - D′ and an isotransformation a : TV - V T′ such

that each distinghuished triangle in D, mapped via V and isomorphically replaced via a, yields

a distinguished triangle of D′.

So V : D - D′ is strictly exact if and only if (V, 1) is exact.

0.2.2.3 Stability properties of the Verdier formalism

Adjoints of exact functors are exact [44, App. 2, Prop. 11] [34, 1.6]. Already Grothendieck

and Deligne observed in Algebraic Geometry the appearance of exact functors that are not

derived functors, but adjoints to derived functors (15).

11Bounded to the left.
12A Frobenius category is an exact category with a sufficient supply of relatively bijective objects.
13With a sign inserted.
14In the notation above, X2/0

- X2/1 is a weak cokernel of X1/0
- X2/0 , i.e. it satisfies the universal

property of a cokernel, except for uniqueness of the induced morphism. Moreover, X−1
2/1

- X1/0 is a weak
kernel of X1/0

- X2/0 , i.e. satisfies the universal property of a kernel, except for uniqueness of the induced
morphism.

15The functor Rf !, constructed for certain morphisms f of schemes, is only abusively written with a “R”; cf.
[19, Exp. XVIII, Th. 3.1.4].
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The Karoubi hull of an additive category is the universal additive category whose idempotents

split [30, III.II]. We may form Karoubi hulls within the context of Verdier triangulated categories

and exact functors, as shown by Balmer and Schlichting [2].

The localisation of a category at a subset of its morphisms is the universal category such that

morphisms of this subset become invertible. For instance, the derived category D+(A) is the

localisation of the homotopy category K+(A) at the subset of quasiisomorphisms, i.e. at the

subset of morphisms with acyclic cone. We may form the localisation of a Verdier triangulated

category at the subset of morphisms with cone in a given thick subcategory (16) within the realm

of Verdier triangulated categories and exact functors [56][53, Prop. 1.3].

0.2.3 Heller triangulated categories

0.2.3.1 Heller’s original theorem

Let D be a weakly abelian category; cf. §0.2.2.1. The Freyd category D̂ is the universal abelian

category containing D [15]. Reducing modulo the full additive subcategory of projective objects,

we obtain the stable category D̂, which is Verdier triangulated (17).

Now suppose D to carry a shift functor T. Then D̂ carries two shift functors, a first one induced

by T, a second one given by the Verdier triangulated structure on D̂.

Heller discovered a bijection between the set of Puppe triangulations Ξ on (D,T) and the

set of isomorphisms from the first shift functor to the third power of the second shift functor

satisfying an extra condition (18) [24, Th. 16.4].

So such an isomorphism between these shift functors can be made responsable for a Puppe

triangulation, as the extra datum needed to upgrade a weakly abelian category with shift (D,T)

to a Puppe triangulated category (D,T,Ξ).

So we could just as well include this isomorphism instead of Ξ in our data.

0.2.3.2 Extending Heller’s theorem

Let D be a weakly abelian category. Let T be an automorphism of D.

In order to extend Heller’s result from Puppe triangulations to Verdier triangulations and

beyond, all we need is a suitable replacement for D̂.

A weak square in D is a commutative quadrangle that is at the same time a weak pullback and

16A thick subcategory is a full subcategory closed under shift, forming cones and taking summands.
17The reason being that D is a big enough full subcategory in D̂ consisting of bijective objects, so that D̂ is a

Frobenius abelian category. Cf. [22, §2.1].
18Such an isomorphism can be pre- and postcomposed with the Verdier shift on D̂ ; the condition is that the

result of precomposition is the negative of the result of postcomposition.
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a weak pushout (19). A weak square is marked as

//

//

OO

+

.

OO

Alternatively, a commutative quadrangle is a weak square if and only if its diagonal sequence is

exact in the middle when viewed in D̂.

Let D+(∆̄#
2 ) be the category of diagrams in D of the form

0 // · · ·

0 // X0+1/2

OO

//

+

· · ·

0 // X2/1
//

OO

+

X0+1/1

OO

//

+

· · ·

0 // X1/0
//

OO

+

X2/0
//

OO
+

0

OO

0 // X0/2−1 //

OO

+

X1/2−1 //

OO
+

0

OO

...

OO

+

...

OO
+

...

OO

,

where we do not require any relation between X0+1/2 and X+1
2/0 etc. Viewed in the abelian

category D̂, this is just the category of acyclic complexes consisting of objects in D.

Let D+(∆̄#
3 ) be the category of diagrams in D of the form

0 // · · ·

0 // X0+1/3

OO

//

+

· · ·

0 // X3/2
//

OO

+

X0+1/2

OO

//

+

· · ·

0 // X2/1
//

OO

+

X3/1
//

OO
+

X0+1/1

OO

//

+

· · ·

0 // X1/0
//

OO

+

X2/0
//

OO
+

X3/0
//

OO
+

0

OO

0 // X0/3−1 //

OO

+

X1/3−1 //

OO
+

X2/3−1 //

OO
+

0

OO

...

OO

+

...

OO
+

...

OO
+

...

OO

,

19The respective universal property is supposed to hold, except for the uniqueness of the induced morphism.
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where we do not require any relation between X0+1/3 and X+1
3/0 etc.

Etc.

For n > 0, we let

D+(∆̄#
n )

be the reduction of D+(∆̄#
n ) modulo the full additive subcategory of diagrams all of whose

morphisms split. This category carries two shift functors, the outer shift [−]+1 and the inner

shift [−+1], characterised by, respectively,

([X]+1)β/α = Xα+1/β

([X+1])β/α = (Xβ/α)+1

for X ∈ ObD+(∆̄#
n ) = ObD+(∆̄#

n ). In other words, the outer shift pulls the whole diagram

down left, the inner shift applies T pointwise.

Then

D+(∆̄#
2 ) ' D̂ ,

where

the outer shift corresponds to the third power of the Verdier shift ,

the inner shift corresponds to the functor induced by T .

So we can transport an isomorphism as in Heller’s theorem from §0.2.3.1 to an isomorphism

[−]+1 -ϑ2

∼ [−+1]

from the outer to the inner shift functor on D+(∆̄#
2 ).

Using D+(∆̄#
2 ) as a replacement for D̂ will enable us, in §0.2.3.3 below, to extend from D+(∆̄#

2 )

to D+(∆̄#
n ) for n > 0, so as to include octahedra and bigger diagrams [8, 1.1.14], and to drop

the extra condition on the isomorphism mentioned in §0.2.3.1.

0.2.3.3 Heller triangulated categories

Let D be a weakly abelian category. Let T be an automorphism of D.

Let a Heller triangulation on (D,T) be a tuple ϑ = (ϑn)n>0 of isomorphisms ϑn : [−]+1 - [−+1]

from the outer shift [−]+1 to the inner shift [−+1] on D+(∆̄#
n ) satisfying compatibilities with

quasicyclic operations (20) and with folding (21).

20Deleting and doubling rows and columns in a periodic manner yield functors D+(∆̄#
n ) -p

#

D+(∆̄#
m). We

require that Xϑnp# = Xp#ϑm for X ∈ ObD+(∆̄#
n ) = ObD+(∆̄#

n ).
21Suppose given n > 0 and X ∈ ObD+(∆̄#

2n+1) = ObD+(∆̄#
2n+1). We can canonically (22) construct an

object Xf
n
∈ ObD+(∆̄#

n+1) = ObD+(∆̄#
n+1) that has (Xf

n
)i/0 = Xn+i/i−1 for 1 6 i 6 n+ 1 ; the diagram Xf

n

involves direct sums of objects occurring in X. The operation f
n

can be turned into a functor from D+(∆̄#
2n+1)

to D+(∆̄#
n+1). We require that Xϑ2n+1fn = Xf

n
ϑn+1 . Cf. [8, 1.1.13].

22Up to sign.
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A Heller triangulated category then is a triple (D,T, ϑ) consisting of a weakly abelian category

D, an automorphism T of D and a Heller triangulation ϑ on (D,T) ; cf. Def. I.5.(ii.1). Often, we

write just D := (D,T, ϑ).

For example, the derived category D+(A) is Heller triangulated. Also the homotopy category

K+(A) is Heller triangulated. More generally, the stable category of a Frobenius category is

Heller triangulated. Cf. Cor. I.33, Prop. II.36 (23).

0.2.3.4 n-triangles

Suppose given a Heller triangulated category (D,T, ϑ). Suppose given n > 0.

The base of a diagram X ∈ ObD+(∆̄#
n ) is its subdiagram

(X1/0
// X2/0

// · · · // Xn−1/0
// Xn/0) ∈ ObD(∆̇n)

on the linearly ordered set ∆̇n := {1, 2, . . . , n}.

A diagram X ∈ ObD+(∆̄#
n ) is called an n-triangle if Xϑn = 1. A morphism X -f Y between

n-triangles X and Y is called periodic if [f ]+1 = [f+1].

The restriction functor to the base, mapping from the category of n-triangles and periodic

morphisms to D(∆̇n), is full; cf. Lem. I.19. If all idempotents split in D, then it is also surjective

on objects; cf. Lem. I.18 (24).

Such triangles are stable under quasicyclic operations and under folding; cf. Lem. I.21.(1, 2).

0.2.3.5 Retrieving the Verdier context in the Heller context

Suppose given a Heller triangulated category (D,T, ϑ) in which all idempotents split.

Let Ξ be the set of 2-triangles in D. Then the triple (D,T,Ξ) is a Verdier triangulated category;

cf. Prop. I.23 (25).

Each 3-triangle is a Verdier octahedron; cf. §0.2.2.1. However, not every Verdier octahedron is

a 3-triangle; cf. Lem. III.6 (26).

{distinguished triangles} = {2-triangles}
{Verdier octahedra} ⊇ {3-triangles}

0.2.3.6 Exact functors between Heller triangulated categories

Suppose given Heller triangulated categories (D,T, ϑ) and (D′,T′, ϑ′).

23Cf. also Prop. III.22.(1).
24More generally, this holds if D is a closed Heller triangulated category; cf. Lem. II.20. Cf. also Rem. I.20.
25More generally, this holds if D is a closed Heller triangulated category; cf. Rem. II.18.
26Not even when requiring that it contains the triangles described in [8, 1.1.13]; cf. Rem. III.7.
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A strictly exact functor from D to D′ is a shiftcompatible additive functor V : D - D′ that

respects weak squares, and that satisfies

XϑnV
+(∆̄#

n ) = XV +(∆̄#
n )ϑ′n

for all n > 0 and all X ∈ ObD+(∆̄#
n ) = ObD+(∆̄#

n ), where V +(∆̄#
n ) acts by pointwise applica-

tion of V .

An exact functor from D to D′ is a pair (V, a) consisting of an additive functor V : D - D′
respecting weak squares, and an isotransformation a : TV - V T′ such that

XϑnV
+(∆̄#

n ) ·Xa+(∆̄#
n ) = XV +(∆̄#

n )ϑ′n

for all n > 0 and all X ∈ ObD+(∆̄#
n ) = ObD+(∆̄#

n ).

So V : D - D′ is strictly exact if and only if (V, 1) is exact.

0.2.3.7 Stability properties of the Heller formalism

Adjoints of exact functors are exact; cf. Prop. II.28.

We may form the Karoubi hull within the context of Heller triangulated categories and exact

functors; cf. Prop. II.12.

We may form the localisation at the subset of morphisms with cone in a given thick subcategory

within the context of Heller triangulated categories and exact functors; cf. Prop. II.38.

The derived functor D+(A) -RF D+(B) from §0.2.1.2 is exact, using that A is supposed to have

enough injectives (27).

It is also possible to characterise exactness of a functor, in a manner similar to §0.2.2.2, by

preservation of n-triangles; cf. Prop. II.25. The reason behind that possibility is that closed (28)

Heller triangulated categories can, alternatively, be defined via sets of n-triangles for n > 0 with

suitable preservation properties with respect to quasicyclic operations and folding, as Thomas

informed me.

0.2.3.8 Advantages of ϑ

Having n-triangles at our disposal allows constructions that have not been possible within the

Verdier context. For instance, given two 3-triangles, a morphism between the bases can be

prolonged to a morphism between the 3-triangles. This is no longer true, in general, once we

replace “3-triangles” by “Verdier octahedra”; cf. Lem. III.6.

But why should we work primarily with ϑ, and only secondarily with n-triangles? A possible

answer is that usage of ϑ allows low-effort proofs of the stability properties of the Heller formalism

explained in §0.2.3.7; cf. §II.2.2, §II.6, §II.5.2.

27Somewhat provisionally still, we may use Prop. II.28, Prop. II.36, Cor. III.21, Cor. I.35 to arrive there. It
would be preferable to use the derived functor construction via ind-categories along the lines of [19, Exp. XVII,
§1.2].

28A Heller triangulated category is called closed if it is closed under taking cones in its Karoubi hull.



19

Of course, the price to pay is to get accustomed to the administration of the n-triangles being

done by a tuple of isomorphisms ϑ.

0.2.3.9 An amusing observation

Suppose given Heller triangulated category (D,T, ϑ) in which all idempotents split (29).

A commutative quadrangle

X ′
f ′ // Y ′

X
f
//

x

OO

Y

y

OO

in D is called a dweak square (30) if its diagonal sequence

X
(f x ) // Y ⊕X ′

„
y
−f ′

«
// Y ′

appears as part of a 2-triangle. So a dweak square is in particular a weak square; cf. §0.2.3.2.

Alternatively, a commutative quadrangle is a dweak square if and only if it appears in some

n-triangle for some n > 0.

Any corner //
OO

can be completed to a dweak square. This completion is unique up to non-unique

isomorphism. Accordingly in the dual situation.

Suppose given n > 1. Consider the set Chainn of isoclasses of diagrams of the form

X1
-X2

- · · · -Xn−1
-Xn in D, i.e. the set of isoclasses in D(∆̇n). We obtain two

bijections

σ, τ : Chainn -∼ Chainn

as follows.

Let τ map the isoclass of X1
-X2

- · · · -Xn−1
-Xn to the isoclass of

X+1
1

-X+1
2

- · · · -X+1
n−1

-X+1
n .

Let σ be defined as follows. Suppose given X1
-X2

- · · · -Xn−1
-Xn . Prolong

this diagram by Xn
- 0. Complete to dweak squares along X1

- 0, yielding a new

row 0 -X ′2 - · · · -X ′n−1
-X ′n -W1 . Complete to dweak squares along X ′2 - 0,

yielding a new row 0 -X ′′3 - · · · -X ′′n−1
-X ′′n -W2 . Etc. Then let σ map the isoclass

of X1
-X2

- · · · -Xn−1
-Xn to the isoclass of W1

-W2
- · · · -Wn−1

-Wn .

Elementary properties of n-triangles force σ = τ .

If we only require D to be Verdier triangulated, both σ and τ are still definable, but it is unclear

to me whether they coincide (31).

29More generally, the following holds if D is a closed Heller triangulated category.
30An abbreviation for “distinguished weak square”. Also known as homotopy cartesian square, as homotopy

bicartesian square, or as Mayer-Vietoris square.
31Suppose that [8, 1.1.13] holds in our Verdier triangulated category. Then σ and τ coincide if n ∈ {1, 2, 3}.
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0.2.4 Remarks on spectral sequences

0.2.4.1 Four indices

Suppose given an abelian category A. Suppose given a filtered complex M with values in A, i.e.

a chain of monomorphisms

M(−∞) -r · · · -r M(i) -r M(i+ 1) -r · · · -r M(+∞),

indexed by {−∞} t Z t {+∞}, that satisfies certain technical conditions (32).

We shall use the linearly ordered set

Z̄∞ := { i+k : i ∈ {−∞} t Z t {+∞}, k ∈ Z } ,

where formally i+k is defined as the pair (i, k), and where i+k 6 j+` if k < ` or (k = ` and i 6 j).

Taking M as a base, we can form a diagram that is, morally, an ∞-triangle. It consists of

shifted subfactor complexes M(β/α) for β−1 6 α 6 β 6 α+1 in Z̄∞ and is called spectral object

Sp(M) of M (33). For γ/α 6 δ/β, i.e. γ 6 δ and α 6 β, the induced morphism

M(γ/α) - M(δ/β)

appears in this diagram Sp(M).

Let ME(δ/β//γ/α) ∈ ObA be defined as the image of H0 of this morphism, i.e.

M(γ/α)H0 - ME(δ/β//γ/α) -r M(δ/β)H0 (34) .

These objects ME(δ/β//γ/α) assemble to a big diagram with values in A, the spectral sequence

ME

of M (35).

Suppose given ε−1 6 α 6 β 6 γ 6 δ 6 ε 6 α+1 in Z̄∞ . We obtain the short exact sequence

ME(ε/β//γ/α) -r ME(ε/β//δ/α) - ME(ε/γ//δ/α) ,

which can be made responsible for all exact sequences in general spectral sequences known to

me. Cf. Lem. I.26, generalising a particular case of [57, §II.4.2.6].

Dropping certain “initial terms” (36) from the spectral sequence ME, we obtain the proper

spectral sequence

M Ė

of M .

32Viz. M(−∞) = 0, M(i) -M(i+ 1) being pointwise split and the whole filtration being pointwise almost
everywhere constant. Cf. §IV.3.1.

33This term has been coined by Verdier; cf. [57, §II.4].
34This definition slightly generalises the definition given in [12, App.]. The original definition in [57, §II.4.2.3]

was closer to classical terminology, as found in [10, §XV.1].
35The classical spectral sequence terms are amongst the terms ME(δ/β//γ/α) ; cf. §IV.3.5.
36E1 -terms and similar ones; cf. §IV.3.6.
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0.2.4.2 Comparisons

0.2.4.2.1 Grothendieck spectral sequences

Maintain the situation of §0.2.1.1. So A -F B -G C.

Suppose given X ∈ ObA. Resolve X injectively. This yields a complex with values in A.

Apply F pointwise. This yields a complex with values in B. Resolve this complex injectively,

via the method of Cartan-Eilenberg [10, §XVII.1]. This yields a double complex with values

in B. Apply G pointwise. This yields a double complex with values in C.

The total complex of this resulting double complex is obtained by forming direct sums over its

diagonals. Replacing an increasing number of rows in this double complex by zero rows, and then

taking the total complex, we obtain a descending chain of subcomplexes filtering our original

total complex.

This filtered complex gives rise to the Grothendieck spectral sequence XEGr
F,G via the method

of §0.2.4.1. This yields a functor EGr
F,G on A, mapping to the category of spectral sequences with

values in C.

So we had to “resolve X twice”, with an intermediate application of F , and a final application

of G, to carry out this construction.

0.2.4.2.2 First comparison

Suppose given abelian categories A, A′, B, C (37). Suppose given objects X ∈ ObA and

X ′ ∈ ObA′. Let A×A′ -F B be a biadditive functor such that (X,−)F and (−, X ′)F are left

exact. Let B -G C be a left exact functor. Suppose further conditions to hold; see §IV.5.1.

X X′

A×A′
?F

B
?G

C

We have Grothendieck spectral sequence functors,

EGr
(X,−)F,G for A′ -(X,−)F B -G C ,

EGr
(−,X′)F,G for A -(−,X′)F B -G C .

We evaluate the former at X ′ and the latter at X. Then the proper Grothendieck spectral

sequences are isomorphic, i.e.

X ′ ĖGr
(X,−)F,G ' X ĖGr

(−,X′)F,G ;

cf. Th. IV.31. So instead of “resolving X ′ twice”, we may just as well “resolve X twice”.

37Of which A, A′ and B are supposed to have enough injectives.
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0.2.4.2.3 Second comparison

Suppose given abelian categories A, B, B′, C (38). Suppose given objects X ∈ ObA and

Y ∈ ObB. Let A -F B′ be a left exact functor. Let B × B′ -G C be a biadditive functor such

that (Y,−)G is left exact.

Let B ∈ Ob C[0(B) be a resolution of Y such that (Bk,−)G is exact for all k > 0. Let

A ∈ Ob C[0(A) be an injective resolution of X. Suppose further conditions to hold; see §IV.6.1.

X

A
?FY

B × B′
?G

C

We have the Grothendieck spectral sequence functor

EGr
F, (Y,−)G for A -F B′ -(Y,−)G C ,

which we evaluate at X.

On the other hand, we can consider the double complex (B,AF )G, where the indices of B count

rows and the indices of A count columns. As described in §0.2.4.2.1, we can associate a spectral

sequence to a double complex, in this case named EI

(
(B,AF )G

)
.

Then the proper spectral sequences are isomorphic,

XĖGr
F,(Y,−)G ' ĖI

(
(B,AF )G

)
.

So instead of “resolving X twice”, we may just as well “resolve X once and Y once”.

0.2.4.2.4 Applications

The comparisons in §0.2.4.2.2 and §0.2.4.2.3 may be used to reprove the following two theorems

of Beyl.

The first theorem allows acyclic objects to be alternatively used to calculate Grothendieck spec-

tral sequences [7, Th. 3.4]; cf. Th. IV.40.

The second theorem allows the Hochschild-Serre-Hopf spectral sequence to be calculated with

injective or, equivalently, with projective resolutions; the former fitting in the context of

Grothendieck spectral sequences, the second being apt for manipulating concrete representing

cocycles of cohomology classes; cf. [7, Th. 3.5], Th. IV.52, IV.53.

Further applications can be found in §IV.8 (39).

38Of which A and B′ are supposed to have enough injectives.
39If we were to reduce complexity in the assertions of §0.2.4.2, then, in the spirit of §0.2.1.2, we should directly

work with suitably defined derived categories of double complexes; I do not know how to do that. We would
probably get an additional shift functor.
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[16] Gabriel, P., Des catégories abéliennes, Bull. Soc. Math. France 90, p. 323–448, 1962.
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Chapter I

Heller triangulated categories

I.0 Introduction

I.0.1 Heller’s idea (1)

I.0.1.1 Stable Frobenius categories and an isomorphism between outer and inner

shift

Let E be a Frobenius category, i.e. an exact category with enough bijective objects. For instance,

the category of complexes with values in an additive category, equipped with pointwise split exact

sequences, is a Frobenius category.

Let E denote the stable category of E ; cf. §I.0.3. Assume that E has split idempotents.

A complex with entries in E is acyclic if any Hom functor turns it into an acyclic complex of

abelian groups. Let E+(∆̄#
2 ) denote the category of acyclic complexes with entries in E (2). Let

E+(∆̄#
2 ) denote the homotopy category of the category E+(∆̄#

2 ) of acyclic complexes; that is,

the quotient category of acyclic complexes modulo split acyclic complexes.

There is a shift automorphism T on E . It induces a first, inner shift automorphism T+(∆̄#
2 ) on

E+(∆̄#
2 ) by pointwise application.

There is also a shift automorphism T2 on the diagram ∆̄#
2 . It induces a second, outer shift

automorphism E+(T2) on E+(∆̄#
2 ), shifting a complex by three positions.

Both outer and inner shift induce automorphisms

E+(T2) resp. T+(∆̄#
2 ) on E+(∆̄#

2 ) .

Heller remarked that these functors are isomorphic. But there is no a priori given isomorphism.

So he chose an isomorphism

E+(T2) -ϑ2

∼ T+(∆̄#
2 ) ,

satisfying, for technical reasons, still a further compatibility.

1Heller formulated his idea using Freyd categories. We will rephrase it using complexes, for this is the
language we will use below. Cf. §§ I.0.2.2, I.0.2.4.

2The notation using the diagram ∆̄#
2 is chosen to fit into a larger framework; see §I.0.2.2 for more details.
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Then he remarked that the choice of such an isomorphism ϑ2 determines a triangulation on E
in the sense of Puppe [51, Sec. 2]; that is, it satisfies all the axioms of Verdier [56, Def. 1-1]

except possibly for the octahedral axiom. Namely, as distinguished triangles we take acyclic

complexes on which outer and inner shift coincide (i.e., which are “3-periodic up to shift”) and

on which ϑ2 is the identity.

Whether this observation now fathoms Puppe triangulations remains to be discussed. Whenever

two objects are isomorphic but lack a nature-given isomorphism, it is at any rate not unusual to

pick an isomorphism. Once a suitable isomorphism between our shift functors chosen, a Puppe

triangulation ensues. In nontechnical terms, we may let the relation between the two shifts

govern the Puppe triangulations. This is a possible point of view, which we shall adopt and put

into a larger framework; cf. §I.0.2.2.

Heller used this construction to parametrise Puppe triangulations on E . The non-uniqueness

of such a Puppe triangulation on E , and hence the impossibility of an intrinsic definition of

distinguished triangles, thus can be regarded as rooted in the possible nontriviality of the au-

tomorphism group of the inner shift functor T+(∆̄#
2 ), or, by choice, of the outer shift functor

E+(T2). This is to be seen in contrast to the intrinsic characterisation of short exact sequences

in an abelian category.

I.0.1.2 The stable Frobenius case models a general definition of Puppe triangula-

tions

A weak kernel in an additive category is defined by the universal property of a kernel, except for

the uniqueness of the induced morphism; dually a weak cokernel.

A weakly abelian category is an additive category in which each morphism has a weak kernel

and a weak cokernel, and in which each morphism is a weak kernel and a weak cokernel. For

instance, the stable category E appearing in §I.0.1.1 is a weakly abelian category.

Let C be a weakly abelian category with split idempotents carrying a shift automorphism T.

Now Heller’s construction yields an alternative, equivalent definition of a Puppe triangulation

on (C,T) as being an isomorphism

C+(T2) -ϑ2

∼ T+(∆̄#
2 )

satisfying still a further compatibility. In other words, a Puppe triangulated category can be

defined to be such a triple (C,T, ϑ2).

I.0.1.3 From Puppe to Verdier and beyond

In a Puppe triangulated category, Verdier’s octahedral axiom [56, Def. 1-1] does not seem to

hold in general (3).

3The author lacks an example of a category that is Puppe but not Verdier triangulated, but strongly suspects
that such an example exists, i.e. that the octahedral axiom is not a consequence of Puppe’s axioms; cf. Question
I.6. In any case, such a deduction is unknown.
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In a Verdier triangulated category, in turn, it seems to be impossible to derive the existence

of the two extra triangles in a particular octahedron described in [8, 1.1.13], or to distinguish

crosses as in [28, App.].

Moreover, to define a K-theory simplicial set of a triangulated category, one is inclined to take ob-

jects as 1-simplices, distinguished triangles as 2-simplices, distinguished octahedra as 3-simplices,

etc.

So we enlarge the framework, generalising from C+(∆̄#
2 ) to C+(∆̄#

n ), as described next in §I.0.2.

I.0.2 Definition of Heller triangulated categories

I.0.2.1 A diagram shape

Given n > 0, we let ∆n := {i ∈ Z : 0 6 i 6 n}, considered as a linearly ordered set. Let

∆̄n be the periodic prolongation of ∆n, consisting of Z copies of ∆n put in a row. This is a

periodic linearly ordered set; that is, a linearly ordered set equipped with a shift automorphism

i - i+1. For instance, ∆̄2 = {. . . , 2−1, 0, 1, 2, 0+1, . . . }, equipped with i - i+1. Let ∆̄ be the

category consisting of periodic linearly ordered sets of the form ∆̄n as objects, and of monotone

shiftcompatible maps as morphisms.

Let ∆̄n(∆1) denote the category of morphisms in ∆̄n, i.e. the category of ∆̄n-valued diagrams of

shape ∆1. Given α, β ∈ ∆̄n such that α 6 β, the object (α - β) in ∆̄n(∆1) is abbreviated by

β/α.

Let ∆̄#
n be the full subcategory of ∆̄n(∆1) that consists of objects β/α within a single period,

i.e. such that β−1 6 α 6 β 6 α+1. For instance,

∆̄#
2 =

0+1/0+1 // · · ·

2/2 // 0+1/2

OO

// · · ·

1/1 // 2/1

OO

// 0+1/1

OO

// · · ·

0/0 // 1/0

OO

// 2/0

OO

// 0+1/0

OO

...

OO

...

OO

...

OO

I.0.2.2 Heller triangulations

Let C be a weakly abelian category; cf. §I.0.1.2. A sequence X -f Y -g Z in C is called exact

at Y if f is a weak kernel of g, or, equivalently, if g is a weak cokernel of f . A commutative

quadrangle in C whose diagonal sequence is exact at the middle object is called a weak square.

Let C+(∆̄#
n ) be the category of C-valued diagrams of shape ∆̄#

n with a zero at α/α and at
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α+1/α for each α ∈ ∆̄n , and such that the quadrangle on (γ/α, δ/α, γ/β, δ/β) is a weak square

whenever δ−1 6 α 6 β 6 γ 6 δ 6 α+1. Let C+(∆̄#
n ) be the quotient of C+(∆̄#

n ) modulo the full

subcategory of diagrams therein that consist entirely of split morphisms.

For instance, C+(∆̄#
2 ) is the category of C-valued acyclic complexes; and C+(∆̄#

2 ) is its quotient

modulo split acyclic complexes, i.e. the homotopy category of C-valued acyclic complexes.

Furthermore, suppose given an automorphism T on C. We obtain two shift functors on C+(∆̄#
n ),

the inner shift given by pointwise application of T, and the outer shift induced by a diagram

shift j/i - i+1/j.

A Heller triangulation on (C,T) is a tuple of isomorphisms ϑ = (ϑn)n>0, where ϑn is an iso-

morphism from the outer to the inner shift on C+(∆̄#
n ). This tuple is required to be compatible

with the functors induced by periodic monotone maps between ∆̄n and ∆̄m, where m, n > 0.

Moreover, it is required to be compatible with an operation called folding, which emerges from

the fact that a weak square

X
f // Y

X ′
f ′
//

x

OO

+

Y ′

y

OO

entails a folded weak square

0 // Y

X ′
(x f ′ )

//

OO

+

X⊕Y ′ .

“
f
−y
”OO

A Heller triangulated category is a triple (C,T, ϑ) as just described, often just denoted by C.

An n-triangle in a Heller triangulated category C is an object X of C+(∆̄#
n ) that is periodic in

the sense that outer shift and inner shift coincide on X, and that satisfies Xϑn = 1. The usual

properties of 2-triangles generalise to n-triangles.

If C is a Heller triangulated category in which idempotents split, then, taking the 2-triangles as

the distinguished triangles, it is also triangulated in the sense of Verdier [56, Def. 1-1]; see

Proposition I.23.

I.0.2.3 Strictly exact functors

An additive functor C -F C ′ between Heller triangulated categories (C,T, ϑ) and (C ′,T′, ϑ′) is

called strictly exact if, firstly, it respects weak kernels, or, equivalently, weak cokernels; if, sec-

ondly, F T′ = TF ; and if, thirdly, the functor

C+(∆̄#
n ) -

F+(∆̄#
n )

C ′+(∆̄#
n ) ,

induced by pointwise application of F , satisfies F+(∆̄#
n ) ? ϑ′n = ϑn ? F

+(∆̄#
n ) for n > 0.
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I.0.2.4 Enlarge to simplify

Let ∆̇n := {i ∈ Z : 1 6 i 6 n}. We have an embedding ∆̇n -
�� ∆̄#

n via α - α/0. Let C be

a weakly abelian category. Let C(∆̇n) denote the category of C-valued diagrams of shape ∆̇n.

Let C(∆̇n) be the quotient of C(∆̇n) modulo the full subcategory of split diagrams. Restriction

induces an equivalence

(∗) C+(∆̄#
n ) -

(−)|∆̇n
∼ C(∆̇n) ,

which is also a useful technical tool; cf. Proposition I.12.

At first sight, one might be inclined to prefer C(∆̇n) over C+(∆̄#
n ). It contains smaller diagrams

and has a less elaborate definition. By transport of structure along (∗), one obtains an outer

shift on C(∆̇n) as well. By pointwise application of the shift functor on C, we also obtain an

inner shift on C(∆̇n). These could be compared in order to write down a definition of Heller

triangulated categories.

So why then did we prefer to use C+(∆̄#
n ) in our definition of Heller triangulated categories in

§I.0.2.2? Working with C(∆̇n), the indirect definition of the outer shift would cause problems.

In practice, one would have to pass the equivalence (∗) back and forth. The “blown-up variant”

C+(∆̄#
n ) of C(∆̇n) carries a directly defined outer shift functor and is thus easier to work with.

There is a further equivalence C(∆̇n) -∼ Ĉ(∆̇n−1), where Ĉ denotes the Freyd category of C,
i.e. the universal abelian category containing C, and where Ĉ(∆̇n−1) is the quotient of Ĉ(∆̇n−1)

modulo split diagrams with entries in C; cf. Proposition I.16. Originally, Heller worked with

Ĉ(∆̇n−1) for n = 2, i.e. with Ĉ/C.

I.0.3 A result to begin with

Let E be a Frobenius category. We define its stable category E to be the quotient category of

the category of purely acyclic complexes with values in the bijective objects of E , modulo the

subcategory of split acyclic such complexes.

Then E is equivalent to the classical stable category E of E , defined as the quotient category of E
modulo bijective objects. But E carries a shift automorphism T (invertible), whereas E carries,

in general, only a shift autoequivalence (invertible up to isomorphism). In this sense, E is a

“strictified version” of E .

Theorem (Corollary I.33, Corollary I.35). Given a Frobenius category E, there exists a Heller

triangulation ϑ on (E ,T). An exact functor E -E E ′ between Frobenius categories that sends

all bijective objects of E to bijective objects of E ′ induces a strictly exact functor E -E E ′.

The Verdier triangulated version of this theorem is due to Happel [22, Th. 2.6].

I.0.4 A quasicyclic category

Let C be a Heller triangulated category.
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A quasicyclic category is a contravariant functor from ∆̄
◦

to the (1-)category of categories.

Letting qcycn C be the subcategory of isomorphisms in C+(∆̄#
n ) for n > 0, we obtain a quasicyclic

category qcyc• C. There is a quasicyclic subcategory qcycϑ=1
• C that consists only of n-triangles

and their isomorphisms instead of all objects in C+(∆̄#
n ) and their isomorphisms (4).

Restricting qcycϑ=1
• C along the functor ∆◦ -

�� ∆̄
◦

of “periodic prolongation”, this yields a

simplicial category, hence a topological space; depending functorially on C. This space is the

author’s tentative proposal for the definition of the K-theory of C; cf. [50, Rem. 63]. Of course,

this definition still needs to be justified by results one expects of such a K-theory, which has not

yet been attempted.

I.0.5 Some remarks

A comparison of our theory to the derivator approach and related constructions in [11],

[26, chap. V.1], [25], [20], [32], [14] and [42] would be interesting. One might ask whether the

base category of a triangulated derivator in the sense of [42] carries a Heller triangulation; and

if so, whether morphisms of triangulated derivators give rise to strictly exact functors.

Our approach differs from the derivator approach in that we consider a single category C with shift

and an “exactness structure”, i.e. a Heller triangulation, on it. The categories C+(∆̄#
n ) needed

to define this “exactness structure” on C consist of veritable C-valued diagrams; cf. §I.0.2. In

particular, a “structure preserving map” between two such categories C and C ′, i.e. a strictly

exact functor, is a single additive functor C -F C ′ compatible with the “exactness structures”

imposed on C and on C ′. In contrast, a “structure preserving map” of triangulated derivators is

a compatible family of additive functors.

The generalised triangles in [8, 1.1.14] are, in our language, n-pretriangles for which the

2-pretriangle obtained by restriction along any periodic monotone map ∆̄2
- ∆̄n is a 2-triangle.

An n-triangle is such a generalised triangle, but the converse does not hold in general, as pointed

out to me by A. Neeman. For an example, see §III.2.

It is conceivable that the concept of Heller triangulated categories is essentially equivalent to a

direct axiomatisation via n-triangles, as worked out independently by G. Maltsiniotis [43]

and myself [35]. To compare these approaches, on the one hand, the Heller triangulated category

should be closed in the sense of §III.4.2, Def. III.13; on the other hand, the n-triangles should

be stable under folding as in Lemma I.21.(2) (5).

Concerning the motivation to consider triangulated categories at all, and in particular derived

categories, conceived by Grothendieck, we refer the reader to the introduction of the thesis

of Verdier [57]; cf. also [27] and [60, p. 26].

I.0.6 Acknowledgements

I thank A. Wiedemann for an introduction to derived categories. I thank A. Beligiannis

for directing me to Heller’s parametrisation of Puppe triangulations, and for helpful remarks.

4Here, “ ϑ=1 ” is a mere symbol that should evoke the definition of n-triangles via ϑ.
5Jan. 2013: This is feasible, as I have been informed by S. Thomas.



31

I thank B. Keller for the hint how to “strictify” the classical stable category of a Frobenius

category using acyclic complexes. I thank A. Neeman for the hint leading to the folding

operation, and for corrections.

More than once I returned to A. Heller’s original construction [24, p. 53–54], the reference

not only for the basic idea, but also for arguments perfectly extendable to the more general

framework used here.

I.0.7 Notations and conventions

(i) The disjoint union of sets X and Y is written X t Y .

(ii) Given a, b, c ∈ Z, the assertion a ≡c b is defined to hold if there exists a z ∈ Z such that a− b = cz.

(iii) For a, b ∈ Z, we denote by [a, b] := {z ∈ Z : a 6 z 6 b} the integral interval. Similarly, we let
[a, b[ := {z ∈ Z : a 6 z < b}, ]a, b] := {z ∈ Z : a < z 6 b}, Z>0 := {z ∈ Z : z > 0} and
Z60 := {z ∈ Z : z 6 0}.

(iv) All categories are supposed to be small with respect to a sufficiently big universe.

(v) Given a category C, and objects X, Y in C, we denote the set of morphisms from X to Y by C(X,Y ), or
simply by (X,Y ), if unambiguous.

(vi) Given a poset P , we frequently consider it as a category, letting P(x, y) contain one element y/x if x 6 y,
and letting it be empty if x 66 y, where x, y ∈ ObP = P .

(vii) Given n > 0, we denote by ∆n := [0, n] the linearly ordered set with ordering induced by the standard
ordering on Z. Let ∆̇n := ∆n r {0} = [1, n], considered as a linearly ordered set.

(viii) Maps act on the right. Composition of maps, and of more general morphisms, is written on the right, i.e.
-a -b = -ab .

(ix) Functors act on the right. Composition of functors is written on the right, i.e. -F -G = -FG .
Accordingly, the entry of a transformation a between functors at an object X will be written Xa.

The reason for this convention is that we will mainly consider functors of type “restriction to
a subdiagram” or “shift”, and such operations are usually written on the right.

(x) A functor is called strictly dense if its map on the objects is surjective. It is called dense if its induced
map on the isoclasses is surjective.

(xi) Given transformations C
F ))

G

55 C′
F ′ ++

G′
33 C′′ ,a�� a′�� we write a?a′ for the transformation from FF ′ to GG′ given

at X ∈ Ob C by X(a ? a′) := (XFa′)(XaG′) = (XaF ′)(XGa′). In this context, we also write the object
F for the identity 1F on this object, i.e. e.g. X(F ? a′) = X(1F ? a′) = (XF )a′.

(xii) The inverse of an isomorphism f is denoted by f−. Note that if we denote an iterated shift automorphism
f - f+1 by f - f+z for z ∈ Z, then we have to distinguish f− (inverse isomorphism if f is an
isomorphism) and f−1 (inverse of the shift functor applied to f).

(xiii) In an exact category, pure monomorphy is indicated by X -r Y , pure epimorphy by X - Y .

(xiv) A morphism in an additive category A is split if it is isomorphic, in A(∆1), to a morphism of the form

X ⊕ Y -

“
0 0
1 0

”
Y ⊕ Z . A morphism being split is indicated by X // // Y (not to be confused with

monomorphy). Accordingly, a morphism being a split monomorphism is indicated by X // • // Y , a
morphism being a split epimorphism by X // � // Y . Cf. §I.6.2.1.

(xv) We say that idempotents split in an additive category A if every endomorphism e in A that satisfies e2 = e

is split.



32

(xvi) The category of functors and transformations from a category D to a category C is denoted by D, C or
by C(D). To objects in C(D), we also refer to as diagrams on D with values or entries in C.

(xvii) If C and D are categories, and X ∈ Ob C(D), we usually write (d -a e)X =: (Xd
-Xa Xe) for a morphism

d -a e in D. If the morphism a is unambiguously given by the context, we also use small letters to write

(Xd
-x Xe) := (Xd

-Xa Xe) (similarly X ′d -x
′

X ′e , Ỹd -ỹ Ỹe , . . . )

(xviii) Let Add denote the 2-category of additive categories.

(xix) Given an additive category A and a full additive subcategory B ⊆ A, we denote by A/B the quotient of A
by B, having as objects the objects of A and as morphisms equivalence classes of morphisms of A; where
two morphisms f and f ′ are equivalent, written f ≡B f ′, if their difference factors over an object of B.

(xx) In an exact category, an object P is called projective if (P,−) turns pure epimorphisms into epimorphisms.
An object I is called injective if (−, I) turns pure monomorphisms into epimorphisms. It is called bijective
if it is injective and projective. See §I.6.2 for details.

(xxi) In an additive category, a morphism K -i X is called a weak kernel of a morphism X -f Y if for every

morphism T -t X with tf = 0 there exists a morphism T -t
′

K with t′i = t. A weak cokernel is defined
dually. An additive category is called weakly abelian if every morphism has a weak kernel and a weak
cokernel, and is a weak kernel and a weak cokernel.

(xxii) The Freyd category of a weakly abelian category C is written Ĉ. See §I.6.6.3 for details.

(xxiii) In an abelian category, a commutative quadrangle

X
f //

x

��

Y

y

��
X ′

f ′
// Y ′

is called a square if its diagonal sequence X -(x f )
X ′ ⊕ Y -

„
f ′

−y

«
Y ′ is short exact. Being a square is

indicated by a box sign “� ” in the quadrangle.

The quadrangle (X,Y,X ′, Y ′) is called a weak square if its diagonal sequence is exact in the middle; cf.
Definition I.49. Being a weak square is indicated by a “ + ”-sign in the quadrangle.

In an exact category, (X,Y,X ′, Y ′) is a pure square if it has a pure short exact diagonal sequence. Being
a pure square is indicated by a box sign “� ” in the quadrangle.

In a weakly abelian category, (X,Y,X ′, Y ′) is a weak square if it is a weak square in the Freyd category
of that weakly abelian category.

(xxiv) In an abelian category, given a morphism X -f Y , we sometimes denote its kernel by Kf , and its cokernel
by Cf .

I.1 Definition of a Heller triangulated category

I.1.1 Periodic linearly ordered sets and their strips

Without further comment, we consider a poset D as a category, whose set of objects is given by

D, and for which #D(α, β) = 1 if α 6 β, and #D(α, β) = 0 otherwise. If existent, i.e. if α 6 β,

the morphism from α to β is denoted by β/α. A full subposet of a category is a full subcategory

that is a poset. In particular, a full subposet of a poset is just a full subcategory of that poset.
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A periodic poset is a poset P together with an automorphism T : P -∼ P , α - αT =: α+1.

Likewise, we denote αTm =: α+m resp. αT−m =: α−m for m ∈ Z>0. By abuse of notation, we

denote a periodic poset (P,T) simply by P .

A morphism of periodic posets P �
p
P ′ is a monotone map p of the underlying posets such that

(α′+1)p = ((α′)p)+1 for all α′ ∈ P ′. The category of periodic posets shall be denoted by pp.

A periodic linearly ordered set is a periodic poset the underlying poset of which is linearly ordered,

i.e. such that #
(
D(α, β) ∪ D(β, α)

)
= 1 for all α, β ∈ D.

To any linearly ordered set D we can attach a periodic linearly ordered set D̄ by letting D̄ :=

D×Z, and (α, z) 6 (β, w) if z 6 w, or if (z = w and α 6 β in D). We let (α, z)+1 := (α, z+ 1).

Sending D - D̄, α - (α, 0), and identifying D with its image, we obtain (α, z) = α+z, and

the latter is the notation we will usually use. The periodic linearly ordered set D̄ is called the

periodic repetition of D. Likewise, the functor D - D̄ from the category of linearly ordered

sets to the category of periodic linearly ordered sets is called periodic repetition.

Let ∆ be the full subcategory of the category of linearly ordered sets defined by

Ob ∆ := {∆n : n ∈ Z>0}.

Let ∆̄ be the full subcategory of the category of periodic linearly ordered sets defined by Ob ∆̄ :=

{∆̄n : n ∈ Z>0} (6).

The reason for considering periodic linearly ordered sets is that the functor periodic repetition from
∆ to ∆̄ is dense and faithful but not full. We will require a naturality of a certain construction
with respect to P ∈ Ob ∆̄, which is stronger than setting P = D̄ and requiring naturality with
respect to D ∈ Ob ∆.

Given n > 0, the underlying linearly ordered set of ∆̄n is isomorphic to Z via

α+z - α + (n+ 1)z. We use this isomorphism to define the operation

∆̄n × Z - ∆̄n , (α+z, x) - α+z + x := (α + x)+(z+α+x) ,

where we write k = (n + 1)k + k with k ∈ Z and k ∈ [0, n] for k ∈ Z. For instance, if n = 3,

then 2+1 + 7 = 1+3.

To a periodic linearly ordered set P , we attach the poset

P# := {β/α ∈ P (∆1) : β−1 6 α 6 β 6 α+1}

as a full subposet of P (∆1), called the strip of P . A morphism therein from β/α to δ/γ is written

δ/γ//β/α, which is unique if it exists, i.e. if α 6 γ and β 6 δ.

The strip P# carries the automorphism β/α - (β/α)+1 := α+1/β in pp, where β/α ∈ P#.

If P = ∆̄n, we also write β/α -Tn (β/α)+1.

This construction defines a functor
∆̄ -(−)#

pp

P - P#

6The category ∆̄ is isomorphic to the category L defined by Elmendorf in [13].
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which sends a morphism P �
p
P ′ in ∆̄ to

P# �p
#

P ′#

β′p/α′p � β′/α′

In fact, p# is welldefined, since if β′−1 6 α′ 6 β′ 6 α′+1, then (β′p)−1 6 α′p 6 β′p 6 (α′p)+1.

Moreover, p# is monotone and compatible with shift.

Example I.1 The periodic poset ∆̄#
2 , i.e. the strip of the periodic repetition of ∆2, can be displayed

as
1+1/1+1 // · · ·

0+1/0+1 // 1+1/0+1

OO

// · · ·

2/2 // 0+1/2

OO

// 1+1/2

OO

// · · ·

1/1 // 2/1

OO

// 0+1/1

OO

// 1+1/1

OO

0/0 // 1/0

OO

// 2/0

OO

// 0+1/0

OO

2−1/2−1 // 0/2−1

OO

// 1/2−1

OO

// 2/2−1

OO

...

OO

...

OO

...

OO

I.1.2 Heller triangulated categories

Suppose given a weakly abelian category C; cf. Definition I.66. From §I.1.2.1.3 on, we assume it

to be equipped with an automorphism

C -T∼ C
(X -u Y ) - (X T -uT

Y T) =: (X+1 -u
+1

Y +1) .

Similarly, we denote (X Tm -uTm
Y Tm) =: (X+m -u

+m

Y +m) for m ∈ Z.

Recall that its Freyd category Ĉ is an abelian Frobenius category, and that the image of C in Ĉ,
identified with C, is a sufficiently big subcategory of bijectives; cf. §I.6.6.3.

I.1.2.1 The stable category of pretriangles C+(P#)

I.1.2.1.1 Definition of C+(P#)

Concerning the Freyd category Ĉ of C, cf. §I.6.6.3. Concerning the notion of a weak square in Ĉ,
see Definition I.49. A weak square in C is a weak square in Ĉ that has all four objects in Ob C.
Applying Remark I.67, we obtain an elementary way to characterise weak squares as having a

diagonal sequence with first morphism being a weak kernel of the second; or, equivalently, with

second morphism being a weak cokernel of the first.
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Given a periodic linearly ordered set P , we let C+(P#) be the full subcategory of C(P#) defined

by

Ob C+(P#) :=


X ∈ Ob C(P#) :

1) Xα/α = 0 and Xα+1/α = 0 for all α ∈ P .

2) For all δ−1 6 α 6 β 6 γ 6 δ 6 α+1 in P ,

the quadrangle

Xγ/β
x // Xδ/β

Xγ/α
x //

x

OO

+

Xδ/α

x

OO

is a weak square (as indicated by +).


.

Note that we do not require that (Xα+1/γ
-x Xβ+1/δ) = (Xγ/α

-x Xδ/β)+1 for γ/α, δ/β ∈ P#

with γ/α 6 δ/β.

An object of C+(P#) is called a P -pretriangle. Given n > 0, an object of C+(∆̄#
n ), i.e. a

∆̄n-pretriangle, is also called an n-pretriangle.

Roughly put, an n-pretriangle is a diagram on the strip ∆̄#
n of the periodic repetition ∆̄n of ∆n

consisting of weak squares with zeroes on the boundaries.

Example I.2 A 0-pretriangle consists of zero objects. A 1-pretriangle is just a sequence
. . . , X0/1−1 , X1/0, X0+1/1, . . . of objects of C, decorated with some zero objects. A 2-pretriangle
is a complex in C which becomes acyclic in Ĉ – for short, which is acyclic –, decorated with some
zero objects.

A morphism in C is split in Ĉ if and only if it factors in Ĉ into a retraction followed by a

coretraction. Equivalently, its image, taken in Ĉ, is bijective as an object of Ĉ.

Let C+, split(P#) be the full subcategory of C+(P#) defined by

Ob C+, split(P#) :=

{
X ∈ Ob C+(P#) :

Xγ/α
-x Xδ/β is split in Ĉ

for all γ/α, δ/β ∈ P# with γ/α 6 δ/β

}

We denote the quotient category by

C+(P#) := C+(P#)/C+, split(P#) ,

called the stable category of P -pretriangles.

Example I.3 We have C+(∆̄#
0 ) = C+(∆̄#

1 ) = 0. The category C+(∆̄#
2 ) can be regarded as the

homotopy category of the category of acyclic complexes with entries in C.

I.1.2.1.2 Naturality of C+(P#) in P

Suppose given periodic linearly ordered sets P , P ′, and a morphism P# �q P ′# of periodic

posets such that either (P = P ′ and q = T, the shift functor on P#) or q = p# for some

morphism P �
p
P ′ of periodic linearly ordered sets.
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Recall that if P = ∆̄n, then we write alternatively Tn for the shift functor T on ∆̄#
n .

We obtain an induced functor

C+(P#) -C
+(q) C+(P ′#)

X - X
(
C+(q)

)
:= q X ,

given by composition of q, followed by X.

In particular, the shift T on P# induces a functor

C+(P#) -C+(T) C+(P#)

X - [X]+1 := X
(
C+(T)

)
,

called the outer shift. Note that if P = ∆̄n, then [X]+1
β/α = X(β/α)+1 = Xα+1/β for β/α ∈ ∆̄#

n . On

the stable category, this functor induces a functor

C+(P#) -
C+(T)

C+(P#)

X - [X]+1,

likewise called the outer shift.

Given a morphism P �
p
P ′ in ∆̄, we obtain an induced morphism P# �p

#

P ′#, and hence an

induced functor usually abbreviated by

C+(P#) -
p# := C+(p#)

C+(P ′#)

X - Xp# := X
(
C+(p#)

)
.

Likewise on the stable categories; we abbreviate p# := C+(p#).

So altogether, we have defined Xp# := p#X (Xp#: operation induced by p, applied to X ; p#X:
composition of p# and X), which is a bit unfortunate, but convenient in practice.

Given a morphism P �
p
P ′ in ∆̄ and X ∈ Ob C+(P#), we have

[X]+1p# = [Xp#]+1 ,

natural in X. Likewise on the stable categories.

Given P, P ′ ∈ Ob ∆̄, a functor C+(P#) -F C+(P ′#) is called strictly periodic if

[XF ]+1 = [X]+1F ,

natural in X. Likewise on the stable categories.

I.1.2.1.3 Naturality of C+(P#) in C

An additive functor C -F C ′ is called subexact if the induced additive functor Ĉ -F̂ Ĉ ′ is an exact

functor of abelian categories; cf. §I.6.6.3. Alternatively, it is subexact if and only if it preserves

weak kernels, or, equivalently, weak cokernels; cf. Remark I.67.
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Suppose given a subexact functor C -F C ′ and P ∈ Ob ∆. We obtain an induced functor

C+(P#) -F+(P#) C ′+(P#)

X - X F+(P#) ,

where, writing Y := X F+(P#), we let

(Yβ/α -y Yδ/γ) := (Xβ/αF -xF Xδ/γF )

for β/α, δ/γ ∈ P# with β/α 6 δ/γ.

In particular, the automorphism C -T C induces an automorphism

C+(P#) -T+(P#) C+(P#)

X - [X+1] := X
(
T+(P#)

)
,

called the inner shift. Note that if P = ∆̄n, then [X+1]β/α = X+1
β/α for β/α ∈ ∆̄#

n .

On the stable category, this induces an automorphism

C+(P#) -
T+(P#)

C+(P#)

X - [X+1] ,

likewise called the inner shift.

I.1.2.2 Folding

The following construction arose from a hint of A. Neeman, who showed me a multitude of
2-triangles in an n-triangle similar to the two 2-triangles explained in [8, 1.1.13]; cf. Definition I.5.(ii)
below.

I.1.2.2.1 Some notation

Given P = (P,T) ∈ Ob ∆̄, we denote by 2P the periodic poset (P,T2).

Given a linearly ordered set D, we let ρtD be the linearly ordered set having as underlying set

{ρ} tD; and as partial order ρ 6ρtD α for all α ∈ D, and α 6ρtD β if α, β ∈ D and α 6D β.

Roughly put, 2P is P with doubled period, and ρ tD is D with an added initial object ρ.

Let n > 0. We have an isomorphism of periodic linearly ordered sets

2∆̄n
-∼ ∆̄2n+1

k+l -

{
k+l/2 for l ≡2 0

(k + n+ 1)+(l−1)/2 for l ≡2 1

and an isomorphism of linearly ordered sets

ρ t∆n
-∼ ∆n+1

k - k + 1 for k ∈ [0, n]

ρ - 0 .
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In order to remain inside ∆̄ resp. inside ∆, we use these isomorphisms as identifications.

Then P - 2P is natural in P and therefore defines an endofunctor of ∆̄, and D - ρ t D is

natural in D and therefore defines an endofunctor of ∆.

Given a linearly ordered set D, we will need to consider the periodic posets 2D̄ and ρ tD, formed
using periodic repetition.

I.1.2.2.2 The folding operation

Let n > 0. Let the strictly periodic functor

C+((2∆̄n)#) -fn C+(ρ t∆n
#

)

X - Xfn

be determined on objects by the following data. Writing Y = Xfn, we let

(Yα/ρ -y Yβ/ρ) :=
(
Xα+1/α

-x Xβ+1/β

)
(Yβ/ρ -y Yβ/α) :=

(
Xβ+1/β

-(x x )
Xβ+1/α+1 ⊕Xα+2/β

)
(Yβ/α -y Yδ/γ) :=

(
Xβ+1/α+1 ⊕Xα+2/β

-

“
x 0
0 x

”
Xδ+1/γ+1 ⊕Xγ+2/δ

)
(Yδ/γ -y Yρ+1/γ) :=

(
Xδ+1/γ+1 ⊕Xγ+2/δ

-

“
x
−x
”
Xγ+2/γ+1

)
for α, β, γ, δ ∈ ∆n with α 6 β, with γ 6 δ and with β/α 6 δ/γ. The remaining morphisms

are given by composition.

Note that X ∈ Ob C+((2∆̄n)#), so e.g. Xβ+1/β 6= 0 is possible, whereas Xβ+2/β = 0 for β ∈ ∆n.

We claim that Xfn is an object of C+(ρ t∆n
#

).

In fact, by Lemma I.54, applied in the abelian category Ĉ, we are reduced to considering the quad-

rangles of Y on (γ/ρ, δ/ρ, γ/β, δ/β) for β, γ, δ ∈ ∆n with β 6 γ 6 δ; on (γ/α, δ/α, γ/β, δ/β)

for α, β, γ, δ ∈ ∆n with α 6 β 6 γ 6 δ; and on (γ/α, ρ+1/α, γ/β, ρ+1/β) for α, β, γ ∈ ∆n

with α 6 β 6 γ.

The quadrangle of Y on (γ/α, δ/α, γ/β, δ/β) is a weak square as the direct sum of two weak

squares.

For the remaining quadrangles to be treated, Lemma I.57 reduces us to considering

the quadrangles of Y on (α/ρ, β/ρ, α/α, β/α), on (β/ρ, ρ+1/ρ, β/α, ρ+1/α) and on

(β/α, ρ+1/α, β/β, ρ+1/β) for α, β ∈ ∆n with α 6 β. These are in fact weak squares, as

ensues from Lemma I.58 and its dual assertion. This proves our claim.

This construction of Y = Xfn is functorial in X.

To prove that the folding operation passes to the stable categories, we have to show that for an

object X of C+, split((2∆̄n)#), the folded object Xfn is in C+, split(ρ t∆n
#

). Denote Y := Xfn.

Since Yα/ρ -y Yβ/ρ is split in Ĉ for all α, β ∈ ∆n with α 6 β, it suffices to prove the following

lemma.
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Lemma I.4 Suppose given m > 0 and Z ∈ Ob C+(∆̄#
m) such that Zα/0 -z Zβ/0 is split in Ĉ for

all α, β ∈ ∆m with 0 < α 6 β. Then Z ∈ Ob C+, split(∆̄#
m).

Proof. Consider the morphism Zγ/α -z Zδ/β for γ/α 6 δ/β in ∆̄#
m. We have to show that it is

split in Ĉ, i.e. that its image, taken in Ĉ, is bijective there. Unless α 6 β 6 γ 6 δ 6 α+1, this

morphism is zero, hence split in Ĉ. If this condition holds, it is the diagonal morphism of the

weak square (Zγ/α, Zδ/α, Zγ/β, Zδ/β).

So by Lemma I.59, applied in the abelian category Ĉ, we see that it suffices to show that the

(horizontal) morphism Zβ/α -z Zγ/α is split in Ĉ and that the (vertical) morphism Zγ/α -z Zγ/β
is split in Ĉ for all α, β, γ in ∆̄m with γ−1 6 α 6 β 6 γ 6 α+1.

The long exact sequence

· · · - Zα/β−1 - Zα/γ−1 - Zβ/γ−1 - Zβ/α - Zγ/α - Zγ/β - Zα+1/β
- · · ·

in Ĉ shows that it suffices to show that the morphism Zβ/α -z Zγ/α is split in Ĉ for all

0 6 α 6 β 6 γ < 0+1. In fact, first of all we may assume that 0 6 α < 0+1, so that

0 6 α 6 β 6 γ 6 α+1 < 0+2. Hence either 0 6 α 6 β 6 γ < 0+1, or 0 6 γ−1 6 α 6 β < 0+1, or

0 6 β−1 6 γ−1 6 α < 0+1.

Now we may assume that 0 < α and apply Lemma I.59 to the weak square

(Zβ/0, Zγ/0, Zβ/α, Zγ/α), in which Zβ/0 -z Zγ/0 is split in Ĉ by assumption, in which

Zβ/0 -z Zβ/α is split in Ĉ since Zα/0 -z Zβ/0 is split in Ĉ by assumption, and in which

Zγ/0 -z Zγ/α is split in Ĉ since Zα/0 -z Zγ/0 is split in Ĉ by assumption.

So the folding operation passes to an operation

C+((2∆̄n)#) -
f
n C+(ρ t∆n

#
)

X - Xf
n

on the stable categories.
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I.1.2.2.3 An example: folding from ∆̄#
5 to ∆̄#

3

Let D = ∆2. Note that 2∆̄2 ' ∆̄5. Let X ∈ Ob C+((2∆̄2)#), depicted as follows.

0 // X1+1/0+1

OO

x //

+

X2+1/0+1

OO

x //

+

X0+2/0+1

OO

x //

+

X1+2/0+1

OO

x //

+

X2+2/0+1

OO

//

+

0

OO

0 // X0+1/2

OO

x //

+

X1+1/2

x

OO

x //

+

X2+1/2

x

OO

x //

+

X0+2/2

x

OO

x //

+

X1+2/2

x

OO

//

+

0

OO

0 // X2/1

OO

x //

+

X0+1/1

x

OO

x //

+

X1+1/1

x

OO

x //

+

X2+1/1

x

OO

x //

+

X0+2/1

x

OO

//

+

0

OO

0 // X1/0

OO

x //

+

X2/0

x

OO

x //

+

X0+1/0

x

OO

x //

+

X1+1/0

x

OO

x //

+

X2+1/0

x

OO

//

+

0

OO

0 // X0/2−1

OO

x //

+

X1/2−1

x

OO

x //

+

X2/2−1

x

OO

x//

+

X0+1/2−1

x

OO

x //

+

X1+1/2−1

x

OO

//

+

0

OO

OO
+

OO
+

OO
+

OO
+

OO
+

OO

Note that ρ t∆2 ' ∆3. Folding turns X into Xf2 ∈ Ob C+(ρ t∆2
#

), depicted as follows.

0 //

0 // X2+2/2+1

OO

//

+

0 // X2+1/1+1⊕X1+2/2

“
x
−x
”
//

OO

+

X1+2/1+1

x

OO

//

+

0 // X1+1/0+1⊕X0+2/1

“
x 0
0 x

”
//

OO

+

X2+1/0+1⊕X0+2/2

“
x
−x
”
//

“
x 0
0 x

” OO
+

X0+2/0+1

x

OO

//

+

0 // X0+1/0
x //

OO

+

X1+1/1
x //

(x x )

OO

+

X2+1/2 //

(x x )

OO

+

0

OO

0 // X2/2−1
(x x ) //

OO

+

X2/0⊕X0+1/2−1

“
x 0
0 x

”
//

“
x
−x
” OO

+

X2/1⊕X1+1/2−1 //

“
x
−x
” OO

+

0

OO

OO
+

OO
+

OO
+

OO
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I.1.2.3 A definition of Heller triangulated categories and strictly exact functors

Recall that C is a weakly abelian category, and that T = (−)+1 is an automorphism of C.

Suppose given n > 0. We have introduced the automorphisms

C+(∆̄#
n ) -

C+(Tn)

∼ C+(∆̄#
n ) (outer shift; §I.1.2.1.2)

X - [X]+1

C+(∆̄#
n ) -

T+(∆̄#
n )

∼ C+(∆̄#
n ) (inner shift; §I.1.2.1.3)

X - [X+1] .

The outer shift shifts the whole diagram X ∈ Ob C+(∆̄#
n ) one step downwards – the object Xα+1/β

is the entry of [X]+1 at position β/α.

The inner shift applies the given shift automorphism (−)+1 of C entrywise to a diagram
X ∈ Ob C+(∆̄#

n ).

Furthermore, we write [X+a]+b := X T+(∆̄#
n )a C+(Tn)b = XC+(Tn)b T+(∆̄#

n )a for a, b ∈ Z>0

and X ∈ Ob C+(∆̄#
n ); similarly for a, b ∈ Z. Likewise in the stable case.

Definition I.5

(i) A Heller triangulation on (C,T) is a tuple of isomorphisms of functors

ϑ =
(
C+(Tn) -ϑn∼ T+(∆̄#

n )
)
n>0

=
(

[−]+1 -ϑn∼ [−+1]
)
n>0

such that

(∗) p# ? ϑm = ϑn ? p
#

for all n, m > 0 and all periodic monotone maps ∆̄n
�p ∆̄m in ∆̄, and such that

(∗∗) f
n
? ϑn+1 = ϑ2n+1 ? f

n

for all n > 0.

Note that given n > 0, the isomorphism ϑn consists of isomorphisms

[X]+1 -Xϑn
∼ [X+1]

in the stable category C+(∆̄#
n ) of n-pretriangles, where X runs over the set Ob C+(∆̄#

n ) of
n-pretriangles.

Condition (∗) asserts that the following diagram commutes in Add for all n, m > 0 and all
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periodic monotone maps ∆̄n
�p ∆̄m in ∆̄.

C+(∆̄#
n )

p# = C+(p#)
//

[−]+1

��

[−+1]

��

C+(∆̄#
m)

[−]+1

��

[−+1]

��
C+(∆̄#

n )
p# = C+(p#)

// C+(∆̄ #
m )

ϑn +3 ϑm +3

Condition (∗∗) asserts that the following diagram commutes in Add for all n > 0.

C+(∆̄#
2n+1)

f
n //

[−]+1

��

[−+1]

��

C+(∆̄#
n+1)

[−]+1

��

[−+1]

��
C+(∆̄#

2n+1)
f
n // C+(∆̄ #

n+1)

ϑ2n+1+3 ϑn+1 +3

(ii) Given a Heller triangulation ϑ on (C,T), we use the following terminology.

(1) The triple (C,T, ϑ) forms a Heller triangulated category, usually

just denoted by C.
(2) Given n > 0, an n-triangle is an object X of C+(∆̄#

n ) for which

[X+1] = [X]+1 in Ob C+(∆̄#
n ), and for which

Xϑn = 1[X]+1 = 1[X+1] (equality in C+(∆̄#
n )) .

A morphism of n-triangles is a morphism X -u Y in C+(∆̄#
n ) be-

tween n-triangles X and Y such that [u]+1 = [u+1].

The category of n-triangles and morphisms of n-triangles is denoted

by C+, ϑ=1(∆̄#
n ).

In the notation C+, ϑ=1(∆̄#
n ), the index “ ϑ=1 ” is to be read as a symbol, not as an actual

equation.

The subcategory of n-triangles C+, ϑ=1(∆̄#
n ) in the category of n-pretriangles C+(∆̄#

n ) is not
full in general.

(iii) An additive functor C -F C ′ between Heller triangulated categories (C,T, ϑ) and

(C ′,T′, ϑ′) is called strictly exact if the following conditions hold.

(1) F T′ = TF .

(2) F is subexact; cf. §I.1.2.1.3.

(3) We have

(∗∗∗) ϑn ? F
+(∆̄#

n ) = F+(∆̄#
n ) ? ϑ′n

for all n > 0.



