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Zusammenfassung
Einleitung Das Interesse an Quanteninformationsverarbeitung entstand 1985 durch
den Vorschlag von D. Deutsch, dass ein Computer, der die Gesetzte der Quanten-
mechanik ausnutzt, Berechnungsprobleme deutlich effizienter lösen kann als ein klas-
sischer Computer [1]. Diese Idee wurden von anderen Wissenschaftlern weiter un-
tersucht, und in der Tat wurden solche Quanten-Algorithmen gefunden für aktuelle
Berechnungsprobleme wie die Primfaktorzerlegung oder Suchalgorithmen [2, 3]. Zusät-
zlich wurde von Feynman gezeigt, dass man einen Quantencomputer auch dazu be-
nutzen kann, andere Quantensysteme effizient zu simulieren [4], was mit einem klassis-
chen Computer nicht möglich ist. Ein weiteres interessantes, vielversprechendes Gebiet
der Quanteninformationsverarbeitung ist Quantenkryptographie [5], bei der fundamen-
tale Sicherheit auf Basis physikalischer Prinzipien gewährleistet wird. Dies ist möglich
durch die probabilistische Natur der Quantenmechanik, und die Tatsache, dass ein Quan-
tenzustand durch eine Messung beeinflusst wird. Die große Herausforderung der ex-
perimentellen Umsetzung von Quanteninformationsverarbeitung ist die Notwendigkeit,
ein hohes Maß an Kontrolle über miteinander wechselwirkende, physikalische Systeme
zu haben, die gleichzeitig möglichst keine Wechselwirkung mit ihrer unkontrollierten
Umgebung haben. Vielversprechende Systeme sind Photonen [6, 7], Atome in Fallen
[8], Kernspinresonanz [9], Supraleiter [10], Quantenpunkte [11], und Spin-Defekte in
Festkörpern [12], wie das in dieser Arbeit untersuchte Stickstoff-Fehlstellen-Zentrum in
Diamant [13, 14].
Das Stickstoff-Fehlstellen-Zentrum (NV, englisch für nitrogen-vacancy) in Diamant

kann man sich wie ein Atom bzw. Molekül vorstellen, das im Diamantkristall gefangen
ist. Durch seine hohe Fluoreszenz und seine optische Stabilität kann es beispielsweise als
Einzelphotonenquelle benutzt werden [15, 16], oder in Nanodiamanten als Fluoreszenz-
markierung für die Biologie [17, 18, 19]. In einem reinen Diamant stellt der Elektronen-
spin des negativ geladenen NV, NV−, ein ’quantenmechanisches Spielzeugsystem’ dar,
dessen Zustand gemessen und manipuliert werden kann um die quantenmechanische Dy-
namik einen einzelnen Systems zu beobachten. Die besonderen Eigenschaften von NV−
sind seine spinabhängige Photophysik, wodurch rein optische Initialisierung und Mes-
sung des Spinzustands möglich sind [20], kombiniert mit langen Spinkohärenzzeiten im
elektronischen Grundzustand [21, 22]. Zudem sind beim NV viele Experimente selbst
bei Raumtemperatur möglich, da wegen der hohen Debeye-Temperatur von Diamant
verhältnismäßig lange Spinlebenszeiten erreicht werden. Die Energie der Elektronen-
spinzustände ist abhängig von verschiedenen äußeren Parametern, sodass das NV als
Quantensensor mit Nanometer-Auflösung eingesetzt werden kann, z.B. für Magnetfelder
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Zusammenfassung

[23, 24, 25, 26, 27], externe Spins [28, 29, 30], elektrische Felder [31] und Temperatur
[32, 33, 34, 35]. In dieser Arbeit untersuchen wir die mögliche Anwendbarkeit von NV−
zur Quanteninformationsverarbeitung [13], wobei alle Experimente bei Raumtemperatur
durchgeführt werden.
Im speziellen konzentrieren wir uns darauf, Kernspins in der Nähe des NV als weitere

Quantenressource zu nutzen, um die Einsatzmöglichkeiten eines einzelnen NV zu er-
weitern. Durch die Ausnutzung von Kernspins ergibt sich ein natürtliches, heterogenes
Spinsystem. Der Vorteil eines solchen heterogenen Systems ist, dass die verschiedenen
guten Eigenschaften der Teilsysteme miteinander kombiniert werden können. Im Falle
eines Spinssystems aus Elektronen und Kernspins werden die Elektronenspins mit ihrer
verhältnismäßig starken Wechselwirkung zur Quantenkontrolle genutzt, und die Kern-
spins als langlebiger Informationsspeicher. Die kohärente Kontrolle von einzelnen 13C
Kernspins mit dem NV wurde erstmals in [36] demonstriert. Das Potential von Kernspins
als Quantenregister wurde weiter untersucht, indem die Speicherung von Informationen
auf Kernspins und deren Kohärenzeigenschaften analysiert wurden [37, 38, 39], und Ver-
schränkung von zwei 13C Kernspin demonstriert wurde [40]. Eine wichtige Grundlage
für diese Arbeit ist die nicht-destruktive Messung von Kernspins mit dem NV [41, 42].
Dadurch kann eine direkte Zustandsmessung des Kernspins auf Basis von wiederholten
Messung gemacht werden, d.h. das Messergebnis ist quantisiert mit den Eigenzuständen
des Systems, das sich nach der Messung im zum Messergebnis zugehörenden Eigenzus-
tand befinden (eine sogenannte projektive, "single-shot" Messung).

Aufbau dieser Arbeit In Kapitel 1 werden die physikalischen Grundlagen dieser Ar-
beit bezüglich Quanteninformationsverarbeitung, theoretische und praktische Aspekte
des NV, und die Dynamik von Spins zusammengefasst. In Kapitel 2 untersuchen wir
die Photoionisation des NV. Dort zeigen wir den Nachweis von NV0 über NMR, eine
Methode zur Ladungszustandmessung in Echtzeit, mit der die Dynamik des Ladungszu-
stands untersucht wird, und die Verbesserung der Elekronenspinpolarisation. In Kapitel
3 sind verschiedene Grundlagenexperimente auf Basis der direkten Zustandsmessung
des 14N Kernspin gezeigt. Dabei handelt es sich um die Verletzung einer zeitlichen
Bellschen Ungleichung, die Unterscheidung von nicht-orthogonalen Zuständen, und ein
Algorithmus zur Quantenphasenabschätzung für Magnetfeldmessung mit hohem Dy-
namikumfang. In Kapitel 4 wird ein Quantenregister aus dem Elektronenspin und drei
Kernspins vorgestellt. Gezeigt werden die Initialisierung und das Auslesen der Kern-
spins, die Implementierung von nicht-lokalen Kernspinoperationen mit optimaler Kon-
trolle und schließlich Quantenfehlerkorrektur. Zudem untersuchen wir die Nutzbarkeit
von sogenannten schwach gekoppelten Kernspins.

Ergebnisse dieser Arbeit Nach der Entwicklung der direkten Zustandsmessung des
14NKerspins [41] wurde entdeckt, dass Kernspinoperationen nur mit≈ 70 %Wahrschein-
lichkeit funktionieren. Der Grund für dieses Verhalten ist photoinduzierte Ionisation
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und Rekombination des NV, wie wir in dieser Arbeit herausgefunden haben. Dadurch
befindet sich das NV nach dem optischen Initialisieren und Auslesen in einem gemis-
chten Zustand von NV− und NV0, wobei maximal 75 % der Population in NV− ist.
Dabei kann nur der negative Ladungszustand NV− sinnvoll genutzt werden, da die
Spinkohärenzzeiten in NV0 zu kurz sind. Diese Ionisations- und Rekombinationsdy-
namik haben wir untersucht in Abhängigkeit der Wellenlänge und Leistung des anre-
genden Lasers. Dadurch wurde ein wichtiger Beitrag zum Verständnis des NV geliefert.
Mit der richtigen Wahl der Laserwellenlänge und Leistung haben wir eine neue Meth-
ode entwickelt, mit der der momentane Ladungszustand eines einzelnen NV direkt, zer-
störungsfrei gemessen wird, womit die Echtzeitdynamik des Ladungszustands beobachtet
werden kann. Mithilfe dieser Messmethode ist es uns gelungen, die Ionisierungsenergie
(2.6 eV) und Rekombinationsenergie (2.94 eV) von NV− zu bestimmen. Zudem kon-
nten wir mit dem neu gewonnen Wissen die optische Polarisation des Elektronenspins
von zuvor ≈ 91.8 % auf ≈ 97.2 % verbessern. Mit der neuen Methode zur Messung
des Ladungszustands kann man diesen auch initialisieren. Zusätzlich haben wir einen
weiter Ansatz entwickelt zur Nachselektion von Messergebnissen, die bei einem bes-
timmten Ladungszustand entstanden sind. Dabei wird effektiv der Ladungszustand auf
den 14N Kernspin übertragen, und kann wegen dessen langer Lebenszeit nach einem
experimentellen Durchlauf mittels direkter Zustandsmessung ausgelesen werden. Die
Kontrolle des Ladungszustand wird besonders für zukünftige skalierbare NV-Systeme
wichtig sein.
Auf Basis der direkten Zustandsmessung des 14N Kernspins kombiniert mit den neu

entwickelten Methoden zur Initialisierung des Ladungszustands haben wir mehrere fun-
damentale Grundlagenexperimente durchgeführt. So ist es gelungen, einen Algorithmus
zur Quantenphasenabschätzung mit quantenlimitierter Messgenauigkeit einzusetzen, um
Magnetfeldmessungen mit hohem Dynamikumfang zu realisieren. Im Vergleich zum
herkömmlichen Ansatz der Phasen- und Magnetfeldmessung kann man mit diesem Al-
gorithmus entweder die Messsensitivität bei gegebenem maximalen Magnetfeldbereich
erhöhen, oder den maximalen Magnetfeldbereich bei gleichbleibender Sensitivität ver-
größern. Diese Methode ist nicht beschränkt auf Magnetfeldmessungen, sondern kann
generell für die Messung von Energiedifferenzen zwischen den Zuständen eines quanten-
mechanischen Systems auf Basis der Lamorfrequenz angewandt werden.
Mit einer hohen Messgenauigkeit von Kernspin und Ladungszustand konnten wir die

Verletzung von zeitlichen Bellschen Ungleichungen demonstrieren. Zeitlichen Bellschen
Ungleichungen berechnen sich aus zeitlichen Korrelationen der Dynamik eines einzelnen
Systems, und durch Einführung der Realismus-Annahme. Diese besagt, dass der Zu-
stand eines Systems (im Sinne des Messresultats) jederzeit definierbar sein muss, d.h.
dass es immer möglich ist, dem Zustand eines Systems eines seiner Zustandsmessresul-
tate zuzuweisen. Die Realismus-Annahme impliziert, dass die Dynamik des Systems
deterministisch ist. Solche Ungleichungen werden von der Quantenmechanik verletzt,
und die experimentelle Implementierung zeigt, dass die Quantenmechanik in der der
Tat eine vollständige Theorie darstellt, die nicht-deterministisch ist. Diese Eigenschaft
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der Quantenmechanik ist besonders wichtig für die Quantenkryptographie.
Ein weiteres Experiment dieser Arbeit beschäftigt sich mit der experimentellen Un-

terscheidbarkeit von nicht-orthogonalen Zuständen. Nach den Regeln der Quanten-
mechanik ist diese Unterscheidung nicht perfekt möglich. Allerdings lassen sich solche
Messungen mithilfe einer verallgemeinerten Messtheorie (bei der die Messoperatoren
nicht orthogonal sein müssen) bezüglich unterschiedlicher Anforderungen optimieren.
Hier haben wir die Unterscheidung von nicht-orthogonalen Zuständen einerseits mit
der minimaler Fehlermessung und andererseits mit eindeutiger Zustandsbestimmung
durchgeführt und verglichen. Dabei wurden die drei Zustände des 14N Kernspins aus-
genutzt. Solche Messmethoden können für Quantenkryptographie und Quantentelepor-
tation ausgenutzt werden.
Eine wichtige Aufgabe zur praktischen Anwendung von Quanteninformationsverar-

beitung ist die Vergößerung des verfügbaren Quantenregisters. Dazu haben wir die
Methode zur direkten Zustandsmessung auf mehrere 13C Kernspins erweitert. Eine
Initialisierungswarscheinlichkeit des Kernspinregisters von 99 % wurde über eine Kom-
bination aus Polarisationsübertrag vom Elektronenspin und direkter Zustandsmessung
erreicht. Zudem wurde eine neue Operation entwickelt, um nicht-lokale Zustandsmanip-
ulationen zwischen Kernspins, die selbst keine direkte Wechselwirkung zeigen, über die
Hyperfeinwechselwirkung zu realisieren. Diese Operationen wurden mittels optimaler
Kontrollmethoden implementiert, womit die vergleichsweise schnelle Dekohärenz des
Elektronenspins teilweise vermieden werden kann. Dadurch wurde die Verschränkung
von drei Kernspins mit hoher Genauigkeit von > 85 % erreicht, die mit Zustandstomo-
graphie nachgewiesen wurde. In diesem Register wurden die Vorteile seiner heteroge-
nen Natur ausgenutzt, indem nur die Kernspins als Informationsspeicher genutzt wur-
den, während Kontrolle, Initialisierung und Auslesen über den Elektronenspin erfolgten.
Mit der hier erreichten Kontrolle konnten wir Quantenfehlerkorrektur realisieren, ein
wichtige Methode für skalierbare Quanteninformationsverarbeitung. Zudem haben wir
theoretisch untersucht, wie die durschnittliche Anzahl nutzbarer 13C Kernspins pro NV
von der Kontrollmethode der Kernspins und dem äußeren Magnetfeld abhängt. Durch
Ausnutzung sogenannter schwach gekoppelter Kernspins sollten an jedem NV mehrere
nutzbare Kernspins detektierbar sein. Eine Methode zur Detektion solcher Kernspins bei
hohem Magnetfeld wurde vorgestellt und für einen Kernspin erfolgreich experimentell
implementiert.
Die Ergebnisse dieser Arbeit wurden publiziert in [43, 44, 45, 46, 47, 48].

Fazit In dieser Arbeit wurden die potentiellen Anwendungsmöglichkeiten des NV für
Quanteninformationsverarbeitung untersucht, besonders in Hinblick auf die Ausnutzung
von umliegenden Kernspins. Ein wichtiger Aspekt hierbei ist die Verbesserung der Kon-
trolle über diese Kernspins. Die Grundlage dazu bildet das neu gewonnene Verständnis
über die Photoionisierung, auf deren Basis die Genauigkeit von Zustandsmanipulatio-
nen deutlich verbessert werden konnte. Anhand verschiedener Experimente zu zeitlichen
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Bellschen Ungleichungen, der Unterscheidung von nicht-orthogonalen Zuständen und
einem Algorithmus für Quantenphasenabschätzung konnte diese Kontrolle und Anwen-
dungsmöglichkeiten demonstriert werden. Zudem haben wir das verfügbare Quantenreg-
ister aus Kernspins vergrößert, wobei selektive, direkte Zustandsmessung aller Systeme
und universelle Quantenkontrolle gegeben war. Unter Ausnutzung des heterogenen Sys-
tems und dem Einsatz von optimalen Kontrollmethoden gelang die Verschränkung von
drei Kernspins und Quantenfehlerkorrektur mit hoher Genauigkeit.
In Zukunft kann dieses hier demonstrierte Quantenregister noch weiter ausgebaut

werden. Besonders durch die Ausnutzung von schwach gekoppelten Kernspins wird es
deutlich wahrscheinlicher, mehrere nutzbare Kernspins an einem einzelnen NV zu finden.
Allerdings ist auch diese Methode limitiert durch die Hyperfeinwechselwirkung, ein wirk-
lich skalierbares System mit einem NV und Kernspins ist nicht machbar. Dazu benötigt
man die Kopplung von einzelnen NVs, z.B. durch direkte Dipol-Dipol Wechselwirkung
[49] oder über Photonen [50], was mit den hier gezeigten Methoden zur Kernspinkontrolle
kombiniert werden kann. Aber auch das hier benutzte Register aus drei Kernspins kann
neue Grundlagenexperimente ermöglichen, z.B. die Demonstration von Quantensimula-
tionen oder von sogenannten schwachen Messungen und schwachen Werten [51, 52].
Die Experimente in dieser Arbeit wurden am Stickstoff-Fehlstellenzentrum in Dia-

mant durchgeführt, demonstrieren aber darüber hinaus das Potential von Spinsystemen
basierend auf Defektstellen in Festkörpern. Andere solche Defektstellen die bisher un-
tersucht wurden sind beispielsweise Phosphor in Silizium [12, 53, 54, 55], verschiedene
Defekte in Siliziumcarbid [56], oder Seltene Erden Ionen in Kristallen [57, 58]. Während
sich diese System in der Initialisierung und Auslesemethode des Elektronenspins vom
NV teilweise unterscheiden, sind die Mechanismen zur Elektronen- und Kernspinkon-
trolle über magnetische Wechselfelder und die Hyperfeinwechselwirkung die gleichen.
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Summary
Introduction Interest in quantum information processing arose since 1985, when D.
Deutsch proposed in [1] that by building a computer which exploits the laws of quantum
mechanics, computational problems could be solved much more efficiently than by using
a classical computer. This idea was picked up by other scientists, and indeed, this was
found the be the case for real-world computational problems like prime factorization or
search algorithms [2, 3]. Furthermore, it was pointed out by Feynman that quantum
computers could be used to efficiently simulate quantummechanical systems [4]. Another
promising application of QIP is quantum cryptography [5], as quantum mechanics allows
for transmission of information with fundamental, physical security. This is provided
by the probabilistic nature of quantum mechanics, and because a quantum state is
influenced by its measurement. The daunting challenge for the experimental realization
of quantum information processing is the requirement of achieving a high degree of
control over interacting, physical systems, which should at the same time have only very
weak interactions with their uncontrolled environment. Among systems like photons [6,
7], trapped atoms [8], nuclear magnetic resonance [9], superconductors [10] and quantum
dots [11], defects in solids [12] like the NV [13, 14] are promising candidates for QIP
[59].
The NV can be thought of as an atom / molecule trapped inside the diamond crystal.

It can be used as a single photon source due to its optical stability and high fluorescence
[15, 16]. NVs in nanodiamonds can also be used as fluorescence markers [17, 18, 19].
Within a clean enough diamond, the electronic spin of the negatively charged NV, NV−,
provides a single quantum mechanical toy model, whose state can be measured and
manipulated to observe quantum mechanical dynamics of a single quantum system. The
distinct feature of NV− is its spin dependent photo-physics, which allows purely optical
initialization and readout of the spin state [20], combined with long spin coherence times
in the electronic ground state [21, 22]. Furthermore, many experiments with the NV can
be carried out at room temperature, due to the high Debeye temperature of diamond,
which leads to relatively long spin lifetimes. The energy splitting of its electron spin
depends on many environmental parameters, such that the NV can be used as a quantum
sensor with nanometer resolution of magnetic fields [23, 24, 25, 26, 27] including external
spins [28, 29, 30], electric fields [31], and temperature [32, 33, 34, 35]. Here, we investigate
the potential applicability of NV− for QIP [13], while all experiments of this work were
performed at room temperatur.
Specifically, we focus on using nuclear spins surrounding the NV as quantum resources

to increase the versatility of a single NV. This results in a natural heterogeneous spin
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system. The advantage of such a system is that the desired features of the different sub-
system species can be combined. In the case of a spin system consisting of electron and
nuclear spins, the electron spin can be used for quantum control due to its comparatively
strong interaction, and the nuclear spins can be used as a long lived quantum memory.
Coherent control of a single 13C nuclear spin nearby an NV was first demonstrated in
[36]. The potential of using these nuclear spins as a quantum register was further in-
vestigated [37, 38, 39], analysing the storage and retrieval of information on 13C nuclear
spins and their coherence properties, and entanglement of two 13C nuclear spins was
achieved [40]. This thesis is strongly based on quantum non-demolition measurement of
nuclear spins with the NV, which enables projective, single shot readout [41, 42].

Thesis outline In chapter 1 the physical basics of this work regarding quantum in-
formation processing, theoretical and practical aspects of the NV and the dynamics of
spins are summarized. In chapter 2 we investigate the photo-ionization of the NV. There
we show the proof of NV0 via NMR, a method for real-time measurement of the charge
state, which is also applied to analyze the charge state dynamics, and the improvement
of the electron spin polarization. In chapter 3 several proof-of-principle experiments on
the basis of 14N single shot readout are shown. These are violation of a temporal Bell
inequality, distinguishing between non-orthogonal quantum states, and a quantum phase
estimation algorithm for high dynamic range magnetometry. In chapter 4 a quantum
register based on the NV electron spin and three nuclear spins is presented. We show
initialization and readout of the nuclear spins, implementation of non-local gates with
optimal control, and finally three-qubit entanglement and quantum error correction.
Additionally, we investigate the usability of so called weakly coupled nuclear spins.

Results of this work After the development of single shot readout of the 14N nuclear
spin associated with the NV [41], it was found that nuclear spin operations seem to be
only ≈ 70 % efficient. In this thesis, we investigated this behavior, and found that the
reason is photo-induced ionization and recombination of the NV, leaving it in a mixture
of NV− and NV0, with at most 75 % population in NV−. Thereby, only NV− can be used
for our experiments, as the spin coherence times in NV0 are too short. The ionization
and recombination dynamics was thoroughly investigated depending on illumination
wavelength and power, which yielded an important contribution to the understanding
of the NV. By properly choosing the excitation wavelength and power, a novel method
for non-destructive, single shot charge state detection is presented, which allows for
real-time observation of the charge state dynamics. The observed dynamics allowed
the determination of the NV− ionization (2.6 eV) and recombination energy (2.94 eV)
and thus its ground state energy relative to the diamond band gap. Furthermore, the
obtained understanding of this process allows us to improve the optical polarization of
the NV electron spin from previously ≈ 91.8 % to ≈ 97.2 %. This new method for non-
destructive, single shot charge state detection also allows for initialization of the charge
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state. In addition to this method, another approach for charge state post-selection was
developed, which is based on effectively mapping the charge state onto the 14N nuclear
spin, and final detection by nuclear single shot readout. In future applications of the
NV for QIP, charge state control will be crucial for a scalable system.
Nuclear single shot readout combined with these new methods for charge state initial-

ization and post-selection enabled several fundamental, proof-of-principle experiments.
We achieved implementation of a quantum phase estimation algorithm with quantum
limited accuracy, which allowed for magnetic field sensing with high dynamic range.
Compared to the standard approach, this new method can be used to increase the sensi-
tivity for a given maximum magnetic field range, or to increase the accessible magnetic
field range with constant sensitivity. This algorithm is not limited to magnetic field sens-
ing, but can be applied generally to the measurement of energy differences of a quantum
mechanical system via the Lamor frequency.
With high fidelity initialization and readout of nuclear spin and charge state we could

demonstrate violation of a temporal Bell inequality. Temporal Bell inequalities are
obtained by calculating temporal correlations of the dynamics of a single system, and by
imposing the realism assumption, which states that the state of a system (in the sense
of a measurement result) can always be defined. This implied that the dynamics of the
system are deterministic. This type of inequalities is violated by quantum mechanics,
and the experimental implementation shows that quantum mechanics can be considered
a complete theory which is non-deterministic. This behavior of quantum mechanics is
important e.g. for quantum cryptography.
A further experiment in this work is about experimental distinguishing between non-

orthogonal quantum states. According to quantum mechanics, this is not possible per-
fectly due to the partial overlap of the states. However, on the theoretical basis of gener-
alized measurements (with non-orthogonal measurement operators), such measurements
can be optimized with respect to different requirements. Here, we performed and com-
pared distinguishing between non-orthogonal quantum states on the one hand with the
minimum error measurement, and on the other hand with unambiguous state discrimi-
nation. This was achieved by utilizing the triplet character of the 14N nuclear spin.
An important task for practical application of quantum information processing is in-

creasing the size of the available quantum register. Therefore, we extended projective,
single-shot readout of the 14N nuclear spin onto several 13C nuclear spins with a single
NV. An initialization fidelity of 99 % of the nuclear register was reached by a combi-
nation of swap-gates with the electron spin and projective readout. Additionally, we
developed a new method for non-local operations between nuclear spins, which show no
direct interaction, via the hyperfine interaction with the electron spin. These operations
were implemented by optimal control, which allows for partially avoiding the fast deco-
herence of the electron spin. Thereby, we achieved high fidelity entanglement (> 85 %)
of three nuclear spins, which was observed by state tomography. In this register, the
advantages of its heterogeneous nature were exploited, by using only the nuclear spins
for information storage, and the electron spin was merely used for control, initialization
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Summary

and readout. With the achieved high degree of control, we were able to realize quan-
tum error correction, an important tool for scalable quantum information processing.
Furthermore, we analyzed theoretically the average number of usable 13C nuclear spins
per NV depending on the control method of nuclear spins and the external magnetic
field. By including so-called weakly coupled nuclear spins, several such spins should be
usable per NV. A method for detection of weakly coupled nuclear spins is presented and
implemented experimentally for one such nuclear spin.
The results of this thesis were published in [43, 44, 45, 46, 47, 48].

Conclusion In this work the potential application of the NV for quantum information
processing was investigated, especially regarding the use of surrounding nuclear spins.
An important aspect for this goal is improving the control of these nuclear spins. A fun-
damental result was the new understanding of the NV photo-ionization, which allowed to
improve the fidelity of gate operations considerably. With several experiments, namely
violation of a temporal Bell inequality, distinguishing between non-orthogonal quantum
states and implementation of a quantum phase estimation algorithm, this control and
the potential of the NV could be demonstrated. Furthermore, we increased the available
nuclear spin quantum register, with projective, single-shot readout of all qubits and uni-
versal quantum control (i.e. that any unitary operation can be realized). By exploiting
the advantages of the heterogeneous system and the application of optimal control we
achieved three-qubit entanglement and quantum error correction with high fidelity.
In the future, the quantum register demonstrated here could be further improved.

Especially by using weakly detected nuclear spins, it becomes likely to find more usable
nuclear spin at a single NV. However, the size of the register using this method is limited
by the range of the hyperfine interaction, such that a truly scalable system cannot be
realized with a single NV and nuclear spins. Such a scalable system can be achieved
by coupling of NV centers, e.g. via direct dipole-dipole interaction [49] or via photons
[50], which can be combined with the control methods for nuclear spins demonstrated
in this work. But even the register presented here can be used for new proof-of-principle
experiments, e.g. demonstration of quantum simulations and of weak measurements and
weak values [51, 52].
The experiments presented in this work were performed with the nitrogen-vacancy

defect, however, they also demonstrate the potential of spin based solid state defects in
general. Other such defect centers which were investigated so far are phosphorus in silica
[12, 53, 54, 55], various defects in silicon carbide [56], and rare-earth ions in solid [57, 58].
While these systems partially differ in electron spin initialization and readout methods,
the mechanisms for electron and nuclear spin control via time dependent magnetic fields
and the hyperfine interaction are the same.
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1. Introduction to physical basics
In this chapter, the current state of knowledge which is necessary for the motivation
and understanding of the work presented in this thesis is reviewed. We will start with a
short introduction to quantum information processing (section 1.1), which motivates this
work on the Nitrogen-Vacancy defect (NV). The NV is introduced in section 1.2, which
gives an overview over the physical properties of the NV, its level structure, the spin
Hamiltonian, and the experimental setup. Furthermore, we will focus on the interaction
of the NV with surrounding nuclear spins, which can greatly increase the versatility
of single NVs for QIP. Finally, the dynamics and manipulation of spin states by time-
dependent magnetic fields is discussed in section 1.3.

1.1. Quantum information processing
Quantum information processing (QIP) describes the processing of information (com-
putation, communication), by exploiting the laws of quantum mechanics. Most of the
contents of this introduction to QIP can be found in the book by Nielsen and Chuang
[60]. QIP can offer unique advantages over classical computation and communication.
For solving a computational problem, an important question is how much resources are
needed to solve the problem. Here, two so-called complexity classes are important for
our considerations: The P complexity class, which refers to problems that can be solved
efficiently on a classical computer, where ’efficiently’ usually indicates that the number
of computational steps scales polynomially with the size of the problem. The NP class
is defined by computational problems, for which a possible solution can be efficiently
checked on a classical computer. Much interest arose in QIP when quantum algorithms
were proposed, which offer unique computational advantages compared to classical al-
gorithms, and can even solve certain classical NP problems efficiently. One of the first
quantum algorithms proposed was the Deutsch algorithm [1], which also beautifully il-
lustrates how quantum mechanical features lead to improved computation. One the
hand, the superposition principle (i.e. coherences for a single qubit or entanglement of
multiple qubits) leads to quantum parallelism, where a single operation is applied to sev-
eral input parameters (quantum states) at the same time. However, this is not directly
useful, as a final measurement will project the system into one of its states, removing
all superposition. In addition to this quantum parallelism, exploiting interference of the
states can be used to extract general information of different possible results at once. In
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1. Introduction to physical basics

the case of the Deutsch algorithm, this allows to determine if a function has the property
f(0) = f(1) by a single application of the function f . While this algorithm is of little
practical use, the are other quantum algorithms like the quantum Fourier transform or
quantum search that can be applied to real-world problems, providing substantial ad-
vantages in computational effort compared to their classical implementations.
Another interesting application is quantum simulation, which cannot be implemented

efficiently on a classical computer. The reason is that in order to describe a quantum
mechanical system, not only the states of the individual sub-systems are needed, but
also possible coherences and entanglement between these systems. The classical mem-
ory required to describe a quantum state increases exponentially with the size of the
quantum systems. On the other hand, simulation of a quantum mechanical system on
a quantum computer can be done efficiently, thus being an important application for
other fields of physics or chemistry.
Apart from quantum computation, communication based on quantum mechanics also

offers unique benefits over classical communication. The most important application
in this field is probably quantum cryptography [5], which is also believed to be the
potentially first application of QIP. The basic principle of quantum cryptography is
that eavesdropping is theoretically impossible, as quantum measurements will perturb
(project) the system, and quantum states cannot be cloned. Therefore, if information
is sent from some point A to another point B, any measurements in between can be
revealed. One exclusion of this principle are measurements that are performed in the
same basis as the information is stored, such that the projection of the state does not ac-
tually perturb it. To avoid this possibility of eavesdropping, the quantum states have to
be sent either with random basis, or by using non-orthogonal states for the transmission.

1.1.1. Physical implementation
As we have seen, QIP has potential, powerful applications. However, physical imple-
mentation of quantum computation is very challenging. The necessary requirements for
a quantum computer were first introduced by DiVincenzo [61], which were re-formulated
in [59]:

1. ”A scalable physical system with well characterized qubits.” This requirement
leads to the possibility of increasing the Hilbert space of the system exponentially,
with the theoretical linear effort of adding qubits to the system. In a physical
system, the effort to add a qubit usually scales with the size of the system. This
lead to the re-formulation of this requirement for a scalable system [59], that the
effort (time, space, energy etc.) of adding a qubit must scale less than exponential.

2. ”The ability to initialize the state of the qubits to a simple fiducial state, such as
|000...〉.” It is important to note here that this initialization of qubits must not
only be performed at the start of the computation, but also while the computation
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is running. This is necessary for scalable QIP, in order to perform quantum error
correction and remove the entropy generated by errors from the system.

