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Zusammenfassung

Das Ziel dieser Arbeit ist der Nachweis von Approximationssätzen für die Nicht-
lineare Schrödinger-Approximation in höheren Raumdimensionen für dipersive Sys-
teme. Das Hauptaugenmerk liegt dabei auf Systemen mit resonanten quadratischen
Nichtlinearitäten, welche zu einer Explosion der Lösungen vor Ende des Appro-
ximationsintervalls führen können. Im Vergleich zu einer Raumdimension ist die
Resonanzstruktur im höherdimensionalen Fall deutlich koplizierter. Der Nachweis
der Approximationseigenschaft geschieht mittels Normalformtransformationen und
zusätzlich mit zeitabhängigen Normen.



Abstract

The goal of the present work is the proof of approximation results for the Nonlinear
Schördinger approximation in higher space dimensions for dispersive systems. The
focus is on systems with resonant quadratic terms, which can lead to some explo-
sion before the end of the approximation interval. In higher space dimensions the
resonance structure is much more complicated than in case of one space dimension.
The proof of approximation results is based on normal form transforms and the use
of time-dependent norms.
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1. Introduction

Recently, 3D oscillatory water waves and localized electromagnetic waves in higher
dimensional media became a subject of active research in mathematics, cf. [1, 2, 3].
Usually these systems are very complex. However, these original systems can be
reduced to systems which are much easier than the original system. Because of
the complicated nature of these original systems a Nonlinear Schrödinger (NLS)
equation can be derived as an universal amplitude equation to describe the dynamics
of these systems. Due to its simple structure, the NLS equation can be analyzed and
hence correct predictions about the dynamics of the original system can be made.
It is the purpose of the present work to transfer and improve existing approximation
results for the NLS approximation in 1D to higher space dimensions.

We start with the 1D nonlinear wave equation

∂2
t u = ∂2

xu− u+ u3, (1.1)

with u = u(x, t) ∈ R, x ∈ R, and t ≥ 0. On the time interval [0, 1/ε2] equation (1.1)
has O(ε)-amplitude solutions which are slow spatial and temporal modulations of
an underlying spatially and temporarily oscillating wave packet. Such solutions are
described by the ansatz

εψNLS(x, t) = εA(X,T )ei(k0x+ω0t) + c.c., (1.2)

where 0 < ε � 1 is a small perturbation parameter, k0 and ω0 are the spatial and
the temporal wave numbers of the underlying carrier wave ei(k0x+ω0t), A(X,T ) ∈ C
is the complex valued envelope function and c.c. is the complex conjugate. Here
T = ε2t, X = ε(x + cgt) and cg = k0

ω0
is the negative group velocity. Inserting

the ansatz (1.2) into (1.1) and equating the coe�cients in front of εj1ej2i(k0x−ω0t) for
j1 ∈ N, j2 ∈ Z, to zero gives a NLS equation

∂TA = iν1∂
2
XA+ iν2A|A|2, (1.3)

where T ∈ R, X ∈ R, ν1, ν2 ∈ R, and where the basic temporal and spatial wave
numbers ω0 and k0 are related via the linear dispersion relation ω2

0 = 1 + k2
0 of the

underlying dispersive wave system (1.1).
The goal of the present thesis is to establish approximation results like
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O(ε)

O(ε−1)

cg

cp

Figure 1.1: The envelope of the oscillating wave packet is described by the amplitude
A which solves the NLS equation and advances with the group velocity cg where the
underlying carrier wave advances with the phase velocity cp = ω0/k0.

Approximation Property (APP).
Let A ∈ C([0, T0], HθA(R,C)) be a solution of the NLS equation (1.3) for a θA ≥ 0
su�ciently big. Then there exist ε0 > 0 and C > 0 such that for all ε ∈ (0, ε0) there
are solutions u of (1.1) with

sup
t∈[0,T0/ε2]

sup
x∈R
|u(x, t)− εψNLS(ε, x, t)| ≤ Cε3/2.

This means that the solutions of the original system behave as predicted by the NLS
equation on the time interval [0, T0/ε

2].
Approximation results: In the 1D case the NLS equation has been derived

�rst in [4] for the water wave problem with in�nite depth and no surface tension.
The �rst justi�cation result which shows that the error made by the approximation is
small over the natural time scale has been established in [5] for very general quasilin-
ear hyperbolic systems. In case of purely cubic nonlinearities in the original system
error estimates can be proven with a simple application of Gronwall's inequality [6].
If semilinear quadratic terms are present in the original system, then they can be
removed by a near identity change of variables if the eigenvalues of the linearized
problem satisfy a so-called non-resonance condition. Quasilinear quadratic terms
have been excluded explicitly in [5]. In the following years there were several ef-
forts to weaken this non-resonance condition from [5] since it is not satis�ed for the
water wave problem. We refrain from giving a complete overview about existing
approximation results at this point and start immediately with the 2D case.
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As an example we consider a rotationally symmetric system with two unbounded
space directions

∂2
t u = ∆u− u+ u3, (1.4)

with ∆ = ∂2
x + ∂2

y , u = u(x, y, t) ∈ R, x, y ∈ R and t ≥ 0. The NLS equation can be
derived by making the ansatz

εψNLS(x, y, t) = εA(X,Y , T )ei(k01x+ω0t) + c.c., (1.5)

with 0 < ε � 1 a small perturbation parameter, the wave vector k = (k1, k2),
the negative group velocity cg = ∂k1ω|k=k0,ω=ω0 , T = ε2t, X = ε(x + cgt), Y = εy,
A(X, Y, T ) ∈ C, c.c. the complex conjugate and for notational simplicity we assumed
k0 = (k01, 0). Herein, k = k0 ∈ R2 and ω = ω0 satisfy the linear dispersion relation
ω2

0 = 1 + |k0|2.
In lowest order we obtain that A has to satisfy the 2D NLS equation

∂TA = iν1∂
2
XA+ iν2∂

2
YA+ iν3A|A|2, (1.6)

with T ∈ R, X, Y ∈ R and real-valued coe�cients

ν1 = ν1(k0) = −1

2
∂2
k1
ω|k=k0,ω=ω0 ,

ν2 = ν2(k0) = −1

2
∂2
k2
ω|k=k0,ω=ω0 ,

ν3 = ν3(k0),

and k0 ∈ R2 and A(X, Y, T ) ∈ C.

It is the goal of the present thesis to transfer and improve the existing approxi-
mation results explained above for the 1D case to the 2D case. Very recently N. Totz
[7] justi�ed the Davey-Stewartson system [8] for the water wave problem in case of
in�nite depth without surface tension. In Chapter 2 the approximation result in the
case of a cubic nonlinearity is presented. As an example we consider (1.4). The proof
of an approximation result is based on a simple application of Gronwall's inequality.

For the quadratic nonlinear wave equation

∂2
t u = ∆u− u+ u2, (1.7)

a simple application of Gronwall's inequality only would give estimates on a time
interval of length O(ε−1) instead of O(ε−2). The approximation result for the NLS
equation can be shown with the help of a normal form transform if the linear dis-
persion relation satis�es a non-resonance condition. This can be found in Chapter
3. It turns out that in these two cases the transfer of the 1D results [6, 5] is rather
easy and the proofs follow almost line for line the 1D case.
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Figure 1.2: The mode concentration of the NLS ansatz with analytic initial condi-
tions in Fourier space.

In Chapter 4 we consider the case of quadratic nonlinearities with a single reso-
nance at k = 0. As an example we consider

∂2
t u = ∆u+ ∂2

t ∆u+ ∆(u2).

Again by a normal form transform and by some wave number dependent scaling of
the error function we are able to control the dangerous terms that emerge by the
additional non-trivial resonance at k = k0 which is implied by the resonance at
k = 0.

Another case is the in�uence of a pair of resonances at k 6= 0. We get rid of the
di�culty that comes from the quadratic terms in

∂2
t u = ∆u− u−∆2u+ u2,

by using the fact that modes associated to the resonances are exponentially small
with respect to ε a priori if analytic initial conditions for the NLS equation are
chosen. However, the set of resonant wave vectors and the set of integer multiples
of the basic wave vector k0 must have a positive distance. Hence, we �nd at integer
multiples of the basic wave vector k0 small peaks of width of O(ε) as we can see in
Figure 1.2. Our approach follows an idea that has been pointed out already in [9]
where a �rst attempt has been made to weaken the non-resonance condition of [5].

In Chapter 6 we consider the Boussinesq model

∂2
t u = ∆u+ ∂2

t ∆u+ ∆(u2) + µ∆3u,

where µ is a parameter which can be interpreted as strength of surface tension. The
proof of the APP in case of unstable resonances will be a combination of the proof
in Chapter 4 for the handling of the trivial resonance at k = 0 and the method
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introduced in Chapter 5. Obviously, this is an improvement to the method used
in [10] since the APP holds if the resonance is unstable for the given system, too.
In principal the approach would also apply to the water wave problem with surface
tension if the problem with the quasilinear quadratic nonlinearities could be solved.

Finally, in Chapter 7 we prove the approximation result for the four-wave inter-
action (FWI) system. In their simplest form the equations are given by

∂TAj = cj · ∇Aj +
∑

l∈{1,...,4}

dj,l|Al|2Aj,

with group velocity cj = ∇kω|k=kj ,ω=ωj , j ∈ {−4, ...4}\{0}, ∇ = (∂x, ∂y)
T and

coe�cients dj,l ∈ R. We will see that the results from Chapter 6 can be applied
directly to the problem. Due to the di�erent scaling of the space an even stronger
result can be established. The existing literature for the 1D cases will be discussed
at the beginning of each chapter.

1.1 Functional analytic setup

We use C for constants which can be chosen independently by the small perturbation
parameter 0 < ε� 1.

In 2D, the coordinates in physical space are denoted by x = (x, y) and the
coordinates in Fourier space by k = (k1, k2). Further we consider functions u :
R2 → R. All statements in the following are made for such functions.

The space of uniformly continuous and uniformly bounded functions u : R2 → R
is denoted by C0

b,u(R2,R). It is equipped with the norm

‖u‖C0
b

= sup
x∈R2

|u(x)|.

In the proof of the approximation result the Fourier transform is an essential tool.
The Fourier transform F of a function u is denoted by

(Fu)[k] = û(k) =
1

(2π)2

∫
R2

u(x)e−ik ·xdx.

The inverse Fourier transform F−1 is given by

(F−1û)[x] = u(x) =

∫
R2

û(k)eik ·xdk.

Multiplication of two functions (uv)(x) = u(x)v(x) in x-space corresponds in Fourier
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space to the convolution

(û ∗ v̂)(k) =

∫
R2

û(k− l)v̂(l)dl.

The Fourier transform of A(εx)eik ·x is given by

1

(2π)2

∫
R2

A(εx)eik0 ·xe−ik ·xdx

=
1

(2π)2

∫
R2

A(εx)ei(k0−k)xdx

=
1

(2π)2

∫
R2

1

ε2
A(X)ei(k0−k

ε )XdX

=
1

ε2
Â

(
k− k0

ε

)
,

where X = (X, Y ).
The space of n times di�erentiable functions u : R2 → R with uniformly con-

tinuous and uniformly bounded derivatives ∂j1x ∂
j2
y u with |j1| + |j2| = j are denoted

with Cn
b,u(R

2,R). It is equipped with the norm

‖u‖Cnb =
n∑
j=0

∑
|j1|+|j2|=j, j1,j2≥0

‖∂j1x ∂j2y u‖C0
b
.

The space of Lebesgue integrable functions u : R2 → R is denoted with L1(R2,R).
It is equipped with the norm

‖u‖L1 =

∫
R2

|u(x)|dx.

For p ≥ 1 a function u is in Lp(R2,R) if |u|p ∈ L1(R2,R). The space Lp is equipped
with the norm

‖u‖Lp =

(∫
R2

|u(x)|pdx
)1/p

.

The Sobolev space Hθ is equipped with the norm

‖u‖Hθ =

(∫
R2

|û(k)|2(1 + |k|2)θdk

)1/2

.

We de�ne the space L1(m) by u ∈ L1(m)⇔ uρm ∈ L1, where ρ(k) = (1 + k2)1/2.
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Moreover, we use the space Hθ(m)(R2,C) equipped with the norm

‖u‖Hθ(m) = ‖uρm‖Hθ .

Fourier transform is an isomorphism between the space Hθ(m)(R2,C) and the space
Hm(θ)(R2,C) and a continuous mapping from L1(m) into Cm

b , i.e.,

‖u‖Cmb ≤ C‖û‖L1(m).

We also use L2(m) = H0(m). Due to Sobolev's embedding theorem we have

‖u‖Cmb (R2,R) ≤ C‖u‖Hθ(R2,R),

if m < θ − 1. Moreover, we need the space

W = {u : R2 → R : ‖u‖W <∞},

where ‖u‖W = ‖û‖L1 . We have

‖u · v‖W = ‖û ∗ v̂‖L1 ≤ ‖û‖L1‖v̂‖L1 ≤ ‖u‖W‖v‖W , (1.8)

since L1 is closed under convolution. The elements of W are uniformly continuous
and uniformly bounded functions, which additionally satisfy lim|x|→∞ u(x) = 0 due
to Riemann-Lebesgue theorem.

For the functions in Fourier space we �nd

Lemma 1.1.
There exists a constant C and m = m1 +m2 such that the following holds. For θ > 1
and m ≥ 0 we have

‖uv‖Hθ(m) ≤ C‖u‖Hθ(m1)‖v‖Hθ(m2), (1.9)

and for m > 1 we have

‖û ∗ v̂‖L2(m) ≤ C‖û‖L2(m)‖v̂‖L2(m). (1.10)

Proof. Young's inequality and Sobolev's embedding theorem yield

‖uv‖Hθ(m) ≤ C‖uρmv‖Hθ ≤ C‖uρm1‖Hθ‖vρm2‖Hθ ≤ C‖u‖Hθ(m1)‖v‖Hθ(m2),
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and

‖û ∗ v̂‖L2(m) = ‖(û ∗ v̂)ρm‖L2

≤ C(‖(ûρm) ∗ v̂‖L2 + ‖û ∗ (v̂ρm)‖L2)

≤ C(‖ûρm‖L2‖v̂‖L1 + ‖û‖L1‖v̂ρm‖L2)

≤ C‖û‖L2(m)‖v̂‖L2(m),

since ρm(k) ≤ C(ρm(k− l) + ρm(l)). �

Remark 1.2. We always have
∥∥∥ 1
ε2
Â
( ·
ε

)∥∥∥
L1
≤ ‖Â‖L2(2) = O(1) as ε→ 0.



2. Cubic nonlinearities

In this chapter we transfer the existing approximation results for the NLS approxi-
mation from 1D to 2D in case that the original system does not contain quadratic
nonlinearities. The case of cubic nonlinearities is simple in the sense that there will
be no terms of O(ε) in the error equation, which can lead to an explosion on the
long time interval [0, T0/ε

2] in comparison to the case with quadratic nonlinearities.
For the proof that solutions of the original system behave as predicted by the NLS
equation the application of Gronwall's inequality is su�cient. Such a result was
shown in the 1D case in [6]. The transfer to the 2D case will be straightforward.

2.1 Derivation of the NLS equation and

estimates for the residual

We consider in 2D the nonlinear wave equation

∂2
t u = ∆u− u+ u3, (2.1)

with ∆ = ∂2
x + ∂2

y , x ∈ R, y ∈ R and u(x, y, t) ∈ R. The NLS equation describes

slow modulations in time and space of a wave train ei(k01x−ω0t) in (2.1).
The ansatz for the derivation of the NLS equation is given by

εψNLS(x, y, t) = εA(X, Y, T )ei(k01x−ω0t) + c.c., (2.2)

with 0 < ε � 1 a small perturbation parameter, T = ε2t, X = ε(x + cgt), Y = εy,
A(X, Y, T ) ∈ C, and c.c. the complex conjugate. Formally, the approximation is a
good approximation if the terms that do not cancel after inserting εψNLS into (2.1)
are small.

2.1.1 The residual

The terms that do not cancel after inserting the approximation into (2.1) are col-
lected in the residual
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Res(u) = −∂2
t u+ ∂2

xu+ ∂2
yu− u+ u3.

We have Res(εψ) = 0 if εψ is an exact solution of (2.1). Inserting the ansatz (2.2)
into equation (2.1) yields

Res(εψNLS) =εE(ω2
0 − k2

01 − 1)A+ c.c.

+ ε2E(2iω0(−cg)∂XA+ 2ik01∂XA) + c.c.

+ ε3E(−2iω0∂TA− c2
g∂

2
XA+ ∂2

XA+ ∂2
YA+ 3A|A|2) + c.c.

+ ε3E3A3 + c.c.

+O(ε4) + c.c.,

where E = ei(k01x−ω0t). We choose ω = ω0 and k = (k01, 0) ∈ R2 to satisfy the linear
dispersion relation

ω2 = 1 + |k|2, (2.3)

cg to be the linear group velocity

cg =
k01

ω0

, (2.4)

and A to satisfy the NLS equation

2iω∂TA = (1− c2
g)∂

2
XA+ ∂2

YA+ 3A|A|2. (2.5)

Then we obtain the residual

Res(εψ) = ε3E3A3 +O(ε4) + c.c..

2.1.2 Making the residual small

In order to prove that the NLS equation (2.5) provides a good approximation for
solutions of the original system (2.1) the residual should be made smaller by adding
higher order terms to the ansatz (2.2).

Therefore, we de�ne

εΨ(x, y, t) = εψNLS(x, y, t) + ε3A31(x, y, t)E3,
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and �nd

Res(εΨ) = ε3E3(A3 + (9ω2 − 9k2
01 − 1)A31) +O(ε4) + c.c..

Choosing A31 = −(9ω2 − 9k2
01 − 1)−1A3 formally yields

Res(εΨ) = O(ε4).

Since ε3A31(X, Y, T )e3i(k01x−ω0t)+c.c.� O(ε) the approximation εΨ makes the same
predictions as εψNLS about the behavior of the solutions of the original system.

Remark 2.1. In order to make the residual even smaller we can make the general
ansatz

εΨ(x, y, t) =
∑

|m|=1,3,...,2N+1

β(m)∑
n=1

εα(m)+nAmn(X,T )Em, (2.6)

where α(m) = ||m| − 1| with N and β(m) su�ciently large.

Although the residual is small the NLS equation can make wrong predictions about
the behavior of the original system. There are counterexamples, cf. [11], showing
that the estimates for the residual are a necessary step but not at all su�cient.
Therefore, we consider the di�erence, which is called the error, between the correct
solution and the approximation.

2.2 The error estimates

In order to obtain the estimates for the di�erence between the approximation εψ
and true solutions u of the original system we use the variation of constants formula.

We write
∂2
t û = −(|k|2 + 1)û+ û ∗ û ∗ û,

as a �rst-order system

∂tû = −
√
|k|2 + 1 v̂,

∂tv̂ =
√
|k|2 + 1 û− 1√

|k|2 + 1
(û ∗ û ∗ û),

(2.7)

and abbreviate it as
∂tÛ =M(k)Û +N (Û), (2.8)
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where

M(k) =

(
0 −

√
|k|2 + 1√

|k|2 + 1 0

)
,

Û =

(
û

v̂

)
=

(
û

− 1√
|k|2+1

∂tû

)
,

and k = (k1, k2). By the transformation V̂ (k) = S(k)Û(k) with

S =
1

2i

(
i −1
i 1

)
,

we obtain the diagonalized system

∂tV = ΛV +N(V, V, V ), (2.9)

where

Λ̂(k) =

(
i
√
|k|2 + 1 0

0 −i
√
|k|2 + 1

)
,

N̂(V̂1, V̂2, V̂3) =− 1√
|k|2 + 1

SÑ(S−1V̂1, S
−1V̂2, S

−1V̂3),

Ñ(V̂1, V̂2, V̂3)(k) =

(
0

((V̂1)1 ∗ (V̂2)1 ∗ (V̂3)1)(k)

)
,

with V̂i = ((V̂i)1, (V̂i)2) for i ∈ {1, 2, 3}.
We introduce the coe�cients α̂j1,j2,j3,j4(k,k− l, l−m,m) for j1, j2, j3, j4 ∈ {1, 2}

of the trilinear mapping N

(N̂(V̂ , V̂ , V̂ ))j1 =

∫
R4

∑
j2,j3,j4∈{1,2}

α̂j1,j2,j3,j4(k,k− l, l−m,m)V̂j2(k− l)V̂j3(l−m)

× V̂j4(m)dldm,

such that (2.9) can be written as

∂tV̂1(k, t) =i
√
|k|2 + 1 V̂1(k, t)
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+

∫
R4

α̂1111(k,k− l, l−m,m)V̂1(k− l)V̂1(l−m)V̂1(m)dldm

+

∫
R4

α̂1112(k,k− l, l−m,m)V̂1(k− l)V̂1(l−m)V̂2(m)dldm

+

∫
R4

α̂1122(k,k− l, l−m,m)V̂1(k− l)V̂2(l−m)V̂2(m)dldm

+

∫
R4

α̂1222(k,k− l, l−m,m)V̂2(k− l)V̂2(l−m)V̂2(m)dldm,

∂tV̂2(k, t) =− i
√
|k|2 + 1 V̂2(k, t)

+

∫
R4

α̂2111(k,k− l, l−m,m)V̂1(k− l)V̂1(l−m)V̂1(m)dldm

+

∫
R4

α̂2112(k,k− l, l−m,m)V̂1(k− l)V̂1(l−m)V̂2(m)dldm

+

∫
R4

α̂2122(k,k− l, l−m,m)V̂1(k− l)V̂2(l−m)V̂2(m)dldm

+

∫
R4

α̂2222(k,k− l, l−m,m)V̂2(k− l)V̂2(l−m)V̂2(m)dldm.