43

Such a functor F is called strictly exact because of the equality in (1).
Condition (∗∗∗) asserts that the following diagram commutes in Add for all n > 0.

C+(∆̄#
n )

F+(∆̄#
n )

//

[−]+1

��

[−+1]

��

C′+(∆̄#
n )

[−]+1

��

[−+1]

��
C+(∆̄#

n )
F+(∆̄#

n )
// C′+(∆̄#

n )

ϑn +3 ϑ′n +3

To summarise Definition I.5 roughly, a Heller triangulation is an isomorphism ϑ from the outer
shift to the inner shift, varying with ∆n, and compatible with folding. An n-triangle is a periodic
n-pretriangle at which ϑ is an identity. A strictly exact functor respects the weakly abelian structure
and is compatible with shift and ϑ.

Note that if ϑ is a Heller triangulation on (C,T), so is −ϑ.

Definition I.5 would make sense for periodic, but not necessarily linearly ordered posets, generalising
∆̄n. But then it is unknown whether, and, it seems to the author, not very probable that the stable
category of a Frobenius category is triangulated in this generalised sense. More specifically, it seems
to be impossible to generalise Proposition I.11 below accordingly, which is the technical core of our
approach.

Question I.6 Does there exist an additive functor C -F C′ between Heller triangulated categories
that, in Definition I.5.(iii), satisfies (1) and (2), but (3) only for n 6 2 ? If F is an identity, this
amounts to asking for the existence of two Heller triangulations ϑ and ϑ′ on (C,T), C weakly abelian,
T automorphism of C, such that ϑn = ϑ′n only for n 6 2.

I.2 Some equivalences

Suppose given n > 0. Suppose given a weakly abelian category C, together with an automorphism

T : C - C, X -X+1. Concerning the Freyd category Ĉ of C, we refer to §I.6.6.3.

We shall show in Proposition I.12 that the functor C(∆̄#
n ) - C(∆̇n), induced on the stable cate-

gories by restriction from ∆̄#
n to ∆̇n := [1, n], is an equivalence.

I.2.1 Some notation

I.2.1.1 Some posets

Let ∆̇n := ∆n r {0} = [1, n], considered as a linearly ordered set. We have an injection

∆̇n
- ∆̄#

n , i - i/0, and identify ∆̇n with its image in ∆̄#
n .

We define two subposets of ∆̄#
n by

∆̄Mn := {β/α ∈ ∆̄#
n : 0 6 α}

∆̄On := {β/α ∈ ∆̄#
n : α 6 0} .
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Then ∆̇n = (∆̄Mn ∩ ∆̄On) r {0/0, 0+1/0}.

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

∆̄Mn

∆̄On
∆̇n

�-

I.2.1.2 Fixing parametrisations κM, κO

There exists a bijective morphism ∆̄Mn - Z>0 of posets (“refining the partial to a linear order”).

We fix such a morphism and denote by Z>0
-κ
M

∆̄Mn its inverse (as a map of sets; in general, κM

is not monotone). So whenever κM(`) 6 κM(`′), then ` 6 `′. In particular, κM(0) = 0/0.

There exists a bijective morphism ∆̄On - Z60 of posets. We fix such a morphism and denote by

Z>0
-κ
O

∆̄On its inverse (as a map of sets). So whenever κO(`) 6 κO(`′), then ` 6 `′. In particular,

κO(0) = 0+1/0.

I.2.1.3 The categories Ĉ+,∗(∆̄Mn), C+(∆̄Mn) etc.

Let A be an abelian category, and let B ⊆ A be a full subcategory. Let E ⊆ ∆̄#
n be a full

subposet.

For example, for E we may take the subposets ∆̄Mn , ∆̄On or ∆̄Mn ∩ ∆̄O,+1
n of ∆̄#

n .

Moreover, for example, we may take A = Ĉ and for B either Ĉ or C.

Let B+,∗(E) be the full subcategory of B(E) defined by

Ob B+,∗(E) :=


X ∈ Ob B(E) :

For all δ−1 6 α 6 β 6 γ 6 δ 6 α+1 in ∆̄n

such that γ/α, γ/β, δ/α and δ/β are in E,

the quadrangle

Xγ/β
x // Xδ/β

Xγ/α
x //

x

OO

+

Xδ/α

x

OO

is a weak square (as indicated by +).


.

The symbol ∗ should remind us of the fact that we still allow Xα/α resp. Xα+1/α to be arbitrary

for α ∈ ∆̄n such that α/α ∈ E resp. α+1/α ∈ E.

In turn, let B+(E) be the full subcategory of B+,∗(E) defined by

Ob B+(E) :=

{
X ∈ Ob B+,∗(E) :

Xα/α = 0 for α ∈ ∆̄n such that α/α ∈ E , and

Xα+1/α = 0 for α ∈ ∆̄n such that α+1/α ∈ E.

}
.
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I.2.1.4 Reindexing

Given a subposet E ⊆ ∆̄#
n , we have a reindexing equivalence

C(E) -∼ C(E+1)

X - X(−1)

X(+1) � X

defined by

(X(−1))β/α := X(β/α)−1 = Xα/β−1 ,

where β/α ∈ E+1; and inversely by

(X(+1))β/α := X(β/α)+1 = Xα+1/β ,

where β/α ∈ E. This equivalence restricts to an equivalence between C+(E) and C+(E+1).

For instance, if E = ∆̄#
n , then X(+1) = [X]+1. The outer shift and reindexing will play different

roles, and so we distinguish in notation.

I.2.2 Density of the restriction functor from ∆̄#
n to ∆̇n

I.2.2.1 Upwards and downwards spread

Let the upwards spread SM be defined by

Ĉ(∆̇n) -S
M

Ĉ+(∆̄Mn)

X - XSM ,

where XSM is given by

(XSM)0/0 := 0

(XSM)β/0 := Xβ for β ∈ ∆̇n

(XSM)β/α := Cokern(Xα
-x Xβ) for α, β ∈ ∆̇n with α 6 β

(XSM)β/α := 0 for α, β ∈ ∆̄n with 0+1 6 β 6 α+1 6 β+1 ,

the diagram being completed with the induced morphisms between the cokernels and zero mor-

phisms elsewhere.

This construction is functorial in X. The functor SM is left adjoint to the restriction functor

from Ĉ+(∆̄Mn) to Ĉ(∆̇n), with unit being the identity, i.e. X = XSM|∆̇n
.

Dually, let the downwards spread SO be

Ĉ(∆̇n) -S
O

Ĉ+(∆̄On)

X - XSO ,
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where XSO is given by

(XSO)0+1/0 := 0

(XSO)α/0 := Xα for α ∈ ∆̇n

(XSO)α/β−1 := Kern(Xα
-x Xβ) for α, β ∈ ∆̇n with α 6 β

(XSO)α/β−1 := 0 for α, β ∈ ∆̄n with α−1 6 β−1 6 α 6 0 ,

the diagram being completed with the induced morphisms between the kernels and zero mor-

phisms elsewhere.

This construction is functorial in X. The functor SO is right adjoint to the restriction functor

from Ĉ+(∆̄On) to Ĉ(∆̇n), with counit being the identity, i.e. XSO|∆̇n
= X.

I.2.2.2 Resolutions

I.2.2.2.1 A stability under pointwise pushouts and pullbacks

Let E ⊆ ∆̄#
n be a full subposet. Moreover, assume that E is a convex subposet, i.e. that whenever

given ξ, ζ ∈ E and η ∈ ∆̄#
n such that ξ 6 η 6 ζ, then η ∈ E.

An element δ/β ∈ E is on the left boundary of E if we may conclude from γ/β ∈ E and γ 6 δ

that γ = δ. It is on the lower boundary of E if we may conclude from δ/α ∈ E and α 6 β that

α = β.

An element γ/α ∈ E is on the right boundary of E if we may conclude from δ/α ∈ E and γ 6 δ

that γ = δ. It is on the upper boundary of E if we may conclude from γ/β ∈ E and α 6 β that

α = β.

Let A be an abelian category. Concerning pointwise pullbacks and pointwise pushouts, we refer

to §I.6.7.

Lemma I.7 Suppose given ε ∈ E and an object X of A+,∗(E).

(1) Given a monomorphism Xε
-x
′
X ′ in A, the pointwise pushout X�x′ of X along x′ is an

object of A+,∗(E) again.

(2) Given an epimorphism Xε
�x
′
X ′ in A, the pointwise pullback X�x′ of X along x′ is an

object of ObA+,∗(E) again.

(3) Suppose that ε is on the left boundary or on the lower boundary of E. Given a morphism

Xε
-x
′
X ′ in A, the pointwise pushout X�x′ of X along x′ is an object of A+,∗(E) again.

(4) Suppose that ε is on the right boundary or on the upper boundary of E. Given a morphism

Xε
�x
′
X ′ in A, the pointwise pullback X �x′ of X along x′ is an object of ObA+,∗(E)

again.

Proof. Ad (1). First we remark that by Lemma I.55, the quadrangle

(Xβ/α , Xδ/γ , (X�x′)β/α , (X�x′)δ/γ) is a pushout for ε 6 β/α 6 δ/γ in E.
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We have to show that the quadrangle of X�x′ on (γ/α, δ/α, γ/β, δ/β), where

δ−1 6 α 6 β 6 γ 6 δ 6 α+1 in ∆̄n, is a weak square, provided its corners have indices in E.

Using Lemmata I.54, I.56 and convexity of E, we are reduced to the case ε 6 γ/α. In this case,

the assertion follows by Lemma I.55.

Ad (3). Here we need only Lemma I.54 and convexity of E to reduce to the case ε 6 γ/α, the

rest of the argument is as in (1). Hence the morphism x′ may be arbitrary.

I.2.2.2.2 Upwards and downwards resolution

Remark I.8

(1) Given a direct system X0
-X1

-X2
- · · · in Ĉ+,∗(∆̄Mn) such that its restriction to

any finite full subposet E ⊆ ∆̄Mn eventually becomes constant, then the direct limit lim−→i
Xi

exists in Ĉ+,∗(∆̄Mn).

(2) Given an inverse system X0
� X1

� X2
� · · · in Ĉ+,∗(∆̄On) such that its restriction to

any finite subposet E ⊆ ∆̄On eventually becomes constant, then the inverse limit lim←−iXi

exists in Ĉ+,∗(∆̄On).

For k > 0, we let

Ob Ĉ+,∗(∆̄Mn) -R
M
k Ob Ĉ+,∗(∆̄Mn)

X - X�x′(k) ,

where

x′(k) :=

{
(XκM(k)

- 0) if κM(k) ∈ {α/α, α+1/α} for some α ∈ ∆̄n with 0 6 α

(XκM(k)
-ι XκM(k)I) if κM(k) = β/α for some α, β ∈ ∆̄n with 0 6 α < β < α+1

Define the upwards resolution map by

Ob Ĉ+,∗(∆̄Mn) -R
M

Ob C+(∆̄Mn)

X - XRM := lim−→
m

XRM0 · · ·RMm ,

the direct system being given by the transition morphisms

XRM0 · · ·RMm -i (XRM0 · · ·RMm)RMm+1 .

We have XRM = X for X ∈ Ob C+(∆̄Mn).

Note that we apparently cannot turn the upwards resolution into a functor unless we are in a
particular case in which the map I on objects can be turned into a functor.

Dually, for k > 0, we let

Ob Ĉ+,∗(∆̄On) -R
O
k Ob Ĉ+,∗(∆̄On)

X - X�x′′(k) ,



48

where

x′′(k) :=

{
(XκO(k)

� 0) if κO(k) ∈ {α/α, α+1/α} for some α ∈ ∆̄n with α 6 0

(XκO(k)
�π XκO(k)P) if κO(k) = β/α for some α, β ∈ ∆̄n with α−1 < β−1 < α 6 0

Define the downwards resolution map by

Ob Ĉ+,∗(∆̄On) -R
O

Ob C+(∆̄On)

X - XRO := lim←−
m

XRO0 · · ·ROm ,

the inverse system being given by the transition morphisms

XRO0 · · ·ROm �p (XRO0 · · ·ROm)ROm+1 .

We have XRO = X for X ∈ Ob C+(∆̄On).

Lemma I.9

(1) Given a morphism Y -g X in Ĉ+(∆̄Mn) with X ∈ Ob C+(∆̄Mn), there exists a factorisation

(Y -g X) = (Y - Y RM -X) .

(2) Given a morphism Y �
g
X in Ĉ+(∆̄On) with X ∈ Ob C+(∆̄On), there exists a factorisation

(Y �
g
X) = (Y � Y RO � X) .

Proof. Ad (1). Since the entries of X are injective in Ĉ and since Xα/α = 0 and Xα+1/α = 0 for

α > 0, we obtain, using the universal property of the pointwise pushout, a factorisation

(Y -g X) = (Y - Y RM0 · · ·RMm -X)

for every m > 0, compatible with the transition morphisms, resulting in a factorisation over

Y RM = lim−→m
Y RM0 · · ·RMm.

I.2.2.2.3 Both-sided resolutions

Let the resolution map

Ob C(∆̇n) -R Ob C+(∆̄#
n )

X - XR

be defined by gluing an upper and a lower part along ∆̇n as follows.

XR|∆̄Mn := XSMRM

XR|∆̄On := XSORO

This is welldefined, since XSMRM|∆̇n
= X = XSORO|∆̇n

. In particular, we obtain

XR|∆̇n
= X .

We summarise.
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Proposition I.10 The restriction functor

C+(∆̄#
n ) -

(−)|∆̇n C(∆̇n)

Y - Y |∆̇n

is strictly dense, i.e. it is surjective on objects.

I.2.3 Fullness of the restriction functor from ∆̄#
n to ∆̇n

Proposition I.11 The restriction functors

C+(∆̄#
n ) -

(−)|∆̇n C(∆̇n)

Y - Y |∆̇n

and

C+(∆̄Mn) -
(−)|∆̇n C(∆̇n)

Y - Y |∆̇n

are full.

Proof. By duality and gluing along ∆̇n, it suffices to consider the restriction from ∆̄Mn to ∆̇n. So

suppose given X, Y ∈ Ob C+(∆̄Mn) and a morphism X|∆̇n
-f Y |∆̇n

. We have to find a morphism

X -f
M

Y such that fM|∆̇n
= f .

We construct fMκM(`) for ` > 0 by induction on `.

At κM(0), we let fMκM(0) := 10. Suppose given ` > 1. If κM(`) ∈ ∆̇n, we let fMκM(`) := fκM(`). If

κM(`) ∈ {α/α, α+1/α} for some α > 0, we let fMκM(`) := 10. If κM(`) =: β/α with 0 < α < β < α+1,

then we let α′ := α− 1 be the predecessor of α in ∆̄n, and we let β′ := β − 1 be the predecessor

of β in ∆̄n, using that ∆̄n is linearly ordered. We may complete the diagram

Yβ′/α
y // Yβ/α

Xβ′/α

fM
β′/α

::vvvvvvvvv
x // Xβ/α

Yβ′/α′ y
//

y

OO

+

Yβ/α′

y

OO

Xβ′/α′

fM
β′/α′

::vvvvvvvvv

x
//

x

OO

+

Xβ/α′

fM
β/α′

;;wwwwwwwww

x

OO

to a commutative cuboid, inserting a morphism Xβ/α
-

fM
β/α Yβ/α.

Since we need the restriction functor C+(∆̄#
n ) -

(−)|∆̇n C(∆̇n) to be full, we are not able to generalise
from linearly ordered periodic posets to arbitrary periodic posets.
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I.2.4 The equivalence between C+(∆̄#
n ) and C(∆̇n)

Let Csplit(∆̇n) be the full subcategory of C(∆̇n) defined by

Ob Csplit(∆̇n) := {X ∈ Ob C(∆̇n) : Xα
-Xβ is split in Ĉ for all α, β ∈ ∆̇n with α 6 β} .

We denote the quotient category by

C(∆̇n) := C(∆̇n)/Csplit(∆̇n) .

Proposition I.12 The functor

C+(∆̄#
n ) -

(−)|∆̇n C(∆̇n)

X - X|∆̇n
,

induced by restriction from ∆̄#
n to ∆̇n, is an equivalence.

Proof. By Propositions I.10 and I.11, we may invoke Lemma I.41. Moreover, Lemma I.4 gives

the inverse image of Ob Csplit(∆̇n) under C+(∆̄#
n ) -

(−)|∆̇n C(∆̇n) as Ob C+, split(∆̄#
n ).

Consider a morphism X -f X ′ in C+(∆̄#
n ) such that (X -f X ′)|∆̇n

is zero in C(∆̇n). We have

to prove that it factors over an object of C+, split(∆̄#
n ).

Let Y M be the cokernel in Ĉ(∆̄Mn) of the counit X|∆̇n
SM -X|∆̄Mn at X|∆̄Mn . Note that Y M|∆̇n

= 0.

By Lemma I.61, we have Y M ∈ Ob Ĉ+(∆̄Mn). Consider the following diagram in Ĉ+(∆̄Mn).

X|∆̇n
SM //

0
��

X|∆̄Mn //

f |∆̄Mn
��

Y M //

||

Y MRM

vv
X ′|∆̇n

SM // X ′|∆̄Mn
The indicated factorisation

(X|∆̄Mn -
f |∆̄Mn X ′|∆̄Mn) = (X|∆̄Mn - Y M -X ′|∆̄Mn)

ensues from the universal property of the cokernel Y M. By Lemma I.9.(1), we can factorise

further to obtain

(∗M) (X|∆̄Mn -
f |∆̄Mn X ′|∆̄Mn) = (X|∆̄Mn - Y MRM -X ′|∆̄Mn) .

Dually, we obtain a factorisation

(∗O) (X|∆̄On -
f |∆̄On X ′|∆̄On) = (X|∆̄On - Y ORO -X ′|∆̄On)

for some Y O ∈ Ob Ĉ+(∆̄On) such that Y O|∆̇n
= 0.

Since Y MRM|∆̇n
= 0 = Y ORO|∆̇n

, there is a unique N ∈ Ob C+(∆̄#
n ) such that N |∆̄Mn = Y MRM

and N |∆̄On = Y ORO. By Lemma I.4, we have N ∈ Ob C+, split(∆̄#
n ).

Moreover, since both factorisations (∗M) and (∗O) restrict to the factorisation

(X|∆̇n
-0 X ′|∆̇n

) = (X|∆̇n
- 0 -X ′|∆̇n

)

in C(∆̇n), we may glue to a factorisation

(∗) (X -f X ′) = (X - N -X ′)

that restricts to (∗M) in C+(∆̄Mn) and to (∗O) in C+(∆̄On).
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I.2.5 Auxiliary equivalences

We shall extend the equivalence C+(∆̄#
n ) -∼ C(∆̇n) to a diagram of equivalences

C+(∆̄#
n ) -∼ C+(∆MOn ) -∼ C(∆̇n) -∼ Ĉ(∆̇n−1) .

I.2.5.1 Factorisation into two equivalences

Abbreviate ∆̄M,+1
n := (∆̄Mn)+1 ⊆ ∆̄#

n , ∆̄O,+1
n := (∆̄On)+1 ⊆ ∆̄#

n and ∆̇+1
n := (∆̇n)+1 ⊆ ∆̄#

n .

Abbreviate ∆̄MOn := ∆̄Mn ∩ ∆̄O,+1
n = {β/α : α, β ∈ ∆̄n, 0 6 α 6 β 6 0+1} ⊆ ∆̄#

n .

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

∆̄MOn
∆̇n

∆̄On

∆̄M,+1
n

�-

?

6

∆̇+1
n

Let C+, split(∆̄MOn ) be the full subcategory of C+(∆̄MOn ) defined by

Ob C+, split(∆̄MOn ) :=

X ∈ Ob C+(∆̄MOn ) :

Xγ/α
-x Xδ/β is split in Ĉ

for all γ/α, δ/β ∈ ∆̄MOn

with γ/α 6 δ/β


We denote the quotient category by

C+(∆̄MOn ) := C+(∆̄MOn )/C+, split(∆̄MOn )

Lemma I.13

(1) The restriction functors

C+(∆̄#
n ) -

(−)|∆̄MOn C+(∆̄MOn ) -
(−)|∆̇n C+(∆̇n)

X - X|∆̄MOn
Y - Y |∆̇n

are full and strictly dense.

(2) The functors

C+(∆̄#
n ) -

(−)|∆̄MOn C+(∆̄MOn ) -
(−)|∆̇n C+(∆̇n)

X - X|∆̄MOn
Y - Y |∆̇n

,

induced by restriction, are equivalences.
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Proof. Ad (1). The composition

C+(∆̄#
n ) - C+(∆̄MOn ) - C(∆̇n)

X - X|∆̄MOn - X|∆̇n

is strictly dense by Proposition I.10 and full by Proposition I.11. Therefore, the restriction

functor from C+(∆̄MOn ) to C+(∆̇n) is full and strictly dense.

We claim that the restriction functor from C+(∆̄#
n ) to C+(∆̄MOn ) is strictly dense. Let

C(∆̇+1
n ) -SM,+1

Ĉ+(∆̄M,+1
n )

X - (X(+1)SM)(−1) ,

cf. §I.2.1.4. Similarly,

Ob Ĉ+(∆̄M,+1
n ) -RM,+1

Ob C+(∆̄M,+1
n )

X - (X(+1)RM)(−1) .

Given X ∈ Ob C+(∆̄MOn ), we may define X ′ ∈ Ob C+(∆̄#
n ) letting

X ′|∆̄M,+1
n

:= X|∆̇+1
n
SM,+1RM,+1

X ′|∆̄MOn := X

X ′|∆̄On := X|∆̇n
SORO .

We claim that the restriction functor from ∆̄#
n to ∆̄MOn is full. Suppose given X, Y ∈ Ob C+(∆#

n )

and a morphism X|∆̄MOn -f Y |∆̄MOn . By Proposition I.12 and a shift, there exists a morphism

X|∆M,+1
n

-f
M

Y |∆M,+1
n

such that fM|∆̇+1
n

= f |∆̇+1
n

. By Proposition I.12 and by duality, there exists a

morphism X|∆On -f
O

Y |∆On such that fO|∆̇n
= f |∆̇n

. We may define a morphism X -f
′
Y letting

f ′|∆̄M,+1
n

:= fM

f ′|∆̄MOn := f

f ′|∆̄On := fO .

Ad (2). The composition

C+(∆̄#
n ) - C+(∆̄MOn ) - C(∆̇n)

X - X|∆̄MOn - X|∆̇n

is an equivalence by Proposition I.12. Therefore, the functor induced by restriction from ∆̄#
n

to ∆̄MOn is faithful. By (1), it is full and dense, and so it is an equivalence. Therefore, also the

functor induced by restriction from ∆̄MOn to ∆̇n is an equivalence.

I.2.5.2 Cutting off the last object

Putting n = 2, the equivalence given in Lemma I.16, composed with the equivalence in Proposition
I.12, can be used to retrieve Heller’s original isomorphism, called δ(∆) in [24, p. 53].
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In this section, we suppose that n > 2. Consider the functor

C(∆̇n) -K Ĉ(∆̇n−1)

X - XK := (X�0)|∆̇n−1
,

where 0 denotes the morphism 0 -0 Xn ; cf. §I.6.7.

Explicitly, we have (XK)i := Kern(Xi
-x Xn) for i ∈ [1, n− 1], taken in Ĉ, equipped with the

induced morphisms (XK)i - (XK)j for i, j ∈ [1, n − 1] with i 6 j, fitting into a pullback

((XK)i, (XK)j, Xi, Xj).

Let Csplit(∆̇n) ⊆ C(∆̇n) be the full subcategory defined by

Ob Csplit(∆̇n) := {X ∈ Ob C(∆̇n) : (Xi
-Xj) is split in Ĉ for all i, j ∈ [1, n] with i 6 j} ,

and let C(∆̇n) := C(∆̇n)/Csplit(∆̇n) and Ĉ(∆̇n−1) := Ĉ(∆̇n−1)/Csplit(∆̇n−1).

For Y ∈ Ob Ĉ(∆̇n) and i ∈ [1, n], we let Y Ri := Y �Yiι∈ Ob Ĉ(∆̇n).

We have a resolution map

Ob Ĉ(∆̇n) -R
′
n Ob C(∆̇n)

Y - Y R′n := Y R0 · · ·Rn .

If Y ∈ Ob Ĉ(∆̇n) consists of monomorphisms, then so does Y R′n, whence Y R′n ∈ Ob Csplit(∆̇n).

Given a morphism Y - Y ′ in Ĉ(∆̇n) with Y ′ having bijective entries, this morphism factors

over Y -r Y R′n by injectivity of the entries of Y ′ and by the universal property of the pointwise

pushout.

Lemma I.14 The functor K is dense.

Proof. Suppose given X ∈ Ob Ĉ(∆̇n−1). Let X ′ ∈ Ob Ĉ(∆̇n) be defined by X ′|∆̇n−1
:= X and

X ′n := 0. Then X ′R′n ∈ Ob C(∆̇n) has (X ′R′n)K ' X.

Lemma I.15 The functor K is full.

Proof. Suppose given X, Y ∈ Ob C(∆̇n) and a morphism XK -f Y K. We claim that there ex-

ists a morphism X -f̃ Y such that f̃K = f . We construct its components f̃` by induction on `.

For ` = 1, we obtain a morphism X1
-f̃1 Y1 such that ((XK)1, (Y K)1, X1, Y1) commutes, by in-

jectivity of Y1 in Ĉ. For ` > 2, we obtain a morphism X`
-f̃` Y` such that ((XK)`, (Y K)`, X`, Y`)

and (X`−1, Y`−1, X`, Y`) commute, by the fact that ((XK)`−1, (XK)`, X`−1, X`) is a weak square

and by injectivity of Y`.

Proposition I.16 The functor K induces an equivalence

C(∆̇n) -K∼ Ĉ(∆̇n−1)

X - XK .
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Proof. Let C̃ ⊆ Ĉ denote the full subcategory of bijective objects in Ĉ. Every object in C̃ is a

direct summand of an object in C. Let C̃split(∆̇n−1) ⊆ C̃(∆̇n−1) be the full subcategory defined

by

Ob C̃split(∆̇n−1) := {X ∈ C̃(∆̇n−1) : (Xi
-Xj) is split for all i, j ∈ [1, n− 1] with i 6 j} ,

Let Y be an object of C̃split(∆̇n−1). Then Y R′n−1 is an object of Csplit(∆̇n−1) that has Y as a

direct summand since the identity on Y factors over Y -r Y Rn−1.

Therefore, any morphism that factors over an object of C̃split(∆̇n−1) already factors over an object

of Csplit(∆̇n−1). We infer that

Ĉ(∆̇n−1) = Ĉ(∆̇n−1)/C̃split(∆̇n−1).

Suppose given X ∈ Ob C(∆̇n). Denote X ′ := XK ∈ Ob Ĉ(∆̇n−1).

We claim that if X ∈ Ob Csplit(∆̇n), then X ′ ∈ Ob C̃split(∆̇n−1). First of all, X ′i is bijective

for i ∈ [1, n − 1], since the image of Xi
-Xn is bijective, and since X ′i is the kernel of this

morphism. Now suppose given i, j ∈ [1, n − 1] with i < j. In Ĉ, we let B be the image of

Xi
-Xj and form a pullback (B′, X ′j, B,Xj). Then there is an induced morphism X ′i - B′

turning (X ′i, B
′, Xi, B) into a commutative quadrangle, which is a pullback by composition to a

pullback (X ′i, X
′
j, Xi, Xj). We insert the common kernel Z of Xi

-Xj and X ′i -X ′j.

Z // • // Xi
// � // B // • // Xj

Z • // X ′i
� //

•

OO

B′ • //

•

OO

X ′j

•

OO

Hence Z -r X ′i is split monomorphic, and therefore X ′ - B′ is split epimorphic. Thus B′ is

bijective, and so finally B′ -r X ′j is split monomorphic. This proves the claim.

We claim that if X ′ ∈ Ob C̃split(∆̇n−1), then X ∈ Ob Csplit(∆̇n). Suppose given i, j ∈ [1, n − 1]

with i < j. We have to show that Xi
-Xj is split in Ĉ. In Ĉ, we insert the image B of

Xi
-Xj and form a pullback (B′, X ′j, B,Xj). Since (X ′i, B

′, Xi, B) is a square, and since X ′i is

bijective, its diagonal sequence is split short exact. Hence B is bijective as a direct summand of

Xi ⊕B′, which proves the claim.

Invoking Lemma I.41 to prove the equivalence, it remains to show that given X -f Y in C(∆̇n)

such that fK = 0, there exists an object V in Csplit(∆̇n) such that there exists a factorisation

(X -f Y ) = (X - V - Y ) .

Denote by XK ′ ∈ Ob C(∆̇n) the object that restricts to XK on ∆̇n−1 and that has (XK ′)n := 0.

Let U be the cokernel of XK ′ -r X and consider the following diagram.

XK ′ • //

0
��

X
� //

f

��

U • //

��

URn

vv
Y K ′ • // Y

The morphism U - Y is induced by the universal property of the cokernel. Its factorisation

(U - Y ) = (U -r URn
- Y ) exists since Y consists of bijective objects.

Since the morphism XK ′ -r X consists of pullbacks, its cokernel U consists of monomorphisms.

Hence so does V := URn, which is therefore in Ob Csplit(∆̇n), as required.
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I.2.5.3 Not quite an equivalence

Let C+, periodic(∆̄#
n ) be the subcategory of C+(∆̄#

n ) that consists of morphisms X -f Y for which

([X+1] -
[f+1]

[Y +1]) = ([X]+1 -[f ]+1

[Y ]+1) ;

which is in general not a full subcategory. The objects C+, periodic(∆̄#
n ) are called periodic

n-pretriangles, the morphisms are called periodic morphisms of periodic n-pretriangles. Let

C+, split, periodic(∆̄#
n ) := C+, periodic(∆̄#

n ) ∩ C+, split(∆̄#
n ).

For instance, if (C,T, ϑ) is a Heller triangulated category, then C+, ϑ=1(∆̄#
n ) ⊆ C+, periodic(∆̄#

n ) is a
full subcategory.

For Y ∈ Ob C(∆̇n), we define Y S ∈ Ob C+(∆̄#
n ) by

Y S|∆̄Mn := Y SM

Y S|∆̄On := Y SO ,

and similarly on morphisms. If Y ∈ Ob Csplit(∆̇n), then Y S ∈ Ob C+, split(∆̄#
n ) by Lemma I.4,

since Y S|∆̇n
= Y ∈ Ob Csplit(∆̇n).

To any X ∈ Ob C+(∆̄#
n ) for which Xβ/α is zero for all but finitely many β/α ∈ ∆̄#

n , we can

assign its periodification

X̄ :=
⊕
i∈Z

[X+i]−i ∈ Ob C+, periodic(∆̄#
n ) ,

and similarly for morphisms between such objects.

If X ∈ Ob C+, split(∆̄#
n ), then X̄ ∈ Ob C+, split, periodic(∆̄#

n ).

We have the restriction functor

C+, split,periodic(∆̄#
n ) -

(−)|∆̇n Csplit(∆̇n)

X - X|∆̇n

which is not faithful in general, as the case n = 2 shows. In the inverse direction, we dispose of

the functor

C+, split,periodic(∆̄#
n ) �S̄ Csplit(∆̇n)

Y S =: Y S̄ � Y .

Lemma I.17 For X ∈ Ob C+, split, periodic(∆̄#
n ), we have X ' X|∆̇n

S̄.

Note that we do not claim that 1 ' (−)|∆̇n
S̄ as endofunctors of C+, split, periodic(∆̄#

n ).

Proof. We have a short exact sequence

X|∆̇n
S|∆̄MOn - X|∆̄MOn - [X|∆̇n

S+1]−1|∆̄MOn

in Ĉ(∆̄MOn ), and it suffices to show that it splits. Write C := X|∆̇n
S|∆̄MOn .



56

It suffices to show that there exists a retraction to C -X|∆̄MOn , which we will construct by

induction. Suppose given 0 < α < β 6 0+1. We may assume that after restriction of C -X|∆̄MOn
to {δ/γ ∈ ∆̄MOn : δ/γ < β/α}, there exists a retraction. Let α′ := α − 1 be the predecessor

of α, and let β′ := β − 1 be the predecessor of β, using that ∆̄n is linearly ordered. It suffices

to show that the morphism from the quadrangle (Cβ′/α′ , Cβ′/α, Cβ/α′ , Cβ/α) to the quadrangle

(Xβ′/α′ , Xβ′/α, Xβ/α′ , Xβ/α) has a retraction.

Let (Xβ′/α′ , Xβ′/α, Xβ/α′ , T ) be the pushout in Ĉ. The quadrangle (Cβ′/α′ , Cβ′/α, Cβ/α′ , Cβ/α) is

a pushout. The induced morphism from (Cβ′/α′ , Cβ′/α, Cβ/α′ , Cβ/α) to (Xβ′/α′ , Xβ′/α, Xβ/α′ , T )

has a retraction by functoriality of the pushout. The morphism T -Xβ/α induced by

pushout is a monomorphism in Ĉ, since (Xβ′/α′ , Xβ′/α, Xβ/α′ , Xβ/α) is a weak square. Note

that (Cβ/α, T,Xβ/α) is a commutative triangle.

The morphism T - Cβ/α that is part of the retraction of quadrangles, factors as

(T - Cβ/α) = (T -r Xβ/α
- Cβ/α) ,

since Cβ/α is injective in Ĉ as a summand of Cβ/0 = Xβ/0. Now Xβ/α
- Cβ/α completes the three

morphisms on the other vertices to a retraction of quadrangles from (Xβ′/α′ , Xβ′/α, Xβ/α′ , Xβ/α)

to (Cβ′/α′ , Cβ′/α, Cβ/α′ , Cβ/α) as sought.

I.3 Verification of Verdier’s axioms

Let (C,T, ϑ) be a Heller triangulated category.

I.3.1 Restriction from C+, ϑ=1(∆̄#
n ) to C(∆̇n) is dense and full

Let n > 1. Let

C(∆̇+1
n ) -S

′O
Ĉ+(∆̄O,+1

n )

U - US ′O := (U (+1)SO)(−1)

be the conjugate by reindexing, i.e. a “shifted version” of SO; cf. §I.2.1.4. Note that

(US ′O)β/α = Kern(U0+1/α
-u U0+1/β)

for α, β ∈ ∆̄n with 0 6 α 6 β 6 0+1.

Lemma I.18 Suppose that idempotents split in C. Given X ∈ Ob C(∆̇n), there exists an

n-triangle X̃ ∈ Ob C+, ϑ=1(∆̄#
n ) that restricts to

X̃|∆̇n
= X .

In other words, the restriction functor C+, ϑ=1(∆̄#
n ) -

(−)|∆̇n C(∆̇n) is strictly dense.

Proof. Let Y := XR ∈ Ob C+(∆̄#
n ); cf. §I.2.2.2.3. We have an isomorphism [Y ]+1 -Y ϑn∼ [Y +1] in

C+(∆̄#
n ). Let [Y +1] -

θ
[Y ]+1 be a representative in C+(∆̄#

n ) of the inverse isomorphism (Y ϑn)−
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in C+(∆̄#
n ). Consider the morphism (7)

[Y +1]−1|∆̇+1
n

-
[θ]−1|

∆̇+1
n [Y ]+1−1|∆̇+1

n
= Y |∆̇+1

n
.

We have an induced pointwise epimorphism

Y |∆̄MOn - Y |∆̇+1
n
S ′O|∆̄MOn ,

which we may use to form the pullback

Z

f

��

� // [Y +1]−1|∆̇+1
n
S ′O|∆̄MOn

[θ]−1|
∆̇+1
n
S′O|∆̄MOn

��
Y |∆̄MOn

� // Y |∆̇+1
n
S ′O|∆̄MOn

in the abelian category Ĉ(∆̄MOn ), i.e. pointwise. An application of Lemma I.61.(2) to the diagonal

sequence of this pullback shows that Z ∈ Ob Ĉ+,∗(∆̄MOn ). We obtain Zα/α = 0 for all 0 6 α 6 0+1;

and we obtain Z0+1/0 = 0. Hence we have Z ∈ Ob Ĉ+(∆̄MOn ).

Suppose given β/α ∈ ∆̄MOn . We claim that Zβ/α -
fβ/α

Yβ/α represents an isomorphism in Ĉ/C.
By Lemma I.64, it suffices to show that

([Y +1]−1|∆̇+1
n
S ′O)β/α -

([θ]−1|
∆̇+1
n
S′O)β/α

(Y |∆̇+1
n
S ′O)β/α

represents an isomorphism in Ĉ/C. Since evaluation at β/α induces a functor from

Ĉ+(∆̄MOn )/C+, split(∆̄MOn ) to Ĉ/C, where C+, split(∆̄MOn ) denotes the full subcategory of C+(∆̄MOn ) con-

sisting of diagrams all of whose morphisms split (in Ĉ or, equivalently, in C), it suffices to show

that

[Y +1]−1|∆̇+1
n
S ′O|∆̄MOn -

[θ]−1|
∆̇+1
n
S′O|∆̄MOn Y |∆̇+1

n
S ′O|∆̄MOn

represents an isomorphism in Ĉ+(∆̄MOn )/C+, split(∆̄MOn ).

Now (−)(−1)S ′O|∆̄MOn induces a functor from C(∆̇n) to Ĉ+(∆̄MOn )/C+, split(∆̄MOn ), since it maps

Csplit(∆̇n) to C+, split(∆̄MOn ) by Lemma I.4, using that idempotents are assumed to split in C. There-

fore, it suffices to show that

([Y +1]−1|∆̇+1
n

)(+1) -
([θ]−1|

∆̇+1
n

)(+1)

(Y |∆̇+1
n

)(+1)

represents an isomorphism in C(∆̇n). Since ([−]−1|∆̇+1
n

)(+1) = (−)|∆̇n
, this means that it suffices

to show that

[Y +1]|∆̇n
-

θ|∆̇n [Y ]+1|∆̇n

represents an isomorphism in C(∆̇n). Since (−)|∆̇n
induces a functor from C+(∆#

n ) to C(∆̇n), it

suffices to show that

[Y +1] -θ [Y ]+1

represents an isomorphism in C+(∆̄#
n ). This, however, follows by choice of θ. This proves the

claim.

7We recall the convention that the inverse of the outer shift applied to a morphism f is written [f ]−1, whereas
f− denotes the inverse morphism, if existent.
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Since idempotents are assumed to split in C, we can conclude from the claim that for all β/α in

∆̄MOn , the entry Zβ/α is isomorphic in Ĉ to an object in C, hence without loss of generality, the

entry Zβ/α is an object of C. So Z ∈ Ob C+(∆̄MOn ).

We remark that

(∗)
Z|∆̇n

= Y |∆̇n
= X

Z|∆̇+1
n

= [Y +1]−1|∆̇+1
n

= (X+1)(−1) ,

where X+1 arises from X by pointwise application of (−)+1. Concerning morphisms, we remark

that

(∗∗)
(Z -f Y |∆̄MOn )|∆̇n

= (X -1X X)

(Z -f Y |∆̄MOn )|∆̇+1
n

= ([Y +1]−1 -[θ]−1

Y )|∆̇+1
n
.

In fact, on ∆̇n, the right hand side column of our pullback vanishes; and on ∆̇+1
n , the lower row

of our pullback is an identity.

Now, (∗) allows to define the periodic prolongation Z̄ ∈ Ob C+(∆̄#
n ) of Z ∈ Ob C+(∆̄MOn ) by

Z̄|∆̄MOn := Z and by the requirement that [Z̄]+1 = [Z̄+1].

We claim that Z̄ϑn = 1[Z̄]+1 in C+(∆̄#
n ). Let Z̄ -f̂ Y be an inverse image of Z -f Y |∆̄MOn under

C+(∆̄#
n ) -

(−)|∆̄MOn C+(∆̄MOn ); cf. Lemma I.13.(1). By (∗∗), we get

(∗∗′)
(Z̄ -f̂ Y )|∆̇n

= (X -1X X)

(Z̄ -f̂ Y )|∆̇+1
n

= ([Y +1]−1 -[θ]−1

Y )|∆̇+1
n
.

We consider the commutative quadrangle

[Z̄]+1 Z̄ϑn //

[f̂ ]+1

��

[Z̄+1]

[f̂+1]
��

[Y ]+1 Y ϑn // [Y +1]

in C+(∆̄#
n ). We restrict it to ∆̇n to obtain the commutative quadrangle

[Z̄]+1|∆̇n

Z̄ϑn|∆̇n //

[f̂ ]+1|∆̇n
��

[Z̄+1]|∆̇n

[f̂+1]|∆̇n
��

[Y ]+1|∆̇n

Y ϑn|∆̇n // [Y +1]|∆̇n

in C(∆̇n), which, using (∗∗′), can be rewritten as

X+1
Z̄ϑn|∆̇n //

θ|∆̇n
��

X+1

1X+1

��
[Y ]+1|∆̇n

Y ϑn|∆̇n // X+1 ,

where we did not distinguish in notation between θ|∆̇n
and its residue class in C(∆̇n), etc.
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Since θ(Y ϑn) = 1[Y +1] in C+(∆̄#
n ), we have θ|∆̇n

(Y ϑn|∆̇n
) = 1X+1 in C(∆̇n). Thus the last quad-

rangle shows that Z̄ϑn|∆̇n
= 1X+1 = 1[Z̄]+1|∆̇n

in C(∆̇n) as well. Since C+(∆̄#
n ) -

(−)|∆̄MOn
∼ C+(∆̄MOn ) is

an equivalence, we conclude that Z̄ϑn = 1[Z̄]+1 in C+(∆̄#
n ); cf. Proposition I.12. This proves the

claim; i.e. we have shown that Z̄ is an n-triangle.

Since Z̄|∆̇n
= X by (∗), this proves the lemma.

In the proof of Lemma I.18, we needed the assumption that idempotents split in C in the equivalent
form that the residue class functor Ĉ - Ĉ/C maps precisely the objects isomorphic to objects of
C to zero – just as Heller did at that point.

Lemma I.19 Given n-triangles X and Y and a morphism

X|∆̇n
-f Y |∆̇n

in C(∆̇n), there exists a morphism X -f̃ Y of n-triangles such that f̃ |∆̇n
= f . In other words,

the restriction functor C+, ϑ=1(∆̄#
n ) -

(−)|∆̇n C(∆̇n) is full.

Proof. Since the restriction functor C+(∆̄#
n ) -

(−)|∆̇n C(∆̇n) is full by Proposition I.11, we find a

morphism X -g Y in C+(∆̄#
n ) such that g|∆̇n

= f .

Let g denote the residue class of g in C+(∆̄#
n ). Since ϑn is a transformation, we have [g]+1(Y ϑn) =

(Xϑn)[g+1]. Since X and Y are n-triangles, both Xϑn and Y ϑn are identities, and this equality

amounts to [g]+1 = [g+1], i.e. the difference [g]+1 − [g+1] factors over an object of C+, split(∆̄#
n ).

Restricting to ∆̇n, the difference

([g]+1 − [g+1])|∆̇n
= (g|∆̇+1

n
)(+1) − f+1

factors over an object of Csplit(∆̇n). Therefore, g|∆̇+1
n
− (f+1)(−1) factors over an object Z of

Csplit(∆̇+1
n ), say, as(

X|∆̇+1
n

-
g|

∆̇+1
n
− (f+1)(−1)

Y |∆̇+1
n

)
=

(
X|∆̇+1

n
-a Z -b Y |∆̇+1

n

)
.

By periodic continuation, it suffices to find a morphism X|∆̄MOn -f̆ Y |∆̄MOn in C+(∆̄MOn ) such that

f̆ |∆̇n
= f and such that f̆ |∆̇+1

n
= (f+1)(−1). I.e. we have to find a morphism X|∆̄MOn -h Y |∆̄MOn

such that h|∆̇n
= 0 and such that h|∆̇+1

n
= ab, for then we may take f̆ := g|∆̄MOn − h.

Note that (ZS ′O|∆̄MOn )|∆̇n
= 0. Note that ZS ′O|∆̄MOn is in C+(∆̄MOn ), hence in C+, split(∆̄MOn ) by Lemma

I.4.

Since S ′O|∆̄MOn is right adjoint to restriction to ∆̇+1
n , we have a morphism X|∆̄MOn -a

′
ZS ′O|∆̄MOn such

that a′|∆̇+1
n

= a.

Since C+(∆̄MOn ) -
(−)|

∆̇+1
n C(∆̇+1

n ) is full by the dual and shifted assertion of Lemma I.13.(1), there

is a morphism ZS ′O|∆̄MOn -b
′
Y |∆̄MOn such that b′|∆̇+1

n
= b.

We may take h := a′b′.
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In Lemmata I.18 and I.19, we do not claim the existence of a coretraction from C(∆̇n) to C+, ϑ=1(∆̄#
n )

to restriction. The construction made in the proof of Lemma I.19 involves e.g. a choice of a lift b′

of b. Cf. [57, II.1.2.13].

The fullness used in the proof of Lemma I.19 to lift b, can also be used to lift a. We have used the
direct argument and thus seen that the lift a′ of a does not involve a choice.

Remark I.20 Suppose that idempotents split in C. By Lemmata I.18 and I.19, the restriction

functor

C+, ϑ=1(∆̄#
n ) -

(−)|∆̇n C(∆̇n)

is full and strictly dense. By Proposition I.12, the restriction functor

C+(∆̄#
n ) -

(−)|∆̇n
∼ C(∆̇n)

is an equivalence. Denoting by C+, ϑ=1(∆̄#
n ) the image of C+, ϑ=1(∆̄#

n ) in C+(∆̄#
n ), we obtain a

full and strictly dense functor C+, ϑ=1(∆̄#
n ) -

(−)|∆̇n C(∆̇n). Since it factors as a faithful embed-

ding C+, ϑ=1(∆̄#
n ) -
�� C+(∆̄#

n ) followed by an equivalence, it is also faithful. We end up with

equivalences

C+, ϑ=1(∆̄#
n ) -

(−)|∆̇n
∼ C(∆̇n) , C+, ϑ=1(∆̄#

n ) -∼ C+(∆̄#
n ) .

I.3.2 An omnibus lemma

Suppose given n, m > 1. Concerning the category C+, periodic(∆̄#
n ) of periodic n-pretriangles

and its full subcategory C+, split, periodic(∆̄#
n ), cf. §I.2.5.3; concerning the category C+, ϑ=1(∆̄#

n ) of

n-triangles, cf. Definition I.5.(ii). Note that

C+, ϑ=1(∆̄#
n ) ⊆ C+, periodic(∆̄#

n ) ⊆ C+(∆̄#
n ) ,

and that the first inclusion is full.

Lemma I.21

(1) Let X be an n-triangle, and let ∆̄n
�p ∆̄m be a morphism of periodic linearly ordered sets.

Then Xp#, obtained by “restriction along p”, is an m-triangle.

(2) Let X be a (2n+ 1)-triangle. Then Xfn, obtained by folding, is an (n+ 1)-triangle.

(3) The category C+, ϑ=1(∆̄#
n ) of n-triangles is a full additive subcategory of the category

C+, periodic(∆̄#
n ) of periodic n-pretriangles, closed under direct summands.

(4) Suppose given an isomorphism X -f Y in C+, periodic(∆̄#
n ). If X is an n-triangle, then Y

is an n-triangle.

(5) Let X -f Y be a morphism in C+,periodic(∆̄#
n ) such that f |∆̇n

is an isomorphism. Then f

is an isomorphism.

(6) Let X and Y be n-triangles. Suppose given an isomorphism X|∆̇n
-u∼ Y |∆̇n

in C(∆̇n).

Then there exists an isomorphism X -ũ∼ Y in C+, ϑ=1(∆̄#
n ) such that ũ|C(∆̇n) = u .
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(7) If X ∈ Ob C+, split, periodic(∆̄#
n ), then X is an n-triangle.

Note that Lemma I.21.(5) applies in particular to n-triangles and a morphism of n-triangles.

Proof. Ad (1). In C+(∆̄#
m), we have

(Xp#)ϑm = (Xϑn)p# = (1[X]+1)p# = 1[Xp#]+1 .

Ad (2). In C+(∆̄#
n+1), we have

(Xf
n
)ϑn+1 = (Xϑ2n+1)f

n
= (1[X]+1)f

n
= 1[Xf

n
]+1 .

Ad (3). We have to show that

X, Y ∈ Ob C+, ϑ=1(∆̄#
n ) ⇐⇒ X ⊕ Y ∈ Ob C+, ϑ=1(∆̄#

n ) .

But since ϑn is a morphism between additive functors, we have (X ⊕ Y )ϑn = 1[X⊕Y ]+1 if and

only if Xϑn = 1[X]+1 and Y ϑn = 1[Y ]+1 . In fact, (X ⊕ Y )ϑn identifies with
(
Xϑn 0

0 Y ϑn

)
.

Ad (4). Since f |∆̇n
is an isomorphism in C(∆̇n), so is its image in C(∆̇n). Hence the image of f

in C+(∆̄#
n ) is an isomorphism by Proposition I.12. Consider the commutative quadrangle

[X]+1 [f ]+1

∼
//

Xϑn o
��

[Y ]+1

Y ϑno
��

[X+1]
[f+1]

∼
// [Y +1]

in C+(∆̄#
n ). Since [f ]+1 = [f+1] by assumption, we conclude from Xϑn = 1[X]+1 that Y ϑn =

1[Y ]+1 .

Ad (5). It suffices to show that given 0 6 i 6 j 6 n, the morphism fj/i is an isomorphism in C.
In fact, we have a morphism of exact sequences

( fi/0, fj/0, fj/i, f
+1
i/0 , f

+1
j/0 )

in Ĉ, whose entries except possibly fj/i are isomorphisms; hence also fj/i is isomorphic.

Ad (6). This follows by Lemma I.19 using (5).

Ad (7). We have [X]+1 ' 0 in C+(∆̄#
n ), whence Xϑn = 1[X]+1 ∈ C+(∆̄#

n )([X]+1, [X]+1).

I.3.3 Turning n-triangles

Let n > 2.

Lemma I.22 Given an n-triangle X ∈ Ob C+, ϑ=1(∆̄#
n ), we define Y ∈ Ob C+, periodic(∆̄#

n ) by

letting

(Yj/i -
y
Yj′/i′) := (Xi+1/j

-x Xi′+1/j′)

for 0 6 i 6 j 6 n and 0 6 i′ 6 j′ 6 n such that i 6 i′ and j 6 j′, and by letting

(Yn/i -
y
Y0+1/i) := (Xi+1/n

-−x Xi+1/0+1)

for 0 6 i 6 n. Then [X]+1
− := Y is an n-triangle.
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Proof. Let

2∆̄n−1
-hn ∆̄n

i+j -

{
(i+ 1)+j/2 if j ≡2 0

0+(j+1)/2 if j ≡2 1 ,

where i ∈ [0, n− 1] and j ∈ Z. The map hn is a morphism of periodic posets. We claim that

Y = Xh#
n fn−1 .

Once this claim is shown, we are done by Lemma I.21.(1, 2).

Note that (Xh#
n )l/k = Xlhn/khn for k, l ∈ 2∆̄n−1 with k 6 l. For 0 6 i 6 n and 1 6 j 6 0+1, we

obtain

(Xh#
n fn−1)j/i =


(Xh#

n )(j−1)+1/(j−1) for i = 0 and 1 6 j 6 n

(Xh#
n )(i−1)+2/(i−1)+1 for 1 6 i 6 n and j = 0+1

(Xh#
n )(j−1)+1/(i−1)+1 ⊕ (Xh#

n )(i−1)+2/(j−1) for 1 6 i 6 j 6 n

0 for i = 0 and j = 0+1

=


X0+1/j for i = 0 and 1 6 j 6 n

Xi+1/0+1 for 1 6 i 6 n and j = 0+1

Xi+1/j for 1 6 i 6 j 6 n

0 for i = 0 and j = 0+1 ,

and also the morphisms result as claimed.

I.3.4 Application to the axioms of Verdier

Recall that (C,T, ϑ) is a Heller triangulated category.

Proposition I.23 Suppose that idempotents split in C. The tuple (C,T), equipped with the set of

2-triangles as the set of distinguished triangles, is a triangulated category in the sense of Verdier

[56, Def. 1-1].

Proof. We number the axioms of Verdier as in loc. cit.

Ad (TR 1). Stability under isomorphism of the set of distinguished triangles follows from Lemma

I.21.(4).

The possible extension of a morphism to a distinguished triangle follows by Lemma I.18.

The distinguished triangle (X,X, 0) on the identity of an object X in C follows by Lemma

I.21.(7). Alternatively, one can use that each morphism is contained in a distinguished triangle

and the fact that a distinguished triangle is a long exact sequence in Ĉ.

Ad (TR 2). Suppose given a distinguished triangle

X -u Y -v Z -w X+1 .
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By Lemma I.22, we obtain the distinguished triangle

X+1 -u
+1

Y +1 -v
+1

Z+1 -−w
+1

X+2 .

By Lemma I.21.(1), applied to the morphism ∆̄2
� ∆̄2 that sends 0 to 2−1, 1 to 0 and 2 to 1,

we obtain the distinguished triangle

Y -v Z -−w X+1 -u
+1

Y +1 .

By Lemma I.21.(4), we obtain the distinguished triangle

Y -v Z -w X+1 -−u
+1

Y +1 .

Ad (TR 3). The possible completion of a morphism in C(∆̇2) to a morphism of distinguished

triangles follows from Lemma I.19.

Ad (TR 4). The octahedral axiom, i.e. the compatibility of forming cones with composition of

morphisms, follows from Lemma I.18, applied to the case n = 3, for by Lemma I.21.(6), we may

arbitrarily choose completions to distinguished triangles.

Note that 3-triangles are particular octahedra, in the language of [8, 1.1.6]. Using 3-triangles,

we will now verify the axiom proposed in [8, 1.1.13].

Lemma I.24 Suppose given a 3-triangle T in Ob C+, ϑ=1((2∆̄1)#), depicted as follows.

0

0 // Z+1

OO

0 // Z ′′
w′′ //

OO

+

Y +1

v+1

OO

0 // Y ′
v′ //

OO

+

Z ′
w′ //

z′

OO

+

X+1

u+1

OO

0 // X
u //

OO

+

Y
v //

y

OO

+

Z //

z

OO

+

0

OO

Then

T f1 = ( Y -
vz

Z ′ -
(z′ w′ )

Z ′′ ⊕X+1 -

„
w′′

−u+1

«
Y +1 )

and

Ts#f1 = (Z ′−1 -
w′−1u

Y -
(y v )

Y ′ ⊕ Z -

„
v′

−z

«
Z ′ )

are distinguished triangles, where 2∆̄1
�s 2∆̄1 is the morphism of periodic posets determined by

0s = 1−1, 1s = 0, 0+1s = 1 and 1+1s = 0+1.

Proof. This follows by Lemma I.21.(1, 2).
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I.3.5 n-triangles and strictly exact functors

Let C -F C ′ be a strictly exact functor between Heller triangulated categories (C,T, ϑ) and

(C ′,T′, ϑ′). Let n > 0.

Lemma I.25 Given an n-triangle X ∈ Ob C+, ϑ=1(∆̄#
n ), the diagram X(F+(∆̄#

n )), obtained by

pointwise application of F to X, is an n-triangle, i.e. an object of C ′+, ϑ′=1(∆̄#
n ).

Proof. Using F T′ = TF as well as [X]+1 = [X+1], we obtain

[XF+(∆̄#
n )]+1 = X(F+(∆̄#

n ))(C+(Tn)) = X(F+(Tn))

= X(C+(Tn))(F+(∆̄#
n )) = [X]+1(F+(∆̄#

n ))

= [X+1](F+(∆̄#
n )) = X(T+(∆̄#

n ))(F+(∆̄#
n ))

= X((TF )+(∆̄#
n )) = X((F T′)+(∆̄#

n ))

= X(F+(∆̄#
n ))(T′+(∆̄#

n )) = [(X(F+(∆̄#
n )))+1] .

Moreover,

X(F+(∆̄#
n ))ϑ′n = Xϑn(F+(∆̄#

n )) = 1[X]+1(F+(∆̄#
n )) = 1[XF+(∆̄#

n )]+1 .

I.3.6 A remark on spectral sequences

Verdier calls certain pretriangles objets spectraux (spectral objects); cf. [57, Sec. II.4]. We shall
explain the connection to spectral sequences in our language.

Consider the linearly ordered set Z∞ := {−∞}tZt{+∞}. Let Z̄##
∞ be the subposet of Z̄#

∞(∆1)

consisting of those δ/β//γ/α for which

δ−1 6 α 6 β 6 γ 6 δ 6 α+1 ,

where α, β, γ, δ ∈ Z̄∞. A spectral object, in a slightly different sense from [57, II.4.1.2], is an

object of C+(Z̄#
∞). The spectral sequence functor

C+(Z̄#
∞) -E Ĉ(Z̄##

∞ )

X - XE ,

is defined by

XE(δ/β//γ/α) := Im(Xγ/α
-Xδ/β)

for δ/β//γ/α ∈ Z̄##
∞ , equipped with the induced morphisms.

Lemma I.26 Given α, β, γ, δ, ε ∈ Z̄∞ such that

ε−1 6 α 6 β 6 γ 6 δ 6 ε 6 α+1 ,

and given X ∈ Ob C+(Z̄#
∞), the morphisms appearing in XE form a short exact sequence

XE(ε/β//γ/α) -r XE(ε/β//δ/α) - XE(ε/γ//δ/α) .
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Proof. This follows by Lemma I.62, applied to the diagram

(Xγ/α , Xδ/α , Xε/α , Xγ/β , Xδ/β , Xε/β , Xγ/γ︸︷︷︸
=0

, Xδ/γ , Xε/γ ) .

Note that we may apply a shift β/α - α+1/β to the indices, i.e. an outer shift to X, before
applying Lemma I.26, to get another short exact sequence.

The usual exact sequences of spectral sequence terms can be derived from Lemma I.26. Cf.
[57, II.4.2.6], [12, App.].

I.4 The stable category of a Frobenius category is

Heller triangulated

Let F = (F ,T, I, ι,P, π) be a functorial Frobenius category; cf. Definition I.45.(3). Let B ⊆ F
denote the full subcategory of objects in the image of I, coinciding with the full subcategory of

the objects in the image of P; then B is a sufficiently big full subcategory of bijectives in F .

We shall prove in Theorem I.32 below that the classical stable category F carries a Heller triangu-
lation.

I.4.1 Definition of F�(∆̄#
n ), modelling F+(∆̄#

n )

We shall model, in the sense of Proposition I.31 below, the category F+(∆̄#
n ) by a category F�(∆̄#

n ).
Morally, we represent weak squares (+) in F by pure squares (�) in F . To do so, we have to represent
the zeroes on the boundaries by bijective objects.

Let n > 0. Concerning the notion of a pure square, see §I.6.4. Let F�(∆̄#
n ) ⊆ F(∆̄#

n ) be the

full subcategory defined by

ObF�(∆̄#
n ) :=


X ∈ ObF(∆̄#

n ) :

1) Xα/α and Xα+1/α are in ObB for all α ∈ ∆̄n

2) For all δ−1 6 α 6 β 6 γ 6 δ 6 α+1 in ∆̄n ,

the quadrangle

Xγ/β
x // Xδ/β

Xγ/α x
//

x

OO

�

Xδ/α

x

OO

is a pure square.


.

Given n, m > 0, a morphism ∆̄n
�p ∆̄m induces a morphism F�(p#), usually, and by abuse of

notation, denoted by p#.

Given an exact functor F -F F̃ between functorial Frobenius categories that sends bijectives to

bijectives, we obtain an induced functor F�(∆̄#
n ) -F�(∆̄#

n ) F̃�(∆̄#
n ) by pointwise application

of F .
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Denote by

F�(∆̄#
n ) -M F+(∆̄#

n )

F�(∆̄#
n ) -M

′
F+(∆̄#

n )

F+(∆̄#
n ) -M

′′
F+(∆̄#

n )

F -N F
F(∆̇n) -N

′
F(∆̇n)

the respective residue class functors, welldefined by Lemma I.71. In particular, M = M ′M ′′.

I.4.2 Folding for F�(∆̄#
n )

We model, in the sense of Remark I.27, the folding operation f introduced in §I.1.2.2.

Suppose given n > 0. Let the periodic functor

F�((2∆̄n)#) -f̃n F�(ρ t∆n
#

)

X - X f̃n

be determined by the following data. Writing Y := X f̃n, we let

(Yα/ρ -y Yβ/ρ) :=
(
Xα+1/α

-x Xβ+1/β

)
Yρ/ρ := 0

Yρ+1/ρ := 0

(Yβ/ρ -y Yβ/α) :=
(
Xβ+1/β

-(x x )
Xβ+1/α+1 ⊕Xα+2/β

)
(Yβ/α -y Yδ/γ) :=

(
Xβ+1/α+1 ⊕Xα+2/β

-

“
x 0
0 x

”
Xδ+1/γ+1 ⊕Xγ+2/δ

)
(Yδ/γ -y Yρ+1/γ) :=

(
Xδ+1/γ+1 ⊕Xγ+2/δ

-

“
x
−x
”
Xγ+2/γ+1

)
for α, β, γ, δ ∈ ∆n with α 6 β, with γ 6 δ and with β/α 6 δ/γ. The remaining morphisms

are given by composition.

We claim that X f̃n is an object of F�(ρ t∆n
#

).

In fact, by Lemma I.52, we are reduced to considering the quadrangles of Y inside ∆MOn , i.e. the

quadrangles

(i) on (γ/α, δ/α, γ/β, δ/β) for α, β, γ, δ ∈ ∆n with α 6 β 6 γ 6 δ;

(ii) on (γ/ρ, δ/ρ, γ/β, δ/β) for β, γ, δ ∈ ∆n with β 6 γ 6 δ;

(iii) on (γ/α, ρ+1/α, γ/β, ρ+1/β) for α, β, γ ∈ ∆n with α 6 β 6 γ;

(iv) and on (β/ρ, ρ+1/ρ, β/α, ρ+1/α) for α, β ∈ ∆n with α 6 β.
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Another application of loc. cit. reduces case (i) to case (ii) (or (iii)). Still another application

of loc. cit. reduces the cases (ii) and (iii) to case (iv). Now the quadrangle in case (iv) is in fact

a pure square, as follows from X ∈ ObF�(∆̄#
n ) and the definition of a pure square via its pure

short exact diagonal sequence.

The construction of Y is functorial in X.

Remark I.27 We have f̃nM
′ = M ′fn, and thus f̃nM = M f

n
for n > 0.

F�((2∆̄n)#)
f̃n //

M ′

��

F�(ρ t∆n
#

)

M ′

��

F+((2∆̄n)#)
fn //

M ′′

��

F+(ρ t∆n
#

)

M ′′

��

F+((2∆̄n)#)
f
n // F+(ρ t∆n

#
)

Example I.28 Let n = 2. Note that 2∆̄2 ' ∆̄5. Let X ∈ ObF�((2∆̄2)#), depicted as follows.

X0+1/0+1
x // X1+1/0+1

OO

x //

�

X2+1/0+1

OO

x //

�

X0+2/0+1

OO

x //

�

X1+2/0+1

OO

x //

�

X2+2/0+1

OO

x //

�

X0+3/0+1

OO

X2/2
x // X0+1/2

x

OO

x //

�

X1+1/2

x

OO

x //

�

X2+1/2

x

OO

x //

�

X0+2/2

x

OO

x //

�

X1+2/2

x

OO

x //

�

X2+2/2

x

OO

X1/1
x // X2/1

x

OO

x //

�

X0+1/1

x

OO

x //

�

X1+1/1

x

OO

x //

�

X2+1/1

x

OO

x //

�

X0+2/1

x

OO

x //

�

X1+2/1

x

OO

X0/0
x // X1/0

x

OO

x //

�

X2/0

x

OO

x //

�

X0+1/0

x

OO

x //

�

X1+1/0

x

OO

x //

�

X2+1/0

x

OO

x //

�

X0+2/0

x

OO

X2−1/2−1
x // X0/2−1

x

OO

x //

�

X1/2−1

x

OO

x //

�

X2/2−1

x

OO

x//

�

X0+1/2−1

x

OO

x //

�

X1+1/2−1

x

OO

x //

�

X2+1/2−1

x

OO

OO
�

OO
�

OO
�

OO
�

OO
�

OO

Note that the objects on the boundary of the diagram,

. . . , X2−1/2−1 , X0/0 , X1/1 , X2/2 , X0+1/0+1 , . . .

. . . , X2+1/2−1 , X0+2/0 , X1+2/1 , X2+2/2 , X0+3/0+1 , . . .

are all supposed to be in ObB.
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Note that ρ t∆2 ' ∆3. Folding turns X into X f̃2 ∈ ObF�(ρ t∆2
#

), depicted as follows.

0 //

X2+1/2+1⊕X2+2/2

“
x
−x
”
// X2+2/2+1

OO

//

�

X1+1/1+1⊕X1+2/1

“
x 0
0 x

”
// X2+1/1+1⊕X1+2/2

“
x
−x
”
//

“
x 0
0 x

” OO
�

X1+2/1+1

x

OO

//

�

X0+1/0+1⊕X0+2/0

“
x 0
0 x

”
// X1+1/0+1⊕X0+2/1

“
x 0
0 x

”
//

“
x 0
0 x

” OO
�

X2+1/0+1⊕X0+2/2

“
x
−x
”
//

“
x 0
0 x

” OO
�

X0+2/0+1

x

OO

//

�

0 // X0+1/0
x //

(x x )

OO

�

X1+1/1
x //

(x x )

OO

�

X2+1/2 //

(x x )

OO

�

0

OO

X2−1/2−1⊕X2/2−2

“
x
−x
”
// X2/2−1

(x x ) //

OO

�

X2/0⊕X0+1/2−1

“
x 0
0 x

”
//

“
x
−x
” OO

�

X2/1⊕X1+1/2−1

“
x 0
0 x

”
//

“
x
−x
” OO

�

X2/2⊕X2+1/2−1

“
x
−x
” OOOO

OO
�

OO
�

OO
�

OO

I.4.3 Some 1-epimorphic functors

Let n > 0. Concerning 1-epimorphy, cf. §I.6.8.

