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Notations

∅ empty set

N set of all natural numbers

N0 set of all natural numbers and zero

R set of all real numbers

R+ set of all nonnegative real numbers

e; exp Euler’s number, exponential function

ln, log2 natural logarithm (base e), binary logarithm (base 2)

I[S] indicator function of the set S

|S| cardinality of the set S

dxe upper integer part of x ∈ R

bxc lower integer part of x ∈ R

[a1, a2], (a1, a2) closed and open interval from a1 ∈ R to a2 ∈ R

(a1, a2], [a1, a2) left half-open and right half-open interval from a1 ∈ R

to a2 ∈ R

‖ · ‖ Euclidean norm in Rd

∂

∂x
f, f ′x partial derivative of the function f : Rd → R with re-

spect to x ∈ R

∂k1+...+kd

∂xk1
1 . . . ∂xkdd

f (weak) partial derivative of order (k1, . . . , kd) of the

function f : Rd → R with respect to x = (x1, . . . , xd)

x0 = arg min
x∈D

f(x) x0 satisfies x0 ∈ D and f(x0) = min
x∈D

f(x)

a.s.; f.s. almost surely; fast sicher

i.i.d. independent and identically distributed

ix



x NOTATIONS

P probability

P [X = x ] probability that the random variable X equals x

E [X ] expected value of the random variable X

Var [X ] variance of the random variable X

F, F (t) = P [Y > t] survival function of the random variable Y (evalu-

ated at t ∈ R)

G, G(t) = P [C > t] survival function of the random variable C (evalu-

ated at t ∈ R)

τF = sup{t ∈ R : F (t) > 0} upper endpoint of the distribution of Y

τK = sup{t ∈ R : P [Z > t] > 0} upper endpoint of the distribution of Z

Fn; Gn, Ĝ
(KM) Kaplan-Meier estimates of F and G (Sections 1.2

and 2.4)

P [ Y = y | X ] conditional probability that the random variable Y

equals y given X

E [ Y | X ] conditional expectation of Y given X

Var [ Y | X ] conditional variance of Y given X

m(x) = E [ Y | X = x ] regression function (Section 1.3)

m[h](x) = E [ h(X,Y ) | X = x ] (generalized) regression function of (X,h(X,Y ))

(Section 1.4)

σ2(x) = Var [ Y | X = x ] conditional variance of Y given X = x (Section 1.4)

σ(x) = |
√
σ2(x) | conditional standard deviation of Y given X = x

F (τ |x) = P [ Y > τ | X = x ] conditional survival function of Y at fixed point

τ ∈ R given X = x (Section 1.4)

µ distribution of X

T[·,·] truncation operator (Section 2.3)

Nr(ε,F , xn1 ) Lr–ε–covering number of F on xn1 (Appendix C)

Wk([0, 1]d) Sobolev space of degree k on [0, 1]d (Section 2.1)

OP rate of stochastic convergence (Section 1.3)

IQR interquartile range (Section 6.3)

MSSE multivariate smoothing spline estimate(s), possibly

truncated (Chapter 2)

J2
k (·) roughness penalty of MSSE (Section 2.1)



Zusammenfassung

Das Auftreten von zensierten Daten ist ein typisches Phänomen in vielen verschiedenen

Bereichen innerhalb der Medizin, der Biologie, der Soziologie, der Qualitätskontrolle, der

Risikotheorie oder auch der Demographie. Zensierte Daten entstehen immer dann, wenn

die sogenannte Überlebenszeit nicht für alle untersuchten Studienteilnehmer oder Objekte

in vollem Umfang beobachtet werden kann. Für die anderen liegt dann möglicherweise

nur eine Teilinformation, die sogenannte Zensierungszeit, vor. Die Überlebenszeitanalyse,

oder allgemeiner die Ereigniszeitanalyse, versucht Aussagen über die Überlebenszeit Y

von solchen unvollständigen Daten abzuleiten. Von besonderem praktischen Interesse ist

dabei die Untersuchung des Zusammenhangs zwischen Y und einem beobachteten Vektor

kovariater Größen X ∈ Rd.

Die nichtparametrische Regressionsanalyse stellt Techniken zur Verfügung, die hilf-

reich sind, um dieses Ziel zu erreichen. Außer zur Schätzung der bedingten mittleren

Überlebenszeit kann sie zum Beispiel auch zur Schätzung der (bedingten) Überlebensfunk-

tion oder der bedingten Varianz von Y angewendet werden. Im Gegensatz zur nicht-

parametrischen Regressionsanalyse benötigen die beiden anderen üblicherweise in der

Überlebenszeitanalyse verwendeten Verfahren im Allgemeinen stärkere Voraussetzungen

an die zugrunde liegende Verteilung der zensierten Daten. Diese Verfahren beruhen zum

einen auf der Untersuchung des sogenannten hazard risk und zum anderen auf der para-

metrischen Regressionsschätzung.

Aus diesem Grund haben Techniken aus der nichtparametrischen Regressionsanalyse

in den letzten beiden Jahrzehnten zunehmend an Aufmerksamkeit in der Überlebenszeit-

analyse erlangt. Für zahlreiche Schätzverfahren wurde die schwache beziehungsweise starke

Konsistenz unter unterschiedlichen Annahmen an den Zensierungsmechanismus sowie an

xi
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die Art der Abhängigkeit zwischen Überlebenszeit und Zensierungszeit nachgewiesen. Weit

weniger ist jedoch über die Konvergenzraten solcher Schätzer bekannt, insbesondere wenn

man keine Regularitätsvoraussetzungen an die Verteilung von X stellen möchte. Im Fall

unzensierter Daten konnte Stone (1982) zeigen, dass für (p,B)-glatte Regressionsfunkti-

onen n
− 2p

2p+d die optimale Konvergenzrate bezüglich des L2-Fehlers ist.

Ziel der vorliegenden Arbeit ist die Konstruktion und die Analyse nichtparametrischer

Schätzer der bedingten mittleren Überlebenszeit, der bedingten Überlebensfunktion sowie

der bedingten Varianz der Überlebenszeit. Besondere Beachtung gilt hierbei der Analyse

der Konvergenzgeschwindigkeit dieser Schätzer in der Gegenwart zensierter Daten, ohne

Regularitätsvoraussetzungen an die Verteilung von X zu stellen (außer, dass X beschränkt

ist).

In dieser Arbeit wird ausschließlich das Modell der zufälligen Rechtszensierung be-

trachtet, welches auf eine Vielzahl wichtiger Anwendungen zutrifft. Hierbei wird ange-

nommen, dass sowohl die Überlebenszeit Y als auch die Zensierungszeit C nicht-negative

Zufallsvariablen mit unbekannter Überlebensfunktion F (t) := P [Y > t ] beziehungsweise

G(t) := P [C > t ] (t ∈ R) sind. Aufgrund dieses Zensierungstyps beobachtet man je-

doch nur die Zufallsvariable Z := min {Y,C} , das Minimum aus Überlebenszeit und

Zensierungszeit, sowie die Zufallsvariable δ := I[Y <C ], welche die Beobachtung als zen-

siert (δ = 0) beziehungsweise unzensiert (δ = 1) kennzeichnet. Ziel ist es nun, ausge-

hend von einer Stichprobe der Verteilung von (X,Z, δ), Schätzer der bedingten mitt-

leren Überlebenszeit, der bedingten Überlebensfunktion und der bedingten Varianz der

Überlebenszeit zu konstruieren.

Es ist bekannt, dass die sogenannte Regressionsfunktion m(X) = E [Y |X ] die Funk-

tion des minimalen L2-Risiko bezüglich Y ist; in der Überlebenszeitanalyse entspricht m

der bedingten mittleren Überlebenszeit. Weiterhin kann man zeigen, dass die bedingte

Varianz σ2 sowie die bedingte Überlebensfunktion F ( τ | · ) (τ ∈ R fest gewählt) von Y

gegeben X mit den Regressionsfunktionen zu (X,Y 2−m(X)2) beziehungsweise (X, I[Y >τ ])

übereinstimmen. Dies bedeutet, dass σ2(X) und F (τ |X ) die besten Approximationen von

Y 2 −m(X)2 beziehungsweise I[Y >τ ] bezüglich den entsprechenden L2-Risiken sind.

Im Rahmen dieser Arbeit erfolgt die Schätzung von m, σ2 und F ( τ | · ) daher mittels

eines speziellen “Kleinste-Quadrate”-Ansatzes, den sogenannten multivariaten Smoothing-
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Splineschätzern (MSSE).

In der gewöhnlichen Regressionanalyse werden diese Schätzer definiert durch Mini-

mierung der Summe aus betrachtetem empirischem L2-Risiko und einem geeignet ge-

wählten Strafterm λn ·J2
k (·), der einer reinen Interpolation der Daten entgegenwirken soll,

über einem Sobolevraum Wk vom Grad k (k ∈ N mit 2k > d, λn > 0). Anschließend

erfolgt im Fall fast sicher beschränkter abhängiger Variablen noch eine Stutzung der re-

sultierenden Schätzfunktion. Im Gegensatz zu gewöhnlichen Kleinste-Quadrate-Schätzern

haben MSSE den Vorteil, dass sie durch Lösen eines linearen Gleichungssystems einfach

zu bestimmen und daher schneller zu berechnen sind.

Um MSSE von m, σ2 und F ( τ | · ) für zufällig rechtszensierte Daten zu konstruieren,

wird in dieser Arbeit ein verallgemeinerter Ansatz der censoring unbiased transformation

(siehe dazu z.B. Fan und Gijbels (1994, 1996) und El Ghouch und Van Keilegom (2008))

verwendet. Die Grundidee dieser Vorgehensweise ist, die zensierten Daten mittels einer

geeignet gewählten Transformation in im Prinzip unzensierten Daten zu überführen. Das

Verfahren hat den Vorteil, dass Schätzer aus der gewöhnlichen Regressionsanalyse direkt

auf diese Daten angewendet werden können. Insbesondere lassen sich damit bereits aus

der Literatur bekannte Ergebnisse für diese Schätzer in einfacher Art und Weise auf den

Fall rechtszensierter Daten übertragen.

Im Rahmen dieser Arbeit wird für jede der drei Funktionen m, σ2 und F ( τ | · ) eine

andere Klasse von Transformationen eingeführt. Die Transformation der Daten erfolgt

dabei jeweils so, dass der bedingte Erwartungswert, die bedingte Varianz oder die be-

dingte Überlebensfunktion der transformierten Zufallsvariablen mit m, σ2 beziehungsweise

F ( τ | · ) übereinstimmt. Für die Regressionsfunktion wird dafür der in Fan und Gijbels

(1994, 1996) beschriebene Ansatz angewendet und auf Klassen von Transformationen für

σ2 und F (τ | · ) erweitert (vgl. hierzu El Ghouch und Van Keilegom (2008)).

Die oben genannten transformierten Zufallsvariablen sind jedoch alle von der unbekann-

ten Überlebensfunktion G der Zensierungszeiten abhängig und somit in einer statistischen

Anwendung nicht berechenbar. Daher führt man nun zunächst noch Schätzer der trans-

formierten Datenpunkte ein, bei denen G durch den bekannten Kaplan-Meier-Schätzer Gn

ersetzt wird. Die MSSE von m, σ2 und F (τ | · ) für zensierte Daten werden nun analog zum

unzensierten Fall auf der Grundlage dieser Daten definiert. Ein entscheidender Schritt in
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der Analyse der Regressionsschätzer ist daher die Abschätzung der Transformationsfehler,

das heißt der Beträge der Differenzen zwischen den transformierten Zufallsvariablen und

ihren Schätzern.

In Bezug auf den MSSE der bedingten Varianz gilt es noch zu beachten, dass dieser

unter Verwendung des MSSE der bedingten mittleren Überlebenszeit definiert wird, da σ2

von m abhängt. Die Untersuchung des erstgenannten Schätzverfahrens erfolgt daher mit

Hilfe vorher bewiesener Ergebnisse für den zweitgenannten Schätzer.

In der vorliegenden Arbeit werden die folgenden Regularitätsvoraussetzungen an die

zugrunde liegende Verteilung von (X,Y,C) benötigt, um das Problem der Regressions-

analyse mit zensierten Daten auf die gewöhnliche nichtparametrische Regressionsanalyse

zurückzuführen:

(RA1) X ∈ [0, 1]d f.s.

(RA2) ∃L ∈ (0,∞), so dass 0 ≤ Y ≤ L f.s. und P [C > L ] > 0

(RA3) C und (X,Y ) sind unabhängig

(RA4) G ist stetig.

Die Bedingungen (RA1) und (RA4) sind übliche Annahmen in der Konvergenz-

analyse beziehungsweise der Überlebenszeitanalyse und stellen in einer praktischen An-

wendung keine ernsthafte Einschränkung dar. Die Voraussetzungen (RA2) und (RA3)

vereinfachen das mathematische Problem der Konvergenzanalyse. Sie sind zum Beispiel in

Bezug auf Studien von fester Dauer und bei Unabhängigkeit von Zensierung und betrach-

teten kovariaten Größen realistisch.

Die Regularitätsbedingungen (RA1) – (RA4) sind ausreichend für den Nachweis

der fast sicheren Konvergenz der maximalen quadratischen Transformationsfehler. Dieses

Resultat wird in den Theoremen 3.2 – 3.4 der vorliegenden Arbeit verwendet, um unter

geeigneten Annahmen an die Parameter der Schätzer die starke Konsistenz der MSSE von

m, σ2 und F ( τ | · ) für alle Verteilungen von (X,Y,C), die (RA1) – (RA4) erfüllen, zu

beweisen. Ähnliche Ergebnisse für andere nichtparametrische Schätzer von m und F (τ | · )

sind bereits unter schwächeren Voraussetzungen an die Verteilung von (Y,C) bekannt,
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insbesondere wenn anstatt (RA3) nur gefordert wird, dass Y und C bedingt unabhängig

sind gegeben X (siehe dazu Beran (1981), Dabrowska (1987, 1989) und Pintér (2001)).

Im Gegensatz dazu ist Theorem 3.3 nach dem Kenntnisstand des Verfassers der vor-

liegenden Arbeit das erste veröffentlichte Resultat, welches die starke Konsistenz eines

nichtparametrischen Schätzers der bedingten Varianz für rechtszensierte Daten ohne Regu-

laritätsvoraussetzungen an die Verteilung von X zeigt. Im Beweis von Theorem 3.3 werden

die oben genannten Ergebnisse für die maximalen quadratischen Transformationsfehler

sowie den MSSE von m verwendet. Der Nachweis der starken Konsistenz des Schätzers

von σ2 folgt dann aus einer Untersuchung des Abstandes des empirischen L2-Fehlers und

des L2-Fehlers des MSSE von m.

Ist ein Schätzer konsistent, so konvergiert sein L2-Fehler mit wachsendem Stichproben-

umfang gegen Null. Für statistische Anwendungen ist es aber sehr oft von entscheidender

Bedeutung, wie schnell dies geschieht. Da die Konvergenzrate eines Schätzers ohne starke

Einschränkungen an die Verteilung von (X,Y ) beliebig langsam sein kann, werden in

der gewöhnlichen nichtparametrischen Regressionanalyse üblicherweise Glattheitsbedin-

gungen an m gestellt. Unter der Annahme einer p-mal stetig differenzierbaren Regressions-

funktion — insbesondere auch, dass m ein Element eines Sobolevraums vom Grad p ist

— wurde im Fall unzensierter Daten für zahlreiche Schätzer gezeigt, dass sie die oben

genannte optimale Konvergenzrate n
− 2p

2p+d erreichen (oder fast erreichen). Falls zensierte

Daten auftreten, sind Glattheitsbedingungen in der Regel jedoch nicht ausreichend, um

diese Eigenschaft nachzuweisen.

In Korollar 4.1 wird gezeigt, dass die stochastischen Konvergenzraten der in dieser

Arbeit betrachteten MSSE von den Raten dieser Schätzer im unzensierten Fall sowie den

Raten der mittleren quadratischen Transformationsfehler abhängen. Um ein nichttriviales

Resultat für letztere zu erhalten, wird neben (RA1) – (RA4) eine zusätzliche Bedingung

an die Verteilung von (Y,C) benötigt.

Unter den in dieser Arbeit getroffenen Regularitätsannahmen impliziert ein Ergebnis

von Chen und Lo (1997) für den Kaplan-Meier-Schätzer Gn, dass n−γ mit γ ∈ (0, 1) die

Konvergenzrate der mittleren quadratischen Transformationsfehler ist, falls

−
∫ τF

0
F (t)

−γ
2−γ dG(t) <∞. (1)
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Mit Bedingung (1) wird gefordert, dass ausreichend viele zensierte Beobachtungen in der

Nähe der oberen Schranke τF := sup{t ∈ R : F (t) > 0} der Verteilung von Y vorhanden

sind, so dass Gn ein stabiler Schätzer von G ist.

Für beliebiges p ∈ N mit 2p > d wird in Theorem 4.2 gezeigt, dass der MSSE von m

im Fall geeignet gewählter Parameter die stochastische Konvergenzrate(
(lnn)2

n

) 2p
2p+d

erreicht, und zwar für jede Verteilung von (X,Y,C), die (RA1) – (RA4), m ∈Wp([0, 1]d)

mit 0 < J2
p (m) < ∞ und (1) mit γ = 2p

2p+d erfüllt. Hierbei gilt es zu beachten, dass in

Theorem 4.2 bis auf (RA1) keine Annahme an die zugrunde liegende Verteilung von

X benötigt wird. Insbesondere wird nicht gefordert, dass X eine Dichte bezüglich des

Lebesgue-Borel-Maßes besitzt. Darüber hinaus kann man folgern, dass die Konvergenzrate

in Theorem 4.2 bis auf den logarithmischen Faktor optimal ist.

Analog zu Theorem 4.2 wird mit Theorem 4.4 für beliebiges p ∈ N mit 2p > d und

für beliebiges, jedoch festes τ ∈ R nachgewiesen, dass der geeignet gewählte MSSE von

F ( τ | · ) für jede Verteilung von (X,Y,C), die (RA1) – (RA4), F ( τ | · ) ∈ Wp([0, 1]d)

mit 0 < J2
p (F ( τ | · ) ) <∞ und (1) mit γ = 2p

2p+d erfüllt, die bis auf den logarithmischen

Faktor optimale Konvergenzrate (
(lnn)2

n

) 2p
2p+d

erreicht.

Um eine schnelle Konvergenzrate für den Schätzer von σ2 zu gewährleisten (welcher

wie oben beschrieben von dem MSSE von m abhängt), wird in dieser Arbeit sowohl eine

Glattheitsbedingung an σ2 als auch an m gestellt. In Theorem 4.3 wird für beliebige p1 ∈ N

und p2 ∈ N mit 2p1 > d sowie 2p2 > d gezeigt, dass die stochastische Konvergenzrate des

geeignet gewählten MSSE von σ2 für jede Verteilung von (X,Y,C), die (RA1) – (RA4),

m ∈ Wp1([0, 1]d) mit 0 < J2
p1

(m) < ∞, σ2 ∈ Wp2([0, 1]d) mit 0 < J2
p2

(σ2) < ∞ sowie (1)

mit γ = 2pmax
2pmax+d erfüllt, gegeben ist durch

(
(lnn)2

n

) 2pmin
2pmin+d

(2)

Hierbei sind pmin und pmax gegeben durch pmin := min{p1, p2} und pmax := max{p1, p2}.
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Die Rate in (2) ist optimal bis auf den logarithmischen Faktor, falls p2 ≤ p1. Wenn

jedoch p2 > p1 in Theorem 4.3 gilt, dann wird zugelassen, dass m “rauer” ist als σ2. In

diesem Fall wird (2) von der Rate des MSSE der Regressionsfunktion bestimmt und kann

sich deutlich von der optimalen Rate n
− 2p2

2p2+d unterscheiden (vgl. Cai, Levine und Wang

(2009) für ein ähnliches Ergebnis im Fall unzensierter Daten).

In den Theoremen 4.2 – 4.4 wird angenommen, dass die Parameter der MSSE geeignet

gewählt wurden. Diese Wahl hängt jedoch von der unbekannten Glattheit von m, σ2

beziehungsweise F ( τ | · ) ab. Die Schätzer aus den Theoremen 4.2 – 4.4, welche die fast

optimalen Konvergenzraten erreichen, sind daher in einer statistischen Anwendung nicht

berechenbar. Aus diesem Grund werden die bisher betrachteten MSSE in einem weiteren

Schritt so modifiziert, dass die resultierenden Schätzer die Parameter rein datenbasiert

wählen und sich automatisch an die Glattheit von m, σ2 beziehungsweise F (τ | · ) anpassen.

Ein häufig verwendetes und einfach zu handhabendes Verfahren, das es ermöglicht,

diese Ziele zu erreichen, ist die splitting-of-the-sample-Technik. Für jede mögliche Para-

meterkombination aus einer geeignet gewählten Menge werden dazu auf einem Teil der

Daten, der sogenannten Lernmenge, MSSE von m, σ2 und F ( τ | · ) wie oben beschrieben

berechnet. Für jede der drei Funktionen wird dann derjenige Schätzer ausgewählt, der

auf dem übriggeblieben Teil der Daten, der sogenannten Testmenge, die beste Vorhersage

liefert. In den Theoremen 5.2 – 5.4 wird gezeigt, dass die durch die splitting-of-the-sample-

Technik definierten Schätzer von m, σ2 und F ( τ | · ) die selben Konvergenzraten wie die

entsprechenden MSSE aus den Theoremen 4.2 – 4.4 erreichen, ohne dass man zusätzliche

Bedingungen an die Verteilung von (X,Y,C) stellen muss. Da die Parameter der Schätzer

hierbei rein datenabhängig gewählt werden, kann man daraus schließen, dass diese MSSE

sich automatisch an die unbekannte Glattheit von m, σ2 beziehungsweise F (τ | · ) anpassen.

Zu Theorem 4.2 und Theorem 5.2 analoge Resultate für Kleinste-Quadrate-Schätzer

der Regressionsfunktion wurden bereits in Máthé (2006) nachgewiesen, jedoch unter et-

was stärkeren Voraussetzungen an die Verteilung von (X,Y,C). Genauer gesagt wurde in

Máthé (2006) neben (RA1) – (RA4) die Regularitätsannahme

lim sup
t↑τF

G(t)−G(τF )

F (t)
<∞ (3)

anstatt der schwächeren Bedingung (1) verwendet und vorausgesetzt, dass m eine (p,B)-



xviii ZUSAMMENFASSUNG

glatte Funktion ist (p = k + ψ mit k ∈ N0 und 0 < ψ ≤ 1, B ∈ (0,∞)), im Gegensatz zur

Forderung m ∈ Wp([0, 1]d) mit 0 < J2
p (m) < ∞ (p ∈ N mit 2p > d) im Rahmen dieser

Arbeit.

Soweit dem Verfasser der vorliegenden Arbeit bekannt, sind Theorem 4.3, Theorem

4.4, Theorem 5.3 und Theorem 5.4 dagegen die ersten veröffentlichten Resultate auf dem

Gebiet der nichtparametrischen Regressionsschätzung mit zufälligem Design, welche die

Konvergenzrate von Schätzern von σ2 und F (τ | · ) für zensierte Daten untersuchen, ohne

Regularitätsannahmen an die Verteilung von X zu stellen.

Die oben vorgestellten Ergebnisse für die MSSE von m, σ2 und F (τ | · ) sind rein asymp-

totische Resultate. Für kleine bis mittlere Stichprobenumfänge wird die Güte der Schätz-

verfahren daher abschließend anhand realer und simulierter rechtszensierter Daten be-

wertet. Für diese Datensätze wird gezeigt, dass die in dieser Arbeit betrachteten Schätzer

gute Approximationseigenschaften zeigen, die vergleichbar zu anderen aus der Literatur

bekannten Schätzern für zufällig rechtszensierte Daten sind. Darüberhinaus werden ver-

schiedene Modifikationen der MSSE vorgestellt und untersucht, die darauf abzielen, die

Güte der Vorhersage bei begrenztem Stichprobenumfang weiter zu verbessern oder prak-

tischen Problemen in statistischen Anwendungen Rechnung zu tragen.

Kurz zusammengefasst weisen die im Rahmen dieser Arbeit erzielten Resultate unter

anderem nach, dass geeignet definierte nichtparametrische Regressionsschätzer von m, σ2

und F (τ | · ) in der Gegenwart zufällig rechtszensierter Daten die optimale Konvergenzrate

bis auf einen logarithmischen Faktor erreichen. Für die Beweise der vorgestellten Theoreme

werden dabei weniger starke Voraussetzungen als für aus der Literatur bekannte verwandte

Ergebnisse benötigt, sie gelten insbesondere ohne Annahmen an die zugrunde liegende

Verteilung von X (außer, dass X beschränkt ist).



Summary

The occurrence of censored data is a typical phenomenon in many different areas of,

e.g., medicine, biology, sociology, quality control, risk theory, and demography. Censored

data arise whenever the time of interest, the so-called lifetime cannot be fully observed

for all subjects or objects under study. For those only a partial information, the so-

called censoring time may be available. In survival analysis or more general event history

analysis, one seeks to draw conclusions for the lifetime Y from such incomplete data.

The identification of the relationship between Y and a vector of covariates X ∈ Rd is of

particular interest in this context.

Nonparametric regression analysis provides techniques which can help to achieve this

aim. Besides the estimation of the conditional mean lifetime, it may be applied in order to

estimate the (conditional) survival function and the conditional variance of Y. In contrast

to nonparametric regression analysis the two other commonly used methods in survival

analysis, hazard risk approaches and approaches based on parametric regression, usually

require stronger regularity conditions on the underlying distribution of the censored data.

Due to this fact, the application of nonparametric regression techniques in survival

analysis has attracted more and more attention during the last two decades. Many results

have been obtained which show the weak and strong consistency of various estimates

concerning different censoring mechanisms and modes of dependency of the lifetime and

the censoring time. However, far less is known about the rate of convergence of such

estimates in the presence of censored data, especially if one does not impose regularity

conditions on the distribution of X. In case that no censoring arises, Stone (1982) proved

that for (p,B)-smooth regression functions, the optimal rate of convergence with respect

to the L2 error is given by n
− 2p

2p+d .

xix



xx SUMMARY

The aim of the present work is the construction and the investigation of nonparametric

estimates of the conditional mean lifetime, the conditional survival function, and the

conditional variance of the lifetime. Special attention is devoted to the analysis of the

rate of convergence of these estimates in the presence of censored data without assuming

anything on the distribution of the design (beside that X is bounded).

In this thesis, we focus on the randomly right censorship model, which is valid for many

important applications. This model assumes that the lifetime Y and the censoring time C

are both non-negative random variables with unknown survival function F (t) := P [Y > t]

and G(t) := P [C > t] (t ∈ R), respectively. Due to the censoring mechanism, one only

observes Z := min {Y,C} , the minimum of the lifetime and the censoring time, and

δ := I[Y <C ], which stores the information whether an observation is censored (δ = 0)

or uncensored (δ = 1). Given a sample of the distribution of (X, δ, Z), we now seek to

construct estimates of the conditional mean lifetime, the conditional survival function,

and the conditional variance of the lifetime in the presence of censored data.

It is well known that the so-called regression function m(x) = E[Y |X = x ] is the

function of minimal L2 risk with respect to Y ; in survival analysis, m represents the

conditional mean lifetime. In addition, one can show that the conditional variance σ2 and

the conditional survival function F ( τ | · ) (τ ∈ R fixed) of Y given X are identical to the

regression function of (X,Y 2 −m(X)2) and (X, I[Y >τ ]), respectively. Hence, σ2(X) and

F (τ |X ) are the best approximations of Y 2−m(X)2 or I[Y >τ ] in terms of the corresponding

L2 risks. Therefore, estimates of m, σ2, and F ( τ | · ) may be constructed by applying a

(modified) least squares approach. In this thesis, multivariate smoothing spline estimates

(MSSE) are considered.

In usual nonparametric regression analysis, these estimates are defined by minimizing

the sum of the corresponding empirical L2 risk and a suitably chosen penalty term λn J
2
k (·),

which is added in order to avoid overfitting, over a Sobolev space Wk of degree k (k ∈ N

with 2k > d, λn > 0). Subsequently, the resulting estimates are truncated in case that

the dependent variables are bounded almost surely. In contrast to usual least squares

estimates, MSSE have the advantage that they can simply be calculated by solving a

linear system of equations and are therefore much faster to compute.

In order to derive MSSE of m, σ2, and F ( τ | · ) in the presence of randomly right
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censored data, the present work uses a generalized approach of the censoring unbiased

transformation (vide, e.g., Fan and Gijbels (1994, 1996) and El Ghouch und Van Keilegom

(2008)). Here, the idea is that the censored data is first converted in a suitable manner to

virtually uncensored data. The advantage of this approach is that estimates from usual

regression analysis can simply be applied to these new data. In particular, results for these

estimates to be found in literature can be easily transferred to regression in the presence

of right censored data.

To be more precise, for each of the three functions m, σ2, and F ( τ | · ), we convert

the censored data with a different kind of transformation such that the conditional mean,

the conditional variance, and the conditional survival function of the transformed random

variables is identical to m, σ2, and F (τ | · ), respectively. For the estimation of the regres-

sion function, the approach of Fan and Gijbels (1994, 1996) is used and extended to classes

of transformations for σ2 and F (τ | · ) (see also El Ghouch und Van Keilegom (2008)).

However, the random variables of these transformations all depend on the unknown

survival function G of the censoring time and are therefore not calculable in a statistical

application. Therefore, in a second step, we construct estimates of the converted data

points by replacing G with the well-known Kaplan-Meier estimate Gn. The MSSE of m,

σ2, and F ( τ | · ) in the presence censored data are now defined on the basis of these data

in analogy to the uncensored case. In our analysis, a basic requirement is therefore that

the transformation errors, i.e., the absolute differences between the converted random

variables and their estimates, are small.

Note that since σ2 depends on m, the MSSE of the conditional variance is defined via

the MSSE of the conditional mean. Hence, the investigation of the first estimate is based

on results previously obtained for the second estimate.

In this thesis, the following regularity assumptions on the distribution of (X,Y,C) are

required to reduce the problem of censored regression to usual nonparametric regression:

(RA1) X ∈ [0, 1]d a.s.

(RA2) ∃L ∈ (0,∞) such that 0 ≤ Y ≤ L a.s. and P [C > L ] > 0

(RA3) C and (X,Y ) are independent

(RA4) G is continuous.



xxii SUMMARY

Conditions (RA1) and (RA4) are common assumptions in the analysis of the rate

of convergence or in survival analysis and are no serious constraints in a statistical appli-

cation. Assumptions (RA2) and (RA3) simplify the analysis of the rate of convergence.

They are realistic if, e.g., the data are collected during a study of fixed duration and the

mechanism of censoring is independent of the covariates under study.

The regularity conditions (RA1) – (RA4) are sufficient in order to show the almost

sure convergence of the maximum squared transformation errors. Based on this result, it

is proven in Theorems 3.2 – 3.4 of the present work that under suitable conditions on the

parameters of the estimates, the MSSE of m, σ2, and F (τ | · ) are strongly consistent for all

distributions of (X,Y,C) satisfying (RA1) – (RA4). For other nonparametric estimates

of m and F ( τ | · ), similar findings were already obtained under weaker conditions on the

distribution of (Y,C), especially if one only demands that Y and C are conditionally

independent given X (vide Beran (1981), Dabrowska (1987, 1989), and Pintér (2001)).

In contrast, Theorem 3.3 is to the best knowledge of the author of this thesis the first

result to be published, which shows the strong consistency of a nonparametric regression

estimate of the conditional variance in the presence of censored data without imposing

regularity assumptions on the distribution of X. In the proof of Theorem 3.3, we use the

aforementioned results on the maximum squared transformation errors and the MSSE of

m. The verification of the strong consistency of the estimate of σ2 then follows from an

analysis of the deviation of the empirical L2 error from the L2 error of the MSSE of m.

Consistency of an estimate means that its L2 error converges to zero while the sample

size increases. But for statistical applications, it is very often essential to know how fast

this happens. Since the rate of convergence may be arbitrarily slow if one does not im-

pose strong restrictions on the distribution of (X,Y ), one typically imposes smoothness

conditions on m in usual nonparametric regression. Assuming a p times continuously dif-

ferentiable regression function — or especially that m is a function in a Sobolev space of

degree p — many different types of estimates have been shown to achieve (or to nearly

achieve) the optimal rate n
− 2p

2p+d in case that censoring does not arise. However, in cen-

sored regression, smoothness conditions are generally not sufficient in order to verify this

property.

In Corollary 4.1, it is shown that the rates of convergence of our MSSE depend on
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the rate of these estimates in usual nonparametric regression and the rate of the mean

squared transformation errors. In order to derive a nontrivial result for the latter one, an

additional assumption to (RA1) – (RA4) on the distribution of (Y,C) is required.

From a result of Chen and Lo (1997) for the Kaplan-Meier estimate Gn we deduce

that if (RA1) – (RA4) hold, the rate of convergence of the mean squared transformation

errors is given by n−γ with some γ ∈ (0, 1) if

−
∫ τF

0
F (t)

−γ
2−γ dG(t) <∞. (1)

Condition (1) basically demands that near the upper endpoint τF := sup{t ∈ R : F (t) > 0}

of the distribution of Y, there are enough censored observations such that Gn is a stable

estimate of G.

For arbitrary p ∈ N with 2p > d, we show in Theorem 4.2 that for suitably chosen

parameters, the stochastic rate of convergence of the MSSE of m is given by

(
(lnn)2

n

) 2p
2p+d

for every distribution of (X,Y,C) which satisfies (RA1) – (RA4), m ∈ Wp([0, 1]d) with

0 < J2
p (m) < ∞, and (1) with γ = 2p

2p+d . Observe that in Theorem 4.2 no assumption on

the underlying distribution besides (RA1) is required. Especially, we do not demand that

X has a density with respect to the Lebesgue-Borel measure. Moreover, one can conclude

that the rate of convergence in Theorem 4.2 is optimal up to the logarithmic factor.

In analogy to Theorem 4.2, we deduce in Theorem 4.4 for arbitrary p ∈ N with 2p > d

and for arbitrary, but fixed τ ∈ R, that the suitably chosen MSSE of F ( τ | · ) derives the

nearly optimal nonparametric rate

(
(lnn)2

n

) 2p
2p+d

for every distribution of (X,Y,C) satisfying (RA1) – (RA4), F ( τ | · ) ∈Wp([0, 1]d) with

0 < J2
p (F ( τ | · ) ) <∞, and (1) with γ = 2p

2p+d .

In order to guarantee a fast rate of convergence for the MSSE of σ2 (which depends

on the MSSE of m as mentioned above), we impose a smoothness condition on m as well

as on σ2. In Theorem 4.3, it is shown for arbitrary p1 ∈ N and p2 ∈ N with 2p1 > d and
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2p2 > d, that the rate of stochastic convergence of the suitably defined MSSE of σ2 is

given by (
(lnn)2

n

) 2pmin
2pmin+d

(2)

for every distribution of (X,Y,C) satisfying (RA1) – (RA4), m ∈ Wp1([0, 1]d) with

0 < J2
p1

(m) < ∞, σ2 ∈ Wp2([0, 1]d) with 0 < J2
p2

(σ2) < ∞, and (1) with γ = 2pmax
2pmax+d .

Here, pmin and pmax are defined by pmin := min{p1, p2} and pmax := max{p1, p2}.

In case that p2 ≤ p1, the rate in (2) is optimal up to the logarithmic factor. On the

other hand, if p2 > p1 in Theorem 4.3, then m is “rougher” than σ2. In this case, (2) is

dominated by the rate of the MSSE of the regression function and may be far from the

optimal rate n
− 2p2

2p2+d (cf. Cai, Levine, and Wang (2009) for a similar finding in the case

of uncensored data).

Note that in Theorems 4.2 – 4.4, it is assumed that the parameters of our MSSE have

been suitably chosen. However, these choices depend on the unknown smoothness of m,

σ2, and F ( τ | · ), respectively. Hence, the MSSE in Theorems 4.2 – 4.4 which achieve

the nearly optimal rates of convergence are not calculable in a statistical application.

Therefore, we further modify our MSSE in order to derive estimates which choose the

parameters in a totally data-dependent way and are able to adapt automatically to the

unknown smoothness of m, σ2, and F (τ | · ), respectively.

The splitting of the sample technique is a widely used and simple method, which allows

to achieve these aims. For each combination of parameters in a suitably defined set, MSSE

of m, σ2, and F ( τ | · ) are computed on the basis of one part of the censored data, the

so-called learning data. Then, for each of the three functions, that estimate out of all

calculated MSSE is chosen which performs best on the remaining part of the data, the

so-called testing data. In Theorems 5.2 – 5.4, it is shown that the estimates of m, σ2,

and F ( τ | · ), which are defined via the splitting of sample technique, achieve the same

rate of convergence as the corresponding estimates in Theorem 4.2 – 4.4 without further

assumptions on the distribution of (X,Y,C). Since the parameters of these MSSE are

chosen in a totally data-dependent way, one can conclude that the former estimates adapt

automatically to the unknown smoothness of m, σ2, and F (τ | · ).

Analogous results to Theorem 4.2 and Theorem 5.2 for least squares estimates of the
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regression function were verified in Máthé (2006), yet using somewhat stronger conditions

on the distribution of (X,Y,C). To be more precise, besides (RA1) – (RA4), Máthé

(2006) applied the regularity assumption

lim sup
t↑τF

G(t)−G(τF )

F (t)
<∞ (3)

instead of the weaker constraint (1) and supposed that m is (p,B)-smooth (p = k + ψ

with k ∈ N0 and 0 < ψ ≤ 1, B ∈ (0,∞)), while we require that m ∈ Wp([0, 1]d) with

0 < J2
p (m) <∞ (p ∈ N with 2p > d).

To the best knowledge of the author of the present work, Theorem 4.3, Theorem 4.4,

Theorem 5.3, and Theorem 5.4 are the first results to be published in the context of

nonparametric regression with random design, which examine the rate of convergence of

estimates of σ2 and F (τ | · ) in the presence of censored data without imposing regularity

assumptions on the distribution of X.

The results for the MSSE of m, σ2, and F (τ | · ) discussed above are valid for n tending

to infinity. For small to moderate sample sizes, the performance of the estimation proce-

dures is finally analyzed by applying them to real and simulated right censored data. For

these data sets, it is demonstrated that the estimates show good approximation character-

istics which are comparable to other estimates for randomly right censored data discussed

in literature. Furthermore, different modifications of the MSSE, which aim at the improve-

ment of the performance of the estimates for limited sample sizes or allow for practical

considerations in statistical applications, are introduced and investigated.

In a nutshell, among other things, the results stated in this thesis verify that in the

presence of right censored data, suitably defined nonparametric regression estimates of

m, σ2, and F ( τ | · ) achieve the optimal rate of convergence up to a logarithmic factor.

Compared to related results to be found literature, weaker assumptions on the distribution

of (X,Y,C) are required in order to prove the presented theorems. In particular, they are

valid without any condition on the distribution of X (beside that X is bounded).
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Chapter 1

Introduction

Chapter 1 presents the basic mathematical concepts of this thesis. A general introduction

to the area of survival analysis is given in Section 1.1, while Section 1.2 then focuses on

the randomly right censored data model. The latter one also contains results to be found

in literature, which are useful in the analysis of the asymptotic properties of our estimates.

Section 1.3 describes the problem and the basic concepts of nonparametric regression. A

simple extension of these concepts in order to estimate a generalized regression function

is outlined in Section 1.4. In Section 1.5, published results of regression analysis with

randomly right censored data are discussed. Section 1.6 specifies the basic regularity

assumptions on the underlying distribution of the data which are required in this thesis.

1.1 Survival analysis

Survival analysis or more general event history analysis is a branch of statistics that

investigates (functions of) the elapsed time since a certain event under study occurred

and/or until it occurs. This area is also known as reliability theory in engineering and as

duration modeling in economics. The term survival analysis refers to its application in

biology or medicine. Examples for the event under study are:

• Death of biological organisms

• Failure of mechanical systems

• Occurrence of a certain disease or its relapse in humans

1
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• First use of tobacco by smokers

• Re-entry into employment of non-workers

The presence of censored data is characteristic of survival analysis. These arise whenever

the time of interest cannot be fully observed for all subjects or objects under study, i.e.,

for some we may have complete observations, but for the others only partial information

may be available. Censoring can occur due to several facts, e.g., termination of a study,

drop outs or loss to follow-up.

Throughout this thesis, the times which are caused by the censoring mechanism are

denoted as censoring times and the times of interest as lifetimes (although they may

not be lifetimes but, e.g., other time-to-events, as can be seen in the examples above).

Furthermore, the observed censoring times and lifetimes will be termed as censored and

uncensored observations, respectively.

In literature, the type of the censoring mechanism is classified according to two cate-

gories: the way the censoring times are operating on the lifetimes and when subjects or

objects are entering or leaving the study. In the first category, one generally distinguishes

between:

• Right censoring: For each subject or object under study, the observed time is the

minimum of its lifetime and its censoring time. Typically, the aim of the study is to

analyze functions of the time until a certain event occurs (e.g., death of a patient).

For all subjects or objects for which the event of interest does not occur before

leaving the study, only a censored observation is reported.

• Left censoring: For each subject or object under study, the observed time is the

maximum of its lifetime and its censoring time. Here, one is usually interested in

the time since an event of interest occurred or when it did happen in the past (e.g.,

age of first use of tobacco by smokers).

• Interval censoring: This kind of censoring occurs when the times of interest cannot

be measured exactly, but they are only known to lie in a certain time interval (e.g.,

if the state of health of patients is only observed during physical examinations, and
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so the occurrence of a disease or a relapse is only known to have happened between

two inspections).

Moreover, in literature many other different censoring types of the first category are de-

scribed, such as double censoring (i.e., when the time of interest can be both, left and

right censored), mid censoring (i.e., when the lifetimes are available at two extremes,

but some of the observations in the middle are censored), or combinations and extensions

of these types.

Each of the types of the first category may occur in combination with one of the

following types of the second category:

• Time censoring (also known as Type I censoring): The censoring times are

fixed and equal for all subjects or objects under study. This type of censoring occurs,

e.g., when all subjects enter the study at time point t1 = 0 and their observation

times are stopped at the same fixed censoring time t2 > 0. In this case, the number

of censored and uncensored observations is random.

• Failure censoring (also known as Type II censoring): The study is designed in

such a way that the times of interest are observed for a predetermined percentage p

of the subjects or objects under study, while leaving 1−p percent of the observations

censored. I.e., one fixes the number of censored and uncensored observations. This

type of censoring occurs, e.g., when the study starts for all subjects at the same

time point t1 = 0 and terminates after having observed the event of interest for a

predetermined percentage p of the subjects. Here, the censoring time is random.

• Random censoring: Neither the time points when the subjects or objects enter

the study nor when they leave the study are predetermined, only the observation

period for the whole study may be fixed. In this case, the number of censored and

uncensored observation is random and the censoring times are random variables,

which are usually assumed to be independent and identically distributed.

This thesis deals with randomly right censored data, i.e., with data which are subject

to both, random censoring and right censoring. In this model, at least two different modes

of dependency of the lifetimes and the censoring times are analyzed in literature. For each
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subject or object under study, the first one requires that the lifetime and the censoring

time are independent, while the second one expects conditional independence of lifetime

and censoring time given the vector of covariates. Note that neither of these both modes

implies the other (vide Dippon (2011) for an example where the second one holds, but not

the first).

The next section explains the first scenario in more detail, including results from

literature which are relevant for the formulation and the proofs of our results. In order

to analyze asymptotic properties of our estimates, we will assume that for each subject

or object under study, the random vector containing the covariates and the lifetime is

independent of the censoring time. Obviously, this scenario is weakened by the first (and

the second) mode mentioned above. Therefore, all results presented in the next section

hold under our assumption.

1.2 Analysis of randomly right censored data

Let Y, Y1, . . . , Yn and C,C1, . . . , Cn be independent sequences of i.i.d. nonnegative random

variables. In our model, Y1, . . . , Yn represent the lifetimes of n subjects or objects under

study, while C1, . . . , Cn denote the censoring times. Due to the right censoring mechanism,

one only observes the sequence (Z, δ), (Z1, δ1), . . . , (Zn, δn), where

Z := min {Y,C} , Zi := min {Yi, Ci} (i = 1, . . . , n) (1.1)

and

δ = I[Y <C ], δi = I[Yi<Ci ] (i = 1, . . . , n). (1.2)

I.e., Zi is the observed time of subject or object i ∈ {1, . . . , n} under study, while δi

stores the information whether an observation is censored or uncensored. In case of an

uncensored observation, we have Zi = Yi and δi = 1, for a censored observation Zi = Ci

and δi = 0. Note that Z,Z1, . . . , Zn and δ, δ1, . . . , δn are both sequences of nonnegative

i.i.d. random variables.

Denote the unknown survival function of the lifetimes, the censoring times, and the

observed times as F (t) := P [Y > t] , G(t) := P [C > t] , and K(t) := P [Z > t] (t ∈ R),
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respectively. Moreover, define

τF := sup{t ∈ R : F (t) > 0},

τG := sup{t ∈ R : G(t) > 0},

and

τK := sup{t ∈ R : K(t) > 0}.

Due to the assumed independence of Y and C, we can conclude that K(t) = F (t) · G(t)

(t ∈ R) which, in turn, implies τK = min{τF , τG}.

An important task in survival analysis is the estimation of F and G. In the case of

uncensored data, a nonparametric estimate of F is given by the empirical survival function

F̂n(t) := F̂ (t, {Y1, . . . , Yn}) :=
1

n

n∑
i=1

I[Yi>t].

Due to the Glivenko-Cantelli theorem, F̂n is a strongly uniform consistent estimate of F,

i.e.,

sup
t∈R
|F̂n(t)− F (t)| → 0 a.s. (n→∞).

But for censored data, F̂n(t) is in general not calculable, since the number of lifetimes

larger than t is not known exactly for all t ∈ [0, τF ]. A nonparametric estimate of F in this

case is given by the well known Kaplan-Meier product-limit estimate (vide, e.g., Kaplan

and Meier (1958))

Fn(t) := Fn(t, {(Z1, δ1), . . . , (Zn, δn)}) :=
∏

i=1,...,n:
Z(i)≤t

[
n− i

n− i+ 1

]δ(i)
(t ∈ R), (1.3)

where we set 00 := 1. In (1.3), (Z(i), δ(i)) (i = 1, . . . , n) denote the observed pairs (Zi, δi),

arranged in such a way that

Z(1) ≤ Z(2) ≤ . . . ≤ Z(n).

In the case of ties, this ordering is defined such that censored observations (δi = 0) occur

before uncensored observations (δi = 1), i.e.,

if Z(i) = Z(j), δ(i) = 0, δ(j) = 1 ⇒ i < j. (1.4)
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Note that we have 0 ≤ Z(1) ≤ Z(n) ≤ τK and Z(n) → τK a.s. (n → ∞) (cf. Peterson

(1977)).

Since F is arbitrary, some of the Yi (i = 1, . . . , n) may be identical. In this case the

ordering of Z1, . . . , Zn into Z(1), . . . , Z(n) is not unique. However, one can see from (1.3)

that Fn is unique. Furthermore, the definition of the Kaplan-Meier estimate implies that

Fn is a monotonically decreasing step function with jumps solely at the uncensored data

points. It equals F̂n in the case that no censored observations occur, i.e., if Zi = Yi and

δi = 1 for all i = 1, . . . , n.

Similar to (1.3), the Kaplan-Meier estimate ofG based on the set {(Z1, δ1), . . . , (Zn, δn)}

is defined by

Gn(t) := Gn(t, {(Z1, δ1), . . . , (Zn, δn)}) :=
∏

i=1,...,n:
Z(i)≤t

[
n− i

n− i+ 1

]1−δ(i)
(t ∈ R). (1.5)

Gn is a monotonically decreasing step function with jumps solely at the censored data

points. Obviously, (1.3) merges into (1.5) by replacing δi = I[Yi<Ci] with 1− δi = I[Ci≤Yi]

for all i = 1, . . . , n. This together with a redefinition of Y as censoring time and C as

lifetime shows that (1.3) and (1.5) equal the definitions of the Kaplan-Meier estimates of

F and G in literature.

It is not evident why Fn and Gn should be consistent estimates. A first interpretation

in this respect was the proof of the maximum likelihood property of Fn and Gn (Kaplan

and Meier (1958)). Peterson (1977) showed that if F and G have no jumps in common,

the Kaplan-Meier estimates are strongly consistent for all t < τK , i.e.,

Fn(t)→ F (t) a.s. (n→∞)

and

Gn(t)→ G(t) a.s. (n→∞).

Since the definitions of the estimates considered in this thesis are based on the Kaplan-

Meier estimate of G (and not of F, vide Chapter 2), the following results are solely for-

mulated for Gn.

Under additional assumptions to the one of Peterson, Stute and Wang (1993) were

able to verify the analogon to the Glivenko-Cantelli theorem for G on [0, τK ] in presence

of randomly right censored data.
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Theorem 1.1. (Stute and Wang (1993)) Assume that F and G do not have jumps in

common. Then

sup
0≤t≤τK

|Gn(t)−G(t)| → 0 (n→∞) a.s. (1.6)

if and only if either P [C = τK ] = 0 or P [C = τK ] > 0 but P [Y ≥ τK ] > 0.

For the proof of Theorem 1.1, see Stute and Wang (1993), Corollary 1.3.

Theorem 1.1 implies that (1.6) holds if G is continuous on R. This result will be used

in order to show strong consistency of suitably defined regression estimates (vide Chapter

3).

In Chapter 4, we apply the following result of Chen and Lo (1997) to prove that our

estimates nearly achieve the optimal rate of convergence. Theorem 1.2 below states a

sufficient and necessary condition for the rate of strong uniform convergence of Gn−G on

[0, τK ].

Theorem 1.2. (Chen and Lo (1997)) Assume G is continuous and G (τK) > 0. Let

γ ∈ (0, 1). Then

n
γ
2 sup

0≤t≤τK
|Gn(t)−G(t)| → 0 (n→∞) a.s. (1.7)

if and only if

−
∫ τK

0
F (t)

−γ
2−γ dG(t) <∞. (1.8)

For the proof of Theorem 1.2, see Chen and Lo (1997), Theorem 2.1.

The second remark after Theorem 2.1 in Chen and Lo (1997) suggests that Theorem

1.2 also holds for discontinuous G (cf. Remark 4.3). Note that the assumption G (τK) > 0

in Theorem 1.2 together with the independence of Y and C implies τK = τF <∞.

Since F and G are unknown, τF , τG, and τK are in general unknown, too. Therefore, in

order to apply (1.7) in the analysis of the rate of convergence of our estimates, we assume

that Y ∈ [0, L] a.s. for some known upper bound L ∈ [ τK ,∞).

In Theorem 1.2, (1.8) represents a condition on the underlying distribution of (Y,C)

near its endpoint τK , where γ reflects the heaviness of the censoring near τK . Setting

γ = 0, the left hand side of (1.8) equals G(0)−G(τK) = 1−G(τK) < 1. In this case, (1.7)

would state (if γ = 0 was allowed in Theorem 1.2) the strong uniform consistency of Gn for

continuous G (cf. Theorem 1.1). The larger γ ∈ (0, 1) can be chosen such that (1.8) still



8 CHAPTER 1. INTRODUCTION

holds, the more censored observations are likely to be near the endpoint. As mentioned

by Chen and Lo (1997), the Kaplan-Meier estimates (1.3) and (1.5) are rather unstable

near τK . Since we seek to estimate G, the survival function of the censoring times, more

censored observations near the endpoint therefore means that Gn becomes a more reliable

estimate of G. Consequently, this is reflected in the rate of convergence in 1.7: The larger

γ, the faster is the rate of convergence, n−
γ
2 .

