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1 Zusammenfassung

Nanoporen sind vielversprechende Kandidaten für hochempfindliche, neuarti-
ge Sensoren. Mit ihnen kann der Transport winziger Mengen eines Materials,
bis hin zu einzelnen Molekülen, nachgewiesen werden. Das grundsätzliche Mes-
sprinzip ist verblüffend einfach. Eine Membran mit einer einzigen Pore teilt
einen Probenraum, der mit einer wässrigen Lösung gefüllt ist. Durch Anlegen
einer Spannung zwischen beiden Teilen fließt ein elektrischer Strom durch die
Pore. Verändert sich die Zusammensetzung des Porenraums kann dies als Mo-
dulation des elektrischen Stroms nachgewiesen werden. Dies kann etwa beim
Durchqueren der Pore von Biomolekülen, z. B. DNA geschehen. Der Trans-
port solcher Moleküle durch eine Nanopore wird als Translokation bezeichnet.
Bereits frühe Experimente [1] zeigten, dass sich anhand verschiedener Mo-
dulationen des Stroms DNA-Moleküle mit unterschiedlichen Basensequenzen
unterscheiden lassen. Die wohl wichtigste Vision der Forscherinnen und For-
scher auf diesem Gebiet ist die Möglichkeit, Nanoporen zum Auslesen des
Genoms zu nutzen. Eine günstige und schnelle Technologie für diese Aufgabe
würde die Tür zu individualisierter medizinischer Behandlung öffnen, bei der
Therapien anhand des individuellen genetischen Profils zugeschnitten werden
könnten. Kommerzielle Sensoren sind bereits angekündigt [2], sind aber noch
nicht verfügbar.

Die Ladung der DNA hat eine besondere Stellung. Ein hochgeladenes DNA-
Molekül ist umgeben von einer Gegenionenwolke, die experimentell typi-
scherweise aus Kaliumionen besteht. Wird eine Spannung angelegt, kommt
es zu komplexen elektrohydrodynamischen Phänomenen wie Elektrophore-
se und Elektroosmose. Ein vollständiges Verständnis dieser Mechanismen ist
anspruchsvoll. Daher wurden in dieser Dissertation Computersimulationsme-
thoden genutzt um ein besseres Verständnis zu erzielen. Diese ermöglichen
es, sehr grundsätzliche, bisher nicht geklärte Phänomene zu verstehen. Die
große Herausforderung besteht darin, die dabei auftretenden Transportpro-
zesse realistisch im Computer abzubilden. Die Zeit- und Längenskalen, die
dafür notwendig sind übersteigen das, was mit aktuellen Rechnern mit ato-
marer Auflösung simulierbar ist, um einige Größenordnungen. Daher wurden
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Kapitel 1. Zusammenfassung

Methoden weiterentwickelt, mit denen eine vergröberte Modellierung mit ei-
ner reduzierten Anzahl an Freiheitsgraden möglich ist. Durch Simulationen
auf atomarer Ebene wurde weiterhin untersucht, wie realistisch die genutzten
vergröberten Modelle sind. So konnte gezeigt werden, unter welchen Bedingun-
gen kompatible Ergebnisse zwischen den genutzten Modellskalen zu erzielen
sind.

Zwei Hauptaspekte wurden untersucht. Einerseits wurde betrachtet, inwiefern
elektrostatische Barrieren der Translokation von DNA entgegenwirken. Dies
beinhaltet nicht nur die Rolle der Gegenionenwolke, die durch die Pore de-
formiert wird, sondern auch mögliche dielektrische Randkräfte hervorgerufen
durch den Unterschied der dielektrischen Konstante von Wasser und Mem-
bran. Andererseits wurde die Frage untersucht, welche Mechanismen die be-
obachteten Modulationen des elektrischen Stroms aufgrund der Anwesenheit
von DNA-Molekülen hervorrufen. Dabei wurde durch den Vergleich von Mo-
dellen auf drei Auflösungsniveaus, nämlich Kontinuum, vergröberte Partikelsi-
mulation und atomistische Simulation, analysiert, inwiefern die Mechanismen
quantitativ korrekt auf vergröbertem Niveau wiedergegeben werden.

Elektrostatische Barrieren

Eine der zentralen experimentellen Fragen besteht darin, wie man die Ge-
schwindigkeit des DNA-Transports verringern kann, damit mehr Zeit besteht,
das translokierende Molekül zu identifizieren. Zum besseren Verständnis der
auftretenden Transportraten und -geschwindigkeiten haben wir Barrieren der
freien Energie betrachtet, die dem Transport entgegenwirken bzw. ihn verlang-
samen. Für diese Untersuchung wurde eine vergröberte molekulardynamische
Simulation verwendet, bei der das Wasser implizit anhand seiner dielektrischen
Konstante und die Ionen explizit als Partikel repräsentiert wurden.

Bisher ungeklärt war insbesondere die Frage, wie der Unterschied in der di-
elektrischen Konstante zwischen Wasser und Membran den Transport, insbe-
sondere die auftretenden Barrieren, beeinflusst. In der gewählten vergröberten
Darstellung kann der dielektrische Kontrast mit dem ICC? (induced charge
computation)-Algorithmus miteinbezogen werden [3]. Dabei wird die Grenz-
flächen zwischen beiden Medien durch induzierte Ladungen dargestellt, die
iterativ bestimmt werden. Hierzu ist lediglich die Kenntnis des elektrischen
Feldes auf der Oberfläche notwendig, und insofern kann jeder übliche Elektro-
statik-Löser leicht um diesen Aspekt erweitert werden. Das Skalierungsver-
halten und die Periodizität der Lösung wird dabei von dem genutzten Löser
übernommen. Eine grundlegende Implementierung des ICC?-Algorithmus im
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Abbildung 1.1: (a) Skizze des Simulationsaufbaus. Eine Nanopore wird als
zylindrische Kavität in einer ebenen Membran mit einer dielektrischen Kon-
stante von ε = 2 und Wasser als dielektrisches Kontinuumm mit ε = 80 mo-
delliert. Ein 10 nm langes Fragment doppelsträngiger DNA wird dabei durch
viele überlappende Kugeln mit einem Durchmesser von 2 nm repräsentiert.
Ionen werden dargestellt als geladene Kugeln mit 0.425 nm Radius. Aus dem
Potential der mittleren Kraft bestimmen wir die Barrierenhöhe (b), die hier
für verschiedene Porendurchmesser als Funktion der Salzkonzentration aufge-
tragen ist.

Simulationspaket ESPResSo lag bereits vor. Diese wurde parallelisiert und
optimiert, und für leitende Oberflächen erweitert.

Abb. 1.1a zeigt eine Skizze der genutzen Simulationen. Eine generische Nano-
pore wird als zylindrischer Hohlraum in einer flachen Membran dargestellt. Ein
kurzes Fragment doppelsträngiger DNA wird als 10 nm langer, geladener Zy-
linder und die umgebenden Ionen als sphärische Partikel mit 0,425 nm Radius,
entsprechend dem restricted primitive model [4], mit einer Elementarladung
repräsentiert. Die Oberfläche der Membran wird diskretisiert und die induzier-
ten Ladungen in jedem Molekulardynamikschritt iterativ bestimmt. Es wur-
den je nach gewählten Bedingungen sehr große Barrieren in der freien Ener-
gie festgestellt. Abb. 1.1b zeigt eine Zusammenfassung der Ergebnisse. Für
geringe Konzentrationen des umgebenden Elektrolyten werden große Trans-
lokationsbarrieren gefunden, da hier die Ladung der DNA nicht vollständig
abgeschirmt wird. Steigt die Konzentration, so nimmt die Abschirmung zu
und die Barriere sinkt. Entscheidend ist dabei das Verhältnis aus Porenradi-
us und Debye-Länge. Die dielektrischen Randkräfte führen bei der gewählten
Porenlänge etwa zu einer Verdopplung der auftretenden Barrieren.

Weiterhin wurden Translokationsbarrieren für ein vereinfachtes Modell ein-
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Kapitel 1. Zusammenfassung

zelsträngiger DNA-Moleküle bestimmt. Die dabei vorhandene Flexibilität der
DNA führt zusätzlich zu einer entropischen Barriere, die in guter Näherung
unabhängig von der Salzkonzentration ist. Die auftretenden elektrostatischen
Barrieren erhöhen sich durch die Flexibilität deutlich, da sich immer Teile des
DNA-Moleküls in der Nähe der Porenwand aufhalten. Eine wichtige Voraus-
setzung für diese Untersuchung war die Entwicklung einer geeigneten Reak-
tionskoordinate, die es ermöglicht den vollständigen Transportprozess eines
Moleküls aus der Lösung in die Pore und wieder hinaus zu beschreiben. So
konnten wir zeigen, dass die Barriere vor allem in dem Bereich auftritt, wo
sich ein erstes Stück DNA in die Pore hineinbewegt.

Eine Alternative zu der vergröberten teilchenbasierten Darstellung ist die
Wahl einer Kontinuumsbeschreibung. Im thermodynamischen Gleichgewicht
wird die Ionenverteilung und das elektrostatische Potential in guter Näherung
durch die Poisson-Boltzmann (PB)-Gleichung, eine nichtlineare partielle Dif-
ferentialgleichung beschrieben. Es wurde eine sehr einfache Modellierung mit
der PB-Gleichung durchgeführt. Es wurde dabei angenommen, dass das DNA-
Fragment als sehr langer, geladener Zylinder zentriert in einem gleichermaßen
langen ungeladenen Zylinder dargestellt werden kann. Das resultierende Pro-
blem ist eindimensional und kann mit einfachen Mitteln numerisch gelöst wer-
den. Aus dieser Lösung lässt sich die Barriere pro Länge bestimmen. Multipli-
ziert mit der Länge der Pore ergab sich eine hervorragende Korrelation zu den
Ergebnissen, die molekulardynamisch unter Einbeziehung des dielektrischen
Kontrasts ergeben hatten.

Die Berücksichtigung von dielektrischen Grenzflächen in der PB-Gleichung
ist dabei mit der iPBS (Iterated Poisson-Boltzmann Solution) möglich. Die-
se Methode basiert auf einer Lösung der Poisson-Boltzmann-Gleichung mit
der Finite-Elemente-Methode. Die gestellten Randbedingungen werden ite-
riert, und dabei die induzierten Ladungen auf dielektrischen Grenzflächen be-
stimmt. Eine Implementation dieser Methode wurde im Rahmen dieser Arbeit
betreut. Sie wurde genutzt, um Translokationsbarrieren für doppelsträngige
DNA-Fragmente endlicher Länge zu berechnen. Es konnte gezeigt werden,
dass im Limes sehr langer Poren, unabhängig von der dielektrischen Konstante
des Membranmaterials, dieselbe Barriere wie in der einfachen eindimensiona-
len Darstellung erhalten wird. Wird der dielektrische Kontrast berücksichtigt,
erhöht sich die Barriere schneller bei längeren Poren, da der dielektrische Kon-
trast eine Neutralisierung des Inneren erzwingt. Der Unterschied ist besonders
ausgeprägt bei der in den Simulationen zuvor gewählten Porenlänge. Dies er-
klärt die gute Übereinstimmung der eindimensionalem PB-Modellierung mit
den MD-Simulationen mit dielektrischen Kontrast.
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Modulation der Nanonporenleitfähigkeit durch DNA

Die wichtigste experimentell zugängliche Observable ist der gemessene Ionen-
strom. Seine Modulation ermöglicht es, Rückschlüssen auf die Art des trans-
portierten Biomoleküls zu ziehen. Interessanterweise war bisher nicht quantita-
tiv geklärt, wie die Modulation des Stroms durch DNA zustande kommt. Expe-
rimentell wurde z. B. gefunden, dass bei hohen Salzkonzentrationen ein DNA-
Molekül die Leitfähigkeit herabsetzt, bei niedrigen Salzkonzentrationen es aber
die Porenleitfähigkeit erhöht [5]. Um dies genauer zu untersuchen, wurden hy-
bride Gitter-Boltzmann/Molekulardynamik (LB/MD)-Simulationen und ato-
mistische Molekulardynamiksimulationen durchgeführt.

Mithilfe der LB/MD-Simulationen konnten in Übereinstimmung mit der Li-
teratur vier verschiedene Effekte identifiziert werden, die die Leitfähigkeit we-
sentlich beeinflussen. Zunächst hängt die Leitfähigkeit von der Anzahl an Io-
nen ab, die sich in der Pore befinden. Ein DNA-Molekül blockiert einen Teil
des verfügbaren Volumens und verringert damit die Anzahl der den Strom tra-
genden Ionen. Da ein solches Molekül jedoch geladen ist, bringt es auch eine
gewisse Anzahl von Gegenionen in die Pore ein, die die Leitfähigkeit wiederum
erhöhen können. Darüber hinaus muss der an der DNA auftretende elektroos-
motische Fluss berücksichtigt werden. Zuletzt ist es wichtig, dass Ionen in
Wandnähe weniger mobil sind als in freier Lösung, was wiederum zu einer
Verringerung der Leitfähigkeit führt. Das Zusammenspiel all dieser Effekte ist
verantwortlich für die experimentellen Beobachtungen.

Eine quantitativ korrekte Vorhersage für all diese Größen wurde von ver-
gröberten Simulationen nicht geliefert. Wir haben daher atomistische Simula-
tionen eines möglichst einfachen Systems durchgeführt, das all diese Effekte
abdeckt [6]. Dieses System, bestehend aus einem in einer Pore gehaltenen
DNA-Fragment, wird in Abb. 1.2a dargestellt. Sowohl die Pore als auch die
DNA reichen bis an den Rand des Simulationsvolumens, wo periodische Rand-
bedingungen dafür sorgen, dass Partikel, die das System auf einer Seite verlas-
sen, es auf der anderen Seite wieder betreten. Dies ermöglicht es, das bereits
oben erwähnte Zylinder-im-Zylinder-Modell mit atomarer Auflösung zu stu-
dieren. Die Leitfähigkeit des Systems unter Einfluss eines externen elektrischen
Feldes wurde für zahlreiche Salzkonzentrationen untersucht.

In Abb. 1.2b zeigen wir die Ergebnisse und den Vergleich mit experimentel-
len Daten. Unsere Simulationen reproduzieren die experimentellen Beobach-
tungen hervorragend. Ein Vergleich mit einem einfachen Kontinuumsmodell
zeigt: die Oberflächenreibung der Ionen mit der DNA ist verantwortlich für
die Stromblockaden. Nur in einem Modell, in dem diese quantitativ korrekt
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Abbildung 1.2: (a) Skizze der atomistischen Simulationen. Ein quaderförmiges
Simulationsvolumen von 6.76 nm Länge enthält ein Fragment doppelsträngiger
DNA, sowie eine zylindrische Porenwand mit 5 nm Radius. Zusätzlich enthält
die Pore Wassermoleküle sowie Ionen. Der durch Anlegen eines elektrischen
Feldes hervorgerufene Strom wird gemessen. (b) Vergleich der Stromänderung
zwischen dem Fall mit und ohne DNA zu experimentellen Daten [5] bei
verschiedenen Saltzkonzentrationen. Oberhalb von 350 mM Salzkonzentration
verringert die Anwesenheit der DNA in der Pore die Leitfähigkeit, darunter ist
sie durch die DNA erhöht. Die Erhöhung ist darauf zurückzuführen, dass die
DNA zusätzliche Gegenionen in die Pore bringt, die zum Stromleitungspro-
zess beitragen können. Für die Verringerung essentiell ist neben dem von der
DNA ausgefüllten Volumen der in dieser Arbeit zum ersten Mal quantitativ
bestimmte Reibungseffekt zwischen Ionen und DNA.

wiedergegeben werden, kann auch quantitative Übereinstimmung mit dem Ex-
periment erreicht werden.

Schlussfolgerungen

Aus experimenteller Perspektive lässt sich vor allem eine Schlussfolgerung zie-
hen: Werden wider Erwarten keine Translokationsvorgänge beobachtet, so soll-
te der Salzgehalt der Lösung erhöht werden. Damit lassen sich elektrostatische
Barrieren verringern. Dies ist vermutlich einer der Gründe, warum experimen-
tell typischerweise hohe Salzkonzentrationen vorgezogen werden. Aus unseren
Untersuchung zur Porenleitfähigkeit ergibt sich, dass der Ladung der DNA
eine sehr wichtige Rolle zukommt, da sie sowohl die Anzahl der zur Verfügung
stehenden Ladungsträger, als auch die Stärke des elektroosmotischer Flusses
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festlegt. Bei Biomolekülen, deren Ladung sich z. B. durch Änderung des pH-
Wertes verändern lässt, kann daher eine andere Einstellung der Ladung die
Chance einer eindeutigen Detektion verbessern. Auch die beobachtete Rate
von Translokationsvorgängen kann auf diese Weise beeinflusst werden.

Auf theoretischer Ebene sind vielfältige Schlüsse möglich. Es wurde festge-
stellt, dass die Modellierung doppelsträngiger DNA als geladener Zylinder
eine vernünftige Näherung ist, solange nur Regionen weiter als 1.5 nm von der
Achse entfernt, betrachtet werden. Die Ionenverteilung ist realistisch und dies
rechtfertigt die zur Bestimmung der Translokationsbarrieren genutzten Model-
le. Hierbei ist die partikelbasierte Darstellung in der Anwesenheit von einwer-
tigen Gegenionen aus unserer Sicht der PB-Modellierung nicht überlegen. Die
Unterschiede in der Vorhersage beider Methoden ist vermutlich in vielen Fällen
deutlich geringer als die Ungewissheit genauer experimenteller Parameter. Da-
bei ist die Kontinuumsmethode basierend auf der Lösung der PB-Gleichung
deutlich effizienter. Die vergröberte molekulardynamische Simulation kann ih-
re Stärken bei flexiblen Molekülen wie die von uns untersuchte einzelsträngige
DNA ausspielen, da hier die Entropie des Kettenmoleküls explizit betrachtet
werden muss. Dies ist in einem Kontinuumsansatz nur schwer möglich.

Diese Näherung der doppelsträngigen DNA als geladener Zylinder ist auch
außerhalb des thermodynamischen Gleichgewichts vernünftig, wenn etwa die
Stärke des elektroosmotischen Flusses betrachtet werden soll. Zu unserer
Überraschung ist die Vorhersage der Stärke des elektroosmotischen Flusses
gut, und nur wenn quantitativ besonders präzise Aussagen notwendig sind,
ist eine atomistische Simulation notwendig. Es wurde gezeigt, dass in Form
der hybriden LB/MD-Methode eine verlässliches quantitatives Werkzeug zur
Verfügung steht. Hier gilt allerdings wiederum, dass diese Methode ihr volles
Potential besonders dann entwickeln kann, wenn flexible Strukturen unter-
sucht werden sollen. Die vergröberten Modelle lassen jedoch keinen genau-
en Schluss auf die Leitfähigkeitsmodulation zu. Hierfür ist die genaue Mi-
krostruktur der DNA, einschließlich der betrachteten Basen und die genaue
Wechselwirkung mit dem Ionen von großer Wichtigkeit. Der beobachtete Ober-
flächenreibungseffekt erscheint von sehr grundlegender Natur zu sein, und eine
genauere Untersuchung wäre daher wünschenswert.

Diese Arbeit zeigt insgesamt, dass trotz der enormen Zunahme der Leistungs-
fähigkeit von Computern nicht alle Probleme mit atomistischen Simulationen
bewältigt werden können. Die Größe notwendiger Systeme und die große Zeit-
dauer der zu untersuchenden Prozesse macht es notwendig, eine Vergröberung
durchzuführen, die alle für die Fragestellung relevanten Aspekte korrekt re-
produziert. Die Frage welche Aspekte relevant sind, muss jedoch im Einzelfall
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aufgrund physikalischer Einsicht und Vergleich mit der feineren Skala ent-
schieden werden. Darüber hinaus liefern die dabei entwickelten vergröberten
Beschreibungen das Vokabular, mit dem die physikalische Einsicht formuliert
wird. Insofern sind sie für die Wissenschaft eine essentielle Grundlage.
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2 Introduction

Since 20 years nanopores offer scientists interesting insights into the world of
single biomolecules. Conceptually, a nanopore is just a very small hole with a
diameter of only a few nanometers in a thin membrane. The fascinating fea-
ture of nanopores is that they can be used to probe single molecules with an
astonishingly simple measurement principle, the so-called the resistive pulse
technique [7]. When a nanopore is immersed in an electrolyte and a voltage
is applied, the dissolved ions create an electric current through the pore. The
extension of the pore is so small, that a single biomolecule inside the pore
is enough to produce a measurable perturbation of the current. The shape
and magnitude of the pulses reveal properties of the molecule traversing the
pore and can be used to probe single molecules. In 2000, Meller et al. showed
that DNA with different sequences can be discriminated by their resistive
pulses [8]. After this seminal finding the idea of using nanopores as read-out
sensors for DNA was born. Twelve years later, in early 2012, the company
Oxford Nanopore Technologies indeed announced two nanopore-based sensors
for DNA sequencing applications [2]. Their sensors were promised to be com-
mercially available within 2012, but so far (June 2014) Oxford Nanopore’s
sensors are not yet being sold, and the company has remained silent about
the sensors’ future [9]. Even though not all scientists in the field share the
optimism that nanopores are a promising technology for DNA sequencing, it is
undisputed that nanopores make versatile sensors. This and the sheer amount
of different proposed applications make it a safe bet to say that we will see
commercially applied nanopore technology in the future.

This thesis discusses two fundamental questions regarding DNA transport
through nanopores. First, we investigate the rate with which molecules enter
a nanopore, and what physical mechanisms hinder their passage. Second, we
study the electric conduction of a nanopore, and how the conduction is altered
by the presence of a macromolecule. In both cases, we encounter a complex
interplay of several different physical effects. By using models with different
degrees of detail and realism we can disentangle the contributing factors and
their role for macromolecular transport and conduction. Our insights are a
further step towards a better understanding of the details of macromolecular
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Chapter 2. Introduction

transport through nanopores, and therefore also towards technological appli-
cations. In the following, we will outline briefly the questions we investigated
and the methods we applied.

Already in one of the first publications regarding nanopores by Sung and
Park [10], an entropic barrier for polymers crossing a membrane through a
small hole was postulated, as the polymer has to assume a configuration com-
patible with the shape of the membrane. Works of Zhang and Shklovskii [11]
and Kumar and Muthukumar [12] demonstrated that electrostatic interactions
also create free energy barriers, but so far they had not been investigated sys-
tematically. Especially the role of the difference in dielectric permittivity be-
tween water and the membrane material had not been investigated. With the
ICC? algorithm (induced charge computation, the star can stand for various
Coulomb solvers [3]) a new tool to take this effect into account in molecular
dynamics (MD) simulations has become available. In a past investigation,
a significant free energy barrier in the absence of salt ions, hence at very
low electrolyte concentrations, had been found [13]. We investigated the free
energy barrier of short, stiff segments of double-stranded DNA (dsDNA) in
electrolyte solutions of different concentration. Here the cases of neglecting
and taking into account the dielectric contrast were compared. We then inves-
tigated the free energy barrier for a flexible chain, a model of single-stranded
DNA (ssDNA). A very important step making this investigation possible was
the formulation of a reaction coordinate that is capable of describing the
translocation progress all the way from approach to exit.

Furthermore, the free energy barriers for the dsDNA segment were investigated
by means of the Poisson-Boltzmann (PB) theory. Initially, this was performed
without high ambitions: the simple numerical solver of the PB equation in
one dimension written for the second major part was reused and applied to
calculate the work necessary to embed an infinite charged cylinder into a
cylindrical cavity. Interestingly, the results agreed well with the simulations
in which the dielectric contrast had been taken into account, even though the
model did not contain any notion of dielectric permittivity. We could explain
this observation by the insight that both models, with and without dielectric
contrast, converge to the same free energy barrier in the limiting case of long
pores. The rate of convergence, however, is faster in the presence of dielectric
contrast, and therefore the agreement was better for pores of finite length in
that case. This convergence was explicitly shown using the IPBS algorithm
proposed by S. Tyagi, which was implemented in a Diploma thesis to which
the author was an advisor [14]. The algorithm is a numerical method to solve
the PB equation in arbitrary geometries with different regions of arbitrary
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dielectric constant and could be directly applied to investigate the pores of
finite length as we did before with molecular dynamics simulations.

In the second part presented in Chapter 5, a very fundamental feature re-
garding the resistive pulse technique is addressed, the sign and magnitude of
the pulses. We observed that the simple one-dimension model based on the
electrokinetic equations suggested in Ref. [15] is not capable of predicting the
DNA-induced reduction of conductance in the nanopore correctly. Instead, the
model predicts a conductivity increase, up to very high electrolyte concentra-
tions, a feature that in experiments is only observed at low concentrations. To
adress this issue, we developed two different models in analogy to the model
of van Dorp et al. [15], but each based on different simulation techniques.
We used a hybrid molecular dynamics / Lattice Boltzmann (MD/LB) simula-
tion method as well as all-atom simulations (AA). We did so using geometries
reflecting the original model as closely as possible. The deviations between
the prediction of the MD/LB simulations and the electrokinetic theory could
be clarified in terms of well-known physical effects, but the expected conduc-
tivity reduction was only found for very high electrolyte concentrations. The
all-atom model, however, did reproduce the current reduction in agreement
with the experiments. This turned out to be due to the fact that ions near
the DNA are less mobile as they experience a surface friction effect. This is
not taken into account in the other models, and hence they fail in predicting
the reduction.

Throughout this thesis, different physical effects are disentangled by using
coarse-grained descriptions. This means, it is attempted to find models in
which many degrees of freedom, e.g. the positions of all atoms in a system,
are replace by fewer degrees of freedom. Our aim of coarse-graining is not
solely simplifying the considered system for computational convenience. In-
stead, we use the simplified models as a tool for analysis. If it is possible
to construct a set of models, in which certain effects can simply be switched
on and off, this is a very powerful tool to gain physical insight. Then, the
importance of individual effects can unambiguously assessed by comparing
predictions with and without this effect. It is important to note, that coarse-
grained descriptions are not only tool for investigation, but also provide the
concepts used to formulate qualitative findings. Take, for example, one of the
key statements of Chapter 4: “Charged objects in water are repelled from
interfaces with most other media”. The notions of object, media an interface
are coarse representations of many atomic degrees of freedom.

Unfortunately, in modelling, this ideal situation is rare. Physical models are
not Lego bricks, that can be simply be put together into very complex struc-
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tures. Constructing consistent and meaningful physical models is a delicate
task. Comparing the outcome of different models requires a fair amount of
knowledge about the expected agreement with experiments and other simu-
lation results, and where differences can be anticipated. For this reason it
is important to know along which lines these models and simulation methods
have been constructed. We therefore give a relatively detailed account of theo-
ries and computational methods in Chapter 3. Knowing the guiding principles
is an important prerequisite for understanding what degree of accuracy can
be expected.

This thesis is organised as follows. After a short summary in German, we de-
scribe the general strategy and setting of the thesis in this introduction. In the
third chapter, important background information about DNA, nanopores and
our modelling strategy. In particular, we give condensed information about
the structure of DNA, characteristics of nanopores and an overview over ex-
periments performed with both (Sec. 3.1), the statistical mechanics necessary
for understanding of the applied models and algorithms (Sec. 3.2), molecular
dynamics simulations (Sec. 3.3), and continuum models in context of charged
soft matter systems (Sec. 3.4). In the following two extensive chapters the
result regarding the two main research directions are presented. Chapter 4
is devoted to the role of electrostatic interactions for barriers opposing the
translocation of DNA molecules through nanopores with special emphasis on
the role of dielectric permittivity. It consists of an introduction to the the-
ory of dielectric media and computational algorithms to take interfaces into
account (Sec. 4.1), two example systems for which we study the role of di-
electric interfaces (Sec. 4.2), molecular dynamics simulations regarding the
height of electrostatic barriers (Sec. 4.3), and finally two Poisson-Boltzmann
equation based models of DNA translocation barriers (Sec. 4.4). In Chapter
5 the modulation of the resistance of a nanopore by the presence of a DNA
is investigated where we make use of three different models. In Sec. 5.1 we
discuss general aspects of the electrical conductance of a nanopore, for which
we present the prediction of a simple continuum model. In Sec. 5.2 we apply a
mesoscopic molecular dynamics simulation method and in Sec. 5.3 an all-atom
simulation is used to address the same question. In each step the results are
compared, leading to a clear picture of the accuracy of each method. Both the
findings of Chapters 4 and 5 are summarized at the end of each. We conclude
in Chapter 6 with a general summary, a discussion of the applied models and
suggest future research.

Although this thesis has only one author, the actual research was performed
in a team. Therefore, I use “we” as the pronoun of the first person voice
use throughout the scientific discussion. My starting point was the work of
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M. Süzen. In the time during his PhD, the question of electrostatic barri-
ers and the role of dielectric interfaces had already been raised. I benefitted
strongly from his preliminary studies, as well as from a working and tested
implementation of the ICC? algorithm in ESPResSo. With these important
steps taken, it was possible to prepare the manuscripts of two articles within
the first year of my PhD [16, 17], of which one was published as a full peer-
reviewed paper [18]. Additionally, I advised four theses: Preliminary work
on the Lattice-Boltzmann method was performed by G. Rempfer during his
B.Sc. thesis [19], and F. Zeller [20] performed simulations on similar sys-
tems. A. Schlaich implemented the iPBS algorithm applied in Sec. 4.4 [14].
W. Müller prepared the simulation methods used in Sec. 5.3 and obtained
preliminary results while preparing his Diploma thesis [21]. I enjoyed work-
ing with them an I am grateful for their contributions to the work presented
here.

Published Work

Most of the work presented in this thesis is published. In total 5 peer-reviewed
journal articles and 2 book chapters were produced.

Journal articles:

• S. Kesselheim, M. Sega, C. Holm, Applying ICC* to DNA translocation:
Effect of dielectric boundaries, Comp. Phys. Comm., 182, 33 (2011).

• S. Kesselheim, M. Sega, C. Holm, Effects of dielectric mismatch and
chain flexibility on the translocation barriers of charged macromolecules
through solid state nanopores, Soft Matter, 8, 36 (2012).

• A. Arnold, K. Breitsprecher, F. Fahrenberger, S. Kesselheim, O. Lenz,
C. Holm, Efficient algorithms for electrostatic interactions including di-
electric contrasts, Entropy 15, 11(2013).

• S. Kesselheim, W. Müller, C. Holm, Origin of current blockades in
nanopore translocation experiments, Phys. Rev. Lett. 122, 018101
(2014).

• T. Ertl, M. Krone, K. Scharnowski, S. Kesselheim, C. Holm, Visual
analysis for space-time aggregation of biomolecular simulations, Faraday
Discussions, accepted manuscript, (2014).

Peer-reviewed book chapters:
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• A. Arnold, O. Lenz, S. Kesselheim, R. Weeber, F. Fahrenberger, D.
Roehm, P. Kosovan, C. Holm, ESPResSo 3.1 - Molecular Dynamics Soft-
ware for Coarse-Grained Models, in Lecture Notes in Computational Sci-
ence and Engineering 89, M. Griebel, M.A. Schweitzer (Eds.), Springer,
(2012).

• S. Kesselheim, C. Holm, Modeling DNA in Nanopores, in Electrostatics
of Soft and Disordered Media, R. Podgornik, D.S. Dean, A. Naji, J.
Dobnikar (Eds.), Pan Stanford (2013).

Other projects

Beyond the nanopores project I was involved in two other projects, that have
lead to publications:

• Tracer diffusion in crowded channels In cooperation with Rajarshi
Chakrabarti, a postdoc at the ICP, the diffusive transport of small tracer
particles in a cylindrial pore, grafted with polymers was studied. We
investigated how the transport of material along a channel is influenced
by the crowding with polymers with repulsive interactions as well as
with attractive interactions. I was involved in all phases of this work:
I assisted in preparing simulation scripts and software infrastructure to
perform parameter studies, and contributed to the publication. The
results were published as
R. Chakrabarti, S. Kesselheim, P. Kosovan, C. Holm, Tracer diffusion
in a crowded cylindrical channel, Phys. Rev. E 87 (2013).
This project was intended as a preliminary study towards a more realistic
model for transport through the molecular pore complex, a complex
structure which gates transport into and out of the cell nucleus.

• Growth of colloidal crystals In collaboration with A. Arnold and
D. Roehm, both at the ICP, the growth of a crystal consisting of charge
stabilized colloids was investigated. We applied the Lattice-Boltzmann
method to show that hydrodynamic interactions lead to a significant
slowdown of crystal growth. This interesting result disputes the analogy
of colloidal system with smaller systems, specifically atomic or molecular
systems near the freezing point. The results were published as
D. Roehm, S. Kesselheim, A. Arnold, Hydrodynamic interactions slow
down crystallization of soft colloids, advance article in Soft Matter
(2014).
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3 Experimental and theoretical
framework

In the four sections of this chapter we describe the framework in which this the-
sis is set. The first section contains a brief overview over DNA and nanopore-
based experiments. In the next section the necessary statistical mechanics
background is presented. It addresses mainly the question of how physical
laws from a finer model can be transferred to a coarser one, as this theme
is found in many different aspects throughout this thesis. We then give an
overview over different conceptual and algorithmic aspects of molecular dy-
namics (MD) simulations. Here, the focus lies on coarse-grained MD simula-
tions, and especially on the software ESPResSo which is developed mainly at
the ICP and was used to perform all coarse-grained simulations that are part
of this thesis. Finally, we introduce two continuum models useful for model-
ing charged soft matter systems, namely the Poisson-Boltzmann equation for
static properties and the electrokinetic equations for dynamic properties.

3.1 DNA and nanopores

Sensing single DNA molecules has arguably been the most important applica-
tion for nanopores. The thrive for a next-generation DNA sequencing method
is highly stimulating for the nanopore field in science. In this thesis we in-
vestigate two fundamental questions regarding how DNA can be sensed. We
start off by giving background information about DNA molecules and a brief
account of state of the art in nanopore experiments.

3.1.1 DNA: The molecule of life

The genetic information of a living organism is encoded in only a few
molecules: Each of the 23 human chromosomes contains a single deoxyri-
bonucleic acid (DNA) molecule carrying the genome. DNA is a very long
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Chapter 3. Experimental and theoretical framework

chain molecule. In a human cell its length is in total about 1.5 m [22]. The
building blocks were identified already in 1919 by Levene [23]. Each of the
four nucleobases, or short bases, Adenine, Cytosine, Guanine and Thymine is
connected to a sugar group, which in turn is bonded to a phosphate group. To-
gether they form a nucleotide. The chemical structures are shown in Fig. 3.1.
Many phosphate groups are covalently bonded when forming the backbone of
the DNA. The phosphate group is a strong acid, which gives rise to the name
of the structures formed by nucleotides: nucleic acid [24]. The sequence of
the bases in the DNA strand encodes the genetic information. Determining
the DNA sequence is a challenging, costly and time–consuming process. Im-
pressive progress has been made in the last decade [25,26], bringing down the
price to currently $5000 for sequencing the genome of a human [9]. Even eas-
ier access to genetic sequences would open the door for personlized medicine,
in which treatments can be adjusted to individual genetic profiles. Nanopore-
based technology is considered a promising candidate for a technology that
allows for significantly cheaper DNA sequencing.

James D. Watson and Francis H. Crick discovered a very important aspect of
the DNA structure, the base pairing mechanism depicted in 3.1b. This mech-
anism was identified in 1953 [27] based on X-ray diffraction images taken by
Rosalind Franklin et al. [28]. The nucleobases Adenine and Thymine can form
stable pairs by forming two hydrogen bonds at the same time. Cytosine and
Guanine can form three hydrogen bonds and accordingly, their paired config-
uration is slightly more stable [29]. All other possible pairings are significantly
less stable. Due to this specific pairing mechanism in living cells, two strands
of DNA are wound around a common axis, forming a double helix. This fa-
mous structure is shown in Fig. 3.2, as a wire model by Watson and Crick [28],
and rendered snapshots from the simulation presented in chapter 5. The two
strands are complementary, thus every nucleotide in one strand is opposed by
the matching partner on the other strand. In the course of cell replication the
two strands are separated and new complementary strands are constructed
base by base using each of the strands as blueprints. In vitro the two strands
can be separated by elevating the temperature, the DNA melts [30]. In many
nanopore experiments the resulting single-stranded DNA (ssDNA) is used,
and not the double stranded DNA (dsDNA), in which the genetic information
is typically stored.

The acidity of the backbone is directly responsible for the DNA’s charge.
In aqueous solutions with moderate pH the acidic groups are fully dissociated
and every phosphate group carries one elementary charge. In this thesis effects
related to its charge are the main features under investigation.
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3.1. DNA and nanopores

(a) (b)

Figure 3.1: (a) The primary structure of a single DNA strand. Each of
the four nucleobases (blue, green, yellow and red) is covalently bond to a
dexyribose–phospate group. (b) The specific hydrogen bonds between differ-
ent nucleobases. Within an Adenine-Thymine (AT) base pair two hydrogen
bonds form. In a Cytosine-Guanine (CG) three hydrogen bonds are present
(CG). Illustrations from the Wikimedia Commons (DNA-Nucleobases.svg,
AT base pair jypx3.png, GC base pair jypx3.png).

The mechanism with which living cells replicate the genetic material to prepare
for cell division can be imitated in vitro. The enzyme that constructs comple-
mentary strands, the DNA polymerase, also works in the test tube. In order
to achieve rapid replication special temperature-resistant variants extracted
from bacteria living in high temperature environments are necessary [32, 33].
By sequentially heating and cooling a solution containing a DNA sample,
DNA polymerase and a supply of nucleotides, a single DNA strand can be
copied [34]. Many cycles of this procedure are executed, so that the number
of DNA molecules is doubled in every step, a process called polymerase chain
reaction (PCR). This mechanism is an important workhorse in many medical
and biological labs. Mullis was awarded the Nobel Prize in Chemistry in 1993
for this discovery [35].
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(a) (b)

Figure 3.2: The helical structure of DNA. (a) A wire model published by
Watson and Crick in 1954 [28]. (b) The DNA molecule simulated in section
5.3 rendered using three different rendering methods in VMD [31].

In 1977 Sanger et al. published the first genetic sequence: the sequence of the
bacterium Φ X174 [36]. Their sequencing method, now termed the Sanger
method [37], is based on the PCR. In a slightly more modern version it works
as follows [33, 38, 39]. First, a DNA sample is enhanced by PCR and melted.
Then four DNA replication experiments are performed, each with a different
additive. In each of the experiments one of the nucelotides is added also in
a modified version. This modified nucleotide, the dideoxynucleotide is built
into the chain by the polymerase like the original nucleotides but interrupts
the polymerization. The construction of a complementary strand is aborted.
In one of the reactions e.g. a dideoxy-adenine is added, and at every position
where the complementary strand has a thymine base, there is a small proba-
bility that the chain reaction is interrupted. Then the DNA is melted and the
resulting mixture of short oligomers created as complementary strands is size
separated by gel electrophoresis. From the length distribution of the short
strands in each of the sample the base type at each location can be deduced.
This chain termination method can be fully automated, but still is a laborious
process when applied to a full genome.

The Sanger method was the gold standard of genetic sequencing for many
years, but during the last decade several next-generation methods have turned
into viable alternatives [39]. The Archon X prize, however, still remains to
be claimed: $ 10 Mio. are awarded to the first team that can sequence “100
human genomes in 30 days or less, for no more than $10,000 USD per genome
sequenced” [40]. Nanopores might be the technology that can achieve this
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(a) (b)

Figure 3.3: Pore proteins used as nanopores. (a) The α-Hemolysine protein.
Left: the seven identical units are colored differently. Right: colors indicate
the three different regions of the pore. (from [43]) (b) The MspA pore protein.
The amino acids replaced in by genetic engineering are marked read and blue
(from [44]).

goal, and in text books they already appear as candidates for next-generation
sequencing [39].

3.1.2 Nanopore translocation experiments

The first successful nanopore experiments used single biological pore proteins
embedded in a lipid bilayer membrane [41]. Membrane proteins called α-
Hemolysine, extracted from the bacterium staphylococcus aureus, were em-
bedded into a lipid membrane separating two water compartments. Fig. 3.3a
depicts this setup. This protein is hollow, so applying a voltage between the
two compartments results in a small ion current through the pore. Adding
ssDNA molecules to the chamber containing the negative electrode alters the
current. Short events appear, in which the current is largely blocked. These
events are interpreted as individual DNA molecules passing the pore in the
lipid membrane, a process called translocation. A few years later, Meller
et al. could discriminate between a homopolymer consisting only of cytosines
and a homopolymer of adenines from the duration of the translocation events
and the current blockade level [8]. Since then an impressive number of similar
experiments have been conducted. The Nanopore Site [42] currently lists more
than 60 groups working on nanopore experiments.

Experiments with biological nanopores have significantly broadened in tech-
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(a) (b)

Figure 3.4: (a) Fabrication of a solid-state nanopore. In several surface depo-
sition and etching steps, a thin free-standing membrane is created. By means
of an ion or electron beam a thin hole is milled into the membrane (from [50]).
(b) Experiments in Ref. [51]. A DNA molecule is attached to a colloid held
in a laser tweezer in front of a nanopore. When a voltage is applied, it is
dragged into the nanopore. This can be deduced consistently from the change
in current (green line) and the colloid position (red line).

niques and scope. Relatively recently, the MspA protein extracted from a
myobacterium [44, 45] shown in Fig.3.3b has been proposed as an alternative
to the α-Hemolysine pore protein. In a genetic engineering process negative
charged residues were removed from this protein, and DNA translocation could
be observed. Oxford Nanopore Technology’s sensor is based on this protein.
By genetic engineering also the properties of the α-Hemolysine pore can be
altered. In 2001 Howorka et al. attached a short single DNA strand inside
the pore and were able to detect specific DNA sequences [46]. By replacing
certain amino acids other interesting features were realized, such as a binding
site for metal ions [47] or a receptor for the explosive TNT [48]. More very
fascinating sensing applications can be found in the reviews by Venkatesan
and Bashir [49] as well as Howorka and Siwy [43].

Only a few years after the first experiments with biological pores, conceptu-
ally identical experiments were performed with synthetic pores. The process
to create them is sketched in Fig. 3.4a. Originally, a group in Harvard applied
a technique called ion beam sculpting to create a thin hole in a free-standing
silicon nitride membrane [52]. Using an ion beam, a pore was drilled into this
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membrane and by varying the intensity and energy of the ion beam the pore
could be reduced in size. Many different groups developed similar nanofab-
rication techniques to create single pores in different silicon–based substrates
(e.g. [53, 54]). This class of pores is called solid–state nanopores. A good
overview can be obtained from the reviews of Dekker [50] and also Howorka
and Siwy [43], and the very recent review of Miles et al. [55]. As the substrates
are solid, these nanopores are easier to handle than biological nanopores. By
means of lithographic techniques they can eventually be produced in large
arrays, which makes them very attractive for high-throughput sensing appli-
cations.

The surface of solid-state nanopores can be modified by different techniques.
With atomic layer deposition, thin layers of e.g. alumina [56,57] or gold [58] can
be used to fine-tune the size and surface properties of solid-state nanopores.
Alternatively, different polymer coatings can be used. By silanization, differ-
ent coatings can be bound covalently to the nanopore surface, which allows
e.g. for the construction of pH-sensitive conduction characteristics [59]. Gold-
coated surface can be functionalized with self-assembled monolayers [60], a
process with which a broad range of materials can be bound to the nanopore.
Kowalczyk et al. covered a solid-state nanopore with nucleoporins, reminiscent
of the biological nuclear pore complex [61]. A relatively recent trend is the use
of graphene or boron nitride as membrane materials. Both can be produced
as very thin material, down to single-atomic layers. These materials are used
to cover solid state nanopores and the beam of a transmission electron micro-
scope is used to stamp a hole into these extremely thin membranes [62–64].
In these setup, the in-plane electric conductivity of the graphene can be used
to infer information about molecules in its vicinity [65]. Similar effects can
also be achieved with nanowires placed across nanopores [66]. In all these
cases, the field effect due to the DNA charge is used as sensing mechanism.
Other groups were able to include gold electrodes over the pores to enable the
detection of molecules by means of the tunneling current [67,68]. This tunnel
current also contains valuable information about the translocating molecule
and can be used to identify individual molecules.

An entirely different, fascinatingly simple nanopore fabrication technique was
developed in the lab of U. Keyser. In a so-called pipette-puller, glass mi-
cropipettes are heated with a laser and pulled apart [69]. Using the right
protocol, opening diameters down to around 15 nm can be achieved. As a
micropipette is a product of mass-fabrication and very cheap, this technique
is especially well suited for commercial sensing applications. By using trans-
mission electron microscope beam, the opening can even be shrunk to only
a few nanometers [70]. The transparency of the nanocapillary also allows for
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direct imaging of molecules inside of the capillary. With this technique, the
translocation of fluorescently labelled dsDNA could be observed in a light
microscope [71].