Lemma I.29 The restriction functor

F�(∆̄#
n ) -

(−)|∆̇n F(∆̇n)

X - X|∆̇n

is 1-epimorphic.

Proof. We claim that the functor (−)|∆̇n
satisfies the requirements (i, ii) of Corollary I.76, which

then implies that it is 1-epimorphic.

Suppose given Y ∈ ObF(∆̇n). We construct an object Ỹ of F�(∆̄#
n ) such that Ỹ |∆̇n

= Y by

the following procedure.

Write ∆̄M, ·n := ∆̄Mn r {0/0} and ∆̄O, ·n := ∆̄On r {0+1/0}; cf. §I.2.1.1.

On ∆̄M, ·n , we proceed by induction to construct a diagram for which, moreover, the morphisms

Ỹγ/α - Ỹγ/β are purely monomorphic for all α, β, γ ∈ ∆̄n with 0 6 α 6 β 6 γ 6 α+1, and,

moreover, for which Ỹα+1/α = 0 for all 0 6 α.

First of all, let Ỹ |∆̇n
:= Y .

Assume given ` > 0 such that ỸκM(`′), together with all diagram morphisms pointing to position

κM(`′), is already constructed for all `′ < `, but such that ỸκM(`) is not yet constructed; cf. §I.2.1.2.

If κM(`) is of the form α/α for some α ∈ ∆̄n with 0 < α, then choose a pure monomorphism

Ỹα/(α−1)
-r Ỹα/α into an object Ỹα/α of B
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We do not necessarily choose Ỹα/(α−1) ι here.

If κM(`) = α+1/α for some α ∈ ∆̄n with 0 6 α, then let Ỹα+1/α := 0.

If κM(`) is of the form β/α for some α, β ∈ ∆̄n with 0 < α < β < α+1, then we let

( Ỹ(β−1)/(α−1) , Ỹ(β−1)/α , Ỹβ/(α−1) , Ỹβ/α )

be a pushout. Recall that by induction assumption, Ỹ(β−1)/(α−1)
-r Ỹ(β−1)/α is purely monomor-

phic. So Ỹβ/(α−1)
-r Ỹβ/α is purely monomorphic as well.

On ∆̄O, ·n , we proceed dually, and finally glue along ∆̇n to obtain the sought Ỹ .

Ad (i). The restriction map F(∆̄#
n )(Ỹ1, Ỹ2) -

(−)|∆̇n
F(∆̇n)(Y1, Y2) is surjective for Y1, Y2 ∈

ObF(∆̇n), as we see by induction, using bijectivity to prolong morphisms and universal prop-

erties of occurring pushouts and pullbacks.

Ad (ii). Suppose given X ∈ ObF�(∆̄#
n ). Let X ′′ := (X|∆̇n

)̃ ∈ ObF�(∆̄#
n ). Let X ′ ∈

ObF�(∆̄#
n ) be defined by X ′|∆̄M, ·n

= X ′′|∆̄M, ·n
and by X ′|∆̄O, ·n

= X|∆̄O, ·n
.

There is a morphism X ′ -X that restricts to the identity of X|∆̄O, ·n
on ∆̄O, ·n , and hence to the

identity of X|∆̇n
on ∆̇n.

There is a morphism X ′ -X ′′ that restricts to the identity of X ′′|∆̄M, ·n
on ∆̄M, ·n , and hence to

the identity of X|∆̇n
on ∆̇n.

Now suppose given X1, X2 ∈ ObF�(∆̄#
n ) such that X1|∆̇n

= X2|∆̇n
. Then there is a sequence

of morphisms

X1
� X ′1 - X ′′1 = X ′′2 � X ′2 -X2

each of which restricts to the identity of X1|∆̇n
= X2|∆̇n

on ∆̇n, as required.

Lemma I.30 The functors

F(∆̇n) -N(∆̇n) F(∆̇n)

F(∆̇n) -N(∆̇n)N ′ F(∆̇n)

are 1-epimorphic.

Proof. Since N ′ is full and dense, it is 1-epimorphic by Corollary I.77. Therefore, it suffices to

show that N(∆̇n) is 1-epimorphic.

We will apply Lemma I.75. Choosing representatives of the occurring morphisms Zi - Zi+1 in

an object Z of F(∆̇n), where i ∈ [1, n− 1], we see that N(∆̇n) is dense.

To fulfill condition (C) of loc. cit., we will show that given X, Y ∈ ObF(∆̇n) and a morphism

(X)(N(∆̇n)) -f (Y )(N(∆̇n)), there are morphisms X ′ -
h
X and X ′ -

f ′
Y in F(∆̇n) such that

(h)(N(∆̇n)) is an isomorphism and such that (h)(N(∆̇n))f = (f ′)(N(∆̇n)).

We proceed by induction on k ∈ [1, n]. Suppose given a diagram

X̃1
x̃ //

f̃1

��

X̃2
x̃ //

f̃2

��

X̃3
x̃ //

f̃3

��

· · · x̃ // X̃n−1
x̃ //

f̃n−1

��

X̃n

f̃n
��

Y1
y // Y2

y // Y3
y // · · · y // Yn−1

y // Yn
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in F such that x̃f̃i+1 = f̃iy for i ∈ [1, k − 1], and such that x̃f̃i+1 ≡B f̃iy for i ∈ [k, n],

and a morphism X̃ -h̃ X in F(∆̇n) such that (h̃)(N(∆̇n)) is an isomorphism and such that

(h̃)(N(∆̇n))f is the morphism in F(∆̇n) represented by f̃ .

If k < n, we shall construct a morphism X̃ ′ -
h̃′

X̃ in F(∆̇n) with each h̃′iN being an isomorphism,

and a diagram

X̃ ′1
x̃′ //

f̃ ′1
��

X̃ ′2
x̃′ //

f̃ ′2
��

X̃ ′3
x̃′ //

f̃ ′3
��

· · · x̃′ // X̃ ′n−1
x̃ //

f̃ ′n−1

��

X̃ ′n

f̃ ′n
��

Y1
y // Y2

y // Y3
y // · · · y // Yn−1

y // Yn

in F such that x̃′f̃ ′i+1 = f̃ ′iy for i ∈ [1, k], such that x̃′f̃ ′i+1 − f̃ ′iy ≡B 0 for i ∈ [k + 1, n], and such

that h̃′if̃i − f̃ ′i ≡B 0 for all i ∈ [1, n]. For then we obtain a commutative diagram in F(∆̇n)

X̃ ′

h̃′

��
f̃ ′

��0
00000000000000

X̃

h̃
�� f̃   AAAAAAAA

X
f
// Y ,

in which we denoted morphisms by their representatives.

Let X̃k
-rj B be a pure monomorphism to an object B in B, and let x̃f̃k+1 − f̃ky = jg. Let

X̃ ′ := ( X̃1
-̃x · · · -̃x X̃k

-( x̃ j )
X̃k+1 ⊕B -

“
x̃
0

”
X̃k+2

-̃x · · · -̃x X̃n ) ,

and let

f̃ ′i :=

 f̃i for i ∈ [1, n] r {k + 1}(
f̃k+1
−g

)
for i = k + 1

, h̃′i :=

 1X̃i for i ∈ [1, n] r {k + 1}(
1X̃k+1

0

)
for i = k + 1

.

Proposition I.31 The residue class functor F�(∆̄#
n ) -M F+(∆̄#

n ) is 1-epimorphic.

Proof. Consider the commutative quadrangle

F�(∆̄#
n )

M //

(−)|∆̇n
��

F+(∆̄#
n )

(−)|∆̇n
��

F(∆̇n)
N(∆̇n)N ′ // F(∆̇n) .

Therein, the functor F�(∆̄#
n ) -

(−)|∆̇n F(∆̇n) is 1-epimorphic by Lemma I.29. The functor

F(∆̇n) -N(∆̇n)N ′ F(∆̇n) is 1-epimorphic by Lemma I.30. The functor F+(∆̄#
n ) -

(−)|∆̇n F(∆̇n)

is an equivalence by Proposition I.12. Hence by Remark I.74, the functor F�(∆̄#
n ) -M F+(∆̄#

n )

is 1-epimorphic.

We do not claim that the residue class functor F�(∆̄#
n ) -N(∆̄#

n )
F+(∆̄#

n ) is 1-epimorphic.
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I.4.4 Construction of ϑ

Let n > 0. In the notation of Lemma I.72, we let C := ∆̄#
n ; the role of the category called E

there is played by F here; we let G := F�(∆̄#
n ); and finally, we let H := F+(∆̄#

n ). Note that

F+(∆̄#
n ) is a characteristic subcategory of F(∆̄#

n ).

The tuples

I(n) =
((
IX,β/α

)
β/α∈∆̄#

n

)
X∈ObF�(∆̄#

n )

:=

((
Xβ/α

-r(x x )
Xβ/β ⊕Xα+1/α

-

“
x
−x
”

Xα+1/β

)
β/α∈∆̄#

n

)
X∈ObF�(∆̄#

n )

J(n) =
((
JX,β/α

)
β/α∈∆̄#

n

)
X∈ObF�(∆̄#

n )

:=

((
Xβ/α

-rXβ/α ι Xβ/α I = X+1
β/α P -

X+1
β/α

π

X+1
β/α

)
β/α∈∆̄#

n

)
X∈ObF�(∆̄#

n )

are ∆̄#
n -resolving systems, inducing an isomorphism TI(n)

-αI(n), J(n)

∼ TJ(n) by Lemma I.72.(2).

Recall that F+(∆̄#
n ) -M

′′
F+(∆̄#

n ) denotes the residue class functor. We have

TI(n) M
′′ = M F+(Tn) = M [−]+1

TJ(n) M
′′ = M T+(∆̄n) = M [−+1] .

Since M is 1-epimorphic by Proposition I.31, we obtain

F�(∆̄#
n )

TI(n)
--

TJ(n)

11

M
��

F+(∆̄#
n )

M ′′

��
F+(∆̄#

n )
[−]+1

--

[−+1]

11 F+(∆̄#
n ) ,

αI(n), J(n)��

ϑn��

where ϑn is characterised by this commutative diagram, i.e. by

αI(n), J(n) ? M
′′ = M ? ϑn .

Since αI(n), J(n) is an isomorphism, so is ϑn. Varying n, this defines ϑ = (ϑn)n>0.

Theorem I.32 The tuple ϑ = (ϑn)n>0 is a Heller triangulation on F .

Proof. According to Definition I.5.(i), we have to show that the following conditions (∗) and

(∗∗) hold.

(∗) For m, n > 0, for a morphism ∆̄n
�p ∆̄m and for an object Y ∈ ObF+(∆̄#

n ), we have

(Y p#)ϑm = (Y ϑn)p# .
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(∗∗) For n > 0 and for an object Y ∈ ObF+((2∆̄n)#), we have

(Y f
n
)ϑn+1 = (Y ϑ2n+1)f

n
.

Ad (∗). Recall that p# stands for F+(p#), and that p# stands for F�(p#). By Proposition I.31,

we may assume Y = XM for some X ∈ ObF�(∆̄#
n ). Then

(XMp#)ϑm = (Xp#M)ϑm = (Xp#αI(m), J(m))M
′′

(XMϑn)p# = (XαI(n), J(n)M
′′)p# = (XαI(n), J(n)p

#)M ′′ ,

so that it suffices to show that Xp#αI(m), J(m) = XαI(n), J(n)p
#.

Starting with Xp# , the object Xp# TI(m) is calculated by means of (IXp#, β/α)β/α∈∆̄#
m

; whereas

X TI(n) is calculated by means of (IX, δ/γ)δ/γ∈∆̄#
n

, so that X TI(n) p
# can be regarded as being

calculated by means of (IX,βp/αp)β/α∈∆̄#
m

. But

IX,βp/αp =

(
Xβp/αp

-r(x x )
Xβp/βp ⊕X(αp)+1/αp

-

“
x
−x
”
X(αp)+1/βp

)
= IXp#, β/α ,

whence Xp# TI(m) = X TI(n) p
#.

Next, starting with Xp# , the object Xp# TJ(m) is calculated by means of (JXp#, β/α)β/α∈∆̄#
m

;

whereas X TJ(n) p
# can be regarded as being calculated by means of (JX,βp/αp)β/α∈∆̄#

m
. But

JX,βp/αp =
(
Xβp/αp

-rXβp/αpι Xβp/αp I = X+1
βp/αp P -

X+1
βp/αp

π

X+1
βp/αp

)
= JXp#, β/α ,

whence Xp# TJ(m) = X TJ(n) p
#.

Now

Xp# TI(m)
-Xp#αI(m), J(m)

∼ Xp# TJ(m)

is induced by (IXp#, β/α)β/α∈∆̄#
m

and by (JXp#, β/α)β/α∈∆̄#
m

; whereas

X TI(n) p
# -XαI(n), J(n)p

#

∼ X TJ(n) p
#

can be regarded as being induced by (IX,βp/αp)β/α∈∆̄#
m

and by (JX,βp/αp)β/α∈∆̄#
m

. We have just

seen, however, that these pairs of tuples coincide.

Ad (∗∗). By Proposition I.31, we may assume Y = XM for some X ∈ ObF�((2∆̄n)#). By

Remark I.27, we have

(XM f
n
)ϑn+1 = (X f̃nM)ϑn+1 = (X f̃nαI(n+1), J(n+1))M

′′

(XMϑ2n+1)f
n

= (XαI(2n+1), J(2n+1)M
′′)f

n
= (XαI(2n+1), J(2n+1)fn)M ′′ ,

so that it suffices to show that X f̃nαI(n+1), J(n+1) = XαI(2n+1), J(2n+1)fn .

Starting with X f̃n , the object X f̃n TI(n+1) is calculated by means of (IX f̃n, β/α
)
β/α∈ ρt∆n

# ; whereas

X TI(2n+1) fn can be regarded as being calculated by means of the tuple of pure short exact

sequences consisting of
0 at (ρ/ρ)+z, z ∈ Z

IX, (α+1/α)+z at (α/ρ)+z, α ∈ ∆n , z ∈ Z

IX, (β+1/α+1)+z ⊕ IX, (α+2/β)+z at (β/α)+z, α, β ∈ ∆n , α 6 β, z ∈ Z .
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We have IX f̃n, (ρ/ρ)+z = 0 for z ∈ Z. For α ∈ ∆n , we have

IX f̃n, α/ρ
=

(
Xα+1/α

-r(x x )
Xα+1/α+1 ⊕Xα+2/α

-

“
x
−x
”
Xα+2/α+1

)
= IX,α+1/α ,

and accordingly at (α/ρ)+z for z ∈ Z. Moreover, for α, β ∈ ∆n with α 6 β, we have

IX f̃n, β/α
=(

Xβ+1/α+1 ⊕Xα+2/β
-r“

x 0 x 0
0 x 0 −x

”
Xβ+1/β+1 ⊕Xβ+2/β ⊕Xα+3/α+1 ⊕Xα+2/α+2 -

0@ x 0
0 −x
−x 0

0 −x

1A
Xα+3/β+1 ⊕Xβ+2/α+2

)
and

IX,β+1/α+1 ⊕ IX,α+2/β =(
Xβ+1/α+1 ⊕Xα+2/β

-r“
x x 0 0
0 0 x x

”
Xβ+1/β+1 ⊕Xα+3/α+1 ⊕Xα+2/α+2 ⊕Xβ+2/β

-

0@ x 0
−x 0

0 x
0 −x

1A
Xα+3/β+1 ⊕Xβ+2/α+2

)
Accordingly at (β/α)+z for z ∈ Z.

Since there is an isomorphism from IX f̃n, α/ρ
to IX,β+1/α+1 ⊕ IX,α+2/β that has identities on the

first and on the third terms of the short exact sequences, completed by

Xβ+1/β+1 ⊕Xβ+2/β ⊕Xα+3/α+1 ⊕Xα+2/α+2 -

0@1 0 0 0
0 0 0 1
0 1 0 0
0 0 −1 0

1A
∼ Xβ+1/β+1 ⊕Xα+3/α+1 ⊕Xα+2/α+2 ⊕Xβ+2/β

on the second terms, the characterisation in Lemma I.72.(1) shows that we end up altogether

with X f̃n TI(n+1) = X TI(2n+1) fn.

Starting with X f̃n , the object X f̃n TJ(n+1) is calculated by means of (JX f̃n, β/α
)
β/α∈ ρt∆n

# ;

whereas X TJ(2n+1) fn can be regarded as being calculated by means of the tuple of pure short

exact sequences consisting of
0 at (ρ/ρ)+z, z ∈ Z

JX, (α+1/α)+z at (α/ρ)+z, α ∈ ∆n , z ∈ Z

JX, (β+1/α+1)+z ⊕ JX, (α+2/β)+z at (β/α)+z, α, β ∈ ∆n , α 6 β, z ∈ Z .

We have JX f̃n, (ρ/ρ)+z = 0 for z ∈ Z. For α ∈ ∆n , we have

JX f̃n, α/ρ
=
(
Xα+1/α

-rXα+1/α ι
Xα+1/α I = X+1

α+1/α P -
X+1

α+1/α
π

X+1
α+1/α

)
= JX,α+1/α ,

and accordingly at (α/ρ)+z for z ∈ Z.

Moreover, for α, β ∈ ∆n with α 6 β, we have

JX f̃n, β/α
=

(
Xβ+1/α+1 ⊕Xα+2/β

-r(Xβ+1/α+1⊕Xα+2/β) ι

(Xβ+1/α+1 ⊕Xα+2/β) I = (Xβ+1/α+1 ⊕Xα+2/β)+1 P -
(Xβ+1/α+1⊕Xα+2/β)+1 π

Xα+3/β+1 ⊕Xβ+2/α+2

)
= JX,β+1/α+1 ⊕ JX,α+2/β ,



74

and accordingly at (β/α)+z for z ∈ Z.

Hence altogether, we conclude that X f̃n TJ(n+1) = X TJ(2n+1) fn.

Now

X f̃n TI(n+1)
-

X f̃nαI(n+1), J(n+1)

∼ X f̃n TJ(n+1)

is induced by (IX f̃n, β/α
)β/α∈∆̄#

n+1
and by (JX f̃n, β/α

)β/α∈∆̄#
n+1

; whereas

X TI(2n+1) fn -
XαI(2n+1), J(2n+1)fn

∼ X TJ(2n+1) fn

can be regarded as being induced by the tuple consisting of
0 at (ρ/ρ)+z, z ∈ Z

IX, (α+1/α)+z at (α/ρ)+z, α ∈ ∆n , z ∈ Z

IX, (β+1/α+1)+z ⊕ IX, (α+2/β)+z at (β/α)+z, α, β ∈ ∆n , α 6 β, z ∈ Z .

and by (JX f̃n, β/α
)β/α∈∆̄#

n+1
.

Since the respective former tuples are isomorphic by a tuple of isomorphisms that has iden-

tities on the first and on the third term, and since the respective latter tuples are equal, the

characterisation in Lemma I.72.(3) shows that in fact X f̃nαI(n+1), J(n+1) = XαI(2n+1), J(2n+1)fn.

Corollary I.33 Let E be a Frobenius category. There exists a Heller triangulation on (E ,T).

Concerning the stable category E , cf. Definition I.47.

Proof. Let B ⊆ E be the full subcategory of bijectives. The category Bac is functorially Frobe-

nius by Example I.46. Hence E = Bac, equipped with the complex shift T, carries a Heller

triangulation by virtue of Theorem I.32.

I.4.5 Exact functors induce strictly exact functors

Proposition I.34 Suppose given an exact functor

F -F F̃

between functorial Frobenius categories F = (F ,T, I, ι,P, π) and F̃ = (F̃ , T̃, Ĩ, ι̃, P̃, π̃) that satis-

fies

F T̃ = TF

F Ĩ = IF

F P̃ = PF .

Then the induced functor

F -F F̃

is strictly exact with respect to the Heller triangulations introduced in Theorem I.32.
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Proof. Condition (1) of Definition I.5.(iii) is satisfied. Condition (2) of loc. cit. holds since each

morphism has a weak kernel that is sent to a weak kernel of its image; and dually. In fact, given

a morphism represented by X -f Y , the residue class of the kernel of X ⊕ Y P -

„
f
Y π

«
Y in F ,

composed with X ⊕ Y P -

“
1
0

”
X, is a weak kernel of the residue class of X -f Y by Lemma I.71

and Remark I.67. Since pure short exact sequences and bijectives are preserved by F , this weak

kernel is preserved by F .

Consider condition (3) of loc. cit. Let ϑ resp. ϑ̃ be the Heller triangulation on F resp. on F̃
characterised as in Theorem I.32 by

αI(n), J(n)M
′′ = Mϑn

αĨ(n), J̃(n)M̃
′′ = M̃ϑ̃n ,

where M̃ , M̃ ′, M̃ ′′, Ĩ(n) resp. J̃(n) is defined over F̃ as M , M ′, M ′′, I(n) resp. J(n) is over F .

To prove (3), i.e. to show that for n > 0 and Y ∈ ObF+(∆̄#
n ), we have

(Y ϑn)F+(∆̄#
n ) = (Y F+(∆̄#

n ))ϑ̃n ,

we may assume by Proposition I.31 that Y = XM for some X ∈ ObF�(∆̄#
n ). Since

(XMϑn)F+(∆̄#
n ) = (XαI(n), J(n)M

′′)F+(∆̄#
n ) = (XαI(n), J(n)F

+(∆̄#
n ))M̃ ′′

(XMF+(∆̄#
n ))ϑ̃n = (XF�(∆̄#

n )M̃)ϑ̃n = (XF�(∆̄#
n )αĨ(n), J̃(n))M̃

′′ ,

it suffices to show that XαI(n), J(n)F
+(∆̄#

n ) = XF�(∆̄#
n )αĨ(n), J̃(n).

Starting with XF�(∆̄#
n ) , the object XF�(∆̄#

n ) TĨ(n) is calculated by means of

(ĨXF�(∆̄#
n ), β/α)β/α∈∆̄#

n
; whereas X TĨ(n) F

+(∆̄#
n ) can be regarded as being calculated by means

of (IX,β/αF )β/α∈∆̄#
n

, where IX,β/αF is defined by an application of F to all three terms and both

morphisms of the pure short exact sequence IX,β/α. Since F is additive, we get

(ĨXF�(∆̄#
n ), β/α)β/α∈∆̄#

n
= (IX,β/αF )β/α∈∆̄#

n
,

whence XF�(∆̄#
n ) TĨ(n) = X TI(n) F

+(∆̄#
n ).

Starting with XF�(∆̄#
n ) , the object XF�(∆̄#

n ) TJ̃(n) is calculated by means of

(J̃XF�(∆̄#
n ), β/α)β/α∈∆̄#

n
; whereas X TJ(n) F

+(∆̄#
n ) can be regarded as being calculated by means of

(JX,β/αF )β/α∈∆̄#
n

, where JX,β/αF is obtained by entrywise application of F . Since F commutes

with P and P̃, and with I and Ĩ, we get

(J̃XF�(∆̄#
n ), β/α)β/α∈∆̄#

n
= (JX,β/αF )β/α∈∆̄#

n
,

whence XF�(∆̄#
n ) TJ̃(n) = X TJ(n) F

+(∆̄#
n ).

Moreover, since the defining pairs of tuples coincide, we finally get XF�(∆̄#
n )αĨ(n), J̃(n) =

XαI(n), J(n)F
+(∆̄#

n ).

Suppose given an exact functor

E -E Ẽ
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between Frobenius categories E and Ẽ that sends all bijective objects in E to bijective objects in

Ẽ . Let B ⊆ E resp. B̃ ⊆ Ẽ be the respective subcategories of bijectives. We obtain an induced

functor Bac -E
ac

B̃ac, inducing in turn a functor

E := Eac : E = Bac - B̃ac = Ẽ

modulo split acyclic complexes; cf. Example I.46.(2).

Corollary I.35 The induced functor

E -
E
Ẽ

is strictly exact with respect to the Heller triangulations on E and on Ẽ introduced in Theorem

I.32 via the functorial Frobenius categories Bac and B̃ac.

Proof. We may apply Proposition I.34 to (F -F F̃) := (Bac -E
ac

B̃ac).

I.5 Some quasicyclic categories

In the definition of a Heller triangulated category, the categories C+(∆̄#
n ) occur. Replacing this clas-

sical stable category by its stable counterpart, these turn out to be Heller triangulated themselves.
So we can iterate. Cf. [5, Prop. 8.4].

Let C be a weakly abelian category. Let n > 0.

I.5.1 The category C+(∆̄#
n ) is Frobenius

I.5.1.1 The category A0(∆̄#
n ) is Frobenius

We proceed in a slightly more general manner than necessary. We generalise the fact that the
category of complexes A0(∆̄#

2 ) over an additive category A is a Frobenius category, to a category
A0(∆̄#

n ) for n > 0; cf. Lemma I.37 below. Then we will specialise to our weakly abelian category C
and pass to the full subcategory C+(∆̄#

n ) ⊆ C0(∆̄#
n ); cf. Proposition I.40 below.

I.5.1.1.1 Notation

Let A be an additive category. Let A0(∆̄#
n ) be the full subcategory of A(∆̄#

n ) defined by

ObA0(∆̄#
n ) :=

{
X ∈ ObA(∆̄#

n ) : Xα/α = 0 and Xα+1/α = 0 for all α ∈ ∆̄n

}
.

A sequence X ′ -
i
X -p X ′′ in A0(∆̄#

n ) is called pointwise split short exact if the sequence

X ′ξ -iξ Xξ
-pξ X ′′ξ is split short exact for all ξ ∈ ∆̄#

n . A morphism is called pointwise split

monomorphic (resp. epimorphic ) if it appears as a kernel (resp. cokernel) in a pointwise split

short exact sequence.

The category A0(∆̄#
n ) carries an outer shift functor X - [X]+1, where [X]+1

β/α := X(β/α)+1 =

Xα+1/β for β/α ∈ ∆̄#
n .
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Recall that A, together with the set of split short exact sequences, is an exact category; cf.

Example I.43. So the additive category A0(∆̄#
n ), equipped with the set of pointwise split short

exact sequences as pure short exact sequences, is an exact category; cf. Example I.44.

Given β/α, δ/γ ∈ ∆̄#
n , we write β/αl δ/γ if α < γ and β < δ.

Given A ∈ ObA and β/α ∈ ∆̄#
n , we denote by A]α,β] the object in A0(∆̄#

n ) consisting of identical

morphisms wherever possible and having

(A]α,β])δ/γ :=

{
A if α/β−1 l δ/γ 6 β/α

0 else

for δ/γ ∈ ∆̄#
n . Such an object is called an extended interval.

Intuitively, it is a rectangle with upper right corner at β/α, and as large as possible in A0(∆̄#
n ).

LetA+, split(∆̄#
n ) be the full subcategory ofA0(∆̄#

n ) consisting of objects isomorphic to summands

of objects of the form ⊕
β/α ∈ ∆̄#

n

(Aβ/α)]α,β] ,

where Aβ/α ∈ ObA for β/α ∈ ∆̄#
n . This direct sum exists since it is a finite direct sum at each

δ/γ ∈ ∆̄#
n . Concerning the notation A+, split(∆̄#

n ), cf. also Remark I.38 below.

I.5.1.1.2 The periodic case

Let A′ be an additive category, equipped with a graduation shift automorphism X -X[+1].

We write X -X[m] for its m-th iteration, where m ∈ Z.

By entrywise application, there is also a graduation shift on A′0(∆̄#
n ), likewise denoted by

X -X[+1].

As in §I.2.5.3, we define the subcategory A′0,periodic(∆̄#
n ) ⊆ A′0(∆̄#

n ) to consist of the morphisms

X -f Y in A′0(∆̄#
n ) that satisfy

(X[+1] -
f [+1]

Y [+1]) = ([X]+1 -[f ]+1

[Y ]+1)

So the subcategory A′0,periodic(∆̄#
n ) ⊆ A′0(∆̄#

n ) is not full in general.

Given A ∈ ObA′ and 0 6 i 6 j 6 n, we denote by A]i,j] the object in A′0(∆̄#
n ) consisting only

of zero and identical morphisms and having

(A]i,j])δ/γ :=

{
A[m] if (i/j−1)+m l δ/γ 6 (j/i)+m for some m ∈ Z

0 else

for δ/γ ∈ ∆̄#
n .

Intuitively, it is a rectangle with upper right corner at j/i, and as large as possible in
A′0, periodic(∆̄#

n ), repeated Z-periodically up to according graduation shift.
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LetA′+, split,periodic(∆̄#
n ) be the full subcategory ofA′0, periodic(∆̄#

n ) consisting of objects isomorphic

to summands of objects of the form ⊕
06i6j6n

(Aj,i)]i,j] ,

where Aj,i ∈ ObA′ for 0 6 i 6 j 6 n. Such an object is called a periodic extended interval.

Lemma I.36 The category A′0, periodic(∆̄#
n ), equipped with the pointwise split short exact se-

quences, is a Frobenius category, having A′+, split, periodic(∆̄#
n ) as its subcategory of bijectives.

Proof. By duality, it suffices to show that the following assertions (1, 2) hold.

(1) The object A]i,j] is injective in A′0,periodic(∆̄#
n ) for any A ∈ ObA′ and any 0 6 i 6 j 6 n.

(2) For each object of A′0, periodic(∆̄#
n ), there exists a pure monomorphism into an object of

A′+, split,periodic(∆̄#
n ).

Ad (1). Note that we have an adjunction isomorphism

A′0, periodic(∆̄#
n )(X,A]i,j]) -∼ A′(Xj/i , A)

f - fj/i ,

where X ∈ ObA′0, periodic(∆̄#
n ). Suppose given a pure monomorphism A]i,j]

-r X for some

A ∈ ObA′. Let (A -r Xj/i
- A) = 1A. Let X - A]i,j] correspond to Xj/i

- A. The

composition (A]i,j]
-r X - A]i,j]) restricts to 1A at j/i, hence equals 1A]i,j]

.

Ad (2). Suppose given X ∈ ObA′0, periodic(∆̄#
n ). Given 0 6 i 6 j 6 n, we let

X -
Xsj/i

(Xj/i)]i,j]

be the morphism corresponding to 1Xj/i by adjunction, which is natural in X. Collecting these

morphisms yields a morphism

X -Xs
⊕

06i6j6n

(Xj/i)]i,j] ,

which is pointwise split monomorphic since at j/i, its component Xj/i
-Xj/i is an identity.

I.5.1.1.3 The general case

Lemma I.37 The category A0(∆̄#
n ), equipped with the pointwise split short exact sequences, is

a Frobenius category, having A+, split(∆̄#
n ) as its subcategory of bijectives.

Proof. To prove that A0(∆̄#
n ) is a Frobenius category, we more precisely claim that A+, split(∆̄#

n )

is a sufficiently big category of bijective objects in the exact category A0(∆̄#
n ).

AbbreviateAZ := A(Ż), where Ż denotes the discrete category with Ob Ż = Z and only identical

morphisms. The category AZ carries the graduation shift automorphism

AZ -∼ AZ

(X -f Y ) - (X[+1] -f [+1]
Y [+1]) := (Xi+1

-fi+1
Yi+1)i∈Z .
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We have an isomorphism of categories

A+(∆̄#
n ) -Φ∼ (AZ)+,periodic(∆̄#

n )

X -
(
(X(β/α)+i)i∈Z

)
β/α∈∆̄#

n

((Yβ/α)0)β/α∈∆̄#
n

� Y .

Both categories are exact when equipped with pointwise split short exact sequences, and Φ and

Φ−1 are exact functors. We have A+, split(∆̄#
n )Φ = (AZ)+, split,periodic(∆̄#

n ).

Putting A′ := AZ, the result follows by Lemma I.36.

If A = C is a weakly abelian category, we have two definitions of C+, split(∆̄#
n ).

The first one, given in §I.1.2.1.1, defines this category as a full subcategory of C+(∆̄#
n ) containing

those diagrams in which all morphisms are split in Ĉ.

The second one, just given, defines this category as a full subcategory of C0(∆̄#
n ) containing, up

to isomorphism, summands of direct sums of extended intervals.

Remark I.38 If A = C is a weakly abelian category, then the two aforementioned definitions of

C+, split(∆̄#
n ) coincide.

Proof. First, we notice that an extended interval lies in C+(∆̄#
n ), and that all its diagram

morphisms are split in Ĉ.

It remains to be shown that an object in C+(∆̄#
n ) all of whose diagram morphisms are split in

Ĉ, is, up to isomorphism, a summand of a direct sum of extended intervals.

Passing to (CZ)+, periodic(∆̄#
n ), we have to show that an object X ∈ Ob(CZ)+,periodic(∆̄#

n ) all of

whose diagram morphisms are split in ĈZ, is, up to isomorphism, a summand of a direct sum of

periodic extended intervals.

By Lemma I.65, applied to the abelian Frobenius category ĈZ, the object X|∆̇n
∈ Ob CZ(∆̇n) is

isomorphic to a summand of a finite direct sum of intervals. Hence, by Lemma I.17, the object X

is isomorphic to a summand of a finite direct sum of images of intervals under S̄, i.e. of periodic

extended intervals, as was to be shown.

I.5.1.2 The subcategory C+(∆̄#
n ) ⊆ C0(∆̄#

n )

Recall that C is a weakly abelian category.

Lemma I.39 Suppose given a pure short exact sequence

X ′ -r X - X ′′

in C0(∆̄#
n ). If two out of the three objects X ′, X and X ′′ are in C+(∆̄#

n ), so is the third.
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Proof. For an object X ∈ Ob C0(∆̄n) to lie in Ob C+(∆̄n), it suffices to know that the complex

X(α, β, γ) :=
(
· · · - Xβ/γ−1 - Xβ/α

- Xγ/α
- Xγ/β

- Xα+1/β
- · · ·

)

is acyclic in Ĉ for all α, β, γ ∈ ∆̄n with α 6 β 6 γ 6 α+1; which is true, as we take from

Lemma I.57; cf. Remark I.67.

Now the long exact homology sequence, applied in Ĉ to the short exact sequence

X ′(α, β, γ) -r X(α, β, γ) -X ′′(α, β, γ) of complexes, shows that if two of these complexes

are acyclic, so is the third.

Proposition I.40

(1) The category C+(∆̄#
n ), equipped with the pointwise split short exact sequences, is a Frobenius

category, having C+, split(∆̄#
n ) as its subcategory of bijectives.

Hence its stable category C+(∆̄#
n ) is equivalent to its classical stable category C+(∆̄#

n ) =

C+(∆̄#
n )/C+, split(∆̄#

n ). So both C+(∆̄#
n ) and C+(∆̄#

n ) are weakly abelian.

(2) Suppose C to be equipped with an automorphism X -X+1. The category C+, periodic(∆̄#
n )

(cf. §I.2.5.3), equipped with the pointwise split short exact sequences, is an additively func-

torial Frobenius category, having C+, split, periodic(∆̄#
n ) as its subcategory of bijectives.

We remark that C+(∆̄#
n ) appears in Definition I.5.

Proof. Ad (1). To prove that C+(∆̄#
n ) is an exact category, it remains to be shown, in view of

Lemma I.37 and of §I.6.2.2, that a pure short exact sequence in C0(∆̄#
n ) that has the first and

the third term in Ob C+(∆̄#
n ), has the second term in Ob C+(∆̄#

n ), too. This follows by Lemma

I.39.

To prove that C+(∆̄#
n ) is Frobenius, we may use that C0(∆̄#

n ) is Frobenius, with the bijective

objects already lying in C+(∆̄#
n ), thus being a fortiori bijective with respect to C+(∆̄#

n ). By

duality, it remains to be shown that the kernel of a pointwise split epimorphism of a bijective

object to a given object in C+(∆̄#
n ) is again in C+(∆̄#

n ), thus showing that this epimorphism is

actually pure in C+(∆̄#
n ). This follows by Lemma I.39.

Ad (2). In view of Lemma I.36, this follows as (1).
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I do not know whether C+, ϑ=1(∆̄#
n ) is Frobenius. It seems doubtful, since this question is

reminiscent of the example of A. Neeman that shows that the mapping cone of a morphism of
distinguished triangles in the sense of Verdier need not be distinguished [49, p. 234].

I.5.1.3 Two examples

Suppose C to be equipped with an automorphism X - X+1.

The category C+, periodic(∆̄#
n ) being a Frobenius category by Proposition I.40.(2), its classical stable

category C+, periodic(∆̄#
n ) carries a Heller operator, defined on X ∈ Ob C+, periodic(∆̄#

n ) as the kernel
of B - X, where B ∈ Ob C+, split, periodic(∆̄#

n ). As examples, we calculate the Heller operator for
n ∈ {2, 3} on periodic n-pretriangles.

Suppose n = 2. Let X ∈ Ob C+, periodic(∆̄#
2 ) be a periodic 2-pretriangle. We obtain

X1/0
-x

X2/0

��
��

��*x

X2/1
-x

X+1
1/0

��
��

��*x

X+1
2/0

?

[
x
1

]

?

[
x
1

]
?

[
x
1

]

?

[
x
1

]
?

[
x
1

]
X−1

2/1⊕X1/0
-

h
0 0
1 0

i
X1/0⊕X2/0

��
�
��*

h
0 0
1 0

i X2/0⊕X2/1
-

h
0 0
1 0

i
X2/1⊕X+1

1/0

��
�
��*

h
0 0
1 0

i X+1
1/0⊕X

+1
2/0

?

[1 −x ]

?

[1 −x ] ?

[1 −x ]

?

[1 −x ] ?

[1 −x ]

X−1
2/1

-−x
X1/0

��
��

��*−x

X2/0
-−x

X2/1

�
��

�
��*−x

X+1
1/0

In particular, if X is a 2-triangle, i.e. an object of C+, ϑ=1(∆̄#
2 ), then this Heller shift of X is also a

2-triangle; cf. Lemma I.22.
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I.5.2 A quasicyclic category

The category of quasicyclic categories is defined to be the category of contravariant functors from

∆̄
◦

to the (1-)category (Cat) of categories. Recall that we have a functor ∆ - ∆̄, ∆n
- ∆̄n

that allows to restrict a quasicyclic category to its underlying simplicial category.

Given a category U , we denote by Iso U ⊆ U its subcategory consisting of isomorphisms. Given

a functor U -U U ′, we denote by IsoF : Iso U - Iso U ′ the induced functor.

We define

∆̄
◦ -

qcyc• C
(Cat)

(∆̄n
�p ∆̄m) -

(
Iso C+(∆̄#

n ) -Iso C+(p#)
Iso C+(∆̄#

m)
)
.

More intuitively written, qcyc• C := Iso C+(∆̄#
• ). Note that qcyc0 C consists only of zero-objects.

A strictly exact functor C -F C ′ induces a functor C+(∆̄#
n ) -

F+(∆̄#
n )
C ′+(∆̄#

n ) for n > 0, and

thus a morphism

qcyc• C -
qcyc• F

qcyc• C ′

of quasicyclic categories.

As variants, we mention

qcycperiodic
• C := Iso C+,periodic(∆̄#

• )

qcycϑ=1
• C := Iso C+, ϑ=1(∆̄#

• ) .

I.5.3 A biquasicyclic category

As an attempt in the direction described in [58, p. 330], we define a first step of an “iteration” of
the construction C - qcyc• C.

By Proposition I.40, we may form the category C+(∆̄#
n )+(∆̄#

m). Note that a morphism

∆̄m
�f ∆̄m′ of periodic linearly ordered sets induces a functor C+(∆̄#

n )+(f#) in the second

variable.

By Lemma I.34, a morphism ∆̄n
�g ∆̄n′ of periodic linearly ordered sets induces a strictly exact

functor C+(g#), and so a functor C+(g#)+(∆̄#
m) in the first variable for m > 0.

The functors induced by f and by g commute.

We may define

qcyc•• C := Iso
(
C+(∆̄#

• )+(∆̄#
• )
)
,

which yields a biquasicyclic category, i.e. a functor from ∆̄
◦ × ∆̄

◦
to the (1-)category (Cat) of

categories.

By Lemma I.34, a strictly exact functor C -F C ′ induces a functor C+(∆̄#
n ) -

F+(∆̄#
n )

C ′+(∆̄#
n )

for n > 0, and thus a morphism

qcyc•• C -qcyc•• F qcyc•• C ′
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of quasicyclic categories.

As variants, we mention

qcycperiodic
•• C := Iso

(
C+(∆̄#

• )+, periodic(∆̄#
• )
)

qcycϑ=1
•• C := Iso

(
C+(∆̄#

• )+, ϑ=1(∆̄#
• )
)
.

Cf. Remark I.20.

This procedure can be iterated to obtain triquasicyclic categories etc.

I.6 Some general lemmata

This appendix is a tool kit consisting of folklore lemmata (with proof) and known results (mainly without proof).

We do not claim originality.

I.6.1 An additive lemma

Let A and B be additive categories, and let A -F B be a full and dense additive functor. Let N ⊆ B be a full
additive subcategory. Let M⊆ A be the full subcategory determined by

ObM := {A ∈ ObA : AF is isomorphic to an object of N} .

Lemma I.41 Suppose that for each morphism A -a0
A′ in A such that a0F = 0, there exists a factorisation

(A -a0
A′) = (A -a

′
0 M0

-a
′′
0 A′)

with M0 ∈ ObM. Then the induced functor

A/M -F B/N

(A -a A′) - (AF -aF A′F )

is an equivalence.

Proof. We have to show that F is faithful. Suppose given A -a A′ in A such that

(AF -aF A′F ) = (AF -b
′

N -b
′′

A′F ) ,

where N ∈ ObN . Since F is dense, we may assume N = MF for some M ∈ ObM. Since F is full, there exist
a′ and a′′ in A with a′F = b′ and a′′F = b′′. Then

(A -a A′) = (A -a
′a′′

A′) + (A -a0
A′)

with a0F = 0. Since a′a′′ factors over M ∈ ObM, and since a0 factors over an object of M by assumption on
F , we conclude that a factors over an object of M.

I.6.2 Exact categories

I.6.2.1 Definition

The concept of exact categories is due to Quillen [52], who uses a different, but equivalent set of axioms. In

[31, App. A], Keller has cut down redundancies in this set of axioms. We give still another equivalent reformula-

tion.
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An additive category A is a category with zero object, binary products and binary coproducts such that the
natural map from the coproduct to the product is an isomorphism; which allows to define a commutative and
associative addition (+) on A(X,Y ), where X, Y ∈ ObA; and such that there exists an endomorphism −1X for
each X ∈ ObA that is characterised by 1X + (−1X) = 0X .

A sequence X -f Y -g Z in A is called short exact if f is a kernel of g and g is a cokernel of f .

A short exact sequence isomorphic to a short exact sequence of the form

X -(1 0)
X ⊕ Y -

“
0
1

”
Y ,

where X, Y ∈ ObA, is called split short exact. A morphism appearing as a kernel in a split short exact sequence
is split monomorphic, a morphism appearing as a cokernel in a split short exact sequence is called split epimorphic.
A split short exact sequence is isomorphic to a sequence of the form just displayed by an isomorphism having an
identity on the first and on the third term.

An exact category (E ,S) consists of an additive category E and an isomorphism closed set S of short exact
sequences in E , called pure short exact sequences (8), such that the following axioms (Ex 1, 2, 3, 1◦, 2◦, 3◦) are
satisfied.

A monomorphism fitting into a pure short exact sequence is called a pure monomorphism, denoted by -r ; an
epimorphism fitting into a pure short exact sequence is called a pure epimorphism, denoted by - . A morphism
which can be written as a composition of a pure epimorphism followed by a pure monomorphism is called pure.

(Ex 1) Split monomorphisms are pure monomorphisms.

(Ex 1◦) Split epimorphisms are pure epimorphisms.

(Ex 2) The composite of two pure monomorphisms is purely monomorphic.

(Ex 2◦) The composite of two pure epimorphisms is purely epimorphic.

(Ex 3) Given a commutative diagram

Y

�
@@@@

��@@@@

X

??~~~~~~~~
• // Z ,

we may insert it into a commutative diagram

A

•
@@@@

  @@@@

• // B

Y

�
@@@@

  @@@@

>
~~~~

>>~~~~

X

•~~~~

>>~~~~

• // Z

with (X,Y,B) and (A, Y, Z) pure short exact sequences.

8This notion is borrowed from the particular cases of pure short exact sequences of lattices over orders and of ⊗-pure short exact

sequences of modules. Other frequently used names are admissible short exact sequence, consisting of an admissible monomorphism

and an admissible epimorphism; and conflation, consisting of an inflation and a deflation.
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(Ex 3◦) Given a commutative diagram

Y

��@@@@@@@

X

•~~~~

??~~~~

� // Z ,

we may insert it into a commutative diagram

A

•
@@@@

  @@@@

� // B

Y

�
@@@@

  @@@@

>
~~~~

>>~~~~

X

•~~~~

>>~~~~

� // Z

with (X,Y,B) and (A, Y, Z) pure short exact sequences.

An exact functor from an exact category (E ,S) to an exact category (F , T ) is given by an additive functor

E -F F such that SF ⊆ T , where, by abuse of notation, F also denotes the functor induced by F on diagrams
of shape • - • - •.

Frequently, the exact category (E ,S) is simply referred to by E .

Example I.42

(1) An abelian category, equipped with the set of all short exact sequences as pure short exact sequences, is
an exact category.

(2) If E is an exact category, so is E◦, equipped with the pure short exact sequences of E considered as short
exact sequences in E◦, with the roles of kernel and cokernel interchanged.

Example I.43 An additive category A, equipped with the set of split short exact sequences as pure short exact
sequences, is an exact category.

In fact, (Ex 1, 2) are fulfilled, and it remains to prove (Ex 3); then the dual axioms ensue by duality. Given

X⊕Y ⊕Z

�LLLLL
 

1 0
0 1
0 0

!

&&LLLLL

X

::uuuuuuuuuu
•

(1 0) // X⊕Y ,

we get

Z

•KKKKKKK

(0 0 1)
%%KKKKKK

•
(0 1) // Y ⊕Z

X⊕Y ⊕Z

�KKKKKK  
1 0
0 1
0 0

!
%%KKKKKK

3ssssss

 
0 −a
1 0
0 1

!99ssssss

X

•sssssss

(1 0 a )

99ssssss

•
(1 0) // X⊕Y ,

where X -a Z is the third component of the given morphism X - X ⊕ Y ⊕ Z.

Example I.44 Suppose given an exact category E and a category D. Let a short exact sequence (X,Y, Z) in
E(D) be pure if the sequence (Xd, Yd, Zd) is a pure short exact sequence in E for all d ∈ ObD. Then E(D) is an
exact category.
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I.6.2.2 Embedding exact categories

By a theorem

• stated by Quillen [52, p. 100],

• proven by Laumon [41, Th. 1.0.3],

• re-proven by Keller [31, Prop. A.2],

• where Quillen resp. Keller refer to [16] for a similar resp. an auxiliary technique,

for any exact category E , there exists an abelian category Ẽ containing E as a full subcategory closed under
extensions, the pure short exact sequences in E being the short exact sequences in Ẽ with all three objects in
Ob E .

Conversely, suppose given an exact category E and a full subcategory E ′ ⊆ E such that whenever (X,Y, Z) is a
pure short exact sequence in E with X, Z ∈ Ob E ′, then also Y ∈ Ob E ′. Then the subcategory E ′, equipped
with the pure short exact sequences in E with all three terms in Ob E ′ as pure short exact sequences in E ′, is an
exact category.

I.6.2.3 Frobenius categories : definitions

Definition I.45

(1) A bijective object in an exact category E is an object B for which E(B,−) and E(−, B) are exact functors
from E resp. from E◦ to Z -Mod.

(2) A Frobenius category is an exact category for which each object X allows for a diagram B - X -r B′
with B and B′ bijective.

(3) Suppose given an exact category F carrying a shift automorphism T : X - X T = X+1 and two additive

endofunctors I and P together with natural transformations 1F -ι I and P -π 1F such that T P = I

and such that
X -Xι X I = X+1 P -X

+1π
X+1

is a pure short exact sequence with bijective middle term for all X ∈ Ob C. Then (F ,T, I, ι,P, π) is called
a functorial Frobenius category. Often we write just F for (F ,T, I, ι,P, π).

Example I.46

(1) Let A be an additive category. Let Ż denote the discrete category with Ob Ż = Z and only identical
morphisms. The category A(Ż) carries the shift functor X• - X•+1, where (X•+1)i = Xi+1. An
object in the category C(A) of complexes with entries in A is written (X•, d•), where X is an object

of A(Ż) and where X• -d
•

X•+1 with d•d•+1 = 0. The category C(A), equipped with pointwise split
short exact sequences, is an exact category; cf. Examples I.43, I.44. Given a complex (X•, d•), we let
(X•, d•) T = (X•, d•)+1 := (X•+1,−d•+1) and(

(X•, d•) -(X•,d•)ι
(X•, d•) I = (X•, d•)+1 P -(X•,d•)+1π

(X•, d•)+1
)

:=
(

(X•, d•) -(1 d• ) (
X• ⊕X•+1,

(
0 0
1 0

))
-

„
−d•

1

«
(X•+1,−d•+1)

)
.

Then (C(A),T, I, ι,P, π) is a functorial Frobenius category.

(2) Suppose E to be a Frobenius category. Let B ⊆ E be a sufficiently big full subcategory of bijective objects,
i.e. each object of B is bijective in E , and each object X of E admits B - X -r B′ with B, B′ ∈ ObB.
In other words, each bijective object of E is isomorphic to a direct summand of an object of B.
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Let Bac ⊆ C(B) denote the full subcategory of purely acyclic complexes, i.e. complexes (X•, d•) such

that all differentials Xi -d Xi+1 are pure, factoring in E as d = d̄ḋ with d̄ purely epi- and ḋ purely
monomorphic, and such that all resulting sequences (ḋ, d̄) are purely short exact. For short, a complex is
purely acyclic if it decomposes into pure short exact sequences.

Then Bac is a functorial Frobenius category, equipped with the restricted functors and transformations of
C(B) as defined in (1); cf. [48, Lem. 1.1]. Let Bsp ac ⊆ Bac be the full subcategory of split acyclic complexes,
i.e. of complexes isomorphic to a complex of the form (T • ⊕ T •+1,

(
0 0
1 0

)
) for some T • ∈ ObB(Ż). Then

Bsp ac is a sufficiently big full subcategory of bijective objects in Bac.

Definition I.47 Suppose given a Frobenius category E , and a sufficiently big full subcategory B ⊆ E of bijectives.
Let

E := E/B be the classical stable category of E ;

E := Bac/Bsp ac be the stable category of E .

In other words, the stable category E of E is defined to be the classical stable category Bac of Bac. The shift
functor induced by the automorphism T of Bac on E is also denoted by T.

Lemma I.48 The functor

Bac -I E

(X, d) - Im(X0 -d X1)

induces an equivalence

E = Bac -I
∼ E .

Cf. [33, Sec. 4.3].

Proof. This is an application of Lemma I.41.

We choose an inverse equivalence R to I. We have the residue class functor E -N E , and, by abuse of notation,

a second residue class functor (E -N E) := (E -N E -R
∼ E).

A morphism X -f Y is zero in E if and only if for any monomorphism X -ri X′ and any epimorphism Y ′ -
p

Y ,

there is a factorisation f = if ′p. This defines E without mentioning bijective objects in E. So one might speculate

whether the class of Frobenius categories within the class of exact categories could be extended still without losing

essential properties of Frobenius categories.

I.6.3 Kernel-cokernel-criteria

Let A be an abelian category. The circumference lemma states that given a commutative triangle in A, the
induced sequence on kernels and cokernels, with zeroes attached to the ends, is long exact.

Definition I.49 A weak square in A is a commutative quadrangle (A,B,C,D) in A whose diagonal sequence
(A,B ⊕ C,D) is exact at B ⊕ C. It is denoted by a “ + ”-sign in the commutative diagram,

C // D

A //

OO

+

B .

OO

A pullback is a weak square with first morphism in the diagonal sequence being monomorphic. It is denoted

C // D

A //

OO

B .

OO
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A pushout is a weak square with second morphism in the diagonal sequence being epimorphic. It is denoted

C // D

A //

OO

B .

OO

A square is a commutative quadrangle that is a pullback and a pushout, i.e. that has a short exact diagonal
sequence. It is denoted

C // D

A //

OO

�

B .

OO

Remark I.50 If a commutative quadrangle in A

C
c // D

A
b
//

a

OO

B

d

OO

is a square, then the induced morphism from the kernel of A -a C to the kernel of B -d D is an isomorphism

and the induced morphism from the cokernel of A -a C to the cokernel of B -d D is an isomorphism.

Proof. If (A,B,C,D) is a square, then the circumference lemma, applied to the commutative triangle

C

B ⊕ C

“
0
1

”ccFFFFFFFFF

A

(b a )

;;xxxxxxxxx

a

OO

,

yields a long exact sequence

0 - Ka
-j B -−d D -q Ca - 0 ,

where Ka
-i A is the kernel of a, and where C -p Ca is the cokernel of a. Since ib = j and cb = p, the induced

morphisms on the kernels and on the cokernels of a and d are isomorphisms.

Lemma I.51 A commutative quadrangle in A

C
c // D

A
b
//

a

OO

B

d

OO

is a weak square if and only if the induced morphism Ka
- Kd from the kernel of A -a C to the kernel of

B -d D is an epimorphism and the induced morphism Ca - Cd from the cokernel of A -a C to the cokernel

of B -d D is a monomorphism.

It is a pullback if and only if Ka
-∼ Kd and Ca -r Cd.

It is a pushout if and only if Ka
- Kd and Ca -∼ Cd.

It is a square if and only if Ka
-∼ Kd and Ca -∼ Cd.
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Proof. Let A′ be the pullback of (C,B,D), and let D′ be the pushout of (A′, C,B). We obtain induced morphisms
A - A′ and D′ -r D. The circumference lemma, applied to (B,D′, D), shows CB→D′ -r CB→D.

The quadrangle (A,B,C,D) is a weak square if and only if A - A′; which in turn, by the circumference lemma
applied to (A,A′, C), is equivalent to KA→C - KA′→C and CA→C -∼ CA′→C ; which, by composition and by
Remark I.50, applied to the square (A′, B,C,D′), is equivalent to KA→C - KB→D and CA→C -r CB→D.

The quadrangle (A,B,C,D) is a pullback if and only if A -∼ A′; which in turn, by the circumference lemma
applied to (A,A′, C), is equivalent to KA→C -∼ KA′→C and CA→C -∼ CA′→C ; which, by composition and by
Remark I.50, applied to the square (A′, B,C,D′), is equivalent to KA→C -∼ KB→D and CA→C -r CB→D.

The quadrangle (A,B,C,D) is a square if and only if A -∼ A′ and D′ -∼ D; which in turn, by the circumference
lemma applied to (A,A′, C), is equivalent to KA→C -∼ KA′→C , CA→C -∼ CA′→C and CB→D′ -∼ CB→D;
which, by composition and by Remark I.50, applied to the square (A′, B,C,D′), is equivalent to KA→C -∼ KB→D
and CA→C -∼ CB→D.

I.6.4 An exact lemma

Let E be an exact category. A pure square in E is a commutative quadrangle (A,B,C,D) in E that has a pure
short exact diagonal sequence (A,B ⊕C,D). Just as a square in abelian categories, a pure square is denoted by
a box “� ”.

Lemma I.52 Suppose given a composition

X ′ // Y ′ // Z ′

X //

OO

Y //

OO

Z

OO

of commutative quadrangles in E. If two out of the three quadrangles (X,Y,X ′, Y ′), (Y, Z, Y ′, Z ′), (X,Z,X ′, Z ′)
are pure squares, so is the third.

Proof. In an abelian category, this follows from Lemma I.51.

As explained in §I.6.2.2, we may embed E fully, faithfully and additively into an abelian category Ẽ such that
the pure short exact sequences in E are precisely the short exact sequences in Ẽ with all three objects in Ob E .
In particular, the pure squares in E are precisely the squares in Ẽ with all four objects in Ob E , and the assertion
in E follows from the assertion in Ẽ .

I.6.5 Some abelian lemmata

Let A be an abelian category.

Lemma I.53 Inserting images, a weak square (A,B,C,D) in A decomposes into

C
� // • // D

� //

•

OO
�

• //

•

OO

•

OO

A
� //

_

OO

• //

_

OO

�

B

_

OO

Proof. The assertion follows using the characterisation of weak squares, pullbacks and pushouts given in Lemma
I.51.
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Lemma I.54 If, in a commutative diagram

X ′ // Y ′ // Z ′

X

OO

//

+

Y

OO

//

+

Z

OO

in A, the quadrangles (X,Y,X ′, Y ′) and (Y, Z, Y ′, Z ′) are weak squares, then the composite quadrangle
(X,Z,X ′, Z ′) is also a weak square.

Proof. The assertion follows using the characterisation of weak squares given in Lemma I.51.

Lemma I.55 If, in a commutative diagram

X ′ // Y ′ // Z ′

X

OO

// Y

OO

// Z

OO

in A, the left hand side quadrangle (X,Y,X ′, Y ′) is a pushout, as indicated, and the outer quadrangle
(X,Z,X ′, Z ′) is a weak square, then the right hand side quadrangle (Y,Z, Y ′, Z ′) is also a weak square.

If the left hand side quadrangle (X,Y,X ′, Y ′) and the outer quadrangle (X,Z,X ′, Z ′) are pushouts, then the right
hand side quadrangle (Y, Z, Y ′, Z ′) is also a pushout.

Proof. This follows using Lemma I.51.

Lemma I.56 If, in a commutative quadrangle in A

X ′ // Y ′

X

OO

// Y ,

OO

the morphism X - Y is an epimorphism and the morphism X ′ - Y ′ is a monomorphism, then the quadrangle
is a weak square.

Proof. This follows using Lemma I.51, applied horizontally.

Lemma I.57 Given a commutative diagram

0 // Y ′ // Z ′ // W ′

X

OO

// Y

OO

// Z

OO

// 0

OO

in A such that (X,Z, 0, Z ′) and (Y, 0, Y ′,W ′) are weak squares, then (Y,Z, Y ′, Z ′) is a weak square.

Proof. This follows using Lemma I.51.

Lemma I.58 Given a diagram

0 // Y ′′
v′′ // Z ′′

X ′

OO

u′ //

+

Y ′
v′ //

y′

OO

+

Z ′

z′

OO

X

x

OO

u //

+

Y //

y

OO

+

0

OO
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in A consisting of weak squares, as indicated by +, the sequence

X -xu
′

Y ′ -
(y′ v′ )

Y ′′ ⊕ Z ′ -

„
v′′

−z′
«
Z ′′

is exact at Y ′ and at Y ′′ ⊕ Z ′.

Proof. At Y ′, we reduce to the case u, u′, x and y monomorphic and (X,Y,X ′, Y ′) being a pullback via Lemma

I.53. Suppose given T -t Y ′ with ty′ = 0 and tv′ = 0. First of all, there exist T -a X ′ and T -b Y such

that au′ = t = by. Thus there exists T -c X such that cx = a and cu = b. In particular, cxu′ = au′ = t. Hence
a factorisation of t over xu′ exists. Uniqueness follows by monomorphy of xu′.

Lemma I.59

(1) Suppose given a weak square in A
X ′ // Y ′

X //

OO

+

Y

OO

with X ′ bijective. If the images of X - Y , of X - X ′ and of Y - Y ′ are bijective, then the images
of X ′ - Y ′ and of X - Y ′ are bijective, too.

(2) Suppose given a weak square in A
X ′ // Y ′

X //

OO

+

Y

OO

with Y bijective. If the images of X ′ - Y ′, of X - X ′ and of Y - Y ′ are bijective, then the images
of X - Y and of X - Y ′ are bijective, too.

Proof. Ad (1). We decompose (X,Y,X ′, Y ′) according to Lemma I.53 and denote the image of X - Y by
ImX,Y , etc.

The diagonal sequence of the square (ImX,Y , Y, ImX,Y ′ , ImY,Y ′) shows that ImX,Y ′ is bijective.

The diagonal sequence of the square (ImX,X′ , ImX,Y ′ , X
′, ImX′,Y ′) shows that ImX′,Y ′ is bijective.

Lemma I.60 Given a pullback

X
f // Y

X ′
f ′
//

OO
•x

OO

Y ′ ,

y

OO

in A with Y ′ injective, the morphism (X ′, Y ′) -(x,y)
(X,Y ) is split monomorphic in A(∆1). More precisely, any

retraction for x may be extended to a retraction for (x, y).

Proof. Let xx′ = 1X′ . We form the pushout.

Y

X //

f

66nnnnnnnnnnnnnnn
P

•}}}}

>>}}}}

X ′
f ′
//

OO
•x

OO

Y ′
OO
•

OO y

GG��������������
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There is an induced morphism P - Y ′ such that (X - P - Y ′) = (X -x
′f ′

Y ′) and such that

(Y ′ - P - Y ′) = (Y ′ -
1Y ′ Y ′). Since Y ′ is injective, we obtain a factorisation (P - Y ′) =

(P -r Y - Y ′).

Lemma I.61 Suppose given a morphism X - Y of commutative quadrangles in A, i.e. a morphism in A(∆1×
∆1).

(1) If X is a pushout and Y is a weak square, then the cokernel of X - Y is a weak square.

(2) If X is a weak square and Y is a pullback, then the kernel of X - Y is a weak square.

Proof. Ad (1). A morphism of commutative quadrangles gives rise to a morphism of the diagonal sequences;
namely from a sequence that is exact in the middle and has an epimorphic second morphism, stemming from
X, to a sequence that is exact in the middle, stemming from Y . In order to prove that the cokernel sequence is
exact in the middle, we reduce by insertion of the image of the first morphism of the diagonal sequence and by an
application of the circumference lemma to the case in which the sequence stemming from Y has a monomorphic
first morphism. Then the snake lemma yields the result.

Lemma I.62 Suppose given a diagram

0 // Y ′′ // Z ′′

X ′ //

OO

+

Y ′ //

OO

+

Z ′

OO

X //

OO

+

Y //

OO

+

Z

OO

in A, consisting of weak squares. The induced morphisms furnish a short exact sequence

Im(X - Z ′) - Im(Y - Z ′) - Im(Y - Z ′′) .

Proof. Abbreviate Im(X - Z ′) by ImX,Z′ etc. The morphism ImX,Z′
- ImY,Z′ is monomorphic by composi-

tion, and, dually, the morphism ImY,Z′
- ImY,Z′′ is epimorphic. Now since ImX,X′

- ImX,Z′ is epimorphic
and ImY,Z′′

- ImY ′′,Z′′ is monomorphic, it suffices to show that

ImX,X′
- ImY,Z′

- ImY ′′,Z′′

is exact at ImY,Z′ . This follows from the diagram obtained by Lemma I.53

0 // Y ′′
� // ImY ′′,Z′′

X ′ //

OO

+

Y ′
� //

OO

ImY ′,Z′

OO

ImX,X′ //

•

OO

ImY,Y ′
� //

•

OO

�

ImY,Z′ ,

•

OO

since by Lemma I.54, weak squares are stable under composition.

I.6.6 On Frobenius categories

I.6.6.1 Some Frobenius-abelian lemmata

Suppose given an abelian Frobenius category A; cf. Definition I.45. Let B be its full subcategory of bijective
objects. Recall that the classical stable category of A is defined as A = A/B; cf. Definition I.47. A morphism in
A whose residue class in A is an isomorphism is called a homotopism. A morphism in A whose residue class in
A is a retraction is called a retraction up to homotopy.
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Lemma I.63 Given a retraction up to homotopy X -f Y and an epimorphism Y ′ -
y

Y in A, in the pullback

X ′
�x //

f ′

��

X

f

��
Y ′

�y // Y ,

the morphism X ′ -
f ′

Y ′ is a retraction up to homotopy, too. More precisely, if gf ≡B 1Y , then we may find a
morphism g′ with g′f ′ ≡B 1Y ′ as a pullback of g along x.

Proof. Let Y -g X be such that gf = 1Y + h, where

(Y -h Y ) = (Y -h1
B -h2

Y )

for some B ∈ ObB and some morphisms h1 and h2 in A. Let B -h
′
2 Y ′ be a morphism such that

(B -h
′
2 Y ′ -

y
Y ) = (B -h2

Y ) ,

which exists since B is projective and y is epimorphic. The commutative quadrangle

Y ′
�y //

1Y ′+yh1h
′
2

��

Y

1Y +h

��
Y ′

�y // Y

is a pullback since the induced morphism on the horizontal kernels is an identity; cf. Lemma I.51. So we may
form the diagram

Y ′
�y //

g′

��

Y

g

��
X ′

�x //

f ′

��

X

f

��
Y ′

�y // Y ,

in which g′ with g′x = yg and g′f ′ = 1Y ′ + yh1h
′
2 is induced by the universal property of the lower pullback

(X ′, X, Y ′, Y ), and in which the resulting upper quadrangle (Y ′, Y,X ′, X) is a pullback by Lemma I.51.

Lemma I.64 Given a homotopism X -f Y and an epimorphism Y ′ -
y

Y in A, in the pullback

X ′
�x //

f ′

��

X

f

��
Y ′

�y // Y ,

the morphism X ′ -
f ′

Y ′ is a homotopism, too.

Proof. Let gf ≡B 1Y and fg ≡B 1X . By Lemma I.63, we may form the diagram

Y ′
�y //

g′

��

Y

g

��
X ′

�x //

f ′

��

X

f

��
Y ′

�y // Y ,
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in which g′f ′ ≡B 1Y ′ . Since g is a retraction up to homotopy, so is g′ by Lemma I.63. Therefore g′ is a
homotopism. Hence also f ′ is a homotopism.

I.6.6.2 Decomposing split diagrams in intervals

Let A be an abelian Frobenius category, and let B be its full subcategory of bijective objects. Suppose given

n > 1. Write ∆̇n := ∆n r {0}. An object X in A(∆̇n) is called split if Xk
-x Xl is split for all k, l ∈ [1, n]

with k 6 l.