The following lemma gives a sufficient assumption under which condition (1.8) is ful-

filled:

Lemma 1.1. (Chen and Lo (1997)) Assume G is continuous, G (τK) > 0, and

0 < lim inf
t↑τK

P [ t < C ≤ τK ]γ̃

P [ t < Y ≤ τK ]
≤ lim sup

t↑τK

P [ t < C ≤ τK ]γ̃

P [ t < Y ≤ τK ]
<∞ (1.9)

for some γ̃ > 0. Then (1.8) holds for γ ∈ (0, 1) if and only if γ < 2
1+γ̃ . In particular, if

γ̃ ≤ 1, (1.8) holds for all γ < 1.

For the proof of Lemma 1.1, vide Theorem 2.1 and Corollary 2.2 in Chen and Lo

(1997).

There are basically two methods to determine the functional interrelationship between

covariates and censored response: regression based approaches and hazard risk approaches,

which include classical Cox regression as well as extensions to nonparametric models.

In the second approach, one estimates the conditional hazard rate function, which can

be used to reconstruct the conditional survival function under suitable assumptions on

its structure and under regularity conditions on the underlying distribution. Details can,

e.g., be found in the books of Andersen, Borgan, Gill, and Keiding (1993), Fleming and

Harrington (1991) or Cox and Oakes (1984), and in the works of Dippon (2011) or Huang

and Stone (1998) as well as in the literature cited therein. Concerning estimates which

are not based on structural assumptions on the hazard rate see, e.g., Kooperberg, Stone,

and Troung (1995a, 1995b) or Döhler and Rüschendorf (2002).

This thesis presents an approach for the analysis of censored data which is based

on nonparametric regression estimation. Here, the goal is to estimate the conditional

expectation of the lifetime Y given the vector X of covariates, the so-called regression

function (we extend this approach in Section 1.4 in order to estimate the conditional
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expectation of a function of Y and X). In general, this is an easier task than estimating

the conditional hazard rate function. Therefore, hazard risk approaches require stronger

regularity assumptions on the underlying distribution than regression based approaches.

The next section gives an introduction to nonparametric regression in the presence

of uncensored data. Results of regression analysis with censored data are presented in

Section 1.5.

1.3 Nonparametric regression

Let (X,Y ) be a Rd ×R–valued random vector with EY 2 <∞. No assumptions are made

on the distribution functions of the coordinates of X: Some of them may be (absolutely)

continuous, others may be step functions or a mixture of these types.

In regression analysis one wants to estimate Y (e.g., the lifetime of a patient) after

having observed X (e.g., the medical file of the patient), i.e., one wishes to determine

a function f such that f(X) is a “good” approximation of Y . Here, we measure the

“distance” between f(X) and Y by the L2 risk of f,

E
[
|f(X)− Y |2

]
, (1.10)

which we now want to minimize.

Let µ denote the distribution of X. It is well known that the L2 risk of every measurable

function f is the sum of the L2 risk of the regression function

m : Rd → R : x 7→ E [Y |X = x ]

and the L2 error :

E
[
|f(X)− Y |2

]
= E

[
|m(X)− Y |2

]
+

∫
Rd
|f(x)−m(x)|2µ(dx). (1.11)

Indeed, (1.11) follows from

E
[
|f(X)− Y |2

]
= E

[
|f(X)−m(X) +m(X)− Y |2

]
= E

[
|f(X)−m(X)|2

]
+ E

[
|m(X)− Y |2

]
+2 ·E [ (f(X)−m(X)) · (m(X)− Y ) ] , (1.12)
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taking into account that the last term on the right hand side (1.12) equals zero:

E [ (f(X)−m(X)) · (m(X)− Y ) ] = E [ E [ (f(X)−m(X)) · (m(X)− Y ) | X ] ]

= E [ (f(X)−m(X)) ·E [ (m(X)− Y ) | X ] ]

= E [ (f(X)−m(X)) · (m(X)−E [ Y | X ] ) ]

= E [ (f(X)−m(X)) · (m(X)−m(X)) ]

= E [ (f(X)−m(X)) · 0 ]

= 0. (1.13)

Since the L2 error is always non-negative, (1.11) implies that the regression function m is

the optimal predictor of Y in view of the minimization of the L2 risk:

E
[
|m(X)− Y |2

]
= min

f :Rd→R,
fmeasurable

E
[
|f(X)− Y |2

]
. (1.14)

In practical applications, the distribution of (X,Y ) and hence also m are usually un-

known. But it is often possible to observe a sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn) of this

distribution, and one can construct estimates

mn(·) := mn(·, (X1, Y1), (X2, Y2), . . . , (Xn, Yn)) : Rd → R

of the regression function. It follows from (1.11) that such an estimate mn is a good

approximation of Y in the sense that the L2 risk of mn is close to the optimal value

E
[
|m(X)− Y |2

]
if and only if the L2 error

∫
Rd |mn(x) −m(x)|2µ(dx) is small. Conse-

quently, the error caused by using an estimate mn instead of m will be measured by the

L2 error, whose convergence to zero with n tending to infinity is required.

Definition 1.1. (Consistency) A sequence of measurable regression estimates (mn)n∈N

is called weakly consistent for a certain distribution of (X,Y ) if

E

[ ∫
Rd
|mn(x)−m(x)|2µ(dx)

]
→ 0 (n→∞)

and it is called strongly consistent for a certain distribution of (X,Y ) if∫
Rd
|mn(x)−m(x)|2µ(dx)→ 0 (n→∞) with probability one.

Moreover, the sequence (mn)n∈N is called weakly (strongly) universally consistent if

it is weakly (strongly) consistent for all distributions of (X,Y ) with EY 2 <∞.
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At first, Stone (1977) raised the question whether a sequence of regression estimates is

universally consistent and answered it positively (i.e., proved weak universal consistency)

for a class of local averaging estimates. For multivariate smoothing spline estimates,

strong universal consistency was verified by Kohler and Krzyżak (2001). A survey of

various weakly and strongly consistent regression estimates can be found in Györfi, Kohler,

Krzyżak, and Walk (2002).

By demonstrating convergence of an estimate mn, one has not drawn a conclusion

about how fast the L2 error of mn converges to zero when n increases. But this might

be important if one thinks of a practical statistical application with a limited sample size.

Disappointingly, due to a result of Devroye (1982), without imposing strong restrictions

on the distribution of (X,Y ), the rate of convergence for the L2 error may be arbitrarily

slow. The question of a nontrivial rate of convergence can therefore solely be answered

positively for certain classes of distributions (cf. Devroye and Wagner (1980) and Devroye,

Györfi, and Lugosi (1996)).

Stone (1982) proved that for (p,B)-smooth regression functions and d-dimensional

covariates, no nonparametric regression estimate converges in suitably defined minimax

sense in L2 faster than n
− 2p

2p+d (vide Remark 4.1). He showed that the L2 error of a local

polynomial kernel estimate mn converges to zero in probability with this rate, i.e., that

there exists a constant b > 0 such that

lim
n→∞

P

[∫
Rd
|mn(x)−m(x)|2µ(dx) > b · n−

2p
2p+d

]
= 0 (1.15)

for all distributions of (X,Y ) with X ∈ [0, 1]d a.s., X having a density with respect to the

Lebesgue-Borel measure which is bounded away from zero and infinity, EY 2 <∞, and for

(p,B)-smooth m.

A big drawback of this result in many statistical applications is that the assumption of

X having a density with respect to the Lebesgue-Borel measure cannot be verified reliably

or is even known to be inappropriate. Kohler (2000) demonstrated that suitably defined

least squares spline estimates achieve the rate n
− 2p

2p+d in L2 for (p,B)-smooth regression

functions without any assumptions on the distribution of X (beside X is bounded a.s.).

In addition, this result also holds for estimates which do not depend on the smoothness

of the regression function m. For multivariate smoothing spline estimates (MSSE), which
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are subject of this thesis, similar results were proven by Kohler, Krzyżak, and Schäfer

(2002). To be more precise, they showed that if m is a function in the Sobolev space

Wp([0, 1]d), totally data-driven MSSE achieve in L2 the optimal rate of convergence up

to some logarithmic factor. Note that this conclusion is valid without any regularity

conditions on the distribution of the design.

In Theorem 4.2 and 5.2, we extend the results of Kohler, Krzyżak, and Schäfer (2002)

to censored data and show that under additional assumptions on the distribution of the

censoring times, the L2 error of our estimates converges to zero in probability with a rate

which is optimal up to some logarithmic factor. There, the following notation is used.

Let Vn be a nonnegative random variable and b a positive constant. If the L2 error of an

estimate mn converges to zero in probability with rate Vn, i.e.,

lim
n→∞

P

[∫
Rd
|mn(x)−m(x)|2µ(dx) > b · Vn

]
= 0,

then we write ∫
Rd
|mn(x)−m(x)|2µ(dx) = OP (Vn) .

1.4 Regression estimates for transformed data

Denote by (X,Y ), (X1, Y1), (X2, Y2), . . . , (Xn, Yn) ∈ Rd × R i.i.d. random vectors with

EY 2 <∞. (1.14) shows that the best approximation of Y based on the observation of X

in terms of the L2 risk is given by the regression function m(x) = E [ Y | X = x ] (x ∈ Rd).

In the following, we discuss how this approach can be extended to estimate h(X,Y )

after having observed X, where h : Rd × R → R is some measurable function with

E
[
h(X,Y )2

]
< ∞. This will enable us to construct estimates of, e.g., the higher or-

der conditional moments, the conditional variance, and the conditional survival function

of Y given X = x (see below). In analogy to Section 1.3, the L2 risk is used to measure

the quality of the approximation to h(X,Y ). Obviously, by replacing Y with h(X,Y ) in

(1.11), (1.12), and (1.13), one can conclude for the regression function of (X,h(X,Y )),

m[h](x) := E [ h(X,Y ) | X = x ] (x ∈ Rd), (1.16)

and for any measurable function f : Rd → R that

E
[
|f(X)− h(X,Y )|2

]
= E

[
|m[h](X)− h(X,Y )|2

]
+

∫
Rd
|f(x)−m[h](x)|2µ(dx).
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Similar to (1.14), this implies that m[h] minimizes the L2 risk of f and h, i.e.,

E
[
|m[h](X)− h(X,Y )|2

]
= min

f :Rd→R,
fmeasurable

E
[
|f(X)− h(X,Y )|2

]
.

Therefore m[h] is the best approximation of h(X,Y ) in terms of the L2 risk.

Beside trivial choices of h (e.g., h ≡ 0), m[h] will be unknown, and the task is to

construct estimates m
[h]
n of m[h], which depend on h. If h : Rd × R → R is a known

function, then an estimate m
[h]
n may simply be derived by first transforming the data

(X1, Y1), (X2, Y2), . . . , (Xn, Yn) to (X1, h(X1, Y1)), (X2, h(X2, Y2)), . . . , (Xn, h(Xn, Yn))

and then applying a regression estimate of m to the new data. In general, under the

assumption that E
[
h(X,Y )2

]
<∞, all attributes of the estimate mn transfer directly to

the estimate m
[h]
n .

Examples for such functions are h : Rd × R → R : (x, y) 7→ yq (q ∈ N), which results

in the problem of estimating the qth conditional moment of Y,

m(q)(x) := E [ Y q | X = x ] (x ∈ Rd)

(where we assume that E
[
Y 2q

]
<∞), or h : Rd ×R→ R : (x, y) 7→ I[Y >τ ] (τ ∈ R fixed),

aiming at the estimation of the conditional survival function of Y at point τ,

F (τ |x) := P [ Y > τ | X = x ] = E
[
I[Y >τ ]

∣∣ X = x
]

(x ∈ Rd).

If, in contrast, h is not known, it may still be estimable from the data (X1, Y1),. . . ,

(Xn, Yn). The probably most important example in this case is the estimation of the

conditional variance of Y,

σ2(x) := Var [ Y | X = x ] = E
[
|Y −m(X)|2

∣∣ X = x
]

(x ∈ Rd). (1.17)

Here, we set h : Rd × R→ R : (x, y) 7→ |y −m(x)|2 and assume that EY 4 <∞. Since

m is unknown in a statistical application, h is unknown, too. But using the fact that

σ2(x) = E
[
Y 2
∣∣ X = x

]
−m(x)2 = E

[
Y 2 −m(X)2

∣∣ X = x
]

(x ∈ Rd), (1.18)

one can obviously derive an estimate of σ2 by applying a regression estimate to the data

(X1, Y
2

1 −mn(X1)2), . . . , (Xn, Y
2
n −mn(Xn)2),
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where mn is an estimate of m.

The conditional variance is sometimes also termed local variance since it locally mea-

sures the prediction quality by the regression function (observe that conditional variance

is a local measure of the minimal L2 risk). In this context, it is widely used to construct

(local) confidence intervals of confidence bands for m (for the construction of confidence

bands in the presence of censored data, see, e.g., Deheuvels and Mason (2004) and the

literature cited therein).

A broad survey of regression estimation on the basis of transformed variables (especially

within parametric models), including estimates of the conditional variance, can be found in

Carroll and Ruppert (1988). Ferraty, Laksaci, Tadj, and Vieu (2010) analyze the uniform

rate of convergence of kernel estimates of the generalized regression functionm[h] for known

h and covariates in a semi-metric space. Concerning the construction of nonparametric

estimates of the conditional variance as well as their applications see, e.g., Müller and

Stadtmüller (1987), Carroll and Hall (1989), Neumann (1994), Stadtmüller and Tsybakov

(1995), Wang, Brown, Cai, and Levine (2008), and Cai, Levine, and Wang (2009). In

particular, Wang, Brown, Cai, and Levine (2008) (for d = 1) and Cai, Levine, and Wang

(2009) show that for nonparametric estimates of σ2 in fixed design regression, the optimal

rate of convergence (pointwise and in L2) in case of (p1, B1)-smooth m and (p2, B2)-smooth

σ2 is given by

max
{
n−

4p1
d , n

− 2p2
2p2+d

}
.

Notably, they thereby correct results of Carroll and Hall (1989) and Stadtmüller and Tsy-

bakov (1995) incorrectly denoting a slower rate as optimal (under the same assumptions

as given above).

In Section 2.2, a similar idea as the one described in this section will be presented which

aims at the construction of regression estimates in the presence of censored data. First

a special kind of transformation is applied to the censored data, leaving the regression

function (or more general m[h]) unchanged. Since these transformed data points depend

on the unknown survival function G of the censoring times, they have to be estimated

using the original data. In this step, the Kaplan-Meier estimate Gn (vide (1.5)) plays a

crucial role. Now, an estimate for censored regression can be constructed by applying a

usual nonparametric regression estimate to the new, virtually uncensored data. Obviously,
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the asymptotic behavior of the first estimate is determined by the behavior of the second

one and of the estimates of the transformed data, the latter being in turn ruled by the

convergence of the Kaplan-Meier estimate Gn. This is demonstrated in the proofs of our

main results in Chapters 3 – 5.

1.5 Results of regression analysis with censored data

Throughout the present work, we will assume that (X,Y,C), (X1, Y1, C1), . . . , (Xn, Yn, Cn)

are i.i.d. Rd ×R+ ×R+–valued random vectors, where C is a right censoring variable op-

erating on Y. Set Z := min {Y,C} , δ := I[Y <C ], Zi := min {Yi, Ci} , and δi = I[Yi<Ci ]

(i = 1, . . . , n). The problem of censored regression is now to estimate the regression func-

tion m(x) := E [ Y | X = x ] (x ∈ Rd) or more general m[h](x) (vide Section 1.4) from the

data

Dn := {(X1, Z1, δ1) , . . . , (Xn, Zn, δn)} . (1.19)

In 1979, Buckley and James introduced an estimate of a linear regression function,

whose consistency was investigated by James and Smith (1984). For a slight modification

of this estimate, Ritov (1990) and Lai and Ying (1991) established the asymptotic nor-

mality. Other estimates for the linear regression model are due to Miller (1976), Leurgans

(1987), and Koul, Sousarla, and Van Ryzin (1981).

The first fully nonparametric estimate of the conditional survival function in the pres-

ence of right censored data was established by Beran (1981). Under the assumption that Y

and C are conditionally independent given X, Beran (1981) and Dabrowska (1987, 1989)

showed that this estimate is weakly and strongly consistent.

Without conditions on the structure of the regression function or regularity assump-

tions on the distribution of the design, Zheng (1987) showed that suitably defined nearest

neighbor estimates of m for censored regression are strongly pointwise consistent. He

required that (X,Y ) and C are independent. In the same setting, strong consistency of

suitably defined partitioning estimates with respect to the L2 error was proven by Car-

bonez (1992). A survey of corresponding results for further nonparametric estimates of the

regression function is given in Pintér (2001). Beyond, in the more general model accord-

ing to which Y and C are conditionally independent given X, Pintér (2001) showed that
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one can use the nonparametric estimate of the conditional survival function introduced

by Beran (1981) to construct suitably defined local averaging estimates of m which are

strongly consistent with respect to the L2 error.

Though, far less is known about the rate of convergence regarding regression based

approaches for the analysis of censored data, especially without assuming regularity con-

ditions on the distribution of X. Supposing that X has a density with respect to the

Lebesgue-Borel measure, Fan and Gijbels (1994) showed that suitably defined local poly-

nomial estimates of m achieve pointwise the optimal rate of convergence. In the presence

of right censoring and possible left truncation, Park (2004) proved that for (p,B)-smooth

regression functions, suitably defined weighted least squares estimates reach the opti-

mal rate of convergence if X has a bounded density with respect to the Lebesgue-Borel

measure. However, these estimates are not calculable, since they depend on p, which is

unknown in a statistical application. Supposing that X has a bounded density, Guessoum

and Ould-Säıd (2008, 2010) derived a uniform almost sure rate of convergence for kernel

estimates of m and established its optimality for d = 1. Using the assumption that X has a

strictly positive density, Gneyou (2005), El Ghouch and Van Keilegom (2008), and Maillot

and Viallon (2009) investigated the rate of convergence of nonparametric estimates of the

generalized regression function, and deduced rates of estimates of m and the conditional

survival function.

Without regularity assumptions on the distribution of X, Máthé (2006) showed that

suitably defined least squares estimates achieve for (p,B)-smooth regression functions the

optimal global rate of convergence up to a logarithmic factor. Furthermore, this result

also holds for estimates which adapt automatically to the unknown smoothness p of m.

In order to derive this rate of convergence, Máthé (2006) assumed that (1.9) holds with

γ̃ = 1.

In this thesis, it is shown that under the somewhat weaker condition (1.8) and if m is

a function in a Sobolev space of degree p suitably defined multivariate smoothing spline

estimates (MSSE) also achieve the optimal rate of convergence up to some logarithmic

factor, without assuming regularity conditions on the distribution of X. Moreover, this

rate even holds if the parameters of these estimates are chosen in a totally data-dependent

way, i.e., for MSSE which do not depend on the smoothness of m.
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Beyond, these results are extended to estimates of the conditional variance σ2(X) and

the conditional survival function F ( τ |X) (τ ∈ R fixed) in the presence of censored data.

To be more precise, we show that under appropriate conditions on the smoothness of

m(X), σ2(X) and F ( τ |X), suitably defined MSSE of the conditional variance and the

conditional survival function also achieve their optimal rate of convergence up to some

logarithmic factor. Furthermore, this conclusion is still valid for estimates which adapt

automatically to the unknown smoothness of σ2(X) and F ( τ |X), respectively. To the

knowledge of the author of this thesis, there are so far no results published, which analyze

the rate of convergence for nonparametric estimates of σ2(X) and F (τ |X) in the presence

of censored data without imposing regularity assumptions on the distribution of X.

1.6 Regularity assumptions

Consider the situation of the randomly right censored data model in Section 1.2. In the

following, we present the regularity assumptions on the underlying distribution of (X,Y,C)

which are required in this thesis in order to generalize known bounds on the L2 error of

our estimates from nonparametric regression with random design to censored regression.

These conditions can be stated as follows:

(RA1) X ∈ [0, 1]d a.s.

(RA2) ∃L ∈ (0,∞) such that 0 ≤ Y ≤ L a.s. and P [C > L ] > 0

(RA3) C and (X,Y ) are independent

(RA4) G is continuous.

Regularity assumption (RA1) demands that with probability one, X takes only values

in some bounded set, which we choose without loss of generality equal to [0, 1]d. Bounded-

ness of X is a common assumption in the analysis of the rate of convergence of regression

estimates and is not a serious constraint in a statistical application. For instance, in sur-

vival analysis, the vector X may store the personal and the medical data of a subject under

study, such as age, weight, or the expression levels of several hundred genes measured in
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a microarray experiment. Note that if no censoring arises, one can show strong consis-

tency of a modified multivariate smoothing spline estimate without assumption (RA1)

(cf. Remark 3.2).

Regularity assumption (RA2) simplifies the analysis of the rate of convergence. It

is satisfied in statistical applications where the data are collected during a study of fixed

duration or an upper bound L > 0 on the lifetimes is known. Once this bound is deter-

mined, one can make a more or less rough guess of τF and τG, since (RA2) implies that

τF ≤ L < τG. Note that in general, τF and τG are unknown in a statistical application.

Therefore, we define our estimates with the more general and known upper bound L.

Furthermore we want to stress that in (RA2) P [C > L ] = 1 is allowed. Therefore

the results presented in this thesis are still valid if censoring does not occur. They can

be regarded as generalizations of results for multivariate smoothing splines in usual non-

parametric regression with random design (vide Kohler and Krzyżak (2001) and Kohler,

Krzyżak, and Schäfer (2002)).

Assumption (RA3) also simplifies the mathematical problem in the analysis of the

rate of convergence. As mentioned at the end of Section 1.1, there are at least two other

modes of dependency of Y and C commonly considered in the analysis of randomly right

censored data, which both weaken (RA3). The first one demands that Y and C are

independent, while the second one supposes that Y and C are conditionally independent

given X. In addition to the first mode, (RA3) requires that C and X are independent.

This condition is realistic whenever the mechanism of censoring is independent of the

covariates under study (e.g., the personal and genetic data of a subject). Of course there

exist applications where this is not satisfied, but without assumption (RA3) the analysis

of the rate of convergence seems to be much more difficult.

Regularity assumption (RA4) is used to simplify the presentation of our main results

and their proofs. As discussed in Section 1.2, we will estimate the unknown survival

function G by the Kaplan-Meier estimate Gn. Assume that F (the survival function of

the lifetimes) and G have no jumps in common and that (RA2) – (RA3) hold. If G is

continuous in τK , this together with Theorem 1.1 implies that Gn is a uniform consistent

estimate for G on [0, τK ]. If, in contrast, G is discontinuous in τK , then the assertion of

Theorem 1.1 is fulfilled if and only if Y and C both equal the upper bound of the distribu-
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tion of Y with a non-zero probability. I.e., unless in this fairly unrealistic situation, G can

only be consistently estimated by Gn on the whole interval [0, τK ] if G is continuous in

τK . Vide Remark 3.1 for further details.

Assumptions (RA1) – (RA4) are sufficient in order to prove that our estimates are

strongly consistent. However, from Theorem 1.2 one can conclude that we need an addi-

tional assumption on the distribution of (Y,C) in the analysis of the rate of convergence.

Let γ ∈ (0, 1). Observe that the regularity assumptions (RA2) and (RA3) yield

G(τK) = G(τF ) ≥ G(L) > 0. This together with (RA4) and Theorem 1.2 implies that

the rate of strong uniform convergence of Gn −G on [0, τK ] is given by n−
γ
2 if and only if

(1.8) holds, i.e.,

−
∫ τK

0
F (t)

−γ
2−γ dG(t) <∞.

Note that the left hand side of the last inequality is always non-negative, since G is

monotonically decreasing. As mentioned in Section 1.2, (1.8) reflects the heaviness of the

censoring near τK .

As discussed in Section 1.3, for (p,B)-smooth regression functions and d−dimensional

covariates, the optimal rate of convergence of an estimate in usual nonparametric re-

gression is given by n
− 2p

2p+d . In order to show that in the presence of censored data, our

estimates achieve this rate up to some logarithmic factor, Theorem 1.2 will be applied

(vide Section 4.2). Therefore, in the analysis of the rate of convergence, we will assume

that (1.8) holds with γ suitably chosen. As mentioned in Section 1.3, Chen and Lo (1997)

argue that Theorem 1.2 also holds if (RA4) is violated. In this case, one has to handle

the discontinuous points of G carefully (vide Remark 4.3).
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Chapter 2

Definition of the estimates

This chapter introduces the estimates for censored regression, which are analyzed in this

thesis. The multivariate smoothing spline estimates (MSSE) of the regression function

m(X) in the presence of uncensored data are defined in Section 2.1. Section 2.2 presents

a valuable class of transformations in order to reduce the censored regression problem to

a usual nonparametric regression problem. Based on three different transformations in

this class, MSSE of m(X), the conditional variance σ2(X), and the conditional survival

function F ( τ |X) (τ ∈ R fixed) are defined in the subsequent sections of this chapter. In

Section 2.3, our estimates of m(X) in the presence of censored data are introduced. These

MSSE depend on parameters, which control the smoothness of the estimates. An estimate

of m(X) with a totally data-driven choice of these parameters is presented in Section 2.4.

In Section 2.5, the estimates of Sections 2.3 and 2.4 are used to define MSSE of σ2(X).

Finally, Section 2.6 presents our estimates of F (τ |X) in the presence of censored data.

2.1 Multivariate smoothing spline estimates (MSSE) for un-

censored data

Let

Dn := {(X1, Y1), . . . , (Xn, Yn)} (2.1)

be a i.i.d. sample of the Rd × R–valued random vector (X,Y ) with EY 2 < ∞. Since the

regression function minimizes the L2 risk (cf. (1.14)), a natural estimate of m(X) can be

21
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obtained by minimizing an estimate of the L2 risk, the empirical L2 risk

1

n

n∑
i=1

|f(Xi)− Yi|2. (2.2)

But if one would minimize (2.2) over all (measurable) functions, this would lead to a

function which interpolates the data (at least if the X1, . . . , Xn are all distinct). There

are basically two different strategies to avoid this. For least squares estimates one min-

imizes the empirical L2 risk over some suitably chosen class of functions which depends

on the sample size n. For penalized least squares estimates or smoothing spline estimates

one minimizes the sum of the empirical L2 risk and a penalty term which penalizes the

roughness of a function, over basically all functions:

Definition 2.1. (Multivariate smoothing spline estimates (MSSE)) Let d, k ∈ N

with 2k > d, X ∈ [0, 1]d a.s., Dn be given by (2.1), and denote by Wk([0, 1]d) the Sobolev

space{
f ∈ L2([0, 1]d) :

∂κ

∂xκ1
1 . . . ∂xκdd

f ∈ L2([0, 1]d) ∀κ1, . . . , κd ∈ N0,

d∑
i=1

κi = κ ≤ k

}
. (2.3)

The multivariate smoothing spline estimate (MSSE) m̃n,(k,λn) is defined by

m̃n,(k,λn)(·,Dn) := arg min
f∈Wk([0,1]d)

(
1

n

n∑
i=1

|f(Xi)− Yi|2 + λnJ
2
k (f)

)
(2.4)

with smoothing parameter λn > 0 and penalty term

J2
k (f) :=

∑
κ1,...,κd∈N0:
κ1+...+κd=k

k!

κ1! · . . . · κd!

∫
[0,1]d

∣∣∣∣ ∂k

∂xκ1
1 . . . ∂xκdd

f(x)

∣∣∣∣2 dx. (2.5)

The condition 2k > d implies that the functions in Wk([0, 1]d) are continuous and

hence the evaluation of a function at a point is well defined. Observe that the (partial)

derivatives in (2.3) do not need to exist in a classical sense, but rather only weak derivatives

are required.

Moreover, note that in (2.4), we do not demand that the minimizer is unique. Duchon

(1976) and (under some additional assumptions) Wahba (1990) showed that a function of

the form
n∑
i=1

a1,iR(‖x−Xi‖) +

M∑
j=1

a2,jΨj(x)
(
x ∈ Rd,M =

(
d+k−1
d

) )
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achieves the minimum in (2.4), where the so-called radial basis functions R are given by

R : R+ → R : t 7→

 t2k−d ln t if 2k − d is even

t2k−d if 2k − d is odd

and Ψ1, . . . ,ΨM are all monomials xκ1
1 ·. . .·x

κd
d of total degree

∑d
i=1 κi ≤ k−1. Furthermore,

Duchon and Wahba demonstrated that the coefficients a1,1, . . . , a1,n, a2,1, . . . , a2,M ∈ R can

be computed by solving a linear system of equations.

2.2 Transformation of the censored data

Let (X,Y,C), (X1, Y1, C1), (X2, Y2, C2), . . . , (Xn, Yn, Cn) be i.i.d. Rd × R+ × R+–valued

random vectors and assume that the regularity conditions (RA1) – (RA3) hold. Note

that (RA1) and (RA2) imply that there exists a known constant L ∈ [τF ,∞) such that

with probability one (X,Y ) ∈ [0, 1]d × [0, L].

In order to define estimates of the regression function m(X) = E [ Y | X ] in the pres-

ence of censored data, several authors, in particular Buckley and James (1979), Koul,

Susarla, and Van Ryzin (1981), Leurgans (1987), Zheng (1987), and Fan and Gijbels

(1994, 1996), developed and investigated the approach of the so-called censoring unbiased

transformation. The idea behind this is to convert the censored data in an appropriate way

to virtually uncensored data, leaving m unchanged. Now estimates from usual regression

analysis can be applied to this new data.

Let B ∈ R+, h : [0, 1]d × [0, τF ] → [0, B] : (x, y) 7→ h(x, y) be a measurable function,

and m[h] be defined by (1.16), i.e.,

m[h](X) = E [ h(X,Y ) | X ] . (2.6)

In the following, we present a generalization of the censoring unbiased transformation,

which accounts for the estimation of m[h] (cf. El Ghouch and Van Keilegom (2008)).

Similar to this approach, our aim is to convert the censored data such that the regression

function to this new data is identical to m[h]. This enables us to define not only estimates

of m but also of σ2 and F (τ | ·) (τ ∈ R fixed) in censored regression similar to those in

usual nonparametric regression (cf. Sections 1.3, 1.4, and 2.1).
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For this purpose, we first note that m[h] is equal to the conditional expectation of

δh(X,Z)

G(Z)
(2.7)

given X, where δ = I[Y <C] and Z = min{Y,C} (vide (1.1) and (1.2)). Indeed, (RA2)

implies G(Z) ≥ G(L) > 0. Using this together with (RA3) and properties of conditional

expectation, one gets

E

[
δh(X,Z)

G(Z)

∣∣∣∣X] = E

[
I[Y <C ]

h(X,Y )

G(Y )

∣∣∣∣X]

= E

[
E
[
I[Y <C ]

∣∣X,Y ] h(X,Y )

G(Y )

∣∣∣∣X]
= E [ h(X,Y ) | X ]

= m[h](X). (2.8)

Now assume that for all (x, y) ∈ [0, 1]d × [0, τF ]

h(x, 0) = 0, h(x, y) is continuously differentiable with respect to y, and
∂

∂y
h(x, y) ≥ 0.

(2.9)

Set

h′t(x, t) :=
∂

∂t
h(x, t) (x ∈ [0, 1]d, t ∈ [0, τF ]).

Since (2.9) implies ∫ Y

0
h′t(X, t) dt = h(X,Y ) a.s., (2.10)

one can conclude similar to (2.8) from (RA2) and (RA3)

E

[∫ Z

0

h′t(X, t)

G(t)
dt

∣∣∣∣X] = E

[∫ Y

0

I[ t<C ] h
′
t(X, t)

G(t)
dt

∣∣∣∣X]

= E

[
E

[ ∫ Y

0

I[ t<C ] h
′
t(X, t)

G(t)
dt

∣∣∣∣ X,Y ] ∣∣∣∣X]

= E

[∫ Y

0

h′t(X, t)

G(t)
E
[
I[ t<C ]

∣∣ X,Y ] dt ∣∣∣∣X]

= E

[ ∫ Y

0
h′t(X, t) dt

∣∣∣∣ X ]
= E [ h(X,Y ) | X ]

= m[h](X). (2.11)
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Therefore, m[h] is in this case also identical to the conditional expectation of∫ Z

0

h′t(X, t)

G(t)
dt (2.12)

given X. Observe that the random variable (2.12) is well defined since (RA2) implies

G(t) ≥ G(τF ) ≥ G(L) > 0 for all t ∈ [0, τF ].

Let α[h] ∈ R. The transformation of the censored data is now defined as follows.

Replace (X,Z, δ) by (X,Y [h]), where

Y [h] :=


(1 + α[h])

∫ Z

0

h′t(X, t)

G(t)
dt− α[h]

δh(X,Z)

G(Z)
if (2.9) holds

δh(X,Z)

G(Z)
otherwise

(2.13)

and for all i = 1, . . . , n, the datum point (Xi, Zi, δi) by (Xi, Y
[h]
i ), with

Y
[h]
i :=


(1 + α[h])

∫ Zi

0

h′t(Xi, t)

G(t)
dt− α[h]

δih(Xi, Zi)

G(Zi)
if (2.9) holds

δih(Xi, Zi)

G(Zi)
otherwise.

(2.14)

From (2.8), (2.11), and (2.13), one can conclude that

E
[
Y [h]

∣∣∣ X ] = m[h](X) = E [ h(X,Y ) | X ] . (2.15)

Moreover, observe that with probability one, Y [h] is bounded in absolute value by

some constant L?[h] > 0. Indeed, 0 ≤ Y ≤ L < ∞ a.s., 1 ≥ G(t) ≥ G(τF ) ≥ G(L) > 0

(t ∈ [0, τF ]), and h(x, y) ∈ [0, B] ((x, y) ∈ [0, 1]d × [0, τF ]) imply in case that (2.9) holds

|Y [h]| ≤
∣∣∣∣(1 + α[h])

∫ Z

0

h′t(X, t)

G(t)
dt

∣∣∣∣+

∣∣∣∣α[h]
δh(X,Z)

G(Z)

∣∣∣∣
≤ (1 + |α[h]|)

∣∣∣∣∫ Z

0

h′t(X, t)

G(t)
dt

∣∣∣∣+ |α[h]|
∣∣∣∣δh(X,Z)

G(Z)

∣∣∣∣
≤ (1 + |α[h]|)

1

G(L)

∣∣∣∣∫ Z

0
h′t(X, t) dt

∣∣∣∣+ |α[h]|
h(X,Z)

G(L)

= (1 + 2|α[h]|)
h(X,Z)

G(L)

≤ (1 + 2|α[h]|)
B

G(L)
=: L?[h] <∞ a.s., (2.16)
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(where we used (2.10)), and if (2.9) is violated

|Y [h]| ≤ h(X,Z)

G(Z)
≤ B

G(L)
≤ L?[h] <∞ a.s., (2.17)

Due to (2.15), the estimation of m[h] can be based on the transformed data

(X1, Y
[h]

1 ), . . . , (Xn, Y
[h]
n )

If our goal is to estimate the regression function m(X) = E [ Y | X ] , then (2.6) de-

mands that we choose the function h such that h : [0, 1]d × [0, τF ] : (x, y) 7→ y. In this

case, (2.9) obviously holds with h′y : [0, 1]d× [0, τF ] : (x, y) 7→ 1. This yields that Y [h] then

equals

(1 + α[h])

∫ Z

0

1

G(t)
dt− α[h]

δZ

G(Z)
. (2.18)

Note that (2.18) agrees with the transformed random variable in the “new class” of trans-

formations introduced in Fan and Gijbels (1994, 1996), which is therefore a special case

of our approach (yet observe that El Ghouch and Van Keilegom (2008) use a more gen-

eral transformation for the estimation of m[h] than the present work by adding a suitably

defined random variable Ỹ with E[ Ỹ |X ] = 0 to (2.13)). The next section discusses the

construction of estimates of the regression function in the presence of censored data in

more detail.

If (2.9) holds, then (2.13) and (2.14) depend on the transformation parameter α[h] ∈ R.

For the estimation of m, one could, e.g., choose α[h] such that Y [h] ≥ 0 a.s. (corresponding

to Y ≥ 0 a.s.), which is for example fulfilled for α[h] = 0 (vide Leurgans (1987)), α[h] = −1

(vide Koul, Susarla, and Van Ryzin (1981)) or the data-dependent choice of Fan and

Gijbels (1994, 1996). For general functions h, the parameter α[h] may be defined in an

analogous way. Note that the results of this thesis are valid for any (fixed) α[h] ∈ R.

Now assume that the values of h(x, y) are known for all (x, y) ∈ [0, 1]d × [0, τF ]. But

even in this case, the random variables Y
[h]

1 , . . . , Y
[h]
n are not calculable, since the survival

function G of the censoring time is unknown in a statistical application. An obvious idea

is to replace G in (2.14) by the Kaplan-Meier product-limit estimate Gn (vide (1.5)).
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For all i = 1, . . . , n, this results in

Ŷ
[h]
i :=


(1 + α[h])

∫ Zi

0

h′t(Xi, t)

Gn(t)
dt− α[h]

δih(Xi, Zi)

Gn(Zi)
if (2.9) holds

δih(Xi, Zi)

Gn(Zi)
otherwise,

(2.19)

where we set 0
0 := 0. Moreover, let

D̂[h]
n :=

{
(X1, Ŷ

[h]
1 ), . . . , (Xn, Ŷ

[h]
n )
}
. (2.20)

Observe that Ŷ
[h]

1 , . . . , Ŷ
[h]
n depend on the sample size n and this is suppressed in our

notation. Furthermore, we want to stress that these random variables are in general

neither independent nor identically distributed or even fulfill an equality similar to (2.15).

The key step in the proof of our main results (vide Sections 3.2 and 4.2) is rather to

control the squared differences |Y [h]
1 − Ŷ [h]

1 |2, . . . , |Y
[h]
n − Ŷ [h]

n |2, which we term as squared

transformation errors.

In the next sections, we will specify three choices of h, each resulting in a different

transformed data set (2.20). Based on this virtually uncensored data, we then define

estimates of the regression function m, the conditional variance σ2, and the conditional

survival function F (τ | ·) (τ ∈ R fixed) of Y given X in the presence of censored data.

2.3 Estimating the regression function from censored data

Let the assumptions of Section 2.2 hold. In this section, our estimates of the regression

function m(X) = E [ Y | X ] in the presence of censored data are defined. Consequently,

we set h = h1 in (2.6), where

h1 : [0, 1]d × [0, τF ]→ [0, B1] : (x, y) 7→ y

and B1 := L ≥ τF . In this case, it is obvious that (2.9) holds with h′y(x, y) = h′1,y(x, y) = 1

for all (x, y) ∈ [0, 1]d× [0, τF ]. As mentioned in Section 2.2, (2.13) and (2.14) thus coincide

with the transformed random variables in the “new class” of transformations defined in

Fan and Gijbels (1994, 1996).
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Set α1 := α[h1]. Next, the following notations for the transformed random variables

Y [h1], Y
[h1]

1 , . . . , Y
[h1]
n are introduced:

U (1) := Y [h1] = (1 + α1)

∫ Z

0

1

G(t)
dt− α1

δZ

G(Z)
(2.21)

and for all i = 1, . . . , n

U
(1)
i := Y

[h1]
i = (1 + α1)

∫ Zi

0

1

G(t)
dt− α1

δiZi
G(Zi)

. (2.22)

Since (2.15) and (2.16) imply that

E
[
U (1)

∣∣∣ X ] = m(X) (2.23)

and

|U (1)| ≤ (1 + 2|α1|)
L

G(L)
=: L?1 <∞ a.s., (2.24)

the estimation of m will now be based on the estimates of the transformed data (cf. Section

2.2).

Therefore, we set

Û
(1)
i := Ŷ

[h1]
i := (1 + α1)

∫ Zi

0

1

Gn(t)
dt− α1

δiZi
Gn(Zi)

(i = 1, . . . , n) (2.25)

(0
0 := 0) and

D̂(1)
n := D̂[h1]

n :=
{

(X1, Û
(1)
1 ), . . . , (Xn, Û

(1)
n )
}
. (2.26)

For the data D̂(1)
n , multivariate smoothing spline estimates of m for censored regression can

now be defined in analogy to Definition 2.1.

Let d, k ∈ N with 2k > d and λn > 0. Our MSSE of m for censored data is given by

m̃n,(k,λn)(·) := m̃n,(k,λn)(·, D̂(1)
n ) := arg min

f∈Wk([0,1]d)

(
1

n

n∑
i=1

|f(Xi)− Û (1)
i |

2 + λnJ
2
k (f)

)
(2.27)

with Wk([0, 1]d) and J2
k (·) defined as in (2.3) and (2.5), respectively.

Since 0 ≤ Y = h1(X,Y ) ≤ L < ∞ a.s. (vide (RA2)), it holds with probability one

that 0 ≤ m(X) = E [ Y | X ] ≤ L. Hence, we now truncate our estimate (2.27) such that

it is bounded in the same way:

mn,(k,λn)(·) := T[0,L]m̃n,(k,λn)(·). (2.28)
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Here, for all a1, a2, t ∈ R with a1 ≤ a2,

T[a1,a2]t :=


a2 if t > a2

t if a1 ≤ t ≤ a2

a1 if t < a1,

(2.29)

and for all functions f : Rd → R, we define T[a1,a2]f : Rd → R by

(
T[a1,a2]f

)
(x) := T[a1,a2](f(x)) (x ∈ Rd). (2.30)

2.4 Adaptation via splitting of the sample

Assume that the conditions of Section 2.2 hold. The estimates (2.27) and (2.28) depend

on the smoothing parameter λn and on k, which defines the degree of the Sobolev space

Wk([0, 1]d). It is evident that a non-data-dependent choice of these parameters can lead to

very unsatisfactory results. Therefore we modify the estimate in a second step and choose

k and λn in a totally data-dependent way via the splitting of the sample technique.

Let n ≥ 2. We split the sample (X1, Z1, δ1), . . . , (Xn, Zn, δn) into two parts, the so-

called learning or training data

D(1)
nl := {(X1, Z1, δ1), . . . , (Xnl , Znl , δnl)} (2.31)

and the so-called testing data

D(1)
nt := {(Xnl+1, Znl+1, δnl+1), . . . , (Xn, Zn, δn)} , (2.32)

where nt, nl ∈ N with nt + nl = n.

Next, the estimates of the transformed data points (2.22) are computed separately for

both of these sets. Let n0, n1 ∈ N with n0 ≤ n1. In analogy to (1.5), the Kaplan-Meier

estimate of G based on the sample {(Zn0 , δn0), . . . , (Zn1 , δn1)} is defined by

Ĝ(KM)(t, {(Zn0 , δn0), . . . , (Zn1 , δn1)}) :=
∏

i=n0,...,n1:
Z(i)≤t

[
n1 − i

n1 − i+ 1

]1−δ(i)
(t ∈ R), (2.33)

where (Z(i), δ(i)) denote the observed pairs (Zi, δi) (i = n0, . . . , n1), arranged in such a

way that Z(n0) ≤ Z(n0+1) ≤ . . . ≤ Z(n1). Observe that for all t ∈ R, (1.5) implies that

Gn(t) = Ĝ(KM)(t, {(Z1, δ1), . . . , (Zn, δn)}).
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Let α1 ∈ R and denote the Kaplan-Meier estimates calculated on the learning data

and testing data by

Gnl(·) := Ĝ(KM)(·, {(Z1, δ1), . . . , (Znl , δnl)}) (2.34)

and

Gnt(·) := Ĝ(KM)(·, {(Znl+1, δnl+1), . . . , (Zn, δn)}), (2.35)

respectively. Similar to (2.25), the estimates of the random variables (2.22) are now defined

as

Û
(1)
i,nl

:= (1 + α1)

∫ Zi

0

1

Gnl(t)
dt− α1

δiZi
Gnl(Zi)

(i = 1, . . . , nl) (2.36)

and

Û
(1)
i,nt

:= (1 + α1)

∫ Zi

0

1

Gnt(t)
dt− α1

δiZi
Gnt(Zi)

(i = nl + 1, . . . , n) (2.37)(
0
0 := 0

)
. The transformed learning and testing data are therefore given by

D̂(1)
nl :=

{
(X1, Û

(1)
1,nl

), . . . , (Xnl , Û
(1)
nl,nl)

}
(2.38)

and

D̂(1)
nt :=

{
(Xnl+1, Û

(1)
nl+1,nt

), . . . , (Xn, Û
(1)
n,nt)

}
. (2.39)

Moreover denote the complete transformed data set by

D̂(1)
nl,nt :=

{
(X1, Û

(1)
1,nl

), . . . , (Xnl , Û
(1)
nl,nl), (Xnl+1, Û

(1)
nl+1,nt

), . . . , (Xn, Û
(1)
n,nt)

}
. (2.40)

Note that D̂(1)
nl and D̂(1)

nt are independent (in the sense that the two sequences of

random variables in (2.38) and (2.39) are independent). In contrast, if one simply splits

the data (2.26) into two parts, each of the random variables Ûi (i ∈ {1, . . . , n}) given by

(2.25) depends on the Kaplan-Meier estimate Gn(·) = Ĝ(KM)(·, {(Z1, δ1), . . . , (Zn, δn)})

and therefore on the whole sample (Z1, δ1), . . . , (Zn, δn). I.e., as mentioned in Section 2.2,

Û1, . . . , Ûn are in general not independent.

Now consider the set of parameters Kn × Λn with

Kn :=

{⌊
d

2

⌋
+ 1,

⌊
d

2

⌋
+ 2, . . . ,

⌊
d

2

⌋
+
⌈
(lnn)2

⌉}
(2.41)

and

Λn :=

{
lnn

2n
,

lnn

2n−1
, . . . ,

lnn

1

}
. (2.42)
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For each pair of parameters (k, λ) ∈ Kn × Λn, we first use the data (2.38) to define an

estimate mnl,(k,λ) via

m̃nl,(k,λ)(·) := m̃nl,(k,λ)(·, D̂(1)
nl ) := arg min

f∈Wk([0,1]d)

(
1

nl

nl∑
i=1

|f(Xi)− Û (1)
i,nl
|2 + λJ2

k (f)

)
, (2.43)

where Wk([0, 1]d) and J2
k (·) are given by (2.3) and (2.5), and

mnl,(k,λ)(·, D̂(1)
nl ) := mnl,(k,λ)(·) := T[0,L]m̃nl,(k,λ)(·). (2.44)

Then we choose that estimate out of all calculated estimates (2.44) which performs best

on the data (2.39) in terms of the empirical L2 risk. To be more precise, our modified

MSSE is defined by

mn(·) := mnl,(k(1),λ(1))(·), (2.45)

where (
k(1), λ(1)

)
:= arg min

(k,λ)∈Kn×Λn

(
1

nt

n∑
i=nl+1

|mnl,(k,λ)(Xi)− Û (1)
i,nt
|2
)
. (2.46)

2.5 Estimating the conditional variance

Let the assumptions of Section 2.2 hold. Below, we consider the estimation of the condi-

tional variance of Y given X, i.e.,

σ2(X) := Var [ Y | X ] , (2.47)

in the presence of censored data. Since

σ2(X) = E
[
Y 2
∣∣ X ]−m(X)2 = E

[
Y 2 −m(X)2

∣∣ X ] , (2.48)

σ2(X) is the regression function to (X,Y 2 −m(X)2) (cf. (1.18)). Due to (2.48), we can

split our problem of estimating σ2 into two parts: The transformation of the censored data

in order to estimate the conditional second moment E
[
Y 2
∣∣ X ] , and the estimation of the

squared regression function m(X)2. For the latter, one may simply use the squared MSSE

from Section 2.3 or from Section 2.4, i.e., estimate m(X)2 by mn,(k,λn)(X)2 or mn(X)2,

where mn,(k,λn) and mn are given by (2.28) and (2.45), respectively.

In order to derive a solution for the first problem, set h = h2 in Section 2.2, where

h2 : [0, 1]d × [0, τF ]→ [0, B2] : (x, y) 7→ y2
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and B2 := L2 ≥ τ2
F . In this case, (2.9) obviously holds with h′y(x, y) = h′2,y(x, y) = 2y for

all (x, y) ∈ [0, 1]d× [0, τF ] (cf. Section 2.3). In analogy to Section 2.3, we define α2 := α[h2],

U (2) := Y [h2], U
(2)
i := Y

[h2]
i , and Û

(2)
i := Ŷ

[h2]
i (i = 1, . . . , n), where Y [h], Y

[h]
i , and Ŷ

[h]
i

are given by (2.13), (2.14), and (2.19), respectively.

To be more precise, let

U (2) := Y [h2] = (1 + α2)

∫ Z

0

2 t

G(t)
dt− α2

δZ2

G(Z)
, (2.49)

U
(2)
i := Y

[h2]
i = (1 + α2)

∫ Zi

0

2 t

G(t)
dt− α2

δiZ
2
i

G(Zi)
(i = 1, . . . , n), (2.50)

and

Û
(2)
i := Ŷ

[h2]
i = (1 + α2)

∫ Zi

0

2 t

Gn(t)
dt− α2

δiZ
2
i

Gn(Zi)
(i = 1, . . . , n) (2.51)(

0
0 := 0

)
. From (2.15), (2.16), (2.49), and (2.48), one can conclude

|U (2)| ≤ (1 + 2|α2|)
L2

G(L)
=: L?2 <∞ a.s. (2.52)

and

E
[
U (2) −m(X)2

∣∣∣ X ] = E
[
Y 2
∣∣ X ]−m(X)2 = σ2(X). (2.53)

Hence, σ2(X) is the regression function to (X,U (2) −m(X)2). Therefore, similar to the

estimation of the regression function (cf. Sections 2.3 and 2.4), the estimation of σ2(X)

in the presence of censored data may be based on estimates of the random variables

U
(2)
i −m(Xi)

2 (i = 1, . . . , n). As mentioned above, we will present two different versions

of these estimates. The first one is based on the regression estimate mn,(k,λn), while the

second one is defined via a MSSE, which is given similar to mn.

We start with the description of the first version. Let k1 ∈ N with 2k1 > d and

λ1,n > 0. For all i = 1, . . . , n, define the estimates Ūi,n,(k1,λ1,n) of U
(2)
i −m(Xi)

2 via

Ūi,n,(k1,λ1,n) := Û
(2)
i −mn,(k1,λ1,n)(Xi)

2, (2.54)

where mn,(k1,λ1,n) and Û
(2)
i are given by (2.28) and (2.51), respectively. So an obvious idea

for constructing our first estimate of σ2 is to simply apply the MSSE of Definition 2.1 to

the data

D̄(2)
n := D̄(2)

n,(k1,λ1,n) :=
{

(X1, Ū1,n,(k1,λ1,n)), . . . , (Xn, Ūn,n,(k1,λ1,n))
}
. (2.55)
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Let k2 ∈ N with 2k2 > d and λ2,n > 0. Define σ̃2
n,(k1,k2,λ1,n,λ2,n) by

σ̃2
n,(k1,k2,λ1,n,λ2,n)(·) := arg min

f∈Wk2
([0,1]d)

(
1

n

n∑
i=1

|f(Xi)− Ūi,n,(k1,λ1,n)|2 + λ2,nJ
2
k2

(f)

)
, (2.56)

where Wk2([0, 1]d) and J2
k2

(·) are given by (2.3) and (2.5).

Now observe that 0 ≤ Y ≤ L a.s. (vide (RA2)) implies 0 ≤ m(X) ≤ L a.s. (cf.

Section 2.3). From this together with (1.17), one can conclude with probability one that

0 ≤ σ2(X) ≤ L2. Consequently, we truncate our estimate of the conditional variance such

that it is bounded in the same way. Set

σ2
n,(k1,k2,λ1,n,λ2,n)(·) := T[0,L2]σ̃

2
n,(k1,k2,λ1,n,λ2,n)(·), (2.57)

where T[0,L2] is given by (2.29) and (2.30). Note that σ2
n,(k1,k2,λ1,n,λ2,n) depends on the four

parameters k1, k2, λ1,n, and λ2,n, where k1 and λ1,n are the parameters of the underlying

estimate mn,(k1,λ1,n) of the regression function.