In order to prove that the NLS equation is a good approximation we estimate the
di�erence between the correct solution V and its approximation εΨ. Therefore, we
write a solution V as a sum of the approximation and an error

V = εΨ + εβR,

where β = 2. Inserting this ansatz into (2.9) we �nd R to satisfy

∂tR = ΛR + 3ε2N(Ψ,Ψ, R) + 3εβ+1N(Ψ, R,R) + ε2βN(R,R,R) + ε−βRes(εΨ),

where
Res(εΨ) = −∂t(εΨ) + εΛΨ +N(εΨ, εΨ, εΨ).

With our previous estimates for the residual we have the following lemma.

Lemma 2.2.
For θA su�ciently large the following holds. Let A ∈ C([0, T0], HθA(R2,C)) be a

solution of the NLS equation (2.5). Then there exist an approximation εΨ, constants

CΨ, CRes, C1 > 0 such that for all ε ∈ (0, 1) we have

sup
t∈[0,T0/ε2]

‖Ψ(t)‖W ≤CΨ,

sup
t∈[0,T0/ε2]

‖Res(εΨ(t))‖W ≤CResε
4,
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sup
t∈[0,T0/ε2]

‖εΨ(t)− εΨNLS(t)‖C0
b
≤C1ε

3.

Remark 2.3. The �rst estimate in Lemma 2.2 is used for instance for the estimate

‖N(Ψ, R)‖W ≤ C‖Ψ‖W‖R‖W .

Remark 2.4. Note that ‖Ψ‖Hθ ≤ O(ε−1) such that Ψ has to be estimated in the
W -norm. Then we have

‖Ψ‖W =

∥∥∥∥ 1

ε2
Â

(
· − k0

ε

)
+ h.o.t.

∥∥∥∥
L1

≤ C

∥∥∥∥ 1

ε2
Â
( ·
ε

)∥∥∥∥
L1

+ h.o.t.

≤ C‖Â‖L2(2) + h.o.t. ≤ C‖Â‖H0(2) + h.o.t..

With the help of the variation of constants formula we write the error equations as

R(t) =

∫ t

0

eΛ(t−τ)
(
3ε2N(Ψ,Ψ, R) + 3εβ+1N(Ψ, R,R)

+ ε2βN(R,R,R) + ε−βRes(εΨ)
)
(τ)dτ,

where eΛ(k)t is the semigroup generated by Λ(k) which is de�ned for �xed k by

eΛ(k)t =
∞∑
n=0

(Λ(k)t)n

n!
.

Lemma 2.5.
The semigroup is uniformly bounded in W , i.e., there exists a C > 0 such that we

have ‖eΛ(k)t‖W→W ≤ C.

We obtain the estimates

‖3ε2Ψ2R‖W ≤3Cε2C2
Ψ‖R‖W ,

‖3Cεβ+1ΨR2‖W ≤3Cεβ+1CΨ‖R‖2
W ,

‖3ε2βR3‖W ≤3Cε2β‖R‖3
W ,

and so

‖R(t)‖W ≤
∫ t

0

(
3Cε2C2

Ψ‖R(τ)‖W + 3Cεβ+1CΨ‖R(τ)‖2
W + 3Cε2β‖R(τ)‖3

W

+ CResε
2
)
dτ.

(2.10)
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Choosing 3Cεβ+1CΨ‖R‖2
W + 3Cε2β‖R‖3

W ≤ ε2 we then have

‖R(t)‖W ≤
∫ t

0

(
3Cε2C2

Ψ‖R(τ)‖W + ε2 + CResε
2
)
dτ. (2.11)

An application of Gronwall's inequality to (2.11) implies

‖R(t)‖W ≤ (1 + CRes)ε
2te3CC2

Ψε
2t

≤ (1 + CRes)T0e
3CC2

ΨT0 =: CR,

independent of ε ∈ (0, ε0) for all t ∈ [0, T0/ε
2]. We choose ε0 > 0 so small that

3Cεβ−1
0 CΨC

2
R + 3Cε2β−2

0 C3
R ≤ 1.

We are done and so the dynamics of the NLS equation on a time interval [0, T0/ε
2]

can really be seen in the original system, too, since for ε→ 0 the error of O(εβ) for
β = 2 is much smaller than the solution and the approximation which are both of
O(ε).

We obtain the following result.

Theorem 2.6.
For all θA su�ciently large the following holds. Let A ∈ C([0, T0], HθA(R2,C)) be a
solution of the NLS equation (2.5). Then there exist ε0 > 0 and C > 0 such that for

all ε ∈ (0, ε0) there are solutions u of the 2D nonlinear wave equation (2.1) with

sup
t∈[0,T0/ε2]

‖u( · x, · y, t)− εψNLS(ε, · x, · y, t)‖W ≤ Cε2.

Since ‖u‖C0
b
≤ ‖u‖W we have

Corollary 2.7.
We have

sup
t∈[0,T0/ε2]

sup
(x,y)∈R2

|u(x, y, t)− εψNLS(ε, x, x, t)| ≤ Cε2. (2.12)

Remark 2.8. The use of the space Hθ instead of W would lead in Lemma 2.2 to
‖Res(εΨ)‖Hθ = O(ε3) due to the scaling properties of the L2-norm. Therefore, in
order to obtain ‖Res(εΨ)‖Hθ = O(ε4) additional terms have to be added to Ψ.
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3. Quadratic nonlinearities without

resonances

As in Chapter 2 we will show that the solutions of the NLS equation predict the
behavior of the solutions of the original system correctly in case of quadratic non-
linearities without resonances in 2D. Such an approximation result for 1D can be
found for example in [5]. Due to the quadratic nonlinearity there are now terms of
O(ε) in the error equation. This means that a direct estimate with the help of Gron-
wall's inequality is not possible. The semigroup generated by all linear terms then
increases as eCεt which is of O(e1/ε) for t = O(1/ε2). In order to obtain estimates
on the long time interval [0, T0/ε

2] the in�uence of these terms has to be controlled.
For many systems they turn out to be oscillatory and can be removed by a normal
form transform. After the removal Gronwall's inequality can again be applied. The
analysis is carried out for a 2D nonlinear wave equation.

3.1 Derivation of the NLS equation

We consider
∂2
t u = ∆u− u+ u2, (3.1)

with ∆ = ∂2
x + ∂2

y , x ∈ R, y ∈ R and u(x, y, t) ∈ R.
The NLS equation describing slow modulations in time and space of a wave train

ei(k01x−ω0t) in (3.1) can be derived by the ansatz

εψNLS(x, y, t) =εA1(ε(x+ cgt), εy, ε
2t)ei(k01x−ω0t) + c.c.

+ ε2A2(ε(x+ cgt), εy, ε
2t)e2i(k01x−ω0t) + c.c.

+ ε2A0(ε(x+ cgt), εy, ε
2t),

(3.2)

with cg = ∂k1ω|k=k0,ω=ω0 the negative group velocity, A an amplitude describing the
envelope of the wave packet, and c.c. the complex conjugate. Inserting this ansatz
into (3.1) and equating the coe�cients in front of εj1ej2i(k01x−ω0t) with j1 ≥ 0, j2 ∈ Z,
to zero we obtain with ei(k01x−ω0t) =: E for the coe�cients at εE the linear dispersion
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relation
ω2 = |k|2 + 1,

with ω = ω0 and k = (k01, 0) ∈ R2, at ε2E the negative group velocity and

ε3E : 0 =− 2iω∂TA1 + (1− c2
g)∂

2
XA1 + ∂2

YA1 + 2A1A0 + 2A2A−1,

ε2E0 : 0 =− A0 + 2A1A−1,

ε2E2 : 0 =(−4ω2
0 + 4k2

01 + 1)A2 + A2
1,

where T = ε2t, X = ε(x + cgt), Y = εy, A0(X, Y, T ) ∈ R, Ai(X, Y, T ) ∈ C for
i ∈ {−2,−1, 1, 2}.

Hence, we �nd with A0 = 2A1A−1 and A2 = A2
1/(−4ω2

0 + 4k2
01 + 1) the NLS

equation
2iω0∂TA1 = (1− c2

g)∂
2
XA1 + ∂2

YA1 + γA1|A1|2, (3.3)

with

γ = 4 +
2

−4ω2
0 + 4k2

01 + 1
.

We prove the following approximation result.

Theorem 3.1.
For all θA su�ciently large the following holds. Let A1 ∈ C([0, T0], HθA(R2,C)) be

a solution of the NLS equation (3.3). Then there exist ε0 > 0 and C > 0 such that

for all ε ∈ (0, ε0) there are solutions u of the 2D nonlinear wave equation (3.1) with

sup
t∈[0,T0/ε2]

‖u( · x, · y, t)− εψNLS(ε, · x, · y, t)‖W ≤ Cε2.

Remark 3.2. Such an approximation result should not be taken for granted. There
are counterexamples, cf. [11], where formally correctly derived modulation equations
similar to (3.3) make wrong predictions about the dynamics of the original system.

As before the residual

Res(u) = −∂2
t u+ ∆u− u+ u2,

can be made smaller by adding higher order terms to the approximation (3.2). Since
this goes very similar to the procedure in Chapter 2 we skip the details of this step.
We have again

Lemma 3.3.
For θA su�ciently large the following holds. Let A1 ∈ C([0, T0], HθA(R2,C)) be

a solution of the NLS equation (3.3). Then there exist an approximation εψ and
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constants CRes, C1 > 0 such that for all ε ∈ (0, 1) we have

sup
t∈[0,T/ε2]

‖Res(εψ(t))‖W ≤ CResε
4,

sup
t∈[0,T/ε2]

‖εψ(t)− εψNLS(t)‖C0
b
≤ C1ε

3.

As in Chapter 2 we write equation (3.1) as a �rst-order system

∂tV = ΛV +N(V, V ), (3.4)

where Λ is a linear mapping and N a bilinear mapping. In detail, in Fourier space
we have

S =
1

2i

(
i −1
i 1

)
,

Λ̂(k) =

(
i
√
k2 + 1 0

0 −i
√
|k|2 + 1

)
,

N̂(V̂1, V̂2) =− 1√
|k|2 + 1

SÑ(S−1V̂1, S
−1V̂2),

Ñ(V̂1, V̂2)(k) =

(
0

((V̂1)1 ∗ (V̂2)1)(k)

)
,

with V̂i = ((V̂i)1, (V̂i)2) for i ∈ {1, 2}.
We introduce the coe�cients α̂j1,j2,j3(k,k− l, l) of the bilinear mapping N by

(N̂(V̂ , V̂ )(k))j1 =

∫
R2

∑
j2,j3∈{1,2}

α̂j1,j2,j3(k,k− l, l)V̂j2(k− l)V̂j3(l)dl.

We de�ne the new residual as

RES(V ) = −∂tV + ΛV +N(V, V ).

As a direct consequence of Lemma 3.3 we have

Lemma 3.4.
There exist an approximation εΨ and a θA su�ciently large such that the following

holds. Let A1 ∈ C([0, T0], HθA(R2,C)) be a solution of the NLS equation (3.3). Then
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there exists a CRES > 0 such that for all ε ∈ (0, 1) we have

sup
t∈[0,T/ε2]

‖RES(εΨ(t))‖W ≤ CRESε
3.

Again the solution V is split into an approximation εΨ and into an error εβR with
β > 2, i.e., V = εΨ + εβR. Inserting this into (3.4) gives a system for the error

∂tR = ΛR + 2εN(Ψ, R) + εβN(R,R) + ε−βRES(εΨ). (3.5)

The last two terms on the right hand side are of order O(ε2) which can be handled
with the help of Gronwall's inequality. But, the term 2εN(Ψ, R) causes di�culties in
estimating the error on the long time interval. Since this term can lead to a growth
of the solutions of order e1/ε on time scales of O(1/ε2) the control over the size of
R would be lost on the time scale [0, T0/ε

2]. However, this term turns out to be
oscillatory in time and can be eliminated by averaging or a normal form transform.
After eliminating this term the proof for the cubic nonlinearities can be applied
again line by line.

3.2 The normal form transform

In order to show that the solutions of the error equation (3.5) remain small over the
natural time scale we eliminate the term 2εN(Ψ, R) via a normal form transform

R̃ = R + εB(Ψ, R), (3.6)

where

( ̂B(Ψ, R))j1(k) =

∫
R2

∑
j2,j3∈{1,2}

b̂j1j2,j3(k,k− l, l)Ψ̂j2(k− l)R̂j3(l)dl, (3.7)

with k, l ∈ R2 similar to

( ̂N(Ψ, R))j1(k) =

∫
R2

∑
j2,j3∈{1,2}

α̂j1j2,j3(k,k− l, l)Ψ̂j2(k− l)R̂j3(l)dl, (3.8)

k = (k1, k2), l = (l1, l2) and α̂j1j2,j3 , b̂
j1
j2,j3

some coe�cients.
We use ∂tψ = ΛΨ +O(ε2) to obtain

∂tR̃ = ∂tR + εB(∂tΨ, R) + εB(Ψ, ∂tR)

= ΛR + 2εN(Ψ, R) + εB(∂tΨ, R) + εB(Ψ, ∂tR) + ε2M
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= ΛR̃− εΛB(Ψ, R) + 2εN(Ψ, R) + εB(∂tΨ, R) + εB(Ψ, ∂tR) + ε2M

= ΛR̃− εΛB(Ψ, R) + 2εN(Ψ, R) + εB(ΛΨ, R) + εB(Ψ, ΛR) + ε2M,

where

ε2M =εB(Ψ, 2εN(Ψ, R)) +O(ε3) + εβN(R,R) + ε−βRES(εΨ)

+ εB(Ψ, εβN(R,R)) + εB(Ψ, ε−βRES(εΨ)).

In order to eliminate the term 2εN(Ψ, R) we have to �nd a B such that

−ΛB(Ψ, R) +B(ΛΨ, R) +B(Ψ, ΛR) + 2N(Ψ, R) = 0.

Since the approximation εΨ is of O(ε) only close to the wave vectors ±k0. Since all
kernels are globally Lipschitz, and also because we have a real-valued problem we
write

Ψ̂(k) =
1

ε2
a+

(
k− k0

ε

)
+

1

ε2
a−

(
k + k0

ε

)
+O(ε),

where ad stands for the terms concentrated at dk0 for d ∈ {+,−}.
Using now Lemma 4.8 from Chapter 4 terms (3.7) and (3.8) can be simpli�ed to

( ̂N(Ψ, R))j(k) =

∫
R2

∑
j3∈{1,2}

α̂j+,j3(k,k0,k− k0)
1

ε2
a+

(
k− l− k0

ε

)
R̂j3(l)dl

+

∫
R2

∑
j3∈{1,2}

α̂j−,j3(k,−k0,k + k0)
1

ε2
a−

(
k− l + k0

ε

)
R̂j3(l)dl

+O(ε2),

and

( ̂B(Ψ, R))j(k) =

∫
R2

∑
j3∈{1,2}̂

bj+,j3(k,k0,k− k0)
1

ε2
a+

(
k− l− k0

ε

)
R̂j3(l)dl

+

∫
R2

∑
j3∈{1,2}̂

bj−,j3(k,−k0,k + k0)
1

ε2
a−

(
k− l + k0

ε

)
R̂j3(l)dl

+O(ε2),

such that we get the relation

i(ωj1(k)− ω+(k0)− ωj3(k− k0))̂bj1+,j3(k,k0,k− k0) = 2α̂j1+,j3
(k,k0,k− k0), (3.9)

cf. [12]. For the notational simplicity we set ω1 = ω+ and ω2 = ω−.
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The expression (3.9) can be solved with respect to b̂j1+,j3 if the non-resonance
condition

inf
k∈R2
|ω(k)− ω(k0)− ω(k− k0)| > 0,

is satis�ed. For �nite k Figure 3.1 shows that for ω±(k) = ±
√

1 + |k|2 there are no
resonances and hence the non-resonance condition is valid. In detail, for |k| → ∞
the term

ω(k)− ω(k0)− ω(k− k0),

is bounded away from 0 since

ω(k)− ω(k0)− ω(k− k0) =
√

1 + |k|2 −
√

1 + (k− k0)2 −
√

1 + |k0|2

=
1 + |k|2 − (1 + |k|2 − 2kk0 + |k0|2)√

1 + |k|2 +
√

1 + (k− k0)2
−
√

1 + |k0|2

=
2k0 − |k0|2

k√
1
|k|2 + 1 +

√
1
|k|2 +

(
1− k0

k

)2
−
√

1 + |k0|2,

and as |k| → ∞ we get

k0 −
√

1 + |k0|2 =
|k0|2 − 1− |k0|2

k0 +
√

1 + |k0|2
< 0.

Therefore, the non-resonant condition

inf
k∈R2
|ω(k)− ω(k0)− ω(k− k0)| > 0,

is satis�ed.
With

( ̂B(Ψ, R))j(k) =

∫
R2

∑
j3∈{1,2}

2α̂j+,j3(k,k0,k− k0)

iωj1(k)− iω1(k0)− iωj3(k− k0)
a+

(
k− l− k0

ε

)

× R̂j3(l)dl +

∫
R2

∑
j3∈{1,2}

2α̂j−,j3(k,−k0,k + k0)

iωj1(k)− iω1(−k0)− iωj3(k + k0)

× a−
(
k− l + k0

ε

)
R̂j3(l)dl,
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k1
k2

ω

k 7→ ω+(k)

k 7→ ω+(k0) + ω+(k− k0)

k 7→ ω+(k0) + ω−(k− k0)

k 7→ ω−(k)

Figure 3.1: Validity of the non-resonance condition. The surfaces of eigenvalues
ω±(k) = ±

√
1 + |k|2 with k01 = 1 and k02 = 0 have no intersections.

all dangerous terms can be eliminated and since

sup
j1,j3∈{1,2},k,k0∈R2

∣∣∣∣∣ α̂j1+,j3
(k,k0,k− k0)

ωj1(k)− ω1(k0)− ωj3(k− k0)

∣∣∣∣∣ ≤ C <∞,

we get
‖B(Ψ, R)‖W ≤ C‖Ψ‖W‖R‖W . (3.10)

Therefore, (3.5) transforms into

∂tR̃ = ΛR̃ +O(ε2). (3.11)

All terms of O(ε) are eliminated and so the rest of the proof for the cubic case from
Chapter 2 can be applied.
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4. Nonlinearities with a single

resonance at k=0

In this chapter we justify the Davey Stewartson (DS) system [8] for a 2D Boussinesq
equation

∂2
t u = ∆u+ ∂2

t ∆u+ ∆(u2), (4.1)

where ∆ = ∂2
x + ∂2

y , x ∈ R, y ∈ R for u(x, y, t) ∈ R. The 1D version can formally
be derived from the 2D water wave problem [13, 14], where the solution u of this
equation can be interpreted as the vertical velocity of the �uid at the free surface.
This equation possesses a resonance at the wave vector k = 0 which turns out to be
trivial. A resonance is called trivial if the nonlinear terms vanish for the resonant
wave vector, too. Otherwise it is called non-trivial. This trivial resonance at the
wave vector k = 0 always implies another resonance for the wave vector k = k0,
which is non-trivial for our Boussinesq equation. This situation is shown in Figure
4.2. Hence, the ideas of Chapter 3 for the justi�cation of the NLS equation do not
apply. Improving the method by an appropriate wave vector dependent rescaling of
the error function R used in [15, 10] the problem can be handled. Additionally a
second normal form transform has to be made.