A novel, very interesting technique relies on track-etching. In this case a
polymeric membrane material such as polyethylene terephthalate (PET) is
targeted by a heavy ion beam from a suitable source. After this irradiation, an
etching agent is added to one side of the membrane which dissolves the polymer
partly. As the ion beam has altered the structure of the membrane material,
the etching occurs mostly along the track the ions took through the material.
The other compartment is filled with a neutralization agent, which stops the
etching process once the two compartments are connected. This process results
in highly asymmetric nanopores with a conical shape and a small opening
down to a few nanometers. The track-etching technique creates a highly
charged surfaces with deprotonated carboxyl groups at a density around 1
e/nm2 [72]. These high surface charges, in conjunction with the asymmetric
shape of the nanopore can lead to interesting nonlinear electrokinetic effects
such as current rectifications similar to the effects in a semiconductor diode
[73, 74]. Also very interesting relationships between an applied electric field
and the wetting properties of the surface have been observed [72].

Both the glass nanocapillary and the track-etched PET sensors are probably
too coarse for DNA sequencing. Their strength lies in the robustness, sim-
plicity and tunability, and this makes them interesting candidates for more
qualitative sensing applications. They bridge the length scale towards micro-
and nanofluidics. In micro- and nanofluidics, the idea of electric circuits on
silicon wafers is transferred to applications with liquids. Very small amounts
of liquids are controlled very precisely to be able to miniaturize analytics as
far as possible. Very complex processes are performed in microfluidic environ-
ments, where the ultimate goal is integrating a whole a lab to a single chip.
A very interesting overview over this fast-growing field can be found in the
reviews [75–77]. Nanopores can fill an important role in these settings due to
their capabilities as sensors for single biomolecules.

While the detection of the ion currents might already be sufficient for tech-
nological applications, other observables have proved helpful for scientific in-
sight. An interesting experiments conducted in the lab of C. Dekker is shown
in Fig. 3.4b. A double-stranded DNA molecule is attached to a colloidal par-
ticle fixed by a laser tweezer. The colloid can be positioned in front of a
solid-state nanopore, an by switching the voltage on, the DNA can reversibly
be inserted into the nanopore [51]. This setup allows to study the same DNA
molecule during many insertion processes and at the same time measure the
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force acting on the DNA molecule. The same technique, which is dubbed
single-molecule force spectroscopy, was also realized with a glass micropipette
nanopore [78].

Recently a very innovative nanopore approach was presented, termed DNA
origami nanopores. DNA origami [79] is a technique in which three-
dimensional structures are created by self-assembly of DNA. The structures
are held together by Holliday junctions, where two adjacent dsDNAs are in-
terconnected because one strand of both cross each other and pair with the
opposite strand. Hollow structures from DNA have been designed and in-
serted either into lipid bilayer membranes [80], solid-state nanopores [81] or
into glass micropipette nanopores [82]. With this technique, the atom-precise
control over the material known from biological nanopores can be combines
with the control and tunability of synthetic nanopores. The coarse-grained
simulation methods developed in this thesis might facilitate fundamental in-
sights into how the DNA origami technique can be refined.

Despite their complexity, we reduce nanopores to structureless holes in walls,
throughout this work. This assumption is sufficient to answer our basic, yet
fundamental questions about DNA and ion transport.
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3.2 Statistical physics in the soft matter regime

DNA and nanopores are set in a field known as soft condensed matter. On the
map of science, this field is located at the interface between biology, chemistry,
and physics. What is the unifying feature of soft matter? Daoud and Williams
state in the introduction of their book that a good example soft matter is “a
molecular system giving a strong response to a very weak command signal”
[83]. What is a weak and what is a strong command signal is, however, not
clarified.

In the American community a different term is more common: complex fluids
[84]. Complexity here means that the spectrum of properties, effects, and
structures is vast and that properties can change upon small applied forces.
The term fluid refers to the fact that a material does not sustain stress, but
responds by deformation. This mechanical notion is clearly also the origin of
soft in the term soft matter [85]. The fluidity also stresses the importance of
the thermal energy: Liquids are liquid because the intermolecular interaction
energies are comparable to the thermal energy [86], and the entropy gain
associated with the positional and orientational disorder dominates over the
energy loss of a phase change to a state with long-range order. This allows us
to identify the energy scale on which stimuli are sufficient to induce a response
in a soft matter system: the thermal energy kBT .

We here give a few typical soft matter system, each with a characteristic trait
that highlights in what sense they are soft.

• Liquid crystals: A material made out of highly anisotropic molecules
or particles that can exhibit crystal order in one spatial direction and
liquid–like structure in another direction.

• Colloids: small particles or droplets immersed in a solvent. They can
form, depending on their mutual interactions, solid, liquid and gas phase
and these phase transitions are sometimes investigated as models for
phase transitions in other systems.

• Polymers: Long chain molecules, whose behaviour is largely driven by
configurational entropy. We give a short introduction in Sec. 3.2.7.

• Gels: crosslinked networks of polymers that take up a lots of liquid. In
a good solvent they can swell to many times their original size.
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• Room temperature ionic liquids: a substance of large ions that is liq-
uid at room temperature. They are promising alternative solvents in
chemical engineering, as their vapour pressure is negligible.

• Magnetic fluids and gels: magnetic particles immersed in a liquid phase,
sometimes connected with polymers. They can be manipulated and
controlled by external magnetic fields.

• Most biological matter: Many biological structures from cell walls to
proteins are manipulated by small amounts of energy in living organisms,
and structural and functional changes can be induced with e.g. a small
change in temperature.

All these systems share the property that they are soft with respect to de-
formation and that small temperature changes can induce large macroscopic
changes, sometimes phase transitions. Typically they are investigated under
room temperature conditions and ambient pressure.

The importance of the thermal energy implies two things: First, these sys-
tems are governed by a balance of energy and entropy. Small changes of the
temperature can induce significant structural changes. Second, understanding
intrinsic thermal fluctuations is of crucial importance. Fluctuations dictate
the dynamics of all processes. Consequently, understanding soft matter sys-
tems typically requires considering not only the scale of single atoms, and the
continuum scale of e.g. classical thermodynamics, but at least one length scale
in between, a domain sometimes called the mesoscale. For DNA transloca-
tion experiments this mesoscale is the scale of DNA molecules: much larger
than atoms, but still small enough that thermal fluctuations remain impor-
tant. The fascinating property of nanopores is that in these experiments the
mesoscale is directly accessible.

3.2.1 The multiscale view

The 2013 Nobel Prize in Chemistry was awarded to Karplus, Warshel and
Lewitt “for the development of multiscale models for complex chemical sys-
tems”. In the announcement three very influential works by these scientists
were mentioned [87]. In 1972, Karplus and Warshel studied electronic prop-
erties of a planar molecule which was partly described by quantum mechanics
and partly by classical mechanics [88]. In 1976, Warshel and Lewitt studied
the catalytic activity of a protein where the active part was again modelled
by quantum mechanics, and the rest of the protein was described by classical
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mechanics [89]. Additionally, in 1975, Warshel and Lewitt suggested a sim-
ulation method, where a protein was represented only by two “superatoms”
instead of many individual atoms [90].

In the first two works physical theories of two sorts are combined into a sin-
gle simulation. An example of a modern quantum mechanics/molecular me-
chanics (QM/MM) simulation is shown in fig 3.5a. Here an enzyme and the
surrounding water is modelled by means of classical mechanics, and the ac-
tive center of the enzyme is modelled by means of quantum mechanics. The
complexity in these methods lies in providing a physically justified, consistent
and numerically stable coupling scheme between the two physical theories.
The suggestion and development of this class of QM/MM approaches was a
breakthrough, that enabled scientists to study quantum effects, e.g. chemi-
cal reactions, in systems which are too large for a purely quantum-mechanical
model. Today, some forty years later, the available amount of computer power
has increased tremendously, but is still far from being abundant. Therefore
QM/MM approaches are still under active development, and applied to a wide
variety of systems [91,92].

The strategy of the third work mentioned in the Nobel Prize announcement
is the formulation of a method with fewer degrees of freedom than the origi-
nal model, where the physical laws follow also classical mechanics. Here the
conceptual difficulty lies in constructing a coarser model, in which important
properties of the fine model are represented correctly. The loss of information
should be minimal. Two approaches are possible: In systematic approaches
both models are considered explicitly, and strategies and algorithms are de-
vised to construct a coarse model that reproduces certain target properties
as well as possible. Alternatively, in an axiomatic approach, coarse models
are assumed based on fundamental physical laws, combined with scientific in-
tuition. The connection to a microscopic model is not made explicitly. The
emergent properties typically resemble the original system qualitatively, al-
though sometimes the coarse-grained model can be constructed in such a way,
that certain properties are exactly reproduced.

Constructing coarse-grained models in a systematic and consistent way is a
very active field of research [86, 95]. The systematic approach is sketched in
Fig. 3.5b. Several microscopic degrees of freedom, e.g. the coordinates of a
group of atoms, are replaced by a single degree of freedom, the position of a
superatom, or sometimes just a bead. Besides the question of how to obtain
a coarse-grained model, it can can never fully represent the original model in
all its properties, but only a subset. Using the iterative Boltzmann inversion
technique [96] it is e.g. possible to create a pair potential that reproduces a
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(a) (b)

Figure 3.5: (a) Conceptual sketch of a QM/MM simulation. A region modelled
by classical mechanics, in this case an enzyme, hosts a small region treated
by means of quantum mechanics (from [93]). (b) Mapping scheme in the
systematic coarse-graining of polystyere (top) and polycarbonate (bottom)
(from [94]). In both schemes a set of atoms is represented as a single sphere
in a coarse-grained model.

given radial distribution function exactly. This, however, is not a sufficient
condition for reproducing other structural properties correctly [97]. For ex-
ample, a coarse-grained representation of water molecules can at the same
time perfectly reproduce the radial distribution function while the tetrahe-
dral packing matches poorly [98]. This clearly shows that the construction of
coarse-grained models is delicate and has to be performed with lots of care.

The idea of coarse-graining can be combined with the hybrid approach used
in QM/MM calculations. The vision of adaptive resolution simulations is to
create a single model where the resolution can locally be adjusted as neces-
sary [99]. A fully consistent method would allow scientists to simulate very
large systems where many degrees of freedom have been eliminated. Only
certain interesting spots are tackled with high, typically atomistic, resolution.
Interesting examples are e.g. biomolecular systems, where the functional re-
gions are clearly located, the surrounding solvent, however, is mostly not of in-
terest. All adaptive-resolution MD schemes are currently at a relatively early
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development stage: The first approach [100] was is not even a decade old.
Adaptive resolution simulations might eventually evolve into what all-atom
MD simulations are now: standard tools that with relatively little training.

According to the correspondence principle, classical mechanics emerge from
quantum mechanics in the limit a of vanishing Planck’s constant. Hence the
laws of classical mechanics are a special case of quantum mechanics, in a cer-
tain asymptotic limit. In this limit the field quantities of quantum mechanics
can be replaced by discrete degrees of freedom, by classical particles. In classi-
cal continuum theories, such as continuum mechanics, the opposite approach
is applied: A continuum theory is constructed from a classical particle model.
In this case a high-dimensional configuration space is replaced by a small set
of functions smoothly varying in space. Formulating a continuum theory of a
particle system clearly is a coarse-graining procedure. Interestingly, in many
cases, the emergent continuum theories are asymptotically exact, thus the ob-
tained physical laws hold exactly if the considered time and length scales are
large and the applied forces are small enough. The microscopic properties are
propagated to the macroscale in terms of transport coefficients, parameters
which describe how a system responds to certain macroscopic stimuli. These
can e.g. be obtained from molecular dynamics simulations [101]. Important
examples considered in this thesis are the theory of electrostatics in dielectric
media, and continuum hydrodynamics, and its generalization to immersed
ions and applied electric fields, called electrokinetics.

The question of chemical kinetics is: at what rate does a chemical reaction
happen? To answer this question it is necessary to have a measure of how
far a chemical reaction has progressed. Macroscopically the amount of the
reaction product is a very good measure for that. Microscopically, on the
level of single molecules, this is expressed in terms of a reaction coordinate.
For a dimerization reaction it is clear: If the to constituents are close enough
and have the right orientation, they form a complex. If they are far apart, they
are not bound. In this case, the progress of the reaction can be measured with
a geometric coordinate. Clearly the rate of the chemical reaction is closely
related to the dynamics in this single reaction coordinate, as we will describe
in more detail in Sec. 3.2.6. The choice of the reaction coordinate, or a set
of coordinates is not always obvious. A good choice is crucial for the success
of dynamic models. In Sec. 4.3.3 we will describe a new reaction coordinate
for the translocation of flexible polymer chains. It is important to note that,
in an abstract sense, a describing a process in terms of a reaction coordinate
is also a coarse-graining method: the complex motion of many molecules is
projected onto a single or a few axes.
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Throughout this work, all of these coarse-graining strategies are going to be
applied. In the following chapter, we study the free energy of a charged chain
molecule when passing through a nanopore. We want to understand if the
frequency of successful translocations is reduced by electrostatic effects. We
construct a reaction coordinate for this process that allows us to measure
barriers, which oppose the translocation process. These simulations are per-
formed using ad-hoc constructed models of DNA molecules and pores, where
a model with implicit water and explicit ions is used. The water is coarse-
grained out and we rely on a dielectric continuum description of the water and
the membrane material, in which the pore is located. In addition, we perform
similar investigations using a full continuum description based on the Poisson-
Boltzmann theory. In the next chapter, we present results where ion transport
is studied with models of different resolution. To do so , we apply a continuum
model, based on the electrokinetic equations, an implicit-water-explicit-ions
model, where the Lattice-Boltzmann method is applied to replace the effect
of water on dynamics, and a fully explicit all-atom model. The comparison
of these models allows us to determine on which modelling level which effects
are reproduced to what degree of accuracy.

3.2.2 Equilibrium statistical mechanics

The material appearing in the following sections is a compilation from different
textbook sources. It is a collection of important theoretic concepts and an
overview where these concepts appear in the field of statistical mechanics. The
simulation models and the applied simulation methodology are not derived
rigorously in this section, but we attempt to make them plausible, and to
identify the most important approximations. The central theme of this section
is the question of how to convert a description of a (classical) system with many
degrees of freedom into a model with fewer degrees of freedom.

The most important sources were the books of Landau and Lifshitz [102],
Balescu [103], Reichl [104], and Evans and Morris [105], which cover equilib-
rium and non-equilibrium statistical mechanics. Other helpful sources were
the books by Risken [106], Liboff [107], and Röpke [108] and the more classical
books by Kubo [109] and Zwanzig [110]. Further background knowledge was
obtained from Hansen and McDonald [111] and the physical chemistry book
of Atkins. [112]. Finally we mention the more simulation-oriented textbooks
of Frenkel and Smit [101], and Allen and Tildesley [113], and different text-
books on the science of colloids [114–116], which also contain a very readable
perspective on statistical mechanics. The information about non-equilibrium
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statistical mechanics in Sec. 3.2.3 and Sec.3.2.4 are also compiled from these
sources.

In the following we will assume that the system under consideration can be de-
scribed as a classical system. Quantum effects are neglected. The system may
be described by the Euclidian coordinates ri of n atoms, and their velocities
vi. The main goal of this section is to formulate laws for a set of “coarse–
grained” coordinates and velocities Ri and V i that reflect the original system
in some respect. For brevity, we refer to the column vectors containing all
positions as r and R respectively, and the vectors containing all velocities
as v and V. The space spanned by r,v and R, and V is denoted as phase
space.

The “fine–grained” system has a total energy H, where

H =

n∑
i=1

mi

2
v2i + V (r1, · · · , rn) . (3.1)

Here mi is the mass of the ith particle and V is the potential energy of
the system, which we will not specify further here. Restricting ourselves to
Euclidian coordinates allows us to use terms from Newtonian and Hamiltonian
mechanics interchangeably: the canonical momenta p are trivially related to
the velocities by pi = mivi. We hence can refer to the total energy as the
Hamiltonian H (r,v).

The Newtonian equations of motions read as

ṙi = vi

miv̇i = −∇ri
V (r1, · · · , rn) .

(3.2)

The dot denotes the time derivative, and ∇ri
indicates that the gradient is

to be taken with respect to the spacial coordinate of the ith particle. This
gradient corresponds to the negative of the force Fi acting on particle i. In
the shorthand notation we write:

ṙ = v

mv̇ = −∇rV (r) ,
(3.3)

where m is a diagonal tensor containing the masses of all particles.

The change of paradigm between classical mechanics and statistical mechanics
is that the entity under consideration is not a single trajectory but many
trajectories are investigated by means of statistics. The most general quantity
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to describe these statistics of trajectories is the phase space density f (r,v, t),
which is the probability density of finding the particles at positions ri with
velocities vi at time t. It is normalized to unity, hence∫

d3nr d3nv f (r,v, t) = 1. (3.4)

The time evolution of f can be constructed from the time evolution of sin-
gle trajectories that follow Newton’s equation of motion. This leads to the
Liouville equation:

∂

∂t
f + v · ∇rf −∇rV · ∇vf = 0. (3.5)

By integrating this expression over phase space, and inserting Newton’s equa-
tion of motion, it can be seen that the normalization in 3.12 remains valid for
all times.

Typically one is interested in the statistical mean 〈B〉 of a quantity B, that
is a function of the configuration of the system. It is obtained by integration
over the phase space:

〈B (t)〉 =

∫
d3nr d3nvB (r,v) f (r,v, t) . (3.6)

The angular brackets 〈·〉 are sometimes are left out, if it is clear that we are
referring to averages. Alternatively two-time quantities can be of interest.
Then a statistical statement is made about the time evolution of the system.
A typical case is the correlation function of two quantities A and B, which is
defined as

CAB (t, t′) =

∫
d3nr d3nv

∫
d3nr d3nvA (r,v)B (r′,v′) f (r,v, t) f (r′,v′, t′) .

(3.7)
Quantities of interest are not necessarily scalars, but can be defined as function
in space. The particle number density ρ can e.g. be defined as

ρ (r, t) =

∫
d3nr d3nv f (r,v, t)

∑
i

δ (ri − r) , (3.8)

Here δ (·) is Dirac’s delta function1. If it is given with a vector valued-

1For simplicity we ignore the distribution character of the delta functions completely in
this work.
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argument, it is to be interpreted as a product of delta functions for all com-
ponents.

The initial conditions specified for Newton’s equations of motion are trans-
ferred into specifying the initial conditions of the phase space density
f (r,v, 0). A steady state, or stationary state, expresses that f is independent
of time. Restricting all considerations to steady states is a great simplification.
Despite this simplification, only few general statements about steady states
are known, and formulating general theorems about these states is ongoing
research (see e.g. [117]).

The concept of thermodynamic equilibrium however is much more restrictive,
but yields the very powerful apparatus of equilibrium statistical mechanics.
For an isolated system, the concept of thermodynamic equilibrium can easily
be introduced. In an isolated system, the energy E is by definition conserved.
In that case thermal equilibrium is characterized by the fact that all state
points (r,v) with that energy have the same probability. The entropy is
maximal. For an isolated system, the entropy is defined as the logarithm of
the phase space volume compatible with the energy E:

S (E) = kB log

∫
d3nrd3nvδ (H (r,v)− E) , (3.9)

where kB is the Boltzmann constant. This naturally leads to the definition of
the temperature and the thermodynamic beta, as the derivative of the entropy
with respect to the energy:

1

kB

∂S

∂E
= β =

1

kBT
, (3.10)

where T is the absolute temperature.

For a system in equilibrium that can exchange heat with a reservoir at a fixed
temperature the phase space density is given by the Boltzmann distribution:

f (r,v) =
1

Y
e−βH(r,v). (3.11)

Here Y is used to obtain a proper normalization. It is defined as

Y =

∫
d3nr d3nv e−βH(r,v), (3.12)

and thus is identical to the partition function up to a prefactor related to the
indistinguishability of the particles. For a Hamiltonian which is the sum of
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the kinetic Energy Ekin and the potential energy V , Y can be written as a
product of a velocity part X and a configurational part Z, where

X =

∫
d3nve−βEkin(v1,...,vn) and

Z =

∫
d3nre−βV (r1,··· ,rn) (3.13)

The Boltzmann distribution in Eq. 3.11 can be factorized into n+ 1 indepen-
dent factors

f (r,v) = f (r)
∏

fi (vi) . (3.14)

The velocity distribution, is given by

fi (vi) =

(
mi

2πkBT

)3/2

exp

(
miv

2
i

2kBT

)
, (3.15)

the Maxwell-Boltzmann distribution All information about the interaction of
particles is contained in the configuration partition function Z. The probabil-
ity density in configuration space is given by

f (r) =
1

Z
e−βV (r1,··· ,rn), (3.16)

the n+ 1st factor of the factorization of Eq. 3.11. With the Boltzmann distri-
bution it is possible to immediately obtain the probability to find the system
in a state characterized by coarse–grained coordinate R, that is a function of
the coordinates R (r):

p
(
R′
)

=

∫
d3nre−βV (r1,··· ,rn)δ

(
R′ −R (r)

)
. (3.17)

As an example we might consider a coarse-grained space, which contains the
first N < n positions of the configuration space of the original system. Then
the probability distribution can be written as

p (r1, · · · , rN ) =

∫
dr3N+1 · · · d3

nr e
−βV (r1,··· ,rn). (3.18)

This expression is named the reduced probability function. The above form of
the Boltzmann distribution is the reason why this process of eliminating vari-
ables is dubbed integrating out degrees of freedom. The free energy landscape
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F (r) is defined as

F (R) = − 1

β
log p (R) . (3.19)

The word landscape is introduced here because the probability distribution
exactly reflects the probability distribution of a single particle in an N -
dimensional landscape where the altitude is given, up to appropriate con-
stants, by the value of the free energy at the respective position. By taking
the gradient of the expression above, a useful expression can be obtained:

∇RF (R) =

∫
d3nr p (r)∇RH (r) δ (R−R (r)) . (3.20)

This can be read as follows: The derivative of the free energy landscape with
respect to a coarse-grained coordinate R, is the mean of the (generalized)
force, where the average is taken at all points r compatible with the particular
coarse-grained configuration R. Therefore free energy landscape is also called
the potential of mean force. Both will be used interchangeably in this thesis.

The difficulty of systematic coarse–graining lies in finding a good model for
F (R). Even if V (r) is a sum of pair potentials, the coarse-grained potential
will include many-body terms and can be relatively complicated. It is pos-
sible to approximate it by pair potentials, e.g. with the iterative Boltzmann
inversion procedure (the name was coined by [96], the method is older), which
a tabulated pair potential is constructed iteratively that exactly, meaning to
arbitrary accuracy, reproduces a radial distribution function. The existence
of a unique potential is guaranteed by the Henderson theorem [118].

In equilibrium it is possible to algorithmically derive coarse-grained repre-
sentations of a system reflecting the fine system in some respect. Assuming
Newtonian equations of motion in this effective many-body potential does not
create realistic dynamics, as frequent collisions between particles, that have
been coarse-grained out, lead a much faster relaxation of momentum towards
equilibrium. Formal access to this aspect of coarse-graining can be gained
using projection operator techniques. The theoretical foundation for these
techniques was developed by Zwanzig [119] Mori [120], and therefore they are
nowadays known as the Mori-Zwanzig formalism.

Before studying the details we will give an example of a coarse-grained model
for dynamics, Brownian motion. It is so well known, because it was one of the
first examples, where the statistical nature of matter was directly observable
in experiments.
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3.2.3 Brownian motion: A simple case of coarse-grained
dynamics

In 1827 the Botanist R. Brown observed that pollen grains in water performed
an disordered, stochastic motion [108, 121]. This motion originates from col-
lisions of the water molecules with the immersed particle. With Einsteins
seminal work [122], as Renn points out [123], it was not only possible to un-
derstand this behaviour qualitatively, but to also use the observation of Brow-
nian motion to measure a quantity that links the micro- to the macroscale:
the Avogadro number. Alternatively, by observing Brownian motion one can
connect the energy scale of the macro- and the microscale. The thermal en-
ergy kBT can be inferred from measurements of the diffusion constant and
the radius of particles and the viscosity of the surrounding medium.

Einstein’s contribution to the understanding of Brownian motion was twofold
[122]: First, he found that the mean square displacement of a particle is closely
related to the self diffusion coefficient of these particles. It equals twice the
slope of mean square displacement

D =
1

2
lim
τ→∞

d

dτ
〈[x (t)− x (t+ τ)]

2〉t, (3.21)

in the limit of infinite τ .

Second, Einstein discovered the fact that the diffusion coefficient is related to
the response of the particle to small applied forces. The formula he derived
relates the diffusion coefficient D to the gas constant R, the Avogadro number
NA, the viscosity η and the particle radius a:

D =
RT

NA

1

6πηa
. (3.22)

His finding is based on the very simple argument that the response of the
particle to a random force caused by the solvent must be identical to the
response to an external force. This is the insight on which the more general
fluctuation dissipation theorem discussed below is founded.

A spherical particle immersed in a medium with a viscosity η moving at ve-
locity v experiences, according to Stokes’ law, a frictional force FD given by

FD = −6πηav (3.23)

The factor 6πηa is defined as the friction coefficient γ of the particle. From
the assumption above, and the identification that forces on a particle originate
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from gradients of the osmotic pressure, he derived Eq. 3.22.

This finding motivated Paul Langevin to suggest the following effective equa-
tion of motion for Brownian particles [124], here given in one dimension. He
assumed a friction force FD = −γv acting on moving particles. In addition he
introduced a stochastic force FR [108] due to collisions with solvent molecules
with zero mean and a finite variance. In addition, an external force FC can be
present. Including the forces into Newton’s equation of motion leads to the
Langevin equation:

mr̈ = −γṙ + FR + FC . (3.24)

The random force is assumed to have zero mean and to be uncorrelated in
time. Its strength is characterized by its variance, which we denote by A.
This reads as

〈FR〉 = 0,

〈FR (t)FR (t′)〉 = Aδ (t− t′) . (3.25)

Eq. 3.24 is a stochastic equation of motion. To obtain meaningful results,
it is necessary to calculated averages over all realizations of the stochastic
process FR. Two important observations can be made: First, in the absence
of external forces the mean square velocity of the particle fulfills:

〈v2〉 =
A

m
. (3.26)

Second, if the external force F can be written as the gradient of a potential
V that diverges for x → ±∞, in the long time limit, the probability density
of finding a particle at position x converges to:

p (x) ∝ e−2V (x)
A . (3.27)

Both suggest to identify the variance of the random force A as twice the
thermal energy kBT .

This means that by applying a velocity-dependent frictional force, and a ran-
dom force of the right magnitude to a particle, it is possible to generate con-
figurations in according to the Boltzmann distribution. Hence, if Newton’s
equation of motion are exchanged for the Langevin equation in a computer
simulation, it is possible to prescribe the temperature and obtain a series
of configurations with probabilities according to the Boltzmann distribution.
Observable averages can be calculated as time averages of the trajectories, and
they approximate the ensemble average in the canonical ensemble. Frictional
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and random forces mimic the action of a heat bath fixing the temperature of
the system. This thermostatting mechanism is widely applied especially in
implicit solvent molecular dynamics simulations, including the simulations in
Chapter 4.

The fundamental solution to the Langevin equation as presented in Eq. 3.24 is
an exponentially decaying velocity. The characteristic timescale of the decay
γ/m is in many cases very small. If this time scale is much smaller than the
other time scales of the system the system is overdamped. In this limit is
possible to treat the dynamics without considering the velocities explicitly.
We will discuss this issue below, when introducing hydrodynamic interactions
and their algorithmic treatment.

For the Brownian motion of a spherical particle much larger than the solvent
particles, a theory which is exact in the limit of large space and time scales can
be formulated. Only based on the assumption of the validity of Stokes’ law,
the diffusion constant can be predicted, given that the Boltzmann constant
is known. This prediction is possible by virtue of the fluctuation-dissipation
theorem, which links the dissipative frictional force to the speed of the diffusion
process. The more general framework is discussed in the following section.

3.2.4 Theory of linear response

In the following section we provide a short introduction to the theory how
thermodynamic systems react to small applied forces, the theory of linear
response. It is a generalization of what was found for the case of Brown-
ian motion, the relation between the diffusion coefficient and the mobility to
general, time-dependent forces and equilibrium fluctuations.

If we assume that the system under consideration is subject to some force F ,
then it is often2 justified to expand the response j of the system (both will be
defined below) in a Taylor expansion

ji =
∑
j

χijFj + · · · . (3.28)

The matrix χij is the response matrix, admittance or susceptibility of the
system. In general the response of the system is not instantaneous, but needs

2In some cases, e.g. two-dimensional hydrodynamics, the theory of linear response fails, as
the obtained response coefficients diverge.
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a certain time to develop. This is expressed by a time-dependent susceptibility:

ji (t) =
∑
j

∫ ∞
−∞

dt′χij (t− t′)Fj (t′) + · · · . (3.29)

Causality demands that χij (τ) = 0 for τ < 0. The Fourier transform of this
equation leads to the same form:

ji (ω) =
∑
j

χij (ω)Fj (ω) , (3.30)

and Eq. 3.28 is the low frequency (ω → 0) limit of this equation. The time-
dependent response coefficient or its Fourier transformed frequency-dependent
response can be equivalently used to describe the response to a time-dependent
force.

So far we have introduced the response functions without defining the corre-
sponding forces or fluxes. Two types of forces can be identified [109]: me-
chanical forces, which can be taken into account directly in the equations of
motion, and thermal forces, which require a macroscopic collective picture.
According to Kubo et al. [109], the Hamiltonian corresponding to mechanical
forces must be of the form

H = −F ·X. (3.31)

Then the corresponding flux can be identified as the time derivatives of the
displacement X. According to Evans and Morris [105], thermal forces must
be connected to their respective fluxes by the form of the entropy production
rate

T
dS

dt
= F · j. (3.32)

F · Ẋ is the amount of work the external force performs on the system per
unit time (the power). This work is converted into heat by dissipation. It
is thus plausible that both definition of forces and fluxes for mechanical and
thermal forces are in agreement.

Onsager found that the response matrix must be symmetric, and the real and
imaginary parts of the admission coefficients are related by Kramers-Kronig
relations. A sufficient condition for this is the time-reversibly of the underlying
equations of motion.

There is an intimate relationship between the decay of equilibrium fluctua-
tions and the response matrix: the fluctuation-dissipation theorem (FDT).
The FDT links the correlation function CXY of two variable X and Y in equi-
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librium to the value of the admittance χXY . It reflects the fact that small
applied forces must effect the system in the same way as stochastic fluctu-
ations. For our consideration it is not necessary to formulate the full FDT.
We need only one of its immediate consequences, the Green-Kubo formula. It
links the Fourier-Transform of the correlation function of the time derivate of
two variables CẊẎ to the susceptibility by

χXY (ω) =
1

kBT

∫
dτe−iωτCẊẎ (τ) , (3.33)

where the correlation function is given by:

CẊẎ = 〈X (t)Y (t+ τ)〉t. (3.34)

Here the time average is taken in a system which is not perturbed by the
external force, hence an equilibrium system. In context of Brownian motion,
we are e.g. interested in the mobility µ, which thus is related to the Force f
applied to a particle along the coordinate x. In the limit ω → 0 we obtain:

µ =
1

kBT

∫ ∞
0

dτ〈v (t) v (t+ τ)〉t, (3.35)

where v denotes the velocity of the particle. The equivalence with Eq. 3.21
can be shown by integration by parts [101].

The Green-Kubo relationship is a very useful tool for practical computation,
as it allows us to perform a simulation in equilibrium and extract all response
functions from a single trajectory. On the other hand, it is a requirement for
a thermodynamically consistent simulation. When constructing an algorithm
for the study of soft matter systems, it is thus of paramount importance, to
make sure it fulfills this requirement. If it does not, it is not possible to obtain
unique transport coefficients. We will show in Sec. 5.2 that this prerequisite
is not always fulfilled for the Lattice-Boltzmann algorithm.

3.2.5 Hydrodynamics: The continuum limit

The hydrodynamic picture of fluids is based on the assumption of a local
thermodynamic equilibrium. With this assumption, it is possible to locally
use the statistical mechanics framework developed before, and construct equa-
tions based on conservation laws which describe a system on a global scale.
Locally, the system can fluctuate, but the subsystems are chosen so large,
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that fluctuations are weak or negligible. Only conserved quantities need to
be considered, as they can not be created or annihilated, and therefore affect
a system on a global scale. Evans and Morris characterize this perspective
as follows: “At the hydrodynamic level we are interested in the macroscopic
evolution of densities of conserved extensive variables such as mass, energy
and momentum. Because these quantities are conserved, their respective den-
sities can only change by a process of redistribution. [. . . ] this means that
the relaxation of these densities is slow, and therefore the relaxation plays a
macroscopic role.” Hydrodynamic theories thus are exact on large time and
length scales. Lower bounds to the length scale in a gas is e.g. given by the
mean free path, and to the timescale by the collision frequency [105]. In this
section, we perform this analysis for a fluid under the effect of forces and
pressure differences. This leads to the Navier-Stokes equations. Finally we
describe how hydrodynamic interactions can be derived from it.

We change the perspective from individual particles to fields, e.g. the mass
density density or the momentum density. Microscopically, they can be defined
in analogy to the number density in Eq. 3.8. For every conserved quantity a
continuity equation must hold:

∂q

∂t
+∇ · j̃q = 0. (3.36)

Here j̃q is a flux, which we do not specify further for now. The key idea is to
distinguish between a flux related to the motion of the underlying medium,
the convective transport, and a flux that originates from local deviations from
equilibrium, the diffusive transport. Which type of transport is more impor-
tant depends on the specific application. In soft matter applications, e.g. heat
conduction can almost always be considered a process that is much faster than
convective heat transport, and the latter may be neglected for that reason.

If one assumes that a medium is in motion, with a certain position dependent
velocity u, then the flux of an extensive quantity q, measured per mass density
of the medium, can be written as

j̃q = ρqu+ jq (3.37)

where ρ denotes the local mass density, and j is a flux resulting from a local
imbalance of thermodynamic or mechanic forces. If the flux of mass itself is
considered, q is set to 1 (the mass density per mass density). In a medium with
one component, no mass fluxes that are not associated with a corresponding
velocity field need to be considered, and one immediately obtains the mass

40



3.2. Statistical physics in the soft matter regime

continuity equation:
∂ρ

∂t
+∇ · ρu = 0. (3.38)

To consider the momentum density, it is important to realize, that actually
three quantities are considered at the same time, namely the three components
of the momentum. Hence momentum fluxes are tensor valued, where the
component jij measures the flux density of i-momentum in j-direction. It can
be shown generally that the momentum flux tensor must be symmetric, as a
result of the conservation of angular momentum [105].

Now, we consider the mechanical forces acting on a volume element. If the
pressure in the surrounding is not constant, a volume element experiences a
force proportional to the local pressure gradient:

f = ∇p. (3.39)

In the present form this appears as a source term, but we can recast it in the
form of the divergence of a tensor, in order to obtain the form of Eq. 3.36. We
interpret the tensor

pH =

p/3 0 0
0 p/3 0
0 0 p/3

 (3.40)

as the tensor describing the momentum flux in a co-moving reference frame
due to a local imbalance in the pressure.

These hydrostatic forces are solely caused by a local deviation from mechanical
equilibrium. They are conservative, in the sense that one volume element can
perform reversible work on another volume element without dissipation, and
this work can be recovered by expansion. This is true e.g. for sound waves,
which can propagate through a medium with only small losses.

A second class of forces arises from the local local deformation of the medium.
The tensor ∇u, the rate of deformation, is a measure for this. It measures
how strongly a volume element is deformed per unit time. This deformation
leads to a deviation from local thermal equilibrium. If we choose a reference
point r0 in space, then for a point r in its vicinity the velocity is given by:

u (r) = u (r0) +∇u · (r − r0) . (3.41)

The deviation from local equilibrium can be expanded in orders of the rate of
deformation. The viscosity is obtained as the linear response coefficient in the
limit of zero frequency of the deformation. For an isotropic medium only two
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independent response functions are possible: forces opposing a compression,
and forces opposing shear. This can be seen from the following decomposition
of a tensor A [104]:

A =
1

3
TrA I︸ ︷︷ ︸

diagonal

+
1

2

(
A+AT − 2

3
TrA I

)
︸ ︷︷ ︸

symmetric traceless

+
1

2

(
A−AT

)
︸ ︷︷ ︸
antisymmetric

(3.42)

(3.43)

Applying this to the rate of shear tensor ∇u, one obtains:

∇u =
1

3
∇ · uI︸ ︷︷ ︸
εd

+
1

2

(
∇u+ (∇u)

T − 2

3
∇ · u

)
︸ ︷︷ ︸

εs

+
1

2

(
∇u− (∇u)

T
)

︸ ︷︷ ︸
εs

, (3.44)

with the diagonal εd, a traceless symmetric εs, an antisymmetric εa component
of the strain rate tensor. For simple liquids no momentum flux arises from
the antisymmetric part of the deformation. Then the viscous momentum flux
tensor can be written as

pv = ηvεd + ηεs. (3.45)

Here the bulk viscosity, hence the dissipative force counteracting compression
ηv and the dynamic viscosity η appear, as the only two independent parame-
ters possible in an isotropic fluid. Inserting this into the conservation equation
leads to the (compressible) Navier-Stokes equations:

∂tρu+∇ · ρuu = −∇p+ η∇2u−
(
ηv +

1

3
η

)
∇ (∇ · u) (3.46)

The last conserved quantity that could be considered is the energy. This leads
to an equation where heat conductivity is considered explicitly. In most soft
matter applications it is however to assume that temperature is transported
much faster through the system than particles. Therefore temperature does
not have to be considered explicitly.

If the velocities are much smaller than the speed of sound, the flow is in good
approximation incompressible. Then it fulfills

∇ · u = 0. (3.47)
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The Navier-Stokes equation then can be simplified to:

ρ∂tu+ ρu · ∇u = −∇p+ η∇2u. (3.48)

The character of the hydrostatic pressure changes when performing this ap-
proximation. In the compressible Navier-Stokes equations it was related to
the local density by the equation of state p (ρ). Now the density is constant,
and the pressure appears purely as a degree of freedom that needs to be chosen
such that the flow field can fulfill Eq. 3.47 and Eq. 3.50 simultaneously.

By a dimensional analysis of the Navier-Stokes equation, a parameter that re-
lates the viscous forces to the inertia effects the can be identified, the Reynolds
Number

Re =
ρu0l

η
. (3.49)

Here u0 is the scale of the velocity and l is a characteristic length scale of
the system. In virtually all soft matter applications the velocities as well as
the length scales are sufficiently small to make the small Reynolds number
approximation. This leads to the Stokes equation, where the convective term
in the Navier-Stokes equation is neglected:

ρ∂tu = −∇p+ η∇2u+ f . (3.50)

Here we have added a body force density f , which can e.g. correspond to grav-
ity or to forces related to electric fields, as will be seen below. In the stationary
case, where ∂tu = 0, the Stokes equation, plus the continuity equation are a
linear, coupled set of PDEs, which can be analyzed in a similar fashion as the
Poisson equation for electrostatics.

Stokes’ law can be obtained by solving the Stokes equation with the bound-
ary conditions u = v on a spherical surface, and u = 0 at infinite distance
from the sphere. The resulting flow field is asymptotically equal to a Stokeslet
multiplied with the force applied to the particle. Only for the near field, cor-
rections are necessary. The boundary condition u = v is called the no-slip
boundary condition. Its validity has been under heavy debate, as it can not
be derived from first principles. Until the advent of microfluidics, however,
no evidence was found that it might be violated. Examples, for which slip
effect has been related to dissolved gas or hydrophobic interactions [125]. Still
there is no convergence of the discussion. It has e.g. been shown, that surface
roughness has a similar effect as slip [126, 127]. The no-slip boundary con-
dition remains a somewhat mysterious but very efficient tool in the study of
hydrodynamic effects.
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In a three-dimensional unbound system a point force F δ (r − r0) leads to a
flow field

u (r) =
1

8πη |r − r0|

(
1 +

(r − r0) (r − r0)

|r − r0|2

)
· F . (3.51)

This expression is the fundamental solution of the Stokes equation, and cor-
responds formally to the Coulomb potential of electrostatics. Every solution
of the Stokes equation can be written as a superposition of expressions of the
type 3.51. The fundamental solution is referred to as the Stokeslet.

Assume we want to study the motion of n spherical particles immersed in
a liquid on which the forces F i act. We want to know their velocities vi
in the stationary state. This problem can be solved approximately by using
a pairwise additive approximation. We will show the route to the simplest
of these approximation, the Oseen form of the mobility matrix, sometimes
called the Oseen tensor. In the stationary state, the force on each particle,
the applied force F i, is right away transferred to the fluid. In terms of the
Stokeslet, the flow field can be written as

u (r) =
∑
i

1

8πη |r − ri|

(
1 +

(r − ri) (r − ri)
|r − ri|2

)
· F i. (3.52)

By virtue of Stokes’ law, the hydroynamic force on the particles can be eval-
uated as F i,h = 6πηa (u (ri)− vi). The hydrodynamic force in turn must be
the negative applied force. This expression can solved for the velocities vi and
we obtain:

vi =
1

6πηa
F i +

∑
i 6=j

1

8πη |rij |
(1 + r̂ij r̂ij)F j , (3.53)

where we use a shorthand notation rij = ri − rj and r̂ij = rij/ |rij | for the
particle distances.

The expression above can be interpreted as a mobility matrix µ. The Os-
een approximation is only valid for particle much further apart than their
radius. Rotne and Prager gave an improved expression, which they obtained
by minimizing the dissipation in the system [128]. In general, their expres-
sion is preferred over the Oseen form, as the mobility matrix in this case is
positive definite. Even better expressions can be obtained by incorporating
lubrication corrections to improve the short-range behaviour of the mobility
matrix [129].
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Taking into account diffusion, the particle motion can be expressed in terms
of a Fokker-Planck equation [130] for the many particle probability density
p (r1, · · · , rn),

∂tp =
∑
i,j

∇ri
·Dij

[
∇rj

p+ F jp
]
. (3.54)

This expression is suitable for theoretical analysis. Examples are the calcula-
tions of the diffusion coefficients in suspension of colloidal particles [131–133]
and the diffusion of polymers [134]. To perform computer simulations with
this type of interaction tensor, Ermak and McCammon derived a simulation
scheme, where the corresponding stochastic equation of motion is used to cre-
ate trajectories that include the hydrodynamic interactions [130], which will
briefly be describe below.

3.2.6 Theory of the transition state: Dynamics in 1D

The theory of collective dynamics in a single coordinate is probably oldest
branch of statistical physics out of thermal equilibrium, as it describes the
dynamics of chemical reactions. We give a short introduction following the
review of Hänggi and Borkovec [135].

In the late 19th century van’t Hoff [136] and Arrhenius [137] both found an ex-
ponential dependence of reaction rates with the negative inverse temperature,
now known as the Arrhenius law:

k = k0 exp− EA
kBT

(3.55)

Here k is the rate at which the reaction occurs, EA is the activation energy and
k0 the so-called pre-exponential factor. At their time neither the atomistic
nature of matter was certain nor the quantitative value of the Boltzmann
constant or Avogadro number was known, and hence only the constant EA/kB
could be determined for each reaction. The interpretation as a microscopic
activation energy could only be given later.

The key to giving an explanation of this behaviour was the interpretation of
EA as the energy difference between the educt and some intermediate struc-
ture that forms in course of the chemical reaction, the transition state. In
this simplification, only three states are considered: the educt state, the tran-
sition state and the product state. To deduce the rate at which the reaction
occurs, we first make the following consideration: If there were no product
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state, the probability of finding the system in the transition state is would be
proportional to the Boltzmann factor:

p (T ) =
e
−EA
kBT

1 + e
−EA
kBT

≈ e
−EA
kBT (3.56)

The actual rate at which a reaction from the transition state to the product
occurs is proportional to the probability of finding the system in the tran-
sition state. With these assumption the Arrhenius equation is immediately
obtained.

The work of Kramers [138] provides the connection to Brownian motion in
one dimension. His assumption was that a chemical reaction and Brownian
motion are linked such that every molecule (or group of molecule) undergoes
a Langevin-type motion in a certain coordinate, the reaction coordinate. The
potential energy contains all information about the chemical environment.
The product and the educt state correspond to local minima in the potential
energy. Chemical kinetics can then be derived by investigating the statistics of
the corresponding trajectories, from the analysis of the Fokker-Planck equa-
tion. From our consideration in Sec. 3.2.2, it is obvious that the potential
energy that needs to be inserted in the Langevin equation is actually the free
energy, or potential of mean force expressed in the reaction coordinate.

Two important limits of Kramer’s theory can be identified: In the low friction
limit, the Langevin equation reflects Newton’s equation of motion, valid for
equations in the gas phase [139]. The high friction limit is appropriate for
typical dense soft matter systems. Here ballistic motion is largely suppressed
due to frictional forces. Interestingly in both, the high and the low friction
limit, rates of the van’t-Hoff-Arrhenius form with different pre-exponential
factors arise.

These considerations emphasize the importance of the role of the transition
state for the dynamics of all processes, also in the field of soft matter. One
example is the folding of biomolecules. In this case it is very interesting to
identify transition states, i.e. states which a system is likely to pass, when mov-
ing between two stable states. Modifying the transition state can dramatically
influence the dynamics of the corresponding process.

