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Zusammenfassung

Die Kristallisation von geladenen Makromolekiilen spielt eine wichtige Rolle in vielen
Fachgebieten wie der Biologie, der Medizin, der Physik und im Materialdesign. Zum
Beispiel benutzt man die Kristallisation bei Proteinen, um diese von anderen Be-
standteilen in einer Losung zu trennen, und kolloidale Kristalle sind vielversprechende
Bausteine fiir photonische Kristalle mit optischen Anwendungen. Ein weiteres Beispiel
ist die Kristallisation fiir die Strukturaufklarung mit elektromagnetischer Strahlung
wie z. B. Rontgenstrahlung.

Um eine geschlossene Theorie der Kristallisation von geladenen Makromolekiilen zu
formulieren, ist es notwendig, die mikroskopischen Details der Kristallisation zu er-
forschen, insbesondere die Entstehung des Keims aus der vorhandenen Phase. Dieser
Prozess wird Nukleation genannt und kann im grundlegenden Fall durch die klassische
Nukleationstheorie beschrieben werden. In dieser wird der Wachstumsprozess als ein
Gleichgewicht aus Oberflachenspannung zwischen dem Kristall und der Fliissigkeit so-
wie des chemischen Potentials beschrieben, wobei der Oberflichenanteil quadratisch
mit der Grofse des Kristalls eingeht und der Volumenanteil kubisch. Dies fiihrt zu ei-
ner Energiebarriere, die iiberwunden werden muss, wenn man einen Kristall aus einer
fliissigen Phase aufbauen méchte. Mit der klassischen Nukleationstheorie konnen quan-
titative Vorhersagen fiir den Nukleationsprozess gemacht werden. Jedoch werden in
dieser Theorie einige vereinfachende Annahmen getroffen, zum Beispiel wird eine ideale
Kugelform des wachsenden Kristalls angenommen. Mit einer vollstéandigen Theorie wa-
re es moglich, Kristallisationsbedingungen vorherzusagen. Damit lassen sich Kristalle
aus geladenen Makromolekiilen zielorientiert ziehen. Z. B. konnte man defektfreie Kris-
talle fiir optische Anwendungen herstellen, oder auch das Wachstum unerwiinschter
Kristalle unterdriicken.

Um weiter mit dem Vorhaben einer geschlossenen physikalischen Theorie der Kristal-
lisation voranzukommen und die Abweichung der Theorie von den realen Systemen zu
minimieren, untersuchen wir in dieser Arbeit die Kristallisation von geladenen Makro-
molekiilen mit Hilfe von Molekulardynamik- (MD-) Simulationen. Hierfiir benutzen
wir eine 3D Simulationsbox mit periodischen Randbedingungen im NPT-Ensemble.
Dabei werden die geladenen Makromolekiile durch ein effektives Potential modelliert,
welches die Abschirmung der dissoziierten Ladungen und der neutralisierenden Salz-
ionen der Losung beinhaltet, ein sog. Yukawapotential.

Dieses effektive Potential beschreibt ein reales kolloidales System, wie es in Experi-
menten verwendet wird. Dies haben wir wiahrend dieser Arbeit in Kooperation mit dem
2. Physikalischen Institut der Universitdt Stuttgart fiir kolloidale Systeme tiberpriift.
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Zusammenfassung

Dabei benutzten wir unsere Simulationen, um das Wechselwirkungspotential zu finden,
welches die radiale Verteilungsfunktion des experimentellen Systems am besten repro-
duzieren kann. Bei niedrigeren Systemdichten konnte sehr gut ein Yukawapotential
an die erhaltenen Potentiale angepasst werden und somit die Abschirmldnge und der
Wechselwirkungsfaktor bestimmt werden. Bei hoheren Dichten konnte nur der repul-
sive Teil des Potentials damit beschrieben werden, da Dreikorperwechselwirkungen an
Gewicht gewinnen. Die Abschirmldnge der Wechselwirkung héngt von der Dichte des
Systems ab, da die Ladungen im System von den dissoziierten Oberflichenladungen
der Kolloide herriihren, deren Anzahl von der Menge der Kolloide pro Volumen ab-
hangt.

Um das Kristallwachstum im Detail zu untersuchen, ist es notig, nahe der Ko-
existenzlinie im Phasendiagramm, an der die Wachstumsrate gering ist, zu simulieren.
An solchen Phasenpunkten ist die Energiebarriere fiir die Nukleation sehr hoch. Dies
erschwert Untersuchungen sowohl im Experiment als auch in Simulationen, da man
fiir eine statistische Auswertung sehr lange beobachten bzw. simulieren miisste.

In letzter Zeit wurden einige Rare Fvent Sampling Methoden entwickelt, um mit
einer Simulation trotzdem Aussagen in solchen Fillen zu erméglichen. Dabei werden
die unnotigen Wartezeiten, in denen nur Trajektorien simuliert werden, die nicht zum
Ziel fiihren, reduziert. Statistische Methoden korrigieren dann diesen Prozess und es
lassen sich Aussagen iiber die Ubergangsraten zwischen den jeweiligen Zusténden tref-
fen. Weiterhin konnen erfolgreiche Pfade extrahiert und physikalische Mechanismen
analysiert werden.

In dieser Arbeit verwenden wir das sog. Forward Fluz Sampling (FFS). Dabei wird
der Reaktionsweg durch den Phasenraum durch einen Ordnungsparameter charak-
terisiert und durch einen Satz von sog. Interfaces in mehrere Stufen unterteilt. Der
Vorteil dabei ist, dass die Ubergéinge der einzelnen Stufen mit konventionellen Simu-
lationsmethoden simuliert werden kénnen und sich daraus dann der Gesamtiibergang
ergibt.

Fiir unsere Untersuchungen war es nicht nur notig, diese Methode zu parallelisieren,
sondern auch im Hinblick auf die Effizienz, welche sich aus Gleichgewicht von Rechen-
aufwand und statistischem Fehler ergibt, weiterzuentwickeln. Fiir die parallele Imple-
mentierung haben wir die FFS-Methode mit mehreren Simulationen analysiert, z. B.
mit einem eindimensionalen Teilchen, welches sich anfangs in einem Potentialminimum
befindet und eine Energiebarriere iiberqueren muss, als auch mit komplexeren Pro-
blemen wie der Gasblaschenbildung in einer Fliissigkeit und der Translokation eines
Polymers durch eine Nanopore.

Die Effizienz der FFS-Methode hiingt hauptséichlich von der Position und dadurch
der Anzahl der Interfaces fiir die Ubergéinge ab. Wihrend meines Auslandsaufenthal-
tes an der University of Edinburgh entwickelten wir zwei Methoden, um diese Po-
sitionen automatisch zu schétzen und damit die Interfaces an den optimalen Positi-
onen im Phasenraum zu platzieren. Dafiir entwickelten wir ein analytisches Modell,
das beschreibt, wie die Effizienz von den Ubergangswahrscheinlichkeiten zwischen den
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Interfaces abhédngt, welches wir anschliefsend durch Simulationen verifizierten. Diese
Optimierung kann nun direkt wahrend der Simulation automatisch geschehen, sodass
fiir die Simulation nur noch der Anfangszustand und der Endzustand spezifiziert wer-
den miissen, und die Simulation dann von selbst und optimiert den Weg durch den
Phasenraum findet.

Um unsere Weiterentwicklungen und parallele Implementierungen auch anderen For-
schungsgruppen zugénglich zu machen, erstellten wir ein Framework, in dem alle diese
Funktionen enthalten sind, unser sog. Flexible Rare Fvent Sampling Harness System
(FRESHS), welches nun in Kooperation mit einer Forschungsgruppe in Luxemburg
weiterentwickelt wird.

Mit Hilfe dieser Vorkenntnisse und Werkzeuge war es moglich, die Kristallisation
von geladenen Makromolekiilen zu untersuchen. Um den Fortschritt der Kristallisati-
on im System zu quantifizieren, wurde der sog. lokale Bindungsordnungsparameter g,
benutzt, mit Hilfe dessen man erkennen kann, ob das entsprechende Molekiil in einem
Kristallgitter eingebaut ist. Die Anzahl der festen Partikel im groften Cluster wird
dann als Ordnungsparameter fiir die FFS-Methode verwendet. Mit diesem System wur-
den FFS-Simulationen an verschiedenen Punkten im Phasendiagramm durchgefiihrt
und die Kristallisation der Makromolekiile simuliert. Dabei wurden u.a. die Ubergangs-
raten und finalen Strukturen fiir diese verschiedenen Punkte bestimmt. Es zeigte sich,
dass die Ubergangsraten bei Anniherung an die Phasenkoexistenzlinie drastisch ab-
nahmen und dadurch wie erwartet Nukleationsereignisse sehr selten wurden.

Durch Extrahieren der erfolgreiche Pfade konnte der Nukleationsprozess direkt ver-
folgt werden. Dabei fanden wir heraus, dass an den Stellen, an denen sich der Kristall
bilden wird, schon sehr friih eine lokale sechsziahlige Symmetrie in der fliilssigen Pha-
se beobachten ldsst. Wir fanden keine Korrelation zu einer vierzéhligen Symmetrie
oder zur lokalen Dichte. Somit wird die Nukleation iiber lokale Fluktuationen der
rdumlichen Ordnung getrieben, und nicht {iber Dichtefluktuationen, wie klassisch oft
argumentiert wird.

Je nach Druck und Kontaktenergie des Yukawapotentials zeigt die Kristallisation
eine andere feste Struktur an der Grenze des Endzustands B. Fiir niedrige Kontakt-
energien und hohe Driicke wuchs eine hep/fec-artige Struktur, was auch mit dem
Phasendiagramm iibereinstimmte, wihrend fiir héhere Kontaktenergien und niedrige
Driicke eine bce-artige Struktur vorherrschte, was bei den untersuchten Punkten aber
nicht die thermodynamische Gleichgewichtsstruktur darstellt.

Die Erklarung ist, dass es sich hierbei um einen zweistufigen Kristallisationprozess
mit zwei Energiebarrieren handelt. Die erste Stufe ist der Ubergang von der fliissigen
Phase zur metastabilen bec-artigen Phase, und die zweite Stufe dann von der vorhan-
denen kritischen bec-artigen Phase zur hep/fec-artigen Phase. Dabei ist die Energie-
barriere niedriger fiir kleinere Kontaktenergien des Yukawapotentials und hoher fiir
grokere Kontaktenergien. Deshalb konnte nur in der Simulation mit der niedrigeren
Kontaktenergie der spontane Ubergang zur stabilen Phase beobachtet werden, wiih-
rend in der Simulation mit der h6heren Kontaktenergie die zweite Energiebarriere nicht
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Zusammenfassung

spontan iiberwunden werden konnte. Dazu ben6tigt man eine weitere FFS-Simulation,
die das System auf eine grofere Anzahl von fcc-artigen Partikel optimiert. Dies war
aber nur moglich, wenn von den Zusténden gestartet wurde, die die kritischen Cluster
beinhalteten, und nicht von dem vollsténdig bee-kristallisierten System. Dies bedeutet,
dass fiir den zweiten Ubergang die Existenz einer Oberfléiche fliissig-bce Voraussetzung
ist. Der Ubergang wird durch hep/fce-Fluktuationen an der Oberfliche des Kristalls
begilinstigt, was eine heterogene Kristallisation in der anfangs homogenen Umgebung
darstellt.

Mit Hilfe von Untersuchungen der stationéren Verteilungen des Ordnungsparame-
ters und Gewichtung mit den FFS-Interface-Ubergangswahrscheinlichkeiten in einer
Vorwarts- und Riickwartssimulation, bei der der Kristall wieder aufgelost wurde, konn-
te die freie Energielandschaft der Kristallisation analysiert werden. Diese lasst sich gut
mit der freien Energielandschaft der klassischen Nukleationstheorie erkldren, wenn
man eine kleine Verschiebung in Richtung der Kristallgrofte zuldsst. Dies lasst sich
dadurch begriinden, dass die wirkliche Grofe des Clusters nicht bekannt ist, da die
Kristallgrofe durch die Schwelle des Ordnungsparameters fiir die Erkennung der fes-
ten Partikel beeinflusst wird. Dabei war die Verschiebung sowohl fiir niedrige als auch
fiir hohe Kontaktenergien kleiner als ein Partikeldurchmesser. Aus der Anpassung an
die Nukleationstheorie konnten Oberflichenspannung und chemisches Potential des
Kristallisationsprozesses bestimmt werden, welche gut mit existierenden Werten aus
anderen Arbeiten iibereinstimmen. Die klassische Nukleationstheorie kann also in bei-
den Féllen angewandt werden, wobei die zuerst geformte, metastabile Phase zihlt.
Diese Phase ist immer ein bee-Kristall, auch wenn die thermodynamisch stabile Pha-
se ein fce-Kristall ist. In diesem Fall ist die Nukleation ein zweistufiger Prozess, der
jedoch nicht die Nukleationsrate oder die Struktur des kritischen Clusters beeinflusst.
Die Nuklei sind praktisch rund, sodass Kanten des Kristalls eine untergeordnete Rolle
spielen. Weiterhin ist die Kristalloberfliche diffus, was jedoch bereits in der Ober-
flachenspannung beriicksichtigt ist. Die Nukleation ist hauptséchlich die Ausbildung
einer sechszahligen Symmetrie, die sich schon beim Einsetzen der Kristallisation in der
iibersittigten Fliissigkeit zeigt.

Auf dem Weg zu diesen Ergebnissen wurden moderne Methoden optimiert und pa-
rallelisiert, Tools zur Analyse geschaffen und damit die Kristallisation von geladenen
Makromolekiilen ausfiihrlich untersucht. Es wurden also nicht nur Moglichkeiten fiir
viele Forscher geschaffen, weitere schwer zugéngliche Ereignisse zu untersuchen, son-
dern auch die Theorie fiir das Kristallwachstum, insbesondere fiir den Nukleationspro-
zess, einen weiteren Schritt vorangebracht.
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Summary

The crystallization of charged macromolecules plays an important role in many fields
like biology, medicine, physics and material design. For example, crystallization is used
to purify proteins from other ingredients in a solution. Colloidal crystals are promising
candidates for photonic crystals in optical applications, and macromolecules have to
be crystallized for structure determination with electromagnetic radiation, e.g. X-ray
radiation.

For developing a closed theory of crystallization it is indispensable to investigate
the underlying microscopical details, in particular to investigate the onset of crystal
growth. This process is called nucleation and can be described qualitatively by the
Classical Nucleation Theory (CNT). In CNT, crystal growth is described as a balance
of surface tension between the crystal cluster and the liquid, and the chemical potential
difference between those phases. The contribution of the surface tension is proportional
to the surface area of the cluster, and the contribution of the chemical potential is
proportional to its volume, which leads to an energy barrier towards nucleation. In
principle, CNT can be used for quantitative predictions of the nucleation process.
However, this theory is based on simplifying assumptions which lead to discrepancies
when applied to real systems, e.g. concerning nucleation rates.

Having a closed theory, targeted crystallization would be possible, and one could
create defect-free crystals for optical applications, create crystals with defined features,
or prevent crystal growth if desired.

To advance towards a closed physical theory of crystallization and to minimize the
deviations of theory and real systems, we investigate the crystallization of charged
macromolecules with the help of Molecular Dynamics (MD) computer simulations.
In these simulations, we use a 3D simulation box with periodic boundary conditions
and an NPT ensemble. The charged macromolecules are modeled by an effective
pair potential, the Yukawa potential, which accounts for the electrostatic screening by
neutralizing salt ions.

The Yukawa potential can be used to model real colloidal systems like they are
used in experiments. This has been shown during this work in collaboration with the
274 Physical Institute of the University of Stuttgart. We used simulations to compute
the pair interaction potential of the macromolecules from the radial distribution func-
tion (RDF) of the experimental system. We found that at lower system densities the
Yukawa potential fits very well to the interaction potentials obtained from the RDFs.
Using this procedure, the screening length of the colloids and the contact value of the
interaction potential could be determined. At higher densities, the repulsive part of
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Summary

the interaction potential could be described by the Yukawa potential, while for large
distances, three body interactions play a role. The screening length of the colloids
depends on the density of the system, which can be explained by the different number
of charges in solution for the different number of molecules per volume, because the
charges dissociate from the surface of the colloidal spheres.

To study the crystal growth in detail, it is necessary to simulate near the coexistence
line in the phase diagram, where the attachment rate of growth units is low, which leads
to a high free energy barrier towards nucleation. Under these conditions, observing
nucleation is difficult not only in simulations, but also in experiments, because the
waiting time before seeing such a process is very long compared to the process itself.

Recently, several Rare Fvent Sampling methods have been developed to enhance
the sampling in the regions of interest. These methods ratchet the system towards
the interesting event, and statistical sampling is used to correct for this ratchet-like
manner. With that, transition rates and physical pathways can be investigated.

In this work, we use the Forward Fluz Sampling (FFS) method, where the reaction
path through phase space, characterized by an order parameter, is partitioned by a
set of interfaces. The advantage of this scheme is that successive transitions between
these interfaces can be calculated by conventional computer simulations, which can
then be composed to the overall transition event.

For our investigations, it was not only indispensable to parallelize the method,
but also to improve the FFS method concerning the efficiency, e.g. the balance of
computational effort and statistical error. For the parallel implementation we analyzed
the FFS method with diverse simulation problems, e.g. a one-dimensional particle
which is placed initially in a potential minimum and has to cross an energy barrier, as
well as with more complex problems like vapor bubble nucleation and translocation of
polymers through nanopores. Moreover, we developed an algorithm to parallelize the
initial simulation run of the FFS method.

The efficiency of the FFS method depends mainly on the positions and hence on
the amount of interfaces for the transitions. During my stay abroad at the University
of Edinburgh we developed two methods to place these interfaces automatically and
at their optimized locations, on-the-fly during simulation. To this aim, we developed
an analytical model which describes the dependency of the efficiency on the transition
probability, which is the tuning parameter of the interface placement. This analytical
model was verified by simulations. Beyond the increase of efficiency, this work leads
to a tremendous simplification of the method: Only the initial state (e.g. liquid) and
the final state (e.g. a certain number of solid particles in the largest cluster) have to be
defined in terms of the order parameter. Then, the simulation finds its way through
phase space automatically and optimized.

To make our extensions and parallel implementations publicly available for other
research groups, we introduced a framework which contains all these features, our
so-called Flezible Rare Event Sampling Harness System (FRESHS). FRESHS was
developed during this work and which is now further developed in collaboration with
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a research group in Luxembourg.

With the help of these precognitions and tools it was possible to investigate the
crystallization of charged macromolecules in simulations. For quantifying the progress
of the crystallization in the system, we implemented the so-called local bond g, order
parameter, which is a local, per-particle property to analyze if the particle can be con-
sidered as solid-like or liquid-like. Furthermore, we implemented a cluster algorithm
to detect the size of the largest cluster of solid-like particles in the system, which
is then used as order parameter for the FF'S method. With this system, many FFS
simulations have been conducted at different phase points, and the crystallization of
charged macromolecules could be directly simulated and be investigated.

The transition rates decrease drastically for smaller pressures, which means ap-
proaching the phase coexistence line, and nucleation events become very rare in this
case, as expected. The backtracking of different crystallization pathways in the FFS
scheme yields the successful crystallization paths. These pathways were analyzed in
the post-processing for determining nucleation mechanisms and to identify possible
precursors for the onset of crystal growth. We found that at the local position, where
the critical cluster will be formed, a local structure of sixfold order can already been
discovered in the fluid at an early stage. We did not find correlations with the fourfold
symmetry or the local density. Thus, the nucleation is driven by local sixfold order
fluctuations, and not by density fluctuations as classically argued.

Depending on the pressure and contact energies of the potential, we arrive at dif-
ferent solid-like structures in the final state B. For lower contact values and higher
pressures the structure is an hep/fec-like lattice, which is consistent with the thermo-
dynamically stable fcc phase. In contrast, at higher contact values and lower pressures
we obtained a bcc-like structure, which is not the stable structure according to the
phase diagram.

This can be explained by the fact that the crystallization process is a two-stage
mechanism with two energy barriers involved. The first stage is the transition from
the liquid phase to the metastable bce-like phase, and the second stage is the transition
from the bec-like phase to the hep/fec-like phase. The energy barrier for the second
transition is lower for smaller contact values of the Yukawa potential, and higher for
larger contact values. This is the reason, why we could only observe the spontaneous
transition to the stable phase for the low contact value case.

In the simulation with the higher contact value, the second energy barrier could not
be overcome spontaneously, but requires performing an additional FFS simulation,
which optimizes for a higher number of fcc-like particles in the system. Moreover,
the transition was only possible when starting from the critical clusters and not from
the fully converted bce-like system. Hence, a condition for the second transition is
the existence of a liquid-bee interface. The process of the transition is facilitated
by hep/fec-like fluctuations at the surface of the crystal cluster. Thus, we observe a
heterogeneous nucleation in the initially homogeneous system.

With the help of analyzing stationary distributions of the order parameter and
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Summary

weighting with the FFS interface transition probabilities in a forward and a backward
simulation, where the crystal cluster was dissolved again, it was possible to calculate
the free energy landscape of crystallization. The free energy landscape fits well to CN'T,
if one allows a small shift for the cluster size. This is justified because the unknown
real dimensions of the cluster depend on the (arbitrary) threshold for the solid particle
detection in the local bond order parameter analysis. For both, high and low contact
values, the shift was smaller than a particle’s diameter. From the fitting we obtained
the surface tension and chemical potential of the crystallization process, which we
compared to previous work. CNT can be applied in both cases considering the first,
metastable phase. This phase is always a bcc crystal, even if the thermodynamically
stable phase is an fcc crystal. In this case, nucleation is a two-stage process, which
however does not influence nucleation rates or the structure of the critical cluster. The
nuclei are almost spherical, so that edges of the crystal play a minor role. Also, the
crystal surface is fairly diffuse, which however is taken into account by the surface
tension. Nucleation is mainly the formation of a sixfold symmetry, which can already
be seen at the onset of crystallization in the supersaturated liquid.

On our way, we optimized and parallelized state-of-the-art rare event sampling tech-
niques, created powerful analysis tools and investigated the crystallization of charged
macromolecules in great detail. In this work, we therefore created not only the pos-
sibility for many researchers to investigate rare events which are difficult to access,
but we also pushed the theory for colloidal crystal growth, notably for the nucleation
process, one step further.
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1 Introduction

Many phenomena in nature are related to crystallization, from the formation of min-
eral crystals, complex processes in organisms to the general formation of droplets in
many systems [1]. Beyond the phenomena in nature, the crystallization process is
important for many applications, e.g. photonic crystals where the optical properties
are determined by the underlying crystal structure |2, 3|, protein purification where
proteins can be extracted from a mixture by crystallizing them [4], and structure de-
termination via X-ray scattering which is very important for chemical physics and
medicine [5, 6].

For all these applications and from a fundamental point of view a closed picture of
the crystallization process is desirable, in particular for systems consisting of charged
components [7]. Since a long time it is known that crystals grow by accretion, where
growth units attach under appropriate conditions, which is called nucleation at the
early stage, when “a crystal is born from its mother solution” [§].

Despite of important recent advances in this field [8, 9, 10, 11, 12, 13, 14|, crystal
growth is a complex process and is not yet fully understood: “However, even when pure
soluble protein is available, producing high-quality crystals remains a major bottleneck
in structure determination” |6]. Hence, in experiments crystals are often grown by an
empirical trial and error approach, where hundreds of different conditions are tested
until a certain crystal is obtained [15], which can be seen as more an art rather than
a technique because of the non-complete understanding of the underlying physical
mechanisms. The problem is, that the exact conditions must be met under which
nucleation takes place, which is mainly at low supersaturations.

Colloidal nucleation can be described to some extent by the Classical Nucleation
Theory (CNT) [16]. However, discrepancies exist when comparing with real systems,
e.g. concerning the nucleation rates [11], because in real systems e.g. long-ranged
interactions can play a role, as well as mixtures of different crystal structures. Ac-
cording to CNT, the nucleation process is a balance of a surface term and a bulk
term which leads to an energy barrier towards crystal growth which is higher for lower
supersaturations. This makes the nucleation process a rare event in such cases, which
is difficult to study.

In general, physical phenomena like crystallization processes can be studied with
the help of experiments, theoretical approaches and computer simulations (Fig. 1.1).
In the ideal case, all these approaches are combined to obtain a maximal descriptive
picture.

In this work we use Molecular Dynamics (MD) computer simulations together with
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Figure 1.1: The pyramid of research for understanding nature: Experiments, theory
and simulations are used to explain physical phenomena. Thereby, all these
pillars interact to obtain a picture of maximal clarity. In this illustration,
the theory is a formula to quantify crystal growth, the simulation shows
solid particles with a crystal cluster, and the experiment is a scattering
setup to determine the crystal structure of e.g. protein crystals via X-
Ray scattering. The photo of the experiment was taken at a visit of the
European Synchrotron Radiation Facility in Grenoble, France.

theoretical models to investigate the crystallization process of — generally speaking
— charged macromolecules from the bulk phase. The charged macromolecules are a
generic coarse-grained model and can represent colloidal particles carrying surface
charges as well as proteins or DNA, where the functional groups are dissociated in
solution. We use this generic model of charged macromolecules to transfer our findings
to different systems of e.g. different length scales. In addition, we also compare the
simulation model of charged macromolecules to an experimental colloidal system to
verify the practicability. All the simulations are performed using the open source
software package ESPResSo [17].

Simulations have the great advantage that particles, which are e.g. growth units
of a crystal cluster, can be tracked directly, physical quantities can be calculated
from the simulations because a lot of details are known, and we can apply statistical
sampling methods to observe unlikely events which are practically never observed in
a real system because of the long waiting time towards the event.

The last point is very important for this work because we are interested in inves-
tigating the crystallization process from the parent phase, where a small cluster is
nucleated from the parent phase. To this aim, we have to simulate at conditions

Tn experiments, colloidal particles made of Polystyrene are often used for the investigations.



where the attachment rate is low, namely at low supersaturations of the fluid. This
means, that we have to wait for spontaneous fluctuations to form a small crystal clus-
ter, which is very unlikely at these conditions without any wall or artificial impurities
present.

With conventional brute-force computer simulations such rare events are difficult
to investigate, if even possible at all. Recently, several methods have been devel-
oped to succeed in this challenge, e.g. umbrella sampling [18, 19|, Bennett-Chandler
methods [19, 20, 21|, transition path sampling [22, 23, 24, 25, 26|, transition inter-
face sampling [27, 28, 29|, milestoning [30, 31, 32|, nudged elastic band [33, 34], string
methods [35, 36|, weighted-ensemble methods [37], non-equilibrium umbrella sampling
or ‘splitting’-type methods [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50].

In this work, we use the Forward Flux Sampling (FFS) method [39, 40, 42| from
the splitting family, which is based on calculating many trajectory fragments which
are then combined to the overall result.

By using FFS, transition rates and pathways can be investigated. In addition,
with the help of a backward simulation run, stationary distributions and free energy
landscapes can be obtained with FFS [43].

On our way towards investigating the crystallization process we encounter the fol-
lowing contents: In chapter 2 we summarize the current state of the art and introduce
the theoretical background which is necessary for this work as well as the simulation
model for charged macromolecules which is based on a screened Coulomb potential.
For our investigations and for FFS an order parameter has to be implemented to the
simulation tool ESPResSo for characterizing the progress of crystallization. We use
the largest cluster size of solid particles as order parameter in which solid particles are
detected via a so-called local bond order parameter.