4.1 Derivation of the NLS equation

In order to derive the DS system we make the ansatz

εψDS(x, y, t) =εA1(ε(x+ cgt), εy, ε
2t)ei(k01x−ω0t) + c.c.

+ ε2A2(ε(x+ cgt), εy, ε
2t)e2i(k01x−ω0t) + c.c.

+ ε2A0(ε(x+ cgt), εy, ε
2t).

(4.2)

Inserting the ansatz into the residual

Res(u) = −∂2
t u+ ∂2

xu+ ∂2
yu+ ∂2

t ∂
2
xu+ ∂2

t ∂
2
yu+ ∂2

x(u
2) + ∂2

y(u
2),
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k1

k2

ω

k 7→ ω+(k)

k 7→ ω−(k)

Figure 4.1: The surfaces of eigenvalues ω±(k) = ±
√

|k|2
1+|k|2 for the 2D Boussinesq

equation.

k1

k2

ω

k 7→ ω+(k)

k 7→ ω+(k0) + ω+(k− k0)

k 7→ ω+(k0) + ω−(k− k0)

k 7→ ω−(k)

Figure 4.2: Beside the trivial resonance at the wave vector k = 0 there is one more
resonance at the wave vector k = k0 where here k0 = (1, 0) has been chosen.
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with E = ei(k01x−ω0t) we �nd for the coe�cients

εE : 0 =(ω2
0 − k2

01 + k2
01ω

2
0)A1,

ε2E : 0 =(2iω0cg + 2ik01 − 2ik01ω
2
0 + 2iω0cgk

2
01)∂XA1,

ε2E2 : 0 =4ω2
0A2 − 4k2

01A2 + 16k2
01ω

2
0A2 − 4k2

01A
2
1, (4.3)

ε3E : 0 =2iω0∂TA1 + (1− c2
g)∂

2
XA1 + ∂2

YA1 − 2k2
01A1A0 − 2k2

01A2Ā1, (4.4)

ε4E0 : 0 =(∂2
X + ∂2

Y − c2
g∂

2
X)A0 + 2(∂2

X + ∂2
Y )(A1Ā1), (4.5)

where T = ε2t, X = ε(x + cgt), Y = εy, A0(X, Y, T ) ∈ R, Ai(X, Y, T ) ∈ C for
i ∈ {−2,−1, 1, 2}. From (4.3) we get

A2 =
k2

01

ω2
0 − k2

01 + 4k2
01ω

2
0

A2
1.

With (4.5) we obtain

A0 = − 2(∂2
X + ∂2

Y )

∂2
X + ∂2

Y − c2
g∂

2
X

|A1|2.

Inserting this into expression (4.4) we �nd the DS system

2iω∂TA1 =(−1 + c2
g)∂

2
XA1 − ∂2

YA1 + γ1A1|A1|2 + γ2A1A0,

A0 =− (2∂2
X + ∂2

Y )

∂2
X + ∂2

Y − c2
g∂

2
X

|A1|2,
(4.6)

where

γ1 =
2k4

01

ω2
0 − k2

01 + 4k2
01ω

2
0

and γ2 = −2k2
01.

Herein, ω = ω0 and k = (k01, 0) satisfy the linear dispersion relation

ω2 = |k|2 − ω2|k|2,

where the solutions ω are given by

ω±(k) = ±

√
|k|2

1 + |k|2
,

and cg = −k01+k01ω2

ω0+ω0k2
01

is the linear group velocity. For the derivation, a �nite number

of discrete non-resonance conditions have to be satis�ed. These are

ωj(mk0) 6= mω+(k0) and ω′j(0) 6= ω′+(k0), (NR)
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for all integers m with |m| ≤ M de�ned in Remark 2.1 and j ∈ {+,−}. For
notational simplicity we set ω1 = ω+ and ω2 = ω−.

We prove the following result.

Theorem 4.1.
For all θA su�ciently large the following holds. Let A0 ∈ C([0, T0], HθA(R2,R)),
A1 ∈ C([0, T0], HθA(R2,C)) be solutions of the DS system (4.6). Then there exist

ε0 > 0 and C > 0 such that for all ε ∈ (0, ε0) there are solutions u of (4.1) with

sup
t∈[0,T0/ε2]

‖u( · x, · y, t)− εψDS( · x, · y, t)‖W ≤ Cε2.

4.2 Proof of Theorem 4.1

The residual can be made arbitrarily small by adding higher order terms to the
ansatz, i.e., we have

Lemma 4.2.
There exists an approximation εψ and a θA su�ciently large such that the following

holds. Let A1 ∈ C([0, T0], HθA(R2,C)) be a solution of the DS system (4.6). Then

there exist constants Cψ, C, CRes > 0 such that for all ε ∈ (0, 1) we have

sup
t∈[0,T0/ε2]

‖ψ(t)‖W ≤Cψ,

sup
t∈[0,T0/ε2]

‖εψ(t)− εψDS(t)‖C0
b
≤Cε2,

sup
t∈[0,T0/ε2]

‖Res(εψ(t))‖W ≤CResε
7.

Remark 4.3. The �rst estimate in Lemma 4.2 is used for instance for the estimate

‖N(ψ,R)‖W ≤ C‖ψ‖W‖R‖W .

In the proof we used

Lemma 4.4.
For all θ ≥ 0, m ∈ N, C1 > 0 there exist C > 0, C2 > 0 such that for all ε ∈ (0, 1) the
following holds. Let ν : R→ C with ν(k) ≤ C1|k|m and A ∈ C([0, T0], HθA(R2,C)).
Then

‖(νA)(ε · )E‖W ≤ C2ε
m‖Â‖L1(θ+m).
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Proof. We have

‖A(ε · )E‖W =

∥∥∥∥ 1

ε2
Â

(
· − k0

ε

)∥∥∥∥
L1(θ)

≤ C‖Â‖L1(θ).

Using ν(k) ≤ C|k|m for a m ≥ 0 we obtain

‖(νA)(ε · )E‖W =

∥∥∥∥ν( · − k0)
1

ε2
Â

(
· − k0

ε

)∥∥∥∥
L1(θ)

≤ sup
k∈R2

∣∣∣∣∣∣C1|k|mεm
(

1 +

(
k− k0

ε

)2
)−m/2∣∣∣∣∣∣ ‖Â‖L1(θ+m)

≤ C2ε
m‖Â‖L1(θ+m). �

We now write the equation (4.1) as a �rst-order system

∂tU = ΛU +N(U,U), (4.7)

where Λ is a skew-symmetric diagonal linear operator and N( · , · ) : W ×W → W
a symmetric bilinear mapping. In detail, in Fourier space we have

Λ̂(k) =

i
√

|k|2
1+|k|2 0

0 −i
√

|k|2
1+|k|2

 ,

and

(N̂(Û , Û)(k))j1 =

∫
R2

∑
j1,j2,j3∈{1,2}

α̂j1,j2,j3(k,k− l, l)Ûj2(k− l)Ûj3(l)dl,

with α̂j1,j2,j3 some uniformly bounded coe�cients and

N̂(Û , V̂ ) =

√
|k|2

1 + |k|2
SÑ(S−1Û , S−1V̂ ),

Ñ(Û , V̂ ) =

(
0

Û1 ∗ V̂1

)
,

S =
1

2i

(
i −1
i 1

)
,

where Û = (Û1, Û2).
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4.2.1 Estimates for the residual

With εΨ we denote the extended approximation associated to εψ, namely

εΨ =
∑
|j|≤M

∑
β(j)≤M

εβ(j)ψj, (4.8)

where β(j) = 1 + ||j| − 1| and ψj = Aj(X, Y, T )eji(k01x+ω0t) + c.c. with M su�ciently
large.

We de�ne the new residual as

RES(U) = −∂tU + ΛU +N(U,U).

As a direct consequence of Lemma 4.2 we have

Lemma 4.5.
There exists an approximation εΨ and a θA su�ciently large such that the following

holds. Let A1 ∈ C([0, T0], HθA(R2,C)) be a solution of the DS system (4.6). Then

there exists a CRES > 0 such that for all ε ∈ (0, 1) we have

sup
t∈[0,T0/ε2]

‖RES(εΨ(t))‖W ≤ CRESε
6.

Remark 4.6. We have O(ε6) instead of O(ε7) due to the application of |k|−1 in

the de�nition of N̂ which loses a factor ε−1.

In order to prove Theorem 4.1 we estimate the error. By inserting U = εΨ + εβR
with β > 2 su�ciently big into (4.7) we �nd R to satisfy

∂tR = ΛR + 2εN(Ψ, R) + εβN(R,R) + ε−βRES(εΨ). (4.9)

The last two terms are at least of O(ε2) such that these terms can be bounded by
a simple application of Gronwall's inequality. Therefore, it remains to control or
eliminate the e�ects of the term 2εN(Ψ, R). Usually this term can be removed by
a normal form transform provided the original system does not possess non-trivial
resonances. At the wave vector k = 0 this term vanishes but a resonance at the
wave vector k = 0 always implies another resonance for the wave vector k = k0

which is non-trivial for our Boussinesq equation. In order to get rid of this di�culty
we de�ne a function ϑ by

ϑ̂(k) =

{
1, for |k| > |k0|/10,

ε+ 10(1− ε) |k||k0| , for |k| ≤ |k0|/10.
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We then write a solution U as a sum of the approximation and an error

U = εΨ + εβϑR, (4.10)

where β = 3 and ϑR is de�ned by ϑ̂R = ϑ̂R̂. Note that ϑ̂(t)R̂(t) is small at the
wave vectors close to zero.

Inserting (4.10) into (4.9) we �nd R to satisfy

∂tR = ΛR + 2εϑ−1N(Ψ, ϑR) + εβϑ−1N(ϑR, ϑR) + ε−βϑ−1RES(εΨ). (4.11)

We now look in detail at the term εϑ−1N(Ψ, ϑR). Its kernel is given in Fourier space
by

εϑ̂−1(k)α̂j1,j2,j3(k,k− l, l)ϑ̂(l), (4.12)

for j1, j2, j3 ∈ {1, 2}. The main property we use in the following is the validity of
an estimate |α̂j1,j2,j3(k)| ≤ C min(1, |k|).

Extracting the dangerous terms

The approximation is of the form

εΨ = εΨc + ε2Ψs,

where supp(Ψ̂c) = {k ∈ R2 : |k ± k0| ≤ δ} for some small δ > 0 and supp(Ψ̂s) =

R2 \ supp(Ψ̂c). Obviously, we have ‖Ψc‖W = O(1) and ‖Ψs‖W = O(1). In a �rst
step we prove that εϑ−1N(Ψc, ϑR) is of O(ε) and not of O(1).

Lemma 4.7.
There exists C1 > 0 such that

‖εϑ−1N(Ψc, ϑR)‖W ≤C1ε‖R‖W ,
‖εϑ−1N(εΨs, ϑR)‖W ≤C1ε

2‖R‖W .

Proof. Since |α̂j1,j2,j3(k)| ≤ Cmin(1, |k|) for some C > 0, both estimates follow
from ∣∣∣∣∣ α̂j1,j2,j3(k)

ϑ̂(k)

∣∣∣∣∣ ≤ C
min(1, |k|)

min(ε+ |k|, 1)
≤ C = O(1). �

Since terms of O(ε2) do not cause intense growth in the error R on the time interval
[0, T0/ε

2] the term 2ε2ϑ−1N(Ψs, ϑR) = O(ε2) has not to be eliminated. Eventually,
it can be handled together with the remaining terms of O(ε2) with the help of
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Gronwall's inequality. Thus, R satis�es

∂tR =ΛR + 2εϑ−1N(Ψc, ϑR) + 2ε2ϑ−1N(Ψs, ϑR)

+ εβϑ−1N(ϑR, ϑR) + ε−βϑ−1RES(εΨ).
(4.13)

4.2.2 The �rst normal form transform

In order to control the remaining dangerous terms εϑ−1N(Ψc, ϑR) we make the
normal form transform

R̃ = R + εB(Ψc, R), (4.14)

where B is a bilinear mapping. Using ∂tΨc = ΛΨc +O(ε2) we obtain

∂tR̃ =∂tR + εB(∂tΨc, R) + εB(Ψc, ∂tR)

=ΛR + 2εϑ−1N(Ψc, ϑR) + 2ε2ϑ−1N(Ψs, ϑR) + εβϑ−1N(ϑR, ϑR)

+ ε−βϑ−1RES(εΨc) + εB(ΛΨc, R) + εB(O(ε2), R) + εB(Ψc, ΛR)

+ εB(Ψc, 2εϑ
−1N(Ψc, ϑR)) + εB(Ψc, ε

βϑ−1N(ϑR, ϑR))

+ εB(Ψc, ε
−βϑ−1RES(εΨ)),

(4.15)

where ΛR = ΛR̃− εΛB(Ψc, R).
In order to eliminate all terms of O(ε) we have to choose B in such a way that

−εΛB(Ψc, R) + εB(ΛΨc, R) + εB(Ψc, ΛR) = −2εϑ−1N(Ψc, ϑR). (4.16)

In Fourier space the j1-th component of the right hand side of (4.16) can be written
as

̂ϑ−1(N(Ψc, ϑR))j1 =
∑

j2,j3∈{1,2}

∫
R2

α̂j1,j2,j3(k,k− l, l)
ϑ̂(l)

ϑ̂(k)
Ψ̂c,j2(k− l)R̂j3(l)dl,

where |α̂j1,j2,j3(k,k− l, l)| ≤ C|k| and k, l ∈ R2. By (4.16) we obtain

̂(B(Ψc, R))j1 =
∑

j2,j3∈{1,2}

∫
R2

2α̂j1,j2,j3(k,k− l, l)

iωj1(k)− iωj2(k− l)− iωj3(l)

ϑ̂(l)

ϑ̂(k)

× Ψ̂c,j2(k− l)R̂j3(l)dl.

The normal form transform is well-de�ned if∣∣∣∣∣ α̂j1,j2,j3(k,k− l, l)

iωj1(k)− iωj2(k− l)− iωj3(l)

ϑ̂(l)

ϑ̂(k)

∣∣∣∣∣ ≤ C = O(1) <∞, (4.17)
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is valid. Since (4.12) is of O(ε2) for |l| < ε and since the approximation Ψc has
localized support near k− l = ±k0 respectively the expression (4.17) only has to be
analyzed for |k ± k0| > ε. In order to express the term of the variable k alone we
use the following Lemma.

Lemma 4.8.
Let K̂ = K̂(k, l) ∈ C2(R2,C) be globally Lipschitz-continuous. Then there exists a

C ≥ 0, such that∥∥∥∥∫ K̂( · , l) 1

ε2
â

(
· − l− k0

ε

)
R̂(l)dl−

∫
K̂( · , · − k0)

1

ε2
â

(
· − l− k0

ε

)
R̂(l)dl

∥∥∥∥
W

≤ Cε‖R̂‖W‖â‖L1(m+1).

Proof. The proof is an adaption of the 1D case [10] to the 2D case. With Young's
inequality the right hand side can be estimated by∥∥∥∥∫ (K̂( · , l)− K̂( · , · − k0)

) 1

ε2
â

(
· − l− k0

ε

)
R̂(l)dl

∥∥∥∥
W

≤ C

∥∥∥∥∫ ∣∣∣∣( · − l− k0)
1

ε2
â

(
· − l− k0

ε

)
R̂(l)

∣∣∣∣ dl∥∥∥∥
W

≤ C‖R̂‖W
∥∥∥∥( · − k0)

1

ε2
â

(
· − k0

ε

)∥∥∥∥
L1(m)

≤ Cε‖R̂‖W
∥∥∥∥ 1

ε2

( · − k0)

ε
â

(
· − k0

ε

)∥∥∥∥
L1(m)

≤ Cε‖R̂‖W |â|L1(m+1) . �

So the condition (4.17) can be weakened to

max
j1,j2,j3∈{1,2}

sup
|k−k0|>ε

∣∣∣∣∣ α̂j1,j2,j3(k,k0,k− k0)

iωj1(k)− iωj2(k0)− iωj3(k− k0)

ϑ̂(k− k0)

ϑ̂(k)

∣∣∣∣∣ <∞. (4.18)

For the resonances k = 0 and k = k0 the denominator of (4.18) becomes zero.
Therefore, we have to look in detail at the zeroes k = 0 and k = k0.

• k close to 0:

We have

|α̂j1,j2,j3(k,k0,k− k0)| ≤ C|k|,

and ϑ̂(k− k0) = O(1). Moreover

|iωj1(k)− iωj2(k0)− iωj3(k− k0)|
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= |iωj1(k)− iωj2(k0)− i(ωj3(−k0) + ω′j3(−k0)k +O(k2))| ≥ C|k|,

due to |ω′(0)| > |ω′(k0)| and ω(k0) = −ω(−k0).

Thus, the expression (4.18) behaves as 1/ϑ̂(k) and for k → 0 it will be of
O(ε−1).

• k close to k0:

We have ϑ̂(k) = O(1) for k → k0 and as before a bound on the denominator
of the form

|iωj1(k)− iωj2(k0)− iωj3(k− k0)| ≥ C|k− k0|. (4.19)

The term (4.19) can be balanced by ϑ̂(k− k0), which behaves as ε+ |k− k0|.

Inverting the �rst normal form transform

Although 1/ϑ̂(k) = O(ε−1) for k → 0 an O(1)-bounded normal form transform is
possible. In order to show that the transformation is invertible we de�ne projection
operators P0 and P1 by the Fourier multipliers P0 = χ|k|≤δ and P1 = 1 − P0 for a
δ > 0 su�ciently small, but independent of 0 < ε� 1 and split the error into

R = R0 +R1,

with Rj = PjRj for j = 0, 1 such that (4.14) is given by

R̃0 = R0 + εP0B(Ψc, R0) + εP0B(Ψc, R1),

R̃1 = R1 + εP1B(Ψc, R0) + εP1B(Ψc, R1).
(4.20)

Since P0(k) = 0 for |k| > δ we have P0B(Ψc, R0) = 0 if δ > 0 is su�ciently small,
but independent of ε. Hence, (4.20) can be rewritten as

R0 = R̃0 − εP0B(Ψc, R1), (4.21)

R1 = R̃1 − εP1B(Ψc, R1)− εP1B(Ψc, R0)

= R̃1 − εP1B(Ψc, R1)− εP1B(Ψc, R̃0) + ε2P1B(Ψc, P0B(Ψc, R1)). (4.22)

Hence, only R1 = R1(R̃1, R̃0) appears implicitly. Since P1B is of O(1), on the right
hand side, all terms with R1 are at least of O(ε). Inserting (4.22) into (4.21) we
obtain that the term εP0B is of O(ε) and hence the normal form transform can be
inverted by a Neumann series.
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The terms of O(ε) are removed and so the error equation (4.15) transforms into

∂tR̃ =ΛR̃ + 2ε2B(Ψc, ϑ
−1N(Ψc, ϑR)) + 2ε2ϑ−1N(Ψs, ϑR)

+ εB(O(ε2), R) + εβϑ−1N(ϑR, ϑR) + εβ+1B(Ψc, ϑ
−1N(ϑR, ϑR))

+ ε−β+1B(Ψc, ϑ
−1RES(εΨ)) + ε−βϑ−1RES(εΨ).