Given C ∈ ObA and k, l ∈ [1, n] with k 6 l, we denote by C[k,l] the object of A(∆̇n) given by (C[k,l])j = 0 for

j ∈ [1, n] r [k, l], by (C[k,l])j = C for j ∈ [k, l], and by
(
(C[k,l])j -c (C[k,l])j′

)
= (C -1C C) for j, j′ ∈ [k, l] with

j 6 j′. An object in A(∆̇n) of the form C[k,l] for some C ∈ ObA and some k, l ∈ [1, n] with k 6 l, is called an
interval.

Lemma I.65 Any split object in B(∆̇n) is isomorphic to a finite direct sum of intervals.

Proof. We proceed by induction on n. Suppose given a split object X in B(∆̇n). Let X ′ := X�0 be defined as

a pointwise pullback at n, using 0 -0 Xn (cf. §I.6.7 below). We have X ′ ∈ ObB(∆̇n) with X ′n = 0. Hence, by
induction, X ′ is isomorphic to a finite direct sum of intervals. There is a pure monomorphism X ′ -r X whose
cokernel is a diagram in ObB(∆̇n) consisting of split monomorphisms; cf. Lemma I.51. Moreover, by an iterated
application of Lemma I.60, starting at position 1, this pure monomorphism X ′ -r X is split as a morphism of
A(∆̇n) (9). Thus X is isomorphic to the direct sum of X ′ and the cokernel of X ′ -r X, and it remains to be
shown that this cokernel is isomorphic to a finite direct sum of intervals.

Therefore, we may assume that X consists of split monomorphisms Xk
// •x // Xl for k, l ∈ [1, n]. We have a

monomorphism (X1)[1,n]
-ri X. Choosing a retraction to X1

// •x // Xn and composing, we obtain a coretrac-
tion to i, so that X is isomorphic to the direct sum of the interval (X1)[1,n] and the cokernel of i. Since the
cokernel of i has a zero term at position 1, we are done by induction.

I.6.6.3 A Freyd category reminder

The construction of the Freyd category and its properties are due to Freyd [15, Th. 3.1].

Definition I.66 Suppose given an additive category C and a morphism X -f Y in C.

(1) A morphism K -i X is a weak kernel of X -f Y if the sequence of abelian groups

(T,K) -(−)i
(T,X) -(−)f

(T, Y )

is exact at (T,X) for every T ∈ Ob C.

(2) A morphism Y -p C is a weak cokernel of X -f Y if the sequence of abelian groups

(X,T ) �
f(−)

(Y, T ) �
p(−)

(C, T )

is exact at (Y, T ) for every T ∈ Ob C.

(3) The category C is called weakly abelian if every morphism has a weak kernel and a weak cokernel, and if
every morphism is a weak kernel (of some morphism) and a weak cokernel (of some morphism).

9At this point, we use that ∆̇n is linearly ordered.
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Let C be a weakly abelian category. Let C0(∆1) be the full subcategory of C(∆1) whose objects are zero morphisms.
The Freyd category Ĉ of C is defined to be the quotient category

Ĉ := C(∆1)/C0(∆1) .

We collect some elementary facts and constructions and mention some conventions.

(1) The category Ĉ is abelian. The kernel and the cokernel of a morphism X -f Y represented by (f ′, f ′′)
are constructed as

K
i //

ix

��

X ′

x

��

f ′ // Y ′

y

��

1Y ′ // Y ′

yp

��
X ′′

1X′′ // X ′′
f ′′ // Y ′′

p // C ,

where i is a chosen weak kernel and p a chosen weak cokernel of the diagonal morphism f ′y = xf ′′. If

f ′y = xf ′′ = 0, we choose X ′ -
1X′ X ′ as weak kernel and Y ′′ -

1Y ′′ Y ′′ as weak cokernel.

Choosing a kernel and a cokernel for each object in Ĉ(∆1), we obtain a kernel and a cokernel functor
Ĉ(∆1) -

- Ĉ, as for any abelian category.

(2) We stipulate that the pullback resp. the pushout of an identity morphism along a morphism is chosen to
be an identity morphism.

(3) We have a full and faithful functor C - Ĉ, X - (X -1X X). Its image, identified with C, consists of
bijective objects.

(4) For each X = (X ′ -
x

X ′′) ∈ Ob Ĉ, we may define objects and morphisms

X P -
Xπ

X -rXι X I

by

X ′
1X′ //

1X′

��

X ′
x //

x

��

X ′′

1X′′

��
X ′

x // X ′′
1X′′ // X ′′ .

As already mentioned in (3), the objects X P and X I are bijective, and thus Ĉ is Frobenius.

Sometimes, we write just ι for Xι and π for Xπ. Note that Xπ = 1X and Xι = 1X if X ∈ Ob C.

This construction X P -
Xπ

X -rXι X I is not meant to be functorial in (X′ -
x

X′′), however.

Remark I.67 Suppose given morphisms X -f Y -g Z in C. The following assertions are equivalent.

(i) The morphism f is a weak kernel of g.

(ii) The morphism g is a weak cokernel of f .

(iii) The sequence (f, g) is exact at Y when considered in Ĉ.

Proof. Ad (i) =⇒ (iii). Suppose that f is a weak kernel of g. Let K -i Y be the kernel of g in Ĉ. Factor f = f ′i.
Since f is a weak kernel of g in C, we may factor (Kπ)i = uf , whence Kπ = uf ′. Hence f ′ is epimorphic.

Ad (iii) =⇒ (i). Suppose (f, g) to be exact at Y . Let T -t Y in C be such that tg = 0. Then t factors over the
kernel of g, taken in Ĉ, and therefore, by projectivity of T in Ĉ, also over X.

Remark I.68 A morphism X -f Y in C is monomorphic if and only if it is a coretraction. Dually, it is
epimorphic if and only if it is a retraction.
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Proof. Suppose f to be monomorphic in C. It suffices to show that f is monomorphic in Ĉ, for then f is a

coretraction since X is injective in Ĉ. Let K -i X be the kernel of f in Ĉ. From (Kπ)if = 0, we conclude
(Kπ)i = 0 since f is monomorphic in C, and thus K ' 0 since Kπ is epimorphic and i is monomorphic in Ĉ.

In particular, an abelian category is weakly abelian if and only if it is semisimple, i.e. if and only if every morphism

in A splits. Hence the notion “weakly abelian” is slightly abusive.

Let E be a Frobenius category; cf. §I.6.2.3.

Lemma I.69 Suppose given a pure short exact sequence X ′ -ri X -
p

X ′′ in E. In E, the residue class iN is
a weak kernel of pN , and the residue class pN is a weak cokernel of iN .

Proof. By duality, it suffices to show that iN is a weak kernel of pN . So suppose given T -t X in E with

tp ≡B 0. We have to show that there exists a morphism T -t
′

X ′ such that t′i ≡B t. Let (T -t X -p X ′′) =

(T -u B -q X ′′), where B is bijective. Let P -
p̃

B be the pullback of p along q. We have a factorisation

(T -t X) = (T -v P -w X). We have a factorisation (X ′ -ri X) = (X ′ -rĩ P -w X); moreover, (̃i, p̃) is
a pure short exact sequence, hence split by projectivity of B; cf. Lemma I.51 and §I.6.2.2. Let ĩr = 1. Then
rĩ− 1 ≡B 0, since it factors over B. We obtain (vr)i = vrĩw ≡B vw = t.

Remark I.70 The stable category E and the classical stable category E of the Frobenius category E are weakly
abelian. The stable category E carries an automorphism T, induced by shifting an acyclic complex to the left by
one position and negating the differentials.

Cf. Definition I.47.

Proof. By Lemma I.48, it remains to prove that E is weakly abelian. Suppose given a morphism X -f Y in E .

By duality, it suffices to show that the residue class of X -f Y in E is a weak cokernel and has a weak kernel.
Substituting isomorphically in E by adding a bijective object to X, we may assume f to be a pure epimorphism
in E . So we may complete to a pure short exact sequence and apply Lemma I.69.

Lemma I.71 A pure short exact sequence X ′ -ri X -
p

X ′′ in E is mapped via the residue class functor N to
a sequence in E that is exact at X when considered in the Freyd category Ê of E. In particular, a pure square in
E is mapped to a weak square in E.

Proof. By Remark I.67, we may apply Lemma I.69.

I.6.6.4 Heller operators for diagrams

In Definition I.5, the central role is attributed to the tuple ϑ = (ϑn)n>0 of isomorphisms. In the case of C being the

stable category of a Frobenius category, such an isomorphism ϑn arises from different choices of pure monomorphisms

into bijective objects. To that end, we provide a comparison lemma, which suitably organises wellknown facts.

Let C be a category.

Given a category D and a full subcategory U ⊆ D(C), we say that U is characteristic in D(C) if the image of U

under A(C) is contained in U for any autoequivalence D -A
∼ D, and if U is closed under isomorphy in D(C), i.e.

X ' X ′ in D(C) and X ′ ∈ Ob U implies X ∈ Ob U .

Let E be a Frobenius category. Denote by E its classical stable category, and denote by E -N E the residue class
functor. Let G ⊆ E(C) be a full additive subcategory. Let H ⊆ E(C) be a full additive characteristic subcategory
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such that (G)(N(C)) ⊆ H.
G � � //

��

E(C)

N(C)

��
H � � // E(C)

A C-resolving system I consists of pure short exact sequences

I =
((

Xc
-riX,c IX,c -

pX,c
X̃c

)
c∈ObC

)
X∈ObG

,

with bijective objects IX,c in E as middle terms.

Lemma I.72

(1) Given a C-resolving system

I =
((

Xc
-riX,c IX,c -

pX,c
X̃c

)
c∈ObC

)
X∈ObG

,

there exists a functor

G -TI H

that is uniquely characterised by the following properties.

On objects X ∈ ObG ⊆ Ob E(C), the image X TI ∈ ObH ⊆ Ob E(C) is characterised as follows.

(∗) For any (c -γ d) ∈ C, there exist

• a representative (X TI)∼γ in E of the evaluation (X TI)c -
(X TI)γ

(X TI)d in E at

c -γ d of the diagram X TI ∈ ObH ⊆ Ob E(C), and

• a morphism IX,c - IX,d in E

such that

Xc •
iX,c //

Xγ

��

IX,c
�pX,c //

��

(X TI)c

(X TI)∼γ

��
Xd •

iX,d // IX,d
�pX,d // (X TI)d

is a morphism of pure short exact sequences.

On morphisms (X -f Y ) ∈ G ⊆ E(C), the image (X TI -
f TI

Y TI) ∈ H ⊆ E(C) is characterised as
follows.

(∗∗) For any c ∈ ObC, there exist

• a representative (f TI)∼c in E of the evaluation (X TI)c -
(f TI)c

(Y TI)c in E at

c of the diagram morphism (X TI -
f TI

Y TI) ∈ H ⊆ E(C), and

• a morphism IX,c - IY,c in E

such that

Xc •
iX,c //

fc

��

IX,c
�pX,c //

��

(X TI)c

(f TI)∼c
��

Yc •
iY,c // IY,c

�pY,c // (Y TI)c

is a morphism of pure short exact sequences.
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(2) Given C-resolving systems

I =
((

Xc
-riX,c IX,c -

pX,c
X̃c

)
c∈ObC

)
X∈ObG

,

I ′ =
((

Xc
-ri′X,c I ′X,c

-
p′X,c

X̃ ′c

)
c∈ObC

)
X∈ObG

,

there exists an isomorphism

TI -
αI,I′

∼ TI′

that is uniquely characterised by the following property.

(∗∗∗) For any X ∈ ObG ⊆ Ob E(C) and for any c ∈ ObC, there exist

• a representative (XαI,I′)∼ in E of the evaluation (X TI)c -
(XαI,I′ )c

(X TI′)c in

E at c of the evaluation X TI -
XαI,I′

X TI′ in H ⊆ E(C) of αI,I′ at X, and

• a morphism IX,c - I ′X,c in E

such that

Xc •
iX,c // IX,c

�pX,c //

��

(X TI)c

(XαI,I′ )
∼

��
Xc •

i′X,c // I ′X,c
�p′X,c // (X TI′)c

is a morphism of pure short exact sequences.

Proof. Let us first assume that H = E(C). Having proven all assertions in this case, it then finally will remain
to be shown that given H ⊆ E(C) and a C-resolving system I, we have X TI ∈ ObH ⊆ Ob E(C) for X ∈ ObG.

We remark that starting from a morphism U -u U ′ in E and from chosen pure short exact sequences (U,B, V )

and (U ′, B′, V ′) with bijective middle terms B resp. B′, we may define a morphism V -v V ′ in E by the existence
of a morphism

U •
i
//

u

��

B
�p //

��

V

v∼

��
U ′ •

i′

// B′
�p
′

// V ′

of pure short exact sequences in E , where V -v V ′ is the image in E of the morphism V -v
∼

V ′ in E .

Ad (1). Given X ∈ ObG, we define X TI ∈ E(C) at the morphism c -γ d of C by the diagram in (∗). The
characterisation (∗) shows that X TI is in fact in Ob E(C).

Given a morphism X -f Y in G, we define the morphism X TI -f TI
Y TI in E(C) at c ∈ ObC by the diagram

in (∗∗). Combining (∗) and (∗∗), we see that f TI is in fact in E(C). From (∗∗) we conclude that TI is indeed a
functor.

Ad (2). Given X ∈ ObG, we define X TI -
XαI,I′

X TI′ at c ∈ ObC by the diagram in (∗∗∗).

Combining (∗∗∗) and (∗), we see that X TI -
XαI,I′

X TI′ is indeed in E(C). Combining (∗∗∗) and (∗∗), we see
that αI,I′ is indeed a transformation.

Suppose given resolving systems I, I ′ and I ′′. The characterisation of αI,I′ etc. implies that αI,I′αI′,I′′ = αI,I′′

and that αI,I = 1TI . Hence in particular, αI,I′αI′,I = 1TI and αI′,IαI,I′ = 1TI′ , and so αI,I′ is an isomorphism
from TI to TI′ .
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Consider the case C = ∆0, i.e. the terminal category, let G = E(∆0) = E and let H = E(∆0) = E . For a

∆0-resolving system J , we obtain a functor E -TJ E that factors as

(E -TJ E) = (E -N E -T̄J
∼ E) .

In fact, for a morphism b that factors over a bijective object B, we can choose 0 as a representative of bTJ ,
inserting the pure short exact sequence (B,B, 0). Moreover, T̄J is an equivalence, for it is full; faithful, using the
dual of the argument just given; and dense, since given a morphism of short exact sequences in E with bijective
middle terms and an identity on the kernels, the morphism on the cokernels is a homotopism.

Now return to the general case H ⊆ E(C). Let J ′ be a C-resolving system consisting of pure short exact sequences
with bijective middle term that already occur in the chosen ∆0-resolving system J . Then, for X ∈ ObG, we
have X TJ′ = X(N(C))(T̄J(C)). Since X(N(C)) ∈ ObH by assumption, and since, moreover, H is assumed
to be a characteristic subcategory of E(C), we conclude that X(N(C))(T̄J(C)) = X TJ′ is in ObH. Finally,

let I be an arbitrary C-resolving system. We have X TI -
αI,J′

∼ X TJ′ in E(C), and thus X TJ′ ∈ ObH implies
X TI ∈ ObH, since a characteristic subcategory of E(C) is, by definition, closed under isomorphy.

I.6.7 Pointwise pullback and pushout

Suppose given an abelian category A, a poset E and an element ε ∈ E. Let Eε := E t {ε′} be the poset defined
by requiring that ε 6 ε′, that α 66 ε′ whenever α 66 ε and that ε′ 66 α for all α ∈ E; and the remaining relations
within E ⊆ Eε inherited from E. We define the pushout at ε

A(Eε) -(−)�(=)

A(E)

X ′ - X�x
′
,

where X := X ′|E , and (X ′ε -x
′

X ′ε′) = (X ′ε -
X′
ε′/ε

X ′ε′); and a transformation

X ′|E = X -i = iX′

X�x
′
,

natural in X ′, by the following construction. Abbreviating X�x
′

by X̃, we let

X ′ε′ = X̃ε

X̃α/ε // X̃α

Xε

Xα/ε //

x′

OO

Xα

iα

OO

for α ∈ E with ε 6 α. If ε 66 α, we let X̃α = Xα and iα = 1Xα .

Given α 6 β in E, we let

(X̃α
-X̃β/α X̃β) be induced by pushout if ε 6 α 6 β ,

(X̃α
-X̃β/α X̃β) := (Xα

-Xβ/α Xβ
-iβ X̃β) if ε 66 α, but ε 6 β ,

(X̃α
-X̃β/α X̃β) := (Xα

-Xβ/α Xβ) if ε 66 β .

The morphism X -i X �x
′

is the solution to the following universal problem. Suppose given a morphism

X -f Y in A(E) such that at ε ∈ E we have a factorisation

(Xε
-fε Yε) = (Xε

-x
′

X ′ε′
- Yε) .

Then there is a unique morphism X�x
′ -g Y such that

(X -f Y ) = (X -i X�x
′ -g Y ) .
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Dually, let Eε := E t {ε′} be the poset defined by requiring that ε > ε′, that α 6> ε′ whenever α 6> ε and that
ε′ 6> α for all α ∈ E; and the remaining relations within E ⊆ Eε inherited from E. We define the pullback at ε

A(Eε) -(−)�(=) A(E)

X ′ - X�x′ ,

where X := X ′|E , and (X ′ε′ -
x′

X ′ε) = (X ′ε′ -
X′
ε/ε′

X ′ε); and a transformation

X ′|E = X � p = pX′

X�x′ ,

natural in X ′, being the solution to the universal problem dual to the one described above.

I.6.8 1-epimorphic functors

Let C -F D be a functor between categories C and D.

Definition I.73 The functor C -F D is 1-epimorphic if the induced functor “restriction along F ”

C, E �F (−) D, E

is full and faithful for any category E . In particular, given functors D -
-G

H
E with FG ' FH, we can conclude

that G ' H; whence the notion of 1-epimorphy.

Remark I.74 Suppose given a diagram of categories and functors

C F //

S o
��

D

To
��

C′ F ′ // D′

with equivalences S and T , and with FT ' SF ′. Then F is 1-epimorphic if and only if F ′ is 1-epimorphic.

Let C, C ′ ∈ Ob C . An F -epizigzag (resp. an F -monozigzag) C u
 C ′ is a finite sequence of morphisms

C = C0
-u0

Z0
�u
′
0 C1

-u1
Z1
�u
′
1 C1

-u2 · · · �u
′
k−2 Ck−1

-uk−1
Zk−1

�u
′
k−1Ck = C ′

in C of length k > 0 such that u′iF is an isomorphism for all i ∈ [0, k], and such that

uF := (u0F )(u′0F )−(u1F )(u′1F )− · · · (uk−1F )(u′k−1F )− : CF - C ′F

is a retraction (resp. a coretraction) in D.

Lemma I.75 Suppose the functor

C -F D

to be dense, and to satisfy the following condition (C).

(C)



Given objects C, C ′ ∈ Ob C and a morphism CF -d C ′F in D, there exists

an F -epizigzag Cs
cs C, an F -monozigzag C ′

c′t C ′t and a morphism Cs
-c C ′t

such that

(CsF -csF CF -d C ′F -c
′
tF C ′tF ) = (CsF -cF C ′tF ) .
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Then F is 1-epimorphic.

Proof. Since F is dense, Remark I.74 allows to assume that F is surjective on objects, i.e. (Ob C)F = ObD.

Let us prove that E(C) �F (−) E(D) is faithful. Suppose given functors C -F D -
-G

H
E and morphisms G -γ H

and G -γ
′

H such that Fγ = Fγ′. Given D ∈ ObD, we have to show that Dγ = Dγ′. Writing D = CF for
some C ∈ Ob C, this follows from Dγ = CFγ = CFγ′ = Dγ′.

Let us prove that E(C) �F (−) E(D) is full. Suppose given functors C -F D -
-G

H
E and a morphism FG -δ FH.

Define G -δ̂ H by (CF )δ̂ := Cδ for C ∈ Ob C.

We have to prove that Dδ̂ is a welldefined morphism for D ∈ ObD. So suppose that D = CF = C ′F . We
have to show that Cδ = C ′δ. By assumption (C), applied to d = 1D = 1CF = 1C′F , there exist an F -epizigzag

Cs
cs C, an F -monozigzag C ′

c′t C ′t and a morphism Cs
-c C ′t such that (csF )(c′tF ) = cF . We obtain

(csFG)(Cδ)(c′tFH) = (Csδ)(csFH)(c′tFH)

= (Csδ)(cFH)

= (cFG)(C ′tδ)

= (csFG)(c′tFG)(C ′tδ)

= (csFG)(C ′δ)(c′tFH) ,

whence Cδ = C ′δ by epimorphy of csFG and by monomorphy of c′tFH.

We have to prove that δ̂ is natural. Suppose given CF -d C ′F in D for some C, C ′ ∈ Ob C. We have to
show that (dG)((C ′F )δ̂) = ((CF )δ̂)(dH), i.e. that (dG)(C ′δ) = (Cδ)(dH). By assumption (C), there exist an

F -epizigzag Cs
cs C, an F -monozigzag C ′

c′t C ′t and a morphism Cs
-c C ′t such that (csF )d(c′tF ) = cF . We

obtain
(csFG)(dG)(C ′δ)(c′tFH) = (csFG)(dG)(c′tFG)(C ′tδ)

= (cFG)(C ′tδ)

= (Csδ)(cFH)

= (Csδ)(csFH)(dH)(c′tFH)

= (csFG)(Cδ)(dH)(c′tFH) ,

whence (dG)(C ′δ) = (Cδ)(dH) by epimorphy of csFG and by monomorphy of c′tFH.

Corollary I.76 If C -F D is a functor such that (i, ii) hold, then F is 1-epimorphic.

(i) For all morphisms D -d D′ in D, there is a morphism C -c C ′ in C such that

(C -c C ′)F = (D -d D′) .

(ii) For any C, C ′ ∈ Ob C such that CF = C ′F , there exists a finite sequence of morphisms

C = C0
-u0

Z0
�u
′
0 C1

-u1
Z1
�u
′
1 C2

-u2 · · · �u
′
k−2 Ck−1

-uk−1
Zk−1

�u
′
k−1Ck = C ′

from C to C ′ such that uiF = u′iF = 1CF = 1C′F for all i ∈ [0, k].

Proof. The functor F is dense, even surjective on objects, because identities have inverse images under F . To

fulfill condition (C) of Lemma I.75, given objects C, C ′ ∈ Ob C and a morphism CF -d C ′F in D, we may

take some morphism Cs
-c C ′t in C such that (Cs

-c C ′t)F = (CF -d C ′F ), we may take for cs a sequence as
given by assumption because of CsF = CF , and we may take for ct a sequence as given by assumption because
of C ′tF = C ′F .

Corollary I.77 If C -F D is a full and dense functor, then F is 1-epimorphic.

Proof. In fact, in condition (C) of Lemma I.75, we may take an F -monozigzag and an F -epizigzag of length 0.



Chapter II

On exact functors for Heller

triangulated categories

II.0 Introduction

II.0.1 Extending from Verdier to Heller

The following facts are part of the classical theory that Verdier triangulated categories.

• Verdier triangulated categories are stable under formation of the Karoubi hull [2].

• The Karoubi hull construction is functorial within Verdier triangulated categories and

exact functors [2].

• Verdier triangulated categories are stable under localisation at a thick subcategory [56].

• Such a localisation has a universal property within Verdier triangulated categories and

exact functors [56].

• An adjoint functor of an exact functor is exact [44, App. 2, Prop. 11], [34, 1.6].

We extend these assertions somewhat to fit into the Heller triangulated setting.

• Heller triangulated categories are stable under formation of the Karoubi hull; cf. Proposi-

tion II.12.

• The Karoubi hull construction is functorial within Heller triangulated categories and exact

functors; cf. Proposition II.13.

• Closed Heller triangulated categories are stable under localisation at a thick subcategory;

cf. Proposition II.36. (Concerning closedness, see remark below.)

• Such a localisation has a universal property within closed Heller triangulated categories

and exact functors; cf. Proposition II.38.

103
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• An adjoint functor of an exact functor is exact; cf. Proposition II.28.

In a general Heller triangulated category, it is unknown whether there exists a cone on a given

morphism. This however is true if all idempotents split; cf. Lem. I.18. It is technically convenient

to extend this assertion in the following manner. Define a Heller triangulated category to be

closed if this property holds; cf. Def. III.13, Definition II.14, Remark II.15, Lemma II.20. Prove

that certain constructions yield closed Heller triangulated categories or preserve closedness; cf.

Cor. III.21, Proposition II.36.

An exact functor between Heller triangulated categories (C,T, ϑ) and (C ′,T′, ϑ′) is a pair (F, a)

consisting of a subexact functor F and an isotransformation a : TF - F T′ such that ϑ, ϑ′

and a are compatible; cf. [34, Def. 1.4], Definition II.1. Exactness of such a pair can also be

characterised via n-triangles; cf. Proposition II.25. The deeper reason behind that fact is that

closed Heller triangulated categories can, alternatively, be defined via sets of n-triangles for

n > 0 with suitable properties with respect to quasicyclic and folding operations, as S. Thomas

informed me.

The proof of the exactness of an adjoint of an exact functor does not have to make recourse to

n-triangles. Neither does the construction of the Heller triangulation on the Karoubi hull. This

shows the convenience of the definition of a triangulation via a tuple ϑ = (ϑn)n>0 of isomorphisms

between certain shift functors, and to view the n-triangles as accessory, if useful; which is no

longer the point of view taken in [35].

II.0.2 Desirables

Still missing is a precise formulation in which sense the dual of a Heller triangulated category

is again a Heller triangulated category, and also in which sense the constructions above are

compatible with duality. Moreover, we do not treat exactness of derived functors, except im-

plicitly, in those cases where a derived functor can be written as a composite of an adjoint of

a localisation functor, an exact functor and another localisation functor. Still missing, in the

Heller triangulated context, is furthermore the exactness of the lift of the inclusion of the heart

to a functor on the bounded derived category [8, Prop. 3.1.10], or more generally, the functor

Z appearing in the construction of [34, Ex. 2.3] ; cf. [34, Th. 3.2].

II.0.3 Notations and conventions

We use the notations and conventions from Chapter I. In particular, we write composition of

morphisms and functors in the natural order; viz. morphisms as -f -g = -fg = -f ·g and

functors as -F -G = -FG = -F?G
. Similarly for transformations.

Epic and epimorphic are synonymous, and so are monic and monomorphic.

II.1 Exact functors

Let (C,T, ϑ), (C ′,T′, ϑ′) and (C ′′,T′′, ϑ′′) be Heller triangulated categories; cf. Def. I.5.(ii).
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In Def. I.5.(iii), we required a strictly exact functor C - C′ to satisfy F T′ = TF . The adjoint
functor of a strictly exact functor does not always seem to be strictly exact. Following Keller and
Vossieck, we shall prove below that if we call a functor exact, if it satisfies the weakened condition
F T′ ' TF instead (and an accordingly modified compatibility with the Heller triangulations),
then an adjoint of an exact functor is exact; cf. [34, 1.4].

Nonetheless, generally speaking, usually one deals with strictly exact functors. Hence we shall
also state an extra condition of shiftcompatibility on the adjunction that ensures a shiftcompatibly
adjoint functor of a strictly exact functor to be strictly exact.

Given n > 0 and a transformation G -a G′ between subexact additive functors C -
-G

G′
C ′, we

denote by G+(∆̄#
n ) -a+(∆̄#

n )
G′+(∆̄#

n ) the transformation given by(
X(a+(∆̄#

n ))
)
β/α

:= Xβ/αa : Xβ/αG - Xβ/αG
′

for X ∈ Ob C(∆̄#
n ), and for β/α ∈ ∆̄#

n , i.e. for α, β ∈ ∆̄n with β−1 6 α 6 β 6 α+1. Moreover,

we denote by G+(∆̄#
n ) -

a+(∆̄#
n )

G′+(∆̄#
n ) the induced transformation between the induced

functors on the stable categories.

Sometimes, we abbreviate (G -
a

G′) :=
(
G+(∆̄#

n ) -
a+(∆̄#

n )
G′+(∆̄#

n )
)
.

Definition II.1

A pair (F, a), consisting of an additive functor C -F C ′ and a transformation TF -a F T′,

is called an exact pair, or an exact functor, if the following conditions hold.

(1) a is an isotransformation.

(2) F is subexact, i.e. its induced functor Ĉ -F̂ Ĉ ′ on the Freyd categories is exact.

(3) We have

(ϑn ? F
+(∆̄#

n )) · a+(∆̄#
n ) = F+(∆̄#

n ) ? ϑ′n

for all n > 0.

In particular, provided TF = F T′, then (F, 1) is exact if and only if F is strictly exact; cf.

Def. I.5.(iii). In this case, we sometimes identify F and (F, 1).

Calling a pair (F, a) an exact functor instead of an exact pair is an abuse of notation.

We shall not discuss whether condition (1) is redundant; we need it for the construction of Ỹ in
§II.4, but that may be due to the order of our arguments.

Condition (3) asserts that the following cylindrical diagram commutes for all n > 0.

C+(∆̄#
n )

F+(∆̄#
n )

//

[−]+1

��

[−+1]

��

C′+(∆̄#
n )

[−]+1

��

[−+1]

��

1
2:

a+(∆̄#
n )

:B

C+(∆̄#
n )

F+(∆̄#
n )

// C′+(∆̄#
n )

ϑn +3 ϑ′n +3
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I.e., using the abbreviation just introduced, we require XϑnF ·Xa = XFϑ′n to hold in C′+(∆̄#
n ) for

all X ∈ Ob C+(∆̄#
n ) = Ob C+(∆̄#

n ).

Definition II.2 Suppose given exact functors (F, a) from C to C ′, and (F ′, a′) from C ′ to C ′′.
The composite of (F, a) and (F ′, a′) is defined to be

(F, a) ? (F ′, a′) = (F, a)(F ′, a′) := (FF ′, (aF ′)(Fa′)) = (F ? F ′, (a ? F ′) · (F ? a′)) .

Composition is associative.

Remark II.3 If (F, a) and (F ′, a′) are exact, then so is their composite (F, a)(F ′, a′).

Proof. To be able to distinguish more easily, we shall make use, from the second to the last but

first step, of the notation a ? F = aF , F ? F ′ = FF ′ etc. Given n > 0, we obtain(
ϑn ? (F ? F ′)+(∆̄#

n )
)
·
(
(a ? F ′) · (F ? a′)

)+
(∆̄#

n )

=
(
ϑn ? F

+(∆̄#
n ) ? F ′+(∆̄#

n )
)
·
(
a+(∆̄#

n ) ? F ′+(∆̄#
n )
)
·
(
F+(∆̄#

n ) ? a′+(∆̄#
n )
)

=
(
F+(∆̄#

n ) ? ϑ′n ? F
′+(∆̄#

n )
)
·
(
F+(∆̄#

n ) ? a′+(∆̄#
n )
)

= F+(∆̄#
n ) ? F ′+(∆̄#

n ) ? ϑ′′n

= (F ? F ′)+(∆̄#
n ) ? ϑ′′n .

Definition II.4 Suppose given exact functors (F, a) and (G, b) from (C,T, ϑ) to (C ′,T′, ϑ′).

A transformation F -s G such that (T ? s) · b = a · (s ? T′) holds, is called periodic.

The periodicity condition requires that

X+1F
X+1s //

Xa o
��

X+1G

Xbo
��

(XF )+1 (Xs)+1

// (XG)+1

commute for all X ∈ Ob C.

Remark II.5 Suppose given exact functors (F, a), (G, b) and (H, c) from C to C ′, and periodic

transformations F -
-s

s′
G -t H.

(1) The composite F -s·t H is periodic.

(2) The identity F -1 F is periodic.

(3) If s is a periodic isotransformation from (F, a) to (G, b), then s− is a periodic isotransfor-

mation from (G, b) to (F, a).
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(4) The difference F -
s−s′

G of two periodic transformations is periodic.

(5) The direct sum (F, a) ⊕ (G, b) := (F ⊕ G, a ⊕ b) = (F ⊕ G,
(
a 0
0 b

)
) is exact, with periodic

inclusions from and periodic projections to (F, a) and (G, b).

Definition II.6 Write C, C ′ ex for the category of the exact functors and periodic transfor-

mations from C to C ′ ; cf. Definitions II.1, II.4, Remark II.5.

Write C, C ′ st ex for the full subcategory of C, C ′ ex of the strictly exact functors and periodic

transformations from C to C ′ .

II.2 Idempotents and cones

Let (C,T, ϑ) be a Heller triangulated category; cf. Def. I.5.

II.2.1 A general remark on residue classes

Concerning Frobenius categories, cf. e.g. §I.6.2.3.

Remark II.7 Given a full and faithful exact functor G : F - F ′ of Frobenius categories that

sends all bijective objects to bijective objects. Then the induced functor G : F - F ′ on the

classical stable categories is full and faithful.

Proof. By construction, it is full. We claim that it is faithful. Suppose given X - Y in F such

that

(XG - Y G) = (XG - B′ - Y G)

in C ′ for some bijective object B′ of C ′. Choose X -r B in C with B bijective in C. Since G

preserves pure monomorphy, XG - B′ factors over XG -r BG, whence XG - Y G factors

over XG -r BG, whence X - Y factors over X -r B.

Suppose given weakly abelian categories A and A′. Suppose given a subexact functor A -F A′ .
Suppose given n > 0. We obtain an induced functor

F+(∆̄#
n ) : A+(∆̄#

n ) - A′+(∆̄#
n )

on the respective stable categories of n-pretriangles. Cf. §I.1.2.1.3, §I.6.6.3.

Remark II.8 If F is full and faithful, so is F+(∆̄#
n ) .

In particular, if F is the embedding of a full subcategory, we may and will also consider F+(∆̄#
n )

to be the embedding of a full subcategory.

Proof. By Prop. I.40, both A+(∆̄#
n ) and A′+(∆̄#

n ) are Frobenius categories; and the full and

faithful functor F+(∆̄#
n ) : A+(∆̄#

n ) -A′+(∆̄#
n ) induced by F preserves bijective objects, viz.

split objects, and pure short exact sequences, viz. pointwise split short exact sequences. So by

Remark II.7, the assertion follows.
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II.2.2 A Heller triangulation on the Karoubi hull

Let Ĉ denote the Freyd category of C ; cf. e.g. § I.6.6.3. We consider the full and faithful functor

C - Ĉ as an embedding of a full subcategory. Let C̃ denote the full subcategory of bijectives in

the abelian Frobenius category Ĉ. So we have full subcategories

C ⊆ C̃ ⊆ Ĉ

Since the image of C in Ĉ is a big enough subcategory of bijectives, the embedding C -
�� C̃ is a

Karoubi hull of C ; cf. [30, III.II]. Cf. also Remark II.43, Lemma II.44 – which we will not use

and argue directly instead.

We shall give a Heller triangulation on this Karoubi hull C̃ of C. The Verdier triangulated version

of this construction is due to Balmer and Schlichting; cf. [2, Th. 1.12].

As a full subcategory of bijective objects in abelian Frobenius category, the category C̃ is weakly

abelian.

The shift T on C induces a shift T̂ on Ĉ, which restricts to a shift T̃ on C̃.

Remark II.9 Suppose given n > 0 and X ∈ Ob C̃+(∆̄#
n ) . There exists Z ∈ Ob C+(∆̄#

n )

such that X is isomorphic to a direct summand of Z in C̃+(∆̄#
n ) . In other words, there exists

Z ∈ Ob C+(∆̄#
n ) and a split monomorphism X -i Z in C̃+(∆̄#

n ) .

Proof. By Prop. I.12, it suffices to prove that given X ∈ Ob C̃(∆̇n), there exists Z ∈ Ob C(∆̇n)

such that X is isomorphic, in C̃(∆̇n), to a direct summand of Z.

It suffices to prove the existence of a split monomorphism X - Z in C̃(∆̇n) with Z ∈ Ob C(∆̇n).

For i ∈ [1, n], let Yi ∈ Ob C̃ be such that Xi ⊕ Yi is isomorphic to an object in C. Let

Y ∈ Ob C̃(∆̇n) have entry Yi at position i for 1 6 i 6 n and the morphism from position i

to position j be zero for 1 6 i < j 6 n. The diagram X ⊕ Y has X as a summand and is

isomorphic to an object in C(∆̇n).

Remark II.10 Given n > 0, a diagram X ∈ Ob C̃+(∆̄#
n ) , a split monomorphism X - Z with

Z ∈ Ob C+(∆̄#
n ) and a morphism X -x X ′, then there exists a commutative quadrangle

X
��
•
��

x // X ′
��
•
��

Z // Z ′

in C̃+(∆̄#
n ) with Z ′ ∈ Ob C+(∆̄#

n ) .

Moreover, if X -X ′ is a split monomorphism, we may choose Z - Z ′ to be a split monomor-

phism.

Proof. We form

X
��
•(1 0)

��

x // X ′
��
•
��

��
•(1 0)

��
X ⊕ Y “

x 0
0 1

” // X ′ ⊕ Y ,
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where X ⊕ Y ' Z. By Remark II.9, there is a split monomorphism from X ′ ⊕ Y to an object

Z ′ of Ob C+(∆̄#
n ) .

Moreover, if X -x X ′ is split monic, so is the composite (X ⊕ Y -

“
x 0
0 1

”
X ′ ⊕ Y - Z ′).

Construction II.11 Given n > 0, we define [−]+1 -ϑ̃n [−+1] on C̃+(∆̄#
n ) as follows.

Given X ∈ Ob C̃+(∆̄#
n ) , choose a split monomorphism X -i Z with Z ∈ Ob C+(∆̄#

n ) , existent

by Remark II.9, and choose a retraction p to i. Define

([X]+1 -
Xϑ̃n

[X+1]) := ([X]+1 -
[i]+1

[Z]+1 -
Zϑn

[Z+1] -
[p+1]

[X+1]) .

To prove that Xϑ̃n is welldefined, we shall first show that it is independent of the choice of the

retraction p. Given d : Z -X with id = 0, we have to show that [i]+1Zϑn[d+1] = 0. Since [i+1]

is monic, it suffices to show that [i]+1Zϑn[d+1][i+1] = 0. In fact,

[i]+1Zϑn[d+1][i+1] = [i]+1Zϑn[(di)+1] = [i]+1[di]+1Zϑn = [id]+1[i+1]Zϑn = 0 ,

since di is in C+(∆̄#
n ) .

Now assume given another split monomorphism X - Z ′ with Z ′ ∈ Ob C+(∆̄#
n ) . By Re-

mark II.10, we may assume that this split monomorphism factors into two split monomorphisms

X -i Z -i
′
Z ′. Let ip = 1 and i′p′ = 1. Then (ii′)(p′p) = 1, and we may conclude

[ii′]+1(Z ′ϑn)[(p′p)+1] = [i]+1[i′]+1
(
Z ′ϑn[p′+1]

)
[p+1] = [i]+1[i′]+1

(
[p′]+1Zϑn

)
[p+1] = [i]+1Zϑn[p+1] ,

since p′ is in C+(∆̄#
n ) .

To show that ϑn is a transformation, we suppose given a morphism X -f X ′ in C̃+(∆̄#
n ) and

have to show that Xϑ̃n[f+1]
!

= [f ]+1X ′ϑ̃n. By Remarks II.9 and II.10, we find a commutative

quadrangle

X
��
•i
��

f // X ′
��
•i′
��

Z
g // Z ′

in C̃+(∆̄#
n ) with Z, Z ′ ∈ Ob C̃+(∆̄#

n ) . Choose p and p′ such that ip = 1 and i′p′ = 1. It suffices

to show that Xϑ̃n[f+1][i′+1]
!

= [f ]+1X ′ϑ̃n[i′+1] by monomorphy of [i′+1]. In fact,

Xϑ̃n[f+1][i′+1] = Xϑ̃n[i+1][g+1] = [i]+1Zϑn[p+1][i+1][g+1]

= [i]+1Zϑn[(pig)+1] = [i]+1[pig]+1Z ′ϑn = [ig]+1Z ′ϑn

= [fi′]+1Z ′ϑn = [fi′]+1[p′i′]+1Z ′ϑn = [fi′]+1Z ′ϑn[(p′i′)+1]

= [f ]+1[i′]+1Z ′ϑn[p′+1][i′+1] = [f ]+1X ′ϑ̃n[i′+1] .

Note that Zϑ̃n = Zϑn for Z ∈ Ob C+(∆̄#
n ) .

End of construction.
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Proposition II.12

(1) The tuple ϑ̃ := (ϑ̃n)n>0 is the unique Heller triangulation on (C̃, T̃) such that the full and

faithful inclusion functor C -
�� C̃ is strictly exact; cf. Def. I.5.(i, ii).

(2) An n-pretriangle U ∈ Ob C+(∆̄#
n ) is an n-triangle with respect to (C,T, ϑ) if and only if it

is an n-triangle with respect to (C̃, T̃, ϑ̃).

Proof. Ad (1). We have to show that given m, n > 0 and a periodic monotone map ∆̄n
�p ∆̄m ,

we have p#?ϑ̃m
!

= ϑ̃n?p
#. Let us verify this at X ∈ Ob C̃+(∆̄#

n ) . Choose a split monomorphism

X -i Z with Z ∈ Ob C+(∆̄#
n ) by Remark II.9. It suffices to show that (Xp#)ϑ̃m[(ip#)+1]

!
=

(Xϑ̃n)p#[(ip#)+1]. In fact, we obtain

(Xp#)ϑ̃m[(ip#)+1] = [ip#]+1(Zp#)ϑm = [ip#]+1(Zϑn)p#

= ([i]+1Zϑn)p# = (Xϑ̃n[i+1])p# = (Xϑ̃n)p#[(ip#)+1] .

We have to show that given n > 0, we have f
n
? ϑ̃n+1

!
= ϑ̃2n+1 ? f

n
. Let us verify this at

X ∈ Ob C̃+(∆̄#
2n+1) . Choose a split monomorphism X -i Z with Z ∈ Ob C+(∆̄#

2n+1) by Re-

mark II.9. It suffices to show that (Xf
n
)ϑ̃n+1[(if

n
)+1]

!
= (Xϑ̃2n+1)f

n
[(if

n
)+1]. In fact, we obtain

(Xf
n
)ϑ̃n+1[(if

n
)+1] = [if

n
]+1(Zf

n
)ϑn+1 = [if

n
]+1(Zϑ2n+1)f

n

= ([i]+1Zϑ2n+1)f
n

= (Xϑ̃2n+1[i+1])f
n

= (Xϑ̃2n+1)f
n
[(if

n
)+1] .

The inclusion functor C -
�� C̃ is strictly exact since it strictly commutes with shift by construc-

tion, since it is subexact because the induced functor on the Freyd categories is an equivalence,

and since Zϑ̃n = Zϑn for Z ∈ Ob C+(∆̄#
n ) .

Now suppose that both ϑ̃ and ϑ̃′ are Heller triangulations on (C̃, T̃) such that C -
�� C̃ is strictly

exact. Suppose given n > 0 and X ∈ Ob C̃+(∆̄#
n ) . We have to show that Xϑ̃n

!
= Xϑ̃′n . Choose

a split monomorphism X -i Z with Z ∈ Ob C+(∆̄#
n ) ; cf. Remark II.9. It suffices to show that

Xϑ̃n[i+1]
!

= Xϑ̃′n[i+1]. In fact,

Xϑ̃n[i+1] = [i]+1Zϑ̃n = [i]+1Zϑn = [i]+1Zϑ̃′n = Xϑ̃′n[i+1] .

Ad (2). Suppose given an n-pretriangle U ∈ Ob C+(∆̄#
n ) . Now U is an n-triangle with respect

to (C,T, ϑ) if and only if Uϑn = 1 , and with respect to (C̃, T̃, ϑ̃) if and only if Uϑ̃n = 1 ; cf.

Def. I.5.(ii). Since Uϑn = Uϑ̃n , these assertions are equivalent. Cf. also Lem. I.25.

II.2.3 Functoriality of the Karoubi hull

We shall prove the universal property of the Karoubi hull directly, without making recourse to
Remark II.43 and Lemma II.44. We will make use of the universal property and the abelianness of
the Freyd category, however.
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Proposition II.13 Suppose given Heller triangulated categories (C,T, ϑ), (C ′,T′, ϑ′). Call the

strictly exact inclusion functors K : C - C̃ and K′ : C ′ - C̃ ′.

(1) Suppose given an exact functor (F, a) from C to C ′.

We may construct an exact functor (F̃ , ã) from C̃ to C̃ ′ such that

C
(F,a) //

K
��

C ′

K′

��

C̃
(F̃ ,ã) // C̃ ′

commutes, i.e. such that (F, a)(K′, 1) = (K, 1)(F̃ , ã), i.e. such that F ? K′ = K ? F̃ and

a ? K′ = K ? ã, i.e. such that uF̃ = uF for u ∈ Mor C and Zã = Za for Z ∈ Ob C.

The functor F̃ and the condition a?K′ = K ? ã uniquely determines ã. If a = 1, then ã = 1.

(2) Given two exact functors (F̃1 , ã1) and (F̃2 , ã2) such that (F, a)(K′, 1) = (K, 1)(F̃1 , ã1) =

(K, 1)(F̃2 , ã2), there exists a unique isotransformation F̃1
-ϕ∼ F̃2 such that K ?ϕ = 1, i.e.

such that Zϕ = 1 for Z ∈ Ob C. This isotransformation ϕ is periodic.

(3) Suppose given exact functors (F, a) and (G, b) from C to C ′. Suppose given a periodic

transformation s from F to G.

Construct (F̃ , ã) and (G̃, b̃) as in (1).

There exists a unique periodic transformation s̃ from F̃ to G̃ such that K ? s̃ = s ? K′, i.e.

such that Zs̃ = Zs for Z ∈ Ob C.

Proof. Given X ∈ Ob C̃, we choose X -
iX

ZX -
pX

X in C̃ such that iX · pX = 1X and such

that ZX ∈ Ob C.

Moreover, choose these objects and morphisms in such a way that ZXT̃ = ZX T, iXT̃ = iXT̃ and

pXT̃ = pXT̃ for X ∈ Ob C̃.

Furthermore, if X ∈ Ob C, then choose ZX = X and iX = 1X and pX = 1X .

Given X -u Y in C̃, we let ZX -zu ZY be defined by zu := pX · u · iY ; cf. Remark II.39.

Ad (1). Since F is subexact, F̂ is exact. Since W is a summand of an object in C, also WF̂ is a

summand of an object in C ′, hence bijective. So F̃ := F̂ |C̃′C̃ is welldefined.

We want to show that the functor F̃ preserves weak kernels and is therefore subexact; cf.

Lemma II.41. In fact, given W -w B -f C in C̃ such that w is a weak kernel of f , we get a

factorisation w = w′i, where K -ri B is a kernel of f in Ĉ. Considering an epimorphism P -
p
K

in Ĉ with P ∈ Ob C̃, we obtain a factorisation pi = p′w = p′w′i, whence p = p′w′, whence w′ is

epic. Since w′F̂ is epic and iF̂ is a kernel of fF̂ , we obtain that wF̂ = wF̃ is a weak kernel of

fF̂ = fF̃ .

The universal property of the Freyd construction yields a transformation â : T̂F̂ - F̂ T̂
′
. We let

the transformation ã : T̃F̃ - F̃ T̃
′
be defined on X ∈ Ob C̃ ⊆ Ob Ĉ as Xã := Xâ. In particular,

Zã = Za for Z ∈ Ob C.
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Given n > 0, it remains to be shown that F̃+(∆̄#
n ) ? ϑ̃′n

!
= (ϑ̃n ? F̃

+(∆̄#
n )) · ã+(∆̄#

n ); cf. Defini-

tion II.1. Let us verify this at X ∈ Ob C̃+(∆̄#
n ). Let X -i Z be a split monomorphism with

Z ∈ Ob C+(∆̄#
n ), existent by Remark II.9. It suffices to show that

(XF̃+(∆̄#
n ))ϑ̃′n · [(iF̃+(∆̄#

n ))+1]
!

= (Xϑ̃n)F̃+(∆̄#
n ) ·Xã+(∆̄#

n ) · [(iF̃+(∆̄#
n ))+1] .

In fact, we obtain

(XF̃+(∆̄#
n ))ϑ̃′n · [(iF̃+(∆̄#

n ))+1] = [iF̃+(∆̄#
n )]+1 · (ZF̃+(∆̄#

n ))ϑ̃′n

= [iF̃+(∆̄#
n )]+1 · (ZF+(∆̄#

n ))ϑ′n
(F, a) ex.

= [iF̃+(∆̄#
n )]+1 · (Zϑn)F+(∆̄#

n ) · Za+(∆̄#
n )

= [iF̃+(∆̄#
n )]+1 · (Zϑ̃n)F̃+(∆̄#

n ) · Zã+(∆̄#
n )

= [i]+1F̃+(∆̄#
n ) · (Zϑ̃n)F̃+(∆̄#

n ) · Zã+(∆̄#
n )

= (Xϑ̃n)F̃+(∆̄#
n ) · [i+1]F̃+(∆̄#

n ) · Zã+(∆̄#
n )

= (Xϑ̃n)F̃+(∆̄#
n ) ·Xã+(∆̄#

n ) · [(iF̃+(∆̄#
n ))+1] .

If a = 1, then â = 1, so ã = 1.

It remains to show that ã is uniquely determined by F̃ and the condition a ?K′ = K ? ã. In fact,

given X ∈ Ob C̃, we have

Xã · iXF̃ T̃
′

= iXT̃F̃ · ZX ã = iXT̃F̃ · ZXa ,

and iXF̃ T̃
′

is monic.

Ad (2). Define ϕ : F̃1
-∼ F̃2 at X ∈ Ob C̃ by

ZXF
pX F̃1 //

1

��

XF̃1

iX F̃1 //

oXϕ

��

ZXF

1

��
ZXF

pX F̃2 // XF̃2

iX F̃2 // ZXF ;

cf. Remark II.40.

The tuple ϕ = (Xϕ)X∈Ob C̃ is actually a transformation from F̃1 to F̃2 , for given X -u Y in C̃,
we obtain

pXF̃1 · uF̃1 · Y ϕ · iY F̃2 = pXF̃1 · uF̃1 · iY F̃1

= pXF̃1 · (u · iY )F̃1 = pXF̃1 · (iX · zu)F̃1

= pXF̃1 · iXF̃1 · zuF̃1 = ((pX · iX) · zu)F

= (zu · (pY · iY ))F = zuF̃2 · pY F̃2 · iY F̃2

= (zu · pY )F̃2 · iY F̃2 = (pX · u)F̃2 · iY F̃2

= pXF̃2 · uF̃2 · iY F̃2 = pXF̃1 ·Xϕ · uF̃2 · iY F̃2 ,

and pXF̃1 is epic and iY F̃2 is monic.
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Note that commutativity of the diagram above is also necessary, for we require K ?ϕ = 1. This

ensures uniqueness of ϕ.

It remains to show that ϕ is a periodic transformation from (F̃1 , ã1) to (F̃2 , ã2). In fact, given

X ∈ Ob C̃, we get

Xã1 ·XϕT̃
′ · iXF̃2T̃

′
= Xã1 · iXF̃1T̃

′

= iXT̃F̃1 · ZX ã1 = iXT̃F̃1 · ZX ã1

= iXT̃F̃1 · ZXa = iXT̃F̃1 · ZX ã2

= XT̃ϕ · iXT̃F̃2 · ZX ã2 = XT̃ϕ · iXT̃F̃2 · ZX ã2

= XT̃ϕ ·Xã2 · iXF̃2T̃
′
,

and iXF̃2T̃
′

is monic.

Ad (3). Define s̃ : F̃ - G̃ at X ∈ Ob C̃ by

ZXF
pX F̃ //

ZXs

��

XF̃
iX F̃ //

oXs̃
��

ZXF

ZXs

��
ZXG

pXG̃ // XG̃
iXG̃ // ZXG ;

cf. Remark II.40.

The tuple s = (Xs)X∈Ob C̃ is actually a transformation from F̃ to G̃, for given X -u Y in C̃, we

obtain
pXF̃ · uF̃ · Y s̃ · iY G̃ = pXF̃ · uF̃ · iY F̃ · ZY s

= pXF̃ · (u · iY )F̃ · ZY s = pXF̃ · (iX · zu)F̃ · ZY s

= pXF̃ · iXF̃ · zuF̃ · ZY s = ((pX · iX) · zu)F · ZY s

= (zu · (pY · iY ))F · ZY s = ZXs · (zu · (pY · iY ))G

= ZXs · zuG̃ · pY G̃ · iY G̃ = ZXs · (zu · pY )G̃ · iY G̃

= ZXs · (pX · u)G̃ · iY G̃ = ZXs · pXG̃ · uG̃ · iY G̃

= pXF̃ ·Xs̃ · uG̃ · iY G̃ ,

and pXF̃ is epic and iY G̃ is monic.

Note that commutativity of the diagram above is also necessary, for we require K ? s̃ = s ? K′.

This ensures uniqueness of s.

It remains to show that s̃ is a periodic transformation from (F̃ , ã) to (G̃, b̃). In fact, given

X ∈ Ob C̃, we get

Xã ·Xs̃T̃′ · iXG̃ T̃
′

= Xã · iXF̃ T̃
′ · ZXsT̃

′

= iXT̃F̃ · ZX ã · ZXsT̃
′

= iXT̃F̃ · ZX ã · ZXsT̃
′

= iXT̃F̃ · ZXa · ZXsT′ = iXT̃F̃ · ZX T s · ZXb

= iXT̃F̃ · ZXT̃s · ZX b̃ = iXT̃F̃ · ZXT̃s · ZX b̃

= XT̃s̃ · iXT̃G̃ · ZX b̃ = XT̃s̃ · iXT̃G̃ · ZX b̃

= XT̃s̃ ·Xb̃ · iXG̃ T̃
′
,
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and iXG̃ T̃
′

is monic.

II.2.4 Closed Heller triangulated categories

Recall that given a Heller triangulated category (C,T, ϑ), its Karoubi hull C̃ is Heller triangulated,

too; cf. Proposition II.12.(1). More precisely, (C̃, T̃ , ϑ̃) is Heller triangulated, where T̃ and ϑ̃ are

as in §II.2.2.

Definition II.14

A Heller triangulated category (C,T, ϑ) is called closed if whenever (X, Y, Z̃) is a 2-triangle

in C̃ and X, Y ∈ Ob C, then Z̃ is isomorphic to an object of C.

Cf. Def. I.5.(i, iii).

I do not know an example of a non-closed Heller triangulated category.

As usual, we will call Z̃ the cone of X - Y , being unique up to isomorphism. Thus we may

rephrase that by definition, (C,T, ϑ) is closed if it is closed under taking cones in the Karoubi

hull C̃.

Remark II.15 The Heller triangulated category (C,T, ϑ) is closed if and only if given X -f Y

in C, there exists a 2-triangle X -f Y - Z -X+1 in C.

Cf. Def. III.13.

Proof. If (C,T, ϑ) is closed, then given X -f Y in C, there exists a 2-triangle

X -f Y - Z̃ -X+1 in C̃ by Lem. I.18, and we may substitute Z̃ isomorphically by an object

Z in Ob C, so we are done by Lem. I.21.(4).

Conversely, if we dispose of this existence property, and if we are given a 2-triangle (X, Y, Z̃) in

C̃ with X, Y ∈ Ob C, then there exists a 2-triangle (X, Y, Z) with Z ∈ Ob C, too, and we may

apply Lem. I.21.(6) to conclude that Z ' Z̃. So (C,T, ϑ) is closed.

Remark II.16 If idempotents split in C, then (C,T, ϑ) is closed.

Proof. If idempotents split in C, then C = C̃.

Remark II.17 Suppose given Heller triangulated categories (C,T, ϑ), (C ′,T′, ϑ′) and a full and

faithful strictly exact functor C -F C ′. Furthermore, suppose that whenever given a 2-triangle

(XF, Y F, Z ′) in C ′, where X, Y ∈ Ob C, then there exists Z ∈ Ob C such that Z ′ ' ZF .

Suppose that C ′ is closed. Then C is closed.
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Proof. Suppose given X -f Y in C. There exists a 2-triangle XF -fF Y F - Z ′ -XF+1

in C ′. By assumption, there exists Z ∈ Ob C such that ZF ' Z ′. By isomorphic substitution

and fullness of F , we obtain a 2-triangle XF -fF Y F -gF ZF -hF XF+1 in C ′ ; cf. Lem. I.21.(4).

Since

(X, Y, Z)ϑ2F
+(∆̄#

2 ) = (X, Y, Z)F+(∆̄#
2 )ϑ′2 = (XF, Y F, ZF )ϑ′2 = 1 ,

we conclude by faithfulness of F+(∆̄#
2 ) that (X, Y, Z)ϑ2 = 1 ; cf. Remark II.8, Def. I.5.(ii). So

we are done by Remark II.15.

Remark II.18 A closed Heller triangulated category is Verdier triangulated.

Proof. Its Karoubian hull is Verdier triangulated by Prop. I.23. An additive shift-closed sub-

category of a Verdier triangulated category that is closed under forming cones is Verdier trian-

gulated.

Definition II.19 Suppose given a closed Heller triangulated category (C,T, ϑ).

Suppose given n > 0 and Y ∈ Ob C(∆̇n) and X ∈ Ob C+, ϑ=1(∆̄#
n ) such that X|∆̇n

= Y .

Then Y is called the base of the n-triangle X.

Lemma II.20 Suppose given a closed Heller triangulated category (C,T, ϑ) and n > 0. The

restriction functor C+, ϑ=1(∆̄#
n ) -

(−)|∆̇n C(∆̇n) is strictly dense, i.e. surjective on objects. In other

words, each object Y ∈ Ob C(∆̇n) is the base of an n-triangle.

So weakening the assumption in Lem. I.18 that idempotents be split in C to the assumption that C
be closed, we nonetheless obtain the conclusion of loc. cit.

Proof. Suppose given Y ∈ Ob C(∆̇n). By Lem. I.18, we obtain an n-triangle X̃ ∈ Ob C+, ϑ=1(∆̄#
n )

such that X̃|∆̇n
= Y .

By Lem. I.21.(1), we have a triangle (X̃α/0 , X̃β/0 , X̃β/α) whenever 0 < α < β < 0+1. Since

C is closed, X̃β/α is isomorphic to an object of C. Isomorphic substitution, which is permitted

without leaving C̃+, ϑ=1(∆̄#
n ) by Lem. I.21.(4), yields an n-triangle in C+, ϑ=1(∆̄#

n ) that restricts

to Y on ∆̇n ; cf. Proposition II.12.(2).

II.3 Heller triangulated subcategories

Definition II.21 Given a Heller triangulated category (C ′,T′, ϑ′), a full subcategory C ⊆ C ′ is

called a full Heller triangulated subcategory of C ′ if there exist T and ϑ such that (C,T, ϑ) is a

Heller triangulated category and such that the inclusion functor C -
�� C ′ is strictly exact.

We remark that in this case, the automorphism T and the tuple of transformations ϑ are uniquely

determined by (C ′,T′, ϑ′) as respective restrictions; cf. Def. I.5.(iii), Remark II.8.
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Example II.22 Let (C,T, ϑ) be a Heller triangulated category. Let C̃ be the Karoubi hull of

C, and let (C̃, T̃, ϑ̃n) be the Heller triangulated category from Construction II.11. By Proposi-

tion II.12.(1), C is a Heller triangulated subcategory of C̃.

Lemma II.23 Suppose given a closed Heller triangulated category (C ′,T′, ϑ′), and a full subcat-

egory C ⊆ C ′ such that the following conditions (1, 2) hold.

(1) C T′ = C.

(2) Given a 2-triangle (X, Y, Z ′) in C ′ with X, Y ∈ Ob C, then Z ′ is isomorphic to an object

of C.

Then C, equipped with the shift T and the tuple ϑ obtained by restriction from T′ and ϑ′, respec-

tively, is a Heller triangulated subcategory of C ′. Moreover, (C,T, ϑ) is closed.

Proof. Let T denote the restriction of T′ to an automorphism of C, which exists by assumption (1).

Write C -
�� i C ′ for the inclusion functor.

Since C ′ is closed, assumption (2) allows to conclude that C is a full additive subcategory of C ′,
and moreover, that C is weakly abelian such that i is subexact; cf. Lemma II.41.

Given n > 0 and X ∈ Ob C+(∆̄#
n ), we define, by restriction, ([X]+1 -Xϑn [X+1]) :=

([X]+1 -
Xϑ′n [X+1]). Since C+(∆̄#

n ) -i C ′+(∆̄#
n ) is full and faithful by Remark II.8, this is

a welldefined transformation satisfying ϑn ? i = i ? ϑ′n .

Given m, n > 0 and a periodic monotone map ∆̄n
�p ∆̄m , we have p# ? i = i ? p#, whence

p# ? ϑm ? i = p# ? i ? ϑ′m = i ? p# ? ϑ′m = i ? ϑ′n ? p
# = ϑn ? i ? p

# = ϑn ? p
# ? i ,

so that we may conclude that p# ? ϑm = ϑn ? p
#, for i is faithful.

Given n > 0, we have f
n
? i = i ? f

n
, whence

f
n
? ϑn+1 ? i = f

n
? i ? ϑ′n+1 = i ? f

n
? ϑ′n+1 = i ? ϑ′2n+1 ? f

n
= ϑ2n+1 ? i ? f

n
= ϑ2n+1 ? f

n
? i ,

so that we may conclude that f
n
? ϑn+1 = ϑ2n+1 ? f

n
, for i is faithful.

Hence ϑ is a Heller triangulation on (C,T); cf. Def. I.5.(i). By construction, C -
�� i C ′ is strictly

exact.

By (2) and Remark II.17, the Heller triangulated category (C,T, ϑ) is closed.

II.4 Functors are exact if and only if they are compatible

with n-triangles

Suppose given Heller triangulated categories (C,T, ϑ) and (C ′,T′, ϑ′).

Concerning the notion of n-triangles in a Heller triangulated category, cf. Def. I.5.(ii).



117

For n > 0, an object Y in C(∆̄#
n ) is called periodic if [Y ]+1 = [Y +1].

Suppose given an additive functor C -F C ′ and an isomorphism TF -a∼ F T′.

For z ∈ Z, we let Tz F -a(z)

∼ F T′z be defined by

a(0) := 1F

a(z+1) := (T ? a(z)) · (a ? T′z) for z > 0

a(z−1) := (T− ? a(z)) · (T− ? a− ? T′z−1) for z 6 0

Then (Tz ? a(w)) · (a(z) ? T′w) = a(z+w) : Tz+w F -∼ F T′z+w for z, w ∈ Z.

Given a periodic n-pretriangle X ∈ Ob C+, periodic(∆̄#
n ), for sake of brevity we denote in this

chapter by

Y := X(F (∆̄#
n )) ∈ Ob C ′(∆̄#

n )

the diagram obtained by pointwise application of F to X. We have

Y |∆̇+1
n

= X|∆̇n
((TF )(∆̇n)) -

X|∆̇n (a(∆̇n))

∼ X|∆̇n
((F T′)(∆̇n)) = (Y |∆̇n

)+1 .

Isomorphic substitution along this isomorphism turns Y |∆̄MOn into a diagram Y̆ |∆̄MOn for a periodic

object Y̆ ∈ Ob C(∆̄#
n ) thus defined. We have an isomorphism Y -ă∼ Y̆ in C ′(∆̄#

n ) that at (β/α)+z

for 0 6 α 6 β 6 n and z ∈ Z is given by(
Y(β/α)+z -

ă(β/α)+z

∼ Y̆(β/α)+z

)
:=

(
Xβ/α Tz F -Xβ/α a

(z)

∼ Xβ/αF T′z
)
.

In fact, given 0 6 α 6 n and z ∈ Z, we obtain a commutative quadrangle

Xn/α Tz F xTz F //

Xn/α a
(z) o
��

Xα/0 Tz+1 F

Xα/0 a
(z+1)o

��
Xn/αF T′z

(xF T′z)(Xα/0 aT′z)
// Xα/0F T′z+1 ,

for

(Xn/α a
(z))(xF T′z)(Xα/0 aT′z) = (xTz F )(Xα/0 T a(z))(Xα/0 aT′z) = (xTz F )(Xα/0 a

(z+1)) .

The remaining commutativities required for the naturality of Y -ă∼ Y̆ follow by naturality of a(z).

We remark that ă|∆̇n
= 1F (∆̇n) .

If F is subexact, then Y is an n-pretriangle and Y̆ is a periodic n-pretriangle.

Lemma II.24 Suppose given an exact functor (F, a).

Then for each n-triangle X of C, i.e. X ∈ Ob Cϑ=1,+(∆̄#
n ), the object Y̆ of C ′(∆̄#

n ) defined by

(1) and (2) is an n-triangle of C ′, i.e. Y̆ ∈ Ob C ′ϑ=1,+(∆̄#
n ).

(1) We have [Y̆ ]+1 = [Y̆ +1].
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(2) On ∆̄MOn , the object Y̆ |∆̄MOn arises from Y := X(F (∆̄#
n ))|∆̄MOn by isomorphic substitution

along Y |∆̇+1
n

= X|∆̇n
(T(∆̇n))(F (∆̇n)) -a(∆̇n)

∼ X|∆̇n
(F (∆̇n))(T′(∆̇n)) = (Y |∆̇n

)+1.

Cf. Lem. I.25 for the case of a strictly exact functor.

Proof. Suppose given n > 0 and an n-triangle X ∈ Ob C+, ϑ=1(∆̄#
n ). By construction, Y̆ is

periodic. We have to show that Y̆ ϑ′n
!