Since the FFS method is described in a serial way in literature, we present the
parallel implementation in chapter 3 as well as further improvements and optimizations
of the Forward Flux Sampling method for a tremendous increase of the efficiency, which
was mainly developed in collaboration with Rosalind Allen during a stay abroad at
the University of Edinburgh, Scotland.

In chapter 4 we present our Flexible Rare Event Sampling Harness System (FRESHS),
which we developed from scratch during this thesis. Many rare event sampling meth-
ods, mainly of the ‘splitting’-type family, can be implemented in the context of this
framework. For our work, we implement FFS in a highly efficient, parallel way to
make the crystallization of charged macromolecules computationally possible at all.

In order to verify the applicability of our simulation model we compare experimen-
tal data with our simulations in chapter 5, where we identify the appropriate pair
interaction with its screening length and contact values for reproducing a given radial
distribution function of the experimental systems at different densities.

We present the results of the crystallization simulations at low supersaturations in
chapter 6 which we perform with the help of our optimized FFS method together with
FRESHS. Therefore, we simulate on high performance computing hardware. In the
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post-processing we analyze crystallization rates and physical pathways to investigate
crystallization mechanisms. In addition, we identify possible precursors for nucle-
ation, and compare our direct simulation results to the Classical Nucleation Theory
by calculating the free energy landscapes via a stationary distribution analysis.

Finally, in chapter 7, we summarize and discuss the findings of this work and give
an outlook on possible future work.

Publications

The following publications are related to this thesis:

Yevgen Dorozhko, Kai Kratzer, Yuriy Yudin, Axel Arnold, Colin W. Glass and
Michael Resch. — “Rare Event Sampling using the Science Experimental Grid
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Kai Kratzer, Axel Arnold, Rosalind J. Allen — “Automatic, optimized interface
placement in forward flux sampling simulations”. J. Chem. Phys. 138, 164112
(2013).

Dominic Roehm, Kai Kratzer and Axel Arnold — “Heterogeneous and Homoge-
neous Crystallization of Soft Spheres in Suspension”. High Performance Com-
puting in Science and Engineering '13, pages 33-52. Editors: Nagel, Wolfgang E.
and Kroener, Dietmar H. and Resch, Michael M., Springer International Pub-
lishing (2013).

Kai Kratzer, Joshua T. Berryman, Aaron Taudt, Johannes Zeman and Axel
Arnold — “The Flexible Rare Event Sampling Harness System (FRESHS)”. J.
Comp. Phys. Comm. 185(7), 1875-1885 (2014).

Kai Kratzer, Dominic Roehm and Axel Arnold — “Homogeneous and Heteroge-
neous Crystallization of Charged Colloidal Particles”. High Performance Com-
puting in Science and Engineering '14, Springer International Publishing (2014).

Kai Kratzer and Axel Arnold — “Two-stage crystallization of charged colloids at
low supersaturations”, arXiv:1410.8695 (2014).



2 State of the art

In this chapter we address the current state of the art by proceeding as follows: First,
we introduce the framework of statistical mechanics. The next part is about the
simulation technique for sampling the dynamics. Then, we present the model for
charged macromolecules, the crystallization theory, and finally the theory about rare
events.

2.1 Statistical mechanics

We are interested in the collective properties of the particles in our system according
to statistical mechanics [19, 51]. In this section we follow Ref. [19] for the description.
From a theoretical point of view!, a system can be in a certain state |i),

HIi) = Bli), (2.1)

with the Hamiltonian H and the energy F; of state |i). In our case, with many degrees
of freedom, the degeneracy of energy states is very large. A system of N particles,
volume V' and energy E has

Q(E,V,N) (2.2)

eigenstates. A basic assumption of statistical mechanics is that such a system is equally
likely to be found in one of the eigenstates Q(E). If we consider two subsystems with
Ey and Fy and E; + Es = E and we fix Eq, the degeneracy is 1(FE;) x Qq(F») or in
an additive notation, InQ(E, E — Ey) = InQ(Ey) + InQy(E — Ey). The most likely
value of E is obtained by maximizing In Q(E;, E — Fy), hence with

_ 8an(E,V,N))
EV.N) = 2.3
sm v = (PR (23)
= B1(E1, Vi, N1) = Ba(Ey, Va, No). (2.4)

If Eq. (2.4) is fulfilled, there is no net energy transfer between the subsystems which
describes thermal equilibrium. This implies that using the second law of thermody-
namics, in thermal equilibrium the entropy

S(E,V,N)=kglnQ(E,V,N) (2.5)

INote, that here we use the elegant formulation of quantum mechanics, but we use it only for the
description of the basic laws of statistical mechanics. Our simulations are all non-quantum.
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of a composed system is maximal. kp in this relation is the Boltzmann constant?.
From thermodynamics we know that

1 oS
T = (8_E) . , hence (2.6)
1
= —. 2.

We can now couple a system A to a heat bath B, fixing F = E4 + Eg. A is now
prepared in state ¢ with energy F;. For the bath it follows that Fz = E — E; with the
degeneracy §2g. The probability of finding the system in state ¢ is then given by

p_ Qp(E—Ei) _  exp(=Ei/kpT)
COX(E-E) X e (“E/ksT)

(2.8)

which is the Boltzmann distribution. The right hand side of equation (2.8) was ob-
tained via an expansion of In Qg(E — E;) around E; = 0.
For example, the average energy (E) of a system with temperature 7" can then be

calculated by
B 0@
(E) = Z BPi= g0 T (2.9)

with the partition function @ = ). exp (—E;/kgT’). With the thermodynamic equa-
tion E = (OF/T)/(01/T) we see in comparison with Eq. (2.9) that the Helmholtz free
energy F' is related to the partition function by

F=—ksTQ= kT exp(—E;/ksT), (2.10)

which is the “workhorse of equilibrium statistical mechanics” [19].

Observables

In our work we are interested in measuring different observables. In general, using
classical statistical mechanics a thermal averaged value of an observable A can be
obtained with

_ JdpYdr¥exp {5 [37, p}/(2mi) + UrV)[}A(PY, ")
J dpNdreN exp {=532; p}/(2mi) + U(eV)]} '

In the next section we present a way to calculate such observables via sampling of the
ensembles.

(A) (2.11)

2k = 1.38066 x 10~23m2kgs 2K ~1



2.2 Molecular Dynamics Simulations

2.2 Molecular Dynamics Simulations

We use the Molecular Dynamics (MD) simulation technique to answer the questions
from the introductory chapter by simulating the dynamics of the particles and sam-
pling the particular observables. In contrast to other techniques like Monte Carlo
(MC), the MD simulation method is suited for tracking particles in each simulation
step which is desirable e.g. for investigating crystallization mechanisms. Thus, MD
simulations are related in many details to real experiments [19].

To measure observables in MD simulations, the observables must be expressed as a
function of positions and momenta of the particles in the system. The temperature
T in a simulation can be defined via the average of the kinetic energy per degree of
freedom Ny via

1 1
<§mz}2> = ks, (2.12)

with the mass m and velocity v of a particle. Because of the fluctuations of the kinetic
energy in simulations, the instantaneous temperature also fluctuates,

T(t) =) ";;Ag) (2.13)

i=1

with the sum running over all N particles ¢ in the simulation.

2.2.1 Ergodicity

Above we have used the ensemble average of multiple states. However, in experiments
one usually doesn’t prepare multiple setups and performs only a single measurement.
In contrast, many measurements are conducted in a time series. The same is true
for MD simulations: We would like to study the average behavior of a system by
computing the time evolution and by averaging the investigated quantities. Hence, we
assume that the average of the states is equal to the average of the time series,

pi(r) = {pi(r)), (2.14)
where p;(r) is the density at a distance r of an atom 7 in a simulation as an example.
The bar denotes a time average and (...) denotes an ensemble average. This is called
ergodicity hypothesis and is plausible for a lot of systems. But, there are also systems
which can’t be considered to be ergodic, then Eq. (2.14) doesn’t hold. The ensemble
average is usually calculated using MC simulations and the time average using MD
simulations.

2.2.2 Force calculation, equation of motion and ensembles

In MD simulations, the position and velocity of many-body systems are derived from
the force acting on them in an iterative way according to classical mechanics (see
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also [19, 51]). Forces can be of different nature, like interaction forces or external
forces (e.g. an electric field). The interaction forces f per particle pair are derived
from the interaction potential U(r) with the absolute value of the particle-particle

connection vector |r| =r = /22 + y? + 22 via

falz) = = 8%;"@) , (2.15)

here exemplarily shown for the xz-dimension. The force calculation is the most de-
manding part in an MD simulation, usually most of the computational effort is spent
in this calculation. This arises from the fact that for N particles we must compute
the forces of N(N — 1)/2 pair distances which scales like O(N?). For details how to
implement this efficiently e.g. by using Verlet lists with the aim that this calculation
doesn’t scale with O(N?) but rather with O(N) refer to [19].

At this point, the forces on the particles are known, hence we are able to introduce
Newton’s equation of motion

f=p=ma= —VU(r), (2.16)

with the mass m, acceleration a and momentum p of the particle. Note, that we use
the Newtonian scheme in this case, but an Hamiltonian description of the equations
of motion would be also possible [51|. From equation (2.16) the position z(t + At)
and velocity v(t + At) can be calculated by numerical integration schemes. This will
be covered in the next section.

Numerical integration

To propagate the particles from timestep ¢ to (t+ At) the equations of motions for the
particles must be integrated. In our self-written simulations we use the Velocity Verlet?
integration scheme. We use this scheme for our purposes because it is symplectic* and
has a good numerical stability and accuracy with an error oc O(At*). In this scheme,
the new position x and the new velocity v of a particle is calculated using the following
equations which show the one dimensional case [19]:

z(t+At) = x(t)+v(t)At+J;<—Ti>At2, (2.17)
ot + AL = v(t)+f(t+A22+f(t)At. (2.18)
(2.19)

The force f(t + At) is derived at the new position z(t + At) calculated in Eq. (2.17).
Note, that f(t)/(m) = a(t) is the acceleration.

3For an overview of different integration schemes please refer to [19].
4The energy performs a random walk around its arithmetic average.
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It follows, that the dynamics of the system is determined by the forces acting on
the particles. These forces can’t only be interaction forces or external forces but also
random temperature fluctuations, e.g. implemented in the context of a thermostat.

Thermostat and barostat

In MD simulations, thermostats and barostats are used to generate certain statistical
ensembles by monitoring physical quantities like pressure p and temperature 7', and
correct these quantities such that these values fluctuate around a presetting. A typical
thermostat to model temperature fluctuations similar to a real system is the Langevin
thermostat. For the Langevin dynamics, two additional terms are added to Eq. 2.16,
one for the friction in the system and one for the random temperature fluctuations:

flz) =mi=—-VU(z)— E&mi +R(t)\/2mékpT, (2.20)
e fiction  random ctut
force riction random fluctuations

where ¢ is the friction coefficient and R(t) is a Gaussian random process with (R(t)) =
0 and (R(t)R(t')) = o(t —t'). In this equation a fluctuation is added to the dynamics
which can either be positive or negative, and the dynamics is damped by a friction
force.

The barostat for a constant pressure in the simulation works by adapting the vol-
ume of the simulation box and rescaling of the particle coordinates according to the
pressure changes. This leads to a new Lagrangian expression for the system [52]. The
interpretation of the additional terms in the new Lagrangian can be seen as a piston
of a certain mass acting on the isotropic adaptive system. In the limit of an infinite
piston mass, the original system is obtained. For another piston mass, the averages of
the observables of the system correspond to the time averages of the thermodynamic
ensemble at the desired pressure [52|. Thereby, the dynamics of the volume fluctua-
tions depends on the mass of the piston. For further details and barostat examples
refer to [19, 52, 53, 54, 55].

Our main simulations are performed using ESPResSo [17], where most of the sim-
ulation techniques are already implemented. For our self-written codes we use the
techniques described in this chapter.

2.2.3 Reduced units

For our simulations we use so-called reduced units. The practical reason for this is
that we would like to have all quantities in an order of magnitude to be numerically
friendly, which reduces the numerical issues in a simulation®.

A great advantage of reduced units is, that they can be adapted easily to a certain
scale afterwards, which means that we perform our simulations in the most general

°In SI units we would permanently multiply values which are much less or much larger than 1 which
can lead easily to numerical instabilities.
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way and are able to insert dimensions like [um] afterwards to e.g. compare with
experiments. We use the following basic units in this work:

o ¢, the unit of energy,
e m, the unit of mass,

e o, the unit of length.

The unit of time is then given as o1/m/e and the unit of temperature is ¢/kg. We
define the following reduced units: The reduced potential U* = Ue™!, pressure p* =
pode!, temperature T* = kgTe! and density p* = po® [19]. With the help of these
reduced units we are able to relate an arbitrary number of combinations €, p, o and
T to the same simulated state, which is called law of corresponding states [19].

2.2.4 Inverse Boltzmann: Pair potential from an RDF

The Radial Distribution Function (RDF) is used to characterize the local structure
of a system and can be measured in both, experimental systems® and simulations.
Therefore, it is often consulted to compare simulations with experimental data and
vice versa.

The RDF g(r) is determined by the average number density p(r) at a certain distance
r from a given atom compared to an ideal gas with the same p(r). From a given g(r),
the local density p(r) of the system can be obtained via p(r) = pg(r). For details
about the calculation of g(r) refer to [19]. Note, that g(r) = 1 for an ideal gas, and
g(r) # 1 is an indication for pair interactions. For a typical system (e.g. with a
Lennard-Jones interaction) we expect therefore the RDF to be zero at small values
of r, because of the strong repulsion of the potential at these distances, and in the
following we obtain peaks and minima at distances where it is likely or unlikely for
the system to find particles at a given r, and the RDF ends on a value of 1 for large
distances r. Examples of RDFs can be found in chapter 5.

With the Inverse Boltzmann method [56, 57] a pair interaction potential can be
reconstructed from a given (experimental) RDF gey,(7) in an iterative way. This is
based on the fact, that particles arrange e.g. during equilibration according to their
pair potential. From this arrangement the RDF is generated, therefore it is nearby to
reconstruct the potential from an RDF. For the Inverse Boltzmann method we start
with an initial guess for the potential generated from ge.,(r) with

Uo(r) = —kpT'10g gexp (7). (2.21)

Then, we equilibrate our simulation system using this potential” and generate the
corresponding g;(r). From the new g;(r) we calculate the correction of U(r) in an

Se.g. from data obtained by scattering experiments or by microscopical imaging,.
"A tabulated potential is well suited for this purpose. Otherwise a fit of the expected potential for
generating the RDF could be tried for example.
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2.3 Model for charged macromolecules

Figure 2.1: Simulation box filled with different particles: Macromolecules (dark), and
neutralizing salt-ions with opposite charges (red and blue).

iterative procedure via

Gexp ()

until the desired accuracy is reached. This iterative procedure corrects the poten-
tial in a way that particles are more attracted at distances where the target RDF
would require more particles, and are less attracted at distances where less particles
are expected. This means, that a potential reproducing the exact RDF is a fixed
point for this procedure. The Inverse Boltzmann method will be applied to an RDF
from an experimental system to obtain the corresponding pair interaction potential in
chapter 5.

2.3 Model for charged macromolecules

In this section we address the simulation details of charged macromolecules. If we
model the macromolecules as particles on a computer, a typical simulation scenario
could look like the one in Fig. 2.1, which shows a simulation box with many parti-
cles. In this simulation scenario there are larger particles which represent the macro-
molecules and smaller particles of two different colors, which represent the oppositely
charged neutralizing salt. Note, that this is an example image for a situation where
we just put the ingredients in a simulation box and would like to figure out what
happens. We are interested in the dynamics of that system, more precisely if we are
now at timestep ¢, how does the system look like at ¢t + At? In section 2.2 we have
discussed the numerical methods to perform this intention in a simulation, therefore
we will now have a look at the interaction forces for our model which influence the

11
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dynamics. We would like to simulate a charged system, which means that forces arise
from electrostatic interactions of the charges. These forces are called Coulomb forces.
In the following sections we present a generic model, which can be used for charged
macromolecules like proteins and colloids and captures the influence of long-range
electrostatics.

2.3.1 Coulomb electrostatic interaction in different media

We present the details of the electrostatic interaction following the book of Ref. [58].
First, we consider the general case in vacuum, where nothing hinders the propaga-
tion of the electrical field. Then we discuss the Coulomb interaction in a polarizable
medium like water, and finally tackle the case where the electrostatic interactions are
screened by additional charges like salt ions.

Coulomb interaction in vacuum, unscreened

Two charges )1 and ()2 in vacuum with a distance r» have the Coulomb interaction
potential

UC,vacuum(r> — kQITQQ (223)
with
1
k= =8.99 x 10°Nm*C~?, (2.24)
4dmeq

where ¢ is the vacuum permittivity. If we calculate the force f(r) by the derivative
of Eq. (2.23), we see that f(r) oc 2. From the sign of Q; and Q, it is determined,
whether the force is attractive or repulsive: Different charges are attractive and same
charges are repulsive. We see that in the vacuum case the interaction is long-ranged
because of the slow decay o< r~! (Fig. 2.2(a)). The field lines are not terminated in
this case and head for infinity. For biological, chemical and physical applications in
vacuum this would mean that we would have to superpose many of these fundamental
long-ranged Coulomb interactions, which is not very practicable in simulations when
thinking of the absolute number of interaction pairs, e.g. in a periodic simulation box.
Luckily, many applications (including our project) are not situated in vacuum.

Coulomb interaction screened by a polarizable medium

Charges embedded in a dielectric material interact also via the Coulomb interaction.
In contrast to the vacuum case, their interaction strength is reduced by the dielectric
constant €,,

k
UC,dielectric(r> - _QlQQ- (225)

€ T

12



2.3 Model for charged macromolecules
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Figure 2.2: (a) Coulomb interaction potential in vacuum, the inset shows that the
potential is long-ranged. (b) Coulomb potential for water (e = 80) and
for the Debye-Hueckel interaction, where the potential is screened by salt
ions. In both cases, the interacting potential is much smaller than in (a).
In addition, the Debye-Hueckel potential decays very fast to zero as shown
in the inset, which is a good model for screened interactions, where the
field-lines are terminated at the counter-charges.

Here, the screening is possible due to the polarizability of particles in the dielectric
medium. Thereby, oriented dipoles are induced and some of the field lines are termi-
nated at other charges. In Eq. (2.25) the interaction strength is reduced by a constant
factor e,.. However, this is still a long-ranged interaction (Fig. 2.2(b)), but depending
on the value of ¢, this potential can be cut at an earlier point with a lower error in
contrast to the vacuum case.

As an example, pure water at a temperature of 7' = 298K has a value of ¢, &~ 80,
which means that the Coulomb interaction is reduced by a factor of 80 relative to
vacuum. In this case, every water molecule carries a permanent dipole moment which
reduces the pure interaction.

Bjerrum length

The Bjerrum length is the distance of two charges » = [z, where the two unit charges
e have an interaction energy of U = kgT'. If we put this in Eq. 2.25, we obtain the
Bjerrum length via

k 2
6_;_3 L kT, (2.26)
k e?

As an example, the Bjerrum length of two electrons with a charge e = 1.602 x 10~*C
in water with €, = 80 is Iz = 7.0 x 1071 = 0.7nm. This means that the interaction
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Macromolecule

(colloid, protein,

Figure 2.3: Screening of the surface charges of a macromolecule in solution. The neg-
ative surface charges of the macromolecule are immediately screened by
counter-ions which accumulate at the surface. Outside of this area the in-
teracting potential is mainly determined by the effective ion background.

energy is U = kgT at an electron distance of 7A.
Using the Bjerrum length, the electrostatic potential conveniently reduces to

U(r) = k7192 (2.28)

r

Coulomb interaction screened by salt ions

Now, we arrive at the very important electrostatic interaction case for biological,
chemical and physical applications. In these applications, the interaction is practically
always screened and reduced in strength by the presence of other molecules. For
example, if we consider a macromolecule which can be e.g. a colloidal sphere in solution
which carries a negative surface charge, this negative surface charge is immediately
screened by counter-ions from the environment (Fig. 2.3).

Outside this area the potential is mainly determined by the resulting effective ion
background. In contrast to the case in the previous section, the screening here is not
only a reduction of the Coulomb interaction by a constant factor, but an exponential
decay of the interaction potential beyond a distance which is called Debye screening
length lp. This length [p determines, at which distance the exponential scales down
the Coulomb interaction and can be calculated for an electrically neutral system by

T —-1/2
o= =t (2.29)
i1 1y
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2.3 Model for charged macromolecules

with the number of different species of charges N, the charge of the i-th species @),
and the mean concentration of charges nY. As one can see from this equation, the
screening length [y decreases when increasing the number of ions.

The resulting screened Coulomb potential is called Debye-Hiickel or Yukawa poten-
tial®. Using equation (2.27) this potential has the form

exp (—m“).

UDH(T‘) == lB]{?BT (230)

r

with the inverse screening length x = Ip~'. For a visualization see Fig. 2.2(b).

This model can be applied to simulate charged macromolecules as they appear in
biophysical soft-matter applications with charges being screened by neutralizing salt
ions (see also Fig. 2.3), e.g. many nucleic acids, proteins and other macromolecules are
slightly charged when they are put into water. The ions originate from the dissociation
of functional groups which are then screened by the surrounding salt. The size of the
surrounding cloud is approximately the screening length [. This is often called electric
double layer [59, 60].

2.3.2 The hard core Yukawa potential

The potential for our simulations of the crystallization of charged macromolecules is
the Yukawa potential and based on the potential described by Eq. (2.30). We choose
this potential because it was successfully applied to colloidal systems [9, 61, 62, 63| as
well as to be able to compare our results with previous works (e.g. with Ref. [9]).

In addition, we add a Weeks-Chandler-Andersen (WCA) potential [64], which is a
shifted Lennard-Jones potential with a cutoff 21/9¢ and hence without the attractive
part, to model the excluded volume of the macromolecules. This WCA potential
as a smaller cutoff than the Yukawa potential and therefore only plays a role if the
macromolecules come close to each other. Then, this potential avoids overlapping of
the macromolecules, as it is the case in real experiments.

The resulting potential for our simulation is a combination of both potentials,

U(r) = Uyukawa (1) + Uwea(r) (2.31)
with
Uy () = eeXp(_”r(Z o=1) (2.32)
and . .
Uwon(r) = {3 ((?) - (7) + Z) 7”1< 250 (2.33)

8Eq. (2.30) is called the Yukawa form of the Debye-Hiickel potential.
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Figure 2.4: Phase diagram of the Yukawa potential for x = 5, data from [62]. The
phase diagram consists of three regions in this case: a liquid region, and
two solid regions, namely a solid region where the system crystallizes to a
bee or fee lattice. In addition, there are two triple-points where all three
phases can coexist.

From a practical point of view, the Lennard-Jones and the Debye-Hueckel potential
are already built-in potentials in our simulation tool ESPResSo, therefore we use these
potentials and set the cutoff to the WCA cutoff for the former one and the Bjerrum
length for the latter one such, that it matches our potential in Eq. (2.32), lp = eoe”.

2.3.3 Phase diagram of the Yukawa potential

The Yukawa potential which was introduced above has a phase diagram which is
depicted for a screening length of x = 5 in Fig. 2.4 [62]. As can be seen in the phase
diagram, the system has three phases in this case, a liquid phase and two solid phases.
The solid phases can have a body-centered cubic (bcc) or a face-centered cubic (fec)
lattice.

There are also two triple-points, where all three phases can coexist. In our simu-
lations we try to build crystal clusters from fluctuations as close as possible to these
phase coexistence lines. Note, that the size of the solid domain with the bcc structure
is determined by the location of the triple points. For higher values of k, the size of
this domain shrinks [62].

Before we discuss the crystallization theory in section 2.4, we discuss briefly the
computational considerations and physical limitations of this model.
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Figure 2.5: Cutoff trend for re(k,€): (a) Varying € and (b) varying . If the contact
value € is increased, the potential must be cut at higher distances for the

same accuracy and if the inverse screening length « is increased, the cutoff
is lower for the same accuracy.

2.3.4 Computational considerations and physical limitations

The main quantity which can be changed for the computational effort is the cutoff
of a long-ranged potential. On the one hand, choosing a higher cutoff results in a
better accuracy but more particle pairs must be considered. In Sec. 2.2 we mentioned
that calculating the interaction forces is the part which takes most of the computation
time, so this increases the computational effort tremendously. On the other hand, a
cutoff which is too low leads to defective results.

Choosing a cutoff for the screened Coulomb interaction

The screened Coulomb potential decays much faster than the plain Coulomb interac-
tion (see also Fig. 2.2). However, it has still an asymptotic behavior for » — co. For
the computer simulations it is necessary to cut the potential at a certain distance r¢y.
In our case, for the potential in Eq. (2.32) this cutoff depends on the screening length
x and the contact value € of the potential, because the combination of these two values
determines the shape and decay of the potential. We choose the cutoft value such,
that the error in energy is below a certain value, with

Teut (K, €) = —% [log (%) — /4} , (2.34)

where €. can be set to e.g. 0.1e. The trend for 7.y (%, €) in the range where we simulate
is shown in Fig. 2.5. It can be seen, that the cutoff varies between approximately 1.5
and 3, which can be tackled with our simulations and the available computation power.
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Pressure tail corrections

If the pair potential is cut at a certain distance r.,;, the measurement of the pressure
in the simulation is defective and can be corrected via a pressure tail correction [19].
For the Yukawa potential this leads to

2 2 o)
AP = T [t fudo). with 2.35)
— 8Uyuk(7”) . coe Fr/o=1)  cpe—nr(r/o—1)
fyuk(T') - 87” — 7’2 + . , and (236>
1 c
Teur(K,€) = - [log <%> — ,{} . (2.37)

We set e.g. 0 =1 and k = 5 in our simulations, which means that the pressure tail
correction AP,,; depends on € and p in our case,

2me p? €0\ 2 €c
APai(e, p) = 75p [log <?> — 13log <€> + 43} . (2.38)

By using the AP,,; value of Eq. (2.38) and adding it to the obtained value of P in the
simulation, the real pressure for the simulation can be calculated, which we performed
for our system in Chap. 6. Having treated the computational feasibility we address
now the physical limitations of the model.

Physical limitations

The use of a screened Coulomb interaction and a certain cutoff is a simplification to
avoid the calculation of the interactions of all charges in the system with each other.
Despite of the available computation power which has increased tremendously in the
last years [65] it wouldn’t be possible until now to investigate crystallization with ex-
plicit charges close to the phase coexistence lines because of the high computational
effort at reasonable system sizes. For example, if we would like to simulate 10,000
charged macromolecules carrying a charge which is only 10 times higher than the
charge of the salt ions, we would have to simulate at least the long-ranged Coulomb
interactions of 100,000 counter-ions plus the 10,000 macromolecules to obtain a neu-
tral system. In addition, we would probably like to have not only the counter-ions
but also additional charges in the system. This leads to a system which contains
much more than 100,000 charges, and the simulation of the crystallization will only
be possible with more computation power in the next few years.

However, as found in previous work [66, 67, 68, 69] and as we will see in Chap. 5, the
screened Coulomb potential is a good model to describe many phenomena of systems
consisting of charged macromolecules, not only when compared to simulations but also
in comparison to experimental systems, see Chap. 5.
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2.4 Crystallization

We should keep the following things in mind: The screening only works if many
charges, which weaken the long-ranged forces, are between the macromolecules. If
there are no charges located in between, Eq. (2.30) can’t be applied anymore.