(4.23)

We have to consider the term 2ε2B(Ψc, ϑ
−1N(Ψc, ϑR)) in detail because it can be

of O(ε) due to the factor ϑ−1 which is of O(ε−1).
Since

P̂1(k)
α̂j1,j2,j3(k,k− l, l)

iωj1(k)− iωj2(k− l)− iωj3(l)

ϑ̂(l)

ϑ̂(k)
α̂j3,j4,j5(l, l− n,n)

ϑ̂(n)

ϑ̂(l)
= O(1),

it remains to consider

P̂0(k)
α̂j1,j2,j3(k,k− l, l)

iωj1(k)− iωj2(k− l)− iωj3(l)

ϑ̂(l)

ϑ̂(k)
α̂j3,j4,j5(l, l− n,n)

ϑ̂(n)

ϑ̂(l)
. (4.24)

We use again Lemma 4.8 in order to express the kernel

α̂j1,j2,j3(k,k− l, l)

iωj1(k)− iωj2(k− l)− iωj3(l)

ϑ̂(l)

ϑ̂(k)
α̂j3,j4,j5(l, l− n,n)

ϑ̂(n)

ϑ̂(l)
,

in terms of k alone. Due to the concentration of Ψc at ±k0 we write Ψ̂c = 1
ε2
a++ 1

ε2
a−

where ad stands for the terms concentrated at dk0. We consider two cases:

• The combination of dk0 with −dk0 for d ∈ {+,−}

P̂0(k)
α̂j1,j,j3(k, dk0,k− dk0)

iωj1(k)− iωd(dk0)− iωj3(k− dk0)

ϑ̂(k− dk0)

ϑ̂(k)

×α̂−j3,j,j5(k− dk0,−dk0,k)
ϑ̂(k)

ϑ̂(k− dk0)
.

(4.25)

We have |iωj1(k) − iωd(dk0) − iωj3(k − dk0)| ≥ C|k| which can be balanced
by the term |α̂j1,j,j3(k, dk0,k − dk0)| ≤ C|k|. The non-resonance condition is
satis�ed and so we have an O(1)-bound for (4.25).

• The combination of dk0 with dk0 for d ∈ {+,−}
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Sj1j,j3,j5(k) = P̂0(k)
α̂j1,j,j3(k, dk0,k− dk0)

iωj1(k)− iωd(dk0)− iωj3(k− dk0)

ϑ̂(k− dk0)

ϑ̂(k)

×α̂j3,j,j5(k− dk0, dk0,k− 2dk0)
ϑ̂(k− 2dk0)

ϑ̂(k− dk0)
.

(4.26)

The denominator iωj1(k) − iωj(dk0) − iωj3(k − dk0) can be balanced by the

term ϑ̂(k− 2dk0) in the numerator. However, there is a term ϑ−1(k) which is
of O(ε−1) for k→ 0. Thus, we have an O(1/ε)-bound for (4.26).

Hence, (4.23) simpli�es only into

∂tR̃ =ΛR̃ + 2ε2B(a+, ϑ
−1N(a+, ϑR)) + 2ε2B(a−, ϑ

−1N(a−, ϑR)) +O(ε2)

+ εB(O(ε2), R) + εβϑ−1N(ϑR, ϑR) + εβ+1B(Ψc, ϑ
−1N(ϑR, ϑR))

+ ε−β+1B(Ψc, ϑ
−1RES(εΨ)) + ε−βϑ−1RES(εΨ).

4.2.3 The second normal form transform

In order to eliminate the term

2ε2B(a+, ϑ
−1N(a+, ϑR)) + 2ε2B(a−, ϑ

−1N(a−, ϑR)), (4.27)

we use a normal form transform

Ř = R̃ + εT (a+, a+, R) + εT (a−, a−, R),

where

T j1(ad, ad, R)(k)

=
∑

j3,j5∈{1,2}

∫
R4

εSj1j,j3,j5(k)

ωj1(k)− ωd(dk0)− ωd(dk0)− ωj5(k− 2dk0)

× ad(k− l)ad(l− n)Rj5(n)dndl,

(4.28)

with |Sj1j,j3,j5(k)| ≤ C and k, l, n ∈ R2. The denominator is non zero due to the
combination of a+ with a+ and a− with a−. The transformation works as before
and so the term (4.27) can be eliminated with Tj = O(1) using εSj1j,j3,j5(k) = O(1).
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After the normal form transform we have

∂tŘ =ΛŘ + 2ε2ϑ−1N(Ψs, ϑR) + εB(O(ε2), R) + εβϑ−1N(ϑR, ϑR)

+ εβ+1B(Ψc, ϑ
−1N(ϑR, ϑR)) + ε−β+1B(Ψc, ϑ

−1RES(εΨ))

+ ε−βϑ−1RES(εΨ).

(4.29)

Substituting R by Ř leads to

∂tŘ =ΛŘ + 2ε2N(Ψs, ϑŘ) + εB(O(ε2), Ř) + εβϑ−1N(ϑŘ, ϑŘ)

+ εβ+1B(Ψc, ϑ
−1N(ϑŘ, ϑŘ)) + ε−β+1B(Ψc, ϑ

−1RES(εΨ))

+ ε−βϑ−1RES(εΨ).

(4.30)

All terms of O(ε) are eliminated. It remains to estimate the error and we will do it
by using the variation of constants formula and Gronwall's inequality.

For the terms in (4.30) we �nd the following estimates

‖2ε2N(Ψs, ϑŘ)‖W ≤2ε2CΨs‖Ř‖W ,
‖εB(O(ε2), Ř)‖W ≤ε2‖Ř‖W ,

‖εβϑ−1N(ϑŘ, ϑŘ)‖W ≤εβ−1C‖Ř‖2
W ,

‖εβ+1B(Ψc, ϑ
−1N(ϑŘ, ϑŘ))‖W ≤εβC‖Ř‖2

W .

Choosing
εβ−1C‖Ř‖2

W + εβC‖Ř‖2
W ≤ ε2, (4.31)

we obtain with the help of the variation of constants formula

‖Ř(t)‖W ≤
∫ t

0

(
ε2C‖Ř(τ)‖W + ε2 + CRESε

2
)
dτ. (4.32)

An application of Gronwall's inequality to (4.32) implies

‖Ř(t)‖W ≤(1 + CRES)ε
2teCε

2t

≤(1 + CRES)T0e
CT0 =: CR,

independent of ε ∈ (0, ε0) for all t ∈ [0, T0/ε
2] and R = Ř. Choosing ε0 > 0 such

that
εβ−3CC2

R + εβ−2CC2
R ≤ 1,

we have satis�ed the condition (4.31) and so proved Theorem 4.1.
�
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5. Non-trivial quadratic resonances

In this chapter we prove estimates between the formal approximation, obtained via
the NLS equation, and solutions of the system

∂2
t u = ∆u− u−∆2u+ u2,

in case that the original system possesses non-trivial quadratic resonances. The
quadratic resonances play a major role, since the modes associated to these res-
onances can grow to O(e1/ε) on the long O(1/ε2) time interval. Therefore, it is
necessary to control these terms. In order to do so we make use of the fact that
in case of analytic initial conditions for the NLS equation the resonances do not
matter provided the set of resonant wave vectors and integer multiples of the basic
wave vector k0 have a positive distance. Using spaces with time dependent norms
the remaining terms of O(ε) can then be controlled by the weight function. See
Figure 5.1. This method makes it possible to show that although these resonances

Figure 5.1: The mode concentration of the NLS ansatz in Fourier space.

occur, there are solutions of the original system with initial conditions that behave
on time scales of O(ε−2) as predicted by the NLS equation and do not explode on
time scales of O(ε−1).

In [10] error estimates for the NLS approximation have been shown in case that
the basic wave number k0 of the underlying wave train is resonant and that the
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associated resonance is stable. The case of unstable resonances remained open in
[10]. However, it was pointed out that in this case for resonant wave numbers
kj = njk0 with nj ∈ Z and periodic boundary conditions the APP does not hold.
This was made rigorous for the water wave problem with surface tension in case of
�nite depth in [16]. It turns out that quadratic resonances can not be removed by a
normal form transform. Our approach follows an idea which has been pointed out in
[9] where a �rst attempt has been made to weaken the non-resonance condition. The
assumption of [9] that all resonant wave numbers are bounded away from integer
multiples of the basic wave number k0 can be weakened by the assumption that the
resonant wave numbers k2 and k3 are bounded away from integer multiples of the
basic wave number k0.

5.1 Derivation of the NLS equation

We consider in 2D a nonlinear wave equation

∂2
t u = ∆u− u−∆2u+ u2, (5.1)

where ∆ = ∂2
x + ∂2

y , x ∈ R, y ∈ R for u(x, y, t) ∈ R. With X = ε(x + cgt), Y = εy
and T = ε2t we make the ansatz

εψNLS(x, y, t) =εA1(ε(x+ cgt), εy, ε
2t)ei(k01x−ω0t) + c.c.

+ ε2A2(ε(x+ cgt), εy, ε
2t)e2i(k01x−ω0t) + c.c.

+ ε2A0(ε(x+ cgt), εy, ε
2t),

(5.2)

where 0 < ε� 1 is a small perturbation parameter, A0(X, Y, T ) ∈ R, Aj(X, Y, T ) ∈
C for j ∈ {−2,−1, 1, 2} and c.c. is the complex conjugate. Inserting the ansatz into
the residual

Res(u) = −∂2
t u+ ∂2

xu+ ∂2
yu− u− 2∂2

x∂
2
yu− ∂4

xu− ∂4
yu+ u2,

with E = ei(k01x−ω0t) we obtain for the coe�cients

εE : 0 =(ω2
0 − 1− k2

01 − k4
01)A1,

ε2E0 : 0 =− A0 + 2A1A−1, (5.3)

ε2E : 0 =(2iω0cg + 2ik01 + 4ik3
01)∂XA1,

ε2E2 : 0 =(4ω2
0 − 4k2

01 − 16k4
01 − 1)A2 + A2

1, (5.4)

ε3E : 0 =2iω0∂TA1 + (1− c2
g)∂

2
XA1 + ∂2

YA1 + 6k2
01∂

2
XA1

+ 2A1A0 + 2A2A−1.
(5.5)
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From (5.3) and (5.4) we get

A0 = 2A1A−1 and A2 =
A2

1

−4ω2
0 + 4k2

01 − 16k2
01 + 1

.

Inserting this into (5.5) a NLS equation

2iω0∂TA1 = (−1 + c2
g + 5k2

01)∂2
XA1 − ∂2

YA1 + γ|A1|2A1, (5.6)

is obtained where

γ = 4 +
2

−4ω2
0 + 4k2

01 + 16k2
01 + 1

.

Herein, ω = ω0 and k = (k01, 0) satisfy the linear dispersion relation

ω2(k) = 1 + |k|2 + |k|4,

where the solutions ω are denoted by

ω±(k) = ±
√

1 + |k|2 + |k|4,

and cg =
−2k01−4ik3

01

2ω0
is the negative group velocity.

A wave vector k̃ is called resonant to the basic wave vector k0 if

ωj1(k̃)− ω+(k0)− ωj3(k̃− k0) = 0,

for some j1, j3 ∈ {+,−}. We now introduce the set of the resonant wave vectors

K(k0) = {k2 : ∃k3 : k0 + k2 + k3 = 0, ω0 + ω2 + ω3 = 0}.

In order to see the set of the resonant wave vectors in the (k1, k2)-space we �rst
have to look at the surfaces of eigenvalues which are shown in Figure 5.2 (a). The
projection of the intersection curves on the (k1, k2)-space yields the set of resonant
wave vectors, see Figure 5.2 (b). For the wave vector |k0| su�ciently big one more
intersection occurs, see Figure 5.2 (c). Therefore, in Figure 5.2 (d) a ring of reso-
nances appears. But, this causes no additional problems since the ring of resonances
does not intersect the basic wave vector k0.

The modes associated to the resonances k2, k3 will be called resonant modes.
Otherwise they are called non-resonant modes. These resonant modes increase as
eεt which are of O(e1/ε) on the long time interval O(1/ε2). Therefore, these modes
have to be controlled in order to show that the formal approximation obtained via
the NLS approximation εψNLS makes correct predictions over the natural time scale.
We will solve this problem by using spaces with a time-dependent weight, which will
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(a) k0 = (1, 0). Non-validity of the non-resonance
condition. The surfaces of eigenvalues ω±(k) =
±
√

1 + |k|2 + |k|4 intersect the surfaces k 7→ ω±(k)
and k 7→ ω+(k0) + ω±(k − k0). Intersection points
correspond to resonances.

k2

k1

ω

k0 k1

k2

(b) The set K(k0) of wave vectors which
are resonant with k0 = (1, 0).

(c) k0 = (2, 0). Non-validity of the non-resonance
condition. The surfaces of eigenvalues ω±(k) =
±
√

1 + |k|2 + |k|4 intersect the surfaces k 7→
ω±(k) and k 7→ ω+(k0)+ω±(k−k0). Intersection
points correspond to resonances.

k2

k1

ω

k0 k1

k2

(d) The set K(k0) of wave vectors which
are resonant with k0 = (2, 0). Due to
k0 = (2, 0) an additional ring of reso-
nances occur.

Figure 5.2: Surfaces of eigenvalues and the set of the resonant wave vectors for the
resonant nonlinear wave equation.



5.2. The weighted space 53

be de�ned below.

5.2 The weighted space

We �rst de�ne the space

Wα =

{
u : R2 → C : ‖u‖Wα =

∫
R2

|û(k)|eα|k|dk <∞
}
.

The space Wα is closed under point-wise multiplications, i.e.,

‖uv‖Wα = ‖(û ∗ v̂)eα|k|‖L1 ≤ C‖ûeα|k|‖L1‖v̂eα|k|‖L1 ≤ C‖u‖Wα‖v‖Wα ,

due to Young's inequality for convolutions and the inequality e|k| ≤ e|k−l|e|l|. In
one space dimension Wα forms a proper subset of the space of functions, that are
analytic in a strip in the complex plane symmetric around the real axis equipped
with the supremum norm due the Paley-Wiener theorem.

Next, we de�ne the space

L1
g =

{
u : R2 → C : ‖u‖L1

g
=

∫
R2

|u(k)|g(k, t)dk <∞
}
,

where

g(k, t) =
1

supm∈Z |e
−
(
α′
ε
−α′εt

T1

)
|k−mk0||

, (5.7)

for α′ < α independent of 0 < ε� 1 and T1 = O(1) < T0.
In order to estimate the error, we need the following inequality.

Lemma 5.1.
For all t ≥ 0 we have

‖u ∗ v‖L1
g
≤ ‖u‖L1

g
‖v‖L1

g
.

Proof. We have

1

g(k− l, t)g(l, t)
≤ sup

m∈Z
|e−

(
α′
ε
−α
′εt
T1

)
|k−l−mk0|| sup

m∈Z
|e−

(
α′
ε
−α
′εt
T1

)
|l−mk0||

≤ sup
m∈Z
|e−

(
α′
ε
−α
′εt
T1

)
|k−l+l−mk0||

≤ sup
m∈Z
|e−

(
α′
ε
−α
′εt
T1

)
|k−mk0|| = 1

g(k, t)
,
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Figure 5.3: Reciprocal weight g−1(k, t) = supm∈Z |e
−
(
α′
ε
−α
′εt
T1

)
|k−mk0|| describing the

mode concentration of the NLS ansatz.

and so

‖u ∗ v‖L1
g

=

∫
R2

∣∣∣∣∫
R2

u(k− l)v(l)dl

∣∣∣∣ g(k)dk

≤
∫
R2

|u(k− l)|g(k− l)dk

∫
R2

|v(l)| g(l)dl

= ‖u‖L1
g
‖v‖L1

g
. �

The analyticity of the initial conditions for the NLS equation implies that the res-
onant Fourier modes are exponentially small w.r.t. ε if the set of resonant wave
vectors and integer multiples of the basic wave vector k0 have a positive distance,
i.e., they are initially of O(e−κ1/ε) for a κ1 > 0 independent of 0 < ε� 1. Due to the
resonance these modes will grow with some rate of O(eκ2εt) for a κ2 > 0 independent
of 0 < ε � 1. Hence, these modes are less than O(ε2) for all ε2t ≤ T1 = κ1/κ2.
Therefore, the resonances do not matter and so the approximation result can be
established. Figure 5.3 shows the mode concentration of the NLS ansatz in Fourier
space.

It is the aim to prove the following approximation result.

Theorem 5.2.
Assume K(k0) ∩ (k0Z× {0}) = ∅. Let α > 0 and A1 ∈ C([0, T0],Wα) be a solution

of the NLS equation (5.6). Then there exist ε0 > 0, T1 ∈ (0, T0] and a C > 0 such

that for all ε ∈ (0, ε0) we have solutions u of (5.1) satisfying

sup
t∈[0,T1/ε2]

‖u( · , · , t)− εψNLS( · , · , t)‖L1
g(t) ≤ Cε2,

where L1
g is the weighted space and g the weight function de�ned in (5.7).
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Corollary 5.3.
Assume that the resonant wave vectors are bounded away from integer multiples of

the basic wave vector k0. Let A1 be a solution of the NLS equation (5.6) given for

T ∈ [0, T0] whose Fourier transform satis�es

sup
t∈[0,T0/ε2]

∫
|Â1(K, T )|eα|K|dK <∞,

for some α > 0. Then there exist ε0 > 0, T1 ∈ (0, T0] and a C > 0 such that for all

ε ∈ (0, ε0) we have solutions u of (5.1) satisfying

sup
t∈[0,T1/ε2]

sup
(x,y)∈R2

|u(x, y, t)− εψNLS(x, y, t)| ≤ Cε2.

Remark 5.4. Due to the method in use the error estimates can only be proved on
the time interval [0, T1/ε

2], but not necessarily for all t ∈ [0, T0/ε
2]. Hence, we can

only guarantee that parts of the NLS dynamics can be seen in the original system.

The subsequent sections contain the proof of Theorem 5.2

5.3 Higher order approximation and estimates for

the residual

We make the extended ansatz

εψ4(x, y, t) =εψNLS(x, y, t) + ε3A3(X, Y, T )E3 + c.c.

+ ε3A22(X, Y, T )E2 + c.c.+ ε3A02(X, Y, T ).

Choosing

A3 = 2A1A2/(−9ω2
0 + 9k2

01 + 81k4
01 + 1),

A22 = −(cg + 2ik01 + 8k3
01)∂XA2/(−4ω2

0 + 4k2
01 + 164

01 + 1),

A02 = −cg∂XA0,

we obtain
Res(εψ4) = O(ε4).

Adding more higher order terms to the approximation we �nally obtain

Res(εψ5) = O(ε5).
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Since all determined equations are linearized NLS equations or linear algebraic equa-
tions the approximation exists as long as the solution of the NLS equation exist.

And so it follows

Lemma 5.5.
Let α > 0 and A1 ∈ C([0, T0],Wα) be a solution of the NLS equation (5.6). Then

there exists an approximation εψ, an ε0 > 0 and a C > 0 such that for all ε ∈ (0, ε0)
we have

sup
t∈[0,T0/ε2]

‖εψ( · , t)‖L1
g
≤ Cε,

and

sup
t∈[0,T0/ε2]

‖Res(εψ( · , t))‖L1
g
≤ Cε5.

Proof. We have for instance

‖A(ε · )E‖L1
g

=

∥∥∥∥ 1

ε2
Â

(
· − k0

ε

)
g( · )

∥∥∥∥
L1

≤ sup
k∈R2

∣∣∣∣eα| ·−k0|/ε

eα| ·−k0|/ε

∣∣∣∣ ∥∥∥∥ 1

ε2
Â

(
· − k0

ε

)
eα| ·−k0|/ε

∥∥∥∥
L1

≤ C‖Â( · )eα| · |‖L1 = C‖A‖Wα ,

which implies the �rst estimate. For the second estimate we use estimates as follows.
For µ with µ(k) ≤ C|k|m and a m ≥ 0 we obtain

‖(µA)(ε · )E‖L1
g

=

∥∥∥∥µ( · − k0)
1

ε2
Â

(
· − k0

ε

)
g( · )

∥∥∥∥
L1

≤ sup
k∈R2

∣∣∣∣µ( · − k0)
eα| ·−k0|/ε

eα| ·−k0|/ε

∣∣∣∣ ∥∥∥∥ 1

ε2
Â

(
· − k0

ε

)
eα| ·−k0|/ε

∥∥∥∥
L1

≤ Cεm‖Â( · )eα| · |‖L1 = Cεm‖A‖Wα .

Note that the time derivatives can be expressed as spatial derivatives via the right
hand side of the NLS equation. �
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5.4 Proof of Theorem 5.2

In order to explain the main idea of the proof of Theorem 5.2 we consider equation
(5.1) as a �rst-order system

∂tû = −
√

1 + |k|2 + |k|4 v̂,

∂tv̂ =
√

1 + |k|2 + |k|4 û− 1√
1 + |k|2 + |k|4

(û ∗ û).