In Ch. 4 we consider the dynamics of transport of a DNA molecule through
a pore. We calculate the free energy barrier in terms of a certain reaction
coordinate. We find a free energy barrier that strongly depends on conditions
like the salt concentration and the diameter of the pore. In terms of the theory
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of the transition state this suggests, that also the transport rate depends
significantly on the free energy barrier.

An important assumption for these consideration is that the dynamics can
be described in terms of Brownian motion in one dimension. This is only
justified if all other processes happen faster than the considered process. In
the following section we will discuss DNA from the point of view of polymer
science. This will lead to a simple, but very interesting point. For long polymer
lengths the DNA dynamics in a nanopore can not be described in terms of a
single reaction coordinate, because the assumption that only one slow degree
of freedom exists is invalid. The chain lengths considered in Sec. 4.3.4 should
be, however, short enough to be on the safe side.

3.2.7 DNA from the point of view of polymer science

DNA’s importance for biology can hardly be underestimated. From a some-
what coarser perspective, the DNA molecule is, however, a polymer that fol-
lows the same laws a synthetic polymer, namely the statistical physics of chain
molecules. We give a very brief introduction to a few theoretical concepts that
will be needed to justify our coarse-grained DNA models. The information is
compiled from various text books [140–144].

Starting with the work of Debye, Flory, Kramers, Kuhn and others scientists
in the early 20th century a new branch of physics was founded: the physics of
long chain–like molecules. A particularly successful perspective was pioneered
by de Gennes: the scaling approach to polymer science. The key observation
was, that polymer properties follow scaling laws in the limit of long lengths.
In this scaling limit the chemical details are not important. These universal-
ity concepts had been developed in the context of critical phenomena, so that
polymer science could benefit from the “vast knowledge” [140] that had been
accumulated in the field. This universality allows polymer scientists to for-
mulate different models and use any of them to answer a particular question.
The answer can always be transferred to other models by a simple rescaling
procedure. This also facilitates the use of computers. A model does not have
to be chosen to achieve detailed agreement to the physical system of interest,
but can be chosen by the convenience of its computational evaluation. We
illustrate this by explaining a few chain models. We follow the textbook of
Grosberg et al. [141]:

In the freely jointed chain model a chain is represented by a series of N points
(monomers) with a mutual distance l in space. No further restrictions are

47



Chapter 3. Experimental and theoretical framework

imposed, e.g. the chain can bend sharply and cross itself. Alternatively the
chain can described by its starting point and N − 1 bond vectors ui of length
l. The bond vectors are uncorrelated, which can be expressed as

〈uiuj〉 = l2δij , (3.57)

where δij is the Kronecker delta:

δij =

{
1 if i = j,

0 else.
(3.58)

The end-to-end vector R is the sum of all bond vectors and the end-to-end
distance Re is its length. The total length of the chain is called the contour
length Lc = (N − 1) l. It is easy to show that the end-to-end distance grows
with the square root of the number of monomers N :

〈Re〉 =
√
N − 1l. (3.59)

If we now consider a real chain molecule, say polyethylen, where the repeat
unit is CH2, the vectors that connect carbon atoms clearly can not fluctuate
freely. On the contrary, the bond angle will stay close to the tetrahedral angle
of 110 ◦. This, of course, reduces the flexibility. In other polymers other
mechanisms creating stiffness are present. In our model for single-stranded
DNA shown in Sec. 4.3.4, for example, electrostatic repulsion favors locally
straight conformations. The role of stiffness can be expressed by a single
parameter: the persistence length. It is the characteristic decay length of
orientational correlation of monomers. Another measure of stiffness is the
effective segment length, the Kuhn length lK . It is defined such that the
end-to-end distance for a stiff chain exactly fulfills

〈Re〉 = lK
√
N. (3.60)

Both stiffness measures are consistent, thus both serve for rescaling. Their
numerical value does depend on the underlying polymer model. An equivalent
model is the random walk on a lattice. It can be considered a special case
of the freely jointed chain where only bond angles compatible with a certain
lattice (e.g. square or cubic lattice) are accepted. Also in this case the end-
to-end distance increases with the square root of the chain length N :

〈Re〉 =
1√
d
a
√
N − 1. (3.61)
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Here d denotes the dimension and a the lattice spacing, and square or cubic
lattice is assumed. It is obvious that the Kuhn length is different from the bond
length. Physical quantities, can be calculated in both models in completely
equivalent ways.

The fundamental universality in the behaviour above is expressed in scaling
laws. The equation above would be expressed as

Re ∼ N1/2, (3.62)

which reads as follows: Re scales as N to the power of 1/2. It means that

the end-to-end distance asymptotically approaches the functional form A
√
N ,

where the numerical prefactor A, the length scale, is dropped. This scaling
law as such holds for all polymers of the according universality class, and for
a particular model the prefactor must be determined individually.

The chain models we have presented so far are ideal, which means that inter-
actions between the monomers are neglected. In real systems the interactions
can only be neglected under very special conditions, so called θ–conditions.
Under these conditions, repulsive interactions (excluded volume interactions)
are counterbalanced by attractive interactions. Under all other conditions, at
least one extra parameter is necessary for the relative importance of excluded
volume interactions: the second virial coefficient. The underlying idea is bor-
rowed from the theory of dense gases and dilute solutions. For low densities
the effect of interactions can be described solely by taking into account particle
pairs. The second virial coefficient is defined as

B =

∫ ∞
0

(
1− exp

(
−V (r)

kT

))
d3r, (3.63)

where V (r) is the interaction potential of two monomers. It thus characterizes
the balance of attractive and repulsive forces, weighted by the Boltzmann
factor. For high temperatures the second virial coefficient is positive due to
repulsive “excluded volume” interactions. For low temperature in presence
of attractive forces it is negative. The temperature for which the second
virial coefficient is zero is called the θ-temperature. The condition T > θ is
sometimes called good solvent condition as the potential u in the equation
above refers to the effective pair potential, where the solvent molecules have
been integrated out. Under good solvent conditions the interaction between
chain and solvent is more favourable that the direct chain–chain interaction.
The solvent condition separates three solvent different classes, with different
scaling behaviour. (a) Under good solvent condition the end-to-end distance
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scales like Re ∼ Nν , where ν is the Flory exponent. It equals 0.588 in three
spatial dimension . (b) Under θ-conditions the ideal behaviour is recovered:
Re ∼ N1/2 because attractive and repulsive forces cancel. (c) For B < 0,
under bad solvent conditions, attractive forces dominate and the polymer
chain collapses to a globule, where Re ∼ N1/3.

The typical computer model for polymers under good solvent condition is
the bead-spring model [145] where monomer interactions are modelled by
the Weeks-Chandler-Anderson potential and finite-extensible non-linear elas-
tic (FENE) bond. The WCA potential is a truncated and shifted variant of
the Lennard-Jones potential:

Ulj(r)

kBT
=

4

[(σij
r

)12
−
(σij
r

)6]
+ 1 if r < 21/6σ

0 otherwise.
(3.64)

It can be considered an MD variant of a hard sphere interaction potential.
The FENE bond potential reads as

UFENE(r) = −Kr
2
max

2
log
[
1− (r/rmax)2

]
. (3.65)

It diverges at r = rmax, which represents the finite extensibility of polymer
bonds. This model, plus the Langevin equation of motion is probably the
most widely used computer model for polymers.

When addressing the dynamics of a single chain, or a dilute solution in a
solvent, two competing models have been developed. In the Rouse model
hydrodynamic interactions are neglected, and each monomer undergoes an
overdamped Brownian motion. In this case, the time of a polymer to relax to
its equilibrium state scales as N1+2ν . In the Zimm model, hydrodynamics are
taken into account, and correlation between monomer motion accelerate the
relaxation, and the relaxation time scales as as N3ν . These relaxation times
will be important below.

A quite simple question has attracted much interest since the advent of DNA
translocation experiments and yet remains not fully solved: How does the
mean translocation time τ of a chain molecule depend on its number of
monomers N?

Inserting a polymer into a pore is associated with a decrease in chain entropy as
a large number of conformations is disallowed by steric hindrance. Assuming
that s monomers are on one side of the pore and N − s monomers are on
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the other side of the pore, and assuming the pore is very narrow and short,
the entropic cost can be expressed as the free energy penalty of tethering two
polymer chains of size s and N − s to a wall. According to [146] and [10] this
is associated with and entropic free energy barrier:

A (s) /kBT = γ (log s+ log (N − s)) , (3.66)

where γ is a prefactor of order 1 that depends on the chain model (0.69 for
self–avoiding chains in 3D). The definition of the free energy requires ther-
modynamic equilibrium, which means that all other degrees of freedom have
sufficient time relax to thermodynamic equilibrium while changes of the reac-
tion coordinate s happen on a longer timescale. In other words: all degrees
of freedom of the system change much more rapidly than the reaction coor-
dinate s. The chain is in quasiequilibrium for every value of s. Under these
conditions, the translocation process can be described as a diffusion process
of s in an external potential. This would imply a scaling of τ ∼ N2, just as
for free diffusional processes the square distance travelled is linear in time. A
simple but very interesting observation brought forward in [147] is, that the
relaxation time of the chain ends scales as N1+2ν in the Rouse model and
for long enough chains will be larger than the N2 scaling of the transloca-
tion time. The Zimm model is invalid in the presence of walls as they screen
hydrodynamic interactions. Thus, for long enough chains the relaxation time
will be longer than the translocation time itself, and thus the quasiequilibrium
assumption must be invalid.

A particularly clear account of this intrinsic non-equilibrium effect was given
by Gauthier et al. [148], who showed with molecular dynamics simulations
that the escape of a chain from a nanopore changes dramatically if interrupted
half–way and given time to relax to its equilibrium. De Haan et al. were able
to show, that a whole range of exponents can be obtained in computer ex-
periments by systematically varying the solvent viscosity and the friction in
the pore [149]. This explains why so many different apparently contradicting
values had been found before. Only very recently the discussion appears to
converge, at least for the case of unforced translocation, after Sakaue intro-
duced the concept of chain tension propagation [150], which was extended
e.g. by Rowghanian and Grosberg [151]. The simple question however has
proved to have a quite complicated answer and a full understanding is not yet
achieved.
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3.3 Simulation approaches to soft matter

The “softness” property of soft matter is a very important reason why com-
puter simulation models have been applied to soft matter systems already very
early. Processes that require only a small timespan, or a small perturbation,
are computationally much more feasible than those where materials withstand
strong external forces. On the contrary, in solid state materials for example,
the fastest vibrational time scales and other time scales, e.g. dislocation dy-
namics, are much further separated, and therefore simulations require much
more computational effort. Some of the first computer simulations were per-
formed to calculate the thermodynamic properties of a hard disc fluid [152].
This was only possible, because liquids are soft and therefore explore their
phase space in a relatively small amount of time.

We would like to stress here in what sense the term simulation is applied in
this thesis: We refer to procedures relying on the concept of classical parti-
cles, where a potential energy function, and possibly a propagation mechanism
specified, and particle configurations are generated successively by a computer
code. These simulation, also termed molecular simulations are hence a clas-
sical example of bottom-up modelling: properties of small constituents are
assumed, and collective properties can be obtained from the calculations.

3.3.1 Monte-Carlo simulations

Two main directions can be identified in molecular simulations [153]. In
Monte–Carlo approaches a stochastic algorithm is used to generate a series
of configurations r of the system according to a given distribution function
f . The method to generate these configurations is chosen solely by conve-
nience and efficiency considerations. In Molecular Dynamics approaches, the
mechanism to generate configurations is part of the modeling process. The
equations of motion chosen are usually Newton’s equation of motion, possibly
with modifications to incorporate a heat bath, or the Langevin equation.

Monte-Carlo methods are mainly suited to measure static quantities Q, that
can be expressed as averages over configuration space:

Q = 〈Q (r)〉f . (3.67)

The “dynamics”, thus the sequence of configurations that is obtained is not
direct physical meaning. The most famous method to generate configurations
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is the Metropolis algorithm [152]. In this algorithm initially a random starting
configuration r0 is generated. New configurations are generated in subsequent
moves consisting of three steps: (1) a small displacements δr is chosen ran-
domly. (2) the potential energy of the configuration is evaluated, (3) the move
is accepted with a probability

p =

1 ifV (r + δr) < V (r)

exp

(
−V (r + δr)− V (r)

kBT

)
ifV (r + δr) < V (r) ,

(3.68)

where T is the desired temperature. The probability distribution of the re-
sulting Markov chain of states converges to the Boltzmann distribution

p (r) ∝ exp−V (r)

kBT
, (3.69)

if the probability distribution of random displacements fulfills certain criteria.
Then quantities Q can be calculated as averages over the sampled states.

Monte-Carlo methods offer a lot of algorithmic freedom, as the propagation
method can be chosen in accordance with the problem that is studied. On
the other hand, they have been somewhat on the decline in the last decades,
because typically they are difficult to implement efficiently on parallel com-
puter architectures. The Metropolis algorithm requires for efficient execution
that every move changes the potential energy by . kBT , so the elementary
steps are very small. Typically, only single particles are displaced, requiring
only few computational operations. This not a promising scenario for parallel
computers. Molecular dynamics simulations are much better suited for paral-
lel execution, because all particles are displaced, which requires a calculation
of the forces on all particles in every step.

3.3.2 Molecular dynamics simulations

The idea of molecular dynamics simulation very simple. One constructs a par-
ticle model with conservative interactions and computes its time evolution by
numerically integrating Newton’s equations of motion. The interactions typ-
ically conserve energy, and hence are called potentials. They depend only on
the positions of the other particles. Newton’s equation of motion for particle
i with mass m reads as

mi
∂2

∂t2
ri = −∇ri

V (r1, · · · , rn) . (3.70)
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Here n denotes the number of particles present in the system, and V the po-
tential energy of the system according to the model. In three dimension one
obtains thus a set of 3n coupled ordinary differential equations (ODEs) that
can be integrated with standard methods [154]. The timestep δt is chosen
time independent. Explicit integration schemes are in typically preferred over
implicit schemes as the number of degrees of freedom can be very large. A fre-
quently applied integration scheme is the Velocity-Verlet (VV) scheme which
consists of four substeps. Let denote F i (t) be the force that acts on particle
i based on the positions r1, · · · , rn evaluated at time t and vi the velocity of
particle i . Then the four steps of the VV integration scheme read as

(1) vi (t+ δt/2) = vi (t) +
δt

2

1

mi
F i (t)

(2) ri (t+ δt) = ri (t) + δtvi (t+ δt/2)

(3) F i (t+ δt) = −∇riV (r1, · · · , rn)

(4) vi (t+ δt) = vi (t+ δt/2) +
δt

2

1

mi
F i (t+ δt)

(3.71)

The VV scheme is a second order propagation scheme that is time–reversible.
The time–reversibility condition is important because it is a good indicator
for the stability. The VV scheme can be considered the gold standard for MD
applications. The expensive force evaluation only has to be performed once
per step. Time–reversibility ensures stability and the computer code is almost
as simple as for a first–order integration scheme.

It is tempting to apply the same integration scheme also for the integration
of the Langevin equation. This is done in ESPResSo as well, but according
to [155] this is not a good choice under all conditions. It must be noted, that
the Langevin equation itself is not time–reversible and thus this feature of
VV scheme is in vain. In other words, the frictional force and the noise in the
Langevin ensure that trajectories are not stable in the sense of classical trajec-
tories, but are in (in the continuous limit) nowhere differentiable. The current
implementation in ESPResSo uses indeed the positions at full timesteps and
the velocities at half timesteps for the calculation of the conservative forces
and the dissipative forces, which already indicates a certain inconsistency. In
the limit of weak frictional forces, however, Newton’s equations of motion are
recovered and in this limit it is possibly useful to apply the VV scheme also
to the Langevin equations of motion.

Apart from using the Langevin equations of motion, different mechanisms can
be applied to allow for heat exchange with a hypothetical reservoir. These

54



3.3. Simulation approaches to soft matter

thermostats typically are modifications to the equations of motion, and allow
the user to prescribe a certain temperature. In the simulations in Sec. 5.3 a
stochastic velocity rescaling mechanism is used, that is based on the Berend-
sen thermostat [156]. In regular intervals the kinetic energy is calculated. If
it smaller than the mean kinetic energy expected from the Boltzmann distri-
bution, the velocities are scaled up, and if it is lower, they are scaled down.
By adding a stochastic contribution to this rescaling mechanism, it can be
assured that the correct distribution of the kinetic energy and hence a proper
canonic ensemble can be obtained [157].

If the interactions are of finite range or have a finite cut-off rc, the time
necessary for an update can be reduced to O (n). This is done using the
concept illustrated in Fig. 3.6. The simulation box is partitioned into cells
with an edge length & rc. The interactions of a particle in a particular cell
only need to be calculated with particles from neighbouring cells. The lists
containing the particles are updated in every MD step. The resulting scheme
is known as the linked cell algorithm. Cell lists are particularly well suited for
a parallelization based on a spatial decomposition of the simulation domain.
In this case, every process is responsible for calculating the forces in a well-
defined region in space. At the boundary of this region, the process maintains
copies of the particles in cells surrounding this region. The forces and positions
on these copies, the so-called ghost particles, must be communicated in every
MD step. This can lead to a significant dominant communication overhead.
To keep the overhead small compared to the actual computational work, the
number of particles per process must be sufficiently large.

Electrostatic interactions can not be treated with this method, as their long-
range nature forbids cutting them off at a certain distance. In the following
section we discuss how they can be calculated efficiently.

3.3.3 Electrostatic interactions

In a molecular dynamics simulation, calculating the electrostatic forces is a
challenging issue. As the electrostatic potential decays only as 1/r, it is long-
ranged. The occurring complication can be already seen by the following
simple examples adapted from [158]. For a short-ranged interaction potential
it is possible to perform a density expansion of the pressure. The first term
in the expansion is ∝ c, where c is the number density. The prefactor is the
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CPU 1 CPU 2

Figure 3.6: Illustration of the domain decomposition parallelization scheme
of a molecular dynamics algorithm using cell lists. The computational do-
main is decomposed into subdomains according to the number of CPUs. Ev-
ery CPU stores the particles inside its computational domain and a ghost
region surrounding its computational domain. When particle cross a sub-
domain border, they move from CPU to CPU. Each subdomain is decom-
posed into cells. The cell size is chosen such, that only a small num-
ber of neighbouring cells, typically only direct neighbours, need to be con-
sidered in the calculation of interactions. This reduces the computational
complexity of molecular dynamics simulations to O (n). Illustration from
http://en.wikipedia.org/wiki/Cell lists.

second virial coefficient:

B = 2π

∫ ∞
0

dr r2V (r) . (3.72)

If V is the Coulomb potential ∝ 1/r, the integral diverges, not only for short
distances (this could be repaired by introducing a repulsive pair interaction)
but also for large r. Indeed, the pressure for a charged system can be expanded
in orders of

√
c, so that the p (c) has an infinite slope at c = 0, reflecting the

divergence in Eq. 3.72.

In some systems, a truncation of electrostatic interactions is possible because
the long range nature is compensated for by screening effects [159]. But even
then the cutoff radius typically must be relatively large. As the computational
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effort strongly depends cubically on the cut-off distance, this is undesired. A
notable number of algorithms has been developed to circumvent this problem.
The first method was developed by Ewald [160] to calculate the Madelung con-
stant. More advanced variants of this Ewald summation method are applied
in most common MD codes, including ESPResSo. Therefore, a brief intro-
duction is given here. Before that, we would like to make two remarks. First,
we introduce Poisson’s equation and the applied unit system, and second,
we briefly introduce the Fourier transformation. Different text book sources
(e.g. [101]) and original research articles [161–163] were used as sources. As
improvement of electrostatic algorithms is an active area of research in the
Holm group and the SFB 716, some parts of the following section may also
stem from personal communication with experts.

We apply a unit system in which the thermal energy kBT is the scale of energy
and the elementary charge e is the scale of charge. In this unit system the
Bjerrum length lB emerges naturally. It is the distance at which the potential
energy of two elementary charges equals kBT . It is given by

lB =
e2

4πε0εrkBT
, (3.73)

where εr is the relative permittivity of the considered medium. In this unit
system the Poisson equation for the electrostatic potential Φ, measured in
kBT per elementary charge, reads as

∆Φ = −4πlBρ, (3.74)

where ρ is the charge density in elementary charges per unit length cubed.
The electric field is the negative gradient of the electric field E = −∇Φ and is
measured in kBT per elementary charge and unit length. In Chapter 4, we will
discuss extensively how to introduce an inhomogeneous dielectric constant.

We additionally introduce the Fourier transformation. We define the contin-
uous Fourier transformation f̂ of a function f as

f̂ (k) =

∫
e−ikxf (x) d3x. (3.75)

Here x is a 3-dimensional vector. The prefactor for the proper normalization
are defined as part of the back-transformation:

f (x) =
1

(2π)
3

∫
eikxf̂ (k) d3k. (3.76)
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For a periodic function only a discrete set of Fourier coefficients is different
from zero, namely those that are compatible with the length of the unit cell.
In the x direction with unit cell size Lx these are:

kx = 2πn/Lx, (3.77)

where n is an integer number. Clearly, if a function f with a finite support
is given, the Fourier transformation of its periodic continuation (assuming a
certain unit cell) can easily be constructed, as this implies only discarding
the Fourier modes incompatible with the assumed unit cell size. The Ewald
summation makes use of this fact. Periodic boundary conditions automatically
appear due to the application of Fourier transformations.

The key idea of the Ewald summation is to formally split the charge density
into two, calculate the electric energy and the electric field separately with
different methods and add them up again at the end. According to their char-
acteristics, one is called the short-range (sr) and the other one the long-range
(lr) part of the charge density, electrostatic potential and force respectively.
The short range part is treated in real space and the long range part in Fourier
space. A full treatment in Fourier space is impractical because for small dis-
tances the potential can become very steep, and thus many Fourier modes
would have to be taken into account. Therefore, before solving the Poisson
equation in Fourier space a smoothing operation of the charge density is per-
formed. This is done by a convolution with a smoothing kernel S. Formally
we write

ρlr (r) =

∫
d3r′ρ (r′)S (r − r′) . (3.78)

In case of the Ewald summation a convolution with a Gaussian smoothing
kernel is used. We have

S (r) =

(
α√
π

)3

exp−α2r2. (3.79)

The parameter α is called the splitting parameter and its inverse is the char-
acteristic smoothing length.

The short range charge distribution is constructed as the complement:

ρsr (r) =

∫
d3r′ρ (r′) (1− S (r − r′)) . (3.80)

In the short range charge distribution, every peak in the original charge dis-
tribution is thus surrounded by a smoothed complementary Gaussian distri-
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bution of opposite sign. Conceptually this is shown in Fig. 3.7a. Accordingly
the electrostatic potential and field are each split into a component due to the
short and long range charge distribution ρsl and ρlr. We denote them by Φlr
and Φsr, and Elr and Esr. The total electrostatic energy can be calculated
from

Uel =
1

2

∫
dV ρΦsr +

1

2

∫
dV ρΦlr. (3.81)

The first sum can easily be evaluated in real space, as the short-range con-
tribution to the electrostatic potential caused by by each particle decays on
the length scale 1/α as shown in Fig. 3.7b. The second sum is evaluated in
Fourier space. This leads to an expression that quickly converges in Fourier
space: ∫

dV ρΦlr =
1

2L3

∑
k 6=0

4πlB
k2

e−k
2/4α2 |ρ̂ (k)|2 . (3.82)

Here ρ̂ (k) is the Fourier transform of the charge density. The long range elec-

trostatic potential can be identified as −k2e−k2/4α2

ρ̂ (k), as the convolution
in Eq. 3.78 in Fourier space reduces to a simple product, and the Laplace
operator is just a multiplication with −k2.

The forces are obtained analogously. The short range contribution to the
forces is obtained directly from differentiation of the potential energy contri-
bution. The long range on particle i part can be expressed in the following
form:

F i = qi
∑
k

eik·ri
4πlBk

k2
e−k

2/4α2

ρ̂ (k) , (3.83)

hence also as a function decaying quickly in Fourier space. The computational
effort of the Ewald summation of n charges scales as n3/2, if the splitting
parameter is chosen optimally [164,165].

The class of mesh-Ewald summation algorithms makes use of the fact that
the computational effort for the Fourier transformation can be substantially
reduced by the use of the Fast Fourier Transformation (FFT). The FFT is a
computational algorithm for the calculation of the discrete Fourier transfor-
mation. The discrete Fourier Transformation is very similar to the Fourier
Transformation shown before but for a function defined on an equidistant
grid of points. It has a favourable scaling of O (N logN) where N is the
number of grid points. As it is very widely used very efficient computational
libraries as the FFTW [166] are available. For the application of a mesh-
Ewald summation, first a suitable grid-representation for the point charges
must be constructed. This process is called charge assignment. After the
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Figure 3.7: The Ewald decomposition of the (a) charge density and (b) the elec-
trostatic potential. Two charges -1 and +1 are positioned at x=0.3 and x=0.7
of a periodic box with edge length 1. For the calculation of the short range
potential, the source charges are surrounded by Gaussian screening charges.
The long range charge density is the negative of the screening charge density,
which corresponds to a smeared variant of the original charge density. The
splitting parameter is in this case set to 10/l, where l denotes the box length,
thus the decay length of the Gaussians is 0.1. The electrostatic potential is
decomposed into a rapidly decaying short range contribution and a long wave-
length long ranged contribution, which is calculated in Fourier space. This
illustration was made using ESPResSo, where the P3M, thus a mesh–based
variant of the Ewald summation was used for the calculation.

application of the FFT, operations in Fourier Space and application of the
inverse FFT, the electrostatic potential or electric field need to be evaluated
at the continuous particle positions. This is done by a interpolation. The
choice of functions for charge assignment and interpolation is one key ingredi-
ent. In the P3M method cardinal B-splines are chose, while in other variants
different functions are chosen. The favourable scaling of the FFT transfers to
the mesh-Ewald algorithms. Given n charged particles the algorithm scales
as n log n.

One drawback of the Ewald summation and its descendants is the fact that pe-
riodic boundary conditions are automatically applied in all spacial directions.
When simulating planar systems, it is, however, desired to have periodic im-
ages only in two directions. An alternative approach was for 2D periodic sys-
tems was developed by Arnold and Holm, the MMM2D algorithm [167–169].
We give a brief overview here, as its extension to flat dielectric and conducting
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interfaces is discussed in the following chapter.

We assume a system that is periodic in x and y direction and not periodic
in z direction. We perform a Fourier transformation of the Poisson equation
only in x and y direction, denoting the x-wave number by p and the y-wave
number by q. Then the Poisson equation reads as(

−p2 − q2 +
∂2

∂z2

)
Φ = −4πρ (p, q, z) . (3.84)

Thus an ordinary differential equation in z obtained. For p = q = 0 it easily
solved by

Φ (0, 0, z) = 4πlB

∫
dz′ |z − z′| ρ (0, 0, z) . (3.85)

In physical terms this can be translated as: For the lowest Fourier mode, the
electrostatic potential can be calculated by assuming all charges to be smeared
out over planes, and using the well-known solution of the potential around a
charged plane. A solution for higher Fourier modes can be obtained by the
well known solution of the PDE in Eq. 3.86:

Φ (p, q, z) =
2πlB√
p2 + q2

∫
dz′ exp

(
−
√
p2 + q2 |z − z′|

)
ρ (p, q, z′) . (3.86)

The sum that appears in the back–transformation into real space has favorable
convergence properties only if the distance between charges in the distance
in z-direction is large. In the simulation box in the MMM2D algorithm is
subdivided into slabs in the z-direction. Eq. 3.86 is used to calculate the
interaction between non-adjacent slabs. For neighbouring slabs, a different
expression is applied: the MMM2D near field formula. This formula has the
complementary property of being well convergent for if distances in z direction
are small.

3.3.4 Hydrodynamics

Hydrodynamic effects can be incorporated into simulations in different ways.
The first algorithm was suggested by Ermak and McCammon [130]. Its under-
lying dynamics is an overdamped Langevin equation. In every step displace-
ments for all particles are calculated. The underlying physical assumption is,
that the correlation time of velocities are much smaller than the time step. Me-
chanical forces lead to deterministic displacements and random forces lead to
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random displacements. Apart from the force calculation two time-consuming
steps must be mentioned: (a) calculating the diffusion matrix according to
Eq. 3.53 or a different approximation (b) a Cholesky decomposition of the dif-
fusion matrix. The second step is necessary to obtain correlated displacements
with a correlation matrix related to the diffusion tensor,

∆xi∆xj = 2Dij∆t. (3.87)

The Cholesky decomposition scales like O
(
n3
)
, and originally was the limiting

factor. Alternatives of O
(
n2.5

)
[170] and recently even of O

(
n2
)

[171] have
been proposed.

The Ermak-McCammon scheme was called Brownian Dynamics, as purely
Brownian, diffusive processes could be studied. Mainly in the group of Brady,
it has been generalized to situations including inertia, who coined the term
Stokesian Dynamics [129]. The further development included an Ewald-Type
summation for the diffusion tensor, and the inclusion of particle rotation and
shear flow. In addition they added short range corrections of the diffusion
matrix, lubrication corrections. Further improvements were the acceleration
of the algorithm by using Fast Fourier transformations, with a method in the
spirit of the P3M algorithm [172]. This brings the computational cost down
to O (n log n).

In the last two decades, several alternatives, sometimes called mesoscopic
methods, have emerged. The idea here is that the solvent is replaced by a
medium that resembles a Newtonian fluid “well enough” without being as
costly as e.g. an explicit water model. One example is the dissipative par-
ticle dynamics (DPD) method. Originally suggested by Hoogerbrugge and
Koelman [173] it features the idea of combining soft particles with a momen-
tum conserving thermostat [174]. The general idea is to thermalize particle
pairs, rather than particles, and construct their dissipative interaction so that
momentum conservation is obeyed. Asymptotically an isothermal Newtonian
fluid is obtained. From molecular dynamics methods, it inherits theO (n) scal-
ing, and a well defined temperature is obtained automatically. Its flexibility
has been enhanced by generalizing the dissipative particle interaction [175],
and also the connection to the smooth particle hydrodynamics method has
been made [176]. The Lattice Boltzmann Method, another method of this
class, is described in detail in Sec. 5.2.
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3.3.5 The software package ESPResSo

When one aims at simulating coarse-grained models, it is clear that there is
not a unique typical simulation situation. For example, when simulating an
ideal chain (without excluded volume interactions) with harmonic bonds, a
decomposition of the computational domain is not helpful as no non-bonded
interactions have to be calculated. However, when an explicit solvent model
is considered, short-ranged non-bonded interactions appear where a domain
decomposition is much more efficient. In atomistic biomolecular simulations
the situation is different. Here the density of atoms and the short range inter-
action is always similar. In this case, performance questions are dominated by
how the water models are most efficiently simulated. The necessary flexibility
is much lower. When the decision was made by the Holm Group in 1998 to
develop an own code for simulations two main ideas were followed [177]. First,
no other available code offered the flexibility necessary. Second, the usage of
a program language (TCL) as control mechanism for the simulation provides
more flexibility and extensibility than any other available software.

The second point is most important from a user’s point of view. Typically,
lengthy input files need to be written to control what a simulation code does.
In these input files, parameters that control the simulation are set. In ES-
PResSo the user writes a TCL program, where the TCL idiom is extended
with commands that perform MD-specific task, like adjusting the system or
switching algorithms on and off. The same approach is used in the visualiza-
tion software VMD [31]. This variant is much more powerful as it allows the
user to explicitly formulate the logic of his or her computational task. As an
example, we would like to show the TCL script that was used to calculate the
electrostatic potential for the system with two charges in Fig. 3.7:

1 setmd box l 1 . 1 . 1 .
2 setmd t ime s t ep 0 .01
3 setmd sk in 0 .01
4 thermostat o f f
5
6 set d i s t 0 . 4
7 set alpha 10 .
8
9 part 0 pos [ expr 0 .5−$d i s t /2 −$d / 2 ] 0 0 q 1

10 part 1 pos [ expr 0 . 5+$ d i s t /2 +$d / 2 ] 0 0 q −1
11
12 i n t e r coulomb 1 . p3m 0 .25 16 4 $alpha
13
14 set f s [ l i s t ]
15 set q t e s t 0 .0001
16
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17 set n 1000
18 set d [ expr 1 . /$n ]
19
20 set p 0
21 for { set i 0 } { $ i < $n } { incr i } {
22 set p [ expr $p + $d ]
23 part 2 pos [ expr $p ] 0 0 q $ q t e s t
24 i n t e g r a t e 0
25 set f [ expr [ lindex [ part 2 p r i n t f ] 0 ]

/ $ q t e s t ]
26 lappend f s $ f
27 }

Here is a brief overview over the program. In the first lines, the system
geometry and basic MD parameters necessary for the program to run are set
up. In line 9 and 10, the two source particles are placed and their charge
is assigned. In line 12, the P3M algorithm is switched on with the desired
parameters. Finally, in the loop following line 21, a test charge is moved
through the system to measure the electrostatic field. The logic of this task
is not one that fits into typical MD procedures. After every force calculation
step the system is modified by an external influence: The user wants the test
charge to be displaced. The equations of motion are not integrated at all. As
the user controls the structure of the process and not only single parameters,
the above task can easily be solved using ESPResSo.

The simulation package ESPResSo is actively developed by a group of core
developers who is largely located in Stuttgart. SK has been one of the core
developers during the preparation of this thesis, and has made major contri-
butions to several parts. All contributions are integral part of the 3.1 version
of ESPResSo [178] or prepared for later versions. We hereby give a brief
overview

• The ICC? algorithm which is applied in Chapter 4 was improved. Ini-
tially a purely serial version was available. The implementation was
carefully checked, and parallelized for execution on distributed mem-
ory computers. It was extended for the use with homogeneous external
fields. The implementation is explained in detail below.

• A module for the efficient calculation of correlation–type quantities was
implemented. It is a generic framework to calculate quantities that
depend on the state of the simulation at two different times, like cor-
relations and mean-square-displacements (MSD). It can be considered
a special case of the algorithm presented in [101], where the lag time
is not equidistantly spaced, but where larger lag times can have larger
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time spacings. This is especially suited for correlation–type data as they
often have features distributed over several orders of magnitude in time.

• The present implementation of the Lattice-Boltzmann algorithm was
carefully checked and the code was cleaned up. It was extended for
the use of arbitrarily shaped boundaries using the application of the
link bounce back method, including boundaries with nonzero velocity.
The user interface was improved. This included the calculation of the
pressure tensor field and functions to calculate the average fluid field,
also in a cylindrical coordinate system.

• An implementation of tabulated external potentials. Based on a poten-
tial energy map given on a regular grid the forces particle forces are
calculated. The potential was used to include the result of a finite ele-
ment calculation of the electrostatic potential into an MD simulation.
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3.4 Continuum theories of charged soft matter
systems

In this section we briefly introduce an approach in soft matter science where
the particle concept is abandoned in favour of a continuum descriptions. In
these approach the particle entropy is automatically contained and only the
averages of fields are considered. Therefore, continuum approaches allow for
a very efficient modelling, if they are applicable.

3.4.1 Ions in equilibrium: Poisson–Boltzmann theory

The interaction of charged objects in aqueous solution is modified not only by
the polarizability of the surrounding water, but also by present ions. Even in
completely desalinated water the autoprotolysis of water molecules leads to
a concentration of H3O+ and OH− ions of at least 10−7 mol/l. Ions which
are free to move, will accumulate near objects bearing a charge of the oppo-
site sign. This reduces the magnitude of electric fields and the field created
by a charged object is negligible if it is enclosed in a sufficiently large elec-
trolyte compartment. In the presence of large electrolyte concentrations this
screening effect is so strong that the long range-nature of electrostatics often
can be entirely neglected. The distribution of ions around charged objects
is governed by the interplay of energy, i.e. the attraction of counterions, and
entropy, the tendency of ions to distribute homogeneously. The theory pro-
posed by Debye and Hückel published in 1923 [179] describes this interplay
exactly, in a certain limit that will be discussed below. It is generalized by a
theory that, depending on the scientific context, is called Poisson-Boltzmann
theory or Gouy-Chapman theory. We will present a short derivation in the
following lines, and apply the name of Poisson-Boltzmann theory throughout
this work.

We reformulate here the derivation of Russel et al. [116]. For simplicity we
assume the presence of only two univalent ion species + and −. In the PB
theory the chemical potential of both ion species is assumed to be

µ± = log c±/c0 ± Φ. (3.88)

Her c denotes the local ion concentration of both species. The chemical poten-
tial µ and the electrostatic potential Φ are measured in units of the thermal
energy kBT and in kBT per elementary charge. Eq. 3.88 corresponds to the
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ideal gas chemical potential in the reduced external potential Φ. The reference
state is chosen in a hypothetical reservoir, where the zero point of the electro-
static potential is fixed. The reservoir is characterized by its concentration c0.
In equilibrium, the free energy is minimal if the chemical potential is constant
in space. With this assumption a Boltzmann distribution of the ions in the
electrostatic potential is obtained:

c± = c0 exp∓Φ. (3.89)

To derive the PB equation, the mean electrostatic potential created by the
charge densities c+ and ci is inserted as the external potential Φ into this
equation. This Boltzmann distribution is inserted inserted into the Poisson
equation, leading to

∆Φ = −4πlB [c0 exp (−Φ)− c0 exp (Φ)]

= 8πlBc0 sinh Φ. (3.90)

The prefactor 8πlBc0 is identified as the inverse square of a characteristic
length: the Debye length lD =

√
1/8πlBc0. For low surface potentials so-

lutions of the form exp (−d/lD) are obtained, where d is the distance to a
charged object. Thus the Debye length is the characteristic length scale on
which the electrostatic potential decays.

At two points approximations were made to construct this form of the PB
equation: First, the chemical potential was constructed based on the ideal gas
chemical potential. Second, the mean electrostatic potential was assumed to
be acting on the ions. Both assumptions are quite severe, however the PB
equation is very successful at describing ion behaviour in univalent salt under
ambient conditions in water (see e.g. [180]).

The free energy of a system in the Poisson-Boltzmann theory can be calculated
from the following expression [181,182]:

F =

∫
V

1

2
E ·E + c0 (φ sinhφ− coshφ+ 1) (3.91)

This expression is very convenient as it can be used to directly calculate the
free energy difference between two states. It will be used in Sec. 4.4.4 to
calculate the free energy difference between two positions of a model DNA
molecule.
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3.4.2 The electrokinetic equations

The phenomenon of electrophoresis seems not very spectacular. When a
charged object is placed in an aqueous phase and exposed to an electric field, it
starts to accelerate until it reaches a stationary state. However, a remarkable
difference to the application of a mechanical force is apparent when consid-
ering the counterion cloud of the object. It is charged oppositely and thus
accelerates the solvent in the opposite direction. When one considers the to-
tal force that is applied onto a region large enough so that the counterion cloud
is fully inside, it must be zero. Therefore, also the momentum flux out of the
region must be zero in the stationary state. Noting that the Navier-Stokes
equation is a conservation equation for the momentum it appears obvious that
e.g. the resulting flow field must be quite different.

In rest of this section we present a brief account of the electrokinetic equations,
which a set of partial differential equations sometime called the “standard
model of electrokinetics” [183–185]. It can be considered a generalization
of the PB equation for out-of-equilibrium situations. In equilibrium, the PB
equations are recovered. In Sec. 3.4 of this thesis, they will be used to construct
a continuum model for charge transport in nanopores, and to our surprise
this simple continuum model yields very good agreement with our atomistic
simulation even on the sub-nanometer scale. It is formulated for two univalent
ion species + and − to keep the formulas simple but expressive.

In the standard model of electrokinetics the ions follow a convection-diffusion
equation. Their number flux density j± thus obeys

j± = −D (∇c± ± c±∇Φ) + c±u. (3.92)

Here, D is the diffusion coefficient and u the solvent velocity. We have assumed
D to be identical for both ion species. The solvent is described by a Stokes
equation that is driven by a gradient in the hydrodynamic pressure p, the
osmotic pressure posm and by the electrostatic potential that exerts a force
density on the solvent. Then the Stokes equation reads as follows:

η∆u = −∇p−∇posm + (c+ − c−)∇Φ. (3.93)

Here η denotes the dynamic viscosity of the solvent. The osmotic pressure in
our unit system is just the sum of the two concentrations: posm = c+ + c−. It
can be noted that for the solution of the PB equation the osmotic pressure and
the electrostatic force exactly cancel. Therefore the solvent is not accelerated
in this case. Finally the electrostatic potential Φ is described by the Poisson
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equation
∆Φ = −4πlB (c+ − c−) . (3.94)

The equations are closed by continuity equations which, in a stationary state,
read as

∇ · j± = 0, ∇ · u = 0 (3.95)

The whole set of equations thus consists of 13 nonlinear first order (Diffusion-
related) and second order (Poisson and Stokes) partial differential equations.
Directly applying the continuity equation for the ion numbers leaves 7 PDEs
of second order.

An interesting observation can be made: When the ion velocities v± = j±/c±
are introduced, the following form of the Stokes equation can immediately
obtained:

η∆u = −∇p− 1

D
(c+ (v+ − u) + c− (v+ − u)) . (3.96)

The physical interpretation of this form is the appearance of a drag force
between ions ans solvent:

fdrag = γc (v − u) , (3.97)

with a drag coefficient γ = 1/D. Note that the usually appearing factor kBT
is absorbed into our definition of the energy scale.

The diffusion-convection equation is based on the free energy of an ideal gas.
If the fluxes and the flow field are zero, the Boltzmann distribution of an ideal
gas in an external potential is recovered. Therefore, in the case of vanishing
ion fluxes, the Poisson-Boltzmann equation is recovered as a special case of the
electrokinetic equations. The reservoir concentration then is given explicitly
as a boundary condition.

Under certain conditions, the effect of solvent motion on the ions is negligible.
Then the convective term in Eq. 3.92 can be dropped. The resulting set of
diffusion equations and the Poisson equation is known as the Poisson-Nernst-
Planck model of ion transport. Formally they can e.g. be obtained as the
limit of infinite viscosity. These equations are used for the description e.g. of
ion migration through biological pore [186]. In the nanopore community, the
have e.g. been applied to understand the current rectification properties of
nanopores with an asymmetric charge distribution [74].

It is very common to simplify the electrokinetic equations by linearization.
The means, the solution is expanded around the solution of the system which
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is not driven by external forces, the solution of the PB equation. Formally
this corresponds to a first order perturbation theory [187]. In case of the
electrokinetic equations, the driving force is included in the boundary con-
ditions (BCs). To perform the perturbation expansion, the solution to the
electrokinetic equation is written as power series in ε:

Φ = Φ0 + εΦ1 +O
(
ε2
)
, (3.98)

c± = c0± + εc1± +O
(
ε2
)
, (3.99)

u = u0 + εu1 +O
(
ε2
)
. (3.100)

(3.101)

As the unperturbed state (0) is the undriven case V (r) = 0, the solution can
be obtained from the PB equation. Then, the force density on the fluid is zero,
and hence u0 =. By inserting these formal expansions into the electrokinetic
equation, we can derive equations for Φn, cn± and un. We the expressions by
order of ε, and on every order of ε the equations must be valid independently.
This way, we construct a hierarchy of equations, each linear in the highest
appearing order of ε. The equations corresponding to first order of ε are given
here:

∆Φ1 = −4πlB
(
c1+ − c1−

)
,

0 = ∇ ·
(
−D∇c1± ∓D∇c1±∇Φ0 ∓D∇c0±∇Φ1 + c0±u

1
)
, (3.102)

η∆u1 = −∇p1 +
(
c1+ − c1−

)
∇Φ0 +

(
c0+ − c0−

)
∇Φ1.

Solving this linear set of equations is significantly easier than solving the full
problem. For many physical questions, the first order expansion is sufficient.
Other effects, for example, induced charge electroosmotic flow [188, 189] or
ion current rectification in nanopores [74], are second order effects, where the
system of equations in second order of ε must be solved.

The electrokinetic equations are a simple and well-understood continuum
model, where many effects can be modelled accurately, at least in the limit of
low surface potentials and low salt concentrations, where the theory is exact.
However, the lack of knowledge of the right boundary conditions is in practice
a severe limitation. In Chapter 5, we construct a model of nanopore con-
duction from this model. There, DNA is included as a charged cylinder. By
comparison to atomistic simulations, we can show that this assumption works
surprisingly well. However, we find that a surface friction effect is very im-
portant for understanding the conduction modification caused by DNA. This
effect is conceptually not in included in the electrokinetic equations. Identify-
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ing this effect is, however, only possible, because the electrokinetic equations
describe the general behaviour well, and the system simulated with atomistic
resolution deviates only in a certain region close to the DNA.
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4 Translocation barriers

In this chapter we present our approach to one of two main questions we inves-
tigated in course of the preparation of this thesis: Is there a free energy barrier
for DNA that opposes DNA molecules from entering a nanopore? Free energy
barriers greatly influence the expected rate of translocation and the ratio of
successful to unsuccessful translocation processes. A thorough understanding
of them therefore is an important ingredient to understanding translocation
dynamics.

We investigated free energy barriers with special emphasis on the role of elec-
trostatics. DNA is a highly charged molecule, and potentially interacts di-
rectly and through its surrounding counterion cloud with obstacles and bound-
aries. We applied two different modelling approaches, a coarse-grained molec-
ular dynamics simulation approach and an approach based on the Poisson-
Boltzmann equation. One of the challenges of this chapter lied in obtaining
compatible results with both methods.