3. ”Long relevant decoherence times, much longer than the gate operation time.” This
is important for high-fidelity implementation of quantum gates. The figure of merit
for the fidelity is given by the threshold theorem for quantum error correction (see
below), and depends on the architecture of the quantum computer [62].

4. ”A ’universal’ set of quantum gates.” In a newer formulation [59], this requirement
is termed ”Universal logic”, meaning that the whole Hilbert space must somehow
be accessible, without exponential increase in effort. A common example is the
combination of arbitrary rotation gates on single qubits, and one two-qubit gate,
e.g. a CNOT gate. Other approaches are adiabatic quantum computation [63],
or measurement based quantum computation which requires preparation of the
system in so-called cluster states [64].

5. ”A qubit-specific measurement capability.” After a quantum computation, it is
necessary to read out the final, resulting state. This measurement most not nec-
essarily be projective with fidelities approaching 100 %, however, these strong
measurements can be helpful for initialization and error correction.

Note that in the explanation of these requirement by DiVincenzo, the importance for
quantum error correction is emphasized. Indeed, in a newer formulation [59], quantum
error correction is even termed a requirement on its own, replacing some of DiVincenzo’s
criteria.
Each of these requirements, on its own, is not impossible with nowadays technology.

What makes scalable QIP such a daunting challenge is their combination, as they partly
contradict each other. On the one hand, the required long coherence times means that
the systems must be very well-isolated from their (uncontrolled) environment. On the
other hand, the high amount of control necessary for fast, universal gates, initialization
and readout requires strong enough interactions with some sort of control apparatus.
So far, there are several physical systems which are possible candidates for QIP [59],

like photons, trapped atoms, nuclear magnetic resonance (NMR), superconducting quan-
tum interference device (SQUIDS) and quantum dots / defects in solids. In this thesis,
we investigate a defect in solid, namely the nitrogen-vacancy centre (NV) in diamond.

1.1.2. Quantum error correction
An import concept for scalable QIP is quantum error correction (QEC), as it presents
a method to overcome the inevitable decoherence of quantum systems. A mile-stone
theoretical work is fault tolerant quantum computation [65, 66, 67, 68] on the basis
of concatenated QEC, yielding the threshold theorem [69, 70]. The threshold theorem
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states that the error of any quantum algorithm can be made arbitrarily small, if concate-
nated QEC is applied and the probability of a single error is below a certain threshold
(which depends on the actual physical architecture of the quantum computer). Error
correction is well known for classical computation. There, information can be stored
via redundancy, such that the relevant information can be restored if parts of the full
information are corrupted. Consider the storage (encoding) of one bit of information
{0, 1} onto three bits {000, 111}. If one bit of the encoded information is changed, the
original one bit of relevant information can be restored by majority vote.
For quantum information, there are a few obstacles to this approach, however, which

are all solvable:

1. The no-cloning theorem. It is impossible to copy a quantum state. Still, we can
create an encoded, entangled state of multiple qubits, such that all qubits will be
found in the same state as the original single qubit. Note that the coherences of
the original qubit, however, are then not stored on each qubit individually, but
only once in the multi-qubit entanglement. Nevertheless, we will see that this is
enough to employ a majority-vote principle.

2. Quantum state errors are continuous; measurements destroy quantum coherences.
Here the latter actually cancels out the former. On the one hand, the state of
a qubit is an analogue state offering infinite error possibilities, which seems to
require infinite precision for correction. Furthermore, measurements destroy the
coherence information by projecting the system onto a state corresponding to the
measurement result. However, this is only the case if we measure the actual in-
formation carried by the system, and can be used to our advantage. By designing
the measurement such that it probes whether an error occurred, only coherences
between the error-free states and the erroneous states are destroyed by projecting
the system onto one of these two cases, whereas the coherences carrying the quan-
tum information are not affected. Due to this projection, we are left with the two
possibilities of having an error or not having an error, and the continuous aspect
of the error is removed.

3. There are two types of errors for quantum information: bit flip and phase flip
error. As the name suggests, bit flip errors are defined by the operation |0〉 ↔ |1〉,
whereas phase flip errors are α |0〉 + β |1〉 ↔ α |0〉 − β |1〉, which is equivalent to
|x+〉 ↔ |x−〉, |y+〉 ↔ |y−〉 (where |x±〉 = (|0〉 ± |1〉)/

√
2, |y±〉 = (|0〉 ± i |1〉)/

√
2).

Written in the latter form, phase flip errors have the same effect as bit flips, just in
a different basis. Changing the basis the information is stored in can be done by
only local π/2 rotations. Thus, bit flip and phase flip correction is implemented in
effectively the same way, only differing by these local π/2 rotations. Nevertheless,
the possibility of two types of errors means that more storage qubits are needed for
full QEC. In experimental implementations, however, the rate of phase flip errors
is usually much larger than the rate of bit flip errors. In our case, where the qubit
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is defined by two orientations of a spin, these two errors types have a different
physical origin. The bit flip errors correspond to T1 decay, which is caused by
energy exchange with the environment (relaxation). Phase flip errors are induced
by the energy splitting of the two levels, which depends on the environmental
state, yielding an uncontrollable phase accumulation due to changes of the Lamor
frequency.

Here, we will illustrate the basic mechanism for three qubit phase flip error correc-
tion. The first step is to encode the information |ψ〉 = α |0〉 + β |1〉 into two logical
states of the three qubits as α |000〉 + β |111〉, and then change the basis where this
information is stored to e.g. α |x+x+x+〉 + β |x−x−x−〉 by a (π/2)y-rotation (we could
also store in the y-basis). Note that this state is not affected by |y+〉 ↔ |y−〉 er-
rors. The encoding can also be written in terms of the logical qubit states |0L〉, |1L〉
as |0〉 → |0L〉 = |x+x+x+〉, |1〉 → |1L〉 = |x−x−x−〉. After a possible phase flip error
|x+〉 ↔ |x−〉, the basis is changed back to the eigenbasis by a (−π/2)y-rotation, such
that these errors effectively appear as bit flip errors. For example, for an error on the
first qubit α |x−x+x+〉+β |x+x−x−〉 → α |100〉+β |011〉. As mentioned above, the errors
are continuous, i.e. the system will generally be in a mixture of having no error, having
an error on each qubit and having multiple errors. This entropy can be removed by
so-called syndrome measurements. We can detect possible errors by measuring if the
system is in the Hilbert-subspace corresponding to a certain error. Ideally, this mea-
surement will project the state onto either the subspace corresponding to the error, or
on the remaining part of the Hilbert space, without destroying the coherences within
these subspaces. E.g. if the system is found in subspace {|100〉 , |011〉}, we assume that
a single error occurred on qubit 1, and can thus correct this error by flipping qubit 1. In
the same way, errors on the other qubits can be detected and corrected. Of course, we
could also find the system in subspace {|100〉 , |011〉} if two errors on the other qubits
occurred, which means that these multiple errors inevitably destroy the information.
If the probability p of an error is the same for each qubit, then a lower bound on the
probability of successful error correction is 1− 3p2 + 2p3.
In a physical implementation of the syndrome measurement, coherences within the

subspaces might not be preserved, due to the strong influence of the measurement onto
the system. This measurement can also be replaced by using an ancillary qubit. For
this approach, the syndrome is mapped onto the ancillary qubit by a flip of this qubit
conditional of the system being in a subspace corresponding to a certain error. Then,
the possible error is corrected by a flip of the system conditional on the state of the ancil-
lary qubit. Thus, the entropy generated by the error in the system is transferred to the
ancillary qubit. After each correction step, the state of this qubit has to be re-initialized
to remove this entropy. A third approach, which we experimentally implement in this
work, does not even need an ancillary qubit [71]. The scheme corrects possible errors
for only a single qubit of the system, transferring any error onto the other qubits, see
section 4.5 for details. To remove the entropy, these other qubits then have to be reset.
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1.2. The Nitrogen-Vacancy defect in diamond

Figure 1.1.: Physical structure of the NV. Blue arrow: Illustration of the electron spin, which is
located close to the vacancy in the NV− ground state. Orange arrow: Illustration of the nitrogen
nuclear spin.

1.2. The Nitrogen-Vacancy defect in diamond
All the experiments presented in this thesis are based on the Nitrogen-Vacancy defect
(NV) in diamond. The NV is a point defect consisting of a substitutional nitrogen
atom and an adjacent lattice carbon vacancy, as illustrated in fig. 1.1. It can occur
naturally in diamond, or for instance can be created by nitrogen implantation, electron
irradiation and annealing [72, 20, 73, 74]. The diamond host is either natural diamond,
or can be produced artificially by high pressure high temperature (HPTP) or chemical
vapour deposition (CVD) [75]. In this section, the basic properties of the NV at room
temperature are introduced, with focus on its negative charge state NV−. We will discuss
its electronic structure, leading to the optical spin polarization and readout. The basic
experimental setup which was used for this work is presented. We will specifically focus
on nuclear spins which are hyperfine coupled to the NV, in order to understand the
necessary requirements for nuclear spin single shot readout.

1.2.1. Electronic structure and photophysics
Several studies have investigated the electronic structure of the NV, yet detailed un-
derstanding of all energy levels and transitions has to be obtained by future work. We
will focus on established knowledge based on a recent review by M. Doherty [14], with
effective descriptions relevant for this work. Depending on the local Fermi level, both
the neutral charge state NV0 and the negative charge state NV− can be stable [76].
The electronic structure of the NV is formed by the three dangling bonds of the carbon
atoms neighbouring the vacancy, two electrons from the nitrogen atom, and one addi-
tional electron for the negative charge state. These electrons fill the orbitals a1(1), a1(2),
ex,y, with energy ordering a1(1) < a1(2) < ex,y [77, 78]. Here, we will only consider the

27



1. Introduction to physical basics

energy

GS
3A2

ES
3E

MS
1E

|0〉

|±1〉

|0〉
|±1〉

NV
-

1.
94
5	
eV

GS
2E

ES
2A

MS
4A2

NV
0

2.
15
6	
eV

a b

Figure 1.2.: Effective energy level scheme of NV− and NV0. GS: ground state, ES: excited
state, MS: metastable state. Red lines indicate radiative decay, grey dotted lines non-radiative
decay (the width of the grey lines indicates relative decay rate). a, NV−. b, NV0.

a1(2) and ex,y orbitals, as the a1(1) is filled for all relevant states.

NV− For the six electrons of NV−, fig. 1.2a shows the energy level scheme of the
3A2 ground state triplet with configuration a2e2, the 1E metastable singlet state (also
a2e2), and the 3E excited state triplet (a1e3). The zero-phonon line of the 3A2 ground
state to 3E excited state is 1.945 eV. Fig. 1.2a also shows the possible decay channels.
In bulk diamond, the excited state lifetimes are ≈ 12 ns for the mS = 0 spin state,
and ≈ 7.8 ns for mS = ±1 [79]. This difference is an important feature of NV−, and
is due to spin-state dependant inter-system crossing. From the excited state, there are
two decay channels: The radiative decay back into the ground state, and non-radiative
decay into the metastable singlet state by phonon assisted inter-system crossing. The
former transition 3A2 ↔3 E is spin conserving. The latter non-radiative decay is spin
state dependant, such that the decay rate is higher for the mS = ±1 states compared to
mS = 0. In addition to this, the non-radiative decay rate from the metastable state is
higher into themS = 0 state than into themS = ±1 state. The lifetime of the metastable
state is ≈ 250 ns [80]. These two effects lead to optical spin polarization and readout.
On the one hand, the fluorescence of the mS = ±1 states is reduced due to trapping
in the metastable state. On the other hand, the preferential inter-system crossing for
mS = ±1 and the preferential decay from the singlet state into the mS = 0 ground state
results in optical polarization into mS = 0 by illumination.
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NV0 Fig. 1.2b shows the energy level scheme of NV0, with the doublet ground state
2E (a2e1), doublet excited state 2A (a1e2) and quartet metastable state 4A2 (a1e2).
The zero-phonon line is 2.156 eV. Much less is known about the photophysics of NV0

compared to NV−, however, it also seems to exhibit spin state dependant inter-system
crossing [81].

1.2.2. Experimental setup
The experimental setup is illustrated in fig. 1.3. The laser (mostly a 532 nm, 300 mW
diode-pumped solid state laser, or other lasers as indicated in the experiments) is sent
through an acousto-optical modulator (AOM) for pulse generation with length > 10 ns.
Other laser sources can be combined via a beam splitter before the photonic crystal
fiber (PCF). The detection of single NV’s is realized via a confocal microscope. The
excitation laser hits a beam splitter (BS) and is reflected into a microscope objective,
which focuses the light onto a diffraction limited spot inside the diamond. The objective
is mounted to a piezo scanner for position control. If an NV is in this spot, it will
be excited and emit fluorescence, which is partly collected by the objective. Then, the
fluorescence passes the beam splitter and is filtered by a long pass filter to block the
excitation laser. For lateral resolution, the fluorescence light is focused onto a pinhole.
If the origin of the fluorescence is not within the focal plane of the objective, it will
also not be focused onto the pinhole and is therefore blocked. Finally, the fluorescence
photons are detected via avalanche photo diodes (APD). A confocal scan of a diamond
showing single NVs is shown in fig. 1.3b, and a g2(τ) correlation function in fig. 1.3c.
The mw and rf signals are applied via a micro coplanar waveguide structure created by
photo-lithography either on a glass cover-slide or directly on the diamond.
As mentioned in section 1.2.1, the fluorescence of the NV depends on its electronic spin
state. Fig. 1.3d shows the average NV fluorescence for the initial states mS = 0 and
mS = ±1. The difference of these two curves is the effective readout signal, which decays
over time due to the polarization of the NV under illumination. A typical measurement
sequence with the NV electron spin is illustrated in fig. 1.3e. After the first laser pulse,
the electron spin is initialized into mS = 0. Then, a control sequence is applied, typi-
cally consisting of mw signals for electron spin manipulation [21]. E.g. for measuring the
electron spin resonance spectrum, the mw frequency is varied, and for Rabi oscillations,
the mw pulse duration is varied while being in resonance to an electron spin transition.
Finally, a second laser pulse reads out and re-initializes the electron spin. The readout
signal is obtained by summation of all photons detected within the first ≈ 300 ns of the
laser pulse. For bulk diamond and using an oil immersion objective, up to on average 0.1
photons per laser pulse can be detected. Fig. 1.3f shows an optically detected magnetic
resonance (ODMR) spectrum within a small magnetic field (≈ 2 Gauss) oriented parallel
to the NV axis, revealing the two electron spin transitions mS = 0↔ ±1 with hyperfine
(hf) splitting to the three 14N nuclear spin states. Optically detected Rabi oscillations
of the electron spin are shown in fig. 1.3g.
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Figure 1.3.: Experimental setup and measurement techniques. a, Experimental setup, see
text for description. b, Confocal scan image of natural bulk diamond. c, g2(τ) correlation function
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mS states. e, Basic measurement sequence. f, ODMR spectrum. g, Rabi oscillation of the electron
spin.
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1.2. The Nitrogen-Vacancy defect in diamond

1.2.3. Spin Hamiltonian: Electron and nuclear spins
The Hamiltonian of the NV− electron spin coupled to nuclear spins is given by the sum
of the electron spin Hamiltonian Ĥe, the nuclear spin Hamiltonian Ĥn and the hyperfine
Hamiltonian Ĥhf

Ĥ = Ĥe + Ĥn + Ĥhf . (1.1)
Because the electron spin is formed by two unpaired electrons, there is a zero-field
splitting due to spin-spin interaction ŜDŜ, where Ŝ is the spin operator and D the
interaction tensor. With the z-direction oriented along the NV axis, this interaction can
be expressed as

ĤZF = DŜ2
z + E(Ŝ2

x + Ŝ2
y), (1.2)

with the zero-field splitting D = 2.87 GHz in the ground state, and E results from
deviations of the rotational symmetry, e.g. for strain or external electric fields. For the
samples used in this work, E is small and can be ignored for these experiments. In
addition to this, an external magnetic field B leads to a Zeeman splitting

ĤZ = −γeŜ ·B, (1.3)

with the gyromagnetic ratio γe = 28.03 GHz/T of the electron spin.
For the 14N nuclear spin I = 1, there will also be a zero-field splitting

ĤnZF = QÎ2
z , (1.4)

with Q = −4.945 MHz for the ground state. All nuclear spins show a Zeeman splitting

ĤnZ = γnÎ ·B, (1.5)

where the gyromagnetic ratio γn depends on the type of nucleus: For 14N γn = 3.0766
MHz/T, for 15N γn = −4.3156 MHz/T, and for 13C γn = 10.705 MHz/T.
The hyperfine interaction originates from two terms, the isotropic Fermi contact in-

teraction
ĤF = aisoŜ · Î , (1.6)

with interaction strength aiso depending on the electron spin density at the location of
the nucleus, and the anisotropic dipole-dipole interaction (given here for point dipole
approximation)

Ĥdd = µ0

4πγeγnh
Ŝ · Î − 3

(
Ŝ · er

) (
Î · er

)
r3 , (1.7)

where µ0 is the vacuum permeability, r the distance between electron and nuclear spin
and er the unit vector connecting the two spins. The combined hyperfine interaction
can be written as

Ĥhf = ŜAÎ , (1.8)
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1. Introduction to physical basics

with hyperfine tensor A.
The total Hamiltonian of the NV with a 14N nuclear spin is given by

Ĥ = DŜ2
z + E(Ŝ2

x + Ŝ2
y)− γeŜ ·B +QÎ2

z + γnÎ ·B + ŜAÎ . (1.9)

1.2.4. Single shot readout of nuclear spins
As we have seen in section 1.2.2, the optical readout of the electron spin also destroys its
state due to polarization. The detected signal is the relative fluorescence rate, which only
yields qualitative information on the electron spin state. Here, we will discuss optical
single shot readout of nuclear spins [82, 41, 42], and the influence of the electronic
dynamics during readout onto the nuclear spin.
Readout of nuclear spins is achieved by correlating the electron spin state with the

nuclear spin, and optical readout of the electron spin [36]. For strongly coupled nuclear
spins, where the hyperfine splitting is larger than the linewidth of the electron spin
transition, this correlation is created by a frequency selective electron spin π pulse. This
pulse flips the state of the electron spin conditional on the nuclear spin state, which
is a CnNOTe gate. The quantum logic readout sequence is shown in fig. 1.4c. It is
important to note that for the readout laser pulse, the number of detected photons is
either according to the distribution formS = 0 (bright distribution) or formS = ±1 (dark
distribution), and the wavefunction of the nuclear spin collapses onto the corresponding
eigenstate. The average number of detected photons 〈n〉 per readout pulse is up to
〈n〉 ≈ 0.1 for mS = 0 and 〈n〉 ≈ 0.07 for mS = ±1, with a standard deviation σ =

√
〈n〉

according to the Poisson distribution. This means that there is a large overlap of the
two distributions, such that state determination after one readout pulse is not possible.
While the electron spin state is destroyed during readout, we will see below that for
an appropriate external magnetic field and position of the nucleus relative to the NV
the nuclear spin eigenstates can be robust against the optical readout of the electron
spin. In this case, the nuclear spin state survives the readout process, and stays in its
initial state, while the electron spin is re-initialized into mS = 0. Therefore, another
application of the nuclear readout sequence will yield a number of detected photons
with the same statistical distribution (bright or dark) as for the first readout step. By
applying repetitive readout of the nuclear spin, the random numbers of detected photons
with always the same distribution are summed up. Consequently, the relative standard
deviation σ/ 〈n〉 is reduced, such that eventually the dark and bright distributions are
well separated and single shot state determination is possible.
Fig. 1.4a shows a fluorescence time trace of the NV during repetitive readout of the 14N
nuclear spin within a magnetic field of ≈ 0.62 T. There, low fluorescence corresponds
to the mI = +1 nuclear spin state, and high fluorescence to mI = 0,−1. As we can
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time trace. The red lines are Gaussian fits. c, Measurement sequence for nuclear spin readout. d,
Measurement sequence for nuclear spin operations with single shot readout. e, Rabi oscillation of
the 14N nuclear spin measured by single shot readout.
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see, the lifetime of the nuclear spin states is much longer than the time needed for
state determination, which enables single shot readout. Fig. 1.4b shows a histogram of
measurement results for this time trace. The two peaks correspond to the two nuclear
spin states mI = +1 and mI 6= +1 (i.e. mI = 0,−1). Placing a threshold between
these two peaks allows for state determination of a single measurement point in the
time trace, by checking whether the number of photons is below or above this threshold.
Due to the overlap of the two distributions, the readout fidelity F will be limited, here
it is F = 0.958. This projective, single shot readout is also used for initialization of the
nuclear spin. Thereby, the initialization fidelity can be increased by shifting the threshold
to lower photon count numbers. This will remove results which are likely wrong (cf. fig.
1.4b), at the expense of successful initialization events. A typical measurement sequence
for Rabi oscillation of the nuclear spin is shown in fig. 1.4d. Two consecutive single shot
measurements are correlated by taking the average result of the second measurement, if
the first measurement yielded e.g. state mI = +1. Thereby, the effect of the rf pulse in
between these two measurements is obtained. Fig. 1.4d shows the spin flip probability
of the 14N nuclear spin during resonant rf irradiation measured by single shot readout.
The lifetime of nuclear spins during optical readout is limited by interactions with the

electron spin. The hyperfine interaction can be split into two parts, which lead to two
different flipping mechanisms of the nuclear spin. The first part are Axx and Ayy terms
of the hyperfine tensor in (1.8), which leads to S+I+, S+I−, S−I+, S−I− terms in the
Hamiltonian. These lead to mixing of electron and nuclear spin states, i.e. if we consider
the mS = 0,−1 electron spin states and a nuclear spin 1/2 with states mI = −,+, the
eigenstates can be written as αi |mS = 0,mI = ±〉+βi |mS = −1,mI = ±〉, with different
prefactors αi, βi for each eigenstate. After each readout laser pulse, the electron spin is
polarized into mS = 0, which is not an eigenstate due to the mixing. Thus, the electron
and nuclear spin states will coherently evolve, effectively destroying the nuclear spin
state. The flipping rate r1 due to this mechanism scales inversely quadratically with the
electron Zeeman splitting γeB [41, 42],

r1 ∝ ≈
2A2
⊥

2A2
⊥ + (Di − γeB)2 , (1.10)

where A⊥ = (Axx+Ayy)/2, Di the electron zero-field splitting for ground state or excited
state, and B the magnetic field aligned along the NV axis. The second part are the Azx
and Azy terms of the hyperfine tensor. These terms lead to nuclear spin eigenstates
which depend on the electron spin state. Thus, whenever the electron spin flips, the
nuclear spin will start to evolve in the new eigenbasis, effectively destroying its state.
The flipping rate r2 due to this mechanism will scale inversely quadratically with the
nuclear Zeeman splitting γnB [42],

r2 ∝ ≈
A2
zx + A2

zy

A2
zx + A2

zy + (Azz − γnB)2 . (1.11)
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1.2. The Nitrogen-Vacancy defect in diamond

Usually, the flipping rate r2 will be the dominant one, as it scales with the nuclear
Zeeman splitting, contrary to r1 which scales with the much larger electron Zeeman
splitting. However, the Azx and Azy terms are highly position dependent. Specifically,
these terms are zero for nuclear spin positions on the axis of the NV and for positions on
the equatorial plane of the electron spin. Thus, for the 14N nuclear spin, the dominant
flipping mechanism is spin state mixing [41].
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1.3. Spin dynamics
The spin is an intrinsic angular momentum of a particle, which results from relativistic
quantum mechanics [84]. Associated with the spin is a magnetic moment

µ = gS
q

2mS, (1.12)

where S is the particle’s spin, q its charge, m its mass, and gS the so called spin g-factor.
Due to this magnetic moment, the spin states interact with magnetic fields, see section
1.2.3. Besides the energy splitting within a static magnetic field, time-dependant fields
perpendicular to the spin orientation lead to spin rotations. For a spin oriented in z
direction and an oscillating field Bxcos(ωt) in x direction the Hamiltonian reads

Ĥ = −γeBzŜz − γeBxcos(ωt)Ŝx. (1.13)

By setting the Lamor frequency ωL = −γeBz, the detuning ∆ = ωL − ω and the Rabi
frequency ΩR = −γeBx, we rewrite the Hamiltonian as

Ĥ = ωŜz︸︷︷︸
Ĥ0

+ ∆Ŝz + ΩR

2 (eiωt + e−iωt)Ŝx︸ ︷︷ ︸
Ĥ1

, (1.14)

where we used cos(ωt) = eiωt + e−iωt. This is transformed from the Schrödinger pic-
ture |ψS〉 into the interaction picture |ψI〉 by |ψS〉 = Û |ψI〉 with Û = exp(iωŜz). The
effective Hamiltonian in the interaction picture is Ŵ = Û †Ĥ1Û , which yields in matrix
representation

Ŵ = 1
2

(
∆ ΩR
ΩR −∆

)
+ 1

2

(
0 ΩRe2iωt

ΩRe−2iωt 0

)
, (1.15)

where the last term is neglected in the rotating wave approximation. In the resonant
case, ∆ = 0, the Hamiltonian Ŵ (1.15) leads to rotations between the two spin states
around the x-axis on the Bloch sphere with frequency ΩR. This mechanism is used for
the implementation of quantum gates, e.g. a NOT gate corresponds to a π rotation, and
a Hadamard gate to a π/2 rotation. Note that these rotations will also induce additional,
yet insignificant phase factors compared to the ideal gate operation. The rotation axis
can also be changed by adjusting the phase φ of the field Bxcos(ωt + φ), leading to a
rotation around the axis (x, y, z) = (cos(φ), sin(φ), 0). In this work, the total rotation
is denoted by θφ, where θ is the rotation angle and φ the rotation axis. In the case of
off-resonant driving, ∆ 6= 0, the rotation axis becomes (x, y, z) = (ΩR, 0,∆), and the
effective Rabi frequency Ω ′R =

√
Ω2

R + ∆2.
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1.3. Spin dynamics

1.3.1. Spin decoherence

The destructive effect of the environment onto a quantum state can be split into the
two parts, longitudinal relaxation and transversal relaxation [85]. The longitudinal re-
laxation refers the relaxation of the state populations (i.e. the diagonal elements of the
density operator) into an equilibrium state, which is accompanied by energy exchange
with the environment. It can be measured by initialization of the system and observa-
tion of the subsequent decay, and the timescale of the decay is denoted as the T1 time.
For NV− in bulk diamond at room temperature, the T1 of the electron spin is typically
several ms.
Transversal relaxation, which leads to dephasing, refers to relaxation of coherences

(i.e. off-diagonal elements of the density operator) towards zero. It is generated by
interactions with the environment which either influence the energy levels of the system
or create entanglement. We distinguish between inhomogeneous dephasing and homo-
geneous dephasing. Inhomogeneous dephasing is caused by quasi-static changes of the
energy levels, which differ for separate experimental runs, but are static during one
experimental run. Note that here, we consider the signal of a single system averaged
over time / many experimental runs, i.e. a so called temporal ensemble. This leads to
inhomogeneous line broadening in the resonance spectrum, cf. fig. 1.3d. This dephasing
can be measured by a free induction decay, also called Ramsey interferometry, and is
referred to as the T ∗2 time. The measurement sequence is shown in fig. 1.5a. An initial
π/2 pulse creates coherences, which then evolve during the free evolution time. In the
rotating frame of the control field, the evolution frequency is the detuning. The second
π/2 pulse maps the accumulated phase onto state population for readout. An example
experiment is shown in fig. 1.5b. Here, the electron spin is hyperfine coupled to the 14N
nuclear spin (spin I = 1, coupling strength 2.165 MHz) and an additional 13C nuclear
spin (spin I = 1

2 , coupling strength 0.75 MHz), leading to a beating of six frequencies in
the interferometry signal. A fast Fourier transformation unravels the six lines, and the
linewidth corresponds to the T ∗2 time.
For Ramsey interferometry the dephasing is caused by the quasi-static fluctuations

of the detuning, which leads to fluctuations in the phase accumulation. The unknown
phase can be re-focused by application of a π pulse in the middle of the free evolu-
tion time of the Ramsey sequence. The control sequence of this so-called Hahn echo is
shown in fig. 1.6a. Effectively, this π pulse changes the phase φ1 accumulated so far
to φ′ = π − φ1. If the detuning stays constant, another phase φ2 = φ1 is accumulated,
leading to a total phase of π, which is independent of φ, and therefore independent of
the detuning. However, if the energy levels of the system are time-dependent due to
fluctuations of the environment (on the timescale of the experiment), then φ2 6= φ1, thus
resulting in dephasing. Another effect for decoherence is entanglement of the system
with the environment when the environmental dynamics depend on the state of the sys-
tem, effectively measuring its state [86]. An example Hahn echo experiment is shown in
fig. 1.6b. This field of phase refocussing techniques is called dynamical decoupling, i.e.
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Figure 1.5.: Ramsey interferometry. a, Experimental sequence for electron spin control. Note
that electron spin initialization and readout is performed via illumination and fluorescence, see fig.
1.3c. b, Ramsey interferometry of the electron spin for a natural NV in natural type IIa diamond.
The Rabi frequency for the control pulses is ≈ 11 MHz. The frequency of the control field was set
to 1 MHz besides the spectrum. c, Fast Fourier transformation of the signal shown in b. The red
line is a multi-peak Gaussian fit. The linewidth (full width half maximum) is 303 kHz.

decoupling the dynamics of a system from its environment. Higher order decoupling can
be achieved by e.g. implementing more π pulses or more complex refocussing sequences
[87, 88, 89, 90].

1.3.2. Optimal control
As we have seen in the previous section, well designed control sequences on a quantum
system can effectively decouple its dynamics from fluctuations of the environment. A
more general approach for such a task is optimal control [91, 92]. In optimal control, the
control sequence applied to the system is optimized numerically for a given task. This
task can be defined very broadly, however, one needs a figure of merit (a so-called quality
function) for how well the task is implemented by a control sequence. Typical exam-
ples would be to reach a desired final state, or to implement a certain gate operation,
and the figure of merit for these tasks would be the fidelity between actual and ideal
implementation. Environmental fluctuations are included by appropriate variables in
the Hamiltonian or master equation of the system. By optimizing the task for a certain
range of these variables, robustness with respect to the corresponding fluctuation can
be achieved.
For example, we want to implement the operation Ûideal robust against the detuning

(inhomogeneous line broadening) and fluctuations of the control field strength. First, we
need to define the Hamiltonian or master equation describing the dynamics of the sys-
tem. The control sequence is described by control terms/operators Bi with discretized
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Figure 1.7.: Illustration of optimal control and update step for optimization. A possible
update step for the ui(tk) is indicated by the red arrows.
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evolution of control strength ui(tk) for duration τk, cf. fig. 1.7. Additionally, experi-
mental restrictions regarding e.g. the control strength ui are implemented. Then, the
range of the detuning and control field strength, for which the operation should be im-
plemented optimally, is defined. The quality function is the fidelity F , which is summed
over the defined range of the fluctuating variables, with F = Tr(Û †idealÛ), where Û is
the actual operation calculated from the control sequence and the Hamiltonian. At the
heart of optimal control is the optimization of the quality function with the controls
ui(tk). There are different approaches for optimizing the fidelity [91, 92, 93]. In this
work, we use gradient ascent pulse engineering (GRAPE) [91, 92]. There, the fidelity
for a certain control sequence is calculated by the forward and backward evolution of
the system, and optimized by calculating the gradient of the fidelity with respect to the
control strengths ui(tk). For GRAPE, the update steps are concurrent, i.e. all ui(tk) are
updated simultaneously, see fig. 1.7.