This is of the form
∂tÛ =M(k)Û + N̂ (Û),

where

M(k) =

(
0 −

√
1 + |k|2 + |k|4√

1 + |k|2 + |k|4 0

)
,

Û =

(
û
v̂

)
=

(
û

− 1√
1+|k|2+|k|4

∂tû

)
.

The system can be diagonalized via the transform V̂ (k) = S(k)Û(k) with

S =
1

2i

(
i −1
i 1

)
,

such that we obtain
∂tV = ΛV +N(V, V ), (5.8)

where

Λ̂(k) =

(
i
√

1 + |k|2 + |k|4 0

0 −i
√

1 + |k|2 + |k|4

)
,

and

(N̂(V̂ , V̂ )(k))j1 =

∫
R2

∑
j2,j3∈{1,2}

α̂j1,j2,j3(k,k− l, l)V̂j2(k− l)V̂j3(l)dl,

with some coe�cients α̂j1,j2,j3 of the bilinear mapping N .
The approximation εψ for u can be extended to an approximation of V , namely

εΨ = εS

(
Ψ̂

−iω(k)−1∂tΨ̂

)
.
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It is obvious that εΨ obeys the estimates from Lemma 7.4, too, where now

RES(V ) = −∂tV + ΛV +N(V, V ).

As a direct consequence of Lemma 5.5 we have

Lemma 5.6.
Let α > 0 and A1 ∈ C([0, T0],Wα) be a solution of the NLS equation (5.6). Then

there exists an approximation εΨ, an ε0 > 0 and a C > 0 such that for all ε ∈ (0, ε0)
we have

sup
t∈[0,T0/ε2]

‖RES(εΨ( · , t))‖L1
g
≤ Cε5.

In order to prove Theorem 5.2 we have to show that the error

εβR = V − εΨ,

is of O(εβ) for a β > 2 and all t ∈ [0, T1/ε
2], i.e., we have to prove that R is of O(1)

for all t ∈ [0, T1/ε
2]. We �nd R to satisfy

∂tR =ΛR + 2εN(Ψ, R) + εβN(R,R) + ε−βRES(εΨ). (5.9)

The error can be shown to be of O(1) if the term 2εN(Ψ, R) can be eliminated or
controlled. We will solve the problem by separating �rst the set of the resonant wave
vectors from integer multiples of the basic wave vector k0. Then all non-resonant
terms can be removed by a normal form transform. The resonant terms can be
controlled with time dependent norms and so Gronwall's inequality can then be
applied to obtain the bound of the error.

5.4.1 The error estimates

Now, let a δ > 0 be su�ciently small, but independent of 0 < ε � 1. In order to
extract the resonant modes we de�ne a mode �lter on the resonant wave vectors by

Êr(k) =

{
1 for k ∈ Uδ(K(k0)),

0 else ,

and the one of the non-resonant wave vectors by Ên= 1− Êr.
The approximation function εΨ is split into

εΨ = εΨc,+ + εΨc,− + ε2Ψs,

where supp(Ψ̂c,±) = {k ∈ R2 : |k ± k0| ≤ δ} for some small δ > 0 and supp(Ψ̂s) =

R2 \ supp(Ψ̂c,±). We have εErΨc,± = O(ε) and ε2ErΨc,± = O(ε2). We now use
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the mode �lters to separate the error into two parts, namely R = Rr + Rn with
Rr = ErRr and Rn = EnRn to �nd

∂tRr =ΛRr + 2εErN(Ψc, Rn) + 2εErN(Ψc, Rr) + 2ε2ErN(Ψs, Rr)

+ 2ε2ErN(Ψs, Rn) + 2εβErN(Rr, Rn) + εβErN(Rr, Rr)

+ εβErN(Rn, Rn) + ε−βErRES(εΨ),

∂tRn =ΛRn + 2εEnN(Ψc, Rn) + 2εEnN(Ψc, Rr) + 2ε2EnN(Ψs, Rr)

+ 2ε2EnN(Ψs, Rn) + 2εβEnN(Rr, Rn) + εβEnN(Rr, Rr)

+ εβEnN(Rn, Rn) + ε−βEnRES(εΨ),

(5.10)

where εΨc = εΨc,+ + εΨc,−.
Since we want to eliminate the terms of O(ε), we only consider terms on the

support of Ψc in the error equations for Rr and Rn.
In the following we make a normal form transform in order to eliminate all non-

resonant terms to obtain a system of the form

∂tR̃r =ΛR̃r + 2εErN(Ψc, Rr) +O(ε2),

∂tR̃n =ΛR̃n +O(ε2).

Making now the normal form transform

R̃r = Rr + εBr,n(Ψc, Rn),

R̃n = Rn + εBn,r(Ψc, Rr) + εBn,n(Ψc, Rn),
(5.11)

where Br,n, Bn,r and Bn,n are smooth bilinear mappings and using ∂tΨc = ΛΨc +
O(ε2) we obtain for the �rst equation in (5.10)

∂tR̃r =∂tRr + εBr,n(∂tΨc, Rn) + εBr,n(Ψc, ∂tRn)

=ΛR̃r − ΛεBr,n(Ψc, Rn) + εBr,n(ΛΨc, Rn) + εBr,n(Ψc, ΛRn)

+ 2εErN(Ψc, Rr) + 2εErN(Ψc, Rn) + ε2Qr,

(5.12)

and for the second equation

∂tR̃n =∂tRn + εBn,r(∂tΨc, Rn) + εBn,r(Ψc, ∂tRn) + εBn,n(∂tΨc, Rn)

+ εBn,n(Ψc, ∂tRn)

=ΛR̃n − ΛεBn,r(Ψc, Rr) + εBn,r(ΛΨc, Rr) + εBn,r(Ψc, ΛRr)

− ΛεBn,n(Ψc, Rn) + εBn,n(ΛΨc, Rn) + εBn,n(Ψc, ΛRn)

+ 2εEnN(Ψc, Rr) + 2εEnN(Ψc, Rn) + ε2Qn,

(5.13)
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where

ε2Qr =2ε2ErN(Ψs, Rr) + 2ε2ErN(Ψs, Rn) + εBr,n(Ψc, 2εErN(Ψc, Rr))

+ εBr,n(Ψc, 2εErN(Ψc, Rn)) + εBr,n(O(ε2), Rr) + εBr,n(O(ε2), Rn)

+ εBr,n(Ψc, ε
βErN(Rr, Rn)) + εBr,n(Ψc, ε

βErN(Rr, Rr))

+ εBr,n(Ψc, ε
βErN(Rn, Rn) + ε−β−1ErRES(εΨ),

ε2Qn =2ε2EnN(Ψs, Rr) + 2ε2EnN(Ψs, Rn) + εB̃(Ψc, 2εEnN(Ψc, Rr))

+ εB̃(Ψc, 2εEnN(Ψc, Rn)) + εB̃(O(ε2), Rr) + εB̃(O(ε2), Rn)

+ εB̃(Ψc, ε
βEnN(Rr, Rn)) + εB̃(Ψc, ε

βEnN(Rr, Rr))

+ εB̃(Ψc, ε
βEnN(Rn, Rn)) + ε−β−1EnRES(εΨ),

with B̃ = Bn,r + Bn,n. In order to eliminate the dangerous terms of O(ε) we have
to �nd Br,n, Bn,r and Bn,n such that

2εErN(Ψc, Rn) =ΛεBr,n(Ψc, Rn)− εBr,n(ΛΨc, Rn)− εBr,n(Ψc, ΛRn),

2εEnN(Ψc, Rr) =ΛεBn,r(Ψc, Rr)− εBn,r(ΛΨc, Rr)− εBn,r(Ψc, ΛRr),

2εEnN(Ψc, Rn) =ΛεBn,n(Ψc, Rn)− εBn,n(ΛΨc, Rn)− εBn,n(Ψc, ΛRn).

(5.14)

In Fourier space the j1-th component of the nonlinear term EzN(Ψc, Rz) can be
written as

̂EzN(Ψc, Rz)j1 =
∑

j2,j3∈{1,2}

∫
R2

Êz(k)α̂j1,j2,j3(k,k− l, l)Ψ̂c,j2(k− l)R̂z,j3(l)dl,

where |α̂j1,j2,j3(k,k− l, l)| ≤ C and z ∈ {r, n}. For Bn,z we �nd

̂Bn,z(Ψc, Rz)j1 =
∑

j2,j3∈{1,2}

∫
R2

2α̂j1,j2,j3(k,k− l, l)

iωj1(k)− iωj2(k− l)− iωj3(l)
Ψ̂c,j2(k− l)R̂z,j3(l)dl.

We now want to write this expression for the variable k alone. Using Lemma 4.8 and
the fact that Ψc is concentrated at ±k0 we obtain the condition that the operators
Bn,z, Br,n are well-de�ned if

max
j1,j1,j3∈{1,2}

∣∣∣∣ α̂j1,j2,j3(k,k0,k− k0)

iωj1(k)− iωj2(k0)− iωj3(k− k0)

∣∣∣∣ <∞. (5.15)

Since the denominator of (5.15) becomes zero in case of resonances we consider
the non-resonance condition in more detail. In the following we set ω1 = ω+ and
ω2 = ω−.
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Validity of the non-resonance condition

Terms are resonant to Ψc if both indices are r. Since we have at least two indices
n, the non-resonance condition is satis�ed and so we get

(r, n, n) : iωj1(k)− iωj2(k0)− iωj3(k− k0) 6= 0,

(n, n, r) : iωj1(k)− iωj2(k0)− iωj3(k− k0) 6= 0,

(n, n, n) : iωj1(k)− iωj2(k0)− iωj3(k− k0) 6= 0.

Hence, (5.12) and (5.13) simpli�es into

∂tR̃r =ΛR̃r + 2εErN(Ψc, Rr) + ε2Qr,

∂tR̃n =ΛR̃n + ε2Qn,

where Qr, Qn are de�ned above.
All non-resonant terms are eliminated. In order to apply Gronwall's inequality

we have to get rid of the remaining term 2εErN(Ψc, Rr). We can achieve this by
using time dependent norms, which take care of the initial mode distribution and
damp this term arti�cially.

For the next step we need the following lemma.

Lemma 5.7.
Let α > 0 and A1 ∈ C([0, T0],Wα) be a solution of the NLS equation (5.6). Then

there exists a C > 0 such that the following holds. For all ε ∈ (0, 1] the maps

B±n,n(Ψc,±, En · ), B±n,r(Ψc,±, En · ) and B±r,n(Ψc,±, En · ) are bounded linear mappings

from L1
g to L

1
g satisfying

‖B±n,n(Ψc,±, EnRn)‖L1
g
≤ C‖Rn‖L1

g
.

Proof. The proof follows immediately from the �rst estimate in Lemma 5.5 and
then by using Lemma 5.1. �

Since L1
g is a Banach algebra, Neumann's series allows to invert the near identity

change of variables (5.11). Hence, we have

Lemma 5.8.
The transformation

T :

{
L1
g → L1

g,

R→ R̃,
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de�ned through (5.11) is a small perturbation of identity. The mapping is analytic

and for all C1 > 0 there exists an ε0 > 0 such that for ε ∈ (0, ε0) the following holds.

For all R̃ with ‖R̃‖L1
g
≤ C1 there exists an analytic inverse.

The �nal error estimates

Substituting Rr by R̃r and Rn by R̃n and using the variation of constants formula
we get

R̃r =

∫ t

0

eΛ(t−τ)
(
2εErN(Ψc, R̃r) + 2ε2ErN(Ψs, R̃r) + 2ε2ErN(Ψs, R̃n)

+ εBr,n(Ψc, 2εErN(Ψc, R̃r)) + εBr,n(Ψc, 2εErN(Ψc, R̃n))

+ εBr,n(O(ε2), R̃r) + εBr,n(O(ε2), R̃n) + εBr,n(Ψc, 2ε
βErN(R̃r, R̃n))

+ εBr,n(Ψc, ε
βErN(R̃r, R̃r)) + εBr,n(Ψc, ε

βErN(R̃n, R̃n))

+ ε−β−1ErRES(εΨ)
)
dτ,

(5.16)

R̃n =

∫ t

0

eΛ(t−τ)
(
2ε2EnN(Ψs, R̃r) + 2ε2EnN(Ψs, R̃n)

+ εB̃(Ψc, 2εEnN(Ψc, R̃r)) + εB̃(Ψc, 2εEnN(Ψc, R̃n))

+ εB̃(O(ε2), R̃r) + εB̃(O(ε2), R̃n) + εB̃(Ψc, 2ε
βEnN(R̃r, R̃n))

+ εB̃(Ψc, ε
βEnN(R̃r, R̃r)) + εB̃(Ψc, ε

βEnN(R̃n, R̃n))

+ ε−β−1EnRES(εΨ)
)
dτ.

(5.17)

The remaining terms of the �rst equation can be estimated as

‖2ε2ErN(Ψs, R̃r) + εBr,n(Ψc, 2εErN(Ψc, R̃r)) + εBr,n(O(ε2), R̃r)‖L1
g
≤Cε2‖R̃r‖L1

g
,

‖2ε2ErN(Ψs, R̃n) + εBr,n(Ψc, 2εErN(Ψc, R̃n)) + εBr,n(O(ε2), R̃n)‖L1
g
≤Cε2‖R̃n‖L1

g
,

‖εBr,n(Ψc, 2ε
βErN(R̃r, R̃n)) + εBr,n(Ψc, ε

βErN(R̃r, R̃r))

+εBr,n(Ψc, ε
βErN(R̃n, R̃n))‖L1

g
≤ε2.

Using these estimates we get for the equation (5.16)

‖R̃r(t)‖L1
g(t)
≤
∫ t

0

(
‖eΛ(t−τ)2εErN(Ψc, R̃r)(τ)‖L1

g(τ)
+ Cε2‖R̃r‖L1

g(τ)
+ Cε2‖R̃n‖L1

g(τ)

+ ε2 + CRESε
2

)
dτ

≤
∫ t

0

( ∣∣∣∣∫
R2

eΛ(k)(t−τ)2εErN(Ψc, R̃r)(τ)g(k, t)dk

∣∣∣∣+ Cε2‖R̃r‖L1
g(τ)
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+ Cε2‖R̃n‖L1
g(τ)

+ ε2 + CRESε
2

)
dτ

≤
∫ t

0

( ∣∣∣∣∫
R2

eΛ(k)(t−τ) g(k, t)

g(k, τ)
2εErN(Ψc, R̃r)(τ)g(k, τ)dk

∣∣∣∣
+ Cε2‖R̃r‖L1

g(τ)
+ Cε2‖R̃n‖L1

g(τ)
+ ε2 + CRESε

2

)
dτ

≤
∫ t

0

(
sup
k∈R2

∣∣∣∣eΛ(k)(t−τ) g(k, t)

g(k, τ)
Er

∣∣∣∣ ∫
R2

|2εN(Ψc, R̃r)(τ)|g(k, τ)dk

+ Cε2‖R̃r‖L1
g(τ)

+ Cε2‖R̃n‖L1
g(τ)

+ ε2 + CRESε
2

)
dτ

≤
∫ t

0

(
e−κ(t−τ)ε2εC‖R̃r(τ)‖L1

g(τ)
+ Cε2‖R̃r‖L1

g(τ)
+ Cε2‖R̃n‖L1

g(τ)

+ ε2 + CRESε
2

)
dτ,

for a κ > 0. Introducing the notation Rz(t) := sup0≤τ≤t ‖R̃z(τ)‖L1
g(τ)

we �nd

Rr(t) ≤
∫ t

0

(
e−κ(t−τ)ε2εCRr(τ) + Cε2Rr(τ) + Cε2Rn(τ) + ε2

+ CRESε
2
)
dτ.

(5.18)

For the terms in (5.17) we obtain the estimates

‖2ε2EnN(Ψs, R̃r) + εB̃(Ψc, 2εEnN(Ψc, R̃r)) + εB̃(O(ε2), R̃r)‖L1
g
≤Cε2‖R̃r‖L1

g
,

‖2ε2EnN(Ψs, R̃n) + εB̃(Ψc, 2εEnN(Ψc, R̃n)) + εB̃(O(ε2), R̃n)‖L1
g
≤Cε2‖R̃n‖L1

g
,

‖εB̃(Ψc, 2ε
βEnN(R̃r, R̃n)) + εB̃(Ψc, ε

βEnN(R̃r, R̃r))

+εB̃(Ψc, ε
βEnN(R̃n, R̃n))‖L1

g
≤ε2.

Therefore,

Rn(t) ≤
∫ t

0

(
Cε2Rr + Cε2Rn + ε2 + CRESε

2
)
dτ. (5.19)

Adding both inequalities (5.18) and (5.19) with R(t) = Rr(t) +Rn(t) gives

R(t) ≤
∫ t

0

(
e−κ(t−τ)ε2εCRr(τ) + Cε2Rr(τ) + Cε2Rn(τ) + ε2 + CRESε

2
)
dτ
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+

∫ t

0

(
Cε2Rr(τ) + Cε2Rn(τ) + ε2 + CRESε

2
)
dτ

≤ 2Cκ−1R(t) + 2

∫ t

0

(
Cε2R(τ) + ε2 + CRESε

2
)
dτ.

For Cκ−1 < 1/4 which can be achieved by choosing T1 > 0 su�ciently small, but
independent of 0 < ε� 1, we have

R(t) ≤ 4C

∫ t

0

(
ε2R(τ) + ε2 + CRESε

2
)
dτ.

Applying Gronwall's inequality yields

R(t) ≤ 4(1 + CRES)T1e
4CT1 =: CR,

independent of ε ∈ (0, ε0) where ε0 > 0 had to be chosen so small that εβ−1CC2
R +

εβ−1CCRCR + εβ−1CC2
R ≤ 1. Therefore, this system possesses O(1) bounded solu-

tions for t ∈ [0, T1/ε
2].



6. Resonant Boussinesq model

The method that we used to justify the NLS equation as an approximation equation
in case of non-trivial quadratic resonances cannot be applied directly to the problem
of a trivial resonance at the wave vector k = 0 as it occurs for the water wave
problem. In this situation the resonance at the wave vector k = 0 is an integer
multiples of the basic wave vector k = k0. Therefore, we combine Chapter 4 and
5 to obtain a DS approximation result for a resonant Boussinesq model. In 1D
such a result has been shown in [10] where the NLS approximation is stable in the
system for the three wave interaction associated to the resonances. The method
developed in Chapter 5 allows us to justify the DS approximation also in case of
unstable resonances. However, it turns out that the APP does not hold for every k0.
For k0 = (2.5, 0) e.g. the set of the resonances K(k0) is not separated from integer
multiples of the basic wave vector k0, see Figure 6.1 (d). Therefore, Theorem 6.1
can only be proven for |k0| su�ciently small.

6.1 The result

We extend the 2D Boussinesq equation from Chapter 4 with a term that can be
interpreted as a surface tension term, i.e., we consider

∂2
t u = ∆u+ ∂2

t ∆u+ ∆(u2) + µ∆3u. (6.1)

The parameter µ can be interpreted as the strength of surface tension. With the
ansatz

εψDS(x, y, t) =εA1(ε(x+ cgt), εy, ε
2t)E + c.c.

+ ε2A2(ε(x+ cgt), εy, ε
2t)E2 + c.c.

+ ε2A0(ε(x+ cgt), εy, ε
2t),

(6.2)

where 0 < ε� 1 is a small perturbation parameter, E = ei(k01x−ω0t), X = ε(x+ cgt),
Y = εy, T = ε2t, A0(X, Y, T ) ∈ R, Aj(X, Y, T ) ∈ C for j ∈ {−2,−1, 1, 2} and c.c.
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is the complex conjugate, a DS system

2iω∂TA1 =(−1 + c2
g)∂

2
XA1 − ∂2

YA1 + γ1A1|A1|2 + γ2A1A0,

A0 =− (2∂2
X + ∂2

Y )

∂2
X + ∂2

Y − c2
g∂

2
X

|A1|2,
(6.3)

is obtained where

γ1 =
2k4

01

ω2
0 − k2

01 + 4k2
01ω

2
0

and γ2 = −2k2
01.

See Chapter 4. Herein, k = (k01, 0) and ω = ω0 satisfy the linear dispersion relation

ω2 = |k|2 − ω2|k|2 + µ|k|6, (6.4)

where the solutions ω are denoted with

ω±(k) = ±

√
|k|2 + µ|k|6

1 + |k|2
.