Electrostatic barriers can, on the one hand, be present, if the pore is smaller
than the extension of the counterion cloud of the molecular. In this case, the
Debye layer must deform, which is associated with a free energy cost. On the
other hand, typical membrane materials have a dielectric constant significantly
smaller than water. This dielectric contrast gives rise to dielectric boundary
forces (DBFs) which potentially increase a free energy barrier. In most inves-
tigations, these DBFs have so far been neglected. This is probably due to the
fact that they are computationally difficult to take into account correctly. In
coarse-grained MD simulations they could, until recently, only be taken into
account with method of computational complexity O

(
n2
)

[190,191] if surfaces
of arbitrary shape were to be considered. Recently, an algorithm proposed by
S. Tyagi [3] and developed in the group of C. Holm has made it possible to
take these effects into account more efficiently, the ICC? algorithm. In the
Poisson-Boltzmann equation, typically the dielectric constant is not taken ex-
plicitly into account, but only in terms of boundary conditions corresponding
to a infinitely low or infinitely high dielectric constant inside the boundary.
We were able to take the dielectric constant of the pore material explicitly
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into account using the iPBS algorithm. The idea is very similar to the ICC?
algorithm, but not only the induced charges, but also the boundary conditions
to the PB equation are iterated. The PB equation itself is solved by means of
a Finite Element Method. Originally it has also been proposed by S. Tyagi,
and has been re-implemented using the DUNE framework by A. Schlaich in
course of the work of his diploma thesis [14], to which SK was an advisor.

The project of investigating translocation barriers for short fragments of ds-
DNA with coarse-grained MD simulations had already been started, as a part
of the PhD thesis of M. Süzen [13]. However only first example studies had
been performed, indicating that under certain conditions the DBFs strongly
increase electrostatic free energy barriers. We extended theses studies to a
broad range of conditions, pore sizes and obtained a good understanding of
the expected barriers. We also developed a method to calculate the free energy
barrier of a highly flexible polymer resembling a longer piece of single-stranded
DNA. We could show that in this scenario, due to the flexibility of the DNA
molecule, electrostatic effects, especially dielectric effects are even more im-
portant.

This chapter is organized as follows. We first give a textbook level introduction
to the physics of dielectric media. Then we present algorithmic approaches
to take dielectric interfaces into account in coarse grained MD simulations.
This includes a description of the ICC? algorithm, but also a brief account
of the ICMMM2D method [192]. In the following section we show results for
a simple setting, which already contains many aspects of the subsequently
applied model for DNA, the distribution of ions dissolved in water in the
vicinity of a dielectric interface. Then we investigate the role of DBFs for DNA
translocation: For models of double-stranded DNA and single-stranded DNA
the occurring translocation barriers are assessed. In the last section we present
the results we obtained from the Poisson-Boltzmann theory, and compare
them to the results of the MD simulations. Finally, we briefly summarize the
finding of this chapter.

The content of this chapter was published in in total four articles [18,178,193,
194]. In the first three of these articles SK was the main author, performed all
simulations, suggested the structure and content of the articles and prepared
the figures. Several parts of these articles are reproduced literally in this
thesis. Other parts are paraphrased, or otherwise adapted. To the fourth
article different authors contributed significantly. Here only data produced by
simulations of SK are displayed, and most text parts have completely been
rewritten. Only Sec. 4.1.4 is reproduced almost verbally, as it fulfills the same
standards of being originally authored by SK as the other three articles. The

74



4.1. Polarization effects in simulations

artwork presented from this article was partly performed by F. Fahrenberger
based on drafts by SK. His support is highly appreciated. The reproduction
of the content in this thesis is in agreement with the coauthors of the articles.
The content of Sec. 4.4 is currently in preparation for publication.

4.1 Polarization effects in simulations

Implicit solvent models are largely based on a continuum approximation of
the solvent. One strategy is describing the solvent as a dielectric continuum,
an approach pioneered by Born [195]. Reducing a solvent to its dielectric
properties is very appealing as the number of degrees of freedom necessary
to consider can be significantly lowered. It is hence a coarse-graining strat-
egy. In this section we outline the theory of continuum electrostatics, and
how its equations can be used to approximate the forces acting on charged
particles near interfaces. This leads to the formulation of two algorithms, the
ICC? algorithm (Induced Charge Calculation, the star can stand for different
Coulomb solvers), and the Image Charge MMM2D (ICMMM2D) algorithm.
we apply the ICC? algorithm in the next sections to the calculation of ion
distributions near interfaces and free energy barriers DNA molecules have to
overcome when crossing a dielectric pore.

Standard textbooks on electrostatics [112, 196–199] and on the theory of the
liquid state [111,200] are the main sources of the following section. No single
source is strictly followed, as the theory is relatively common. We apply SI
units in this section, as the reduced units require the concept of a dielectric
constant.

While preparing this thesis also a different system not directly related to
nanopores and DNA was brought to the author’s attention: Ionic-liquid based
supercapacitors with graphene electrodes [201–204]. In this system ions ap-
proach the interface between vacuum and graphene, a material with a high
electric susceptibility, which can, potentially, be approximated as a conducting
medium. It appeared natural to investigate if and how the considerations for
dielectric media can be extended to conducting media. This will be discussed
in Sec. 4.1.4.
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4.1.1 Electrostatics in polarizable media

When electric fields are applied to a material, the charge distribution in the
material changes: it becomes is polarized. The most common occurrence of
this effect in every day life is the refraction of light at interfaces with different
dielectric constants. The deflection of the electromagnetic rays is caused by
the difference in polarizability of the two media. In this work we focus on
how polarization affects the role of electrostatic effects in different soft matter
systems. Thus we are interested its impact on static electric fields rather than
on electromagnetic waves.

The microscopic origin of the dielectric effect is a distortion of the charge
distribution in the material when an electric field is applied, the polarization
effect. In water the dielectric effect is very large. In an electric field the water
dipoles align antiparallel to the field which cancels 79/80 of the external field
and, of course, dramatically changes the role and strength of electrostatic
interactions. Therefore this effect needs to be considered in every charged
system.

Particles with a nonzero charge density embedded in dielectric media polarize
the surrounding medium. Molecules for which the charge distribution is rele-
vant are called polar, and the highest non-vanishing multipole moment is used
to characterize them e.g. as dipolar, or quadrupolar. The term “monopolar”
is uncommon, and ions are referred to as being charged. In the Born model
of solvation, the free energy of solvation of a molecule is estimated from the
energy difference between a state where the molecule is in vacuum, and where
the molecule is embedded in a spherical cavity in a homogeneous dielectric
medium with the same bulk dielectric constant as the solvent [195]. Following
this line of thought, near the interface of two dielectric media forces must be
expected that drag polar objects towards the phase with the higher dielec-
tric constant. Polar objects immersed in water thus would be mostly repelled
from interfaces since water is better polarizable than most other media. As
the forces acting on molecules close to interfaces are of electrostatic origin
they can be long ranged. Their far field can be approximated in terms of
continuum electrostatic theory. We now systematically develop the necessary
theory.

When applying an electric field E to an isolated molecule, its electronic struc-
ture, and also the position of its nuclei is distorted, it is polarized. For small
applied fields, this effect is linear in the field strength. The perturbation of
the charge density, ρm, can be expanded in multipoles, and the term connect-
ing the dipole moment of the perturbed charge density to the applied field is
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defined as the polarizability of an isolated molecule α:

α = lim
E→0

1

E

∫
d3rρm (r) r.

In general α is a symmetric tensor of rank two, as the polarizability is not
necessarily isotropic. Recently, a lot of effort has been made to devise interac-
tions in molecular systems that incorporate electronic polarizability, without
explicitly considering the quantum mechanical structure of the electrons in a
molecule. From these polarizable force fields (see e.g. [205, 206]) a significant
improvement of the accuracy of molecular simulations is expected.

In a dense medium, the collective response can be expressed in terms of a
dipole density P . The proportionality constant between P and the electric
field, is called the dielectric susceptibility χ, which is tensorial as well. Find-
ing a general relationship between the polarizability of atoms or molecules and
the susceptibility is a nontrivial issue. Mean-field theories can be constructed,
analogous to the construction of the macroscopic magnetization from the den-
sity of magnetic moments in a paramagnet, leading to the Clausius-Mossotti
relationship [207]. In general, however, the collective response can be qualita-
tively different from the response of individual molecules due to strong mutual
interaction and material anisotropy. This can lead to interesting phenomena
such as ferroelectricity and the piezoelectric effect. It is important to note that
the timescale on which the electron shell responds is below a femtosecond and
hence can be considered instantaneous for soft matter applications.

In liquid phases, also the orientation of polar molecules needs to be considered:
In water for example, the orientational polarization is more than a factor of 50
stronger than electronic polarizability. The dipole density in a medium with
a number density n of molecules with a dipole moment D is given by

P = nD〈cos θ〉Ê,

where θ is the angle between the dipole vector of a molecule, and the applied
field, and Ê is a unit vector pointing in the direction of the applied electric
field. Note that, due to the isotropy of the liquid phase, no off-diagonal terms
in the response can appear. The susceptibility must be a scalar.

At this point it becomes obvious that the theory of polarization is in general
nonlocal. Expressing e.g. the potential energy of a molecule in an electric
field by P ·E is only a good approximation if E is approximately constant on
the length scale of the molecular extension. If this is not the case, terms of
higher order must be considered. The same is valid for the response: Applied
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external fields not only create local dipole moments, but also multipoles of
higher order that need to be considered. The non-locality can e.g. considered
by means of integral equation theories [208, 209]. This lies, however, beyond
the scope of this thesis.

If only the response on large length scales is of interest, it is sufficient to
consider it in terms of the dipole density, as only dipole fields are long-ranged.
In this limit the response of an isotropic medium can be expressed solely by
its dielectric susceptibility χ, which relates the mean local electric field E to
the mean dipole density P :

P (r) = χE (r) . (4.1)

The potential created by the dipole density P (r) can be expressed as:

ΦP =
1

4πε0

∫
d3r′

P (r′) · (r − r′)
|r − r′|3

.

In two simple steps this can be rewritten as:

ΦP = − 1

4πε0

∫
d3r′P (r′) · ∇r

1

|r − r′|

= − 1

4πε0

∫
d3r′∇r′ · P (r′)

1

|r − r′| . (4.2)

This expression is has the same form as the potential created by a charge den-
sity −∇·P . Therefore −∇·P is called the induced charge density and denoted
by ρind. By taking the divergence of Eq. 4.1 we can derive an expression for
it:

ρind = −E · ∇χ− χ∇ ·E. (4.3)

The induced charge density thus is nonzero only where the susceptibility
changes or where the electric field has sources.

To derive the Poisson equation in a dielectric medium we assume a density ρf
of fixed (contrary to induced) charges. Sources of the electric field E are the
fixed and the induced charges:

∇ ·E =
1

ε0
(ρf + ρind) . (4.4)

78



4.1. Polarization effects in simulations

By inserting Eq. 4.3, it can be rewritten as:

∇ ·
(

1 +
χ

ε0

)
E = ρf/ε0. (4.5)

The relative permittivity εr is defined as εr = (1 + χ). With this definition
we we can write down the Poisson equation in a dielectric medium:

∇ · (εr∇Φ) = −4πρf/ε0. (4.6)

An important point can be noticed. If a homogeneous relative permittivity εr
is assumed, it can be brought to the right hand side, and appears as a factor
1/εr in front of the fixed charge density. This means, all charges appear
scaled down by this factor, and hence, if the polarizability of a medium is
large, electrostatics is significally weakened.

We have now laid out the necessary equations to present the ICC? algorithm.
Before going on, we introduce a concept that is very useful for the interpreta-
tion of the role of dielectrics, the concept of image charges. With this concept
we can discuss qualitative aspects of the resulting forces.

4.1.2 The image charge method

A very simple though mathematically entirely correct picture of dielectric
effects can be drawn using the concept of image charges. This technique
is standard in textbooks considering dielectric interfaces. We develop it for
planar interfaces, although it is also suited for other interfaces if they are
sufficiently symmetric, e.g. dielectric spheres [210–212]. The key idea behind
the picture of image charges is determining a charge distribution inside the
dielectric that creates the same electrostatic field outside as obtained from a
full solution of the Poisson equation including a dielectric interface. Assuming
a dielectric interface at x = 0 between ε1 in the right half–space x > 0 and
ε2 in the left half–space x < 0 the solution of the full Poisson equation is
recovered by assuming an image charge density

ρim (x, y, z) =
ε1 − ε2
ε1 + ε2

ρf (−x, y, z) . (4.7)

in the left half–space, and assuming a homogeneous permittivity ε1. Two
limits can be identified. If ε1 � ε2 the image charge distribution is the nega-
tive of the original charge distribution. This limit corresponds to conducting
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IC-repulsion
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Figure 4.1: Image charges of a single charge (upper half) and a pair of charges
(lower half). We consider the limits ε1 � ε2 (left) and ε1 � ε2 (right).
Individual charges are attracted to interfaces with a medium with a higher
dielectric constant, and repelled by interfaces with a medium with a lower di-
electric constant. Pairs of charges attract each other less in front of a wall of
high permittivity, and their mutual attraction is increased in front of bound-
aries with media with a lower permittivity.

medium and yields a constant electrostatic potential on the dielectric inter-
face. The opposite limit ε1 � ε2 corresponds to a situation often encountered
in aqueous systems: The dielectric constant of water at ambient conditions is
around 80, which is much larger than most other materials. The image charge
distribution ρim is identical to the charge distribution in the water phase with
the same sign. In Fig. 4.1 we qualitatively depict the influence of a dielec-
tric interface of both types on a single point charge and a pair of oppositely
charged point charges.

For a single elementary charge the image charge picture allows us to deduce
potential energy V (in units of the thermal energy) of a single elementary
charge as a function of the distance to the dielectric interface d:

V (d) =
ε1 − ε2
ε1 + ε2

lB
2d
.

We use reduced units again, and the Bjerrum length is defined in medium
1, in which the particle is immersed. It is important to note the sign of the
potential: For ε2 > ε1 it is attractive; a charge is attracted by its own image,
while for ε2 < ε1 it is repulsive. At maximum dielectric contrast, the image
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charge is of equal magnitude as the real charge, and the interaction strength
depends on the permittivity of medium 1. For a pair of particles of opposite
sign the situation is as follows: In the case ε2 > ε1 each particle is repelled
by the image of the other particle, which weakens the mutual attraction. For
ε2 < ε1 they attract each other stronger as each particle is attracted by the
image of the other one. The general character of these statements remain the
same also for dielectric interfaces of other shapes.

We will repeat these two qualitative statements for ε2 < ε1 again in other
words, as it is the very important for the qualitative understanding of our
results. We assume that the medium in which the charges are immersed is
water, and assume a boundary to a medium of significantly lower dielectric
permittivity. First, charged objects are repelled by the boundary, if they are
not neutralized by other charges. Second, the mutual attraction of unlike-
charged object is enhanced in the vicinity of the boundary. This leads to a
higher tendency of neutralizing charged objects.

If a second dielectric interface is present, the situation becomes more com-
plicated: At every dielectric interface also the image charges due to all other
interfaces need to be reflected. In the two limits of large dielectric contrast,
this leads to an infinite series of image charges, which does not decrease with
increasing number of reflections. The occurring sum is only conditionally con-
vergent, and the interpretation of this sum lead to extensive discussions in
our institute. We will present our interpretation in Sec. 4.1.4. For every fi-
nite value of εr no convergence problems arise. The magnitude of the image
charges decays exponentially with the number of reflections. An efficient way
to take these image charges into account is the summation method used in
the ICMMM2D method [192], which is based on a Fourier decomposition of
the electric field in the parallel direction.

We will now turn to the presentation of the ICC? algorithm that allows for
dielectric interfaces of arbitrary shape.

4.1.3 The ICC? algorithm

We have seen above, that the formulation of electrostatics in dielectric media
in terms of a polarization density and in terms of an induced charge density are
equivalent. The idea of the ICC? algorithm is to determine the induced charge
distribution in an iterative procedure. This is possible because the equation
we derive for it below has a fix-point structure. A simple iterative scheme
can be applied to determine the charges, and only the electric field at the
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boundary is necessary for the iteration. For that reason, the iterative scheme
can be used in conjunction with any Coulomb solver for point charges.

The Poisson equation given in Eq. 4.6 can be rewritten as:

∆Φ = − 1

εrε0
ρf −

1

εr
∇εr · ∇Φ. (4.8)

The first term of the right-hand side of this equation contains the screened
fixed charges, and the second term describes charge density induced in regions
where the dielectric permittivity varies. We assume a discontinuous jump of
the dielectric constant between two regions from ε1 to ε2.

In this case the induced charge density ρind can be replaced by a induced
surface charge density σind. By evaluating the second source term in the
equation above it can be identified as

σind = 2ε0
ε1 − ε2
ε1 + ε2

E · n, (4.9)

where n is the local normal vector on the surface. This equation couples the
magnitude of an induced charge density to the local magnitude of the electric
field. If hence the local field strength was known, the induced surface charge
density could be determined from Eq. 4.9. As the local field strength, however,
depends on the magnitude of the induced charge density everywhere else in
the system, this is not possible. But Eq. 4.9 can be used to construct a surface
charge density iteratively. From an initial guess of the induced charge density
the electric field at the boundary can be calculated, leading to an improved
estimate of the induced charge density. This procedure can be iterated until
self-consistency is achieved. This is the idea of the ICC? algorithm.

To go into more detail, let us introduce the Green’s function G for the Laplace

operator. In an unbounded 3D geometry it is just
1

4π |r − r′| , but it can also

include, for example, periodic boundary conditions. The Laplace operator can
be eliminated from Eq. 4.8 and we obtain

Φ =
1

ε0

∫
V

G (r, r′)
ρf (r′)
ε (r′)

d3r′ +
1

ε0

∫
A

G (r, r′)σind (r′) dA′. (4.10)

The volume integral extends over the whole volume and the surface integral
extends over all dielectric interfaces. The potential is now expressed in terms
of the Green’s function of a homogeneous dielectric, yet the induced charge
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density σind is still unknown. By taking the gradient and inserting this ex-
pression in the Eq. 4.9, we obtain the following integral equation:

σind = −2
ε1 − ε2
ε1 + ε2

(∫
V

∇rG (r, r′)
ρ (r′)
ε1

d3r′ +
∫
A

∇rG (r, r′)σ (r′) dA′
)
.

(4.11)
This result is easily generalized to multiple regions with different permittiv-
ities. We assume a discretized surface of m point charges on the dielectric
interface the equation above for discretization point k can be written as

qk = −Ak
ε1 − ε2
ε1 + ε2

nk ·

 n∑
i=1

qi
εε0
∇rkG (rk, ri) +

m∑
j=1,j 6=k

qj
ε0
∇rkG (rk, rj)

 ,
where Ak is the surface area and nk the normal vector of the surface element
k. The term in square brackets is just the electric field acting at the position of
point k assuming a homogeneous dielectric constant ε1 in the system, created
by conventional (not induced) charges. Any standard Coulomb solver can thus
be used to calculate the sum in the expression above. The desired solution of
all qk is the fix point of the following iteration:

ql+1
k = (1− ω) qlk + ωAk

ε1 − ε2
ε1 + ε2

nk ·E
(
[qi] ,

[
qlj
])
.

This iteration belongs to the class of Successive Overrelaxation (SOR)
Schemes. It turned out that this iteration is very stable when performed for
typical soft matter system. With a choice of ω ≈ 0.7 no stability issues occur.
In every MD step only 1-3 iterations are necessary as the particle positions
change only slightly.

An important advantage of this algorithm is, that the computationally most
costly part, the evaluation of the electric field, can be done with any usual
electrostatics solver without modifications. Thus not only the computational
efficiency, but also the periodicity is inherited from the underlying Coulomb
solver. The complexity of the algorithm remains unchanged by the presence
of induced surface charges. However, the number of particles can increase
considerably. We found it sufficient to discretize the surface with mutual
particle distances equal to the distance of closest approach. For the system
shown in section 4.2.2 this would mean in total 1600 surface charges per wall,
compared to less than 100 ions in the system.
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Figure 4.2: (a) Illustration of the dielectric boundary problem of single charge
q outside of a grounded conducting sphere. The problem can be solved by
assuming an image charge q′ inside the sphere, leading to zero potential Φ on
its surface. If the sphere is assumed to be conducting, but isolated, the excess
charge q′ has to be cancelled by adding a second charge q′′ in the center of the
sphere, which leads to a constant surface potential Φ. (adapted from [196]).
(b) A more complex geometry with an upper and lower electrode (yellow).
The electrodes are treated with the ICC? algorithm. If a Coulomb solver
with periodic boundary conditions (BCs) in vertical direction is applied, the
potential difference between both electrodes is automatically zero. This is
because the periodicity yields zero potential difference between an electrode
and its periodic image and the ICC? algorithm ensures that the two electrodes
connected over periodic BCs are on equal potential.

4.1.4 Conducting interfaces

Metallic boundary conditions are the εr →∞ limit of Equations 4.6, where εr
denotes the dielectric constant of the surrounding medium. The corresponding
dielectric contrast becomes −1, so that the field automatically vanishes in the
conductor. In the case of two interfaces, this leads to constant potentials on
each of the two interfaces, but the potentials are not necessarily the same.
It is, however, also possible to fix the electrostatic potential difference for
two surfaces in a system, which is especially interesting for the simulation of
batteries with conducting electrodes. In the following, a brief account on how
this can be achieved with image-charge based methods as well as the ICC?
method is given.
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4.1. Polarization effects in simulations

The starting point is the textbook example of a single point charge outside
of a conducting sphere as depicted in Fig. 4.2a. A metallic sphere brought
into an electric field can either be isolated, i.e. the charge on the sphere is
constant, or on a constant electrostatic potential, typically grounded. Again,
the boundary problem can be solved by adding an image charge opposite to
the source charge in the sphere. This ensures, that the surface potential of the
sphere does not vary, but is constant. A second image charge can be placed
at the center, which dictates the electrostatic potential at the surface of the
sphere: for an isolated sphere with zero net charge, the image charge at the
center must be of the same magnitude as the other image charge, but with
opposite sign. For a grounded sphere, it is simply zero. In the following, we
will show how the same conceptual idea can be transferred to a system in a
slitlike geometry. This way we can treat isolated as well as grounded boundary
conditions both with the image charge and induced charge methods.

In the MMM2D method a solution of the Poisson equation periodic in x and y
direction and non-periodic in z direction is constructed. To do this it is helpful
to construct a partially Fourier-transformed charge distribution ρ (kx, ky, z).
For two conducting planes at z = 0 and z = Lz the series of images can easily
be constructed: ρn = (−1)

n
ρ (kx, ky, z + nLz). Here n denotes the index of

the image, n ∈ Z\ {0}. This sum can efficiently be evaluated by ICMMM2D,
an extension of the MMM2D method [192]. In the conducting limit, all Fourier
modes kx 6= 0, ky 6= 0 serve to hold the potential constant on each conducting
plates individually.

The kx = ky = 0 term is related to the potential difference ∆V between the
two planes. It is given by.

∆V =
1

εrε0

∫ Lz

0

ρ (kx = 0, ky = 0, z) z dz. (4.12)

In terms of the z-component of the dipole moment of the system, Pz =
∑
i

qizi,

this equals

V = − 1

εrLxLy
Pz. (4.13)

In order to cancel this potential difference, one has to apply a constant ex-

ternal field E = (0, 0,
1

εrLxLyLz
Pz) in every MD step. This additional field

corresponds to that created by the central charge in the spherical image charge
picture, which puts the surfaces to the desired potential. In the planar limit,
it, however, shifts to a position infinitely far away from the charge distribu-
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tion, which obfuscates their possible presence. To obtain a nonzero voltage
∆V , in addition a field ∆V/Lz can be applied in z direction.

Systems treated with ICC? require no special measures if the surface on con-
stant potential is connected within the simulation box. However some atten-
tion is required when considering electrodes at the boundary of the simulation
box as depicted in figure 4.2b. If an electrostatics method is applied which
is not periodic in the respective direction, this will result in two electrically
unconnected surfaces. To obtain surfaces on the same electrostatic potential,
such as two electrically connected plates, it is sufficient to use a solver periodic
in the respective direction and leave a gap to the periodic images. This can be
seen from the simple example depicted in figure 4.2b. If a solver with periodic
boundary conditions is used, for example the Ewald summation, the difference
between the electrostatic potential at a given position and its nearest periodic
image is necessarily zero due to periodicity. But since the induced charges
create a constant potential in both sections of the conductor, these must be
the same throughout the whole, periodically connected conductor.

To obtain a nonzero electrostatic potential difference, the solution of the Pois-
son equation with zero potential can be superimposed with a solution of the
empty simulation box with nonzero potential on the surfaces. This requires
a solution of the Laplace equation that is then applied as an external field,
just as in the simple case of parallel plates. To do that, we have implemented
reading in tabulated external potentials, which are applied to charged particles
weighted with the according charge into the simulation package ESPResSo.
It also takes care that the external potential is not applied to theICC? dis-
cretization charges. The solution of the Laplace equation has to be obtained
externally.

In order to illustrate the considerations above we show its importance on a
simple model system. We chose a planar geometry because in this geometry it
is possible to use both the image charge method as well as the induced charge
method. Thus our system consists of a set of charges confined by two parallel
conducting planes. In the following, we will show that isolated plates can
be simulated either by using the ICMMM2D algorithm without correction,
or by using the ICC? method with a Coulomb solver which is not periodic in
the direction of the planes’ normal vectors. Connected plates at zero potential
difference can either be simulated with using the ICMMM2D method with the
correction derived above, or using the ICC? method with a Coulomb solver
which is periodic in the normal direction. As solver for the fully periodic case,
we use the P3M algorithm [161, 162], as solver for the partially periodic case
MMM2D [213,214].
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Figure 4.3: (a) Sketch of the model system that was used to probe the influence
of grounded and isolated metallic boundary conditions. The two possible
setups are depicted by adding a switch to electrically connect the two plates.
(b) The resulting electric field E and the electrostatic potential Φ between the
plates calculated with different algorithms for disconnected plates (red/grey)
and connected plates (yellow/green).

For simplicity we construct a constant, spatially fixed charge distribution with
a net dipole moment and probe the electrostatic field with a small test charge
q = 10−9e that is moved through the system. Metallic boundary conditions
are created at z = 0 and z = Lz = 10 nm by using the four algorithms
described above. The dielectric permittivity between the surrounding metal
plates is assumed to be εW = 80 for bulk water. The charge distribution we
chose is depicted in figure 4.3a: fixed, charged particles form two oppositely
charged plates at z = 0.25Lz and 0.75Lz. In one of the two directions parallel
to the surrounding metal plates a void of length 0.5 Lx is left, so that the test
charge can be moved through the gaps without getting close to the charged
plates. We measure the electric field by performing a force calculation with
the respective algorithm and dividing the obtained force by the small value
of the test charge. In figure 4.3b we report the measured electric field and
the potential obtained from integration of the electric field. We observe the
expected behavior: The shape of the electric field is identical in all cases up
to a constant. In the cases where the algorithms are supposed to simulate two
connected metal electrodes the electric field is shifted downwards, so that the
integral is zero, and both electrodes have the same potential.
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4.2 Electrolytes near dielectric interfaces

In the following we report two examples, where the dielectric contrast between
an electrolyte solution and a second material are important. Both are not
directly related to an experimental system, but are interesting examples, where
many important aspects can be already discussed. They are based on the
primitive model of electrolytes, which we will introduce first.

4.2.1 The primitive model of electrolytes

The natural generalization of hard sphere systems to electrostatic interactions
is the primitive model of electrolytes. In this simple model, the repulsive
interactions between spherical particles is extended by a Coulomb interaction.
This model as such is suited for salt melts [111], but can be extended to
solutions, by taking into account the solvent polarizability in terms of a scalar
dielectric constant εr. In general arbitrary mixtures of ion species can, of
course, be considered. Electroneutrality is, however, necessary. The restricted
primitive model corresponds to the special case of the primitive model, where
two ion species of equal valency and diameter are considered.

For the considerations in Sec. 3.2 it is apparent, that the hard sphere plus
Coulomb interaction is an approximation of the ion-ion potential of mean
force. In water, a first shell of water molecules, the first solvation shell is
bound very tightly to any small ion. This is taken into account in the prim-
itive model in terms of an effective ion radius. There is, however, no unique
definition of an ion radius. Several possible definitions exist, e.g. the Born ra-
dius describing the free energy of solvation, or the hydrodynamic radius which
will be discussed in Sec. 5.2. For the primitive model of electrolytes composed
of small ions an effective ion radius of 0.425 nm is very common [4, 215]. The
first appearance of this number we found was the publication of Card and
Valleau from 1970 [216].

A generalization of the primitive model can be done in terms of a softer
potential. In Hansen/McDonald [111], a repulsive potential of the form

V (r) = εr

(σ
r

)n
is proposed, which yields the hard sphere interaction in the limit n→∞. In
our simulations we applied a Weeks-Chandler-Anderson potential, a purely

88



4.2. Electrolytes near dielectric interfaces

repulsive truncated and shifted variant of the Lennard-Jones interaction:

U(r)

kBT
=

4ε

[(σ
r

)12
−
(σ
r

)6]
+ 1 if r < 21/6σ

0 otherwise.
(4.14)

Here the energy parameter ε was set to kBT and the canonical ion radius of
0.425 nm was applied. This variant has the advantage of being continuously
differentiable everywhere, which is helpful for the numerical integration of the
equations of motion. At the same time, the range in which it is nonzero is
relatively small, as 21/6 ≈ 1.122.

We however expect that the details of the ion-ion interaction is only of minor
importance for the results as the considered ion densities are relatively small.
In Ref. [180] it was e.g. shown that the Poisson-Boltzmann theory can well
describe the ion distribution around DNA, although in PB theory ions are
treated as point-like.

4.2.2 Salt distribution in a slit pore

As an illustrative example, we investigated the distribution of a 3:1 electrolyte
in a two-dimensional slit, in which the walls have a different dielectric permit-
tivity as that of the solvent.

The simulation setup is sketched in Fig. 4.4a. We use a box of 20x20x11 nm3

in which walls are created at z=0.5 nm and z = 10.5 nm. This is done using
a potential, of the WCA-form, except only the coordinate normal to the wall
z − z0 is inserted as distance. z0 is chosen such that the potential equals
kBT at the desired position. 23 trivalent cations and 69 univalent anions
were added to the system, corresponding to a concentration of 10 mM. The
expected Debye length is about 1 nm, and hence we expect the interactions
between the walls to be small.

In the calculations the ELCIC (electrostatic layer correction with image
charges) algorithm was applied [217]. In this algorithm, the infinite series
of image charges is summed up as in the ICMMM2D. The electrostatic forces
of the particles which are not images, however, is calculated differently. The
result of a 3D-periodic electrostatics method, in this case P3M, is corrected
such that effectively a system only periodic in the directions parallel to the slab
is considered. Image charges are constructed by reflections at the box bound-
aries in z-direction. The parameter d determining the approximate distance
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of closest approach of ions to the wall hence is set to 0.5 nm. We investigated
a wall of high permittivity and a wall of low permittivity in the same simu-
lation. One wall has a permittivity of εr = 2, which is typical for biological
membranes. Water is assumed have εr = 80. The prefactor in Eq. 4.7 then is
already at a value of 0.95, hence the strength of the image charges is almost as
large as the original charges. On the other wall we assumed εr = 800, which
is close to a conducting boundary.

In Fig. 4.4b the density distribution is reported. Both walls are shown in one
graph, and each concentration is divided by c0=10 mM. Near the high per-
mittivity wall both ion species accumulate. The accumulation of the trivalent
cation is much stronger than the univalent anion because the image charges
are larger by a factor of 9. This creates a net charge in the first layer, which is
then compensated for by an extended layer of anion excess. Image charges lead
to a repulsion of the ions on the side with the low dielectric medium. Here
again the strength is larger for the cation, leading to a negatively charged
boundary layer and a positive second layer.

The range of the accumulation and depletion layers is similar to the Debye
length. We will find this consistently throughout all applications: Dielectric
effects, as all electrostatic effects are screened on the length scale of the Debye
length, and hence only need to be considered if the Debye length is comparable
to other length scales in the system.
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Figure 4.4: (a) Sketch of our simulation setup. A 3:1 electrolyte, between
two walls with a dielectric constant different from that of water. The slab is
periodically replicated parallel to the walls, vertical in the sketch.
(b) Density distribution of univalent anions and trivalent cations near the
dielectric interface. The dielectric interfaces is placed at x = 0, and a repulsive
potential maintains a minimum distance of 0.5 nanometers of all ions. A a high
permittivity medium with εr = 800, strongly attracts cations, while anions
are less attracted. A low permittivity εr = 2, repels both ion species. Image
charges are stronger for the trivalent cations, leading to a charged boundary
layer with opposite sign in both cases.

4.2.3 Salt distribution in a cylindrical pore

As a second example we investigate how the dielectric permittivity of a mem-
brane affects the distribution of the same electrolyte in a cylindrical pore.
We expect the qualitative findings to be similar. With this example we can
demonstrate, that the ICC?-algorithm is applicable to more complex shapes.

We created a discretized representation of a cylindrical pore in a flat membrane
with smooth openings. We devised a procedure where the user specifies the
desired pore length, radius and the average distance between discretization
points. Then the particles are placed automatically. This was implemented
in the TCL language and is shipped with ESPResSo versions > 3.1. Conical
shapes are possible, but will not be used in this thesis. The normal vectors
and areas for each discretization point are stored in TCL variables that can be
handed over to the ICC? function.

91



Chapter 4. Translocation barriers

The pore is incorporated in the MD simulations as what is called a constraint
in ESPResSo. The key ingredient is the signed distance function, a mathe-
matical function d (r), that maps from every point in the simulation box to a
real number. It describes the distance to the closest point on the surface of
the object. A position with a negative distance to a constraint is considered
to be inside the wall. This distance is inserted the into interaction potential.
Forces are calculated as the negative gradient of this expression. We apply
the WCA interaction with σ = 1nm and ε = 1kBT . The shape parameters
of the distance function are chosen so that the interaction potential equals
1 kBT for the given size parameters. An implementation of the signed dis-
tance function did exist in ESPResSo. We only adapted it for conical pores.
This implementation, however, was error-prone and tedious, and we consider
it a very helpful extension of ESPResSo if these procedures could be partly
automated. In Sec. 6.4 we will comment further on this issue.

In Fig. 4.5a a snapshot of the system is shown. A box of size 22x22x70nm3,
was filled with 649 cations and 1947 anions. This number had been calculated
from the volume in the box that was not occupied by membrane material
assuming an electrolyte concentration of 10 mmol/l. A pore of diameter 10 nm
and length 40 nm was created. The potential acting on the particles is again
a WCA potential, where the distance function was used as argument to the
WCA potential. The discretization points of the surface were shifted by 0.5 nm
into the position of the boundary. Periodic boundary conditions were applied
in all directions of the system with the P3M algorithm. The dielectric constant
of the wall material was set to εr = 2.

We measured the distribution in the central half of the cylindrical pore, using
the new routines for analysis on the fly described in Sec. 3.3.5. Qualitatively
our findings are consistent with those for the flat wall. Both ion species are
repelled from the pore boundary, and only after a few Debye lengths, the
concentration profile is flat again.
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Figure 4.5: (a) The ICC? example system: positive and negative ions are
displayed as red and blue spheres, the ICC? discretization points by grey
spheres. (b) Ion density of both species in the pore measured in the center of
the pore.

4.3 Translocation Barriers for DNA molecules

In theoretical approaches [218] the translocation process is usually subdivided
into three different phases, namely: (I) The approach of a DNA molecule to
the pore opening, where the molecule undergoes a drift/diffusion motion; (II)
The capture process where the first piece of a DNA enters the pore; (III) The
translocation phase, where the contour of the chain molecule moves through
the pore. In phase II, chain-like molecules have to partly un-coil and enter
the pore with either one end or with a loop. This is also called the nucleation
process as the molecule has to overcome a free energy barrier in this phase.
In this section we investigate the free energy barrier for short, stiff segments
of double-stranded DNA molecules and long, flexibility single-stranded DNA
molecules. After some remarks on the experimental situations, we present
our simulation model and its prediction for the dsDNA molecules. Then we
show our results for ssDNA, after having introduced a new reaction coordinate
especially well suited for the capture process of flexible chain molecules.
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4.3.1 General considerations

In the capture phase, a DNA molecule has to overcome a free energy barrier
that is entropic in nature since the confinement reduces the number of allowed
configurations. In general, this contribution will depend on the flexibility of
the macromolecule. However, a charged macromolecules such as DNA it is
surrounded by a cloud of counterions, and as it enters the confined geometry
of the pore, the counterion cloud has to follow. This can enhance the barrier,
since under most conditions the confinement also perturbs the distribution
of counterions. Kumar et al. showed [12] that the free energy of a flexible
polyelectrolyte confined into a spherical cavity is increased by 6-9 kBT when
one of its ends is anchored to the cavity. This anchoring can be assumed to
be comparable to the capture process as one end of the chain is confined in
space.

For much smaller pores, very similar questions have been asked e.g. by Par-
segian [219] and Levitt [220,221]. They considered the ion conduction through
thin biological pores. They found electrostatic interactions, especially related
to the permittivity to be of major importance. The electrostatic barrier for
ssDNA in a biological α-hemolysin pore was calculated in a work by Zhang
and Shklovskii [11]. They found a value of more than 10 kBT . In these cal-
culations the barrier is governed by the dielectric mismatch effect between
the surrounding water and the membrane material that is less polarizable.
Findings based on simulations that take into account the dielectric contrast
indicated that a dielectric contrast increases the tendency to neutralize charges
in the pore [222] and compresses the counterion cloud [223]. Previous sim-
ulation works on this effect were however restricted to generic pore models
with small diameters not much larger than a nanometer and small simulation
cells, because the employed scheme to solve Poisson equation in the presence
of dielectric discontinuities was computationally very demanding. The ICC?
algorithm is a very viable alternative, and we could already show that it allows
us to simulation large systems.

Experimentally a high (10kBT and more) barrier that depends on the salt
concentration is well supported: Brun et al. investigated the voltage de-
pendence of the capture rate of dextran sulfonate, a polyelectrolyte [224].
From exponential fits of the translocation frequency they estimate the free
energy barrier to be ∼ 10kBT for high salt concentration (1 M) while be-
ing higher (∼ 14kBT ) for lower salt concentration (0.1 M). The experiments
in the group of Meller [225] indicated that ssDNA translocating through α-
Hemolysine crosses a free energy barrier that strongly depends on the buffer
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solution. Their explanation seems to omit the effect of dielectric contrast,
which could provide a good physical justification. Oukhaled et al. also showed
that for α-Hemolysine pores the frequency of capture events is inversely pro-
portional to the Debye length [226].

4.3.2 The translocation barrier for a double-stranded DNA
molecule

To study the influence of dielectric interfaces on DNA translocation it is nec-
essary to construct a coarse–grained representation of a pore and a DNA
molecule. Most importantly we want to study the question if dielectric bound-
ary forces are responsible for a significant electrostatic barrier that opposes
the translocation process. We wish to apply a coarse–grained picture where an
implicit solvent approach is justified. This is clearly not the case for protein–
based nanopores. Solid-state nanopores have diameters of more than 5 nm
in most cases. Here coarse-grained representations can be expected to work
much better.

Our pore representation is a cylindrical hole in a flat membrane of 8 nm thick-
ness that is smoothed at the openings to avoid sharp edges. In comparison to
experiments this pore is relatively short. For example in the experiments of
Keyser et al. , a length of around 40 nm is reported [5]. In the MD simula-
tions it is modelled exactly as the pore by its distance function and a WCA
potential as described in Sec. 4.2.3.

To evaluate the dielectric boundary forces we require a model that reason-
ably well reproduces the electric field on the nanometer length scale. Most
importantly this means to reproduce the DNA’s charge density correctly. Our
dsDNA model is motivated by the fact that the persistence length of B-DNA
is between 40 and 60 nm [227]. In other words it is rather stiff on the length
scale of the size of small synthetic pores. This allows us to approximate a
10 nm (=30 base pairs) long piece of DNA as a stiff rod. As its backbone’s
acidic groups are fully dissociated we assume it to be charged with 2e/bp and
approximate it as a rigid object composed of 58 overlapping spheres of diam-
eter 2 nm with a mutual distance of 0.167 nm each carrying one elementary
charge. This rigid cylinder model is found in the literature in many places,
and is sometimes dubbed the primitive model of DNA [228, 229], reminiscent
of the primitive electrolyte model introduced above.

The rationale to use such a crude and simple model is – beyond the ease
of computations – the insight, that the exact interaction between ions and
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Figure 4.6: (a) Sketch of the simulation setup applied for the translocation
of a rigid model dsDNA. A nanopore is represented as a cylindrical cavity of
length 8 nm and varying diameter in a flat membrane. A fragment of dsDNA
of 10 nm length is represented by 58 overlapping spheres with 2 nm diameter
and fixed on the pore axis. Ions are represented as spheres with a diameter of
0.425 nm water, a dielectric medium with ε = 80. The dielectric constant of
the membrane can be set to ε = 2 by using the ICC? algorithm. (b) Simulation
snapshot. Anions and cations are displayed as blue and red spheres, and the
DNA beads as cyan spheres. The discretization points of the ICC? algorithm,
the discrete induced charges are shown as golden spheres.

DNA is not of importance. If the DNA does not approach a wall to shorter
distances that the length scale of its microstructure, the exact shape will
appear smeared out. Creating a representation which has the right asymptotic
electrostatic potential is sufficient to yield a correct free energy barrier. A
necessary condition for that is, of course, repulsive interactions between DNA
and wall. If attraction dominated, the DNA would stick to the wall and it
would be necessary to create a more detailed model. In chapter 5.3 this model
is compared to a full atomistic model of dsDNA. There it will be shown, that
the charged-rod model applied in this section is surprisingly accurate.

In Fig. 4.6a the most important simulation parameters are sketched. Fig. 4.6b
shows a snapshot of the system. We applied a time step of τ =
0.005

√
mσ2/kBT , and the Langevin equation (Eq. 3.24) to thermalize the

system with a friction coefficient of 0.5/τ . The simulations were performed
using an earlier version of ESPResSo, and the induced charges were recom-
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Figure 4.7: Coion and counterion densities for a salt concentration of 100 mM.
(a) The ion density as a function of the position z along the pore axis and of
the distance r from it. A 10 nm long DNA fragment is centered in the pore.
Density of counterions (upper part, red) and coions (lower part, blue). Darker
colors indicate higher density. The increase in density of counterions and the
depletion of coions close to the DNA can easily be seen. (b) The counterion
density in the vicinity of the DNA measured in the center of the pore as a
function of the distance from the DNA. Upper curve: dielectric contrast is
taken into account. Lower curve: Dielectric contrast is neglected.

puted every 10 MD steps. All ion distributions remained independent of this
parameter. All simulations were performed by adding 58 counterions, and a
certain number of salt ions to the system. The number was calculated from
the available volume in the box, multiplied with the electrolyte concentra-
tion to be considered. We investigated a salt-free case, and concentrations
of 10 mM, 30 mM, 100 mM, and 300 mM. Each simulation was run with and
without taking the dielectric contrast between the pore and the water into
account.

In Fig. 4.7 we show the ion distributions obtained for the 10 mM electrolyte
case. A Debye layer forming around the DNA can clearly be observed. Near
the DNA the local ion concentration goes up to around 2 M. It decays within
the pore to slightly more than 100 mM, indicating that the electrostatic po-
tential has almost decayed to zero. The counterion density is increased when
taking into account the dielectric contrast. This reflects the enhanced attrac-
tion between unlike-charges, or the tendency to neutralize charged objects as
qualitatively found in Sec. 4.1.2.

To assess the free energy barrier for translocation we made a simplification
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regarding the geometry. In principle the position and orientation of the rod is
given by five independent parameters, e.g. the position of the center of mass,
and two angles. We however further simplify the geometry, by assuming that
the DNA position is constraint to the pore axis and aligned parallel to the
pore. This is justified as the shape of the pore requires an alignment of
the rod. On the other hand we dramatically reduce the configuration space
necessary to be sampled. The whole process can be expressed in terms of one
number only, the axial (z) component of the center of mass (COM) position
of the rod. The free energy can hence be obtained as the potential of the
mean total force in z direction. This allowed us to perform a completely
straightforward calculation. We fix the DNA at equidistant positions zi with
a mutual distance d. Fixing means simply that the particle positions are not
updated in integration step of the MD run. The force necessary to constrain
the DNA at that particular z-position trivially is the negative of the force
acting in every MD step. The free energy profile F (z) then is obtained from
a numerical integration of the mean constraint force F

F (zn) = −
n∑
i=1

〈F (zi)〉d. (4.15)

As the system setup is symmetric with respect to reflection at the center plane
of the membrane, we symmetrized the free energy in the graphs shown below.