40



2. Photo-ionization of the NV
After the invention of single shot readout with the NV [41], it was for the first time
possible to directly measure occupation probabilities of different NV states, while pre-
viously only indirect state measurement via the NV’s fluorescence rate was possible. In
[41], Rabi oscillations of the 14N nuclear spins were driven, and the spin flip probability
measured by single shot readout. However, the maximally measured flip probability was
only around 67 %. This indicated that the electronic state of the NV is not always ini-
tialized: Because the transition frequency of the nuclear spin depends on the electronic
state of the NV (due to hyperfine interaction), state manipulations of the nuclear spin
with radio frequency (rf) fields are usually conditional on the electronic state. Only if
the current transition frequency is in resonance with the rf, the nuclear spin will be ro-
tated. In section 2.1, we will show that due to photo-ionization, the NV is in its desired
negative charge state with only ≈ 75 % probability for typical measurement conditions.
Previous studies have shown that photo-ionization of the NV between its negative and

neutral charge state can occur [94, 95, 96, 97, 98]. In these studies, the charge state oc-
cupations were only measured indirectly via spectrally resolving the NV’s fluorescence,
and cannot explain the above described reduced Rabi contrast. In section 2.2, we will
introduce a new method for single shot, projective charge state detection of a single
NV. With this method, we perform detailed studies of the ionization and recombina-
tion dynamics, and their dependency on illumination wavelength and power, see section
2.3. These results allow us to obtain the absorption spectrum of the NV (section 2.3.1),
the population of NV− depending on the illumination wavelength (section 2.3.2), and
the energy of the NV− ground state within the diamond band gap (section 2.3.3). By
exploiting this new knowledge of the NV’s photo-physics, we can improve the optical
polarization of the NV− electron spin (section 2.4).
The results of sections 2.1, 2.2, 2.3 are published in [43, 47].

2.1. Detection of NV0 via single shot NMR
As explained in the introduction, the transition frequency of the 14N nuclear spin de-
pends on the electronic state. By applying frequency selective rf pulses, the state of the
nuclear spin can be changed conditional on the electronic state. We can therefore probe
the occupation probabilities of different electronic states, by using single shot readout
of the nuclear spin. Note that the nuclear spin readout mechanism only works in NV−.
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As we will see later, probing of other charge states is nevertheless possible, because
the green readout laser pulse induces rapid charge state switching. Whenever the NV
is in the negative charge state, the nuclear spin readout will work. Additionally, the
possibility of performing nuclear spin single shot readout shows that the nuclear spin
state is robust against ionization of the NV. Fig. 2.1a shows the sequence used for these
measurements. First, a projective single shot measurement initializes the nuclear spin.
Then, the frequency selective rf π-pulse is applied, and a second single shot measurement
(which also initializes the next measurement repetition) is used to determine if the spin
was flipped. Fig. 2.1b shows Rabi oscillations of the 14N nuclear spin, conditional on
the mS = 0 NV− ground state. Taking into account the reduced contrast due to the
limited readout fidelity, we can estimate the population of the mS = 0 NV− ground state
to ≈ 70 %. This indicates that the NV is with ≈ 30 % probability in a different state,
which we refer to as ”missing population”.

Detection of unknown state with NMR To gain more knowledge of the missing
population of the NV, we measured broad range NMR spectra, for both 14N and 15N
, which are shown in fig. 2.1c. For 14N , the spin was initialized in mI = 0, to see
both transitions mI = 0 ↔ −1 and mI = 0 ↔ +1. The large peaks correspond to
transitions in the mS = 0 NV− ground state. There are no peaks at the transition
frequencies corresponding to the mS = −1,+1 states, indicating a high degree of spin
polarization in the NV− ground state. Note that the intensity of these peaks could also
be reduced due to differing hyperfine enhancement of the different mS states. Therefore,
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2.1. Detection of NV0 via single shot NMR

Rabi oscillations at these frequencies were measured separately and showed, indeed,
small population < 5 % for each of these states, cf. section 2.4. However, we find new
peaks corresponding to yet unknown electronic states (orange arrows in fig. 2.1c). By
initializing 14N intomI = +1 or −1, we can assign the two possible transitions mentioned
above to the two peaks. The Hamiltonian for the nuclear spin is

Ĥn = QÎ2
z +B · Î + Ĥhf , (2.1)

with three terms for the quadrupole splitting (QÎ2
z , zero for spin 1

2), nuclear Zeeman
interaction (B · Î), and hyperfine interaction (Ĥhf). The quadrupole splitting depends
on the NV’s electronic charge state and wave function, and the hyperfine interaction on
the electron wave function and spin state. The Zeeman interaction only depends on the
external field, which is known. From the new peaks in fig. 2.1c, we can calculate both
the quadrupole splitting Q and the hyperfine interaction for both 14N and 15N , see fig.
2.1d. For 14N , the observed hyperfine splitting is ∆14N = 3.03 MHz and the quadrupole
splitting is Q = −4.654 MHz. For 15N , we find ∆15N = 4.242 MHz. In the case of
|mS| = 1

2 , the hyperfine coupling constants a with ∆ = amSmI are |a14N| = 6.06 MHz
for 14N and |a15N| = 8.484 MHz for 15N . Most interestingly, only nuclear spin transi-
tions corresponding to one orientation of the electron spin in the unknown NV state
can be observed, even though the unknown state is not S = 0, because of the observed
hyperfine interaction. Recent experiments indicate that this is not due to polarization
of the electron spin, but due to some unknown mechanism that prevents driving Rabi
oscillations of the nitrogen nuclear spin on these transitions, and that this mechanism
is magnetic field dependent. However, this behavior needs to be analyzed in more detail.

Optical pumping into unknown state Recently, a long-lived dark state of the NV
was discovered [99]. By applying red illumination (637 nm), initial fluorescence of the
NV will decay, pumping the NV into a dark state, see fig. 2.2a. Here, we show that
this dark state is the same as the above discovered new unknown state. We measure the
population of the mS = 0 NV− ground state and of the unknown state, while pumping
the NV into the dark state by red illumination. For this, we monitor the NMR transitions
lines of both states (cf. fig. 2.1c), after applying red laser pulses with varying length.
Fig. 2.2c shows that red illumination pumps the NV into the unknown state, which is,
in fact, the dark state. From the spectra shown in fig. 2.2c, we can also see that the
transition corresponding to the mS = 0 NV− ground state exhibits a typical Fourier
transformed line shape due to the rectangular rf π-pulse, whereas the transition of the
unknown state has a broad Lorentzian shape (full width at half maximum (FWHM) of
≈ 33 kHz), indicating very short nuclear spin coherence times. Indeed, fig. 2.2e shows
Rabi oscillations of the nuclear spin in the unknown state, with very short coherence
time of T2 = T ∗2 ≈ 6µs due to homogeneous dephasing. Homogeneous dephasing can
be deduced from the fact that the spin flip probability converges to 0.5 independent of
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Figure 2.2.: Pumping into unknown dark state. a, NV fluorescence during red illumination
(637 nm). Before the start of each red pulse, a green laser pulse (532 nm) was used to restore
the initial state. b, Pulse sequence for characterizing pumping into unknown state (c, d, e). After
initialization of the nuclear spin, a red pulse with variable length pumps into dark state. With the
NMR operation, the populations of the mS = 0 NV− ground state and of the unknown state are
probed. c, Intensity of NMR transition lines in the mS = 0 NV− ground state and in the unknown
state, depending on the duration of the red pump laser. d, Calculated populations (see text) of the
mS = 0 NV− ground state and the unknown state from the data shown in c. The red and black
lines are exponential fits, and the green line is the mean value of the green data points. e, Rabi
oscillations with different rf powers (18 dB difference) of the nuclear spin in the unknown state.
Red lines show fits with homogeneous dephasing. f, Nuclear spin flip probability after pumping into
the unknown state, with exponential fit. The sequence is similar as shown in b, but instead of the
nuclear spin operation, a variable waiting time was introduced.
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2.1. Detection of NV0 via single shot NMR

the driving Rabi frequency, which cannot be explained by inhomogeneous dephasing.
The mechanism of this dephasing can be explained by fluctuations of the transition
frequency during one experimental run (i.e. homogeneous fluctuations). Therefore, the
nuclear spin flip probability converges to 50% of the electronic state population. A
possible exception could be homogeneous dephasing due to electron spin flips in the
unknown state. In either case, to calculate the population of the unknown state, the
measured intensity of the NMR transition line in the unknown state has to be multiplied
by a factor of 2, whereas the population of the different spin states in the unknown state
cannot be determined. Taking this into account, we can calculate the electronic state
populations p from fig. 2.2c with

p = y − F 2

1− 2F 2 , (2.2)

where y is the measured spin flip probability (multiplied by an additional factor of 2 for
the unknown state) and F the single shot readout fidelity (cf. fig. 2.1b). The popula-
tions are shown in fig. 2.2d. We can see that nearly all of the population is either in
the mS = 0 NV− ground state or in the unknown state. In addition to the very short
nuclear spin coherence time in the unknown state, also the nuclear spin T1 time (≈ 90
ms, see fig. 2.2f) is much shorter than in the NV− ground state (T1 ≈ 800 ms, [41]). In
the same manner, also the lifetime of the unknown electronic state can be measured, by
initializing the NV in the unknown state, and measuring the intensity of the NMR tran-
sition after a waiting time. Even for a waiting time of 50 ms, no decay of the intensity
was visible, meaning that the lifetime of the unknown state is � 50 ms.
In the following, we will further investigate the pumping process into the unknown

state, to gain more knowledge about it. For this, we studied the power dependence of
both the pumping rate into the unknown state under red illumination (637 nm), and
the repumping rate into the NV− ground state under green illumination (532 nm). The
pumping rate into the unknown state is measured via the exponential decay of the NV
fluorescence during a red laser pulse (cf. fig. 2.2a). Similar to this, the NV fluores-
cence shows an increase during a green laser pulse, if it is initially in the unknown state.
Fig. 2.3a shows the pumping and repumping rate in dependence of the red and green
laser power, respectively. For low laser powers, the rates increase quadratically with the
applied laser power, indicating two-photon processes. For high laser powers, the rates
increase linearly with the applied laser power. This behavior can be explained by pump-
ing and repumping processes via excited states. For such a model, the interconversion
rate r is given by the product of the population pe of the corresponding excited state,
and the applied laser power I,

r ∝ peI = I2

I + I0
, (2.3)

where pe = I
I+I0

describes the saturation of the excitation process with increasing laser
power. The measured rates can be explained by eq. (2.3), which is used to fit the data
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Figure 2.3.: Model for pumping process. a, Power dependence for pumping into unknown state
under red illumination, and repumping into NV− ground state under green illumination. The insets
show the pulse sequences: First a red or green laser pumps initializes the NV in the unknown state
or the NV− ground state, and pumping and repumping rates are obtained from the fluorescence
evolution during the following green or red laser pulse with variable power. The solid lines show
fits, see text. b, Fluorescence decay during red illumination with aligned and misaligned magnetic
field. c, Model of the interconversion between NV− ground state and unknown state. To pump
the NV into the unknown state, NV− has to be excited first. For the repumping into the NV−
ground state, a similar process occurs: First the unknown state has to be excited, and can then be
brought to the NV− ground state by a second photon.
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2.1. Detection of NV0 via single shot NMR

in fig. 2.3a.
Further evidence that the repumping process goes via the NV− excited state can be

obtained by exploiting the spin state dependent inter-system crossing of NV−. Due to
this inter-system crossing, the steady-state population of the excited state depends on
the electron spin state. However, the optical cycle of the NV leads to polarization of the
electron spin. Therefore, to change the steady-state population of the excited state via
the inter-system crossing, continuous changing of the electron spin state is required. This
can be achieved by applying a misaligned magnetic field, which mixes the spin states,
and leads to constant evolution between the states (cf. section 1.2.4) [100]. Fig. 2.3b
shows the fluorescence decay during red illumination (i.e. pumping from NV− ground
state to unknown state), for an aligned and for a misaligned magnetic field. For the
misaligned magnetic field, the pumping rate is reduced, which can be explained with
eq. (2.3) by the reduced population of the excited state. Note that is analysis is only
for the pumping process from NV− ground state into the unknown state. In section
2.3 we will gain further insight into the repumping process. A schematic model for the
interconversion between the two states is shown in fig. 2.3c.

Unknown state is NV0 The data presented so far already provides strong indica-
tion that the unknown state is the ground state of the neutral charge state NV0. The
hyperfine coupling constants of the unknown state are similar to the hyperfine coupling
constants in the NV− ground state, indicating that the observed spin of the unknown
state is in ex,y orbitals [81, 101]. In contrast, an unpaired electron spin in the a1(2)
orbital would lead to an about one order of magnitude larger hyperfine interaction [102].
Additionally, the long lifetime of the unknown state indicates that it is not an excited
state. Therefore, possible states are the NV2− ground state or the NV0 ground state,
which both are S = 1

2 states. The observed optical pumping into the unknown state can
be explained by photo-ionization of NV− via the NV− excited state. The NV− excited
state is located ≈ 0.6 eV below the conduction band, such that red light (1.95 eV) would
be enough to ionize this state [97]. Furthermore, photo-interconversion between NV−
and NV0 has already been observed. These facts indicate that the unknown state is NV0.
However, in our case of a single NV, no spectral evidence of NV0 could be detected.
Here, we will show further evidence that the unknown state is, indeed, NV0. We find

that illumination with blue light (440 nm) leads to NV0 fluorescence, while suppressing
fluorescence of NV− (see fig. 2.4a). In section 2.3.3 we will see that this is due to one-
photon ionization of NV−. Again, we can use single shot NMR to probe the electronic
state of NV0. The sequence is shown in fig. 2.4b. For the laser pulse we either apply red
illumination to pump into the unknown state or blue illumination to pump into NV0,
and for reference green illumination (532 nm, fig. 2.4c), As can be seen in fig. 2.4d,
both red illumination and blue illumination populate the unknown state, showing that
it is NV0.
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Figure 2.4.: Unknown state = NV0. a, Spectrum of the NV fluorescence by excitation with
green and with blue light. b, Pulse sequence for single shot NMR, used for c and d. c, NMR
spectra of frequencies corresponding to NV− ground state and unknown state, with typically used
green laser pulse (532 nm). The spectra here and in d are for the mI = 0 ↔ +1 transition. d,
NMR spectra for unknown state with red (620 - 630 nm, left side) and with blue (432 - 456 nm,
right side) laser pulse. For 620 - 630 nm, the laser power was 20 µW and the pulse length 2 ms.
For 432 - 456 nm, it was 20 µW for 10 ms. The red lines are Lorentzian fits.

2.2. Single shot charge state detection
In the previous section, we have seen that illumination of the NV leads to photo-induced
ionization and recombination between NV− and NV0. Additionally, the dark lifetime
of NV0 is very long (≈ 150 s [99]), such that it can be considered as stable for most
experiments. Under typical measurement conditions with green illumination, the NV
is in its negative charge state NV− only with around 70% probability. In this section,
we will present a new method to determine the current charge state of an NV with a
single, projective measurement, which allows for pre-selection of experimental runs in
NV−. This method will also allow us to perform real-time monitoring of the NVs’ charge
state.
By illuminating the NV with laser light with less photon energy than the zero-phonon

line of NV0 (2.16 eV =̂ 575 nm), NV0 will hardly be excited (only due to thermal
broadening) and does not seem to fluoresce. If, on the other hand, the photon energy is
higher than the zero-phonon line of NV− (1.95 eV =̂ 637 nm), fluorescence from NV−
can detected. Therefore, under these conditions, detection of fluorescence indicates that
the NV was, at some time during the illumination, in NV−. Additionally, a long-pass
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Figure 2.5.: Single shot charge state detection. a, Fluorescence time trace of the NV with
orange (600 nm), 0.4 µW illumination. A hidden Markov model [83] was applied for the state fit,
which shows the most likely fluorescence level evolution. For these conditions, the lifetime of NV−
is ≈ 600 ms. The steady state charge state population is around 0.9 : 0.1 for NV0 : NV− b,
Histogram of measurement results for charge state detection under typical measurement conditions
with the NV. The two peaks correspond to NV0 and NV−. As for single shot readout of the 14N
nuclear spin (see section 1.2.4), a threshold is placed between the two peaks for single shot charge
state detection. The inset shows the measurement sequence: First, a green laser pulse creates the
typical steady state distribution of around 0.3 : 0.7 for NV0 : NV−, and the NV fluorescence is
measured during a second low power orange pulse (0.4 µW, 8 ms).

filter at 650 nm ensures that mainly fluorescence of NV− can be detected. As we have
seen in eq. (2.3), for low illumination power the ionization and recombination rates (rion
and rre, respectively) for the NV are quadratic to the applied laser power I,

rion, rre ∝ I2. (2.4)

On the other hand, the fluorescence rate rfl of the NV is proportional to the population
of the excited state, which is linear to the applied laser power (for low power),

rfl ∝ I. (2.5)

The average number of photons, which we can detect from NV− before it is ionized,
i.e. the photons per burst nppb), is the product of the NV− fluorescence rate with the
lifetime Tion = 1

rion
of NV− during illumination,

nppb ∝
rfl

rion
∝ 1
I
, (2.6)

i.e. nppb increases inversely with decreasing illumination power. Therefore, for very low
illumination power it can be possible to obtain enough fluorescence from the NV to
determine its charge state, before the current charge state is destroyed, which allows for
real-time charge state monitoring and single shot charge state detection.
For these experiments we use a laser with 600 nm wavelength. Fig. 2.5a shows a fluo-
rescence time trace of the NV during orange (600 nm), 0.4 µW laser illumination. The
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2. Photo-ionization of the NV

two distinct fluorescence levels corresponding to NV− (high fluorescence) and NV0 (low
fluorescence) are clearly distinguishable, i.e. the time needed to determine the current
charge state is shorter than the lifetime. Therefore, real-time monitoring of the charge
state is possible, and we can apply a hidden Markov model to the fluorescence data, to
obtain the most likely charge state evolution [83], see 2.5a. Additionally, this allows us to
perform single shot charge state detection, to measure e.g. the charge state populations
under typical measurement conditions (532 nm illumination), see fig. 2.5b.

Optimal wavelength The maximum fidelity for single shot charge state detection is
given by the number of photons per burst nppb, see eq. (2.6), which depends on the
fluorescence of NV− (higher is better), and the lifetime (longer is better). By reducing
the excitation power, nppb can be increased. However, reducing the excitation power also
decreases the fluorescence, which in turn increases the measurement time and is therefore
limited by photon count noise (e.g. "dark counts"). This means that experimentally, not
only nppb is important, but also the actual fluorescence rate rfl. As can be seen from
eq. (2.6) and eq. (2.5), any increase of nppb leads to a decrease of rfl. Another possible
parameter to change besides the excitation power is the excitation wavelength: Because
of different dependencies on the excitation wavelength of the absorption cross-section of
NV− and of the cross-section for ionization, we can search for an optimal wavelength for
charge state detection. This can be done using the data presented in section 2.3.1. The
figure of merit c for charge state detection is then given by the product of nppb with rfl,

c = nppbrfl = r2
fl

rion
. (2.7)

For a given desired number of photons per burst nppb, the measurement time t can be
determined by t ∝ nppb/c, i.e. high values for c are preferred. Note that c is power-
independent for low illumination intensities. The wavelength dependence of c is shown
in fig. 2.6. The maximum of c is at around 585 to 590 nm. For the following experiments
with charge state detection, we will mostly use 595 nm light for the excitation, from a
commercially available diode pumped solid state (DPSS) laser.

2.3. Wavelength dependent ionization dynamics
Recently, new studies were performed with single NVs at cryogenic temperatures, which
provided new insight into the recombination process [103, 104]. It was shown that for
the recombination process, first NV0 is excited, and then a second photon captures an
electron from the valence band to form NV−. In the following, we will discuss the current
understanding of the full cycle of two-photon ionization and recombination (see fig. 2.7).
As shown in section 2.3.3, the one-photon ionization and recombination energies are
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Figure 2.6.: Optimal wavelength for charge state detection. Wavelength dependence of figure
of merit c as calculated from the data in fig. 2.9c, see text for description.

∆ion,0 ≈ 2.6 eV and ∆re,0 ≈ 2.94 eV, respectively, i.e. here we only consider photon
energies below 2.6 eV.

1. One photon excites NV− into the excited state, which is ENV−,ex = 1.95 eV above
the ground state, from where it can also decay to the 1E metastable state.

2. A second photon excites one electron from the NV− excited state into the conduc-
tion band, ionizing NV− and forming NV0. Another possibility is ionization from
the NV− 1E metastable state, if the photon energy is high enough. The energy
of this state is believed to be close to, but less than ENV−,ms . 0.76 eV above
the ground state of NV−[105, 80, 106, 77]. This leads to an ionization energy for
the 1E metastable state of & ∆ion,0 − ENV−,ms = 1.84 eV, i.e. this process could,
in principle, happen. Another question is the state of NV0 after the ionization
of NV−. The configuration of the NV− excited state is a1e3, and removing one
electron from the highest energy orbital (e) would lead to a a1e2 configuration,
which is an excited state of NV0. However, the remaining ionization energy of the
NV− excited state is ≈ ∆ion,0 − ENV−,ex = 0.65 eV. To end up in the NV0 excited
state (ENV0,ex = 2.16 eV above the ground state of NV0), a photon with at least
0.65+2.16 eV = 2.81 eV (=̂ 441 nm) would be needed. The NV0 metastable state is
also an excited state, implying a similar minimum photon energy. Therefore, these
energetic considerations imply that after the ionization of NV−, NV0 can only be
in its ground state. In addition to promoting one electron to the conduction band
for ionization from the NV− excited state, another electron from the e orbital has
to decay to the a orbital. This latter effect could possibly be an Auger process
[104].

3. From the NV0 ground state, one photon with energy E ≥ ENV0,ex = 2.16 eV is
absorbed to yield the NV0 excited state.
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Figure 2.7.: Model for ionization and recombination. Illustration of the full cycle of photo-
induced ionization and recombination of NV− by two-photon processes. In both cases, first NV−
respectively NV0 are excited by one photon, and a second photon excites one electron from the
NV− excited state into the conduction during ionization, respectively excites one electron from the
valence band into the NV during recombination. See text for more detailed description.

4. Another photon promotes one electron from the valence band to the NV, forming
NV−. What is the final state in NV−? From the NV0 excited state, the remaining
recombination energy is therefore ≈ ∆re,0 − ENV0,ex = 0.78 eV. To end up in the
NV− excited state, an energy of at least ≈ ENV−,ex + 0.78 eV = 2.73 eV (=̂ 454
nm) is necessary. To end up in the NV− 1E metastable state, the necessary energy
is ≈ ENV−,ms + 0.78 eV . 1.54 eV (=̂ 805 nm). This means that we expect the NV
to be in either the NV− ground state or metastable state after recombination.

In this section, we will further investigate the wavelength dependence of the photo-
induced ionization dynamics of the NV. These measurements will yield the wavelength
dependence of the ionization and recombination rates, the intrinsic absorption spectrum
of NV− and the steady state population of NV− in dependence of the illumination
wavelength. Furthermore, we will determine the ionization and recombination energies
of NV−, which are also shown in fig. 2.7.

2.3.1. Charge state dynamics
As we have seen in section 2.2, low laser illumination of the NV allows for real-time
monitoring of the charge state dynamics. Here, we use this method for illumination
wavelengths of 540 to 610 nm, and analyse the observed charge state dynamics with a
hidden Markov model. For shorter wavelengths, this analysis is not possible, because
the difference of observed fluorescence rates between the NV− and NV0 states becomes
severely reduced. For wavelengths longer that 610 nm, the recombination rate is too low
to observe the dynamics, because NV0 can hardly be excited. From the hidden Markov
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eq. (2.8).

model, we can obtain the detected fluorescence rates for both states, and the ionization
and recombination rates. From the ionization and recombination rates (rion and rre,
respectively) we can also calculate the steady state population pNV− of NV− by

pNV− = rre

rion + rre
. (2.8)

Power dependence Previously, we observed a quadratic dependency on the laser
power of the ionization rate for red illumination (637 nm), and of the recombination
rate for green illumination (532 nm). As a first step, we verify the quadratic depen-
dency of both rates for the two illumination wavelengths 560 nm and 593 nm. Fig.
2.8a shows these rates, as obtained from a hidden Markov model, and the quadratic
dependency for low laser powers. Additionally, we calculate the steady state population
of NV− according to eq. (2.8), see fig. 2.8b. For these illumination powers, there is no
notable change in the NV− population.
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Wavelength dependence To measure the wavelength dependence (540 to 610 nm)
of the charge state dynamics, a fixed illumination power of 1 µW was used. We expect
the ionization and recombination rates to roughly resemble the intrinsic absorption cross
section of the involved excitation step, which directly influences the population of the
excited state, and therefore the total rates according to eq. (2.3). Fig. 2.9a,b shows the
wavelength dependence of the ionization and recombination rates. For the ionization
rate, two maxima at around 550 and 590 nm are observed. As we will see below, these
maxima are, indeed, a result of the intrinsic absorption of NV−. For the recombination
rate, we find a local maximum at 575 nm, which coincides with the zero phonon-line of
NV0. For higher photon energies, the recombination rate shows a steep increase. These
two features resemble, as expected, a typical absorption spectrum of a solid state defect,
with zero-phonon line and phonon side band.
Applying the hidden Markov model to the fluorescence time traces also yields the

observed fluorescence levels. This allows us to determine the intrinsic absorption cross-
section of NV−, which was not possible before. In previous studies [72, 103], the mea-
sured fluorescence was always time averaged (or ensemble average) over the NV being
in NV− or NV0. Additionally, the appearance of ionization and recombination rates
influences the excited state population of NV−. This, in turn, will lead to non-trivial
deviations of the relation between intrinsic absorption cross-section of NV− and its ex-
cited state population (=̂ fluorescence), see appendix A.1. For our measurements, these
imitations do not apply: Due to the time-resolved observation of the charge state, we
are able to directly determine the fluorescence level of NV− during time intervals where
no ionization events occur. Therefore, the observed NV− fluorescence shown in fig. 2.9c
is directly proportional to the intrinsic absorption cross-section of NV−. Note that this
assertion only holds if the internal dynamics within NV− do not depend on the illumi-
nation wavelength, which would be an unexpected feature. The measured double peak
structure was not observed before, however, we cannot explain this behavior.
With the fluorescence level of NV−, which is proportional to the excited state popula-

tion, we can also calculate the ionization cross-section from the excited state according
to eq. (2.3) by the ratio of total ionization rate to NV− fluorescence. Note that this is
only possible if ionization occurs exclusively from the excited state, however, ionization
from the metastable state cannot be excluded, as discussed above. This ratio of total
ionization rate to NV− fluorescence is shown in fig. 2.9d.

2.3.2. NV− population
An important requirement for QIP is the initialization of the system, which includes
initialization of the NV in its negative charge state NV−. So far, NV0 does not seem
suitable for QIP, due to short nuclear spin coherence times (see section 2.1) and the lack
of ODMR. Here, we investigate the steady-state population of NV− depending on the
excitation wavelength, which is also the initialization probability into NV− due to the
long lifetime of NV0. For the measurements performed in section 2.3.1 in the range of 540
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to 610 nm, we can directly calculate the NV− population from the ionization and recom-
bination rates according to eq. (2.8). This is shown in fig. 2.10a. The visible behavior
is mainly dominated by the recombination rate via the absorption of NV0, cf. section
2.3.1. For wavelengths longer than 610 nm, the absorption of NV0 and therefore also the
NV− population will go further down. However, what about shorter wavelengths? The
previous measurements (section 2.3.1), which were based on real-time monitoring of the
charge state dynamics, are not possible at shorter wavelength. Therefore, we employ
another method to measure the NV− population, which is based on single shot charge
state detection (section 2.2). The measurement sequence is shown in fig. 2.10b. First,
an arbitrary laser pulse with variable wavelength leads to a characteristic NV− popu-
lation. The NV− population is then measured via single shot charge state detection,
which leads to a histogram with two Poissonian distributions corresponding to the two
charge states, see fig. 2.10b. By fitting the sum of two Poissonian distributions, the
obtained areas of the single Poissonians yield the populations of NV− and NV0, which
were prepared by the first laser pulse.
This measurement was performed in the range of 450 to 570 nm, and the result is

shown in fig. 2.10c together with the data from fig. 2.10a. The population of NV−
is maximal at ≈ 75 % for 510 to 540 nm. For longer wavelengths, it decreases due
to reduced absorption of NV0 (see above). For shorter wavelengths, it decreases due
to one-photon ionization of NV− (see section 2.3.3). A similar behavior was observed
in low temperature studies [103]. Therefore, initialization of the NV into its negative
charge state with > 75 % probability was not achieved by illumination.