For the notational simplicity we set ω1 = ω+ and ω2 = ω−.
We prove the following approximation result.

Theorem 6.1.
Assume K(k0) ∩ (k0Z × {0}) = {0,k0}. Let α > 0 and A0, A1 ∈ C([0, T0],Wα) be

solutions of the DS system (6.3). Then there exists ε0 > 0, T1 ∈ (0, T0] and a C > 0
such that for all ε ∈ (0, ε0) we have solutions u of (6.1) satisfying

sup
t∈[0,T1/ε2]

‖u( · , · , t)− εψDS( · , · , t)‖L1
g(t) ≤ Cε2,

where L1
g is the weighted space and g the weight function as de�ned in (5.7).

Corollary 6.2.
Assume that except of the intersection at 0 and k0 the resonant wave vectors are

bounded away from integer multiples of the basic wave vector k0. Let A1 be a solution

of the DS system (6.3) given for T ∈ [0, T0] whose Fourier transform satis�es

sup
t∈[0,T0/ε2]

∫
|Â1(K, T )|eα|K|dK <∞,

for an α > 0. Then there exist ε0 > 0, T1 ∈ (0, T0] and a C > 0 such that for all

ε ∈ (0, ε0) we have solutions u of (6.1) which satisfy

sup
t∈[0,T1/ε2]

sup
(x,y)∈R2

|u(x, y, t)− εψDS(x, y, t)| ≤ Cε2.
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(a) k0 = (1, 0). The surface of eigenvalues ω±(|k|) =
±
√
|k|2+µ|k|6

1+|k|2 with µ = 1
10 for (6.1) and the surfaces

k 7→ ω±(k) and k 7→ ω+(k0) + ω±(k− k0). Intersec-
tion points correspond to resonances.

k2

k1

ω

k0 k1

k2

(b) k0 = (1, 0) and µ = 1
10 . The set of

wave vectors: K(k0) = {k2 : ∃k3 : k0 +
k2 + k3 = 0, ω0 + ω2 + ω3 = 0}.

(c) k0 = (2.5, 0). The surface of eigenvalues ω±(|k|) =
±
√
|k|2+µ|k|6

1+|k|2 with µ = 1
10 for (6.1) and the surfaces

k 7→ ω±(k) and k 7→ ω+(k0)+ω±(k−k0). Intersection
points correspond to resonances.

k2

k1

ω

k0 k1

k2

(d) k0 = (2.5, 0) and µ = 1
10 . The set

K(k0) of wave vectors intersect the set of
integer multiples of the basic wave vector
k0.

Figure 6.1: Surfaces of eigenvalues and the set of the resonant wave vectors for the
resonant Boussinesq model.
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Remark 6.3. In Figure 6.1 (b) for the wave vector k0 = (1, 0) the set of resonances
K(k0) is separated from integer multiples of the basic wave vector k0. However,
for k0 = (2.5, 0) there is an additional ring or resonances which intersect the wave
vector k0, see Figure 6.1 (d). Therefore, Theorem 6.1 can not be proven for |k0|
su�ciently big.

Remark 6.4. Due to the method in use the error estimates can only be proved on
the time interval [0, T1/ε

2], but not necessarily for all t ∈ [0, T0/ε
2]. Hence, we can

only guarantee that parts of the DS dynamics can be seen in the original system.

As before, we can add higher order terms to the ansatz (6.2) in order to construct
an approximation, which makes the residual terms su�ciently small for our purpose.
And so we obtain with

εψ4(x, y, t) = εψNLS(x, y, t) + ε3A3(X, Y, T )E3 + c.c.+ ε3A22(X, Y, T )E2 + c.c.,

where

A3 = 2k2
01A1A2/(−ω2

0 + k2
01 − 9k2

01ω
2
0 + 81ω6

0),

A22 = −(cgiω0 + ik01 − 16ik01ω
2
0 − 2ik2

01ω0)∂XA2/(ω
2
0 − k2

01 − 4k2
01ω

2
0 − 8k6

01),

that Res(εψ4) = O(ε4). By adding more terms as above it follows

Lemma 6.5.
Let α > 0 and A1 ∈ C([0, T0],Wα) be a solution of the DS system (6.3). Then there

exist an approximation εψ, an ε0 > 0 and a C > 0 such that for all ε ∈ (0, ε0) we

have

sup
t∈[0,T0/ε2]

‖εψ( · , t)‖L1
g
≤ Cε,

and

sup
t∈[0,T0/ε2]

‖Res(εψ( · , t))‖L1
g
≤ Cε7.

6.2 Proof of Theorem 6.1

As in Chapter 4 we write the Boussinesq equation (6.1) as a �rst order system

∂tU = ΛU +N(U,U), (6.5)
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where Λ is a skew-symmetric diagonal linear operator and N( · , · ) a symmetric
bilinear mapping. In detail, in Fourier space we have

Λ̂(k) =

i
√
|k|2+µ|k|6

1+|k|2 0

0 −i
√
|k|2+µ|k|6

1+|k|2

 ,

and

(N̂(Û , Û)(k))j1 =

∫
R2

∑
j2,j3∈{1,2}

α̂j1,j2,j3(k,k− l, l)Ûj2(k− l)Ûj3(l)dl,

with α̂j1,j2,j3 some uniformly bounded coe�cients and

N̂(Û , V̂ ) =

√
|k|2 + µ|k|6

1 + |k|2
SÑ(S−1Û , S−1V̂ ),

Ñ(Û , V̂ ) =

(
0

Û1 ∗ V̂1

)
,

S =
1

2i

(
i −1
i 1

)
,

where Û = (Û1, Û2).
Further we de�ne the new residual as

RES(U) = −∂tU + ΛU +N(U,U).

We proceed as in Chapter 4 in order to estimate the error made by the approximation
εΨ in (4.8) which denotes the extended approximation associated to εψ. Hence, we
make the ansatz

U = εΨ + εβϑR,

with β = 3 and where

ϑ̂(k) =

{
1, for |k| > |k0|/10,

ε+ 10(1− ε) |k||k0| , for |k| ≤ |k0|/10.

Inserting the ansatz into (6.5) we obtain

∂tR = ΛR + 2εϑ−1N(Ψ, ϑR) + εβϑ−1N(ϑR, ϑR) + ε−βϑ−1RES(εΨ). (6.6)

Since the approximation εΨ is only of order ε in two δ neighborhoods of ±k0 with
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δ > 0 small, but independent of 0 < ε� 1, we split the approximation εΨ into

εΨ = εΨc,+ + εΨc,− + ε2Ψs,

where supp(Ψ̂c,±) = {k ∈ R2 : |k ± k0| ≤ δ} for some small δ > 0 and supp(Ψ̂s) =

R2 \ supp(Ψ̂c,±). We �nd R to satisfy

∂tR = ΛR + 2εϑ−1N(Ψc, ϑR) +O(ε2). (6.7)

We now remove all non-resonant terms with a normal form transform as we did in
Chapter 5. Then the resonant terms can be controlled by time dependent norms.
For this purposes we use a mode �lter

Êr(k) =

{
1 for k ∈ Uδ(K̂(k0)),

0 else ,

for a δ > 0 su�ciently small, but independent of 0 < ε � 1, and the one of the
non-resonant modes by Ên = 1− Êr with

K̂(k0) = K(k0) \ {0,k0},

in order to separate the error in two parts, namely R = Rr + Rn with Rr = ErRr

and Rn = EnRn.
We now make the normal form transform

∂tR̃r =ΛRr + 2εBr,n(Ψc, Rn),

∂tR̃n =ΛRn + 2εBn,r(Ψc, Rr) + 2εBn,n(Ψc, Rn),

with Br,n, Bn,r and Bn,n smooth bilinear mappings. Using ∂tΨc = ΛΨc +O(ε2) we
obtain

∂tR̃r =ΛR̃r − ΛεBr,n(Ψc, Rn) + εBr,n(ΛΨc, Rn) + εBr,n(Ψc, ΛRn)

+ 2εErϑ
−1N(Ψc, ϑRr) + 2εErϑ

−1N(Ψc, ϑRn) + Erε
2Gr,

∂tR̃n =ΛR̃n − ΛεBn,r(Ψc, Rr) + εBn,r(ΛΨc, Rr) + εBn,r(Ψc, ΛRr)

− ΛεBn,n(Ψc, Rn) + εBn,n(ΛΨc, Rn) + εBn,n(Ψc, ΛRn)

+ 2εEnϑ
−1N(Ψc, ϑRr) + 2εEnϑ

−1N(Ψc, ϑRn) + Enε
2Gn,

(6.8)
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where

ε2Gr =2ε2Br,n(Ψc, ϑ
−1(Ψs, ϑRr)) + 2ε2Br,nN(Ψc, ϑ

−1N(Ψs, ϑRn))

+ 2ε2ϑ−1N(Ψs, ϑRr) + 2ε2ϑ−1N(Ψs, ϑRn) + εBr,n(O(ε2), Rr)

+ εBr,n(O(ε2), Rn) + εβϑ−1Br,n(ϑRr, ϑRr) + εβϑ−1Br,n(ϑRn, ϑRn)

+ εβϑ−1Br,n(ϑRr, ϑRn) +O(εβ−1),

ε2Gn =2ε2B̃(Ψc, ϑ
−1N(Ψs, ϑRr)) + 2ε2B̃(Ψc, ϑ

−1N(Ψs, ϑRn))

+ 2ε2ϑ−1N(Ψs, ϑRr) + 2ε2ϑ−1N(Ψs, ϑRn) + εB̃(O(ε2), Rr)

+ εB̃(O(ε2), Rn) + εβϑ−1B̃(ϑRr, ϑRr) + εβϑ−1B̃(ϑRn, ϑRn)

+ εβϑ−1B̃(ϑRr, ϑRn) +O(εβ−1),

with B̃ = Bn,r +Bn,n.
In Fourier space the j1-th component of the nonlinear term Enϑ

−1N(Ψc,±, ϑRn)
can be written as

̂(Enϑ−1N(Ψc, ϑRn))j1(k) =
∑

j2,j3∈{1,2}

∫
R2

Ên(k)α̂j1,j2,j3(k,k− l, l)
ϑ̂(l)

ϑ̂(k)
Ψ̂c,j2(k− l)

× R̂n,j3(l)dl,

where |α̂j1,j2,j3(k,k− l, l)| ≤ C <∞ and k, l ∈ R2. Choosing

( ̂Bn,z(Ψc, Rz))j1 =
∑

j2,j3∈{1,2}

∫
R2

2α̂j1,j2,j3(k,k− l, l)

iωj1(k)− iωj2(k− l)− iωj3(l)

ϑ̂(l)

ϑ̂(k)
Ψ̂c,j2(k− l)

× R̂z,j3(l)dl,

( ̂Br,n(Ψc, Rn))j1 =
∑

j2,j3∈{1,2}

∫
R2

2α̂j1,j2,j3(k,k− l, l)

iωj1(k)− iωj2(k− l)− iωj3(l)

ϑ̂(l)

ϑ̂(k)
Ψ̂c,j2(k− l)

× R̂n,j3(l)dl,

with z ∈ {r, n} all non-resonant terms can be removed. By the choice of ϑ the
nontrivial resonance at k = k0 can be removed, too. However, for the resonance at
k→ 0 additional terms of O(ε) appear.
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Hence, the error equation (6.8) only simpli�es into

∂tR̃r =ΛR̃r + 2εErÑ(Ψc, Rr) + 2ε2Br,n(Ψc, ϑ
−1N(Ψc, ϑRr)

+ 2ε2Br,n(Ψc, ϑ
−1N(Ψc, ϑRn) + Erε

2Gr,

∂tR̃n =ΛR̃n + 2ε2B̃(Ψc, ϑ
−1N(Ψc, ϑRr) + 2ε2B̃(Ψc, ϑ

−1N(Ψc, ϑRn)

+ Enε
2Gn,

(6.9)

where

(
̂

Ñ(Ψc, Rr))j1 =
∑

j2,j3∈{1,2}

∫
R2

α̂j1,j2,j3(k,k− l, l)Ψ̂c,j2(k− l)R̂r,j3(l)dl,

and Gr, Gn de�ned above.
Applying the second normal form transform

Řr =R̃r + εB̄r,n(Ψc,+,Ψc,+, Rn) + εB̄r,n(Ψc,−,Ψc,−, Rn),

Řn =R̃n + εB̄n,n(Ψc,+,Ψc,+, Rn) + εB̄n,r(Ψc,+,Ψc,+, Rr)

+ εB̄n,n(Ψc,−,Ψc,−, Rn) + B̄n,r(Ψc,−,Ψc,−, Rr),

where

B̄j1
r,n(Ψc,d,Ψc,d, Rn)(k)

=
∑

j3,j5∈{1,2}

∫
R4

εSj1j,j3,j5(k)

iωj1(k)− iωj(dk0)− iωj(dk0)− iωj5(k− 2dk0)

×Ψc,d(k− l)Ψc,d(l− n)Rn,j5(n)dndl,

B̄j1
n,z(Ψc,d,Ψc,d, Rz)(k)

=
∑

j3,j5∈{1,2}

∫
R4

εSj1j,j3,j5(k)

iωj1(k)− iωj(dk0)− iωj(dk0)− iωj5(k− 2dk0)

×Ψc,d(k− l)Ψc,d(l− n)Rz,j5(n)dndl,

with |Sj1j,j3,j5(k)| ≤ C, z ∈ {r, n}, d ∈ {+,−} and k, l, n ∈ R2 terms of O(ε2) can

be removed, since Br,n and B̃ can be of O(ε−1) at the wave vector k = 0. The
transformation works as before and so the term of O(ε2) can be eliminated with
B̄j
r,n = O(1) and B̄j

n,z = O(1) using εS = O(1).
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Hence, (6.9) simpli�es further into

∂tŘr =ΛŘr + 2εErÑ(Ψc, Rr) + Erε
2Gr,

∂tŘn =ΛŘn + Enε
2Gn.

(6.10)

Substituting R by Ř yields

∂tŘr =ΛŘr + 2εErÑ(Ψc, Řr) + Erε
2Ǧr,

∂tŘn =ΛŘn + Enε
2Ǧn,

(6.11)

where

ε2Ǧr =2ε2ϑ−1N(Ψs, ϑŘr) + 2ε2ϑ−1N(Ψs, ϑŘn) + εBr,n(O(ε2), Řr)

+ εBr,n(O(ε2), Řn) + εβϑ−1Br,n(ϑŘr, ϑŘr) + εβϑ−1Br,n(ϑŘn, ϑŘn)

+ εβϑ−1Br,n(ϑŘr, ϑŘn) +O(εβ−1),

ε2Ǧn =2ε2ϑ−1N(Ψs, ϑŘr) + 2ε2ϑ−1N(Ψs, ϑŘn) + εB̃(O(ε2), Řr)

+ εB̃(O(ε2), Řn) + εβϑ−1B̃(ϑŘr, ϑŘr) + εβϑ−1B̃(ϑŘn, ϑŘn)

+ εβϑ−1B̃(ϑŘr, ϑŘn) +O(εβ−1).

with B̃ = Bn,r +Bn,n. It remains to eliminate the term 2εErÑ(Ψc, Řr). In order to
do so we proceed as in Chapter 5.

In the following we need

Lemma 6.6.
Let ‖Ř‖L1

g
≤ Z. There exist constants C1, C3 independent of Z and ε ∈ (0, 1] and a

function C2(Z) independent of ε ∈ (0, 1] such that

‖ε2Ǧ‖L1
g
≤C1ε

2‖Ř‖L1
g

+ C2(Z)ε3‖Ř‖L1
g

+ C3ε
2.

Using now the variation of constants formula we obtain

Řr(t) =

∫ t

0

eΛ(t−τ)
(
2εErÑ(Ψc, Řr) +O(‖ε2Ǧr(τ)‖L1

g
)
)
dτ, (6.12)

Řn(t) =

∫ t

0

eΛ(t−τ)O(‖ε2Ǧn(τ)‖L1
g
)dτ, (6.13)

where

ε2‖Ǧr‖L1
g
≤C1ε

2‖Řr‖L1
g

+ C1ε
2‖Řn‖L1

g
+ C2(Z)ε3‖Řr‖L1

g
‖Řn‖L1

g
+ C2(Z)ε3‖Řr‖2

L1
g

+ C2(Z)ε3‖Řn‖2
L1
g

+ C3ε
2,
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ε2‖Ǧn‖L1
g
≤C1ε

2‖Řr‖L1
g

+ C1ε
2‖Řn‖L1

g
+ C2(Z)ε3‖Řr‖L1

g
‖Řn‖L1

g
+ C2(Z)ε3‖Řr‖2

L1
g

+ C2(Z)ε3‖Řn‖2
L1
g

+ C3ε
2.

We get for
∫ t

0
eΛ(t−τ)2εErÑ(Ψc, Řr)dτ in (6.12)

‖2ε
∫ t

0

eΛ(t−τ)ErÑ(Ψc, Řr)(τ)dτ‖L1
g(t)

≤
∫
R2

2ε

∫ t

0

∣∣∣eΛ(t−τ)ErÑ(Ψc, Řr)(τ)
∣∣∣ dτg(k, t)dk

≤
∫
R2

2ε

∫ t

0

∣∣∣∣eΛ(t−τ) g(k, t)

g(k, τ)
ErÑ(Ψc, Řr)(τ)

∣∣∣∣ g(k, τ)dτdk

≤2ε

∫ t

0

∣∣∣∣∫
R2

eΛ(t−τ) g(k, t)

g(k, τ)
ErÑ(Ψc, Řr)(τ)

∣∣∣∣ g(k, τ)dkdτ

≤2ε

∫ t

0

sup
k∈R2

∣∣∣∣eΛ(t−τ) g(k, t)

g(k, τ)
Er

∣∣∣∣ ∫
R2

∣∣∣Ñ(Ψc, Řr)(τ)
∣∣∣ g(k, τ)dkdτ

≤2Cε

∫ t

0

e−κ(t−τ)ε‖Ψc‖L1
g(τ)
‖Řr(τ)‖L1

g(τ)
dτ,

for a κ > 0. Introducing the notation Rz(t) := sup0≤τ≤t ‖Řz(τ)‖L1
g(τ)

for z ∈ {r, n}
and R(t) = Rr(t) +Rn(t) we �nd

Rr(t) ≤2Cε

∫ t

0

e−κ(t−τ)εRr(τ)dτ + C

∫ t

0

(
C1ε

2R(τ) + C2(Z)ε3R(τ)

+ C3ε
2
)
dτ.

(6.14)

For the terms in (6.13) we obtain

Rn(t) ≤ C

∫ t

0

(
C1ε

2R(τ) + C2(Z)ε3R(τ) + C3ε
2
)
dτ. (6.15)

Adding both inequalities (6.14), (6.15) and choosing C2(M)εR(τ) ≤ 1 gives

R(t) ≤2Cε

∫ t

0

e−κ(t−τ)εRr(τ)dτ + 2C

∫ t

0

(
(C1 + 1)ε2R(τ) + C3ε

2
)
dτ

≤ 2Cκ−1R(t) + 2C

∫ t

0

(
(C1 + 1)ε2R(τ) + C3ε

2
)
dτ.

For Cκ−1 < 1/4 which can be achieved by choosing T1 > 0 su�ciently small, but
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independent of 0 < ε� 1, we have

R(t) ≤ 4C

∫ t

0

(
(C1 + 1)ε2R(τ) + C3ε

2
)
dτ.

Applying Gronwall's inequality yields

R(t) ≤ 4C3T1e
4C(1+CRES)T1 =: CR,

independent of ε ∈ (0, ε0) where ε0 > 0 had to be chosen so small that C2(CR)εCR ≤
1. Therefore, this system possesses O(1) bounded solutions for t ∈ [0, T1/ε

2]. The
APP holds and so there are solutions u of the 2D resonant Boussinesq equation (6.1)
that behave for all t ∈ [0, T1/ε

2] as predicted by the DS system although resonances
occur.

6.3 Consequences for the water wave problem

The justi�cation of the NLS approximation with quasilinear quadratic terms remains
unsolved so far in general. The reason for this is that normal form transforms in
quasilinear systems lead to a loss of regularity and therefore local existence and
uniqueness of solutions in general can no longer be proven. Only for special problems
approximation properties could be established. In [17] the Miura transformation has
been used to justify the NLS approximation for the KdV equation. In [18] numerical
evidence has been given that the NLS approximation makes correct predictions for
a quasilinear wave equation. Associated with the normal form transform comes a
loss of regularity if quasilinear quadratic terms are eliminated.