Free energy profiles for five parameter sets are displayed for a 5 nm pore in
Fig. 4.8. It is shown for three salt concentrations, 10 mM, 30 mM, and 100 mM,
in which the dielectric contrast is taken into account and 10 mM and 30 mM,
in which the dielectric contrast was neglected. Data for other concentration
was calculated but omitted here as they show similar behaviour. All datasets
exhibit a significant free energy barrier. This indicates that the Debye layers
are compressed, which is assiociated with a free energy loss. In all cases the
free energy barrier is larger with dielectric contrast, and strongly depends on
the salt concentration. The height of the barriers is significant: In the 10 mM
with dielectric contrast more than 10 kBT is observed.

We further investigated the dependence of the barriers on the salt concentra-
tion and the width of the pore, as we expect that the ratio of the Debye and
pore radius governs the height of the barrier. The results are shown in Fig. 4.9.
The barrier height decreases strongly with the electrolyte concentration. For
c=300 mM the barrier is negligible even for the smallest pore size. In this
case the Debye length is about 0.5 nm, which is two times smaller than the
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Figure 4.8: Free energy as a function of the z component of the COM position
of the DNA. The potential is set to zero at the position where the DNA rod
is centered between two periodic replicas of the pore. The salt concentrations
10 mM, 30 mM and 100 mM are shown as filled squares, circles and triangles for
cases in which dielectric contrast is taken into account. The salt concentrations
10 mM and 30 mM are shown as open squares and circles for the case where
the dielectric contrast was neglected.

shortest distance between the DNA and the pore wall. The barriers including
dielectric contrast are typically a factor 2-3 larger than the barriers obtained
without dielectric contrast.

Next we want to consider the free energy barrier for flexible molecules reflect-
ing single-stranded DNA. One important question considered was, what is an
appropriate reaction coordinate for the process. The COM position of the
chain is a possible choice. However, we have seen, that the free energy profile
is very steep at the point where only a short piece of the DNA enters the pore.
We devised an alternative reaction coordinate for chain molecules, that can
capture this aspect well. It is presented in the next section.
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Figure 4.9: The translocation barriers obtained for pore diameters between
4 and 8 nm as a function of the electrolyte concentration. Results obtained
with dielectric contrast are shown as circles, and without dielectric contrast
as squares.
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4.3.3 A new reaction coordinate for the translocation of
chain molecules

Our aim is to compute the free energy landscape along a reaction coordinate
which is suitable to characterize the progress of translocation over all three
different translocation phases. It is necessary that this coordinate is chosen
so that it can be unambiguously determined from a given configuration and
that it is a continuous function of the configuration. It is also helpful for
practical purposes if the reaction coordinate is simple enough so that gener-
alized forces can be calculated easily from configurations. In the early article
of Muthukumar [146], the suggested reaction coordinate is the index of the
monomer centered in the pore at a given instant in time. This, however, can
neither describe the approach of the macromolecule to the pore, nor is it well
defined if more than one monomer is centered in the pore. In general, the use
of this reaction coordinate presents difficulties if both ends of the chain are
on identical sides of the membrane. This corresponds “the approach” of the
macromolecule towards the pore, thus part of phase I. In phase I the desired
reaction coordinate, however, should describe the distance of the chain from
the membrane. Our following suggestion allows to combine both approaches
and correctly capture the symmetry of the pore and our model chain.

We assume that the polymer configuration is described by a parametric func-
tion r (l) where −lC/2 < l < lC/2 spans the contour length lC . We then
distinguish two cases, namely: (a) Both ends are the same side of the mem-
brane. The reaction coordinate R takes the value ±(d + lC/2), where d is
the Euclidean distance to the middle of the pore of the polymer end closest
to the pore itself. The positive and negative sign distinguish between the
cis and the trans compartment. (b) Both ends are on different sides of the
membrane. In this case we assign to the reaction coordinate R the value l
at which the contour r(l) intersects with the separation plane. If more than
one intersection is found, since their number has to be odd, the central one is
taken. Hence, our reaction coordinate spans the interval from −∞ to +∞ and
is able to describe the whole translocation process as a continuous functional
of the polymer contour.

Differently from other possible reaction coordinates, it covers the fact that the
insertion of only a few monomers into the pore is potentially associated with
a steep increase of the free energy. The generalized forces along this reaction
coordinates are just the usual Cartesian forces on the chain bead centered in
the pore or on the head bead, respectively. Also, the force is continuous at the
transition point of the two parts, as the head bead coincides with the bead
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Chapter 4. Translocation barriers

Figure 4.10: The reaction coordinate R of a stiff chain and a flexible chain.
We distinguish two cases: (i) both ends of the chain are on the same side of
the mid- plane through the membrane and (iii, iv) both ends of the chain are
on different sides. (ii) is the transition point. For the stiff chain, R is the axial
position of the center of mass of the chain. For the flexible chain in case (i)
the distance of the end monomer plus half the contour length lc is taken for
R. In (iii) and (iv) the distance between the position of the monomer centered
in the pore and the position of the central monomer of the chain taken along
the polymer contour is chosen. The sign indicates if the chain is mainly in the
cis or trans compartment. The definition for the stiff chain is a special case
of the more general definition for flexible chains.

centered in the pore at the transition between case (a) and (b). For a single,
stiff chain confined to the pore axis the reaction coordinate reduces to the
axial position of its center in a cylindrical coordinate system centered in the
middle of the pore.

4.3.4 The translocation barrier for a single-stranded DNA
molecule

To model ssDNA, we applied a model inspired by common coarse-grained poly-
electrolytes models, a bead spring model [230, 231]. In our model, spherical
beads are connected by harmonic springs, with a potential

V (r) =
1

2
k (r − r0)

2
(4.16)
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Figure 4.11: (a) Simulation snapshot of a flexible ssDNA molecule (represented
by red beads) through a pore. The particles used for the discretize the pore
surface for the ICC? algorithm are shown in white, cations in orange and
anions in blue. (b) Density of beads found in simulation with the bead with
index 10 fixed in the pore. Darker colors correspond to a higher probability of
finding a bead at the corresponding position. A representative configuration
is displayed in the upper right corner.

with an equilibrium bond length of r0 =1 nm and a k = 30kBT/nm. The beads
mutually interact with a WCA potential with σ=1 nm and ε = kBT . The line
charge density of ssDNA is slightly less than 3 charges per nanometer, and
hence each bead was assigned three elementary charges. The resulting mean
bond length was around 1.1 nm, and hence the line charge density of ssDNA
was reproduced with sufficient accuracy. We considered polymers with N = 40
beads, corresponding to 120 bases, which resulted in a contour length of 44 nm.
We chose a box length of 20x20x60 nm3, sufficient to host the ssDNA molecule.
Fortunately an improvement of the P3M implementation to non-cubic boxed
allowed us to perform the simulation without extending the box size in x and
y direction. This would have dramatically increased the number of ions to
consider. We found a discretization of the pore for the calculation of induced
charges with a resolution of 1 nm sufficient to obtain accurate forces, and hence
we could significantly reduce the number of necessary surface charges. A pore
of 10 nm diameter was chosen, as we expected the force in general to be higher
due to closer approach of the DNA to the pore wall. All other parameters
were chosen in accordance with the simulations of dsDNA presented above.
In Fig. 4.11a a snapshot of a simulation is shown. In addition in Fig. 4.11b
we display a density map of the beads for a simulation in which the monomer
with index 10 was fixed in the center of the pore. The equilibrium extension
of the polymer can be estimated from this graph.
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Chapter 4. Translocation barriers

We calculated the radius of gyration of the chain in electrolytes in different
salt concentrations. It was found in the range of 5.5 and 6 nm depending
on the electrolyte concentration. This was significantly larger than for an
uncharged chain, as the electrostatic between adjacent beads is known lead to
an apparent stiffening of the chain. By employing also an angular potential
of the form

V (φ) =
1

2
kφφ

2

to an uncharged chain, with kφ=10kBT , a similar radius of gyration was
obtained. Furthermore, we stiffened the charged polymers by applying and
angular potential with kφ = 30kBT . This way we can minimize the entropic
contribution to the free energy barrier. The two additional models, the un-
charged polymer with a similar radius of gyration and the artificially stiffened
charged polymer, are used for reference simulations. With the uncharged poly-
mer we can probe the entropic contribution to the free energy barrier that will
help us interpreting the simulation results. With the stiffened polymer we can
investigate the free energy barrier with a much smaller entropic contribution.
This allows us to proble electrostatic and entropic effects separately.

For the free energy calculation with the reaction coordinate for chains in-
troduced above we made some assumptions. The contour of the polymer is
assumed to be a piecewise linear function, connecting the bead positions. For
configurations where both ends of the polymer were on different sides of the
symmetry plane we only evaluated it at positions, where one bead was exactly
placed at the center of the pore. The fact that the contour length on both
sides could slightly fluctuate was neglected. Furthermore the reaction space
was restricted only to configurations where the bead by which the reaction
coordinate was determined is placed on the axis. These approximations allow
us to constrain the system to a certain value of the reaction coordinate by
fixing one bead of the polymer chain at a certain position.

The free energy is calculated as follows. The system in the region (a) of the
definition of the reaction coordinate, where the polymer has not yet entered the
pore, reaction coordinate is constraint to equidistant zi with mutual distances
d by placing one end bead at (0, 0, zi + LC/2). We only consider negative
reaction coordinates here. For positive values the + sign must be exchanged
for a − sign. The force acting on the end bead was measured, and the free
energy was calculated from Eq. 4.15. In the region (b) where the chain crosses
the membrane, the reaction coordinate is constraint by fixing the bead with
index zi/b + N/2, where b is the mean bond length is fixed in the center of
the pore. The mean force acting on that bead is calculated in a simulation,
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Figure 4.12: (a) Potential of mean force for a flexible ssDNA segment at a salt
concentration of 10 mM. The free energy changes steeply as the first 10 nm
of the ssDNA-molecule enter the pore. (b) The potential of mean force for a
ssDNA at different salt concentrations with εM = 2. For comparison the free
energy profile of an uncharged polymer with a comparable radius of gyration
is shown in grey.

and the free energy is again calculated from Eq. 4.15, except the distance d is
exchanged by the mean bond length b.

In Fig. 4.12a the free energy for four different configurations, all in 10 mM
salt concentration, is shown. We compare again the cases with and without
dielectric contrast. We do this for a fully flexible, and an artificially stiffened
DNA. For a flexible DNA, the barriers are general higher, and taking into
account the dielectric contrast also increases the barriers by about 4 kBT in
both cases. The flexibility seems to be of major importance. It enhances the
barriers by around 8 kBT in both cases. Two contributions may be important.
(a) There is an entropic barrier directly associated with the chain flexibility,
and (b) due to the flexibility electrostatic effects are magnified, as the beads
can get closer to the wall. For comparison we performed simulations also with
an uncharged polymer of which we had matched the radius of gyration as
described above. It is shown in Fig. 4.12b. It experiences a barrier of about
4kBT , which is of purely entropic origin.

These results suggest the following approximate decomposition of the free
energy barrier for a ssDNA molecule in 10 mM salt: 4 kBT due the entropy loss
in the pore, and 7-12 kBT due to electrostatic effects. Taking into account the
dielectric contrast between membrane and DNA again approximately doubles
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the height of the free energy barrier, consistent with our findings for double-
stranded DNA.

For comparison we also performed calculations in different salt concentrations.
The barriers are displayed in Fig. 4.12b. Again a significant decrease of the
barrier height with increasing salt concentration is observed. Also for 100 mM
the barrier remains clearly above the barrier measured for the purely entropic
barrier.

We conclude that the considered 50 nm long ssDNA strand is subject to con-
siderable free energy barrier in the 10 nm wide pore. The entropic contribution
accounts for around 4 kBT . Under an electrolyte concentration of 10 mM we
measure a total barrier is around 14 kBT , of which we attribute 10 kBT to
electrostatic effects. Neglecting the dielectric contrast, the electrostatic bar-
rier is considerably smaller. The electrostatic contribution to the free energy
barrier, however, rapidly decays when increasing the salt concentration. At
100 mM it is reduced to only 2-3 kBT . This finding is consistent with those
made above for dsDNA. The dielectric constant approximately double the
free energy barrier. When comparing the absolute numbers, it is, however,
important to note, than in this investigation the DNA charge density was sig-
nificantly smaller than in the investigations for dsDNA and at the same time
the pore was much larger in diameter. This demonstrates that the flexibility
enhances the role of electrostatic barriers significantly.

4.4 Poisson-Boltzmann models for the
translocation barrier

In the following section we present the translocation barrier of a charged cylin-
der, a model of double-stranded DNA, calculated by means of the Poisson-
Boltzmann (PB) equation. First, we will show results obtained with a very
simple one-dimensional model which agrees reasonably well with the data we
obtained from MD simulation described in the previous section. Interestingly,
only the MD data including dielectric contrast was especially well reproduced.
This is very surprising as the simple PB model does not even contain any no-
tion of dielectric permittivity at all. We were originally very surprised by
this fact, however we found a convincing explanation for this behaviour. Sec-
ond, we investigated the translocation barrier estimated for a cylinder of finite
length with the iPBS method, suggested by S. Tyagi, and worked out in detail
by A. Schlaich in his diploma thesis [14]. In the iPBS, method a finite element
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solution of the PB equation is combined with the idea of the ICC? algorithm.
The boundary condition to the FEM solution are iterated. With this model we
can support our more qualitative discussion of the one-dimensional model.

4.4.1 A simple one-dimensional Poisson-Boltzmann model
for the translocation barrier

One effect observed in the calculations above, is that inside the pore the
degree of counterions was enhanced by the dielectric contrast. This can also be
understood in terms of a modified electrostatic pair interaction. In the image
charge picture in the vicinity of a low permittivity dielectric, the attraction
of unlike-charged objects in enhanced. Applying this to the DNA-electrolyte
system, we expect, that the effective attraction between cations and DNA
is higher when the DNA is inside a pore. On the other hand, if the DNA
is completely neutralized, we expect no enhanced attraction, as an object
surrounded by a fully developed counterion cloud does not induce net charge
in an adjacent interface.

The expected degree of neutralization will depend on the pore length: A long
pore will lead to a strong energetic penalty if the DNA is not neutralized,
while for a short pore a non-neutral DNA molecule will lead to a much smaller
energy penalty.

We performed simulations with different pore lengths between 4 nm and 20 nm
at 10 mM salt and measured the degree, to which the DNA charge in the center
of a pore was neutralized. This degree was defined as the net ion charge in
a thin slab at the pore center divided by the DNA charge in the same slab.
A neutralization degree of 1 thus means that each DNA charge is exactly
compensated for by counterions.

The results are depicted in Fig. 4.13a. The dielectric contrast enhances the
tendency that the interior of the pore is electrostatically neutral at much
lower pore lengths than in the situation without dielectric contrast. In both
cases, full neutralization is reached in the limit of an infinitely long pore.
This is due to the fact that the self–energy of an infinitely long charged rod
diverges and therefore must be compensated by counterions. In the limit of
zero salt reservoir concentration as treated in [232], this divergence leads to
the following: Even when decreasing the ion reservoir concentration to zero
a finite number of ions stays next to the charged cylinder. This behaviour is
known as Manning condensation. The effect of charge neutralization allows
us to make the following consideration. If the interior of the pore is fully
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Figure 4.13: (a) The degree of neutralization as a function of the pore length.
The vertical dotted line corresponds to the length for which free energy bar-
riers are reported. (b) Sketch depicting the idea of the PB model applied to
calculate free energy barriers.

neutralized, no image charges are to be taken into account. Then the effect
of the pore confinement is only a compression of the counterion cloud into
a radius r. This can be modelled with the Poisson–Boltzmann equation as
described in the following.

We assume DNA to be a cylinder of radius 1 nm and one elementary charge
per 0.167 nm and the pore to be a cylinder of radius R without surface charges.
The boundary conditions thus are the following:

∂Φ

∂r

∣∣∣∣
r=1nm

= 4πlBσDNA, (4.17)

∂Φ

∂r

∣∣∣∣
r=R

= 0, (4.18)

where σDNA = 0.94e/nm2. The second boundary condition corresponds to
the requirement of charge neutrality of the system.

The work to change the volume of the pore is determined by the osmotic
pressure on the cylinder (see the sketch in Fig. 4.13b). In the PB approxima-
tion this is just the ideal gas pressure of the ions at the boundary of the cell.
However, we do not want the compress the whole ion cloud, but allow particle
and volume exchange with the reservoir. Under these conditions the excess
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the result from molecule dynamics simulations of Sec. 4.3.2 (vertical axis).
The slope of the dashed line is 6 nm, the best choice of an effective pore
length. (b) The free energy barrier calculated from MD simulations (symbols
connected with thin lines), and PB model (thick lines).

osmotic pressure, meaning the osmotic pressure minus the osmotic pressure
in the reservoir. It reads as:

pe (R) = kBT (c+ + c− − 2c0)

∣∣∣∣
r=R

(4.19)

= 2kBTc0 (cosh Φ (R)− 1) . (4.20)

This allows us to calculate the work needed to shrink the pore to the desired
size. by integrating pedV from an infinitely large cylinder to a finite cylinder
of radius R. In our case, we obtain the work per unit length as the integral:

W/l =

∫ R

∞
pe (R′) 2πR′dR′.

We determine this work from numerical solutions of the PB equation and a
simple Euler integration scheme. We apply a finite difference scheme imple-
mented in the programming language PYTHON using the NUMPY numeric
library.

In Fig. 4.14 we report the results obtained with the PB model in comparison
to the results of the coarse grained MD model including dielectric contrast.
First, we report the correlation of the PB barriers with the MD data. In
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this graph, the MD barrier is reported as a function of the PB barrier for the
same pore radius and salt concentration. The correlation is very good. This
is surprising given the simplicity of the PB model. From the slope of the plot
it is possible to extract an effective pore length. The slope of the dashed line
is 6 nm, which agrees reasonably well with the 8 nm pore we have used in the
MD simulations.

In Fig. 4.14b we report the free energy barrier as a function of the pore radius
for different salt concentration. The PB barriers are scaled to an effective pore
length of 6 nm. The agreement is again surprisingly good: The deviations are
within a few kBT . This indicates that the general physical effects are captured
correctly by the PB model. Although our considerations make it plausible that
the PB model is appropriate, it remains surprising to us, that the complex
effect of dielectric boundary forces can be boiled down to a model that does
not contain dielectrics at all. It encourages us to believe, that other simple
models in physics chosen with care and good physical intuition sometimes can
explain more than expected at first sight.

As a further investigation step we calculated the free energy barriers obtained
for a cylindrical DNA molecule of finite length with the iPBS method, which
is described below.
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4.4.2 The iPBS algorithm

In this section we give a brief overview over the iterative Poisson-Boltzmann
solver (iPBS) method and apply it to the question of Sec. 4.3.2, the translo-
cation barrier of a stiff dsDNA fragment. It is based on a finite element
solution of the PB equation, for which boundary conditions are determined
iteratively until self-consistence is fulfilled. This iterative strategy was sug-
gested by S. Tyagi, who also wrote a prototype solution in MATLAB. Later
on, it was implemented DUNE-PDELAB by A. Schlaich. SK was advisor to
the Diploma thesis of A. Schlaich, where it was implemented and tested on
other benchmark problems.

In many “classic” calculations involving the PB equation the electric poten-
tial is only evaluated in the region, where ions can enter. Non-ionic charges
are introduced in terms of boundary conditions to the electrostatic potential
(Dirichlet-type) or to the normal component of the electric field (Neumann-
type), as in text books of classical electrodynamics [196]. Physically, the
situation is more complicated. In general the Poisson equation must be solved
in the whole space where the field can enter. Applying Dirichlet and Neu-
mann boundary conditions are only approximations but not always an ap-
propriate model for physical interfaces. The iPBS algorithm is a method to
tackle general systems, where the geometry of the domains can be arbitrarily
complicated, and where dielectric interfaces can be introduced naturally.

One of the reasons why the approximate Dirichlet and Neumann boundary
conditions are so abundant, is that the more general situation is more difficult
to treat from a numerical point of view. The boundary value problem on some
spatial region A

∆Φ = κ2 sinh Φ onA,
∂Φ

∂n
= f (r) on ∂A

(4.21)

with Neumann BCs can be solved with standard finite element methods for
elliptic equations. We call a problem of this kind a restricted problem. In gen-
eral, the situation is more complicated, because multiple regions with different
permittivities are to be considered. The strategy of iPBS lies in determining
the boundary condition f iteratively from solutions of the restricted problem
only. This can be achieved by performing an explicit Coulomb integration.

In Fig. 4.15 we depict the geometry we have in mind: A system S consists
of a region A filled with an electrolyte and a region B, composed of several

111



Chapter 4. Translocation barriers

regions Bi without ions. The permittivity in region A is given by εA and in
every region Bi by εi. The surfaces of the regions Bi can be charged. With
the iPBS method, it is also possible to consider cases, in which the charge
density depends on the local electrostatic potential as the result of a chemical
dissociation reaction. We neglect this possibility in this thesis.

S

A

B
"1

"A = 1

"2B

⌦+

fixed surface 
charge density

regulated surface 
charge density

Figure 4.15: Schematic sketch of the systems considered with the iPBS algo-
rithm. A system S consists of a region A where ions are described by the PB
equation and several regions Bi that do not contain ions. These regions may
contain charges on their surfaces that are either fixed, or regulated by some
regulation mechanism. The dielectric permittivity is constant in A and each
of the Bi, but may jump at interfaces.

The physical problem that we want to solve can be expressed in terms of
a combination of the Poisson equation (eq.4.6) and the Poisson-Boltzmann
equation:

∇ · (ε∇Φ) =


8πlBc0 sinh Φ onA,
0 onBi,
−4πlBσf on ∂A.

(4.22)

Here σf denotes a fixed, spatially varying charge density on the interface ∂A.
We apply reduced units, which allows us to keep the notation shorthand.
We explicitly keep the dielectric constant in all media, and assume that the
Bjerrum length lB is defined in some reference medium (e.g. vacuum) relative
to which the permittivity is defined.

At dielectric interfaces, the electric field is discontinuous. In the presence of

112



4.4. Poisson-Boltzmann models for the translocation barrier

a surface charge σf the discontinuity is given by

εAEA · n− εBiEBi · n = 4πσf , (4.23)

where n denotes the normal vector of the surface an EA and EB the electric
field on both sides of the discontinuity. Eq. 4.23 can be rewritten as

EA · n =
4πlB

εA + εB
σf +

εB
εB + εA

(EA +EB) · n. (4.24)

Obviously, EA ·n is exactly the boundary value f in the boundary condition
of Eq. 4.21 we seek to determine. The sum (EA +EB) is independent of the
charge the particular boundary segment and we will derive an expression for
it in the following.

Analogously to the derivation of the ICC? algorithm in Sec. 4.1.3 we rewrite
the full PB equation and introduce the induced charge density σind:

∆Φ =


8πlBc0/εA sinh Φ onA,

−4πlB
εA

 2εA
εA + εB

σf +
εA

2πlB

εA − εi
εA + εi

∇Φ · n︸ ︷︷ ︸
σind

 on ∂Bi. (4.25)

To obtain the electric field in the whole system S without solving the Poisson-
Boltzmann equation everywhere, we use the Greens function G of the Laplace
operator in S. In this way, we can express the electric field in terms of integrals
over A and the interfaces ∂Bi:

EC (r) =2lB/εA

∫
A

∇rG (r, r′) c0 sinh Φ (r′) dV ′

− lB/εA
∑
i

∫
∂Bi

∇rG (r, r′)

[
2εA

εA + εB
σf (r′) + σind (r′)

]
dA′

(4.26)

The so far unknown expression EA+EB in Eq. 4.24 can be identified as twice
the field created by all charges in the system, except for the surface segment
that is currently considered. Hence we can write

f (r) =
4πlB

εA + εB
σf +

2εB
εB + εA

EC · n (4.27)
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This equation is the heart of the iPBS algorithm. If a function f can be
found that fulfills Eq. 4.27, the solution of the restricted problem with this
BC coincides with the solution of the full problem. A further complication
lies in the fact, that the induced charge density σind is also unknown. The
fix point structure of this equation, however, make it possible to formulate a
simple iterative procedure to construct both functions at the same time.

The iteration is constructed analogously to the ICC? algorithm. Initially we
choose

f0 = 4πlB/εAσf (4.28)

and induced charges
σ0
ind = 0 (4.29)

and solve the restricted problem with these boundary conditions. Then we
construct subsequent improvements to both f and σ by the update rules

f i+1 = (1− αf ) f i + αf
4πlB

εA + εB
σf +

2εB
εB + εA

EC · n (4.30)

and

σi+1
ind = (1− ασ)σiind + ασ

1

8πlB

1− ε
1 + ε

Ei · n. (4.31)

The field at the boundary is evaluated from Eq. 4.26. As this expression de-
pends on the potential Φ, it is is necessary to solve the restricted problem
in every iteration step. In our investigations the above iterations converged
without convergence problems if αf = 0.7 and ασ = 0.2 were used. These
iterations again are part of the class of successive overrelaxation (SOR) meth-
ods.

4.4.3 The Finite Element solution of the PB equation

We applied a finite element method (FEM) for the solution of the restricted
problem. In the following we give a brief introduction to the applied method.
Comparing to the vast literature and modern developments our method is
classical. It is not much more sophisticated than that formulated by Courant
int 1943 [233], which is often quoted as the birth of the finite element method
[234]. Using a FEM was initially chosen because its resolution can be spa-
cially adjusted. In systems governed by the PB equation this is very helpful
as the Debye length can be much smaller than the system size, and thus a
fine resolution next to charged surfaces and a coarse resolution far away from
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charged surfaces is desired to keep the computational effort low. It was tech-
nically realized using the DUNE framework [235], which will be described
below. We apply the notation and concepts from the DUNE-PDElab Howto
document [236].

The key idea in the finite element method is to approximate the solution of
a PDE with a sum of functions which are nonzero only in a small region of
space, and which can be described by a finite set of coefficients. In boundary
value problems an algebraic set of equation for the coefficients is derived,
which is subsequently solved numerically. Here, we sketch the FEM with
Lagrangian triangular elements with polynomial basis functions of degree k,
so called Pk elements. P stands for “pyramid” in this abbreviation. In all
cases investigated with IPBS the cylindrical symmetry was used to decrease
the dimension of the system to two. Three-dimensional systems were only
investigated to prove the functionality of our implementation.

The main ingredient for an FE based solution of a PDE are the elements.
The nomenclature here is somewhat ambiguous. Speaking loosely, the term
element refers an element of the decomposition of the domain in which the
PDE is solved. In mathematical terms [237], an element is a triple composed
of (a) a domain Ω̂, (b) a set of linear independent basis functions {ψi} defined
on Ω̂, and (c) a set of functionals that are defined on the space spanned by
the functions ψi. These two notions can usually be clearly distinguished by
context.

The computational domain is decomposed into n regions with simple shapes,
the triangulation. It typically consists of triangles or rectangles in two di-
mensions, or of pyramids or cuboids in three dimensions. All elements can be
mapped to a reference element by an affine transformation µe, the element
transformation. Here e is the index of the corresponding element. This refer-
ence element corresponds to the domain Ω̂ of the mathematical definition of
an element. For simplicity we will assume the same reference element for all
elements. We additionally assume a conformal triangulation: all vertices of
the triangulation must be a vertex to all adjacent triangles.

The function space is chosen to be the space of all polynomials of degree k on
Ω̂. One important trick now lies in a good representation. One possible choice
is a Lagrangian basis, that is also used in Lagrangian interpolation. One the
reference element certain points are chosen, so called nodal points, on which
all functions of the basis set are zero, but one, which equals unity. The concept
of a nodal basis is sketched in fig. 4.16. The nodal points are now chosen such
that, under reverse application of the finite element transformation, every
image of a nodal point that is at an element boundary is not only a nodal
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point on one element but on all adjacent elements. This is always possible if
the triangulation is conformal. The corners of the triangle are typical nodal
points, and e.g. for P2 elements also the midpoints of all intersections. In
this nodal representation we tag the basis entry by the index of the nodal
point where it is nonzero, and denote it by ψl. The number of the necessary
nodal points depends on the order of the polynomials taken as basis. In two
dimensions, for polynomials of order one, three points are necessary, for P2
elements six, and for order three polynomials ten.

P1 P2 P3

a

b

Figure 4.16: (a) Triangular Lagrangrian Elements of order 1, 2 and 3. The
reference elements are depicted as triangles, and the nodal points a circles. (b)
Conformal triangulation of an arbitrary region, including nodal points for P2
elements. Nodal points of adjacent elements fall on top of each other. Every
function of the discrete function space in which solutions are searched for is
uniquely characterized by its value on the nodal points.

A global function space is constructed by transforming every point in A to a
point in Ω̂ using the appropriate element transformation. In a nodal repre-
sentation, continuity of the global functions can be ensured by using the same
coefficient for those basis functions, which share the nodal point in global
space. We denote the set of pairs of elements and basis function indices (e, l)
which share the global nodal point with index j by L (j). Then the global
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basis function j can be written as:

Ψj (x) =
∑

(e,l)∈L(j)
ψ
(
µ−1e (x)

)
χe (x) . (4.32)

Here χe is the characteristic function of element e, which ensures that every
basis function can only contribute if evaluated within Ω̂. Thus finally we have
constructed a basis of continuous functions in A, where every basis function
has only a small support. Different elements, now meant in the mathematical
sense, allow for the construction of a different global basis. With this method
it is e.g. also possible to construct a basis continuous in the first or higher
derivatives, but we stick to the most basic case.

Every global nodal point corresponds to one degree of freedom. In the follow-
ing section we will show how it is possible to derive a set of algebraic equation
from the PB equation. The solution of this set of equations thus yield the
coefficients needed for the global basis functions given in Eq. 4.32.

The starting point to solve the PB equation with the FEM is writing down
its weak form. Let u and v be a square integrable functions. A function u is
called weak solution of the PB equation if:∫

A

v∆u− vκ2 sinhu = 0 (4.33)

for all functions v. Functions u for which this condition might hold are called
trial functions, functions v are called test functions. For practical purposes
the vector space of admitted functions H is restricted to those constructed
before. In the FEM this is done not only for the space of trial functions, but
also for the test function space. Both are restricted to the span of the global
basis. A function is called weak solution with respect to H if Eq. 4.33 holds
for all test functions v ∈ H. We can thus construct n independent equations,
by setting v = Ψj , for all 0 < j < n. Eq. 4.33 can be reformulated by means
of Green’s first identity:

−
∫
A

(
∇Ψj · ∇u+ Ψjκ

2 sinhu
)

dV +

∫
∂A

v∇u · ndA = 0. (4.34)

Noting that the support of Ψj consists of only a few elements, it is obvious that
the integral in Eq. 4.34 can also be restricted to only a few elements. Neumann
BCs are incorporated easily in the above formulation by replacing ∇u = f in
the surface integral. We expand u in the global basis, with coefficients ui
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and thus find a nonlinear set of equations for ui. For a given set (vector) of
coefficients /u the RHS of all n equations above is called the residual R (u).
Finding the solution can be formally written as:

R (u) = 0. (4.35)

Only for linear PDEs the residual is linear in u. In general, including the PB
equation, a nonlinear set of algebraic equations must be solved. We apply
a Newton method to solve this problem. The Hessian of R is calculated
by numerical differentiation. In every step of the Newton method, a sparse
linear system must be solved. This can easily be exchanged. We obtained
the fastest convergence with a biconjugate gradient method with a successive-
overrelaxation preconditioner.

The realization of iPBS in DUNE

The DUNE software framework was written to assist in solving problems sim-
ilar to that given above. This supports not only FE methods, but also Finite
Volume methods and Discontinuous Galerkin methods. It consists of the fol-
lowing submodules:

• dune-grid [238, 239]: Management of triangulations. It provides an ab-
stract interface for different grid managers, other software that stores
the actual data. The grid managers used in IPBS are UG [240] and
ALU [241,242]. The grid managers can be used interchangeably. Dune-
grid supports a domain decomposition between processes and provides
an interface for MPI communication of data.

• dune-localfunctions: Provides the elements in the mathematical sense.
This includes Lagrangian elements of arbitrary order in two and three
dimensions. Also more complex elements are available.

• dune-istl [243, 244]: A library of iterative linear solvers and interface
to third-party linear solvers. Built-in solvers are (bi-) conjugate gra-
dient solvers, and multigrid-solvers and with different preconditioners.
External solver that can be used are SUPERLU, and PETSc.

• dune-pdelab [245]: a module that connects those mentioned above so
that the solution of discrete problems is convenient. The software con-
cepts follow very closely the mathematical constructs.

In the IPBS program, the following steps are performed:

118



4.4. Poisson-Boltzmann models for the translocation barrier

1. Reading in a configuration file.

2. Reading in a mesh file.

3. Solution of the restricted problem, using Lagrangian elements of arbi-
trary order.

4. Calculation of the electric field using Eq. 4.25.

5. Update of regulated and induced charges and the flux, using Eqs. 4.31
and 4.30.

6. Analysis.

Steps 3-5 are iterated until the relative change of each quantity is below a
certain threshold, typically 10−4.

4.4.4 Application to the free energy barrier of dsDNA

The method outlined above was used to calculate the free energy barrier that
a DNA molecule has to overcome when entering a pore. The geometry we
used was constructed as closely as possible to that used in the MD simula-
tions: a cylindrical pore with smoothed openings in a flat membrane. The
DNA molecule was modelled as a charged cylinder of 1 nm radius. The sur-
face charge density was calculated from the linear charge density used in the
MD simulations. The cylinder symmetry of the problem could be used to
reduce the problem to an effective two-dimensional problem. The surface of
the pore was iterated to take into account different values of the dielectric
permittivity.

For each parameter set, two calculations were performed to obtain a free
energy barrier: one in which the DNA is far away from the pore, and one where
it is inside. The free energy of both states is calculated from Eq. 3.91, and the
difference corresponds to the free energy barrier opposing the translocation
process. In Fig. 4.17, typical meshes we used the calculations are shown. The
density of triangles can be increased in the vicinity of the DNA and the pore,
and near the box boundary the resolution is decreased.

The pore radius, salt concentration and pore length were varied. The DNA
molecule was always kept 2 nm longer than the length of the pore. For each
parameter set two types of simulations were performed: A pair of simulations
in which the dielectric constant of the membrane was set to ε = 2 and one
in which the dielectric constant was set to ε = 80. With all this data we can
access the whole parameter space investigated with the MD simulations, plus
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X

Y

Z

Figure 4.17: The meshed used to calculate the free energy barrier of a 10nm
DNA fragment in a pore of length 8 nm. The free energy of both configurations
was evaluated; the difference corresponds to the free energy barrier of the
DNA.

we can consider different pore lengths. The calculations did not take longer
than a day on a single CPU.

The results are depicted in Fig. 4.18a and 4.18b. In Fig. 4.18a we display
the free energy barrier obtained for a 10 nm DNA strand in an 8 nm pore as
a function of the pore radius 10 mM and 100 mM electrolyte concentrations.
We obtain the same behaviour as in the MD simulations. The barrier drops
rapidly from more than 10 kBT when the pore radius increases from two
to four to six nanometers. The decay for 10 mM is slower than for 100 mM
reflecting the longer Debye length of around 3 nm compared to around 1 nm.
When assuming a dielectric constant of ε = 80 of the membrane material, the
barriers are almost by a factor of two lower than for ε = 2.

In Fig. 4.18b we display the free energy barrier we obtained for pores of
different lengths, and DNA molecules of accordingly slightly larger length. The
barriers are divided by the pore length. The free energy barriers for 10 mM
and 30 mM electrolyte concentration are shown, but all other concentrations
investigated exhibit the same trends. The free energy barrier per unit length
increases with increasing pore length and converges to the value calculated
from the one-dimensional theory in Sec. 4.4 for the respective concentration.
The convergence is accelerated by a dielectric contrast between the membrane
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Figure 4.18: The free energy barrier obtained for a DNA molecule. (a) The free
energy barrier for a 10nm strand of dsDNA in a 5nm pore of length 8nm for
two electrolyte concentrations. 10 mM is displayed as squares, and 100 mM is
displayed as circles. We compare the situations between a pore permittivity of
ε = 2 to ε = 80. (b) The free energy barrier per unit length of DNA molecule
which is 2nm longer than the pore. Symbols are chosen as before, expect for
the dataset for c =100mM is replaced by the dataset of c =30mM. In the
limit of long pores, both converge against the result of the one-dimensional
PB model (Sec. 4.4), which shown as horizontal lines.

material and the surrounding water as neutralization is increased. For the
8 nm pore considered above without dielectric contrast around 50% of the
limiting value is reached, while the dielectric contrast the fraction is around
80%.

These results conform with our arguments presented above. In the limit of an
infinite pore, the free energy barrier is given by the simple one-dimensional
model of Sec. 4.4. The question for which pore length this model is adequate
depends on the dielectric properties of the membrane materials. Low-ε media
reduce this necessary length so that for the 8 nm long pores considered in the
MD simulations the one-dimensional model is applicable. Without dielectric
contrast the necessary length is much longer, around 20 nm. This finding is
in agreement with the neutralization data from the MD simulations shown in
Fig. 4.13a.
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4.5 Summary

In this chapter have investigated an important questions regarding DNA
translocation: Under which conditions do electrostatic interactions cause sig-
nificant free energy barriers? We have presented the ICC? algorithm, an
algorithm suited for including dielectric boundary forces into coarse grained
molecular dynamics simulations. This algorithm is an extension to an existing
Coulomb solver, where additional charges represent the dielectric boundaries.
Their magnitude is determined self-consistently in every simulation step. In
course of this work, this algorithm was improved and extended and can now
be used in parallel molecular dynamics simulations for surfaces of arbitrary
shape. The dominant additional computational cost stems from the increased
number of particles with electrostatic interactions. The complexity of the un-
derlying electrostatics algorithm remains unchanged when taking into account
induced surface charges.

With this method, we investigated the free energy barrier for 10 nm-long, stiff
rods, resembling a fragment of double-stranded DNA. We could show that if
the pore radius is comparable to or smaller than the Debye length, significant
free energy barriers appear. This can be as high as several kBT per nanome-
ter pore length, and hence can suppress translocation even at high applied
voltages. When taking into account dielectric boundary forces, these barri-
ers are significantly enhanced, typically by a factor of two. We were able to
show that this barrier only partly originates from repulsive dielectric bound-
ary forces, but also happens as a consequence of entropic loss of the counterion
cloud. Especially in the presence of dielectric contrast, the system minimizes
its free energy by dragging more counterions into the pore. This enhances the
screening of the bare DNA charge, but at the expense of counterion entropy.

For flexible molecules, very similar effects are apparent, but somewhat in-
creased in strength. We performed simulations with a flexible polyelectrolyte
chain resembling single-stranded DNA with a contour length of 45 nm. With
a pore of twice the radius and a flexible molecule with only half the charge
density of the stiff molecule considered before, we obtained similar free energy
barriers. This results from the chain entropy which drives a longer section of
the contour into the pore and closer to the pore boundary than in the case
of a stiff rod. Again, with increasing salt concentration, the barrier height
decreases. Dielectric contrast increases the height of the barrier, again with
contributions due to counterion entropy and direct interaction.

For the stiff dsDNA piece, we could show, that alternatively to a particle-based
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model, a simple Poisson-Boltzmann model is surprisingly accurate. The very
simple one-dimensional cylinder-in-cylinder model leads to almost identical
free energy barriers. The deviations to the particle simulation models are
not larger than errors caused by the uncertainty of experimental conditions.
Interestingly the agreement with simulations including dielectric contrast was
much better than with that without dielectric contrast. From the data of
particle-based simulation we could show that for the simulation with dielectric
contrast the degree of neutralization of the interior of the pore was larger.
As the neutrality of the pore interior is a fundamental assumption of the
PB model, this explains why the agreement with simulations with dielectric
contrast is better.

Using the iPBS algorithm, we could support this argument. In the iPBS
algorithm the Poisson-Boltzmann equation is solved by means of the Finite
Element Method. The boundary conditions are iterated in a fashion similar to
ICC?. This allowed us to compute free energy barriers in essentially the same
geometry as we used for particle simulations. We could show that, in the limit
of an infinitely long pore, the free energy per pore length converges against the
prediction of the one-dimensional PB model. For the pore length considered in
the simulations before, the result with and without dielectric contrast deviate.
As the dielectric contrast enhances the neutralization, the barrier measured
with dielectric contrast converges faster to the limiting value.

Two important questions naturally appear at this point: (a) “How accurate
are the models we have applied?” and (b) “What are the implications of our
findings for the dynamics of DNA translocations”. The next chapter contains
interesting insight especially about point (a), and therefore we comment on
these question in detail in the concluding chapter 6.
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5 Nanopore conductance in the
presence of DNA

Most nanopore-based experiments are based on measuring the ion current
through the pore. A macromolecule crossing the pore is observed as a mod-
ulation. These current modulations they contain valuable information about
the molecules transported through the pore. But what is the origin of the
modulation? For the Coulter Counter, developed in the 50s to count red
blood cells, the answer is simple. Cells obstruct a certain fraction of the pore
cross section, and this increases the resistance of the circuit. The Coulter
principle states that the relative change of the current current is roughly pro-
portional to ratio of the cell volume to the pore volume [246]. Qualitatively,
the same observation is made in most nanopore experiments. In this chapter
we will see that in the case of charged biomolecules, such as DNA, the situ-
ation is more complicated. In addition, electrokinetic aspects must be taken
into account. An interesting observation is, for example, that when a low
electrolyte buffer concentration is used, pulses of conductivity increase can
be observed [5, 247, 248]. This already indicates that the situation is more
complex than the Coulter Counter.

So far the understanding of the current modulations was not quantitative.
This unsatisfactory situation stimulated our work on understanding the rel-
evant mechanisms. In this chapter, we focus on understanding the experi-
mental data of Smeets et al. [5]. They systematically investigated the role
of the salt concentration in translocation experiments with double-stranded
DNA (dsDNA) in solid state nanopores. For concentrations above around
350 mM a current reduction was observed, and below this concentration a
current increase was observed. We consider a quantitative understanding of
this crossover point an important benchmark, because this point should be
insensitive to many details, like the exact geometry of the pore.

We started our investigations by applying the model suggested by van Dorp
et al. [15] to nanopore conductivity. It has been used successfully to predict
the mechanical force necessary to stall a DNA molecule in a nanopore while
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it is subject to an electric field. In this model an infinite charged cylinder rep-
resenting the DNA is embedded in an infinite uncharged cylinder, the pore.
The electrokinetic equations are solved in this simple one-dimensional geom-
etry. We refer to it as the electrokinetic infinite cylinder model to distinguish
it from our other models. The electrokinetic infinite cylinder model does not
predict the conductance crossover in agreement with the experiments, but
predicts a crossover at much higher concentrations. As this model fails to
describe the behaviour quantitatively, we chose to investigate the system with
a hybrid of molecular dynamics (MD) simulations and the Lattice Boltzmann
(LB) method. The geometry we applied was chosen to represent exactly the
electrokinetic cylinder model. The challenge is to develop this well-established
method for qualitative insight towards a quantitatively reliable tool. As a third
step, we constructed a model with atomistic resolution. The geometry was
also designed to resemble the electrokinetic cylinder model as closely as pos-
sible. We thus gradually increase the level of detail of the representation. By
taking into account the atomic details of the DNA we can, indeed, understand
the experimental data, although the coarse-grained modelling approaches turn
out to be surprisingly accurate.

This chapter is organized as follows. First, in Sec. 5.1, we give a more detailed
description of the experiments by Smeets et al. [5] and van Dorp et al.. In the
first set of experiments the conductance crossover effect was investigated in
detail. In course of the second experiments the electrokinetic infinite cylinder
model has been developed. We present a detailed account of this model and
its prediction for the conductance. In Sec. 5.2 we describe the MD/LB model,
including several benchmark tests we have performed. In Sec. 5.3 we describe
the all-atom model, and the results obtained for the conductance. This model
is also used to study DNA molecules with different base pair compositions,
where we make use of a visualization tool that was developed in a joint project
with the visualization department within the SFB 716.

5.1 Current blockade or enhancement

In this section we present the starting point of our project. We discuss the
experiments of Smeets et al. [5] where the crossover between current blockade
and current enhancement has been investigated systematically for the first
time. They already gave the main qualitative arguments, but our simulations
presented in the following sections allow us to discuss their validity quantita-
tively. In context of the experiments of van Dorp et al. [15], the electrokinetic
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infinite cylinder model was presented. While originally applied to calculate
forces acting on DNA molecules in nanopores we apply it to calculate the
current modulation caused by a DNA molecule. We discuss its prediction in
some detail as in the following all simulation results will be compared to it.

5.1.1 The reference experiments

In their experiments Smeets et al. investigated systematically the role of elec-
trolyte concentration for the current magnitude [5]. They performed translo-
cation experiments with double-stranded DNA (dsDNA) under different elec-
trolyte conditions. The buffer concentration was changed between very low
salt conditions, around 0.05 M, and 1 M. They used solid-state nanopores of
around 10 nanometer diameter which were drilled with a transmission elec-
tron microscope into a free-standing silicon nitride membrane. Short resis-
tance pulses were observed as in other experiments, indicating DNA molecules
traversing the pore. For high salt concentrations, they observed a reduction
of the current by a few percent. Under low salt concentration conditions, the
pulses inverted their sign. Then the current was enhanced by the presence of a
DNA molecule. Their findings are depicted in Fig. 5.1. The nanopore conduc-
tance corresponds to conductance changes between -1 and +1 nS depending
on the salt concentration. The crossover point between current enhancement
and current reduction is between 300 and 400 mM. If normalized by the open
pore current without DNA, the modulations are between +16% and -4%, de-
pending on the salt concentration.