= 1[Y̆ ]+1 . We obtain

Y ϑ′n = X
(
F+(∆̄#

n ) ? ϑ′n

)
= X

((
ϑn ? F

+(∆̄#
n )
)
· a+(∆̄#

n )
)

= X
(
ϑn ? F

+(∆̄#
n )
)
·Xa+(∆̄#

n )

= Xa+(∆̄#
n ) .

In particular, Y ϑ′|∆̇n
= X|∆̇n

a(∆̇n). Hence, restricting the stably commutative quadrangle

[Y ]+1 [ă]+1

//

Y ϑ′n
��

[Y̆ ]+1

Y̆ ϑ′n
��

[Y +1]
[ă+1] // [Y̆ +1]

to ∆̇n , we obtain the stably commutative quadrangle

Y |∆̇+1
n

X|∆̇na(∆̇n)
//

X|∆̇na(∆̇n)

��

(Y |∆̇n
)+1

Y̆ ϑ′n|∆̇n
��

(Y |∆̇n
)+1 1 // (Y |∆̇n

)+1 .

whence Y̆ ϑ′n|∆̇n
= 1(Y |∆̇n )+1 . Since the functor from C+(∆̄#

n ) to C(∆̇n) induced by restriction is

an equivalence by Prop. I.12, this implies that Y̆ ϑ′n = 1[Y̆ ]+1 .

Proposition II.25 Suppose C to be closed.

The pair (F, a) is an exact functor if and only if for each n-triangle X of C, the object Y̆ of

C ′(∆̄#
n ) defined by (1, 2) is an n-triangle of C ′.

(1) We have [Y̆ ]+1 = [Y̆ +1].

(2) On ∆̄MOn , the object Y̆ |∆̄MOn arises from Y := X(F (∆̄#
n ))|∆̄MOn by isomorphic substitution

along Y |∆̇+1
n

= X|∆̇n
(T(∆̇n))(F (∆̇n)) -a(∆̇n)

∼ X|∆̇n
(F (∆̇n))(T′(∆̇n)) = (Y |∆̇n

)+1.

Proof. In view of Lemma II.24, it suffices to show that if each n-triangle X in C yields an

n-triangle Y̆ in C ′ by (1, 2), then (F, a) is exact.

We claim that F is subexact. By Lemma II.41, it suffices to show that given a morphism S -p T

in C, there exists a weak cokernel of p that is mapped by F to a weak cokernel. Since C is a
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closed Heller triangulated category, a weak cokernel of p is contained in the the completion of

S -p T to a 2-triangle X by Lemma II.20. We form the corresponding 2-triangle Y̆ defined

by (1, 2). Since it contains a weak cokernel of SF -pF TF , and since Y̆ is isomorphic, in C ′+(∆̄#
n ),

to X(F+(∆̄#
2 )), the image under F of the weak cokernel of p that is contained in the 2-triangle

X is in fact a weak cokernel of pF . This proves the claim.

We claim that

(ϑn ? F
+(∆̄#

n )) · a+(∆̄#
n ) = F+(∆̄#

n ) ? ϑ′n

for all n > 0. Suppose given X ∈ Ob C+(∆̄#
n ). Since C is a closed Heller triangulated category,

there exists an n-triangle X ′ such that X ′|∆̇n
= X|∆̇n

; cf. Lemma II.20. By Prop. I.12, we

have an isomorphism X -f∼ X ′ in C+(∆̄#
n ) that restricts to the identity on ∆̇n . We dispose of a

commutative diagram

[X]+1 Xϑn //

[f ]+1

��

[X+1]

[f+1]
��

[X ′]+1 X′ϑn // [X ′+1]

in C+(∆̄#
n ). Since, by construction, X ′ϑn = 1, we have Xϑn = [f ]+1 · [f+1]− in C+(∆̄#

n ).

Likewise, we have a commutative quadrangle

[XF+(∆̄n)]+1
XF+(∆̄n)ϑ′n //

[fF+(∆̄n)]+1

��

[(XF+(∆̄n))+1]

[(fF+(∆̄n))+1]

��
[X ′F+(∆̄n)]+1

X′F+(∆̄n)ϑ′n // [(X ′F+(∆̄n))+1] ,

in C ′+(∆̄#
n ). We want to calculate its lower arrow. Since X ′ is an n-triangle, we have an

isomorphism Y ′ -
ă′

∼ Y̆ ′ formed as above, where Y̆ ′ϑ′n = 1. The stably commutative quadrangle

[Y ′]+1 [ă′]+1

//

Y ′ϑ′n
��

[Y̆ ′]+1

Y̆ ′ϑ′n = 1
��

[Y ′+1]
[ă′+1] // [Y̆ ′+1]

yields by restriction to ∆̇n the commutative diagram

X ′|∆̇n
(TF )(∆̇n)

X′|∆̇n a(∆̇n)
// X ′|∆̇n

(F T′)(∆̇n)

[Y ′]+1|∆̇n

[ă]+1|∆̇n //

Y ′ϑ′n|∆̇n
��

[Y̆ ′]+1|∆̇n

1
��

[Y ′+1]|∆̇n

1 // [Y̆ ′+1]|∆̇n
,

whence Y ′ϑ′n|∆̇n
= X ′|∆̇n

a(∆̇n) = X ′a+(∆̄#
n )|∆̇n

. Since the functor from C ′+(∆̄#
n ) to C ′(∆̇n)

induced by restriction is an equivalence by Prop. I.12, this implies that

X ′F+(∆̄n)ϑ′n = Y ′ϑ′n = X ′a+(∆̄#
n ) .
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So we can conclude that

XF+(∆̄n)ϑ′n = [fF+(∆̄n)]+1 ·X ′F+(∆̄n)ϑ′n · [(fF+(∆̄n))+1]−

= [fF+(∆̄n)]+1 ·X ′a+(∆̄#
n ) · [(fF+(∆̄n))+1]−

= [fF+(∆̄#
n )]+1 ·X ′a+(∆̄#

n ) · (f(F T′)+(∆̄#
n ))−

= [fF+(∆̄#
n )]+1 · (f(TF )+(∆̄#

n ))− ·Xa+(∆̄#
n )

= ([f ]+1 · [f+1]−)F+(∆̄#
n ) ·Xa+(∆̄#

n )

= X(ϑn ? F
+(∆̄#

n )) ·Xa+(∆̄#
n ) .

This proves the claim.

Corollary II.26 Suppose (C,T, ϑ) to be closed.

Suppose given an additive functor C -F C ′ such that TF = F T′.

Then F is strictly exact if and only if for each n > 0 and each n-triangle X ∈ Ob C+, ϑ=1(∆̄#
n ),

the diagram X(F (∆̄#
n )) ∈ Ob C ′(∆̄#

n ), obtained by pointwise application of F , is an n-triangle.

Proof. In this case, we have a = 1TF = 1F T′ and Y̆ = Y = X(F (∆̄#
n )). Since (F, 1) is exact if

and only if F is strictly exact, the assertion follows by Proposition II.25.

II.5 Adjoints

II.5.1 Adjoints and shifts

Suppose given categories A and A′. Suppose given an endofunctor T of A. Suppose given an

endofunctor T ′ of A′.

Suppose given functors A�-
F

G
A′ such that F a G via unit 1 -ε FG and counit GF -η 1, i.e.

(Gε)(ηG) = 1G and (εF )(Fη) = 1F .

Suppose given TF -α FT ′.

Let

(GT -β T ′G) :=
(
GT -

GTε
GTFG -

GαG
GFT ′G -

ηT ′G
T ′G

)
.

So we have the commutative diagram

GT
β //

GTε
��

T ′G

GTFG
GαG // GFT ′G .

ηT ′G

OO
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Lemma II.27

(1) We have the commutative diagram

TF
α //

εTF
��

FT ′

FGTF
FβF // FT ′GF .

FT ′η

OO

(2) We have the commutative quadrangle

T
εT //

Tε
��

FGT

Fβ
��

TFG
αG
// FT ′G .

(2◦) We have the commutative quadrangle

GTF
Gα //

βF
��

GFT ′

ηT ′

��
T ′GF

T ′η
// T ′ .

(3) Suppose that T and T ′ are autofunctors. Write G′ = T ′GT−. If α is an isotransformation,

then so is β, where

(T ′G -
β−

GT ) =(
T ′G = T ′GT−T -

T ′GT−εT
T ′GT−FGT =

T ′GT−FT ′T ′−GT -
T ′GT−α−T ′−GT

T ′GT−TFT ′−GT =

T ′GFT ′−GT -
T ′ηT ′−GT

T ′T ′−GT = GT
)
.

(3◦) Suppose that T and T ′ are autofunctors. If β is an isotransformation, then so is α, where

(FT ′ -
α−

TF ) =(
FT ′ = TT−FT ′ -

TεT−FT ′

TFGT−FT ′ =

TFT ′−T ′GT−FT ′ -
TFT ′−β−T−FT ′

TFT ′−GTT−FT ′ =

TFT ′−GFT ′ -
TFT ′−ηT ′

TFT ′−T ′ = TF
)
.

Proof. Ad (2). We have

(εT )(Fβ) = (εT )(FGTε)(FGαG)(FηT ′G)

= (Tε)(εTFG)(FGαG)(FηT ′G)

= (Tε)(αG)(εFT ′G)(FηT ′G)

= (Tε)(αG) .
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Ad (1). We have

(εTF )(FβF )(FT ′η)
(2)
= (TεF )(αGF )(FT ′η)

= (TεF )(TFη)α

= α .

Ad (3). We have

β · (T ′GT−εT )(T ′GT−α−T ′−GT )(T ′ηT ′−GT )

= (βT−T )(T ′GT−εT )(T ′GT−α−T ′−GT )(T ′ηT ′−GT )

= (GTT−εT )(βT−FGT )(T ′GT−α−T ′−GT )(T ′ηT ′−GT )

= (GεT )(βT−FT ′T ′−GT )(T ′GT−α−T ′−GT )(T ′ηT ′−GT )

= (GεT )(GTT−α−T ′−GT )(βT−TFT ′−GT )(T ′ηT ′−GT )

= (GεT )(Gα−T ′−GT )(βFT ′−GT )(T ′ηT ′−GT )
(2◦)
= (GεT )(Gα−T ′−GT )(GαT ′−GT )(ηT ′T ′−GT )

= (GεT )(ηGT )

= 1

and
(T ′GT−εT )(T ′GT−α−T ′−GT )(T ′ηT ′−GT ) · β

= (T ′GT−εT )(T ′GT−α−T ′−GT )(T ′ηT ′−GT )(T ′T ′−β)

= (T ′GT−εT )(T ′GT−α−T ′−GT )(T ′GFT ′−β)(T ′ηT ′−T ′G)

= (T ′GT−εT )(T ′GT−α−T ′−GT )(T ′GT−TFT ′−β)(T ′ηG)

= (T ′GT−εT )(T ′GT−FT ′T ′−β)(T ′GT−α−T ′−T ′G)(T ′ηG)

= (T ′GT−εT )(T ′GT−Fβ)(T ′GT−α−G)(T ′ηG)
(2)
= (T ′GT−Tε)(T ′GT−αG)(T ′GT−α−G)(T ′ηG)

= (T ′Gε)(T ′ηG)

= 1 .

II.5.2 An adjoint of an exact functor is exact

The Verdier triangulated version of the following proposition is due to Margolis

[44, App. 2, Prop. 11], and, in a more general form, to Keller and Vossieck [34, 1.6].

Proposition II.28 Suppose given Heller triangulated categories (C,T, ϑ) and (C ′,T′, ϑ′).

Suppose given an exact functor (F, a) from C to C ′ ; cf. Definition II.1.

Suppose given a functor C �G C ′ .

So C �-
F

G
C ′ and TF -a∼ F T′ .

(1) If F a G, then there exists an isomorphism T′G -b∼ GT such that (G, b) is an exact functor

from C ′ to C.
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Choose a unit 1C′ -
ε
FG and a counit GF -η 1C . Then, more precisely, we may choose

(T′G -b GT) := (GT -GT ε
GTFG -GaG

GF T′G -ηT′G
T′G)− .

(1◦) If G a F , then there exists an isomorphism T′G -b∼ GT such that (G, b) is an exact functor

from C ′ to C.

Choose a unit 1C′ -
ε
GF and a counit FG -η 1C . Then, more precisely, we may choose

(T′G -b GT) := (T′G -εT′G
GF T′G -Ga−G

GTFG -GT η
GT) .

Proof. Ad (1). By Lemma II.42.(1◦), G is subexact.

Lemma II.27.(3) yields the isotransformation b− := (GT ε)(GaG)(η T′G).

Suppose given n > 0. We shall make use of the abbreviation G = G+(∆̄#
n ) , etc. We have to

show that

(ϑ′n ? G) · b !
= G ? ϑn ,

i.e. that

(G ? ϑn) · b− !
= ϑ′n ? G ,

i.e. that

(G ? ϑn) · (G ? T ? ε) · (G ? a ? G) · (η ? T′ ? G)
!

= ϑ′n ? G

Recall that [−]+1 denotes the outer shift, that [−+1] denotes the inner shift and that

ϑn : [−]+1 -∼ [−+1] on C+(∆̄#
n ) ; similarly on C ′+(∆̄#

n ) .

We obtain

(G ? ϑn) · (G ? T ? ε) · (G ? a ? G) · (η ? T′ ? G)

= (G ? ϑn) · (G ? [−+1] ? ε) · (G ? a ? G) · (η ? T′ ? G)

= (G ? [−]+1 ? ε) · (G ? ϑn ? F ? G) · (G ? a ? G) · (η ? T′ ? G)

= (G ? [−]+1 ? ε) · (G ? ((ϑn ? F ) · a) ? G) · (η ? T′ ? G)
(F, a) ex.

= (G ? [−]+1 ? ε) · (G ? F ? ϑ′n ? G) · (η ? T′ ? G)

= (G ? [−]+1 ? ε) · (G ? F ? ϑ′n ? G) · (η ? [−+1] ? G)

= (G ? [−]+1 ? ε) · (η ? [−]+1 ? G) · (ϑ′n ? G)

= (G ? ε ? [−]+1) · (η ? G ? [−]+1) · (ϑ′n ? G)

= ϑ′n ? G .

Ad (1◦). Cf. Lemma II.27.(1).

Example II.29 Suppose we are in the situation of Proposition II.28.(1). Then ε and η are

periodic; cf. Definition II.4.

Ad ε : 1 - FG. The functor (F, a)(G, b) = (FG , aG · Fb) is exact; cf. Remark II.3. The

functor (1C , 1) is exact. The quadrangle

T
Tε //

1
��

TFG

aG·Fb
��

T
εT // FGT
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commutes by Lemma II.27.(2).

Ad η : GF - 1. The functor (G, b)(F, a) = (GF , bF · Ga) is exact; cf. Remark II.3. The

functor (1C′ , 1) is exact. The quadrangle

T′GF
T′ η //

bF ·Ga
��

T′

1
��

GF T′
ηT′ // T′

commutes by Lemma II.27.(2◦).

II.5.3 A functor shiftcompatibly adjoint to a strictly exact functor

is strictly exact

Suppose given closed Heller triangulated categories (C,T, ϑ) and (C ′,T′, ϑ′)

Recall that an additive functor F : C - C ′ is strictly exact if and only if (F, 1) is exact; cf.

Def. I.5.(iii), Definition II.1.

Corollary II.30

Suppose given a strictly exact functor C -F C ′ .

Suppose given a functor C �G C ′ .

(1) If F a G, with unit ε : 1 - FG and counit η : GF - 1 such that (GT ε)(η T′G) = 1,

then G is strictly exact.

(1◦) If G a F , with unit ε : 1 - FG and counit η : GF - 1 such that (εT′G)(GT η) = 1,

then G is strictly exact.

Proof. Ad (1). In the notation of Proposition II.28.(1), we have a = 1, and, consequently,

b = (GT ε)(η T′G) = 1. Hence by loc. cit., (G, 1) is exact, i.e. G is strictly exact.

II.6 Localisation

We prove that the localisation C//N of a Heller triangulated category C at a thick subcategory

N is Heller triangulated in such a way that the localisation functor C -L C//N is strictly ex-

act; cf. Def. I.5. There is considerable overlap with the classical localisation theory of Verdier

triangulated categories, due to Verdier [56], which we include for sake of self-containedness.

Let (C,T, ϑ) be a closed Heller triangulated category; cf. Definition II.14.

Definition II.31 A full additive subcategory N ⊆ C is called thick if the conditions (1, 2, 3) are

satisfied; cf. [53, Prop. 1.3]
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(1) We have N+1 = N (closed under shift).

(2) Given a 2-triangle (X, Y, Z) in C with X and Y in ObN , then Z ∈ ObN
(closed under taking cones).

(3) Given X, Y ∈ Ob C with X ⊕ Y in ObN , then X ∈ ObN
(closed under taking summands).

Let N be a thick subcategory of C. By Lemma II.23, conditions (1) and (2) of Definition II.31

yield that N is a Heller triangulated subcategory of C.

Let M(N ) := {(X -f Y ) ∈ C : the cone of f is in ObN}. An element of M(N ) is called an

M(N )-isomorphism or often just an N-isomorphism (not to be confused with “an isomorphism

in N ”). If N is unambiguous, then an N-isomorphism is denoted by X =⇒ Y . For instance,

X =⇒ 0 if and only if 0 =⇒ X if and only if X ∈ ObN .

Lemma II.32 The subset M(N ) of N-isomorphisms in C is a multiplicative system in C in the

sense of Definition II.45.

Proof. Ad (Fr 2). Suppose given X1/0
-x X2/0

-x X3/0
-x X4/0 such that X1/0

-x X3/0 and

X2/0
-x X4/0 are M -isomorphisms. We complete to a 4-triangle X ∈ Ob C+, ϑ=1(∆̄#

n ) using

closedness of C ; cf. Lemma II.20. By Lem. I.21.(1, 6), we have X3/1 , X4/2 ∈ ObN . We have

to show that X2/1 , X3/2 , X4/3 , X4/1 ∈ ObN . Let the periodic monotone map ∆̄5
-p ∆̄4 be

defined by 0p := 1, 1p := 1, 2p := 2, 3p := 3, 4p := 4 and 5p := 4. The 2-triangle Xp#f2 ∈
Ob C+, ϑ=1(∆̄#

2 ) is given by

0

0 // X2+1/4

OO

0 // X1+1/2
−x //

OO

+

X1+1/4

x

OO

0 // X4/3
(1 0) //

OO

+

X4/3⊕X1+1/2

“
x
−x
”
//

“
0
1

” OO
+

X1+1/3

x

OO

0 // X3/1
x //

OO

+

X4/1
x //

x

OO

+

X4/2
//

(x x )

OO

+

0 ,

OO

cf. Lem. I.21.(1, 2), §I.1.2.1.2, §I.1.2.2.2. Since X3/1 , X4/2 ∈ ObN , and since N is closed under

cones, we have X4/3 ⊕ X1+1/2 ∈ ObN . Since N is closed under summands and under shift, we

obtain X4/3 , X2/1 ∈ ObN . Since N is closed under cones and under shift, X4/1 ∈ ObN ensues.

Considering X again, since N is closed under cones, we finally obtain X3/2 ∈ ObN .

Ad (Fr 3). Let X -f Y be a morphism in C such that there exists Y
s

=⇒ Z with fs = 0.

We obtain a factorisation (X -f Y ) = (X -u N -v Y ) with N ∈ ObN . Completing
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(T1/0
-t T2/0

-t T3/0) := (X -u N -v Y ) to a 3-triangle by Lemma II.20, we obtain

T1/2−1
t

=⇒ T1/0 , which composes to zero with (T1/0
-t T3/0) = (X -f Y ).

Ad (Fr 4). Suppose given

X ′

X +3

OO

Y

in C. Prolonging X -X ′ to a 2-triangle (X ′′, X,X ′), then completing X ′′ -X =⇒ Y to a

3-triangle using Lemma II.20, we obtain, by Lem. I.21.(6), a 3-triangle T with (T2/0
-t T3/0) =

(X =⇒ Y ) and (T2/0
-t T2/1) = (X -X ′). Then T3/2 ∈ ObN , whence T2/1 =⇒ T3/1 . The

weak square (T2/0 , T3/0 , T2/1 , T3/1) is a completion as sought.

Note that if X ∈ (Ob C) r (ObN ), then (0, 0, 0, X) is a weak square in which 0 - 0 is an
N-isomorphism, but 0 - X is not.

The localisation of C at M(N ), defined as in §II.7.4, is also called the localisation of C at N , and

also written C//N := CM(N ). Concerning the localisation functor C -L C//N , we refer to §II.7.4.

Recall that an additive functor between weakly abelian categories is called subexact if it induces

an exact functor on the Freyd categories; cf. §I.1.2.1.3; cf. also Lemma II.41.

Lemma II.33 The category C//N is weakly abelian. The functor C -L C//N is subexact.

Proof. By Remark II.51, the category C//N is additive, and the localisation functor

L : C - C//N is additive. We claim that L maps weak kernels to weak kernels. Let X -f Y be

a weak kernel of Y -g Z in C. We claim that it remains a weak kernel in C//N . Suppose given

a morphism T -t Y in C such that tg = 0 in C//N , which we, by isomorphic replacement, may

assume given. Let T ′
s

=⇒ T be such that stg = 0 in C ; cf. Remark II.47. Since f is a weak

kernel of g in C, we have a factorisation st = uf . Hence t = (s−1u)f is a factorisation of t over

f in C//N .

Substituting isomorphically in C//N and using duality, for C//N to be weakly abelian, it suffices

to show that each morphism X -f Y has a weak kernel resp. is a weak kernel in C//N . But by

the property of L just shown, we may use a weak kernel of f in C resp. a morphism f is a weak

kernel of in C.

Remark II.34 The category C//N carries a shift automorphism C//N -T C//N ,

f/t - f+1/t+1. We have L T = T L.

Proof. This functor is welldefined since N , and hence M(N ), is closed under shift in C. Likewise,

its inverse f/t - f−1/t−1 is welldefined.

Lemma II.35 Suppose given a Heller triangulated category (D,T, θ).

Suppose given a weakly abelian category D′ and an automorphism D′ -T
′
D′. Suppose given a

subexact additive functor D -G D′ strictly compatible with shift, i.e. GT′ = TG. Suppose that

D(∆̇n) -G(∆̇n) D′(∆̇n) is 1-epimorphic for n > 0.
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Then the functor D+(∆̄#
n ) -

G+(∆̄#
n )
D′+(∆̄#

n ) is 1-epimorphic.

Moreover, there exists a unique Heller triangulation θ′ on (D′,T′) such that D -G D′ is strictly

exact; cf. Def. I.5.

Proof. Given n > 0. Since the residue class functors D(∆̇n) - D(∆̇n) and D′(∆̇n) - D′(∆̇n)

are full and dense, they are 1-epimorphic by Cor. I.77 ; concerning notation, cf. §I.2.4. The

commutative quadrangle

D(∆̇n)
G(∆̇n) //

��

D′(∆̇n)

��

D(∆̇n)
G(∆̇n)

// D′(∆̇n)

shows that G(∆̇n) is 1-epimorphic. Restriction induces equivalences D+(∆̄#
n ) -

(−)|∆̇n D(∆̇n) and

D′+(∆̄#
n ) -

(−)|∆̇n D′(∆̇n) by Prop. I.12. Therefore, the commutative quadrangle

D(∆̇n)
G(∆̇n)

// D′(∆̇n)

D+(∆̄#
n )

(−)|∆̇n

OO

G+(∆̄#
n )
// D′+(∆̄#

n )

(−)|∆̇n

OO

shows that G+(∆̄#
n ) is 1-epimorphic; concerning notation, cf. §I.1.2.1.1, §I.1.2.1.3. Therefore, we

may define a transformation θ′n for D′ by the requirement that

D+(∆̄#
n )

G+(∆̄#
n )

//

[−]+1

��

[−+1]

��

D′+(∆̄#
n )

[−]+1

��

[−+1]

��
D+(∆̄#

n )
G+(∆̄#

n )
// D′+(∆̄ #

n )

θn +3 θ′n +3

be commutative, i.e. that θn ?G
+(∆̄#

n ) = G+(∆̄#
n ) ? θ′n . In other words, there exists a unique θ′n

making this diagram commutative.

Let θ′ := (θ′n)n>0 , where for n = 0, we make use of D′+(∆̄ #
0 ) = 0. We claim that θ′ is a

Heller triangulation on (D′,T′), i.e. that (D′,T′, θ′) is a Heller triangulated category. Once this

is proven, we see that by construction, D -G D′ is strictly exact; cf. Def. I.5.(iii).

Suppose given m, n > 0 and a periodic monotone map ∆̄n
�p ∆̄m . To prove that

p# ? θ′m
!

= θ′n ? p
#, we may precompose with the 1-epimorphic functor G+(∆̄#

n ) to obtain

G+(∆̄#
n ) ? p# ? θ′m = p# ? G+(∆̄#

m) ? θ′m = p# ? θm ? G
+(∆̄#

m)

(D,T,θ)
=

Heller triangulated
θn ? p

# ? G+(∆̄#
m) = θn ? G

+(∆̄#
n ) ? p# = G+(∆̄#

n ) ? θ′n ? p
# .
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Suppose given n > 0. To prove that f
n
? θ′n+1

!
= θ′2n+1 ? f

n
, we may precompose with the

1-epimorphic functor G+(∆̄#
2n+1) to obtain

G+(∆̄#
2n+1) ? f

n
? θ′n+1 = f

n
? G+(∆̄#

n+1) ? θ′n+1

= f
n
? θn+1 ? G

+(∆̄#
n+1)

(D,T,θ)
=

Heller triangulated
θ2n+1 ? f

n
? G+(∆̄#

n+1)

= θ2n+1 ? G
+(∆̄#

2n+1) ? f
n

= G+(∆̄#
2n+1) ? θ′2n+1 ? f

n
.

Proposition II.36 Recall that (C,T, ϑ) is a closed Heller triangulated category, and that N is

a thick subcategory of C.

There exists a unique Heller triangulation θ on (C//N ,T) such that C -L C//N is strictly exact;

cf. Def. I.5.

Then (C//N ,T, θ) is a closed Heller triangulated category; cf. Definition II.14.

Proof. By Lemma II.33, the category C//N is weakly abelian, and L : C - C//N is subexact. By

Remark II.34, C//N carries a shift automorphism, and L is compatible with the shift automor-

phisms on C and on C//N . By Lemma II.50, the functor C(∆̇n) -L(∆̇n)
(C//N )(∆̇n) is 1-epimorphic

for n > 0. Therefore, existence and uniqueness of θ follow by Lemma II.35.

It remains to be shown that C//N is closed. By isomorphic substitution, it suffices to show that

each morphism in the image of L has a cone in C//N ; cf. Lem. I.21.(6). But this follows from C
being closed and from L being strictly exact.

An object (X -x X ′) of the Freyd category Ĉ is called N-zero if x factors over an object of N ;
concerning Ĉ, cf. §I.6.6.3. Note that an object of Ĉ that is isomorphic to a summand of an N-zero
object is itself N-zero.

Remark II.37 A morphism in C is an N-isomorphism if and only if its kernel and its cokernel,
taken in Ĉ, are N-zero.

Note that this criterion does not make reference to the Heller triangulated structure on C, but only to
the fact that C is weakly abelian. One might ask for conditions on N that only use weak abelianess
of C, and that nonetheless suffice to turn CM(N ) into a weakly abelian category – where now M(N )
is the subset of morphisms of C defined by the criterion given in Remark II.37.

Proof of Remark II.37. Suppose that X -f Y is an N-isomorphism in C. Then it has a weak kernel
N and a weak cokernel M in ObN . By construction of the kernel in Ĉ, it is of the form (N - X).
Dually, the cokernel is of the form (Y -M); cf. §I.6.6.3.

Conversely, suppose that the kernel and the cokernel of the morphism X -f Y , taken in Ĉ, are

N-zero. Consider the exact functor Ĉ -L̂ (C//N )̂ that prolongs L on the level of Freyd categories.
It maps f to an isomorphism, since in the abelian category (C//N )̂ , the image of f has zero kernel
and zero cokernel. Since C//N - (C//N )̂ is full and faithful, the image of f under L in C//N is an
isomorphism, too. Hence f is an N-isomorphism in C ; cf. Remark II.46.
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Proposition II.38 (universal property) Recall that (C,T, ϑ) is a closed Heller triangu-

lated category, and that N is a thick subcategory of C.

Let θ be the unique Heller triangulation on (C//N ,T) such that the localisation functor C -L C//N
is strictly exact; cf. Proposition II.36. Suppose given a Heller triangulated category (C ′,T′, ϑ′).

Recall that we write C, C ′ ex for the category of exact functors and periodic transformations

from C to C ′ ; cf. Definition II.6.

Write C, C ′ ex, N ⊆ C, C ′ ex for the full subcategory consisting of exact functors (F, a) such

that NF ' 0 for all N ∈ ObN .

Recall that we write C, C ′ st ex for the category of strictly exact functors and periodic transfor-

mations from C to C ′ ; cf. Definition II.6.

Write C, C ′ st ex, N ⊆ C, C ′ st ex for the full subcategory consisting of strictly exact functors F

such that NF ' 0 for all N ∈ ObN .

(1) We have a strictly dense equivalence

C, C ′ ex, N �
L ? (−)

C//N , C ′ ex

(L ?G , L ? b) = (L, 1) ? (G, b) � (G, b) .

(2) We have a strictly dense equivalence

C, C ′ st ex, N �
L ? (−)

C//N , C ′ st ex

L ?G � G .

Proof.

Ad (1). Welldefinedness of the functor L ? (−) follows from L being strictly exact and exact

functors being stable under composition; cf. Proposition II.36, Remark II.3.

We make use of the universal property of the localisation to the extent stated in Remark II.51.

Suppose given exact functors C -
-(F,a)

(G,b)
C ′ and a periodic transformation F -u G.

Let F̆ : C//N - C ′ be defined by L ? F̆ := F . Let Ğ : C//N - C ′ be defined by L ? Ğ := G.

Recall that the shift on C//N is, abusively, also denoted by T, so that T ? L = L ?T. Let the

transformations ă and b̆ be defined by

L ? (T ? F̆ -̆a F̆ ? T′) := (T ?F -a F ? T′)

L ? (T ? Ğ -b̆ Ğ ? T′) := (T ?G -b G ? T′) .

Let the transformation F̆ -̆u Ğ be defined by

L ? (F̆ -̆u Ğ) := (F -u G) .

We have to show that (F̆ , ă) is exact and that ŭ is periodic.
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Ad F̆ exact. Since Xă = X L ă = Xa is an isomorphism for X ∈ Ob C//N = Ob C, the

transformation a is an isotransformation.

To show that F̆ is subexact, by Lemma II.41, it suffices to show that given a morphism f in

C//N , it has a weak cokernel that is preserved by F̆ . By isomorphic substitution, we may assume

that f = f ′ L for some morphism f ′ in C. Let (f ′, g′, h′) be a 2-triangle in C ; cf. Lemma II.20.

Since L is strictly exact, the 2-triangle (f, g′ L, h′ L) results. In particular, g′ L is a weak cokernel

of f . Since F is subexact, g′F = g′ L F̆ is a weak cokernel of f ′F = f ′ L F̆ = fF̆ .

Suppose given n > 0. We shall make use of the abbreviation F = F+(∆̄#
n ) , etc. It remains to

show that

(θn ? F̆ ) · ă !
= F̆ ? ϑ′n .

Since L = L+(∆̄#
n ) is 1-epimorphic by Lemmata II.50 and II.35, it suffices to show that

L ? ((θn ? F̆ ) · ă)
!

= L ? F̆ ? ϑ′n .

In fact,

L ? ((θn ? F̆ ) · ă) = (L ? θn ? F̆ ) · (L ? ă)

L ex.
= (ϑn ? L ? F̆ ) · (L ? ă)

= (ϑn ? F ) · a
(F, a) ex.

= F ? ϑ′n

= L ? F̆ ? ϑ′n .

Ad ŭ periodic. We have to show that

(T ? ŭ) · b̆ !
= ă · (ŭ ? T′)

as transformations from T ? F̆ to Ğ ? T′. By Remark II.51, it suffices to show that

L ? ((T ? ŭ) · b̆) !
= L ? (ă · (ŭ ? T′)) .

In fact,

L ? ((T ? ŭ) · b̆) = (L ?T ? ŭ) · (L ? b̆)

= (T ? L ? ŭ) · (L ? b̆)

= (T ? u) · b
u per.
= a · (u ? T′)

= (L ? ă) · (L ? ŭ ? T′)

= L ? (ă · (ŭ ? T′)) .

Ad (2). Welldefinedness of the functor L ? (−) follows from L being strictly exact and strictly

exact functors being stable under composition; cf. Proposition II.36, Remark II.3.

Keep the notation of the proof of (1). Given an exact functor (F, a) from C to C ′, we infer from

a = 1, using L ? ă = a, that ă = 1.
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II.7 Some general assertions

This appendix serves as a tool kit consisting of known results and folklore lemmata. We do not
claim originality.

II.7.1 Remarks on coretractions and retractions

Remark II.39 Let A be a category.

Suppose given X, Z in ObA, and morphisms X -i Z -p X such that ip = 1X .

Suppose given Y , W in ObA, and morphisms Y -j W -q Y such that jq = 1Y .

Suppose given X -u Y in A. Let Z -v W be defined by v := puj. Then vq = pu and iv = uj.

Z
p //

v

��

X
i //

u

��

Z

v

��
W

q // Y
j // W

Proof. We have vq = pujq = pu and iv = ipuj = uj.

Remark II.40 Let A be a category. Suppose given Z, X, Z ′, W, Y, W ′ ∈ ObA.

Suppose given morphisms X -i Z -p X such that ip = 1X .

Suppose given morphisms X -i
′

Z ′ -
p′

X such that i′p′ = 1X .

Suppose given morphisms Y -j W -q Y such that jq = 1Y .

Suppose given morphisms Y -j
′

W ′ -
q′

Y such that j′q′ = 1Y .

Suppose given Z -v W and Z ′ -
v′

W ′ such that pi′v′ = vqj′.

Then there exists a unique morphism X -u Y in A such that vq = pu and i′v′ = uj′.

Z
p //

v

��

X
i′ //

u

��

Z ′

v′

��
W

q // Y
j′ // W ′

If v and v′ are isomorphisms, so is u.

Proof. Uniqueness follows from p being epic and j′ being monic.

For existence, we let u := ivq = i′v′q′, the latter equality holding because of pivqj′ = pipi′v′ = pi′v′ = vqj′ =
vqj′q′j′ = pi′v′q′j′, using p epic and j′ monic. Then pu = pi′v′q′ = vqj′q′ = vq and uj′ = ivqj′ = ipi′v′ = i′v′.

If v and v′ are isomorphisms, then let u′ := jv−p = j′v′−p′ to get uu′ = ivqj′v′−p′ = ipi′v′v′−p′ = 1 and
u′u = jv−p i′v′q′ = jv−vqj′q′ = 1, so that u′ = u−. In particular, u is an isomorphism.

II.7.2 Two lemmata on subexact functors

Suppose given weakly abelian categories A and A′ ; cf. e.g. Def. I.66.(3). Suppose given an additive functor
F : A - A′. Recall that F is called subexact if the induced functor F̂ : Â - Â′ on the Freyd categories is
exact; cf. §I.1.2.1.3.
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Lemma II.41 The following assertions (1, 2, 3, 3◦, 4, 4◦) are equivalent.

(1) The functor F is subexact.

(2) The functor F preserves weak kernels and weak cokernels.

(3) The functor F preserves weak kernels.

(3◦) The functor F preserves weak cokernels.

(4) For each morphism X -t Y in A, there exists a weak kernel W -w X such that wF is a weak kernel
of tF .

(4◦) For each morphism X -t Y in A, there exists a weak cokernel Y -w
′

W ′ such that w′F is a weak cokernel
of tF .

Proof. Ad (1) ⇒ (4). Suppose given a morphism X -t Y in A. Let K -ri X be a kernel of t in Â. Choose

A -
b

K with A ∈ ObA. Since F̂ is exact, AF̂ -(bi)F̂
XF̂ -tF̂ Y F̂ is exact at XF̂ . So (bi)F̂ = (bi)F is a weak

kernel of tF̂ = tF in A′.

Ad (4) ⇒ (3). Given a morphism X -t Y in A and a weak kernel W -w X, a morphism V -v X is a weak
kernel of t if and only if both (w factors over v) and (v factors over w). So if wF is a weak kernel of tF , so is
vF . Consequently, if F preserves a single weak kernel of t, it preserves all of them.

Ad (3) ⇒ (2). This follows by Rem. I.67.

Ad (2) ⇒ (1). Using duality and uniqueness of the kernel up to isomorphism, it suffices to show that F̂ maps a
chosen kernel of a given morphism to a kernel of its image under F̂ . Since F preserves weak kernels, this follows
by construction of a kernel; cf. e.g. §I.6.6.3, item (1) before Rem. I.67.

Lemma II.42 Suppose that C -F C′ is subexact. Suppose given a functor C �G C′.

(1) If G a F , then G is subexact.

(1◦) If F a G, then G is subexact.

Proof. Ad (1). As an adjoint functor between additive categories, G is additive.

Let 1 -ε GF be a unit and FG -η 1 a counit of the adjunction G a F .

By Lemma II.41, it suffices to show that G preserves weak cokernels. Suppose given X ′ -
u

X -v X ′′ such
that v is a weak cokernel of u. We have to show that Gv is a weak cokernel of Gu. Suppose given t : XG - T

such that uG · t = 0. Then

u ·Xε · tF = X ′ε · uGF · tF = X ′ε · (uG · t)F = 0 .

Since v is a weak cokernel of u, we obtain a morphism s : X ′′ - TF such that v · s = Xε · tF . Then

vG · (sG · Tη) = XεG · tFG · Tη = XεG ·XGη · t = t .

II.7.3 Karoubi hull

The construction of the Karoubi hull is due to Karoubi; cf. [30, III.II].

Suppose given an additive category A. The Karoubi hull Ã has

Ob Ã := { (A, e) : A ∈ ObA, e ∈ A(A,A) with e2 = e }
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and, given (A, e), (B, f) ∈ Ob Ã,

A
(
(A, e), (B, f)

)
:= {u ∈ A(A,B) : e · u · f = u } .

Then Ã is an additive category, in which all idempotents are split.

Composition is inherited from A. We have a full and faithful additive functor

A -K Ã

(X -u Y ) -
(
(X, 1) -u (Y, 1)

)
,

which we often consider as an inclusion of a full subcategory.

Suppose given an additive category B in which all idempotents are split.

Remark II.43 Write A,B add for the category of additive functors and transformations between such from A

to B. The induced functor A,B �K ? (−)
Ã,B restricts to a strictly dense equivalence

A,B add
�K ? (−)

Ã,B add .

Lemma II.44 Suppose given an additive functor A -I A′ to an additive category A′ in which all idempotents
split. By Remark II.43, we obtain a functor J : Ã - A′, unique up to isomorphism, such that the following
triangle of functors commutes.

A

K

��

I // A′

Ã
J

??~~~~~~~~

If I is full and faithful, and if every object of A′ is a direct summand of an object in the image of I, then J is
an equivalence.

By abuse of notation, in the situation of Lemma II.44, we also write Ã = A′ and consider I to be an inclusion
of a full subcategory.

II.7.4 Multiplicative systems

The construction of the quotient category of a Verdier triangulated category is due to Verdier; cf. [56].

Suppose given a category C.

Definition II.45 A set M of morphisms of C is called a multiplicative system in C if (Fr 1-4) are satisfied. An
element of M is called an M -isomorphism and denoted by X =⇒ Y .

(Fr 1) Each identity in C is an M -isomorphism.

(Fr 2) Suppose given X -f Y -g Z -h W in C such that fg and gh are M -isomorphisms.

Then f , g, h and f · g · h are M -isomorphisms.

(Fr 3) Suppose given X -
-f

g
Y in C. There exists an M -isomorphism s such that sf = sg if and only if there

exists an M -isomorphism t such that ft = gt.
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(Fr 4) Given

X +3

��

Y

X ′

in C, there exists a completion to a commutative quadrangle

X +3

��

Y

��
X ′ +3 Y ′

.

Dually, given

Y

��
X ′ +3 Y ′

in C, there exists a completion to a commutative quadrangle

X +3

��

Y

��
X ′ +3 Y ′

.

Cf. [56, §2, no. 1].

Suppose given a multiplicative system M in C. Using (Fr 2), we note that in the first assertion of (Fr 4),
if X - X ′ is an M -isomorphism, then there exists a commutative completion with Y - Y ′ being an
M -isomorphism. And dually.

The category CM , called localisation of C at M , is defined as follows. Let Ob CM := Ob C. A morphism from X

to Y is a double fraction, which is an equivalence class of diagrams of the following form.

X ′
s

t| ppppp
ppppp

f // Y ′

X Y

t
bj MMMMMM

MMMMMM

The diagrams (s, f, t) and (s′s, s′ft′, tt′) are declared to be elementarily equivalent, provided s′ and t′ are
M -isomorphisms. To form double fractions, we take the equivalence relation generated by elementary equi-
valence.

The equivalence class of the diagram (s, f, t) is written s\ f/t. So s\ f/t = s̃\ f̃/t̃ if and only if there exist
M -isomorphisms u, ũ, v, ṽ such that us = ũs̃ and tv = t̃ṽ and ufv = ũf̃ ṽ.

ks //

��

ks

ks //

KS

��

�#
???

???ks[c???
???

�� �
��������

���������
//

ks //

KS

��

ks

ks //

KS

��

FN
���������

���������ks

ks //

KS

ks

Write f/t := 1\ f/t, called a right fraction, and s\f := s\ f/1, called a left fraction. Using (Fr 4), each morphism
in CM can be represented both by a left fraction and by a right fraction. Given right fractions f/t and f̃/t̃, they
are equal if there exist M -isomorphisms u, v and ṽ such that ufv = uf̃ ṽ and tv = t̃ṽ. By (Fr 3), this implies the
existence of M -isomorphisms v, ṽ and u′ such that f(vu′) = f̃(ṽu′) and t(vu′) = t̃(ṽu′). Dually for left fractions.

So double fractions are a self-dual way to represent morphisms in CM . Right or left fractions are more efficient in

many arguments.

The composite of two double fractions s\ f/t and u\ g/v is defined, using (Fr 4) for the commutative diagram

s

u} ssssss
ssssss

f // g′ //

X Y
t

`hIIIIII

IIIIII
Z ,

vu} tttttt
tttttt

f ′
//

x

`hIIIIIIIIIIIIII

IIIIIIIIIIIIII
u

`hIIIIII

IIIIII
g
//

y

`hIIIIIIIIIIIIII

IIIIIIIIIIIIII
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to be equivalently s\ fg′/vy or xs\ f ′g/v. By (Fr 4, 2, 3), this definition is independent of the chosen completion
with g′ and y, and, likewise, of the chosen completion with x and f ′.

Independence of the choice of the representative s\ f/t is seen considering an elementary equivalence and using
(Fr 4, 2), thus obtaining an elementary equivalence of the two possible representatives of the composite. Likewise
independence of the representative u\ g/v.

Associativity follows using right fractions and a commutative diagram constructed by means of (Fr 4),

55jjjjjj
em TTTTTT

TTTTTT55jjjjjj
fn TTTTTT

TTTTTT
55jjjjjj
em TTTTTT

TTTTTT

X

66mmmmmm
Y

dl QQQQQ
QQQQQ

66mmmmmm
Z

dl QQQQQ
QQQQQ

66mmmmmm
W .

dl QQQQQ
QQQQQ

Given f ∈ Mor C, we also write 1\ f/1 =: f in CM , by abuse of notation. Note that in CM , we have s\ f/t =
s−f t−.

Remark II.46 A double fraction s\ f/t represents an isomorphism in CM if and only if f is an M -isomorphism.

Sketch. First, using (Fr 2), we reduce to the case of a right fraction g/u. For a right fraction in turn, the assertion
follows applying (Fr 2) to an associativity diagram as above.

Remark II.47 Given X -
-f

g
Y in C, we have f = g in CM if and only if there exists an M -isomorphism t such

that ft = gt in C, or, equivalently, if and only if there exists an M -isomorphism s such that sf = sg in C.

Remark II.48 We have a functor C -L CM , f - 1\ f/1 = f , called localisation functor.

Given a category T , we let C, T M be the full subcategory of C, T consisting of functors that send all
M -isomorphisms in C to isomorphisms in T . The induced functor

C , T M
�
L ? (−)

CM , T

is a strictly dense equivalence, i.e. it is surjective on objects, full and faithful.

Sketch. Given a functor F ∈ Ob C , T M , we may define F̆ on CM by letting XF̆ := XF for X ∈ Ob CM = Ob C
and by (s\ f/t)F̆ := (sF )− · (fF ) · (tF )−. Then L ? F̆ = F .

Given a transformation (F -u G) ∈ Mor C , T M , we may define F̆ -ŭ Ğ by setting Xŭ := Xu for
X ∈ Ob CM = Ob C. Then L ? ŭ = u.

Lemma II.49 Given n > 0, the functor

C(∆̇n) -L(∆̇n)
CM (∆̇n) ,

given by pointwise application of L, is dense.

Proof. We may assume n > 1.

Suppose given X ∈ Ob CM (∆̇n). To prove that for i ∈ [1, n− 1] there exists an X ′ ∈ Ob CM (∆̇n) isomorphic to

X such that X ′j -x
′

X ′j+1 is in the image of L for j ∈ [1, i− 1], we proceed by induction on i > 1. Suppose the

assertion to be true for i. Let us prove the assertion for i + 1. Write X ′i -
x′

X ′i+1 as a right fraction f/s. If
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i = n − 1, we replace X ′i+1 by the target of f , and f/s by f . If i 6 n − 2, we write X ′i+1
-x
′

X ′i+2 as a right
fraction g/u and construct the following commutative diagram using (Fr 4).

X ′′i+1

g′ 44iiiiiiii
s′

fn UUUUUUUUUU

UUUUUUUUUU

X ′i

f 44iiiiiii X ′i+1

sfn UUUUU
UUUUU

g 44iiiiiiii
X ′i+2

u
fn UUUUUUU

UUUUUUU

We replacing the object X ′i+1 by X ′′i+1 , the morphism f/s by f and the morphism g/u by g′/us′.

In both cases, we obtain a diagram isomorphic to X ′ that conincides with X ′ on [1, i] and whose morphism from
i to i+ 1 is in the image of L.

Lemma II.50 Given n > 0, the functor

C(∆̇n) -L(∆̇n)
CM (∆̇n)

is 1-epimorphic.

Proof. We shall apply Lem. I.75. By Lemma II.49, L(∆̇n) is dense.

Suppose given X, Y ∈ Ob C(∆̇n) and a morphism X L(∆̇n) -g Y L(∆̇n) in CM (∆̇n). Let gi be represented by
a right fraction fi/si for i ∈ [1, n].

We claim that for i ∈ [1, n], we can find representatives f ′j/s
′
j for j ∈ [1, i] such that there exist hj with

s′jhj = ys′j+1 and f ′jhj = xf ′j+1 in C for j ∈ [1, i−1]. Let f ′1 := f1 and s′1 := s1 . Proceeding by induction on i, we
have to write the right fraction fi+1/si+1 suitably as f ′i+1/s

′
i+1 . First of all, by (Fr 4), we find an M -isomorphism

σ and a morphism ξ such that yσ = s′iξ in C. We have f ′iξσ
− = xfi+1s

−
i+1 in CM . Using (Fr 4) and (Fr 2), we

find M -isomorphisms s′ and σ′ such that σs′ = si+1σ
′ in C. Hence

f ′iξs
′ = f ′iξs

′s′−σ−si+1σ
′ = f ′iξσ

−si+1σ
′ = xfi+1s

−
i+1si+1σ

′ = xfi+1σ
′

in CM . Composing with a further M -isomorphism, we may assume that f ′iξs
′ = xfi+1σ

′ in C ; cf. Remark II.47.
We take hi := ξs′ and s′i+1 := si+1σ

′ and f ′i+1 := fi+1σ
′.

Xi
x //

f ′i

��

Xi+1

fi+1

��ξ //

s′
;C�������

�������

σ′
_gHHHHHHHHH

HHHHHHHHH

Yi

s′i

KS

y // Yi+1

σ

ck OOOOOOOOOOOO

OOOOOOOOOOOO
si+1

KS

This proves the claim, in particular for i = n.

X1
x //

f ′1

��

X2
//

f ′2

��

· · · // Xn−1
x //

f ′n−1

��

Xn

f ′n

��h1 // // · · · // hn−1 //

Y1
y //

s′1

KS

Y2
//

s′2

KS

· · · // Yn−1
y //

s′n−1

KS

Yn

s′n

KS

Condition (C) of loc. cit. is satisfied letting the epizigzag have length 0, letting the monozigzag be the single
backwards diagram morphism consisting of the morphisms s′i , and letting the required diagram morphism in the
image of L(∆̇n) consist of the morphisms f ′i .
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Remark II.51 Suppose the category C to be additive.

(1) An object X is isomorphic to 0 in CM if and only if X =⇒ 0, or, equivalently, if and only if 0 =⇒ X.

(2) The category CM is additive, and the functor L : C - CM is additive.

(3) Given an additive category T , the strictly dense equivalence

C , T M
�
L ? (−)

CM , T

restricts to a strictly dense equivalence from the category of additive functors from CM to T to the category
of additive functors from C to T that sends all M -isomorphisms to isomorphisms, written

C , T add,M
�
L ? (−)

CM , T add .

Sketch.

Ad (1). If X is isomorphic to 0, then X =⇒ X ′ ⇐= 0 ; cf. Remark II.46. By (Fr 4), we conclude that 0 =⇒ X.

Ad (2). Given X, Y ∈ Ob C, the direct sum X ⊕ Y , together with X -
(1 0)

X ⊕ Y and Y -
(0 1)

X ⊕ Y , remains
a coproduct in CM .

For existence of an induced morphism from the coproduct, we use (Fr 4, 2) to produce a common denominator
of two right fractions.

To prove uniqueness of the induced morphism, we suppose given
(
f
g

)
/s and

(
f ′

g′

)
/s, without loss of generality

with common denominator, such that f/s = (1 0) ·
(
f
g

)
/s = (1 0) ·

(
f ′

g′

)
/s = f ′/s and g/s = (0 1) ·

(
f
g

)
/s =

(0 1) ·
(
f ′

g′

)
/s = g′/s in CM . So there exists an M -isomorphism u such that fu = f ′u, and an M -isomorphism

v such that gv = g′v, both in C. By (Fr 4, 2), we obtain a common M -isomorphism w such that fw = f ′w and
gw = g′w in C. Hence

(
f
g

)
w =

(
f ′

g′

)
w in C. Therefore

(
f
g

)
/s =

(
f ′

g′

)
/s in CM .

Moreover, the automorphism
(

1 0
1 1

)
of X ⊕X remains an automorphism in CM .

Ad (3). Since L is additive, L ? (−) sends additive functors to additive functors. Conversely, given an additive
functor F : C - T , the functor F̆ as constructed in the proof of Remark II.48 is additive.
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Chapter III

Nonisomorphic Verdier octahedra on

the same base

III.0 Introduction

III.0.1 Is being a 3-triangle characterised by 2-triangles?

Verdier (implicitly) defined a Verdier octahedron to be a diagram in a triangulated category

in the shape of an octahedron, four of whose triangles are distinguished, the four others com-

mutative [56, Def. 1-1]; cf. also [8, 1.1.6]. It arises as follows.

To a morphism in a triangulated category, we can attach an object, called its cone. The morphism

we start with and its cone are contained in a distinguished triangle. To the morphism we started

with, we refer as the base of this distinguished triangle.

Now given a commutative triangle, we can form the cone on the first morphism, on the second

morphism and on their composite, yielding three distinguished triangles. These three cones

in turn are contained in a fourth distinguished triangle. The whole diagram obtained by this

construction is a Verdier octahedron. We shall refer to the commutative triangle we started with

as the base of this Verdier octahedron.

A distinguished triangle has the property of being determined up to isomorphism by its base.

Moreover, any morphism between the bases of two distinguished triangles can be extended to a

morphism between the whole distinguished triangles.

We shall show that the analogous assertion is not true for Verdier octahedra. In §III.3, we

give an example of two nonisomorphic Verdier octahedra on the same base. In particular, the

identity morphism between the bases cannot be prolonged to a morphism between the whole

Verdier octahedra.

The reader particularly interested in Verdier octahedra can read §III.1.1, §III.1.2, §III.1.4 and

§III.3.

In the terminology of Heller triangulated categories, a Verdier octahedron is a periodic

3-pretriangle X such that Xd# is a 2-triangle (i.e. a distinguished triangle) for all injective
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periodic monotone maps ∆̄3
�d ∆̄2.

One of the two Verdier octahedra in our example will be a 3-triangle in the sense of Def. I.5, i.e.

a “distinguished octahedron”, whereas the other will not.

Note that unlike a Verdier octahedron, a 3-triangle is uniquely determined up to isomorphism

by its base in the Heller triangulated context; cf. Lem. I.21.(6).

III.0.2 Is being an n-triangle characterised by (n− 1)-triangles?

The situation of §III.0.1 can be generalised in the following manner.

Suppose given a closed Heller triangulated category (C,T, ϑ); cf. Def. I.5, Definition III.13.

The Heller triangulation ϑ = (ϑn)n>0 on (C,T) can be viewed as a means to distinguish certain

periodic n-pretriangles as n-triangles. Namely, a periodic n-pretriangle X is, by definition, an

n-triangle if Xϑn = 1; cf. Def. I.5.(ii.2). For instance, 2-triangles are distinguished triangles in

the sense of Verdier; 3-triangles are particular, “distinguished” Verdier octahedra.

III.0.2.1 The example

Let n > 3. Let X be a periodic n-pretriangle. Suppose that Xd# is an (n − 1)-triangle for all

injective periodic monotone maps ∆̄n
�d ∆̄n−1. One might ask whether X is an n-triangle.

We shall show in §III.2 by an example that this is, in general, not the case.

III.0.2.2 Consequences

Suppose given n > 3 and a subset of the set of periodic n-pretriangles. We shall say for the

moment that determination holds for this subset if for X and X̃ out of this subset, X|∆̇n
' X̃|∆̇n

implies that there is a periodic isomorphism X ' X̃. We shall say that prolongation holds for

this subset, if for X and X̃ out of this subset and a morphism X|∆̇n
- X̃|∆̇n

, there exists a

periodic morphism X - X̃ that restricts on ∆̇n to that given morphism. If prolongation holds,

then determination holds.

• Consider the subset of periodic n-pretriangles X such that Xd# is an (n− 1)-triangle for

all injective periodic monotone maps ∆̄n
�d ∆̄n−1. Our example shows that in general,

determination and prolongation do not hold for this subset. In fact, if X is such an

n-pretriangle, but not an n-triangle, then the n-triangle on the base X|∆̇n
is not isomorphic

to X; cf. Lem. I.21.(1, 4).

• Bernstein, Beilinson and Deligne considered the subset of periodic n-pretriangles

X such that Xd# is a 2-triangle (i.e. a distinguished triangle) for all injective periodic

monotone maps ∆̄n
�d ∆̄2 [8, 1.1.14]. Our example shows that in general, determination

and prolongation do not hold for this subset. In fact, this subset contains the previously

described subset.
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In both of the cases above, if n = 3, then the condition singles out the subset of Verdier

octahedra.

• By Lem. I.21.(6), Lem. I.19, determination and prolongation hold for the set of n-triangles.

So morally, our example shows that it makes sense to let the Heller triangulation ϑ distinguish

n-triangles for all n > 0. There is no “sufficiently large” n we could be content with.

III.0.3 An appendix on transport of structure

Suppose given a Frobenius category E ; that is, an exact category with enough bijective objects

(relative to pure short exact sequences). Let B ⊆ E denote the full subcategory of bijective

objects.

There are two variants of the stable category of E . First, there is the classical stable category

E , defined as the quotient of E modulo B. Second, there is the stable category E , defined as the

quotient of the category of purely acyclic complexes with entries in B modulo the category of

split acyclic complexes with entries in B. The categories E and E are equivalent. The advantage

of the variant E is that it carries a shift automorphism, whereas E carries a shift autoequivalence.

In Cor. I.33, we have endowed E with a Heller triangulation. Now in our particular situation,

also E carries a shift automorphism. Since E is better suited for calculations within that cate-

gory, the question arises whether the equivalence E ' E can be used to transport the structure

of a Heller triangulated category from E to E . This is indeed the case; cf. Proposition III.22.(1).

Moreover, we give recipes how to detect and how to construct n-triangles in E ; cf. Proposi-

tions III.22.(2, 3), III.25.

Roughly put, the variant E is rather suited for theoretical purposes, the variant E is rather suited

for practical purposes, and we had to pass a result from E to E . Not surprisingly, to do so, we

had to grapple with the various equivalences and isomorphisms involved.

III.0.4 Acknowledgements

I thank Amnon Neeman for pointing out, years ago, why a counterexample as in §III.2 should

exist, contrary to what I had believed.

This example has been found using the computer algebra system Magma [9]. I thank Markus

Kirschmer for help with a Magma program.

I thank the referee for helpful comments.

III.0.5 Notations and conventions

We use the conventions listed in §I.0.7. In addition, we use the following conventions.

(i) If x and y are elements of a set, we let ∂x,y := 1 if x = y, and we let ∂x,y := 0 if x 6= y.

(ii) Given a ∈ Z, we write Z/a := Z/aZ.
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(iii) Given a ring R and R-modules X and Y , we write, by choice, R(X,Y ) = R -Mod(X,Y ) = HomR(X,Y ).
Moreover, given k > 0, we write X⊕k :=

⊕
i∈[1,k]X.

(iv) An automorphism T of a category C is an endofunctor on C for which there exists an endofunctor S such
that ST = 1C and TS = 1C . An autoequivalence T of a category C is an endofunctor on C for which there
exists an endofunctor S such that ST ' 1C and TS ' 1C .

(v) Let n > 0. Recall that ∆̄MOn = {β/α ∈ ∆̄#
n : 0 6 α 6 β 6 0+1} ⊆ ∆̄#

n . We will often display an
n-triangle or a periodic n-pretriangle in a Heller triangulated category C by showing its restriction to
∆̄MOn r ({α/α : 0 6 α 6 0+1} ∪ {0+1/0}). This is possible without loss of information, for we can
reconstruct the whole diagram by adding zeroes on α/α for 0 6 α 6 0+1 and on 0+1/0, and then by
periodic prolongation.

(vi) Suppose given a Heller triangulated category C. A Verdier octahedron in C is a periodic 3-pretriangle
X ∈ Ob C+, periodic(∆̄#

3 ) such that Xd# ∈ Ob C+, periodic(∆̄#
2 ) is a 2-triangle for all injective periodic

monotone maps ∆̄3
�d ∆̄2.

Henceforth, let p > 2 be a prime.

III.1 The classical stable category of (Z/pm) -mod

III.1.1 The category (Z/pm) -mod

Let m > 0. By E := (Z/pm) -mod we understand the following category.

The objects are indexed by tuples (ai)i∈[0,m] with ai ∈ Z>0. To such an index, we attach the

object ⊕
i∈[0,m]

(Z/pi)⊕ai .

As morphisms, we take Z/pm-linear maps.

Note that we have not chosen a skeleton. The trick here is to pick several zero objects.

The duality contrafunctor Z/pm(−,Z/pm) on E , which sends Z/pi to Z/pi for i ∈ [1,m], shows

that an object in this category is injective if and only if it is projective. An object of E is

bijective if and only if it is isomorphic to a finite direct sum of copies of Z/pm. The category

E is an abelian Frobenius category, with all short exact sequences stipulated to be pure; cf. e.g.

Def. I.45.
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III.1.2 The shift on (Z/pm) -mod

To define a shift automorphism on the classical stable category E = (Z/pm) -mod, we shall

distinguish certain (pure) short exact sequences in E ; cf. §III.4.4.2.1, Def. I.47.

Let Ek :=

(
1 . . .

1

)
denote the unit matrix of size k × k; let E′k :=

(
1

. .
.

1

)
denote the reversed

unit matrix of size k × k.

As distinguished (pure) short exact sequences we take those of the form

⊕
i∈[0,m](Z/p

i)⊕ai •

0BBBB@
pmEa0

pm−1Ea1

. . .
p0Eam

1CCCCA
// (Z/pm)⊕

P
i∈[0,m] ai �

0BBBB@
E′a0

E′a1

. .
.

E′am

1CCCCA
//
⊕

i∈[0,m](Z/p
i)⊕am−i

So roughly speaking, distinguished short exact sequences are direct sums of those of the form

Z/pi -rpm−i Z/pm -
1

Z/pm−i ,

where i ∈ [0,m]; we reorder the summands the cokernel term consists of.

With this choice, conditions (i, ii, iii) of §III.4.4.2.1 are satisfied.

On indecomposable objects and morphisms between them, the shift automorphism induced on

E by our set of distinguished short exact sequences is given by

(Z/pi -a Z/pj)+1 = (Z/pm−i -pi−ja
Z/pm−j) ,

where i, j ∈ [0,m], and where a is a representative in Z. Note that if i < j, then a is divisible

by p j−i.

Note that Z/pi -
a

Z/pj represents zero in E if and only if a is divisible by pmin(m−i, j).

III.1.3 A Heller triangulation on (Z/pm) -mod

Concerning the notation E�(∆̄MOn ), cf. §III.4.3. Given n > 0 and X ∈ Ob E�(∆̄MOn ), we form

Xτ ∈ Ob E+, periodic(∆̄MOn ) with respect to the set of distinguished short exact sequences of §III.1.2

as described in §III.4.4.2.3. That is, we replace the rightmost column of X by the column

obtained using distinguished short exact sequences, so that (Xτ )0+1/∗ = ((Xτ )∗/0)+1 = (X∗/0)+1;

cf. §III.4.4.2.3.

Remark III.1 If the short exact sequences

Xα/0
-r(x x )

Xα/α ⊕X0+1/0
-

“
x
−x
”
X0+1/α

appearing in the diagram X for 1 6 α 6 n already are distinguished, then the image of X in

Ob E+(∆̄MOn ) equals Xτ .

Concerning the notion of a closed Heller triangulated category, cf. Definition III.13 in §III.4.2.
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Remark III.2 The classical stable category E = (Z/pm) -mod carries a closed Heller triangu-

lation such that given n > 0 and X ∈ Ob E�(∆̄MOn ), the periodic prolongation of Xτ to an object

of E+, periodic(∆̄#
n ) is an n-triangle.

Proof. The assertion follows by Proposition III.22.(1) in §III.4.4.2.1 and Proposition III.25 in

§III.4.4.2.4.

III.1.4 A Verdier triangulation on (Z/pm) -mod

By [22, Th. 2.6], E = (Z/pm) -mod is a Verdier triangulated category, i.e. a triangulated category

in the sense of Verdier [56, Def. 1-1].

This also follows by Remark III.2 and by Prop. I.23, which says that any Heller triangulated category
in which idempotents split is also Verdier triangulated. The 2-triangles in the Heller context are
the distinguished triangles in the Verdier context.

Given a morphism X -f Y in E , using the distinguished short exact sequence X -r B -X+1,

where B is bijective, we can form the morphism

Y • // Z
� // X+1

X • //

f

OO

B
� //

OO

X+1

of short exact sequences, from which the sequence

X
f // Y • // Z

� // X+1

represents a distinguished triangle in the Verdier triangulated category E .

III.2 Nonisomorphic periodic n-pretriangles

Nonisomorphic periodic n-pretriangles whose periodic (n− 1)-pretriangles are all (n− 1)-triangles,
to be specific.

Let n > 3. Let C := (Z/p2n) -mod, and let it be endowed with a shift automorphism as in

§III.1.2 and a Heller triangulation as in §III.1.3.
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III.2.1 A (2n− 1)-triangle

Let Y be the following (2n− 1)-triangle in C.

Z/p1

Z/p1
−p // Z/p2

1

OO

Z/p1
p // Z/p2

−p //

1

OO

Z/p3

1

OO

. .
. ...

1

OO

...

1

OO

...

1

OO

Z/p1
p // · · · p // Z/p2n−4

p //

1

OO

Z/p2n−3
−p //

1

OO

Z/p2n−2

1

OO

Z/p1
p // Z/p2

p //

1

OO

· · · p // Z/p2n−3
p //

1

OO

Z/p2n−2
−p //

1

OO

Z/p2n−1

1

OO

Z/p1
p // Z/p2

p //

1

OO

Z/p3
p //

1

OO

· · · p // Z/p2n−2
p //

1

OO

Z/p2n−1

1

OO

Here we have made use of the convention from §III.0.5 that we display of Y only its restriction to
the subposet {β/α ∈ ∆̄#

2n−1 : 0 6 α < β 6 0+1, β/α 6= 0+1/0}, which is possible without loss of
information. Similarly below.

It arises from a diagram on ∆̄MOn with values in (Z/p2n) -mod that consists of squares, has entry

Z/p2n at position 0+1/0, and has the quadrangle

Z/p2n−2 −p // Z/p2n−1

Z/p2n−1 p //

1

OO

Z/p2n

−1

OO

in its lower right corner. This diagram contains the necessary distinguished short exact sequences

with the necessary signs inserted for Y to be in fact a (2n− 1)-triangle; cf. Remarks III.1, III.2.
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III.2.2 An n-triangle and a periodic n-pretriangle

We apply the folding operator fn−1 to the (2n− 1)-triangle Y obtained in §III.2.1, yielding the

n-triangle Y fn−1, which we shall display now; cf. Lem. I.21.(2), §I.1.2.2.3.

Z/pn

Z/p1⊕Z/p2n−1

„
−pn−1

−1

«
// Z/pn

p

OO

Z/p1⊕Z/p2n−1

“
p 0
0 1

”
// Z/p2⊕Z/p2n−2

„
−pn−2

−1

«
//

“
1 0
0 p

” OO

Z/pn

p

OO

. .
. ...

“
1 0
0 p

” OO

...