In the following we brie�y consider the well known 2D water wave problem and
then the 3D water wave problem [21, 7].

6.3.1 2D water wave problem

The 2D water wave problem consists in �nding the irrotational �ow of an incom-
pressible �uid �lling the domain Ω(t) between the bottom {(x1,−1) : x1 ∈ R} and
the free surface Γ(t)= {(x1, η(x1, t)) : x1 ∈ R}, which is bounded in the x2-direction.
Under these assumptions the problem is completely determined by the evolution of
the free surface Γ(t).

In case of �nite depth and no surface tension a NLS equation

∂TA = iν1∂
2
XA+ iν2A|A|2, (6.16)
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Γ(t)

u2

u1

x

Ω(t)

−1

0

y

Figure 6.2: The 2D water wave problem.

with coe�cients νj = νj(k0) ∈ R can be derived by making the ansatz(
η
u1

)
≈ εψNLS(x, t) = εA(X,T )ei(k0x−ω0t)ϕ(k0) + c.c., (6.17)

where 0 < ε� 1 is a small perturbation parameter, T ∈ R, X ∈ R and A(X,T ) ∈
C. Here T = ε2t, X = ε(x+ cgt), ϕ(k0) is an explicitly computable two dimensional
complex-valued eigenvector and cg = ∂kω|k=k0,ω=ω0 is the negative group velocity,
cf. [22]. The spatial wave number k = k0 and the temporal wave number ω = ω0

are related through the linear dispersion relation

ω2 = k tanh k, (6.18)

of the water wave problem, cf. [23].
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6.3.2 3D water wave problem

The Eulerian formulation for the water wave problem

The velocity �eld u(x, y, z) = (u1, u2, u3) in Ω(t) is governed by Euler's equations

∂tu+ (u · ∇)u = −∇p+ g

 0
0
−1

 ,

divu = 0,

where p is the pressure, g is the gravitation. We write the velocity �eld as a gradient
of the potential ϕ : Ω(t)→ R, i.e., u = ∇ϕ.

From Euler's equations it follows that

∂t∇ϕ+
1

2
∇|∇ϕ|2 = −1

ρ
∇p− g∇z,

where ρ is the constant density of the �uid.
By integrating this equation we obtain the dynamic boundary condition

∂tϕ+
1

2
|∇ϕ|2 = −1

ρ
p− gz + µ∇ ·

(
∇η√

1 + |∇η|2

)
,

where µ∇ ·
(

∇η√
1+|∇η|2

)
is the surface tension term. At the top boundary without

loss of generality we have p = 0 which implies that ϕ satis�es the equation

∂tϕ =− 1

2
((∂xϕ)2 + (∂yϕ)2 + (∂zϕ)2)− gη

+ µ∂x

(
∂xη√

1 + (∂xη)2 + (∂yη)2

)
+ µ∂y

(
∂yη√

1 + (∂xη)2 + (∂yη)2

)
,

(6.19)

for (x, y, z) ∈ Γ(t) and g = 1. Di�erentiating z = η(x, y, t) and using

(1, ∂tx, ∂ty, ∂tz) = (1, u1(t), u2(t), u3(t)) = (1,∇ϕ),

we obtain

∂tη = −∂zϕ− (∂xϕ)(∂xη)− (∂yϕ)(∂yη), (6.20)
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for (x, y, z) ∈ Γ(t) and ρ = 1. With

∆ϕ = 0 in Ω(t),

u3|x3=−1 = ∂zϕ|z=−1 = 0,
(6.21)

we obtain with (6.19)-(6.21) a closed system. Thus, the dynamics of the system can
be completely described by the evolution of the free surface Γ, which is governed by
the equations

∂tη =− u1(∂xη)− u2(∂yη),

∂tϕ =− 1

2
(u2

1 + u2
2)− gη + µ∂x

(
∂xη√

1 + (∂xη)2 + (∂yη)2

)

+ µ∂y

(
∂yη√

1 + (∂xη)2 + (∂yη)2

)
,

(6.22)

with initial conditions z|t=0 = ϕ1 and u1|t=0 = ϕ2, cf. [24].
With the ansatz

εψDS(x, y, t) = εA(ε(x± cgt), εy, ε2t)ei(k01x±ω0t)ϕ(k01) + c.c., (6.23)

where ϕ(k01) ∈ C3, the DS system (4.6), can be derived. The linear dispersion
relation for this problem is given by

ω+(k) = −ω−(k) =

√
(g|k|+ µ|k|3) tanh(h|k|),

where k = (k1, k2) ∈ R2.
�

It is the aim of future research to prove the following approximation result.

Claim 6.7.
For all θA su�ciently large the following holds. Let A0 ∈ C([0, T0], HθA(R2,R)),
A1 ∈ C([0, T0], HθA(R2,C)) be solutions of the DS system (4.6). Then there exist

ε0 > 0 and C > 0 such that for all ε ∈ (0, ε0) there are solutions of (6.22) with

sup
t∈[0,T0/ε2]

sup
(x,y)∈R2

∣∣∣∣(ηu
)

(x, y, t)− εψDS(x, y, t)

∣∣∣∣ ≤ Cεβ.

Figure 6.3 shows that for the water wave problem in case of small surface tension
non-trivial resonances also occur. Eliminating terms of O(ε) in the error equation
with a normal form transform would lead to a loss of regularity and so the local
existence and uniqueness theorems for the water wave problem are no longer appli-
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k1

k2

ω

k 7→ ω+(k) k 7→ ω+(k0) + ω+(k− k0)

k 7→ ω+(k0) + ω−(k− k0)k 7→ ω−(k)

Figure 6.3: The surfaces of eigenvalues ω =
√

(g|k|+ µ|k|3) tanh(h|k|) with g =
h = 1, µ = 0.1 and the surfaces k 7→ ω±(k) and k 7→ ω+(k0) + ω±(k− k0).

cable. Because after the normal form transform there is a loss of a derivative and
the Eulerian formulation already loses a derivative as we can see in (6.22). There-
fore, the consequences for the water wave problem are that the result in case of our
approach does not apply for the DS system.
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7. The four-wave interaction system

The resonant four-wave interaction (FWI) system describes the nonlinear interaction
of four resonant wave packets. It can be derived as an amplitude equation for the 2D
or 3D water wave problem, cf. [25]. There are a number of physical situations where
the FWI-system is expected to provide a good description. Examples are pattern
formation in vertically oscillated convection [26], multi-wave nonlinear couplings in
elastic structures [27], nonlinear optical waves [28], or the four-wave interactions in
plasmas [29]. In previous chapters we showed that over the natural time scale there
are solutions of the Boussinesq model that behave as predicted by the DS system.
The purpose of this chapter is to explain how the justi�cation of the DS system can
be transferred to the justi�cation of the equations for the resonant FWI system in
2D. The method used for proving the validity of the FWI as a good approximation
is very similar to the one used in Chapter 6. We will explain the method in more
detail. Due to the spatial scaling X = ε2x and Y = ε2y, there is no restriction on
the approximation time T1 as in the chapters before. Due to the spatial scaling the
peaks decay initially as e−α|k−kj |/ε

2
. As a consequence the modes associated to the

resonant wave vectors are initially exponentially small w.r.t. ε2 instead of ε as for
the NLS approximation resp. the DS system if the set of the resonant wave vectors
and integer linear combinations of the basic wave vectors kj have a positive distance.

7.1 The result

We will explain under similar assumptions as in Chapter 6 that the FWI system
makes correct predictions on the natural time scale of the approximation although
quadratic resonances are present in the original system. The equations for the FWI
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system are given by

∂TA1 = c1 · ∇A1 +
∑

l∈{1,...,4}

d1,l|Al|2A1,

∂TA2 = c2 · ∇A2 +
∑

l∈{1,...,4}

d2,l|Al|2A2,

∂TA3 = c3 · ∇A3 +
∑

l∈{1,...,4}

d3,l|Al|2A3,

∂TA4 = c4 · ∇A4 +
∑

l∈{1,...,4}

d4,l|Al|2A4,

with group velocities cj = ∇kω|k=k,ω=ωj , ∇ = (∂x, ∂y)
T and coe�cients dj,l ∈ R. In

case that the four spatial wave vectors kj with associated temporal wave numbers
ωj satisfy

k1 + k2 + k3 + k4 = 0, ω1 + ω2 + ω3 + ω4 = 0,

we obtain the resonant FWI system. The equations for the resonant FWI system
are given by

∂TA1 = c1 · ∇A1 +
∑

l∈{1,...,4}

d1,l|Al|2A1 + d1A2A3A4,

∂TA2 = c2 · ∇A2 +
∑

l∈{1,...,4}

d2,l|Al|2A2 + d2A1A3A4,

∂TA3 = c3 · ∇A3 +
∑

l∈{1,...,4}

d3,l|Al|2A3 + d3A1A2A4,

∂TA4 = c4 · ∇A4 +
∑

l∈{1,...,4}

d4,l|Al|2A4 + d4A1A2A3,

with additional coe�cients dj ∈ R.
In order to establish the APP on the natural time scale of O(1/ε2) we have to

show that the error is of O(1). It turns out that the modes associated to the resonant
wave vector are initially small w.r.t. ε2 instead of ε as for the DS system in Chapter
6 if the set of resonant wave vectors and integer linear combinations of the basic
wave vector kj have a positive distance, i.e., these modes are initially or shortly after
t = 0 of O(e−κ1/ε2t) for a κ1 > 0 independent of 0 < ε � 1. Due to the resonances
these modes will grow with some rate of O(eκ2εt) for a κ2 > 0 independently of
0 < ε� 1. Hence, these modes are less than O(ε2) for all t ∈ [0, T0/ε

2].



7.1. The result 83

7.1.1 Derivation of the FWI system and estimates for the

residual

We consider again a resonant 2D Boussinesq equation

∂2
t u = ∆u+ ∂2

t ∆u+ ∆(u2) + µ∆3u, (7.1)

where ∆ = ∂2
x + ∂2

y and µ∆3u models the surface tension.

The ansatz for the resonant wave packets ei(kj ·x−ωjt) with kj = (kj1 , kj2) ∈ R2,
ω ∈ R, x = (x, y)T is given by

εψFWI(x, y, t) =
∑

j∈{−4,...,4}\{0}

εAj(X, Y, T )ei(kj ·x−ωjt)

+
∑

j,n∈{−4,...,4}\{0}

ε2Ajn(X, Y, T )ei(kj ·x−ωjt)ei(kn ·x−ωnt),
(7.2)

where X = ε2x, Y = ε2y and T = ε2t. Inserting this ansatz into the residual with
ei(kj ·x−ωjt) = Ej and e

i(kn ·x−ωnt) = En we �nd for the coe�cients of εEj, ε
2EjEn,

and ε3Ej that

0 =
∑

j∈{−4,...,4}\{0}

(
ω2
j − k2

j1
− k2

j2
+ (k2

j1
+ k2

j2
)ω2

j − µ(k6
j1

+ k6
j2

+ 3k4
j1
k2
j2

+ 3k2
j1
k4
j2

)
)
Aj,

(7.3)

0 =
∑

j,n∈{−4,...,4}\{0}

(
(−3µ(kj2 + kn2)2(kj1 + kn1)4 − 3µ(kj1 + kn1)2(kj2 + kn2)4

+ (ωj + ωn)2 − (k2
j1

+ k2
n1

) + (k2
j1

+ k2
n1

)(ωj + ωn)2 − (k2
j2

+ k2
n2

)

+ (k2
j2

+ k2
n2

)(ωj + ωn)2 − µ(kj1 + kn1)6 − µ(kj2 + kn2)6)Ajn

− 4(k2
j1

+ k2
j2

)A2
j

)
,

(7.4)

0 =
∑

j∈{−4,...,4}\{0}

(
(2iωj + 2ik2

j1
ωj + 2ik2

j2
ωj)∂TAj + (2ikj1 + 5µik5

j1

− 2ikj1ω
2
j )∂XAj + (2ikj2 + 5µik5

j2
− 2ikj2ω

2
j )∂YAj + 6µik4

j1
kj2∂YAj

+ 12µik3
j1
k2
j2
∂XAj + 6µikj1k

4
j2
∂XAj + 12µik2

j1
k3
j2
∂YAj − 2(k2

j1
+ k2

j2
)

×
∑

km+kn+kl=kj ;m,n,l∈{−4,...,4}\{0}

AmnAl

)
,

(7.5)

where T = ε2t, X = ε2x, Y = ε2y, Aj(X, Y, T ) ∈ C, Ajn(X, Y, T ) ∈ C. We obtain
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from (7.3) the linear dispersion relation

ω2
j = |kj|2 − ω2

j |kj|2 + µ|kj|6.

From (7.5) we get the FWI system

2iωj(1 + k2
j1

+ k2
j2

)∂TAj

= −(2ikj1 + 5µik5
j1
− 2ikj1ω

2
j + 12µik3

j1
k2
j2

+ 6µikj1k
4
j2

)∂XAj − (2ikj2

+ 5µik5
j2
− 2ikj2ω

2
j + 6µik4

j1
kj2 + 12µik2

j1
k3
j2

)∂YAj +
∑

l∈{1,...,4}

djlAj|Al|2,
(7.6)

with coe�cients djl ∈ R. For the notational simplicity we set ω1 = ω+ and ω2 = ω−.
The goal is to show that the formal approximation obtained via the FWI ap-

proximation εψFWI makes correct predictions over the natural time scale for analytic
solutions of the FWI system although unstable resonances are present in the prob-
lem.

We de�ne the set of resonant wave vectors

K(kj) = {k̃ : ∃ ˜̃k : kj + k̃ +
˜̃
k = 0, ωj + ω̃ + ˜̃ω = 0}, (7.7)

and

K̂(kj) = K(kj) \ {0,kj}. (7.8)

It is the aim to prove the following result.

Theorem 7.1.
For kj satisfying dist((∪j∈{1,...,4}K̂(kj)),k1Z+ ...+k4Z) > 0 the following holds. Let

α > 0 and A1, ..., A4 ∈ C([0, T0],Wα) satisfy the FWI system (7.6). Then there exist

ε0 > 0 and a C > 0 such that for all ε ∈ (0, ε0) we have solutions u of (7.1) which
satisfy

sup
t∈[0,T0/ε2]

‖u( · , · , t)− εψFWI( · , · , t)‖L1
g(t)
≤ Cε2,

where L1
g(t) is the weighted space de�ned in Chapter 5 and g is the weight function

g(k, t) =
1

supm1,...,mn∈Z |e
−
(
α′
ε2
−α′t
T0

)
|k−(m1k1+...+mnkn)||

, (7.9)

for α′ < α independent of 0 < ε� 1.

A direct consequence which avoids our previous de�nitions is as follows.
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k2

k1

Figure 7.1: The set of the wave vectors K(k1) ∪ ... ∪ K(k4) with K(kj) = {k̃| ∃ ˜̃k :

kj + k̃+
˜̃
k = 0, ωj + ω̃+ ˜̃ω = 0} which are resonant with every other resonant wave

vector.

Corollary 7.2.
Assume that except for 0, k1, ...,k4 the resonant wave vectors are bounded away from

integer linear combinations of the basic wave vectors kj. Let Aj for j ∈ {1, 2, 3, 4}
be given for T ∈ [0, T0], satisfy the FWI system (7.6), and whose Fourier transform

satisfy

sup
t∈[0,T0/ε2]

∫
|Âj(K, T )|eα|K|dK <∞,

for some α > 0. Then there exist ε0 > 0, and a C > 0 such that for all ε ∈ (0, ε0)
we have solutions u of (7.1) which satisfy

sup
t∈[0,T0/ε2]

sup
(x,y)∈R2

|u(x, y, t)− εψFWI(x, y, t)| ≤ Cε2.

Remark 7.3. The condition dist((∪j∈{1,...,4}K̂(kj)),k1Z+ ...+k4Z) > 0 is a serious
restriction on the wave vectors kj. This means that there exists a two-dimensional

lattice M] = {ι ∈ ǩZ + k̂Z} spanned by the two vectors ǩ ∈ R2 and k̂ ∈ R2 such
that kj ∈M] for j ∈ {1, 2, 3, 4}.
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7.1.2 The improved approximation

With the approximation εψFWI from above we still have Res(εψFWI) = O(ε3) which
can be improved to Res(εψ4) = O(ε4) by adding higher order terms to the ansatz
εψFWI. We make the extended ansatz

εψ4(x, y, t) =εψFWI(x, y, t) +
∑

kj+km+kn /∈{kw|w∈{−4,...,4}\{0}}

ε3Ajmn(X, Y, T )EjEmEn.

Choosing

Ajmn = 2(2kj1 + 2kj2 + km1 + km2)2AjAjm/
(

(ωj + ωm + ωn)2 − (kj1 + km1 + kn1)2

− (kj2 + km2 + kn2)2 + (kj1 + km1 + kn1)2(ωj + ωm + ωn)2 + (kj2 + km2 + kn2)2

× (ωj + ωm + ωn)2 − 4µ|kj + kn + km|6
)
,

we obtain Res(εψ4) = O(ε4). Adding more higher order terms to the approximation
we obtain Res(εψ5) = O(ε5).

And so it follows

Lemma 7.4.
Let α > 0 and A1, ..., A4 ∈ C([0, T0],Wα) satisfy the FWI system (7.6). Then there

exist an approximation εψ, an ε0 > 0 and a C > 0 such that for all ε ∈ (0, ε0) we

have

sup
t∈[0,T0/ε2]

‖εψ( · , t)‖L1
g
≤ Cε,

and

sup
t∈[0,T0/ε2]

‖Res(εψ( · , t))‖L1
g
≤ Cε5.

Proof. The construction of the approximation goes almost line for line as the con-
struction in Chapter 5 only the spatial scaling is di�erent. �

7.2 The error estimates

As in Chapter 6 we write (7.1) as a �rst-order system

∂tU = ΛU +N(U,U), (7.10)

where

Λ̂(k) =

i√ |k|2+µ|k|6
1+|k|2 0

0 −i
√
|k|2+µ|k|6

1+|k|2

 ,
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and

(N̂(U,U)(k))j1 =

∫
R2

∑
j2,j3∈{1,2}

α̂j1,j2,j3(k,k− l, l)Ûj2(k− l)Ûj3(l)dl,

with some coe�cients α̂j1,j2,j3 of the bilinear mapping N .
We de�ne the new residual as

RES(U) = −∂tU + ΛU +N(U,U).

Writing the solution as U = εΨ + εβR, where β > 2 we �nd R to satisfy

∂tR =ΛR + 2εN(Ψ, R) + εβN(R,R) + ε−βRES(εΨ).

As a direct consequence of Lemma 7.4 we have the following result.

Lemma 7.5.
Let α > 0 and A1, ..., A4 ∈ C([0, T0],Wα) be solutions of the FWI system (7.6).
Then there exist ε0 > 0, an approximation εψ and a C > 0 we have

sup
t∈[0,T0/ε2]

‖RES(εψ( · , t))‖L1
g
≤ Cε5.

In order to obtain estimates on the long time scale O(1/ε2) with the help of Gron-
wall's inequality, we have to control the term 2εN(Ψ, R). These modes are oscilla-
tory and can be removed by a near identity change of variables, except those at the
resonant wave vectors. These resonant modes can be handled with time dependent
norms. Obviously, we have the same situation as in Chapter 6 since the problem
also contains a resonance at the wave vector k = 0 which is trivial but implies other
resonances for the wave vectors k = kj that are non-trivial. We will solve this prob-
lem by introducing a k-dependent scaling of an error function, followed by normal
form transforms.