Next, we define our second version of a MSSE of σ2. For the estimate σ2
n, the parameters

are now chosen in a totally data-dependent way by the splitting of the sample technique

(cf. Section 2.4). For this purpose, our sample (Z1, δ1), . . . , (Zn, δn) will now be split into

three parts. On the first two parts, we define a MSSE of the regression function in analogy

to (2.45), which is used to calculate estimates of σ2 similar to (2.57). We then choose that

estimate out of all calculated MSSE which performs best on the third part in terms of the

empirical L2 risk.

Let n ≥ 3. Set

D(2)
nl := {(X1, Z1, δ1), . . . , (Xnl , Znl , δnl)} , (2.58)

D(2)
Nr

:= {(Xnl+1, Znl+1, δnl+1), . . . , (XNl , ZNl , δNl)} , (2.59)

and

D(2)
Nt

:= {(XNl+1, ZNl+1, δNl+1), . . . , (Xn, Zn, δn)} . (2.60)

Here, nl, Nr, Nt ∈ N with nl +Nr +Nt = n and Nl := nl +Nr.

Similar to Section 2.4, we compute the Kaplan-Meier estimate for each of the sets

(2.58), (2.59), and (2.60) separately. I.e., let Ĝ(KM) and Gnl be given by (2.33) and (2.34)

and set

GNr(·) := Ĝ(KM)(·, {(Znl+1, δnl+1), . . . , (ZNl , δNl)}) (2.61)
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and

GNt(·) := Ĝ(KM)(·, {(ZNl+1, δNl+1), . . . , (Zn, δn)}). (2.62)

Now, we use (2.61) and (2.62) in order to define

Û
(1)
i,Nr

:= (1 + α1)

∫ Zi

0

1

GNr(t)
dt− α1

δiZi
GNr(Zi)

(i = nl + 1, . . . , Nl) (2.63)

as well as

Û
(2)
i,Nr

:= (1 + α2)

∫ Zi

0

2 t

GNr(t)
dt− α2

δiZ
2
i

GNr(Zi)
(i = nl + 1, . . . , Nl) (2.64)

and

Û
(2)
i,Nt

:= (1 + α2)

∫ Zi

0

2 t

GNt(t)
dt− α2

δiZ
2
i

GNt(Zi)
(i = Nl + 1, . . . , n) (2.65)(

0
0 := 0

)
.

Let the MSSE mNl of m be given by (2.45) with n, nt, and Û
(1)
nl+1,nt

, . . . , Û
(1)
n,nt replaced

by Nl, Nr, and Û
(1)
nl+1,Nr

, . . . , Û
(1)
Nl,Nr

, respectively. To be more precise, define Kn×Λn by

(2.41) and (2.42). For all (k, λ) ∈ Kn × Λn, let mnl,(k,λ) be given via (2.44) and set

mNl(·) := mnl,(k̄(1),λ̄(1))(·), (2.66)

where (
k̄(1), λ̄(1)

)
:= arg min

(k,λ)∈Kn×Λn

(
1

Nr

Nl∑
i=nl+1

|mnl,(k,λ)(Xi)− Û (1)
i,Nr
|2
)
. (2.67)

Similar to (2.54), the estimates of U
(2)
i −m(Xi)

2 (i = nl + 1, . . . , n) are now defined

as

Ūi,Nr := Û
(2)
i,Nr
−mNl(Xi)

2 (i = nl + 1, . . . , Nl) (2.68)

and

Ūi,Nt := Û
(2)
i,Nt
−mNl(Xi)

2 (i = Nl + 1, . . . , n). (2.69)

Set

D̂(2)
Nt

:=
{

(XNl+1, ŪNl+1,Nt), . . . , (Xn, Ūn,Nt)
}
. (2.70)

Now, we are in the position to present our modified MSSE of σ2. For each pair of

parameters (k, λ) ∈ Kn × Λn, let the estimates σ̃2
Nl,(k,λ) and σ2

Nl,(k,λ) be given by

σ̃2
Nl,(k,λ)(·) := arg min

f∈Wk([0,1]d)

(
1

Nr

Nl∑
i=nl+1

|f(Xi)− Ūi,Nr |2 + λJ2
k (f)

)
, (2.71)
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and

σ2
Nl,(k,λ)(·) := T[0,L2]σ̃

2
Nl,(k,λ)(·), (2.72)

respectively. Here, Wk([0, 1]d) and J2
k (·) are defined by (2.3) and (2.5). Similar to (2.45),

we now choose that estimate out of all calculated estimates (2.72) which performs best on

the data (2.70) in terms of the empirical L2 risk, i.e., set

σ2
n(·) := σ2

Nl,(k(2),λ(2))(·), (2.73)

where (
k(2), λ(2)

)
:= arg min

(k,λ)∈Kn×Λn

(
1

Nt

n∑
i=Nl+1

|σ2
Nl,(k,λ)(Xi)− Ūi,Nt |2

)
. (2.74)

2.6 Estimating the conditional survival function

Assume that the conditions of Section 2.2 hold. Let τ ∈ R be arbitrary, but fixed. In the

following, we define our estimates of the conditional survival function of Y given X, i.e.,

F ( τ |X ) := P [ Y > τ | X ] , (2.75)

in the presence of censored data.

Observe that

F ( τ |X ) = E
[
I[Y >τ ]

∣∣ X ] . (2.76)

This implies that F ( τ |X) is the regression function to (X, I[Y >τ ]) (cf. Section 1.4). In

order to define estimates of the conditional survival function F ( τ |X), we set h = h3 in

(2.6), where

h3 : [0, 1]d × [0, τF ]→ [0, B3] : (x, y) 7→ I[y>τ ]

and B3 := 1. Now note that if τ < τF , (2.9) is violated – either since h3 is discontinuous

in y = τ (for τ ∈ [0, τF )) or h3(x, 0) = 1 (for τ < 0). And if τ ≥ τF , then (2.9) holds,

but h3(x, y) = 0 and hence h′3,y(x, y) = 0 for all (x, y) ∈ [0, 1]d × [0, τF ]. Observe that in

both cases, we derive on the same form of the transformation (in the second case, we get

Y [h3] = Y
[h3]
i = Ŷ

[h3]
i = 0 a.s. ∀i = 1, . . . , n).

Let Y [h], Y
[h]
i , and Ŷ

[h]
i (i = 1, . . . , n) be given by (2.13), (2.14), and (2.19). Set

U (3) := Y [h3] =
δI[Z>τ ]

G(Z)
(2.77)
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and

U
(3)
i := Y

[h3]
i =

δiI[Zi>τ ]

G(Zi)
(i = 1, . . . , n). (2.78)

Furthermore, define Û
(3)
i (i = 1, . . . , n) by

Û
(3)
i := Ŷ

[h3]
i =

δiI[Zi>τ ]

Gn(Zi)

(
0

0
:= 0

)
. (2.79)

Note that U (3), U
(3)
i , and Û

(3)
i depend on τ and we have suppressed this in our notation.

From (2.15), (2.17), (2.76), and (2.77), one can conclude that

E
[
U (3)

∣∣∣ X ] = F ( τ |X ) (2.80)

and

|U (3)| ≤ 1

G(L)
=: L?3 <∞ a.s. (2.81)

Obviously, (2.80) implies that F (τ |X) is the regression function to (X,U (3)) (cf. Section

2.2).

Next, we introduce our MSSE of F (τ |X) (cf. Section 2.3) in the presence of censored

data. Let k, d ∈ N with 2k > d and λn > 0. Define F̃n,(k,λn) by

F̃n,(k,λn)(τ | ·) := arg min
f∈Wk([0,1]d)

(
1

n

n∑
i=1

|f(Xi)− Û (3)
i |

2 + λnJ
2
k (f)

)
, (2.82)

where Wk([0, 1]d) and J2
k (·) are given by (2.3) and (2.5). Clearly, the conditional survival

function F (τ |X) takes with probability one only values in [0, 1]. Therefore, we define our

truncated estimate Fn,(k,λn)(τ | ·) by

Fn,(k,λn)(τ | ·) := T[0,1]F̃n,(k,λn)(τ | ·). (2.83)

Let n ≥ 2. In analogy to the both preceding sections, the splitting of the sample

technique is applied below in order to choose the parameters of the MSSE of F ( τ |X) in

a totally data-dependent way.

Let D(1)
nl , D

(1)
nt , Gnl , and Gnt be given by (2.31), (2.32), (2.34), and (2.35). Similar

to (2.36) and (2.37), define the estimates of the transformed random variables (2.78)

separately for D(1)
nl and D(1)

nt , i.e.,

Û
(3)
i,nl

:=
δiI[Zi>τ ]

Gnl(Zi)
(i = 1, . . . , nl) (2.84)
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and

Û
(3)
i,nt

:=
δiI[Zi>τ ]

Gnt(Zi)
(i = nl + 1, . . . , n). (2.85)(

0
0 := 0

)
. Moreover, set

D̂(3)
nl :=

{
(X1, Û

(3)
1,nl

), . . . , (Xnl , Û
(3)
nl,nl)

}
(2.86)

and

D̂(3)
nt :=

{
(Xnl+1, Û

(3)
nl+1,nt

), . . . , (Xn, Û
(3)
n,nt)

}
. (2.87)

Denote the whole transformed data set by

D̂(3)
nt :=

{
(X1, Û

(3)
1,nl

), . . . , (Xnl , Û
(3)
nl,nl), (Xnl+1, Û

(3)
nl+1,nt

), . . . , (Xn, Û
(3)
n,nt)

}
. (2.88)

Let Kn×Λn be given by (2.41) and (2.42). For each pair of parameters (k, λ) ∈ Kn×Λn,

we define a MSSE Fnl,(k,λ)(τ | ·) by

F̃nl,(k,λ)(τ | ·) := arg min
f∈Wk([0,1]d)

(
1

nl

nl∑
i=1

|f(Xi)− Û (3)
i,nl
|2 + λJ2

k (f)

)
, (2.89)

where Wk([0, 1]d) and J2
k (·) are given by (2.3) and (2.5), and

Fnl,(k,λ)(τ | ·) := T[0,1]F̃nl,(k,λ)(τ | ·) (2.90)

(cf. 2.83). Similar to (2.44), we now choose that estimate out of all calculated estimates

(2.90) which performs best on the data (2.87) in terms of the empirical L2 risk. I.e., our

modified MSSE is given by

Fn(τ | ·) := Fnl,(k(3),λ(3))(τ | ·), (2.91)

where (
k(3), λ(3)

)
:= arg min

(k,λ)∈Kn×Λn

(
1

nt

n∑
i=nl+1

|Fnl,(k,λ)(τ |Xi)− Û (3)
i,nt
|2
)
. (2.92)
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Chapter 3

Consistency

Chapter 3 presents conditions on the parameters of our MSSE (2.28), (2.57), and (2.83)

which ensure that these estimates are strongly consistent for all distributions of (X,Y,C)

satisfying (RA1) – (RA4). Section 3.1 introduces an estimate, whose definition covers

the definitions of (2.28), (2.57), and (2.83). As shown in Theorem 3.1, a key step in order

to transfer the consistency property of our MSSE from usual nonparametric regression to

censored regression is the analysis of the squared transformation errors (cf. Section 2.2).

This is done in Section 3.2. The strong consistency of the suitably defined MSSE is proven

in Sections 3.3 – 3.5. Finally, Section 3.6 contains the proof of Theorem 3.1.

3.1 A general result

Here, we shall put the setting of Sections 2.2, 2.3, 2.5, and 2.6 in a more general context.

Let therefore (X,Y ?), (X1, Y
?

1 ), . . . , (Xn, Y
?
n ) ∈ [0, 1]d × [−β?, β?] a.s. be i.i.d. random

vectors, where β? ∈ (0,∞). Assume that there exists a constant β ∈ (0, β?] such that

m?(X) := E [ Y ? | X ] ∈ [0, β] a.s. (3.1)

Define U (1), U (2), and U (3) by (2.21) (2.49), and (2.77), respectively. From (2.23),

(2.53), and (2.80) we know that m?(X) equals m(X), σ2(X) or F (τ |X) (τ ∈ R fixed), if

one replaces Y ? in (3.1) by U (1), U (2) −m(X)2, and U (3), respectively.

Let k ∈ N with 2k > d and λn > 0. In this section, a MSSE m?
n,(k,λn) of m? is introduced

whose definition covers the definitions of our estimates (2.28), (2.57), and (2.83).

39
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Since U
(1)
i , U

(2)
i − m(Xi)

2, and U
(3)
i (i = 1, . . . , n) are not calculable, we assume

that the random variables Y ?
i are unknown, too. As in Sections 2.3, 2.5, and 2.6, the

definition of m?
n,(k,λn) is rather based on some observable real-valued random variables

Ȳ
(n)

1 , . . . , Ȳ
(n)
n , where each Ȳ

(n)
i may depend on the whole sample and a finite number of

further, suitably chosen parameters (cf. (2.54) and (2.79)). Note that we neither demand

the random variables Ȳ
(n)

1 , . . . , Ȳ
(n)
n to be independent nor to be identically distributed.

In fact, the only assumptions needed in this section are that the sequence

(X1, Ȳ
(n)

1 ), . . . , (Xn, Ȳ
(n)
n ) is independent of (X,Y ?) (3.2)

and that the mean squared difference

1

n

n∑
i=1

|Y ?
i − Ȳ

(n)
i |

2 (3.3)

between Y ?
1 , . . . , Y

?
n and Ȳ

(n)
1 , . . . , Ȳ

(n)
n is “small”. In the analysis of the MSSE (2.28)

and (2.83), |Y ?
1 − Ȳ

(n)
1 |2, . . . , |Y ?

n − Ȳ
(n)
n |2 represent the squared transformation errors (cf.

Section 2.2). For the estimate (2.57), they depend on (2.50), (2.51), and the MSSE (2.28).

Similar to (1.11), one can show that the minimal L2 risk of a regression estimate based

on the data

D̄n :=
{

(X1, Ȳ
(n)

1 ), . . . , (Xn, Ȳ
(n)
n )

}
(3.4)

is the same as in case of i.i.d. data. Here, we used that assumption (3.2) yields

E
[
Y ? | X, D̄n

]
= E [ Y ? | X ] = m?(X). (3.5)

Next, the MSSE of m? in this general setting will be defined. In analogy to (2.27),

(2.56), and (2.82), the estimate m̃?
n,(k,λn) is given by

m̃?
n,(k,λn)(·) := m̃?

n,(k,λn)(·, D̄n) := arg min
f∈Wk([0,1]d)

(
1

n

n∑
i=1

|f(Xi)− Ȳ (n)
i |

2 + λnJ
2
k (f)

)
, (3.6)

where Wk([0, 1]d) and J2
k (·) are defined as in (2.3) and (2.5). Since m?(X) ∈ [0, β] a.s.,

the MSSE (3.6) will be truncated in the same way (cf. (2.28), (2.57), and (2.83)), i.e., set

m?
n,(k,λn)(·) := T[0,β]m̃

?
n,(k,λn)(·). (3.7)

The following theorem states the conditions on k, the smoothing parameter λn, and

(3.3) for which m?
n,(k,λn) is strongly consistent for all distributions of (X,Y ?) satisfying
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(X,Y ?) ∈ [0, 1]d × [−β?, β?] a.s. and m?(X) ∈ [0, β] a.s. (0 < β ≤ β?). From this result,

we will then derive in Sections 3.3 – 3.5 the strong consistency of our MSSE (2.28), (2.57),

and (2.83) in the presence of censored data.

Theorem 3.1. (Consistency) Let k, d ∈ N with 2k > d and 0 < β ≤ β? <∞. For n ∈ N

choose λn > 0 such that

λn → 0 (n→∞) and
nλn

d
2k

lnn
→∞ (n→∞). (3.8)

Let the estimate m?
n,(k,λn) be defined by (3.6) and (3.7). If assumption (3.2) holds and

1

n

n∑
i=1

|Y ?
i − Ȳ

(n)
i |

2 → 0 (n→∞) a.s. (3.9)

then ∫
Rd

∣∣m?
n,(k,λn)(x)−m?(x)

∣∣2µ(dx)→ 0 (n→∞) a.s. (3.10)

for every distribution of (X,Y ?) with (X,Y ?) ∈ [0, 1]d× [−β?, β?] a.s. and m?(X) ∈ [0, β]

a.s.

The proof of Theorem 3.1 will be given in Section 3.6.

3.2 Maximum squared transformation errors

Condition (3.9) in Theorem 3.1 indicates that an important task in the proofs of the strong

consistency of the MSSE (2.28), (2.57), and (2.83) will be the control of the mean squared

transformation errors. But in the analysis of the rate of convergence of our estimates,

the stochastic convergence of the maximum squared transformation errors is demanded.

Therefore, we now prove a slightly more general result than required by (3.9), which

implies the almost sure convergence of the mean squared transformation errors.

Lemma 3.1. Let α1, α2 ∈ R and let τ ∈ R be arbitrary, but fixed. For j ∈ {1, 2, 3}

define U
(j)
i and Û

(j)
i (i = 1, . . . , n) by (2.22), (2.25), (2.50), (2.51), (2.78) and (2.79),

respectively. Then, for every j ∈ {1, 2, 3},

max
i=1,...,n

|U (j)
i − Û

(j)
i |

2 → 0 (n→∞) a.s.

for all distributions of (Y,C) with Y and C independent, which satisfy (RA2) and (RA4).
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Proof of Lemma 3.1. First note that from (RA2) and due to the independence of

Y and C, we have

τF = τK ≤ L and Zi ∈ [0, τF ] a.s. (i = 1, . . . , n). (3.11)

If j ∈ {1, 2}, then one can conclude from (2.22), (2.25), (2.50), and (2.51) for all

i = 1, . . . , n

U
(j)
i = (1 + αj)

∫ Zi

0

j · tj−1

G(t)
dt− αj

δiZ
j
i

G(Zi)
(3.12)

and

Û
(j)
i = (1 + αj)

∫ Zi

0

j · tj−1

Gn(t)
dt− αj

δiZ
j
i

Gn(Zi)
, (3.13)

where 0
0 := 0. For j ∈ {1, 2}, (3.11) – (3.13) and the relation (a1 + a2)2 ≤ 2a2

1 + 2a2
2

(a1, a2 ∈ R) imply

max
i=1,...,n

|U (j)
i − Û

(j)
i |

2

= max
i=1,...,n

∣∣∣∣∣(1 + αj)

∫ Zi

0

(
j · tj−1

G(t)
− j · tj−1

Gn(t)

)
dt− αj

(
δiZ

j
i

G(Zi)
−

δiZ
j
i

Gn(Zi)

)∣∣∣∣∣
2

≤ 2 max
i=1,...,n

∣∣∣∣(1 + αj)

∫ Zi

0

(
j · tj−1

G(t)
− j · tj−1

Gn(t)

)
dt

∣∣∣∣2 +

∣∣∣∣∣αj
(
δiZ

j
i

G(Zi)
−

δiZ
j
i

Gn(Zi)

)∣∣∣∣∣
2


≤ 2 (1 + |αj |)2 max
i=1,...,n

[∣∣∣∣ ∫ Zi

0
j · tj−1

(
1

G(t)
− 1

Gn(t)

)
dt

∣∣∣∣2 +

∣∣∣∣Zji ( 1

G(Zi)
− 1

Gn(Zi)

)∣∣∣∣2
]

≤ 2 (1 + |αj |)2 max
i=1,...,n

(∣∣∣∣∫ Zi

0
j · tj−1 dt

∣∣∣∣2 +
∣∣∣Zji ∣∣∣2

)(
sup

0≤t≤Zi

∣∣∣∣ 1

G(t)
− 1

Gn(t)

∣∣∣∣
)2


= 2 (1 + |αj |)2 max
i=1,...,n

2Z2j
i

(
sup

0≤t≤Zi

∣∣∣∣ 1

G(t)
− 1

Gn(t)

∣∣∣∣
)2


≤ 4 (1 + |αj |)2 τ2j
F

(
sup

0≤t≤τF

∣∣∣∣ 1

G(t)
− 1

Gn(t)

∣∣∣∣)2

≤ 4 (1 + |αj |)2 L2j

(
sup

0≤t≤τF

∣∣∣∣ 1

G(t)
− 1

Gn(t)

∣∣∣∣)2

a.s.

If, in contrast, j = 3, then (2.78), (2.79), and (3.11) yield with probability one

max
i=1,...,n

|U (3)
i − Û

(3)
i |

2 = max
i=1,...,n

∣∣∣∣δiI[Zi>τ ]

G(Zi)
−
δiI[Zi>τ ]

Gn(Zi)

∣∣∣∣2 ≤ ( sup
0≤t≤τF

∣∣∣∣ 1

G(t)
− 1

Gn(t)

∣∣∣∣)2

.
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Hence we have shown that for every j ∈ {1, 2, 3}

max
i=1,...,n

|U (j)
i − Û

(j)
i |

2 ≤ B(j) ·
(

sup
0≤t≤τF

∣∣∣∣ 1

G(t)
− 1

Gn(t)

∣∣∣∣)2

a.s. (3.14)

holds, where B(1) := 4 (1 + |α1|)2 L2, B(2) := 4 (1 + |α2|)2 L4, and B(3) := 1.

The survival function G of the censoring times is monotonically decreasing. Therefore,

one can conclude from (RA2) and (3.11):

1 ≥ G(t) ≥ G(τK) = G(τF ) ≥ G(L) > 0 ∀t ∈ [0, τF ]. (3.15)

For fixed n ∈ N, the Kaplan-Meier estimate Gn is also monotonically decreasing (vide

(1.5)), i.e.,

1 ≥ Gn(t) ≥ Gn(τK) = Gn(τF ) a.s. ∀t ∈ [0, τF ].

The last two inequalities imply

sup
0≤t≤τF

∣∣∣∣ 1

G(t)
− 1

Gn(t)

∣∣∣∣ = sup
0≤t≤τF

|Gn(t)−G(t) |
G(t) ·Gn(t)

≤ sup
0≤t≤τF

1

G(t) ·Gn(t)
· sup

0≤t≤τF
|Gn(t)−G(t) |

≤ 1

G(τF ) ·Gn(τF )
· sup

0≤t≤τF
|Gn(t)−G(t) | a.s. (3.16)

For every j ∈ {1, 2, 3}, (3.14) and (3.16) yield with probability one

max
i=1,...,n

|U (j)
i − Û

(j)
i |

2 ≤ B(j)

G2(τF ) ·G2
n(τF )

·
(

sup
0≤t≤τF

|Gn(t)−G(t) |
)2

. (3.17)

Next, we will apply Theorem 1.1 to the right hand side of (3.14). From (RA4), one

can conclude that F and G have no jumps in common and that P [C = τK ] = 0. First we

note that this together with Theorem 1.1, G(τF ) > 0 (cf. (3.15)), (RA4) and

P

[
lim sup
n→∞

1

Gn(τF )
>

2

G(τF )

]
= P

[
lim inf
n→∞

Gn(τF ) <
G(τF )

2

]

= P

[
lim sup
n→∞

(G(τF )−Gn(τF )) >
G(τF )

2

]

≤ P

[
lim sup
n→∞

sup
0≤t≤τF

|G(t)−Gn(t)| > G(τF )

2

]
implies

lim sup
n→∞

1

G2
n(τF )

≤ 4

G2(τF )
a.s. (3.18)
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Finally, we have from (3.17) and (3.18) for every j ∈ {1, 2, 3} :

lim sup
n→∞

max
i=1,...,n

∣∣∣U (j)
i − Û

(j)
i

∣∣∣2
≤ lim sup

n→∞

[
B(j)

G2(τF ) ·G2
n(τF )

·
(

sup
0≤t≤τF

|Gn(t)−G(t) |
)2
]

≤ B(j)

G2(τF )
·
[
lim sup
n→∞

1

G2
n(τF )

]
·

[
lim sup
n→∞

(
sup

0≤t≤τF
|Gn(t)−G(t) |

)2
]

≤ 4B(j)

G4(τF )
·
[
lim sup
n→∞

sup
0≤t≤τF

|Gn(t)−G(t) |
]2

a.s.

This together with Theorem 1.1, (RA4), G(τF ) > 0, and B(j) ∈ R+ (j ∈ {1, 2, 3}) implies

the assertion of Lemma 3.1.

�

3.3 Consistent MSSE of the regression function

Now we are in the position to formulate and prove the strong consistency of our MSSE of

the regression function in the presence of censored data.

Theorem 3.2. (Consistency) Let k, d ∈ N with 2k > d and let α1 ∈ R. For n ∈ N

choose λn > 0 such that

λn → 0 (n→∞) and
nλn

d
2k

lnn
→∞ (n→∞). (3.19)

Let Û
(1)
1 , . . . , Û

(1)
n be given by (2.25) and define the estimate mn,(k,λn) via (2.27) and (2.28).

Then ∫
Rd

∣∣mn,(k,λn)(x)−m(x)
∣∣2µ(dx)→ 0 (n→∞) a.s.

for every distribution of (X,Y,C) satisfying (RA1) – (RA4).

Remark 3.1. It follows from assumption (RA2), Theorem 1.1, and the proof of Lemma

3.1 that assumption (RA4) may be dropped in Theorem 3.2 if we assume that F and

G do not have common jumps and that either P[C = τF ] = 0 or P[C = τF ] > 0 but

P[Y = τF ] > 0. The condition P[C = τF ] = 0 demands that G is continuous in τF ,

while P[Y = τF ] > 0 requires that the lifetime Y equals the upper endpoint τF with a
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non-zero probability. Note that the latter assumption is fairly unrealistic in a statistical

application.

Remark 3.2. Since in (RA2) P[C > L ] = 1 is allowed, Theorem 3.2 is still valid if no

censoring occurs. In this case, assumption (RA1) may be abandoned in Theorem 3.2 if

we slightly modify the estimate (vide Kohler and Krzyżak (2001), Remark 3).

Remark 3.3. The strong universal consistency of a weighted MSSE of the regression

function in the presence of right censored data has already been demonstrated by Pintér

(2001). Moreover, Pintér (2001) showed that suitably defined local averaging estimates of

m are strongly consistent with respect to the L2 error in case that (RA3) is violated but

Y and C are conditionally independent given X.

Remark 3.4. From 0 ≤ m(x) ≤ L (cf. (RA2)) and 0 ≤ mn,(k,λn)(x) ≤ L (vide (2.28)),

one can conclude ∫
Rd

∣∣mn,(k,λn)(x)−m(x)
∣∣2µ(dx) ≤ L2 <∞ a.s.

Hence the strong consistency of mn,(k,λn) and Lebesgue’s dominated convergence theorem

imply the weak consistency of mn,(k,λn).

Proof of Theorem 3.2. Let U (1), U
(1)
i , Û

(1)
i , and D̂(1)

n be defined by (2.21), (2.22),

(2.25), and (2.26), respectively (i = 1, . . . , n). First notice that (2.23) and (2.24) state

m(X) = E
[
U (1)

∣∣∣ X ]
and

|U (1)| ≤ (1 + 2|α1|)
L

G(L)
= L?1 <∞ a.s.

This together with (RA2) yields with probability one that 0 ≤ m(X) ≤ L ≤ L?1.Moreover,

since (X,Y,C), (X1, Y1, C1), . . . , (Xn, Yn, Cn) are i.i.d. random vectors, we deduce from

(1.5), (2.21), (2.25), and (2.26) that (X,U (1)) and D̂(1)
n are independent.

Clearly, if one sets β? = L?1, β = L, Y ? = U (1), Y ?
i = U

(1)
i , and Ȳ

(n)
i = Û

(1)
i (i =

1, . . . , n) in Section 3.1, then D̄n equals D̂(1)
n , m? equals m, m?

n,(k,λn) equals mn,(k,λn), and

1

n

n∑
i=1

∣∣∣Y ?
i − Ȳ

(n)
i

∣∣∣2 =
1

n

n∑
i=1

|U (1)
i − Û

(1)
i |

2 ≤ max
i=1,...,n

|U (1)
i − Û

(1)
i |

2.

This together with Theorem 3.1 and Lemma 3.1 implies the assertion of Theorem 3.2.

�
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3.4 Consistent MSSE of the conditional variance

In this section, we show that the suitably defined MSSE of the conditional variance σ2(X)

is strongly consistent for all distributions of (X,Y,C) which satisfy (RA1) – (RA4).

Since the definition of this estimate depends on the MSSE of the regression function, we

require that the assumptions of Theorem 3.2 are fulfilled.

Theorem 3.3. (Consistency) Let k1, k2, d ∈ N with 2k1, 2k2 > d and let α1, α2 ∈ R.

For n ∈ N and j ∈ {1, 2} choose λj,n > 0 such that

λj,n → 0 (n→∞) and
nλj,n

d
2kj

lnn
→∞ (n→∞). (3.20)

Let Ū1,n,(k1,λ1,n), . . . , Ūn,n,(k1,λ1,n) be given by (2.54) and define the estimate σ2
n,(k1,k2,λ1,n,λ2,n)

via (2.56) and (2.57). Then∫
Rd

∣∣σ2
n,(k1,k2,λ1,n,λ2,n)(x)− σ2(x)

∣∣2µ(dx)→ 0 (n→∞) a.s.

for every distribution of (X,Y,C) satisfying (RA1) – (RA4).

Remark 3.5. As stated in Remark 3.2, we can conclude that Theorem 3.3 is still valid in

case that no censoring arises. In addition, Remark 3.1 and Remark 3.4 (with m replaced

by σ2, mn,(k,λn) replaced by σ2
n,(k1,k2,λ1,n,λ2,n), and L replaced by L2) also hold for Theorem

3.3.

Proof of Theorem 3.3. First observe that (RA2) implies that with probability

one m(X) ∈ [0, L] and σ2(X) ∈ [0, L2].

Define U (2), U
(2)
i , and Ūi,n,(k1,λ1,n) (i = 1, . . . , n) by (2.49), (2.50), and (2.54). Moreover,

let D̄(2)
n be given by (2.55) . From (2.52) and (2.53), one gets

σ2(X) = E
[
U (2) −m(X)2

∣∣∣ X ]
and

|U (2) −m(X)2| ≤ |U (2)|+m(X)2 ≤ L?2 + L2 =: L̄2 <∞ a.s.,

where

L?2 =
(1 + 2 |α2|)L2

G(L)
∈ (0,∞).
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Now note that (X,Y,C), (X1, Y1, C1), . . . , (Xn, Yn, Cn) are i.i.d. random vectors and

this together with (2.49), (2.54), and (2.55) yields that (X,U (2) −m(X)2) and D̄(2)
n are

independent.

If we set β? = L̄2, β = L2, Y ? = U (2)−m(X)2, Y ?
i = U

(2)
i −m(Xi)

2, Ȳ
(n)
i = Ūi,n,(k1,λ1,n)

(i = 1, . . . , n), k = k2, and λn = λ2,n in Section 3.1, then one can conclude similar to the

proof of Theorem 3.2 that D̄n equals D̄(2)
n , m? equals σ2, m?

n,(k2,λ2,n) equals σ2
n,(k1,k2,λ1,n,λ2,n),

and that
1

n

n∑
i=1

∣∣∣Y ?
i − Ȳ

(n)
i

∣∣∣2 =
1

n

n∑
i=1

∣∣∣U (2)
i −m(Xi)

2 − Ūi,n,(k1,λ1,n)

∣∣∣2 . (3.21)

Therefore, Theorem 3.1 implies that in order to prove Theorem 3.3, it suffices to show

1

n

n∑
i=1

∣∣∣U (2)
i −m(Xi)

2 − Ūi,n,(k1,λ1,n)

∣∣∣2 → 0 (n→∞) a.s.

Let mn,(k1,λ1,n) and Û
(2)
i (i = 1, . . . , n) be given by (2.28) and (2.51), respectively.

Since mn,(k1,λ1,n)(x) ∈ [0, L] and m(x) ∈ [0, L] (x ∈ [0, 1]d), we have from (2.54) with

probability one

1

n

n∑
i=1

∣∣∣U (2)
i −m(Xi)

2 − Ūi,n,(k1,λ1,n)

∣∣∣2

=
1

n

n∑
i=1

∣∣∣U (2)
i −m(Xi)

2 −
(
Û

(2)
i −mn,(k1,λ1,n)(Xi)

2
) ∣∣∣2

≤ 2

n

n∑
i=1

∣∣∣U (2)
i − Û

(2)
i

∣∣∣2 +
2

n

n∑
i=1

∣∣mn,(k1,λ1,n)(Xi)
2 −m(Xi)

2
∣∣2

=
2

n

n∑
i=1

∣∣∣U (2)
i − Û

(2)
i

∣∣∣2

+
2

n

n∑
i=1

(∣∣mn,(k1,λ1,n)(Xi) +m(Xi)
∣∣2 · ∣∣mn,(k1,λ1,n)(Xi)−m(Xi)

∣∣2)

≤ 2

n

n∑
i=1

∣∣∣U (2)
i − Û

(2)
i

∣∣∣2 +
2

n
(2L)2

n∑
i=1

∣∣mn,(k1,λ1,n)(Xi)−m(Xi)
∣∣2 . (3.22)

Here, we used the facts that (a+ b)2 ≤ 2a2 + 2b2 and (a2− b2) = (a+ b) · (a− b) ∀a, b ∈ R.

From Lemma 3.1 and (RA2) – (RA4), one can conclude that

1

n

n∑
i=1

∣∣∣U (2)
i − Û

(2)
i

∣∣∣2 ≤ max
i=1,...,n

∣∣∣U (2)
i − Û

(2)
i

∣∣∣2 → 0 (n→∞) a.s. (3.23)
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This together with (3.22) implies that it suffices to show

1

n

n∑
i=1

∣∣mn,(k1,λ1,n)(Xi)−m(Xi)
∣∣2 → 0 (n→∞) a.s. (3.24)

From Theorem 3.2, we know that under the assumptions of Theorem 3.3, the estimate

mn,(k1,λ1,n) of the regression function m is strongly consistent with respect to the L2 error,

i.e., ∫
Rd

∣∣mn,(k1,λ1,n)(x)−m(x)
∣∣2µ(dx)→ 0 (n→∞) a.s.,

for all distributions of (X,Y,C) which satisfy (RA1) – (RA4).

So it remains to prove that with probability one

1

n

n∑
i=1

∣∣mn,(k1,λ1,n)(Xi)−m(Xi)
∣∣2 − ∫

Rd

∣∣mn,(k1,λ1,n)(x)−m(x)
∣∣2µ(dx)→ 0 (n→∞).

(3.25)

Let U
(1)
i and Û

(1)
i (i = 1, . . . , n) be defined by (2.22) and (2.25), respectively. First

observe that the relation (a+ b)2 ≤ 2a2 + 2b2 (a, b ∈ R), (2.24), and (2.27) yield

1

n

n∑
i=1

∣∣∣m̃n,(k1,λ1,n)(Xi)− Û (1)
i

∣∣∣2 + λ1,nJ
2
k1

(m̃n,(k1,λ1,n))

≤ 1

n

n∑
i=1

∣∣∣0− Û (1)
i

∣∣∣2 + λ1,nJ
2
k1

(0) =
1

n

n∑
i=1

∣∣∣U (1)
i − Û

(1)
i − U

(1)
i

∣∣∣2

≤ 2

n

n∑
i=1

∣∣∣U (1)
i − Û

(1)
i

∣∣∣2 +
2

n

n∑
i=1

∣∣∣U (1)
i

∣∣∣2

≤ 2

n

n∑
i=1

∣∣∣U (1)
i − Û

(1)
i

∣∣∣2 + 2 (L?1)2 , (3.26)

where L?1 = (1 + 2|α1|) L
G(L) ∈ (0,∞) (cf. (2.24)). Similar to (3.23), one can conclude from

Lemma 3.1 and (RA2) – (RA4) that

1

n

n∑
i=1

∣∣∣U (1)
i − Û

(1)
i

∣∣∣2 → 0 (n→∞) a.s.

This together with (2.27) and (3.26) implies that with probability one, we have for n

sufficiently large

m̃n,(k1,λ1,n) ∈ F̃3(L?1)2/λ1,n
:=

{
f̃ : f̃ ∈Wk1([0, 1]d), J2

k1
(f̃) ≤ 3(L?1)2

λ1,n

}
. (3.27)
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From (2.28) and (3.27), it follows that in order to prove (3.25), it suffices to show

sup
g∈G3(L?

1
)2/λ1,n

∣∣∣∣∣ 1n
n∑
i=1

g(Xi)−Eg(X)

∣∣∣∣∣→ 0 (n→∞) a.s., (3.28)

where

G3(L?1)2/λ1,n
:=
{
g : g(x) = |T[0,L]f̃(x)−m(x)|2, f̃ ∈ F̃3(L?1)2/λ1,n

, x ∈ [0, 1]d
}
.

For this purpose, Lemma C.1 will now be applied. Observe that for any g ∈ G3(L?1)2/λ1,n
,

0 ≤ m(x) ≤ L implies 0 ≤ g(x) ≤ L2 (x ∈ [0, 1]d). This together with Lemma C.1 yields

for all ε > 0

P

 sup
g∈G3(L?

1
)2/λ1,n

∣∣∣∣∣ 1n
n∑
i=1

g(Xi)−Eg(X)

∣∣∣∣∣ > ε


≤ 8 exp

(
− nε2

128L4

)
·EN1

( ε
8
,G3(L?1)2/λ1,n

, Xn
1

)
. (3.29)

Here, Xn
1 := (X1, . . . , Xn) and N1(·, ·, ·) denotes the L1–covering number (vide Definiton

C.1).

In order to bound the L1–covering number on the right hand side of (3.29) from above,

first note that for all a, b ∈ R and all B > 0, one gets from (2.29)∣∣T[0,B]a− T[0,B]b
∣∣ ≤ ∣∣T[−B,B]a− T[−B,B]b

∣∣ . (3.30)

Now, let g1, g2 ∈ G3(L?1)2/λ1,n
be two arbitrary functions with gj(x) = |T[0,L]f̃j(x)−m(x)|2

(x ∈ [0, 1]d), where f̃j ∈ F̃3(L?1)2/λ3,n
(j ∈ {1, 2}). Set f1 := T[0,L]f̃1 and f2 := T[0,L]f̃2.

From 0 ≤ m(X) ≤ L a.s. (cf. (RA2)), one can conclude

1

n

n∑
i=1

|g1(Xi)− g2(Xi)| =
1

n

n∑
i=1

∣∣(f1(Xi)−m(Xi))
2 − (f2(Xi)−m(Xi))

2
∣∣

=
1

n

n∑
i=1

∣∣f2
1 (Xi)− 2f1(Xi)m(Xi)− f2

2 (Xi) + 2f2(Xi)m(Xi)
∣∣

=
1

n

n∑
i=1

|(f1(Xi) + f2(Xi)− 2m(Xi)) · (f1(Xi)− f2(Xi))|

≤ 1

n

n∑
i=1

(|f1(Xi) + f2(Xi)− 2m(Xi)| · |f1(Xi)− f2(Xi)|)

≤ 2L · 1

n

n∑
i=1

|f1(Xi)− f2(Xi)| a.s. (3.31)
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This together with (3.30) implies with probability one

1

n

n∑
i=1

|g1(Xi)− g2(Xi)| ≤ 2L · 1

n

n∑
i=1

∣∣∣T[0,L]f̃1(Xi)− T[0,L]f̃2(Xi)
∣∣∣

≤ 2L · 1

n

n∑
i=1

∣∣∣T[−L,L]f̃1(Xi)− T[−L,L]f̃2(Xi)
∣∣∣ . (3.32)

Define

F3(L?1)2/λ1,n
:=

{
T[−L,L]f̃ : f̃ ∈Wk1([0, 1]d), J2

k1
(f̃) ≤ 3(L?1)2

λ1,n

}
.

For all ε > 0, (3.32) yields

N1

( ε
8
,G3(L?1)2/λ1,n

, Xn
1

)
≤ N1

( ε

16L
,F3(L?1)2/λ1,n

, Xn
1

)
a.s.

The last inequality, (3.20), (3.29), and Lemma C.2 imply that for all 0 < ε < 16L2 and n

sufficiently large, it holds

P

 sup
g∈G3(L?

1
)2/λ1,n

∣∣∣∣∣ 1n
n∑
i=1

g(Xi)−Eg(X)

∣∣∣∣∣ > ε


≤ 8 exp

(
− nε2

128L4

)
·EN1

( ε

16L
,F3(L?1)2/λ1,n

, Xn
1

)

≤ 8 exp

− nε2

128L4
+

B1

(√
3(L?1)2

λ1,n
· 16L

ε

) d
k1

+B2

 ln

(
B3

16L2n

ε

)

≤ 8 exp

− nε2

128L4
+ 2B1

(
16
√

3 L · L?1
ε

) d
k1

λ
− d

2k1
1,n lnn+ 2B2 lnn


≤ 8 exp

(
− nε2

256L4

)
, (3.33)

where B1, B2, B3 > 0 are constants which only depend on k1 and d. From this, we deduce

that
∞∑
n=1

P

 sup
g∈G3(L?

1
)2/λ1,n

∣∣∣∣∣ 1n
n∑
i=1

g(Xi)−Eg(X)

∣∣∣∣∣ > ε

 <∞ (3.34)

for all ε > 0. Finally, (3.28) follows from (3.34) and an application of the Borel-Cantelli

lemma (Lemma D.2).

�
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3.5 Consistent MSSE of the conditional survival function

The following theorem shows that our estimates of the conditional survival function of the

lifetimes, evaluated at fixed point τ ∈ R, are strongly consistent for all distributions of

(X,Y,C) which satisfy (RA1) – (RA4).

Theorem 3.4. (Consistency) Let k, d ∈ N with 2k > d and let τ ∈ R be arbitrary, but

fixed. For n ∈ N choose λn > 0 such that

λn → 0 (n→∞) and
nλn

d
2k

lnn
→∞ (n→∞). (3.35)

Let Û
(3)
1 , . . . , Û

(3)
n be given by (2.79) and define the estimate Fn,(k,λn)(τ | ·) via (2.82) and

(2.83). Then ∫
Rd

∣∣Fn,(k,λn)(τ |x)− F (τ |x)
∣∣2µ(dx)→ 0 (n→∞) a.s.

for every distribution of (X,Y,C) satisfying (RA1) – (RA4).

Remark 3.6. As stated in Remark 3.2, we can conclude that Theorem 3.4 is still valid

if no censoring arises. In this case, one may drop condition (RA2) and allow that Y

is unbounded if we assume that EY 2 < ∞. However, for censored data, we require that

G(τF ) > 0 (cf. Theorem 1.1), i.e., that C exceeds with non-zero probability the upper

endpoint τF of the distribution of Y.

Moreover, note that Remark 3.1 and Remark 3.4 (with m replaced by F (τ | ·), mn,(k,λn)

replaced by Fn,(k,λn)(τ | ·), and L replaced by 1) hold for Theorem 3.4, too.

Proof of Theorem 3.4. Fix τ ∈ R. Obviously, it holds that

F ( τ |X ) = P [ Y > τ | X ] ∈ [0, 1] a.s.

Let U (3) and U
(3)
i (i = 1, . . . , n) be defined by (2.77) and (2.78). From (2.80) and (2.81),

we have

F ( τ |X ) = E
[
U (3)

∣∣∣ X ]
and

|U (3)| ≤ L?3 <∞ a.s.,

where L?3 = 1
G(L) ∈ [1,∞) (cf. (3.15)).
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Furthermore, since (X,Y,C), (X1, Y1, C1), . . . , (Xn, Yn, Cn) are i.i.d. random vectors,

we deduce that the sequence (X1, Û
(3)
1 ), . . . , (X1, Û

(3)
n ) is independent of (X,U (3)).

Similar to the proof of Theorem 3.2, one can conclude that if we set β? = L?3, β = 1,

Y ? = U (3), Y ?
i = U

(3)
i , and Ȳ

(n)
i = Û

(3)
i (i = 1, . . . , n) in Section 3.1, then m?(·) equals

F ( τ | · ) and m?
n,(k,λn)(·) equals Fn,(k,λn)(τ | ·). Furthermore, it holds that

1

n

n∑
i=1

|Y ?
i − Ȳ

(n)
i |2 =

1

n

n∑
i=1

|U (3)
i − Û

(3)
i |

2 ≤ max
i=1,...,n

|U (3)
i − Û

(3)
i |

2.

This together with Theorem 3.1 and Lemma 3.1 implies the assertion of Theorem 3.4.

�

3.6 Proof of Theorem 3.1

In the proof of Theorem 3.1, we will apply the following lemma which investigates the

difference between the L2 risk and the empirical L2 risk of a MSSE, which is truncated

at [−β?, β?]. Here, it is shown that if the conditions (3.8) and (3.9) hold, this difference

converges almost surely to zero with n tending to infinity.

Lemma 3.2. Let k, d ∈ N with 2k > d and β? ∈ (0,∞). Define D̄n by (3.4). For n ∈ N

choose λn > 0 such that

λn → 0 (n→∞) and
nλn

d
2k

lnn
→∞ (n→∞). (3.36)

Let the estimate m̃?
n,(k,λn) be given by (3.6) and set

m̂?
n,(k,λn)(·) := T[−β?,β?]m̃

?
n,(k,λn)(·). (3.37)

If
1

n

n∑
i=1

|Y ?
i − Ȳ

(n)
i |

2 → 0 (n→∞) a.s. (3.38)

then

E
[
|m̂?

n,(k,λn)(X)− Y ?|2
∣∣∣ D̄n ]− 1

n

n∑
i=1

|m̂?
n,(k,λn)(Xi)− Y ?

i |2 → 0 (n→∞) a.s.

for every distribution of (X,Y ?) with (X,Y ?) ∈ [0, 1]d × [−β?, β?] a.s.
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Proof of Lemma 3.2. We mimic the arguments which we used in order to show

(3.25) in the proof of Theorem 3.3.

In analogy to (3.26), one can conclude from Definition (3.6) of the estimate m̃?
n,(k,λn),

|Y ?
i | ≤ β? a.s. (i = 1, . . . , n), and (3.38)

1

n

n∑
i=1

|m̃?
n,(k,λn)(Xi)− Ȳ (n)

i |
2 + λnJ

2
k (m̃?

n,(k,λn))

≤ 1

n

n∑
i=1

|0− Ȳ (n)
i |

2 + λnJ
2
k (0) =

1

n

n∑
i=1

|Y ?
i − Ȳ

(n)
i − Y ?

i |2

≤ 2

n

n∑
i=1

|Y ?
i − Ȳ

(n)
i |

2 +
2

n

n∑
i=1

|Y ?
i |

2

≤ 2

n

n∑
i=1

|Y ?
i − Ȳ

(n)
i |

2 + 2(β?)2 → 2(β?)2 (n→∞) a.s., (3.39)

where the second inequality in (3.39) follows from (a+ b)2 ≤ 2a2 + 2b2 (a, b ∈ R).

This implies that with probability one, for sufficiently large n,

m̂?
n,(k,λn) ∈ F3(β?)2/λn :=

{
T[−β?,β?]f : f ∈Wk([0, 1]d), J2

k (f) ≤ 3(β?)2

λn

}
. (3.40)

Similar to (3.28), we deduce from (3.40) that it suffices to show

sup
g∈G3(β?)2/λn

∣∣∣∣∣E [g(X,Y ?)]− 1

n

n∑
i=1

g(Xi, Y
?
i )

∣∣∣∣∣→ 0 (n→∞) a.s., (3.41)

where

G3(β?)2/λn :=
{
g : g(x, y) = |f(x)− y|2, f ∈ F3(β?)2/λn , x ∈ [0, 1]d, y ∈ [−β?, β?]

}
.

As in the proof of (3.28) (vide (3.29)), we may use Lemma C.1 to bound the probability

that the right hand side of (3.41) exceeds some arbitrary ε > 0 :

P

[
sup

g∈G3(β?)2/λn

∣∣∣∣∣E [g(X,Y ?)]− 1

n

n∑
i=1

g(Xi, Y
?
i )

∣∣∣∣∣ > ε

]

≤ 8 exp

(
− nε2

128 (4(β?)2)2

)
·EN1

( ε
8
,G3(β?)2/λn , (X,Y

?)n1

)
. (3.42)

Here, (X,Y ?)n1 := ((X1, Y
?

1 ), . . . , (Xn, Y
?
n )) .

Now, let g1, g2 ∈ G3(β?)2/λn be two arbitrary functions with gj(x, y) = |fj(x) − y|2

((x, y) ∈ [0, 1]d × [−β?, β?]), where fj ∈ F3(β?)2/λn (j ∈ {1, 2}). Then one can conclude in



54 CHAPTER 3. CONSISTENCY

analogy to (3.31)

1

n

n∑
i=1

|g1(Xi, Y
?
i )− g2(Xi, Y

?
i )| =

1

n

n∑
i=1

|(f1(Xi) + f2(Xi)− 2Y ?
i ) · (f1(Xi)− f2(Xi))|

≤ 4β? · 1

n

n∑
i=1

|f1(Xi)− f2(Xi)| a.s.

This implies that with probability one, the L1–covering number on the right hand side of

(3.42) is for all ε > 0 bounded from above by

N1

(
ε

32β?
,F3(β?)2/λn , X

n
1

)
, (3.43)

where Xn
1 := (X1, . . . , Xn).

Similar to (3.33), Lemma C.2, (3.36), (3.42), and (3.43) yield for all 0 < ε < 32 (β?)2

and n sufficiently large

P

[
sup

g∈G3(β?)2/λn

∣∣∣∣∣E [g(X,Y ?)]− 1

n

n∑
i=1

g(Xi, Y
?
i )

∣∣∣∣∣ > ε

]

≤ 8 exp

− nε2

2048(β?)4
+

B1

√3(β?)2

λn
· 32β?

ε

 d
k

+B2

 ln

(
B3

32 (β?)2 n

ε

)

≤ 8 exp

− nε2

2048(β?)4
+ 2B1

(
32
√

3(β?)2

ε

) d
k

λ
− d

2k
n lnn+ 2B2 lnn


≤ 8 exp

(
− nε2

4096(β?)4

)
.

Here, B1, B2, B3 > 0 are constants which only depend on k and d. From this, the assertion

of Lemma 3.2 follows by an application of Lemma D.2.

�

Now we are in the position to prove Theorem 3.1.

Proof of Theorem 3.1. Let ε > 0 be arbitrarily chosen. From Lemma D.1 in

Appendix D, one can conclude that there exists a function gε ∈ Wk([0, 1]d) such that (cf.