“
1 0
0 p

” OO

...

p

OO

Z/p1⊕Z/p2n−1

“
p 0
0 1

”
// · · ·

“
p 0
0 1

”
// Z/pn−3⊕Z/pn+3

“
p 0
0 1

”
//

“
1 0
0 p

” OO

Z/pn−2⊕Z/pn+2

„
−p2

−1

«
//

“
1 0
0 p

” OO

Z/pn

p

OO

Z/p1⊕Z/p2n−1

“
p 0
0 1

”
// Z/p2⊕Z/p2n−2

“
p 0
0 1

”
//

“
1 0
0 p

” OO

· · ·

“
p 0
0 1

”
// Z/pn−2⊕Z/pn+2

“
p 0
0 1

”
//

“
1 0
0 p

” OO

Z/pn−1⊕Z/pn+1

“−p
−1

”
//

“
1 0
0 p

” OO

Z/pn

p

OO

Z/pn
p // Z/pn

p //

(1 −pn−1 )
OO

Z/pn
p //

(1 −pn−2 )
OO

· · · p // Z/pn
p //

(1 −p2 )
OO

Z/pn

(1 −p )

OO

Let X be the n-triangle obtained from Y fn−1 by isomorphic substitution along
(

1 0
0 −1

)
on all

terms consisting of two summands; cf. Lem. I.21.(4). So X can be displayed as follows.

Z/pn

Z/p1⊕Z/p2n−1

„
−pn−1

1

«
// Z/pn

p

OO

Z/p1⊕Z/p2n−1

“
p 0
0 1

”
// Z/p2⊕Z/p2n−2

„
−pn−2

1

«
//

“
1 0
0 p

” OO

Z/pn

p

OO

. .
. ...

“
1 0
0 p

” OO

...

“
1 0
0 p

” OO

...

p

OO

Z/p1⊕Z/p2n−1

“
p 0
0 1

”
// · · ·

“
p 0
0 1

”
// Z/pn−3⊕Z/pn+3

“
p 0
0 1

”
//

“
1 0
0 p

” OO

Z/pn−2⊕Z/pn+2

„
−p2

1

«
//

“
1 0
0 p

” OO

Z/pn

p

OO

Z/p1⊕Z/p2n−1

“
p 0
0 1

”
// Z/p2⊕Z/p2n−2

“
p 0
0 1

”
//

“
1 0
0 p

” OO

· · ·

“
p 0
0 1

”
// Z/pn−2⊕Z/pn+2

“
p 0
0 1

”
//

“
1 0
0 p

” OO

Z/pn−1⊕Z/pn+1

“−p
1

”
//

“
1 0
0 p

” OO

Z/pn

p

OO

Z/pn
p // Z/pn

p //

(1 pn−1 )
OO

Z/pn
p //

(1 pn−2 )
OO

· · · p // Z/pn
p //

(1 p2 )
OO

Z/pn

(1 p )

OO
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Let X̃ be the following periodic n-pretriangle.

Z/pn

Z/p1⊕Z/p2n−1

„
−pn−1

1

«
// Z/pn

p

OO

Z/p1⊕Z/p2n−1

“
p 0
0 1

”
// Z/p2⊕Z/p2n−2

„
−pn−2

1

«
//

“
1 0
0 p

” OO

Z/pn

p

OO

. .
. ...

“
1 0
0 p

” OO

...

“
1 0
0 p

” OO

...

p

OO

Z/p1⊕Z/p2n−1

“
p 0
0 1

”
// · · ·

“
p 0
0 1

”
// Z/pn−3⊕Z/pn+3

“
p 0
0 1

”
//

“
1 0
0 p

” OO

Z/pn−2⊕Z/pn+2

„
−p2

1

«
//

“
1 0
0 p

” OO

Z/pn

p

OO

Z/p1⊕Z/p2n−1

“
p 0
0 1

”
// Z/p2⊕Z/p2n−2

“
p 0
0 1

”
//

“
1 0
0 p

” OO

· · ·

“
p 0
0 1

”
// Z/pn−2⊕Z/pn+2„

p 0
pn−3 1

«//
“

1 0
0 p

” OO

Z/pn−1⊕Z/pn+1

“−p
1

”
//

„
1 0

−pn−3 p

« OO

Z/pn

p

OO

Z/pn
p // Z/pn

p //

(1 pn−1 )
OO

Z/pn
p //

(1 pn−2 )
OO

· · · p // Z/pn
p //

(1 p2 )
OO

Z/pn

(1 p )

OO

To verify that X̃ actually is an n-pretriangle, a comparison with X reduces us to show that the

three quadrangles depicted in full in the lower right corner of X̃ are weak squares. Of these three,

the middle quadrangle arises from the corresponding one of X by an isomorphic substitution

along Z/pn−1⊕Z/pn+1 -

„
1 0

pn−3 1

«
∼ Z/pn−1⊕Z/pn+1, and thus is a weak square. For the lower one,

we may apply Lem. I.57 to the diagram (X̃1/0, X̃n−1/0, X̃n/0, X̃0+1/0, X̃1/1, X̃n−1/1, X̃n/1, X̃0+1/1)

and compare with X to show that it is a weak square. For the right hand side one, we may apply

Lem. I.57 to the diagram (X̃n/0, X̃n/1, X̃n/2, X̃n/n, X̃0+1/0, X̃0+1/1, X̃0+1/2, X̃0+1/n) and compare

with X to show that it is a weak square.

Given k ∈ [0, n], we let ∆̄n
�dk ∆̄n−1 be the periodic monotone map determined by

[0, n− 1]dk = [0, n] r {k}.

Lemma III.3 Suppose given k ∈ [0, n].

(1) The diagram X̃d#
k is an (n− 1)-triangle.

(2) We have Xd#
k ' X̃d#

k in C+, periodic(∆̄#
n−1).

Proof. Since X is an n-triangle, Xd#
k is an (n− 1)-triangle; cf. Lem. I.21.(1). Since Xd#

k |∆̇n−1
=

X̃d#
k |∆̇n−1

, the diagram X̃d#
k is an (n − 1)-triangle if and only if it is isomorphic to Xd#

k in

C+, periodic(∆̄#
n−1); cf. Lem. I.21.(4, 6). So assertions (1) and (2) are equivalent. We will prove (2).

When referring to an object on a certain position in the diagram Xd#
k resp. X̃d#

k , we shall also

mention in parentheses its position as an object in the diagram X resp. X̃ for ease of orientation.
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When constructing a morphism in C+, periodic(∆̄#
n−1), we will give its components on

{j/i : 0 6 i 6 j 6 n− 1} ⊆ ∆̄#
n−1 ; the remaining components result thereof by periodic rep-

etition.

Case k ∈ {1, n}. We have Xd#
1 = X̃d#

1 and Xd#
n = X̃d#

n .

Case k = 0. We claim that Xd#
0 is isomorphic to X̃d#

0 in C+, periodic(∆̄#
n−1). In fact, an isomor-

phism Xd#
0
-∼ X̃d#

0 is given by

Z/pn−1 ⊕ Z/pn+1 -

„
1 0

pn−3 1

«
∼ Z/pn−1 ⊕ Z/pn+1

at position (n − 1)/0 (position n/1 in X resp. X̃), and by the identity elsewhere. This proves

the claim.

Case k ∈ [2, n − 1]. We claim that Xd#
k is isomorphic to X̃d#

k in C+,periodic(∆̄#
n−1). In fact, an

isomorphism Xd#
k
-∼ X̃d#

k is given as follows.

At position j/0 for j ∈ [1, n− 1] (position j/0 if j 6 k− 1 and (j + 1)/0 if j > k in X resp. X̃),

it is given by the identity on Z/pn.

At position j/i for i, j ∈ [1, k − 1] such that i < j (position j/i in X resp. X̃), it is given by

the identity on Z/p j−i ⊕ Z/p2n−j+i.

At position j/i for i, j ∈ [k, n− 1] such that i < j (position (j + 1)/(i+ 1) in X resp. X̃), it is

given by the identity on Z/p j−i ⊕ Z/p2n−j+i.

At position j/i for i ∈ [1, k − 1] and j ∈ [k, n− 1] such that j/i 6= (n− 1)/1 (position (j + 1)/i

in X resp. X̃), it is given by

Z/p j+1−i ⊕ Z/p2n−j−1+i -

„
1 0

−p j−1−i 1

«
∼ Z/p j+1−i ⊕ Z/p2n−j−1+i

At position (n−1)/1 (position n/1 in X resp. X̃), it is given by the identity on Z/pn−1⊕Z/pn+1.

This proves the claim.

Lemma III.4 X is not isomorphic to X̃ in C+, periodic(∆̄#
n ).

In particular, X̃ is not an n-triangle; cf. Lem. I.21.(6).

Proof. We assume the contrary. By Lem. I.21.(4), X and X̃ are n-triangles. Thus, by

Lem. I.21.(6), there is an isomorphism X -∼ X̃ that is identical at i/0 and at 0+1/i for i ∈ [1, n].

Let

Z/p`−k⊕Z/p2n−`+k -

„
a`/k p2n−2`+2kb`/k
c`/k d`/k

«
Z/p`−k⊕Z/p2n−`+k

denote the entry of this isomorphism at `/k, where 1 6 k < ` 6 n.

If `− k > 2, we have the following commutative quadrangle in C on `/k - `/(k + 1).

Z/p`−k⊕Z/p2n−`+k

„
a`/k p2n−2`+2kb`/k
c`/k d`/k

«
��

“
1 0
0 p

”
// Z/p`−k−1⊕Z/p2n−`+k+1

„
a`/(k+1) p2n−2`+2k+2b`/(k+1)
c`/(k+1) d`/(k+1)

«
��

Z/p`−k⊕Z/p2n−`+k “
1 0
0 p

”
− ∂`/k, n/1

„
0 0

pn−3 0

« // Z/p`−k−1⊕Z/p2n−`+k+1
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We read off the congruences

c`/k − ∂`/k, n/1 pn−3d`/k ≡p`−k−1 pc`/(k+1)(i)

b`/k ≡p`−k−1 pb`/(k+1) .(ii)

From (i) we infer

(iii) cn/1 − pn−3dn/1 ≡pn−2 p1cn/2 ≡pn−2 p2cn/3 ≡pn−2 . . . ≡pn−2 pn−2cn/(n−1) ≡pn−2 0 .

From (ii) we infer

(iv) bn/1 ≡pn−2 pbn/2 ≡pn−2 p2bn/3 ≡pn−2 . . . ≡pn−2 pn−2bn/(n−1) ≡pn−2 0 .

On n/1 - 0+1/1, we have the following commutative quadrangle in C.

Z/pn−1⊕Z/pn+1„
an/1 p

2bn/1
cn/1 dn/1

«
��

“−p
1

”
// Z/pn

Z/pn−1⊕Z/pn+1 “−p
1

” // Z/pn

We read off the congruence

(v) −pcn/1 + dn/1 ≡pn−1 1 .

On n/0 - n/1, we have the following commutative quadrangle in C.

Z/pn
(1 p ) // Z/pn−1⊕Z/pn+1„

an/1 p
2bn/1

cn/1 dn/1

«
��

Z/pn
(1 p )

// Z/pn−1⊕Z/pn+1

We read off the congruence

(vi) pbn/1 + dn/1 ≡pn−1 1 .

By (iii) resp. (iv) we conclude from (v) resp. (vi) that

(1− pn−2)dn/1 ≡pn−1 1(v′)

dn/1 ≡pn−1 1 .(vi′)

Substituting (vi′) into (v′), we obtain

1− pn−2 ≡pn−1 1 ,

which is absurd.
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III.3 Nonisomorphic Verdier octahedra

Since in §III.2, the category C is also a Verdier triangulated category, specialising to n = 3 yields
two nonisomorphic Verdier octahedra on the same base. In this particular case, we shall now give
a somewhat longer argument alternative to that given in §III.2 that is independent of Chapter I,
whose techniques might not be familiar to all readers. Nonetheless, §III.3 is a particular case of
§III.2.

Let C := (Z/p6) -mod, and let it be endowed with a shift automorphism as in §III.1.2 and a

Verdier triangulation as in §III.1.4.

Let the diagram X be given by

Z/p3

Z/p1⊕Z/p5

„
−p2

1

«
// Z/p3

p

OO

Z/p1⊕Z/p5

“
p 0
0 1

”
// Z/p2⊕Z/p4

“−p
1

”
//

“
1 0
0 p

” OO
Z/p3

p

OO

Z/p3 p // Z/p3 p //

(1 p2 )
OO

Z/p3

(1 p )

OO

.

Let the diagram X̃ be given by

Z/p3

Z/p1⊕Z/p5

„
−p2

1

«
// Z/p3

p

OO

Z/p1⊕Z/p5

“
p 0
1 1

”
// Z/p2⊕Z/p4

“−p
1

”
//

“
1 0
−1 p

” OO
Z/p3

p

OO

Z/p3 p // Z/p3 p //

(1 p2 )
OO

Z/p3

(1 p )

OO

.

Lemma III.5 Both X and X̃ are Verdier octahedra.

In contrast to the procedure in §III.2, to prove this, we will not make use of the folding operation.

Proof. For the periodic monotone map ∆̄3
�d3 ∆̄2 that maps 0� 0, 1� 1 and 2� 2, we obtain

Xd#
3 = X̃d#

3 , horizontally displayed as

Z/p3 p // Z/p3
(1 p2 )

// Z/p⊕Z/p5

„
−p2

1

«
// Z/p3 .
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The following morphism of short exact sequences in (Z/p6) -mod showsXd#
3 to be a distinguished

triangle.

Z/p3 •
(1 p2 )

// Z/p⊕Z/p5 �

„
−p2

1

«
// Z/p3

Z/p3 •
p3

//

p

OO

Z/p6 �1 //

(0 1)

OO

Z/p3

For the periodic monotone map ∆̄3
�d1 ∆̄2 that maps 0� 0, 2� 1 and 3� 2, we obtain the

distinguished triangle Xd#
1 = X̃d#

1 = Xd#
3 again.

For the periodic monotone map ∆̄3
�d2 ∆̄2 that maps 0� 0, 1� 1 and 3� 2, we obtain the

diagram Xd#
2 = X̃d#

2 , horizontally displayed as

Z/p3 p2
// Z/p3 (1 p ) // Z/p2⊕Z/p4

“−p
1

”
// Z/p3 .

The following morphism of short exact sequences in (Z/p6) -mod showsXd#
2 to be a distinguished

triangle.

Z/p3 •
(1 p ) // Z/p2⊕Z/p4 �

“−p
1

”
// Z/p3

Z/p3 •
p3

//

p2

OO

Z/p6 �1 //

(0 1)

OO

Z/p3

For the periodic monotone map ∆̄3
�d0 ∆̄2 that maps 1� 0, 2� 1 and 3� 2, we obtain the

periodic isomorphism Xd#
0
-∼ X̃d#

0 , horizontally displayed as

Z/p⊕Z/p5

“
p 0
0 1

”
// Z/p2⊕Z/p4

“
1 0
0 p

”
//“

1 0
1 1

”
o
��

Z/p⊕Z/p5

„
0 −p4

1 0

«
// Z/p⊕Z/p5

Z/p⊕Z/p5

“
p 0
1 1

”
// Z/p2⊕Z/p4

“
1 0
−1 p

”
// Z/p⊕Z/p5

„
0 −p4

1 0

«
// Z/p⊕Z/p5 .

So we are reduced to show that Xd#
0 is a distinguished triangle, which it is as a direct sum of

two distinguished triangles, as the following morphisms of short exact sequences in (Z/p6) -mod

show.

Z/p •
p // Z/p2 �1 // Z/p Z/p4 •

p // Z/p5 �1 // Z/p

Z/p5 •
p //

1

OO

Z/p6 �1 //

1

OO

Z/p Z/p5 •
p //

1

OO

Z/p6 �1 //

1

OO

Z/p

Lemma III.6 The Verdier octahedra X and X̃ are not isomorphic in C+, periodic(∆̄#
3 ).

That is, there is no isomorphism between the displayed parts of X resp. of X̃ such that its entries

on the rightmost vertical column arise by an application of the shift functor of C to its entries

on the lower row.
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We will not use the fact that X is a 3-triangle, which in conjunction with Lem. I.21.(4, 6) would
permit us to restrict ourselves to consider isomorphisms that are identical on the lower row and the
rightmost vertical column, as we did in Lemma III.4.

Proof. We assume the contrary and depict an isomorphism X -∼ X̃ as follows.

Z/p3

w

��

Z/p⊕Z/p5

„
−p2

1

«
//

„
a′′ p4b′′

c′′ d′′

«

��

Z/p3

p

<<zzzzzzzzz

v

��

Z/p⊕Z/p5

“
p 0
0 1

”
//

„
a′ p4b′

c′ d′

«

��

Z/p2⊕Z/p4

(
1 0
0 p

) <<zzzzzzzzz
“−p

1

”
//

„
a p2b
c d

«

��

Z/p3

p

<<zzzzzzzzz

u

��

Z/p3
p //

u

��

Z/p3
p //

(1 p2 )
<<zzzzzzzzz

v

��

Z/p3

(1 p)
<<zzzzzzzzz

w

��

Z/p3

Z/p⊕Z/p5

„
−p2

1

«
// Z/p3

p

<<zzzzzzzzz

Z/p⊕Z/p5

“
p 0
1 1

”
// Z/p2⊕Z/p4

(
1 0
−1 p

) <<zzzzzzzzz
“−p

1

”
// Z/p3

p

<<zzzzzzzzz

Z/p3
p // Z/p3

p //

(1 p2 )
<<zzzzzzzzz

Z/p3

(1 p)
<<zzzzzzzzz

Note that all vertical quadrangles commute in C.

The commutative quadrangles on 1/0 - 2/0 - 3/0 yield u ≡p2 v ≡p2 w.

The commutative quadrangle on 3/0 - 3/1 yields pb+ d ≡p2 w.

The commutative quadrangle on 3/1 - 0+1/1 yields −pc+ d ≡p2 u.

The commutative quadrangle on 3/1 - 3/2 yields b ≡p 0 and c ≡p d.

Altogether, we have

u ≡p2 w ≡p2 pb+ d ≡p2 d ≡p2 u+ pc ≡p2 u+ pd ,

whence

0 ≡p d ≡p w .

Since Z/p3 -w Z/p3 is an isomorphism in C, we have w 6≡p 0. This is absurd.

In [8, 1.1.13], it is described how an octahedron gives rise to two “extra” triangles. As cone of

the diagonal of a quadrangle appearing in that octahedron, we take the direct sum of the non-

diagonal terms of the subsequent quadrangle, the morphisms being taken from the octahedron,

with one minus sign inserted to ensure that the composition of two morphisms in the constructed

triangle vanishes.

Remark III.7 The triangles arising from X and from X̃ as described in [8, 1.1.13] are distin-

guished.
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Proof. (1) The morphism of short exact sequences in (Z/p6) -mod

Z/p3 •
(1 p2 −p)

// Z/p⊕ Z/p5 ⊕ Z/p3 �

 
p 0
0 1
1 p

!
// Z/p2 ⊕ Z/p4

Z/p4 ⊕ Z/p2 •

„
p2 0
0 p4

«
//

„
−p
p2

«OO

Z/p6 ⊕ Z/p6 �

“
1 0
0 1

”
//

“
0 −p 1
0 1 0

”OO

Z/p2 ⊕ Z/p4

and the isomorphism of diagrams with coefficients in C

Z/p3
(1 p2 −p)

// Z/p⊕Z/p5⊕Z/p3

 
p 0
0 1
1 p

!
// Z/p2⊕Z/p4

„
−p2

p

«
//“

1−p 0
1 1

”
o
��

Z/p3

Z/p3
(1 p2 −p)

// (Z/p⊕Z/p5)⊕Z/p3

 
p 0
1 1
1 p

!
// Z/p2⊕Z/p4

„
−p2

p

«
// Z/p3

show one of the triangles mentioned in loc. cit. to be distinguished in X and in X̃.

The morphism of short exact sequences in (Z/p6) -mod

Z/p2 ⊕ Z/p4 •

“
1 0 p
0 p −1

”
// Z/p⊕ Z/p5 ⊕ Z/p3 �

 
−p2

1
p

!
// Z/p3

Z/p3 •
p3

//

(p p2 )
OO

Z/p6 �1 //

(0 1 0)

OO

Z/p3

and the isomorphism of diagrams with coefficients in C

Z/p3
(p p2 )

// Z/p2⊕Z/p4

“
1 0 p
0 p −1

”
// (Z/p⊕Z/p5)⊕Z/p3

 
−p2

1
p

!
// 

1 0 −p2

0 1 1
1 0 1+p

!
o

��

Z/p3

Z/p3
(p p2 )

// Z/p2⊕Z/p4

“
1 0 p
−1 p −1

”
// (Z/p⊕Z/p5)⊕Z/p3

 
−p2

1
p

!
// Z/p3

show the other of the triangles mentioned in loc. cit. to be distinguished in X and in X̃.

III.4 Transport of structure

We use the notation of §I.1, §I.2.

III.4.1 Transport of a Heller triangulation

Concerning weakly abelian categories, see e.g. §I.6.6.3. Recall that an additive functor between weakly abelian
categories is called subexact if it induces an exact functor on the Freyd categories; cf. §I.1.2.1.3. For instance, an
equivalence is subexact.

1Strictly speaking, we should reorder summands in the diagrams that follow; cf. §III.1.1. But then the proof
would be more difficult to read.
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Setup III.8

Suppose given a Heller triangulated category (C,T, ϑ); cf. Def. I.5. Suppose given a weakly abelian
category C′ and an automorphism T′ on C′, called shift ; cf. Def. I.66.

Assume given subexact functors C -F C′ and C′ -G C, and isotransformations 1C′ -
ε

∼ GF and
T′G -σ

∼ GT.

Suppose given n > 0. By abuse of notation, we write F := F+(∆̄#
n ) : C+(∆̄#

n ) - C′+(∆̄#
n ) for the functor

obtained by pointwise application of F .

Similarly, we write ε := ε+(∆̄#
n ) : (1C′)+(∆̄#

n ) -∼ (GF )+(∆̄#
n ) for the isotransformation obtained by pointwise

application of ε.

More generally speaking, for notational convenience, induced functors of type A+(∆̄#
n ) will often be abbrevi-

ated by A, and induced transformations of type α+(∆̄#
n ) will often be abbreviated by α. For instance, given

X ∈ Ob C+(∆̄#
n ), we will allow ourselves to write X T = XT+(∆̄#

n ) ( = [X+1]).

Given X ′ ∈ Ob C′+(∆̄#
n ) = Ob C′+(∆̄#

n ), we define the isomorphism [X ′]+1 -X′ϑ′n
∼ [X ′+1] in C′+(∆̄#

n ) by the
following commutative diagram.

[X ′]+1
X′ϑ′n
∼

//

[X′ε]+1 o
��

[X ′+1]

[X′+1]εo
��

[X ′GF ]+1 [X ′+1]GF

oX′σF

��
[X ′G]+1F

X′GϑnF

∼
// [(X ′G)+1]F

In other words, we let
X ′ϑ′n := ([X ′ε]+1)(X ′GϑnF )(X ′σ−F )([X ′+1]ε−) .

As a composite of isotransformations, (X ′ϑ′n)X′ ∈Ob C′+(∆̄#
n ) is an isotransformation. Let ϑ′ := (ϑ′n)n>0.

Lemma III.9 The triple (C′,T′, ϑ′) is a Heller triangulated category.

Cf. Def. I.5. We will say that ϑ′ is transported from (C,T, ϑ) via F and G. Strictly speaking, we should mention
ε and σ here as well.

Proof. Suppose given m, n > 0, a periodic monotone map ∆̄n
�q ∆̄m and X ′ ∈ Ob C′+(∆̄#

n ). We claim that
X ′q#ϑ′m = X ′ϑ′nq

#. We have

X ′q#ϑ′m = ([X ′q#ε]+1)(X ′q#GϑmF )(X ′q#σ−F )([X ′q#+1]ε−) ,

X ′ϑ′nq
# = ([X ′ε]+1q#)(X ′GϑnFq#)(X ′σ−Fq#)([X ′+1]ε−q#) .

By respective pointwise definition, we have [X ′q#ε]+1 = [X ′ε]+1q# (using that q is periodic), X ′q#σ−F =

X ′σ−Fq# and [X ′q#+1]ε− = [X ′+1]ε−q#. Moreover, since (C,T, ϑ) is Heller triangulated, we get

X ′q#GϑmF = X ′Gq#ϑmF = X ′Gϑnq
#F = X ′GϑnFq

# .

This proves the claim.

Suppose given n > 0 and X ′ ∈ Ob C′+(∆̄#
2n+1). We claim that X ′f

n
ϑ′n+1 = X ′ϑ′2n+1fn. We have

X ′f
n
ϑ′n+1 = ([X ′f

n
ε]+1)(X ′f

n
Gϑn+1F )(X ′f

n
σ−F )([X ′f

n

+1]ε−) ,

X ′ϑ′2n+1fn = ([X ′ε]+1f
n
)(X ′Gϑ2n+1F f

n
)(X ′σ−F f

n
)([X ′+1]ε−f

n
) .
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By additivity of F , G and T′ and by respective pointwise definition, we have [X ′f
n
ε]+1 = [X ′ε]+1f

n
(using

shiftcompatibility of f
n
), X ′f

n
σ−F = X ′σ−F f

n
and [X ′f

n

+1]ε− = [X ′+1]ε−f
n
. Moreover, since (C,T, ϑ) is Heller

triangulated, we get

X ′f
n
Gϑn+1F = X ′Gf

n
ϑn+1F = X ′Gϑ2n+1fnF = X ′Gϑ2n+1F f

n
.

This proves the claim.

III.4.2 Detecting n-triangles

Setup III.10

Suppose given a Heller triangulated category (C,T, ϑ); cf. Def. I.5. Suppose given an additive
category C′ and an automorphism T′ on C′, called shift.

Suppose given mutually inverse equivalences C -F C′ and C′ -G C. Note that G a F , whence

there exist isotransformations 1C′ -
ε

∼ GF and FG -η
∼ 1C such that both (Fε)(ηF ) = 1F and

(εG)(Gη) = 1G hold. We fix such ε and η.

Suppose given an isotransformation T′G -σ
∼ GT.

Note that C′ is weakly abelian, being equivalent to the weakly abelian category C.

Let ϑ′ be transported from (C,T, ϑ) via F and G.

That is, we let X ′ϑ′n := ([X ′ε]+1)(X ′GϑnF )(X ′σ−F )([X ′+1]ε−) for n > 0 and X ′ ∈ Ob C′+(∆̄#
n ), defining

ϑ′ := (ϑ′n)n>0.

By Lemma III.9, the triple (C′,T′, ϑ′) is a Heller triangulated category.

Moreover, let

(TF -ρ
∼ F T′) = (TF -η− TF

∼ FGTF -Fσ−F

∼ F T′GF -F T′ ε−

∼ F T′) .

Notation III.11 Suppose given n > 0. Concerning the full subposet

∆̄MOn = {β/α ∈ ∆#
n : 0 6 α 6 β 6 0+1} ⊆ ∆̄#

n ,

cf. §I.2.5.1.

(1) Suppose given X ′ ∈ Ob C′+, periodic(∆̄#
n ), where periodic means [X ′]+1 = [X ′+1]; cf. §I.2.5.1. Consider the

diagram X ′G|∆̄MO
n

. Denote by X ′G|σ
∆̄MO
n
∈ Ob C′+(∆̄#

n ) the diagram X ′G|∆̄MO
n

with (X ′G)0+1/i = X ′0+1/iG =

X ′i/0 T′G isomorphically replaced via X ′i/0 σ by X ′i/0GT. Denote by X ′Gσ ∈ Ob C+, periodic(∆̄#
n ) its

periodic prolongation, characterised by X ′Gσ|∆̄MO
n

= X ′G|σ
∆̄MO
n

; cf. §I.2.5.1. Using, for k > 0,(
[X ′G]+k -∼ [X ′G+1]+(k−1) -∼ · · · -∼ [X ′G+k]

)∣∣∣
∆̄MO
n

,

given by

X ′(j/i)+kG = X ′j/i T
′kGT0 -

T′k−1 σ T0

∼ X ′j/i T
′k−1GT1 -

T′k−2 σ T1

∼ · · · -
T′0 σ Tk−1

∼ X ′j/i T
′0GTk

at j/i for 0 6 i 6 j 6 0+1, and similarly for k 6 0, using T′−G -
T′− σ− T−

∼ GT−, we obtain an isomorphism

X ′G -ϕ
∼ X ′Gσ in C+(∆̄#

n ) such that ϕi/0 = 1X′
i/0G

and ϕ0+1/i = X ′i/0 σ for i ∈ [1, n].

(2) Suppose given X ∈ Ob C+, periodic(∆̄#
n ). Consider the diagram XF |∆̄MO

n
. Denote by XF |ρ

∆̄MO
n
∈ Ob C+(∆̄#

n )
the diagram XF |∆̄MO

n
with (XF )0+1/i = X0+1/iF = Xi/0 TF isomorphically replaced via Xi/0 ρ by

Xi/0F T′. Denote by XF ρ ∈ Ob C′+, periodic(∆̄#
n ) its periodic prolongation, characterised by XF ρ|∆̄MO

n
=

XF |ρ
∆̄MO
n

; cf. §I.2.5.1.

Similarly as in (1), we have an isomorphism XF -ψ
∼ XF ρ in C′+(∆̄#

n ) such that ψi/0 = 1Xi/0F and
ψ0+1/i = Xi/0 ρ for i ∈ [1, n].
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Lemma III.12 Suppose given n > 0.

(1) Suppose given X ′ ∈ Ob C′+, periodic(∆̄#
n ). Then X ′ is an n-triangle if and only if X ′Gσ is an n-triangle.

(2) Suppose given X ∈ Ob C+, periodic(∆̄#
n ). Then X is an n-triangle if and only if XF ρ is an n-triangle.

Cf. Def. I.5.(ii.2).

Proof. Ad (1). Since ϑn is a transformation, there exists a commutative quadrangle

[X ′Gσ]+1 X′Gσϑn
∼

// [(X ′Gσ)+1]

[X ′G]+1 X′Gϑn
∼

//

[ϕ]+1o

OO

[(X ′G)+1]

[ϕ+1]o

OO

in C+(∆̄#
n ). Therefore, X ′Gσ is an n-triangle if and only if [ϕ]+1 = (X ′Gϑn)[ϕ+1]. By Prop. I.12, this equation

is equivalent to [ϕ]+1|∆̇n
= (X ′Gϑn)|∆̇n

[ϕ+1]|∆̇n
; cf. §I.2.1.1; in other words, to

X ′σ|∆̇n
= X ′Gϑn|∆̇n

as morphisms from X ′ T′G|∆̇n
to X ′GT |∆̇n

in C(∆̇n). This, in turn, is equivalent to X ′σ = X ′Gϑn as
morphisms from X ′ T′G to X ′GT in C+(∆̄#

n ) by Prop. I.12.

Now X ′ being an n-triangle is equivalent to X ′ϑ′n = 1; i.e. to

([X ′ε]+1)(X ′GϑnF )(X ′σ−F )([X ′+1]ε−) = 1 .

Since [X ′]+1 = [X ′+1], we have [X ′ε]+1 = [X ′]+1ε = [X ′+1]ε, whence this equation is equivalent to
(X ′GϑnF )(X ′σ−F ) = 1. Since F is an equivalence, this amounts to (X ′Gϑn)(X ′σ−) = 1, as was to be shown.

Ad (2). Since ϑ′n is a transformation, there exists a commutative quadrangle

[XF ρ]+1
XFρϑ′n
∼

// [(XF ρ)+1]

[XF ]+1
XFϑ′n
∼

//

[ψ]+1o

OO

[(XF )+1]

[ψ+1]o

OO

in C′+(∆̄#
n ). Therefore, XF ρ is an n-triangle if and only if [ψ]+1 = (XFϑ′n)[ψ+1]. By Prop. I.12, this equation

is equivalent to [ψ]+1|∆̇n
= (XFϑ′n)|∆̇n

[ψ+1]|∆̇n
; in other words, to

Xρ|∆̇n
= XFϑ′n|∆̇n

as morphisms from X TF |∆̇n
to XF T′ |∆̇n

in C′(∆̇n). This, in turn, is equivalent to Xρ = XFϑ′n as morphisms
from X TF to XF T′ in C′+(∆̄#

n ) by Prop. I.12. Which amounts to

(Xη− TF )(XFσ−F )(XF T′ ε−) = ([XFε]+1)(XFGϑnF )(XFσ−F )([XF+1]ε−) ;

i.e. to
Xη− TF = ([Xη−F ]+1)(XFGϑnF ) .

Since [Xη−F ]+1 = [Xη−]+1F and since ϑn is a transformation, the right hand side equals (XϑnF )([(Xη−)+1]F ),
and therefore we can continue the string of equivalent assertions with

Xη− TF = (XϑnF )([(Xη−)+1]F ) ;

i.e. with XϑnF = 1; i.e. with Xϑn = 1; i.e. with X being an n-triangle.

Definition III.13 A Heller triangulated category (C,T, ϑ) is said to be closed if every morphism X -f Y

therein can be completed to a 2-triangle; i.e. if for all morphisms X -f Y in C, there exists U ∈ Ob C+, ϑ=1(∆̄#
2 )

with (X -f Y ) = (U1/0
-u U2/0). If this is the case, then also the Heller triangulation ϑ is called closed.
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For instance, a Heller triangulated category whose idempotents split is closed; cf. Prop. I.23. Cf. §II.2.4.

Recall that ϑ′ is transported from (C,T, ϑ) via F and G.

Lemma III.14 If (C,T, ϑ) is a closed Heller triangulated category, then (C′,T′, ϑ′) is a closed Heller triangulated
category.

Proof. By Lemma III.9, it remains to prove closedness of (C′,T′, ϑ′). Suppose given X ′ -
u′

Y ′ in C′. We have
to prove that it can be prolonged to a 2-triangle. Using closedness of (C,T, ϑ), we find a 2-triangle

X ′G -u
′G

Y ′G -v Z -w X ′GT .

We claim that

M ′ := (X ′ -u
′

Y ′ -(Y ′ε)(vF )
ZF -(wF )(X′σ−F )(X′ T′ ε−)

X ′ T′)

is a 2-triangle in C′. By Lemma III.12.(1), it suffices to show that M ′Gσ is a 2-triangle in C. Consider the
periodic isomorphism with upper row M ′Gσ and lower row a 2-triangle

X ′G
u′G // Y ′G

(Y ′εG)(vFG) // ZFG
(wFG)(X′σ−FG)(X′ T′ ε−G)(X′σ)// X ′GT

X ′G
u′G // Y ′G

v // Z
w //

o Zη−
OO

X ′GT .

In fact, we have (Y ′εG)(vFG) = (Y ′Gη−)(vFG) = v(Zη−) and

(Zη−)(wFG)(X ′σ−FG)(X ′ T′ ε−G)(X ′σ) = w(X ′GT η−)(X ′σ−FG)(X ′ T′ ε−G)(X ′σ)

= w(X ′σ−)(X ′ T′Gη−)(X ′ T′ ε−G)(X ′σ)

= w(X ′σ−)(X ′σ)

= w .

This shows that M ′Gσ is a 2-triangle; cf. Lem. I.21.(4). This proves the claim.

Remark III.15 Suppose given n > 0.

(1) Given X ∈ Ob C+(∆̄#
n ), we have (XϑnF )(Xρ) = XFϑ′n in C′+(∆̄#

n ).

(2) Given X ′ ∈ Ob C′+(∆̄#
n ), we have (X ′ϑ′nG)(X ′σ) = X ′Gϑn in C+(∆̄#

n ).

Proof. Ad (1). We have

(XϑnF )(Xρ) = (XϑnF )(Xη− TF )(XFσ−F )(XF T′ ε−)

= (XϑnF )([(Xη−)+1]F )(XFσ−F )([XF+1]ε−)

= ([Xη−]+1F )(XFGϑnF )(XFσ−F )([XF+1]ε−)

= ([Xη−F ]+1)(XFGϑnF )(XFσ−F )([XF+1]ε−)

= ([XFε]+1)(XFGϑnF )(XFσ−F )([XF+1]ε−)

= XFϑ′n .

Ad (2). We have

(X ′ϑ′nG)(X ′σ) = ([X ′ε]+1G)(X ′GϑnFG)(X ′σ−FG)([X ′+1]ε−G)(X ′σ)

= ([X ′ε]+1G)(X ′GϑnFG)(X ′σ−FG)([X ′+1]Gη)(X ′σ)

= ([X ′ε]+1G)(X ′GϑnFG)([X ′G+1]η)(X ′σ−)(X ′σ)

= ([X ′εG]+1)(X ′GϑnFG)([X ′G+1]η)

= ([X ′Gη−]+1)(X ′GϑnFG)([X ′G+1]η)

= ([X ′G]+1η−)(X ′GϑnFG)([X ′G+1]η)

= (X ′Gϑn)([X ′G+1]η−)([X ′G+1]η)

= X ′Gϑn .
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III.4.3 Some lemmata

Let E be a Frobenius category, let B ⊆ E be its full subcategory of bijective objects; cf. e.g. Def. I.45. We use
the notations and conventions of §I.6.2.3, in particular those of Ex. I.46.(2).

Let n > 0. Let E ⊆ ∆̄#
n be a convex full subposet, i.e. whenever ξ, ζ ∈ E and λ ∈ ∆̄#

n such that ξ 6 λ 6 ζ,
then λ ∈ E; cf. §I.2.2.2.1. For instance, ∆MOn ⊆ ∆̄#

n is such a convex full subposet; cf. Notation III.11.

A pure square in E is a commutative quadrangle (A,B,C,D) with pure short exact diagonal sequence
(A,B ⊕ C,D); cf. §I.6.4.

Denote by E�(E) ⊆ E(E) the full subcategory determined by

Ob E�(E) :=



X ∈ Ob E(E) :

1) Xα/α is in ObB for all α ∈ ∆̄n such that α/α ∈ E, and

Xα+1/α is in ObB for all α ∈ ∆̄n such that α+1/α ∈ E.

2) For all δ−1 6 α 6 β 6 γ 6 δ 6 α+1 in ∆̄n

such that γ/α, γ/β, δ/α and δ/β are in E,

the quadrangle

Xγ/β
x // Xδ/β

Xγ/α x
//

x

OO

�

Xδ/α

x

OO

is a pure square.



.

A particular case of this definition has been considered in §I.4.1.

III.4.3.1 Cleaning the diagonal

Lemma III.16 Suppose given X ∈ Ob E�(∆̄MOn ). Suppose given β ∈ ∆̄n such that 0 6 β 6 0+1.

There exists X̃ ∈ Ob E�(∆̄MOn ) such that the following conditions (1a, 1b, 2) hold.

(1a) We have X̃α/α = Xα/α for 0 6 α 6 0+1 such that α 6= β.

(1b) We have X̃β/β = 0.

(2) There exists an isomorphism X̃ -∼ X in E(∆̄MOn ).

Proof. Pars pro toto, we consider the case n = 4 and β = 2. We display X as follows.

X0+1/0+1

X4/4
x // X0+1/4

x

OO

X3/3
x // X4/3

x //

x

OO
�

X0+1/3

x

OO

X2/2
x // X3/2

x //

x

OO
�

X4/2
x //

x

OO
�

X0+1/2

x

OO

X1/1
x // X2/1

x //

x

OO
�

X3/1
x //

x

OO
�

X4/1
x //

x

OO
�

X0+1/1

x

OO

X0/0
x // X1/0

x //

x

OO
�

X2/0
x //

x

OO
�

X3/0
x //

x

OO
�

X4/0
x //

x

OO
�

X0+1/0

x

OO
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Set X̃ to be the following diagram.

X0+1/0+1

X4/4
x // X0+1/4

x

OO

X3/3
x // X4/3

x //

x

OO

�

X0+1/3

x

OO

0 // X3/2
x //

x

OO

�

X4/2
x //

x

OO

�

X0+1/2

x

OO

X1/1
x // X2/1

(x x ) //

OO

�

X3/1⊕X2/2

“
x 0
0 1

”
//

“
x
−x
” OO

�

X4/1⊕X2/2

“
x 0
0 1

”
//

“
x
−x
” OO

�

X0+1/1⊕X2/2

“
x
−x
” OO

X0/0
x // X1/0

x //

x

OO

�

X2/0
(x x ) //

x

OO

�

X3/0⊕X2/2

“
x 0
0 1

”
//

“
x 0
0 1

” OO
�

X4/0 ⊕X2/2

“
x 0
0 1

”
//

“
x 0
0 1

” OO
�

X0+1/0 ⊕X2/2

“
x 0
0 1

” OO

Using the Gabriel-Quillen-Laumon embedding theorem, we see that X̃ is actually an object of E�(∆̄MOn );
cf. §I.6.2.2, Lem. I.51.

Since X2/2 is bijective, inserting the zero morphism on all copies of X2/2 and the identity on all other summands
yields an isomorphism X̃ -∼ X in E(∆̄MOn ).

Lemma III.17 Suppose given X ∈ Ob E�(∆̄MOn ).

There exists X ′ ∈ Ob E�(∆̄MOn ) such that the following conditions (1, 2) hold.

(1) We have X ′α/α = 0 for all α ∈ ∆̄n such that 0 6 α 6 0+1.

(2) There exists an isomorphism X ′ -∼ X in E(∆̄MOn ).

Proof. This follows by application of Lemma III.16 consecutively for β = 0, β = 1, . . . , β = 0+1.

III.4.3.2 Horseshoe lemma

Recall that Bac denotes the category of purely acyclic complexes with entries in B, i.e. of complexes with entries
in B that decompose into pure short exact sequences in E ; cf. §I.6.2.3.

Suppose given Y ∈ Ob E . An object B of Bac is called a (both-sided) bijective resolution of Y if Y is isomorphic
to Im(B0 - B1). Note that a bijective resolution of a bijective object is split acyclic.

We have a full and dense functor (2)

Bac -F̂ E
B - Im(B0 - B1)

We make the additional convention that if the image factorisation of a pure morphism d in E is chosen to be
d = d̄ḋ, then we choose the image factorisation −d = d̄(−ḋ) over the same image object.

Pointwise application yields a functor Bac(∆̄MOn ) -F̂ E(∆̄MOn ), which is an abuse of notation.

2A functor induced by F̂ will play the role of F of Setup III.10; cf. §III.4.4.2.2 below.
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Suppose given X ∈ Ob E�(∆̄MOn ) such that Xα/α = 0 for all 0 6 α 6 0+1.

In particular, Xβ/α
- Xγ/α

- Xγ/β is a pure short exact sequence for 0 6 α 6 β 6 γ 6 0+1.

Recall that for n ∈ ∆̄n, we have n+ 1 = 0+1; cf. §I.1.1.

Lemma III.18 Suppose given a bijective resolution Cα+1/α of Xα+1/α for all α ∈ ∆̄n such that 0 6 α 6 n.

Then there exists B ∈ Ob(Bac)�(∆̄MOn ) such that (1, 2, 3) hold.

(1) We have BF̂ ' X in E�(∆̄#
n ).

(2) We have Bα/α = 0 for all 0 6 α 6 0+1.

(3) We have Bα+1/α = Cα+1/α for all α ∈ ∆̄n such that 0 6 α 6 n.

If n = 2, and if we restrict to {1/0, 2/0, 2/1} ⊆ ∆̄MO2 , we recover the classical horseshoe lemma in its bothsided

Frobenius category variant.

Proof. For 0 6 α 6 n, we denote
(
C0
α+1/α

-
d̄

Xα+1/α

)
:=
(
C0
α+1/α

- Cα+1/αF̂ -∼ Xα+1/α

)
.

By duality and by induction, it suffices to find a morphism Y - X in E�(∆̄MOn ) such that (i, ii, iii) hold.

(i) We have Yβ/α ∈ ObB for all 0 6 α 6 β 6 0+1.

(ii) We have Yα/α = 0 for all 0 6 α 6 0+1.

(iii) We have (Yα+1/α
- Xα+1/α) = (C0

α+1/α
-
d̄

Xα+1/α) for all α ∈ ∆̄n such that 0 6 α 6 n.

Note that any morphism Y - X fulfilling (i, ii, iii) consists pointwise of pure epimorphisms, and that the kernel
of such a morphism Y - X taken in E(∆̄MOn ) is in Ob E�(∆̄MOn ).

To construct Y - X, we let

Yγ/α :=
⊕

β ∈ ∆̄n, α6β<γ

C0
β+1/β

for 0 6 α 6 γ 6 0+1. For γ/α 6 γ′/α′, the diagram morphism Yγ/α - Yγ′/α′ is stipulated to be identical on
the summands C0

β+1/β with α′ 6 β < γ and zero elsewhere. This yields Y ∈ Ob E�(∆̄MOn ).

Given 0 6 α 6 γ 6 0+1, we let Yγ/α - Xγ/α be defined as follows. For 0 6 β 6 n, we choose

Yβ+1/β
-e Xβ+1/0 such that

(Yβ+1/β
-e Xβ+1/0

-x Xβ+1/β) = (Yβ+1/β
-d̄ Xβ+1/β) .

The component of the morphism

(Yγ/α - Xγ/α) =

 ⊕
β ∈ ∆̄n, α6β<γ

C0
β+1/β

- Xγ/α


at β is defined to be the composite

(C0
β+1/β

- Xγ/α) := (C0
β+1/β

-e Xβ+1/0
-x Xγ/α) .
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III.4.3.3 Applying F̂ to a standard pure short exact sequence

Recall that for X ∈ ObBac, we have chosen, in a functorial manner, a pure short exact sequence
X -r X I - X T with a bijective middle term X I, where the letter I stands for “injective”; cf. §I.6.2.3.

Lemma III.19 Suppose given X ∈ ObBac. There exists an isomorphism of pure short exact sequences in E as
follows.

XF̂ • // X I F̂
� //

o
��

X T F̂

XF̂ • // X1 � // X T F̂

Therein, the upper sequence results from an application of F̂ to the pure short exact sequence X -r X I - X T

in Bac. The lower sequence is taken from the purely acyclic complex X.

Proof. Consider the following part of the pure short exact sequence X -r X I - X T in Bac; cf. Ex. I.46.

X2 •
(1 d ) // X2 ⊕X3 �

“−d
1

”
// X3

X T F̂

•���������

ḋ

AA���������

X1 •
(1 d ) //

d

OO

{;;;;;;;;;

d̄

]];;;;;;;;;

X1 ⊕X2 �

“−d
1

”
//

“
0 0
1 0

”

OO

X2

−d

OO

X I F̂

•MMMMMδ̇

ffMMMMM

_κ
−d̄

��
XF̂

•���������

ḋ

AA���������

•
ḋ

//

•dddddddddddddddddddddddddd

ḋκ dddd
ddddddddd

11ddddddddddd

X1

•���������

(1 0)

AA���������

�d̄ //

κ
∼

44hhhhhhhhhhhhhhhhhhhhhhhh
X T F̂

•���������

−ḋ

AA���������

X0 •
(1 d ) //

d

OO

{;;;;;;;;;

d̄

]];;;;;;;;;

X0 ⊕X1 �

“−d
1

”
//

(
0 0
1 0

)

OO

{;;;;;;;;;

“
0
1

”

]];;;;;;;;;

L
�������������

δ̄

�����

FF�������

X1

−d

OO

{;;;;;;;;;

d̄

]];;;;;;;;;

We have added the image factorisations X0 -
d̄

XF̂ -rḋ X1 and X0⊕X1 -
δ̄

X I F̂ -rδ̇ X1⊕X2 of the respective
differentials, resulting from an application of F̂ . Factoring the differential of X T as(

X1 -−d X2

)
=
(
X1 -

d̄
X T F̂ -r−ḋ X2

)
follows the additional convention made above.

Moreover, we have added the image factorisationX0⊕X1 -

“
0
1

”
X1 -r(1 0)

X1⊕X2 and, accordingly, the isomorphism

X1 -κ
∼ X I F̂ that satisfies κδ̇ = (1 0) and

(
0
1

)
κ = δ̄.

The horizontal pure short exact sequence XF̂ -rḋ X1 -
d̄

X T F̂ lets all four arising parallelograms commute.
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Now the sequence X -r X I - X T maps to XF̂ -ḋκ X I F̂ -κ−d̄
X T F̂ , for the commutativities

(ḋκ)δ̇ = ḋ (1 d) and δ̄(κ−d̄) =
(
−d

1

)
d̄ hold.

In particular, the sequence (X -r X I - X T)F̂ actually is purely short exact.

III.4.4 Stable vs. classically stable

Let E be a Frobenius category, let B ⊆ E be its full subcategory of bijective objects.

III.4.4.1 n-triangles in the stable category

Recall that Bac denotes the category of purely acyclic complexes with entries in B; cf. §III.4.3.2. Let Bsp ac ⊆ Bac

denote the subcategory of split acyclic complexes. Let E = Bac/Bsp ac denote the stable category of E ; cf.
Def. I.47. Let T be the automorphism on E that shifts a complex to the left by one position, inserting signs; cf.
Ex. I.46.(1). Then (E ,T) carries a Heller triangulation ϑ; cf. Cor. I.33. In fact, we may, and will, choose the
tuple of isotransformations ϑ = (ϑn)n>0 constructed in the proof of Th. I.32.

Suppose given n > 0 and X ∈ Ob(Bac)�(∆̄#
n ); cf. §I.4.1 or §III.4.3. Now X maps to an object X ∈ Ob E+(∆̄#

n );

cf. Lem. I.69. Thus we have an isomorphism [X]+1 -Xϑn
[X+1] in E+(∆̄#

n ). By the construction in the proof

of Th. I.32, there is a representative [X]+1 -Xθ [X+1] in E+(∆̄#
n ) of Xϑn such that in particular, there exists a

morphism of pure short exact sequences

Xi/0 •
(x x ) // Xi/i⊕X0+1/0

�

“
x
−x
”
//

��

X0+1/i

Xθ̂i/0
��

Xi/0 • // Xi/0 I � // X+1
i/0

for each i ∈ [1, n]; where Xθ̂i/0 is a representative in Bac for the morphism Xθi/0 in E ; where the upper pure
short exact sequence stems from the diagram X; and where the lower pure short exact sequence is the standard
one as in Ex. I.46.(1). In particular, Xθi/0 is an isomorphism in E .

Let Xϑ ∈ Ob E+, periodic(∆̄#
n ) be defined as periodic prolongation of the image of the diagram X|∆̄MO

n
in

Ob E+(∆̄MOn ) with X0+1/i isomorphically replaced via Xθi/0 by X+1
i/0 for all i ∈ [1, n]. For short, the rightmost

column of the image of X|∆̄MO
n

becomes standardised; cf. §I.2.1.3. Using(
[X]+k -∼ [X+1]+(k−1) -∼ · · · -∼ [X+k]

)∣∣∣
∆̄MO
n

for k > 0, and similarly for k 6 0, we obtain an isomorphism X -ω Xϑ in E+(∆̄#
n ) such that ωi/0 = 1Xi/0 and

ω0+1/i = Xθi/0 for i ∈ [1, n]; cf. Notation III.11.(1).

Lemma III.20 Given n > 0 and X ∈ Ob(Bac)�(∆̄#
n ), the periodic n-pretriangle Xϑ is an n-triangle.

The following proof is similar to the proof of Lemma III.12.

Proof. We have to show that Xϑϑn = 1; cf. Def. I.5.(ii.2). Since ϑn is a transformation, we have a commutative
quadrangle

[Xϑ]+1 Xϑϑn
∼

// [(Xϑ)+1]

[X]+1 Xϑn
∼

//

[ω]+1o

OO

[X+1]

[ω+1]o

OO

in E+(∆̄#
n ). So we have to show that (Xϑn)[ω+1] = [ω]+1. By Prop. I.12, it suffices to show that

(Xϑn)|∆̇n
[ω+1]|∆̇n

= [ω]+1|∆̇n
. Now [ω+1]|∆̇n

= 1[X+1]|∆̇n
and, by construction, (Xϑn)|∆̇n

= [ω]+1|∆̇n
.
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Corollary III.21 The Heller triangulated category (E ,T, ϑ) is closed.

Cf. Definition III.13.

Proof. We can extend any morphism X1/0
- X2/0 of Bac to an object of (Bac)�(∆̄#

2 ) by choosing X1/0
-r X1/1

with X1/1 bijective and by choosing X0+1/0 = 0, then forming pushouts, then choosing X2/1
-r X2/2 with X2/2

bijective, etc. Dually in the other direction. Then we apply Lemma III.20.

III.4.4.2 The classical stable category under an additional hypothesis

III.4.4.2.1 The hypothesis

Let E := E/B denote the classical stable category of E .

Suppose given a set D of distinguished pure short exact sequences in E such that the following conditions hold.

(i) The middle term of each distinguished pure short exact sequence is bijective.

(ii) For all X ∈ Ob E , there exists a unique distinguished pure short exact sequence with kernel term X.

(iii) For all X ∈ Ob E , there exists a unique distinguished pure short exact sequence with cokernel term X.

III.4.4.2.2 Consequences

We shall define an endofunctor T′ of E .

On objects. Given X ∈ Ob E = Ob E , there exists a unique distinguished pure short exact sequence with kernel
term X. Let X T′ be the cokernel term of this sequence.

On morphisms. The image under T′ of the residue class in E of a morphism X -f Y in E is represented by the

morphism X T′ -
g

Y T′ in E if there exists a morphism of distinguished pure short exact sequences as follows.

X • //

f

��

B
� //

��

X T′

g

��
Y • // C

� // Y T′

Then T′ is an automorphism of E ; i.e. there exists an inverse T′−, constructed dually, such that T′ T′− = 1E and
T′− T′ = 1E .

As usual, we shall write X+1 := X T′ for X ∈ Ob E ; etc.

The functor
E -F E
B - Im(B0 - B1)

induced by F̂ is an equivalence; cf. §III.4.3.2, Lem. I.41. Splicing purely acyclic complexes from distinguished

pure short exact sequences, we obtain an inverse equivalence E �G E . Define T′G -σ GT at Y ∈ Ob E = Ob E
by letting

(Y σi) := (−1(Y G)i+1)i .

Note that Y σF = 1Y T′GF = 1Y GTF ; cf. §III.4.3.2.

Suppose given Y ∈ Ob E . We have a commutative diagram

(Y G)1

Y ∼
//

•����

@@���

Y GF

•BBBB

aaBBBB

(Y G)0

|<<<

^^<<<< <||||

==||||

,
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consisting of two image factorisations of the differential (Y G)0 - (Y G)1 and the induced isomorphism between
the images Y -∼ Y GF that makes the upper and the lower triangle in this diagram commute.

The residue class in E of this induced morphism Y -∼ Y GF shall be denoted by Y -Y ε
∼ Y GF . Letting Y

vary, this gives rise to an isotransformation 1E -ε
∼ GF . Since ε is a transformation, we have (Y ε)(Y GFε) =

(Y ε)(Y εGF ), whence GFε = εGF . Thus there is an isotransformation FG -η
∼ 1E such that (εG)(Gη) = 1G

and (Fε)(ηF ) = 1F . Namely, for η we may take the inverse image under F of Fε−.

So we are in the situation of Setup III.10 of §III.4.2. Define (TF -ρ F T′) as in §III.4.2.

Proposition III.22

(1) By transport from (E ,T, ϑ) via F and G, we obtain a closed Heller triangulation ϑ′ on (E ,T′).

(2) Suppose given X ′ ∈ Ob E+, periodic(∆̄#
n ). Then X ′ is an n-triangle if and only if X ′Gσ is an n-triangle.

(3) Suppose given X ∈ Ob E+, periodic(∆̄#
n ). Then X is an n-triangle if and only if XF ρ is an n-triangle.

Proof. Assertion (1) follows by Lemmata III.9 and III.14; cf. Corollary III.21. Assertions (2, 3) follow by
Lemma III.12.

Recall that XF = XF̂ in Ob E = Ob E for X ∈ Ob E = ObBac.

Lemma III.23 Suppose given X ∈ ObBac. We have a morphism of pure short exact sequences

XF • // X1 � //

��

X TF

��
XF • // (XFG)1 � // XF T′

in E such that its morphism X TF - XF T′ represents Xρ in E. Here, the upper pure short exact sequence is
taken from the purely acyclic complex X; the lower pure short exact sequence is distinguished.

Proof. Given X ∈ ObBac, we can form a commutative diagram in E as follows.

X2 // (XFG)2

X TF

•yyyyyy

<<yyyyy

// XF T′

•yyyyy

<<yyyyy

XF T′ ε // XF T′GF = XFGTF

•EEEEE

bbEEEEE

X1 //

OO

�EEEEE

bbEEEEEE

(XFG)1

OO

�EEEEE

bbEEEEE 9yyyyy

<<yyyyy

XF

•yyyyyy

<<yyyyy

XF

•yyyyyy

<<yyyyy

XFε // XFGF

•EEEEEE

bbEEEEE

X0 //

OO

�EEEEE

bbEEEEEE

(XFG)0

OO

�EEEEE

bbEEEEEE 9yyyyy

<<yyyyyy

The morphisms (XFG)0 - XF , XF -r (XFG)1, (XFG)1 - XF T′ and XF T′ -r (XFG)2 appear in
distinguished pure short exact sequences. Moreover, by abuse of notation, we have written XFε resp. XF T′ ε

for representatives in E of the respective morphisms in E .
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The partially displayed morphism of complexes X - XFG represents X -Xη−

XFG in E , for F maps the
morphism represented by X - XFG to XFε = Xη−F .

Therefore, the composite morphism

(X TF - XF T′ -XF T′ ε
XF T′GF = XFGTF )

from this diagram represents

(X -Xη−

XFG) TF ;

note that there are no signs to be inserted at the respective pure epimorphisms of the image factorisation chosen
by F ; cf. §III.4.3.2. Thus the morphism X TF - XF T′ from this diagram represents

(
X TF -Xη− TF

XFGTF = XF T′GF -XF T′ ε−

XF T′
)

=
(
X TF -Xρ XF T′

)
.

III.4.4.2.3 Standardisation by substitution of the rightmost column

We mimic the construction X - Xϑ made in §III.4.4.1, now for E instead of Bac.

Denote by E�(∆̄MOn ) -M
′

E+(∆̄MOn ) the residue class functor; cf. §III.4.3, §I.2.1.3, §I.4.1. Denote by E+, (�)(∆̄MOn )
the full subcategory of E+(∆̄MOn ) whose set of objects is given by

Ob E+, (�)(∆̄MOn ) :=
(

Ob E�(∆̄MOn )
)
M ′ .

So E+, (�)(∆̄MOn ) is defined to be the “full image” in E+(∆̄MOn ) of the residue class functor M ′.

Suppose given n > 0 and X ∈ Ob E�(∆̄MOn ). Recall that ∆̇n = [1, n] is identified with {i/0 : i ∈ [1, n]} ⊆ ∆̄MOn .
Write X∗/0 := X|∆̇n

= (i - Xi/0) ∈ Ob E(∆̇n) and X0+1/∗ := (i - X0+1/i) ∈ Ob E(∆̇n), analogously for
morphisms; analogously for objects in E+(∆̄MOn ) and their morphisms.

Let the isomorphism X0+1/∗ -Xτ
∼ X+1

∗/0 in E(∆̇n) be defined by morphisms of pure short exact sequences

Xi/0 •
(x x ) // Xi/i⊕X0+1/0

�

“
x
−x
”
//

��

X0+1/i

Xτ̂i
��

Xi/0 • // Bi/0
� // X+1

i/0

for i ∈ [1, n]; where Xτ̂i is a representative in E for the morphism Xτi in E ; where the upper pure short exact
sequence stems from the diagram X; and where the lower pure short exact sequence is distinguished.

In this way, we get an isotransformation τ between the functors (−)0+1/∗ and (−)+1
∗/0 from E+, (�)(∆̄MOn ) to E(∆̇n).

Let E+, periodic(∆̄MOn ) be the (in general not full) subcategory of E+(∆̄MOn ) given by the set of objects

Ob E+, periodic(∆̄MOn ) :=
{
Y ∈ Ob E+(∆̄MOn ) : Y0+1/∗ = Y +1

∗/0 in Ob E(∆̇n)
}
,

and by the set of morphisms

E+, periodic(∆̄MO
n )(Y, Y

′) = {f ∈ E+(∆̄MO
n )(Y, Y

′) : f0+1/∗ = f+1
∗/0 in E(∆̇n)} ,

for Y, Y ′ ∈ Ob E+, periodic(∆̄MOn ).

Given X ∈ Ob E�(∆̄MOn ), we let Xτ ∈ Ob E+, periodic(∆̄MOn ) be defined as the diagram X with X0+1/∗ isomorphi-
cally replaced via Xτ by X+1

∗/0. For short, the rightmost column of X becomes standardised to obtain Xτ .
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Given X, X ′ ∈ Ob E�(∆̄MOn ), a morphism X -f X ′ in E+(∆̄MOn ) induces a morphism Xτ -f
τ

X ′τ in
E+, periodic(∆̄MOn ). Namely, we let fτβ/α := fβ/α for 0 6 α 6 β 6 n, and we let fτ0+1/∗ be characterised by
the commutative quadrangle

X0+1/∗
Xτ
∼
//

f0+1/∗

��

X+1
∗/0

fτ
0+1/∗
��

X ′0+1/∗
X′τ
∼
// X ′+1
∗/0

in E(∆̇n). In particular, since τ is an isotransformation, we have fτ0+1/∗ = (fτ∗/0)+1.

Remark III.24 The constructions made above define a functor

E+, (�)(∆̄MOn ) -(−)τ

E+, periodic(∆̄MOn )

X - Xτ .

III.4.4.2.4 n-triangles in the classical stable category

Proposition III.25 Suppose given n > 0 and X ∈ Ob E�(∆̄MOn ).

The periodic prolongation of Xτ ∈ Ob E+, periodic(∆̄MOn ) to an object of E+, periodic(∆̄#
n ) is an n-triangle with respect

to the triangulation ϑ′ on (E ,T′) obtained as in Proposition III.22.

Proof. By Lemma III.17, there exists X ′ ∈ Ob E�(∆̄MOn ) such that X ′α/α = 0 for all 0 6 α 6 0+1 and such that
X is isomorphic to X ′ in E+(∆̄MOn ). By Remark III.24, the object Xτ is isomorphic to X ′τ in E+, periodic(∆̄MOn ).
Thus the periodic prolongation of Xτ is an n-triangle if and only if that of X ′τ is; cf. Lem. I.21.(4).

Therefore, we may assume that Xα/α ' 0 for all 0 6 α 6 0+1.

Let X̃ ∈ Ob(Bac)�(∆̄MOn ) be such that there exists an isomorphism X -â
∼ X̃F̂ in E�(∆̄MOn ) and such that

X̃α/α = 0 for all 0 6 α 6 0+1; cf. Lemma III.18. Denote by X -a
∼ X̃F the isomorphism in E+(∆̄MOn ) represented

by X -â
∼ X̃F̂ .

Let ˜̃X ∈ Ob(Bac)�(∆̄#
n ) be such that ˜̃X|∆̄MO

n
= X̃. By Lemma III.20, the periodic n-pretriangle ˜̃Xϑ ∈

Ob E+, periodic(∆̄#
n ) is an n-triangle. Note that ˜̃Xϑ depends only on X̃, not on the choice of ˜̃X.

Thus, by Proposition III.22.(3), ˜̃XϑF ρ ∈ Ob E+, periodic(∆̄#
n ) is an n-triangle. Therefore, it suffices to show that

Xτ and ˜̃XϑF ρ|∆̄MO
n

are isomorphic in E+, periodic(∆̄MOn ), for then their periodic prolongations are isomorphic in
E+, periodic(∆̄#

n ), which in turn shows the periodic prolongation of Xτ to be an n-triangle; cf. Lem. I.21.(4).

We have a composite isomorphism

Xτ �∼ X -a
∼ X̃F = ˜̃XF |∆̄MO

n

-∼ ˜̃XϑF |∆̄MO
n

-∼ ˜̃XϑF ρ|∆̄MO
n

in E+(∆̄MOn ). We claim that it lies in E+, periodic(∆̄MOn ).
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Suppose given i ∈ [1, n]. On i/0, this composite equals ai/0. Thus we have to show that on 0+1/i, this composite
equals a+1

i/0 = ai/0 T′. Consider, to this end, the following morphisms of pure short exact sequences in E .

Xi/0 • // (Xi/0G)1 � // Xi/0 T′

Xi/0 •
x //

âi/0o
��

X0+1/0
�−x //

OO

â0+1/0o
��

X0+1/i

Xτ̂i

OO

â0+1/io
��

X̃i/0F̂ •
x̃F̂ // X̃0+1/0F̂

�−x̃F̂ //

��

X̃0+1/iF̂

Xθ̂i/0F̂��
X̃i/0F̂ • // X̃i/0 I F̂

� //

��

X̃i/0 T F̂

X̃i/0F̂ • // (X̃i/0)1 � //

��

X̃i/0 T F̂

��
X̃i/0F̂ • // (X̃i/0F̂G)1 � // X̃i/0F̂ T′

The fourth sequence is purely short exact by Lemma III.19.

The first morphism from above arises by definition of τ̂i; cf. §III.4.4.2.3. The second morphism is taken from â.
The third morphism arises by definition of θ̂i/0 and an application of F̂ ; cf. §III.4.4.1. The fourth morphism is
given by Lemma III.19. The fifth morphism is given by Lemma III.23.

The first and the sixth pure short exact sequence are distinguished, and so the claim and hence the proposition
follow.
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Chapter IV

Comparison of spectral sequences

involving bifunctors

IV.0 Introduction

To calculate Ext∗(X, Y ), one can either resolve X projectively or Y injectively; the result is, up

to isomorphism, the same. To show this, one uses the double complex arising when one resolves

both X and Y ; cf. [10, Chap. V, Th. 8.1].

Two problems in this spirit occur in the context of Grothendieck spectral sequences; cf.

§§ IV.0.2, IV.0.3.