In addition, there can be the case where only a few ions are between the macro-
molecules, e.g. if they are close to each other. This could lead to non-linear charge
effects. In such a case, charges of the surrounding solution would move very fast to
such a position to compensate for the electrostatic potential®. We will take on this
point again in the discussion.

2.4 Crystallization

Crystallization can be seen as a combination of two process: Nucleation of growth
units, when a crystal cluster forms from the parent phase at the beginning until a
critical cluster size has been reached, and further crystal growth, when the critical
cluster size has been overcome.

2.4.1 Phase transitions

Nucleation is a first-order phase transition which is thermodynamically characterized
by an equal chemical potential of the old and the new phase and by discontinuous first
order derivatives at phase equilibrium (classification according to Ehrenfest, 1933). In
general, this phase transition occurs if a metastable state is transformed into a truly
stable state. In this section we follow mainly refs. |70, 71].

Stable thermodynamic equilibrium
A fluid is in a stable thermodynamic equilibrium, if the Gibbs free energy
G=F+pV (2.39)

is minimal. In this relation, V' is the Volume and p a certain pressure. F' is the
Helmholtz free energy, which is given by

F=—p(V)dV (2.40)

with the volume dependent pressure p(V').

Note, that at certain conditions, two phases are able to coexist as separate phases
if they are in contact with each other, which is called phase equilibrium. Then, the
chemical potential

Hold,e = Hnew,e = He (241>

of the two phases is the same.

9Note, that in our examples the charges of the neutralizing salt are monovalent, but in the general
case multivalent charges must be considered, too.
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GA

Figure 2.6: Phase transition from a metastable state A (local minimum) to a stable
state B (global minimum). The transition is characterized by an order
parameter A (x-axis). Before leaving the metastable state A at position
(1), an energy barrier must be overcome at position (2) before the truly
stable state B at position (3) can be reached.

Stable and metastable

Above we have mentioned, that if G is minimal, more precisely if G has a global
minimum, the state of the system is truly stable. However, if there is a local minimum
of GG, the system is metastable and is able to perform a transition from metastable
to truly stable under certain conditions (fig 2.6). This transition is then called phase
transition of first order, where the first order derivatives, e.g.

_ 9G(T,p)

Vv
dp T

(2.42)

are not continuous.

The process of the beginning phase transition is called nucleation of the new phase
and takes place in the space of the parent phase. A metastable state can be obtained
by supersaturation or undercooling of the system, which we address in the next section.

Driving force for nucleation

From a thermodynamic point of view, the ambition of a system is to occupy a lower
energy state [70]. Here, this is the ambition of the first phase in the system. The
thermodynamic driving force for such a first order phase transition and hence for the
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2.4 Crystallization

nucleation process is the supersaturation of the system,

AM = M = Mold — Mnew (243)
where N is the number of molecules. The supersaturation Ay is the gain in Gibbs
free energy per molecule when advancing from the (local) minimum G4 to the new
(e.g. global) minimum Gey. The quantities jioq and piney are also called the chemical
potentials at these minima.

When there is no driving force, Ap = 0, the phase is called saturated. In addition,
the old phase is called undersaturated, if Ay < 0 with the definition in Eq. (2.43). In
both cases, nucleation is not possible. This occurs e.g. when the minimum at Ggyq is
lower than the other minimum.

If we regard this the other way round, the nucleated phase would be dissolved again
if we advance from a lower minimum to a higher (local) minimum, where the parent
phase is metastable again. In our simulations, we are able to perform such operations
with the rare event methods described later in this chapter. Before we do this, we
introduce a generally used nucleation theory in the next section.

2.4.2 Classical Nucleation Theory

The Classical Nucleation Theory (CNT) |72, 73, 74, 75] is suited for the fundamental
theoretical description of the nucleation process. In the last section we have seen that
a necessary condition for the first order phase transition and hence the nucleation is
the supersaturation of the parent phase. However, this is not a guarantee that this is
going to take place within an available observation time, because the system remains a
certain time in the metastable state before advancing to the truly stable state. This is
originated in the fact that the two states are separated by an energy barrier (see also
Fig. 2.6). Beyond that, a real system is able to take different paths for the transition,
and each path can have a different underlying energy landscape, e.g. the nucleus
can have different shapes during this process, and some of the shapes could be more
advantageous for the transition to the stable state.

From an energetic point of view, the preferred path should be the one which requires
the lowest energy [70, 76]. An obvious path would be a complete density change from
the old phase to the new phase. This would result in a volume change which affects
directly the Gibbs free energy GG. However, this path is very unlikely because all
particles would have to take part in this transition, which has a very high energy
barrier of NAu. Therefore, a path which originates from local density changes is
much more likely, e.g. caused by local fluctuations of n <« N particles (Fig. 2.7). This
results in an energy barrier height in the order of nAuy < NApu, which makes the
transition much more probable than in the previous case.

In nature, this can be observed directly: Nano-sized precursors grow first due to
fluctuations with their density close to the parent phase which are the starting point
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Figure 2.7: Illustration of the cluster formation which is the beginning of the phase
transition. The parent phase is shown on the left-hand side. The phase
transition begins only in a small domain (red particles on the right-hand
side) of the parent phase, induced by local density fluctuations.

for the further phase transition.

Cluster formation

We investigate the cluster formation of n growth units. In general, such a cluster
which represents the new phase is separated from its parent phase by a so-called phase
boundary or dividing surface [70|. The free energy AG required to form the cluster of
size n is given as

AG(n) = —nAp + Gex(n), (2.44)

with the cluster excess energy Gex(n). Gex(n) can be determined in a sufficiently large
cluster!® with the help of thermodynamic considerations:

Gox(n) = S(V2) = (pn — p)V + / "y (Pyap, (2.45)

In this equation, ¢ is the total surface energy of the cluster, p and p,, the pressures
of the old phase and the n-sized cluster, and V,, the equation of state. For spherical
clusters with radius R in the condensed phase, where it is assumed that the cluster is
incompressible which leads to the cancellation of the last two terms in Eq. (2.45), this
can be simplified to

Gex(R) = 47y R, (2.46)

where 7 is the surface tension. Equation (2.44) can then be expressed for spherical

clusters with n = %7‘('33 as

ArA
AG(R) = —QTO“R?) +dryR?, (2.47)

where vy = p~! is the molecular volume!!. Note, that this expression is only valid for
the condensed phase. For the vapor phase, the expression would be more complicated

10Then, the cluster can be seen as a distinct phase.
HVolume occupied by a single molecule in the cluster.
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Figure 2.8: Energy landscape AG(R) (solid red line, Eq. (2.47)) of the nucleation as
a balance of bulk o R? and surface o R? term (blue dashed lines). This
leads to an energy barrier with a barrier height of AG* (Eq. (2.50)) at the
critical nucleus size R* (Eq. (2.51)).

because of a different equation of state V,,, where the cluster can not be seen as
incompressible any more like in the condensed phase.

Relation (2.47) leads to an energy barrier AG(R) (Fig. 2.8) for the first-order phase
transition and hence the nucleation, which is a balance of the bulk (—%R‘q’) and
the surface term (47yR?) of Eq. (2.47). The energy landscape has a maximum with a
height of

AG" = AG(RY) (2.48)
at a certain cluster size R*, the critical nucleus size.

The consequence of this is that clusters with a size R < R*, so-called subnuclei, are
more likely dissolved than they continue to grow. In contrast, clusters R > R*, so-
called supernuclei, are capable to grow spontaneously because the free energy AG(R)
is then lowered with further growth. For R = R* the committor probability'? is 0.5,
which means that further growth is equally likely with becoming dissolved again.

Therefore, the formation of nuclei is a precondition for the onset of crystal growth
and hence the first-order phase transition. The formation of the nucleus is statistically
spoken a random event, and can even be a rare event'® depending on the height AG*
of the energy barrier. The condition to obtain the maximum of the free energy is

dAG

dn n=n*

~0. (2.49)

12The so-called committor probability describes the probability to complete the transition to the new
phase from a given phase point, usually characterized by an order parameter A.
13More on rare events in section 2.5
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The height G* can be obtained for the condensed'* homogeneous nucleation like in
our case using equations (2.47), (2.48) and (2.49):

16mv3~3
AGF = — 91 2.50
3A (2.50)
The critical radius R* is thereby given as
2vgy
R = 2.51
Au (2.51)
or in terms of the number of molecules in the critical cluster
32mvay?
e — — 2.52
VE (2.52)

We see, that the critical nucleus size and the barrier height decrease with increasing
supersaturation Au. Equations (2.50) and (2.52) yield

1
AG = En*A,u, (2.53)
from which we are able to calculate e.g. the difference of the chemical potential
Ap = 2AG*/n* of the new and the old phase if we know the height of the energy
barrier and the number of molecules in the critical nucleus.

Cluster size distribution

As mentioned above, the formation of clusters takes place randomly in space and
time of the parent phase due to fluctuations. As a consequence, there exist clusters
with different sizes at certain locations in the old phase. The equilibrium cluster size
distribution C(n) is thereby given as [77],

cin) = Croso (- 262) o

with Cy = 1/vy, the concentration of cluster locations in the system, without consid-
ering cluster-cluster interactions.

Nucleation rate

The nucleation rate quantifies the creation of supernuclei per volume and time and is
therefore measured in 03771 in our 3D system, where o is the unit of length and 7
the unit of time.

14Tn the vapor phase, the pressure plays a crucial role for the critical quantities.
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To quantify the nucleation we assume that clusters grow and shrink via particle
attachment [78]:

B,1+ B <<= [|kyn-llk-n]Bn (2.55)
B, + B; <~ [k+7n] [kf,n+1]Bn+1 (256)
B, Cluster with n particles

kyn—1, k_, | Attachment and detachment rates

Then, the master equation can be formulated for the cluster size distribution N, (¢) [79]:

AN, (t)
dt

= anl(t>k+,nfl - [Nn(t)k*,n + Nn(t)k+,n] + Nn+1 (t)kf,nJrl (2-57)
From this master equation, Becker and Doring have derived the nucleation rate as
k = De PAC" (2.58)

For details of the derivation of Eq. (2.58) from Eq. (2.57) please refer to references |70,
75]. In many fields an equation of this form is also called the Arrhenius equation.
Here, T is the kinetic pre-factor and P. = e #2¢" the probability that a critical nucleus
forms. Note, that I' contains the unit of the rate, [[] = ¢ 277! in 3 dimensions. The

kinetic pre-factor can be calculated via
I'=ZfCo, (2.59)

where f7 is the attachment rate of particles to the critical cluster at temperature
T (kinetic part), Cy contains the spatial characteristics of the cluster, and Z is the
Zeldovich factor,

7= |—

de d 2 * 1/25 erical G* A 2

1/2
onkpT 37Tk’BTn*2] ~ Srug (kT2

for n* > 10. Note, that Z is the inverse width of the nucleus region, for further details
refer to [70]. Typical values for these quantities are 0.01 < Z < 1 for the Zeldovich
factor, 1 < fr < 10'?77! for the attachment rate, and 10'* < Cy < 10?03 for volume
nucleation as well as 10 < T' < 10673771 in most cases [70]. Smaller values stand
for lower attachment rates and the presence of seeds and active centers in the system.
In this work we are going to compare our direct simulations to the Classical Nu-
cleation Theory from this chapter. To this aim, the particles of the simulated system
which are in a solid structure and hence in a nucleation cluster must be identified.

25



2 State of the art

2.4.3 Crystallization progress: order parameter

To monitor the progress of crystallization in our 3-dimensional system, a mapping of
the system’s state to a 1-dimensional order parameter is necessary. For convenience
and to apply further theoretical methods, this parameter should increase monotonously
when the system progresses to its aim, e.g. the particles crystallize successively.

For our work, namely crystallization, the size of the largest cluster of solid particles
in the system is a good parametrization of the committor function of the system and
is an intuitive quantity which leads to physically plausible pathways [80], e.g. it is
possible to track the crystal growth in the system, which wouldn’t be possible if we
would use a global variable like the system’s total energy.

Detecting solid particles

To identify a particle ¢ as solid-like or liquid-like in the 3D simulation box we have to
analyze the spatial orientation of the particles relative to their neighbors. Therefore,
we use the averaged local bond g, order parameters which allow not only to determine
a solid structure but also the underlying lattice type [81, 82]:

4

Q0 = |57 2 @O (2.61)

m=—1

with the average g,,, (i) over all neighbors Ny (i) and the particle i itself (second neigh-
bor shell),

T (1) = ~1, > (k). (2.62)

[N (0)] ke Ny (i)

The complex vector gy, (first neighbor shell) is given by

Qi (i) = Nl. > Vi), (2.63)

with the sum over all neighbors N, (i) of particle ¢ constructed by the spherical har-
monics Y},,'® which are dependent of the spatial orientation of the particles ¢ and
J, connected by the vector 7j;. The maximum neighbor distance to determine the
neighbors of particle ¢ is determined via the first minimum of the radial distribution
function of the system. Depending on the value of g, (i) for a certain order [ and a
particle 7, the 3D structure can be analyzed and quantified, e.g. it can be detected, if
particle ¢ is member of a crystal lattice and hence solid-like.

5The spherical harmonics Y;,,, are a complete set of orthonormal eigenfunctions of the angular part
of the Laplace operator. They are also used e.g. for atomic orbitals calculations.
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Figure 2.9: Different crystal lattice structures: (a) body-centered, (b) face-centered,
(c) depending on the placement of the third layer hexagonal close-packed
(hep) or fee otherwise. Images (a)-(c) taken from [83]. (d) Scatter plot of
the g, and g values for the different 3D crystal structures. According to
this plot the particles can be classified as solid-like and liquid-like using
only the g4 order parameter (horizontal line). In addition, if they are
solid-like, the structure can be determined using the g, parameter (vertical
lines). The scatter data is taken from [82].

Solid particles and crystal lattice of the Yukawa system

In our Yukawa system according to the phase diagram (see also Fig. 2.4) the following
crystal structures are expected to be possible: face-centered cubic (fcc), body-centered
cubic (bce), and hexagonal close-packed (hep). Figure 2.9(a)-(c) gives an overview of
these structures. To detect the structures in the simulations, we use the g; order
parameters with [ = 4 and [ = 6. Fig. 2.9(d) shows the §,g, scattering plane of these
parameters for the expected crystal structures.

We see, that to identify only solid particles in our system, the g, order parameter
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is sufficient, and we can draw a horizontal separating line in Fig. 2.9(d) at g5 ~ 0.3.
In the post-processing of the simulation, we use in addition the g, order parameter
to distinguish between different crystal lattice structures, see the vertical lines in
Fig. 2.9(d) at g, ~ 0.05 and g, ~ 0.1.

Note, that the scattering clouds in Fig. 2.9(d) are caused by fluctuations in the
system. For the ideal structure, there would only be a single point in the scattering
plot. Depending on the magnitude of the fluctuations, there can be overlappings in
the scattering clouds, which are in our case already minimized by using the averaged
q; order parameters. However, in the transition regions between the domains, the
affiliation of a particle to a certain structure is not clearly defined.

Order parameter

In the last section we have identified solid particles. As a next step, we use a cluster
algorithm in combination with a neighbor analysis to determine the clusters of solid
particles in the 3D simulation box. The size n of the largest cluster in the system is
then used as order parameter and therefore to monitor the progress of crystal growth.

Note, that the cluster size is dependent on the choice of g4 ~ 0.3 for detecting solid
particles. To only characterize the progress of the crystallization, this threshold plays
a minor role. However, if we would like to compare to nucleation theory we have to
keep in mind that this may not be the real cluster size.

2.5 Rare events

In this work, we are interested in the nucleation processes close to the coexistence line
where the chemical potential difference Ap (Sec. 2.4) is small and where the attach-
ment rate of the growth units is low. At these conditions, the crystallization of the
system can be a result of only one crystalline supernucleus 70|, and the mononuclear
crystallization mechanisms can directly be investigated.

However, a small supersaturation Ayp implies a high energy barrier AG* towards
crystallization, which means that the growth of a cluster until its critical size is a rare
event.

In general, a rare event is defined as an event which is short compared to its waiting
time (Fig. 2.10). In conventional brute-force computer simulations or in experiments
we therefore mainly observe the uninteresting waiting time of the system, without
observing the fluctuation-driven event itself. If the event is observed by chance, we
wouldn’t be able to perform a statistical analysis. For the experiments this would
mean to wait several years for the event, and in simulations we would calculate useless
trajectories where the main effort is spent in calculating the interactions in the system
without sampling the event.
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Figure 2.10: Rare event illustration: If the waiting time is much longer than the event
itself, the event is difficult to access in experiments and simulations.

2.5.1 Simulating rare events

Recently, a lot of rare event sampling methods have been invented to reduce the
amount of unnecessary trajectories'®, e.g. umbrella sampling [18, 19], Bennett - Chan-
dler methods [20, 21, 19|, transition path sampling [22, 23, 24|, transition interface
sampling (27, 28, 29|, milestoning [30, 31, 32|, nudged elastic band [33, 34], string
methods [35, 36|, weighted-ensemble methods [37], non-equilibrium umbrella sampling
and ‘splitting’-type methods [39, 40, 41, 42, 43, 44, 45, 46, 47, 48|, where the overall
calculation can be split up in many path fragments.

Thereby, the applicability of a method depends on the physics of the system and
the research interest, because the methods are only applicable for certain ensembles
and aim for extracting different observables from the simulations. For this work, we
use the Forward Flux Sampling method [39, 40, 42].

2.5.2 Forward Flux Sampling

Forward Flux Sampling (FFS) is suited to simulate quasi-static systems with stochas-
tic dynamics in equilibrium or non-equilibrium without knowing the phase space den-
sity [42]| and is therefore applicable to the crystallization of charged macromolecules,
where we advance from a metastable state A to a final (stable) state B in phase space
and do not have information about the intermediate states in phase space. With FFS
simulations the transition rate from A to B can be directly obtained as well as the
successful pathways of the system.

To perform such a task, FFS uses an order parameter A to measure the progress
towards the final state. This order parameter is expected to grow monotonously in
positive B direction. The way from A to B is then partitioned by a set of non-
intersecting interfaces defined at specific values \;, where 7 is the interface index and
Ao = A4 is the border of state A, and A\, = Ap is the border of state B, respectively.
The system is in state A, if A < A4 and in state B, if A > Apg.

16Unnecessary’ in this sense means, that we gain no new information from the trajectories of the
system when it is only in the initial state, because we are interested in the transition dynamics
to the final state and the corresponding pathways.
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The transition rate in this scheme is given as
kap = ®Pp, (2.64)

where ® is the so-called escape flux, the flux of trajectories leaving A. Pg is the
probability that a trajectory which has successfully left the initial state A manages it
to make it to the final state B without returning to A, crossing all successive interfaces.
Thereby, Pg is split by the interfaces,

P =[] (2.65)

With the help of the above interfaces the system can be driven from state A to state
B using a certain algorithm, which is also suited to calculate ® and Pg. Here, we
use the direct FFS algorithm, another possibility would be e.g. the branched growth
algorithm [42, 39, 48|.

The direct FFS algorithm (DFFS)

The direct FFS algorithm is used to populate the scheme with the set of interfaces
A; described above in an efficient way, like illustrated in Fig. 2.11. The first step is
to launch a conventional MD simulation run with a random generated configuration
point from the initial state A with A\ < A4. Every time, the simulation run crosses A4
in positive B direction, a configuration point is stored at A4 (see also the numbered
dots in Fig. 2.11). The escape flux ® is then given by

o = %, (2.66)
t
where Ny is the number of collected points at Ay during the simulation time t of the
whole initial MD run. If the system enters the final state B during this run, the
trajectory is continued at a random, equilibrated point of A.

In a second step, a random configuration point is chosen from the set of previously
collected points which serves as starting point for a new trial trajectory. This trajec-
tory can either fall back to A (failure), or reach the next interface A;;; (success). The
conditional probability p; from \; to A\, is then given as

pi = p(haal) = 37 (2.67)
where M, is the number of successful runs and M the number of total trial runs
launched. Note, that p; is the probability to reach interface \;11, hence pqy is the
probability to reach A\;. This second step is now repeated for each interface ¢ in an
iterative way until the final state B is reached and Pg can be calculated via Eq. (2.65).

30



2.5 Rare events

A3 An

Figure 2.11: Hlustration of the DFFS algorithm, schematic view. An initial MD simu-
lation run is started at a random configuration from state A (red dashed
line). When \q is crossed in positive B direction a configuration point of
the system is stored (serially numbered dots). In a second step, trial runs
(blue solid lines) are started at the collected set of points which either
reach the next interface \;; or fall back to A. This procedure populates
the whole sampling scheme from A to B.

In the post-processing, successful transition trajectories can be obtained from the
collection of trajectories by backtracking the runs starting at Ap.

We remark, that FFS is not a panacea for every rare event problem. E.g. it has
been demonstrated, that FFS can fail concerning the calculation of the rate constant
if there is a slower component of the reaction coordinate in one dimension than in the
other [84, 85|, or if the folding pathways in protein simulations are not fully sampled,
because the system does not explore the complete phase space in such problems [86].
Therefore, the sampling of the phase space should be ergodic at A;. In contrast to the
previous examples, FFS has been applied successfully for a lot of problems, including
crystallization problems, and has also been compared to brute-force simulations [42,
39, 87, 88, 89, 90].

Efficiency of an FFS simulation

The efficiency of an FFS simulation is a balance of computational cost and statistical
error [42, 48, 41, 45, 44]. A high computational cost C and a high statistical error V
lead to a low efficiency

— 2.
£ 5 (2.68)
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Estimates for C and )V can be obtained analytically by modeling the FFS method as
Bernoulli experiment, where trials have the values ‘success’ and ‘failure’” [41]. The
computational cost C can be approximated via [41]

n—1
C=NoR+> MC; (2.69)
=0
with the cost for a trial run
Ci = S[pi(Niv1 — X)) — @i(Ni — Aa)], (2.70)

the number of interfaces n, ¢; = 1 — p;, the cost of generating a configuration R and
the fitting constant S. Note, that the computational cost is measured in simulation
steps. For the statistical error one obtains [41]

V%i (1_?"). (2.71)

It has been shown that Eq. (2.71) can be minimized for fixed n, {M;} and Pg by
choosing interface positions \; such that M;p; is equal for all interfaces [91, 48|, which
results in a constant net flux across the interfaces. Here, in the hypothetical model
we keep it at a fixed number. Note, that Pg is determined by the underlying physics
of a real system, e.g. by the height of an energy barrier. A measurement function f;
for a constant net flux is [91, 92]

i—1
o logpi .= ;
f= —Zg;g SPim=p_* (2.72)
ijo log p; n

which is linear at a constant net flux p; = p when plotted against the interface index
t. Using this function f; the interface positions can be corrected after the analysis of
a complete FFS simulation run. In this work we don’t use this function to adapt the
interface positions after our simulation, but we will use it later as a measurement of
the ‘quality’ of an interface set, which we determine on-the-fly.

2.5.3 Stationary distributions and energy landscapes

With the previously discussed FFS sampling scheme, the stationary distribution and
the energy landscape against the order parameter can be calculated by monitoring
the whole distribution during a forward (state A to state B) and a backward (B
to A) FFS simulation run [43] and weighting this distribution by the corresponding
interface transition probabilities p;. In general, this method is possible for systems

I7We assume, that the trials are not correlated.
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where FFS can be applied. Thus, equilibrium and non-equilibrium systems can be
tackled. However, in practice the simulation must be realized for the forward and the
backward reaction, which can sometimes be difficult, e.g. a crystal must be dissolved
again in the backward run. In contrast, for problems like a 1D particle in a symmetric
potential it is sufficient to use only one direction because of the symmetry of the
problem.

Stationary distributions

In this section, we follow Ref. [43]|. In a brute-force simulation, the stationary distri-
bution p(q) can easily be obtained in the states A and B by just letting the simulation
run and by monitoring the order parameter ¢ during this run.

However, in the ‘barrier’ region the sampling is poor because the system stays
there from very shortly to never!®. With FFS, the system is guided through this
barrier region and statistics can be obtained for this part in a forward and backward
simulation. Therefore, we partition p(q) in two contributions for the forward (A) and

backward (B) FFS run,
p(q) = Valq) + ¥p(q). (2.73)

This means, that we must now calculate the two contributions ¥ 4(q) and Vg(q):

Wa(q) = pa®ati(g; M), (2.74)
Up(q) = pePB7_(q; An), (2.75)

with the probability p4 (pp) that the system is in A (B) and the escape flux ®4
(®p) (see also Sec. 2.5.2). The factor 7, (q; \g) is determined by the time which the
trajectories remain at a certain q,

n—1 i—1
(g3 2) = mi(gi do) + D mi (g N) [ POyl M), (2.76)
i=1 j=0

where the transition probabilities P(A;41|);) for each interface \; are directly obtained
from the FFS simulation like described in Sec. 2.5.2, which reweight the distribu-
tion 7(q; A;) in this case. 7, (g;\;) is obtained from the simulations via 7, (q; \;) =
N,/(AqM;) with the number of trials M;, the order parameter distribution binning
width Aq and a counter IV, for a value of ¢ between ¢ and ¢ + Ag.

The factor 7_(g; \,,) of the backward reaction is calculated as follows:

T(q; An) = 7 (g5 An) + Z (g \) H P(Aj-alAy), (2.77)

8Here, ‘never’ means that the system is not observed at a certain barrier region position during
feasible brute-force simulation time.
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where all quantities are now calculated from the backward simulation. For further
details, refer to [43]. What is left in our calculations are the quantities p4 and pp
which have the relation

pakap = ppkpa, (2.78)

in the steady-state with the transition rates k4p and k4. Furthermore, in a system
with two states A and B and with a low visited barrier region in between, po+pp =~ 1,
and hence

kpa/kap

_ _Fmalkap 2.79

ba 1+ kpa/kap (2.79)
! (2.80)

PB = 1+k’BA/kAB. .

The free energy profile AG can then be approximated for equilibrium systems via
AG ~ —kgTlog [p(q)], (2.81)

where p(q) is calculated with the forward and backward FFS simulations according to
Eq. (2.73).
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sampling

This chapter is the first part of the results, where we extend the sampling methods
and describe our optimizations of the Forward Flux Sampling method. Without these
extensions it wouldn’t have been possible to address the crystallization of charged
macromolecules under the conditions which are interesting for us.

The first part of this chapter is about the results of the implementation of FFS in
the context of the Science Experimental Grid Laboratory (SEGL)! for the usage of
FFS on high performance computing hardware, which is based on the computational
physics part of our collaborative article [93].

The second part is about the general parallelization of the Forward Flux Sampling
algorithm, because this algorithm is only described in its serial representation in the
FFS literature. We used some tricks in the first part of this chapter to use FFS on
high performance computing hardware. Rare event simulations are computationally
demanding in the usual case, therefore the serial implementation does not lead to a
result in available computing time like in our case.