2.3.3. Ionization and recombination energy
So far, the observed ionization and recombination of NV− were two-photon processes (cf.
fig. 2.7). Because the used photon energies were too low, ionization and recombination
only occurred via the excited states of NV− and NV0. However, if the photon energy is
high enough, direct one photon ionization and recombination from the respective ground
states is possible. Here, we will measure the transition from two-photon ionization and
recombination to one-photon ionization and recombination, which will allow us to de-
termine the energy of the NV− ground state within the diamond band gap.
For this purpose, we use correlated single shot charge state measurements (see section

2.2), in order to determine the power dependence of the ionization and recombination
rates for arbitrary illumination wavelength. Fig. 2.11a shows the measurement sequence.
The first laser pulse measures the current charge state of the NV. The second laser pulse
with arbitrary wavelength, power and duration will influence and possibly change the
charge state due to photo-induced ionization and recombination. The last laser pulse
again measures the charge state of the NV. By correlating the results of the two charge
state measurements, the influence of the laser pulse on the charge state can be deter-
mined. We vary the length of the laser pulse at a fixed wavelength and power, which
yields the charge state evolution for this specific illumination (wavelength and power).
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Figure 2.10.: NV− population. a, NV− population for 540 to 610 nm excitation wavelength,
obtained from the ionization and recombination rates measured in section 2.3.1 with 1 µW excitation
power. b, Upper part: Measurement sequence for the NV− population based on single shot charge
state detection. Note that the preparation pulse must be long enough to reach the steady-state
population distribution. Only fluorescence during the second laser pulse is detected. Lower part:
Probability distribution of measurement results (i.e. normalized histogram) for preparation with
a laser pulse with 565 nm wavelength, 17 µW power and 100 ms duration. The charge states
corresponding to the two peaks are indicated together with the amplitude A of a two-Poissonian
fit (solid line). c, NV− population depending on the excitation wavelength from 450 - 610 nm.
Results from b (single shot charge state detection) and from a (real-time charge state monitoring)
are combined here.
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Depending on the result of the first charge state measurement (NV− or NV0), the evo-
lution is obtained for the corresponding initial charge state (NV− or NV0, respectively),
see fig. 2.11b. As shown in appendix A.2, from the measured charge state evolution
we can obtain the ionization and recombination rates for this specific illumination. To
measure the power dependence of the ionization and recombination rates for a specific
illumination wavelength, we repeat this measurement for varying illumination powers
at fixed illumination wavelength, which yields the data shown in fig. 2.11c. With the
measured power dependence of the ionization rate rion and recombination rate rre, we
can separately determine the one-photon part and the two-photon part, by fitting a
parabola

rion/re = aI + bI2, (2.9)

where a is the linear part corresponding to the one-photon process and b is the quadratic
part corresponding to the two-photon process. We repeat the procedure above for dif-
ferent illumination wavelengths, and for each wavelength determine the relative cross-
section of the one-photon ionization and recombination processes, which is the linear
part a in eq. (2.9). This is shown in fig. 2.11d.
As we can see, for low photon energies, ionization and recombination are purely two-

photon processes. Only above a certain threshold energy corresponding to the NV−
ionization energy and recombination energy, the relative cross-section for one-photon
ionization and recombination starts to increase. To obtain the ionization energy of NV−
from this data, we model the relative cross-section for the one-photon processes accord-
ing to Fermi’s Golden Rule, and approximate the density of states (DOS) g(E) at the
edge of the valence and conduction bands by a free electron gas (in three dimensions),
such that

g(E) ∝
√
E − E0, E ≥ E0, (2.10)

where E is the electron energy and E0 the energy of the NV− ground state relative to the
band edges (absolute value), i.e. for ionization relative to the conduction band and for
recombination relative to the valence band, and assume that the matrix element of the
transition does, with good approximation, not depend on the photon energy. However,
both the energy E and the energy E0 are not sharp values, but have a probability
distribution: The energy E is the energy of the electron after absorbing a photon,
i.e. E is the photon energy, which depends on the spectral width of the excitation
laser (Gaussian distribution with ≈ 2 nm standard deviation). The energy E0 has a
probability distribution due to thermal effects of both the NV− ground state energy and
the band edge energies. Because we do not know the form of this probability distribution,
we approximate it with a Gaussian distribution. The final energy Ef of the electron after
absorption, which is the initial electron energy plus the photon energy, is then also given
by a Gaussian distribution

P (Ef) ∝ e
− 1

2

(
Ef −~ω
σ

)2

, (2.11)
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Figure 2.11.: Ionization and recombination energies. a, Measurement sequence for correlated
charge state detection. The second laser pulse can be arbitrary wavelength, power and duration.
b, Measured charge state evolution during the second laser pulse for initial state NV− (left graph)
and NV0 (right graph), which is given by the result of the first charge state measurement. The
solid (red) lines are fits, as described in appendix A.2. c, Power dependence of the ionization and
recombination rates (left and right graph, respectively) for different illumination wavelengths. The
fits (solid lines) are performed according to eq. (2.9). d, Wavelength dependence of the linear part
of ionization and recombination rates (left and right graph, respectively). See text for explanation
of fit (solid red line)
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2. Photo-ionization of the NV

where ~ω is the average photon energy set by the excitation laser and σ the width of the
distribution. The expected relative cross-section for the one-photon processes (a in eq.
(2.9)) is the convolution of the final photon energy eq. (2.11) with the DOS eq. (2.10),

a(~ω) = A
∫ ∞
−∞

√
Ef − E0 e

− 1
2

(
Ef −~ω
σ

)2

dEf , (2.12)

where E0, σ and A are fitting parameters. Eq. (2.12) is solved numerically (
√
Ef − E0

is zero for Ef < E0). For fitting the ionization rate, only data points down to 445 nm
are considered, because the approximation eq. (2.10) is only valid close to the band
edge. For the recombination rate, there are only four relevant measurements points.
Therefore, for the parameter σ the value from the ionization data with σ = 0.069 eV
was used, because the broadening mechanisms are the same. Then E0 is the only fitting
parameter for the recombination rate shown in fig. 2.11d.
From the above described analysis of the data shown in fig. 2.11d, we can extract the

ionization energy of NV−, which is Eion = (2.604 ± 0.005) eV, and the recombination
energy Eion = (2.94± 0.02) eV.

2.4. Improved electron spin initialization
The observed photo-ionization of the NV also sheds new light onto the electron spin
polarization in the NV− ground state. On the one hand, the optical cycle during il-
lumination within NV− leads to polarization into ms = 0 due to spin-state dependent
inter-system crossing. On the other hand, the illumination also leads to ionization and
recombination. After recombination, NV− is assumed to end up in a random spin state,
as there is no physical reason for preferred population of ms = 0. This introduces a
depolarizing mechanism, which increases with the illumination power. Therefore, we
expect increased electron spin polarization for decreasing illumination power. The elec-
tron spin polarization can be measured very accurately by single shot nuclear magnetic
resonance (NMR), see section 2.1.
Fig. 2.12a shows the measurement sequence. Fig. 2.12b shows the measured nuclear

spin flip probability inmS = 0 after a low power red laser pulse (637 nm, 1 µW). Without
the red pulse, the population of the mS = 0 state is given by the green laser pulse used
for the nuclear single shot measurement. As can be seen, even a very short low power
red pulse increases this population by increasing the polarization of the electron spin in
NV−. The subsequent decrease of the spin flip probability is due ionization of NV− by
the red laser. For this illumination, the lifetime of NV− was ≈ 2 ms. In the following,
we will measure the absolute polarization of the electron spin in NV−, by measuring the
nuclear spin flip probability in mS = −1.
In order to obtain the electron spin polarization of NV− from the nuclear spin flip prob-
ability pflip in mS = −1, a few things have to be taken into account. We are interested
in the polarization within NV−, which is the relative occupation probability of the mS
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Figure 2.12.: NV− polarization measurement. a, Measurement sequence. a, Spin flip proba-
bility in mS = 0 after varying duration of red (637 nm), 1 µW illumination.

states, but not the total occupation probability of mS = −1. Therefore, we normalize
the measurement result by the total probability to be in NV−, which is pNV− = 0.75.
Additionally, the measured flip probability is reduced by the single shot measurement
fidelity F , cf. fig. 2.1b. The estimated relative flip probability pflip,rel is

pflip,rel = pflip
1

0.75
1

1− 2F 2 , (2.13)

where pflip is the measured flip probability. Additionally, the long duration of the rf-π
pulse of 600 µs relative to the electron T1 time of ≈ 4 ms leads to electron spin flips
during the nuclear spin rotation. This will lead to an additional flip probability in
mS = −1 due to electron spin flips from mS = 0 to −1. This effect can be estimated by
a convolution of the flip probability of the mS = 0 to −1 state with the flip probability
of the nuclear spin due to the induced Rabi oscillations. The probability pms−1 that the
electron spin has flipped at time t from the mS = 0 to −1 state is approximated by

pms−1 = 0.33 (1− exp (−t/T1)) , (2.14)

(where we approximated the population of the mS = 0 state at time t = 0 to be 100%),
and the probability that it flips during time dt is deduced to

dpms−1 = 0.33
T1

(1− exp (−t/T1)) dt. (2.15)

The Rabi-induced flip probability of the nuclear spin, pflip,t, if the electron spin is flipped
from mS = 0 to -1 at time t, is

pflip,t = sin2
(

Ω(tπ − t)
2

)
, (2.16)

where tπ is the duration of the nuclear pulse, and Ω = 2π 1
1.2 kHz is the nuclear Rabi

frequency. The total probability that the nuclear spin is flipped in the experiment due
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to electron T1 decay from mS = 0 to -1 is

pflip,T1 =
∫ tπ

t=0
sin2

(
Ω(tπ − t)

2

)
0.33
T1

(1− exp (−t/T1)) dt. (2.17)

Numerically solving eq. (2.17) yields pflip,T1 = 2.4 %.
The flip probability pflip is measured by the sequence shown in fig. 2.12a, once with

on-resonant rf pulses and once with off-resonant rf pulses. The difference of these two
measurements is pflip, which is then normalized by eq. (2.13), and pflip,T1 is subtracted
to obtain the relative population ρms−1 of the mS = −1 state. By assuming that the
populations of the mS = −1 and mS = +1 states are the same, ρms−1 = ρms+1, we can
calculate the relative population of mS = 0 within NV− by ρms0 = 1 − 2ρms−1 This
measurement is performed for high power green illumination (532 nm) typically used in
experiments, and low power red illumination (637 nm). The results are shown in table
2.1.
Please note that these are preliminary results, and more accurate and meaningful

λ power time resonant off-resonant pflip ρms−1 ρms0

532 nm ≈ 100 µW 1 µs 0.204 0.172 6.5 % 4.1 % 91.8 %
637 nm ≈ 1 µW 30 µs 0.1839 0.1647 3.82 % 1.42 % 97.2 %

Table 2.1.: Polarization measurement results. Resonant and off-resonant are measured spin flip
probabilities for resonant and off-resonant rf control.

results would require further measurements, like measuring the power-dependence of
polarization at one wavelength. The accuracy of the results could be improved by using
much higher Rabi frequencies for the nuclear spin rotation, to decrease the effect of
electron T1 decay, and by measuring the spin flip probability in all mS and directly
calculating the relative populations.

2.5. Conclusions
In this chapter, we have unravelled the photo-induced ionization and recombination
mechanism of NV−, which is important for understanding the dynamics of the NV. Es-
pecially for high-fidelity quantum information processing tasks, control of the charge
state is necessary. We have already demonstrated a method to measure the charge state
of a single NV by a non-destructive, single shot measurement, see section 2.2. In sec-
tions 3.1 and 3.2, we will use this method for charge state pre-selection of measurements.
In section 3.3 we will introduce another method based on nuclear single shot measure-
ments, to post-select measurement results for the desired charge state. Additionally,
the observed blinking due to ionization of the NV for low-power illumination (cf. fig.
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Figure 2.13.: Proposed model for the optical dynamics of the NV. ES0/−, MS0/−, GS0/−, are
excited state, metastable state and ground state of NV0 and NV−. Red arrows indicate radiative
and non-radiative decay processes, where the decay rate λ is the figure of interest. Green arrows
indicate processes induced by photon absorption, where the absorption cross-section σ is the figure
of interest. The actual rate of these transitions is obtained by multiplying the corresponding
absorption cross-section σ with the illumination power. Transitions between the two charge states
are assumed to be spin-state independent. The placement and ordering of the states is only given
schematically for illustrative reasons, and does not necessarily represent the relative energies.

2.2) can be used for high-resolution microscopy by stochastic optical reconstruction mi-
croscopy (STORM) [107] respectively photoactivation localization microscopy (PALM)
[108]. Thereby, several emitters within a diffraction limit spot are switched on and off
stochastically, such that at any time fluorescence of most likely only one emitter is de-
tected, which leads to fluorescence bursts whenever an emitter is ”on“. This allows for
reconstruction of the position of the emitter by fitting its point spread function to the
observed fluorescence during one burst.

2.5.1. Rate equation model including photo-ionization
The results of this chapter allow us to propose a new rate equations model to describe the
effective dynamics within NV−, see fig. 2.13. Previously, power dependent rates between
the triplet and singlet states of NV− have been discussed and investigated [109, 110],
however, without considering the actual mechanism and spin selective dynamics within
NV−. The model proposed in fig. 2.13 takes into account the two-photon ionization and
recombination processes as discussed in section 2.3, i.e. for illumination wavelengths
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of around 500 to 600 nm. The model is supposed to be able to explain the dynamics
for NV−, specifically the fluorescence, the spin polarization, and the total population of
NV−, but not for NV0, and spin selective rates within NV0 are not considered. Note that
several states of both charge states (see [78], [81]) are neglected here, which are believed
to not being relevant for the above discussed values at the current state of knowledge.
Also note that for the actual values of the absorption cross-sections, the degeneracy due
to different spin orientations of the states has to be taken into account, in accordance
with Fermi’s Golden Rule.

64



3. Applications of nuclear spin
single shot readout

In this chapter, we will apply single shot readout of the 14N nuclear spin in several exper-
iments. Is section 3.1, we show violation of a temporal Bell inequality. Here, high-fidelity
single shot readout is a necessary requirement. In section 3.2, we implement generalized
measurements for discrimination of non-orthogonal quantum states, where single shot
readout is needed for consecutive measurements. For both these experiments, we will
additionally employ charge state pre-selection, to prepare the NV in its negative charge
state, see section 2.2. Charge state pre-selection is based on low-power illumination of
the NV with ≈ 595 nm wavelength, such that only fluorescence of NV− is detected.
Due to the low illumination power, photo-ionization of the NV is suppressed, allowing
for non-destructive, single shot charge state detection. In section 3.3, we use single
shot readout for quantum-limited measurements of magnetic fields. To this end, we will
demonstrate a new method for charge state post-selection, by using the third state of
the 14N nuclear spin.
The results presented in this chapter are published in [44] (section 3.1), [46] (section

3.2), [45] (section 3.3).

3.1. Violation of a temporal Bell inequality
When quantum mechanics (QM) was introduced, the intuitive, yet classical concepts of
realism and locality had to be dismissed. This lead Einstein, Podolsky and Rosen in 1935
[111] to believe that quantum mechanics cannot be complete, as it contradicts with these
concepts, which they defined as: (1) Reality: ”If, without in any way disturbing a system,
we can predict with certainty (i.e., with probability equal to unity) the value of a physical
quantity, then there exists an element of physical reality corresponding to this physical
quantity“, and (2) locality: The measurement of one system can have no immediate
effect on another, spatially separated system, e.g. for two entangled systems. For the
given definition of reality it is important to note that the authors of [111] assumed that
a deterministic description of the world is possible, i.e. that the result of a measurement
can, in principle, be predicted with certainty. Some time later in 1964, Bell proposed an
experimentally testable inequality that holds for any theory which complies with both
these concepts [112]. However, he also showed that QM violates this inequality, meaning
that either QM is wrong (and not just incomplete) or that the assumptions are wrong.
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Nowadays, we know that the latter is the case, and reality and locality do not apply
for a description of the world on a quantum level. Especially the violation of reality
for macroscopic systems is counter-intuitive to how we experience the world. This was
exemplified by Schrödinger’s cat gedanken experiment [113]. He envisaged a cat that
is trapped within a perfectly isolated box, together with a device that can randomly
kill the cat. According to QM, the cat is dead and alive at the same time, as long as
observations of what is happening inside the box are not possible. Only when we open
the box (measure the cat’s state), we will find the cat in one of its two states, either
dead or alive, which are exclusive measurement results. This result is non-deterministic,
i.e. it is impossible to assign the cat’s state as either dead or alive right before the
measurement. Therefore, the concept of defining the state as dead and alive at the same
time is not merely an illustration of our lack of knowledge, but means that the cat’s
state, in the sense of a measurement result, is not even defined.
The inequality proposed by Bell, and similar proposals [114, 115, 116], focused on

the concept of locality. Here, however, we will test reality for a single system, without
the assumption of locality. Such an experimental test based on an inequality was first
proposed by Leggett and Garg in 1985 in the context of macroscopic superconducting
quantum interference devices (SQUID) [117]. Instead of probing correlations of two
spatially separated system, one is interested in state correlations of a single system at
different points in time. This type of inequality (see below) was later termed temporal
Bell inequalities (TBI), and possible variations for the experimental implementation were
proposed [118, 119, 120, 121, 122] and implemented for SQUIDs [123] and for photons
[124], both based on weak measurements.
A TBI similar to the one given by Leggett and Garg [117] can be obtained with only

the assumption of realism:

A1) Realism: The state of any physical system is always well defined, i.e. the dichotomic
variableMn(t), which tells us whether (Mn(t) = 1) or not (Mn(t) = −1) the system
is in state n, is, at any time, Mn(t) = {−1, 1}.

Without loss of generality, in the following we will look at only one state n, and omit this
index. The definition of realism does not necessarily mean that we know the value of
M(t), but merely that it exists, in principle, and that it can be obtained from some set of
time-dependent variables λ(t), the so called hidden variables, i.e. by M(t) = M(λ(t)).
To derive the inequality along the lines of [121], we start by defining the temporal
correlation K(ti, tj) = Kij of M(t) at the two times ti, tj as

Kij =
∫

dλ(t)P (λ(t))MiMj := 〈MiMj〉 , (3.1)

where P (λ(t)) is the probability that a certain evolution λ(t) happens, and Mi =
M(λ(ti)). Kij is the statistical information on Mi given that Mj is known, and vice
versa. We now take the value of M(t) at three points in time, {M1,M2,M3}, for any
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evolution λ(t), and find that

M1M2 +M2M3 −M1M3 ≤ 1, (3.2)

as Mi = {−1, 1} according to A1. By averaging this equation according to eq. (3.1), we
finally obtain the TBI

〈M1M2 +M2M3 −M1M3〉 = 〈M1M2〉+ 〈M2M3〉 − 〈M1M3〉
= K12 +K23 −K13 ≤ 1, (3.3)

which is only based on A1, and is violated by quantum mechanics [117].
However, it turns out that in order to measure violation of eq. (3.3), non-invasive

measurements are required. By measuring K12, K23, K13, i.e. M1M2,M2M3,M1M3,
separately, the dynamics of the system, i.e. the P (λ(t)) in eq. (3.1), are changed
for the intermediate measurement of M2M3 needed for K23. Therefore, the first line
in eq. (3.3) does not hold any more, i.e. we cannot assume eq. (3.3) to be fulfilled
only based on realism. On the other hand, direct measurement of M1,M2,M3 at the
same experimental run will obey eq. (3.2), as the possible measurement results are
Mi = {−1, 1} by definition. A possible solution are weak measurements [125], which
have been used to show violation of a TBI in SQUIDs and for photons [123, 124].
Here, we use a different approach based on a further assumption, namely stationarity

[120, 121]:

A2) Stationarity: The conditional probability Qnm(ti, tj) to find a system in state m
at time tj, if it was in state n at time ti only depends on the time difference
tj − ti = ∆t.

This assumption is fulfilled if the probability distribution P (λ(t)) for the possible evo-
lutions of λ(t) is always the same for a given initial state M(t). Of course, the evolution
λ(t) of the system depends on its interaction with the environment, i.e. we have to
ensure that the environment is stable enough and / or that these interactions are small
enough. As we will see later, Qnm(∆t) is measured to be indeed stable on long time
scales, see fig. 3.1b. Additionally, the decoherence in our system is very small on the
time scale of single measurements, indicating that the influence on the dynamics due
to environmental interactions is small. Nevertheless, it is assumed to be possible to
construct hidden variable theories, which fulfil realism and the observed measurement
results, yet violate stationarity, i.e. our measurement result will impose restrictions on
possible hidden variable models. Qnn(∆t) is connected with Kij by

Kij = K(∆t) = 2Qnn(∆t)− 1. (3.4)

Inserting eq. (3.4) into eq. (3.3) and setting t2 − t1 = t3 − t2 = ∆t we obtain the TBI

Qnn(2∆t)−Q2
nn(∆t) ≥ 0, (3.5)

67



3. Applications of nuclear spin single shot readout

L LMW RF
2000x

QND	init/	
readout

NV-
check

nuclear
state
rotation

Q
11
fτ
b

Time	τ	fμsb0

0.2

0.4

0.6

0.8

1

0 50 100 150

0

0.2

0.4

0.6

0.8

1

-0.2

0 20 40 60 80

Q
11
f2
τb
	-	
Q
11
2 f
τb

c

Clasically
forbidden

-0.209	
±	0.004	

Time	τ	fμsb

a

b

Figure 3.1.: Violation of temporal Bell inequality. a, Measurement sequence (see text). b, Rabi
oscillations of the 14N nuclear spin obtained by varying the duration of the rf pulses in sequence
a, yielding Q11(τ). The blue squares are the measurement results, the green line a cosine fit.
The errors bars are the empirical standard deviation obtained from many chronologically ordered
sub-ensembles of the full measurement data. Therefore, these errors also impose an upper bound
on the long-term temporal fluctuations of Q11(∆t). The measurement points at the red dots were
measured with increased accuracy. c, Calculated result of the TBI eq. (3.5). The green line is the
result of the TBI calculated from the fitting parameters of b. For comparison, the black dashed line
would be the result of an ideal experiment (error-free implementation and measurement of Rabi
oscillations). The red dot corresponds to the two red dots in b.

which can be experimentally tested without the need of measuring the intermediate
correlation of 〈M2M3〉. The temporal Bell inequality eq. (3.5) is violated by quantum
mechanics for a Rabi oscillation with Qnn(∆t) = cos2(Ω∆t) (where Ω is the Rabi fre-
quency), if ∆t corresponds to a rotation of ≈ π/5.1 on the Bloch sphere, yielding a value
of −1/3.

3.1.1. Experimental violation of the temporal Bell inequality
For testing the TBI eq. (3.5) experimentally, we will use the 14N nuclear spin associated
with the NV in diamond. Here, projective, single shot readout is necessary to measure
two-time correlations. Additionally, to observe full-contrast Rabi oscillations (only lim-
ited by the readout fidelity) we also need to initialize the NV into its negative charge
state, which is achieved by charge state pre-selection. The measurement sequence is
shown in fig. 3.1a. First, the state of the 14N nuclear spin is measured by single shot
readout. Second, single shot charge state detection is performed, see section 2.2. Third,
a rf pulse of varying duration induces Rabi oscillations of the nuclear spin. Finally, the
next single shot state measurement of the 14N is performed. Correlating the two 14N
spin state measurements and averaging over many measurements yields the conditional
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3.1. Violation of a temporal Bell inequality

probability Q11(∆t).
Fig. 3.1b shows Q11(∆t) (the Rabi oscillations). We can see that the curve is not

symmetric with respect to Q11(∆t) = 0.5, which is attributed to the limited fidelity of
the charge state pre-selection and the imperfect polarization of the NV electron spin,
cf. section 2.2 and section 2.4. From the measured value of Q11(∆t), we calculate the
result of the TBI eq. (3.5), see fig. 3.1c. These results demonstrate a clear violation of
the TBI.

Conclusions This violation of a TBI indicates that the dynamics of a single nuclear
spin cannot be described by a deterministic theory obeying the realism assumption A1,
however, with the possible loophole that the stationarity assumption A2 is not fulfilled.
More generally, these results indicate that quantum mechanics can, indeed, be considered
as a complete theory, describing the non-deterministic behaviour of nature. A possible
approach to overcome the limiting assumption of stationarity is the use of delayed-choice
measurements, by utilizing a second nuclear qubit [119].
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3. Applications of nuclear spin single shot readout

3.2. Distinguishing between non-orthogonal
quantum states

In this section, we will experimentally investigate optimal, generalized quantum mea-
surements of two non-orthogonal states. The standard description of the quantum mea-
surement process is based on observables [126]. An observable Ô is a hermitian operator,
and can be written in its eigenbasis as

Ô =
∑
m

om |om〉 〈om| , (3.6)

where the eigenvalues om are the possible measurement results and |om〉 the correspond-
ing eigenstate. After the measurement, the system will be in the eigenstate corresponding
to the measurement result om. The probability p(om) to obtain the measurement result
om can be written in terms of projectors P̂m = |om〉 〈om|

p(om) = 〈ψ|om〉 〈om|ψ〉 = 〈ψ| P̂m |ψ〉 , (3.7)

where |ψ〉 is the state of the system. Note that the projectors are orthogonal, i.e. that
P̂mP̂n = 0 for m 6= n. Generalized measurements are based on so called probability
operators Π̂m, whose expectation value is the probability that a measurement yields the
result m [127]. The most important difference to standard measurements is that the
operators Π̂m do not need to be orthogonal.
The generalized measurement description allows for optimal discrimination between

non-orthogonal quantum states. This is important e.g. for quantum communication
[128, 129, 130, 131]. In quantum key distribution, transmission of the key in two non-
orthogonal states leads to improved security [128]. By utilizing unambiguous state dis-
crimination (see below), perfect quantum teleportation even with nonmaximally entan-
gled states can be achieved [131].

3.2.1. Optimal state discrimination
The discrimination of non-orthogonal quantum states can be optimized with respect to
two requirements, which are the minimum-error measurement and unambiguous state
discrimination (USD). In the following, we consider the two non-orthogonal states |a〉 , |b〉
which are defined in an orthogonal basis {|0〉 , |−1〉} as

|a〉 = cos θ|0〉 − sin θ|−1〉, |b〉 = cos θ|0〉+ sin θ|−1〉, (3.8)

where 0 ≤ θ ≤ π/4, and θ is half the angle between |a〉 and |b〉. We assume that no
further prior information about the states is provided, such that the probabilities of the
system to be in state a, b are pa = pb = 0.5.
For the minimum-error measurement, the goal is to minimize the error in identifying
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Figure 3.2.: Geometric representation of measurement basis. a, For optimal USD. b, For
the minimum-error measurement

the state, while each measurement should yield a state assignment. For two states,
this approach also yields the highest mutual information [127]. It turns out that this
can be achieved by a standard projective measurement in an appropriate orthogonal
measurement basis {|a′〉 , |b′〉} [127]. This is illustrated in fig. 3.2b. The orthonormal
basis {|a′〉 , |b′〉} is symmetric to |a〉 , |b〉, with

|a′〉 = 1√
2

(|0〉 − | − 1〉) , |b′〉 = 1√
2

(|0〉+ | − 1〉) , (3.9)

which is independent of the angle θ. A positive result for measurement on |a′〉 indicates
|a〉, and a positive result on |b′〉 indicates |b〉. The error probability of making a false
state identification (with ideal measurements) is [132]

popt
err = 1

2

(
1−

√
1− |〈a|b〉|2

)
. (3.10)

Since every measurement yields a state assignment due to the orthogonal measurement
basis, the probability of a correct result is pcorr = 1− popt

err, which is the highest possible
probability to identify the state correctly.
For unambiguous state discrimination (USD), we require that every state identifica-

tion is correct (for ideal measurements). This is possible by allowing for inconclusive
measurement results. A non-optimal approach (called standard USD in the following)
is obtained by using the orthogonal measurement basis {|a〉, |a⊥〉} or {|b〉, |b⊥〉}, where
|a⊥〉 and |b⊥〉 are orthogonal to |a〉 and |b〉, respectively. Then, a positive measure-
ment result on |a⊥〉 (|b⊥〉) indicates that the state is not |a〉 (|b〉), such that is must be
unambiguously |b〉 (|a〉). Specifically, |a⊥〉 and |b⊥〉 are

|a⊥〉 = sin θ|0〉+ cos θ|−1〉, |b⊥〉 = sin θ|0〉 − cos θ|−1〉. (3.11)
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3. Applications of nuclear spin single shot readout

The drawback compared to minimum-error measurements is that not every measurement
yields a conclusive results, i.e. if the measurement is positive on |a〉 (|b〉), still both
initial states are possible. The probability of such an inconclusive result with ideal
measurements is given by

p? = (1 + |〈a|b〉|2)/2 ≥ 1/2, (3.12)

and the probability of a correct state assignment is

pcorr = 1− p?. (3.13)

Optimal USD was proposed by Ivanovic, Dieks and Peres in [133, 134, 135], and is
optimal in the sense that it yields the lowest possible probability of an inconclusive result.
It is realized by extending the measurement Hilbert space to at least three dimensions
{|0〉 , |−1〉 , |+1〉}. A possible choice of such a measurement basis is illustrated in fig.
3.2a. The measurement basis is spanned by

|ã〉 = 1√
2

(
tan θ|0〉 − |−1〉 −

√
1− tan2 θ|+1〉

)
,

|b̃〉 = 1√
2

(
tan θ|0〉+ |−1〉 −

√
1− tan2 θ|+1〉

)
,

|?〉 =
√

1− tan2 θ|0〉+ tan θ|+1〉, (3.14)

where |ã〉 and |b̃〉 herald the states |a〉 and |b〉, respectively, and |?〉 corresponds to the
inconclusive result. For this basis, the overlap of |ã〉 with |b〉 and of |b̃〉 with |a〉 is
zero, 〈ã|b〉 =

〈
b̃|a
〉

= 0, such that positive results on |ã〉, |b̃〉 yield unambiguous state
assignment. For ideal measurements, the probability of correct state assignment pcorr
and the probability of inconclusive results p? are

pcorr = |〈ã|a〉|2 = |〈b̃|b〉|2 = 1− |〈a|b〉|
p? = |〈?|a〉| = |〈?|b〉| = |〈a|b〉|. (3.15)

3.2.2. Experimental implementation
Here, we implement the generalized measurements introduced in section 3.2.1 on the
14N nuclear spin of the NV. We employ projective, single shot readout of the nuclear
spin and charge state pre-selection (cf. sections 2.2, 3.1.1). The basic measurement
sequence is shown in fig. 3.3a. The first step is the initialization of the 14N nuclear spin
into mI = |0〉 by measurement pre-selection. Then, single shot charge state detection
is performed to pre-select for NV−. After these two initialization steps, the spin opera-
tions for state preparation and measurement are carried out. For the preparation of the
states |a〉 , |b〉 in eq. (3.8), a 2θ pulse is applied onto the mI = |0〉 ↔ |−1〉 transition
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Figure 3.3.: Measurement sequence. a, Basic sequence with 14N initialization and charge state
pre-selection. b, Pulse sequence on the 14N spin for optimal USD.

with phase 0 or π, creating state |a〉 or |b〉, respectively. The measurement basis, which
depends on the chosen generalized measurement protocol as described in section 3.2.1
is realized by rotating the state appropriately on both transitions mI = |0〉 ↔ |−1〉 and
mI = |0〉 ↔ |+1〉 (see below), such that the final measurement in the spin eigenbasis
mI = {|0〉 , |−1〉 , |+1〉} corresponds to the desired measurement basis. This final pro-
jective readout is carried out by subsequent measurements on the eigenstates. Due to
the finite readout fidelity and possible spin flips during readout, multiple positive results
or no positive results for the subsequent measurements can be obtained. For multiple
positive results, we take the first one as the final result. If no positive result is obtained,
the measurement is ignored, which leads to an effective imperfect detection efficiency.
The measurement basis for the minimum error measurement is given in eq. (3.9),

and is independent of the angle θ. It is obtained by applying a π/2 pulse with phase
0 onto the mI = |0〉 ↔ |−1〉 transition. Additionally, we apply a π rotation onto
the mI = |0〉 ↔ |+1〉 transition, such that the final measurement is performed in the
mI = {|−1〉 , |+1〉}, which yields higher fidelities than measurements on mI = |0〉. The
probability to obtain at least one positive measurement result (effective detection effi-
ciency) for this implementation was ≈ 83.1%.
For the standard unambiguous state discrimination, the operations Ûa = |0〉〈a| +
|1〉〈a⊥| and Ûb = |0〉〈b| + |1〉〈b⊥| yield the two possible measurement bases given in eq.
(3.11). These operations are realized by 2θ and -2θ pulses for Ûa and Ûb, respectively, on
themI = |0〉 ↔ |−1〉 transition. Again, a π rotation onto themI = |0〉 ↔ |+1〉 transition
is performed before readout. Depending on the chosen basis, mI = |−1〉 corresponds
to |a⊥〉 or |b⊥〉, and mI = |−1〉 corresponds to |a〉 or |b〉. Here, the effective detection

73



3. Applications of nuclear spin single shot readout

efficiency was ≈ 84.6%.
The pulse sequence for the optimal USD is shown in fig. 3.3b. The operation Û that

generates the measurement basis defined in eq. (3.14) is (in the basis {|0〉 , |−1〉 , |+1〉})

Û = 1√
2


tan θ −1 −

√
1− tan2 θ

tan θ 1 −
√

1− tan2 θ√
2(1− tan2 θ) 0

√
2 tan θ

 . (3.16)

We decompose this operation into two rotations [136, 137], which each act on only one
spin transition. The decomposition is given by Û = T̂0,−1T̂0,+1, with

T̂0,−1 = 1√
2

 1 −1 0
1 1 0
0 0

√
2

 , (3.17)

T̂0,+1 =

 tan θ 0 −
√

1− tan2 θ
0 1 0√

1− tan2 θ 0 tan θ

 . (3.18)

T̂0,+1 corresponds to a θ1 = 2 arcsin(
√

1− tan2 θ) rotation on the mI = |0〉 ↔ |+1〉
transition and T̂0,+1 to a π/2 rotation on the mI = |0〉 ↔ |−1〉 transition. As above,
finally a π rotation on the mI = |0〉 ↔ |+1〉 transition is applied. This has the additional
effect that if the pulse sequence is not successful due to e.g. imperfect electron spin
initialization, the result will be inconclusive. For the final measurement, a positive
result on mI = |0〉, |−1〉, and |+1〉 corresponds to |?〉, |a〉, and |b〉, respectively, where
|?〉 indicates the inconclusive result. Here, the average detection efficiency was ≈ 90.2%.