IV.0.1 Language

In §IV.3, we give a brief introduction to the Deligne-Verdier spectral sequence language; cf.

[57, II.§4], [12, App.]; or, on a more basic level, cf. [38, Kap. 4]. This language amounts

to considering a diagram E(X) containing all the images between the homology groups of the

subquotients of a given filtered complex X, instead of, as is classical, only selected ones. This

helps to gain some elbow room in practice : to govern the objects of the diagram E(X) we can

make use of a certain short exact sequence; cf. §IV.3.4.

Dropping the E1-terms and similar ones, we obtain the proper spectral sequence Ė(X) of our

filtered complex X. Amongst others, it contains all Ek-terms for k > 2 in the classical language;

cf. §§ IV.3.6, IV.3.5.

IV.0.2 First comparison

Suppose given abelian categories A, A′ and B with enough injectives and an abelian category

C. Suppose given objects X ∈ ObA and X ′ ∈ ObA′. Let A×A′ -F B be a biadditive functor

such that F (X,−) and F (−, X ′) are left exact. Let B -G C be a left exact functor. Suppose

further conditions to hold; see §IV.5.1.

We have a Grothendieck spectral sequence for the composition G ◦F (X,−) and a Grothendieck
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spectral sequence for the composition G◦F (−, X ′). We evaluate the former at X ′ and the latter

at X.

In both cases, the E2-terms are (RiG)(RjF )(X,X ′). Moreover, they both converge to(
Ri+j(G ◦ F )

)
(X,X ′). So the following assertion is well-motivated.

Theorem IV.31. The proper Grothendieck spectral sequences just described are isomorphic;

i.e.

ĖGr
F (X,−),G(X ′) ' ĖGr

F (−,X′),G(X) .

So instead of “resolving X ′ twice”, we may just as well “resolve X twice”.

In fact, the underlying double complexes are connected by a chain of double homotopisms, i.e.

isomorphisms in the homotopy category as defined in [10, IV.§4], and rowwise homotopisms (the

proof uses a chain • �double • �roww. • -roww. • -double •). These morphisms then induce isomorphisms

on the associated proper first spectral sequences.

IV.0.3 Second comparison

Suppose given abelian categories A and B′ with enough injectives and abelian categories B and

C. Suppose given objects X ∈ ObA and Y ∈ ObB. Let A -F B′ be a left exact functor. Let

B × B′ -G C be a biadditive functor such that G(Y,−) is left exact.

Let B ∈ Ob C[0(B) be a resolution of Y , i.e. a complex B admitting a quasiisomorphism

ConcY - B. Suppose that G(Bk,−) is exact for all k > 0. Let A ∈ Ob C[0(A) be, say,

an injective resolution of X. Suppose further conditions to hold; see §IV.6.1.

We have a Grothendieck spectral sequence for the composition G(Y,−) ◦ F , which we evaluate

at X. On the other hand, we can consider the double complex G(B,FA), where the indices of

B count rows and the indices of A count columns. To the first filtration of its total complex, we

can associate the proper spectral sequence ĖI

(
G(B,FA)

)
.

If B has enough injectives and B is an injective resolution of Y , then in both cases the E2-terms

are a priori seen to be (RiG)
(
Y, (RjF )(X)

)
. So also the following assertion is well-motivated.

Theorem IV.34. We have ĖGr
F,G(Y,−)(X) ' ĖI

(
G(B,FA)

)
.

So instead of “resolving X twice”, we may just as well “resolve X once and Y once”.

The left hand side spectral sequence converges to
(
Ri+j(G(Y,−) ◦ F )

)
(X). By this theorem, so

does the right hand side one.

The underlying double complexes are connected by two morphisms of double complexes

(in the directions • - • � •) that induce isomorphisms on the associated proper spectral

sequences.

Of course, Theorems IV.31 and IV.34 have dual counterparts.
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IV.0.4 Results of Beyl and Barnes

Let R be a commutative ring. Let G be a group. Let N P G be a normal subgroup. Let M be

an RG-module.

Beyl generalises Grothendieck’s setup, allowing for a variant of a Cartan-Eilenberg resolution

that consists of acyclic, but no longer necessarily injective objects [7, Th. 3.4]. We have docu-

mented Beyl’s Theorem as Theorem IV.40 in our framework, without claiming originality.

Beyl uses his Theorem to prove that, from the E2-term on, the Grothendieck spectral

sequence for RG -Mod -(−)N

RN -Mod -(−)G/N

R -Mod at M is isomorphic to the Lyndon-

Hochschild-Serre spectral sequence, i.e. the spectral sequence associated to the double com-

plex RG(BarG/N ;R⊗R BarG;R , M); cf. [7, Th. 3.5], [6, §3.5]. This is now also a consequence of

Theorems IV.31 and IV.34, as explained in §§ IV.8.2, IV.8.3.

Barnes works in a slightly different setup. He supposes given a commutative ring R, abelian

categories A, B and C of R-modules, and left exact functors F : A - B and G : B - C, where

F is supposed to have an exact left adjoint J : B -A that satisfies F ◦ J = 1B. Moreover, he

assumes A to have ample injectives and C to have enough injectives. In this setup, he obtains a

general comparison theorem. See [3, Sec. X.5, Def. X.2.5, Th. X.5.4].

Beyl [7] and Barnes [3] also consider cup products; in this article, we do not.

IV.0.5 Acknowledgements

Results of Beyl and Haas are included for sake of documentation that they work within our

framework; cf. Theorem IV.40 and §IV.4. No originality from my part is claimed.

I thank B. Keller for directing me to [46, XII.§11]. I thank the referee for helping to con-

siderably improve the presentation, and for suggesting Lemma IV.47 and §IV.8.2. I thank

G. Carnovale and G. Hiß for help with Hopf algebras.

Conventions

Throughout these conventions, let C and D be categories, let A be an additive category, let B and B′ be abelian
categories, and let E be an exact category in which all idempotents split.

• For a, b ∈ Z, we write [a, b] := {c ∈ Z : a 6 c 6 b}, [a, b[ := {c ∈ Z : a 6 c < b}, etc.

• Given I ⊆ Z and i ∈ Z, we write I>i := {j ∈ I : j > i} and I<i := {j ∈ I : j < i}.

• The disjoint union of sets A and B is denoted by A tB.

• Composition of morphisms is written on the right, i.e. -a -b = -ab .

• Functors act on the left. Composition of functors is written on the left, i.e. -F -G = -G◦F

• Given objects X, Y in C, we denote the set of morphisms from X to Y by C(X,Y ).

• The category of functors from C to D and transformations between them is denoted by C,D .

• Denote by C(A) the category of complexes

X = (· · · -d Xi−1 -d Xi -d Xi+1 -d · · · )
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with values in A. Denote by C[0(A) the full subcategory of C(A) consisting of complexes X with Xi = 0

for i < 0. We have a full embedding A -Conc
C[0(A), where, given X ∈ ObA, the complex ConcX has

entry X at position 0 and zero elsewhere.

• Given a complex X ∈ Ob C(A) and k ∈ Z, we denote by X•+k the complex that has differential

Xi+k -(−1)kd
Xi+1+k between positions i and i+ 1. We also write X•−1 := X•+(−1) etc.

• Suppose given a full additive subcategory M ⊆ A. Then A/M denotes the quotient of A by M, which
has the same objects as A, and which has as morphisms residue classes of morphisms of A, where two
morphisms are in the same residue class if their difference factors over an object of M.

• A morphism in A is split if it isomorphic, as a diagram on • - •, to a morphism of the form

X ⊕ Y -

“
1 0
0 0

”
X ⊕ Z. A complex X ∈ Ob C(A) is split if all of its differentials are split.

• An elementary split acyclic complex in C(A) is a complex of the form

· · · - 0 - T -1 T - 0 - · · · ,

where the entry T is at positions k and k + 1 for some k ∈ Z. A split acyclic complex is a complex
isomorphic to a direct sum of elementary split acyclic complexes, i.e. a complex isomorphic to a complex
of the form

· · · -

“
0 0
1 0

”
T i ⊕ T i+1 -

“
0 0
1 0

”
T i+1 ⊕ T i+2 -

“
0 0
1 0

”
T i+2 ⊕ T i+3 -

“
0 0
1 0

”
· · ·

Let Csp ac(A) ⊆ C(A) denote the full additive subcategory of split acyclic complexes. Let K(A) :=
C(A)/Csp ac(A) denote the homotopy category of complexes with values in A. Let K[0(A) denote the
image of C[0(A) in K(A). A morphism in C(A) is a homotopism if its image in K(A) is an isomorphism.

• We denote by InjB ⊆ B the full subcategory of injective objects.

• Concerning exact categories, introduced by Quillen [52, p. 15], we use the conventions of §I.6.2. In
particular, a commutative quadrangle in E being a pullback is indicated by

A //

��

B

��
C // D ,

a commutative quadrangle being a pushout by

A //

��

B

��
C // D .

• Given X ∈ Ob C(E) with pure differentials, and given k ∈ Z, we denote by ZkX the kernel of the
differential Xk - Xk+1, by Z′kX the cokernel of the differential Xk−1 - Xk, and by BkX the image of
the differential Xk−1 - Xk. Furthermore, we have pure short exact sequences BkX -r ZkX - HkX

and HkX -r Z′kX - Bk+1X.

• A morphism X - Y in C(E) between complexes X and Y with pure differentials is a quasiisomorphism
if Hk applied to it yields an isomorphism for all k ∈ Z. A complex X with pure differentials is acyclic if
HkX ' 0 for all k > 0. Such a complex is also called a purely acyclic complex.

• Suppose that B has enough injectives. Given a left exact functor B -F B′, an object X ∈ ObB is F -
acyclic if RiFX ' 0 for all i > 1. In other words, X is F -acyclic if for an injective resolution I ∈ C[0(InjB)
of X (and then for all such injective resolutions), we have HiFI ' 0 for all i > 1.

• By a module, we understand a left module, unless stated otherwise. If A is a ring, we abbreviate A(−,=) :=
A -Mod(−,=) = HomA(−,=).
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IV.1 Double and triple complexes

We fix some notations and sign conventions.

Let A and B be additive categories. Let C(A) -H B be an additive functor.

IV.1.1 Double complexes

IV.1.1.1 Definition

A double complex with entries in A is a diagram

...
...

...

· · · d // X i+2,j d //

∂

OO

X i+2,j+1 d //

∂

OO

X i+2,j+2 d //

∂

OO

· · ·

X = · · · d // X i+1,j d //

∂

OO

X i+1,j+1 d //

∂

OO

X i+1,j+2 d //

∂

OO

· · ·

· · · d // X i,j d //

∂

OO

X i,j+1 d //

∂

OO

X i,j+2 d //

∂

OO

· · ·

...

∂

OO

...

∂

OO

...

∂

OO

in A such that dd = 0, ∂∂ = 0 and d∂ = ∂d everywhere. As morphisms between double

complexes, we take all diagram morphisms. Let CC(A) denote the category of double complexes.

We may identify CC(A) = C(C(A)).

The double complexes considered in this §IV.1.1 are stipulated to have entries in A.

Let CCx(A) := C[0(C[0(A)) be the category of first quadrant double complexes, consisting of

double complexes X such that X i,j = 0 whenever i < 0 or j < 0.

Given a double complex X and i ∈ Z, we let X i,∗ ∈ Ob C(A) denote the complex that has entry

X i,j at position j ∈ Z, the differentials taken accordingly; X i,∗ is called the ith row of X.

Similarly, given j ∈ Z, X∗,j ∈ Ob C(A) denotes the jth column of X.

IV.1.1.2 Applying H in different directions

Given X ∈ Ob CC(A), we let H(X∗,−) ∈ Ob C(A) denote the complex that has H(X∗,j) at posi-

tion j ∈ Z, and as differential H(X∗,j) -H(X∗,j+1) the image of the morphism X∗,j -X∗,j+1

of complexes under H. Similarly, H(X−,∗) ∈ Ob C(A) has H(Xj,∗) at position j ∈ Z.

In other words, a “∗” denotes the index direction to which H is applied, a “−” denotes the surviving
index direction. For short, “∗” before “−”.
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IV.1.1.3 Concentrated double complexes

Given a complex U ∈ Ob C[0(A), we denote by Conc2 U ∈ Ob CCx(A) the double complex whose

0th row is given by U , and whose other rows are zero; i.e. given j ∈ Z, then (Conc2 U)i,j equals

U j if i = 0, and 0 otherwise, the differentials taken accordingly. Similarly, Conc1 U ∈ Ob CCx(B)

denotes the double complex whose 0th column is given by U , and whose other columns are zero.

IV.1.1.4 Row- and columnwise notions

A morphism X -f Y of double complexes is called a rowwise homotopism if X i,∗ -f
i,∗
Y i,∗ is a

homotopism for all i ∈ Z. Provided A is abelian, it is called a rowwise quasiisomorphism if

X i,∗ -f
i,∗
Y i,∗ is a quasiisomorphism for all i ∈ Z.

A morphism X -f Y of double complexes is called a columnwise homotopism if X∗,j -f
∗,j
Y ∗,j is

a homotopism for all j ∈ Z. Provided A is abelian, it is called a columnwise quasiisomorphism

if X∗,j -f
∗,j
Y ∗,j is a quasiisomorphism for all j ∈ Z.

Provided A is abelian, a double complex X is called rowwise split if X i,∗ is split for all i ∈ Z; a

short exact sequence X ′ -X -X ′′ of double complexes is called rowwise split short exact if

X ′i,∗ -X i,∗ -X ′′i,∗ is split short exact for all i ∈ Z.

A double complex X is called rowwise split acyclic if X i,∗ is a split acyclic complex for all i ∈ Z.

It is called columnwise split acyclic if X∗,j is a split acyclic complex for all j ∈ Z.

IV.1.1.5 Horizontally and vertically split acyclic double complexes

An elementary horizontally split acyclic double complex is a double complex of the form

...
...

...
...

· · · // 0

OO

// T i+1

OO

T i+1 //

OO

0

OO

// · · ·

· · · // 0

OO

// T i

∂

OO

T i //

∂

OO

0

OO

// · · ·

...

OO

...

OO

...

OO

...

OO

.
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A horizontally split acyclic double complex is a double complex isomorphic to a direct sum of

elementary horizontally split acyclic double complexes, i.e. to one of the form

...
...

· · · // T i+1,j⊕T i+1,j+1

“
0 0
1 0

”
//

OO

T i+1,j+1⊕T i+1,j+2 //

OO

· · ·

· · · // T i,j⊕T i,j+1

“
0 0
1 0

”
//

“
∂ 0
0 ∂

” OO

T i,j+1⊕T i,j+2 //

“
∂ 0
0 ∂

” OO

· · ·

...

OO

...

OO

.

An elementary vertically split acyclic double complex is a double complex of the form

...
...

· · · // 0 //

OO

0 //

OO

· · ·

· · · // T i
d //

OO

T i+1 //

OO

· · ·

· · · // T i
d // T i+1 // · · ·

· · · // 0 //

OO

0 //

OO

· · ·

...

OO

...

OO

.
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A vertically split acyclic double complex is a double complex isomorphic to a direct sum of

elementary vertically split acyclic double complexes, i.e. to one of the form

...
...

· · · // T i+1,j⊕T i+2,j

“
d 0
0 d

”
//

OO

T i+1,j+1⊕T i+2,j+1 //

OO

· · ·

· · · // T i,j⊕T i+1,j

“
d 0
0 d

”
//

“
0 0
1 0

” OO

T i,j+1⊕T i+1,j+1 //

“
0 0
1 0

” OO

· · ·

...

OO

...

OO

.

A horizontally split acyclic double complex is in particular rowwise split acyclic. A vertically

split acyclic double complex is in particular columnwise split acyclic.

A double complex is called split acyclic if it is isomorphic to the direct sum of a horizontally and

a vertically split acyclic double complex. Let CCsp ac(A) denote the full additive subcategory of

split acyclic double complexes. Let

KK(A) := CC(A)/CCsp ac(A) ;

cf. [10, IV.§4]. A morphism in CC(A) that is mapped to an isomorphism in KK(A) is called a

double homotopism.

A speculative aside. The category K(A) is Heller triangulated; cf. Def. I.5.(i), Th. I.32. Such a
Heller triangulation hinges on two induced shift functors, one of them induced by the shift functor
on K(A). Now KK(A) carries two shift functors, and so there might be more isomorphisms between
induced shift functors one can fix. How can the formal structure of KK(A) be described?

IV.1.1.6 Total complex

Let KKx(A) be the full image of CCx(A) in KK(A).

The total complex tX of a double complex X ∈ Ob CCx(A) is given by the complex

tX =
(
X0,0 -(d ∂ )

X0,1⊕X1,0 -

“
d ∂ 0
0 −d −∂

”
X0,2⊕X1,1⊕X2,0 -

 
d ∂ 0 0
0 −d −∂ 0
0 0 d ∂

!
X0,3⊕X1,2⊕X2,1⊕X3,0 - · · ·

)
in Ob C[0(A). Using the induced morphisms, we obtain a total complex functor

CCx(A) -t C[0(A). Since t maps elementary horizontally or vertically split acyclic double com-

plexes to split acyclic complexes, it induces a functor KKx(A) -t K[0(A). If, in addition, A
is abelian, the total complex functor maps rowwise quasiisomorphisms and columnwise quasi-

isomorphisms to quasiisomorphisms, as one sees using the long exact homology sequence and

induction on a suitable filtration.

Note that we have an isomorphism U -∼ t Conc1 U , natural in U ∈ Ob C[0(A), having entries

1U0 , 1U1 , −1U2 , −1U3 , 1U4 , etc. Moreover, U = t Conc2 U , natural in U ∈ Ob C[0(A).
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IV.1.1.7 The homotopy category of first quadrant double complexes as a quotient

Lemma IV.1 The residue class functor CC(A) - KK(A), restricted to CCx(A) - KKx(A),

induces an equivalence

CCx(A)/
(
CCsp ac(A) ∩ CCx(A)

)
-∼ KKx(A) .

Proof. We have to show faithfulness; i.e. that if a morphism X - Y in CCx(A) factors over

a split acyclic double complex, then it factors over a split acyclic double complex that lies

in Ob CCx(A). By symmetry and additivity, it suffices to show that if a morphism X - Y in

CCx(A) factors over a horizontally split acyclic double complex, then it factors over a horizontally

split acyclic double complex that lies in Ob CCx(A). Furthermore, we may assume X - Y to

factor over an elementary horizontally split acyclic double complex S concentrated in the columns

k and k + 1 for some k ∈ Z. We may assume that Si,j = 0 for i < 0 and j ∈ Z. If k < 0, and in

particular, if k = −1, then X - Y is zero because S - Y is zero, so that in this case we may

assume S = 0. On the other hand, if k > 0, then S ∈ Ob CCx(A).

Cf. also the similar Remark IV.2.

IV.1.2 Triple complexes

IV.1.2.1 Definition

Let CCC(A) := C(C(C(A))) be the category of triple complexes. A triple complex Y has entries

Y k,`,m for k, `, m ∈ Z.

We denote the differentials in the three directions by Y k,`,m -d1 Y k+1,`,m, Y k,`,m -d2 Y k,`+1,m and

Y k,`,m -d3 Y k,`,m+1, respectively.

Let k, `, m ∈ Z. We shall use the notation Y −,`,= for the double complex having at position

(k,m) the entry Y k,`,m, differentials taken accordingly. Similarly the complex Y k,`,∗ etc.

Given a triple complex Y ∈ Ob CCC(A), we write HY −,=,∗ ∈ Ob CC(A) for the double complex

having at position (k, `) the entry H(Y k,`,∗), differentials taken accordingly.

Denote by CCC (A) ⊆ CCC(A) the full subcategory of first octant triple complexes; i.e. triple

complexes Y having Y k,`,m = 0 whenever k < 0 or ` < 0 or m < 0.

IV.1.2.2 Planewise total complex

For Y ∈ Ob CCC (A) we denote by t1,2Y ∈ Ob CCx(A) the planewise total complex of Y , defined

for m ∈ Z as

(t1,2Y )∗,m := t(Y −,=,m) ,

with the differentials of t1,2Y in the horizontal direction being induced by the differentials in

the third index direction of Y , and with the differentials of t1,2Y in the vertical direction being

given by the total complex differentials. Explicitly, given k, ` > 0, we have

(t1,2Y )k,` =
⊕

i, j> 0, i+j= k

Y i,j,` .



178

By means of induced morphisms, this furnishes a functor

CCC (A) -t1,2 CCx(A)

Y - t1,2Y .

IV.2 Cartan-Eilenberg resolutions

We shall use Quillen’s language of exact categories [52, p. 15] to deal with Cartan-Eilenberg
resolutions [10, XVII.§1], as it has been done by Mac Lane already before this language was
available; cf. [46, XII.§11]. The assertions in this section are for the most part wellknown.

IV.2.1 A remark

Remark IV.2 Let A be an additive category. Then C[0(A)/
(
C[0(A) ∩ Csp ac(A)

)
- K[0(A) is

an equivalence.

Proof. Faithfulness is to be shown. A morphism X - Y in C[0(A) that factors over an elemen-

tary split acyclic complex of the form (· · · - 0 - T T - 0 - · · · ) with T in positions

k and k + 1 is zero, provided k < 0.

IV.2.2 Exact categories

Concerning the terminology of exact categories, introduced by Quillen [52, p. 15], we refer to

§I.6.2.

Let E be an exact category in which all idempotents split. An object I ∈ Ob E is called

relatively injective, or a relative injective (relative to the set of pure short exact sequences, that

is), if E(−, I) maps pure short exact sequences of E to short exact sequences. We say that E
has enough relative injectives, if for all X ∈ Ob E , there exists a relative injective I and a pure

monomorphism X -r I.

In case E is an abelian category, with all short exact sequences stipulated to be pure, then we

omit “relative” and speak of “injectives” etc.

Definition IV.3 Suppose given a complex X ∈ Ob C[0(E) with pure differentials. A relatively

injective complex resolution of X is a complex I ∈ Ob C[0(E), together with a quasiisomorphism

X - I, such that the following properties are satisfied.

(1) The object entries of I are relatively injective.

(2) The differentials of I are pure.

(3) The quasiisomorphism X - I consists of pure monomorphisms.

We often refer to such a relatively injective complex resolution just by I.
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A relatively injective object resolution, or just a relatively injective resolution, of an object Y ∈
Ob E is a relatively injective complex resolution of ConcY .

A relatively injective resolution is the complex of a relatively injective object resolution of some

object in E .

Remark IV.4 Suppose that E has enough relative injectives. Every complex X ∈ Ob C[0(E)

with pure differentials has a relatively injective complex resolution I ∈ Ob C[0(E).

In particular, every object Y ∈ Ob E has a relatively injective resolution J ∈ Ob C[0(E).

Proof. Let X0 -r I0 be a pure monomorphism into a relatively injective object I0. Forming

a pushout along X0 -r I0, we obtain a pointwise purely monomorphic morphism of complexes

X -X ′ with X ′0 = I0 and X ′k = Xk for k > 2. By considering its cokernel, we see that it is

a quasiisomorphism. So we may assume X0 to be relatively injective.

Let X1 -r I1 be a pure monomorphism into a relatively injective object I1. Form a pushout

along X1 -r I1 etc.

Remark IV.5 Suppose given X ∈ Ob C[0(E) with pure differentials such that HkX ' 0 for

k > 1. Suppose given I ∈ Ob C[0(E) such that Ik is purely injective for k > 0, and such that the

differential I0 -d I1 has a kernel in E. Then the map

K[0(E)(X, I) - E
(

Kern(X0 -d X1), Kern(I0 -d I1)
)

that sends a representing morphism of complexes to the morphism induced on the mentioned

kernels, is bijective.

Suppose E to have enough relative injectives. Let I ⊆ E denote the full subcategory of relative

injectives. Let C[0, res(I) denote the full subcategory of C[0(I) consisting of complexes X with

pure differentials such that HkX ' 0 for k > 1. Let K[0, res(I) denote the image of C[0, res(I) in

K(E).

Remark IV.6 The functor C[0, res(I) - E, X - H0(X), induces an equivalence

K[0, res(I) -∼ E .

Proof. This functor is dense by Remark IV.4, and full and faithful by Remark IV.5.

Remark IV.7 (exact Horseshoe Lemma)

Given a pure short exact sequence X ′ -X -X ′′ and relatively injective resolutions I ′ of X ′

and I ′′ of X ′′, there exists a relatively injective resolution I of X and a pointwise split short

exact sequence I ′ - I - I ′′ that maps under H0 to X ′ -X -X ′′.

Proof. Choose pure monomorphisms X ′ -r I ′0 and X ′′ -r I ′′0 into relative injectives I ′0 and

I ′′0. Embed them into a morphism from the pure short exact sequence X ′ -r X -X ′′ to
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the split short exact sequence I ′ -(1 0)
I ′ ⊕ I ′′ -

“
0
1

”
I ′′. Insert the pushout T of X ′ -r X along

X ′ -r I ′0 and the pullback of I ′0 ⊕ I ′′0 - I ′′0 along X ′′ -r I ′′0 to see that X - I ′0 ⊕ I ′′0 is

purely monomorphic. So we can take the cokernel B1I ′ - B1I - B1I ′′ of this morphism of pure

short exact sequences. Considering the cokernels on the commutative triangle (X,T, I ′0 ⊕ I ′′0)

of pure monomorphisms, we obtain a bicartesian square (T, I ′0 ⊕ I ′′0, B1I ′, B1I) and conclude

that the sequence of cokernels is itself purely short exact. So we can iterate.

IV.2.3 An exact category structure on C(A)

Let A be an abelian category with enough injectives.

Remark IV.8 The following conditions on a short exact sequence X ′ -X -X ′′ in C(A)

are equivalent.

(1) All connectors in its long exact homology sequence are equal to zero.

(2) The sequence BkX ′ - BkX - BkX ′′ is short exact for all k ∈ Z.

(3) The morphism ZkX - ZkX ′′ is epimorphic for all k ∈ Z.

(3′) The morphism Z′kX ′ - Z′kX is monomorphic for all k ∈ Z.

(4) The diagram

BkX ′ //

��

ZkX ′ //

��

HkX ′

��
BkX //

��

ZkX //

��

HkX

��
BkX ′′ // ZkX ′′ // HkX ′′

has short exact rows and short exact columns for all k ∈ Z.

Proof. We consider the diagram in (4) as a (horizontal) short exact sequence of (vertical)

complexes and regard its long exact homology sequence. Taking into account that all asser-

tions are supposed to hold for all k ∈ Z, we can employ the long exact homology sequence on

X ′ -X -X ′′ to prove the equivalence of (1), (2), (3) and (4).

Now the assertion (1) ⇐⇒ (3) is dual to the assertion (1) ⇐⇒ (3′).

Remark IV.9 The category C(A), equipped with the set of short exact sequences that have zero

connectors on homology as pure short exact sequences, is an exact category with enough relatively

injective objects in which all idempotents split. With respect to this exact category structure on

C(A), a complex is relatively injective if and only if it is split and has injective object entries.

Cf. [46, XII.§11], where pure short exact sequences are called proper. A relatively injective object

in C(A) is also referred to as an injectively split complex. To a relatively injective resolution
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of a complex X ∈ Ob C(A), we also refer as a Cartan-Eilenberg-resolution, or, for short, as a

CE-resolution of X; cf. [10, XVII.§1]. A CE-resolution is a CE-resolution of some complex.

Considered as a double complex, it is in particular rowwise split and has injective object entries.

Given a morphism X -f X ′ in C(A), CE-resolutions J of X and J ′ of X ′, a morphism J -f̂ J ′

in CC(A) such that (J i,j -f̂
i,j

J ′i,j) = (0 - 0) for i < 0 and such that

H0(J∗,− -f̂
∗,−

J ′∗,−) = (X -f X ′)

is called a CE-resolution of X -f X ′. By Remarks IV.9 and IV.6, each morphism in C(A) has

a CE-resolution.

Proof of Remark IV.9. We claim that C(A), equipped with the said set of short exact sequences,

is an exact category. We verify the conditions (Ex 1, 2, 3) listed in §I.6.2. The conditions

(Ex 1◦, 2◦, 3◦) then follow by duality.

Note that by Remark IV.8.(3′), a monomorphism X - Y in C(A) is pure if and only if

Z′k(X - Y ) is monomorphic in A for all k ∈ Z.

Ad (Ex 1). To see that a split monomorphism is pure, we may use additivity of the functor Z′k

for k ∈ Z.

Ad (Ex 2). To see that the composition of two pure monomorphisms is pure, we may use Z′k

being a functor for k ∈ Z.

Ad (Ex 3). Suppose given a commutative triangle

Y

�
@@@@

��@@@@

X

??~~~~~~~~
• // Z ,

in C(A). Applying the functor Z′k to it, for k ∈ Z, we conclude that Z′k(X - Y ) is monomor-