Kohler and Krzyżak (2001) , Pintér (2001), and Corollary A.1 in Györfi, Kohler, Krzyżak,

and Walk (2002)) ∫
Rd
|gε(x)−m?(x)|2µ(dx) ≤ ε and J2

k (gε) <∞. (3.44)
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Define m̃?
n,(k,λn), m

?
n,(k,λn), and m̂?

n,(k,λn) by (3.6), (3.7), and (3.37), respectively. Note

that 0 ≤ m?(x) ≤ β ≤ β? implies |m?
n,(k,λn)(x) − m?(x)|2 ≤ |m̂?

n,(k,λn)(x) − m?(x)|2

(x ∈ [0, 1]d). Therefore, it suffices to show∫
Rd

∣∣m̂?
n,(k,λn)(x)−m?(x)

∣∣2µ(dx)→ 0 (n→∞) a.s. (3.45)

Let D̄n be given by (3.4). In order to prove (3.45), we first decompose the L2 error of

m̂?
n,(k,λn) in the following way∫

Rd

∣∣m̂?
n,(k,λn)(x)−m?(x)

∣∣2µ(dx)

= E
[
|m̂?

n,(k,λn)(X)− Y ?|2
∣∣∣ D̄n ]−E

[
|m?(X)− Y ?|2

]
= E

[
|m̂?

n,(k,λn)(X)− Y ?|2
∣∣∣ D̄n ]− 1

n

n∑
i=1

|m̂?
n,(k,λn)(Xi)− Y ?

i |2

+
1

n

n∑
i=1

|m̂?
n,(k,λn)(Xi)− Y ?

i |2 −
1

n

n∑
i=1

|m̃?
n,(k,λn)(Xi)− Y ?

i |2

+
1

n

n∑
i=1

|m̃?
n,(k,λn)(Xi)− Y ?

i |2 − (1 + ε)
1

n

n∑
i=1

|m̃?
n,(k,λn)(Xi)− Ȳ (n)

i |
2

+(1 + ε)

[
1

n

n∑
i=1

|m̃?
n,(k,λn)(Xi)− Ȳ (n)

i |
2 − 1

n

n∑
i=1

|gε(Xi)− Ȳ (n)
i |

2

]

+(1 + ε)

[
1

n

n∑
i=1

|gε(Xi)− Ȳ (n)
i |

2 − (1 + ε)
1

n

n∑
i=1

|gε(Xi)− Y ?
i |2
]

+(1 + ε)2

[
1

n

n∑
i=1

|gε(Xi)− Y ?
i |2 −E

[
|gε(X)− Y ?|2

]]

+(1 + ε)2 E
[
|gε(X)− Y ?|2

]
− (1 + ε)2 E

[
|m?(X)− Y ?|2

]
+((1 + ε)2 − 1) E

[
|m?(X)− Y ?|2

]
=:

8∑
j=1

Hj,n. (3.46)

Here, we used that assumption (3.2) yields (3.5) and this, in turn, the first equality in

(3.46) in analogy to (1.11) – (1.13) .

Below, it is shown how each of the eight terms on the right hand side of (3.46) is

bounded from above when the sample size n increases. By an application of Lemma 3.2,
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we get

H1,n = E
[
|m̂?

n,(k,λn)(X)− Y ?|2
∣∣∣ D̄n ]− 1

n

n∑
i=1

|m̂?
n,(k,λn)(Xi)− Y ?

i |2 → 0 (n→∞) a.s.

Definition (3.37) of the truncated estimate m̂?
n,(k,λn) and |Y ?| ≤ β? a.s. imply

H2,n =
1

n

n∑
i=1

|m̂?
n,(k,λn)(Xi)− Y ?

i |2 −
1

n

n∑
i=1

|m̃?
n,(k,λn)(Xi)− Y ?

i |2 ≤ 0

In order to bound the third term

H3,n =
1

n

n∑
i=1

|m̃?
n,(k,λn)(Xi)− Y ?

i |2 − (1 + ε)
1

n

n∑
i=1

|m̃?
n,(k,λn)(Xi)− Ȳ (n)

i |
2

from above, observe that for all a, b ∈ R, we have

(a+ b)2 ≤ a2(1 + ε) + b2
(

1 +
1

ε

)
. (3.47)

From (3.9) and (3.47), one can conclude

H3,n ≤
(

1 +
1

ε

)
1

n

n∑
i=1

|Y ?
i − Ȳ

(n)
i |

2 → 0 (n→∞) a.s.

From Definition (3.6) of m̃?
n,(k,λn), (3.44), and λn → 0 (n→∞) it follows that

H4,n = (1 + ε)

[
1

n

n∑
i=1

|m̃?
n,(k,λn)(Xi)− Ȳ (n)

i |
2 − 1

n

n∑
i=1

|gε(Xi)− Ȳ (n)
i |

2

]

≤ (1 + ε)

[
1

n

n∑
i=1

∣∣∣gε(Xi)− Ȳ (n)
i

∣∣∣2 + λnJ
2
k (gε)−

1

n

n∑
i=1

∣∣∣gε(Xi)− Ȳ (n)
i

∣∣∣2]

= (1 + ε)λnJ
2
k (gε)→ 0 (n→∞).

Using again (3.9) and (3.47), we have

H5,n = (1 + ε)

[
1

n

n∑
i=1

|gε(Xi)− Ȳ (n)
i |

2 − (1 + ε)
1

n

n∑
i=1

|gε(Xi)− Y ?
i |2
]

≤ (1 + ε)

(
1 +

1

ε

)
1

n

n∑
i=1

|Y ?
i − Ȳ

(n)
i |

2 → 0 (n→∞) a.s.,

and – since (X,Y ?), (X1, Y
?

1 ), . . . , (Xn, Y
?
n ) ∈ [0, 1]d×[−β?, β?] a.s. are i.i.d. random vectors

– by the strong law of large numbers

H6,n = (1 + ε)2

[
1

n

n∑
i=1

|gε(Xi)− Y ?
i |2 −E

[
|gε(X)− Y ?|2

]]
→ 0 (n→∞) a.s.
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Another application of (3.44) yields

H7,n = (1 + ε)2 E
[
|gε(X)− Y ?|2

]
− (1 + ε)2 E

[
|m?(X)− Y ?|2

]
= (1 + ε)2 E

[
|gε(X)−m?(X) +m?(X)− Y ?|2

]
− (1 + ε)2 E

[
|m?(X)− Y ?|2

]
= (1 + ε)2 E

[
|gε(X)−m?(X)|2

]
+2 (1 + ε)2 E [ (gε(X)−m?(X)) · (m?(X)− Y ?) ]

= (1 + ε)2 E
[
|gε(X)−m?(X)|2

]
≤ ε (1 + ε)2, (3.48)

where the last equality in (3.48) follows from a conversion similar to (1.13):

E [ (gε(X)−m?(X)) · (m?(X)− Y ?) ] = E [ (gε(X)−m?(X)) ·E [ (m?(X)− Y ?) | X ] ]

= E [ (gε(X)−m?(X)) · (m?(X)−E [ Y ? | X ]) ]

= 0.

Finally, we get with |Y ?| ≤ β? a.s. and |m?(X)| ≤ β ≤ β? a.s. for the last of the eight

terms

H8,n = ((1 + ε)2 − 1) E
[
|m?(X)− Y ?|2

]
≤ ((1 + ε)2 − 1) (2β?)2.

Combining all the results from above, one can conclude

lim sup
n→∞

∫
Rd

∣∣m̂?
n,(k,λn)(x)−m?(x)

∣∣2µ(dx) ≤ ε (1 + ε)2 + 4 ((1 + ε)2 − 1) (β?)2 a.s.

With ε→ 0, (3.45) follows.

�
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Chapter 4

Rate of convergence

In this chapter, the rates of convergence of our MSSE for censored regression, (2.28),

(2.57), and (2.83), are analyzed. Similar to Chapter 3, the first section present results for

the estimate (3.7). In order to derive rates of convergence for (2.28), (2.57), and (2.83),

we will then use the fact that their definitions are covered by the definition of (3.7). From

Theorem 4.1, Corollary 4.1, and Lemma 4.1, one can conclude that the main task in this

step is to control the squared transformation errors. A rate of convergence of these errors

is given in Section 4.2. Sections 4.3 – 4.5 then present our results for the MSSE (2.28),

(2.57), and (2.83) while Section 4.6 contains the proofs of Theorem 4.1 and Lemma 4.1.

4.1 General results

Below, we are dealing with the MSSE m?
n,(k,λn) of Section 3.1 (cf. (3.7)). As mentioned

there, this estimate is a generalization of our MSSE (2.28), (2.57), and (2.83).

In the following, we will recall the definition of m?
n,(k,λn). Let β? ∈ (0,∞) and let

(X,Y ?), (X1, Y
?

1 ), . . . , (Xn, Y
?
n ) ∈ [0, 1]d × [−β?, β?] a.s. be the i.i.d. random vectors of

Section 3.1. Furthermore, let β ∈ (0, β?] such that

m?(X) = E [ Y ? | X ] ∈ [0, β] a.s.

Since we assumed that Y ?
1 , . . . , Y

?
n are unknown, the estimate m?

n,(k,λn) in (3.7) is based

on some observable real-valued random variables Ȳ
(n)

1 , . . . , Ȳ
(n)
n , where each Ȳ

(n)
i may

depend on the whole sample and a finite number of further, suitably chosen parameters.

59
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As mentioned in Section 3.1, we do not demand that Ȳ
(n)

1 , . . . , Ȳ
(n)
n are independent or

identically distributed. In the following, it is only required that the squared differences

|Y ?
1 − Ȳ

(n)
1 |2, . . . , |Y ?

n − Ȳ
(n)
n |2 are “small” (cf. (3.9)). In particular, note that in this

section we do not assume that condition (3.2) is fulfilled (however, condition (3.2) ensures

that m? is the function which minimizes the L2 risk with respect to (X,Y ?), cf. Section

1.3 and (3.5)).

Let k ∈ N with 2k > d and λn > 0. According to (3.7) the MSSE m?
n,(k,λn) is defined

via

m?
n,(k,λn)(·) = T[0,β]m̃

?
n,(k,λn)(·),

where m̃?
n,(k,λn) is given by (3.6) as

m̃?
n,(k,λn)(·) = m̃?

n,(k,λn)(·, D̄n) = arg min
f∈Wk([0,1]d)

(
1

n

n∑
i=1

|f(Xi)− Ȳ (n)
i |

2 + λnJ
2
k (f)

)
.

Here, Wk([0, 1]d), J2
k (·), and D̄n are defined by (2.3), (2.5), and (3.4), respectively.

The next theorem investigates the rate of stochastic convergence of m?
n,(k,λn) for smooth

regression functions m? ∈Wp([0, 1]d) with 0 < J2
p (m?) <∞ (p ∈ N with 2p > d).

Theorem 4.1. (Rate of convergence) Let d, n ∈ N and 1 ≤ β ≤ β? < ∞. Let p ∈ N

with 2p > d be arbitrary. Assume that we have chosen the parameters k and λn of the

estimate m?
n,(k,λn), which is given by (3.6) and (3.7), such that k = p and λn > 0 with

( n

lnn

) 2p
2p+d

λn →∞ (n→∞). (4.1)

If there exists a constant b2 > 0 such that

P

[
max
i=1,...,n

|Y ?
i − Ȳ

(n)
i |

2 > b2

]
→ 0 (n→∞), (4.2)

then it holds that∫
Rd

∣∣m?
n,(k,λn)(x)−m?(x)

∣∣2µ(dx) = OP

(
1

n

n∑
i=1

|Y ?
i − Ȳ

(n)
i |

2 + λn +

(
(lnn)2

n

) 2p
2p+d

)

for every distribution of (X,Y ?) satisfying (X,Y ?) ∈ [0, 1]d×[−β?, β?] a.s., m?(X) ∈ [0, β]

a.s., and m? ∈Wp([0, 1]d) with 0 < J2
p (m?) <∞.
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The proof of Theorem 4.1 will be given in Section 4.6.

In case that λn is chosen such that λn is some positive constant times

(
(lnn)2

n

) 2p
2p+d

,

Theorem 4.1 implies the following result on the rate of convergence of the MSSE m?
n,(k,λn).

Corollary 4.1. Let d, n ∈ N and 1 ≤ β ≤ β? < ∞. Let b1 > 0 be an arbitrary constant

and let p ∈ N with 2p > d be arbitrary. Choose the parameters k and λn of the estimate

m?
n,(k,λn), which is given by (3.6) and (3.7), such that k = p and

λn = b1 ·
(

(lnn)2

n

) 2p
2p+d

. (4.3)

If there exists a constant b2 > 0 such that (4.2) holds, then we have

∫
Rd

∣∣m?
n,(k,λn)(x)−m?(x)

∣∣2µ(dx) = OP

(
1

n

n∑
i=1

|Y ?
i − Ȳ

(n)
i |

2 +

(
(lnn)2

n

) 2p
2p+d

)

for every distribution of (X,Y ?) satisfying (X,Y ?) ∈ [0, 1]d×[−β?, β?] a.s., m?(X) ∈ [0, β]

a.s., and m? ∈Wp([0, 1]d) with 0 < J2
p (m?) <∞.

Proof of Corollary 4.1. Let λn be chosen according to (4.3) with some arbitrary

constant b1 > 0. For p, d ∈ N this yields

( n

lnn

) 2p
2p+d

λn = b1 (lnn)
2p

2p+d →∞ (n→∞). (4.4)

The assertion of Corollary 4.1 follows from Theorem 4.1 , (4.3), and (4.4) .

�

Since almost sure convergence implies stochastic convergence, one can conclude from

Lemma 3.1 that (4.2) holds if we replace

max
i=1,...,n

|Y ?
i − Ȳ

(n)
i |

2 (4.5)

by the maximum squared transformation error

max
i=1,...,n

|U (j)
i − Û

(j)
i |

2 (j ∈ {1, 2, 3}).
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Here, U
(1)
i , U

(2)
i , and U

(3)
i (i = 1, . . . , n) are defined by (2.22), (2.50), and (2.78), respec-

tively. Furthermore, Û
(1)
i , Û

(2)
i , and Û

(3)
i (i = 1, . . . , n) are given by (2.25), (2.51), and

(2.79).

Assume that m? ∈ Wp([0, 1]d) and 0 < J2
p (m?) < ∞ for some arbitrary p ∈ N with

2p > d. Corollary 4.1 indicates that the rates of convergence of suitably defined MSSE of

m(X) and F (τ |X) (τ ∈ R fixed) depend on the rate of the mean squared transformation

error
1

n

n∑
i=1

|U (j)
i − Û

(j)
i |

2 (j ∈ {1, 3}) (4.6)

and the rate of these estimates in usual nonparametric regression, which is given by(
(lnn)2

n

) 2p
2p+d

. (4.7)

For the estimation with (2.28) and (2.83), m?(X) equals m(X) and F (τ |X), respectively.

While (4.7) is determined by the smoothness of m?, which is measured by p, the rate of

(4.6) depends on the distribution of (Y,C). I.e., the latter one controls the asymptotic

behavior of our estimates in the presence of censored data (cf. Theorem 3.1). In the next

section, we show that under suitable conditions on the survival functions F and G, the

rate of convergence of the mean squared transformation errors is given by n−γ for some

γ ∈ (0, 1). This together with Corollary 4.1 implies that if we can choose γ such that

γ ≥ 2p
2p+d , the rates of convergence of suitably defined MSSE of m(X) and F (τ |X) (τ ∈ R

fixed) correspond to the rates of these estimates in usual nonparametric regression with

random design and without imposing regularity conditions on the distribution of X to be

found in literature (cf. Kohler, Krzyżak, and Schäfer (2002)). For the estimates (2.28)

and (2.83), these two results are formulated and proven in Section 4.3 and Section 4.5,

respectively.

Let k1 ∈ N with 2k1 > d and let λ1,n > 0. Recall from (2.54) that the MSSE (2.57) of

the conditional variance depends on the estimates Ūi,n,(k1,λ1,n) = Û
(2)
i −mn,(k1,λ1,n)(Xi)

2

of the random variables U
(2)
i −m(Xi)

2 (i = 1, . . . , n). Here, mn,(k1,λ1,n) is the MSSE of the

regression function defined by (2.28). I.e., in order to apply Corollary 4.1 in the analysis

of the rate of convergence of (2.57), we have to investigate the asymptotic behavior of

1

n

n∑
i=1

|U (2)
i −m(Xi)

2 − Ūi,n,(k1,λ1,n)|2.
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Observe that mn,(k1,λ1,n)(X) ∈ [0, L] a.s., m(X) ∈ [0, L] a.s., (a + b)2 ≤ 2a2 + 2b2, and

a2 − b2 = (a+ b) · (a− b) (a, b ∈ R) yield with probability one

1

n

n∑
i=1

|U (2)
i −m(Xi)

2 − Ūi,n,(k1,λ1,n)|2

=
1

n

n∑
i=1

|U (2)
i − Û

(2)
i +mn,(k1,λ1,n)(Xi)

2 −m(Xi)
2|2

≤ 2

n

n∑
i=1

|U (2)
i − Û

(2)
i |

2 +
2

n

n∑
i=1

|mn,(k1,λ1,n)(Xi)
2 −m(Xi)

2|2

=
2

n

n∑
i=1

|U (2)
i − Û

(2)
i |

2

+
2

n

n∑
i=1

(
|mn,(k1,λ1,n)(Xi) +m(Xi)|2 · |mn,(k1,λ1,n)(Xi)−m(Xi)|2

)
≤ 2

n

n∑
i=1

|U (2)
i − Û

(2)
i |

2 + (2L)2 · 2

n

n∑
i=1

|mn,(k1,λ1,n)(Xi)−m(Xi)|2. (4.8)

Hence, beside the rate of the mean squared transformation error

1

n

n∑
i=1

|U (2)
i − Û

(2)
i |

2

and the rate implied by (4.7), the rate of convergence of the estimate (2.57) is determined

by the asymptotic behavior of the empirical L2 error of mn,(k1,λ1,n),

1

n

n∑
i=1

|mn,(k1,λ1,n)(Xi)−m(Xi)|2.

Now assume that m ∈ Wp([0, 1]d) and 0 < J2
p (m) <∞ for some arbitrary p ∈ N with

2p > d. As mentioned above, we can conclude from the result in the following section that

under suitable assumptions on F and G, n
− 2p

2p+d is the rate of convergence of the mean

squared transformation error
1

n

n∑
i=1

|U (1)
i − Û

(1)
i |

2.

In order to show that the MSSE (2.57) achieves the optimal rate of convergence up to

some logarithmic factor, it therefore remains to prove

1

n

n∑
i=1

|mn,(k1,λ1,n)(Xi)−m(Xi)|2 = OP

(
1

n

n∑
i=1

|U (1)
i − Û

(1)
i |

2 +

(
(lnn)2

n

) 2p
2p+d

)
.

Since λnJ
2
k (m̃?

n,(k,λn)) ≥ 0 and the definition of m?
n,(k,λn) covers the definition of mn,(k,λn),

this is implied by the next lemma if λn is chosen according to Corollary 4.1.
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Lemma 4.1. Let the conditions of Theorem 4.1 hold. If there exists a constant b2 > 0

such that (4.2) is fulfilled, then one gets

1

n

n∑
i=1

|m?
n,(k,λn)(Xi)−m?(Xi)|2 + λn J

2
k (m̃?

n,(k,λn))

= OP

(
1

n

n∑
i=1

|Y ?
i − Ȳ

(n)
i |

2 + λn +

(
(lnn)2

n

) 2p
2p+d

)
.

for every distribution of (X,Y ?) satisfying (X,Y ?) ∈ [0, 1]d×[−β?, β?] a.s., m?(X) ∈ [0, β]

a.s., and m? ∈Wp([0, 1]d) with 0 < J2
p (m?) <∞.

The proof of Lemma 4.1 is given in Section 4.6.

4.2 Rate of the maximum squared transformation errors

In Section 3.2, it is shown that under our regularity assumptions on the distribution of

(Y,C), the maximum squared transformation error

max
i=1,...,n

∣∣∣U (j)
i − Û

(j)
i

∣∣∣2 (j ∈ {1, 2, 3}) (4.9)

converges almost surely to zero with n tending to infinity. Here, we derive a result on the

rate of convergence of (4.9) under the additional assumption (1.8). Since

1

n

n∑
i=1

|U (j)
i − Û

(j)
i |

2 ≤ max
i=1,...,n

∣∣∣U (j)
i − Û

(j)
i

∣∣∣2 (j ∈ {1, 2, 3}),

this implies the same rate of convergence for the mean squared transformation error.

Lemma 4.2. Let α1, α2 ∈ R and let τ ∈ R be arbitrary, but fixed. Define U
(1)
i , U

(2)
i , and

U
(3)
i (i = 1, . . . , n) by (2.22), (2.50), and (2.78), respectively. Furthermore, let Û

(1)
i , Û

(2)
i ,

and Û
(3)
i (i = 1, . . . , n) be given by (2.25), (2.51), and (2.79). Let γ ∈ (0, 1) and assume

that

−
∫ τF

0
F (t)

−γ
2−γ dG(t) <∞. (4.10)

For every j ∈ {1, 2, 3}, there exists a constant b3 ∈ (0,∞) such that

lim sup
n→∞

nγ max
i=1,...,n

∣∣∣U (j)
i − Û

(j)
i

∣∣∣2 ≤ b3 a.s.

for all distributions of (Y,C) with Y and C independent, which satisfy (RA2) and (RA4).
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Proof of Lemma 4.2. First we observe that since Y and C are independent, (RA2)

yields τK = τF ≤ L <∞ and G(τK) = G(τF ) ≥ G(L) > 0 (cf. Section 1.2).

Set B(1) := 4 (1 + |α1|)2 L2, B(2) := 4 (1 + |α2|)2 L4, and B(3) := 1. From (3.17) and

(3.18), one can conclude for all j ∈ {1, 2, 3} and all γ ∈ (0, 1)

lim sup
n→∞

nγ max
i=1,...,n

∣∣∣U (j)
i − Û

(j)
i

∣∣∣2
≤ lim sup

n→∞

[
nγ · B(j)

G2(τF ) ·G2
n(τF )

·
(

sup
0≤t≤τF

|Gn(t)−G(t) |
)2
]

≤ B(j)

G2(τF )
·
[
lim sup
n→∞

1

G2
n(τF )

]
·

[
lim sup
n→∞

nγ
(

sup
0≤t≤τF

|Gn(t)−G(t) |
)2
]

≤ 4B(j)

G4(τF )
·
[
lim sup
n→∞

n
γ
2 sup

0≤t≤τF
|Gn(t)−G(t) |

]2

a.s.

This together with Theorem 1.2, G(τK) > 0, (RA4), (4.10), and the independence of Y

and C implies the assertion of Lemma 4.2.

�

4.3 Rate of the MSSE of the regression function

In this section, our result for the rate of convergence of the MSSE (2.28) is presented.

Corollary 4.1 and Lemma 4.2 indicate that for this purpose, we need additional regularity

assumptions to (RA1) – (RA4) on the distribution of (X,Y,C).

Theorem 4.2. (Rate of convergence) Let d, n ∈ N, α1 ∈ R, and L ≥ 1. Let p ∈ N with

2p > d be arbitrary. Assume that we have chosen the parameters k and λn of the estimate

mn,(k,λn), which is defined by (2.27) and (2.28), such that k = p and λn fulfills (4.3) with

an arbitrary constant b1 > 0. Then

∫
Rd

∣∣mn,(k,λn)(x)−m(x)
∣∣2µ(dx) = OP

((
(lnn)2

n

) 2p
2p+d

)
(4.11)

for every distribution of (X,Y,C) which satisfies (RA1) – (RA4), m ∈ Wp([0, 1]d) with

0 < J2
p (m) <∞, and

−
∫ τF

0
F (t)

−p
p+ddG(t) <∞. (4.12)
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Note that since G is monotonically decreasing, the left hand side of (4.12) is always

non-negative.

Remark 4.1. Stone (1982) proved that the optimal rate of convergence (in appropriate

minimax sense) in L2 for nonparametric estimates of (p,B)-smooth regression functions is

given by n
− 2p

2p+d . For p ∈ N and B ∈ (0,∞), a function f : Rd → R is called (p,B)-smooth

if for all p1, . . . , pd ∈ N0 with p1 + . . .+ pd = p− 1 the partial derivative ∂(p−1)

∂x
p1
1 ...∂x

pd
d

f exists

and satisfies∣∣∣∣∣ ∂(p−1)

∂xp1
1 . . . ∂xpdd

f(x)− ∂(p−1)

∂xp1
1 . . . ∂xpdd

f(x0)

∣∣∣∣∣ ≤ B · ‖x− x0‖ (x, x0 ∈ Rd). (4.13)

In some respects, (4.13) is a much stronger condition than the assumption J2
p (f) <∞,

(cf. Theorem 4.2), because in the latter one, the weak derivatives of order p may vary in

such a way that the squared average (2.5) is bounded by some non-negative constant. In

contrast, if (4.13) holds, the partial derivatives of total order p are bounded by B, i.e., the

function satisfies the smoothness condition on the whole domain.

Since in our setting it is allowed that censoring does not arise, i.e., P [C > L ] = 1

(vide (RA2)), we deduce from Stone (1982) that the rate of convergence in Theorem 4.2

is optimal up to the logarithmic factor (lnn)
4p

2p+d . Note that the rate in Theorem 4.2 corre-

sponds to published rates of MSSE in usual nonparametric regression with random design

and without imposing regularity conditions on the distribution of X (cf. Kohler, Krzyżak,

and Schäfer (2002)). However, for censored regression, the additional assumptions on the

distribution of C are needed.

If J2
p (m) = 0, then m is a multivariate polynomial of degree p − 1. In this case, one

can deduce similar to the proofs of Theorem 4.1, Theorem 4.2, and Theorem 1 in Kohler,

Krzyżak, and Schäfer (2002) that for every distribution of (X,Y,C) satisfying (RA1) –

(RA4) and m ∈Wp([0, 1]d), the MSSE (2.28) with k = p achieves the optimal parametric

rate n−1 up to the factor nω if nω (lnn)−2 λn → ∞ (n → ∞) and (4.10) holds with

γ = 1− ω (0 < ω < 1).

Remark 4.2. We want to stress that in Theorem 4.2 no assumption on the underlying

distribution of X besides (RA1) is required. Especially, we do not demand that X has a

density with respect to the Lebesgue-Borel measure.
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Remark 4.3. It follows from the proofs of Lemma 3.1, Lemma 4.2, and Theorem 4.2,

and the Remark after Theorem 1.1 in Chen and Lo (1997), that our result also holds

for discontinuous G if the conditions of Theorem 1.1 are fulfilled (cf. Remark 3.1). In

this case, replace G and F in (4.12) by continuous survival functions G̃ and F̃ , where G̃

smooths the probability mass of G at its discontinuity points to small intervals and F̃

assigns probability zero to these intervals. For further details, see Chen and Lo (1997).

Remark 4.4. Lemma 1.1 and (RA2) imply that assumption (4.12) in Theorem 4.2 holds

if there exists some γ̃ ∈
(

0, 1 + d
p

)
such that

0 < lim inf
t↑τF

(G(t)−G(τF ))γ̃

F (t)
≤ lim sup

t↑τF

(G(t)−G(τF ))γ̃

F (t)
<∞.

Proof of Theorem 4.2. Define U (1), U
(1)
i , and Û

(1)
i (i = 1, . . . , n) by (2.21), (2.22),

and (2.25). In the first part of this proof, it is shown that we can apply Corollary 4.1 in

order to verify (4.11). Note that (RA2), (2.23), and (2.24) imply m(X) ∈ [0, L] a.s.,

m(X) = E
[
U (1)

∣∣∣ X ] ,
and

|U (1)| ≤ (1 + 2|α1|)
L

G(L)
= L?1 <∞ a.s.,

respectively. Since G(L) ≤ 1, we have L?1 ≥ L.

Hence, one can conclude similar to the proof of Theorem 3.2, that m? equals m,

m?
n,(k,λn) equals mn,(k,λn), and∣∣∣Y ?

i − Ȳ
(n)
i

∣∣∣ =
∣∣∣U (1)

i − Û
(1)
i

∣∣∣ (i = 1, . . . , n), (4.14)

if we set β? = L?1, β = L, Y ? = U (1), Y ?
i = U

(1)
i , and Ȳ

(n)
i = Û

(1)
i (i = 1, . . . , n) in Section

4.1. Now, Lemma 3.1, (RA2) – (RA4), and (4.14) yield for any ε > 0

P

[
max
i=1,...,n

∣∣∣Y ?
i − Ȳ

(n)
i

∣∣∣2 > ε

]
= P

[
max
i=1,...,n

∣∣∣U (1)
i − Û

(1)
i

∣∣∣2 > ε

]
→ 0 (n→∞) (4.15)

and therefore (4.2). This implies that the conditions of Corollary 4.1 hold and one gets

∫
Rd

∣∣mn,(k,λn)(x)−m(x)
∣∣2µ(dx) = OP

(
1

n

n∑
i=1

∣∣∣U (1)
i − Û

(1)
i

∣∣∣2 +

(
(lnn)2

n

) 2p
2p+d

)
. (4.16)
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Set γ := 2p
2p+d . Since p, d ∈ N, we have γ ∈ (0, 1). Moreover, it holds that

γ

2− γ
=

2p

2 · (2p+ d)− 2p
=

p

p+ d
. (4.17)

Thus, Lemma 4.2, (RA2) – (RA4), and (4.12) imply that there exists a constant b3 ∈

(0,∞) such that

lim sup
n→∞

n
2p

2p+d
1

n

n∑
i=1

∣∣∣U (1)
i − Û

(1)
i

∣∣∣2 ≤ lim sup
n→∞

n
2p

2p+d max
i=1,...,n

∣∣∣U (1)
i − Û

(1)
i

∣∣∣2 ≤ b3 a.s.

From this, one can conclude

1

n

n∑
i=1

∣∣∣U (1)
i − Û

(1)
i

∣∣∣2 = OP

(
n
− 2p

2p+d

)
. (4.18)

Now, (4.16) and (4.18) yield the assertion of Theorem 4.2.

�

In the next section, we examine the rate of the MSSE (2.57) of the conditional variance,

which is defined via the estimate (2.28). As mentioned in Section 4.1, a crucial step in

this analysis is the control of the empirical L2 error of (2.28).

Corollary 4.2. Define the MSSE mn,(k,λn) by (2.27) and (2.28). If the conditions of

Theorem 4.2 hold, then we have

1

n

n∑
i=1

∣∣mn,(k,λn)(Xi)−m(Xi)
∣∣2 = OP

((
(lnn)2

n

) 2p
2p+d

)
for every distribution of (X,Y,C) which satisfies (RA1) – (RA4), m ∈ Wp([0, 1]d) with

0 < J2
p (m) <∞, and (4.12).

Proof of Corollary 4.2. Let λn be chosen according to (4.3) with an arbitrary

constant b1 > 0. Define U
(1)
i and Û

(1)
i (i = 1, . . . , n) by (2.22) and (2.25), respectively.

Similar to the proof of Theorem 4.2, one can conclude from Lemma 4.1, (RA1), (RA2),

(2.23), (2.24), (4.4) and (4.15), that

1

n

n∑
i=1

∣∣mn,(k,λn)(Xi)−m(Xi)
∣∣2 + λn J

2
k (m̃n,(k,λn))

= OP

(
1

n

n∑
i=1

∣∣∣U (1)
i − Û

(1)
i

∣∣∣2 + λn +

(
(lnn)2

n

) 2p
2p+d

)
. (4.19)

The assertion of Corollary 4.2 follows from λn J
2
k (m̃n,(k,λn)) ≥ 0, (4.3), (4.18), and (4.19).

�
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4.4 Rate of the MSSE of the conditional variance

This section contains our result for the rate of convergence of the MSSE (2.57). Since the

definition of (2.57) depends on the estimate (2.28) of the regression function, we therefore

require that the assumptions of Theorem 4.2 on m and the parameters of (2.28) hold.

Theorem 4.3. (Rate of convergence) Let d, n ∈ N, α1, α2 ∈ R, and L ≥ 1. Further-

more, let b1, b2 > 0 be two arbitrary constants and let p1, p2 ∈ N with 2p1 > d, 2p2 > d be

arbitrary. Set pmin := min{p1, p2} and pmax := max{p1, p2}. Choose the parameters k1,

k2, λ1,n, and λ2,n of the estimate σ2
n,(k1,k2,λ1,n,λ2,n), defined by (2.56) and (2.57), such that

k1 = p1, k2 = p2,

λ1,n = b1 ·
(

(lnn)2

n

) 2p1
2p1+d

(4.20)

and

λ2,n = b2 ·
(

(lnn)2

n

) 2p2
2p2+d

. (4.21)

Then one gets

∫
Rd

∣∣σ2
n,(k1,k2,λ1,n,λ2,n)(x)− σ2(x)

∣∣2µ(dx) = OP

((lnn)2

n

) 2pmin
2pmin+d

 (4.22)

for every distribution of (X,Y,C) satisfying (RA1) – (RA4), m ∈ Wp1([0, 1]d) with

0 < J2
p1

(m) <∞, σ2 ∈Wp2([0, 1]d) with 0 < J2
p2

(σ2) <∞, and

−
∫ τF

0
F (t)

−pmax
pmax+ddG(t) <∞. (4.23)

Remark 4.5. From Wang, Brown, Cai, and Levine (2008) (for d = 1), and Cai, Levine,

and Wang (2009), we deduce that that for (p1, B1)-smooth m and (p2, B2)-smooth σ2, the

fastest achievable L2 rate of convergence of a nonparametric estimate of σ2 is given by

max
{
n−

4p1
d , n

− 2p2
2p2+d

}
. (4.24)

If 2p1 > d and 2p2 > d, then (4.24) equals n
− 2p2

2p2+d . In case that pmin = p2 ≤ p1, one

can therefore conclude in analogy to Remark 4.1 that the rate of convergence in Theorem

4.3 is optimal up to a logarithmic factor. If even p2 = p1, then this rate corresponds

to the rate given in Theorem 4.2, and condition (4.23) is identical to (4.12). However,
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in order to show that (4.22) holds, additional assumptions on the smoothness of σ2, i.e.,

σ2 ∈Wp2([0, 1]d) with 0 < J2
p2

(σ2) <∞, are needed.

Moreover, observe that Theorem 4.2 and Theorem 4.3 imply that for p2 ≤ p1, the

MSSE (2.57) of the conditional variance achieves the same rate of convergence as in the

case when the regression function m is completely known (cf. Cai, Levine, and Wang

(2009))

If, in contrast, p2 > p1 in Theorem 4.3 then we allow m to be “rougher” than σ2. As a

consequence, the rate of convergence in (4.22) is then dominated by the rate of the MSSE

of the regression function. I.e., the rate in Theorem 4.3 equals the rate given in Theorem

4.2 but may be far from being (nearly) optimal for the nonparametric estimation of σ2 in

case that p2 � p1.

If J2
p1

(m) = 0 and J2
p2

(σ2) = 0, then one can conclude similar to Remark 4.1 that

for all distributions of (X,Y,C) which satisfy (RA1) – (RA4), m ∈ Wp1([0, 1]d), and

σ2 ∈ Wp2([0, 1]d), the MSSE (2.57) with k1 = p1 and k2 = p2 achieves the rate nω−1 if

nω (lnn)−2 min{λ1,n, λ2,n} → ∞ (n→∞) and (4.10) holds with γ = 1− ω (0 < ω < 1).

Besides, Remarks 4.2, 4.3, and 4.4 (with pmax instead of p) also hold for Theorem 4.3.

Proof of Theorem 4.3. In analogy to the proof of Theorem 4.2, we first show that

the assumptions of Corollary 4.1 hold.

Let U (2), U
(2)
i , and Ūi,n,(k1,λ1,n) (i = 1, . . . , n) be given by (2.49), (2.50), and (2.54).

Our second regularity assumption (RA2) yields that with probability one, m(X) ∈ [0, L]

and σ2(X) ∈ [0, L2]. Furthermore, (2.52) and (2.53) imply

σ2(X) = E
[
U (2) −m(X)2

∣∣∣ X ]
and

|U (2) −m(X)2| ≤ |U (2)|+m(X)2 ≤ L?2 + L2 =: L̄2 <∞ a.s., (4.25)

respectively. Since

L?2 =
(1 + 2 |α2|)L2

G(L)
> 0,

we have L̄2 ≥ L2.

If we set β? = L̄2, β = L2, Y ? = U (2)−m(X)2, Y ?
i = U

(2)
i −m(Xi)

2, Ȳ
(n)
i = Ūi,n,(k1,λ1,n)

(i = 1, . . . , n), k = k2, and λn = λ2,n in Section 4.1, then one can conclude in analogy
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to the proofs of Theorem 3.3 and Theorem 4.2 that m? equals σ2 and m?
n,(k,λn) equals

σ2
n,(k1,k2,λ1,n,λ2,n). Moreover,

∣∣∣Y ?
i − Ȳ

(n)
i

∣∣∣2 =
∣∣∣U (2)

i −m(Xi)
2 − Ūi,n,(k1,λ1,n)

∣∣∣2 (4.26)

holds for all i = 1, . . . , n.

Define mn,(k1,λ1,n) and Û
(2)
i (i = 1, . . . , n) by (2.28) and (2.51). Let ε > 0 be arbitrary

and set B1 := ε + 2L4. Lemma 3.1, (RA2) – (RA4), (2.54), (4.26), m(X) ∈ [0, L] a.s.,

and mn,(k1,λ1,n)(X) ∈ [0, L] a.s. yield

P

[
max
i=1,...,n

∣∣∣Y ?
i − Ȳ

(n)
i

∣∣∣2 > B1

]

= P

[
max
i=1,...,n

∣∣∣U (2)
i −m(Xi)

2 − Ūi,n,(k1,λ1,n)

∣∣∣2 > B1

]

= P

[
max
i=1,...,n

∣∣∣U (2)
i −m(Xi)

2 −
(
Û

(2)
i −mn,(k1,λ1,n)(Xi)

2
) ∣∣∣2 > B1

]

≤ P

[
2 · max

i=1,...,n

∣∣∣U (2)
i − Û

(2)
i

∣∣∣2 + 2 · max
i=1,...,n

∣∣mn,(k1,λ1,n)(Xi)
2 −m(Xi)

2
∣∣2 > ε+ 2L4

]

≤ P

[
2 · max

i=1,...,n

∣∣∣U (2)
i − Û

(2)
i

∣∣∣2 > ε

]
→ 0 (n→∞), (4.27)

where we used that (a+ b)2 ≤ 2a2 + 2b2 for all a, b ∈ R. This implies (4.2).

Therefore, we deduce from Corollary 4.1, k2 = p2, (4.21), σ2 ∈ Wp2([0, 1]d), and

0 < J2
p2

(σ2) <∞ that∫
Rd

∣∣σ2
n,(k1,k2,λ1,n,λ2,n)(x)− σ2(x)

∣∣2µ(dx)

= OP

 1

n

n∑
i=1

∣∣∣U (2)
i −m(Xi)

2 − Ūi,n,(k1,λ1,n)

∣∣∣2 +

(
(lnn)2

n

) 2p2
2p2+d

 .

Since for all a1, a2 ∈ N0 with a1 ≤ a2(
(lnn)2

n

) 2a2
2a2+d

≤
(

(lnn)2

n

) 2a1
2a1+d

, (4.28)

this yields that in order to prove (4.22), it suffices to show

1

n

n∑
i=1

∣∣∣U (2)
i −m(Xi)

2 − Ūi,n,(k1,λ1,n)

∣∣∣2 = OP

((lnn)2

n

) 2p1
2p1+d

 . (4.29)
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An inequality similar to (4.8) implies with probability one

1

n

n∑
i=1

∣∣∣U (2)
i −m(Xi)

2 − Ūi,n,(k1,λ1,n)

∣∣∣2

≤ 2

n

n∑
i=1

∣∣∣U (2)
i − Û

(2)
i

∣∣∣2 +
2

n

n∑
i=1

∣∣mn,(k1,λ1,n)(Xi)
2 −m(Xi)

2
∣∣2

=
2

n

n∑
i=1

∣∣∣U (2)
i − Û

(2)
i

∣∣∣2

+
2

n

n∑
i=1

( ∣∣mn,(k1,λ1,n)(Xi) +m(Xi)
∣∣2 · ∣∣mn,(k1,λ1,n)(Xi)−m(Xi)

∣∣2 )

≤ 2 · max
i=1,...,n

∣∣∣U (2)
i − Û

(2)
i

∣∣∣2 + (2L)2 · 2

n

n∑
i=1

∣∣mn,(k1,λ1,n)(Xi)−m(Xi)
∣∣2 . (4.30)

Set γ := 2pmax
2pmax+d . Similar to the proof of Theorem 4.2, we deduce that γ ∈ (0, 1) and

γ

2− γ
=

pmax
pmax + d

. (4.31)

Hence, Lemma 4.2 and (4.23) yield that there exists a constant b3 ∈ (0,∞) such that

lim sup
n→∞

n
2pmax

2pmax+d
1

n

n∑
i=1

∣∣∣U (2)
i − Û

(2)
i

∣∣∣2 ≤ lim sup
n→∞

n
2pmax

2pmax+d max
i=1,...,n

∣∣∣U (2)
i − Û

(2)
i

∣∣∣2 ≤ b3 a.s.

This together with (4.30) implies

1

n

n∑
i=1

∣∣∣U (2)
i −m(Xi)

2 − Ūi,n,(k1,λ1,n)

∣∣∣2
= OP

(
n
− 2pmax

2pmax+d +
1

n

n∑
i=1

∣∣mn,(k1,λ1,n)(Xi)−m(Xi)
∣∣2) . (4.32)

From (4.28), (4.29), and (4.32), one can conclude that in order to prove (4.22), it remains

to show

1

n

n∑
i=1

∣∣mn,(k1,λ1,n)(Xi)−m(Xi)
∣∣2 = OP

((lnn)2

n

) 2p1
2p1+d

 . (4.33)

In the following, Corollary 4.2 will be applied. First note that F (t) ∈ [0, 1] (t ∈ R).

Thus, we have

F (t)
p1
p1+d ≥ F (t)

pmax
pmax+d ∀t ∈ R. (4.34)

Since F and G are monotonically decreasing on R, one gets from (4.23) and (4.34)

−
∫ τF

0
F (t)

−p1
p1+ddG(t) ≤ −

∫ τF

0
F (t)

−pmax
pmax+ddG(t) <∞. (4.35)
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Therefore, we have shown that condition (4.12) is fulfilled. Now, one can conclude from

Corollary 4.2 (where we set p = p1, k = k1, and λn = λ1,n) that (4.33) holds. This implies

the assertion of Theorem 4.3.

�

4.5 Rate of the MSSE of the conditional survival function

Let τ ∈ R be arbitrary, but fixed. In the following theorem, we investigate the rate

of stochastic convergence of our estimate of the conditional survival function for all

distributions of (X,Y,C) which satisfy (RA1) – (RA4), F ( τ | · ) ∈ Wp([0, 1]d) with

0 < J2
p (F ( τ | · ) ) <∞, and (4.12).

Theorem 4.4. (Rate of convergence) Let τ ∈ R be arbitrary, but fixed and d, n ∈ N.

Let p ∈ N with 2p > d be arbitrary. Assume that we have chosen the parameters k and λn

of the estimate Fn,(k,λn)(τ | ·), which is defined by (2.82) and (2.83), such that k = p and

λn = b1 ·
(

(lnn)2

n

) 2p
2p+d

,

where b1 > 0 is an arbitrary constant. Then

∫
Rd

∣∣Fn,(k,λn)(τ |x)− F (τ |x)
∣∣2µ(dx) = OP

((
(lnn)2

n

) 2p
2p+d

)

for every distribution of (X,Y,C) satisfying (RA1) – (RA4), F ( τ | · ) ∈Wp([0, 1]d) with

0 < J2
p (F ( τ | · ) ) <∞, and (4.12).

Remark 4.6. Due to (2.76), F (τ |X) is the regression function to (X, I[Y >τ ]). Therefore,

we deduce from Remark 4.1 that the rate of convergence in Theorem 4.4 is optimal up to

the logarithmic factor (lnn)
4p

2p+d .

If nω (lnn)−2 λn →∞ (n→∞) and (4.10) holds with γ = 1−ω (0 < ω < 1), then the

estimate (2.83) with k = p derives the rate nω−1 for all distributions of (X,Y,C) which

satisfy (RA1) – (RA4) and F ( τ | · ) ∈ Wp([0, 1]d) with J2
p (F ( τ | · ) ) = 0 (cf. Remark

4.1).

Moreover, Remarks 4.2, 4.3, and 4.4 hold for Theorem 4.4, too.
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Proof of Theorem 4.4. Below, we mimic the proof of Theorem 4.2. First, it is

shown that Corollary 4.1 may be applied.

Fix τ ∈ R. Let U (3), U
(3)
i , and Û

(3)
i (i = 1, . . . , n) be defined by (2.77) – (2.79).

Obviously, we have with probability one that F ( τ | X) = P [ Y > τ | X ] ∈ [0, 1]. Now

observe that (2.80) and (2.81) yield

F ( τ |X ) = E
[
U (3)

∣∣∣ X ]
and

|U (3)| ≤ 1

G(L)
= L?3 <∞ a.s.,

respectively. Since G(L) ≤ 1, it holds that L?3 ≥ 1.

From this, one can conclude in analogy to the proof of Theorem 3.4, that if we set

β? = L?3, β = 1, Y ? = U (3), Y ?
i = U

(3)
i , and Ȳ

(n)
i = Û

(3)
i (i = 1, . . . , n) in Section 4.1, then

m?(·) equals F ( τ | · ) and m?
n,(k,λn)(·) equals Fn,(k,λn)(τ | ·). Furthermore, one gets∣∣∣Y ?

i − Ȳ
(n)
i

∣∣∣2 =
∣∣∣U (3)

i − Û
(3)
i

∣∣∣2 (i = 1, . . . , n).

Note that Lemma 3.1 yields for any ε > 0 (cf. (4.15))

P

[
max
i=1,...,n

∣∣∣U (3)
i − Û

(3)
i

∣∣∣2 > ε

]
→ 0 (n→∞),

which, in turn, implies (4.2). Therefore, we have shown that the assumptions of Corollary

4.1 are fulfilled and it holds that∫
Rd

∣∣Fn,(k,λn)(τ |x)− F (τ |x)
∣∣2µ(dx)

= OP

(
1

n

n∑
i=1

∣∣∣U (3)
i − Û

(3)
i

∣∣∣2 +

(
(lnn)2

n

) 2p
2p+d

)
. (4.36)

Set γ := 2p
2p+d . Similar to the proof of Theorem 4.2, one can deduce from p, d ∈ N,

Lemma 4.2, (4.12), and (4.17) that there exists a constant b3 ∈ (0,∞) such that

lim sup
n→∞

n
2p

2p+d
1

n

n∑
i=1

∣∣∣U (3)
i − Û

(3)
i

∣∣∣2 ≤ lim sup
n→∞

n
2p

2p+d max
i=1,...,n

∣∣∣U (3)
i − Û

(3)
i

∣∣∣2 ≤ b3 a.s.

which yields
1

n

n∑
i=1

∣∣∣U (3)
i − Û

(3)
i

∣∣∣2 = OP

(
n
− 2p

2p+d

)
.

This together with (4.36) implies the assertion of Theorem 4.4.

�
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4.6 Proofs of Theorem 4.1 and Lemma 4.1

In this section, it is shown that the assertions of Theorem 4.1 and Lemma 4.1 hold. We

start with the proof of Lemma 4.1. Subsequently, this result will be applied in order

to verify Theorem 4.1. In the proof of Lemma 4.1, we apply a result from fixed design

regression, Lemma A.1, which is formulated and proven in Appendix A.

Proof of Lemma 4.1. Define tn by

tn :=

(
(lnn)2

n

) 2p
2p+d

(4.37)

and set

S?n,(k,λn) :=
1

n

n∑
i=1

∣∣∣m?
n,(k,λn)(Xi)−m?(Xi)

∣∣∣2 + λnJ
2
k (m̃?

n,(k,λn))

− 64

n

n∑
i=1

∣∣∣Y ?
i − Ȳ

(n)
i

∣∣∣2 − 2λnJ
2
p (m?).

Assume that there exists a constant b2 > 0 such that (4.2) holds and let l := β? +
√
b2.

Then one can conclude

P

[
1

n

n∑
i=1

∣∣∣m?
n,(k,λn)(Xi)−m?(Xi)

∣∣∣2 + λnJ
2
k (m̃?

n,(k,λn))

>
64

n

n∑
i=1

∣∣∣Y ?
i − Ȳ

(n)
i

∣∣∣2 + 2λnJ
2
p (m?) +

(
(lnn)2

n

) 2p
2p+d

]

= P
[
S?n,(k,λn) > tn

]
≤ P

[
S?n,(k,λn) > tn, max

i=1,...,n

∣∣∣Ȳ (n)
i

∣∣∣ ≤ l ]+ P

[
max
i=1,...,n

∣∣∣Ȳ (n)
i

∣∣∣ > l

]
=: q1,n + q2,n. (4.38)

For the second term on the right hand side of (4.38), |Y ?
i | ≤ β? a.s. (i = 1, . . . , n) and

(4.2) yield

q2,n ≤ P

[
max
i=1,...,n

∣∣∣Y ?
i − Ȳ

(n)
i

∣∣∣+ max
i=1,...,n

|Y ?
i | > l

]
≤ P

[
max
i=1,...,n

∣∣∣Y ?
i − Ȳ

(n)
i

∣∣∣+ β? > l

]

= P

[
max
i=1,...,n

∣∣∣Y ?
i − Ȳ

(n)
i

∣∣∣2 > b2

]
→ 0 (n→∞). (4.39)
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Set

m̂?
n,(k,λn)(·) := T[−l,l]m̃

?
n,(k,λn)(·). (4.40)

From (3.7), (4.40), and 0 ≤ m?(X) ≤ β < l a.s., we have

1

n

n∑
i=1

∣∣∣m?
n,(k,λn)(Xi)−m?(Xi)

∣∣∣2 ≤ 1

n

n∑
i=1

∣∣∣m̂?
n,(k,λn)(Xi)−m?(Xi)

∣∣∣2 a.s. (4.41)

Similarly, one can conclude from (3.6) and (4.40) that inside of q1,n

1

n

n∑
i=1

∣∣∣m̂?
n,(k,λn)(Xi)− Ȳ (n)

i

∣∣∣2 ≤ 1

n

n∑
i=1

∣∣∣m̃?
n,(k,λn)(Xi)− Ȳ (n)

i

∣∣∣2 . (4.42)

For the first term on the right hand side of (4.38), (4.41), and (4.42) imply

q1,n ≤ P

[
S?n,(k,λn) > tn,

1

n

n∑
i=1

∣∣∣m̂?
n,(k,λn)(Xi)− Ȳ (n)

i

∣∣∣2 ≤ 1

n

n∑
i=1

∣∣∣m̃?
n,(k,λn)(Xi)− Ȳ (n)

i

∣∣∣2 ]

≤ P

[
1

n

n∑
i=1

∣∣∣m̂?
n,(k,λn)(Xi)−m?(Xi)

∣∣∣2 + λnJ
2
k (m̃?

n,(k,λn))

>
64

n

n∑
i=1

∣∣∣Y ?
i − Ȳ

(n)
i

∣∣∣2 + 2λnJ
2
p (m?) + tn ,

1

n

n∑
i=1

∣∣∣m̂?
n,(k,λn)(Xi)− Ȳ (n)

i

∣∣∣2 ≤ 1

n

n∑
i=1

∣∣∣m̃?
n,(k,λn)(Xi)− Ȳ (n)

i

∣∣∣2 ]. (4.43)

Next, Lemma A.1 will be applied (note that we have chosen k such that k = p). For

this purpose, it is first shown that the conditions (A.4) – (A.6) hold with the special choice

of tn in (4.37).

Obviously, we may deduce from (4.37) that

tn → 0 (n→∞) (4.44)

and
ntn
lnn

= n
d

2p+d (lnn)
2p−d
2p+d →∞ (n→∞). (4.45)

Now, (4.44) and (4.45) imply (A.4) and (A.5). Moreover, (4.1) and (4.45) yield

ntn
lnn

λ
d
2p
n =

[( n

lnn

) 2p
2p+d

λn

] d
2p

(lnn)
2p

2p+d →∞ (n→∞). (4.46)

and therefore (A.6).
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Hence, Lemma A.1 and (4.43) imply for all sufficiently large n that

q1,n ≤ b5 exp(−b6ntn), (4.47)

where b5, b6 > 0 are two constants only depending on β?. This together with (4.45) yields

q1,n ≤ b5 exp(−b6 lnn) = b5 n
−b6 → 0 (n→∞). (4.48)

The assertion of Lemma 4.1 follows from (4.38), (4.39), and (4.48).

�

Now we are in the position to prove Theorem 4.1. In order to show that the assertion

of Theorem 4.1 holds, we apply Lemma B.2 and Lemma C.4, which are presented in

Appendix B and C, respectively.