Method d unambiguous error % efficiency %
SUSD 2 yes ∼ 3.5 84.6
IDP 3 yes 4− 7.5 90.2

Helstrom 2 no > 3.5 83.1

Table 3.1.: Comparison of the three implemented measurement protocols. Column d is the needed
dimension of the Hilbert space. The Helstrom measurement has an inherent error probability; here
we show the minimum error due to measurement imperfections.

Results Table 3.1 compares the three implemented measurement protocols. Fig. 3.4
shows the measurement results. The probability of obtaining a correct results is pcorr =
p(a|a)pa + p(b|b)pb, where p(i|j) is the conditional probability to get result i if state
j was prepared, and pa, pb are the initial state probabilities for |a〉, |b〉, respectively.
Likewise, the probability for an incorrect result is perr = p(b|a)pa + p(a|b)pb, and for an
inconclusive result p? = p(?|a)pa + p(?|b)pb.
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Figure 3.4.: Measurement results. a, Probability for correct result pcorr = p(a|a)pa + p(b|b)pb.
b, Probability for inconclusive result p? = p(?|a)pa + p(?|b)pb. c, Probability for incorrect result
perr = p(b|a)pa+p(a|b)pb. The solid / dotted lines show the expected result for ideal measurements.

A main drawback of the standard USD is that only one state can be probed, i.e. if
the system is initially in the other state, the result will always be inconclusive. This
can be seen in fig. 3.4a, b: The probability for a correct result is at most 0.5, and the
probability for an inconclusive result always > 0.5. For optimal USD, both states can
be probed independently, leading to better results for pcorr and p?. However, due to
the increased experimental complexity the error probability is slightly increased, see fig.
3.4c and table 3.1.
An important comparison is the probability for an incorrect result perr of the USD

and the minimum error measurement. Ideally, for USD there should be no incorrect
results, whereas these are expected for the minimum error measurement. Nevertheless,
due to experimental imperfections there will be incorrect results for all measurement
protocols. Fig. 3.4c shows that for small overlap 〈a|b〉, perr is similar for all three
implementations, and mainly limited by the readout fidelity for the minimum error
measurement. Only for larger overlap 〈a|b〉, perr, the intrinsic perr of the minimum error
measurement dominates. On the other hand, the probability of a correct result for the
minimum-error measurement is higher than for USD, as expected.

Conclusions Here, we have implemented generalized measurements for the first time
in solid state qubits, which has previously only been done optically [138, 139]. This was
achieved by making use of the qutrit character of the 14N nuclear spin. The ability to
perform these type of measurements is of interest for QIP, and confirms this potential
application of the NV.
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3. Applications of nuclear spin single shot readout

3.3. High-dynamic-range magnetometry

A promising application of the NV is sensing of magnetic fields and other physical values,
e.g. electric fields and temperature. These sensing methods are based on measuring
energy shifts of the NV’s spin state transitions, i.e. shifts of the Lamor frequency,
via phase accumulation [25, 23, 24]. The Lamor frequency can be measured efficiently
by Ramsey interferometry, also called free induction decay (FID), see section 1.3.1.
Thereby, a coherent superposition of two spin states can be generated via a π/2 pulse.
In the rotating frame of the rf signal, the phase of this superposition will evolve with
the frequency difference of the rf and the Lamor frequency, such that the state rotates
around the z-axis of the Bloch sphere. After a waiting time τ , a second π/2 pulse
rotates the state around the same axis as the first pulse, and thereby maps the phase φ
accumulated during the waiting time τ onto the eigenstate populations of the spin, which
is then obtained by measurement. For magnetic field sensing, the frequency difference
ω of the rf and the Lamor frequency is proportional to magnetic field changes B due to
the Zeeman interaction, such that

ω = φ

τ
∝ γB · Ŝ (3.19)

where γ is the spin’s gyromagnetic ratio and Ŝ the spin operator.
In section 3.3.1, we show the accuracy scaling and ambiguity behavior of Lamor

frequency-based measurements. We will see that for high sensitivity measurements,
long phase accumulation times τ are desired, whereas short phase accumulation times
yield a large accessible range (e.g. magnetic field range with unambiguous results) for
the sensor. This contradiction can be tackled by a so called quantum phase estimation
algorithm (QPEA), which is introduced in section 3.3.2. Finally, this algorithm will be
implemented experimentally on the 14N of the NV, see section 3.3.3.
The results of this section have been published in [45]. A similar study which uses the

electron spin of the NV for implementation of the QPEA, however, without single shot
readout, was published in [140].

3.3.1. Accuracy scaling and ambiguity

The accuracy of Ramsey based phase estimation is limited by the final readout for
determining the state populations. For single shot readout, the signal contrast is given
by the readout fidelity, and the noise for this measurement is quantum shot noise, because
of the probabilistic nature of quantum mechanics, which are both independent of the
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3.3. High-dynamic-range magnetometry

phase accumulation time τ 1. The accuracy σ of the frequency ω in eq. (3.19) is therefore

σ ∝ 1
τ
. (3.20)

In principle, increasing the total measurement time T by increasing τ yields the 1/T limit
of the precision. However, the phase accumulation time τ is limited by the coherence time
T2 (for AC magnetometry) of the spin. This yields the highest achievable precision of σ ∝
1/T2 for a single measurement. Upon repeating measurements with phase accumulation
time τ , the final precision scales as

σ ∝ 1
τ
√
N

= 1√
Tτ

(3.21)

where N is the number of repetitions. In the following, we refer to eq. (3.21) as the
1/
√
T limit, where T = τN is the total measurement time. Here, the time needed for ini-

tialization and readout of the system is ignored, as we are interested in the performance
of our algorithm, independent of the details of the implementation. The relationship
eq. (3.21) does not only apply to phase measurements, but to any sensor whose preci-
sion is limited by only quantum shot-noise (statistical noise), according to the central
limit theorem. Due to this fundamental mathematical relationship of the measurement
precision with the total measurement time, the achievable precision is usually given in
terms of sensitivity, which is obtained by multiplying the achieved precision σ with the
square-root of the total measurement time T . Here, in the case of magnetometry based
on phase estimation, the magnetic field sensitivity δB is

δB ∝ σ
√
T ∝ 1

τ

1√
N

√
T = 1√

τ
, (3.22)

where we used eq. (3.20), eq. (3.21) and T =
√
τN .

These 1/
√
T limit and 1/T limit are exemplified in fig. 3.5, where the square of

the sensitivity δB is plotted versus the total phase accumulation time T . In a real
experiment, the achieved sensitivity will be reduced by the limited measurement fidelity
and decoherence of the spin. This leads to an overhead compared to the limits, which
is why only 1/

√
T or 1/T scaling is observed.

Due to the periodicity of the phase signal, the phase and magnetic field estimates will
be ambiguous. This means that the phase accumulation time τ must be chosen such that
the maximum magnetic field Bmax leads to a phase accumulation of at most φmax = π,
where

Bmax ∝
1
τ
, (3.23)

1Note that the quantum shot noise actually depends on the state populations, i.e. on the accumulated
phase. This effect, however, is countered by the dependency of the state population on the phase,
which is weak for points where the shot noise is low. Nevertheless, these considerations can be
neglected for an unknown phase accumulation frequency.
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Figure 3.5.: Schematic limits and scaling of Ramsey based phase estimation.

cf. eq. (3.19). As can be seen from eq. (3.22) and eq. (3.23), the maximum magnetic
field decreases faster with the phase accumulation time than the sensitivity. The dynamic
range, which is the maximum field divided by the sensitivity, therefore decreases with√
τ . As an example, for an achieved sensitivity of 4 nT√

Hz with the NV [22], the accessible
field range is only ∆B ∈ [−31nT, 31nT). If this prior information of the maximum
magnetic field is not available, the phase accumulation time τ has to be decreased,
which in turn decreases the sensitivity.

3.3.2. Quantum phase estimation algorithm
Recently, algorithms for improved phase estimation with photons were introduced in the
context of Heisenberg limited measurements [141, 142, 143], and also proposed for the
NV [144]. To achieve both high sensitivity according to eq. (3.22) and unambiguous
field measurements according to eq. (3.23), weighted measurements with different phase
accumulation times τk are performed. The sensing times are chosen as

τk = τ02k, k = 0, 1, ..., K. (3.24)
In our case, we set τ0 = 20µs, which was technically limited by the experiment (see
section 3.3.3). In the following, we express the total measurement more generally by
the number of resources N , where one resource is N = 1 =̂ τ0, as this is the minimal
phase accumulation time. The weighting is implemented by adjusting the number of
measurement repetitions M at each τk by

M(K,k) = MK + F (K − k). (3.25)
Here we use MK = 36 and F = 8. The total number of resources NK and the total
measurement time TK depending on K are

NK =
K∑
k=0

M(K,k) · 2k

TK = τ0 ·
K∑
k=0

M(K,k) · 2k = τ0 ·NK , (3.26)
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Figure 3.6.: QPEA algorithm. a, Number of measurement repetitions M(K,k) for each τk ac-
cording to eq. (3.25). b, Number of resources M(K,k) · 2k for each τk.

Even though the number of measurement repetitions decreases for longer phase accumu-
lation times τ according to eq. (3.25), most the the measurement resources (i.e. time)
are still expended on the longest and most sensitive measurements, see fig. 3.6. Ad-
ditionally, a controlled phase shift θC is introduced, to determine the phase φ modulo
2π. Here, we implement fixed phase shifts of 0, π/2, π, 3π/2. Another possibility are
adaptive phase shifts with feedback from the measurement results [144], which is not
implemented here for technical reasons.
To obtain the final estimate for the phase, a most-likelihood estimation is performed.

For each repetition of the Ramsey experiment the final state of the system is measured,
which yields either 0 or 1. These results provide information about the accumulated
phase φ according to the probability distribution [144]

P (±1|φ) = 1
2
[
1± (1− 2F 2)eτk/T2cos(2kφ− θC)

]
, (3.27)

where P (±1|φ) is the conditional probability that the accumulated phase is φ given that
the measurement yielded result ±1, F is the measurement fidelity and T2 the coherence
time. The final probability distribution of the algorithm is obtained by multiplication
of the single probability distributions eq. (3.27) as

P (φ) =
∏
i

Pi(mi|φ), (3.28)

where mi is the i’th measurement results. The maximal point of this distribution is
taken as the final result for the phase estimate φ.
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Figure 3.7.: Full sequence for Ramsey interferometry. a, Energy level scheme and used tran-
sitions. b, Full pulse sequence. c, Flow chart of the measurement and analyzation logic (see
text)
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3.3. High-dynamic-range magnetometry

3.3.3. Experimental implementation of the QPEA

Here, we implement the QPEA introduced in section 3.3.2 on the 14N nuclear spin of
the NV, and employ single shot readout (see section 1.2.4) to achieve quantum limited
measurements. As a first step, we perform a Ramsey experiment with varying phase
accumulation time τ . In addition to the measurement preselection for initialization of
the nuclear spin, we also develop a new method to postselect the experiment for the
negative charge state NV−. This method exploits the qutrit states of 14N . The full
measurement and pulse sequence is shown in fig. 3.7. First, the 14N spin is initialized
into mN = +1 by single shot measurement. Then, a π rotation with rf1 is performed on
the mN = +1 ↔ 0 transition. This rotation will only work if the NV is in the correct
electronic state NV− and mS = 0, i.e. if the driving field is in resonance with the nu-
clear spin transition. The actual QPEA experiment is carried out in the mN = {0,−1}
subspace with rf2. Finally, two single shot measurements are performed. The first mea-
surement is on mN = +1. If the spin is still in this state, the previous π rotation did
not work, from which we infer that the NV was not in the correct electronic state. The
second measurement is on mN = −1, and yields the actual result of the experiment,
which is discarded if the NV was in the wrong state according to the first measurement.
Note that this postselection technique can also be used to limit the magnetic field range
to which the sensor is sensitive. The frequency range of the rf1 π pulse can be adjusted
by either the used rf power, or by optimal control (cf. section 1.3.2). If the magnetic
field is then not within the desired range, the pulse will not work and the measurement
results are omitted.
Fig. 3.8 shows the result of a Ramsey experiment on the 14N nuclear spin with the

above described measurement sequence. From this measurement, we can extract the
contrast of the Ramsey fringes of 1− 2F 2 = 0.79 and the coherence time T2 = 7.25 ms,
which are both needed to calculate the probability distribution eq. (3.27). Due to the
finite length of the π/2 pulses, an additional phase is accumulated during these pulses,
even for a phase accumulation time τ = 0, see fig. 3.8b. This phase corresponds to
an additional, fixed phase accumulation time ε, such that the total phase accumulation
time τ ′ = τ + ε. Here, ε = 20 µs, which also limits the smallest phase accumulation time
τ0. In the following, we omit the dash of τ ′ and refer to the total phase accumulation
time as τ .
Fig. 3.9a shows an example probability distribution of the phase / magnetic field

estimate for one run of the QPEA. It illustrates that measurements with small k (short
τk) remove ambiguity, while measurements with large k (long τk) yield high sensitivity.
The precision is determined empirically by repeating the algorithm many times, and for
each run take the maximal point of the distribution as the result, see fig. 3.9b. From the
histogram of estimation results, we calculate the standard deviation of one single run of
the QPEA. Note that the standard deviation of one single run could also be calculated
directly from the obtained probability distribution. During this measurement, fluctua-
tions of the magnetic field can occur due to thermal drifts of the permanent magnet,
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Figure 3.8.: Ramsey fringes. a, Result of the Ramsey experiments on the 14N nuclear spin. The
black line are the measurement results, and the red line a cosine fit 1

2

[
1± (1− 2F 2)eτ/T2cos(ωτ)

]
.

Here, 1− 2F 2 = 0.79 and T2 = 7.25 ms. The blue dots are the measurement points used for the
QPEA. b, Magnification of the Ramsey fringes for small τ , such that the fixed offset off 20 µs due
to the length of the π/2 is visible. c, Schematic Ramsey sequence.
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such that the obtained variance would be limited by these fluctuations. Therefore, we
use the much more sensitive electron spin to periodically determine the current magnetic
field, and adjust the rf according to the Zeeman shift of the nuclear spin states. By doing
so, the frequency difference of the rf and the Lamor frequency is kept constant, and the
pure statistical variance of the estimate can be measured.
To analyse the precision scaling of the QPEA, we increase the total measurement

time T by increasing the parameter K, see section 3.3.2. The relationship between the
standard deviation of the magnetic field (σB) and of the phase (σφ) is

σB = σφ
γNτ0

, (3.29)

where γN is the gyromagentic ratio of 14N . The field sensitivity δB is

δB =
√
σ2
BT . (3.30)

Fig. 3.10a shows the sensitivity scaling of the standard measurement approach compared
with the QPEA. The precision of the standard measurement scales with 1/

√
T (constant

sensitivity), as expected. For the QPEA, we find a precision scaling of 1/T 0.85, such
that the precision of the QPEA surpasses the 1/

√
T quantum limit. Besides the vertical

offset of the sensitivity due to limited readout fidelity and decoherence, there is also
an additional horizontal overhead of the QPEA compared to the 1/T limit due to the
measurement with short τk, which remove the ambiguity. The increase of the sensitivity
of the QPEA at the last two points is because τk becomes larger than the coherence time
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tivity scaling of the standard measurement by repeating Ramsey interferometry with only τ0 (blue
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are the quantum limits (see section 3.3.1), which were calculated by assuming 100 % measurement
fidelity and no decoherence. b, Sensitivity and maximum magnetic field of standard measurement
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T2 = 7.25 ms (cf. fig. 3.8).
The advantage of the QPEA compared to the standard measurement is that both

maximal sensitivity and high dynamic range can be achieved. This is illustrated in
fig. 3.10b. It shows the magnetic field sensitivity of both the QPEA and the standard
measurement, depending on the maximal magnetic field ∆Bmax. As explained in section
3.3.1, the sensitivity of the standard measurement becomes worse as ∆Bmax is increased,
which is due to the decrease of the sensing time τ0. For the same maximal magnetic
field, the sensitivity of the QPEA is a factor of 8 better than that of the standard
measurement. Vice versa, for the same sensitivity, the dynamic range of the QPEA is a
factor of 130 larger compared to the standard measurement.

3.3.4. Conclusion
We have experimentally demonstrated that a quantum phase estimation algorithm can
be applied to improve the dynamic range of magnetic field measurements, by increasing
either the maximal magnetic field for a given sensitivity, or increasing the sensitivity for
a given maximal magnetic field, compared to the standard measurement. In our case,
the maximal magnetic field range is technically limited by available rf power, which leads
to a smallest phase accumulation time τ0 = 20 µs due to the finite length of the pulses. A
possibility to increase this range besides the rf power is optimal control, which has been
applied in [145]. Here, we relied on the nuclear spin for field sensing to show and apply
the basic principle of the QPEA. The electron spin would be more suitable for practical
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field sensing due to its factor ≈ 9000 higher gyromagnetic ratio. This could even be
combined with single shot readout of the nuclear spin, by mapping the electron spin
state onto the nuclear spin after the Ramsey interferometry, and subsequent readout of
the nuclear spin.
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4. Quantum register based on single
nuclear spins: Quantum error
correction

Nuclear spins in the vicinity of an NV can provide a powerful resource to increase the
versatility of a single NV. This has already been exploited in the previous chapters,
where projective measurements of the nitrogen nuclear spin via quantum logic readout
was applied. Especially for quantum information processing (QIP) with the NV, nuclear
spins can prove to be of high importance. Due to the extreme isolation of nuclear
spins from the environment, nuclear spin resonance (NMR) has enabled many proof-
of-principle experiments for QIP [9]. However, ensemble based NMR imposes several
drawbacks for scalable QIP, see section 1.1. The extreme isolation of nuclear spins makes
direct measurements of single nuclear spins impossible with conventional technology
using pick-up coils. Here, hybrid spin systems with coupled electron and nuclear spins
are a promising approach. Thereby, the electron spin provides readout, non-local control
and scalability, whereas the nuclear spins can be used as long-lived qubits. For the NV,
nuclear spins are provided by nearby 13C atoms in the diamond lattice, apart from the
always-present 14N nuclear spin.
In this chapter, we will implement a fully-functional nuclear spin register based on

the NV, where the NV electron spin provides access to the single nuclear spins. Fully-
functional means that we can initialize the whole register, perform projective readout of
individual qubits, and can implement fast local and non-local gates, i.e. have universal
control of the register. With the potential scalability of NV center arrays [50, 49], these
features address all requirements needed for scalable QIP. In section 4.1, we show that
projective readout of multiple 13C nuclear spin with a single NV is possible. We use this
projective readout combined with swap-like gates from the electron spin to the nuclear
spins for high-fidelity initialization of the register, see section 4.2. Non-local control
of the nuclear spins is realized by exploiting the hyperfine interaction with the electron
spin, as explained in section 4.3. Optimal control allows for high-fidelity implementation
of the non-local gates (section 4.4). Finally, in section 4.5 we will utilize these tools to
implement phase flip quantum error correction (QEC) on a three-qubit nuclear spin
register. Furthermore, we will analyze the number of usable 13C spins (section 4.6), and
demonstrate detection of a so-called weakly coupled 13C spin at high magnetic fields
(section 4.7).
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The results of this chapter are published in [48].

4.1. Single shot readout of 13C nuclear spins
Projective, single-shot readout of 13C nuclear spins can be achieved in a similar fashion
as for the 14N nuclear spin, by repetitively mapping the state of the nuclear spin onto the
electron, and subsequent optical readout of the electron spin. In order to map the 13C
nuclear spin state onto the electron spin by a mw pulse, the coupling between nuclear and
electron spin must be larger than linewidth of the electron transition (so-called strong
coupling). Additionally, a long lifetime of the nuclear spin during the optical cycle of
the NV is required, see section 1.2.4. Furthermore, the duration of non-local gates scales
inversely with the hyperfine interaction, i.e. stronger hyperfine interaction enables faster
non-local gates. Therefore, we use a diamond with 0.2 % 13C content. This value is a
compromise for strongly coupled 13C spins being robust against electron spin flips, but
still enabling non-local gates much faster than the electron T2 and T1 times.
To find 13C nuclear spins positions suitable for single shot readout (SSR), we acquired
statistics of possible 13C hyperfine splittings for almost 3300 NVs. For each analyzed
NV, the EPR spectrum is measured, e.g. as shown in Fig. 4.3b. A multi-peak function
fit was used to determine hyperfine interactions larger than approximately 100 kHz, as
the line width of the transition is around 50 kHz FWHM. These measurements where
performed at magnetic fields of around 10 Gauss. However, the magnetic field was not
aligned for all NVs, which can slightly alter the measured hyperfine interaction compared
to the value at zero field or at small, aligned magnetic fields. The deviation is expected
to be below 2.5 % (in the worst case of pure dipolar hyperfine interaction, unfavorable
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Figure 4.2.: Solid immersion lens. a, Scanning electron microscope picture of the SIL. b, Fluo-
rescence saturation curves of the same NV with and without SIL

13C position and perpendicular magnetic field). Finally, we can create a hyperfine prob-
ability spectrum in the following way: For each observed hyperfine interaction, we take
a Gaussian distribution at the center of the observed value, and a standard deviation
according to the fit accuracy. Summing up over all measured values results in the spec-
trum shown in Fig. 4.1. By trying to perform single shot readout on these 13C spins,
we found that the hyperfine splitting (in kHz) of 124, 211, 384, 422, 517 are usable for
single shot readout at magnetic fields of around 0.5 T, with spin lifetimes (in readout
steps) comparable to or better than 14N [41].

4.2. Three-qubit nuclear register: Readout and
initialization

Figure 4.3a illustrates our hybrid spin register, which consists of the NV electron spin, the
14N nuclear spin (I = 1), and two 13C nuclear spins (I = 1

2) with hyperfine interactions
of 413 kHz (13C1) and 89 kHz (13C2). Figure 4.3b shows the hyperfine splitting of the
electron mS = 0↔ −1 transition into 12 individual lines, corresponding to the 12 states
of the nuclear register. A magnetic field of around 6200 Gauss that is applied parallel
to the symmetry axis of the NV decouples the dynamics of the nuclear spins from the
electron spin, which is necessary for single shot readout (cf. section 1.2.4). Additionally,
to improve the readout fidelities and reduce the measurement time, we created a solid
immersion lens (SIL) within the surface of the diamond [146]. This inhibits fluorescence
photon losses due to total internal reflection at the diamond surface, thus increasing the
detected fluorescence count rate. A picture of the SIL is shown in fig. 4.2a. The SIL
increases the detected fluorescence by a factor of > 3.
Similar to the single shot readout of the 14N (see section 1.2.4), we can map any

eigenstate of the nuclear register onto the electron spin. This is achieved by applying
frequency selective microwave (mw) π-pulses resonant with the corresponding transition
lines of the electron (see fig. 4.3b), which yields a CnNOTe operation. For example,
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multiple mw pulses can be applied onto all lines corresponding to the state of one
nuclear spin, in order to map the state of this nuclear spin onto the electron spin, see
fig. 4.3c. Fluorescence time traces of the NV while performing repetitive readout of
the three nuclear spins are shown in fig. 4.3d. Fig. 4.3d also shows histograms of the
measurement results. We can see the two distinct fluorescence levels corresponding to
different nuclear spin states, which enables single shot readout. The achieved single shot
readout fidelities are 95.8 % for 14N , 96.9 % for 13C1 and 99.6 % for 13C2. For the
following experiments, we did not read out the separate nuclear spins as shown in fig.
4.3d, but rather directly probe one state of the total register, by applying the CnNOTe
gate in fig. 4.3c on only one transition shown in fig. 4.3b. The average readout fidelity
of the whole register after the post-selection measurement (see below) is ≈ 89 %.

Nuclear spin initialization To initialize the nuclear register, we use a combination
of projective readout and swap-like gates with the electron spin. The full pulse sequence
for this is shown in fig. 4.3e, under ’nuclear initialization’. The main drawback of
measurement-based initialization is that it is a probabilistic method, which does not
allow deterministic state initialization. Especially for an increasing number of systems,
the probability of successful initialization decreases exponentially. However, we can map
the initialized state of the electron spin (which can be initialized deterministically) onto
the nuclear spins [38]: First, the state of the nuclear spin is mapped onto the electron
via a CnNOTe gate (as described above). Then, a CeNOTn gate is applied to map the
electron spin state onto the nuclear spin. Finally, a laser pulse re-polarizes the electron
spin into mS = 0. Effectively, the two gates flip the nuclear spin only if it is in one
state (e.g. in |1〉, leaving it unaffected if it already is in the desired state (here |0〉). The
polarization efficiency of the whole register with this sequence is around 50 %, owing to
the finite probability of the NV being in NV− (around 70 %) and limited pulse fidelities.
As explained in section 1.2.4, the initialization fidelity can be increased by shifting the

photon count threshold for single shot readout to lower photon count numbers. Due to
the overlap of the photon count distributions of the two fluorescence levels, photon count
numbers that are close to the threshold have a higher probability to give a wrong result.
By using a lower initialization threshold, these results are thrown away, and only photon
count values with a high probability to yield the correct spin state are used. However, this
pre-selection of initialization measurement comes at the expense of reduced initialization
probability. To get an estimate of the initialization fidelity into state |14N,13 C1,

13 C2〉 =
|+1, 0, 0〉, a second single shot measurement after the initialization sequence shown in fig.
4.3e is needed. First, an estimate of the fidelity of this second measurement is made. By
using the same threshold for both single shot measurements, the measured conditional
probability of finding the system in state |ψ〉 = |+1, 0, 0〉 for the second measurement
if it was in this state for the first measurement is p(ψ|ψ) ≈ F 2

0 , where F0 is the fidelity
of a single measurement. Then, the threshold for the first initialization measurement
is shifted, and the above defined conditional probability is now pshift(ψ|ψ) ≈ FinitF0,
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Figure 4.3.: NV based hybrid electron and nuclear spin register. a, Illustration of the quantum
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2〉, respectively. c, Wire diagram for the projective readout of the nuclear spins, here
exemplified for the 13C 1 spin (see text and section 1.2.4). d, Left side: Time trace of the NV
fluorescence during repetitive readout of the corresponding nuclear spin as shown in c. The jumps
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the flip rate, which allows for projective readout. Right side: Histograms of measurement results of
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Figure 4.4.: Initialization of the nuclear register. Initialization fidelity of the nuclear register
with a combination of swap-like gates with the electron spin and single shot readout (cf. fig. 4.3e)
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yielding the initialization fidelity Finit. Fig. 4.4 shows the estimated initialization fidelity
using different thresholds for the initialization, depending on the number of readout steps
(readout laser pulses).

Electronic initialization As we have seen in Chapter 2, not only the electron spin has
to be initialized for QIP, but also the charge state of the NV. Here, we will use a method
similar as described in section 3.3, which is based on post-selection of the charge state by
exploiting the usually unused third state of the 14N nuclear spin. Thereby, a nuclear spin
π rotation conditional on the NV being in its negative charge state is performed. After
implementing the actual experiment, the success of this initial state flip can be probed
by single shot readout. Here, we use a slightly modified version of this scheme, which
is shown in fig. 4.3e as ’post-selection’. First, a frequency-selective electron π pulse at
the transition frequency corresponding to the initial nuclear register state is performed,
to flip the electron spin into mS = −1. Then, the 14N π rotation conditional on NV−
and on mS = −1 is applied. This allows for post-selection not only on the charge state,
but also on the success of the electron π pulse. If, due to thermal drifts of the external
magnetic field or due to fluctuations of the Overhauser field, the transition frequency of
the electron spin is not within the frequency range of the electron π pulse, the 14N π
pulse will not be successful, and the result of the experiment can be discarded.
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4.3. Selective and Non-local gates
For universal control of the nuclear register both local gates selective for each qubit and
non-local gates have to be applied. By performing the gates in the mS = −1 subspace
of the electron spin, all local gates can be applied selectively to each nuclear spin via
their distinct hyperfine interaction, see fig. 4.3e.
Non-local gates between nuclear spins are realized via the hyperfine interaction with

the electron spin. Due to the low magnetic moment, the interaction between two nuclear
spins is too weak to allow for direct conditional state manipulation within the nulcear
spin T2 time, which is limited by the electron spin T1 of around 7 ms. In principle, non-
local gates between two nuclear spins can be implemented in a straightforward manner
by a series of CNOT gates implemented by selective π-pulses, as shown in fig. 4.5a.
However, this sequence involves coherences on the electron spin while applying gates
on the nuclear spins. Because the duration of nuclear gates is longer than the electron
T ∗2 time (here T ∗2 ≈ 9µs), direct implementation of this sequence is not possible. A
possible solution would be a combination of dynamical decoupling of the electron spin
during implementation of the nuclear spin gate [147]. Instead, here we use an approach
that does not rely on nuclear spin manipulation while having coherences on the electron
spin. The scheme is based on a controlled 2πx rotation of the electron spin conditional
on the state of the nuclear register [148], which will change the phase of the state by
π. Therefore, this rotation effectively acts as a CPhase gate on the nuclear register,
allowing for non-local nuclear spin gates.
An example of how to implement a CNOT gate between two nuclear spins using this

CPhase gate is shown in fig. 4.5b. We start with e.g. 14N in state |ψ〉 = α |0〉 + β |1〉
and 13C initialized in |0〉. Then, a (−π/2)x pulse is applied to 13C , to obtain (excluding
normalization)

|14N,13C〉 = α|00〉+ iα|01〉+ β|10〉+ iβ|11〉. (4.1)
Now, a CPhase gate based on an electron spin 2πx rotation conditional on the nuclear
spin state being |11〉 will yield a phase shift of π. This results in the (already entangled)
state

α|00〉+ iα|01〉+ β|10〉 − iβ|11〉. (4.2)
A final 13C πx pulse finishes the CNOT gate and yields

α|00〉 − iβ|11〉. (4.3)

A major limitation for the fidelity of this gate is that it must be implemented both
spectrally selective to be conditional on the nuclear register state, and at the same time
be robust against spectral detuning due to inhomogeneous broadening of the electron
spin transition. To achieve this high-fidelity, yet conditional implementation of the
CPhase gate, we use optimal control based on the GRAPE-algorithm as explained in
section 1.3.2. A possible control sequence is shown in fig. 4.5c, which was used for the
creation of the GHZ state in section 4.4.
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Figure 4.5.: Nuclear spin CNot gates. a, Scheme for non-local nuclear spin gates via the electron
spin. b, Implementation by a nuclear CPhase gate, realized by a 2πx rotation of the electron spin
conditional on the nuclear spin states. c, Illustration of the robust implementation of the conditional
2π rotation on the electron spin, for the gate used in section 4.4 to generate the GHZ state, see
fig. 4.6b. Upper part: Transition spectrum of the electron spin. Two mw frequencies f1 and f2
are applied to cover the full spectrum. Lower part: Control steps for both frequencies, each step is
1.46 µs long.
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Figure 4.6.: Entanglement of nuclear spins. a, Schematic sequence for entanglement and state
tomography. The initialization step is explained in fig. 4.3e. The preparation step is either sequence
b for the GHZ state or d for the W state. The tomography and measurement steps are iterated
over all measurement operators needed for tomography, as explained in appendix B.1. b, Pulse
sequence for creating a GHZ-like state. c, Reconstructed density matrix of the GHZ state. e, Pulse
sequence for creating a W state. f, Reconstructed density matrix of the W state.