7.2.1 Extracting the dangerous terms I

Since the approximation εΨ is only of order ε in δ neighborhoods of ±kj with δ > 0
small, but independent of 0 < ε� 1, we split the approximation εΨ into

εΨ = εΨc,+ + εΨc,− + ε2Ψs,

where the support of εΨc,± in Fourier space is located in the above mentioned δ
neighborhoods of ±kj.
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We introduce a function

ϑ̂j(k) =

{
1, for |k| > |kj|/10,

ε+ 10(1− ε) |k||kj | , for |k| ≤ |kj|/10,

and set U = εΨc + εβϑjR with β = 3 to obtain

∂tR = ΛR + 2εϑ−1
j N(Ψc, ϑR) + εβϑ−1

j N(ϑjR, ϑjR) + ε−βϑ−1
j RES(εΨ). (7.11)

The kernel of 2εϑ−1
j N(Ψc, ϑjR) is given in Fourier space by

εϑ̂−1
j (k)α̂j1,j2,j3(k,k− l, l)ϑ̂j(l), (7.12)

for j1, j2, j3 ∈ {1, 2} with an estimate |α̂j1,j2,j3(k)| ≤ C|k|.
Since (7.12) is of O(ε). We have

εϑ−1
j N(Ψc, ϑjR) = O(ε), and ε2ϑ−1

j N(Ψs, ϑjR) = O(ε2).

Hence, we only have to eliminate the term εϑ−1
j N(Ψc, ϑjR) = O(ε) since terms of

O(ε2) do not cause intense growth in the error R on the time interval [0, T0/ε
2]. At

the end the term 2ε2ϑ−1
j N(Ψs, ϑjR) = O(ε2) has to be handled with the remaining

terms of O(ε2) with the help of Gronwall's inequality.
Therefore, R satis�es

∂tR =ΛR + 2εϑ−1
j N(Ψc, ϑjR) +O(ε2). (7.13)

The �rst normal form transform

The goal is to remove all non-resonant terms with a normal form transform R̃ =
R+ εB(Ψc, R) with B a smooth bilinear mapping. Terms are resonant to Ψc if both
indices are r.

In order to extract the resonant modes we use the mode �lter of the resonant
wave vector

Êr(k) =

{
1 for k ∈ Uδ(K̂(kj)),

0 else ,

for a δ > 0 su�ciently small, but independent of 0 < ε � 1, and the one of the
non-resonant modes Ên = 1 − Êr. With these mode �lters we split the error into
two parts, namely R = Rr +Rn, with Rr = ErRr and Rn = EnRn.

We now apply the normal form transform

R̃r = Rr + εBr,n(Ψc, Rn),
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R̃n = Rn + εBn,r(Ψc, Rr) + εBn,n(Ψc, Rn),

with Br,n, Bn,r and Bn,n as smooth bilinear mappings.
Using ∂tΨc = ΛΨc +O(ε2) we �nd

∂tR̃r =ΛR̃r − ΛεBr,n(Ψc, Rn) + εBr,n(ΛΨc, Rn) + εBr,n(Ψc, ΛRn)

+ 2εErϑ
−1
j N(Ψc, ϑjRr) + 2εErϑ

−1
j N(Ψc, ϑjRn) + Erε

2Hr,

∂tR̃n =ΛR̃n − ΛεBn,r(Ψc, Rr) + εBn,r(ΛΨc, Rr) + εBn,r(Ψc, ΛRr)

− ΛεBn,n(Ψc, Rn) + εBn,n(ΛΨc, Rn) + εBn,n(Ψc, ΛRn)

+ 2εEnϑ
−1
j N(Ψc, ϑjRr) + 2εEnϑ

−1
j N(Ψc, ϑjRn) + Enε

2Hn,

(7.14)

where

ε2Hr =2ε2Br,n(Ψc, ϑ
−1
j N(Ψs, ϑjRr)) + 2ε2Br,n(Ψc, ϑ

−1
j N(Ψs, ϑjRn))

+ 2ε2ϑ−1
j N(Ψs, ϑjRr) + 2ε2ϑ−1

j N(Ψs, ϑjRn) + εBr,n(O(ε2), Rr)

+ εBr,n(O(ε2), Rn) + εβϑ−1
j Br,n(ϑjRr, ϑjRr) + εβϑ−1

j Br,n(ϑjRn, ϑjRn)

+ εβϑ−1
j Br,n(ϑjRr, ϑjRn) +O(εβ−1),

ε2Hn =2ε2B̃(Ψc, ϑ
−1
j N(Ψs, ϑjRr)) + 2ε2B̃(Ψc, ϑ

−1
j N(Ψs, ϑjRn))

+ 2ε2ϑ−1
j N(Ψs, ϑjRr) + 2ε2ϑ−1

j N(Ψs, ϑjRn) + εB̃(O(ε2), Rr)

+ εB̃(O(ε2), Rn) + εβϑ−1
j B̃(ϑjRr, ϑjRr) + εβϑ−1

j B̃(ϑjRn, ϑjRn)

+ εβϑ−1
j B̃(ϑjRr, ϑjRn) +O(εβ−1),

with B̃ = Bn,r +Bn,n if we choose

Br,n = B+
r,n +B−r,n, Bn,r = B+

n,r +B−n,r and Bn,n = B+
n,n +B−n,n,

to satisfy

0 =ΛεB±r,n(Ψc,±, Rn)− εB±r,n(ΛΨc,±, Rn)− εB±r,n(Ψc,±, ΛRn)

− 2εErϑ
−1
j N(Ψc,±, ϑjRn),

0 =ΛεB±n,r(Ψc,±, Rr)− εB±n,r(ΛΨc,±, Rr)− εB±n,r(Ψc,±, ΛRr)

− 2εEnϑ
−1
j N(Ψc,±, ϑjRr),

0 =ΛεB±n,n(Ψc,±, Rn)− εB±n,n(ΛΨc,±, Rn)− εB±n,n(Ψc,±, ΛRn)

− 2εEnϑ
−1
j N(Ψc,±, ϑRn).

(7.15)

In Fourier space the j1-th component of the nonlinear term Enϑ
−1
j N(Ψc,±, ϑjRn)
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can be written as

̂Enϑ
−1
j (N(Ψc, ϑjRn))j1(k) =

∑
j2,j3∈{1,2}

∫
R2

Ên(k)α̂j1,j2,j3(k,k− l, l)
ϑ̂j(l)

ϑ̂j(k)
Ψ̂c,j2(k− l)

× R̂n,j3(l)dl,

where |α̂j1,j2,j3(k,k− l, l)| ≤ C|k| <∞ and k, l ∈ R2. For Bn,n we write

( ̂Bn,n(Ψc, Rn))j1 =
∑

j2,j3∈{1,2}

∫
R2

2α̂j1,j2,j3(k,k− l, l)

iωj1(k)− iωj2(k− l)− iωj3(l)
Ψ̂c,j2(k− l)R̂n,j3(l)dl.

For wave vectors k in the support of Ên, for wave vectors k− l in the support of Ψ̂c,
and wave vectors l in the support of R̂n the denominator is bounded away from zero
if δ > 0 is chosen su�ciently small due to the de�nition of sets K(±kj) of resonant
wave vectors. The same is true for the other �ve B±j1,j2 .

The equations in (7.15) are satis�ed if∣∣∣∣∣ α̂j1,j2,j3(k,k− l, l)

iωj1(k)− iωj2(k− l)− iωj3(l)

ϑ̂j(l)

ϑ̂j(k)

∣∣∣∣∣ ≤ C = O(1) <∞. (7.16)

In order to express the terms of the variable k alone we use the Lemma 4.8 such
that the expression (7.16) can be written as∣∣∣∣∣ α̂j1,j2,j3(k,kj,k− kj)

iωj1(k)− iωj2(kj)− iωj3(k− kj)

ϑ̂j(k− kj)

ϑ̂j(k)

∣∣∣∣∣ < C. (7.17)

By the choice of ϑj the nontrivial resonances at k = kj are removed. For the
resonance at k→ 0 the expression (7.17) will be of O(ε−1), see Chapter 4.

Hence, (7.14) simpli�es further into

∂tR̃r =ΛR̃r + 2εErÑ(Ψc, Rr) + 2ε2Br,n(Ψc, ϑ
−1
j N(Ψc, ϑjRr)

+ 2ε2Br,n(Ψc, ϑ
−1
j N(Ψc, ϑjRn) + Erε

2Hr,

∂tR̃n =ΛR̃n + 2ε2B̃(Ψc, ϑ
−1
j N(Ψc, ϑjRr) + 2ε2B̃(Ψc, ϑ

−1
j N(Ψc, ϑjRn)

+ Enε
2Hn,

(7.18)

where

(
̂

Ñ(Ψc, Rr))j1 =
∑

j2,j3∈{1,2}

∫
R2

α̂j1,j2,j3(k,k− l, l)Ψ̂c,j2(k− l)R̂r,j3(l)dl,
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and Hr, Hn are de�ned above.

The term 2εErÑ(Ψc, Rr) comes from the additional resonances kj, k̃j,
˜̃
kj which

will be removed in the second part. However, the terms

2ε2Br,n(Ψc, ϑ
−1
j N(Ψc, ϑjRr)), 2ε2Br,n(Ψc, ϑ

−1
j N(Ψc, ϑjRn)),

2ε2B̃(Ψc, ϑ
−1
j N(Ψc, ϑjRr)), 2ε2B̃(Ψc, ϑ

−1
j N(Ψc, ϑjRn)),

with B̃ = Bn,r + Bn,n can be of O(ε) for the wave vectors close to k = 0. This is
owned to ϑ−1

j , which is of O(ε−1). For wave vectors k close to kj these terms are of
O(ε2).

Since

P̂1(k)
α̂j1,j2,j3(k,k− l, l)

iωj1(k)− iωj2(k− l)− iωj3(l)

ϑ̂j(l)

ϑ̂j(k)
α̂j3,j4,j5(l, l− n,n)

ϑ̂j(n)

ϑ̂j(l)
= O(1),

it remains to consider

Sj1j,j3,j5(k) =P̂0(k)
α̂j1,j2,j3(k,k− l, l)

iωj1(k)− iωj2(k− l)− iωj3(l)

ϑ̂j(l)

ϑ̂j(k)
α̂j3,j4,j5(l, l− n,n)

× ϑ̂j(n)

ϑ̂j(l)
.

(7.19)

We use again Lemma 4.8 in order to express the kernel

α̂j1,j2,j3(k,k− l, l)

iωj1(k)− iωj2(k− l)− iωj3(l)

ϑ̂j(l)

ϑ̂j(k)
α̂j3,j4,j5(l, l− n,n)

ϑ̂j(n)

ϑ̂j(l)
,

in terms of k alone.
We split Ψ̂c in two parts, namely Ψ̂c = 1

ε2
Ψ̂c,+ + 1

ε2
Ψ̂c,− with Ψ̂c,+ concentrated at

kj and Ψ̂c,− concentrated at −kj. The combination of dkj with −dkj for d ∈ {+,−}
leads to an O(1)-bound for (7.19). The combination of dkj with dkj for d ∈ {+,−}
leads to an O(1/ε)-bound, see Chapter 4.
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Hence, (7.18) simpli�es only into

∂tR̃r =ΛR̃r + 2εErÑ(Ψc, Rr) + 2ε2Br,n(Ψc,+, ϑ
−1
j N(Ψc,+, ϑjRr))

+ 2ε2Br,n(Ψc,+, ϑ
−1
j N(Ψc,+, ϑjRn)) + 2ε2Br,n(Ψc,−, ϑ

−1
j

×N(Ψc,−, ϑjRr)) + 2ε2Br,n(Ψc,−, ϑ
−1
j N(Ψc,−, ϑjRn)) + Erε

2Hr,

∂tR̃n =ΛR̃ + 2ε2B̃(Ψc,+, ϑ
−1
j N(Ψc,+, ϑjRr)) + 2ε2B̃(Ψc,+, ϑ

−1
j

×N(Ψc,+, ϑjRn)) + 2ε2B̃(Ψc,−, ϑ
−1
j N(Ψc,−, ϑjRr))

+ 2ε2B̃(Ψc,−, ϑ
−1
j N(Ψc,−, ϑjRn)) + Enε

2Hn,

(7.20)

where Hr and Nn de�ned above.

The second normal form transform

In order to eliminate terms of O(ε2) in (7.20) we use again a normal form transform

Řr =R̃r + εB̄r,n(Ψc,+,Ψc,+, Rn) + εB̄r,n(Ψc,−,Ψc,−, Rn),

Řn =R̃n + εB̄n,n(Ψc,+,Ψc,+, Rn) + εB̄n,r(Ψc,+,Ψc,+, Rr)

+ εB̄n,n(Ψc,−,Ψc,−, Rn) + B̄n,r(Ψc,−,Ψc,−, Rr),

where

B̄j1
r,n(Ψc,d,Ψc,d, Rn)(k)

=
∑

j3,j5∈{1,2}

∫
R4

εSj1j,j3,j5(k)

ωj1(k)− ωd(dkj)− ωd(dkj)− ωj5(k− 2dkj)

×Ψc,d(k− l)Ψc,d(l− n)Rn,j5(n)dndl,

B̄j1
n,z(Ψc,d,Ψc,d, Rz)(k)

=
∑

j3,j5∈{1,2}

∫
R4

εSj1j,j3,j5(k)

ωj1(k)− ωd(dkj)− ωd(dkj)− ωj5(k− 2dkj)

×Ψc,d(k− l)Ψc,d(l− n)Rz,j5(n)dndl,

with |Sj1j,j3,j5(k)| ≤ C, z ∈ {r, n}, d ∈ {+,−} and k, l, n ∈ R2. The denominator
is non zero due to the combination of Ψc,+ with Ψc,+ and Ψc,− with Ψc,−. The
transformation works as before and so the term of O(ε2) can be eliminated with
B̄j
r,n = O(1) and B̄j

n,z = O(1) using εS = O(1).
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After the normal form transform we have

∂tŘr =ΛŘr + 2εErÑ(Ψc, Rr) + Erε
2Hr,

∂tŘn =ΛŘn + Enε
2Hn.

(7.21)

Substituting R by Ř yields

∂tŘr =ΛŘr + 2εErÑ(Ψc, Řr) + Erε
2Ȟr,

∂tŘn =ΛŘn + Enε
2Ȟn,

(7.22)

where

ε2Ȟr =2ε2ϑ−1
j N(Ψs, ϑjŘr) + 2ε2ϑ−1

j N(Ψs, ϑjŘn) + εBr,n(O(ε2), Řr)

+ εBr,n(O(ε2), Řn) + εβϑ−1
j Br,n(ϑjŘr, ϑjŘr) + εβϑ−1

j Br,n(ϑjŘn, ϑjŘn)

+ εβϑ−1
j Br,n(ϑjŘr, ϑjŘn) +O(εβ−1),

ε2Ȟn =2ε2ϑ−1
j N(Ψs, ϑjŘr) + 2ε2ϑ−1

j N(Ψs, ϑjŘn) + εB̃(O(ε2), Řr)

+ εB̃(O(ε2), Řn) + εβϑ−1
j B̃(ϑjŘr, ϑjŘr) + εβϑ−1

j B̃(ϑjŘn, ϑjŘn)

+ εβϑ−1
j B̃(ϑjŘr, ϑjŘn) +O(εβ−1),

with B̃ = Bn,r +Bn,n. It remains to eliminate the term 2εErÑ(Ψc, Rr). In order to
do so we proceed as in Chapter 5.

7.2.2 Extracting the dangerous terms II

We need the following lemmas.

Lemma 7.6.
Let α > 0 and A1, ..., A4 ∈ C([0, T0],Wα) be solutions of the FWI system (7.6).
Then there exist a C > 0 such that the following holds. For all ε ∈ (0, 1] the maps
B±n,n(Ψc,±, En · ), B±n,r(Ψc,±, Er · ) and B±r,n(Ψc,±, En · ) are bounded linear mappings

from L1
g to L

1
g satisfying

‖B±n,n(Ψc,±, EnŘn)‖L1
g
≤ C‖Řn‖L1

g
.

Lemma 7.7.
Let ‖Ř‖L1

g
≤ Z. There exist constants C1, C3 independent of Z and ε ∈ (0, 1] and a

function C2(Z) independent of ε ∈ (0, 1] such that

‖ε2Ȟ‖L1
g
≤C1ε

2‖Ř‖L1
g

+ C2(Z)ε3‖Ř‖L1
g

+ C3ε
2.
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We now use the variation of constants formula to obtain

Řr(t) =

∫ t

0

eΛ(t−τ)
(
2εErÑ(Ψc, Řr) +O(‖ε2Ȟr(τ)‖L1

g
)
)
dτ,

Řn(t) =

∫ t

0

eΛ(t−τ)O(‖ε2Ȟn(τ)‖L1
g
)dτ,

(7.23)

where

ε2‖Ȟr‖L1
g
≤C1ε

2‖Řr‖L1
g

+ C1ε
2‖Řn‖L1

g
+ C2(Z)ε3‖Řr‖L1

g
‖Řn‖L1

g
+ C2(Z)ε3‖Řr‖2

L1
g

+ C2(Z)ε3‖Řn‖2
L1
g

+ C3ε
2,

ε2‖Ȟn‖L1
g
≤C1ε

2‖Řr‖L1
g

+ C1ε
2‖Řn‖L1

g
+ C2(Z)ε3‖Řr‖L1

g
‖Řn‖L1

g
+ C2(Z)ε3‖Řr‖2

L1
g

+ C2(Z)ε3‖Řn‖2
L1
g

+ C3ε
2.

It remains to estimate the term 2ε
∫ t

0
eΛ(t−τ)ErÑ(Ψc, Řr)(τ)dτ in L1

g-norm. We �nd

‖2ε
∫ t

0

eΛ(t−τ)ErÑ(Ψc, Řr)(τ)dτ‖L1
g(t)

≤
∫
R2

2ε

∫ t

0

∣∣∣eΛ(t−τ)ErÑ(Ψc, Řr)(τ)
∣∣∣ dτg(k, t)dk

≤
∫
R2

2ε

∫ t

0

∣∣∣∣eΛ(t−τ) g(k, t)

g(k, τ)
ErÑ(Ψc, Řr)(τ)

∣∣∣∣ g(k, τ)dτdk

≤2ε

∫ t

0

∣∣∣∣∫
R2

eΛ(t−τ) g(k, t)

g(k, τ)
ErÑ(Ψc, Řr)(τ)

∣∣∣∣ g(k, τ)dkdτ

≤2ε

∫ t

0

sup
k∈R2

∣∣∣∣eΛ(t−τ) g(k, t)

g(k, τ)
Er

∣∣∣∣ ∫
R2

∣∣∣Ñ(Ψc, Řr)(τ)
∣∣∣ g(k, τ)dkdτ

≤2Cε

∫ t

0

e−κ(t−τ)‖Ψc‖L1
g(τ)
‖Řr(τ)‖L1

g(τ)
dτ,

for a κ > 0. Due to the spatial scaling the weight function is

g(k, t) =
1

supm1,...,mn∈Z |e
−
(
α′
ε2
−α′t
T0

)
|k−(m1k1+...+mnkn)||

, (7.24)

Therefore, κ(t− τ) is of O(1) instead of O(ε) as we have in Chapter 6. Introducing
the notation Rz(t) := sup0≤τ≤t ‖Řz(τ)‖L1

g(τ) for z ∈ {r, n} and R(t) = Rn(t)+Rr(t)
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gives

Rn(t) ≤C
∫ t

0

(
C1ε

2R(τ) + C2(M)ε3R(τ)2 + C3ε
2
)
dτ,

Rr(t) ≤2C

∫ t

0

e−κ(t−τ)Rr(τ)dτ + C

∫ t

0

(
C1ε

2R(τ) + C2(M)ε3R(τ)2 + C3ε
2
)
dτ.

Adding both inequalities and choosing C2(M)εR(τ) ≤ 1 yields

R(t) ≤2C

∫ t

0

(
(C1 + 1)ε2R(τ) + C3ε

2
)
dτ + 2Cε

∫ t

0

e−κ(t−τ)ε2R(τ)dτ,

≤2C

∫ t

0

(
(C1 + 1)ε2R(τ) + C3ε

2
)
dτ + 2Cεκ−1R(τ).

The last term on the right-hand side can be made small by choosing ε > 0 su�ciently
small without further restriction on time. We have

R(t) ≤ C

∫ t

0

(
(C1 + 1)ε2R(τ) + C3ε

2
)
dτ.

Applying Gronwall's inequality yields

R(t) ≤ C3T0e
C(C1+1)T0 =: CR,

independent of ε ∈ (0, ε0) where ε0 > 0 had to be chosen so small that C2(CR)εCR ≤
1.

Finally, we showed that in case of an approximation by the FWI system the
same approach works as in Chapter 6 and due to the di�erent spatial scaling an
even stronger result can be established.
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