phic, whence X - Y is purely monomorphic. So we may complete to

A

•A
AAA

  AAAA

// B

Y

�
@@@@

  @@@@

>
~~~~

>>~~~~

X

•~~~~

>>~~~~

• // Z

in C(A) with (X, Y,B) and (A, Y, Z) pure short exact sequences. Applying Z′k to this dia-

gram, we conclude that Z′k(A - B) is a monomorphism for k ∈ Z, whence A - B is a pure

monomorphism.

This proves the claim.

Note that idempotents in C(A) are split since C(A) is also an abelian category.

We claim relative injectivity of complexes with split differentials and injective object entries.

By a direct sum decomposition, and using the fact that any monomorphism from an elementary

split acyclic complex with injective entries to an arbitrary complex is split, we are reduced to
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showing that a pure monomorphism from a complex with a single nonzero injective entry, at

position 0, say, to an arbitrary complex is split. So suppose given I ∈ Ob InjA, X ∈ Ob C(A)

and a pure monomorphism Conc I -r X. Using Remark IV.8.(3′), we may choose a retraction

to the composite (I -X0 - Z′0X). This yields a retraction to I -X0 that composes to 0

with X−1 -X0, which can be employed for the sought retraction X - Conc I. This proves

the claim.

Let X ∈ Ob C(A). We claim that there exists a pure monomorphism from X to a relatively

injective complex. Since A has enough injectives, by a direct sum decomposition we are reduced

to finding a pure monomorphism from X to a split complex. Consider the following morphism

ϕk of complexes for k ∈ Z,

· · · // 0 // Xk
(1 0) // Xk ⊕ Z′kX // 0 // · · ·

· · · // Xk−2 d //

OO

Xk−1 d //

d

OO

Xk d //

(1 p )

OO

Xk+1 //

OO

· · · ,

where Xk -
p

Z′kX is taken from X. The functor Z′k maps it to the identity. We take the

direct sum of the upper complexes over k ∈ Z and let the morphisms ϕk be the components of a

morphism ϕ from X to this direct sum. At position k, this morphism ϕ is monomorphic because

ϕk is. Moreover, Z′k(ϕ) is a monomorphism because Z′k(ϕk) is. Hence ϕ is purely monomorphic

by condition (3′) of Remark IV.8. This proves the claim.

Remark IV.10 Write E := C(A). Given ` > 0, we have a homology functor E -H
`

A, which

induces a functor C(E) -C(H`)
C(A). Suppose given a purely acyclic complex X ∈ Ob C(E). Then

C(H`)X ∈ Ob C(A) is acyclic.

Proof. This follows using the definition of pure short exact sequences, i.e. Remark IV.8.(1).

IV.2.4 An exact category structure on C[0(A)

Write CCx,CE(InjA) for the full subcategory of CCx(A) whose objects are CE-resolutions. Write

KKx,CE(InjA) for the full subcategory of KKx(A) whose objects are CE-resolutions.

Remark IV.11 The category C[0(A), equipped with the short exact sequences that lie in C[0(A)

and that are pure in C(A) in the sense of Remark IV.9 as pure short exact sequences, is an

exact category wherein idempotents are split. It has enough relative injectives, viz. injectively

split complexes that lie in C[0(A).

Proof. To show that it has enough relative injectives, we replace ϕ0 in the proof of Remark IV.9

by X -ϕ
′
0 ConcX0, defined by X0

-
1X0 X0 at position 0.

IV.2.5 The Cartan-Eilenberg resolution of a quasiisomorphism

Abbreviate E := C(A), which is an exact category as in Remark IV.9. Consider CCx(A) ⊆
C[0(E), where the second index of X ∈ Ob CCx(A) counts the positions in E = C(A); i.e. when

X is viewed as a complex with values in E , its entry at position k is given by Xk,∗ ∈ E = C(A).
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Remark IV.12 Suppose given a split acyclic complex X ∈ Ob C[0(A). There exists a horizon-

tally split acyclic CE-resolution J ∈ Ob CCx,CE(InjA) of X.

Proof. This holds for an elementary split acyclic complex, and thus also in the general case by

taking a direct sum.

Lemma IV.13 Suppose given X ∈ Ob CCx(A) with pure differentials when considered as an

object of C[0(E), and with Hk
(
X∗,−

)
' 0 in C[0(A) for k > 1.

Suppose given J ∈ Ob CCx(InjA) with split rows Jk,∗ for k > 1. In other words, J is supposed

to consist of relative injective object entries when considered as an object of C[0(E).

Then the map

(∗) KKx(A)(X, J) -
H0((−)∗,−)

K[0(A)

(
H0
(
X∗,−

)
, H0

(
J∗,−

))
is bijective.

Proof. First, we observe that by Remark IV.5, we have

(∗∗) K[0(E)(X, J) -
H0((−)∗,−)

∼ E
(
H0
(
X∗,−

)
, H0

(
J∗,−

))
.

So it remains to show that (∗) is injective. Let X -f J be a morphism that vanishes under (∗).
Then H0

(
X∗,−

)
- H0

(
J∗,−

)
factors over a split acyclic complex S ∈ Ob C[0(A); cf. Remark IV.2.

Let K be a horizontally split acyclic CE-resolution of S; cf. Remark IV.12. By Remark IV.5,

we obtain a morphism X -K that lifts H0
(
X∗,−

)
- S and a morphism K - J that lifts

S - H0
(
J∗,−

)
. The composite X -K - J vanishes in KKx(A). The difference

(X -f J)− (X -K - J)

lifts H0
(
X∗,−

)
-0 H0

(
J∗,−

)
. Hence by (∗∗), it vanishes in K[0(E) and so a fortiori in KKx(A).

Altogether, X -f J vanishes in KKx(A).

Proposition IV.14 The functor CCx,CE(InjA) -
H0((−)∗,−)

C[0(A) induces an equivalence

KKx,CE(InjA) -
H0((−)∗,−)

∼ K[0(A) .

Proof. By Lemma IV.13, this functor is full and faithful. By Remark IV.4, it is dense.

Corollary IV.15 Suppose given X, X ′ ∈ Ob C[0(A). Let J be a CE-resolution of X. Let J ′ be

a CE-resolution of X ′. If X and X ′ are isomorphic in K[0(A), then J and J ′ are isomorphic in

KKx(A).

The following lemma is to be compared to Remark IV.12.

Lemma IV.16 Suppose given an acyclic complex X ∈ Ob C[0(A). There exists a rowwise split

acyclic CE-resolution J of X. Each CE-resolution of X is isomorphic to J in KKx(A).
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Proof. By Corollary IV.15, it suffices to show that there exists a rowwise split acyclic

CE-resolution of X. Recall that a CE-resolution of an arbitrary complex Y ∈ Ob C[0(A) can

be constructed by a choice of injective resolutions of HkY and BkY for k ∈ Z, followed by an

application of the abelian Horseshoe Lemma to the short exact sequences BkY - ZkY - HkY

for k ∈ Z and then to ZkY - Y k - Bk+1Y for k ∈ Z; cf. [10, Chap. XVII, Prop. 1.2]. Since

HkX = 0 for k ∈ Z, we may choose the zero resolution for it. Applying this construction, we

obtain a rowwise split acyclic CE-resolution.

Given X -f X ′ in C[0(A), a morphism J -f̂ J ′ in CCx(A) is called a CE-resolution of X -f X ′

if H0(f̂ ∗,−) ' f , as diagrams of the form • - •. By Remark IV.5, given CE-resolutions J of X

and J ′ of X ′, there exists a CE-resolution J -f̂ J ′ of X -f X ′.

Proposition IV.17 Let X -f X ′ be a quasiisomorphism in C[0(A). Let J -f̂ J ′ be a

CE-resolution of X -f X ′. Then f̂ can be written as a composite in CCx,CE(InjA) of a rowwise

homotopism, followed by a double homotopism.

Proof. Choose a pointwise split monomorphism X -a A into a split acyclic complex X. We can

factor

(X -f X ′) =
(
X -

(f a )
X ′ ⊕ A -

“
1
0

”
X ′
)
,

so that (f a) is a pointwise split monomorphism. Let B be a CE-resolution of A. Choosing a

CE-resolution b of a, we obtain the factorisation

(J -f̂ J ′) =
(
J -( f̂ b)

J ′ ⊕B -

“
1
0

”
J ′
)
.

SinceX ′⊕A -

“
1
0

”
X ′ is a homotopism, J ′⊕B -

“
1
0

”
J is a double homotopism; cf. Corollary IV.15.

Hence f̂ is a composite of a rowwise homotopism and a double homotopism if and only if this

holds for ( f̂ b). So we may assume that f is pointwise split monomorphic, so in particular,

monomorphic.

By Proposition IV.14, we may replace the given CE-resolution f̂ by an arbitrary CE-resolution

of f between J and an arbitrarily chosen CE-resolution of X ′ without changing the property

of being a composite of a rowwise homotopism and a double homotopism for this newly chosen

CE-resolution of f .

Let X -f X ′ - X̄ be a short exact sequence in C[0(A). Since f is a quasiisomorphism, X̄ ∈
Ob C[0(A) is acyclic. Let J̄ be a rowwise split acyclic CE-resolution of X̄; cf. Lemma IV.16.

The short exact sequence X -f X ′ - X̄ is pure by acyclicity of X̄; cf. Remark IV.8.(1). Hence

by the exact Horseshoe Lemma, there exists a rowwise split short exact sequence J - J̃ ′ - J̄

of CE-resolutions that maps to X -f X ′ - X̄ under H0
(
(−)∗,−

)
; cf. Remark IV.7. Since

J̄ is rowwise split acyclic and since the sequence J - J̃ ′ - J̄ is rowwise split short exact,

J - J̃ ′ is a rowwise homotopism. Since J - J̃ ′ is a CE-resolution of X -f X ′, this proves the

proposition.

IV.3 Formalism of spectral sequences

We follow essentially Verdier [57, II.4]; cf. [12, App.]; on a more basic level, cf. [38, Kap. 4].
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Let A be an abelian category.

IV.3.1 Pointwise split and pointwise finitely filtered complexes

Let Z∞ := {−∞}tZt{∞}, considered as a linearly ordered set, and thus as a category. Write

]α, β] := {σ ∈ Z∞ : α < σ 6 β} for α, β ∈ Z∞ such that α 6 β; etc.

Given X ∈ Ob Z∞,C(A) , the morphism of X on α 6 β in Z∞ shall be denoted by

X(α) -x X(β).

An object X ∈ Ob Z∞,C(A) is called a pointwise split and pointwise finitely filtered complex

(with values in A), provided (SFF 1, 2, 3) hold.

(SFF 1) We have X(−∞) = 0.

(SFF 2) The morphism X(α)i -
xi

X(β)i is split monomorphic for all i ∈ Z and all α 6 β in Z∞.

(SFF 3) For all i ∈ Z, there exist β0, α0 ∈ Z such that X(α)i -
xi

X(β)i is an identity whenever

α 6 β 6 β0 or α0 6 α 6 β in Z∞.

The pointwise split and pointwise finitely filtered complexes with values in A form a full sub-

category SFFC(A) ⊆ Z∞,C(A) .

Suppose given a pointwise split and pointwise finitely filtered complex X with values in A for

the rest of the present §IV.3.

Let α ∈ Z∞. Write X̄(α) := Cokern
(
X(α− 1) -X(α)

)
for α ∈ Z. Given i ∈ Z, we obtain

X(α)i '
⊕

σ∈]−∞,α] X̄(σ)i, which is a finite direct sum. We identify along this isomorphism. In

particular, we get as a matrix representation for the differential

(
X(α)i -

d
X(α)i+1

)
=

 ⊕
σ∈]−∞,α]

X̄(σ)i -
(diσ,τ )σ,τ ⊕

τ∈]−∞,α]

X̄(τ)i+1

 ,

where diσ,τ = 0 whenever σ < τ ; a kind of lower triangular matrix.

IV.3.2 Spectral objects

Let Z̄∞ := Z∞ × Z. Write α+k := (α, k), where α ∈ Z∞ and k ∈ Z. Let α+k 6 β+` in Z̄∞ if

k < ` or (k = ` and α 6 β), i.e. let Z̄∞ be linearly ordered via a lexicographical ordering. We

have an automorphism α+k - α+k+1 of the poset Z̄∞, to which we refer as shift. Note that

−∞+k = (−∞)+k.

We have an order preserving injection Z∞ - Z̄∞ , α - α+0. We use this injection as an

identification of Z∞ with its image in Z̄∞ , i.e. we sometimes write α := α+0 by abuse of

notation.

Let Z̄#
∞ := {(α, β) ∈ Z̄∞ × Z̄∞ : β−1 6 α 6 β 6 α+1}. We usually write β/α := (α, β) ∈ Z̄#

∞;

reminiscent of a quotient. The set Z̄#
∞ is partially ordered by β/α 6 β′/α′ :⇐⇒ (β 6 β′ and
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α 6 α′). We have an automorphism β/α - (β/α)+1 := α+1/β of the poset Z̄#
∞, to which,

again, we refer as shift.

We write Z#
∞ := {β/α ∈ Z̄#

∞ : −∞ 6 α 6 β 6∞}. Note that any element of Z̄#
∞ can uniquely

be written as (β/α)+k for some β/α ∈ Z#
∞ and some k ∈ Z.

We shall construct the spectral object Sp(X) ∈ Ob Z̄#
∞,K(A) . The morphism of Sp(X) on

β/α 6 β′/α′ in Z̄#
∞ shall be denoted by X(β/α) -x X(β′/α′).

We require that(
X
(
(β/α)+k

)
-x X

(
(β′/α′)+k

))
=

(
X(β/α) -x X(β′/α′)

)•+k
for β/α 6 β′/α′ in Z̄#

∞; i.e., roughly put, that Sp(X) be periodic up to shift of complexes.

Define

X
(
β/α

)
:= Cokern

(
X(α) -x X(β)

)
for β/α ∈ Z#

∞. By periodicity, we conclude that X
(
α/α

)
= 0 and X

(
α+1/α

)
= 0 for all α ∈ Z̄∞.

Write

Di
β/α, β′/α′ := (diσ,τ )σ∈]α,β], τ∈]α′,β′] : X(β/α)i - X(β′/α′)i+1

for i ∈ Z and β/α, β′/α′ ∈ Z#
∞.

Given −∞ 6 α 6 β 6 γ 6∞ and i ∈ Z, we let(
X(β/α)i -x

i

X(γ/α)i
)

:=

(
X(β/α)i -(1 0)

X(β/α)i ⊕X(γ/β)i
)

(
X(γ/α)i -x

i

X(γ/β)i
)

:=

(
X(β/α)i ⊕X(γ/β)i -

“
0
1

”
X(γ/β)i

)
(
X(γ/β)i -x

i

X(α+1/β)i
)

:=

(
X(γ/β)i -

Di
γ/β, β/α

X(β/α)i+1

)
.

By periodicity up to shift of complexes, this defines Sp(X). The construction is functorial in

X ∈ Ob SFFC(A).

IV.3.3 Spectral sequences

Let Z̄##
∞ := {(γ/α, δ/β) ∈ Z̄#

∞ × Z̄#
∞ : δ−1 6 α 6 β 6 γ 6 δ 6 α+1}. Given (γ/α, δ/β) ∈ Z̄##

∞ ,

we usually write δ/β//γ/α := (γ/α, δ/β). The set Z̄##
∞ is partially ordered by

δ/β//γ/α 6 δ′/β′//γ′/α′ :⇐⇒ (γ/α 6 γ′/α′ and δ/β 6 δ′/β′) .

Define the spectral sequence E(X) ∈ Ob Z̄##
∞ ,A of X by letting its value on

δ/β//γ/α 6 δ′/β′//γ′/α′

in Z̄##
∞ be the morphism that appears in the middle column of the diagram

H0
(
X(γ/α)

) � //

H0(x)
��

E(δ/β//γ/α)(X) • //

e

��

H0
(
X(δ/β)

)
H0(x)

��
H0
(
X(γ′/α′)

) � // E(δ′/β′//γ′/α′)(X) • // H0
(
X(δ′/β′)

)
.
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Given δ/β//γ/α ∈ Z̄##
∞ and k ∈ Z, we also write

E(δ/β//γ/α)+k(X) := E
(
(δ/β)+k//(γ/α)+k

)
(X) .

Altogether,

Z∞,C(A) ⊇ SFFC(A) - Z̄#
∞,K(A) - Z̄##

∞ ,A
X - Sp(X) - E(X) .

IV.3.4 A short exact sequence

Lemma IV.18 Given ε−1 6 α 6 β 6 γ 6 δ 6 ε 6 α+1 in Z̄∞, we have a short exact sequence

E(ε/β//γ/α)(X) -re E(ε/β//δ/α)(X) -
e

E(ε/γ//δ/α)(X) .

Proof. See Lemma I.26.

Lemma IV.19 Given ε−1 6 α 6 β 6 γ 6 δ 6 ε 6 α+1 in Z̄∞, we have a short exact sequence

E(ε/γ//δ/α)(X) -re E(ε/γ//δ/β)(X) -
e

E(α+1/γ//δ/β)(X) .

Proof. Apply the functor induced by β/α - α+1/β to Sp(X). Then apply Lemma I.26.

The short exact sequence in Lemma IV.18 is called a fundamental short exact sequence (in first

notation), the short exact sequence in Lemma IV.19 is called a fundamental short exact sequence

(in second notation). They will be used without further comment.

IV.3.5 Classical indexing

Let 1 6 r 6∞ and let p, q ∈ Z. Denote

Ep,q
r = Ep,q

r (X) := E(−p− 1 + r/−p− 1//−p/−p− r)+p+q(X) ,

where i+∞ :=∞ and i−∞ := −∞ for all i ∈ Z.

Example IV.20 The short exact sequences in Lemmata IV.18, IV.19 allow to derive the exact
couples of Massey. Write Di,j

r = Di,j
r (X) := E(−i/−∞//−i−r+1/−∞)+i+j(X) for i, j ∈ Z and

r > 1. We obtain an exact sequence

Di, j
r

-e Di−1, j+1
r

-e Ei+r−2, j−r+2
r

-e Di+r−1, j−r+2
r

-e Di+r−2, j−r+3
r

by Lemmata IV.18, IV.19.
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IV.3.6 Comparing proper spectral sequences

Let X -f Y be a morphism in SFFC(A), i.e. a morphism of pointwise split and pointwise finitely

filtered complexes with values in A. Write E(X) -E(f)
E(Y ) for the induced morphism on the

spectral sequences.

For α, β ∈ Z̄∞, we write α <̇ β if(
α < β

)
or

(
α = β and α ∈ {∞+k : k ∈ Z} ∪ {−∞+k : k ∈ Z}

)
.

We write
˙̄Z##
∞ := {δ/β//γ/α ∈ Z̄##

∞ : δ−1 6 α <̇ β 6 γ <̇ δ 6 α+1} .

We write

Ė = Ė(X) := E(X)| ˙̄Z##
∞
∈ Ob ˙̄Z##

∞ ,A

for the proper spectral sequence of X; analogously for the morphisms.

Lemma IV.21 If E(α+ 1/α−1//α/α−2)+k(f) is an isomorphism for all α ∈ Z and all k ∈ Z,

then Ė(f) is an isomorphism.

Proof. Claim 1. We have an isomorphism E(γ/β − 1//β/β − 2)+k(f) for all k ∈ Z, all β ∈ Z

and all γ ∈ Z such that γ > β. We have an isomorphism E(β + 1/β − 1//β/α − 1)+k(f) for all

k ∈ Z, all β ∈ Z and all α ∈ Z such that α < β.

The assertions follow by induction using the exact sequences

E(γ + 2/γ//γ + 1/β)+k−1 -e E(γ/β − 1//β/β − 2)+k -e E(γ + 1/β − 1//β/β − 2)+k - 0

and

0 - E(β+1/β−1//β/α−2)+k -e E(β+1/β−1//β/α−1)+k -e E(β−1/α−2//α−1/α−3)+k+1 .

Claim 2. We have an isomorphism E(γ/β − 1//β/α− 1)+k(f) for all k ∈ Z and all α, β, γ ∈ Z

such that α < β < γ.

We proceed by induction on γ − α. By Claim 1, we may assume that α < β − 1 < β + 1 < γ.

Consider the image diagram

E(γ − 1/β − 1//β/α− 1)+k -
e

E(γ/β − 1//β/α− 1)+k -re E(γ/β − 1//β/α)+k .

Claim 3. We have an isomorphism E(δ/β//γ/α)+k(f) for all k ∈ Z and all α, β, γ, δ ∈ Z such

that α < β 6 γ < δ.

We may assume that γ − β > 1, for E(δ/β//β/α)+k = 0. We proceed by induction on γ − β. By

Claim 2, we may assume that γ − β > 2. Consider the short exact sequence

E(δ/β//γ − 1/α)+k -re E(δ/β//γ/α)+k -
e

E(δ/γ − 1//γ/α)+k .

Claim 4. We have an isomorphism E(δ/β//γ/α)+k(f) for all k ∈ Z and all α, β, γ, δ ∈ Z∞ such

that α < β 6 γ < δ.
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In view of Claim 3, it suffices to choose α̃ ∈ Z small enough such that E(δ/β//γ/α̃)+k(f) =

E(δ/β//γ/−∞)+k(f); etc.

Claim 5. We have an isomorphism E(δ/β//γ/α)+k(f) for all k ∈ Z and all α, β, γ, δ ∈ Z∞ such

that α <̇ β 6 γ <̇ δ.

In view of Claim 4, it suffices to choose β̃ ∈ Z small enough such that E(δ/β̃//γ/−∞)+k(f) =

E(δ/−∞//γ/−∞)+k(f); etc.

Claim 6. We have an isomorphism E(δ/β//γ/α)+k(f) for all k ∈ Z and all α, β, γ, δ ∈ Z̄∞ such

that −∞ 6 δ−1 6 α <̇ β 6 γ 6∞ < −∞+1 6 δ 6 α+1.

In view of Claim 5, it suffices to consider the short exact sequence

E(∞/β//γ/δ−1)+k -re E(∞/β//γ/α)+k -
e

E(δ/β//γ/α)+k .

Claim 7. The morphism Ė(f) is an isomorphism.

Suppose given α, β, γ, δ ∈ Z̄∞ such that δ−1 6 α <̇ β 6 γ <̇ δ 6 α+1. Via a shift, we may

assume that we are in the situation of Claim 5 or of Claim 6.

IV.3.7 The first spectral sequence of a double complex

Let A be an abelian category. Let X ∈ Ob CCx(A). Given n ∈ Z∞, we write X [n,∗ for

the double complex arising from X by replacing X i,j by 0 for all i ∈ [0, n[. We define a

pointwise split and pointwise finitely filtered complex tIX, called the first filtration of tX, by

letting tIX(α) := tX [−α,∗ for α ∈ Z∞; and by letting tIX(α) - tIX(β) be the pointwise split

inclusion tX [−α,∗ - tX [−β,∗ for α, β ∈ Z∞ such that α 6 β. Let EI = EI(X) := E(tIX). This

construction is functorial in X ∈ Ob CCx(A). Note that tIX(α) = X−α,k+α.

We record the following wellknown lemma in the language we use here.

Lemma IV.22 Let α ∈ ]−∞, 0]. Let k ∈ Z such that k > −α. We have

EI(α/α− 1//α/α− 1)+k(X) = Hk+α(X−α,∗)

EI(α + 1/α− 1//α/α− 2)+k(X) = H−α
(
Hk+α(X−,∗)

)
,

naturally in X ∈ Ob CCx(A).

Proof. The first equality follows by EI(α/α− 1//α/α− 1)+k = HktIX(α/α− 1) = Hk+α(X−α,∗).

The morphism tIX(α/α− 1) - tIX
(
(α− 2)+1/α− 1

)
= tIX

(
α− 1/α− 2

)•+1
from Sp(tIX) is

at position k > 0 given by

tIX(α)k = X−α,k+α -(−1)α ∂
X−α+1,k+α = tIX(α− 1)k+1 ;

cf. §IV.1.1.6. In particular, the morphisms

EI(α+ 1/α//α+ 1/α)+k−1 -e EI(α/α− 1//α/α− 1)+k -e EI(α− 1/α− 2//α− 1/α− 2)+k+1
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are given by

Hk+α(X−α−1,∗) -
(−1)α+1Hk+α(∂)

Hk+α(X−α,∗) -
(−1)αHk+α(∂)

Hk+α(X−α+1,∗) .

Now the second equality follows by the diagram

EI(α + 1/α− 1//α/α− 2)+k

•WWWWWWWWWWW
e

++WWWWWWWWWWW

EI(α/α− 1//α/α− 2)+k

•VVVVVVVVVV
e

++VVVVVVVVVV

(hhhhhhhhhh

e
33hhhhhhhhhh

EI(α + 1/α− 1//α/α− 1)+k

EI(α + 1/α//α + 1/α)+k−1 e // EI(α/α− 1//α/α− 1)+k e //

'ggggggggggg

e
33ggggggggggg

EI(α− 1/α− 2//α− 1/α− 2)+k+1 .

Remark IV.23 Let X -f Y be a rowwise quasiisomorphism in CCx(A). Then

EI(δ/β//γ/α)+k(f) is an isomorphism for δ−1 6 α 6 β 6 γ 6 δ 6 α+1 in Z̄∞ and k ∈ Z.

Proof. It suffices to show that the morphism Sp(tIf) in Z̄#
∞, K(A) is pointwise a quasiisomor-

phism. To have this, it suffices to show that tf [k,∗ is a quasiisomorphism for k > 0. But f [k,∗ is

a rowwise quasiisomorphism for k > 0; cf. §IV.1.1.6.

Lemma IV.24 The functor CCx(A) -ĖI ˙̄Z##
∞ , A factors over

KKx(A) -ĖI ˙̄Z##
∞ , A .

Proof. By Lemma IV.1, we have to show that ĖI annihilates all elementary horizontally split

acyclic double complexes in Ob CCx(A) and all elementary vertically split acyclic double com-

plexes in Ob CCx(A).

Let U ∈ Ob CCx(A) be an elementary vertically split acyclic double complex concentrated in

rows i and i + 1, where i > 0. Let V ∈ Ob CCx(A) be an elementary horizontally split acyclic

double complex concentrated in columns j and j + 1, where j > 0.

Since V is rowwise acyclic, EI annihilates V by Remark IV.23, whence so does ĖI.

Suppose given

(∗) −∞ 6 α <̇ β 6 γ <̇ δ 6∞

in Z̄∞ and k ∈ Z. We claim that the functor EI(δ/β//γ/α)+k annihilates U . We may assume

that β < γ. Note that EI(δ/β//γ/α)+k(U) is the image of

Hk
(
tIU(γ/α)

)
- Hk

(
tIU(δ/β)

)
.

The double complex U [−δ,∗/U [−β,∗ is columnwise acyclic except possibly if −β = i + 1 or if

−δ = i+1. The double complex U [−γ,∗/U [−α,∗ is columnwise acyclic except possibly if −α = i+1

or if −γ = i + 1. All three remaining combinations of these exceptional cases are excluded by

(∗), however. Hence EI(δ/β//γ/α)+k(U) = 0. This proves the claim.
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Suppose given

(∗∗) δ−1 6 α <̇ β 6 γ 6∞ 6 −∞+1 6 δ 6 α+1 .

in Z̄∞ and k ∈ Z. We claim that the functor EI(δ/β//γ/α)+k annihilates U . We may assume

that β < γ and that δ−1 < α. Note that EI(δ/β//γ/α)+k(U) is the image of

Hk
(
tIU(γ/α)

)
- Hk+1

(
tIU(β/δ−1)

)
.

The double complex U [−β,∗/U [−(δ−1),∗ is columnwise acyclic except possibly if −(δ−1) = i+1 or if

−β = i+1. The double complex U [−γ,∗/U [−α,∗ is columnwise acyclic except possibly if −γ = i+1

or if −α = i+ 1. Both remaining combinations of these exceptional cases are excluded by (∗∗),
however. Hence EI(δ/β//γ/α)+k(U) = 0. This proves the claim.

Both claims taken together show that ĖI annihilates U .

IV.4 Grothendieck spectral sequences

IV.4.1 Certain quasiisomorphisms are preserved by a left exact func-

tor

Suppose given abelian categories A, B, and suppose that A has enough injectives. Let A -F B
be a left exact functor.

Remark IV.25 Suppose given an F -acyclic object X ∈ ObA and an injective resolution

I ∈ Ob C[0(InjA) of X. Let ConcX -f I be its quasiisomorphism. Then ConcFX -Ff FI

is a quasiisomorphism.

Proof. This follows since F is left exact and since Hi(FI) ' (RiF )X ' 0 for i > 1.

Remark IV.26 Suppose given a complex U ∈ Ob C[0(A) consisting of F -acyclic objects. There

exists an injective complex resolution I ∈ Ob C[0(InjA) of U such that its quasiisomorphism

U -f I maps to a quasiisomorphism FU -Ff FI.

Proof. Let J ∈ Ob CCx,CE(InjA) be a CE-resolution of U ; cf. Remark IV.9. Since the morphism

of double complexes Conc2 U - J is a columnwise quasiisomorphism consisting of monomor-

phisms, taking the total complex, we obtain a quasiisomorphism U - tJ consisting of monomor-

phisms. By F -acyclicity of the entries of U , the image Conc2 FU - FJ under F is a columnwise

quasiisomorphism, too; cf. Remark IV.25. Hence F maps the quasiisomorphism U - tJ to the

quasiisomorphism FU - F tJ . So we may take I := tJ .

Lemma IV.27 Suppose given a complex U ∈ Ob C[0(A) consisting of F -acyclic objects and an

injective complex resolution I ∈ Ob C[0(InjA) of U . Let U -f I be its quasiisomorphism. Then

FU -Ff FI is a quasiisomorphism.
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Proof. Let U - I ′ be a quasiisomorphism to an injective complex resolution I ′ that is mapped to

a quasiisomorphism by F ; cf. Remark IV.26. Since U - I ′ is a quasiisomorphism, the induced

map K(A)(U, I)� K(A)(I
′, I) is surjective, so that there exists a morphism I ′ - I such that

(U - I ′ - I) = (U -f I) in K(A). Since, moreover, U -f I is a quasiisomorphism, I ′ - I

is a homotopism. Since FU - FI ′ is a quasiisomorphism and FI ′ - FI is a homotopism, we

conclude that FU - FI is a quasiisomorphism.

IV.4.2 Definition of the Grothendieck spectral sequence functor

Suppose given abelian categories A, B and C, and suppose that A and B have enough injectives.

Let A -F B and B -G C be left exact functors.

A (F,G)-acyclic resolution of X ∈ ObA is a complex A ∈ Ob C[0(A), together with a quasiiso-

morphism ConcX - A, such that the following hold.

(A 1) The object Ai is F -acyclic for i > 0.

(A 2) The object Ai is (G ◦ F )-acyclic for i > 0.

(A 3) The object FAi is G-acyclic for i > 0.

An object X ∈ ObA that possesses an (F,G)-acyclic resolution is called (F,G)-acyclicly resolv-

able. The full subcategory of (F,G)-acyclicly resolvable objects in A is denoted by A(F,G).

A complex A ∈ Ob C[0(A), together with a quasiisomorphism ConcX - A, is called an

F-acyclic resolution of X ∈ ObA if (A 2) holds.

Remark IV.28 If F carries injective objects to G-acyclic objects, then (A 1) and (A 3) imply

(A 2).

Proof. Given i > 0, we let I be an injective resolution of Ai, and Ĩ the acyclic complex obtained

by appending Ai to I in position −1. Since Ai is F -acyclic, the complex F Ĩ is acyclic; cf. Remark

IV.25. Note that FB0Ĩ ' FAi is G-acyclic by assumption. Since

(RkG)F Ĩj - (RkG)FBj+1Ĩ - (Rk+1G)FBj Ĩ

is exact in the middle for j > 0 and k > 1, we may conclude by induction on j and by G-acyclicity

assumption on F Ĩj that FBj Ĩ is G-acyclic for j > 0. In particular, we have (R1G)(FBj Ĩ) ' 0

for j > 0, whence

GFBj Ĩ - GFĨj - GFBj+1Ĩ

is short exact for j > 0. We conclude that (G ◦ F )Ĩ is acyclic. Hence Ai is (G ◦ F )-acyclic.

To see Remark IV.28, one could also use a Grothendieck spectral sequence, once established.

Remark IV.29 Suppose given X ∈ ObA, an injective resolution I of X and an F -acyclic

resolution A of X. Then there exists a quasiisomorphism A - I that is mapped to 1X by H0.

Moreover, any morphism A -u I that is mapped to 1X by H0 is a quasiisomorphism and is

mapped to a quasiisomorphism FA -Fu FI by F .
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Proof. Let I ′ be an injective complex resolution of A such that its quasiisomorphism A - I ′ is

mapped to a quasiisomorphism by F ; cf. Remark IV.26. We use the composite quasiisomorphism

ConcX - A - I ′ to resolve X by I ′.

To prove the first assertion, note that there is a homotopism I ′ - I resolving 1X ; whence the

composite (A - I ′ - I) is a quasiisomorphism resolving 1X .

To prove the second assertion, note that the induced map K(A)(A, I)� K(A)(I
′, I) is surjective,

whence there is a factorisation (A - I ′ - I) = (A -u I) in K(A) for some morphism I ′ - I,

which, since resolving 1X as well, is a homotopism. In particular, A -u I is a quasiisomorphism.

Finally, since FI ′ - FI is a homotopism, also FA -Fu FI is a quasiisomorphism.

Alternatively, in the last step of the preceding proof we could have invoked Lemma IV.27.

The following construction originates in [10, XVII.§7] and [17, Th. 2.4.1]. In its present form, it
has been carried out by Haas in the classical framework [21]. We do not claim any originality.

I do not know whether the use of injectives in A in the following construction can be avoided; in
any case, it would be desirable to do so.

We set out to define the proper Grothendieck spectral sequence functor

A(F,G)
-

ĖGr
F,G ˙̄Z##

∞ , C .

We define ĖGr
F,G on objects. Suppose given X ∈ ObA(F,G). Choose an (F,G)-acyclic resolution

AX ∈ Ob C[0(A) of X. Choose a CE-resolution JX ∈ Ob CCx(InjB) of FAX . Let EGr
F,G(X) :=

EI(GJX) = E(tIGJX) ∈ Ob Z̄##
∞ , C be the Grothendieck spectral sequence of X with respect

to F and G. Accordingly, let

ĖGr
F,G(X) := ĖI(GJX) = Ė(tIGJX) ∈ Ob ˙̄Z##

∞ , C

be the proper Grothendieck spectral sequence of X with respect to F and G.

We define ĖGr
F,G on morphisms. Suppose given X ∈ ObA(F,G), and let AX and JX be as above.

Choose an injective resolution IX ∈ Ob C[0(InjA) of X. Choose a quasiisomorphism AX -pX IX
that is mapped to 1X by H0 and to a quasiisomorphism by F ; cf. Remark IV.29. Choose a

CE-resolution KX ∈ Ob CCx(InjB) of FIX . Choose a morphism JX -qX KX in CCx(InjB) that

is mapped to FpX by H0
(
(−)∗,−

)
; cf. Remark IV.6.

Note that JX -qX KX can be written as a composite in CCx,CE(InjB) of a rowwise homotopism,

followed by a double homotopism; cf. Proposition IV.17. Hence, so can GJX -GqX GKX . Thus

ĖI(GJX) -ĖI(GqX)
ĖI(GKX) is an isomorphism; cf. Remark IV.23, Lemma IV.24.

Suppose given X -f Y in A(F,G). Choose a morphism IX -f
′
IY in C[0(A) that is mapped to f

by H0. Choose a morphism KX
-f
′′
KY in CCx(InjB) that is mapped to Ff ′ by H0

(
(−)∗,−

)
; cf.

Remark IV.6. Let

ĖGr
F,G(X -f Y ) :=

(
ĖI(GJX) -ĖI(GqX)

∼ ĖI(GKX) -ĖI(Gf
′′)

ĖI(GKY ) �
ĖI(GqY )
∼ ĖI(GJY )

)
.
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The procedure can be adumbrated as follows.

X -f
Y

AX

���
pX

IX -f ′

AY

���
pY

IY

JX

���
qX

KX
-f ′′

JY

���
qY

KY

We show that this defines a functor ĖGr
F,G : A(F,G)

- ˙̄Z##
∞ , C . We need to show independence

of the construction from the choices of f ′ and f ′′, for then functoriality follows by appropriate

choices.

Let IX -f̃
′
IY and KX

-f̃
′′
KY be alternative choices. The residue classes of f ′ and f̃ ′ in K[0(A)

coincide, whence so do the residue classes of Ff ′ and F f̃ ′ in K[0(B). Therefore, the residue

classes of f ′′ and f̃ ′′ in KKx(B) coincide; cf. Proposition IV.14. Hence, so do the residue classes

of Gf ′′ and Gf̃ ′′ in KKx(C). Thus ĖI(Gf
′′) = ĖI(Gf̃

′′); cf. Lemma IV.24.

We show that alternative choices of AX , IX and pX , and of JX , KX and qX , yield isomorphic

proper Grothendieck spectral sequence functors.

Let ÃX -p̃X ĨX and J̃X -q̃X K̃X be alternative choices, where X runs through ObA(F,G).

Suppose given X -f Y in A(F,G). We resolve the commutative quadrangle

X
f // Y

X
f // Y

in A to a commutative quadrangle

IX
f ′ //

uX
��

IY

uY
��

ĨX
f̃ ′ // ĨY

in K[0(A), in which uX and uY are homotopisms; cf. Remark IV.6. Then we resolve the com-

mutative quadrangle

FIX
Ff ′ //

FuX
��

FIY

FuY
��

F ĨX
Ff̃ ′ // F ĨY
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in K[0(B) to a commutative quadrangle

KX
f ′′ //

vX
��

KY

vY
��

K̃X

f̃ ′′ // K̃Y

in KKx(B); cf. Proposition IV.14. Therein, vX and vY are each composed of a rowwise homo-

topism, followed by a double homotopism; cf. Proposition IV.17. So are GvX and GvY . An

application of ĖI

(
G(−)

)
yields the sought isotransformation, viz.(

ĖI(GJX) -ĖI(GqX)
∼ ĖI(GKX) -ĖI(GvX)

∼ ĖI(GK̃X) �
ĖI(Gq̃X)
∼ ĖI(GJ̃X)

)
at X ∈ ObA(F,G); cf. Remark IV.23, Lemma IV.24.

Finally, we recall the starting point of the whole enterprise.

Remark IV.30 ([10, XVII.§7], [17, Th. 2.4.1]) Suppose given X ∈ ObA(F,G) and k, ` ∈
Z>0. We have

ĖGr
F,G(−k + 1/−k − 1//−k/−k − 2)+k+`(X) ' (RkG)(R`F )(X)

ĖGr
F,G(∞/−∞//∞/−∞)+k+`(X) '

(
Rk+`(G ◦ F )

)
(X) ,

naturally in X.

Proof. Keep the notation of the definition of ĖGr
F,G .

We shall prove the first isomorphism. By Lemma IV.22, we have

ĖGr
F,G(−k + 1/−k − 1//−k/−k − 2)+k+`(X) ' Hk(H`(GJ−,∗X )) .

Since JX is rowwise split, we have H`(GJ−,∗X ) ' G(H`J−,∗X ). Note that H`J−,∗X is an injective

resolution of H`FAX ; cf. Remark IV.8.(1). By Remark IV.29, H`FAX -
H`FpX
∼ H`FIX ' (R`F )(X).

So

Hk(H`(GJ−,∗X )) ' Hk(G(H`J−,∗X )) ' (RkG)(H`FAX) ' (RkG)(R`F )(X) .

We shall prove naturality of the first isomorphism. Suppose given X -f Y in A(F,G). Consider

the following commutative diagram. Abbreviate E := Ė(−k + 1/−k − 1//−k/−k − 2)+k+`.

E(tIGJX)
E(tIGqX)

∼
//

o
��

E(tIGKX)
E(tIGf

′′) //

o
��

E(tIGKY )

o
��

E(tIGJY )
E(tIGqY )

∼
oo

o
��

HkH`GJ−,∗X

HkH`Gq−,∗X

∼
//

o
��

HkH`GK−,∗X

HkH`Gf ′′−,∗ //

o
��

HkH`GK−,∗Y

o
��

HkH`GJ−,∗Y

HkH`Gq−,∗Y

∼
oo

o
��

HkGH`J−,∗X

HkGH`q−,∗X

∼
//

o
��

HkGH`K−,∗X

HkGH`f ′′−,∗ //

o
��

HkGH`K−,∗Y

o
��

HkGH`J−,∗Y

HkGH`q−,∗Y

∼
oo

o
��

(RkG)H`FAX
(RkG)H`FpX

∼
// (RkG)H`FIX

(RkG)H`Ff ′ //

o
��

(RkG)H`FIY

o
��

(RkG)H`FAY
(RkG)H`FpY

∼
oo

(RkG)(R`F )(X)
(RkG)(R`F )(f) // (RkG)(R`F )(Y )
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We shall prove the second isomorphism. By Lemma IV.27, the quasiisomorphism FAX - tJX
maps to a quasiisomorphism GFAX - tGJX ' GtJX . By Lemma IV.27, the quasiisomorphism

AX -pX IX maps to a quasiisomorphism GFAX -GFpX GFIX . So

ĖGr
F,G(∞/−∞//∞/−∞)+k+`(X) ' Hk+`(tGJX) ' Hk+`(GtJX) ' Hk+`(GFAX)

' Hk+`(GFIX) '
(
Rk+`(G ◦ F )

)
(X) .

We shall prove naturality of the second isomorphism. Consider the following diagram. Abbre-
viate Ẽ := ĖGr

F,G(∞/−∞//∞/−∞)+k+`.

Ẽ(tIGJX)
Ẽ(tIGqX)

∼
//

o
��

Ẽ(tIGKX)
Ẽ(tIGf

′′) //

o
��

Ẽ(tIGKY )

o
��

Ẽ(tIGJY )
Ẽ(tIGqY )

∼
oo

o
��

Hk+`tGJX
Hk+`tGqX

∼
//

o
��

Hk+`tGKX

Hk+`tGf ′′ //

o
��

Hk+`tGKY

o
��

Hk+`tGJY
Hk+`tGqY

∼
oo

o
��

Hk+`GtJX
Hk+`GtqX

∼
// Hk+`GtKX

Hk+`Gtf ′′ // Hk+`GtKY Hk+`GtJY
Hk+`GtqY

∼
oo

Hk+`GFAX
Hk+`GFpX

∼
//

o

OO

Hk+`GFIX
Hk+`GFf ′ //

o
��

OO

Hk+`GFIY

o
��

OO

Hk+`GFAY
Hk+`GFpY

∼
oo

o

OO

(
Rk+`(G ◦ F )

)
(X)

(Rk+`(G◦F ))(f)//
(
Rk+`(G ◦ F )

)
(Y )

IV.4.3 Haas transformations

The following transformations have been constructed in the classical framework by Haas [21]. We
do not claim any originality.

IV.4.3.1 Situation

Consider the following diagram of abelian categories, left exact functors and transformations,

A F //

U
��

B G //

V
��

C
W
��

A′ F ′ // B′ G′ // C ′ ,

µ 9Azzz zzz
ν 9Azzz zzz

i.e. F ′ ◦ U -µ V ◦ F and G′ ◦ V -ν W ◦G. Suppose that the conditions (1, 2, 3) hold.

(1) The categories A, B, A′ and B′ have enough injectives.

(2) The functors U and V carry injectives to injectives.

(3) The functor F carries injective to G-acyclic objects. The functor F ′ carries injective to

G′-acyclic objects.
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We have A(F,G) = A since an injective resolution is an (F,G)-acyclic resolution. Likewise, we

have A′(F ′,G′) = A′.

Note in particular the case U = 1A , V = 1B and W = 1C .

We set out to define the Haas transformations

ĖGr
F ′,G′

(
U(−)

)
-

hI
µ ĖGr

F,G′◦V
(
−
)

-
hII
ν ĖGr

F,W◦G
(
−
)
,

where hI
µ depends on F , F ′, G′, U , V and µ, and where hII

ν depends on F , G, G′, V , W and ν.

IV.4.3.2 Construction of the first Haas transformation

Given T ∈ ObA, we let ĖGr
F,G(T ) be defined via an injective resolution IT of T and via a CE-

resolution JT of FIT ; cf. §IV.4.2.

Given T ′ ∈ ObA′, we let ĖGr
F ′,G′(T

′) be defined via an injective resolution I ′T ′ of T ′ and via a

CE-resolution J ′T ′ of F ′I ′T ′ ; cf. §IV.4.2.

We define hI
µ. Let X ∈ ObA. By Remark IV.5, there is a unique morphism I ′UX -h

′X
UIX in

K[0(A′) that maps to 1UX under H0. Let J ′UX -h
′′X

V JX be the unique morphism in KKx(B′) that

maps to the composite morphism
(
F ′I ′UX -F ′h′X

F ′UIX -µ V FIX

)
in K[0(B′) under H0

(
(−)∗,−

)
;

cf. Lemma IV.13. Let the first Haas transformation be defined by(
ĖGr
F ′,G′

(
UX

)
-

hI
µX ĖGr

F,G′◦V
(
X
))

:=

(
EI(G

′J ′UX) -EI(G
′h′′X)

EI(G
′V JX)

)
.

We show that hI
µ is a transformation. Let X -f Y be a morphism in A. Let IX -f

′
IY re-

solve X -f Y . Let JX -f
′′
JY resolve FIX -f

′
FIY . Let I ′UX -f̃

′
I ′UY resolve UX -Uf UY . Let

J ′UX -f̃
′′
JUY resolve F ′IUX -F

′f̃ ′
F ′IUY . The quadrangle

UX

Uf

��

UX

Uf

��
UY UY

commutes in A′. Hence, by Remark IV.5, applied to I ′UX and UIY , the resolved quadrangle

I ′UX
h′X //

f̃ ′

��

UIX

Uf ′

��
I ′UY h′Y

// UIY

commutes in K[0(A′). Hence both quadrangles in

F ′I ′UX
F ′h′X //

F ′f̃ ′

��

F ′UIX

F ′Uf ′

��

µ // V FIX

V Ff ′

��
F ′I ′UY F ′h′Y

// F ′UIY µ
// V FIY
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commute in K[0(B′). By Lemma IV.13, applied to J ′UX and V JY , the outer quadrangle in the

latter diagram can be resolved to the commutative quadrangle

J ′UX
h′′X //

f̃ ′′

��

V JX

V f ′′

��
J ′UY h′′Y

// V JY

in KKx(B′). Applying EI

(
G′(−)

)
and employing the definitions of ĖGr

F ′,G′ , ĖGr
F,G′◦V and hI

µ , we

obtain the sought commutative diagram

ĖGr
F ′,G′(UX)

hI
µX //

ĖGr
F ′,G′ (Uf)

��

ĖGr
F,G′◦V (X)

ĖGr
F,G′◦V (f)

��

ĖGr
F ′,G′(UY )

hI
µY

// ĖGr
F,G′◦V (Y )

in ˙̄Z##
∞ , C ′ .

IV.4.3.3 Construction of the second Haas transformation

We maintain the notation of §IV.4.3.2.

Given X ∈ ObA, we let the second Haas transformation be defined by(
ĖGr
F,G◦V

(
X
)
-hII
ν X ĖGr

F,W◦G
(
X
))

:=
(

ĖI(G
′V JX) -ĖI(ν)

ĖI(WGJX)
)
.

It is a transformation since ν is.

IV.5 The first comparison

IV.5.1 The first comparison isomorphism

Suppose given abelian categories A, A′ and B with enough injectives and an abelian category C.

Let A×A′ -F B be a biadditive functor. Let B -G C be an additive functor.

Suppose given objects X ∈ ObA and X ′ ∈ ObA′. Suppose the following properties to hold.

(a) The functor F (−, X ′) : A - B is left exact.

(a′) The functor F (X,−) : A′ - B is left exact.

(b) The functor G is left exact.

(c) The object X possesses a
(
F (−, X ′), G

)
-acyclic resolution A ∈ Ob C[0(A).

(c′) The object X ′ possesses a
(
F (X,−), G

)
-acyclic resolution A′ ∈ Ob C[0(A′).
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Moreover, the resolutions appearing in (c) and (c′) are stipulated to have the following properties.

(d) For all k > 0, the quasiisomorphism ConcX - A is mapped to a quasiisomorphism

ConcF (X,A′k) - F (A,A′k) under F (−, A′k).

(d′) For all k > 0, the quasiisomorphism ConcX ′ - A′ is mapped to a quasiisomorphism

ConcF (Ak, X ′) - F (Ak, A′) under F (Ak,−).

The conditions (d, d′) are e.g. satisfied if F (−, A′k) and F (Ak,−) are exact for all k > 0.

Theorem IV.31 (first comparison) The proper Grothendieck spectral sequence for the func-

tors F (X,−) and G, evaluated at X ′, is isomorphic to the proper Grothendieck spectral sequence

for the functors F (−, X ′) and G, evaluated at X; i.e.

ĖGr
F (X,−),G(X ′) ' ĖGr

F (−,X′),G(X)

in ˙̄Z##
∞ , C .

Proof. Let JA , JA′ , JA,A′ ∈ Ob CCx(InjB) be CE-resolutions of the complexes

F (A,X ′), F (X,A′), tF (A,A′) ∈ Ob C[0(B), respectively.

The quasiisomorphism ConcX - A induces a morphism F (ConcX,A′) - F (A,A′), yielding

F (X,A′) - tF (A,A′), which is a quasiisomorphism since ConcF (X,A′k) - F (A,A′k) is a

quasiisomorphism for all k > 0 by (d).

Choose a CE-resolution JA′ - JA,A′ of F (X,A′) - tF (A,A′); cf. Remark IV.6. Since

the morphism F (X,A′) - tF (A,A′) is a quasiisomorphism, JA′ - JA,A′ is a composite in

CCx,CE(InjB) of a rowwise homotopism and a double homotopism; cf. Proposition IV.17. So is

GJA′ - GJA,A′ . Hence, by Remark IV.23 and by Lemma IV.24, we obtain an isomorphism of

the proper spectral sequences of the first filtrations of the total complexes,

ĖGr
F (X,−),G(X ′) = ĖI(GJA′) -∼ ĖI(GJA,A′) .

Likewise, we have an isomorphism

ĖGr
F (−,X′),G(X) = ĖI(GJA) -∼ ĖI(GJA,A′) .

We compose to an isomorphism ĖGr
F (X,−),G(X ′) -∼ ĖGr

F (−,X′),G(X) as sought.

IV.5.2 Naturality of the first comparison isomorphism

We narrow down the assumptions just as we have done for the introduction of the Haas transfor-
mations in §IV.4.3.1 in order to be able to express, in this narrower case, a naturality of the first
comparison isomorphism from Theorem IV.31.

Suppose given abelian categories A, A′ and B with enough injectives and an abelian category C.

Let A×A′ -F B be a biadditive functor. Let B -G C be an additive functor.

Suppose that the following properties hold.
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(a) The functor F (−, X ′) : A - B is left exact for all X ′ ∈ ObA′.

(a′) The functor F (X,−) : A′ - B is left exact for all X ∈ ObA.

(b) The functor G is left exact.

(c) For all X ′ ∈ ObA′, the functor F (−, X ′) carries injective objects to G-acyclic objects.

(c′) For all X ∈ ObA, the functor F (X,−) carries injective objects to G-acyclic objects.

(d) The functor F (I,−) is exact for all I ∈ Ob InjA.

(d′) The functor F (−, I ′) is exact for all I ′ ∈ Ob InjA′.

Proposition IV.32 Suppose given X -x X̃ in A and X ′ ∈ ObA′. Note that we have a trans-

formation F (x,−) : F (X,−) - F (X̃,−). The following quadrangle, whose vertical isomor-

phisms are given by the construction in the proof of Theorem IV.31, commutes.

ĖGr
F (X,−),G(X ′)

hI
F (x,−)X

′
//

o
��

ĖGr
F (X̃,−),G

(X ′)

o
��

ĖGr
F (−,X′),G(X)

ĖGr
F (−,X′),G(x)

// ĖGr
F (−,X′),G(X̃)

For the definition of the first Haas transformation hI
F (x,−), see §IV.4.3.2.

An analogous assertion holds with interchanged roles of A and A′.

Proof of Proposition IV.32. Let I resp. Ĩ be an injective resolution of X resp. X̃ in A. Let

I -̂x Ĩ be a resolution of X -x X̃. Let I ′ be an injective resolution of X ′ in A′.

Let J
(X)
I′ resp. J

(X̃)
I′ be a CE-resolution of F (X, I ′) resp. F (X̃, I ′).

Let JI,I′ resp. JĨ,I′ be a CE-resolution of tF (I, I ′) resp. tF (Ĩ , I ′).

Let JI resp. JĨ be a CE-resolution of F (I,X ′) resp. F (Ĩ , X ′).

We have a commutative diagram

F (X, I ′)
F (x,I′) //

��

F (X̃, I ′)

��
tF (I, I ′)

tF (x̂,I′) // tF (Ĩ , I ′)

F (I,X ′)
F (x̂,X′) //

OO

F (Ĩ , X ′)

OO
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in C[0(B), hence in K[0(B). By Proposition IV.14, it can be resolved to a commutative diagram

J
(X)
I′

//

��

J
(X̃)
I′

��
JI,I′ // JĨ,I′

JI //

OO

JĨ

OO

in KKx(B). Application of ĖI

(
G(−)

)
yields the result; cf. Lemma IV.24.

We refrain from investigating naturality of the first comparison isomorphism in G.

IV.6 The second comparison

IV.6.1 The second comparison isomorphism

Suppose given abelian categories A and B′ with enough injectives, and abelian categories B and

C.

Let A -F B′ be an additive functor. Let B × B′ -G C be a biadditive functor.

Suppose given objects X ∈ ObA and Y ∈ ObB. Let B ∈ Ob C[0(B) be a resolution of Y , i.e.

suppose a quasiisomorphism ConcY - B to exist. Suppose the following properties to hold.

(a) The functor F is left exact.

(b) The functor G(Y,−) is left exact.

(c) The object X possesses an (F, G(Y,−))-acyclic resolution A ∈ Ob C[0(A).

(d) The functor G(Bk,−) is exact for all k > 0.

(e) The functor G(−, I ′) is exact for all I ′ ∈ Ob InjB′.

Remark IV.33 Suppose given a morphism D -f D′ in CCx(C). If H`(f−,∗) is a quasiisomor-

phism for all ` > 0, then f induces an isomorphism

ĖI(D) -ĖI(f)
ĖI(D

′)

of proper spectral sequences.

Proof. By Lemma IV.21, it suffices to show that EI(α+1/α−1//α/α−2)+k(f) is an isomorphism

for all α ∈ Z and all k ∈ Z. By Lemma IV.22, this amounts to isomorphisms HkH`(f−,∗) for all

k, ` > 0, i.e. to quasiisomorphisms H`(f−,∗) for all ` > 0.

Consider the double complex G(B,FA) ∈ Ob CCx(C), where the indices of B count rows and

the indices of A count columns. To the first filtration of its total complex, we can associate the

proper spectral sequence ĖI(G(B,FA)) ∈ Ob ˙̄Z##
∞ , C .
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Theorem IV.34 (second comparison) The proper Grothendieck spectral sequence for the

functors F and G(Y,−), evaluated at X, is isomorphic to ĖI(G(B,FA)); i.e.

ĖGr
F,G(Y,−)(X) ' ĖI(G(B,FA))

in ˙̄Z##
∞ , C .

Proof. Let J ′ ∈ Ob CCx(InjB′) be a CE-resolution of FA. By definition, ĖGr
F,G(Y,−)(X) =

ĖI(G(Y, J ′)). By Remark IV.33, it suffices to find D ∈ Ob CCx(C) and two morphisms of

double complexes

G(B,FA) -u D �v G(Y, J ′)

such that H`(u−,∗) and H`(v−,∗) are quasiisomorphisms for all ` > 0.

Given a complex U ∈ Ob C[0(B), recall that we denote by Conc2U ∈ Ob CCx(B) the double

complex whose row number 0 is given by U , and whose other rows are zero.

We have a diagram

G(B,Conc2 FA) - G(B, J ′) � G(ConcY, J ′)

in CCC (C). Let ` > 0. Application of H`
(
(−)−,=,∗

)
yields a diagram

(∗) H`
(
G(B,Conc2 FA)−,=,∗

)
- H`

(
G(B, J ′)−,=,∗

)
� H`

(
G(ConcY, J ′)−,=,∗

)
in CCx(C). We have

H`
(
G(B,Conc2 FA)−,=,∗

)
' G

(
B , H`

(
(Conc2 FA)−,∗

))
= G

(
B,Conc H`(FA)

)
and

H`
(
G(B, J ′)−,=,∗

)
' G

(
B,H`(J ′−,∗)

)
,

since the functor G(Bk,−) is exact for all k > 0 by (d), or, since the CE-resolution J is rowwise

split. Since the CE-resolution J ′ is rowwise split, we moreover have

H`
(
G(ConcY, J ′)−,=,∗

)
' G

(
ConcY,H`(J ′−,∗)

)
.

So the diagram (∗) is isomorphic to the diagram

(∗∗) G
(
B,Conc H`(FA)

)
- G

(
B,H`(J ′−,∗)

)
� G

(
ConcY, H`(J ′−,∗)

)
,

whose left hand side morphism is induced by the quasiisomorphism Conc H`(FA) - H`(J ′−,∗),

and whose right hand side morphism is induced by the quasiisomorphism ConcY - B.

By exactness of G(Bk,−) for k > 0, the left hand side morphism of (∗∗) is a rowwise quasiiso-

morphism. Since H`(J ′k,∗) is injective, the functor G(−,H`(J ′k,∗)) is exact by (e), and therefore

the right hand side morphism of (∗∗) is a columnwise quasiisomorphism. Thus an application

of t to (∗∗) yields two quasiisomorphisms; cf. §IV.1.1.6. Hence, also an application of t to (∗)
yields two quasiisomorphisms in the diagram

tH`
(
G(B,Conc2 FA)−,=,∗

)
- tH`

(
G(B, J ′)−,=,∗

)
� tH`

(
G(ConcY, J ′)−,=,∗

)
.
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Note that t◦H`
(
(−)−,=,∗

)
= H`

(
(−)−,∗

)
◦ t1,2, where t1,2 denotes taking the total complex in the

first and the second index of a triple complex; cf. §IV.1.2.2. Hence we have a diagram

H`
((

t1,2G(B,Conc2 FA)
)−,∗) - H`

((
t1,2G(B, J ′)

)−,∗) � H`
((

t1,2G(ConcY, J ′)
)−,∗)

consisting of two quasiisomorphisms. This diagram in turn, is isomorphic to

H`
(
G(B,FA)−,∗

)
- H`

(
(t1,2G(B, J ′))−,∗

)
� H`

((
G(Y, J ′)

)−,∗)
,

where the left hand side morphism is obtained by precomposition with the isomorphism

G(B,FAk) -∼ t Conc1G(B,FAk) = (t1,2G(B,Conc2 FA))−,k, where k > 0; cf. §IV.1.1.6.

Hence we may take(
G(B,FA) -u D �v G(B, J ′)

)
:=

(
G(B,FA) - t1,2G(B, J ′) � G(Y, J ′)

)
.

IV.6.2 Naturality of the second comparison isomorphism

Again, we narrow down the assumptions just as we have done for the introduction of the Haas
transformations in §IV.4.3.1 to express a naturality of the second comparison isomorphism from
Theorem IV.34.

Suppose given abelian categories A and B′ with enough injectives, and abelian categories B and

C. Suppose given additive functors A -
-F

F̃
B′ and a transformation F -ϕ F̃ . Let B×B′ -G C be

a biadditive functor.

Suppose given a morphism X -x X̃ in A and an object Y ∈ ObB. Let B ∈ Ob C[0(B) be a

resolution of Y , i.e. suppose a quasiisomorphism ConcY - B to exist. Suppose the following

properties to hold.

(a) The functors F and F̃ are left exact and carry injective to G(Y,−)-acyclic objects.

(b) The functor G(Y,−) is left exact.

(c) The functor G(Bk,−) is exact for all k > 0.

(d) The functor G(−, I ′) is exact for all I ′ ∈ Ob InjB′.

Let A -a Ã in C[0(InjA) be an injective resolution of X -x X̃ in A. Note that we have a

commutative quadrangle

G(B,FA)
G(B,ϕA) //

G(B,Fa)

��

G(B, F̃A)

G(B,F̃a)
��

G(B,FÃ)
G(B,ϕÃ) // G(B, F̃ Ã)

in CCx(C).
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Note that once chosen injective resolutions A of X and Ã of X̃, the image of G(B,Fa)

in KKx(C) does not depend on the choice of the resolution A -a Ã of X -x X̃, for

C[0(A) -G(B,F (−))
CCx(C) maps an elementary split acyclic complex to an elementary horizon-

tally split acyclic complex.

Lemma IV.35 The quadrangle

ĖGr
F,G(Y,−)(X)

ĖGr
F,G(Y,−)

(x)
//

o
��

ĖGr
F,G(Y,−)(X̃)

o
��

ĖI(G(B,FA))
ĖI(G(B,Fa)) // ĖI(G(B,FÃ))

commutes, where the vertical isomorphisms are those constructed in the proof of Theorem IV.34.

Proof. Let J ′ -̂
a
J̃ ′ be a CE-resolution of FA -Fa FÃ. Consider the following commutative

diagram in CCx(C).

G(Y, J ′)
G(Y,â) //

��

G(Y, J̃ ′)

��
t1,2G(B, J ′)

t1,2G(B,â)// t1,2G(B, J̃ ′)

G(B,FA)
G(B,Fa) //

OO

G(B,FÃ)

OO

An application of ĖI yields the result.

Lemma IV.36 The quadrangle

ĖGr
F,G(Y,−)(X)

hI
ϕX //

o
��

ĖGr
F̃ ,G(Y,−)

(X)

o
��

ĖI(G(B,FA))
ĖI(G(B,ϕA)) // ĖI(G(B, F̃A))

commutes, where the vertical morphisms are those constructed in the proof of Theorem IV.34.

For the definition of the first Haas transformation hI
F (x,−), see §IV.4.3.2.

Proof. Let J ′ -̂
ϕ
J̆ ′ be a CE-resolution of FA -Fϕ F̃A. Consider the following commutative

diagram in CCx(C).

G(Y, J ′)
G(Y,ϕ̂) //

��

G(Y, J̆ ′)

��
t1,2G(B, J ′)

t1,2G(B,ϕ̂) // t1,2G(BJ̆ ′)

G(B,FA)
G(B,ϕA) //

OO

G(B, F̃A)

OO

An application of ĖI yields the result.

We refrain from investigating naturality of the second comparison isomorphism in Y .
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IV.7 Acyclic CE-resolutions

We record Beyl’s Theorem [7, Th. 3.4] (here Theorem IV.40) in order to document that it fits
in our context. The argumentation is entirely due to Beyl [7, Sec. 3], so we do not claim any
originality.

Let A, B and C be abelian categories. Suppose A and B to have enough injectives. Let

A -F B -G C be left exact functors.

IV.7.1 Definition

Let T ∈ Ob C[0(B). In this §IV.7, a CE-resolution of T will synonymously (and not quite correctly)

be called an injective CE-resolution, to emphasise the fact that its object entries are injective.

We regard C[0(B) as an exact category as in Remarks IV.9 and IV.11.

Definition IV.37 A double complex B ∈ CCx(B) is called a G-acyclic CE-resolution of T if

the following conditions are satisfied.

(1) We have H0(B∗,−) ' T and Hk(B∗,−) ' 0 for all k > 1.

(2) The morphism of complexes Bk,∗ - Bk+1,∗, consisting of vertical differentials of B, is a

pure morphism for all k > 0.

(3) The object B`(Bk,∗) is G-acyclic for all k, ` > 0 .

(4) The object Z`(Bk,∗) is G-acyclic for all k, ` > 0 .

A G-acyclic CE-resolution is a G-acyclic CE-resolution of some T ∈ Ob C[0(B).

From (3, 4) and the short exact sequence Z`(Bk,∗) - Bk,` - B`+1(Bk,∗), we conclude that Bk,`

is G-acyclic for all k, ` > 0 .

From (3, 4) and the short exact sequence B`(Bk,∗) - Z`(Bk,∗) - H`(Bk,∗), we conclude that

H`(Bk,∗) is G-acyclic for all k, ` > 0 .

Example IV.38 An injective CE-resolution of T is in particular a G-acyclic CE-resolution of

T .

Note that given Y ∈ Ob C(B) and ` ∈ Z, we have Z`GY ' GZ`Y , whence the universal property

of the cokernel H`GY of GY `−1 - Z`GY induces a morphism H`GY - GH`Y . This furnishes

a transformation H`(GXk,∗) -θX GH`(Xk,∗), natural in X ∈ Ob CCx(B).

Remark IV.39 If B is a G-acyclic CE-resolution, then H`(GB−,∗) -θB GH`(B−,∗) is an iso-

morphism for all ` > 0.
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Proof. The sequences

GB`(Bk,∗) - GZ`(Bk,∗) - GH`(Bk,∗)

GZ`−1(Bk,∗) - GBk,`−1 - GB`(Bk,∗)

are short exact for k, ` > 0 by G-acyclicity of B`(Bk,∗) resp. of Z`−1(Bk,∗). In particular, the

cokernel of GBk,`−1 - GZ`(Bk,∗) is given by GH`(Bk,∗).

IV.7.2 A theorem of Beyl

Let X ∈ ObA(F,G). Let A ∈ Ob C[0(A) be a (F,G)-acyclic resolution of X. Let B ∈ CCx(B) be

a G-acyclic CE-resolution of FA.

Theorem IV.40 (Beyl, [7, Th. 3.4]) We have an isomorphism of proper spectral sequences

ĖGr
F,G(X) ' ĖI(GB)

in ˙̄Z##
∞ , C .

Proof. Since the proper Grothendieck spectral sequence is, up to isomorphism, independent of

the choice of an injective CE-resolution, as pointed out in §IV.4.2, our assertion is equivalent

to the existence of an injective CE-resolution J of FA such that ĖI(GJ) ' ĖI(GB). So

by Remark IV.33, it suffices to show that there exists an injective CE-resolution J of FA and

a morphism B - J that induces a quasiisomorphism H`(GB−,∗) - H`(GJ−,∗) for all ` > 0.

By Remark IV.39 and Example IV.38, it suffices to show that GH`(B−,∗) - GH`(J−,∗) is a

quasiisomorphism for all ` > 0.

By the conditions (1, 2) on B and by G-acyclicity of H`(Bk,∗) for k, ` > 0, the complex H`(B−,∗)

is a G-acyclic resolution of H`(FA); cf. Remark IV.10.

By Remark IV.4, there exists J ∈ Ob CCx(InjB) with vertical pure morphisms and

split rows, and a morphism B - J consisting rowwise of pure monomorphisms such that

Hk(B∗,−) - Hk(J∗,−) is an isomorphism of complexes for all k > 0. In particular, the com-

posite (Conc2 FA - B - J) turns J into an injective CE-resolution of FA.

Let ` > 0. Since B is a G-acyclic and J an injective CE-resolution of FA, both

Conc H`(FA) - H`(B−,∗) and Conc H`(FA) - H`(J−,∗) are quasiisomorphisms. Hence

H`(B−,∗) - H`(J−,∗) is a quasiisomorphism, too. Now Lemma IV.27 shows that

GH`(B−,∗) - GH`(J−,∗) is a quasiisomorphism as well.

IV.8 Applications

We will apply Theorems IV.31 and IV.34 in various algebraic situations. In particular, we will
re-prove a theorem of Beyl; viz. Theorem IV.53 in §IV.8.3.

In several instances below, we will make tacit use of the fact that a left exact functor between

abelian categories respects injectivity of objects provided it has an exact left adjoint.
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IV.8.1 A Hopf algebra lemma

We will establish Lemma IV.47 in §IV.8.1.4, needed to prove an acyclicity that enters the proof of
the comparison result Theorem IV.52 in §IV.8.2 for Hopf algebra cohomology, which in turn allows
to derive comparison results for group cohomology and Lie algebra cohomology; cf. §§ IV.8.3, IV.8.4.

IV.8.1.1 Definition

Let R be a commutative ring. Write ⊗ := ⊗R . A Hopf algebra over R is an R-algebra H

together with R-algebra morphisms H -ε R (counit) and H -∆ H ⊗H (comultiplication), and

an R-linear map H -S H (antipode) such that the following conditions (i–iv) hold.

Write x∆ =
∑

i xui ⊗ xvi for x ∈ H, where ui and vi are chosen maps from H to H, and

where i runs over a suitable indexing set. Note that
∑

i(r · x + s · y)ui ⊗ (r · x + s · y)vi =

r · (
∑

i xui ⊗ xvi) + s · (
∑

i yui ⊗ yvi) for x, y ∈ H and r, s ∈ R, whereas ui and vi are not

necessarily R-linear maps.

The elegant Sweedler notation [55, §1.2] for the images under ∆(∆⊗ 1) etc. led the author, being
new to Hopf algebras, to confusion in a certain case. So we will express them in these more naive
terms.

WriteH⊗H -∇ H, x⊗y - x·y andR -η H, r - r·1H . WriteH⊗H -τ H⊗H, x⊗y - y⊗x.

(i) We have ∆(ε⊗ idH) = (x - 1R ⊗ x), i.e.
∑

i xuiε · xvi = x for x ∈ H.

(i′) We have ∆(idH ⊗ε) = (x - x⊗ 1R), i.e.
∑

i xui · xviε = x for x ∈ H.

(ii) We have ∆(idH ⊗∆) = ∆(∆⊗ idH), i.e.
∑

i,j xui⊗xviuj⊗xvivj =
∑

i,j xuiuj⊗xuivj⊗xvi
for x ∈ H.

(iii) We have ∆(S ⊗ idH)∇ = εη, i.e.
∑

i xuiS · xvi = xε · 1H for x ∈ H.

(iii′) We have ∆(idH ⊗S)∇ = εη, i.e.
∑

i xui · xviS = xε · 1H for x ∈ H.

(iv) We have S2 = idH .

In particular, imposing (iv), we stipulate a Hopf algebra to have an involutive antipode.

IV.8.1.2 Some basic properties

In an attempt to be reasonably self-contained, we recall some basic facts on Hopf algebras needed
for Lemma IV.47 below; cf. [55, Ch. IV], [1, §2], [47, §§1-3]. In doing so, we shall use direct
arguments.

Suppose given a Hopf algebra H over R.

Remark IV.41 ([55, Prop. 4.0.1], [1, Th. 2.1.4], [47, 3.4.2])

The following hold.
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(1) We have
∑

i(x · y)ui ⊗ (x · y)vi =
∑

i,j(xui · yuj)⊗ (xvi · yvj) for x, y ∈ H.

(2) We have 1HS = 1H .

(3) We have (x · y)S = yS · xS for x, y ∈ H.

(4) We have Sε = ε.

(5) We have ∆(S ⊗ S)τ = S∆, i.e.
∑

i xuiS ⊗ xviS =
∑

i xSvi ⊗ xSui for x ∈ H.

(6) We have x · y =
∑

i

(∑
j(xui)uj · y · (xui)vjS

)
· xvi for x, y ∈ H.

(6′) We have y · x =
∑

i xui ·
(∑

j(xvi)ujS · y · (xvi)vj
)

for x, y ∈ H.

(7) We have
∑

i xvi · xuiS = xε · 1H for x ∈ H.

(7′) We have
∑

i xviS · xui = xε · 1H for x ∈ H.

Proof. Ad (1). Given x, y ∈ H, we obtain

∑
i(xy)ui ⊗ (xy)vi = (xy)∆ = x∆ · y∆ =

∑
i,j(xui · yuj)⊗ (xvi · yvj) .

Ad (2). Remarking that 1H∆ = 1H ⊗ 1H , we obtain

1HS = 1H∆(S ⊗ idH)∇ (iii)
= 1Hε · 1H = 1H .

Ad (3). Given x, y ∈ H, we obtain

(x · y)S
2× (i′)

=
∑

i,k(xui · xviε · yuk · yvkε)S
(iii′)
=

∑
i,j,k(xui · yuk · yvkε)S · xviuj · xvivjS

(iii′)
=

∑
i,j,k,`(xui · yuk)S · xviuj · yvku` · yvkv`S · xvivjS

2× (ii)
=

∑
i,j,k,`(xuiuj · yuku`)S · xuivj · yukv` · yvkS · xviS

(1)
=

∑
i,j,k(xui · yuk)ujS · (xui · yuk)vj · yvkS · xviS

(iii)
=

∑
i,k(xui · yuk)ε · yvkS · xviS

=
∑

i,k(yukε · yvk)S · (xuiε · xvi)S
2× (i)

= yS · xS .

Ad (4). Note that (yε · z)ε = yε · zε = (y · z)ε for y, z ∈ H. Given x ∈ H, we obtain

xSε
(i)
= (

∑
ixuiε · xvi)Sε = (

∑
ixuiε · xviS)ε = (

∑
ixui · xviS)ε

(iii′)
= (xε · 1H)ε = xε .
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Ad (5). Given x ∈ H, we obtain

x∆(S ⊗ S)τ
(i)
=

∑
i(xuiε · xvi)∆(S ⊗ S)τ

=
∑

i(xuiε · 1H)∆ · xvi∆(S ⊗ S)τ
(iii)
=

∑
i,j(xuiujS · xuivj)∆ · xvi∆(S ⊗ S)τ

=
∑

i,j xuiujS∆ · xuivj∆ · xvi∆(S ⊗ S)τ
(ii)
=

∑
i,j xuiS∆ · xviuj∆ · xvivj∆(S ⊗ S)τ

=
∑

i,j,k,` xuiS∆ · (xviujuk ⊗ xviujvk) · (xvivjv`S ⊗ xvivju`S)

=
∑

i,j,k,` xuiS∆ · (xviujuk · xvivjv`S ⊗ xviujvk · xvivju`S)
(ii)
=

∑
i,j,k,` xuiS∆ · (xviuj · xvivjvkv`S ⊗ xvivjuk · xvivjvku`S)

(ii)
=

∑
i,j,k,` xuiS∆ · (xviuj · xvivjvkS ⊗ xvivjuku` · xvivjukv`S)

(iii′)
=

∑
i,j,k xuiS∆ · (xviuj · xvivjvkS ⊗ xvivjukε · 1H)

=
∑

i,j,k xuiS∆ · (xviuj · (xvivjvk · xvivjukε)S ⊗ 1H)
(i)
=

∑
i,j xuiS∆ · (xviuj · xvivjS ⊗ 1H)

(iii′)
=

∑
i xuiS∆ · (xviε · 1H ⊗ 1H)

=
∑

i(xui · xviε)S∆
(i′)
= xS∆ .

Ad (6). Given x, y ∈ H, we obtain

x · y (i′)
=
∑

ixui · y · xviε
(iii)
=
∑

i,jxui · y · xviujS · xvivj
(ii)
=
∑

i,jxuiuj · y · xuivjS · xvi .

Ad (6′). Given x ∈ H, we obtain

y · x (i)
=
∑

ixuiε · y · xvi
(iii′)
=

∑
i,jxuiuj · xuivjS · y · xvi

(ii)
=
∑

i,jxui · xviujS · y · xvivj .

Ad (7). Given x ∈ H, we have∑
ixvi ·xuiS

(iv)
=
∑

ixS
2vi ·xS2uiS

(5)
=
∑

ixSuiS ·xSviS
2 (iv)

=
∑

ixSuiS ·xSvi
(iii)
= xSε·1H

(4)
= xε·1H .

Ad (7′). Given x ∈ H, we have∑
ixviS ·xui

(iv)
=
∑

ixS
2viS ·xS2ui

(5)
=
∑

ixSuiS
2 ·xSviS

(iv)
=
∑

ixSui ·xSviS
(iii′)
= xSε·1H

(4)
= xε·1H .

In the present §IV.8.1, we shall refer to the assertions Remark IV.41.(1–7′) just by (1–7′).

IV.8.1.3 Normality

Suppose given a Hopf algebra H over R, and an R-subalgebra K ⊆ H. Suppose H and K to be

flat as modules over R.
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Note that K ⊗K -H ⊗H is injective. We will identify K ⊗K with its image.

The R-subalgebra K ⊆ H is called a Hopf-subalgebra if K∆ ⊆ K ⊗ K and KS ⊆ K. In this

case, we may and will suppose the maps ui and vi to restrict to maps from K to K.

Suppose K ⊆ H to be a Hopf-subalgebra. It is called normal, if for all a ∈ K and all x ∈ H, we

have ∑
ixui · a · xviS ∈ K and

∑
ixuiS · a · xvi ∈ K .

An ideal I ⊆ H is called a Hopf ideal if I∆ ⊆ I ⊗H + H ⊗ I (where we have identified I ⊗H
and H ⊗ I with their images in H ⊗ H), Iε = 0 and IS ⊆ I. In this case, the quotient H/I

carries a Hopf algebra structure via

H/I -ε R , x+ I - xε

H/I -∆ H/I ⊗H/I , x+ I -
∑

i(xui + I)⊗ (xvi + I)

H/I -S H/I , x+ I - xS + I .

Suppose K ⊆ H to be a normal Hopf subalgebra. Write K+ := Kern(K -ε R). By (6, 6′, 3, 4)

and by writing

k∆ =
(∑

i(kui − kuiε)⊗ kvi
)

+ 1⊗ k
for k ∈ K+, the ideal HK+ = K+H is a Hopf ideal in H.

IV.8.1.4 Some remarks and a lemma

Suppose given a Hopf algebra H over R and a normal Hopf-subalgebra K ⊆ H. Suppose H and

K to be flat as modules over R.

Write H̄ := H/HK+. Given x ∈ H, write x̄ := x+HK+ ∈ H̄ for its residue class.

Let N ′, N , M , M ′ and Q be H-modules. Let P be an H̄-module, which we also consider as an

H-module via H - H̄, x - x̄.

We write K(N,M) = K(N |K ,M |K) for the R-module of K-linear maps from N to M .

Remark IV.42 Given f ∈ R(N,M) and x ∈ H, we define x · f ∈ R(N,M) by

[n](x · f) :=
∑

ixui · [xviS · n]f

for n ∈ N . This defines a left H-module structure on R(N,M).

Formally, squared brackets mean the same as parentheses. Informally, squared brackets are to
accentuate the arguments of certain maps.

Proof. We claim that x′ · (x · f) = (x′ · x) · f for x, x′ ∈ H. Suppose given n ∈ N . We obtain

[n](x′ · (x · f)) =
∑

i x
′ui · [x′viS · n](x · f)

=
∑

i,j x
′ui · xuj · [xvjS · x′viS · n]f

(3)
=

∑
i,j(x

′ui · xuj) · [(x′vi · xvj)S · n]f
(1)
=

∑
i(x
′ · x)ui · [(x′ · x)viS · n]f

= [n]((x′ · x) · f) .
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We claim that 1H · f = f . Suppose given n ∈ N . We obtain

[n](1H · f) =
∑

i1Hui · [1HviS · n]f = 1H · [1HS · n]f
(2)
= [n]f ,

remarking that 1H∆ = 1H ⊗ 1H .

I owe to G. Hiß the hint to improve a previous weaker version of Corollary IV.45 below by means
of the following Remark IV.43.

Denote by

MK := {m ∈M : a ·m = aε ·m for all a ∈ K}

the fixed point module of M under K.

Remark IV.43 Letting x̄·m := x·m for x ∈ H and m ∈MK, we define an H̄-module structure

on MK.

Proof. The value of the product x̄ ·m does not depend on the chosen representative x of x̄ since,

given y ∈ H, a ∈ K+ and m ∈MK , we have

y · a ·m = y · aε ·m = 0 .

It remains to be shown that given x ∈ H and m ∈ MK , the element x ·m lies in MK . In fact,

given a ∈ K, we obtain

a · x ·m (6′)
=

∑
i xui ·

(∑
j(xvi)ujS · a · (xvi)vj

)
·m

=
∑

i xui ·
(∑

j(xvi)ujS · a · (xvi)vj
)
ε ·m

=
∑

i,j xui · xviujSε · aε · xvivjε ·m
(4)
=

∑
i,j xui · xviujε · aε · xvivjε ·m

(ii)
=

∑
i,j xuiuj · xuivjε · aε · xviε ·m

(i′)
=

∑
i xui · aε · xviε ·m

(i′)
= aε · x ·m .

Remark IV.44 We have (R(N,M))K = K(N,M), as subsets of R(N,M).

Proof. The module ( R(N,M))K consists of the R-linear maps N -f M that satisfy∑
ixui · [xviS · n]f = xε · [n]f .

for x ∈ H and n ∈ N . The module K(N,M) consists of the R-linear maps N -f M that satisfy

[x · n]f = x · [n]f

for x ∈ H and n ∈ N . By (iii′), we have (R(N,M))K ⊇ K(N,M).
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It remains to show that (R(N,M))K ⊆ K(N,M). Given f ∈ (R(N,M))K , x ∈ H and n ∈ N , we

obtain

x · [n]f
(i′)
=

∑
i xui · xviε · [n]f

=
∑

i xui · [xviε · n]f
(iii)
=

∑
i,j xui · [xviujS · xvivj · n]f

(ii)
=

∑
i,j xuiuj · [xuivjS · xvi · n]f

=
∑

i xuiε · [xvi · n]f
(i)
= [x · n]f .

Corollary IV.45 Given f ∈ K(N,M) and x ∈ H, we define x̄ · f ∈ K(N,M) by

[n](x̄ · f) :=
∑

ixui · [xviS · n]f

for n ∈ N . This defines a left H̄-module structure on K(N,M).

Proof. By Remark IV.42, we may apply Remark IV.43 to R(N,M). By Remark IV.44, the

assertion follows.

Remark IV.46 Given f ∈ K(N,M), x ∈ H, and H-linear maps N ′ -
ν
N , M -µ M ′, we

obtain

ν(x̄ · f)µ = x̄ · (νfµ) .

Proof. Given n′ ∈ N ′, we obtain

[n′]
(
ν(x̄ · f)µ

)
=
(∑

ixui · [xviS · n
′ν]f

)
µ =

∑
ixui · [xviS · n

′](νfµ) = [n′](x̄ · (νfµ)) .

The following Lemma IV.47 has been suggested by the referee, and has been achieved with the
help of G. Carnovale. It is reminiscent of [54, Cor. 4.3], but easier. It resembles a bit a Fourier
inversion.

Note that the right H̄-module structure on H̄ induces a left H̄-module structure on R(H̄,M).

Lemma IV.47 We have the following mutually inverse isomorphisms of H̄-modules.

K(H,M) -Φ∼ R(H̄,M)

f - (x̄ -
∑

i xui · [xviS]f)

K(H,M) �Ψ∼ R(H̄,M)

(x -
∑

j xvj · [xujS ]g) � g
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Proof. We claim that Φ is a welldefined map. We have to show that fΦ is welldefined, i.e. that

its value at x̄ does not depend on the representing element x. Suppose given y ∈ H and a ∈ K+.

We obtain ∑
i(ya)ui · [(ya)viS]f

(1)
=

∑
i,j yui · auj · [(yvi · avj)S]f

(3)
=

∑
i,j yui · auj · [avjS · yviS]f

=
∑

i,j yui · auj · avjS · [yviS]f
(iii′)
=

∑
i yui · aε · [yviS]f

= 0 .

We claim that Φ is H̄-linear. Suppose given y ∈ H and x ∈ H. We obtain

[x̄]((ȳf)Φ) =
∑

i xui · [xviS](ȳf)

=
∑

i,j xui · yuj · [yvjS · xviS]f
(3)
=

∑
i,j xui · yuj · [(xvi · yvj)S]f

(1)
=

∑
i(x · y)ui · [(x · y)viS]f

= [x̄](ȳ(fΦ)) .

We claim that Ψ is a welldefined map. We have to show that gΨ is K-linear. Suppose given

a ∈ K and x ∈ H. Note that aui ∈ K for all i, whence also auiS ∈ K, and therefore

auiS ≡HK+ auiSε · 1H . We obtain

[a · x](gΨ) =
∑

j(a · x)vj · [ (a · x)ujS ]g
(1)
=

∑
i,j avi · xvj · [ (aui · xuj)S ]g

(3)
=

∑
i,j avi · xvj · [xujS · auiS ]g

=
∑

i,j avi · xvj · [xujS · auiSε ]g
(4)
=

∑
i,j auiε · avi · xvj · [xujS ]g

(i)
=

∑
j a · xvj · [xujS ]g

= a · [x](gΨ) .

We claim that ΦΨ = id
K(H,M). Suppose given x ∈ H. We obtain

[x](fΦΨ) =
∑

j xvj · [xujS ](fΦ)

=
∑

i,j xvj · xujSui · [xujSviS]f
(5)
=

∑
i,j xvj · xujviS · [xujuiS2]f

(iv)
=

∑
i,j xvj · xujviS · [xujui]f

(ii)
=

∑
i,j xvjvi · xvjuiS · [xuj]f

(7)
=

∑
j xvjε · [xuj]f

(i)
= [x]f .
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We claim that ΨΦ = id
R(H̄,M). Suppose given x ∈ H. We obtain

[x̄](gΨΦ) =
∑

i xui · [xviS](gΨ)

=
∑

i,j xui · xviSvj · [xviSujS ]g
(5)
=

∑
i,j xui · xviujS · [xvivjS2 ]g

(iv)
=

∑
i,j xui · xviujS · [xvivj ]g

(ii)
=

∑
i,j xuiuj · xuivjS · [xvi ]g

(iii′)
=

∑
i xuiε · [xvi ]g

(i)
= [x̄]g .

Finally, it follows by H̄-linearity of Φ and by Ψ = Φ−1 that Ψ is H̄-linear.

The tensor product N ⊗M is an H-module via ∆. Note that R is an H-module via ε. Note

that R⊗M 'M 'M ⊗R as H-modules by (i, i′).

Remark IV.48 (cf. [6, Lemma 3.5.1]) We have mutually inverse isomorphisms of R-modules

H̄(P, K(Q,M)) -α∼ H(P ⊗Q,M)

f - (p⊗ q - [q](pf))

H̄(P, K(Q,M)) �β∼ H(P ⊗Q,M)

(p - (q - [p⊗ q]g)) � g ,

natural in P ∈ Ob H̄-Mod, Q ∈ ObH-Mod and M ∈ ObH-Mod.

Proof. We claim that α is welldefined. We have to show that fα is H-linear. Suppose given

x ∈ H. We obtain

x · (p⊗ q) =
∑

i xui · p⊗ xvi · q
-fα

∑
i[xvi · q]((xui · p)f)

=
∑

i[xvi · q](xui · (pf))

=
∑

i,j xuiuj · [xuivjS · xvi · q](pf)
(ii)
=

∑
i,j xui · [xviujS · xvivj · q](pf)

(iii)
=

∑
i xui · [xviε · q](pf)

(i′)
= x · [q](pf)

= x · [p⊗ q](fα) .

We claim that β is welldefined. First, we have to show that [p](gβ) is K-linear. Suppose given

a ∈ K. We obtain

a · q -
[p](gβ)

[p⊗ a · q]g (i)
=
∑

i[auiε · p⊗ avi · q]g =
∑

i[aui · p⊗ avi · q]g = a · [p⊗ q]g .



215

Second, we have to show that gβ is H̄-linear. Suppose given x ∈ H. We obtain

x̄ · p -gβ (q - [x̄ · p⊗ q]g)
(i)
= (q -

∑
i[xui · xviε · p⊗ q)]g)

(iii′)
= (q -

∑
i,j[xui · p⊗ xviuj · xvivjS · q)]g)

(ii)
= (q -

∑
i,j[xuiuj · p⊗ xuivj · xviS · q)]g)

= (q -
∑

i xui · [p⊗ xviS · q]g)

= x̄ · (q - [p⊗ q]g) .

Finally, α and β are mutually inverse.

Corollary IV.49 We have H̄(P,MK) ' H̄(P, K(R,M)) ' H(P,M) as R-modules, natural in P

and M .

Proof. Note that M ' R(R,M) as H-modules, whence MK ' K(R,M) as H̄-modules by

Remarks IV.43, IV.44. Now the assertion follows from Remark IV.48, letting Q = R.

IV.8.2 Comparing Hochschild-Serre-Hopf with Grothendieck

Let R be a commutative ring. Suppose given a Hopf algebra H over R (with involutive antipode)

and a normal Hopf-subalgebra K ⊆ H; cf. §IV.8.1.3. Write H̄ := H/HK+. Suppose H, K and

H̄ to be projective as modules over R. Suppose H to be projective as a module over K.

Let B ∈ Ob C(H-Mod) be a projective resolution of R over H. Let B̄ ∈ Ob C(H̄-Mod) be a

projective resolution of R over H̄. Note that since H̄ is projective over R, B̄|R ∈ Ob C(R-Mod)

is a projective resolution of R over R. Let M be an H-module.

By Corollary IV.45 and by Remark IV.46, we have a biadditive functor

(H-Mod)◦ × H-Mod -U H̄-Mod

(X , X ′) - U(X,X ′) := K(X,X ′) .

Write
(H̄-Mod)◦ × H̄-Mod -V R-Mod

(Y , Y ′) - V (Y, Y ′) := H̄(Y, Y ′)

for the usual Hom-functor.

In particular, we shall consider the functors

H-Mod -
U(R,−)

H̄-Mod -
V (R,−)

R-Mod

X - U(R,X) ' XK

Y - V (R, Y ) ' Y H̄ .

On the other hand, we shall consider the double complex

D(M) = D−,=(M) := V
(
B̄− , U(B= , M)

)
= H̄

(
B̄− , K(B= , M)

)
.
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Note that D(M) is isomorphic in CCx(R-Mod) to H

(
B̄− ⊗R B= , M

)
, naturally in M ; cf. Re-

mark IV.48.

Lemma IV.50 The H̄-module U(H,M) is V (R,−)-acyclic.

Proof. By Lemma IV.47, this amounts to showing that R(H̄,M) is V (R,−)-acyclic, which in

turn amounts to showing that V
(
B̄ , R(H̄,M)

)
= H̄

(
B̄ , R(H̄,M)

)
has vanishing cohomology in

degrees > 1. Now,

H̄

(
B̄ , R(H̄,M)

)
' R(H̄ ⊗H̄ B̄ , M) ' R(B̄ , M) ,

whose cohomology in degree i > 1 is ExtiR(R,M) ' 0.

Lemma IV.51 Given a projective H-module P , the H̄-module U(P,M) is V (R,−)-acyclic.

Proof. It suffices to show that U(
∐

ΓH, M) '
∏

Γ U(H, M) is V (R,−)-acyclic for any in-

dexing set Γ. By Lemma IV.50, it remains to be shown that RiV (R,
∏

Γ Y ) is isomorphic to∏
Γ RiV (R, Y ) for a given H̄-module Y and for i > 1. Having chosen an injective resolution J

of Y , we may choose the injective resolution
∏

Γ J of
∏

Γ Y . Then

RiV (R,
∏

Γ Y ) ' HiV (R,
∏

Γ J) ' Hi
∏

Γ V (R, J) '
∏

Γ HiV (R, J) '
∏

Γ RiV (R, Y ) .

Theorem IV.52 The proper spectral sequences

ĖI(D(M)) and ĖGr
U(R,−), V (R,−)(M)

are isomorphic (in ˙̄Z##
∞ , R-Mod ), naturally in M ∈ ObH-Mod.

Proof. To apply Theorem IV.31 with, in the notation of §IV.5.1,(
A×A′ -F B -G C

)
=
(

(H-Mod)◦ ×H-Mod -U H̄-Mod -V (R,−)
R-Mod

)
,

and with X = R and X ′ = M , we verify the conditions (a–d′) of loc. cit. in this case.

Ad (c). We claim that B is a
(
U(−,M), V (R,−)

)
-acyclic resolution of R. We have to show that

U(Bi,M) is V (R,−)-acyclic for i > 0; cf. §IV.4.2. Since Bi is projective over H, this follows by

Lemma IV.51. This proves the claim.

Ad (c′). Let I be an injective resolution of M over H. We claim that I is a
(
U(R,−), V (R,−)

)
-

acyclic resolution of M . We have to show that U(R, I i) is V (R,−)-acyclic for i > 0. In fact, by

Corollary IV.49, U(R, I i) is an injective H̄-module. This proves the claim.

Ad (d, d′). We claim that U(Bi,−) and U(−, I i) are exact for i > 0; cf. §IV.5.1. The former

follows from H being projective over K. The latter is a consequence of I i|K being injective in

K-Mod by exactness of K-Mod -H⊗K− H-Mod. This proves the claim.
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So an application of Theorem IV.31 yields

ĖGr
U(R,−),V (R,−)(M) ' ĖGr

U(−,M),V (R,−)(R) .

To apply Theorem IV.34 with, in the notation of §IV.6.1,(
A -F B′ , B × B′ -G C

)
=
(

(H-Mod)◦ -U(−,M)
H̄-Mod , (H̄-Mod)◦ × H̄-Mod -V C

)
,

and with X = R and Y = R, we verify the conditions (a–e) of loc. cit. in this case.

Ad (c). We have already remarked that B is a
(
U(−,M), V (R,−)

)
-acyclic resolution of R.

Ad (d). As a resolution of R over H̄, we choose B̄.

So an application of Theorem IV.34 yields

ĖGr
U(−,M),V (R,−)(R) ' ĖI

(
V
(
B̄− , U(B= , M)

))
.

Naturality in M ∈ ObH-Mod remains to be shown. Suppose given M -m M̃ in H-Mod. Note

that the requirements of §IV.5.2 are met. By Proposition IV.32, with roles of A and A′ inter-

changed, we have the following commutative quadrangle.

ĖGr
U(R,−),V (R,−)(M)

ĖGr
U(R,−),V (R,−)

(m)
// ĖGr
U(R,−),V (R,−)(M̃)

ĖGr
U(−,M),V (R,−)(R)

hI
U(−,m)R //

o

OO

ĖGr
U(−,M̃),V (R,−)

(R)

o

OO

Note that the requirements of §IV.6.2 are met. By Lemma IV.36, we have the following com-

mutative quadrangle.

ĖGr
U(−,M),V (R,−)(R)

hI
U(−,m)R //

o
��

ĖGr
U(−,M̃),V (R,−)

(R)

o
��

ĖI

(
V
(
B̄− , U(B= , M)

)) ĖI(V (B̄−, U(B=,m))) // ĖI

(
V
(
B̄− , U(B= , M̃)

))

IV.8.3 Comparing Lyndon-Hochschild-Serre with Grothendieck

Let R be a commutative ring. Let G be a group and let N P G be a normal subgroup. Write

Ḡ := G/N . Let M be an RG-module. Write BarG;R ∈ Ob C(RG -Mod) for the bar resolution of

R over RG, having (BarG;R)i = RG⊗(i+1) for i > 0, the tensor product being taken over R.

Note that RG is a Hopf algebra over R via

RG -∆ RG⊗RG , g - g ⊗ g
RG -S RG , g - g−1

RG -ε R , g - 1 ,
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where g ∈ G; cf. §IV.8.1.1. Moreover, RN is a normal Hopf subalgebra of RG such that

RG/(RG)(RN)+ ' RḠ; cf. §IV.8.1.3.

Note that RG, RN and RḠ are projective over R, and that RG is projective over RN .

We have functors RG -Mod -
(−)N

RḠ -Mod -
(−)Ḡ

R-Mod, taking respective fixed points.

Theorem IV.53 (Beyl, [7, Th. 3.5]) The proper spectral sequences

ĖGr
(−)N , (−)Ḡ

(M) and ĖI

(
RG

(
(BarḠ;R)− ⊗R (BarG;R)= , M

))
are isomorphic (in ˙̄Z##

∞ , R-Mod ), naturally in M ∈ ObRG -Mod.

Beyl uses his Theorem IV.40 to prove Theorem IV.53. We shall re-derive it from Theorem IV.52,
which in turn relies on the Theorems IV.31 and IV.34.

Proof. This follows by Theorem IV.52.

IV.8.4 Comparing Hochschild-Serre with Grothendieck

Let R be a commutative ring. Let g be a Lie algebra over R that is free as an R-module. Let

n P g be an ideal such that n and ḡ := g/n are free as R-modules. Let M be a g-module, i.e. a

U(g)-module. Write Barg;R ∈ Ob C(U(g) -Mod) for the Chevalley-Eilenberg resolution of R over

U(g), having (Barg;R)i = U(g)⊗R ∧ig for i > 0; cf. [10, XIII.§7] or [59, Th. 7.7.2].

Note that U(g) is a Hopf algebra over R via

U(g) -∆ U(g)⊗ U(g) , g - g ⊗ 1 + 1⊗ g
U(g) -S U(g) , g - −g
U(g) -ε R , g - 0 ,

where g ∈ g; cf. §IV.8.1.1.

Note that U(g), U(n) and U(ḡ) are projective over R, and that U(g) is projective over U(n);

cf. [59, Cor. 7.3.9].

We have functors U(g) -Mod -
(−)n

U(ḡ) -Mod -
(−)ḡ

R-Mod, taking respective annihilated sub-

modules; cf. [59, p. 221].

Theorem IV.54 The proper spectral sequences

ĖGr
(−)n, (−)ḡ(M) and ĖI

(
U(g)

(
(Barḡ;R)− ⊗R (Barg;R)= , M

))
are isomorphic (in ˙̄Z##

∞ , R-Mod ), naturally in M ∈ ObU(g) -Mod.

Cf. Barnes, [3, Sec. IV.4, Ch. VII].

Proof. This follows by Theorem IV.52.
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IV.8.5 Comparing two spectral sequences for a change of rings

The following application is taken from [10, XVI.§6].

Let R be a commutative ring. Let A -ϕ B be a morphism of R-algebras. Consider the functors

A-Mod -A(B,−)
B-Mod and (B-Mod)◦ ×B-Mod -B(−,=)

R-Mod.

Let X be an A-module, let Y be a B-module.

We shall compare two spectral sequences with E2-terms ExtiB(Y,ExtjA(B,X)), converging to
Exti+jA (Y,X). If one views X⇑BA := A(B,X) as a way to induce from A-Mod to B-Mod, this

measures the failure of the Eckmann-Shapiro-type formula ExtiB(Y,X⇑BA)
?' ExtiA(Y,X), which

holds if B is projective over A.

Let I ∈ Ob C[0(A-Mod) be an injective resolution of X. Let P ∈ Ob C[0(B-Mod) be a projective

resolution of Y .

Proposition IV.55 The proper spectral sequences

ĖGr
A(B,−), B(Y,−)(X) and ĖI

(
B

(
P−, A(B, I

=)
))

are isomorphic (in ˙̄Z##
∞ , R-Mod ).

Proof. To apply Theorem IV.34, if suffices to remark that for each injective A-module I ′, the

B-module A(B, I
′) is injective, and thus B(Y,−)-acyclic.

Remark IV.56 The functor A(B,−) can be replaced by A(M,−), where M is an A-B-bimodule

that is flat over B.

IV.8.6 Comparing two spectral sequences for Ext and ⊗

Let R be a commutative ring. Let S be a ring. Let A be an R-algebra. Let M be an

R-S-bimodule. Let X and X ′ be A-modules. Assume that X is flat over R. Assume that

ExtiR(M,X ′) ' 0 for i > 1.

Example IV.57 Let T be a discrete valuation ring, with maximal ideal generated by t. Let

R = T/t` for some ` > 1. Let S = T/tk, where 1 6 k 6 `. Let G be a finite group, and let

A = RG. Let M = S. Let X and X ′ be RG-modules that are both finitely generated and free

over R.

Consider the functors

(A-Mod)◦ × A-Mod -A(−,=)
R-Mod -R(M,−)

S -Mod
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Proposition IV.58 The proper Grothendieck spectral sequences

ĖGr
A(X,−), R(M,−)(X

′) and ĖGr
A(−,X′), R(M,−)(X)

are isomorphic (in ˙̄Z##
∞ , S -Mod ).

Both have E2-terms ExtiR
(
M, ExtjA(X,X ′)

)
and converge to Exti+jA (X⊗RM,X ′). In particular,

in the situation of Example IV.57, both have E2-terms ExtiR
(
S, ExtjRG(X,X ′)

)
and converge to

Exti+jRG(X/tk, X ′).

Proof of Proposition IV.58. To apply Theorem IV.31, we comment on the conditions in §IV.5.1.

(c) Given a projective A-module P , we want to show that the R-module A(P,X
′) is

R(M,−)-acyclic. We may assume that P = A, which is to be viewed as an A-R-bimodule.

Now, we have ExtiR
(
M, A(A,X

′)
)
' ExtiR(M,X ′) ' 0 for i > 1 by assumption.

(c′) Given an injective A-module I ′, the R-module A(X, I
′) is injective since X is flat over R

by assumption.

IV.8.7 Comparing two spectral sequences for Ext of sheaves

Let T -f S be a flat morphism of ringed spaces, i.e. suppose that

OT ⊗f−1OS − : f−1OS -Mod - OT -Mod

is exact. Consequently, f ∗ : OS -Mod -OT -Mod is exact.

Given OS-modules F and F ′, we abbreviate OS(F ,F ′) := HomOS(F ,F ′) ∈ ObR-Mod and

OS((F ,F ′)) := HomOS(F ,F ′) ∈ ObOS -Mod.

Let F be an OS-module that has a locally free resolution B ∈ Ob C(OS -Mod); cf.

[23, Prop. III.6.5]. Let G ∈ ObOT -Mod. Let A ∈ Ob C[0(OT -Mod) be an injective resolu-

tion of G.

Consider the functors OT -Mod -f∗ OS -Mod and (OS -Mod)◦ ×OS -Mod -OS((−,=))
OS -Mod.

Proposition IV.59 The proper spectral sequences

ĖGr
f∗, OS((F ,−))(G) and ĖI

(
OS((B−, f∗A=))

)
are isomorphic (in ˙̄Z##

∞ , OS -Mod ).

In particular, both spectral sequences have E2-terms Ext iOS
(
F , (Rjf∗)(G)

)
and converge to

(Ri+jIΓF)(G), where IΓF(−) := OS((F , f∗(−))) ' f∗ OT((f
∗F ,−)). For example, if S = {∗} is

a one-point-space and if we write R := OS(S), then we can identify OS -Mod = R-Mod. If, in

this case, F = R/rR for some r ∈ R, then IΓR/rR(G) ' Γ(T,G)[r] := {g ∈ G(T ) : rg = 0}.

Proof of Proposition IV.59. To apply Theorem IV.34, we comment on the conditions in §IV.6.1.
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(c) Since f∗ maps injective OT -modules to injective OS-modules by flatness of T -f S, the

complex A is an
(
f∗, OS((F ,−))

)
-acyclic resolution of G.

(e) If I is an injective OS-module and U ⊆ S is an open subset, then I|U is an injective

OU -module; cf. [23, Lem. III.6.1]. Hence OS((−, I)) turns a short exact sequence of OS-

modules into a sequence that is short exact as a sequence of abelian presheaves, and hence

a fortiori short exact as a sequence of OS-modules. In other words, the functor OS((−, I))

is exact.
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