The last part of this chapter, which addresses the optimized interface placement
to increase the efficiency tremendously in FFS simulations, is mainly based on our
article [94] with additional information which has become available during application
of the methods since the article was published.

e Yevgen Dorozhko, Kai Kratzer, Yuriy Yudin, Axel Arnold, Colin W. Glass and
Michael Resch. — Rare Event Sampling using the Science Experimental Grid
Laboratory. Civil-Comp. CC2013/2013/00402 (2013).

e Kai Kratzer, Axel Arnold, Rosalind J. Allen — Automatic, optimized interface
placement in forward flux sampling simulations. J. Chem. Phys. 138, 164112
(2013),

!SEGL is developed at the HLRS Stuttgart, http://segl.hlrs.de
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3.1 Using FFS on high performance computing
hardware

In this chapter we use the Science Experimental Grid Laboratory (SEGL) |95, 96, 97|
for running FFS on high performance computing hardware. SEGL is a tool which
manages the workflow and dataflow of a simulation and is therefore suited for FFS
simulations. In our simulations, the sampling algorithm is described as a workflow,
and the storage and selection of configuration points is handled by the dataflow tools.
For our intention, an important requirement is the selection of a configuration point
at random from the dataspace of the last FFS interface, which has been extra imple-
mented for our purpose by the SEGL group. The great advantage of such a tool is,
that the user must not be concerned about the technical details of the implementation
of the workflow and dataflow at a certain high performance computing facility, this is
performed by SEGL, and the user’s experiment can be implemented on a higher level,
comparable to e.g. LabVIEW?2,

As the parallelization of the escape flux ® of the FFS simulation was unclear at this
stage (details will be discussed in Sec. 3.2), we generated the configurations on A4 by
one serial MD run which collected the desired number of configurations on A4.

The computation of the transition probabilities p; was performed in parallel by
starting a few hundred trial runs at once, e.g. if 1000 trials should be made, we fire
the trials in bunches of 5 x 200 trials, which means that 200 jobs are queued at once.
Note, that the duration of the runs is not known in an FFS simulation and this can
be a bottleneck in parallelization, but this couldn’t be handled in this context so far
and will also be discussed later.

The main workflow of the FFS method can be seen in Fig. 3.1. Further details of
the implementation of FFS into SEGL with the corresponding dataflow diagrams are
given in Ref. [93].

After the simulation run has completed, the simulation data which was produced
during the run can be post-processed. The total transition rate kyp = @[], p; can
then be calculated by extracting the escape flux @, from the first calculation stage.
Therefore, the number of configuration points on Ay in the dataspace is divided by
the simulation time which was accumulated in another dataspace of the escape flux
calculation block. The probabilities p; of the second stage are extracted by counting
the number of successful configuration snapshots in an interface dataspace and by
dividing by the number of total runs launched for this interface. This procedure is
repeated for each interface \;, respectively, leading to the complete set of p;.

To extract the successful reaction paths from the datasets we stored the tracking
information in the header of each datafile, in this case the name of the originating
snapshot. This is sufficient to build the tree of successful pathways.

2LabVIEW is a tool of National Instruments, which is widely used in the field of experimental
physics to steer experiments (http://www.ni.com/labview)
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EscapeFlux
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Figure 3.1: Control flow of the FFS method in SEGL: Circles denote start (s,S) and
end (e,E) points, where lower-case stands for a “SubExperiment” block.
The orange rectangles depict “Solver” blocks, where the main calculation
takes place. The “Arrived in B” block is a decision block for proceeding or
ending the simulation.

O

Now, we describe the physical problem which we simulated and present the simu-
lation results. This simulation problem will also be used for further test cases during
this work.

3.1.1 Single particle barrier crossing

We simulate a single particle undergoing Langevin dynamics in a 1D potential accord-
ing to the simulation description of Sec. 2.2.2.
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Figure 3.2: Single particle in a 1D potential (Eq. (3.1)) undergoing Langevin dynamics
(schematic in this image). For a high barrier, crossings from state A to
state B are rare events. We use FFS to push the particle over the barrier
using a series of interfaces (blue dashed lines) and calculate transition paths
and the transition rate kp.

Simulation details and order parameter

The potential with height h for this simulation is given by

h
U(z) = B [1 — cos (mx)]. (3.1)
Thereby, the order parameter A is simply the coordinate x, and a system snapshot is
given by the particle’s current position z and the current momentum p = mv with the
current velocity v and mass m = 1. Furthermore, we set the timestep 7 = 0.001, the
Boltzmann constant kg = 1, the temperature 7" = 1, and the friction £ = 1.

FFS setup

For the setup of FFS, we define the initial state A to be the minimum around z = 0
with A4 < 0.2 and the state B to be the minimum around = = 2 (Fig. 3.2), where the
final state is reached if A\ > 2.0. Note, that the location of \p is not very sensitive
in this case for the transition rate k4p, because if the barrier has been overcome, the
probability to reach the minimum around x = 2 is p = 1.0 if the barrier from A to
B is high compared to the energy of the particle. The barrier height can be tuned
via the parameter h, which we set to h = 10kgT in this example. This means that
the transition from A to B is a rare event because the barrier is about ten times
higher than the fluctuation energy of the particle. We use the FFS method to push
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Table 3.1: Interface positions for the 1D particle in a periodic potential. The interfaces
are mainly located at the steep ascent of the barrier with z < 1.
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Figure 3.3: (a) Plain histogram of the xz-coordinate distribution (not weighted) for the
FFS run including the escape flux, and a brute-force run with the same
number of simulation steps. The brute-force run is distributed in state
A and the FFS run has a distribution also in the barrier region towards
B. (b) Phase space plot of a part of the brute-force run (black) and one
successful FFS run (red) which manages to cross the interfaces (dashed
blue) and reaches B after crossing the barrier maximum (dashed orange).

the particle over the barrier with the help of a set of interfaces, in which the interfaces
are located mainly at the steep ascent of the barrier. An overview of the interface
locations is given in table 3.1.

3.1.2 Simulation results

Fig. 3.3(a) shows the histogram of the reaction coordinate distribution for the complete
FFS simulation and a conventional brute-force simulation with the same number of
simulation steps like the overall FF'S run. The histogram of the brute-force run is only
distributed around state A, where the particle was initially set up, and was not able
to leave this minimum within the simulated number of steps. For the FFS run, the
histogram is also distributed along the steep part of the energy barrier towards the
final state B.

Fig. 3.3(b) is a visualization of the brute-force run and a successful FFS trajectory
in phase space (x,p). Note that for better visibility only a part of the brute-force
run is shown. As expected, the brute-force run stays in region A with its momentum
fluctuating around zero because of the direction changes of the particle at the potential
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l 0 1 2 3 4 b} 6 7 8 9
pi | 0.324 | 0.245 | 0.253 | 0.199 | 0.227 | 0.267 | 0.385 | 0.603 | 0.864 | 0.917

Table 3.2: Conditional probabilities p; for each interface transition. By multiplying
these values, the overall transition probability from A4 to A\p is obtained,
Py = H?:o pi- Note, that an index of i addresses the transition (Ai1|\;).
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Figure 3.4: Selection of successful trajectories of the single particle barrier crossing
simulation. The runs are backtracked until the second last point before
finally escaping from A. The dots represent the configuration points on
the particular interfaces. Note, that trace 3 and 4 have the same escape
trace and split up later.

boundaries. The FFS trajectory is able to leave this basin by crossing the interfaces
until the barrier has been overcome.

From the FFS simulation we obtain the escape flux of trajectories leaving state A:
® = 0.42477!. The results of the particular interface transition probabilities p; are
given in table 3.2, which lead to Pp = H?:o p; = 4.455 x 107° The transition rate
kap = ®Ppg is then

kap =1.89 x 10777

for this simulation, which means that the average waiting time for a single crossing
event at barrier height h = 10kgT is 5.30 x 10*7 or 5.3 x 107 timesteps.

From the FF'S simulation we are also able to extract the successful transition path-
ways by backtracking the runs which reached B. We show this exemplarily in Fig. 3.4.
These successful runs can be used to study the physical transition dynamics, e.g. in
this case we see, that the runs gain momentum before they climb up the barrier by
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coming from highly negative x values at the left-hand side of basin A.

3.1.3 Discussion

The results of the last section have been obtained using FFS in the context of SEGL
on high performance computing hardware. Thereby, SEGL handled the complete
workflow and dataflow of the simulation. The advantage of this scheme is, that if all
the workflows are defined, the physical simulation can easily be exchanged with other
simulation codes without implementing FFS to the particular simulation code itself,
allowing to simulate different rare event problems with a low implementation effort.

In the simulation, trajectory fragments of the Pg calculation could be calculated
simultaneously by queuing and executing several jobs at once, which was also managed
by SEGL. However, as already mentioned above the duration of the runs in an FFS
simulation is a priori unknown. Therefore, an interface transition must be calculated
completely until the next configuration of the new interface can be drawn. This leads
to bottlenecks in the calculation in this synchronous parallelization scheme, where
e.g. only one job is still running but must complete to be able to advance to the next
calculation stage.

The presented scheme in this section is faster than the serial implementation any-
ways, but there are possibilities for further optimizations. We will now discuss the
parallelization of FF'S which leads then to a more complex workflow, as we will see.

3.2 Parallelization of FFS

To extend the serial implementation described in the FFS literature [42, 40] and to
optimize the synchronous parallel implementation of the Pp calculation (Sec. 3.1),
we are going to perform some considerations and tests in this section. FFS is split
up in the calculation of the escape flux ® and in the computation of the transition
probabilities p; and hence Pp to calculate the transition rate kap = ®Pp (see also
Sec. 2.5.2). We start with the parallelization of the escape flux ®.

3.2.1 Escape flux

In a serial FFS simulation, the first step is to start an initial MD simulation run in
A to calculate the escape flux ®. Every time the system crosses the border of A4 in
positive direction of B a configuration is stored. However, in a parallel simulation the
parallelization method of this task is unclear at first glance. In this section, we use
the 1D particle system of Sec. 3.1.1 to verify our considerations.

A first possibility would be to draw many configurations from state A in parallel
and simulate until A4 is reached. An extension to this would be to collect not only
one but Ny, points on A4 in each parallel run. The question is now, if this leads to
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Figure 3.5: Deviation 0P for the parallelization of the escape flux calculation by ending
the parallel runs if Ny, points are calculated on A4 for each trajectory. The
number of parallel runs is Ny/Np . The shaded area is the acceptable error
domain, determined by the mean error in the serial escape flux. Note, that
this is a systematic deviation because the fall-back time is not counted if
the runs are ended after having collected a configuration point.

the correct result of the escape flux ®, because we omit a part of the fall-back time
in both cases, which should be more severe in the former case, where only one point
is collected. Therefore, we performed a standard serial escape flux run and collect Ny
points to calculate a reference flux ®,.;. Then we distribute the collection of Ny points
to No/No,p parallel runs. The deviation §® of the parallel flux @y, , is then

®(Ny,) = [P0, = Brt] (3.2)
(I)ref

Fig. 3.5 shows this deviation for a total number of points Ny = 10000. Note, that this
graph is simulation specific, but as we use a generic simulation problem this can be
transferred to other simulation problems, too. We see, that if we collect only a small
number of points on A4 for each run, the escape flux deviates from the serial one.
This is simply due to the fact, that we do not account for the fall-back time of the
escape run, which is cropped if we end our runs after collecting a point on A4. This
error becomes smaller if we collect more points on 4. However, a small systematic
error remains, which vanishes in the natural fluctuations of the escape run for many
points. However, collecting many points means that depending on the number of
desired points the count of parallel runs can’t be that high any more. We also see
that the higher the energy barrier in the system, the higher is the error in the escape
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flux calculation on A4 if the same number of points is collected like at smaller energy
barrier heights. This implies, that at high energy barriers, a lot of points must be
collected to decrease the error in the escape flux ®.

This leads to another approach to calculate the escape flux ® in parallel, namely
by fixing the simulation length ¢, of the serial escape trajectory. In the next step, we
divide the desired length ¢, by the amount of parallel trajectories so that every client
calculates a total simulation time of ¢,. If t; = 10 one could e.g. simulate 100 x ¢,
with ¢, = 10* and use the collected points on A4 during this time. We suggest to
choose a length of ¢, such, that in most cases at least 1 point on A4 is visited during
this time®. The calculation time ¢, of these runs is added to the escape flux in any case,
even if no point is collected during such a run. With this procedure, we account for the
fall-back time as well which was not considered above. For this method, the number
of points on A4 is not exactly pre-determined in advance, since we have to finish
every run. But if we collect O(1000) points on A4 a deviation of a few points doesn’t
matter for the accuracy of the escape flux. We measure the deviation in this case with
0D(ty) = (|Ps, — Pref])/ Pret, where the reference escape flux has the same calculation
time as the added partial escape trajectories. Fig. 3.6 shows the result of this type of
simulation. The simulations have been performed for different energy barrier heights
but with the same order of configuration points on A4, O(1000). Therefore, ¢, was
adjusted for the different barrier heights to match the number Ny ~ 1000. We see,
that we should at least collect 1 configuration point on average for each escape trace
within its length ¢, to obtain a reasonable estimate for ®. This means, that if we
would like to calculate Ny =~ 1000 points on )y, it should be safe to spawn e.g. 100
clients with ¢, = ¢,/100.

3.2.2 Transition probabilities

For the transition probabilities p; in a serial simulation we would draw a configuration
point from the last calculated interface \;_; and simulate until we reach \; or fall
back to A4, then draw another point and so on, one by one. As long as we calculate
the same interface transition, this procedure is independent if carried out in parallel,
because we have to draw the points anyways, and it doesn’t matter if we perform that
in a series or simultaneously. Therefore, we are able to choose as many points as we
have parallel clients available and fire trial trajectories starting at the drawn points
from \;_; in parallel, while still trial trajectories are required.

However, there are drawbacks in this scheme. First, the duration of the runs is
unknown beforehand, because they are of stochastic nature and only ended if they
reach A4 or A\;11. Fig. 3.7 shows a distribution of run lengths for different interfaces
Ai. We see, that the run length per interface A\; can be very different and that there
can be a general trend for the run lengths of different interfaces, e.g. the main part

3This can be estimated by a short escape trajectory which calculates a few (e.g. O(10)) points.
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Figure 3.6: Deviation 0® for the escape flux with different partial run length ¢, of
the parallel runs, compared to a serial escape run with length ¢, = > ¢,.
Note, that there is a basic noise in the escape flux when repeating the
simulations, therefore the curves do not converge to 0, but the shaded area
denotes the acceptable error domain. For the different barrier heights, ¢
was chosen such that the same order of configuration points was collected
on A4, namely Ny =~ 1000. This leads to longer escape runs for higher
barriers to collect the same number of points. Note, that at least 1 config-
uration point should be collected per escape trace within ¢, in this case.

of the runs are longer for higher ¢ in this example. This arises from a steeper part
of the energy landscape at the beginning, where the runs quickly fall back to A4 and
therefore have a short duration. In contrast, at the top of the energy barrier the free
energy landscape is rather flat, leading to longer runs at these points.

For a synchronous parallelization scheme this is impossible to implement in an
efficient way, because we always have to wait for the last run. In Sec. 3.1 we have
performed these runs in bunches of e.g. 5 x 200 trial runs. However, we will always
have to wait for the last run of the interface set to be completed before advancing to
the next one, and in the worst case this is a long run which has a duration of e.g. 24
hours. Note, that it isn’t allowed to omit trajectories, e.g. aborting the calculation
if a certain number of points is collected on the new interface, because this wouldn’t
account for the information of longer runs. Hence, all runs which have been started
by drawing random configurations must be completed.

The aforementioned facts can lead to situations, where calculation clients in paral-
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Figure 3.7: Distribution of the duration of FFS runs per interface \; for a real FFS
simulation, measured in simulation time ¢ (7 = 0.01). The length of the
runs is unknown beforehand and differs at a certain interface as well as
for different interfaces, e.g. the main part of the runs are longer for a
higher interface number ¢ in this example. This must be considered for
parallelization.

lel simulations have to wait. In our case, we will steer the parallel simulation asyn-
chronously, which means that we start a new simulation run as soon as we have
calculation resources available, e.g. if a run is completed and the processing unit is
free again.

To bridge waiting times in our simulations we use pre-calculations on already col-
lected points if resources become available, so-called ‘ghost runs’, which will be de-
scribed in more detail in Sec. 4.2.1. Before that, we introduce the automatic, optimized
interface placement for FFS simulations which will be also implemented in this asyn-
chronous scheme.

3.3 FFS: Automatic, optimized interface placement

In FFS, the efficiency of the simulation depends sensitively on the location of the
interfaces, because statistical error ¥V and computational effort C depend on the in-
terface placement (see also Sec. 2.5.2). Until now, we only have mentioned that the
interface positions A\; can be adapted after the analysis of a complete FFS simulation
run. Borrero and Escobedo developed a procedure where the simulation is performed
with an initial (trial) set of interfaces and the positions of the interfaces are corrected
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3 Parallel and optimized rare event sampling

afterwards in an iterative way [91, 92|. However, if the simulation is not even able to
complete with such a trial interface set because of a very high energy barrier within
the unknown energy landscape and of the simulation being expensive itself (e.g. due
to electrostatic interactions like in our case), this strategy can’t be applied, therefore
the first interface set should be already reasonably optimal.

In this section, we present two alternative methods for determining an optimized set
of interfaces automatically and adaptively. These methods can be applied on-the-fly
during the simulation run, without knowledge of the underlying energy landscape of
the system and without user intervention.

The methods which we developed allow the FFS simulation to progress efficiently
through phase space while placing more interfaces in bottleneck regions with the aim of
a constant net flux across all interfaces. We will now present the theoretical arguments
which are the fundament of the methods. Then, we introduce the methods for the in-
terface placement and discuss the operation scenarios and advantages of each method.
Finally, we demonstrate the applicability and performance with two examples, a single-
particle test problem and for a computationally demanding crystallization problem of
Yukawa particles and then, we draw our conclusions.

3.3.1 Theoretical arguments and optimization principles

While setting up an FFS simulation, the question of the optimal interface positions
arises. Interfaces are placed arbitrarily in many cases, or according to an already
known underlying energy landscape, e.g. if one knows where the potential is steep,
more interfaces can be placed at these parts. However, if the interfaces are placed
with a too large spacing, the probability of advancement will be very low, and many
trial runs will be wasted because they do not reach the next interface, e.g. firing 1000
trials with 1 successful trial thereof would result in a high computational effort and a
high statistical error. In contrast, if the interfaces are placed very close, trajectories
can be correlated between the particular interfaces which leads to a bad statistics and
little new information can be obtained from this.

Optimal transition probability

Our goal is now to find the optimal transition probability p which maximizes the
efficiency &£(p), assuming that the transition probability is the same for all interfaces,
pi = p. Note, that in contrast to Borrero and Escobedo [91], the number of interfaces
n is not fixed in our case, but determined for our hypothetical rare event problem from

IOgPB
n =
log p

(3.3)
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which follows from Eq. (2.65). The computational efficiency is now dependent on p,

1

E(p) = W (3.4)

We have now to calculate C(p) and V(p) to determine the dependence of the efficiency
on p. Assuming that the number of trials M is the same for each interface we can
write

C(p) = NoR+ M i Ci(p) (3.5)
where s :
Cim —fp+i(l —p)], (3.6)

with the proportionality constant S/n where S is the cost of a trajectory from A to
B. For details refer to [94]. With Eq. (3.5) and Eq. (3.6) we obtain

Cw)~ MR+ TN i1~ p)
Skz’zl (3.7)
= N, (R + 5 [2p(n = 1) +n(n — (1 - p)])

where k = M/Ny. Applying Eq. (3.3) leads to

Ny
= ————[2Rlog Pglogp + Sk(3plog Py lo
2logplogPB[ &1 I08D (8plog P log p (3.8)

+ log Pg? — plog Pg?—2 log p* — log Pp log p)].

C(p)

The statistical error is obtained straight forward from Eq. (2.71) with p; = p and

Mz’ = M:
V(p) = Mip(n —-1)(1-p) = (}Vo_k? <1(1)§g};9 — 1) : (3.9)

Eq. (3.8) and Eq. (3.9) can be combined via Eq. (3.4) to

E(p) = (2kplog Pglog p*)[(p — 1)(log P — log p)(log Py log p(Sk(1 — 3p) — 2R)
+ Sklog Pg*(p — 1) + 2Skplog p*)] !
(3.10)

Fig. 3.8 shows the trend of £(p) for p in the range (0, 1) for a hypothetical rare event
simulation with Ny = 100, M = 200 and various values of R, S and Pg. The trend
of £(p) is a balance of C(p) and V(p), where the former one increases with a higher
transition probability p and hence more interfaces, and the latter one decreases with
more interfaces at higher p.
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Figure 3.8: Analytical prediction for the efficiency £(p) (Eq. (3.10)) of a hypothetical
rare event simulation (for details see main text). The insets show the
predicted computational cost C(p) (Eq. (3.8)) and statistical error V(p)
(Eq. (3.9)) which contribute to £(p). The efficiency is rather insensitive
over a broad range. However, very low values of p should be avoided.

We find, that low values of p (in this case p < 0.2) should be avoided for a good
efficiency, but that the efficiency is high in a broad range otherwise. In our case for
the hypothetical rare event problem there exists a weak maximum at a certain p.
The upper limit for p should be set at a minimal interface distance where trajectories
are still able to decorrelate, we will address this later. From these considerations we
suggest to choose a value of 0.3 < p < 0.7 as a rule of thumb, which can be corrected if
more detailed knowledge about the particular simulation like decorrelation information
is available.

Note, that p = 0 would mean that no run reaches the next interface, therefore the
interfaces should be placed with an infinite distance which can’t be achieved between
Aa and Ag. In addition, Eq. (3.3) is not defined for p = 0. On the other hand,
p = 1 would mean an infinitely large number of interfaces, because every run should
be successful then. In Eq. (3.3) this would be a division by zero.

3.3.2 On-the-fly interface placement algorithms

We now introduce two algorithms to determine the interface positions on-the-fly dur-
ing the simulation in the context of a desired target transition probability p. The
algorithms start at the last known interface position A;, which is in the most basic
case the border of state A at A4, which implies that no interface must be defined by
the user when setting up an FFS simulation. Only A4 and the border of state B, g,
as well as a target probability (range) of the desired values of p and a minimal distance
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between the interfaces to avoid correlations must be defined. Note, that with these
methods, the number n of total interfaces is automatically determined by the choice
of p.

Interfaces are placed in an iterative way, e.g. starting from A4 = A, the interface
position \; is determined, next the simulation for the transition (A1|\g) is carried out,
then the interface position ), is determined, and so on. The stop criterion is reached
if the new interface position would be A\;y; > A\, = Ap.

To estimate the transition probability p for placing an interface at an optimized
location A;11, a small number of trial runs are fired for both algorithms. From the
outcome of these ‘exploratory’ trajectories, the dependence of A\;;; on p can be deter-
mined. The difference of the algorithms is the way how these trial runs are performed
and how the extracted information is used.

3.3.3 Trial interface method

For the “trial interface” method we allow the transition probability p to be in a cer-
tain range, pmin < P < Pmax, Which can be specified by the user according to the
requirements of the simulation. To obtain the desired transition probability we place
a trial interface at the position a1, fire a few number of trial runs and shift the trial
interface according to the outcome of these trial runs until the estimated probability
Pest Obtained by this procedure lies in the desired range of p. The algorithm of the
“trial interface” method is visualized in Fig. 3.9.

Algorithm

Starting at the last known interface A; the trial interface algorithm proceeds in the
following way:

1. Begin with a trial interface position A, as a candidate for the next interface
Air1 with \; < Agia1 < Ap. This initial position is dependent on the simulation
problem and could be e.g. Agia = Aj +b X (Ap — Aa), where 0.01 < b < 0.1, or
another first guess can be for example Ay = A + (A — Ai1).

2. Launch M;,;, trial runs starting from configurations at the last known interface
Ai. The abort criterion is the same like in the standard FFS method, the runs
are terminated on the next interface which is A in this case or if they fall
back to A4. Miyia should be much smaller than the number of trials for the real
simulation. However, note that the resolution of the estimate depends on this
number, e.g. if 10 trials are fired the resolution for pges is 0.1.

3. Calculate pesy = Ns/Miyia with the number of successful trajectories Ng which
reached Agiq-
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Figure 3.9: Visualization of the “trial interface” method, schematic. A small number of
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trial runs are launched from the last known interface position \; to estimate
the probability pes; to reach a trial interface at Ayja. In this illustration,
two runs (red arrows) reach the interface and two runs (blue arrows) fall
back to A, hence pesty = 0.5. The trial interface position is varied according
to Eq. (3.11) or accepted if peg is in the desired range.

4. If prin < Pest < Pmax, the trial interface position can be accepted. Otherwise, a

new trial interface position must be chosen via
/\trial7 new — Atrial, old T /\stepApa (311)
with
est — FMmax 1f es > max
Ap = (Dest — Pmax) H pesi > p (3.12)
(pest - pmin) lf DPest < Pmin-

Then, the procedure of firing trial runs and checking the estimate peg; is repeated
until peg is in the desired range. If Ayial, new < Ai + dinin, 5€t Agrial = Ai + dmin.
The above mentioned distance d,;, is the minimal interface distance which makes
sense in the simulation, e.g. to avoid correlations between the trajectories. If
)\trial, new = )\B set )\trial = )\B-

. Set the next interface position A\;y1 = Agral-

. Proceed with the real simulation by firing the whole M trajectories to A\;11 to

calculate p; and to collect a new set of configuration points on A; ;. The previous
trajectories to this new interface can be included in the number of M trial runs.
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Parameters and minimal distance

For this algorithm the parameters specified by the user are pyi, and pnax, the adjust-
ment step width Agep, the number of trial runs M, for the estimation of pey, and the
minimal interface spacing distance d,;,. This minimal distance d,,;, depends on the
system’s dynamics, e.g. a trajectory should not be able to cross several interfaces at
once in positive B direction. In addition, d,;, should be at least 1 for systems with a
discrete order parameter. It is also possible to determine d,.;, for each new interface
position by performing a short study of the systems dynamics, because this can be
dependent on the current state in phase space.

A good guideline for the minimal distance is the maximal fluctuation of the order
parameter at a certain stage of the FFS scheme. Furthermore, runs usually do not end
on the exact value of \;, because the stop criterion is A > \;, which means that runs are
able to overshoot the current interface position, depending on the fluctuations of the
order parameter (which is also related to the timestep of the simulation). Therefore,
it can be a good idea to use at least the maximal value of the order parameter on the
last known interface minus the interface location itself as a minimal distance diy,.

The interface shifting criterion of point 4 in the algorithm is expected to work for
systems with a steep energy barrier at the beginning, like in our case the crystallization
problem. However, it can be flexibly exchanged with other rules which fit the simulated
system, e.g. if the system has a flatter barrier it could be useful to use a bisectional
scheme, where the trial interface A, is placed in the middle of the last known interface
A; and the border of the final state Ag. Then the interfaces are placed not that close at
the beginning. The shifting can then also be applied according to a bisection by placing
the next A between either Ay and A; or Agia and Ag. Note, that depending on
the system setup (e.g. if state B is far away), the trial interface Ay, could be placed
too far apart at the first iteration of the placement algorithm in this case.

Pros and cons of the trial interface method

The great advantage of the trial interface method is, that it works like an original FF'S
simulation, e.g. runs are fired to a new interface position, which is A, in this case,
and aborted if the interface position is reached or the runs fall back to A. Therefore,
only minor modifications must be made to an already available FFS setup, because
the method is conceptually simple. From the computational side the advantage is,
that trajectories which are fired to the final accepted interface can be reused directly
for the real simulation run to calculate the transition probability.

A drawback of the method is the already discussed step 4 of the algorithm above.
If the first estimate of Aja is not chosen adequately, the algorithm may need some
iterations to find the new interface position \; 1, and therefore preliminary tests should
be made to find a good concept for the particular simulation setup.

We advance now to the “exploring scouts” method, where this challenge is avoided,
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Figure 3.10: Visualization of the “exploring scouts” method. A small number of trial
runs are launched from the last known interface position \; while moni-
toring their distribution of the order parameter A\. The abort criteria are
either to reach A4 (blue arrows), A\g (red arrow) or a user-defined max-
imum number of calculation steps (orange arrow). Then the particular
maximum values of \ are reported (depicted by circles in the illustration),
which are used to determine the new interface position (e.g. p = 0.75 for
i1 in this case).

but more settings of the FF'S setup must be changed.