Proof of Theorem 4.1. From Lemma 4.1, one can conclude that it remains to show∫
Rd

∣∣m?
n,(k,λn)(x)−m?(x)

∣∣2µ(dx)

= OP

(
1

n

n∑
i=1

∣∣∣m?
n,(k,λn)(Xi)−m?(Xi)

∣∣∣2 + λnJ
2
k (m̃?

n,(k,λn)) + λn

)
. (4.49)

An application of the peeling-technique (cf. Section 5.3 in Van de Geer (2000)) yields for

all t > 0

P

[ ∫
Rd

∣∣m?
n,(k,λn)(x)−m?(x)

∣∣2µ(dx)

>
2

n

n∑
i=1

∣∣∣m?
n,(k,λn)(Xi)−m?(Xi)

∣∣∣2 + 2λnJ
2
k (m̃?

n,(k,λn)) + t

]

= P
[
Qn,(k,λn) > t

]
≤

∞∑
j=0

P
[
Qn,(k,λn) > t, 2jt ≤ 2λnJ

2
k (m̃?

n,(k,λn)) + t < 2j+1t
]
, (4.50)

where

Qn,(k,λn) :=

∫
Rd

∣∣m?
n,(k,λn)(x)−m?(x)

∣∣2µ(dx)

− 2

[
1

n

n∑
i=1

∣∣∣m?
n,(k,λn)(Xi)−m?(Xi)

∣∣∣2 + λnJ
2
k (m̃?

n,(k,λn))

]
.



78 CHAPTER 4. RATE OF CONVERGENCE

Let D̄n be defined by (3.4). From (4.50), one gets for all t > 0

P
[
Qn,(k,λn) > t

]
≤

∞∑
j=0

P

[
2 E

[∣∣∣m?
n,(k,λn)(X)−m?(X)

∣∣∣2∣∣∣∣ D̄n]− 2

n

n∑
i=1

∣∣∣m?
n,(k,λn)(Xi)−m?(Xi)

∣∣∣2

> E

[∣∣∣m?
n,(k,λn)(X)−m?(X)

∣∣∣2∣∣∣∣ D̄n]+ 2jt, J2
k (m̃?

n,(k,λn)) <
2jt

λn

]

≤
∞∑
j=0

P

[
∃ g ∈ G2jt/λn : 2 E g(X)− 2

n

n∑
i=1

g(Xi) > E g(X) + 2jt

]

=
∞∑
j=0

P

[
∃ g ∈ G2jt/λn :

E g(X)− 1
n

∑n
i=1 g(Xi)

E g(X) + 2jt
>

1

2

]

≤
∞∑
j=0

P

[
sup

g∈G
2jt/λn

∣∣E g(X)− 1
n

∑n
i=1 g(Xi)

∣∣
E g(X) + 2jt

>
1

2

]
. (4.51)

Here, for every j = 0, 1, . . .

G2jt/λn :=
{
g : g(x) = |T[0,β]f̃(x)−m?(x)|2, f̃ ∈ F̃2jt/λn , x ∈ [0, 1]d

}
with

F̃2jt/λn :=

{
f̃ : f̃ ∈Wk([0, 1]d), J2

k (f̃) ≤ 2jt

λn

}
.

Fix j ∈ {0, 1, . . . }. In the following, Lemma C.4 will be applied in order to bound the

probabilities on the right hand side of (4.51). First, we check that the conditions (C.1)

– (C.3) are fulfilled for all sufficiently large n. For this purpose, set V = X, Vi = Xi

(i = 1, . . . , n), G = G2jt/λn , Θ = [0, 1]d, ε = 1
2 , ν = 2jt, and K1 = K2 = β2 in Lemma C.4.

Since β ≥ 1 and |g(X)| ≤ β2 a.s. for all g ∈ G2jt/λn , one can conclude that (C.1) holds.

Now, note that (4.1) implies

nλn ≥
( n

lnn

) 2p
2p+d

λn →∞ (n→∞). (4.52)

For all t ≥ λn and all sufficiently large n, we have from (4.52)

√
2j n t · 1

2
√

2
≥
√
n λn

8
≥ 576 β2,

which, in turn, yields (C.2).
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Next, it is shown that (C.3) is fulfilled. Let g1, g2 ∈ G2jt/λn be two arbitrary functions

with g1(x) = |T[0,β]f̃1(x)−m?(x)|2 and g2(x) = |T[0,β]f̃2(x)−m?(x)|2 (x ∈ [0, 1]d), where

f̃1, f̃2 ∈ F̃2jt/λn . Set f1 := T[0,β]f̃1 and f2 := T[0,β]f̃2. Similar to (3.31) and (3.32) , one can

conclude from m?(x) ∈ [0, β] (x ∈ [0, 1]d) and (3.30) for all x1, . . . , xn ∈ [0, 1]d

1

n

n∑
i=1

|g1(xi)− g2(xi)|2 =
1

n

n∑
i=1

∣∣(f1(xi)−m?(xi))
2 − (f2(xi)−m?(xi))

2
∣∣2

=
1

n

n∑
i=1

|(f1(xi) + f2(xi)− 2m?(xi)) · (f1(xi)− f2(xi))|2

≤ (2β)2 · 1

n

n∑
i=1

|f1(xi)− f2(xi)|2

≤ (2β)2 · 1

n

n∑
i=1

∣∣∣T[−β,β]f̃1(xi)− T[−β,β]f̃2(xi)
∣∣∣2 .

This implies that for all s > 0 and all x1, . . . , xn ∈ [0, 1]d

N2

(
s,G2jt/λn , x

n
1

)
≤ N2

(
s

2β
,F2jt/λn , x

n
1

)
(4.53)

holds, where xn1 = (x1, . . . , xn) and

F2jt/λn :=

{
T[−β,β]f̃ : f̃ ∈Wk([0, 1]d), J2

k (f̃) ≤ 2jt

λn

}
.

Now observe that
lnn

n
≤
(

lnn

n

) 2p
2p+d

∀p, d, n ∈ N. (4.54)

From (4.52), it follows for all t ≥ λn, all ξ ≥ 2jt
4 , and all sufficiently large n that

n ξ ≥ 4β4. This together with (4.1), (4.53), (4.54), and Lemma B.2 yields∫ √ξ
0

√
lnN2

(
s,G2jt/λn , x

n
1

)
ds ≤ 2β

∫ √ξ
2β

0

√
lnN2

(
s,F2jt/λn , x

n
1

)
ds

≤ 2β

(
b8

(
4β2

ξ
· 2j t

λn

) d
4p
√
ξ

2β

√
lnn+ b9

√
ξ

2β

√
lnn

)

≤ b8 (4β)
d
2p λ

− d
4p

n

√
ξ
√

lnn+ b9
√
ξ
√

lnn

≤ 2
√
n ξ

(
b8 (4β)

d
2p

√
lnn

n
λ
− 2p+d

2p
n + b9

√
lnn

nλn

)

≤ 2
(
b8 (4β)

d
2p + b9

)√
n ξ

√(
lnn

n

) 2p
2p+d

λ−1
n (4.55)
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for all t ≥ λn, all ξ ≥ 2jt
4 , all x1, . . . , xn ∈ [0, 1]d, and all sufficiently large n. Here, b8, b9 > 0

are two constants which only depend on p and d. Finally, (4.1), (4.55), and the definiton

of covering numbers (Definition C.1) imply that (C.3) is fulfilled for all sufficiently large

n.

Therefore, one can conclude from (4.51), Lemma C.4, 2j ≥ j + 1 (j = 0, 1, 2, . . . ), and

β ≥ 1 that for all t ≥ λn and all sufficiently large n, it holds

P
[
Qn,(k,λn) > t

]
≤ 50

∞∑
j=0

exp

(
− 2j n t

8 · 128 · 2304β4

)
≤ 50

∞∑
j=0

exp (−(j + 1)B1 n t)

= 50
exp (−B1 n t)

1− exp (−B1 n t)
, (4.56)

where

B1 :=
1

8 · 128 · 2304β4
.

From (4.50), (4.52), and (4.56), one gets

P

[ ∫
Rd

∣∣m?
n,(k,λn)(x)−m?(x)

∣∣2µ(dx)

>
2

n

n∑
i=1

∣∣∣m?
n,(k,λn)(Xi)−m?(Xi)

∣∣∣2 + 2λnJ
2
k (m̃?

n,(k,λn)) + λn

]

= P
[
Qn,(k,λn) > λn

]
≤ 50

exp (−B1 nλn)

1− exp (−B1 nλn)
→ 0 (n→∞). (4.57)

This yields (4.49) and therefore the assertion of Theorem 4.1.

�



Chapter 5

Adaptation

Chapter 5 investigates the rates of convergence of the MSSE (2.45), (2.73), and (2.91),

which are defined via the splitting of the sample technique. Similar to the both preceding

chapters, an estimate m?
N which covers the definitions of (2.45), (2.73), and (2.91) is

introduced in Section 5.1. In Theorem 5.1, Lemma 5.1, and Corollary 5.1, the rate of

convergence of m?
N is analyzed. Based on these results, we derive in Sections 5.2 – 5.4

nearly optimal rates of the MSSE (2.45), (2.73), and (2.91). Finally, Section 5.5 contains

the proofs of Theorem 5.1 and Lemma 5.1.

5.1 General results

In this sequel, a MSSE m?
N , which is a generalization of our regression estimates (2.45),

(2.73), and (2.91), is defined via the splitting of the sample technique. Compared to Sec-

tions 3.1 and 4.1, a slightly different notation is introduced below in order to simplify the

presentations of the proofs in Sections 5.2 – 5.4.

For this purpose, we now denote the sample size by N, where N ∈ N with N ≥ 2. In

addition, let (X,Y ?), (X?
1 , Y

?
1 ), . . . , (X?

N , Y
?
N ) ∈ [0, 1]d × R a.s. be i.i.d. random vectors

with E (Y ?)2 < ∞. Throughout this chapter, it is assumed that there exists a constant

β ∈ R+ such that

m?(X) = E [ Y ? | X ] ∈ [0, β] a.s.

In analogy to Section 3.1 and Section 4.1, we suppose that Y ?
1 , . . . , Y

?
N are unknown.

Therefore, the estimate m?
N of m? is now rather based on some observable real-valued ran-

81
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dom variables Ȳ
(N)

1 , . . . , Ȳ
(N)
N , which need neither to be independent nor to be identically

distributed and where each Ȳ
(n)
i may depend on the whole sample and finite number of

further, suitably chosen parameters.

Let N`, NT ∈ N with N` +NT = N. According to Section 2.4, we split the data

D̄N :=
{

(X?
1 , Ȳ

(N)
1 ), . . . , (X?

N , Ȳ
(N)
N )

}
(5.1)

in two parts: The learning data

D̄N` :=
{

(X?
1 , Ȳ

(N)
1 ), . . . , (X?

N`
, Ȳ

(N)
N`

)
}

(5.2)

and the testing data

D̄NT :=
{

(X?
N`+1, Ȳ

(N)
N`+1), . . . , (X?

N , Ȳ
(N)
N )

}
. (5.3)

Furthermore, let K?
N × Λ?N be a finite, non-empty set of parameters with

K?
N ⊂

{⌊
d

2

⌋
+ 1,

⌊
d

2

⌋
+ 2, . . .

}
(5.4)

and

Λ?N ⊂ (0,∞). (5.5)

Similar to Section 2.4, we use the learning data in order to define for each pair of parameters

(k, λ) ∈ K?
N × Λ?N an estimate m?

N`,(k,λ) via

m̃?
N`,(k,λ)(·) := m̃?

N`,(k,λ)(·, D̄N`) := arg min
f∈Wk([0,1]d)

(
1

N`

N∑̀
i=1

|f(X?
i )− Ȳ (N)

i |2 + λJ2
k (f)

)
,

(5.6)

where Wk([0, 1]d) and J2
k (·) are given by (2.3) and (2.5), and

m?
N`,(k,λ)(·) := T[0,β]m̃

?
N`,(k,λ)(·). (5.7)

Then we choose that estimate out of all calculated MSSE (5.7) which performs best on

the testing data in terms of the empirical L2 risk, i.e., our modified estimate is defined by

m?
N (·) := m?

N`,(k?,λ?)(·) (5.8)

with

(k?, λ?) := arg min
(k,λ)∈K?

N×Λ?N

 1

NT

N∑
i=N`+1

|m?
N`,(k,λ)(X

?
i )− Ȳ (N)

i |2
 . (5.9)
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The parameters k? and λ? of m?
N are chosen in a data-dependent way and are therefore

random variables. The next theorem demonstrates in which way the rate of convergence

of m?
N = m?

N`,(k?,λ?) depends on the rate of the empirical L2 error of m?
N`,(k,λ) on the

testing data for arbitrary, but deterministic (k, λ) ∈ K?
N × Λ?N .

Theorem 5.1. Let d, N, N`, NT ∈ N with N = N` +NT and N` ≤
⌈
N
2

⌉
. In addition, let

1 ≤ β ≤ β? < ∞ and let the finite, non-empty set of parameters K?
N × Λ?N be given by

(5.4) and (5.5), where we assume that

|K?
N × Λ?N |
N2

→ 0 (N →∞). (5.10)

For each (k, λ) ∈ K?
N ×Λ?N , define the estimate m?

N`,(k,λ) by (5.6) and (5.7). Furthermore,

let the MSSE m?
N be given by (5.8) and (5.9).

If

D̄N` and (X,Y ?), (X?
N`+1, Y

?
N`+1), . . . , (X?

N , Y
?
N ) are independent (5.11)

and moreover

D̄N and (X,Y ?) are independent, (5.12)

then we have∫
Rd

∣∣m?
N (x)−m?(x)

∣∣2µ(dx)

= OP

 min
(k,λ)∈K?

N×Λ?N

1

NT

N∑
i=N`+1

|m?
N`,(k,λ)(X

?
i )−m?(X?

i )|2+
1

NT

N∑
i=N`+1

|Y ?
i − Ȳ

(N)
i |2+

(lnN)2

N


for every distribution of (X,Y ?) with (X,Y ?) ∈ [0, 1]d× [−β?, β?] a.s. and m?(X) ∈ [0, β]

a.s.

The proof of Theorem 5.1 is given in Section 5.5.

As in Chapter 3, we deduce that condition (5.12) ensures

E
[
Y ?|X, D̄N

]
= E [Y ?|X] = m?(X)

(cf. (3.2) and (3.5)). This implies that the minimal L2 risk of any regression estimate based

on the data D̄N is the same as in case of i.i.d. data (vide Sections 1.3 and 3.1). Besides,

(5.11) is required in the proof of Theorem 5.1 to show that the rate of the empirical L2
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error of m?
N on the testing data is identical to the rate of convergence given in Theorem

5.1. This assertion will be reformulated as a fixed design regression problem and verified

by an application of Hoeffding’s inequality (Lemma D.3), demanding that the sequences

of random variables Y ?
N`+1, . . . , Y

?
N and Ȳ

(N)
1 , . . . , Ȳ

(N)
N`

are independent. In order to

prove Theorem 5.1, it then suffices to show that the rate of the difference between the

L2 error and two times the empirical L2 error of our MSSE is given by (lnN)2

N . Since

(k?, λ?) ∈ K?
N × Λ?N , this is implied by the following lemma:

Lemma 5.1. Let d, N, N`, NT ∈ N with N = N` + NT and N` ≤
⌈
N
2

⌉
. Assume that

X ∈ [0, 1]d a.s., E (Y ?)2 < ∞, and m?(X) ∈ [0, β] a.s. for some β ∈ (0,∞). Let the

finite, non-empty set of parameters K?
N × Λ?N be given by (5.4) and (5.5). For each

(k, λ) ∈ K?
N × Λ?N , define the estimate m?

N`,(k,λ) by (5.6) and (5.7) and set

H?
N,(k,λ) :=

∣∣∣∣∣∣ 1

NT

N∑
i=N`+1

|m?
N`,(k,λ)(X

?
i )−m?(X?

i )|2 −E
[
|m?

N`,(k,λ)(X)−m?(X)|2
∣∣∣ D̄N` ]

∣∣∣∣∣∣ ,
where D̄N` is given by (5.2).

If the conditions (5.10) and (5.11) hold, then we have

lim
N→∞

∑
(k,λ)∈K?

N×Λ?N

P

[
2H?

N,(k,λ) > E
[
|m?

N`,(k,λ)(X)−m?(X)|2
∣∣∣ D̄N` ]+

(lnN)2

N

]
= 0.

The proof of Lemma 5.1 is given in Section 5.5.

Let (kN , λN ) ∈ K?
N × Λ?N be arbitrary (but deterministic). Theorem 5.1 and Lemma

5.1 yield that under the conditions of Theorem 5.1, the rate of convergence of the estimate

m?
N is given by∫

Rd

∣∣m?
N`,(kN ,λN )(x)−m?(x)

∣∣2µ(dx) +
1

NT

N∑
i=N`+1

|Y ?
i − Ȳ

(N)
i |2 +

(lnN)2

N
. (5.13)

Now assume that in addition, m? ∈ Wp([0, 1]d) with 0 < J2
p (m?) <∞ for some p ∈ N

with 2p > d and that there exists a constant b2 > 0 such that (4.2) is fulfilled. For k = p

and λ chosen according to (4.3) (with n replaced by N`), one can then conclude from

Corollary 4.1 that∫
Rd

∣∣m?
N`,(k,λ)(x)−m?(x)

∣∣2µ(dx) = OP

(
1

N`

N∑̀
i=1

|Y ?
i − Ȳ

(N)
i |2 +

(
(lnN`)

2

N`

) 2p
2p+d

)
.
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Obviously, one can choose K?
N with |K?

N | < ∞ such that p ∈ K?
N for all sufficiently

large N (vide (5.4)). However, the choice of λ in (4.3) also depends on p ∈ N, whereas

condition (5.10) requires that |Λ?N | < ∞. Since we assume that the smoothness p of m?

is unknown in an application, it is not possible to choose Λ?N with |Λ?N | < ∞ such that

there always exists a N0 ∈ N with λ ∈ Λ?N for all N ≥ N0. Hence, one cannot simply

apply Corollary 4.1 and (5.13) to derive a rate of convergence of m?
N which does not

depend on the rate of the estimate (5.7). Instead, we will combine the results of Theorem

4.1, Theorem 5.1, and Lemma 5.1 in order to prove the following corollary. Here, it

is shown that for smooth m? and K?
N × Λ?N chosen according to (2.41) and (2.42), the

rate of convergence of m?
N is determined by three factors: the rates of the mean squared

generalized transformation errors on the learning and testing data and the rate of the

MSSE known from usual nonparametric regression (cf. Corollary 4.1).

Corollary 5.1. Let d, N ∈ N with N ≥ 2 and set N` :=
⌈
N
2

⌉
and NT := N−N`. Moreover,

let 1 ≤ β ≤ β? <∞ and let the set of parameters K?
N × Λ?N be given by

K?
N :=

{⌊
d

2

⌋
+ 1,

⌊
d

2

⌋
+ 2, . . . ,

⌊
d

2

⌋
+
⌈
(lnN)2

⌉}
(5.14)

and

Λ?N :=

{
lnN

2N
,

lnN

2N−1
, . . . ,

lnN

1

}
. (5.15)

Define the estimate m?
N by (5.6) – (5.9). Assume that there exists a constant b2 > 0 such

that

P

[
max

i=1,...,N`
|Y ?
i − Ȳ

(N)
i |2 > b2

]
→ 0 (N` →∞). (5.16)

Let p ∈ N with 2p > d be arbitrary. If the conditions (5.11) and (5.12) are fulfilled, then

one gets∫
Rd

∣∣m?
N (x)−m?(x)

∣∣2µ(dx)

= OP

 1

N`

N∑̀
i=1

|Y ?
i − Ȳ

(N)
i |2 +

1

NT

N∑
i=N`+1

|Y ?
i − Ȳ

(N)
i |2 +

(
(lnN)2

N

) 2p
2p+d


for every distribution of (X,Y ?) with (X,Y ?) ∈ [0, 1]d × [−β?, β?] a.s., m?(X) ∈ [0, β]

a.s., and m? ∈Wp([0, 1]d) with 0 < J2
p (m?) <∞.
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Proof of Corollary 5.1. Assume that the conditions (5.11) and (5.12) hold. First

note that (5.14) and (5.15) imply (5.10), since

|K?
N × Λ?N |
N2

=

⌈
(lnN)2

⌉
· (N + 1)

N2
→ 0 (N →∞). (5.17)

Furthermore, one can conclude for all p, d, N ∈ N that

(lnN)2

N
≤
(

(lnN)2

N

) 2p
2p+d

. (5.18)

For each (k, λ) ∈ K?
N ×Λ?N , define the estimate m?

N`,(k,λ) by (5.6) and (5.7). According

to Theorem 5.1, (5.17), and (5.18), it remains to show

min
(k,λ)∈K?

N×Λ?N

1

NT

N∑
i=N`+1

|m?
N`,(k,λ)(X

?
i )−m?(X?

i )|2

= OP

(
1

N`

N∑̀
i=1

|Y ?
i − Ȳ

(N)
i |2 +

(
(lnN)2

N

) 2p
2p+d

)
. (5.19)

In the following, Theorem 4.1 will be applied. Observe that for sufficiently large N,

there exist (ǩ, λ̌) ∈ K?
N × Λ?N and a constant B1 > 0 such that ǩ = p and

B1

(
(lnN)2

N

) 2p
2p+d

≤ λ̌ ≤ 2 ·B1

(
(lnN)2

N

) 2p
2p+d

(5.20)

(cf. Kohler, Krzyżak, and Schäfer (2002)). Here, we used that for all sufficiently large N,

one gets

1 ≤ hN :=
1

B1
lnN

(
N

(lnN)2

) 2p
2p+d

≤ 2N

and therefore jN := blog2 hNc ∈ {0, 1, . . . , N}. Indeed, this yields that (5.20) holds with

λ̌ := 2−jN · lnN.

Now note that N
2 ≤ N` =

⌈
N
2

⌉
≤ N implies

(
(lnN`)

2

N`

) 2p
2p+d

≤
(

2
(lnN)2

N

) 2p
2p+d

. (5.21)

From (5.20) and (5.21), we deduce that

(
N`

lnN`

) 2p
2p+d

λ̌ ≥ B1

(
lnN`

2

) 2p
2p+d

→∞ (N` →∞). (5.22)
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Hence, Theorem 4.1 (where we set n = N`, k = ǩ, and λn = λ̌), (5.16), (5.22), and

ǩ = p yield∫
Rd

∣∣m?
N`,(ǩ,λ̌)

(x)−m?(x)
∣∣2µ(dx) = OP

(
1

N`

N∑̀
i=1

|Y ?
i − Ȳ

(N)
i |2 + λ̌+

(
(lnN`)

2

N`

) 2p
2p+d

)
.

From this together with (5.18), (5.19), (5.21), and (5.20), one can conclude that it

suffices to show

1

NT

N∑
i=N`+1

|m?
N`,(ǩ,λ̌)

(X?
i )−m?(X?

i )|2

= OP

(∫
Rd

∣∣m?
N`,(ǩ,λ̌)

(x)−m?(x)
∣∣2µ(dx) +

(lnN)2

N

)
. (5.23)

Below, we apply Lemma 5.1. For all (k, λ) ∈ K?
N × Λ?N , set

H?
N,(k,λ) :=

∣∣∣∣∣∣ 1

NT

N∑
i=N`+1

|m?
N`,(k,λ)(X

?
i )−m?(X?

i )|2 −E
[
|m?

N`,(k,λ)(X)−m?(X)|2
∣∣∣ D̄N` ]

∣∣∣∣∣∣ ,
where D̄N` is given by (5.2). Then one gets

P

[
2

NT

N∑
i=N`+1

|m?
N`,(ǩ,λ̌)

(X?
i )−m?(X?

i )|2 − 3

∫
Rd

∣∣m?
N`,(ǩ,λ̌)

(x)−m?(x)
∣∣2µ(dx) >

(lnN)2

N

]

= P

[
2

NT

N∑
i=N`+1

|m?
N`,(ǩ,λ̌)

(X?
i )−m?(X?

i )|2 − 2 E
[
|m?

N`,(ǩ,λ̌)
(X)−m?(X)|2

∣∣∣ D̄N` ]

> E
[
|m?

N`,(ǩ,λ̌)
(X)−m?(X)|2

∣∣∣ D̄N` ]+ (lnN)2

N

]

≤ P

[
2H?

N,(ǩ,λ̌) > E
[
|m?

N`,(ǩ,λ̌)
(X)−m?(X)|2

∣∣∣ D̄N` ]+ (lnN)2

N

]

≤ P

[
∃ (k, λ) ∈ K?

N × Λ?N : 2H?
N,(k,λ) > E

[
|m?

N`,(k,λ)(X)−m?(X)|2
∣∣∣ D̄N` ]+ (lnN)2

N

]

≤
∑

(k,λ)∈K?
N×Λ?N

P

[
2H?

N,(k,λ) > E
[
|m?

N`,(k,λ)(X)−m?(X)|2
∣∣∣ D̄N` ]+ (lnN)2

N

]
. (5.24)

This together with Lemma 5.1, (5.11), and (5.17) implies (5.23) and therefore the assertion

of Corollary 5.1.

�
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5.2 Adaptive MSSE of the regression function

In the following Theorem, we analyze the rate of convergence of the MSSE (2.45), which

chooses the parameters k and λ in a data-dependent way via the splitting of the sample

technique (cf. Section 2.4).

Theorem 5.2. (Adaptation via splitting of the sample) Let d, n ∈ N with n ≥ 2.

Set nl := dn2 e and nt := n − nl. Let the set of parameters Kn × Λn be defined by (2.41)

and (2.42). Let L ≥ 1, α1 ∈ R, and the estimate mn be given by (2.43) – (2.46). For any

p ∈ N with 2p > d, we have∫
Rd

∣∣mn(x)−m(x)
∣∣2µ(dx) = OP

((
(lnn)2

n

) 2p
2p+d

)

for every distribution of (X,Y,C) which satisfies (RA1) – (RA4), m ∈ Wp([0, 1]d) with

0 < J2
p (m) <∞, and (4.12).

Remark 5.1. The rate of convergence in Theorem 5.2 is identical to the rate in Theorem

4.2, although the definition of the MSSE mn does not depend on p or J2
p (m). In this sense,

mn is able to adapt automatically to the unknown smoothness of the regression function,

which is measured by p and J2
p (m). Particularly, observe that in Theorem 5.2, the same

conditions on the distribution of (X,Y,C) as in Theorem 4.2 are required.

Remark 5.2. It follows from Lemma 4.2 and the proof of Theorem 5.2 that the assertion

of Theorem 5.2 also hold if the MSSE mn is replaced by m̈n(·) := mnl,(k̈(1),λ̈(1))(·), where

(
k̈(1), λ̈(1)

)
:= arg min

(k,λ)∈Kn×Λn

(
1

nt

n∑
i=nl+1

|mnl,(k,λ)(Xi)− Û (1)
i |

2

)
,

i.e., if we use Û
(1)
i instead of Û

(1)
i,nt

(i = nl + 1, . . . , n) in (2.46) to define our estimate.

Here, Û
(1)
i and mnl,(k,λ) are defined by (2.25) and (2.44). Observe that Û

(1)
i depends on

the whole sample, while Û
(1)
i,nt

is calculated only on the basis of the testing data.

Remark 5.3. In order to define an estimate of m in the presence of censored data, Máthé

(2006) suggested to split the transformed data (2.26) in a learning and testing set in place

of first splitting the data (1.19) and then transforming these learning and testing data

seperately. Though, one can show that in general, the learning data defined by Máthé
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and (Xnl+1, U
(1)
nl+1), . . . , (Xn, U

(1)
n ) are correlated (cf. (5.11)). Hence, it is not possible

to directly apply standard exponential probability inequalities in order to derive a nearly

optimal rate of convergence of such regression estimates.

Proof of Theorem 5.2. Define U (1), U
(1)
i (i = 1, . . . , n), Û

(1)
i,nl

(i = 1, . . . , nl), and

Û
(1)
i,nt

(nl + 1, . . . , n) by (2.21), (2.22), (2.36), and (2.37). Moreover, let the transformed

learning data D̂(1)
nl and the whole transformed data D̂(1)

nl,nt be given by (2.38) and (2.40).

In the following, it is shown that the assumptions of Corollary 5.1 hold. As in the

proof of Theorem 4.2, we first note that (RA2) and (2.24) imply m(X) ∈ [0, L] a.s. and

|U (1)| ≤ L?1 <∞ a.s., where

L?1 = (1 + 2|α1|)
L

G(L)
≥ L.

If we set N = n, N` = nl, NT = nt, β
? = L?1, β = L, K?

N = Kn, Λ?N = Λn, Y
? = U (1),

(X?
i , Y

?
i ) = (Xi, U

(1)
i ) (i = 1, . . . , N), and

Ȳ
(N)
i =

 Û
(1)
i,nl

if i ∈ {1, . . . , N`}

Û
(1)
i,nt

if i ∈ {N` + 1, . . . , N}

in Section 5.1, then one can conclude from (RA2), (RA3), (2.23), (2.43) – (2.46), and

(5.6) – (5.9) that m? equals m and m?
N equals mn. Moreover, one gets D̄N` = D̂(1)

nl and

D̄N = D̂(1)
nl,nt .

Now, observe that (2.34) yields that the estimates (2.36) coincide with the estimates

(2.25) if the latter are only calculated on the learning data (2.31) instead of the whole

sample. Thus, we have from Lemma 3.1 and (RA2) – (RA4)

max
i=1,...,nl

|U (1)
i − Û

(1)
i,nl
|2 → 0 (nl →∞) a.s. (5.25)

Since (X,Y,C), (X1, Y1, C1), . . . , (Xn, Yn, Cn) are i.i.d. random vectors, (2.21), (2.22),

and (2.34) – (2.37) imply that D̂(1)
nl and (X,U (1)), (Xnl+1, U

(1)
nl+1), . . . , (Xn, U

(1)
n ) are in-

dependent and moreover that D̂(1)
nl,nt and (X,U (1)) are independent (cf. (5.11) and (5.12)).

Hence, Corollary 5.1 and (5.25) yield∫
Rd

∣∣mn(x)−m(x)
∣∣2µ(dx)

= OP

(
1

nl

nl∑
i=1

|U (1)
i − Û

(1)
i,nl
|2 +

1

nt

n∑
i=nl+1

|U (1)
i − Û

(1)
i,nt
|2 +

(
(lnn)2

n

) 2p
2p+d

)
.
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Therefore, it suffices to show

1

nl

nl∑
i=1

|U (1)
i − Û

(1)
i,nl
|2 = OP

(
n
− 2p

2p+d

)
(5.26)

and
1

nt

n∑
i=nl+1

|U (1)
i − Û

(1)
i,nt
|2 = OP

(
n
− 2p

2p+d

)
. (5.27)

Set γ := 2p
2p+d . Since p, d ∈ N, one gets γ ∈ (0, 1). Similar to above, we deduce from

(2.35) that the estimates (2.37) coincide with the estimates (2.25) if the latter are only

calculated on the testing data (2.32). Thus, Lemma 4.2, (RA2) – (RA4), (4.12), and

(4.17) imply that there exists a constant b3 ∈ (0,∞) such that

lim sup
nl→∞

n
2p

2p+d

l

1

nl

nl∑
i=1

|U (1)
i − Û

(1)
i,nl
|2 ≤ lim sup

nl→∞
n

2p
2p+d

l max
i=1,...,nl

|U (1)
i − Û

(1)
i,nl
|2 ≤ b3 a.s.

and

lim sup
nt→∞

n
2p

2p+d
t

1

nt

n∑
i=nl+1

|U (1)
i − Û

(1)
i,nt
|2 ≤ lim sup

nt→∞
n

2p
2p+d
t max

i=nl+1,...,n
|U (1)
i − Û

(1)
i,nt
|2 ≤ b3 a.s.

This together with

n ≥ nl ≥ nt = n− nl = n−
⌈n

2

⌉
≥ n

3
(5.28)

implies (5.26) and (5.27) and hence the assertion of Theorem 5.2.

�

In the following section, the rate of convergence of the MSSE σ2
n, whose definition

depends on the estimate mNl of the regression function, is analyzed. For this purpose, we

now examine the rate of the empirical L2 error of mNl with respect to the testing data

(cf. Corollary 4.2).

Lemma 5.2. Let d, n ∈ N with n ≥ 3. Set Nl :=
⌈

2n
3

⌉
, nl :=

⌈
n
3

⌉
, and Nr := Nl − nl.

Define the set of parameters Kn×Λn by (2.41) and (2.42). Let L ≥ 1, α1 ∈ R, and let p ∈ N

with 2p > d be arbitrary. Moreover, define the estimate mNl by (2.43), (2.44), (2.66), and

(2.67). For every distribution of (X,Y,C) satisfying (RA1) – (RA4), m ∈ Wp([0, 1]d)

with 0 < J2
p (m) <∞, and (4.12), it holds that

1

n− nl

n∑
i=nl+1

|mNl(Xi)−m(Xi)|2 = OP

((
(lnn)2

n

) 2p
2p+d

)
.
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Proof of Lemma 5.2. First note that Nl =
⌈

2n
3

⌉
and nl =

⌈
n
3

⌉
yield for all n ∈ N

nl =

⌈
Nl

2

⌉
(5.29)

and (
(lnNl)

2

Nl

) 2p
2p+d

≤
(

3

2

(lnn)2

n

) 2p
2p+d

. (5.30)

For each (k, λ) ∈ Kn×Λn, define mnl,(k,λ) by (2.44). Let mn, Û
(1)
i,nt

(i = nl + 1, . . . , n)

and Û
(1)
i,Nr

(i = nl + 1, . . . , Nl) be given by (2.45), (2.37), and (2.63). Observe that (2.45),

(2.46), and (2.66) imply that mNl coincides with mn, if we replace Nl with n, Nr with

nt, and Û
(1)
i,Nr

with Û
(1)
i,nt

in (2.67), except that the minimum in (2.67) is calculated over

Kn × Λn instead of KNl × ΛNl . Hence, one can conclude from the proofs of Corollary 5.1

and Theorem 5.2, (5.29), Nl =
⌈

2n
3

⌉
≥ 2, and Nr = Nl − nl that

∫
Rd

∣∣mNl(x)−m(x)
∣∣2µ(dx) = OP

((
(lnNl)

2

Nl

) 2p
2p+d

)
. (5.31)

This together with (
(lnn)2

n

) 2a
2a+d

≥ (lnn)2

n
∀a ∈ N0 (5.32)

and (5.30) yields that it suffices to show

1

n− nl

n∑
i=nl+1

|mNl(Xi)−m(Xi)|2 = OP

(∫
Rd

∣∣mNl(x)−m(x)
∣∣2µ(dx) +

(lnn)2

n

)
. (5.33)

Below, Lemma 5.1 will be applied. For each (k, λ) ∈ Kn × Λn, set

H
(1)
n,(k,λ) :=

∣∣∣∣∣ 1

n− nl

n∑
i=nl+1

∣∣mnl,(k,λ)(Xi)−m(Xi)
∣∣2 − ∫

Rd

∣∣mnl,(k,λ)(x)−m(x)
∣∣2µ(dx)

∣∣∣∣∣
and note that (cf. (5.24))

P

[
2

n− nl

n∑
i=nl+1

|mNl(Xi)−m(Xi)|2 − 3

∫
Rd

∣∣mNl(x)−m(x)
∣∣2µ(dx) >

(lnn)2

n

]

≤
∑

(k,λ)∈Kn×Λn

P

[
2H

(1)
n,(k,λ) >

∫
Rd

∣∣mnl,(k,λ)(x)−m(x)
∣∣2µ(dx) +

(lnn)2

n

]
. (5.34)

In analogy to (5.17), we deduce from (2.41) and (2.42)

|Kn × Λn|
n2

=

⌈
(lnn)2

⌉
· (n+ 1)

n2
→ 0 (n→∞). (5.35)
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Let U (1), U
(1)
i (i = 1, . . . , n), and Û

(1)
i,nl

(i = 1, . . . , nl) be given by (2.21), (2.22),

and (2.36), respectively. Now, set N = n, N` = nl, NT = n − nl, β = L, K?
N = Kn,

Λ?N = Λn, Y
? = U (1), Y ?

i = U
(1)
i (i = 1, . . . , N), X?

i = Xi (i = 1, . . . , N), and Ȳ
(N)
i = Û

(1)
i,nl

(i = 1, . . . , N`) in Lemma 5.1. Similar to the proof of Theorem 5.2, one can conclude from

(2.23), (2.44), and (5.7) that m? then equals m and m?
N`,(k,λ) equals mnl,(k,λ). Furthermore,

we deduce that D̄N` = D̂(1)
nl and moreover that H?

N,(k,λ) = H
(1)
n,(k,λ) for all (k, λ) ∈ K?

N×Λ?N .

In addition, since (X,Y,C), (X1, Y1, C1), . . . , (Xn, Yn, Cn) are i.i.d. random vectors, (2.21),

(2.22), (2.34), and (2.38) imply that D̂(1)
nl and (X,U (1)), (Xnl+1, U

(1)
nl+1), . . . , (Xn, U

(1)
n )

are independent (cf. (5.11)). Hence, Lemma 5.1, (2.24), (RA1), (RA2), (5.34), (5.35),

and nl =
⌈
n
3

⌉
≤
⌈
n
2

⌉
yield (5.33) and therefore the assertion of Lemma 5.2.

�

5.3 Adaptive MSSE of the conditional variance

This section investigates the rate of convergence of the MSSE (2.73). Theorem 4.3 indicates

that this rate also depends on the smoothness of the underlying estimate of the regression

function.

Theorem 5.3. (Adaptation via splitting of the sample) Let d, n ∈ N with n ≥ 3. Set

Nl :=
⌈

2n
3

⌉
, nl :=

⌈
n
3

⌉
, Nt := n−Nl, and Nr := Nl − nl. Define the set of parameters

Kn × Λn by (2.41) and (2.42). Let L ≥ 1, α1, α2 ∈ R, and the estimate σ2
n be given by

(2.71) – (2.74). Let p1, p2 ∈ N with 2p1 > d, 2p2 > d be arbitrary. Set pmin := min{p1, p2}

and pmax := max{p1, p2}. Then we have

∫
Rd

∣∣σ2
n(x)− σ2(x)

∣∣2µ(dx) = OP

((lnn)2

n

) 2pmin
2pmin+d


for every distribution of (X,Y,C) which satisfies (RA1) – (RA4), (4.23), m ∈Wp1([0, 1]d)

with 0 < J2
p1

(m) <∞, and σ2 ∈Wp2([0, 1]d) with 0 < J2
p2

(σ2) <∞.

Remark 5.4. The rate of convergence in Theorem 5.3 is identical to that of Theorem 4.3.

As mentioned in Remark 4.5, this rate may be far from the optimal nonparametric rate

in case that p1 < p2. If, in contrast, p2 ≥ p1 then we can conclude similar to Remark 4.5
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that σ2
n achieves the optimal rate of convergence up to some logarithmic factor. In this

case, σ2
n adapts automatically to the unknown smoothness of σ2 (cf. Remark 5.1).

Remark 5.5. Let Ĝ(KM), Û
(2)
i (i = 1, . . . , n), and mNl be given by (2.33), (2.51) and

(2.66). Define GNl(·) := Ĝ(KM)(·, {(Z1, δ1), . . . , (ZNl , δNl)}) and, for α2 ∈ R,

Û
(2)
i,Nl

:= (1 + α2)

∫ Zi

0

2 t

GNl(t)
dt− α2

δiZ
2
i

GNl(Zi)
(i = 1, . . . , Nl).

Moreover, set

Ū
(2)
i := Û

(2)
i −mNl(Xi)

2 (i = 1, . . . , n) (5.36)

and

Ū
(2)
i,Nl

:= Û
(2)
i,Nl
−mNl(Xi)

2 (i = 1, . . . , Nl). (5.37)

Similar to Remark 5.2, we deduce that Theorem 5.2 holds for σ̈2
n(·) := σ̈2

Nl,(k̈(2),λ̈(2))(·) with

(
k̈(2), λ̈(2)

)
:= arg min

(k,λ)∈Kn×Λn

(
1

Nt

n∑
i=Nl+1

|σ̈2
Nl,(k,λ)(Xi)− Ū (2)

i |
2

)
,

too. Here, σ̈2
Nl,(k,λ)(·) := T[0,L2]

¨̃σ2
Nl,(k,λ)(·), where

¨̃σ2
Nl,(k,λ)(·) := arg min

f∈Wk([0,1]d)

(
1

Nl

Nl∑
i=1

|f(Xi)− Ū (2)
i,Nl
|2 + λJ2

k (f)

)
.

In addition, Theorem 5.2 is also fulfilled if we replace mNl in (5.36) and (5.37) by the

MSSE m̈n, which is defined in Remark 5.2.

Proof of Theorem 5.3. The proof is divided into five steps.

Step 1. For each (k, λ) ∈ Kn × Λn, let σ2
Nl,(k,λ) be given by (2.72) and set

Vn,(k,λ) :=
1

Nt

n∑
i=Nl+1

|σ2
Nl,(k,λ)(Xi)− σ2(Xi)|2.

In the first step of the proof, we use Theorem 5.1 in order to show∫
Rd

∣∣σ2
n(x)− σ2(x)

∣∣2µ(dx)

= OP

(
min

(k,λ)∈Kn×Λn
Vn,(k,λ) +

1

Nt

n∑
i=Nl+1

|U (2)
i −m(Xi)

2 − Ūi,Nt |2 +
(lnn)2

n

)
. (5.38)

Here, U
(2)
i (i = 1, . . . , n) and Ūi,Nt (i = Nl + 1, . . . , n) are defined by (2.50) and (2.69),

respectively.
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In the following, we show that the conditions of Theorem 5.1 hold. Set nt := n− nl.

Since nl =
⌈
n
3

⌉
, one has for all n ≥ 3

n ≥ nt = n− nl = n−
⌈n

3

⌉
≥ n

2
. (5.39)

This implies

|Kn × Λn|
n2
t

=
d(lnn)2e · (n+ 1)

n2
t

≤ ((ln (2nt))
2 + 1) · (2nt + 1)

n2
t

→ 0 (nt →∞) (5.40)

and
(lnnt)

2

nt
≤ 2

(lnn)2

n
. (5.41)

Moreover, nl =
⌈
n
3

⌉
and Nl =

⌈
2n
3

⌉
yield

Nr = Nl − nl =
⌈nt

2

⌉
∀n ∈ N. (5.42)

Let U (2), mNl , and Ūi,Nr (i = nl + 1, . . . , Nl) be given by (2.49), (2.66), and (2.68),

respectively. Set

D̂(2)
Nr

:=
{

(Xnl+1, Ūnl+1,Nr), . . . , (XNl , ŪNl,Nr)
}

and

D̂(2)
Nr,Nt

:=
{

(Xnl+1, Ūnl+1,Nr), . . . , (XNl , ŪNl,Nr), (XNl+1, ŪNl+1,Nt), . . . , (Xn, Ūn,Nt

}
.

Observe that (4.25) implies that there exists some constant L̄2 ≥ L2 such that we have

with probability one |U (2) −m(X)2| ≤ L̄2.

If we set N = nt, N` = Nr, NT = Nt, β
? = L̄2, β = L2, K?

N = Kn, Λ?N = Λn,

Y ? = U (2) −m(X)2, Y ?
i = U

(2)
i+nl
−m(Xi+nl)

2 (i = 1, . . . , N), X?
i = Xi+nl (i = 1, . . . , N),

and

Ȳ
(N)
i =

 Ūi+nl,Nr if i ∈ {1, . . . , N`}

Ūi+nl,Nt if i ∈ {N` + 1, . . . , N}

in Section 5.1, then one can deduce similar to the proof of Theorem 4.3 that m? equals σ2

and m?
N equals σ2

n. Moreover, one gets D̄N` = D̂(2)
Nr
, D̄N = D̂(2)

Nr,Nt
,

min
(k,λ)∈K?

N×Λ?N

1

NT

N∑
i=N`+1

|m?
N`,(k,λ)(X

?
i )−m?(X?

i )|2 = min
(k,λ)∈Kn×Λn

Vn,(k,λ), (5.43)

and
1

NT

N∑
i=N`+1

|Y ?
i − Ȳ

(N)
i |2 =

1

Nt

n∑
i=Nl+1

|U (2)
i −m(Xi)

2 − Ūi,Nt |2. (5.44)
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Here, we used that Nr + nl = Nl and nl + nt = n.

Observe that (X,Y,C), (X1, Y1, C1), . . . , (Xn, Yn, Cn) are i.i.d. random vectors. Hence,

one can conclude from (2.34), (2.36), (2.43), (2.44), and (2.61) – (2.69) that D̂(2)
Nr

and

(X,U (2) −m(X)2), (XNl+1, U
(2)
Nl+1 −m(XNl+1)2), . . . , (Xn, U

(2)
n −m(Xn)2) are indepen-

dent (cf. (5.11)). Furthermore, we may deduce that D̂(2)
Nr,Nt

and (X,U (2) − m(X)2) are

independent (vide (5.12)). Therefore, one can conclude from Theorem 5.1, σ2(X) ∈ [0, L2]

a.s. (cf. (RA2)), (4.25), (5.40), and (5.42) – (5.44) that∫
Rd

∣∣σ2
n(x)− σ2(x)

∣∣2µ(dx)

= OP

(
min

(k,λ)∈Kn×Λn
Vn,(k,λ) +

1

Nt

n∑
i=Nl+1

|U (2)
i −m(Xi)

2 − Ūi,Nt |2 +
(lnnt)

2

nt

)
. (5.45)

Now, (5.38) follows from (5.41) and (5.45).

Step 2. Similar to the proof of Corollary 5.1, one can conclude that for n sufficiently

large, there exists a pair of parameters (k̆, λ̆) ∈ Kn ×Λn and a constant B1 > 0 such that

k̆ = p2 and

B1

(
(lnn)2

n

) 2p2
2p2+d

≤ λ̆ ≤ 2 ·B1

(
(lnn)2

n

) 2p2
2p2+d

. (5.46)

For all (k, λ) ∈ Kn × Λn, define

H
(2)
n,(k,λ) :=

∣∣∣∣Vn,(k,λ) −
∫
Rd

∣∣σ2
Nl,(k,λ)(x)− σ2(x)

∣∣2µ(dx)

∣∣∣∣ .
In analogy to (5.24), we have

P

[
2Vn,(k̆,λ̆) − 3

∫
Rd

∣∣σ2
Nl,(k̆,λ̆)

(x)− σ2(x)
∣∣2µ(dx) >

(lnnt)
2

nt

]

≤ P

[
2H

(2)

n,(k̆,λ̆)
>

∫
Rd

∣∣σ2
Nl,(k̆,λ̆)

(x)− σ2(x)
∣∣2µ(dx) +

(lnnt)
2

nt

]

≤ P

[
∃(k, λ) ∈ Kn × Λn : 2H

(2)
n,(k,λ) >

∫
Rd

∣∣σ2
Nl,(k,λ)(x)− σ2(x)

∣∣2µ(dx) +
(lnnt)

2

nt

]

≤
∑

(k,λ)∈Kn×Λn

P

[
2H

(2)
n,(k,λ) >

∫
Rd

∣∣σ2
Nl,(k,λ)(x)− σ2(x)

∣∣2µ(dx) +
(lnnt)

2

nt

]
. (5.47)

If we setN = nt, N` = Nr, NT = Nt, β = L2, K?
N = Kn, Λ

?
N = Λn, Y

? = U (2)−m(X)2,

Y ?
i = U

(2)
i+nl
−m(Xi+nl)

2 (i = 1, . . . , N), X?
i = Xi+nl (i = 1, . . . , N), and Ȳ

(N)
i = Ūi+nl,Nr
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(i = 1, . . . , N`) in Section 5.1, then one can conclude in analogy to the first step of this

proof that m? equals σ2 and m?
N`,(k,λ) equals σ2

Nl,(k,λ). Moreover, it holds that D̄N` = D̂(2)
Nr

and H?
N,(k,λ) = H

(2)
n,(k,λ).

Therefore, Lemma 5.1, σ2(X) ∈ [0, L2] a.s., (4.25), (5.32), (5.39) – (5.41), and (5.47)

imply

min
(k,λ)∈Kn×Λn

Vn,(k,λ) = OP

∫
Rd

∣∣σ2
Nl,(k̆,λ̆)

(x)− σ2(x)
∣∣2µ(dx) +

(
(lnn)2

n

) 2p2
2p2+d

 . (5.48)

Here, we used that the data D̂(2)
Nr

and the sequence of random vectors (X,U (2) −m(X)2),

(XNl+1, U
(2)
Nl+1 −m(XNl+1)2), . . . , (Xn, U

(2)
n −m(Xn)2) are independent (vide Step 1).

Step 3. In the third step of the proof, Lemma 3.1 and Theorem 4.1 will be applied in

order to prove∫
Rd

∣∣σ2
Nl,(k̆,λ̆)

(x)− σ2(x)
∣∣2µ(dx)

= OP

 1

Nr

Nl∑
i=nl+1

|U (2)
i −m(Xi)

2 − Ūi,Nr |2 +

(
(lnn)2

n

) 2p2
2p2+d

 . (5.49)

Let ε > 0 be arbitrary and set B2 := ε + 2L4. First note that one can conclude

similar to (4.27) from mNl(X) ∈ [0, L] a.s., m(X) ∈ [0, L] a.s. (see (RA2)), (2.68), and

(a+ b)2 ≤ 2a2 + 2b2 (a, b ∈ R) that

P

[
max

i=nl+1,...,Nl

∣∣∣U (2)
i −m(Xi)

2 − Ūi,Nr

∣∣∣2 > B2

]

= P

[
max

i=nl+1,...,Nl

∣∣∣U (2)
i −m(Xi)

2 −
(
Û

(2)
i,Nr
−mNl(Xi)

2
) ∣∣∣2 > B2

]

≤ P

[
2 max
i=nl+1,...,Nl

∣∣∣U (2)
i − Û

(2)
i,Nr

∣∣∣2 + 2 max
i=nl+1,...,Nl

∣∣mNl(Xi)
2 −m(Xi)

2
∣∣2 > ε+ 2L4

]

≤ P

[
2 max
i=nl+1,...,Nl

∣∣∣U (2)
i − Û

(2)
i,Nr

∣∣∣2 > ε

]
. (5.50)

Here, Û
(2)
nl+1,Nr

, . . . , Û
(2)
Nl,Nr

are defined by (2.64).

Now, let Û
(2)
i (i = 1, . . . , n) be given by (2.51). Since the random variables Û

(2)
i,Nr

coincide with the random variables Û
(2)
i if the latter ones are only computed on the data

set (2.59) instead of the whole sample, Lemma 3.1, (RA2) – (RA4), and (5.50) yield

P

[
max

i=nl+1,...,Nl

∣∣∣U (2)
i −m(Xi)

2 − Ūi,Nr

∣∣∣2 > B2

]
→ 0 (Nr →∞). (5.51)
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Observe that for all n ≥ 3, we have from (5.39) and (5.42)

n ≥ Nr ≥
n

4
, (5.52)

which, in turn, implies (
(lnNr)

2

Nr

) 2p2
2p2+d

≤
(

4
(lnn)2

n

) 2p2
2p2+d

. (5.53)

From (5.46) and (5.53), one can conclude(
Nr

lnNr

) 2p2
2p2+d

λ̆ ≥ B1

(
lnNr

4

) 2p2
2p2+d

→∞ (Nr →∞). (5.54)

(cf. (5.22)).