4.4. Entanglement of three nuclear spins
Utilizing the techniques for initialization and readout as described in section 4.2 and for
non-local nuclear spin gates as described in section 4.3, we can now create three-qubit
entangled states of the nuclear spins, and perform state tomography. For three qubits,
there are two types of maximally entangled states, which cannot be transformed into
each other by only local gates. These two states are the so-called GHZ state (excluding
normalization)

|GHZ〉 = |000〉+ |111〉 (4.4)

and the W state
|W〉 = |001〉+ |010〉+ |100〉 . (4.5)

Fig. 4.6b,d shows the sequences that create these two types of states. Here, the GHZ like
state |0y−y−〉 + |1y+y+〉 is created, which differs from the GHZ state eq. (4.4) only by
local rotations. After preparation, these states are then measured by state tomography,
see appendix B.1. Fig. 4.6c,e shows the reconstructed density matrices. The fidelity
F = 〈ψ |ρ|ψ〉 of the prepared state ρ can be estimated by correcting for the readout
fidelity of ≈ 89 %, which yields F = (88±1)% for the GHZ state and F = (85±3)% for
the W state. This fidelity is reduced by the fidelity of the robust 2π pulses (≈ 95 %),
the T1 decay of the electron spin (≈ 96%) and initialization and post-selection fidelity
(≈ 97%).
In addition to state tomography, we also demonstrate violation of the Mermin inequal-
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ity [149]. The Mermin inequality generalizes the inequalities devised by Bell [112] and
Greenberger et. al. [116] to n-particle entanglement. These types of inequalities hold
for any local, realistic theory [116], but are violated by quantum mechanics. Therefore,
experimental violation of such an inequality is considered as proving genuine quantum
entanglement. Note that for most implementations, loopholes have to be taken into ac-
count, e.g. the locality-loophole, as is the case here, or the detection loophole (in which
case the fair sampling assumption has to be invoked). For the GHZ-like state shown in
fig. 4.6b,c the corresponding Mermin inequality is (see appendix C)

|〈σxσxσz〉+ 〈σxσzσx〉+ 〈σyσxσx〉 − 〈σyσzσz〉| ≤ 2. (4.6)

The ideal quantum state shown in fig. 4.6b would violate this inequality and yield a
value of 4. Here, we measured a value of 3.258 ± 0.014, clearly showing the non-classical
nature of this state.

4.5. Quantum error correction
Here, we will experimentally implement three-qubit quantum error correction in the
above presented nuclear spin register. QEC is a mile-stone experiment for systems that
are supposed to be usable for QIP, due to the importance of QEC for scalable QIP (see
section 1.1.2) and due to high experimental demands, thus demonstrating the achieved
level of control [150, 151, 152, 153, 154, 71, 10]. Here, we demonstrate for the first
time QEC in a solid state spin system. As bit-flip and phase-flip correction codes are
essentially the same, here we only implement phase-flip error correction, because the
rate of phase flips is usually the dominating one.
Historically, so-called syndrome measurements were introduced to enable QEC (see

section 1.1.2), which detect if and which error happened by measuring in which subspace
of the total Hilbert space the system is in. Once the error is known, it can easily
be corrected by appropriate gates. Alternatively, the syndrome measurement can be
replaced by an ancillary qubit, which has to be reset after each correction step. For
our register, both these approaches are not possible. During the readout of the nuclear
spins via the electron spin or the reset of the electron spin (as the ancillary qubit),
the unknown dynamics of the electron spin will destroy nuclear spin coherence due
to the hyperfine interaction. Therefore, we use a different approach, which was also
implemented in cold ions [151] and SQUIDs [10]. This code is based on restoring the
state of one qubit (here 13C2), and transferring any errors onto the other two qubits
(14N and 13C1). For repetitive QEC, which is not implemented here, the state of the
other two qubits has to be reset after each correction step. This approach does not
need measurements of ancillary qubits. Fig. 4.7 illustrates this correction scheme.
First, the initial state |ψ〉 = α |0〉 + β |1〉 of 13C2 is encoded into a three-qubit state as
|14N,13 C1,

13 C2〉 = α |y+y+y+〉+ β |y−y−y−〉. Since we are only interested in the state of
13C2 after the correction, we will, as an example, consider an error on this qubit. After
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Figure 4.7.: QEC sequence. a, Implemented sequence for phase-flip QEC. Upper part: Actual
pulse sequence in the experiment. Lower part: Effective operations within the nuclear register.
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b, Illustration of the detection and correction steps within the three-qubit register states. The
chronological order of the two gates in step 1 is not relevant. Note that the gates in the detection
step 1 are the same as used for the encoding.
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the blue circles is for the experimental implementation. Likewise, the red dashed line is for the ideal
case with QEC and with possible errors on all qubits (same probability), f(p) = 1− 3p2 + 2p3, and
the red circles are for the experimental implementation.

the decoding, the state will be α |000〉+ β |111〉 in case of no error and α |001〉+ β |110〉
in case of an error on 13C2. The first step of the correction is to apply a conditional flip
on 14N and 13C1 depending on 13C2 being in state |1〉. Due to this step, errors of 13C2
are detected by the other two qubits: If all three qubits are in the same state, i.e. |000〉
or |111〉, the final state of 14N and 13C1 will be |00〉, indicating that no error happened
on 13C2. On the other hand, if there was an error on 13C2, the state is |001〉 or |110〉,
and the final state of 14N and 13C1 will be |11〉, indicating this error. Thus, by applying
a final conditional flip on 13C2 if 14N and 13C1 are in state |11〉, the original state on
13C2 is restored. These detection and correction gates are also illustrated in fig. 4.7b.
To demonstrate the implementation of this QEC code, we perform process tomography
to determine the fidelity of the implemented process on 13C2 with the ideal process,
which is the unity operator 1, as described in appendix B.2. Controlled phase errors on
a qubit are introduced by changing the phase of all pulses (gates) on this qubit after
the error step. Fig. 4.8 shows the results of the experiment. The green triangles are
the process fidelity of the implemented QEC, while errors only appear on 13C2. Indeed,
these single errors are faithfully corrected by the algorithm. The blue circles and the red
dots are the process fidelity without QEC and with QEC, respectively. This comparison
shows that for zero error probability, the process fidelity with QEC is reduced compared
to the case without QEC due to the increased complexity of the measurement. However,
for an error probability >≈ 0.15, the implementation of QEC is beneficial, as indicated
by the red area in fig. 4.8.
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4.6. Estimated number of strongly and weakly
coupled nuclear spin

In the previous part of this chapter, we relied on strongly coupled nuclear spins for
single shot readout, initialization and non-local control. Here, strongly coupled means
that the hyperfine splitting is larger than the electron spin inhomogeneous broadening
(1/T ∗2 ), such that the splitting is visible in the electron spin resonance spectrum, see fig.
4.3b. In this case, electron spin rotations conditional on the nuclear spin state can be
implemented by frequency-selective mw pulses, see section 4.3. The (average) number
of such nuclei close-by to an NV is limited, as increasing the concentration of 13C within
the diamond would also increase the linewidth of the electron spin transition, up to the
point where contact interaction becomes dominant [155]. In addition to these strongly
coupled nuclear spins, also weakly coupled spins can be addressed by the NV. Weakly
coupled means that the hyperfine splitting is smaller than the electron spin inhomo-
geneous broadening (1/T ∗2 ), but larger than the electron spin homogeneous broadening
(1/T2). These nuclear spins can be addressed at low magnetic fields via the electron spin
by applying dynamical decoupling [37, 156, 157, 158, 159].
Here, we will estimate the average number of suitable strongly and weakly coupled nu-

clear spins depending on the external magnetic field and the 13C concentration, which is
done by numerical simulations. To this end, we numerically calculate the volume within
the diamond of suitable 13C positions surrounding the NV. We assume only dipole-dipole
hyperfine interaction, and ignore contact interaction, which means that the results are
expected to be valid for hyperfine interactions below ∼ 1 MHz. The first condition for a
suitable 13C nuclear spin is that the hyperfine splitting is larger than a certain threshold
value, which is 1/T ∗2 in the strong coupling case and 1/T2 for weak coupling. Note that
for high-fidelity implementation of quantum algorithms, these thresholds, especially the
1/T2 limit, can usually not be fully exploited. The second condition roughly estimates if
single shot readout of the nuclear spin is possible. For this, we require that the difference
of the nuclear spin eigenbasis {|ni〉} with respect to the z-basis {|zi〉} is smaller than
1− |〈ni|zi〉|2 < 0.25 · 10−4. Due to this change of the nuclear spin eigenbasis depending
on the electron spin state, the nuclear spin becomes projected into a new eigenbasis
whenever the electron spin flips, which might destroy the nuclear spin state, see section
1.2.4. Our requirement means that the nuclear spin state will survive ≈ 4 · 104 electron
spin flips, which corresponds to ≈ 4 · 104 readout steps, if one electron spin flip happens
per readout step. The volume of suitable 13C positions is obtained by numerical integra-
tion. For each volume element, we calculate the hyperfine splitting and the nuclear spin
eigenbasis from the Hamiltonian of the electron plus nuclear spin system (see section
1.2.3), and mark this volume element as suitable if the two conditions described above
are fulfilled.
Fig. 4.9a summarizes the results of this simulation. For strongly coupled nuclear spins,
we can see that increasing the 13C concentration to the natural value (brown dots) and
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Figure 4.9.: Average number of suitable 13C spins. a, Average number of suitable 13C spins
per NV for different 13C concentrations c and different minimum hyperfine interaction. The red
dots are for strongly coupled nuclei, and the blue triangles for including weakly coupled nuclei with
at least 20 kHz hyperfine splitting. b, Spectral density of suitable lattice positions per NV for
different magnetic fields B. The fluctuations at higher hyperfine interaction are due to numerical
grain. Note that for these simulations, actual lattice positions are not taken into account.

increasing the magnetic field to 10 T increases the average number of suitable 13C spins
by around one order of magnitude compared to the current case (0.2 % 13C concentra-
tion, red dots, 0.6 T). The blue triangles show the case where weakly coupled 13C spins
are included in the register. For a natural 13C concentration c = 1.1 %, a T2 time of
0.65 ms is possible [155], corresponding to a minimal hyperfine splitting of ≈ 1.5 kHz for
an addressable 13C , which, however, will not be usable for high-fidelity implementation
of algorithms with several gates. By setting the minimal hyperfine splitting to > 20
kHz, we find that on average ≈ 10 13C spins per NV are usable. Note that for smaller
hyperfine interaction, the density of suitable 13C positions steeply increases, as can be
seen in fig. 4.9b. For example, decreasing the minimal hyperfine splitting to > 10 kHz
would yield ≈ 20 suitable 13C , which would make spectral addressing of all these spins
challening. Fig. 4.9b also illustrates that at a field of 1 T, nearly all 13C positions with
hyperfine splitting < 100 kHz are suitable, and increasing the field mainly affects the
13C spins with stronger hyperfine interaction.

4.7. Detection of weakly coupled nuclear spins
In the previous section, we have seen that including weakly coupled nuclear spins can
greatly increase the achievable size of the nuclear register. Here, we want to discuss and
experimentally demonstrate how these weakly coupled spins can be addressed by the
NV electron spin at high magnetic fields. So far, detection of weakly coupled nuclear
spins with dynamical decoupling (DD) has been carried out at low magnetic fields [37,
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Figure 4.10.: 13C detection via DD. a, DD sequence on electron and nuclear spin. Note that
for technical reasons, a small time delay of ≈ 2 µs has to be introduced between electron and
nuclear operations. b, Energy level scheme without rotating frame. δe is the energy splitting of
the electron spin without hyperfine interaction (i.e. zero-field splitting plus electron Zeeman), δn is
the nuclear Zeeman splitting, and δh the hyperfine splitting. c, Energy level scheme in the rotating
frame of the electron spin. d, Energy level scheme in the rotating frame of the electron spin and
of the nuclear spin in ms = −1, which is used for the calculations.

156, 157, 158, 159]. In this case, the eigenbasis of the nuclear spins is mainly defined
by the dipolar field of the electron spin at the position of the nucleus. In principle, DD
removes the inhomogeneous dephasing of the electron spin by making the final coherent
state independent of any static magnetic fields, generated by e.g. different states of the
nuclear spin bath, see section 1.3.1. For previously demonstrated detection of weakly
coupled nuclear spins [37, 156, 157, 158, 159], it is important that the eigenbasis of
the nuclear spin (i.e. its quantization axis) depends on the electron spin state. Then,
the change of the nuclear spin eigenbasis during coordinated flips of the electron spin
will induce effective nuclear spin rotations due to precession within the new eigenbasis.
During the DD, this effect will lead to changes of the nuclear spin state, such that the
magnetic field generated by this nuclear spin will not be static, and influence the final
state of the electron spin, if the timing of the DD is set appropriately [37].
However, for strong magnetic fields (larger than the hyperfine interaction), this effect

is suppressed, as the nuclear spins eigenbasis will mainly be defined by the external
field. Moreover, for single shot readout we even need that the eigenbasis of the nuclear
spin does not change with the electron spin state. In this case, a technique similar to
double electron-electron resonance can be applied. There, the state of the second spin
(the nuclear spin in our case) is actively driven during the DD of the first spin (the
NV electron spin). A difference is that in our case, the Rabi frequency of the nuclear

101



4. Quantum register based on single nuclear spins: Quantum error correction

spin is usually smaller than the hyperfine interaction, such that all gates on the nuclear
spin are selective to the electron spin state. The sequence for addressing these weakly
coupled nuclear spins is shown in fig. 4.10a. To calculate the state evolution during this
sequence, we go into the rotating frame of the electron spin and of the nuclear spin in the
ms = −1 state, see section 1.3. The effective energy level scheme is shown in fig. 4.10b.
Note that due to inhomogeneous broadening, the electron spin driving field is always
slightly off-resonant, however, this effect will be removed by DD, and is therefore ignored
for the following considerations. We now calculate the possible evolution of the state
|e, n〉 depending on the initial state of the nuclear spin, where e is the electron spin and
n the nuclear spin. This is done in eq. (4.7) − eq. (4.11), where the first column is for
nuclear spin state |0〉, the second column for state |1〉, and the last column without any
nuclear spin, for reference. Eq. (4.7) is the state after the electron π/2 pulse. We set the
states |1, 0〉, |1, 1〉 to zero energy such that only the states |0, 0〉, |0, 1〉 will accumulate
phase (cf. fig. 4.10d). After the waiting time τ and the nuclear conditional π pulse the
state is eq. (4.8). Then, the electron π pulse yields eq. (4.9). After the second waiting
time τ and nuclear π pulse the state is eq. (4.10), which is re-written in eq. (4.11) for
better readability.

|0, 0〉 − |1, 0〉 |0, 1〉 − |1, 1〉 |0〉 − |1〉 (4.7)
eiδhτ/2 |0, 0〉+ |1, 1〉 e−iδhτ/2 |0, 1〉 − |1, 0〉 |0〉 − |1〉 (4.8)
− eiδhτ/2 |1, 0〉+ |0, 1〉 − e−iδhτ/2 |1, 1〉 − |0, 0〉 − |1〉 − |0〉 (4.9)
eiδhτ/2 |1, 1〉+ e−iδhτ/2 |0, 1〉 − e−iδhτ/2 |1, 0〉 − eiδhτ/2 |0, 0〉 − |1〉 − |0〉 (4.10)
eiδhτ |1, 1〉+ |0, 1〉 e−iδhτ |1, 0〉+ |0, 0〉 |1〉+ |0〉 (4.11)

The nuclear spin can be detected depending on the waiting time τ and the hyperfine
splitting δh. If τδh = nπ, n = 1, 3, 5, ..., then the final state eq. (4.11) will be orthogonal
to the case where no nuclear spin is present, independent on the initial state of the
nuclear spin. The final electron π/2 pulse in 4.10a will then yield the electron spin state
|1〉 instead of |0〉 for no nuclear spin, i.e. the presence of the nuclear spin is detected
by the final state of the electron spin, which is demonstrated below experimentally. In
addition, the initial state of the nuclear spin can be detected, i.e. implementation of a
CnNOTe is possible. By setting the accumulated phase to τδh = nπ/2, n = 1, 3, 5, ...,
the final state eq. (4.11) will be orthogonal for the two initial states of the nuclear spin
(first two columns). The final electron π/2 pulse in 4.10a must then be applied with a
π/2 phase shift, such that one initial state of the nuclear spin will yield the electron spin
state |0〉, and the other initial nuclear spin will yield the electron spin state |1〉.
The experimental detection of weakly coupled nuclear spins is demonstrated on the

same NV that was used for the previous measurements in this chapter. To measure a
hyperfine spectrum of this NV, we have to sweep the parameters for the measurement
sequence (fig. 4.10a), which are τ , the rf frequency and the rf power. The phase evolution
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Figure 4.11.: Experimental 13C detection via DD. All measurement shown here were performed
with single shot readout of the 14N nuclear spin, i.e. the final state of the electron spin was mapped
onto the 14N spin and then read out. a, Hyperfine spectrum of the NV. b, Measurement of the
hyperfine splitting of a weakly coupled 13C (12.3 kHz), see text for description. The damping of
the oscillations is due to homogeneous dephasing of the electron spin. c, Hahn echo of the electron
spin. Both the 14N and 13C2 (413 kHz hyperfine splitting) were initialized by single shot readout
for this measurement, and the Rabi frequency of the electron spin was 1.88 MHz. The final π/2
pulse of the Hahn echo was performed once with phase 0 and once with phase π relative to the
other pulses. The results of these two measurements were then subtracted. The fitting function is
Aexp(−(x/T2)p), with parameters T2 = 179 µs, p = 3.74, A = 0.43.
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time τ has to be set to τδh = nπ, n = 1, 3, 5, .... Here, we chose n such that τ is as
close as possible to 120 µs, which is slightly shorter than the T2 time (see Hahn-echo in
fig. 4.11c). Keeping τ roughly constant ensures that the spectrum is not obscured by
varying decoherence effects. Furthermore, the rf has to be resonant to the nuclear spin
and has to be adjusted by the current hyperfine splitting. Finally, the rf power (i.e. the
Rabi frequency) has to be adjusted such that a π rotation is performed during time τ .
The obtained spectrum is shown in fig. 4.11a. The 13C spin at around 90 kHz is the one
which was also visible in the ODMR spectrum of the NV (13C2), i.e. is strongly coupled.
Additionally, we find another weakly coupled 13C with hyperfine splitting of ≈ 13 kHz.
Below 10 kHz, this measurement is hardly possible, due to the short electron T2 ≈ 180
µs. However, the spectrum does not look as ’smooth’ as expected, e.g. the dip at 90
kHz is split into two unequal dips. This effect could be due the above described jumps
of τ and of the rf power, but this would have to be examined in more detail. We can
further analyse the weakly coupled 13C . Therefore, the rf frequency, power and duration
is set constant to induce a π rotation on this 13C , and the time τ for the DD sequence
is varied (note that τ must be longer than the rf duration). This measurement yields
oscillations with a frequency corresponding to the hyperfine splitting, as shown in fig.
4.11b. The measured hyperfine splitting is 12.3 kHz.

4.8. Conclusions and outlook
In this chapter, we have experimentally demonstrated the capabilities of a hybrid electron-
nuclear spin register based on the NV. The advantages of this hybrid register are fully
exploiting by using the electron spin exclusively for control of the nuclear qubits (initial-
ization, readout, selective and non-local gates), and the nuclear qubits as a long-lived
quantum storage. Due to the achieved high-fidelity implementation of all control re-
quirements, demonstration of quantum error correction was possible. For this work, we
relied on strongly coupled nuclear spins, which limits the number of available nuclear
spins, and also requires an NV with a specific nuclear spin environment. In addition to
these strongly coupled nuclear spins, weakly coupled nuclear spins can greatly increase
the size of the register, see section 4.6. We have seen that addressing of such nuclear
spins is possible via dynamical decoupling of the electron spin, and provided first exper-
imental demonstration in section 4.7.
For our implementation of QEC, errors were introduced artificially. In our case, the

natural phase noise of the nuclear spins is generated by flips of the electron spin, which
limits the coherence time of the nuclear spins to the T1 ≈ 7 ms time of the electron spin.
Additionally, this means that the noise source of all three nuclear spins is the same. As
soon as the electron spin flips, the nuclear spins decohere on the time scale of the hy-
perfine splitting, i.e. within several µs. Note that this effect does not lead to correlated
errors (i.e. if qubit 1 is flipped qubit 2 will be flipped as well), but rather that after an
electron spin flip, all coherences are lost, and the error probability of all qubits is 50 %,
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which renders QEC non-applicable. It has been shown that the nuclear spin coherence
can be protected by inducing fast dynamics on the electron spin (much faster than hy-
perfine splitting), such that the effective hyperfine interaction is suppressed (similar to
motional averaging) [160]. By combining this technique with QEC, it could be possible
to even extend the natural coherence time of the nuclear spins.
Another possible improvement is the implementation of repetitive QEC. The challenge

there is to store the quantum information, while resetting the remaining part of the reg-
ister, i.e. removing the entropy generated by the error. As the nuclear spins can be reset
via the electron spin (see section 4.2), the task is to re-polarize the electron spin optically
without destroying nuclear spin coherence. In our case, this was not possible because
the hyperfine interaction was too strong. By carefully adjusting the laser power to avoid
ionization of the NV, the optical polarization of the electron spin should be achievable
within ∼ 10 µs (cf. section 2.4). This means that the inverse hyperfine interaction (δh)
must be much longer than the polarization time of the electron, i.e. 1/δh �≈ 10 µs,
δh � 100 kHz.
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A.1. Steady state fluorescence of the NV with
ionization

Here, we want to model the steady-state fluorescence of NV−, depending on the illu-
mination power. We will see that due to photo-ionization, the power and wavelength
dependence of this steady-state fluorescence does not yield direct information of the
NV− intrinsic absorption cross-section, as would be the case without ionization. To
this end, we use a four-level model, with NV− ground state (G), excited state (E) and
metastable state (M). For NV0, we only take a single state (0) into account, as we are
only interested in the state populations within NV−. The model is illustrated in fig.
A.1, and the corresponding rate equations are

ṗG = −IσpG + λEGpE + λMGpM + rrep0,

ṗE = IσpG + (−λEG − λEM − Iσion)pE,

ṗM = λEMpE − λMGpM,

ṗ0 = IσionpE − rrep0, (A.1)

where pi denotes the population of state i, λij a decay rate from state i to state j, I the
illumination intensity, σ the absorption cross-section of NV−, and σion the cross-section
of ionization. The rate rre is the effective recombination rate according to (2.3), which

G

E

M

0IσλEG

λEM

λMG

Iσion

rre

Figure A.1.: Four-level model of the NV.
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is
rre = σreI

I

I + I0
, (A.2)

where σre is an effective recombination cross-section, and I0 is the saturation power of
NV0. The steady-state populations are obtained by setting all time derivatives in (A.1)
to zero,

0 = ṗG = ṗE = ṗM = ṗ0, (A.3)
and using

1 = pG + pE + pM + p0. (A.4)
Solving these equations for the excited state population pE of NV− yields

pE = pS
I

I + IS
, (A.5)

where the saturation population pS is

pS = 1
1 + λEM/λMG + σion/σre + σion/σ

, (A.6)

and the saturation power IS is

IS = λEG + λEM + I0σσion/σre

σ + σλEM/λMG + σion + σσion/σre
. (A.7)

As can be seen, not only the NV− intrinsic absorption cross-section σ depends on the
excitation wavelength, but also σion and σre. Therefore, the time or ensemble averaged
fluorescence of NV− cannot be used to determine the wavelength dependence of σ, as
changes of the other cross-sections will also influence the fluorescence.

A.2. Two-level rate equation for determination of
ionization and recombination rates

Here, we calculate the relationship of the intrinsic rates of two-level linear rate equations
with the measured state evolution, as obtained in section 2.3.3 for the charge state
dynamics of the NV. The rate equations are(

ṗNV−

ṗNV0

)
=
(
−λion λre
λion −λre

)
︸ ︷︷ ︸

A

·
(
pNV−

pNV0

)
︸ ︷︷ ︸

p

, (A.8)

where pNV − , pNV 0 are the populations of NV− and NV0, respectively, and λion, λre are
the rates for ionization (i.e. from NV− to NV0) and recombination (i.e. from NV0 to
NV−), respectively. The time evolution of the population vector p is then given by

p(t) = eAtp(0), (A.9)
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which is solved by diagonalizing A. The starting point p(0) is fixed by the result of the

first charge state measurement, which is either p(0) =
(

1
0

)
(for NV−) or p(0) =

(
0
1

)
(for NV0). Then, the evolution of p(t) can be calculated with the eigenvectors and
eigenvalues of A, which yields

p−/0(t) =
(

λre
λion+λre
λion

λion+λre

)
±

λ0−/−0

λion + λre
e−(λion+λre)t

(
−1
1

)
, (A.10)

where p−/0(t) is the evolution for the two initial states NV−/0, respectively. These
functions describe the measured charge state evolutions shown in fig. 2.11b. Fitting the
functions to the measurement data yields the steady state population p(∞)

p(∞) =
(

λre
λion+λre
λion

λion+λre

)
, (A.11)

and the decay rate rdec into the steady state,

rdec = λion + λre. (A.12)

With these two values, the ionization rate λion and recombination rate λre can be calcu-
lated, see fig. 2.11c.
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B.1. State tomography
For state tomography, the density matrix ρ is expanded as

ρ =
∑
i

aiAi, (B.1)

where the Ai form a basis of mutually orthogonal operators. In the case of a single
qubit, we would use the Pauli matrices 1, σx, σy, σz. For multiple qubits, the Ai are all
combinations of the Pauli matrices for all qubits, i.e.

Ai =
{
1

(1)
1

(2)...1(n),1(1)
1

(2)...σ(n)
x , ..., σ(1)

z σ(2)
z ...σ(n)

z

}
, (B.2)

where the superscripts indicates on which qubit the operator acts. The ai in eq. (B.1)
are given by the expectation value Tr (Aiρ) of the corresponding operator 1. These
expectation values can be determined experimentally. Since only the expectation value
of the σz operator can be measured directly, we apply π/2 rotations around the y and
x axis of a spin to get the expectation values of σx and σy. Solving eq. (B.1) with the
measured ai yields the state of the system. Note that due to statistical measurement
errors, the measured density matrix may not be positive semi-definite.

B.2. Process tomography
A general characterization of a quantum mechanical process E on a system is obtained
by expanding the density matrix ρ into a basis of orthonormal states |ψi〉, and measuring
the effect of the operator Ei of the process on each of these states:

ρ =
∑
i

pi |ψi〉 〈ψi| ,

E(ρ) =
∑
i

Eipi |ψi〉 〈ψi|E†i . (B.3)

The Ei can be measured by initializing the states |ψi〉 and performing state tomography
after the process. Furthermore, we can do the expansion

Ei =
∑
m

χimAm, (B.4)

1Note that expectation value of the identity is fixed, as the sum of the diagonal elements of the density
matrix ρ must be one,

∑
ρii = 1. E.g. for a qubit, the expectation value of the identity 1 is 0.5.
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where the Am form a basis of mutually orthogonal operators. Inserting eq. (B.4) into
eq. (B.3) yields

E(ρ) =
∑
mn

χmnAmρA
†
n, (B.5)

where the χmn = ∑
i χimχin form the process matrix χ.

For the error correction, we only consider the effect of the process on the qubit that
is carrying the information after the correction. Additionally, we are only interested in
the fidelity F of the measured process and the ideal process χid, which is

F = Tr(χidχ). (B.6)

Here, we chose the Pauli matrices Am = {1, σx, σy, σz} as the operator basis. The ideal
process for the error correction is the identity, and therefore χid

11 = 1, and all other values
being zero. The fidelity is then χ11. Table B.1 shows the measurements we perform to
obtain

χ11 = 1 + (rz,z − r−z,z + rx,x − r−x,x + ry,y − r−y,y)
4 , (B.7)

by noting that χ11 + χ22 + χ33 + χ44 = 1.

Init Measure result
|z〉 σz rz,z = χ11 + χ14 + χ41 + χ44
|−z〉 σz r−z,z = −χ11 + χ14 + χ41 − χ44
|x〉 σx rx,x = χ11 + χ12 + χ21 + χ22
|−x〉 σx r−x,x = −χ11 + χ12 + χ21 − χ22
|y〉 σy ry,y = χ11 + χ13 + χ31 + χ33
|−y〉 σy r−y,y = −χ11 + χ13 + χ31 − χ33

Table B.1.: Measurement procedure and theoretical results for the process fidelity.
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C. Mermin inequality
A first test for the non-deterministic and non-local structure of quantum mechanics
was proposed by Bell in 1964 for the case of two entangled particles [112]. A general
inequality to measure this behaviour of quantum mechanics for multiple particles was
derived by Mermin [149]. For three particles, the inequality is

|〈σxσxσy〉+ 〈σxσyσx〉+ 〈σyσxσx〉 − 〈σyσyσy〉| ≤ 2 (C.1)

for any deterministic, local theory. However, the state

|ψ〉 = 1√
2

(|000〉+ i |111〉) (C.2)

yields the value 4 for eq. (C.1). In our case, the prepared state is

|ψ〉 = 1√
2

(|0yy〉+ i |1yy〉), (C.3)

where |y〉 = |0〉 + i |1〉 and |y〉 = |0〉 − i |1〉. This state can be derived from eq. (C.2)
by π/2 rotations around the x axis on qubit two and three. Thereby, σy in eq. (C.1)
becomes σz for these two qubits, yielding the inequality

|〈σxσxσz〉+ 〈σxσzσx〉+ 〈σyσxσx〉 − 〈σyσzσz〉| ≤ 2. (C.4)

To measure the single terms, we transform each term to 〈11σz〉. This can be achieved
by a unitary operation U according to 〈ψ |A|ψ〉 = 〈ψ′ |A′|ψ′〉 for |ψ′〉 = U |ψ〉 and
A′ = UAU †. The operations are shown in table C.1. The Cphase gate is described in

Measure Operation

〈σxσxσz〉
(
π
2

)
1,y

(
π
2

)
2,y

(
−π

2

)
3,y

(CPhase)
(
π
2

)
3,y

〈σxσzσx〉
(
π
2

)
1,y

(CPhase)
(
π
2

)
3,y

〈σyσxσx〉
(
π
2

)
1,x

(
π
2

)
2,y

(CPhase)
(
π
2

)
3,y

〈σyσzσz〉
(
π
2

)
1,x

(
−π

2

)
3,y

(CPhase)
(
π
2

)
3,y

Table C.1.: Measurement procedure for the Mermin inequality.

section 4.3; here it is conditional on the states |011〉 and |101〉.