3.3.4 Exploring scouts method

The “exploring scouts” method is also based on firing a small number M,;, of trial runs
from the last known interface position )\;. However, we do not place a trial interface
in this algorithm, the runs are just performed while monitoring the distribution of the
order parameter A\. The runs are aborted if they either reach A4, Ap, or a maximum
number of calculation steps are performed. This maximum number is defined by
the user according to the simulation problem. From these “exploring scouts” the
probability of reaching a certain value of A is obtained, which can be used to place the
new interface \;. Fig. 3.10 gives a schematic overview of the algorithm. The maximum
value of the distribution of A from each run is used to position the interface such that
the transition probability p for the new interface position is close to a desired value
Pdes (Which could be the arithmetic average of the acceptable probability range like
used for the trial interface method).
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Algorithm

From a last known interface \; the exploring scouts algorithm proceeds in the following
way:

1. Launch M, trial runs starting at the configurations of the last known interface
A;. The trial runs are completed, if A4 or Ag are reached, or if a maximum
number of calculation steps mpy., are performed. Store the maximum values of
the order parameter A for each run.

2. Store all maximum values of the trajectories in a ranked list with an index k for
(k+1)

each trajectory in the range 0 < k < M;ya1, With )\I(fgx < Amax -

3. Compute the index of the maximum value which is closest to the desired tran-
sition probability value, kges = |Mirial(1 — paes)]- The position of the next
interface can then be set to ;11 = AEﬁ;;s). If the new value ;11 < A\; + dpin, set
Ait1 = A + dmin (Where dy,;, is the minimal interface distance like in the trial

interface method).

4. Continue with the standard FFS simulation by firing the complete M trials to
Air1 to obtain the real transition probability and a new set of configuration
points on A 1.

Note, that for entry k in the ranked list*, k exploring scouts fail to reach AR
and M. — k scouts reach at least Aﬁffgx or higher values. In the description of the
algorithm above, we choose the value of the | Miyja1(1 — pges) |-th entry which is stored
in the ranked list as the new interface position \; ;. However, one could also think of
more advanced selecting algorithms, e.g. by interpolating between the values in the
ranked list for the new interface position. In most cases this should not be necessary
because the real transition probability will be slightly different from the estimated
value in this algorithm anyway.

Parameters

For the minimal distance d,,;, the same rules from the trial interface method like
described above are valid. Further parameters in the exploring scouts method are the
desired target probability pqes, the number of exploring scouts M;,;, and the maximum
number of simulation steps for a trial trajectory mmya,. This number should be chosen
such that enough information can be gained from an exploring scout. If my., is set
too low, values of larger A won'’t probably be explored, and the new interface \;;; will
be placed too close at the last interface A;. In contrast, if m.x is chosen too large, the
algorithm could become computationally expensive, e.g. if runs are not able to reach
A4 or Ag within this number of steps, the full number of steps must be calculated.

4k runs from zero to Miya — 1
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Pros and cons of the exploring scouts method

The great advantage of the exploring scouts method is the fact that it is already
predetermined how many trial runs will be required to determine the new interface
position \;;1, because we only need the information of the maximum values of the order
parameter which were reached during these runs to place the interface. In addition,
the number of parameters which must be specified for this placement method is lower
than in the trial interface method. A rather technical drawback is, that the exploring
scouts method requires more modifications to a standard FFS simulation, because the
distribution of the order parameter A has to be monitored and the maximum values
must be reported by the runs.

3.3.5 Examples

In the following examples we demonstrate the application of the interface placement
methods with two examples. First, we present the results of a fundamental problem,
namely a single particle moving according to Langevin dynamics (see also Sec. 2.2) in
a 1D potential with an energy barrier towards state B. In this example, we also verify
the analytical predictions for the efficiency (see also Sec. 3.3.1) by simulations. In the
second example, we apply the algorithms to the crystallization of Yukawa particles to
demonstrate the usage of the interface placement in a ‘real’ system.

1D particle in a potential with an energy barrier towards B

In this section we use the same particle system like described in Sec. 3.1.1 with the
potential U(z) = (h/2)[1 — cos (wz)] which has two minima in the z-range [—1, 3],
but this time with a barrier height of h = 12kgT at x = 1. For a visualization of the
potential U(x) and the simulation problem see also Fig. 3.2. Like in Sec. 3.1.1, we set
the border of the states A and B at A4 = 0.2 and Ag = 2.0. For the simulation we set
kp=1,T=1 m=1,dt =0.001, £ =1 and as order parameter we set A = x.

In contrast to the problem in Sec. 3.1.1, we do not define interface positions \;,
but use our algorithms to determine the optimized locations. Therefore, we perform
DFFS simulations in combination with our methods. The common parameters for the
methods are the number of trial runs M, = 50, the number of real runs M = 500,
the number of runs for A4 Ny = 250 and the minimal interface distance d,,;, = 0.01.
For the trial interface method we set the acceptance range for p to [0.4,0.6] and the
first trial interface position is calculated via

A+ 0.1(A — \i). (3.13)

For the exploring scouts method we use a desired target probability of pges = 0.5 and
a maximum number of simulation steps for the exploratory runs of m ., = 1000.
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Figure 3.11: Interface locations \; and transition probabilities p; (inset) as a function
of i, determined by the trial interface and exploring scouts method in the
single particle simulation. The main part of the interfaces is located at
the left-hand side of the barrier with \; < 1 and the probabilities p; are
distributed around the desired value of pges = 0.5.

The interface positions A; which have been found by both our algorithms are shown
in the main plot of Fig. 3.11 as well as the transition probabilities p;. We find, that
the bulk of interfaces is located at the ascent domain of the barrier until the top of
the barrier. This is a result of the constant flux requirement where it is necessary to
place more interfaces at bottlenecks like the steep part of the potential. Therefore,
these methods can be used for a hint, where the top of the barrier is approximately
located.

In both methods, the transition probabilities p; are distributed in the accepted
domain and around the desired value pqes, respectively. The last probabilities are
slightly higher because the steep part of the barrier has been left behind for these
transitions.

Fig. 3.12 shows the reference functions f; for constant flux (Eq. (2.72)) for the trial
interface and the exploring scouts method. We see, that the trend of f; is nearly linear
in both cases, which means that the interfaces have been placed close to optimal, and
further optimizations are not required. Note, that there are statistical fluctuations in
the probabilities and therefore they can’t be exactly linear.

As we have seen, we are able to obtain a certain transition probability p auto-
matically according to our specification. This can be used to verify the analytical
predictions of the p-dependent quantities which we derived above, e.g. the efficiency
E(p) of an FFS simulation. To this aim, we use the exploring scouts method and vary
the target probability pges in the range [0.05,0.95], which means the method has to
place a very low number of interfaces at pges = 0.05 and a very large number of inter-
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Figure 3.12: Reference function f; (Eq. (2.72)) for constant net flux of the automatic
interface placement methods. The dashed lines would be the optimal
case where f; = i/n. Note, that depending on the fluctuations of p, the
number of interfaces n can differ.

faces at pges to obtain these probabilities. For a good accuracy we set Ny = 3000 and
M = 1000. In the simulation we measure the computational cost C(p) in simulation
steps and the statistical error V in the rate to obtain £(p) (Eq. (3.4)).

Fig. 3.13 shows the comparison of the result of this simulation to the analytical
prediction of £(p) (Eq. (3.10)). For the comparison we used Pg = 1.36 x 10~ which
was obtained from our simulations. The parameters R = 1.60x 107 and S = 1.39 x 107
in simulation steps were obtained by fitting the function of the computational cost C
(Eq. (3.8)) of the hypothetical rare event problem to the simulation data.

As we can see, the results of the simulations are in good agreement with our ana-
lytical calculations, which shows that the transition probability p can indeed be used
as tuning parameter and is related to the efficiency. Note, that we obtained the same
Pg within the error range in our FFS simulations for a different number of interfaces
n, which emphasizes the applicability of FFS.

Crystallization of Yukawa particles

With our analytical model for the efficiency of an FFS simulation confirmed and
with having the placement methods tested on a fundamental problem in the sec-
tion before, we move now on to a ‘real’ simulation problem, namely by applying the
methods to crystallization simulations using the model of charged macromolecules like
described in Sec. 2.3.2, where we use a combination of Yukawa potential and Weeks-
Chandler-Andersen (WCA) potential, U(r) = Uyvukawa() + Uwca(r) (see Eq. (2.32)
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Figure 3.13: Comparison of the simulation results for £(p) with the analytical cal-
culation (Eq. (3.10)), obtained with the single particle simulations and
Pg = 1.36 x 1075, R = 1.60 x 107 and S = 1.39 x 10". Thereby, the
automatic placement method placed between 3 (for p = 0.05) and 671
(for p = 0.95) interfaces.

and Eq. (2.33)).

For this simulation, we use the values of the Yukawa potential ¢ = 8 and the inverse
screening length x = 5 at a pressure of P = 38. We perform our MD simulations
using ESPResSo [17] with 4096 WCA-Yukawa particles in a 3D box with periodic
boundaries in an NPT ensemble and Langevin dynamics®. We use our parallel FFS
algorithm in the context of the rare event sampling framework FRESHS [98].

With the parameters for the simulation above, the crystallization is already a rare
event, and setting up an FFS simulation is difficult because of the unknown underlying
energy landscape, e.g. we do not know the size of the critical cluster from which the
crystal grows spontaneously. Therefore, we do not know where to place the main
portion of the interfaces. Even with 100 evenly spaced interfaces \; between A4 and
Ap this can lead to situations where no single trial of thousand succeeds.

The state A of our system is the liquid phase of the system® where the order
parameter, which is the number of solid particles in the largest cluster like described
in Sec. 2.4.3, is A < 15. The final state B of the system is located at A\g = 3700,
which means that more than 90% of the particles are part of the largest cluster. We
collect Ny = 80 configuration points on A4 and use M = 50 trial runs per interface.

®The Langevin dynamics includes stochastic fluctuations in the system, which ensures different
paths in FFS.

6The liquid phase is created by randomly set up the particles in the 3D box and equilibrating the
system (first with a capped potential, see also the user’s guide from [17]) and verifying the size
of the solid clusters in the system.
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With these settings, we use FFS to perform the transition from A to B, and hence,
crystallize the system. We use the following schemata to place the interfaces:

(i) manual placement of the interfaces by hand, using an initial interface set with
fixed distances A\ of the order parameter, e.g. A\ = 30 and then moving the
interfaces closer if the transition does not succeed,

(ii) manual placement in a logarithmic way, because as a pre-knowledge we assume
that we have to place more interfaces at the beginning to build up a cluster until
the critical size,

(iii) automatic placement with the trial interface method,
(iv) automatic placement with the exploring scouts method.

With these schemata we are able to compare the quality of our automatic placement
methods with conventional (manual) FFS simulation setups, which are used by many
other groups to perform their FFS simulations. As a measure of quality, which is
determined by a constant net flux across the interfaces (see also Sec. 2.5.2) we use the
function f; (Eq. 2.72). Note, that in this section we are only interested in the interface
placement results, the crystallization of the system is analyzed in detail in chapter 6.

Fig. 3.14 shows a comparison of the interface positions \; of the manual placement
methods and the automatic placement methods. From a practical point of view,
the problem of placing the interfaces manual by hand (i) was that our simulations
are computationally expensive and we don’t know the underlying energy landscape.
Therefore, we had to interrupt the simulation when it didn’t advance several times
to adjust the interface placement, which turned out to be very painful on a high
performance computing machine. The result of this procedure was in our case a set
of interfaces where — depending of course on the initial set — the interfaces are placed
too far apart at the beginning which means a low fraction of successful runs and
unnecessary interfaces at the end, when the barrier has been overcome.

The manual logarithmic placement (ii) was performed with the knowledge of the
automatic placement methods and hence set up with a comparable number of interfaces
(n = 36) to be used as a reference. Thereby, the interface spacing was chosen to be
closer at the beginning because of the steep part of the energy barrier. The idea of
choosing a logarithmic set of interfaces was caused by the fact that the simulation
didn’t actually succeed with 100 evenly spaced interfaces between A4 and Apg.

The automatic placement methods (iii)+(iv) placed interfaces only at positions
where they are required, namely at the steep part (bottlenecks) of the barrier which is
closer to state A, e.g. in this case there is no intermediate interface beyond A = 1120.

Fig. 3.15 shows the corresponding functions f; and transition probabilities p; for each
case. For the manual placement scenarios (Fig. 3.15(a) and Fig. 3.15(b)) we obtain a
characteristics of f; which is not linear (this would be the dashed line in the figure),
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Figure 3.14: Interface positions of the different placement schemata (see main text).
By using method (i) by hand, the smallest number of interfaces was
placed. Method (ii) is the logarithmic case where more interfaces are
placed at the beginning. With automatic placement using (iii) trial in-
terface and (iv) exploring scouts, the larger portion of interfaces is placed
at the beginning until the critical cluster size has been overcome, then no
more interfaces are necessary for the spontaneous growth.

which means that the net flux across the interfaces is not constant. The associated
transition probabilities p; which are shown in the insets are far from equal because we
didn’t place enough interfaces in bottleneck regions. This leads to p — 0 and hence
a bad sampling with a resulting high computational effort C and a large statistical
error V. In addition, the interfaces placed with p — 1 are unnecessary and lead to a
higher cost C as well as a computational overhead due to storing configuration points
on these particular interfaces and launching the appropriate trial runs. Note, that this
manual placement method shouldn’t be used, because it can potentially bias the FFS
simulation due to only shifting the interfaces where we have too few successes, but we
don’t touch the interfaces on which we collect by chance a large number of successes”.

The results of the automatic interface placement methods (Fig. 3.15(c), Fig. 3.15(d)
and also Fig. 3.14) were generated using My, = 8 trial runs and a minimal distance
of the interfaces d,;, = 3 to avoid correlations of the runs. For the trial interface
method we set the acceptance range to 0.3 < p < 0.6 and the trial interface position
was chosen via Eq. (3.13). The destination probability for the exploring scouts was
set to pges = 0.45, where each exploring scout was allowed to perform a maximum
number of M., = 10000 steps. With these parameters, we obtain for both methods a

7If such a scheme was used we recommend to repeat the complete FFS simulation after the interfaces
have been fixed.
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Figure 3.15: Comparison of the quality of the placement methods (i)-(iv) with the
help of the net flux function f; (Eq. (2.72)). The dashed lines show the
optimal case, where the net flux across the interfaces would be constant.
The insets show the transition probabilities p; for each interface transi-
tion (A;41|A;). A probability of p; &~ 1 stands for an unnecessary placed
interface, p; ~ 0 leads to a bad sampling and hence a large statistical
error. This occurs in the manual placement methods but is avoided with
our automatic, optimized interface placement algorithms.

set of interfaces \; with a linear shape of f; on-the fly and automatically, which means
that the interfaces are already placed at their optimal positions. In addition, the
transition probabilities p; are nicely distributed around our target probability range
or value, respectively, and we do not obtain very low numbers of p; which would
have a low efficiency £. The automatic methods do not place interfaces where they
aren’t necessary, e.g. when the barrier has been overcome and the crystal growth
spontaneously®.

In table 3.3 we show a detailed overview of the results of all methods. The cost
C is measured in simulation steps and includes the computational effort which was
necessary for the interface placement. Note, that this includes also the aborted runs

8Note, that if mmax is too small for the exploring scouts method, additional interfaces could be
placed if the runs become longer, e.g. when the barrier has been overcome and the crystal just
grows, then the runs do not reach A\g before they reach mpyax.
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method cost C | error V | efficiency £ kap
(i) manual by hand 4 x 107 | 18652 10712 5x 1071=3
(i) manual logarithmic | 7 x 105 | 6648 10~1 1 x 107142
(iii) trial interface 4 x10% | 188 107° 6 x 1071+
(iv) exploring scouts 3x 10| 251 1079 2 x 1071+t

Table 3.3: Interface placement results for the different methods (i)-(iv) and the Yukawa
simulations: computational cost C (simulation steps), variance in the rate
constant V), resulting computational efficiency £, and rate constant k4p (in

o371 with the simulation time unit 7).

in (i) when an interface position was not used because of a too low success ratio. We
see, that C and V are significantly lower for the automatic placement methods which
leads to an efficiency which is 2 — 3 orders of magnitude better than for the manual
placement. Note, that in this case the manual placement method (i) leads also to a
biased rate constant with a larger error. The computational cost of the algorithms (iii)
and (iv) is about a factor of 2 lower than for the logarithmic case (ii), where we used
already pre-knowledge, and one order of magnitude lower than for the manual case
(i), where we placed the interfaces by hand without pre-knowledge. For this specific
simulation, the exploring scouts method required only 75% of the simulation steps of
the trial interface method.

3.3.6 Discussion

The automatic, optimized interface placement algorithms facilitate the set-up of an
FFS simulation because only the borders A4 and Mg of the initial state A and the
final state B must be specified in terms of the order parameter \. Then, the algo-
rithms ratchet the system from A to B automatically and on-the-fly by placing the
interfaces of FFS in their optimal locations ;. The efficiency £, which is a balance of
computational cost C and statistical error V), is increased tremendously. This denotes
a great improvement of the performance of the FFS simulation, which is particularly
helpful for rare event simulations, which are in addition computationally demanding
and comprise complex trajectories in phase space with unknown bottlenecks.

The presented algorithms are based on launching a small number of exploratory
runs to estimate the new optimal position A;;; of an interface. The first algorithm
works like a standard FFS simulation by placing a trial interface and by monitoring
if the exploratory runs reach this interface or fall back to A. The second algorithm
doesn’t use such an interface, but the distribution of the order parameter A during the
exploratory run: The maximum of the order parameter A, is reported for each run,
which is carried out until it falls back to A, reaches B or reaches a given number of
maximum steps.
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3 Parallel and optimized rare event sampling

To find the optimal interface location A;.;, the dependency of the efficiency &(p)
on the transition probability p for a given P was investigated, since this quantity is
directly related to the interface spacing. Our analytical expressions were confirmed
by fundamental simulations of a 1D particle. We find, that p can be used as a tuning
parameter for the interface placement and that for the desired target probability a
range of 0.3 < p < 0.7 should be suited for many applications. In this domain, the
values of the efficiency are high and the change of the efficiency is rather insensitive to
p. The lower value of the p-range is due to the fact that the efficiency becomes very
poor for low values of p. The upper bound should be set such that the trajectories are
not correlated due to a small interface spacing, which can also be avoided by setting
a minimal user-defined interface distance d,,;,, which should be e.g. at least 1 for a
discrete order parameter A like in crystallization problems, where the order parameter
counts the number of monomers in a nucleus, for example.

We demonstrated the applicability of the methods with two examples, namely a
fundamental example of a single particle in a 1D potential and a ‘real’ simulation
problem which is computationally more demanding, the crystallization of charged
Yukawa macromolecules with an unknown underlying energy landscape. Thereby,
the automatic, optimized interface placement increased the efficiency significantly in
comparison to the manual placement methods.

This work was based on the findings of Borrero and Escobedo [91], where the inter-
face set was optimized after a first complete simulation run. The post-optimization
from this work can also be applied after the interfaces have been found by the au-
tomatic placement, if desired or necessary. However, in our simulations this didn’t
improve the results any more.

Beyond the application to FFS and its flavors, the interface placement algorithms
could be used for other rare event sampling methods with both, one-dimensional or
multi-dimensional order parameters to determine the way through phase space with
unknown density efficiently.

Last but not least these methods can be used to verify the selection of an order
parameter or to adjust an order parameter during simulation by using the information
from the exploratory runs, on-the-fly.

The algorithms which we introduced in this section can be parallelized and are
already implemented in our Flexible Rare Event Sampling Framework [98] in a generic
way, which we present in the next chapter.
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4 The Flexible Rare Event
Sampling Harness System

In this chapter we present our highly efficient and parallel implementation of rare event
sampling algorithms in our Flexible Rare Fvent Sampling Harness System (FRESHS),
which was developed starting from scratch during this work. The chapter is based on
our article [98].

Some parts of the article have been revised and extended, as well as further impor-
tant application examples have been added. All the results of chapter 3 have been
implemented in context of this framework, which is now publicly available! and helps
also other researchers to accomplish their investigations using rare event sampling,
like e.g. [99].

e Kai Kratzer, Joshua T. Berryman, Aaron Taudt, Johannes Zeman and Axel
Arnold — The Flexible Rare Event Sampling Harness System (FRESHS). J.
Comp. Phys. Comm. 185(7), 1875-1885 (2014)

4.1 Overview

FRESHS has been developed for simulating rare events with algorithms from the
‘splitting family’, which comprises all methods which are based on calculating tra-
jectory fragments. To be able to simulate both quasi-static and dynamic systems in
equilibrium and non-equilibrium we primarily implemented the sampling algorithms
Forward Fluz Sampling and Stochastic Process Rare Event Sampling (SPRES) [100]
to FRESHS, but other rare event sampling methods (e.g. NS-FFS [101]) can be im-
plemented in a flexible and modular way. In this work, we focus only on the Forward
Flux Sampling part of FRESHS and show further relevant application examples which
are not included in [98]. For the SPRES part and further simulation examples refer
to Ref. [98] and to the contents of the FRESHS package, available at [102].

FRESHS is based on the fact, that the sampling flow can be separated from the
calculation of the physics in the simulation, which implies that the simulation tool of
the user’s choice can be used to simulate the trajectories independent of the sampling
algorithms. Thereby, simulation tools like the soft-matter MD tools GROMACS [103],
LAMMPS [104], ESPResSo or — beyond that — self-written code can be attached to

http://www.freshs.org
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4 The Flexible Rare Event Sampling Harness System

FRESHS via a plugin-system. This creates also a fundament for a comparison of
different sampling algorithms or simulation tools for the same simulation problem.
The parallelization in FRESHS is performed by calculating several trajectories at
the same time, with multiple instances of the simulation tool. In section 3.1 we al-
ready used such a parallelization scheme together with the Science Experimental Grid
Laboratory and discussed the issues which occurred, e.g. the synchronous paralleliza-
tion. To be maximal flexible, the communication in FRESHS is realized via standard
networking? which allows the use of FRESHS not only on high performance computing
(HPC) hardware but also on heterogeneous resources in an asynchronous® way.
Within FRESHS, the rare event sampling information is stored in a database which
can be used to track runs, resume the simulation if aborted, reproduce runs or for a
versatile analysis in general like we will see in the example section of this chapter.

4.2 Under the hood

In this section we discuss the inner life of our framework. As already said, for FRESHS
we separate the calculation of the trajectory fragments from the rare event sampling
method. Therefore, we use a server-client scheme, where the sampling method is
implemented on the server-side and the clients calculate trajectories. Fig. 4.1 gives
an overview of the schematic layout of the FRESHS framework. The partitioning in
a server-client scheme is possible, because the calculation of the trajectory fragments
is independent of the sampling scheme, only a starting point and an abort criterion
must be communicated which is performed via standard networking and the help of a
so-called harness script*, which steers the simulation.

The logic of the rare event sampling algorithm with the statistical analysis is located
in the server, which we will address now.

4.2.1 The server: optimized rare event sampling

The server is initialized with a configuration file and an appropriate sampling module
(see also Fig. 4.1). The information during simulation is stored and read from a
database, which can be used to monitor, restart and analyze the simulation.

We focus now on the highly efficient FF'S implementation of the FRESHS server.
In Sec. 3.2 we already described the parallelization of FFS and the drawback, that
a configuration point from an interface \; can only be drawn at random in an un-
biased way, if the set of configurations of A; is complete. As we have seen from the
broad distributions in Fig. 3.7, the run lengths in FFS can be very different and are

2We use a socket-based communication via the TCP /IP protocol.

3An example for an asynchronous communication protocol is a chat protocol, where messages can
be sent and received at any time.

4Details and examples of the harness scripts can be found on http://www.freshs.org.
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setup, FRESHS | TCP/IP | FRESHS | harness | . :
sampling lient - simulation
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Figure 4.1: Schematic layout of FRESHS. The server (reddish) reads the rare event
sampling setup (yellowish) from a configuration file and loads the appro-
priate rare event sampling algorithm module. During simulation, data is
stored in a database (orange), which can be used for on-line monitoring of
the simulation and for versatile analysis. Multiple parallel running simu-
lation clients (bluish) are connected to FRESHS via the network, whereas
the simulation is steered by the client with an appropriate harness script.
Thereby, the simulation itself can also be implemented in parallel.

undetermined beforehand. In the worst case this leads to situations, where one client
calculates a long simulation trajectory which is necessary for the last configuration
point of the set, while the others would have to wait. Now, we bridge this waiting

time using look-ahead runs which we call ‘ghost runs’.

Ghost runs

To bridge the waiting time in the simulation, we proceed as follows: Assuming that
the simulation calculates trajectories for the transition (A;11]|A;) which is not yet ready
because a few runs are missing, we already load configurations from the new interface
Ai11 if compute resources become available and calculate the corresponding trajecto-
ries. However, the information® from these runs is stored in a separate storage location,
in our case a second ‘ghost’ database with the same layout like the original database.
Thereby, the starting configuration point for the ghost runs on \;,; is chosen to be the
point with the minimum number of pre-calculated ghosts runs, because our goal is to
populate all points on \;; with several ghost runs. If the calculation of the transition
(Air1|\:) is complete, we continue the real simulation be choosing points from the new
interface A\; 11 on a job call (Fig. 4.2). If a ghost run exists for this point, we copy the
entry from the ghost run storage location to the real simulation and with that, use

®The name ‘ghost’ is used to separate these runs from the ‘real’ runs, because they can’t be used
directly for the simulation but exist as lead workers which are invisible to the ‘real’ simulation.

61f the run is successful the configuration point with the success information is stored, otherwise the
failure information.
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Figure 4.2: Server-side selection of configuration points on a job call with checking
for pre-calculated ghost run information. If a ghost run is available on
the drawn configuration point the data is used for the real simulation by
copying the information from the ghost database to the real database. The
call of this scheme is repeated until no more simulation starts are required
for the current interface transition.

the pre-calculated information. In a rare event simulation, the configuration points
are sampled several times which results in a great efficiency using this scheme. In the
extreme case of a lot of clients, the main simulation task would then be reduced to
simulate the last (long) runs on the current interface transition.

Fig. 4.3 shows the ratio of calculated integration steps by ghost runs compared to
the calculated steps of the real runs in a typical simulation with 20 simulation clients
in this case. Here, about 10% of the simulation steps were calculated using ghost
runs. Note, that the fraction of calculation steps which is performed by the ghost
runs differs in each simulation, because the number of ghost runs performed depends
on the available computing resources and hence on the number of clients which are
connected to FRESHS, as well as on the randomly distributed trajectory run length
for the particular interface of the simulation.

A great advantage of this ghosting scheme is, that clients don’t need to know that
they are considered as ghosts. In addition, if ghosts are still calculating while the last
configuration point is collected on \;; they can easily be converted to real simulation
runs if the starting point of them is selected during the random draw.

The ghost runs can also be used to adjust the number of sampling points after the
complete FFS simulation has already been performed. Conventional FFS simulations
must be performed from scratch again, because if one increases only the number of
points per interface and simulates again keeping the already sampled points, there
would be a large bias because as already mentioned, the configuration points on an
interface must be drawn from the complete set. The bias can simply be avoided by
storing the already calculated trajectories as ghost trajectories and only use them if
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Figure 4.3: Ghost usage (red boxes) in simulation timesteps compared to the real runs
(grey boxes) per interface \; for a typical simulation scenario consisting of
20 calculation clients in this case. The fraction of ghost run calculation
steps depends on the number of clients, the length of the runs per interface
and the random distribution of the run lengths, so this ratio differs in every
simulation. Here, about 10% of the simulation was performed by ghosts.

the particular point is drawn.