In Ref. [5], this observation was explained by the competition of two effects.
First, the volume occupied by the DNA molecules can not be occupied by
ions. This leads to a steric exclusion of ions, and hence a reduction of the cur-
rent. Second, DNA is a highly charged object. The electrostatic interactions
guide additional ions into the pore, its counterion cloud. The number of ions
displaced from the pore should be roughly proportional to the salt concentra-
tion, while the number of additional counterions is approximately constant.
With these assumptions, Smeets et al. obtained a good fit of their data by
assuming a cylindrical geometry of 10 nm diameter and assuming that the
DNA obstructs circular cross section of 2.2 nm diameter. In their analysis,
the counterion number was used as adjustable parameter. They obtained a
value of 0.58 K+ ions per base pair. This is only 29% of the “bare” charge
of DNA. This discrepancy is interpreted as the DNA’s effective charge. They
noted that assuming two K+ per base pair and but a reduction of the mobility
to 29% of its bulk value leads to the same conductance modulation. Thus,
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(a) (b)

Figure 5.1: (a) Absolute and (b) relative change in conductance ∆G during
DNA translocation events as a function of the salt concentration of the solu-
tion. At low salt concentration, the conduction increases by almost 1 nS or
15 %, while it drops at high salt concentration by -1 nS or around -4 %. From
Ref. [5].

the reduced counterion mobility is a different interpretation of the parameters
obtained from the fit.

Significant effort has been taken to make more physical quantities accessible
to direct observation in these experiments. An interesting example is the
approach taken by Keyser et al. in the Dekker lab in Delft. The setup is
sketched in Fig. 5.2. In these experiments dsDNA was attached to a colloidal
particle, which could be controlled by a laser tweezer. The colloidal particle
was moved to the vicinity of the nanopore. On applying an electric field
the DNA moved into the nanopore. This insertion process was measured by
monitoring the electric current. When the particle was moved away from the
pore the current exhibited an abrupt drop to the baseline current; the DNA
was pulled out of the pore.

From the displacement of the colloid in the laser trap the force acting on the
colloid, and hence the forces acting on the DNA can be deduced. The ob-
served forces were dependent on the radius of the pore. For pores of around
ten nanometers in diameter forces around 220 pN/V were observed, while for
larger pores (up to 80 nm) the force decreased to around 100 pN/V. A naive
model where the force is assumed to be the DNAs bare charge density mul-
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Figure 5.2: (a) Experimental setup of the force measurements in Ref. [249].
DsDNA is attached to colloidal particle in laser tweezers. By placement of the
particle in front of a nanopore and application of an electric fied, the DNA
can be reversibly inserted into the pore. (b) Conductance measurement in the
same setup. As the particle is moved away from the membrane, the current
decreases and eventually DNA leaves the pore. Both illustrations from [249].

tiplied with the applied voltage, however, yields a much higher force of more
than 900 pN/V. The model described in the following section was constructed
to understand this behaviour quantitatively.

5.1.2 The electrokinetic infinite cylinder model

Before turning to the question of modulations in the resistance we briefly re-
capitulate the nanopore conductance model for cylindrical nanopores of finite
size presented in [250]. Using this simple model we can argue, that for the
considerations below it is sufficient to assume a cylindrical pore, where the
entrance and exit regions are neglected.

Fig. 5.3 displays the geometry and the equivalent circuit. A cylindrical pore
of length L and radius R connects two reservoirs containing electrodes be-
tween which the voltage is applied. The total resistance of the system can be
expressed in terms of a series of access resistances Rac on both sides of the
membrane, and the resistance of the cylindrical pore Rcyl. In 1968 [251], Hille
considered the conductance of a single pore in an infinitely thing membrane.
He approximated the surrounding electrolyte as a homogeneously conducting
medium with a conductivity σ, and a pore as a hole in an infinitesimally thin
sheet. He approximated the equipotential planes as hemispheres, and this
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Rac Rcyl

a

b

L

R

Rac

Figure 5.3: (a) Sketch of the considered geometry. A planar membrane of
width L contains a cylindrical pore of radius R. Two electrodes are inserted
on the different sides of the membrane. Near the pore, the equipotential
planes (shown as black lines) are hemi-spherical and inside they are planar.
(b) Equivalent circuit of nanopore conductance. The applied voltage drops
over a series of an access resistance Rac, a resistance of the pore Rcyl and an
identical access resistance.

lead him to the following expression for the conductance of an infinitely thin
circular pore.

G = σ
π

4R
. (5.1)

Hall later realized that the exact result of the capacity of a charged disc could
be applied to improve this result [252]. The differential form of Ohm’s law

∇ · σE = 0 (5.2)

that describes a conducting medium is formally identical with the Laplace
equation of electrostatics in the absence of further charges. By symmetry,
the symmetry plane of the system must be on constant potential, and hence
the potential in the conductance must follow the same form as the potential
around a disc on constant potential. The normal derivative of the potential
is, in one case, proportional to the current density through the midplane, and
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in the other case proportional to the charge density. This consideration leads
to the following expression of the conductance of an infinitely thin pore of:

G = σ
1

2R
. (5.3)

The conductance of a cylinder of radius R and length L is:

Gcyl = σ
πR2

2L
. (5.4)

The access resistance of the cylindrical pore is given by half of the resistance
of an infinitely thin pore. Using Hall’s formula for the access resistance, the
conductance of the whole G system can be written as:

G−1 =
1

σ

(
L

πR2
+

1

2R

)
(5.5)

=
1

σ

L

πR2

(
1 +

πR

2L

)
. (5.6)

From this expression it can be seen that if for pores with a much smaller
radius than length the access resistance in negligible. In the experiments of
Smeets et al. , the radius-to-length ratio of the pores is around 0.12, thus the
correction due to a finite pore length is around 20%. In the following consid-
erations, we do not investigate the absolute current, but only how it changes
relative to the open pore current. By neglecting the access resistance, we will
clearly overestimate the current modulations by a similar percentage, as access
resistance will be influenced less by the presence of a DNA molecule. This ap-
proximation, however, simplifies the discussion and the crossover point, where
the open pore current and the current with DNA are identical, is obviously
insensitive to the magnitude of the pore resistance.

In Ref. [15], the authors explain the forces acting on a colloidal particle which
was used to hold a DNA molecule in a nanopore also measured by Keyser
et al. [51, 249]. They used the electrokinetic equations to model the flow of
ions and water and chose a particularly simple geometry. An infinitely long
impermeable charged cylinder on the z-axis of the coordinate system with
a radius of 1.1 nm representing the DNA molecule is assumed. The pore is
represented as an infinitely long impermeable cylindrical tube also centered
in the coordinate system. Originally, the radius R of the pore is varied. We,
however, choose a fixed radius of 5 nm in correspondence to the experimental
data of Ref. [5]. On the surface of both cylinders, no-slip boundary conditions
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u = 0 for the water are assumed. No pressure and concentration gradients
are present, so the solution of the electrokinetic equations is independent of z.
No currents and no fluid flow in radial directions can occur, as the cylinders
are impermeable (j± = 0). The solution of this model is very simple: First
the model can be solved for the concentrations in radial direction. This can
be done by solving the Poisson-Boltzmann equation

1

r

d

dr

(
r

d

dr
Φ

)
=

1

l2D
sinh Φ, (5.7)

in the radial coordinate r. Here the Laplace operator in cylindrical coordinates
has been inserted. lD is the Debye length. Neumann boundary conditions are
assumed at the two cylinder surfaces:

d

dr
Φ

∣∣∣∣
r=1.1nm

= 4πlBσ,

d

dr
Φ

∣∣∣∣
r=5nm

= 0.

Here the cylinder charge density σ is set to the value expected from dis-
tributing a line charge density of 5.9 e/nm homogeneously on a cylinder of
1.1 nm radius. This yields a surface charge density of 0.85 e/nm2. We solved
this boundary value problem numerically by means of finite differences using
PYTHON.

The concentrations of ions can be obtained from the electrostatic potential
simply by applying the Boltzmann distribution:

c± (r) = c0 exp∓Φ. (5.8)

The body force on the water acts only in axial (z) direction and can be written
as:

fz =
(
c+ − c−

)
E, (5.9)

where E denotes the strength of the externally applied electric field. Assuming
a long but finite pore, it is related to the applied voltage V by V/l, where l is
the length of the pore.

The Stokes equation reduces to an ordinary differential equation in the z
component of the fluid velocity uz,

η
1

r

d

dr

(
r

d

dr
uz

)
+
(
c+ − c−

)
E = 0. (5.10)
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It can be solved by a double integration. Here, two integration constants
appear, that are chosen to fulfill no-slip boundary conditions on both walls.

The force on the counterions is partly transferred into the DNA molecule and
can be calculated from the value of the viscous stress

η
d

dr
uz (5.11)

at the surface of the DNA molecule. Interestingly, the force acting on a DNA is
independent of the pore length for a given voltage. Shorter pores lead to higher
electric fields, and therefore identical forces if end effects are negligible.

In the simple one-dimensional cylinder-in-cylinder geometry the ion velocities
are given by

v±z = uz ± µ±E. (5.12)

In accordance with the experimental values for KCl, we assume µ+ = µ−.
In Fig. 5.4 we present the density and velocity profiles obtained from the
electrokinetic infinite cylinder model for two different salt concentrations, 100
mM and 800 mM. Qualitatively, both datasets have very similar features. The
counterion density decays steeply from a very high value at the DNA to a its
bulk value. The decay for 800 mM is more rapid than for 100 mM, reflecting
a Debye length of around 0.35 nm and 1 nm respectively. The ion motion
is much faster than the water motion which indicates that convection due to
electroosmotic flow is only a small correction to the conductivity.

Interestingly, in this simple geometry, the decoupling of the equations can be
used, to obtain a form of the electrokinetic equations with only one free pa-
rameter. All other constants can be absorbed into scaling factors. Physically
the remaining constant can be interpreted the effective hydrodynamic radius
of the ions, which is given by

rh =
kBT

6πηD
, (5.13)

hence the diameter of a sphere with the same diffusion constant in the same
solvent. The ion velocity can be brought to the following form:

v = µE
(

1 +
rh
a
u?
)
, (5.14)

where a denotes a characteristic length of the system and u? is the water
velocity divided by µE. The hydrodynamic radius thus characterizes the rel-
ative importance of the water motion for the ion current. We distinguish the
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Figure 5.4: (a) Ion density profile and (b) ion velocity and water velocity
profile as predicted by the electrokinetic infinite cylinder model. We show
the results for 100 mM (left half) and an 800 mM buffer concentration (right
half). The velocities are normalized by µ0E, where µ0 is the infinite dilution
mobility and E the electric field along the pore axis.

two contributions to the ion motion as direct velocity and convective velocity,
and their respective contributions to the total current. For ions with a very
small hydrodynamic radius, the convective contribution is negligible, and the
transport is dominated by direct motion. Large ions couple stronger to the
water, and the convective transport is more important. Matching the hydro-
dynamic radius of ions is therefore a necessary condition for a quantitatively
correct model. This will be very important in the following sections.

To compare the current in the absence of a DNA molecule we apply the same
model, just without the inner cylinder representing DNA. As the pore wall is
assumed to be uncharged, the solution is trivial. The current is just given by

Iw/o DNA = πR22c0µE. (5.15)

The ion velocity profiles can readily be integrated yielding the total current I.
We define the following decomposition of the total current: The current den-
sity is decomposed into a direct current ID, which excludes the water motion
and an convective current IW solely due to water motion. The corresponding
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Figure 5.5: Relative modulation of the electric current. Experimental data by
Smeets et al. [5] is shown as diamonds and the prediction of the electrokinetic
model presented in Ref. [15] is displayed as a solid line. In addition, the
prediction of the electrokinetic model is divided into the two contributions
defined in the text: a direct contribution caused purely by the change of the
number of ions in the pore and a contribution due to ion convection, shown
as dashed and dotted line, respectively.

densities jD and jW read as:

jD =
(
c+ + c−

)
µE (5.16)

jW =
(
c+ − c−

)
uz. (5.17)

ID and IW are defined as the corresponding integrals over the pore cross sec-
tion. In absence of a DNA molecule IW = 0 as no water motion is observed.

For comparison with the experimental data of Ref. [5], we plot the results of
this model in Fig. 5.5. We present the relative current modulation

Iwith DNA − Iw/o DNA

Iw/o DNA
(5.18)

as a function of the salt concentration c0 in the bulk solution. It can clearly
be seen that the model predicts a crossover between current enhancement and
current reduction for c0 ≈ 1.2 M, in clear quantitative disagreement with the
experiments. The direct current modulation reflects the change in the total
number of ions upon DNA insertion. At around c0 > 0.85 M the direct current
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contribution changes its sign. For larger concentrations the number of ions
displaced from the pore due to the volume occupied by the DNA cylinder
exceeds the number of counterions brought into the pore by the DNA. The
convection always enhances the current, as it makes counterion transport more
efficient and only appears in presence of the DNA.

The observed crossover concentrations are significantly higher than those mea-
sured experimentally. This matches the observation of Smeets et al., that only
by assuming reduced, effective charge of the DNA leads to a consistent predic-
tion of the crossover. The same “trick” would, of course work here. Inserting
a smaller charge of the cylinder decrease the conductance in the presence of
DNA. We are, however, interested in the physical mechanism, that leads to
the decrease of conductance. Therefore, our next step was developing a model
which incorporates “more” physics, a model based on molecular dynamics
simulations. It is presented in the following section.

5.2 Lattice-Boltzmann/MD simulations

In this section we will present a model of ion transport through nanopores
based on coarse-grained simulations. The modeling strategy relies on treating
all charged objects as explicit particles, and replace the water molecules by a
continuum. As dynamic quantities are considered, a simple dielectric picture
will not be enough. The water, as any solvent, assumes an active role in the
dynamics. Two very important effects of the presence of water have already
been discussed before: electroosmotic flow and hydrodynamic interactions.
Electroosmotic flow occurs as a collective phenomenon, where the concerted
motion of many ions induces water flow. Its relevance for the conduction pro-
cess has already been addressed in context of the electrokinetic infinite cylinder
model of the previous section. Hydrodynamic interactions are also relevant in
ion conduction phenomena. We will show below that they cause, for example,
a decrease of the specific conductivity of an electrolyte with increasing con-
centration. To take both effects into account, we apply the Lattice Boltzmann
method (LBM), a lattice-based solvent representation to which particles are
coupled. The ion motion is taken into account by Molecular Dynamics (MD).
This concept was pioneered by Ladd [253] and Ahlrichs and Dünweg [254].
Before going into the details, we give a more thorough motivation why this
method was used. It contains key ideas from Ref. [255].

In liquid systems, momentum is subject to a diffusive motion. Momentum
flux occurs in the direction of a gradient of the momentum density. In the
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5.2. Lattice-Boltzmann/MD simulations

time-dependent Navier-Stokes equation, the kinematic viscosity ν, related to
the dynamic viscosity η and the fluid density ρ, by ν = η/ρ takes the role of a
diffusion constant. Particles immersed in the liquid are subject to Brownian
motion. By taking the ratio of the particle diffusion coefficient D and the
kinematic viscosity it is possible to quantify, how much faster momentum is
transported through the system than particles. This ratio is defined as the
Schmidt number

Sc =
ν

D
. (5.19)

The hydrodynamic interactions described in Sec. 3.2.5 are derived assuming
instantaneous momentum transfer between particles. They are derived in the
infinite Schmidt number limit. This assumption leads to a non-local coupling
of particles, where the motion of all particles is linked by a many-body hy-
drodynamic interaction. Under virtually all conditions in liquid systems the
Schmidt number is very high, at least in the order of 103. Its magnitude
will be discussed in more detail below. The non-locality of of hydrodynamic
interactions, and the intrinsic structure of a conservation law causes hydrody-
namic interactions to be long ranged. In general they can not be cut beyond
a certain distance without introducing systematic errors. Therefore typically
algorithms scaling O

(
n2
)

, where n is the number of particles, must be ap-
plied to take them into account. This unfortunate scaling behaviour can be
avoided by using a novel class of simulation algorithms, mesoscopic simulation
methods.

The general idea of mesoscopic simulation methods lies in replacing the “real”
mechanism of momentum transport by a “synthetic” mechanism that is com-
putationally more convenient. This means that fluid parameters, which are
unimportant for the result can be chosen at will from a certain range. The
Stokes equation is the low-Reynolds number limit of the Navier-Stokes equa-
tion. Simulating a fluid with a small but finite Reynolds number will yield
equivalent results, but possibly at lower computational costs. This robustness
of the physics laws against details allows for a great freedom in the choice of
computational methods. It is possible to reformulate hydrodynamics entirely
in a local way. A good example for this is the dissipative particle dynamics
(DPD) approach [173,174]. In DPD, real molecules are replaced by soft parti-
cles which do not only possess a conservative interaction, but also a dissipative
interaction based on a pairwise friction. All interactions conserve momentum
and therefore Navier-Stokes-like behaviour is recovered. The interactions are
short-ranged and hence O (n) algorithms for particle methods can be applied.
The resulting fluid is highly compressible due to the soft particle interaction.
The compressibility can be much larger than the compressibility of the fluid
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that is actually considered, as the velocities are sufficiently low that compress-
ibility effects are anyways negligible. The soft potential allows for a larger time
step and thus reduces the computational effort. Therefore also the Schmidt
number in DPD is typically also much smaller than in reality. Under which
conditions this is problematic, is, however, not entirely clear.

We have seen above that for the system consisting of ions and water the hydro-
dynamic radius of the particles must be matched. This is the key prerequisite
to obtain the correct ratio of convective and direct ion transport and there-
fore must be matched in our mesoscopic approach. The numerical value of
the viscosity, on the contrary, is not important. By using appropriate scaling
factors we can a posteriori deduce the physical values of all observables.

A particularly successful mesoscopic modelling strategy is the Lattice-
Boltzmann method (LBM). It originates from the field of Lattice Gas Cellular
Automata (LGCAs). In LGCAs particles are confined to discrete positions
on a lattice, and can only assume a velocity which connect lattice positions
in one time step [256]. With this crude form of dynamics, also hydrodynamic
behaviour can be recovered, if momentum conservation is assured. Entirely
local collision rules lead to O (n) complexity. The LBM is a generalization of
LGCAs. Instead of boolean populations, i.e. a certain lattice site is occupied
with a particle or not, floating point numbers are introduced which contain
the number of particles with a certain velocity at a certain lattice site [257].
This statistical perspective allows to draw the connection to the Boltzmann
equation. In the following section 5.2 we give a derivation of the LBM as pre-
sented by He and Luo [258]. In their derivation the Boltzmann equation, and
not LCGAs, is used as starting point. The nomenclature Lattice-Boltzmann
method (LBM) and Lattice-Boltzmann equation (LBE) are used interchange-
ably. When referring to the LBE typically the mathematical structure of the
method is addressed, while the term LBM refers more to the general method
and philosophy. We sometimes also apply the term LB fluid because we refer
to it by its function in simulations which also contain particles.

Two main strategies have been proposed to couple particles to an LB fluid,
the approaches suggested by Ladd [253] and by Ahlrichs and Dünweg [254].
In Ladd’s method particles treated in the same way as other boundaries to the
LB fluid, with the exception that they can move. In Ahlrichs’ and Dünweg’s
method particle couple to the fluid by momentum exchanged based on mutual
friction. As the coupling occurs at a specific spatial point, we refer to this
approach also as the point coupling scheme. We will apply the it for the ions.
Our representation of the DNA molecule is inspired by the Ladd scheme, with
the simplification that the DNA is immobile. Especially the point coupling
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has so far rarely been applied as tool with numerical accuracy. We therefore
have performed a series of benchmark tests to investigate what accuracy we
can expect from it. This is presented in Sec. 5.2.2. One important aspect is
investigating the properties of an electrolyte modelled with this model.

Finally we apply the model presented before to the problem of nanopore con-
duction. We chose a system that resembles closely the electrokinetic infinite
cylinder model described before. We systematically compare its predictions
to that of electrokinetic infinite cylinder model, and work out how good the
agreement is, and where differences occur.

5.2.1 The Lattice Boltzmann Method

Two possible routes can be taken to construct the LBE: First, it is possible to
consider the LBE a generalization of LCGAs, as described in [256]. A second
approach is the route of kinetic theory, in which the LBE is constructed, as a
discretization of the linearized Boltzmann equation. We will take the second
route here, as it appears natural, in context of MD simulations to take the
route where classical particles, and not lattice particles are involved. We follow
the original description by He and Luo [258,259] and that of Shan et al. [260].
We restrict ourselves to the Lattice-Bhatnagar-Gross-Krook (LBGK) form of
the LBM.

The Boltzmann equation describes the time-evolution of a dilute gaseous
system, where the mean free path is not negligible in comparison to other
length scales. The considered quantity is the one-particle distribution func-
tion f (r,v), the number of particles in an infinitesimal phase space volume
around r and v. Analogous to the particle number density in Eq. 3.8 it can
be defined as

f (r,v, t) =

∫
d3nr d3nv f̃ (r,v, t)

∑
i

δ (ri − r) δ (vi − v) . (5.20)

Here we have added a tilde to the n-particle distribution function. For non-
interacting particles in a potential V (r), the time-evolution is given by:

∂tf + v · ∇rf −∇rV (r) · ∇vf = 0. (5.21)

For free particles, it hence looks exactly like the Liouville equation, except
that the arguments are only 3-dimensional and not 3N -dimensional.
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Deviations from free propagation can be incorporated on the right hand side
of the equation. Boltzmann suggested a term in which correlations between
particles are neglected, appropriate for a dilute gas. With his molecular chaos
assumption the probability of finding a collision pair with velocities v1 and
v2 is assumed to be proportional to the product f (r,v1) f (r,v2). In this
approximation, a closed expression for the time evolution of f can be given.
The necessary input is the differential cross section of the particles, which
describes the outcome of collisions as a function of the relative orientation
of the velocity vectors of the colliding particles, that depends on the pair
potential.

With Boltzmann’s molecular chaos assumption it is possible to close the
Boltzmann equation, and connect the microscale of single particles to the
macroscale where many collisions are averaged over. A different closure is the
one suggested by Bhatnagar, Gross and Krook [261] (BGK). It is an effective
theory where no particular underlying mechanism is assumed. The central
assumption is that the relaxation towards local thermodynamic equilibrium
can be described solely by a linear relaxation process. This is expressed as

∂tf (r,v, t) =
1

τr
(f − feq) . (5.22)

τr is called the relaxation time. Obviously, the distribution function converges
against the equilibrium distribution feq, if the system is not driven by external
forces. For the equilibrium distribution a Boltzmann distribution

feq =
ρ

(2πkBT )
3/2

exp

(
(v − u)

2

2mkBT

)
(5.23)

shifted by the local mean velocity u is assumed. The BGK equation is mo-
mentum conserving, but energy is not conserved.

The BGK model fulfills the criterion given by Evans and Morris quoted in
Sec. 3.2.5. The collision process is is a completely generic mechanism, but as
it conserves momentum it leads to a well defined asymptotic behaviour. It is
possible to derive the Navier-Stokes equation from this assumption for large
time and length scales. The transport coefficients depend solely on the choice
of τr.

To obtain the Lattice-Boltzmann equation, we consider again the full Boltz-
mann equation. Assuming a constant potential, and disregarding the colli-
sions, Eq. 5.21 can be integrated along a line r + vt over a time interval τ .

140



5.2. Lattice-Boltzmann/MD simulations

This leads to
f (r + vτ,v, t+ τ) = f (r,v, t) . (5.24)

This expresses the fact that all particles at (r,v) travel to (r + vτ,v) in
the time interval. For sufficiently small time intervals τ also BGK collision
expression can be rewritten as

f (r,v, t+ τ)− f (r,v, t) =
1

τr
(f − feq) . (5.25)

To obtain the Lattice-Boltzmann equation this equation is discretized by
choosing a cubic lattice with discrete lattice points rmno = amex + aney +
aoez, with a lattice constant a. The vectors ex, ey, ez denote the unit vectors
in the three spatial directions. The velocity space is discretized accordingly
into discrete velocities vijk, where the spacing is given by the lattice constant
divided by the time step,

vijk =
a

τ
iex +

a

τ
jey +

a

τ
kez (5.26)

The choice of a and τ so far appears arbitrary. They are, however, chosen in a
particular relation to the mass of the particles and temperature of the system.
This allows for a calculation of certain integrals based on the Gauss-Hermite
quadrature.

In the Gauss-Hermite quadrature, integrals of the form

I =

∫ ∞
∞

P (x) e−x
2

(5.27)

are considered. If P a polynomial of degree of not more than ≤ 2n − 1, the
integral I can be expressed exactly by a sum of n terms

I =

n∑
i=1

wiP (xi) , (5.28)

if both the weight wi and the abscissae xi are be chosen appropriately. If
a non-polynomial function is used the sum in Eq. 5.28 is only an approxi-
mation. The correct choice of the xi in one dimension are the n roots of
the Hermite polynomial of degree n. For the abscissae and weights, tables
are available [262]. In multiple dimensions corresponding integration formulas
can be constructed, where a corresponding subset of the space of polynomials
of several arguments can be integrated exactly. The choice of the considered
polynomial degree results in the number of integration points that have to be
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used in Eq. 5.28.

Calculating hydrodynamic fields involves integrals in velocity space. They can
be identified as the moments of the distribution function. The density e.g. is
given by

ρ (r, t) =

∫
dv f (r,v, t) , (5.29)

and the momentum density ρu is given by

ρu (r, t) =

∫
dv vf (r,v, t) . (5.30)

By using the Gauss-Hermite quadrature these integrals can be calculated ap-
proximately, if the distribution does not deviate too much from a Gaussian.
This is only the case for applied forces. An arbitrary distribution function
that deviates only weakly from a Gaussian can be described in terms of its
moments. This can be expressed in terms of a Taylor expansion in three
dimensions,

f (r,v, t) ≈ (a (r, t) + b (r, t) · v + c (r, t) : vv + · · · ) e−mv2/2kBT . (5.31)

where : denotes the double tensor contraction. The constants a, b, c are deter-
mined from matching the moments of f . When considering isothermal flow,
it is sufficient to match moments up to second order [255]. For n = 2 the

roots of the Hermite polynomials are 0 and ±
√

3/2. The velocity is rescaled

to x =
√
mv/2kBTv, so that e.g. the density integral is of the form

ρ =

√
m

2kBT

∫
dxg (r,x, t) e−x

2

(5.32)

in which the Gauss-Hermite quadrature can be applied. Here g is the poly-
nomial approximation of Eq. 5.31. The Maxwell-Boltzmann distribution is
brought to the same form by expanding it around small velocities u,

feq (v) =
ρ

(2πkBT )
3/2

(
1 +

mv · u
3kBT

+
m2 (v · u)

2

18k2BT
2
− m2v2

9k2BT
2

)
e−mv2/2kBT .

(5.33)
With this method it is therefore possible to express the local particle distri-
bution function in terms of a few discrete quantities, namely the moments of
the distribution.

The connection to the discretization of the Boltzmann equation is made such
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that exactly the points at which f is evaluated, the abscissae, correspond to
the discretization points of time and space. Every quadrature point corre-
sponds exactly to the discretization points in Eq. 5.26. The naming scheme
introduced by Qian [263] characterizes every LBM by the spacial dimension
and the number of abscissae in the Gauss-Hermite quadrature. In two spa-
tial dimensions the most prominent example is the D2Q9 scheme, where in
the nine integration points (0, 0), (±a/τ, 0), (0,±a/τ), and (±a/τ,±a/τ) are
considered. Throughout this thesis, the D3Q19 variant will be applied. Its 19
velocities are depicted in Fig. 5.6. They correspond to the vectors

v0 = (0, 0, 0),

v1, · · · ,v6 = (±a/τ, 0, 0), (0,±a/τ, 0), (0, 0,±a/τ), and

v7, · · · ,v18 = (±a/τ,±a/τ, 0), (0,±a/τ,±a/τ), (±a/τ, 0,±a/τ),

(5.34)

and a/τ is identified as
√
m/3kBT . This condition links the choice of the spa-

tial and temporal discretization to the mass of the particles and the tempera-
ture of the system. The associated weights in the Gauss-Hermite quadrature
are

w0 =
1

3
, w1, · · · , w6 =

1

18
, and w7, · · · , w18 =

1

36
. (5.35)

It is important to note that the information about the full distribution func-
tion f has been reduced to its value at fixed positions vi in velocity space, the
populations. All formulas look as if the velocity space had been discretized
in the first place, but they are merely the abscissae of the Gauss-Hermite
quadrature.

On the level of ρ and u as defined in eqs. 5.29 and 5.30 hydrodynamic be-
haviour is recovered asymptotically. The dynamic viscosity, the only relevant
transport coefficient for low Reynolds number flow, is obtained from the value
of the relaxation time τr by a multiple time scale expansion. This approach is
known as the Chapman-Enskog analysis. It is found that for the LBE in the
BGK form the viscosity is related to the relaxation time by

η =
kBTτ

a3
1 + τ/τr
1− τ/τr

. (5.36)

In typical soft matter applications diffusion is very important. If diffusive
mechanisms are considered, the fluctuations of a medium can, of course, not
be neglected. Fluctuations can be incorporated into the LBM by adding a
stochastic expression to the collision step. It was shown by Dünweg, Schiller
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Figure 5.6: The 19 velocities of the D3Q19 Lattice-Boltzmann equation. One
population is at rest, six move to nearest neighbours and twelve to next-nearest
neighbours. From [264].

and Ladd that this can be expressed best in terms of the framework of multiple
relaxation time (MRT) Lattice Boltzmann Method [265–268].

In the LBGK equation all populations relax towards the local equilibrium with
a single relaxation time constant. In general, a linear collision operator can
have multiple characteristic relaxation times. The expression of Eq. 5.25 can
be generalized to

f?i = fi,eq +
∑
j

Cij (fj − fj,eq) , (5.37)

which reduces to Eq. 5.25 in the case Cij =
1

τr
δij . The idea of the multi-

ple relaxation time formulation, lies in generalizing this equation such that
the collision operator Cij conserves mass and momentum, but otherwise is
formulated with maximum freedom. This can be done by constructing new
orthonormal basis set of the space spanned by the local populations, the mode
space.

For the D3Q19 model it is possible to construct the following classes of
modes:

• the density

• the three components of the momentum density
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• a bulk mode describing local compression or expansion

• five modes related to shear stress

• nine modes which are not directly related to physical quantities, so called
ghost or kinetic modes.

The density and momentum density are conserved, and hence the correspond-
ing eigenvalue of the collision matrix is unity. The eigenvalues of the bulk
and stress modes control the bulk and shear viscosity of the fluid. The relax-
ation of ghost modes does not have an immediate physical interpretation. For
D3Q19 two independent relaxation times for the ghost modes can be chosen.
A proper choice of the ghost mode relaxation time can be used to improve the
stability of the LBM with certain boundary conditions [269].

The collision process leads to a relaxation of these modes towards their equi-
librium value, if they are not conserved. In the same spirit as in the Langevin
equation, under conditions with nonzero temperature, random fluctuations
must be added to them. It was shown that these fluctuations need to be
added to all modes to obtain a thermodynamically consistent system in equi-
librium [155, 268]. This is most conveniently done in the multiple-relaxation-
time (MRT) formulation of the LBM. The implementation in ESPResSo fol-
lows this scheme [266].

The most widely used method to include boundaries to an LB fluid was al-
ready applied for LGCAs, the bounce back method. Originally, discrete parti-
cles propagated to wall nodes were reflected to where they came with inverted
velocities [270]. In terms of populations this means, all populations streamed
into a boundary node are reflected back to the node where they came from
with inverted velocities. This does not cause overwriting of relevant data,
because exactly this population would have been streamed to that node from
a boundary node. With this method in the LBM a zero-velocity boundary
condition half-way between to nodes is produced [271, 272]. This statement
only applies if the viscosity is not too high. In general the position of the
boundary will depend on the viscosity [273]. Interestingly we have observed
that this leads to cases where refining the lattice and keeping the viscosity
constant worsens the agreement with the expected result as an apparent slip
appears. A thorough discussion of possible boundary implementations is be-
yond the scope of our project, as we consider the LBM mostly as a tool to
mediate hydrodynamic effects.
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5.2.2 Coupling small particles to the LB fluid

In many applications of the LBM, it is necessary to couple the actual soft
matter to the solvent the that is modelled by the LBM. The first model for
particle coupling was suggested by Ladd et al. [274]. In this coupling scheme,
particles are represented as bounce-back boundaries to the LB fluid. By sum-
ming up the transferred linear and angular momentum during a time step,
the force and torques on the particles are calculated and their equations of
motion are integrated. If necessary, the shape of the boundary is updated. In
Ladd’s work, a stochastic collision operator was used for the first time. Due
to the fluctuating stress, Brownian motion of the particles can be observed,
as desired for soft matter systems.

A different coupling method was introduced by Ahlrichs and Dünweg [254].
The general idea is that small particles are coupled by their expected frictional
momentum exchange with the fluid. In this model it is assumed that a particle
moving with velocity v at position r experiences a frictional force

F F = −γ (v − u (r)) . (5.38)

The coefficient γ is a friction coefficient, which we will discuss below. To ob-
tain the fluid velocity at a continuous particle position, the fluid velocity is
interpolated from the surrounding fluid nodes. The same force with opposite
sign is applied to the fluid to conserve momentum in this coupling process.
In the present implementation in ESPResSo, a first and a second order inter-
polation scheme can be employed, and the interpolation weights are also used
to spread the force on the surrounding lattice nodes. In the following section
we will discuss several aspects of this coupling scheme. Similar analyses were
performed by Nash et al. and Ollila et al. [275,276].

We note that the considered coupling mechanism is not overdamped, but
resolves the inertial time scale. It is helpful to quantify this scale for an
illustrative case. Assuming a colloid of R =1 µm radius with the density of
water immersed in water, the characteristic time scale of the decay of the
velocity is

m/γ = ρ
4π

3
R3/6πηR ≈ 200 ns. (5.39)

In comparison, the time to diffuse over its own radius is

r2/DkBTR
2/6πηR ≈ 5 s. (5.40)

This time scale is a factor of approximately 107 larger than the inertial time
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scale. Accordingly, the Schmidt number is 107. Matching both numbers
independently is thus very difficult, as the number of time steps must be at
least equal to the ratio of the two. Using the Lattice-Boltzmann algorithm
for colloidal particles can only be practical following the idea of telescoping
of time scales [277]. If two time scales in a physical system are sufficiently
separated, a simulation method can be applied where the time scales are closer
together but still sufficiently separated. Practically a much smaller Schmidt
number may be as good as the correct one, which allows to significantly reduce
the number of time steps. The clear advantage of using an algorithm where
the inertial time scale is resolved, is that hydrodynamic interactions can be
achieved by purely local operations.

Interestingly the friction coefficient γ in Eq. 5.38 is not identical to the inverse
mobility of a particle. When a force F ext is applied to a particle also the
underlying fluid starts to move, as it is accelerated by the friction force. A
stationary state is reached, when the applied forces and the friction force
cancel, and then the applied force is completely transferred to the fluid. The
particle velocity will then be given by

v = F ext/γ + u (r) . (5.41)

Note, that due to the finite resolution of the grid, the fluid velocity at the
particle position remains finite, in contrast to the divergent Stokeslet in the
continuum case. Hence, if the resolution of the LB fluid is raised, the velocity
at the position of the particle can be expected to be proportional to the
resolution, as the flow field, decaying like 1/r, is resolved finer. Furthermore
in the Stokes equation the fluid velocity is proportional to the inverse of the
viscosity. These dimensional arguments lead to a particle mobility of the form

µ =
1

γ
+

g

ηa
, (5.42)

which was suggested by Ahlrichs and Dünweg [278]. g is a numerical constant,
which is supposedly independent of all other parameters. We performed the
same check of this formula as Ahlrichs and Dünweg, and could confirm this
behaviour for sufficiently high viscosities. As the LB method only fulfills the
Stokes equation in the limit of large lengths, the field on short distances may
deviate from the 1/ηa scaling discussed above. Therefore it is legitimate that
the numerical value of g also depends weakly on the viscosity. For the D3Q19
method with the first order coupling, g is around 0.04.

We define the hydrodynamic radius rH of a particle coupled by this method
as the radius of a sphere with the same mobility in the same medium. This
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leads to the following expression

1

rH
=

6πη

γ
+

6πg

a
. (5.43)

Thus for all choices of η and γ, the hydrodynamic radius can be at maximum

rH ≤
a

6πg
≈ 0.75a. (5.44)

This point is very important from the practical perspective. Making the lat-
tice of the LBM finer does not leave the physics unchanged. On the contrary,
it weakens the hydrodynamic interactions, as the hydrodynamic radius is de-
creased.

In addition, the mobility of a particle in periodic boundary conditions is sys-
tem size dependent. This issue was first discussed by Hasimoto [279]. His ac-
tual physical question was the permeability of a periodic array of spheres. In
this context he analyzed the response of a fluid subject to a delta-shaped force
replicated periodically in space on a cubic lattice. He applied an technique
inspired by the Ewald sum, where automatically a homogeneous counter-force
density is assumed, because otherwise the result would be divergent. His re-
sult leads to the following form of the mobility of a spherical particle of radius
a in a cubic box of length L:

µ =
1

6πηa

(
1− 2.81

rh
L

)
. (5.45)

This expression is asymptotically exact for large a/L.

In order to check the agreement between Hasimoto’s prediction and the LBM,
we performed computer simulations, in which we applied a force to an iso-
lated particle in periodic boundary conditions. A homogeneous counterforce
was applied to the fluid, in agreement with Hasimoto’s calculation. These cal-
culations were performed with boxes of different sizes and checked the validity
of the formula. The results are depicted in Fig. 5.7. Here we report only one
data set, but the agreement between the Hasimoto prediction and all simula-
tion results was very good. Only relatively large boxes (corresponding to >
20a) were investigated, and therefore higher order corrections to the Hasimoto
formula are negligible.

The finite size correction of the mobility can be interpreted as a result of the
hydrodynamic interaction between a particle and its periodic images. The
good agreement with Hasimoto’s formula underlines that HIs are modelled
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Figure 5.7: Finite size dependence on the mobility of a single particle coupled
with the point coupling method. The simulation results (points) are coincide
perfectly with the theory by Hasimoto [279]. This indicates that the hydrody-
namic interaction with periodic images in the simulation method supports the
notion of a hydrodynamic radius of particle coupled with the point coupling
method.

asymptotically correctly. Thus, unique hydrodynamic radius is a justified
concept for this coupling method. The same effective radius which describes
the particle mobility also determines the strength of the hydrodynamic inter-
actions.

Additionally we wanted to measure the hydrodynamic interactions of a pair
of particles. However, this quantity is also influenced by finite size effects,
and it was difficult to correct for this effect. Alternatively, we used the flow
field created by the particles and the counterforce in the simulations above
and compared it to the solution of Stokes equation subject to a point force
in periodic boundary condition. This can be expressed as a infinite sum of
Stokeslets. For the summation an Ewald summation technique can be applied.
This calculation was first performed by Beenakker [280], and we implemented
the formulas from [281].

In Fig. 5.8 we present the results. We find a good agreement of the analytic
solution and the LB results in the percent range at distances of around 3-5
lattice sites between particles. Therefore we can also expect hydrodynamic
interactions to be in agreement with the Oseen-Tensor level hydrodynamic
interactions.
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Figure 5.8: Flow field in a box subject to a point force at the center. (a) Scaled
flow field in the plane where the force is applied. LB results are indicated
as solid arrows and the analytic solution as dashed arrow. (b) The vertical
component of the scaled velocity along the horizontal centerline of graph (a).
The simulations are displayed as dashed lines with symbols at the lattice
nodes, and the analytic solution as solid line. The velocity units are arbitrary,
as only the linear response is considered.

As a further test we addressed the question if the coupling method fulfills the
fluctuation dissipation theorem, or, more precisely, the Green-Kubo formula.
Schiller and Dünweg have found a proof [255], but we will show below, that
not in all cases of practical relevance the conditions of their proof is fulfilled.

To define a time dependent mobility µ (τ), we assume a particle at rest that
is subject to step force that is switched on at τ = 0. The particle will assume
a velocity v (τ). We define µ (τ) as the velocity after time τ , divided by the
magnitude of the applied force F . This quantity can be extracted easily from
the same simulation we have used to calculate the long time mobility. It is
straightforward to show that this quantity is the inverse Fourier transformed
frequency-dependent mobility. By means of the Green-Kubo formula it is
related to the integral of the velocity autocorrelation function by

µ (τ) =
1

kBT

∫ τ

0

dτ ′ 〈v (t) v (t+ τ ′)〉t . (5.46)

This is a generalization of Eq. 3.35; the “normal” mobility is retained for
τ →∞. We denote the time-derivative of the mobility as the response function
g. It is accessible directly by simulations by using a delta-function-shaped
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Figure 5.9: Test of the fluctuation dissipation theorem. (a) Velocity autocor-
relation function (symbols) vs. response to a short force pulse (lines). (b)
Integral of the the velocity autocorrelation function vs. response to a step
force. Friction constant and viscosity are give in simulation units.

force in time, a kick, and measuring the velocity of as a function in time. It is
the fundamental solution of the corresponding equation of motion, and can be
therefore also called the Green’s function of the particle motion. The velocity
response to any force F (t), can be obtained from its convolution with g. By
virtue of the FDT, it must be identical to the velocity autocorrelation function
up to a constant 1/kBT .

We also calculated the velocity autocorrelation function for a single particle
in periodic boundary conditions for different values of the viscosity η and
friction coefficient γ, with a lattice constant of 1. The results are presented
in Fig. 5.9. It observed that the expected agreement is only found, if the
viscosity and friction coefficient are sufficiently large. The long time limit of
the mobility measured from fluctuations and from pulling the particle differs
up to a factor of two under the considered conditions. We found that this
behaviour is insensitive to the LB time step, and therefore is unlikely to be
related to LB internals. It however appears to be an intrinsic property of the
coupling mechanism.

So far we have not been able to systematically track the origin of the devia-
tions. Lower viscosities increase the deviations, but it still remains unclear,
what exactly causes the deviations. In the proof in Ref. [255], Schiller and
Ladd argue only on the level of hydrodynamic fields, and hence assume that
the fluid is in local equilibrium on the time scale of the coupling. By decreas-
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ing the viscosity, the time scale on which the hydrodynamic fields develop
increases. Therefore, it is plausible that the time scales for establishing a vis-
cous flow and of the relaxation of particle momentum are not sufficiently well
separated to apply the proof.

As a further test, we investigated the conductance of an electrolyte. On-
sager [282], based on work of Debye and Hückel, derived a model how the
conductance of an electrolyte depends on the concentration. His theory ap-
plies for sufficiently small concentrations, and contains two effects, relaxation
and retardation. First, the radial distribution of ions is skewed by the ap-
plied electric field, the relaxation effect. This leads to a reduction of the field
strength at the position of the ion, and hence a reduction of the conductance.
Second, ions of opposite charge moving in opposite directions are subject to
hydrodynamic interactions which also slows them down, the retardation effect.
In Onsager’s calculation, hydrodynamic interactions are taken into account on
the Oseen level. The results of this calculation is known as the Debye-Hückel-
Onsager limiting law and is contained e.g. in many physical chemistry books.
For a 1:1 electrolyte. it can be brought to a particularly simple form, where
it reads as

σ = 2cµ0

(
1− 0.07

lB
lD
− rh
lD

)
. (5.47)

It is apparent, that the retardation term vanishes for vanishing hydrodynamic
radii.

For small c, the Debye-Hückel-Onsager law is exact. Interestingly, this means
that the conductivity can not be expanded in a Taylor series in c, as the slope
at c = 0 is infinite, but must be expanded in terms of

√
c. Different empirical

extensions have been proposed to extend the range of applicability of such a
formula to higher concentrations.

We performed simulations of a univalent electrolyte at room temperature
represented by spherical particles interacting with the WCA potential with
σ = 0.45 nm and ε = kBT . The hydrodynamic radius chosen in agreement
with that of K and Cl ions to 0.15 nm. This was done by using a lattice
constant of 0.34 nm. This length was chosen as the unit of length in the sim-
ulations. The mass of both cations and anions was chosen as unity. Using the
mean experimental mass this fixes the unit of time of our simulations to 1.5
ps. We chose a viscosity of 0.8 in simulation units, corresponding to 0.11 mPa
s. This is a factor of 10 smaller than real water, but the diffusion constant
accordingly is with 1.3 10−8m/s also factor of 10 larger. The Schmidt number
is even smaller by a factor of 100, as we have reduced the viscosity and en-
hanced the diffusion constant. The box shape is cubic with an edge length of
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Figure 5.10: Specific conductance of an electrolyte simulated with Langevin
dynamics (Lgv) and the LB method. (a) Plotted with a linear concentration
axis, (b) axis scaled by the square root of the concentration. Simulation data
with Langevin dynamics are shown as squares, and data obtained with the LB
method are shown as circles. Experimental data, interpolated with splines, is
shown as grey lines. The result of the Debye-Hückel-Onsager (DHO) formula
is added in the right plot as dashed lines, both with (blue) and without the
hydrodynamic contribution (red).