113





Acknowledgement
First of all, I want to thank Prof. Jörg Wrachtrup for giving me the opportunity and
the support for doing my PhD thesis on the exciting topic of quantum information
processing and nitrogen-vacancy defects in diamonds. I also thank Prof. Tilman Pfau
for taking the time to evaluate this thesis and Prof. Hans Peter Büchler for chairing my
PhD defense.
My two supervisors, Philipp Neumann and Prof. Fedor Jelezko contributed signifi-

cantly to the success of my thesis. They provided important ideas and would always
help me with technical, experimental and theoretical questions and challenges. For this
support I am deeply thankful. I also thank Philipp for proof-reading this thesis.
I also thank all the people with whom I worked together at the institute and all

around the world, namely Johannes Beck, Nabeel Aslam, Sebastian Zaiser, Moham-
mad Jamali, Matthias Nitsche, Adetunmise Dada, Susanna Huelga, Ressa Said, Jason
Twamley, Junichi Isoya, Adam Gali, Thomas Schulte-Herbrüggen. Johannes Beck, who
taught me a lot about the NV and the experimental setup, and who took part in the
experiments on the initial mystery of NV0 and on high dynamic range magnetometry.
The work on high dynamic range magnetometry was also done in collaboration with
Ressa Said and Jason Twamley, who designed and simulated the algorithm. Susanna
Huelga provided helpful theoretical insight regarding temporal Bell inequalities. I had
a great time working with Adetunmise Dada on distinguishing between non-orthogonal
quantum states. Nabeel Aslam performed many of the tedious experiments for analyzing
the charge state dynamics of the NV. Thomas Schulte-Herbrüggen invited us to Munich
and explained us optimal control and its potential. For the error correction experiments
I worked closely together with Ya Wang, who proposed and calculated the non-local
gate operations and the tomography and error correction algorithms. Important steps
for these experiments were the electron irradiation performed by Junichi Isoya and the
creation a solid immersion lens by Mohammad Jamali.
Many people at the institute have helped me with various issues during my work.

Most notably, I thank Petr Siyushev for help with dye lasers and optics, Helmut Fedder
for help with Python programming, Florian Dolde and Ingmar Jacobi for help with the
arbitrary waveform generator and microstructure generation, Stephan Hirschmann for
help with many technical issues, and of course all the other people who supported me.
Special thanks go to my office colleagues Johannes Beck, Jan Honert, Nabeel Aslam

and Sebastian Zaiser for interesting discussions not only related to physics. I also thank
all the other members of the institute for a nice time during my PhD-thesis.
Finally, I want to thank my family. My beloved wife Ling Waldherr I thank for her

115



C. Mermin inequality

support and for always being there for me and for our sweet daughters Julia and Felina.
I also thank my parents for supporting me and my family.

116



Bibliography
[1] D. Deutsch. Quantum Theory, the Church-Turing Principle and the Universal

Quantum Computer. Proceedings of the Royal Society of London. A. Mathematical
and Physical Sciences 400(1818), 97–117 (August 1985). ISSN 1364-5021, 1471-
2946.
URL http://dx.doi.org/10.1098/rspa.1985.0070

[2] P. W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. arXiv e-print quant-ph/9508027 (August
1995). SIAM J.Sci.Statist.Comput. 26 (1997) 1484.
URL http://arxiv.org/abs/quant-ph/9508027

[3] L. K. Grover. A fast quantum mechanical algorithm for database search. arXiv
e-print quant-ph/9605043 (May 1996).
URL http://arxiv.org/abs/quant-ph/9605043

[4] R. P. Feynman. Simulating physics with computers. International Journal of The-
oretical Physics 21(6-7), 467–488 (June 1982). ISSN 0020-7748, 1572-9575.
URL http://dx.doi.org/10.1007/BF02650179

[5] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden. Quantum cryptography. Reviews
of Modern Physics 74(1), 145–195 (March 2002).
URL http://dx.doi.org/10.1103/RevModPhys.74.145

[6] E. Knill, R. Laflamme, and G. J. Milburn. A scheme for efficient quantum com-
putation with linear optics. Nature 409(6816), 46–52 (January 2001). ISSN 0028-
0836.
URL http://dx.doi.org/10.1038/35051009

[7] A. Politi, J. C. F. Matthews, and J. L. O’Brien. Shors Quantum Factoring Al-
gorithm on a Photonic Chip. Science 325(5945), 1221–1221 (April 2009). ISSN
0036-8075, 1095-9203. PMID: 19729649.
URL http://dx.doi.org/10.1126/science.1173731

[8] R. Blatt and D. Wineland. Entangled states of trapped atomic ions. Nature
453(7198), 1008–1015 (June 2008). ISSN 0028-0836.
URL http://dx.doi.org/10.1038/nature07125

117

http://dx.doi.org/10.1098/rspa.1985.0070
http://arxiv.org/abs/quant-ph/9508027
http://arxiv.org/abs/quant-ph/9605043
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1103/RevModPhys.74.145
http://dx.doi.org/10.1038/35051009
http://dx.doi.org/10.1126/science.1173731
http://dx.doi.org/10.1038/nature07125


Bibliography

[9] D. Cory, R. Laflamme, E. Knill, L. Viola, T. Havel, N. Boulant, G. Boutis,
E. Fortunato, S. Lloyd, R. Martinez, C. Negrevergne, M. Pravia, Y. Sharf,
G. Teklemariam, Y. Weinstein, and W. Zurek. NMR Based Quantum Information
Processing: Achievements and Prospects. Fortschritte der Physik 48(9-11),
875–907 (2000). ISSN 1521-3978.
URL http://dx.doi.org/10.1002/1521-3978(200009)48:9/11<875::
AID-PROP875>3.0.CO;2-V

[10] M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J.
Schoelkopf. Realization of three-qubit quantum error correction with supercon-
ducting circuits. Nature 482(7385), 382–385 (February 2012). ISSN 0028-0836,
1476-4687.
URL http://dx.doi.org/10.1038/nature10786

[11] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen.
Spins in few-electron quantum dots. Reviews of Modern Physics 79(4), 1217–1265
(October 2007).
URL http://dx.doi.org/10.1103/RevModPhys.79.1217

[12] B. E. Kane. A silicon-based nuclear spin quantum computer. Nature 393(6681),
133–137 (May 1998). ISSN 0028-0836.
URL http://dx.doi.org/10.1038/30156

[13] J. Wrachtrup and F. Jelezko. Processing quantum information in diamond. Journal
of Physics: Condensed Matter 18(21), S807 (May 2006). ISSN 0953-8984.
URL http://dx.doi.org/10.1088/0953-8984/18/21/S08

[14] M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C.
Hollenberg. The nitrogen-vacancy colour centre in diamond. Physics Reports
528(1), 1–45 (July 2013). ISSN 0370-1573.
URL http://dx.doi.org/10.1016/j.physrep.2013.02.001

[15] C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter. Stable Solid-State Source of
Single Photons. Physical Review Letters 85(2), 290–293 (2000).
URL http://dx.doi.org/10.1103/PhysRevLett.85.290

[16] T. Babinec, B. Hausmann, M. Khan, Y. Zhang, J. Maze, P. Hemmer, and M. Lon-
car. A diamond nanowire single-photon source. Nature Nanotechnology 5(3)
(2010).
URL http://dx.doi.org/10.1038/nnano.2010.6

[17] F. Neugart, A. Zappe, F. Jelezko, C. Tietz, J. P. Boudou, A. Krueger, and
J. Wrachtrup. Dynamics of Diamond Nanoparticles in Solution and Cells. Nano
Letters 7(12), 3588–3591 (December 2007). ISSN 1530-6984.
URL http://dx.doi.org/10.1021/nl0716303

118

http://dx.doi.org/10.1002/1521-3978(200009)48:9/11<875::AID-PROP875>3.0.CO;2-V
http://dx.doi.org/10.1002/1521-3978(200009)48:9/11<875::AID-PROP875>3.0.CO;2-V
http://dx.doi.org/10.1038/nature10786
http://dx.doi.org/10.1103/RevModPhys.79.1217
http://dx.doi.org/10.1038/30156
http://dx.doi.org/10.1088/0953-8984/18/21/S08
http://dx.doi.org/10.1016/j.physrep.2013.02.001
http://dx.doi.org/10.1103/PhysRevLett.85.290
http://dx.doi.org/10.1038/nnano.2010.6
http://dx.doi.org/10.1021/nl0716303


Bibliography

[18] Y. Chang, H. Lee, K. Chen, C. Chang, D. Tsai, C. Fu, T. Lim, Y. Tzeng, C. Fang,
C. Han, H. Chang, and W. Fann. Mass production and dynamic imaging of fluo-
rescent nanodiamonds. Nature Nanotechnology 3(5) (2008).
URL http://dx.doi.org/10.1038/nnano.2008.99

[19] J.-P. Boudou, P. Curmi, F. Jelezko, J. Wrachtrup, P. Aubert, M. Sennour, G. Bal-
asubramanian, R. Reuter, A. Thorel, and E. Gaffet. High yield fabrication of
fluorescent nanodiamonds. Nanotechnology 20(23), 235602 (2009).
URL http://dx.doi.org/10.1088/0957-4484/20/23/235602

[20] A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. von Bor-
czyskowski. Scanning Confocal Optical Microscopy and Magnetic Resonance on
Single Defect Centers. Science 276(5321), 2012–2014 (June 1997). ISSN 1095-
9203.
URL http://dx.doi.org/10.1126/science.276.5321.2012

[21] F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup. Observation of
coherent oscillations in a single electron spin. Physical Review Letters 92(7),
076401 (2004).
URL http://dx.doi.org/10.1103/PhysRevLett.92.076401

[22] G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov,
N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. Hemmer,
F. Jelezko, and J. Wrachtrup. Ultralong spin coherence time in isotopically engi-
neered diamond. Nature Materials 8(5) (2009).
URL http://dx.doi.org/10.1038/nmat2420

[23] J. Maze, P. Stanwix, J. Hodges, S. Hong, J. Taylor, P. Cappellaro, L. Jiang,
M. Dutt, E. Togan, A. Zibrov, A. Yacoby, R. Walsworth, and M. Lukin. Nanoscale
magnetic sensing with an individual electronic spin in diamond. Nature 455(7213)
(2008).
URL http://dx.doi.org/10.1038/nature07279

[24] J. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. Hemmer, A. Ya-
coby, R. Walsworth, and M. Lukin. High-sensitivity diamond magnetometer with
nanoscale resolution. Nature Physics 4(10) (2008).
URL http://dx.doi.org/10.1038/nphys1075

[25] G. Balasubramanian, I. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin,
C. Kim, A. Wojcik, P. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Brats-
chitsch, F. Jelezko, and J. Wrachtrup. Nanoscale imaging magnetometry with
diamond spins under ambient conditions. Nature 455(7213) (2008).
URL http://dx.doi.org/10.1038/nature07278

119

http://dx.doi.org/10.1038/nnano.2008.99
http://dx.doi.org/10.1088/0957-4484/20/23/235602
http://dx.doi.org/10.1126/science.276.5321.2012
http://dx.doi.org/10.1103/PhysRevLett.92.076401
http://dx.doi.org/10.1038/nmat2420
http://dx.doi.org/10.1038/nature07279
http://dx.doi.org/10.1038/nphys1075
http://dx.doi.org/10.1038/nature07278


Bibliography

[26] L. Hall, J. Cole, C. Hill, and L. Hollenberg. Sensing of Fluctuating Nanoscale
Magnetic Fields Using Nitrogen-Vacancy Centers in Diamond. Physical Review
Letters 103, 220802 (2009).
URL http://dx.doi.org/10.1103/PhysRevLett.103.220802

[27] S. Steinert, F. Dolde, P. Neumann, A. Aird, B. Naydenov, G. Balasubramanian,
F. Jelezko, and J. Wrachtrup. High sensitivity magnetic imaging using an array
of spins in diamond. Review of Scientific Instruments 81(4) (2010).
URL http://dx.doi.org/10.1063/1.3385689

[28] B. Grotz, J. Beck, P. Neumann, B. Naydenov, R. Reuter, F. Reinhard, F. Jelezko,
J. Wrachtrup, D. Schweinfurth, B. Sarkar, and P. Hemmer. Sensing external spins
with nitrogen-vacancy diamond. New Journal of Physics 13(5), 055004 (2011).
URL http://dx.doi.org/10.1088/1367-2630/13/5/055004

[29] T. Staudacher, F. Shi, S. Pezzagna, J. Meijer, J. Du, C. A. Meriles, F. Reinhard,
and J. Wrachtrup. Nuclear Magnetic Resonance Spectroscopy on a (5-Nanometer)3
Sample Volume. Science 339(6119), 561–563 (January 2013). ISSN 0036-8075,
1095-9203. PMID: 23372009.
URL http://dx.doi.org/10.1126/science.1231675

[30] H. J. Mamin, M. Kim, M. H. Sherwood, C. T. Rettner, K. Ohno, D. D. Awschalom,
and D. Rugar. Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy
Spin Sensor. Science 339(6119), 557–560 (January 2013). ISSN 0036-8075, 1095-
9203. PMID: 23372008.
URL http://dx.doi.org/10.1126/science.1231540

[31] F. Dolde, H. Fedder, M. Doherty, T. Nobauer, F. Rempp, G. Balasubramanian,
T. Wolf, F. Reinhard, L. Hollenberg, F. Jelezko, and J. Wrachtrup. Electric-field
sensing using single diamond spins. Nature Physics 7(6) (2011).
URL http://dx.doi.org/10.1038/nphys1969

[32] V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L.-S. Bouchard, and
D. Budker. Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance
in Diamond. Physical Review Letters 104(7), 070801 (February 2010).
URL http://dx.doi.org/10.1103/PhysRevLett.104.070801

[33] X.-D. Chen, C.-H. Dong, F.-W. Sun, C.-L. Zou, J.-M. Cui, Z.-F. Han, and G.-
C. Guo. Temperature dependent energy level shifts of nitrogen-vacancy centers in
diamond. Applied Physics Letters 99(16), 161903–161903–3 (2011). ISSN 0003-
6951.
URL http://dx.doi.org/10.1063/1.3652910

[34] G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and
M. D. Lukin. Nanometre-scale thermometry in a living cell. Nature 500(7460),

120

http://dx.doi.org/10.1103/PhysRevLett.103.220802
http://dx.doi.org/10.1063/1.3385689
http://dx.doi.org/10.1088/1367-2630/13/5/055004
http://dx.doi.org/10.1126/science.1231675
http://dx.doi.org/10.1126/science.1231540
http://dx.doi.org/10.1038/nphys1969
http://dx.doi.org/10.1103/PhysRevLett.104.070801
http://dx.doi.org/10.1063/1.3652910


Bibliography

54–58 (August 2013). ISSN 0028-0836.
URL http://dx.doi.org/10.1038/nature12373

[35] P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert,
T. Wolf, A. Brunner, J. H. Shim, D. Suter, H. Sumiya, J. Isoya, and J. Wrachtrup.
High-Precision Nanoscale Temperature Sensing Using Single Defects in Diamond.
Nano Letters 13(6), 2738–2742 (June 2013). ISSN 1530-6984.
URL http://dx.doi.org/10.1021/nl401216y

[36] F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup. Obser-
vation of coherent oscillation of a single nuclear spin and realization of a two-qubit
conditional quantum gate. Physical Review Letters 93(13), 130501 (2004).
URL http://dx.doi.org/10.1103/PhysRevLett.93.130501

[37] L. Childress, M. Dutt, J. Taylor, A. Zibrov, F. Jelezko, J. Wrachtrup, P. Hemmer,
and M. Lukin. Coherent dynamics of coupled electron and nuclear spin qubits in
diamond. Science 314(5797) (2006).
URL http://dx.doi.org/10.1126/science.1131871

[38] M. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. Zibrov, P. Hem-
mer, and M. Lukin. Quantum register based on individual electronic and nuclear
spin qubits in diamond. Science 316(5829) (2007).
URL http://dx.doi.org/10.1126/science.1139831

[39] L. Jiang, G. Dutt, E. Togan, L. Childress, P. Cappellaro, J. Taylor, and M. Lukin.
Coherence of an Optically Illuminated Single Nuclear Spin Qubit. Physical Review
Letters 100(7), 073001 (2008).
URL http://dx.doi.org/10.1103/PhysRevLett.100.073001

[40] P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki,
V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup. Multipartite entanglement
among single spins in diamond. Science 320(5881) (2008).
URL http://dx.doi.org/10.1126/science.1157233

[41] P. Neumann, J. Beck, M. Steiner, F. Rempp, H. Fedder, P. Hemmer, J. Wrachtrup,
and F. Jelezko. Single-Shot Readout of a Single Nuclear Spin. Science 329(5991)
(2010).
URL http://dx.doi.org/10.1126/science.1189075

[42] A. Dreau, P. Spinicelli, J. R. Maze, J.-F. Roch, and V. Jacques. Single-Shot
Readout of Multiple Nuclear Spin Qubits in Diamond under Ambient Conditions.
Physical Review Letters 110(6) (February 2013). ISSN 0031-9007, 1079-7114.
URL http://dx.doi.org/10.1103/PhysRevLett.110.060502

121

http://dx.doi.org/10.1038/nature12373
http://dx.doi.org/10.1021/nl401216y
http://dx.doi.org/10.1103/PhysRevLett.93.130501
http://dx.doi.org/10.1126/science.1131871
http://dx.doi.org/10.1126/science.1139831
http://dx.doi.org/10.1103/PhysRevLett.100.073001
http://dx.doi.org/10.1126/science.1157233
http://dx.doi.org/10.1126/science.1189075
http://dx.doi.org/10.1103/PhysRevLett.110.060502


Bibliography

[43] G. Waldherr, J. Beck, M. Steiner, P. Neumann, A. Gali, T. Frauenheim, F. Jelezko,
and J. Wrachtrup. Dark States of Single Nitrogen-Vacancy Centers in Diamond
Unraveled by Single Shot NMR. Physical Review Letters 106(15), 157601 (2011).
URL http://dx.doi.org/10.1103/PhysRevLett.106.157601

[44] G. Waldherr, P. Neumann, S. Huelga, F. Jelezko, and J. Wrachtrup. Violation of
a Temporal Bell Inequality for Single Spins in a Diamond Defect Center. Physical
Review Letters 107(9), 090401 (2011).
URL http://dx.doi.org/10.1103/PhysRevLett.107.090401

[45] G. Waldherr, J. Beck, P. Neumann, R. Said, M. Nitsche, Markham, D. Twitchen,
J. Twamley, F. Jelezko, and J. Wrachtrup. High Dynamic Range Magnetometry
with a Single Nuclear Spin in Diamond. Nature Nanotechnology 7(2) (December
2011).
URL http://dx.doi.org/10.1038/nnano.2011.224

[46] G. Waldherr, A. C. Dada, P. Neumann, F. Jelezko, E. Andersson, and
J. Wrachtrup. Distinguishing between Nonorthogonal Quantum States of a Sin-
gle Nuclear Spin. Physical Review Letters 109(18), 180501 (November 2012).
URL http://dx.doi.org/10.1103/PhysRevLett.109.180501

[47] N. Aslam, G. Waldherr, P. Neumann, F. Jelezko, and J. Wrachtrup. Photo-induced
ionization dynamics of the nitrogen vacancy defect in diamond investigated by
single-shot charge state detection. New Journal of Physics 15(1), 013064 (January
2013). ISSN 1367-2630.
URL http://dx.doi.org/10.1088/1367-2630/15/1/013064

[48] G. Waldherr, Y. Wang, S. Zaiser, M. Jamali, T. Schulte-Herbrüggen, H. Abe,
T. Ohshima, J. Isoya, J. F. Du, P. Neumann, and J. Wrachtrup. Quantum error
correction in a solid-state hybrid spin register. Nature 506(7487), 204–207 (Febru-
ary 2014). ISSN 0028-0836.
URL http://dx.doi.org/10.1038/nature12919

[49] F. Dolde, I. Jakobi, B. Naydenov, N. Zhao, S. Pezzagna, C. Trautmann, J. Mei-
jer, P. Neumann, F. Jelezko, and J. Wrachtrup. Room-temperature entanglement
between single defect spins in diamond. Nature Physics 9(3), 139–143 (February
2013). ISSN 1745-2473, 1745-2481.
URL http://dx.doi.org/10.1038/nphys2545

[50] H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H.
Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson. Her-
alded entanglement between solid-state qubits separated by three metres. Nature
497(7447), 86–90 (May 2013). ISSN 0028-0836.
URL http://dx.doi.org/10.1038/nature12016

122

http://dx.doi.org/10.1103/PhysRevLett.106.157601
http://dx.doi.org/10.1103/PhysRevLett.107.090401
http://dx.doi.org/10.1038/nnano.2011.224
http://dx.doi.org/10.1103/PhysRevLett.109.180501
http://dx.doi.org/10.1088/1367-2630/15/1/013064
http://dx.doi.org/10.1038/nature12919
http://dx.doi.org/10.1038/nphys2545
http://dx.doi.org/10.1038/nature12016


Bibliography

[51] Y. Aharonov, D. Z. Albert, and L. Vaidman. How the result of a measurement of
a component of the spin of a spin-1/2 particle can turn out to be 100. Physical
review letters 60(14), 1351–1354 (1988).
URL http://link.aps.org/doi/10.1103/PhysRevLett.60.1351

[52] N. W. M. Ritchie, J. G. Story, and R. G. Hulet. Realization of a measurement of
a "weak value". Physical review letters 66(9), 1107–1110 (1991).
URL http://link.aps.org/doi/10.1103/PhysRevLett.66.1107

[53] J. J. L. Morton, A. M. Tyryshkin, R. M. Brown, S. Shankar, B. W. Lovett, A. Ar-
davan, T. Schenkel, E. E. Haller, J. W. Ager, and S. A. Lyon. Solid-state quantum
memory using the 31P nuclear spin. Nature 455(7216), 1085–1088 (October 2008).
ISSN 0028-0836.
URL http://dx.doi.org/10.1038/nature07295

[54] J. J. Pla, K. Y. Tan, J. P. Dehollain, W. H. Lim, J. J. L. Morton, D. N. Jamieson,
A. S. Dzurak, and A. Morello. A single-atom electron spin qubit in silicon. Nature
489(7417), 541–545 (September 2012). ISSN 0028-0836.
URL http://dx.doi.org/10.1038/nature11449

[55] J. J. Pla, K. Y. Tan, J. P. Dehollain, W. H. Lim, J. J. L. Morton, F. A. Zwanenburg,
D. N. Jamieson, A. S. Dzurak, and A. Morello. High-fidelity readout and control
of a nuclear spin qubit in silicon. Nature 496(7445), 334–338 (April 2013). ISSN
0028-0836.
URL http://dx.doi.org/10.1038/nature12011

[56] W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom.
Room temperature coherent control of defect spin qubits in silicon carbide. Nature
479(7371), 84–87 (November 2011). ISSN 0028-0836.
URL http://dx.doi.org/10.1038/nature10562

[57] R. Kolesov, K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. R. Hemmer, and
J. Wrachtrup. Optical detection of a single rare-earth ion in a crystal. Nature
Communications 3, 1029 (August 2012).
URL http://dx.doi.org/10.1038/ncomms2034

[58] C. Yin, M. Rancic, G. G. de Boo, N. Stavrias, J. C. McCallum, M. J. Sellars,
and S. Rogge. Optical addressing of an individual erbium ion in silicon. Nature
497(7447), 91–94 (May 2013). ISSN 0028-0836.
URL http://dx.doi.org/10.1038/nature12081

[59] T. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. O/’Brien.
Quantum computers. Nature 464(7285), 45–53 (March 2010). ISSN 0028-0836.
URL http://dx.doi.org/10.1038/nature08812

123

http://link.aps.org/doi/10.1103/PhysRevLett.60.1351
http://link.aps.org/doi/10.1103/PhysRevLett.66.1107
http://dx.doi.org/10.1038/nature07295
http://dx.doi.org/10.1038/nature11449
http://dx.doi.org/10.1038/nature12011
http://dx.doi.org/10.1038/nature10562
http://dx.doi.org/10.1038/ncomms2034
http://dx.doi.org/10.1038/nature12081
http://dx.doi.org/10.1038/nature08812


Bibliography

[60] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Informa-
tion. Campridge University Press (2000).

[61] D. P. DiVincenzo. Topics in Quantum Computers. arXiv e-print cond-
mat/9612126 (December 1996).
URL http://arxiv.org/abs/cond-mat/9612126

[62] S. J. Devitt, K. Nemoto, and W. J. Munro. The idiots guide to quantum error
correction. arXiv preprint arXiv:0905.2794 (2009).
URL http://arxiv.org/abs/0905.2794

[63] A. Mizel, D. A. Lidar, and M. Mitchell. Simple Proof of Equivalence between
Adiabatic Quantum Computation and the Circuit Model. Physical Review Letters
99(7), 070502 (August 2007).
URL http://dx.doi.org/10.1103/PhysRevLett.99.070502

[64] R. Raussendorf and H. J. Briegel. A One-Way Quantum Computer. Physical
Review Letters 86(22), 5188–5191 (May 2001).
URL http://dx.doi.org/10.1103/PhysRevLett.86.5188

[65] P. W. Shor. Fault-tolerant quantum computation. In Proc. 37th Symp. Foundations
Comput., pages 56–65 (1996).
URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=548464

[66] D. P. DiVincenzo and P. W. Shor. Fault-Tolerant Error Correction with Efficient
Quantum Codes. Physical Review Letters 77(15), 3260–3263 (October 1996).
URL http://dx.doi.org/10.1103/PhysRevLett.77.3260

[67] D. Gottesman. Theory of fault-tolerant quantum computation. Physical Review A
57(1), 127–137 (January 1998).
URL http://dx.doi.org/10.1103/PhysRevA.57.127

[68] E. Knill, R. Laflamme, and W. H. Zurek. Resilient Quantum Computation. Science
279(5349), 342–345 (January 1998). ISSN 0036-8075, 1095-9203.
URL http://dx.doi.org/10.1126/science.279.5349.342

[69] E. Knill, R. Laflamme, and W. Zurek. Threshold Accuracy for Quantum Compu-
tation. arXiv:quant-ph/9610011 (October 1996).
URL http://arxiv.org/abs/quant-ph/9610011

[70] D. Aharonov and M. Ben-Or. Fault-tolerant Quantum Computation with Constant
Error. In Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of
Computing, STOC ’97, pages 176–188. ACM, New York, NY, USA (1997). ISBN
0-89791-888-6.
URL http://dx.doi.org/10.1145/258533.258579

124

http://arxiv.org/abs/cond-mat/9612126
http://arxiv.org/abs/0905.2794
http://dx.doi.org/10.1103/PhysRevLett.99.070502
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=548464
http://dx.doi.org/10.1103/PhysRevLett.77.3260
http://dx.doi.org/10.1103/PhysRevA.57.127
http://dx.doi.org/10.1126/science.279.5349.342
http://arxiv.org/abs/quant-ph/9610011
http://dx.doi.org/10.1145/258533.258579


Bibliography

[71] P. Schindler, J. T. Barreiro, T. Monz, V. Nebendahl, D. Nigg, M. Chwalla, M. Hen-
nrich, and R. Blatt. Experimental Repetitive Quantum Error Correction. Science
332(6033), 1059–1061 (May 2011). ISSN 0036-8075, 1095-9203.
URL http://dx.doi.org/10.1126/science.1203329

[72] G. Davies and M. F. Hamer. Optical Studies of the 1.945 eV Vibronic Band in
Diamond. Proceedings of the Royal Society of London. A. Mathematical and
Physical Sciences 348(1653), 285–298 (February 1976). ISSN 1364-5021, 1471-
2946.
URL http://dx.doi.org/10.1098/rspa.1976.0039

[73] J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko,
and J. Wrachtrup. Generation of single color centers by focused nitrogen implan-
tation. Applied Physics Letters 87(26), 261909 (December 2005).
URL http://dx.doi.org/10.1063/1.2103389

[74] J. Rabeau, P. Reichart, G. Tamanyan, D. Jamieson, S. Prawer, F. Jelezko,
T. Gaebel, I. Popa, M. Domhan, and J. Wrachtrup. Implantation of labelled single
nitrogen vacancy centers in diamond using N-15. Applied Physics Letters 88(2),
023113 (2006).
URL http://dx.doi.org/10.1063/1.2158700

[75] J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D. J. Twitchen, A. J.
Whitehead, S. E. Coe, and G. A. Scarsbrook. High Carrier Mobility in Single-
Crystal Plasma-Deposited Diamond. Science 297(5587), 1670–1672 (June 2002).
ISSN 0036-8075, 1095-9203. PMID: 12215638.
URL http://dx.doi.org/10.1126/science.1074374

[76] M. Hauf, B. Grotz, B. Naydenov, M. Dankerl, S. Pezzagna, J. Meijer, F. Jelezko,
J. Wrachtrup, M. Stutzmann, F. Reinhard, and J. Garrido. Chemical control of
the charge state of nitrogen-vacancy centers in diamond. Physical Review B 83,
081304 (2011).
URL http://dx.doi.org/10.1103/PhysRevB.83.081304

[77] M. W. Doherty, N. B. Manson, P. Delaney, and L. C. L. Hollenberg. The negatively
charged nitrogen-vacancy centre in diamond: the electronic solution. New Journal
of Physics 13(2), 025019 (February 2011). ISSN 1367-2630.
URL http://dx.doi.org/10.1088/1367-2630/13/2/025019

[78] J. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, and M. Lukin.
Properties of nitrogen-vacancy centers in diamond: the group theoretic approach.
New Journal of Physics 13(2), 025025 (2011).
URL http://dx.doi.org/10.1088/1367-2630/13/2/025025

125

http://dx.doi.org/10.1126/science.1203329
http://dx.doi.org/10.1098/rspa.1976.0039
http://dx.doi.org/10.1063/1.2103389
http://dx.doi.org/10.1063/1.2158700
http://dx.doi.org/10.1126/science.1074374
http://dx.doi.org/10.1103/PhysRevB.83.081304
http://dx.doi.org/10.1088/1367-2630/13/2/025019
http://dx.doi.org/10.1088/1367-2630/13/2/025025


Bibliography

[79] A. Batalov, C. Zierl, T. Gaebel, P. Neumann, I. Chan, G. Balasubramanian,
P. Hemmer, F. Jelezko, and J. Wrachtrup. Temporal coherence of photons
emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-
oscillations. Physical Review Letters 100(7), 077401 (2008).
URL http://dx.doi.org/10.1103/PhysRevLett.100.077401

[80] N. Manson, J. Harrison, and M. Sellars. Nitrogen-vacancy center in diamond:
Model of the electronic structure and associated dynamics. Physical Review B
74(10), 104303 (2006).
URL http://dx.doi.org/10.1103/PhysRevB.74.104303

[81] S. Felton, A. Edmonds, M. Newton, P. Martineau, D. Fisher, and D. Twitchen.
Electron paramagnetic resonance studies of the neutral nitrogen vacancy in dia-
mond. Physical Review B 77, 081201 (2008).
URL http://dx.doi.org/10.1103/PhysRevB.77.081201

[82] L. Jiang, J. Hodges, J. Maze, P. Maurer, J. Taylor, D. Cory, P. Hemmer,
R. Walsworth, A. Yacoby, A. Zibrov, and M. Lukin. Repetitive Readout of a
Single Electronic Spin via Quantum Logic with Nuclear Spin Ancillae. Science
326 (2009).
URL http://dx.doi.org/10.1126/science.1176496

[83] N. Zarrabi, M. Dueser, R. Reuter, S. Dunn, J. Wrachtrup, and M. Boersch. De-
tecting substeps in the rotary motors of FoF1-ATP synthase by Hidden Markov
Models. Proc. SPIE 6444, 64440E (2007).
URL http://dx.doi.org/10.1117/12.701001

[84] C. Cohen-Tannoudji, B. Diu, and F. Laloe. Quantum mechanics. Wiley,
New York (2005). ISBN 9780471569527 0471569526 9780471164333 047116433X
9780471164357 0471164356.