Now note that Theorem 4.1 (where we set n = Nr, k = k̆, λn = λ̆, p = p2, β
? = L̄2,

β = L2, Y ? = U (2)−m(X)2, Y ?
i = U

(2)
i+nl
−m(Xi+nl)

2 and Ȳ
(N)
i = Ūi+nl,Nr (i = 1, . . . , n)),

σ2 ∈ Wp2([0, 1]d) with 0 < J2
p2

(σ2) < ∞, k̆ = p2, Nr = Nl − nl, L ≥ 1, (RA1), (RA2),

(2.53), (4.25), (5.46), and (5.51) – (5.54) imply (5.49).

Step 4. In the fourth step of the proof, it is shown that

1

Nr

Nl∑
i=nl+1

|U (2)
i −m(Xi)

2 − Ūi,Nr |2 +
1

Nt

n∑
i=Nl+1

|U (2)
i −m(Xi)

2 − Ūi,Nt |2

= OP

(
1

nt

n∑
i=nl+1

|mNl(Xi)−m(Xi)|2 + n
− 2pmax

2pmax+d

)
. (5.55)

Similar to (4.30), one can conclude from (2.68) and (2.69) with probability one

1

Nr

Nl∑
i=nl+1

|U (2)
i −m(Xi)

2 − Ūi,Nr |2 +
1

Nt

n∑
i=Nl+1

|U (2)
i −m(Xi)

2 − Ūi,Nt |2

≤ 2

Nr

Nl∑
i=nl+1

|U (2)
i − Û

(2)
i,Nr
|2 +

2

Nr

Nl∑
i=nl+1

|mNl(Xi)
2 −m(Xi)

2|2

+
2

Nt

n∑
i=Nl+1

|U (2)
i − Û

(2)
i,Nt
|2 +

2

Nt

n∑
i=Nl+1

|mNl(Xi)
2 −m(Xi)

2|2

≤ (2L)2 · 2

Nr

Nl∑
i=nl+1

|mNl(Xi)−m(Xi)|2 + (2L)2 · 2

Nt

n∑
i=Nl+1

|mNl(Xi)−m(Xi)|2

+ 2 max
i=nl+1,...,Nl

|U (2)
i − Û

(2)
i,Nr
|2 + 2 max

i=Nl+1,...,n
|U (2)
i − Û

(2)
i,Nt
|2. (5.56)
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Now note that nt = n− nl ≥ 2 and (5.42) yield Nr ≥ nt
2 and

n ≥ Nt = n−Nl = nt −Nr = nt −
⌈nt

2

⌉
≥ nt

3
. (5.57)

This, in turn, implies

1

Nr

Nl∑
i=nl+1

|mNl(Xi)−m(Xi)|2 +
1

Nt

n∑
i=Nl+1

|mNl(Xi)−m(Xi)|2

≤ 2

nt

Nl∑
i=nl+1

|mNl(Xi)−m(Xi)|2 +
3

nt

n∑
i=Nl+1

|mNl(Xi)−m(Xi)|2

≤ 3

nt

n∑
i=nl+1

|mNl(Xi)−m(Xi)|2. (5.58)

From (5.56) and (5.58), one gets with probability one

1

Nr

Nl∑
i=nl+1

|U (2)
i −m(Xi)

2 − Ūi,Nr |2 +
1

Nt

n∑
i=Nl+1

|U (2)
i −m(Xi)

2 − Ūi,Nt |2

≤ 2 max
i=nl+1,...,Nl

|U (2)
i − Û

(2)
i,Nr
|2 + 2 max

i=Nl+1,...,n
|U (2)
i − Û

(2)
i,Nt
|2

+
24L2

nt

n∑
i=nl+1

|mNl(Xi)−m(Xi)|2. (5.59)

Set γ := 2pmax
2pmax+d . In the third step of this proof, we observed that the random variables

Û
(2)
i,Nr

coincide with the random variables Û
(2)
i if the latter ones are only calculated on

the data set (2.59) instead of the whole sample. Hence, Lemma 4.2, (RA2) – (RA4),

γ ∈ (0, 1), (4.23), and (4.31) imply that there exists some constant b3 ∈ (0,∞) such that

lim sup
Nr→∞

N
2pmax

2pmax+d
r max

i=nl+1,...,Nl

|U (2)
i − Û

(2)
i,Nr
|2 ≤ b3 a.s.

This together with (5.52) yields

max
i=nl+1,...,Nl

|U (2)
i − Û

(2)
i,Nr
|2 = OP

(
n
− 2pmax

2pmax+d

)
. (5.60)

In analogy to (5.60), we deduce from Lemma 4.2, (RA2) – (RA4), (2.51), (2.65), (4.23),

(4.31), (5.39), and (5.57) that

max
i=Nl+1,...,n

|U (2)
i − Û

(2)
i,Nt
|2 = OP

(
n
− 2pmax

2pmax+d

)
. (5.61)

Now, (5.55) follows from (5.59) – (5.61).
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Step 5. In the fifth step, we finish the proof of Theorem 5.3. From p2 ≤ pmax, (5.32),

(5.38), (5.48), (5.49), and (5.55), one can conclude∫
Rd

∣∣σ2
n(x)− σ2(x)

∣∣2µ(dx)

= OP

 1

nt

n∑
i=nl+1

|mNl(Xi)−m(Xi)|2 +

(
(lnn)2

n

) 2p2
2p2+d

 (5.62)

Since m ∈ Wp1([0, 1]d) with 0 < J2
p1

(m) < ∞, Lemma 5.2, (RA1) – (RA4), (4.23),

(4.35), L ≥ 1, and nt = n− nl imply

1

nt

n∑
i=nl+1

|mNl(Xi)−m(Xi)|2 = OP

((lnn)2

n

) 2p1
2p1+d

 .

This together with (4.28) and (5.62) yields the assertion of Theorem 5.3.

�

5.4 Adaptive MSSE of the conditional survival function

In this section, we derive the rate of convergence of the MSSE (2.91), which is defined via

the splitting of the sample technique (cf. Section 2.4).

Theorem 5.4. (Adaptation via splitting of the sample) Let d, n ∈ N with n ≥ 2

and let τ ∈ R be arbitrary, but fixed. Set nl := dn2 e and nt := n − nl. Moreover, let the

set of parameters Kn × Λn be given by (2.41) and (2.42). Define the estimate Fn(τ | ·) by

(2.89) – (2.92). For any p ∈ N with 2p > d, we have

∫
Rd

∣∣Fn(τ |x)− F (τ |x)
∣∣2µ(dx) = OP

((
(lnn)2

n

) 2p
2p+d

)

for every distribution of (X,Y,C) satisfying (RA1) – (RA4), F (τ | ·) ∈Wp([0, 1]d) with

0 < J2
p (F (τ | ·)) <∞, and (4.12).

Remark 5.6. Observe that the MSSE Fn(τ | ·) does not depend on p or J2
p (F (τ | ·)).

Nevertheless, it achieves the same rate of convergence as the estimate in Theorem 4.4.

Hence, Fn(τ | ·) adapts automatically to the unknown smoothness of F (τ | ·), which is

measured by p and J2
p (F (τ | ·)).
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Remark 5.7. In analogy to Remark 5.2, one can conclude that the assertion of Theorem

5.4 is also fulfilled for the estimate F̈n(τ | ·) := Fnl,(k̈(3),λ̈(3))(τ | ·) with

(
k̈(3), λ̈(3)

)
:= arg min

(k,λ)∈Kn×Λn

(
1

nt

n∑
i=nl+1

|Fnl,(k,λ)(τ |Xi)− Û (3)
i |

2

)
.

Here Û
(3)
i (i = 1, . . . , n) and Fnl,(k,λ)(τ | ·) are given by (2.51) and (2.90).

Proof of Theorem 5.4. In the following, we mimic the proof of Theorem 5.2. First,

it is shown that the conditions of Corollary 5.1 hold.

Fix τ ∈ R. Furthermore, let U (3), U
(3)
i (i = 1, . . . , n), Û

(3)
i,nl

(i = 1, . . . , nl), and Û
(3)
i,nt

(i = nl + 1, . . . , n) be defined by (2.77), (2.78), (2.84), and (2.85). Moreover, let D̂(3)
nl and

D̂(3)
nl,nt be given by (2.86) and (2.88).

Obviously, we have with probability one that F (τ |X ) = P [ Y > τ | X ] ∈ [0, 1]. In

addition, note that (2.81) implies |U (3)| ≤ L?3 <∞ a.s., where L?3 = 1
G(L) ≥ 1.

Now set N = n, N` = nl, NT = nt, β
? = L?3, β = 1, K?

N = Kn, Λ?N = Λn, Y
? = U (3),

(X?
i , Y

?
i ) = (Xi, U

(3)
i ) (i = 1, . . . , N), and

Ȳ
(N)
i =

 Û
(3)
i,nl

if i ∈ {1, . . . , N`}

Û
(3)
i,nt

if i ∈ {N` + 1, . . . , N}

in Section 5.1. From (RA2), (RA3), (2.80), (2.89) – (2.92), and (5.6) – (5.9), one can

conclude similar to the proof of Theorem 4.2 that this implies that m?(·) equals F ( τ | · )

and m?
N (·) equals Fn ( τ | · ) . Moreover, one gets D̄N` = D̂(3)

nl and D̄N = D̂(3)
nl,nt .

Note that (2.34) yields that the estimates (2.84) coincide with the estimates (2.79)

if the latter are only calculated on the learning data (2.31) instead of the whole sample.

Therefore, one gets from Lemma 3.1

max
i=1,...,nl

|U (1)
i − Û

(3)
i,nl
|2 → 0 (nl →∞) a.s.

and thus (5.16).

Furthermore, since (X,Y,C), (X1, Y1, C1), . . . , (Xn, Yn, Cn) are i.i.d. random vectors,

one can conclude from (2.34), (2.35), (2.77), (2.78), (2.84) – (2.87) that D̂(3)
nl and (X,U (3)),

(Xnl+1, U
(3)
nl+1), . . . , (Xn, U

(3)
n ) are independent as well as that D̂(3)

nl,nt and (X,U (3)) are

independent. This, in turn, yields (5.11) and (5.12).
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Hence, we have verified that the conditions of Corollary 5.1 are fulfilled. This together

with (5.28) implies that in order to prove Theorem 5.4, it remains to show

1

nl

nl∑
i=1

|U (3)
i − Û

(3)
i,nl
|2 = OP

(
n
− 2p

2p+d

l

)
(5.63)

and
1

nt

n∑
i=nl+1

|U (3)
i − Û

(3)
i,nt
|2 = OP

(
n
− 2p

2p+d
t

)
. (5.64)

Set γ := 2p
2p+d . Since p, d ∈ N, it holds that γ ∈ (0, 1). In analogy to above, one can

conclude from (2.35) that the estimates (2.85) coincide with the estimates (2.79) if the

latter are only calculated on the testing data (2.32). Thus, Lemma 4.2, (4.12), and (4.17)

yield that there exists a constant b3 ∈ (0,∞) such that

lim sup
nl→∞

n
2p

2p+d

l

1

nl

nl∑
i=1

|U (3)
i − Û

(3)
i,nl
|2 ≤ lim sup

nl→∞
n

2p
2p+d

l max
i=1,...,nl

|U (3)
i − Û

(3)
i,nl
|2 ≤ b3 a.s.

and

lim sup
nt→∞

n
2p

2p+d
t

1

nt

n∑
i=nl+1

|U (3)
i − Û

(3)
i,nt
|2 ≤ lim sup

nt→∞
n

2p
2p+d
t max

i=nl+1,...,n
|U (3)
i − Û

(3)
i,nt
|2 ≤ b3 a.s.

This together with (5.28) and (5.39) implies (5.63) and (5.64) and therefore the assertion

of Theorem 5.4.

�

5.5 Proofs of Theorem 5.1 and Lemma 5.1

In this section, we show that the assertions of Theorem 5.1 and Lemma 5.1 hold. First, the

proof of Lemma 5.1 is given. Subsequently, we apply this result in order verify Theorem

5.1.

Proof of Lemma 5.1. Assume that the conditions (5.10) and (5.11) are fulfilled and

define D̄N` by (5.2). For all (k, λ) ∈ K?
N × Λ?N set

gN`,(k,λ)(x) := |m?
N`,(k,λ)(x)−m?(x)|2 (x ∈ [0, 1]d)

and ς2
(k,λ) := Var

[
gN`,(k,λ)(X)

∣∣ D̄N` ] . Observe that 0 ≤ m?(X) ≤ β a.s. and (5.7) imply

with probability one

0 ≤ gN`,(k,λ)(X) ≤ β2 ∀ (k, λ) ∈ K?
N × Λ?N . (5.65)
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Hence, one can conclude for all (k, λ) ∈ K?
N × Λ?N

ς2
(k,λ) ≤ E

[
gN`,(k,λ)(X)2

∣∣ D̄N` ] ≤ β2 E
[
gN`,(k,λ)(X)

∣∣ D̄N` ] a.s. (5.66)

Since (X,Y ?), (X?
1 , Y

?
1 ), . . . , (X?

N , Y
?
N ) are i.i.d. random vectors, (5.6), (5.7), and

assumption (5.11) imply for all (k, λ) ∈ K?
N ×Λ?N that gN`,(k,λ)(X

?
N`+1), . . . , gN`,(k,λ)(X

?
N )

are conditionally independent given D̄N` ,

E
[
gN`,(k,λ)(X

?
i )
∣∣ D̄N` ] = E

[
gN`,(k,λ)(X)

∣∣ D̄N` ] (i = N` + 1, . . . , N),

and
1

NT

N∑
i=N`+1

Var
[
gN`,(k,λ)(X

?
i )
∣∣ D̄N` ] = ς2

(k,λ).

This together with (5.65), (5.66), and Bernstein’s inequality (Lemma D.4) yields for all

t > 0 with probability one

∑
(k,λ)∈K?

N×Λ?N

P

[
2H?

N,(k,λ) > E
[
|m?

N`,(k,λ)(X)−m?(X)|2
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]

=
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]

≤
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(
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2

)2

6ς2
(k,λ) + 2β2

(
ς2
(k,λ)

2β2 + t
2

)


≤ 2 |K?
N × Λ?N | max

(k,λ)∈K?
N×Λ?N

exp

−
3NT

(
ς2
(k,λ)

2β2 + t
2

)2

6ς2
(k,λ) + 2β2

(
ς2
(k,λ)

2β2 + t
2

)


≤ 2 |K?
N × Λ?N | max

(k,λ)∈K?
N×Λ?N

exp

−
3NT

(
ς2
(k,λ)

2β2 + t
2

)2

(12β2 + 2β2)

(
ς2
(k,λ)

2β2 + t
2

)
 .
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Hence, we may deduce for all t > 0

∑
(k,λ)∈K?

N×Λ?N

P

[
2H?

N,(k,λ) > E
[
|m?

N`,(k,λ)(X)−m?(X)|2
∣∣∣ D̄N` ]+ t

∣∣∣∣∣ D̄N`
]

≤ 2 |K?
N × Λ?N | max

(k,λ)∈K?
N×Λ?N

exp

−3NT

(
ς2
(k,λ)

2β2 + t
2

)
14β2


≤ 2 |K?

N × Λ?N | exp

(
−3

NT t

28β2

)
a.s. (5.67)

Since N` ≤
⌈
N
2

⌉
, we have for all N ≥ 2

NT = N −N` ≥ N −
⌈
N

2

⌉
≥ N

3
(5.68)

(cf. (5.28)), which, in turn, implies for all sufficiently large N that

exp

(
3
NT

28β2
· (lnN)2

N

)
≥ exp

(
(lnN)2

28β2

)
≥ exp(2 lnN) = N2. (5.69)

From (5.67) and (5.69), one can conclude

∑
(k,λ)∈K?

N×Λ?N

P

[
2H?

N,(k,λ) > E
[
|m?

N`,(k,λ)(X)−m?(X)|2
∣∣∣ D̄N` ]+

(lnN)2

N

]

≤ 2
|K?

N × Λ?N |
N2

for all sufficiently large N.

This together with (5.10) implies the assertion of Lemma 5.1.

�

Now we are in the position to prove Theorem 5.1. Here, Lemma A.2 will be applied,

which is formulated and verified in Appendix A.

Proof of Theorem 5.1. Assume that the conditions (5.11) and (5.12) hold. Let

N ≥ 2 and set

FK?
N×Λ?N

:=
{
m?
N`,(k,λ) : (k, λ) ∈ K?

N × Λ?N

}
.

First observe that (5.8) and (5.9) imply

m?
N (·) = arg min

f∈FK?
N
×Λ?

N

1

NT

N∑
i=N`+1

|f(X?
i )− Ȳ (N)

i |2. (5.70)
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Define

A?N := 18 min
(k,λ)∈K?

N×Λ?N

1

NT

N∑
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|m?
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i )−m?(X?

i )|2 +
512

NT
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i=N`+1

|Y ?
i − Ȳ

(N)
i |2.

Assumption (5.11), Lemma A.2, and (5.70) yield

P

[∫
Rd

∣∣m?
N (x)−m?(x)

∣∣2µ(dx) > 2A?N + 3
(lnN)2

N
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NT
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i )−m?(X?
i )|2 > (lnN)2
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]
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N∑
i=N`+1
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i )−m?(X?
i )|2 > A?N +

(lnN)2

N

]

≤ P

[∫
Rd

∣∣m?
N (x)−m?(x)

∣∣2µ(dx)− 2

NT

N∑
i=N`+1

|m?
N (X?

i )−m?(X?
i )|2 > (lnN)2

N

]

+
2|K?

N × Λ?N |

exp
(
b7NT

(lnN)2

N

)
− 1

=: qN +
2|K?

N × Λ?N |

exp
(
b7NT

(lnN)2

N

)
− 1

. (5.71)

Here, b7 > 0 is the constant in Lemma A.2 which only depends on β?.

For all sufficiently large N, one can conclude from (5.68) for the last term on the right

hand side of (5.71)

2 |K?
N × Λ?N |

exp
(
b7NT

(lnN)2

N

)
− 1
≤

2 |K?
N × Λ?N |

exp (2 lnN + ln 2)− 1
=

2 |K?
N × Λ?N |

2N2 − 1
≤

2 |K?
N × Λ?N |
N2

.

This together with (5.10) and (5.71) implies that it remains to show

qN → 0 (N →∞). (5.72)

In the following, Lemma 5.1 will be applied. Let the data sets D̄N , D̄N` , and D̄NT be

given by (5.1) – (5.3). For each (k, λ) ∈ K?
N × Λ?N define

H?
N,(k,λ) :=

∣∣∣V ?
N,(k,λ) −E

[
|m?

N`,(k,λ)(X)−m?(X)|2
∣∣∣ D̄N` ] ∣∣∣ ,

where

V ?
N,(k,λ) :=

1

NT

N∑
i=N`+1

|m?
N`,(k,λ)(X

?
i )−m?(X?

i )|2.
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From (5.11) and (5.12), we deduce that D̄NT and (X,Y ?) are conditionally independent

given D̄N` . This together with (5.8) and properties of conditional expectation yields

qN = P

[∫
Rd

∣∣m?
N (x)−m?(x)

∣∣2µ(dx)− 2

NT

N∑
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|m?
N (X?

i )−m?(X?
i )|2 > (lnN)2

N

]

= P
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E
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|m?

N (X)−m?(X)|2
∣∣ D̄N ]− 2V ?
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(lnN)2

N

]

≤ P
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N × Λ?N : E
[
|m?

N`,(k,λ)(X)−m?(X)|2
∣∣∣ D̄N ]− 2V ?

N,(k,λ) >
(lnN)2

N

]

≤
∑

(k,λ)∈K?
N×Λ?N

P

[
E
[
|m?

N`,(k,λ)(X)−m?(X)|2
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(lnN)2

N

]

=
∑
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N×Λ?N

P

[
E
[
|m?

N`,(k,λ)(X)−m?(X)|2
∣∣∣ D̄N` ]− 2V ?

N,(k,λ) >
(lnN)2

N

]

≤
∑

(k,λ)∈K?
N×Λ?N

P

[
2H?

N,(k,λ) > E
[
|m?

N`,(k,λ)(X)−m?(X)|2
∣∣∣ D̄N` ]+

(lnN)2

N

]
.

Finally, the last inequality and Lemma 5.1 imply (5.72).

�
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Chapter 6

Applications to simulated data

In this chapter, we analyze the performances of the MSSE (2.45), (2.73), and (2.91) in a

simulation study. Section 6.1 introduces our choice of the distribution of (X,Y,C). Here,

it is shown that this choice assures that the assumptions of Theorems 5.2 – 5.4 on the

distribution of (X,Y,C) are fulfilled, and the suitably defined MSSE (2.45), (2.73), and

(2.91) hence achieve their optimal rate of convergence up to some logarithmic factor. In

the three subsequent sections, the results of the simulation study are discussed, which

suggest that our MSSE are reliable estimates, which perform well for moderate sample

sizes. Finally, Section 6.5 contains the proofs of two lemmata presented in Section 6.1.

All results of the simulation study (including pictures) presented in this chapter were

performed by means of statistical software R-2.6.2 (www.r-project.org), in which simula-

tions were based on self-written functions.

6.1 Simulation model

This section establishes the specific choice of the distribution of (X,Y,C) ∈ Rd×R+×R+

which is applied in the simulation studies presented in Sections 6.2 – 6.4. In particular,

for the lifetime Y with EY 4 <∞ it is assumed that the heteroscedastic model

Y = m(X) + σ(X) · ε (6.1)

holds, where the so-called error term ε is a real-valued random variable with Eε4 <∞. In

order to ensure that the functions m and σ in (6.1) are actually identical to the regression

107
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function of (X,Y ) and the conditional standard deviation of Y given X, respectively, we

require that E [ ε |X ] = 0 and Var [ ε |X ] = 1.

Indeed, (6.1) and the last two conditions imply that with probability one

E [Y |X ] = E [m(X) + σ(X) · ε |X ] = m(X) + σ(X) ·E [ ε |X ] = m(X)

and

Var [Y |X ] = E
[
|Y −m(X) |2

∣∣∣ X ] = E
[
|σ(X) · ε |2

∣∣∣ X ]
= σ2(X) ·E

[
ε2
∣∣ X ] = σ2(X) ·Var [ ε | X ]

= σ2(X).

The term heteroscedastic model refers to all models allowing for a non-constant condi-

tional variance of the dependent variable. A broad survey of different types of such models,

in particular in the context of parametric regression, can be found in Carroll and Ruppert

(1988) and the literature cited therein. The construction of nonparametric estimates of

the regression function or the conditional variance within heteroscedastic models is, e.g.,

described in Müller and Stadtmüller (1987), Carroll and Hall (1989), Neumann (1994),

Stadtmüller and Tsybakov (1995), Wang, Brown, Cai, and Levine (2008), and Cai, Levine,

and Wang (2009).

For our simulation study, we now choose a specific form of m and σ in (6.1) as well as

the distributions of X, C, and the error term ε. To be more precise, in this chapter, it is

assumed that the following conditions on the distribution of (X,Y,C) are fulfilled:

(SM1) The heteroscedastic model (6.1) holds, where

(SM1a) m(X) = 7
8 −

1
3 (2X − 1)4 − 48 (X (1−X))

7
2 ,

(SM1b) σ(X) =
√

3
24 + 16

√
3 (X (1−X))

7
2 ,

(SM1c) ε is uniformly distributed on
[
−
√

3,
√

3
]
.

(SM2) X is uniformly distributed on [ 0, 1] .

(SM3) C is exponentially distributed with mean 4
3 .

(SM4) C, X, and ε are mutually independent.
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From (SM1c) and (SM4), one can conclude that

E [ ε |X ] = E ε =
1

2

(√
3−
√

3
)

= 0 and Var [ ε |X ] = Var ε =
1

12

∣∣∣√3 +
√

3
∣∣∣2 = 1.

I.e., our conditions on the first and second conditional moment of ε are satisfied. Moreover,

note that (SM1) – (SM4) imply that in our simulation study, on average approximately

37.7% of the data is censored.

In the next proposition, it is shown the distribution of (X,Y,C) specified above meets

the regularity assumptions (RA1) – (RA4).

Proposition 6.1. Let the conditions (SM1) – (SM4) hold. Then the distribution of

(X,Y,C) fulfills the regularity conditions (RA1) – (RA4).

Proof of Proposition 6.1. Obviously, (RA1) is implied by (SM2) (with d = 1).

Furthermore, (RA3) directly follows from (6.1) and (SM4). Moreover, (SM3) yields

(RA4). In order to show regularity assumption (RA2), first observe that for all x ∈ [0, 1],

we have from (SM1a) and (SM1b)

2

3
≤M+(x) := m(x) +

√
3 · σ(x) = 1− 1

3
(2x− 1)4 ≤ 1 (6.2)

and

0 ≤M−(x) := m(x)−
√

3 · σ(x) ≤M−max := max
x∈[0,1]

M−(x) ≈ 0.603. (6.3)

Now, (6.1) – (6.3), (SM1c), and (SM2) imply with probability one

0 ≤M−(X) ≤ Y ≤M+(X) ≤ 1. (6.4)

This together with (SM3) yields that (RA2) is fulfilled with any L ∈ [1,∞).

�

Let α1, α2 ∈ R and k, k1, k2 ∈ N. with 2k, 2k1, 2k2 > 1. For n ∈ N choose the smooth-

ing parameters λn, λ1,n, λ2,n > 0 such that the conditions (3.19), (3.20), and (3.35) are

satisfied. Moreover, let τ ∈ R be arbitrary, but fixed. Then one can conclude from Theo-

rem 3.2, Theorem 3.3, and Theorem 3.4 that for the distribution of (X,Y,C) defined by

(SM1) – (SM4), the MSSE (2.28), (2.57), and (2.83) are strongly consistent.

In the following, we derive the explicit form of the conditional survival function F (t|x)

(t ∈ R, x ∈ [0, 1]). First observe that (SM1b) yields σ(x) > 0 ∀x ∈ [0, 1]. Set

R(t, x) :=
t−m(x)

σ(x)
(t ∈ R, x ∈ [0, 1]). (6.5)
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Now, (SM4), (6.1), (6.2), and (6.5) imply for all t ∈ R and all x ∈ [0, 1]

F (t|x) = P [ Y > t | X = x ] = P [ m(X) + σ(X) · ε > t | X = x ]

= P [ ε > R(t,X) | X = x ] =

∫ √3

R(t,x)

1

2
√

3
I[−
√

3≤ s≤
√

3 ] ds

= I[R(t,x)<−
√

3 ] + I[−
√

3≤R(t,x)≤
√

3 ] ·
1

2
√

3

(√
3−R(t, x)

)
= I[R(t,x)<−

√
3 ] + I[−

√
3≤R(t,x)≤

√
3 ] ·

M+(x)− t
2
√

3σ(x)
. (6.6)

Now note that from (6.2) and (6.3), we have for all t ∈
[
M−max,

2
3

]
and all x ∈ [0, 1]

m(x)−
√

3 · σ(x) ≤ t ≤ m(x) +
√

3 · σ(x)

and therefore −
√

3 ≤ R(t, x) ≤
√

3. This together with (6.6) yields

F (t|x) =
M+(x)− t
2
√

3σ(x)

(
M−max ≤ t ≤

2

3
, x ∈ [0, 1]

)
. (6.7)

In the next two lemmata, we show that in the scenario of our simulation study, the

conditions of Theorems 5.2 – 5.4 on the distribution of (X,Y,C) are fulfilled with p = 3

(or p1 = p2 = 3) and d = 1. The first lemma states that m, σ2, and F (τ |·) (τ ∈
[
M−max,

2
3

)
fixed) are functions in the Sobolev space W3([0, 1]).

Lemma 6.1. Let M−max be given by (6.3). Furthermore, let τ ∈
[
M−max,

2
3

)
be arbitrary,

but fixed. If the conditions (SM1) – (SM4) hold, then we have

1. m ∈W3([0, 1]) with 0 < J2
3 (m) <∞, but m /∈Wk([0, 1]) ∀k ≥ 4.

2. σ2 ∈W3([0, 1]) with 0 < J2
3 (σ2) <∞, but σ2 /∈Wk([0, 1]) ∀k ≥ 4.

3. F (τ |·) ∈W3([0, 1]) with 0 < J2
3 (F (τ |·)) <∞, but F (τ |·) /∈Wk([0, 1]) ∀k ≥ 4.

The proof of Lemma 6.1 is given in Section 6.5.

Let k ∈ N and let τ ∈
[
M−max,

2
3

)
be arbitrary, but fixed. The Sobolev space Wk([0, 1])

contains all functions whose weak derivatives up to order k are contained in L2([0, 1]) (see

(2.3)). This implies that Wk([0, 1]) ⊆ Wκ([0, 1]) for all κ ∈ N with κ ≤ k. Therefore,

one can conclude from Lemma 6.1 that if the conditions (SM1) – (SM4) are fulfilled,

m,σ2, F (τ |·) ∈Wκ([0, 1]) for all κ ∈ {1, 2, 3}.
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In the second lemma of this section, we investigate the conditions (4.12) and (4.23),

which determine the rate of convergence of the mean squared transformation errors (cf.

Lemma 4.2).

Lemma 6.2. If the conditions (SM1) – (SM4) hold, then one gets τF = 1 and

−
∫ 1

0
F (t)−

3
4 dG(t) <∞.

The proof of Lemma 6.2 is given in Section 6.5.

Let n ∈ N with n ≥ 3, L ≥ 1, α1, α2 ∈ R, and τ ∈
[
M−max,

2
3

)
. Theorems 5.2 – 5.4,

Lemma 6.1, and Lemma 6.2 imply that for the distribution of (X,Y,C) defined by (SM1)

– (SM4), the rate of stochastic convergence of the MSSE (2.45), (2.73), and (2.91) (with

nl, nt, Nl, Nr, and Nt chosen according to Theorems 5.2 – 5.4) is given by(
(lnn)2

n

) 6
7

, (6.8)

which is optimal up to the logarithmic factor.

However, in statistical applications, such asymptotic results are often secondary, since

in general, it is unknown whether they are valid for or they do not apply to a given finite

sample size. In order to assess the accuracy and the precision of our MSSE on data with

a moderate sample size n, the estimates (2.45), (2.73), and (2.91) are therefore analyzed

below on simulated data sets with n = 200.

6.2 Results for MSSE of the regression function

Throughout this and the two subsequent sections of this chapter, we will assume that

(X,Y,C), (X1, Y1, C1), . . . , (Xn, Yn, Cn) are i.i.d. random vectors, whose distribution is

given by (SM1) – (SM4). For a single simulation run and for each (Xi, Yi, Ci), a realiza-

tion (xi, yi, ci) (i = 1, . . . , n) is generated. According to (1.1) and (1.2), we then compute

the realizations (∆i, zi) of (δi, Zi), where ∆i := I[yi<ci] and zi := min{yi, ci} (i = 1, . . . , n).

As mentioned above, in each simulation run a sample size of n = 200 is chosen.

Furthermore, we set the “known upper bound” on the distribution of Y in assumption

(RA2) to L = 1. However, for all estimates presented in this chapter, the effect of the

choice of L (with L ≥ 1) on the results is negligible.
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In order to calculate the MSSE mn, the 200 data points of a single simulation run

are first randomly split into a learning data set and a testing data set with sample sizes

nl = nt = 100 (cf. Section 2.4). For each of these sets, we then compute the estimates of

the transformed data according to (2.36) and (2.37).

Observe that these data still depend on α1 ∈ R. This parameter provides the possibility

to improve the quality of the transformation and therefore the estimation of m. Let the

transformed random variables U
(1)
i (i = 1, . . . , n) be given by (2.22). As pointed out by

Fan and Gijbels (1994, 1996), the choice α1 > 0 is more intuitive, because it rather focuses

on the censored than on the uncensored observations. On the other hand, if α1 is too large,

then we have U
(1)
i ≥ Zi a.s. if δi = 0 but U

(1)
i ≤ Zi a.s. if δi = 1 (i = 1, . . . , n). Hence,

this would lead to an increased variability of the transformed random variables. Likely,

this would deteriorate the performance of the estimation of m by any regression estimate

which is based on this sample.

Thus, Fan and Gijbels (1994, 1996) suggested to take the largest α1 in a data-dependent

way such that the observed lifetimes do not exceed the corresponding estimates of the

transformed times. Since (2.36) and (2.37) are calculated separately, we adapt their propo-

sition to our situation by computing their choice of α1 only on the learning data, i.e., set

αFG1 := αFG1 (D(1)
nl ) := min

i=1,...,nl:
δi=1

∫ Yi

0

1

Gnl(t)
dt− Yi

Yi
Gnl(Yi)

−
∫ Yi

0

1

Gnl(t)
dt

. (6.9)

Here, D(1)
nl and Gnl are given by (2.31) and (2.34). In order to guarantee that αFG1 is always

calculable, we require that the learning data contains at least one uncensored observation.

Observe that (2.34) implies Gnl(a) ≤ Gnl(t) ≤ 1 a.s. for all 0 ≤ t ≤ a and therefore

Yi ≤
∫ Yi

0

1

Gnl(t)
dt ≤ Yi

Gnl(Yi)
a.s. (i = 1, . . . , n).

This yields with probability one that αFG1 ≥ 0 and hence that the estimates of the trans-

formed times do not fall below the corresponding censoring times.

Once the value of αFG1 is determined, we apply this choice to the computation of the

transformed random variables (2.37). Note that while (6.9) ensures that Û
(1)
i,nl
≥ Yi for

all i = 1, . . . , nl with δi = 1, it may happen that there exists some i ∈ {nl + 1, . . . , n}

with δi = 1 such that Û
(1)
i,nt

< Yi. As mentioned above, this may somewhat increase the
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variability of the transformed observations in the testing data. One way to avoid this would

be to calculate αFG1 according to Fan and Gijbels (1994, 1996) on the whole data set. But

in this case, one would use information from the testing set (2.32) in order to calculate

the random variables (2.36) in the learning set (2.38). To examine the performance of our

regression estimate of m, we rather like to transform the learning data (2.31) as if (2.32)

would be a new sample of (X, δ, Z) which is not available in this step (cf. Section 2.4).

In order to ensure that (2.38) and (2.39) do not depend on each other, one could choose

α1 = αFG1 (D(1)
nl ) in (2.36) and α1 = αFG1 (D(1)

nt ) in (2.37), where αFG1 (D(1)
nt ) is given similar

to (6.9) with D(1)
nl replaced by D(1)

nt . Since we randomly split the data set in (2.31) and

(2.32), αFG1 (D(1)
nl ) and αFG1 (D(1)

nt ) should not differ very much. However, especially for

small sample sizes, it may nevertheless happen that this difference is so large that this

would considerably diminish the accuracy of any regression estimate.

Other suggestions in order to choose α1, which do not depend on the data can, e.g., be

found in Leurgans (1987) or Koul, Susarla, and Van Ryzin (1981) which propose to use

α1 = 0 and α1 = −1, respectively. Note that α1 = 0 implies that uncensored and censored

observations are treated equally. In contrast, the choice α1 = −1 yields that all censored

observations are set to zero, while all the uncensored observations are increased.

Once the value of the transformation parameter is determined, we compute the MSSE

mn according to Section 2.4 on the realizations of the transformed learning and testing

data. In order to analyze the effect of the censoring mechanism on the estimation of m, a

second MSSE mUD
n is calculated on the realizations of the (in an statistical application not

observable) uncensored data. This estimate is derived by simply replacing D(1)
nl and D(1)

nt

in the definition of mn with {(X1, Y1), . . . , (Xnl , Ynl)} and {(Xnl+1, Ynl+1), . . . , (Xn, Yn)} ,

respectively. I.e., mn is identical to mUD
n if no censoring arises. Observe that mUD

n does

not depend on the transformation parameter α1.

For a single simulated data set, Figure 6.1 (a) shows the (in an application) unobserved

data together with the regression function m (vide (SM1a) ), Figure 6.1 (b) the observed

censored data with censored data points marked by “+”, Figure 6.1 (c) the transformed

data with α1 = αFG1 ≈ 0.44, and Figure 6.1 (d) m (green solid line), the MSSE mn of m

based on the transformed data (blue dotted line), and the in an application not calculable

MSSE mUD
n of m based on the unobserved data (red dashed line).
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Figure 6.1: Data set for a single simulation run. The character “•” indicates the uncensored

observations, while the censored observations are presented by “+”. The same characters are

used for the transformed data. The individual panels show (a) the unobserved data together

with m (green solid line), (b) the observed simulated data, (c) the transformed data with

α1 = αFG1 ≈ 0.44, and (d) m (green solid line) with the MSSE mn (blue dotted line) and

mUD
n (red dashed line).

Figure 6.1 (d) indicates that even for the small to moderate sample size of n = 200

chosen, both nonparametric regression estimates perform very well in our simulation study.
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For the simulated data set displayed in Figure 6.1, the empirical L2 error of mUD
n is

approximately 1.5 · 10−3, while the empirical L2 error of mn (with α1 = αFG1 ≈ 0.44)

is about 5.2 · 10−3. It is evident that the MSSE mUD
n , which is solely computed on the

uncensored observations, will commonly be an better estimate of m (in terms of the L2

error) than mn. However, in an application where censored data occurs, mUD
n is not

calculable.

According to Lemma 6.1, m, σ2, and F (τ |·) (M−max ≤ τ < 2
3 fixed) are functions

in the Sobolev space W3([0, 1]). All the MSSE presented in this and the two subsequent

sections (for the MSSE of F (τ |·) provided that M−max ≤ τ < 2
3) typically choose the value

of the parameter k (or k1 and k2 for the estimation of σ2) via the splitting of the sample

technique to k = 3 (or k1 = k2 = 3). I.e., in general, our estimates adapt automatically

to the (in an application unknown) smoothness of m, σ2, and F (τ |·) , respectively, as

indicated by Theorems 5.2 – 5.4.

In order to determine the influence of the parameter α1 on the estimation of the

regression function m, we generated 50 independent samples (with sample size n = 200)

of the distribution of (X,Y,C) given by (SM1) – (SM4). For each sample, the empirical

L2 error of mn for six different choices of α1 was calulated. For our first version of mn,

α1 = αFG1 was considered, where αFG1 is given by (6.9). Secondly, we chose α1 = 14
25 , which

corresponds to the median of the αFG1 ’s calculated on the learning data (2.31) for the 50

independently repeated simulation runs. Thirdly, α1 = 0 was taken (cf. Leurgans (1987)).

In order to cover a wider range, these versions of mn were compared with three others,

where we considered values of α1 which lay somewhere between (α1 = 1
3) or above (α1 = 2

3

and α1 = 3
4) the choices mentioned before. Furthermore, for each of the 50 samples, the

empirical L2 error of the MSSE mUD
n based on the unobserved data was computed.

Figure 6.2 (a) displays the boxplots for the empirical L2 errors of these estimates,

Figure 6.2 (b) for each choice of α1 the boxplots for the ratios of the empirical L2 errors

of the MSSE mn to the empirical L2 errors of mUD
n .

Figure 6.2 (b) shows that the empirical L2 errors of the MSSE based on the trans-

formed data is for all six different choices of α1 in 50% of the simulation runs between

approximately 1.8 and 6.4 times larger than the empirical L2 error of mUD
n . In this ex-

ample, choosing α1 = 14
25 leads to the estimate with the lowest median of the empirical
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Figure 6.2: Boxplots of the empirical L2 errors and the ratio of the empirical L2 errors of mn

and mUD
n for different values of α1 in 50 independently repeated simulation runs. Panel (a)

displays (from left to right) the boxplot of the empirical L2 errors of mUD
n and the boxplots of

the L2 errors of mn for six different choices of α1, panel (b) for each value of α1 the boxplots

for the ratios of the empirical L2 errors of mn to the corresponding empirical L2 error of mUD
n .

L2 errors (about 4.5 · 10−3, vide Figure 6.2 (a)) as well as the lowest median of the ratios

of the empirical L2 errors (about 2.7, vide Figure 6.2 (b)) of all six MSSE for censored

data. This estimate also achieves the lowest 75%–quantile of the ratios of the empirical L2

errors for the 50 independentyl repeated simulation runs compared to the other five MSSE

based on the transformed data. As described above, the choice α1 = 14
25 corresponds to the

median of the αFG1 ’s which were calculated for the 50 samples. As expected, the MSSE

based on the transformed data with α1 = αFG1 performs quite as well as the estimate with

α1 = 14
25 , with the first MSSE having a slightly higher median of the empirical L2 errors

and ratios of the empirical L2 errors, respectively, than the second. In our example, only

the MSSE with α1 = 0 shows a reduced accuracy and precision of the estimation of m

compared to these two estimates (vide Figure 6.2 (a)), while the three remaining MSSE

show a more or less comparable performance. Here, in 50% of the independently repeated

simulation runs, the empirical L2 error of the estimate with α1 = 0 is between 1.0 and 1.6

times larger than the empirical L2 error of the estimate with α1 = 14
25 .
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The best choice of the parameter α1 in an application is still an open question. From

a theoretical point of view, α1 should be determined in such a way that it minimizes the

variability of the transformed data. However, the derivation of an analytic formula for

this selection is complicated (cf. Fan and Gijbels (1994, 1996) and El Ghouch and Van

Keilegom (2008)).

As indicated by the difference between the empirical L2 errors for MSSE based on the

transformed data with α1 = 14
25 and α1 = 0, choosing α1 properly might be important.

But on the other hand, this difference is much smaller than the difference between the

empirical L2 errors of the estimates based on the censored data for our six choices of α1

and the empirical L2 errors of MSSE mUD
n based on the uncensored data. Therefore, for

the MSSE in our simulation study, the different choices of the transformation parameter

α1 have a much smaller impact on the accuracy of the estimation of m than the effect of

the censoring itself.

6.3 Results for MSSE of the conditional variance

Below, we present our results of the estimate (2.73). In order to compute the MSSE

σ2
n of the conditional variance σ2, the data of a single simulation run with sample size

n = 200 is split into three parts. As mentioned in Section 2.5, the first part with sample

size nl = 67 and the second part with sample size Nr = 66 are used to calculate the

underlying estimate of m. The second part and the third part with sample size Nt = 67

are then treated as learning data and testing data in the computation of (2.73). Note

that this estimate depends on two transformation parameters, α1 and α2. According to

the results of Section 6.2, the parameter of the underlying estimate of m is in this section

set to α1 = 14
25 or α1 = αFG1 . Furthermore, we consider two similar choices for α2 :

αFG2 := αFG2

(
D(2)
Nr

)
:= min

i=nl+1,...,Nl:
δi=1

∫ Yi

0

2 t

GNr(t)
dt− Y 2

i

Y 2
i

GNr(Yi)
−
∫ Yi

0

2 t

GNr(t)
dt

(cf. (6.9)) and α2 = 1, which agrees with the median of αFG2 for 50 independently repeated

simulation runs.

Let Ūi,Nr (i = 68, . . . , 133) and Ūi,Nt (i = 134, . . . , 200) be given by (2.68) and (2.69).
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For a single simulated data set, Figure 6.3 displays (a) the (realizations of the) unobserved

data points (Xi, Y
2
i −m(Xi)

2) (i = 1, . . . , 200) together with the conditional variance σ2

(see (SM1b)) and (b) the transformed data points (Xi, Ūi,Nr) (i = 68, . . . , 133) and

(Xi, Ūi,Nt) (i = 134, . . . , 200) with transformed censored data points marked by “×”, σ2

(green solid line), the MSSE σ2
n based on the censored data (blue dotted line), and the in

an application not calculable MSSE σ2,UD
n of σ2 based on the uncensored data (red dashed

line). In this example, we have α1 = αFG1 ≈ 0.25 and α2 = αFG2 ≈ 1.18.

The estimates σ2
n and σ2,UD

n depend on the MSSE mNl and mUD
Nl

, respectively. Hence,

the performances of mNl and mUD
Nl

may have a big influence on the precision of our

estimation of σ2. On the left hand side of Figure 6.3 (b), one can identify a larger domain,

where the MSSE σ2
n tends to overestimate the conditional variance σ2. For the displayed

simulated data set, this is due to the fact that in this area, the underlying MSSE mNl

takes smalller values than the regression function m, and the transformed random variables

Ūi,Nr (i = 68, . . . , 133) and Ūi,Nt (i = 134, . . . , 200) are therefore more likely to exceed the

unobserved random variables Y 2
i − m(Xi)

2 (i = 68, . . . , 200) (cf. (2.68) and (2.69)). In

the opposite scenario, one can similarly expect that σ2
n inclines to underestimate σ2. The

same remarks apply to mUD
Nl

and σ2,UD
n .

The MSSE σ2
n depends on two transformation parameters, α1 and α2. In analogy to

our analysis in Section 6.2, we created 50 independent data sets according to the setting

of our simulation study. For each of these samples and for the four different choices of

(α1, α2) mentioned above, the estimate σ2
n was calculated. Furthermore, we computed

σ2,UD
n , the MSSE based on the uncensored data, which does not depend on α1 or α2.

Table 6.1 presents the minimum, the 25%–quantile, the median, the 75%–quantile, and

the maximum of the empirical L2 errors of σ2
n on the 50 independently repeated simulation

runs for each choice of the two transformation parameters. Moreover the interquartile

range (abbreviated as IQR) is given, which is defined as the difference between the 75%–

quantile and the 25%–quantile. Here, the IQR serves as a measure of the variability of

the empirical L2 errors in the 50 simulated data sets.

From Table 6.1, one can conclude that for the 50 samples and out of the four different

choices of α1 and α2, the choice α1 = 14
25 and α2 = αFG2 results in the estimate with the

lowest median and the lowest 25%–quantile of the empirical L2 errors. However, the MSSE
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Transformed data and MSSE 

Figure 6.3: Data set for a single simulation run. The character “�” indicates the (transformed)

uncensored observations, while the (transformed) censored observations are presented by “×”.

The individual panels show (a) the (realizations of the) unobserved data (Xi, Y
2
i −m(Xi)

2)

together with σ2 (green solid line) and (b) the (realizations of the) transformed data (Xi, Ūi,·)

— where Ūi,· := Ūi,Nr for i ∈ {68, . . . , 133} and Ūi,· := Ūi,Nt for i ∈ {134, . . . , 200} —

together with σ2 (green solid line), MSSE σ2
n (blue dotted line) and σ2,UD

n (red dashed line).

with the lowest 75%–quantile and the lowest IQR is derived for α1 = 14
25 and α2 = 1. A

comparison of the first and the third column of Table 6.1 shows that choosing α1 = αFG1

instead of α1 = 14
25 while keeping α2 = αFG2 , leads to a slightly higher median and IQR of

the empirical L2 errors. This conclusion also holds true with α2 = 1 replaced by α2 = αFG2 ,

as indicated by the second and the fourth column.

In Section 6.2, we already observed that for the MSSE mn, the choice α1 = 14
25 is

slightly better in terms of the median of the empirical L2 errors than taking α1 = αFG1 .

Since the estimate σ2
n depends on mNl , choosing α1 = 14

25 instead of α1 = αFG1 also leads to

a smaller median and IQR of the empirical L2 errors of σ2
n, as mentioned above. Moreover,

Figure 6.2 and Table 6.1 imply that for α1 = 14
25 , the median of the empirical L2 errors

of the two MSSE of σ2 are equal to or slightly smaller than the median of the empirical

L2 error of the MSSE of m. However, this relation does not hold for the estimates with

α1 = αFG1 , and in both cases, the 75%–quantiles and the IQR of the empirical L2 errors
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αFG1 , αFG2 αFG1 , α2 = 1 α1 = 14
25 , α

FG
2 α1 = 14

25 , α2 = 1

Minimum 0.81 · 10−3 0.56 · 10−3 1.09 · 10−3 1.3 · 10−3

25%–Quantile 2.01 · 10−3 2.12 · 10−3 1.93 · 10−3 2.16 · 10−3

Median 5.61 · 10−3 5.13 · 10−3 4.27 · 10−3 4.5 · 10−3

75%–Quantile 9.52 · 10−3 9.08 · 10−3 9.09 · 10−3 7.67 · 10−3

Maximum 23.99 · 10−3 25.27 · 10−3 25.83 · 10−3 27.95 · 10−3

IQR 7.51 · 10−3 6.97 · 10−3 7.16 · 10−3 5.51 · 10−3

Table 6.1: Summary statistics for the empirical L2 errors of σ2
n on 50 independently generated

simulated data sets for four different choices of (α1, α2).

of the estimates of σ2 exceed those of the estimates of m. Since the MSSE of σ2 depend

on the MSSE of m, the empirical L2 error of the latter ones are in our setting expected

to be on average smaller than (or at least equal to) those of the first ones.

6.4 Results for MSSE of the conditional survival function

In the following, the results of the simulation study for our MSSE of the conditional

survival function F (τ |·) (τ ∈ R fixed) are presented.

For each simulation run, we first create 200 data points which are split at random into

a learning and a testing data set, each of sample size nl = nt = 100 (cf. Section 6.2). Then

the MSSE Fn( τ | · ) is calculated on the basis of the random variables (2.84) and (2.85). In

addition, we compute FUDn ( τ | · ) by applying the estimate Fn( τ | · ) to the (in an statistical

application not observable) uncensored data. Note that Fn( τ | · ) and FUDn ( τ | · ) do not

depend on the truncation parameter L or any transformation parameter.

For τ = 2
3 and a single simulated data set, Figure 6.4 shows (a) the unobserved

simulated data, the conditional survival function F (τ |·) (green solid line), and a horizontal

line at level 2
3 (orange dot and dash line), (b) the observed simulated data with censored

data points marked by “+” and the horizontal line from panel (a), (c) the transformed

data, computed according to (2.84) and (2.85), and (d) F (τ |·) (green solid line) together

with the MSSE Fn( τ | · ) (red dashed line) and FUDn ( τ | · ) (blue dotted line).

The transformed times displayed in Figure 6.4 (c) are calculated from the observed
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Figure 6.4: Data set for a single simulation run. The character “•” indicates the (transformed)

uncensored observations, while the (transformed) censored observations are presented by “+”.

The individual panels show (a) the unobserved data together with F ( τ | · ) (green solid line)

and a horizontal line at level τ = 2
3 (orange dot and dash line), (b) the observed simulated

data with the horizontal line from panel (a), (c) the transformed data, and (d) F ( τ | · ) (green

solid line) with MSSE Fn( τ | · ) (red dashed line) and FUDn ( τ | · ) (blue dotted line).

times of panel (b) as follows (vide (2.84) and (2.85)). All uncensored data points below the

orange horizontal line at level τ = 2
3 and all censored data points and are set to zero. All
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uncensored observations which exceed 2
3 are replaced by Gnl(Yi)

−1 (i = 1, . . . , 100) if they

are contained in the learning data or by Gnt(Yi)
−1 (i = 101, . . . , 200) if they belong to the

testing data, respectively. Therefore, one part of the transformed data points takes values

larger than or identical to one, while the data points in the other part are all identical to

zero. Note that if we compute the MSSE FUDn ( τ | · ) or if no censoring arises, then the

transformed random variables are simply given by I[Zi>τ ] (i = 1, . . . , 200).

But then, it holds that F (t|x) = P [Y > t |X = x ] ∈ [0, 1] for all (x, t) ∈ [0, 1]d × R.

This means that we seek to estimate a function which takes only values between zero and

one on the basis of some data, where the dependent random variables are in (0, 1) with

probability zero.

It is not evident that an estimate based on such data performs well. However, Figure

6.4 (d) indicates that Fn( τ | · ) and FUDn ( τ | · ) are quite reliable estimates of the conditional

survival function, especially if one recalls the small sample size we considered. Though, the

performance of Fn( τ | · ) may be poor if our assumption that C and X are independent

does not hold. In this case, it may happen that the censored observations are much

more likely to occur for particular intervals of the corresponding covariates. Since these

observations are all transformed to zero, this can cause Fn( τ | · ) to underestimate F ( τ | · )

in these domains, while it may overestimate in the others. Yet, if the censoring is not to

heavy, then this effect is compensated by the smoothing parameter of Fn( τ | · ), at least

to some extent.