Now, we’ve introduced a powerful scheme to involve the simulation clients into the
calculations and to keep them busy, but a requirement for starting ghost runs is the
knowledge about the next interface location \;y;. In Sec. 3.3 we presented methods
to determine the optimal interface location \;;; automatically and on-the-fly during
simulation. Therefore, we address now the point how this can be combined with the
ghost runs which leads us to the final calculation job selection scheme.

Automatic optimized interface placement in FRESHS

For a maximum efficiency of the FF'S simulation we implemented the methods from [94]
which are also described in Sec. 3.3 to FRESHS. At this point, if a calculation client
connects to the server, we have the following jobs which must be launched at the
appropriate state in the rare event sampling calculation scheme: (i) normal (real)
simulation runs, (ii) ghost runs, and (iii) exploring runs which can either be the trial
interface runs or the exploring scout runs (see also Sec. 3.3) which can be specified in
the server’s configuration.

The following is an example, how a highly optimized FFS simulation using FRESHS
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can be performed?, assuming that the physical simulation is set up and an order
parameter \ is available to characterize the state of the system. First, we specify
our states A and B and define the borders A4 and A\g. We enable ghost runs and
automatic interface placement in the configuration, and connect a couple of clients to
the server. Then, our simulation proceeds as follows:

1. The escape flux ® is calculated in parallel by the clients according to Sec. 3.2.1
with a fixed number of calculation time ¢, per client.

2. As the next interface position is unknown (we only specified A4 and Ag) the
server starts exploring runs according to the configuration and if a user-defined
threshold of points is collected on the current calculated interface.

3. If the new interface position is determined and the last interface has still calcu-
lations which are left open, the server starts ghost runs to the new interface if
calculation resources are available.

4. As soon as the calculations on the last interface are completed, real runs are
started and ghost runs are transferred according to Fig. 4.2.

5. These steps are repeated until the new interface is \;;; = Ag. Then, the last
transition to \;y; is performed to obtain all p;, and finally Pg and hence ks p =
® Py can be calculated.

In the scheme above, clients have to wait very rarely, e.g. if not enough points on the
last interface are available to start an exploring run or a ghost run. This would only
happen, if a large number of clients are connected and only a low number of points is
collected on the interfaces and the threshold for starting the latter mentioned runs is
set very high.

Having discussed an efficient scheme for the server side, we will now have look at

the client side of FRESHS.

4.2.2 The clients: massively parallel calculations

The task of the FRESHS client is to communicate with the server and to steer the
simulation of the physics. Fig. 4.4 gives an overview of the internal structure of a client.
When connected to the server, the communication part of the client receives a certain
message which is translated to a job request. Then, a specific harness script which
launches the simulation with the appropriate parameters is called. The harness script
can be any type of an executable file like a bash or python script or even compiled

"The FRESHS configuration possibilities allow also to perform the very basic simulation like it is
described in the literature for the serial case by turning off the extensions and by connecting a
single client to the server.
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Figure 4.4: Client scheme: If the client receives a job request from the server, the
harness script is called with the appropriate parameters and launches the
simulation. During simulation, the order parameter is monitored and if
the abort criterion (initially given by the server) is reached, the simulation
is ended and analyzed. Thereby, the abort criterion can be checked by the
harness script or by the client [98]. In FF'S, a configuration point is stored if
the next interface is reached, otherwise only the metadata like calculation
steps and the outcome of the trajectory is reported to the server.

code. Examples for different simulation tools like GROMACS, LAMMPS or ESPResSo
are available [102|. The simulation aborts according to the sampling method’s abort
criteria. If the simulation tool doesn’t support order parameter checking, this can be
also performed by the client, but this results in a lower performance in general, e.g.
when the startup time of the simulation is long. However, as many large simulation
packages have this peculiarity, we developed a scheme to maximize the performance
in such cases. For details refer to [98]. In our case, the simulation is script language
driven, which means that we are able to check the abort criterion between a desired
number m of integration steps without restarting the whole simulation program. When
our FFS simulation is ended due to the abort criterion, a configuration point is stored
if the trajectory was successful, or otherwise only the metadata like the performed
steps and the outcome of the trajectory is reported to the server.

Many of these clients can be connected to the server to achieve parallelization. The
simulation of the clients itself can be also carried out in parallel, if the architecture of
the underlying hardware allows for that. E.g. one could use 1 node with 8 CPU cores
for a client, and connect 100 such clients to the server to obtain a calculation power
of 800 CPUs.

Now, we will have a look at the quality of the statistics of an FFS simulation and
at the backtracking of successful transition pathways.

4.3 Analysis of the statistics

In our simulations, we are not only interested in calculating the transition rate kap
for different physical conditions, but also in the transition pathways, whereby we are
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Figure 4.5: Successful transition pathways obtained via backtracking from interface
Ap. The arrows start at A4 (black circles) and point towards Ap, with the
color coding per interface. The flower-like look arises because of p; ~ 1
for the last transition. The more pathways are obtained, the better is the
sampling of the statistics.

able to investigate the crystal growth.

For FFS, it is important to have multiple transition paths with many branches. If
all successful runs would cross only a single configuration point on an interface \;, a
bad sampling statistics would be obtained. If we have for example one configuration
point on interface A\; which has a higher escape velocity \ towards B , this point could
be preferentially sampled, e.g. if every run launched from this point reaches the next
interface A\;11. This is especially important for A4, because the quality of the sampling
on this interface determines the chances of different configuration points being chosen
to advance in positive B direction. The number of different available trajectories
on an interface \; can be obtained via backtracking the runs till A4, starting at the
configuration points on A;. Fig. 4.5 shows the result of such a backtracking. In this
case, we backtracked the runs of a crystallization problem starting from interface Ap.
The flower-like look arises, because p; =~ 1 for the last transition. In this case, we
obtain a quite large number of different successful trajectories from A4 to Ag, like it
is desired.

In general, the number of different origin points Ny; on A4 of the backtracked runs
from interface \; is the same as the number of different successful trajectories for the
simulation. This number of different origin points can be tracked during simulation
to determine the decay of the number of different origin points which we define as the
fraction of the different points /Ny ; obtained via backtracking from interface 4, related
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Figure 4.6: Decay dNy; (Eq. (4.1)) of different origin points on A4 when backtracking
runs from different interfaces A; for the 1D particle example with Ny = 1000
at A4 = 0.2 and the maximum of the barrier at A = 1.0 (see also Sec. 3.1.1).

to the number of initial configuration points Ny on Ag4,

SNp; = —2 (4.1)

Fig. 4.6 shows this decay with the help of the simulation of the 1D particle for a
starting number of Ny = 1000 configuration points on A 4.

Note, that the decay depends on the simulation and the interface spacing, but the
general message is, that we should use more points on A4 and a higher sampling at
larger barrier heights, because we loose origin points and hence different successful
trajectories during the advancement to B.

FRESHS has a built-in feature to monitor this number on-line and per interface
A; already during simulation and to adjust the number of configuration points on
an interface if the presetting can’t be fulfilled. With this, many successful physical
transition pathways can be obtained, not only for the purpose of a good sampling but
also for the investigation of multiple transition mechanisms.

4.4 Calculating stationary distributions

In general, according to section 2.5.3 the stationary distribution p(q) of an order
parameter g can be calculated in an FFS simulation by splitting up the calculation of
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the distribution in a forward simulated part and a backward simulated part (see also
Eq. (2.73)).

Concerning our simulations this means that the crystal of macromolecules must not
only be built up in a forward simulation but also be dissolved again in a backward sim-
ulation. Thereby, the automatic, optimized interface placement for FFS simulations
which was discussed in section 3.3 facilitates such an intention tremendously, because
the simulation must simply be set up in A or in B, the rest of the reaction scheme
(forward and backward) is populated automatically [94].

In FRESHS, the backward reaction is realized such that we negate the order pa-
rameter. Thus, we are able to use the same order parameter (in our case the cluster
size) but the reaction is driven in the other direction. The great advantage of this
scheme is, that we do not need to change the logic in our routines, e.g. all com-
parators can be used like they are. This backward reaction scheme via negation is
already implemented in FRESHS and can be activated via the configuration options.
Thereby, the configurations in B can be loaded from an existing database of a forward
simulation run, which is important if the system states in B can’t be set up ad hoc
like in the crystallization case, where we can’t simply set up the ready crystal cluster,
e.g. because of its unknown shape.

To calculate the stationary distributions, all order parameter values of all trajec-
tories are required. FRESHS provides a field in the database to store custom data,
which we can directly use for this purpose. The advantage of this is, that we are
able to store the order parameter values directly assigned to the runs and that we
can use database functions to extract all values which belong to an interface®, which
is required in this case because the histogram per interface is then weighted with the
corresponding transition probabilities.

Now, we will show the calculation of the stationary distributions on a fundamental
simulation problem.

Stationary distributions of a dimer molecule

To demonstrate the calculation of an energy profile via FFS simulations using station-
ary distribution we simulated a 1D particle in a double well potential using FRESHS.
For the simulations®, we use a velocity verlet integrator and a Langevin thermostat
like described in Sec. 2.2 and set v =1, kg =1, T =1, and 7 = 0.01. The potential
from which the forces are derived is given by

U(x) = 2* — 7.52% + 14.0625. (4.2)

The particle is set up at the left-hand side of the barrier in region A with x < —1.5.
We are interested in pushing the particle over the barrier to state B using FFS.

8 An example would be ‘SELECT customdata FROM configpoints WHERE lambda = 1’
9The harness script is available in the FRESHS package (http://www.freshs.org)
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Figure 4.7: Computing the energy landscape with FF'S using the stationary distribu-
tion theory: The solid line is the underlying 1D potential of the simulation
(Eq. (4.2)). The blue datapoint represents the escape flux ®4 ~ 0.0977!
and the orange triangles the forward probabilities P(A;11|A;). The dashed
vertical lines show the interface positions ;. Since the problem is symmet-
ric, the data of the forward run is inversed and used for the backward run
leading to the reproduced energy profile AG from Eq. (2.81) (red circles).

Therefore, we set Ay = —1.5 and Ag = 1.5. We use the automatic optimized interface
placement [94] with exploring scouts and a target probability of p = 0.5 to advance
from A to B automatically and efficiently.

An overview of the results of the simulations is given in Fig. 4.7 and table 4.1.

Since our potential and simulation problem are symmetric, we only need to perform
the simulation in one direction (A to B) and can directly use these results for the
other direction (B to A) by mirroring the order parameter range and the results
at x = 0. Therefore, in Fig. 4.7 we only show the forward simulation FFS results
with the automatically determined interface set and transition probabilities, which
are distributed around our target probability p = 0.5. The overall transition rate was
determined to kap = 1.3 x 10~ 77! for this transition. Table 4.2 gives an overview of
the computational details of the simulation.

Using the calculations of Sec. 2.5.3, the energy profile AG was calculated and
matches nicely the given potential shape of Eq. (4.2) (red circles in Fig. 4.7). Note,
that this is already a rare event with a relatively high barrier, to further improve
the statistics and thus the shape of AG one has to collect a lot of points in the FFS
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1 0 1 2 3 4 ) 6
Ai | =150 —-141 —-134 -—-126 -—-121 -—-1.14 -—-1.08
pi | 0.09*  0.42 0.53 0.44 0.58 0.51 0.53
l 7 8 9 10 11 12 13
A | —1.04 —-097 —-090 -0.84 -0.80 —-0.71 —-0.67
pi | 0.65 0.46 0.45 0.49 0.61 0.33 0.56
1 14 15 16 17 18 19 20
Ai | =059 —-0.53 —-043 —-0.34 —-0.18 1.47 1.50
pi | 0.46 0.54 0.44 0.49 0.40 0.60 1.00

Table 4.1: Interface locations \; and transition probabilities p; of the 1D particle in
a double well potential, identified by the automatic, optimized interface
placement. The quantity with an asterisk (*) denotes the escape flux.

kAB [7'_1]

o]

Pg

C

1%

&

1.3 x 1077

9.1 x 1072

1.5 x 107°

1.2 x 107

1.7 x 10°

4.9 x 1077

Table 4.2: Computational details of the 1D particle in a double well potential. The
error V in the rate ksp is very low because of the automatic, optimized
interface placement, leading to a good efficiency £. The computational cost
C is measured in simulation steps.

simulations.

The branching trees of the trajectories can be extracted by backtracking the suc-
cessful runs from Ap in the database. In an FFS simulation, many of these trees are
obtained, starting at different origin points. Fig. 4.8 shows such a tree for the 20
interfaces of this simulation, exemplarily.

During the transition from A4 to Ap, the tree branches several times. Here, we
only show the successful branches which reach the last interface Ag, but there are also
many branches which do not reach the last interface and which are ended in between.
The FRESHS package provides scripts to analyze this branching behavior in detail,
which can be used to visualize the dynamics of the simulation.

The demonstration in this section shows, how FRESHS with the built-in datahan-
dling can be used for versatile analysis, e.g. to calculate the free energy landscape
from custom data and to analyze transition rates. We will apply the same analysis of
AG to our crystallization of charged macromolecules simulation in chapter 6.
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Figure 4.8: Successful branching tree of the 1D particle in a double well potential, ex-
emplarily. In the FFS simulation, multiple trees of this kind are obtained.
The color coding is per interface, the arrows point is positive interface
direction and the starting point is the larger black circle, which is a con-
figuration point on 4.

75



4 The Flexible Rare Event Sampling Harness System

Figure 4.9: Snapshot of the rare event sampling simulation of a polymer which is
translocating through a nanopore. The polymer was set up at the entrance
of the nanopore and is pushed through the nanopore using the framework
FRESHS with FFS, ghost runs, and automatic, optimized interface place-
ment in parallel.

4.5 Translocation of a polymer through a nanopore

In this section, we use the software package ESPResSo [17] together with the Forward
Flux Sampling method, ghost runs and automatic, optimized interface placement [94]
to push a polymer through a nanopore (Fig. 4.9). This process is also a rare event
due to the free energy barrier towards the translocation and is important for many
process in nature or technical applications, e.g. when sequencing DNA [105].

This use case is not part of our article [98]. For other examples of the usage of
FRESHS, e.g. together with the simulation tools GROMACS, LAMMPS or with the
sampling method SPRES for dynamic systems, please refer to refs. [98|.
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4.5 Translocation of a polymer through a nanopore

4.5.1 Order parameter

As order parameter, we use the z coordinate in direction of the pore axis of the center
of mass of the polymer chain,

A= % Z %, (4.3)

where NN is the number of monomers in the polymer chain. Note, that this is maybe
not the best order parameter, but an intuitive one which increases monotonously when
the polymer translocates through the nanopore.

4.5.2 Simulation and rare event sampling details

For the initial state A, we set up a polymer with the first bead located at the entry
of the pore. The rest of the polymer chain is placed at random, using the capabilities
of ESPResSo to set up random polymers. Then, the order parameter of this state is
verified. If the order parameter value is in the allowed range for state A, we begin the
initial MD run in A to calculate the escape flux ®. If the value is not in A, we delete
the polymer and try a new one.

For the simulation setup, we use a 3D box with dimensions 30 x 30 x 60 and periodic
boundary conditions. The center of the pore is located in the middle of the box,
with a length of [ = 10.0 in z-direction. The radius r of the pore can be varied, for
smaller pores the translocation event becomes very rare, because there is a huge energy
barrier towards pushing the polymer into the pore. Here, we simulate for different r
and different monomer numbers n, of the polymer to show the dependence of these
quantities on the energy barrier and transition rates.

The entry of the pore is located at A\ = 25 in our case and the center of the pore
is at A\c = 30. For the border of the initial domain A we choose A4 = 17, which
is at the beginning of the ascent of the free energy curve towards the entry of the
pore. We set A\gp = 43, which is the mirrored value to A4 at A¢. Note, that we do not
consider the x and y directions in our reaction coordinate, which can lead to situations
where the polymer is located away from the center of the pore. However, to make the
translocation event more probable, we set up the polymer at the entrance of the pore.
In addition, if the polymer diffuses too much away from the pore, we have to interrupt
the simulation before the center of mass is at the other side of the simulation box
because of the periodic boundary conditions, which is a simulation specific boundary
of our state A. If this happens we initialize our system again in A. This can be seen as
fixing the volume of the box, which is necessary in this case to obtain a translocation
rate. In an infinitely large box, the rate would be zero.

The polymer uses so-called FENE interactions for the bonds. The other interactions
(e.g. polymer-pore) are set to Weeks-Chandler-Andersen (WCA) interactions with
o =1 and € = 1, like they are used for the excluded volume of our macromolecules.

7
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ny | kag[t™!] n, | T kag[t™!]
64 [3]57x107" ] 32 [5]1.1x10°°
64| 5| 23x1077 || 64 | 5]23x107"7
64 | 7| 24x107% | 96 | 5]6.3x 1078
64 (9] 9.6x107% || 128 | 5| 2.4 x 10°8

Table 4.3: Overview of the results of the translocation experiments. On the left-hand
side the pore radius r was varied, and on the right-hand side the polymer
length n,. The transition rate k45 becomes lower for smaller pore radii and
longer polymer chains.

le-04

le-05

' n,=64 5 | | | | | I I r=5I |
1le-05 | e —
g
1e-06 |
- 1e-06 |2
o
o 1e-07 } ‘v |
< |
X X
1e-08 | |
1le-07 f
oo 7 ] &
b ] o
) l 1e-08 . . . . . . . . .
3 4 5 6 7 8 9 30 40 50 60 70 80 90 100 110 120 130

(a’) r (b> Mo

Figure 4.10: Transition rates for the translocation simulations: (a) Varying the pore
radius r for a polymer of the length n, = 64, (b) Varying the polymer
length n, for a fixed pore radius r = 5.

Furthermore, we simulate at T'= 1, kg = 1 and with a timestep of 7 = 0.001.

4.5.3 Results - transition rates

Table 4.3 gives an overview of translocation simulations with the resulting transition
rate kap for different pore radii r and different polymer lengths n,. These values are
visualized in Fig. 4.10. Fig. 4.10(a) shows the dependence of the transition rate kap
on the pore radius r. The transition rate of the polymer is much lower for small pore
radii, because pushing the polymer into the pore costs more free energy in this case.
The same is true for longer polymer lengths n,, as shown in Fig. 4.10(b), where we
find an exponential dependence of the rate on the polymer length ksp o< exp(—Iyn,),
where I'y is related to the cost of free energy for a bead of the polymer entering the
pore. This is consistent with theories from literature, e.g. [106].

Note, that the error of the simulations increases with a smaller pore diameter,
because we obtain less successful traces with the same number of collected points in
FFS. The error of the rate at r = 3 is approximately two orders of magnitude and at
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Figure 4.11: Free energy landscapes AG(\) for the translocation simulations,
symmetry-mapped from Ay = 17 to Agp = 43. (a) AG(A) for different
pore radii r, simulated for a fixed length n, = 64 and (b) for different
polymer lengths n, at a fixed radius » = 5. The free energy landscape
has a plateau domain along the pore, as well as a steep ascent at the
entrance. Thereby, the ascent is steeper for longer polymer chains and
for smaller pore radii. Note, that for the absolute barrier heights a brute-
force sampling term must be added to these curves (not shown here).

45

r = 9 one order of magnitude, determined by repeated simulations.

4.5.4 Results - free energy landscapes

With the techniques discussed in Sec. 4.4 we are also able to calculate the energy
landscape AG(A). Because of the symmetry of the problem, we can also use the
mirrored data for the backward FFS run, where we mirror at A = 30 which means
that our simulations cover the range Ay = 17 to Ag = 43. The results of these
calculations are shown in Fig. 4.11. Fig. 4.11(a) shows the shape of AG()) for varying
the radius of the pore while fixing the polymer length, and Fig. 4.11(b) for varying the
polymer length and fixing the radius. As expected for these kind of experiments, we
obtain a shape of the energy landscape which is steep at the entrance of the pore and
has a flat part along the pore. This becomes more significant for smaller pore radii, as
shown in Fig. 4.11(a). Furthermore, the ascent of the barrier is much steeper for longer
polymers, which means that it is more difficult for them to enter the pore, which can
be seen in Fig. 4.11(b). Note, that for the absolute barrier heights, a brute-force term
must be fitted to these curves, which is not shown in here.
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4.6 Summary

With the help of the powerful framework created during this work and presented
in this chapter, computationally expensive rare event sampling simulations can be
performed optimized, efficient and in a parallel way on high performance computing
and heterogeneous computing resources. Thereby, the following optimizations and
extensions have been made beyond the state of the art (chapter 2):

The rare event sampling method is now applicable in parallel and in combination
with an itself parallel simulation.

Simulation tools and rare event sampling techniques can be exchanged in a
flexible way, allowing for a general comparison of tools.

Waiting times in the asynchronous parallelization have been bridged successfully
using ghost runs.

The efficiency of FFS was increased tremendously by the automatic, optimized
interface placement, which is also implemented in our parallel framework and
simplifies a simulation such, that only the states A and B must be defined in
terms of an order parameter .

Simulating backwards or starting a new simulation from the final state of a
previously calculated transition A — B is possible by using the database of the
previous run. Thereby, simulating backwards is possible by internal negation of
the order parameter.

The quality of the statistical sampling can be monitored and tuned on the fly,
as the simulation progresses and according to simulation-specific parameters.

The ghost runs can be used to increase the number of sampling points in the
complete FFS scheme after the simulation has already been performed.

An intelligent data storage scheme using databases has been implemented allow-
ing to interrupt, adjust and resume simulations from different stages.

Versatile analysis tools which are based on the intelligent data storage can be
applied, e.g. to analyze the tree of successful pathways, histograms of the run
lengths, stationary distributions and hence free energy landscapes.

Without the above mentioned achievements the simulation of charged macromolecules
wouldn’t have been possible under the desired conditions which are interesting for us.
Before advancing to the rare event simulations of the charged macromolecules, we
compare the applicability of the simulation model to real experimental data in the
next chapter.
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5 Comparison of the Yukawa
model to an experimental
colloidal system

In this chapter we compare results of experiments with colloidal particles to numerical
simulations of a comparable system. The colloidal experiments were performed by the
Bechinger group! at the second institute of physics PI2, University of Stuttgart.

The aim is to determine the pair interaction of the colloids by simulations and to
verify the applicability of the screened Yukawa interaction model.

5.1 Introduction

In experimental physics colloidal systems, e.g. consisting of spheres made of Polystyrene
in solution, are used to study different effects like entropic forces, many-body interac-

tions or hydrodynamic coupling [107]|. In such systems, the radial distribution func-

tion (RDF) is often used to characterize the spatial organization of the particles. The

advantage of using an RDF is that the RDF is accessible in both, experiments and

simulations, because it is calculated from the coordinates of the particles in the system.

In turn, these coordinates depend on the underlying pair interaction of the particles

in a unique way [56|.

In experimental systems, these interactions are difficult to characterize, because
they depend on the particles’ local surrounding which is influenced e.g. by the ion
density, thermal fluctuations, and impurities. Theoretically, the pair interaction can
be described by a pair interaction potential, which models an effective interaction.

The task in this chapter is now to find the pair interaction which leads to the
distribution of particle coordinates in the simulation to obtain the same RDF as in
the experiments. To this aim, we use two approaches: (i) We simulate a system
with the same density as the experimental one using the Yukawa model (see also
equation (2.30)) and try to find the screening length x and the contact value A such,
that we obtain the correct RDF, and (ii) we reconstruct the pair interaction potential
directly from the RDF using the Inverse Boltzmann method (Sec. 2.2.4) in combination
with a tabulated potential. All the simulations are MD simulations and performed
using the software package ESPResSo [17].

1Zaidouny et al.
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Figure 5.1: (a) Detail of the 2D experimental Polystyrene colloidal system (photomi-
crograph, Zaidouny et al.). The colloids have a diameter of 0 = 3.9um.
(b) Snapshot of the 2D simulation of colloidal particles for comparison
with the experimental data. The comparison is performed via matching
the RDF of both systems by tuning the pair interaction.

5.2 Experimental details

Fig. 5.1(a) shows a microscopical image of the 2D experimental system with Polystyrene
colloids in water. The colloids in the system have a diameter of 0 = 3.9um. The num-
ber of particles plays a minor role, the important quantity is the density p of the
system.

For the system shown in Fig. 5.1(a), the radial distribution function can be calcu-
lated from the N particle coordinates in volume V' by [108]

g(r) = % <Z S(r—r;) x> 6(r— rj)> (5.1)

i=1

with Dirac’s d-function d(x). In practice, several frames (O(1000)) are recorded with
the camera of the optical microscope. Then, the coordinates of the colloids are ex-
tracted from the frames and can be used to sample the corresponding RDF.

The system was prepared for different densities p. The lower densities are expected
to be easier to compare to the Yukawa model, because at high densities the particles are
located at closer distances and many-body interactions can play a role [107|. Thereby,

the investigated densities are in the range 0.00215um =2 < p < 0.02um =2
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5.3 Simulation details

5.3 Simulation details

Fig. 5.1(b) shows a visualization of the simulated 2D system. We use a Langevin ther-
mostat and periodic boundary conditions to realize a sufficiently large NVT ensemble.
In the simulations, the particle coordinates are already known and can be used di-
rectly to sample the RDF in a time evolution of the system, which is comparable to
the method in the experimental system by recording several frames with a microscope
in a time series.

Since the experimental RDFs suffer from finite size effects and do not end with their
tails at values of 1, we correct the experimental RDFs by dividing the whole RDF by
a factor which was determined by the average value of the tail of the particular RDF
for better convergence of the simulations.

For the simulations of the colloids we use the Yukawa pair interaction potential in
the following notation:

UYukawa(T) = AkBTM (52)
with the pre-factor A, which is given according to DLVO theory? as
A= exp(ko) (5.3)
P2 1+ 05k0)2 ‘

where Z is the charge and ¢ the diameter of a colloid.

To determine the parameters A and « in the pair interaction potential (Eq. (5.2)) we
use two approaches, the first is based on tuning the Yukawa interaction itself and the
second is the Inverse Boltzmann approach for the direct reproduction of the potential
from the RDF without pre-knowledge like described in Sec. 2.2.4.

5.4 Results

In this section we present the results concerning the reconstruction of the pair inter-
action potential from the experimental datasets. The first part is about tuning the
Yukawa interaction and the second part about the reproduction of the potential by
the Inverse Boltzmann method.

5.4.1 Optimizing the Yukawa potential

Here, we use the Yukawa model of Eq. (5.2) for our simulations to compare with the
experimental data.

2Derjaguin, Landau, Verwey and Overbeek
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Figure 5.2: Reproduction of the data of [107] for A = 750000um, x = 1.83um™"
and different densities p. For better visibility the RDFs are shifted in
y-direction. The dashed lines depict the digitized data from [107], the
datapoints are the reproduced data. The RDFSs can be reproduced by our
simulations in great detail. Note, that the particle diameter is different in

this work.
plum™?] | alpm] | U(r = a)[k5T]
0.00406 | 2.83 0.015
0.01027 | 2.57 0.071
0.01877 | 2.29 0.370
0.02086 | 2.24 0.498

Table 5.1: Values of the simulated potential at the peak location » = a of the RDFs
for the different densities p.