[85] A. Schweiger and G. Jeschke. Principles of pulse electron paramagnetic reso-
nance. Oxford University Press, Oxford, UK; New York (2001). ISBN 0198506341
9780198506348.

[86] V. Dobrovitski, A. Feiguin, D. Awschalom, and R. Hanson. Decoherence dynamics
of a single spin versus spin ensemble. Physical Review B 77, 245212 (2008).
URL http://dx.doi.org/10.1103/PhysRevB.77.245212

[87] L. Viola, E. Knill, and S. Lloyd. Dynamical Decoupling of Open Quantum Systems.
Physical Review Letters 82(12), 2417–2421 (March 1999).
URL http://dx.doi.org/10.1103/PhysRevLett.82.2417

126

http://dx.doi.org/10.1103/PhysRevLett.100.077401
http://dx.doi.org/10.1103/PhysRevB.74.104303
http://dx.doi.org/10.1103/PhysRevB.77.081201
http://dx.doi.org/10.1126/science.1176496
http://dx.doi.org/10.1117/12.701001
http://dx.doi.org/10.1103/PhysRevB.77.245212
http://dx.doi.org/10.1103/PhysRevLett.82.2417


Bibliography

[88] G. S. Uhrig. Keeping a Quantum Bit Alive by Optimized pi-Pulse Sequences. Phys-
ical Review Letters 98(10), 100504 (March 2007).
URL http://dx.doi.org/10.1103/PhysRevLett.98.100504

[89] G. de Lange, Z. Wang, D. Ristè, V. Dobrovitski, and R. Hanson. Universal dy-
namical decoupling of a single solid-state spin from a spin bath. Science 330(6000)
(2010).
URL http://dx.doi.org/10.1126/science.1192739

[90] J. Du, X. Rong, N. Zhao, Y. Wang, J. Yang, and R. B. Liu. Preserving electron
spin coherence in solids by optimal dynamical decoupling. Nature 461(7268), 1265–
1268 (October 2009). ISSN 0028-0836.
URL http://dx.doi.org/10.1038/nature08470

[91] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbruggen, and S. J. Glaser. Optimal
control of coupled spin dynamics: design of NMR pulse sequences by gradient as-
cent algorithms. Journal of Magnetic Resonance 172(2), 296–305 (February 2005).
ISSN 1090-7807.
URL http://dx.doi.org/10.1016/j.jmr.2004.11.004

[92] S. Machnes, U. Sander, S. J. Glaser, P. de Fouquieres, A. Gruslys, S. Schirmer,
and T. Schulte-Herbruggen. Comparing, optimizing, and benchmarking quantum-
control algorithms in a unifying programming framework. Physical Review A 84(2),
022305 (August 2011).
URL http://dx.doi.org/10.1103/PhysRevA.84.022305

[93] T. Caneva, T. Calarco, and S. Montangero. Chopped random-basis quantum opti-
mization. Physical Review A 84(2), 022326 (August 2011).
URL http://dx.doi.org/10.1103/PhysRevA.84.022326

[94] N. Manson and J. Harrison. Photo-ionization of the nitrogen-vacancy center in
diamond. Diamond and Related Materials 14 (2005).
URL http://dx.doi.org/10.1016/j.diamond.2005.06.027

[95] K. Iakoubovskii, G. Adriaenssens, and M. Nesladek. Photochromism of vacany-
related centers in diamond. Journal of Physics: Condensed Matter 12 (2000).
URL http://iopscience.iop.org/0953-8984/12/2/308/pdf/0953-8984_12_
2_308.pdf

[96] I. Kupriyanov, V. Gusev, Y. Pal’yanov, and Y. Borzdov. Photochromic effect in
irradiated and annealed nearly IIa type synthetic diamond. Journal of Physics:
Condensed Matter 12 (2000).
URL http://iopscience.iop.org/0953-8984/12/35/318/pdf/0953-8984_12_
35_318.pdf

127

http://dx.doi.org/10.1103/PhysRevLett.98.100504
http://dx.doi.org/10.1126/science.1192739
http://dx.doi.org/10.1038/nature08470
http://dx.doi.org/10.1016/j.jmr.2004.11.004
http://dx.doi.org/10.1103/PhysRevA.84.022305
http://dx.doi.org/10.1103/PhysRevA.84.022326
http://dx.doi.org/10.1016/j.diamond.2005.06.027
http://iopscience.iop.org/0953-8984/12/2/308/pdf/0953-8984_12_2_308.pdf
http://iopscience.iop.org/0953-8984/12/2/308/pdf/0953-8984_12_2_308.pdf
http://iopscience.iop.org/0953-8984/12/35/318/pdf/0953-8984_12_35_318.pdf
http://iopscience.iop.org/0953-8984/12/35/318/pdf/0953-8984_12_35_318.pdf


Bibliography

[97] J. Steeds, S. Charles, J. Davies, and I. Griffin. Photoluminescence microscopy of
TEM irradiated diamond. Diamond and Related Materials 9(3-6), 397–403 (April
2000). ISSN 0925-9635.
URL http://dx.doi.org/10.1016/S0925-9635(99)00360-X

[98] T. Gaebel, M. Domhan, C. Wittmann, I. Popa, F. Jelezko, J. Rabeau, A. Green-
tree, S. Prawer, E. Trajkov, P. Hemmer, and J. Wrachtrup. Photochromism in
single nitrogen-vacancy defect in diamond. Applied Physics B 82 (2006).
URL http://dx.doi.org/10.1007/s00340-005-2056-2

[99] K. Han, S. Kim, C. Eggeling, and S. Hell. Metastable Dark States Enable
Ground State Depletion Microscopy of Nitrogen Vacancy Centers in Diamond with
Diffraction-Unlimited Resolution. Nano Letters 10(8) (2010).
URL http://dx.doi.org/10.1021/nl102156m

[100] R. Epstein, F. Mendoza, Y. Kato, and D. Awschalom. Anisotropic interactions of
a single spin and dark-spin spectroscopy in diamond. Nature Physics 1(2) (2005).
URL http://dx.doi.org/10.1038/nphys141

[101] S. Felton, A. Edmonds, M. Newton, P. Martineau, D. Fisher, D. Twitchen, and
J. Baker. Hyperfine interaction in the ground state of the negatively charged nitro-
gen vacancy center in diamond. Physical Review B 79(7), 075203 (2009).
URL http://dx.doi.org/10.1103/PhysRevB.79.075203

[102] G. Fuchs, V. Dobrovitski, R. Hanson, A. Batra, C. Weis, T. Schenkel, and
D. Awschalom. Excited-state spectroscopy using single spin manipulation in di-
amond. Physical Review Letters 101(11), 117601 (2008).
URL http://dx.doi.org/10.1103/PhysRevLett.101.117601

[103] K. Beha, A. Batalov, N. Manson, R. Bratschitsch, and A. Leitenstorfer. Optimum
Photoluminescence Excitation and Recharging Cycle of Single Nitrogen-Vacancy
Centers in Ultrapure Diamond. Physical Review Letters 109, 097404 (2012).
URL http://dx.doi.org/10.1103/PhysRevLett.109.097404

[104] P. Siyushev, H. Pinto, M. Voros, A. Gali, F. Jelezko, and J. Wrachtrup. Optically
Controlled Switching of the Charge State of a Single Nitrogen-Vacancy Center in
Diamond at Cryogenic Temperatures. Physical Review Letters 110(16), 167402
(April 2013).
URL http://dx.doi.org/10.1103/PhysRevLett.110.167402

[105] A. Draebenstedt, L. Fleury, C. Tietz, F. Jelezko, S. Kilin, A. Nizovtzev, and
J. Wrachtrup. Low-temperature microscopy and spectroscopy on single defect cen-
ters in diamond. Physical Review B 60(16), 11503–11508 (October 1999).
URL http://dx.doi.org/10.1103/PhysRevB.60.11503

128

http://dx.doi.org/10.1016/S0925-9635(99)00360-X
http://dx.doi.org/10.1007/s00340-005-2056-2
http://dx.doi.org/10.1021/nl102156m
http://dx.doi.org/10.1038/nphys141
http://dx.doi.org/10.1103/PhysRevB.79.075203
http://dx.doi.org/10.1103/PhysRevLett.101.117601
http://dx.doi.org/10.1103/PhysRevLett.109.097404
http://dx.doi.org/10.1103/PhysRevLett.110.167402
http://dx.doi.org/10.1103/PhysRevB.60.11503


Bibliography

[106] P. Delaney, J. C. Greer, and J. A. Larsson. Spin-Polarization Mechanisms of the
Nitrogen-Vacancy Center in Diamond. Nano Letters 10(2), 610–614 (February
2010). ISSN 1530-6984.
URL http://dx.doi.org/10.1021/nl903646p

[107] M. J. Rust, M. Bates, and X. Zhuang. Sub-diffraction-limit imaging by stochas-
tic optical reconstruction microscopy (STORM). Nature Methods 3(10), 793–796
(October 2006). ISSN 1548-7091.
URL http://dx.doi.org/10.1038/nmeth929

[108] E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S.
Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess. Imaging
Intracellular Fluorescent Proteins at Nanometer Resolution. Science 313(5793),
1642–1645 (September 2006). ISSN 0036-8075, 1095-9203. PMID: 16902090.
URL http://dx.doi.org/10.1126/science.1127344

[109] A. Beveratos, R. Brouri, J.-P. Poizat, and P. Grangier. Bunching and antibunching
from single NV color centers in diamond. arXiv e-print quant-ph/0010044 (Octo-
ber 2000).
URL http://arxiv.org/abs/quant-ph/0010044

[110] R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier. Photon antibunching in
the fluorescence of individual color centers in diamond. Optics Letters 25(17),
1294–1296 (September 2000).
URL http://dx.doi.org/10.1364/OL.25.001294

[111] A. Einstein, B. Podolsky, and N. Rosen. Can Quantum-Mechanical Description
of Physical Reality Be Considered Complete? Physical Review 47(10), 777–780
(May 1935).
URL http://dx.doi.org/10.1103/PhysRev.47.777

[112] J. S. Bell. On the Einstein Podolsky Rosen Paradox. Physics I, 195–200 (1964).

[113] E. Schroedinger. Die gegenwaertige Situation in der Quantenmechanik. Naturwis-
senschaften 23(48), 807–812 (November 1935). ISSN 0028-1042, 1432-1904.
URL http://dx.doi.org/10.1007/BF01491891

[114] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt. Proposed Experiment
to Test Local Hidden-Variable Theories. Physical Review Letters 23(15), 880–884
(October 1969).
URL http://dx.doi.org/10.1103/PhysRevLett.23.880

[115] A. Aspect, P. Grangier, and G. Roger. Experimental Realization of Einstein-
Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bells Inequali-
ties. Physical Review Letters 49(2), 91–94 (July 1982).
URL http://dx.doi.org/10.1103/PhysRevLett.49.91

129

http://dx.doi.org/10.1021/nl903646p
http://dx.doi.org/10.1038/nmeth929
http://dx.doi.org/10.1126/science.1127344
http://arxiv.org/abs/quant-ph/0010044
http://dx.doi.org/10.1364/OL.25.001294
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1007/BF01491891
http://dx.doi.org/10.1103/PhysRevLett.23.880
http://dx.doi.org/10.1103/PhysRevLett.49.91


Bibliography

[116] D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger. Bells theorem
without inequalities. American Journal of Physics 58(12), 1131 (1990). ISSN
00029505.
URL http://dx.doi.org/10.1119/1.16243

[117] A. J. Leggett and A. Garg. Quantum mechanics versus macroscopic realism: Is
the flux there when nobody looks? Physical Review Letters 54(9), 857–860 (March
1985).
URL http://dx.doi.org/10.1103/PhysRevLett.54.857

[118] C. D. Tesche. Can a noninvasive measurement of magnetic flux be performed with
superconducting circuits? Physical Review Letters 64(20), 2358–2361 (May 1990).
URL http://dx.doi.org/10.1103/PhysRevLett.64.2358

[119] J. P. Paz and G. Mahler. Proposed test for temporal Bell inequalities. Physical
Review Letters 71(20), 3235–3239 (November 1993).
URL http://dx.doi.org/10.1103/PhysRevLett.71.3235

[120] S. F. Huelga, T. W. Marshall, and E. Santos. Proposed test for realist theories
using Rydberg atoms coupled to a high-Q resonator. Physical Review A 52(4),
R2497–R2500 (October 1995).
URL http://dx.doi.org/10.1103/PhysRevA.52.R2497

[121] S. F. Huelga, T. W. Marshall, and E. Santos. Temporal Bell-type inequalities for
two-level Rydberg atoms coupled to a high-Q resonator. Physical Review A 54(3),
1798 (1996).
URL http://pra.aps.org/abstract/PRA/v54/i3/p1798_1

[122] F. De Zela. Single-qubit tests of Bell-like inequalities. Physical Review A 76(4)
(October 2007). ISSN 1050-2947, 1094-1622.
URL http://dx.doi.org/10.1103/PhysRevA.76.042119

[123] A. Palacios-Laloy, F. Mallet, F. Nguyen, P. Bertet, D. Vion, D. Esteve, and A. N.
Korotkov. Experimental violation of a Bells inequality in time with weak measure-
ment. Nature Physics 6(6), 442–447 (April 2010). ISSN 1745-2473, 1745-2481.
URL http://dx.doi.org/10.1038/nphys1641

[124] M. E. Goggin, M. P. Almeida, M. Barbieri, B. P. Lanyon, J. L. O’Brien, A. G.
White, and G. J. Pryde. Violation of the Leggett-Garg inequality with weak mea-
surements of photons. Proceedings of the National Academy of Sciences 108(4),
1256–1261 (January 2011). ISSN 0027-8424, 1091-6490.
URL http://dx.doi.org/10.1073/pnas.1005774108

[125] R. Ruskov, A. N. Korotkov, and A. Mizel. Signatures of Quantum Behavior in
Single-Qubit Weak Measurements. Physical Review Letters 96(20), 200404 (May

130

http://dx.doi.org/10.1119/1.16243
http://dx.doi.org/10.1103/PhysRevLett.54.857
http://dx.doi.org/10.1103/PhysRevLett.64.2358
http://dx.doi.org/10.1103/PhysRevLett.71.3235
http://dx.doi.org/10.1103/PhysRevA.52.R2497
http://pra.aps.org/abstract/PRA/v54/i3/p1798_1
http://dx.doi.org/10.1103/PhysRevA.76.042119
http://dx.doi.org/10.1038/nphys1641
http://dx.doi.org/10.1073/pnas.1005774108


Bibliography

2006).
URL http://dx.doi.org/10.1103/PhysRevLett.96.200404

[126] C. Cohen-Tannoudji, B. Diu, and F. Laloe. Quantum mechanics. 1 (1991) 1
(1991). Wiley [u.a.], New York [u.a.] (1991). ISBN 0471164321 9780471164326
047116433X 9780471164333 2705658335 9782705658335.

[127] S. M. Barnett and S. Croke. Quantum state discrimination. Advances in Optics
and Photonics 1(2), 238–278 (April 2009).
URL http://dx.doi.org/10.1364/AOP.1.000238

[128] C. H. Bennett. Quantum cryptography using any two nonorthogonal states. Phys-
ical Review Letters 68(21), 3121–3124 (May 1992).
URL http://dx.doi.org/10.1103/PhysRevLett.68.3121

[129] S. J. van Enk. Unambiguous state discrimination of coherent states with linear
optics: Application to quantum cryptography. Physical Review A 66(4), 042313
(October 2002).
URL http://dx.doi.org/10.1103/PhysRevA.66.042313

[130] A. Delgado, L. Roa, J. C. Retamal, and C. Saavedra. Entanglement swapping via
quantum state discrimination. Physical Review A 71(1), 012303 (January 2005).
URL http://dx.doi.org/10.1103/PhysRevA.71.012303

[131] L. Roa, A. Delgado, and I. Fuentes-Guridi. Optimal conclusive teleportation of
quantum states. Physical Review A 68(2), 022310 (August 2003).
URL http://dx.doi.org/10.1103/PhysRevA.68.022310

[132] C. W. Helstrom. Quantum detection and estimation theory. Academic Press (Jan-
uary 1976). ISBN 0124110118.

[133] I. Ivanovic. How to differentiate between non-orthogonal states. Physics Letters A
123(6), 257–259 (August 1987). ISSN 0375-9601.
URL http://dx.doi.org/10.1016/0375-9601(87)90222-2

[134] D. Dieks. Overlap and distinguishability of quantum states. Physics Letters A
126(5-6), 303–306 (January 1988). ISSN 0375-9601.
URL http://dx.doi.org/10.1016/0375-9601(88)90840-7

[135] A. Peres. How to differentiate between non-orthogonal states. Physics Letters A
128(1-2), 19 (March 1988). ISSN 0375-9601.
URL http://dx.doi.org/10.1016/0375-9601(88)91034-1

[136] S. Franke-Arnold, E. Andersson, S. M. Barnett, and S. Stenholm. Generalized
measurements of atomic qubits. Physical Review A 63(5), 052301 (April 2001).
URL http://dx.doi.org/10.1103/PhysRevA.63.052301

131

http://dx.doi.org/10.1103/PhysRevLett.96.200404
http://dx.doi.org/10.1364/AOP.1.000238
http://dx.doi.org/10.1103/PhysRevLett.68.3121
http://dx.doi.org/10.1103/PhysRevA.66.042313
http://dx.doi.org/10.1103/PhysRevA.71.012303
http://dx.doi.org/10.1103/PhysRevA.68.022310
http://dx.doi.org/10.1016/0375-9601(87)90222-2
http://dx.doi.org/10.1016/0375-9601(88)90840-7
http://dx.doi.org/10.1016/0375-9601(88)91034-1
http://dx.doi.org/10.1103/PhysRevA.63.052301


Bibliography

[137] M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani. Experimental realization of
any discrete unitary operator. Physical Review Letters 73(1), 58–61 (July 1994).
URL http://dx.doi.org/10.1103/PhysRevLett.73.58

[138] R. B. M. Clarke, A. Chefles, S. M. Barnett, and E. Riis. Experimental demon-
stration of optimal unambiguous state discrimination. Physical Review A 63(4),
040305 (March 2001).
URL http://dx.doi.org/10.1103/PhysRevA.63.040305

[139] A. C. Dada, E. Andersson, M. L. Jones, V. M. Kendon, and M. S. Everitt. Quantum
measurements of atoms using cavity QED. Physical Review A 83(4), 042339 (April
2011).
URL http://dx.doi.org/10.1103/PhysRevA.83.042339

[140] N. M. Nusran, M. U. Momeen, and M. V. G. Dutt. High-dynamic-range magne-
tometry with a single electronic spin in diamond. Nature Nanotechnology 7(2),
109–113 (February 2012). ISSN 1748-3387.
URL http://dx.doi.org/10.1038/nnano.2011.225

[141] B. Higgins, D. Berry, S. Bartlett, H. Wiseman, and G. Pryde. Entanglement-free
heisenberg-limited phase estimation. Nature 450(7168), 393 (2007).
URL http://dx.doi.org/10.1038/nature06257

[142] B. L. Higgins, D. W. Berry, S. D. Bartlett, M. W. Mitchell, H. M. Wiseman,
and G. J. Pryde. Demonstrating Heisenberg-limited unambiguous phase estimation
without adaptive measurements. New Journal of Physics 11(7), 073023 (July 2009).
ISSN 1367-2630.
URL http://dx.doi.org/10.1088/1367-2630/11/7/073023

[143] D. W. Berry, B. L. Higgins, S. D. Bartlett, M. W. Mitchell, G. J. Pryde, and
H. M. Wiseman. How to perform the most accurate possible phase measurements.
Physical Review A 80(5) (November 2009). ISSN 1050-2947, 1094-1622.
URL http://dx.doi.org/10.1103/PhysRevA.80.052114

[144] R. Said, D. Berry, and J. Twamley. Nanoscale magnetometry using a single-spin
system in diamond. Physical Review B 83, 125410 (2011).
URL http://dx.doi.org/10.1103/PhysRevB.83.125410

[145] T. Haeberle, D. Schmid-Lorch, K. Karrai, F. Reinhard, and J. Wrachtrup. High-
Dynamic-Range Imaging of Nanoscale Magnetic Fields Using Optimal Control of
a Single Qubit. Physical Review Letters 111(17), 170801 (October 2013).
URL http://dx.doi.org/10.1103/PhysRevLett.111.170801

[146] L. Robledo, L. Childress, H. Bernien, B. Hensen, P. Alkemade, and R. Hanson.
High-fidelity projective read-out of a solid-state spin quantum register. Nature

132

http://dx.doi.org/10.1103/PhysRevLett.73.58
http://dx.doi.org/10.1103/PhysRevA.63.040305
http://dx.doi.org/10.1103/PhysRevA.83.042339
http://dx.doi.org/10.1038/nnano.2011.225
http://dx.doi.org/10.1038/nature06257
http://dx.doi.org/10.1088/1367-2630/11/7/073023
http://dx.doi.org/10.1103/PhysRevA.80.052114
http://dx.doi.org/10.1103/PhysRevB.83.125410
http://dx.doi.org/10.1103/PhysRevLett.111.170801


Bibliography

477(7366), 574–578 (September 2011). ISSN 0028-0836.
URL http://dx.doi.org/10.1038/nature10401

[147] T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli,
D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski. Decoherence-
protected quantum gates for a hybrid solid-state spin register. Nature 484(7392),
82–86 (April 2012). ISSN 0028-0836.
URL http://dx.doi.org/10.1038/nature10900

[148] V. Filidou, S. Simmons, S. D. Karlen, F. Giustino, H. L. Anderson, and J. J. L.
Morton. Ultrafast entangling gates between nuclear spins using photoexcited triplet
states. Nature Physics 8(8), 596–600 (August 2012). ISSN 1745-2473.
URL http://dx.doi.org/10.1038/nphys2353

[149] N. D. Mermin. Extreme quantum entanglement in a superposition of macroscopi-
cally distinct states. Physical Review Letters 65(15), 1838–1840 (October 1990).
ISSN 0031-9007.
URL http://dx.doi.org/10.1103/PhysRevLett.65.1838

[150] D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H. Zurek, T. F.
Havel, and S. S. Somaroo. Experimental quantum error correction. Physical Review
Letters 81(10), 2152–2155 (1998).
URL http://link.aps.org/doi/10.1103/PhysRevLett.81.2152

[151] J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. B. Blakestad, J. Britton,
W. M. Itano, J. D. Jost, E. Knill, C. Langer, R. Ozeri, and D. J. Wineland.
Realization of quantum error correction. Nature 432(7017), 602–605 (December
2004). ISSN 0028-0836, 1476-4679.
URL http://dx.doi.org/10.1038/nature03074

[152] E. Knill, R. Laflamme, R. Martinez, and C. Negrevergne. Benchmarking Quan-
tum Computers: The Five-Qubit Error Correcting Code. Physical Review Letters
86(25), 5811–5814 (June 2001). ISSN 0031-9007, 1079-7114.
URL http://dx.doi.org/10.1103/PhysRevLett.86.5811

[153] N. Boulant, L. Viola, E. Fortunato, and D. Cory. Experimental Implementation of
a Concatenated Quantum Error-Correcting Code. Physical Review Letters 94(13)
(April 2005). ISSN 0031-9007, 1079-7114.
URL http://dx.doi.org/10.1103/PhysRevLett.94.130501

[154] O. Moussa, J. Baugh, C. A. Ryan, and R. Laflamme. Demonstration of Sufficient
Control for Two Rounds of Quantum Error Correction in a Solid State Ensemble
Quantum Information Processor. Physical Review Letters 107(16) (October 2011).
ISSN 0031-9007, 1079-7114.
URL http://dx.doi.org/10.1103/PhysRevLett.107.160501

133

http://dx.doi.org/10.1038/nature10401
http://dx.doi.org/10.1038/nature10900
http://dx.doi.org/10.1038/nphys2353
http://dx.doi.org/10.1103/PhysRevLett.65.1838
http://link.aps.org/doi/10.1103/PhysRevLett.81.2152
http://dx.doi.org/10.1038/nature03074
http://dx.doi.org/10.1103/PhysRevLett.86.5811
http://dx.doi.org/10.1103/PhysRevLett.94.130501
http://dx.doi.org/10.1103/PhysRevLett.107.160501


Bibliography

[155] N. Mizuochi, P. Neumann, F. Rempp, J. Beck, V. Jacques, P. Siyushev, K. Naka-
mura, D. J. Twitchen, H. Watanabe, S. Yamasaki, F. Jelezko, and J. Wrachtrup.
Coherence of single spins coupled to a nuclear spin bath of varying density. Phys-
ical Review B 80(4), 041201 (July 2009).
URL http://dx.doi.org/10.1103/PhysRevB.80.041201

[156] N. Zhao, J. Honert, B. Schmid, M. Klas, J. Isoya, M. Markham, D. Twitchen,
F. Jelezko, R.-B. Liu, H. Fedder, and J. Wrachtrup. Sensing single remote nuclear
spins. Nature Nanotechnology 7(10), 657–662 (September 2012). ISSN 1748-3387,
1748-3395.
URL http://dx.doi.org/10.1038/nnano.2012.152

[157] T. Taminiau, J. Wagenaar, T. van der Sar, F. Jelezko, V. Dobrovitski, and R. Han-
son. Detection and Control of Individual Nuclear Spins Using a Weakly Coupled
Electron Spin. Physical Review Letters 109, 137602 (2012).
URL http://dx.doi.org/10.1103/PhysRevLett.109.137602

[158] S. Kolkowitz, Q. Unterreithmeier, S. Bennett, and M. Lukin. Sensing Distant
Nuclear Spins with a Single Electron Spin. Physical Review Letters 109, 137601
(2012).
URL http://dx.doi.org/10.1103/PhysRevLett.109.137601

[159] T. H. Taminiau, J. Cramer, T. v. d. Sar, V. V. Dobrovitski, and R. Hanson.
Universal control and error correction in multi-qubit spin registers in diamond.
Nature Nanotechnology advance online publication (February 2014). ISSN
1748-3387.
URL http://dx.doi.org/10.1038/nnano.2014.2

[160] P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett,
F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac,
and M. D. Lukin. Room-Temperature Quantum Bit Memory Exceeding One Sec-
ond. Science 336(6086), 1283–1286 (August 2012). ISSN 0036-8075, 1095-9203.
PMID: 22679092.
URL http://dx.doi.org/10.1126/science.1220513

134

http://dx.doi.org/10.1103/PhysRevB.80.041201
http://dx.doi.org/10.1038/nnano.2012.152
http://dx.doi.org/10.1103/PhysRevLett.109.137602
http://dx.doi.org/10.1103/PhysRevLett.109.137601
http://dx.doi.org/10.1038/nnano.2014.2
http://dx.doi.org/10.1126/science.1220513

	Contents
	Zusammenfassung
	Summary
	List of Figures
	List of Tables
	Acronyms
	1 Introduction to physical basics
	1.1 Quantum information processing
	1.1.1 Physical implementation
	1.1.2 Quantum error correction

	1.2 The Nitrogen-Vacancy defect in diamond
	1.2.1 Electronic structure and photophysics
	1.2.2 Experimental setup
	1.2.3 Spin Hamiltonian: Electron and nuclear spins
	1.2.4 Single shot readout of nuclear spins

	1.3 Spin dynamics
	1.3.1 Spin decoherence
	1.3.2 Optimal control


	2 Photo-ionization of the NV
	2.1 Detection of NV0 via single shot NMR
	2.2 Single shot charge state detection
	2.3 Wavelength dependent ionization dynamics
	2.3.1 Charge state dynamics
	2.3.2 NV- population
	2.3.3 Ionization and recombination energy

	2.4 Improved electron spin initialization
	2.5 Conclusions
	2.5.1 Rate equation model including photo-ionization


	3 Applications of nuclear spin single shot readout
	3.1 Violation of a temporal Bell inequality
	3.1.1 Experimental violation of the temporal Bell inequality

	3.2 Distinguishing between non-orthogonal quantum states
	3.2.1 Optimal state discrimination
	3.2.2 Experimental implementation

	3.3 High-dynamic-range magnetometry
	3.3.1 Accuracy scaling and ambiguity
	3.3.2 Quantum phase estimation algorithm
	3.3.3 Experimental implementation of the QPEA
	3.3.4 Conclusion


	4 Quantum register based on single nuclear spins: Quantum error correction
	4.1 Single shot readout of 13C nuclear spins
	4.2 Three-qubit nuclear register: Readout and initialization
	4.3 Selective and Non-local gates
	4.4 Entanglement of three nuclear spins
	4.5 Quantum error correction
	4.6 Estimated number of strongly and weakly coupled nuclear spin
	4.7 Detection of weakly coupled nuclear spins
	4.8 Conclusions and outlook

	A Rate equations
	A.1 Steady state fluorescence of the NV with ionization
	A.2 Two-level rate equation for determination of ionization and recombination rates

	B Tomography
	B.1 State tomography
	B.2 Process tomography

	C Mermin inequality
	Acknowledgement
	Bibliography