Figure 6.5 (a) and (b) display the empirical L2 errors of FUDn ( τ | · ) and Fn( τ | · ) for

seven different values of τ on 50 independently generated samples of the chosen distribution

of (X,Y,C). Note that since 0 ≤ Y ≤ 1 a.s. (cf. Section 6.1), we only consider τ ∈ [0, 1].

Obviously, the performances of Fn( τ | · ) and FUDn ( τ | · ) depend on the particular

choice of τ. In our simulation study, the conditional survival function is given by (6.6).

From (6.3) and (6.5), we deduce that if τ ≤ M−max ≈ 0.603 then there exist x ∈ [0, 1]

with F ( τ |x ) = 1. In case that τ ∈
(
M−max,

2
3

)
, then (6.7) yields F ( τ |x ) ∈ (0, 1) for

all x ∈ [0, 1]. And if τ ≥ 2
3 , then one can conclude from (6.2) and (6.5) that there exist

x ∈ [0, 1] with F ( τ |x ) = 0. In addition, note that for τ = 2
3 , F ( τ |x ) = 0 holds if and

only if x = 0 or x = 1, and that for τ = M−max ≈ 0.603, there exist exactly one value

x−max ≈ 0.13 with F ( τ |x−max ) = F ( τ | 1− x−max ) = 1. Furthermore, we have F ( 1 |x ) = 0
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Figure 6.5: Boxplots of the empirical L2 errors for seven different values of τ in 50 inde-

pendently repeated simulation runs. The individual panels show the empirical L2 errors of

the MSSE (a) FUDn ( τ | · ), (b) Fn( τ | · ), (c) FUDn,1 ( τ | · ), and (d) Fn,1( τ | · ). The estimates

FUDn ( τ | · ) and FUDn,1 ( τ | · ) are based on the unobserved simulated data, while Fn( τ | · ) and

Fn,1( τ | · ) are calculated on the censored data.

and F ( 0 |x ) = 1 for all x ∈ [0, 1]. Since our MSSE Fn( τ | · ) and FUDn ( τ | · ) are truncated

at zero and one, this implies that in case that τ ∈
[
M−max,

2
3

]
, these estimates are likely

to have larger empirical L2 errors than if τ /∈
[
M−max,

2
3

]
(vide Figure 6.5 (a) and (b)).
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In addition, the empirical L2 errors of FUDn ( 0 | · ), FUDn ( 1 | · ), and Fn( 1 | · ) are zero a.s.,

because with probability one, the transformed random variables then all equal 1 (for τ = 0)

or 0 (for τ = 1). This is indicated by Figure 6.5 (a) and (b). But if censoring arises, then

with a non-zero probability, the empirical L2 error of Fn( 0 | · ) is not identical to zero,

since in this case, with probability one, the censored observations are set to zero, while

the transformed uncensored observations take values larger than or equal to 1.

Let the assumptions of Section 2.6 hold. Next, a MSSE Fn,1( τ | · ) of F ( τ | · ) is derived,

which performs for small values of τ (and a finite sample size) better than Fn( τ | · ) in terms

of the L2 error (see below). Let therefore τ ∈ R be arbitrary, but fixed and set

Ū (3) :=
δI[Z≤τ ]

G(Z)
(6.10)

and

Ū
(3)
i =

δiI[Zi≤τ ]

G(Zi)
(i = 1, . . . , n). (6.11)

Note that (6.10) and (6.11) are given similar to (2.77) and (2.78), but with I[Z>τ ] and

I[Zi>τ ] replaced by I[Z≤τ ] or I[Zi≤τ ].

Next, we define estimates of (6.11) in analogy to (2.84) and (2.85). Let Gnl and Gnt

be given by (2.34) and (2.35). Set

Ū
(3)
i,nl

:=
δiI[Zi≤τ ]

Gnl(Zi)
(i = 1, . . . , nl) (6.12)

and

Ū
(3)
i,nt

:=
δiI[Zi≤τ ]

Gnt(Zi)
(i = nl + 1, . . . , n) (6.13)(

0
0 := 0

)
. If τ = 0 and P [Y = 0 ] = 0, then (RA2) implies that with probability one

Ū
(3)
i,nl

= 0 (i = 1, . . . , nl) and Ū
(3)
i,nt

= 0 (nl + 1, . . . , n). (6.14)

Let the MSSE F̄n( τ | · ) be defined by (2.89) – (2.92) with the only difference that U
(3)
i,nl

is replaced by Ū
(3)
i,nl

(i = 1, . . . , nl) and U
(3)
i,nt

by Ū
(3)
i,nt

(i = nl + 1, . . . , n). Observe that one

can conclude similar to (2.80)

E
[
Ū (3)

∣∣∣ X ] = P [ Y ≤ τ | X ] = 1− F ( τ |X ) .

Therefore, F̄n( τ | · ) may be considered as a regression estimate of 1− F ( τ | · ), the condi-

tional distribution function of the lifetime Y at fixed point τ ∈ R (cf. Section 2.6).
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Hence, our MSSE Fn,1( τ | · ) of F ( τ | · ) is now given by

Fn,1( τ | · ) := 1− F̄n( τ | · ). (6.15)

Assume that the conditions of Theorem 5.4 hold. From the proofs of Lemma 4.2 and

Theorem 5.4, one can conclude that in this case, Fn,1( τ | · ) and F̄n( τ | · ) achieve their

optimal rate of convergence up to some logarithmic factor. Here, we used the fact that

(6.15) implies

|Fn,1( τ |x )− F ( τ |x ) | =
∣∣ F̄n( τ |x )− (1− F ( τ |x ))

∣∣ ∀x ∈ [0, 1]d.

If P [Y = 0 ] = 0, then (6.14) and (6.15) yield that the L2 error of Fn,1( 0 | · ) is zero

a.s. for all n ≥ 2. Moreover, in case that τ is close to zero, it is likely that this L2 error is

smaller than the L2 error of Fn( τ | · ). On the other hand, if τ is close to L and censoring

arises, then one can conclude similar to above that Fn( τ | · ) is a more reliable estimate of

F ( τ | · ) in terms of the L2 error than Fn,1( τ | · ) (note that we use L = 1 in our simulation

study).

Therefore, an obvious idea is to construct an estimate Fn,2( τ | · ) of F ( τ | · ), where

Fn,2( τ | · ) equals Fn,1( τ | · ) if τ ≤ 0 and Fn( τ | · ) if τ ≥ L, respectively. In order to

account for values of τ ∈ (0, L), one can introduce a weight function w : R → [0, 1] with

w(τ) = 1 if τ ≥ L and w(τ) = 0 if τ ≤ 0 and set

Fn,2( τ | · ) := w(τ) · Fn( τ | · ) + (1− w(τ)) · Fn,1( τ | · ). (6.16)

Observe that (a+ b)2 ≤ 2 · a2 + 2 · b2 and 0 ≤ w(τ) ≤ 1 (τ ∈ R) yield for all x ∈ [0, 1]d

|Fn,2( τ |x )− F ( τ |x ) |2

= |w(τ) · Fn( τ |x )− w(τ) · F ( τ |x ) + (1− w(τ)) · Fn,1( τ |x )− (1− w(τ)) · F ( τ |x ) |2

≤ 2 · w(τ)2 · |Fn( τ |x )− F ( τ |x ) |2 + 2 · (1− w(τ))2 · |Fn,1( τ |x )− F ( τ |x ) |2

≤ 2 · |Fn( τ |x )− F ( τ |x ) |2 + 2 · |Fn,1( τ |x )− F ( τ |x ) |2 .

Similar to above, this implies that the assertion of Theorem 5.4 still holds if we replace

Fn( τ | · ) by Fn,2( τ | · ). The proper choice of the weight function w in a statistical applica-

tion may be a non-trivial task, since it depends on the underlying censoring mechanism,
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and should in general be done via some data-driven method (e.g., be based on the empirical

L2 risks of Fn( τ | · ) and Fn,1( τ | · )).

Figure 6.5 (b) and (d) show the boxplots of the empirical L2 errors of Fn( τ | · ) and

Fn,1( τ | · ) on the 50 independently repeated simulation runs for seven different values of

τ. In our example, Fn( τ | · ) is a more reliable estimate of F ( τ | · ) than Fn,1( τ | · ) if τ > 2
3 .

This is due to several reasons. From the proof of Lemma 6.2, we deduce that for τ > 2
3 ,

there exist x−t , x
+
t ∈ (0, 1) such that F ( τ |x ) = 0 for all x /∈ [x−t , x

+
t ]. Therefore, we have

P [Z ≤ τ |X = x ] = 1 for all τ > 2
3 and all x /∈ [x−t , x

+
t ]. And this in turn implies that

outside of the interval [x−t , x
+
t ], the transformed random variables, which we use in order

to compute Fn( τ | · ), are all a.s. identical to zero. But then, for uncensored observations,

(6.12) and (6.13) are in this case larger than or equal to one. Moreover, for x ∈ [x−t , x
+
t ]

and τ > 2
3 , (6.6) yields that Fn( τ | · ) is likely to be closer to F ( τ | · ) than Fn,1( τ | · ).

In addition, for τ = 1 we have x−t = x+
t = 1

2 . As mentioned above, the empirical L2

error of Fn( 1 | · ) is zero a.s., while with a non-zero probability the empirical L2 error of

Fn,1( 1 | · ) does not equal zero. Similar, one can conclude that for 2
3 < τ < 1, the former is

likely to be close to zero, whereas this does not apply for the latter one. This implies that

the empirical L2 error of Fn( τ | · ) will in general be smaller than the empirical L2 error

of Fn,1( τ | · ) if τ > 2
3 . In analogous way, one can argue that for τ < M−max the reverse is

true.

As a consequence, for τ = 5
6 , the median of the empirical L2 errors displayed in Figure

6.5 (d) is approximately 1.21 times larger than that in panel (b). Furthermore, this also

holds true for the 25%–quantile, the 75%–quantile, and the IQR. The median of the ratios

of the empirical L2 errors of Fn,1( 5
6 | · ) to the corresponding empirical L2 errors of Fn( 5

6 | · )

is approximately 1.21.

On the other hand, Figure 6.5 (b) and (d) also demonstrate that if τ < M−max, then

Fn,1( τ | · ) is a more accurate and preciser estimate of the conditional survival function of

Y than Fn( τ | · ). For τ = 1
6 and τ = 1

2 , the median of the ratios of the empirical L2 errors

of Fn,1( τ | · ) to the corresponding empirical L2 errors of Fn( τ | · ) is about 0.34 and 0.42,

respectively.

Additionally, as discussed above, one can observe that the empirical L2 errors of

Fn( τ | · ) and Fn,1( τ | · ) are generally larger in case that τ ∈
[
M−max,

2
3

]
than if τ is not
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contained in this interval. And the closer τ is chosen to zero or one, the smaller is the me-

dian of the empirical L2 errors of both MSSE evaluated on the 50 independently repeated

simulation runs.

These characteristics are also visible in Figure 6.5 (a) and (c) for the estimates FUDn ( τ | · )

and FUDn,1 ( τ | · ), which are calculated on the uncensored data. But in contrast to the

MSSE for censored regression, panels (a) and (c) indicate that FUDn ( τ | · ) and FUDn,1 ( τ | · )

perform similar for all τ ∈ R. This is due to the fact that if no censoring arises, the trans-

formed random variables (2.78) are in this case identical to I[Yi>τ ], whereas (6.11) equal

I[Yi≤τ ] = 1− I[Yi>τ ] (i = 1, . . . , n). As a consequence, F̄UDn ( τ | · ) is close to 1−FUDn ( τ | · )

and therefore FUDn,1 ( τ | · ) to FUDn ( τ | · ). For the 50 independently generated simulated

data sets and all seven choices of τ considered, 90% of the absolute differences between

the empirical L2 errors of FUDn ( τ | · ) and FUDn,1 ( τ | · ) are smaller than 8.9 · 10−3.

6.5 Proofs of Lemmata 6.1 and 6.2

In this section, it is shown that the assumptions of Lemma 6.1 and Lemma 6.2 hold. First,

we verify that m, σ2, and F (τ |·) (M−max ≤ τ < 2
3 fixed) are functions in the Sobolev space

W3([0, 1]).

Proof of Lemma 6.1. First note that (SM1b) yields for all x ∈ [0, 1]

d

dx
σ(x) = 56

√
3 (1− 2x) (x (1− x))

5
2 , (6.17)

d2

dx2
σ(x) = 28

√
3 (5− 24x+ 24x2) (x (1− x))

3
2 , (6.18)

and

d3

dx3
σ(x) = 210

√
3 (1− 10x+ 24x2 − 16x3) (x (1− x))

1
2 . (6.19)

Since

0 ≤ x (1− x) ≤ 1

4
∀x ∈ [0, 1], (6.20)

(SM1b) and (6.17) – (6.19) imply for all k ∈ {0, 1, 2, 3}∣∣∣∣ dkdxk σ(x)

∣∣∣∣ ≤ √3

24
+ 210

√
3 · 53 · 1

2
< 1 + 210 · 53 = 11131 (x ∈ [0, 1]). (6.21)
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Furthermore, one can conclude from (6.19) for all x ∈ (0, 1) that

d4

dx4
σ(x) = 105

√
3 (1− 32x+ 160x2 − 256x3 + 128x4) (x (1− x))−

1
2 . (6.22)

From (6.22), one gets for all 0 < x ≤ 7
500

d4

dx4
σ(x) ≥ 105

√
3

1√
3

(x (1− x))−
1
2 = 105 (x (1− x))−

1
2 . (6.23)

Here, we used that

1− 32x+ 160x2 − 256x3 + 128x4 ≥ 1√
3

(
0 < x ≤ 7

500

)
. (6.24)

Now, (6.21) yields for all k ∈ {0, 1, 2, 3}∫ 1

0

∣∣∣∣ dkdxk σ(x)

∣∣∣∣2 dx <∞. (6.25)

In contrast, (6.23) implies∫ 7
500

0

∣∣∣∣ d4

dx4
σ(x)

∣∣∣∣2 dx ≥ ∫ 7
500

0
1052(x (1− x))−1 dx = 1052 ln

(
x

1− x

)∣∣∣∣ 7
500

0

,

i.e., ∫ 7
500

0

∣∣∣∣ d4

dx4
σ(x)

∣∣∣∣2 dx =∞. (6.26)

Furthermore, we deduce from (6.2)∫ 1

0

∣∣∣∣ dkdxk M+(x)

∣∣∣∣2 dx <∞ ∀k ∈ N0.

The last inequality together with (6.2), (6.25), and (a + b)2 ≤ 2a2 + 2b2 (a, b ∈ R) yields

for all k ∈ {0, 1, 2, 3}∫ 1

0

∣∣∣∣ dkdxk m(x)

∣∣∣∣2 dx ≤ 2 ·
∫ 1

0

∣∣∣∣ dkdxk M+(x)

∣∣∣∣2 dx+ 6 ·
∫ 1

0

∣∣∣∣ dkdxk σ(x)

∣∣∣∣2 dx <∞. (6.27)

This proves that m ∈ W3([0, 1]) (cf. (2.3)). On the other hand, (6.2), (6.23), and (6.26)

imply ∫ 1

0

∣∣∣∣ d4

dx4
m(x)

∣∣∣∣2 dx =

∫ 1

0

∣∣∣∣√3 · d
4

dx4
σ(x) + 128

∣∣∣∣2 dx
≥ 3 ·

∫ 7
500

0

∣∣∣∣ d4

dx4
σ(x)

∣∣∣∣2 dx =∞, (6.28)
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i.e., m /∈Wk([0, 1]) for all k ∈ N\{1, 2, 3} (vide (2.3)). In addition, one can conclude from

(2.5), (SM1a), and (6.27), that

0 < J2
3 (m) =

∫ 1

0

∣∣∣∣ d3

dx3
m(x)

∣∣∣∣2 dx <∞ (6.29)

and therefore the first part of Lemma 6.1.

Next, we show the second part of Lemma 6.1. First observe that (6.21) implies∫ 1

0

∣∣σ2(x)
∣∣2 dx =

∫ 1

0
|σ(x)|4 dx <∞.

Moreover, we have from (6.21)∫ 1

0

∣∣∣∣ ddx σ2(x)

∣∣∣∣2 dx =

∫ 1

0

∣∣∣∣2σ(x) · d
dx

σ(x)

∣∣∣∣2 dx <∞,∫ 1

0

∣∣∣∣ d2

dx2
σ2(x)

∣∣∣∣2 dx =

∫ 1

0

∣∣∣∣∣2σ(x) · d
2

dx2
σ(x) + 2

(
d

dx
σ(x)

)2
∣∣∣∣∣
2

dx <∞,

and∫ 1

0

∣∣∣∣ d3

dx3
σ2(x)

∣∣∣∣2 dx =

∫ 1

0

∣∣∣∣2σ(x) · d
3

dx3
σ(x) + 6

d

dx
σ(x) · d

2

dx2
σ(x)

∣∣∣∣2 dx <∞. (6.30)

On the other hand, σ(x) ≥
√

3
24 (x ∈ [0, 1]) and (6.26) yield

∫ 1

0

∣∣∣∣ d4

dx4
σ2(x)

∣∣∣∣2 dx =

∫ 1

0

∣∣∣∣∣2σ(x) · d
4

dx4
σ(x) + 8

d

dx
σ(x) · d

3

dx3
σ(x) + 6

(
d2

dx2
σ(x)

)2
∣∣∣∣∣
2

dx

≥
∫ 7

500

0

∣∣∣∣2σ(x) · d
4

dx4
σ(x)

∣∣∣∣2 dx
≥ 1

48

∫ 7
500

0

∣∣∣∣ d4

dx4
σ(x)

∣∣∣∣2 dx
= ∞.

Here, the first inequality follows from (6.23) and

8
d

dx
σ(x) · d

3

dx3
σ(x) + 6

(
d2

dx2
σ(x)

)2

≥ 0

(
0 ≤ x ≤ 7

500

)
.

Finally, one can conclude from (2.5), (SM1b), and (6.30)

0 < J2
3 (σ2) =

∫ 1

0

∣∣∣∣ d3

dx3
σ2(x)

∣∣∣∣2 dx <∞.
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This proves the second part of Lemma 6.1.

Now, let M−max be given by (6.3) and let τ ∈
[
M−max,

2
3

)
be arbitrary, but fixed. From

(6.2), (6.7), and σ(x) > 0 (x ∈ [0, 1]), one gets∫ 1

0
|F (τ |x)|2 dx =

1

12

∫ 1

0

∣∣∣∣M+(x)− τ
σ(x)

∣∣∣∣2 dx <∞. (6.31)

Furthermore, (6.2), (6.7), (6.17) – (6.19), and

max
x∈[0,1]

∣∣∣∣ didxi (M+(x)− τ
)∣∣∣∣ ≤ max

x∈[0,1]

∣∣∣∣ d3

dx3
M+(x)

∣∣∣∣ = 64 (i = 0, 1, 2, 3)

yield for all k ∈ {1, 2, 3}∫ 1

0

∣∣∣∣ dkdxk F (τ |x)

∣∣∣∣2 dx =
1

12

∫ 1

0

∣∣∣∣ dkdxk M+(x)− τ
σ(x)

∣∣∣∣2 dx
≤ 1

12
· 32 · 642

k∑
i=0

k∑
j=0

∫ 1

0

∣∣∣∣ didxi σ−1(x)

∣∣∣∣ · ∣∣∣∣ djdxj σ−1(x)

∣∣∣∣ dx
= 3072

k∑
i=0

k∑
j=0

∫ 1

0

∣∣∣∣ didxi σ−1(x)

∣∣∣∣ · ∣∣∣∣ djdxj σ−1(x)

∣∣∣∣ dx, (6.32)

where

σ−a(x) :=

(
1

σ(x)

)a
(a ∈ N, x ∈ [0, 1]).

Next, we express the first three derivatives of σ−1 by the derivatives of σ, i.e.,

d

dx
σ−1(x) = −σ−2(x) · d

dx
σ(x), (6.33)

d2

dx2
σ−1(x) = 2σ−3(x) ·

(
d

dx
σ(x)

)2

− σ−2(x) · d
2

dx2
σ(x), (6.34)

and

d3

dx3
σ−1(x) = −6σ−4(x) ·

(
d

dx
σ(x)

)3

+ 6σ−3(x) · d
dx

σ(x) · d
2

dx2
σ(x)

−σ−2(x) · d
3

dx3
σ(x) (6.35)

(0 ≤ x ≤ 1).

For all k ∈ {1, 2, 3}, (6.21), (6.32) – (6.35), and σ(x) > 0 (x ∈ [0, 1]) imply∫ 1

0

∣∣∣∣ dkdxk F (τ |x)

∣∣∣∣2 dx <∞. (6.36)

This together with (6.31) shows that F (τ |·) ∈W3([0, 1]).
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On the other hand, one can conclude from (6.35) for all x ∈ (0, 1)

d4

dx4
σ−1(x) = 24σ−5(x) ·

(
d

dx
σ(x)

)4

− 36σ−4(x) ·
(
d

dx
σ(x)

)2

· d
2

dx2
σ(x)

+6σ−3(x) ·
(
d2

dx2
σ(x)

)2

+ 8σ−3(x) · d
dx

σ(x) · d
3

dx3
σ(x)

−σ−2(x) · d
4

dx4
σ(x). (6.37)

Now (6.2), (6.7), (6.26), and (6.37) yield

∫ 1

0

∣∣∣∣ d4

dx4
F (τ |x)

∣∣∣∣2 dx =
1

12

∫ 1

0

∣∣∣∣∣
4∑
i=0

24

i! · (4− i)!
· d

4−i

dx4−i
(
M+(x)− τ

)
· d

i

dxi
σ−1(x)

∣∣∣∣∣
2

dx

≥ 1

12

∫ 7
500

0

∣∣∣∣(M+(x)− τ
)
· d

4

dx4
σ−1(x)

∣∣∣∣2 dx
≥ 1

12

(
2

3
− τ
)2

·
∫ 7

500

0

∣∣∣∣ d4

dx4
σ(x)

∣∣∣∣2 dx
= ∞. (6.38)

Here, we used that for all x ∈ (0, 7
500 ]

3∑
i=0

24

i! · (4− i)!
· d

4−i

dx4−i
(
M+(x)− τ

)
· d

i

dxi
σ−1(x) ≤ 0,

(
M+(x)− τ

)
· d

4

dx4
σ−1(x) ≤ 0,∣∣∣∣ d4

dx4
σ−1(x)

∣∣∣∣ ≥ ∣∣∣∣ d4

dx4
σ(x)

∣∣∣∣ ,
and M+(x) > M+(0) = 2

3 > τ.

Finally, 0 < J2
3 (F (τ |·)) <∞ follows from (6.36) and

J2
3 (F (τ |·)) =

1

12

∫ 1

0

∣∣∣∣∣
3∑
i=0

6

i! · (3− i)!
· d

3−i

dx3−i
(
M+(x)− τ

)
· d

i

dxi
σ−1(x)

∣∣∣∣∣
2

dx

≥ 1

12

∫ 1

0

∣∣∣∣(M+(x)− τ
)
· d

3

dx3
σ−1(x)

∣∣∣∣2 dx
≥ 1

12

(
2

3
− τ
)2 ∫ 1

200

0

∣∣∣∣ d3

dx3
σ(x)

∣∣∣∣2 dx > 0

(cf. (6.29) and (6.38)). This proves the third part of lemma 6.1.

�
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In the remaining part of this section we show that for the distribution of (X,Y,C)

chosen in our simulation study, regularity assumption (4.10), which controls the rate of

convergence of the maximum squared transformation errors in Lemma 4.2, is fulfilled for

γ = 6
7 (cf. (6.8)).

Proof of Lemma 6.2. First note that (6.1), (6.2), (SM1c) , and (SM2) imply

τF = 1. Let M+(x), M−max, and R(t, x) be given by (6.2), (6.3), and (6.5), respectively

(t ∈ R, x ∈ [0, 1]). Similar to (6.7), one can conclude for all t ≥ 2
3 and all x ∈ [0, 1] from

(6.2), (6.3), and (6.6)

F (t|x) = I[R(t,x)≤
√

3 ] ·
M+(x)− t
2
√

3σ(x)
. (6.39)

Now, observe that R(t, x) ≤
√

3 is equivalent to t ≤M+(x) = 1− 1
3(2x− 1)4 and this, in

turn, to

x−t :=
1

2
− 1

2
(3− 3t)

1
4 ≤ x ≤ 1

2
+

1

2
(3− 3t)

1
4 =: x+

t

(
2

3
≤ t ≤ 1

)
.

Hence, one gets for all 2
3 ≤ t ≤ 1 from (6.39)

F (t|x) =


M+(x)−t
2
√

3σ(x)
if x ∈

[
x−t , x

+
t

]
0 if x /∈

[
x−t , x

+
t

]
.

(6.40)

Next, we apply (6.40) in order to derive a lower bound on the survival function F (t)

for 2
3 ≤ t ≤ 1. From (SM1b), one can conclude that

0 < σ(x) ≤ σ
(

1

2

)
=

1

2
√

3
∀x ∈ [0, 1]

This together with (SM2) and (6.40) implies for all 2
3 ≤ t ≤ 1

F (t) = E [F (t|X) ] =

∫ x+
t

x−t

M+(x)− t
2
√

3σ(x)
dx

≥
∫ x+

t

x−t

(
M+(x)− t

)
dx =

∫ x+
t

x−t

(
1− 1

3
(2x− 1)4 − t

)
dx

= x · (1− t)− 1

30
(2x− 1)5

∣∣∣∣x+
t

x−t

=
4

5
3

1
4 (1− t)

5
4 . (6.41)

Here, we used that 0 ≤ x−t ≤ x
+
t ≤ 1 for all 2

3 ≤ t ≤ 1.

On the other hand, we have from (SM3)

G(t) = P [C > t ] =

 exp
(
−3

4 t
)

if t ≥ 0

1 if t < 0.
(6.42)
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Since F is monotonically decreasing on [0, 1], (6.41) and (6.42) yield

−
∫ 1

0
F (t)−

3
4 dG(t) =

3

4

∫ 1

0
F (t)−

3
4 exp

(
−3

4
t

)
dt

≤ 3

4

∫ 1

0
F (t)−

3
4 dt =

3

4

∫ 2
3

0
F (t)−

3
4 dt+

3

4

∫ 1

2
3

F (t)−
3
4 dt

≤ 3

4
· 2

3
·
(

4

5
· 3

1
4 · 3−

5
4

)− 3
4

+
3

4

∫ 1

2
3

(
4

5
· 3

1
4 · (1− t)

5
4

)− 3
4

dt

≤ 2 +

∫ 1

2
3

(1− t)−
15
16 dt = 2 + (−16) · (1− t)

1
16

∣∣∣1
2
3

= 2 + 16 · 3−
1
16

< ∞.

This implies the assertion of Lemma 6.2.

�
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Chapter 7

Applications to real data

In Chapter 7, we apply our MSSE of the regression function to two publicly available data

sets. Section 7.1 contains an analysis of the well-known Stanford heart transplant data,

which has already been investigated by Miller and Halpern (1982), Escobar and Meeker

(1992), and Fan and Gijbels (1994, 1996) among many others. Here, different versions of

our MSSE are compared with various estimates of the conditional mean or median lifetime

time defined in literature. In Section 7.2, we discuss interesting features related to the

breast cancer data set described in Van de Vijver, He, Van’t Veer et al. (2002).

All pictures and computations of the estimates presented below were performed using

R-2.6.2 (www.r-project.org), including libraries Design 2.1-1, MASS 7.2-40, scatterplot3d

0.3-25, and survival 2.33 as well as self-written functions for the computation of the MSSE.

7.1 Stanford heart transplant data

The Stanford heart transplantation program, described in more detail in Crowley and Hu

(1977) and Miller and Halpern (1982), started in October 1967. Until February 1980, 249

patients were admitted to the study after a medical inspection. For each participant, a

donor heart, matched on the blood type, was sought. Out of the 249 patients, 184 received

a heart transplantation, a few having multiple transplants. The other participants were

lost due to follow up, died or improved sufficiently while waiting for a donor heart.

For the 184 recipients, Miller and Halpern (1982) reported two covariates, the age at

time of first transplant (ranging from 12 to 64 years) and the T5 mismatch score (ranging

135
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from 0 to 3.05). The latter one is a measure for the degree of tissue incompatibility between

the donor and the patients heart. Because the tissue typing was never completed, the T5

mismatch scores of 27 recipients are not available. The time of interest, i.e., the “lifetime”,

in the analysis of the 184 patients is the (logarithm of the) lifetime since transplantation.

Of the recipients, 113 (61.4%) died before February 1980, i.e., were uncensored, while 71

(38.6%) were still alive and a censored observation was listed.

In their study of the heart transplant data set, Miller and Halpern (1982) and Escobar

and Meeker (1992) both reported that there is no evidence that the T5 mismatch score

is a useful explanatory variable for survival. Furthermore, Escobar and Meeker (1992)

observed that this conclusion is stable, since it is not seriously influenced by a limited

perturbation of the observed times or if the most influential data points were dropped.

Consequently, in Miller and Halpern (1982), Escobar and Meeker (1992), Fan and Gijbels

(1994, 1996), and this thesis, the T5 mismatch score is not used in the further analysis.

Observe that Miller and Halpern (1982) and Fan and Gijbels (1994, 1996) initially

only considered the 157 patients with complete tissue typing. However, after discarding

T5 mismatch score, this is not necessary and we use the data of all 184 recipients. Note

that the differences between the estimates computed for the 157 and the 184 patients are

minor and do not affect our interpretation of the results.

Miller and Halpern (1982) applied four different semiparametric methods to the Stan-

ford heart transplant data in order to estimate the regression function m and the con-

ditional median lifetime, respectively. Their first approach is based on the proportional

hazard model with linear predictor, introduced by Cox (1972, 1975). The other three

methods, which are due to Miller (1976), Buckley and James (1979), and Koul, Susarla,

and Van Ryzin (1981), assume that m is a linear function.

For the latter one, the observed times are first transformed according to (2.22) with

α1 = −1. Then a least squares approach in order to estimate m is applied to the new,

virtually uncensored data. The method of Buckley and James (1979) is quite similar, but

uses a somewhat different transformation which involves the unknown regression function

and therefore leads to an iterative scheme. Miller (1976) suggested to estimate the slope

and the intercept of m by minimizing a weighted sum of squares of residuals. Here,

the weights depend on a modified Kaplan-Meier estimate of F. Note that if the lifetimes
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are measured on a logarithmic scale, then the linear regression model corresponds to an

accelerated failure time model (vide, e.g., Martinussen and Scheike (2006)).

As mentioned above, Miller and Halpern (1982) also presented a hazard risk approach

in order to analyze censored data. As suggested by Cox (1972, 1975), they assumed that

the failure rate for the lifetime Y of an individual given a d-dimensional vector of covariates

X ∈ Rd follows a log-linear model. Here, the existence of the conditional density of Y given

X is required. In this model, one can derive an explicit form of the conditional survival

function F (t|x) of Y (t ∈ R, x ∈ Rd). Note that for arbitrary, but fixed (t, x) ∈ R×Rd, this

form is completely determined by two unknown parameters. The first one is the vector of

regression coefficients, which is independent of t and x, and the second one is the baseline

hazard rate, which is a univariate function in t. Hence, an estimate F̂Coxn (t|x) of F (t|x)

(t ∈ R, x ∈ Rd) may simply be obtained by replacing these unknown parameters with

appropriate estimators. Miller and Halpern (1982) proposed to calculate the latter ones

with the techniques established by Cox (1972, 1975) and Breslow (1974). Based on these

estimates, they introduced an estimate medCoxn of the conditional median lifetime, which

is derived by calculating at each x ∈ Rd the value of t ∈ R, where F̂Coxn (t|x) = 1
2 .

In the following, we compare the performance of the four methods presented above on

the Stanford heart transplant data, where all 184 recipients are considered. As already

mentioned a similar analysis for the 157 patients with complete tissue typing can be found

in Miller and Halpern (1982). Observe that the three regression based approaches are

applied in order to estimate m, while medCoxn estimates the conditional median lifetime.

Miller and Halpern (1982) argued that within the hazard risk approach, it is reasonable to

select medCoxn because it is much easier to compute and, since the time scale is irrelevant

to this method, more appropriate than an estimate of m.

Figure 7.1 (a) displays the scatterplot of the observed times (in days) on a logarithmic

scale (base 10) versus age at transplant (in years) for the 184 Stanford heart transplant

patients. Furthermore, the linear fits to these data with the four estimates described

in Miller and Halpern (1982) are given. Here, the three methods based on parametric

regression are abbreviated as BJ (Buckley and James (1979)), Miller (Miller (1982)), and

KSV (Koul, Susarla, and Van Ryzin (1981)).

Note that for one of the 184 patients, death at time t = 0 was reported. Since in the
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log-linear model, it is impossible to account for such an observation, it was recoded as

t = 1 according to Miller and Halpern (1982) and Fan and Gijbels (1994, 1996).

In the comparison of the four methods mentioned above, Miller and Halpern (1982)

concluded that the estimate of Buckley and James (1979) and medCoxn performed best

on the heart transplant data. Here, the method of Koul, Susarla, and Van Ryzin (1981)

differs substantially from the other three approaches (vide Figure 7.1 (a)). This is due

to the fact that within the Stanford heart transplant data, there occur proportionately

more censored observations in younger recipients than in older patients. Transforming

the sample according to (2.22) with α1 = −1 sets all censored observations to zero, while

the uncensored observations are enlarged (cf. Section 6.4). Hence, the linear regression

estimate of Koul, Susarla, and Van Ryzin (1981) predicts a positive slope. Yet intuitively,

the lifetime since transplantation should rather diminish with increasing recipient age and

the slope should be negative, as for all other linear estimates. Applying the linear fit of

Miller (1976) to the heart transplant data also seems to be quite inappropriate (cf. Figure

7.1 (a)), since it is nearly constant over the whole range, implying that the age of a patient

is not a risk factor for survival.

However, the linear fits to the data are poor for all of the four methods. In particular,

the estimate of the conditional median log-lifetime, medCoxn , exceeds all observed lifetimes

(and censoring times) for young patients. Similar to Miller and Halpern (1982), we there-

fore computed a quadratic fit with medCoxn and the estimate of Buckley and James (1979).

The results of these analyses are illustrated in Figure 7.1 (b) and compared to two different

versions of the parametric estimate described in Escobar and Meeker (1992). Here, it is

assumed that an accelerated failure time model holds, where the lifetime is either lognor-

mal or Weibull distributed. For both versions, a quadratic fit to the data was computed

(abbreviated as EM ln and EM W, respectively).

Figure 7.1 (b) shows that all four estimates perform quite similar for older recipients,

whereas there is some difference for younger patients. Compared to Figure 7.1 (a), the

quadratic model fits the data better than the linear model. In particular, it reveals that

for the extreme young recipients, the lifetime is shorter than for middle-aged patients.

Anyway, the quadratic fits all have a big drawback: they suggest that the lifetime increases

from young to middle-aged recipients in the same way as it diminishes from middle-aged
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Figure 7.1: Stanford heart transplant data set for the 184 recipients and the estimates de-

scribed in Miller and Halpern (1982). The character “•” indicates the uncensored observations,

while the censored observations are presented by “+”. The individual panels show (a) Stan-

ford heart transplant data with observed time (in days) on logarithmic scale (base 10) plotted

against age at transplant (in years) and the four different estimates (linear fit) described in

Miller and Halpern (1982) and (b) as in Figure 7.1 (a) but for quadratic regression and the

two best performing estimates due to Miller and Halpern (1982) as well as the estimates of

Escobar and Meeker (1992). Details are given in the text.

to old patients, which seems to be fairly unrealistic. Beyond, this feature essentially

cannot be improved by using more complex parametric fits with ordinary polynomials

(i.e., with natural exponents exceeding two). This is indicated by an analysis of the cubic

model with the four estimates of Figure 7.1 (b) which shows that there is only a very

small difference to the corresponding quadratic fit. Hence, we conclude that the presented

global parametric and semiparametric methods miss important features of the data, and

a suitable nonparametric approach may be more reasonable.

As mentioned in Section 2.2, Fan and Gijbels (1994, 1996) also investigated the idea

of the censoring unbiased transformation in order to estimate the regression function in

the presence of censored data. But in contrast to Buckley and James (1979) and Koul,

Susarla, and Van Ryzin (1981), a nonparametric regression technique was chosen. To be
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more precise, Fan and Gijbels (1994, 1996) suggested to transform the data according to

(2.22) and then to apply a locally weighted least squares estimate. Here, the parameter

α1 was calculated similar to (6.9) with the only difference that the whole sample instead

of a learning data set was used.

Furthermore, in the univariate situation, Fan and Gijbels (1994, 1996) proposed an

alternative transformation, which incorporates the values of the covariate via the same

kernel function which is used in order to compute the locally weighted least squares esti-

mate. This transformation has the advantage that it leaves the uncensored observations

unchanged and does not require that the censoring times and the covariates are indepen-

dent, but that Y and C are conditionally independent given X. In their applications to

real and simulated data, the kernel was chosen as the standard normal density function.

The parameter kFG of the bandwidth of the estimate was determined via a n-fold cross-

validation (also known as leave-one out crossvalidation). However, the disadvantage of

this alternative transformation is that it is only applicable in univariate regression.

Figure 7.2 displays the Stanford heart transplant data in analogy to Figure 7.1 together

with the estimates described in Fan and Gijbels (1994, 1996) based (a) on the transforma-

tion in the univariate case and (b) on (2.22) with α1 ≈ 0.056, respectively. The optimal

choice of the bandwidth parameter due to the cross-validation procedure is kFG = 24

in the former and kFG = 34 in the latter case. Similar to Fan and Gijbels (1994), we

additionally choose smaller bandwith parameters kFG = 8 and kFG = 9, thereby trying

to detect a finer structure.

Observe that in panel (a) the curves are nearly constant for the 17 to 48 year old

recipients. In addition, for patients older than 48 years, the estimate with kFG = 24

predicts a nearly linear slope. As a consequence, Fan and Gijbels (1994, 1996) conjectured

that for younger recipients, the log-lifetime is constant, while it decreases linearly for

older patients. On the other hand, the estimates in panel (b) predict that the log-lifetime

is diminished for young patients compared to middle-aged recipients. This is mainly

due to the different treatment of the censored observations by (2.22) in contrast to the

univariate transformation given in Fan and Gijbels (1994, 1996), which generally results

in a smaller variability of the random variables of the latter transformation. Yet, the

whole sample is used to compute Û
(1)
1 , . . . , Û

(1)
n . In contrast, for the conversion of a
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Figure 7.2: Stanford heart transplant data set for the 184 patients similar to Figure 7.1

together with the estimates of Fan and Gijbels (1994, 1996). The individual panels show the

Stanford heart transplant data with observed time (in days) on logarithmic scale (base 10)

plotted against age at transplant (in years) and the estimates of Fan and Gijbels (1994, 1996)

based on the transformation (a) in the univariate case with bandwidth parameter kFG = 24

and kFG = 9 and (b) according to (2.22) with transformation parameter α1 ≈ 0.056, and

bandwidth parameter kFG = 34 and kFG = 8, respectively..

censored observation Ci by the univariate transformation, only those uncensored data

points (Xj , Yj) with Yj > Ci and Xj being in a neighborhood of Xi (defined via kFG)

are incorporated (i 6= j; i, j ∈ {1, . . . , n}). If no such datum point exists, then Ci is not

transformed.

As for the Stanford heart transplant data, the majority of the censored observations

exceed the most uncensored ones. Moreover, for 38–52 year old recipients the amount of the

censored data points with this property is larger than for the other patients. Therefore, for

most censored observations only few uncensored data points are used in order to estimate

the random variables of the univariate transformation. Hence, calculating Û
(1)
1 , . . . , Û

(1)
n

instead may be more appropriate. But then, by transforming the data according to (2.22),

one assumes that C and X are independent, which obviously is inappropriate for the heart

transplant data.
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To sum it up, the different behavior of the estimates in Figure 7.2 (a) and (b) for

young to middle-aged patients is mainly caused by the following facts. The univariate

transformation causes the censored observations to be located at about the same level.

This results in the curves in panel (a) which are nearly constant over a large fraction

of the plot. On the other hand, the transformation according to (2.22) with α1 ≈ 0.056

operates mainly on the censored observations of the 38–52 year old patients, while the data

points for recipients younger than 38 years are nearly left unchanged. Hence, the estimates

in panel (b) predict that the lifetime increases from young to middle-aged patients.

Finally, we applied our MSSE (2.45) to the Stanford heart transplant data. Note that

mn depends on the particular choice of the learning and the testing data (cf. Section 2.4).

In order to determine its effect on our estimation of m, we randomly selected 50 different

learning and testing data sets, each of sample size nl = nt = 92. For each of these sets,

an MSSE was calculated according to (2.45). For each recipient age, we computed the

median mn,med, the 10%–quantile mn,10%, and the 90%–quantile mn,90% of the log-lifetimes

predicted by the 50 estimates. Beyond, mUT
n,med, m

UT
n,10%, and mUT

n,90% were derived in an

analogous way by replacing (2.36) and (2.37) with the transformation suggested by Fan

and Gijbels (1994, 1996) for the univariate case where kFG = 24.

In a statistical application, one may prefer to avoid the dependency of mn on the

particular choice of the learning and testing data set in order to get a unique (and at

best a more accurate) result. Here, a n-fold cross-validation similar to Fan and Gijbels

(1994, 1996) instead of the splitting of the sample technique can be applied. Note that in

this case, it is not advisable to calculate (2.36) and (2.37) separately (at least if censored

data occurs). This is due to the fact that for n-fold cross-validation, each of the n testing

data sets has sample size nt = 1, i.e., we would have just one observation to compute

the Kaplan-Meier estimate of G on the testing data. Therefore, we rather define a cross-

validation version mCV
n of mn as follows (cf. Fan and Gijbels (1994, 1996)).

First, the censored data is transformed according to (2.25). Then, for all i = 1, . . . , n

and all (k, λ) ∈ Kn ×Λn, we compute a MSSE mn−1,i,(k,λ) in analogy to (2.28), where we

replace D̂(1)
n with D̂(1)

n \ {(Xi, Û
(1)
i )} and λn with λ. Here, D̂(1)

n , Kn, and Λn are given by

(2.26), (2.41), and (2.42), respectively. In the next step, we choose that pair of parameters

out of Kn ×Λn which minimizes the empirical L2 risk of mn−1,i,(k,λ) (i = 1, . . . , n). To be
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more precise, let

(
kCV , λCV

)
:= arg min

(k,λ)∈Kn×Λn

(
1

n

n∑
i=1

|mn−1,i,(k,λ)(Xi)− Û (1)
i |

2

)
,

where Û
(1)
i (i = 1, . . . , n) is given by (2.25). Finally, we use this pair of parameters in order

to construct a MSSE according to (2.28) from the whole transformed data D̂(1)
n , i.e, we

define mCV
n (·) := mn,(kCV ,λCV )(·). Moreover, let mCV,UT

n be given by replacing (2.26) in the

estimation procedure described above with the data from the univariate transformation

of Fan and Gijbels (1994, 1996).

In general, it is more complicated to show that a regression estimate based on a cross-

validation procedure achieves the optimal rate of convergence than in case that a splitting

of the sample technique is applied (cf., e.g., Györfi, Kohler, Krzyżak, and Walk (2002)),

Chapters 7 and 8). If censored data occurs, this problem gets even worse. In our case,

we have to deal with the fact that mn−1,i,(k,λ) and (Xi, Û
(1)
i ) both depend on (Xi, Zi, δi)

(i ∈ {1, . . . , n}). This is because for each of the random variables (2.25), we calculate the

Kaplan-Meier estimate of G on the whole sample

(X1, Z1, δ1), . . . , (Xn, Zn, δn).

Hence, in contrast to the proofs of Theorem 5.1 and Lemma 5.1, we cannot use standard

techniques from usual nonparametric regression in order to reduce the problem mentioned

above to the problem of deriving a fast stochastic rate of convergence of mn−1,i,(k,λ). In

contrast, the mode of dependency of mn−1,i,(k,λ) and D̂(1)
n \ {(Xi, Û

(1)
i )} on (Xi, Û

(1)
i ) has

to be established and one has to impose additional assumptions on the distribution of

(X,Y,C). Similar to above, one can conclude that the same problem occurs for mCV,UT
n.

Figure 7.3 displays the Stanford heart transplant data as in Figure 7.1 together with

(a) mCV,UT
n (green solid line), mUT

n,med (red solid line), mUT
n,10% (lower red dotted line), and

mUT
n,90% (upper red dotted line) with kFG = 24, and (b) mCV

n (green solid line) mn,med (red

solid line), mn,10%, and mn,90% (lower and upper red dotted line) with α1 ≈ 0.056.

Similar to Figure 7.2 (a), one observes that mCV,UT
n and mUT

n,med show a nearly constant

shape for the 17-48 year old recipients. However, for patients older than 55 years, there

is a difference between the estimates of Fan and Gijbels (1994, 1996) and the curves in

Figure 7.3 (a). While the first ones show a similar linear slope as for 48–55 year old
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Figure 7.3: Stanford heart transplant data set for the 184 patients similar to Figure 7.1 with

observed time (in days) on logarithmic scale (base 10) plotted against age at transplant (in

years) and (a) mCV,UT
n (green solid line), mUT

n,med (red solid line), mUT
n,10% (lower red dotted

line), and mUT
n,90% (upper red dotted line) with kFG = 24 and (b) mCV

n (green solid line),

mn,med (red solid line), mn,10% (lower red dotted line) and mn,90% (upper red dotted line)

with α1 ≈ 0.056.

recipients, the latter ones are almost constant. The curve with kFG = 24 even falls below

all the data points on the right hand side of Figure 7.2 (a). Hence, one may argue that

mCV,UT
n and mUT

n,med are more appropriate estimates of the regression function on this

interval. However, there are only few patients being older than 55 years at time of first

transplantation.

In analogy to the estimates in Figure 7.2 (b), mCV
n and mn,med increase from young

to middle-aged recipients. Here, we observe that mCV
n and mn,med do not predict a linear

slope as the curve with kFG = 34 in Figure 7.2 (b), but rather show a somewhat similar

behavior to the estimate with kFG = 8. Both estimates are nearly constant for up to 30

year old recipients as well as for 32 to 50 year old patients with a small increase in between.

Note that the mean level of the curves on these intervals is at about the same level as of

the estimates in panel (a).

As mentioned above, the variability of Û
(1)
1 , . . . , Û

(1)
n is in general larger than that of



7.1. STANFORD HEART TRANSPLANT DATA 145

the random variables of univariate transformation. Consequently, for the estimates based

on the latter ones the difference between the 90%–quantiles and the 10%–quantiles of the

log-lifetimes predicted by the 50 estimates is smaller than for those based on the first ones.

Moreover, mUT
n,10% and mUT

n,90% are smoother than mn,10% and mn,90%.

Overall, the curves in Figure 7.3 show a similar behavior to those in Figure 7.2. Table

7.1 displays the median empirical L2 risks of mn for the 50 different choices of the learning

and the traing data set together with the empirical L2 risk of mCV
n (or mCV,UT

n for the

univariate transformation) and mFG
n with respect to the transformed censored data. The

first column lists these values for the transformation according to (2.25) with α1 ≈ 0.056

(cf. Figure 7.2 (b) and Figure 7.3 (b)). For the estimates in the second column, α1 ≈ 0.013

was chosen which corresponds to the median of the αFG1 ’s which were calculated on the

50 learning data sets, where αFG1 is given by (6.9). The third column shows the median

empirical L2 risk and the empirical L2 risks with respect to the univariate transformation,

where kFG = 24.

From Table 7.1, we deduce that at large, the MSSE fit the transformed heart transplant

data for all three transformations slightly better than the estimates of Fan and Gijbels

(1994, 1996). However, the difference between both estimation procedures is consider-

ably smaller than the gap between the univariate transformation and the transformation

according to (2.25). This is due to the above-mentioned difference in the variability of

the converted random variables when applying the two transformations. Thus, for this

data set where the censoring mechanism is not independent of the covariate under study,

Transformation (2.36) Univariate Transformation

α1 ≈ 0.056 α1 ≈ 0.013 kFG = 24

mn 0.979 0.955 0.577

mCV
n ,mCV,UT

n 1.016 0.974 0.568

mFG
n 1.038 0.998 0.574

Table 7.1: Median empirical L2 risk of mn and empirical L2 risk of mCV
n (or mCV,UT

n for the

univariate transformation) and mFG
n with respect to the transformed censored data of three

different transformations.
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choosing the univariate transformation instead of the transformation according to (2.25)

is much more important than the choice of either of the two estimation procedures.

Note that for the MSSE based on the transformation according to (2.25), further

improvements may be possible by choosing a different value of the transformation pa-

rameter. In particular, one can deduce from the proof of Lemma 4.2 that Theorem 5.2

still holds, if we replace α1 in (2.22) and (2.25) for each i ∈ {1, . . . , n} by ᾱ1(Xi). Here,

ᾱ1 : Rd → R : x 7→ ᾱ1(x) with |ᾱ1(x)| < ∞ for all x ∈ Rd. This provides the possibility

to transform the data for different values of the covariates in a different way and hence

reduce the variability of the transformed random variables.

7.2 Breast cancer data set of Van de Vijver et al. (2002)

The breast cancer data set published by Van de Vijver, He, Van’t Veer et al. (2002) com-

prises tumors of 295 women selected from the fresh-frozen-tissue bank of the Netherlands

Cancer Institute according to several predefined criteria, which should assure a homoge-

neous patient collective. Among other things it was required that the tumor was a so-called

primary invasive breast carcinoma, which has the ability to metastasize, but has yet not

spread beyond the breast. Furthermore, only tumors with less than 5 cm in diameter

were considered. Moreover, it was demanded that there was no prior history of cancer

(except for a non-aggressive form of skin cancer), the apical axillary lymph nodes were

tumor-negative, the year of diagnosis was between 1984 and 1995, and the age at diagnosis

was below 53 years.

For a period of at least five years, all women were assessed at least annually. The

median duration of follow-up since surgery was 6.7 years. Out of the 295 patients, 130

received a so-called adjuvant systemic therapy, consisting of chemotherapy (90 patients),

hormonal therapy (20 patients) or both (20 patients). Overall survival was defined as the

time from date of surgery to date of death from any cause (uncensored observations) or

to date of the last follow up visit (censored observation). Distant metastasis-free survival

time was specified as the time from date of surgery to date of first occurrence of a distant

metastasis (uncensored observations) or to date of last follow up visit, non-breast cancer

related death, recurrence of local or regional disease or second primary cancer (censored
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observation).

Several clinical and histopathological characteristics of the tumors were reported.

These comprehend widely used prognostic factors in medical praxis such as the estro-

gen receptors (ER) expression level, the number of metastases, the lymph node status, the

tumor diameter, and the histological grade of the tumors. Moreover, by histopathological

methods, it was determined whether a patient was a carrier of a germline mutation in the

BRCA1 or the BRCA2 gene. The wild type alleles of these so-called tumor suppressor

genes are known to lower the risk of getting breast cancer and are assumed to be incor-

porated in the DNA repair in the cells. In contrast, carriers of a mutation in BRCA1 or

BRCA2 are more likely to develop tumors.

However, breast cancer is a very complex disease of the mammary gland with many

subgroups, partially differing seriously in their clinical courses. It thus cannot be explained

satisfactorily by the common clinical or histopathological characteristics. Today, it is

generally agreed that breast cancer, like other types of cancer, is the final outcome of

multiple environmental, hereditary, and genetic factors. Carcinogenesis is often considered

as a multistage process, in which normal cells are transformed to tumor cells.

Among women worldwide, breast cancer is the most common cause of cancer death

with about 460, 000 disease-related deaths in 2008. Every eighth to tenth women is at

least once in her lifetime affected by breast cancer (Ferlay et al., GLOBOCAN 2008 v2.0).