Comparison to previous data

To verify the correctness of the implementation of the simulation we reproduce the
experimental data of Ref. [107]. To this aim, we set A = 750000um and x = 1.83um™*
in Eq. (5.2), which correspond to the values of Ref. [107| with o = 3um. Fig. 5.2 shows
the results of our simulations for 6 different densities p. The data of [107] could be
reproduced in great detail for all densities with our simulations.

As a reference, table 5.1 shows the values of the potentials U(a) at the position of
the first peak » = a of the RDF.
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5.4 Results

Sensitivity of the parameters

To find the values of A and x which lead to a simulated RDF with the minimal distance
to the experimental one we varied these values in a step-wise fashion, where we started
with guessed values first. As a measure of quality, we use the L? distance d of the
experimental RDF and the simulated RDF which we define as

d= / %(gexp(r) - gsimu(r))2dr7 (5.4)
Tt

with the value r; where the RDF begins to take off from 0. Thereby, we weight the
distance with r=! because the first part of the RDF is more significant for the pair
potential than the rear part, as it is related to the main part of the interaction of two
particle pairs. Then, we iterate A and x to minimize the distance function Eq. (5.4) in
a loop. This should lead to values of the Yukawa potential which fit the experimental
RDF best.

However, this method is complex because the guessing part is based on a trial and
error approach, and if the method leads to a deviating RDF it is unclear if the wrong
parameterset of A and k is chosen or if the system can’t be matched with a Yukawa
model.

Matching an experimental RDF

In this section we use the tuning method from above to reproduce an experimental
RDF created from N = 612 particles at a density of p = 0.011125um 2. Fig. 5.3
shows the result of the minimization procedure with Eq. (5.4) and the sensitivity
of the parameters A and . For the given system we found with that procedure a
A = 10%pm and an inverse screening length of x = 7.35um~'. The resulting Debye
screening length is then lp = k=1 ~ 136nm.

Because of the high sensitivity of the RDFs to the parameters and the fact, that
different combinations of A and x can lead to a similar quality of RDFs when using
the distance d (Eq. (5.4)) due to k o log A for similar contact values at the main
distance of the particles, we use the Inverse Boltzmann for reproducing the potential
in the following sections.

5.4.2 Inverse Boltzmann

Here, we use the Inverse Boltzmann method from Sec. 2.2.4 to reproduce the pair
potential from RDFs at different densities.

Low densities

To exclude many-body interactions the experimental systems have been prepared at
the densities p = 0.00215um 2 and p = 0.005um 2. Here, we use the Inverse Boltz-
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Figure 5.3: Radial distribution function g(r) for the experimental system and the sim-
ulation with A = 10%°um and x = 7.35um . The dashed curves show the
behavior of the RDF for 0.9 x x and 1.1 x x as well as for 0.1 x A and
10.0 x A. The resulting screening length is x~! ~ 136nm in this system.

plpm=] | Alpm] | klpm™"]
0.005 | 22x10° | 2.15
0.00215 | 11.3 % 10° | 2.70

Table 5.2: Inverse Boltzmann Yukawa fitting results. The values for s result in a
screening length of 400nm — 500nm, similar to the results in Ref. [107].
The prefactors differ due to the fact that the RDFs start to take off at
different distances (7um vs. 8um).

mann method to determine the parameters. For these low densities we obtain poten-
tials that fit well to a Yukawa-like shape for both densities which are depicted with a
corresponding RDF in Fig. 5.4.

Note, that at the lowest density p = 0.00215um 2 the results are more noisy because
at this low density the simulations become computationally more expensive. It takes
around 50000 simulation steps for a particle to diffusive over the mean particle distance
which is important for the sampling of the RDF.

The results for A and x for both low densities are given in table 5.2. The screening
length £~ is in the range of 400nm—500nm which is comparable to the data from [107].
However, the prefactors differ due to the fact that the RDFs start to take off from 0
at different distances (7um vs. 8um) and this must be compensated by the prefactor
(Eq. (5.3)), which depends on the salt concentration Z. The factor exp(ko) in Eq. (5.3)
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Figure 5.4: (a) Datapoints of the potentials for the two densities p = 0.005um =2 and
p = 0.00215um ™2 and corresponding Yukawa fits (the values of the fit are
given in table 5.2). The inset shows the first part of the potentials as
U(r) x r plot. (b) RDF for p = 0.005um 2 obtained with the tabulated
potential (datapoints) from (a). The experimental RDF can be reproduced
nicely and the obtained potential has a Yukawa-like shape.

is quite large, because the screening length « is small compared to the colloid diameter
o. For the pre-factor in Eq. (5.3) we obtain [5Z? = 1.19 x 107um and [pZ? =
1.35 x 107 um for the two densities p = 0.00215um =2 and p = 0.005um =2, respectively.
Theses values are consistent, and the differences in the pre-factor A are mainly due to
the different screening lengths for the two densities.

High densities

The RDFs of the higher densities p = 0.0133um 2, p = 0.0175um =2 and p = 0.02um >
are much more peaked than the lower density cases in the previous section. There-
fore, particles must be located more precise at the peak positions, which can lead to
attractive potentials when simulating pair interactions.

Fig. 5.5 shows the radial distribution functions for the densities p = 0.0133um =2 and
p = 0.0175um~2. In this case, the Inverse Boltzmann method succeeds in matching
the RDFs nicely. With the Yukawa tuning method this was not possible satisfactorily
which indicates that the exact RDFs can’t be matched with a Yukawa potential. Since
we do not assume any kind of potential in the Inverse Boltzmann method, we are able
to match the RDFs with a potential that has not only a repulsive part like the Yukawa
potential but also an attractive part which reminds of a Lennard-Jones potential.
Fig. 5.6(a) shows the corresponding potentials for the two densities p = 0.0133pum >
and p = 0.0175um 2. We do not show the RDF and potential for p = 0.02um 2,
because the Inverse Boltzmann didn’t converge in this case.

Fig. 5.6(b) shows the comparison of a simulation with the adapted Yukawa pa-
rameters from Ref. [107] for our current colloids, A = 750000um and x = 1.83um™!
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Figure 5.5: Inverse Boltzmann for high densities: (a) p = 0.0133um=2 and (b) p =
0.0175um =2 for iteration 10, respectively. The RDFs can be matched nicely
with this method.
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Figure 5.6: (a) Potentials identified by the Inverse Boltzmann methods for the densities
p=0.0133um=2 and p = 0.0175um 2. The potentials show in addition to
the repulsive part also an attractive part which is necessary to obtain the
sharp peaks in the RDFs. (b) Comparable simulation to Ref. [107] and to
the work of Sec. 5.4.1 for density p = 0.0133um =2 with A = 750000um
and k = 1.83um ™! with o = 3.0um.

with ¢ = 3.0um for the density p = 0.0133um 2. As can be seen, for the present

experimental datasets the RDF can’t be reproduced with the size-adapted colloidal
interaction parameters like from the work of [107].

We have seen, that for the reproduction of the complete RDFs of the higher densities
an attractive part of the potential is necessary, which could be identified by the Inverse
Boltzmann method. This is likely due to three-body effects beyond Debye-Hueckel
theory, which are present at these higher densities. Hence, a Yukawa fit is not possible
to match these potentials for reproducing the RDFs. However, the pair interaction is
responsible for the first ascent of the RDF of the first peak. At this part, the Yukawa

88



5.4 Results

12 v r r r r r r r r 4
0.02 + 0.02 +
0.0175 X a5 | + 0.0175 X
10 0.0133 E : e 0.0133
A=6.9e+12, k=3.98 3}
8 A=4.5e+14, k=4.50 X
- = = 1 +
A=3.5e+12, k=3.10 25 1 ’iﬁ
+ %
= = +
Sep,.” S 2 3%
+ X %X
4r Ty %
+
X
2t ix
X
+
0 %62

5 6 7 8 9 10 11 12 13 14 15

(a> r (b) r

Figure 5.7: (a) Comparison of the potentials obtained by the Inverse Boltzmann
method when only taking the first ascent of the RDF into account for
the densities p = 0.0133um ™2, p = 0.0175um ™2 and p = 0.02um=2. (b)
The first important part of the particular RDF is also matched using the
repulsive potential from (a).

plum=?] | Alpm] | rlpm™]

0.0133 | 6.9 x 102 | 3.98

0.0175 | 4.5 x 104 |  4.50
0.02 |35x102| 3.10

Table 5.3: Inverse Boltzmann Yukawa fitting results for the higher densities. The
screening length x~! is in the range of 222nm — 323nm.

potential decays very fast and many-body interactions don’t play a role. In the next
section, we try to simulate this part in great detail.

Comparison of the repulsive part at high densities

In this section we use the Inverse Boltzmann method to find potentials, which match
the first ascent of the first peaks of the particular RDFs for the densities p = 0.0133um 2,
p=0.0175um~2 and p = 0.02um 2. Therefore, many frames of the experimental sys-
tem have been used to sample the RDFs in higher detail compared to the previous
sections to obtain more datapoints for the first (important) parts of the RDFs.

Fig. 5.7(a) shows the potentials which were obtained when only the ascent of the
first peaks of the RDFs were taken into account using the Inverse Boltzmann method.
As expected, the potentials do not show an attractive part. In addition, at least
the first important peak of the corresponding RDFs could be matched using such an
approach for the potential (Fig. 5.7(b)).

Table 5.3 shows the corresponding values for a Yukawa fit to these potentials, which
is also shown in Fig. 5.7(a). From these fits and for this case we can conclude, that the
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Figure 5.8: Dependence of the inverse screening length x on the number density. Sym-
bols denote x values from the Inverse Boltzmann method, the straight line
depicts the theory.

screening length for the Yukawa potential is in the range 222nm — 323nm. We remark,
that in the experimental system the screening length changes with density, because
ions are dissociated by the colloidal particles whose density changes. Furthermore, the
screening length can change during time evolution, because the solution absorbs C'O,
from the environment, for example, and hence the ion concentration changes which
influences the screening length. The latter aspect is difficult to investigate, but we are
able to address the dependence of k on the density p.

5.4.3 Dependence of the screening length on the density

The inverse screening length in the DLVO theory is given by
k= (8mlpe,)"? (5.5)

with the Bjerrum length of water {5 = 0.7nm and the reservoir salt concentration
cs = (Nyp)/o when assuming a layer height of o, where Ny is the number of dissociated
charges, and p the density of the colloids. Fig. 5.8 shows the dependency of x on
the density p in our measurements. From Eq. (5.5) we expect a behavior which is
Kk o< (p)'/2, therefore we fit a trend x(p) = as(p)'/? to the values obtained from the
simulations (line in figure 5.8). For the fitting parameter we obtain a; = 31.17, hence
this leads to the number of dissociated charges per colloid with diameter o = 3.9um
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via
(871 Nap/0)'"? = as(p)"? (5.6)
L STV (5.7)
87TlB

The surface of the spherical particles has an area of A = 4x(0/2)? = 47.78um?* =
4.778 x 10"nm?, which means that — speaking in orders — approximately every 100-th
charge on the colloidal surface is dissociated in this case. For a different layer height,
this number must be scaled accordingly.

5.5 Conclusions

In this section we have shown that MD simulations can be used to determine not easily
accessible quantities in experimental systems as well as that the Yukawa interaction
model can indeed be used to model the interaction in real colloidal systems except for
high densities, where multi-body interactions may play a role.

However, also in these systems the main part of the repulsive interaction could be
reproduced by the Inverse Boltzmann method and fitted to a Yukawa shape, which
gives reasonable values for the screening length, which was — depending on the density —
in the range of 222nm — 500nm and could be characterized by the DLVO theory in
Sec. 5.4.3.

In conclusion, we can say that a Yukawa pair interaction can be used to model
the screened effective forces in colloidal systems which substantiate our intention to
simulate the crystallization of charged macromolecules using such a model.
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6 Crystallization of charged
macromolecules at low
supersaturations

During this work, many simulations have been performed to investigate the crystal-
lization of charged macromolecules. However, presenting every simulation would go
beyond the scope of this thesis. Therefore, the results with the highest physical sig-
nificance are presented in great detail. Some of the findings of this chapter are part
of the following publications [109, 110]:

e Kai Kratzer, Dominic Roehm, and Axel Arnold — Homogeneous and Hetero-
geneous Crystallization of Charged Colloidal Particles. High Performance Com-
puting in Science and Engineering "14, Springer International Publishing (2014).

e Kai Kratzer and Axel Arnold — Two-stage crystallization of charged colloids at
low supersaturations, arXiv:1410.8695 (2014).

6.1 Introduction

The crystallization of charged macromolecules plays an important role in many fields,
such as biology, soft matter physics or materials science. For example, proteins are
crystallized for structure determination by scattering [15, 111, 112].

In experiments, macromolecules can be investigated in great detail due to their well
known properties and the fact that they can be investigated by microscopy or scatter-
ing methods [107, 113|, e.g. investigations have been performed concerning nucleation
rates for different densities [114, 115, 116]. In computer simulations, the Yukawa
interaction introduced in Sec. 2.3 is used to study the dynamics of such systems.

However, despite of recent advances in colloidal crystallization [1, 9, 13, 14], there is
still no closed theory of the crystallization of charged macromolecules. For example,
the mechanisms and dynamics how crystals nucleate are not yet fully understood. Is
there a two-stage crystallization process or not, and how are the different crystallite
structures selected, e.g. is an fcc-like core established in a previously nucleated bce-
like structure [9]7 What are the crystallization pathways and how are structures
converted during this process? Are there precursors like density changes or structural
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6 Crystallization of charged macromolecules at low supersaturations

ordering already at an early stage, which predict the formation of a crystallite in the
bulk [13, 14, 117, 118|?

According to Ostwald, the phase which is closest in free energy is nucleated first,
which doesn’t have to be the stable phase [76]. In addition, Stranski and Totomanow
found that the phase with the lowest free energy barrier is nucleated first [119], and
according to Alexander and McTague, the nucleation of a bee-like phase is favored in
a liquid [120].

For investigating the crystallization process in full detail, experiments or simulations
at low supersaturations close to the phase coexistence lines are necessary, where the
attachment rate of growth units is slow and the nucleation process can be studied
in great detail. In our simulations, we have to advance to low pressures P where
the attachment rate is small, which means that the crystal doesn’t grow abruptly
including usually many defects. In addition, if the attachment rate would be high,
multiple crystals are able to nucleate simultaneously, leading to many domains rather
than a large monocrystal.

In this work, we contribute to a clearer picture of crystallization by using our simula-
tion model of charged macromolecules together with rare event sampling simulations
(Sec. 2.5 and chapter 3) to access the onset of crystal growth at low supersatura-
tions, where the energy barrier towards nucleation is high (Sec. 2.4). This allows
us to investigate the mononuclear nucleation process directly which is triggered only
by spontaneous fluctuations of the homogeneous bulk, and to study the mechanisms
which are necessary to form a certain crystallite structure.

6.2 Details of the investigations

6.2.1 Simulation

We perform MD simulations in the isothermal-isobaric ensemble, realized by a Langevin
thermostat and a barostat [55], in a 3D box with periodic boundaries using ESPResSo [17]
together with FRESHS [98| and with the FFS optimizations from Ref. [94]. As a
reference for our simulations, we use the well-known phase diagram of the Yukawa
model [62, 121].

The simulation is set up in the initial state A, which is the liquid state, by dis-
tributing the desired number of particles at random in the 3D simulation box and a
following warmup equilibration®. This leads to an undercooled metastable liquid state,
where the particles are not in a crystal structure because we distributed them ran-
domly and the energy barrier towards crystallization prevents the system to advance
spontaneously to the stable crystallized state. The way towards the final state B is
then characterized by the order parameter.

'For details refer to the ESPResSo user’s guide, http://espressomd.org
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Figure 6.1: (a) Snapshot of the simulated system in the initial undercooled liquid state.
The coloring of the particles is according to the fluctuating g, parameter.
(b) Dependency of the cluster size n and the effective cluster radius R on
the g4 threshold for a typical system snapshot during crystallization.

We simulate for different contact energy values € and for different pressures P. All
simulations have been performed with an inverse screening length of x = 5, which is
comparable to the length scales of the experimental colloidal system of chapter 5. Note,
that we use reduced units in this chapter. We fix the simulation timestep 7 = 0.01,
and kT = 1 in our simulations. The simulation model is the screened Coulomb
(Yukawa) model, where we set the cutoff of the interaction potential like described in
Sec. 2.3, Eq. (2.34). For FFS, we use the exploring scouts method and set pges = 0.5,
dmin = 1, and My, = 15. Further parameters are given in the particular sections.

6.2.2 Order parameter

We use the size of the largest crystal cluster in the system as order parameter (compare
Sec. 2.4.3), detected via a cluster analysis of solid neighbor particles identified by
Gs > 0.29. Fig. 6.1(a) shows a typical snapshot of such a system in the initial liquid
state A, with the coloring of the particles according to the g; parameter. In this
illustration, the fluctuations of the g4 parameter in the liquid can be seen. Domains
with higher g4 values are possible candidate domains for a crystal seed. During time
evolution of the conventional simulation run solid particles with g5 > 0.29 occur and
vanish at different locations in the supersaturated liquid.

Note, that in this model a single particle can be identified as solid like, which sounds
nonphysical at first sight. But, the solid particle detection depends on the environment
of a particle, and if the particle is embedded in a particular crystal lattice, it is
considered as solid-like. However, regarding the neighbors, their environment must
not be solid-like which leads to the case that they aren’t labeled as solid part of the
cluster.
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Figure 6.2: Order parameter visualization: Growth of the largest cluster of solid par-
ticles in a crystallization simulation, detected via gz > 0.29. The im-
ages depict snapshots of the largest cluster at the indicated points. Blue
colorcoding is for liquid-like particles, red and golden stand for solid-like
particles of fce-like and bcec-like type, respectively.

6.2.3 Crystal cluster analysis

The labeling of solid particles depends on the selection of the threshold of the g
parameter, which influences the absolute nucleus size n as well as the effective cluster

radius given by
3\ /3
=(-— 1
R (m) | (6.1)

with the number density p, assuming spherical cluster growth. Fig. 6.1(b) shows the
change of the cluster size n and radius R on the g4 threshold for a typical system
snapshot of the crystallization pathway. As a consequence, the threshold for the g
parameter should be kept constant in the simulations to obtain comparable results for
the cluster sizes. To advance the simulation using FFS, this threshold plays a minor
role, because if it is kept constant the cluster size grows monotonously during the
advancement towards the crystallized final state B, which fulfills the requirement of
the order parameter for FFS. Note, that in our case the threshold of gz > 0.29 is not
arbitrarily. We choose this value such, that it represents a dividing layer between the
liquid domain and a certain solid crystal structure, see also Sec. 2.4.3 and Ref. [82].

Fig. 6.2 visualizes a typical order parameter transformation during the crystalliza-
tion process for a fixed g4 threshold, in this case for a brute-force simulation at a high
pressure of P = 42, where the system crystallizes spontaneously.
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Figure 6.3: Nucleation process: (a) shift of the center of mass of the largest cluster
in the system in the directions dx, dy and dz relative to the initial box
coordinates. (b) radial analysis of the g4 order parameter for different
cluster sizes, indicated by the symbols. The dashed line depicts the gz =
0.29 threshold which was used to determine the cluster size.

As can be seen, the crystallization process can be characterized by this order param-
eter. Here, only solid particles and no certain crystal lattice structure is detected. This
is done in the post-processing, where different crystal structures can be distinguished
by also taking the g, parameter into account.

For the radial analysis of the cluster, we create spherical shells around its center of

mass with A
Varen = Z7(ro - ri)?, (6.2)

where r, is the outer radius and r; the inner radius of a particular shell. To average
over the same number of particles, we choose the sphere shell radii such, that the
number of particles is constant in every shell, e.g. N = 5 particles. We use the mean
of these two radii as the value for the histogram bin,

1
r= §(TZ +7,). (6.3)

Fig. 6.3(a) shows the position of the center of mass of the largest crystallite cluster
during a successful FFS simulation pathway. The center of mass position is nearly
constant in this case, which indicates that we’re looking at the same cluster during
the growth process and no second cluster with competing size is in the system at the
same time, which would lead to jumps in the position of the center of mass. Note, that
this constant behavior is already an indication for balanced growth in each direction
of the 3D system.

Fig. 6.3(b) shows the radial analysis around the center of mass of the g4 order
parameter for different cluster sizes during the nucleation process, created with the
help of the spherical shells around the center of mass according to Eq. (6.2) and
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e | P |APa| pa PB na nB kap Ap structure
2 125.72 | 0.72 ]0.9739 | 1.0103 | 0.5099 | 0.5290 | 8.5 x 10~ hep/fec
2 | 27.75| 0.75 | 0.9943 | 1.0262 | 0.5206 | 0.5373 | 4.0 x 10~'® hep /fee
2 | 2877 | 0.77 | 1.0041 | 1.0358 | 0.5257 | 0.5423 | 1.2 x 10~*° hep /fee
8 | 35.67 | 0.67 | 0.8188 | 0.8288 | 0.4287 | 0.4339 | 2.6 x 10726 | bcc/hep
8 | 38.71| 0.71 | 0.8408 | 0.8508 | 0.4402 | 0.4455 | 1.0 x 107'* |  bcc/hep
8 |40.73 | 0.73 | 0.8547 | 0.8648 | 0.4475 | 0.4528 | 2.1 x 107 | bec/hep
20 [ 23.35 | 0.35 | 0.5467 | 0.5514 | 0.2863 | 0.2887 | 3.2 x 10~** bce

20 | 25.37 | 0.37 | 0.5618 | 0.5668 | 0.2942 | 0.2968 | 3.7 x 10716 bee
20 | 28.40 | 0.40 | 0.5830 | 0.5877 | 0.3053 | 0.3077 | 2.3 x 107 | bcc/hep

Table 6.1: Simulation details and crystallization rates k4p for different values of € and
P for kK = 5. The number densities p and volume fractions 1 are determined
from the snapshots on A4 and Ap, respectively. The number of particles in
all systems is N = 8192. The last column indicates the crystal structure of
the main part of the cluster at the border of B.

Eq. (6.3). The datapoints correspond to an averaged value in time over 20 integration
steps, and the cluster size in the legend is the averaged cluster size during these steps.
Fig. 6.3(b) demonstrates the dependence of the cluster size on the choice of the g
threshold. In contrast to the Classical Nucleation Theory, where one assumes a sharp
transition between old and new phase, there is a continuous transition from the liquid-
like to the solid-like particles, which we will consider when we compare our simulations
to this theory. The transition region is larger than the cluster at the critical nucleus.

6.3 Results

In this section we present the main results of the Forward Flux Sampling simulations.
First, we address the dependency of the crystallization rates on the system parameters
pressure P and the pair interaction contact value e. By investigating the crystallization
rates, the rare transitions can be quantified.

6.3.1 Crystallization rates

Table 6.1 gives an overview of the simulation details and transition rates ksp in
[771o73] for different contact values € and pressures P, which leads to a certain number
density p and volume fraction n for the states A and B. In addition, the values for the
pressure tail corrections A P,,; which are calculated using Eq. (2.38) are given in this
table. The error in the rates k4p ranges from +3 in the exponent for the lower rates
to £1 in the exponent for the higher rates. To improve the error, a lot of additional
computational effort would have to be spent in simulating more trajectories.
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Figure 6.4: Transition rates k4p for different initial volume fractions on the first inter-
face 14, where the system is liquid-like, to the final state B, where > 90%
of the particles are solid-like. The datapoints are grouped by the contact
value €, and the number besides a datapoint denotes the pressure in the
simulation. With decreasing pressure P, the volume fraction is lower which
decreases the transition rate k,p drastically.

All these simulations have been performed with N = 8192 particles, with the border
of the liquid state A located at A4 = 15 and with the border of the final state B located
at A\p = 7300. Table 6.1 also contains the information about the main composition of
different structures of the crystal cluster at the border of state B. This must not be
the final structure of the stable state in the phase diagram, but an indication for the
spontaneous nucleated structure for the state where 90% of the particles are in the
largest cluster. There is a tendency to higher g, values for higher pressures and lower
contact values which is caused by hcp-like and fcc-like structures at these conditions.

Fig. 6.4 shows the values for ksp plotted versus the volume fraction n4 of the
snapshots at the border of the liquid state A\ 4. With decreasing pressure P the volume
fraction is lower, the system is closer to the coexistence line which means a lower
chemical potential difference Ay and hence a lower transition rate kp.

Note, that the transition rates are the outcome from considering all trajectories of
a complete FFS simulation, which includes the successful and non-successful path-
way branches in the FFS splitting scheme. In the following sections, we analyze the
successful pathways to investigate — amongst others — the nucleation mechanisms.
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Figure 6.5: Nucleating critical clusters at a low contact energy, ¢ = 2, and a pressure
P = 25.72. Blue color coding depicts a bec-like structure with g, < 0.05
and red color coding denotes fce-like particles with g, > 0.1. The colors in
between stand for hep-like structures (values according to Ref. [82]). In this
case, a bee, hep, and fec signature is visible. Note, that only approximately
every second interface snapshot is shown in this image.

6.3.2 Nucleation pathways

For a low contact energy of the potential, ¢ = 2, and a pressure P = 25.72, the
averaged volume fraction of the liquid state on A4 is n4 = 0.5099 and changes to
ne = 0.5290 during crystallization. Fig. 6.5 shows the nucleation of critical clusters
for these settings, which are successful traces of the FFS simulation up to the second
to last automatically placed interface \,,_1, which is possible because we set the target
transition probability to pges = 0.5. As a result there is no additional interface placed
beyond a committor value of 0.5, which corresponds to the committor value at the
critical cluster size |94, 24|. During the nucleation process, bce-like, hep-like, and
fce-like crystal structures can be observed in the clusters.
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6 Crystallization of charged macromolecules at low supersaturations

For an improved analysis of the particle structures during a crystallization trace,
we consult the distribution of the g, and g4 parameters of all particles in the system.
This is visualized in Fig. 6.6, which shows a time series of selected snapshots of one
crystallization trace of Fig. 6.5 as scatter plots of the g, parameters. In Fig. 6.6 all
particles which are solid-like and in the largest cluster are depicted as larger dots. The
smaller dots represent particles which are not in the largest cluster. In addition, the
shown domain of the order parameters was subdivided into 100 bins for each direction
and the color of the dots represents the count of each bin to indicate the domains
where many particles have similar order parameter values.

At the beginning of the time series, the system is in the liquid state, where the or-
der parameters of most particles are g, < 0.1 and gz < 0.29. Only a few particles are
beyond these boundaries, and a very small fraction forms the largest solid cluster in
the system (approximately 5 larger dots in the first scattering plot). In the following
image mainly the g4 values have increased, and more particles are in the largest clus-
ter. Then, the values are scattered also to higher g, domains, and the density of the
dots with g, > 0.1, which is considered as fcc-like, increases during nucleation of the
cluster until the critical size, which is until the second to last image. The transition
from the second to last image to the last image illustrates the change of the system
from the state which contains the critical cluster to the final state on A\g where 90%
of the particles are in the largest solid cluster. The system shows a strong tendency
to the hep/fec-like domain. Note, that the system is only driven to higher g4 values,
but it is not driven towards higher g, values. The increase in the g, parameter can be
seen as a result of the ordering process under the preset simulation conditions.

For further investigations and to visualize the cluster growth with the relevant order
parameters we show slices of the simulation box in x-y, x-z, and y-z direction, with a
thickness of plusminus the neighbor cutoff, which was determined by the first minimum
of the radial distribution function g(r). For better comparability, all system snapshots
have been transformed to the center of mass of the critical cluster at A,_;. This
allows us to study the location in the system where the critical cluster will form at an
early stage, e.g. for the identification of precursors to the onset of crystal nucleation.
Fig. 6.7 shows this analysis for the critical cluster with a size of approximately 1000
particles.