20 simulation units, or 6.68 nm. The choice the parameters convenient from a
practical perspective, as the diffusion constant is relatively high, and therefore
simulated systems exhibit a high signal-to-noise ratio. On the other hand, the
FDT is fulfilled sufficiently precisely to derived unique transport coefficients.
It is, however, not unique, and from our perspective further investigations of
the role of the parameters are necessary.

In Fig. 5.10 the result is depicted and compared to experimental results to
NaCl from [283]. Furthermore we compare the results to simulations without
hydrodynamic interactions using Langevin dynamics. The friction coefficient
in the Langevin dynamics simulations are chosen such that the mobility of an
isolated particle is matched. The conductance of the experimental data is nor-
malized by its value at infinite dilution, and the simulation data is normalized
by the mobility of isolated particles.

The agreement with the experimental data is very good. The simulation data
captures the experimental curve almost to the statistical accuracy of the sim-
ulation data. The relaxation effect is weaker than the retardation effect, but
constitutes an important contribution. For small electrolyte concentrations
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we find considerable deviations, that are caused by the finite size of our simu-
lation box. For the smallest considered salt concentration only four ion pairs
were used. Such a good agreement between simulation and experiment is very
surprising from our perspective, but very encouraging. Our simulation data
not only captures low concentration as the Debye-Hückel-Onsager law, but
can describe the experimental data over the entire concentration range.

5.2.3 Nanopore conduction with the LB model

The electrolyte model described above was applied to calculate the conduc-
tance of a nanopore in the presence and in the absence of a DNA molecule.
Inspired by the electrokinetic continuum model, the DNA molecule was repre-
sented as a cylinder and the nanopore as a cylindrical channel. We considered
a system where both the pore and the DNA periodically repeated across the
boundary. This way we can simulate a finite piece of pore and DNA that
imitates an infinite system. The DNA cylinder was charged by placing par-
ticles with one elementary charge at a mutual distance of 0.16 nm along the
cylinder axis. The DNA-ion interaction was modelled by a WCA interaction
with ε = kBT and σ =0.425 nm, and the distance was shifted by 0.575 nm
to obtain a steep potential and a distance of closest approach of around 1
nm. The Bjerrum length of 0.71 nm reflects a temperature of 298 K and an
aqueous solvent. A box length of 25 nm was chosen and again all lengths were
expressed in units of the LB lattice constant of 0.34 nm.

The total charge of the cylinder consisted of 144 elementary charges. The
system was neutralized by adding 144 positive counterions, and a varying
number of extra ions was added to the system. In this geometry it is impos-
sible to use an ion reservoir. Our strategy was therefore adding a different
numbers of salt ions, perform the simulation and determine the concentration
of a hypothetically attached reservoir a posteriori. This leads to a somewhat
different salt concentration than one obtains by dividing the number of ions
by the pore volume. We determined the salt concentrations by calculating the
local concentration as a function of the distance to the pore axis, and fitting a
constant to the mean of the concentration of positive and negative ions in a re-
gion between 3 and 4.5 nm away from the pore axis. If the Poisson-Boltzmann
equation held exactly, this method would yield exact results given that the
electrostatic potentials are smaller than kBT/e. This is the case in the regions
used for averaging. The same method was also applied for the atomistic sim-
ulations described below, where we performed further simulations to justify
it.
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Figure 5.11: Radial density profile of ions. K+ ions are shown as squares, and
Cl− ions as circles as obtained from the simulations. Corresponding results
of the electrostatic continuum model are shown as lines. The left half of the
plot is corresponds to a reservoir concentration of 135 mM and the right half
to 600 mM.

In Fig. 5.11 we display the ion densities we obtained from our simulations
for two different data sets, corresponding to 101 and 505 ion pairs added to
the system. The corresponding reservoir concentrations were determined to
be 135 mM and 600 mM. The agreement between the electrokinetic infinite
cylinder model and the simulations is good. Especially for the higher salt
concentration case the decay of the counterion cloud towards the bulk value
is somewhat faster. This indicates that correlation effects are present that
are not contained in the PB theory. The divergence between the two models
is weak. We therefore can say, consistent with previous findings [284], that
the ion density and hence also the electrostatic potential around a charged
rod with the line charge density of DNA is described well by the Poisson-
Boltzmann equation, and that correlation effects are not a dominant source
of error.

The position-dependent water and ion velocities are depicted in Fig. 5.12a.
The water velocities obtained in the simulations are significantly in the simu-
lations than in the electrokinetic model. This encloses both datasets shown,
although the deviations for higher salt concentrations are larger. Qualita-
tively the fast decay of the counterion cloud in the simulations will lead to a
smaller water flow. This can be understood by considering the extreme case
of ions sitting right at the boundary. The force acting on them is immediately
transferred into the DNA and they do not constitute electroomotic flow. The
effect can be considered analogous to a lever. The larger the distance of the
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Figure 5.12: (a) Ion velocity as a function of the distance to pore axis. K+ and
Cl− ions as squares and circles resp. The velocity of the LB fluid replacing
the water is displayed as diamonds. The corresponding continuum model
prediction are shown as lines. (b) Ion mobility as a function of the distance
from the pore axis pore axis.

counterions from the DNA, the larger is the EOF they create. This qualitative
finding is also the reason why the EOF is smaller when the Debye length gets
smaller. A second aspect probably is related to the coupling scheme of the
LB particles. Due to the multilinear assignment scheme forces in a certain
range are directly transferred into the DNA without causing an acceleration
of the water. This could be a second source of deviation, which we have not
completely ruled out. Finally it is interesting to note that the position of the
hydrodynamic boundary is found exactly at the desired distance from the pore
axis, although the cylinder is represented on a lattice. The ion velocities we
obtain are in good qualitative agreement between the values obtained from
the continuum model, although significantly smaller. This is not surprising as
the conductance decreases with increasing concentration in the coarse-grained
simulation model.

In the electrokinetic continuum model the ion velocity is just the water velocity
plus a constant offset. Inspired by this notion we define an effective position-
dependent mobility as the difference between the local ion velocity and the
water velocity, as

µ± = ±
(
v±z (r)− u±z (r)

)
. (5.48)

It is shown in Fig. 5.12b for both ion species, again for the same two datasets as
used before. We normalize their values by the mobility of an isolated particle.
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At least for the higher concentration data set the mobility is almost constant
in the center between the DNA and the pore wall. This constant however is
significantly smaller than unity, which reflects the concentration dependence of
the conductance. Towards the walls detail below. The mobility of counterions
is somewhat larger than the mobility of the coions. For this behaviour we
have so far not found a satisfactory explanation, but it is found throughout
our data.

On the macroscopic scale the mobility of particles in a solvent is reduced near a
wall. In analogy with the image charge method this effect can be explained in
term of image particles moving in the opposite direction. A particle interacts
hydrodynamically with this image particle, leading to a decrease in mobility.
For a single planar wall this can be expressed in terms of the Blake tensor
[285], that replaces the Oseen tensor near walls, just as Coulombs law can
be corrected by introducing an image charge on the other side of the wall.
Asymptotically the correction behaves as equation

µ (d)‖ = µ0

(
1− 8

9

a

d
+ · · ·

)
, (5.49)

where d is the distance from the wall. Perkins and Jones derived a quasi-exact
expression by solving the Stokes equation in this geometry [286]. We applied
their result, as stated in [287], to construct an expression for the position-and
concentration dependent mobility. We assumed that the mobility is corrected
by three factors, a factor depending on the local concentration , and the
influence of two walls. The concentration factor was determined from an in-
terpolation of the experimental data, and we used the local concentration of
ions of the opposite charge, as the opposite species is responsible for the relax-
ation and retardation effects. The wall factors were constructed by inserting
the distance to both walls into the Perkins-Jones formula. For simplicity we
only state its asymptotic form

µ (r) = µ0 × fconc ×
(

1− 8

9

a

r − rDNA

)
×
(

1− 8

9

a

r − rwall

)
. (5.50)

It is depicted in Fig.5.12b as solid lines. Even though the agreement to the
simulation data is not perfect we reproduce the trends in the simulation data
well. It appears plausible that these two factors must be taken into account,
even though they conceptually not included in the electrokinetic equations.

Finally we investigate the current predictions of the coarse grained simulation
model. The current is measured from the displacement of all ions during
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the production part of the simulation, divided by the applied field and the
simulation time. We write the total current as product the product

I = niµ0E (5.51)

of the number of ions per unit length n =
(
N+ +N−

)
/L, multiplied by the

product of the velocity of an isolated particle µ0E and a dimensionless current
per particle i, which contains all deviations from the behaviour of isolated
particles. This way we can distinguish between two influences, how a DNA
affects the number of ions present in the pore, and how easily these ions can
move. If all ions moved at the velocity of an isolated particle, i would equal
unity. This way it is possible to express the conductivity of the system in
“equivalent ions per nanometer” N/Li, thus in the same units as the number
of ions in the system.

In Fig. 5.13a we present the results obtained both for the number of ions the
pore contains per unit length and the reduced measured current. Both are
shown as a function of the effective reservoir concentration which was calcu-
lated a posteriori for every dataset. We performed all simulations also for a
DNA-free system, where the same a posteriori analysis procedure was applied.
We find that for low concentrations the number of ions in the pore and the
current is significantly larger when a DNA is present in the pore, reflecting the
fact that the conductivity is dominated by the counterion cloud surrounding
the DNA. For all datasets the current is considerable smaller than the num-
ber of ions per unit length, thus i is smaller than unity and decreases with
increasing concentration. This reflects the decrease of electrolyte conductance
with increasing concentration.

For concentrations above around 600 mM, both the number of ions and the
current exhibit a crossover. Above this concentration, the conductivity is
higher without a DNA. Although the relative statistical error is small, this
crossover is not much larger than the error. To investigate this further, we
fitted a third order polynomial to the data without DNA, and investigated
the relative difference in current I, number of ions n, and current per ion i.
The validity of the third order polynomial fit was verified by a χ2-test. We
define the relative modulation of the current as

∆I/I = (Iwith DNA − Iwithout DNA) /Iwithout DNA, (5.52)

and the relative modulations of n and i analogously. The results are shown in
Fig. 5.13b, and compared to the experimental data of Smeets et al. . Here, the
crossover around 700 mM in the simulation data is clearly visible. Interestingly
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Figure 5.13: (a) Comparison of the number of ions n in the pore (open symbols)
and the reduced ion current I (solid symbols). Data with a DNA present is
depicted as squares, and data without DNA as circles. (b) Relative modulation
of the current ∆I/I, the number of ions in the pore ∆n/n and the current
per ion ∆i/i. Experimental data for of Smeets et al. [5] is shown as black
diamonds, the modulation of the current as smaller red solid diamonds, the
modulation of the number of ions as open diamonds and the modulation of
the current per ion as solid pentagons. The size of the statistical errors is
comparable to the symbol size.

it occurs both in ∆n/n and ∆i/i at a similar concentration, but in both cases
the reduction is with . 1% very weak.

We interpret the data as follows. The relative modulation of the number of
ions per unit length exhibits the same crossover behaviour as in electrokinetic
infinite cylinder model. The crossover concentration appears to be somewhat
smaller than the 800 mM determined in the continuum model. This can, how-
ever, be explained by the occurrence of correlation effects which are neglected
in the continuum model. In all cases, the current per ion, which is equivalent
to the electroosmotic contribution to the current in the continuum model, is
smaller not only in absolute numbers due to the concentration dependent con-
ductivity, but also smaller in relative terms. Two sources of this effect can be
identified. First, the electoosmotic flow occuring in the simulation is smaller
than in the continuum model. Second, the mobility of ions near the DNA is
smaller due to the hydrodynamic image particle interaction.

To this point the data obtained from the simulations is only partly satisfactory.
We have identified four potentially important effects, (a) the excluded volume
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of the DNA which ions can not enter, (b) the counterion cloud of the DNA
which brings extra ions into the pore, (c) the electroosmotic flow and (d) the
mobility reduction near boundaries. The last aspect is a result of momentum
conservation and particle number conservation, it is very likely to occur also
for real DNA. On the other hand, the models we applied here are clearly
too coarse for a quantitative analysis. The magnitude of the effect only a
few percent and on that level the exact shape, position of charges, surface
structure and other microscopic details are likely to be important. To achieve
a better understanding of these effects, we decided to perform also simulation
with atomistic resolution, where these aspects are represented much more
realistically. They will be described in the following section.

5.3 Atomistic model of nanopore conductance

In this section we present our atomistic resolution model of a DNA in a
nanopore. From the previous models we have learned what are the key ef-
fects that determine how much the nanopore current is modulated by the
presence of a DNA molecule: (a) the excluded volume of the DNA, (b) the
DNA charge and the structure of the counterion cloud (c) electroosmotic flow,
and (d) friction effects near the DNA. The magnitude of each effect however
remains obscure. All of them are significantly affected by the microstructure
of the DNA. Therefore we studied these quantities with a model with atomic
resolution to achieve a more realistic picture.

The guiding principle of atomistic simulations is that every atom is represented
by a particle. At present, atomistic computer simulations of biomolecules, such
as proteins and nucleic acids have reached a point where they can be applied
without many years of experience, but after a relatively short training pe-
riod. Different software packages, such als GROMACS (GROningen MAchine
for Chemical Simulations) [288–292], AMBER (Assisted Model Building with
Energy Refinement) [293, 294], CHARMM (Chemistry at HARvard Macro-
molecular Mechanics) [295, 296] and NAMD (Not (just) Another Molecular
Dynamics program) [297, 298] are installed and ready to use on many super-
computers. Using them requires only relatively little knowledge about the
internals, and a vast amount of computer simulation results is published in a
broad range of scientific journals. From crystallographic X-ray measurements
the structure of an impressive number of biomolecules is available. Down-
loading one of them from the Protein Database (PDB), and studying it in
simulation can be learned in a few days. The possibility to zoom into details
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5.3. Atomistic model of nanopore conductance

which are experimentally inaccessible allow scientists to gain an entirely new
perspective on microscopic mechanisms, that, for example, be e.g. biologically
relevant.

In Fig. 5.14 we outline our simulation setup. Just as in our previous simu-
lations, we investigate the central part of a cylindrical nanopore. We apply
periodic boundary conditions to mimic an infinite system. The system length
is chosen in agreement with the symmetry of a DNA molecule. We use a
simulation box size of 6.76 nm, which contains exactly two full turns of the
double helix. We choose a DNA homopolymer which consists only of CG base
pairs. In Sec. 5.3.4, we compare the results also to a DNA containing only
AT base pairs. The DNA is held in place by harmonic springs attached to
the phosphorous atoms of the backbone, so that it can deform and fluctu-
ate but not move away from the initial position. Water and ions are added
to the system. An electric field is applied parallel to the pore axis and the
ion motion is monitored and analyzed. For comparison, identical simulations
without a DNA molecule were performed. In principle, this system is identical
with the electrokinetic infinite cylinder model, and the LB/MD model. The
only difference is that all degrees of freedom are taken into account explicitly
in terms of particles. Similar simulation studies have been conducted by Luan
et. al. [299], but with a focus on measuring the force acting on the DNA.

Despite the relative ease of performing simulations, the question remains how
reliable the results are. Crucial is the choice of simulation parameters, most
importantly the choice of interaction potentials between atoms. The dataset
containing all interaction potentials is called a force field. Determining these
parameters from experimental data is an extreme complex inverse problem.
Due to the complexity of this problem, there are several well-established sets
of parameters, where somewhat different philosophies, and also different un-
derlying data guided the development. Each force field was developed in
conjunction with a particular set of parameters for water molecules, the water
model. Choosing a force field is a particularly difficult problem and requires
expert knowledge. For our simulations it was unfortunately not possible to
use one of the most popular combinations.

For the simuluations, we used GROMACS 4.5.5 [289, 291, 300]. This simula-
tion software is very efficient and highly optimized. Especially the implemen-
tation of common water models, for which virtually all atomistic biomolecular
simulations spend most of the computation time, is fast, due hand-written
assembler kernels with a minimum number of floating point operations. Its
relatively narrow focus on biomolecular systems compared e.g. to ESPResSo
makes these optimizations very useful.
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Figure 5.14: The simulation setup used for the atomistic simulations. We
focus on the central, cylindrical part of a long nanopore. 20 base pairs, cor-
responding to two full turns of the helix are simulated in peridioc boundary
conditions. The pore is formed by Lennard-Jones bead forming a cylinder of
radius 5 nm. A box of 6.76×15×15 nm3 is used, and an electric field is applied
along the pore axis.

The somewhat difficult choice of a combination of a force field, a water model,
and interaction parameters of KCl will be discussed in the following section.
Then we will present the details of the applied simulation protocol. In the
following section, we present the simulation results we obtained for the conduc-
tivity of a nanopore in the presence of a DNA molecule. They are compared
to the prediction of the electrokinetic infinite cylinder model. Finally, we in-
vestigate detailed features of the obtained data by means of visual analytics,
where we also discuss sequence-specific effects.

5.3.1 Choice of the force field

An important ingredient for our simulations is the choice of the force field.
Our simulation is not too far from standard tasks in biolomolecular simulations
and therefore we choose one of the classical, (non-polarizable) force fields. On
the market there are four families of force fields for biomolecules: AMBER,
CHARMM, GROMOS and OPLS. The first three have been developed in
connection with simulation packages with the same name. Only the first
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5.3. Atomistic model of nanopore conductance

three are regularly applied for DNA. OPLS is therefore excluded from the
further discussion. Our focus lies on the dynamic properties of ions, and
this introduces certain complications to the discussion. Our rationale will be
presented in this paragraph accompanied by some background information on
each force field.

The AMBER and CHARMM force fields are the most widely used force fields
for DNA [301]. Both are parametrized with the TIP3P water model [302].
The first nucleic acid simulations with AMBER were performed with the AM-
BER94 parameter set of Cornell et al. [303]. The force field parameters were
derived by a combination of quantum-chemical calculation for determining the
partial charges and experimental values of thermodynamic properties. The
AMBER99 parameter set [304] still is the reference for simulations of DNA,
with the exception that unrestrained DNA deforms in very long simulation
runs [305]. The same group therefore suggested a modification of angular and
dihedral potentials, the ParmBSC0 parametrization, which results in a some-
what stiffer double-stranded DNA and appears to be the state of the art in
the simulation of DNA. In the AMBER03 force field [306] torsional poten-
tials and partial charges were reparametrized. Interestingly, in the parameter
set recommended in the manual for the newest version 12 of the AMBER
software, ff12sb, is based on the 99 version including the ParmBSC0 mod-
ifications of the force field again and not on the AMBER03 parameter set.
The CHARMM force field was initially used for nucleic acids in 1995 [307]. It
was updated to be compatible with the CHARM27 version of the force field
and also new ion parameters were included [308]. The resulting DNA con-
formations, however, are somewhere between the A and B form [309]. In the
GROMOS force field hydrogen atoms bound to non-polar atoms are included
into a “super-atom”. This slight simplification appears not to affect the overall
quality of the force field. The GROMOS force field is somewhat less common
in DNA simulations [301]. The most mature parameter set for nuculeic acids,
45A4 [310], unfortunately is currently not available in GROMACS. GROMOS
is parametrized with the SPC water model [311].

In our simulations the conformations of the DNA molecule will only very
weakly depend on the force field. On the one hand, we fix the phosphorous
atoms of its backbone and therefore it cannot bend. On the other hand it
has not ends where it can start unzipping. Only fine details as the size of
the groves and the exact surface exposed to the solvent can somewhat depend
on the applied force field. Therefore the accurate reproduction of a certain
geometry is not the most worrying point in the choice of a force field. Our
main focus lies on the ions. In general it can be stated that the quality of
the ion parameters has not been not considered a very important point in
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the force field development. For example, the only place where the standard
GROMOS parameters for sodium and chloride are documented, is the software
manual. Potassium is even not available at all. We are not aware of any
independent study which assesses the quality of the predictions obtained with
these ions. A second example is related to the default ion parameters in
the AMBER force field. Only relatively recently it has been found that small
stable salt clusters form already at moderate concentrations when the alkali ion
parameters by Aqvist [312] are used. They are not encouraged to be used any
more, [313,314]. Noy even states: “The use of AMBER-standard combination
of LB-adapted [Lorentz-Bertelot-mixing rule adapted] Aqvist parameters for
cations and Dang’s parameters for Cl− should be disregarded as a potential
source of artefacts in simulations at medium or large ionic strengths.”. The
source of trouble originates from the mixing rule used to calculate the Lennard-
Jones interaction parameters between unequal particles. AMBER uses the
Lorentz-Bertholot mixing rule, i.e. the arithmetic mean of σ and ε of the
individual atoms, while the Aquist parameter set requires a geometric mixing
rule [315]. In the last couple of years a trend has developed to systematically
improve the quality of ionic force fields, e.g. [301,316,317]. This process is not
converged, but has created an even larger variety of ion parameter sets with
so far still partly unknown properties.

In addition to the cluster formation, two main points are to be worried about
when making a choice of ion parameters, (a) the DNA/ion interaction and
(b) the hydrodynamic radius of the ions. For the first point, it is very diffi-
cult to make an appropriate statement. Experimental data about ion-DNA
binding is in principle availabe, e.g. [318, 319], and was also used to improve
ion parametrizations [301] but the evidence for or against a particular choice
appeared vague to us. The second point, the hydrodynamic radius is much
simpler to evaluate from our point of view. We define the hydrodynamic ra-
dius rh as the radius of a spherical particle in the same solvent of viscosity η,
for which the Stokes-Einstein formula predicts the same diffusion coefficient
D. Then rh is given by

rh =
kBT

6πηD
. (5.53)

Its importance has been stressed in the previous sections. Only if the hy-
drodynamic radius is reproduced correctly, the contribution of convection to
the overall current is correct. Noy et al. showed [320] that essentially every
combination of popular ion parameters with every common water model in
combination with the ParmBSC0 variant of the AMBER force field leads to
very similar DNA conformations [320]. Therefore we chose to apply the AM-
BER force field, and select a suitable set of ion parameters and water model.
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Ion TIP3P SPC/E exp.
D rh D rh D rh

K+ 2.22 0.31 1.2 0.25 1.957 0.112
Na+ 3.30 0.21 2.05 0.154 1.334 0.167
Cl+ 3.08 0.22 1.74 0.148 2.032 0.108

Viscosity 0.321 0.729 1.00

Table 5.1: Diffusion constants in 10−9m2/s as reported in [324] and hydro-
dynamic radii in nanometer for the Smith-Dang-Garrett ion parameters. In
addition, we report the literature values for the viscosity of water in mPa s.

This way we can also evade the Aqvist ion parameters. One popular choice
is using the parameters of Smith, Dang and Garrett [321–323] (abbreviated
by Dang, as he is the only author of all articles), especially as the Dang chlo-
ride ion is the default of AMBER anyways. From the simulation results of
Joung et al. [324], we calculated the hydrodynamic radii of sodium, potas-
sium and chloride ions in SPC/E and TIP3P water. The results, including
experimental values also from [324] are summarized in table 5.1. We note
that the viscosity of both TIP3P water and SPC/E water are significantly
smaller than the experimental values. The viscosity for TIP3P is around 1/3
and that of SPC/E is around 2/3 the viscosity of real water. Correspond-
ingly, the diffusion constants of all ions are higher in the simulations than in
reality. The hydrodynamic radius in all cases is larger than the experimental
values, which therefore must lead to somewhat large convective current con-
tributions. Hence, that the Dang-SPC/E combination is a better choice than
the combination than choosing TIP3P water.

Originally we had performed the full set of simulations using the GROMOS
parameter set. Also in these simulations the hydrodynamic radius of ions was
significantly too large. We did not determine it exactly, but from investigating
the ion velocity profiles we found that the magnitude of the EOF compared
to the ion velocity was larger than we had expected. Indeed this even spoiled
observing the conductivity crossover. We therefore have chosen to use the
AMBER-SPC/E-Dang combination which is not canonical, but tested for long
time stability by Noy et al. and where the hydrodynamic radii are acceptable.
While experimentally also NaCl is used in experiments, we focus on KCl as in
the experiments of Smeets et al. [5].

Our force field choice was justified, given the available data, but not unique.
It would be very helpful to compare the simulation results presented here to
the prediction of other force fields. However, this goes beyond the scope of
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this thesis. In the conclusions section, we will discuss how this work could be
continued in this respect.

5.3.2 Simulation setup and analysis procedure

We briefly summarize the procedure we perform in course of a simulation.

The DNA strands are generated using the Nucleic Acid Builder (NAB) from
the AMBER toolbox [294]. This tool provides a powerful interface to au-
tomatically generate complex nucleic acid structures. Although we studied
only very simple examples, we chose it because it provides the flexibility to
solve also more complex tasks. Changing from a poly-CG DNA molecule to a
poly-AT could e.g. be achieved with minimal effort. It generates a PDB (pro-
tein database) file which then is converted into a GROMACS structure using
the GROMACS tool pdb2gmx. From solely atomic coordinates and residue
names, this tool creates a topology containing interaction parameters, includ-
ing bonds, angular and dihedral potentials. In this process also the desired
force field must be chosen.

The resulting topology has to be modified to be compatible with peri-
odic boundary conditions. This was done with a tool written in course of
W. Müller’s Diploma thesis. NAB automatically creates special terminal
groups at the ends of the DNA strand. Our tool chops these terminal groups
off and automatically creates bonds between the new ends of the chain. Then
harmonic springs, restraints in GROMACS terminology, are created which
keep the phosphorous atoms in place. Finally the pore atoms are created and
a also fixed in space by harmonic restraints. A pore of length 6.76 nm and
radius 5 nm is created by placing two layers of Lennard-Jones particles with
σ = 0.5 nm at mutual distances of 0.5 nm on a cylinder in a simulation box of
15 x 15 x 6.76 nm3. Adding water and ions is a somewhat more complicated
process described below.

Before the start of a simulation, several annealing steps are taken that ensure
the system reaches a configuration with a small potential energy. First, we
minimize the energy of the system in vacuum with a gradient method, then
we add water molecules. The water molecules are created as periodic repli-
cations of an equilibrated box containing 216 water molecules. This box is
provided by GROMACS and ensures that the systems is not far away from
an equilibrium configuration when starting a simulation. Water molecules
overlapping with the DNA and the pore pseudoatoms are removed. For this
procedure a distance criterion based on the van-der-Waals radii of the atoms
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is used. The applied radii of the pore atoms are adjusted to yield the bulk
density of water in the region between the wall and the DNA. The energy
of the resulting hydrated DNA molecule is minimized again to ensure that
energetically unfavorable configurations are eliminated and the first MD steps
can be be performed without stability problems. Then the production run is
initiated. To make sure the system is in a stationary state, a certain portion,
in most simulations the first nanosecond is discarded. During this period, the
stationary ion distribution develops.

During the production run, the bonds involving hydrogen atoms are constraint
in length with the P-LINCS algorithm [325], because this allows for a larger
time step, here to two femtoseconds. A stochastic velocity rescaling thermo-
stat [157] keeps the temperature of the system constant. In principle this
thermostat is not momentum-conserving and therefore does not produce cor-
rect hydrodynamics. We use a relatively weak coupling constant of 5 ps where,
on the length scale of the considered box size, hydrodynamics are reproduced
with good accuracy. The restraints are sinks of the momentum anyway, and
therefore the system is not extremely sensitive to the violation of momentum
conservation as long as the coupling is sufficiently weak. We also performed
simulations with different coupling times up to 50 ps, hence an even weaker
coupling, and the results were indistinguishable.

Electrostatic interactions are calculated using the SPME method [326] with
a grid constant of 0.125 nm. For short range interactions a 1.4 nm cut-off is
used, in accordance with the specification of the AMBER force field. An elec-
tric field of 0.2 V/nm is applied along the axis of the system. For every salt
concentration ten independent runs of five nanoseconds were performed. For
analysis we hence obtained around 40 ns of simulation trajectories for each
salt concentration. In most simulation runs, we used the GROMACS shared
memory parallelization using one node of the BW-Grid cluster with eight pro-
cessor cores. The performance of around five nanoseconds per day could have
been increased by using a higher number of processors and distributed mem-
ory parallelization. As several hundred independent calculations had to be
performed, this degree of parallelization was sufficient and the parallelization
overhead was minimal.

Once per 200 time steps all particle positions are stored to disc. This creates
a relatively large amount of data, around 3 gigabyte per five nanosecond run.
We chose such a high output frequency as we want to resolve the velocity
autocorrelation time of the ions to maximize the statistical accuracy. After
each run, in an automatic procedure, the ion trajectories and a short piece of
the water trajectories are extracted from the compressed GROMACS output
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format and analyzed by a binning procedure. In this binning procedure for
every ion the distance from the cylinder axis is calculated and the density in
every bin is calculated by accumulating the weights of a linear interpolation
for each bin. The flux density is calculated by multiplying the displacement in
the each interval with the same weights and accumulating it per bin. Finally
the result is divided by the volume of each bin, the number of snapshots
and the timespan of each interval. The mean local velocity is calculated as
the ratio of flux density and density. For bins with a very low density, this
can lead to high statistical errors and therefore if the density was below a
threshold 0.001 ions per cubic nanometer the velocity was set to zero. To
obtain a three-dimensional density and velocity fields, we performed a three-
dimensional binning procedure we describe in more detail below.

In our simulations we could not consider a reservoir explicitly, as it is not
compatible with our geometry. Our strategy for obtaining the reservoir con-
centrations is adding a certain number of ion pairs to the simulation box and
determining the effective concentration of a hypothetically attached reservoir
afterwards. Our method works as follows: In the Poisson-Boltzmann (PB)
theory, the densities c± of univalent ions with signs + and - is given by

c± = c0 exp∓Φ. (5.54)

Here Φ denotes the electrostatic potential measured in kBT per elementary
charge and c0 the reservoir concentration. Then the mean of the + and -
concentration can be expanded in the potential, and we obtain

1

2
(c+ + c−) = c0 +O

(
Φ2
)
. (5.55)

Thus, for sufficiently low electrostatic potentials, the mean of both ion concen-
trations equals the reservoir concentration. We observed in our simulations,
that for distances between 3 and 4 nm away from DNA, the local ion concen-
trations of both species are very similar for all considered datasets. This is
shown in detail below. Therefore, the mean concentration of both species in
this region was assumed to be the reservoir concentration.

In order to check that this method of determining the reservoir concentration
is valid we performed further simulations in a box without the constraining
wall particles with a square cross section, which was fully filled with water and
where we applied periodic boundary conditions in all direction. Since in this
case the box is much larger, it can serve as a reservoir, and at the border the
DNA’s presence is fully screened. We will briefly elucidate this by discussing
another quantity, the mean ion density, in the total simulation volume.

168



5.3. Atomistic model of nanopore conductance

In the simulations with a pore wall, a volume

V1 = πR2Lz, (5.56)

is accessible to DNA, water and ions, where R is the pore radius (5 nm) and
Lz the box length in axial direction (6.76 nm). In the simulations without
pore a volume

V2 = LxLyLz (5.57)

is available. Here Lx and Ly are the box dimensions in x and y direction
(15 nm). The available volume V2 is approximately four times larger than
V1. We performed extra simulations in the larger system where we wanted to
reproduce the ion distribution for a certain dataset of the original simulations
with pore. Let N1 be the number of ion pairs which we had used in the original
simulations and c0 the effective reservoir concentration we have determined
from the original simulations. The additional number of ions pairs to add
to the box was then determined from the reservoir concentration c0 we had
determined from the method described above:

N2 = N1 + (V2 − V1)c0. (5.58)

This was justified as the pore originally had already been large enough to
provide an almost complete screening of the DNA’s charge. We chose the
original datasets with N1 = 16 (lowest concentration), N1 = 64 (close to
the crossover) and N1 = 256 (a high salt concentration of almost 1 mol/l).
Eq. 5.58 gave N2 = 64, N2 = 241 and N2 = 842, respectively. We compared
the ion distributions explicitly for all data sets in Fig. 5.16. As can be seen,
for all datasets the ion distribution around the DNA of the original data and
the new simulations are in agreement, and the ion concentration in the new
datasets converges as anticipated to the reservoir c0 concentration we had
determined before. An important point however was, that the relaxation time
of the ion density was significantly larger in these simulations and the first
four nanoseconds of every run had to be discarded.

In addition, we investigate how the ratio of ion pairs per volume N/V (ex-
pressed in mol/l here) compares to the reservoir concentration c0 we had
determined from the original simulations. In the limit of an infinite box they
should be identical. For the now much larger box, we expect them to be closer.
The results are shown in table 5.2. Indeed, the difference between N/V and
c0 decrease with the larger accessible volume. The factor of four in volume is
reflected in a comparable reduction of the difference.

We have shown that this method allows us to determine the effective reser-
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Figure 5.15: Local ion concentration around the DNA. The data of the original
setup with pore are shown as lines, and the data of the setup without pore are
shown as symbols with error bars. The K concentration (solid line) and Cl
concentration (dashed line) of the original run with 16 ion pairs (dotted line)
are compared to simulation in a cuboid box where the number of ion pairs
we had to add was determined from eq. 5.58. The good agreement between
the ion distributions indicates the method that we used to determine c0 was
correct.

voir concentration a posteriori without extra computational effort. The same
analysis mechanism was also used for the simulations without DNA to make
sure that boundary effects caused by the pore are correspondingly taken into
account.

5.3.3 Simulation results

In the following we perform a detailed investigation of the static and dynamic
properties of the system. It is split into two parts: First, the density profiles
c± (r) and velocity profiles v± (r) , u (r) are compared to the continuum model.
Second we determine the electric current through the pore and compare this
to the experimental results of [5].

The static ion density profile reflects the typical behavior known from the
literature (e.g. [299,327,328]). Fig. 5.16 shows, as an example, the simulation
with 64 added ion pairs. The counterion density exhibits two significant peaks.
One peak occurs at r=0.5 nm (full height not shown), and a second peak is
observed at r=1.25 nm. The first peak is related to counterions entering into
the major and minor grove of the DNA. This peak compensates for around
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5.3. Atomistic model of nanopore conductance

N1 N1/V1 N2 N2/V2 c0
16 0.050 mol/l 64 0.070 mol/l 0.080 mol/l
80 0.28 mol/l 278 0.26 mol/l 0.25 mol/l
256 0.80 mol/l 842 0.92 mol/l 0.98 mol/l

Table 5.2: Comparison of the mean ion density N/V and the concentration of
a hypothetical reservoir c0, from simulations in the cylindrical pore geometry
(1) and in the cuboid box without constraining the pore pseudoatoms (2). In
the second set of simulations the deviation between mean ion density and c0
is approximately a factor of four smaller, reflecting the volume increase by a
factor of four.

1/3 of the DNA’s bare charge at all considered salt concentration. The second
peak indicates the effective radius of the DNA backbone. For larger distances
than 1.25 nm, the ion distribution is well described by the continuum model.
In the region between r = 3 nm and r = 4 nm an almost complete screening
of the DNA charge was observed for all salt concentrations.

In the right panel of Fig. 5.16 we display the ion velocities v± of both ion
species and the water velocity u as a function of the radial position r for
the same dataset. The electrokinetic infinite cylinder model (dotted curves)
and the atomistic simulation data are qualitatively similar. An electroosmotic
flow of water is observed in the migration direction of the K+ ions. Both ion
species move significantly faster than the water whose velocity tends to zero
in the atomistic model approximately at the inner boundary of the continuum
model. The agreement of the hydrodynamic no-slip boundary between both
models up to the size of a water molecule is remarkable.

Motivated by the simple decomposition of the ion velocity v± = µ±E + u
in the continuum model, we define a position dependent mobility of the ions
by computing their actual velocity minus the local water velocity, µ (r)

±
=(

v± − u
)
/E. In the region farthest away from both the pore wall and the DNA

the mobility is constant, and we denote this constant value by µD, the free
mobility. We find that its value is concentration dependent, and the trends
of the experimental data in bulk electrolyte [283] are well reproduced (not
shown). This was, however, not investigated in more detail. In the left panel
of Fig. 5.17 we show the position dependent K+ mobility for electrolyte con-
centrations between 0.15M and 1.2M, normalized by µD. All curves collapse
onto a single master curve. The range of the mobility reduction is comparable
with the effect found in Ref. [329]. The different geometries, however, make a
direct comparison difficult.
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Figure 5.16: (a) Comparison of the ion concentration as a function of the
distance r from the pore axis at around 0.3 mol/l of the atomistic data (points)
to the continuum model (broken lines). The long distance decay of the second
peak at r=1.25 nm is well described by the continuum model. (b) Comparison
of the measured ion and water velocities as a function of r.

Zhang and Shklovskii e.g. introduced a friction coefficient between ions and
DNA and [11], which they calculate based on hydrodynamic arguments, simi-
lar to those we brought forward in Sec. 5.2.3. In Comer et al. measured the dif-
fusion coefficient of ions in the vicinity of the different nucleotides in atomistic
simulations [329]. They found that the diffusion coefficient changes by more
than a factor of two in the first nanometer from the nucleotide, independent of
the specific base. We interpret the mobility reduction at the boundary as being
caused by three factors. First, the major and minor groove produce a micro-
scopically rough DNA surface, and ions trapped inside are virtually immobile.
Second, the charge pattern on the DNA causes electrofriction [330, 331] that
can extend beyond the DNA backbone. Finally, hydrodynamic effects will
slow down the motion of particles near a hydrodynamic boundary, as Comer
et al. have shown.

In order to quantify how the mobility reduction next to the boundary affects
the current, we split the current into three contributions: (1) the current
ID that would be expected if the mobility was constant and the water was
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Figure 5.17: (a) Position dependent ion mobility normalized by the bulk mo-
bility (v − u)/µDE for five different salt concentration. Near the DNA and
the wall a significant reduction is observed. (b) Observed current densities as
a function of r. We distinguish the direct current jD, the convective current
jW and the (negative) frictional current jF . The direct current near the DNA
is largely cancelled by friction.

immobile, (2) the convective current IW due to the water flow, and (3) the
(negative) current contribution IF that is suppressed by interfacial friction.
We express all of these in terms of current densities which we define as the
direct current density jD = c+µ+

DE − c−µ−DE, the convective current density
(as in [332]) jW = c+u − c−u, and the interfacial current reduction density
jF = j − jD − jW, where j is the total current density. The direct current
depends, apart from the concentration dependence of the mobility, only on the
number of ions of both species inside the pore. Therefore it contains both, the
extra counterions that the DNA brings into the pore, and the ions expelled
from the pore due to the DNA’s finite volume.

In the right panel of Fig. 5.17 we report the direct and convective current
density, and the density of interfacial current reduction. They are multiplied
by the radius, so that the area under the graph corresponds to the magnitude
of the associated current. The area between the jF curve (yellow) and the
sum of jD and jW (blue) represents the total current. The shape of the
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Chapter 5. Nanopore conductance in the presence of DNA

direct current follows exactly the ion concentration reported in Fig. 5.16. The
convective current jW = (c+ − c−)u is nonzero only in the regions with net
charge, namely the Debye layer. It only occurs if a DNA is in the pore, and it
is a positive modulation of the total current. In the proximity of the DNA, the
conduction is largely suppressed. The fact that ions in the DNA’s grooves are
virtually immobile is reflected in jD and jF being almost equal. This however
applies only to 1/3 of the counterions. Ions further away from the pore axis,
also at r > 1 nm, are considerably reduced in mobility, resulting in an larger
frictional current reduction.

We performed identical simulations also for a DNA-free pore. We investi-
gate the relative current modulation (Iwith DNA − Iwithout DNA) /Iwithout DNA

as this quantity depends neither on the length of the investigated pore nor on
the absolute value of the mobility of the ions. The total current was calculated
from the displacement of the ions during a simulation run. In Fig. 5.18 the
results are displayed together with the experimental data. The lines are only
guides to the eye. The current obtained in the DNA-free simulations is inter-
polated by a third order polynomial to get a continuous function to determine
the relative current alteration for every salt concentration. We decompose
our data into a direct, an convective and a frictional component. For all
salt concentrations the current modulations from the simulations are in good
agreement with the experimental data. For high salt conditions a current re-
duction of around 5% is observed. The experiments suggest a somewhat lower
reduction, however with uncertainties similar to the deviations between exper-
iments and simulation. For low salt concentrations the predicted enhancement
is larger than experimentally observed. This can be justified by noting that
the experimentally used nanopores are not very long (around 40 nm) and have
an hourglass shape. Only the radius at the constriction corresponds to the
10 nm used here. When the pore is wider the relative enhancement or blockade
can be expected to be smaller. The crossover point between enhancement and
blockade occurs at an electrolyte concentration of 0.3 mol/l, agreeing with the
experiments.

The observed direct current is always larger in presence of the DNA since the
number of ions in the pore at equal reservoir concentration is always larger
with DNA in the investigated concentration range up to 1.2 mol/l. The contin-
uum model predicts this to be the case up to 0.85 mol/l. Thus the obstruction
of the cross section due to the DNA’s finite volume is always overcompensated
by the presence of the Debye layer. The convective contribution to the current
only appears in the presence of a DNA strand and is always positive. The
effect that is responsible for the crossover effect, however, can be clearly iden-
tified. Without the mobility reduction at the surface of the DNA no current
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Figure 5.18: Relative current modulation caused by the DNA as a function
of salt concentration for the experiments (diamonds) and simulations (cir-
cles). The quantitative agreement between simulations and experiments is
good, especially the location of the crossover point between enhancement and
reduction. We decomposed the total current into direct current (downward
triangles), convective current (upward triangles), and friction (squares) and
consider their contribution to the modulation independently. The current re-
duction due to friction is responsible for observing an overall current reduction
at large salt concentrations.

blockades would be observed.

5.3.4 Visual analysis of sequence-specific effects

In the one-dimensional radial projection of the ion densities and velocities,
very interesting information is lost. So far we could only speculate about
the mechanisms slowing down ions in the vicinity of the DNA molecule. To
understand the mechanisms in more detail, it is useful to investigate the data
in all spatial dimensions, especially to identify how the molecular structure
of the DNA affects the conduction process. After all, if DNA sequencing
from measuring the ion current is possible at all, the current modulation must
somehow depend on the DNA sequence in the pore. Even though double-
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stranded DNA is less well suited for sequencing we decided, as a first step, to
compare the current modulation of a poly-CG and a poly-AT DNA.

The analysis was performed in cooperation with the Visualisation Research
Centre of the University in Stuttgart (VISUS). The goal of our joint project
was to analyze our data with regard to correspondences between the ion dy-
namics and the DNA structure. From the visualization point of view, this
problem is tackled with a visual analytics approach [333–335]. The key in-
gredient in visual analytics is using the human’s perceptual and cognitive
capability and extending it by suitable visualization. In a tight interaction
of visualization development and the user, tailored techniques of data visu-
alization, abstraction and filtering are developed. This approach stems from
the problem that available datasets are growing in size and complexity. The
human is put “in the loop” of the process of representation of the data, vi-
sual interaction and computational analysis. In this incremental process of
insight and refinement, researchers can work out the “important” aspects of
a dataset.

An important necessity for visual analytics are visualization techniques which
allow for interaction with the data. This requires the use of parallel computer
architectures and efficient algorithms. In our case this is realized by using
the software framework MegaMol [336], which is developed at VISUS for in-
teractive visualization of large and complex datasets. Our effort resulted in
a software application where data aggregated from many independent simu-
lation is displayed in conjunction with a particles-based representation of the
DNA. By using modern rendering techniques on state-of-the-art hardware this
allows for visualizations of our datasets with at least 30 frames per second.
All visualization parameters can be adjusted on the fly. The user can interac-
tively rotate the representation, adjust thresholds, add filters, make elements
transparent, add and remove different visualization elements, and explore the
data for interesting features.

Different visualization techniques were combined in this application, which are
briefly outlined below. Before that, we briefly describe the applied aggregation
technique.

A challenging aspect of a three-dimensional data representation is the noise
of the data due to statistical uncertainties. To maximize the statistical ac-
curacy we reduced the pore radius to three nanometers and ran in total 100
simulations of eight nanoseconds, with otherwise identical simulation param-
eters as above. With a C program, a three-dimensional binning of the den-
sity and the flux density was performed. Each ion was distributed over the
eight neighbouring bins with weights according to the multilinear expression
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5.3. Atomistic model of nanopore conductance

which is also used for the interpolation of Lattice-Boltzmann velocities. In
this binning method we made use of the intrinsic symmetry of the data. By
construction, the system is, except for artifacts due to the cubic periodicity
of the simulation box, invariant under a translation of 0.338 nm and rotation
by 36◦, as all base pairs are identical. We therefore counted each ion twenty
times at coordinates translated by n·0.338 nm and rotated by n · 36◦. This
minimizes the statistical errors, but the resulting dataset has the same shape
as the simulation box, and is therefore easy to use in the visualization soft-
ware. We applied a file format from the VTK toolbox [337], so, in principle,
the data can also be visualized with VTK-based tools as ParaView [338].