At present, treatment of breast cancer may include a surgery (breast-conserving or

mastectomy, possibly with axillary lymph node dissection), radiotherapy, chemotherapy,

hormonal treatment, and/or antibody therapy. In clinical practice, the decision which

therapies should be applied is based on the various histopathological or clinical character-

istics. Here, often a systemic treatment, consisting of a chemotherapy, hormonal treatment

and/or antibody therapy is ordered. However, it is known that 70%− 80% of the patients

receiving this treatment do not benefit from it and may in addition suffer from the strong

side effects. This is due to the fact that disappointingly, just on the basis of the histopatho-

logical and clinical variables, these patients cannot be distinguished from the remaining

20%− 30%. Up to now, systemic therapy is therefore in general given to all patients with

certain histopathological or clinical characteristics, although only a minor part of them

benefits from this treatment.
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Since genetic factors play a major role in carcinogenesis, measuring gene expression

levels has become a standard tool in cancer research. Here, the hope is that the hetero-

geneity and complexity of tumors can be better modeled by adding these factors than

with histopathological or clinical variables alone. Indeed, it has been shown in several

studies that this improves tumor diagnosis and classification as well as the prediction of

prognosis and the response to therapy and hence offers the potential to refine treatment for

cancer patients. Today, one important tool for monitoring gene expression levels are the

so-called DNA microarrays. They usually consist of a solid glass, plastic or silicon surface,

where microscopic DNA spots, each representing a single gene, are fixed in a rectangular

grid. Depending on the subject of a study, DNA microarrays may, e.g., cover just some

interesting genes up to the complete genome of an organism or several organisms.

For each of the 295 women in their study, Van de Vijver, He, Van’t Veer et al. (2002)

measured the gene expression levels of the tumor cells with microarray containing ap-

proximately 25, 000 human genes and therefore covering nearly the whole human genome.

Their goal was to demonstrate that solely on the basis of these data, one may better

predict prognosis and response to therapy of breast cancer patients than with classical

histopathological and clinical variables. To be more precise, for each of the 295 tumors,

the expression levels of the genes on the microarray were used in order to calculate a

single measure, which was then applied in order to classify the patients in a low-risk and

a high-risk group.

In a previous study with the same microarrays and 78 breast cancer patients, Van’t

Veer, Dai, Van de Vijver et al. (2002) selected 70 genes based on the association of the

expression of each gene with the probability of developing a distant metastasis within 5

years. For the 44 patients which remained disease free for at least 5 years, the mean

of the gene expression levels of each the 70 genes (in the following denoted as average

profile) were calculated. Then, for each tumor, Pearson’s correlation coefficient between

this average profile and the expression levels of the 70 genes was computed. A patient

with a correlation coefficient of more than 0.4 was then assigned to the low-risk group,

while all other patients were classified into the high-risk group. Here, this threshold was

chosen by a cross-validation procedure and caused a 10% rate of false negative results.

Van de Vijver, He, Van’t Veer et al. (2002) used the average profile of Van’t Veer,
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Dai, Van de Vijver et al. (2002) in order to determine the patients with low-risk and

high-risk in their study. For each of the 295 women, the correlation coefficient with this

profile was calculated and the same threshold in order to distinguish between the two

groups was applied. Van de Vijver, He, Van’t Veer et al. (2002) showed that within their

dataset, this measure is a more powerful predictor of overall survival, development of

distant metastasis within 5 years, and response to therapy than standard systems based

on clinical and histopathological factors. In the following, we will refer to the correlation

coefficients described above as VHV’s.

Besides, Chang, Nuyten, Sneddon et al. (2005) observed that for the 295 patients of

Van de Vijver, He, Van’t Veer et al. (2002), overall survival and distant metastasis-free

survival are also markedly diminished in women whose tumors are similar to a second,

independent prognosis profile. In contrast to Van de Vijver, He, Van’t Veer et al. (2002),

the determination of this profile was knowledge-based. Here, only genes which are involved

in processes of wound-healing of cells were considered. This choice was motivated by the

observation of many similarities between the tumor microenvironment and wound-healing.

Due to this fact, it has been proposed that carcinogenesis can at least partly be explained

by malfunctions in the reparative processes of cells.

In a preceding study with a DNA microarray covering approximately 36, 000 genes,

Chang, Sneddon, Alizadeh et al. (2004) identified 512 genes, which are associated with

wound-healing processes in human cells. Note that the selection of these genes was based

on their expression profiles in experiments with normal cells and cell lines, and no exper-

iments with tumor cells were included in this step. Rather, Chang, Sneddon, Alizadeh

et al. (2004) subsequently demonstrated by hierarchical cluster analyses of several cancer

data sets, including the breast cancer data set of Van’t Veer, Dai, Van de Vijver et al.

(2002), that their gene set has the power to reveal a low-risk and a high-risk population.

Furthermore, a prognosis profile similar to Van’t Veer, Dai, Van de Vijver et al. (2002)

was derived by computing for each of the of 512 genes the mean expression level for the

patients in the latter group. Moreover, it was shown that 62 genes are sufficient to classify

the patients in the data set of Van’t Veer, Dai, Van de Vijver et al. (2002) into a group

with poor and with good wound-healing properties, where the misclassification rate is

approximately 6.4%. Chang, Sneddon, Alizadeh et al. (2004) report that this misclassifi-
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cation rate could not be improved, even if all genes associated with wound-healing were

considered.

Chang, Nuyten, Sneddon et al. (2005) applied this profile in order to analyze the

breast cancer data set of Van de Vijver, He, Van’t Veer et al. (2002). Out of the 512

genes which were selected in the study of Chang, Sneddon, Alizadeh et al. (2004), 459

were also measured by the microarray used in the study of Van de Vijver, He, Van’t

Veer et al. (2002). In analogy to Van’t Veer, Dai, Van de Vijver et al. (2002), Pearson’s

correlation coefficient between the prognosis profile of Chang, Sneddon, Alizadeh et al.

(2004), restricted to these genes, and the expression levels of the 459 genes was calculated

for each of the 295 tumors. In the following, we term these coefficients as CNS.

In order to assign the 295 women either to a low-risk or a high-risk group, a threshold

for the CNS’s was determined via a splitting of the sample technique (cf. Section 2.4).

Here, the learning and testing data were matched for all available clinical variables and all

known risk factors. Chang, Nuyten, Sneddon et al. (2005) demonstrated that a threshold

of −0.15 gave approximately 90% sensitivity for predicting distant metastasis as the first

recurrence event in both data sets. Note that in contrast to the procedure of Van de

Vijver, He, Van’t Veer et al. (2002), in the approach of Chang, Nuyten, Sneddon et al.

(2005), patients are classified into the high-risk group if their CNS is below the established

threshold.

According to the results of Chang, Nuyten, Sneddon et al. (2005), the approaches

of Van’t Veer, Dai, Van de Vijver et al. (2002) and Chang, Sneddon, Alizadeh et al.

(2004) gave overlapping and generally consistent predictions of outcomes, although their

derivation was quite different. Note that only 2 of the 512 genes in the prognosis profile

of Chang, Nuyten, Sneddon et al. (2005) were also contained in the 70 genes selected

by Van de Vijver, He, Van’t Veer et al. (2002). Moreover, approximately 70.8% of the

patients were classified into the high-risk group or low risk-group by both procedures. Of

the remaining 86 women, 67 were classified as high-risk by the profile of Chang, Sneddon,

Alizadeh et al. (2004), but as low-risk by that of Van’t Veer, Dai, Van de Vijver et al.

(2002). In contrast, 19 patients were grouped vice versa.

An analysis of overall survival and distant metastasis-free survival time by means of

Kaplan-Meier estimates revealed that the profile of Van’t Veer, Dai, Van de Vijver et al.
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(2002) performs slightly better on the data set of the 295 breast cancer patients than the

profile of Chang, Sneddon, Alizadeh et al. (2004). E.g., for the approach of Van de Vijver,

the predicted value of the survival function F (t) at time t = 10 years is 94.5% for the low-

risk group (mean standard error: 2.6%) and 54.6% in the high-risk group (mean standard

error: 4.4%). In contrast, for the low-risk group determined by Chang, Nuyten, Sneddon

et al. (2005), the estimated probability is only 92.3% (standard error: 3.8%), while it is

63.7% (standard error: 3.8%) for the corresponding high-risk group. This demonstrates

that of the two prognosis profiles described above, the profile of Van’t Veer, Dai, Van de

Vijver et al. (2002) more accurately allocates patients to a low- or high-risk group.

However, the choice of the number of groups and the selection of the correlation thresh-

olds in the analyses of Van de Vijver, He, Van’t Veer et al. (2002) and Chang, Nuyten,

Sneddon et al. (2005) are somewhat arbitrary. Moreover, many features can be left unre-

vealed if one only applies a simple classification rule. Regression based approaches may

give deeper insight into such data. Here, we calculated our MSSE (2.45) on the breast

cancer data set of Van de Vijver, He, Van’t Veer et al. (2002). In order to compare our

results with those of Chang, Nuyten, Sneddon et al. (2005), only the VHV’s and CNS’s

are used as covariates. Furthermore, the parameters of the estimates were determined by

the splitting of the sample technique with the same learning and testing data set as in

Chang, Nuyten, Sneddon et al. (2005). Note that in this example, it is not advisable to

randomly choose learning and testing set, since then it can happen that risk factors are

not equally distributed between these two samples. This could seriously bias any analysis

based on these data sets.

Figure 7.4 displays the breast cancer data set of Van de Vijver, He, Van’t Veer et

al. (2002) together with the MSSE (2.45) of the regression function. In panel (a), the

lifetimes of the 295 patients since surgery (in years) and the censoring times, respectively,

are plotted against the VHV’s and CNS’s. Panel (b) shows the transformed data together

with the MSSE mn (red surface). Here, the censored data is transformed according to

(2.36) and (2.37) with α1 = αFG1 ≈ 0.09.

Note that in this example, mn is approximately a linear function of the two covariates

VHV and CNS with intercept 12.2 and slopes 12.1 (VHV) and −4.7 (CNS). The signs of

the slopes coincide with the fact that larger values of VHV, but smaller values of CNS,
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Observed data
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Figure 7.4: Breast cancer data set of Van de Vijver, He, Van’t Veer et al. (2002) and the

MSSE mn of the regression function. The character “•” indicates the (transformed) uncen-

sored observations, while the (transformed) censored observations are presented by “+”. The

individual panels show (a) the breast cancer data with observed time (in years) plotted against

the VHV’s and CNS’s and (b) the transformed data together with mn (red surface), where

α1 = αFG1 ≈ 0.09.

agree with a higher risk of women to develop distant metastases and hence having a shorter

overall survival. Furthermore, the difference in magnitude of the absolute values of the

slopes reflects the observation of Chang, Nuyten, Sneddon et al. (2005) that the VHV’s

better distinguish between a high-risk and low-risk group of the patients than the CNS’s.

Chang, Nuyten, Sneddon et al. (2005) reported that by combining the VHV’s and

CNS’s, one may distinguish between three risk-groups of the 295 patients by simply setting

a threshold for each prognosis profile. They observed that the women with VHV’s larger

than 0.4 had a very good prognosis (cf. Figure 7.4 (b)). With a threshold of 0.05 for

the CNS’s, the remaining patients could then be divided into those with moderate and

slightly worse outcomes. Here, this choice was motivated by the fact that only 10% of

the patients in the good prognosis group had a CNS larger than 0.05, while a threshold

of −0.15 similar to above would simply split this group in nearly two equally sized classes

which show a minor difference in outcome.
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Figure 7.5: Breast cancer data set of Van de Vijver, He, Van’t Veer et al. (2002) with three

different subgroups defined by Chang, Nuyten, Sneddon et al. (2005). The individual panels

display (a) the Kaplan-Meier estimates of the survival function F for the three subgroups

(green, orange, and brown solid line) with censored observations marked by “+” and (b) the

transformed breast cancer data with mn (red surface) as in Figure 7.4, but with the data

points of the different subgroups colored according to the corresponding Kaplan-Meier curves

in panel (a). The colored rectangles in panel (b) display the range of the VHV’s and CNS’s in

the three subgroups.

Figure 7.5 presents a comparison between this division of the 295 patients and mn.

Panel (a) displays the Kaplan-Meier estimates of the overall survival for patients with

good, intermediate, and poor prognosis (green, brown, and orange solid line) according

to Chang, Nuyten, Sneddon et al. (2005). Figure 7.5 (b) is identical to Figure 7.4 with

the only difference that the data points of the different subgroups are colored as the

corresponding Kaplan-Meier curves in Figure 7.5 (a). Moreover, the colored rectangles

display the range of the VHV’s and CNS’s in the three groups.

The three prognosis groups marked in Figure 7.5 (b) clearly coincide with high, medium

and low levels of the MSSE mn. However, in contrast to the assumption of having two

or three well-seperated risk groups of patients in the data, the shape of the MSSE rather

suggest that there exist no clear boundaries between such groups, but the mean survival
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rather alters smoothly for different values of the VHV’s and CNS’s. Hence, the group

definitions of Chang, Nuyten, Sneddon et al. (2005) should be handled with care, since a

slight change of the chosen thresholds would affect the assignment of more than just very

few patients.



Appendix A

Results for fixed design regression

Below we formulate and prove two auxiliary results, which are used in the proofs of Lemma

4.1 and Theorem 5.1, in a fixed design regression model.

Let therefore x1, . . . , xn ∈ [0, 1]d be arbitrary, but fixed and let m? : [0, 1]d → R be a

real-valued function. Assume that for all i = 1, . . . , n

Y ?
i = m?(xi) + εi, (A.1)

where ε1, . . . , εn are independent, real-valued random variables with expectation zero.

Then the following result holds:

Lemma A.1. Let n, d ∈ N, λn > 0, β? ≥ 1, and b4 > 0. Set l := β? + b4 and let p ∈ N

with 2p > d be arbitrary. Assume that Y ?
1 , . . . , Y

?
n are given by (A.1) with |Y ?

i | ≤ β? a.s.

and |m?(xi)| ≤ β? for all i ∈ {1, . . . , n}. Let Ȳ1, . . . , Ȳn be arbitrary real-valued random

variables. Define estimates m̃?
n,(p,λn) and m̂?

n,(p,λn) by

m̃?
n,(p,λn)(·) := arg min

f∈Wp([0,1]d)

(
1

n

n∑
i=1

|f(xi)− Ȳi|2 + λnJ
2
p (f)

)
, (A.2)

where Wp([0, 1]d) and J2
p (·) are given by (2.3) and (2.5), and

m̂?
n,(p,λn)(·) := T[−l,l]m̃

?
n,(p,λn)(·). (A.3)

Assume m? ∈Wp([0, 1]d) with J2
p (m?) <∞ and set

Ŝ?n :=
1

n

n∑
i=1

|m̂?
n,(p,λn)(xi)−m

?(xi)|2 + λnJ
2
p (m̃?

n,(p,λn))−
64

n

n∑
i=1

|Y ?
i − Ȳi|2 − 2λnJ

2
p (m?).
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Then there exist constants b5, b6 > 0 which only depend on β?, such that for any tn > 0

with

tn → 0 (n→∞), (A.4)

n tn
lnn

→∞ (n→∞), (A.5)

and
n tn
lnn

λ
d
2p
n →∞ (n→∞), (A.6)

we have for all t ≥ tn and for all sufficiently large n

P

[
Ŝ?n > t,

1

n

n∑
i=1

|m̂?
n,(p,λn)(xi)− Ȳi|

2 ≤ 1

n

n∑
i=1

|m̃?
n,(p,λn)(xi)− Ȳi|

2

]
≤ b5 exp (−b6nt) .

Proof of Lemma A.1. First, we notice that |Y ?
i | ≤ β? a.s. and |m?(xi)| ≤ β? imply

ε2i = |Y ?
i −m?(xi)|2 ≤ 4(β?)2 a.s. (A.7)

for all i ∈ {1, . . . , n}. Set

V̂ ?
n,(p,λn) :=

1

n

n∑
i=1

|m̂?
n,(p,λn)(xi)−m

?(xi)|2 + λnJ
2
p (m̃?

n,(p,λn)).

By an application of Lemma B.1 in combination with (A.7), we have for all t > 0

P

[
Ŝ?n > t,

1

n

n∑
i=1

|m̂?
n,(p,λn)(xi)− Ȳi|

2 ≤ 1

n

n∑
i=1

|m̃?
n,(p,λn)(xi)− Ȳi|

2

]

= P

[
V̂ ?
n,(p,λn) > t+

64

n

n∑
i=1

|Y ?
i − Ȳi|2 + 2λnJ

2
p (m?),

1

n

n∑
i=1

|m̂?
n,(p,λn)(xi)− Ȳi|

2 ≤ 1

n

n∑
i=1

|m̃?
n,(p,λn)(xi)− Ȳi|

2

]

≤ P

[
t < V̂ ?

n,(p,λn) ≤
8

n

n∑
i=1

(m̂?
n,(p,λn)(xi)−m

?(xi)) · εi

]

= P

[
t < V̂ ?

n,(p,λn) ≤
8

n

n∑
i=1

(m̂?
n,(p,λn)(xi)−m

?(xi)) · εi,
1

n

n∑
i=1

ε2i ≤ 4(β?)2

]
=: q1,n. (A.8)

In order to derive an upper bound on q1,n, observe that the Cauchy–Schwarz inequality

yields with probability one

8

n

n∑
i=1

(m̂?
n,(p,λn)(xi)−m

?(xi)) · εi ≤ 8

√√√√ 1

n

n∑
i=1

|m̂?
n,(p,λn)(xi)−m?(xi)|2

√√√√ 1

n

n∑
i=1

ε2i .
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Therefore, one can conclude that inside of q1,n

V̂ ?
n,(p,λn) =

1

n

n∑
i=1

|m̂?
n,(p,λn)(xi)−m

?(xi)|2 + λnJ
2
p (m̃?

n,(p,λn))

≤

√√√√ 1

n

n∑
i=1

|m̂?
n,(p,λn)(xi)−m?(xi)|2 +

λnJ
2
p (m̃?

n,(p,λn))√
1
n

∑n
i=1 |m̂?

n,(p,λn)(xi)−m?(xi)|2

2

=

 V̂ ?
n,(p,λn)√

1
n

∑n
i=1 |m̂?

n,(p,λn)(xi)−m?(xi)|2

2

≤

 8
n

∑n
i=1(m̂?

n,(p,λn)(xi)−m
?(xi)) · εi√

1
n

∑n
i=1 |m̂?

n,(p,λn)(xi)−m?(xi)|2

2

≤

16β?
√

1
n

∑n
i=1 |m̂?

n,(p,λn)(xi)−m?(xi)|2√
1
n

∑n
i=1 |m̂?

n,(p,λn)(xi)−m?(xi)|2

2

= 256(β?)2. (A.9)

For arbitrary t > 0 set

̄min := min
{
j ∈ N : 2jt ≥ 256(β?)2

}
.

An application of the peeling-technique (cf. (4.50)) together with (A.8) and (A.9) implies

for all t > 0

P

[
Ŝ?n > t,

1

n

n∑
i=1

|m̂?
n,(p,λn)(xi)− Ȳi|

2 ≤ 1

n

n∑
i=1

|m̃?
n,(p,λn)(xi)− Ȳi|

2

]

≤ P

[
t < V̂ ?

n,(p,λn) ≤ 256(β?)2, V̂ ?
n,(p,λn) ≤

8

n

n∑
i=1

(m̂?
n,(p,λn)(xi)−m

?(xi)) · εi,

1

n

n∑
i=1

ε2i ≤ 4(β?)2

]

≤
̄min∑
j=1

P

[
2jt

2
< V̂ ?

n,(p,λn) ≤ 2jt, V̂ ?
n,(p,λn) ≤

8

n

n∑
i=1

(m̂?
n,(p,λn)(xi)−m

?(xi)) · εi,

1

n

n∑
i=1

ε2i ≤ 4(β?)2

]
.
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Hence, we have for all t > 0

P

[
Ŝ?n > t,

1

n

n∑
i=1

|m̂?
n,(p,λn)(xi)− Ȳi|

2 ≤ 1

n

n∑
i=1

|m̃?
n,(p,λn)(xi)− Ȳi|

2

]

≤
̄min∑
j=1

P

[
V̂ ?
n,(p,λn) ≤ 2jt,

1

n

n∑
i=1

(m̂?
n,(p,λn)(xi)−m

?(xi)) · εi >
2jt

16
,

1

n

n∑
i=1

ε2i ≤ 4(β?)2

]

≤
̄min∑
j=1

P

[
1

n

n∑
i=1

|m̂?
n,(p,λn)(xi)−m

?(xi)|2 ≤ 2jt, λnJ
2
p (m̃?

n,(p,λn)) ≤ 2jt,

1

n

n∑
i=1

(m̂?
n,(p,λn)(xi)−m

?(xi)) · εi >
2jt

16
,

1

n

n∑
i=1

ε2i ≤ 4(β?)2

]

≤
̄min∑
j=1

P

[
sup

g∈G
2jt/λn

∣∣∣∣∣ 1n
n∑
i=1

g(xi) · εi

∣∣∣∣∣ ≥ 2jt

16
,

1

n

n∑
i=1

ε2i ≤ 4(β?)2

]

=:

̄min∑
j=1

q2,n,j . (A.10)

Here, for all j ∈ {1, . . . , ̄min}

G2jt/λn :=

{
f −m? : f ∈ F2jt/λn ,

1

n

n∑
i=1

|f(xi)−m?(xi)|2 ≤ 2jt

}
with

F2jt/λn :=

{
T[−l,l]f : f ∈Wp([0, 1]d), J2

p (f) ≤ 2jt

λn

}
.

For two arbitrary functions g1, g2 ∈ G2jt/λn with g1 = f1 −m? and g2 = f2 −m?, where

f1, f2 ∈ F2jt/λn (j ∈ {1, . . . , ̄min}), one gets

1

n

n∑
i=1

|g1(xi)− g2(xi)|2 =
1

n

n∑
i=1

|f1(xi)− f2(xi)|2

and therefore

N2

(
s,G2jt/λn , x

n
1

)
= N2

(
s,F2jt/λn , x

n
1

)
∀s > 0. (A.11)

In the following, Lemma C.5 will be applied to the probabilities q2,n,j (j = 1, . . . , ̄min)

on the right hand side of (A.10). For this purpose, we first check that the conditions (C.4),

(C.5), and (C.6) are fulfilled.

Set Vi = εi (i = 1, . . . , n), ξ = 2jt
16 , ν = K = 2β?, R =

√
2jt, ν0 = 2

√
2β?, and

G = G2jt/λn in Lemma C.5 (j ∈ {1, . . . , ̄min}). Then (A.7) and the definition of G2jt/λn

imply that (C.4) and (C.5) hold, respectively.
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In order to show that (C.6) is fulfilled, first note that (A.5) yields

√
n ξ =

√
n 2jt

16
≥
√
n tn
16

√
2jt ≥ 2b14

√
2jt = 2b14R (A.12)

for all t ≥ tn, all j ∈ {1, . . . , ̄min}, and all sufficiently large n. Here, b14 > 0 is the constant

in Lemma C.5. Note that Lemma C.5 implies that b14 only depends on β?.

Furthermore, from the definition of ̄min, we have that 2jt = 2 · 2j−1t < 2 · 256(β?)2,

i.e., ξ = 2jt
16 <

√
2jt · 2β? = Rν in Lemma C.5 (j ∈ {1, . . . , ̄min}). For all t ≥ tn,

all j ∈ {1, . . . , ̄min}, and all sufficiently large n, (A.5) yields R2 = 2jt ≥ 2jtn ≥ l2

n .

Therefore, one can conclude similar to (4.55) that Lemma B.2 and (A.11) imply∫ √2jt

2jt
28β?

√
lnN2

(
s,G2jt/λn , x

n
1

)
ds ≤

∫ √2jt

0

√
lnN2

(
s,F2jt/λn , x

n
1

)
ds

≤ b8 λ
− d

4p
n

√
2jt
√

lnn+ b9
√

2jt
√

lnn

=
√
n2jt

(
b8

√
lnn

n2jt
λ
− d

2p
n + b9

√
lnn

n2jt

)

≤
√
n2jt

b8
√

lnn

ntn
λ
− d

2p
n + b9

√
lnn

ntn

 (A.13)

for all t ≥ tn, all j ∈ {1, . . . , ̄min}, and all sufficiently large n. Here, b8, b9 > 0 are the

constants from Lemma B.2 which only depend on p and d. Now, (A.13) together with

(A.5), (A.6), and (A.12) yields that (C.6) holds for all t ≥ tn, all j ∈ {1, . . . , ̄min}, and

all sufficiently large n.

Hence, we can deduce from Lemma C.5 and (A.5) for all t ≥ tn and all sufficiently

large n

̄min∑
j=1

q2,n,j ≤
̄min∑
j=1

b14 exp

(
− n

4 b2142jt

(
2jt

16

)2
)

=

̄min∑
j=1

b14 exp

(
− n2jt

1024 b214

)

≤
̄min∑
j=1

b14 exp

(
− njt

1024 b214

)
≤ b14

exp
(
− nt

1024 b214

)
1− exp

(
− nt

1024 b214

)
≤ 2 b14 exp

(
− nt

1024 b214

)
, (A.14)

where we used that 2j ≥ j (j ∈ N). Since in our case b14 only depends on β?, the assertion

of Lemma A.1 follows from (A.10) and (A.14).

�
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The next lemma is applied in the proof of Theorem 5.1 in order to bound the empirical

L2 error of the MSSE (5.8) on the testing data.

Lemma A.2. Let d, nl, nt ∈ N and set n := nl + nt. Let 0 < β ≤ β? < ∞. Define Y ?
i

by (A.1) with |Y ?
i | ≤ β? a.s. and m?(xi) ∈ [0, β] (i ∈ {1, . . . , n}). Let Ȳ1, . . . , Ȳn be real-

valued random variables, where Ȳ1, . . . , Ȳnl and Y ?
nl+1

, . . . , Y ?
n are independent sequences

of random variables.

Let K?
n × Λ?n be a finite, non-empty set of parameters with

K?
n ⊂

{⌊
d

2

⌋
+ 1,

⌊
d

2

⌋
+ 2, . . .

}
and Λ?n ⊂ (0,∞).

For each (k, λ) ∈ K?
n × Λ?n, define the estimates m̃?

nl,(k,λ) and m?
nl,(k,λ) via

m̃?
nl,(k,λ)(·) := arg min

f∈Wk([0,1]d)

(
1

nl

nl∑
i=1

|f(xi)− Ȳi|2 + λJ2
k (f)

)
,

where Wk([0, 1]d) and J2
k (·) are given by (2.3) and (2.5), and

m?
nl,(k,λ)(·) := T[ 0,β ]m̃

?
nl,(k,λ)(·).

Now, let

m?
n(·) := arg min

f∈FK?n×Λ?n

1

nt

n∑
i=nl+1

|f(xi)− Ȳi|2 (A.15)

with

FK?
n×Λ?n :=

{
m?
nl,(k,λ) : (k, λ) ∈ K?

n × Λ?n

}
and set

A?n := 18 min
(k,λ)∈K?

n×Λ?n

1

nt

n∑
i=nl+1

|m?
nl,(k,λ)(xi)−m

?(xi)|2 +
512

nt

n∑
i=nl+1

∣∣Y ?
i − Ȳi

∣∣2 .
Then there exists a constant b7 > 0 which depends only on β?, such that for all t > 0

P

[
1

nt

n∑
i=nl+1

|m?
n(xi)−m?(xi)|2 > A?n + t

]
≤ 2 |K?

n × Λ?n|
exp (b7 ntt)− 1

.

Proof of Lemma A.2. Set

m̂n(·) := arg min
f∈FK?n×Λ?n

1

nt

n∑
i=nl+1

|f(xi)−m?(xi)|2 . (A.16)

In the proof, we will apply the following lemma.
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Lemma A.3. (Kohler (2006)) Let t > 0, d ∈ N, x1, . . . , xn ∈ Rd, y?1, ȳ1, . . . , y
?
n, ȳn ∈ R,

m? : Rd → R, and F a class of functions f : Rd → R. Set

m?
n(·) := arg min

f∈F

1

n

n∑
i=1

|f(xi)− ȳi|2 , (A.17)

m̂n(·) := arg min
f∈F

1

n

n∑
i=1

|f(xi)−m?(xi)|2 , (A.18)

and

a?n := 18 min
f∈F

1

n

n∑
i=1

|f(xi)−m?(xi)|2 +
512

n

n∑
i=1

|y?i − ȳi|
2 .

If both minima in (A.17) and (A.18) exist and

1

n

n∑
i=1

|m?
n(xi)−m?(xi)|2 > a?n + t, (A.19)

then we have

t

2
<

1

n

n∑
i=1

|m?
n(xi)− m̂n(xi)|2 ≤

16

n

n∑
i=1

(m?
n(xi)− m̂n(xi)) (y?i −m?(xi)). (A.20)

For the proof of Lemma A.3, see Kohler (2006), Lemma 1.

Since

min
(k,λ)∈K?

n×Λ?n

1

nt

n∑
i=nl+1

|m?
nl,(k,λ)(xi)−m

?(xi)|2 = min
f∈FK?n×Λ?n

1

nt

n∑
i=nl+1

|f(xi)−m?(xi)|2 ,

one can conclude from Lemma A.3 for arbitrary t > 0

P

[
1

nt

n∑
i=nl+1

|m?
n(xi)−m?(xi)|2 > A?n + t

]

≤ P

[
t

2
<

1

nt

n∑
i=nl+1

|m?
n(xi)− m̂n(xi)|2

≤ 16

nt

n∑
i=nl+1

(m?
n(xi)− m̂n(xi)) (Y ?

i −m?(xi))

]

≤ P

[
∃(k, λ) ∈ K?

n × Λ?n :
t

2
<

1

nt

n∑
i=nl+1

|m?
nl,(k,λ)(xi)− m̂n(xi)|2

≤ 16

nt

n∑
i=nl+1

(m?
nl,(k,λ)(xi)− m̂n(xi)) (Y ?

i −m?(xi))

]

≤ |K?
n × Λ?n| max

(k,λ)∈K?
n×Λ?n

P

[
t

2
< V̂ ?

1,n,(k,λ) ≤ 16 V̂ ?
2,n,(k,λ)

]
. (A.21)
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Here,

V̂ ?
1,n,(k,λ) :=

1

nt

n∑
i=nl+1

|m?
nl,(k,λ)(xi)− m̂n(xi)|2

and

V̂ ?
2,n,(k,λ) :=

1

nt

n∑
i=nl+1

(m?
nl,(k,λ)(xi)− m̂n(xi)) (Y ?

i −m?(xi)) .

An application of the peeling-technique (cf. (4.50)) to the right hand side of (A.21) yields

for all t > 0

P

[
1

nt

n∑
i=nl+1

|m?
n(xi)−m?(xi)|2 > A?n + t

]

≤ |K?
n × Λ?n| max

(k,λ)∈K?
n×Λ?n

∞∑
s=0

P

[
2st

2
< V̂ ?

1,n,(k,λ) ≤ 2st, V̂ ?
1,n,(k,λ) ≤ 16 V̂ ?

2,n,(k,λ)

]

≤ |K?
n × Λ?n| max

(k,λ)∈K?
n×Λ?n

∞∑
s=0

P

[
V̂ ?

1,n,(k,λ) ≤ 2st, V̂ ?
2,n,(k,λ) >

2st

32

]
. (A.22)

Now fix (k, λ) ∈ K?
n×Λ?n and s ∈ N0∪{∞}. Set Ȳ nl

1 :=
{
Ȳ1, . . . , Ȳnl

}
. Next, we apply

Hoeffding’s inequality (Lemma D.3) in order to bound the conditional probability

qn,(k,λ),s(t) := P

[
V̂ ?

1,n,(k,λ) ≤ 2st, V̂ ?
2,n,(k,λ) >

2st

32

∣∣∣∣ Ȳ nl
1

]

= P

[
1

nt

n∑
i=nl+1

|m?
nl,(k,λ)(xi)− m̂n(xi)|2 ≤ 2st,

1

nt

n∑
i=nl+1

(m?
nl,(k,λ)(xi)− m̂n(xi)) (Y ?

i −m?(xi)) >
2st

32

∣∣∣∣∣ Ȳ nl
1

]

for all t > 0.

Let

V̂ ?
3,n,(k,λ),i := (m?

nl,(k,λ)(xi)− m̂n(xi)) (Y ?
i −m?(xi)) (i = nl + 1, . . . , n).

Observe that due to (A.1), we have Y ?
i = m?(xi) + εi (i = 1, . . . , n), where ε1, . . . , εn are

independent random variables with expectation zero. This together with the assumption

that Ȳ1, . . . , Ȳnl and Y ?
nl+1

, . . . , Y ?
n are independent sequences of random variables implies

E
[
Y ?
i

∣∣ Ȳ nl
1

]
= E [Y ?

i ] = m?(xi) + E [ εi ] = m?(xi) (i = nl + 1, . . . , n), (A.23)

and moreover that V̂ ?
3,n,(k,λ),nl+1, . . . , V̂

?
3,n,(k,λ),n are conditionally independent given Ȳ nl

1 .
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From (A.23), we deduce with probability one

E
[
V̂ ?

3,n,(k,λ),i

∣∣∣ Ȳ nl
1

]
= (m?

nl,(k,λ)(xi)− m̂n(xi)) ·E
[
Y ?
i −m?(xi)

∣∣ Ȳ nl
1

]
= 0

(i = nl + 1, . . . , n). Furthermore, |Y ?
i | ≤ β? a.s. and 0 ≤ m?(xi) ≤ β ≤ β? yield

| V̂ ?
3,n,(k,λ),i | ≤ 2β? · |m?

nl,(k,λ)(xi)− m̂n(xi)| =: Bi a.s. (i = nl + 1, . . . , n). (A.24)

This implies that inside of qn,(k,λ),s(t), one gets for all t > 0

1

nt

n∑
i=nl+1

|2Bi|2 =
16 (β?)2

nt

n∑
i=nl+1

|m?
nl,(k,λ)(xi)− m̂n(xi)|2 ≤ 16 (β?)2 · 2st. (A.25)

Therefore, we have shown that (conditioned on Ȳ nl
1 ) the assumptions of Lemma D.3

hold, and one can conclude from Lemma D.3, (A.24), and (A.25) that for all t > 0

qn,(k,λ),s(t) ≤ 2 exp

(
−

2nt
(

2s t
32

)2
16(β?)2 · 2st

)
= 2 exp (−b7 nt 2s t) a.s.,

where b7 := 2−13(β?)−2.

This together with (A.22) and 2s ≥ s+ 1 (s ∈ N0) yields for all t > 0

P

[
1

nt

n∑
i=nl+1

|m?
n(xi)−m?(xi)|2 > A?n + t

]
≤ |K?

n × Λ?n|
∞∑
s=0

2 exp (−b7 nt 2s t)

≤ 2 |K?
n × Λ?n|

∞∑
s=0

exp (−b7 nt (s+ 1) t)

= 2 |K?
n × Λ?n|

exp (−b7 ntt)
1− exp (−b7 ntt)

=
2 |K?

n × Λ?n|
exp (b7 ntt)− 1

.

This implies the assertion of Lemma A.2.

�
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Appendix B

Two deterministic lemmata

This chapter contains two deterministic lemmata which are used in the proofs of Theorem

4.1 and Lemma A.1.

Lemma B.1. Let l > 0, n, d ∈ N, x1, . . . , xn ∈ [0, 1]d, and y?1, ȳ1, . . . , y
?
n, ȳn ∈ R. Let p ∈ N

with 2p > d be arbitrary and let λn > 0. Define the estimates m̃?
n,(p,λn) and m̂?

n,(p,λn) by

m̃?
n,(p,λn)(·) := arg min

f∈Wp([0,1]d)

(
1

n

n∑
i=1

|f(xi)− ȳi|2 + λnJ
2
p (f)

)
, (B.1)

where Wp([0, 1]d) and J2
p (·) are given by (2.3) and (2.5), and

m̂?
n,(p,λn)(·) := T[−l,l]m̃

?
n,(p,λn)(·). (B.2)

Assume that m? ∈Wp([0, 1]d) with J2
p (m?) <∞. Let t > 0 and set

v̂?n,(p,λn) :=
1

n

n∑
i=1

|m̂?
n,(p,λn)(xi)−m

?(xi)|2 + λnJ
2
p (m̃?

n,(p,λn)).

If

v̂?n,(p,λn) > t+
64

n

n∑
i=1

|y?i − ȳi|2 + 2λnJ
2
p (m?) (B.3)

and
1

n

n∑
i=1

|m̂?
n,(p,λn)(xi)− ȳi|

2 ≤ 1

n

n∑
i=1

|m̃?
n,(p,λn)(xi)− ȳi|

2, (B.4)

then we have

v̂?n,(p,λn) ≤
8

n

n∑
i=1

(m̂?
n,(p,λn)(xi)−m

?(xi))(y
?
i −m?(xi)). (B.5)
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Proof of Lemma B.1. Assume m? ∈Wp([0, 1]d) with J2
p (m?) <∞. Definition (B.1)

and inequality (B.4) imply

v̂?n,(p,λn) =
1

n

n∑
i=1

|m̂?
n,(p,λn)(xi)− ȳi|

2 + λnJ
2
p (m̃?

n,(p,λn))−
1

n

n∑
i=1

|m?(xi)− ȳi|2

+
2

n

n∑
i=1

(m̂?
n,(p,λn)(xi)−m

?(xi)) (ȳi −m?(xi))

≤ 1

n

n∑
i=1

|m̃?
n,(p,λn)(xi)− ȳi|

2 + λnJ
2
p (m̃?

n,(p,λn))−
1

n

n∑
i=1

|m?(xi)− ȳi|2

+
2

n

n∑
i=1

(m̂?
n,(p,λn)(xi)−m

?(xi)) (ȳi −m?(xi))

≤ 1

n

n∑
i=1

|m?(xi)− ȳi|2 + λnJ
2
p (m?)− 1

n

n∑
i=1

|m?(xi)− ȳi|2

+
2

n

n∑
i=1

(m̂?
n,(p,λn)(xi)−m

?(xi)) (ȳi −m?(xi))

= λnJ
2
p (m?) +

2

n

n∑
i=1

(m̂?
n,(p,λn)(xi)−m

?(xi)) (ȳi −m?(xi)) . (B.6)

Here, the first equality follows with

(a1 − a2)2 = (a1 − a3)2 − (a2 − a3)2 + 2 (a1 − a2) (a3 − a2) ∀a1, a2, a3 ∈ R.

If

2

n

n∑
i=1

(m̂?
n,(p,λn)(xi)−m

?(xi)) (ȳi −m?(xi)) < λnJ
2
p (m?),

then we can conclude from (B.3) and (B.6)

t+ 2λnJ
2
p (m?) < v̂?n,(p,λn) < 2λnJ

2
p (m?),

in contradiction to t > 0. Therefore, we have shown that

v̂?n,(p,λn) ≤
4

n

n∑
i=1

(m̂?
n,(p,λn)(xi)−m

?(xi)) (ȳi −m?(xi))

=
4

n

n∑
i=1

(m̂?
n,(p,λn)(xi)−m

?(xi)) (ȳi − y?i )

+
4

n

n∑
i=1

(m̂?
n,(p,λn)(xi)−m

?(xi)) (y?i −m?(xi)) . (B.7)
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Now assume that the second term on the right hand side of (B.7) is smaller than the first

one. In this case, (B.7) and the Cauchy–Schwarz inequality yield

v̂?n,(p,λn) ≤
8

n

n∑
i=1

(m̂?
n,(p,λn)(xi)−m

?(xi)) (ȳi − y?i )

≤ 8

√√√√ 1

n

n∑
i=1

|m̂?
n,(p,λn)(xi)−m?(xi)|2 ·

√√√√ 1

n

n∑
i=1

|y?i − ȳi|2. (B.8)

If

1

n

n∑
i=1

|m̂?
n,(p,λn)(xi)−m

?(xi)|2 6= 0,

then (B.3) together with (B.8) implies (cf. (A.9))

t+
64

n

n∑
i=1

|y?i−ȳi|2 < v̂?n,(p,λn) ≤

 v̂?n,(p,λn)√
1
n

∑n
i=1 |m̂?

n,(p,λn)(xi)−m?(xi)|2

2

≤ 64

n

n∑
i=1

|y?i−ȳi|2,

in contradiction to t > 0. And if

1

n

n∑
i=1

|m̂?
n,(p,λn)(xi)−m

?(xi)|2 = 0,

then we can conclude from (B.3), (B.8), and the definition of v̂?n,(p,λn) that t < v̂?n,(p,λn) = 0.

From this together with (B.7), the assertion (B.5) of Lemma B.1 follows.

�

Lemma B.2. Let l, b > 0. Let p, d, n ∈ N with 2p > d and n > 1. Set

Fb :=
{
T[−l,l]f : f ∈Wp([0, 1]d), J2

p (f) ≤ b
}
,

where Wp([0, 1]d) and J2
p (·) are given by (2.3) and (2.5). There exist constants b8, b9 > 0

which only depend on p and d, such that for all ζ ≥ l2

n and all x1, . . . , xn ∈ [0, 1]d

∫ √ζ
0

√
lnN2(s,Fb, xn1 ) ds ≤ b8

(
b

ζ

) d
4p √

ζ
√

lnn+ b9
√
ζ
√

lnn. (B.9)

Proof of Lemma B.2. For any ζ > 0 and all x1, . . . , xn ∈ [0, 1]d set

Iζ :=

∫ √ζ
0

√
lnN2(s,Fb, xn1 ) ds.
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Lemma C.3 implies that there exist two constants B1, B2 > 0 which only depend on p and

d, such that for all ζ ∈ (0, l2] and all x1, . . . , xn ∈ [0, 1]d

Iζ ≤ B1b
d
4p

∫ √ζ
0

s
− d

2p

√
ln

(
64l2en

s2

)
ds+B2

∫ √ζ
0

√
ln

(
64l2en

s2

)
ds. (B.10)

Here, we used that
√
a1 + a2 ≤

√
a1 +

√
a2 for all a1, a2 ≥ 0.

Substituting t :=
√
ζ
s and applying Hölder’s inequality, one can conclude from (B.10)

for all ζ ∈ (0, l2] and all x1, . . . , xn ∈ [0, 1]d

Iζ = B1b
d
4p ζ

1
2
− d

4p

∫ ∞
1

t
d
2p
−2

√
ln

(
64l2en

ζ
t2
)
dt+B2

√
ζ

∫ ∞
1

t−2

√
ln

(
64l2en

ζ
t2
)
dt

≤ B1b
d
4p ζ

1
2
− d

4p

√∫ ∞
1

t
d
2p
−2
dt ·

∫ ∞
1

t
d
2p
−2

ln

(
64l2en

ζ
t2
)
dt

+B2

√
ζ

√∫ ∞
1

t−2 dt ·
∫ ∞

1
t−2 ln

(
64l2en

ζ
t2
)
dt

= B3

(
b

ζ

) d
4p √

ζ

√
ln

(
B4
l2n

ζ

)
+B2

√
ζ

√
ln

(
B5
l2n

ζ

)
(B.11)

with the constants B3 := B1

1− d
2p

, B4 := 64e
1+ 2

1− d
2p , and B5 := 64e3. In (B.11), the last

equality follows from∫
ta ln (B t2) dt =

ta+1

a+ 1
ln
(
B e−

2
a+1 t2

)
(a 6= −1, B > 0).

Note that this formula is applicable for the first term on the right hand side of (B.11)

since 2p > d implies d
2p − 2 < −1.

For all ζ > l2, we deduce from Lemma C.3 that Iζ = Il2 . Finally, for all ζ ≥ l2

n and all

x1, . . . , xn ∈ [0, 1]d, this together with (B.11) yields

Iζ ≤ B3

(
b

ζ

) d
4p √

ζ
√

ln (B4n2) +B2

√
ζ
√

ln (B5n2)

≤ B3

(
b

ζ

) d
4p √

ζ
√

2 (2 + lnB4)
√

lnn+B2

√
ζ
√

2 (2 + lnB5)
√

lnn,

where the last inequality follows from ln
(
a · n2

)
≤ 2 (2 + ln a) lnn for all a ≥ 1 and n ≥ 2.

�



Appendix C

Results from empirical process

theory

Definition C.1. (Covering number) Let d ∈ N, 1 ≤ r < ∞, and F be a class of

functions f : Rd → R. For any ε > 0 and any vn1 = (v1, . . . , vn) ∈ (Rd)n, the Lr– ε–

covering number Nr(ε,F , vn1 ) is defined as the smallest N ∈ N such that there exist

functions g1, . . . , gN : Rd → R with

min
1≤j≤N

(
1

n

n∑
i=1

|f(vi)− gj(vi)|r
) 1

r

≤ ε

for each f ∈ F . If no such N ∈ N exists, then set Nr(ε,F , vn1 ) :=∞.

If V n
1 = (V1, . . . , Vn) is a vector of Rd-valued random variables, then Nr(ε,F , V n

1 ) is a

random variable with expected value ENr(ε,F , V n
1 ).

Lemma C.1. (Pollard (1984)) Let d ∈ N, B > 0, V, V1, . . . , Vn be Rd-valued i.i.d. random

variables, and let G be a class of functions g : Rd → [0, B]. Then, for any ε > 0,

P

[
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

g(Vi)−Eg(V )

∣∣∣∣∣ > ε

]
≤ 8 exp

(
− nε2

128B2

)
·EN1

( ε
8
,G, V n

1

)
.

Lemma C.2. (Kohler and Krzyżak (2001)) Let k, d ∈ N, l, b > 0 and set

Fb :=
{
T[−l,l]f : f ∈Wk([0, 1]d), J2

k (f) ≤ b
}
,

where Wk([0, 1]d) and J2
k (·) are defined as in (2.3) and (2.5). For any 0 < ε < l and any

x1, . . . , xn ∈ [0, 1]d there exist constants b10, b11, b12 > 0, depending only on k and d, such
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that

N1 (ε,Fb, xn1 ) ≤
(
b10

l n

ε

)b11

(√
b
ε

) d
k +b12

.

Lemma C.3. (Kohler, Krzyżak, and Schäfer (2002)) Let l, b > 0, p, d ∈ N, and set

Fb :=
{
T[−l,l]f : f ∈Wp([0, 1]d), J2

p (f) ≤ b
}
,

where Wp([0, 1]d) and J2
p (·) are given by (2.3) and (2.5). There exists a constant b13 > 0

which depends only on p and d such that for any ε > 0 and all x1, . . . , xn ∈ [0, 1]d

lnN2 (ε,Fb, xn1 ) ≤ b13

(√b
ε

) d
p

+ 1

 · ln(64el2n

ε2

)
· I[ε≤l].

Lemma C.4. (Kohler (2000)) Let V, V1, . . . , Vn be i.i.d. random variables with values in

some set Θ. Let K1,K2 ≥ 1 and let G be a permissible class of functions g : Θ→ [−K1,K1]

satisfying

E g(V )2 ≤ K2 ·E g(V ). (C.1)

If for 0 < ε < 1 and ν > 0

√
nε
√

1− ε
√
ν ≥ 288 max{2K1,

√
2K2} (C.2)

and for all v1, . . . , vn ∈ Θ and all ξ ≥ ν
4

√
n ε (1− ε) ξ ≥ 288 max{K1, 2K2}

∫ √ξ
0

√
lnN2 (s,G∗, vn1 ) ds, (C.3)

where

G∗ =

{
g ∈ G :

1

n

n∑
i=1

g(vi)
2 ≤ 4ξ

}
,

then

P

[
sup
g∈G

∣∣E g(V )− 1
n

∑n
i=1 g(Vi)

∣∣
ν + E g(V )

> ε

]
≤ 50 exp

(
− nνε2(1− ε)

128 · 2304 max{K2
1 ,K2}

)
.

Lemma C.5. (Van de Geer (2000)) Let d ∈ N, R > 0, x1, . . . , xn ∈ Rd, and G be a class

of functions g : Rd → R. Assume that

sup
g∈G

√√√√ 1

n

n∑
i=1

|g(xi)|2 ≤ R. (C.4)
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Let K > 0, ν0 > 0. Suppose that V1, . . . , Vn are independent, real-valued random variables

with expectation zero, which fulfill the sub-Gaussian condition

max
i=1,...,n

K2 E

[
exp

(
|Vi|2

K2

)
− 1

]
≤ ν2

0 . (C.5)

Then for some constant b14 > 0 which depends only on K and ν0, and for ξ > 0 and ν > 0

satisfying ξ < Rν and

√
nξ ≥ 2b14 max

{∫ R

ξ
8ν

√
lnN2(s,G, xn1 ) ds,R

}
, (C.6)

we have

P

[
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

g(xi) · Vi

∣∣∣∣∣ ≥ ξ, 1

n

n∑
i=1

V 2
i ≤ ν2

]
≤ b14 · exp

(
− nξ2

4 b214R
2

)
.
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Appendix D

Auxiliary results

Definition D.1. Let p ∈ (0,∞) and let Ω be an arbitrary measure space with positive

measure µ. The Lp (Ω) space is defined as

Lp(Ω) :=

{
f : Ω→ C : f measurable,

∫
Ω
|f(x)|pµ(dx) <∞

}
.

Definition D.2. Let Ω ⊆ Rd (d ∈ N) and let F be an arbitrary set consisting of functions

f : Ω → R. For 1 ≤ p < ∞ and for an arbitrary probability measure µ on Ω, F is dense

in Lp (Ω) if and only if for any g ∈ Lp (Ω) and any ε > 0, there is a function f ∈ F such

that ∫
Ω
|g(x)− f(x)|p µ(dx) ≤ ε.

Lemma D.1. (Rudin (1974)) Let d ∈ N and let Ω ⊆ Rd be a locally compact Hausdorff

space. For any 1 ≤ p < ∞ and any probability measure µ on Ω, the collection of all

continuous real-valued functions on Ω whose support is compact is dense in Lp(Ω).

Lemma D.2. (Borel-Cantelli lemma) Let (Ω,A,P) be a probability space. Furthermore,

let A1, A2, . . . ∈ A be a sequence of events with
∑∞

n=1 P(An) <∞. Then we have

P

[
lim sup
n→∞

An

]
= 0.

I.e., if for a sequence V1, V2, . . . , of real-valued random variables and arbitrary ε > 0

∞∑
n=1

P [ |Vn| > ε ] <∞, (D.1)
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then

P

[
lim sup
n→∞

|Vn| > ε

]
= 0.

If D.1 even holds for all ε > 0, then one can conclude with probability one that Vn → 0

(n→∞).

Lemma D.3. (Hoeffding’s inequality, Hoeffding (1963)) Let a1, b1, . . . , an, bn ∈ R.

Assume that V1, . . . , Vn are independent real-valued random variables with Vi ∈ [ai, bi]

a.s. for all i = 1, . . . , n. Then, for all ε > 0,

P

[ ∣∣∣∣∣ 1n
n∑
i=1

(Vi −EVi)

∣∣∣∣∣ > ε

]
≤ 2 exp

(
− 2n2ε2∑n

i=1 |bi − ai|2

)
.

Lemma D.4. (Bernstein’s inequality, Bernstein (1946)) Let a, b ∈ R with a < b. Assume

that V1, . . . , Vn are independent real-valued random variables with Vi ∈ [a, b] a.s. for all

i = 1, . . . , n. Let

ς2 :=
1

n

n∑
i=1

Var(Vi) > 0.

Then it holds for all ε > 0 that

P

[ ∣∣∣∣∣ 1n
n∑
i=1

(Vi −EVi)

∣∣∣∣∣ > ε

]
≤ 2 exp

(
− 3nε2

6 ς2 + 2ε(b− a)

)
.
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Meier de la régression (in French). Afr. Statist. 1, 77-92.

[34] Grenander, U. (1981). Abstract inference. Wiley, New York.
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