The images depict slices through the center of mass in every box direction, where
images in the same column correspond to the same slice. The brackets (S) around a
system quantity S denote an average of the particle’s value itself with the values of
its N nearest neighbors within the cutoff radius. The first row in Fig. 6.7 shows the
averaged g, order parameter and the second row the g, order parameter. The last row
shows the averaged neighbor distance (r) of the particle with its nearest neighbors,
which characterizes the local density.

As can be seen in the images, the g, order parameter (first row) has higher values at
the positions where the solid particles of the cluster are located, but the distribution
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Figure 6.7: Slices of the 3D cluster near the critical size in every direction of the box

is not uniform across the cluster.

(x-y, x-z, y-z) for € = 2. The slices have a size of plusminus the neighbor
cutoff, determined by the first minimum of the RDF. The first row shows
the (g,) distribution, the second row the (gg) distribution, and the last
row the neighbor distance (r). The cluster shows a high ordering for both
parameters, g, and gg.

This means that the cluster consists of fce-like

particles and also of hep-like and of bee-like particles in this case. In contrast, the
values of the g4 order parameter (second row) correlate nicely with the circular shape
of the cluster as expected from CNT, and the profile decreases smoothly at the border
of the cluster. The alignment of the particles can also be seen in the panels of the last
row. However, the particles corresponding to the cluster in the system do not show a
significantly different local density compared to the other particles in the system. The
different neighbor distances are distributed over the whole domain in these images.
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6 Crystallization of charged macromolecules at low supersaturations
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Figure 6.8: Nucleating critical clusters with ¢ = 20 and P = 25.37. The color coding
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is the same as in Fig. 6.5. Despite of the fact that the phase point for
these conditions is located in the fcc-like region of the phase diagram, the
critical cluster pathways consist of mainly bce-like particles in all cases,
with only small fluctuations of hep-like and fee-like structures (compare to
Fig. 6.5).



6.3 Results

As a next step, we set the Yukawa contact value to ¢ = 20 and simulate at a
comparable pressure of P = 25.37. Fig. 6.8 shows the corresponding pathways for this
higher contact energy. According to the phase diagram (see also Fig. 2.4), the stable
phase of this point is fcc-like. As the color coding by g, in the figure depicts, there
are also fluctuations of this fcc-like structure, but they are much smaller than in the
previous case for € = 2. The main part of the pathways contain clusters which consist
of bee-like particles, with a much smaller number of hcp-like and fcc-like particles
compared to the previous case with € = 2. In addition, the critical cluster size is much
smaller for e = 20 and consists of approximately 360 particles. From the last snapshots
shown in Fig. 6.8, the system crystallizes spontaneously to a state which consists of
mainly bec-like particles. To quantify this observation, Fig. 6.9 shows the time series
of the scatter plots of the g, and g4 parameters for one representative successful trace:

e At the beginning, most of the particles are in the liquid domain and only a small
number of larger dots are present, which stand for the particles in the largest
cluster.

e In the following images of the time series, the dots shift mainly to higher gg
values without increasing the g, order, but a few fluctuations are present.

e The second to last picture represents the configuration at interface \,,_; near the
critical cluster size, and the transition to the last image occurs during crystal
growth until the border of state B.

Note, that in our Forward Flux Sampling simulations, we only ratchet the system
towards states where more particles are included in the largest cluster, detected via
the gz parameter, and do not optimize for a certain structure. In this case, it is more
convenient for the system to form a bcc-like structure spontaneously, than the truly
stable fce-like structure, as predicted by McTague [120].

Now, we present the investigations of the critical cluster for e = 20, analyzed in 3D
slices through the simulation box as in the lower contact energy case before. Fig. 6.10
shows the g, analysis in the first row and the g, analysis in the second row as well
as the averaged neighbor distance images in the last row. Columns correspond to the
same slices. The critical cluster is much smaller for e = 20 than for e = 2. Note, that
the scale for the g, analysis in the second row is different than for the previous case
in Fig. 6.7, the absolute values are much smaller. Here, the overall g, values are much
smaller. As we can see in the g, panels, there are fluctuations present, but they are
not as large as in the ¢ = 2 case and have a different noncircular distribution. These
fluctuations appear only for short periods of time and dissolve again. The g, panels in
the second row show nicely the circular shape and the higher g4 values in the center
with a smooth decrease at the border. Again, no correlations to the solid cluster can
be seen in density panels for e = 20.
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Figure 6.9: Time series of the g, and gz parameters per particle for e = 20 with the
same color coding like in Fig. 6.6. The particles arrange mainly in the
[ = 6 order, with a bee-like structure in the end.
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Figure 6.10: Slices of the 3D cluster near the critical size in every direction of the box
(x-y, x-z, y-z) for e = 20. The slices have a size of plusminus the neighbor
cutoff, determined by the first minimum of the RDF. The first row depicts
the (g,) distribution, the second row the (gs) distribution, and the last
row the neighbor distance average (r).

One question remains still open in the case for ¢ = 20: The phase point of the
system is located in the fcc-like domain in the phase diagram. However, our system
crystallized to the bee-like domain. To perform further investigations of this behavior
we use the g, order parameter together with an FF'S simulation to optimize for clusters
of fce-like particles. We conducted the following approaches:

(a) Use the configuration points of the final state B as starting points for the FFS
simulation with the g,-based order parameter. Here, the system is a defective

bee-like crystal.

(b) Set up a perfect bee crystal lattice at the same simulation conditions and try to
grow an fcc-like crystal in this system.
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6 Crystallization of charged macromolecules at low supersaturations
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Figure 6.11: Results of different approaches to transform the system with ¢ = 20 to
the hep/fec-like state, obtained via FFS simulations and the g, order
parameter. The color coding is blue for bee-like particles, red for fee-like
particles and in between for hcp-like particles. We show the states which
could be reached if using as starting point (a) the (defective) bce-like
snapshots from the previous gy simulation run, (b) a perfect bee crystal,
and (c) the snapshots of the previous simulation containing the critical
clusters. As one can see, approach (c) leads to the desired result.

(c) Use the snapshots from the previous simulation which contain the critical clusters
for a new FFS simulation and try if an fcc-like pathway is possible. In our case,
these are the snapshots at \,_;.

Fig. 6.11(a)-(c) gives an overview of the results of these approaches. In approach
(a), an hcp/fec-like domain of a certain size could be grown in the bee-like phase.
However, the FFS simulation was not able to advance the system to higher fcc-like
particle numbers in available computation time, the trajectories for reordering the
particles are very long in this case. In addition, fluctuations are necessary to reorder
the structures, and in this case a larger box size may help to achieve this aim. For
the second approach (b), which can be seen as an extreme case of (a), it was not
possible to grow a cluster with more than A\ = 6 particles in the largest cluster with
hep-like structure (g, > 0.06). Most of the runs immediately fall back to the bee-like
phase, which leads to a very high computational effort, e.g. we launched about a
million trial runs starting at the interface with A = 6, and none of them was able to
reach the next interface. Thus, we can conclude that the defects in system (a) were
responsible for allowing some hcp/fec-like particles to grow, already indicating a free
energy barrier. In the third approach (c), where we start from the system snapshots
of the previous simulation containing the critical clusters, it was possible to advance
to a higher number of hcp/fce-like particles. Fig. 6.11(c) shows a snapshot where
approximately 65% of the particles are fce-like (g, > 0.1). In addition, many hcp-like
particles (g, > 0.05) can be found in the system. If an fcc-like cluster of size A ~ 1400
has been reached, the probability to fall back is less than 25%. Fig. 6.12 shows the
time series of the g, and g4 parameters for the transition bee-critical — hep/fee.
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6.12: Scatter plots of the g, and G4 order parameters for the transition from

the system states which comprise the critical clusters to an fcc-like state.
Thereby, the largest cluster size of particles with g, > 0.1 was used as

order parameter.
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6 Crystallization of charged macromolecules at low supersaturations

v

Figure 6.13: Beginning of the transition bee-critical — hep/fee for € = 20 when driving
the simulation via g,. The first snapshot shown is located on Ay of the
new simulation. Note, that the core is mainly fcc-structured.

First, most of the particles in the largest cluster are located in the bce-like and
hep-like domain (compare also with the second to last image of Fig. 6.9, which is
from the collection of system states comprising the critical cluster). During the next
steps, more particles advance towards the fcc-like structure with g, > 0.1, because
this transition is driven with our order parameter. In addition, we observe more
particles crystallizing to the solid state with Gz > 0.29. Then, the system transforms
further while crystallizing to a similar image like in the case for € = 2 (see also last
scattering plot in Fig. 6.6). Fig. 6.13 visualizes the crystal clusters of the beginning of
such a trajectory. The first cluster of this trace is located on interface Ay of the new
simulation. As can be seen, the crystal clusters are optimized for more particles with
higher g, values along the nucleation trace.

Before we give an explanation for the observations, we summarize the transitions as
follows: The observed pathway for ¢ = 2 is

liquid(— bee) — hep/fec.

We put the bee-like domain in brackets, because this domain is only crossed, and there
is no retardation or stay. For e = 20, the spontaneous transition reads

liquid — bcc,
and the following transitions are not observed:

liquid - hep/fee, or
bee - hep/fec.

However, using the g, parameter in FF'S, it is possible to perform the transition
liquid — bec-critical — hep/fec.

Videos of all the transitions are available on the supplementary materials webpage [122].
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Figure 6.14: Two-stage nucleation: (a) e = 2 with snapshots on A4, critical, and Ag.
(b) € = 20 with snapshots on A4, critical, Ag, and the branch of the FFS
simulation driven by g,. The solid arrows in the figures indicate transition
pathways.

6.3.3 Two-stage nucleation

Two-stage nucleation takes place, if the direct transition to the truly stable phase in the
parent phase is not possible [70]. Fig. 6.14 summarizes the transitions which we inves-
tigated in the previous chapters for € = 2 and € = 20 with the help of the corresponding
scattering plots. Fig. 6.14(a) shows selected snapshots of the transition for the e = 2
case, where we use only the G4 parameter to drive the transition. Fig. 6.14(b) shows
the corresponding transition for the e = 20 case, where the transition is performed
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6 Crystallization of charged macromolecules at low supersaturations

spontaneously to the bcc-like state when only using the g, parameter. In addition,
the branch where we use the g, parameter to drive the simulation is shown. In all
our simulations we observe, that there is no direct transition liquid — fec (crossed
arrows). It was also not possible to drive the simulation directly from the liquid to
higher g, order parameters. Hence, there is a two-stage nucleation process in all cases:

liquid — bce — hep/fec.

This behavior is explained naturally with the presence of two energy barriers in Yukawa
systems: One for the liquid — bce transition and one for the bee — hep/fee transition.
The latter one is smaller for lower values of € and can be overcome spontaneously for
e = 2. For ¢ = 20 we have to drive the two-stage mechanism in the simulation with
the additional help of the g, parameter due to the larger second barrier.

Since there is no direct transition liquid — fcc, the liquid-bcc surface in the system is
a requirement to overcome the second barrier and for triggering the second transition
to the hep/fec-like structure, which is a heterogeneous nucleation mechanism in the
homogeneous system.

6.3.4 Nucleation mechanism

In Sec. 6.3.2 we have seen that the g, parameter is distributed uniformly across the
slices of the clusters, with a smooth decay at the border of the cluster (see also Fig. 6.7
and Fig. 6.10). However, the g, parameter shows another behavior. Fig. 6.15 depicts
a selection of characteristic distributions of the g, parameter in the system during
nucleation of the clusters. The highest values of the g, distributions aren’t located in
the center of the slices, but fluctuate at the liquid-bce interface of the cluster, which
shows the heterogeneous nucleation at the border.

For ¢ = 20 we observe that the fluctuations are smaller, which explains why the
system crystallizes to the bce-like phase, namely because the second energy barrier
can’t be overcome spontaneously.

To quantify the g, transition bee-critical — hep/fec-like, we calculated the transition
rate with respect to the surface area of the critical-bce cluster, and obtain a transition
rate of

— —08 -1 _—2
kcritical—bcc,fcc = 9.52x10 T O .

In summary, two mechanisms play a role for the full transition liquid — hep/fee: The
presence of an already established bcc-like interface, and the necessary fluctuations at
the border of the crystal cluster to nucleate a certain structure, and to overcome the
second free energy barrier.
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Figure 6.15: Heterogeneous nucleation at the border: g, distributions during nucle-
ation. First row for € = 2 and second row for e = 20. Only solid particles
with g4 > 0.29 are shown in these images. The highest values of the g,
parameters occur at the border of the clusters and oscillate during nucle-
ation. Note, that the color scale is different for each row, the fluctuations
for € = 20 are much smaller.

6.3.5 Precursors

An interesting question is, if precursors in the liquid phase at an early stage can
be detected, which indicate the local onset of crystal nucleation. Fig. 6.16 shows a
characteristic set of snapshots at A, obtained by backtracking the successful FFS
trajectories. Note, that these snapshots are an outcome of the initial brute-force
simulation run, which was started at a random configuration of state A, and was
performed without driving the system using an order parameter.

As can be seen, there are only a few solid particles present in the examined slices,
and no seeds apart from the one leading to the critical cluster. The pressure at which
we simulate is very low, therefore we observe only sporadic formations of solid clusters
due to fluctuations. The g, order parameter shows a few smaller regions at random
positions where the values are slightly elevated. However, the g4 order parameter
shows a domain of higher values already in the center of the box, where the critical
cluster will nucleate, in all slices. The density maps in the last row do not show
any correlations. In contrast to previous work, where the crystallization was studied
experimentally at higher supersaturations [13], the density panels in the last row do
not show any indications where the critical cluster could form. The distances of the
particles are distributed randomly over the whole domain.
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Figure 6.16: Slices of the seed from which the critical cluster of Fig. 6.10 has been
grown. The snapshots are transformed according to the center of mass
of the critical cluster. Note, that the scales of the g, and g4 plots are
adjusted to the lower values. The g, distribution (row in the middle) is
the quantity of the system which shows a distinct indication where the
crystal nucleates.

Thus, the g, distribution is the quantity of the system which shows a distinct in-
dication at this early stage where the critical cluster will form and can be seen as a
precursor in this case. As the A4 border is from the initial brute-force simulation run,
this is not an artifact from the FFS simulation being driven by the gz and shows a
posteriori that this was a good choice.
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Figure 6.17: AG for € = 2 and e = 20, obtained from FFS simulations with g; > 0.29
for the identification of solid particles. We allow a shift of the theory
curve in R direction because of the unknown real cluster size, which is
dependent on the g, threshold.

6.3.6 Comparison to Classical Nucleation Theory

For the comparison with CNT, we calculated the free energy difference AG(\) for the
crystallization simulations using the method of calculating stationary distributions
with FFS (see also Sec. 2.5.3). The first part of the distribution was obtained using
brute-force simulations which has been combined with the distribution of the FFS
simulation via a least-square fit like described in Ref. [43].

The resulting energy landscapes AG(R) for e = 2 and € = 20 are shown in Fig. 6.17.
Note, that for ¢ = 20 the energy landscape corresponds to the first transition lig-
uid — bce. The simulations have been performed with a threshold of gz > 0.29 for
the identification of solid particles. Due to the unknown real cluster size we allow a
shift in R direction of the theory curve with an offset AR;. The shifts for € = 2 and
e = 20 are 0.65 and 0.54, respectively, which is less than a particle diameter. As we
can see, it is possible by applying such a shift to fit the free energy profile AG of the
Classical Nucleation Theory to the free energy profile obtained from the simulations
via stationary distributions.

Table 6.2 gives an overview of the FFS simulation and fitting results. From the
fitting, we obtain for € = 2 an effective critical cluster size of R* = 5.92, a chemical
potential difference of Ay = —0.2148 and a surface tension of v = 0.5723, and for € =
20 an effective critical cluster size of R* = 5.44, a chemical potential difference of Ay =
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€ ‘ A* )\n_g )\n—l R* AG* ARf A,u Y
2 | 846 865 1004 592 67 0.65 —0.2148 0.5723
20 1 379 318 363 544 25 0.54 —0.1953 0.2637

Table 6.2: Stationary distribution FFS simulations: CNT fitting results.

—0.1953 and a surface tension of v = 0.2637. The values of the chemical potential
are comparable to the values of Ref. [9], however, deviations can occur because we
simulate at slightly different volume fractions.

The automatically placed interfaces \,,_» and \,_; coincide with the critical cluster
size \*, which confirms that the FFS interface placement methods with pges = 0.5,
which corresponds to the committor value at A*, can be used to estimate the size of
the critical cluster A\*.
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7 Conclusions

In this thesis we used advanced rare event sampling techniques to investigate the
crystallization of charged macromolecules close to phase equilibrium.

To this aim, we implemented a powerful local bond order parameter and a cluster
analysis algorithm to the simulation software ESPResSo (chapter 2). Using this com-
bination, the progress of crystallization can be characterized by mapping the system
state in phase space to a one-dimensional order parameter, namely the size of the
largest crystalline cluster in the system.

We used the Yukawa model as simulation model for the charged macromolecules,
which consists of a screened Coulomb potential for the pair interaction of the macro-
molecules. We tested the applicability of this model against experimental colloidal sys-
tems of Polystyrene spheres at different densities in collaboration with the Bechinger
group (PI2) at the University of Stuttgart (chapter 5) and find with the help of the
Inverse Boltzmann method, that the Yukawa model can in general be used to explain
the interactions of the charged colloidal particles. Difficulties only occurred when ad-
vancing to high densities of the experimental system, because the radial distribution
functions were sharply peaked for these densities, which can be caused by many-body
interactions in the system. In this case, a potential which has also an attractive part
is better suited than the Yukawa potential to model the sharp peaks of the RDF.
However, the important shape of the RDF at smaller radii could be reproduced by
the Yukawa potential to a certain extent. For the screening lengths of the colloids we
found a dependency on the density of the system, which occurs because of the different
number of dissociated charges for a different number of colloids per volume, which we
compared to DLVO calculations.

To investigate the nucleation process at an early stage, we performed crystal growth
simulations directly from the homogeneous liquid phase, to our knowledge closer to
phase equilibrium than it has been done so far for a system of charged macromolecules.
Until now, studies at these conditions haven’t been possible with conventional brute-
force simulations due to the high energy barrier towards nucleation and hence the
long waiting time for the assembly of the crystal cluster from the bulk without an
artificial seed or impurity. We used rare event sampling techniques, more precisely
the Forward Flux Sampling technique, to overcome the energy barrier and to grow the
single crystal cluster in the system only with local fluctuations.

The charged macromolecule simulation problem is computationally more expensive
than e.g. a hard sphere system or a Lennard-Jones system, therefore we had to put
effort in not only parallelizing, but also enhancing the efficiency of the method, where
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the latter one depends sensitively on the interface locations of FFS. Based on our
analytical preliminary considerations, we introduced two algorithms for placing the
interfaces at their optimal positions, automatically and on-the-fly during the simu-
lation. Therefore, the interface locations are estimated by a small number of trial
runs.

This improvement increases the efficiency and the set-up of the simulation tremen-
dously, because now, only initial and final state must be specified in terms of the order
parameter and in the following the simulated system performs the transition through
phase space automatically and optimized, saving a lot of simulation time.

In principle, these placement methods can also be applied to other rare event sam-
pling methods which are based on advancing the system in terms of an interface-based
order parameter, as well as be extended to systems with more than one order param-
eter. Beyond that, the placement methods could also be used to adjust the reaction
coordinate on-the-fly, as the simulation progresses.

We tested both, the parallelization of FF'S and the enhancement of the efficiency by
fundamental simulations and also with the computationally more expensive simula-
tion of the crystallization of charged macromolecules. We could confirm the analytical
prediction of the efficiency of the FFS simulation with the help of the fundamental
simulations. In the case of the crystallization simulation we could show that with the
optimized FFS method the efficiency was significantly larger than without the opti-
mizations, even if we already used pre-knowledge for the simulation setup. Without
pre-knowledge, simulating the crystallization of charged macromolecules and espe-
cially the placement of the interfaces was a ‘hit and miss’ task and turned out to be
impossible at certain conditions.

We developed the Flexible Rare Event Sampling Harness System which contains all
the improvements of the methods and is able to steer many simulation clients in a
highly parallel and asynchronous manner (chapter 4). To bridge waiting times which
can occur due to the different length of the trajectories, we introduced so-called ‘ghost’
runs, which are performed if computation resources are available but the system would
have to wait for a previously started run to finish. The result of these pre-calculations
are stored in a different location and transferred in the next calculation stage, if the
random configuration point in FFS is drawn.

In addition, FRESHS is based on a server-client principle and was designed with a
module-based structure, which allows the flexible implementation of further sampling
algorithms as well as the attachment of different simulation packages and user-defined
simulation code with the help of a plug-in system and an appropriate harness script.
This creates an objective basis for comparing e.g. the performance of calculating
trajectories with different simulation tools, or the applicability of different sampling
algorithms. The further development of FRESHS was performed in close collabora-
tion with the group of T. Schilling and J.T. Berryman at the University of Luxem-
bourg. At present, FRESHS is suited for simulating quasi-static and dynamic rare
event systems in equilibrium and non-equilibrium and can be used with GROMACS,
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LAMMPS, ESPResSo and self-written code. FRESHS uses standard networking for
the communication between the sampling method and the simulation of the physics,
which makes it possible to use even heterogeneous hardware resources at different high
performance computing locations. In the post-processing, powerful analysis tools can
be used to analyze the rare event sampling simulation. FRESHS is open-source and
publicly available, making the investigation of different rare events accessible for many
research groups.

Having the powerful, optimized and parallel tools to simulate rare events, we ad-
dressed the crystallization of charged macromolecules at low supersaturations in great
detail (chapter 6). For our simulations we used the efficient implementation of FFS
with the automatic, optimized interface placement and ghost runs in FRESHS to-
gether with the software package ESPResSo on the client side for the calculation of
trajectory fragments. We simulated the macromolecules in an NPT ensemble with
Langevin dynamics and used a 3D simulation box with periodic boundary conditions.
The initial state was set up by randomly placing and equilibrating the particles un-
der the particular conditions which lead to the fluid phase, and the final state was in
most cases defined in terms of the order parameter such that approximately more than
90% of the particles are member of the largest cluster of solid particles in the system.
Thereby, a particle was defined as solid-like depending on the spatial orientation of
the neighboring particles, quantified via the local bond order parameters. The crystal
lattice was mainly analyzed in the post-processing.

By using such a system setup, we were able to simulate at low supersaturations
and to grow a single cluster in the system. Thereby, the interfaces positions in FFS
were determined by the placement methods, which leads to the situation, that the
last interface was placed at a location near the critical cluster size. From the critical
cluster size on, no further interface was necessary for the last step of the transition to
the final state, because growth then happens spontaneously.

We were able to investigate transition rates under different conditions which wouldn’t
have been possible with conventional brute-force simulations. Thereby we find, that
the transition rate decreases drastically with decreasing pressure due to lower volume
fractions and a lower supersaturation of the system, which leads to a higher free en-
ergy barrier towards nucleation. For lower contact energies and higher pressures we
obtained more likely an hcp/fce-like structure than for higher contact energies and
lower pressures. To analyze this behavior, we investigated also the crystallization
pathways under these conditions. For low contact energies and a certain pressure we
obtained a spontaneous transition to the hep/fec-like state of the system. We analyzed
the structure formation and the crystal clusters for this transition in great detail and
find crystal clusters of nearly spherical shape during the nucleation process.

For high contact energies at a comparable pressure we obtained a direct transition
to a bee-like metastable state of the system. As the stable state at this phase point is
also the fce-like domain, we used multiple approaches to drive the system towards this
stable state. Thereby, it was not possible to drive the system from a fully converted
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bee-like system towards the hep/fee-like state. However, it was possible by starting
from the system states comprising the critical clusters to optimize for a larger number
of fee-like particles using our FF'S simulations. This could be explained by the presence
of a liquid-bcce interface, which supports the heterogeneous nucleation of the hep/fec-
like structure at the surface of the crystal. These investigations lead to the question,
if the crystallization is a two-stage mechanism or not.

In all our simulations, we didn’t see a direct transition from liquid to the fcc-like
domain without crossing the bee-like and hep-like domains, and it wasn’t possible to
crystallize the system, at least in available computation time, by just optimizing for an
fce-like cluster in the system. Using the structure analysis, the crystallization pathways
could be analyzed, which always took the transition liquid — bce — hep/fee in our
investigations, which is a two-stage process. This means, that there are two energy
barriers towards the stable state, and the second one for the transition bece — hep/fee
is smaller for lower contact energies than for higher values, which leads to the result,
that for the low contact value the barrier can be overcome spontaneously, and for the
high contact value we have to drive the system over the second barrier using an extra
FFS simulation. In addition, the already existing bcc-like interface is a necessary
condition for the further nucleation of hcp-like and fcc-like particles at the crystal
surface. To quantify this process, we calculated the transition rate of the second
transition with respect to the surface area of the critical cluster. We further analyzed
the growth mechanisms and found, that fluctuations of the hep/fee-like particles take
mainly place at the surface of the crystal cluster, and that these fluctuations are much
stronger for lower contact energies, which also helps to overcome the second energy
barrier. The final crystal structure is then nucleated starting from these fluctuations
at the border.

To identify precursors, we investigated the nucleation at an early stage, namely at
the border of the initial state A, where the crystal seed is born from the parent phase.
Therefore, we analyzed the configuration of the liquid at the local positions where the
critical cluster will form at a later stage. For both, low and high contact energies, we
find correlations of the g, structure at the appropriate positions. Hence, the formation
of a crystal cluster is indicated by local sixfold symmetry at this early stage. We do not
observe correlations with the local density or fourfold symmetry in our simulations.
The nucleation is started by spontaneous local fluctuations which lead to a bce-like
ordering, as predicted by Alexander and McTague.

For comparing the simulations to the Classical Nucleation Theory, we computed
the stationary distributions and the free energy landscape AG with a forward and
backward FFS simulation, where in the latter case the crystal cluster was dissolved
again. The curve of the Classical Nucleation Theory was fitted to the obtained free
energy landscape, assuming an effective spherical cluster shape and allowing a shift in
radial direction due to the unknown real cluster size, which is influenced by the order
parameter threshold. The radial offset was found to be less than a particle diameter,
which confirms that the choice of the g4 threshold of 0.29 was suitable to describe

120



the nucleation process of solid particles. From the fitting results the surface tension
and chemical potential difference for the particular simulation could be extracted. The
chemical potential values are comparable to already known values from different calcu-
lations of previous work. Thus, CNT seems to be a surprisingly good model for crystal
nucleation. However, the relevant phase for nucleation is not the thermodynamically
most stable one, but rather the first formed metastable phase.

In conclusion, the findings of this work on colloidal crystallization contribute di-
rectly to a closed theory of colloidal crystallization: Unlike previously argued, the free
energy landscapes are well-described by classical nucleation theory, where the relevant
transition is the one to the first metastable phase. This phase is always a bcc crystal,
even if the thermodynamically stable phase is an fcc crystal. In this case, nucleation is
a two-stage process, which however does not influence nucleation rates or the structure
of the critical cluster. The nuclei are almost spherical, so that edges of the crystal play
a minor role. Also, the crystal surface is fairly diffuse, which however is taken into
account by the surface tension. Nucleation is mainly the formation of a sixfold sym-
metry, which can already be seen at the onset of crystallization in the supersaturated
liquid.

Beyond that, the advanced rare event sampling techniques developed during this
thesis help other researchers to investigate rare events in diverse fields like biology,
chemistry, medicine and physics.
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