As means to display the ion densities, we apply isosurfaces, a very common
and intuitive technique. An isosurface is defined as the level-set of a scalar
function in space [339]. They are often visualized using either a mesh gener-
ated by method like Marching Cubes [340] or direct volume rendering. In our
application, we use GPU-based ray marching [341], a direct volume rendering
method that can be used to render a smooth isosurface. The basic idea of
ray marching is to traverse the scene along a ray that starts at the camera,
thereby sampling the scalar field in a given interval. If the scalar value crosses
the given isovalue between two sample points (which are obtained using trilin-
ear interpolation), the location of the isosurface along the ray is approximated
using linear interpolation. Isosurface ray marching yields high visual quality
and runs very fast on current graphics hardware [341]. It has the additional
inherent benefit that it renders semi-transparent surfaces correctly. Further
information can be added to the isosurface by a color coding.

Originally we planned to apply stream lines to visualize the velocity vector
field. Stream lines are the trajectories of massless particles where the force
on the particle corresponds to the value of the vector field at each position.
Further information can be encoded in the local color and thickness of the
line. Visual clutter can be avoided by limiting the number of stream lines.
By graphical insepction, it however turned out that stream lines are only well
suited for divergence-free fields, such as flow fields and electrostatic fields. The
velocity field is not divergence-free, but only the flux density field, and there-
fore the results appeared implausible to the observer. Alternative to stream
lines we implemented a glyph-based representation of the velocity field. In
this case we chose arrows as glyphs, indicating the direction of the velocity
field. The length was scaled by the velocity and with different color codings
extra information could be added. The DNA atoms are represented by spher-
ical glyphs, where the color coding is an adjustable mix of molecule index (in
this case in index of the DNA strand it belongs to) and the atom type. Also
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Figure 5.19: (a) One-dimensional projection of the ion density (top) and the
ion velocity (bottom) for both CG- and AT-DNA. The right parts of the
diagrams show the curves for CG-DNA, while the left parts show the curves for
AT-DNA. The DNA strand and the pore walls are given for reference. (b) Two
screenshots taken from our application showing three ion density isosurfaces
for the CG-DNA molecule. The innermost, blue isosurface encapsulate ions
inside the major groove of the DNA and strictly follows the helix shape. The
outermost, yellow isosurface exhibits an almost perfectly circular cross section
with a radius of ∼1.5 nm, indicating that for larger distances a rod-like model
of DNA is absolutely adequate.

other representation, such a stick representation, where each chemical bond
is represented as a stick connecting the atom centers, are available.

First we compare the ion densities of the CG- and AT-DNA in the well-
known one-dimensional projection in the upper left left panel of Fig. 5.19a.
It is noted that the very high first peak in the potassium ion concentration
observed already in the CG-Simulations before is much less pronounced for
the AT-DNA. In the latter case the fraction of charge of the DNA already
compensated for within the grooves is smaller. Correspondingly the second
peak, corresponding to the onset of the Debye-type screening is slightly higher.
The chloride ion distribution in both cases is indistinguishable. At the pore
boundary a surprisingly pronounced layering behaviour can be observed.
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5.3. Atomistic model of nanopore conductance

In Fig. 5.19b we display isosurfaces of the ion densities around the CG-DNA
in two variants. The two snapshots were rendered with the raycasting method
described above, where in the left variant the isosurfaces were rendered with
a high degree of transparency, and as opaque surfaces in the right variant.
The iso-levels of the three surfaces correspond to around 0.8 M, 1.6 M and
3.5 M respectively. The outermost yellow surfaces is virtually cylindric with
a radius of around 1.5 nm. This indicates that already at this short distance
the structure of the DNA is entirely smeared out. The ion distribution is
indistinguishable from that of a structureless rod. Close to the DNA more
structure can be observed. The intermediate isosurface is almost cylindrical,
but exhibits a gap in the major groove of the DNA. The isosurface with the
highest density forms a tube-like structure within the major groove, indicating
a region with a high binding affinity for the ions.

In Fig. 5.20 we have highlighted the qualitative differences of the regions with
the highest ion concentrations of the CG and AT simulations. We combine
a transparent isosurface rendering with a stick representation of the DNA
molecule, which is cropped to a region of interest at a particular base pair. In
the CG dataset we observe a tube structure of highest ion concentration which
winds around the DNA axis. It is located directly at the N and O groups of the
C or G base. At positions between two base pairs, the O atom of the next pair
is also close, and this effect makes the tube structure continuous. Even for the
highest iso-values no isolated spots are observed. In case of the AT dataset,
two binding regions can be identified. On the one hand, ions accumulate
in the major grove in direct vicinity of the hydrogen bond-forming atoms of
the nucleobase. This effect is, however, significantly lower than for the CG
homopolymer, and the binding spots form a pearl-necklace structure. The
regions of highest potassium density are located adjacent to the phosphate
groups of the backbone. Each of the two oxygen atoms of the phosphate
groups bear a charge of -0.7761e, hence this binding behaviour likely to be
caused by electrostatic interactions.
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Figure 5.20: Ion binding to a CG-DNA (left) and an AT-DNA (right). For the
CG-DNA the innermost layer of ions binds very tightly to the major groove.
The ions prefer close binding to the nitrogen and oxygen atoms in the major
grove which are involved in the base pairing. In case of AT-DNA the major
groove is far less attractive. The ions also bind there, but much stronger to
the negatively charged oxygen atoms at the backbone.

Furthermore we investigated the ion velocity field. In Fig. 5.21 we present
a combined rendering of stream lines and arrow glyphs of the velocity field
around the CG DNA. Additionally, the highest density isosurface is color-
coded from red to blue indicating an outflow or inflow, respectively. To our
surprise this rendering was not very helpful as the streamlines exhibit very
unstructured behaviour, and some arrows point upward and some point down-
ward. But we could make a very interesting observation. When we reduced the
sampling rate with which the velocity field was calculated, we found the gen-
eral trend that the magnitude of the velocity field reduced significantly (right
panel). Reducing the sampling rate in this case means that the ion velocities
are not calculated from their displacement between subsequent snapshots, but
from snapshots with a higher distance along the time axis. This results in a
smoothening of the trajectories, similar to a low-pass filter. This result is
remarkable. The arrows pointing in seemingly random directions are not a re-
sult of statistical noise, because this would have increased when lowering the
available number of independent snapshots. On the contrary, the ions must
perform some high frequency vibrational motion that does not average out.
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Figure 5.21: Ion motion near the CG-DNA taken with two different sampling
rates: 5/ps (left) and 0.1/ps (right). The color coding indicates the normal
component of the local ion velocity, and the ion velocity is additionally dis-
played as arrows. Stream lines support the perception of the vector field. On
short time scales a rapid, ballistic ion motion is apparent. If the trajectories
are smoothened by using a lower sampling rates, the short time motion is av-
eraged out. On long time scales, the motion of the ions is largely suppressed,
reflecting the friction effect near the surface.

We adapted our visualisations to investigate this phenomenon in more de-
tail. Fig. 5.22 shows the arrow glyph visualisation of the ion velocity vector
field inside the grooves (regions with high ion density, green isosurface). The
arrows are colour-coded according to their direction: Red arrows indicate ve-
locity vectors that point in the direction of the electric current. This is the
anticipated direction of ion motion. There is, however, a region in the major
groove where the ions move in the opposite direction. Intuitively, this should
not happen, since the force of the applied current is stronger than other com-
peting effects (e.g. negatively charged atoms in the DNA). By reducing the
sampling rate, which leads to a smoothing the individual trajectories, this
effect is weakened, and entirely disappears for even lower sampling rates. Ul-
timately, the up- and down-motion of the ions within the major groove cancel
almost entirely, as seen in the one-dimensional projection of Fig. 5.19a. The
origin of the behaviour, however, remains obscure to us. The phenomenon is
not understood, and we can only speculate about the underlying mechanism.
The close interaction with the visualization department, allowed us to clearly
and unambiguously identify this effect. We suggest to study it further in a
coarse-grained scenario, where the parameters are under better control and
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the computational effort is smaller.

Figure 5.22: Ion motion inside the major and minor groove of CG-DNA taken
with two different sampling rates: 5/ps (left) and 0.1/ps (right). The green
isosurface encircles the region with high ion density, which is following the
the major groove. In this region, ion motion is partially in compliance with
the electric current (upwards, red arrow glyphs). There is, however, a distinct
region where the direction of the ion motion opposes the direction of the
current (blue arrow glyphs). The atoms of the DNA are colour-coded by their
chemical element using the common CPK colouring scheme.
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5.4 Summary

We have investigated the question what mechanisms cause ion current mod-
ulations in nanopore translocation experiments. More specifically, have we
investigated why a DNA in a nanopore can cause current enhancements at
low salt concentrations, and current reductions at high salt concentrations of
the buffer solution. Four important effects and their qualitative influence on
the current modulation could be identified: (a) Excluded volume. Ions are
displaced from the volume occupied by a DNA molecule. This leads to a cur-
rent reduction. (b) DNA charge. As the DNA is charged it is surrounded by a
counterion cloud. Under most experimental conditions this counterion cloud
can enter the pore and the counterion presence enhances the conductivity.
(c) Electroosmostic flow. The DNA creates an electroosmotic flow of water
molecules inside the pore. This leads to an convective transport of ions and
hence an increase in conductance. (d) Surface friction. Ions near the DNA
surface are less mobile than ions far away from the pore. This decreases the
conductance. The relative importance of these mechanisms depends strongly
on the details of the considered system.

As a first step, we applied a very simple model where the DNA is modelled
as a infinite charged cylinder in a cylindrical pore and where the ion motion
is described by the electrokinetic equations. In this model the experimental
conductivity modulations can not be observed in agreement with the experi-
ments. For concentrations up to 1.2 M the conductance with DNA is higher
than without DNA. By replacing the continuum description of ions and water
by a explicit particles and an LB fluid, the crossover concentration between
enhancement and reduction moved down to around 0.7 M, which is in better
agreement with the experiments. The MD/LB simulations contain hydrody-
namic interactions of ions with interfaces, which reduced the mobility at the
boundary. This friction effect is conceptually not contained in the electroki-
netic equations. In a third step, we performed simulations of the same system
with atomistic resolution, including an all-atom model of the DNA molecule.
In this model the friction of ions with the DNA molecule is more pronounced,
and a crossover behaviour in agreement with the experiments is found.

The continuum model based on the electrokinetic equations had been suc-
cessfully applied to predict the electrohydrodynamic forces acting on DNA
molecules in pores [15]. Its most important drawback is that conceptually
no friction effects are included. In principle, it is possible to add this effect
by using a position-dependent diffusion coefficient. A second effect missing
in the electrokinetic equation is the concentration-dependent conductance of
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electrolytes. This effect is of electrohydrodynamic origin and, to our surprise,
is included in the LB/MD model almost in quantitative agreement with ex-
perimental data. It however only weakly affects the question of the magnitude
of the current modulation in a nanopore caused by a DNA molecule. In the
LB/MD model we observe a friction effect between ions and surfaces caused
by hydrodynamic interactions. As the DNA surface in our model is only rep-
resented in a very primitive way we can, however, not expect quantitative
agreement.

The LB/MD method we used so far had only rarely been used as a tool for
quantitative predictions. We have shown that by choosing the right parame-
ters a well defined hydrodynamic radius of the particles is obtained. The max-
imum hydrodynamic radius that can be obtained with the nearest-neighbour
coupling suggested by Ahlrichs and Duenweg [278] is around half of the applied
lattice constant. Choosing too small viscosities can lead to a violation of the
fluctuation-dissipation relation and is therefore discouraged. We have shown,
that quantitative predictions in agreement with the electrokinetic equations
plus the two extra effects contained in the simulation method are possible.
Our analysis of the methodology is, however, not complete. We will comment
on that discussing further work.

Quantitative agreement with the experimental data could be achieved by re-
building the same geometry in all-atom simulations. We found a surface fric-
tion effect that is significantly more pronounced than in the LB/MD simula-
tions. It leads to an reduced effective conductivity of the counterion cloud.
The general agreement between the all-atom model and the coarser models
presented above is surprisingly good. For distances larger than around 1.5 nm
the ion density measured in atomistic simulation is virtually indistinguishable
from that of a charged cylinder. Also the magnitude of the electroosmotic
flow and the position of the effective hydrodynamic boundary in both mod-
els agree remarkably well. In a detailed three-dimensional visual analysis of
the ion densities around a DNA molecule determined from atomistic simula-
tions we could clearly distinguish features of a poly-AT and a poly-CG DNA
molecule. For the poly-CG a significant amount of ions accumulates in the
major groove, which is almost absent of the poly-AT DNA. In this case the
ion densities in vicinity of the phosphate group of the backbone, where the
DNA charge is located, is somewhat higher. The visual analysis also revealed
a very interesting behaviour. In the tube of highest ion concentration within
the major groove of the CG-DNA in one region the ions move in the direc-
tion of the applied field, and in some regions in the opposite directions. Both
currents largely cancel out. So far, this behaviour is not understood, but it
appears related to a high frequency ballistic motion of the ions.
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Choosing a suitable set of interaction parameters for the all-atom simulations
turned out to be more difficult than anticipated. No standard set of parame-
ters could yield hydrodynamic ion radii in agreement with experiments. We
applied a combination of the AMBER force field, the SPC/E water model,
and an ion model suggested by Dang. This was the only combination we
found in the literature that had been tested for DNA simulations and where
the hydrodynamic radii are not much larger than the experimental values of
potassium and chloride ions. The role of the force field for the simulation re-
sults remains an open question. Below we will discuss how these investigations
can be extended with regard to this question.
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6 Conclusions

In this concluding chapter I will review the work that was done, discuss the
modelling strategies and formulate ideas on how to proceed with this work.
Except for the summary, it is written in the first person singular voice, as
the judgements and views put forward are mostly my personal opinion. At
the point of writing this thesis the application of an extension of this project,
together with the Special Research Center (Sonderforschungsbereich) it is sit-
uated in, are prepared to be extended. Also, a long-term collaboration with
the experimental group of U. Keyser, which possibly includes myself, is being
prepared. Thus, many plans and different strategies have been discussed in the
last months. This chapter is a good opportunity to formulate my judgement
on the present findings and recommendations for future work. Therefore, this
chapter has become quite extensive.

6.1 Summary

In this thesis we studied nanopores, one of the most promising biosensor
technologies. The measurement principle is astonishingly simple. A mem-
brane separates two water-filled compartments and only a single nanometer-
sized hole connects them. By applying a voltage, biomolecules can be driven
through the pore. The voltage also causes a current of ions, e.g. KCl, through
the pore, which can be measured. From ion current measurements, detailed
information about the transported biomolecule can be obtained. The most at-
tractive application is the sequencing of DNA, which can be potentially made
much cheaper and faster than the current state of the art. The versatility of
nanopores, however, makes them also very attractive for other scientific and
commercial applications.

We studied two fundamental aspects of nanopore-based sensors: (a) Are there
free energy barriers of electrostatic origin which prevent charged molecules
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from crossing pores? (b) What is the physical origin of the ion current modu-
lations caused by DNA molecules transported through a nanopore? Both ques-
tions were answered with a combination of particle-based molecular-dynamics
simulations and the application of a continuum theory.

We investigated the question regarding electrostatic free energy barriers with
simple coarse-grained models for double-stranded DNA (dsDNA) and single-
stranded DNA (ssDNA). Short dsDNA fragments were modelled as stiff rods
of 2 nm diameter and ssDNA was modelled by a flexible bead-spring model.
In both cases we chose the charge density in agreement with the experimental
charge density of about 6 e/nm and 3 e/nm. A univalent electrolyte was
modelled as charged spheres in an implicit solvent model, where water was
assumed to act as a homogeneous dielectric medium with a permittivity of
80. We investigated especially the role of the dielectric permittivity of the
membrane material. This was done by means of the ICC? algorithm, where
induced charges on a dielectricm interface are determined iteratively in every
simulation step. This algorithm was improved considerably, parallelized and is
available as part of the simulation package ESPResSo since version 3.1. In our
simulation the pore was modelled as a homogeneous dielectric medium with
a permittivity of 2, reflecting the sharp dielectric contrast between typical
membrane materials and the surrounding water. It was assumed to be an
eight nanometers long, cylindrical cavity in a flat wall. We compared the
cases with and without taking the dielectric contrast into account.

We determined the free energy profile for the transport of DNA molecules by
calculating the potential of mean force. For dsDNA we used the axial coordi-
nate of the center of mass of the DNA as a reaction coordinate and additionally
assumed that the DNA is constraint to the pore axis. We measured the free
energy barrier for a 10 nm dsDNA fragment in pores of different diameters at
different electrolyte concentrations. The barrier height we determined were as
large as 20 kBT , corresponding to around 50 kJ/mol for small pores and low
salt concentrations. With increasing salt concentration and pore radius the
barrier sharply decreases as more and more of the DNA charge is screened due
the formation of a counterion cloud. The relevant length scale for screening is
the Debye length which is between around 3 nm at 0.01 mol/l and 0.3 nm at 1
mol/l. Its ratio to the pore radius governs the magnitude of the barrier height.
The dielectric contrast increases the barrier height. As a rule of thumb, we
found that it approximately doubles under the considered conditions. This is,
however, only valid for the pore length we considered.

For single-stranded DNA we suggested a new reaction coordinate which al-
lows us to describe exactly both the approach of one end of the DNA towards
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the pore opening and the transport process. This is achieved by using the
Euclidean distance of the DNA end to the pore center in if the DNA does not
cross the pore, and by using the fraction of the DNA that has already translo-
cated if the DNA crosses the pore. By stitching these two regions together, a
continuous function is obtained that describes over the whole process how far
the translocation has proceeded. With this reaction coordinate we calculated
the free energy barrier for a 40 nm ssDNA molecule in a 10 nm wide pore. We
found it to be between 15 and 5 kBT depending on the salt concentration.
Even at high salt concentrations an barrier of a few kBT remains, reflecting
the entropic loss of the inner degrees of freedom of the DNA, as it has to
assume a shape compatible with the membrane. The dielectric permittivity
here also increases the barrier significantly.

Interestingly we found that the free energy barriers calculated for dsDNA
correlated well with the free energy barrier calculated from a very simple model
based on the Poisson-Boltzmann theory. In the Poisson-Boltzmann theory,
the ion density in the electrostatic potential is assumed to be governed by the
Boltzmann distribution, while the electrostatic potential is generated by the
ions themselves. It is a simple mean-field theory. In the applied model, DNA
is assumed to be an infinite charged cylinder which is centered in an infinite
uncharged cylinder. The free energy barrier is calculated from solving the
resulting one-dimensional differential equation numerically in pores of different
radii and calculating the work necessary to shrink the pore to the desired size.
The dielectric permittivity does not appear on this level of description as
the pore must be entirely neutralized and no induced charges can occur. We
could show that, for the pore length considered in the MD simulations, the
DNA is only partly screened but that the central region of a very long pore
must be neutral as otherwise the self-energy diverges. This divergence is also
responsible for the phenomenon of Manning condensation. When we consider
longer pores in the simulations, indeed the central regions of the pore is entirely
neutralized regardless if dielectric contrast is considered or not. If dielectric
contrast is considered, the screening is stronger and therefore we find such a
good correlation between the barriers from the Poisson-Boltzmann model and
the simulations including dielectric contrast.

We could support this finding by calculating the free energy barrier with the
iPBS method. With the iPBS method, the Poisson-Boltzmann equation can
be solved in arbitrary geometries including dielectric contrast between differ-
ent regions. This is done with a combination of the Finite Element Method
and an induced charge iteration similar to the ICC? algorithm. We applied
the iPBS method to calculate the free energy barrier of DNA molecules in a
nanopore. In agreement with the MD simulations, DNA was approximated as
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a charged cylinder on the axis of a cylindrical pore. We could show that, in
the limit of infinite pore length and DNA length, the same free energy barriers
as in the one-dimensional model is obtained. This is valid regardless of the
question if dielectric contrast between the membrane material and the water
is considered. For pores of only 8 nm length, as considered in the MD simula-
tions, we, however, found that the barriers are significantly higher if dielectric
contrast is considered.

Summarizing our findings regarding electrostatic free energy barriers we find:
Electrostatic interactions are subject to screening due to the presence of salt
ions. Under all relevant experimental conditions, a significant amount of salt
is present. The charge can still lead to considerable free energy barriers, if the
Debye length is comparable to the pore radius. The dielectric contrast does
not change this picture qualitatively. It increases the tendency that charged
objects in front of dielectric interfaces are neutralized. For long molecules in
long pores, the dielectric contrast does not have to be taken into account, as
the self-energy which increases with increasing length also requires neutraliza-
tion.

The second question we investigated was the physical origin of ion current
modulations in DNA translocation experiments. In virtually all translocation
experiments a voltage is applied over the nanopore and the molecules to be
sensed are dragged into the pore. During the experiment, a steady electric
current formed by ions, typically KCl, develops. When DNA molecules, enter
the pore, their presence alters the electric current. Four important effects
contribute to these modulations modulation: (1) the excluded volume of the
DNA, (2) the DNA charge, (3) electroosmotic flow and (4) ion friction near
the DNA surface. Each of these effects is suggested in the literature, but so
far they have not been quantified in detail.

Our goal was to improve the quantitative understanding of the interplay of
these effects. We performed a modelling procedure composed of three stages:
We started off with a continuum model based on the electrokinetic equa-
tions. Then we constructed a coarse grained simulation model. Finally we
performed simulations with atomistic resolution. The challenge in this pro-
cess was obtaining mutually compatible results, or a consistent hierarchy of
models where only more details but not systematic deviations were introduced
on each level.

First, we applied the model developed by van Dorp et al. [15] to predict the
ion current modulation caused by a DNA molecule. It was the inspiration for
the simple one-dimensional continuum model discussed above and therefore
is very similar. A cylinder bearing the line charge density of double-stranded
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DNA is embedded in an uncharged cylinder. The motion of ions and water are
described by the electrokinetic equations. If no field was applied this model
would reduce to the Poisson-Boltzmann equation, and hence exactly to the
infinite cylinder model of the first section. An electric field is applied along the
pore axis, which leads to the transport of ions and water along the pore. From
the integral of the current density over the pore cross section the current is
inferred. This model contains three of the four effects mentioned above. The
cylinder radius governs the excluded volume of the DNA. It reduces the cross
section and hence the number of ions available. The solution of the Poisson-
Boltzmann equation takes into account the charge of the DNA, and how many
counterions enter and how many coions leave the pore in equilibrium. Finally
the solution of the Stokes equation leads to a convective contribution to the
ion transport, because counterions travelling in the direction of the developing
electroosmotic flow can move easier.

The experimental data we wanted to understand are, among others, the exper-
iments of Smeets et al. [5]. They observed, that in translocation experiments
with dsDNA through solid-state nanopores the sign of the current modula-
tions depends on the concentration of the electrolyte that is used. For low
salt concentrations, they observed positive modulations; the ion current is
increased by the presence of a DNA molecule inside the pore. For high salt
concentrations they observed the behaviour found in most experiments, a
current reduction. The crossover between current increase and reduction was
determined at concentrations between 300 mM and 400 mM. The model of van
Dorp et al. had originally been developed to predict the force necessary to stall
a DNA molecule in the pore in a very similar experiment setup. Therefore,
we were optimistic that it would be successful in describing the ion current
as well. However, we found that the crossover is predicted at concentrations
larger than 1 M. Even by omitting the convective current contribution the
crossover still is above 800 mM. Based on an even simpler model, Smeets
et al. had argued that is was justified to assume an “effective” DNA charge
significantly smaller than the bare charge could be assumed to explain the
data. They speculated that this charge reduction might be related to a re-
duced mobility of ions. On this level of modelling this effect is conceptually
not included and we therefore continued to more complex models of the same
system.

We constructed a conceptually identical model based on a hybrid Molecular
Dynamics/ Lattice Boltzmann (MD/LB) simulation. This approach is an ex-
tension of conventional implicit solvent molecular dynamics simulations, where
the dynamic properties of the solvent are taken into account in terms of a very
efficient lattice-based fluid representation. Compared to an entirely particle-
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based method the computational effort is much lower, and the remarkable
computational capabilities of graphics cards can be used efficiently. Parti-
cles are coupled to the LB fluid with an frictional force. From a dimensional
analysis of the electrokinetic equations we could show that the effective hy-
drodynamic radius of the ions must be matched to obtain the correct ratio of
ion velocity and magnitude of the electrokinetic flow. We could show that for
the MD/LB method a unique hydrodynamic particle radius can be identified.
By choosing the right particle radius the concentration dependence of the spe-
cific conductivity of an electrolyte is predicted in quantitative agreement with
experimental data. To study the nanopore conductance properties, we con-
structed a model reflecting the infinite cylinder model as exactly as possible.
We created a cylinder which is periodically repeated through periodic bound-
ary conditions and which bears the same line charge. It was embedded it into
a cylinder. The DNA charge was neutralized and a varying number of ions was
added to the system. The effective reservoir concentration was determined,
in accordance with the electrokinetic model, as the mean concentration near
the pore boundary. The radial distribution of ions and the occurring ion and
water velocities were in agreement with the predictions of the electrokinetic
equations. We found, however, that the absolute conductance of the pore was
significantly reduced (up to around 30%) due to the concentration dependent
electrolyte conductance. Additionally we found, that the mobility of particles
near the walls, including the DNA, was lowered. This is in qualitative agree-
ment with macroscopic hydrodynamics, but the magnitude of the slowdown
did not follow any well-established form. This effect, however, shifted the
crossover concentration to around 600 mM. As the mobility reduction some-
what arbitrary, we decided to study the same effect with a model of finer
resolution.

As a third step, we constructed a very similar model using atomistic simula-
tions. A dsDNA molecule was placed in a periodic simulation box such that
it was closed over periodic boundaries. This pseudo-infinite DNA strand of 20
base pairs was fixed in a cylindrical pore represented by Lennard-Jones beads.
We chose a combination of ion force field and water model with realistic hydro-
dynamic radii and used the only atomic force field with which this combination
has been tested in the literature. An electric field was applied along the pore
axis and we again determined the position-dependent ion densities and ion
and water velocities. The ion distributions was in good agreement with the
predictions of the electrokinetic model for distance from the DNA axes larger
than 1.5 nm. For shorter distances specific binding inside the DNA’s major
and minor groves occurred. To our surprise especially the electroosmotic flow
predicted by the continuum model was almost qualitatively correct. The de-
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viations e.g. of the effective hydrodynamic boundary was smaller than the size
of a water molecule. The ion velocity is described very well by a position de-
pendent mobility, for which we find a concentration-independent shape, if we
correct for the concentration- dependent conductance. Furthermore, we find
that this mobility modulation near the DNA surface is responsible for the
current blockades in the experiments. We found a crossover concentration in
quantitative agreement with the experiments and the modulations we found
were somewhat larger than those found experimentally. This, however, can
be explained by the fact that we neglect the access resistance of both sides of
the pore, which is less affected by the presence of the DNA.

These investigations were performed with a DNA molecule consisting only
of cytosine-guanine (CG) base pairs. In addition, we performed simulations
with a DNA consisting of only adenine-thymine (AT) base pairs. In a coop-
eration with the Visualisation Research Centre at the University of Stuttgart
we developed a Visual Analytics tool to investigate the detailed features of
the simulation results. With this tool we could identify the structures attract-
ing the potassium ions. For the CG molecule we found the N-H-O structure
in the major grove as binding site. The continuity of the tube structure is
possible, because the next N-H-O region is close as well. For the AT, the
amine group in the major groove and the oxygen atom in the minor grove are
the sites where the highest potassium concentration is found. The origin of
these differences is so far not fully understood. A very interesting observation
was made regarding the motions of ions in the tube of highest ion concentra-
tion of the CG-DNA. It can be separated into a region where the ions travel
parallel to the electric field and a region where the move antiparallel. This
behaviour must be related to a high frequency vibration as it disappears when
the ion trajectory are sampled with a lower sampling rate. It is so far also not
understood.

6.2 Discussion of models and methods

In the present work we applied models based on three different approaches,
each with a different resolution. We applied all-atom simulations, implicit sol-
vent simulations, and continuum models. Each of these three approaches has
clear strengths and drawbacks. The computational effort and therefore the
time and length scales possible to access increase significantly with the reso-
lution. In orders of magnitude, we spent CPU-years for all-atom simulations,
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CPU-months for coarse-grained simulations and CPU-days for continuum-
level calculations. On the contrary the length scales were nanometers for the
atomistic simulations, tens of nanometers for the coarse-grained simulations
and hundreds of nanometers on the continuum level. These numbers already
indicate that all of these approaches are complementary. A consistent con-
nection between these scales, however, is necessary, and we will summarize
our findings regarding the consistency here. We will start the discussion in
terms of properties regarding thermodynamic equilibrium and then proceed
to dynamic properties.

The electrokinetic equations are derived from very general assumptions and
can be expected to be exact in the limit of large length scales and low ion
concentrations and low electrostatic surface potentials. While this limit may
be unrealistic for many applications we believe that this a helpful starting
point. In equilibrium, i.e. in the absence of driving forces like voltages or
pressure or concentration gradients, they reduce to a single equation, the
Poisson-Boltzmann equation. In this equation only a single free parameter, the
Debye length governs the physics. It is the length scale on which electrostatic
interactions are screened and it depends on the electrolyte concentration and
the dielectric constant of the solvent. Ion correlations are neglected in this
mean-field-theory. By comparison to simulations with explicit ions, we found
that in aqueous systems containing a cylinder with the line charge density
of DNA this approximation is not severe. This is in agreement with the
literature. By comparison to atomistic simulations, we found that describing
the ions by means of Poisson-Boltzmann theory around a cylinder of around
1 nm radius is absolutely adequate, as long as the far field more the 1.5 nm
away from the DNA axis is of interest. This finding also makes us confident
that the free energy barriers calculated from coarse-grained simulations are
realistic. For distances smaller than around 1.5 nm, effects specific to the
DNA type appear important. Our simulations indicate that around one third
of the DNA charge is compensated for by ions entering the DNA grooves.
This fraction does depend on the DNA type that is considered. The far field,
however, remains virtually unaffected by the DNA composition.

The of role dielectric interfaces is twofold. In the context of an interface be-
tween water and a medium with a lower dielectric constant, their effect is
twofold. On the single ion level, they are repulsive and therefore prevent
ions from being close. Furthermore, they increase correlations. This is only
visible at conditions under which ion correlations are important at all. In
a univalent aqueous electrolyte, the effect is negligible, but in trivalent salt,
some effect could be detected. On the Poisson-Boltzmann mean-field-level of
description, as correlation effects, they are not contained. In the presence
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of charged macroions, e.g. DNA, the interface repels the charged objects. In
addition, it increase the electrostatic attraction between counterions and the
charged objects. This effect is screened on the Debye length scale. Applying
a particle-based description for the dsDNA translocation barriers was by no
means better than a PB-based model. The differences between the prediction
of both was smaller than the uncertainty e.g. of the geometry from the exper-
iments. Correlation effects were of no importance for the considered question
and therefore the PB equation is absolutely adequate. With the iPBS algo-
rithm, dielectric interfaces can be treated satisfactorily, and even the simple
one-dimensional continuum model yielded acceptable results.

In case of the flexible model for single stranded DNA, the coarse-grained
simulations played their full potential. We were able to model a DNA strand
of forty nanometer length in a simulation box, which was even larger. In this
case the high configurational degree of freedom is difficult to take into account
correctly on the continuum level. For the all-atom-model the computational
effort rises to enormous amounts. On the continuum scale the geometric
simplicity, which made the modelling with double-stranded DNA so easy, is
lost. In other terms, the conformational space of the DNA and the ions is
sampled at the same time in the coarse-grained model. However, it is fair
to say that our effort in parametrizing the ssDNA was small. The physics of
single-stranded DNA is much more complex, especially as it can form complex
structures, for example so-called hairpins, by interactions with itself. A more
realistic model must take these into account in more detail.

For dynamic effects, the electrokinetic equations contain only one further pa-
rameter, the hydrodynamic radius of the ions. The hydrodynamic ion radius
can be measured in terms of the diffusion constant of the ions and the solvent
viscosity. The physical interpretation of this parameter is as follows: Parti-
cles with small hydrodynamic radii can slip though the solvent easily. Their
motion is only weakly affected by fluid flow. If the hydrodynamic radius of
the particles is large, water flow and particle transport are tightly coupled.
Consistent with this statement is the fact that the strength hydrodynamic
interactions also only depends on this quantity. The Debye-Hückel-Onsager
expression for the electrolyte concentration contains the hydrodynamic radius
for the same reason. Any model containing more microscopic structure must
match the ratio of this length scale to other length scales in the system to be
in asymptotic agreement with the electrokinetic equations.

We could show, that the hybrid Lattice-Boltzmann/Molecular Dynamics sim-
ulations, the hydrodynamic radius of the particles is well-defined and can be
adjusted to the desired number. Hydrodynamic interactions are reproduced
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sufficiently accurately so that the experimental electrolyte conductance can
be reproduced almost numerically. In this sense, the LB/MD method is an
extension to the electrokinetic equations, that can reproduce their behaviour
asymptotically. It does contain hydrodynamic interactions as a correlation
effect. Near boundaries, the particle mobility is reduced. From the atomistic
simulations of DNA, we could show, that this effect is physically relevant, but
further work is necessary to understand its magnitude better. In this sense
the LB/MD method is not predictive, and its accuracy for different conditions
still must be explored better.

On the all-atom level we proved the existence and relevance of a surface fric-
tion effect for ions. We believe that this effect is independent of the applied
force field, but caused by a combination of a microscopic surface roughness,
electrofriction due to charge patterns on the surface and a water-mediated hy-
drodynamic frictional force. We are, however, somewhat suspicious that the
findings may quantitatively dependent of the applied force field. This is be-
cause ion parameters mostly have been adjusted to reproduce bulk electrolyte
properties well, but the interaction with other materials, e.g. DNA, has not
been considered in the parametrization. The ion parameters used in canoni-
cally with the different popular force fields have been used more traditionally
than because their behaviour is well tested. To obtain ions with a realistic
hydrodynamic radius, we had to rely on a non-standard combination of ion
parameters and water model, which was not very satisfactory. We suggest
studying these effects further by systematically checking further combinations
of force fields, ion parameters and water models.

Furthermore, a very interesting open question is, how reliable a discontinuous
dielectric constant can model the behaviour of ions or also dipolar molecules
in the vicinity of the interfaces. This is especially important if the membrane
material has a higher dielectric constant than the solution. This can happen
e.g. near graphene sheets, because in plane graphene is a conductor. By
assuming an infinite dielectric constant, ions are strongly attracted to the
surface. Even if this is realistic, an open question is where to position the
dielectric interface relative to the atoms. In our simulations the distance
between the dielectric interface and the plane, where repulsive interactions
set is a model parameter, but our findings were not changed much by altering
that distance, because the image charge effects were repulsive. In case of
attractive dielectric boundary forces potential with comparisons to quantum
mechanical calculations would be advisable.
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6.3 Future work

In Chapter 4, we investigated free energy profiles of DNA fragments. This
investigation aimed at learning about the translocation rate. Our investiga-
tion, however, did indeed not address the translocation rate directly. Two as-
pects are still missing when considering the translocation rate in experiments.
First, knowledge about the translocation rate requires knowledge about the
pre-exponential factor of the Arrhenius law. This factor, also known as the
attempt rate, is proportional to the diffusion constant and the DNA concen-
tration. It also involves a factor related to the exact geometry and definition
of the reaction coordinate. Second, it is necessary to take the driving voltage
into account.

The charged rod system described in Sec. 4.3.2 would be a good starting
point for this investigation. Dielectric boundary forces could be neglected to
minimize the computational effort. As a first step it would be interesting to
study the translocation rate of a charged rod which is confined to the pore
axis but can move along the axis without applied voltage. In this system
it is straightforward to apply Kramers theory. By adding an appropriate
amount of salt ions, or choosing a wider pore, the free energy barrier can
be reduced, so that translocation happens sufficiently often and rates can be
measured directly and compared to Kramers theory. No further complications
are expected and therefore this system can act as a benchmark system for the
understanding of these processes.

For tighter pores and lower salt concentration, the spontaneous transloca-
tion rate will drop significantly, and methods of rare event sampling will be
necessary to study them. As techniques like Umbrella sampling still rely
on Kramer’s theory, we suggest to apply the Forward Flux sampling tech-
nique [342, 343]. In this method, unbiased molecular dynamics trajectories
along a reaction coordinate can be constructed. A series of points along this
reaction coordinates serves as milestones, an each of them defines a hypersur-
face in phase space. Trajectories crossing a hypersurface are forked into many
by using different series of random number for thermostatting. This way it
can be assured for every hypersurface, that some trajectories will cross the
next hypersurface, without applying a biasing force. From a statistical analy-
sis of the trajectory fragments, an overall rate of the process can be obtained.
As no complications e.g. from slow internal degrees of freedom are expected,
agreement of conventional simulations, Kramers’ theory and Forward Flux
sampling should be obtained.
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For biased system is important to recognize that the driving force is not trivial
to determine. For sufficiently small voltages, the electric field is described by
a Laplace equation with zero field boundary condition on the pore. The
force acting on the DNA, however, has to be obtained by also considering
electroosmotic flow. In Ref. [344] this is e.g. done by solving the electrokinetic
equations in a very similar geometry as in 4.4.2. The mean force necessary to
stall the DNA at various positions along the axis is calculated by solving the
electrokinetic equations with the Finite Element Method. The integral results
is then used as the effective potential including the driving force for Kramers’
theory. This procedure appears sound, but our system would allow us to verify
this procedure without additional assumptions. For this the methodological
process with the LB method presented in this thesis is helpful. As the Forward
Flux Sampling method also allows for nonequilibrium conditions, it would be
possible to perform this investigation also for small driving forces and high free
energy barriers. We believe it is important to show that this process can not be
described by a concept of an effective charge, and that the out-of-equilibrium
conditions requires special care.

Moving from a DNA fragment confined to the pore axis to a fragment with
full orientational and positional freedom makes the considerations above more
difficult. Brute-Force simulations will require significantly longer simulation
time for DNA molecules to find the pore entrance. The reaction coordinate
used in Sec. 4.3.2 is probably not well suited for this enterprise. It would
be important to also take into account the distance in parallel direction, so
that the reaction coordinate can distinguish between DNA molecule in the
flat region of the membrane and in the pore. It could, for example, be pos-
sible to use the geometrical distance from the disc corresponding to the pore
opening. An alternative possibility could be inspired by the solution of the
electrostatic problem of a pore with electrodes placed far away from the pore
openings. Evaluating this value at the position of the center of mass of the
DNA fragment also could form a viable alternative. In all of these cases, an
entropic contribution to the free energy, the Fixman potential [345], needs
to be taken into account. With these modifications, the same machinery as
for the constraint case can be used. With all these intermediate steps it
should be possible to obtain a full picture of the translocation of stiff DNA
fragments. All steps can be performed largely without new implementations,
since already a well tested framework for the Forward Flux Sampling Method
is available [346, 347]. This would make this project very well suited for a
Master thesis.

Furthermore, the information gained on the atomistic level could be trans-
ferred back to the coarser scales. The good general agreement of the LB/MD
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simulation both with the electrokinetic theory and the atomistic simulations
make it plausible that only small modifications could lead to a representation
that is suited to study more complex questions, e.g. regarding more complex
geometries or nonlinear responses. In the literature, a plethora of model with
several “super-atoms” per nucleotide or base pair is available [348–355]. Only
few of the were though designed to be used in combination with an explicit
ion representation. The first step in this project would be to find a DNA
model which reproduces the ion distribution correctly. It could be attempted
to represent the different base pairs differently, to reproduce the significant
differences in ion distribution we found by the visual analysis. The parameter
space of such a problem should not be underestimated. Different numbers
of beads per base, with different sizes, and possibly anisotropic shapes and
attractive interactions with different strength must be tested. From first at-
tempts, I have learned that approximate results for the ion densities can be
obtained from only minutes of simulation time. A GPU implementation of
electrostatics could be very helpful to achieve a workflow which is not too
tedious. As a second step, the DNA could be made mobile, but it is probably
very helpful to have working model for a fixed DNA as a starting point.

A second detail that must be transported to the coarser scale is the position-
dependent mobility. To our knowledge, this effect has so far only been taken
into account Comer and Aksimentiev [329]. In their atomic resolution Brow-
nian dynamics, ions are treated explicitly and DNA is taken into account
including all atomic detail. The water has been incorporated into potentials
of Mean Force between the ions and all four nucleotides that have been de-
duced from extensive simulations. Beyond, the diffusion coefficient of the ions
depends on the distance from the nucleotide surface. For the LB/MD hybrid
method it could be possible to include an extra friction term in the spirit
of the Dissipative Particle Dynamics method could be considered. The pair-
wise particle friction of DPD could pose a viable way to include the extra
friction effect thermodynamically consistently, and including momentum con-
servation. The dynamic properties of the particles coupled to the LB fluid is
only partly well understood. We have shown, that the method can be used
as a quantitative tool for simulating electrokinetic systems. Our simulation
results indicate, that the hydrodynamic particle radius is unique, and deter-
mines indeed the strength of hydrodynamic interactions. Yet, we have shown,
that the fluctuation-dissipation theorem for particle mobility and diffusion
is only valid in a part of the parameters space. These deviations should be
investigated more systematically to understand why this can happen.

Interesting structures that could be studied with a coarse grained model of
DNA are DNA Origami nanopores. In these pores, DNA Origami [79] is used
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to create nanopores. [80–82]. The key advantage lies in the accuracy of the
DNA self-assemblies. First computer simulations of DNA origami have been
published, [356], but the size of experimentally used DNA origami nanopores
makes the all-atom simulations very demanding. A coarse-grained DNA rep-
resentation with implicit water and realistic ion dynamics would allow for
realistic and computationally tractable models.

With sufficient computational resources, it would be relatively easy to inves-
tigate further combinations of force fields, ion parameters and water models
in the same simulation setup we used in Sec. 5.3. In principle, all combina-
tions should yield similar ion distributions around the DNA. The workflow
is already adapted for the use of different force fields and water models, and
only ion parameters must be added. The visual analysis tool developed in
this thesis will then be especially helpful, as qualitative features of the ion
distributions must be compared.

In most translocation experiments, single-stranded DNA is used. The main
motivation, is that, of course, DNA sequencing can only with work if a single
DNA strand passes the constriction. Therefore, it appears very rewarding
to extend our investigation to single-stranded DNA. At least one important
parameter will then appear, which has so far not been relevant, the chain
tension. Single-stranded DNA will fluctuate much more, and therefore the
interplay of entropic forces within the chain and external forces from the chain
ends can significantly affect the chain geometry. The analysis will also turn out
to be more difficult, as fixing parts of the DNA will lead to unrealistic results.
Therefore, new measures must be found to characterize the ion distribution
and position dependent friction effects. Thus, studying ssDNA will require
conceptually new ideas and is therefore much more difficult than the study of
dsDNA presented here.

6.4 Concluding remarks

Finally, we would like to review our work from a somewhat more philosophical
perspective. I would like to comment especially the way we apply the concept
of a model. In other fields of physics, typically a single theory that describes
all observations is searched for (see e.g. [357]). In our case, we are, however not
striving for the model, which entirely explains the experimental data. On the
contrary, for all we know, the soft matter regime is satisfactorily explained
in terms of quantum mechanics. So why are we discussing models? One
very plausible point is, of course, the computational feasibility. We have
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e.g. shown, that we can estimate free energy barriers reasonably by solving
a one-dimensional ordinary differential equation. This is convenient, but not
the only reason.

In our case, the problem setting is somewhat different. The physical theory
capable of describing all the phenomena considered is well known. Quantum
mechanics are known to accurately describe the effects of relevant to soft mat-
ter systems. The generality of QM is also its fate: For our purposes We are in
no need to find a unique and highly accurate representation, which can “stand
for” the material world [358]. We, on the one hand, are in the need models
which are hand computationally feasible. Only if available computational re-
sources allow us to evaluate the model and make predictions, a model is useful.
On the other hand, we need models, as a tool to analyze and interpret the
data we have obtained from simulations. In this sense our understanding is
model-based itself because we rely on the using simpler models to understand
the prediction of a complex model. In our model-based understanding, we de-
liberately leave out details and realism leads to scientific insight. Yi describes
the strategy as follows: Identifying the features of a model, and what a model
can do – with and without extra assumptions – helps us to shape our physical
intuitions of the model [359]. Precision and generality of models of complex
systems are sometimes considered contradictory [360], and the tradeoff be-
tween the two we choose, is typically on the side of generality. Interestingly,
this approach is a “novelty [. . . ] in the philosophy of science” [361].

When projecting the current developement of computational power into the
future, it becomes plausible, that we are only observing an early stage of
in silico modelling. In a few decades, atomistic simulations with billions of
particles might be standard. I believe that then it is even more important
to have an appropriate language of formulating scientific insight. Possibly in
this future, computer simulation methods will be much easier to perform and
much more accessible for amateurs. But at that point, it is very important
to possess a language in which expected behaviour can be separated from
unexpected behaviour. With expected, I refer to that behaviour, which could
have been inferred from simple considerations of very basic scientific laws.
Especially then, it is necessary to have a sharp intuition and good coarse-
grained representations.
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ion distribution and osmotic pressure in hexagonally oriented dna. The
Journal of Physical Chemistry, 99(25):10373–10382, 1995.
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dna molecules mediated by multivalent ions. Physical Review E,
69(4):041904, 2004.
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